
HB206R1/D1

0

LINEAR/SWITCHMODE VOLTAGE REGULATOR HANDBOOK

THEORY AND PRACTICE

LINEAR/SWITCHMODE VOLTAGE REGULATOR HANDBOOK

Principal Contributors: Jade Alberkrack Bob Haver Roger Janikowski Cal Lidback Nick Lycoudes Henry Wurzburg

Circuit diagrams external to Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information in this book has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Second U.S. Edition First Printing ©MOTOROLA INC., 1982 "All Rights Reserved"

Printed in U.S.A.

Switchmode or SWITCHMODE is a trademark of Motorola Inc.

PREFACE

In most electronic systems, voltage regulation is required for various functions. Today's complex electronic systems are requiring greater regulating performance, higher efficiency and lower parts count. Present integrated circuit and power package technology has produced IC voltage regulators which can ease the task of regulated power supply design, provide the performance required and remain cost effective. Available in a growing variety, Motorola offers a wide range of regulator products from fixed and adjustable voltage types to special-function and switching regulator control ICs.

This handbook describes Motorola's voltage regulator products and provides information on applying these products. Basic Linear regulator theory and switching regulator topologies has been included along with practical design examples. Other relevant topics include: trade-offs of Linear versus switching regulators, series pass elements for Linear regulators, switching regulator component design considerations, heatsinking, construction and layout, power supply supervisory and protection, and reliability. A Motorola regulator selector guide along with data sheets and an industry cross-reference are also contained in this handbook. A transistor and rectifier selector guide for switching regulators of various configurations and power levels is provided in Appendix A and B.

TABLE OF CONTENTS

		Page
Section 1.	Basic Linear Regulator Theory	1
	The IC Voltage Regulator	1
	The Voltage Reference	1
	The Error Amplifier	5 8
	The "Regulator within a Regulator"	-
Section 2.	Selecting a Linear IC Voltage Regulator	11
	Selecting the Type of Regulator	11
	Positive Regulators	11 11
	Fixed Output Regulators	11
	Adjustable Output Regulators	13
	Tracking Regulators	13
	Floating Regulators	13
	Selecting an IC Regulator	13
Section 3.	Linear Regulator Circuit Configuration and	
	Design Considerations	15
	Positive, Adjustable Regulators	15
	Negative, Adjustable Regulators	22
	Positive, Fixed Regulators	24
	Negative, Fixed Regulators	27
	Tracking Regulators	28
	Floating Regulators	30
	Extending the Output Voltage Range	32
	Electronic Shutdown	32
		34
Section 4.	Series Pass-Element Considerations for Linear Regulators	37
	Series Pass Configurations	37 38
	Current Limiting Techniques	39
	Constant Current Limiting	39
	Foldback Current Limiting	42
	Paralleled Series Pass Elements	45
	Pass Transistor Selection Guide	46
Section 5.	Linear Regulator Construction and Layout	51
	General Considerations	51
	Ground Loops and Remote Voltage Sensing	52
	Semiconductor Mounting Considerations	55
Section 6.	Linear Regulator Design Example	57
	IC Regulator Selection	57
	Component Value Determination	57
	Input Voltage Constraints	57
	Regulator Output Current versus Package Considerations	58
	Series Pass Element Selection	59 59
	Heatsink CalculationClamp Diodes	59 60
Section 7.	Linear Regulator Circuit Troubleshooting Check List	61
		63
Section 8.	Designing the Input Supply	64
	Surge Current Considerations	68
	Design Procedure	68
	Filter Capacitor Determinations	68
	Rectifier Requirements	69
	Transformer Specifications	69
	Design Example	70

TABLE OF CONTENTS (continued)

		Page
Section 9.	Switching Regulators versus Linear Regulators	73 73
	Comparison with Linear Regulators	73
Section 10.	Switching Regulator Topologies	77 78
	Flyback and Forward Converters Push-Pull and Bridge Converters	80 84
Section 11.	Switching Regulator Component Design Tips	87 87
	Transistors Rectifiers Capacitors and Filters	90 96 98
	Control Circuits	99
Section 12.	The Future for Switching Regulators	103
Section 13.	Switching Regulator Design Examples	105
	Using the TL494 Control Circuit Application of the TL494 in a 400 Watt and 1000 Watt	105
	Off-Line Power Supply	107 112 112
	Advantages of Flyback	117
Section 14.	Power Supply Supervisory and Protection Considerations The Crowbar Technique SCR Considerations The Sense and Drive Circuit	121 121 122 124
Section 15.	The MC3424 Heatsinking The Thermal Equation Selecting a Heatsink	129 135 135 136
Section 16.	Custom Heatsink Design Heatsink Design Example Regulator Reliability Quality Concepts Reliability Concepts	138 142 145 145 145 147
Section 17.	IC Regulator Selection Guides	151 151 154
Section 18.	Speciality Regulators and Switching Regulator Control Circuits	154 157 161
	Voltage Regulators	162
	Voltage Regulators LM117L, 217L, 317L Low Current 3-Terminal Adjustable	167
	Output Positive Voltage Regulators LM117M, 217M, 317M Medium-Current 3-Terminal Adjustable	175
	Output Positive Voltage Regulators LM123,A/LM223,A/LM323,A 3-Ampere, 5 Volt Positive	183 191
	Voltage Regulators LM137, 237, 337 3-Terminal Adjustable Output Negative Voltage Regulators	197

TABLE OF CONTENTS (continued)

		Page
Section 18.	(continued)	
	LM137M, 237M, 337M Medium-Current 3-Terminal Adjustable	
	Negative Voltage Regulators	204
	LM140 Series, LM340 Series 3-Terminal Positive	
	Voltage Regulators	211
	LM150, 250, 350 3-Terminal Adjustable Output Positive	
	Voltage Regulators	221
	MC1463, 1563 Negative Voltage Regulators	229
	MC1466L, 1566L Voltage and Current Regulators	235
	MC1468, 1568 Dual ±15 Volt Regulators	238
	MC1469, 1569 Positive Adjustable Regulators	243
	MC1723, C Positive or Negative Adjustable Regulator	249
	MC3420, 3520 Inverter Control Circuit	254
	MC3423, 3523 Overvoltage "Crowbar" Sensing Circuit	267
	MC3424, A/MC3524, A/MC3324, A Power Supply Supervisory	273
	Circuit/Dual Voltage Comparator	2/3
	MC34060, 35060 Switchmode Pulse Width Modulation	276
	Control Circuits	276
	MC7800 Series 3-Terminal Positive Voltage Regulators	300
	MC78M00C Series 3-Terminal Positive Voltage Regulators	307
	MC78T00 Series 3-Terminal Positive Voltage Regulators	315
	MC7900C Series 3-Terminal Negative Voltage Regulators	316
	MC79L00C, AC Series 3-Terminal Negative Voltage Regulators	325
	SG1525A, 1527A/SG2525A, 2527A/SG3525A, 3527A	020
	Pulsewidth Modulator Control Circuit	331
	SG1526/2526/3526 Pulse Width Modulation Control Circuits	338
	TL431 Series Programmable Precision References	346
	TL494, 495 Switchmode Pulse Width Modulation	
	Control Circuits	354
	μ78S40 Universal Switching Regulator Subsystem	365
Section 19.	Package Outline Dimensions	369
Section 20.	Voltage Regulator Cross-Reference Guide	375
Appendix A.	Switchmode Power Transistor Application Selector Guide	381
Appendix B.	Motorola Switchmode Rectifiers for	
Appendix D.	Switching Power Supplies	387

SECTION 1 BASIC LINEAR REGULATOR THEORY

A. THE IC VOLTAGE REGULATOR

The basic functional block diagram of an integrated circuit voltage regulator is shown in Figure 1-1. It consists of a stable reference, whose output voltage is VREF, and a high gain error amplifier. The output voltage, Vo, is equal to, or a multiple of, VREF. The regulator will tend to keep Vo constant by sensing any changes in Vo and trying to return it to its original value. Therefore, the ideal voltage regulator could be considered a voltage source with a constant output voltage. However, in practice the IC regulator is better represented by the model shown in Figure 1-2.

In this figure, the regulator is modeled as a voltage source with a positive output impedance, Zo. The value of the voltage source, V, is not constant; instead, it varies with changes in supply voltage, Vcc, and with changes in IC junction temperature, T_j , induced by changes in ambient temperature and power dissipation. Also, the regulator output voltage, Vo, is affected by the voltage drop across Zo, caused by the output current, Io. In the following text, the reference and amplifier sections will be described, and their contributions to the changes in the output voltage analyzed.

B. THE VOLTAGE REFERENCE

Naturally, the major requirement for the reference is that it be stable; variations in supply voltage or junction temperature should have little or no effect on the value of the reference voltage, VREF.

The Zener Diode Reference

The simplest form of a voltage reference is shown in Figure 1-3a. It consists of a resistor and a zener diode. The zener voltage, Vz, is used as the reference voltage. In order to determine Vz, consider Figure 1-3b. The zener diode, VR1, of Figure 1-3a has been replaced with its equivalent circuit model and the value of Vz is therefore given by (at a constant junction temperature):

$$V_Z = V_{BZ} + I_Z Z_Z = V_{BZ} + (\frac{V_{CC} - V_{BZ}}{R + Z_Z}) Z_Z$$
 (1)

where V_{BZ} = zener breakdown voltage

Iz = zener current

Zz = zener impedance at Iz

Note that changes in the supply voltage give rise to changes in the zener current, thereby changing the value of Vz, the reference voltage.

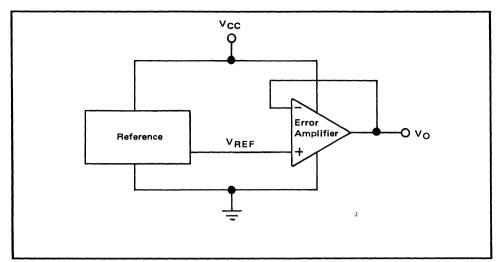


Figure 1-1. Voltage Regulator Functional Block Diagram

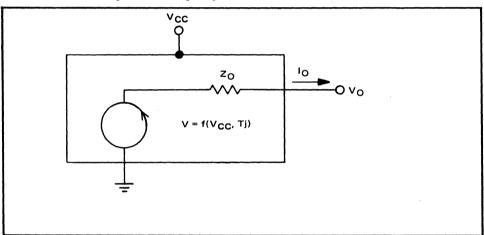


Figure 1-2. Voltage Regulator Equivalent Circuit Model

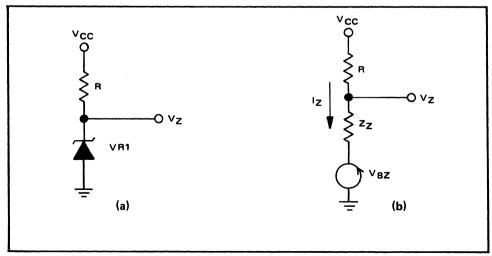


Figure 1-3. Zener Diode Reference

The Constant Current — Zener Reference

The effect of zener impedance can be minimized by driving the zener diode with a constant current as shown in Figure 1-4. The value of the zener current is largely independent of Vcc and is given by:

$$Iz = \frac{V_{BEQ1}}{R_{SC}}$$
(2)

where V_{BEQ1} = base-emitter voltage of Q1

This gives a reference voltage of:

$$V_{REF} = V_Z + V_{BEQ1} = V_{BZ} + I_Z Z_Z + V_{BEQ1}$$
(3)

where Iz is constant and given by equation 2.

The reference voltage (about 7 V) of this configuration is therefore largely independent of supply voltage variations. This configuration has the additional benefit of better temperature stability than that of a simple resistor-zener reference.

Referring back to Figure 1-3a, it can be seen that the reference voltage temperature stability is equal to that of the zener diode, VR1. The stability of zener diodes used in most integrated circuitry is about $+2.2 \text{ mV/}^{\circ}\text{C}$ or $\approx .04\%/^{\circ}\text{C}$ (for a 6.2 V zener). If the junction temperature varies 100°C, the zener, or reference, voltage would vary 4%. A variation this large is usually unacceptable.

However, the circuit of Figure 1-4 does not have this drawback. Here the positive $2.2 \text{ mV/}^{\circ}\text{C}$ temperature coefficient (TC) of the zener diode is offset by the negative $2.2 \text{ mV/}^{\circ}\text{C}$ TC of the V_{BE} of Q1. This results in a reference voltage with very stable temperature characteristics.

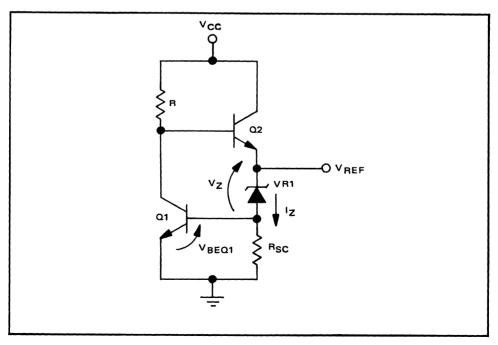


Figure 1-4. Constant Current - Zener Reference

The Bandgap Reference

Although very stable, the circuit of Figure 1-4 does have a disadvantage in that it requires a supply voltage of 9 volts or more. Another type of stable reference which requires only a few volts to operate was described by Widlar¹ and is shown in Figure 1-5. In this circuit VREF is given by:

$$V_{\text{REF}} = V_{\text{BEQ3}} + I_2 R_2 \tag{4}$$

where $I_2 = \frac{V_{BEQ1} - V_{BEQ2}}{R_1}$ (neglecting base currents)

The change in VREF with junction temperature is given by:

$$\Delta V_{\text{REF}} = \Delta V_{\text{BE3}} + \left\{ \frac{\Delta V_{\text{BEQ1}} - \Delta V_{\text{BEQ2}}}{R_1} \right\} R_2$$
(5)

It can be shown that,

$$\Delta V_{BEQ1} = \Delta T_j K \ln I_1 \tag{6}$$

and
$$\Delta V_{BEQ2} = \Delta T_j K \ln I_2$$
 (7)

where K = a constant

ΔT_j = change in junction temperature

and
$$I_1 > I_2$$

Combining (5), (6), and (7)

$$\Delta V_{\text{REF}} = \Delta V_{\text{BEQ3}} + \Delta T_{j} K \left(\frac{R_{2}}{R_{1}}\right) \ln \frac{I_{1}}{I_{2}}$$
(8)

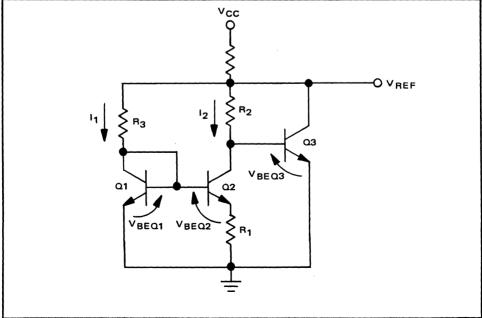


Figure 1-5. Bandgap Reference

Since ΔV_{BEQ3} is negative, and with $I_1 > I_2$, $\ln I_1/I_2$ is positive, the net change in VREF with temperature variations can be made to equal zero by appropriately selecting the values of I_1 , R_1 , and R_2 .

C. THE ERROR AMPLIFIER

Given a stable reference, the error amplifier becomes the determining factor in integrated circuit voltage regulator performance. Figure 1-6 shows a typical differential error amplifier in a voltage regulator configuration. With a constant supply voltage, Vcc, and junction temperature, the output voltage is given by:

$$V_{O} = A_{VOL} v_{i} - Z_{OL} I_{O} = A_{VOL} \{ (V_{REF} \pm V_{IO}) - V_{O} \beta \} - Z_{OL} I_{O}$$
(9)

where A_{VOL} = amplifier open loop gain

V₁₀ = input offset voltage Z_{0L} = open loop output impedance $\beta = \frac{R_1}{R_1 + R_2}$ = feedback ratio (β is always ≤ 1) Io = output current

 v_i = true differential input voltage

Manipulating (9)

$$V_{O} = \frac{(V_{REF} \pm V_{IO}) - \frac{Z_{OL}}{A_{VOL}}I_{O}}{\beta + \frac{1}{A_{VOL}}}$$
(10)

7

Note that if the amplifier open loop gain is infinite, this expression reduces to:

$$V_{0} = \frac{1}{\beta} (V_{REF} \pm V_{I0}) = (V_{REF} \pm V_{I0}) (1 + \frac{R_{2}}{R_{1}})$$
(11)

The output voltage can thus be set any value equal to or greater than (V_{REF} \pm VIO). Note also that if AvoL is not infinite, with constant output current (a non-varying output load), the output voltage can still be "tweaked in" by varying R₁ and R₂, even though Vo will not exactly equal that given by equation 11.

Assuming a stable reference and a finite value of AvoL, inaccuracy of the output voltage can be traced to the following amplifier characteristics:

1. Amplifier input offset voltage drift ----

The input transistors of integrated circuit amplifiers are usually not perfectly matched. As in operational amplifiers, this is expressed in terms of an input offset voltage, V10. At a given temperature, this effect can be nulled out of the desired output voltage by adjusting VREF or $1/\beta$. However, V10 drifts with temperature, typically ± 5 to $15 \ \mu$ V/°C, causing a proportional change in the output voltage. Closer matching of the internal amplifier input transistors, minimizes this effect, as does selecting a feedback ratio, β , to be close to unity.

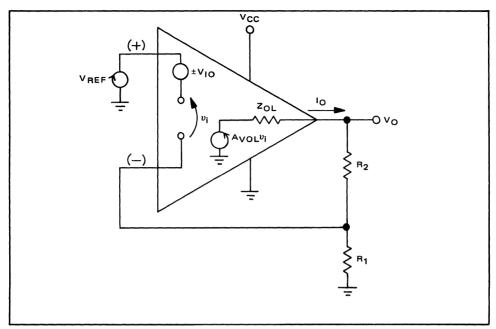


Figure 1-6. Typical Voltage Regulator Configuration

2. Amplifier power supply sensitivity —

Changes in regulator output voltage due to power supply voltage variations can be attributed to two amplifier performance parameters: power supply rejection ratio (PSRR) and common-mode rejection ratio (CMRR). In modern integrated circuit regulator amplifiers, the utilization of constant current sources gives such large values of PSRR that this effect on Vo can usually be neglected. However, supply voltage changes can affect the output voltage since these changes appear as common mode voltage changes, and they are best measured by the CMRR.

The definition of common mode voltage, VCM, illustrated by Figure 1-7a, is:

$$V_{CM} = \left(\frac{V_1 + V_2}{2}\right) - \left(\frac{V_+ + V_-}{2}\right)$$
(12)

where V_1 = voltage on amplifier non-inverting input

 V_2 = voltage on amplifier inverting input

 V_{+} = positive supply voltage

 V_{-} = negative supply voltage

In an ideal amplifier, only the differential input voltage $(V_1 - V_2)$ has any effect on the output voltage; the value of V_{CM} would not effect the output. In fact, V_{CM} does influence the amplifier output voltage. This effect can be modeled as an additional voltage offset at the amplifier input equal to V_{CM}/CMRR as shown in Figures 1-7b and 1-8. The latter figure is the same configuration as Figure 1-6, with amplifier input offset voltage and output impedance deleted for clarity and common-mode voltage effects added. The output voltage of this configuration is given by:

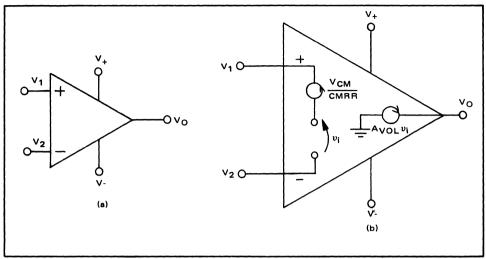


Figure 1-7. Definition of Common-mode Voltage Error

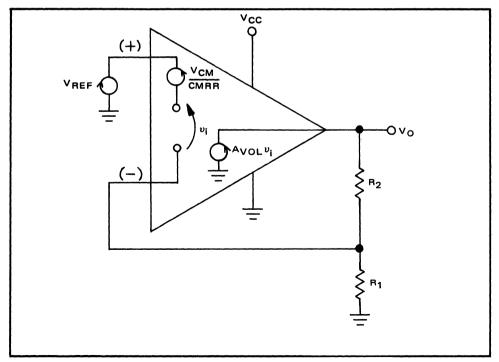


Figure 1-8. Common-mode Regulator Effects

$$V_{O} = A_{VOL} v_{i} = A_{VOL} (V_{REF} - \frac{V_{CM}}{CMRR} - \beta V_{O})$$
(13)

_ _

Manipulating,

$$V_{O} = \frac{(V_{REF} - \frac{V_{CM}}{CMRR})}{\beta + \frac{1}{A_{VOL}}}$$
(14)

where
$$V_{CM} = V_{REF} - \frac{V_{CC}}{2}$$
 (15)

and CMRR = common-mode rejection ratio

It can be seen from equations (14) and (15) that the output can vary when Vcc varies. This can be reduced by designing the amplifier to have a high AvoL, a high CMRR, and by choosing the feedback ratio, β , to be unity.

3. Amplifier Output Impedance —

Referring back to equation (9), it can be seen that the equivalent regulator output impedance, Zo, is given by:

$$Z_{O} = \frac{\Delta V_{O}}{\Delta I_{O}} \simeq \frac{Z_{OL}}{\beta A_{VOL}}$$
(16)

This impedance must be as low as possible, in order to minimize load current effects on the output voltage. This can be accomplished by lowering ZoL, choosing an amplifier with high AvoL, and by selecting the feedback ratio, β , to be unity.

A simple way of lowering the effective value of ZoL is to make an impedance transformation with an emitter follower, as shown in Figure 1-9. Given a change in output current, Δ Io, the amplifier will see a change of only Δ Io/hFEQI in its output current, Io'. Therefore ZoL in equation (16) has been effectively reduced to ZoL/hFEQI, reducing the overall regulator output impedance, Zo.

D. THE REGULATOR WITHIN A REGULATOR APPROACH

In the preceding text, we have analyzed the sections of an integrated circuit voltage regulator and determined how they contribute to its non-ideal performance characteristics. These are shown in Table 1-1 along with procedures which minimize their effects.

It can be seen that in all cases regulator performance can be improved by selecting AvoL as high as possible and $\beta = 1$. Since a limit is soon approached in how much AvoL can be practically obtained in an integrated circuit amplifier, selecting a feedback ratio, β , equal to unity is the only viable way of improving total regulator performance, especially in reducing regulator output impedance. However, this method presents a basic problem to the regulator designer. If the configuration of Figure 1-6 is used, the output voltage cannot be adjusted to a value other than VREF. The solution is to utilize a different regulator configuration known as the "regulator within a regulator approach."² Its greatest benefit is in reducing total regulator output impedance.



Figure 1-9. Emitter Follower Output

TABLE 1-1						
Vo CHANGES SECTION	EFFECT CAN BE INDUCED BY	MINIMIZED BY SELECTING				
Reference	Vcc	 Constant current-zener method Bandgap reference 				
neieleite	Tj	 Bandgap reference TC compensated zener method 				
	Vcc	 High CMRR amplifier High Avo∟ amplifier β = 1 				
Amplifier	Tj	 Low Vio drift amplifier High AvoL amplifier β = 1 				
	ю	1. Low ZoL amplifier 2. High AvoL amplifier 3. Additional emitter follower output 4. $\beta = 1$				

TABLE 1.1

As shown in Figure 1-10, amplifier A1 sets up a voltage, V1, given by:

$$V_1 \simeq V_{REF} \left(1 + \frac{R_2}{R_1}\right)$$
 (17)

 V_1 now serves as the reference voltage for amplifier A2, whose output voltage, Vo, is given by:

$$V_0 \simeq V_1 \simeq V_{REF} \left(1 + \frac{R_2}{R_1}\right) \tag{18}$$

Note that the output impedance of A2, and therefore the regulator output impedance, has been minimized by selecting A2's feedback factor to be unity; and that output voltage can still be set at voltages greater than V_{REF} by adjusting R1 and R2.

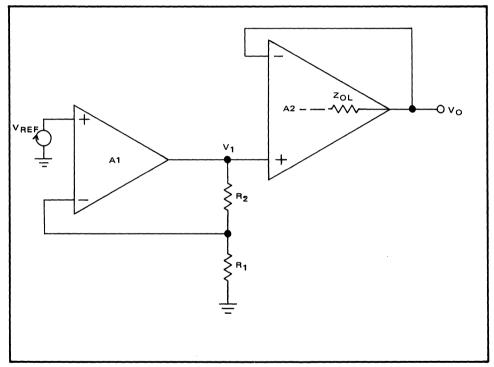


Figure 1-10. The "Regulator within a Regulator" Configuration

¹Widlar, R. J., "New Developments in IC Voltage Regulators," IEEE Journal of Solid State Circuits, Feb. 1971, Vol. SC-6, pgs. 2-7.

²Tom Fredericksen, IEEE Journal of Solid State Circuits, Vol. SC-3, Number 4, Dec. 1968, "A Monolithic High Power Series Voltage Regulator."

SECTION 2

SELECTING A LINEAR IC VOLTAGE REGULATOR

A. SELECTING THE TYPE OF REGULATOR

There are five basic linear regulator types; these are the positive, negative, fixed output, tracking and floating regulators. Each has its own particular characteristics and best uses, and selection depends on the designer's needs and trade-offs in performance and cost.

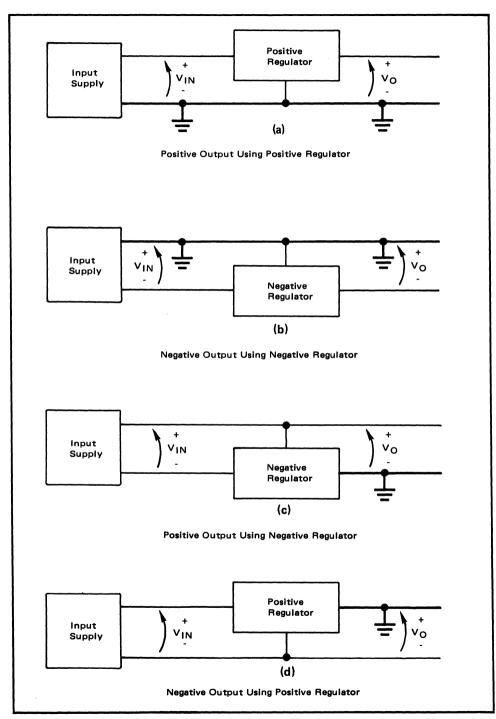
1. Positive Versus Negative Regulators.

In most cases, a positive regulator is used to regulate positive voltages and a negative regulator negative voltages. However, depending on the system's grounding requirements, each regulator type may be used to regulate the "opposite" voltage.

Figures 2-1a and 2-1b show the regulators used in the conventional and obvious mode. Note that the ground reference for each (indicated by the heavy line) is continuous. Several positive regulators could be used with the same input supply to deliver several voltages with common grounds; negative regulators may be utilized in a similar manner.

If no other common supplies or system components operate off the input supply to the regulator, the circuits of Figures 2-1c and 2-1d may be used to regulate positive voltages with a negative regulator and vice versa. In these configurations, the input supply is essentially floated, i.e., neither side of the input is tied to the system ground.

There are methods of utilizing positive regulators to obtain negative output voltages without sacrificing ground bus continuity; however, these methods are only possible at the expense of increased circuit complexity and cost. An example of this technique is shown in Section 3.


2. Three Terminal, Fixed Output Regulators

These regulators offer the designer a simple, inexpensive way to obtain a source of regulated voltage. They are available in a variety of positive or negative output voltages and current ranges. The advantages of these regulators are:

- a) Easy to use.
- b) Internal overcurrent and thermal protection.
- c) No circuit adjustments necessary.
- d) Low cost.

Their disadvantages are:

- a) Output voltage cannot be precisely adjusted. (Methods for obtaining adjustable outputs are shown in Section 3).
- b) Available only in certain output voltages and currents.
- c) Obtaining greater current capability is more difficult than with other regulators. (Methods for obtaining greater output currents are shown in Section 3.)

3. Three Terminal, Adjustable Output Regulators

Like the three terminal fixed regulators, the three terminal adjustable regulators are easy and inexpensive to use. These devices provide added flexibility with output voltage adjustable over a wide range, from 1.2 V to nearly 40 V, by means of an external, two-resistor voltage divider. A variety of current ranges from 100 mA to 3.0 Amperes are available.

4. Tracking Regulators

Often a regulated source of symmetrical positive and negative voltage is required for supplying op amps, etc. In these cases, a tracking regulator is required. In addition to supplying regulated positive and negative output voltages, the tracking regulator assures that these voltages are balanced; in other words, the midpoint of the positive and negative output voltages is at ground potential.

This function can be implemented using a positive output regulator together with an op amp or negative output regulator. However, this method results in the use of two IC packages and a multitude of external components. To minimize component count, an IC is offered which performs this function in a single package: the MC1568/MC1468 $\pm 15V$ tracking regulator.

5. Floating Regulators

If the desired output voltage is in excess of 40 volts, a floating regulator such as the MC1566/MC1466 should be considered. The output voltage of this regulator can be any magnitude and is limited only by the capabilities of an external transistor. However, an additional floating low voltage input supply is required.

B. SELECTING AN IC REGULATOR

Once the type of regulator is decided upon, the next step is to choose a specific device. As an aid in choosing an appropriate IC regulator, a Selection Guide is contained in Section 17.

To provide higher currents than are available from monolithic technologies, an IC regulator will often be used as a driver to a boost transistor. This complicates the selection and design task, as there are now several overlapping solutions to many of the design problems.

Unfortunately, there is no exact step-by-step procedure that can be followed which will lead to the ideal regulator and circuit configuration for a specific application. The regulating circuit that is finally accepted will be a compromise between such factors as performance, cost, size and complexity.

Because of this, the following general design procedure is suggested:

1. Select the regulators which meet or exceed the requirements for line regulation, load regulation, TC of the output voltage and operating ambient temperature range. At this point, do not be overly concerned with the regulator capabilities in terms of output voltage, output current, SOA and special features.

2. Next, select application circuits from Section 3 which meet the requirements for output current, output voltage, special features, etc. Preliminary designs using the chosen regulators and circuit configurations are then possible. From these designs a judgement can be made by the designer as to which regulator — circuit configuration combination best meets his requirements in terms of cost, size and complexity.

SECTION 3

LINEAR REGULATOR CIRCUIT CONFIGURATION AND DESIGN CONSIDERATIONS

Once the IC regulators, which meet the designer's performance requirements, have been selected, the next step is to determine suitable circuit configurations. Initial designs are devised and compared to determine the IC regulator/circuit configuration that best meets the designer's requirements. In this section, several circuit configurations and design equations are given for the various regulator ICs. Additional circuit configurations can be found on the device data sheets (see Section 18). Organization is first by regulator type and then by variants, such as current boost. Each circuit diagram has component values for a particular voltage and current regulator design.

- A. Positive, Adjustable
- B. Negative, Adjustable
- C. Positive, Fixed
- D. Negative, Fixed
- E. Tracking
- F. Floating
- G. Special
 - 1. Obtaining Extended Output Voltage Range
 - 2. Electronic Shutdown
- H. General Design Considerations

It should be noted that all circuit configurations shown have constant current limiting; if foldback limiting is desired, see Section 4C for techniques and design equations.

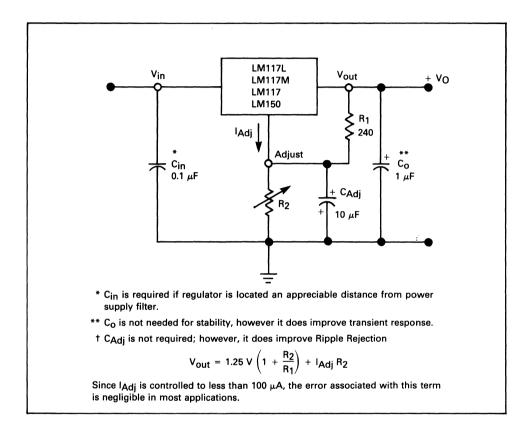
A. POSITIVE, ADJUSTABLE OUTPUT IC REGULATOR CONFIGURATIONS

1. Basic Regulator Configurations

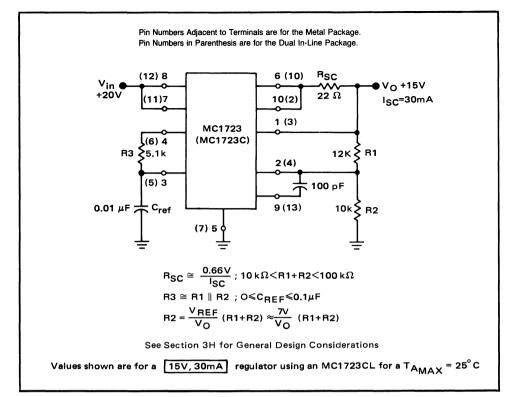
Positive Three-Terminal Adjustables

These adjustables, comprised of the LM117L, LM117M, LM117, and LM150 series devices range in output currents of 100mA, 500mA, 1.5A, and 3.0A respectively. All of these devices utilize the same basic circuit configuration as shown in Figure 3-1A.

MC1723(C)


The basic circuit configurations for the MC1723(C) regulator are shown in Figures 3-3A and 3-2A. For output voltages from ≈ 7 V to 37 V the configuration of Figure 3-2A can be used, while Figure 3-3A can be used to obtain output voltages from 2 V to ≈ 7 V.

MC1569, MC1469


Figure 3-4A shows the basic circuit configuration for the MC1569, MC1469 regulator IC. Depending on VIN, TA, heatsinking and package utilized, output currents in excess of 500 mA can be obtained with this configuration.

2. Output Current Boosting

If output currents greater than those available from the basic circuit configurations are desired, the current boost circuits shown in this section can be used. The output currents which can be obtained with these configurations are limited only by the capabilities of the external pass element(s).

Figure 3-1A — Basic Configuration for Positive, Adjustable Ouput Three-Terminal Regulators

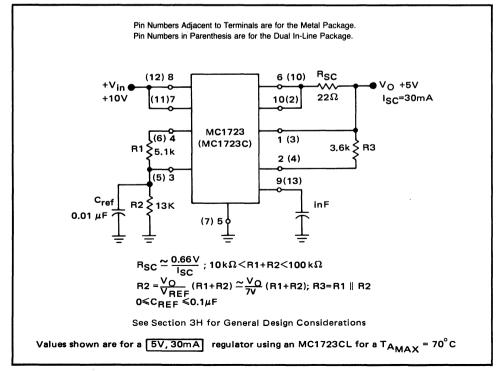


Figure 3-3A. MC1723 Basic Circuit Configuration for $2v \le V_0 \le V_{REF}$

MC1723(C)

To obtain greater output currents with the MC1723 the configurations shown in Figures 3-5A and 3-6A can be used. Figure 3-5A uses an NPN external pass element, while a PNP is used in Figure 3-6A.



Figure 3-4A. MC1569, MC1469 Basic Circuit Configuration

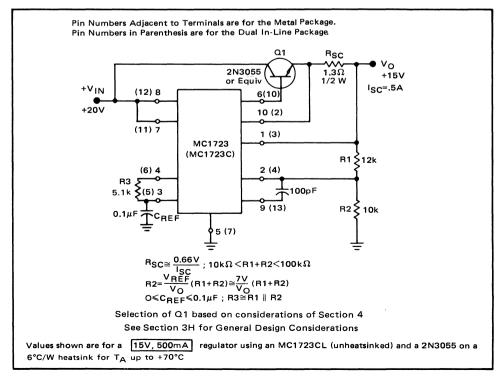


Figure 3-5A. MC1723(C) NPN Boost Configuration

MC1569, MC1469

Figures 3-7A and 3-8A show typical current boosting configurations for the MC1569, MC1469 using an NPN and a PNP series pass element, respectively.

3. High Efficiency Regulator Configurations

When large output currents at voltages under approximately 9 volts are desired, the configurations of Figures 3-9A and 3-10A can be utilized to obtain increased operating efficiency. This is accomplished by providing a separate low voltage input supply for the pass element. This method, however, usually necessitates that separate short circuit protection be provided for the IC regulator and external pass element. Figure 3-9A shows a high efficiency regulator configuration for the MC1723(C), while Figure 3-10A is for the MC1469, MC1469.

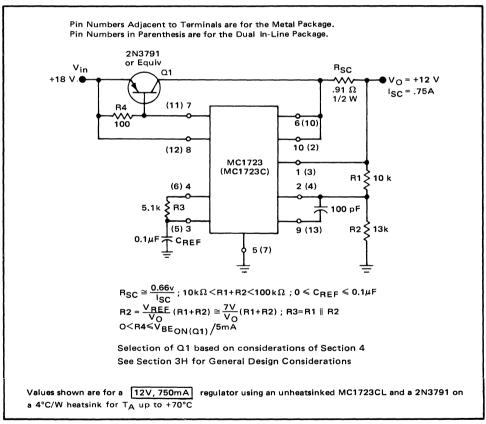
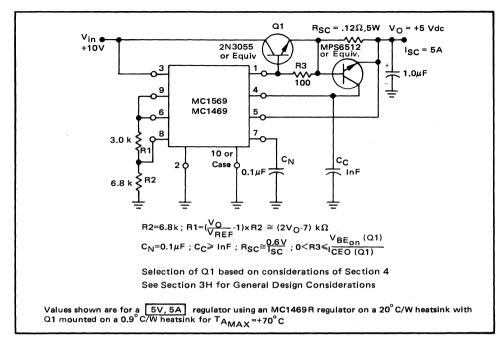
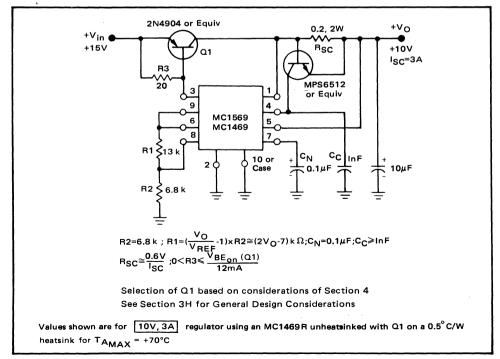




Figure 3-6A. MC1723(C) PNP Boost Configuration

Figure 3-8A. MC1569, MC1469 PNP Boost Configuration

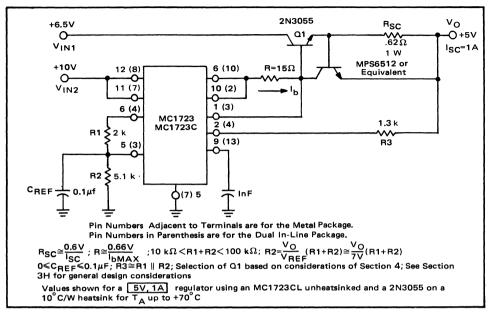


Figure 3-9A. MC1723(C) High Efficiency Regulator Configuration

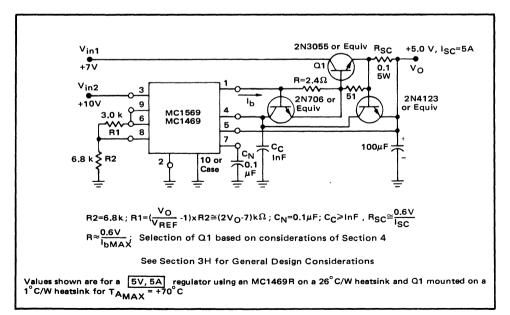


Figure 3-10A. MC1569, MC1469 High Efficiency Regulator Configuration

B. NEGATIVE, ADJUSTABLE OUTPUT IC REGULATOR CONFIGURATIONS

1. Basic Regulator Configurations

MC1563, MC1463

Figure 3-1B illustrates the basic circuit configuration for the MC1563, MC1463 negative regulator IC. Output currents in excess of 500 mA can be obtained depending on input voltage, heatsinking and maximum ambient temperature.

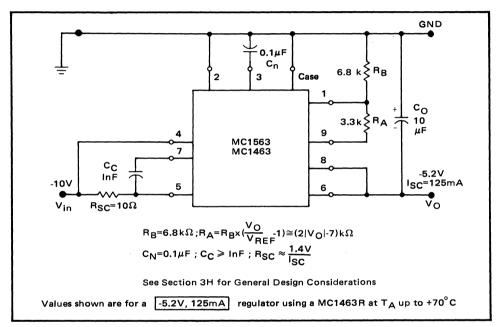


Figure 3-1B. MC1563, MC1463 Basic Regulator Configuration

MC1723(C)

Although a positive regulator, the MC1723(C) can be used in a negative regulator circuit configuration if the superior regulation and performance capabilities of the MC1563 are not needed. This is done by using an external pass element and a zener level shifter as shown in Figure 3-2B. It should be noted that for proper operation, the input supply must not vary over a wide range, since the correct value for V_z depends directly on this voltage. In addition, it should be noted that this circuit will not operate with a shorted output.

2. Output Current Boosting

Figure 3-3B shows a configuration for obtaining increased output current capability from the MC1563, MC1463 regulator by the use of an external series pass element(s).

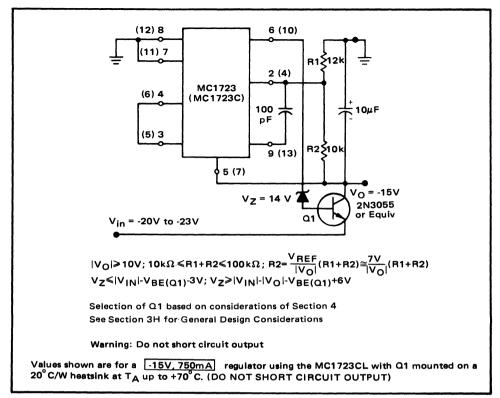


Figure 3-2B. MC1723(C) Negative Regulator Configuration

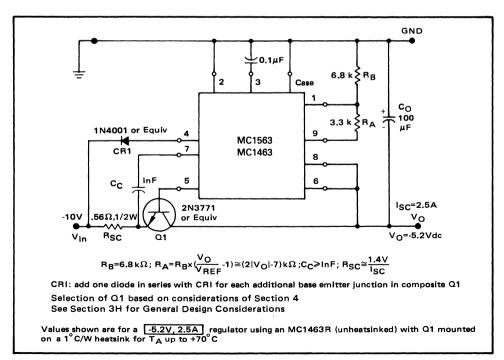


Figure 3-3B. MC1563, MC1463 Current Boost Configuration

C. POSITIVE, FIXED OUTPUT IC REGULATOR CONFIGURATIONS

1. Basic Regulator Configurations

The basic current configuration for the positive three terminal regulators is shown in Figure 3-1C. Depending on which regulator type is used, this configuration can provide output currents in excess of 3A.

2. Output Current Boosting

Figure 3-2C illustrates a method for obtaining greater output currents with the three terminal positive regulators. Although any of these regulators may be used, usually it is most economical to use the 1 ampere MC7800C in this configuration.

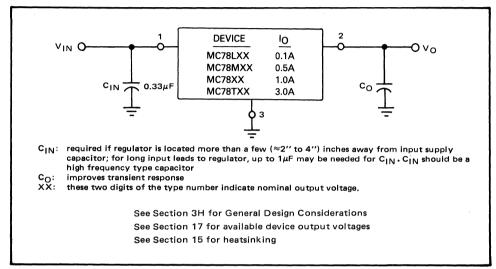


Figure 3-1C. Basic Circuit Configuration for the Positive, Fixed Output Three Terminal Regulators

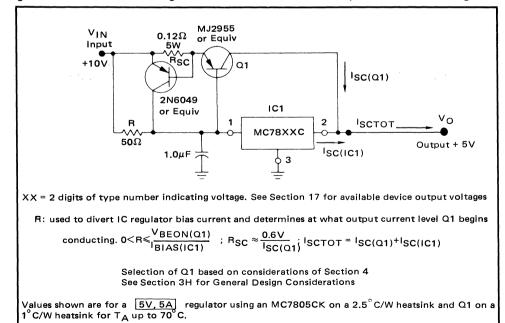


Figure 3-2C. Current Boost Configuration for Positive Three Terminal Regulators

3. Obtaining an Adjustable Output Voltage

With the addition of an op amp, an adjustable output voltage supply can be obtained with the MC7805C. Regulation characteristics of the three terminal regulators are retained in this configuration, shown in Figure 3-3C. If lower output currents are required, an MC78M05C (0.5A) could be used in place of the MC7805C.

4. Current Regulator

In addition to providing voltage regulation, the three terminal positive regulators can also be used as current regulators to provide a constant current source. Figure 3-4C shows this configuration. The output current can be adjusted to any value from ≈ 8 mA (IQ, the regulator bias current) up to the available output current of the regulator. Five volt regulators should be used to obtain the greatest output voltage compliance range for a given input voltage.

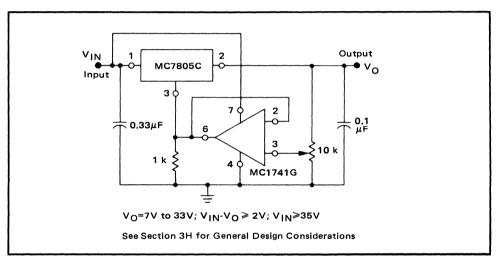


Figure 3-3C. Adjustable Ouput Voltage Configuration Using a Three Terminal Positive Regulator

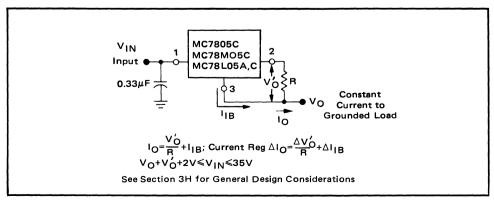


Figure 3-4C. Current Regulator Configuration

5. High Input Voltage

Occasionally, it may be necessary to power a three terminal regulator from a supply voltage greater than $V_{IN(MAX)}$ (35V or 40V). In these cases a preregulator circuit, as shown in Figure 3-5C may be used.

6. High Output Voltage

If output voltages above 24 V are desired, the circuit configuration of Figure 3-6C may be used. Zener diode Z1 sets the output voltage, while Q1, Z2, & D1 assure that the MC7824C does not have more than 30 V across it during short circuit conditions.

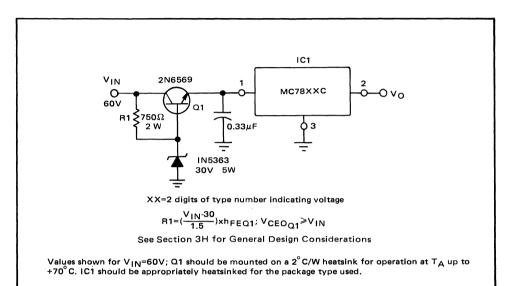


Figure 3-5C. Preregulator for Input Voltages Above VINMAX

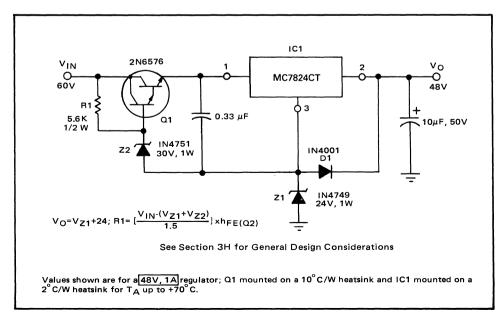


Figure 3-6C. High Output Voltage Configuration for Three Terminal Positive Regulators

D. NEGATIVE, FIXED OUTPUT IC REGULATOR CONFIGURATIONS

1. Basic Regulator Configurations

Figure 3-1D gives the basic circuit configuration for the MC79XX and MC79LXX three terminal negative regulators.

Output Current Boosting

In order to obtain increased output current capability from the negative three terminal regulators, the current boost configuration of Figure 3-2D may be used. Currents which can be obtained with this configuration are limited only by the capabilities of the external pass transistor(s).

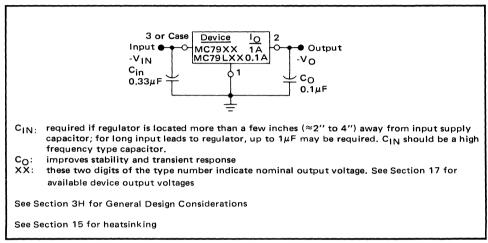


Figure 3-1D. Basic Circuit Configuration for the Negative Three Terminal Regulators

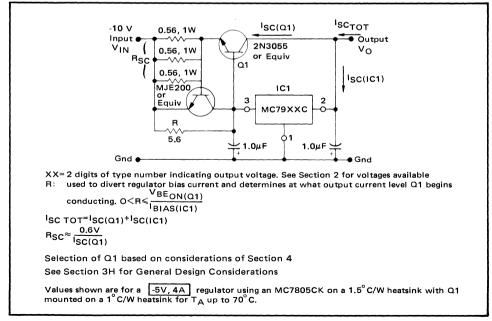


Figure 3-2D. Output Current Boost Configuration for Three Terminal Negative Regulators

2. Current Regulator

The three terminal negative regulators may also be used to provide a constant current sink, as shown in Figure 3-3D. In order to obtain the greatest output voltage compliance range at a given input voltage, the MC7902 or MC79L03 should be used in this configuration.

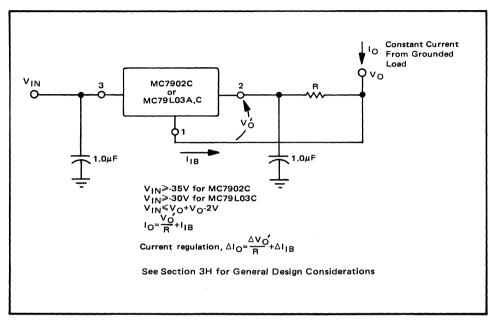
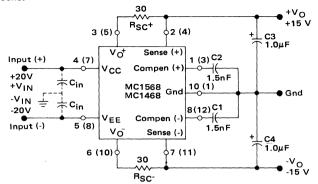


Figure 3-3D. Current Regulator Configuration for the Three Terminal Negative Regulators

E. TRACKING IC REGULATOR CONFIGURATIONS

MC1568, MC1468

Figure 3-1E shows the basic circuit configuration for the MC1568, MC1468 Dual Tracking Regulator. The outputs of this device are internally set at \pm 15V. (The output voltage can be externally adjusted with some accompanying loss of temperature performance; see device data sheet, Section 18.) This configuration is capable of providing up to \pm 100mA of load current, depending on operating conditions and package style chosen. If greater output currents are desired, the current boost configuration shown in Figure 3-2E can be used.

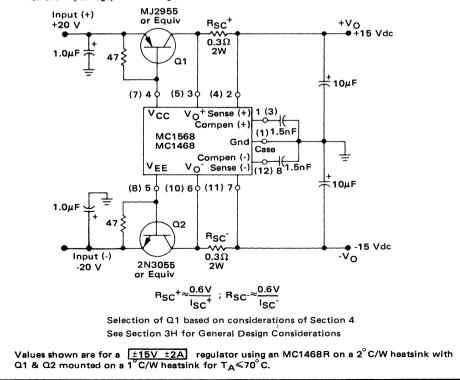

It should be noted that in this configuration, when the positive output of the MC1568, MC1468 drops below approximately 14.5V, e.g. during a short circuit, the negative output will not drop proportionally. Instead, it collapses to ≈ 0 V. This can create a latch condition, depending on the type of load.

MC1563/MC1569

If a "true" tracking regulator configuration is desired, the MC1569, MC1469 can be used in conjunction with the MC1563, MC1463 as shown in Figure 3-3E.

In this circuit, the MC1563, MC1463 sets and regulates the negative output voltage, while the MC1569, MC1469 acts as a balancing amplifier to regulate the positive output voltage. The magnitude of the positive output voltage is equal to and tracks the negative output voltage. Since the MC1569's amplifier inputs are at ground potential, its case (or pin 10) is connected to a negative voltage to allow sufficient amplifier common-mode operating range.

Pin numbers adjacent to terminals are for the G and R suffix packages only. Pin numbers in parenthesis are for the L suffix package only. Pin 10 is ground for the G suffix package only. For the R package, the case is ground.


C1 and C2 should be located as close to the device as possible. A 0.1 μ F ceramic capacitor (C_{in}) may be required on the input lines if the device is located an appreciable distance from the rectifier filter capacitors. C3 and C4 may be increased to improve load transient response and to reduce the output noise voltage. At low temperature operation, it may be necessary to bypass C4 with a 0.1 μ F ceramic disc capacitor.

Values shown are for a $\pm 15V$, 20mA regulator using an MC1468R regulator for T_A $\leq 75^{\circ}$ C.

Pin numbers adjacent to terminals are for the G and R suffix packages only. Pin numbers in parenthesis are for the L suffix package only. Pin 10 is ground for the G suffix package only. For the R package, the case is ground.

Figure 3-2E. MC1568, MC1468 Current Boost Configuration

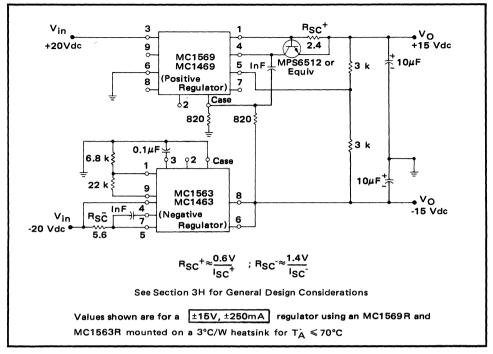


Figure 3-3E. Tracking Regulator Configuration Using the MC1569 & MC1563

F. FLOATING REGULATOR CONFIGURATIONS

If an output voltage exceeding 40V is required, the MC1566L, MC1466L floating regulator can be used, as shown in Figure 3-1F. Although a standard regulator (MC1569, MC1723, etc.) can be used to regulate output voltages above 40V, by the use of level shifting techniques (see Section 3G), the output voltage of these configuration is not adjustable over a wide range, as is the output voltage of the MC1566L. In addition, the MC1566L has several features which are not available elsewhere:

1. Output voltage adjustable to zero volts.

2. Output voltage and current capabilities limited only by choice of external series pass element.

3. Internal current limit amplifier for excellent current regulation and sharp crossover between constant voltage and constant current regulation modes.

Note that an auxiliary supply is used to power the MC1566, MC1466. This supply must be isolated from the main supply voltage since the MC1566 "floats" on the output voltage. (For a complete description of the MC1566's operation, consult its data sheet, in Section 18.)

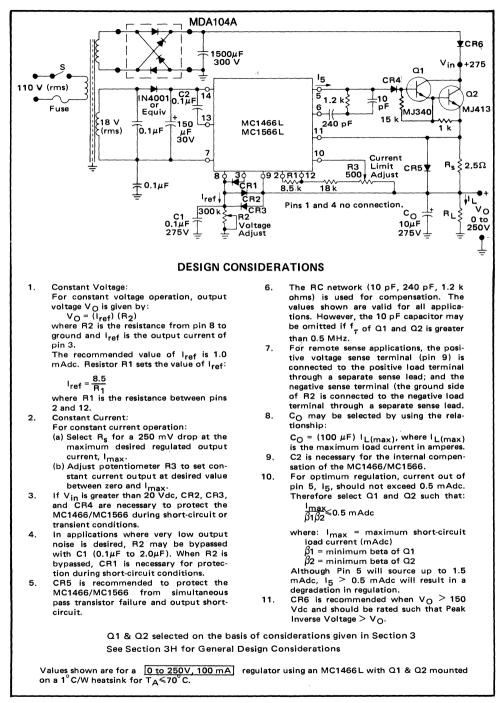


Figure 3-1F. MC1566, MC1466 Floating Regulator Configuration

G. SPECIAL REGULATOR CONFIGURATIONS

1. Obtaining Extended Output Voltage Range

As mentioned in the previous section, the output voltage capability of an IC regulator can be increased by using a level shifting technique. In these circuit configurations, the IC regulator is powered from a low voltage supply and its output is shifted by a zener diode to control the base of an external pass element which regulates the high voltage output. A typical configuration is shown in Figure 3-1G for an MC1569, MC1469. This technique can be used with any adjustable output regulator so long as the IC pin voltages, currents, and differentials do not exceed device data sheet specifications.

2. Electronic Shutdown

Occasionally, it is desired that the regulator have an electronic shutdown feature with which the output voltage can be reduced to zero by an external signal.

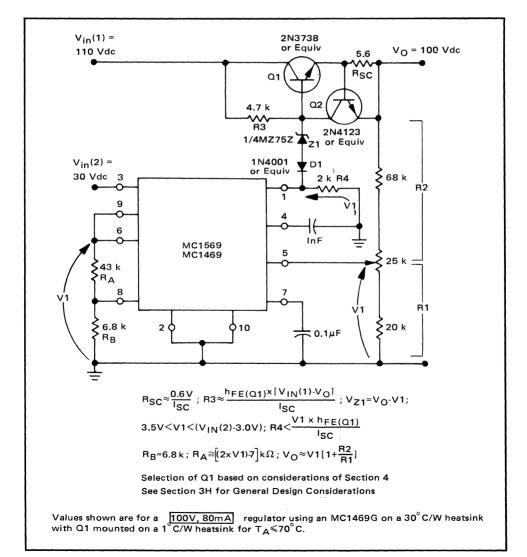


Figure 3-1G. MC1569, MC1469 Output Voltage Boosting Configuration

MC1569 and MC1563

These regulators have internal electronic shutdown circuitry. To activate the shutdown feature, a 1mA minimum, 10mA maximum current is applied to pin 2 of these regulators. This current may be the output of a logic gate or buffer or other external circuitry. This feature can be used to obtain thermal shutdown when the regulator's junction temperature limit is exceeded, as shown in Figures 3-2G and 3-3G; to latch the output when a short circuit occurs, as shown in Figure 3-4G; or to remotely shut down the regulator during standby periods in battery operated equipment.

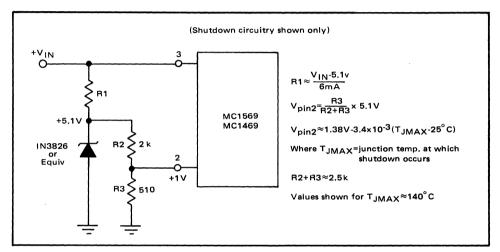


Figure 3-2G. MC1569 Thermal Shutdown Configuration

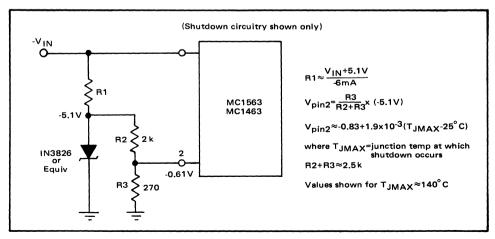


Figure 3-3G. MC1563 Thermal Shutdown Configuration

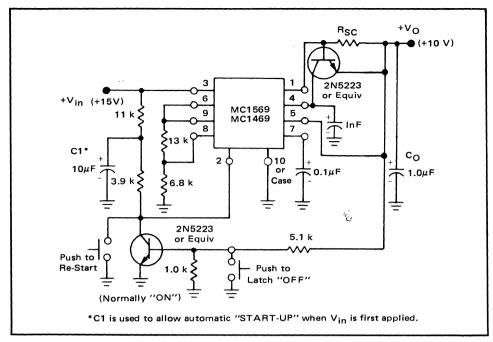


Figure 3-4G. MC1569 Automatic Latch into Shut-Down When Output is Short Circuited with Manual Reset

MC1723

Although the MC1723 does not have internal electronic shutdown circuitry, this feature can be added externally, as shown in Figure 3-5G. This technique can be used with any externally compensated regulator IC.

H. GENERAL DESIGN CONSIDERATIONS

In addition to the design equations given in the regulator circuit configuration panels of Sections 3A–G, there are a few general design considerations which apply to all regulator circuits. These considerations are given below:

1. Regulator voltages — for any circuit configuration, the worse-case voltages present on each pin of the IC regulator must be within the maximum and/or minimum limits specified on the device data sheets. These limits are instantaneous values, not averages. They include:

- a. Vin min
- b. Vin max
- c. $(V_{IN} V_{OUT}) M_{IN}$
- d. Vo min
- e. Vo max

For example, the voltage between pins 8 and 5 (VIN) of an MC1723CG must never fall below 9.5V, even instantaneously, or the regulator will not function properly.

2. Regulator Power Dissipation, Junction Temperature and Safe Operating Area

The junction temperature, power dissipation output current or safe operating area limits of the IC regulator must never be exceeded.

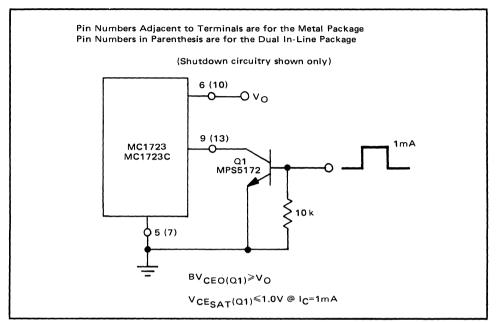


Figure 3-5G. MC1723 Electronic Shutdown Configuration

3. Operation with a load common to a voltage of opposite polarity — In many cases, a regulator powers a load which is not connected to ground but instead is connected to a voltage source of opposite polarity (e.g. op amps, level shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 3-1H. This protects the regulator, during startup and short-circuit operation, from output polarity reversals.

4. Reverse Bias Protection — Occasionally, there exists the possibility that the input voltage to the regulator can collapse faster than the output voltage. This could occur, for example, if the input supply is "crowbarred" during an output overvoltage condition. If the output voltage is greater $\approx 7V$, the emitter-base junction of the series pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed, as shown in Figure 3-2H.

Figure 3-3H shows a three-terminal positive-adjustable regulator with the recommended protection diodes for output voltages in excess of 25 volts, or highoutput capacitance values ($C_0 > 25 \ \mu$ F, $C_{Adj} > 10 \ \mu$ F). Diode D_1 prevents C_0 from discharging through the regulator during an input short-circuit. Diode D_2 protects against capacitor C_{Adj} from discharging through the regulator during an output short circuit. The combination of diodes D_1 and D_2 prevents C_{Adj} from discharging through the regulator during an input short circuit.

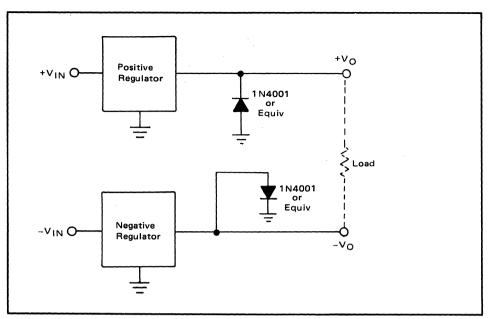


Figure 3-1H. Output Polarity Reversal Protection

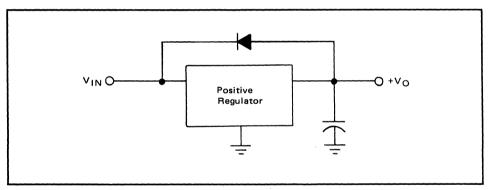


Figure 3-2H. Reverse Bias Protection

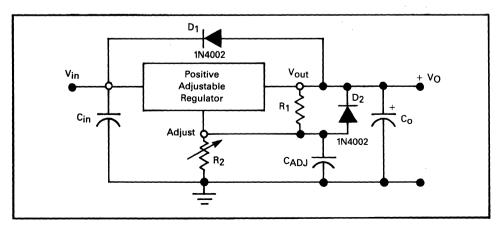


Figure 3-3H. Reverse Bias Protection for Three Terminal Adjustable Regulators

SECTION 4

SERIES PASS ELEMENT CONSIDERATIONS FOR LINEAR REGULATORS

Presently, most monolithic IC voltage regulators that are available have output current capabilities from 100 mA to 3.0 A. If greater current capability is required, or if the IC regulator does not possess sufficient safe-operating-area (SOA), the addition of an external series pass element is necessary.

In this section, configurations, specifications and current limit techniques for external series pass elements will be considered. For illustrative purposes, pass elements for only positive regulator types will be discussed. However, the same considerations apply for pass elements used with negative regulators.

A. SERIES PASS ELEMENT CONFIGURATIONS

Using an NPN Type Transistor

If the IC regulator has an external sense lead, an NPN type series pass element may be used, as shown in Figure 4-1A. This pass element could be a single transistor or multiple transistors arranged in darlington and/or paralleled configurations.

In this configuration, the IC regulator supplies the base current (IB) to the pass element, Q2, which acts as a current amplifier and provides the increased output current (Io) capability.

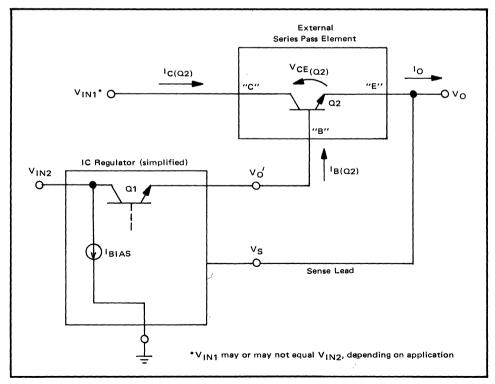


Figure 4-1A. NPN Type Series Pass Element Configuration

Using a PNP Type Transistor

If the IC regulator does not have an external sense lead, as in the case of the three terminal, fixed output regulators, the configuration of Figure 4-1B can be used. (Regulators which possess an external sense lead may also be used with this configuration.) As before, the PNP type pass element can be a single transistor or multiple transistors.

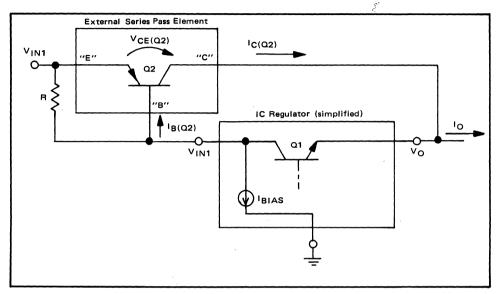


Figure 4-1B. PNP Type Series Pass Element Configuration

This configuration functions in a similar manner to that of Figure 4-1A, in that the regulator supplies base current to pass element. The resistor, R, serves to route the IC regulator bias current, IBIAS, away from the base of Q2. If not included, regulation would be lost at low output currents. The value of R is low enough to prevent Q2 from turning on when IBIAS flows through this resistor, and is given by:

$$0 < \mathbf{R} \le \frac{\mathbf{V}_{\text{BE ON}}(\mathbf{Q2})}{\mathbf{I}_{\text{BIAS}}} \tag{4.0}$$

B. SERIES PASS ELEMENT SPECIFICATIONS

Independent of which configuration is utilized, the transistor or transistors that compose the pass element must have adequate ratings for ICMAX, VCEO, hFE, power dissipation, and safe-operating-area.

1. ICMAX — for the pass element of Figure 4-1A, ICMAX is given by:

$$I_{CMAX(Q2)} \ge I_{OMAX} - I_{BMAX(Q2)} = I_{OMAX} - \frac{I_{CMAX(Q2)}}{h_{FE(Q2)}}$$
(4.1)

$$\geq$$
 Iomax (4.2)

For the configuration of Figure 4-1B:

$$I_{CMAX(Q2)} \ge I_{OMAX} + I_{BMAX(Q2)}$$
 (4.3)

$$\geq I_{OMAX}$$
 (4.4)

2. V_{CEO} — since $V_{CE(Q2)}$ is equal to $V_{IN1(MAX)}$ when the output is shorted or during start up:

$$V_{CEO(Q2)} \ge V_{IN1(MAX)}$$
 (4.5)

3. hFE — the minimum DC current gain for Q2 in Figures 4-1A and 4-1B is given by:

$$h_{\text{FEMIN}(Q2)} \ge \frac{I_{\text{CMAX}(Q2)}}{I_{\text{BMAX}(Q2)}} \textcircled{O} \quad V_{\text{CE}} = (V_{\text{IN1}(\text{MIN})} - V_0) \quad (4.6)$$

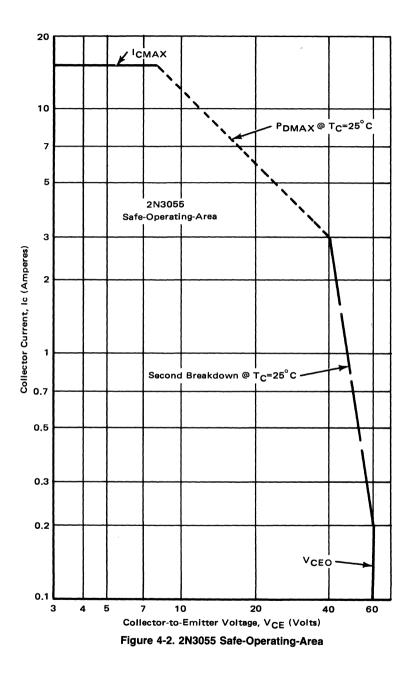
4. Maximum Power Dissipation, PD(MAX) and Safe-Operating Area (SOA) — for any transistor there are certain combinations of Ic and VCE at which it may safely be operated. When plotted on a graph, whose axes are VCE and Ic, a safe-operating region is formed.

As an example, the safe-operating-area (SOA) curve for the well known 2N3055 NPN silicon power transistor is shown in Figure 4-2. The boundaries of the SOA curve are formed by the ICMAX, power dissipation, second breakdown and VCEO ratings of the transistor. Notice, that the power dissipation and second breakdown ratings are given for a case temperature of $+25^{\circ}$ C, and must be derated at higher case temperatures. (Derating factors may be found in the transistors' data sheets.) These boundaries must never be exceeded during operation, or destruction of the transistor or transistors which constitute the pass element may result. (In addition, the maximum operating junction temperature must not be exceeded. See Section 15.)

C. CURRENT LIMITING TECHNIQUES

In order to select a transistor or transistors with adequate SOA, the locus of pass element Ic and VCE operating points must be known. This locus of points is determined by the input voltage (V_{IN1}), output voltage (V_0), output current (Io) and the type of output current limiting technique employed.

In most cases, V_{IN1} , Vo, and the required output current are already known. All that is left to determine is how the chosen current limit scheme affects required pass element SOA.


NOTE: Since the external pass element is merely an extension of the IC regulator, the following discussions apply equally well to IC regulators not using an external pass element.

1. Constant Current Limiting

This method is the simplest to implement and is extensively used, especially at the lower output current levels. The basic curcuit configuration is shown in Figure 4-3A, and operates in the following manner:

As the output current increases, the voltage drop across Rsc increases, proportionately. When the output current has increased to the point that the voltage drop across Rsc is equal to the base-emitter "on" voltage of Q3 (VBEON(Q3)), Q3 conducts. This diverts base current (IDRIVE) away from Q1, the IC regulator's internal series pass element. Base drive (IB(Q2)) of Q2 is therefore reduced and its collector-emitter voltage increases, thereby reducing the output voltage below its regulated value, VOUT. The resulting output voltage-current characteristic is shown in Figure 4-3B. The value of Isc is given by:

$$Isc = \frac{V_{BEON(Q3)}}{Rsc}$$
(4.7)

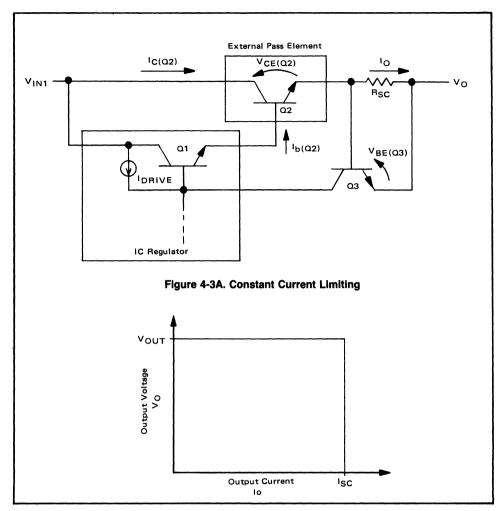


Figure 4-3B. Constant Current Limiting

By using the base of Q1 in the IC regulator as a control point, this configuration has the added benefit of limiting the IC regulator output current ($I_{B(Q2)}$) to Isc/hFE(Q2), as well as limiting the collector current of Q2 to Isc. Of course, access to this point is necessary. Fortunately, it is usually available in the form of a separate pin or as the regulator's compensation terminal.*

The required safe-operating-area for Q2 can be obtained by plotting the V_{CE} and Ic of Q2 given by:

$$V_{CE(Q2)} = V_{IN1} - V_O - I_OR_{SC} \simeq V_{IN1} - V_O$$

$$(4.8)$$

$$I_{C(Q2)} \simeq I_0$$
 (4.9)

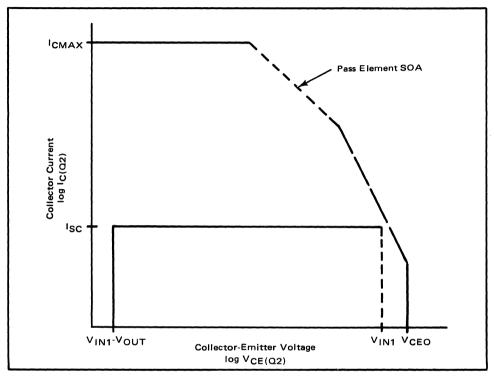
where $V_0 = V_{0UT}$ for $0 \le I_0 \le I_{SC}$ (4.10)

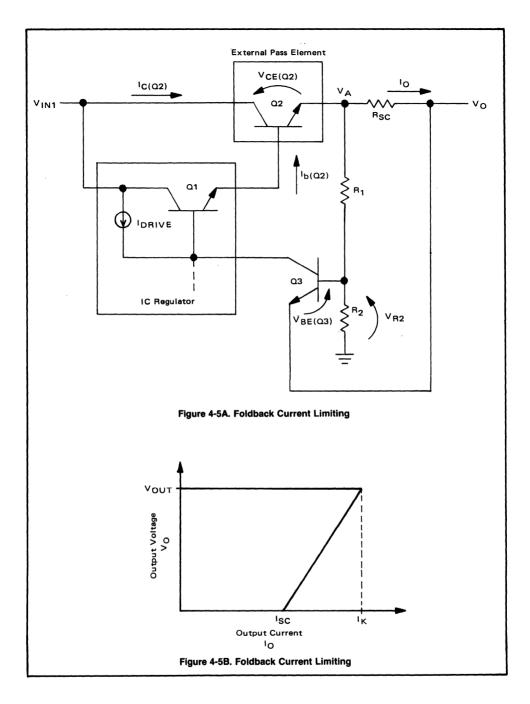
and
$$I_0 = I_{SC} \text{ for } 0 \le V_0 \le V_{OUT}$$
 (4.11)

*The three terminal regulators have internal current limiting and therefore do not provide access to this point. If an external pass element is used with these regulators, constant current limiting can still be accomplished by diverting pass element drive. See Section 3 for circuit techniques.

The resulting plot is shown in Figure 4-4. The transistor chosen for Q2 must have an SOA which encloses this plot, as shown in this Figure.

Note that the greatest demand on the transistors SOA capability occurs when the output of the regulator is short circuited and the pass element must support the full input voltage and short circuit current simultaneously.




Figure 4-4. Constant Current Limit SOA Requirements

2. Foldback Current Limiting

A disadvantage of the constant current limit technique is that in order to obtain sufficient SOA the pass element must have a much greater collector current capability than is actually needed. If the short circuit current could be reduced, while still allowing full output current to be obtained during normal regulator operation, more efficient utilization of the pass elements SOA capability would result. This can be done by using a "foldback" current limiting technique instead of constant current limiting.

The basic circuit configuration for this method is shown in Figure 4-5A. The circuit operates in a manner similar to that of the constant current limiting circuit, in that output current control is obtained by diverting base drive away from Q1 with Q3.

At low output currents, V_A approximately equals Vo and V_{R2} is less than than Vo. Q3 is therefore non-conducting and the output voltage remains constant. As the output current increases, the voltage drop across Rsc increases until VA and VR2 are great enough to bias Q3 on. The output current at which this occurs is I κ , the "knee" current.

The output voltage will now decrease. Less output current is now required to keep V_A and V_{R2} at a level sufficient to bias Q3 on since the voltage at its emitter has the tendency to decrease faster than that at its base. The output current will continue to "foldback" as the output voltage decreases, until an output short circuit current level, Isc, is reached when the output voltage is zero. The resulting output current-voltage characteristic is shown in Figure 4-5B. The values for R1, R2, and Rsc (neglecting base current of Q3) are given by:

$$R_{SC} = \frac{V_{OUT}/I_{SC}}{(1 + \frac{V_{OUT}}{V_{BEON(03)}}) - \frac{I_K}{I_{SC}}}$$
(4.12)

$$\frac{R2}{R1+R2} = \frac{V_{BEON(Q3)}}{Isc Rsc}$$
(4.13)

and
$$R1 + R2 \leq \frac{V_{OUT}}{I_{DRIVE}}$$
 (4.14)

where Vout = normal regulator output voltage

 $I\kappa = knee current$

Isc = short circuit current

 I_{DRIVE} = base drive to regulator's internal pass element(s)

A plot of Q2 operating points which result when using this technique are shown in Figure 4-6. Note that the pass element is required to operate with a collector current of only Isc during short circuit conditions, not the full output current, I κ . This resuts in a more efficient utilization of the SOA of Q2 allowing the use of a smaller transistor than if constant current limiting were used. Although foldback current limiting allows use of smaller pass element transistors for a given regulator output current than does constant current limiting, it does have a few disadvantages.

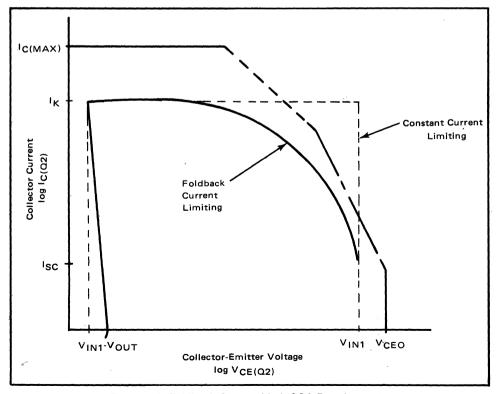


Figure 4-6. Foldback Current Limit SOA Requirements

Referring to Equation (4.12), as the foldback ratio, IK/Isc, is increased, the required value of Rsc increases. This results in a greater input voltage at higher foldback ratios. In addition, it can be seen for Equation (4.12) that there exists an absolute limit to the foldback ratio equal to:

$$\left(\frac{I_{K}}{I_{SC}}\right)_{MAX} = 1 + \frac{V_{OUT}}{V_{BEON(Q3)}} \text{ for } R_{SC} = \infty$$
 (4.15)

For these reasons, foldback ratios greater than 2:1 or 3:1 are not usually practical for the lower output voltage regulators.

D. PARALLELING PASS ELEMENT TRANSISTORS

Occasionally, it will not be possible to obtain a transistor with sufficient safe-operating-area. In these cases it is necessary to parallel two or more transistors. Even if a single transistor with sufficient capability is available, it is possible that paralleling two smaller transistors is more economical.

In order to insure that the collector currents of the paralleled transistors are approximately equal, the configuration of Figure 4-7 can be used. Emitter ballasting resistors are used to force collector current sharing between Q1 and Q2. The collector current mismatch can be determined by considering the following:

From Figure 4-7,

and

and

$$V_{BE1} + V_1 = V_{BE2} + V_2 \tag{4.16}$$

$$\Delta V_{BE} = \Delta V \tag{4.17}$$

where $\Delta V_{BE} = V_{BE1} - V_{BE2}$

 $\Delta V = V_2 - V_1$

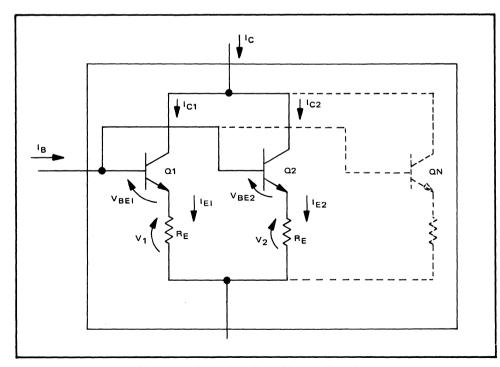


Figure 4-7. Paralleling Pass Element Transistors

Assuming $I_{E1} \simeq I_{C1}$ and $I_{E2} \simeq I_{C2}$, the collector current mismatch is given by,

$$\frac{I_{C2} - I_{C1}}{I_{C2}} = \frac{\begin{pmatrix} V_2 \\ \overline{R_E} \end{pmatrix} \begin{pmatrix} V_1 \\ \overline{R_E} \end{pmatrix}}{\begin{pmatrix} V_2 \\ \overline{R_E} \end{pmatrix}} = \frac{V_2 - V_1}{V_2} = \frac{\Delta V}{V_2}$$
(4.18)

$$=\frac{\Delta V_{BE}}{V_2} \tag{4.19}$$

and,

percent collector current mismatch =
$$\frac{\Delta V_{BE}}{V_2} \times 100\%$$
 (4.20)

From Equation (4.20), the collector current mismatch is dependent on Δ VBE and V2. Since Δ VBE is usually acceptable, V2 should be 1.0 V to 0.5 V, respectively. RE is therefore given by:

$$R_{E} = \frac{0.5 \text{ to } 1.0 \text{ V}}{\text{Ic}_{1}} = \frac{0.5 \text{ V to } 1.0 \text{ V}}{\text{Ic}_{2}} = \frac{0.5 \text{ V to } 1.0 \text{ V}}{\text{Ic}/2}$$
(4.21)

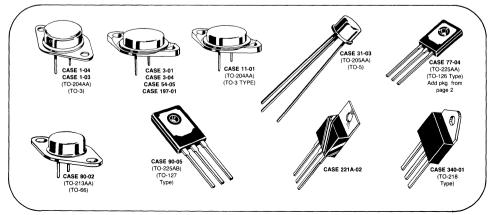
E. TRANSISTOR SELECTION GUIDE

As an aid in selecting an appropriate series pass element, the following selection guide has been included.

Device a NPN	nd Polarity PNP	V _{CEO} Volts Min	^h FE Min/Max	I _C Amps	V _{ce(sat)} Volts Max	IC Amps	fT MHz Min	P _D Watts Max	Case
0.3 Amp									
MJE3440		250	40/160	0.02	0.5	0.05	15	15	77
MJE3439		350	40/160	0.02	0.5	0.05	15	15	77
0.5 Amp									
2N5655		250	30/250	0.1	1.0	0.1	10	20	77
2N5656		300	30/250	0.1	1.0	0.1	10	20	77
MJE340	MJE350	300	30/240	0.05		2		20	77
2N5657		350	30/250	0.1	1.0	0.1	10	20	77
1.0 Amp									
TIP29	TIP30	40	15/75	1.0	0.7	1.0	3.0	30	221/
2N4921	2N4918	40	30/150	0.5	0.6	1.0	3.0	30	77
TIP29A	TIP30A	60	15/75	1.0	0.7	1.0	3.0	30	221/
2N4922	2N4919	60	30/150	0.5	0.6	1.0	3.0	30	77
TIP29B	TIP30B	80	15/75	1.0	0.7	1.0	3.0	30	221/
2N4923	2N4920	80	30/150	0.5	0.6	1.0	3.0	30	77
TIP29C	TIP30C	100	15/75	1.0	0.7	1.0	3.0	30	221
2N3738	2N6424	225	40/200	0.1	2.5	0.25	10	20	80
TIP47		250	30/150	0.3	1.0	1.0	10	40	221
TIP48		300	30/150	0.3	1.0	1.0	10	40	221
2N3739	2N6425	300	40/200	0.1	2.5	0.25	10	20	80
TIP49		350	30/150	0.3	1.0	1.0	10	40	221/
2.0 Amp									
2N3583	2N6420	175	40/200	0.5	5.0	1.0	10	35	80
2N3584	2N6421	250	8/80	1.0	0.75	1.0	10	35	80
2N3585	2N6422	300	8/80	1.0	0.75	1.0	10	35	80
2N4240	2N6423	300	30/150	0.75	1.0	0.75	15	35	80
2.5 Amps		1				1			
BU205		750	2/	2.5	5.0	2.5	7.5	10	01

PREFERRED SILICON POWER TRANSISTORS (continued)

Device a	and Polarity PNP	VCEO Volts Min	hFE Min/Max	IC Amps	V _{ce(sat)} Volts Max	l <u>C</u> Amps	^f T MHz Min	PD Watts Max	Ca
3.0 Amps	1					1		1	
MJE520		30	25/	1.0				25	7
MJE31	MJE32	40	25/	1.0	1.2	3.0	3.0	40	7
MJEST	2N3867	40	40/200	1.0	0.75	1.5	60	6.0	
						1		1	3
M. (501 A	2N3868	60	30/150	1.5	0.75	1.5	60	6.0	3
MJE31A	MJE32A	60	25/	1.0	1.2	3.0	3.0	40	7
MJE31B	MJE32B	80	25/	1.0	1.2	3.0	3.0	40	7
MJE181	MJE171	80	50/250	0.1	0.9	1.5	50	1.5	7
MJE31C	MJE32C	100	25/	1.0	1.2	3.0	3.0	40	7
3.5 Amp								{	
2N3902		400	30/90	1.0	0.8	1.0	2.8	100	0
4.0 Amp									
2N5190	2N5193	40	25/100	1.5	0.6	1.5	2.0	40	7
2N6037	2N6034	40	750/15K	2.0	2.0	2.0	1.0	40	7
MJE3300	MJE3310	40	1000/	1.0	1.5	1.5	20	15	7
2N6121	2N6124	45	25/100	1.5	0.6	1.5	2.5	40	22
2N3054A	2N6049	55	25/250	0.5	1.0	0.5	3.0	75	8
2N6122	2N6125	60	25/100	1.5	0.6	1.5	2.5	40	22
2N6413	2N6415	60	40/250	0.2	2.5	4.0	50	15	7
2N5191	2N5194	60	25/100	1.5	0.6	1.5	2.0	40	7
2110101	2N3740	60	30/100	0.25	0.6	1.0	3.0	25	8
2N6294	2N6296	60	750/18K	2.0	2.0	4.0	50	80	°
2N6038	2N6035	60	750/15K	2.0	2.0	2.0	1.0	40	7
MJE3301	MJE3311	60	1000	1.0	1.5	1.5	20	15	7
MJE800	MJE700	60	750/	1.0	2.5	1.5	1.0	40	7
2N6123	2N6126	80	20/80			1			
MJE3302		80		1.5	0.6	1.5	2.5	40	22
2N5192	MJE3312	80	1000/	1.0	1.5	1.5	20	15	7
2115192	2N5195		20/80	1.5	0.6	1.5	2.0	40	7
	2N3741	80	30/100	0.25	0.6	1.0	3.0	25	8
2N6295	2N6297	80	750/18K	2.0	2.0	2.0	4.0	50	8
2N6039	2N6036	80	750/15K	2.0	2.0	2.0	1.0	40	7
5.0 Amp									
MJE200	MJE210	40	45/180	2.0	0.75	2.0	65	15	7
2N4232A	2N6313	60	25/100	1.5	0.7	1.5	4.0	75	8
MJE1100	MJE1090	60	750/	3.0	2.5	3.0		70	9
2N4233A	2N6314	80	25/100	1.5	0.7	1.5	4.0	75	8
2N6233		225	25/125	1.0	0.5	1.0	20	50	8
2N6497		250	10/75	2.5	1.0	2.5	5.0	80	22
MJE51T		250	5/	5.0	2.0	5.0	2.5	80	22
2N6234		275	25/125	1.0	0.5	1.0	20	50	8
2N6498		300	10/75	2.5	1.25	2.5	80	5.0	22
MJE52T		300	5/	5.0	2.0	5.0	2.5	80	22
2N6235		325	25/125	1.0	0.5	1.0	20	50	8
MJ3030		325			2.0	3.0		125	o
2N6499		350	10/75	2.5	1.5	2.5	5.0	80	22
MJE53T		350	5/	5.0	2.0	5.0	2.5	80	22
BU208		700	2.25/	5.0 4.5	5.0	4.5	4.0	1.25	22
00200	1	/00	2.20/	4.5	5.0	4.5	4.0	1.25	0


PREFERRED SILICON POWER TRANSISTORS (continued)

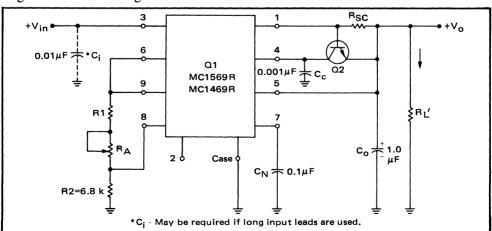
Device a NPN	nd Polarity PNP	V _{CEO} Volts Min	hFE Min/Max	l <u>C</u> Amps	V _{ce(sat)} Volts Max	l _C Amps	f _T MHz Min	P _D Watts Max	Case
6.0 Amp						1		1	
TIP41	TIP42	40	15/75	3.0	1.5	6.0	3.0	2.0	221/
TIP41A	TIP42A	60	15/75	3.0	1.5	6.0	3.0	2.0	221
TIP41B	TIP42B	80	15/75	3.0	1.5	6.0	3.0	2.0	221
TIP41D	TIP42D	100	15/75	3.0	1.5	6.0	3.0	2.0	221
	2N6226	100	25/100	3.0	1.0	3.0	1.0	150	11
2N5758						3.0		1	11
2N5959 2N5760	2N6227 2N6228	120 140	20/80 15/60	3.0 3.0	1.0 1.0	3.0	1.0 1.0	150 150	11
8.0 Amp	2110220	3	13/00	5.0	1.0	5.0	1.0	130	
•			750/10/						
2N6300	2N6298	60	750/18K	4.0	2.0	4.0	4.0	75	80
2N6055	2N6053	60	750/18K	4.0	2.0	4.0	4.0	100	11
2N6043	2N6040	60	1K/10K	4.0	2.0	4.0	4.0	75	221
MJ1000	MJ900	60	1000/	3.0	2.0	3.0		90	11
2N6301	2N6299	80	750/18K	4.0	2.0	4.0	4.0	75	80
2N6056	2N6054	80	750/18K	4.0	2.0	4.0	4.0	100	11
2N6044	2N6041	80	1K/10K	4.0	2.0	4.0	4.0	75	221
2N6045	2N6042	100	1K/10K	3.0	2.0	3.0	4.0	75	221
2N6306		250	15/75	3.0	0.8	3.0	5.0	125	01
2N6307		300	15/75	3.0	1.0	3.0	5.0	125	01
2N6308		350	12/60	3.0	1.5	3.0	5.0	125	01
10.0 Amp									
2N6383	2N6648	40	1K/20K	5.0	2.0	5.0	20	100	11
2N6384	2N6649	60	1K/20K	5.0	2.0	5.0	20	100	11
MJE3055	MJE2955	60	20/100	4.0	1.1	4.0	2.0	90	90
MJE3055T	MJE2955T	60	20/100	4.0	1.1	4.0	2.0	90	221
MJE4340	MJE4350	100	50/	10.0	0.5	5.0	1.0	125	340
MJE4341	MJE4351	120	50/	10.0	0.5	5.0	1.0	125	340
MJE4342	MJE4352	140	50/	10.0	0.5	5.0	1.0	125	340
MJE4343	MJE4353	160	50/	10.0	0.5	5.0	1.0	125	340
2N5877	2N5875	60	20/100	4.0	1.0	5.0	4.0	150	11
2N3715	2N3791	60	50/150	1.0	0.8	5.0	4.0	150	11
2N5878	2N5876	80	20/100	4.0	1.0	5.0	4.0	150	11
2N6385	2N6650	80	1K/20K	4.0 5.0	2.0	5.0	20	100	11
2N6385 2N3716	2N8650 2N3792	80	50/150	1.0	0.8	5.0	4.0	150	11
		1						1	
2N5632	2N6229	100	25/100	5.0	1.0	7.5	1.0	150	11
2N5633	2N6230	120	20/80	5.0	1.0	7.5	1.0	150	11
2N5634	2N6231	140	15/60	5.0	1.0	7.5	1.0	150	11
MJ413		325	20/80	0.5	0.8	0.5	2.5	125	11
MJ423		325	30/90	1.0	0.8	1.0	2.5	125	11
12.0 Amp									
2N6569		40	15/200	4.0	1.5	4.0	1.5	100	11
2N5989	2N5986	40	20/120	6.0	0.7	6.0	2.0	100	90
2N5990	2N5987	60	20/120	6.0	0.7	6.0	2.0	100	90
2N6057	2N6050	60	750/18K	6.0	2.0	6.0	4.0	150	01
2N5991	2N5988	80	20/120	6.0	0.7	6.0	2.0	100	90
2N6058	2N6051	80	750/18K	6.0	2.0	6.0	4.0	150	01
2N6059	2N6052	100	750/18K	6.0	2.0	6.0	4.0	150	01

Device NPN	and Polarity PNP	VCEO Volts Min	hFE Min/Max	l <u>C</u> Amps	V _{ce(sat)} Volts Max	l <u>C</u> Amps	fT MHz Min	P _D Watts Max	Case
15.0 Amp	1					[
2N6486	2N6489	40	20/150	5.0	1.3	5.0	5.0	75	221A
2N6487	2N6490	60	20/150	5.0	1.3	5.0	5.0	75	221A
2N3055	MJ2955	60	20/70	4.0	1.1	4.0	2.5	115	11
2N5881	2N5879	60	20/100	6.0	1.0	7.0	4.0	160	11
2N6576		60	500/5K	10.0	4.0	15		120	11
2N6488	2N6491	80	20/150	5.0	1.3	5.0	5.0	75	221A
2N5882	2N5880	80	20/100	6.0	1.0	7.0	4.0	160	11
2N6577		90	500/5K	10.0	4.0	15		120	11
2N6578		120	500/5K	10.0	4.0	15		120	11
2N6249		200	10/50	10.0	1.5	10	2.5	175	01
2N6250		275	8/50	10.0	1.5	10	2.5	175	01
2N6251		350	6/50	10.0	1.5	10	2.5	175	01
16.0 Amp			1						
2N5629	2N6029	100	25/100	8.0	1.0	10	1.0	200	11
2N5630	2N6030	120	20/80	8.0	1.0	10	1.0	200	11
2N5631	2N6031	140	15/60	8.0	1.0	10	1.0	200	11
20.0 Amp			1						
2N6282	2N6285	60	750/18K	10.0	2.0	10	4.0	160	01
2N5303	2N5745	80	15/160	10.0	1.0	10	2.0	200	11
2N6283	2N6286	80	750/18K	10.0	2.0	10	4.0	160	01
2N6284	2N6287	100	750/18K	10.0	2.0	10	4.0	160	01
25.0 Amp									
2N5885	2N5883	60	20/100	10.0	1.0	15	4.0	200	11
2N5886	2N5884	80	20/100	10.0	1.0	15	4.0	200	11
2N6338		100	30/120	10.0	1.0	10	40	200	01
2N6339		120	30/120	10.0	1.0	10	40	200	01
2N6340		140	30/120	10.0	1.0	10	40	200	01
2N6341		150	30/120	10.0	1.0	10	40	200	01
30.0 Amp									
2N5301	2N4398	40	15/60	15.0	0.75	10	2.0	200	11
2N5302	2N4399	60	15/60	15.0	0.75	10	2.0	200	11
MJ802	MJ4502	90	25/100	7.5	0.8	7.5	2.0	200	11
50.0 Amp									
2N5685	2N5683	60	15/60	25.0	1.0	25	2.0	300	197
2N5686	2N5684	80	15/60	25.0	1.0	25	2.0	300	197
2N6274		100	30/120	20.0	1.0	20	30	250	197
2N6275		120	30/120	20.0	1.0	20	30	250	197
2N6276	1	140	30/120	20.0	1.0	20	30	250	197
2N6277		150	20/120	20.0	1.0	20	30	250	197

PREFERRED SILICON POWER TRANSISTORS (continued)

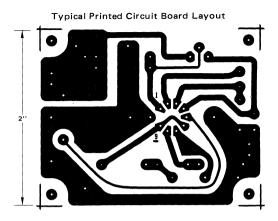
SILICON POWER DEVICE PACKAGES

SECTION 5 LINEAR REGULATOR CONSTRUCTION AND LAYOUT


An important, and often neglected, aspect of the total regulator circuit design is the actual layout and component placement of the circuit. In order to obtain excellent transient response performance, high frequency transistors are used in modern integrated circuit voltage regulators. Proper attention to circuit layout is therefore necessary in order to prevent regulator instability or oscillations, or degraded performance.

In this section, guidelines will be given on proper regulator layout and placement of circuit components. In addition, topics such as remote voltage sensing and semiconductor mounting techniques will also be considered.

1. General Layout and Component Placement Considerations


As mentioned previously, modern integrated circuit regulators are necessarily high bandwidth devices in order to obtain good transient response characteristics. To insure stable closed loop operation, all these devices are frequency compensated, either internally or externally. This compensation can easily be upset by unwanted stray circuit capacitances and lead inductances, resulting in spurious oscillations. Therefore, it is important that the circuit lead lengths be short and the layout as tight as possible. Particular attention should be paid to locating the compensation and bypass capacitors as close to the IC as possible. Lead lengths associated with the external pass element(s), if used, should also be minimized.

Often overlooked is the stray inductance associated with the input leads to the regulator circuit. If the lead length from the input supply filter capacitor to the regulator input is more than a couple of inches, a $0.01-1.0\mu$ F high frequency type capacitor (tantalum, ceramic, etc.) should be used to bypass the supply leads close to the regulator input pins.

A typical good circuit layout is shown in Figure 5-1 for an MC1569R regulator circuit configuration.

Figure 5-1. Typical Regulator Circuit Layout

Location of Components

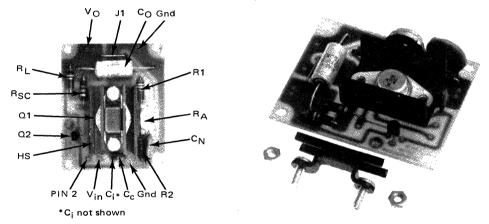


Figure 5-1. Typical Regulator Circuit Layout (cont.)

2. Ground Loops and Remote Voltage Sensing

Ground Loops

Regulator performance can also suffer if ground loops in the circuit wiring are not avoided. The most common ground loop problem occurs when the return lead of the input supply filter capacitor is improperly located, as shown in Figure 5-2. If this return lead is physically connected between the load return and the regulator circuit ground point ("B"), a ripple voltage component (60 or 120 Hz) can be induced on the load voltage, VL. This is due to the high peaks of the filter capacitor ripple current, iripple, flowing through the lead resistance between the load and regulator. These peaks can be 5 to 15 times the value of load current. Since the regulator will only keep constant the voltage between its sense lead and ground point, points "A" and "B" in Figure 5-2, this additional ripple voltage, VLEAD, will appear at the load.

This problem can be avoided by proper placement and connection of the filter capacitor return load as shown in Figure 5-3.

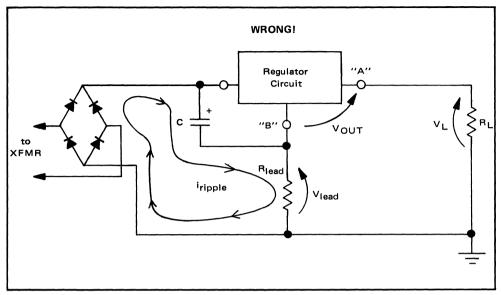


Figure 5-2. Filter Capacitor Ground Loop

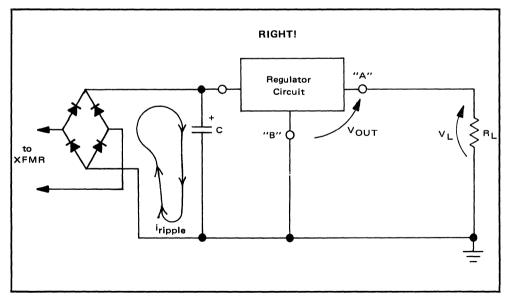


Figure 5-3.

Remote Voltage Sensing

Closely related to the above ground loop problem, is resistance in the current carrying leads to the load. This can cause poorer than expected load regulation in cases where the load currents are large or where the load is located some distance from the regulator. This is illustrated in Figure 5-4. As stated previously, the regulator circuit will keep the voltage present between its sense and ground pins constant. From Figure 5-4 we can see that any lead resistance between these points and the load will cause the load voltage, VL, to vary with varying load current, iL. This effectively lowers the load regulation of the circuit.

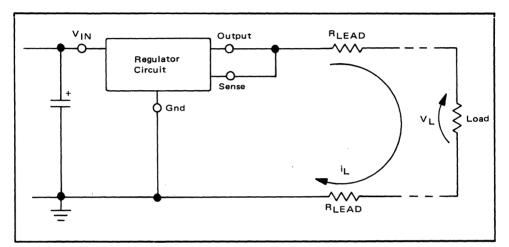


Figure 5-4. Effects of Resistance in Output Leads

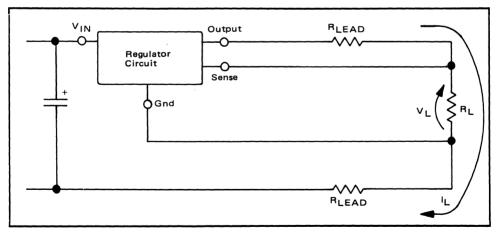


Figure 5-5. Remote Voltage Sensing

This problem can be avoided by use of remote sense leads, as shown in Figure 5-5. The voltage drops in the high current carrying leads now have no effect on the load voltage, VL. However, since the sense and ground leads are usually rather long, care must be exercised that their associated lead inductance is minimized, or loop instability may result. The ground and sense leads should be formed into a twisted pair lead to minimize their lead inductance and noise pickup.

3. Semiconductor Mounting Considerations

An area of regulator construction which frequently does not receive proper attention is the mounting of the semiconductor power devices. Improper mounting of the external series pass transistor(s) and/or IC regulator, if in a power type package (TO-3, TO-66, TO-220, etc.), can result in higher than expected case to heatsink thermal resistances (for thermal information see Section 15) or worse, mechanical damage to the package.

Most problems associated with mounting can be avoided if the following rules are observed:

1. The mounting surface should be flat, smooth, free of deep scratches or burrs, and free of paint, varnish, anodization, or oxidation.

2. Always use a thermal joint compound at the mounting interface (Dow-Corning 340, etc.)

3. Mounting holes should be no larger than those on the semiconductor package; and should be free of burrs or chamfers.

4. TO-3 and TO-66 style packages can be torqued down to the torque limit of the mounting hardware.

Examples of TO-3/TO-66 and TO-220 (Case 221A) mounting techniques are shown in Figures 5-6 and 5-7, respectively.

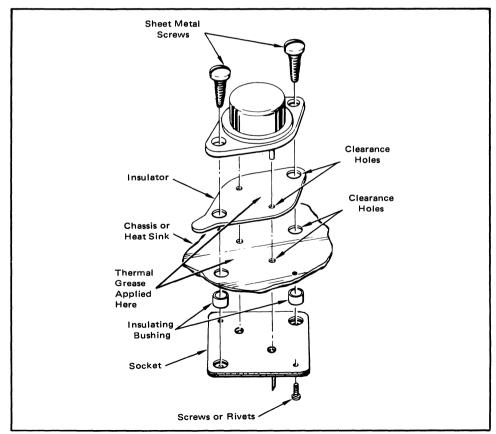
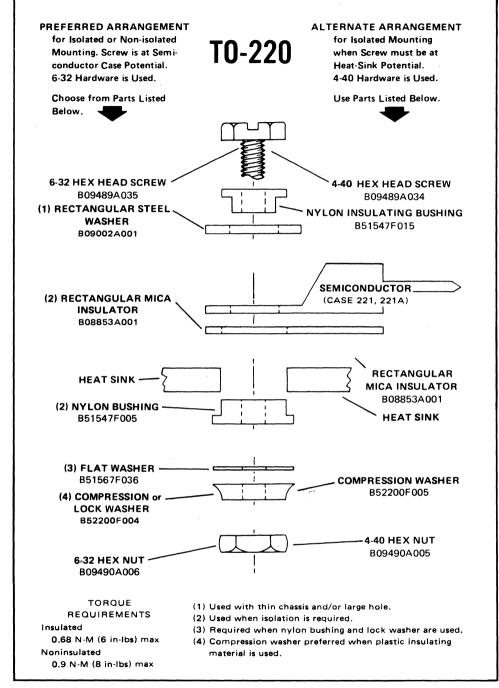



Figure 5-6. Mounting Details for Flat-Base Mounted Semiconductors (TO-66 Shown). When not using a socket, machine screws tightened to their torque limits will produce lowest thermal resistance.

***** *****

Figure 5-7. Mounting Scheme for the TO-220 (Case 221A)

SECTION 6 LINEAR REGULATOR DESIGN EXAMPLE

As an illustration of the use of the material contained in the preceeding sections, the following regulator design example is given.

Regulator Performance Requirements

Output Voltage, $Vo = +10V \pm .1V$ Output Current, Io = 1A, current limited Load Regulation, $\leq .1\%$ for Io = 10mA to 750mA Line Regulation, $\leq .1\%$ Output ripple, $\leq 2mV$ p-p Max Ambient Temperature, $T_A \leq + 70^{\circ}C$ Supply will have common loads to a negative supply

1. IC Regulator Selection: Study of the available regulators given in the selection guide of Section 17 reveals that both the MC1723C and MC1469 would meet the regulation performance requirements. Both regulators must be current boosted to obtain the required 1A output current A rough cost estimate shows that an MC1723C/ series pass element combination is the most economical approach.

2. Circuit Configuration: In Section 3, an appropriate circuit configuration is found. This is the MC1723 NPN boost configuration of Figure 3-5A.

3. Determination of Component Values: Using the equations given in Figure 3-5A, the values of CREF, R1, R2, R3 and Rsc are determined:

a. CREF is chosen to be 0.1μ F for low noise operation.

b. R1 + R2 is chosen to be ≈ 10 K.

c. R2 is then given by: R2 $\approx \frac{7v}{V_o}(R1 + R2) = .7(10K) = 7K$

d. Since VREF can vary by as much as $\pm 5\%$ for the MC1723C, R2 should be made variable by at least that much, so that Vo can be set to the required value of $+10V \pm .1V$. R2 is therefore chosen to consist of a 62K resistor and a 2K trimpot.

e.
$$R1 = 10K - R2 = 10K - 7K = 3K$$

f.
$$\operatorname{Rsc} \approx \frac{0.6V}{\operatorname{Isc}} = \frac{0.6V}{1A} = .6\Omega$$
; .56 Ω , 1W chosen for Rsc.

g.
$$R3 = R1 \parallel R2 \cong 2.2K$$

4. Determination of Input Voltage, VIN: There are two basic constraints on the input voltage: (1) the device limits for minimum and maximum VIN and (2) the minimum input-output voltage differential. These limits are found on the device data sheet (Section 18.) to be:

$$9.5V \le V_{IN} \le 40V$$
 and $(V_{IN} - V_0) \ge 3V$

For the configuration of Figure 3-5A, (VIN - VO) is given by:

 $(V_{IN} - V_O) = [V_{IN} - (V_O + 2\phi)] \ge 3V$ where $\phi = V_{BEON} \approx 0.6V$

Note that $(V_{IN} - V_O)$ is defined on the device data sheet to be the differential between the input and output pins. Since the base-emitter junction drops of Q1 and Rsc have been added to the circuit, they must be added to the minimum value of $(V_{IN} - V_O)$. Therefore,

$$V_{IN} \ge V_O + 2\phi + 3V = 10 + 1.2 + 3$$

 $V_{IN} \ge 14.2V$

This condition also satisfies the requirement for a minimum V_{IN} of 9.5V.

b. In order to simplify the design of the input supply (see Section 8), V_{IN} is chosen to be 16V average with a 3V p-p ripple at full load and up to 25V at no load. This assures that the input voltage is always above the required minimum value of 14.2V. Now, the output ripple can be determined. The MC1723C has a typical ripple rejection ratio of -74 db, as given on its data sheet. With an input ripple of 3V p-p, the output ripple would be less than 1m V p-p, which meets the regulator output ripple requirements.

5. Determination of regulator package and available output current: Referring to the MC1723 data sheet (Section 18), there are two package styles to choose from. Since the two packages have different thermal characteristics, the amount of available output current will be different for each.

This can be found from:

 $T_J = T_A + \theta_{JA} P_D (Eq. 6.1 \text{ from Section 15})$

where θ_{JA} = heatsink and/or pkg total junction-to-ambient thermal resistance

 $P_D = V_{IN} \times (I_0 + I_{IB})$

IIB = quiescent current of IC regulator

Io = IC regulator output current

solving for Io:

Io =
$$\left[\frac{(T_J - T_A)}{\theta_{JA} V_{IN}}\right]$$
 – IIB (6.1)

From the device data sheet, we can find the values of TJ, θ JA, and IIB. Eq 6.1 can then be solved. The results are summarized below for an unheatsinked MC1723CL (ceramic DIP), an unheatsinked MC1723CG (metal can), and an infinitely heatsinked MC1723CG packages.

	MC1723CL	MC1723CG	MC1723CG				
Heatsink	None	None	Infinite				
Τյ ΤΑ θJΑ ΙιΒ	175℃ 70℃ 150℃ / W 4mA	150°C 70°C 184°C ∕ W 4mA	150°C 70°C 70°C∕ W 4mA				
lo	40mA	23mA	67mA				

TABLE 6-1

A choice must now be made. Since it is desirable to have as much available current as possible to drive Q1 (thereby lowering its gain (hfe) requirements), an infinitely heatsinked MC1723CG is the most desirable choice. However, the construction of an infinite heatsink is hardly practical. Therefore, the choice is between an unheat-sinked MC1723CL and an MC1723CG with some form of heatsinking. The unheatsinked MC1723CL is chosen since this approach is the least complex.

6. Selection of the Series Pass Element, Q1: The transistor type chosen for Q1 must have the following characteristics (see Section 4):

a. VCEO \geq VINMAX

c.
$$h_{fe} \ge \frac{I_{SC}}{I_O} @ V_{CE} = V_{IN} - V_O - \phi$$

where $\phi = V_{\text{BEON}} \approx 0.6 \text{V}$

- d. $P_{DMAX} \ge V_{IN}, \times I_{SC}$
- e. θ_{JC} such to allow practical heatsinking
- f. SOA such that it can withstand

$$V_{CE} = V_{IN} @ I_C = I_{SC}$$

for this example:

$$V_{CEO} \ge 25V$$

$$I_{CMAX} \ge 1A$$

$$h_{fe} \ge 25 @ V_{CE} = 5V @ I_{C} = 1A$$

$$P_{DMAX} \ge 16W$$

$$\theta_{JC} = 1.52^{\circ}C/W$$

$$SOA: 1A @ 16V$$

A 2N3055 transistor is chosen as a suitable device for Q1 using the selection guide of Section 4 and the transistor data sheets (available from device manufacturer).

7. Q1 Heatsink Calculation

 $T_{J} = T_{A} + \theta_{JA} P_{D} (Eq \ 15.1 \text{ from Section 15})$ where $P_{D} = V_{IN} \times I_{SC}$ $\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA} (Eq \ 6.2)$

solving for θ_{SA} :

$$\theta_{\rm SA} = \left[\frac{T_{\rm J} - T_{\rm A}}{P_{\rm D}}\right] - (\theta_{\rm JC} + \theta_{\rm CS})$$
 (6.2)

From the 2N3055 data sheet, $T_J = 200^{\circ}C$ and $\theta_{JC} = 1.52^{\circ}C/W$. The transistor will be mounted with thermal grease directly to the heatsink. Therefore, θ_{CS} is found to be 0.1°C/W from Table 15-1.

Solving 6.2:

$$\theta_{\text{SA}} = \left[\frac{200^{\circ}\text{C} - 70^{\circ}\text{C}}{16\text{V} \times 1\text{A}}\right] - (1.52 + 0.1)^{\circ}\text{C/W}$$

 $\leq 6.6^{\circ}\text{C/W}$

A commercial heatsink is now chosen from Table 15-2 or a custom designed using the methods given in Section 15. For this example, a thermalloy 6003 heatsink having a θ cs of 6.2°C/W was used.

8. Clamp Diode: Since the regulator can power a load which is also connected to a negative supply, a 1N4001 diode is connected to the output for protection. (See general design considerations, Section 3H.) The complete circuit schematic is shown in Figure 6-1.

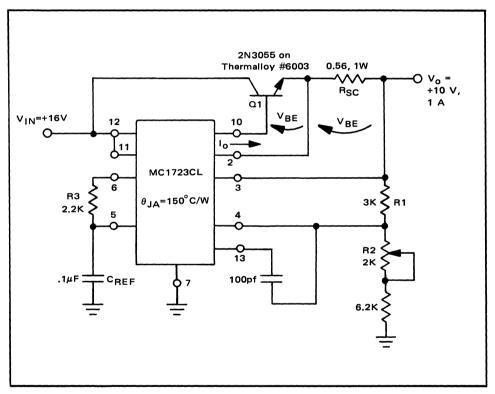


Figure 6-1. + 10V, 1A Design Example

9. Construction Input Supply Design: The input supply is now designed using the information contained in Section 8 and the regulator circuit is constructed using the guidelines given in Section 5.

SECTION 7 LINEAR REGULATOR CIRCUIT TROUBLESHOOTING CHECKLIST

Occasionally the designer's prototype regulator circuit will not operate properly. If problems do occur, the trouble can be traced to a design error in 99.9% of the cases. As a troubleshooting aid to the designer, the following guide is presented.

Of course, it would be difficult, if not impossible, to devise a troubleshooting guide which would cover all possible situations. However, the checklist provided will help the designer pinpoint the problem in the majority of cases. To use the guide, first locate the problem's symptom(s) and then carefully recheck the regulator design in the area indicated using the information contained in the referenced handbook section.

SYMPTOM	DESIGN AREA TO CHECK	REFER TO SECTION
Regulator Oscillates	 Layout Compensation capacitor too small Input leads not bypassed External pass element parasitically oscillating 	5 3, 18 5 5
Loss of Regulation at Light Loads	 Emitter-Base resistor in "PNP" type boost configuration too large Absence of 1 mA "minimum" load (see load regulation test spec on device data sheet) Improper circuit configuration 	4 18 3
Loss of Regulation at Heavy Loads	 Input Voltage too low (VINMIN, IVIN - VOIMIN) External pass element gain too low Current limit too low Line resistance between sense points and load Inadequate heatsinking 	2, 3, 18 17 4 3 5 15
IC Regulator or Pass Element Fails after Warm-Up or at High TA	 Inaequate heatsinking Input Voltage Transient (VINMAX, VCEO) 	15 2, 4, 5, 17, 18
Pass Element Fails During Short Circuit	 Insufficient pass element ratings (SOA, ICMAX) Inadequate heatsinking 	4 15

TROUBLESHOOTING CHECKLIST

SYMPTOM	DESIGN AREA TO CHECK	REFER TO SECTION
IC Regulator Fails During Short Circuit	 IC current or SOA capability exceeded Inadequate heatsinking 	2, 18
IC Regulator Fails During Power Up	 Input voltage transient (VINMAX) IC current or SOA capability exceeded as load (capacitor) is charged up. 	2, 18 2, 18
IC Regulator Fails During Power-Down	1. Regulator reverse biased	3.H
Output Voltage Does Not Come Up During Power-Up or After Short Circuit	 Output polarity reversal Load has "latched-up" in some manner (usually seen with op amps, current sources, etc.) 	3.Н
Excessive 60 or 120 Hz Output Ripple	1. Input supply filter capacitor ground loop	5

If, after carefully rechecking the circuit, the designer is not successful in resolving the problem, seek assistance from the factory by contacting the nearest Motorola Sales office.

SECTION 8 DESIGNING THE INPUT SUPPLY

Most input supplies used to power series pass regulator circuits consist of a 60 Hz, single phase step-down transformer followed by a rectifier circuit whose output is smoothed by a choke or capacitor input filter. The type of rectifier circuit used can be either a half-wave, full-wave, or full-wave bridge type, as shown in Figure 8-1. The half-wave circuit is used in low current applications, while the full-wave is preferrable in high-current, low output voltage cases. The fullwave bridge is usually used in all other high-current applications.

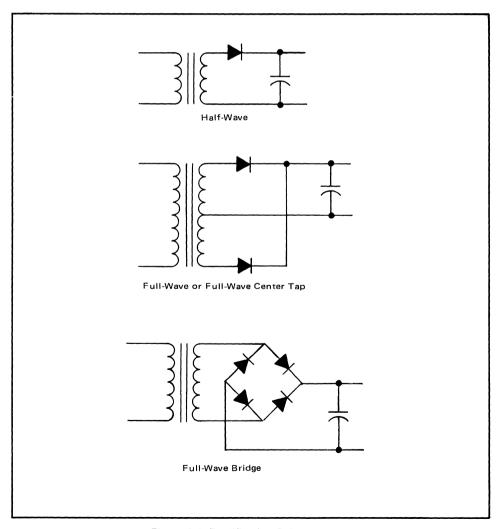


Figure 8-1. Rectification Schemes

In this section, specification of the filter capacitor, rectifier and transformer ratings will be discussed. The specifications for the choke input filter will not be considered since the simpler capacitor input type is more commonly used in series regulated circuits. A detailed description of this type of filter can be found in the reference listed at the end of this section.

1. Design of Capacitor-Input Filters

The best practical procedure for the design of capacitor-input filters still remains based on the graphical data presented by Schade¹ in 1943. The curves shown in Figures 8-2 through 8-5 give all the required design information for half-wave and full-wave rectifier circuits. Whereas Schade originally also gave curves for the impedance of vacuum-tube rectifiers, the equivalent values for semiconductor diodes must be substituted. However, the rectifier forward drop often assumes more significance than the dynamic resistance in low-voltage supply applications, as the dynamic resistance can generally be neglected when compared with the sum of the transformer secondary-winding resistance plus the reflected primary-winding resistance. The forward drop may be of considerable importance, however, since it is about 1 V, which clearly cannot be ignored in supplies of 12 V or less.

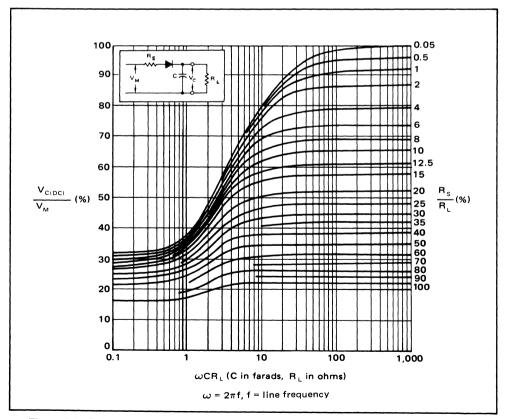


Figure 8-2. Relation of applied alternating peak voltage to direct output voltage in halfwave capacitor-input circuits. (From O. H. Schade, Proc. IRE, vol. 31, p. 356, 1943.)

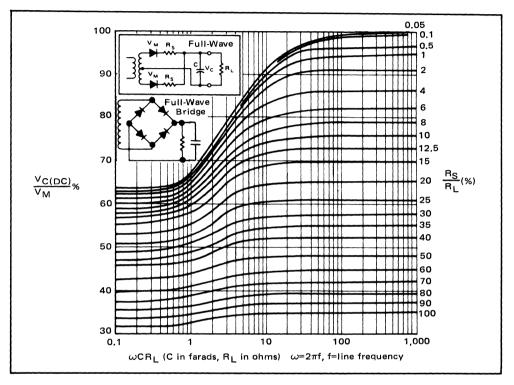


Figure 8-3. Relation of applied alternating peak voltage to direct output voltage in fullwave capacitor-input circuits. (From O. H. Schade, Proc. IRE, vol. 31, p. 356, 1943.)

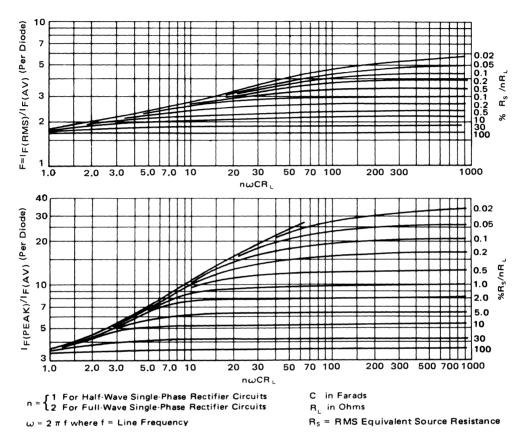


Figure 8-4. Relation of RMS and peak to average diode current in capacitor-input circuits. (From O. H. Schade, Proc. IRE, vol. 31, p. 356, 1943.)

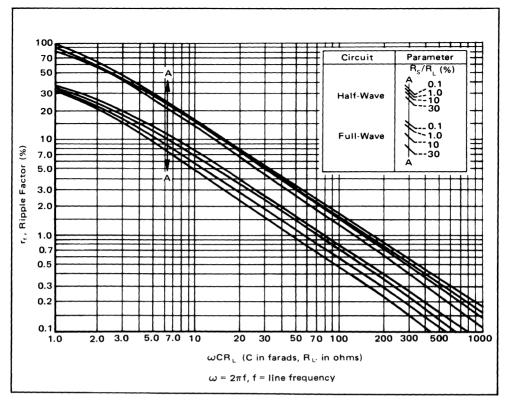


Figure 8-5. Root-mean-square ripple voltage for capacitor-input circuits. (From O. H. Schade, Proc. IRE, vol. 31, p. 356, 1943.)

Returning to the above curves, the full-wave circuit will be considered. Figure 8-3 shows that a circuit must operate with $\omega CRL \ge 10$ in order to hold the voltage reduction to less than 10 percent and $\omega CRL \ge 40$ to obtain less than 2 percent reduction. However, it will also be seen that these voltage-reduction figures require Rs/RL, where Rs is now the total series resistance, to be about 0.1% which, if attainable, causes repetitive peak-to-average current ratios from 10 to 17 respectively, as can be seen from Figure 8-4. These ratios can be satisfied by many diodes; however, they may not be able to tolerate the turn-on surge current generated when the input-filter capacitor is discharged and the transformer primary is energized at the peak of the input waveform. The rectifier is then required to pass a surge current determined by the peak secondary voltage less the rectifier forward drop and limited only by the series resistance Rs. In order to control this turn-on surge, additional resistance must often be provided in series with each rectifier. It becomes evident, then, that a compromise must be made between voltage reduction on the one hand and diode surge rating and hence average current-carrying capacity on the other hand. If small voltage reduction, that is good voltage regulation, is required, a much larger diode is necessary than that demanded by the average current rating.

Surge Current

The capacitor-input filter allows a large surge to develop, because the reactance of the transformer leakage inductance is rather small. The maximum instantaneous surge current is approximately V_M/Rs and the capacitor charges with a time constant $\tau \approx \text{Rs C1}$. As a rough — but conservative — check, the surge will not damage the diode if V_M/Rs is less than the diode IFSM rating and τ is less than 8.3 ms. It is wise to make Rs as large as possible and not pursue tight voltage regulation; therefore, not only will the surge be reduced but rectifier and transformer ratings will more nearly approach the dc power requirements of the supply.

As an aid in the selection of a suitable rectifier or bridge, the brief selection guide of Table 8-1 is included.

	RECTIFIERS	
lF(AVG)	İfsm	SERIES
1.0A	30A	1N4000
1.5A	50A	1N5391
3.0A	100A	MR500
3.0A	200A	1N5400
6.0A	400A	MR750
12A	300A	MR1120
20A	400A	MR2000S
25A	600A	MR2500S
40A	800A	1N1183A
	BRIDGES	×
1.0A	30A	MDA100A
2.0A	50A	MDA200
4.0A	100A	MDA400
8.0A	400A	MDA800
12A	400A	MDA1200
25A	400A	MDA2500
35A	400A	MDA3500

2. Design Procedure

A. From the regulator circuit design (see Section 6), we know:

 $V_{C(DC)}$ = The required full load average DC output voltage of the capacitor input filter

 $V_{Ripple(p-p)}$ = the maximum full load peak-to-peak ripple voltage

 V_m = the maximum no load output voltage

Io = the full-load filter output current

f = the input AC line frequency

B. From Figure 8-5, we can determine a range of minimum capacitor values to obtain sufficient ripple attenuation. First determine rf:

$$\mathbf{r}_{\rm f} = \frac{V_{\rm Ripple(p-p)}}{\sqrt{2} V_{\rm C(DC)}} \times 100\%$$
(8.1)

a range for ωCR_L can now be found from Figure 8-5.

C. Next, determine the range of Rs/RL from Figure 8-2 or 8-3 using VC(DC) and the values for ω CRL found in part B. If the range of ω CRL values initially

determined from Figure 8-5 is above ≈ 10 , Rs/RL can be found from Figures 8-2 and 8-3 using the lowest ω CRL value. Otherwise, several iterations between Figures 8-2 or 8-3 and 8-5 may be necessary before an exact solution for Rs/RL and ω CRL for a given rf and VC(DC)/Vm can be found.

D. Once ωCR_L is found, the value of the filter capacitor, C, can be determined from:

$$C = \frac{\omega CRL}{2\pi \left(\frac{V_{C(DC)}}{I_0}\right)}$$
(8.2)

E. The rectifier requirements may now be determined:

1. Average Current

$$I_{F(AVG)} = I_{O}$$
 for half-wave rectification (8.3)

=
$$I_0/2$$
 for full-wave rectification

2. RMS and Peak repetitive rectifier current ratings can be determined from Figure 8-4.

3. The rectifier PIV rating is 2 V_m for the half-wave and full wave circuits, V_m for the full-wave bridge circuit. In addition, a safety margin of 20% to 50% is advisable due to the possibility of line transients.

4. Maximum Surge Current

$$I_{SURGE} = V_m/(R_s + ESR)$$
(8.4)

where ESR = minimum equivalent series resistance of filter capacitor from its data sheet

- F. Transformer Specification
- 1. Secondary Leg RMS Voltage

$$V_{s} = \{V_{m} + (n) \ 1.0\}/\sqrt{2}$$
(8.5)

where n = 1 for half-wave and full-wave

= 2 for full-wave bridge

2. Total resistance of secondary and any external resistors to be equal to Rs found from Figures 8-2, -3, and -4 (see Part C).

- 3. Secondary RMS Current
 - Half-Wave = I_{rms}

Full-Wave = I_{rms}

Full-Wave Bridge = $\sqrt{2}$ Irms

where $I_{rms} = rms$ rectifier current (from part E.1 and E.2).

4. Transformer VA rating

Half-Wave = Vs Irms Full-Wave = 2 Vs Irms (8.7)

Full-Wave Bridge = Vs Irms ($\sqrt{2}$)

where $I_{rms} = rms$ rectifier current (from part E.1 and E.2)

and Vs = Secondary Leg RMS Voltage

3. Design Example

A. Find the values for the filter capacitor, transformer rectifier ratings, given: Full-Wave Bridge Rectification

$$V_{C(DC)} = 16V$$

$$V_{RIPPLE (p-p)} = 3 V$$

$$V_M = 25 V$$

$$I_0 = 1 A$$

$$f = 60 Hz$$

B. Using Equation (8.1)

$$r_{\rm f} = \frac{3}{2\sqrt{2}(16)} \times 100\% = 6.6\%$$

from Figure 8-5, $\omega CRL \simeq 7$ to 10

C. Using $\omega CRL = 10$, Rs/RL is found from Figure 8-3 using:

$$\frac{V_{C(DC)}}{V_M} = \frac{16}{25} = .64 = .64\%$$

. . Rs/RL = 20% or Rs = .2 × RL = .2($\frac{V_{C(DC)}}{I_0}$) = .2 (16)

$$Rs = 3.2 \Omega$$

D. From Equation (8.2), the filter capacitor size is found:

$$C = \frac{\omega CR_{L}}{2\pi f(\frac{V_{C(DC)}}{I_{O}})} = \frac{10}{2\pi (60)16} = 1657 \ \mu F$$

- E. The rectifier ratings are now specified:
- 1. IF(AVG) = IO/2 = 0.5 A from Eq (8.3)
- 2. $IF(RMS) = 2 \times IF(AVG) = 1$ A from Fig. 8-4
- 3. $IF(PEAK) = 5.2 \times IF(AVG) = 2.6 \text{ A from Fig. 8-4}$
- 4. PIV = VM = 25 V (use 50 V for safety margin)

5. Isurge = VM/(Rs + ESR) $\simeq 25/3.2 = 7.8$ A from Eq (8.4) (neglecting capacitor ESR)

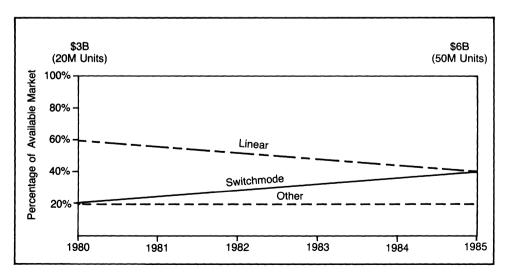
F. The transformer should have the following ratings:

- 1. Vs = {V_M + n(1.0)}/ $\sqrt{2}$ = (25 + 2)/ $\sqrt{2}$ = 19 VRMS {from Eq (8.5)}
- 2. Secondary Resistance should be 3.2 Ω .
- 3. Secondary RMS current rating should be 1.4 A {from Eq (8.6)}
- 4. From Eq. (8.7), the transformer should have a 27 VA rating.

It should be noted that, in order to simplify the procedure, the above design does not allow for line voltage variations or component tolerances. The designer should take these factors into account when designing his input supply. Typical tolerances would be: Line Voltage - +10%, -15% and Capacitors - +75%, -10%.

REFERENCES

- 1. O. H. Schaade, Proc. IRE, Vol. 31, 1943.
- 2. Motorola Silicon Rectifier Manual, 1980.


SECTION 9 SWITCHING REGULATORS VERSUS LINEAR REGULATORS

A. THE MARKET

A switching power supply or switcher is a high frequency power conversion circuit. It uses the ac power line to produce one or more regulated dc voltages. Switchers became practical in the early 60's with the advent of fast, high voltage transistors that made it possible for designers to operate directly off the rectified high voltage (120/220 V) ac lines. By 1970 almost every power supply company had a switcher or line of switchers in their catalog. And today, it is estimated that 20% of the regulated AC-DC power supply market belongs to switchers (See Figure 9-1). The chart indicates that this market will enjoy a compound growth rate (CGR) of about 15% annually but that switchers will average a 30% CGR and will capture 40% of the market by 1985. At this time, the fastest growing market segment is the small, single transistor, switchers (50 to 150 watts). These supplies are benefitting from the current boom in microprocessor and minicomputer equipment such as bank auto tellers and point-of-sale terminals.

B. COMPARISON WITH LINEAR REGULATORS

Switching power supplies offer advantages of efficiency, size, and weight, but also require a more complex design, cannot meet some of the performance capabilities of linear supplies, and can generate a considerable amount of electrical noise. Even with some of the disadvantages, switchers are being accepted in the industry, particularly where size and efficiency are of prime importance. In most applications performance is adequate, and they are cost competitive in the 50 W power level and above. Figure 9-2 illustrates the trends in cost as a function of

Figure 9-1. Market Trends for Power Supplies

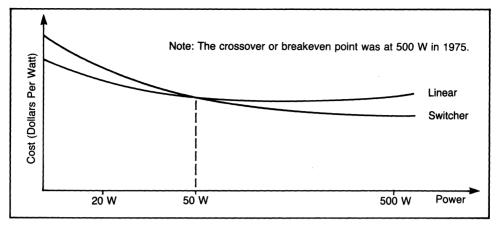


Figure 9-2. 1980 Cost Comparison

output power. Because the switcher's passive components such as transformers and filters are smaller, they are almost always lower in cost than the high power (100 W) linear regulators. However, active component count is high (70 to 140 devices) and remains high regardless of the output power rating. This makes it less cost effective at the lower power levels. Switchers have been significantly cost reduced in the past five years because designers have been able to simplify the control circuits and have found even lower cost alternatives in the passive component area. The 500 W break even point (switcher versus linear) was broken five years ago, and the present 50 W break even point is expected to drop to 20 W in the next couple of years. An example of present parts cost in a 50 W switcher is shown in Table 9-1. The active component semiconductor cost is a somewhat higher percentage of the total at this power level. The average cost of semiconductors for switchers tends to be about 10% of the selling price. This can be subdivided into 5% for rectifiers and about 2% each for transistors and IC's.

Finally, the actual performance comparison chart is shown in Table 9-2. Single output switcher efficiencies run from 70 to 80% but occasionally fall to 60-65% with post regulated auxiliary outputs. Some linear power supplies on the other hand, are operated with up to 50% efficiency, but these are areas where line variations and short hold-up time problems are minimal. Most linear supplies

TABL	.E 9-1
------	--------

Approximate Parts Cost of Similar 50 W Power Supplies (1980)

Component	20 kHz Switcher (\$)	Linear (\$)
Magnetics	8	10
Capacitors	7	7
*Rectifiers	5	3
*Transistors	3	2
*IC's	2	2
Misc. (Line/Heat Sinks)	5	8
TOTAL	30	32

*Semiconductors account for 22% of the total cost in linear power supplies and 33.4% for switchers.

TABLE 9-2

Parameter	Switcher	Linear
Efficiency	75%	30%
Size	2.0 W/IN ³	0.5 W/IN ³
Weight	40 W/lb.	10 W/lb.
Cost 200-500 W*	\$1.00/W	\$1.25/W
Cost 50–150 W*	\$1.50/W	\$1.50/W
Line and Load Regulation	0.1%	0.1%
Output Ripple Vp-P	50 mV	5.0 mV
Noise Vp-p	50–200 mV	
Transient Response	1 ms	20 µs
Hold-Up Time	20-30 ms	1-2 ms

20 kHz Switcher versus Linear Performance

*Based on 1980 Cost Figures

operate with typical efficiencies of only 30%. The overall size reduction of a 20 kHz switcher is about 4:1 over an equivalent linear supply. Newer designs in the 100 to 200 kHz region end up at about 6:1. Other characteristics such as static regulation specs are comparable, while ripple and load transient response are usually worse. Output noise specs can be somewhat misleading. Very often a 200 mV switching spike at the output may be attenuated considerably at the load itself due to the series inductance of the connecting cables and the additional filter capacitors found in many logic circuits. In the future, noise generated at higher switching frequencies (100–500 kHz) will probably be easier to filter and the transient response will be faster. Switchers also exhibit long hold-up time due to their inherent ability to regulate over wide variations in input voltage. It is easier to store the required energy in high voltage input filter capacitors (200–400 V) than in lower voltage (20–50 V) capacitors common to linear power supplies. This is because the physical size of a capacitor is dependent on its CV product, while energy storage is proportional to CV^2 .

SECTION 10 SWITCHING REGULATOR TOPOLOGIES

A switching power supply is a relatively complex circuit as is shown by the four basic building blocks of Figure 10-1. It is apparent here that the heart of the supply is really the high frequency inverter. It is here that the work of chopping the rectified line at a high frequency (≥ 20 kHz) is done. It is here also that the line voltage is transformed down to the correct output level for use by logic or other electronic circuits. The remaining blocks support this basic function. The 60 Hz input line is rectified and filtered by one block, and after the inverter steps this voltage down, the output is again rectified and filtered. The task of regulating the output voltage is left to the control circuit which closes the loop from the output to the inverter. Most control circuits generate a fixed frequency internally and utilize pulse width modulation techniques to implement the desired regulation. Basically, the on-time of the square wave drive to the inverter is controlled by the output voltage. As the load is removed or input voltage increases, a slight rise in output voltage will signal the control circuit to deliver narrower pulses to the inverter, and conversely, as the load is increased or input voltage decreases. wider pulses will be fed to the inverter.

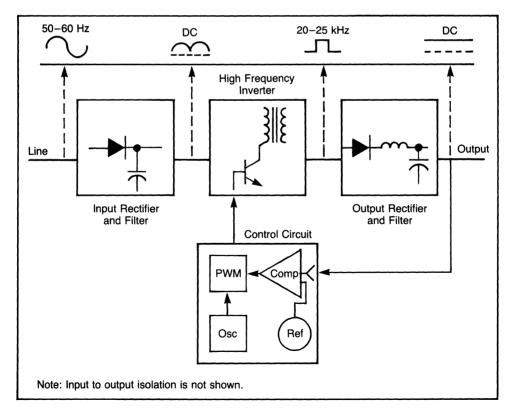


Figure 10-1. Functional Block Diagram — Switching Power Supply

A. BUCK AND BOOST

The inverter topologies used in today's switchers actually evolved from the buck and boost circuits shown in Figure 10-2A & 10-2B. In each case, the regulating means and loop analysis will remain similar, but a transformer is added in order to provide electrical isolation between the line and load. The forward converter family which includes the push-pull and half bridge circuits evolved from the buck regulator (Figure 10-2A). And the newest switcher, the flyback converter, actually evolved from the boost regulator. The buck circuit interrupts the line and provides a variable pulse width square wave to a simple averaging LC filter. In this case, the first order approximation of the output voltage is $V_{out} = V_{in} \times duty$ cycle, and regulation is accomplished by simply varying the duty cycle. This is satisfactory for most analysis work, and only the transformer turns ratio will have to be adjusted slightly to compensate for IR drops, diode drops, and transistor saturation voltages.

Operation of the boost circuit (Figure 10-2B) is more subtle in that it first stores energy in a choke and then delivers this plus energy from the input line to the load. However, the flyback regulators which evolved from this configuration deliver only the inductive energy stored in the choke to the load. This method of operation is actually based on the boost variation model shown in Figure 10-2C. Here, when the switch is opened, only the stored inductive energy is delivered to the load. The true boost circuit can also regulate by stepping up (or boosting) the input voltage, whereas the variation or flyback regulator can step the input voltage up or down. Analysis of the boost regulator begins by dealing with the choke as an energy storage element which delivers a fixed amount of power to the load:

$$P_{O} = 1/2 L I^{2} f_{o}$$
where I = the peak choke current
$$f_{o} = the operating frequency$$
and L = the inductance

Because it delivers a fixed amount of power to the load regardless of load impedance (except for short circuits), the boost regulator is the designer's first choice in photo-flash and capacitive-discharge (CD) automotive ignition circuits to recharge the capacitive load. It also makes a good battery charger. For an electronic circuit load, however, the load resistance must be known in order to determine the output voltage:

$$V_{O} = \sqrt{P_{O}R_{L}} = I \sqrt{\frac{Lf_{O}R_{L}}{2}}$$

where R_{L} = The load resistance

In this case, the choke current is proportional to the on time or duty cycle of the switch, and regulation for fixed loads simply involves varying the duty cycle as before. However, the output also depends on the load (which was not the case with buck regulators) and results in a variation of loop gain with load.

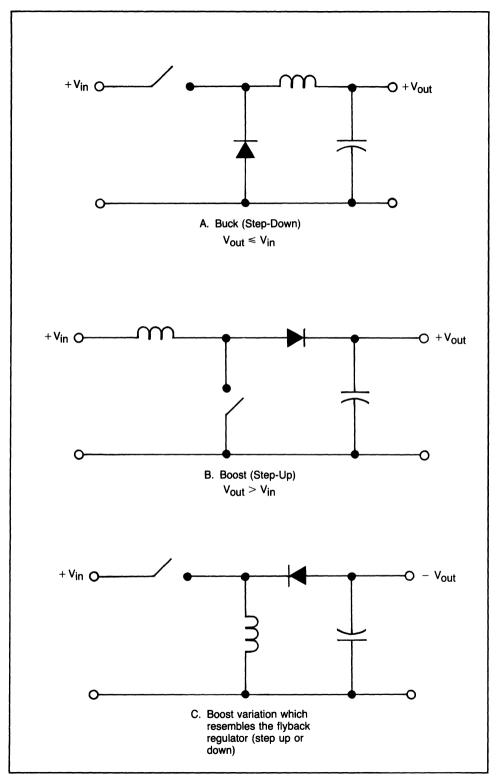


Figure 10-2. Non-Isolated DC-DC Converters

For both regulators, transient response or responses to step changes in load are very difficult to analyze. They lead to what is termed a "load dump" problem. This requires that energy already stored in the choke or filter be provided with a place to go when load is abruptly removed. Practical solutions to this problem include limiting the minimum load and using the right amount of filter capacitance to give the regulator time to respond to this change.

B. FLYBACK AND FORWARD CONVERTERS

To take advantage of the regulating techniques just discussed, and also provide isolation, a total of five popular topologies have evolved and are illustrated in figures 10-3 and 10-6. Each circuit has a practical power range or capability associated with it as follows:

Circuit	Power Range	Motorola Reference
Flyback	50 to 100 watts	EB87
Forward	100 to 200 watts	Power Leader
Push-Pull	200 to 500 watts	EB88, AN-737A
Half Bridge	200 to 500 watts	EB's 86 & 100, AN-767
Full Bridge	500 to 2000 watts	EB-85

First to be discussed will be the low power (20-200 W) converters which are dominated by the single transistor circuits shown in Figure 10-3. All of these circuits operate the magnetic element in the unipolar rather than bipolar mode. This means that transformer size is sacrificed for circuit simplicity.

1. Flyback — The flyback (alternately known as the "ringing choke") regulator stores energy in the primary winding and dumps it into the secondary windings (Figure 10-3A). A clamp winding is usually present to allow energy stored in the leakage reactance to return safely to the line instead of avalanching the switching transistor. The operating model for this circuit is the boost circuit variation discussed earlier. The flyback is the lowest cost regulator (except at high power levels) because output filter chokes are not required, since the output capacitors feed from a current source rather than a voltage source. Because of this, the flyback will have higher output ripple than the forward converter. However, the flyback is an excellent choice when multiple output voltages are required and does tend to provide better cross regulation than the other types. In other words, changing the load on one winding will have little effect on the output voltage of the others.

A 120/220 Vac flyback design requires transistors that block twice the peak line plus transients or about 1.0 kV. Presently, variations of 1200 to 1500 V horizontal deflection transistors are used here. These bipolar devices are relatively slow ($t_f = 200-500$ ns) and tend to limit efficient operating frequencies to 20–40 kHz. Introduction of 1000 V TMOS FET will soon permit operation at much higher frequencies. Faster 1.0 kV bipolar transistors are also anticipated in the near future and will provide a lower cost alternative. The two transistor variation of this circuit (Figure 10-3C) eliminates the clamp winding and adds

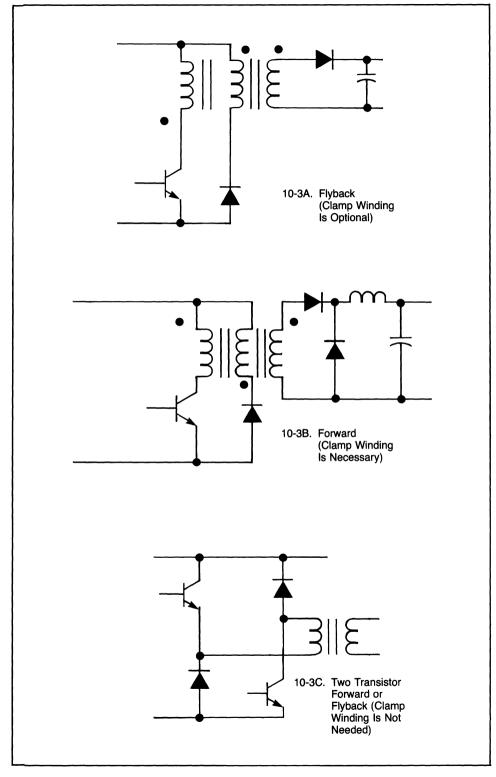


Figure 10-3. Low Power Popular (20-200 W) Converter Topologies

a transistor and diode to effectively clamp peak transistor voltages to the line. With this circuit a designer can safely use the faster 400 V to 500 V bipolar or FET Switchmode transistors and push operating frequencies considerably higher. There is a cost penalty here over the single transistor circuit due to the extra transistor, diode and floating base drive requirement of the upper switch transistor.

A subtle variation in the method of operation can be applied to either of these circuits. The difference is referred to as operation in the discontinuous or continuous mode, and the waveform diagrams are shown in Figure 10-4. The analysis given in the earlier section on boost regulators dealt strictly with the discontinuous mode where all the energy is dumped from the choke before the transistor turns on again. If the transistor is turned on while energy is still being dumped into the load, the circuit is operating in the continuous mode. This is generally an advantage for the transistor in that it needs to switch only half as much peak current in order to deliver the same power to the load. In many instances, the same transformer may be used with only the gap reduced to provide more inductance. Sometimes the core size will need to be increased to support the higher LI product (2 to 4 times) now required, because the inductance must increase by almost 10 times to effectively reduce the peak current by two. In dealing with the continuous mode, it should also be noted that the transistor must now turn-on from 500 to 600 V rather than 400 V level, because there no longer is any dead time to allow the flyback voltage to settle back down to the input voltage level. Generally it is advisable to have V_{CEO (sus)} ratings comparable to the turn-on requirements.

The flyback converter stands out from the others in its need for a low inductance, high current primary. Conventional E and pot core ferrites are difficult to work with because their permeability is too high even with relatively large gaps (50 to 100 mili-inches). The industry needs something better (like powered iron) that will provide permeabilities of 60 to 120 instead of 2000 to 3000 for this application.

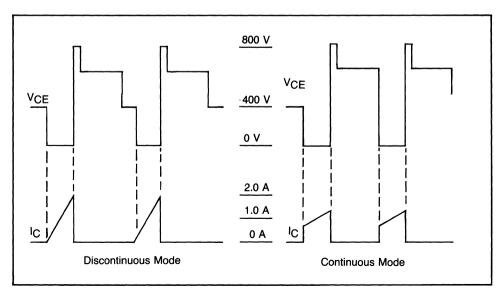


Figure 10-4. Flyback Transistor Waveforms

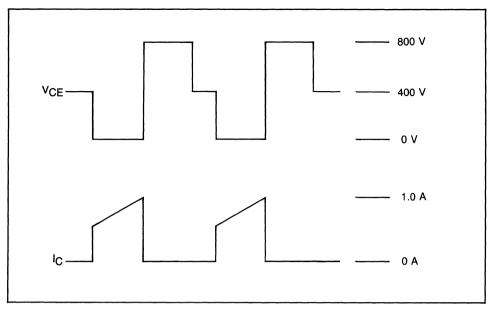


Figure 10-5. Forward Converter Transistor Waveforms

2. Forward — The single transistor forward converter is shown in Figure 10-3B. Although it initially appears very similar to the flyback, it is not. The operating model for this circuit is actually the buck regulator discussed earlier. Instead of storing energy in the transformer and then delivering it to the load, this circuit uses the transformer in the active or forward mode and delivers power to the load while the transistor is on. The additional output rectifier is used as a freewheeling diode from the LC filter, and the third winding is actually a reset winding. It generally has the same turns as the primary (is usually bifilar wound) and clamps the reset voltage to twice the line. However, its main function is to return energy stored in the magnetizing inductance to the line and thereby reset the core after each cycle of operation. Because it takes the same time to set and reset the core, the duty cycle of this circuit cannot exceed 50%. This also is a very popular low power converter, and like the flyback, is practically immune from transformer saturation problems. Transistor waveforms shown in Figure 10-5 illustrate that the voltage requirements are identical to the flyback. For the single transistor versions, 400 V turn-on and 1.0 kV blocking devices like the 1200 to 1500 V deflection transistors are required. The two transistor circuit variation shown in Figure 10-3C again adds a cost penalty, but allows a designer to use the faster 400 to 500 V devices. With this circuit, operation in the discontinuous mode refers to the time when the load is reduced to a point where the filter choke runs "dry." This means that choke current starts at and returns to zero during each cycle of operation. Even though there are no adverse effects on the components themselves, most designers prefer to avoid this type of mode because of higher ripple and noise. Standard ferrite cores work fine here and in the high power converters as well. In these applications, no gap is used as the high permeability (3000) results in a desirable effect of very low magnetizing current levels.

C. PUSH-PULL AND BRIDGE CONVERTERS

The high power circuits shown in Figure 10-6 all operate the magnetic element in the bipolar or push-pull mode and require 2 to 4 inverter transistors. Because the transformers operate in this mode, they tend to be almost half the size of the equivalent single transistor converters and thereby provide a cost advantage over their counterparts at power levels of 100 watts to 1.0 kW.

1. Push-Pull — The push-pull converter shown in Figure 10-6A is one of the oldest converter circuits around. Its early use was in low voltage inverters such as the 12 Vdc to 120 Vdc power source for recreational vehicles and in dc to dc converters. Because these converters are free running rather than driven and operate from low voltages, transformer saturation problems are minimal. In the high voltage off line switchers, saturation problems are common and difficult to solve. The transistors are also subjected to twice the peak line voltage which requires the use of relatively slow 1.0 kV transistors. Both of these drawbacks have tended to discourage designers of off line switchers from using this topology.

2. Half and Full Bridge — The most popular high power converter today is the half bridge (Figure 10-6B). It has two clear advantages over the push-pull type. First, the transistors never see more than the peak line voltage and standard 400 V fast Switchmode transistors that are now readily available may be used. Second, and probably even more important, transformer saturation problems are easily minimized by use of a small coupling capacitor (2.0 μ F \leq C_C \leq 5.0 μ F) as shown. Because the primary winding is driven in both directions, a full wave output filter, rather than half, is now used, and the core is actually utilized more effectively. Another more subtle advantage of this circuit is that the input filter capacitors are placed in series across the rectified 220 Vac line which allows them to be used as the voltage doubler elements on a 120 Vac line. This allows the inverter transformer to operate from a nominal 320 Vdc bus when the circuit is connected to either 120 Vac or 220 Vac. Finally, this topology allows diode clamps across each transistor to contain destructive switching transients. The designers dream, of course, is for fast transistors that can handle a clamped inductive load line at rated current. And a few (like the Switchmode III and TMOS FET series from Motorola) are beginning to appear on the market. However, the older designs in this area still end up using snubbers to protect the transistor which sacrifices both cost and efficiency.

The effective current limit of today's low cost TO-3 transistors (300 mil die) is somewhere in the 10 to 20 A area. Once this limit is reached, the designer generally changes to the full bridge topology shown in Figure 10-6C. Because full line rather than half is applied to the primary winding, the power output can almost double that of the half bridge with the same switching transistors.

Another variation of the half bridge is the split winding circuit shown in Figure 10-6D. A diode clamp can protect the lower transistor but a snubber or zener clamp must still be used to protect the top transistor from switching transients. Because both emitters are at an ac ground point, expensive drive transformers can now be replaced by lower cost capacitively coupled drive circuits.

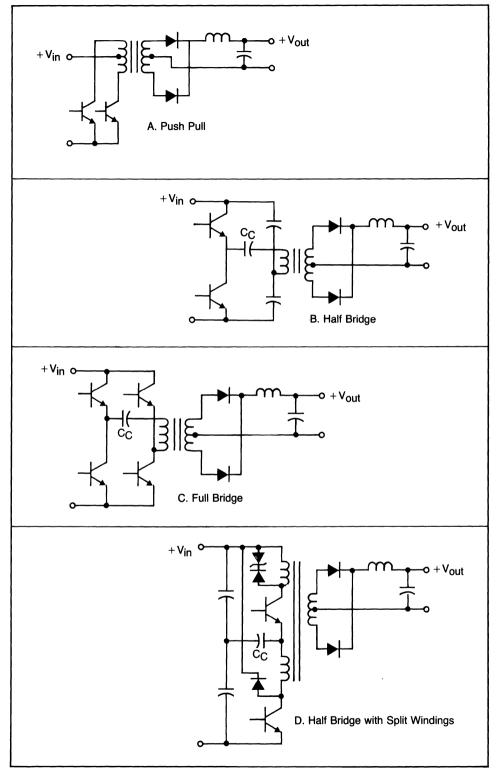
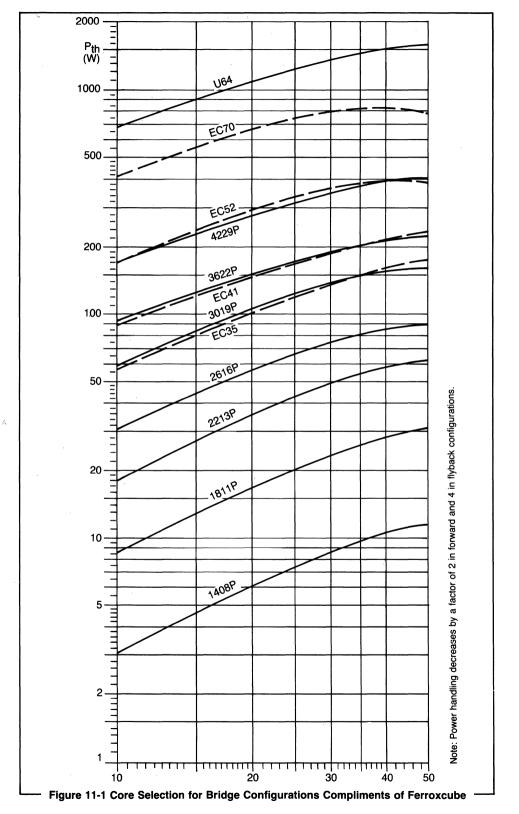


Figure 10-6. High Power Popular Converter Topologies (100 W-1.0 kW)

SECTION 11 SWITCHING REGULATOR COMPONENT DESIGN TIPS

A. TRANSFORMERS


With respect to transformer design, many of today's designers would say don't try it. They'd advise using a consultant or winding house to perform this task, and with good reason. It takes quite a bit of time to develop a "feel" for this craft and be able to use both experience and intuition to find solutions to second and third order problems. Because of these subtle problems, most designers find that after the first paper design is done, as many as four or five lab iterations may be necessary before the transformer meets the design goals. However, there is a considerable design challenge in this area and a great deal of satisfaction can be obtained by mastering it.

As do all others, this component design begins by requesting all available literature from the appropriate manufacturers, and then following up with phone calls when specific questions arise. A partial list of companies is shown in Table 11-1. Designs below 50 W generally use pot cores, but for 50 W and above E cores are preferred. E cores expose the windings to air so that heat is not trapped inside. The exposure also makes it easier to bring out connections for tapped windings. Remember that flyback designs require lower permeability cores than the others. The classic approach is to consult manufacturers charts like the one shown in Figure 11-1 and then pick a core with the required power handling ability. Both E and E-C (E cores with a round center leg) are popular now, and they are available from several manufacturers. E-C cores offer a performance advantage (better coupling) but standard E cores cost less and are also used in these applications. Another approach that seems to work equally as well is to do a paper design of the estimated windings and number of turns required. Size the wire for 500 circular mils (CM) per ampere and then find a core that has the required window area for this design. Now, before the windings are put on, it is a good idea to modify the turns so that they fit on the bobbin in an integer number of layers. This involves checking the turns per inch of wire against the bobbin length. The primary generally goes on first and then the secondary windings. If the primary hangs over an extra half layer, try reducing the turns or the wire size. Conversely, if the secondary does not take up a full layer, try bifilar winding (parallel) using wire half the size originally chosen; i.e., 3 wire sizes smaller like 23 versus 20. This technique ultimately results in the use of foil for the higher current (20 A) low voltage windings. Most windings can be separated with 3 mil mylar (usually yellow) tape, but for good isolation, cloth is recommended between primary and secondary.

Company Location Code Ferroxcube Inc. Sauggerties, N.Y. С C C C T Keasby, N.J. Indiana General Stackpole St. Marys, PA. El Segundo, CA. TDK **Pulse Engineering** San Diego, CA. Cary, IL. Т Coilcraft

 TABLE 11-1

 Partial List of Core (C) and Transformer (T) Manufacturers

Finally, once a mechanical fit has been obtained, it is time for the circuit tests. The voltage rating is strictly a mechanical problem and is one of the reasons why U.L. normally does not allow high voltage bifilar windings. The inductance and saturating current level of the primary are inherent to the design, and should be checked in the circuit or other suitable test fixture. Such a fixture is shown in Figure 11-2 where the transistor and diode are sized to handle the anticipated currents. The pulse generator is run at a low enough duty cycle to allow the core to reset. Pulse width is increased until the start of saturation is observed (I_{sat}). Inductance is found using

$$L = V \frac{di}{dt}$$

In forward converters, the transformer generally has no gap in order to minimize the magnetizing current (I_M) . For these applications the core should be chosen to be large enough so that the resulting LI product insures that I_M at operating voltages is less than I_{sat} . For flyback designs, a gap is necessary and the test circuit is useful again to evaluate the effect of the gap. The gap will normally be quite large where:

$L_g > >$	L _m /μ
$L_g =$	gap length
L _m =	magnetic path length
μ =	permeability

Under this stipulation, the gap directly controls the LI parameters. Doubling it will decrease L by two and increase I_{sat} by two. Again, the anticipated switching currents must be less than I_{sat} when the core is gapped to ensure correct inductance.

Transformer tests in the actual supply are usually done with a high voltage dc power supply on the primary and with a pulse generator or other manual control for the pulse width drive such as using the control IC in an open loop configuration.

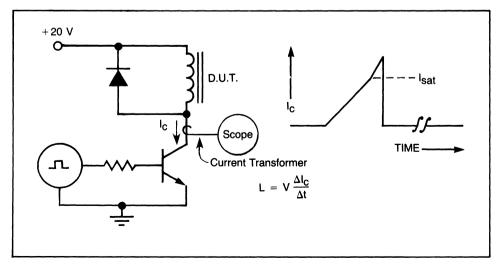


Figure 11-2. Simple Coll Tester

Here the designer must recheck three areas:

- 1. No evidence of core saturation
- 2. Correct amount of secondary voltage
- 3. Minimum core or winding heat rise

If problems are detected in any of these areas, one possible solution is to redesign using the next larger core size. However, if problems are minimal, or none exist, it is possible to stay with the same core or even consider using the next smaller size.

B. TRANSISTORS

The initial selection of a transistor(s) for a switcher is basically a problem of finding the one with voltage and current capabilities that are compatible with the application. For the final choice, performance and cost tradeoffs among devices from the same or several manufacturers have to be weighed. Before these devices can be put in the circuit, both protective and drive circuits will have to be designed.

Motorola's first line of devices for switchers were trademarked "Switchmode'' transistors and introduced in the early 70's. Data sheets were provided with all the information that a designer would need, including reverse bias safe operating area (RBSOA) and performance at elevated temperature (100°C). The first series was the 2N6542 through 6547, TO-3 devices which were followed by the MJE13004 series in a plastic TO-220 package. Finally, high voltage (1.0 kV) requirements were met by the metal MJ12002 and MJ8500 series and the plastic MJE12007. Just recently, Motorola introduced three new families of "Switchmode" transistors shown in Table 11-2. The Switchmode II series is basically a faster switching version of Switchmode I. Switchmode III is the Cadillac of today's industry with both exceptional speed and RBSOA. Here, device cost is up but system costs may be lowered because of reduced snubber requirements and higher operating frequencies. A similar argument applies to Motorola T-MOS FET's. These devices make it possible to switch efficiently at higher frequencies (200 to 500 kHz), but the main selling point is that they are easier to drive. This latter point is the one most often made to show that systems savings are again quite possible even though the initial device cost is higher.

Family	Typical Device	Typical Fall Time	Approximate Switching Frequency
SWITCHMODE I	2N6545 MJE13005 MJE12007	200–500 ns	20K
SWITCHMODE II	MJ12010	100 ns	100K
SWITCHMODE III	MJ13010	50 ns	200K
T-FET'S	MTP565	20 ns	500K

TABLE 11-2

Motorola High Voltage Switching Transistor Technologies

TABLE 11-3

		Cir	cuit	
Line Voltage		k, Forward or ush-Pull	Half or Full Bridge	
	VCEV	V _{CEO(sus)}	VCEO(sus)	VCEV
220 120	850 450	400 200	400 200	400 200

Power Transistor Voltage Chart

Table 11-3 is a review of the transistor voltage requirements for the various off line converter circuits. As illustrated, the most stringent requirement for single transistor circuits (flyback and forward) is the blocking or V_{CEV} rating. Bridge circuits, on the other hand, turn on and off from the dc bus and their most critical voltage is the turn on or V_{CEO} (sus) rating. To help designers select parts for these applications, Motorola has provided the selection charts in Appendix A. Each table lists devices that are appropriate for a given line voltage and circuit configuration and various power handling capabilities. Table 1 contains devices listed by their current (power handling) rating and $200 < V_{CEO} < 400$ V for use in 120 Vac bridge circuits. Tables 2 and 3 list the remaining devices ($V_{CEO} \ge 400$ V) which would be appropriate for 220 Vac and 380 Vac bridge circuits. Tables 4 and 5 list devices by their V_{CEV} rating. These tables can therefore be used to select devices for either 120 or 220 Vac single transistor circuits (flyback and forward converters).

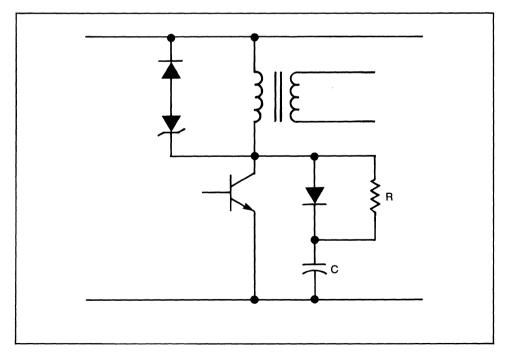


Figure 11-3. Zener Clamp and Snubber for Single Transistor Converters

Most Switchmode transistor load lines are inductive during turn on and turn off. Turn on is generally inductive because the short circuit created by output rectifier reverse recovery times is isolated by leakage inductance in the transformer. This inductance effectively snubs most turn-on load lines so that the rectifier recovery (or short circuit) current and the input voltage are not applied simultaneously to the transistor. Sometimes primary interwinding capacitance presents a small current spike, but usually turn-on transients are not a problem. Turn-off transients due to this same leakage inductance, however, are almost always a problem. In bridge circuits, clamp diodes can be used to limit these voltage spikes. If the resulting inductive load line exceeds the transistor's reverse bias switching capability (RBSOA) then an RC network may also be added across the primary to absorb some of this transient energy. The time constant of this network should equal the anticipated switching time of the transistor (100 ns to 1 µs). Resistance values of 100 to 1000 ohms in this RC network are generally appropriate. Trial and error will indicate how low the resistor has to be to provide the correct amount of snubbing. For single transistor converters, the snubber shown in Figure 11-3 is generally used. Here slightly different criteria are used to define the R and C values:

	C =	$\frac{I t_{f}}{V}$
where	I =	The peak switching current
	$t_f =$	The transistor fall time
	V =	The peak switching voltage
		(Approximately twice the dc bus)
also	R =	t_{on}/C (it is not necessary to completely discharge this capacitor to obtain the desired effects of this circuit)
where	t _{on} =	The minimum on time or pulse width
and	$P_R =$	$\frac{CV^2f}{2}$
where	$P_R =$	The power rating of the resistor
and	f =	The operating frequency

Most of today's transistors that are used in 20 kHz converters switch slow enough so that most of the energy stored in the leakage inductance is dissipated by the snubber or transistor, causing very little voltage overshoot. Higher speed converters and transistors present a slightly different problem. In these newer designs, snubber elements are smaller and voltage spikes from energy left in the leakage inductance may be a more critical problem depending on how good the coupling is between the primary and clamp windings. If necessary, protection from these spikes may be obtained by adding a zener and rectifier across the primary as shown in Figure 11-3. Motorola's 1.0 W and 5.0 W zener devices with ratings up to 200 V can provide the clamping or spike limiting function. If the zener must handle most of the power, its size can be estimated using:

	$P_Z =$	$\frac{L_L I^2 f}{2}$
where	$P_Z =$	The zener power rating
and	L _L =	The leakage inductance (measured with the clamp winding or secondary shorted)

There are probably as many base drive circuits for bipolars as there are designers. Ideally, the transistor should have just enough forward drive (current) to stay in or near saturation and reverse drive that varies with the amount of

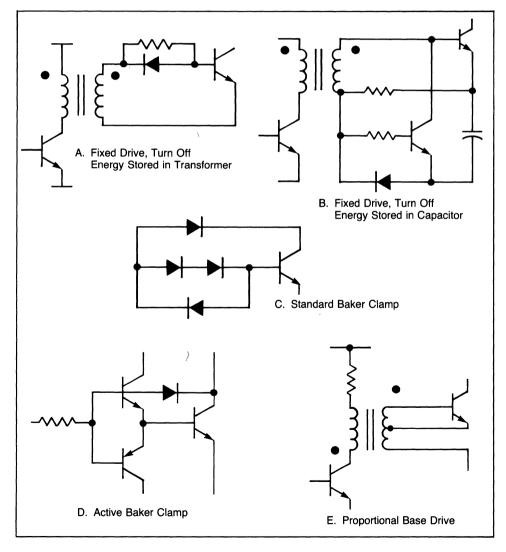


Figure 11-4. Typical Bipolar Base Drive Circuits

stored base charge such as a low impedance reverse voltage. Many of today's common drive circuits are shown in Figure 11-4. The fixed drive circuits of 11-4A and 11-4B tend to emphasize economy, while the Baker clamp and proportional drive circuits of 11-4C, 11-4D and 11-4E emphasize performance over cost.

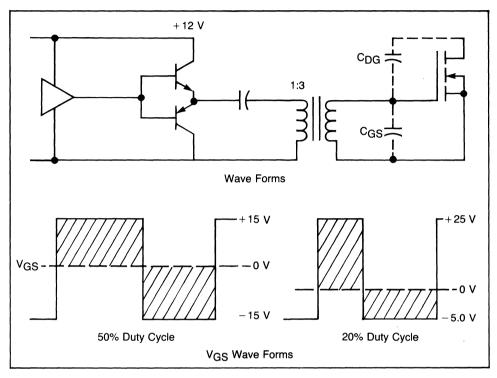
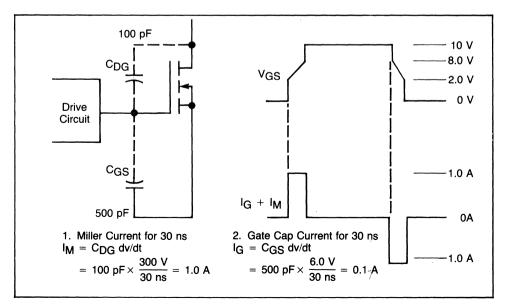
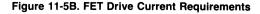




Figure 11-5A. Typical Transformer Coupled FET Drive

FET drive circuits are just beginning to appear. The standard that has evolved at this time is shown in Figure 11-5A. This transformer coupled circuit will produce forward and reverse voltages applied to the FET gate which vary with the duty cycle as shown. For this example, a V_{GS} rating of 20 V would be adequate for one condition, but not the other. Higher V_{GS} ratings would solve the problem, but at this time it is advisable to use a regulated logic supply and provide only the minimum gate drive required for these situations. Finally, there is one point that is not obvious when looking at the circuit. It turns out that FET's can be directly coupled to many IC's with only to 100 mA of sink and source output capability and still switch efficiently at 20 kHz. However, to switch efficiently at higher frequencies, several amperes of drive may be required on a pulsed basis in order to quickly charge and discharge the gate capacitances. A simple example will serve to illustrate this point and also show that the Miller effect, produced by C_{DG}, is the predominant speed limitation when switching high voltages (see Figure 11-5B). A FET responds instantaneously to changes in gate voltage and will begin to conduct when the threshold is reached (V_{GS} = 2.0 to 3.0 V) and be fully on with V_{GS} = 7.0 to 8.0 V. Gate waveforms will show a step at a point just above the threshold voltage which varies in duration depending on the amount of drive current available. The drive current determines both the rise and fall times for the drain current. To estimate drive current requirements, two simple calculations with gate capacitances can be made:

1.	$I_M =$	C _{DG} dv/dt
2.	$I_G =$	C _{GS} dv/dt

and where

 I_M is the current required by the Miller effect to charge the drain to gate capacitance at the rate it is desired to move the drain voltage (and current). And I_G is usually the lesser amount of current required to charge the gate to source capacitance through the linear region (2.0 to 8.0 V). As an example, if 30 ns switching times are desired at 300 V where $C_{DG} = 100$ pF and $C_{GS} = 500$ pF, then

$I_M =$	$100 \text{ pF} \times 300 \text{ V}/30 \text{ ns} = 1.0 \text{ A and}$
$I_G =$	500 pF \times 6.0 V/30 ns = 0.1 A

This example shows the direct proportion of drive current capability to speed. It also illustrates that for most devices, C_{DG} will have the greatest effect on switching speed and that C_{GS} is important only in estimating turn on and turn off delays.

⁵ Aside from rather unique drive requirements, a FET is very similar to a bipolar transistor. Today's 400 V FET's compete with bipolar transistors in many switching applications. They are faster and easier to drive, but do cost more and have higher saturation, or more precisely, on voltages. The performance or efficiency tradeoffs are best analyzed using Figure 11-6. Here, typical power losses for 5.0 A switching transistors versus frequency are shown. The FET and bipolar losses were calculated at $T_J = 100^{\circ}$ C rather than 25°C because on resistance and switching times are highest here, and 100°C is typical of many applications. These curves are asymptotes of the actual device performance, but are useful in establishing the "break point" of various devices, which is the point where

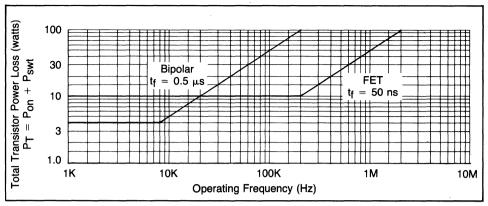


Figure 11-6. Typical Switching Losses at 5.0 A and $T_J = 100^{\circ}C$

saturation and switching losses are equal. Since this is as low as 10 kHz for some bipolars, it is possible that a FET even with high on voltages can be competitive efficiency-wise at 20 kHz. The faster Switchmode II and III bipolar products fall somewhere between the curves shown and therefore are more competitive with FET's at the higher operating frequencies.

C. RECTIFIERS

Once components for the inverter section of a switcher have been chosen, it is time to determine how to get power into and out of this section. This is where the all important rectifier comes into play. The input rectifier is generally a bridge that operates off the ac line and into a capacitive filter. For the output section, most designers use Schottkys for efficient rectification of the low voltage, 5.0 V output windings, and for the higher voltage (12 to 15 V) outputs, the more economical fast recovery diodes are used. A guide to Motorola's rectifier products is given in Appendix B. Here devices that would normally be used in switchers from 10 to 2000 watts are listed next to circuits in which they would generally be used.

For the process of choosing an input rectifier, it is useful to visualize the circuit shown in Figure 11-7. To reduce cost, most earlier approaches of using choke input filters, soft start relays (Triacs), or SCR's to bypass a large limiting resistor have been abandoned in favor of using small limiting resistors or NTC thermistors, and a large bridge. The bridge must be able to withstand the surge currents that exist from repetitive starts at peak line. The procedure for finding the right component and checking its fit is as follows:

- 1. Choose a rectifier with 2 to 5 times the average I_0 required.
- 2. Estimate the peak surge current (I_p) and time (t) using:

$$I_{p} = \frac{1.4V_{in}}{R_{S}} \qquad t = R_{S}C$$

Where V_{in} is The RMS input voltage

- R_{S} = the total limiting resistance, and
- C = the filter capacitance

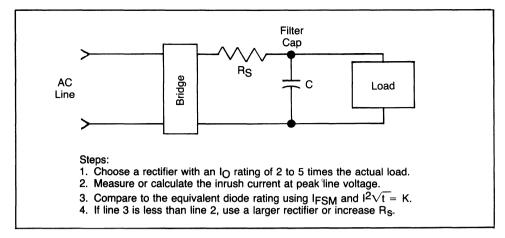


Figure 11-7. Choosing Input Rectifiers

- 3. Compare this current pulse to the sub cycle surge current rating (I_S) of the diode itself. If the curve of I_S versus time is not given on the data sheet, the approximate value for I_S at a particular pulse width (t) may be calculated knowing:
 - I_{FSM} the single cycle (8.3 ms) surge current rating.
 - $I^2 \sqrt{t} = K$ which applies when the thermal response, r(t), is proportional to \sqrt{t} (for t<8.3 ms). This gives:

$$I_s^2 \sqrt{t} = I_{FSM}^2 \sqrt{8.3 \text{ ms}}$$
 or
 $I_s = I_{FSM} \left(\frac{8.3 \text{ ms}}{t}\right)^{\frac{1}{4}}$ (t is in milliseconds)

4. If $I_S < I_P$, consider either increasing the limiting resistor (R_S) or utilizing a larger diode.

In the output section where high frequency rectifiers are needed, there are several types available to the designer. In addition to the Schottky (SBR) and fast recovery (FR), there is also an ultra fast recovery (UFR) which fills the gap between the 50 V Schottky and the 600 V fast recovery lines. Comparative performance and cost data for devices with similar current ratings is shown in Table 11-4. The obvious point here is that lower forward voltage improves efficiency and faster recovery times reduces turn-on losses in the switching transistors, but the tradeoff is higher cost. As stated earlier, Schottkys are generally used for 5.0 V outputs and fast recovery devices for ≥ 12 V outputs. The ultra fast is competing primarily with the Schottky in those applications where cost is more important than efficiency. Of these devices, only the Schottky may need special handling. Ten years ago Schottkys were very fragile and could fail short from either excessive dv/dt (1.0 to 5.0 volts per nano-second) or reverse avalanche. Present day devices, however, all have something similar to Motorola's "guard ring" and internal zener, which minimizes these earlier problems and reduces the need for RC snubbers and other external protective networks.

TABLE 11-4

Output Rectifier Type Comparisons

	SBR	UFR	FR
VF	0.5–0.6	0.9–1.0	1.2-1.4
t _{rr}	10 ns	25 ns	150 ns
t _{rr} FORM	"SOFT"	"ABRUPT"	"EITHER"
V _R	30–50 V	50–150 V	50–600 V

NOTES: 1. Low VF improves efficiency

2. Low trr reduces transistor switching losses

3. Soft (verses abrupt) recovery reduces noise

D. CAPACITORS AND FILTERS

In today's 20 kHz switchers, aluminum electrolytics are still predominate. The good news is that most have been characterized, improved, and cost reduced for this application. The input filter requires a voltage rating that depends on the peak line voltage; i.e., 400 to 450 V for a 220 Vac switcher. If voltage is increased beyond this point, the capacitor will begin to act like a zener and be thermally destroyed from high leakage currents if the rating is exceeded for enough time. When filter capacitors are placed in series across the rectified line, as in a doubler circuit, voltage sharing can be a problem. Here extra voltage capability may be needed to make up for the imbalances caused by different values of capacitance and leakage current. A bleeder resistor is normally used here not only for safety but to mask the differences in leakage current. The RMS current rating is also an important consideration for input capacitors and is an example of improvements offered by today's manufacturers. Earlier "lytics" usually lacked this rating and often overheated. Large capacitors that were not needed for performance were used just to reduce this heating. However, today's devices, like the swedged variety from Mepco-Electra offer lower thermal resistance, improved connection to the foil and good RMS ratings. A partial list of manufacturers that supply both high voltage input and the lower voltage output capacitors for switchers is shown in Table 11-5. Most of the companies offer not only the standard 85°C components, but devices with up to 125°C ratings, which are required because of the high ambient temperatures (55 to 85°C) in which switchers must operate, many times without the benefit of fans.

Company (U.S.)	Location		
Sprague	North Adams, MA		
Mepco/Electra	Columbia, SC		
Cornell-Dublier	Sanford, NC		
Sangamo	Pickens, SC		
Mallory	Indianapolis, IN		

TABLE 11-5

Partial List of Capacitor Companies

For output capacitors the buzz word is low ESR (equivalent series resistance). It turns out that for most capacitors even in the so-called "low ESR" series, the output ripple depends more on this resistance than on the capacitor value itself. Although typical and maximum ESR ratings are now available on most capacitors designed for switchers, the lead inductance generally is not specified except for the ultra-high frequency four-terminal capacitors from some vendors. This parameter is responsible for the relatively high switching spikes that appear at the output. However, at present, most designers find it less costly and more effective to add a high frequency noise filter rather than use a relatively expensive capacitor with low equivalent series inductance (ESL).

High frequency noise or spike filters are made using small powdered iron toroids (1/2 to 1" OD) with distributed windings to minimize interwinding capacitance. The output is bypassed using a small 0.1 μ F ceramic or a 10 to 50 μ F tantalum or both. Larger powered iron toroids are often used in the main LC output filter, although the higher permeability ferrite C and E cores with relatively large gaps can also be used. Calculations for the size of this component should take into account the minimum load so that the choke will not run "dry" as stated earlier.

E. CONTROL CIRCUITS

Ten years ago, discrete control circuits were in use and very few IC's could be found. Since that time, various semiconductor companies recognized the designer's needs for a dedicated control IC. Now a variety of these circuits are on the market and widely used. They provide the designer with a cost incentive over the discrete, or a simpler control circuit, or both. Internally, most of these resemble the functional configuration shown in Figure 11-8. The basic regulating function is performed in the pulse width modulator (PWM) section. Here, the dc feedback signal is compared to a fixed frequency sawtooth (or triangular) waveform. The result is a variable duty cycle pulse train which, with suitable buffer or interface circuits, can be used to drive the power switching transistor(s). Some IC's provide only a single output while others provide the phase splitter shown to alternately pulse two output channels. In this latter case, provisions are usually made either internally or by wire "OR"-ing the outputs to convert the dual output to a single output channel. Additionally, most IC's provide the error amplifier section shown as a means to process, compare and amplify the feedback signal.

TABLE 11-6

Desirable Features of Switchmode Control IC's

- PROGRAMMABLE (TO 500 kHz) FIXED FREQUENCY OSCILLATOR
- LINEAR PWM SECTION WITH DUTY CYCLE FROM 0 TO 100 %
- ON BOARD ERROR AMPLIFIERS
- ON BOARD REFERENCE REGULATOR
- ADJUSTABLE DEAD TIME
- UNDERVOLTAGE (LOW V_{CC}) INHIBIT
- GOOD OUTPUT DRIVE (100 TO 200 mA)
- OPTION OF SINGLE OR DUAL CHANNEL OUTPUT
- UN-COMMITTED OUTPUT COLLECTOR AND EMITTER OR TOTEM POLE DRIVE CONFIGURATION
- SOFT START
- CURRENT LIMITING WITH "HICCUP MODE" AS BACKUP
- SYNC CAPABILITY

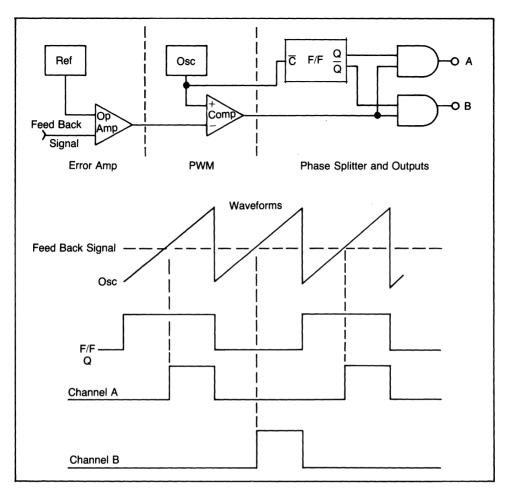


Figure 11-8. Basic Pulse Width Modulator Control IC

Features required by a control IC vary to some extent because of the particular needs of a designer and on the circuit topology chosen. However, most of today's current generation IC's have evolved with the capabilities or features listed in Table 11-6. It is primarily the cost differences in these parts that determines whether all or only part of these features will be incorporated. Most of these are evident to the designer who has already started comparing data sheets. A selector guide of control IC's available from Motorola is shown in Table 17-4 on page 160.

Because low cost and second sources are important, parts like the TL494 (available from Motorola) have already captured a large share of the market. New products such as the SG1525A/27A and SG1526 are quickly gaining popularity. These devices offer additional features like totem pole outputs and digital current limiting and are available from Motorola.

To satisfy the need for a low cost control IC for low power (20 to 100 W) applications, Motorola has introduced a single channel Control IC known as the MC34060.

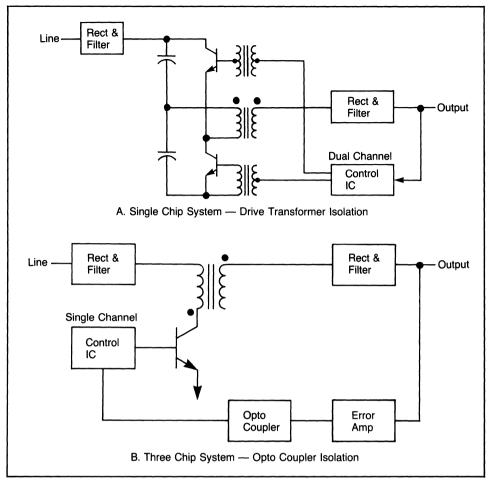


Figure 11-9. Control Circuit Topologies

When it is necessary to drive two or more power transistors, drive transformers are a practical interface element and are driven by the conventional dual channel IC just discussed (Figure 11-9A). In the case of a single transistor converter, however, it is usually more cost effective to directly drive the transistor from the IC (Figure 11-9B). In this situation, an opto coupler is commonly used to couple the feedback signal from the output back to the control IC. And the error amplifier in this case is nothing more than an op amp, and reference such as the TL431 from Motorola.

102

 \mathbb{N}

SECTION 12 THE FUTURE FOR SWITCHING REGULATORS

The future offers a lot of growth potential for switchers in general — and low power switchers (50–200 watts) in particular. The latter are responding to the growth in microprocessor-based equipment, as well as computer peripherals. Today's topologies have already been challenged by the sine wave inverter, which reduces noise and improves transistor reliability, but results in a cost penalty. Also, a trend has begun toward higher switching frequencies to further reduce size and cost. The latest bipolar transistor can operate efficiently up to 100 kHz, and the FET seems destined to own the 200 to 500 kHz range.

The growth pattern predicted at this time can possibly be impacted by noise problems. Originally governed only by MIL specs and the VDE in Europe, the FCC (effective October 1981) has released a set of specifications that apply to electronic systems which often include switchers (see FCC Class A in Figure 12-1). It seems probable, however, that system engineers or power supply designers will be able to add the necessary line filters and EMI shields without adding a significant cost.

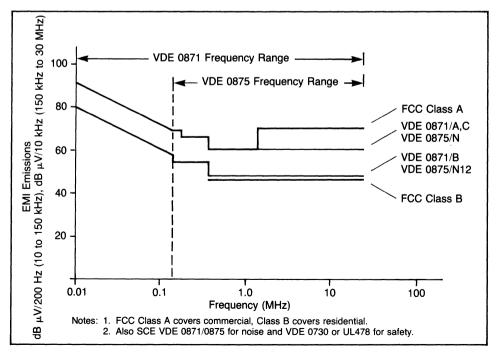


Figure 12-1. Noise Limits

103

The most optimistic note concerning switchers is in the components area. Switching power supply components have actually evolved from components used in similar applications. And it is very likely that newer and more mature products specifically for switchers will continue to appear over the next several years. The ultimate effect of this evolution will be to further simplify and cost reduce these designs. Because the designer and component manufacturer must work as a team to bring this about, companies like Motorola that are looking to the future will continue a dialogue with designers to keep abreast with their current and future product needs.

SECTION 13

SWITCHING REGULATOR DESIGN EXAMPLES

Three switching regulator power supply designs are covered in this section. Part A describes a 400 W half bridge and a 1000 W full bridge configuration in which the TL494 control I.C. is utilized. Part B describes a 60 W flyback regulator where a MC34060 control I.C. is used. All three design examples are off-line supplies which can operate from either 115 or 230 Vac.

A. A SIMPLIFIED POWER-SUPPLY DESIGN USING THE TL494 CONTROL CIRCUIT

The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 13-1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, R_T and C_T . The oscillator frequency is determined by:

$$f_{osc} \cong \frac{1.1}{R_T C_T}$$

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The NOR



Figure 13-1. TL494 Block Diagram

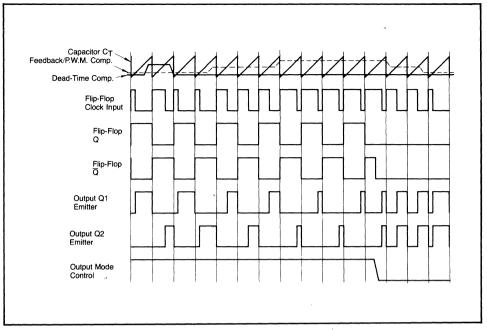


Figure 13-2. TL494 Timing Diagram

gates, which drive output transistors Q1 and Q2, are enabled only when the flipflop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 13-2.)

The control signals are external inputs that can be fed into the dead-time control (Figure 13-1, Pin 4), the error amplifier inputs (pins 1, 2, 15, 16), or the feedback input (Pin 3). The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle of 96% with the output mode control (Pin 13) grounded, and 48% with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from -0.3 V to (V_{CC} -2.0 V), and may be used to sense power-supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor C_T is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-mode control connected to

the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output mode control pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL494 has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an accuracy of $\pm 5\%$ over an operating temperature range of 0 to 70°C.

Application of The TL494 in a 400 W and 1000 Watt Off-Line Power Supply

A 5 V, 80 A line operated 25 kHz switching power supply, designed around the TL494, is shown in Figure 13-3, and the performance data is shown in Table 13-1. The explanation of each section of the power supply, which follows, applies not only to this model but to the higher power (12 V, 84 A) model shown in Figure 13-4, as well. In comparing the two, note that the 400-watt design is a half-bridge, while the 1,000 watt is a full bridge. The 1,000 watt power supply components switching transistors, transformers, and output rectifiers have been beefed up.

1. AC Input Section

The operating ac line voltage is selectable for a nominal of 115 or 230 volts by moving the jumper links to their appropriate positions. The input circuit is a full wave voltage doubler when connected for 115 Vac operation with both halves of the bridge connected in parallel for added line surge capability. When connected for 230 Vac operation, the input circuit forms a standard full wave bridge.

The line voltage tolerance for proper operation is -10, +20% of nominal. The ac line inrush current, during power-up, is limited by resistor R1. It is shorted out of the circuit by triac Q1, only after capacitors C1 and C2 are fully charged, and the high frequency output transformer T1, commences operation.

2. Power Section

The high frequency output transformer is driven in a half-bridge configuration by transistors Q3 and Q5. Each transistor is protected from inductive turn-off voltage transients by an R-C snubber and a fast recovery clamp rectifier. Transistors Q2 and Q4 provide turn-off drive to Q3 and Q5, respectively. In order to describe the operation of Q2, consider that Q6 and Q3 are turned on. Energy is coupled from the primary to the secondary of T3, forward biasing the base-emitter of Q3, and charging C3 through CR1. Resistor R3 provides a dc path for the 'on' drive after C3 is fully charged. Note that the emitter-base of Q2 is reverse biased during this time. Turn-off drive to Q3 commences during the dead-time period, when both Q6 and Q7 are off. During this time, capacitor C3 will forward bias the base-emitter of Q2 through R3 and R2 causing it to turn-on. The baseemitter of Q3 will now be reverse biased by the charge stored in C3 coupled through the collector-emitter of Q2.

TABLE 13-1

	Con]	
Test	Input	Output	Results
Line Regulation	103.5 to 138 VAC	5 volts and 80 amps	8 mV 0.16%
Load Regulation	115 VAC	5 volts, 0 to 80 amps	20 mV 0.4%
Output Ripple	115 VAC	5 volts and 80 amps	P.A.R.D. 50 mV P-P
Efficiency	115 VAC	5 volts and 80 amps	73%
Line Inrush Current	115 VAC	5 volts and 80 amps	24 amps peak

400 Watt Switcher Performance Data

3. Output Section

The ac voltage present at the secondaries of T1 is rectified by four MBR6035 Schottky devices connected in a full wave center tapped configuration. Each device is protected from excessive switching voltage spikes by an R-C snubber, and output current sharing is aided by having separate secondary windings. Output current limit protection is achieved by incorporating a current sense transformer T4. The out-of-phase secondary halves of T1 are cross connected through the core of T4, forming a 1-turn primary. The 50 kHz output is filtered by inductor L1, and capacitor C4. Resistor R4 is used to guarantee that the power supply will have a minimum output load current of 1.0 ampere. This prevents the output transistors Q3 and/or Q5 from cycle skipping, as the required on-time to maintain regulation into an open circuit load is less than that of the devices' storage time. Transformer T5 is used to reduce output switching spikes by providing common mode noise rejection, and its use is optional.

The MC3423, U1, is used to sense an overvoltage condition at the output, and will trigger the crowbar S.C.R., Q8. The trip voltage is centered at 6.4 V with a programmed delay of 40 μ s. In the event that a fault condition has caused the crowbar to fire, a signal is sent to the control section via jumper 'A' or 'B.' This signal is needed to shut down the output, which will prevent the crowbar S.C.R. from destruction due to over dissipation. Automatic over voltage reset is achieved by connecting jumper 'A.' The control section will cycle the power supply output every 2 seconds until the fault has cleared. If jumper 'B' is connected, S.C.R. Q12 will inhibit the output until the ac line is disconnected.

4. Low Voltage Supply Section

A low current internal power supply is used to keep the control circuitry active and independent from external loading of the output section. Transformer T2, Q9 and CR2 form a simple 14.3 V series pass regulator.

5. Control Section

The TL494 provides the pulse-width modulation control for the power supply. The minimum output dead-time is set to approximately 4% by grounding Pin 4 through R5. The soft start is controlled by C5 and R5. Transistor Q11 is used to discharge C5 and to inhibit the operation of the power supply if a low ac line voltage condition is sensed indirectly by Q10, or the output inhibit line is grounded.

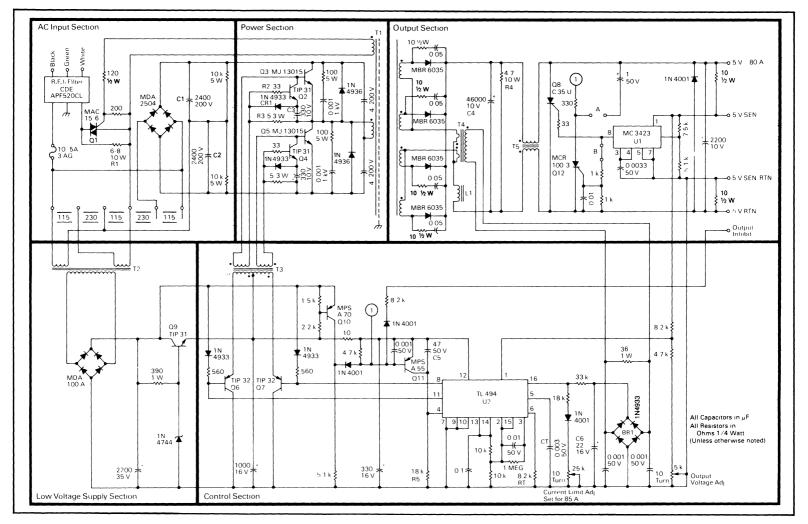


Figure 13-3. 400 Watt SWITCHMODE Power Supply

109

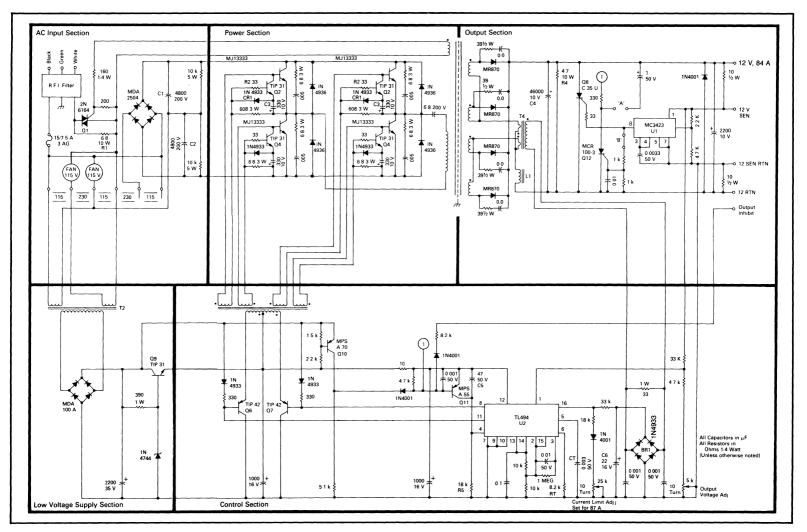


Figure 13-4. 1000 Watt SWITCHMODE Power Supply

110

Error amplifiers 1 and 2 are used for output voltage and current-level sensing, respectively. The inverting inputs of both amplifiers are connected together to a 2.5 V reference derived from Pin 14. By connecting the two inputs together, only one R-C feedback network is needed to set the voltage gain and roll-off characteristics for both amplifiers. Remote output voltage sensing capability is provided, and the supply will compensate for a combined total of 0.5 V drop in the power busses to the load. The secondary of the output current sense transformer T4, is terminated into 36 Ω and peak detected by BR1 and C6. The current limit adjust is set for a maximum output current of 85 amperes.

The oscillator frequency is set to 50 kHz by the timing components R_T and C_T . This results in a 25 kHz two phase output drive signal, when the output mode (Pin 13) is connected to the reference output (Pin 14).

TABLE 13-2

Transformer Data for 400 Watt SWITCHMODE Power Supply

			
T1	Core: Bobbin: Windings:	Ferroxcube EC 70-3C8, 0.002" gap in each leg. Ferroxcube 70 PTB. Primary (Q3, Q5): Primary (Q1): Secondary, 4 each: Shield, 2 each:	50 turns total, #17 AWG Split wound about secondary. 4 turns, #17 AWG. 3 turns, #14 AWG Quad Filar wound. Made from soft allow copper 0.002" thick.
T2	Core: Bobbin: Windings:	Allegheny Ludlum El-75-M6, 29 gauge. Bobbin Cosmo El75. Primary, 2 each: Secondary:	1000 turns, #36 AWG. 200 turns, #24 AWG.
T3	Core: Windings:	Ferroxcube 846T250-3C8. Primary, 2 each: Secondary, 4 each:	30 turns, #30 AWG Bifilar wound. 12 turns, #20 AWG Bifilar wound.
T4	Core: Windings:	Magnetics Inc. 55059-A2 Primary, 2 each: Secondary:	1 turn, #14 AWG Quad Filar wound. Taken from secondary to T1. 500 turns, #30 AWG.
T5	Core: Windings:	Magnetics Inc. 55071-A2 Primary: Secondary:	4 turns, #16 AWG Hex Filar wound. 4 turns, #16 AWG Hex Filar wound.
L1	Core: Winding:	TDK H7C2DR56 x 35 5 turns, soft alloy copper strap, 0.9" wide x 0.020" thick, 6.0μ H.	

TABLE 13-3

Transformer Data fo	or 1,000 Watt	Switching Powe	r Supply

T1	Core: Bobbin: Windings:	Ferroxcube EC70-3C8, 0.002" gap in each leg. Ferroxcube 70 PTB. Primary (Q3, Q5): Primary (Q1): Secondary, 4 each: Shield, 2 each:	 44 turns total, #18 AWG Bifilar Split wound about secondary. 3 turns, #18 AWG. 4 turns, #16 AWG Septe Filar wound. Made from soft alloy copper 0.002" thick.
T2	Core: Bobbin: Windings:	Allegheny Ludlum El-75-M6, 29 gauge. Bobbin Cosmo El75. Primary, 2 each: Secondary:	1000 turns, #36 AWG. 200 turns, #24 AWG.
тз	Core: Windings:	Ferroxcube 846 T250-3C8. Primary, 2 each: Secondary, 4 each:	30 turns, #30 AWG Bifilar wound. 12 turns, #20 AWG Bifilar wound.
T4	Core: Windings:	Magnetics Inc. 55071-A2 Primary, 2 each: Secondary:	1 turn, #14 AWG Quad Filar wound. Taken from secondary to T1. 500 turns, #30 AWG.
L1	Core: Winding:	TDK H7C2 DR 56 x 35	5 turns, soft alloy copper strap, 0.9" wide x 0.020" thick, 6.0 μH

B. 60-WATT FLYBACK SWITCHING POWER SUPPLY DESIGN

The flyback-regulator circuit (Figures 13-5 and 13-6) with a single drive transistor needs only a few main parts:

A unique flyback transformer

A single control IC (MC34060)

A fast-switching high-voltage transistor

Single output filters in each of the four outputs

The flyback base-drive circuit

AC-line input voltage doublers.

In the power stage of Figure 13-5, a single 2N6545 transistor blocks 800 V and switches 1.0 A in 40 ns. The control section utilizes a low cost MC34060 Pulse Width Modulator control IC to minimize parts count.

The following paragraphs provide useful information and performance results regarding this Flyback design.

1. Sandwiching The Windings

The flyback transformer uses an EC-41 ferrite core made by the Ferroxcube Corp. It has a 40 : 1 turns ratio and is wound by a sandwich technique that improves the coupling between its primary and secondary windings.

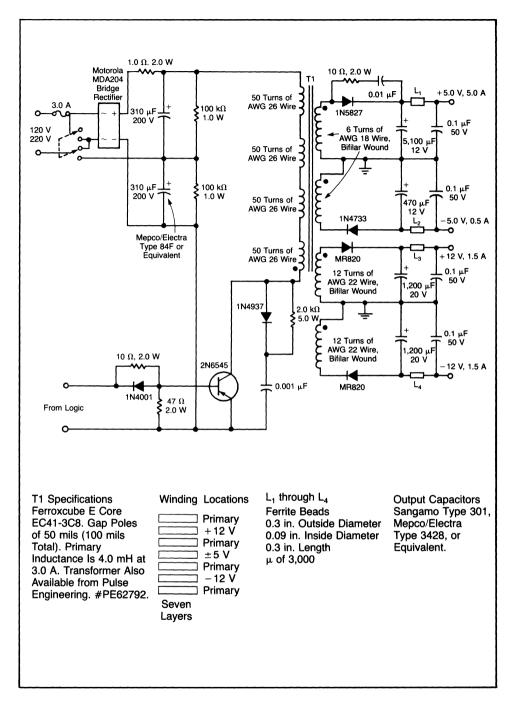


Figure 13-5. Flyback Power Stage Provides Output Voltages of +5, -5, +12 and -12 V

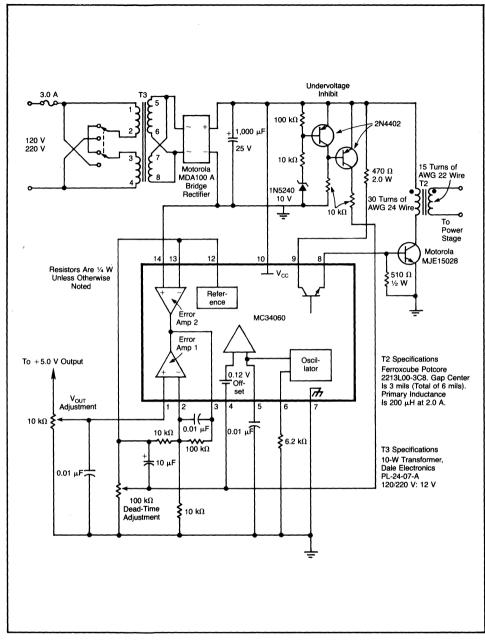


Figure 13-6. The Power Supply's Control Functions Are Obtained from The MC34060

The primary winding consists of four split windings in series with each other. The four windings of the secondary alternate in a sandwich construction with the four primary windings. Total core gap is 100 mils, and primary-winding inductance is 4.5 millinenries at 2.5 amperes. Transformer performance can be gauged from the fact that although the output current ratings for the secondary transformer windings are specified as 5.0, 1.5, and 0.5 A for 5.0 \pm 12, and -5.0 V, respectively, actual respective current values are 8, 3, and 4 A (Figure 13-7). The flyback transformer can be hand-wound over an EC-41 ferrite core obtainable from Ferroxcube Corp. The four secondary windings alternate in a sandwich construction with four split primary windings that are connected in series with each other. All of the power-supply control functions reside in the MC34060 pulse width modulation control I.C. It includes a 20-kilohertz oscillator, a dead-time adjustment (50% maximum) for preventing transformer saturation, two error amplifiers to process both current and voltage feedback signals, and an output stage that produces 200 milliampere pulses to drive the power transistor. An undervoltage-inhibiting circuit is added externally to the control IC. Consisting of two transistors and a zener diode, it inhibits output pulses when the drive voltage is less than 10 V.

For fast switching, a Motorola type 2N6545 transistor is used. It is capable of switching 2.0 A in just 40 nanoseconds and can block up to 800 V under worst-case conditions. Because of the transistor's high speed, losses due to the snubber (the RC network in the collector circuit) are low — typically 2.0 W, or less than 2% of the total delivered power. Output Transistor current and voltage waveforms, along with load lines, are shown in Figures 13-8 and 13-9.

Each of the four output stages employs one filter capacitor and one diode. The capacitors (series 301 from Sangamo, 3428 from Mepco/Electra, or UPT from Cornell-Dubilier), exhibit low equivalent series resistance, typically 10 to 100 milliohms. Noise spikes are reduced dramatically (by as much as a factor of four) by the addition of a ferrite bead and ceramic capacitor across each of the output filter capacitors. Ripple test data for various types of capacitors is shown in Table 13-4.

Output	Test	Sangamo 301	Mepco/Electra 3428	CDE UPT	Mallory VPR	Sprague 432D
	Capacitance/volts	5,100 μF, 12 V	800 μF, 7.5 V	5,000 μF, 12 V	5,300 µF, 20 V	5,600 μF, 10 V
+5.0 V	Ripple (P-P)	200 mV	360 mV	170 mV	250 mV	200 mV
	Spikes (P-P)	660 mV	640 mV	980 mV	880 mV	580 mV
	Capacitance/volts	1,200 μF, 20 V	1,400 μF, 20 V	1,000 µF, 20 V	1,200 μF, 12 V	1,200 μF, 20 V
+ 12 V	Ripple	210 mV	260 mV	200 mV	200 mV	n.a.
	Spikes	740 mV	1,100 mV	1,800 mV	1,440 mV	n.a.
	Capacitance/volts	470 μF, 12 V	2,100 μF, 10 V	680 μF, 12 V	1,200 μF, 12 V	560 μF, 40 V
– 5.0 V	Ripple	160 mV	160 mV	180 mV	140 mV	180 mV
	Spikes	540 mV	1,300 mV	680 mV	360 mV	440 mV

TABLE 13-4. Ripple Test Data for Various Capacitors

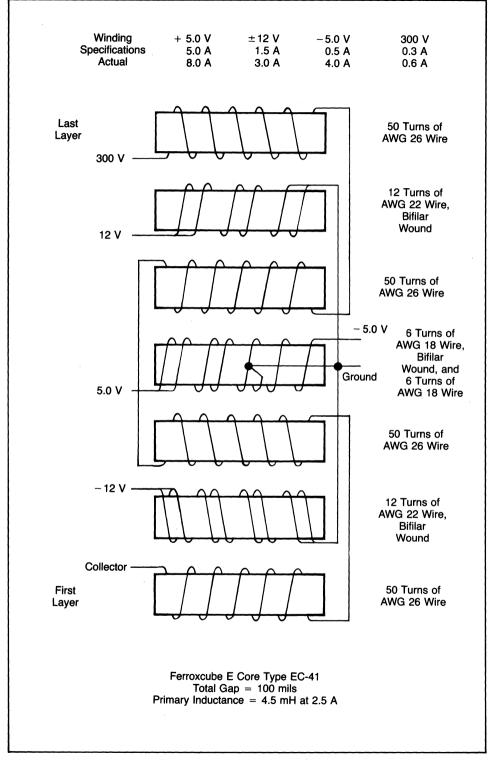
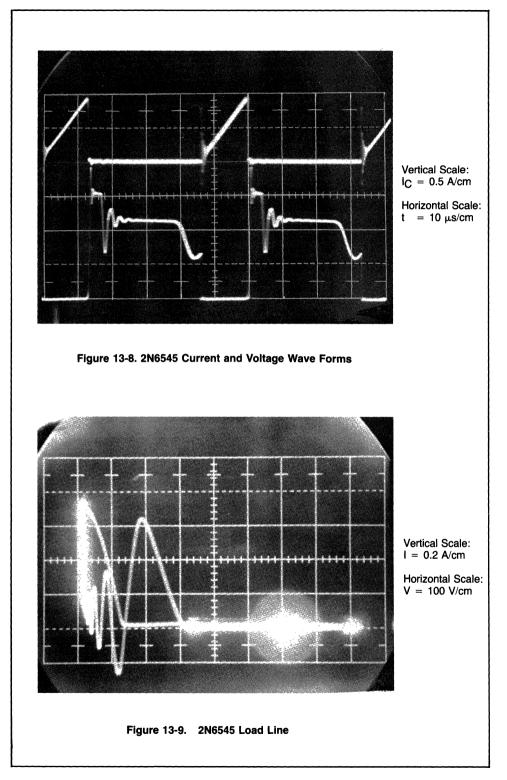


Figure 13-7. Flyback Transformer

The use of a flyback transformer for base drive greatly simplifies the drive circuit. Besides the transformer, only three other components are employed: a drive transistor capable of handling 2.0 A, a resistor, and a diode. The flyback transformer turns on the transistor with a 5.0 V drive pulse while simultaneously storing the energy from the 2.0 A current drawn by the transistor. This stored energy becomes the reverse bias drive when the pulse from the transformer is terminated. The reverse bias drive removes stored charge quickly — within 2 μ s — and then causes the transistor's base to avalanche for the short while it takes to reset the transformer. Typically, if the transistor is initially turned on for 20 μ s with a 5.0 V pulse, a 10 μ s 10 V pulse is needed to reset if after it has been turned off.

At the ac line input, two axial-lead 310 μ F, 200 V capacitors (Mepco/Electra series 84F) are connected in series with each other across the bridge rectifier output, thus acting as a voltage doubler when operating from 120 Vac line. A nominal 320 V bus is thus provided across the transformer's primary winding, regardless of whether it operates from a 120 Vac or a 220 Vac line input.


2. Advantages of Flyback — One of the most popular low wattage switchingregulator power supply circuits is the forward converter. The transformer, having only a 15 : 1 ratio of primary to secondary turns, is simpler than the flyback type approach, but requires four expensive filtering chokes. In addition, the secondary windings are unregulated, so output voltages vary with line and load variations more than they do in the case of a flyback transformer.

A flyback regulator with a control IC isolated from the primary side has a number of advantages. Feedback signals can be coupled directly to the transformer. Also, current-limiting protection on any or all of the output windings is simplified. Since the control IC has an extra amplifier, the addition of a sense resistor and simple divider network to the high-current 5.0 V output makes it easy to protect that output against short circuits (Figure 13-10). The addition of three more similar networks and a quad operational amplifier makes it a simple matter to protect all four outputs against short circuits.

This approach breaks with convention. Other switching-regulator schemes place the control IC at the primary side of the transformer, where the transistor emitter current is sensed for overcurrent protection. Optocouplers then have to be inserted in the feedback loop for proper isolation. Moreover, optocouplers drift over temperature.

3. Final Results — The output power stage can be checked out by using a pulse generator to energize the drive transistor and transformer; and subsequently, to calculate the snubber values. To improve coupling and reduce the 13 to 14 V nominal output to 12 V, the 5.0 V secondary winding can be increased from an initial five turns to six.

Adding control logic involves designing the base drive transformer and finding values for the feedback network that will provide optimum performance without creating instability. An operational amplifier gain of 20 with a rolloff at 160 Hz is sufficient. A dead-time limit of 50% keeps the drive transformer from saturation without interfering with low-line-voltage performance. An undervoltage-inhibiting circuit keeps the control circuit disabled at voltages under 10 V to prevent output pulses from occurring before sufficient drive is available to the output stage.

60-W FLYBACK REGULATOR WAVEFORMS

Despite the power supply's low parts count and simplicity of design, it has an impressive level of performance. For a nominal input of 120 Vac, it maintains regulation over an input range of 90 to 140 Vac and load range of 2 : 1 (half load to full load). For example, line and load regulation for the 5.0 V output are 2.5% and 1%, respectively. At an input of 90 Vac, full-load output voltages are 4.848, -4.930, -12.78 and 12.68 V, respectively, for the 5.0, -5.0, -12 and 12 V outputs. At 120 Vac, full-load output voltages are 5.001, -4.977, -12.98 and 12.94 V. At 140 Vac, full-load voltages are 5.983, -5.061, -13.16 and 13.10 V.

Half-load regulation is equally impressive. At a 90 Vac input, output voltages are 5.040, -5.075, -13.13 and 13.07 V. At a 120-V input, they are 5.098, -5.162, -13.30 and 13.20 V. At a 140-V input, they are 5.114, -5.191, -13.35, and 13.28 V.

Should it become necessary to work over a wider load range, such as from full to no load, the power transformer would have to be redesigned to protect the drive transistor from load dump conditions. This can be done by increasing the transformer's core size from the present EC-41 to EC-52 and by adding a primary bifilar winding coupled through a diode to the dc bus.

The power supply is also very efficient. At 120 Vac in and a full-load condition, its efficiency was an impressive 80%. The only noticeable heat rise is in the small components like the snubber resistor and Schottky diode. All other components remain cool to the touch.

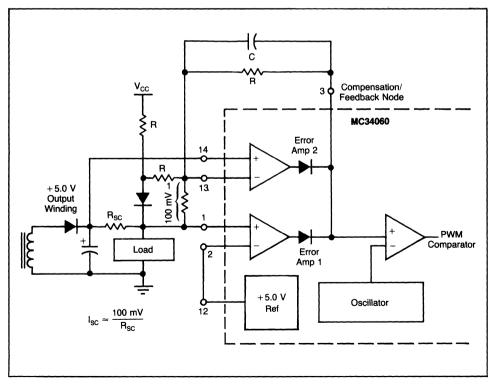


Figure 13-10. Current Limiting with the MC34060

SECTION 14

POWER SUPPLY SUPERVISORY AND PROTECTION CONSIDERATIONS

The use of SCR crowbar overvoltage protection (OVP) circuits has been, for many years, a popular method of providing protection from accidental overvoltage stress for the load. In light of the recent advances in LSI circuitry, this technique has taken on added importance. It is not uncommon to have several hundred dollars worth of electronics supplied from a single low voltage supply. If this supply were to fail due to component failure or other accidental shorting of higher voltage supply busses to the low voltage bus, several hundred dollars worth of circuitry could literally go up in smoke. The small additional investment in protection circuitry can easily be justified in such applications.

A. THE CROWBAR TECHNIQUE

One of the simplest and most effective methods of obtaining overvoltage protection is to use a "crowbar" SCR placed across the equipment's dc power supply bus. As the name implies, the SCR is used much like a crowbar would be, to short the dc supply when an overvoltage condition is detected. Typical circuit configurations for this circuit are shown on Figure 14-1. This method is

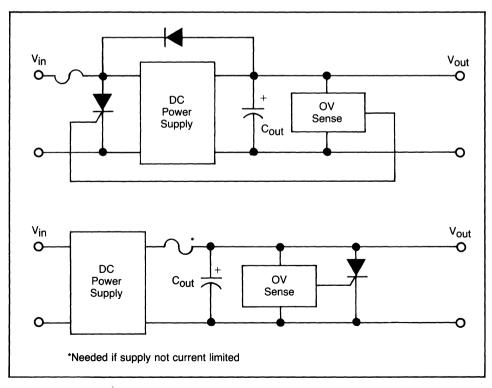


Figure 14-1. Typical Crowbar OVP Circuit Configurations

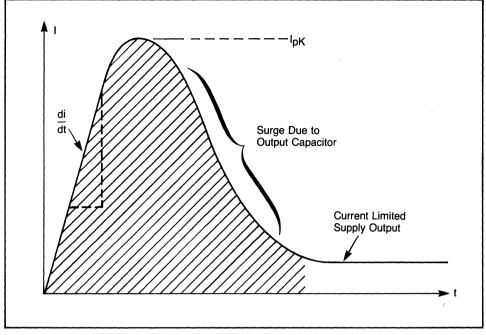


Figure 14-2. Crowbar SCR Surge Current Waveform

very effective in eliminating the destructive overvoltage condition. However, the effectiveness is lost if the OVP circuitry is not reliable.

B. SCR CONSIDERATIONS

Referring to Figure 14-1, it can easily been seen that, when activated, the crowbar SCR is subjected to a large current surge from the filter and output capacitors. This large current surge, illustrated in Figure 14-2, can cause SCR failure or degradation by any one of three mechanisms: di/dt, peak surge current, or I²t. In many instances the designer must empirically determine the SCR and circuit elements which will result in reliable and effective OVP operation. To aid in the selection of devices for this application, Motorola has characterized several devices specifically for crowbar applications. A summary of these specifications and a selection guide for this application is shown in Table 14-1. This significantly reduces the amount of empirical testing that must be done by the designer. A good understanding of the factors that influence the SCR's di/dt and surge current capability will greatly simplify the total circuit design task.

TABLE	14-1
Crowbar	SCRs

Device Type**	Peak Discharge Current*	di/dt*
MCR67	300 A	75 A/μs
MCR68	300 A	75 A/μs
MCR69	750 A	100 A/µs
MCR70	850 A	100 A/µs
MCR71	1700 A	200 A/µs

* tw = 1 μ s, exponentially decaying

** All devices available with 25, 50, and 100 V ratings

1. di/dt — As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities, depending upon the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times I_{GT}) the SCR gate with a fast (< 1 μ s) rise time signal will maximize its di/dt capability. A typical maximum di/dt in phase control SCRs of less than 50 A rms rating might be 200 A/ μ s, assuming a gate current of five times I_{GT} and < 1 μ s rise time. If having done this, a di/dt problem still exists, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 14-3. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage, and a tradeoff must be made between speedy voltage reduction and di/dt.

2. Surge Current — If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance — see Figure 14-3) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

(For additional information on SCRs in crowbar applications refer to "Characterizing the SCR for Crowbar Applications," Al Pshaenich, Motorola AN-789).

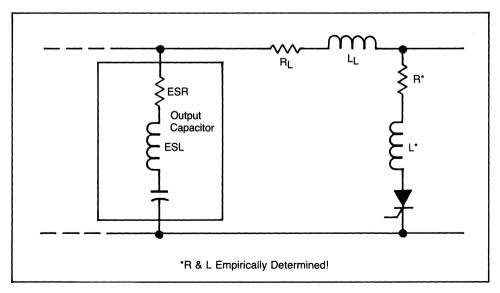


Figure 14-3. Circuit Elements Affecting SCR Surge & di/dt

C. THE SENSE AND DRIVE CIRCUIT

In order to maximize the crowbar SCR's di/dt capability, it should receive a fast rise time high-amplitude gate-drive signal. This must be one of the primary factors considered when selecting the sensing and drive circuitry. Also important is the sense circuitry's noise immunity.

Noise immunity can be a major factor in the selection of the sense circuitry employed. If the sensing circuit has low immunity and is operated in a noisy environment, nuisance tripping of the OVP circuit can occur on short localized noise spikes, which would not normally damage the load. This results in excessive system down time. There are several types of sense circuits presently being used in OVP applications. These can be classified into three types: zener, discrete, and "723."

1. The Zener Sense Circuit — Figure 14-4 shows the use of a zener to trigger the crowbar SCR. This method is NOT recommended since it provides very poor gate drive and greatly decreases the SCR's di/dt handling capability, especially since the SCR steals its own very necessary gate drive as it turns on. Additionally, this method does not allow the trip point to be adjusted except by zener replacement.

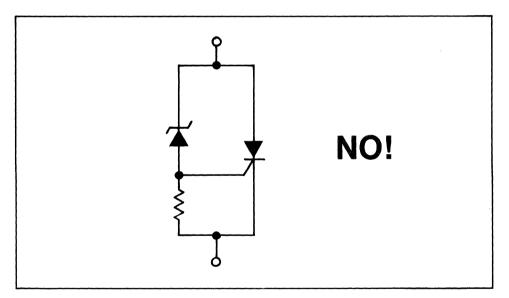


Figure 14-4. The Zener Sense Circuit

2. The Discrete Sense Circuit — A technique which can provide adequate gate drive and an adjustable, low temperature coefficient trip point is shown in Figure 14-5. While overcoming the disadvantages of the zener sense circuit, this technique requires many components and is more costly. In addition, this method is not particularly noise immune and often suffers from nuisance tripping.

3. The "723" Sense Circuit — By using an integrated circuit voltage regulator, such as the industry standard "723" type, a considerable reduction in component count can be achieved. This is illustrated in Figure 14-6. Unfortunately, this technique is not noise immune, and suffers an additional disadvantage in that it must be operated at voltages above 9.5 volts.

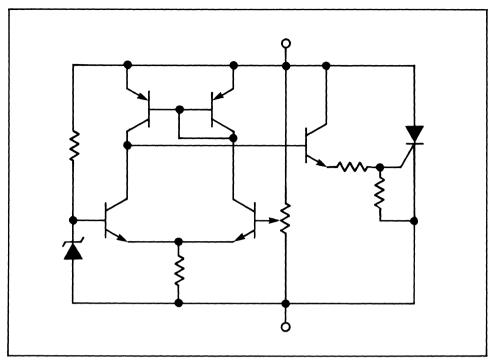


Figure 14-5. The Discrete Sense Circuit

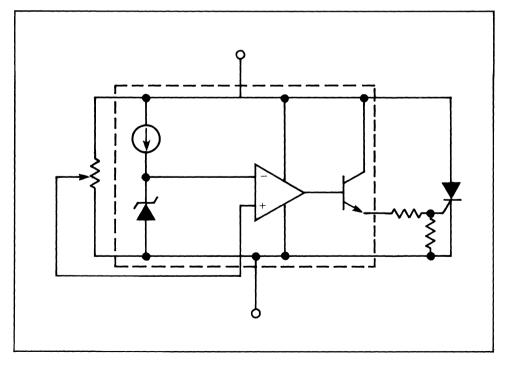


Figure 14-6. The "723" Sense Circuit

4. The MC3423 — To fill the need for a low cost, low complexity method of implementing crowbar overvoltage protection which does not suffer the disadvantages of previous techniques, an IC has been developed for use as an OVP sense and drive circuit, the MC3423.

The MC3423 was designed to provide output currents of up to 300 mA with a 400 mA/ μ s rise time in order to maximize the di/dt capabilities of the crowbar SCR. In addition, its features include:

- 1. Operation off 4.5 V to 40 V supply voltages.
- 2. Adustable, low temperature coefficient trip point.
- 3. Adjustable minimum overvoltage duration before actuation to reduce nuisance tripping in noisy environments.
- 4. Remote activation input.
- 5. Indication output.

5. Block Diagram — The block diagram of the MC3423 is shown in Figure 14-7. It consists of a stable 2.6 V reference, two comparators and a high current output. This output, together with the indication output transistor, is activated either by a voltage greater than 2.6 V on Pin 3 or by a TTL/5 volt CMOS high logic level on the remote activation input, Pin 5.

The circuit also has a comparator-controlled current source which can be used in conjunction with and external timing capacitor to set a minimum overvoltage duration (0.5 μ s to 1.0 ms) before actuation occurs. This feature allows the OVP circuit to operate in noisy environments without nuisance tripping.

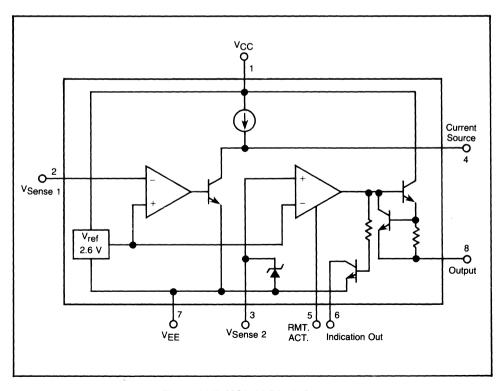


Figure 14-7. MC3423 Block Diagram

6. Basic Circuit Configuration — The basic circuit configuration of the MC3423 OVP is shown in Figure 14-8. In this circuit the voltage sensing inputs of both the internal amplifiers are tied together for sensing the overvoltage condition. The shortest possible propagation delay is thus obtained. The threshold or trip voltage at which the MC3423 will trigger and supply gate drive to the crowbar SCR, Q1, is determined by the selection of R1 and R2. Their values can be determined by the equations given in Figure 14-8 or by the graph shown in Figure 14-9. The switch, S1, shown in Figure 14-8 may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non current-limited supply is used a fuse or circuit breaker, F1, should be used to protect the SCR and/or the load.

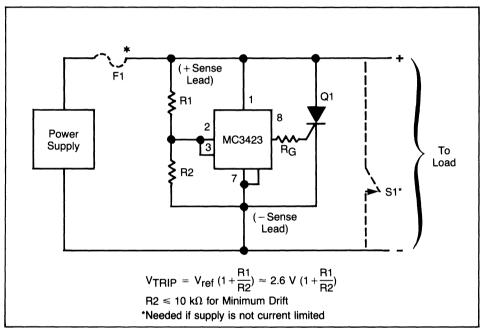
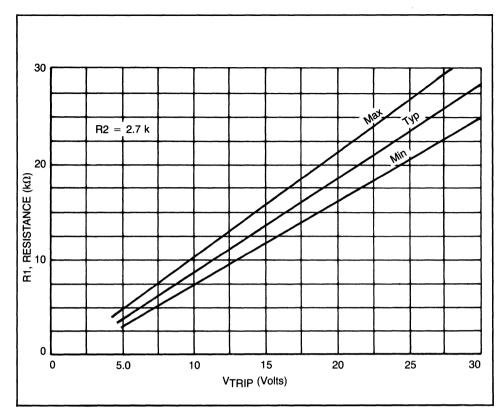



Figure 14-8. MC3423 Basic Circuit Configuration

7. MC3423 Programmable Configuration — In many instances, MC3423 OVP will be used in a noisy environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 14-10 is used.

Here a capacitor is connected from Pin 3 and Pin 4 to V_{EE} . The value of this capacitor determines the minimum duration of the overvoltage condition (t_D) which is necessary to trip the OVP. The value of C_D can be found from Figure 14-11. The circuit operates in the following manner: when V_{CC} rises above the trip point set by R1 and R2, the internal current source begins charging the capacitor, C_D , connected to pins 3 and 4. If the overvoltage condition remains present long enough for the capacitor voltage, V_{CD} to reach V_{ref} , the ouput is activated. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate 10 times faster than the charging rate, resetting the timing feature until the next over-voltage condition occurs.

Figure 14-9. R1 versus Trip Voltage for The MC3423 OVP

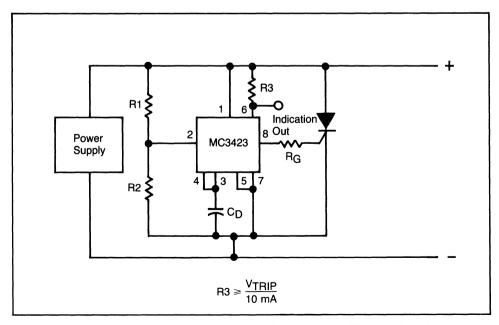


Figure 14-10. MC3423 Configuration for Programmable Minimum Duration of Overvoltage Condition before Tripping

8. Indication Output — An additional output for use as an indicator of OVP activation is provided by the MC3423. This output (Pin 6) is an open collector transistor which saturates when the MC3423 OVP is activated. It will remain in a saturated state until the SCR crowbar pulls the supply voltage, V_{CC} , below 4.5 V as in Figure 14-10. This output can be used to clock an edge triggered flop-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR.

9. Remote Activation Input — Another feature of the MC3423 is its Remote Activation Input, Pin 5. If the voltage on this CMOS/TTL compatible input is held below 0.7 V, the MC3423 operates normally. However, if it is raised to a voltage above 2.0 V, the OVP output is activated independent of whether or not an overvoltage condition is present.

This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the Indication Output of one MC3423 can be used to activate another MC3423, if a single transistor inverter is used to interface the former's Indication Output to the latter's Remote Activation Input.

D. THE MC3424

In addition to the MC3423 a second IC, the MC3424, has been developed for overvoltage protection and power supply supervision. Similar in many respects to the MC3423, the MC3424 may also be programmed for under voltage detection

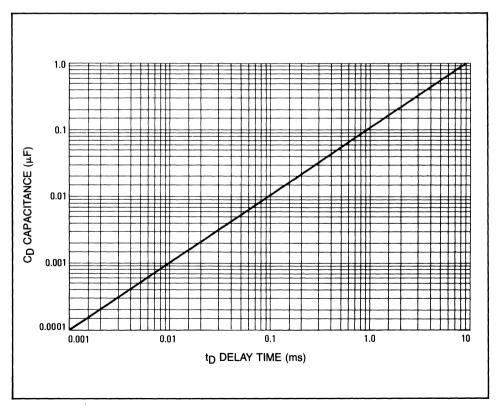
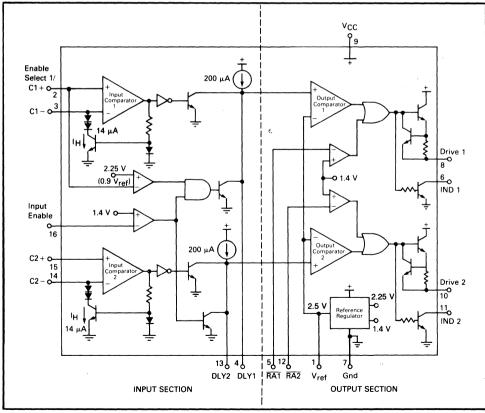


Figure 14-11. CD versus Minimum Overvoltage Duration, tD for The MC3423 OVP

or line loss monitoring. With a few passive components the MC3424 is able to perform all of the monitoring required for a power supply.

The block diagram of the MC3424 is shown in Figure 14-12. Notice that both inputs to the two sensing comparators (C1 + , C1 - , C2 + , and C2 -) are pinned out to provide additional flexibility. In addition the "-" inputs to the comparators are tied to controlled current sinks which may be used to provide hysteresis in the sensing function. The hysteresis voltage (V_H) at the comparator input can be calculated using the equation:


$$V_{H} = R_{H} I_{H}$$

Where $R_{\rm H}$ = equivalent resistance

 $I_{\rm H}$ = comparator hysteresis current

If hysteresis is not required, it can be eliminated by making the equivalent resistance in series with the C- input (R_H) equal to zero or by configuring the device such that the quiescent operating point for the C- input is below 1.2 volts.

Both channels of the MC3424 may be operated independently, and both have high current drive outputs and open collector indicator outputs.

Note: All voltages and currents are nominal

Figure 14-12. MC3424/MC3524 Block Diagram

1. Dual Overvoltage Protection — The circuit shown in Figure 14-13 uses the MC3424 to provide overvoltage sensing for a split supply. In this application the MC3424 is powered from the positive supply but senses both the positive and negative supplies, and will crowbar both supplies if a overvoltage condition is detected on either of the supplies.

To cause the MC3424 to crowbar both supplies, the indicator outputs from each half of the device are connected to the remote activation inputs of the other half of the device. With this arrangement, if either side of the device detects an overvoltage condition it will cause one of the SCRs to crowbar, and at the same time, activate the other half of the circuit, which will in turn cause the second SCR to crowbar.

If more than two supplies were to be protected, a similar arrangement could be used to cause all of the supplies to be crowbarred if any fault occurred. To accomplish this, simply connect all of the remote activation inputs and all of the indicator outputs together. Since the indicator outputs of the MC3424 are open collector devices, any one of the indicator outputs can activate all of the crowbars without any interference.

2. Line Loss Detection — In addition to providing overvoltage protection, the MC3424 can also be used to detect line loss or brownout conditions which will soon cause the power supply to fail. This is particularly important in many small

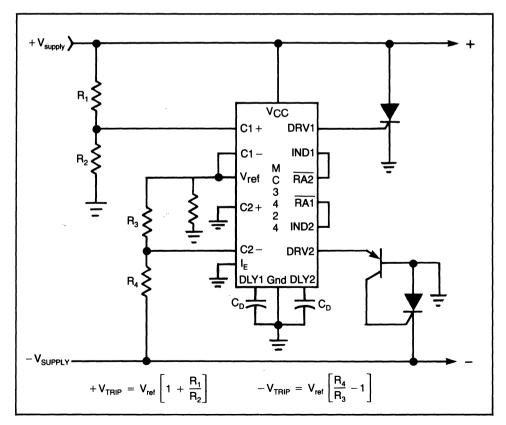


Figure 14-13. OVP for Split Supply Operation

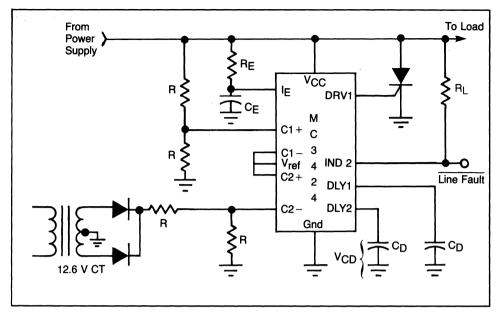


Figure 14-14. Sensing Line Fault and Over Voltage Conditions for Linear and Switching Power Supplies

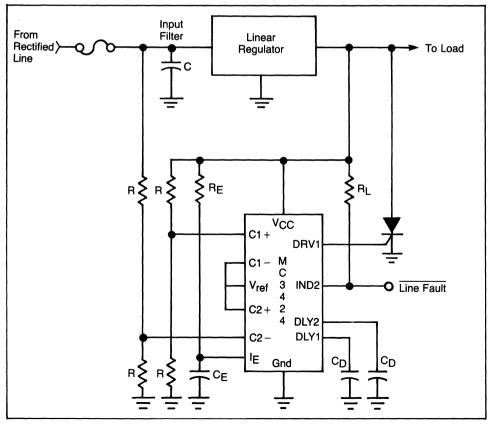


Figure 14-15. An Alternate Method of Sensing Line Fault and Overvoltage Conditions for Linear Power Supplies

and medium sized computer systems which must store part or all of the data currently being processed before the power failure. The use of circuits such as these will allow such systems to "die with dignity."

The circuits shown in Figures 14-14 and 14-15 both perform essentially the same function. The circuit shown in Figure 14-14 may be used with almost any type of regulator circuitry; however, the circuit shown in Figure 14-15 should only be used in linear type supplies where the filter capacitor is isolated from the line. Using the circuit in Figure 14-15 on switching supplies where the filter capacitors are not isolated from the line would defeat the isolation in the switching transformer.

The circuit shown in Figure 14-14 utilizes half of the MC3424 as an overvoltage protection circuit in a configuration like the programmable configuration discussed earlier for the MC3423. The remaining half of the device is configured for line loss and brownout detection. The C2 + and C2 - inputs are connected as an undervoltage sensing circuit, and sense the center tap of a voltage divider driven with a full wave rectified signal proportional to the line voltage. At each peak of the line the output of the comparator discharges the delay capacitor ($C_{\rm D}$). If a half cycle is missing from the line voltage, or if a brownout occurs reducing the peak line voltage, the delay capacitor will not be discharged and will continue to be charged as shown in Figure 14-16. If a sufficient number of half cycles are missing, or if the brownout continues for a sufficient time, the circuit will detect an ac line fault and output a line fault indication on the indicator output. The delay capacitor is used to provide some noise immunity and to prevent the loss of a single half cycle from triggering the line fault signal. The minimum time the fault condition must occur can be adjusted by changing the value of the delay capacitor.

The circuit shown in Figure 14-15 senses the voltage on the power supply filter capacitors to predict the imminent power supply failure. Since the voltage on the capacitor is proportional to the remaining charge, the remaining time the power supply will function can be calculated by the equation:

$$t = \frac{C (V_C - V_{min})}{I_{max}}$$

Where

C = filter capacitance

t = time to power supply failure

 I_{max} = maximum load current

 $V_{\rm C}$ = filter capacitor voltage

 V_{min} = minimum regulator input voltage

By setting t equal to the maximum time for the system to store all required data, and solving the equation for V_C , the minimum capacitor voltage can be calculated that will allow the supply to remain functional, while the system executes the power down sequence. The MC3424 is then configured as an undervoltage detector, as shown in Figure 14-15, and programmed to detect the minimum capacitor voltage V_C .

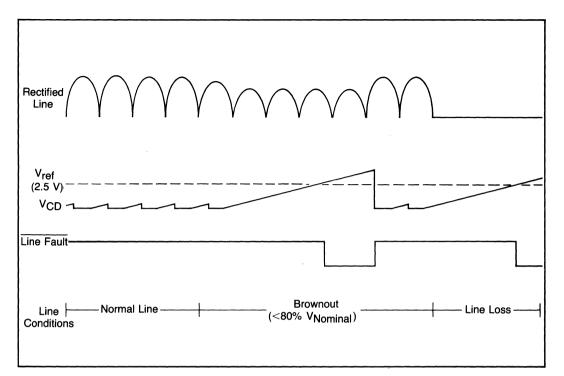


Figure 14-16. Waveforms Illustrating Brownout and Line Loss Detection for the Circuit of Figure 14-14.

REFERENCES

- 1. "Characterizing the SCR for Crowbar Applications," Al Pshaenich, Motorola AN-789.
- "Semiconductor Considerations for DC Power Supply SCR Crowbar Circuits," Henry Wurzburg, Third National Sold-State Power Conversion Conference, June 25, 1976.
- 3. "Is a Crowbar Enough?" Willis C. Pierce Jr., Hewlett-Packard, Electronic Design 20, Sept. 27, 1974.
- 4. "Transient Thermal Response-General Data and Its Use," Bill Roehr and Brice Shiner, Motorola AN-569.

SECTION 15 HEATSINKING

A. THE THERMAL EQUATION

A necessary and primary requirement for the safe operation of any semiconductor device, whether it be an IC or a transistor, is that its junction temperature be kept below the specified maximum value given on its data sheet. The operating junction temperature is given by:

$$\Gamma_{\rm j} = T_{\rm A} + P_{\rm D} \,\theta_{\rm JA} \tag{15.1}$$

where $T_j =$ junction temperature (°C)

 T_A = ambient air temperature (°C)

 P_D = power dissipated by device (watts)

 θ_{JA} = thermal resistance from junction to ambient air (°C/W)

The junction-to-ambient thermal resistance, θ_{JA} , in Equation (15.1) can be expressed as a sum of thermal resistances as shown below:

$$\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$
 (15.2)

where $\theta_{\rm JC}$ = junction-to-case thermal resistance

 $\theta cs = case-to-heatsink$ thermal resistance

 θ_{SA} = heatsink-to-ambient thermal resistance

(Equation (15.2) applies only when an external heatsink is used. If no heatsink is used. θ_{IA} is equal to the device package θ_{IA} given on the data sheet.)

 θ_{JC} depends on the device and its package (case) type, while θ_{SA} is a property of the heatsink and θ_{CS} depends on the type of package/heatsink interface employed. Values for θ_{JC} and θ_{SA} are found on the device and heatsink data sheets, while θ_{CS} is given in Table 15-1.

TABLE 15-1

*θ*cs For Various Packages & Mounting Arrangements

	θcs				
	METAL-TO-METAL*		USING AN INSULATOR*		
CASE	DRY	With Heatsink Compound	With Heatsink Compound	Туре	
TO-3	0.2°C/W	0.1°C/W	0.36°C/W 0.28°C/W	3 mil MICA Anodized Aluminum	
TO-66	1.5°C/W	0.5°C/W	0.9°C/W	2 mil MICA	
TO-220	1.2°C/W	1.0°C/W	1.6°C/W	2 mil MICA	

*Typical values; heatsink surface should be free of oxidation, paint, and anodization

Examples showing the use of Equations 15.1 and 15.2 in thermal calculations are as follows:

Example 1: Find required heatsink θ_{SA} for an MC7805CT; given:

$$T_{jmax} (desired) = +125^{\circ}C$$
$$T_{Amax} = +70^{\circ}C$$
$$P_{D} = 2 watts$$

Mounted directly to heatsink with silicon thermal grease at interface

1. From MC7805CT data sheet, $\theta_{JC} = 5^{\circ}C/W$

2. From Table 15-1, $\theta cs = 2.6^{\circ}C/W$

3. Using Equation 15.1 and 15.2, solve for θ sA:

$$\theta_{SA} = \frac{(T_j - T_A)}{P_D} - \theta_{CS} - \theta_{JC}$$
$$\theta_{SA} = \frac{(125 - 70)}{2} - 5.0 - 2.6$$
$$\leq 19.9^{\circ}C/W \text{ required}$$

Example 2: Find the maximum allowable T_A for an unheatsinked MC78L15CT, given:

 T_jmax (desired) = $+125^{\circ}C$

 $P_D = .25$ watt

- 1. From MC78L15CT data sheet, $\theta_{JA} = 200^{\circ}C/W$
- 2. Using Equation 15.1 find TA:

$$T_A = T_j - P_D \theta_{JA}$$

= 125 - .25 (200)
= +75°C

B. SELECTING A HEATSINK

Usually, the maximum ambient temperature, power being dissipated, the T_{jmax} , and θ_{JC} for the device being used are known. The required θ_{SA} for the heatsink is then determined using Equations 15.1 and 15.2, as in Example 1. The designer may elect to use a commercially available heatsink, or if packaging or economy demands it, design his own.

1. Commercial Heatsinks

As an aid in selecting a heatsink, a representative listing is shown in Table 15-2. This listing is by no means complete and is only included to give the designer an idea of what is available.

TABLE 15-2

Commercial Heatsink Selection Guide

No attempt has been made to provide a complete list of all heatsink manufacturers. This list is only representative.

	TO-3 & TO-66
θsa*(°C/W)	Manufacturer/Series or Part Number
0.3-1.0	Thermalloy — 6441, 6443, 6450, 6470, 6560, 6590, 6660, 6690
1.0-3.0	Wakefield — 641 Thermalloy — 6123, 6135, 6169, 6306, 6401, 6403, 6421, 6423, 6427, 6442, 6463, 6500
3.0-5.0	Wakefield — 621, 623 Thermalloy — 6606, 6129, 6141, 6303 IERC — HP Staver — V3-3-2
5.0-7.0	Wakefield — 690 Thermalloy — 6002, 6003, 6004, 6005, 6052, 6053, 6054, 6176, 6301 IERC — LB Staver — V3-5-2
7.0-10.0	Wakefield — 672 Thermalloy — 6001, 6016, 6051, 6105, 6601 IERC — LA, uP Staver — V1-3, V1-5, V3-3, V3-5, V3-7
10.0-25.0	Thermalloy — 6013, 6014, 6015, 6103, 6104, 6105, 6117

*All values are typical as given by mfgr. or as determined from characteristic curves supplied by manufacturer.

	TO-5
θsa*(°C/W)	Manufacturer/Series or Part Number
12.0-20.0	Wakefield — 260 Thermalloy — 1101, 1103 Staver — V3A-5
20.0-30.0	Wakefield — 209 Thermalloy — 1116, 1121, 1123, 1130, 1131, 1132, 2227, 3005 IERC — LP Staver — F5-5
30.0-50.0	Wakefield — 207 Thermalloy — 2212, 2215, 225, 2228, 2259, 2263, 2264 Staver — F5-5, F6-5
	Wakefield — 204, 205, 208 Thermalloy — 1115, 1129, 2205, 2207, 2209, 2210, 2211, 2226, 2230, 2257, 2260, 2262 Staver — F1-5, F5-5
θsa*(°C/W)	CASE TO-220
5.0-10.0	IERC H P3 Series Staver — V3-7-225, V3-7-96
10.0-15.0	Thermalloy — 6030, 6032, 6034 Staver — V4-3-192, V-5-1
15.0-20.0	Thermalloy — 6106 Staver — V4-3-128, V6-2
20.0-30.0	Wakefield — 295 Thermalloy — 6025, 6107

*All values are typical as given by mfgr. or as determined from characteristic curves supplied by manufacturer.

	TO-92							
θsa*(°C/W)	Manufacturer/Series or Part Number							
46 50 57 65 72 80-90 85	Staver F5-7A, F5-8 IERC RUR Staver F5-7D IERC RU Staver F1-8, F2-7 Wakefield 292 Thermalloy 2224							
	DUAL-INLINE-PIN ICS							
20 30 32 34 45 60	Thermalloy — 6007 Thermalloy — 6010 Thermalloy — 6011 Thermalloy — 6012 IERC — LIC Wakefield — 650, 651							

*All values are typical as given by mfgr. or as determined from characteristic curves supplied by manufacturer.

Staver Co., Inc.: 41-51 N. Saxon Ave., Bay Shore, NY 11706 IERC: 135 W. Magnolia Blvd., Burbank, CA 91502 Thermalloy: P.O. Box 34829, 2021 W. Valley View Ln. Dallas, TX Wakefield Engin Ind: Wakefield, MA 01880

2. Custom Heat Sink Design

Custom heatsinks are usually either forced air cooled or convection cooled. The design of forced air cooled heatsinks is usually done empirically, since it is difficult to obtain accurate air flow measurements. On the other hand, convection cooled heatsinks can be designed with fairly predictable characteristics. It must be emphasized, however, that any custom heatsink design should be thoroughly tested in the actual equipment configuration to be certain of its performance. In the following sections, a design procedure for convection cooled heatsinks is given.

Obviously, the basic goal of any heatsink design is to produce a heatsink with an adequately low thermal resistance, θ_{SA} . Therefore, a means of determining θ_{SA} is necessary in the design. Unfortunately, a precise calculation method for θ_{SA} is beyond the scope of this book.* However, a first order approximation can be calculated for a convection cooled heatsink if the following conditions are met:

1. The heatsink is a flat rectangular or circular plate whose thickness is much smaller than its length or width.

2. The heatsink will not be located near other heat radiating surfaces.

- 3. The aspect ratio of a rectangular heatsink (length:width) is not greater than 2:1.
- 4. Unrestricted convective air flow.

For the above conditions, the heatsink thermal resistance can be approximated by:

$$\theta_{\rm SA} \simeq \frac{1}{A\eta \; (\rm Fchc + \epsilon Hr)} \; (^{\circ}C/W) \tag{15-3}$$

where A = area of the heatsink surface

 η = heatsink effectiveness

*If greater precision is desired, or more information on heat flow and heatsinking is sought, consult the references list at the end of this section.

 F_c = convective correction factor

 $h_c = convection heat transfer coefficient$

 $\epsilon = \text{emissivity}$

 H_r = normalized radiation heat transfer coefficient

The convective heat transfer coefficient, h_c , can be found from Figure 15-1. Note that it is a function of the heatsink fin temperature rise, $T_s - T_A$, and the heatsink significant dimension, L. The fin temperature rise, $T_s - T_A$, is given by:

$$\Gamma s - T_A = \theta s_A P_D \tag{15.4}$$

where Ts = heatsink temperature

 T_A = ambient temperature

 θ_{SA} = heatsink-to-ambient thermal resistance

 $P_D = power dissipated$

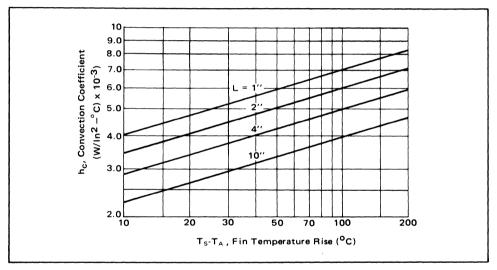


Figure 15-1. Convection Coefficient, hc

The significant heatsink dimension, L, is dependent on the heatsink shape and mounting place and is given in Table 15-3.

The convective correction factor, F_c , is likewise dependent on shape and mounting plane of the heatsink and is also given in Table 15-3.

TABLE 15-3
Significant Dimension L and Correction Factor F_c for Convection Thermal Resistance

	Signific	ant Dimension L	Correction Factor Fc			
Surface	Position	L	Position	Fc		
	vertical	height — (max 2 ft)	Vertical Plane	1.0		
Rectangular Plane	horizontal	length x width length + width	Horizontal Plane both surfaces exposed	1.35		
Circular Plane	vertical	π / 1 x diameter	top only exposed	0.9		

The normalized radiation heat transfer coefficient, H_r , is dependent on the ambient temperature, TA, and the heatsink temperature rise, Ts – TA, given by Equation (15.4). Hr can be determined from Figure 15-2.

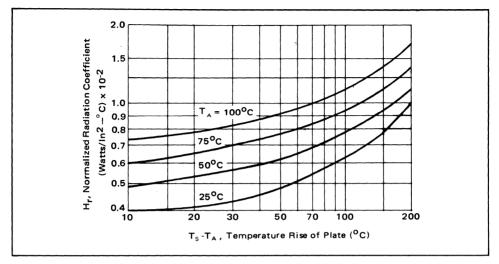


Figure 15-2. Normalized Radiation Coefficient, Hr

The emissivity, ϵ , can be found in Table 15-4 for various heatsink surfaces.

Surface	Emissivity, ϵ						
Aluminum, Anodized	0.7 0.9						
Alodine on Aluminum	0.15						
Aluminum, Polished	0.05						
Copper, Polished	0.07						
Copper, Oxidized	0.70						
Rolled Sheet Steel	0.66						
Air Drying Enamel (any color)	0.85 0.91						
Oil Paints (any color)	0.92 — 0.96						
Varnish	0.89 — 0.93						

 TABLE 15-4.

 Typical Emissivities of Common Surfaces

Finally, the heatsink efficient, η , can be found from the nomograph of Figure 15-3. Use of the nomograph is as follows:

a. Find $hT = Fchc + \epsilon Hr$ from Figures 15-1, 15-2 and Tables 15-3 and 15-4, and locate this point on the nomograph.

b. Draw a line from ht through chosen heatsink fin thickness, x, to find α .

c. Determine D for the heatsink shape as given in Figure 15-4 and draw a line from this point through α , which was found in (b), to determine η .

d. If power dissipating element is not located at heatsink's center of symmetry, multiply η by 0.7 (for vertically mounted plates only).

Note that in order to calculate θ_{SA} from Equation (15.3), it is necessary to know the heatsink size. Therefore, in order to arrive at a suitable heatsink design, a trial size is selected, its θ_{SA} evaluated, and the original size reduced or enlarged as necessary. This process is iterated until the smallest heatsink is obtained that has the required θ_{SA} . The following design example is given to illustrate this procedure:

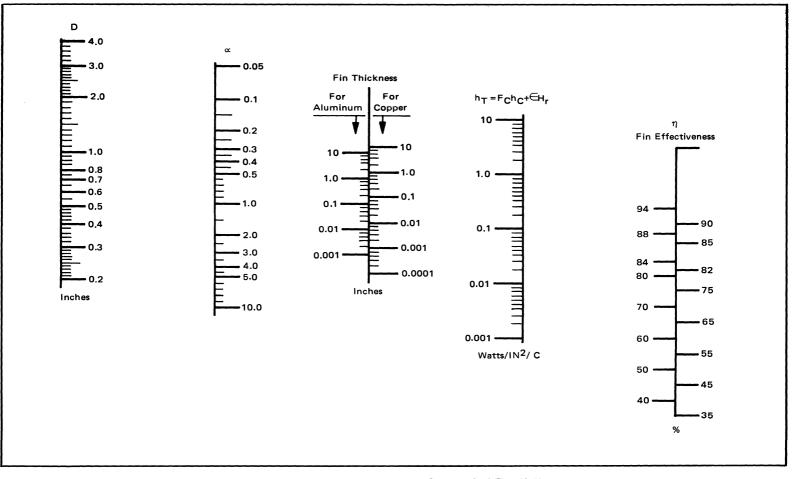


Figure 15-3. Fin Effectiveness Nomogram for Symmetrical Flat, Uniformly Thick Fins

141

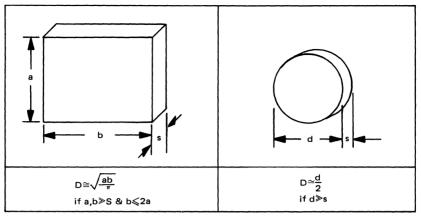


Figure 15-4. Determination of D for Use in η Nomograph of Figure 15-3

Heatsink Design Example

Design a flat rectangular heatsink for use with a horizontally mounted power device on a PC card, given the following:

- 1. Heatsink $\theta_{SA} = 25^{\circ}C/W$
- 2. Power to be dissipated, $P_D = 2W$
- 3. Maximum ambient temperature, $T_A = 50^{\circ}C$
- 4. Heatsink to be constructed from $\frac{1}{6}$ (0.125'') thick anodized aluminum.

a. First, a trial heatsink is chosen: $2'' \times 3''$ (experience will simplify this selection and reduce the number of necessary iterations.)

b. The factors in Equation (15.3) are evaluated by using the Figures and Tables given.

A = 2" x 3" = 6 sq. in. L = 6/5" = 1.2 in. (from Table 15-3) Ts - TA = 50° C (from Equation 15.4) hc = $5.8 \times 10^{-3} \text{ W/in}^2 - ^{\circ}$ C from Figure 15-1) Fc = 0.9 (from Table 15-3) Hr = $6.1 \times 10^{-3} \text{ W/in}^2 - ^{\circ}$ C (from Figure 15-2) $\epsilon = 0.9$ (from Table 15-4) hT = Fchc + Hr $\epsilon = 10.7 \times 10^{-3} \text{ w/in}^2 - ^{\circ}$ C $\alpha = 0.13$ (from Figure 15-3) D = 1.77 (from Figure 15-4) $\eta > 0.94 \approx 1$ (from Figure 15-3) c. Using Equation 15.3, find θ sA

$$\theta_{\rm SA} \simeq \frac{1}{A\eta \; ({\rm Fchc} \; + \; \epsilon {\rm Hr})} = \; 16.66^{\circ} {\rm C/W} < 25^{\circ} {\rm C/W}$$

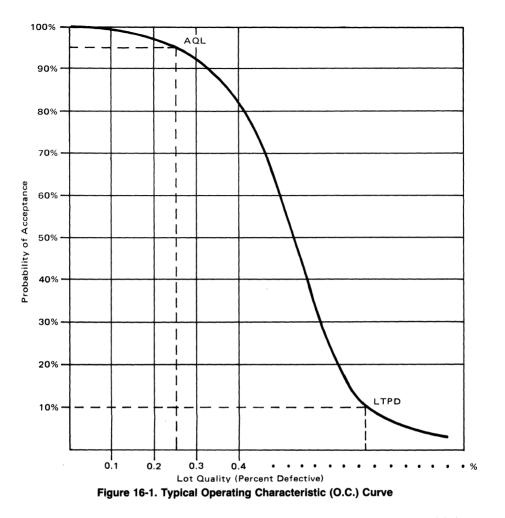
d. Since 2'' x 3'' is too large, try 2'' x 2''. Following the same procedure, θ_{SA} is found to be 25°C/W, which exactly meets the design requirements.

REFERENCES

1. Bill Roehr, "Motorola Silicon Rectifier Handbook," Chapter 10, Motorola Inc., 1973.

2. Werner Luft, "Taking the Heat Off Semiconductor Devices," *Electronics*, June 12, 1959.

3. Frank Kreith, Principles of Heat Transfer, International Textbook Co., 1958.


SECTION 16 REGULATOR RELIABILITY

A. QUALITY CONCEPTS

The quality of a regulator, from a production line, is a measure that expresses the conformance of the device to a set of specifications. Such a measure is the percent rejects out of a collection of devices (lot, population). One hundred percent inspection has to be used to determine the quality of the lot. One characteristic of this approach is that it is expensive, and therefore, is used only where necessary. In addition, it may not be as accurate as it first appears because of operator errors due to fatigue and of course, it cannot be used where the inspection (test) is destructive. An alternative to this is scientific acceptance sampling. Acceptance sampling is a method by which a portion of the total population is examined. On the basis of the sample quality, (number of rejects out of a total sample that fail to conform to specifications) and by using the mathematics of probability and statistics, an estimate of the lot quality is made and the risk of an improper decision is specified. For example, a lot may be rejected because the sample quality was less than that prescribed by the mathematics of sampling and our original goal (maximum percent rejects allowed in a lot). Yet, if the lot was one hundred percent inspected, we may find that the actual percent rejects in the lot was less than the maximum percent rejects established as a goal (Type I improper decision). In a similar way, the reverse may happen: a lot may be accepted on the basis of the sample quality (sample rejects are fewer than those prescribed by the mathematics of sampling and our goal) and yet, if a 100% inspection was performed, the actual percent rejects in the lot could be more than our established goal (Type II improper decision). A sampling plan is specified by the sample size and the maximum allowable defectives (known as the acceptance number (ACCN)).

The risks involved in sampling are described by the operating characteristic (O.C.) curve of the sampling plan. As illustrated by Figure 16-1, this curve shows the probability of acceptance, on the vertical axis, vs the lot quality (percent rejects), on the horizontal axis. Each particular sampling plan will have its own O.C. curve.

Two points on the curve are of interest. The AQL, (acceptable quality level), signifies the quality level that will be accepted most of the time (usually this is set at 95%). In other words, the AQL specifies the risk of making the Type I improper decision, that is why it is often referred to as Producer's Risk. The other point on the curve is the *LTPD* (lot tolerance percent defective) which signifies the level of rejects in a lot that is unsatisfactory and should be rejected by the plan most of the time (usually this is set at 10%). This is also known as Consumer's Risk.

Regulators can be produced to a variety of quality levels by combining different 100% and sample inspections and varying the criteria of acceptance and rejection. Thus, a customer can negotiate his own custom quality level if he wishes; however, this can become quite expensive in terms of time and money. That is why Motorola, in addition to the standard product level, produces regulators to four different levels of quality that are similar to those found in the MIL-M-38510 JAN Program processed in accordance with MIL-STD-883. The Motorola program is called MIL-M-38510 JAN Processed Product; a description of the program is beyond the scope of this section, however, Table 16-1 gives the outgoing quality assurance sampling plan for standard quality level regulators. It is important to discern the effects of the different quality levels. This can be done by noting the typical field removal rates (verified rejects plus removed devices verified good) for different classes of 38510 integrated circuits listed below. 110001 s

Field Removal Rate/1000 hours
0.1%
0.04%
0.004%
0.002%

Outgoing Quality Assurance Sampling Plan for Regulators Standard Product								
Subgroups (Per Mil-Std-883, Method 5005)	LTPD	ACCN	AQL					
A-1: Static Tests, 25°C	2.3	0						
A-2: Static Tests, Max. Temp.	3.8	1						
A-3: Static Tests, Min. Temp.	3.8	1						
A-4: Dynamic Tests, 25°C	2.3	0						
A-5: Dynamic Tests, Max. Temp.	3.8	1						
A-6: Dynamic Tests, Min. Temp.	3.8	1						
A-7: Funct. Test, 25°C	2.3	0	0.11					
A-8: Funct. Test, Min/Max Temps.	2.3	0	0.11					
A-9: Switching Tests, 25°C	2.3	0						
A-21: Key Parameters, 25°C	2.3	0	0.11					

TABLE 16-1

Although the above removal rates are not specifically for regulators, because these products are relatively new with respect to other integrated circuits, nevertheless, it is expected that regulators will have similar removal rates. Burn-in can be used to improve the failure rate of regulators. As a rule of thumb, a 10 to 1 improvement may be realized. This is because regulators are state-of-the-art devices, handling high voltages and currents.

B. RELIABILITY CONCEPTS

Reliability is the probability that a regulator will perform its specified function in a given environment for a specified period of time. The most frequently used reliability measure for regulators is the *failure rate*, expressed in percent per thousand hours. The number of rejects observed, taken over the number of device hours accumulated at the end of the observation period and expressed as a percent, is called the point estimate failure rate. This, however, is a number obtained from observations from a portion of all the regulators; if we are to use this number to estimate the failure rate of all regulators (total population), we need to say something about the risk we are taking by using this estimate. This statement is provided by the confidence level expressed together with the failure rate. For example, a 0.1% per 1000 hours failure rate at 90% confidence level means that 90% of the regulators will have a failure rate below 0.1%/1000 hrs - mathematically, the failure rate at a given confidence level is obtained from the point estimate and the CHI square (X^2) distribution. (The X^2 is a statistical distribution used to relate the observed and expected frequencies of an event). In practice, a reliability calculator rule is used that gives the failure rate at the confidence level desired for the number of rejects and device hours under question.

It is also important to note that, as the number of device hours increases, our confidence in the estimate increases. In integrated circuits, it is preferred to make estimates on the basis of 1,000,000,000 device hours or more. If such large numbers of device hours are not available for a particular device, then the point estimate is obtained from devices that are similar in process, voltage, construction, design, etc., and for which we expect to see the same failure modes in the field. Finally, the *environment* is specified in terms of the *junction temperature* of the regulator by using one of the following two expressions:

(A) $T_J = T_A + \theta_{JA} P_D$

or

(B) $T_J = T_C + \theta_{JC} P_D$

where $T_J =$ Junction Temperature

 T_A = Ambient Temperature

Tc = Case Temperature

 θ_{JA} = Junction to Ambient Thermal Resistance

 $\theta_{\rm JC}$ = Junction to Case Thermal Resistance

 $P_D = Power Dissipation$

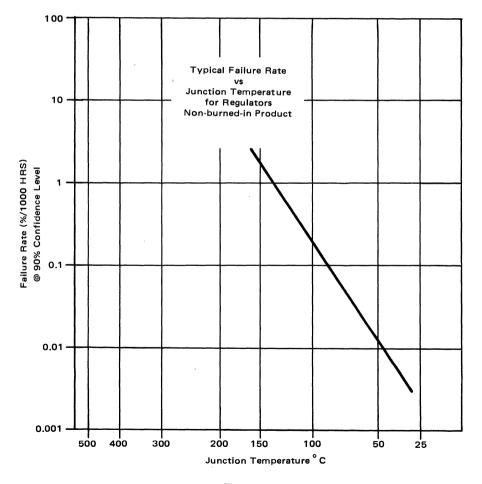


Figure 16-2

One other point worth remembering is that the failure rate for integrated circuits increases as the junction temperature increases while the causes of failure generally remain the same. Thus, we can test devices near their maximum junction temperatures, analyze the failures to assure that they are the types that are accelerated by temperature and then by applying known acceleration factors, estimate the failure rates for lower junction temperatures. Figure 16-2 shows a curve that gives estimates of typical failure rates vs temperature for regulators. To assure that the reliability level does not change over a period of time, Motorola performs a number of periodic audits such as EPIIC. These audit programs, besides monitoring the current reliability level, provide information on what will be required to achieve higher levels of reliability.

Frequently a question is raised about the reliability differences between *plastic vs hermetic regulators*. In general, for all Linear integrated Circuits, including regulators, the field removal rates for plastic and hermetic I/C's are the same for environments where there is no high humidity. In cases where the environment contains high humidity, higher failure rates are to be expected from plastic encapsulated devices. On the other hand, some users have reported favorable results in moderate humidity environments when boards with plastic I/C's (including regulators) are coated with protective materials, provided that the coating is done properly (adhering properly) and no new contaminants are introduced.

SECTION 17 IC REGULATOR SELECTION GUIDES

The selection guides in this section are included as an aid to choosing an appropriate IC regulator. These guides are organized according to regulator type and list all the IC voltage regulators presently offered by Motorola.

A. ADJUSTABLE OUTPUT REGULATORS

When an adjustable output voltage is required, use of the regulators shown in Table 17-1 is recommended. Output voltage is set by adjusting the value of an external resistor or resistors. More complete data on individual devices can be found in the data sheets of Section 18. An explanation of the column headings shown in Table 17-1 follows:

Maximum Output Current (I_{O max})

Maximum output current in which key device parameters are specified.

Device

Motorola part number for the IC regulator.

Suffix

Designator for case type; and, in some products, includes temperature range.

Output Voltage (V_{out})

The range of output voltages that can be obtained with the regulator basic circuit configuration. (Methods for extending output voltage range are shown in Section 3.)

Input Voltage (V_{in})

Range of allowable DC input voltages. These are instantaneous values. Exceeding maximum input voltage could result in regulator damage, while dropping below minimum value will cause loss of regulation.

Input-Output Differential (V_{in}-V_{out})

This is the minimum voltage across the regulator for proper operation.

Maximum Power Dissipation (P_{D max})

Maximum power the device can dissipate in free air at $T_A = 25^{\circ}C$ without a heatsink; and with case temperature held constant at $T_C = 25^{\circ}C$.

Line Regulation (Reg_{line})

The percent change of output voltage for a change in input supply voltage. Given by:

$$\operatorname{Reg_{line}}(\%) = \frac{\Delta V_{out}}{V_{out}} \times \frac{1}{\Delta V_{in}} \times 100$$

where ΔV_{out} = change in V_{out} ΔV_{in} = change in V_{in}

This performance figure applies for the entire output and input voltage range for the regulator. For actual test conditions, consult data sheets in Section 18.

Load Regulation (Reg_{load})

The percent change of output voltage for a change in output current. For actual test conditions, consult data sheets in Section 18.

Typical Temperature Coefficient of Output Voltage (T_C of V_{out})

Percent change in output voltage per degree Celsius rise in junction temperature.

Maximum Operating Junction Temperature (T_{J max})

Maximum junction temperature allowed before damage occurs. For complete thermal information consult data sheets in Section 18. See Section 15 for heat-sinking techniques.

Packages

Case 1: "TO-3" metal can Case 29: "TO-92" plastic package Case 79: "TO-39" metal can Case 80-02: "TO-66" metal can Case 221A: "TO-220" plastic package Case 603: 10-pin "TO-5" metal can Case 614: 9-pin "TO-66" metal can Case 632: 14-pin ceramic dual-in-line package Case 646: 14-pin plastic dual-in-line package Case 751A: 14-pin plastic dual-in-line SOIC package

For detailed outline drawings of these case styles, consult Section 19.

TABLE 17-1

ADJUSTABLE OUTPUT REGULATORS

POSITIVE OUTPUT REGULATORS

lo mA	Device	S U F		out lits		in bits	V _{in} — V _{out} Differ- ential Volts	Wa M	D atts ax	% V _C TA =	lation out @ 25°C YP	TC Vout	Tj = °C					
Max	Туре	I X	Min	Max	Min	Max	Min	TA = 25℃	TC = 25℃	Line	Load	Тур %/°С	Max	Case				
100	LM317L	H,Z	1.2	37	5.0	40	3.0		nally	0.04	0.5	0.006	125	29, 79				
	LM217L							Lim	ited	0.02	0.3	0.004	150					
	LM117L*											0.003						
150	MC1723	СР	2.0	37	9.5	40	3.0	1.25	-	0.1	0.3	0.003	150	646				
		CG						1.0	2.1	0.1		0.003		603C				
		G								0.2		0.002						
		CL						1.5	_	0.1		0.003	175	632				
		L								0.2		0.002						
		CD						1.25		0.1		0.003	150	751A				
250	MC1469	G	2.5	32	9.0	35	3.0	0.68	1.8	0.03	0.13	0.002	150	603				
	MC1569			37	8.5	40	2.7			0.015								
500	LM317M	т	1.2	37	5.0	40	3.0		nally	0.02	0.1	0.0056	125	221A				
	LM317M	R						Lim	Limited		Limited		imited					80
	LM217M											0.004	150					
	LM117M*											0.0036						
600	MC1469	R	2.5	32	9.0	35	3.0	3.0	14.0	0.03	0.05	0.002	150	614				
	MC1569			37	8.5	40	2.7			0.015								
1500	LM317	т	1.2	37	5.0	40	3.0	Inter	nallv	0.07	1.5	0.006	125	221A				
	LM317	н, к						Lim						79, 1				
	LM217											0.004						
	LM117*									0.05	1.0	0.003	150					
3000	LM350	т	1.2	33	5.0	36	3.0	Inter	nally	0.02	0.1	0.008	125	221A				
	LM350	к						Lim	ited					1				
	LM250											0.0057	150					
	LM150*											0.0051						

 $\label{eq:started} \begin{array}{l} {}^{\#}T_J = -40 \ to \ +125^\circ C \\ {}^{*}T_J = -55 \ to \ +150^\circ C \\ {}^{\dagger}Output \ Voltage \ Tolerance \ for \ Worst \ Case \end{array}$

NEGATIVE OUTPUT REGULATORS

		S U F	V _{out} Volts		Vin Volts		Vin — Vout Differ-	Wa	PD Watts Max		lation out @ 25°C yp			
lO mA Max	Device Type	F I X	Min	Max	Min	Max	ential Volts Min	T _A = 25°C	TC = 25°C	Line	Load	TC V _{out} Typ %/°C	Tj= ℃ Max	Case
250	MC1463	G	- 3.8	- 32	9.0	35	3.0	0.68	1.8	0.03	0.05	0.002	150	603
	MC1563		- 3.6	- 33	8.5	40	2.7			0.015	0.13			
600	MC1463	R	- 3.8	- 34	9.0	35	3.0	2.4	9.0	0.03	0.05	0.002	175	614
	MC1563		- 3.6	- 37	8.5	40	2.7	1		0.015				
1500	LM337	т	- 1.2	- 37	5.0	40	3.0	Inter	nally	0.02	0.3	0.3 0.0048	125	221A
	LM337	Н, К						Limited						79, 1
	LM237]										0.0034	150	
	LM137*											0.0031		

 $T_{J} = -55 \text{ to } + 150^{\circ}\text{C}$

B. FIXED OUTPUT REGULATORS

If low cost and easy implementation are prime regulator design considerations, the fixed output, three terminal regulators shown in Table 17-2 are recommended. These are available with output current capabilities from 100 mA to 3.0 A. All have internal overcurrent, safe-operating area, and thermal protection circuitry. Complete device specifications are given in the data sheets of Section 18. An explanation of the column headings shown in Table 17-2 follows:

Output Voltage (Vout)

Nominal output voltage for positive and negative regulators. The adjacent column indicates worst case tolerance (Volts). (Methods for adjusting output voltage are shown in Section 3.)

Maximum Output Current (I_{O max})

Maximum output current available from regulator under normal operating conditions. (Methods for obtaining greater output currents are shown in Section 3.)

Device

Two columns are provided listing Motorola part numbers for positive and negative voltage outputs.

Input Voltage min/max (V_{in})

Range of allowable instantaneous dc input voltage. Exceeding maximum V_{in} could result in regulator damage, while dropping below minimum value will cause loss of regulation.

Line Regulation (Reg_{line})

Change in output voltage for a given change in input voltage. Test specifications are given in the data sheets of Section 18.

Load Regulation (Reg_{load})

Change in output voltage for a given change in output current. Test specifications are given in the data sheets of Section 18.

Typical Temperature Coefficient of Output Voltage $(\Delta V/\Delta T)$

Typical change in output voltage per degree celsius change in junction temperature.

Packages

Case 1: "TO-3" metal can Case 29: "TO-92" plastic package Case 79: "TO-39" metal can Case 221A: "TO-220" plastic package

For detailed outline drawings of these case styles, consult Section 19.

Package Styles	(0 + 2 (0 + 1) (0 + 1)		1 0 0 3		23			
CASE	1 (TO-3)	29 (TO-92)	79 (TO-39)	80 (TO-66)	221A (TO-220)	603 (TO-5	603C Type)	614 (TO-66)
MATERIAL	Metal	Plastic	Metal	Metal	Plastic	Metal	Metal	Metal
SUFFIX	к	P, Z	G, H	R	Т	G	G	R

						18	
CASE	620	632 (TO-116)	646	648	707	726	751A
MATERIAL	Ceramic	Ceramic	Plastic	Plastic	Plastic	Ceramic	Plastic
SUFFIX	J, L	L	Р	N, P	N	J	D

TABLE 17-2

FIXED OUTPUT VOLTAGE REGULATORS

FIXED/VOLTAGE, 3-TERMINAL REGULATORS FOR POSITIVE OR NEGATIVE POLARITY POWER SUPPLIES.

V _{out} Volts	Tol.† Volts	lO mA Max	Device Type Positive Output	Device Type Negative Output	V _{in} Min/Max	Regline mV	Reg _{load} mV	ΔV _O /ΔT mV/°C Typ	Case
2	±0.1	1500	_	MC7902C	5.5/35	40	120	1.0	1, 221A
	± 0.15	100		MC79L03AC	4.7/30	60	72		29, 79
3	±0.3			MC79L03C		80			
5	±0.5	100	MC78L05C	MC79L05C	6.7/30	200	60		29, 79
	±0.25		MC78L05AC	MC79L05AC		150			
		500	MC78M05C		7/35	100	100	1.0	79, 221A
	±0.4	1500	LM109					1.1	1, 79
			LM209	—					
	±0.25		LM309			50		1.0	
	±0.35		MC7805*	—	8:0/35			0.6	1
	±0.25		MC7805B#	_	8/35	100		1.0	1, 221A
			MC7805C	MC7905C	7/35				
	±0.2		MC7805A*	—	7.5/35	10	50	0.6	1
			MC7805AC	MC7905AC		~	100		1, 221A
	±0.25		LM140-5*	_	7/35	50	50		1
			LM340-5	—					
		3000	MC78T05*		7.3/35	10	25	0.1	1
			MC78T05C	—					
	±0.2		MC78T05A*	_					1, 221A
			MC78T05AC	_					1, 221A
	±0.4		LM123*	_	7.5/20	5.0	25		1, 221A
			LM223	_					
	±0.25		LM323						

(continued)

V _{out} Volts	Tol.† Volts	lO mA Max	Device Type Positive Output	Device Type Negative Output	V _{in} Min/Max	Regline mV	Regload mV	ΔV _O /ΔT mV/°C Typ	Case
5.2	±0.26	1500		MC7905.2C	7.2/35	105	105	1.0	1, 221A
6	±0.3	500	MC78M06C	_	8/35	100	120	1.0	79, 221A
	± 0.35	1500	MC7806*	_	9/35	60	100	0.7	1
	±0.3		MC7806B#	_	9/35	120	120		1,221A
			MC7806C	MC7906C	8/35	1			
	±0.24		MC7806A*	-	8.6/35	11	50		1
			MC7806AC	_			100		1, 221A
	±0.3		LM140-6*		8/35	60	60		1
			LM340-6						
		3000	MC78T06*		8.3/35	11	25	0.12	1
			MC78T06C	_					1, 221A
8	±0.8	100	MC78L08C	_	9.7/30	200	80		29, 79
			MC78L08AC			175			
	±0.4	500	MC79M08C	_	10/35 100 160	160	1.0	79, 221A	
		1500	MC7808*	_	11.5/35	80	100		1
			MC7808B#	-	11.5/35	160	160		1, 221A
			MC7808C	MC7908C	10.5/35				
	±0.3		MC7808A*	-	10.6/35	13	50		1
			MC7808AC				100		1, 221A
	±0.4		LM140-8*	_	10.5/35	80	80		1
			LM340-8	_					
		3000	MC78T08*	_	10.4/35	13	25	0.16	1
			MC78T08C	_					1, 221A
12	±1.2	100	MC78L12C	MC79L12C	13.7/35	250	100		29, 79
	±0.6		MC78L12AC	MC79L12AC					
		500	MC78M12C	—	14/35	100	240	1.0	79, 221A
		1500	MC7812*	-	15.5/35	120	120	1.5	1
			MC7812B#			240	240		1, 221A
			MC7812C	MC7912C	14.5/35				-
	±0.5		MC7812A*		14.8/35	18	50		1
			MC7812AC	_			100		1, 221A
	±0.6		LM140-12*		14.5/35	120	120	1.5	1
			LM340-12						
		3000	MC78T12*	-	14.5/35	18	25	0.24	1
			MC78T12C	_					1, 221A
	±0.5		MC78T12A*						1
			MC78T12AC	-					1, 221A
15	± 1.5	100	MC78L15C	MC78L15C	16.7/35	300	150		29, 79
	±0.75		MC78L15AC	MC78L15A					
		500	MC78M15C		17/35	100	300	1.0	79, 221A
		1500	MC7815*		18.5/35	150	150	1.8	1
			MC7815B#			300	300		1, 221A
			MC7815C	MC7915C	17.5/35				
	±0.6		MC7815A*	· _	17.9/35	22	50		1
			MC7815AC				100		1, 221A
	±0.75		LM140-15*		17.5/35	150	150		1
			LM340-15						
		3000	MC78T15*		17.5/40	22	25	0.3	1
			MC78T15C						1, 221A
	±0.6		MC78T15A*						1
			MC78T15AC			1			1, 221A

(continued)

Fixed Output Voltage Regulators (continued)

V _{out} Volts	Tol.† Volts	lO mA Max	Device Type Positive Output	Device Type Negative Output	V _{in} Min/Max	Reg _{line} mV	Reg _{load} mV	∆VO/∆T mV/°C Typ	Case
18	± 1.8	100	MC78L18C	MC79L18C	19.7/35	325	170	-	29, 79
	±0.9		MC78L18AC	MC79L18AC					
		500	MC78M18C	_	20/35	100	360	1.0	79, 221A
		1500	MC7818*	-	22/35	180	180	2.3	1
			MC7818B#	_		360	360		1, 221A
			MC7818C	MC7918C	21/35				
	± 0.7		MC7818A*	-		31	50		1
			MC7818AC				100		1, 221A
	±0.9		LM140-18*	-		180	180		1
			LM340-18						
		3000	MC78T18*	—	20.6/40	31	25	0.36	1
			MC78T18C	_					1, 221A
20	± 1.0	500	MC78M20C	_	22/40	10	400	1.1	79, 221A
24	±2.4	100	MC78L24C	MC79L24C	25.7/40	350	200	-	29, 79
	±1.2		MC78L24AC	MC79L24AC		300			
		500	MC78M24C	—	26/40	100	480	1.2	79, 221A
		1500	MC7824*	_	28/40	240	240	3.0	1
			MC7824B#	_		480	480		1, 221A
			MC7824C	MC7924C	27/40				
	±1.0		MC7824A*	—	27.3/40	36	50		1
			MC7824AC	-			100		1, 221A
	±1.2		LM140-24*	_		240	240		1
			LM340-24	—					
		3000	MC78T24*		26.7/40	36	25	0.48	1
			MC78T24C						1, 221A

 $\#T_J = -40 \text{ to } + 125^{\circ}C$ $*T_J = -55 \text{ to } + 150^{\circ}C$

†Output Voltage Tolerance for Worst Case

C. SPECIALTY REGULATORS AND SWITCHING REGULATOR CONTROL CIRCUITS

In addition to the regulators of Tables 17-1 and 17-2, Motorola offers two specialty regulators: the MC1568/MC1468 \pm 15 V Tracking regulator and the MC1466 Precision Floating regulator. General specifications for these regulators are shown in Table 17-3. More complete data on these devices can be found in the data sheets of Section 18. An explanation of the column headings shown in Table 17-3 follows:

Device

Motorola part number for the IC regulator. (No symbol indicates 0°C to +70°C operating ambient temperature range. * indicates -55°C to +125°C operating ambient temperature range.)

Output Voltage (V₀)

For the tracking regulators, the value of the preset output voltage. (Methods for obtaining adjustable output voltages are shown in Section 3.)

For the floating regulators, the range of output voltages that can be obtained with the regulator.

* Indicates that the maximum obtainable output voltage is dependent only on the characteristics of the external pass element.

Maximum Output Current (I_{O max})

Absolute maximum output current that can be obtained without damaging regulator. (Methods for obtaining increased output current are shown in Section 3.)

* Indicates that the maximum obtainable output current is dependent only on the characteristics of the external pass element.)

Input Voltage (V_{in})

The range of allowable DC input voltage. This is an instantaneous value. Exceeding maximum VIN could result in regulator damage, while dropping below minimum value will cause loss of regulation.

Auxiliary Supply Voltage (V_{aux})

The floating regulators require an additional dedicated voltage source which is floating with respect to the output ground. The values given are the limits for this auxiliary supply voltage.

Line Regulation (Reg_{line})

Percent change in output voltage for a given change in input voltage. Test specifications are given in the data sheets of Section 18.

Load Regulation (Reg_{load})

Percent change in output voltage for a given change in output current. Test specifications are given in the data sheets of Section 18.

Load Current Regulation

Percent change in output current for a given change in load voltage while in the current regulation mode. Test specifications are given in the data sheets of Section 18.

Typical Temperature Coefficient of Output Voltage (TC of Vo)

Typical percent change in output voltage per degree Celsius change in junction temperature.

Maximum Power Dissipation (PDmax)

Maximum power which device can safely dissipate when case temperature is held at $+25^{\circ}$ C; and junction temperature is at its maximum value of $+125^{\circ}$ C. For complete thermal information, consult data sheets in Section 18. For heat sinking information, see Section 15.

Package

Case 603C: 10-pin "TO-5" type metal can

Case 614: 9-pin "TO-66" type can

Case 632: 14-pin ceramic dual-in-line package

For detailed outline drawings of these case styles, consult Section 18.

TABLE 17-3

SPECIALTY REGULATORS

	VOL	TPUT TAGE / _o)	MAX OUTPUT CURRENT		ILIARY TAGE	LINE	LOAD	CURRENT	TYPICAL		
DEVICE	MIN	MAX	ΙοΜΑΧ	MIN	MAX	REGULATION	REGULATION	REGULATION	TC OF Vo	PDMAX	PACKAGE
MC1566L*	0	*	*	20V	35V	.01% + 1mV	.01% + 1mV	.1%+1mA	±.006%/°C	.75W	632
MC1466L	0	*	*	21V	30V	.03%+3mV	.03% + 3mV	.1%+1mA	±.01%/°C	.75W	632

TRACKING REGULATORS

FLOATING REGULATORS

	OUTPUT VOLTAGE (V ₀) MAX OUTPUT CURRENT		INPUT VOLTAGE (V _{in})		LINE REGULATION	LOAD REGULATION	TYPICAL			
DEVICE	MiN	MAX	IoMAX	MIN	MAX	%V ₀	%V ₀	TC of Vo	PDMAX	PACKAGE
MC1568G*	± 14.8V	±15.2V	± 100mA	± 17V	± 30V	.13%	.2%	±.006%/°C	.8W	603C
MC1568L*	± 14.8V	± 15.2V	± 100mA	± 17V	± 30V	.13%	.2%	±.006%/°C	1.0W	632
MC1568R*	± 14.8V	± 15.2V	± 100mA	± 17V	± 30V	.13%	.2%	±.006%/°C	2.4W	614
MC1468G	± 14.5V	± 15.5V	± 100mA	± 17V	± 30V	.13%	.2%	±.013%/°C	.8W	603C
MC1468L	± 14.5V	± 15.5V	±100mA	± 17V	± 30V	.13%	.2%	±.013%/°C	1.0W	632
MC1468R	± 14.5V	± 15.5V	± 100mA	± 17V	± 30V	.13%	.2%	±.013%/°C	2.4W	614

Switching Regulator Control Circuits

Motorola offers a complete line of switching regulator I.C.s to meet the various demands of the market. Table 17-4 lists devices offered along with key parameters. For detailed specifications, refer to Section 18.

An explanation of the column headings shown in Table 17-4 follows:

Maximum Output Current (I_{O max})

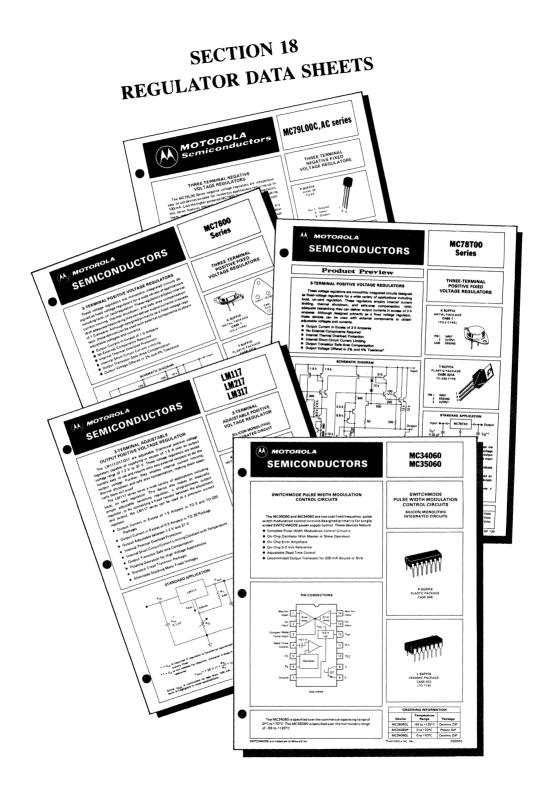
This is the maximum output current capability of the switching control circuit outputs. Most of the devices have dual push-pull outputs, except for the MC34060/ 35060 and $\mu A78S40$ devices which are single ended.

Supply Voltage (V_{CC}) min/max

Minimum applied voltage to V_{CC} in which normal operation occurs. Maximum applied voltage to V_{CC} , beyond which damage to the I.C. can occur. The TL495 has an internal 39 volt zener and therefore can be operated from supplies greater than 40 volts with a series current limiting resistor. For detail specifications, refer to Section 18.

Oscillator Frequency (f_o)

The range in which the oscillator will operate to effectively drive the internal logic and outputs.

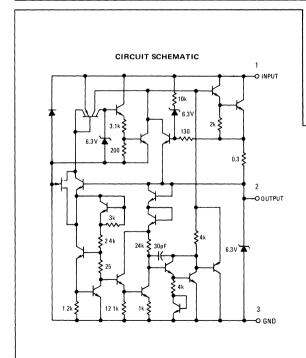

Package

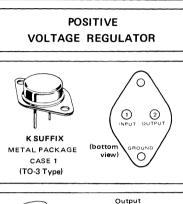
Case 620: 16-pin ceramic dual-in-line package
Case 632: 14-pin ceramic dual-in-line package
Case 646: 14-pin plastic dual-in-line package
Case 648: 16-pin plastic dual-in-line package
Case 701: 18-pin plastic dual-in-line package
Case 726: 18-pin ceramic dual-in-line package

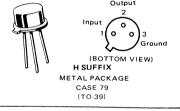
	TABLE 17-4	
SWITCHING	REGULATOR CONTRO	L CIRCUITS

lo m4	IO VCC mA Volts		f, ki	o tz	Device		Тд	
Max	Min	Max	Min	Max	Number	Suffix	۸. ث	Case
40	10	30	2.0	100	MC3420	Р	0 to +70	648
			•			L		620
					MC3520	L	- 55 to + 125	620
250*	7.0	40	1.0	300	MC34060	Р	0 to + 70	646
						L] [632
					MC35060	L	55 to +125	632
250	7.0	40	1.0	300	TL494	CN	0 to +70	648
							1 f	620
						IN	- 25 to +.85	648
						IJ	25 10 + .65	620
						MJ	-55 to +125	620
250		>40	1.0	300	TL495	CN	0 to +70	707
						CJ	1 1	726
						IN	- 25 to + 85	707
						IJ	- 25 to +85	726
					SG3525A	N	0° to +70	648
		-			SG3525A	J	0 to +70	620
± 400	8	40	0.1	400	SG2525A	N	40.4	648
					SG2525A	J	40 to + 85	620
					SG1525A	J	-55 to +125	620
					SG3527A	N	0 to +70	648
					SG3527A	J	0 to + 70	620
±400	8	40	0.1	400	SG2527A	N	10.15	648
					SG2527A	J	40 to + 85	620
					SG1527A	J	-55 to +125	620
		1			SG3526	N	0 to +70	707
					SG3526	J		726
± 200	8	40	0.001	400	SG2526	N	40.10.1.05	707
					SG2526	J	40 to + 85	726
					SG1526	J	-55 to +125	726
					µA78S40	PC	0.45 + 70	648
1500	5	40	1	40	μA78S40	DC	0 to +70	
					μA78S40	DM	- 55 to + 125	620

*Single output device **Internal 39 V zener for <40 volt operation

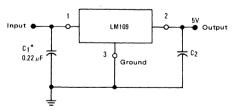



MONOLITHIC POSITIVE THREE - TERMINAL FIXED VOLTAGE REGULATOR


A versatile positive fixed +5.0-volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged.

In most applications only one external component, a capacitor, is required in conjunction with the LM109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator.

- High Maximum Output Current Over 1.0 Ampere in TO-3 type Package Over 200 mA in TO-39 type Package.
- Minimum External Components Required
- Internal Short-Circuit Protection
- Internal Thermal Overload Protection
- Excellent Line and Load Transient Rejection
- Designed for Use with Popular MDTL and MTTL Logic



ORDERING INFORMATION								
Device Temperature Range Package								
LM109H	$T_{J} = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can						
LM109K	$T_{J} = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Power						
LM209H	$T_{J} = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can						
LM209K	$T_{J} = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Power						
LM309H	$T_{J} = 0^{O}C \text{ to } + 125^{O}C$	Metal Can						
LM309K	$T_{J} = 0^{O}C \text{ to } + 125^{O}C$	Metal Power						

TYPICAL APPLICATION

FIXED 5.0 V REGULATOR

Required if regulator is located an appreciable distance from power supply filter. Although no output capacitor is needed for stability, it does improve transient response.

LM109, LM209, LM309

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	Vin	35	Vdc
Power Dissipation	PD	Internally Limited	
Junction Temperature Range	Tj		oC
LM109		-55 to +150	
LM209		-55 to +150	1
LM309		0 to +125	
Storage Temperature Range	T _{stg}	-65 to +150	٥C
Lead Temperature	TS	300	oC
(soldering, t = 60 s)			

ELECTRICAL CHARACTERISTICS

	1		LM109/LM	209 ①	LM309 ②			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	vo	4.7	5.05	5.3	4.8	5.05	5.2	Vdc
Input Regulation (T _J = +25 ^O C)	Regin	-	40	50		4.0	50	mV
$7.0 \leq V_{in} \leq 25.V$								
Load Regulation (Tj = +25°C)	Regload							mV
Case 11-01 (type TO-3) 5 0 mA $\leq 1_0 \leq 15A$		-	50	100	-	50	100	
Case 79-02 (TO-39) 5 0 mA \leqslant 1 $_{ m O}$ \leqslant 0 5A		-	20	50		20	50	
Output Voltage Range	Vo	46	-	5.4	4 75		5.25	Vdc
70 V \leq V ₁ \leq 25 V						1		
$50 \text{ mA} \leq I_{O} \leq I_{max}$, $P \leq P_{max}$								
Quiescent Current (7 0 V \leq V _{in} \leq 25 V)	IВ		5.2	10		52	10	mAdc
Quiescent Current Change (7 0 V \leq V _{in} \leq 25 V)	ΔIB		-	05		-	0.5	
5.0 mA ≤ 1 ₀ ≤ 1 _{max}	1	-	-	08	-	-	0.8	
Output Noise Voltage (T _A = +25 ^o C)	VN	-	40	-	-	40		μV
10 Hz ≤f ≤ 100 kHz								
Long Term Stability	S	-	-	10	-	-	20	mV
Thermal Resistance, Junction to Case ③	θJC							°C/W
Case 1 (type TO-3)	1	-	3.0	-		3.0	-	
Case 79-02 (TO-39)		-	15		- 1	15		

NOTES

 $\begin{array}{l} \fbox{12} \hline \textbf{U} \text{ less otherwise specified, these specifications apply for -55°C \leqslant T_J \leqslant +150°} (-25°C \leqslant T_J \leqslant +150°C \text{ for the } LM209) \\ \hline \textbf{LM209} \quad \textbf{For Case 79 02} \\ \hline \textbf{(TO:39) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.1 \text{ A}, \text{ I}_{\text{max}} \approx 0.2 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{For Case 1} \quad \textbf{(type TO-3) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.5 \text{ A}, \text{ I}_{\text{max}} \approx 1.0 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{For Case 1} \quad \textbf{(type TO-3) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.5 \text{ A}, \text{ I}_{\text{max}} \approx 1.0 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{For Case 1} \quad \textbf{(type TO-3) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.5 \text{ A}, \text{ I}_{\text{max}} \approx 1.0 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{For Case 1} \quad \textbf{(type TO-3) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.5 \text{ A}, \text{ I}_{\text{max}} \approx 1.0 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{For Case 1} \quad \textbf{(type TO-3) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.5 \text{ A}, \text{ I}_{\text{max}} \approx 1.0 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{For Case 1} \quad \textbf{(type TO-3) } V_{\text{in}} \approx 10 \text{ V}, \text{ I}_{\text{O}} \approx 0.5 \text{ A}, \text{ I}_{\text{max}} \approx 1.0 \text{ A} \text{ and } \text{ P}_{\text{max}} \approx 2.0 \text{ W} \\ \hline \textbf{(total a)} \quad \textbf$

(3) Without a heat sink, the thermal resistance of the Case 79 02 (T0-39) package is about 150°C/W, while that of the Case 1 (type TO 3) package is approximately 35°C/W. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the heat sink.

TYPICAL CHARACTERISTICS

 $(V_{in} = 10 \text{ V}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

FIGURE 1 – MAXIMUM AVERAGE POWER DISSIPATION (LM109K, LM209K)

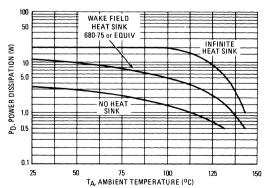
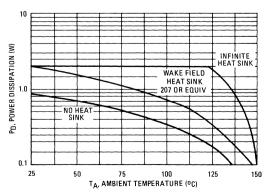
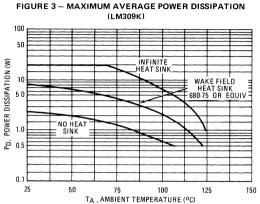




FIGURE 2 - MAXIMUM AVERAGE POWER DISSIPATION (LM109H, LM209H)

LM109, LM209, LM309

TYPICAL CHARACTERISTICS (continued)

 $(V_{in} = 10 \text{ V}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

FIGURE 4 - MAXIMUM AVERAGE POWER DISSIPATION (LM309H) 10 WAKE FIELD HEAT SINK 680-75 OR EQUIV PD, POWER DISSIPATION (W) INFINITE HEAT SINK 1.0 NO HEAT 0.1 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (°C)

FIGURE 5 - OUTPUT IMPEDANCE versus FREQUENCY

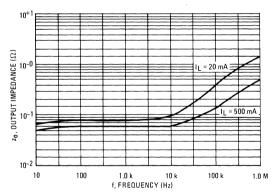


FIGURE 7 - PEAK OUTPUT CURRENT (H PACKAGE)

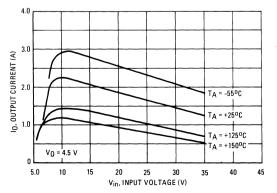


FIGURE 6 - PEAK OUTPUT CURRENT (K PACKAGE)

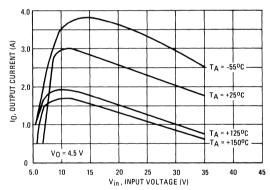
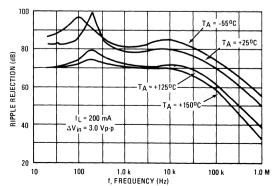
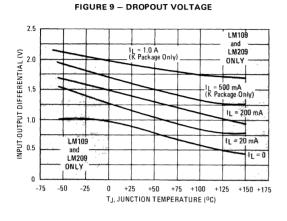




FIGURE 8 - RIPPLE REJECTION

TYPICAL CHARACTERISTICS (continued)

FIGURE 10 – DROPOUT CHARACTERISTIC (K PACKAGE)

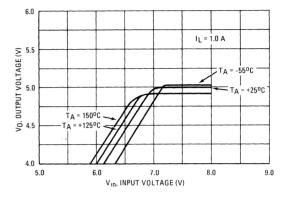


FIGURE 11 - OUTPUT VOLTAGE

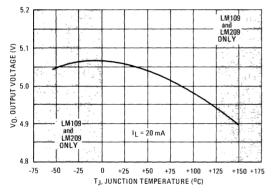


FIGURE 13 - QUIESCENT CURRENT

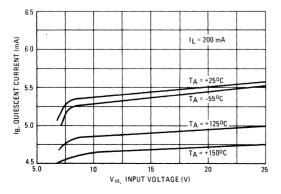


FIGURE 12 - OUTPUT NOISE VOLTAGE

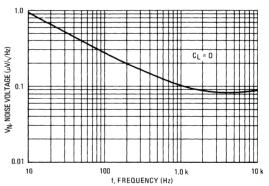
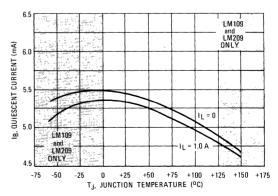



FIGURE 14 - QUIESCENT CURRENT

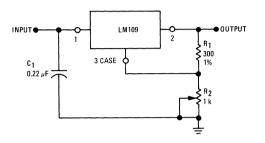
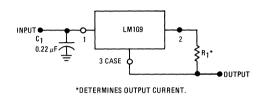



FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR

TYPICAL APPLICATIONS

FIGURE 16 - CURRENT REGULATOR

FIGURE 17 – 5.0-VOLT, 3.0-AMPERE REGULATOR (with plastic boost transistor)

FIGURE 18 – 5.0 VOLT, 4.0-AMPERE TRANSISTOR (with plastic Darlington boost transistor)

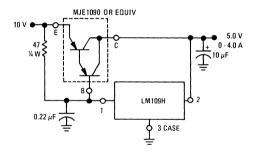
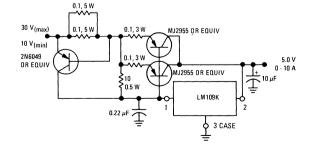



FIGURE 20 – 5.0-VOLT, 10-AMPERE REGULATOR (with Short-Circuit Current Limiting for Safe-Area Protection of pass transistors)

$10 V \longrightarrow 5W MJE370 OR EQUIV$ $10 V \longrightarrow 10 V \longrightarrow 10 V O OR EQUIV$

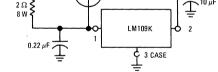
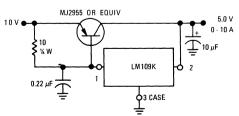
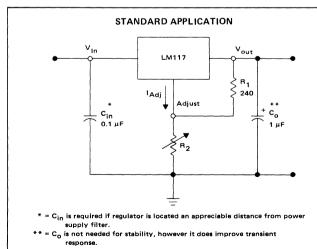
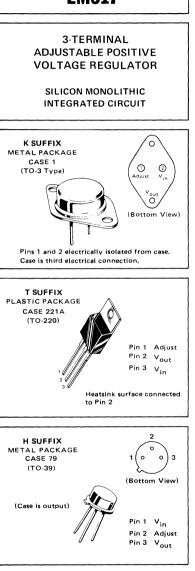



FIGURE 19 - 5.0-VOLT, 10-AMPERE REGULATOR


LM117 LM217 LM317

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM117/217/317 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.


The LM117 series serve a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117 series can be used as a precision current regulator.

- Output Current in Excess of 1.5 Ampere in TO-3 and TO-220 Packages
- Output Current in Excess of 0.5 Ampere in TO-39 Package
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

$$V_{out} = 1.25 \vee (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since I_{Adj} is controlled to less than 100 $\mu A,$ the error associated with this term is negligible in most applications

ORDERING INFORMATION

Device	Temperature Range	Package
LM117H	T _J = -55 ^o C to +150 ^o C	Metal Can
LM117K	$T_{J} = -55^{\circ}C \text{ to } +150^{\circ}C$	Metal Power
LM217H	$T_{J} = -25^{\circ}C \text{ to } +150^{\circ}C$	Metal Can
LM217K	$T_{J} = -25^{\circ}C \text{ to } +150^{\circ}C$	Metal Power
LM317H	$T_{J} = 0^{O}C$ to $+125^{O}C$	Metal Can
LM317K	T _J = 0 ^o C to +125 ^o C	Metal Power
LM317T	$T_{J} = 0^{0}C$ to $+125^{0}C$	Plastic Power

LM117, LM217, LM317

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input-Output Voltage Differential	VI-VO	40	Vdc
Power Dissipation	PD	Internally Limited	
Operating Junction Temperature Range LM117 LM217 LM317	Тյ	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_I - V_O = 5 V$; $I_O = 0.5 A$ for K and T package; $I_O = 0.1 A$ for H package; $T_J = T_{low}$ to T_{high} [see Note 1]; I_{max} and P_{max} per Note 2; unless otherwise specified.)

			LM117/217			LM317			
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3)	1	Regline							%/V
T _A = 25 ^o C, 3 V ≤ V _I − V _O ≤ 40 V			-	0.01	0.02	-	0.01	0.04	
Load Regulation (Note 3)	2	Regload							
$T_A = 25^{o}C$, 10 mA $\leq I_O \leq I_{max}$									
V _O ≤ 5 V			-	5	15	-	5	25	mV
V ₀ ≥ 5 V			-	0.1	0.3	-	0.1	0.5	%Vo
Adjustment Pin Current	3	l Adj	-	50	100	-	50	100	μA
Adjustment Pin Current Change	1, 2	∆lAdj							μA
$2.5 V \leq V_1 - V_0 \leq 40 V$									
$10 \text{ mA} \leq I_{L} \leq I_{max}, P_{D} \leq P_{max}$			-	0.2	5		0.2	5	
Reference Voltage (Note 4)	3	V _{ref}							V
$3 V \leq V_{I} - V_{O} \leq 40 V$									
$10 \text{ mA} \leq I_0 \leq I_{\text{max}}, P_D \leq P_{\text{max}}$			1.20	1.25	1.30	1.20	1.25	1.30	
Line Regulation (Note 3)	1	Reglinę							%/V
$3 \vee \leq \vee_{I} - \vee_{O} \leq 40 \vee$			-	0.02	0.05		0.02	0.07	
Load Regulation (Note 3)	2	Regload							
10 mA ≤ I _O ≤ I _{max}									
$V_0 \leq 5 V$			-	20	50	-	20	70	mV
V ₀ ≥ 5 V			-	0.3	1	-	0.3	1.5	%Vo
Temperature Stability (T _{low} ≤ T _J ≤ T _{high})	3	TS	-	0.7	-	-	0.7	-	%Vo
Minimum Load Current to	3	Lmin							mA
Maintain Regulation ($V_1 - V_0 = 40 V$)			-	3.5	5	-	3.5	10	
Maximum Output Current	3	I _{max}				1			A
$V_{I} - V_{O} \le 15 V, P_{D} \le P_{max}$									1
K and T Packages			1.5	2.2	-	1.5	2.2	-	1
H Package VI — VO = 40 V, PD ≤ Pmax, T∆ = 25 ⁰ C			0.5	0.8	-	0.5	0.8	-	
V V 40 V, F ≤ F _{max} , T - 25°C K and T Packages			0.25	0.4	_	0.15	0.4		
H Package			0.20	0.4	_	0.15	0.4	_	
RMS Noise, % of VO	<u>+</u>	N					- 0.07		%v₀
$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq$ 10 KHz	-		_	0.003	_	- 1	0.003	_	1 10
Ripple Rejection, $V_{\Omega} = 10 V$, f = 120 Hz (Note 5)	4	RR							dB
Without CADJ		1	_	65	_	-	65	-	
$C_{ADJ} = 10 \mu\text{F}$			66	80	-	66	80	-	
Long Term Stability, TJ = Thigh (Note 6)	3	s		1					%/1.0k H
$T_A = 25^{\circ}C$ for Endpoint Measurements	-	-	_	0.3	1	- 1	0.3	1	
Thermal Resistance Junction to Case	- 1	R _{θJC}		1				1	°C/W
H Package (TO-39)		000	-	12	15	- 1	12	15	
K Package (TO-3)			- 1	2.3	3	-	2.3	3	
T Package (TO-220)		1	-	-	-	- 1	5	-	

NOTES: (1) T_{IOW} = ~55^oC for LM117 = ~25^oC for LM217 = 0^oC for LM217

(2) Imax = 1.5 A for K (TO-3) and T (TO-220) Packages

= 0.5 A for H (TO-39) Package Pmax = 20 W for K (TO-3) and T (TO-220) Packages

= 2 W for H (TO-39) Package

(3) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating

effects must be taken into account separately. Pulse testing with low duty cycle is used.

- (4) Selected devices with tightened tolerance reference voltage available.
- (5) C_{ADJ}, when used, is connected between the adjustment pin and ground.
- (6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

LM117, LM217, LM317

SCHEMATIC DIAGRAM

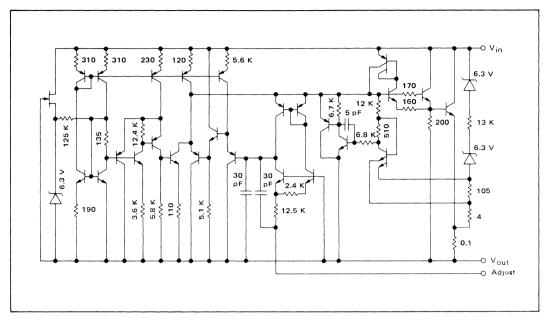
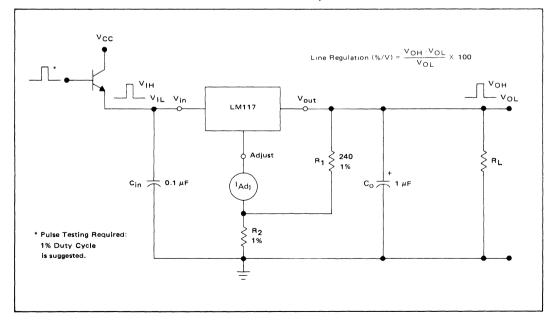
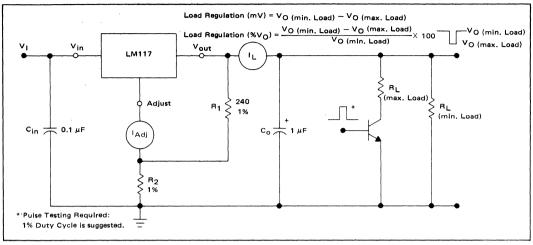
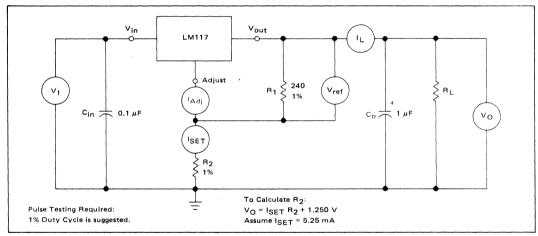




FIGURE 1 – LINE REGULATION AND $\triangle I_{Adj}/LINE$ TEST CIRCUIT



LM117, LM217, LM317

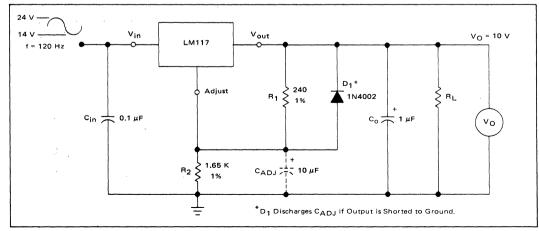
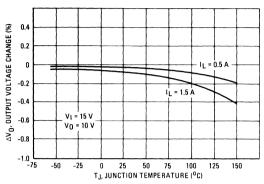
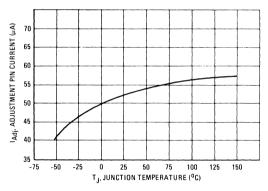
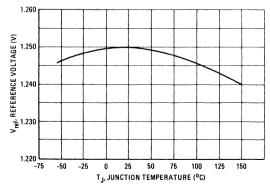


FIGURE 2 - LOAD REGULATION AND ΔIAdj/LOAD TEST CIRCUIT

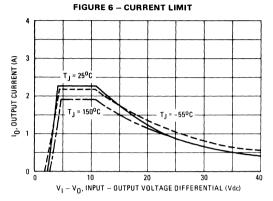
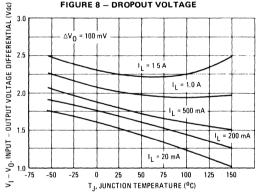
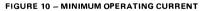

FIGURE 5 - LOAD REGULATION

FIGURE 7 - ADJUSTMENT PIN CURRENT





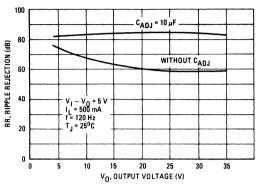


FIGURE 11 - RIPPLE REJECTION VS OUTPUT VOLTAGE

FIGURE 13 - RIPPLE REJECTION VS. FREQUENCY

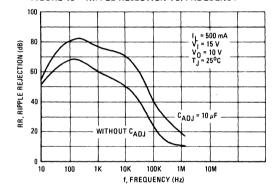


FIGURE 15 - LINE TRANSIENT RESPONSE

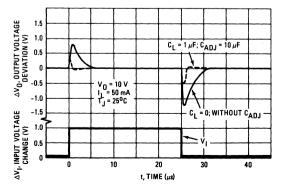


FIGURE 12 - RIPPLE REJECTION VS. OUTPUT CURRENT

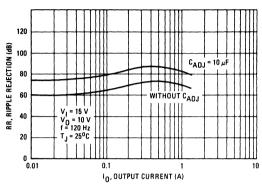


FIGURE 14 - OUTPUT IMPEDANCE

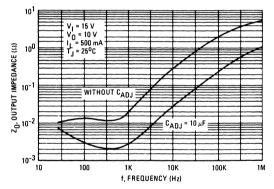
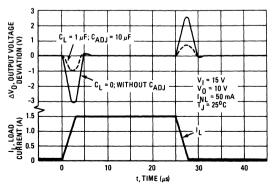
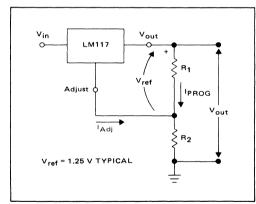



FIGURE 16 - LOAD TRANSIENT RESPONSE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION


The LM117 is a 3-terminal floating regulator. In operation, the LM117 develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{Adj} R2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM117 was designed to control I_{Adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM117 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

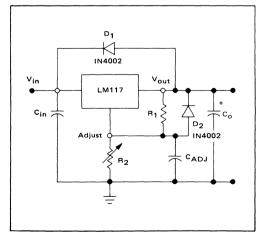
LOAD REGULATION

The LM117 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μ F disc or 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{ADJ}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application.


Although the LM117 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C₀) in the form of a 1 μ F tantalum or 25 μ F aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

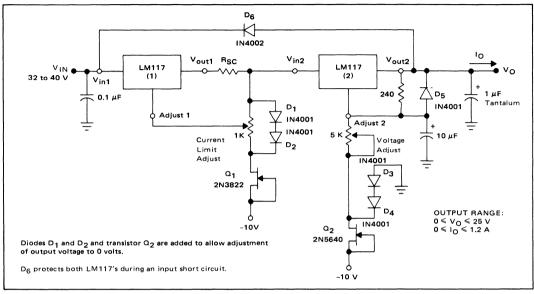

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM117 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0 > 25 \ \mu$ F, $C_{ADJ} > 10 \ \mu$ F). Diode D₁ prevents C₀ from discharging thru the I.C. during an input short circuit. Diode D₂ protects against capacitor C_{ADJ} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{ADJ} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

LM117, LM217, LM317

FIGURE 19 – "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE

FIGURE 20 - ADJUSTABLE CURRENT LIMITER

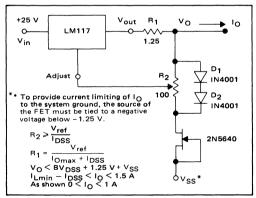


FIGURE 22 - SLOW TURN-ON REGULATOR

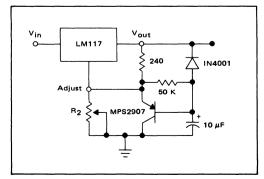
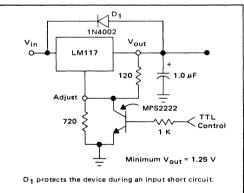
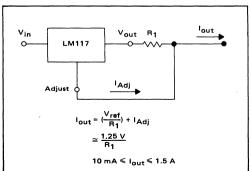




FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR

FIGURE 23 - CURRENT REGULATOR

LM117L LM217L LM317L

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM117L/217L/317L are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM117L series serves a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117L series can be used as a precision current regulator.

STANDARD APPLICATION

LM117L

Adjust

R.

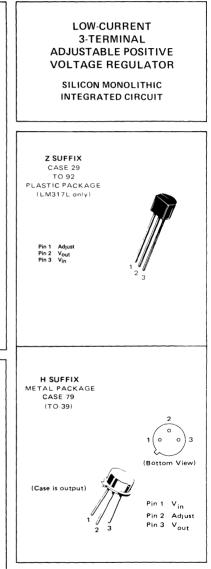
1_{Adj}

Vout

240

c,

1 µF


- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages

Vin

c_{in}

0.1 μF

Eliminates Stocking Many Fixed Voltages

ORDERING INFORMATION

Device	Temperature Range	Package
LM117LH	$T_{J} = -55^{\circ}C \text{ to } +150^{\circ}C$	Metal Can
LM217LH	$T_{J} = -25^{\circ}C \text{ to } +150^{\circ}C$	Metal Can
LM317LH	$T_{J} = 0^{O}C \text{ to } + 125^{O}C$	Metal Can
LM317LZ	$T_{J} = 0^{0}C \text{ to } + 125^{0}C$	Plastic

= Cin is required if regulator is located an appreciable distance from power supply filter. = Co is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 V (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since I_{Adj} is controlled to less than 100 $\mu A,$ the error associated with this term is negligible in most applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Input-Output Voltage Differential		VI-VO	40	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM117L LM217L LM317L	Tj	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

(VI - VO = 5 V, IO = 40 mA; TJ = Tlow to Thigh [see Note 1]; Imax and Pmax per Note 2; unless otherwise specified.)

				1117L/21	17L	LM317L			
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) T _A = 25°C, 3 V \leq V _I -V _O \leq 40 V	1	Regline	_	0.01	0 02	_	0.01	0.04	%/V
$ \begin{array}{l} \mbox{Load Regulation (Note 3), } T_A = 25^\circ \mbox{C} \\ 5 \mbox{ mA} \leqslant I_Q \leqslant I_{max} - \mbox{LM117L}/217 \mbox{L} \\ 10 \mbox{ mA} \leqslant I_Q \leqslant I_{max} - \mbox{LM317L} \\ V_Q \leqslant 5 \mbox{V} \end{array} $	2	Regload		5	15	_	5	25	mV
$V_{O} \ge 5 V$				0.1	0.3		01	0.5	% V0
Adjustment Pin Current	3	l _{Adj}		50	100		50	100	μA
$\begin{array}{l} \mbox{Adjustment Pin Current Change} \\ 2.5 \ \mbox{V} \leqslant \ \mbox{V}_{l} \mbox{-V}_{D} \leqslant \ \mbox{P}_{max} \\ 5 \ \mbox{mA} \leqslant \ \mbox{I}_{O} \leqslant \ \mbox{I}_{max} - \mbox{LM117L}/217L \\ 10 \ \mbox{mA} \leqslant \ \mbox{I}_{O} \leqslant \ \mbox{I}_{max} - \mbox{LM317L} \end{array}$	1,2	∆lAdj		0.2	5	_	0 2	5	μΑ
$\begin{array}{l} \mbox{Reference Voltage (Note 4)} \\ 3 \ V \leqslant \ V_I \mbox{-} V_O \leqslant 40 \ V, \ P_D \leqslant \mbox{P}_{max} \\ 5 \ mA \leqslant \ I_O \leqslant \ I_{max} - \ LM117L/217L \\ 10 \ mA \leqslant \ I_O \leqslant \ I_{max} - \ LM317L \end{array}$	3	V _{ref}	1.20	1.25	1.30	1 20	1 25	1 30	V
Line Regulation (Note 3) 3 V \leqslant VI-VO \leqslant 40 V	1	Regline		0.02	0.05		0 02	0 07	%/V
$ Load Regulation (Note 3) \\ 5 mA \leqslant I_{O} \leqslant I_{max} - LM117L/217L \\ 10 mA \leqslant I_{O} \leqslant I_{max} - LM317L \\ V_{O} \leqslant 5 \lor V \\ V_{O} \geqslant 5 \lor V $	2	Reg _{load}		20 0.3	50 1		20 0 3	70 1 5	mV %V∩
Temperature Stability ($T_{low} \leq T_J \leq T_{high}$)	3	TS		0.7			0.7		%V0
Minimum Load Current to Maintain Regulation (V_I - V_O = 40 V)	3	ILmin		3.5	5		3.5	10	mA
$\begin{array}{l} \mbox{Maximum Output Current} \\ V_I \mbox{-}V_O \leqslant 20 \ V, \ P_D \leqslant P_{max} \ H \ Package \\ V_I \mbox{-}V_O \leqslant 6.25 \ V, \ P_D \leqslant P_{max}. \ Z \ Package \\ V_I \mbox{-}V_O = 40 \ V, \ P_D \leqslant P_{max}. \ T_A = 25^\circ \ C \\ H \ Package \end{array}$	3	I _{max}	100 100	200 200 50		100 1005	200 200 50		A
Z Package			—	20			20		
RMS Noise, % of V_O T_A = 25°C, 10 Hz \leqslant f \leqslant 10 kHz		N	_	0 003		_	0.003		%VO
Ripple Rejection (Note 5) V _O = 1.25 V, f = 120 Hz C _{ADJ} = 10 μF V _O = 10.0 V	4	RR	66 —	80 80		60 —	80 80	_	dB
Long Term Stability, $T_J = T_{high}$ (Note 6) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S		0.3	1	-	0.3	1	%/1.0 k Hrs.
Thermal Resistance Junction to Case H Package (TO-39) Z Package (TO-92)	-	R _{θJC}		40 —	_	_	40 160	_	°C/W

NOTES:

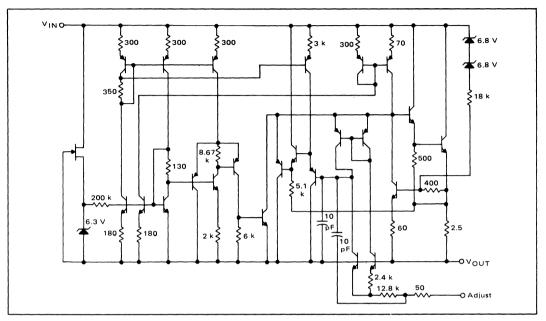
(1) $T_{low} = -55^{\circ}C$ for LM117L -25°C for LM217L

0°C for LM317L

= +150°C for LM217L

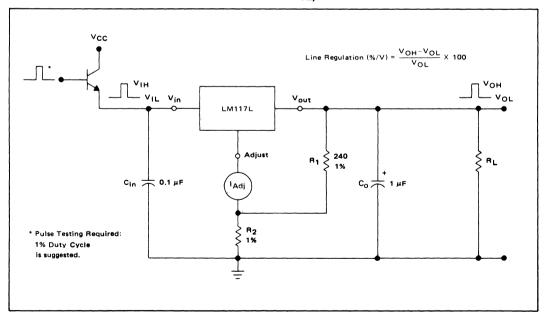
Thigh = +150°C for LM117L

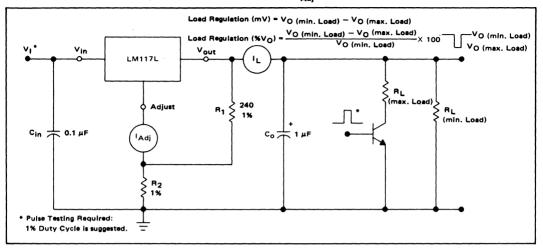
(2) I_{max} = 100 mA


P_{max} = 2 W for H (TO-39) Package = 625 mW for Z (TO-92) Package

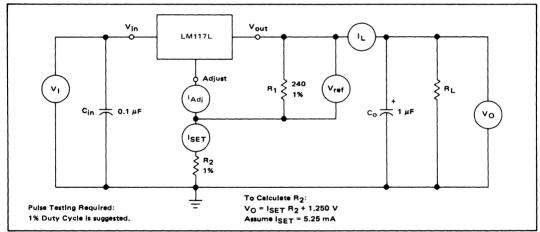
= +125°C for LM317L

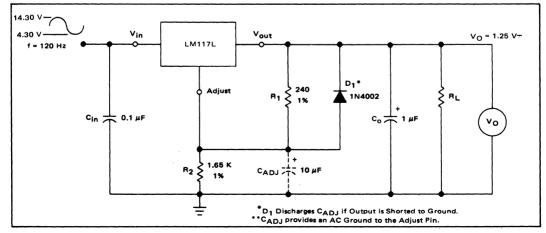
(3) Load and line regulation are specified at constant junction temperature Changes in $V_{\mbox{O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

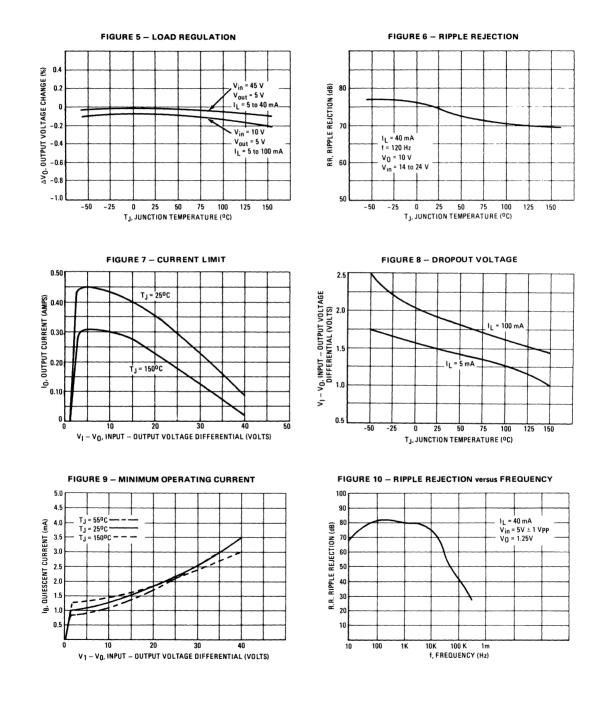

(4) Selected devices with tightened tolerance reference voltage available (5) CADJ, when used, is connected between the adjustment pin and ground.


(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

SCHEMATIC DIAGRAM


FIGURE 1 – LINE REGULATION AND ${\bigtriangleup I}_{Adj}/LINE$ TEST CIRCUIT




FIGURE 2 - LOAD REGULATION AND AIAdj/LOAD TEST CIRCUIT

. . .

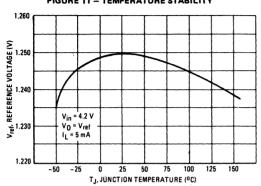


FIGURE 11 - TEMPERATURE STABILITY

FIGURE 13 - LINE REGULATION

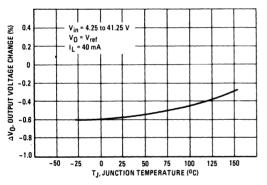
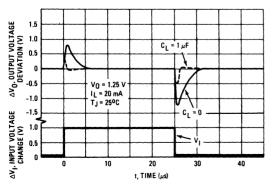



FIGURE 15 - LINE TRANSIENT RESPONSE

FIGURE 12 – ADJUSTMENT PIN CURRENT

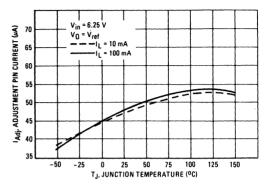
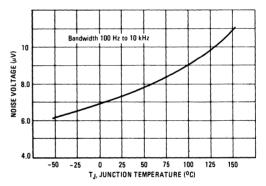
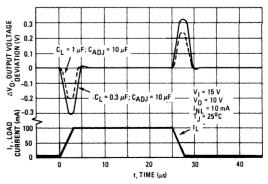
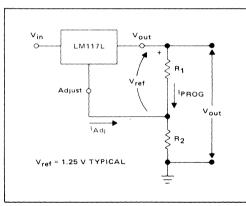




FIGURE 14 - OUTPUT NOISE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION


The LM117L is a 3-terminal floating regulator. In operation, the LM117L develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see Figure 13), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{Adj} R2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM117L was designed to control I_{Adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM117L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

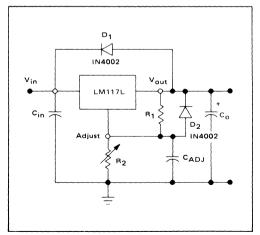
LOAD REGULATION

The LM117L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μ F disc or 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{ADJ}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application.

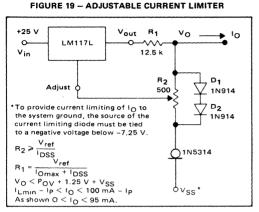
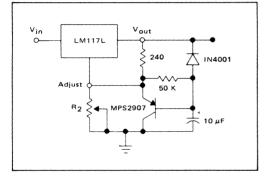
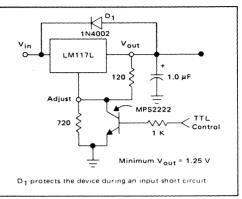

Although the LM117L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C₀) in the form of a 1 μ F tantalum or 25 μ F aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM117L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0 > 10 \ \mu$ F, $C_{ADJ} > 5 \ \mu$ F). Diode D₁ prevents C₀ from discharging thru the I.C. during an input short circuit. Diode D₂ protects against capacitor C_{ADJ} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{ADJ} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

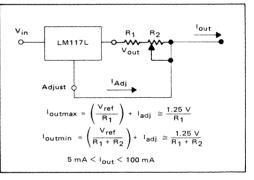

FIGURE 21 - SLOW TURN-ON REGULATOR

FIGURE 20 - 5 V ELECTRONIC SHUTDOWN REGULATOR

LM117M LM217M LM317M

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM117M/217M/317M are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 500 mA over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM117M series serve a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117M series can be used as a precision current regulator.

STANDARD APPLICATION

LM117M

Adjust

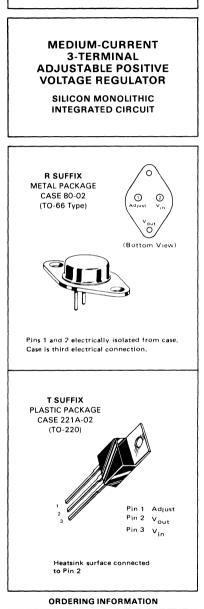
I_{Ad)}

Vout

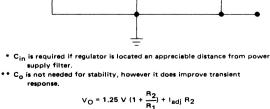
R₁ 240

c°

- Output Current in Excess of 500 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages


V_{in}

Cin


term is negligible in most applications

0.1 #

• Eliminates Stocking Many Fixed Voltages

ORDERING INFORMATION					
Device	Temperature Range	Package			
LM117MR	T _J = -55°C to +150°C	Metal Power			
LM217MR	T _J = -25°C to +150°C	Metal Power			
LM317MR	T _J = 0°C to +125°C	Metal Power			
LM317MT	Tj = 0°C to +125°C	Plastic Power			

Since I_{adi} is controlled to less than 100 μ A, the error associated with this

LM117M, LM217M, LM317M

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Input-Output Voltage Differential		VI-VO	40	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM117M LM217M LM317M	Τj	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

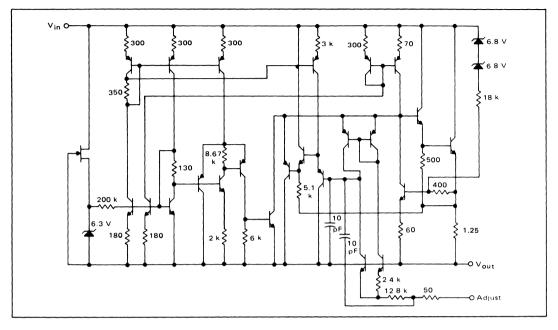
 $(V_I - V_O = 5 V, I_O = 0.1 A, T_J = T_{low}$ to Thigh [see Note 1], P_{max} per Note 2, unless otherwise specified)

	1		LM	117M/21	7M		LM317M		<u> </u>
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) T _A = 25°C, 3 V \leq V _I -V _O \leq 40 V	1	Regline	_	0.01	0.02	_	0.01	0.04	%/V
$ \begin{array}{l} \mbox{Load Regulation (Note 3),} \\ T_A = 25^\circ C, \mbox{10 mA} \leqslant I_O \leqslant 0.5 \mbox{ A} \\ V_O \leqslant 5 \mbox{ V} \\ V_O \geqslant 5 \mbox{ V} \\ \end{array} $	2	Reg _{load}		5 0 1	15 0.3		5 0.1	25 0.5	mV % VO
Adjustment Pin Current	3	ladj	—	50	100	-	50	100	μA
Adjustment Pin Current Change 2.5 V \leqslant VI-VO \leqslant 40 V, 10 mA \leqslant IL \leqslant 0.5 A, PD \leqslant Pmax	1,2	∆ ^I adj		0.2	5		0.2	5	μΑ
$ \begin{array}{l} \mbox{Reference Voltage (Note 4)} \\ \mbox{3 } V \leqslant V_I {-} V_O \leqslant 40 \ V \\ \mbox{10 } \mbox{mA} \leqslant I_O \leqslant 0.5 \ \mbox{A}, \ \mbox{P}_D \leqslant \ \mbox{P}_{max} \end{array} $	3	V _{ref}	1.20	1.25	1.30	1.20	1 25	1.30	V
Line Regulation (Note 3) 3 V \leqslant VI-VO \leqslant 40 V	1	Regline	_	0.02	0.05		0.02	0.07	%/V
Load Regulation (Note 3) 10 mA $\leq I_O \leq 0.5 A$ $V_O \leq 5 V$ $V_O \geq 5 V$	2	Reg _{load}		20 0.3	50 1	-	20 0.3	70 1.5	mV %V⊖
Temperature Stability ($T_{Iow} \leq T_J \leq T_{high}$)	3	TS		0.7	-	-	0.7	-	%Vo
Minimum Load Current to Maintain Regulation (VJ-VO = 40 V)	3	lLmin	_	3.5	5	·	3.5	10	mA
$ \begin{array}{l} Maximum \ Output \ Current \\ V_I {-} V_O \leqslant 15 \ V, \ P_D \leqslant P_{max} \\ V_I {-} V_O = 40 \ V, \ P_D \leqslant P_{max}, \ T_A = 25^\circ C \end{array} $	3	I _{max}	0.5 0.15	0.9 0.25	_	0.5 0.15	0.9 0.25		A
RMS Noise, % of V _O T _A = 25°C, 10 Hz \leq f \leq 10 kHz	-	N	_	0.003	_	_	0.003		%VO
Ripple Rejection, V _O = 10 V, f = 120 Hz (Note 5) Without C _{adj} C _{adj} = 10 µF	4	RR	 66	65 80		 66	65 80	_	dB
Long Term Stability, $T_J = T_{high}$ (Note 6) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S	_	0.3	1	_	0.3	1	%/1.0 k Hrs.
Thermal Resistance Junction to Case R Package (TO-66) T Package (TO-220)	-	R _{θJC}	_	7	7	_	7 7	_	°C/W

NOTES

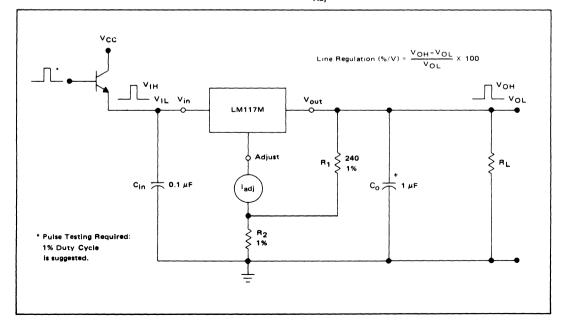
(1) $T_{low} = -55^{\circ}C$ for LM117M

= -25°C for LM217M = 0°C for LM317M T_{high} = +150°C for LM117M = +150°C for LM217M

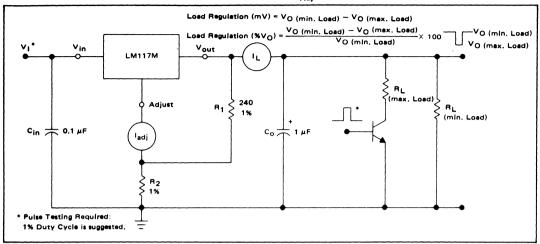

= +125°C for LM317M

 (2) P_{max} = 7.5 W
 (3) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

(4) Selected devices with tightened tolerance reference voltage available. (5) C_{adj} , when used, is connected between the adjustment pin and ground

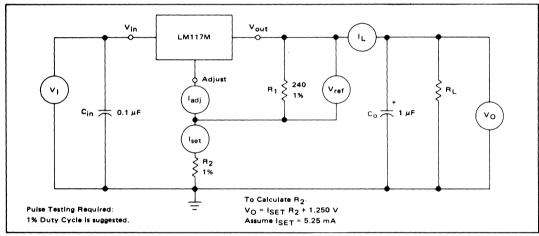

(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

LM117M, LM217M, LM317M



SCHEMATIC DIAGRAM

FIGURE 1 – LINE REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LINE TEST CIRCUIT}$



LM117M, LM217M, LM317M

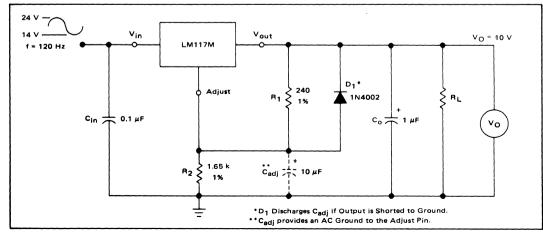


FIGURE 2 - LOAD REGULATION AND ΔIAdj/LOAD TEST CIRCUIT

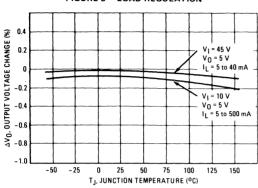
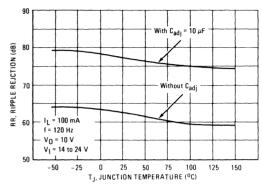



FIGURE 5 - LOAD REGULATION

FIGURE 6 - RIPPLE REJECTION

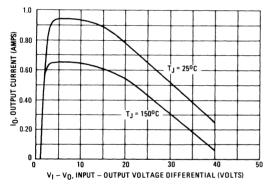


FIGURE 9 - MINIMUM OPERATING CURRENT

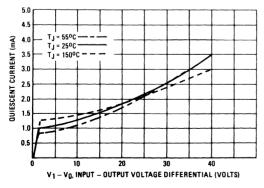
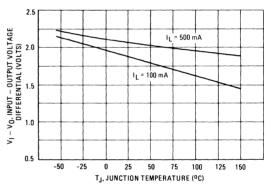
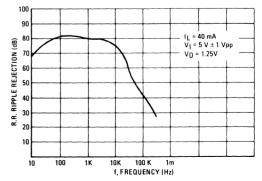




FIGURE 8 - DROPOUT VOLTAGE

ŧ

ę

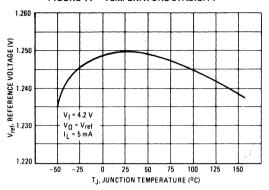


FIGURE 11 – TEMPERATURE STABILITY

FIGURE 13 - LINE REGULATION

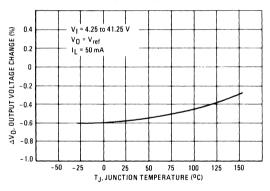


FIGURE 15 - LINE TRANSIENT RESPONSE

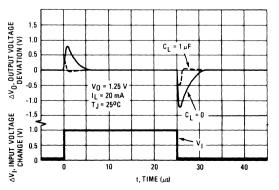


FIGURE 12 - ADJUSTMENT PIN CURRENT

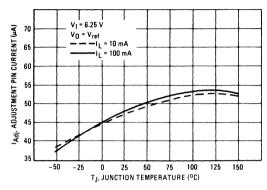


FIGURE 14 - OUTPUT NOISE

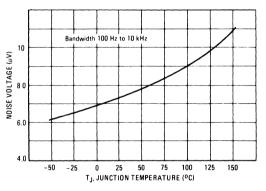
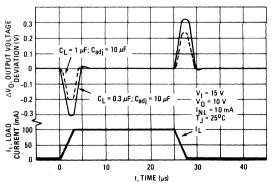
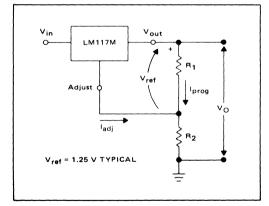



FIGURE 16 - LOAD TRANSIENT RESPONSE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION


The LM117M is a 3-terminal floating regulator. In operation, the LM117M develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{prog}) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{O} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{adj}R2$$

Since the current from the adjustment terminal (I_{adj}) represents an error term in the equation, the LM117M was designed to control I_{adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

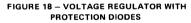
Since the LM117M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

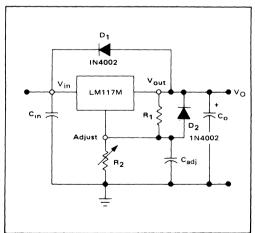
LOAD REGULATION

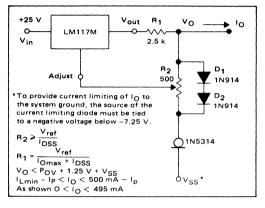
The LM117M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μF disc or1 μF tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance.


The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.


Although the LM117M is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C₀) in the form of a 1 μ F tantalum or 25 μ F aluminum electrolytic capacitor on the output swamps this effect and insures stability.


PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM117M with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0>10~\mu F,~C_{adj}>5~\mu F).$ Diode D1 prevents C_0 from discharging thru the IC. during an input short circuit. Diode D2 protects against capacitor C_{adj} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{adj} from discharging through the I.C. during an input short circuit.

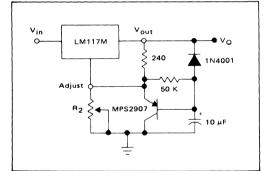


FIGURE 19 - ADJUSTABLE CURRENT LIMITER

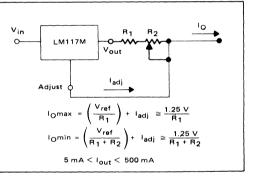

1N4002 Vout ٧ı Vin LM117M • Vo C . τ 1.0 μF 120 7 Adjust MPS2222 TTL 720 Control 1 k Minimum $V_0 = 1.25 V$ D1 protects the device during an input short circuit

FIGURE 20 - 5 V ELECTRONIC SHUTDOWN REGULATOR

FIGURE 21 - SLOW TURN-ON REGULATOR

Specifications and Applications Information

3 AMPERE, 5 VOLT POSITIVE VOLTAGE REGULATOR

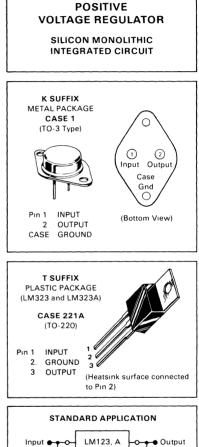
The LM123, A/LM223, A/LM323, A are a family of monolithic integrated circuits which supply a fixed positive 5.0 volt output with a load driving capability in excess of 3.0 amperes. These threeterminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. An improved series with superior electrical characteristics and a 2% output voltage tolerance is available as A-suffix (LM123A/LM223A/LM323A) device types.

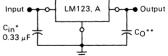
These regulators are offered in a hermetic TO-3 metal power package in three operating temperature ranges. A 0°C to +125°C temperature range version is also available in a low cost TO-220 plastic power package.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series pass transistor to supply up to 15 amperes at 5.0 volts.

- Output Current in Excess of 3.0 Amperes
- Available with 2% Output Voltage Tolerance
- No external Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Thermal Regulation and Ripple Rejection Have Specified Limits

MAXIMUM RATINGS


Rating	Symbol	Value	Unit	
Input Voltage		V _{in}	20	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM123, A LM223, A LM323, A	Τj	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		Tstg	-65 to +150	°C
Lead Temperature (Soldering, 10 s)		T _{solder}	300	°C


ORDERING INFORMATION

Device	Output Voltage Tolerance	Junction Temperature Range	Package
LM123K LM123AK	6% 2%	-55 to +150°C	Metal Power
LM223K LM223AK	6% 2%	–25 to +150°C	
LM323K LM323AK	4% 2%	0 to +125°C	
LM323T LM323AT	4% 2%		Plastic Power

LM123, LM123A LM223, LM223A LM323, LM323A

3-AMPERE, 5 VOLT

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.5 V above the output voltage even during the low point on the input ripple voltage.

- = C_{in} is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details.)
- ** = C_O is not needed for stability; however, it does improve transient response.

LM123, LM123A, LM223, LM223A, LM323, LM323A

		LM123A	/LM223A/	LM323A	LM123/LM223			LM323			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (V _I n = 7 5 V, 0 ≤ I _{out} ≤ 3.0 A, T _J = 25°C)	vo	4.9	5.0	5.1	47	5.0	5.3	4.8	5.0	52	v
Output Voltage (7 5 V ≤ V _I n ≤ 15 V, 0 ≤ I _{out} ≤ 3.0 A, P ≤ P _{max} [Note 2])	VO	4.8	50	5 2	4.6	5.0	54	4 75	5.0	5 25	v
Line Regulation (7 5 V \leqslant V $_{in}$ \leqslant 15 V, T $_{J}$ = 25°C) (Note 3)	Regline	-	1.0	15	-	10	25	-	10	25	mV
Load Regulation (V _{In} = 7.5 V, 0 \leq I _{OUT} \leq 3.0 A, T _J = 25°C) (Note 3)	Reg _{load}	_	10	50	-	10	100		10	100	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = 25°C)	Reg _{therm}	-	0.001	001	-	0 002	0 03	-	0 002	0.03	%V _O /W
Quiescent Current (7 5 V \leq V _{IN} \leq 15 V, 0 \leq I _{out} \leq 3 0 A)	^I Β	-	35	10	-	35	20	-	35	20	mA
Output Noise Voltage (10 Hz \leq f \leq 100 kHz, T _J = 25°C)	∨ _N	-	40	-	-	40	-	-	40		μV _{rms}
Ripple Rejection (8.0 V ≤ V _I n ≤ 18 V, I _{OUt} = 2 0 A, f = 120 Hz, T _J = 25°C)	RR	66	75	-	62	75		62	75		dB
Short Circuit Current Limit ($V_{in} = 15 V, T_J = 25^{\circ}C$) ($V_{in} = 7 5 V, T_J = 25^{\circ}C$)	'sc	_	4.5 5 5	_	-	4 5 5.5	-	_	45 55	_	A
Long Term Stability	S	_	-	35		-	35		-	35	mV
Thermal Resistance Junction to Case (Note 4)	R _{θJC}	-	20	-	-	20	-	-	2.0	-	°C/W

ELECTRICAL CHARACTERISTICS (T_J = T_{low} to T_{high} [see Note 1] unless otherwise specified)

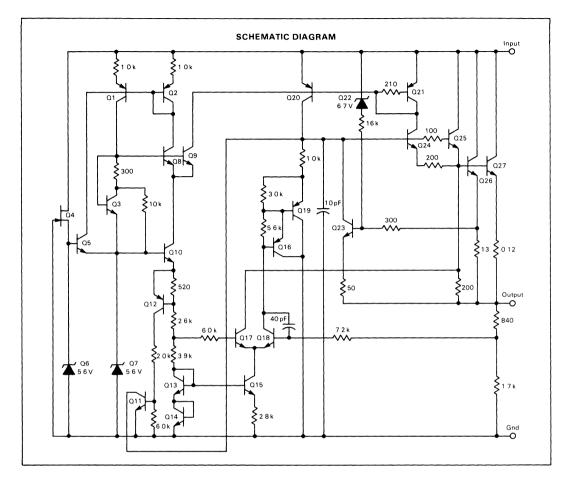
Note 1	T _{Iow} = -55°C for LM123, A	Thigh = +150°C for LM123, A
	= -25°C for LM223, A	= +150°C for LM223, A
	= 0°C for LM323, A	= +125°C for LM323, A

Note 2. Although power dissipation is internally limited, specifications apply only for $P \leqslant P_{max}$

P_{max} = 30 W for K (TO-3) package P_{max} = 25 W for T (TO-220) package

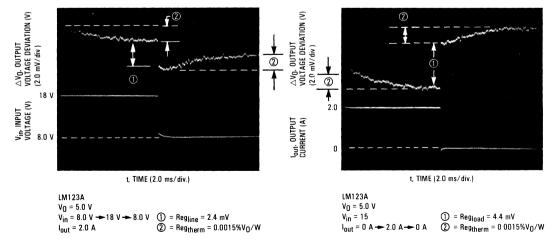
VOLTAGE REGULATOR PERFORMANCE

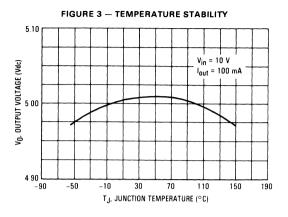
The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (< 100 μ s) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.


Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The

- Note 3 Load and line regulation are specified at constant junction temperature Pulse testing is required with a pulse width \leqslant 1 0 ms and a duty cycle \leqslant 5%.
- Note 4. Without a heat sink, the thermal resistance ($R_{\theta,JA}$) is 35°C/W for the TO-3, and 65°C/W for the TO-220 packages With a heat sink, the effective thermal resistance can approach the specified values of 2 0 °C/W, depending on the efficiency of the heat sink.

change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of I.C. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device.


Figure 1 shows the line and thermal regulation response of a typical LM123A to a 20 watt input pulse. The variation of the output voltage due to line regulation is labeled (1) and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical LM123A to a 20 watt load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).


LM123, LM123A, LM223, LM223A, LM323, LM323A

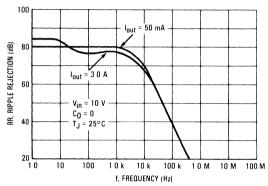

FIGURE 1 - LINE AND THERMAL REGULATION

FIGURE 2 - LOAD AND THERMAL REGULATION

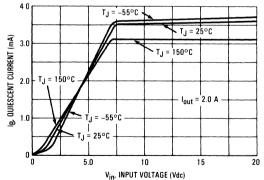


FIGURE 4 - OUTPUT IMPEDANCE

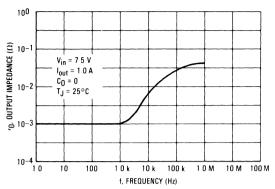


FIGURE 6 — RIPPLE REJECTION versus OUTPUT CURRENT

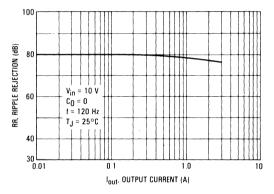
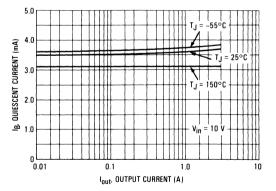
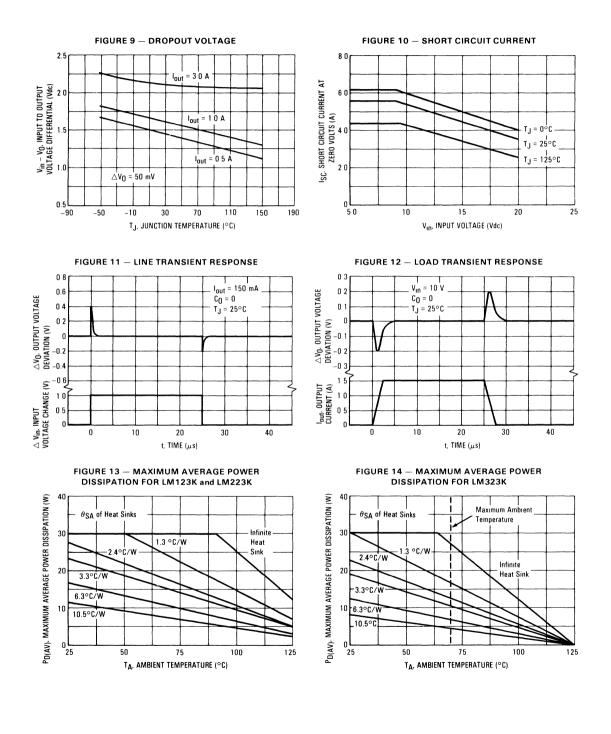
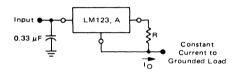




FIGURE 8 — QUIESCENT CURRENT versus OUTPUT CURRENT

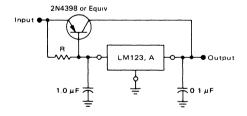
LM123, LM123A, LM223, LM223A, LM323, LM323A


APPLICATIONS INFORMATION

Design Considerations

The LM123,A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased

In many low current applications, compensation capacitors are not required However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions A O 33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.


The LM123, A regulator can also be used as a current source when connected as above. Resistor R determines the current as follows

$$I_{O} = \frac{5 V}{R} + I_{Q}$$

 \bigtriangleup I $_Q \cong 0.7$ mA over line, load and temperature changes I $_Q \cong 3.5$ mA

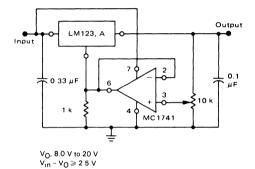
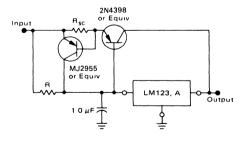

For example, a 2-ampere current source would require R to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7 5 volts

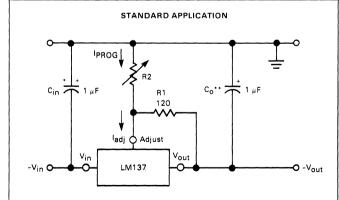
FIGURE 17 - CURRENT BOOST REGULATOR


The LM123, A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transitor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by the VBE of the pass transistor.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3 0 volts greater than the regulator voltage.

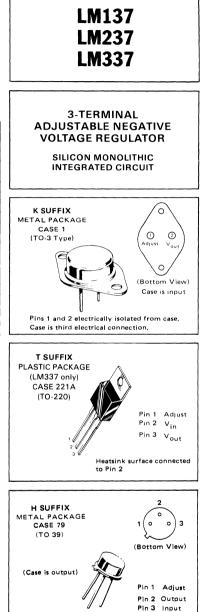
FIGURE 18 — CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{SC} , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, an eight-ampere plastic power transistor is specified.


Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATOR

The LM137/237/337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of -1.2 V to -37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.


The LM137 series serve a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM137 series can be used as a precision current regulator.

- Output Current in Excess of 1.5 Ampere in TO-3 and TO-220 Packages
- Output Current in Excess of 0.5 Ampere in TO-39 Package
- Output Adjustable Between –1.2 V and –37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting, Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

*C_{in} is required if regulator is located more than 4 inches from power supply filter. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended. **C₀ is necessary for stability. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended.

 $V_{out} = -1.25 V (1 + \frac{R2}{R1})$

ORDERING INFORMATION

Device	Temperature Range	Package
LM137H	T _J = -55°C to +150°C	Metal Can
LM137K	T_ = -55°C to +150°C	Metal Power
LM237H	T_1 = -25°C to +150°C	Metal Can
LM237K	T_l = -25°C to +150°C	Metal Power
LM337H	T_ = 0°C to +125°C	Metal Can
LM337K	T」= 0°C to +125°C	Metal Power
LM337T	Tj = 0°C to +125°C	Plastic Power

LM137, LM237, LM337

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Input-Output Voltage Differential		VI-VO	40	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM137 LM237 LM337	TJ	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \quad (|V_1 - V_0| = 5 V, I_0 = 0.5 A \text{ for K and T packages}, I_0 = 0.1 A \text{ for H package}, T_J = T_{low} \text{ to } T_{high} \text{ [see the second seco$ Note 1], Imax and Pmax per Note 2, unless otherwise specified)

	Figure		LM137/237			LM337]
Characteristic		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) T _A = 25°C, 3 V $\leq V_I - V_O \leq 40 V$	1	Reg _{line}	-	0.01	0.02	-	0.01	0.04	%/V
Load Regulation (Note 3), $T_A = 25^{\circ}C$, 10 mA $\leq I_0 \leq I_{max}$ $ V_0 \leq 5 V$	2	Regload		15	25-		15	50	mV
VO ≥ 5 V			_	0.3	0.5	-	0.3	1.0	%Vo
Thermal Regulation 10 mS Pulse, T _A = 25°C	_	Reg _{therm}	—	0.002	0.02	-	0.003	0.04	% V _O /W
Adjustment Pin Current	3	l _{adj}		65	100	-	65	100	μA
Adjustment Pin Current Change 2.5 V ≤ V -VQ ≤ 40 V, 10 mA ≤ I_≤ I _{max} , P _D ≤ P _{max} , T _A = 25°C	1,2	^{∆l} adj	_	2.0	5.0	-	2.0	5.0	μΑ
$ \begin{array}{l} \mbox{Reference Voltage (Note 4)} \\ \mbox{3 V} \leqslant V_{I} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	3	V _{ref}	-1.225 -1.20	-1.250 -1.25	-1.275 -1.30	-1.213 -1.20	-1.250 -1.25	-1 287 -1.30	v
Line Regulation (Note 3) 3 V ≤ V -V _O ≤ 40 V	1	Regline	-	0.02	0.05	-	0.02	0.07	%/V
Load Regulation (Note 3)	2	Regload							
10 mA ≤ I _O ≤ I _{max} V _O ≤ 5 V			-	20 0.3	50 1.0	_	20 0.3	70 1.5	mV
V _O ≥ 5 V Temperature Stability (T _{Iow} ≤ T _J ≤ T _{high})	3	TS		0.3	1.0		0.3	1.5	%Vo %Vo
Minimum Load Current to	3	I _{Lmin}		0.0					mA
Maintain Regulation ($ V_I - V_O \leq 10 \text{ V}$) ($ V_I - V_O \leq 40 \text{ V}$)		· Linini	-	1.2 2.5	3.0 5.0		1.5 2.5	6.0 10	
Maximum Output Current VI-VO ≤ 15 V, PD ≤ Pmax	3	I _{max}							А
$ V_1 - V_0 \ge 10$ V, PD \le Pmax K and T Packages H Package $ V_1 - V_0 \le 40$ V, PD \le Pmax, TJ = 25°C			1.5 0.5	2.2 0.8	_	1.5 0.5	2.2 0.8	-	
K and T Packages H Package			0.24 0.15	0.4 0.20	- -	0.15 0.10	0.4 0.20	-	
RMS Noise, % of V _O T _A = 25°C, 10 Hz \leq f \leq 10 kHz	-	. N	-	0.003	-	-	0.003	-	%Vo
Ripple Rejection, V _O = -10 V, f = 120 Hz (Note 5)	4	RR							dB
Without C _{adj} C _{adj} = 10 μF			66	60 77	_	66	60 77		
Long Term Stability, $T_J = T_{high}$ (Note 6) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S,	-	0.3	1.0	-	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case H Package (TO-39) K Package (TO-3) T Package (TO-220)	-	R _θ JC		12 2.3 —	15 3.0 —		12 2.3 4.0	15 3.0 —	°C∕W

NOTES.

(1) T_{low} = -55°C for LM137

T_{high} = +150°C for LM137 = +150°C for LM237

= -25°C for LM237 = +125°C for LM337 = 0°C for LM337

(2) $I_{max} = 1.5 A$ for K (TO-3) and T (TO-220 Packages

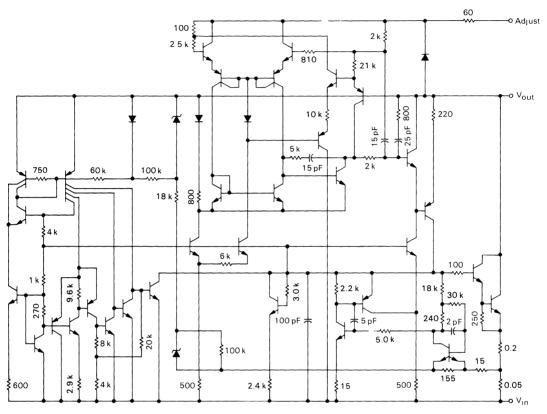
= 0.5 A for H (TO-39) Package

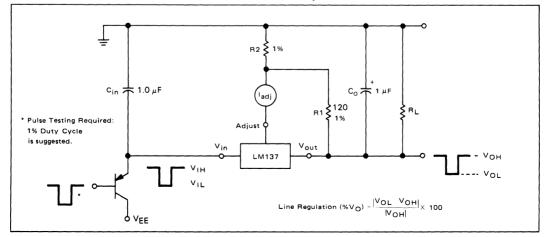
P_{max} = 20 W for K (TO-3) and T (TO-220) Packages = 2 W for H (TO-39) Package

(3) Load and line regulation are specified at a constant junction tempera-

ture. Pulse testing with a low duty cycle is used Change in $V_{\mbox{O}}$ because of heating effects is covered under the Thermal Regulation specification.

(4) Selected devices with tightened tolerance reference voltage available.


(5) C_{adj} , when used, is connected between the adjustment pin and around


(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

(7) Power dissipation within an I C. voltage regulator produces a temperature gradient on the die, affecting individual I C components on the die. These effects can be minimized by proper integrated circuit design and layout techniques. Thermal Regulation is the effect of these temperature gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time

LM137, LM237, LM337

SCHEMATIC DIAGRAM

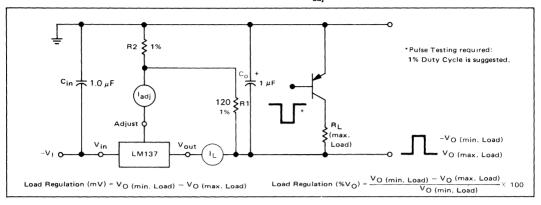
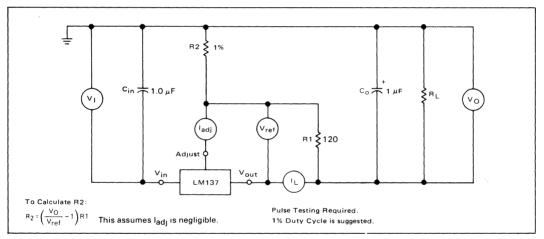
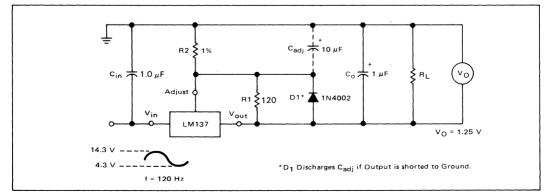
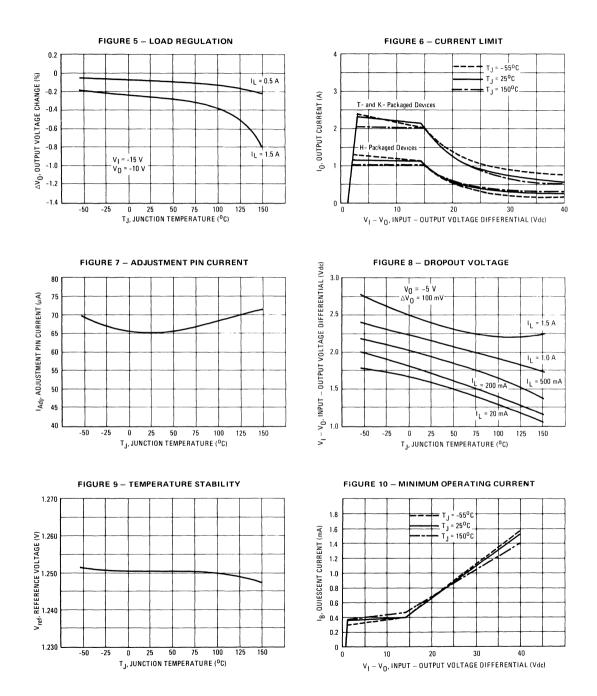




FIGURE 2 - LOAD REGULATION AND A Iadj/LOAD TEST CIRCUIT


FIGURE 3 - STANDARD TEST CIRCUIT

LM137, LM237, LM337

LM137, LM237, LM337

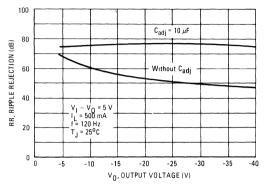


FIGURE 11 - RIPPLE REJECTION VS OUTPUT VOLTAGE

FIGURE 12 - RIPPLE REJECTION VS. OUTPUT CURRENT

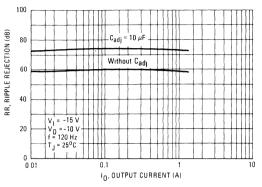
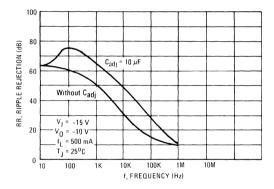



FIGURE 13 - RIPPLE REJECTION VS. FREQUENCY

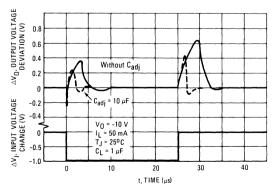
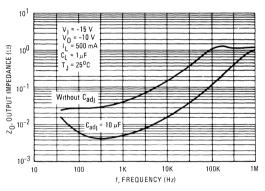
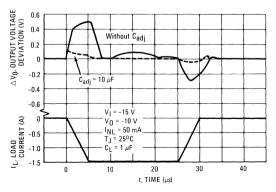
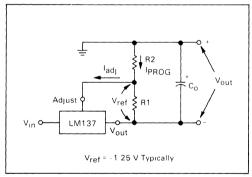




FIGURE 14 – OUTPUT IMPEDANCE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION


The LM137 is a 3-terminal floating regulator. In operation, the LM137 develops and maintains a nominal –1 25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{adj} R2$$

Since the current into the adjustment terminal (I_{adj}) represents an error term in the equation, the LM137 was designed to control I_{adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the LM137 is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible

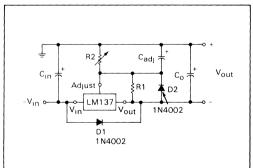
LOAD REGULATION

The LM137 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation

EXTERNAL CAPACITORS

A 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{adj}) prevents ripple from being amplified as the output voltage is increased A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application

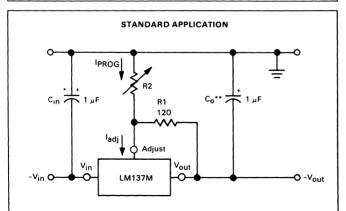

An output capacitor (C₀) in the form of a 1 μ F tantalum or 10 μ F aluminum electrolytic capacitor is required for stability

PROTECTION DIODES

When external capacitors are used with any I C regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator

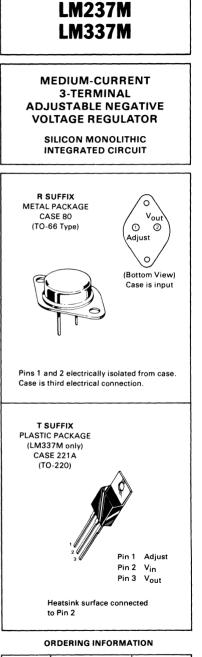
Figure 18 shows the LM137 with the recommended protection diodes for output voltages in excess of -25 V or high capacitance values ($C_0 > 25 \ \mu$ F, $C_{adj} > 10 \ \mu$ F) Diode D₁ prevents C_0 from discharging thru the IC during an input short circuit Diode D₂ protects against capacitor C_{adj} discharging through the IC during an output short circuit. The combination of diodes D1 and D2 prevents C_{adj} from discharging through the IC. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES


Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATOR

The LM137M/237M/337M are adjustable 3-terminal negative voltage regulators capable of supplying in excess of 500 mA over an output voltage range of -1.2 V to -37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.


The LM137M series serve a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM137M series can be used as a precision current regulator.

- Output Current in Excess of 500 mA
- Output Adjustable Between -1.2 V and -37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

*C_{in} is required if regulator is located more than 4 inches from power supply filter. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended. **C_o is necessary for stability. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended.

$$V_{out} = -1.25 V (1 + \frac{R2}{R1})$$

LM137M

Device	Temperature Range	Package
LM137MR	T _J = -55°C to +150°C	Metal Power
LM237MR	T _J = -25°C to +150°C	Metal Power
LM337MR	T _J = 0°C to +125°C	Metal Power
LM337MT	T _J = 0°C to +125°C	Plastic Power

LM137M, LM237M, LM337M

MAXIMUM RATINGS

Rating		Symbol	Value	Unit	
Input-Output Voltage Differential		VI-VO	40	Vdc	
Power Dissipation		PD	Internally Limited		
Operating Junction Temperature Range	LM137M LM237M LM337M	TJ	-55 to +150 -25 to +150 0 to +125	°C	
Storage Temperature Range		Tstg	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS $(|V_1 - V_0| = 5.0 \text{ V}, I_0 = 0.1; T_j = T_{low} \text{ to } T_{high} \text{ [see Note 1], } P_{max} \text{ per Note 2, unless otherwise specified.)}$

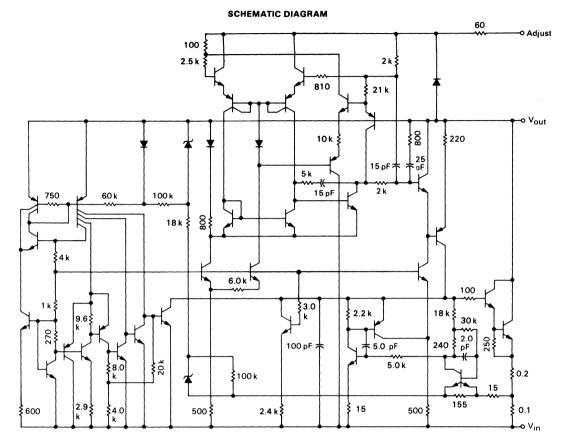
un	less othe	rwise specif	ieu.)						
Characteristic	Figure	Symbol	LM137M/237M			LM337M			
			Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, 3.0 V \leq V _I -V _O \leq 40 V	1	Regline	-	0.01	0.02	-	0.01	0.04	%/V
Load Regulation (Note 3), T _A = 25°C, 10 mA ≤ I _O ≤ 0.5 A V _O ≤ 5.0 V	2	Regload		15	25	_	15	50	mV
V ₀ ≥ 5.0 V				0.3	0.5	-	0.3	1.0	% Vo
Thermal Regulation 10 mS Pulse, T _A = 25°C		Reg _{therm}		0.002	0.02		0.003	0.04	%V _O /W
Adjustment Pin Current	3	ladj		65	100		65	100	μA
Adjustment Pin Current Change 2.5 V ≤ V -VQ ≤ 40 V, 10 mA ≤ ⊾ ≤ 0.5 A, PD ≤ Pmax. TA = 25°C	1,2	^{∆l} adj		2.0	5.0	-	2.0	5.0	μΑ
Reference Voltage (Note 4) $3.0 V \leq V_I - V_O \leq 40 V$, $10 \text{ mA} \leq I_O \leq 0.5 \text{ A}$,	3	V _{ref}							V
S.0 V ≤ V -VO ≤ 40 V, 10 mA ≤ 10 ≤ 0.5 A, PD ≤ P _{max} , TA = 25°C Tlow to Thigh			-1.225 -1.20	-1.250 -1.25	-1.275 -1.30	-1.213 -1.20	-1.250 -1.25	-1.287 -1.30	
Line Regulation (Note 3) 3.0 V \leq V _I -V _O \leq 40 V	1	Reg _{line}		0.02	0.05	-	0.02	0.07	%/V
Load Regulation (Note 3) 10 mA ≤ I _O ≤ 0.5 A	2	Regload							
$ V_0 \leq 5.0 V$ $ V_0 \geq 5.0 V$				20 0.3	50 1.0	_	20 0.3	70	mV %V⊖
Temperature Stability (T _{low} ≤ T _J ≤ T _{high})	3	TS		0.6			0.6	-	%Vo
$\begin{array}{l} \mbox{Minimum Load Current to} \\ \mbox{Maintain Regulation (} V_I - V_O \leqslant 10 \ \mbox{V}) \\ (V_I - V_O \leqslant 40 \ \ \mbox{V}) \end{array}$	3	^I Lmin		1.2 2.5	3.0 5.0	-	1.5 2.5	6.0 10	mA
$ \begin{array}{l} Maximum \ Output \ Current \\ V_I - V_O \leqslant 15 \ V, \ P_D \leqslant P_{max} \\ V_I - V_O = 40 \ V, \ P_D \leqslant P_{max}, \ T_A = 25^\circ C \end{array} $	3	I _{max}	0.5 0.15	0.9 0.25		0.5 0.1	0.9 0.25	-	A
RMS Noise, % of V _O T _A = 25°C, 10 Hz \leqslant f \leqslant 10 kHz		N		0.003		-	0.003	-	%V _O
Ripple Rejection, V _O = -10 V, f = 120 Hz (Note 5)	4	RR							dB
Without C _{adj} C _{adj} = 10 μF			66	60 77	-	66	60 77	-	
Long Term Stability, T _J = T _{high} (Note 6) T _A = 25°C for Endpoint Measurements	3	S	-	0.3	1.0	-	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case R Package (TO-66) T Package (TO-220)	-	R _θ JC		7.0	-	-	7.0 7.0		°C/W

NOTES:

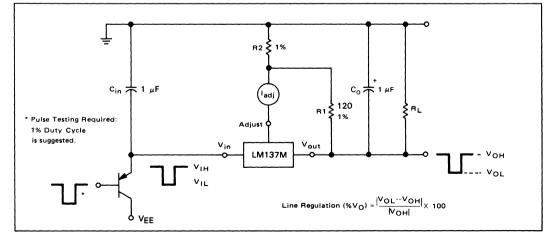
(1) $T_{Iow} = -55^{\circ}C$ for LM137M = -25^{\circ}C for LM237M

= 0°C for LM337M

(2) P_{max} = 7.5 W


(3) Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

T_{high} = +150°C for LM137M = +150°C for LM237M

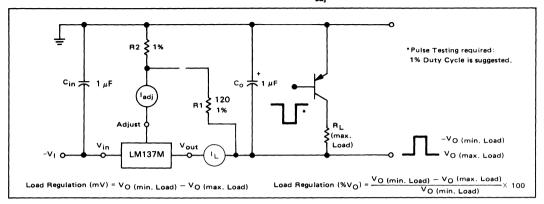
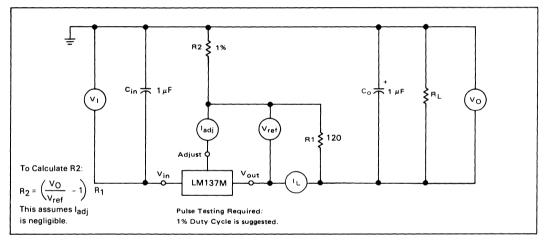
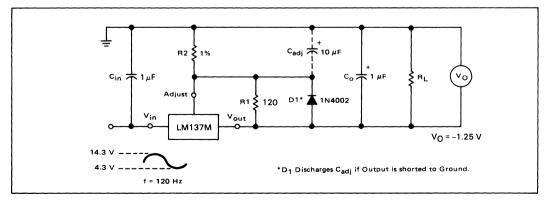

= +125°C for LM337M

(4) Selected devices with tightened tolerance reference voltage available.

(5) Cadj, when used, is connected between the adjustment pin and ground. (6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

FIGURE 1 – LINE REGULATION AND $\triangle I_{adj}/LINE$ TEST CIRCUIT

LM137M, LM237M, LM337M

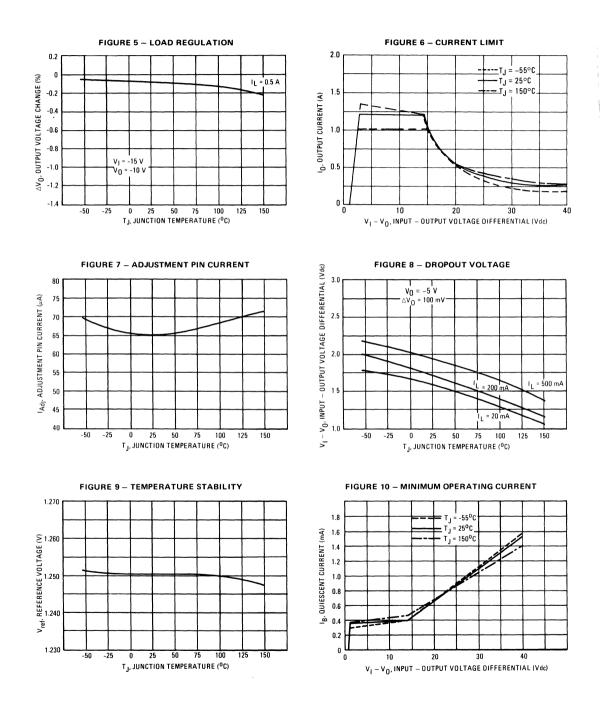

FIGURE 2 – LOAD REGULATION AND ${\vartriangle\,}I_{adj}/LOAD$ TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

LM137M, LM237M, LM337M

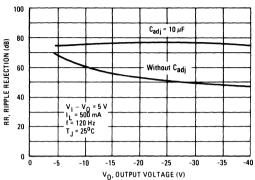


FIGURE 11 - RIPPLE REJECTION VS OUTPUT VOLTAGE

FIGURE 12 - RIPPLE REJECTION VS. OUTPUT CURRENT

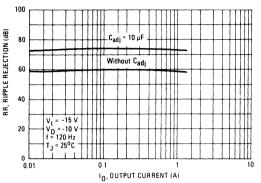


FIGURE 13 - RIPPLE REJECTION VS. FREQUENCY

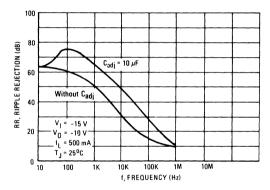


FIGURE 15 - LINE TRANSIENT RESPONSE

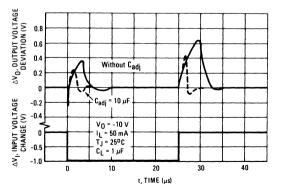


FIGURE 14 - OUTPUT IMPEDANCE

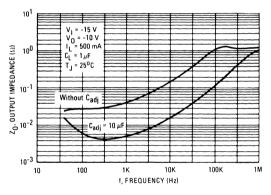
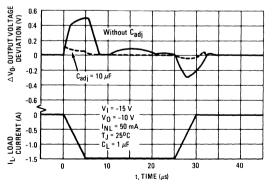
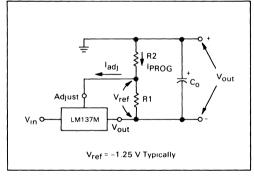



FIGURE 16 - LOAD TRANSIENT RESPONSE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION


The LM137M is a 3-terminal floating regulator. In operation, the LM137M develops and maintains a nominal -1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (IpROG) by R1 (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{adj}R2$$

Since the current into the adjustment terminal (I_{adj}) represents an error term in the equation, the LM137M was designed to control I_{adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the LM137M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

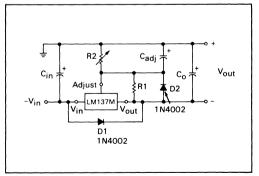
LOAD REGULATION

The LM137M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 1 μF tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

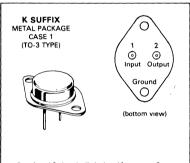

An output capacitor (C₀) in the form of a 1 μ F tantalum or 10 μ F aluminum electrolytic capacitor is required for stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM137M with the recommended protection diodes for output voltages in excess of -25 V or high capacitance values ($C_0 > 25 \ \mu$ F, $C_{adj} > 10 \ \mu$ F). Diode D₁ prevents C₀ from discharging thru the I.C. during an input short circuit. Diode D₂ protects against capacitor C_{adj} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{adj} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES


LM140 series LM340 series

3-TERMINAL POSITIVE VOLTAGE REGULATORS

The LM140/340 series of three-terminal positive voltage regulators are monolithic integrated circuits designed for a wide variety of applications including local on-board regulation. Available in seven fixed output voltage options from 5.0 to 24 volts, these regulators employ internal current limiting, thermal shutdown, and safe area compensation — making them virtually blowout proof. The LM140/340 series is guaranteed to have line and load regulation that is a factor of two better than the 7800 series. Although the LM140/340 series was designed primarily as a fixed regulator, it can be used with external components to obtain adjustable voltages.

- Output Currents in Excess of 1.0 A
- Internal Thermal Overload Protection
- Internal Short Circuit Limiting
- Output Transistor Safe-Area Compensation
- No External Components Required
- Available in Both Commercial and Military Temperature Ranges

THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS

Pins 1 and 2 electrically isolated from case. Case is third electrical connection.

STANDARD APPLICATION Input $\leftarrow C_{in}^{C_{in}} + C_{O}^{-1.0 \mu F}$

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- * = C_{in} (solid tantalum) is required, if regulator is located an appreciable distance from power supply filter.
- ** = C_O is not needed for stability; however, it does improve transient response. If needed, its value should be greater than 0.1 μF.

ORDERING INFORMATION

Device	Voltage	Temperature Range (TA
LM140K-5.0	5.0 Volts	-55 to +125°C
LM140K-6.0	6.0 Volts	-55 to +125°C
LM140K-8.0	8.0 Volts	-55 to +125°C
LM140K-12	12 Volts	-55 to +125°C
LM140K-15	15 Volts	-55 to +125°C
LM140K-18	18 Volts	-55 to +125°C
LM140K-24	24 Volts	–55 to +125°C
LM340K-5.0	5.0 Volts	0 to +70°C
LM340K-6.0	6.0 Volts	0 to +70°C
LM340K-8.0	8.0 Volts	0 to +70°C
LM340K-12	12 Volts	0 to +70°C
LM340K-15	15 Volts	0 to +70°C
LM340K-18	18 Volts	0 to +70°C
LM340K-24	24 Volts	0 to +70°C

LM140 Series, LM340 Series

LM140 series/LM340 series MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V - 18 V) (24 V)	V _{in}	35 40	Vdc
Power Dissipation and Thermal Characteristics (Metal Package) $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +65^{\circ}C$ (See Figure 2) Thermal Resistance, Junction to Case	Р _D 1/R _Ø JA R _Ø JA P _D 1/R _Ø JC R _Ø JC	Internally Limited 22.5 45 Internally Limited 182 5.5	Watts mW/°C °C/W Watts mW/°C °C/W
Storage Junction Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range LM140 LM340	TJ	-55 to +150 0 to +125	°C

NOTES:

1. $T_{low} = -55$ °C for LM140 = 0°C for LM340

T_{high} = +150°C for LM140 = +125°C for LM340

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 5.0 ELECTRICAL CHARACTERISTICS

 $(V_{in} = 10 \text{ V}, I_0 = 500 \text{ mA}, T_J = T_{low}$ to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	Vo	4.8	5.0	5.2	Vdc
Input Regulation (Note 2) 8.0 to 20 Vdc 7.0 to 25 Vdc (TJ = +25°C) 8.0 to 12 Vdc, I _O = 1.0 A 7.3 to 20 Vdc, I _O = 1.0 A (TJ = +25°C)	Reg _{in}		 	50 50 25 50	mV
Load Regulation (Note 2) 5.0 mA ≤ I _O ≤ 1.0 A 5.0 mA ≤ I _O ≤ 1.5 A (T _J = +25°C) 250 mA ≤ I _O ≤ 750 mA (T _J = +25°C)	Reg _{load}	 _		50 50 25	mV
Output Voltage LM140 8.0 $\leq V_{in} \leq$ 20 Vdc, 5.0 mA $\leq I_0 \leq$ 1.0 A, P ₀ \leq 15 W LM340 7.0 $\leq V_{in} \leq$ 20 Vdc, 5.0 mA $\leq I_0 \leq$ 1.0 A, P ₀ \leq 15 W	vo	4.75 4.75	5.0 5.0	5.25 5.25	Vdc
Quiescent Current $I_O = 1.0 A$ LM140 LM340 LM140 (T _J = +25°C) LM340 (T _J = +25°C)	ι _b	 	4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Δlb		 	0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 IO = 1.0 A (T _J = +25°C) LM140 LM340	RR	68 62 68 62	80 80 —		dB
Dropout Voltage	V _{in} - Vo	-	2.0	-	Vdc
Output Resistance	RO	-	30	-	mΩ
Short-Circuit Current Limit	I _{sc}	_	2.0		А
Output Noise Voltage (T _A = +25°C) 10 Hz $\leqslant f \leqslant$ 100 kHz	۷ _n	-	40	-	μV
Average Temperature Coefficient of Output Voltage $I_{\mbox{O}}$ = 5.0 mA	TCVO	-	±0.6	-	mV/°C
Peak Output Current (Tj = +25°C)	10	-	2.4		А
Input Voltage to Maintain Line Regulation (T _J = +25°C) I _O = 1.0 A		7.3	-	-	Vdc

NOTES:

1. T_{low} = -55°C for LM140 = 0°C for LM340

Thigh = +150°C for LM140 = +125°C for LM340

2. Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 6.0 ELECTRICAL CHARACTERISTICS

(Vin = 11 V, IO = 500 mA, TJ = Tlow to Thigh (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	Vo	5.75	6.0	6.25	Vdc
Input Regulation (Note 2) 9.0 to 21 Vdc 8.0 to 25 Vdc (T _J = +25°C) 9.0 to 13 Vdc, I _O = 1.0 A 8.3 to 21 Vdc, I _O = 1.0 A (T _J = +25°C)	Reg _{in}			60 60 30 60	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.0$ A 5.0 mA $\leq I_O \leq 1.5$ A (T _J = +25°C) 250 mA $\leq I_O \leq 750$ mA (T _J = +25°C)	Regload	-		60 60 30	mV
$ \begin{array}{l} \text{Output Voltage} \\ \text{LM140} \\ 9.0 \leqslant \text{V}_{\text{in}} \leqslant 21 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant 1.0 \text{ A}, \\ \text{P}_{\text{O}} \leqslant 15 \text{ W} \\ \text{LM340} \\ 8.0 \leqslant \text{V}_{\text{in}} \leqslant 21 \text{ Vdc}, 6.0 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant 1.0 \text{ A}, \\ \text{P}_{\text{O}} \leqslant 15 \text{ W} \\ \end{array} $	vo	5.7 5.7	6.0 5.0	6.3 6.3	Vdc
Quiescent Current $I_O = 1.0 A$ LM140 LM340 LM140 (T_J = +25°C) LM340 (T_J = +25°C)	lь		4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
	Δlb	-		0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	65 59 65 59	78 78 		dB
Dropout Voltage	Vin - VO		2.0		Vdc
Output Resistance	RO	-	35	-	mΩ
Short-Circuit Current Limit	I _{sc}	-	1.9	-	A
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn	-	45		μV
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA	тсv _о	-	±0.7	-	mV∕°C
Peak Output Current (TJ = +25°C)	lo	-	2.4	-	A
Input Voltage to Maintain Line Regulation (T _J = +25°C) I _O = 1.0 A		8.3	-	-	Vdc

NOTES:

1. $T_{low} = -55^{\circ}C$ for LM140 $T_{high} = +150^{\circ}C$ for LM140

= 0°C for LM340

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 8.0 ELECTRICAL CHARACTERISTICS

(Vin = 14 V, IO = 500 mA, TJ = Tlow to Thigh (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	vo	7.7	8.0	8.3	Vdc
Input Regulation (Note 2) 11 to 23 Vdc 10.5 to 25 Vdc (TJ = +25°C) 11 to 17 Vdc, I O= 1.0 A 10.5 to 23 Vdc, IO = 1.0 A (TJ = +25°C)	Reg _{in}	- - -	- - - -	80 80 40 80	mV
Load Regulation (Note 2) 5.0 mA ≤ I _O ≤ 1.0 A 5.0 mA ≤ I _O ≤ 1.5 A (T _J = +25°C) 250 mA ≤ I _O ≤ 750 mA (T _J = +25°C)	Regload			80 80 40	mV
$\begin{array}{l} \text{Output Voltage} \\ \text{LM140} \\ 11.5 \leqslant \text{V}_{in} \leqslant 23 \; \text{Vdc}, \; 5.0 \; \text{mA} \leqslant \text{I}_{O} \leqslant 1.0 \; \text{A}, \\ \text{P}_{O} \leqslant 15 \; \text{W} \\ \text{LM340} \\ 10.5 \leqslant \text{V}_{in} \leqslant 23 \; \text{Vdc}, \; 5.0 \; \text{mA} \leqslant \text{I}_{O} \leqslant 1.0 \; \text{A}, \\ \text{P}_{O} \leqslant 15 \; \text{W} \end{array}$	vo	7.6 7.6	8.0 8.0	8.4 8.4	Vdc
Quiescent Current I _O = 1.0 A LM140 LM340 LM140 (T _J = +25°C) LM340 (T _J = +25°C)	ι _b		4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
Quiescent Current Change 11.5 ≤ V _{in} ≤ 25 Vdc LM140 10.5 ≤ V _{in} ≤ 25 Vdc LM340 5.0 mA ≤ I _O ≤ 1.0 A LM140, LM340 11.5 ≤ V _{in} ≤ 23 Vdc, I _O = 1.0 A LM140, LM340 10.6 ≤ V _{in} ≤ 23 Vdc, I _O = 1.0 A LM140	ΔI _b			0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 IO = 1.0 A (TJ = +25°C) LM140 LM340	RR	62 56 62 56	76 76 —		dB
Dropout Voltage	V _{in} - Vo		2.0	_	Vdc
Output Resistance	Ro	_	40	_	mΩ
Short-Circuit Current Limit	l _{sc}	_	1.5		A
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	V _n	-	52	-	μV
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA	TCVO	-	±1.0	-	mV/°C
Peak Output Current (T」= +25°C)	10		2.4	-	Α
Input Voltage to Maintain Line Regulation (T _J = +25°C) I _O = 1.0 A		10.5	-		Vdc

NOTES:

1. Tlow = -55°C for LM140 = 0°C for LM340

2. Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Thigh = +150°C for LM140 = +125°C for LM340

LM140/340 – 12 ELECTRICAL CHARACTERISTICS

(Vin = 19 V, IO = 500 mA, TJ = Tlow to Thigh (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) IO = 5.0 mA to 1.0 A	vo	11.5	12	12.5	Vdc
Input Regulation (Note 2) 15 to 27 Vdc 14.6 to 30 Vdc (TJ = +25°C) 16 to 22 Vdc, I _O = 1.0 A 14.6 to 27 Vdc, I _O = 1.0 A (TJ = +25°C)	Regin			120 120 60 120	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.0$ A 5.0 mA $\leq I_O \leq 1.5$ A (T _J = +25°C) 250 mA $\leq I_O \leq 750$ mA (T _J = +25°C)	Reg _{load}			120 120 60	mV
$ \begin{array}{l} \text{Output Voltage} \\ \text{LM140} \\ 15.5 \leqslant \text{V}_{in} \leqslant 27 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{0} \leqslant 1.0 \text{ A}, \\ \text{P}_{0} \leqslant 15 \text{ W} \\ \text{LM340} \\ 14.5 \leqslant \text{V}_{in} \leqslant 27 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{0} \leqslant 1.0 \text{ A}, \\ \text{P}_{0} \leqslant 15 \text{ W} \end{array} $	vo	11.4 11.4	12 12	12.6 12.6	Vdc
Quiescent Current $I_0 = 1.0 \text{ A}$ LM140 LM340 LM140 (T_J = +25°C) LM340 (T_J = +25°C)	Ιb		4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ΔI _b	 		0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	61 55 61 55	72 72 —		dB
Dropout Voltage	Vin - VO	_	2.0		Vdc
Output Resistance	RO	-	75		mΩ
Short-Circuit Current Limit	I _{sc}		1.1	-	A
Output Noise Voltage (T _A = +25°C) 10 Hz $\leqslant f \leqslant$ 100 kHz	Vn	-	75	-	μV
Average Temperature Coefficient of Output Voltage $I_{\mbox{O}}$ = 5.0 mA	тсv _о	-	±1.5	-	mV∕°C
Peak Output Current (TJ = +25°C)	lo		2.4		A
Input Voltage to Maintain Line Regulation (T _J = +25°C) $I_O = 1.0 A$		14.6	-	-	Vdc

NOTES:

1. $T_{low} = -55^{\circ}C$ for LM140

T_{high} = +150°C for LM140 = +125°C for LM340

= 0°C for LM340 = +125°C for LM34

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 – 15 ELECTRICAL CHARACTERISTICS

(Vin = 23 V, IO = 500 mA, TJ = Tlow to Thigh (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	Vo	14.4	15	15.6	Vdc
Input Regulation (Note 2) 18.5 to 30 Vdc 17.5 to 30 Vdc (T _J = +25°C) 20 to 26 Vdc, I _O = 1.0 A 17.7 to 30 Vdc, I _O = 1.0 A (T _J = +25°C)	Reg _{in}			150 150 75 150	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.0$ A 5.0 mA $\leq I_O \leq 1.5$ A (T _J = +25°C) 250 mA $\leq I_O \leq 750$ mA (T _J = +25°C)	Regload			150 150 75	mV
$\begin{array}{l} \text{Output Voltage} \\ \text{LM140} \\ 18.5 \leqslant \text{V}_{in} \leqslant 30 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{0} \leqslant 1.0 \text{ A}, \\ \text{P}_{0} \leqslant 15 \text{ W} \\ \text{LM340} \\ 17.5 \leqslant \text{V}_{in} \leqslant 30 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{0} \leqslant 1.0 \text{ A}, \\ \text{P}_{0} \leqslant 15 \text{ W} \end{array}$	Vo	14.25 14.25	15 15	15.75 15.75	Vdc
Quiescent Current $I_0 = 1.0 \text{ A}$ LM140 LM340 LM140 (T_J = +25°C) LM340 (T_J = +25°C)	Ιb		4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Δlb			0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 IO = 1.0 A (TJ = +25°C) LM140 LM340	RR	60 54 60 54	70 70 		dB
Dropout Voltage	Vin - VO	_	2.0	-	Vdc
Output Resistance	RO		95		mΩ
Short-Circuit Current Limit	I _{sc}	_	800	-	mA
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn	-	90	-	μV
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA	тсv _О	-	±1.8	-	mV/°C
Peak Output Current (TJ = +25°C)	١o	_	2.4	_	А
Input Voltage to Maintain Line Regulation (T _J = +25°C) I_{O} = 1.0 A		17.7	-	-	Vdc

NOTES:

1. $T_{low} = -55^{\circ}C$ for LM140 = 0°C for LM340 T_{high} = +150°C for LM140 = +125°C for LM340

 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 18 ELECTRICAL CHARACTERISTICS

(Vin = 27 V, IO = 500 mA, TJ = Tlow to Thigh (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C) I _O = 5.0 mA to 1.0 A	vo	17.3	18	18.7	Vdc
Input Regulation (Note 2) 21.5 to 33 Vdc 21 to 33 Vdc (T _J = +25°C) 24 to 30 Vdc, I _O = 1.0 A 21 to 33 Vdc, I _O = 1.0 A (T _J = +25°C)	Reg _{in}		1 1 1	180 180 90 180	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.0$ A 5.0 mA $\leq I_O \leq 1.5$ A (T _J = +25°C) 250 mA $\leq I_O \leq 750$ mA (T _J = +25°C)	Regload	-		180 180 90	mV
$\begin{array}{l} \mbox{Output Voltage} \\ \mbox{LM140} \\ 22 \leqslant V_{in} \leqslant 33 \mbox{Vdc}, \ 5.0 \ \mbox{mA} \leqslant I_{Q} \leqslant 1.0 \ \mbox{A}, \\ P_{Q} \leqslant 15 \ \mbox{W} \\ \mbox{LM340} \\ 21 \leqslant V_{in} \leqslant 33 \ \mbox{Vdc}, \ 5.0 \ \mbox{mA} \leqslant I_{Q} \leqslant 1.0 \ \mbox{A}, \\ \end{array}$	vo	17.1 17.1	18 18	18.9 18.9	Vdc
$P_0 ≤ 15 W$ Quiescent Current $I_0 = 1.0 A$ LM140 LM340 LM140 (T_J = +25°C) LM340 (T_J = +25°C)	ι _b		4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
	ΔI _B			0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	59 53 59 53	69 69 		dB
Dropout Voltage	V _{in} - VO		2.0		Vdc
Output Resistance	RO	_	110	_	mΩ
Short-Circuit Current Limit	I _{sc}		500		mA
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	Vn	-	110	-	μV
Average Temperature Coefficient of Output Voltage $I_{O} = 5.0 \text{ mA}$	тсv _O	-	±2.3		mV⁄°C
Peak Output Current (TJ = +25°C)	IO	_	2.4	-	А
Input Voltage to Maintain Line Regulation (T _J = +25°C) I _O = 1.0 A		21	-	-	Vdc

NOTES:

1. $T_{low} = -55^{\circ}C$ for LM140 = 0°C for LM340

Thigh = +150°C for LM140

= +125°C for LM340

2. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 24 ELECTRICAL CHARACTERISTICS

(Vin = 33 V, I_O = 500 mA, T_J = T_{low} to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) IO = 5.0 mA to 1.0 A	vo	23	24	25	Vdc
Input Regulation (Note 2) 28 to 38 Vdc 27 to 38 Vdc (T _J = +25°C) 30 to 36 Vdc, I _O = 1.0 A 27.1 to 38 Vdc, I _O = 1.0 A (T _J = +25°C)	Reg _{in}	=		240 240 120 240	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.0$ A 5.0 mA $\leq I_O \leq 1.5$ A (T _J = +25°C) 250 mA $\leq I_O \leq 750$ mA (T _J = +25°C)	Regload			240 240 120	mV
$ \begin{array}{l} \text{Output Voltage} \\ \text{LM140} \\ 28 \leqslant \text{V}_{in} \leqslant 38 \text{ Vdc } 5.0 \text{ mA} \leqslant \text{I}_{O} \leqslant 1.0 \text{ A}, \\ \text{P}_{O} \leqslant 15 \text{ W} \\ \text{LM340} \\ 27 \leqslant \text{V}_{in} \leqslant 38 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{O} \leqslant 1.0 \text{ A}, \\ \text{P}_{O} \leqslant 15 \text{ W} \end{array} $	Vo	22.8 22.8	24 24	25.2 25.2	Vdc
Quiescent Current $I_0 = 1.0 \text{ A}$ LM140 LM340 LM140 (T _J = +25°C) LM340 (T _J = +25°C)	Iв		4.0 4.0 4.0 4.0	7.0 8.5 6.0 8.0	mA
	ΔI _b			0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	56 50 56 50	66 66 —		dB
Dropout Voltage	V _{in} - Vo		2.0		Vdc
Output Resistance	RO		150	-	mΩ
Short-Circuit Current Limit	I _{sc}		200	_	mA
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	V _n	-	170	-	μV
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA	тсv _О		±3.0	-	mV∕°C
Peak Output Current (T」= +25°C)	lo		2.4	—	A
Input Voltage to Maintain Line Regulation (TJ = +25°C) IO = 1.0 A		27.1	-	-	Vdc

NOTES:

1. $T_{low} = -55^{\circ}C$ for LM140 $T_{high} = +150^{\circ}C$ for LM140 = 0°C for LM340

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

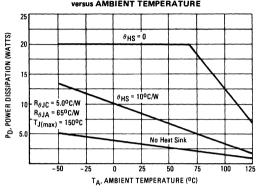
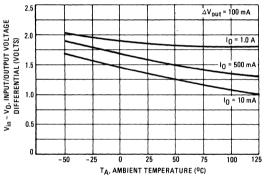
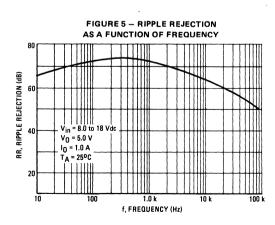




FIGURE 1 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE

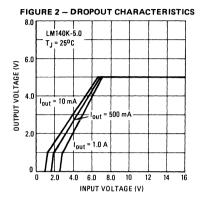
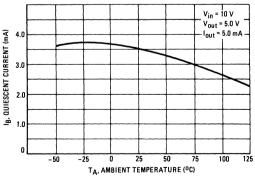
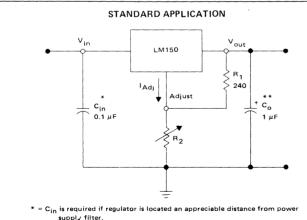



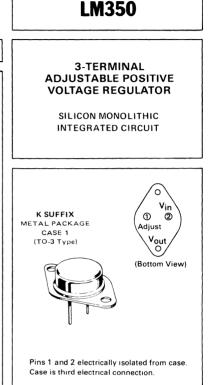
FIGURE 4 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

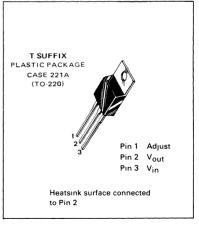

Advance Information

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM150/250/350 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 3.0 A over an output voltage range of 1.2 V to 33 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM150 series serve a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM150 series can be used as a precision current regulator


- Guaranteed 3.0 Amps Output Current
- Output Adjustable between 1.2 V and 33 V
- Load Regulation Typically 0.1%
- Line Regulation Typically 0 005%/V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages


* = C₀ is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 V (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since I_{Adj} is controlled to less than 100 $\mu A,$ the error associated with this term is negligible in most applications

LM150 LM250

ORDERING INFORMATION

Device	Temperature Range	Package
LM150K	T _J = -55°C to +150°C	Metal Power
LM250K	T _J = -25°C to +150°C	Metal Power
LM350K	T _J = 0°C to +125°C	Metal Power
LM350T	T j = 0°C to +125°C	Plastic Power

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Input-Output Voltage Differential		VI-VO	35	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM150 LM250 LM350	Tj	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Soldering Lead Temperature (10 seconds)			300	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, VI-VO = 5 V; IL = 1.5 A; TJ = Tlow to Thigh [see Note 1]; Pmax = 30 W)

	1			M150/2	50	100.00	1		
Characteristic	Figure	Symbol	Min	Тур	Max	Min	LM350 Typ	Max	Unit
Line Regulation (Note 2) T _A = 25°C, 3 V \leq V _I - V _O \leq 35 V	1	Regline	-	0.005	0.01	-	0.005	0.03	%/V
Load Regulation (Note 2) $T_A = 25^{\circ}C$, 10 mA $\leq I_L \leq 3A$	2	Regload							
$V_0 \leq 5V$ $V_0 \geq 5V$			_	5 0.1	15 0.3	_	5 0.1	25 0.5	mV % VO
Thermal Regulation Pulse = 20 ms	—	Reg _{therm}		0.002	-	-	0.002	—	%/W
Adjustment Pin Current	3	l _{Adj}		50	100	-	50	100	μA
Adjustment Pin Current Change 3 V \leqslant VI-VO \leqslant 35 V	1,2	∆ ^I Adj							μA
10 mA \leq IL \leq 3 A, PD \leq Pmax			-	0.2	5	-	0.2	5	
Reference Voltage (Note 3) $3 V \leq V_I \cdot V_O \leq 35 V$ $10 m A \leq 10 \leq 24 A C \leq 2$	3	V _{ref}	1 00	1.05	1.00	1.00	1.05		v
$10 \text{ mA} \leq I_{L} \leq 3 \text{ A}, P_{D} \leq P_{\text{max}}$			1.20	1.25	1.30	1.20	1.25	1.30	
Line Regulation (Note 2) $3 V \leq V_I \cdot V_O \leq 35 V$	1	Regline		0.02	0.05	_	0.02	0.07	%/V
Load Regulation (Note 2) 10 mA $\leq I_L \leq 3$ A	2	Regload							
$V_{O} \leq 5 V$ $V_{O} \geq 5 V$			_	20 0.3	50 1	_	20 0.3	70 1.5	mV %VO
Temperature Stability ($T_{low} \leq T_J \leq T_{high}$)	3	TS		1	-	—	1		%Vo
Minimum Load Current to Maintain Regulation (VI-VO = 35 V)	3	^I Lmin		3.5	5	_	3.5	10	mA
$\begin{array}{l} \mbox{Maximum Output Current} \\ \mbox{V}_{I}\mbox{-}V_{O} \leqslant 10 \mbox{ V}, \mbox{P}_{D} \leqslant \mbox{P}_{max} \\ \mbox{V}_{I}\mbox{-}V_{O} = 30 \mbox{ V}, \mbox{P}_{D} \leqslant \mbox{P}_{max}, \mbox{T}_{A} = 25^{\circ}\mbox{C} \end{array}$	3	I _{max}	3.0 0.3	4.5 1	_	3.0 0.25	4.5 1		A
RMS Noise, % of V _O T _A = 25°C, 10 Hz \leq f \leq 10 kHz	-	N	_	0.003	_	_	0.003	_	%V _O
Ripple Rejection, V _O = 10 V, f = 120 Hz (Note 4)	4	RR							dB
Without C _{ADJ} C _{ADJ} = 10 μF			 66	65 80	_	 66	65 80	_	
Long Term Stability, $T_J = T_{high}$ (Note 5) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S	_	0.3	1	_	0.3	1	%/1.0 k Hrs.
Thermal Resistance Junction to Case Peak (Note 6) K Package (TO-3)	-	R _θ JC		2.3			2.3	-	°C/W
T Package (TO-220) Average (Note 7) K Package (TO-3) T Package (TO-220)			_	-	1.5		2.3 — —	1.5 1.5	

NOTES:

Thigh = +150°C for LM150 (1) T_{low} = -55°C for LM150 -25°C for LM250 = +150°C for LM250 0°C for LM350 = +125°C for LM350

(2) Load and line regulation are specified at constant junction temperature. Changes in $V_{\ensuremath{O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

(3) Selected devices with tightened tolerance reference voltage available.

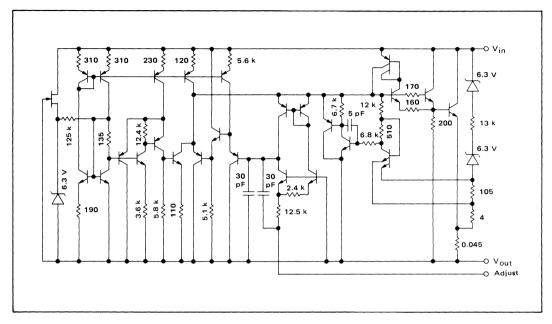
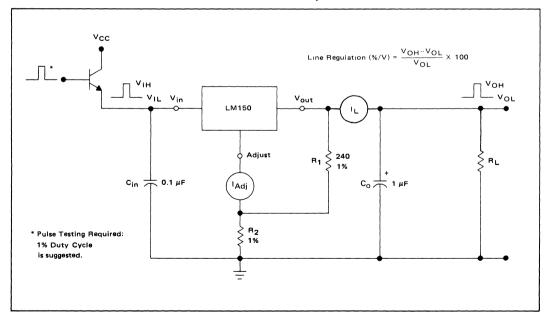
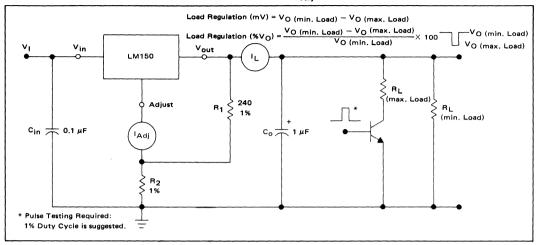
(4) C_{ADJ}, when used, is connected between the adjustment pin and ground.

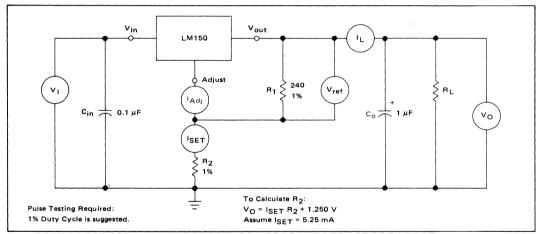
(5) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

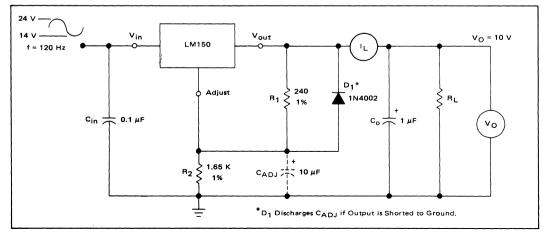
(6) Thermal Resistance evaluated measuring the hottest temperature on the die using an infrared scanner. This method of evaluation yields very accurate thermal resistance values which are conservative when compared to other measurement techniques.

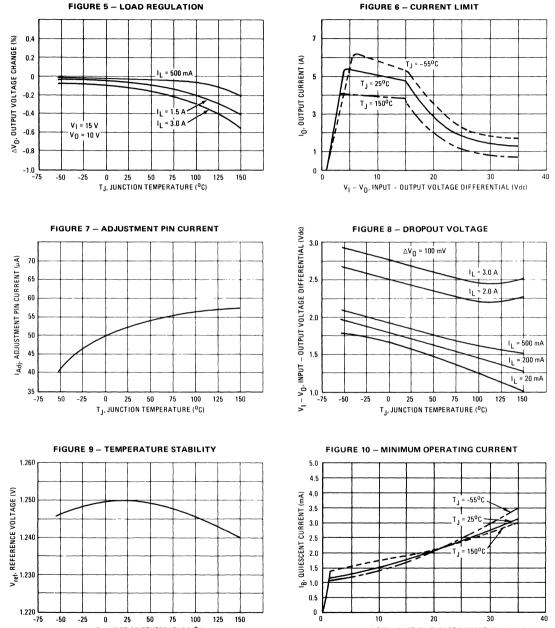
(7) The average die temperature is used to derive the value of thermal resistance junction to case (average).

SCHEMATIC DIAGRAM



FIGURE 1 - LINE REGULATION AND ΔIAdj/LINE TEST CIRCUIT





 $v_{1} - v_{0}$, INPUT – OUTPUT VOLTAGE DIFFERENTIAL (Vdc)

225

T_J, JUNCTION TEMPERATURE (^OC)

FIGURE 11 – RIPPLE REJECTION VS OUTPUT VOLTAGE

FIGURE 12 - RIPPLE REJECTION VS. OUTPUT CURRENT

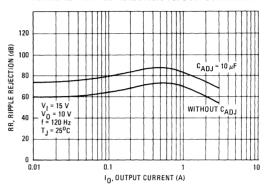


FIGURE 13 - RIPPLE REJECTION VS. FREQUENCY

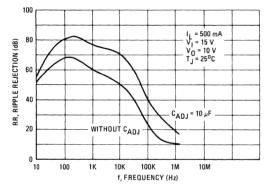


FIGURE 15 - LINE TRANSIENT RESPONSE

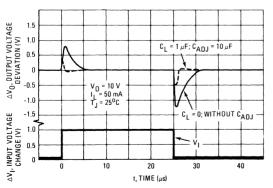
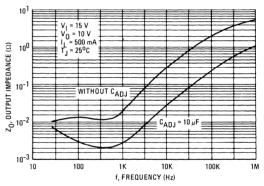
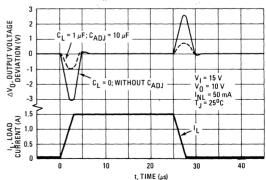
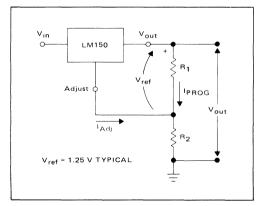




FIGURE 14 - OUTPUT IMPEDANCE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION


The LM150 is a 3-terminal floating regulator. In operation, the LM150 develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{Adj} R2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM150 was designed to control I_{Adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM150 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

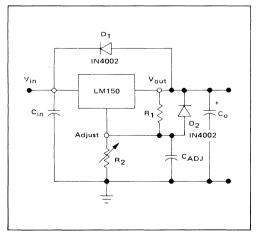
LOAD REGULATION

The LM150 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μ F disc or 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{ADJ}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application.


Although the LM150 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C₀) in the form of a 1 μ F tantalum or 25 μ F aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM150 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0 > 25 \ \mu$ F, $C_{ADJ} > 10 \ \mu$ F). Diode D₁ prevents C₀ from discharging thru the I.C. during an input short circuit. Diode D₂ protects against capacitor C_{ADJ} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{ADJ} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

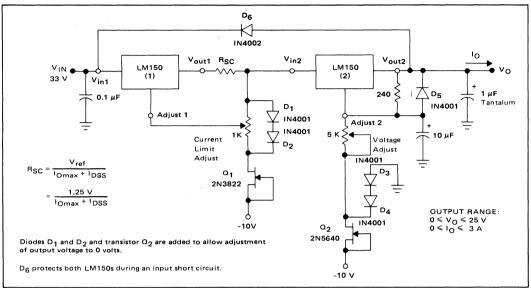


FIGURE 19 – "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE

FIGURE 20 - ADJUSTABLE CURRENT LIMITER

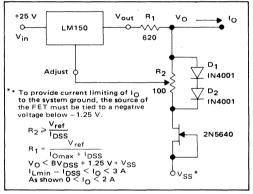


FIGURE 22 - SLOW TURN-ON REGULATOR

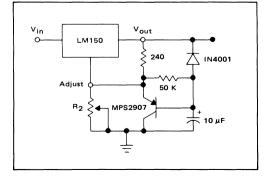
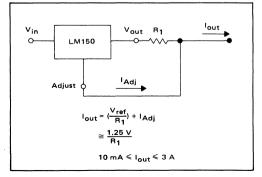
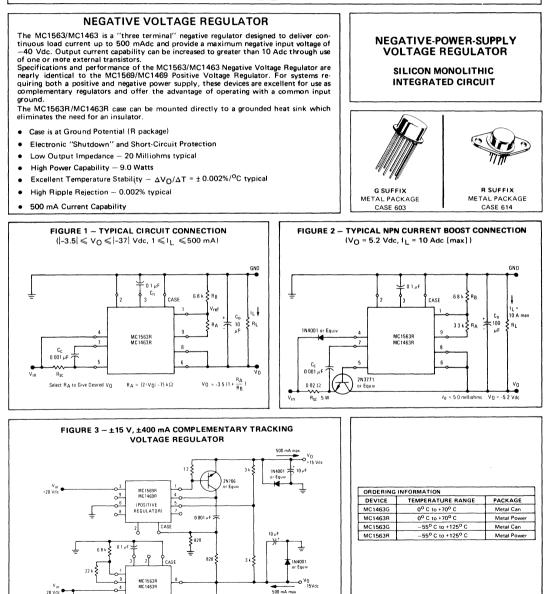



FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR

FIGURE 23 - CURRENT REGULATOR


(NEGATIVE REGULATOR)

<u>_</u>___

- ---- ---- -----

Specifications and Applications Information

Rating	Symbol	Va	lue	Unit
Input Voltage MC1463 MC1563	VI	35 40		Vdc
		G Package	R Package	ļ
Load Current – Peak	1	250	600	mA
Current, Pin 2	12	10	10	mA
Power Dissipation and Thermal Characteristics $T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = 25^{\circ}C$ Derate above $T_C = 25^{\circ}C$ Thermal Resistance, Junction to Case	P _D 1/R _θ JA R _θ JA P _D 1/R _θ JC R _θ JC	0.68 5.44 184 1.8 14.4 69.4	2.4 16 62 9.0 61 17	Watts mW/ ^O C ^O C/W Watts mW/ ^O C ^O C/W
Operating and Storage Junction Temperature Range	⊤j, T _{stg}	-65 to +150		°C

MAXIMUM RATIN	GS (T _C = +25 ^o C	unless otherwise noted.)
---------------	---	--------------------------

OPERATING TEMPERATURE RANGE

Operating Ambient Temperature Range	TA		°c
MC1463		0 to +70	
MC1563		-55 to +125	

ELECTRICAL CHARACTERISTICS (I_L = 100 mAdc, T_C = +25^oC, V_{in} = 15 V, V_O = 10 V unless otherwise noted.)

				MC1563						
Characteristic	Fig.	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage (T _A = T _{low} $\textcircled{1}$ to T _{high} $\textcircled{2}$ I _L = 1.0 mA)	4	1,6	VI	-8.5	-	-40	-9.0	-	-35	Vdc
Output Voltage Range (IL = 1.0 mA)	4	-	Vo	-3.6	-	-37	-3.8	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	4	-	V _{ref}	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc
Minimum Input-Output Voltage Differential (R _{sc} = 0)	4	2	Vin - VO	-	1.5	2.7	-	1.5	3.0	Vdc
Bias Current (Standby Current) (I _L = 1.0 mAdc, I _{IB} = I _I - I _L)	4	-	ЧВ	-	7.0	11	-	7.0	14	mAdc
Output Noise ($C_n = 0.1 \ \mu F$, f = 10 Hz to 5.0 MHz)	4	-	۷N	-	120	-	-	120	-	µV(rms)
Temperature Coefficient of Output Voltage	4	3	ΔV _O /ΔΤ	-	±0.002	-	-	±0.002		%/ ⁰ C
Operating Load Current Range (R _{sc} = 0.3 ohm) R Package (R _{sc} = 2.0 ohms) G Package	4	-	^I LR	1.0 1.0	-	500 200	1.0 1.0		500 200	mAdc
Input Regulation (V _{in} = 1.0 V rms, f = 1.0 kHz)	4	4	Regline	-	0.002	0.015	-	0.003	0.030	%/Vo
Load Regulation (T _J = Constant [1.0 mA ≤I _L ≤ 20 mA]) (T _C = +25 ^o C [1.0 mA ≤I _L ≤50 mA]) R Package G Package	6	5	Reg _{load}		0.4 0.005 0.01	1.6 0.05 0.13		0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (f = 1.0 kHz)	7	-	zo	-	20	-	-	35	_	milliohms
Shutdown Current (V _I = -35 Vdc)	8	-	^I sd	-	7.0	15	-	14	50	μAdc

 $T_{1ow} = 0^{\circ}C \text{ for MC1463}$ $= -55^{\circ}C \text{ for MC1563}$ Thigh = +70°C for MC1463 = +125°C for MC1563 Heat sink required for Thigh testing of "G" package.

MC1463, MC1563

- Note 1 "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode.
- Note 2. This parameter states that the MC1563/MC1463 will regulate properly with the input-output voltage differential $|V_1 V_0|$ as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with $|V_1 V_0|$ as low as 1.5 Vdc as shown in the typical column.
- Note 3. "Temperature Coefficient of Output Voltage" is defined as

$$\Delta V_{O} / \Delta T = \frac{\pm (V_{O} \max - V_{O} \min) (100)}{\triangle T_{A} (V_{O} \otimes T_{A} = +25^{\circ}C)}$$

where $\triangle T_A = +180^{\circ}C$ for the MC1563 +75°C for the MC1463

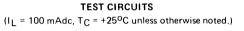
The output-voltage adjusting resistors (R_A and R_B) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature

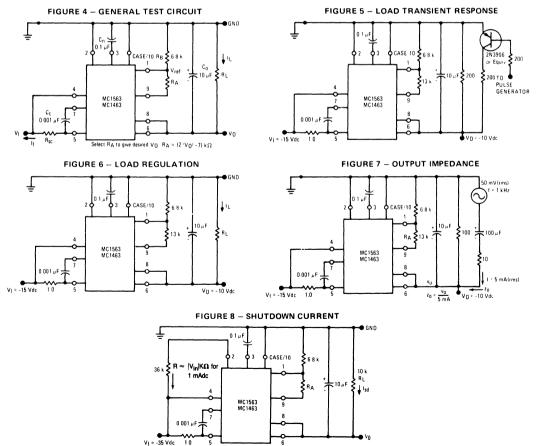
Note 4. Input regulation is the percentage change in output voltage per volt change in the input voltage and is expressed as

Input Regulation =
$$\frac{V_0}{V_0 (V_1)}$$
 100 (%/V₀)

where v_{O} is the change in the output voltage V_{O} for the input change $v_{in},$

The following example illustrates how to compute maximum output voltage change for the conditions given:


$$\begin{aligned} & \text{Regin} = 0.015\%/V_{O} \\ & \text{V}_{O} = 10 \text{ Vdc} \\ & \text{v}_{in} = 1.0 \text{ V(rms)} \end{aligned}$$


$$\begin{aligned} & \text{V}_{O} = \frac{(\text{Regl_{ine}}) (V_{I}) (V_{O})}{100} \\ &= \frac{(0.015)(1.0)(10)}{100} \\ &= 0.0015 \text{ V(rms)} \end{aligned}$$

Note 5. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation =
$$\frac{VO|I_{L} = 1.0 \text{ mA}|^{-}VO|I_{L} = 50 \text{ mA}|}{VO|I_{I} = 1.0 \text{ mA}|} \times 100$$

Note 6. Not to exceed maximum package power dissipation

GENERAL DESIGN INFORMATION

- 1. Output Voltage, VO
 - a) Output Voltage is set by resistors RA and RR (see Figure 9). Set $R_B = 6.8$ k ohms and determine R_A from the graph of Figure 11 or from the equation:

 $R_A \approx (2 |V_0| - 7) k\Omega$

- b) Output voltage can be varied by making RA adjustable as shown in Figures 9 and 10.
- c) Output voltage, V_0 , is determined by the ratio of R_A and R_B therefore optimum temperature performance can be achieved If RA and RB have the same temperature coefficient.
- d) $V_{O} = V_{ref} (1 + RA)$; therefore the tolerance on RB

output voltage is determined by the tolerance of Vref and RA and RB.

2. Short-Circuit Current, ISC

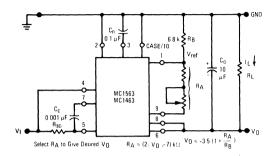
Short-Circuit Current, I_{SC} is determined by R_{SC} . R_{SC} may be chosen with the aid of Figure 11 when using the typical circuit connection of Figure 9.

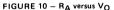
 Compensation, C_C A 0.001 µF capacitor (C_c, see Figure 9), will provide adequate compensation in most applications, with or without current boost. Smaller values of Cc will reduce stability and larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of Cc should be close to the MC1563/MC1463 with short lead lenaths.

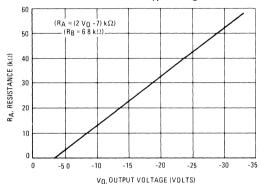
4. Noise Filter Capacitor, Cn

A 0.1 μ F capacitor, \ddot{C}_n , from Pin 3 to ground will typically reduce the output noise voltage to $120 \,\mu V(rms)$. The value of Cn can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.

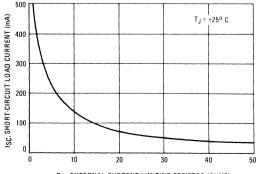
5. Output Capacitor, C_0 The value of C_0 should be at least 10 μ F in order to provide good stability.

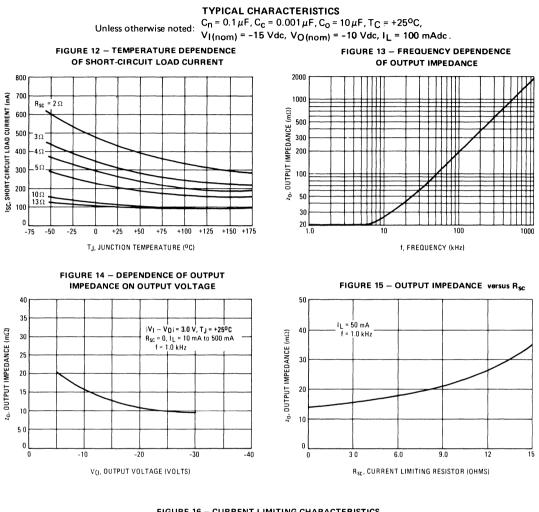

6. Shutdown Control

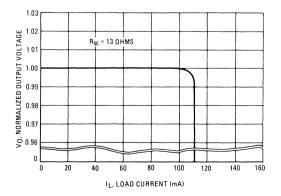

One method of turning "OFF" the regulator is to draw 1 mA from Pin 2 (See Figure 8). This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shutdown for high junction temperatures. This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard Logic levels of MRTL, MDTL* or MTTL* can also be used to turn the regulator "ON" or "OFF".


7. Remote Sensing

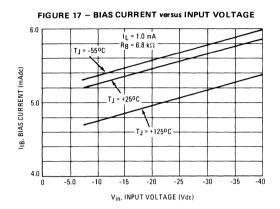
The connection to Pin 8 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure IL) on zo can be greatly reduced.


FIGURE 9 - TYPICAL CIRCUIT CONNECTION





Rsc, EXTERNAL CURRENT-LIMITING RESISTOR (OHMS)


MC1463, MC1563

233

TYPICAL CHARACTERISTICS (continued)

FIGURE 18 – EFFECTS OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL

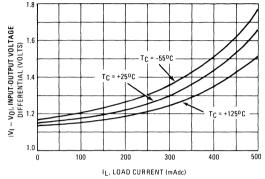


FIGURE 19 – EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION

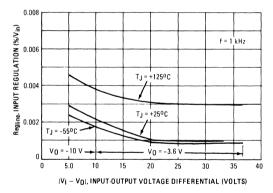


FIGURE 21 – LOAD TRANSIENT RESPONSE

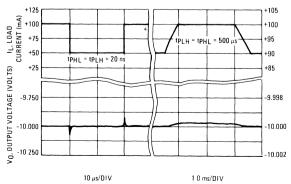
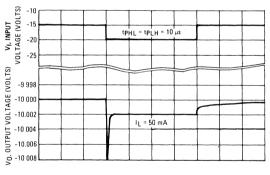
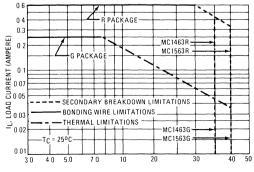




FIGURE 20 - INPUT TRANSIENT RESPONSE

100 µs/DIV

FIGURE 22 - DC OPERATING AREA

(VI - VO), INPUT-OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)

MC1466L MC1566L

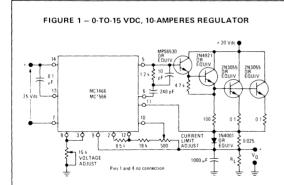
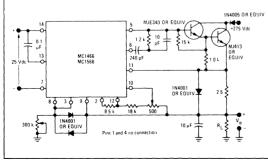
Specifications and Applications Information

MONOLITHIC VOLTAGE AND CURRENT REGULATOR

This unique "floating" regulator can deliver hundreds of volts – limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466/ MC1566 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance.

- Voltage/Current Regulation with Automatic Crossover
- Excellent Line Voltage Regulation, 0.01% +1.0 mV
- Excellent Load Voltage Regulation, 0.01% +1.0 mV
- Excellent Current Regulation, 0.1% +1.0 mA
- Short-Circuit Protection
- Output Voltage Adjustable to Zero Volts
- Internal Reference Voltage
- Adjustable Internal Current Source

TYPICAL APPLICATIONS

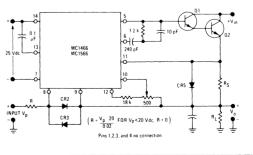

FIGURE 3 - 0-TO-250 VDC, 0.1 AMPERE REGULATOR

FIGURE 2 - 0-TO-40 VDC. 0.5-AMPERE REGULATOR

FIGURE 4 – REMOTE PROGRAMMING

PRECISION WIDE-RANGE VOLTAGE and CURRENT REGULATOR

EPITAXIAL PASSIVATED INTEGRATED CIRCUIT

ORDERING	ORDERING INFORMATION						
Device	Package						
MC1466L	0°C to +70° C	Ceramic DIP					
MC1566L	55°C to +125°C	Ceramic DIP					

MC1466L, MC1566L

MAXIMUM RATINGS ($T_A = +25^{\circ}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Auxiliary Voltage	MC1466 MC1566	V _{aux}	30 35	Vdc
Power Dissipation (Package Limitation) Derate above $T_A = +50^{\circ}C$		Ρ _D 1/ _{θJA}	750 6.0	mW mW/ ^o C
Operating Temperature Range	MC1466 MC1566	TA	0 to +70 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{aux} = +25$ Vdc unless otherwise noted)

Characteristic Definition	Characteristic		Symbol	Min	Тур	Max	Units
	Auxiliary Voltage (See Notes 1 & (Voltage from pin 14 to pin 7)	2) MC1466 MC1566	V _{aux}	21 20	-	30 35	Vdc
	Auxiliary Current	MC1466 MC1566	laux	-	9.0 7.0	12 8.5	mAdc
V _{BUX} 13 MC1466 ⁻ 6 240 pF 2N3055 MC1566 0F 2N3055 MC1566 0F 2N3055 11	Internal Reference Voltage (Voltage from pin 12 to pin 7)	MC1466 MC1566	VIR	17.3 17.5	18.2 18.2	19.7 19	Vdc
2 	Reference Current (See Note 3)	MC1466 MC1566	l _{ref}	0.8 0.9	1.0 1 0	1.2 1.1	mAdc
	Input Current-Pin 8	MC1466 MC1566	18	-	6.0 3.0	12 6.0	µAdc
	Power Dissipation	MC1466 MC1566	PD	-	-	360 300	mW
	Input Offset Voltage, Voltage Co Amplifier (See Note 4)	MC1466 MC1566	Viov	0 3.0	15 15	40 25	mVdc
	Load Voltage Regulation (See Note 5)	MC1466 MC1566	ΔV _{iov}	-	1.0 0.7	3.0 1.0	mV
V _{aux} O MC1466* 6 240 pF S1 OR EDUIV		MC1466 MC1566	∆V _{ref} /V _{ref}		0.015 0.004	0.03 0.01	%
	Line Voltage Regulation (See Note 6)	MC1466 MC1566	ΔV _{iov}	-	1.0 0.7	3.0 1.0	mV
$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$		MC1466 MC1566	∆V _{ref} /V _{ref}		0.015 0.004	0.03 0.01	%
÷	Temperature Coefficient of Outp (T _A = 0 to +75°C) (T _A = -55 to +25°C) (T _A = +25 to +125°C)	ut Voltage MC1466 MC1566 MC1566	TCV0	-	0.01 0.006 0.004		%/ ^o C
→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Input Offset Voltage, Current Co Amplifier (See Note 4) (Voltage from pin 10 to pin 11)	ntrol MC1466 MC1566	V _{ioi}	0 3.0	15 15	40 25	mVdc
$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	Load Current Regulation (See Note 7)	MC1466 MC1566	Δ۱μ/۱	-	-	0.2 0.1 1.0	%
$\int_{\mathbb{R}^{3}} \frac{1}{2}		MC1466 MC1566	ΔI _{ref}	-	-	1.0 1.0	mAdc

236

MC1466L, MC1566L

NOTE 1:

The instantaneous input voltage, Vaux, must not exceed the maximum value of 30 volts for the MC1466 or 35 volts for the MC1566. The instantaneous value of Vaux must be greater than 20 volts for the MC1566 or 21 volts for the MC1466 for proper internal regulation.

NOTE 2

The auxiliary supply voltage V_{aux} , must "float" and be electrically isolated from the unregulated high voltage supply, Vin-

NOTE 3:

Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship: lref (mA) = $\frac{8.55}{R_{e}}$ (kQ)

 $R_1(k\Omega)$

NOTE 4:

A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero

NOTE 5:

Load Voltage Regulation is a function of two additive components, ΔV_{iov} and ΔV_{ref} , where ΔV_{iov} is the change in input offset voltage (measured between pins 8 and 9) and ΔV_{ref} is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is:

a. With S1 open ($I_4 = 0$) measure the value of V_{iov} (1) and Vref (1)

b, Close S1, adjust R4 so that $I_{\Delta} = 500 \,\mu\text{A}$ and note VIOV (2) and Vref (2)

Then $\Delta V_{iov} = V_{iov} (1) - V_{iov} (2)$

% Reference Regulation =

$$\frac{[V_{ref (1)} - V_{ref (2)}]}{V_{ref (1)}} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$$

Load Voltage Regulation =

 $\frac{\Delta V_{ref}}{\Delta V_{iov}}$ (100%) + ΔV_{iov} · Vref

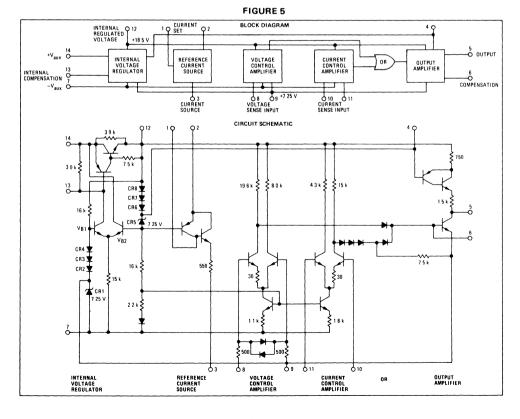
NOTE 6:

- Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, ΔV_{IOV} and ΔV_{ref} (see note 5). The measurement procedure is
- a. Set the auxiliary voltage, V_{aux} , to 22 volts for the MC1566 or the MC1466. Read the value of
- Viov (1) and Vref (1).
 b. Change the V_{aux} to 28 volts for the MC1566 or the MC1466 and note the value of V_{iov} (2) and Vref(2). Then compute Line Voltage Regulation:

$$\Delta V_{iov} = \Delta V_{iov} (1) - V_{iov} (2)$$

$$\frac{[V_{ref}(1) - V_{ref}(2)]}{V_{ref}(1)} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$$

Line Voltage Regulation =

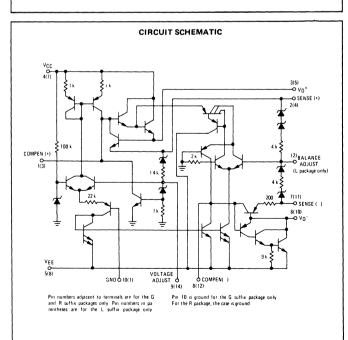

$$\frac{\Delta V_{\text{ref}}}{V_{\text{ref}}}$$
 (100%) + ΔV_{iov} ·

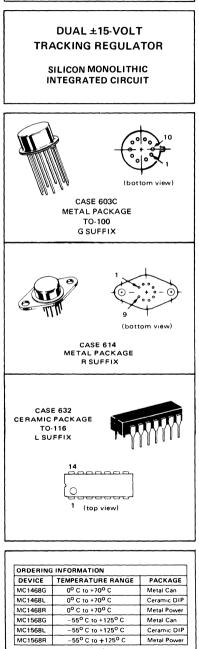
NOTE 7:

- Load Current Regulation is measured by the following
- procedure: a. With S2 open, adjust R3 for an initial load current,
- $I_L(1)$, such that V_0 is 8.0 Vdc. b. With S2 closed, adjust RT for $V_0 = 1.0$ Vdc and read
 - IL(2). Then Load Current Regulation = [1]

$$\frac{L(2) - IL(1)}{IL(1)} (100\%) + I_{re}$$

where Iref is 1.0 mAdc, Load Current Regulation is specified in this manner because Iref passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, R_s.




MC1468 MC1568

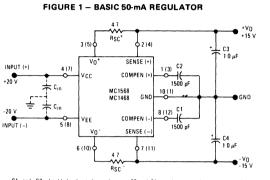
DUAL ±15-VOLT REGULATOR

The MC1568/MC1468 is a dual polarity tracking regulator designed to provide balanced positive and negative output voltages at currents to 100 mA. Internally, the device is set for ± 15-volt outputs but an external adjustment can be used to change both outputs simultaneously from 8.0 to 20 volts. Input voltages up to ± 30 volts can be used and there is provision for adjustable current limiting. The device is available in three package types to accomodate various power requirements.

- Internally set to ±15 V Tracking Outputs
- Output Currents to 100 mA
- Outputs Balanced to within 1% (MC1568)
- Line and Load Regulation of 0.06%
- 1% Maximum Output Variation due to Temperature Changes
- Standby Current Drain of 3.0 mA
- Externally Adjustable Current Limit
- Remote Sensing Provisions
- Case is at Ground Potential (R suffix package)

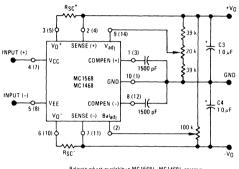
MAXIMUM RATINGS (T_C = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol		Value		Unit
Input Voltage	V _{CC} , V _{EE}	30			Vdc
Peak Load Current	Ірқ		mA		
Power Dissipation and Thermal Characteristics		G Package	R Package	L Package	
$T_A = +25^{\circ}C$	PD	0.8	2.4	1.0	Watts
Derate above $T_A = +25^{\circ}C$	1/0 _{JA}	6.6	28.5	10	mW/ ⁰ C
Thermal Resistance, Junction to Air	θJA	150	35	100	°C/W
$T_{C} = +25^{\circ}C$	PD	2.1	9.0	2.5	Watts
Derate above $T_{C} = +25^{\circ}C$	1/0 _{JC}	14	61	20	mW/ ⁰ C
Thermal Resistance, Junction to Case	θJC	70	17	50	°C/W
Storage Junction Temperature Range	Tj,T _{stg}	-65 to +175			°C
Minimum Short-Circuit Resistance	R _{SC} (min)	4.0			Ohms


Ambient Temperature	TA		°C
MC1468		0 to +70	
MC1568		-55 to +125	i

$\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +20 \ V, \ V_{EE} = -20 \ V, \ C1 = C2 = 1500 \ pF, \ C3 = C4 = 1.0 \ \mu F, \ R_{SC}^- = 4.0 \ \Omega, \\ I_{L}^+ = I_{L}^- = 0, \ T_{C} = +25 \ OC \ unless \ otherwise \ noted.) \ (See \ Figure \ 1.) \end{array}$

			MC 1568			MC1468		
Characteristic	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage	Vo	±14.8	±15	±15.2	±14.5	±15	±15.5	Vdc
Input Voltage	Vin	-	-	±30	-	-	±30	Vdc
Input-Output Voltage Differential	Vin - VO	2.0	-	-	2.0	-	-	Vdc
Output Voltage Balance	V _{Bal}	-	±50	±150	-	±50	±300	mV
Line Regulation Voltage ($V_{in} = 18 V to 30 V$) (T_{low} to T_{high}	Reg _{in}	-	-	10 20			10 20	mV
Load Regulation Voltage (I _L = 0 to 50 mA, T _J = constant) (T _A = T _{Iow} to T _{high})	RegL	-		10 30			10 30	mV
Output Voltage Range L Package (See Figure 4.) R and G Packages (See Figures 2 and 13.)	VOR	±8.0 ±14.5		±20 ±20	±8.0 ±14.5		±20 ±20	Vdc
Ripple Rejection (f = 120 Hz)	RR	-	75	-	-	75	-	dB
Output Voltage Temperature Stability (T _{Iow} to T _{high})	TS _{VO}	-	0.3	1.0	-	0.3	1.0	%
Short-Circuit Current Limit (R _{SC} = 10 ohms)	^I SC	-	60	-	-	60	-	mA
Output Noise Voltage (BW = 100 Hz - 10 k Hz)	VN	_	100	-	-	100	-	μV(RMS)
Positive Standby Current (V _{in} = +30 V)	'B ⁺	-	2.4	4.0	_	2.4	4.0	mA
Negative Standby Current (V _{in} = -30 V)	¹ В_	_	1.0	3.0	-	1.0	3.0	mA
Long-Term Stability	∆V0/∆t	-	0.2	-	-	0.2	-	%/k Hr


(1) $T_{1ow} = 0^{\circ}C$ for MC1468 = -55°C for MC1568

② $T_{high} = +70^{\circ}C$ for MC1468 = +125°C for MC1568

TYPICAL APPLICATIONS

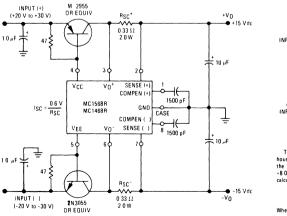
FIGURE 2 - VOLTAGE ADJUST AND BALANCE ADJUST CIRCUIT (14.5 V \leq V_{out} \leq 20 V)

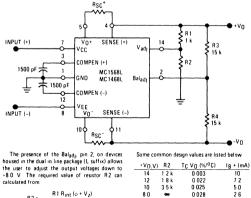
Balance adjust available in MC1568L, MC1468L ceramic dual in line package only

C1 and C2 should be located as close to the device as possible A 0.1 μF ceramic capacitor (C₁₀) may be required on the input lines if the device is located an appreciable distance from the rectifier filter capacitors

~

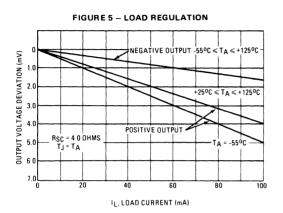
C3 and C4 may be increased to improve load transient response and to reduce the output noise voltage. At low temperature operation, it may be necessary to hypass C4 with a 0.1 µF ceraniic disc capacitor


FIGURE 3 - ±1.5-AMPERE REGULATOR


(Short-Circuit Protected, with Proper Heatsinking)

(Metal-Packaged Devices Only, R Suffix)

FIGURE 4 - OUTPUT VOLTAGE ADJUSTMENT FOR 8.0 V $\leq |\pm V_0| \leq 14.5$ V


(Ceramic-Packaged Devices Only, L Suffix.)

8.0 - 0 0 2 8

R1 R_{int} (ϕ + V_z) $R2 = \frac{1}{R_{int} (V_0 - \phi - V_z) - \phi R1}$ Where R_{int} = An internal Resistor = R1 = 1 ks: ϕ = 0.68 V V_{Z} = 6.6 V

 $\label{eq:VCC} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = +20 \ V, \ V_{EE} = -20 \ V, \ V_{O} = \pm 15 \ V, \ T_{A} = +25^{o} C \ unless \ otherwise \ noted.) \end{array}$

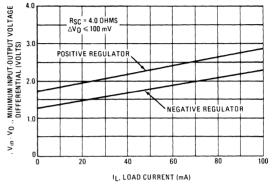
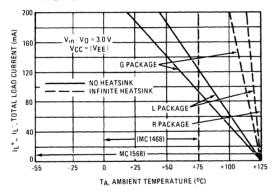
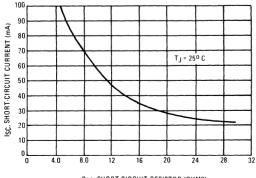
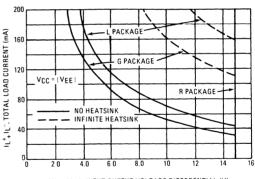
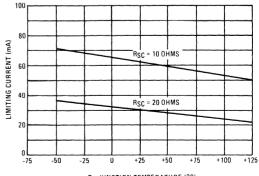
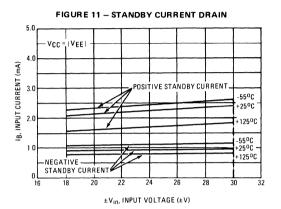




FIGURE 6 - REGULATOR DROPOUT VOLTAGE

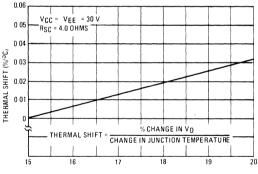
FIGURE 7 - MAXIMUM CURRENT CAPABILITY



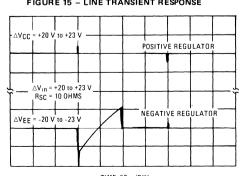

RSC, SHORT-CIRCUIT RESISTOR (OHMS)

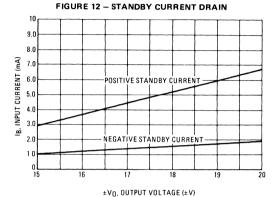

FIGURE 8 - MAXIMUM CURRENT CAPABILITY

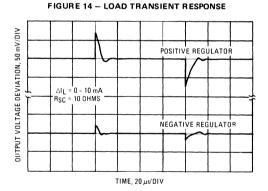
[Vin · VO], INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V)

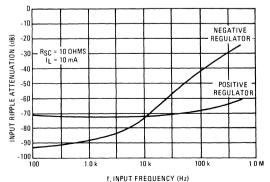


TYPICAL CHARACTERISTICS (continued) (V_{CC} = +20 V, V_{EE} = -20 V, V_O = \pm 15 V, T_A = +25^oC unless otherwise noted.)

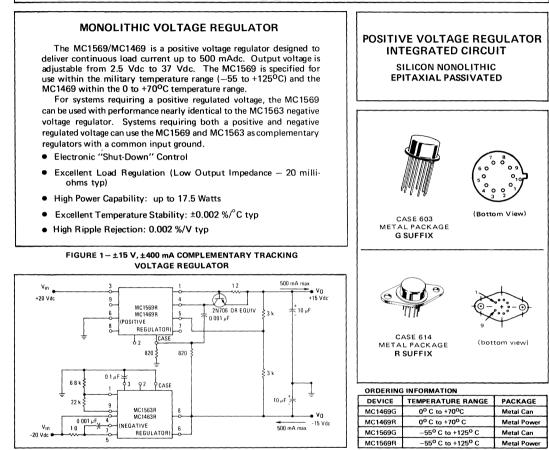


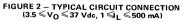

±V0, OUTPUT VOLTAGE (±V)

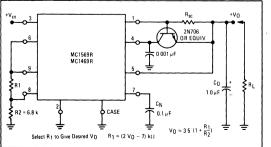




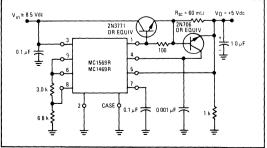
TIME, 50 µs/DIV


FIGURE 16 - RIPPLE REJECTION





MC1469 MC1569


Specifications and Applications Information

				r
Rating	Symbol	Va	lue	Unit
Input Voltage	Vin			Vdc
MC1469		3	5	
MC1569		4	0	
		G Package	R Package	
Peak Load Current	IPK	250	600	mA
Current, Pin 2	lpin 2	10	10	mA
Current, Pin 9	Ipin 9	5.0	5.0	
Power Dissipation and Thermal Characteristics				
$T_{\Delta} = +25^{\circ}C$	PD	0.68	3.0	Watts
Derate above $T_A = +25^{\circ}C$	1/θ JA	5.44	24	mW/ºC
Thermal Resistance, Junction to Air	θJA	184	41.6	°C/W
$T_{C} = +25^{\circ}C$	PD	1.8	14	Watts
Derate above T _C = +25 ^o C	1/0 JC	14.4	140	mW/ ^o C
Thermal Resistance, Junction to Case	θJC	69.4	7.15	°C/W
Operating and Storage Junction Temperature	TJ, Tstg	-65 to	+150	°C

MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

OPERATING TEMPERATURE RANGE

Ambie	nt Temperature	ТА		°C
	MC1469		0 to +70	
	MC1569		-55 to +125	

ELECTRICAL CHARACTERISTICS

 $(T_{C} = +25^{\circ}C \text{ unless otherwise noted}) \text{ (Load Current} = 100 \text{ mA for "R" Package device, unless otherwise noted)} = 10 \text{ mA for "G" Package device,}$

				MC1569			MC1469			
Characteristic	Fig.	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage (T _A = T _{low} $^{\textcircled{1}}$ to T _{high} $^{\textcircled{2}}$)	4	1	V _{in}	8.5	-	40	9.0	-	35	Vdc
Output Voltage Range	4,5		Vo	2.5	-	37	2.5	-	32	Vdc
Reference Voltage (Pin 8 to Ground , V _{in} = 15 V	4		V _{ref}	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential (R _{SC} = 0)	4	2	V _{in} – Vo		2.1	2.7	-	2.1	3.0	Vdc
Bias Current (V _{in} = 15 V) (I _L = 1.0 mAdc, R ₂ = 6.8 k ohms, I _{IB} = I _{in} - I _L)	4		Чв	-	4.0	9.0	-	5.0	12	mAdc
Output Noise ($C_N = 0.1 \ \mu$ F, f = 10 Hz to 5.0 MHz)	4		۷N		0.150	_	-	0.150	_	mV(rms)
Temperature Coefficient of Output Voltage	4	3	TCVO		±0.002	-	-	±0.002	-	%/ ⁰ C
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4		١٢	1.0 1.0		500 200	1.0 1.0		500 200	mAdc
Input Regulation	6	4	Reg _{in}		0.002	0.015		0.003	0.030	%/Vo
Load Regulation (T _J = Constant [1.0 mA≤I _L ≤20 mA]) (T _C = +25°C [1.0 mA≤I _L ≤50 mA]) R Package G Package	7	5	Regload		0.4 0.005 0.01	1.6 0.05 0.13		0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (C _c = 0.001 µF, R _{SC} = 1.0 ohm, f = 1.0 kHz, V _{in} = +14 Vdc, V _O = +10 Vdc)	8	6	z _o	_	20	-	-	35	-	milliohms
Shutdown Current (V _{in} = +35 Vdc)	9		l _{sd}	-	70	150	-	140	500	μAdc

(1) $T_{low} = 0^{\circ}C$ for MC1469 = -55°C for MC1569

(2) $T_{high} = +70^{\circ} C \text{ for MC1469}$ = +125°C for MC1569

MC1469, MC1569

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".
- Note 2. This parameter states that the MC1569/MC1469 will regulate properly with the input-output voltage differential (V_{in} V_O) as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with (V_{in} V_O) as low as 2.1 Vdc as shown in the typical column. (See Figure 21.)
- Note 3. "Temperature Coefficient of Output Voltage" is defined as:

MC1569, TCV_O =
$$\frac{\pm (V_O \max - V_O \min) (100)}{(180^{\circ}C) (V_O @ 25^{\circ}C)} = \%/^{\circ}C$$

MC1469, TCV_O =
$$\frac{\pm (V_O \max - V_O \min) (100)}{(75^{\circ}C) (V_O \oplus 25^{\circ}C)} = \%/^{\circ}C$$

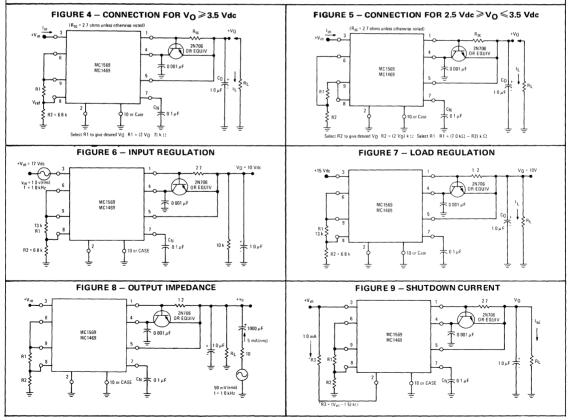
The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output voltage per volt change in the input voltage and is expressed as

Input Regulation =
$$\frac{v_0}{V_0 (v_{in})}$$
 100 (%/V₀),

where v_{0} is the change in the output voltage V_{0} for the input change $v_{10}.$

The following example illustrates how to compute maximum output voltage change for the conditions given:


 $\begin{array}{l} \text{Reg}_{in} = 0.015 \ \%/V_{O} \\ V_{O} = 10 \ Vdc \\ v_{in} = 1.0 \ V(rms) \\ v_{O} = \frac{(\text{Reg}_{in}) \ (v_{in}) \ (V_{O})}{100} \\ = \frac{(0.015) \ (1.0) \ (10)}{100} \\ = 0.0015 \ V(rms) \end{array}$

Note 5. Load regulation is specified for small (≤+17°C) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation =
$$\frac{|V_0|I_L = 1.0 \text{ mA}] - [V_0|I_L = 50 \text{ mA}]}{|V_0|I_L = 1.0 \text{ mA}} \times 100$$

Note 6. The resulting low level output signal (v_0) will require the use of a tuned voltmeter to obtain a reading. Special care should be used to insure that the measurement technique does not include connection resistance, wire resistance, and wire lead inductance (i.e., measure close to the case). Note that No. 22 AWG hook-up wire has approximately 4.0 milliohms/in. dc resistance and an inductive reactance of alproximately 10 milliohms/in, int 100 kHz. Avoid use of alligator clips or banana plug-jack combination.

TEST CIRCUITS

GENERAL DESIGN INFORMATION

- 1. Output Voltage, VO
 - a) For Vo $\geqslant 3.5$ Vdc Output voltage is set by resistors R1 and R2 (see Figure 4). Set R2 = 6.8 k ohms and determine R1 from the graph of Figure 10 or from the equation: R1 \approx (2 Vo – 7) kΩ
 - b) For 2.5 \leq V_O \leq 3.5 Vdc Output voltage is set by resistors R1 and R2 (see Figure 5). Resistors R1 and R2 can be determined from the graph of Figure 11 or from the equations:

R2
$$\approx$$
2 (V_O) kΩ
R1 \approx (7 kΩ–R2) kΩ

- c) Output voltage, V_{O} is determined by the ratio of R1 and R2, therefore optimum temperature performance can be achieved if R1 and R2 have the same temperature coefficient.
- d) Output voltage can be varied by making R1 adjustable as shown in Figure 43.
- e) If V_O = 3.5 Vdc (to supply MRTL* for example), tie pins 6, 8 and 9 together. R1 and R2 are not needed in this case.
- 2. Short Circuit Current, Isc
 - Short Circuit Current, I_{sc}, is determined by R_{sc}. R_{sc} may be chosen with the aid of Figure 12 or the expression:

$$R_{sc} \approx \frac{0.6}{I_{sc}}$$
 ohm

where I_{SC} is measured in amperes. This expression is also valid when current is boosted as shown in Figure 2.

3. Compensation, C_c

A 0.001 μ F capacitor, C_c, from pin 4 to ground will provide adequate compensation in most applications, with or without current boost. Smaller values of C_c will reduce stability and larger values of C_c will degrade pulse response and output impedance versus frequency. The physical location of C_c should be close to the MC1569/MC1469 with short lead lengths.

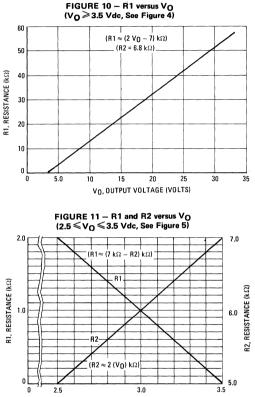
4. Noise Filter Capacitor, CN

A 0.1 μ F capacitor, C_N , from pin 7 to ground will typically reduce the output noise voltage to 150 μ V (rms). The value of C_N can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 μ F is recommended.

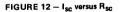
5. Output Capacitor, CO

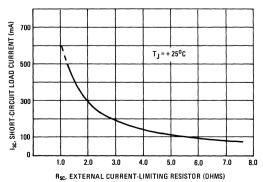
The value of C_O should be at least 1.0 μ F in order to provide good stability. The maximum value recommended is a function of current limit resistor R_{sc}:

$$C_O \max \approx \frac{250 \, \mu F}{R_{sc}}$$


where ${\sf R}_{sc}$ is measured in ohms. Values of ${\sf C}_O$ greater than this will degrade the pulse response characteristics and increase the settling time.

6. Shut-Down Control


One method of turning "OFF" the regulator is to apply a dc voltage at pin 2. This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures. This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard Logic levels of MRTL, MDTL* or MTTL* can also be used to turn the regulator "ON" or "OFF".


7. Remote Sensing

The connection to pin 5 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure I_L) on z_0 can be greatly reduced.

 $R_{sc} = 0$

10

15

50

40

30

20

10

0

0 5.0

zo, OUTPUT IMPEDANCE (MILLIOHMS)

TYPICAL CHARACTERISTICS

 ${\rm C_{N}=0.1\,\mu F,\,C_{c}=0.001\,\mu F,\,C_{O}=1.0\,\mu F,\,T_{C}=+25}^{\circ}{\rm C},}$ Unless otherwise noted:

Vin nom = +9.0 Vdc, Vo nom = +5.0 Vdc,

IL >200 mA for R package only.

FIGURE 14 - OUTPUT IMPEDANCE versus Rsc

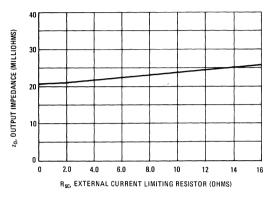


FIGURE 15 - FREQUENCY DEPENDENCE OF INPUT REGULATION, C_O = 10 μ F

20 VO, OUTPUT VOLTAGE (VOLTS)

25

30

35 40

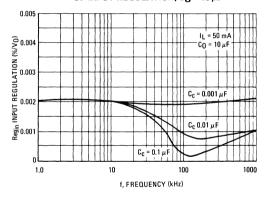


FIGURE 17 - CURRENT-LIMITING CHARACTERISTICS

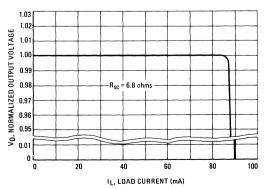


FIGURE 16 - FREQUENCY DEPENDENCE OF INPUT REGULATION, C_O = 2.0 μ F

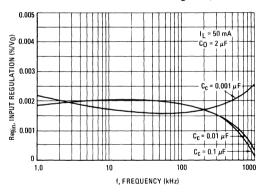
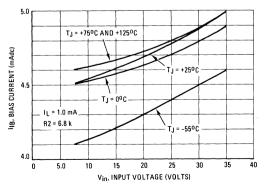
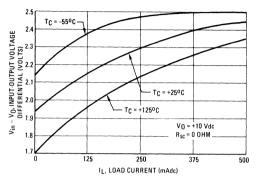
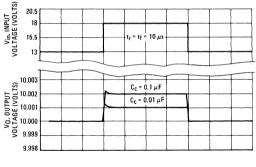



FIGURE 18 – BIAS CURRENT versus INPUT VOLTAGE


247

TYPICAL CHARACTERISTICS (continued)


Unless otherwise noted: $C_N = 0.1 \,\mu\text{F}$, $C_c = 0.001 \,\mu\text{F}$, $C_O = 1.0 \,\mu\text{F}$, $T_C = +25^{\circ}\text{C}$,

IL >200 mA for R package only.

FIGURE 19 – EFFECT OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL

FIGURE 21 – INPUT TRANSIENT RESPONSE

100 µs/DIV

FIGURE 23 – FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, CO = 10 μF

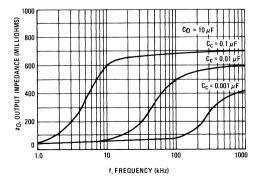


FIGURE 20 – EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION

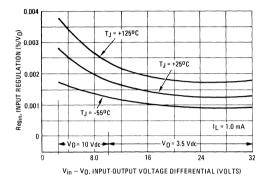


FIGURE 22 – TEMPERATURE DEPENDENCE OF SHORT-CIRCUIT LOAD CURRENT

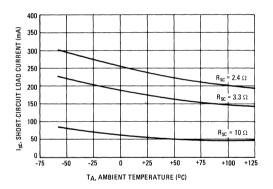
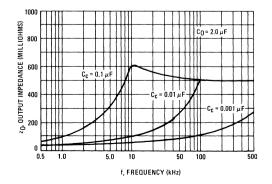
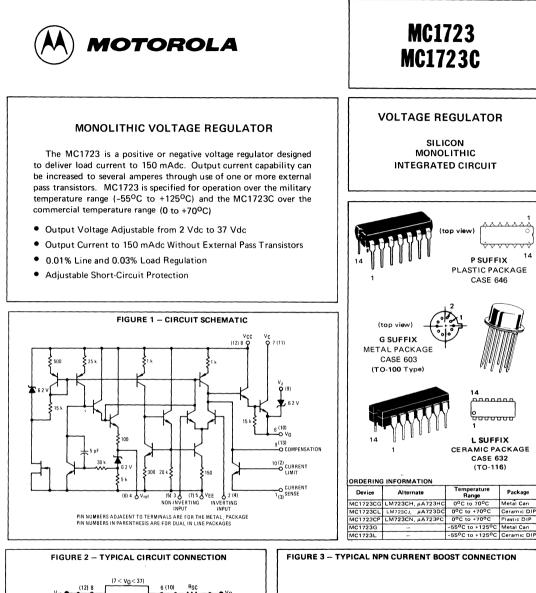
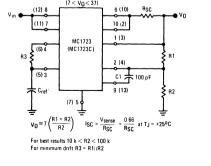
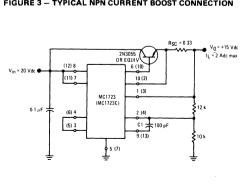






FIGURE 24 – FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, C_O = 2.0 μF

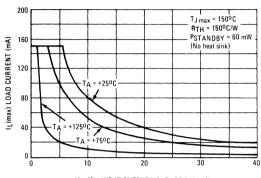
MC1723, MC1723C

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Pulse Voltage from V _{CC} to V _{EE} (50 ms)	Vin(p)	50	V _{peak}
Continuous Voltage from V _{CC} to V _{EE}	Vin	40	Vdc
Input-Output Voltage Differential	Vin – VO	40	Vdc
Maximum Output Current	۱ _L	150	mAdc
Current from V _{ref}	I _{ref}	15	mAdc
Current from Vz	١ _z	25	mA
Voltage Between Non-Inverting Input and VEE	V _{ie}	8.0	Vdc
Differential Input Voltage	V _{id}	± 5.0	Vdc
Power Dissipation and Thermal Characteristics Plastic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air Metal Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Case Dual In-Line Ceramic Package Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	PD 1/θ JA θ JA PD 1/θ JA θ JA PD 1/θ JA θ JC PD 1/θ JA θ JA	1.25 10 100 1.0 6.6 150 2.1 14 35 1.5 10 10	W mW/°C °C/W Watt mW/°C °C/W Watts mW/°C °C/W Watt mW/°C
Operating and Storage Junction Temperature Range Metal Package Dual In-Line Ceramic and Ceramic Flat Packages	т _Ј , т _{stg}	-65 to +150 -65 to +175	°C
Operating Ambient Temperature Range MC1723C MC1723	тА	0 to +70 -55 to +125	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = +25^{\circ}C$, V_{in} 12 Vdc, $V_O = 5.0$ Vdc, $I_L = 1.0$ mAdc, $R_{SC} = 0$, C1 = 100 pF, $C_{ref} = 0$ and divider impedance as seen by the error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in Figure 2)

	MC1723				MC1723C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	V _{in}	9.5	-	40	9.5	-	40	Vdc
Output Voltage Range	VO	2.0	-	37	2.0	-	37	Vdc
Input-Output Voltage Differential	V _{in} -Vo	3.0	-	38	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.95	7.15	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain (IL = 0, Vin = 30 V)	Чв	_	2.3	3.5	_	2.3	4.0	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) Cref = 0 Cref = 5.0 µF	V _N		20 2.5		-	20 2.5	_	μV(RMS)
Average Temperature Coefficient of Output Voltage (T $_{\rm low}$ $0\!<\!{\rm T}_{\rm A}\!<\!{\rm T}_{\rm high}$ 2)	тсv _о	-	0.002	0.015	-	0.003	0.015	%/ ^o C
	Reg _{in}		0.01 0.02 —	0.1 0.2 0.3		0.01 0.1	0.1 0.5 0.3	%∨ _O
Load Regulation (1.0 mA $<$ l_ <50 mA) T _A = +25 ^o C T _{low} $O < T_A < T_{high}$	Regload	_	0.03	0.15 0.6	-	0.03 -	0.2 0.6	%V _O
Ripple Rejection (f = 50 Hz to 10 kHz) C _{ref} = 0 C _{ref} = 5.0 μF	Rej _R	-	74 86	-	-	74 86	-	dB
Short Circuit Current Limit (R _{SC} = 10 Ω , V _O = 0)	ISC	-	65	_	_	65	-	mAdc
Long Term Stability	∆V _O /∆t	-	0.1	-	-	0.1	-	%/1000 H


 $(1) T_{Iow} = 0^{o}C \text{ for MC1723C} \\ = -55^{o}C \text{ for MC1723}$

 $T_{high} = +70^{\circ} C \text{ for MC1723C}$ = +125°C for MC1723

TYPICAL CHARACTERISTICS

(V_{in} = 12 Vdc, V_O = 5.0 Vdc, I_L = 1.0 mAdc, R_{SC} = 0, T_A = +25°C unless otherwise noted.)

FIGURE 4 – MAXIMUM LOAD CURRENT AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

Vin-VO, INPUT-OUTPUT VOLTAGE (VOLTS)

FIGURE 6 – LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

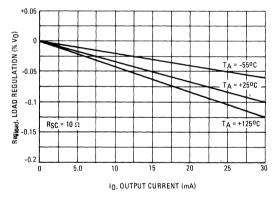


FIGURE 8 – CURRENT LIMITING CHARACTERISTICS

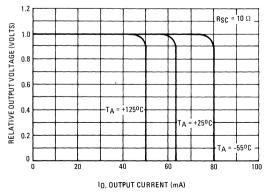
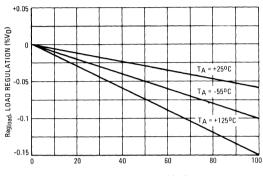
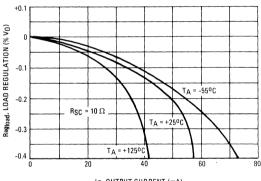
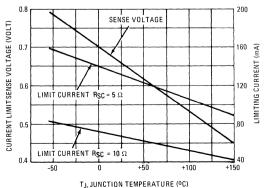
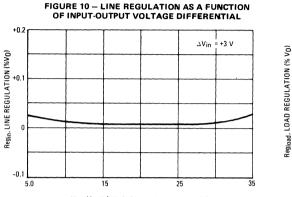


FIGURE 5 – LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING




FIGURE 7 – LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

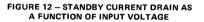
IO, OUTPUT CURRENT (mA)

FIGURE 9 – CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE

TYPICAL CHARACTERISTICS (continued)

+0.1

n


-0.

-0.2

0

10

Vin - VO, INPUT-OUTPUT VOLTAGE (VOLTS)

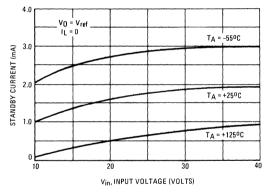
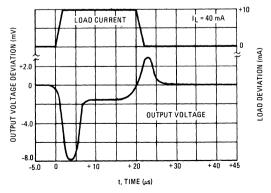



FIGURE 14 - LOAD TRANSIENT RESPONSE

Vin-VO, INPUT-OUTPUT VOLTAGE (VOLTS)

30

20

FIGURE 11 - LOAD REGULATION AS A FUNCTION

OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

IL = 1 mA to IL = 50 mA

40

50

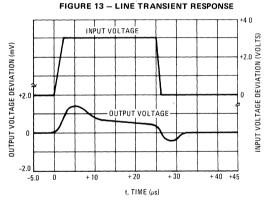
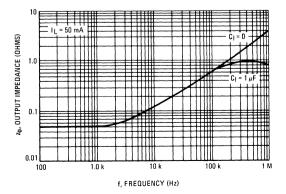
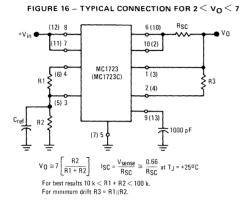
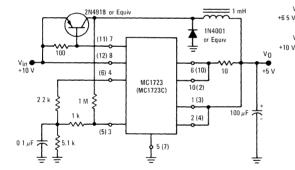




FIGURE 15 – OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY



TYPICAL APPLICATIONS

Pin numbers adjacent to terminals are for the metal. package; pin numbers in parenthesis are for the dual in-line packages.

FIGURE 18 - +5 V, 1-AMPERE SWITCHING REGULATOR

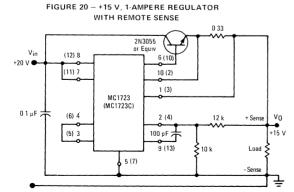
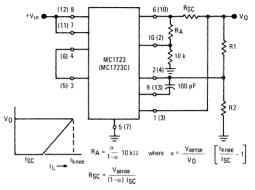
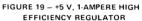




FIGURE 17 - MC1723,C FOLDBACK CONNECTION

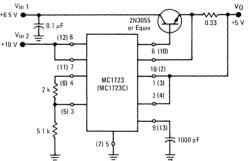
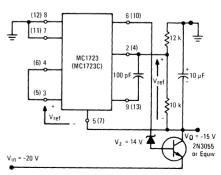
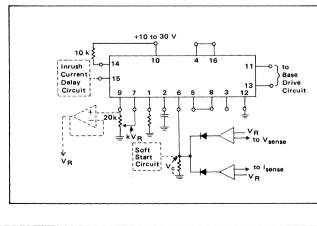



FIGURE 21 - - 15 V NEGATIVE REGULATOR

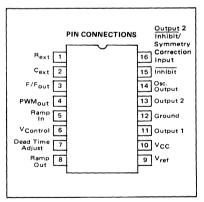
MC3420 MC3520


SWITCHMODE REGULATOR CONTROL CIRCUIT

The MC3520/3420 is an inverter control unit which provides all the control circuitry for PWM push-pull, bridge and series type switchmode power supplies.

These devices are designed to supply the pulse width modulated drive to the base of two external power transistors. Other applications where these devices can be used are in transformerless voltage doublers, transformer coupled dc-to-dc converters and other power control functions.

The MC3520 is specified over the military operating range of -55° C to $+125^{\circ}$ C. The MC3420 is specified from 0°C to $+70^{\circ}$ C.


- Includes Symmetrical Oscillator
- On Chip Pulse Width Modulator, Voltage Reference, Dead Time Comparator, and Phase Splitter
- Output Frequency Adjustable (2 kHz to 100 kHz)
- Inhibit and Symmetry Correction Inputs Available
- Controlled Start-Up
- Frequency and Dead Time are Independently Adjustable (0% to 100%)
- Can be Slaved to Other MC3420s
- Open Collector Outputs
- Output Capability 50 mA (Max.)
- On Chip Protection Against Double Pulsing of Same Output During Load Transient Condition

SWITCHMODE REGULATOR CONTROL CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUITS PSUFFIX PLASTIC PACK AGE CASE 648

L SUFFIX CERAMIC PACKAGE CASE 620

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE
MC3420P	0 to +70° C	Plastic DIP
MC3420L	0 to +70 [°] C	Ceramic DIP
MC3520L	-55 to +125°C	Ceramic DIP

MAXIMUM RATINGS

Rating	Symbol	MC3520	MC3420	Unit
Power Supply Voltage	Vcc	3	0	v
Output Voltage (pins 11 and 13)	Vout	4	0	v
Oscillator Output Voltage (pin 14)	V14	3	0	v
Voltage at pin 4	V4	2	.0	v
Voltage at pins 3 and 8	V3, V8	5.0		v
Voltage at pin 5	V5	7	.0	v
Power Dissipation	PD	See Thermal	Information	
Operating Junction Temperature	Тj			°C
Plastic Package)	_	125	
Ceramic Package)	150	150	
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

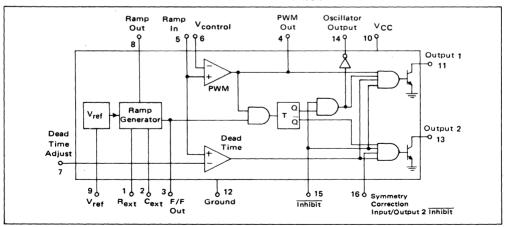
ELECTRICAL CHARACTERISTICS (V_{CC} = 10 to 30 V, T_A = 25°C unless otherwise noted.)

			MC3520		MC3420				
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION									
Reference Voltage	5	V _{ref}	7.6	7.8	8.0	7.4	7.8	8.2	V
(I _{ref} = 400 μA)									
Temperature Coefficient of Reference Voltage (V _{CC} = 15 V, I _{ref} = 400 μA)	5	TCV _{ref}	-	800.0	0.03	-	0.008	0.03	%/ ⁰ C
Input Regulation of Reference Voltage	5	Reg(in)							mV/V
(I _{ref} = 400 μA)			-	3.0	7.5	-	4.0	7.5	
(I _{ref} = 1.0 mA)			-	5.0	-	-	5.0		L
DC SUPPLY SECTION					_				
Supply Voltage	5	Vin	10	-	30	10	-	30	v
Supply Current	5	١D		-	16	-	-	22	mA
$(R_{ext} = 10 k\Omega, excluding load and current and reference current)$									
OSCILLATOR SECTION								L	
Line Frequency Stability	5			1	[[
(f = 20 kHz)	-	Δf		-	3.0	-	-	5.0	%
(f = 20 kHz, V _{CC} = 15 V, T _{low} to T _{high})	1	Δf	-	0.03	-	-	0.04	-	%/ ⁰ C
Maximum Output Frequency	6	fmax	100	200	-	100	200		kHz
(V _{CC} = 15 V)									
Minimum Output Frequency	6	fmin	-	2.0	5.0	-	2.0	5.0	kHz
(V _{CC} = 15 V)									
Oscillator Output Saturation Voltage	11	Vosc(sat)		0.2	0.5	-	0.2	0.5	V
(114 sink = 5.0 mA)						[
OUTPUT SECTION									
Output Saturation Voltage	7	V _{CE(sat})							v
(I _L = 40 mA, T _{high} to T _{low})	1	1	-	0.33	0.5	-	0.33	0.5	1
$(I_L = 25 \text{ mA}, T_{high to T_{low}})$			-	0.22	-	-	0.22	-	
Output Leakage Current	8	ICE	-	-	50	-	-	50	μA
(V _{CE} = 40 V, pins 11 and 13)	1					L			L
COMPARATOR SECTION									
Pulse Width Adjustment Range	9	ΔPW	0		100	0		100	%
Dead Time Adjustment Range	9	ΔDT	0	-	100	0	-	100	%
Temperature Coefficient of Dead Time	-	TCDT	_	0.1	-	-	0.1	-	%/°C
Comparator Bias Currents	12,13	I _{IB}	-	5.0	15	-	5.0	15	μA
	14	IIB	-	10	30	-	10	30	μA

MC3420, MC3520

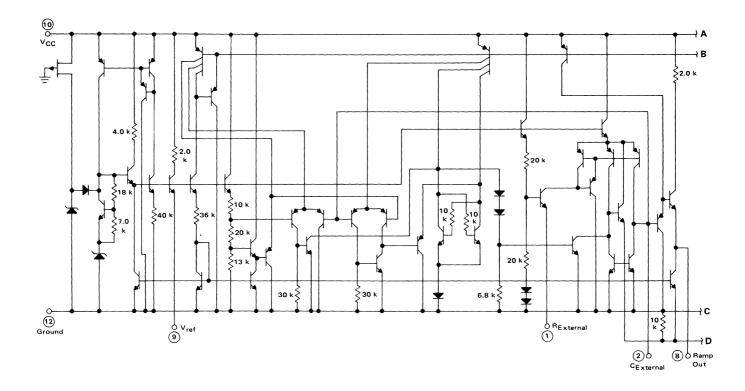
ELECTRICAL CHARACTERISTICS (continued)

			MC3520			MC3420			
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AUXILIARY INPUTS/OUTPUTS									
Ramp Voltage	5								V
Peak High		V _{ramp} (Hi)	5.5	6.0	6.5	5.5	6.0	6.5	
Peak Low		Vramp(Low)	2.0	2.4	2.8	2.0	2.4	2.8	
Ramp Voltage Change	5	ΔV _{ramp}	3.0	3.5	4.0	3.0	3.5	4.0	V
(Vramp Hi - Vramp Low)						1			
Ramp Out Sink Current	5	l _{sink}	-	400	-	-	400	-	μA
Ramp Out Source Current	5	Isource	-	3.0	-	-	3.0	-	mA
Inhibit Input Current — High (V _{IH} = 2.0 V)	10	Чн	-	-	40	-	-	40	μA
Inhibit Input Current — Low (VIL = 0.8 V)	10	ΪΙĽ	-	-25	-180	-	25	-180	μA
Symmetry Correction Input/Output 2 Inhibit Current – High (V _{SY} = 2.0 V, pin 16)	10	ISY/H	-	-	40	-	-	40	μA
Symmetry Correction Input/Output 2 Inhibit Current – Low ($V_{SY} = 0.8 V$, pin 16)	10	ISY/L	-	-10	-180	-	-10	-180	μA
F/Fout Source Current	-	Isource	-	2.0	-	-	2.0	-	mA
OUTPUT AC CHARACTERISTICS (TA = Thigh, VCC	= +15 V, f	= 20 kHz)							
Rise Time	15	tr	-	40	-	-	40	-	ns
Fall Time	15	t _f	-	150	-	-	150	-	ns
Overlap Time	15	t _{ov}	-	275	-	-	275	-	ns
Assymmetry	15	ton1-ton2	-	±1.0	-	-	±1.0	-	%
(Duty Cycle = 50%)		t _{on1}							


NOTE:

T_{high} = +125^oC for MC3520

+70⁰C for MC3420


 $T_{low} = -55^{\circ}C$ for MC3520

0^oC for MC3420

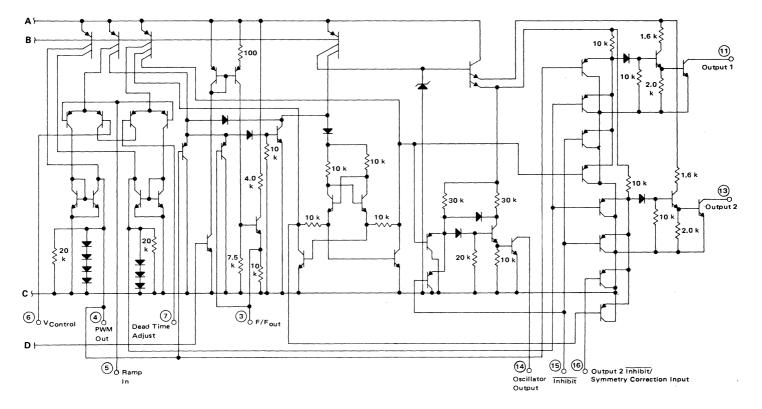

FIGURE 2-EQUIVALENT CIRCUIT

FIGURE 3 – CIRCUIT SCHEMATIC (continued next page)

÷

(continued) FIGURE 3 - CIRCUIT SCHEMATIC

GENERAL INFORMATION

The internal block diagram of the MC3420 is shown in Figure 2, and consists of the following sections:

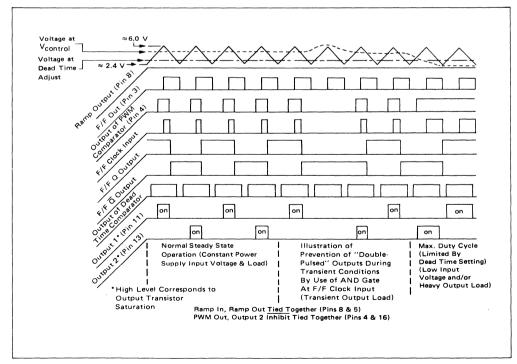
Voltage Reference

A stable reference voltage is generated by the MC3420 primarily for internal use. However, it is also available externally at Pin 9 (V_{ref}) for use in setting the dead time (Pin 7) and for use as a reference for the external control loop error amplifiers.

Ramp Generator

The ramp generator section produces a symmetrical triangular waveform ramping between 2.4 V and 6.0 V, with frequency determined by an external resistor (R_{ext}) and capacitor (C_{ext}) tied from Pins 1 and 2, respectively, to ground.

PWM Comparator


The output of the ramp generator at pin 8 is normally connected to Pin 5, RAMP IN. The PWM (pulse width modulation) comparator compares the voltage at Pin 6 (V_{control}) to the ramp generator output. The level of V_{control} determines the outputs' pulse width or duty cycle. The duty cycle of each output can vary, exclusive of dead time, from 50% (when V_{control} is at approximately 2.4 V) to 0% (V_{control} approximately 6.0 V).

Dead Time Comparator

An additional comparator has been included in MC3420 to allow independent adjustment of system dead time or maximum duty cycle. By dividing down V_{ref} at Pin 9 with a resistive divider or potentiometer, and applying this voltage to Pin 7, a stable dead time is obtained for prevention of inverter switching transistor cross conduction at high duty cycles due to storage time delays.

Phase Splitter

A phase splitter is included to obtain two 180° out of phase outputs for use in multiple transistor inverter systems. It consists of a toggle flip-flop whose clock signal is derived by "ANDing" the output of the PWM comparator and a signal from the ramp generator section. This "AND" gate ensures that the outputs truly alternate under control loop transient conditions. Better understanding of this feature and MC3420 operation may be gained by studying the circuit waveforms, shown in Figure 4.

FIGURE 4 – INTERNAL WAVEFORMS

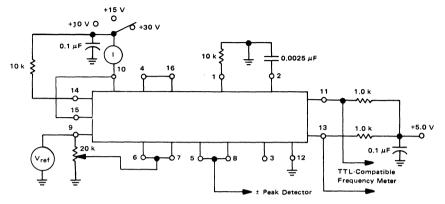
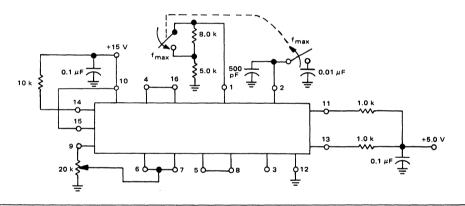
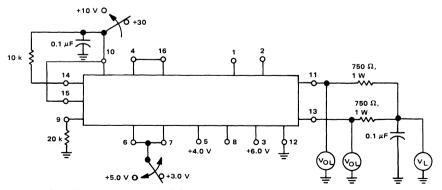




FIGURE 5 - STANDARD AC, DC TEST CIRCUIT

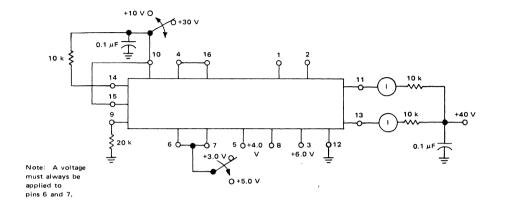
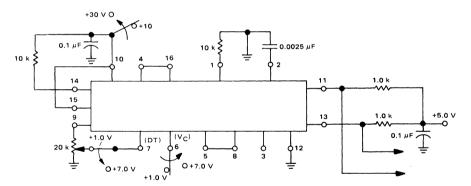

FIGURE 6 - FREQUENCY LIMIT TEST CIRCUIT

FIGURE 7 - OUTPUT SATURATION TEST CIRCUIT



Note: Use voltage change on pins 6, 7 to change output states. A voltage must always be present on pins 6 and 7.

FIGURE 8 - OUTPUT LEAKAGE TEST CIRCUIT

FIGURE 9 - OUTPUT DUTY CYCLE TEST CIRCUIT

TYPICAL DUT versus DEAD TIM		TYPICAL DUT versus PWM VOLTA	
PIN 7. DEAD TIME VOLTAGE (V) (V _{control} = 2.0 V)	% DUTY CYCLE (FOR EACH OUTPUT)	PIN 6. V _{control} (V) (DEAD TIME VOLTAGE = 1.0 V)	% DUTY CYCLE (FOR EACH OUTPUT)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	50 46 40 33 26 18 11 4.0 0	2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0	50 46 40 33 26 18 11 4.0 0

	V ₆	V7	
	Va	olts	
100% Adjust			
Dead Time	1.0	1.0	(Pin 11 + Pin 13 = Logic ''1'')
Pulse Width	1.0	1.0	(Pin 11 + Pin 13 = Logic "1")
0% Adjust			
Dead Time	7.0	1.0	(Pin 11)(Pin 13) = Logic ''1''
Pulse Width	1.0	7.0	(FIN 11)(FIN 13) = Logic 1

NOTE: Logic "1" is TTL-Compatible VOH.

MC3420, MC3520

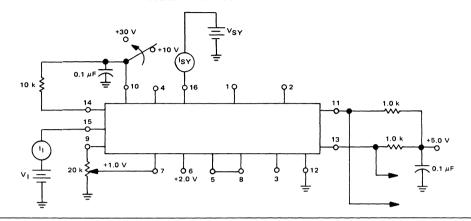
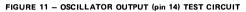



FIGURE 10 - INHIBIT/SYMMETRY TEST CIRCUIT

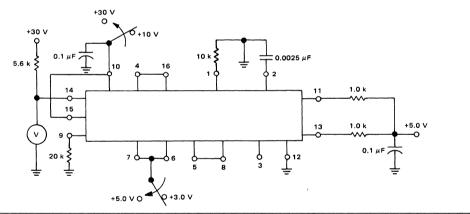
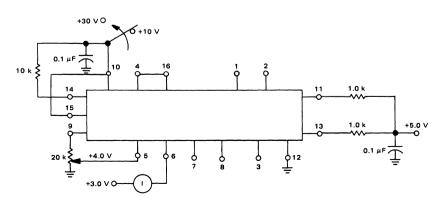



FIGURE 12 - VControl BIAS CURRENT TEST CIRCUIT

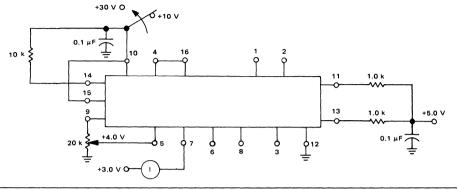
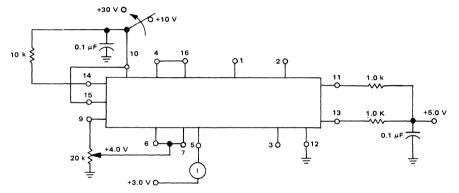
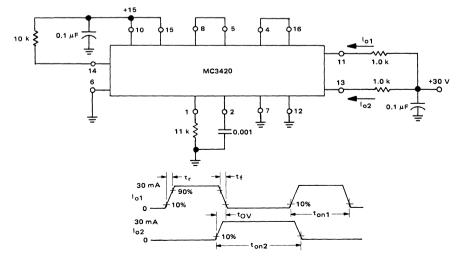




FIGURE 13 - DEAD TIME BIAS CURRENT TEST CIRCUIT

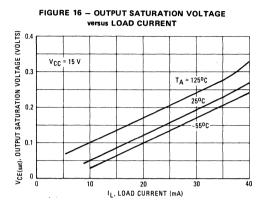

FIGURE 14 - RAMP IN BIAS CURRENT TEST CIRCUIT

FIGURE 15 - AC TEST CIRCUIT AND WAVEFORMS

MC3420, MC3520

TYPICAL CHARACTERISTICS

8.0

REFERENCE VOLTAGE (VOLTS) 8.2 2.2

Vref.

7.6

0

7.8

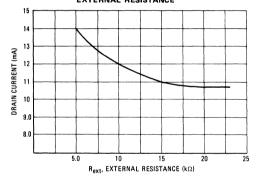


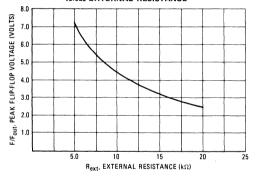
FIGURE 19 - PEAK FLIP-FLOPout VOLTAGE versus EXTERNAL RESISTANCE

1.0

Iref, REFERENCE CURRENT (mA)

1.5

2.0


FIGURE 17 - REFERENCE VOLTAGE versus

REFERENCE CURRENT

V_{CC} = 15 V

 $T_{A} = 25^{\circ}C$

0.5

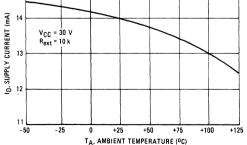
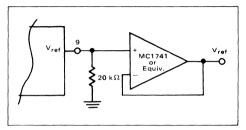


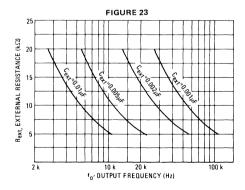

FIGURE 21 - REFERENCE VOLTAGE TEMPERATURE COEFFICIENT versus OUTPUT CURRENT



OPERATION AND APPLICATIONS INFORMATION

The Voltage Reference

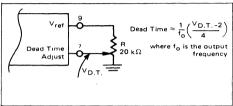
The temperature coefficient of V_{ref} has been optimized for a 400 μ A (\cong 20 k Ω) load. If increased current capability is required, an op amp buffer may be used, as shown in Figure 22.


Output Frequency

The values of R_{ext} and C_{ext} for a given output frequency, $f_{o,}$ can be found from:

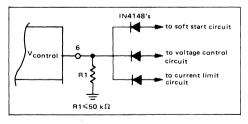
$$f_0 \cong \frac{0.55}{R_{ext} C_{ext}}$$
; 5.0 k $\Omega \le R_{ext} \le 20 \text{ k}\Omega$ (Eq. 1)

or from the graph shown in Figure 23.


Note that f_0 refers to the frequency of Output 1 (Pin 11) or Output 2 (Pin 13). The frequency of the ramp generator output waveform at Pin 8 will be twice f_0 .

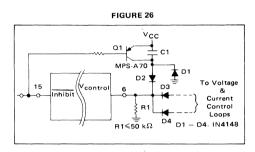
Dead Time

Figure 24 illustrates how to set or adjust the MC3420 outputs' dead time or maximum duty cycle. For minimum dead time drift with temperature or supply voltage, $V_{D,T}$ should be derived from V_{ref} as shown.


Connections to the V_{control} Pin

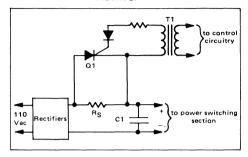
In many systems, it is necessary to make multiple connections to the V_{control} Pin in order to implement features in addition to voltage regulation such as current limiting, soft start, etc. These can be made by the use of a simple "diode-OR" connection, as shown in Figure 25. This allows whichever control element is seeking the lowest PWM duty cycle to dominate. Note that a resistor, R1, whose value is \leqslant 50 k Ω is placed from the V_{control} Pin to ground. This is necessary to provide a dc path for the PWM comparator input bias current under all conditions.

The system duty cycle is given by:


D.C. (%)
$$\cong \frac{V_{\text{Control}} - 2}{4} \times 100$$
 (Eq. 2)

Soft Start

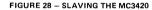
In most PWM switching supplies, a soft start feature is desired to prevent output voltage overshoots and magnetizing current imbalances in the power transformer primary. This feature forces the duty cycle of the switching elements to gradually increase from zero to their normal operating point during initial system powerup or after an inhibit. This feature can be easily implemented with the MC3420. One method is shown in Figure 26.

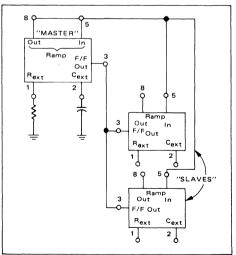


After an inhibit command or during power-up, the voltage on R1 and Pin 6 exponentially decays from V_{CC} toward ground with a time constant of R1C1, allowing a gradual increase in duty cycle. Diodes D2 – D4 provide a diode-or function at the V_{control} Pin, while Q1 serves to reset the timing capacitor, C1, when an inhibit command is received thereby reinitializing the soft-start feature. D1 allows C1 to reset when power (V_{CC}) is turned off.

Inrush Current Limiting

Since many PWM switching supplies are operated directly off the rectified 110 Vac line with capacitive input filters, some means of preventing rectifier failure due to inrush surge currents is usually necessary. One method which can be used is shown in Figure 27.


In this circuit, a series resistor, R_S , is used to provide inrush surge current limiting. After the filter capacitor, C1, is charged, Q1 receives a trigger signal from the control circuitry through T1 and shorts RS out of the circuit, eliminating its otherwise, larger power dissipation. The trigger signal for Q1 may be derived from either the oscillator output (Pin 14) or one of the MC3420's outputs. If the oscillator output is used, it will be necessary FIGURE 27



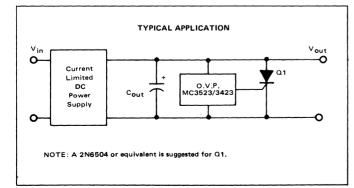
to provide a time delay on the inhibit pin to keep it low until the input filter capacitor, C1, has had time to charge, whereas the initial portion of the soft start timing cycle can be used for this delay if this signal is derived from one of the output pins. However, using the Oscillator Output Pin does offer the advantage that its waveform has a constant 50% duty cycle, independent of the outputs' duty cycle which can simplify the design of a drive circuit for T1.

Slaving

In some applications, as when one PWM inverter/converter is used to feed another, it may be desired that their frequencies be synchronized. This can be done with multiple MC3420s as shown in Figure 28. By omitting their R_{ext} and C_{ext} , up to two MC3420s may be slaved to a master MC3420.

MC3423 MC3523

Specifications and Applications Information

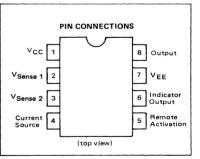

OVERVOLTAGE "CROWBAR" SENSING CIRCUIT

These overvoltage protection circuits (OVP) protect sensitive electronic circuitry from overvoltage transients or regulator failures when used in conjunction with an external "crowbar" SCR. They sense the overvoltage condition and quickly "crowbar" or short circuit the supply, forcing the supply into current limiting or opening the fuse or circuit breaker.

The protection voltage threshold is adjustable and the MC3423/ 3523 can be programmed for minimum duration of overvoltage condition before tripping, thus supplying noise immunity.

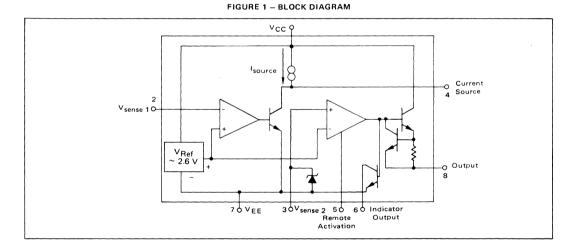
The MC3423/3523 is essentially a "two terminal" system, therefore it can be used with either positive or negative supplies.

Rating	Symbol	Value	Unit
Differential Power Supply Voltage	V _{CC} -V _{EE}	40	Vdc
Sense Voltage (1)	V Sense 1	6.5	Vdc
Sense Voltage (2)	V _{Sense} 2	6.5	Vdc
Remote Activation Input Voltage	Vact	7.0	Vdc
Output Current	10	300	mA
Operating Ambient Temperature Range MC3423 MC3523	ТА	0 to +70 -55 to +125	°C
Operating Junction Temperature Plastic Package Ceramic Package	Тј	125 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

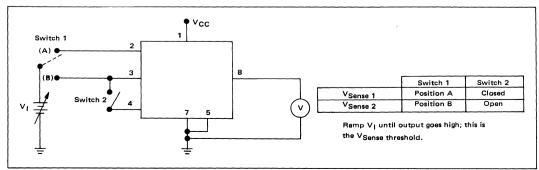

OVERVOLTAGE SENSING CIRCUIT

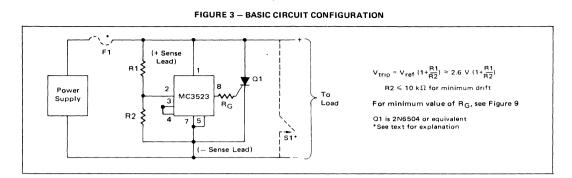
SILICON MONOLITHIC

U SUFFIX CERAMIC PACKAGE CASE 693



ORDERING INFORMATION						
DEVICE	TEMPERATURE RANGE	PACKAGE				
MC3423P1	0 to +70°C	Plastic DIP				
MC3423U	0 to +70°C	Ceramic DIP				
MC3523U	–55 to +125°C	Ceramic DIP				


Characteristic	Symbol	Min	Тур	Max	Unit
Supply Voltage Range	V _{CC} -V _{EE}	4.5	-	40	Vdc
Output Voltage (I _O = 100 mA)	vo	V _{CC} -2.2	V _{CC} -1.8	-	Vdc
Indicator Output Voltage (IO(Ind) = 1.6 mA)	V _{OL} (Ind)		0.1	0.4	Vdc
Sense Voltage (T _A = 25 ^o C)	VSense 1, VSense 2	2.45	2.6	2.75	Vdc
Temperature Coefficient of V _{Sense 1} (Figure 2)	TCV _{S1}	-	0.06	-	%/ ^o C
Remote Activation Input Current					μA
(V _{IH} = 2.0 V, V _{CC} -V _{EE} = 5.0 V)	Чн	-	5.0	40	
$(V_{1L} = 0.8 V, V_{CC} - V_{EE} = 5.0 V)$	ΙL	-	-120	-180	
Source Current	Isource	0.1	0.2	0.3	mA
Output Current Risetime (T _A = 25 ⁰ C)	t _r	-	400		mA/µs
Propagation Delay (T _A = 25 ⁰ C)	^t pd	-	0.5	-	μs
Supply Current	ID		1		mA
MC3423			6.0	10	
MC3523		_	5.0	7.0	


ELECTRICAL CHARACTERISTICS (5 V < V_{CC} -V_{EE} < 36 V, $T_{low} < T_A < T_{high}$ unless otherwise noted.)

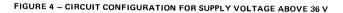

T_{low} = -55^oC for MC3523 = 0^oC for MC3423 T_{high} = +125^oC for MC3523 = +70^oC for MC3423

FIGURE 2 - SENSE VOLTAGE TEST CIRCUIT

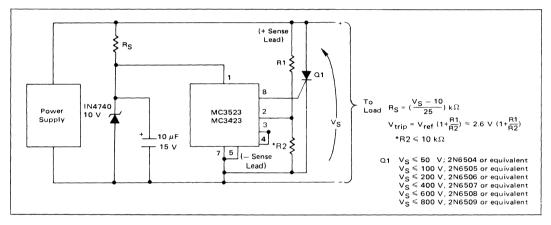
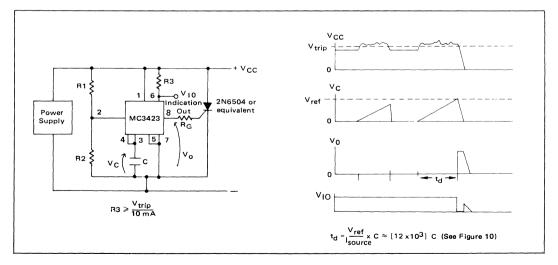
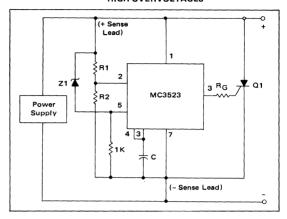



FIGURE 5 – BASIC CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP

APPLICATIONS INFORMATION

BASIC CIRCUIT CONFIGURATION


The basic circuit configuration of the MC3423/3523 OVP is shown in Figure 3 for supply voltages from 4.5 V to 36 V, and in Figure 4 for trip voltages above 36 V. The threshold or trip voltage at which the MC3423/3523 will trigger and supply gate drive to the crowbar SCR, Q1, is determined by the selection of R1 and R2. Their values can be determined by the equation given in Figures 3 and 4, or by the graph shown in Figure 8. The minimum value of the gate current limiting resistor, RG, is given in Figure 9. Using this value of RG, the SCR, Q1, will receive the greatest gate current possible without damaging the MC3423/3523. If lower output currents are required, RG can be increased in value. The switch, S1, shown in Figure 3 may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non currentlimited supply is used, a fuse or circuit breaker, F1, should be used to protect the SCR and/or the load.

The circuit configurations shown in Figures 3 and 4 will have a typical propogation delay of 1.0 μ s. If faster operation is desired, pin 3 may be connected to pin 2 with pin 4 left floating. This will result in decreasing the propogation delay to approximately 0.5 μ s at the expense of a slightly increased TC for the trip voltage value.

CONFIGURATION FOR PROGRAMMABLE MINIMUM DURATION OF OVERVOLTAGE CONDITION BEFORE TRIPPING

In many instances, the MC3423/3523 OVP will be used in a noise environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423/3523 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 5 is used. In this configuration, a capacitor is connected from pin 3 to VFF. The value of this capacitor determines the minimum duration of the overvoltage condition which is necessary to trip the OVP. The value of C can be found from Figure 10. The circuit operates in the following manner: When VCC rises above the trip point set by R1 and R2, an internal current source (pin 4) begins charging the capacitor, C, connected to pin 3. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate \cong 10 times faster than the charging rate, resetting the timing feature until the next overvoltage condition occurs.

Occasionally, it is desired that immediate crowbarring of the supply occur when a high overvoltage condition occurs, while retaining the false tripping immunity of Figure 5. In this case, the circuit of Figure 6 can be used. The circuit will operate as previously described for small overvoltages, but will immediately trip if the power supply voltage exceeds $V_{Z1} + 1.4 V$. FIGURE 6 – CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP/WITH IMMEDIATE TRIP AT HIGH OVERVOLTAGES

ADDITIONAL FEATURES

1. Activation Indication Output

An additional output for use as an indicator of OVP activation is provided by the MC3423/3523. This output is an open collector transistor which saturates when the OVP is activated. It will remain in a saturated state until the SCR crowbar pulls the supply voltage, V_{CC}, below 4.5 V as in Figure 5. This output can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR.

2. Remote Activation Input

Another feature of the MC3423/3523 is its remote activation input, pin 5. If the volage on this CMOS/TTL compatible input is held below 0.8 V, the MC3423/ 3523 operates normally. However, if it is raised to a voltage above 2.0 V, the OVP output is activated independent of whether or not an overvoltage condition is present. It should be noted that pin 5 has an internal pull-up current source. This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the activation indication output of one MC3423/3523 can be used to activate another MC3423/3523 if a single transistor inverter is used to interface the former's indication output to the latter's remote activation input, as shown in Figure 7. In this circuit, the indication output (pin 6) of the MC3423 on power supply 1 is used to activate the MC3423 associated with power supply 2. Q1 is any small PNP with adequate voltage rating.

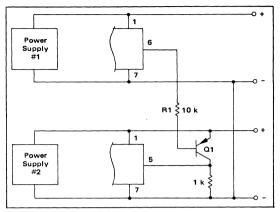
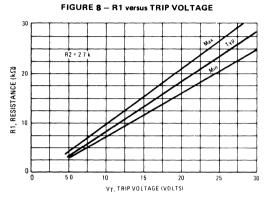
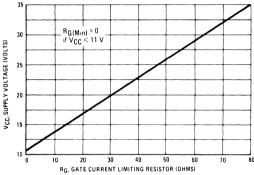


FIGURE 7 – CIRCUIT CONFIGURATION FOR ACTIVATING ONE MC3523 FROM ANOTHER

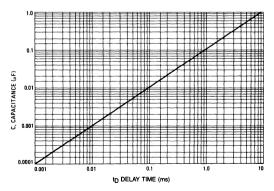
Note that both supplies have their negative output leads tied together (i.e., both are positive supplies). If their positive leads are common (two negative supplies) the emitter of Ω 1 would be moved to the positive lead of supply 1 and R1 would therefore have to be resized to deliver the appropriate drive to Ω 1.


CROWBAR SCR CONSIDERATIONS

Referring to Figure 11, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, C_{out}^1 . This surge current is illustrated in Figure 12, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or 1^2 t. The interrelationship of these failure methods and the breadth of the application make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.


1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities – depending on the severity of the occasion.


 $^{1}C_{out}$ consists of the power supply output caps, the load's decoupling caps, and in the case of Figure 11A, the supply's input filter caps.

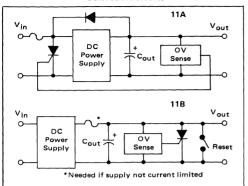


FIGURE 11 – TYPICAL CROWBAR OVP CIRCUIT CONFIGURATIONS

FIGURE 12 – CROWBAR SCR SURGE CURRENT WAVEFORM

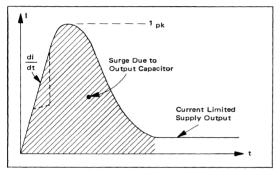
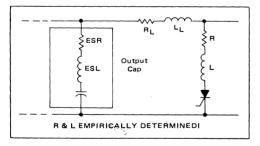



FIGURE 13 – CIRCUIT ELEMENTS AFFECTING SCR SURGE & di/dt

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 11B.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast (< 1 μ s) rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 Arms rating might be 200 A/ μ s, assuming a gate current of five times IGT and $< 1 \ \mu s$ rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 13. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance – see Figure 13) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Refering back to Figure 11A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an 1^2 t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

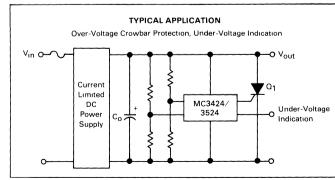
CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	ITSM	PACKAGE
2N6400 Series	16A	160A	TO220 Plastic
2N6504 Series	25A	160A	TO220 Plastic
2N1842 Series	16A	125A	Metal Stud
2N2573 Series	25A	260A	Metal TO-3 Type
2N681 Series	25A	200A	Metal Stud
MCR3935-1 Series	35A	350A	Metal Stud
MCR81-5 Series	80A	1000A	Metal Stud

Product Preview

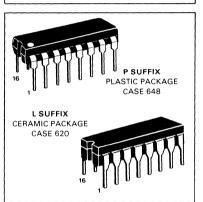
POWER SUPPLY SUPERVISORY CIRCUIT/ DUAL VOLTAGE COMPARATOR


The MC3424 series is a dual-channel supervisory circuit, consisting of two uncommitted input comparators, a reference, output comparators, and high-current drive and indicator outputs for each channel. The input comparators feature programmable hysteresis, high common-mode rejection, and wide common-mode range, capable of comparing at ground potential with single-supply operation. Separate delay-filter pins are provided to increase noise immunity by delaying activation of the outputs. A 2.5 V bandgap voltage reference is pinned-out for referencing the input comparators, or other external functions. Independent high-current drive and indicator outputs for each channel can source and sink up to 300 mA and 50 mA respectively. CMOS/TTL compatible digital inputs provide remote activation of each channel's outputs. An input-enable pin allows control of the input comparators.

Although this device is intended for power supply supervision, the pinned-out reference, uncommitted-input comparator, and many other features, enable the MC3424 series to be utilized for a wide range of applications.

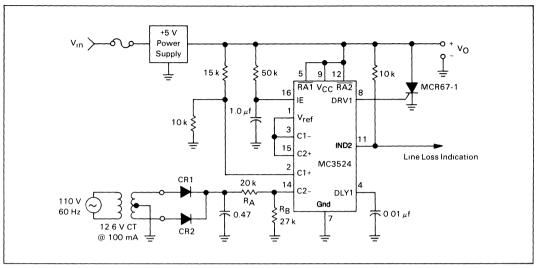
- Pinned-Out 2.5 V Reference
- Wide Common-Mode Range
- Programmable Hysteresis
- Programmable Time Delays
- Two 300 mA Drive Outputs
- Remote Activation Capability
- Wide Supply Range: 4.5 V \leq V_{CC} \leq 40 V
- Low Current Drain
- Low Current

Applications


- Dual-Over Voltage "Crowbar" Protection
- Dual-Under Voltage Supervision
- Over/Under Voltage Protection
- Split-Supply Supervision
- Line-Loss Sensing
- Proportional Control
- Over/Under-Speed Indicator
- Sequential-Time Delay
- Battery Charging

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice MC3424 • MC3424A MC3524 • MC3524A MC3324 • MC3324A

POWER SUPPLY SUPERVISORY CIRCUIT/DUAL VOLTAGE COMPARATOR


SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION							
Temperature Device Range Package							
MC3524L, AL	- 55 to + 125°C	Ceramic DIP					
MC3324L, AL	40.1.0500	Ceramic DIP					
MC3324P, AP	-40 to + 85°C	Plastic DIP					
MC3424L, AL	1 0 to + 70°C Ի	Ceramic DIP					
MC3424P, AP		Plastic DIP					

MC3424, MC3424A, MC3524, MC3524A, MC3324, MC3324A

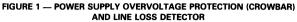
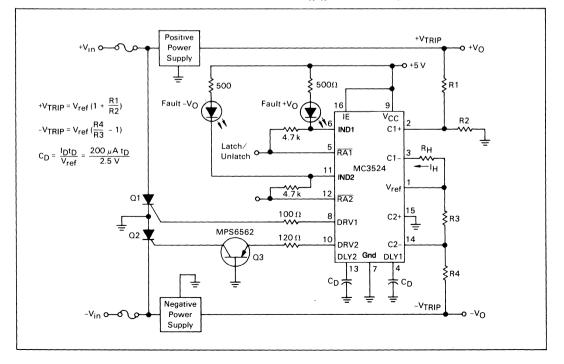
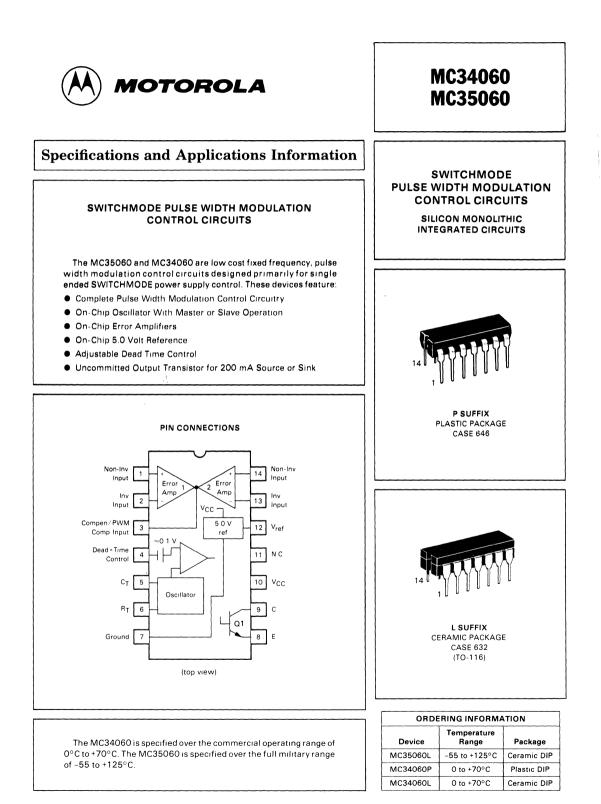



FIGURE 2 — OVERVOLTAGE PROTECTION, WITH DELAY, OF SPLIT SUPPLIES USING SCR "CROWBAR" SHUTDOWN AND LATCHED-FAULT INDICATION. (The Positive Sense is Chosen to Have I_HR_H Hysteresis Voltage.)



MC3424, MC3424A, MC3524, MC3524A, MC3324, MC3324A

Vcc ۲<u>و</u> Enable Select 1/ 200 µA (ţ Seico. C1 + O-----2 Input Comparato Output Comparato C1 - 0³ 1 4_μΑ Drive 1 80 2.25 V (0.9 V_{ref}) 6_0 IND 1 1.4 V o Input 1.4 V o Enable 0 16 Output 200 µA C2 + O-2 Input Comparato 15 $C_{2} - 0^{-\frac{14}{2}}$ 2 Drive 2 Т 2.25 V 2.5 V -0 11 IND 2 Reference Regulator ١н • 14 μA 1.4 V ī 5 12 13 4 16 76 RA1 RA2 V_{ref} DLY2 DLY1 Gnd 1 OUTPUT SECTION INPUT SECTION

MC3524/3424/3324 BLOCK DIAGRAM

Note: All voltages and currents are nominal.

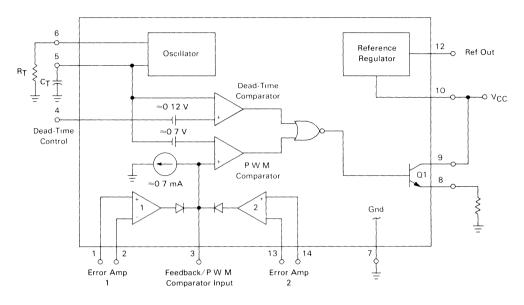
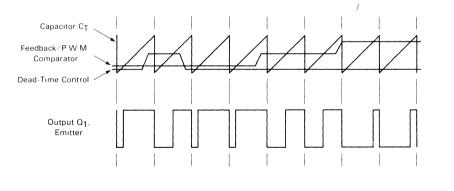



FIGURE 1 - BLOCK DIAGRAM

FIGURE 2 - TIMING DIAGRAM

Description

The MC35060/34060 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, RT and CT The oscillator frequency is determined by:

$$f_{osc} = \frac{1.1}{R_T \bullet C_T}$$

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor CT to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width (Refer to the timing diagram shown in Figure 2.)

MC34060, MC35060

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtoothcycle time. This would result in a maximum duty cycle of 96%. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from -0.3 V to (V_{CC} -2 V), and may be used to sense power supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC35060/34060 has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of $\pm 5\%$ with a thermal drift of less than 50 mV over an operating temperature range of 0 to $\pm 70^{\circ}$ C.

MAXIMUM RATINGS (Full op	perating ambient temperature range	applies unless otherwise noted)
--------------------------	------------------------------------	---------------------------------

Rating	Symbol	MC35060	MC34060	Unit
Power Supply Voltage	V _{CC}	42	42	v
Collector Output Voltage	VC	42	42	v
Collector Output Current	۱c	250	250	mA
Amplifier Input Voltage	Vin	V _{CC} + 0.3	V _{CC} + 0.3	v
Power Dissipation @ $T_A \le 45^{\circ}C$	PD	1000	1000	mW
Operating Junction Temperature	Tj	150	150	°C
Operating Ambient Temperature Range	TA	-55 to 125	0 to 70	°C
Storage Temperature Range	T _{stg}	-65 to 150	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	L Suffix Ceramic Package	P Suffix Plastic Package	Unit
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	100	80	°C/W
Power Derating Factor	$1/R_{\theta JA}$	10	12.5	mW∕°C
Derating Ambient Temperature	Τ _Α	50	45	°C

RECOMMENDED OPERATING CONDITIONS

Condition / Value	Symbol	мсз	Unit		
Condition/ value	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	V _{CC}	7.0	15	40	V
Collector Output Voltage	v _c	-	30	40	V
Collector Output Current	۱ _C	-	—	200	mA
Amplifier Input Voltage	V _{in}	-0.3		V _{CC} -2.0	V
Current Into Feedback Terminal	l _{f.b.}	-		0.3	mA
Reference Output Current	Iref	-		10	mA
Timing Resistor	RT	1.8	47	500	kΩ
Timing Capacitor	CT	0.00047	0.001	10	μF
Oscillator Frequency	f _{osc}	1.0	25	200	kHz

ELECTRICAL CHARACTERISTICS V_{CC} = 15 V, f_{OSC} = 25 kHz unless otherwise noted. For typical values T_{A} = 25°C, for min/max values T_{A} is the operating ambient temperature range that applies unless otherwise noted.

Characteristic	Comb. 1	MC35060		60 MC34060			0	—
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
EFERENCE SECTION		- t						
eference Voltage (I _O = 1.0 mA)	V _{ref}	4.75	5.0	5.25	4.75	5.0	5.25	v
eference Voltage Change with Temperature $(\Delta T_A = Min \text{ to } Max)$	V _{ref(T)}	-	0.2	2.0	-	1.3	2.6	%
put Regulation (V _{CC} = 7.0 V to 40 V)	Regline	-	2.0	25	-	2.0	25	mV
utput Regulation (I _O = 1.0 mA to 10 mA)	Regload	-	3.0	15	-	3.0	15	mV
hort-Circuit Output Current (V _{ref} = 0 V, T _A = 25C)	'sc	10	35	50	-	35	-	mA
UTPUT SECTION								
ollector Off-State Current (V _{CC} = 40 V, V _{CE} = 40 V)	IC(off)	-	2.0	100	-	2.0	100	μΑ
mitter Off-State Current (V _{CC} = 40 V, V _C = 40 V, V _E = 0 V)	IE(off)	-	-	-150		-	-100	μΑ
ollector-Emitter Saturation Voltage Common-Emitter	V _{sat(C)}	-	1.1	1.5	-	1.1	1.3	V
(V _E = 0 V, I _C = 200 mA) Emitter-Follower (V _C = 15 V, I _E = -200 mA)	V _{sat(E)}	-	1.5	2.5	-	1.5	2.5	v
utput Voltage Rise Time (T _A = 25°C) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	t _r	-	100 100	200 200	_	100 100	200 200	ns
utput Voltage Fall Time (T _A = 25°C) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	tf	-	25 40	100 100	-	25 40	100 100	ns
Characteristic			Symbo	י וכ	MC350		34060	Unit
Characteristic			Symbo	י וכ	Min	Tyn	Max	

		Min	Тур	Max	
ERROR AMPLIFIER SECTIONS					
Input Offset Voltage (VQ[Pin 3] = 2 5 V)	V _{IO}	-	2.0	10	mV
Input Offset Current (VC[Pin 3] = 2.5 V)	40	—	50	250	nA
Input Bias Current (VQ[Pin 3] = 2.5 V)	IВ	-	0.1	1.0	μΑ
Input Common-Mode Voltage Range (V _{CC} = 7.0 V to 40 V)	VICR	-0.3	-	V _{CC} -2.0	V
Open Loop Voltage Gain (ΔV_O = 3.0 V, V _O = 0.5 to 3.5 V, R _L = 2.0 k(1)	Avol	70	95	-	dB

.

279

MC34060, MC35060

ELECTRICAL CHARACTERISTICS $V_{CC} = 15V$, $f_{osc} = 25$ kHz unless otherwise noted. For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.

Characteristic	Symbol	MC35060/MC34060			Unit	
	0,	Min.	Тур.	Max.		
ERROR AMPLIFIER SECTIONS (Continued)						
Unity-Gain Crossover Frequency (VO = 0.5, to 3.5 V, RL = 2.0 k Ω)	f _c	—	350	-	kHz	
Phase Margin at Unity-Gain (V _O = 0.5 to 3.5 V, R _L = 2.0 kΩ)	Φm	-	65	-	deg	
Common-Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90		dB	
Power Supply Rejection Ratio $^{P_{c}}$ (ΔV_{CC} = 33 V, V _O = 2.5 V, R _L = 2.0 k Ω)	PSRR	-	100	-	dB	
Output Sink Current (VO[Pin 3] = 0.7 V)	IO-	03	07	—	mA	
Output Source Current (VO[Pin 3] = 3.5 V)	IO+	-2.0	-4.0		mA	
PWM COMPARATOR SECTION (Test circuit Figure 11)						
Input Threshold Voltage (Zero Duty Cycle)	V _{TH}	-	35	4 5	V	
Input Sink Current (V[P_{1n} 3] = 0 7 V)	lı~	0.3	0.7		mA	
DEAD-TIME CONTROL SECTION (Test Circuit Figure 11)						
Input Bias Current (Pin 4) (V _{In} = 0 to 5 25 V)	IB(DT)		-2 0	-10	μA	
Maximum Output Duty Cycle (V _{in} = 0 V, C _T = 0 1 μF, R _T = 12 kΩ) (V _{in} = 0 V, C _T = 0.001 μF, R _T = 47 kΩ)	DC _{max}	90	96 92	100 100	%	
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	Vтн	0	28	33	V	
OSCILLATOR SECTION		L	i i			
Frequency (C _T = 0 001 μF, R _T = 47 kΩ)	f _{osc}	-	25		kHz	
Standard Deviation of Frequency* (CT = 0.001 μ F, RT = 47 kΩ)	σfosc	-	3.0		%	
Frequency Change with Voltage (V_{CC} = 7.0 V to 40 V, T _A = 25°C)	$\Delta f_{OSC}(\Delta V)$	-	01	-	%	
Frequency Change with Temperature	$\Delta f_{OSC}(\Delta T)$	-	1.0	2.0	%	
$(\Delta T_A = 25^{\circ}C \text{ to } T_A \text{ low}, 25^{\circ}C \text{ to } T_A \text{ high})$						
TOTAL DEVICE	·····		L		J	
Standby Supply Current (Pin 6 at V _{ref} , all other inputs and outputs open) (V _{CC} = 15 V) (V _{CC} = 40 V)	ICC		55 70	10 15	mA	
Average Supply Current (V[pin 4] = 2.0 V, CT = 0.001, RT = 47 kΩ). See Figure 11.	IS	-	7.0		mA	

$$\frac{\sum_{n=1}^{N} (X_n - \bar{x})^2}{N - 1}$$

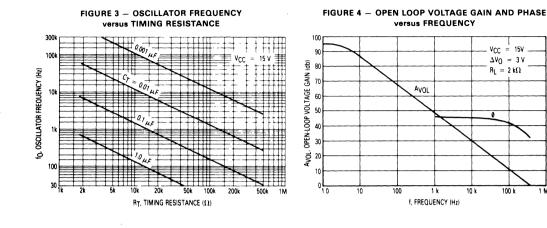
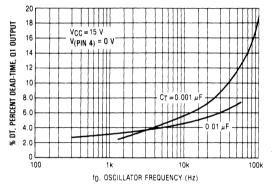



FIGURE 5 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY

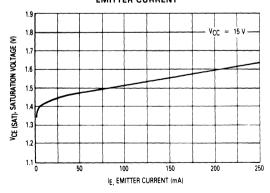


FIGURE 6 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE

20

0

- 20

۵۵

60

- 80

100

120

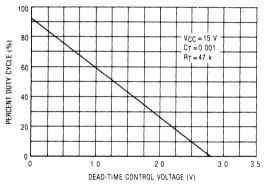
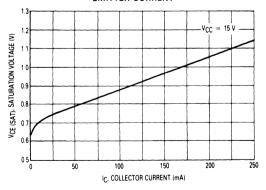
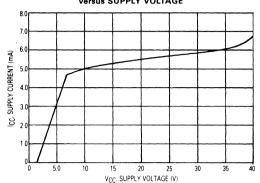
- 140

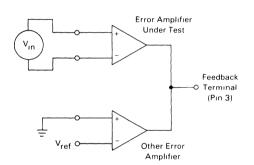
- 160

- 180

1 M

PHASE (DEGREES)


FIGURE 8 - COMMON EMITTER CONFIGURATION **OUTPUT-SATURATION VOLTAGE versus** EMITTER CURRENT

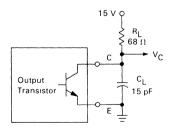


FIGURE 9 – STANDBY-SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 10 - ERROR AMPLIFIER CHARACTERISTICS

FIGURE 12 -- COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM

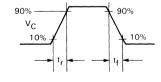
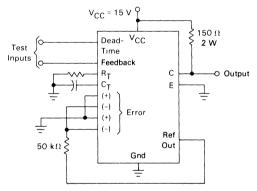
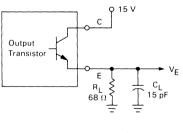
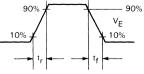
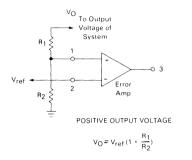
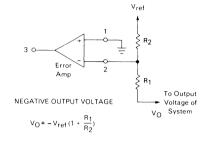
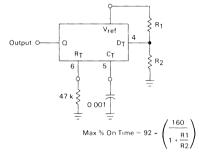
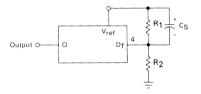


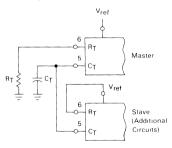
FIGURE 11 -- DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT


FIGURE 13 — EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM




FIGURE 14 - ERROR AMPLIFIER SENSING TECHNIQUES


FIGURE 15 - DEAD-TIME CONTROL CIRCUIT

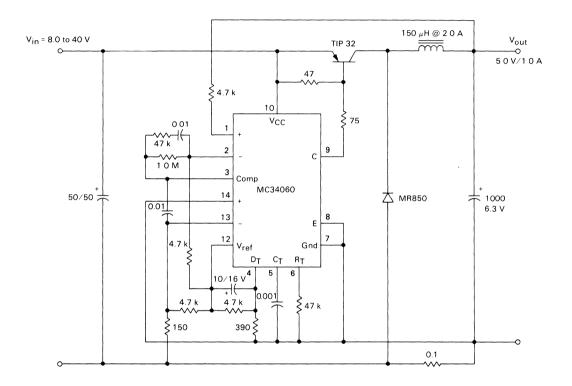


FIGURE 17 – SLAVING TWO OR MORE CONTROL CIRCUITS

MC34060, MC35060

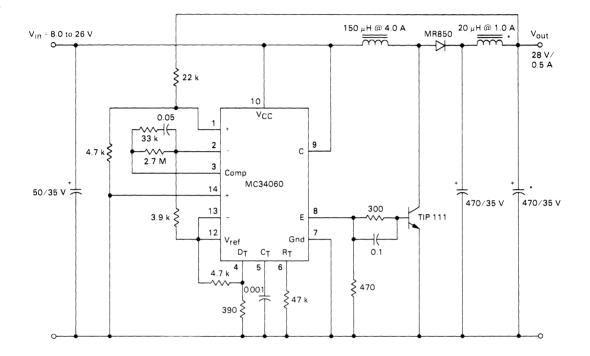
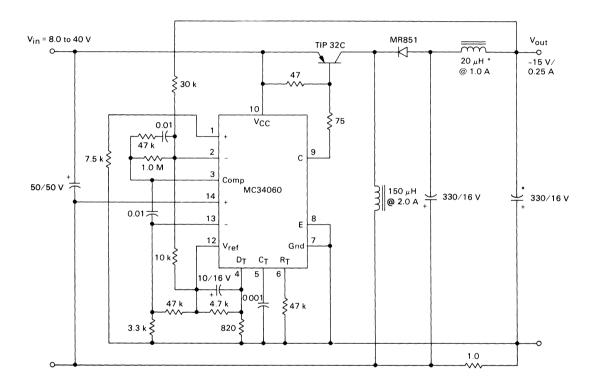


FIGURE 18 — STEP-DOWN CONVERTER WITH SOFT-START AND OUTPUT CURRENT LIMITING

TEST	CONDITIONS	RESULTS
Line Regulation	V _{IN} = 8.0 V to 40 V, I _O = 1 0 A	25mV 05%
Load Regulation	V _{IN} = 12 V, I _O = 1.0 mA to 1 0 A	30 mV 006%
Output Ripple	V _{in} = 12 V, I _O = 1.0 A	75 mV p-p P A R D
Short Circuit Current	V _{IN} = 12 V, R _L = 0.1 Ω	1 6 A
Efficiency	V _{IN} = 12 V, I _O = 1 0 A	73%

ż,



TEST	CONDITIONS	RESULTS
Line Regulation	V _{IN} = 8.0 V to 26 V, I _O = 0 5 A	40mV 014%
Load Regulation	V _{1n} = 12 V, I _O = 1 0 mA to 0 5 A	50 mV 018%
Output Ripple	V _{IN} = 12 V, I _O = 0 5 A	24 mV p-p P A R D
Efficiency	V _{in} = 12 V, I _O = 0 5 A	75%

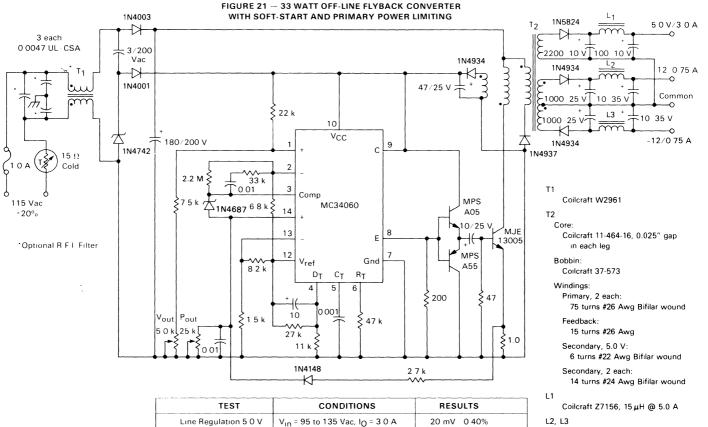

'Optional circuit to minimize output ripple

FIGURE 20 — STEP-UP/DOWN VOLTAGE INVERTING CONVERTER WITH SOFT-START AND CURRENT LIMITING

TEST	CONDITIONS	RESULTS
Line Regulation	V _{IN} = 8.0 V to 40 V, I _O = 250 mA	52 mV 035%
Load Regulation	V _{IN} = 12 V, I _O = 1 mA to 250 mA	47 mV 0.32%
Output Ripple	V _{in} = 12 V, I _O = 250 mA	10 mV p.p. P.A.R.D.
Short Circuit Current	V _{IN} = 12 V, R _L = 0.1 Ω	330 mA
Efficiency	V _{in} = 12 V, I _O = 250 mA	86%

* Optional circuit to minimize output ripple

 V_{in} = 95 to 135 Vac, I_0 = ±0 75 A

 $V_{10} = 115 \text{ Vac}, I_0 = \pm 0.4 \text{ to } \pm 0.9 \text{ A}$

V_{in} = 115 Vac, I_O = 1 0 to 4 0 A

V_{In} = 115 Vac, I_O = 3 0 A

 $V_{10} = 115 \text{ Vac}, I_0 = \pm 0.75 \text{ A}$

V_{In} = 115 Vac, I_O 5 0 V = 3 0 A

 $I_0 \pm 12 = \pm 0.75 \text{ A}$

52 mV 026%

476 mV 95%

300 mV 2.5%

45 mV p-p P A R D

75 mV p-p P A R D

74%

Line Regulation ±12 V

Load Regulation 5.0 V

Load Regulation ±12 V

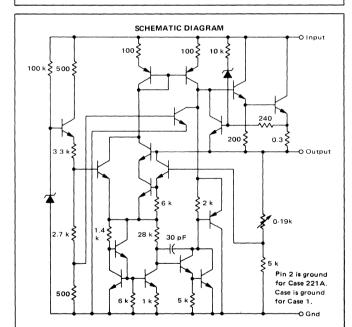
Output Ripple 5 0 V

Output Ripple ±12 V

Efficiency

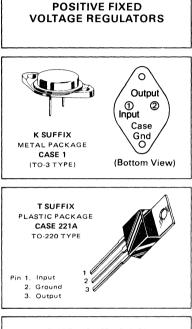
Coilcraft	77157	25 uH	ര 1	0 A

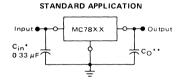
MC34060, MC35060



THREE-TERMINAL

3-TERMINAL POSITIVE VOLTAGE REGULATORS


These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.


- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in 2% and 4% Tolerance

ORDERING INFORMATION

Device	Output Voltage Tolerance	Temperature Range	Package
МС78ХХК МС78ХХАК	4% 2%	–55 to +150°C	Metal Power
МС78ХХВК	4%	-40 to +125°C	
MC78XXCK MC78XXACK	4% 2%	0 to +125°C	
MC78XXCT MC78XXACT	4% 2%		Plastic Power
MC78XXBT	4%	-40 to +125°C	

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
 - * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = CO is not needed for stability; however, it does improve transient response. XX indicates nominal voltage

	TYPE NO /VOLTAGE									
MC7805	5.0 Volts	MC7815	15 Volts							
MC7806	6.0 Volts	MC7818	18 Volts							
MC7808	8.0 Volts	MC7824	24 Volts							
MC7812	12 Volts									

MC7800 Series MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V - 18 V)	Vin	35	Vdc
(24 V)		40	-
Power Dissipation and Thermal Characteristics			
Plastic Package			
T _A = +25°C	PD	Internally Limited	Watts
Derate above T _A = +25°C	1/θ _{JA}	15.4	mW∕°C
Thermal Resistance, Junction to Air	θJA	65	°C/W
T _C = +25°C	PD	Internally Limited	Watts
Derate above T _C = +95°C (See Figure 1)	1/θ _{JC}	200	mW∕°C
Thermal Resistance, Junction to Case	θJC	50	°C/W
T _C = +25°C	PD	Internally Limited	Watts
Derate above $T_A = +25^{\circ}C$	$1/\theta_{\rm JA}$	22.5	mW∕°C
Thermal Resistance, Junction to Air	θJA	45	°C∕W
T _C = +25°C	PD	Internally Limited	Watts
Derate above T _C = +65°C (See Figure 2)	$1/\theta_{\rm JC}$	182	mW∕°C
Thermal Resistance, Junction to Case	θ၂Ϲ	5 5	°C∕W
Storage Junction Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	TJ		°C
MC7800, A		-55 to +150	
MC7800C, AC		0 to +150	
MC7800, B		-40 to +150	

DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation — The maximum total device dissipation for which the regulator will operate within specifications. Quiescent Current — That part of the input current that is not delivered to the load.

Output Noise Voltage — The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range

Long Term Stability — Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

MC7805, B, C

ELECTRICAL CHARACTERISTICS (Vin = 10 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1] unless otherwise noted).

Characteristic	Symbol		MC7805		1	MC7805	В	MC7805C			Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	4.8	5.0	5.2	4.8	5.0	5.2	4.8	5.0	5.2	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _O \leq 15 W)	vo							4.75	5.0	5.25	Vdc
7.0 Vdc $\leq V_{II} \leq 20$ Vdc 8.0 v Jc $\leq V_{II} \leq 20$ Vdc		4.65	5.0	5.35	4.75	5.0	5.25	4.75	5.0	5.25	
Line Regulation (T _J = +25°C, Note 2) 7.0 Vdc \leqslant V _I n \leqslant 25 Vdc 8.0 Vdc \leqslant V _i n \leqslant 12 Vdc	Reg _{in}	_	2.0 1.0	50 25	_	7.0 2.0	100 50	_	7.0 2.0	100 50	mV
Load Regulation (T _J = +25°C, Note 2) 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Reg _{load}	_	25 8.0	100 25	_	40 15	100 50	_	40 15	100 50	mV
Quiescent Current (T _J = +25°C)	IB	-	3.2	6.0	-	4.3	8.0	-	4.3	8.0	mA
Quiescent Current Change 7.0 Vdc $\leq V_{II} \leq 25$ Vdc 8.0 Vdc $\leq V_{II} \leq 25$ Vdc 5.0 mA $\leq I_Q \leq 1.0$ A	BIT		 0.3 0.04	 0.8 0.5			 1.3 0.5			1.3 — 05	mA
Ripple Rejection 8 0 Vdc ≤ V _{in} ≤ 18 Vdc, f = 120 Hz	RR	68	75	-		68	-	-	68		dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	-	2.0	2 5	-	2.0	-	-	20	-	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	v _n	-	10	40	-	10		-	10	-	μV/ V _O
Output Resistance f = 1 0 kHz	RO	-	17	-	-	17	-		17		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	-	0 2	1.2		0.2	-	-	02		А
Peak Output Current (T _J = +25°C)	Imax	13	2 5	3.3		2.2	_		2 2		А
Average Temperature Coefficient of Output Voltage	тсv _О	-	±0.6	-	-	~1.1		-	-11	—	mV∕ °C

MC7805A, AC

ELECTRICAL CHARACTERISTICS (Vin = 10 V, In = 10 A, TJ = Tlow to Thigh [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7805A			Unit		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	4.9	5.0	51	49	50	51	Vdc
Output Voltage (5 0 mA \leqslant I $_O$ \leqslant 1 0 A, P $_O$ \leqslant 15 W) 7 5 Vdc \leqslant V $_{ID}$ \leqslant 20 Vdc	v _o	4 8	50	5.2	4 8	50	5 2	Vdc
	Reg _{in}		2.0 3.0 1.0 2.0	10 10 4 0 10		7 0 10 2 0 7 0	50 50 25 50	mV
Load Regulation (Note 2) $50 \text{ mA} \le I_0 \le 15 \text{ A}$ $50 \text{ mA} \le I_0 \le 1.0 \text{ A}$ $50 \text{ mA} \le I_0 \le 15 \text{ A}, T_J = +25^{\circ}\text{C}$ $250 \text{ mA} \le I_0 \le 750 \text{ mA}$	Reg _{load}		25 — — 8 0	50 — — 25		 25 25 8 0	100 100 50	mV
Quiescent Current $T_J = +25^{\circ}C$	IВ	-	3 2	50 40	-	43	6.0 6 0	mA
$\begin{array}{l} \text{Quescent Current Change} \\ \text{8 0 Vdc } \leqslant V_{in} \leqslant 25 \ \text{Vdc}, I_{D} = 500 \ \text{mA} \\ \text{7 5 Vdc } \leqslant V_{in} \leqslant 20 \ \text{Vdc}, \ \text{T}_{J} = +25^{\circ}\text{C} \\ \text{5 0 mA} \leqslant I_{Q} \leqslant 1.0 \ \text{A} \end{array}$	B		0.3 0.2 0 04	0.5 0.5 0.2			08 08 05	mA
$ \begin{array}{l} \mbox{Ripple Rejection} \\ 8 \ 0 \ Vdc \leqslant V_{in} \leqslant 18 \ Vdc, \ f = 120 \ Hz, \\ T_{j} = +25^{\circ}C \\ 8 \ 0 \ Vdc \leqslant V_{in} \leqslant 18 \ Vdc, \ f = 120 \ Hz, \\ I_{Q} = 500 \ mA \end{array} $	RR	68 68	75 75		_		-	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	_	2.0	2.5	-	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	V _n	-	10	40	-	10	-	μV/VC
Output Resistance (f = 1.0 kHz)	RO	-	17	-	-	17		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{IN} = 35 Vdc	I _{sc}	-	0.2	1.2	-	0.2	-	A
Peak Output Current (Tj = +25°C)	Imax	1.3	2.5	3.3	-	2.2	-	A
Average Temperature Coefficient of Output Voltage	TCVO	_	±0.6		_	-1.1		mV/°

NOTES: 1 T_{Iow} = -55°C for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7806, B, C

ELECTRICAL CHARACTERISTICS (Vin = 11 V. In = 500 mA. T I = Tiony to Think [Note 1] unless otherwise noted).

Ok	Current -1		MC7806	5		MC7806	В	P	MC7806C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	5.75	6.0	6.25	5.75	6.0	6.25	5 75	6.0	6.25	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _O \leq 15 W)	vo										Vdc
8.0 Vdc \leq V _{in} \leq 21 Vdc 9.0 Vdc \leq V _{in} \leq 21 Vdc		5.65	6.0	6.35	57	6.0	 6.3	57 —	60 —	63	
	Reg _{in}	_	3 0 2.0	60 30		9 0 3.0	120 60	-	90 30	120 60	mV
Load Regulation (T _J = +25°C, Note 2) 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Reg _{load}		27 9.0	100 30		43 16	1 20 60		43 16	120 60	mV
Quiescent Current (T _J = +25°C)	IВ	-	32	60	-	4.3	80		43	8.0	mA
$\begin{array}{l} \mbox{Quiescent Current Change} \\ 8.0 \mbox{Vdc} \leqslant V_{ij} \leqslant 25 \mbox{Vdc} \\ 9.0 \mbox{Vdc} \leqslant V_{ij} \leqslant 25 \mbox{Vdc} \\ 5.0 \mbox{ mA} \leqslant I_{0} \leqslant 1.0 \mbox{A} \end{array}$	Bוح		 0 3 0 04	 0 8 0 5			 13 05	-		13 05	mA
Ripple Rejection 9 0 Vdc ≤ V _{II} ≤ 19 Vdc, f = 120 Hz	RR	65	73	-	-	65	-	-	65	-	dB
Dropout Voltage (I _O = 1 O A, T _J = +25°C)	V _{in} - V _O	-	2.0	2 5		20			20		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leq f \leq 100 kHz	Vn		10	40	-	10		-	10		μV/ Vo
Output Resistance f = 1 0 kHz	RO	-	17	-	-	17	-		17	_	mΩ
Short-Circuit Current Limit ($T_A = +25^{\circ}C$) V _{in} = 35 Vdc	Isc	-	0 2	12	-	0.2	-	-	0 2		A
Peak Output Current (T _J = +25°C)	Imax	13	2.5	33	-	2 2	-	—	22	-	A
Average Temperature Coefficient of Output Voltage	тсv _О	-	±0.7	-	-	-08	-	—	-0 8		mV∕ °C

MC7806A, AC ELECTRICAL CHARACTERISTICS (V_{in} = 11 V, I_0 = 1 0 A, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7806A			MC7806AC			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Output Voltage (TJ = +25°C)	vo	5 88	60	6 1 2	5 88	60	6 1 2	Vdc	
Output Voltage (5 0 mA \leqslant I_O \leqslant 1 0 A, P_O \leqslant 15 W) 8 6 Vdc \leqslant V_In \leqslant 21 Vdc	v _o	5 76	60	6 24	5 76	60	6 24	Vdc	
$ \begin{array}{l} \text{Line Regulation (Note 2)} \\ 8.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Reg _{in}		3 0 5 0 2 0 4 0	11 15 5 0 11		90 11 30 90	60 60 30 60	mV	
Load Regulation (Note 2) $50 \text{ mA} \le I_0 \le 15 \text{ A}$ $50 \text{ mA} \le I_0 \le 10 \text{ A}$ $50 \text{ mA} \le I_0 \le 15 \text{ A}$, $T_J = +25^{\circ}\text{C}$ $250 \text{ mA} \le I_0 \le 750 \text{ mA}$	Reg _{load}		27 — — 90	50 25		 43 43 16		mV	
Quiescent Current TJ = +25°C	ΙB		3 2	5 0 4.0	_	4 3	60 60	mA	
$\begin{array}{l} \text{Quescent Current Change} \\ 9.0 \ \text{Vdc} \leqslant V_{in} \leqslant 25 \ \text{Vdc}, I_{D} = 500 \ \text{mA} \\ 8.6 \ \text{Vdc} \leqslant V_{in} \leqslant 21 \ \text{Vdc}, \ T_{J} = +25^{\circ}\text{C} \\ 5.0 \ \text{mA} \leqslant I_{Q} \leqslant 1.0 \ \text{A} \end{array}$	B		0.3 0 2 0 04	0.5 0 5 0 2			0 8 0 8 0.5	mA	
$\begin{array}{l} \mbox{Ripple Rejection} \\ 9 \ 0 \ Vdc \leqslant V_{in} \leqslant 19 \ Vdc, \ f = 120 \ Hz, \\ T_{ij} = +25^{\circ}C \\ 9.0 \ Vdc \leqslant V_{in} \leqslant 19 \ Vdc, \ f = 120 \ Hz, \\ I_{O} = 500 \ mA \end{array}$	RR	65 65	73 73	-	_	- 65	_	dB	
Dropout Voltage (I _O = 1 O A, T _J = +25°C)	V _{in} - V _O	-	2.0	2.5	-	20	-	Vdc	
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn	-	10	40	-	10	-	μV/V _O	
Output Resistance (f = 1.0 kHz)	R _O	-	17		-	17		mΩ	
Short-Circuit Current Limit (T _A = +25°C) V _{IN} = 35 Vdc	I _{sc}	-	0.2	1 2		0 2		A	
Peak Output Current (TJ = +25°C)	I _{max}	1.3	2.5	3.3	-	2.2		A	
Average Temperature Coefficient of Output Voltage	TCVO	-	±0.7	_	-	-0.8		mV/°C	

 NOTES: 1. T_{Iow} = -55°C for MC78XX, A
 Thigh = +150°C for MC78XX, A

 = 0° for MC78XXC, AC
 = +125°C for MC78XXC, AC, B

 = -40°C for MC78XXB
 2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account

 2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account

 separately. Pulse testing with low duty cycle is used.

MC7808, B, C

ELECTRICAL CHARACTERISTICS (Vin = 14 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1] unless otherwise noted).

Obernetterietie	Cumbel		MC7808	3	1	MC7808	в		MC7808C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (TJ = +25°C)	Vo	7.7	8.0	8.3	7.7	8.0	8.3	7.7	8.0	8.3	Vdc
Output Voltage (5.0 mA ≤ I _O ≤ 1.0 A, P _O ≤ 15 W) 10.5 Vdc ≤ V _{in} ≤ 23 Vdc	vo			_			_	7.6	8.0	8.4	Vdc
11.5 Vdc \leq V _{in} \leq 23 Vdc		7.6	8.0	8.4	7.6	8.0	8.4	-			
Line Regulation (T _J = +25°C, Note 2) 10.5 Vdc $\leq V_{in} \leq 25$ Vdc 11 Vdc $\leq V_{in} \leq 17$ Vdc	Reg _{in}	_	3.0 2.0	80 40	-	12 5.0	160 80	_	12 5.0	160 80	mV
Load Regulation (T _J = +25°C, Note 2) 5.0 mA \leqslant I _O \leqslant 1.5 A 250 mA \leqslant I _O \leqslant 750 mA	Reg _{load}	-	28 9.0	100 40		45 16	160 80	-	45 16	160 80	mV
Quiescent Current (T _J = $+25^{\circ}$ C)	1 _B	-	3.2	6.0	-	4.3	8.0	-	4.3	8.0	mA
Quiescent Current Change 10.5 Vdc $\leq V_{in} \leq 25$ Vdc 11.5 Vdc $\leq V_{in} \leq 25$ Vdc 5.0 mA $\leq I_0 \leq 1.0$ A	BIT			 0.8 0.5	-		 1.0 0 5			10 05	mA
Ripple Rejection 11 5 Vdc ≤ V _{II} ≤ 21.5 Vdc, f = 120 Hz	RR	62	70	-	_	62	-	-	62	-	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	-	2.0	2.5	-	2.0	-		2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn	-	10	40		10	—	-	10	-	μV/ V _O
Output Resistance f = 1.0 kHz	RO	-	18	-	-	18	-		18	-	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}		0.2	1.2		0.2	-	-	0.2	_	A
Peak Output Current (T _J = +25°C)	Imax	13	2 5	3.3	-	22		—	22		А
Average Temperature Coefficient of Output Voltage	тсv _О	-	±1.0	-	-	-0.8			-0 8		mV∕ °C

MC7808A, AC

ELECTRICAL CHARACTERISTICS (Vin = 14 V, IO = 1.0 A, TJ = Tlow to Thigh [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7808A			MC7808AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	vo	7.84	8.0	8 16	7 84	80	8 16	Vdc
Output Voltage (5 0 mA \leq I $_{O} \leq$ 1 0 A, P_{O} \leq 15 W) 10 6 Vdc \leq V $_{ID} \leq$ 23 Vdc	vo	77	80	83	77	80	83	Vdc
	Reg _{in}		4.0 6.0 2 0 4.0	13 20 6 0 13		12 15 5 0 12	80 80 40 80	mV
Load Regulation (Note 2) 5 0 mA ≤ $I_0 ≤ 1.5 A$ 5 0 mA ≤ $I_0 ≤ 1.0 A$ 5 0 mA ≤ $I_0 ≤ 1.5 A$. T _J = +25°C 250 mA ≤ $I_0 ≤ 75 mA$	Reg _{load}		28 — — 9 0	50 25			 100 100 50	mV
Quiescent Current TJ = +25°C	۱ _B	-		50 40	=		60 60	mA
$ \begin{array}{l} \text{Quiescent Current Change} \\ 11 \ \text{Vdc} \leqslant V_{in} \leqslant 25 \ \text{Vdc}, \ I_{O} = 500 \ \text{mA} \\ 10 \ 6 \ \text{Vdc} \leqslant V_{in} \leqslant 23 \ \text{Vdc}, \ T_{J} = +25^{\circ}\text{C} \\ 5 \ 0 \ \text{mA} \leqslant I_{O} \leqslant 1.0 \ \text{A} \end{array} $	B		0.3 0.2 0 04	05 05 02			08 08 05	mA
$ \begin{array}{l} \mbox{Ripple Rejection} \\ 115 \mbox{Vdc} \leqslant V_{i1} \leqslant 21.5 \mbox{Vdc}, \mbox{f} = 120 \mbox{Hz}, \\ T_J = +25 \mbox{C} \\ 11.5 \mbox{Vdc} \leqslant V_{i1} \leqslant 21.5 \mbox{Vdc}, \mbox{f} = 120 \mbox{Hz}, \\ I_0 = 500 \mbox{ mA} \end{array} $	RR	62 62	70 70	_	_	- 62		dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C) '~	V _{in} - V _O	-	20	2 5	-	2.0	-	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leq f \leq 100 kHz	Vn	-	10	40	-	10	-	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	-	18	-	-	18	-	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}		0.2	1.2	-	0 2	-	A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	-	2.2	-	A
Average Temperature Coefficient of Output Voltage	TCVO	-	±1.0		-	-0.8		mV/°C

 NOTES: 1. T_{Iow} = -55°C for MC78XX, A
 T_{high} = +150°C for MC78XX, A

 = 0° for MC78XXC, AC
 = +125°C for MC78XXC, AC, B

 = -40°C for MC78XXB
 2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account

 separately. Pulse testing with low duty cycle is used.

MC7812, B, C ELECTRICAL CHARACTERISTICS (V_{in} = 19 V, I_0 = 500 mA, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted)

Characteristic	Symbol		MC7812	2		MC7812	в		MC7812	с	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	11.5	12	12.5	11.5	12	12 5	11.5	12	12.5	Vdc
Output Voltage (5 0 mA \leq I _O \leq 1 0 A, P _O \leq 15 W) 14 5 Vdc \leq V _{in} \leq 27 Vdc	vo	_	_	_	_	_	_	11.4	12	12.6	Vdc
15 5 Vdc \leq V _{in} \leq 27 Vdc		11.4	12	12.6	114	12	126	_			
Line Regulation (T _J = +25°C, Note 2) 14 5 Vdc $\leq V_{in} \leq 30$ Vdc 16 Vdc $\leq V_{in} \leq 22$ Vdc	Reg _{in}	_	50 30	120 60	-	13 6 0	240 120	-	13 6 0	240 120	mV
Load Regulation (T _J = +25°C, Note 2) 5.0 mA \leqslant I _O \leqslant 1 5 A 250 mA \leqslant I _O \leqslant 750 mA	Regload	-	30 10	120 60	_	46 17	240 120	_	46 17	240 120	mV
Quiescent Current (TJ = +25°C)	IВ	_	34	60		44	80	-	4.4	80	mA
Quiescent Current Change 14 5 Vdc $\leq V_{in} \leq 30$ Vdc 15 Vdc $\leq V_{in} \leq 30$ Vdc 5.0 mA $\leq I_0 \leq 1.0$ A	Bוح		 0 3 0 04	08 05			 10 05			1.0 — 0 5	mA
Ripple Rejection 15 Vdc $\leq V_{in} \leq 25$ Vdc, f = 120 Hz	RR	61	68		-	60		-	60	-	dB
Dropout Voltage (I _O = 1 O A, T _J = +25°C)	V _{in} - V _O	-	20	2 5		20		-	20		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn		10	40	-	10		-	10		μV/ VO
Output Resistance f = 1 0 kHz	RO		18	-	-	18		-	18		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{IN} = 35 Vdc	Isc	-	0 2	1,2	-	0 2			0 2		A
Peak Output Current (T _J = +25°C)	Imax	13	25	33		22			22	—	А
Average Temperature Coefficient of Output Voltage	TCVO	-	±1 5	-		-10	—	-	-10	-	mV∕ °C

MC7812A, AC ELECTRICAL CHARACTERISTICS (V_{in} = 19 V. I₀ = 1 0 A, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7812A			MC7812AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	11 75	12	12 25	11 75	12	12 25	Vdc
Output Voltage	Vo							Vdc
(5 0 mA \leq I _O \leq 1 0 A, P _O \leq 15 W)	-	115	12	12 5	115	12	12 5	
14 8 Vdc $\leq V_{II} \leq 27$ Vdc								
Line Regulation (Note 2)	Regin							mV
14 8 Vdc ≤ V _I n ≤ 30 Vdc, I _O = 500 mA		-	50	18		13	120	
$16 \text{ Vdc} \leq \text{V}_{in} \leq 22 \text{ Vdc}$]		80	30		16	120	
16 Vdc ≤ V _I n ≤ 22 Vdc, T _J = +25°C			30	9.0	- 1	60	60	
14 5 Vdc $\leq V_{in} \leq 27$ Vdc, T _J = +25°C		-	5.0	18	-	13	120	
Load Regulation (Note 2)	Regload)				mV
5 0 mA ≤ I _O ≤ 1 5 A		-	30	50	-	-	-	
$50 \text{ mA} \leq \text{I}_{\text{O}} \leq 10 \text{ A}$		-	-	-	- 1	46	100	
$5.0 \text{ mA} \leqslant I_{O} \leqslant 1.5 \text{ A}$, T_{J} = +25°C		-		-	- 1	46	100	
250 mA ≤ I _O ≤ 750 mA			10	25	-	17	50	
Quiescent Current	IВ	-		50	-	- 1	60	mA
T _J = +25°C		-	34	40	-	44	60	
Quiescent Current Change	BIT							mA
15 Vdc \leq V _{IN} \leq 30 Vdc, I _O = 500 mA	-		03	05			0.8	
14 8 Vdc ≤ V _{in} ≤ 27 Vdc, T _J = +25°C			0.2	0.5		-	08	1
$50 \text{ mA} \leq \text{I}_{\text{O}} \leq 10 \text{ A}$		_	0 04	0 2	-		0.5	
Ripple Rejection	RR							dB
15 Vdc ≤ V _{in} ≤ 25 Vdc, f = 120 Hz,								
T _J = +25°C		61	68	- 1	-	-	-	
15 Vdc ≤ V _I n ≤ 25 Vdc, f = 120 Hz,							1	
I _O = 500 mA		61	68		-	60		
Dropout Voltage (I _O = 1 O A, T _J = +25°C)	V _{in} - V _O		2.0	2.5		2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leq f \leq 100 kHz	v _n	-	10	40	-	10	-	^μ V/V _O
Output Resistance (f = 1.0 kHz)	RO	_	18		-	18		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	-	0.2	1.2		0.2	-	A
Peak Output Current (T」= +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	_	A
Average Temperature Coefficient of Output Voltage	TCVO		±1.5	_	-	-1.0	_	mV/°C

NOTES[.] 1. T_{low} = -55°C for MC78XX, A = 0° for MC78XXC, AC

= -40°C for MC78XXB

T_{high} = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7815, B, C

ELECTRICAL CHARACTERISTICS (Vin = 23 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1] unless otherwise noted).

Characteristic	Sumbol		MC7815	5	1	MC7815	в	P	AC7815	с	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	14.4	15	15.6	14.4	15	15.6	14.4	15	15.6	Vdc
Output Voltage (5.0 mA ≤ I _O ≤ 1.0 A, P _O ≤ 15 W) 17.5 Vdc ≤ V _i _{II} ≤ 30 Vdc 18.5 Vdc ≤ V _i _{II} ≤ 30 Vdc	Vo		— 15	 15.75	 14.25		 15.75	14.25	15	15.75	Vdc
Line Regulation (T _J = +25°C, Note 2) 17 5 Vdc $\leq V_{in} \leq 30$ Vdc 20 Vdc $\leq V_{in} \leq 26$ Vdc	Reg _{in}	-	6.0 3.0	150 75		13 6.0	300 150	-	13 6.0	300 150	mV
Load Regulation (T_J = +25°C, Note 2) 5.0 mA \leq I_O \leq 1.5 A 250 mA \leq I_O \leq 750 mA	Reg _{load}	_	32 10	150 75	-	52 20	300 150	_	52 20	300 150	mV
Quiescent Current (T _J = +25°C)	۱ _B	-	3.4	6.0	-	44	8.0		4.4	8.0	mA
Quiescent Current Change 17.5 Vdc \leq V _{in} \leq 30 Vdc 18.5 Vdc \leq V _{in} \leq 30 Vdc 5 0 mA \leq I ₀ \leq 1.0 A	Bاح		 0.3 0.04	 0 8 0.5	_ _ _	- - -				1.0 0.5	mA
Ripple Rejection 18.5 Vdc ≤ V _{ID} ≤ 28.5 Vdc, f = 120 Hz	RR	60	66	-	-	58	-	-	58	-	dB
Dropout Voltage (IO = 1.0 A, TJ = +25°C)	Vin - VO	-	2.0	2.5	-	20	-	-	2.0	-	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn	-	10	40		10	-	-	10	-	μV/ VO
Output Resistance f = 1.0 kHz	RO	-	19	. —	-	19		-	19	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	Isc	-	0 2	1 2	-	0 2	-		0 2	-	A
Peak Output Current (T _J = +25°C)	Imax	13	2.5	3.3	-	2.2	-	-	2 2		А
Average Temperature Coefficient of Output Voltage	тсv _о	-	±1 8	-	-	-10	-	-	-10	-	mV∕ °C

MC7815A, AC

ELECTRICAL CHARACTERISTICS (Vin = 23 V, IO = 1 0 A, TJ = Tlow to Thigh [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7815A			MC7815AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	٧ ₀	14.7	15	15 3	14.7	15	15 3	Vdc
Output Voltage (5.0 mA \leqslant I _O \leqslant 1 0 A, P _O \leqslant 15 W) 17 9 Vdc \leqslant V _{IN} \leqslant 30 Vdc	v _o	14.4	15	15 6	14 4	15	15 6	Vdc
	Reg _{in}		6.0 6 0 3.0 6.0	22 22 10 22		13 16 6 0 13	150 150 75 150	mV
Load Regulation (Note 2) 50 mA ≤ $I_0 ≤ 1.5 A$ 50 mA ≤ $I_0 ≤ 1 0 A$ 50 mA ≤ $I_0 ≤ 1 5 A$, $T_J = +25°C$ 250 mA ≤ $I_0 ≤ 750 mA$	Reg _{load}		32 10	50 25				mV
Quiescent Current T _J = +25°C	1 ^B	_	3.4	55 45	_	44	6 0 6 0	mA
$\begin{array}{l} \text{Quiescent Current Change} \\ 17 5 \ \text{Vdc} \leqslant V_{In} \leqslant 30 \ \text{Vdc}, \ I_{O} = 500 \ \text{mA} \\ 17 5 \ \text{Vdc} \leqslant V_{In} \leqslant 30 \ \text{Vdc}, \ T_{J} = +25^{\circ}\text{C} \\ 5.0 \ \text{mA} \leqslant I_{O} \leqslant 1.0 \ \text{A} \end{array}$	Bاح		0.3 0.2 0.04	0.5 0 5 0 2			0 8 0 8 0.5	mA
$\begin{array}{l} \mbox{Ripple Rejection} \\ 18.5 \mbox{Vdc} \leqslant V_{i1} \leqslant 28.5 \mbox{Vdc}, \mbox{f} = 120 \mbox{ Hz}, \\ T_{ij} = +25^{\circ}C \\ 18.5 \mbox{Vdc} \leqslant V_{i1} \leqslant 28.5 \mbox{ Vdc}, \mbox{f} = 120 \mbox{ Hz}, \\ I_{Q} = 500 \mbox{ mA} \end{array}$	RR	60 60	66 66				_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - VO	-	2.0	2.5	-	20	-	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	V _n	-	10	40		10	-	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	-	19	-	-	19	-	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{IN} = 35 Vdc	I _{sc}	-	0.2	1.2	-	0.2	-	A
Peak Output Current (TJ = +25°C)	Imax	1.3	2.5	3.3		2.2	-	A
Average Temperature Coefficient of Output Voltage	TCVO	_	±1.8		_	-1.0	_	mV/°C

NOTES: 1 $T_{low} = -55^{\circ}C$ for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account

separately. Pulse testing with low duty cycle is used.

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

MC7818, B, C

ELECTRICAL CHARACTERISTICS (Vin = 27 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1] unless otherwise noted).

Characteristic	Symbol		MC7818	3		MC7818	в		MC7818	С	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	17.3	18	18.7	17.3	18	18.7	17.3	18	18.7	Vdc
Output Voltage (5 0 mA $\leq I_0 \leq 1$ 0 A, P ₀ ≤ 15 W)	vo							47.4			Vdc
21 Vdc ≤ V _I n ≤ 33 Vdc 22 Vdc ≤ V _I n ≤ 33 Vdc		171	18	18.9	17.1	18	18.9	17.1	18	18.9	
Line Regulation (T _J = +25°C, Note 2) 21 Vdc \leq V _{IR} \leq 33 Vdc 24 Vdc \leq V _{IR} \leq 30 Vdc	Reg _{in}	-	70 40	180 90	-	25 10	360 180	-	25 10	360 180	mV
Load Regulation (T _J = +25°C. Note 2) 5 0 mA \leq I _O \leq 1 5 A 250 mA \leq I _O \leq 750 mA	Reg _{load}	_	35 12	180 90	_	55 22	360 180	-	55 22	360 180	mV
Quiescent Current (TJ = +25°C)	IB	-	3.5	6.0	-	4.5	80	-	4 5	8.0	mA
Quiescent Current Change 21 Vdc $\leq V_{in} \leq 33$ Vdc 22 Vdc $\leq V_{in} \leq 33$ Vdc 5 0 mA $\leq I_0 \leq 1.0$ A	Bוح		 0 3 0.04	 0 8 0.5			 1.0 0.5			1.0 — 05	mA
Ripple Rejection 22 Vdc $\leq V_{in} \leq 32$ Vdc, f = 120 Hz	RR	59	65	-	-	57		-	57	-	dB
Dropout Voltage (I _O = 1 0 A, T _J = +25°C)	V _{in} - V _O	-	2.0	2 5	-	2.0			20		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn		10	40	-	10		-	10	-	μV/ VO
Output Resistance f = 1 0 kHz	RO	-	19	-	-	19	_		19	-	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	Isc	-	0.2	12	-	02	-	-	0.2	-	A
Peak Output Current (TJ = +25°C)	Imax	13	2 5	3.3	-	2 2		-	22	-	A
Average Temperature Coefficient of Output Voltage	тсv _О	-	±2.3	-	-	-10	-	-	-10	-	mV∕ °C

MC7818A, AC ELECTRICAL CHARACTERISTICS (V_{in} = 27 V, I_0 = 1.0 A, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7818A			MC7818AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	17 64	18	18 36	17 64	18	18 36	Vdc
Output Voltage (5 0 mA \leq I _O \leq 1 0 A, P _O \leq 15 W)	vo	173	18	187	173	18	173	Vdc
21 Vdc $\leq V_{in} \leq 33$ Vdc								
Line Regulation (Note 2)	Regin							mV
21 Vdc \leq V _{in} \leq 33 Vdc, I _O = 500 mA		-	70 12	31 45	-	25 28	180 180	
24 Vdc ≤ V _I n ≤ 30 Vdc 24 Vdc ≤ V _I n ≤ 30 Vdc, T _J = +25°C	(40	15		10	90	1
24 Vdc $\leq V_{In} \leq 30$ Vdc, TJ = +25°C 20 6 Vdc $\leq V_{In} \leq 33$ Vdc, TJ = +25°C		_	70	31	_	25	180	
Load Regulation (Note 2)	Regload							mV
5 0 mA ≤ I _O ≤ 1 5 A		-	35	50	[-		-	
5 0 mA ≤ I _O ≤ 1 0 A		-	-		-	55	100	
$50 \text{ mA} \le 1_0 \le 15 \text{ A}, \text{ T}_J = +25^{\circ}\text{C}$			12	25		55 22	100 50	
250 mA ≤ I _O ≤ 750 mA								
Quiescent Current T ₁ = +25°C	1B	_	34	55 4.5		4 5	60 60	mA
Quiescent Current Change	BIT							mA
21 Vdc ≤ V _{in} ≤ 33 Vdc, I _O = 500 mA	- 0	_	0.3	05	-	-	08	
21 Vdc ≤ V _{in} ≤ 33 Vdc, T _i = +25°C			0.2	05	-		08	
5.0 mA ≤ I _O ≤ 1 0 A			0 04	0 2	-		0.5	
Ripple Rejection	RR							dB
$22 \text{ Vdc} \le V_{in} \le 32 \text{ Vdc}, \text{ f} = 120 \text{ Hz}, $ T _J = +25°C		59	65	_	-		-	
22 Vdc ≤ V _{IN} ≤ 32 Vdc, f = 120 Hz, I _O = 500 mA		59	65			57		
Dropout Voltage (I _O = 1 0 A, T _J = +25°C)	V _{in} - V _O		2.0	2.5		2.0	-	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	v _n	-	10	40	-	10	-	μV/V _O
Output Resistance (f = 1 0 kHz)	RO		19	-		19	-	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{IN} = 35 Vdc	Isc	_	0.2	12	-	0.2	-	A
Peak Output Current (T _J = +25°C)	Imax	1.3	2 5	3.3	-	2.2	_	A
Average Temperature Coefficient of Output Voltage	τcv _o	-	±2.3	-	-	-10		mV/°C

NOTES 1 $T_{low} = -55^{\circ}C$ for MC78XX, A = 0° for MC78XXC, AC

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

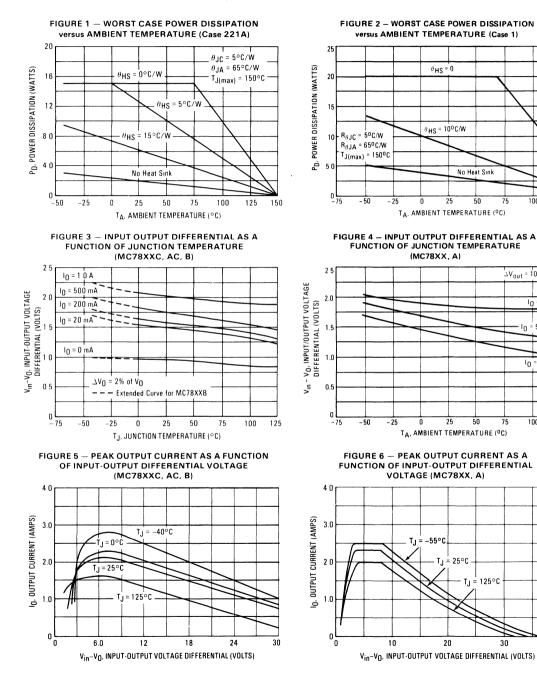
= -40°C for MC78XXB 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7824, B, C

ELECTRICAL CHARACTERISTICS (Vin = 33 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1] unless otherwise noted).

Okintia	Cumple-1		MC7824	L	1	MC7824	в	MC7824C			11
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (TJ = +25°C)	Vo	23	24	25	23	24	25	23	24	25	Vdc
Output Voltage (5 0 mA \leq I _O \leq 1.0 A, P _O \leq 15 W)	vo										Vdc
27 Vdc		22.8	24	25.2	22.8	24	25.2	22.8	24	25 2	
Line Regulation (T _J = +25°C, Note 2) 27 Vdc \leqslant V _{in} \leqslant 38 Vdc 30 Vdc \leqslant V _{in} \leqslant 36 Vdc	Reg _{in}	_	10 5 0	240 120	-	31 14	480 240	-	31 14	480 240	mV
Load Regulation (T _J = +25°C, Note 2) 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Reg _{load}	-	40 15	240 120		60 25	480 240		60 25	480 240	mV
Quiescent Current (T _J = +25°C)	IВ	_	3.6	6.0	-	4.6	8.0	-	4.6	80	mA
Quiescent Current Change 27 Vdc $\leq V_{in} \leq 38$ Vdc 28 Vdc $\leq V_{in} \leq 38$ Vdc 5.0 mA $\leq I_{O} \leq 1.0$ A	BIT		 0.3 0.04				1 0 0 5			10 05	mA
Ripple Rejection 28 Vdc $\leq V_{in} \leq 38$ Vdc, f = 120 Hz	RR	56	62	-	-	54	-	-	54	-	dB
Dropout Voltage (I _O = 1 O A, T _J = +25°C)	V _{in} - V _O		20	2.5	-	2.0		-	20		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leq f \leq 100 kHz	Vn	-	10	40		10	—	-	10	-	μV/ V _O
Output Resistance f = 1.0 kHz	RO	-	20	-	-	20	-	-	20	-	mΩ
Short-Circuit Current Limit ($T_A = +25^{\circ}C$) V _{in} = 35 Vdc	Isc		0 2	12	-	0.2		-	0 2	-	A
Peak Output Current (Tj = +25°C)	Imax	13	2 5	33	-	2.2		-	2 2		A
Average Temperature Coefficient of Output Voltage	TCVO	-	±3 0	-	-	-15			-15	-	mV∕ °C

MC7824A, AC


ELECTRICAL CHARACTERISTICS (V_{in} = 33 V, I_O = 1 0 A, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7824A			MC7824AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	vo	23.5	24	24 5	23.5	24	24 5	Vdc
Output Voltage (5 0 mA \leqslant I_O \leqslant 1 0 A, P_O \leqslant 15 W) 27 3 Vdc \leqslant V _I_N \leqslant 38 Vdc	vo	23	24	25	23	24	25	Vdc
	Reg _{in}		10 15 5 0 10	36 60 19 36		31 35 14 31	240 240 120 240	mV
Load Regulation (Note 2) 50 mA ≤ $I_0 ≤ 1.5 A$ 50 mA ≤ $I_0 ≤ 1 0 A$ 50 mA ≤ $I_0 ≤ 1 5 A$, $T_J = +25°C$ 250 mA ≤ $I_0 ≤ 75 mA$	Reg _{load}		40 15	50 — — 25				mV
Quiescent Current T _J = +25°C	IВ		36	6 0 5.0	-	4 6	6 0 6.0	mA
Quiescent Current Change 27.3 Vdc $\leq V_{In} \leq 38$ Vdc. I _Q = 500 mA 27.3 Vdc $\leq V_{In} \leq 38$ Vdc. T _J = +25°C 5.0 mA $\leq I_Q \leq 1.0$ A	B		0 3 0.2 0 04	0.5 0 5 0.2			0 8 0.8 0 5	mA
$\begin{array}{l} \text{Ripple Rejection} \\ 28 \ \text{Vdc} \leqslant \text{V}_{In} \leqslant 38 \ \text{Vdc}, \ \text{f} = 120 \ \text{Hz}, \\ \text{T}_{J} = +25^{\circ}\text{C} \\ 28 \ \text{Vdc} \leqslant \text{V}_{in} \leqslant 38 \ \text{Vdc}, \ \text{f} = 120 \ \text{Hz}, \\ \text{I}_{O} = 500 \ \text{mA} \end{array}$	RR	56 56	62 62	_		- 54	_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	Vin - VO	_	2.0	2.5	-	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz \leq f \leq 100 kHz	Vn	-	10	40	-	10	-	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	-	20	-	_	20		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	-	0.2	1.2	-	0.2	-	A
Peak Output Current (TJ = +25°C)	I _{max}	1.3	2.5	33	-	2.2		A
Average Temperature Coefficient of Output Voltage	TCVO	-	±3.0	-	_	-1.5	_	mV/°C

NOTES: 1. T_{Iow} = -55°C for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

T_{high} = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

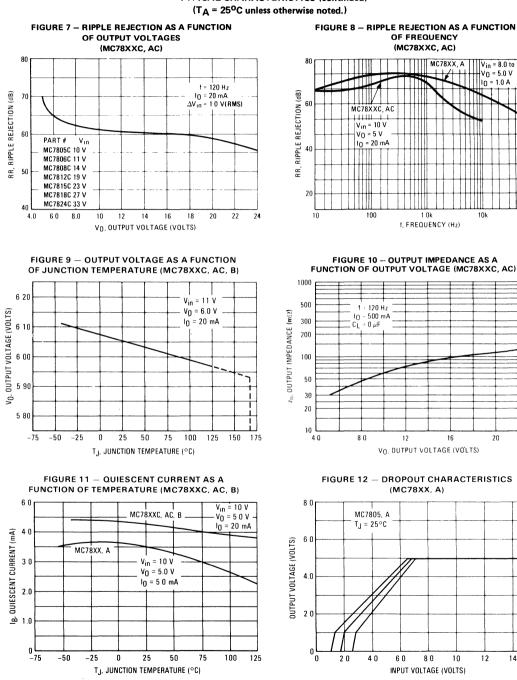
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TYPICAL CHARACTERISTICS

 $(T_{\Delta} = +25^{\circ}C \text{ unless otherwise noted.})$

100 125

V_{out} = 100 mV


10

10 = 10 A

-500 m A

 $I_0 = 10 \text{ mA}$

100 125

TYPICAL CHARACTERISTICS (continued)

Vin = 8.0 to 18 Vdc

V0 = 5.0 V 10 = 1.0 A

10k

20

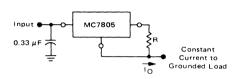
12

14

16

24

100k

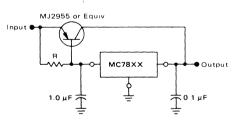

APPLICATIONS INFORMATION

Design Considerations

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected

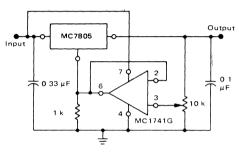
FIGURE 13 - CURRENT REGULATOR


The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5 V}{R} + I_0$$

 $1_{O} \cong 1.5$ mA over line and load changes

For example, a 1-ampere current source would require R to be a 5-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.



XX = 2 digits of type number indicating voltage

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by VBE of the pass transistor.

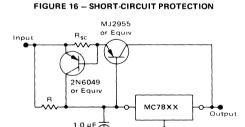

to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor, should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistancedrops since the regulator has no external sense lead.

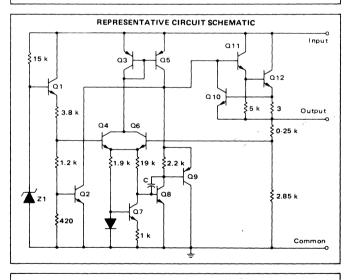
FIGURE 14 - ADJUSTABLE OUTPUT REGULATOR

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

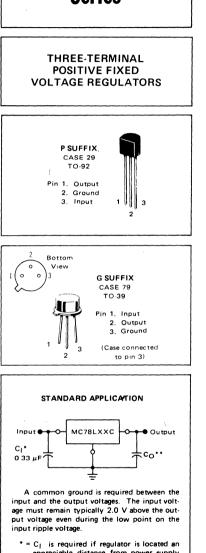
XX - 2 digits of type number indicating voltage

The circuit of Figure 15 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{scr} and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

MC78LOOC, AC Series


THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

60.,


The MC78L00 Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination. Output impedance is greatly reduced and quiescent current is substantially reduced.

- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00 Series)
- Available in Either ±5% (AC) or ±10% (C) Selections

Device No. ±10%	Device No. ±5%	Nominal Voltage
MC78L05C	MC78L05AC	5.0
MC78L08C	MC78L08AC	8.0
MC78L12C	MC78L12AC	12
MC78L15C	MC78L15AC	15
MC78L18C	MC78L18AC	18
MC78L24C	MC78L24AC	24

- appreciable distance from power supply filter.
- ** = C_O is not needed for stability; however, it does improve transient response.

Device	Temperature Range	Package
MC78LXXACG	$T_{J} = 0^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can
MC78LXXACP	T _J = 0 ^o C to +150 ^o C	Plastic Transistor
MC78LXXCG	$T_{J} = 0^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can
MC78LXXCP	T ₁ = 0 ^o C to +150 ^o C	Plastic Transisto

MC78L00 Series MAXIMUM RATINGS ($T_A = +125^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.6 V - 8.0 V)	V ₁	30	Vdc
(12 V – 18 V)		35	
(24 ∨)		40	
Storage Junction Temperature Range	Tstg	-65 to +150	°C
Operating Junction Temperature Range	Тj	0 to +150	°C

MC78L05C, MC78L05AC ELECTRICAL CHARACTERISTICS (V₁ = 10 V, I₀ = 40 mA, C₁ = 0.33 μ F, C₀ = 0.1 μ F, $0^{O_{C}} < T + 2126^{O_{C}}$ upless otherwise noted.)

			0°C < Tj	< +125 ⁰ C	unless oth	erwise not	ted.)	
			MC78L05	С	r r	AC78L05/	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	٧o	4.6	5.0	5.4	4.8	5.0	5.2	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 40 mA)	Regline							mV
7.0 Vdc ≤ V _I ≤ 20 Vdc 8.0 Vdc ≤V _I ≤ 20 Vdc		-	55 45	200 150	- -	55 45	150 100	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Regload	-	11 5.0	60 30		11 5.0	60 30	mV
Output Voltage (7.0 Vdc ≤ VI ≤ 20 Vdc, 1.0 mA ≤ IO ≤ 40 mA) (VI = 10 V, 1.0 mA ≤ IO ≤ 70 mA)	Vo	4.5 4.5		5.5 5.5	4.75 4.75	-	5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	^I IB		3.8 _	6.0 5.5		3.8 	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V ₁ \leq 20 Vdc) (1.0 mA \leq 1 ₀ \leq 40 mA)	^IB	-		1.5 0.2			1.5 0.1	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤ f ≤ 100 kHz)	VN	-	40	-	-	-40	-	μV
Long-Term Stability	∆V _O /∆t	-	12	-	-	12	-	mV/1.0 k Hrs
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 8.0 V \leq V ₁ \leq 18 V, T _J = +25 ^o C)	RR	40	49	-	41	49	-	dB
Input-Output Voltage Differential (T _J = +25 ^o C)	V ₁ /V _O	-	1.7	-	-	1.7	-	Vdc

7

MC78L08C, MC78L08AC ELECTRICAL CHARACTERISTICS (V₁ = 14 V, I₀ = 40 mA, C₁ = 0.33 μ F,C₀ = 0.1 μ F,

			MC78L08	C		MC78L08A	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (Tj ≃ +25 ⁰ C)	vo	7.36	8.0	8.64	7.7	8.0	8.3	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 40 mA)	Regline							mV
10.5 Vdc ≤ V _I ≤ 23 Vdc 11 Vdc ≤ V _I ≤ 23 Vdc		-	20 12	200 150		20 12	175 125	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		15 6.0	80 40	-	15 8.0	80 40	mV
$ \begin{array}{l} \mbox{Output Voltage} \\ (10.5 \mbox{ Vdc} \leqslant V_I \leqslant 23 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leqslant I_O \leqslant 40 \mbox{ mA}) \\ (V_I = 14 \mbox{ V}, \ 1.0 \mbox{ mA} \leqslant I_O \leqslant 70 \mbox{ mA}) \end{array} $	٧o	7.2 7.2	_	8.8 8.8	7.6 7.6		8.4 8.4	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	^I IВ	-	3.0 _	6.0 5.5		3.0 -	6.0 5.5	mA
Input Bias Current Change (11 Vdc $\leq V_{I} \leq 23$ Vdc) (1.0 mA $\leq I_{O} \leq 40$ mA)	ƠIB	-	-	1.5 0.2			1.5 0.1	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	52	-	-	60	-	μV
Long-Term Stability	∆V _O /∆t	-	20	-	-	20		mV/1.0 k Hrs
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 12 V \leq V _I \leq 23 V, T _J = +25 ^o C)	RR	36	55		37	57		dB
Input-Output Voltage Differential (T _J = +25 ^o C)	V _I /V _O	-	1.7	-	-	1.7		Vdc

MC78L12C, MC78L12AC ELECTRICAL CHARACTERISTICS (V_I = 19 V, I_O = 40 mA, C_I = 0.33μ F, C_O = 0.1μ F, 0° C < T_J < $+125^{\circ}$ C unless otherwise noted.)

		+125°C	unless oth	erwise not	ed.)			
			MC78L12	С		MC78L12/	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	Vo	11.1	12	12.9	11.5	12	12.5	Vdc
Input Regulation (T ₁ = +25 ^o C, I _O = 40 mA)	Regline							mV
14.5 Vdc ≤ V _I ≤ 27 Vdc		-	120	250	-	120	250	
$16 \text{ Vdc} \leq \text{V}_{1} \leq 27 \text{ Vdc}$		-	100	200	-	100	200	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	-	20 10	100 50	-	20 10	100 50	mV
Output Voltage (14.5 Vdc ≤ V _I ≤ 27 Vdc, 1.0 mA ≤ I _O ≤ 40 mA) (V _I = 19 V, 1.0 mA ≤ I _O ≤ 70 mA)	vo	10.8 10.8	-	13.2 13.2	11.4 11.4	-	12.6 12.6	Vdc
Input Bias Current (T _J = +25 ^o C) (T _J = +125 ^o C)	ΪВ	-	4.2	6.5 6.0	-	4.2	6.5 6.0	mA
Input Bias Current Change (16 Vdc ≤ V ≤ 27 Vdc) (1.0 mA ≤ I _O ≤ 40 mA)	∆IB	-		1.5 0.2			1.5 0.1	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤ f ≤ 100 kHz)	VN	-	80	-	-	80	-	μ∨
Long-Term Stability	∆V0/∆t	-	24		-	24	-	mV/1.0 k Hrs.
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 15 V ≤ V _I ≤ 25 V, T _J = +25 ^o C)	RR	36	42	-	37	42	-	dB
Input-Output Voltage Differential (T _J = +25 ^o C)	VI/VO	-	1.7		-	1.7	-	Vdc

MC78L15C, MC78L15AC ELECTRICAL CHARACTERISTICS (V₁ = 23 V, I₀ = 40 mA, C₁ = 0.33 μ F, C₀ = 0.1 μ F,

		(0°C < Tj <	< +125°C	unless othe	erwise not	ed.)	
			MC78L15	с	M	MC78L15A	NC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	٧o	13.8	15	16.2	14.4	15	15.6	Vdc
Input Regulation $(T_1 = +25^{\circ}C, I_{\Omega} = 40 \text{ mA})$	Regline							mV
17.5 Vdc ≤ V _I ≤ 30 Vdc 20 Vdc ≤ V _I ≤ 30 Vdc		-	130 110	300 250	-	130 110	300 250	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	-	25 12	150 75	_ _	25 12	150 75	mV
Output Voltage (17.5 Vdc ≤ VI ≤ 30 Vdc, 1.0 mA ≤ I _O ≤ 40 mA) ⁽ VI = 23 V, 1.0 mA ≤ I _O ≤ 70 mA)	v _o	13.5 13.5		16.5 16.5	14.25 14.25		15.75 15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IВ	-	4.4	6.5 6.0	-	4.4	6.5 6.0	mA
Input Bias Current Change (20 Vdc $\leq V_{I} \leq 30$ Vdc) (1.0 mA $\leq I_{Q} \leq 40$ mA)	^{∆I} IB	-		1.5 0.2	-		1.5 0.1	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤ f ≤ 100 kHz)	VN		90	-	-	90	-	μV
Long-Term Stability	∆V0/∆t		30	-	-	30	-	mV/1.0 k Hrs.
Ripple Rejection (I_0 = 40 mA, f = 120 Hz, 18.5 V $\leq V_I \leq$ 28.5 V, T _J = +25 ^o C)	RR	33	39	-	34	39	-	dB
Input-Output Voltage Differential (T _J = +25 ⁰ C)	V _I /V _O	-	1.7	-	-	1.7	-	Vdc

$\label{eq:mc78L18C} \begin{array}{l} \text{MC78L18AC ELECTRICAL CHARACTERISTICS} \quad (v_1 = 27 \ v, \ l_O = 40 \ \text{mA}, \ C_1 = 0.33 \ \mu\text{F}, \ C_O = 0.1 \ \mu\text{F}, \ 0^{\circ}\text{C} < \tau_J < +125^{\circ}\text{C} \ \text{unless otherwise noted.} \end{array} \right)$

	$0^{\circ}C < T_{J} < +125^{\circ}C$ unless otherwise noted.)							
			MC78L18	С	N	AC78L18A	۱C	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	16.6	18	19.4	17.3	18	18.7	Vdc
Input Regulation (T ₁ = +25 ^o C, I _O = 40 mA)	Regline							mV
21.4 Vdc ≤ V ₁ ≤ 33 Vdc 20.7 Vdc ≤ V ₁ ≤ 33 Vdc 22 Vdc ≤ V ₁ ≤ 33 Vdc			32 27	325 275	-	45	325	
$21 \text{ Vdc} \leq \text{V}_1 \leq 33 \text{ Vdc}$		_	27	2/5	_	35	275	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	-	30 15	1 70 85		30 15	170 85	mV
Output Voltage (21.4 Vdc $\leq V_1 \leq 33$ Vdc, 1.0 mA $\leq I_0 \leq 40$ mA) (20.7 Vdc $\leq V_1 \leq 33$ Vdc, 1.0 mA $\leq I_0 \leq 40$ mA) ($V_1 = 27$ V, 1.0 mA $\leq I_0 \leq 70$ mA)	v _o	16.2 16.2	-	17.8 17.8	17.1	-	18.9	Vdc
$(V_{ } = 27 V, 1.0 \text{ mA} \le I_{0} \le 70 \text{ mA})$					17.1	-	18.9	
Input Bias Current (T _J = +25 ^o C) (T _J = +125 ^o C)	ΪВ	-	3.1 -	6.5 6.0		3.1 _	6.5 6.0	mA
Input Bias Current Change (22 Vdc $\leq V_{I} \leq 33$ Vdc) (21 Vdc $\leq V_{I} = 33$ Vdc) (1.0 mA $\leq I_{O} \leq 40$ mA)	^{∆1} IB	-	-	1.5 0.2	-		1.5 0.1	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤ f ≤ 100 kHz)	V-N	-	150	-	-	150	-	μV
Long-Term Stability	∆V0/∆t		45	-	-	45	-	mV/1.0 k Hrs.
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 23 V \leq V _I \leq 33 V, T _J = +25 ^o C)	RR	32	46	-	33	48	-	dB
Input-Output Voltage Differential (T _J = +25 ⁰ C)	v _I /v _O	-	1.7	-	-	1.7	-	Vdc

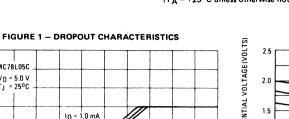
$\label{eq:mc78L24C} \mbox{MC78L24AC ELECTRICAL CHARACTERISTICS (V_I = 33 \ V, \ I_O = 40 \ mA, \ C_I = 0.33 \ \mu\text{F}, \ C_O = 0.1 \ \mu\text{F}, \ 0^{0}\text{C} < T_J < +125^{0}\text{C} \ unless \ otherwise \ noted.)}$

	$0^{\circ}C < T_{J} < +125^{\circ}C$ unless otherwise noted.)								
			MC78L24	С	Ν	AC78L244	AC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Output Voltage (T _J = +25 ⁰ C)	Vo	22.1	24	25.9	23	24	25	Vdc	
Input Regulation (T I = +25 ^o C, I O = 40 mA)	Regline							mV	
27.5 Vdc ≤ VI ≤ 38 Vdc		-	35	350	-	-			
28 Vdc ≼ V _I ≼ 38 Vdc		-	30	300	-	50	300		
27 Vdc < VI ≤ 38 Vdc		-	-	-	-	60	350		
Load Regulation (T _J = $+25^{\circ}$ C, 1.0 mA $\leq I_{O} \leq 100$ mA)	Regload		40	200	-	40	200	mV	
$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$			20	100	-	20	100		
Output Voltage (28 Vdc \leq V _I \leq 38 Vdc, 1.0 mA \leq I _O \leq 40 mA)	Vo	21.6	-	26.4				Vdc	
$(27 \text{ Vdc} \le \text{V}_{I} \le 38 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_{O} \le 40 \text{ mA})$ $(28 \text{ Vdc} \le \text{V}_{I} \le 33 \text{ V}, 1.0 \text{ mA} \le \text{I}_{O} \le 70 \text{ mA})$ $(27 \text{ Vdc} \le \text{V}_{I} \le 22 \text{ V}, 1.0 \text{ mA} \le \text{I}_{O} \le 70 \text{ mA})$		21.6	-	26.4	22.8 22.8		25.2		
$(27 \text{ Vdc} \le \text{V}_1 \le 33 \text{ V}, 1.0 \text{ mA} \le \text{I}_0 \le 70 \text{ mA})$					22.8		25.2		
Input Bias Current	IВ			0.5				mA	
$(T_{J} = +25^{\circ}C)$			3.1	6.5	-	3.1	6.5		
$(T_{J} = +125^{\circ}C)$		-	-	6.0	· -		6.0		
Input Bias Current Change	∆IB			1.5			4.5	mA	
(28 Vdc ≤ V ₁ ≤ 38 Vdc) (1.0 mA ≤ I _O ≤ 40 mA)		_	_	0.2	_	_	1.5 0.1		
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	200	-	_	200	-	μV	
Long-Term Stability	∆V0/∆t	-	56		-	56	_	mV/1.0 k Hrs.	
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 29 V \leq V _I \leq 35 V, T _J = +25 ^o C)	RR	30	43	-	31	45		dB	
Input-Output Voltage Differential $(T_J = +25^{0}C)$	V _I /V _O	-	1.7	-	-	1.7	-	Vdc	

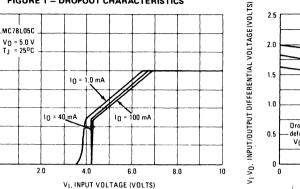
e de la compañía de

8.0

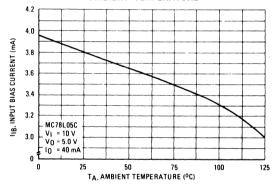
6.0

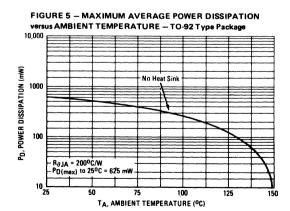

4.0

2.0


0

0


VO, OUTPUT VOLTAGE (VOLTS)



TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

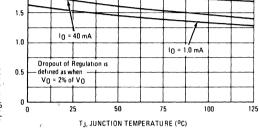
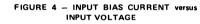



FIGURE 2 - DROPOUT VOLTAGE versus

JUNCTION TEMPERATURE

lo - 70 mA

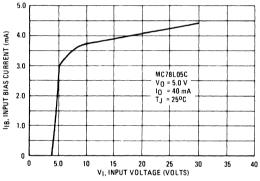
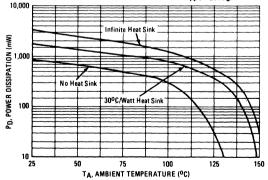
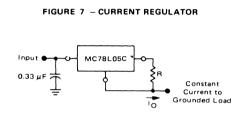



FIGURE 6 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - TO-39 Type Package

APPLICATIONS INFORMATION

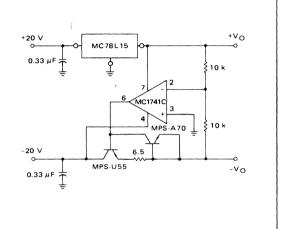

Design Considerations

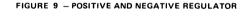
MC78L00C, AC Series

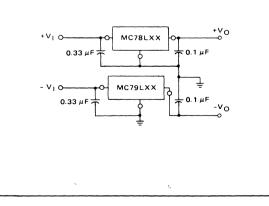
The MC78L00C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A $0.33 \ \mu\text{F}$ or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 8 - ±15 V TRACKING VOLTAGE REGULATOR



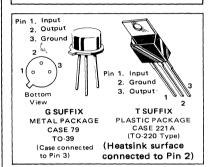

The MC78L00C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows

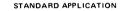

$$I_0 = \frac{5 V}{R} + I_{IB}$$

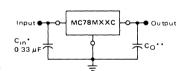
IIB = 3.8 mA over line and load changes

For example, a 100 mA current source would require R to be a 50-ohm, 1/2-W resistor and the output voltage compliance would be the input voltage less 7 volts.

MC78M00C series

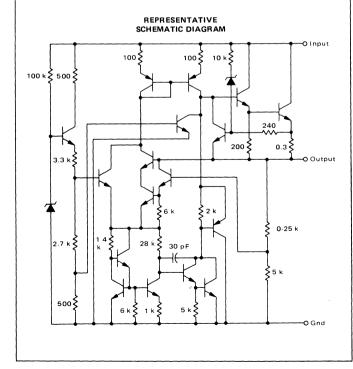

MC78M00C SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS


The MC78M00 Series positive voltage regulators are identical to the popular MC7800C Series devices, except that they are specified for only one-third the output current. Like the MC7800C devices, the MC78M00C three-terminal regulators are intended for local, oncard voltage regulation.


Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mA.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 221A and Case 79 (TO-220 and Hermetic TO-39)

THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS


A common ground is required between the input and the output voltages. The input voltage must remain typically 2 0 V above the output voltage even during the low point on the input ripple voltage.

- = C_{ID} is required if regulator is located an appreciable distance from power supply filter.
- ** = C_O improves stability and transient response.

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE
MC78MXXCG	T _J = 0 ⁰ C to +150 ⁰ C	Metal Can
MC78MXXCT	$T_{i} = 0^{\circ} C$ to +150° C	Plastic Power

TYPE NO	./VOLTAGE
MC78M05C	5.0 Volts
MC78M06C	6.0 Volts
MC78M08C	8.0 Volts
MC78M12C	12 Volts
MC78M15C	15 Volts
MC78M18C	18 Volts
MC78M20C	20 Volts
MC78M24C	24 Volts

MC78M00C Series MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

4

Rating		Symbol	Value	Unit
Input Voltage (5.0 V - 18 V)		VI	35	Vdc
(20 V - 24 V)			40	
Power Dissipation (Package Limitation)				
Plastic Package				
T _A = 25 ^o C		PD	Internally Limited	
Derate above T _A = 25 ^o C	S	θJA	70	°C/W
T _C = 25 ^o C	1.00	PD	Internally Limited	
Derate above T _C = 110 ^o C		θιΟ	5.0	°C/W
Metal Package				
T _A = 25 ^o C		PD	Internally Limited	
Derate above $T_A = 25^{\circ}C$		θJA	185	°C/W
T _C = 25 ^o C		PD	Internally Limited	
Derate above $T_C = 85^{\circ}C$		θ」C	25	°C/W
Operating Junction Temperature Range		. Т <u>ј</u>	0 to +150	°C
Operating Ambient Temperature Range		TA	0 to +85	°C
Storage Temperature Range		T _{stg}		
Plastic Package		5	-65 to +150	°C
Metal Package			-65 to +150	°C

 $\textbf{MC78M05C ELECTRICAL CHARACTERISTICS} \hspace{0.1in} (V_{1} \hspace{0.1in} = \hspace{0.1in} 10 \hspace{0.1in} V, \hspace{0.1in} I_{0} \hspace{0.1in} = \hspace{0.1in} 200 \hspace{0.1in} \text{mA}, \hspace{0.1in} 0^{o}\text{C} < \text{T}_{J} < \hspace{0.1in} + \hspace{0.1in} 125^{o}\text{C}, \hspace{0.1in} P_{D} \hspace{0.1in} \leqslant \hspace{0.1in} 5.0 \hspace{0.1in} \text{W unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	4.8	5.0	5.2	Vdc
Line Regulation (T ₁ = +25 ^o C)	Regline	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			mV
(7.0 Vdc ≤ V _I ≤ 25 Vdc) (8.0 Vdc ≤ V _I ≤ 25 Vdc)	· •	-	3.0 1.0	100 50	
Load Regulation (T _J = +25 ^o C, 5.0 mA \leq I _O \leq 500 mA) (T _J = +25 ^o C, 5.0 mA \leq I _O \leq 200 mA)	Regload	-	20 10	100 50	mV
Output Voltage (7.0 Vdc $\leqslant~V_{1}~\leqslant~25$ Vdc, 5.0 mA $\leqslant~I_{0}~\leqslant~200$ mA)	vo	4.75	-	5.25	Vdc
Input Bias Current (T _J = +25 ^o C)	Чв	-	4.5	6.0	mA
Quiescent Current Change (8.0 Vdc ≤ V _I ≤ 25 Vdc) (5.0 mA ≤ I _O ≤ 200 mA)	ΔIIB	-		0.8 0.5	mA *
Output Noise Voltage (T _A = $+25^{\circ}$ C, 10 Hz \leq f \leq 100 kHz)	eon		40	-	μV
Long-Term Stability	ΔV _O /Δt		-	20	mV/1.0 k Hrs
$\begin{array}{l} \mbox{Ripple Rejection (I_O = 100 mA, f = 120 Hz, 8.0 V \leqslant V_I \leqslant 18 V) \\ \mbox{(I_O = 300 mA, f = 120 Hz, 8.0 \leqslant V_I \leqslant 18 V, T_J = 25^{o}C) \end{array}$	RR	-	80 80	-	dB
Input-Output Voltage Differential $(T_A = +25^{\circ}C)$	V _I -V _O	_	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25 ^o C, V _I = 35 V)	los	-	300	-	mA
Average Temperature Coefficient of Output Voltage ($I_O = 5.0 \text{ mA}$)	Δν ₀ /Δτ	- ,	-1.0	-	mV/ ^o C
Peak Output Current $(T_J = 25^{\circ}C)$	10	-	700	-	mA

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	5.75	6.0	6.25	Vdc
Line Regulation (T _J = +25 ^o C)	Reg _{line}				mV
$(8.0 \text{ Vdc} \le V_1 \le 25 \text{ Vdc})$ $(9.0 \text{ Vdc} \le V_1 \le 25 \text{ Vdc})$		-	5.0 1.5	100 50	
Load Regulation (T _J = +25 ^o C, 5.0 mA \leq 1 _O \leq 500 mA) (T _J = +25 ^o C, 5.0 mA \leq 1 _O \leq 200 mA)	Regload	-	20 10	120 60	mV
Output Voltage (8.0 Vdc $\leq~$ V1 $~\leq~$ 25 Vdc, 5.0 mA $\leq~$ I $_{O}$ $\leq~$ 200 mA)	vo	5.7	-	6.3	Vdc
Input Bias Current (T _J = +25 ^o C)	1 _{1B}	-	4.5	6.0	mA
Quiescent Current Change (9.0 Vdc $\leq V_1 \leq 25$ Vdc) (5.0 mA $\leq I_0 \leq 200$ mA)	ΔI _{IB}	-		0.8 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	eon	-	45	-	μV
Long-Term Stability	$\Delta V_0 / \Delta t$	-	-	24	mV/1.0 k Hr
$ \begin{array}{l} \mbox{Ripple Rejection (I}_{O} = 100 \mbox{ mA, f} = 120 \mbox{ Hz}, 9.0 \mbox{ V} \leqslant V_{I} \leqslant 19 \mbox{ V}) \\ \mbox{(I}_{O} = 300 \mbox{ mA, f} = 120 \mbox{ Hz}, 9.0 \mbox{ V} \leqslant V_{I} \leqslant 19 \mbox{ V}, T_{J} = 25^{o}\mbox{C}) \end{array} $	RR	-	80 80		dB
Input-Output Voltage Differential (T $_{A}$ = +25 o C)	VI-VO	-	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25 ^o C, V _I \neq 35 V)	^I OS	-	270	-	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	Δν _Ο /Δτ		-1.0	-	mV/ ^o C
Peak Output Current (T _J = 25° C) (T _J = 25° C)	ю	-	700	-	mA
MC78M08C ELECTRICAL CHARACTERISTICS (VI = 14 V	', I _O = 200 mA, 0 ⁰	С < Тј < +1	25 ⁰ C, P _D ≤ 5	5.0 W unless	otherwise noted
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_1 = +25^{\circ}C$)	Vo	7.7	8.0	83	Vdc

MC78M06C ELECTRICAL CHARACTERISTICS (V₁ = 11 V, I₀ = 200 mA, 0° C < T_J < +125°C, P_D \leq 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	vo	7.7	8.0	8.3	Vdc
Line Regulation (T _J = +25 ^O C) (10.5 Vdc ≤ V _I ≤ 25 Vdc) (11 Vdc ≤ V _I ≤ 25 Vdc)	Reg _{line}	-	6.0 2.0	100 50	mV
Load Regulation (T _J = $+25^{\circ}C$, 5.0 mA $\leq I_{O} \leq 500$ mA) (T _J = $+25^{\circ}C$, 5.0 mA $\leq I_{O} \leq 200$ mA)	Regload		2.0 25 10	160 80	mV
Output Voltage (10.5 Vdc \leq V _I \leq 25 Vdc, 5.0 mA \leq I _O \leq 200 mA)	٧o	7.6	-	8.4	Vdc
Input Bias Current (T _J = +25 ^o C)	Чв	-	4.6	6.0	mA
Quiescent Current Change (10.5 Vdc \leq V ₁ \leq 25 Vdc) (5.0 mA \leq 1 ₀ \leq 200 mA)	ΔIIB	-		0.8 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	52	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	32	mV/1.0 k Hrs
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 11.5 V $\leq V_{i} \leq 21.5$ V)(I _O = 300 mA, f = 120 Hz, 11.5 V $\leq V_{i} \leq 21.5$ V, T _J = 25 ^o C)	_RR		80 80	-	dB
Input-Output Voltage Differential $(T_A = +25^{\circ}C)$	v _I -v _O	-	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25 ⁰ C, V _I = 35 V)	los	_	250	-	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	ΔV _O /ΔΤ	-	-1.0	-	mV/ ^o C
Peak Output Current $(T_J = 25^{\circ}C)$	ю	-	700	-	mA

ŝ

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo Vo	11.5	12	12.5	Vdc
Line Regulation (T _J = +25 ⁰ C) (14.5 Vdc ≤ V ₁ ≤ 30 Vdc)	Regline			100	mV
$(16 \text{ Vdc} \leqslant \text{V}_1 \leqslant 22 \text{ Vdc})$		-	8.0 2.0	100 50	
Load Regulation (T _J = +25 ⁰ C, 5.0 mA \leq I _O \leq 500 mA) (T _J = +25 ⁰ C, 5.0 mA \leq I _O \leq 200 mA)	Reg _{load}		25 10	240 120	m∨
Output Voltage (14.5 Vdc ≼ VI ≼ 27 Vdc, 5.0 mA ≤ I _O ≤ 200 mA)	vo	11.4	-	12.6	Vdc
Input Bias Current (T _J = +25 ⁰ C)	Чв	-	4.8	6.0	mA
Quiescent Current Change (14.5 Vdc \leq V ₁ \leq 30 Vdc) (5.0 mA \leq 1 _O \leq 200 mA)	۵۱ _{۱Β}	-		0.8 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	75	-	μV
Long-Term Stability	$\Delta V_0 / \Delta t$	-		48	mV/1.0 k Hr
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V) (I _O = 300 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = 25 ^o C)	RR	-	80 80		dB
Input-Output Voltage Differential $(T_A = +25^{\circ}C)$	V _I -V _O	-	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25 ⁰ C, V _I = 35 V)	los	-	240	-	mA
Average Temperature Coefficient of Output Voltage ($I_0 = 5.0 \text{ mA}, 0^{\circ}C \le T_A \le +125^{\circ}C$)	ΔV ₀ /ΔΤ	-	-1.0	-	mV/ ⁰ C
Peak Output Current $(T_J = 25^{\circ}C)$	10	-	700	-	mA

MC78M12C ELECTRICAL CHARACTERISTICS (V₁ = 19 V, I₀ = 200 mA, 0° C < T_J < +125^oC, P_D ≤ 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	V _O	14.4	15	15.6	Vdc
Input Regulation (TJ = +25 ^o C)	Regline				mV
(17.5 Vdc ≤ V ₁ ≤ 30 Vdc) (20 Vdc ≤ V ₁ ≤ 30 Vdc)		_	10 3.0	100 50	
Load Regulation (T _J = +25 ^o C, 5.0 mA \leq I _O \leq 500 mA) (T _J = +25 ^o C, 5.0 mA \leq I _O \leq 200 mA)	Regload	-	25 10	300 150	mV
Output Voltage 17.5 Vdc < V1 < 30 Vdc, 5.0 mA < I _O < 200 mA)	v _o	14.25	-	15.75	Vdc
Input Bias Current (T _J = +25 ⁰ C)	I _{IB}	-	4.8	6.0	mA
Quiescent Current Change (18.5 Vdc \leq V ₁ \leq 30 Vdc) (5.0 mA \leq 1 _O \leq 200 mA)	ΔIIB	-	-	0.8 0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	90	-	μV
Long-Term Stability	ΔV _O /Δt	-	-	60	mV/1.0 kHr
$\begin{array}{l} \mbox{Ripple Rejection (I_{O} = 100 mA, f = 120 Hz, 18.5 V \leqslant V_{I} \leqslant 28.5 V) \\ \mbox{(I_{O} = 300 mA, f = 120 Hz, 18.5 V \leqslant V_{I} \leqslant 28.5 V, T_{J} = 25^{0} C) \end{array}$	RR	-	70 70	-	dB
Input-Output Voltage Differential (T _A = +25 ^o C)	V _I -V _O	-	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25 ⁰ C, V _I = 35 V)	los	-	240	-	mA
Average Temperature Coefficient of Output Voltage ($I_0 = 5.0 \text{ mA}, 0^{o}C \leq T_A \leq +125^{o}C$)	ΔV _O /ΔΤ	-	-1.0	-	mV/ ^o C
Peak Output Current (T _J = 25 ⁰ C)	10	-	700	-	mA

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	17.3	18	18.7	Vdc
Line Regulation (T _J = +25 ⁰ C)	Regline				mV
(21 Vdc ≤ V ₁ ≤ 33 Vdc) (24 Vdc ≤ V ₁ ≤ 33 Vdc)			10 40	100 50	
Load Regulation (T _J = +25 ⁰ C, 5.0 mA \leq 1 _O \leq 500 mA) (T _J = +25 ⁰ C, 5.0 mA \leq 1 _O \leq 200 mA)	Regload	-	30 10	360 180	mV
Output Voltage (21 Vdc \leq V ₁ \leq 33 Vdc, 5.0 mA \leq I _O \leq 200 mA)	Vo	17.1	-	18.9	Vdc
Input Bias Current (T _J = +25 ⁰ C)	IIB		4.8	6.5	mA
Quiescent Current Change (21 Vdc ≤ V ₁ ≤ 33 Vdc) (5.0 mA ≤ 1 _O ≤ 200 mA)	ΔI _{IB}	_		0.8 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	100	-	μV
Long-Term Stability	$\Delta V_0 / \Delta t$		-	72	mV/1.0 k Hrs
$\begin{array}{l} \mbox{Ripple Rejection (I}_{O} = 100 \mbox{ mA, f} = 120 \mbox{ Hz}, 22 \mbox{ V} \leqslant 32 \mbox{ V}) \\ \mbox{(I}_{O} = 300 \mbox{ mA, f} = 120 \mbox{ Hz}, 22 \mbox{ V} \leqslant 32 \mbox{ V}, T_{J} = 25^{0} \mbox{C} \end{array}$	RR	-	70 70	-	dB
Input-Output Voltage Differential $(T_A = +25^{\circ}C)$	VI-VO		2.0	-	Vdc
Short-Circuit Current Limit $(T_J = +25^{\circ}C, V_I = 35 V)$	los		240	- 1	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA, 0 ^o C \leq T _A \leq +125 ^o C)	Δν ₀ /Δτ		-1.0	-	mV/ ^o C
Peak Output Current (T _J = 25 ^o C)	10	-	700	-	mA

$MC78M18C \ ELECTRICAL \ CHARACTERISTICS \quad (V_{I} = 27 \ V, \ I_{O} = 200 \ mA, \ 0^{o}C < T_{J} < +125^{o}C, \ P_{D} < 5.0 \ W \ unless \ otherwise \ noted.)$

 $MC78M20C \ ELECTRICAL \ CHARACTERISTICS \quad (V_1 = 29 \ V, \ I_O = 200 \ mA, \ 0^oC < T_J < +125^oC, \ P_D \leqslant 5.0 \ W \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	19.2	20	20.8	Vdc
Line Regulation (T _J = +25 ^o C)	Regline				mV
$(23 \text{ Vdc} \leq \text{V}_{1} \leq 35 \text{ Vdc})$		-	10	100	
(24 Vdc ≤ _{VI} ≤ 35 Vdc)		-	5.0	50	
Load Regulation	Regload				mV
(Tj = +25 ⁰ C, 5.0 mA ≤ I _O ≤ 500 mA)			30	400	
$(T_J = +25^{\circ}C, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$		-	10	200	
Output Voltage (23 Vdc ≤ V ₁ ≤ 35 Vdc, 5.0 mA ≤ I _O ≤ 200 mA)	vo	19	-	21	Vdc
Input Bias Current (T _J ,= +25 ⁰ C)	Чв		4.9	6.5	mA
Quiescent Current Change (23 Vdc $\leq V_1 \leq 35$ Vdc)	ΔIIB	_	-	0.8	mA
(5.0 mA ≤ I _O ≤ 200 mA)			-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	110	-	<i>μ</i> ∨
Long-Term Stability	$\Delta V_0 / \Delta t$		- 1	80	mV/1.0 k Hrs
$ \begin{array}{l} \mbox{Ripple Rejection (I_O = 100 mA, f = 120 Hz, 24 V \leqslant V_I \leqslant 34 V) \\ \mbox{(I_O = 300 mA, f = 120 Hz, 24 V \leqslant V_I \leqslant 34 V, T_J = 25^{O}C) \end{array} } $	RR	-	70 70		dB
Input-Output Voltage Differential $(T_A = +25^{\circ}C)$	VI-VO	-	2.0	-	Vdc
Short-Circuit Current Limit ($T_J = +25^{\circ}C, V_I = 35 V$)	los	_	240	-	mA
Average Temperature Coefficient of Output Voltage ($I_O = 5.0 \text{ mA}, 0^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$)	ΔV ₀ /ΔΤ	_	-1.1	-	mV/ ^o C
Peak Output Current $(T_J = 25^{\circ}C)$	10	_	700	-	mA

MC78M24C ELECTRICAL CHARACTERISTICS	$(V_1 = 33 V, I_0 = 200 mA, 0^{\circ})$	0°C < T」< +125°C, P _D ≤ 5	5.0 W unless otherwise noted.)
-------------------------------------	---	--------------------------------------	--------------------------------

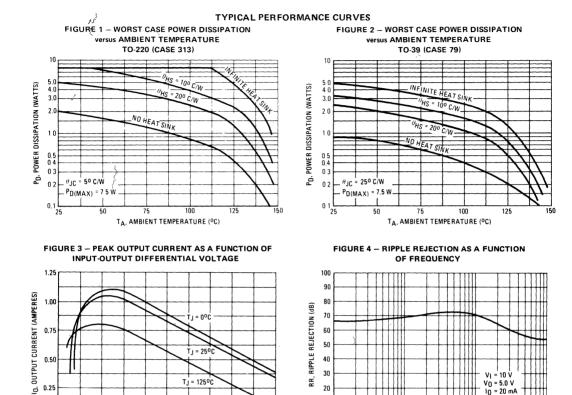
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	٧o	23	24	25	Vdc
Line Regulation (TJ = +25 ⁰ C) (27 Vdc ≤ VI ≤ 38 Vdc)	Regline	_	10	100	mV
$(28 \text{ Vdc} \leqslant \text{V}_1 \leqslant 38 \text{ Vdc})$		-	5.0	50	
Load Regulation (T J = +25°C, 5.0 mA \leq I O \leq 500 mA) (T J = +25°C, 5.0 mA \leq I O \leq 200 mA)	Regload	-	30 10	480 240	mV
Output Voltage (27 Vdc $\leqslant~V_{1}~\leqslant$ 38 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 200 mA)	vo	22.8	-	25.2	Vdc
Input Bias Current (T _J = +25 ⁰ C)	¹ 1B		5.0	7.0	mA
Quiescent Current Change (27 Vdc ≤ V ₁ ≤ 38 Vdc) (5.0 mA ≤ I _O ≤ 200 mA)	ΔIB	-		0.8 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	170	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	96	mV/1.0 k Hrs
$\begin{array}{l} \mbox{Ripple Rejection (I}_{O} = 100 \mbox{ mA, f} = 120 \mbox{ Hz}, 28 \mbox{ V} \leqslant V_{I} \leqslant 38 \mbox{ V}) \\ \mbox{(I}_{O} = 300 \mbox{ mA, f} = 120 \mbox{ Hz}, 28 \mbox{ V} \leqslant V_{I} \leqslant 38 \mbox{ V}, T_{J} = 25^{0} \mbox{C}) \end{array}$	ŘR	-	70 70		dB
Input-Output Voltage Differential (T _A = +25 ^o C)	VI-VO	-	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25 ⁰ C)	^I OS	-	240	-	mA
Average Temperature Coefficient of Output Voltage (I_0 = 5.0 mA, 0°C \leq T _A \leq +125°C)	ΔV ₀ /ΔΤ	-	-1.2	-	mV/ ^o C
Peak Output Current (T _J = 25 ⁰ C)	10	-	700	-	mA

DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications. Input Bias Current - That part of the input current that is not delivered to the load.


Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

0.25

0 L

3.0 6.0 9.0 12 15 18 21 24 27 30

T.I = 125°C

VI-VO, INPUT-OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)

ð?

30

20 10

0

10

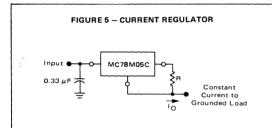
100

f, FREQUENCY (Hz)

VI = 10 V V0 = 5.0 V 10 = 20 mA

1.0 k

10 k

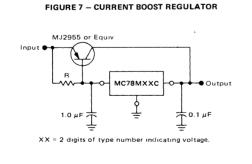

313

APPLICATIONS INFORMATION

Design Considerations

The MC78M00C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

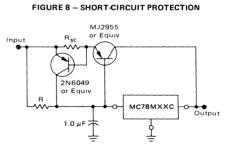
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.



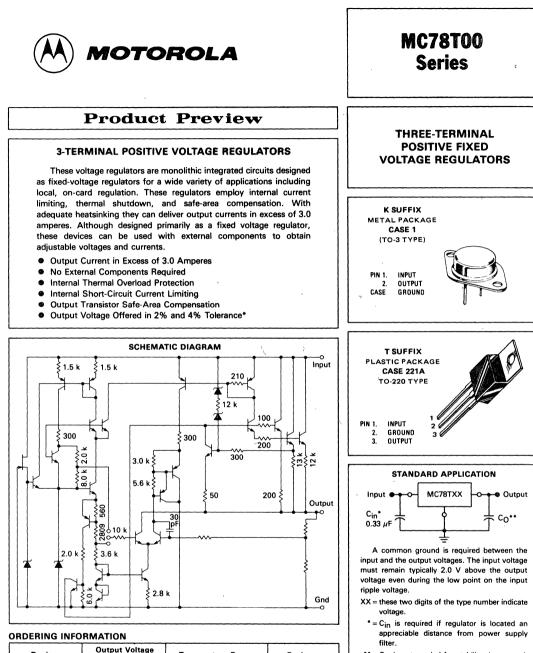
The MC7800C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_{O} = \frac{5 V}{R} + I_{O}$$

IQ = 1.5 mA over line and load changes


For example, a 500 mA current source would require R to be a 10-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.

The MC78M00C series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VB_E of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by VB_E of the pass transistor.


FIGURE 6 – ADJUSTABLE OUTPUT REGULATOR H_{Input} $H_{C78M05C}$ H_{Input} $H_{C78M05C}$ H_{Input} H_{Input

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

XX = 2 digits of type number indicating voltage.

The circuit of Figure 7 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{Sc} , and an additional PNP transstor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a two-ampere plastic power transistor is specified.

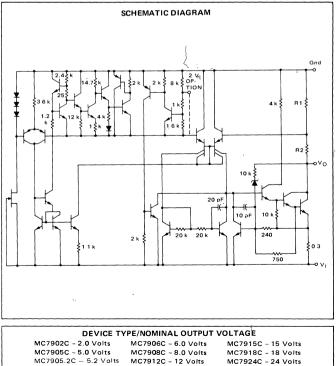
** = C_O is not needed for stability; however, it does improve transient response.

XX indicates nominal voltage

Ľ	TYPE NO./VOLTAGE							
ſ	MC78T05	5.0 Volts	MC78T15	15 Volts				
	MC78T06	6.0 Volts	MC78T18	18 Volts				
	MC78T08	8.0 Volts	MC78T24	24 Volts				
-	MC78T12	12 Volts	1					

Device	Output Voltage Tolerance	Temperature Range	Package
МС78ТХХК МС78ТХХАК	4% 2%*	– 55 to + 150°C	Metal Power
MC78TXXCK MC78TXXACK	4% 2%*	0 to +125°C	
MC78TXXCT MC78TXXACT	4% 2%*	1	Plastic Power

XX Indicates nominal voltage *2% regulators are available in 5, 12 and 15 volt devices This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice



MC7900C SERIES THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS

The MC7900C Series of fixed output negative voltage regulators are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage options as the MC7800C devices. In addition, two extra voltage options commonly employed in MECL systems are also available in the negative MC7900C Series.

Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation, - making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 1.0 ampere.

- No External Components Required
- Internal Thermal Overload Protection •
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 221A and Case 1 (TO-220 and Hermetic TO-3)

MC7912C - 12 Volts

Series THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS O \bigcirc 2 Gnd Output K SUFFIX Case METAL PACKAGE Input CASE 1 Ô (TO-3 TYPE) (bottom view) T SUFFIX PLASTIČ PÄCKAGE CASE 221A Pin 1. Ground 2. Input 3. Output (Heatsink surface connected to Pin2) STANDARD APPLICATION Input мс79ххс - Output Cin ∠co•• 1.0 μF 0.33 u

MC7900C

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple voltage

- XX = these two digits of the type number indicate voltage.
 - = Cin is required if regulator is located an appreciable distance from power supply filter.
- = Co improves stability and transient response.

ORDERING	NFORMATION	
DEVICE	TEMPERATURE RANGE	PACKAGE
MC79XXCK	$T_{J} = 0^{\circ} C \text{ to } +150^{\circ} C$	Metal Power
мс79ххст	$T_{J} = 0^{\circ} C \text{ to } +150^{\circ} C$	Plastic Power

MC7924C - 24 Volts

MC7900C Series

MC7900C Series MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.0 V – 18 V) (24 V)	V _I	-35 -40	Vdc
Power Dissipation Plastic Package T _A = +25 ^o C Derate above T _A = +25 ^o C	P _D 1/R∂JA	Internally Limited 15.4	Watts mW/ ⁰ C
$T_{C} = +25^{\circ}C$ Derate above $T_{C} = +95^{\circ}C$ (See Figure 1)	Ρ _D 1/R _θ JC	Internally Limited 200	Watts mW/ ^o C
Metal Package T _A = +25 ⁰ C Derate above T _A = +25 ⁰ C	P _D 1/R _{∂JA}	Internally Limited 22.2	Watts mW/ ^o C
$T_{C} = +25^{\circ}C$ Derate above $T_{C} = +65^{\circ}C$	PD 1/R ₀ JC	Internally Limited 182	Watts mW/ ⁰ C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature Range	Тј	0 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient – Plastic Package	R _{θJA}	65	°C/W
— Metal Package		45	
Thermal Resistance, Junction to Case - Plastic Package	R _{θJC}	5.0	°C/W
- Metal Package		5.5	

$MC7902C \ ELECTRICAL \ CHARACTERISTICS \ (\ v_1 = -10 \ V, \ I_0 = 500 \ mA, \ 0^0C < T_J < +125^0C \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	Vo	-1.92	-2.00	-2.08	Vdc
Line Regulation (T _J = +25 ⁰ C, I _O = 100 mA)	Regline	,			mV
-7.0 Vdc \ge V _I \ge -25 Vdc -8.0 Vdc \ge V _I \ge -12 Vdc (T ₁ = +25 ^o C, I ₀ = 500 mA)			8.0 4.0	20 10	
$\begin{array}{c} (1) = 123 & (0, 1) = 300 & (0, 1) \\ -7.0 & Vdc \ge V_1 \ge -25 & Vdc \\ -8.0 & Vdc \ge V_1 \ge -12 & Vdc \end{array}$	×	_ _	18 8.0	40 20	
Load Regulation $T_J = +25^{0}C, 5.0 \text{ mA} \leqslant I_O \leqslant 1.5 \text{ A}$ 250 mA $\leqslant I_O \leqslant 750 \text{ mA}$	Regload		70 20	120 60	mV
Output Voltage -7.0 Vdc \geqslant V1 \geqslant -20 Vdc, 5.0 mA \leqslant I $_{0}$ \leqslant 1.0 A, P \leqslant 15 W	vo	-1.90	-	-2.10	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$	1 IB	-	4.3	8.0	mA
Input Bias Current Change -7.0 Vdc \ge V _I \ge -25 Vdc 5.0 mA \le I _O \le 1.5 A	^{∧I} IВ	-		1.3 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	40	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	20	mV/1.0 k Hrs
Ripple Rejection ($I_0 = 20 \text{ mA}, f = 120 \text{ Hz}$)	RR	_	65	-	dB
Input-Output Voltage Differential I_{O} = 1.0 A, T _J = +25 ^o C	v ₁ -v ₀	-	3.5	-	Vdc
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, 0°C \leqslant T_A \leqslant +125°C	∆V _O /∆T	-	-1.0	-	mV/ ^o C

MC7905C ELECTRICAL CHARACTERISTICS (VI = -10 V, IO = 500 mA, 0°C <TJ <+125°C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	Vo	-4.8	-5.0	-5.2	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{line}				mV
$-7.0 \text{ Vdc} \ge \text{V}_1 \ge -25 \text{ Vdc}$			7.0	50	
-8.0 Vdc \geq V _I \geq -12 Vdc		-	2.0	25	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$					
$-7.0 \text{ Vdc} \ge \text{V}_1 \ge -25 \text{ Vdc}$		-	35	100	
$-8.0 \text{ Vdc} \ge \text{V}_{ } \ge -12 \text{ Vdc}$		-	8.0	50	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C, 5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}$		-	11	100	
250 mA ≤ I _O ≤ 750 mA		-	4.0	50	
Output Voltage -7.0 Vdc \geqslant V1 \geqslant -20 Vdc, 5.0 mA \leqslant I_O \leqslant 1.0 A, P \leqslant 15 W	Vo	-4.75	-	-5.25	Vdc
Input Bias Current (T _J = +25 ^o C)	[†] IB	-	4.3	8.0	mA
Input Bias Current Change	∆İIB				mA
-7.0 Vdc ≥ V _{in} ≥ -25 Vdc		-	1 -	1.3	
5.0 mA \leq I _O \leq 1.5 A		_	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	40	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	70	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = $+25^{O}C$	IVI-VOI	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, 0°C \leqslant T_A \leqslant +125°C	∆V _O /∆T	-	-1.0	-	mV/ ^o C

$MC7905.2C \ ELECTRICAL \ CHARACTERISTICS \ (V_{I} \ = -10 \ V, \ I_{O} = 500 \ mA, \ 0^{o}C < T_{J} < +125^{o}C, \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-5.0	-5.2	-5.4	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Regline				mV
$-7.2 \text{ Vdc} \ge \text{V}_1 \ge -25 \text{ Vdc}$		-	8.0	52	
-8.0 Vdc \geq V ₁ \geq -12 Vdc		-	2.2	27	
(T _J = +25 ^o C, I _O = 500 mA) -7.2 Vdc ≥ Vi ≥ -25 Vdc			37	105	
-8.0 Vdc \geqslant V ₁ \geqslant -12 Vdc		_	8.5	52	
			0.0	52	+
Load Regulation T ₁ = +25 ^o C, 5.0 mA \leq I _O \leq 1.5 A	Regload		12	105	mV
$1 J = +25 \circ C, 5.0 \text{ mA} \ll 10 \ll 1.5 \text{ A}$ 250 mA $\ll 10 \ll 750 \text{ mA}$		_	4.5	52	
			4.5		<u> </u>
Output Voltage -7.2 Vdc \geqslant V _I \geqslant -20 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W	Vo	-4.94	-	-5.46	Vdç
Input Bias Current (T _J = +25 ^o C)	IIB	-	4.3	8.0	mA
Input Bias Current Change	∆IB				mA
-7.2 Vdc ≥ V _I ≥-25 Vdc		-	- 1	1.3	
5.0 mA ≤I _O ≤ 1.5 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	42	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	20	mV/1.0k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	68	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ^o C	IVI-VOI	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, $0^{o}C \leqslant T_{A} \leqslant +125^{o}C$	∆V _O /∆T	-	-1.0	-	mV/ ⁰ C

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-5.75	-6.0	-6.25	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Regline				mV
-8.0 Vdc ≥ V ₁ ≥ -25 Vdc		-	9.0	60	1
$-9.0 \text{ Vdc} \ge \text{V}_1 \ge -13 \text{ Vdc}$		-	3.0	30	
$(T_{J} = +25^{\circ}C, I_{O} = 500 \text{ mA})$					
$-8.0 \text{ Vdc} \ge \text{V}_1 \ge -25 \text{ Vdc}$		-	43	120	
-9.0 Vdc \geq V ₁ \geq -13 Vdc			10	60	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C, 5.0 \text{ mA} \leq I_{O} \leq 1.5 \text{ A}$		-	13	120	
$250 \text{ mA} \leq 1_0 \leq 750 \text{ mA}$		-	5.0	60	
Output Voltage	Vo	-5°.7	- 1	-6.3	Vdc
-8.0 Vdc ≥ V _I ≥-21 Vdc, 5.0 mA ≤I _O ≤1.0 A, P ≤⁄15 W)					1
Input Bias Current (T _J = +25 ^o C)	I _{IB}	-	4.3	8.0	mA
Input Bias Current Change	^{∆1} IB				mA
-8.0 Vdc ≥ V _I ≥-25 Vdc		-	-	1.3	
5.0 mA ≤I _O ≤1.5 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	45	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	24	mV/1.0 k Hrs
Ripple Rejection ($I_0 = 20 \text{ mA}$, f = 120 Hz)	RR	_	65	-	dB
Input-Output Voltage Differential $I_O = 1.0 A, T_J = +25^{O}C$	V _I -V _O	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, 0^OC \leqslant T_A \leqslant +125 ^{O}C	∆V _O /∆T	_	-1.0	-	mV/ ^o C

MC7906C ELECTRICAL CHARACTERISTICS ($v_1 = -11 v$, $v_0 = 500 mA$, $0^{\circ}C < T_J < +125^{\circ}C$ unless otherwise noted.)

MC7908C ELECTRICAL CHARACTERISTICS ($V_1 = -14 V$, $I_0 = 500 \text{ mA}$, $0^{\circ}C < T_J < +125^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-7.7	-8.0	-8.3	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Regline				mV
$-10.5 \text{ Vdc} \ge \text{V}_1 \ge -25 \text{ Vdc}$		-	12	80	
$-11 \text{ Vdc} \ge \text{V}_{\text{I}} \ge -17 \text{ Vdc}$		-	5.0	40	
(T _J = +25 ⁰ C, I _O = 500 mA) -10.5 Vdc ≥ V _I ≥ -25 Vdc -11 Vdc ≥ V _I ≥ -17 Vdc		-	50 22	160 80	
Load Regulation $T_J = +25^{0}C$, 5.0 mA $\leq I_O \leq 1.5$ A 250 mA $\leq I_O \leq 750$ mA	Regioad		26 9.0	160 80	mV
Output Voltage -10.5 Vdc \ge V ₁ \ge -23 Vdc, 5.0 mA \le I ₀ \le 1.0 A, P \le 15 W	Vo	-7.6	-	-8.4	Vdc
Input Bias Current (T _J = +25 ^o C)	Ів	-	4.3	8.0	mA
Input Bias Current Change -10.5 Vdc \ge V _I \ge -25 Vdc 5.0 mA \le I _O \le 1.5 A	^{∆1} IB		_	1.0 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	eon	-	52	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	32	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	62	_	'dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ^o C	IVI-VOI	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I _0 = 5.0 mA, 0°C \leqslant T_A \leqslant +125°C	△V _O /△T	-	-1.0	-	mV/ ^o C

$\frac{1}{1000} \text{ MC7912C ELECTRICAL CHARACTERISTICS (V_{\text{I}} = -19 \text{ V, I}_{\text{O}} = 500 \text{ mA, } 0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}, \text{ unless otherwise noted.}$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-11.5	-12	-12.5	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Regline				mV
-14.5 Vdc \geq V ₁ \geq -30 Vdc		-	13	120	
-16 Vdc \geq V ₁ \geq -22 Vdc		-	6.0	60	
(T _J = +25 ^o C, I _O = 500 mA) -14.5 Vdc ≥ V _I ≥-30 Vdc			55	240	
$-14.5 \text{ Vdc} \neq V_{ } \neq -30 \text{ Vdc}$ $-16 \text{ Vdc} \geq V_{ } \geq -22 \text{ Vdc}$		_	24	120	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C$, 5.0 mA $\leq I_{O} \leq 1.5$ A	11091090	-	46	240	
250 mA \leq 1 ₀ \leq 750 mA		-	17	120	
Output Voltage -14.5 Vdc \ge V1 \ge -27 Vdc, 5.0 mA \le I0 \le 1.0 A, P \le 15 W	Vo	-11.4	-	-12.6	Vdc
Input Bias Current (T _J = +25 ^o C)	I _{IB}		4.4	8.0	mA
Input Bias Current Change -14.5 Vdc \ge V ₁ \ge -30 Vdc 5.0 mA \le I ₀ \le 1.5 A	^Ơ IB	-		1.0 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	75	-	μV
Long-Term Stability	ΔV _O /Δt	-	-	48	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		61	· -	dB
Input-Output Voltage Differential $I_{O} = 1.0 \text{ A}, T_{J} = +25^{O}C$	V -VO	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, 0°C \leqslant T_A \leqslant +125°C	△V _O /△T	-	-1.0	-	mV/ ⁰ C

$MC7915C \ ELECTRICAL \ CHARACTERISTICS \ (\ v_1 \ = -23 \ V, \ I_0 \ = 500 \ mA, \ 0^oC \ < T_J \ < +125^oC, \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	. Unit
Output Voltage (T _J = +25 ^o C)	Vo	-14.4	-15	-15.6	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{line}				mV
-17.5 Vdc \geqslant V ₁ \geqslant -30 Vdc		-	14	150	
-20 Vdc \geq V ₁ \geq -26 Vdc		-	6.0	75	
(T _J = +25 ^o C, I _O = 500 mA)					
$-17.5 \text{ Vdc} \ge \text{V}_1 \ge -30 \text{ Vdc}$		-	57	300	
-20 Vdc \geq V ₁ \geq -26 Vdc		-	27	150	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C, 5.0 \text{ mA} \leq I_{O} \leq 1.5 \text{ A}$		-	68	300	
250 mA ≤ I _O ≤ 750 mA		-	25	150	
Output Voltage	Vo	-14.25	-	-15.75	Vdc
-17.5 Vdc \geqslant V _I \geqslant -30 Vdc, 5.0 mA \leq I _O \leq 1.0 A, P \leq 15 W					
Input Bias Current (T _J = +25 ⁰ C)	1IB	. –	4.4	8.0	mA
Input Bias Current Change	^{∆I} IB				mA
-17.5 Vdc \geqslant V _I \geqslant -30 Vdc		-	-	1.0	
5.0 mA \leq I _O \leq 1.5 A			-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	e _{on}	-	90	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	60	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	60	-	dB
Input-Output Voltage Differential	IV1-V01	-	2.0	-	Vdc
I _O = 1.0 A, T _J = +25 ^o C					
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^o C \leqslant T_A \leqslant +125^o C$	△V _O /△T	-	-1.0	-	mV/ºC

Q.

MC7918C ELECTRICAL CHARACTERISTICS (V_I = -27 V, I_O = 500 mA, $0^{O}C < T_{J} < +125^{O}C$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-17:3	-18	-18.7	Vdc
Line Regulation (T _J = +25 ⁰ C, I _O = 100 mA)	Regline				mV
-21 Vdc \geq V _I \geq -33 Vdc		-	25	180	
-24 Vdc ≥ V ₁ ≥-30 Vdc		- 1	10	90	
(T _J = +25 ^o C, I _O = 500 mA)]		
-21 Vdc ≥ V _I ≥-33 Vdc		-	90	360	
-24 Vdc \geq V ₁ \geq -30 Vdc		-	50	180	
Load Regulation T ₁ = +25 ^o C, 5.0 mA $\leq 1_{O} \leq 1.0$ A	Regload	_	110	360	mV
250 mA ≤1 ₀ ≤750 mA		-	55	180	
Output Voltage -21 Vdc \geqslant V $_{I}$ \geqslant -33 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 1.0 A, P \leqslant 15 W	vo	-17.1	-	-18.9	Vdc
Input Bias Current (T _J = +25 ^o C)	1 _{IB}	-	4.5	8.0	mA
Input Bias Current Change	[∆] 1B				mA
-21 Vdc ≥ V _I ≥ -33 Vdc		-		1.0	
5.0 mA ≤I _O ≤ 1.0 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤f ≤100 kHz)	e _{on}	-	110	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$			72	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	59	-	dB
Input-Output Voltage Differential $I_0 = 1.0 \text{ A}, \text{ T}_J = +25^{\circ}\text{C}$	V -VO	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^{\circ}\text{C} \leqslant T_A \leqslant +125^{\circ}\text{C}$	△VO/△T	-	-1.0	-	mV/ ^o C

MC7924C ELECTRICAL CHARACTERISTICS ($v_1 = -33 \text{ V}$, $I_0 = 500 \text{ mA}$, $0^{\circ}\text{C} < T_J < +125^{\circ}\text{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-23	-24	-25	Vdc
Line Regulation (T _J = +25 ⁰ C, I _O = 100 mA)	Regline				mV
-27 Vdc \geqslant V ₁ \geqslant -38 Vdc		-	31	240	
-30 Vdc \geq V ₁ \geq -36 Vdc		-	14	120	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$	ļ			480	
-27 Vdc \geq V ₁ \geq -38 Vdc -30 Vdc \geq V ₁ \geq -36 Vdc		_	118 70	480 240	
				240	mV
Load Regulation T _J = +25 ^o C, 5.0 mA $\leq I_O \leq 1.0$ A	Regload	_	150	480	mv
$250 \text{ mA} \le 10 \le 750 \text{ mA}$		-	85	240	
Output Voltage -27 Vdc \geq V ₁ \geq -38 Vdc, 5.0 mA \leq I ₀ \leq 1.0 A, P \leq 15 W	Vo	-22.8	-	-25.2	Vdc
Input Bias Current (T _J = +25 ^o C)	Iв	-	4.6	8.0	mA
Input Bias Current Change	∆IB				mA
-27 Vdc \geq V _I \geq -38 Vdc		- 1	-	1.0	
5.0 mA $\leq I_0 \leq 1.0$ A	L	-	-	0.5	
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤f ≤100 kHz)	eon	-	170	-	μ∨
Long-Term Stability	$\Delta V_O / \Delta t$		-	96	mV/1.0k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	56	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ^o C	V ₁ -V ₀	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_0 = 5.0 \text{ mA}, 0^{o}C \leqslant T_A \leqslant +125^{o}C$	△V ₀ /△T	-	-1.0	-	mV/ ^o C

FIGURE 1 – WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-220)

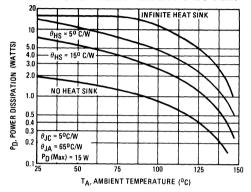
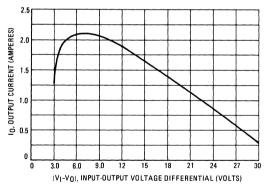



FIGURE 3 – PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

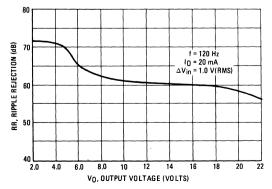


FIGURE 2 – WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3)

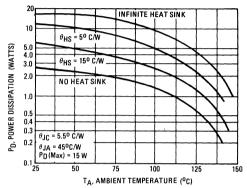


FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

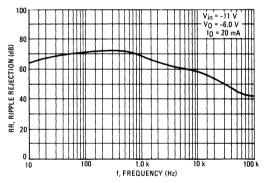
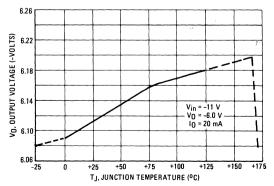
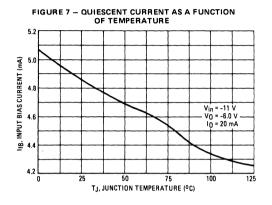




FIGURE 6 – OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

TYPICAL CHARACTERISTICS (continued)

DEFINITIONS

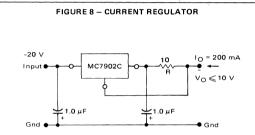
Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation -- The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current - That part of the input current that is not delivered to the load.

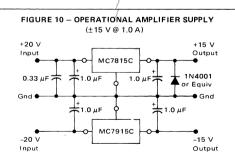
Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

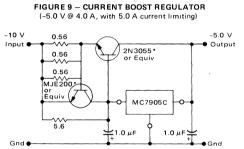

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

APPLICATIONS INFORMATION

Design Considerations

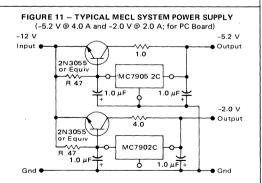
The MC7900C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.


In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected


The MC7902, -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:

$$I_0 = \frac{2V}{R} + I_B$$

The quiescent current for this regulator is typically 4.3 mA. The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

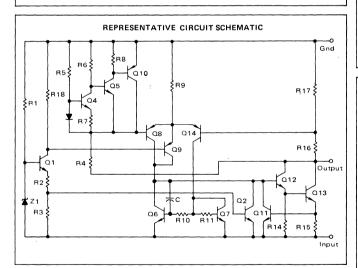


The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems. to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A $0.33~\mu$ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

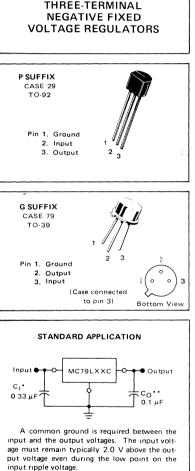
*Mounted on common heat sink , Motorola MS-10 or equivalent.

When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/R_{SC}. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

When current-boost power transistors are used, 47-ohm base-toemitter resistors (R) must be used to bypass the quiescent current at no load. These resistors, in conjunction with the V_{BE} of the NPN transistors, determine when the pass transistors begin conducting. The 1-ohm and 4-ohm dropping resistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation.



THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS


The MC79L00 Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to 100 mA. Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation.

The MC79L00 devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach.

- No External Components Required
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Low Cost
- Complementary Positive Regulators Offered (MC78L00 Series)
- Available in Either ±5% (AC) or ±10% (C) Selections

Device No. ±10%	Device No. ±5%	Nominal Voltage
MC79L03C	MC79L03AC	- 3.0
MC79L05C	MC79L05AC	- 5.0
MC79L12C	MC79L12AC	- 12
MC79L15C	MC79L15AC	- 15
1C79L18C	MC79L18AC	- 18
MC79L24C	MC79L24AC	- 24

- = C₁ is required if regulator is located an appreciable distance from power supply filter.
- * = C_O improves stability, and transient response.

ORDERING INFORMATION

Device	Temperature Range	Package					
MC79LXXACG	$T_{J} = 0^{0}C \text{ to } + 150^{0}C$	Metal Can					
MC79LXXACP	$T_{\rm J} = 0^{\rm O} {\rm C} \ {\rm to} + 150^{\rm O} {\rm C}$	Plastic Power					
MC79LXXCG	$T_{J} = 0^{O}C \text{ to } +150^{O}C$	Metal Can					
MC79LXXCP	$T_J = 0^{\circ}C$ to $+150^{\circ}C$	Plastic Power					
XX indicates nominal voltage							

J.

Rating	Symbol	Value	Unit
Input Voltage (-3,-5 V)	V _I	-30	Vdc
(-12,-15,-18 V)		-35	
(-24 ∨)		-40	
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature Range	Tj	0 to +150	°C

MC79L00C Series MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

MC79L03C, AC ELECTRICAL CHARACTERISTICS (V₁ = -10 V, I₀ = 40 mA, C₁ = 0.33 μ F, C₀ = 0.1 μ F,

		0 ^о С < т	J < +125 ⁰	C unless of	therwise n	oted.)		
		MC79L03C MC79L03AC			C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	Vo	-2.76	-3.00	-3.24	-2.88	-3.0	-3.12	Vdc
Input Regulation $(T_J = +25^{\circ}C)$	Regline							mV
$-7.0 \text{ Vdc} \ge \text{V}_{\text{I}} \ge -20 \text{ Vdc}$		-	-	80	-	-	60	1
-8.0 Vdc ≥ V _I ≥ -20 Vdc			-	60	-	-	40	
Load Regulation T _J = +25 ^o C, 1.0 mA \leq I _O \leq 100 mA 1.0 mA \leq I _O \leq 40 mA	Regload	_		72 36	-	-	72 36	mV
Output Voltage -7.0 Vdc ≥ V _I ≥ -20 Vdc, 1.0 mA ≤ I _O ≤ 40 mA V _I = -10 Vdc, 1.0 mA ≤ I _O ≤ 70 mA	Vo	-2.7 -2.7		-3.3 -3.3	-2.85 -2.85	-	-3.15 -3.15	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	ΪВ			6.0 5.5		-	6.0 5.5	mA
Input Bias Current Change -8.0 Vdc \ge V ₁ \ge -20 Vdc 1.0 mA \le I _Q \le 40 mA	^{∆∤} IB			-1.5 -0.2		-	-1.5 -0.1	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	30	-	-	30	-	μV
Long-Term Stability	△V _O /△t	-	10	-	-	10	-	mV/1.0 k Hrs.
Ripple Rejection (-8.0 \ge V _I \ge -18 Vdc, f = 120 Hz, T _J = 25 ^o C)	RR	44	51	-	45	51	-	dB
Input-Output Voltage Differential I _O = 40 mA, T _J = $+25^{\circ}$ C	/v _I -v _O /	-	1.7	-	-	1.7	-	Vdc

MC79L05C, AC Series ELECTRICAL CHARACTERISTICS (V_I = -10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0^oC < T_I < +125^oC unless otherwise noted.)

	$0^{\circ}C < T_{J} < +125^{\circ}C$ unless otherwise noted.)								
			MC79L05	C	ľ	AC79L05/	AC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Output Voltage (T _J = +25 ^o C)	Vo	-4.6	-5.0	-5.4	-4.8	-5.0	-5.2	Vdc	
Input Regulation (T _J = +25 ^O C)	Regline							mV	
-7.0 Vdc ≥ V ₁ ≥ -20 Vdc -8.0 Vdc ≥ V ₁ ≥ -20 Vdc		-		200 150		-	150 100		
Load Regulation T _J = +25 ^o C, 1.0 mA \leq I _O \leq 100 mA 1.0 mA \leq I _O \leq 40 mA	Regload	_		60 30			60 30	mV	
Output Voltage $-7.0 \text{ Vdc} \ge V_1 \ge -20 \text{ Vdc}, 1.0 \text{ mA} \le I_0 \le 40 \text{ mA}$ $V_1 = -10 \text{ Vdc}, 1.0 \text{ mA} \le I_0 \le 70 \text{ mA}$	Vo	-4.5 -4.5		-5.5 -5.5	-4.75 -4.75	-	-5.25 -5.25	Vdc	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	^I IB	-		6.0 5.5			6.0 5.5	mA	
Input Bias Current Change -8.0 Vdc \ge V ₁ \ge -20 Vdc 1.0 mA \le I _Q \le 40 mA	^{∆I} IB	-	-	1.5 0.2			1.5 0.1	mA	
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	VN	-	40	-	-	40	-	μV	
Long-Term Stability	△V _O /△t	-	12	-	-	12	-	mV/1.0 k Hrs.	
Ripple Rejection $(-8.0 \ge V_1 \ge 18 \text{ Vdc}, \text{ f} = 120 \text{ kHz}, \text{T}_J = 25^{O}\text{C})$	RR	40	49	-	41	49	-	dB	
Input-Output Voltage Differential IO = 40 mA, TJ = +25 ^o C	/v _I -v _O /	-	1.7	-	-	1.7	-	Vdc	

MC79L12C, AC ELECTRICAL CHARACTERISTICS (V $_{I}$ = -19 V, I $_{O}$ = 40 mA, C $_{I}$ = 0.33 μF , C $_{O}$ = 0.1 μF , $0^{\circ}C < T_{1} < +125^{\circ}C$ unless otherwise noted.)

		0001	1 +125	C unless of	nerwise no	neu./		
			MC79L12	C	N	1C79L12/	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage $(T_J = +25^{\circ}C)$	Vo	-11.1	-12	-12.9	-11.5	-12	-12.5	Vdc
Input Regulation (T ₁ = +25 ^o C)	Regline							mV
-14.5 Vdc ≥ V _I ≥ -27 Vdc -16 Vdc ≥ V _I ≥ -27 Vdc		-	-	250 200	-	-	250 200	
Load Regulation T J = +25°C, 1.0 mA \leq I $_{O}$ \leq 100 mA 1.0 mA \leq I $_{O}$ \leq 40 mA	Regload	-		100 50			100 50	mV
Output Voltage -14.5 Vdc ≥ V _I ≥ -27 Vdc, 1.0 mA ≤ I _O ≤ 40 mA V _I = -19 Vdc, 1.0 mA ≤ I _O ≤ 70 mA	Vo	-10.8 -10.8	-	-13.2 -13.2	-11.4 -11.4		-12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IВ	-		6.5 6.0	-		6.5 6.0	mA
Input Bias Current Change -16 Vdc \ge V ₁ \ge -27 Vdc 1.0 mA \le I _Q \le 40 mA	АIВ	-	_	1.5 0.2	_		1.5 0.1	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	80	-	-	80	-	μV
Long-Term Stability	∆V0/∆t		24	-	-	24	-	mV/1.0 k Hrs.
Ripple Rejection (−15 ≤ V _I ≤ −25 Vdc, f = 120Hz, T _J = +25 ⁰ C)	RR	36	42	-	37	42	-	dB
Input-Output Voltage Differential I _O = 40 mA, T _J = +25 ⁰ C	/v _I -v _O /	-	1.7	_	-	1.7	-	Vdc

- ---- ---- ---

MC79L15C, AC ELECTRICAL CHARACTERISTICS (V₁ = -23 V, I₀ = 40 mA, C₁ = 0.33 μ F, C₀ = 0.1 μ F,

		0 ^о С < т	յ < +125 ⁰	°C unless o	therwise n	oted.)		
			MC79L15	с	N	1C79L15	AC	1
4 Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	Vo	-13.8	-15	-16.2	-14.4	-15	-15.6	Vdc
Input Regulation (T _J = +25 ^o C)	Regline							mV
-17.5 Vdc ≥ V _I ≥ -30 Vdc -20 Vdc ≥ V _I ≥ -30 Vdc		-	-	300 250	-	-	300 250	
Load Regulation T J = +25 ⁰ C, 1.0 mA \leq I $_{O}$ \leq 100 mA 1.0 mA \leq I $_{O}$ \leq 40 mA	Regload			150 75			150 75	mV
Output Voltage -17.5 Vdc \geq V _I \geq -30 Vdc, 1.0 mA \leq I _O \leq 40 mA V _I = -23 Vdc, 1.0 mA \leq I _O \leq 70 mA	Vo	-13.5 -13.5	-	-16.5 -16.5	-14.25 -14.25		-15.75 -15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IВ	-		6.5 6.0	_		6.5 6.0	mA
Input Bias Current Change -20 Vdc \ge V _I \ge -30 Vdc 1.0 mA \le I _O \le 40 mA	^{∆I} IB	-		1.5 0.2	-		1.5 0.1	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	90	-	-	90	-	μV
Long-Term Stability	△V0/△t	-	30	-	-	30	-	mV/1.0 k Hrs.
Ripple Rejection (-18.5 ≤ V _I ≤ -28.5 Vdc, f = 120 Hz)	RR	33	39	-	34	39	-	dB
Input-Output Voltage Differential I _O = 40 mA, T _J = +25 ^o C	/v _I -v _O /	-	1.7	-	-	1.7	-	Vdc

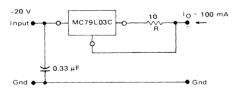
MC79L18C, AC ELECTRICAL CHARACTERISTICS (V₁ = -27 V, I₀ = 40 mA, C₁ = 0.33 μ F, C₀ = 0.1 μ F, $0^{\circ}C \leq T_{\perp} \leq \pm 125^{\circ}C$ upless otherwise noted)

	$0^{\circ}C < T_{J} < +125^{\circ}C$ unless otherwise noted.)									
		1	MC79L18	C ,	٨	AC79L18	AC			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit		
Output Voltage (T _J = +25 ^o C)	Vo	-16.6	-18	-19.4	-17.3	-18	-18.7	Vdc		
Input Regulation (T _J = +25 ^o C)	Regline							mV		
-20.7 Vdc ≽ V _I ≥ -33 Vdc		-	-	_	- 1	-	325			
-21.4 Vdc ≥ V _I ≥-33 Vdc			-	325	-	-	-			
-22 Vdc ≥ V _I ≥ -33 Vdc			-	275	-	-	-			
$-21 \text{ Vdc} \ge \text{V}_{\text{I}} \ge -33 \text{ Vdc}$			-	-	-	-	275	1		
Load Regulation T _J = +25 ^o C, 1.0 mA $\leq I_O \leq 100$ mA	Reg _{load}	-	_	170	-	_	170	mV		
$1.0 \text{ mA} \le I_{O} \le 40 \text{ mA}$		-		85	-		85			
Output Voltage -20.7 Vdc ≥ V _I ≥ -33 Vdc, 1.0 mA ≤ I _O ≤ 40 mA -21.4 Vdc ≥ V _I ≥ -33 Vdc, 1.0 mA ≤ I _O ≤ 40 mA	v _o	- -16.2	-	-19.8	-17.1		-18.9	Vdc		
V _I = −27 Vdc, 1.0 mA ≤ I _O ≤ 70 mA		-16.2	_	-19.8	-17.1	- 1	-18.9			
Input Bias Current (T _J = +25 ^o C) (T _J = +125 ^o C)	lΒ			6.5 6.0	-		6.5 6.0	mA		
Input Bias Current Change -21 Vdc ≥ V _I ≥ -33 Vdc	АIВ	-	_	_	-	_	1.5	mA		
$-27 \text{ Vdc} \ge \text{V}_1 \ge -33 \text{ Vdc}$		-	-	1.5		-	-			
1.0 mA ≤ I _O ≤ 40 mA		-		0.2	-		0.1			
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤ f ≤ 100 kHz)	VN	-	150	-	-	150	- ,	μV		
Long-Term Stability	∆V _O /∆t		45			45		mV/1.0 k Hrs.		
Ripple Rejection (-23 ≼ V _I ≤ -33 Vdc, f = 120 Hz, T _J = +25 ^o C)	RR	32	46	-	33	48	-	dB		
Input-Output Voltage Differential I _O = 40 mA, T _J = +25 ⁰ C	/v _l -v _O /	-	1.7	-	-	1.7	-	Vdc		

MC79L24C, AC ELECTRICAL CHARACTERISTICS (V $_{I}$ = -33 V, I $_{O}$ = 40 mA, C $_{I}$ = 0.33 μ F, C $_{O}$ = 0.1 μ F,

			MC79L24	С	1	AC79L24	AC	1	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Output Voltage (T _J = +25 ^o C)	Vo	-22.1	-24	-25.9	-23	-24	-25	Vdc	
Input Regulation (T ₁ = +25 ^o C)	Regline							mV	
-27 Vdc ≥ V1 ≥ -38 V		_	- 1	-	-	- 1	350		
-27.5 Vdc ≥ V _I ≥ -38 Vdc		-	- 1	350	1 –	-	-		
-28 Vdc ≥ V _I ≥ -38 Vdc		-	- 1	300	-	- 1	300		
Load Regulation T _J = +25 ^o C, 1.0 mA \leq I _O \leq 100 mA 1.0 mA \leq I _O \leq 40 mA	Reg _{load}			200 100			200 100	mV	
$\begin{array}{l} \mbox{Output Voltage} \\ -27 \mbox{ Vdc } \geqslant V_{I} \geqslant -38 \mbox{ V}, \ 1.0 \mbox{ mA} \leqslant I_{O} \leqslant 40 \mbox{ mA} \\ -28 \mbox{ Vdc } \geqslant V_{I} \geqslant -38 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leqslant I_{O} \leqslant 40 \mbox{ mA} \\ \mbox{ V}_{I} = -33 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leqslant I_{O} \leqslant 70 \mbox{ mA} \end{array}$	Vo	 -21.4 -21.4		- -26.4 -26.4	-22.8 -22.8		-25.2 	Vdc	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	ЧВ			6.5 6.0			6.5 6.0	mA	
Input Bias Current Change -28 Vdc \ge V ₁ \ge -38 Vdc 1.0 mA \le I ₀ \le 40 mA	^{∆I} IB			1.5 0.2	-		1.5 0.1	mA	
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤ f ≤ 100 kHz)	V _N	-	200	-	-	200	-	μV	
Long-Term Stability	△V0/△t	-	56	-		56	-	mV/1.0 k Hrs.	
Ripple Rejection (-29 ≤ V _I ≤ -35 Vdc, f [°] = 120 Hz, T _J = 25 ⁰ C)	RR	30	43	-	31	47		dB	
Input-Output Voltage Differential I _O = 40 mA, T _J = +25 ⁰ C	/v ₁ -v ₀ /	-	1.7	-	-	1.7	-	Vdc	

 $0^{\circ}C < T_{\downarrow} < +125^{\circ}C$ unless otherwise noted.)

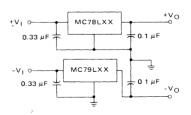

APPLICATIONS INFORMATION

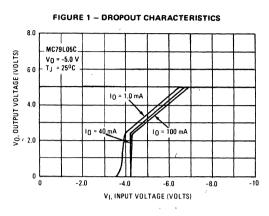
Design Considerations

The MC79L00C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable-operation under all load conditions. A $0.33 \,\mu$ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has one external sense lead. Bypassing the output is also recommended.

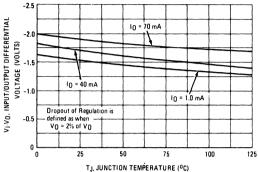
CURRENT REGULATOR

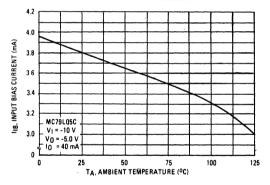



The MC79L03, -3.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and guiescent bias current as follows

$$O = \frac{3 V}{R} + I_B$$

The quiescent current for this regulator is typically 3.8 mA The -3.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage


POSITIVE AND NEGAPIVE REGULATOR



TYPICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted.)

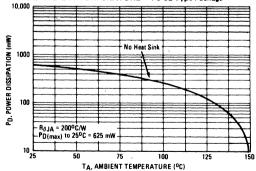


FIGURE 4 - INPUT BIAS CURRENT versus INPUT VOLTAGE

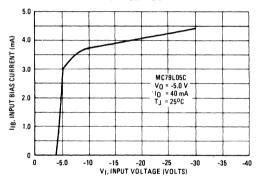
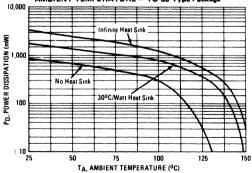
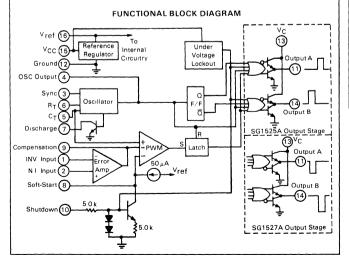
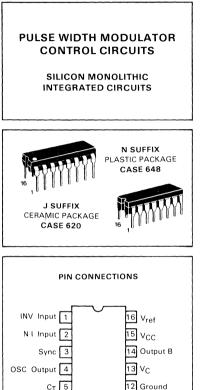



FIGURE 6 – MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE – TO 39 Type Package




SG1525A/SG1527A SG2525A/SG2527A SG3525A/SG3527A

PULSE WIDTH MODULATOR CONTROL CIRCUIT

The SG1525A/1527A series of pulse width modulator controlcircuits offer improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The device includes a +5.1 volt $\pm 1\%$ reference and an error amplifier with a common-mode range including the reference voltage to eliminate external divider resistors. A sync input to the oscillator enables multiple units to be slaved together, or a single unit can be synchronized to an external system clock A wide range of dead time is programmable with a single resistor between the CT pin and the Discharge pin. Other features included are soft-start circuitry requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages, allowing fast output turn-off with soft-start recycle turn-on. Undervoltage lockout keeps the outputs off when V_{CC} is less than the required level for normal operation. The output stages are a totem-pole design capable of sinking and sourcing in excess of 200 mA. The SG1525A series output stage features NOR Logic, giving a low output for an off state The SG1527A utilizes OR Logic which results in a high output level when off. These devices are available in Military, Industrial and Commercial temperature ranges and feature

- 8 0 to 35 Volt Operation
- 5 1 Volt ±1% Trimmed Reference
- 100 Hz to 400 kHz Oscillator Range
- Separate Oscillator Sync Pin
- Adjustable Dead Time
- Input Undervoltage Lockout
- Latching PWM to Prevent Multiple Pulses
- Dual Source/Sink Output Current. ±400 mA Peak

ORDERING INFORMATION

(Top View)

11 Output A

10 Shutdown

9 Compensation

CT 5

R_T 6

Discharge

Soft-Start 8

Device	Temperature Range	Package
SG1525AJ	–55 to +125°C	Ceramic Dip
SG1527AJ	–55 to +125°C	Ceramic Dıp
SG2525AJ	-40 to +85°C	Ceramic Dip
SG2525AN	–40 to +85°C	Plastic Dip
SG2527AJ	–40 to +85°C	Ceramic Dip
SG2527AN	–40 to +85°C	Plastic Dip
SG3525AJ	0 to +70°C	Ceramic Dip
SG3525AN	0 to +70°C	Plastic Dip
SG3527AJ	0 to +70°C	Ceramic Dip
SG3527AN	0 to +70°C	Plastic Dip

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	+40	Vdc
Collector Supply Voltage	V _C	+40	Vdc
Logic Inputs	-	-0.3 to +5.5	v
Analog Inputs	-	-0.3 to V _{CC}	V
Output Current, Source or Sink	10	±500	mA
Reference Output Current	l _{ref}	50	mA
Oscillator Charging Current	_	5.0	mA
Power Dissipation (Plastic & Ceramic Package) Note 2, T _A = +25°C Note 3, T _C = +25°C	PD	1000 2000	mW
Thermal Resistance Junction to Air Plastic and Ceramic Package	R _{θJA}	100	°C/W
Thermal Resistance Junction to Case Plastic and Ceramic Package	R _{θJC}	60	°C/W
Operating Junction Temperature	Tj	+150	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Lead Temperature (Soldering, 10 Seconds)	TSolder	+300	°C

NOTES

1 Values beyond which damage may occur

2 Derate at 10 mW/°C for ambient temperatures above +50°C

3 Derate at 16 mW/°C for case temperatures above +25°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min.	Max.	Unit
Supply Voltage	V _{CC}	+8.0	+35	Vdc
Collector Supply Voltage	V _C	+4.5	+35	Vdc
Output Sink/Source Current (Steady State) (Peak)	10	0	±100 ±400	mA
Reference Load Current	l _{ref}	0	20	mA
Oscillator Frequency Range	f _{osc}	0.1	400	kHz
Oscillator Timing Resistor	RT	2.0	150	kΩ
Oscillator Timing Capacitor	Ст	0.001	0.1	μF
Deadtime Resistor Range	RD	0	500	Ω
Operating Ambient Temperature Range SG1525A, SG1527A SG2525A, SG2527A SG3525A, SG3527A	ТА	-55 -40 0	+125 +85 +70	°C

			525A/2 527A/2					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION						•		
Reference Output Voltage (T _J = +25°C)	V _{ref}	5.05	5.10	5.15	5.00	5.10	5.20	Vdc
Line Regulation (+8.0 V \leqslant V _{CC} \leqslant +35 V)	Regline	-	10	20	-	10	20	mV
Load Regulation (0 mA \leqslant IL \leqslant 20 mA)	Regload		20	50		20	50	mV
Temperature Stability	۲د∕ _{ref} ∠۲		20	50		20	50	mV
Total Output Variation Includes Line and Load Regulation over Temperature	۷ _{ref}	5.00		5.20	4 95		5 25	Vdc
Short Circuit Current (V _{ref} = 0 V, T _J = +25°C)	Isc	-	80	100	-	80	100	mA
Output Noise Voltage (10 Hz \leqslant f \leqslant 10 kHz, TJ = +25°C)	VN	-	40	200	-	40	200	μVrms
Long Term Stability (T _J = +125°C) (Note 5)	S	-	20	50	-	20	50	mV/kh
OSCILLATOR SECTION (Note 6, unless otherwis	e specified)							
Initial Accuracy (Tj = +25°C)	-	_	±2.0	±6 0	-	±2 0	±6 0	%
Frequency Stability with Voltage (+8.0 V \leqslant V _{CC} \leqslant +35 V)	$\frac{\Delta f_{osc}}{\Delta V_{CC}}$	-	±0 3	±1 0	-	±1 0	±2 0	%
Frequency Stability with Temperature	Δf _{osc}	-	±3 0	±6 0	-	±3 0	±6 0	%
Minimum Frequency ($R_T = 150 \text{ k}\Omega$, $C_T = 0.1 \mu\text{F}$)	f _{min}	-	-	100		-	100	Hz
Maximum Frequency (R _T = 2 0 kΩ, C _T = 1.0 nF)	f _{max}	400	-	-	400	_		kHz
Current Mirror (I _{RT} = 2 0 mA)	-	17	2 0	22	17	20	22	mA
Clock Amplitude	-	3.0	3 5	-	30	35	-	V
Clock Width ($T_J = +25^{\circ}C$)	-	03	0 5	1.0	03	05	10	μs
Sync Threshold	-	12	20	2.8	12	20	28	V
Sync Input Current (Sync Voltage = +3 5 V)	-		10	2.5	-	10	25	mA
ERROR AMPLIFIER SECTION (V _{CM} = +5.1 V)					•	•		
Input Offset Voltage	VIO		05	50	-	2.0	10	mV
Input Bias Current	IIВ	-	10	10	-	10	10	μΑ
Input Offset Current	lio			10	-		10	μΑ
DC Open Loop Gain (RL \geqslant 10 M\Omega)	Avol	60	75	-	60	75		dB
Gain Bandwidth Product ($A_{VOL} = 0 \text{ dB}, T_J = +25^{\circ}C$)	GBW	10	20	-	10	2.0	-	MHz
Low Level Output Voltage	VOL	-	0.2	0.5	_	02	05	V
High Level Output Voltage	∨он	3.8	5.6	—	38	56		V
Common Mode Rejection Ratio (+1 5 V \leqslant V _{CM} \leqslant +5.2 V)	CMRR	60	75	-	60	75	-	dB
Power Supply Rejection Ratio (+8.0 V \leqslant V _{CC} \leqslant +35 V)	PSRR	50	60		50	60	-	dB
PWM COMPARATOR SECTION								
Minimum Duty Cycle	DC _{min}	-	-	0	-		0	%
Maximum Duty Cycle	DC _{max}	45	49		45	49		%
Input Threshold, Zero Duty Cycle (Note 6)	VTH	0.6	0.9		0.6	0.9	-	V
Input Threshold, Maximum Duty Cycle (Note 6)	VTH		3.3	3.6	_	3.3	36	V
Input Bias Current	IIB	-	0.05	1.0		0.05	10	μA

ELECTRICAL CHARACTERISTICS (V_{CC} = +20 Vdc, T_A = T_{low} to T_{high} [Note 4], unless otherwise specified)

			525A/25 527A/25		SG3525A SG3527A			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
SOFT-START SECTION		•				-	•	
Soft-Start Current (V _{shutdown} = 0 V)		25	50	80	25	50	80	μA
Soft-Start Voltage (V _{shutdown} = 2.0 V)	-	-	0.4	0.6	-	0.4	0.6	v
Shutdown Input Current (V _{shutdown} = 2.5 V)	-	-	0.4	1.0	-	0.4	1.0	mA
OUTPUT DRIVERS (Each Output, V _C = +20 V)							•	
Output Low Level (I _{sınk} = 20 mA) (I _{sink} = 100 mA)	VOL	_	0.2 1.0	0.4 2.0	_	0.2 1.0	0.4 2.0	v
Output High Level (I _{source} = 20 mA) (I _{source} = 100 mA)	VOH	18 17	19 18		18 17	19 18		V
Under Voltage Lockout (V8 and V9 = High)	VUL	6.0	7.0	8.0	6.0	7.0	8.0	V
Collector Leakage, V _C = +35 V (Note 7)	C(leak)	-	-	200		-	200	μA
Rise Time (C _L = 1.0 nF, T _J = 25°C)	tr		100	600		100	600	ns
Fall Time (CL = 1.0 nF, TJ = 25°C)	t _f	-	50	300	-	50	300	ns
Shutdown Delay (V _{SD} = +3.0 V, C _S = 0, T _J = +25°C)	t _{ds}	-	0.2	0.5	-	0.2	0.5	μs
Supply Current, V _{CC} = +35 V	^I CC	—	14	20	—	14	20	mA

ELECTRICAL CHARACTERISTICS (Continued)

NOTES.

4 T_{Iow} = -55°C for SG1525A/1527A -40°C for SG2525A/2527A 0°C for SG3525A/3527A

T_{high} = +125°C for SG1525A/1527A +85°C for SG2525A/2527A +70°C for SG3525A/3527A

5 Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot

6 Tested at f_{OSC} = 40 kHz (R_T = 3.6 kΩ, C_T = 0.01 µF, R_D = 0.Ω)

7 Applies to SG1525A/2525A/3525A only, due to polarity of output pulses

APPLICATION INFORMATION

Shutdown Options (see block diagram, front page)

- An external open collector comparator or transistor can be used to pull down the Compensation pin (9). This will set the PWM latch and turn off both outputs. Pulse-by-pulse protection can be accomplished if the shutdown signal is momentary, since the PWM latch will be reset with each clock pulse.
- Shutdown can also be accomplished by pulling down on the SOFT-START pin (8). When using this approach, shutdown will not affect the amplifier compensation network; however, if a SOFT-START capacitor is used, it must be discharged, possible slowing shutdown response.
- 3. Applying a positive-going signal to the Shutdown pin (10) will provide the most rapid shutdown of the outputs if a soft-start capacitor is not used at Pin 8. An external soft-start capacitor at Pin 8 will slow shutdown response due to the discharge time of the softstart capacitor. Dishcarge current is approximately twice the charging current.
- 4. The Shutdown terminal can be used to set the PWM latch on a pulse-by-pulse basis if there is no external capacitance on Pin 8. Soft-start characteristics may still be accomplished by applying an external capacitor, blocking diode and charging resistor to the Compensation pin (9).

TYPICAL CHARACTERISTICS

FIGURE 1 - SG1525A OSCILLATOR SCHEMATIC

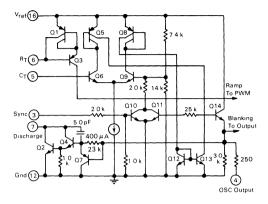
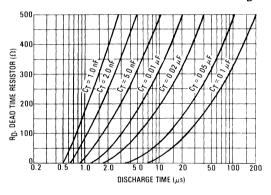



FIGURE 3 - OSCILLATOR DISCHARGE TIME versus RD

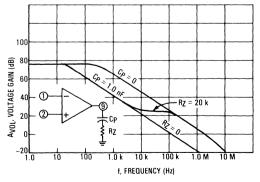
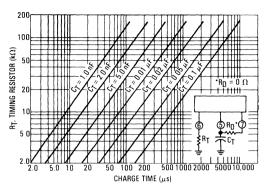



FIGURE 2 - OSCILLATOR CHARGE TIME versus RT

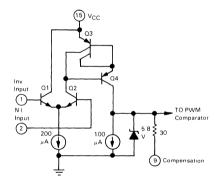
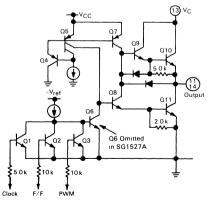
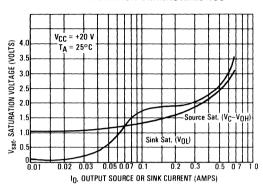
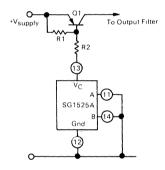



FIGURE 6 — SG1525A OUTPUT CIRCUIT (1/2 CIRCUIT SHOWN)

.

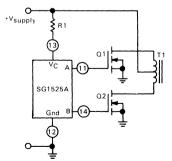
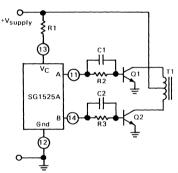
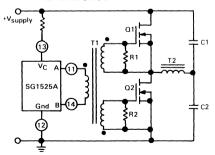

FIGURE 7 — SG1525A/2525A/3525A OUTPUT SATURATION CHARACTERISTICS

FIGURE 8 — SINGLE ENDED SUPPLY



For single-ended supplies, the driver outputs are grounded. The V_C terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

FIGURE 10 - DRIVING POWER FETS



The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components. FIGURE 9 - PUSH-PULL CONFIGURATION

In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 and C2.

FIGURE 11 – DRIVING TRANSFORMERS IN A HALF-BRIDGE CONFIGURATION

Low power transformers can be driven directly by the SG1525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.

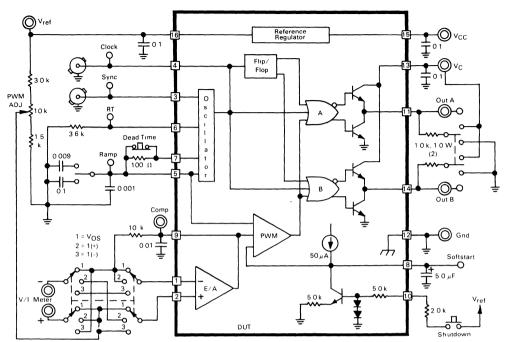
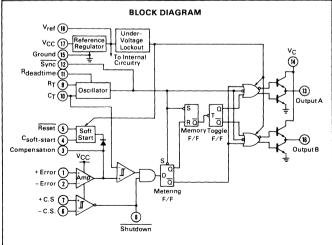
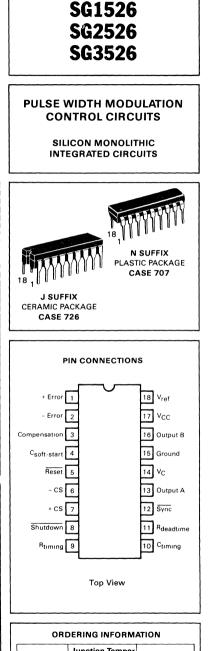


FIGURE 12 - LAB TEST FIXTURE


PULSE WIDTH MODULATION CONTROL CIRCUIT


The SG1526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications.

Functions included in this IC are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logic, and two high current totem pole outputs ideally suited for driving the capacitance of power FETs at high speeds.

Additional protective features include soft-start and undervoltage lockout, digital current limiting, double pulse inhibit, adjustable dead time and a data latch for single pulse metering. All digital control ports are TTL and B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum flexibility. The versatility of this device enables/implementation in single-ended or push-pull switching regulators that are transformerless or transformer coupled. The SG1526 is specified/over the full military junction temperature range of -55° C to $+150^{\circ}$ C. The SG2526 is specified over a junction temperature range of -40° C to $+150^{\circ}$ C.

- 8.0 to 35 Volt Operation
- 5.0 Volt ±1% Trimmed Reference
- 1.0 Hz to 400 kHz Oscillator Range
- Dual Source/Sink Current Outputs: ±100 mA
- Digital Current Limiting
- Programmable Dead Time
- Undervoltage Lockout
- Single Pulse Metering
- Programmable Soft-Start
- Wide Current Limit Common Mode Range
- Guaranteed 6 Unit Synchronization

Device	Junction Temper ature Range	Package
SG1526J	-55 to +150°C	Ceramic DIP
SG2526J SG2526N	-40 to +150°C	Ceramic DIP Plastic DIP
SG3526J SG3526N	0 to +125°C	Ceramic DIP Plastic DIP

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	+40	Vdc
Collector Supply Voltage	V _C	+40	Vdc
Logic Inputs	-	-0.3 to +5.5	v
Analog Inputs		-0.3 to V _{CC}	v
Output Current, Source or Sink	IO	±200	mA
Reference Output Current	l _{ref}	50	mA
Logic Sink Current		15	mA
Power Dissipation (Plastic & Ceramic Package) Note 2, T _A = +25°C Note 3, T _C = +25°C	PD	1000 3000	mW
Thermal Resistance Junction to Air (Plastic and Ceramic Package)	R _{0JA}	100	°C/W
Thermal Resistance Junction to Case (Plastic and Ceramic Package)	R _θ JC	42	°C/W
Operating Junction Temperature	Тj	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	TSolder	±300	°C

Notes:

Values beyond which damage may occur
 Derate at 10 mW/°C for ambient temperatures above +50°C
 Derate at 24 mW/°C for case temperatures above +25°C

RECOMMENDED OPERATING CONDITIONS

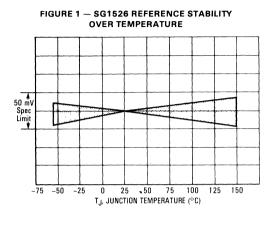
Characteristic	Symbol	Min	Max	Unit
Supply Voltage	Vcc	+8.0	+35	Vdc
Collector Supply Voltage	V _C	+4.5	+35	Vdc
Output Sink/Source Current (Each Output)	10	0	±100	mA
Reference Load Current	Iref	0	20	mA
Oscillator Frequency Range	f _{osc}	0.001	400	kHz
Oscillator Timing Resistor	RT	2.0	150	kΩ
Oscillator Timing Capacitor	Ст	0.001	20	μF
Available Deadtime Range (40 kHz)		3.0	50	%
Operating Junction Temperature Range SG1526 SG2526 SG3526	Тј	-55 -40 0	+ 150 + 150 + 125	°C

Characteristic	Symphal	SG	1526/2		SG3526		1	
Unaracteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION (Note 5)								
Reference Output Voltage (TJ = +25°C)	V _{ref}	4.95	5.00	5.05	4.90	5.00	5.10	v
Line Regulation (+8.0 V \leq V _{CC} \leq +35 V)	Regline	-	10	20	-	10	30	mV
Load Regulation, 0 mA \leq IL \leq 20 mA	Regload	-	10	30	-	10	50	mV
Temperature Stability	$\Delta V_{ref} / \Delta T_J$		15	50	-	15	50	mV
Total Reference Output Voltage Variation (+8.0 V \leq V _{CC} \leq +35 V, 0 mA \leq I _L \leq 20 mA)	ΔV _{ref}	4.90	5.00	5.10	4.85	5.00	5.15	v
Short Circuit Current (V _{ref} = 0 V)	Isc	25	50	100	25	50	100	mA
UNDERVOLTAGE LOCKOUT								
Reset Output Voltage (V _{ref} = +3.8 V)	-	-	0.2	0.4	-	0.2	0.4	v
Reset Output Voltage (V _{ref} = +4.8 V)	-	2.4	4.8	-	2.4	4.8	-	v
OSCILLATOR SECTION (Note 6)							•	
Initial Accuracy (T _J = +25°C)	-	-	±3.0	±8.0	-	±3.0	±8.0	%
Frequency Stability over Power Supply Range (+8.0 V \leq V _{CC} \leq +35 V)	$\frac{\Delta f_{OSC}}{\Delta V_{CC}}$	-	0.5	1.0		0.5	1.0	%
Frequency Stability over Temperature $(\Delta T_J = T_{low} \text{ to } T_{high})$	$\frac{\Delta f_{OSC}}{\Delta T_J}$	-	7.0	10	-	3.0	5.0	%
Minimum Frequency (R _T = 150 k Ω, C _T = 20 μF)	fmin	-	—	1.0	-	-	1.0	Hz
Maximum Frequency (R _T = 2.0 k Ω , C _T = 0.001 μ F)	f _{max}	400	—		400	-	-	kHz
Sawtooth Peak Voltage (V _{CC} = +35 V)	V _{osc(P)}	-	3.0	3.5	-	3.0	3.5	v
Sawtooth Valley Voltage (V _{CC} = +8.0 V)	V _{osc(V)}	0.5	1.0	-	0.5	1.0	—	v
ERROR AMPLIFIER SECTION (Note 7)								
Input Offset Voltage ($R_S \le 2.0 \text{ k}\Omega$)	VIO	-	2.0	5.0		2.0	10	mV
Input Bias Current	^I IB		- 350	- 1000		- 350	- 2000	nA
Input Offset Current	10	-	35	100	-	35	200	nA
DC Open Loop Gain ($R_L \ge 10 M\Omega$)	Avol	64	72	-	60	72	-	dB
High Output Voltage (VPin 1−VPin 2 ≥ +150 mV, I _{source} = 100 μA)	VOH	3.6	4.2	-	3.6	4.2		v
Low Output Voltage (VPin 2 ⁻ VPin 1 ≥ +150 mV, I _{sink} = 100 µA)	VOL	-	0.2	0.4		0.2	0.4	v
Common Mode Rejection Ratio ($R_S \leqslant 2.0 \ k\Omega$)	CMRR	70	94	۲ ۲	70	94		dB
Power Supply Rejection Ratio (+12 V ≤ V _{CC} ≤ +18 V)	PSRR	66	80	-	66	80	-	dB
PWM COMPARATOR SECTION (Note 6)				d	L	J		
Minimum Duty Cycle (Vcompensation = +0.4 V)	DC _{min}	-	-	0	-	-	0	%
Maximum Duty Cycle (Vcompensation = +3.6 V)	DCmax	45	49	-	45	49	-	%

ELECTRICAL CHARACTERISTICS (Continued)

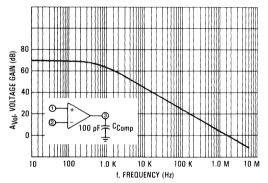
0		SG	1526/25	26		SG3526		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
DIGITAL PORTS (SYNC, SHUTDOWN, RESET)								
Output Voltage — High Logic Level (I _{Source} = 40 µA)	VOH	2.4	4.0	-	2.4	4.0	-	V
Output Voltage — Low Logic Level (I _{Sink} = 3.6 mA)	V _{OL}	-	0.2	0.4	-	0.2	0.4	V
Input Current — High Logic Level (V _{IH} = +2.4 V)	Чн	-	-125	-200	-	-125	-200	μA
Input Current — Low Logic Level (V _{IL} = +0.4 V)	ΙL	-	-225	-360		-225	-360	μΑ
CURRENT LIMIT COMPARATOR SECTION (Not	e 8)						1	
Sense Voltage (R _S \leqslant 50 Ω)	V _{sense}	90	100	110	80	100	120	mV
Input Bias Current	IIB	_	-3.0	-10	-	-3.0	-10	μA
SOFT-START SECTION								
Error Clamp Voltage (Reset = +0.4 V)	-	-	0.1	0.4		0.1	04	V
CSoft-Start Charging Current (Reset = +2.4 V)	Ics	50	100	150	50	100	150	μA
OUTPUT DRIVERS (Each Output, V _C = +15 Vdc unless otherwise speci	fied)	1	f	1		L	L	
Output High Level I _{source} = 20 mA I _{source} = 100 mA	VOH	12.5 12	13.5 13	_	12.5 12	13.5 13	_	V
Output Low Level I _{sink} = 20 mA I _{sink} = 100 mA	VOL	-	0.2 1.2	0.3 2.0		0.2 1.2	0.3 2.0	V
Collector Leakage, V _C = +40 V	IC(leak)	-	50	150	—	50	150	μA
Rise Time (C _L = 1000 pF)	tr	-	0.3	0.6	—	0.3	0.6	μs
Fall Time (C _L = 1000 pF)	tf	-	0.1	0.2	_	0.1	0.2	μs
Supply Current (Shutdown = +0.4 V, V _{CC} = +35 V, R_T = 4.12 k Ω)	Icc	-	18	30	—	18	30	mA

Notes

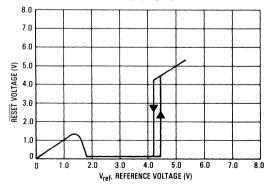

4 T_{low} = -55°C for SG1526

-40°C for \$G2526

0°C for SG3526 T_{high} = +150°C for SG1526/2526 +125°C for SG3526


5. $I_L = 0$ mA unless otherwise noted.

 $\begin{array}{l} \text{5. } I_{\text{L}} = 0 \text{ mA unless otherwise noted} \\ \text{6. } f_{\text{OSC}} = 40 \text{ kH}_2 (\text{R}_{\text{T}} = 4.12 \text{ k}\Omega \pm 1\%, \\ \text{C}_{\text{T}} = 0.01 \ \mu\text{F} \pm 1\%, \text{R}_{\text{D}} = 0 \ \Omega) \\ \text{7. } 0 \ \text{V} \leqslant \text{V}_{\text{CM}} \leqslant +5.2 \ \text{V} \\ \text{8. } 0 \ \text{V} \leqslant \text{V}_{\text{CM}} \leqslant +12 \ \text{V} \end{array}$



TYPICAL CHARACTERISTICS

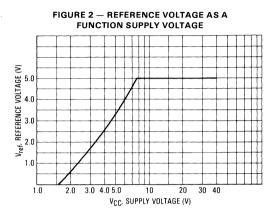


FIGURE 4 — CURRENT LIMIT COMPARATOR THRESHOLD

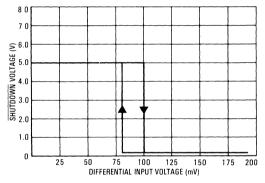
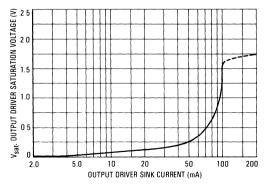



FIGURE 6 — OUTPUT DRIVER SATURATION VOLTAGE AS A FUNCTION OF SINK CURRENT

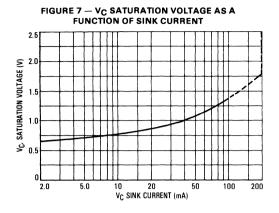


FIGURE 9 - SG1526 ERROR AMPLIFIER

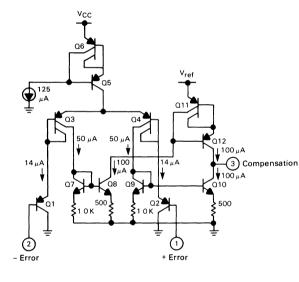
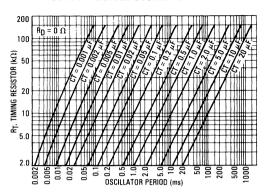


FIGURE 8 - SG1526 OSCILLATOR PERIOD



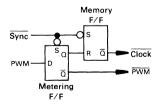


FIGURE 10 - SG1526 UNDERVOLTAGE LOCKOUT

The metering FLIP-FLOP is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle. The memory FLIP-FLOP prevents double pulsing in a push-pull configuration by remembering which output produced the last pulse.

APPLICATIONS INFORMATION

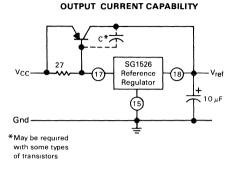


FIGURE 12 - EXTENDING REFERENCE

FIGURE 13 - ERROR AMPLIFIER CONNECTIONS

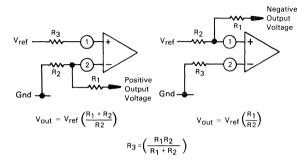
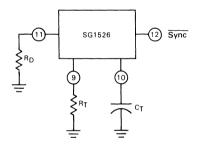



FIGURE 14 - OSCILLATOR CONNECTIONS

FIGURE 16 - SG1526 SOFT-START CIRCUITRY

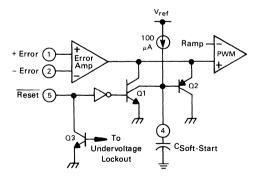
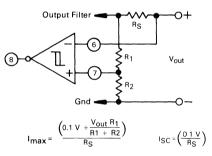
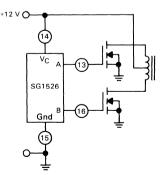




FIGURE 15 - FOLDBACK CURRENT LIMITING

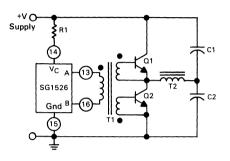
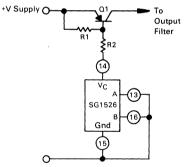


FIGURE 17 - DRIVING VMOS POWER FETS



The totem-pole output drivers of the SG1526 are ideally suited for driving the input capacitance of power FETs at high speeds.

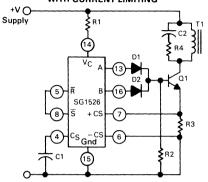

FIGURE 18 — HALF-BRIDGE CONFIGURATION

FIGURE 20 - SINGLE-ENDED CONFIGURATION

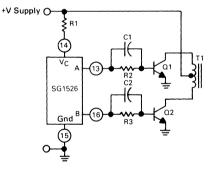


FIGURE 19 – FLYBACK CONVERTER WITH CURRENT LIMITING

In the above circuit, current limiting is accomplished by using the current limit comparator output to reset the soft-start capacitor.

FIGURE 21 - PUSH-PULL CONFIGURATION

INTERNAL SCHEMATIC

Component values are nominal

TL431 series

Package

Plastic TO-92

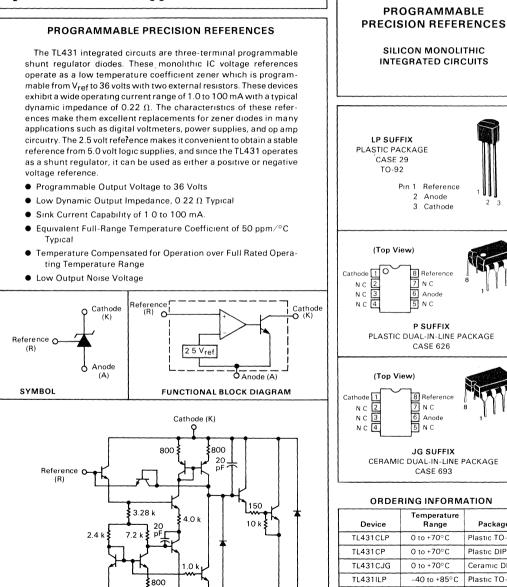
Plastic DIP

Ceramic DIP

Plastic DIP

Ceramic DIP

Ceramic DIP


-40 to +85°C

-40 to +85°C

-55 to +125°C

Plastic TO-92

Specifications and Applications Information

h

Anode (A)

TL431IP

TL431IJG

TL431MJG

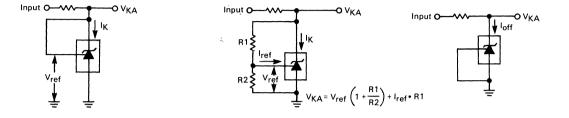
Rating	Symbol	Value	Unit
Cathode To Anode Voltage	VKA	37	V
Cathode Current Range, Continuous	١ĸ	-100 to +150	mA
Reference Input Current Range, Continuous	Iref	-0.05 to +10	mA
Operating Junction Temperature	Тј	150	°C
Operating Ambient Temperature Range TL431M TL431I TL431C	TA	-55 to +125 -40 to +85 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C Ambient Temperature LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package	PD	0.775 1 10 1.25	W
Total Power Dissipation @ T _C = 25°C Derate above 25°C Case Temperature LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package	PD	1.5 3.0 3.3	w

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.)

THERMAL CHARACTERISTICS

Characteristics	Symbol	LP Suffix Package	P Suffix Package	JG Suffix Package	Unit
Thermal Resistance, Junction to Ambient	R _{0JA}	178	114	100	°C/W
Thermal Resistance, Junction to Case	R _{θJC}	83	41	38	°C/W

RECOMMENDED OPERATING CONDITIONS


Condition/Value	Symbol	Min	Max	Unit
Cathode To Anode Voltage	VKA	V _{ref}	36	V
Cathode Current	١ĸ	1.0	100	mA

ELECTRICAL CHARACTERISTICS (Ambient temperature at 25°C unless otherwise noted)

0		1	FL431M	N	TL4311			TL431C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Input Voltage (Figure 1) $V_{KA} = V_{ref}$, I _K = 10 mA	V _{ref}	2.440	2.495	2 550	2.440	2.495	2.550	2.440	2.495	2.550	V
Reference Input Voltage Deviation Over Temperature Range. (Figure 1, Note 1) VKA = V _{ref} , I _K = 10 mA	∆V _{ref}	-	15	44	-	7.0	30	-	30	17	mV
Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage I _K = 10 mA (Figure 2), △V _{KA} = 10 V to V _{ref}	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	_	-1,4	-2.7	_	-1.4	-2.7		-1.4	-2.7	mV/V
$\Delta V_{KA} = 36 V \text{ to } 10 V$		- 1	-1.0	-2.0	-	-1.0	-2.0	-	-1.0	-2.0	
Reference Input Current (Figure 2) I _K = 10 mA, R1 = 10 k, R2 = ∞	Iref	-	1.8	4.0	-	1.8	4.0	-	1.8	4.0	μA
Reference Input Current Deviation Over Temperature Range. (Figure 2) IK = 10 mA, R1 = 10 k, R2 = ∞	^{∆I} ref		1.0	3.0	-	0.8	2.5		0.4	1.2	μA
Minimum Cathode Current For Regulation $V_{KA} = V_{ref}$ (Figure 1)	I _{min}	-	0.5	1.0	—	0.5	1.0		05	1.0	mA
Off-State Cathode Current (Figure 3) V _{KA} = 36 V, V _{ref} = 0 V	loff	-	2.6	1000		2.6	1000	~	2.6	1000	nA
Dynamic Impedance (Figure 1, Note 2) $V_{KA} = V_{ref}$, $\triangle I_K = 1.0$ mA to 100 mA $f \leqslant 1.0$ kHz	Z _{ka}		0.22	0.5	-	0.22	0.5		0.22	0.5	Ω

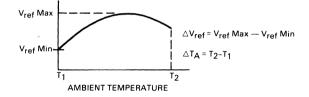


FIGURE 1 — TEST CIRCUIT FOR VKA = V_{ref} FIGURE 2 — TEST CIRCUIT FOR VKA > V_{ref} FIGURE 3 — TEST CIRCUIT FOR I_{off}

Note 1

The deviation parameter ΔV_{ref} is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

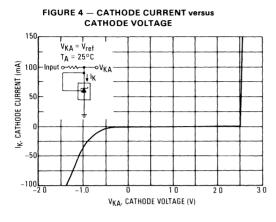
The average temperature coefficient of the reference input voltage, α V_{ref}, is defined as:

$$\alpha \text{ V}_{\text{ref}} \quad \frac{\text{ppm}}{^{\circ}\text{C}} = \frac{\left(\frac{\triangle V_{\text{ref}}}{V_{\text{ref}} (\varpi 25^{\circ}\text{C})} \times 10^{6}\right)}{\triangle T_{\text{A}}} = \frac{\triangle V_{\text{ref}} \times 10^{6}}{\triangle T_{\text{A}} (V_{\text{ref}} (\varpi 25^{\circ}\text{C}))}$$

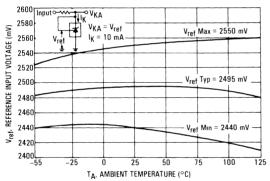
 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6)

Example: $\triangle V_{ref}$ = 8.0 mV and slope is positive, V_{ref} @ 25°C = 2.495 V, $\triangle T_A$ = 70°C

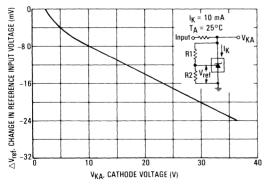
$$\alpha V_{ref} = \frac{0.008 \times 10^6}{70 (2.495)} = 45.8 \text{ ppm/}^{\circ}\text{C}$$


Note 2

The dynamic impedance Zka is defined as:


$$|Z_{ka}| = \frac{\triangle V_{KA}}{\triangle I_{K}}$$

When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:


$$|z_{ka'}| \approx |z_{ka}| \ \left(1 + \frac{R1}{R2}\right)$$

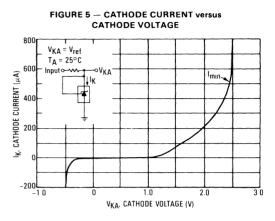


FIGURE 7 — REFERENCE INPUT CURRENT versus AMBIENT TEMPERATURE

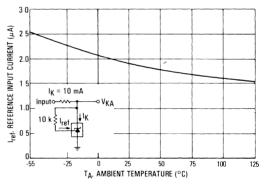
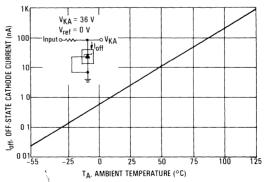



FIGURE 9 — OFF-STATE CATHODE CURRENT versus AMBIENT TEMPERATURE

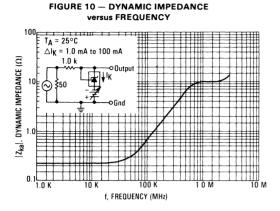


FIGURE 12 --- OPEN LOOP VOLTAGE GAIN versus FREQUENCY

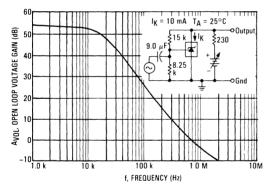
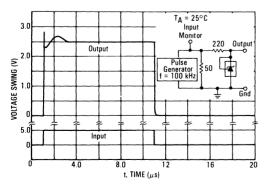



FIGURE 14 - PULSE RESPONSE

Versus AMBIENT TEMPERATURE

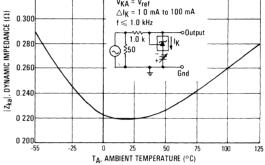


FIGURE 11 - DYNAMIC IMPEDANCE

0.320

FIGURE 13 - SPECTRAL NOISE DENSITY

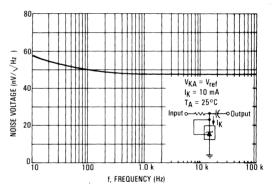


FIGURE 15 - STABILITY BOUNDARY CONDITIONS

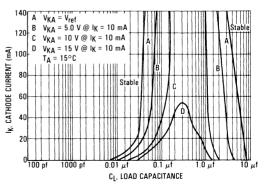


FIGURE 16 – TEST CIRCUIT FOR CURVE A OF STABILITY BOUNDARY CONDITIONS

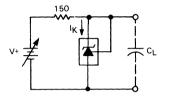
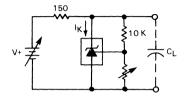
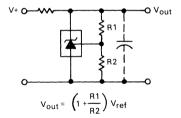




FIGURE 17 – TEST CIRCUIT FOR CURVES B, C, AND D OF STABILITY BOUNDARY CONDITIONS

TYPICAL APPLICATIONS

FIGURE 18 - SHUNT REGULATOR

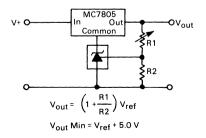


FIGURE 19 - HIGH CURRENT SHUNT REGULATOR

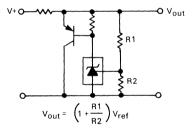
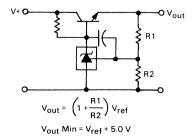



FIGURE 21 - SERIES PASS REGULATOR

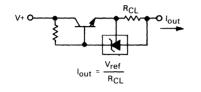


FIGURE 22 - CONSTANT CURRENT SOURCE

FIGURE 23 - CONSTANT CURRENT SINK

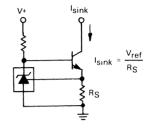
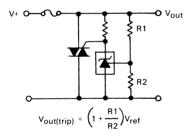
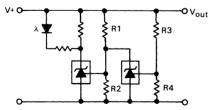




FIGURE 24 - TRIAC CROWBAR

L.E.D. indicator is 'on' when V+ is between the upper and lower limits.

Lower Limit =
$$\left(1 + \frac{R1}{R2}\right)V_{ref}$$

Upper Limit = $\left(1 + \frac{R3}{R4}\right)V_{ref}$

FIGURE 25 - SCR CROWBAR

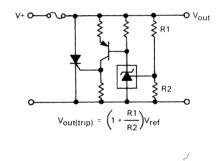
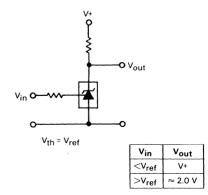



FIGURE 27 — SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD

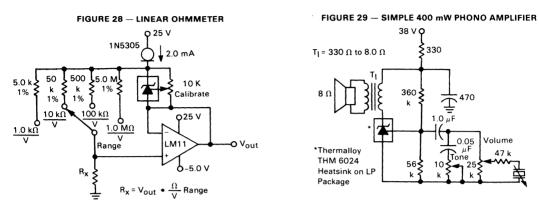
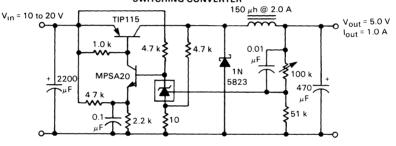
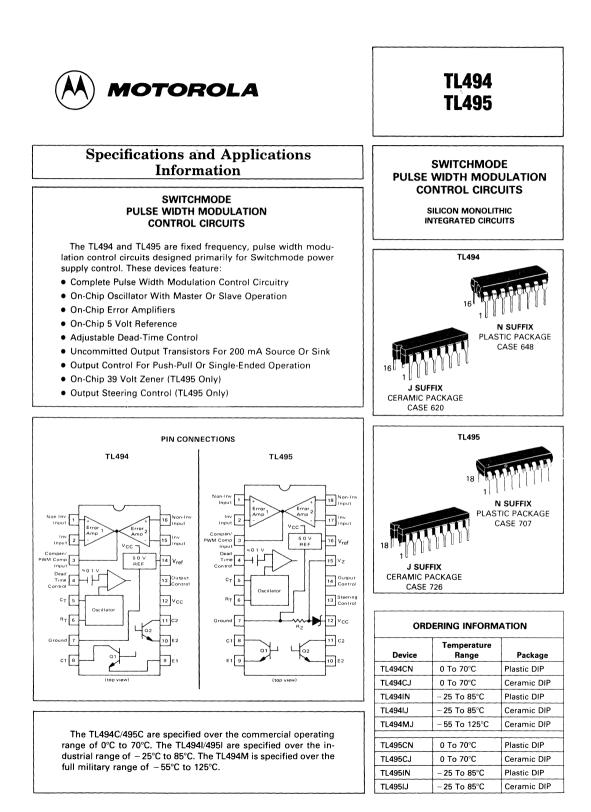




FIGURE 30 — HIGH EFFICIENCY STEP-DOWN SWITCHING CONVERTER

TEST	CONDITIONS	RESULTS
Line Regulation	V_{in} = 10 V to 20 V, I ₀ = 1.0 A	53 mV (11%)
Load Regulation	V _{in} = 15 V, I _o = 0A to 1.0 A	25 mV (0.5%)
Output Ripple	V _{in} = 10 V, I _o = 1.0 A	50 mV _{p-p} P.A.R.D.
Output Ripple	V _{in} = 20 V, I _o = 1.0 A	100 mV _{p-p} P.A.R.D.
Efficiency	V _{in} = 15 V, I _o = 1.0 A	82%

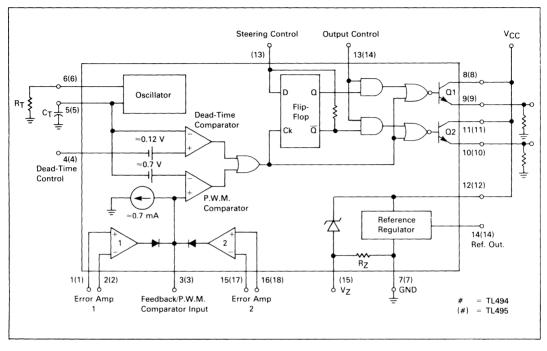
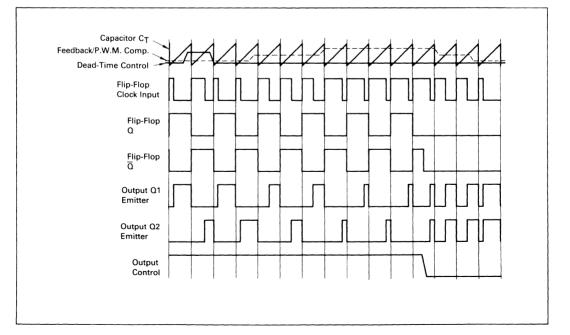



FIGURE 1 - BLOCK DIAGRAM

Description

The TL494/495 are fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, R_T and C_T . The oscillator frequency is determined by:

$$f_{osc} \approx \frac{1.1}{R_T \bullet C_T}$$

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from -0.3 V to (V_{CC} -2 V), and may be used to sense power-supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor C_T is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flipflop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL494/495 has an internal 5 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of \pm 5% with a thermal drift of less than 50 mV over an operating temperature range of 0 to 70°C.

The TL495 contains an on-chip 39 volt zener diode for high voltage applications where V_{CC} is greater than 40 volts, and an output steering control that overrides the internal control of the pulse-steering flip-flop. (Refer to the functional table shown in figure 3.)

Inp	uts		fout
Output Control	Steering Control	Output Function	f _{osc} =
Grounded	Open	Single-ended P.W.M. at Q1 and Q2	1
At V _{ref}	Open	Push-pull operation	0.5
At V _{ref}	V1 <0.4 V	Single-ended P.W.M. at Q1 only	1
At V _{ref}	V1 >2.4 V	Single-ended P.W.M. at Q2 only	1

FIGURE 3 — FUNCTIONAL TABLE

Rating	Symbol	TL494M	TL494I/TL495I	TL494C/TL495C	Unit
Power Supply Voltage	Vcc	42	42	42	V
Collector Output Voltage	V _{C1} , V _{C2}	42	42	42	V
Collector Output Current (each transistor)	IC1, IC2	250	250	250	mA
Amplifier Input Voltage	V _{in}	V _{CC} + .03	V _{CC} + .03	V _{CC} + .03	V
Power Dissipation (a $T_A \le 45^{\circ}C$	PD	1000	1000	1000	mW
Operating Junction Temperature	ТJ	150	150	150	°C
Operating Ambient Temperature Range	TA	-55 to 125	- 25 to 85	0 to 70	°C
Storage Temperature Range	T _{stg}	-65 to 150	- 65 to 150	- 65 to 150	°C

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted)

THERMAL CHARACTERISTICS

Characteristics	Symbol	J Suffix Ceramic Package	N Suffix Plastic Package	Unit
Thermal Resistance, Junction to Ambient	Roja	100	80	°C/W
Power Derating Factor	1/RoJA	10.0	12.5	m₩/ºC
Derating Ambient Temperature	TA	50	45	°C

RECOMMENDED OPERATING CONDITIONS

Condition/Value	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{CC}	7.0	15	40	V
Collector Output Voltage	V _{C1} , V _{C2}	—	30	40	V
Collector Output Current (each transistor)	IC1, IC2		_	200	mA
Amplifier Input Voltage	V _{in}	- 0.3	-	V _{CC} - 2.0	V
Current Into Feedback Terminal	lf.b.		_	0.3	mA
Reference Output Current	l _{ref}			10	mA
Timing Resistor	RT	1.8	30	500	kΩ
Timing Capacitor	Ст	0.00047	0.001	10	μF
Oscillator Frequency	fosc	1.0	40	200	kHz

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, f_{OSC} = 10 kHz unless otherwise noted.) For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.

Characteristic	Complete		TL494M		TL49	4C, I/TL49	5C, I	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION								
Reference Voltage $(I_0 = 1.0 \text{ mA})$	V _{ref}	4.75	5.0	5.25	4.75	5.0	5.25	V
Reference Voltage Change with Temperature $(\Delta T_A = Min \text{ to } Max)$	ΔV_{ref} ($_{2}T$)	—	0.2	2.0	—	1.3	2.6	%
Input Regulation (V _{CC} = 7.0 V to 40 V)	Regline	-	2.0	25	—	2.0	25	mV
Output Regulation ($I_0 = 1.0 \text{ mA to } 10 \text{ mA}$)	Regload	—	3.0	15	—	3.0	15	mV
Short-Circuit Output Current ($V_{ref} = 0 V, T_A = 25^{\circ}C$)	Isc	10	35	50	—	35	-	mA

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, f_{OSC} = 10 kHz unless otherwise noted.) For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.

			TL494M		TL49	4C, I/TL4	95C, I	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	
OUTPUT SECTION								
Collector Off-State Current (V _{CC} = 40 V, V _{CE} = 40 V)	lC(off)	-	2.0	100	-	2.0	100	μA
Emitter Off-State Current ($V_{CC} = 40 V, V_{C} = 40 V, V_{E} = 0 V$)	lE(off)	-	_	- 150	—	-	- 100	μA
Collector-Emitter Saturation Voltage Common-Emitter ($V_E = O_V$, $I_C = 200 \text{ mA}$) Emitter-Follower ($V_C = 15 \text{ V}$, $I_E = -200 \text{ mA}$)	V _{sat(C)}	-	1.1	1.5	-	1.1	1.3	v
	V _{sat(E)}	-	1.5	2.5		1.5	2.5	v
Output Control Pin Current Low State $(V_{OC} \le 0.4 V)$	IOCL		10	-		10	-	μΑ
High State (V _{OC} = V _{ref})	ЮСН	-	0.2	3.5	-	0.2	3.5	mA
Output Voltage Rise Time ($T_A = 25^{\circ}C$) Common-Emitter (See Figure 13)	tr	-	100	200	-	100	200	ns
Emitter-Follower (See Figure 14)		-	100	200	-	100	200	ns
Output Voltage Fall Time ($T_A = 25^{\circ}C$) Common-Emitter (See Figure 13)	tf		25	100		25	100	ns
Emitter-Follower (See Figure 14)			40	100		40	100	ns

Ok	Combat				
Characteristic	Symbol	Min	Тур	Max	Unit
ERROR AMPLIFIER SECTIONS					
Input Offset Voltage (VO (Pin 3) = 2.5 V)	VIO		2.0	10	mV
Input Offset Current (VO (Pin 3) = 2.5 V)	lio	_	5.0	250	nA
Input Bias Current (V _O (Pin 3) = 2.5 V)	IВ	-	0.1	1.0	μA
Input Common-Mode Voltage Range (V _{CC} = 7.0 V to 40 V)	VICR	-0.3	-	V _{CC} - 2.0	v
Open-Loop Voltage Gain $ \begin{array}{l} (\Delta V_{O}\ =\ 3.0\ V,\ V_{O}\ =\ 0.5\ to\ 3.5\ V, \\ R_{L}\ =\ 2.0\ k\Omega) \end{array} $	AVOL	70	95	_	dB
Unity-Gain Crossover Frequency (V _O = 0.5 to 3.5 V, R _L = 2.0 k Ω)	fC	_	350	_	kHz
Phase Margin at Unity-Gain $(V_0 = 0.5 \text{ to } 3.5 \text{ V}, \text{ R}_L = 2.0 \text{ k}\Omega)$	Øm	_	65	-	deg.
Common-Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90		dB
Power Supply Rejection Ratio ($\Delta V_{CC} = 33 \text{ V}, \text{ V}_{O} = 2.5 \text{ V}, \text{ R}_{L} = 2.0 \text{ k}\Omega$)	PSRR	—	100	_	dB
Output Sink Current (VO (Pin 3) = 0.7 V)	IO-	0.3	0.7	_	mA
Output Source Current (V _O (Pin 3) = 3.5 V)	IO+	- 2.0	- 4.0	_	mA

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 V$, $f_{OSC} = 10 kHz$ unless otherwise noted.) For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.

Characteristic	Sumbal				
	Symbol	Min	Тур	Max	Unit
PWM COMPARATOR SECTION (Test Circuit Figure 1	2)				
Input Threshold Voltage (Zero duty cycle)	VTH		3.5	4.5	V
Input Sink Current (V (Pin 3) = 0.7 V)	lı –	0.3	0.7	-	mA
DEAD-TIME CONTROL SECTION (Test Circuit Figure	12)				
Input Bias Current (Pin 4) (V _{in} = 0 to 5.25 V)	^I IB (DT)		- 2.0	- 10	μA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DC _{max}	45	48 45	50 50	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	V _{TH}	0	2.8	3.3	V
OSCILLATOR SECTION					
Frequency $(C_T = 0.001 \ \mu f, R_T = 30 \ k\Omega)$	fosc		40	-	kHz
Standard Deviation of Frequency* ($C_T = 0.001 \ \mu f, R_T = 30 \ k\Omega$)	σf _{osc}		3.0		%
Frequency Change with Voltage $(V_{CC} = 7.0 \text{ V to } 40 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C})$	∆f _{osc (→V)}	_	0.1	_	%
Frequency Change with Temperature $(\Delta T_A = 25^{\circ}C \text{ to } T_A \text{ low}, 25^{\circ}C \text{ to } T_A \text{ high})$	Δf _{osc} (₁ T)		1.0	2.0	%
Characteristic	Symbol		TL495		Unit
		Min	Түр	Max	
STEERING CONTROL					
Input Current Low	ISTL		- 25	- 200	μA

Input Current Low	^I STL	-	- 25	- 200	μΑ
(V(Pin 13) = 0.4 V)					
Input Current High	^I STH				μA
$(V_{(Pin \ 13)} = 2.4 \text{ V})$		-	25	200	
$(V(Pin 13) = V_{ref})$		_	75	—	

ZENER CHARACTERISTICS

Zener Breakdown Voltage (I _Z = 2mA)	٧ _Z	—	39	—	V
Sink Current (V(Pin 15) = 1.0 V)	IRZ	_	0.3	_	mA

TOTAL DEVICE

Standby Supply Current (Pin 6 at V_{ref} , All Other Inputs and Outputs Open) ($V_{CC} = 15 V$) ($V_{CC} = 40 V$)	Icc		5.5 7.0	10 15	mA
Average Supply Current (V(Pin 4) = 2.0 V) (See Figure 12.) (C_T = 0.01, R_T = 12 k Ω , V _{CC} = 15V)		_	7.0	_	mA

* Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, σ =

$$\int \frac{\sum_{n=1}^{N} (X_n - \overline{X})^2}{N - 1}$$

_

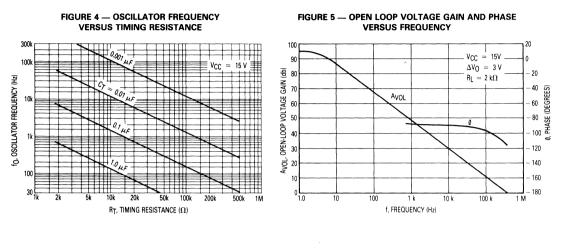


FIGURE 6 — PERCENT DEAD TIME VERSUS OSCILLATOR FREQUENCY

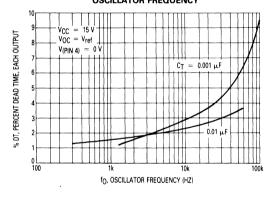


FIGURE 7 — PERCENT DUTY CYCLE VERSUS DEAD-TIME CONTROL VOLTAGE

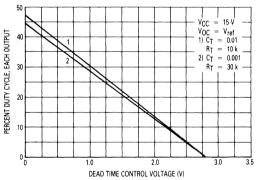


FIGURE 8 — EMITTER-FOLLOWER CONFIGURATION, OUTPUT-SATURATION VOLTAGE VERSUS EMITTER CURRENT

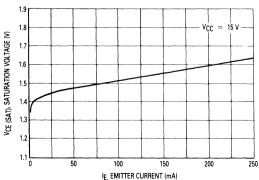
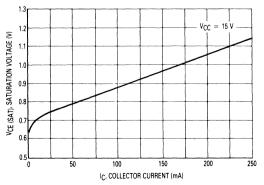
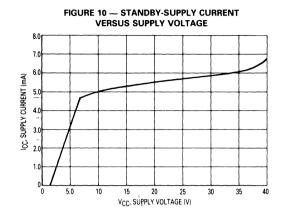




FIGURE 9 — COMMON-EMITTER CONFIGURATION OUTPUT-SATURATION VOLTAGE VERSUS COLLECTOR CURRENT

FIGURE 11 -- ERROR AMPLIFIER CHARACTERISTICS

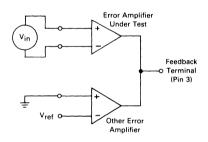


FIGURE 12 — DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT

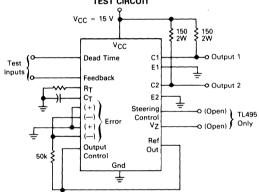
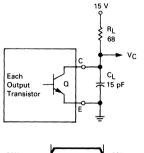



FIGURE 13 --- COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM

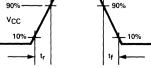
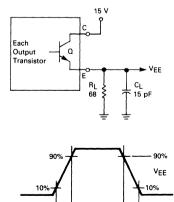



FIGURE 14 — EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM

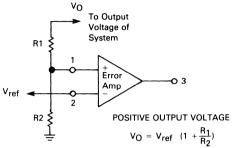



FIGURE 15 - ERROR-AMPLIFIER SENSING TECHNIQUES

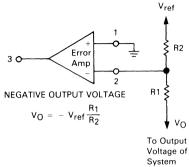
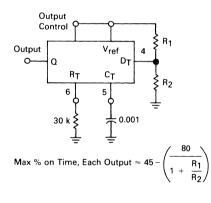
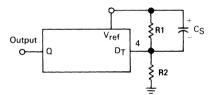
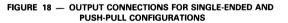





FIGURE 16 - DEAD-TIME CONTROL CIRCUIT

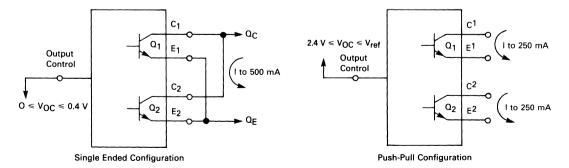
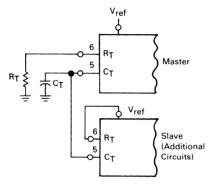
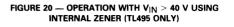




FIGURE 19 - SLAVING TWO OR MORE CONTROL CIRCUITS

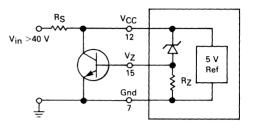
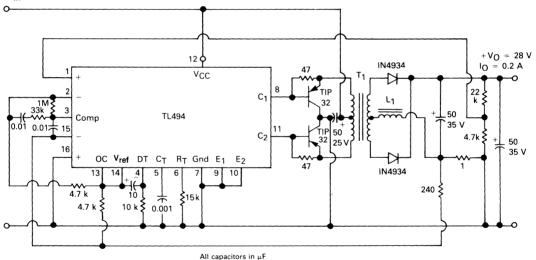



FIGURE 21 --- PULSE-WIDTH MODULATED PUSH-PULL CONVERTER

 $+V_{in} = 8.0 \text{ to } 20 \text{ V}$

L1 — 3.5 mh @ 0.3A T1 — Primary: 20T C.T. #28 AWG

Secondary: 120T C.T. #36 AWG Core: Ferroxcube 1408P-L00-3C8

TEST	CONDITIONS	RESULTS
Line Regulation	V _{in} = 8.0 to 20 V	3.0 mV 0.01%
Load Regulation	$V_{in} = 12.6 V, I_0 = 0.2 to 200 mA$	5.0 mV 0.02%
Output Ripple	$V_{in} = 12.6 V, I_{O} = 200 mA$	40 mV p-P P.A.R.D.
Short Circuit Current	$V_{in} = 12.6 V, R_L = 0.1 \Omega$	250 mA
Efficiency	$V_{in} = 12.6 V, I_0 = 200 mA$	72%

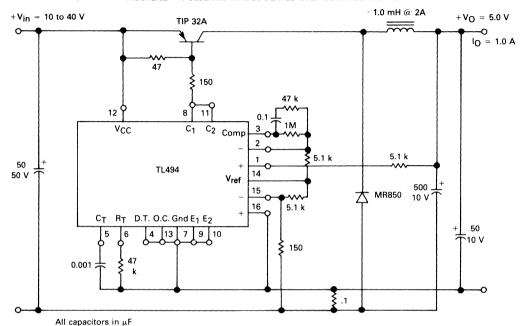
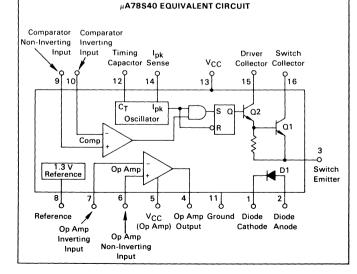
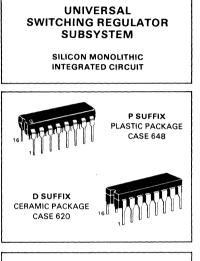


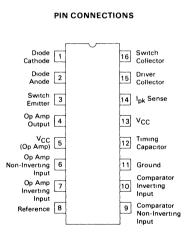
FIGURE 22 — PULSE-WIDTH MODULATED STEP-DOWN CONVERTER

TEST	CONDITIONS	RESULTS
Line Regulation	$V_{in} = 10V$ to $40V$	14mV 0.28%
Load Regulation	$V_{in} = 28V, I_0 = 1 \text{ mA to } 1 \text{ A}$	3.0mV 0.06%
Output Ripple	$V_{in} = 28V, I_0 = 1.0A$	65mV P-P P.A.R.D.
Short Circuit Current	$V_{in} = 28V, R_L = 0.1\Omega$	1.6 amps
Efficiency	$V_{in} = 28V, I_0 = 1A$	71%

μ**A78S40**


Advance Information


UNIVERSAL SWITCHING REGULATOR SUBSYSTEM


The μ A78S40 is a monolithic-switching regulator subsystem, providing all active functions necessary for a switching regulator system. The device consists of a tight-tolerance temperature-compensated voltage reference, controlled-duty cycle oscillator with an active peak-current limit circuit, comparator, high-current and high-voltage output switch, capable of 1.5 A and 40 V, pinned-out power diode and an uncommitted operational amplifier, which can be powered up or down independent of the I.C. supply. The switching output can drive external NPN or PNP transistors when voltages greater than 40 V, or currents in excess of 1.5 A, are required. Some of the fatures are wide-supply voltage range, low standby current, high efficiency and low drift. The μ A78S40 is available in both commercial (0°C to +70°C) and military (-55°C to +125°C) temperature ranges.

Some of the applications include use in step-up, step-down, and inverting regulators, with extremely good results obtained in battery-operated systems.

- Output Adjustable from 1.3 V to 40 V
- Peak Output Current of 1.5 A Without External Transistor
- 80 dB Line and Load Regulation
- Operation from 2.5 V to 40 V Supply
- Low Standby Current Drain
- High Gain, High Output Current, Uncommitted Op Amp.
- Uncommitted Power Diode
- Low Cost

ORDERING INFORMATION

Device	Temperature Range	Package
μA78S40PC	0°C to +70°C	Plastic DIP
μA78S40DC	0°C to +70°C	Ceramic DIP
µA78S40DM	-55°C to +125°C	Ceramic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	v
Op Amp Power Supply Voltage	V _{CC} (Op Amp)	40	v
Common Mode Input Range (Comparator and Op Amp)	VICR	-0.3 to V _{CC}	v
Differential Input Voltage (Note 2)	VID	±30	v
Output Short-Circuit Duration (Op Amp)	-	Continuous	
Reference Output Current	Iref	10	mA
Voltage from Switch Collectors to Gnd	-	40	v
Voltage from Switch Emitters to Gnd	-	40	v
Voltage from Switch Collectors to Emitter	-	40	v
Voltage from Power Diode to Gnd	-	40	v
Reverse-Power Diode Voltage	V _{DR}	40	v
Current through Power Switch	Isw	1.5	A
Current through Power Diode	ID.	1.5	A
Power Dissipation and Thermal Characteristics Plastic Package - T _A = +25°C Derate above +25°C (Note 1) Ceramic Package - T _A = 25°C Derate above +25°C (Note 1)	PD 1/R ₀ JA PD 1/R ₀ JA	1500 14 1000 8	mW mW∕°C mW mW∕°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range μA78S40M μA78S40C	ТА	-55 to +125 0 to +70	°C

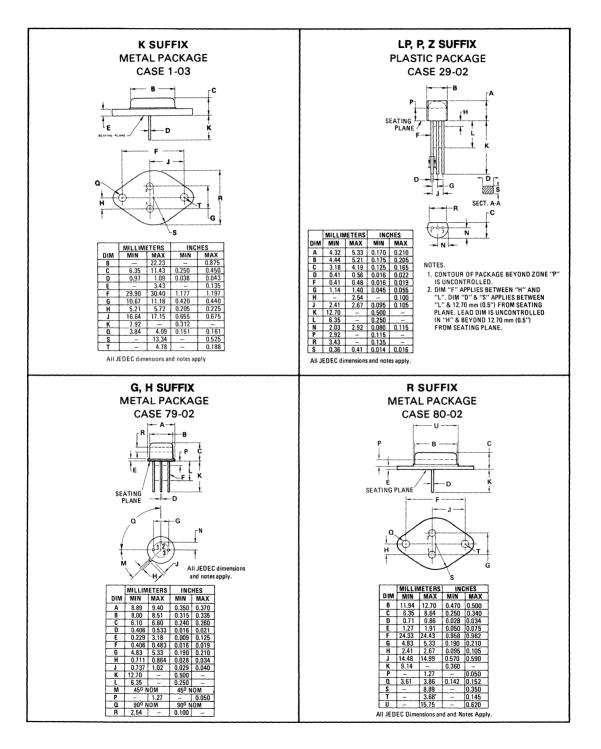
Notes:

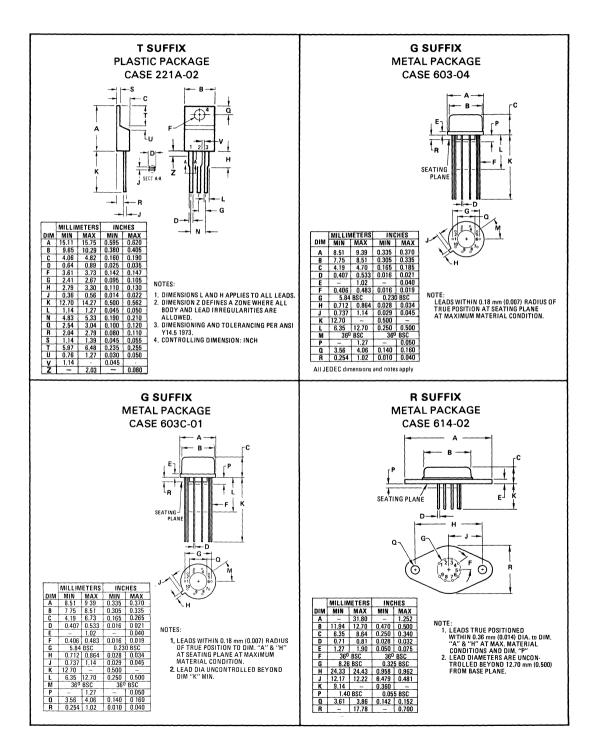
1. $T_{Iow} = -55^{\circ}C \text{ for } \mu \text{A78S40DM}$ = 0°C for $\mu \text{A78S40DC} \text{ and } \mu \text{A78S40PC}$

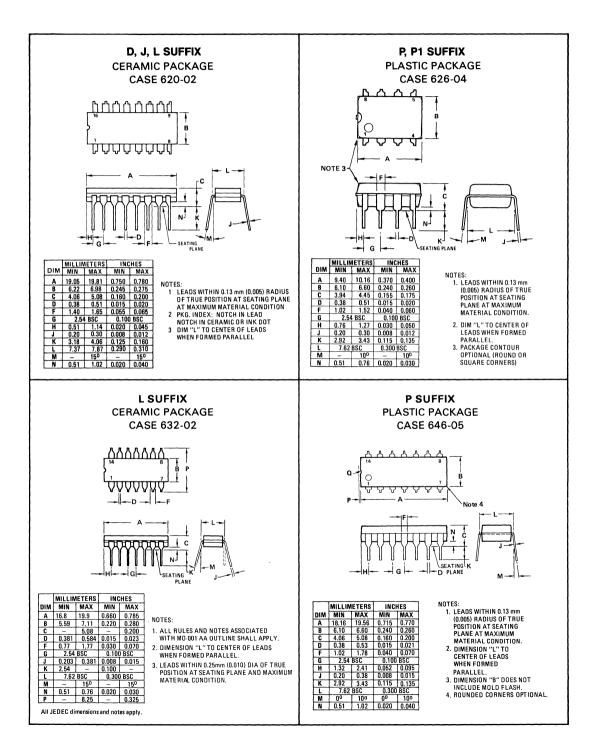
Thigh = +125°C for μA78S40DM = +70°C for μA78S40DC and μA78S40PC

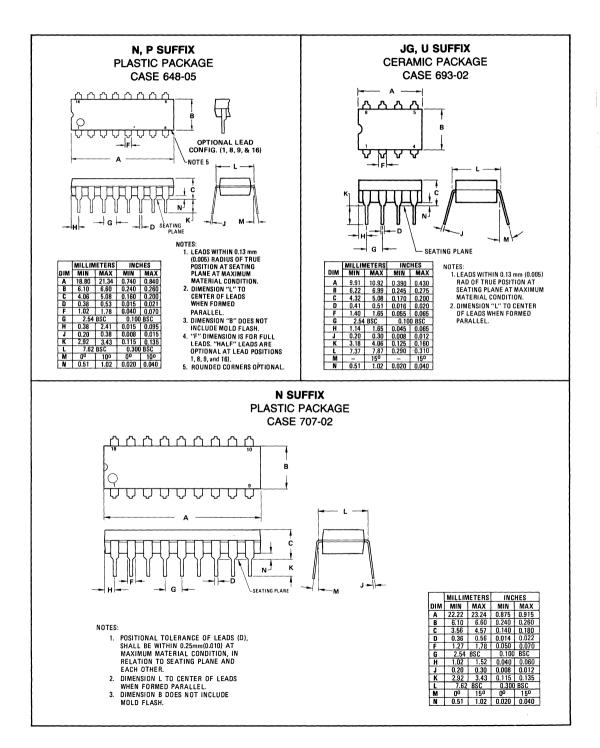
2. For supply voltages less than 30 V the maximum differential input voltage (Error Amp and Op Amp)

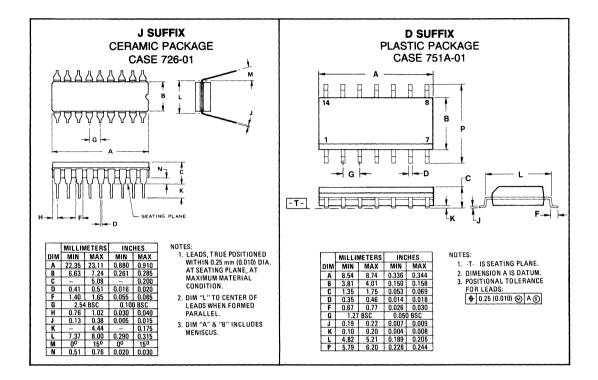
is equal to the supply voltage.


ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{CC} (Op Amp) = 5.0 V, T_A = T_{low} to T_{high} unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
GENERAL					
Supply Voltage	Vcc	2.5	-	40	v
Supply Current (Op Amp Disconnected) (V _{CC} = 5.0 V) (V _{CC} = 40 V)	lcc		1.8 2.3	3.5 5.0	mA
Supply Current (Op Amp Connected) (V _{CC} = 5.0 V) (V _{CC} = 40 V)	lcc			4.0 5.5	mA
REFERENCE					
Reference Voltage (I _{ref} = 1.0 mA)	V _{ref}	1.180	1.245	1.310	v
Reference Voltage Line Regulation (3.0 V \leqslant V _{CC} \leqslant 40 V, I _{ref} = 1.0 mA, T _A = 25°C)	RegLine	-	0.04	0.2	mV/V
Reference Voltage Load Regulation (1.0 mA \leq I_{ref} \leq 10 mA, T_{A} = 25°C)	RegLoad	-	0.2	0.5	mV∕mA


ELECTRICAL CHARACTERISTICS (Continued)


Characteristic	Symbol	Min	Тур	Max	Unit
	- Cymbol		.,,,,	Inux	
OSCILLATOR			r		
Charging Current (T _A = 25°C) (V _{CC} = 5.0 V)	lchg	20		50	μΑ
(V _{CC} = 40 V)		20	-	70	
Discharge Current (T _A = 25°C)	Ichg				μΑ
$(V_{CC} = 5.0 V)$		150	-	250	
(V _{CC} = 40 V)		150		350	v
Oscillator Voltage Swing ($T_A = 25^{\circ}C$) ($V_{CC} = 5.0 V$)	V _{osc}		0.5	_	v
Turn-on/Turn-off	ton/toff		6.0		μs/μs
CURRENT LIMIT			LJ		I
Current-Limit Sense Voltage (T _A = 25°C)		250	-	350	mV
(V _{CC} - V _{IPK} [Sense])					
OUTPUT SWITCH					
Output Saturation Voltage 1 (I _{SW} = 1.0 A, Pin 15 tied to Pin 16)	V _{sat1}		1.1	1.3	v
Output Saturation Voltage 2 (I _{SW} = 1.0 A, I ₁₅ = 50 mA)	V _{sat2}		0.45	0.7	v
Output Transistor Current Gain (T _A = 25°C) (I _C = 1.0 A, V _{CE} = 5.0 V)	hFE		70		-
Output Leakage Current (T _A = 25°C) (V _O = 40 V)	-		10		nA
POWER DIODE					
Forward Voltage Drop (I _D = 1.0 A)	VD		1.25	1.5	v
Diode Leakage Current (T _A = 25°C) (V _{DR} = 40 V)	IDR		10	-	nA
COMPARATOR	l		4		La
Input Offset Voltage (V _{CM} = V _{ref})	VIO		1.5	15	mV
Input Bias Current (V _{CM} = V _{ref})			35	200	nA
Input Offset Current (V _{CM} = V _{ref})	10		5.0	75	nA
Common-Mode Voltage Range ($T_A = 25^{\circ}C$)	VICR	0		V _{CC} -2	v
Power-Supply Rejection Ratio ($T_A = 25^{\circ}C$) (3.0 $\leq V_{CC} \leq 40$ V)	PSRR	70	96	-	dB
OUTPUT OPERATIONAL AMPLIFIER			L		1
Input Ofset Voltage (V _{CM} = 2.5 V)	VIO		4.0	15	mV
Input Bias Current (V _{CM} = 2.5 V)	Чв		30	200	nA
Input Offset Current (V _{CM} = 2.5 V)	10		5.0	75	nA
Voltage Gain + (T _A = 25°C) (R _L = 2.0 kΩ to Gnd, 1.0 V ≤ V _O ≤ 2.5 V)	Avol+	25000	250000	-	V/V
Voltage Gain – (T_A = 25°C) (R_L = 2.0 k Ω to V _{CC} (op amp), 1.0 V \leq V _O \leq 2.5 V)	A _{vol-}	25000	250000		V/V
Common-Mode Voltage Range (T _A = 25°C)	VICR	10	-	V _{CC} -2	v
Common-Mode Rejection Ratio ($T_A = 25^{\circ}C$) ($V_{CM} = 0$ to 3.0 V)	CMRR	76	100	-	dB
Power-Supply Rejection Ratio ($T_A = 25^{\circ}$ C) (3.0 V \leq V _{CC} (op amp) \leq 40 V)	PSRR	76	100		dB
Output Source Current (T _A = 25°C)	ISource	75	150		mA
Output Sink Current (T _A = 25°C)	ISink	10	35	-	mA
Slew Rate (T _A = 25°C)	SR		0.6	-	V/µs
0.011 Hate (1, A 20 0)			+		t
Output Low Voltage ($T_A = 25^{\circ}$ C) ($I_L = -5.0$ mA)	VOL		-	1.0	V


SECTION 19 PACKAGE OUTLINE DIMENSIONS

SECTION 20 VOLTAGE REGULATOR CROSS REFERENCE GUIDE

This cross reference provides a complete interchangeability list linking the most common voltage regulators offered by major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola device. The Motorola "Direct Replacement" column lists devices with identical pin connections and package and the same or better electrical characteristics and temperature range. The Motorola "Functional Equivalent" column provides a device which performs the same function but with possible differences in package configurations, pin connections, temperature range or electrical characteristics.

Grouped by individual manufacturers, reference numbers are listed in alphanumeric sequence, with Greek " μ " preface numbers appearing first.

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
REFERENCE	DIRECT	FUNCTIONAL	REFERENCE	DIRECT	FUNCTIONAL
NUMBER	REPLACEMENT	EQUIVALENT	NUMBER	REPLACEMENT	EQUIVALENT
FAIRCHILD			μA78M05UC	MC78M05CT	
μA109KM	LM109K		μA78M06HC	MC78M06CG	
μA117KM	LM117K		μA78M06UC	MC78M06CT	
μΑ209ΚΜ	LM209K		μA78M08HC	MC78M08CG	
μ217UV		LM217K	μA78M08UC	MC78M08CT	
μА309КС	LM309K		μA78M12HC	MC78M12CG	
μA317KC	LM317K		μA78M12UC μA78M15HC	MC78M12CT	NO70N4500
μA317UC	LM317T			MOZOMIECT	MC78M15CG
μA494DC	TL494CJ		μA78M15UC μA78M24HC	MC78M15CT MC78M24CG	
μA494DM	TL494MJ		μΑ7905ΚΜ	WIC/ OIVI24CG	MC7905CK
μA494PC	TL494CN		μA7905UC	MC7905CT	WIC/ 3030K
μA723DC	MC1723CL		μA7906KC	MC7906CK	
μA723DM	MC1723L		μA7906KM		MC7906CK
μA723HC	MC1723CG		μA7906UC	MC7906CT	11070001
μΑ723ΗΜ	MC1723G		μA7908KC	MC7908CT	
μΑ723PC	MC1723CP		μA7908KM		MC7908CK
μΑ7805ΚC	MC7805CK		μA7908UC		MC7908CT
μΑ7805ΚΜ	MC7805K		μA7912KC	MC7912CK	
μA7805UC	MC7805CT		μA7912KM		MC7912CK
μA7805UV μA7806KC	MC7805BT MC7806CK		uA7912UC	MC7912CT	
	MC7806CK		μA7915KC	MC7915CK	
μΑ7806KM μΑ7806UC	MC7806CT		μA7915KM		MC7915CK
μΑ7806UV	MC7806BT		μA7915UC	MC7915CT	
μΑ7808KC	MC7808K		μA7918KC	MC7918CK	
μA7808KM	MC7808K		μ7918KM		MC7918CK
μA7808UC	MC7808CT		μA7918UC	MC7918CT	
μ.A7808UV	MC7808BT		μA7924KC	MC7924CK	
μA7812KC	MC7812CK		μA7924KM		MC7924CK
μA7812KM	MC7812K		μA7924UC	MC7924CT	
μA7812UC	MC7812CT		μA79M05AUC		MC7905CT
μA7812UV	MC7812BT		μA79M06AUC		MC7906CT
μA7815KC	MC7815CK		μA79M08AUC		MC7908CT
μA7815KM	MC7815K		μA79M12AUC		MC7912CT
μA7815UC	MC7815CT		μA79M15AUC		MC7915CT
μ A7815UV	MC7815BT		μA79M24AUC	LM323K	MC7924CT
μA7818KC	MC7818CK		SH323SKC	LIVIJZJA	
μA7818KM	MC7818K		NATIONAL		
μA7818UC	MC7818CT		LM109H	LM109H	
μ7818UV	MC7818BT		LM109K	LM109K	
μ7824KC	MC7824CK		LM117H	LM117H	
μΑ7824ΚΜ	MC7824K		LM117K	LM117K	10000000
μΑ7824UC	MC7824CT		LM120H-5.0	1	MC7905CK
μA7824UV μA78GKC	MC7824BT	LMO17K	LM120H-12		MC7912CK
		LM317K	LM120K-5.0		MC7905CK
μA78GKM μA78GUC		LM117K LM317T	LM120K-12 LM120H-15		MC7912CK MC7915CK
μΑ78G0C μΑ78L05AHC	MC78L05ACG	LWOTT	LM120H-15		MC7915CK MC7915CK
μΑ78L05AHC	MC78L05ACG		LM120K-15	LM123K	moreroux
μA78L08AWC	MC78L08ACP		LM125H		MC1568G
μA78L12AHC	MC78L12ACG		LM126H		MC1568G
μA78L12AWC	MC78L12ACP		LM137K	LM137K	
μA78L15AHC	MC78L15ACG		LM140AK-5	MC7805AK	
μA78L15AWC	MC78L15ACP		LM140AK-12	MC7812AK	
µA78L18AHC	MC78L18ACG		LM140AK-15	MC7815AK	
µA78L18AWC	MC78L18ACP		LM140K-5.0	LM140K-5.0	
µA78L24AHC	MC78L24ACG		LM140K-12	LM140K-12	
μA78L24AWC	MC78L24ACP	1	LM140K-15	LM140K-15	
μA78MGHC		LM317MR	LM140LAH-5.0		MC78L05ACG
μA78MGHM		LM117MR	LM140LAH-12		MC78L12ACG
μA78MGUC		LM317MT	LM140LAH-15		MC78L15ACG
μA78M05HC	MC78M05CG		LM150K	LM150K	l

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
REFERENCE	DIRECT	FUNCTIONAL	REFERENCE	DIRECT	FUNCTIONAL
NUMBER	REPLACEMENT	EQUIVALENT	NUMBER	REPLACEMENT	EQUIVALENT
LM209H	LM209H		LM350K	LM350K	
LM209K	LM209K		LM723CH	MC1723CG	
LM217H	LM217H		LM723CJ	MC1723CL	
LM217K	LM217K		LM723CN	MC1723CP	
LM223K	LM223K		LM723H	MC1723G	
LM225H		MC1568G	LM723J	MC1723L	
LM226H	1 1 10071/	MC1568G	LM7805CK LM7805CT	MC7805CK MC7805CT	
LM237K	LM237K LM250K		LM7805C1	MC7803C1 MC7812CK	
LM250K LM309H	LM250K		LM7812CT	MC7812CT	
LM309K	LM309K		LM7815CK	MC7815CK	
LM317H	LM317H		LM7815CT	LM7815CT	
LM317K	LM317K		LM78L05ACH	MC78L05ACG	
LM317MP	LM317MT		LM78L05ACZ	MC78L05ACP	
LM317T	LM317T		LM78L05CH	MC78L05CG	
LM320H-5.0		MC7905CK	LM78L05CZ	MC78L05CP	
LM320H-12		MC7912CK	LM78L12ACH	MC78L12ACG	
LM320H-15		MC7915CK	LM78L12ACZ	MC78L12ACP	
LM320K-5.0	MC7905CK		LM78L12CH	MC78L12CG	
LM320K-12	MC7912CK		LM78L12CZ LM78L15ACH	MC78L12CP	
LM320K-15	MC7915CK		LM78L15ACH	MC78L15ACG MC78L15ACP	
LM320LZ-5.0 LM320LZ-12	MC79L05ACP MC79L12ACP		LM78L15AC2	MC78L15ACF	
LM320LZ-12 LM320LZ-15	MC79L12ACP		LM78L15CZ	MC78L15CP	
LM320T-5.0	MC7905CT		LM78M05CP		MC78M05CT
LM320T-12	MC7912CT		LM78M12CP		MC78M12CT
LM320T-15	MC7915CT		LM78M15CP		MC78M15CT
LM323K	LM323K		LM7905CK	MC7905CK	
LM325AN		MC1468L	LM7905CT	MC7905CT	
LM325AS		MC1468L	LM7912CK	MC7912CK	
LM325G		MC1468L	LM7912CT	MC7912CT	
LM325H		MC1468L	LM7915CK	MC7915CK	
LM325N		MC1468L	LM7915CT	MC7915CT	
LM326H		MC1468G	LM79L05ACZ	MC79L05ACP MC79L12ACP	
LM326N		MC1468L	LM79L15ACZ	MC79L15ACP	
LM326S LM337K	LM337K	MC1468L	RAYTHEON	MOTOLIONO	
LM337MP	LINISSIN	LM337MT			
LM337T	LM337T	EN007 NT	LM109H LM209H	LM109H LM209H	
LM340AK-5.0	MC7805ACK		LM309H	LM309H	
LM340AK-12	MC7812ACK		RC4194DC	LIVISUUT	MC1468L
LM340AK-15	MC7815ACK		RC4194TK		MC1468R
LM340AT-5.0	MC7805ACT		RC4195NB		MC1468L
LM340AT-12	MC7812ACT		RC4195T		MC1468G
LM340AT-15	MC7815ACT		RC4195TK		MC1468R
LM340K-5.0	LM340K-5.0		RC723DB	MC1723CP	
LM340K-12	LM340K-12		RC723DC	MC1723CL	
LM340K-15 LM340LAH-5.0	LM340K-15	MC78L05ACG	RC723T	MC1723CG	MOIER
LM340LAH-5.0 LM340LAH-12		MC78L05ACG	RM4194DC		MC1568L MC1568R
LM340LAH-12		MC78L12ACG	RM4194TK RM4195T		MC1568R MC1568G
LM340LAZ-5.0		MC78L05ACP	RM41951 RM4195TK		MC1568R
LM340LAZ-12		MC78L12ACP	RM723DC	MC1723L	
LM340LAZ-15		MC78L15ACP	RM723T	MC1723G	
LM340T-5.0	MC7805CT		RCA		
LM340T-12	MC7812CT		1		1017050
LM341P-5.0	MC78M05CT		CA3085		MC1723G
LM341P-12	MC78M12CT		CA3085A CA3085AF		MC1723G
LM341P-15	MC78M15CT		CA3085AF CA3085AS		MC1723L MC1723G
LM342P-5.0 LM342P-12	MC78M05CT		CA3085B		MC1723G
LM342P-12 LM342P-15	MC78M12CT MC78M15CT		CA3085BF		MC1723L
			L	L	L

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
REFERENCE	DIRECT	FUNCTIONAL	REFERENCE	DIRECT	FUNCTIONAL
NUMBER	REPLACEMENT	EQUIVALENT	NUMBER	REPLACEMENT	EQUIVALENT
CA3085BS		MC1723G	SG2501AT		
CA3085F		MC1723L	SG2501J	MC1468L	
CA3085S		MC1723G	SG2501T	MC1468G	
CA723CE	MC1723CP		SG2502J		MC1468L
C723CT	MC1723CG	1	SG2502N		MC1468L
CA723T	MC1723G		SG2503M		MC1403AU
CA723E	MC1723L		SG2503Y		MC1403AU
SIGNETICS			SG2503T		MC1403AU
μA723F	MC1723L		SG250K	LM250K	
μA723CF	MC1723CL		SG309K	LM309K	
μA723CL	MC1723CG		SG309P		LM309K
μA723CN	MC1723CP		SG309R		MC309K
NE550A		MC1723CP	SG309T	LM309H	
NE550L		MC1723CG	SG317T	LM317H	
SE550L		MC1723G	SG317R		LM317T
			SG317K	LM317K	
SILICON			SG317P		
GENERAL			SG337T SG337R	LM337H	LM337T
SG109K	LM109K				LM3371
SG109R		MC109K	SG337K	LM337K LM337T	
SG109T	LM109H		SG337P	LM340K-5.0	
SG117T	LM117H		SG340K-05		
SG117R		LM117K	SG340K-06 SG340K-08	LM340K-6.0	
SG117K	LM117K		SG340K-08	LM340K-8.0 LM340K-12	
SG123K	LM123K		SG340K-12 SG340K-15	LM340K-12	
SG137T	LM137H				
SG137R		LM137K	SG340K-18 SG340K-24	LM340K-18 LM340K-24	
SG137K	LM137K		SG3501AJ	MC1468L	
SG140K-05	LM140K-5.0		SG3501AJ	MC1400L	MC1468L
SG140K-06	LM140K-6.0		SG3501AN	MC1468G	IVIC 1400L
SG140K-08	LM140K-8.0		SG3501J	MC1468L	
SG140K-12	LM140K-12		SG35015	MC1468G	
SG140K-15	LM140K-15		SG3502J	INIC 1400C	MC1468L
SG140K-18	LM140K-18		SG3503Y	MC1403U	WIC 1400L
SG140K-24	LM140K-24		SG3503T	111014000	MC1403U
SG1468T	MC1468G		SG3503M		MC1403U
SG1468R	MC1468R		SG350K	LM350K	
SG1468J	MC1468L		SG3511T		MC1463G
SG1468N		MC1468L	SG3511J		MC1463G
SG150K	LM150K		SG3511N		MC1463G
SG1501AJ		MC1568L	SG4194CJ	1	MC1468L
SG1501J	MC1568L		SG4194J		MC1568L
SG1501T	MC1568G		SG4194CR	1	MC1468R
SG1502J		MC1568L	SG4194R		MC1568R
SG1503Y		MC1503U	SG4501T	1	MC1468G
SG1503T		MC1503U	SG4501J	1	MC1468L
SG1511T		MC1563G	SG4501N	1	MC1468L
SG1511J		MC1563G	SG501AJ		MC1468G
SG1568T	MC1568G		SG723CJ	MC1723CL	
SG1568R	MC1568R		SG723CN	MC1723CP	
SG1568J	MC1568L		SG723CT	MC1723CG	
SG209K	LM209K	MORROW	SG723J	MC1723L	
SG209R		MC209K	SG723T	MC1723G	
SG209T	LM209H		SG7805ACK	MC7805ACK	
SG217T	LM217H	1.1.0171	SG7805ACP	MC7805ACT	
SG217R		LM217K	SG7805ACR	1	MC7805ACT
SG217K	LM217K		SG7805ACT		MC7805ACT
SG223K	LM223K		SG7805AK	MC7805AK	
SG237T	LM237H		SG7805AR		MC7805AK
SG237R		LM237K	SG7805AT		MC7805AK
SG237K	LM237K		SG7805CK	MC7805CK	

REFERENCE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	REFERENCE	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
SG7805CP	MC7805CT		007040400	MC7818ACT	
SG7805CR		MC7805CT	SG7818ACP	MC7010AC1	MC7818ACT
SG7805CT		MC78M05CG	SG7818ACT		MC7818ACT
SG7805K	MC7805K		SG7818AC	MC7818AK	WOIGHONOT
SG7805R		MC7805K	SG7818AR	WICTOTOAN	MC7818AK
SG7805T		MC7805K	SG7818AT		MC7818AK
SG7806ACK	MC7806ACK		SG7818CK	MC7818CK	
SG7806ACP	MC7806ACT		SG7818CP	MC7818CT	
SG7806ACR		MC7806ACT	SG7818CR	MC7818CT	
SG7806ACT		MC7806ACT	SG7818CT		MC7818CG
SG7806AK	MC7806AK		SG7818K	MC7818K	
SG7806AR		MC7806AK	SG7818R		MC7818K
SG7806AT		MC7806AK	SG7818T		MC7818K
SG7806CK	MC7805CK		SG7824ACK	MC7824ACK	
SG7806CP	MC7806CT	MOTOROT	SG7824ACP	MC7824ACT	
SG7806CR		MC7806CT	SG7824ACR		MC7824ACT
SG7806CT	1070001	MC78M06CG	SG7824ACT		MC7824ACT
SG7806K SG7806R	MC7806K	MC7806K	SG7824AK	MC7824AK	
SG7806T		MC7806K MC7806K	SG7824AR		MC7824AK
SG7808ACK	MC7808ACK	WIC/OUGK	SG7824AT		MC7824AK
SG7808ACP	MC7808ACK MC7808ACT		SG7824CK	MC7824CK	
SG7808ACR	MC7808AC1	MC78M08ACT	SG7824CP	MC7824CT	
SG7808ACT		MC7808ACT	SG7824CR		MC7824CT
SG7808AK	MC7808AK		SG7824CT	MC7824K	MC78M24CG
SG7808AR		MC7808AK	SG7824K SG7824R	MC/824K	MC7824K
SG7808AT		MC7808AK	SG7824R		MC7824K
SG7808CK	MC7808CK		SG7905ACK	MC7905ACK	WIC7024K
SG7808CP	MC7808CT		SG7905ACP	MC7905ACT	
SG7808CR		MC7808CT	SG7905ACR	NIO7 303A01	MC7905ACT
SG7808CT		MC7808CG	SG7905ACT		MC7905ACT
SG7808K	MC7808K		SG7905CK		MC7905CK
SG7808R		MC7808K	SG7905CP	MC7905CT	
SG7808T		MC7808K	SG7905CR		MC7905CT
SG7812ACK	MC7812ACK		SG7905CT		MC7905CT
SG7812ACP	MC7812ACT		SG7905.2CK	MC7905.2CK	
SG7812ACR		MC7812ACT	SG7905.2CP	MC7905.2CT	
SG7812ACT		MC7812ACT	SG7905.2CR		MC7905.2CT
SG7812AK	MC7812AK	10701011	SG7905.2CT		MC7905.2CT
SG7812AR		MC7812AK	SG7908CK	MC7908CK	{
SG7812AT	MOZOLOOK	MC7812AK	SG7908CP	MC7908CT	
SG7812CK SG7812CP	MC7812CK		SG7908CR		MC7908CT
SG7812CP SG7812CR	MC7812CT	MC7812CT	SG7908CT	MOZOLOVOV	MC7908CT
SG7812CT		MC78M12CG	SG7912ACK	MC7912ACK	
SG7812C1	MC7812K		SG7912ACP	MC7912ACT	MC7912ACT
SG7815ACK	MC7815ACK		SG7912ACR		
SG7815ACP	MC7815ACT		SG7912ACT SG7912CK	MC7912CK	MC7912ACT
SG7815ACR		MC7815ACT	SG7912CR	MC7912CK MC7912CT	
SG7815ACT		MC7815ACT	SG7912CP		MC7912CT
SG7815AK	MC7815AK		SG7912CT		MC7912CT
SG7815AR		MC7815AK	SG7915ACK	MC7915ACK	
SG7815AT		MC7815AK	SG7915ACP	MC7915ACT	
SG7815CK	MC7815CK		SG7915ACR		MC7915ACT
SG7815CP	MC7815CT		SG7915ACT		MC7915ACT
SG7815CR		MC7815CT	SG7915CK	MC7915CK	
SG7815CT		MC78M15CG	SG7915CP	MC7915CT	
SG7815K	MC7815K		SG7915CR		MC7915CT
SG7815R		MC7815K	SG7915CT		MC7915CT
SG7815T		MC7815K	SG7918CK	MC7918CK	
SG7818ACK	MC7818ACK		SG7918CP	MC7918CT	

	MOTOROLA	MOTOROLA]	MOTOROLA	MOTOROLA
REFERENCE	DIRECT	FUNCTIONAL	REFERENCE	DIRECT	FUNCTIONAL
NUMBER	REPLACEMENT	EQUIVALENT	NUMBER	REPLACEMENT	EQUIVALENT
T.I.			μA78M20CKC	MC78M20CT	
μA723CJ	MC1723CL		μA78M20CKD		MC78M20CT
μA723CL	MC1723CG		μA78M20CLA	MC78M20CG	
μA723CN	MC1723CP		μA78M24CKC	MC78M24CT	
μ723MJ	MC1723L		μA78M24CKD		MC78M24CT
μ723ML	MC1723G		μA78M24CLA	MC78M24CG	
μA7805CKC	MC7805CT		μA7905CKC	MC7905CT	
μA7806CKC	MC7806CT		μA7905.2CKC	MC7905.2CT	
μA7808CKC	MC7808CT		μA7906CKC	MC7906CT	
μA7812CKC	MC7812CT		μA7908CKC	MC7908CT	
μA7815CKC	MC1715CT		μA7912CKC	MC7912CT	
μA7818CKC	MC7818CT		μA7915CKC	MC7915CT	
μA7824CKC	MC7824CT		μA7918CKC	MC7918CT	
µA78L05ACJG		MC78L05ACG	μA7924CKC	MC7924CT	
µA78L05ACLP	MC78L05ACP		μA79M05CKC		MC7905CT
μA78L05CJG		MC78L05CG	µA79M06CKC		MC7806CT
μA78L05CLP	MC78L05CP		μA79M08CKC		MC7908CT
µA78L08ACJG		MC78L08ACG	μA79M12CKC		MC7912CT
µA78L08ACLP		MC78L08ACP	μA79M15CKC		MC7915CT
µA78L08CJG		MC78L08CG	μA79M24CKC		MC7924CT
µA78L08CLP	MC78L08CP		LM109LA	LM109H	
µA78L12ACJG		MC78L12ACG	LM117LA	LM117H	
µA78L12ACLP	MC78L12ACP		LM209LA	LM209H	
µA78L12CJG		MC78L12CG	LM217KC		LM217K
µA78L12CLP	MC78L12CP		LM217KD		LM217H
µA78L15ACJG		MC78L15ACG	LM217LA	LM217H	
µA78L15ACLP	MC78L15ACP		LM309LA	LM309H	· ·
μA78L15CJG		MC78L15CG	LM317KC	LM317T	
μA78L15CLP	MC78L15CP		LM317KD		LM317T
μA78M05CKC	MC78M05CT		LM317LA	LM317H	
μA78M05CKD		MC78M05CT	LM340KC-5		LM340K-5.0
µA78M05CLA	MC78M05CG		LM340KC-6		LM340K-6.0
μA78M06CKC	MC78M06CT		LM340KC-8		LM340K-8.0
μA78M06CKD		MC78M06CT	LM340KC-12		LM340K-12
μA78M06CLA	MC78M06CG		LM340KC-15		LM340K-15
μA78M08CKC	MC78M08CT		LM340KC-18		LM340K-18
µA78M08CKD		MC78M08CT	LM340KC-24		LM340K-24
μA78M08CLA	MC78M08CG		TL494CJ	TL494CJ	}
μA78M12CKC	MC78M12CT		TL494CN	TL494CN	
μA78M12CKD		MC7812CT	TL494MJ	TL494MJ	
μA78M12CLA	MC78M12CG		TL495CJ	TL495CJ	
μA78M15CKC	MC78M15CT		TL495CN	TL495CN	
μA7815CKD		MC78M15CT	TL495MJ	TL495MJ	
μA78M15CLA	MC78M15CG		TL7805ACKC	MC7805ACT	L

APPENDIX A SWITCHMODE POWER TRANSISTOR APPLICATION SELECTOR GUIDE

For line-operated SWITCHMODE power supplies (20 to 50 kHz, 40 to 3200 watts), this guide offers the power supply design engineer an easy way to identify those Motorola SWITCHMODE Transistors most ideally-suited for his particular application. To use the five tables in this guide, the designer must first:

- 1. Determine which of five circuits he will be using (i.e., full-bridge, halfbridge, push-pull, forward or flyback).
- 2. Determine which of three line voltages he will be using (i.e., 120, 220, or 380 Vac).
- 3. Determine the output power capability needed by his design (the table covers the area of 40 to 3200 watts).

Tables 1 through 3 list devices by $V_{CEO (sus)}$ for use in bridge circuits at either 120, 220 or 380 volts. Tables 4 and 5 list the same devices by V_{CEV} for use in the push-pull, forward and flyback circuits at either 120 or 220 volts. Within each table, the devices are grouped by the output power capability of that circuit, and the equivalent operating current level is also noted.

CIRCUIT: HALF AND FULL* BRIDGE LINE VOLTAGE: 120 VRMS DEVICE V_{CEO} RATING ≥200 V

Circuit	Rating	Metal-TO-20	4**, TO-66	Plastic-TO-220	DAB, TO-126	Darlington	
Output Power* (Watts)	IC(OP) (Amps)	Device Type	Rated VCEO (Volts)	Device Type	Rated VCEO (Volts)	Device Type	Rated VCEO (Volts)
40	1	2N6233 2N6421PNP 2N6078 2N3584 2N6077 2N6234 2N6234 2N6212PNP 2N6422PNP MJ4360 2N6235 2N6213PNP MJ4361	225 250 250 250 275 275 300 300 300 300 300 325 350 400	MJE13002	300		
80	2	2N5838 2N5839	250 275	MJE13004	300		
120	3	2N6306 MJ6502PNP 2N6307 2N6542 MJ4380 MJ4380 2N6308 MJ4381 MJ4401	250 250 300 300 300 300 350 400 400	2N6497 2N6498 2N6499	250 300 350		
200	5	2N6544 MJ13014 MJ6502PNP	300 350 250	MJE13006 MJE5850PNP MJE5851PNP	300 300 350	MJ10006	350
320 400	8 10	MJ13014 2N6249 MJ13330 MJ13331 2N6250 2N6546 2N6251 MJ13332	350 200 250 275 300 350 350	MJE13008	300	MJ10004	350
800	20					MJ10015 MJ10022	400 350
1200	30					MJ10020 MJ10021	200 250

*NOTE: Power output ratings are for half-bridge circuit configurations, multiply by 2 for full-bridge. **Formerly TO-3

Circuit	Rating	Metal-TO-20	4**, TO-66	Plastic-TO-220AB, TO-126 Darlington-T		Plastic-TO-220AB, TO-126		
Output Power* (Watts)	IC(OP) (Amps)	Device Type	Rated VCEO (Volts)	Device Type	Rated VCEO (Volts)	Device Type	Rated VCEO (Volts)	
80	1	MJ4361	400	MJE13003	400			
160	2	MJ4381	400	MJE13005	400			
240	3	2N6543 MJ4401	400 400					
400	5	2N6545 MJ6503PNP MJ13015	400 400 400	MJE13007 MJE5852PNP	400 400	MJ10007	400	
640	8	MJ13333	400	MJE13009	400	MJ10013	550	
800	10	2N6547 MJ13333 MJ13334 MJ13335	40 400 450 500			MJ10005 MJ10008 MJ10009 MJ10013 MJ10014	400 450 500 550 600	
1600	20					MJ10023 MJ10015 MJ10016	400 400 500	

CIRCUIT: HALF AND FULL* BRIDGE LINE VOLTAGE: 220 VRMS DEVICE V_{CEO} RATING ≥400V

*NOTE: Power output ratings are for half-bridge circuit configurations, multiply by 2 for full-bridge.

**Formerly TO-3

TABLE 3

CIRCUIT: HALF AND FULL* BRIDGE LINE VOLTAGE: 380 VRMS DEVICE V_{CEO} RATING ≥600V

Circuit Rating		Metal-TO-20	4**, TO-66	Plastic-TO-220AB, TO-126 Darlington-			
Output Power* (Watts)	IC(OP) (Amps)	Device Type	Rated VCEO (Volts)	Device Type	Rated VCEO (Volts)	Device Type	Rated VCEO (Volts)
240	2	MJ8500 MJ12002 MJ8501	700 750 800	MJE12007	750		
360	3	MJ8502 MJ12003 MJ8503	700 750 800				
480	4	MJ12004	750			MJ10011	700
600	5	MJ8504 MJ12005 MJ8505	700 750 800				
1200	10					MJ10014	600

*NOTE: Power output ratings are for half-bridge circuit configurations, multiply by 2 for full-bridge. **Formerly TO-3

Circuit Rating		Metal-TO-20		Plastic-TO-22		D-126 Darlington-TO-204	
Output Power* (Watts)	IC(OP) (Amps)	Device Type	Rated VCEV (Volts)	Device Type	Rated VCEV (Volts)	Device Type	Rated VCEV Volts
40	1	2N3585 2N6422PNP 2N6423PNP 2N6423PNP 2N4240	450 450 450 450	MJE13002 MJE13003	600 700		
80	2			MJE13004 MJE13005	600 700		
120	3	2N6306 2N6307 2N6542 2N6308 2N6543	500 600 650 700 850	2N6499	450		
200	5	MJ6503PNP 2N6544 2N6545	450 650 850	MJE5852PNP MJE5740 MJE13006 MJE5741 MJE13007 MJE5742	450 600 600 700 700 800	MJ10005 MJ10007 MJ10012	450 500 550
320	8			MJE13008 MJE13009	600 700		
400	10	MJ13332 MJ13333 MJ13334 MJ13335 2N6546	450 500 550 600 650			MJ10004 MJ10005 MJ10008 MJ10009 MJ10008 MJ10014	450 500 650 750 650 700
800	20					MJ10009 MJ10015 MJ10016	750 600 750

CIRCUIT: FORWARD, PUSH-PULL* AND FLYBACK* LINE VOLTAGE: 120 VRMS DEVICE V_{CEV} RATING ≥450 V

*NOTE: Power output ratings are for forward converter configurations (one transistor). Multiply by 2 for push-pull circuits and divide by 2 for flyback configurations.

**Formerly TO-3

CIRCUIT: FORWARD, PUSH-PULL* AND FLYBACK* LINE VOLTAGE: 220 VRMS DEVICE V_{CEV} RATING ≥850 V

Circuit Rating		Metal-TO-20	4**, TO-66	Plastic-TO-22	OAB, TO-126	AB, TO-126 Darlington-TO-20	
Output Power* (Watts)	IC(OP) (Amps)	Device Type	Rated VCEV (Volts)	Device Type	Rated VCEV (Volts)	Device Type	Rated VCEV Volts
160	2	MJ8500 MJ8501 MJ12002	1200 1400 1500	MJE12007	1500		
240	3	2N6543 MJ8502 MJ8503 MJ12003	850 1200 1400 1500				
320	4	MJ12004	1500				
400	5	2N6545 MJ8504 MJ8505 MJ12005	850 1200 1400 1500			MJ10011	1500
560	7	MJ12010	950				
800	10	2N6547	850				

*NOTE: Power output ratings are for forward converter configurations (one transistor). Multiply by 2 for push-pull circuits and divide by 2 for flyback configurations.

**Formerly TO-3

APPENDIX B MOTOROLA SWITCHMODE RECTIFIERS FOR SWITCHING POWER SUPPLIES

Total Supply Power	Typical Circuit	Standard Recovery for Line Voltage Operation				
		Input	Suggested Devices			
rowei		Current	Туре	lo	۷R	
10 W	Flyback (Ringing-Choke)	<1.0 A	1N4004 MDA104A MDA920A6	1.0 A 1.0 A 1.5 A	400 V	
50 W	Line Output Input Rectifier Output Input Rectifier Control Cricuitry	1.0 A	1N4004 MDA104A MDA920A6	1.0 A 1.0 A 1.5 A		
75 W		2.0 A	MR504 1N5404 MDA204	3.0 A 3.0 A 2.0 A		
75 W	Basic Forward Converter	2.0 A	MR504 1N5404 MDA204	3.0 A 3.0 A 2.0 A		
100 W	Line O I Power DC Output Input Input Rectifier	3.0 A	MR504 1N5404 MDA970A5	3.0 A 3.0 A 4.0 A		
250 W	Basic Half-Bridge Configuration	6.0 A	MR754 1N1204,A,B,C MR1124 MDS804	6.0 A 12 A 12 A 8.0 A		
1000 W	Output Rectifier L	12 A	1N1204,A,B,C MR1124 MDA1204 MR2004S	12 A 12 A 12 A 20 A		
2500 W	Hectifier	25 A	MDA2504 MDA3504 1N1183,A	25 A 35 A 40 A		

Schottky for 5.0 V Outputs				Fast Recovery for >5.0 V Outputs				
Output Current	Suggeste	d Devices	;	Output	Suggested Devices			
	Туре	ю	VR	Current	Туре	IO VR		
1.0–2.0 A	1N5818 1N5821 MBR330M MBR330M 1N5824	1.0 A 3.0 A 3.0 A 3.0 A 5.0 A	30 V 30 V 30 V 30 V 30 V 30 V	<0.5 A	1N4934	1.0 A	100 V	
5.0–10 A	1N5827 MBR1530 1N5830 1N6095	15 A 15 A 25 A 25 A	30 V 30 V 30 V 30 V 30 V	0.5–1.5 A	1N4934 MR851 MR831 MR801	1.0 A 1.0 A 3.0 A 3.0 A		
10–15 A	1N5830 MBR2535 SD41 MBR3535	25 A 25 A 30 A 35 A	30 V 35 V 35 V 35 V	1.5–2.5 A	MR851 MR821 MR831 MR801	3.0 A 5.0 A 3.0 A 3.0 A		
8.0–16 A	1N5827 MBR1530 1N5830 1N6095 MBR3035CT	15 A 15 A 25 A 25 A 30 A	30 V 30 V 30 V 30 V 30 V 35 V	2.0–2.5 A	1N4934 MR851 MR801	1.0 A 3.0 A 3.0 A		
10–20 A	1N5827 MBR1530 1N5830 1N6095 MBR3035CT	15 A 15 A 25 A 25 A 30 A	30 V 30 V 30 V 30 V 30 V 35 V	2.0–2.5 A	1N4934 MR851 MR801	1.0 A 3.0 A 3.0 A		
30–50 A	1N5830 SD41 1N6095 MBR3535 MBR3035CT	25 A 30 A 25 A 35 A 30 A	30 V 35 V 30 V 35 V 35 V	2.0–8.0 A	1N4934 MR851 MR821 1N3880,A MDA2501FR	1.0 A 3.0 A 5.0 A 6.0 A 25 A		
200 A	SD51 MBR6035 MBR7535 1N6097 (IN PARALLEL)	60 A 60 A 75 A 50 A	35 V 35 V 35 V 35 V 30 V	40 A	1N3900 1N3910 MDA3501FR	20 A 30 A 35 A		
500 A	SD51 MBR6035 MBR7535 1N6097 (IN PARALLEL)	60 A 60 A 75 A 50 A	35 V 35 V 35 V 35 V 30 V	100 A	MR871	50 A		

MOTOROLA SWITCHMODE OUTPUT RECTIFIERS

FURTHER INFORMATION ON SWITCHING REGULATORS

- 1. "100 kHz FET Switcher," R. Haver, Power Conversion International, April 1982.
- "Switching and Linear Power Supply," Power Converter Design, Abraham
 I. Pressman Hayden Book Company, 1977.
- 3. "Power Darlington Load Line Considerations," R. J. Haver, Motorola AN-786, April 1980.
- 4. "The Effect of Emitter-Base Avalanching on High Voltage Power Switching Transistors," A. Pshaenich, Motorola AN-803, February 1980.
- 5. "A Symmetry Correcting Circuit for Use with the MC3420," H. Wurzburg, Motorola EB-66A, January 1981.
- 6. "New ICs Perform Control and Ancillary Functions in High Performance Switching Supplies," R. Suva and R. J. Haver, Motorola EB-78, August 1981.
- 7. "Half-Bridge Switching Power Supplies," R. Suva and R. J. Haver, Motorola EB-86, June 1980.
- 8. "Flyback Switching Power Supplies," R. Suva and R. J. Haver, Motorola EB-87, February 1981.

