

# MOTOROLA MEMORY DATA





Prepared by Technical Information Center

Motorola has developed a very broad range of MOS and bipolar memories for virtually any digital data processing system application. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

New Motorola memories are being introduced continually. For late releases, additional technical information or pricing, contact your nearest authorized Motorola distributor or Motorola sales office.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

> Series A ©MOTOROLA INC., 1979 "All Rights Reserved"

MECL, EXORciser are trademarks of Motorola Inc.

# **Table of Contents**

| Nphanumeric Index | Page<br>v |
|-------------------|-----------|
| Selector Guide    | . 1-2     |
| Cross-Reference   | . 1-8     |

## CHAPTER 2 — NMOS Memories RAMs

| MCM2114, 21L14        | 1K × 4 Static   | 2-3  |
|-----------------------|-----------------|------|
| MCM2115A, 2125A       | 1K × 1 Static   | 2-8  |
| MCM2147               | 4K × 1 Static   | 2-9  |
| MCM4027A              | 4K × 1 Dynamic  | 2-14 |
| MCM4096               | 4K × 1 Dynamic  | 2-24 |
| MCM4116A              | 16K × 1 Dynamic | 2-32 |
| MCM4516               | 16K × 1 Dynamic | 2-39 |
| MCM6604A              | 4K × 1 Dynamic  | 2-43 |
| MCM6605A              | 4K × 1 Dynamic  | 2-52 |
| MCM6641,66L41         | 4K × 1 Static   | 2-66 |
| MCM6664               | 64K × 1 Dynamic |      |
| MCM6810, 68A10, 68B10 | 1286 × 8 Static | 2-74 |
|                       |                 |      |

### **EPROMs**

| 4K × 8 | 2-78                       |
|--------|----------------------------|
| 1K × 8 | 2-84                       |
| 2K × 8 | 2-90                       |
| 1K × 8 | 2-95                       |
| 8K × 8 | 2-101                      |
| 2K × 8 | 2-106                      |
|        | 1K × 8<br>2K × 8<br>1K × 8 |

# ROMs

| MCM6670, 6674            | 128 × (7 × 5) Character Generators |
|--------------------------|------------------------------------|
| MCM66700, 710, 714, 720, |                                    |
| 730, 734, 740, 750, 751, |                                    |
| 760, 770, 780, 790       | 128 × (9 × 7) Character Generators |
| MCM68A30A, 68B30A        | 1K × 8 Binary 2-132                |
| MCM68A308,68B308         | 1K × 8 Binary 2-137                |
| MCM68A316A               | 2K × 8 Binary <sup>9</sup> 2-142   |
| MCM68A316E               | 2K × 8 Binary 2-146                |
| MCM68A332                | 4K × 8 Binary 2-150                |
| MCM68A364,68B364         | 8K × 8 Binary 2-154                |
|                          |                                    |

# CHAPTER 3 — CMOS Memories

# RAMs

| 171110         | •              |      |
|----------------|----------------|------|
| MCM14505       | 64 × 1 Static  | 3-3  |
| MCM14537       | 256 × 1 Static | 3-12 |
| MCM14552       | 64 × 4 Static  | 3-20 |
| MCM145101      | 256 × 1 Static | 3-27 |
| MCM146504      | 4K × 1 Static  | 3-31 |
| MCM146508,6518 | 1K × 1 Static  | 3-32 |
|                |                |      |

### ROM

MCM14524

| 256 × / | <br>3-36 |
|---------|----------|
| 200 ~ 4 | <br>0.00 |

# Table of Contents (continued)

| CHAPTER 4 — Bipolar          | Memories                                             |  |
|------------------------------|------------------------------------------------------|--|
| TTL RAMs                     |                                                      |  |
| MCM93415                     | 1024 × 1                                             |  |
| MCM93425                     | 1024 × 1                                             |  |
| TTI DDOM                     |                                                      |  |
| TTL PROMs                    |                                                      |  |
| MCM5303/5003,                | CA O                                                 |  |
| 5304/5004                    | 64 × 8                                               |  |
| MCM7620,7621                 | 512 × 4 4-15                                         |  |
| MCM7640, 7641,<br>7642, 7643 | 512 × 8 and 1024 × 4                                 |  |
| MCM7680, 7681                | 1024 × 8 and 1024 × 4                                |  |
| MCM7684,7685                 | 1024 × 8                                             |  |
| · · · · ·                    |                                                      |  |
| MECL Memories General        | Information 4-31                                     |  |
| MECL RAMs                    |                                                      |  |
| MCM10143                     | 8 × 2 4-34                                           |  |
| MCM10144                     | 256 × 1 4-39                                         |  |
| MCM10145                     | 16 × 4 4-41                                          |  |
| MCM10146                     | 1024 × 1 4-43                                        |  |
| MCM10147                     | 128 × 1                                              |  |
| MCM10148                     | 64 × 1 4-47                                          |  |
| MCM10152                     | 256 × 1 4-49                                         |  |
| MECL PROMs                   |                                                      |  |
| MCM10139                     | 32 × 8                                               |  |
| MCM10149                     | 256 × 4                                              |  |
|                              |                                                      |  |
|                              |                                                      |  |
| CHAPTER 5 — Memory           | y Subsystems                                         |  |
| Board-Level                  | $\sim \infty$                                        |  |
| MMS1102                      | 32K, 16K, or 8K × 18 or 16 Add-In Memory 5-3         |  |
| MMS1110                      | 16K × 16 LSI-11 Add-In Semiconductor Memory 5-5      |  |
| MMS1117                      | PDP-11 Unibus Compatible RAM 5-7                     |  |
| MMS1118                      | 16K × 18 PDP-11 Add-In Semiconductor Memory 5-9      |  |
| MMS3418                      | 28K × 18 Semiconductor Memory 5-11                   |  |
| MMS68102                     | 16K × 8 Nonvolatile Semiconductor Memory 5-15        |  |
| MMS68103                     | 16K × 8 Semiconductor Memory for M6800 Systems 5-17  |  |
| MMS68104                     | 16K × 8 Semiconductor Memory for MEK6800 D2 Kit 5-19 |  |
| MMS80810                     | 32K × 8 Semiconductor Memory for 8080A Systems 5-23  |  |
|                              |                                                      |  |

# Alphanumeric Index

| Device     | Page   | Device    | Page          |
|------------|--------|-----------|---------------|
| MCM21L14   | 2-3    | МСМ7684   | 4-27          |
| MCM66L41   | 2-66   | MCM7685   | 4-27          |
| MCM25A32   | 2-78   | MCM10139  | 4-51          |
| MCM27A08   | 2-84   | MCM10143  | 4-34          |
| MCM27A16   | 2-90   | MCM10144  | 4-39          |
| MCM68A10   | 2-74   | MCM10145  | 4-41          |
| MCM68A30A  | 2-132  | MCM10146  | 4-43          |
| MCM68A308  | 2-137  | MCM10147  | 4-45          |
| MCM68A316A | 2-142  | MCM10148  | 4-47          |
| MCM68A316E | 2-146  | MCM10149  | 4-55          |
| MCM68A332  | 2-150  | MCM10152  | 4-49          |
| MCM68A364  | 2-154  | MCM14505  | 3-3           |
| MCM68A708  | 2-95   | MCM14524  |               |
| MCM68A764  | 2-101  | MCM14537  |               |
| MCM68B10   |        | MCM14552  |               |
| MCM68B30A  |        | MCM66700  |               |
| MCM68B308  |        | MCM66710  |               |
| MCM68B364  |        | MCM66714  |               |
| MCM2114    | •••••• | MCM66720  |               |
| MCM2115A   |        | MCM66730  |               |
| MCM2125A   |        | MCM66734  |               |
| MCM2147    |        | MCM66740  |               |
| MCM2532    | •••••  | MCM66750  |               |
| MCM2708    |        | MCM66751  |               |
| MCM2716    |        | MCM66760  |               |
| MCM4027A   |        | MCM66770  |               |
| MCM4096    |        | MCM66780  |               |
| MCM4116A   |        | MCM66790  |               |
| MCM4516    |        | MCM68708  |               |
| MCM5003    |        | MCM68764  |               |
| MCM5004    |        | MCM08704  |               |
| MCM5303    |        | MCM93415  |               |
| MCM5304    |        | MCM133425 |               |
| MCM6604A   |        | MCM145101 |               |
| MCM6605A   |        | MCM146508 |               |
| MCM66641   |        | MCM146508 |               |
| MCM6664    |        | MMS1102   | ••• • • • • • |
| MCM66670   |        | MMS1102   |               |
| MCM6674    |        |           |               |
| MCM6874    |        | MMS1117   |               |
| MCM7620    |        | MMS1118   |               |
|            |        | MMS3418   |               |
| MCM7621    |        | MMS68102  |               |
| MCM7640    |        | MMS68103  |               |
| MCM7641    |        | MMS68104  |               |
| MCM7642    |        | MMS80810  |               |
| MCM7643    |        | TMS27A16  |               |
| MCM7680    |        | TMS2716   | . 2-106       |
| MCM7681    | 4-23   |           |               |

# SELECTOR GUIDES CROSS-REFERENCE

Ī



MEMORIES SELECTION GUIDE

### NOTES

Boldface denotes industry standard part numbers.

Operating temperature ranges ---

MOS: 0°C to 70°C

CMOS: -40°C to 85°C and -55°C to +125°C

ECL: Consult individual data sheets

TTL: Military, -55°C to +125°C; Commercial, 0°C to 70°C.

### FOOTNOTES

ss Second source

1 MOS power supplies --Three +12, ±5 V One +5 V

All MOS outputs are three-state except the 6570 and 6580 series which are open-collector.

2 Character generators include shifted and unshifted characters, ASCII, alphanumeric control, math, Japanese, British, German, European, and French symbols.

# RAMs

| Organization                                                       | Part Number                                                                                  | Access Time<br>(ns max)  | Number<br>of Power<br>Supplies <sup>1</sup> | Number<br>of Pins    | Second<br>Source                       |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|----------------------|----------------------------------------|
| NOS DYNA                                                           | MIC RAMs                                                                                     |                          |                                             |                      | •                                      |
| 4096 × 1                                                           | MCM <b>4096</b> -6                                                                           | 250                      | 3                                           | 16                   | \$\$                                   |
| 4096 × 1                                                           | MCM <b>4096</b> -16                                                                          | 300                      | 3                                           | 16                   | \$\$                                   |
| 4096 × 1                                                           | MCM <b>4096</b> -11                                                                          | 350                      | 3                                           | 16                   | \$\$                                   |
| 4096 × 1                                                           | MCM <b>4027A</b> -2                                                                          | 150                      | 3                                           | 16                   | 55                                     |
| 4096 × 1                                                           | MCM <b>4027A</b> -3                                                                          | 200                      | 3                                           | 16                   | 55                                     |
| 4096 × 1                                                           | MCM <b>4027A</b> -4                                                                          | 250                      | 3                                           | 16                   | 55                                     |
| 4096 × 1                                                           | MCM6604A                                                                                     | 350                      | 3                                           | 16                   |                                        |
| 4096 × 1                                                           | MCM6604A-2                                                                                   | 250                      | 3                                           | 16                   |                                        |
| 4096 × 1                                                           | MCM6604A-4                                                                                   | 300                      | 3                                           | 16                   |                                        |
| 4096 × 1                                                           | MCM6605A                                                                                     | 300                      | 3                                           | 22                   | ,                                      |
| 4096 × 1                                                           | MCM6605A-2                                                                                   | 200                      | 3                                           | 22                   | ,                                      |
| 16,384 × 1<br>16,384 × 1<br>16,384 × 1<br>16,384 × 1<br>16,384 × 1 | MCM <b>4116A</b> -15<br>MCM <b>4116A</b> -20<br>MCM <b>4116A</b> -25<br>MCM <b>4116A</b> -30 | 150<br>200<br>250<br>300 | 3<br>3<br>3<br>3                            | 16<br>16<br>16<br>16 | 55<br>55<br>55<br>55                   |
| 16,384 × 1                                                         | MCM4516A-15*                                                                                 | 150                      | 1                                           | 16                   | SS                                     |
| 65,536 × 1                                                         | MCM6664A-15*                                                                                 | 150                      |                                             | 16                   | SS                                     |
|                                                                    |                                                                                              |                          |                                             | 10                   |                                        |
| 128 × 8<br>128 × 8<br>128 × 8                                      | MCM6810<br>MCM68A10<br>MCM68B10                                                              | 450<br>360<br>250        | 1 1 1                                       | 24<br>24<br>24       |                                        |
| 1024 × 4<br>1024 × 4<br>1024 × 4<br>1024 × 4                       | MCM2114-20<br>MCM2114-25<br>MCM2114-30<br>MCM2114-45                                         | 200<br>250<br>300<br>450 | 1<br>1<br>1                                 | 18<br>18<br>18<br>18 | \$\$<br>\$\$<br>\$\$<br>\$\$           |
| 1024 × 4<br>1024 × 4<br>1024 × 4<br>1024 × 4                       | MCM21L14-20<br>MCM21L14-25<br>MCM21L14-30<br>MCM21L14-45                                     | 200<br>250<br>300<br>450 | 1<br>1<br>1<br>1                            | 18<br>18<br>18<br>18 | \$5<br>\$5<br>\$5<br>\$5<br>\$5<br>\$5 |
| 1024 × 1                                                           | MCM2115A                                                                                     | 45                       | ** 1                                        | 16                   |                                        |
| 1024 × 1                                                           | MCM2125A                                                                                     | 45                       | 1                                           | 16                   |                                        |
| 4096 × 1                                                           | MCM6641-20                                                                                   | 200                      | 1                                           | 18                   | 55                                     |
| 4096 × 1                                                           | MCM6641-25                                                                                   | 250                      | 1                                           | 18                   | 55                                     |
| 4096 × 1                                                           | MCM6641-30                                                                                   | 300                      | 1                                           | 18                   | 55                                     |
| 4096 × 1                                                           | MCM6641-45                                                                                   | 450                      | 1                                           | 18                   | 55                                     |
| 4096 × 1<br>4096 × 1<br>4096 × 1<br>4096 × 1                       | MCM66L41-20<br>MCM66L41-25<br>MCM66L41-30<br>MCM66L41-45                                     | 200<br>250<br>300<br>450 | 1<br>1<br>1<br>1                            | 18<br>18<br>18<br>18 | 55<br>55<br>55<br>55<br>55             |
| 4096 × 1                                                           | MCM2147-55*                                                                                  | 55                       | 1                                           | 18                   | 55                                     |
| 4096 × 1                                                           | MCM2147-70*                                                                                  | 70                       | 1                                           | 18                   | 55                                     |
| 4096 × 1                                                           | MCM2147-85*                                                                                  | 85                       | . 1                                         | 18                   | 55                                     |

\*To be introduced.

See Notes on Page 1-2.

| Organization | Part Number  | Access Time<br>(ns max) | Number<br>of Power<br>Supplies | Number<br>of Pins | Second<br>Source |
|--------------|--------------|-------------------------|--------------------------------|-------------------|------------------|
| CMOS STAT    | IC RAMs      |                         |                                |                   |                  |
| 64 × 1       | MCM14505     | 180**                   | 1                              | 14                | -                |
| 256 × 1      | MCM14537     | 700**                   | 1                              | 16                |                  |
| 64 × 4       | MCM14552     | 700**                   | х <b>1</b> с                   | 24                |                  |
| 256 × 4      | MCM145101-1  | 450                     | 1                              | 22                | \$\$             |
| 256 × 4      | MCM145101-3  | 650                     | 1                              | 22                | SS               |
| 256 × 4      | MCM145101-8  | 800                     | 1                              | 22                | ss               |
| 4096 × 1     | MCM146504    | 450                     | 1                              | 18                | ss               |
| 1024 × 1     | MCM146508*   | 460                     | 1                              | 16                | ss               |
| 1024 × 1     | MCM146508-1* | 300                     | 1                              | 16                | ss               |
| 1024 × 1     | MCM146518*   | 460                     | 1                              | 18                | ss               |
| 1024 × 1     | MCM146518-1* | 300                     | 1                              | 18                | 55               |

\*\*Typical access time @ V<sub>DD</sub> = 10 Vdc.

| Organization | Part Number | Access Time<br>(ns max) | Output     | Number<br>Pins | Second<br>Source |
|--------------|-------------|-------------------------|------------|----------------|------------------|
| CL BIPOLA    | R RAMs      |                         |            |                |                  |
| 8 × 2 ,      | MCM10143    | 15                      | ECL Output | 24             | I                |
| 256 × 1      | MCM10144    | 26                      | ECL Output | 16             | ss               |
| 16 × 4       | MCM10145    | 15                      | ECL Output | 16             | 55               |
| 1024 × 1     | MCM10146    | 29                      | ECL Output | 16             | ss               |
| 128 × 1      | MCM10147    | 15                      | ECL Output | 16             | SS               |
| 16 × 4       | MCM10148    | 15                      | ECL Output | 16             |                  |
| 256 × 1      | MCM10152    | 15                      | ECL Output | 16             | ss               |

# TTL BIPOLAR RAMs

| 256 × 4<br>256 × 4 | MCM <b>93412*</b><br>MCM <b>93422</b> * | 45<br>45 | Open-Collector<br>Three-State | 22<br>22 | 55<br>55    |
|--------------------|-----------------------------------------|----------|-------------------------------|----------|-------------|
| 1024 × 4           | MCM93415*                               | 45       | Open-Collector                | 16       | - <i>SS</i> |
| 1024 × 4           | MCM93425*                               | 45       | Three-State                   | 16       | SS          |

\*To be introduced.

See Notes on Page 1-2.

# **EPROMs**

| Organization                                             | Part Number                                                   | Access Time<br>(ns max)  | Number<br>of Power<br>Supplies <sup>1</sup> | Number<br>of Pins    | Second<br>Source     |
|----------------------------------------------------------|---------------------------------------------------------------|--------------------------|---------------------------------------------|----------------------|----------------------|
| MOS EPRON                                                | ls                                                            |                          | 4                                           |                      |                      |
| 1024 × 8<br>1024 × 8                                     | MCM <b>2708</b><br>MCM27A08                                   | 450<br>300               | 3.3                                         | 24<br>24             | \$\$<br>\$\$         |
| 1024 × 8<br>1024 × 8                                     | MCM68708<br>MCM68A708                                         | 450<br>300               | 3<br>3                                      | 24<br>24             | \$\$                 |
| 2048 × 8<br>2048 × 8<br>2048 × 8<br>2048 × 8<br>2048 × 8 | TMS <b>2716</b><br>TMS27A16<br>MCM <b>2716</b> *<br>MCM27A16* | 450<br>300<br>450<br>350 | 3<br>3<br>1                                 | 24<br>24<br>24<br>24 | 55<br>55<br>55<br>55 |
| 4096 × 8<br>8192 × 8                                     | MCM2532*<br>MCM68764*                                         | 450<br>450               | 1                                           | 24<br>24<br>24       | ss                   |

# **PROMs**

| Organization       | Part Number                        | Access Time<br>(ns max) | Output                        | Number<br>Pins | Second<br>Source |
|--------------------|------------------------------------|-------------------------|-------------------------------|----------------|------------------|
| CL PROMs           |                                    |                         | · .                           |                |                  |
| 32 × 8             | MCM10139                           | 25                      | ECL Output                    | 16             | SS               |
| 256 × 4            | MCM10149                           | 30                      | ECL Output                    | 16             | SS               |
| 64 × 8<br>64 × 8   | MCM5003/5303<br>MCM5004/5304       | 125<br>125              | Open-Collector<br>2K Pull-Up  | 24<br>24       | 55<br>55         |
| 64 × 8<br>512 × 4  | MCM5004/5304<br>MCM <b>7620</b>    | 125<br>70               | 2K Pull-Up<br>Open-Collector  | 24<br>16       | ss<br>ss         |
| 512 × 4            | MCM <b>7621</b>                    | 70                      | Three-State                   | 16             | ss               |
| 512 × 4<br>512 × 4 | MCM <b>7640</b><br>MCM <b>7641</b> | 70                      | Open-Collector<br>Three-State | 24<br>24       | ss<br>ss         |
| 1024 × 4           | MCM <b>7642</b>                    | 70                      | Open-Collector                | 18             | SS               |
| 1024 × 4           | MCM7643                            | 70                      | Three-State                   | 18             | \$\$             |

| 64 × 8   | MCM5004/5304      | 125 | 2K Pull-Up     | 24 | ss |
|----------|-------------------|-----|----------------|----|----|
| 512 × 4  | MCM <b>7620</b>   | 70  | Open-Collector | 16 | ss |
| 512 × 4  | MCM <b>7621</b>   | 70  | Three-State    | 16 | ss |
| 512 × 4  | MCM <b>7640</b>   | 70  | Open-Collector | 24 | 55 |
| 512 × 4  | MCM <b>7641</b>   | 70  | Three-State    | 24 | 55 |
| 1024 × 4 | MCM <b>7642</b>   | 70  | Open-Collector | 18 | ss |
| 1024 × 4 | MCM <b>7643</b>   | 70  | Three-State    | 18 | ss |
| 1024 × 8 | MCM <b>7680</b>   | 70  | Open-Collector | 24 | 55 |
| 1024 × 8 | MCM <b>7681</b>   | 70  | Three-State    | 24 | 55 |
| 2048 × 4 | MCM <b>7684</b> * | 70  | Open-Collector | 18 | 55 |
| 2048 × 4 | MCM <b>7685</b> * | 70  | Three-State    | 18 | 55 |

\*To be introduced. See Notes on Page 1-2.

# ROMs

| MOS STATIC ROMs<br>Character Generators <sup>2</sup> 128 × (7 × 5)         MCM6670         350         1         18           128 × (7 × 5)         MCM6670         350         1         18           128 × (7 × 5)         MCM6670         350         1         18           128 × (9 × 7)         MCM66710         350         1         24           128 × (9 × 7)         MCM66714         350         1         24           128 × (9 × 7)         MCM66720         350         1         24           128 × (9 × 7)         MCM66714         350         1         24           128 × (9 × 7)         MCM66730         350         1         24           128 × (9 × 7)         MCM66740         350         1         24           128 × (9 × 7)         MCM66760         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780       | Second<br>Source |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 128 × (7 × 5)         MCM6670         350         1         18           128 × (7 × 5)         MCM6674         350         1         18           128 × (9 × 7)         MCM66700         350         1         24           128 × (9 × 7)         MCM66710         350         1         24           128 × (9 × 7)         MCM66714         350         1         24           128 × (9 × 7)         MCM66720         350         1         24           128 × (9 × 7)         MCM66734         350         1         24           128 × (9 × 7)         MCM66740         350         1         24           128 × (9 × 7)         MCM66750         350         1         24           128 × (9 × 7)         MCM66760         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24           128 × (9 × 7)         MCM66780         350         1         24 <t< th=""><th></th></t<> |                  |
| 128 × (7 × 5)       MCM6674       350       1       18         128 × (9 × 7)       MCM66700       350       1       24         128 × (9 × 7)       MCM66710       350       1       24         128 × (9 × 7)       MCM66714       350       1       24         128 × (9 × 7)       MCM66720       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66740       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         1024 × 8       MCM68A308       350       1       24         1024                                                                                                    |                  |
| 128 × (9 × 7)       MCM66700       350       1       24         128 × (9 × 7)       MCM66710       350       1       24         128 × (9 × 7)       MCM66714       350       1       24         128 × (9 × 7)       MCM66720       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM68A308.7       350       1       24         128 × (9 × 7)       MCM68A308.7       350       1       24                                                                                                      | ;                |
| 128 × (9 × 7)       MCM66710       350       1       24         128 × (9 × 7)       MCM66714       350       1       24         128 × (9 × 7)       MCM66720       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24 <td< td=""><td></td></td<>                                                                                 |                  |
| 128 × (9 × 7)       MCM66710       350       1       24         128 × (9 × 7)       MCM66714       350       1       24         128 × (9 × 7)       MCM66720       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66740       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM68A30-8       350       1       24         <                                                                                                | SS               |
| 128 × (9 × 7)       MCM66720       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66740       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM68A308-7       350       1       24         1024 × 8       MCM68A316-91       350       1       24         1024 × 8       MCM68A30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8<                                                                                                    | SS               |
| 128 × (9 × 7)       MCM66720       350       1       24         128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66740       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM68A308-7       350       1       24         128 × (9 × 7)       MCM68A316-91       350       1       24         1024 × 8       MCM68A308-7       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 ×                                                                                                    | SS               |
| 128 × (9 × 7)       MCM66730       350       1       24         128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66740       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66830-8       350       1       24         124 × 8       MCM68A30-8       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024                                                                                                     | ss               |
| 128 × (9 × 7)       MCM66734       350       1       24         128 × (9 × 7)       MCM66740       350       1       24         128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM668A30-8       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         1024 × 8       MCM68A30-8       350       1       24         1024 × 8       MCM68A316-91       350       1       24         1024 × 8       MCM68B30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30B       350       1       24         1024 × 8 <td>SS</td>                                                                                            | SS               |
| 128 × (9 × 7)       MCM66750       350       1       24         128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         imary ROMs       MCM66790       350       1       24         inary ROMs       MCM68A30-8       350       1       24         1024 × 8       MCM68A30-8       350       1       24         1024 × 8       MCM68A30-91       350       1       24         1024 × 8       MCM68A30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A316E       350       1       24         1024 × 8       MCM68A316A       350       1       24         2048 × 8       MCM68A                                                                                                             | 55               |
| 128 × (9 × 7)       MCM66760       350       1       24         128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         imary ROMs       MCM68A30-8       350       1       24         inary ROMs       MCM68A30-8       350       1       24         1024 × 8       MCM68A308-7       350       1       24         1024 × 8       MCM68A30A       250       1       24         1024 × 8       MCM68A30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A316E       350       1       24         1024 × 8       MCM68A316A       350       1       24         2048 × 8       MCM68                                                                                                             | SS               |
| 128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         imary ROMs       MCM68A30-8       350       1       24         imary ROMs       MCM68A308-7       350       1       24         1024 × 8       MCM68A308-7       350       1       24         2048 × 8       MCM68A30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A308       350       1       24         2048 × 8       MCM68A316E       350       1       24         2048 × 8       MCM68A332       350       1       24         4096 × 8       MCM68A332 <td>SS</td>                                                                                                     | SS               |
| 128 × (9 × 7)       MCM66770       350       1       24         128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         imary ROMs       mcM66790       350       1       24         inary ROMs       MCM68A30-8       350       1       24         1024 × 8       MCM68A308-7       350       1       24         2048 × 8       MCM68A316-91       350       1       24         1024 × 8       MCM68A30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A308       350       1       24         1024 × 8       MCM68A316E       350       1       24         2048 × 8       MCM68A316A       350       1       24         4096 × 8       MCM68A332 <td>55</td>                                                                                                    | 55               |
| 128 × (9 × 7)       MCM66780       350       1       24         128 × (9 × 7)       MCM66790       350       1       24         inary ROMs         1024 × 8       MCM68A30-8       350       1       24         1024 × 8       MCM68A308-7       350       1       24         1024 × 8       MCM68A308-7       350       1       24         2048 × 8       MCM68B316-91       350       1       24         1024 × 8       MCM68B30A       250       1       24         1024 × 8       MCM68B30A       250       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30A       350       1       24         1024 × 8       MCM68A30B       250       1       24         1024 × 8       MCM68A316E       350       1       24         1024 × 8       MCM68A316A       350       1       24         2048 × 8       MCM68A316A       350       1       24         4096 × 8       MCM68A332       350       1       24         4096 × 8       MCM68A332.2*       350       1       24                                                                                                                                   | 00               |
| 128 × (9 × 7)         MCM66790         350         1         24           inary ROMs           1024 × 8         MCM68A30-8         350         1         24           1024 × 8         MCM68A308-7         350         1         24           1024 × 8         MCM68A308-7         350         1         24           2048 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68A30B         250         1         24           1024 × 8         MCM68A30B         350         1         24           1024 × 8         MCM68A30B         350         1         24           1024 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           4096 × 8         MCM68A364*         350         1         24                                                |                  |
| 1024 × 8         MCM68A30-8         350         1         24           1024 × 8         MCM68A308-7         350         1         24           2048 × 8         MCM68A316-91         350         1         24           1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68B30A         350         1         24           1024 × 8         MCM68B30A         350         1         24           1024 × 8         MCM68A30A         350         1         24           1024 × 8         MCM68A308         250         1         24           1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332-2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68                                       |                  |
| 1024 × 8         MCM68A308-7         350         1         24           2048 × 8         MCM68A316-91         350         1         24           1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68B30A         350         1         24           1024 × 8         MCM68A30A         350         1         24           1024 × 8         MCM68A30A         350         1         24           1024 × 8         MCM68A308         250         1         24           1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332-2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                     |                  |
| 2048 × 8         MCM68A316-91         350         1         24           1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68B30A         350         1         24           1024 × 8         MCM68B30A         350         1         24           1024 × 8         MCM68B308         250         1         24           1024 × 8         MCM68A308         350         1         24           1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332-2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                    |                  |
| 1024 × 8         MCM68B30A         250         1         24           1024 × 8         MCM68A30A         350         1         24           1024 × 8         MCM68B308         250         1         24           1024 × 8         MCM68B308         250         1         24           1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                   |                  |
| 1024 × 8         MCM68A30A         350         1         24           1024 × 8         MCM68B308         250         1         24           1024 × 8         MCM68B308         350         1         24           1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| 1024 × 8         MCM68B308         250         1         24           1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332-2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>ss</i>        |
| 1024 × 8         MCM68A308         350         1         24           2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>ss</i>        |
| 2048 × 8         MCM68A316E         350         1         24           2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>ss</i>        |
| 2048 × 8         MCM68A316A         350         1         24           4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           4096 × 8         MCM68A332.2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>ss</i>        |
| 4096 × 8         MCM68A332         350         1         24           4096 × 8         MCM68A332-2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55               |
| 4096 × 8         MCM68A332-2*         350         1         24           8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>SS</i>        |
| 8192 × 8         MCM68A364*         350         1         24           8192 × 8         MCM68A364-3*         350         1         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>ss</i>        |
| 8192 × 8 MCM68A364-3* 350 1 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>SS</b>        |
| 8192 × 8 I MCM68B364-3* I 250 I 1 I 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| MOS ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 256 × 4 MCM14524 1200 1 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |

\*To be introduced. See Notes on Page 1-2.

# **MEMORY SYSTEMS**

For most purposes, memory systems are as unique and individualistic as is the variety of equipment in which they are used. There are, however, some computer systems — micro-computers and minicomputers — whose widespread acceptance results in the use of large numbers of memory systems of a specific architecture. Some of these have been identified, resulting in the standard, inventoried systems described below. Due to large-volume requirement and broad-based sales, these systems represent excellent values.

### ADD-IN SYSTEMS FOR MICROCOMPUTERS

|                                                                              |          |                             | Organizatio                                  | n                          |                                        |
|------------------------------------------------------------------------------|----------|-----------------------------|----------------------------------------------|----------------------------|----------------------------------------|
| Application                                                                  | 32K × 8  | 16K × 9<br>Parity<br>Option | 16K × 8                                      | 8K × 9<br>Parity<br>Option | 8K × 8                                 |
| For 6800 Systems                                                             |          |                             |                                              |                            |                                        |
| Dynamic RAMs<br>Standard<br>Non-Volatile<br>for D2 Kit<br>Pseudo-Static RAMs |          | MMS68102A<br>MMS68103A      | MMS68100<br>MMS68102<br>MMS68104<br>MMS68103 | MMS68102A1<br>MMS68103A1   | MMS68100-1<br>MMS68102-1<br>MMS68103-1 |
| For 8080A Systems<br>Dynamic RAMs                                            | MMS80810 |                             | MMS80810-1                                   |                            |                                        |

### ADD-IN SYSTEMS FOR MINICOMPUTERS

|                 |              |             |                       | Organization          |                       |                     |            |
|-----------------|--------------|-------------|-----------------------|-----------------------|-----------------------|---------------------|------------|
| Application     | 64K × 18     | 48K × 18    | 32K × 18<br>32K × 16* | 16K × 18<br>16K × 16* | 12K × 18<br>12K × 16* | 8K × 18<br>8K × 16* | 4K × 16    |
| For LSI-11/2/23 |              |             |                       |                       |                       |                     |            |
| and             |              |             | MMS1102-34PC          | MMS1102-32PC          |                       | MMS1102-31PC        |            |
| PDP-11/03,/23   |              |             | MMS1102-34*           | MMS1102-32*           |                       | MMS1102-31*         |            |
| LSI-11          |              |             |                       | MMS1110*              | MMS1110-1*            | MMS1110-2*          | MMS1110-3* |
| For General     |              |             |                       |                       | -                     |                     |            |
| Automation      |              |             | MMS1600-32*           | MMS1600-16*           |                       | `                   |            |
| 16/110, 16/220  |              |             | MMS1600-32P           | MMS1600-16P           |                       |                     |            |
| For PDP-11/05/  |              |             |                       |                       |                       |                     |            |
| 10/35/40/45/    |              |             |                       |                       |                       |                     |            |
| 50/55/60        |              |             |                       |                       |                       |                     |            |
| Access Time     |              |             |                       |                       |                       |                     |            |
| 390 ns          | MMS1117-58PC | MMS117-56PC | MMS1117-54PC          | MMS1117-52PC          | 1 a.                  |                     |            |
| 360 ns          | MMS1117-48PC | MMS117-46PC | MMS1117-44PC          | MMS1117-42PC          |                       |                     |            |
| 290 ns          | MMS1117-38PC | MMS117-36PC | MMS1117-34PC          | MMS1117-32PC          |                       |                     |            |
| For PDP-11/04   |              |             |                       |                       |                       |                     |            |
| and 11/34       |              |             |                       | MMS1118               | MMS1118-1             | MMS1118-2           |            |
| For PDP-11s     |              |             |                       |                       |                       |                     |            |
| with "MF11L"    |              |             |                       | MMS1118L*             | MMS1118L-1*           | MMS1118L-2*         |            |
| Backplane       |              |             |                       |                       |                       |                     |            |

### **MODULES FOR GENERAL-PURPOSE APPLICATIONS**

| Dynamic RAMs<br>128K × 18 bits |  |
|--------------------------------|--|
| 128K × 18 bits                 |  |

MMS3418

1-7

# THE OFFICIAL MOS MEMORY CROSS-REFERENCE

From Motorola

# APRIL 1979

| PART NUMBER    | ORGANIZATION<br>DESCRIPTION | MOTOROLA'S<br>ACCESS TIME<br>(ns max) | NO. OF<br>PINS | POWER<br>SUPPLIES | MOTOROLA PIN-TO-PIN<br>REPLACEMENT |
|----------------|-----------------------------|---------------------------------------|----------------|-------------------|------------------------------------|
| AMD            |                             |                                       | 1              | 1                 |                                    |
| Am2716         | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| Am4044         | 4096 X 1 SRAM               | 200-450                               | 18             | +5 V              | MCM66L41                           |
|                |                             |                                       |                |                   |                                    |
| Am9016         | 16,384 X 1 DRAM             | 150-300                               | 16             | +12, ±5 V         | MCM4116A                           |
| Am9114         | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM2114                            |
| Am91L14        | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM21L14                           |
|                |                             |                                       |                |                   |                                    |
| Am9124         | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM2114                            |
| Am9147         | 4096 X 1 SRAM               | 55-85                                 | 18             | +5 V              | MCM2147                            |
| Am9208B        | 1024 X 8 SRAM               | 350                                   | 24             | +5 V              | MCM68A308                          |
|                |                             |                                       |                |                   |                                    |
| Am9217         | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316A                         |
| Am9218         | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316E                         |
| Am9232         | 4096 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A332                          |
| Am9708         |                             | 450                                   | 24             |                   |                                    |
|                | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM68708                           |
| AMI            |                             |                                       |                |                   |                                    |
|                | 1024 X 4 00 444             | 200 450                               | 10             | 1                 | MONDIAL                            |
| S2114          | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM2114                            |
| S2114L         | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM21L14                           |
| S2147          | 4096 X 1 SRAM               | 70-100                                | 18             | +5 V              | MCM2147                            |
| S4264          | 8192 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A364                          |
|                |                             |                                       |                |                   |                                    |
| S5101          | 256 X 4 SRAM                | 450-800                               | 22             | +5 V              | MCM145101                          |
| S6508          | 1024 X 1 SRAM               | 300-460                               | 16             | +5 V              | MCM146508                          |
| S6518          | 1024 X 1 SRAM               | 300-460                               | 18             | +5 V              |                                    |
|                |                             |                                       |                |                   | MCM146518                          |
| S6810          | 128 X 8 SRAM                | 250-450                               | 24             | +5 V              | MCM6810                            |
| S6830          | 1024 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A30A                          |
| S6831A         | 2048 X 8 SROM               | 350                                   | 24             | +5 V              |                                    |
|                |                             |                                       |                |                   | MCM68A316A                         |
| S6831B         | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316E                         |
| FAIRCHILD      | 1                           |                                       |                |                   |                                    |
|                | 1000011100000               |                                       |                |                   |                                    |
| F16K           | 16,384 X 1 DRAM             | 150-300                               | 16             | +12, ±5 V         | MCM4116A                           |
| 2114           | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM2114                            |
| F2708          | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM2708                            |
|                |                             |                                       |                |                   |                                    |
| F2708I         | 1024 X 8 EPROM              | 300                                   | 24             | +12, ±5 V         | MCM27A08                           |
| 2716           | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| 3508           | 1024 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A308                          |
|                |                             |                                       |                |                   |                                    |
| F3516E         | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316E                         |
| FM4027         | 4096 X 1 DRAM               | 120-250                               | 16 ·           | +12, ±5 V         | MCM4027A                           |
| 4096           | 4096 X 1 DRAM               | 250-350                               | 16             | +12, ±5 V         | MCM4096                            |
|                |                             |                                       |                |                   |                                    |
| F68B10         | 128 X 8 SRAM                | 250-450                               | 24             | +5 V              | MCM68B10                           |
| F68B308        | 1024 X 8 SROM               | 250-350                               | 24             | +5 V              | MCM68B308                          |
| F68708         | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM68708                           |
|                | 1024 X B EFHOM              | 450                                   | 24             | +12, ±5 V         | 1010108708                         |
| FUJITSU        |                             | l                                     |                |                   |                                    |
| MB2147         | 4096 X 1 SRAM               | 70-100                                | 18             | +5 V              | MCM2147                            |
|                |                             |                                       |                |                   | MCM2147                            |
| MBM2716        | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| MB4044         | 4096 X 1 SRAM               | 200-450                               | 18             | +5 V              | MCM6641                            |
| MB8114         | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM2114                            |
|                |                             |                                       |                |                   |                                    |
| MB8116         | 16,384 X 1 DRAM             | 150-300                               | 16             | +12, ±5 V         | MCM4116A                           |
| MB8224         | 4096 X 1 DRAM               | 250-350                               | 16             | +12, ±5 V         | MCM4096                            |
| MB8227         | 4096 X 1 DRAM               | 120-250                               | 16             |                   |                                    |
|                |                             |                                       |                | +12, ±5 V         | MCM4027A                           |
| MB8308         | 1024 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A308                          |
| MB8518H        | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM2708                            |
|                |                             |                                       | +              |                   |                                    |
| GENERAL INSTRU |                             | 1                                     |                |                   |                                    |
| RO3-8316A      | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316A                         |
| RO3-9316       | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316E                         |
|                |                             |                                       |                |                   |                                    |
| RO3-9332A      | 4096 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A332                          |
| RO3-9364B      | 8092 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A364                          |
| HITACHI        |                             |                                       |                |                   |                                    |
|                | 1                           |                                       |                | · ·               |                                    |
| HM462716       | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| HM435101       | 256 X 4 SRAM                | 450-800                               | 22             | +5 V              | MCM145101                          |
|                |                             |                                       |                |                   |                                    |
| HM462708       | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM2708                            |
| HM468A10       | 128 X 8 SRAM                | 350                                   | 24             | +5 V              | MCM68A10                           |
| HM46830        | 1024 X 8 SROM               | 350                                   | 24             |                   |                                    |
|                |                             |                                       |                | +5 V              | MCM68A30A                          |
| HM4704L        | 4096 X 1 DRAM               | 150-250                               | 16             | +12, ±5 V         | MCM4027A                           |
| HM4716         | 16.384 X 1 DRAM             | 150-300                               | 16             | +12, ±5 V         |                                    |
|                |                             |                                       |                |                   | MCM4116A                           |
| HM472114A      | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM21L14                           |
|                | 4096 X 1 SRAM               | 55-85                                 | 18             | +5 V              |                                    |

|               | ORGANIZATION    | MOTOROLA'S<br>ACCESS TIME | NO. OF | POWER     | MOTOROLA PIN-TO-PIN |
|---------------|-----------------|---------------------------|--------|-----------|---------------------|
| PART NUMBER   | DESCRIPTION     | (ns max)                  | PINS   | SUPPLIES  | REPLACEMENT         |
| INTEL         | •               |                           |        |           |                     |
| 2104A         | 4096 X 1 DRAM   | 120-250                   | 16     | +12, ±5 ∨ | MCM4027A            |
| 2114          | 1024 X 4 SRAM   | 200-450                   | 18     | +5 V      | MCM2114             |
|               |                 |                           |        |           |                     |
| 2114L         | 1024 X 4 SRAM   | 200-450                   | 18     | +5 V      | MCM21L14            |
| 2117          | 16,384 X 1 DRAM | 150-300                   | 16     | +12, ±5 V | MCM4116A            |
| 2147          | 4096 X 1 SRAM   | 70-100                    | 18     | +5 V      | MCM2147             |
| 2308          | 1024 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A308           |
| 2316A         | 2048 X 8 SROM   | 350                       | 24     | +5 V      |                     |
| 2316E         |                 |                           |        |           | MCM68A316A          |
|               | 2048 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A316E          |
| 2708-1        | 1024 X 8 EPROM  | 300                       | 24     | +12, ±5 V | MCM27A08            |
| 2708          | 1024 X 8 EPROM  | 450                       | 24     | +12, ±5 V | MCM2708             |
| 2716          | 2048 X 8 EPROM  | 450                       | 24     | +5 V      | MCM2716             |
| 2716-1        | 2048 X 8 EPROM  | 350                       | 24     | +5 V      | MCM27A16            |
| 2716-2        | 2048 X 8 EPROM  |                           | 24     |           |                     |
|               |                 | 350                       |        | +5 V      | MCM27A16            |
| 5101          | 256 X 4 SRAM    | 450-800                   | 22     | +5 V      | MCM145101           |
| INTERSIL      |                 |                           |        |           |                     |
| D2114         | 1024 X 4 SRAM   | 200-450                   | 18     | +5 V      | MCM2114             |
| MK4027        |                 |                           |        |           |                     |
|               | 4096 X 1 DRAM   | 150-250                   | 16     | +12, ±5 V | MCM4027A            |
| IM6508        | 1024 X 1 SRAM   | 300-460                   | 16     | +5 V      | MCM146508           |
| IM6508-1      | 1024 X 1 SRAM   | 300-460                   | 18     | +5, V     | MCM146518           |
| IM7027        | 4096 X 1 DRAM   | 120-250                   | 16     | +12, ±5 V | MCM4027A            |
| IM7114        | 1024 X 4 SRAM   | 200-450                   | 18     | +5 V      | MCM21L14            |
| IM7116        | 16,384 X 1 DRAM | 150-300                   | 16     | +12, ±5 V | MCM4116A            |
|               |                 |                           |        |           |                     |
| IM7141        | 4096 X 1 SRAM   | 200-450                   | 18     | +5 V      | MCM6641             |
| IM7141L       | 4096 X 1 SRAM   | 200-450                   | 18     | +5 V      | MCM66L41            |
| ITT           |                 |                           |        |           |                     |
| ITT4027       | 4096 X 1 DRAM   | 120-250                   | 16     | +12 += 1/ | MCM4037A            |
|               |                 |                           |        | +12, ±5 V | MCM4027A            |
| ITT4116       | 16,384 X 1 DRAM | 150-300                   | 16     | +12, ±5 V | MCM4116             |
| MIC           |                 |                           |        |           |                     |
| MIC2316E      | 2048 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A316E          |
|               |                 |                           |        |           |                     |
| MIC2332       | 4096 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A332           |
| MOSTEK        |                 |                           |        |           |                     |
| MK2708        | 1024 X 8 EPROM  | 450                       | 24     | +12. ±5 V | MCM2708             |
| MK2716        | 2048 X 8 EPROM  | 450                       | 24     |           |                     |
|               |                 |                           |        | +5 V      | MCM2716             |
| MK4027        | 4096 X 1 DRAM   | 120-250                   | 16     | +12, ±5 V | MCM4027A            |
| MK4096        | 4096 X 1 DRAM   | 250-350                   | 16     | +12, ±5 V | MCM4096             |
| MK4104        | 4096 X 1 DRAM   | 200-450                   | 18     | +5 V      | MCM6641             |
| MK4114        | 1024 X 4 SRAM   | 200-450                   | 18     | +5 V      | MCM2114             |
| MK4116        | 16,384 X 1 DRAM | 150-300                   | 16     | +12, ±5 V | MCM4116A            |
| MK30000       | 1024 X 8.SROM   | 350                       | 24     | +5 V      |                     |
| MK31000       |                 |                           |        |           | MCM68A308           |
|               | 2048 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A316A          |
| MK32000       | 4096 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A332           |
| MK34000       | 2048 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A316E          |
| MK36000       | 8192 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A364           |
| MK36000-4     | 8192 X 8 SROM   | 250                       | 24     | +5 V      | MCM68B364           |
|               | +               |                           |        |           | 11011000004         |
| NATIONAL      |                 |                           |        |           |                     |
| MM2114        | 1024 X 4 SRAM   | 200-450                   | 18     | +5 V      | MCM2114             |
| MM2147        | 4096 X 1 SRAM   | 55-85                     | 18     | +5 V      | MCM2147             |
| MM2708        | 1024 X 8 EPROM  | 450                       | 24     | +12, ±5 V | MCM2708             |
| MM2716        | 2048 X 8 EPROM  | 450                       | 24     | +5 V      | MCM2716             |
| MM5235        | 8192 X 8 SROM   |                           | 24     |           |                     |
|               |                 | 350                       |        | +5 V      | MCM68A364           |
| MM5257        | 4096 X 1 SRAM   | 200-450                   | 18     | +5 V      | MCM6641             |
| MM5257L       | 4096 X 1 SRAM   | 200-450                   | 18     | +5 V      | MCM66L41            |
| MM5290        | 16,384 X 1 DRAM | 150-300                   | 16     | +12, ±5 V | MCM4116A            |
| NEC/EA        | +               | ·                         |        |           |                     |
|               |                 |                           |        |           |                     |
| μPD414A       | 4096 X 1 DRAM   | 150-250                   | 16     | +12, ±5 V | MCM4027A            |
| μPD414        | 4096 X 1 DRAM   | 250-350                   | 16     | +12, ±5 V | MCM4096             |
| μPD416        | 16,384 X 1 DRAM | 150-300                   | 16     | +12, ±5 V | MCM4116A            |
| µPD2114L      | 1024 X 4 SRAM   | 200-450                   | , 18   | +5 V      | MCM21L14            |
| μPD2147       | 4096 X 1 SRAM   |                           | 18     |           |                     |
|               |                 | 55-85                     |        | +5 V      | MCM2147             |
| μPD2716       | 2048 X 8 EPROM  | 450                       | 24     | +5 V      | MCM2716             |
| μPD4104       | 4096 X 1 SRAM   | 200-450                   | 18     | +5 V      | MCM66L41            |
| μPD5101       | 256 X 4 SRAM    | 450-800                   | 22     | +5 V      | MCM145101           |
| μPD6508       | 1024 X 1 SRAM   | 300-460                   | 16     | +5 V      | MCM146508           |
| EA2308/8308   | 1024 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A308           |
| μPD or        | 1024 / 0 011010 | 550                       | 24     | J V       | WICIWOOA308         |
|               | 2049 X 8 68044  | 250                       | 24     | 15.4      | MOMERADARA          |
| EA2316A/8316A | 2048 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A316A          |
| µPD or        |                 |                           |        |           |                     |
| EA2316E/8316E | 2048 X 8 SROM   | 350                       | 24     | +5 V      | MCM68A316E          |
| EA2708        | 1024 X 8 EPROM  | 450                       | 24     | +12, ±5 V | MCM2708             |
|               |                 |                           |        |           |                     |

| PART NUMBER    | ORGANIZATION<br>DESCRIPTION | MOTOROLA'S<br>ACCESS TIME<br>(ns max) | NO. OF<br>PINS | POWER<br>SUPPLIES | MOTOROLA PIN-TO-PIN<br>REPLACEMENT |
|----------------|-----------------------------|---------------------------------------|----------------|-------------------|------------------------------------|
| NITRON         |                             |                                       |                |                   | · .                                |
| NC6570         | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66700                           |
| NC6571         | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66710                           |
| NC6572         | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66720                           |
| NC6573         | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66730                           |
| NC6574         | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66740                           |
| NC6575         | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66750                           |
| NC6832         | 2048 X 8 SROM               | 550                                   | . 24           | +12, ±5 V         | MCM6832                            |
| SIGNETICS      |                             |                                       |                |                   |                                    |
| 2607           | 1024 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A308                          |
| 2608           | 1024 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A30A                          |
| 2609           | 128 X (9 X 7) SROM          | 350                                   | 24             | +5 V              | MCM66700                           |
| 2660           | 4096 X 1 DRAM               | 120-250                               | · 16           | +12, ±5 V         | MCM4027A                           |
| 2614           | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM21L14                           |
| 2616           | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316E                         |
| 2633           | 4096 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A332                          |
| 2664           | 8192 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A364                          |
| 2690           | 16,384 X 1 DRAM             | 250-350                               | 16             | +12, ±5 V         | MCM4116A                           |
| 2708           | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM2708                            |
| 2716           | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| 4027           | 4096 X 1 DRAM               | 150-250                               | 16             | +12, ±5 V         | MCM4027A                           |
| 5101           | 256 X 4 SRAM                | 450-800                               | · 22           | +5 V              | MCM145101                          |
| SYNERTEK       |                             |                                       |                |                   |                                    |
| SY2114         | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM21L14                           |
| SY2147         | 4096 X 1 SRAM               | 55-85                                 | 18             | +5 V              | MCM2147                            |
| SY2316A        | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316A                         |
| SY2316B        | 2048 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A316E                         |
| SY2716         | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| SY5101         | 256 X 4 SRAM                | 450-800                               | 22             | +5 V              | MCM145101                          |
| TEXAS INSTRUME |                             |                                       |                |                   |                                    |
| TMS 2516       | 2048 X 8 EPROM              | 450                                   | 24             | +5 V              | MCM2716                            |
| TMS 2708       | 1024 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | MCM2708                            |
| TMS 2716       | 2048 X 8 EPROM              | 450                                   | 24             | +12, ±5 V         | TMS 2716                           |
| TMS 4027       | 4096 X 1 DRAM               | 120-250                               | 16             | +12, ±5 V         | MCM4027A                           |
| TMS 4044       | 4096 X 1 SRAM               | 200-450                               | 18             | +5 V              | MCM6641                            |
| TMS 4045       | 1024 X 4 SRAM               | 200-450                               | 18             | +5 V              | MCM2114                            |
| TMS 4116       | 16.384 X 1 DRAM             | 150-300                               | 16             | +12, ±5 V         | MCM4116A                           |
| TMS 4700       | 1024 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A308                          |
| TMS 4732       | 4096 X 8 SROM               | 350                                   | 24             | +5 V              | MCM68A332                          |

### Part Number Guide-



# NMOS Memories RAM, EPROM, ROM







### 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2114 is a 4096-bit random access memory fabricated with high density, high reliability N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM2114 is designed for memory applications where simple interfacing is the design objective. The MCM2114 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select  $(\overline{S})$  lead allows easy selection of an individual package when the three-state outputs are OR-tied.

The MCM2114 series has a maximum current of 100 mA. Low power versions (i.e., MCM21L14 series) are available with a maximum current of only 70 mA.

- 1024 Words by 4-Bit Organization
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Fully Static: Cycle Time = Access Time
- Fully TTL/DTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Low Power Version Available

#### MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME

| MCM2114-20<br>MCM21L14-20 | 200 ns | MCM2114-30<br>MCM21L14-30 | 300 ns |
|---------------------------|--------|---------------------------|--------|
| MCM2114-25<br>MCM21L14-25 | 250 ns | MCM2114-45<br>MCM21L14-45 | 450 ns |



# MCM2114 MCM21L14

# MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY





|           | × .               |
|-----------|-------------------|
| P         | IN NAMES          |
| A0-A9     | Address Input     |
| W         | Write Enable      |
| s         | Chip Select       |
| 1/01-1/04 | Data Input/Output |
| Vcc       | Power (+5 V)      |
| VSS       | Ground            |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                                 | Value        | Unit |
|----------------------------------------|--------------|------|
| Temperature Under Bias                 | -10 to +80   | °C   |
| Voltage on Any Pin With Respect to VSS | -0.5 to +7.0 | Vdc  |
| DC Output Current                      | 5.0          | mA   |
| Power Dissipation                      | 1.0          | Watt |
| Operating Temperature Range            | 0 to +70     | °C   |
| Storage Temperature Range              | -65 to +150  | °C   |

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS  $(T_A = 0^{\circ} \text{ to } 70^{\circ}\text{C}, V_{cc} = 5.0\text{V} \pm 5\%, \text{ unless otherwise noted.})$ 

#### **RECOMMENDED DC OPERATING CONDITIONS**

|                                                                                                          | MCM                            |      |      |      | MCM21L14 |      |      |      |
|----------------------------------------------------------------------------------------------------------|--------------------------------|------|------|------|----------|------|------|------|
| Parameter                                                                                                | Symbol                         | Min  | Nom  | Max  | Min      | Nom  | Max  | Unit |
| Input Load Current<br>(All Input Pins, V <sub>in</sub> = 0 to 5.5 V)                                     | ۱ <sub>L۱</sub>                | -    | -    | 10   | -        | ·    | 10   | μΑ   |
| I/O Leakage Current ( $\overline{S} = 2.4 \text{ V}, \text{V}_{1/O} = 0.4 \text{ V} \text{ to V}_{CC}$ ) | IILO!                          | -    | -    | 10   | -        | -    | 10   | μA   |
| Power Supply Current<br>( $V_{in} = 5.5, I_{I/O} = 0 \text{ mA}, T_A = 25^{\circ}C$ )                    | <sup>I</sup> CC1               |      | 80   | 95   | -        |      | 65   | mA   |
| Power Supply Current<br>( $V_{in} = 5.5 \text{ V}, I_{1/O} = 0 \text{ mA}, T_A = 0^{\circ}\text{C}$ )    | ICC2                           | -    | _    | 100  | -        | . –  | 70   | mA   |
| Input Low Voltage                                                                                        | VIL                            | -0.5 |      | 0.8  | -0.5     | -    | 0.8  | V    |
| Input High Voltage                                                                                       | ViH                            | 2.0  |      | 6.0  | 2.0      | ·    | 6.0  | V    |
| Output Low Current<br>V <sub>OL</sub> = 0.4 V                                                            | IOL                            | 2.1  | 6.0  | -    | 2.1      | 6.0  |      | mA   |
| Output High Current<br>V <sub>OH</sub> = 2.4 V                                                           | юн                             | -    | -1.4 | -1.0 | -        | -1.4 | -1.0 | mA   |
| Output Short Circuit Current                                                                             | <sup>1</sup> OS <sup>(2)</sup> |      | -    | 40   |          | ·    | 40   | mA   |

Note: 2. Duration not to exceed 30 seconds.

#### CAPACITANCE

(f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic                               | Symbol | Max | Unit |
|----------------------------------------------|--------|-----|------|
| Input Capacitance (Vin = 0 V)                | Cin    | 5.0 | pF   |
| Input/Output Capacitance ( $V_{I/O} = 0 V$ ) | CI/O   | 5.0 | pF   |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

| Input Pulse Levels,            |
|--------------------------------|
| Input Rise and Fall Times      |
| Input and Output Timing Levels |
| Output Load                    |

# MCM2114, MCM21L14

### AC OPERATING CONDITIONS AND CHARACTERISTICS Read (Note 3), Write (Note 4) Cycles

# **RECOMMENDED AC OPERATING CONDITIONS** (T<sub>A</sub> = 0 to 70°C, V<sub>CC</sub> = 5.0 V $\pm$ 5%)

|                                 | MCM2114-20 MCM2114-25 N |      |         | MCM2114-20 MCM2114-25 |     |             | 114-30 | MCM2114-45  |     |       |
|---------------------------------|-------------------------|------|---------|-----------------------|-----|-------------|--------|-------------|-----|-------|
|                                 |                         | MCM2 | 1L14-20 | MCM21L14-25           |     | MCM21L14-30 |        | MCM21L14-45 |     |       |
| Parameter                       | Symbol                  | Min  | Max     | Min                   | Max | Min         | Max    | Min         | Max | Units |
| Read Cycle Time                 | <sup>t</sup> RC         | 200  | -       | 250                   |     | 300         | -      | 450         | -   | ns    |
| Access Time                     | tA                      | -    | 200     |                       | 250 | -           | 300    | ·           | 450 | ns    |
| Chip Selection to Output Valid  | tso                     |      | 70      | -                     | 85  | -           | 100    | -           | 120 | ns    |
| Chip Selection to Output Active | tsx                     | 20   | -       | 20                    | -   | 20          | -      | 20          |     | ns    |
| Output 3-State From Deselection | totd                    | -    | 60      |                       | 70  | ·           | 80     | -           | 100 | ns    |
| Output Hold From Address Change | <sup>t</sup> OHA        | 50   |         | 50                    | -   | 50          |        | 50          |     | ns    |
| Write Cycle Time                | tWC                     | 200  | -       | 250                   |     | 300         |        | 450         | ~   | ns    |
| Write Time                      | tw                      | 120  |         | 135                   | -   | 150         | -      | 200         |     | ns    |
| Write Release Time              | twr                     | 0    | -       | 0                     | -   | 0           | - 1    | 0           | -   | ns    |
| Output 3-State From Write       | totw                    | -    | 60      |                       | 70  | -           | 80     |             | 100 | ns    |
| Data to Write Time Overlap      | tDW                     | 120  | -       | 135                   |     | 150         | -      | 200         | -   | ns    |
| Data Hold From Write Time       | t <sub>DH</sub>         | 0    | -       | 0                     | -   | 0           |        | 0           |     | ns    |

Notes: 3. A Read occurs during the overlap of a low  $\overline{S}$  and a high  $\overline{W}$ .

4. A Write occurs during the overlap of a low  $\overline{S}$  and a low  $\overline{W}$ .

READ CYCLE TIMING (Note 5)



Note: 5. W is high for a Read cycle.

WRITE CYCLE TIMING (Notes 6 and 7)



Notes: 6. If the  $\overline{S}$  low transition occurs simultaneously with the  $\overline{W}$  low transition, the output buffers remain in a high-impedance state.

7.  $\overline{W}$  must be high during all address transitions.

#### WAVEFORMS

| Waveform<br>Symbol | Input       | Output      |
|--------------------|-------------|-------------|
|                    | MUST BE     | WILL BE     |
|                    | VALID       | VALID       |
| min                | CHANGE      | WILL CHANGE |
| 1711               | FROM H TO L | FROM H TO L |
| 177777             | CHANGE      | WILL CHANGE |
|                    | FROM L TO H | FROM L TO H |
|                    | DON'T CARE  | CHANGING    |
|                    | ANY CHANGE  | STATE       |
| 1.4444.4.4         | PERMITTED   | UNKNOWN     |
|                    |             | HIGH        |
|                    |             | IMPEDANCE   |





### TYPICAL CHARACTERISTICS







OUTPUT SINK CURRENT versus OUTPUT VOLTAGE



2-6

# MCM2114, MCM21L14



MCM2114/MCM21L14 BIT MAP



To determine the precise location on the die of a word in memory, reassign address numbers to the address pins as in the table below. The bit locations can then be determined directly from the bit map.

| PIN NUMBER | REASSIGNED<br>ADDRESS NUMBER | PIN NUMBER | REASSIGNED<br>ADDRESS NUMBER |
|------------|------------------------------|------------|------------------------------|
| 1          | A6                           | 6          | A1                           |
| 2          | A5                           | 7          | A2                           |
| 3          | A4                           | 15         | Ā9                           |
| 4          | A3                           | 16         | AB                           |
| 5          | A0                           | 17         | Ā7                           |
| 5          |                              | 17         |                              |



# **Product Preview**

#### 1024 X 1 STATIC RAM

The MCM2115A and MCM2125A families are high-speed, 1024 words by one-bit random-access memories fabricated using HMOS, high-performance N-channel silicon-gate technology. Both open collector (MCM 2115A) and three-state output (MCM2125A) are available. The devices use fully static circuitry throughout and require no clocks of refreshing to operate. Data out has the same polarity as the input data.

Access times are fully compatible with the industry-produced 1K Bipolar RAMs, yet offer 20% to 50% reduction in power over their Bipolar equivalents.

All inputs and outputs are directly TTL compatible. A separate chip select allows easy selection of an individual device when outputs are OR-tied.

- Organized as 1024 Words of 1 Bit
- Single +5 V Operation
- Maximum Access Time = 45 ns and 70 ns
- Low Operating Power Dissipation



#### MCM2115A MCM2125A MOS (N-CHANNEL, SILICON-GATE) **1024-BIT STATIC RANDOM ACCESS** MEMORY L SUFFIX CERAMIC PACKAGE CASE 690 C SUFFIX FRIT-SEAL CERAMIC PACKAGE CASE 620 PIN ASSIGNMENT ŝ 16 Vcc 15 D Ao 2 14 W 3[ Α1 A2 4 13 Ao 12 A8 A<sub>3</sub> 5 A⊿ 6 11 A7 Q 10 A6 7 VSS 8 9 A5 PIN NAMES . . Address . . . . . . . . . . D Data input 0 Data Output ŝ Chip Select Vcc +5 V Supply . . Ground Vss Ŵ Write Enable

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

This is advance information and specifications are subject to change without notice.

2-8



# **Advance Information**

#### 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2147 is a 4096-bit static random access memory organized as 4096 words by 1-bit using Motorola's N-channel silicongate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

 $\bar{E}$  controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after  $\bar{E}$  goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as  $\bar{E}$  remains high. This feature results in system power savings as great as 85% in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2147 is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory No Clock or Timing Strobe Required
- Single +5 V Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible—All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output

Access Time -- MCM2147-55 = 55 ns max MCM2147-70 = 70 ns max MCM2147-85 = 85 ns max MCM2147-100 = 100 ns max



MOS (N-CHANNEL, SILICON-GATE). 4096-BIT STATIC RANDOM ACCESS MEMORY

CEBAMIC PACKAGE

also available

MCM2147

P SUFFIX PLASTIC PACKAGE CASE 707



#### PIN NAMES

| A0-A11 | Address Input |
|--------|---------------|
| Ŵ      | Write Enable  |
| Ē      | Chip Enable   |
| D      | Data Input    |
| Q      | Data Output   |
| Vcc    | Power (+5 V)  |
| VSS    | Ground        |

#### TRUTH TABLE

| Ē | w | Mode         | Output   | Power   |
|---|---|--------------|----------|---------|
| н | х | Not Selected | High Z   | Standby |
| L | L | Write        | High Z   | Active  |
| L | н | Read         | Data Out | Active  |

This is advance information and specifications are subject to change without notice.

#### **ABSOLUTE MAXIMUM RATINGS (See Note 1)**

| Rating                                 | Value        | Unit |
|----------------------------------------|--------------|------|
| Temperature Under Bias                 | -10 to +85   | °C   |
| Voltage on Any Pin With Respect to VCC | -0.5 to +7.0 | Vdc  |
| DC Output Current                      | 20           | mA   |
| Power Dissipation                      | 1.0          | Watt |
| Operating Temperature Range            | 0 to +70     | °C   |
| Storage Temperature Range              | -65 to +150  | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

### DC OPERATING CONDITIONS AND CHARACTERISTICS (T<sub>A</sub> = 0 to 70<sup>o</sup>C, V<sub>CC</sub> = 5.0 V $\pm$ 5% unless otherwise noted.)

|                                                                                                  |        | MCM2147-55 MCM 2147-70 |      |     | MCM2147-85 |      |     | MCM2147-100 |       |     |      |      |     |      |
|--------------------------------------------------------------------------------------------------|--------|------------------------|------|-----|------------|------|-----|-------------|-------|-----|------|------|-----|------|
| Parameter                                                                                        | Symbol | Min                    | Тур  | Max | Min        | Тур  | Max | Min         | Тур   | Max | Min  | Тур  | Max | Unit |
| Input Load Current<br>(All Input Pins, V <sub>in</sub> = 0 to 5.5 V)                             | μL     | -                      | 0.01 | 10  | -          | 0.01 | 10  | -           | 0.01  | 10  | -    | 0.01 | 10  | μA   |
| Output Leakage Current<br>(E = 2.0 V, V <sub>out</sub> = 0 to 5.5 V)                             | IOL    | -                      | 0.1  | 50  | -          | 0.1  | 50  |             | 0.1   | 50  | -    | 0.1  | 50  | μA   |
| Power Supply Current<br>(E = V <sub>IL</sub> , Outputs Open, T <sub>A</sub> = 25 <sup>o</sup> C) | ICC1   | · –                    | 120  | 170 | -          | 100  | 150 | -           | 95    | 130 | -    | 90   | 110 | mA   |
| Power Supply Current<br>(E = V <sub>IL</sub> , Outputs Open, T <sub>A</sub> = 0 <sup>0</sup> C)  | ICC2   | -                      | — ·  | 180 | _          | _    | 160 | -           | -     | 140 | - `  | -    | 120 | ṁΑ   |
| Standby Current<br>(E = V <sub>IH</sub> )                                                        | ISB    | <b>-</b> ,             | 15   | 30  | -          | 10   | 20  | -           | 15    | 25  |      | 10   | 20  | mA   |
| Input Low Voltage                                                                                | VIL    | -0.3                   | -    | 0.8 | -0.3       |      | 0.8 | -0.3        |       | 0.8 | -0.3 | -    | 8.0 | V    |
| Input High Voltage                                                                               | VIH    | 2.0                    | -    | 6.0 | 2.0        |      | 6.0 | 2.0         |       | 6.0 | 2.0  |      | 6.0 | V    |
| Output Low Voltage<br>{I <sub>OL</sub> = 8.0 mA)                                                 | VOL    | -                      | -    | 0.4 | ÷          | -    | 0.4 | — ·         | . —   | 0.4 | -    | _    | 0.4 | V    |
| Output High Voltage<br>(I <sub>OH</sub> = -4.0 mA)                                               | VOH    | 2.4                    | -    | -   | 2.4        | T.   | . — | 2.4         | . — A | -   | 2.4  |      | -   | V    |

Typical values are for  $T_A = 25^{\circ}C$  and  $V_{CC} = +5.0 V$ .

#### CAPACITANCE

(f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic                            | Symbol          | Max | Unit |  |
|-------------------------------------------|-----------------|-----|------|--|
| Input Capacitance (V <sub>in</sub> = 0 V) | C <sub>in</sub> | 5.0 | рF   |  |
| Output Capacitance (Vout = 0 V)           | Cout            | 10  | pF   |  |

Capacitance measured with a Boonton Meter or effective capacitance calculated

from the equation:  $C = \frac{I\Delta_t}{\Delta V}$ .

### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

| Input Pulse Levels             | 0 Volt to 3.5 Volts |
|--------------------------------|---------------------|
| Input Rise and Fall Times      | 10 ns               |
| Input and Output Timing Levels | 1.5 Volts           |
| Output Load                    | See Figure 1        |

### FIGURE 1 - OUTPUT LOAD



### AC OPERATING CONDITIONS AND CHARACTERISTICS, Read, Write Cycles (T<sub>A</sub> = 0 to 70°C, $V_{CC}$ = 5.0 V ± 5%)

|                                                  | 1                               | MCM2 | 147-55 | MCM2 | 147-70 | MCM2147-85 MCM2147-100 |          |         |     |      |
|--------------------------------------------------|---------------------------------|------|--------|------|--------|------------------------|----------|---------|-----|------|
| Parameter                                        | Symbol                          | Min  | Max    | Min  |        |                        | Max      | Min Max |     | Unit |
| Address Valid to Address Don't Care              | tAVAX                           | 55   | _      | 70   |        | Min<br>85              | -        | 100     | _   | ns   |
| (Cycle Time When Chip Enable is Held Active)     | AVAA                            |      |        |      |        |                        |          |         |     |      |
| Chip Enable Low to Chip Enable High              | <sup>t</sup> AVQV               | -    | 55     | _    | 70     | _                      | 85       | -       | 100 | ns   |
| Address Valid to Output Valid (Access)           | <sup>t</sup> ELQV1 <sup>*</sup> | -    | 55     | -    | 70     | -                      | 85       | -       | 100 | ns   |
| Chip Enable Low to Output Valid (Access)         | <sup>t</sup> ELQV2 <sup>*</sup> | -    | 65     | -    | 80     | -                      | 95       | -       | 110 | ns   |
| Address Valid to Output Invalid                  | tAVQX                           | 10   | -      | 10   |        | 10                     | -        | 10      | -   | ns   |
| Chip Enable Low to Output Invalid                | <sup>t</sup> ELQX               | 10   | -      | 10   | . –    | 10                     | -        | 10      | -   | ns   |
| Chip Enable High to Output High Z                | <sup>t</sup> EHQZ               | 0    | 40     | 0    | 40     | 0                      | 40       | 0       | 40  | ns   |
| Chip Selection to Power-Up Time                  | tPU ·                           | 0    | -      | 0    | -      | 0                      | -        | 0       | -   | ns   |
| Chip Deselection to Power-Down Time              | tPD                             | 0    | 30     | 0    | 30     | 0                      | 30       | 0       | 30  | ns   |
| Address Valid to Chip Enable Low (Address Setup) | TAXEL                           | 0    | -      | 0    | -      | 0                      | _        | 0       | -   | ns   |
| Chip Enable Low to Write High                    | <sup>t</sup> ELWH               | 45   | -      | 55   | -      | 70                     | -        | 80      | -   | ns   |
| Address Valid to Write High                      | <sup>t</sup> AVWH               | 45   | -      | 55   | -      | 70                     | -        | 80      | · - | ns   |
| Address Valid to Write Low (Address Setup)       | TAVWL                           | 0    | -      | 0    | -      | 0                      | -        | 0       | -   | ns   |
| Write Low to Write High (Write Pulse Width)      | twlwh                           | 35   | -      | 40   |        | 55                     | -        | 65      | -   | ns   |
| Write High to Address Don't Care                 | twhax                           | 10   | -      | 15   | -      | 15                     | <u> </u> | 15      | -   | ns   |
| Data Valid to Write High                         | <sup>t</sup> DVWH               | 25   | -      | 30   | -      | 45                     | -        | 55      | -   | ns   |
| Write High to Data Don't Care (Data Hold)        | twhdx                           | 10   | . —    | 10   | · _    | 10                     | -        | 10      | -   | ns   |
| Write Low to Output High Z                       | twloz                           | 0    | 30     | 0    | 35     | 0                      | 45       | 0       | 50  | ns   |
| Write High to Output Valid                       | <sup>t</sup> WHQV               | 0    | -      | 0    |        | 0                      | -        | 0       |     | ns   |

\* $t_{ELQV1}$  is access from chip enable when the 2147 is deselected for at least 55 ns prior to this cycle.  $t_{ELQV2}$  is access from chip enable for 0 ns < deselect time < 55 ns. If deselect time = 0 ns, then  $t_{ELQV}$  =  $t_{AVQV}$ .

#### TIMING PARAMETER ABBREVIATIONS

t X X X X signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are: H = transition to high

- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. MCM2147





| Waveform<br>Symbol | Input   | Output  |
|--------------------|---------|---------|
|                    | MUST BE | WILL BE |
|                    | VALID   | VALID   |

WAVEFORMS '

| <br>MUST BE<br>VALID                   | WILL BE<br>VALID             |
|----------------------------------------|------------------------------|
| <br>CHANGE<br>FROM H TO L              | WILL CHANGE<br>FROM H TO L   |
| CHANGE                                 | WILL CHANGE<br>FROM L TO H   |
| DON'T CARE:<br>ANY CHANGE<br>PERMITTED | CHANGING<br>STATE<br>UNKNOWN |
| <br>_                                  | HIGH                         |

IMPEDANCE

# MCM2147

#### **DEVICE DESCRIPTION**

The MCM2147 is produced with a high-performance MOS technology which combines on chip substrate bias generation with device scaling to achieve high speed. The speed-power product of this process is about four times better than earlier MOS processes.

This gives the MCM2147 its high speed, low power and ease-of-use. The low-power standby feature is controlled with the  $\overline{E}$  input.  $\overline{E}$  is not a clock and does not have to be cycled. This allows the user to tie  $\overline{E}$  directly to system addresses and use the line as part of the normal decoding logic. Whenever the MCM2147 is deselected, it automatically reduces its power requirements.

#### SYSTEM POWER SAVINGS

The automatic power-down feature adds up to significant system power savings. Unselected devices draw low standby power and only the active devices draw active power. Thus the average power consumed by a device declines as the system size increases, asymptotically approaching the standby power level as shown in Figure 2.

The automatic power-down feature is obtained without any performance degradation, since access time from chip enable is  $\leq$  access time from address valid. Also the fully static design gives access time equal cycle time so multiple read or write operations are possible during a single select period. The resultant data rates are 14.3 MHz and 18 MHz for the MCM2147-70 and MCM2147-55 respectively.

#### DECOUPLING AND BOARD LAYOUT CONSIDERATIONS

The power switching characteristic of the MCM2147 requires careful decoupling. It is recommended that a 0.1  $\mu$ F to 0.3  $\mu$ F ceramic capacitor be used on every other device, with a 22  $\mu$ F to 47  $\mu$ F bulk electrolytic decoupler every 16 devices. The actual values to be used will depend on board layout, trace widths and duty cycle.

Power supply gridding is recommended for PC board layout. A very satisfactory grid can be developed on a two-layer board with vertical traces on one side and horizontal traces on the other, as shown in Figure 3. If fast drivers are used, terminations are recommended on input signal lines to the MCM2147 because significant reflections are possible when driving their high impedance inputs. Terminations may be required to match the impedance of the line to the driver.

FIGURE 2 - AVERAGE DEVICE DISSIPATION versus MEMORY SIZE



FIGURE 3 – PC LAYOUT





### **TRUTH TABLE**

|     | inpu | Its |    |            | Data Out   | •                 | Cycle Power                     |                       | <b>P</b>             |
|-----|------|-----|----|------------|------------|-------------------|---------------------------------|-----------------------|----------------------|
| RAS | CAS  | CS  | WE | Previous   | Interim    | Present           | Cycle Power                     | Ref                   | Function             |
| L   | L    | L   | L  | Valid data | High Imp.  | Input data        | Full-operating                  | Yes                   | Write cycle          |
| L   | L    | · L | н  | Valid data | High Imp.  | Valid data (cell) | ell) Full-operating Yes Read cy |                       | Read cycle           |
| L   | L    | н   | x  | Valid data | High Imp.  | High Imp.         | Full-operating                  | Yes                   | Deselected-refresh   |
| L   | н    | х   | X  | Valid data | Valid data | Valid data        | Reduced operating               | Yes                   | RAS only-refresh     |
| H.  | L    | х   | х  | Valid data | High Imp.  | High Imp.         | Standby                         | andby No Standby-outp |                      |
| н   | н    | х   | X  | Valid data | Valid data | Valid data        | Standby                         | No                    | Standby-output valid |

H = High, L = Low, X = Don't Care



### **OPERATING CHARACTERISTICS**

### ADDRESSING

The MCM4027A has six address inputs (A0–A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe (CAS). At the beginning of a memory cycle, the six low order address bits A0 through A5 are strobed into the chip with RAS to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6–A11) are placed on the address pins. This address is then strobed into the chip with CAS. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by A0 to complete the data selection. The Chip Select ( $\overline{CS}$ ) is latched into the port along with the column addresses.

#### DATA OUTPUT

In order to simplify the memory system designed and reduce the total package count, the MCM4027A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

A chip will be unselected during a memory cycle if:

- (1) The chip receives both RAS and CAS signals, but no Chip Select signal.
- (2) The chip receives a CAS signal but no RAS signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.
- If, during a read, write, or read-modify-write cycle,

the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals:  $\overrightarrow{RAS}$ ,  $\overrightarrow{CAS}$ , and  $\overrightarrow{Chip}$ Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:

- (1) Read Cycle On the negative edge of CAS, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next CAS signal.
- (2) Write Cycle If the WE input is switched to a logic 0 before the CAS transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next CAS signal.
- (3) Read-Modify-Write Same as read cycle.

#### DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the  $\overline{WE}$  and  $\overline{CAS}$  signals. The last of these signals to make a negative transition will strobe the data into the latch. If the  $\overline{WE}$  input is switching to a logic 0 in the beginning of a write cycle, the falling edge of  $\overline{CAS}$  strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of  $\overline{CAS}$ .

If a read-modify-write cycle is being performed, the  $\overline{WE}$  input would not make its negative transistion until after the  $\overline{CAS}$  signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of  $\overline{WE}$ . The data setup and hold times would now be referenced to the negative edge of the  $\overline{WE}$  signal. The only other timing constraints for a write-type-cycle is that both the  $\overline{CAS}$  and  $\overline{WE}$  signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

#### INPUT/OUTPUT LEVELS

All of the inputs to the MCM4027A are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability. (3.2 mA) to drive two TTL loads. The output buffer also has a separate V<sub>CC</sub> pin so that it can be powered from the same supply as the logic being employed.

#### REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCM4027A must be refreshed once every 2 ms. Any cycle in which a RAS signal occurs accomplishes a refresh operation. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, it a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the RAS cycle. This refresh mode will not shorten the refresh cycle time; however, the system standby power can be reduced by approximately 30%.

If the RAS only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Applying CAS to the chip will restore activity of the output buffer.

#### POWER DISSIPATION

Since the MCM4027A is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027A is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycele.

In a memory system, the  $\overline{CAS}$  signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a  $\overline{RAS}$  signal will not dissipate any power on the  $\overline{CAS}$  edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the  $\overline{RAS}$  signal should be decoded so that only the chips to be selected receive a  $\overline{RAS}$  signal. If the  $\overline{RAS}$  signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable. Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser any license under the patent rights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product(s) to which the information applies and to discontinue manufacture of the product(s) at any time.

### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

#### RECOMMENDED OPERATING CONDITIONS (Referenced to V<sub>SS</sub> = Ground.)

| Parameter                                          | Symbol         | Min          | Тур                      | Max                      | Unit                      | Notes |
|----------------------------------------------------|----------------|--------------|--------------------------|--------------------------|---------------------------|-------|
| Supply Voltage                                     | VDD            | 10.8         | 12.0                     | 13.2                     | Vdc                       | 2     |
|                                                    | Vcc            | VSS          | 5.0                      | VDD                      | Vdc                       | 3     |
|                                                    | Vss            | 0            | 0                        | 0                        | Vdc                       | 2     |
|                                                    | VBB            | -4.5         | -5.0                     | -5.5                     | Vdc                       | 2     |
| Logic 1 Voltage, RAS, CAS, WRITE                   | VIHC           | 2.4          | 5.0                      | 7.0                      | Vdc                       | 2, 4  |
| Logic 1 Voltage, all inputs except RAS, CAS, WRITE | VIH            | 2.2          | 5.0                      | 7.0                      | Vdc                       | 2,4   |
| Logic 0 Voltage, all inputs                        | VIL            | -1.0         | 0                        | 0.8                      | Vdc                       | 2, 4  |
| DC CHARACTERISTICS (VDD = 12 V ± 10%, VCC =        | 5.0 V ±10%, VB | B ≃ -5.0 V ± | 10%, V <sub>SS</sub> = 0 | V, T <sub>A</sub> = 0 to | 70 <sup>0</sup> C.) Notes | 1, 5  |
| Characteristic                                     | Symbol         | Min          | Тур                      | Max                      | Units                     | Notes |
| Average VDD Power Supply Current                   | IDD1           |              |                          | 35                       | mA                        | 6     |
| V <sub>CC</sub> Power Supply Current               | Icc            |              |                          |                          | mA                        | 7     |
|                                                    |                |              | 1                        |                          |                           | 1     |

| 00                                                                       |       |     |     |     |      |
|--------------------------------------------------------------------------|-------|-----|-----|-----|------|
| Average VBB Power Supply Current                                         | IBB   |     | 250 | μA  |      |
| Standby V <sub>DD</sub> Power Supply Current                             | IDD2  |     | 2   | mA  | 9    |
| Average V <sub>DD</sub> Power Supply Current during<br>"RAS only" cycles | IDD3  |     | 25  | mA  | 6    |
| Input Leakage Current (any input)                                        | Ч(L)  |     | 10  | μA  | 8    |
| Output Leakage Current                                                   | 10(L) |     | 10  | μA  | 9,10 |
| Output Logic 1 Voltage @ Iout = -5 mA                                    | ∨он   | 2.4 |     | Vdc |      |
| Output Logic 0 Voltage @ Iout = 3.2 mA                                   | VOL   |     | 0.4 | Vdc |      |

#### NOTES 1 through 11:

1. T<sub>A</sub> is specified for operation at frequencies to t<sub>RC</sub> > t<sub>RC</sub>(min). Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible provided that all ac parameters are met.

2. All voltages referenced to VSS.

3. Output voltage will swing from V<sub>SS</sub> to V<sub>CC</sub> when enabled, with no output load. For purposes of maintaining data in standby mode, V<sub>CC</sub> may be reduced to V<sub>SS</sub> without affecting refresh operations or data retention. However, the V<sub>OH</sub>(min) specification is not guaranteed in this mode.

4. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 v).

5. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose. 6. Current is proportional to cycle rate,  $I_{DD1}(max)$  is measured at the cycle rate specified by  $t_{BC}(min)$ .

7. I<sub>CC</sub> depends on output loading. During readout of high level data V<sub>CC</sub> is connected through a low impedance (135  $\Omega$  typ) to Data Out. At all other times I<sub>CC</sub> consists of leakage currents only. 8. All device pins at 0 volts except V<sub>BB</sub> which is at -5 volts and the pin under test which is at +10 volts.

9. Output is disabled (high-impedance) and  $\overline{RAS}$  and  $\overline{CAS}$  are both at a logic 1. Transient stabilization is required prior to measurement of this parameter.

10. 0 V  $\leq$  V<sub>Out</sub>  $\leq$  +10 V.

11. Effective capacitance is calculated from the equation:

$$C = \frac{\Delta Q}{\Delta V}$$
 with  $\Delta V = 3$  volts

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested) Note 11

|                    | . Characteristic              | Symbol                 | Max  | Unit |
|--------------------|-------------------------------|------------------------|------|------|
| Input Capacitance  | (A0-A5), D <sub>in</sub> , CS | Cin(EFF)               | 5.0  | pF   |
|                    | RAS, CAS, WRITE               | · ·                    | 10.0 |      |
| Output Capacitance |                               | C <sub>out</sub> (EFF) | 7.0  | pF   |

#### ABSOLUTE MAXIMUM RATINGS (See Notes 1 and 2)

| Rating                              | Symbol                             | Value       | Unit |  |
|-------------------------------------|------------------------------------|-------------|------|--|
| Voltage on Any Pin Relative to VBB* | V <sub>in</sub> , V <sub>out</sub> | -0.5 to +20 | Vdc  |  |
| Operating Temperature Range         | TA                                 | 0 to +70    | °C   |  |
| Storage Temperature Range           | T <sub>stg</sub>                   | -65 to +150 | °C   |  |
| Output Current (Short Circuit)      | lout                               | 50          | mAdc |  |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS ARE EXCEEDED. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

# RECOMMENDED AC OPERATING CONDITIONS ( $V_{DD} = 12 V \pm 10\%$ , $V_{CC} = 5.0 V \pm 10\%$ , $V_{BB} = -5.0 V \pm 10\%$ , $V_{SS} = 0 V$ , $T_A = 0 \text{ to } 70^{\circ}\text{C}$ .) Notes 1, 5, 12, 18

|                                            |                  | MCM4 | 027AC1 | MCM4 | 027AC2 | MCM4 | 027AC3    | MCM4 | 027AC4 | Units | Notes  |  |
|--------------------------------------------|------------------|------|--------|------|--------|------|-----------|------|--------|-------|--------|--|
| Parameter                                  | Symbol           | Min  | Max    | Min  | Max    | Min  | Max       | Min  | Max    |       |        |  |
| Random Read or Write Cycle Time            | 'RC              | 320  |        | 320  |        | 375  |           | 375  |        | ns    | 13     |  |
| Read Write Cycle Time                      | 'RWC             | 320  |        | 320  |        | 375  |           | 375  |        | ns    | 13     |  |
| Page Mode Cycle Time                       | 'PC              | 160  |        | 170  |        | 225  |           | 285  |        | ns    | 13     |  |
| Access Time From Row Address Strobe        | 'RAC             |      | 120    |      | 150    |      | 200       |      | 250    | ns    | 14, 16 |  |
| Access Time From Column Address Strobe     | 'CAC             |      | 80     |      | 100    |      | 135       |      | 165    | ns    | 15, 16 |  |
| Output Buffer and Turn-Off Delay           | 'OFF             |      | 35     |      | 40     |      | 50        |      | 60     | ns    |        |  |
| Row Address Strobe Precharge Time          | 'RP              | 100  |        | 100  |        | 120  |           | 120  |        | ns    |        |  |
| Row Address Strobe Pulse Width             | 'RAS             | 120  | 10,000 | 150  | 10,000 | 200  | 10,000    | 250  | 10,000 | ns    |        |  |
| Row Address Strobe Hold Time               | 'RSH             | 80   |        | 100  |        | 135  |           | 165  |        | ns    |        |  |
| Column Address Strobe Pulse Width          | 'CAS-            | 80   |        | 100  |        | 135  |           | 165  |        | ns    |        |  |
| Column Address Strobe Hold Time            | 'CSH             | 120  |        | 150  |        | 200  |           | 250  |        | ns    |        |  |
| Row to Column Strobe Lead Time             | 'RCD             | 15   | 40     | 20   | 50     | 25   | 65        | 35   | 85     | ns    | 17     |  |
| Row Address Setup Time                     | 'ASR             | 0    |        | 0 .  |        | 0    |           | 0    |        | ns    |        |  |
| Row Address Hold Time                      | 'RAH             | 15   |        | 20   |        | 25   |           | 35   |        | ns    |        |  |
| Column Address Setup Time                  | 'ASC             | -5   |        | -10  |        | -10  |           | -10  |        | ns    |        |  |
| Column Address Hold Time                   | 'CAH             | 40   |        | 45   |        | 55   |           | 75   |        | ns    |        |  |
| Column Address Hold Time Referenced to RAS | 'AR              | 80   |        | 95   |        | 120  |           | 160  |        | ns    |        |  |
| Chip Select Setup Time                     | 'CSC             | 0    |        | -10  |        | -10  |           | -10  |        | ns    |        |  |
| Chip Select Hold Time                      | 'сн              | 40   |        | 45   |        | 55   |           | 75   |        | ns    |        |  |
| Chip Select Hold Time Referenced to RAS    | 'CHR             | 80   | 1      | 95   |        | 120  |           | 160  |        | ns    |        |  |
| Transition Time Rise and Fall              | 'T               | 3    | 35     | 3    | 35     | 3    | 50        | 3    | 50     | ns    | 18     |  |
| Read Command Setup Time                    | 'RCS             | 0    | 1      | 0    |        | 0    |           | 0    |        | ns    |        |  |
| Read Command Hold Time                     | 'RCH             | 0    | 1      | 0    |        | 0    |           | 0    |        | ns    |        |  |
| Write Command Hold Time                    | WCH              | 40   |        | 45   |        | 55   |           | 75   |        | ns    |        |  |
| Write Command Hold Time Referenced to RAS  | 'WCR             | 80   |        | 95   |        | 120  |           | 160  |        | ns    |        |  |
| Write Command Pulse Width                  | 'WP              | 40   |        | 45   |        | 55   |           | 75   |        | ns    |        |  |
| Write Command to Row Strobe Lead Time      | 'RWL             | 50   |        | 50   |        | 70   |           | 85   |        | ns .  |        |  |
| Write Command to Column Strobe Lead Time   | 'CWL             | 50   | 1      | 50   |        | 70   |           | 85   |        | ns    |        |  |
| Data in Setup Time                         | 'DS              | 0    |        | 0    |        | 0    |           | 0    |        | ns    | 19     |  |
| Data in Hold Time                          | 'DH              | 40   |        | 45   |        | 55   | · · · · · | 75   |        | ns    | 19     |  |
| Data in Hold Time Referenced to RAS        | 'DHR             | 80   |        | 95   |        | 120  | [         | 160  |        | ns    |        |  |
| Column to Row Strobe Precharge Time        | <sup>1</sup> CRP | 0    |        | . 0  |        | 0    | [         | 0    | -      | ns    |        |  |
| Column Precharge Time                      | 'CP              | 60   |        | 60   |        | 80   |           | 110  |        | ns    |        |  |
| Refresh Period                             | 'RFSH            | [    | 2      | [    | 2      |      | 2         | · ·  | 2      | ms    |        |  |
| Write Command Setup Time                   | 'wcs             | 0    |        | 0    | 1      | 0    |           | 0    |        | ns    |        |  |
| CAS to WRITE Delay                         | 'CWD             | 60   |        | 60   |        | 80   |           | 90   |        | ns    | 20     |  |
| RAS to WRITE Delay                         | 'RWD             | 100  | T      | 110  |        | 145  |           | 175  |        | ns    | 20     |  |
| Data Out Hold Time                         | 1DOH             | 10   | 1      | 10   |        | 10   | <b></b>   | 10   |        | μs    |        |  |

#### NOTES 12 through 20:

12. AC measurements assume  $t_T = 5$  ns.

13. The specifications for  $t_{RC}(min)$  and  $t_{RWC}(min)$  are used only to indicate cycle time at which proper operation over the full temperature range (0°C  $\leq$  T\_A  $\leq$  70°C) is assured.

14. Assumes that  $t_{RCD} \leq t_{RCD}(max)$ .

15. Assumes that  $t_{RCD} \ge t_{RCD}$  (max).

16. Measured with a load circuit equivalent to 2 TTL loads and 100  $\ensuremath{\text{pF}}$  .

17.Operation within the t<sub>RCD</sub>(max) limit insures that t<sub>RAC</sub>(max) can be met. t<sub>RCD</sub>(max) is specified as a reference point only; if, t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub>(max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.

 $18.V_{IHC}(\text{min}) \text{ or } V_{IH}(\text{min}) \text{ and } V_{IL}(\text{max}) \text{ are reference levels for measuring timing of input signals. Also, transition times are measured between } V_{IHC} \text{ or } V_{IH} \text{ and } V_{IL}.$ 

19. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify write cycles.

20. twCS, t<sub>CWD</sub>, and t<sub>RWD</sub> are not restrictive operating parameters. They are included in the data sheet as electrical characterisitos only: If twCS  $\geq$  twCS(min), the cycle is an early write cycle and Data Out will contain the data written into the selected cell. If t<sub>CWD</sub>  $\geq$  t<sub>CWD</sub>(min) and t<sub>RWD</sub>  $\geq$  t<sub>RWD</sub>(min), the cycle is a read-write cycle and Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of Data Out (at access time) is indeterminate.



2

## MCM4027A

## WRITE CYCLE TIMING



2-20



## READ-MODIFY-WRITE TIMING

RAS ONLY REFRESH TIMING





PAGE MODE READ CYCLE



PAGE MODE WRITE CYCLE



2-22

MCM4027A



MCM4027A BIT ADDRESS MAP

2



## Advance Information

### 4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4096 is a 4096-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 4096 one-bit words and fabricated using Motorola's highly reliable N-channel silicon gate technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address input, the MCM4096 requires only six address lines and permits packaging in Motorola's standard 16-pin dual in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The MCM4096 incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.

- Organized as 4096 Words of 1 Bit
- Maximum Access Time = 250 ns MCM4096L6, C6

300 ns - MCM4096L16, C16 350 ns - MCM4096L11, C11

Minimum Read and Write Cycle Time =

375 ns - MCM4096L6, C6 425 ns - MCM4096L16, C16 500 ns - MCM4906L11, C11

Low Power Dissipation

445 mW Maximum (Active)

19 mW Maximum (Standby)

- 3-State Output
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Standard 16-Pin Package
- Compatible with the Popular 2104/MK4096/4027/MCM6604/ MCM6604A

### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                              | Symbol                             | Value       | Unit |
|-------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to VBB* | V <sub>in</sub> , V <sub>out</sub> | -0.5 to +20 | Vdc  |
| Operating Temperature Range         | Τ <sub>Α</sub>                     | 0 to +70    | °C   |
| Storage Temperature Range           | T <sub>stg</sub>                   | -55 to +150 | °C   |
| Output Current (Short Circuit)      | lout                               | 50          | mAdc |

\*( $V_{SS} - V_{DD} \ge 4.5 V$ )

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. At power turn-on, the V<sub>BB</sub> supply must come up before or coincident with V<sub>DD</sub>.

MCM4096 MOS (N-CHANNEL, SILICON-GATE) 4096-BIT DYNAMIC RANDOM ACCESS MEMORY L SUFFIX CEBAMIC PACKAGE CASE 690 C SUFFIX FRIT-SEAL RAMIC PACKAGE CASE 620 **PIN ASSIGNMENT** ∨вв 16 Vss Din 2 CAS 15 WF з Dout RAS 4 13 CS Α0 5 12 A3 6 Α2 Δ4 A 1 10 A5 Vnn 8 Vcc This device contains circuitry to protect the

Ins device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

This is advance information and specifications are subject to change without notice.

## DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED OPERATING CONDITIONS (Referenced to V<sub>SS</sub> = Ground)

|                                                                                    | 1               | 409   | 6-6                 | 4096 16 |       | 6 4096-11          |      |       |       |
|------------------------------------------------------------------------------------|-----------------|-------|---------------------|---------|-------|--------------------|------|-------|-------|
| Parameter                                                                          | Symbol          | Min   | Max                 | Min     | Max   | Min                | Max  | Unit  | Notes |
| Supply Voltage                                                                     | V <sub>DD</sub> | 11.4  | 12.6                | 11.4    | 12.6  | 11.4               | 12.6 | Vdc   | 1     |
|                                                                                    | Vcc             | VSS   | VDD                 | VSS     | VDD   | VSS                | VDD  | Vdc   | 1, 2  |
|                                                                                    | V <sub>SS</sub> | 0     | 0                   | 0       | 0     | 0                  | 0    | Vdc   | 1     |
|                                                                                    | VBB             | -4.5  | -5.5                | -4.5    | -5.5  | -4.5               | -5.5 | Vdc   | 1     |
| Logic 1 Voltage, RAS, CAS, WRITE                                                   | VIHC            | 2.7   | 7.0                 | 2.7     | 7.0   | 3.0                | 7.0  | Vdc   | 1,3   |
| Logic 1 Voltage, all inputs except RAS, CAS, WRITE                                 | VIH             | 2.4   | 7.0                 | 2.4     | 7.0   | 2.4                | 7.0  | Vdc   | 1,3   |
| Logic 0 Voltage, all inputs                                                        | VIL             | -1.0  | 0.8                 | -1.0    | 0.8   | -1.0               | 0.8  | Vdc   | 1, 3  |
| DC CHARACTERISTICS (V <sub>DD</sub> = 12 V ± 10%, V <sub>CC</sub> = 5.0 V ± 10%, V | /BB = - 5.0 V   | ± 10% | , v <sub>ss</sub> = | 0 V, 1  | A = 0 | to 70 <sup>0</sup> | C)   |       |       |
|                                                                                    |                 | 409   | 6-6                 | 4096-16 |       | 4096-11            |      |       |       |
| Characteristic                                                                     | Symbol          | Min   | Max                 | Min     | Max   | Min                | Max  | Units | Notes |
| Average V <sub>DD</sub> Power Supply Current                                       | DD1             | -     | 35                  | -       | 30    | -                  | 25   | mA    | 4     |
| V <sub>CC</sub> Power Supply Current                                               | lċc             | -     |                     | -       | -     |                    | -    | mA    | 5     |
| Average VBB Power Supply Curent                                                    | 1 <sub>BB</sub> | -     | 75                  | -       | 75    | -                  | 75   | μA    |       |
| Standby VDD Power Supply Current                                                   | 1DD2            | -     | 1.5                 | -       | 1.5   |                    | 1.5  | mA    | 7     |
| Average VDD Power Supply Current during "RAS only" cycles                          | IDD3            | -     | 25                  | -       | 22    |                    | 18   | mA    | 4     |
| Input Leakage Current (any input)                                                  | IL(L)           | -     | 5                   | -       | 5     | -                  | 5    | μA    | 6     |
| Output Leakage Current                                                             | 10(L)           | -     | 10                  | _       | 10    | -                  | 10   | μA    | 7,8   |

NOTES:

1. All voltages referenced to VSS. VBB must be applied before and removed after other supply voltages.

 Output voltage will swing from V<sub>SS</sub> to V<sub>CC</sub> if V<sub>CC</sub> ≤ V<sub>DD</sub> -4 volts. If V<sub>CC</sub> ≥ V<sub>DD</sub> -4 volts, the output will swing from V<sub>SS</sub> to a voltage somewhat less than V<sub>DD</sub>.

Vон

VOL

2.4 -

3. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 V).

4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.

5. ICC depends upon output loading. The VCC supply is connected to the output buffer only.

6. All device pins at 0 volts except VBB which is at -5 volts and the pin under test which is at +10 volts.

7. Output is disabled (open-circuit) and  $\overline{RAS}$  and  $\overline{CAS}$  are both at a logic 1.

8. 0 V  $\leq$  V<sub>out</sub>  $\leq$  +10 V.

Output Logic 1 Voltage @ Iout = -5 mA

Output Logic 0 Votlage @ Iout = 3.2 mA

## EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested.)

|                    | Characteristic  | Symbol                 | Max | Unit |
|--------------------|-----------------|------------------------|-----|------|
| Input Capacitance  | (A0-A5) Din, CS | C <sub>in(EFF)</sub>   | 10  | pF   |
|                    | RAS, CAS, WRITE |                        | 7.0 |      |
| Output Capacitance | · · ·           | C <sub>out</sub> (EFF) | 8.0 | pF   |

Vdc

Vdc

0.4

2

24

0.4

- 2.4 -

04

## AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

### RECOMMENDED AC OPERATING CONDITIONS (NOTES 13 and 15)

 $(V_{DD} = 12 \text{ V} \pm 10\%, \text{ V}_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{BB} = -5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = 0 \text{ to } 70^{\circ}\text{C})$ 

|                                          |                   | MCM4 | 096-6  | MCM4 | 096-16 | MCM4  | 096-11 |       |        |
|------------------------------------------|-------------------|------|--------|------|--------|-------|--------|-------|--------|
| Parameter                                | Symbol            | Min  | Max    | Min  | Max    | Min   | Max    | Units | Notes  |
| Random Read or Write Cycle Time          | tRC               | 375  | - 1    | 425  | -      | 500   | -      | ns    | 9      |
| Access Time from Row Address Strobe      | <sup>t</sup> RAC  |      | 250    | -    | 300    | -     | 350    | ns    | 9, 11  |
| Access Time from Column Address Strobe   | <sup>t</sup> CAC  | _    | 140    | -    | 165    | -     | 200    | ns    | 10, 11 |
| Output Buffer and Turn-Off Delay         | tOFF              | 0    | 65     | 0    | 80     | 0     | 100    | ns    |        |
| Row Address Strobe Precharge Time        | tRP               | 115  | _ ·    | 125  | -      | - 150 | -      | ns    |        |
| Row Address Strobe Pulse Width           | <sup>t</sup> RAS  | 250  | 10,000 | 300  | 10,000 | 300   | 10,000 | ns    |        |
| Column Address Strobe Pulse Width        | tCAS              | 140  | · _    | 165  | -      | 200   | -      | ns    | 10     |
| Row to Column Strobe Lead Time           | tRCL              | 60   | 110    | 80   | 135    | 100   | 150    | ns    | 12     |
| Row Address Setup Time                   | tASR              | 0    | -      | 0    | -      | 0     | -      | ns    |        |
| Row Address Hold Time                    | <sup>t</sup> RAH  | 60   | -      | 80   |        | 100   | -      | ns.   |        |
| Chip Select Hold Time                    | tCH               | 100  | -      | 100  | -      | 100   | -      | ns    |        |
| Transition Time (Rise and Fall)          | tŢ                | 3.0  | 50     | 3.0  | 50     | 3.0   | 50     | ns    | 13     |
| Read Command Setup Time                  | tRCS              | 0    | -      | 0    | -      | 0     | -      | ns    |        |
| Read Command Hold Time                   | tRCH              | 0    | -      | 0    | -      | 0     | -      | ns    |        |
| Write Command Hold Time                  | tWCH              | 110  | -      | 130  | -      | 150   | -      | ns    | 1      |
| Write Command Pulse Width                | twp               | 110  |        | 130  |        | 150   | -      | ns    | 1      |
| Column to Row Strobe Lead Time           | tCRL              | -40  | +40    | -50  | +50    | -50   | +50    | ns    | 1      |
| Write Command to Column Strobe Lead Time | tCWL              | 110  | -      | 130  |        | 150   | -      | ns    |        |
| Data in Setup Time                       | tDS               | 0    | - 1    | 0    |        | 0     |        | ns    | 14     |
| Data in Hold Time                        | tDH               | 110  |        | 130  | -      | 150   | -      | ns    | 14     |
| Refresh Period                           | <sup>t</sup> RFSH |      | 2.0    | -    | 2.0    | -     | 2.0    | ms    | 1      |
| Modify Time                              | tMod              | 0    | 10     | Ó    | 10     | 0     | 10     | μs    | 1      |
| Data Out Hold Time                       | tDOH              | 10   | -      | 10   | -      | 10    | - 1    | μs    |        |

#### NOTES:

- 9. Assumes that  $t_{RCL} + t_T \leq t_{RCL}$  (max).
- 10. Assumes that  $t_{RCL} + t_T \ge t_{RCL}$  (max).
- 11. Measured with a load circuit equivalent to 1 TTL load and 100 pF.
- Operation within the t<sub>RCL</sub> (max) limit ensures that t<sub>RAC</sub> (max) can be met. t<sub>RCL</sub> (max) is specified as a reference point only; if t<sub>RCL</sub> is greater than the specified t<sub>RCL</sub> (max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.
- 13. VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transistion times are measured between VIHC or VIH and VIL.
- 14. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.
- 15. After the application of supply voltages or after extended periods of operation without clocks, the device must perform a minimum of eight initialization cycles (any valid memory cycle containing both RAS and CAS) prior to normal operation.



2

WRITE CYCLE TIMING



READ-MODIFY-WRITE TIMING



RAS ONLY REFRESH TIMING





## **OPERATING CHARACTERISTICS**

#### ADDRESSING

The MCM4096 has six address inputs (A0-A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe (CAS). At the beginning of a memory cycle, the six low order address bits A0 through A5 are strobed into the chip with RAS to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6-A11) are placed on the address pins. This address is then strobed into the chip with CAS. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by A0 to complete the data selection. The Chip Select (CS) is latched into the port along with the column addresses.

#### DATA OUTPUT

In order to simplify the memory system designed and reduce the total package count, the MCM4027 contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

- A chip will be unselected during a memory cycle if:
  - (1) The chip receives both RAS and CAS signals, but no Chip Select signal.
  - (2) The chip receives a CAS signal but no RAS signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.

If, during a read, write, or read-modify-write cycle,

## MCM4096

the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: RAS, CAS, and Chip Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:

- (1) Read Cycle On the negative edge of CAS, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next CAS signal.
- (2) Write Cycle If the WE input is switched to a logic 0 before the CAS transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next CAS signal.
- (3) Read-Modify-Write Same as read cycle.

#### DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the  $\overline{WE}$  and  $\overline{CAS}$  signals. The last of these signals to make a negative transition will strobe the data into the latch. If the  $\overline{WE}$  input is switching to a logic 0 in the beginning of a write cycle, the falling edge of  $\overline{CAS}$  strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of  $\overline{CAS}$ .

If a read-modify-write cycle is being performed, the  $\overline{WE}$  input would not make its negative transistion until after the  $\overline{CAS}$  signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of  $\overline{WE}$ . The data setup and hold times would now be referenced to the negative edge of the  $\overline{WE}$  signal. The only other timing constraints for a write-type-cycle is that both the  $\overline{CAS}$  and  $\overline{WE}$  signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

#### INPUT/OUTPUT LEVELS

All of the inputs to the MCM4096 are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability (3.2 mA) to drive two TTL loads. The output buffer also has a separate  $V_{CC}$  pin so that it can be powered from the same supply as the logic being employed.

#### REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCM4096 must be refreshed once every 2 ms. Any cycle in which a  $\overline{RAS}$  signal occurs accomplishes a refresh operation. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the RAS cycle. This refresh mode will not shorten the refresh cycle time, however the system standby power can be reduced by approximately 30%.

If the RAS only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Applying CAS to the chip will restore activity of the output buffer.

#### POWER DISSIPATION

Since the MCM4096 is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027 is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycle.

In a memory system, the  $\overline{CAS}$  signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a  $\overline{RAS}$  signal will not dissipate any power on the  $\overline{CAS}$  edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the  $\overline{RAS}$  signal should be decoded so that only the chips to be selected receive a  $\overline{RAS}$  signal. If the  $\overline{RAS}$  signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.



## 16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4116A is a 16,384-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly reliable N-channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By muliplexing row and column address inputs, the MCM4116A requires only seven address lines and permits packaging in Motorola's standard 16-pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The data output of the MCM4116A is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.

The MCM4116A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- Industry Standard 16-Pin Package
- 16,384 × 1 Organization
- ±10% Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation 462 mW Active, 20 mW Standby (Max)
  - Fast Access Time Options: 150 ns MCM4116AL-15, AC-15
    - 200 ns MCM4116AL-20, AC-20
      - 250 ns MCM4116AL-25, AC-25
      - 300 ns MCM4116AL-30, AC-30
- Easy Upgrade from 16-Pin 4K RAMs
- Pin Compatible with 2117, 2116, 6616, μPD416, and 4116

### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                                                                                                                                         | Symbol                                    | Value                                | Unit       |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|------------|
| Voltage on Any Pin Relative to VBB                                                                                                             | Vin,Vout                                  | -0.5 to +20                          | Vdc        |
| Operating Temperature Range                                                                                                                    | TA                                        | 0 to +70                             | °C         |
| Storage Temperature Range                                                                                                                      | T <sub>stg</sub>                          | -65 to +150                          | °C         |
| Power Dissipation                                                                                                                              | PD                                        | 1.0                                  | w          |
| Data Out Current                                                                                                                               | lout                                      | 50                                   | mA         |
| NOTE 1: Permanent device damage may oc<br>INGS are exceeded. Functional ope<br>MENDED OPERATING CONDITI<br>mended voltages for extended perior | eration should be rea<br>ONS. Exposure to | stricted to RECC<br>higher than reco | )M-<br>om- |

|                                                                                      | MOS                                                                                                   | 5                                            |                               |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|
|                                                                                      | (N-CHANNI                                                                                             | :L)                                          |                               |
| 16 3                                                                                 | 84-BIT DY                                                                                             | NAMIC                                        |                               |
|                                                                                      | ANDOM AC<br>MEMOR                                                                                     | CESS                                         |                               |
|                                                                                      |                                                                                                       |                                              | · · · ·                       |
|                                                                                      |                                                                                                       |                                              |                               |
|                                                                                      |                                                                                                       |                                              |                               |
|                                                                                      | <u>μ</u> ι                                                                                            |                                              |                               |
| L SUFFI                                                                              |                                                                                                       |                                              |                               |
| ERAMIC PAC<br>CASE 69                                                                |                                                                                                       |                                              | 0 0                           |
|                                                                                      |                                                                                                       | C SUFFI                                      | x                             |
|                                                                                      | FR                                                                                                    | IT-SEAL PA<br>CASE 62                        |                               |
|                                                                                      |                                                                                                       |                                              |                               |
|                                                                                      | PIN ASSIGNN                                                                                           | ENT                                          |                               |
| VBB                                                                                  |                                                                                                       | ] 16 V                                       |                               |
| ' D <sub>in</sub>                                                                    | 2                                                                                                     | 15 CA                                        |                               |
|                                                                                      |                                                                                                       | 14 D                                         | ut                            |
| WRITE                                                                                | 3                                                                                                     |                                              |                               |
|                                                                                      | 1                                                                                                     | ۲ ۲                                          | 6                             |
| WRITE                                                                                | 4                                                                                                     | 13 A                                         |                               |
| WRITE<br>RAS<br>A0                                                                   | 4 [<br>5 [                                                                                            | 13 A                                         | 3                             |
| WRITE<br>RAS<br>A0<br>A2                                                             | 4 [<br>5 [<br>6 [                                                                                     | 13 A<br>12 Α<br>11 Α                         | 3<br>4 `                      |
| WRITE<br>RAS<br>A0<br>A2<br>A1                                                       | 4 [<br>5 [<br>6 [<br>7 [                                                                              | 113 A<br>12 A<br>111 A<br>10 A               | 3<br>4 <sup>~</sup><br>5      |
| WRITE<br>RAS<br>A0<br>A2                                                             | 4 [<br>5 [<br>6 [                                                                                     | 13 A<br>12 Α<br>11 Α                         | 3<br>4 <sup>~</sup><br>5      |
| WRITE<br>RAS<br>A0<br>A2<br>A1                                                       | 4 [<br>5 [<br>6 [<br>7 [<br>8 [                                                                       | 13 A<br>  12 A<br>  11 A<br>  10 A<br>  9 VC | 3<br>4 <sup>~</sup><br>5      |
| WRITE<br>RAS<br>A0<br>A2<br>A1<br>VDD                                                | 4 (<br>5 (<br>7 (<br>8 (<br>PIN NAM<br>Address II                                                     | 113 A<br>12 A<br>111 A<br>10 A<br>9 VC       | 3<br>4 ~<br>5<br>C            |
| WRITE<br>RAS<br>A0<br>A2<br>A1<br>VDD<br>,<br>A0-A6<br>CAS                           | 4 0<br>5 0<br>7 0<br>8 0<br>PIN NAM<br>Address II<br>Column A                                         | 113 A<br>12 A<br>111 A<br>10 A<br>9 VC       | 3<br>4 ~<br>5<br>C            |
| WRITE<br>RAS<br>A0<br>A2<br>A1<br>VDD<br>A0-A6<br>CAS<br>Din<br>Dout                 | 4 (<br>5 (<br>7 (<br>8 (<br>PIN NAM<br>Address II                                                     | 113 A<br>12 A<br>111 A<br>10 A<br>9 VC       | 3<br>4 ~<br>5<br>C            |
| WRITE<br>RAS<br>A0<br>A2<br>A1<br>VDD<br>A0-A6<br>CAS<br>Din<br>Dout<br>RAS          | 4 1<br>5 1<br>6 1<br>7 1<br>8 1<br>PIN NAM<br>Address II<br>Column A<br>Data In<br>Data In<br>Row Add | ES<br>nputs<br>ddress Strobe                 | 3<br>4 <sup>~</sup><br>5<br>C |
| WRITE<br>RAS<br>A0<br>A2<br>A1<br>VDD<br>A0-A6<br>CAS<br>Din<br>Dout<br>RAS<br>WRITE | 4 1<br>5 1<br>6 1<br>7 1<br>8 1<br>PIN NAM<br>Address II<br>Column A<br>Date In<br>Date Out           | ES<br>nputs<br>iddress Strobe<br>te Input    | 3<br>4 ~<br>5<br>C            |
| WRITE<br>RAS<br>A0<br>A2<br>A1<br>VDD<br>A0-A6<br>CAS<br>Din<br>Dout<br>RAS          | 4 1<br>5 1<br>6 1<br>7 1<br>8 1<br>Dats In<br>Dats Out<br>Row Add<br>Read/Wri                         | ES<br>ress Strobe<br>te Input<br>S V)        | 3<br>4 <sup>~</sup><br>5<br>C |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

#### **RECOMMENDED OPERATING CONDITIONS**

| Parameter                                                                                   | Symbol                           | Min                     | Тур     | Max                    | Unit  | Note                                  |
|---------------------------------------------------------------------------------------------|----------------------------------|-------------------------|---------|------------------------|-------|---------------------------------------|
| Supply Voltage                                                                              | V <sub>DD</sub>                  | 10.8                    | 12.0    | 13.2                   | Vdc   | 1                                     |
|                                                                                             | Vcc                              | 4.5                     | 5.0     | 5.5                    | Vdc   | 1,2                                   |
|                                                                                             | V <sub>SS</sub>                  | 0                       | 0       | 0                      | Vdc   | 1                                     |
|                                                                                             | V <sub>BB</sub>                  | -4.5                    | ~5.0    | -5.5                   | Vdc   | 1                                     |
| Logic 1 Voltage, RAS, CAS, WRITE                                                            | VIHC                             | 2.7                     | -       | 7.0                    | Vdc   | 1                                     |
| Logic 1 Voltage, all inputs except RAS, CAS, WRITE                                          | VIH                              | 2.4                     | _       | 7.0                    | Vdc   | 1                                     |
| Logic 0 Voltage, all inputs                                                                 | VIL                              | -1.0                    | -       | 0.8                    | Vdc   | 1                                     |
| DC CHARACTERISTICS (V <sub>DD</sub> = 12 <sup>.</sup> V ± 10%, V <sub>CC</sub> = 5.0 V ± 10 | %, V <sub>BB</sub> = -5.0 V ± 10 | 0%, V <sub>SS</sub> = 0 | V, TA = | 0 to 70 <sup>0</sup> C | .)    |                                       |
| Characteristic                                                                              | Symbol                           | Min                     | Max     |                        | Inits | Notes                                 |
| Average VDD Power Supply Current                                                            | <sup>I</sup> DD1                 | -                       | 35      |                        | mA    | 4                                     |
| V <sub>CC</sub> Power Supply Current                                                        | <sup>1</sup> cc                  | -                       | -       |                        | mA    | 5                                     |
| Average VBB Power Supply Current                                                            | <sup>I</sup> BB1,3               | -                       | 200     |                        | μA    |                                       |
| Standby VBB Power Supply Current                                                            | IBB2                             |                         | 100     | μΑ (                   |       |                                       |
| Standby VDD Power Supply Current                                                            | <sup>1</sup> DD2                 | -                       | 1.5     |                        | mA    | 6                                     |
| Average VDD Power Supply Current during                                                     | IDD3                             | -                       | 27      |                        | mA    | 4                                     |
| "RAS only" cycles                                                                           |                                  |                         |         | 1                      |       |                                       |
| Input Leakage Current (any input)                                                           | <sup>1</sup> Ι(L)                | -                       | 10      |                        | μA    |                                       |
| Output Leakage Current                                                                      | 10(L)                            | -                       | 10      |                        | μA    | 6,7                                   |
| Output Logic 1 Voltage @ Iout 5 mA                                                          | ∨он                              | VOH 2.4                 |         | _                      | Vdc   | 2                                     |
| Output Logic 0 Voltage @ Iout = 4.2 mA                                                      | VOL                              |                         | 0.4     |                        | Vdc   | · · · · · · · · · · · · · · · · · · · |

NOTES:

1. All voltages referenced to VSS. VBB must be applied before and removed after other supply voltages.

2 Output voltage will swing from VSS to VCC under open circuit conditions. For purposes of maintaining data in power down mode, VCC may be reduced to  $V_{SS}$  without affecting refresh operations,  $V_{OH}(min)$  specification is not guaranteed in this mode.

3. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate. 4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.

5.

 $I_{CC}$  depends upon output loading. The  $V_{CC}$  supply is connected to the output buffer only. Output is disabled (open-circuit) and  $\overrightarrow{\text{RAS}}$  and  $\overrightarrow{\text{CAS}}$  are both at a logic 1. 6.

7.  $0 \vee \leq V_{out} \leq +5.5 V.$ 

7. 0 V  $\leq$  V<sub>out</sub>  $\leq$  +5.5 V. 8. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = \frac{I\Delta_t}{\Lambda V}$ 

#### BLOCK DIAGRAM



## AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9, 14) (Read, Write, and Read-Modify-Write Cycles)

RECOMMENDED AC OPERATING CONDITIONS

 $\frac{(V_{DD} = 12 \text{ V} \pm 10\%, \text{ V}_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{BB} = -5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = 0 \text{ to } 70^{\circ}\text{C.})$ 

|                                               |                   | MCM4 | 116A-15 | MCM4 | 116A-20 | MCM4 | 16A-25 | MCM4 | 116A-30 |       |          |
|-----------------------------------------------|-------------------|------|---------|------|---------|------|--------|------|---------|-------|----------|
| Parameter                                     | Symbol            | Min  | Max     | Min  | Max     | Min  | Max    | Min  | Max     | Units | Notes    |
| Random Read or Write Cycle Time               | tRC               | 375  | -       | 375  | -       | 410  | -      | 480  |         | ns    |          |
| Read Write Cycle Time                         | tRWC              | 375  | -       | 375  | -       | 515  | -      | 660  | -       | ns    |          |
| Access Time from Row Address Strobe           | <sup>t</sup> RAC  | -    | 150     | -    | 200     | -    | 250    | -    | 300     | ns    | 10, 12   |
| Access Time from Column Address Strobe        | <sup>t</sup> CAC  | -    | 90      | -    | 135     | -    | 165    | -    | 200     | ns    | 11, 12   |
| Output Buffer and Turn-off Delay              | tOFF              | 0    | 50      | 0    | 50      | 0    | 60     | 0    | 60      | ns    | 17       |
| Row Address Strobe Precharge Time             | tRP               | 100. | -       | 120  | -       | 150  | -      | 180  | -       | ns    |          |
| Row Address Strobe Pulse Width                | <sup>t</sup> RAS  | 150  | 10,000  | 200  | 10,000  | 250  | 10,000 | 300  | 10,000  | ns    |          |
| Column Address Strobe Pulse Width             | tCAS              | 90   | 10,000  | 135  | 10,000  | 165  | 10,000 | 200  | 10,000  | ns    |          |
| Row to Column Strobe Lead Time                | tRCD              | 20   | 60      | 25   | 65      | 35   | 85     | 60   | 100     | ns    | 13       |
| Row Address Setup Time                        | tASR              | 0    | -       | 0    | -       | 0    | -      | 0    | -       | ns    |          |
| Row Address Hold Time                         | <sup>t</sup> RAH  | 20   | -       | 25   | -       | 35   | -      | 60   | -       | ns    |          |
| Column Address Setup Time                     | tASC              | -10  | -       | -10  | -       | -10  | -      | -10  | -       | ns    |          |
| Column Address Hold Time                      | <sup>t</sup> CAH  | 45   | -       | 55   | -       | 75   | -      | 100  | -       | ns    |          |
| Column Address Hold Time<br>Referenced to RAS | <sup>t</sup> AR   | 105  |         | 120  | -       | 160  | -      | 200  | -       | ns    |          |
| Transition Time (Rise and Fall)               | tŢ                | 3.0  | 35      | 3.0  | 50      | 3.0  | 50     | 3.0  | 50      | ns    | 14       |
| Read Command Setup Time                       | tRCS              | 0    | -       | 0    | -       | 0    |        | 0    | -       | ns    |          |
| Read Command Hold Time                        | <sup>t</sup> RCH  | 0    | -       | 0    | -       | 0    | -      | 0    | -       | ns    | <u> </u> |
| Write Command Hold Time                       | tWCH              | 45   |         | 55   | -       | 75   | -      | 100  | ·       | ns    |          |
| Write Command Hold Time<br>Referenced to RAS  | tWCR              | 105  | -       | 120  |         | 160  |        | 200  | -       | ns    |          |
| Write Command Pulse Width                     | twp               | 45   | -       | 55   |         | 75   | -      | 100  | -       | ns    |          |
| Write Command to Row Strobe Lead Time         | tRWL              | 60   | - ·     | 80   | -       | 100  | -      | 180  | -       | ns    |          |
| Write Command to Column Strobe<br>Lead Time   | tCWL              | 60   |         | 80   | _       | 100  |        | 180  | -       | ns    |          |
| Data in Setup Time                            | tDS               | 0    |         | 0    | -       | 0    | - ,    | 0    | -       | ns    | 15       |
| Data in Hold Time                             | <sup>t</sup> DH   | 45   |         | 55   | -       | 75   | . –    | 100  | - 1     | ns    | 15       |
| Data in Hold Time Referenced to RAS           | <sup>t</sup> DHR  | 105  | -       | 120  |         | 160  | -      | 200  | -       | ns    |          |
| Column to Row Strobe Precharge Time           | tCRP              | -20  | -       | -20  | -       | -20  | -      | -20  | -       | ns    |          |
| RAS Hold Time                                 | <sup>t</sup> RSH  | 100  | -       | 135  | -       | 165  | -      | 200  | -       | ns    |          |
| Refresh Period                                | <sup>t</sup> RFSH | -    | 2.0     | -    | 2.0     | -    | 2.0    | -    | 2.0     | ms    | [        |
| WRITE Command Setup Time                      | twcs              | -20  | -       | -20  |         | -20  | -      | ~20  | -       | ns    |          |
| CAS to WRITE Delay                            | tCWD              | 70   | -       | 95   | -       | 125  | _      | 180  | -       | ns    | 16       |
| RAS to WRITE Delay                            | tRWD              | 120  | -       | 160  |         | 210  |        | 280  | _       | ns    | 16       |
| CAS Precharge Time (Page mode cycle only)     | tCP               | 60   | -       | 80   |         | 100  | -      | 100  | -       | ns    |          |
| Page Mode Cycle Time                          | tPC               | 170  | -       | 225  | -       | 275  | -      | 325  | -       | ns    |          |
| CAS Hold Time                                 | tCSH              | 150  | -       | 200  | -       | 250  | -      | 300  | -       | ns    |          |

### NOTES: (continued)

9. AC measurements assume  $t_T = 5.0$  ns.

| Parameter                         | Symbol          | Тур | Max | Units | Notes |
|-----------------------------------|-----------------|-----|-----|-------|-------|
| Input Capacitance (A0-A5), Din    | C <sub>I1</sub> | 4.0 | 5.0 | pF    | 9     |
| Input Capacitance RAS, CAS, WRITE | C <sub>I2</sub> | 8.0 | 10  | ρF    | 9     |
| Output Capacitance (Dout)         | C <sub>o</sub>  | 5.0 | 7.0 | pF    | 7,9   |

10. Assumes that  $t_{RCD} + t_T \le t_{RCD}$  (max). 11. Assumes that  $t_{RCD} + t_T \ge t_{RCD}$  (max).

- 12. Measured with a load circuit equivalent to 2 TTL loads and 100  $\ensuremath{\mathsf{pF}}$  .
- Operation within the t<sub>RCD</sub> (max) limit ensures that t<sub>RAC</sub> (max) can be met. t<sub>RCD</sub> (max) is specified as a reference point only; if t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub> (max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.
- 14. VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transistion times are measured between VIHC or VIH and VIL.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.
- 16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS > tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If tCWD > tCWD (min) and tRWD > tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out a cycle is indeterminate.
- 17. Assumes that tORP > 50 ns.

## MCM4116A

### READ CYCLE TIMING



2

Dout

VOL-

2-35



## READ-WRITE/READ-MODIFY-WRITE CYCLE

RAS ONLY REFRESH TIMING



VOH-' D<sub>out</sub> VOL-

#### PAGE MODE READ CYCLE



PAGE MODE WRITE CYCLE



2

MCM4116A



MCM4116A BIT ADDRESS MAP



## **Product Preview**

## 16,384-BIT DYNAMIC RAM

The MCM4516 is a 16,384-bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, N-channel, silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM4516 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by  $\overline{CAS}$  allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM4516 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the  $\overline{\text{RAS}}$ -only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 16,384 Words of 1 Bit
- Single +5 Volt Operation
- Fast 120 ns Operation
- Low Power Dissipation: 200 mW Maximum (Active) 20 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 64K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- RAS-only Refresh Mode
- CAS Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatibility from the 16K RAM (MCM4116) to the 64K RAM (MCM6664)

| OUTPUT BUFFER TRUTH TABLE |     |                |                   |                            |  |  |  |  |  |  |  |
|---------------------------|-----|----------------|-------------------|----------------------------|--|--|--|--|--|--|--|
| Internal<br>Early Write   | CAS | Refresh Contro | ol (CAS Internal) | Output Buffer              |  |  |  |  |  |  |  |
| н                         | ×   | ×              | (X)               | Hi-Z                       |  |  |  |  |  |  |  |
| ×                         | н   | ×              | (X)               | Hi-Z                       |  |  |  |  |  |  |  |
| L                         | L   | L              | (H)               | Maintains Previous<br>Data |  |  |  |  |  |  |  |
| L                         | L   | н              | (L)               | Active                     |  |  |  |  |  |  |  |

This is advance information and specifications are subject to change without notice.

| MCM4516                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOS<br>(N-CHANNEL, SILICON-GATE)<br>16,384-BIT<br>DYNAMIC RAM                                                                                                                                                                                                                                         |
| LSUFFIX<br>CERAMIC PACKAGE<br>CASE 690                                                                                                                                                                                                                                                                |
| PIN ASSIGNMENT         REFRESH       1         0       2         15       CAS         W       3         14       0         13       A6         A0       5         11       A4         A1       7         VCC       8                                                                                  |
| This device contains circuitry to protect the<br>inputs against damage due to high static volt-<br>ages or electric fields; however, it is advised that<br>normal precautions be taken to avoid applica-<br>tion of any voltage higher than maximum rated<br>voltages to this high impedance circuit. |

2

2-39

MCM4516

## PIN ASSIGNMENT COMPARISON

|     |     | MCM4116 |        |                 | -       |      | MCM4516  |             |                 |         |   | MCM6664  |      |     |
|-----|-----|---------|--------|-----------------|---------|------|----------|-------------|-----------------|---------|---|----------|------|-----|
| VBB | 1 ( | L.      | 16     | v <sub>ss</sub> | REFRESH | ) ۱  | <u> </u> | 16          | vss             | REFRESH | 1 | f~~      | 16   | VSS |
| D   | 2 [ |         | 15     | CAS             | D       | 2 [  |          | 15          | CAS             | , D     | 2 | þ        | 15   | CAS |
| w   | з[  |         | 14     | <b>a</b> ,      | Ŵ       | зЦ   |          | 14          | ٩               | Ŵ       | 3 | q        | 14   | ٥   |
| RAS | 4 [ |         | 13     | A6              | RAS     | 4 [  |          | 13          | A6              | RAS     | 4 | d .      | 13   | A6  |
| AO  | 5 [ |         | 12     | A3              | A0      | 5 [  |          | 12          | A3 <sup>`</sup> | AO      | 5 | þ        | 12   | A3  |
| A2  | 6 [ |         | 1 11 · | A4              | A2      | 6 [  |          | <b>1</b> 11 | A4              | A2      | 6 | d .      | 1 11 | A4  |
| A1  | 7 [ |         | 10     | A5              | A1      | -7 【 |          | 10          | A5              | A1      | 7 | q        | 1 10 | A5  |
| VDD | 8 ( | L       | 9      | vcc             | VDD     | 8 (  |          | 9           | N/C             | vcc     | 8 | <b>ا</b> | 9    | A7  |

| PIN VARIATIONS |                         |         |                        |  |  |  |  |  |  |
|----------------|-------------------------|---------|------------------------|--|--|--|--|--|--|
| PIN NUMBER     | MCM4116                 | MCM4516 | MCM6664                |  |  |  |  |  |  |
| . 1            | V <sub>BB</sub> (-5 V)  | REFRESH | REFRESH                |  |  |  |  |  |  |
| 8              | V <sub>DD</sub> (+12 V) | Vcc     | V <sub>CC</sub> (+5 V) |  |  |  |  |  |  |
| 9              | V <sub>CC</sub> (+5 V)  | N/C     | A7                     |  |  |  |  |  |  |
|                |                         |         |                        |  |  |  |  |  |  |

#### ON-CHIP REFRESH FEATURES/BENEFITS

Reduce System Refresh Controller Design Problem Reduce System Parts Count Reduce System Noise Increasing System Reliability Reduce System Power During Refresh



Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## MCM4516



## READ-WRITE/READ-MODIFY-WRITE CYCLE TIMING



SELF REFRESH MODE (Battery Backup) (CAS<sup>1</sup>, Addresses, Data In, and Write are Don't Care)





are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.  $V_{BB}$  must be applied prior to  $V_{CC}$  and  $V_{DD}$ .  $V_{BB}$  must also be the last power supply switched off.

#### This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

|                    | Parameter               | Symbol          | Min  | Nom  | Max  | Unit |
|--------------------|-------------------------|-----------------|------|------|------|------|
| Supply Voltage     |                         | V <sub>DD</sub> | 11.4 | 12.0 | 12.6 | Vdc  |
|                    |                         | v <sub>cc</sub> | 4.5  | 5.0  | 5.5  | Vdc  |
|                    |                         | v <sub>BB</sub> | -4.5 | -5.0 | ~5.5 | Vdc  |
| Input High Voltage | An, CS, D <sub>in</sub> | VIH             | 2.4  | -    | 5.0  | Vdc  |
|                    | RAS, CAS, WE            |                 | 2.7  | -    | 5.0  | 1.   |
| Input Low Voltage  | All Inputs              | VIL             | -1.0 | -    | 0.8  | Vdc  |

### **RECOMMENDED OPERATING CONDITIONS** (Referenced to V<sub>SS</sub> = Ground)

## **DC CHARACTERISTICS** (V<sub>DD</sub> = 12 V ±5%, V<sub>CC</sub> = 5.0 V ± 10%, V<sub>BB</sub> = -5.0 V ± 10%, V<sub>SS</sub> = 0 V, T<sub>A</sub> = 0 to 70°C)

| Characteristic                                                      | Symbol                                                   | Min | Тур           | Max             | Unit           |
|---------------------------------------------------------------------|----------------------------------------------------------|-----|---------------|-----------------|----------------|
| Input Current, Any Input<br>(V <sub>in</sub> = 0 to 7.0 V)          | lin                                                      |     | -             | 10              | μΑ             |
| Output High Voltage ( $I_0 = -5.0 \text{ mA}$ )                     | VOH                                                      | 2.4 | -             | -               | Vdc            |
| Output Low Voltage<br>(I <sub>O</sub> = 2.0 mA)                     | VOL                                                      |     |               | 0.4             | Vdc            |
| Output Leakage Current<br>(Output Disabled by CS Input)             | ILO -                                                    |     | -             | 10              | μΑ             |
| Average Supply Current, Active Mode<br>(T <sub>cyc</sub> (W) = min) | IDDA<br>ICCA<br>IBBA                                     |     | 38<br>20<br>- | 50<br>100<br>75 | mA<br>μA<br>μA |
| Supply Current, Standby Mode                                        | <sup>I</sup> DDS<br><sup>I</sup> CCS<br>I <sub>BBS</sub> | -   | 1.3<br>_<br>_ | 2.0<br>10<br>75 | mΑ<br>μΑ<br>μΑ |

#### EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested.)

|                    | Characteristic                     | Symbol               | Max | Unit |
|--------------------|------------------------------------|----------------------|-----|------|
| Input Capacitance  | <u>A0–A5</u>                       | C <sub>in(EFF)</sub> | 10  | pF   |
|                    | RAS, CAS, D <sub>in</sub> ; WE, CS | ·                    | 7.0 |      |
| Output Capacitance | •                                  | Cout(EFF)            | 8.0 | ∙pF  |

## AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

## RECOMMENDED AC OPERATING CONDITIONS (VDD = 12 V ±5%, VCC = 5.0 V ±10%, VBB = -5.0 V ±10%, TA = 0 to 70°C)

|                                          | 1                | MCM66 | MCM6604AL,C |     | 4AL2, C2 | MCM6604AL4,C4 |        |      |
|------------------------------------------|------------------|-------|-------------|-----|----------|---------------|--------|------|
| Parameter                                | Symbol           | Min   | Max         | Min | Max      | Min           | Max    | Unit |
| Random Read or Write Cycle Time          | <sup>t</sup> RC  | 500   |             | 375 |          | 425           | -      | ns   |
| Row Address Strobe Pulse Width           | tRAS             | 350   | 10,000      | 250 | 10,000   | 300           | 10,000 | ns   |
| Row Address Strobe Hold Time             | tRSH             | 200   | -           | 140 | -        | 170           | ~      | ns   |
| Row Address Strobe Precharge Time        | tRP              | 150   |             | 125 | -        | 125           | -      | ns   |
| Row to Column Strobe Lead Time (Note 1)  | <sup>t</sup> RCL | 110   | 150         | 70  | 1.10     | 90            | 130    | ns   |
| Column Address Strobe Pulse Width        | <sup>t</sup> CAS | 200   | 10,000      | 140 | 10,000   | 170           | 10,000 | ns   |
| Column to Row Strobe Lead Time           | tCRL             | -50   | +50         | -40 | +40      | -50           | +50    | ns   |
| Address Setup Time                       | tAS              | 0     | -           | 0   | -        | 0             |        | ns   |
| Address Hold Time                        | tAH              | 100   |             | 60  | -        | 80            | -      | ns   |
| RAS Address Release Time                 | tAR              | 250   | -           | 170 | -        | 210           | -      | ns   |
| Read Command Setup Time                  | <sup>t</sup> RCS | 0     | -           | 0   | -        | 0             | -      | ns   |
| Read Command Hold Time                   | <sup>t</sup> RCH | 100   | -           | 60  | -        | 80            | -      | ns   |
| Write Command to Column Strobe Lead Time | tCWL             | 200   |             | 140 | -        | 170           | -      | ns   |
| Write Command Hold Time (Note 2)         | twch             | 150   | -           | 110 | -        | 130           | -      | ns   |
| Write Command Pulse Width                | twp              | 200   | -           | 140 | -        | 170           | -      | ns   |
| Data In Setup Time                       | tDS              | 0     |             | 0   | -        | 0             | -      | ns   |
| Data In Hold Time                        | t DH             | 150   |             | 110 | -        | 130           | -      | ns   |
| Refresh Period                           | tREF             | -     | 2.0         | -   | 2.0      | -             | 2.0    | ms   |

1. If tRCL is greater than the maximum recommended value shown in this table,

 $t_{\mbox{cyc}}$  and  $t_{\mbox{RAC}}$  will increase by the amount that  $t_{\mbox{RCL}}$  exceeds the value shown.

 The Write Command Hold Time is important only when normal random write cycles are being performed. During a read-write or a read-modify-write cycle, the limiting parameter is the Write Command Pulse Width.

## MCM6604A

## AC CHARACTERISTICS ( $t_T = t_f = 10 \text{ ns}$ , Load = 1 MC74H00 Series TTL Gate, CL(EFF) = 50 pF)

|                                                                                   |                  | MCM6604AL, C | MCM6604AL2, C2 | MCM6604AL4, C4 |      |
|-----------------------------------------------------------------------------------|------------------|--------------|----------------|----------------|------|
| Characteristic                                                                    | Symbol           | Max          | Max            | Max            | Unit |
| Access Time from Row Address Strobe                                               | <sup>t</sup> RAC | 350          | 250            | 300            | ns   |
| (110 ns ≤ t <sub>RCL</sub> + t <sub>T</sub> ≤ 150 ns for MCM6604AL, C)            |                  |              |                |                |      |
| ( 70 ns ≤ t <sub>RCL</sub> + t <sub>T</sub> ≤ 110 ns for MCM6604AL2, C2)          |                  |              |                |                |      |
| (90 ns $\leq$ t <sub>RCL</sub> + t <sub>T</sub> $\leq$ 130 ns for MCM6604AL4, C4) |                  |              |                |                |      |
| Access Time from Column Address Strobe                                            | <sup>t</sup> CAC | 200          | 140            | 170            | ns   |
| Output Buffer Turn-Off Delay                                                      | toff             | 100          | 65             | 85             | ns   |



## READ CYCLE TIMING

2

## MCM6604A



## AC OPERATING CONDITIONS AND CHARACTERISTICS (Read-Modify-Write Cycle)

**RECOMMENDED AC OPERATING CONDITIONS** ( $v_{DD}$  = 12 V ±5%,  $v_{CC}$  = 5.0 V ±10%,  $v_{BB}$  = -5.0 V ±10%,  $T_A$  = 0 to 70<sup>o</sup>C) Note: Parameters not listed are the same as for a Read or Write Cycle.

|                                   | MCM6604AL, C       |     | MCM6604AL2, C2 |     | MCM6604AL4, C4 |     |        |      |
|-----------------------------------|--------------------|-----|----------------|-----|----------------|-----|--------|------|
| Parameter                         | Symbol             | Min | Max            | Min | Max            | Min | Max    | Unit |
| Read-Modify-Write Cycle Time      | tRWC               | 700 | -              | 515 |                | 595 | -      | ns   |
| Row Address Strobe Pulse Width    | <sup>t</sup> RWRAS | 550 | 10,000         | 390 | 10,000         | 470 | 10,000 | ns   |
| Column Address Strobe Pulse Width | TRWCAS             | 400 | 10,000         | 280 | 10,000         | 340 | 10,000 | ns   |
| RAS Hold Time                     | tRWL               | 200 | -              | 140 | -              | 170 | -      | ns   |
| Modify Time                       | tMOD               | 0   | 10,000         | 0   | 10,000         | 0   | 10,000 | ns   |



## READ - MODIFY - WRITE TIMING



RAS ONLY REFRESH TIMING

### OPERATING CHARACTERISTICS

## DATA OUTPUT

In order to simplify the memory system design and reduce the total package count, the MCM6604A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

- A chip will be unselected during a memory cycle if:
  - The chip receives both RAS and CAS signals, but no Chip Select signal.
  - (2) The chip receives a CAS signal but no RAS signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.

If, during a read, write, or read-modify-write cycle, the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: RAS, CAS, and Chip Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:

- (1) Read Cycle On the negative edge of CAS, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next CAS signal.
- (2) Write Cycle If the WE input is switched to a logic 0 before the CAS transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next CAS signal.
- (3) Read-Modify-Write Same as a read cycle.

#### DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the  $\overline{WE}$  and  $\overline{CAS}$  signals. The last of these signals to make a negative transition will strobe the data into the latch. If the  $\overline{WE}$  input is switched to a logic 0 at the beginning of a write cycle, the falling edge of  $\overline{CAS}$  strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of  $\overline{CAS}$ .

If a read-modify-write cycle is being performed, the  $\overline{WE}$  input would not make its negative transistion until after the  $\overline{CAS}$  signal was enabled. Thus, the data would not be strobed into the latch until the negative transition

of  $\overline{WE}$ . The data setup and hold times would now be referenced to the negative edge of the  $\overline{WE}$  signal. The only other timing constraints for a write-type cycle is that both the CAS and  $\overline{WE}$  signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

#### INPUT/OUTPUT LEVELS

All of the inputs to the MCM6604A are TTL compatible, except RAS, CAS, and WE. The latter control inputs require a slightly higher input voltage,  $V_{IH} = 2.7 V$  minimum, which can be met with memory address buffers such as the MC3459.

The inputs feature high impedance and low capacitance (< 10 pF) characteristics which will minimize the driver requirements in a memory system. The three-state data output buffer is TTL compatible and has sufficient current sink capability (2 mA) to drive one high-speed TTL load. The output buffer also has a separate V<sub>CC</sub> pin so that it can be powered from the same supply as the logic being employed.

#### REFRESH

In order to ensure or maintain valid data, each of the 64 internal rows of the MCM6604A must be refreshed once every 2 ms. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle, the chip must be deselected.

The MCM6604A can also be refreshed by employing only the RAS cycle. This refresh mode will not shorten the refresh cycle time; the minimum switching time for RAS still holds. However, the system standby power can be reduced by approximately 30%. It should also be noted that, regardless of the type of refresh cycle employed, all of the minimum and maximum timing restrictions including address setup and hold times must be observed.

#### TIMING CONSIDERATIONS

The timing of  $\overline{RAS}$  and  $\overline{CAS}$  as well as their timing relationships must be understood by the designer in order to obtain maximum performance in a system. The  $\overline{RAS}$  and  $\overline{CAS}$  clocks have minimum and maximum pulse widths, tRAS (tRWRAS) and tCAS (tRWCAS), respectively. These clock limits must not be violated to ensure proper device operation and data integrity. Once a cycle has been initiated by driving  $\overline{RAS}$  and/or  $\overline{CAS}$  low, it must not be aborted prior to fulfilling the minimum clock signal pulse width(s). Also, a new cycle cannot be initiated until the minimum precharge time, tRp, has been met.

The read access time  $(t_{ACC})$  is a function of the row to column strobe lead time  $(t_{RCL})$ , the  $\overrightarrow{CAS}$  transistion from high to low  $(t_f)$ , and the access time from column address

## MCM6604A

strobe (tCAC) as noted in the following equation:

If the tRCL + tf time is less than or equal to the specified tRCL maximum limit, then the device access time becomes:

$$t_{ACC} = t_{RAC}$$
 (access time from the leading  
edge of  $\overline{RAS}$ ) (2)

Note from the ac electrical characteristics that t<sub>RAC</sub> is specified for a given timing skew of t<sub>RCL</sub>; for the MCM6604AL, the t<sub>RAC</sub> is 350 ns maximum for 110 ns  $\leqslant$  t<sub>RCL</sub> + t<sub>f</sub>  $\leqslant$  150 ns. The 40 ns variation in the falling edge of CAS, for a given t<sub>RAC</sub> maximum, is given to allow for system timing skew in the generation of CAS. This will ensure minimum system access time since the timing skew of CAS has been accounted for at the device.

The gating of chip select  $\overline{(CS)}$  is also designed to minimize system access time. Note from the timing diagrams

that  $\overline{CS}$  does not have to be valid until the leading edge of  $\overline{CAS}$ . Since the memory device does not have to be selected at the start of a memory cycle, the system decode time for  $\overline{CS}$  does not enter into the system access time.

The minimum overlap of RAS and CAS during a memory cycle is defined by tRSH. A minimum overlap is required to keep the write control logic on for a sufficient time to ensure adequate charge or discharge of the selected storage capacitor during a write cycle.

The termination of the  $\overrightarrow{RAS}$  and  $\overrightarrow{CAS}$  down time is defined by  $t_{CRL}$ . This parameter defines the maximum lead (-) or lag (+) time that the trailing edge of  $\overrightarrow{CAS}$  can have with respect to the trailing edge of  $\overrightarrow{RAS}$ . Note that for a memory system requiring minimum cycle time,  $\overrightarrow{CAS}$  may lead  $\overrightarrow{RAS}$  by the specified amount, although  $\overrightarrow{CAS}$  cannot lag  $\overrightarrow{RAS}$ . This restriction must be placed on  $t_{CRL}$  for minimum cycle time since  $t_{RSH}$  would be violated;  $\overrightarrow{CAS}$  can lag  $\overrightarrow{RAS}$  for the specified maximum time provided the minimum  $t_{RSH}$  time is not violated.

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.



MCM6604A



## 4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6605A is a 4096-bit high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories 'and peripheral storage. Organized as 4096 one-bit words, these memories are fabricated using selective oxidation N-channel silicon gate technology to optimize device speed, power and density tradeoffs.

All address and control inputs are TTL compatible except for a single high-level clock (Chip Enable). Complete address decoding is done on chip and address latches are incorporated for ease of use. Refresh of the entire memory can be accomplished by sequentially cycling through addresses A0-A4 (32 cycles) a maximum of every 2.0 milliseconds.

The MCM6605A uses a three-transistor memory cell to simplify internal sense amplifier requirements. Output data is inverted with respect to input data. The outputs are 3-state TTL configuration and require no external sense amplifier. Outputs are in the high impedance (floating) state when either the Chip Enable is in the low state or the Chip Select is in the high state.

• Organized as 4096 Words of 1 Bit

|                                                                                                      | L1, P1       | L2,P2  | L, P           |
|------------------------------------------------------------------------------------------------------|--------------|--------|----------------|
| <ul> <li>Maximum Access Time =</li> </ul>                                                            | 150 ns       | 200 ns | 300 ns         |
| <ul> <li>Minimum Read Cycle Time =</li> </ul>                                                        | 290 ns       | 360 ns | 470 ns         |
| Minimum Write Cycle Time =                                                                           | 390 ns       | 490 ns | 590 ns         |
| <ul> <li>Minimum Read Modify Write<br/>Cycle Time =</li> </ul>                                       | 390 ns .     | 490 ns | 590 ns         |
| <ul> <li>Low Power Dissipation<br/>335 mW Typical (Active)<br/>2.6 mW Typical (Standby wi</li> </ul> | th Refresh)  |        | 1.<br>1.<br>1. |
| • Easy Refresh - Only 32 Cycles                                                                      | Every 2.0 ms |        |                |
| <ul> <li>TTL Compatible</li> </ul>                                                                   |              |        |                |
| 3-State Output                                                                                       |              |        |                |
| <ul> <li>Address Latches On Chip</li> </ul>                                                          |              |        |                |
| <ul> <li>Power Supply Pins on Package C<br/>for Layout Simplification</li> </ul>                     | Corners      |        |                |
| <ul> <li>Typical Applications:<br/>Main Memory<br/>Buffer Memory</li> </ul>                          | <i>t</i> .   |        |                |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

Peripheral Storage

| Rating                             | Symbol           | Value       | Unit |
|------------------------------------|------------------|-------------|------|
| Voltage on Any Pin Relative to VBB | Vin, Vout        | -0.3 to +20 | Vdc  |
| Operating Temperature Range        | TA               | 0 to +70    | °C   |
| Storage Temperature Range          | T <sub>stg</sub> | -65 to +150 | °c   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED DC OPERATING CONDITIONS (Referenced to VSS).

| Parameter                                                                                   | Symbol          | Min                   | Nom  | Max                   | Unit |
|---------------------------------------------------------------------------------------------|-----------------|-----------------------|------|-----------------------|------|
| Supply Voltage                                                                              | VDD             | 11.4                  | 12   | 12.6                  | Vdc  |
|                                                                                             | Vcc             | 4.5                   | 5.0  | 5.5                   | Vdc  |
|                                                                                             | V <sub>SS</sub> | 0                     | 0    | 0                     | Vdc  |
| · · · ·                                                                                     | V <sub>BB</sub> | -5.25                 | -5.0 | -4.75                 | Vdc  |
| Logic Levels<br>Input High Voltage (A <sub>n</sub> , D <sub>in</sub> , R/W, <del>CS</del> ) | ۲.              | 3.0                   |      | V <sub>DD</sub> + 0.6 | Vdc  |
| Input Low Voltage (A <sub>n</sub> , D <sub>in</sub> , R/W, <del>CS</del> )                  | VIL             | -1.0                  | ·    | 0.8                   | Vdc  |
| Chip Enable High Voltage                                                                    | VCEH            | V <sub>DD</sub> - 0.6 |      | V <sub>DD</sub> + 0.6 | Vdc  |
| Chip Enable Low Voltage                                                                     | VCEL            | -1.0                  |      | 0.8                   | Vdc  |

#### DC CHARACTERISTICS

| Characteristic                                                                                                                       | Symbol           | Min             | Тур  | Max  | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------|------|------|
| Input Current (A <sub>n</sub> , D <sub>in</sub> , R/W, $\overline{CS}$ , Preset)<br>(V <sub>in</sub> = 0 to V <sub>DD</sub> + 1.0 V) | l in             | -               | -    | 10   | μA   |
| Input Chip Enable Current<br>(V <sub>in</sub> = 0 to V <sub>DD</sub> + 1.0 V)                                                        | IICE             |                 | -    | 10   | μA   |
| Output High Voltage ( $I_{O} = -100 \mu$ A)                                                                                          | VOH              | 2.4             | -    | VCC  | Vdc  |
| Output Low Voltage<br>(1 <sub>0</sub> = 2.0 mA)                                                                                      | VOL              | V <sub>SS</sub> | . –  | 0.45 | Vdc  |
| Output Leakage Current ( $V_O \approx 0.45$ V to V <sub>CC</sub> , CE = V <sub>CEL</sub> , or $\overline{CS} = V_{IH}$ )             | 1LO              | -               | -    | 10   | μA   |
| Average Supply Current, Active Mode                                                                                                  | IDDA             | -               | 28   | 36   | mA   |
| $(T_{cyc}(W) = min)$                                                                                                                 | 1CCA             | -               | 0.05 | 1.0  | mA   |
|                                                                                                                                      | 188A             | -               |      | 100  | μA   |
| Supply Current, Standby Mode                                                                                                         | IDDS             | -               | 1.0  | 20   | μA   |
| (CE = 0.45 V)                                                                                                                        | <sup>I</sup> ccs | -               | -    | 10   | μΑ   |
|                                                                                                                                      | IBBS             | -               | 1.0  | 20   | μA   |

#### EFFECTIVE CAPACITANCE (Test Circuit of Figure 1, full operating voltage and temperature range, operiodically sampled rather than 100% tested.)

| periodically sampled ratio                   | er than 100% testeu./ |     |     |     |      |
|----------------------------------------------|-----------------------|-----|-----|-----|------|
| Characteristic                               | Symbol                | Min | Тур | Max | Unit |
| Input Capacitance (An, Din, R/W, CS, Preset) | C <sub>in(EFF)</sub>  | -   | 4.0 | 5.0 | рF   |
| Chip Enable Capacitance                      | C <sub>CE(EFF)</sub>  | -   | 25  | 30  | рF   |
| Output Capacitance                           | Cout(EFF)             | -   | 4.0 | 5.0 | pF   |



#### FIGURE 1 - MEASUREMENT OF EFFECTIVE CAPACITANCE

DUT

R

Effective capacitance is determined by comparing the rise time of the voltage waveform at a particular pin to that measured with known values of capacitance. Scope calibration points are determined by using the rise times obtained with the empty socket and standard capacitor values as references.

Calibration

Capacitors

The device under test (DUT) is inserted into the test socket and normal operating power supplies applied. All input pins, except that being measured, are grounded. The effective capacitance of the desired pin can then be read directly from the scope.

| Pin          | R            | Input Pulse | Measurement<br>Level |
|--------------|--------------|-------------|----------------------|
| CE           | 67 Ω         | 16 V        | 12 V                 |
| Input/Output | <b>100</b> Ω | 6.0 V       | 4.0 V                |

### AC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

#### **OPERATING MODES**

| Mode                      | Contro | ol States | Output           |  |  |
|---------------------------|--------|-----------|------------------|--|--|
|                           | R/W    | cs        | -                |  |  |
| Active (CE = High)        |        | · ·       |                  |  |  |
| Read Only                 | н      | L         | Valid            |  |  |
| Read/Write                | H→L    | L 1       | Valid            |  |  |
| Write Only                | L      | L L       | Valid            |  |  |
| Read Refresh              | H→L    | L→H       | Valid → Floating |  |  |
| Refresh Only              | L      | н         | Floating         |  |  |
| Chip Disable (Unselected) | н      | н         | Floating         |  |  |
| Standby (CE = Low)        | ×      | ×         | Floating         |  |  |

X = Don't Care

|                         | Parameter                             | Symbol | Min | Max | Unit |
|-------------------------|---------------------------------------|--------|-----|-----|------|
| Address Setup Time      |                                       | tAS    | 0   | -   | ns   |
| Address Hold Time       |                                       | tAH    | 60  | -   | ns   |
| CE Pulse Transition Tim | 10                                    | tī     | 10  | 100 | ns   |
|                         | MCM6605AL,P/L2,P2                     | tSB    | 120 | -   | ns   |
|                         | MCM6605AL1,P1                         |        | 90  | · _ |      |
| Chip Select Delay Time  |                                       | tCSD   | -   | 70  | ns   |
| Chip Select Hold Time   |                                       | tCSH   | 0   | -   | ns   |
| Read Write Delay Time   |                                       | tRWD   | -   | 70  | ns   |
| Read Write Hold Time    | · · · · · · · · · · · · · · · · · · · | tRWH   | 0   | _   | ns   |
| Time Between Refresh    |                                       | tREF   | -   | 2.0 | ms   |

## RECOMMENDED AC OPERATING CONDITIONS (Read, Write, and Read Modify Write Cycles)

# $\label{eq:action} \begin{array}{l} AC \ CHARACTERISTICS \\ [All timing with t_T = 20 \ ns; \ Load = 1 \ TTL \ Gate \ (MC74H00 \ Series), \ C_L = 50 \ pF \ (effective)] \end{array}$

## READ CYCLE (R/W = $V_{IH}$ , $\overline{CS} = V_{IL}$ )

|                             | 1               | MCM6605AL,P |      | MCM6605AL1,P1 |      | MCM6605AL2,P2 |      |      |
|-----------------------------|-----------------|-------------|------|---------------|------|---------------|------|------|
| Characteristic              | Symbol          | Min         | Max  | Min           | Max  | Min           | Max  | Unit |
| Read Cycle Time             | tcyc(R)         | 470         | -    | 290           | -    | 360           | -    | ns   |
| Chip Enable On Time         | <sup>t</sup> CE | 310         | 2000 | 160           | 2000 | 200           | 2000 | ns   |
| Chip Enable to Output Delay | tco             | -           | 280  | -             | 130  | -             | 180  | ns   |
| Read Access Time            | tacc            | -           | 300  | -             | 150  |               | 200  | ns   |

### READ CYCLE TIMING



### WRITE CYCLE (R/W = $V_{1L}$ , $\overline{CS} = V_{1L}$ ) REFRESH CYCLE (R/W = $V_{1L}$ , $\overline{CS} = V_{1H}$ )

|                                           |                 | MCM6605AL,P |      | MCM6605AL1,P1 |      | MCM6605AL2,P2 |      |      |  |
|-------------------------------------------|-----------------|-------------|------|---------------|------|---------------|------|------|--|
| Characteristic                            | Symbol          | Min         | Max  | Min           | Max  | Min           | Max  | Unit |  |
| Write Cycle Time                          | tcyc(W)         | 590         |      | 390           | -    | 490           | -    | ns   |  |
| Chip Enable On Time                       | <sup>†</sup> CE | 430         | 2000 | 260           | 2000 | 330           | 2000 | ns   |  |
| Read-Write Release Time                   | tRWR            | 410         | 2000 | 240           | 2000 | 310           | 2000 | ns   |  |
| Write Pulse Width                         | tw              | 210         |      | 160           | -    | 160           |      | ns   |  |
| Read-Write to Chip Enable Separation Time | <sup>t</sup> RC | 0           | -    | 0             |      | 0             | -    | ns   |  |
| Data Delay Time*                          | tDD             | -           | 70   | -             | 70   | -             | 70   | ns   |  |
| Data Hold Time                            | тон             | 50          | -    | 20            | - '  | 50            | -    | ns   |  |

\*If a write pulse (t<sub>W</sub>) is employed on the R/W line during a write cycle, then the input data setup time is measured from the leading edge of the write pulse. The t<sub>DS</sub> time is the same as that of the read-modify-write cycle.

#### WRITE AND REFRESH CYCLE TIMING



#### READ-MODIFY-WRITE (R/W = $V_{IH} \rightarrow V_{IL}$ , $\overline{CS} = V_{IL}$ ) READ REFRESH (See Note 1)

|                                           |                 | MCM6605AL,P |      | MCM6605AL1,P1 |      | MCM6605AL2,P2 |      |      |  |
|-------------------------------------------|-----------------|-------------|------|---------------|------|---------------|------|------|--|
| Characteristic                            | Symbol          | Min         | Max  | Min           | Max  | Min           | Max  | Unit |  |
| Read-Modify-Write Cycle Time              | tcyc(R/W)       | 590         |      | 390           | -    | 490           | -    | ns   |  |
| Chip Enable On Time                       | tCE             | 430         | 2000 | 260           | 2000 | 330           | 2000 | ns   |  |
| Read-Write Release Time                   | tRWR            | 410         | 2000 | 240           | 2000 | 310           | 2000 | ns   |  |
| Write Pulse Width                         | tw              | 210         |      | 160           | -    | 160           | -    | ns   |  |
| Data Setup Time                           | <sup>t</sup> DS | 0           |      | 0             | -    | 0             | -    | ns   |  |
| Data Hold Time                            | <sup>t</sup> DH | 50          | -    | 20            |      | 50            |      | ns   |  |
| Read-Write to Chip Enable Separation Time | <sup>t</sup> RC | 0           |      | 0             | -    | 0             | -    | ns   |  |
| Chip Enable to Output Delay               | tco             |             | 280  | -             | 130  | -             | 180  | ns   |  |
| Read Access Time                          | tacc            | -           | 300  |               | 150  | -             | 200  | ns   |  |

Note 1: A read refresh cycle is possible by bringing  $\overline{CS}$  high after output data

is valid and then bringing R/W low to the write position.



#### READ MODIFY WRITE TIMING

MCM6605A



#### TYPICAL CHARACTERISTICS CURVES

FIGURE 3 - ACCESS TIME versus AMBIENT TEMPERATURE



FIGURE 4 - IDD SUPPLY CURRENT versus VDD



FIGURE 6 - IDD SUPPLY CURRENT versus AMBIENT TEMPERATURE



FIGURE 5 - IDD SUPPLY CURRENT versus CYCLE TIME



FIGURE 7 - REFRESH TIME versus AMBIENT TEMPERATURE



#### TYPICAL SUPPLY CURRENT TRANSIENT WAVEFORMS



FIGURE 9 - IDD SUPPLY CURRENT





FIGURE 10 - ICC SUPPLY CURRENT





200

300

t, TIME (ns)

400

500

100



#### BLOCK DIAGRAM



#### FUNCTIONAL DESCRIPTION

The MCM6605A 4096-bit dynamic RAM uses a three transistor storage cell in an inverting cell configuration. The single high-level clock (Chip Enable) starts an internal three-phase clock generator which controls the read and write functions of the device. The  $\phi$ 1 signal, which is high when CE is low (standby mode), preconditions the nodes in the dynamic RAM in preparation for a memory cycle. The  $\phi$ 2 signal, which comes on as CE goes high, is the read control and transfers data from storage onto bit sense lines. The  $\phi$ 3 signal, which comes after  $\phi$ 2 only during a write or refresh cycle, transfers data from the bit sense lines back into storage. The  $\phi$ 3 signal occurs only if the R/W input is low.

To perform a read cycle, CE is brought high to initiate a  $\phi 2$  signal and latch the input addresses. The column decoders select one column in each of the four storage quadrants (see the block diagram) and transfers data from storage onto the 128 bit sense lines. The row

decoder selects one of these 128 bit sense lines for read and write operations. During the  $\phi 2$  signal, the data on this selected bit sense line is Exclusive ORed with the state of the appropriate data control cell to supply the correct output data. After this data is received by the external system, CE may be brought low to the standby position. This assumes that the R/W signal is held high to prevent an internal  $\phi 3$  being generated.

To perform a write or refresh operation, CE is brought high and everything is identical to a read operation up until the 128 bit sense lines are charged with the selected columns of stored data. When R/W is brought low (if it is not already there), a  $\phi 3$  signal is generated after  $\phi 2$  is over. The  $\phi 3$  signal takes the data from the 128 bit sense lines and returns it to the 128 storage locations it came from. Because of the design of the memory array, this  $\phi 2 \phi 3$ , read-write operation inverts the data. Therefore, one extra row of memory cells, called data control cells, is used to

#### MCM6605A

keep track of the polarity of stored data in order to be able to correctly recover it. During the write operation, the input data is Exclusive ORed with these control cells before being stored in the array. A refresh cycle does not modify any of the bit sense lines, but simply returns the data (now inverted) into storage.

All timing signals for the MCM6605A are specified around these operations. The following is a brief description of the input pins and relevant timing requirements.

Chip Enable – CE is a single high level clock which initiates all memory cycles. CE can remain low as long as desired for specific applications as long as the 2.0 ms refresh requirements are met.

**Chip Select** – This signal controls only the I/O buffers. When  $\overline{CS}$  is high, the input is disconnected and the output is in the 3-state high-impedance state. A refresh cycle is, therefore, a write cycle with  $\overline{CS}$  high.  $\overline{CS}$  has no critical timing with respect to any other signal except that there is a finite delay between activation and data out.

**Read/Write** — When high, R/W inhibits the internal  $\phi$ 3 signal, thereby keeping the memory from writing. When R/W is low, a  $\phi$ 3 will occur soon after  $\phi$ 2 is finished. For a read cycle, R/W should be high within tRWD of CE to insure that a  $\phi$ 3 does not start. The only timing requirement on the R/W input for writing is a minimum write pulse defined as the overlap of  $\overline{CS}$ , CE, and R/W. Refresh cycles require that  $\overline{CS}$  be high to inhibit the input buffer before a  $\phi$ 3 occurs. Thus  $\overline{CS}$  should be high within tCSD for a refresh cycle, or before R/W goes low for a read-referesh cycle.

**Data In** – The input data must be valid for a sufficient time to override the data stored on the selected bit sense line. It must remain valid for the "write pulse" defined under Read/Write. Signals on the  $D_{in}$  pin are ignored when either  $\overline{CS}$  or R/W is high, or CE is low.

Data Out – Output data is inverted from input data and is valid  $t_{acc}$  after CE goes high. The data will remain valid as long as CE is high and  $\overline{CS}$  remains low. With either CE low or  $\overline{CS}$  high, the output is in a high-impedance state. The data output is initially precharged high when CE goes high and is then either discharged to ground or left high depending on the stored data. This precharging followed by valid data occurs regardless of the state of the R/W input, making the write cycle actually a read-write cycle. The output will also try to precharge during a refresh cycle but will be kept at high impedance by the  $\overline{CS}$  being high. If  $\overline{CS}$  is originally low and is then brought high (within the tcSD specification) the output may start to precharge before being cut off and returned to high impedance.

Addresses --- The addresses are latched when CE goes high, and may be removed after an appropriate hold time.

Vss - Circuit ground.

 $V_{BB}$  — The reverse bias substrate supply. Forward biasing this supply with respect to  $V_{SS}$  will destroy the memory device.

VDD - Positive supply voltage.

 $V_{CC}$  – Output buffer supply. This supply goes only to the data output buffer and draws current only when driving an output load high.

Preset — This pin should be tied to ground. During device testing Preset can be used to preset the data control cells to a logic zero. One 200 ns, 12 V pulse will set all 32 cells simultaneously. Preset has no system use; its only purpose is to ensure a good logic level in the control cells after first power up. In system use, this good logic level will come naturally after the first few refresh cycles.

#### **APPLICATIONS INFORMATION**

#### **Power Supplies**

The MCM6605A is a dynamic RAM which has essentially zero power drain when in the standby (CE low) mode. When operating, the  $V_{DD}$  supply may experience transients in the order of 100 mA for a short time (Figure 9). The  $V_{BB}$  supply, which has very low dc drain while operating, may see transients of about 40 mA during the edges of CE. Therefore, appropriate bypassing of both supplies is recommended. This bypassing has been simplified by the location of the power supply pins on the corners of the package.

The V<sub>CC</sub> line supplies only the input leakage of a TTL load on Data Out and should never exceed about 100  $\mu$ A, presenting little bypassing requirement.

Power dissipation for a system of N chips is much slower than N times the 335 mW typical dissipation for a full speed operating chip. This is because the unselected rows in a memory array card are operating in the standby, mode of near zero dissipation. This zero standby power is actually unachievable because of the requirements for refresh. Therefore, power dissipation for an array of N X M chips operating at t<sub>1</sub> cycle time, tREF refresh increment, and maximum CE down time between cycles is:

$$P_D \approx M\left(\frac{490 \text{ ns}}{t_1 \text{ ns}}\right) 335 \text{ mW} + (N-1) (M)\left(\frac{15.7}{t_RFF}\right) 335 \text{ mW}$$

For a 550-ns-cycle-time, 64 k by 16 system (16 by 16 chip array) with refresh at 2.0 ms, the approximate power dissipation is:

$$P_{D} \approx 16 \left(\frac{490}{550}\right) 335 + (15) (16) \left(\frac{15.7}{2000}\right) 335$$
$$\approx 4775 \text{ mW} + 630 \text{ mW} = 5.4 \text{ W}$$

A similar one megabyte system, eight bytes wide, would have a dissipation of only 24 W. If the low standby power capability were not used, over 600 W would be dissipated.

#### Refresh

The MCM6605A is refreshed by performing a refresh (or write) cycle on each of the 32 combinations of the least significant address bits (A0-A4) within a 2.0 ms time period. (A5-A11 must remain constant at proper logic levels.) This refresh can be done in a burst mode (32 cycles starting every 2.0 ms) or in a distributed mode where one cycle is done every  $62.5 \, \mu_s$ .

A refresh abort can be accomplished by treating a refresh cycle as a read-modify-write cycle with CS high. This type of cycle can be aborted any time until the R/W signal has been brought low to allow a d3 clock to begin.

#### Non-Volatile Storage

In many digital systems, it is extremely important to retain data during emergencies such as power failure. Unfortunately, however, most random access read/write semiconductor memories such as the MCM6605A are volatile. That is, if power is removed from the semiconductor memory, stored information is lost. Therefore, non-volatility for a specified period of time becomes highly desirable — as a necessity to maintain irreplaceable information or as a convenience to avoid the time consuming and troublesome task of having to reload the memory.

The extremely low standby power dissipation of the MCM6605A makes it ideal for main memory applications requiring battery backup for non-volatility. For example, the MCM6605A can be employed in an 8K byte non-volatile main memory system application for microprocessors. The memory system can be partitioned into three major sections as illustrated in Figure 13. The first section contains the address buffers and the Read/Write and Chip Select decoding logic. The second section consists of the

data bus buffering transceivers and the memory array (which consists of 16 MCM6605As) organized into two rows of 4K bytes each.

The third section of the block diagram comprises refresh and control logic for the memory system. This logic interfaces the timing of the refresh handshaking with the microprocessor (MPU) clock circuitry. It handles requests for refresh, the generation of refresh addresses, the synchronization of a Power Fail signal, the multiplexing of the external Memory Clock with the internal clock (used during standby), and the generation of a -5 V supply on the board using a charge-pump method.

The refresh control logic is illustrated in Figure 14. It handles the refreshing of the memory during both operating and standby modes. The timing for this logic is given in Figure 15. Figure 16 gives the memory timing for the standby mode only. Decoding of the memory clock (CEA and CEB) and the circuitry to synchronize the Power Fail signal are shown in Figure 17, with the timing given in Figure 18.

The memory device clock (CEA and CEB) during standby is created by a .monostable multivibrator (MC14528) and buffered from the memory array by three MC14503 buffers in parallel. This clock is multiplexed with the Memory Clock by use of the three-state feature of the



#### FIGURE 13 - NON-VOLATILE MEMORY SYSTEM BLOCK DIAGRAM

### MCM6605A

MC14503. The Memory Clock (used during normal operation) is translated to 12 V levels by use of an MC3460 Clock Driver. Decoding of the CEA and CEB signals (i.e., clocking only the memory bank addressed) to conserve power is accomplished by the logic within the MC3460.

Since the Power Fail signal will occur asynchronously with both the Memory Clock and the refreshing operation (Refresh Clock), it is necessary to synchronize the Power Fail signal to the rest of the system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip-flop is used as the basic synchronization device. The leading edge of the Refresh Clock triggers a 3  $\mu$ s monostable multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 ns monostable which creates the CE pulse during standby operation. The 3  $\mu$ s pretrigger signal is used to set half of the MC14027 flip-flop, the output of which, (B), then inhibits a changeover from the standby to the operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the Power Fail signal change states just prior to or during a refresh cycle. The trailing edge of the 500 ns monostable clears the MC14027 flip-flop, enabling the second flip-flop in the package. The state of Power Fail and Power Fail is applied to the K and J inputs of this second flip-flop and is synchronized by clocking with Memory Clock. The outputs of this flip-flop, labeled Bat and Bat, lock the system into the refresh mode and multiplex in the internal clock for standby operation when Bat = "1". The voltage to logic not required for the refresh only mode of operation is removed to conserve power.

By using CMOS for the refresh logic and capacitance drivers, and a low current refresh oscillator, the standby current required for the 8K byte system is extremely small, as noted in Table 1. This low standby current requirement can be easily supplied for several days with standard type +12 V batteries. For more detailed information on this sytem and a large mainframe memory system, see Application Notes AN-732 and AN-740.



#### FIGURE 14 - REFRESH CONTROL LOGIC





## MCM6605A





FIGURE 18 - POWER UP/DOWN SYNCHRONIZATION

#### TABLE 1 - STANDBY MODE CURRENT ALLOCATION

| Circuit Section                       | Typical Current |
|---------------------------------------|-----------------|
| +12 V Current (VDD) for 16 MCM6605A's | 5 m A           |
| Charge Pump                           | 3 m A           |
| Comparator                            | 2 mA            |
| Capacitance Drivers                   | 4 mA            |
| Total                                 | 14 mA           |

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entrely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola inc. or others.



- MCM66L41 Less Than 385 mW (Maximum)
- Standby Power Dissipation Less Than 125 mW (Typical)
- Plug-in Replacement for TMS4044



#### MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME

| ,<br>, | MCM6641-20<br>MCM66L41-20 | 200 ns | MCM6641-30<br>MCM66L41-30 | 300 ns |
|--------|---------------------------|--------|---------------------------|--------|
|        | MCM6641-25<br>MCM66L41-25 | 250 ns | MCM6641-45<br>MCM66L41-45 | 450 ns |



#### PIN NAMES

| A0-A11          | Address Input       |
|-----------------|---------------------|
| D               | Data Input          |
| <u> </u>        | Data Output         |
| s               | Chip Select         |
| Vcc             | Power Supply (+5 V) |
| V <sub>SS</sub> | Ground              |
| Ŵ               | Write Enable        |

#### TRUTH TABLE

| ŝ  | W | D | Q           | Mode         |
|----|---|---|-------------|--------------|
| н  | × | × | HI-Z        | Not Selected |
| L  | L | L | HI-Z        | Write "O"    |
| L, | Ĺ | н | HI-Z        | Write "1"    |
| Ĺ  | н | X | Output data | Read         |

## MCM6641, MCM66L41

#### **ABSOLUTE MAXIMUM RATINGS (See Note 1)**

| Rating                                 | Value        | Unit |  |
|----------------------------------------|--------------|------|--|
| Temperature Under Bias                 | -10 to +80   | °C   |  |
| Voltage on Any Pin With Respect to VSS | ~0.5 to +7.0 | Vdc  |  |
| DC Output Current                      | 20           | mA   |  |
| Power Dissipation                      | 1.0          | Watt |  |
| Operating Temperature Range            | 0 to +70     | °C   |  |
| Storage Temperature Range              | -65 to +150  | °C   |  |

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could

#### DC OPERATING CONDITIONS AND CHARACTERISTICS $(V_{CC} = 5.0 V \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C})$

#### RECOMMENDED DC OPERATING CONDITIONS

|                                                                                                   |                                | MCM6641 |      |     | MCM66L41 |      |     | Γ    |
|---------------------------------------------------------------------------------------------------|--------------------------------|---------|------|-----|----------|------|-----|------|
| Parameter                                                                                         | Symbol                         | Min     | Тур  | Max | Min      | Тур  | Max | Unit |
| Input Load Current<br>(All Input Pins, V <sub>in</sub> = 0 to 5.5 V)                              | . ILI                          |         | -    | 10  | -        | -    | 10  | μA   |
| Output Leakage Current $(\overline{S} = 2.4 \text{ V}, \text{V}_{in} = 0.4 \text{ to V}_{CC})$    | IILO!                          | -       | -    | 10  | -        | -    | 10  | μA   |
| Power Supply Current<br>( $V_{CC} = 5.5 \text{ V}, I_{out} = 0 \text{ mA}, T_A = 0^{0}\text{C}$ ) | 'cc                            | -       | 80   | 100 | -        | 55   | 70  | mA   |
| Input Low Voltage                                                                                 | VIL                            | -0.5    |      | 0.8 | -0.5     |      | 0.8 | V    |
| Input High Voltage                                                                                | VIH                            | 2.0     | -    | 6.0 | 2.0      | -    | 6.0 | v    |
| Output Low Voltage<br>IOL = 2.1 mA                                                                | VOL                            | -       | 0.15 | 0.4 |          | 0.15 | 0.4 | V    |
| Output High Voltage<br>I <sub>OH</sub> = 1.0 mA                                                   | ∨он                            | 2.4     | -    | -   | 2.4      |      |     | V    |
| Output Short Circuit Current                                                                      | <sup>1</sup> OS <sup>(2)</sup> | - 1     |      | 40  | -        | -    | 40  | mA   |

Typical values are at  $V_{CC} = 5.0 \text{ V}$ ,  $T_A = 25^{\circ}C$ 

Note: 2. Duration not to exceed 30 seconds.

#### CAPACITANCE

(f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic                            | Symbol | Max | Unit |
|-------------------------------------------|--------|-----|------|
| Input Capacitance (V <sub>in</sub> = 0 V) | Cin    | 5.0 | рF   |
| Output Capacitance (Vout = 0 V)           | Cout   | 10  | pF   |

#### STANDBY OPERATION

(Typical Supply Values)

| Device   | Supply          | Operating | Standby | Max Standby Power |
|----------|-----------------|-----------|---------|-------------------|
| MCM6641  | V <sub>CC</sub> | , +5 V    | +2.4 V  | 225 mW            |
| MCM66L41 | Vcc             | +5 V      | +2.4 V  | 150 mW            |

The MCM6641 series is offered in an 18-pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mountinghole rows on 300-mil centers. The series is designed for operation from 0°C to 70°C.

## MCM6641, MCM66L41

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

| Input Pulse Levels             | 0.8 Volt to 2.0 Volts         |
|--------------------------------|-------------------------------|
| Input Rise and Fall Times      | 10 ns                         |
| Input and Output Timing Levels | 1.5 Volts                     |
| Output Load                    | 1 TTL Gate and $C_L = 100.pF$ |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS Read (Note 3), Write (Note 4) Cycles

#### **RECOMMENDED AC OPERATING CONDITIONS** (T<sub>A</sub> = 0 to 70<sup>o</sup>C, $V_{CC}$ = 5.0 V ± 10%)

|                                 |                 |            |     | MCM6641-25<br>MCM66L41-25 |     | MCM6641-30<br>MCM66L41-30 |     | MCM6641-45<br>MCM66L41-45 |     |       |  |
|---------------------------------|-----------------|------------|-----|---------------------------|-----|---------------------------|-----|---------------------------|-----|-------|--|
| Parameter                       | Symbol          | Min        | Max | Min                       | Max | Min                       | Max | Min                       | Max | Units |  |
| Read Cycle Time                 | tRC             | 200        |     | 250                       | -   | 300                       | -   | 450                       | -   | ns    |  |
| Access Time                     | t <sub>A</sub>  | -          | 200 | -                         | 250 |                           | 300 | -                         | 450 | ns    |  |
| Chip Selection to Output Valid  | tso             |            | 70  | -                         | 85  | -                         | 100 | -                         | 120 | ns    |  |
| Chip Selection to Output Active | tsx             | 10         | -   | 10                        |     | 10                        |     | 10                        |     | ns    |  |
| Output 3-State From Deselection | tотр            | <i>(</i> – | 40  |                           | 60  |                           | 80  | -                         | 100 | ns    |  |
| Output Hold From Address Change | toha            | 50         | -   | 50                        | -   | 50                        | -   | 50                        | -   | ns    |  |
| Write Cycle Time                | tWC             | 200        | -   | 250                       |     | 300                       | -   | 450                       |     | ns    |  |
| Write Time                      | tw              | 100        | -   | 125                       |     | 150                       | -   | 200                       | -   | ns    |  |
| Write Release Time              | twr             | 0          |     | 0                         | -   | 0                         | -   | 0                         | -   | ns    |  |
| Output 3-State From Write       | totw            |            | 40  | -                         | 60  | -                         | 80  | -                         | 100 | ns    |  |
| Data to Write Time Overlap      | <sup>t</sup> DW | 100        | -   | 125                       | -   | 150                       | -   | 200                       |     | ns    |  |
| Data Hold From Write Time       | tDH             | 0          | -   | 0                         | -   | 0                         | -   | 0                         |     | ns    |  |



Notes: 3. A Read occurs during the overlap of a low  $\overline{S}$  and a high  $\overline{W}$ .

- 4. A Write occurs during the overlap of a low  $\overline{S}$  and a low  $\overline{W}.$
- 5. W is high for a Read cycle.
- 6. If the  $\overline{S}$  low transition occurs simultaneously with the  $\overline{W}$  low transition, the output buffers remain in a high impedance rate.

#### WRITE CYCLE TIMING (Note 6)





## **Product Preview**

#### 65,536-BIT DYNAMIC RAM

The MCM6664 is a 65,536 bit, high-speed, dynamic Random-Access Memory, Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6664 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6664 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes

- Organized as 65,536 Words of 1 Bit
- Single +5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation 250 mW Maximum (Active) 30 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- . 16K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- RAS-only Refresh Mode

CAS

x

н

L

L

Internal

Early Write

н

х

L

L

CAS Controlled Output Providing Latched or Unlatched Data

OUTPUT BUFFER TRUTH TABLE

**Refresh Control (CAS Internal)** 

(X)

(X)

(H)

(L)

Upward Pin Compatible from the 16K RAM (MCM4116)



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

н This is advance information and specifications are subject to change without notice.

X

x

L

**Output Buffer** 

Hi-Z

Hi-Z

Maintains Previous

Data

Active

#### **BLOCK DIAGRAM**



#### 4116 TO 6664 COMPARISON



| I          | PIN VARIATIONS          |                        |
|------------|-------------------------|------------------------|
| PIN NUMBER | MCM4116                 | MCM6664                |
| 1          | V <sub>BB</sub> (–5 V)  | REFRESH                |
| 8          | V <sub>DD</sub> (+12 V) | V <sub>CC</sub> (+5 V) |
| 9          | V <sub>CC</sub> (+5 V)  | A7                     |

#### On-Chip Refresh Features/Benefits

Reduce System Refresh Controller Design Problem Reduce System Parts Count Reduce System Noise Increasing System Reliability

Reduce System Power During Refresh

r X



WRITE CYCLE TIMING



2

SELF REFRESH MODE (Battery Backup) (CAS<sup>1</sup>, Addresses, Data-In, and Write are Don't Care)



#### AUTOMATIC PULSE REFRESH CYCLE (CAS<sup>1</sup>, Addresses, Data-In, and Write are Don't Care)



 $1\overline{CAS}$  controls the output data. If  $\overline{CAS}$  remains low the previous output will remain valid. When  $\overline{CAS}$  is brought high, the output will assume a high-impedance state.







### READ-WRITE/READ-MODIFY-WRITE CYCLE



#### MAXIMUM RATINGS

| Rating                      | Symbol           | Value                                                                  | Unit |
|-----------------------------|------------------|------------------------------------------------------------------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0                                                           | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0                                                           | Vdc  |
| Operating Temperature Range | ТА               | T <sub>L</sub> to T <sub>H</sub><br>0 to 70<br>-40 to 85<br>-55 to 125 | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150                                                            | °C   |
| Thermal Resistance          | ΑL <sup>θ</sup>  | 82.5                                                                   | °C/W |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

## **ELECTRICAL CHARACTERISTICS** ( $V_{CC} = 5.0 V \pm 5\%$ , $V_{SS} = 0$ , $T_A = T_L$ to $T_H$ unless otherwise noted.)

| Characteristic                                                                                                                                                    |                         | Symbol          | Min | Тур | Max       | Unit  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----|-----|-----------|-------|
| Input Current (A <sub>n</sub> , R/W, CS <sub>n</sub> , $\overline{CS}_n$ )<br>(V <sub>in</sub> = 0 to 5.25 V)                                                     |                         | l <sub>in</sub> |     | -   | 2.5       | μAdc  |
| Output High Voltage<br>(I <sub>OH</sub> = -205 µA)                                                                                                                |                         | ∨он             | 2.4 | -   | -         | Vdc   |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                                                                  |                         | VOL             |     | -   | 0.4       | Vdc   |
| Output Leakage Current (Three-State)<br>(CS = 0.8 V or $\overrightarrow{CS}$ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V)                                          |                         | TSI             |     |     | 10        | µ Adc |
| Supply Current ( $V_{CC} = 5.25 V$ , all other pins grounded)                                                                                                     | 1.0 MHz<br>1.5, 2.0 MHz | 'cc             |     |     | 80<br>100 | mAdc  |
| Input Capacitance (A <sub>n</sub> , R/W, CS <sub>n</sub> , <del>CS</del> <sub>n</sub> )<br>(V <sub>in</sub> = 0, T <sub>A</sub> = 25 <sup>o</sup> C, f = 1.0 MHz) |                         | C <sub>in</sub> | -   | -   | 7.5       | pF    |
| Output Capacitance (D <sub>n</sub> )<br>( $V_{out} = 0$ , T <sub>A</sub> = 25 <sup>o</sup> C, f = 1.0 MHz, CSØ = 0)                                               |                         | Cout            | _   |     | 12.5      | pF    |

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter          | Symbol | Min  | Nom | Max  | Unit |
|--------------------|--------|------|-----|------|------|
| Input High Voltage | VIH    | 2.0  | -   | 5.25 | Vdc  |
| Input Low Voltage  | VIL    | -0.3 |     | 8.0  | Vdc  |

#### BLOCK DIAGRAM



## MCM6810, MCM68A10, MCM68B10

#### AC TEST CONDITIONS

| Condition                 | Value          |
|---------------------------|----------------|
| Input Pulse Levels        | 0.8 V to 2.0 V |
| Input Rise and Fall Times | 20 ns          |
| Output Load               | See Figure 1   |



#### AC OPERATING CONDITIONS AND CHARACTERISTICS

**READ CYCLE** (V<sub>CC</sub> = 5.0 V  $\pm$  5%, V<sub>SS</sub> = 0, T<sub>A</sub> = T<sub>L</sub> to T<sub>H</sub> unless otherwise noted.)

| · ·                        |                  | MCN | MCM6810 |     | 68A10 | MCM68B10 |     | 1    |
|----------------------------|------------------|-----|---------|-----|-------|----------|-----|------|
| Characteristic             | Symbol           | Min | Max     | Min | Max   | Min      | Max | Unit |
| Read Cycle Time            | tcyc(R)          | 450 | -       | 360 | -     | 250      | -   | ns   |
| Access Time                | tacc             | -   | 450     | -   | 360   | -        | 250 | ns   |
| Address Setup Time         | tAS              | 20  | -       | 20  | -     | 20       | -   | ns   |
| Address Hold Time          | tAH              | 0   | -       | 0   | -     | 0        | -   | ns . |
| Data Delay Time (Read)     | <sup>t</sup> DDR | -   | 230     | -   | 220   | -        | 180 | ns   |
| Read to Select Delay Time  | <sup>t</sup> RCS | 0   | -       | 0   | -     | 0        |     | ns   |
| Data Hold from Address     | tDHA             | 10  | -       | 10  | -     | 10       |     | ns   |
| Output Hold Time           | tH               | 10  | -       | 10  | -     | 10       | -   | ns   |
| Data Hold from Read        | <sup>t</sup> DHR | 10  | 80      | .10 | 60    | 10       | 60  | ns   |
| Read Hold from Chip Select | t <sub>RH</sub>  | 0   | -       | . 0 | -     | 0        | -   | ns   |



#### READ CYCLE TIMING

Note: CS and  $\overline{\text{CS}}$  can be enabled for consecutive read cycles provided R/W remains at V IH.

## MCM6810, MCM68A10, MCM68B10

## WRITE CYCLE (V<sub>CC</sub> = 5.0 V $\pm$ 5%, V<sub>SS</sub> = 0, T<sub>A</sub> = T<sub>L</sub> to T<sub>H</sub> unless otherwise noted.)

|                                  |                 | MCM6810 |     | MCM68A10 |         | MCM68B10 |     |      |
|----------------------------------|-----------------|---------|-----|----------|---------|----------|-----|------|
| Characteristic                   | Symbol          | Min     | Max | Min      | Max     | Min      | Max | Unit |
| Write Cycle Time                 | tcyc(W)         | 450     | -   | 360      | -       | 250      | -   | ns   |
| Address Setup Time               | tAS             | 20      | -   | 20       | -       | 20       | -   | ns   |
| Address Hold Time                | <sup>t</sup> AH | 0       | -   | 0        | -       | 0        | _   | ns   |
| Chip Select Pulse Width          | tCS             | 300     | -   | 250      | -       | 210      | -   | ns   |
| Write to Chip Select Delay Time  | twcs            | 0       | _   | 0        | -       | 0        | -   | ns   |
| Data Setup Time (Write)          | tDSW            | 190     |     | 80       | -       | 60       | · - | ∩s   |
| Input Hold Time                  | tH              | 10      |     | 10       | -       | 10       |     | ns   |
| Write Hold Time from Chip Select | twH             | 0       | -   |          | · · · · |          |     |      |



#### WRITE CYCLE TIMING

Note: CS and  $\overrightarrow{CS}$  can be enabled for consecutive write cycles provided R/W is strobed to V<sub>1H</sub> before or coincident with the Address change, and remains high for time t<sub>AS</sub>



## Advance Information

#### 4096 X 8-BIT UV ERASABLE PROM

The MCM2532/25A32 is a 32,768-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window in the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM2532.

- Single +5 V Power Supply
- Organized as 4096 Bytes of 8 Bits
- Automatic Power-Down Mode (Standby)
- Fully Static Operation (No Clocks)
- TTL Compatible During both Read and Program
- Maximum Access Time = 450 ns MCM 2532
   350 ns MCM25A32
- Pin Compatible with MCM68A332 Mask Programmable ROMs



C SUFFIX FRIT-SEAL PACKAGE CASE 623A L SUFFIX SIDEBRAZE CERAMIC PACKAGE ALSO AVAILABLE – CASE 716

**MCM2532** 

MCM25A32

MOS (N-CHANNEL, SILICON-GATE)

4096 X 8-BIT

**UV ERASABLE PROM** 





This is advance information and specifications are subject to change without notice.

|                 | PIN NUMBER           |                       |               |           |           |  |  |  |
|-----------------|----------------------|-----------------------|---------------|-----------|-----------|--|--|--|
| Mode            | 9-11,<br>13-17<br>DQ | 12<br>V <sub>SS</sub> | 20<br>E/Progr | 21<br>Vpp | 24<br>VCC |  |  |  |
| Read            | Data out             | VSS                   | VIL           | 0 to 5 V  | Vcc       |  |  |  |
| Output Disable  | Hi-Z                 | VSS                   | VIH           | 0 to 25 V | Vcc       |  |  |  |
| Standby         | Hi-Z                 | VSS                   | VIH           | 0 to 5 V  | Vcc       |  |  |  |
| Program         | Data in              | VSS                   | Pulsed        | VPPH      | Vcc       |  |  |  |
|                 |                      |                       | VIH to VIL    |           |           |  |  |  |
| Program Verify  | Data out             | VSS                   | VIL           | 0 to 5 V  | Vcc       |  |  |  |
| Program Inhibit | Hi-Z                 | VSS                   | VIH           | VPPH      | Vcc       |  |  |  |

#### ABSOLUTE MAXIMUM RATINGS (1)

| Rating                                                                                                                                                                                                | Value                                              | Unit                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|
| Temperature Under Bias                                                                                                                                                                                | -10 to +80                                         | oC                      |
| Storage Temperature                                                                                                                                                                                   | -65 to +125                                        | oC                      |
| All Input/Output Voltages with                                                                                                                                                                        |                                                    |                         |
| Respect to V <sub>SS</sub>                                                                                                                                                                            | +6 to -0.3                                         | Vdc                     |
| Vpp Supply Voltage with Respect to VSS                                                                                                                                                                | +28 to -0.3                                        | Vdc                     |
| NOTE 1: Permanent device damage may<br>MAXIMUM RATINGS are exceed<br>tion should be restricted to RECC<br>TING CONDITIONS. Exposure t<br>mended voltages for extended p<br>affect device reliability. | ed. Functional (<br>)MMENDED OP<br>o higher than r | opera-<br>ERA-<br>ecom- |

#### **BLOCK DIAGRAM**



#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Fully operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC READ OPERATING CONDITIONS (TA = 0° to +70°C)

| Parameter          |          | Symbol | Min  | Nom | Max                  | Unit |
|--------------------|----------|--------|------|-----|----------------------|------|
| Supply Voltage*    | MCM2732  | Vcc    | 4.75 | 5.0 | 5.25                 | Vdc  |
|                    | MCM27A32 |        | 4.5  | 5.0 | 5.5                  | Vdc  |
|                    |          | VPP    | 0    | 5.0 | V <sub>CC</sub> +0.6 | Vdc  |
| Input High Voltage |          | VIH    | 2.2  | -   | V <sub>CC</sub> +1.0 | Vdc  |
| Input Low Voltage  |          | VIL    | 0.1  |     | 0.65                 | Vdc  |

#### **READ OPERATION DC CHARACTERISTICS**

| Characteristic                            | Condition                 | Symbol | Min | Тур | Max  | Unit |
|-------------------------------------------|---------------------------|--------|-----|-----|------|------|
| Address and E Input Sink Current          | V <sub>in</sub> = 5.25 V  | lin    | -   |     | 10   | μA   |
| Output Leakage Current                    | V <sub>out</sub> = 5.25 V | IL0    | _   | _   | 10   | μA   |
| V <sub>CC</sub> Supply Current* (Standby) | Ē = V <sub>IH</sub>       | ICC1   | -   | 10  | 25   | mA   |
| V <sub>CC</sub> Supply Current* (Active)  | Ē = VIL                   | ICC2   |     | 50  | 160  | mA   |
| Vpp Supply Current*                       | Vpp = 5.85 V              | IPP1   |     | -   | 400  | μA   |
|                                           | Vpp = 0 V                 |        | -   | _   | 0    | μA   |
| Output Low Voltage                        | IOL = 2.1 mA              | VOL    | -   | -   | 0.45 | v    |
| Output High Voltage                       | IOH = -400 µA             | Мон    | 2.4 | · _ |      | V    |

 $V_{CC}$  must be applied simultaneously or prior to Vpp. V<sub>CC</sub> must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V<sub>CC</sub> during the read operation, the supply current would be the sum of Ipp1 and I<sub>CC</sub>. The additional 0.6 V tolerance on Vpp makes it possible to use a driver circuit for switching the Vpp supply from V<sub>CC</sub> in Read mode to +25 V for programming. Typical values are for T<sub>A</sub> = 25°C and nominal supply voltages.

#### CAPACITANCE

(f = 1.0 MHz,  $T_A$  = 25°C, periodically sampled rather than 100% tested)

| Characteristic                            | Symbol          | Тур | Max  | Unit |
|-------------------------------------------|-----------------|-----|------|------|
| Input Capacitance (V <sub>in</sub> = 0 V) | C <sub>in</sub> | 4.0 | 6.0  | pF   |
| Output Capacitance (Vout = 0 V)           | Cout            | 8,0 | · 12 | pF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = 1 \Delta t / \Delta V$ .

#### AC READ OPERATING CONDITIONS AND CHARACTERISTICS

(T<sub>A</sub> = 0 to +70°C, V<sub>CC</sub> and V<sub>PP</sub> = 5.0 V (± 10% MCM25A32, ±5% MCM2532) unless otherwise noted)

| Input Pulse Levels             | 0.65 Volt to 2.2 Volts             |
|--------------------------------|------------------------------------|
| Input Rise and Fall Times      |                                    |
| Input and Output Timing Levels |                                    |
| Output Load                    | . Gate and C <sub>L</sub> = 100 pF |

| ·                                                  |                   | MCM27A32 |     | MCN |     |      |
|----------------------------------------------------|-------------------|----------|-----|-----|-----|------|
| Characteristic                                     | Symbol            | Min      | Max | Min | Max | Unit |
| Address Valid to Output Valid (E/Progr = VIL)      | tAVQV             | -        | 350 |     | 450 | ns   |
| Ē to Output Valid                                  | TELOV             | -        | 350 | -   | 450 | ns   |
| Ē to Hi-Z Output                                   | <sup>t</sup> EHQZ | 0        | 100 | 0   | 100 | ns   |
| Data Hold from Address ( $\overline{E} = V_{IL}$ ) | tAXQX             | 0        | -   | 0   | -   | ns   |

READ MODE TIMING DIAGRAMS (E = VIL)



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

#### STANDBY MODE



## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (T\_A = 0 to +70°C)

#### RECOMMENDED PROGRAMMING OPERATION CONDITIONS

| Parameter                   |           | Min  | Nom | Max                | Unit |
|-----------------------------|-----------|------|-----|--------------------|------|
| Supply Voltage              | VCC, VPPL | 4.75 | 5.0 | 5.25               | Vdc  |
|                             | VPPH      | 24   | 25  | 26                 | Vdc  |
| Input High Voltage for Data | VIH       | 2.2  |     | V <sub>CC</sub> +1 | Vdc  |
| Input Low Voltage for Data  | VIL       | -0,1 | -   | 0.65               | Vdc  |

\*V<sub>CC</sub> must be applied simultaneously or prior to Vpp. V<sub>CC</sub> must also be switched off simultaneously with or after Vpp. The device must not be inserted into or removed from a board with Vpp at +25 V. Vpp must not exceed the +26 V maximum specifications.

#### PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                         | Condition                      | Symbol | Min | Тур | Max | Unit |
|----------------------------------------|--------------------------------|--------|-----|-----|-----|------|
| Address and E/Progr Input Sink Current | V <sub>in</sub> = 5.25V/0.45 V | ILI    | -   | -   | 10  | μAdc |
| Vpp Supply Current                     | E/Progr = VIL                  | IPP1   | -   | -   | 400 | µAdc |
| Vpp Programming Pulse Supply Current   | E/Progr = VIH                  | IPP2   | -   |     | 30  | mAdc |
| V <sub>CC</sub> Supply Current         |                                | 'cc    | -   | -   | 160 | mAdc |

#### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic                         | Symbol            | Min | Max | Unit |
|----------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                     | tAVEL             | 2.0 | -   | μs   |
| Vpp Setup Time                         | <sup>t</sup> PHEL | 0   | -   | ns   |
| Data Setup Time                        | tDVEL             | 2.0 |     | μs   |
| Address Hold Time                      | <sup>t</sup> EHAX | 2.0 |     | μs   |
| Vpp to Enable Low Time                 | TPLEL             | 0   | -   | ns   |
| Data Hold Time                         | tEHQZ             | 2.0 |     | μs   |
| Vpp Hold Time                          | tehpl             | 0   | -   | ns   |
| Enable (Program) Active Time           | teleh             | 1*  | 55  | ms   |
| Enable (E/Progr) Pulse Transition Time | tT(PE)            | 5   | _   | ns   |
| Vpp Rise and Fall Time from 5 to 25 V  | tR, tF            | 0.5 | 2   | μs.  |

• If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified.



PROGRAMMING OPERATION TIMING DIAGRAM

#### PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the Vpp input (pin 21) should be raised to +25 V. The V<sub>CC</sub> supply voltage is the same as for the READ operation. Programming data is entered in 8-bit words through the data out (DQ) terminals while  $\overline{E}/\overline{Progr}$  is high. Only "0's" will be programmed when "0's" and "1's" are entered in the data word.

After address and data setup, a 50 ms program pulse (V<sub>1H</sub> to V<sub>1L</sub>) is applied to the  $\overline{E/Progr}$  input. A program pulse is applied to each address location to be programmed. Locations may be programmed individually, sequentially, or at random. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the  $\overline{E/Progr}$  input.

Multiple MCM2532s may be programmed in parallel with the same data by connecting together like inputs and applying the program pulse to the  $\overline{E}/\overline{Progr}$  inputs. Different data may be programmed into multiple MCM2532s connected in parallel by using the PROGRAM INHIBIT mode. Except for the  $\overline{E}/\overline{Progr}$  pin, all like inputs may be common.

PROGRAM VERIFY for the MCM2532 is the read operation.

#### READ OPERATION

After access time, data is valid at the outputs in the READ mode.

#### **ERASING INSTRUCTIONS**

The MCM2532/25A32 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASEtime is 36 minutes. The lamps should be used without shortwave filters and the MCM2532/25A32 should be positioned about one inch away from the UV-tubes.

#### TIMING PARAMETER ABBREVIATIONS



The transition definitions used in this data sheet are: H = transition to high

- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

#### WAVEFORMS

| Waveform<br>Symbol         | Input       | Output      |
|----------------------------|-------------|-------------|
|                            | MUST BE     | WILL BE     |
|                            | VALID       | VALID       |
| min                        | CHANGE      | WILL CHANGE |
| /11/11                     | FROM H TO L | FROM H TO L |
| ( <del>) / / / / / /</del> | CHANGE      | WILL CHANGE |
|                            | FROM L TO H | FROM L TO H |
|                            | DON'T CARE: | CHANGING    |
|                            | ANY CHANGE  | STATE       |
|                            | PERMITTED   | UNKNOWN     |
|                            |             | HIGH        |
|                            |             | IMPEDANCE   |



## MCM2708 MCM27A08

#### 1024 X 8 ERASABLE PROM

The MCM2708/27A08 is an 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM2708/27A08.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Standard Power Supplies of +12 V, +5 V and -5 V
  - Maximum Access Time = 300 ns MCM27A08 450 ns - MCM2708
- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs

#### PIN CONNECTION DURING READ OR PROGRAM

| Mode      | Pin Number       |                 |                |     |      |     |     |  |  |  |
|-----------|------------------|-----------------|----------------|-----|------|-----|-----|--|--|--|
| Wode      | 9-11, 13-17      | 12              | 18             | 19  | 20   | 21  | 24  |  |  |  |
| Read      | D <sub>out</sub> | V <sub>SS</sub> | VSS            | VDD | VIL  | VBB | Vcc |  |  |  |
| · Program | Din              | V <sub>SS</sub> | Puised<br>ViHP | VDD | ViHW | VBB | Vcc |  |  |  |

| ABSOLUTE MAXIMUM RATINGS (1)                                        |             |       |
|---------------------------------------------------------------------|-------------|-------|
| Rating                                                              | Value       | Unit  |
| Operating Temperature                                               | 0 to +70    | °C    |
| Storage Temperature                                                 | -65 to +125 | °C    |
| VDD with Respect to VBB                                             | +20 to -0.3 | Vdc   |
| V <sub>CC</sub> and V <sub>SS</sub> with Respect to V <sub>BB</sub> | +15 to -0.3 | Vdc   |
| All Input or Output Voltages with Respect to VBB during Read        | +15 to -0.3 | Vdc   |
| CS/WE Input with Respect to VBB during Programming                  | +20 to -0.3 | Vdc   |
| Program Input with Respect to VBB                                   | +35 to -0.3 | Vdc   |
| Power Dissipation                                                   | 1.8         | Watts |

#### Note 1:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OP-ERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



| F      | PIN AS           | SIGNMENT    |
|--------|------------------|-------------|
| 1 🗆    | A7               | Vcc 24      |
| 2      | A6               | A8 🗖 23     |
| 3 🗆    | A5               | A9 22       |
| 4 🗆    | A4               | ∨вв 21      |
| 5 🖸    | A3               | CS/WE 20    |
| 6 🗖    | A2               | V DD 19     |
| 7 🗖    | A1               | Progr. 🗖 18 |
| 8 🗖    | A0               | 07 017      |
| 9 🗖    |                  | D6 🗖 16     |
| 10     | <b>D</b> 1       | D5 🗖 15     |
| 11     | D2               | D4 14       |
| · 12 🗖 | _∨ <sub>ss</sub> | D3 🖸 13     |



#### BLOCK DIAGRAM

## DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

#### RECOMMENDED DC READ OPERATING CONDITIONS

| Parameter          |                    | Min             | Nom  | Max                   | Unit |  |
|--------------------|--------------------|-----------------|------|-----------------------|------|--|
| Supply Voltage     | V <sub>CC</sub> 4. |                 | 5.0  | 5.25                  | Vdc  |  |
|                    | VDD                | 11.4            | -12  | 12.6                  | Vdc  |  |
|                    | ∨ <sub>BB</sub>    | -5.25           | -5.0 | -4.75                 | Vdc  |  |
| Input High Voltage | ViH                | 3.0             | -    | V <sub>CC</sub> + 1.0 | Vdc  |  |
| Input Low Voltage  | VIL                | V <sub>SS</sub> | -    | 0.65                  | Vdc  |  |

#### **READ OPERATION DC CHARACTERISTICS**

| Characteristic                 |            | Condition                                                     | Symbol            | Min | Тур | Max  | Unit |
|--------------------------------|------------|---------------------------------------------------------------|-------------------|-----|-----|------|------|
| Address and CS Input Sid       | nk Current | V <sub>in</sub> = 5.25 V or V <sub>in</sub> = V <sub>IL</sub> | lin               |     | 1   | 10   | μA   |
| Output Leakage Current         |            | V <sub>out</sub> = 5.25 V, CS/WE = 5 V                        | LO                | -   | 1   | 10   | μA   |
| VDD Supply Current             |            | Worst-Case Supply Currents                                    | <sup>1</sup> DD   |     | 50  | 65   | mA   |
| V <sub>CC</sub> Supply Current | (Note 2)   | All Inputs High                                               | ICC               |     | 6   | 10   | mA   |
| VBB Supply Current             | 1          | $\overline{CS}/WE = 5.0 V, T_A = 0^{O}C$                      | 1 <sub>BB</sub>   | -   | 30  | 45   | mA   |
| Output Low Voltage             |            | IOL = 1.6 mA                                                  | VOL               | -   | _   | 0.45 | V    |
| Output High Voltage            |            | I <sub>OH</sub> = -100 μA                                     | V <sub>OH</sub> 1 | 3.7 | -   | -    | V    |
| Output High Voltage            |            | IOH = -1.0 mA                                                 | VOH2              | 2.4 | _   | -    | v    |
| Power Dissipation              | (Note 2)   | T <sub>A</sub> = 70 <sup>0</sup> C                            | PD                | -   | -   | 800  | mW   |

#### Note 2:

The total power dissipation is specified at 800 mW. It is not calculable by summing the various current ( $I_{DD}$ ,  $I_{CC}$ , and  $I_{BB}$ ) multiplied by their respective voltages, since current paths exist between the various power supplies and  $V_{SS}$ . The  $I_{DD}$ ,  $I_{CC}$ , and  $I_{BB}$  currents should be used to determine power supply capacity only.

VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off.

#### AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) (All timing with $t_r = t_f = 20$ ns, Load per Note 3)

|                             |        | MCM27A08 |     |     |     | 1.  |     |      |
|-----------------------------|--------|----------|-----|-----|-----|-----|-----|------|
| Characteristic              | Symbol | Min      | Тур | Max | Min | Тур | Max | Unit |
| Address to Output Delay     | tAO    |          | 220 | 300 | · - | 280 | 450 | ns   |
| Chip Select to Output Delay | tco    |          | 60  | 120 | -   | 60  | 120 | ns   |
| Data Hold from Address      | tDHA   | 0        | -   | -   | 0 : | -   |     | ns   |
| Data Hold from Deselection  | toho   | 0        | -   | 120 | . 0 | - 1 | 120 | ns   |

CAPACITANCE (periodically sampled rather than 100% tested.)

| Characteristic                      | Condition                                                  | Symbol           | Тур | Max | Unit |
|-------------------------------------|------------------------------------------------------------|------------------|-----|-----|------|
| Input Capacitance<br>(f = 1.0 MHz)  | V <sub>in</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C  | C <sub>in</sub>  | 4.0 | 6.0 | pF   |
| Output Capacitance<br>(f = 1.0 MHz) | V <sub>out</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C | C <sub>out</sub> | 8.0 | 12  | ρF   |

#### Note 3:

Output Load = 1 TTL Gate and  $C_L$  = 100 pF (Includes Jig Capacitance) Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V

Outputs: 0.8 V and 2.4 V



#### READ OPERATION TIMING DIAGRAM



#### DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Symbol          | Min                                                    | Nom                                                                                                                                                                                                             | Max                                                                                                                                                                                                                                                                                            | Unit                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vcc             | 4.75                                                   | 5.0                                                                                                                                                                                                             | 5.25                                                                                                                                                                                                                                                                                           | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
| VDD             | 11.4                                                   | 12                                                                                                                                                                                                              | 12.6                                                                                                                                                                                                                                                                                           | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
| ∨ <sub>BB</sub> | -5.25                                                  | -5.0                                                                                                                                                                                                            | -4.75                                                                                                                                                                                                                                                                                          | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
| VIH             | 3.0                                                    | -                                                                                                                                                                                                               | Vcc + 1.0                                                                                                                                                                                                                                                                                      | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
| VIL             | VSS                                                    |                                                                                                                                                                                                                 | 0.65                                                                                                                                                                                                                                                                                           | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
| VIHW            | 11.4                                                   | 12                                                                                                                                                                                                              | 12.6                                                                                                                                                                                                                                                                                           | Vdç                                                                                                                                                                                                                                                                                                                                                                                                       |
| VIHP            | 25                                                     | -                                                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                             | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
| VILP            | VSS                                                    | _                                                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                            | Vdc                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | VCC<br>VDD<br>VBB<br>V1H<br>V1L<br>V1L<br>V1HW<br>V1HP | V <sub>CC</sub> 4.75           V <sub>DD</sub> 11.4           V <sub>BB</sub> -5.25           V <sub>IH</sub> 3.0           V <sub>IL</sub> V <sub>SS</sub> V <sub>IHW</sub> 11.4           V <sub>IHW</sub> 25 | V <sub>CC</sub> 4.75         5.0           V <sub>DD</sub> 11.4         12           V <sub>BB</sub> -5.25         -5.0           V <sub>IH</sub> 3.0         -           V <sub>IL</sub> V <sub>SS</sub> -           V <sub>IHW</sub> 11.4         12           V <sub>IHW</sub> 25         - | V <sub>CC</sub> 4.75         5.0         5.25           V <sub>DD</sub> 11.4         12         12.6           V <sub>BB</sub> -5.25         -5.0         -4.75           V <sub>IH</sub> 3.0         -         V <sub>CC</sub> + 1.0           V <sub>IL</sub> V <sub>SS</sub> -         0.65           V <sub>IHW</sub> 11.4         12         12.6           V <sub>IHW</sub> 25         -         27 |

Note 4: Referenced to VSS.

Note 5: VIHP - VILP = 25 V min.

#### **PROGRAMMING OPERATION DC CHARACTERISTICS**

| Characteristic                       | Condition                              | Symbol          | Min | Тур | Max | Unit |
|--------------------------------------|----------------------------------------|-----------------|-----|-----|-----|------|
| Address and CS/WE Input Sink Current | V <sub>in</sub> = 5.25 V               | ILI.            | -   |     | 10  | μAdc |
| Program Pulse Source Current         |                                        | IIPL            |     | _   | 3.0 | mAdc |
| Program Pulse Sink Current           |                                        | ЧРН             | -   | _   | 20  | mAdc |
| VDD Supply Current                   | Worst-Case Supply Currents             | loo             | -   | 50  | 65  | mAdc |
| VCC Supply Current                   | All Inputs High                        | <sup>I</sup> CC | -   | 6   | 10  | mAdc |
| VBB Supply current                   | $\overline{CS}/WE = 5 V, T_A = 0^{O}C$ | I <sub>BB</sub> | -   | 30  | 45  | mAdc |

#### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

| Characteristic                      | Symbol | Min | Max | Unit |
|-------------------------------------|--------|-----|-----|------|
| Address Setup Time                  | tAS    | 10  | _   | μs   |
| CS/WE Setup Time                    | tCSS   | 10  | -   | μs   |
| Data Setup Time                     | tDS    | 10  |     | μs   |
| Address Hold Time                   | tAH    | 1.0 | -   | μs   |
| CS/WE Hold Time                     | t CH   | 0.5 | _   | μs   |
| Data Hold Time                      | t DH   | 1.0 |     | μs   |
| Chip Deselect to Output Float Delay | tDF    | 0   | 120 | ns   |
| Program to Read Delay               | tDPR   | -   | 10  | μs   |
| Program Pulse Width                 | tpw    | 0.1 | 1.0 | ms   |
| Program Pulse Rise Time             | tPR    | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time             | tPF    | 0.5 | 2.0 | μs   |



#### PROGRAMMING OPERATION TIMING DIAGRAM

Note 6: The CS/WE transition must occur after the Program Pulse transition and before the Address Transition.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

#### **PROGRAMMING INSTRUCTIONS**

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the  $\overline{\text{CS}/\text{WE}}$  input (Pin 20) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages (V\_CC, V\_DD, V\_BB) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, Tptotal = N x tpW ≥ 100 ms. The required number of program loops (N) is a function of the program pulse width (tpW), where: 0.1 ms  $\leq$  tpW  $\leq$ 1.0 ms; correspondingly N is:  $100 \le N \le 1000$ . There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the  $\overline{CS}WE$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to  $V_{ILP}$  with an active device, because this pin sources a small amount of current (I<sub>IPL</sub>) when  $\overline{\text{CS}}/\text{WE}$  is at V<sub>IHW</sub> (12 V) and the program pulse is at  $V_{11}$  p.

#### EXAMPLES FOR PROGRAMMING

Always use the  $T_{Ptotal} = N \times t_{PW} \ge 100$  ms relationship.

1. All 8192 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{TPtotal}{tp_W} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500 \text{ . One program loop}$$

consists of words 0 to 1023.

- 2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops,  $N = \frac{100}{0.5} = 200$ . One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s.
- 3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

#### **ERASING INSTRUCTIONS**

The MCM2708/27A08 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity x exposure time) is 12.5 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM2708/27A08 should be positioned about one inch away from the UV-tubes.



# MCM2716 MCM27A16

MOS

## **Advance Information**

#### 2048 imes 8-BIT UV ERASABLE PROM

The MCM2716/27A16 is a 16,384-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMS are available for large volume production runs of systems initially using the MCM2716/27A16.

- Single ± 10% 5 V Power Supply
- Automatic Power-down Mode (Standby)
- Organized as 2048 Bytes of 8 Bits
- Low Power Dissipation
- TTL Compatible During Read and Program
- Maximum Access Time = 450 ns MCM2716 350 ns MCM27A16
- .Pin Equivalent to Intel's 2716
- Pin Compatible to MCM68A316E Mask Programmable ROMs

|                 | PIN NUMBER     |                 |                      |                 |      |     |  |  |
|-----------------|----------------|-----------------|----------------------|-----------------|------|-----|--|--|
| Mode            | 9—11,<br>13—17 | 12              | 18                   | 20              | 21   | 24  |  |  |
| a.              | DQ             | VSS             | Ē/Progr              | Ğ               | Vpp  | Vcc |  |  |
| Read            | Data out       | V <sub>SS</sub> | VIL                  | VIL             | Vcc  | Vcc |  |  |
| Output Disable  | Hi Z           | V <sub>SS</sub> | Don't Care           | V <sub>IH</sub> | Vcc  | Vcc |  |  |
| Standby         | Hi Z           | VSS             | ViH                  | Don't Care      | Vcc  | Vcc |  |  |
| Program         | Data in        | V <sub>SS</sub> | Pulsed<br>ViL to ViH | VIH             | VIHP | Vcc |  |  |
| Program Verify  | Data out       | VSS             | VIL                  | VIL             | Vінр | Vcc |  |  |
| Program Inhibit | Hi Z           | VSS             | · VIL                | ViH             | VIHP | Vcc |  |  |

#### **ABSOLUTE MAXIMUM RATINGS (1)**

| Rating                                                       | Value       | Unit |
|--------------------------------------------------------------|-------------|------|
| Temperature Under Bias                                       | -10 to +80  | °C · |
| Storage Temperature                                          | -65 to +125 | °C   |
| All Input or Output Voltages with Respect to VSS during Read | + 6 to -0.3 | Vdc  |
| Vpp Supply Voltage with Respect to VSS                       | +28 to -0.3 | Vdc  |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This is advance information and specifications are subject to change without notice.





## MCM2716, MCM27A16

#### Data Input/Output DQ0-DQ7 C Ê/Progr O Control Input/Output Buffers Logic ĞΟ : Y Gating Decode 0 A0-A10 C .......... 0 х Memory 0 Decoder Matrix (128 x 128) 0 C

#### BLOCK DIAGRAM

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### **RECOMMENDED DC READ OPERATING CONDITIONS** ( $T_A = 0^{\circ} \text{ to } + 70^{\circ} \text{C}$ )

| Parameter          |          | Symbol | Min                   | Nom | Max                   | Unit |
|--------------------|----------|--------|-----------------------|-----|-----------------------|------|
| Supply Voltage*    | MCM2716  | Vcc    | 4.75                  | 5.0 | 5.25                  | Vdc  |
|                    | MCM27A16 |        | 4.5                   | 5.0 | 5.5                   |      |
| •                  |          | Vpp    | V <sub>CC</sub> - 0.6 | 5.0 | V <sub>CC</sub> + 0.6 |      |
| Input High Voltage |          | VIH    | 2.0                   |     | V <sub>CC</sub> + 1.0 | Vdc  |
| Input Low Voltage  |          | VIL    | -0.1                  |     | 0.8                   | Vdc  |

**READ OPERATION DC CHARACTERISTICS** 

| Characteristic                               | Condition                                            | Symbol | Min | Тур | Max  | Unit |
|----------------------------------------------|------------------------------------------------------|--------|-----|-----|------|------|
| Address, G and E/Progr<br>Input Sink Current | V <sub>in</sub> = 5.25 V                             | lin    | -   | -   | 10   | μA   |
| Output Leakage Current                       | V <sub>out</sub> = 5.25 V, G = 5.0 V                 | 1LO    | -   | -   | 10   | μA   |
| V <sub>CC</sub> Supply Current* (Standby)    | $\overline{E}/Progr = V_{1H}, \overline{G} = V_{1L}$ | ICC1   |     | 10  | 25   | mA   |
| V <sub>CC</sub> Supply Current* (Active)     | $\overline{G} = \overline{E}/Progr = V_{1L}$         | ICC2   |     | 57  | 100  | mA   |
| Vpp Supply Current*                          | Vpp = 5.85 V                                         | IPP1   |     |     | 5.0  | mA   |
| Output Low Voltage                           | IQL = 2.1 mA                                         | VOL    |     | ~   | 0.45 | V    |
| Output High Voltage                          | 1 <sub>OH</sub> = -400 µA                            | ∨он    | 2.4 | -   |      | V    |

\*V<sub>CC</sub> must be applied simultaneously or prior to Vpp. V<sub>CC</sub> must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V<sub>CC</sub> during the read operation, the supply current would be the sum of Ipp1 and I<sub>CC</sub>. The additional 0.6 V tolerance on Vpp makes it possible to use a driver circuit for switching the Vpp supply pin from V<sub>CC</sub> in Read mode to +25 V for programming. Typical values are for T<sub>A</sub> = 25°C and nominal supply voltages.

#### CAPACITANCE

(f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Symbol | Тур             | Max                 | Unit                    |
|--------|-----------------|---------------------|-------------------------|
| Cin    | 4.0             | 6.0                 | рF                      |
| Cout   | 8.0             | 12                  | ρF                      |
|        | C <sub>in</sub> | C <sub>in</sub> 4.0 | C <sub>in</sub> 4.0 6.0 |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

equation: C =  $\frac{I\Delta_t}{\Delta V}$ 

# MCM2716, MCM27A16

## AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(T_A = 0 \text{ to } + 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 10\% \text{ unless otherwise noted.})$ 

| Characteristic                |                   |                   | MCM | MCM27A16 |     | 12716 |       |
|-------------------------------|-------------------|-------------------|-----|----------|-----|-------|-------|
|                               | Condition         | Symbol            | Min | Max      | Min | Max   | Units |
| Address Valid to Output Valid | E/Progr = G = VIL | tAVQV             | -   | 350      | -   | 450   | ns    |
| E/Progr to Output Valid       | (Note 2)          | <sup>t</sup> ELQV | -   | 350      | -   | 450   | ុពទ   |
| Output Enable to Output Valid | E/Progr = VIL     | tGLQV             | _   | 120      | -   | 120   | ns    |
| E/Progr to Hi Z Output        |                   | <sup>t</sup> EHQZ | 0   | 100      | 0   | 100   | ns    |
| Output Disable to Hi Z Output | E/Progr = VIL     | tGHQZ             | 0   | 100      | 0   | 100   | ns    |
| Data Hold from Address        | E/Progr = G = VIL | <sup>t</sup> AXDX | 0.  | -        | , 0 | -     | ns    |



READ MODE TIMING DIAGRAMS (Chip Enable = VIL)



### STANDBY MODE



NOTE 2:  $t_{ELQV}$  is referenced to  $\overline{E}/Progr$  or stable address, whichever occurs last.

# MCM2716, MCM27A16

# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS $(T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 10\%)$

### RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                   | Symbol                             | Min        | Nom       | Max                 | Unit       |
|-----------------------------|------------------------------------|------------|-----------|---------------------|------------|
| Supply Voltage              | V <sub>CC</sub><br>V <sub>PP</sub> | 4.75<br>24 | 5.0<br>25 | 5.25<br>26          | Vdc<br>Vdc |
| Input High Voltage for Data | VIH                                | 2.2        | -         | V <sub>CC</sub> + 1 | Vdc        |
| Input Low Voltage for Data  | VIL                                | -0.1       |           | 0.8                 | Vdc        |

\*V<sub>CC</sub> must be applied simulataneously or prior to Vpp. V<sub>CC</sub> must also be switched off simultaneously with or after Vpp. The device must not be inserted into or removed from a board with Vpp at +25 V. Vpp must not exceed the +26 V maximum specifications.

### PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                               | Condition                     | Symbol          | Min | Тур | Max | Unit |
|----------------------------------------------|-------------------------------|-----------------|-----|-----|-----|------|
| Address, G and E/Progr Input<br>Sink Current | V <sub>in</sub> = 5.25 V/0.45 | I <sub>LI</sub> | -   | -   | 10  | μAdc |
| Vpp Supply Current                           | E/Progr = VIL                 | PP1             | -   |     | 5.0 | mAdc |
| Vpp Programming Pulse<br>Supply Current      | Ē/Progr = VIH                 | IPP2            | -   |     | 30  | mAdc |
| V <sub>CC</sub> Supply Current               |                               | 'cc             | -   | -   | 100 | mAdc |

### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic                              | Symbol            | Min | Max | Unit |
|---------------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                          | taven             | 2.0 |     | μs   |
| Output Enable High to Program Pulse         | tGHEH             | 2.0 | -   | μs   |
| Data Setup Time                             | <sup>t</sup> DVEH | 2.0 | -   | μs   |
| Address Hold Time                           | <sup>t</sup> ELAX | 2.0 | -   | μs   |
| Output Enable Hold Time                     | telge             | 2.0 |     | μs   |
| Data Hold Time                              | teloz             | 2.0 |     | μs   |
| Output Disable to Hi Z Output               | tGHQZ             | 0   | 120 | . ns |
| Output Enable to Valid Data (E/Progr = VIL) | tGLQV             |     | 120 | ns   |
| Program Pulse Width                         | TEHEL             | 45  | 55  | ms   |
| Program Pulse Rise Time                     | <sup>t</sup> PR   | 5   | —   | ns   |
| Program Pulse Fall Time                     | tpr               | 5   |     | ns   |

### PROGRAMMING OPERATION TIMING DIAGRAM



2-93

### PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the Vpp input (pin 21) should be raised to  $\pm 25$  V. The V<sub>CC</sub> supply voltage is the same as for the READ operation and G is at V<sub>IH</sub>. Programming data is entered in 8-bit words through the data out (DQ) terminals. Only "'0's" will be programmed when "0's" and "1's" are entered in the data word.

After address and data setup, a 50 ms program pulse (V<sub>IL</sub> to V<sub>IH</sub>) is applied to the  $\overline{E}$ /Progr input. A program pulse is applied to each address location to be programmed. Locations may be programmed individually, sequentially, or at random. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the  $\overline{E}$ /Progr input.

Multiple MCM2716s may be programmed in parallel with the same data by connecting together like inputs and applying the program pulse to the  $\overline{E}/Progr$  inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using the PROGRAM INHIBIT mode. Except for the  $\overline{E}/Progr$  pin, all like inputs (including Output Enable) may be common.

### TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined – transition direction for first signal – signal name to which interval is defined – transition direction for second signal –



<sup>t</sup> x x

XX

- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

The PROGRAM VERIFY mode with Vpp at 25 V is used to determine that all programmed bits were correctly programmed.

### READ OPERATION

After access time, data is valid at the outputs in the READ mode. With stable system addresses, effectively faster access time (120 ns) can be obtained by gating the data onto the bus with a low Output Enable input ( $V_{II}$ ).

A high level Output Enable input (VIH) puts the MCM2716 in the Output Disable mode with outputs in the high impedance state. This mode allows two or more devices to have outputs OR-tied together on the same data bus. Only one of the MCM2716s in this configuration should have output enable at VIL to prevent contention on the data bus.

The Standby mode is available to reduce active power dissipation from 525 mW to 132 mW. The outputs are in the high impedance state when the  $\tilde{E}/Progr$  input pin is high (VIH) independent of the Output Enable input.

### **ERASING INSTRUCTIONS**

The MCM2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2716/27A16 should be positioned about one inch away from the UV-tubes.

### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

### WAVEFORMS Waveform Input Output Symbol MUST BE WILL BE VALID VALID CHANGE WILL CHANGE FROMHTOL FROM H TO L CHANGE WILL CHANGE FROM L TO H FROM L TO H DON'T CARE CHANGING ANY CHANGE STATE PERMITTED UNKNOWN HIGH IMPEDANCE



### 1024 X 8 ERASABLE PROM

The MCM68708/68A708 is a 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM68708/68A708.

- Organized as 1024 Bytes of 8 Bits
- Fully Static Operation
- Standard Power Supplies of +12 V, +5 V and -5 V
- Maximum Access Time = 300 ns MCM68A708
  - 450 ns MCM68708
- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs
- Bus Compatible to the M6800 Family

### PIN CONNECTION DURING READ OR PROGRAM

| Mode    |                  |                 | Pin I          | lumber          |      |                 |     |
|---------|------------------|-----------------|----------------|-----------------|------|-----------------|-----|
| Wode    | 9-11, 13-17      | 12              | 18             | 19              | 20   | 21              | 24  |
| Read    | D <sub>out</sub> | VSS             | VSS            | VDD             | VIL  | VBB             | Vcc |
| Program | D <sub>in</sub>  | V <sub>SS</sub> | Pulsed<br>VIHP | V <sub>DD</sub> | Vihw | ∨ <sub>BB</sub> | Vcc |



# MOS

(N-CHANNEL, SILICON-GATE)

1024 X 8-BIT UV ERASABLE PROM



| PI   | N AS | SIGNMEN           | IT          |  |
|------|------|-------------------|-------------|--|
| 10   | Α7   | Vcc               | 24          |  |
| 2 🗖  | A6   | A8                | 23          |  |
| 3 🗖  | A5   | A9                | 22          |  |
| ₄⊂   | Α4   | VBB               | 21          |  |
| 5 🗖  | A3   | <del>C</del> S/we | <b>b</b> 20 |  |
| 6 🗖  | A2   | VDD               | <b>1</b> 9  |  |
| 7    | A1   | Progr.            | <b>b</b> 18 |  |
| 80   | A0   | D7                | <b>1</b> 17 |  |
| 9 🗖  | D0   | D6                | 16          |  |
| 10 🗖 | D1   | D5                | 15          |  |
| 110  | D2   | D4                | 14          |  |
| 12   | VSS  | D3                | 13          |  |



# MCM68708, MCM68A708



### BLOCK DIAGRAM

### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| Rating                                                          | Value       | Unit  |
|-----------------------------------------------------------------|-------------|-------|
| Operating, Temperature                                          | 0 to +70    | °C    |
| Storage Temperature                                             | -65 to +125 | °C    |
| VDD with Respect to VBB                                         | +20 to -0.3 | Vdc   |
| VCC and VSS with Respect to VBB                                 | +15 to -0.3 | Vdc   |
| All Input or Output Voltages with<br>Respect to VBB during Read | +15 to -0.3 | Vdc   |
| CS/WE Input with Respect to VBB<br>during Programming           | +20 to -0.3 | Vdc   |
| Program Input with Respect to VBB                               | +35 to -0.3 | Vdc   |
| Power Dissipation                                               | 1.8         | Watts |

### Note 1:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

### DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED DC READ OPERATING CONDITIONS

| Paramet                  | er        | Symbol | Min                   | Nom  | Max                  | Unit |
|--------------------------|-----------|--------|-----------------------|------|----------------------|------|
| Supply Voltage           | · · · · · | Vcc    | 4.75                  | 5.0  | 5.25                 | Vdc  |
|                          |           | VDD    | 11.4                  | 12   | 12.6                 | Vdc  |
|                          |           | VBB    | -5.25                 | -5.0 | -4.75                | Vdc  |
| Input High Voltage       |           | VIH    | V <sub>SS</sub> + 2.0 |      | Vcc                  | Vdc  |
| Input Low Voltage        |           | VIL    | V <sub>SS</sub> -0.3  |      | V <sub>SS</sub> +0.8 | Vdc  |
| READ OPERATION DC CHARAC | TERISTICS |        |                       |      | · · ·                |      |
| Characteristic           | Condition | Symbol | Min                   | Typ  | May                  | Unit |

| Characteri                     | stic       | Condition                                                     | Symbol          | Min                  | Тур | Max                  | Unit |
|--------------------------------|------------|---------------------------------------------------------------|-----------------|----------------------|-----|----------------------|------|
| Address and CS Input Sir       | nk Current | V <sub>in</sub> = 5.25 V or V <sub>in</sub> = V <sub>1L</sub> | lin             |                      | 1   | 10                   | μA   |
| Output Leakage Current         |            | V <sub>out</sub> = 5.25 V, CS/WE = 5 V                        | <sup>I</sup> LO | -                    | 1   | 10                   | μA   |
| VDD Supply Current             |            | Worst-Case Supply Currents                                    | DD              | -                    | 50  | 65                   | mA   |
| V <sub>CC</sub> Supply Current | (Note 2)   | All Inputs High                                               | <sup>1</sup> cc | -                    | 6   | 10                   | mA   |
| VBB Supply Current             |            | $\overline{CS}/WE = 5.0 V, T_A = 0^{\circ}C$                  | IBB             | -                    | 30  | 45                   | mA   |
| Output Low Voltage             |            | I <sub>OL</sub> = 1.6 mA                                      | VOL             | -                    | -   | V <sub>SS</sub> +0.4 | V    |
| Output High Voltage            |            | I <sub>OH</sub> = -100 μA                                     | Vон             | V <sub>SS</sub> +2.4 | — , | -                    | v    |
| Power Dissipation              | (Note 2)   | T <sub>A</sub> = 70 <sup>0</sup> C                            | PD              | -                    | · _ | 800                  | mW   |

### Note 2:

The total power dissipation is specified at 800 mW. It is not calculable by summing the various currents ( $I_{DD}$ ,  $I_{CC}$ , and  $I_{BB}$ ) multiplied by their respective voltages, since current paths exist between the various power supplies and V<sub>SS</sub>. The  $I_{DD}$ ,  $I_{CC}$ , and  $I_{BB}$  currents should be used to determine power supply capacity only.

 $V_{BB}$  must be applied prior to  $V_{CC}$  and  $V_{DD}$ .  $V_{BB}$  must also be the last power supply switched off.

### AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) (All timing with $t_r = t_f = 20$ ns, Load per Note 3)

|                             |        | MCM68A708 |     |     | MCM68708 |     |     |      |
|-----------------------------|--------|-----------|-----|-----|----------|-----|-----|------|
| Characteristic              | Symbol | Min       | Тур | Max | Min      | Тур | Max | Unit |
| Address to Output Delay     | tAO    | -         | 220 | 300 | -        | 280 | 450 | ns   |
| Chip Select to Output Delay | tco    | -         | 60  | 120 | -        | 60  | 120 | ns   |
| Data Hold from Address      | tDHA   | 10        | -   | - 1 | 10       |     | -   | ns   |
| Data Hold from Deselection  | tDHD   | 10        | -   | 120 | 10       | -   | 120 | ns   |

CAPACITANCE (periodically sampled rather than 100% tested.)

| Characteristic                      | Condition                                                  | Symbol          | Тур | Max | Unit |
|-------------------------------------|------------------------------------------------------------|-----------------|-----|-----|------|
| Input Capacitance<br>(f = 1.0 MHz)  | V <sub>in</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C  | C <sub>in</sub> | 4.0 | 6.0 | pF   |
| Output Capacitance<br>(f = 1.0 MHz) | V <sub>out</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C | Cout            | 8.0 | 12  | pF   |

### Note 3:

Output Load = 1 TTL Gate and CL = 100 pF (Includes Jig Capacitance) Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V Outputs: 0.8 V and 2.4 V







# MCM68708, MCM68A708

### DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                                                                                                                                                                 | Symbol | Min   | Nom  | Max                   | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|-----------------------|------|
| pply Voltage<br>ut High Voltage for All Addresses and Data<br>ut Low Voltage (except Program)<br>WE Input High Voltage (Note 4)<br>gram Pulse Input High Voltage (Note 4) | Vcc    | 4.75  | 5.0  | 5.25                  | Vdc  |
|                                                                                                                                                                           | VDD    | 11.4  | 12   | 12.6                  | Vdc  |
|                                                                                                                                                                           | VBB    | -5.25 | -5.0 | -4.75                 | Vdc  |
| Input High Voltage for All Addresses and Data                                                                                                                             | VIH    | 3.0   |      | V <sub>CC</sub> + 1.0 | Vdc  |
| Input Low Voltage (except Program)                                                                                                                                        | VIL    | VSS   | -    | 0.65                  | Vdc  |
| CS/WE Input High Voltage (Note 4)                                                                                                                                         | VIHW   | 11.4  | 12   | 12.6                  | Vdc  |
| Program Pulse Input High Voltage (Note 4)                                                                                                                                 | VIHP   | .25   |      | 27                    | Vdc  |
| Program Pulse Input Low Voltage (Note 5)                                                                                                                                  | VILP   | VSS   | _    | 1.0                   | Vdc  |

Note 4: Referenced to VSS.

Note 5: VIHP -- VILP = 25 V min.

### **PROGRAMMING OPERATION DC CHARACTERISTICS**

| Characterístic                       | Condition                         | Symbol | Min | Тур | Max | Unit |
|--------------------------------------|-----------------------------------|--------|-----|-----|-----|------|
| Address and CS/WE Input Sink Current | V <sub>in</sub> ≈ 5.25 V          | ILI    | ~-  |     | 10  | μAdc |
| Program Pulse Source Current         |                                   | IPL.   | ·   | -   | 3.0 | mAdc |
| Program Pulse Sink Current           |                                   | ПРН    |     |     | 20  | mAdc |
| VDD Supply Current                   | Worst-Case Supply Currents        | 1DD    |     | 50  | 65  | mAdc |
| V <sub>CC</sub> Supply Current       | All Inputs High                   | lcc    | -   | 6   | 10  | mAdc |
| V <sub>BB</sub> Supply current       | CS/WE = 5 V, T <sub>A</sub> = 0°C | 18B    |     | 30  | 45  | mAdc |

### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

| Characteristic                      | Symbol | Min | Max | Unit |
|-------------------------------------|--------|-----|-----|------|
| Address Setup Time                  | t AS   | 10  |     | μs   |
| CS/WE Setup Time                    | tCSS   | 10  |     | μs   |
| Data Setup Time                     | tDS    | 10  |     | μs   |
| Address Hold Time                   | t A H  | 1.0 |     | μs   |
| CS/WE Hold Time                     | t CH   | 0.5 | -   | μs   |
| Data Hold Time                      | t DH   | 1.0 |     | μs   |
| Chip Deselect to Ouptut Float Delay | tDF    | 0   | 120 | ns.  |
| Program to Read Delay               | t DPR  | -   | 10  | μs   |
| Program Pulse Width                 | tPW    | 0.1 | 1.0 | ms   |
| Program Pulse Rise Time             | tpR    | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time             | tPF    | 0.5 | 2.0 | μs   |



### PROGRAMMING OPERATION TIMING DIAGRAM

Note 6: The  $\overline{CS}$ /WE transistion must occur after the Program Pulse transition and before the Address Transistion.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

### MCM68708, MCM68A708

### PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the  $\overline{CS}$ /WE input (Pin 20) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages ( $V_{CC}$ ,  $V_{DD}$ ,  $V_{BB}$ ) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, Tptotal = N x tpW ≥ 100 ms. The required number of program loops (N) is a function of the program pulse width (tp<sub>W</sub>), where: 0.1 ms  $\leq$  tp<sub>W</sub>  $\leq$ 1.0 ms; correspondingly N is:  $100 \le N \le 1000$ . There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the  $\overline{CS}/WE$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to  $V_{ILP}$  with an active device, because this pin sources a small amount of current (I<sub>IPL</sub>) when  $\overline{CS}/WE$  is at V<sub>IHW</sub> (12 V) and the program pulse is at  $V_{11}$  p.

### EXAMPLES FOR PROGRAMMING

Always use the  $T_{Ptotal}$  =  $N \times t_{PW} \ge 100$  ms relationship.

1. All 8092 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{T_{Ptotal}}{t_{PW}} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500 \text{ . One program loop}$$

consists of words 0 to 1023.

- 2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops,  $N = \frac{100}{0.5} = 200$ . One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s.
- 3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

### ERASING INSTRUCTIONS

The MCM68708/68A708 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity x exposure time) is 12.5 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM68708/68A708 should be positioned about one inch away from the UV-tubes.



# **Advance Information**

### 8192 X 8-BIT UV ERASABLE PROM

The MCM68764/68A764 is a 65,536-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically or for replacing 64K ROMs for fast turnaround time.<sup>2</sup> The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM68764/68A764.

- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 8192 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68764 350 ns MCM68A764
- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A364 Mask Programmable ROM

|                | PIN NUMBER            |                       |                        |                       |  |  |  |
|----------------|-----------------------|-----------------------|------------------------|-----------------------|--|--|--|
| Mode           | 9-11,<br>13-17,<br>DQ | 12<br>V <sub>SS</sub> | 20<br>Е/Vpp            | 24<br>V <sub>CC</sub> |  |  |  |
| Read           | Data out              | VSS                   | VIL                    | Vcc                   |  |  |  |
| Output Disable | Hi-Z                  | VSS                   | VIH                    | Vcc                   |  |  |  |
| Standby        | Hi-Z                  | VSS                   | VIH                    | Vcc                   |  |  |  |
| Program        | Data in               | V <sub>SS</sub>       | Pulsed<br>VILP to VIHP | Vcc                   |  |  |  |

### MODE SELECTION

### **ABSOLUTE MAXIMUM RATINGS (1)**

| Rating                                                       | Value       | Unit |
|--------------------------------------------------------------|-------------|------|
| Temperature Under Bias                                       | -10 to +80  | °C   |
| Storage Temperature                                          | -65 to +125 | °C   |
| All Input or Output Voltages with Respect to VSS during Read | + 6 to -0.3 | Vdc  |
| Vpp Supply Voltage with Respect to VSS                       | +28 to -0.3 | Vdc  |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This is advance information and specifications are subject to change without notice.

# MCM68764 MCM68A764

# MOS

(N-CHANNEL, SILICON-GATE) 8192 X 8-BIT UV ERASABLE PROM



# PIN ASSIGNMENT

| 1 - A7               | V <sub>CC</sub> 24 |
|----------------------|--------------------|
| 2 🗖 A6               | A8 23              |
| 3 🗖 A5               | A9 22              |
| 4 - A4               | A12 21             |
| 5 🗖 A3               | Ē/VPP 20           |
| 6 🗖 A2               | A10 19             |
| 7 🗖 A1               | A11 18             |
| 8 🗖 A0               | DQ7 17             |
| 9 - 000              |                    |
| 10 🗖 DQ1             | 005 15             |
| 11 C DQ2             | DQ4 14             |
| 12 - V <sub>SS</sub> |                    |
| L                    |                    |

| *PIN NAMES                |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
| A Address                 |  |  |  |  |  |
| DQ Data Input/Output      |  |  |  |  |  |
| E/Vpp Chip Enable/Program |  |  |  |  |  |
| GOutput Enable            |  |  |  |  |  |

\*New industry standard nomenclature



BLOCK DIAGRAM

### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

### RECOMMENDED DC READ OPERATING CONDITIONS ( $T_A = 0^\circ$ to +70°C)

| Param              | eter      | Symbol | Min  | Nom | Max                  | Unit |
|--------------------|-----------|--------|------|-----|----------------------|------|
| Supply Voltage*    | MCM68764  | Vcc    | 4.75 | 5.0 | 5.25                 | Vdc  |
|                    | MCM68A764 |        | 4.5  | 5.0 | 5.5                  |      |
| Input High Voltage |           | VIH    | 2.0  | -   | V <sub>CC</sub> +1.0 | Vdc  |
| Input Low Voltage  |           | VIL    | 0.1  | -   | 0.8                  | Vdc  |

### READ OPERATING DC CHARACTERISTICS

| Characteristic                          | Condition                 | Symbol                                       | Min | Тур | Max  | Unit |
|-----------------------------------------|---------------------------|----------------------------------------------|-----|-----|------|------|
| Address Input Sink Current              | V <sub>in</sub> = 5.25 V  | lin                                          |     | -   | 10   | μΑ   |
| Output Leakage Current                  | V <sub>out</sub> = 5.25 V | 1LO                                          | _   |     | 10   | μΑ   |
| E/Vpp Input Sink Current                | Ē/Vpp = VIL               | <sup>I</sup> EL                              |     | -   | 10   | μA   |
|                                         | Ē/Vpp = VIH               | <sup>1</sup> EH <sup>=</sup> <sup>1</sup> PL |     | _   | 200  | μΑ   |
|                                         | Ë/VPP = VIHP              | Ірн                                          | _   | -   | 30   | mA   |
| V <sub>CC</sub> Supply Current (Active) | Ē/Vpp = VIL               | ICC1                                         | -   | · - | 160  | mA   |
| VCC Supply Current (Standby)            | Ê/Vpp ≃ ViH               | ICC2                                         | -   |     | 25   | mA   |
| Output Low Voltage                      | I <sub>OL</sub> = 2.1 mA  | VOL                                          |     | 0.1 | 0.45 | V    |
| Output High Voltage                     | l <sub>OH</sub> = -400 μA | Voн                                          | 2.4 | 4.0 | -    | v    |

### CAPACITÁNCE

(f = 1.0 MHz,  $T_A = 25^{\circ}$ C, periodically sampled rather than 100% tested.)

| Characteristic                            | Symbol | Тур | Max | Unit |
|-------------------------------------------|--------|-----|-----|------|
| Input Capacitance (V <sub>in</sub> = 0 V) | Cin    | 4.0 | 6.0 | рF   |
| Output Capacitance (Vout = 0 V)           | Cout   | 8.0 | 12  | pF   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Capacitance measured with a Boonton Meter or effective capacitance calculated from the  $I\Delta_t$ 

equation: C =  $\frac{12}{4M}$ 

### DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$ 

### RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                                     | Symbol          | Min  | Nom | Max                 | Unit |
|-----------------------------------------------|-----------------|------|-----|---------------------|------|
| Supply Voltage                                | V <sub>CC</sub> | 4.75 | 5.0 | 5.25                | Vdc  |
| Input High Voltage for All Addresses and Data | VIH             | 2.0  | -   | V <sub>CC</sub> + 1 | Vdc  |
| Input Low Voltage for All Addresses and Data  | VIL             | -0.1 | -   | 0.8                 | Vdc  |
| Program Pulse Input High Voltage              | VIHP            | 24   | 25  | 26                  | Vdc  |
| Program Pulse Input Low Voltage               | VILP            | 2.0  | Vcc | 6.0                 | Vdc  |

### PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                            | Condition                | Symbol                       | Min | Тур | Max | Unit |
|-------------------------------------------|--------------------------|------------------------------|-----|-----|-----|------|
| Address Input Sink Current                | V <sub>in</sub> = 5.25 V | <sup>1</sup> LI <sup>1</sup> | -   | -   | 10  | μAdc |
| Program Pulse Current (Vpp = 25 V)        |                          | Ірн                          |     | -   | 30  | mAdc |
| Vpp Programming Pulse Current (Vpp = 5 V) |                          | IPL = IEH                    | _   | -   | 200 | μΑ   |
| V <sub>CC</sub> Supply Current            |                          | <sup>I</sup> cc              |     | -   | 160 | mAdc |

### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic            | Symbol            | Min | Max | Unit |
|---------------------------|-------------------|-----|-----|------|
| Address Setup Time        | <sup>t</sup> AVPH | 2.0 | · - | μs   |
| Data Setup Time           | <sup>t</sup> DVPH | 2.0 | -   | μs   |
| Chip Enable to Valid Data | <sup>t</sup> ELQV | 450 | -   | ns   |
| Chip Disable to Data In   | <sup>t</sup> EHDV | 2.0 |     | μs   |
| Program Pulse Width*      | <b>tPHPL</b>      | 1.0 | 55  | ms   |
| Program Pulse Rise Time   | tpr               | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time   | tPF               | 0.5 | 2.0 | μs   |

\*The minimum programming time is twice the programming time after successful verification of the programmed pattern, but maximum programming time is 55 ms.

### PROGRAMMING OPERATION TIMING DIAGRAM



### AC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

 Input Timing Levels
 1 Volt and 2 Volts

 Output Timing Levels
 0.8 Volt to 2 Volts

 Output Load
 100 pF + 1 74 Series TTL Load

|                               |           |                   | MCM68A764 |     | MCM68764 |     |       |  |
|-------------------------------|-----------|-------------------|-----------|-----|----------|-----|-------|--|
| Characteristic                | Condition | Symbol            | Min       | Max | Min      | Max | Units |  |
| Address Valid to Output Valid | E = VIL   | †AVQV             | 1         | 350 |          | 450 | ns    |  |
| E to Output Valid             |           | <sup>t</sup> ELQV | -         | 350 |          | 450 | ns    |  |
| E to Hi-Z Output              |           | <sup>t</sup> EHQZ | 0         | 100 | 0        | 100 | ns    |  |
| Data Hold from Address        | Ē = VIL   | <sup>t</sup> AXDX | 0         | -   | 0        | -   | ns    |  |

### READ MODE TIMING DIAGRAM



### PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the  $\vec{E}/Vpp$ input (Pin 20) should be between +2.0 and +6.0 V, which will tristate the outputs and allow data to be setup on the DQ terminals. The VCC voltage is the same as for the Read operation, Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25 volt programming pulse (VIH to VIHP) is applied to the  $\overline{E}/VPP$  input. A program pulse is applied to each address location to be programmed. Locations may be programmed individually, sequentially, or at random. The maximum program pulse width is 55 ms and the maximum program pulse amplitude is 26.0 V.

Multiple MCM68764s may be programmed in parallel by connecting like inputs and applying the program pulse to the E/Vpp inputs. Different data may be programmed into multiple MCM68764s connected in parallel by selectively applying the programming pulse only to the MCM68764s to be programmed.

### TIMING PARAMETER ABBREVIATIONS

| · · · · · · · · · · · · · · · · · · ·                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------|
| signal name from which interval is defined —<br>transition direction for first signal —<br>signal name to which interval is defined — |
| transition direction for first signal                                                                                                 |
| signal name to which interval is defined ———                                                                                          |
| transition direction for second signal                                                                                                |

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

### READ OPERATION

After access time, data is valid at the outputs in the Read mode. A single input (E/Vpp) enables the outputs and puts the chip in active or standby mode. With  $\overline{E}/Vpp = "0"$  the outputs are enabled and the chip is in active mode, with  $\mathbf{E}/\mathbf{V}\mathbf{P}\mathbf{P}$  = "1" the outputs are tristated and the chip is in standby mode. During standby mode, the power dissipation is reduced from 880 mW to 132 mW.

Multiple MCM68764 may share a common data bus with like outputs OR-tied together. In this configuration the E/Vpp input should be high on all unselected MCM 68764s to prevent data contention.

### **ERASING INSTRUCTIONS**

The MCM68764 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68764 should be positioned about one inch away from the UV-tubes.

### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

### WAVEFORMS Waveform Input Output Symbol MUST RE WILL BE VALID

| CHANGE<br>FROM H TO L                 | WILL CHANGE<br>FROM H TO L   |
|---------------------------------------|------------------------------|
| CHANGE<br>FROM L TO H                 | WILL CHANGE<br>FROM L TO H   |
| DON'T CARE<br>ANY CHANGE<br>PERMITTED | CHANGING<br>STATE<br>UNKNOWN |
|                                       | HIGH<br>IMPEDANCE            |



# TMS2716 TMS27A16

MOS

(N-CHANNEL, SILICON-GATE)

 $2048 \times 8$ -BIT

**UV ERASABLE PROM** 

C SUFFIX

FRIT-SEAL PACKAGE CASE 623A

L SUFFIX CERAMIC PACKAGE CASE 716

### 2048 × 8 ERASABLE PROM

The TMS2716 and TMS27A16 are 16,384-bit Erasable and Electrically Reprogrammable PROMs designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. The TMS2716 is pin compatible with 2708 EPROMs, allowing easy memory size doubling.

- Organized as 2048 Bytes of 8 Bits
- Fully Static Operation (No Clocks, No Refresh)
- Standard Power Supplies of +12 V, +5 V, and --5 V
- Maximum Access Time = 300 ns TMS27A16 450 ns - TMS2716
- Chip-Select Input for Memory Expansion
- TTL Compatible No Pull-up Resistors Required
- Three-State Outputs for OR-Tie Capability
- The TMS2716 is Pin Compatible to MCM2708 and MCM68708 EPROMs



| P    | IN AS | SIGNMEN             | IT         |       |
|------|-------|---------------------|------------|-------|
| 1 🗖  | A7    | V <sub>CC</sub> (E) | 24         |       |
| 2 🗖  | A6    | A8                  | 23         |       |
| з 🗖  | Á5    | A9                  | 22         |       |
| 4 🗖  | A4    | VBB                 | 21         |       |
| 5 🗖  | A3    | A10                 | 20         |       |
| 6 🗖  | Α2    | VDD                 | 19         |       |
| 7 🗖  | A1    | S(Progr)            | 18         |       |
| 8 🗖  | A0    | D7                  | <b>1</b> 7 |       |
| 9 🗆  | D0    | D6                  | 16         |       |
| 10 🗖 | D1    | D5                  | 15         |       |
| 11 🗖 | D2    | D4                  | 14         |       |
| 12 🗖 | VSS   | D3                  | 13         |       |
|      | 1     |                     |            |       |
|      |       |                     | <u> </u>   | <br>_ |
|      | DIN   | MAMES               |            |       |

| PIN NAMES                          |
|------------------------------------|
| 1                                  |
| A0-A10 Address Inputs              |
| DQ0-DQ7 Data Input (Program) or    |
| Output (Read)                      |
| (E) Program Enable                 |
| S Chip Select                      |
| (Progr) Program Pulse              |
| VBB ~5 V Power Supply              |
| V <sub>CC</sub> +5 V Power Supply  |
| V <sub>DD</sub> +12 V Power Supply |
| V <sub>SS</sub> Ground             |
|                                    |

2-106

# TMS2716, TMS27A16

### ABSOLUTE MAXIMUM RATINGS (1)

| Rating                                                              | Value       | Unit  |
|---------------------------------------------------------------------|-------------|-------|
| Operating Temperature                                               | 0 to +70    | °C    |
| Storage Temperature                                                 | -65 to +125 | °C    |
| V <sub>DD</sub> with Respect to V <sub>BB</sub>                     | +20 to -0.3 | Vdc   |
| V <sub>CC</sub> and V <sub>SS</sub> with Respect to V <sub>BB</sub> | +15 to -0.3 | Vdc   |
| All Input or Output Voltage with Respect to VBB During Read         | +15 to ~0.3 | Vdc   |
| (E) Input with Respect to V <sub>BB</sub> During Programming        | +20 to0.3   | Vdc   |
| Program Input with Respect to VBB                                   | +35 to -0.3 | Vdc   |
| Power Dissipation                                                   | 1.8         | Watts |

PIN CONNECTION DURING READ OR PROGRAM

|         | Pin Number         |                           |      |  |  |  |  |
|---------|--------------------|---------------------------|------|--|--|--|--|
| Mode    | 9 – 11,<br>13 – 17 | 18                        | 24   |  |  |  |  |
| Read    | Dout               | V <sub>IL</sub> or<br>VIH | Vcc  |  |  |  |  |
| Program | D <sub>in</sub>    | Pulsed<br>VIHP            | ∨інw |  |  |  |  |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

### DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

### RECOMMENDED DC READ OPERATING CONDITIONS

|          | Symbol '        | Min                                                                                                                                                                                          | Nom                                                                                                                                                                                                        | Max                                                                                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMS2716  | Vcc             | 4.75                                                                                                                                                                                         | 5.0                                                                                                                                                                                                        | 5.25                                                                                                                                                                                                                                                                                                                   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | V <sub>DD</sub> | 11.4                                                                                                                                                                                         | 12                                                                                                                                                                                                         | 12.6                                                                                                                                                                                                                                                                                                                   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | VBB             | -5.25                                                                                                                                                                                        | -5.0                                                                                                                                                                                                       | -4.75                                                                                                                                                                                                                                                                                                                  | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TMS27A16 | Vcc             | 4.5                                                                                                                                                                                          | 5.0                                                                                                                                                                                                        | 5.5                                                                                                                                                                                                                                                                                                                    | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | VDD             | 10.8                                                                                                                                                                                         | 12                                                                                                                                                                                                         | 13.2                                                                                                                                                                                                                                                                                                                   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | V <sub>BB</sub> | -5.5                                                                                                                                                                                         | -5.0                                                                                                                                                                                                       | -4.5                                                                                                                                                                                                                                                                                                                   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | VIH             | 2.2                                                                                                                                                                                          |                                                                                                                                                                                                            | V <sub>CC</sub> + 1.0                                                                                                                                                                                                                                                                                                  | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | VIL             | V <sub>SS</sub>                                                                                                                                                                              | -                                                                                                                                                                                                          | 0.65                                                                                                                                                                                                                                                                                                                   | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                 | TMS2716         V_CC           VDD         VBB           TMS27A16         V_CC           VDD         VBB           TMS27A16         V_CC           VDD         VBB           VIH         VIH | TMS2716         V <sub>CC</sub> 4.75           V <sub>DD</sub> 11.4         -5.25           TMS27A16         V <sub>CC</sub> 4.5           V <sub>DD</sub> 10.8         -5.5           V <sub>IH</sub> 2.2 | TMS2716         V <sub>CC</sub> 4.75         5.0           V <sub>DD</sub> 11.4         12           V <sub>BB</sub> -5.25         -5.0           TMS27A16         V <sub>CC</sub> 4.5         5.0           V <sub>DD</sub> 10.8         12           V <sub>BB</sub> -5.5         -5.0           V <sub>IH</sub> 2.2 | TMS2716         V <sub>CC</sub> 4.75         5.0         5.25           V <sub>DD</sub> 11.4         12         12.6           V <sub>BB</sub> -5.25         -5.0         -4.75           TMS27A16         V <sub>CC</sub> 4.5         5.0         5.25           V <sub>DD</sub> 10.8         12         13.2           V <sub>BB</sub> -5.5         -5.0         -4.5           V <sub>BB</sub> -5.5         -5.0         -4.5           V <sub>H</sub> 2.2         -         V <sub>CC</sub> +1.0 |

### READ OPERATING DC CHARACTERISTICS

| Characteristic                 | Condition                                                                  | Symbol          | Min | Түр | Max  | Unit |
|--------------------------------|----------------------------------------------------------------------------|-----------------|-----|-----|------|------|
| Address Input Sink Current     | V <sub>in</sub> = V <sub>CC</sub> max or V <sub>in</sub> = V <sub>IL</sub> | lin             |     | 1   | 10   | μA   |
| Output Leakage Current         | Vout = V <sub>CC</sub> max and S = 5 V                                     | LO              |     | 1   | 10   | μA   |
| VDD Supply Current             | Worst-Case Supply Currents                                                 | <sup>1</sup> DD |     |     | 65   | mA   |
| V <sub>CC</sub> Supply Current | All Inputs High                                                            | 'cc             |     | -   | 12   | mA   |
| VBB Supply Current             | $(E) = 5.0 V, T_A = 0^{O}C$                                                | I <sub>BB</sub> |     | -   | 45   | mA   |
| Output Low Voitage             | IOL = 1.6 mA                                                               | VOL             |     |     | 0.45 | V    |
| Output High Voltage            | I <sub>OH</sub> = ~100 μA                                                  | VOH1            | 3.7 | -   |      | V    |
| Output High Voltage            | 1 <sub>OH</sub> = -1.0 mA                                                  | ∨он2            | 2.4 |     |      | V    |

VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off.

CAPACITANCE (periodically sampled rather than 100% tested)

| Characteristic                      | Condition                                                  | Symbol           | Тур | Max | Unit |
|-------------------------------------|------------------------------------------------------------|------------------|-----|-----|------|
| Input Capacitance<br>(f = 1.0 MHz)  | V <sub>in</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C  | C <sub>in</sub>  | 4.0 | 6.0 | pF   |
| Output Capacitance<br>(f = 1.0 MHz) | V <sub>out</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C | C <sub>out</sub> | 8.0 | 12  | pF   |

### AC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

(All timing with  $t_r = t_f = 20 \text{ ns}$ , Load per Note 2)

| · · · · · · · · · · · · · · · · · · · | · .               | TM\$2716 |     | TMS27A16 |     | [ ·  |
|---------------------------------------|-------------------|----------|-----|----------|-----|------|
| Characteristic                        | Symbol            | Min      | Max | Min      | Max | Unit |
| Address to Output Delay               | tAVQV             | -        | 450 |          | 300 | ns   |
| Chip Select to Output Delay           | <sup>t</sup> SLQV | -        | 120 | -        | 120 | ns   |
| Data Hold from Address                | tAXQZ .           | 10       | -   | 10       | -   | ns   |
| Data Hold from Deselection            | tshoz             | 10       | 120 | 10       | 120 | ns   |

NOTE 2: Output Load = 1 TTL Gate and C<sub>L</sub> = 100 pF (Includes Jig Capacitance) Timing Measurement Reference Levels – Inputs: 0.8 V and 2.8 V Outputs: 0.8 V and 2.4 V

t x x x x

### AC TEST LOAD



### TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.



### READ OPERATION TIMING DIAGRAM

# TMS2716, TMS27A16

### DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

### RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                                      | Symbol          | Min             | Nom  | Max                 | Unit |
|------------------------------------------------|-----------------|-----------------|------|---------------------|------|
| Supply Voltage                                 | Vcc             | 4.75            | 5.0  | 5.25                | Vdc  |
|                                                | VDD             | 11.4            | 12   | 12.6                | Vdc  |
|                                                | ∨ <sub>BB</sub> | -5.25           | -5.0 | -4.75               | Vdc  |
| Input High Voltage for Data                    | VIHD            | 3.8             | -    | V <sub>CC</sub> + 1 | Vdc  |
| Input Low Voltage for Data                     | VILD            | V <sub>SS</sub> | -    | 0.65                | Vdc  |
| Input High Voltage for Addresses               | VIHA            | 3.8             |      | V <sub>CC</sub> + 1 | Vdc  |
| Input Low Voltage for Addresses                | VILA            | VSS             | -    | 0.4                 | Vdc  |
| Program Enable (E) Input High Voltage (Note 3) | ViĤw            | 11.4            | 12   | 12.6                | Vdc  |
| Program Enable (E) Input Low Voltage (Note 3)  | VILW=VCC        | 4.75            | 5.0  | 5.25                | Vdc  |
| Program Pulse Input High Voltage (Note 3)      | VIHP            | 25              |      | 27                  | Vdc  |
| Program Pulse Input Low Voltage (Note 4)       | VILP            | VSS             | -    | 1.0                 | Vdc  |

NOTE 3: Referenced to VSS.

NOTE 4: VIHP - VILP = 25 V min.

### PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic               | Condition                     | Symbol           | Min | Тур | Max | Unit - |
|------------------------------|-------------------------------|------------------|-----|-----|-----|--------|
| Address Input Sink Current   | V <sub>in</sub> = 5.25 V      | ILI -            | -   | _   | 10  | μAdc   |
| Program Pulse Source Current |                               | 11PL             | -   |     | 3.0 | mAdc   |
| Program Pulse Sink Current   |                               | <sup>1</sup> IPH | -   | -   | 20  | mAdc   |
| VDD Supply Current           | Worst-Case Supply Currents    | IDD              | · _ | -   | 65  | mAdc   |
| VCC Supply Current           | All Inputs High               | <sup>I</sup> CC  | -   | -   | 15  | mAdc   |
| VBB Supply current           | (E) = 5 V, $T_A = 0^{\circ}C$ | IBB              | -   |     | 45  | mAdc   |

### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

| Characteristic          | Symbol            | Min | Max | Únit |
|-------------------------|-------------------|-----|-----|------|
| Address Setup Time      | <sup>t</sup> AVPH | 10  | -   | μs   |
| (E) Setup Time          | tенрн             | 10  | _   | μs   |
| Data Setup Time         | <sup>t</sup> DVPH | 10  | -   | μs   |
| Address Hold Time       | <sup>t</sup> PLAX | 1.0 |     | μs   |
| (E) Hold Time           | <sup>t</sup> PLEL | 0.5 |     | μs   |
| Data Hold Time          | <sup>t</sup> PLDX | 1.0 | -   | μs   |
| Program to Read Delay   | <sup>t</sup> ELQV | -   | 10  | μs   |
| Program Pulse Width     | tPHPL             | 0.1 | 1.0 | ms   |
| Program Pulse Rise Time | tpR               | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time | tPF               | 0.5 | 2.0 | μs   |

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.



### PROGRAMMING OPERATION TIMING DIAGRAM

NOTE 5: This Program Enable tranistion must occur after the Program Pulse transition and before the Address Transition.



2-110

### **PROGRAMMING INSTRUCTIONS**

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the  $V_{CC}(E)$  input (Pin 24) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (DQ0 to DQ7).

The VDD and VBB supply voltages are the same as for the READ operation.

After address and data setup, one program pulse per address is applied to the program input. A program loop is a full pass through all addresses. Total programming time/ address,  $T_{Ptotal} = N \times t_{PHPL} \ge 100 \text{ ms}$ . The required number of program loops (N) is a function of the program pulse width (tPHPL) where: 0.1 ms  $\leq$  tPHPL  $\leq$  1.0 ms; correspondingly, N is:  $100 \le N \le 1000$ . There must be N successive loops through all 2048 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the Program Enable (E) falling edge transition must occur before the first address transition; when changing from a PROGRAM to a READ cycle. The program pin should be pulled down to VILP with an active device, because this pin sources a small amount of current (IIPL) when (E) is at VIHW (12 V) and the program pulse is at VIIP.

### EXAMPLE FOR PROGRAMMING

Always use the TPtotal = N  $\times$  tPHPL  $\geq$  100 ms relationship.

1. All 16,384 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{TPtotal}{tPHPL} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500.$$

One program loop consists of words 0 to 2047.

2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N = 100/0.5 = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s.

3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

### **ERASING INSTRUCTIONS**

The TMS2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity  $\times$  exposure time) is 12.5 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the TMS2716/27A16 should be positioned about one inch away from the UV-tubes.



### 128c X 7 X 5 CHARACTER GENERATOR

The MCM6670 is a mask-programmable horizontal-scan (row select) character generator containing 128 characters in a 5 X 7 matrix. A 7-bit address code is used to select one of the 128 available characters, and a 3-bit row select code chooses the appropriate row to appear at the outputs. The rows are sequentially displayed, providing a 7-word sequence of 5 parallel bits per word for each character selected by the address inputs.

The MCM6674 is a preprogrammed version of the MCM6670. The complete pattern of this device is contained in this data sheet.

- Fully Static Operation
- TTL Compatibility
- Single ±10% +5 Volt Power Supply
- 18-Pin Package
- Diagonal Corner Power Supply Pins
- Fast Access Time, 350 ns (max)

### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| ' Rating                    | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | Тд               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | 65 to +150   | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING-CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.





This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated

voltages to this high impedance circuit.

3 C A4

4 T A3

5 C A2

6 C A1

7 - 40

8 C RS3

9 Gnd

16

RS1 11

10

D4

D3 15

D2 14

D1 13

D0 - 12

RS2

### DC OPERATING CONDITIONS AND CHARACTERISITCS

(Full operating voltage and temperature range unless otherwise noted.)

### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                                                                                                  | Symbol | Min  | Nom | Max  | Unit |
|----------------------------------------------------------------------------------------------------------------------------|--------|------|-----|------|------|
| Supply Voltage                                                                                                             | Vcc    | 4.5  | 5.0 | 5.5  | Vdc  |
| Input High Voltage '                                                                                                       | VIH    | 2.0  | -   | 5.25 | Vdc  |
| Input Low Voltage                                                                                                          | VIL    | -0.3 |     | 0.8  | Vdc  |
| DC CHARACTERISTICS                                                                                                         |        |      |     |      |      |
| Characteristic                                                                                                             | Symbol | Min  | Тур | Max  | Unit |
| Input Current<br>(V <sub>in</sub> = 0 to 5.25 V)                                                                           | lin    | 8756 | -   | 2.5  | µAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 μA)                                                                         | VOH    | 2.4  | -   | Vcc  | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                           | VOL    |      |     | 0.4  | Vdc  |
| Output Leakage C <u>urr</u> ent (Three-State)<br>(CS = 2.0. V or <del>CS</del> = 0.8 V, V <sub>OUt</sub> = 0.4 V to 2.4 V) | ιτο    | -    | -   | 10   | μAdc |
| Supply Current<br>(V <sub>CC</sub> = 5.25 V, T <sub>A</sub> = $0^{\circ}$ C)                                               | lcc    | -    | -   | 130  | mAdc |

CAPACITANCE (T<sub>A</sub> = 25<sup>o</sup>C, f = 1.0 MHz)

| Characteristic     | Symbol          | Тур | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 5.0 | рF   |
| Output Capacitance | Cout            | 5.0 | pF   |

### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

| AC TEST CONDITIONS        |                           |  |  |  |  |  |  |  |  |
|---------------------------|---------------------------|--|--|--|--|--|--|--|--|
| Condition                 | Value                     |  |  |  |  |  |  |  |  |
| Input Pulse Levels        | 0.8 V to 2.0 V            |  |  |  |  |  |  |  |  |
| Input Rise and Fall Times | 20 ns                     |  |  |  |  |  |  |  |  |
| Output Load               | 1 TTL Gate and CL = 30 pF |  |  |  |  |  |  |  |  |



### AC CHARACTERISTICS

| Characteristic              | Symbol               | Min | Max | Unit |
|-----------------------------|----------------------|-----|-----|------|
| Cycle Time                  | tcyc                 | 350 | -   | ns   |
| Address Access Time         | t <sub>acc</sub> (A) |     | 350 | ns   |
| Row Select Access Time      | tacc(RS) +           |     | 350 | ns   |
| Chip Select to Output Delay | tCO                  |     | 150 | ns   |



CUSTOM PROGRAMMING FOR MCM6670

By the programming of a single photomask, the customer may specify the content of the MCM6670. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:

- 1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4).
- 2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5).

Programming of the MCM6670 can be achieved by using the following sequence:

1. Create the 128 characters in a  $5 \times 7$  font using the format shown in Figure 1. Note that information at output D4 appears in column one, D3 in column two, thru D0 information in column five. The dots filled in and programmed as a logic "1" will appear at the outputs as VOH; the dots left blank will be at VOL. RO is always programmed to be blank (VOL). (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)

2. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. The information for D4 must be a hex one or zero, and is entered in the left block. The information for D3 thru D0 is entered in the right block, with D3 the most significant bit for the hex coding, and D0 the least significant.

3. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).

 Transmit this data to Motorola, along with the customer name, customer part number and revision, and an indication that the source device is the MCM6670.

5. Information should be submitted on an organizational data form such as that shown in Figure 2.

### FIGURE 1 - CHARACTER FORMAT

|     |       |      | -      |     | Character Number (CUSTOMER INPUT)                                       | Character Number(CUSTOMER INPUT)                                     |
|-----|-------|------|--------|-----|-------------------------------------------------------------------------|----------------------------------------------------------------------|
|     |       | SELE |        |     | MSB LSB HEX                                                             | MSB LSB HEX                                                          |
| RS3 | RS2   | RS1  | OUTPUT | 1   | $PO \square \square \square \square \square \square \square \square$    |                                                                      |
| 0   | 0     | 0    | RO     |     | B1 0 2 0 4                                                              | $\mathbb{P}^1 \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes / F$ |
| 0   | 0     | - 1  | R1     | 1   | $B_2 \square \boxtimes \square \boxtimes \square 0   A  $               | $\mathbb{R}^2$                                                       |
| 0   | 1 1 . | 0    | R2     |     |                                                                         |                                                                      |
| 0   | 1     | 1    | R3     |     |                                                                         |                                                                      |
| × 1 | 0     | 0    | R4     | ·   |                                                                         |                                                                      |
| 1.  | 0     | 1    | 85     |     | $P^{5} \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes I F$ |                                                                      |
| 1   | 1     | 0    | R6     | 1.1 |                                                                         |                                                                      |
| 1   | 1     | 1    | R7     |     |                                                                         |                                                                      |
|     |       |      |        |     |                                                                         |                                                                      |

| · · · · · · · · · · · · · · · · · · · | ORGANIZATIONAL<br>MCM6670 MOS READ ONL |                       |
|---------------------------------------|----------------------------------------|-----------------------|
| ustomer:                              |                                        |                       |
| Company                               |                                        | Motorola Use Only:    |
| Company                               |                                        | Quote:                |
| Part No                               |                                        | Part No.:             |
| Originator                            |                                        |                       |
| Phone No                              | · · · · · · · · · · · · · · · · · · ·  | Specif. No.:          |
| nip-Select Options:                   | Active High                            | Active Low No-Connect |
|                                       | 1                                      | 0                     |
| CS                                    |                                        |                       |

### FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

### FIGURE 3 - CARD PUNCH FORMAT

|   | Colum | ns                                 |
|---|-------|------------------------------------|
|   | 1.9   | Blank                              |
|   | 10.25 | Hex coding for first character     |
|   | 26    | Slash (/)                          |
|   | 27.42 | Hex coding for second character    |
|   | 43    | Slash (/)                          |
| 1 | 44-59 | Hex coding for third character     |
|   | 60    | Slash (/)                          |
|   | 61.76 | Hex coding for fourth character    |
| Ì | 77.78 | Blank                              |
| 1 | 79-80 | Card number (starting 01; thru 32) |
| 1 |       |                                    |

Column 10 on the first card contains either a zero or a one to program D4 of row R0 for the first character. Column 11 contains the hex character for D3 thru D0. Columns 12 and 13 contain the information to program R1. The entire first character is coded in columns 10 thru 25. Each card contains the coding for four characters; 32 cards are required to program the entire 128 characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. Figure 3 provides an illustration of the correct format.

### FIGURE 4 – EXAMPLE OF CARD PUNCH FORMAT (First 12 Characters of MCM6670P4)



### FIGURE 5 - PAPER TAPE FORMAT

| Blank Tape                             | s                                                                                                                                                                                                                                         |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allowed for customer use (M $\leq$ 64) | ` a                                                                                                                                                                                                                                       |
| CR; LF (Carriage Return; Line Feed)    | a                                                                                                                                                                                                                                         |
| First line of pattern information      |                                                                                                                                                                                                                                           |
| (64 hex figures per line)              | c                                                                                                                                                                                                                                         |
| CR; LF                                 | t                                                                                                                                                                                                                                         |
| Remaining 31 lines of hex figures,     | g                                                                                                                                                                                                                                         |
| each line followed by a Carriage Re-   | c                                                                                                                                                                                                                                         |
| turn and Line Feed                     | c                                                                                                                                                                                                                                         |
|                                        | Allowed for customer use ( $M \le 64$ )<br>CR; LF (Carriage Return; Line Feed)<br>First line of pattern information<br>(64 hex figures per line).<br>CR; LF<br>Remaining 31 lines of hex figures,<br>each line followed by a Carriage Re- |

Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the

start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains a zero or a one to program D4 of row R0 for the first character. Frame M + 4 contains the hex character for D3 thru D0, completing the programming information for R0. Frames M + 5 and M + 6 contain the information to program R1. The entire first character is coded in Frames M + 3 thru M + 18. Four complete characters are programmed with each line. A total of 32 lines program all 128 characters (32 x 4). The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part.

FIGURE 6 - MCM6674 PATTERN

| A3               | · A0                                                 | 0000  | 0001  | 0010  | 0011  | 0100  | 0101  | 0110  | 0111 | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111 |
|------------------|------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|------|
|                  | $\leq$                                               | D4 D0 | D4D0 | D4 D0 | D4 D |
| 000              | R0<br>:<br>R7                                        |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| 001              | R0<br>::<br>87                                       |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| 010              | R0<br>R7                                             |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| 011              | R0<br>::<br>R7                                       |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| 100              | R0<br>:<br>:<br>: :<br>: : : : : : : : : : : : : : : |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| 101              | R0<br>                                               |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| <sup>-</sup> 110 | Я0<br>:<br>87                                        |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |
| 111              | R0<br>R7                                             |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |      |

The formats below are given for your convenience in preparing character information for MCM6670 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.



2



### . 8192-BIT READ ONLY MEMORIES ROW SELECT CHARACTER GENERATORS

The MCM66700 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 characters in a 7 X 9 matrix, and has the capability of shifting certain characters that normally extend below the baseline such as j, y, g, p, and q. Circuitry is supplied internally to effectively lower the whole matrix for this type of character—a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic 1s and 0s stored in a 7 X 9 matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the 7 X 9 character in one of two preprogrammed positions on the 16-row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The devices listed are preprogrammed versions of the MCM66700. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Fully Static Operation
- Fully TTL Compatible with Three-State Outputs
- CMOS and MPU Compatible, Single ± 10% 5 Volt Supply
- Shifted Character Capability (Except MCM66720, MCM66730, and MCM66734)
- Maximum Access Time = 350 ns
- 4 Programmable Chip Selects (0, 1, or X)
- Pin-for-Pin Replacement for the MCM6570, Including All Standard Patterns



MCM66700 MCM66710 MCM66714 MCM66720 MCM66730 MCM66734 MCM66740 MCM66750 MCM66751 MCM66760 MCM66770 MCM66780 MCM66790

# MOS

(N-CHANNEL, SILICON-GATE)

### **8K READ ONLY MEMORIES**

HORIZONTAL-SCAN CHARACTER GENERATORS



| P    | N ASSIG | NMENT              |
|------|---------|--------------------|
| 1 0  | CS3     | RS3 24             |
| 2    | Vcc     | RS2 23             |
| 3 🗖  | CS4     | RS1 22             |
| 4 🗖  | A6      | RS0 21             |
| 5 🗖  | D5      | D6 🗖 20            |
| 6 🗖  | D3      | D4 19              |
| 7 🗖  | D1 ·    | D2 18              |
| 8 🗖  | A5      | D0 🗖 17            |
| 9 🗖  | A4      | A1 🗖 16            |
| 10 🗖 | CS1     | A0 15              |
| 11 🗖 | A3      | CS2 14             |
| 12   | A2      | V <sub>SS</sub> 13 |
|      |         |                    |

### ABSOLUTE MAXIMUM RATINGS (See Note 1, Voltages Referenced to VSS)

| Rating                      | Symbol           | Value       | Unit |
|-----------------------------|------------------|-------------|------|
| Supply Voltages             | Vcc              | -0.3 to 7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to 7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to + 70   | °c   |
| Storage Temperature Range   | T <sub>stg</sub> | -55 to +125 | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher-than-recommended voltages for extended periods of time could affect device reliability.

### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

### RECOMMENDED DC OPERATING CONDITIONS (Referenced to V<sub>SS</sub>)

| Parameter               | Symbol | Min  | Nom | Max             | Unit  |
|-------------------------|--------|------|-----|-----------------|-------|
| Supply Voltage          | Vcc    | 4.5  | 5.0 | 5.5             | Vdc   |
| Input Logic "1" Voltage | VIH    | 2.0  | -   | V <sub>CC</sub> | Vdc - |
| Input Logic "0" Voltage | VIL    | -0.3 | -   | 0.8             | Vdc   |

### DC CHARACTERISTICS

| Characteristic                                                                  | Symbol          | Min | Тур | Max | Unit |
|---------------------------------------------------------------------------------|-----------------|-----|-----|-----|------|
| Input Leakage Current<br>{V <sub>IH</sub> = 5.5 Vdc, V <sub>CC</sub> = 4.5 Vdc) | Чн              | -   | -   | 2.5 | μAdc |
| Output Low Voitage (Blank)<br>(IOL = 1.6 mAdc)                                  | V <sub>OL</sub> | 0   | -   | 0.4 | Vdc  |
| Output High Voltage (Dot)<br>( $I_{OH} = -205 \mu Adc$ )                        | ∨он             | 2.4 | -   |     | Vdc  |
| Power Supply Current                                                            | 1cc             | -   | -   | 80  | mAdc |
| Power Dissipation                                                               | PD              |     | 200 | 440 | mW   |

### CAPACITANCE (Periodically sampled rather than 100% tested)

| Input Capacitance<br>(f = 1.0 MHz)  | C <sub>in</sub>  |   | 4.0 | 7.0 | pF |
|-------------------------------------|------------------|---|-----|-----|----|
| Output Capacitance<br>(f = 1.0 MHz) | C <sub>out</sub> | - | 4.0 | 7.0 | pF |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

# MCM66700 Series

# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

### AC TEST LOAD



### AC TEST CONDITIONS

| Condition                 | Value                      |
|---------------------------|----------------------------|
| Input Pulse Levels        | 0.8 V to 2.0 V             |
| Input Rise and Fall Times | 20 ns                      |
| Output Load               | 1 TTL Gate and CL = 130 pF |

### AC CHARACTERISTICS

| Characteristic                | Symbol               | Тур | Max | Unit |  |
|-------------------------------|----------------------|-----|-----|------|--|
| Address Access Time           | t <sub>acc</sub> (A) | 250 | 350 | ns   |  |
| Row Select Access Time        | tacc(RS)             | 250 | 350 | ns   |  |
| Chip Select to Output Delay ( | tCO                  | 100 | 150 | ns   |  |



### TIMING DIAGRAM

### **MEMORY OPERATION (Using Positive Logic)**

Most positive level = 1, most negative level = 0.

### Address

To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 through A6).

### **Row Select**

To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RS0 through RS3).

### **Shifted Characters**

These devices have the capability of displaying characters that descend below the bottom line (such as lowercase letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character

Figure 1 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM66700 allows the user to locate the basic 7 X 9 font anywhere in the 7 X 16 array. In addition, a shifted font can be placed anywhere in the same 7 X 16 array. For example, the basic MCM66710 font is established in rows R14 through R6. All other rows are automatically blanked. The shifted font is established in rows R11 through R3, with all other rows blanked. Thus, while any one character is contained in a 7 X 9 array, the MCM66710 requires a 7 X 12 array on the CRT screen to contain both normal and descending characters. Other

can be programmed to occupy either of the two positions in a 7 X 16 matrix. (Shifted characters are not available on MCM66720, MCM66730, or MCM66734.)

### Output

For these devices, an output dot is defined as a logic 1 level, and an output blank is defined as a logic O level.

### **Programmable Chip Select**

The MCM66700 has four Chip Select inputs that can be programmed with a 1, 0, or don't care (not connected). A don't care must always be the highest chip select pin or pins. All standard patterns have Don't Care Chip Selectexcept MCM66751.

### **DISPLAY FORMAT**

uses of the shift option may require as much as the full 7 X 16 array, or as little as the basic 7 X 9 array (when no shifting occurs, as in the MCM66720).

The MCM66700 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM66710 from bottom to top, whereas an up counter will scan the MCM66714 from top to bottom (see Figures 7 and 8 for row designation).

### FIGURE 1 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM66710 AND MCM66720

|     | R   | DW SE | LECT |        | •                                     |            |
|-----|-----|-------|------|--------|---------------------------------------|------------|
|     |     | UTH   |      | E      | MCM66710                              | MCM66720   |
| RS3 | RS2 | RS1   | RS0  | OUTPUT | 2011                                  |            |
| 0   | 0   | 0     | 0    | RÓ     | ROW                                   | ROW<br>NO. |
| 0   | 0   | 0     | 1    | R1     |                                       |            |
| 0   | 0   | 1     | 0    | R2     |                                       |            |
| 0   | 0   | 1     | 1    | R3     |                                       |            |
| 0   | 1   | 0     | 0    | R4     |                                       |            |
| 0   | 1   | 0     | 1    | R5     |                                       |            |
| 0   | 1   | 1     | 0    | R6     |                                       |            |
| 0   | 1   | 1     | 1    | R7     |                                       |            |
| 1   | 0   | 0     | 0    | R8     |                                       |            |
| 1   | 0   | 0     | 1    | R9     |                                       |            |
| 1   | 0   | 1     | 0    | R10    |                                       | D6 D0 D6 D |
| 1   | 0   | 1     | 1    | 811    |                                       |            |
| 1   | 1   | 0     | 0    | R12    | - DDDDDD R3 <b>-</b> DDDDDD           |            |
| 1   | 1   | 0     | 1    | R13    |                                       |            |
| 1   | 1   | 1     | 0    | R14    | ОООООО R1 000000<br>ОООООО R0 0000000 |            |
| 1 1 | 1   | 1     | 1    | R15    |                                       |            |
|     |     |       |      |        |                                       |            |
|     |     |       |      |        |                                       |            |
|     |     |       |      |        |                                       |            |
|     |     |       |      |        | 1                                     |            |
|     |     |       |      |        |                                       |            |

# MCM66700 Series

### CUSTOM PROGRAMMING FOR MCM66700

By the programming of a single photomask, the customer may specify the content of the MCM66700. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:\*

- 1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4)
- 2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5)

Programming of the MCM66700 can be achieved by using the follow sequence:

1. Create the 128 characters in a 7 X 9 font using the format shown in Figure 2. Note that information at output D6 appears in column one, D5 in column two, through D0 information in column seven. The dots filled in and programmed as a logic 1 will appear at the outputs as  $V_{OH}$ ; the dots left blank will be at  $V_{OL}$ . (Blank formats appear at the end of this data sheet for your convenience;

they are not to be submitted to Motorola, however.)

2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S).

3. Convert the characters to hexadecimal coding treating dots as 1s and blanks as 0s, and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns S and D3. For the bottom eight rows, the bit in Column S must be 0, so these locations have been omitted. For the top row, the bit in Column S will be 0 for an unshifted character, and 1 for a shifted character.

4. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).

5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 through 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.

6. Provide, in writing, the information indicated in Figure 6 (a copy of Figure 10 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

### FIGURE 2 – CHARACTER FORMAT

|             | Cha                                                                                                    | aracter<br>MSB | Number          | <u>{</u> Cu |    | HEX                                                           | nour) |  |
|-------------|--------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------|----|---------------------------------------------------------------|-------|--|
| Now-SHIFTED | B 14<br>B 13<br>B 12<br>B 12<br>B 12<br>B 12<br>B 12<br>B 12<br>B 12<br>B 12                           |                |                 |             |    | 0 0<br>0 0<br>0 0<br>0 0<br>3 1<br>4 A<br>4 4<br>4 4<br>4 3 1 |       |  |
|             | Cha                                                                                                    | -              | D6 D4<br>Numbei |             | DO |                                                               | pur)  |  |
| SWIFTED     | R  <br>R <b> 0</b><br>R <b>9</b><br>R <b>7</b><br>R <b>6</b><br>R <b>5</b><br>R <b>4</b><br>R <b>3</b> |                |                 |             |    | 8 C<br>2 2<br>3 C<br>2 2<br>3 C<br>2 0<br>4 0                 |       |  |

FIGURE 3 - CARD PUNCH FORMAT

| ア | Columns     | · · · · · ·                                               |
|---|-------------|-----------------------------------------------------------|
|   | 1 - 10      | Blank                                                     |
|   | 11          | Asterisk (*)                                              |
| 1 | 12 – 29     | Hex coding for first character                            |
|   | 30          | Slash (/)                                                 |
|   | 31 – 48     | Hex coding for second character                           |
|   | 49          | Slash (/)                                                 |
| · | 50 – 67     | Hex coding for third character                            |
|   | 68          | Slash (/)                                                 |
|   | 69 - 76     | Blank                                                     |
|   | 77 – 78     | Card number (starting 01; through 43)                     |
|   | 79 – 80     | Blank                                                     |
| ) |             | Column 12 on the first card contains the hexadecimal      |
|   | equivalent  | of column S and D6 through D4 for the top row of the      |
|   | first chara | acter. Column 13 contains D3 through D0. Columns 14       |
|   |             | ontain the information for the next row. The entire first |
|   |             | is coded in columns 12 through 29. Each card contains     |

and its contain the information for the next row. The entire inst character is coded in columns 12 through 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM66710 are correctly coded and punched in Figure 4.

\*NOTE: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.



FIGURE 5 - PAPER TAPE FORMAT

### Frames

| Leader             | Blank Tape                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------|
| 1 to M             | Allowed for customer use ( $M \leq 64$ )                                                       |
| M + 1, M + 2       | CR; LF (Carriage Return; Line<br>Feed)                                                         |
| M + 3 to M + 66    | First line of pattern information (64 hex figures per line)                                    |
| M + 67, M + 68     | CR; LF                                                                                         |
| M + 69 to M + 2378 | Remaining 35 lines of hex figures,<br>each line followed by a Carriage<br>Return and Line Feed |

### Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the

start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame M + 4 contains D3 thru D0. Frames M + 5 and M + 6 program the second row of the first character. Frames M + 3 to M + 66 comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain 36 x 64 or 2304 hex figures. Since 18 hex figures are required to program each 7 x 9 character, the full 128 (2304  $\div$  18) characters are programmed.

# FIGURE 6 – FORMAT FOR ORGANIZATIONAL DATA ORGANIZATIONAL DATA MCM66700 MOS READ ONLY MEMORY Customer Customer Part No. Row Number for top row of non-shifted font Row Number for bottom row of non-shifted font Row Number for bottom row of non-shifted font Programmable Chip Select information: 1 = Active High 0 = Active Low X = Don't Care (Not Connected) CS1 \_\_\_\_\_ CS2 \_\_\_\_ CS3 \_\_\_\_ CS4 \_\_\_\_

### MCM66700 Series

A3 . . A0 , 0000 1 101 D6 .... D0 D6 D6 D6 D6 . . DO .D6 DO D6 D6 . D0 ncan ggg ...... -----...... ..... .... C CUDUDUDU iognaat 🖉 - Shifte shifted three rows to R11 at the top of the font and R3 at the bott

FIGURE 8 - MCM66714 PATTERN

| A3 . | . A0         | 0000  | 0001  | 0010  | 0011  | 0100  | 0101  | 0110  | 0111  | 1000  | 1001  | 1010    | 1011  | 1100  | 1101    | 1110  | 1111 |
|------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|---------|-------|------|
| . A4 | ~            | 06 00 | D6 D0 | 06 00 | D6 D0 | D6 D0 | 06 00 | 06 00 | 06 00 | D6 D0 | 06 00 | D6 D0   | 06 00 | D6 D0 | 06 00   | D6 D0 | D6 D |
| 000  | P0           |       |       |       |       |       |       |       |       |       |       |         |       |       |         |       |      |
| 001  | Ар<br>       |       |       |       |       |       |       |       |       |       |       |         |       |       |         |       |      |
| 010  | RO           |       |       |       |       |       |       |       |       |       |       |         |       |       |         |       |      |
| D11  | RO           |       |       |       |       |       |       |       |       |       |       | 8588585 |       |       |         |       |      |
| 100  | R8           |       |       |       |       |       |       |       |       |       |       |         |       |       |         |       |      |
| 101  | R0<br>       |       |       |       |       |       |       |       |       |       |       |         |       |       |         |       |      |
| 110  | R0<br>       |       |       |       |       |       |       |       |       |       |       |         |       |       |         |       |      |
| 111  | R0<br>:<br>: |       |       |       |       |       |       |       |       |       |       |         |       |       | 3988888 |       |      |

FIGURE 7 - MCM66710 PATTERN

# MCM66700 Series

### FIGURE 9 - MCM66734 PATTERN\*

| A3. | . AO    | 0000    | 0001   | 0010  | 0011  | 0100   | 0101   | 0110  | 0111  | 1000     | 1001  | 1010  | 1011  | 1100  | 1101  | 1110     | 1111  |
|-----|---------|---------|--------|-------|-------|--------|--------|-------|-------|----------|-------|-------|-------|-------|-------|----------|-------|
| A4  | $\geq$  | 06 . 00 | D46 D0 | D6 00 | D6 D0 | D6. D0 | O45 C7 | 06 00 | D6 D0 | D6 D0    | D6 D0 | D6 D0 | D6 D0 | D6 00 | 06 00 | D6 D0    | 06 00 |
| 000 | R0<br>: |         |        |       |       |        |        |       |       |          |       |       |       |       |       |          |       |
| 001 | R0      |         |        |       |       |        |        |       |       | 00000000 |       |       |       |       |       |          |       |
| 010 | R0 R    |         |        |       |       |        |        |       |       |          |       |       |       |       |       |          |       |
| 011 | 70<br>  |         |        |       |       |        |        |       |       |          |       |       |       |       |       |          |       |
| 100 | R0<br>  |         |        |       |       |        |        |       |       |          |       |       |       |       |       |          |       |
| 101 | RQ      |         |        |       |       |        |        |       |       |          |       |       |       |       |       |          |       |
| 110 | R0<br>  |         |        |       |       |        |        |       |       |          |       |       |       |       |       |          |       |
| 111 | R0      |         |        |       |       |        |        |       |       |          |       |       |       |       |       | 1.000000 |       |

### FIGURE 10 - MCM66720 PATTERN\*\*

| A3.   | . A0          | 0000  | 0001  | 0010  | 0011  | 0100     | 0101  | 0110            | 0111  | 1000    | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111  |
|-------|---------------|-------|-------|-------|-------|----------|-------|-----------------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| 6. A4 | <             | D6 D0    | 06 00 | D6 D0           | D6 D0 | D6 D0   | 06 00 | D6 D0 | 06 00 | 06 00 | D6 D0 | D6 00 | D6 D0 |
| 000   | R0<br>:<br>R8 |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |
| 001   | R0<br>:<br>:  |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |
| 010   | R0<br>:       |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |
| 011   | R0<br>:<br>:  |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |
| 100   | R0<br>:<br>:  |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |
| 101   | ==0<br>:<br>: |       |       |       |       | 00000000 |       | • <u>9</u> 2222 |       | 0000000 |       |       |       |       |       |       |       |
| 110   | #0<br>:<br>#8 |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |
| 111   | #0<br>::      |       |       |       |       |          |       |                 |       |         |       |       |       |       |       |       |       |

.

2-125

|      | . A0                | 0000 | 0001 | 0010  | 0011 | 0100  | 0101  | 0110  | 0111  | 1000  | 1001    | 1010      | 1011  | 1100  | 1101    | 1110  | 1111   |
|------|---------------------|------|------|-------|------|-------|-------|-------|-------|-------|---------|-----------|-------|-------|---------|-------|--------|
| . 44 | $\geq$              | D6D0 | D6D0 | D8 D0 | 0600 | D6 00 | 06 00 | D6 D0 | DS DO | D6 D0 | D8 D0   | D6 D0     | D6 D0 | D6 D0 | 06 00   | D8 D0 | D6D    |
| 000  | яс<br>:<br>яв       |      |      |       |      |       |       |       |       |       |         |           |       |       |         |       |        |
| 001  | P0                  |      |      |       |      |       |       |       |       |       |         |           |       |       |         |       |        |
| 010  | R0                  |      |      |       |      |       |       |       |       |       |         |           |       |       |         |       |        |
| 011  | . R0<br>            |      |      |       |      |       |       |       |       |       |         |           |       |       |         |       |        |
| 100  | R0<br>:<br>:        |      |      |       |      |       |       |       |       |       |         |           |       |       |         |       |        |
| 101  | R0<br>:<br>         |      |      |       |      |       |       |       |       |       | 0000002 |           |       |       |         |       |        |
| 110  | R0<br>:<br>:<br>: : |      |      |       |      |       |       |       |       |       |         | 200222000 |       |       |         |       |        |
| 111  | P0<br>:             |      |      |       |      |       |       |       |       |       |         |           |       |       | 1110111 |       | 300300 |

### FIGURE 11 - MCM66730 PATTERN\*\*

FIGURE 12 - MCM66740 PATTERN

| A3.         | . A0               | 0000  | 0001  | 0010  | 0011  | 0100   | 0101 | 0110           | 0111  | 1000  | 1001  | 1010 | 1011  | 1100  | 1101  | 1110  | 1111     |
|-------------|--------------------|-------|-------|-------|-------|--------|------|----------------|-------|-------|-------|------|-------|-------|-------|-------|----------|
| B A4        | $\sim$             | DS DO | D6 D0 | D6 D0 | 06 D0 | D6D0   | D6D0 | D6 D0          | D6 D0 | D6 D0 | D6 D0 | D6D0 | D6 D0 | D6 D0 | D6 D0 | D8 D0 | D6 D0    |
| 000         | R0<br>:            |       |       |       |       |        |      |                |       |       |       |      |       |       |       |       |          |
| <b>0</b> 01 | R0<br>:<br>:       |       |       |       |       | 100100 |      |                |       |       |       |      |       |       |       |       |          |
| 010         | ₽0<br>             |       |       |       |       |        |      |                |       |       |       |      |       |       |       |       |          |
| 011         | R0<br>:<br>:<br>88 |       |       |       |       |        |      |                |       |       |       |      |       |       |       |       |          |
| 100         | FI0                |       |       |       |       |        |      | <b>1000000</b> |       |       |       |      |       |       |       |       |          |
| 101         |                    |       |       |       |       |        |      |                |       |       |       |      |       |       |       |       | 88888888 |
| 110         | R0 2               |       |       |       |       |        |      |                |       |       |       |      |       |       |       |       |          |
| 111         | 2 3                |       |       |       |       |        |      | 0000000        |       |       |       |      |       |       |       |       |          |

2

# MCM66700 Series

| ×3. | . A0            | 0000 | 0001    | 0010  | 0011  | 0100  | 0101    | 0110  | 0111 | 1000    | 1001        | 1010   | 1011  | 1100  | 1101 | 1110  | 1111  |
|-----|-----------------|------|---------|-------|-------|-------|---------|-------|------|---------|-------------|--------|-------|-------|------|-------|-------|
|     | $\geq$          | 0600 | D6 D0   | D8 D0 | D6 D0 | 08 00 | D6 . D0 | D6 D0 | D8   | 08 00   | D6 D0       | D6. D0 | D6 D0 | D8 D0 | D4   | D6 D0 | D6 00 |
| 000 |                 |      |         |       |       |       |         |       |      |         |             |        |       |       |      |       |       |
| 001 |                 |      |         |       |       |       |         |       |      |         |             |        |       |       |      |       |       |
| 010 | R0<br>:<br>:    |      |         |       |       |       |         |       |      |         |             |        |       |       |      |       |       |
| 011 | R0              |      |         |       |       |       |         |       |      |         |             |        |       |       |      |       |       |
| 100 |                 |      |         |       |       |       |         |       |      | 1999999 |             |        |       |       |      |       |       |
| 101 | - 10<br>- :<br> |      | 0000000 |       |       |       |         |       |      |         | #21/20/2/2# |        |       |       |      |       |       |
| 110 | -               |      |         |       |       |       |         |       |      |         |             |        |       |       |      |       |       |
| 111 |                 |      |         |       |       |       |         |       |      |         |             |        |       |       |      |       |       |

### FIGURE 13 - MCM66750 PATTERN

MCM66751 -- Same as MCM66750 except CS1 = 0, CS2 = 0, CS3 = X, and CS4 = X.

FIGURE 14 - MCM66760 PATTERN

| A3.  | . A0         | 0000 | 0001    | 0010    | 0011  | 0100  | 0101  | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111    |
|------|--------------|------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| A4   | $\geq$       | D6D0 | 06 00   | D6 . D0 | D6 D0 | D6 D0 | 06 D0 | 06 00 | D6 D0 | 06 00 | D8 D0 | D6 . D0 |
| 000  | R0<br>       |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| 001  | P0<br>:      |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| 010  | по<br>:<br>: |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| 011  | R0<br>       |      | 0008000 |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| 100  | R0           |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| 101  | 2 3          |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| 110  | A0<br>       |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |
| ,,,, | #0<br>       |      |         |         |       |       |       |       |       |       |       |       |       |       |       |       |         |

FIGURE 15 - MCM66770 PATTERN

| ~3.         | . AO          | 0000  | 0001  | 0010  | 0011  | 0100 . | 0101  | 01 10 | 0111   | 1000  | . 1001 | 1010  | 1011  | 1100  | 1101  | 1110    | 1111 |
|-------------|---------------|-------|-------|-------|-------|--------|-------|-------|--------|-------|--------|-------|-------|-------|-------|---------|------|
|             | $\geq$        | D6 D0  | D6 D0 | 06 00 | D6. D0 | D6 D0 | O6 D0  | 06 00 | D6 D0 | D6 D0 | D6 D0 | D6 D0   | D6 D |
| 000         | R0            |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |
| <b>00</b> 1 | P0            |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |
| 010         | R0<br>:<br>:  |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |
| 011         | 80<br>;<br>88 |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |
| 100         | RØ            |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |
| 101         | RO            |       |       |       |       |        |       |       |        |       |        |       |       |       |       | 1222228 |      |
| 110         | 80<br>        |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |
| 111         |               |       |       |       |       |        |       |       |        |       |        |       |       |       |       |         |      |

FIGURE 16 - MCM66780 PATTERN

| A3.  | . AU              | 0000  | 0001  | 0010  | 0011  | 0100  | 0101  | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111 |
|------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| . A4 | $\geq$            | D6 D0 | D6 U0 | D6 D0 | D6 D0 | Q6 D0 | D6 D0 | 06 00 | D6 D0 | D6 00 | D6 D0 | D6 D0 | DE 00 | D6 D0 | D6 D0 | D6 D0 | D6 0 |
| 000  | R0<br>:<br>:<br>: |       |       |       |       |       |       | ,     |       |       |       |       | ••••• | •     |       |       |      |
| 001  | P0<br>:<br>88     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 010  | R0                |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 011  | R0<br>:<br>:      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 100  | R0                |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 101  | RQ<br>:<br>:      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 1 10 | R0<br>:<br>:      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 111  | N0                |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |

| A3.  | <b>A</b> 0   | 0000  | 0001  | 0010  | 0011  | 0100   | 0101    | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110    | 1111 |
|------|--------------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------|------|
| . 44 | $\geq$       | D6 D0 | 06 00 | 06 00 | D6 D0 | 06 D0  | 06 00   | D6 D0 | D6 D0 | D6 D0 | 06 00 | D6 00 | D6 00 | D6 D0 | D6 D0 | D6 D0   | D6 D |
| 000  | RO           |       |       |       |       |        |         |       |       |       |       |       |       |       |       |         |      |
| 001  | 80           |       |       |       |       |        |         |       |       |       |       |       |       |       |       |         |      |
| 010  | Р0<br>       |       |       |       |       |        |         |       |       |       |       |       |       |       |       |         |      |
| 011  | P0<br>       |       |       |       |       | 100000 |         |       |       |       |       |       |       |       |       |         |      |
| 100  | Р0<br>       |       |       |       |       |        | 0000000 |       |       |       |       |       |       |       |       |         |      |
| 101  | R()<br>:<br> |       |       |       |       |        |         |       |       |       |       |       |       |       |       | 0000000 |      |
| 110  | Р0           |       |       |       |       |        |         |       |       |       |       |       |       |       |       |         |      |
| 111  | 90<br>98     |       |       |       |       |        |         |       |       |       |       |       |       |       |       |         |      |

#### FIGURE 17 - MCM66790 PATTERN

|                |                     |                      |      | M667 |                 |    |      |      | 70 Series<br>ignment |                |
|----------------|---------------------|----------------------|------|------|-----------------|----|------|------|----------------------|----------------|
| MCM6570 Series | MCM66700 Equivalent | Description          | 1 0  | C\$3 | RS3             | 24 | 1 🗆  | VBB  | R\$3 22              | 4              |
| MCM6571        | MCM66710            | ASCII, shifted       | 2 🗔  | Vcc  | RS2             | 23 | 2    | Vcc  | RS2 22               | з.             |
| MCM6571A       | MCM66714            | ASCII, shifted       | 3 🗖  | CS4  | RS1             | 22 | 3 🖂  | VDD  | RS1 22               | 2              |
| MCM6572        | MCM66720            | ASCII                | 4 🗖  | A6   | RS0             | 21 | 4 🗆  | A6   | RS0 2 2              | 1              |
| MCM6573        | MCM66730            | Japanese             | 5 🗖  | D5   | - D6            | 20 | 5 🗔  | D5   | D6 24                | 0              |
| MCM6573A       | MCM66734            | Japanese             | 6 🖂  | D3   | D4              | 19 | 6 🗔  | D3   | 04 11                | 9 <sup>°</sup> |
| MCM6574        | MCM66740            | Math Symbols         | 7 🗖  | D1   | 02              | 18 | 7    | D1   | 02 11                | 8              |
| MCM6575        | MCM66750            | Alphanumeric Control | 8 🗖  | A5   | DO              | 17 | 8 🗆  | A5   | 0001                 | 7              |
| MCM6576        | MCM66760            | British, shifted     | 9 🖂  | A4 . | A1              | 16 | 9 🗖  | A4   | A1 1                 | 6              |
| MCM6577        | MCM66770            | German, shifted      | 10 🖂 | CS1  | AO              | 15 | 10 🗔 | N.C. | A0 11                | 5              |
| MCM6578        | MCM66780            | French, shifted      | יי 🗆 | A3   | CS2             | 14 | 11   | A3   | N.C. 1               | 4              |
| MCM6579        | MCM66790            | European, shifted    | 12   | A2   | v <sub>ss</sub> | 13 | 12 🗆 | A2   | V <sub>SS</sub> 1    | 3              |

#### APPLICATIONS INFORMATION

One important application for the MCM66700 series is in CRT display systems (Figure 18). A set of buffer shift registers or random access memories applies a 7-bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked serially out to the Z-axis where it modulates the raster to form the character.

The MCM66700 series require one power supply of +5.0 volts. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit spikes or glitches on their outputs when the ac power is switched on and off.



#### FIGURE 18 - CRT DISPLAY APPLICATION USING MCM66710

## MCM66700 Series

The formats below are given for your convenience in preparing character information for MCM66700 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.



Character Number

|   | MSB      | LSB   | HEX |
|---|----------|-------|-----|
| R |          | 000   |     |
| R |          |       |     |
| R |          |       |     |
| R |          |       |     |
| R |          |       |     |
| R |          |       |     |
| R |          |       |     |
| в |          |       |     |
| R |          |       |     |
|   | S D6 D41 | D3 D0 |     |

| onuitac | <br>unioci |  |
|---------|------------|--|
|         |            |  |

Character Number

R

в

F

F

F

R

R

R

R

R

R

B

в



Character Number \_\_\_\_

R

R

B

R

R

в

R

в

Þ

Character Number \_\_\_\_ MSB LSB HEX 

888888



в

R

R





S D6

Character Number \_\_\_









MOS

(N-CHANNEL, SILICON-GATE)

1024 X 8-BIT

READ ONLY MEMORY

### 1024 X 8-BIT READ ONLY MEMORY

The MCM68A30A/MCM68B30A are mask-programmable byteorganized memories designed for use in bus-organized systems. They are fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Four Chip Select Inputs (Programmable)
- Single ± 10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns MCM68A30A
   250 ns MCM68B30A

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol          | Value        | Unit |
|-----------------------------|-----------------|--------------|------|
| Supply Voltage              | Vcc             | -0.3 to +7.0 | Vdc  |
| Input Voltage               | V <sub>in</sub> | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA              | 0 to +70     | °C   |
| Storage Temperature Range   | Tstg            | ~65 to +150  | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



| ANDANANANA CONTRACT                     | <b>C SUFFIX</b><br>FRIT-SEAL PACKAGE<br>CASE 623                                                                |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| P SUFFIX<br>PLASTIC PACKAGE<br>CASE 709 | CANADAMANA C |
| PIN ASSI                                |                                                                                                                 |

| PI   | N ASSIGN | MEN | iT i        |
|------|----------|-----|-------------|
| 1 🗖  | Gnd ●    | A0  | 24          |
| 2    | 00       | A 1 | 23          |
| 3 🗖  | DI       | A2  | 22          |
| 4    | D2       | A3  | 21          |
| 5 🗖  | D3       | A4  | 20          |
| 6 🗖  | D4       | Α5  | 19          |
| 7 🚍  | D5       | A6  | 18          |
| 8 🗖  | D6       | Α7  | <b>D</b> 17 |
| 9 🗖  | D7       | A8  | 16          |
| 10   | CS1      | Α9  | 15          |
| 11 🗖 | CS2      | CS4 | 14          |
| 12   | Vcc      | CS3 | 13          |
|      |          |     |             |

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter          | Symbol          | Min  | Nom | Max | Unit |
|--------------------|-----------------|------|-----|-----|------|
| Supply Voltage     | v <sub>cc</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage | VIH             | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage  | VIL             | -0.3 |     | 0.8 | Vdc  |

#### DC CHARACTERISTICS

| Characteristic                                                                                        | Symbol          | Min | Тур | Max | Unit |
|-------------------------------------------------------------------------------------------------------|-----------------|-----|-----|-----|------|
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                       | lin             | -   | -   | 2.5 | µAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205µA)                                                     | V <sub>OH</sub> | 2.4 |     | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                      | VOL             |     |     | 0.4 | Vdc  |
| Output Leakage Current (Three State)<br>(CS = 0.8 V or CS = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | LO              |     |     | 10  | μAdc |
| Supply Current $(V_{CC} = 5.5 \text{ V}, T_A = 0^{\circ}\text{C})$                                    | 'cc             |     | **  | 130 | mAdc |

## $\label{eq:CAPACITANCE} \begin{array}{l} (f\approx1.0 \mbox{ MHz}, T_{A}\approx25^{o}C, \mbox{ periodically sampled} \\ rather (than/100\% \mbox{ tested.}) \end{array}$

| Charaoteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 7.5  | pF   |
| Output Capacitance | Cout            | 12.5 | pF   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.



#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.) (All timing with  $t_{\rm f}$  =  $t_{\rm f}$  = 20 ns, Load of Figure 1)

| Characteristic              | 1                | MCM68A30AL |     | MCM68B30AL |     |      |
|-----------------------------|------------------|------------|-----|------------|-----|------|
|                             | Symbol           | Min        | Max | Min        | Max | Unit |
| Cycle Time                  | t <sub>cyc</sub> | 350        | -   | 250        |     | ns   |
| Access Time                 | tacc             | -          | 350 | -          | 250 | ns   |
| Chip Select to Output Delay | tCO              | -          | 150 | -          | 125 | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 10         |     | 10         | -   | ns   |
| Data Hold from Deselection  | t DHD            | 10         | 150 | 10         | 125 | · ns |

FIGURE 1 - AC TEST LOAD



TIMING DIAGRAM



#### CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A30A/MCM68B30A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A30A/MCM68B30A should be submitted on an Organizational Data form such as that shown in Figure 3. ("No Connect" must always be the highest order Chip Select pin(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.

2. Hexadecimal coding using IBM Punch Cards.

3. EPROM (MCM2708, MCM27A08, or MCM68708).

4. Hand-punched paper tape (Figure 3).

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

|   | Binary<br>Data |   |   |   |  |
|---|----------------|---|---|---|--|
| 0 | 0              | 0 | 0 | 0 |  |
| 0 | 0              | 0 | 1 | 1 |  |
| 0 | 0              | 1 | 0 | 2 |  |
| 0 | 0              | 1 | 1 | 3 |  |
| 0 | 1              | 0 | 0 | 4 |  |
| 0 | 1              | 0 | 1 | 5 |  |
| 0 | 1              | 1 | 0 | 6 |  |
| 0 | 1              | 1 | 1 | 7 |  |
| 1 | 0              | 0 | 0 | 8 |  |
| 1 | 0              | 0 | 1 | 9 |  |
| 1 | 0              | 1 | 0 | A |  |
| 1 | 0              | 1 | 1 | в |  |
| 1 | 1              | 0 | 0 | С |  |
| 1 | 1              | 0 | 1 | D |  |
| 1 | 1              | 1 | 0 | E |  |
| 1 | 1              | 1 | 1 | F |  |

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

#### **IBM PUNCH CARDS**

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

| 1 | 12    | Byte ''0'' Hexadecimal equivalent for                                |
|---|-------|----------------------------------------------------------------------|
|   |       | outputs D7 thru D4 (D7 = M.S.B.)                                     |
| 2 | 13    | Byte "0" Hexadecimal equivalent for outputs D3 thru D0 (D3 = M.S.B.) |
| 3 | 14.75 | Alternate steps 1 and 2 for consecutive bytes.                       |
| 4 | 77-80 | Card number (starting 0001)                                          |

#### FIGURE 3 - HAND PUNCHED PAPER TAPE FORMAT

| Frames             |                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------|
| Leader             | Blank Tape                                                                                     |
| 1 to M             | Allowed for customer use ( $M \le 64$ )                                                        |
| M + 1, M + 2       | CR; LF (Carriage Return; Line Feed)                                                            |
| M + 3 to M + 66    | First line of pattern information (64 hex figures per line)                                    |
| M + 67, M + 68     | CR; LF                                                                                         |
| M + 69 to M + 2112 | Remaining 31 lines of hex figures,<br>each line followed by a Carriage<br>Return and Line Feed |

#### Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \le 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

#### Option A (1024 x 8)

Frame M + 3 contains the hexadecimal equivalent of

bits D7 thru D4 of byte 0. Frame M + 4 contains bits D3 thru D0. These two hex figures together program byte 0. Likewise, frames M + 5 and M + 6 program byte 1, while M + 7 and M + 8 program byte 2. Frames M + 3 to M + 66 comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

#### Option B (2048 x 4)

Frame M + 3 contains the hexadecimal equivalent of byte 0, bits D3 thru D0. Frame M + 4 contains byte 1, frame M + 5 byte 2, and so on. Frames M + 3 to M + 66 sequentially program bytes 0 to 31 (the first 32 bytes). The line is terminated with a CR and LF.

#### **Both Options**

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32 x 64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

As an example, a printout of the punched tape for Figure 13 would read as shown in Figure 10 (a CR and LF is implicit at the end of each line).

| ORGANIZATION<br>MCM68A30A/68B30A MOS R                         |                                           |
|----------------------------------------------------------------|-------------------------------------------|
| Customer:<br>Company<br>Part No<br>Originator<br>Phone No      | Specif. No.:                              |
| Chip Select Options: Active<br>High<br>CS1 CS2 CS3 CS3 CS4 CS4 | Active No Connect<br>Low "Don't Çare"<br> |



### 1024 X 8-BIT READ ONLY MEMORY

The MCM68A308/MCM68B308 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns MCM68A308 250 ns - MCM68B308
- 350 mW Typical Power Dissipation







| 24          |  |  |
|-------------|--|--|
| 23          |  |  |
| 22          |  |  |
| 21          |  |  |
| <b>2</b> 0  |  |  |
| <b>1</b> 19 |  |  |

S1-S4 . . . Chip Selects Q0-Q7 . . . Data Output V<sub>CC</sub> . . . +5 V Power Supply V<sub>SS</sub> . . . . Ground

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                                                                           | Symbol | Min  | Тур | Max | Unit |
|-----------------------------------------------------------------------------------------------------|--------|------|-----|-----|------|
| Supply Voltage                                                                                      | Vcc    | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage                                                                                  | ViH    | 2.0  |     | 5.5 | Vdc  |
| Input Low Voltage                                                                                   | VIL    | -0.3 | . – | 0.8 | Vdc  |
| C CHARACTERISTICS                                                                                   |        |      |     |     |      |
| Characteristic                                                                                      | Symbol | Min  | •   | Max | Unit |
| Input Current<br>(V <sub>in</sub> = 0'to <sup>'</sup> 5,5 V)                                        | lin    | -    |     | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 µA)                                                  | VOH.   | 2.4  |     | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                    | VOL    | -    |     | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or S = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | LO     | -    |     | 10  | µAdc |
| Supply Current $(V_{CC} = 5.5 \text{ V}, T_A = 0^{\circ}\text{C})$                                  | ICC    | -    |     | 130 | mAdc |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | VGC              | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °c   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM





#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with  $t_r = t_f = 20$  ns, Load of Figure 1)

| Characteristic              |                  | MCM68A308 |     | MCM68B308 |     |      |
|-----------------------------|------------------|-----------|-----|-----------|-----|------|
|                             | Symbol           | Min       | Max | Min       | Max | Unit |
| Cycle Time                  | tcyc             | 350       | -   | 250       |     | ns   |
| Access Time                 | tacc             | -         | 350 | -         | 250 | ns   |
| Chip Select to Output Delay | tso              |           | 150 |           | 150 | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 10        |     | 10        | -   | ns   |
| Data Hold from Deselection  | t DHD            | 10        | 150 | 10        | 150 | ns   |

#### CAPACITANCE

(f = 2.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested)

| Characteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 7.5  | pF   |
| Output Capacitance | Cout            | 12.5 | pF   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.





#### TIMING DIAGRAM



= Don't care

#### CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A308/MCM68B308, the customer may specify the content of the memory and the method of enabling the outputs. (A "no-connect" must always be the highest order chip-select(s).)

Information on the general options of the MCM68A308/MCM68B308 should be submitted on an Organizational Data form such as that shown in Figure 4.

Information for customer memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM one MCM68A708 or equivalent.
- 4. Hand punched paper tape (Figure 3).

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

#### FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

| ,  | Binary<br>Data |     |     |   |  |
|----|----------------|-----|-----|---|--|
| 0  | 0              | 0   | 0   | 0 |  |
| 0  | 0              | 0   | 1   | 1 |  |
| 0  | 0              | 1   | 0   | 2 |  |
| Ο. | 0              | 1   | 1   | 3 |  |
| 0  | 1              | - O | 0   | 4 |  |
| 0  | 1              | 0   | · 1 | 5 |  |
| 0  | 1              | 1   | 0   | 6 |  |
| 0  | 1              | 1   | 1   | 7 |  |
| 1  | 0              | 0   | 0   | 8 |  |
| 1  | 0              | 0   | 1   | 9 |  |
| 1  | 0              | 1   | 0   | A |  |
| 1  | 0              | 1   | 1   | в |  |
| 1  | 1              | 0   | 0   | с |  |
| 1  | 1              | 0   | 1   | D |  |
| 1  | 1              | 1   | 0   | E |  |
| 1  | 1              | 1   | 1   | F |  |

#### **IBM PUNCH CARDS**

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

| 1 | 12    | Byte " $0$ " Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)    |
|---|-------|-----------------------------------------------------------------------------|
| 2 | 13    | Byte "O" Hexadecimal equivalent for                                         |
| 3 | 14-75 | outputs Q3 thru Q0 (Q3 = M.S.B.)<br>Alternate steps 1 and 2 for consecutive |
| 4 | 77-80 | bytes.<br>Card number (starting 0001)                                       |

#### FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

| Frames             |                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------|
| Leader             | Blank Tape                                                                                     |
| 1 to M             | Allowed for customer use (M $\leq$ 64)                                                         |
| M + 1, M + 2       | CR; LF (Carriage Return; Line<br>Feed)                                                         |
| M + 3 to M + 66    | First line of pattern information (64 hex figures per line)                                    |
| M + 67, M + 68     | CR; LF                                                                                         |
| M + 69 to M + 2112 | Remaining 31 lines of hex figures,<br>each line followed by a Carriage<br>Return and Line Feed |

#### Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin

with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains the hexadecimal equivalent of bits Q7 thru Q4 of byte 0. Frame M + 4 contains bits Q3 thru Q0. These two hex figures together program byte 0. Likewise, frames M + 5 and M + 6 program byte 1, while M + 7 and M + 8 program byte 2. Frames M + 3 to M + 66 comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain  $32 \times 64$  or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

| ORGANIZATIONAL DATA<br>MCM68308 MOS READ ONLY MEMORY |   |                      |                |                                       |                   |  |  |
|------------------------------------------------------|---|----------------------|----------------|---------------------------------------|-------------------|--|--|
| Part No.                                             |   |                      |                | Quote:<br>Part No.:<br>Specif. No.: . | otorola Use Only: |  |  |
| Chip Select:                                         | • | S1<br>S2<br>S3<br>S4 | Active<br>High | Active<br>Low                         | No<br>Connect     |  |  |

FIGURE 4 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

2



## MCM68A316A

#### 2048 X 8-BIT READ ONLY MEMORY

The MCM68A316A is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of fully static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read-only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible.
- Maximum Access Time = 350 ns
- Plug-in Compatible with 2316A

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



# MOS

(N-CHANNEL, SILICON-GATE)

2048 X 8-BIT READ ONLY MEMORY



#### PIN ASSIGNMENT

| 1 Q         | A7 🕈            | Vcc | 24          |
|-------------|-----------------|-----|-------------|
| 2 0         | A8              | 00  | 23          |
| зС          | A9              | Q1  | 22          |
| ₄d          | A10             | 02  | 21          |
| 5 <b>C</b>  | A0              | Q3  | 20          |
| 6 🗖         | A1              | Q4  | 19          |
| 7 0         | A2              | Q5  | <b>]</b> 18 |
| 80          | A3              | Q6  | 17          |
| 9 🖸         | A4              | 07  | 16          |
| 10 <b>C</b> | A5              | 51  | 1.15        |
|             | A6              |     | <b>D</b> 14 |
| 12 <b>C</b> | v <sub>ss</sub> | 53  | <b>p</b> 13 |

|                 | PIN NAMES         |
|-----------------|-------------------|
| A0-A10          | Address Inputs    |
| S1-S3           | Chip Selects      |
| Q0-Q7           | Data Output       |
| Vcc             | +5 V Power Supply |
| V <sub>SS</sub> | Ground            |

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                                                                                        | Symbol          | Min  | Тур | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|-----|------|
| Supply Voltage                                                                                                   | V <sub>CC</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage                                                                                               | VIH             | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage                                                                                                | VIL             | -0.3 | -   | 0.8 | Vdc  |
| OC CHARACTERISTICS                                                                                               |                 |      |     |     |      |
| Characteristic                                                                                                   | Symbol          | Min  |     | Max | Unit |
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                  | lin             | -    |     | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 μΑ)                                                               | ∨он             | 2.4  |     | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                 | VOL             | -    |     | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or $\overline{S}$ = 2.0 V, V <sub>OUT</sub> = 0.4 V to 2.4 V) | LO              |      |     | 10  | µAdc |
| Supply Current<br>( $V_{CC} = 5.5 V, T_A = 0^{\circ}C$ )                                                         | 'cc             | -    |     | 130 | mAdc |

#### CAPACITANCE

(f = 2.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested)

| Characteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 7.5  | pF   |
| Output Capacitance | Cout            | 12.5 | pF   |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.

All timing with  $t_r \approx t_f = 20$  ns, Load of Figure 1)

| Characteristic              | Symbol           | Min | Max | Unit |
|-----------------------------|------------------|-----|-----|------|
| Cycle Time                  | tcyc             | 350 | · - | ns   |
| Access Time                 | tacc             | -   | 350 | ns   |
| Chip Select to Output Delay | tso              | -   | 150 | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 10  | -   | ns   |
| Data Hold from Deselection  | tH               | 10  | 150 | ns   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.





MCM68A316A



TIMING DIAGRAM

### CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68316A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316A should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM (TMS2716 or MCM2716).
- 4. Hand-punched paper tape.

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 2048 bytes.

|   | Hexadecimal<br>Character |   |   |   |
|---|--------------------------|---|---|---|
| 0 | 0                        | 0 | 0 | 0 |
| 0 | 0                        | 0 | 1 | 1 |
| 0 | 0                        | 1 | 0 | 2 |
| 0 | 0                        | 1 | 1 | 3 |
| 0 | 1                        | 0 | 0 | 4 |
| 0 | 1                        | 0 | 1 | 5 |
| 0 | 1                        | 1 | 0 | 6 |
| 0 | 1                        | 1 | 1 | 7 |
| 1 | 0                        | 0 | 0 | 8 |
| 1 | 0                        | 0 | 1 | 9 |
| 1 | 0                        | 1 | 0 | A |
| 1 | 0                        | 1 | 1 | В |
| 1 | 1                        | 0 | 0 | С |
| 1 | 1                        | 0 | 1 | D |
| 1 | 1                        | 1 | 0 | E |
| 1 | 1                        | 1 | 1 | F |

#### **IBM PUNCH CARDS**

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

| 1 | 12      | Byte "0" Hexadecimal equivalent for     |
|---|---------|-----------------------------------------|
|   |         | outputs Q7 thru Q4 (Q7 = M.S.B.)        |
| 2 | 13      | Byte ''0'' Hexadecimal equivalent for   |
|   |         | outputs Q3 thru Q0 (Q3 = M.S.B.)        |
| 3 | 14 - 75 | Alternate steps 1 and 2 for consecutive |
|   |         | by tes.                                 |
| 4 | 77–80   | Card number (starting 0001)             |
|   |         | Total number of cards (64)              |
|   |         |                                         |



|              | MCM6       | ORGANIZATIONAL<br>8A316A MOS READ ON |                     |                                               |   |
|--------------|------------|--------------------------------------|---------------------|-----------------------------------------------|---|
| Customer:    |            |                                      |                     |                                               |   |
| Company      |            |                                      | N                   | Motorola Use Only:                            |   |
|              |            |                                      | Quote:              | -                                             | - |
| Part No      |            |                                      | Part No.:           |                                               | _ |
| Originator   |            |                                      | Specif. No.:        |                                               | _ |
| Phone No.    |            |                                      | L                   | <u>, , , , , , , , , , , , , , , , , , , </u> | ` |
| Chip Select: |            |                                      |                     | *Don't Care                                   |   |
|              |            | Active High                          | Active Low          | (No Connect)                                  |   |
|              | <u>S1</u>  | · 🔲                                  |                     |                                               |   |
|              | S2         |                                      |                     |                                               |   |
|              | <b>S</b> 3 |                                      |                     |                                               |   |
|              |            | *A don't care must                   | always be the highe | st order Chip Select (s).                     |   |



## **MCM68A316E**

MOS

(N-CHANNEL, SILICON-GATE)

#### 2048 × 8 BIT READ ONLY MEMORY

The MCM68A316E is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refeshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ± 10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns
- Plug-in Compatible with 2316E
- Pin Compatible with 2708 and MCM2716 EPROMs

2048 X 8 BIT READ ONLY MEMORY C SUFFIX FRIT-SEAL PACKAGE CASE 623 24 PLASTIC PACKAGE CASE 709 1



| PI         | N ASSIC         | GNMENT   |  |
|------------|-----------------|----------|--|
| ٦d         | A7 •            | Vcc 224  |  |
| 2 <b>C</b> | A6              | AB 23    |  |
| 30         | A5              | A9 22    |  |
| - 4d       | A4              | S3 21    |  |
| 50         | A3              | S1 🗖 20  |  |
| 60         | A2              | A10 19   |  |
| 7 0        | A1              | S2 D 18  |  |
| 80         | A0              | 07 17    |  |
| 9 🖸        | 00              | 06 1 16  |  |
| 100        | Q1              | 0.5 2 15 |  |
| 110        | Q2              | 04 114   |  |
| 12 🖸       | ∨ <sub>ss</sub> | 03 2 13  |  |
|            |                 |          |  |

| <br>PIN NAMES               |
|-----------------------------|
| A0-A10 Address Inputs       |
| S1-S3 Chip Selects          |
| Q0–Q7Data Output            |
| VCC · · · +5 V Power Supply |
| V <sub>SS</sub> , Ground    |

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                                                                                        | Symbol            | Min  | Тур | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|-------------------|------|-----|-----|------|
| Supply Voltage                                                                                                   | Vcc               | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage                                                                                               | VIH               | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage                                                                                                | VIL               | -0.3 | -   | 0.8 | Vdc  |
| C CHARACTERISTICS                                                                                                |                   |      |     |     |      |
| Characteristic                                                                                                   | Symbol            | Min  |     | Max | Unit |
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                  | lin               | -    | -   |     | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 μΑ)                                                               | VOH               | 2.4  | 2.4 |     | Vdc  |
| Output Low Voltage<br>(IOL = 1.6 mA)                                                                             | V <sub>OL</sub> – |      | -   |     | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or $\overline{S}$ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | LO                | -    |     | 10  | μAdc |
| Supply Current<br>(V <sub>CC</sub> = 5.5 V, T <sub>A</sub> = 0 <sup>o</sup> C)                                   | lcc               | -    |     | 130 | mAdc |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | V <sub>CC</sub>  | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are

exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages

for extended periods of time could affect device reliability.

#### CAPACITANCE

(f = 2.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested)

| Characteristic      | Symbol          | Max  | Unit |  |
|---------------------|-----------------|------|------|--|
| Input Capacitance * | C <sub>in</sub> | 7.5  | pF   |  |
| Output Capacitance  | Cout            | 12.5 | pF   |  |





M6800 MICROCOMPUTER FAMILY

BLOCK DIAGRAM



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with  $t_r = t_f = 20$  ns, Load of Figure 1)

| Characteristic              | Symbol           | Min | Max | Unit |
|-----------------------------|------------------|-----|-----|------|
| Cycle Time                  | tcyc             | 350 | -   | 'ns  |
| Access Time                 | tacc             | -   | 350 | ns   |
| Chip Select to Output Delay | tso              | -   | 150 | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 10  | -   | ns   |
| Data Hold from Deselection  | tн               | 10  | 150 | ns   |



2

## MCM68A316E

#### **CUSTOM PROGRAMMING**

By the programming of a single photomask for the MCM68A316E, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316E should be submitted on an Organizational Data form such as that shown in Figure 3. ("No-Connect" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of three forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM (TMS2716 or MCM2716).

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for control-ling the assembly process. The paper tape must specify the full 2048 bytes.

| FIGURE 2 - BINAR | Y TO HEXADECIN | IAL CONVERSION |
|------------------|----------------|----------------|
|------------------|----------------|----------------|

|   |     | Hexadecimal<br>Character |    |   |    |
|---|-----|--------------------------|----|---|----|
|   | 0   | 0                        | 0  | 0 | 0  |
|   | 0   | 0                        | 0  | 1 | 1. |
|   | 0   | 0                        | 1  | 0 | 2  |
|   | 0   | 0                        | 1  | 1 | 3  |
|   | · 0 | 1                        | 0  | 0 | 4  |
|   | 0   | 1                        | 0. | 1 | 5  |
|   | 0   | 1                        | 1  | 0 | 6  |
|   | 0   | · 1                      | 1  | 1 | 7  |
|   | 1   | 0                        | 0  | 0 | 8  |
|   | 1   | 0                        | 0  | 1 | 9  |
|   | 1   | 0                        | 1  | 0 | A  |
|   | 1   | 0                        | 1  | 1 | в  |
|   | 1   | 1                        | 0  | 0 | с  |
| Ĩ | 1   | 1 .                      | 0  | 1 | D  |
|   | 1   | 1                        | 1  | 0 | E  |
|   | 1   | 1                        | 1  | 1 | F  |

#### **IBM PUNCH CARDS**

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

| 1 | 12    | Byte "0" Hexadecimal equivalent for     |
|---|-------|-----------------------------------------|
|   |       | outputs Q7 thru Q4 (Q7 = M.S.B.)        |
| 2 | 13    | Byte "0" Hexadecimal equivalent for     |
|   |       | outputs Q3 thru Q0 (Q3 = M.S.B.)        |
| 3 | 14-75 | Alternate steps 1 and 2 for consecutive |
|   |       | bytes.                                  |
| 4 | 77-80 | Card number (starting 0001)             |
|   |       | Total number of cards (64)              |
|   |       |                                         |

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

|              |          | -            | RGANIZATIONAL<br>316E MOS READ OF |               |                   |  |
|--------------|----------|--------------|-----------------------------------|---------------|-------------------|--|
| Customer:    |          |              |                                   |               |                   |  |
| Company      |          |              |                                   | M             | otorola Use Only: |  |
|              |          |              |                                   | Quote:        | · · ·             |  |
|              |          |              |                                   | Part No.:     |                   |  |
| Originator   | Phone No |              |                                   | Specif. No.:  |                   |  |
| Chip Select: |          |              | Active<br>High                    | Active<br>Low | No<br>Connect     |  |
|              |          | S1           |                                   |               |                   |  |
|              |          | S2           |                                   |               |                   |  |
|              |          | ` <b>S</b> 3 |                                   |               |                   |  |
|              |          |              | ч.                                |               |                   |  |



MOS

(N-CHANNEL, SILICON-GATE)

4096 X 8-BIT

READ ONLY MEMORY

P SUFFIX

24

Vcc 1 24

A8 23

A9 22

S2 21

ST 20

A10 19

A11 1 18

a7 b 17

06 16

Q5 1 15

03 1 13

04

b 14

C SUFFIX

FRIT SEAL PACKAGE CASE 623

#### 4096 X 8-BIT READ ONLY MEMORY

The MCM68A332 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output for OR-Ties
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- Fully TTL Compatible
- Maximum Access Time = 350 ns
- Directly Compatible with 4732
- Pin Compatible with 2708 and 2716 EPROMs
- Preprogrammed MCM68A332-2 Available .









#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                                                                                                   | Symbol | Min  | Тур | Max | Unit |
|-------------------------------------------------------------------------------------------------------------|--------|------|-----|-----|------|
| Supply Voltage ( $V_{CC}$ must be applied at least 100 $\mu$ s before proper device operation is achieved.) | Vcc    | 4.5  | 5.0 | 5.5 | Vdc  |
| nput High Voltage                                                                                           | VIH    | 2.0  | _   | 5.5 | Vdc  |
| nput Low Voltage                                                                                            | VIL    | -0.3 |     | 0.8 | Vdc  |

### DC CHARACTERISTICS

| Characteristic                                                                                       | Symbol | Min | Max | Unit |
|------------------------------------------------------------------------------------------------------|--------|-----|-----|------|
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                      | lin    |     | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 μA)                                                   | ∨он    | 2.4 | . – | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                     | VOL    | _   | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or S̄ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | LO     | -   | 10  | μAdc |
| Supply Current $(V_{CC} = 5.5 \text{ V}, T_A = 0^{\circ}\text{C})$                                   | ICC .  | -   | 80  | mAdc |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS, Exposure to higher than recommended voltages for extended periods of time could affect device reliability.-

#### CAPACITANCE

(f = 1.0 MHz,  $T_A^{\dagger}$  = 25°C, periodically sampled rather than 100% tested)

| Characteristic     | Symbol          | Тур | Max  | Unit |
|--------------------|-----------------|-----|------|------|
| Input Capacitance  | C <sub>in</sub> | 5.0 | 7.5  | pF   |
| Output Capacitance | Cout            | 9.0 | 12.5 | pF   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance çircuit.





| Waveform<br>Symbol | Input            | Output           | Waveform<br>Symbol | Input                                 | Output                        | Waveform<br>Symbol | Input | Output            |
|--------------------|------------------|------------------|--------------------|---------------------------------------|-------------------------------|--------------------|-------|-------------------|
|                    | MUST BE<br>VALID | WILL BE<br>VALID |                    | DON'T CARE<br>ANY CHANGE<br>PERMITTED | CHANGING:<br>STÁTE<br>UNKNOWN |                    |       | HIGH<br>IMPEDANCE |

#### MCM68A332 CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A332, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A332 should be submitted on an Organizational Data form such as that shown in Figure 3. (A "No-Connect" or "Don't Care" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. IBM Punch Cards: A. Hexadecimal Format
  - B. Intel Format
  - C. Binary Negative-Postive Format
- EPROMs--two 16K (MCM2716 or TMS2716) or four 8K (MCM2708)
- 3. Paper tape output of the Motorola M6800 software
- Hand punched paper tape

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 4096 bytes.

#### IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

#### Step Column

| 1 | 12     | Byte "0" Hexadecimal equivalent for outputs    |
|---|--------|------------------------------------------------|
|   |        | Q7 through Q4 (Q7 = M.S.B.)                    |
| 2 | ໌ 13 ່ | Byte "0" Hexadecimal equivalent for outputs    |
|   |        | Q3 through Q0 (Q3 = M.S.B.)                    |
| 3 | 14-75  | Alternate steps 1 and 2 for consecutive bytes. |
| 4 | 77-79  | Card number (starting 001).                    |
| 5 |        | Total number of cards must equal 128.          |
|   |        |                                                |

#### FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

|     | Binary | Hexadecimal<br>Character |   |   |
|-----|--------|--------------------------|---|---|
| · 0 | 0      | 0                        | 0 | 0 |
| 0   | 0      | 0                        | 1 | 1 |
| 0   | 0      | 1                        | 0 | 2 |
| 0   | 0      | 1                        | 1 | 3 |
| 0   | 1      | 0                        | 0 | 4 |
| 0   | 1      | 0                        | 1 | 5 |
| 0   | 1      | 1                        | 0 | 6 |
| 0   | 1      | 1                        | 1 | 7 |
| 1.  | 0      | 0                        | 0 | 8 |
| 1   | 0      | 0                        | 1 | 9 |
| 1   | 0      | 1                        | 0 | А |
| 1   | 0      | 1                        | 1 | в |
| 1   | 1      | 0                        | 0 | С |
| 1   | 1      | 0                        | 1 | D |
| 1   | 1      | 1                        | 0 | ε |
| 1   | 1      | 1                        | 1 | F |

#### PRE-PROGRAMMED MCM68A332P2, MCM68A332C2

The -2 standard ROM pattern contains sine-lookup and arctanlookup tables.

Locations 0000 through 2001 contain the sine values. The sine's first quadrant is divided into 1000 parts with sine values corresponding to these angles stored in the ROM. Sin  $\pi/2$  is included and is rounded to 0.9999.

The arctan values contain angles in radians corresponding to the arc tangents of 0 through 1 in steps of 0.001 and are contained in locations 2048 through 4049.

Locations 2002 through 2047 and 4050 through 4095 are zero filled.

All values are represented in absolute decimal format with four digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the two least significant digits in the upper byte. The decimal point is assumed to be to the left of the most significant digit.

| Example: Sin $(\frac{1}{1000} \frac{\pi}{2}) = 0.0016$ decimal |               |      |  |  |  |  |
|----------------------------------------------------------------|---------------|------|--|--|--|--|
| Address                                                        | ress Contents |      |  |  |  |  |
| 0002                                                           | 0000          | 0000 |  |  |  |  |
| 0003                                                           | 0001          | 0110 |  |  |  |  |

#### FIGURE 3 – FORMAT FOR PROGRAMMING GENERAL OPTIONS

|                      |          | RGANIZATIONA<br>332 MOS READ C |            |                   |          |
|----------------------|----------|--------------------------------|------------|-------------------|----------|
| Customer:            |          |                                |            | Motorola Use Only | ]        |
| Company<br>Part No   |          |                                |            |                   | <u> </u> |
| Originator           |          |                                | 1          |                   | `.       |
| Chip Select Options: |          | Active High                    | Active Low | No-Connect        |          |
|                      | S1<br>S2 |                                |            |                   |          |



## **Advance Information**

#### $8192 \times 8$ -BIT READ ONLY MEMORY

The MCM68A364/MCM68B364 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Chip Enable input and the memory content is defined by the user. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Fully Static Operation
- Automatic Power Down
- Low Power Dissipation 150 mW active (typical) 30 mW standby (typical)
- Single ±10% 5-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Chip Enable
- TTL Compatible
- Maximum Access Time 250 ns MCM68B364
  - 350 ns MCM68A364
- Pin Compatible with 8K MCM68A308, 16K MCM68A316E, and 32K – MCM68A332 Mask-Programmable ROMs





MCM68A364

MCM68B364

This is advance information and specifications are subject to change without notice.



#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                                                                                         | Symbol          | Min  | Nom | Max | Unit |
|-------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|-----|------|
| Supply Voltage<br>(V <sub>CC</sub> must be applied at least 100 µs before proper device<br>operation is achieved) | V <sub>CC</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage                                                                                                | VIH             | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage                                                                                                 | VIL             | -0.3 |     | 0.8 | Vdc  |
| DC CHARACTERISTICS                                                                                                |                 |      |     |     |      |
| Characteristic                                                                                                    | Symbol          | Min  | Тур | Max | Unit |
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                   | lin             |      | -   | 2.5 | µAdc |
| Output High Voltage<br>(I <sub>OH</sub> = −205 μA)                                                                | VOH             | 2.4  | - : | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 3.2 mA)                                                                  | VOL             | -    | -   | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(E = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V)                            | LO              | -    | -   | 10  | μAdc |
| Supply Current – Active $(V_{CC} = 5.5 \text{ V}, T_A = 0^{\circ}\text{C})$                                       | ICC             | -    | 30  | 60  | mAdc |
| Supply Current – Standby<br>( $V_{CC} = 5.5 \text{ V}, T_A = 0^{\circ}C, \overline{E} = V_{IH}$ )                 | 'SB             | -    | 6.0 | 15  | mAdc |

#### CAPACITANCE

(f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic     | Symbol | Max  | Unit |
|--------------------|--------|------|------|
| Input Capacitance  | Cin    | 7.5  | pF   |
| Output Capacitance | Cout   | 12.5 | pF   |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                        | Symbol           | Value        | Unit |
|-------------------------------|------------------|--------------|------|
| Supply Voltage                | Vcc              | -0.3 to +7.0 | Vdc  |
| Input Voltage                 | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range - | TA               | 0 to +70     | °c   |
| Storage Temperature Range     | ⊤ <sub>stg</sub> | -65 to +150  | °C   |

NOTE 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

#### **RECOMMENDED AC OPERATING CONDITIONS**

(T<sub>A</sub> = 0 to 70<sup>o</sup>C, V<sub>CC</sub> = 5.0 V  $\pm$  10%. All timing with t<sub>r</sub> = t<sub>f</sub> = 20 ns, load of Figure 1.)

|                                                                                     |                   | MCM | 68B364 | MCM | 68A364 |      |
|-------------------------------------------------------------------------------------|-------------------|-----|--------|-----|--------|------|
| Parameter                                                                           | Symbol            | Min | Max    | Min | Max    | Unit |
| Address Valid to Address Don't Care<br>(Cycle Time when Chip Enable is held Active) | tavax             | 250 |        | 350 | -      | ns   |
| Chip Enable Low to Chip Enable High                                                 | TELEH             | 250 |        | 350 | -      | ns   |
| Address Valid to Output Valid (Access)                                              | <sup>t</sup> AVQV | -   | 250    | -   | 350    | ns   |
| Chip Enable Low to Output Valid (Access)                                            | <sup>t</sup> ELQV |     | 250    | -   | 350    | ns   |
| Address Valid to Output Invalid                                                     | <sup>t</sup> AVQX | 10  | -      | 10  | -      | ns   |
| Chip Enable Low to Output Invalid                                                   | <sup>t</sup> ELOX | 10  | -      | 10  |        | ns   |
| Chip Enable High to Output High Z                                                   | <sup>t</sup> EHQZ | 0   | 70     | 0   | 80     | ns   |
| Chip Selection to Power Up Time                                                     | tPU               | 0   | -      | 0   | -      | ns   |
| Chip Deselection to Power Down Time                                                 | tPD               | -   | 100    | -   | 120    | ns   |
| Address Valid to Chip Enable Low (Address Setup)                                    | tAVEL             | 0   | -      | 0   | -      | ns   |

#### TIMING PARAMETER ABBREVIATIONS

| t x x x x                                                                               | < |
|-----------------------------------------------------------------------------------------|---|
| signal name from which interval is defined —<br>transition direction for first signal — |   |
| transition direction for first signal                                                   |   |
| signal name to which interval is defined                                                | ļ |
| transition direction for second signal                                                  |   |

The transition definitions used in this data sheet are:

WAVEFORMS

Input

MUST BE

VALID

CHANGE

FROM H TO L

CHANGE

FROM L TO H

DON'T CARE

ANY CHANGE

PERMITTED

Output

WILL BE

VALID

WILL CHANGE

FROM H TO L

WILL CHANGE

FROM L TO H

CHANGING

STATE

HIGH IMPEDANCE

- H = transition to high
- L = transition to low
- V = transition to valid

Waveform

Symbol

- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.



#### FIGURE 1 - AC TEST LOAD

#### CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A364/MCM68B364, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A364/MCM68B364 should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

- 1. IBM Punch Cards
  - A. Hexadecimal Format
  - B. INTEL Hexadecimal Format
  - C. Binary Negative-Positive Format
- EPROMs four 16K (MCM2716, or TMS2716, or eight 8K (MCM2708).

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 8,192 bytes.

|     | Hexadecimal<br>Character |     |   |     |
|-----|--------------------------|-----|---|-----|
| 0   | 0                        | 0   | 0 | 0   |
| 0   | 0                        | 0   | 1 | 1   |
| 0   | 0                        | 1   | 0 | 2   |
| 0   | 0                        | 1   | 1 | 3   |
| 0   | 1                        | 0   | 0 | 4   |
| 0   | 1                        | 0   | 1 | 5   |
| 0   | 1                        | 1   | 0 | 6   |
| 0   | 1                        | 1   | 1 | 7   |
| 1   | 0                        | 0   | 0 | 8   |
| 1   | 0                        | 0   | 1 | 9   |
| 1   | 0                        | 1   | 0 | A   |
| 1   | 0                        | · 1 | 1 | в   |
| 1   | 1                        | 0   | 0 | С   |
| 1 · | 1                        | 0   | 1 | D   |
| 1   | 1                        | 1   | 0 | E   |
| 1   | 1                        | 1   | 1 | . F |

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

#### IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

Step Column

- Byte "0" Hexadecimal equivalent for outputs Q7 through Q4 (Q7 = M.S.B.)
   Byte "0" Hexadecimal equivalent for outputs Q3 through Q0 (Q3 = M.S.B.)
- 3 14-75 Alternate steps 1 and 2 for consecutive bytes
- 4 77-79 Card number (starting 001)

Total number of cards must equal 256

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

5

|                 |             | GANIZATIONAL<br>M68B364 MOS RE | DATA<br>AD ONLY MEMORY |
|-----------------|-------------|--------------------------------|------------------------|
| Customer:       |             |                                |                        |
| Company -       |             |                                | Motorola Use Only:     |
| Part No         |             |                                | Quote:                 |
|                 | × .         |                                | Part No.:              |
| Originator _    |             |                                | Specif. No.:           |
| Enable Options: |             |                                |                        |
|                 |             | Active High                    | Active Low             |
|                 | Chip Enable |                                |                        |
|                 |             |                                |                        |





#### PRE-PROGRAMMED MCM68A364P3/C3, MCM68B364P3/C3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight- digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from .000 through .999 incrementing in steps of 1/1000. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consequitive locations.

| Example: | log <sub>10</sub> (1.01) = .00432137 decimal |           |  |  |
|----------|----------------------------------------------|-----------|--|--|
|          | Address                                      | Contents  |  |  |
|          | 4                                            | 0000 0000 |  |  |
|          | 5                                            | 0100 0011 |  |  |
|          | 6                                            | 0010 0001 |  |  |
|          | 7                                            | 0011 0111 |  |  |



# CMOS Memories RAM, ROM

3







## MCM14505

#### 64-BIT STATIC RANDOM ACCESS MEMORY

The MCM14505 64-bit random access memory is fully decoded on the chip and organized as 64 one-bit words (64 X 1). Medium speed operation and micropower supply requirements make this device useful for scratch pad or buffer memory applications where power must be conserved or where battery operation is required.

When used with a battery backup, the MCM14505 can be utilized as an alterable read-only memory, allowing the battery to retain information in the memory when the system is powered down, and allowing the battery to charge when power is applied. The micropower requirements of this memory allow quiescent battery operation for great lengths of time without significant discharging.

- Quiescent Current = 50 nA/package typical @ 5 Vdc
- Noise Immunity = 45% of VDD typical
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Single Read/Write Control Line
- Wired-OR Output Capability (3-State Output) for Memory Expansion
- Access Time = 180 ns typical at VDD = 10 Vdc
- Write Cycle Time = 275 ns typical at V<sub>DD</sub> = 10 Vdc
- Fully Buffered Low Capacitance Inputs
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

| MAXIMUM RATINGS | (Voltages referenced to VSS) |
|-----------------|------------------------------|
|-----------------|------------------------------|

| 60                                      |                  |                               |      |  |  |  |
|-----------------------------------------|------------------|-------------------------------|------|--|--|--|
| Rating                                  | Symbol           | Value                         | Unit |  |  |  |
| DC Supply Voltage                       | VDD              | -0.5 to +18                   | Vdc  |  |  |  |
| Input Voltage, All Inputs               | Vin              | -0.5 to V <sub>DD</sub> + 0.5 | Vdc  |  |  |  |
| DC Current Drain per Pin                | 1                | 10                            | mAdc |  |  |  |
| Operating Temperature Range – AL Device | TA               | -55 to +125                   | °C   |  |  |  |
| CL/CP Device                            |                  | -40 to +85                    |      |  |  |  |
| Storage Temperature Range               | T <sub>stg</sub> | -65 to +150                   | °C   |  |  |  |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that  $V_{in}$  and  $V_{out}$  be constrained to the range  $VSS \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V\_SS or V\_DD).





## ELECTRICAL CHARACTERISTICS

|                                             |                 | VDD | Th       | ow*      |                      | 25 <sup>0</sup> C |            | T <sub>h</sub> | igh <sup>*</sup> | ]     |
|---------------------------------------------|-----------------|-----|----------|----------|----------------------|-------------------|------------|----------------|------------------|-------|
| Characteristic                              | Symbol          | Vdc | Min      | Max      | Min                  | Тур               | Max        | Min            | Max              | Unit  |
| Output Voltage "0" Level                    | VOL             | 5.0 |          | 0.05     |                      | 0                 | 0.05       | _              | 0.05             | Vdd   |
| Vin VDD or 0                                | <b>1</b>        | 10  |          | 0.05     | ·                    | 0                 | 0.05       |                | 0.05             |       |
|                                             |                 | 15  |          | 0.05     |                      | 0                 | 0.05       | · · _          | 0.05             | 1     |
| "1" Level                                   | ∨он             | 5.0 | 4.95     | _        | 4.95,                | 5.0               |            | 4.95           | _                | · Vdd |
| Vin 0 or VDD                                | - OH            | 10  | 9.95     |          | 9.95                 | 10                | ·          | 9.95           |                  |       |
|                                             |                 | 15  | 14.95    |          | 14.95                | 15                | -          | 14.95          | -                |       |
| Noise Immunity #                            | VNL             |     |          |          |                      |                   |            | 1              |                  | Vd    |
| (∴V <sub>out</sub> ≤ 0.8 Vdc)               |                 | 5.0 | 1.5      | · _      | 1.5                  | 2.25              |            | 1.4            | -                | 1     |
| (∴V <sub>out</sub> ≤ 1.0 Vdc)               |                 | 10  | 3.0      | -        | 3.0                  | 4.50              |            | 2.9            | -                |       |
| (△V <sub>out</sub> ≤ 1.5 Vdc)               |                 | 15  | 4.5      | -        | 4.5                  | 6.75              |            | 4.4            | -                |       |
| (∴V <sub>out</sub> ≤ 0.8 Vdc)               | V <sub>NH</sub> | 5.0 | 1.4      | -        | 1.5                  | 2.25              | -          | 1.5            | · · ·            | Vd    |
| ( V <sub>out</sub> ≤ 1.0 Vdc)               |                 | 10  | 2.9      |          | 3.0                  | 4.50              | -          | 3.0            | · ·              |       |
| (∆V <sub>out</sub> ≤ 1.5 Vdc)               |                 | 15  | 4.4      | · · - ·  | 4.5                  | 6.75              |            | 4.5            |                  | 1     |
| Output Drive Current (AL Device)            | ЮН              |     | 1        |          |                      |                   |            |                |                  | mAd   |
| (V <sub>OH</sub> = 2.5 Vdc) Source          |                 | 5.0 | -1.2     | -        | -1.0                 | -1.7              | - 1        | ~0.7           | - 1              |       |
| (V <sub>OH</sub> = 4.6 Vdc)                 |                 | 5.0 | -0.25    | -        | -0.2                 | -0.36             | · _        | -0.14          |                  |       |
| (V <sub>OH</sub> = 9.5 Vdc)                 |                 | 10  | -0.62    | -        | -0.5                 | -0.9              |            | -0.35          | -                |       |
| (V <sub>OH</sub> = 13.5 Vdc)                | · ·             | 15  | -1.8     | -        | -1.5                 | -3.5              |            | -1.1           | - '              |       |
| (VOL = 0.4 Vdc) Sink                        | <sup>I</sup> OL | 5.0 | 0.3      | _        | 0.25                 | 0.35              | -          | 0.18           |                  | mAd   |
| (V <sub>OL</sub> = 0.5 Vdc)                 | UL              | 10  | 0.9      | _        | 0.75                 | 1.2               |            | 0.50           | -                |       |
| $(V_{OL} = 1.5 \text{ Vdc})$                |                 | 15  | 2.2      |          | 1.7                  | 4.5               | <u>-</u> . | 1.2            | -                |       |
| Dutput Drive Current (CL/CP Device)         | юн              |     | <u> </u> |          |                      |                   |            |                |                  | mAd   |
| (VOH = 2.5 Vdc) Source                      | .01             | 5.0 | -1.0     | - 1      | -0.8                 | -1.7              | _          | -0.6           | _                |       |
| (V <sub>OH</sub> = 4.6 Vdc)                 |                 | 5.0 | ~0.2     | -        | -0.16                | -0.36             | -          | -0.12          | 1 <u> </u>       |       |
| (V <sub>OH</sub> = 9.5 Vdc)                 |                 | 10  | -0.5     | · -      | -0.4                 | -0.9              |            | -0.3           |                  |       |
| (V <sub>OH</sub> = 13.5 Vdc)                |                 | 15  | -1.4     | <u> </u> | -1.2                 | 3.5               | ·          | -1.0           |                  |       |
| (VOI = 0.4 Vdc) Sink                        | <sup>I</sup> OL | 5.0 | 0.2      |          | 0.15                 | 0.35              |            | 0.1            | ~~               | mAd   |
| $(V_{OI} = 0.5 \text{ Vdc})$                |                 | 10  | 0.6      | -        | 0.5                  | 1.2               | -          | 0.4            | _                |       |
| (V <sub>OL</sub> = 1.5 Vdc)                 |                 | 15  | 3.9      | -        | 0.75                 | 4.5               |            | 0.6            |                  |       |
| nput Current (AL Device)                    | lin             | 15  |          | ± 0.1    | -                    | ±0.00001          | ± 0.1      | -              | ± 1.0            | μAd   |
| nput Current (CL/CP Device)                 | lin             | 15  |          | ± 1.0    | [                    | ±0.00001          | ±1.0       |                | ± 14             | μAd   |
| nput Capacitance                            | C <sub>in</sub> |     | 1 .      |          | f                    | 5.0               | 7.5        | -              |                  | pF    |
| $(V_{in} = 0)$                              | - 11            | •   |          |          |                      |                   |            |                | 1                |       |
| Quiescent Current (AL Device)               | IDD             | 5.0 | -        | 5.0      | -                    | 0.050             | 5.0        |                | 150              | μAd   |
| (Per Package)                               |                 | 10  |          | 10       | -                    | 0.100             | 10         |                | 300              |       |
| •                                           | 14              | 15  |          | 20       | -                    | 0.150             | 20         |                | 600              | 1     |
| Quiescent Current (CL/CP Device)            | <sup>i</sup> pp | 5.0 |          | 50       | · _                  | 0.050             | 50         |                | 375              | μAd   |
| (Per Package)                               |                 | 10  | - 1      | 100      | - 1                  | 0.100             | 100        | -              | 750              |       |
|                                             |                 | 15  | -        | 200      | -                    | 0.150             | 200        |                | 1500             | 1     |
| Fotal Supply Current**†                     | ŀт              | 5.0 | 1        |          | l <sub>T</sub> - (1. | 28 μA/kHz         | ) f + 100  |                |                  | μAd   |
| (Dynamic plus Quiescent,                    |                 | 10  |          |          |                      | .56 µA/kHz        |            |                |                  |       |
| Per Package)                                |                 | 15  | 1        |          |                      | 85 µA/kHz         |            |                |                  | 1     |
| (C <sub>1</sub> = 50 pF on all outputs, all |                 | -   |          |          | 1 10                 |                   | 50         |                |                  |       |
| buffers switching)                          |                 |     | 1        |          |                      |                   |            |                |                  |       |
| Three-State Leakage Current                 | ΓTL             | 15  | t        | ± 0,1    |                      | 0.00001           | ± 0.1      | -              | ± 3.0            | μAd   |
| (AL Device)                                 |                 |     | 1        |          | 1                    |                   | 1          | 1              | 1 - 0.0          | 1     |
| Three-State Leakage Current                 | ΓL              | 15  |          | ±1.0     |                      | +0.00001          | ± 1.0      |                | ± 7.5            | μAd   |
| (CL/CP Device)                              | 11              | 15  | 1        | 1.0      |                      | 0.00001           | <u> </u>   |                | _ <i>≛ 1.5</i>   | #~u   |
|                                             |                 |     | 1        |          | 1                    | 1                 | t          | 1              | L                | t     |

 $\label{eq:transform} ^{*}T_{IOW} = -55^{\circ}C \mbox{ for AL Device, } +40^{\circ}C \mbox{ for CL/CP Device, } \\ T_{high} = +125^{\circ}C \mbox{ for AL Device, } +85^{\circ}C \mbox{ for CL/CP Device, } \\ \mbox{#Noise immunity specified for worst-case input combination.} \\ the calculate total supply current at loads other than 50 pF: \\ t_T(C_L) = 1_T(50 \mbox{ pF}) + 1 \times 10^{-3} \mbox{ (C}_L -50) \ \mbox{VDD} f \\ \mbox{ where: } t_T \mbox{ is input frequency, } t_L \mbox{ in pF, VDD in Vdc, and f in kHz is input frequency, } \\ \mbox{*The formulas given are for the typical characteristics only at 25^{\circ}C. } \end{array}$ 

## SWITCHING CHARACTERISTICS\* ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}C$ )

| Characteristic                                             | Symbol               | VDD      | Min | Тур  | Max | Unit |
|------------------------------------------------------------|----------------------|----------|-----|------|-----|------|
| Dutput Rise Time                                           | τιμ                  |          |     |      |     | ns   |
| t <sub>TLH</sub> = (2.43 ns/pF) C <sub>L</sub> + 58.5 ns   |                      | 5.0      |     | 180  | 360 |      |
| tTLH = (1.08 ns/pF) CL + 36 ns                             |                      | 10       | -   | 90   | 180 |      |
| tTLH = (0.72 ns/pF) CL + 39 ns                             |                      | 15       |     | 75   | 150 |      |
| Dutput Fall Time                                           | tTHL                 |          |     |      |     | ns   |
| tTHL = (2.16 ns/pF) CL + 52 ns                             |                      | 5.0      | -   | 160  | 320 |      |
| tTHL = (0.96 ns/pF) CL + 32 ns                             |                      | 10       | - 1 | 80   | 160 |      |
| tTHL = (0.69 ns/pF) CL + 33 ns                             |                      | 15       | -   | 65   | 130 |      |
| Propagation Delay Time                                     | tacc(R)              |          |     |      |     | ns   |
| Read Access Time                                           |                      |          |     |      |     |      |
| t <sub>acc(R)</sub> = (1.4 ns/pF) C <sub>L</sub> + 385 ns  |                      | 5.0      |     | 455  | 750 |      |
| t <sub>acc(R)</sub> = (10.7 ns/pF) C <sub>L</sub> + 175 ns |                      | 10       | -   | 210  | 400 | 1    |
| $t_{acc}(R) = (0.5 \text{ ns/pF}) C_{L} + 105 \text{ ns}$  |                      | 15       | -   | 130  | 300 |      |
| Strobe Down Time                                           | twl                  |          | T   |      |     | ns   |
|                                                            |                      | 5.0      | 500 | 100  |     |      |
|                                                            |                      | 10       | 125 | 50   | -   |      |
|                                                            |                      | 15       | 95  | 75   | -   |      |
| Address Setup Time                                         | t <sub>su</sub>      |          |     |      |     | ns   |
|                                                            |                      | 5.0      | 300 | -100 | -   |      |
|                                                            |                      | 10       | 120 | -40  | -   |      |
|                                                            |                      | 15       | 90  | -25  | -   |      |
| Data Setup Time                                            | t <sub>su</sub> (D)  | 1        | 1   | 1    | 1   | ns   |
|                                                            |                      | 5.0      | 200 | 70   | -   |      |
|                                                            |                      | 10       | 75  | 25   | -   |      |
|                                                            |                      | 15       | 55  | 20   | -   |      |
| Read Setup Time                                            | t <sub>su</sub> (R)  |          | 1   |      |     | ns   |
|                                                            |                      | 5.0      | 270 | 90   |     |      |
|                                                            |                      | 10       | 60  | 20   | - 1 |      |
|                                                            |                      | 15       | 45  | 15   | -   |      |
| Write Setup Time                                           | t <sub>su</sub> (W)  |          |     |      |     | ns   |
|                                                            |                      | 5.0      | 400 | 80   | -   |      |
|                                                            |                      | 10       | 100 | 25   | _   |      |
| •                                                          |                      | 15       | 75  | 11   | -   |      |
| Address Release Time                                       | trel(R)              | 1        | -   |      |     | ns   |
|                                                            |                      | 5.0      | 75  | 15   | _   |      |
|                                                            |                      | 10       | 25  | 10   | -   |      |
|                                                            |                      | 15       | 20  | 5.0  | -   |      |
| Data Hold Time                                             | t <sub>h</sub> (D)   |          |     |      |     | ns   |
|                                                            |                      | 5.0      | 50  | 0    | _   |      |
|                                                            |                      | 10       | 15  | 0    | _   |      |
|                                                            |                      | 15       | 10  | 0    | ľ - |      |
| Read Release Time                                          | t <sub>rel</sub> (R) |          | 1   | 1    |     | ns   |
|                                                            |                      | 5.0      | 0   | -90  |     | 1    |
|                                                            |                      | 10       | 0   | -25  | -   |      |
|                                                            | ·                    | 15       | 0   | -10  | -   |      |
| Write Release Time                                         | t <sub>rel</sub> (W) |          |     |      |     | ns   |
|                                                            |                      | 5.0      | 0   | 5.0  | -   |      |
|                                                            |                      | 10       | 0   | 10   | -   |      |
|                                                            |                      | 15       | 0   | 30   |     | 1    |
| Read Cycle Time                                            | tcyc(R)              |          |     |      |     | ns   |
|                                                            |                      | 5.0      |     | 500  | 750 | 1    |
|                                                            |                      | 10       |     | 200  | 400 |      |
|                                                            |                      | 15       |     | 150  | 300 |      |
| Write Cycle Time                                           | tcyc(W)              |          |     |      | T   | nş   |
|                                                            |                      | 5.0      | -   | 440  | 700 |      |
|                                                            |                      | 10       | -   | 275  | 550 |      |
|                                                            |                      | 15       | -   | 200  | 415 |      |
| Output Disable Delay                                       | tdis                 | <u> </u> | +   | +    |     | ns   |
| (10% Output Change into 1.0 kΩ Load)                       |                      | 5.0      | -   | 200  | 600 |      |
| -                                                          |                      | 10       | -   | 80   | 200 |      |
|                                                            | 1                    | 15       | 1   | 60   | 150 | 1    |

\*The formula is for the typical characteristics only.



FIGURE 1 - READ CYCLE TIMING DIAGRAM

FIGURE 2 - WRITE CYCLE TIMING DIAGRAM







#### FIGURE 4 – TYPICAL READ ACCESS TIME versus LOAD CAPACITANCE



.





FIGURE 7 - FUNCTIONAL CIRCUIT DIAGRAM

3

## OPERATING CHARACTERISTICS

In considering the operation of the MCM14505 CMOS memory, refer to the functional circuit diagram of Figure 7 and timing diagrams shown in Figures 1 and 2. The basic memory cell is a cross-coupled flip-flop consisting of two inverter gates and two P-channel devices for read/write control. The push-pull cell provides high speed as well as low power.

During a read cycle, when the strobe line is high the write selection drivers are disabled and the data from the selected row is available on columns 1b, 2b, 3b, and 4b. The A4 and A5 address bits are decoded to select output data from one of the four columns. The output data is available on the data output pin only when the strobe and read/write lines are high simultaneously and after the read access time,  $t_{acc(R)}$ , has occurred (see Figure 1). Note that the output is initially disabled and always goes to the logic "O" state (low voltage) before data is valid. The output is in the highimpedance state (disabled) when the strobe line or the R/W line is in the low state. The memory is strobed for reading or writing only when the strobe, CE1, and CE2 are high simultaneously. The R/W line can be a dc voltage during a read or write cycle and need not be pulsed, as shown in the timing diagrams. For this case the R/W line should be a logic "1" (high) for reading and a logic "0" for writing.

When the strobe line is high, the column read/write inhibit gates and the row decoder inhibit gates are disabled, the selected

row is in the low state, and the unselected 15 rows retain their logic "1" level due to the row capacitance that exists when the row decoder inhibit gates are disabled. This capacitive storage mechanism requires a maximum strobe width (see Figure 3) equal to the junction reverse bias RC time constant. When the strobe is returned to a logic "0" the rows are forced to V<sub>DD</sub> by the row decoder inhibit gates (pullup devices). Similarly the column read/write inhibit gate.

Two column lines are associated with each memory cell in order to write into the cell. The write selection drivers are enabled when the R/W line is a logic '0'' and the strobe line is a logic '1''. The input data is written into the column selected by the column decoder. For instance, if a '1'' is to be written in the memory cell associated with row 1 and column 1, then row 1 would be enabled (logic '0'') while column 1b is forced high and column 1a is forced low by the writte selection drivers. If a logic ''0'' is to be written into the cell, then column 1a is forced high and 1b is forced low. The data that is retained in the memory cell is the data that was present on the data input pin at the moment the strobe goes low when R/W goes high when the strobe is high.

#### APPLICATIONS INFORMATION

Figure 8 shows a 256-word by n-bit static RAM memory system The outputs of four MCM14505 devices are tied together to form 256 words by 1 bit. Additional bits are attained by paraleling the inputs in groups of four. Memories of larger words can be attained by decoding the most significant bits of the address and ANDing them with the strobe input.

Fan-in and fan-out of the memory is limited only by speed requirements. The extremely low input and output leakage current (100 nA maximum) keep the output voltage levels from changing significantly as more outputs are tied together. With the output levels independent of fan-out, most of the power supply range is available as logic swing, regardless of the number of units wired together. As a result, high noise immunity is maintained under all conditions.

Power dissipation is 0.1  $\mu$ W per bit at a 1.0-kHz rate for a 5.0-volt power supply, while the static power dissipation is 2.0 nW per bit. This low power allows non-volatile information storage when the memory is powered by a small standby battery.

Figure 9 shows an optional standby power supply circuit for making a CMOS memory "non-volatile". When the usual power fails, a battery is used to sustain operation or maintain stored information. While normal power supply voltage is present, the battery is trickle-charged through a resistor which sets the charging rate. Vg is the sustaining voltage, and V<sup>+</sup> is the ordinary voltage from a power supply. VDD connects to the power pin on the memory. Low-leakage diodes are recommended to conserve battery power.

The memory system shown in Figure 8 can be interfaced directly with the other devices in the McMOS family. No external components are required.

At the inputs to the CMOS memory, TTL devices can interface directly if an open-collector logic gate such as the MC7407 is used as shown in Figure 10. Driver circuits are not required since the input capacitance is low (4.0 to 6.0 pF). The address, data, and read/write inputs do not need to be fast since they can be changed for the duration when the strobe pulse is low,  $t_{STL}$  (see Figures 1 and 2). For high-speed operation, a push-pull driver should be used if more than five strobe inputs must be driven at one time. One circuit of the type shown in Figure 10 can be used for every ten strobe is robe inputs.

Figures 11, 12, and 13 show methods of interfacing the memory output to TTL logic at various memory voltages. If a  $V_{DD}$  of 5.0 volts is used for slow-speed, low-power applications, one transistor and one resistor must be used (Figure 11). The MCM14505AL will drive one low-power TTL gate directly.

If a V<sub>DD</sub> of 10 volts is used, the output of the memory device can fan out to two low-power TTL gates (Figure 12a) or to a discrete transistor (Figure 12b). The discrete transistor circuit provides higher speed and/or high fan-out. A pulldown resistor at the base of the transistor is not needed for fast turn-off because of the push-pull output of the memory. Turn-on time of the transistor is much faster in Figure 12b since the voltage rise is only 0.75 volt. The low output capacitance of the MCM14505 means that several outputs can be wire-ORed without significantly degrading performance. The read access time is increased by only 20 ns typically for 16 outputs tied together when Figure 12b

is used. Five low-power TTL gates can be driven from the memory output if a V<sub>DD</sub> of 15 volts is used (Figure 13a). Figure 13b shows the interface if a discrete transistor is used. The 1.0 kilohm resistor in the base is required to insure that not more than 10 mA flows through the output as listed in the maximum ratings. If a 2.0 kilohm collector resistor is used (fan-out = 3), the turn-on time of the transistor is only slightly faster than in the circuit shown in Figure 12b due to the lower output impedance when V<sub>DD</sub> = 15 volts. The voltage at the memory data output has to rise to only 1.3 volts to insure driving a fan out of three TTL devices.

If a 510-ohm collector resistor is used, 20 TTL loads may be driven. The read access time is increased about 20 ns when four memory outputs are tied together since the output voltage must rise to 3.7 volts before the transistor can sink the full  $l_{OL}$  for a fan-out of 20 TTL devices. Almost any NPN transistor with a minimum beta of 15 can be used for the interface shown in Figures 11, 12 and 13.

The high source current from the push-pull output stage of the MCM14505 makes for a simpler interface circuit since a low source current memory requires a differential comparator to achieve highspeed operation.



# FIGURE 8 -- CMOS 256-WORD BY n-BIT STATIC READ/WRITE MEMORY

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola inc. or others.



# FIGURE 12 – CMOS·TO·TTL INTERFACE FOR $V_{DD}$ = 10 V



FIGURE 13 – CMOS-TO-TTL INTERFACE FOR V<sub>DD</sub> = 15 V





## 256-BIT STATIC RANDOM ACCESS MEMORY

The MCM14537 is a static random access memory (RAM) organized in a 256 x 1-bit pattern and constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The circuit consists of eight address inputs (A<sub>n</sub>), one data input (D<sub>in</sub>), one write enable input (WE), one strobe input (ST), two chip enable inputs (CE<sub>n</sub>), and one data output (D<sub>out</sub>).

Using both chip enable inputs as extensions of the address inputs, a 10-bit address scheme may be employed. Four MCM14537 devices may be used to comprise a 1024-bit memory without additional address decoding. The CE and ST inputs are dissimilary designed to enable usage of the memory in a variety of applications. An output latch is provided on the chip for storing the data read or written into memory, making a data-out storage register unnecessary. The CE inputs control the data output for third-state (high output impedance) or active operation which makes the memory very useful in a bus oriented system. When CE2 is high the chip is fully disabled. When CE1 is high the output is in the third state but data can be written into the output latch during a read cycle. This enables the use of the memory for fast reading by using the CE1 input to enable the latch. The memory is also designed so that dc signals can operate the memory with no maximum pulse width required on the CE and ST lines,

Medium speed operation and micropower operation make the device useful in scratch pad and buffer applications where micropower or battery operation and high noise immunity are required.

- Quiescent Current = 0.5 µA/package typical @ 5 Vdc
- Noise Immunity = 45% of VDD typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time = 700 ns typical @ Vng = 10 Vdc
- Fully Decoded and Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

| MAXIMUM RATINGS (Voltages referenced<br>Rating          | to V <sub>SS</sub> )<br>Symbol | Value                         | Unit |
|---------------------------------------------------------|--------------------------------|-------------------------------|------|
| DC Supply Voltage                                       | VDD                            | -0.5 to +18                   | Vdc  |
| Input Voltage, All Inputs                               | Vin                            | -0.5 to V <sub>DD</sub> + 0.5 | Vdc  |
| DC Current Drain per Pin                                | 1                              | 10                            | mAdo |
| Operating Temperature Range – AL Device<br>CL/CP Device | TA                             | -55 to +125<br>-40 to +85     | °C   |
| Storage Temperature Range                               | T <sub>stg</sub>               | -65 to +150                   | °c   |



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that  $V_{in}$  and  $V_{out}$  be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $v_{SS} \mbox{ or } v_{DD}).$ 

#### **ELECTRICAL CHARACTERISTICS**

|                                                            |           |                 | VDD      | T <sub>ic</sub> | w*    |          | 25°C                    |                  | T <sub>h</sub>                                | igh <sup>*</sup> |          |
|------------------------------------------------------------|-----------|-----------------|----------|-----------------|-------|----------|-------------------------|------------------|-----------------------------------------------|------------------|----------|
| Characteristic                                             |           | Symbol          | Vdc      | Min             | Max   | Min      | Тур                     | Max              | Min                                           | Max              | Unit     |
| Output Voltage "                                           | 0'' Level | Voi             | 5.0      | _               | 0.05  |          | 0                       | 0.05             | _                                             | 0.05             | Vdc      |
| Vin VDD or 0                                               |           | UL              | 10       |                 | 0.05  | I _      | 0                       | 0.05             | _                                             | 0.05             |          |
|                                                            |           |                 | 15       |                 | 0.05  | _        | 0                       | 0.05             | -                                             | 0.05             |          |
|                                                            | 1" Level  | VOH             | 5.0      | 4.95            | _     | 4,95     | 5.0                     | _                | 4.95                                          | _                | Vdc      |
| Vin 0 or VDD                                               | LCVCI     | 10H             | 10       | 9.95            | _     | 9.95     | 10                      | _                | 9.95                                          | -                | 1 100    |
|                                                            |           |                 | 15       | 14.95           |       | 14.95    | 15                      | _                | 14.95                                         | _                |          |
| Noise Immunity #                                           |           | VNL             |          |                 |       |          |                         |                  | 11.00                                         |                  | Vd       |
| (∴V <sub>out</sub> ≤ 0.8 Vdc)                              |           | I VNL           | 5.0      | 1.5             |       | 1.5      | 2.25                    | _                | 1.4                                           | <u> </u>         | ""       |
| (∴V <sub>out</sub> ≤ 1.0 Vdc)                              |           |                 | 10       | 3.0             |       | 3.0      | 4,50                    |                  | 2.9                                           | _                |          |
| (∆V <sub>out</sub> ≤ 1.5 Vdc)                              |           |                 | 15       | 4.5             |       | 4.5      | 6.75                    | _                | 4.4                                           | _                |          |
| (∴V <sub>out</sub> ≤ 0.8 Vdc)                              |           | VNH             | 5.0      | 1.4             |       | 1.5      | 2.25                    |                  | 1.5                                           |                  | Vdd      |
| (∴V <sub>out</sub> ≤ 1.0 Vdc)                              |           | NH              | 10       | 2.9             | _     | 3.0      | 4.50                    | _                | 3.0                                           |                  |          |
| (∆V <sub>out</sub> ≤ 1.5 Vdc)                              |           |                 | 15       | 4.4             | _     | 4.5      | 6.75                    |                  | 4.5                                           |                  |          |
| Dutput Drive Current (AL D                                 | auiaa)    | 1-1-1           |          |                 |       |          | 0.70                    |                  |                                               |                  | mAd      |
|                                                            | ource     | ∙он             | 5.0      | -1.2            |       | 1.0      | -1.7                    | _                | -0.7                                          | _                | mAd      |
| (V <sub>OH</sub> = 4.6 Vdc)                                | ource     |                 | 5.0      | -0.25           | _     | -0,2     | -0.36                   | _                | -0.14                                         | _                |          |
| (V <sub>OH</sub> = 9.5 Vdc)                                |           |                 | 10       | -0.62           | _     | -0.5     | -0.9                    | _                | -0.35                                         | _                |          |
| (V <sub>OH</sub> = 13.5 Vdc)                               |           |                 | 15       | -1.8            |       | -1.5     | -3.5                    |                  | -1.1                                          | _                |          |
| ÷                                                          | ink .     |                 | 5.0      | 0.64            |       | 0.51     | 0.88                    |                  |                                               |                  |          |
|                                                            | INK .     | <sup>I</sup> OL | 5.0      | 1.6             | 1     | 1.3      | 2.25                    |                  | 0.36                                          |                  | mAd      |
| (V <sub>OL</sub> = 0.5 Vdc)<br>(V <sub>OL</sub> ≈ 1.5 Vdc) |           |                 | 15       | 4.2             | -     | 3.4      | 8.8                     | -                | 2.4                                           | -                |          |
|                                                            |           |                 | 15       | 4.2             |       | 3.4      | 0.0                     |                  | 2.4                                           |                  |          |
| Dutput Drive Current (CL/Cl                                |           | юн              | 5.0      |                 |       |          |                         |                  |                                               |                  | mAd      |
| UT                                                         | ource     |                 | 5.0      | -1.0            |       | -0.8     | -1.7                    |                  | -0.6                                          | -                |          |
| (V <sub>OH</sub> = 4.6 Vdc)                                |           |                 | 5.0      | -0.2            | -     | -0.16    | -0.36                   | -                | -0.12                                         |                  |          |
| (V <sub>OH</sub> ≈ 9.5 Vdc)                                |           |                 | 10<br>15 | -0.5            | -     | -0.4     | -0.9                    |                  | -0.3                                          | -                |          |
| (V <sub>OH</sub> = 13.5 Vdc)                               |           |                 |          | -1.4            |       | -1.2     | -3.5                    |                  | -1.0                                          |                  |          |
| 0L                                                         | ink       | I'OL            | 5.0      | 0.52            |       | 0.44     | 0.88                    | -                | 0.36                                          | -                | mAd      |
| (V <sub>OL</sub> = 0.5 Vdc)                                |           |                 | 10       | 1.3             |       | 1.1      | 2.25                    | - 1              | 0.9                                           | -                |          |
| (V <sub>OL</sub> = 1.5 Vdc)                                |           |                 | 15       | 3.6             | -     | 3.0      | 8.8                     | _                | 2.4                                           | -                |          |
| nput Current (AL Device)                                   |           | 1 <sub>in</sub> | 15       | -               | ± 0.1 |          | ±0.00001                | ± 0.1            |                                               | ± 1.0            | μAdd     |
| nput Current (CL/CP Device                                 | )         | lin             | 15       |                 | ±1.0  | ·        | ±0.00001                | ±1.0             |                                               | ±14              | μAdc     |
| nput Capacitance                                           |           | Cin             | _        |                 | _     | -        | 5.0                     | 7.5              |                                               | ·                | pF       |
| (V <sub>in</sub> = 0)                                      |           | · · · ·         |          |                 |       |          |                         |                  |                                               |                  |          |
| Quiescent Current (AL Devic                                | e)        | 1 <sub>DD</sub> | 5.0      |                 | 100   | -        | 0.5                     | 100              | -                                             | 1800             | μAdo     |
| (Per Package)                                              | - '       | .00             | 10       |                 | 200   |          | 1.0                     | 200              | _                                             | 3600             |          |
|                                                            |           | · ·             | 15       |                 | 400   | -        | 1.5                     | 400              | -                                             | 7200             |          |
| Quiescent Current (CL/CP D                                 | avica)    | 1DD             | 5.0      |                 | 100   | <u> </u> | 0.5                     | 100              | -                                             | 1800             | μAdd     |
| (Per Package)                                              | evice/    | 00'             | 10       | _               | 200   |          | 1.0                     | 200              | _                                             | 3600             |          |
| (ref rackage/                                              |           |                 | 15       | _               | 400   | _        | 1.5                     | 400              | -                                             | 7200             | [        |
| Total Supply Current**†                                    | ****      | ΙŢ              | 5.0      |                 | 400   |          | ·                       |                  | <u> </u>                                      |                  |          |
| (Dynamic plus Quiescent,                                   |           | ''              | 10       |                 |       | iπ = ()  | .46 µA/kHz              |                  |                                               |                  | µAde     |
| Per Package)                                               |           |                 | 15       | Į               |       |          | 91 μA/kHz<br>.37 μA/kHz |                  |                                               |                  |          |
| (C) = 50 pF on all output                                  | الد ما    |                 | 15       |                 |       | 'T = 14  | .37 µA/KHZ              | DD + + + + + + + |                                               |                  |          |
| buffers switching)                                         | (a, an    |                 |          | 1               |       |          |                         |                  |                                               |                  | 1        |
|                                                            |           |                 | 15       | <u>├</u> -      |       | ·        | 1.0.00001               |                  | <u>,                                     </u> |                  | <u> </u> |
| Three-State Leakage Current                                |           | ΙΊΤL            | 15       | -               | ± 0.1 | -        | +0.00001                | ± 0.1            | -                                             | ±3.0             | µAdo     |
| (AL Device)                                                |           |                 |          |                 |       |          |                         |                  | <u> </u>                                      |                  | l        |
| Three-State Leakage Current                                |           | TL              | 15       | -               | ±1.0  | -        | +0.00001                | ± 1.0            | -                                             | ± 7.5            | µAda     |
| (CL/CP Device)                                             |           | 1 1             |          | i               |       | 1        | 4                       |                  | 1                                             |                  | 1        |

\* $T_{Iow} = -55^{\circ}C$  for AL Device,  $-40^{\circ}C$  for CL/CP Device.  $T_{high} = +125^{\circ}C$  for AL Device,  $+85^{\circ}C$  for CL/CP Device. #Noise immunity specified for worst-case input combination. Noise Margin for both "1" and "0" level = 1.0 Vdc min @ VD = 5.0 Vdc.

To calculate total supply current at loads other than 50 pF:  $|T_{(C_{L})} = |T_{(50 \text{ pF})} + 1 \times 10^{-3} (C_{L} - 50) \text{ VDD f}$ where:  $|T_{i}$  is in  $\mu$ A (per package),  $C_{L}$  in pF, VDD in Vdc, and f in kHz is input frequency. \*\*The formulas given are for the typical characteristics only at 25°C.

## SWITCHING CHARACTERISTICS\* (C1 = 50 pF, TA = 25°C)

| Characteristic                                          | Figure        | Symbol .                              | VDD  | Min  | Тур  | Max      | Unit     |
|---------------------------------------------------------|---------------|---------------------------------------|------|------|------|----------|----------|
| Output Rise Time                                        | 3             | <b>TLH</b>                            |      | Ì,   |      |          | ns       |
| $t_{TLH} = (3.0 \text{ ns/pF}) C_{L} + 30 \text{ ns}$   |               |                                       | 5.0  | - 1  | 180  | 360      | 1        |
| $t_{TLH} = (1.5 \text{ ns/pF}) C_{L} + 15 \text{ ns}$   |               | i .                                   | 10   | -    | 90   | 180      | ŀ        |
| t <sub>TLH</sub> = (1.1 ns/pF) C <sub>L</sub> + 10 ns   |               |                                       | 15   |      | 65   | 130      |          |
| Dutput Fall Time                                        | 3             | <b>THL</b>                            |      |      |      |          | ns       |
| tTHL = (1.5 ns/pF) CL + 25 ns                           |               |                                       | 5.0  |      | 100  | 200      |          |
| tTHL = (0.75 ns/pF) CL + 12.5 ns                        |               |                                       | 10   | -    | 50   | 100      | 1        |
| t <sub>THL</sub> = (0.55 ns/pF) C <sub>L</sub> + 9.5 ns |               |                                       | 15   | -    | 40   | 80       |          |
| Read Access Time from ST or CE2                         | 4,5           | tacc(R)                               |      |      |      |          | ns       |
| t <sub>acc</sub> = (1.4 ns/pF) C <sub>L</sub> + 2480 ns |               | · ·                                   | 5.0  | 400  | 2500 | 6000     | 1        |
| t <sub>acc</sub> = (0.7 ns/pF) CL + 690 ns              |               | {                                     | 10   | 150  | 700  | 2000     | 1        |
| t <sub>age</sub> = (0.5 ns/pF) CL + 393 ns              |               | 1                                     | 15   | 115  | 400  | 1500     |          |
| Dutput Enable Delay from CE1 or CE2                     | 5,6           | tacc(CEn)                             | 5.0  | 70   | 300  | 900      | ns       |
|                                                         |               |                                       | 10   | 25   | 100  | 300      | 1        |
|                                                         |               |                                       | 15   | 20   | 70   | 225      |          |
| etup Time from An to ST or CE2                          | 4, 5, 6, 7    | t <sub>su</sub> (A)                   | 5.0  | 1800 | 600  | -        | ns       |
| · · · · ·                                               |               | suitar                                | 10   | 600  | 200  | _        |          |
|                                                         |               |                                       | 15   | 450  | 140  | -        |          |
| old Time from An to ST or CE2                           | 4, 5, 6, 7    | t <sub>h</sub> (A)                    | 5.0  | 600  | 200  |          | ns       |
|                                                         | ., ., ., ., , | -mai                                  | 10   | 240  | 80   |          | 113      |
|                                                         |               |                                       | 15   | 180  | 55   | _        |          |
| Data Hold Time                                          | 7             | t. /                                  | 5.0  | 1400 | 480  | +        |          |
|                                                         | 1             | th(D)                                 | 10   | 500  | 480  | -        | ns       |
|                                                         |               |                                       | 15   | 375  | 110  | _        | 1        |
| ata Satua Tima                                          |               |                                       |      |      |      | f        |          |
| ata Setup Time                                          | 7             | t <sub>su</sub> (D)                   | 5.0  | 3600 | 1200 | -        | ns       |
| · · · · · · · · · · · · · · · · · · ·                   |               | 1                                     | 10   | 1800 | 600  | -        |          |
|                                                         |               |                                       | 15   | 1350 | 420  |          | [        |
| Vrite Enable Hold Time                                  | 7             | <sup>t</sup> h(WE)                    | 5.0  | 150  | 50   | - 1      | ns       |
|                                                         |               |                                       | 10   | 60   | 20   | -        | ļ        |
|                                                         |               | · · · · · · · · · · · · · · · · · · · | 15   | 45   | 15   |          |          |
| Irite Enable Setup Time                                 | 7             | t <sub>su</sub> (WE)                  | 5.0  | 720  | 240  | × -      | ns       |
|                                                         |               |                                       | 10   | 240  | 80   | - 1      | 1.       |
|                                                         |               | 1                                     | 15   | 180  | 55   | ) –      | ]        |
| Irite Enable to Dout Disable**                          | 4             | tWE                                   | 5.0  | 720  | 240  | _        | ns       |
|                                                         |               |                                       | 10   | 240  | 80   | - 1      | 1        |
|                                                         |               |                                       | 15   | 180  | 55   | -        | 1 .      |
| trobe or CE2 Pulse Width When Reading                   | 4, 5, 6       | tWL(R)                                | 5.0  | 1350 | 450  | _        | ns       |
| · · · · · ·                                             |               | W L(H)                                | 10   | 450  | 150  | -        |          |
|                                                         |               |                                       | 15   | 340  | 100  | -        | l        |
| trobe, CE1 or CE2 Pulse Width When Writing              | 7             | twL(W)                                | 5.0  | 2400 | 1200 | -        | ns       |
|                                                         |               | WVL(WV)                               | 10   | 1260 | 600  |          | 113      |
|                                                         |               |                                       | 15   | 945  | 420  | _        | (        |
| Irite Recovery Time                                     | 4             | to (m)                                |      |      |      | <u> </u> | ns       |
| $t_W = (1.4 \text{ ns/pF}) C_L + 219 \text{ ns}$        | -             | <sup>t</sup> R(W)                     | 5.0  | 70   | 240  | 720      | 115      |
| $t_W = (0.7 \text{ ns/pF}) C_L + 70 \text{ ns}$         |               |                                       | 10   | 25   | 80   | 240      | l        |
| $t_W = (0.5 \text{ ns/pF}) C_L + 47.5 \text{ ns}$       |               | I                                     | 15   | 20   | 55   | 180      | {        |
| E1 or CE2 to Dout Disable Delay**                       | 6             | 105                                   | 5.0  | 70   | 300  | 900      |          |
| and one to bout bisable belay                           | U U           | <sup>t</sup> CE <sub>n</sub>          | 10   | 25   | 100  | 300      | ns       |
|                                                         | 1             |                                       | 15   | 25   | 70   | 225      | l        |
| and Satur Time                                          |               |                                       |      |      |      | 220      | <b> </b> |
| ead Setup Time                                          | 4, 5          | t <sub>su</sub> (R)                   | 5.0  | 0    | -100 | -        | ns       |
|                                                         |               |                                       | 10   | 0    | -40  | ] -      | ł        |
|                                                         |               |                                       | 15   | 0    | -30  |          |          |
| lead Hold Time                                          | 4,5           | <sup>t</sup> h(R)                     | 5.0  | 540  | 180  | -        | ns       |
|                                                         |               | ł                                     | . 10 | 240  | 60   | -        | 1        |
|                                                         |               |                                       | 15   | 180  | 45   |          | ļ        |
| lead Cycle Time                                         | 4,5           | t <sub>cyc</sub> (R)                  | 5.0  |      | 2500 | 6000     | ns       |
|                                                         | 1             |                                       | 10   | -    | 700  | 2100     |          |
|                                                         |               |                                       | 15   | -    | 500  | 1575     |          |
| Irite Cycle Time                                        | 7             | tcyc(W)                               | 5.0  | - 1  | 1400 | 4800     | ns       |
|                                                         |               | .,,                                   | 10   | -1   | 700  | 2100     |          |
|                                                         |               |                                       |      |      |      |          | 1        |

The formula given is for the typical characteristics only. \*\*10% output change into a 1.0  $k\Omega$  load.















3



FIGURE 6 - READ CYCLE WAVEFORMS UTILIZING CE1 AND CE2 TO ACCESS MEMORY

FIGURE 7 - WRITE CYCLE WAVEFORMS





| FUNCTION                                                | CE1              | CE2              | ST               | WE               | D <sub>in</sub> | Dout            | COMMENTS                                                                                                                     |
|---------------------------------------------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| Address changing                                        | ×                | ×                | 1                | ×                | ×               | R/A             | $D_{out}$ will be active if $\overrightarrow{CE1}$ and $\overrightarrow{CE2} = "0"$ and $\overrightarrow{WE} = "1"$ .        |
| valid                                                   | ×                | 1                | x                | ×                | ×               | R               | ČE2 = "1", fully disables internal<br>logic and output.                                                                      |
| Address changing<br>not valid                           | ×                | 0                | 0                | x                | ×               | R/A             | Changing address in this mode<br>may result in altered data.                                                                 |
| D <sub>out</sub> disabled in                            | 1                | x                | x                | x                | ×               | R               | CE1 = ''1'' disables write cycle<br>and D <sub>out</sub> .                                                                   |
| high resistance state                                   | Х                | 1                | х                | ×                | X               | R               | The chip is fully disabled.                                                                                                  |
|                                                         | x                | . x              | ×                | 0                | ×               | R               | $\overline{WE} = "0"$ enables writing into<br>memory if $\overline{CE1}$ , $\overline{CE2}$ , and<br>$\overline{ST} = "0"$ . |
| D <sub>out</sub> enabled in active state                | 0                | 0                | ×                | 1                | ×               | A               | If $\overline{ST} = "1"$ , the output stores<br>and reads the previous data<br>from or written into memory.                  |
|                                                         | 0                | 0                | Ó                | 1                | . <b>x</b>      | А               | The output reads the present contents that are addressed.                                                                    |
| Read addressed<br>memory location<br>into output latch. | 1                | 0                | 0                | 1                | ×               | R               | The addressed location is read<br>into output latch with output in<br>the "R" state.                                         |
| Disable reading                                         | ×                | • 1              | ×                | ×                | X               | R               | Address changing can take                                                                                                    |
| from memory                                             | ×                | ×                | 1                | ×                | X               | R/A             | place in this condition.                                                                                                     |
| Write into memory                                       | 0                | 0                | 0                | 0                | А               | R               | D <sub>in</sub> is written into memory<br>and into the output latch                                                          |
| Write disabled                                          | 1<br>X<br>X<br>X | X<br>1<br>X<br>X | X<br>X<br>1<br>X | X<br>X<br>X<br>1 | × × × × ×       | R<br>R/A<br>R/A | $\overline{WE}$ = "1" is a read enable.<br>$\overline{WE}$ = "0" is a write enable.                                          |

LOGIC/BLOCK DIAGRAM

R = High resistance state at  $D_{out}$ A = An active level of either V<sub>SS</sub> or V<sub>DD</sub> R/A = An R or A condition depending on the don't care condition X = Don't care condition (must be in the "1" or "0" state)

1 = A high level at  $V_{DD}$ 0 = A low level at  $V_{SS}$ 



TYPICAL APPLICATION FOR SERIAL WORDS UTILIZING BUS TECHNIQUES

3



CMOS LSI

## 256-BIT STATIC RANDOM ACCESS MEMORY

The MCM14552 is a static random access memory (RAM) organized in a 64 x 4 bit pattern. The three chip enable inputs can be used as extensions of the six address inputs, creating 9-bit address scheme. Eight MCM14552 devices may be used to comprise a 2048-bit memory (512 x 4) without additional address decoding.

The mode control (M) is used to change the control logic characteristic of the circuit. For example, with M high, the 3-state input (T) fully controls the 3-state characteristic of the output. With M low, the output 3-state characteristic is controlled by chip enable inputs (CE), write enable input (WE) and T.

The memory is designed so that dc signals may operate the memory, with no maximum pulse width restrictions.

Medium speed, micropower operation, and control flexibility make the device useful in scratch pad or buffer applications where battery operation or high noise immunity are required.

- Quiescent Current = 50 μA/package typical @ 5 Vdc
- Noise Immunity = 45% of VDD typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time = 700 ns typical @ VDD = 10 Vdc
- Fully Decoded and Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

NOTE: Pin 20(LE)) must be connected to VSS

#### MAXIMUM RATINGS (Voltages referenced to VSS)

| Rating                                                  | Symbol           | Value                         | Unit |
|---------------------------------------------------------|------------------|-------------------------------|------|
| DC Supply Voltage                                       | VDD              | -0.5 to +18                   | Vdc  |
| Input Voltage, All Inputs                               | Vin              | -0.5 to V <sub>DD</sub> + 0.5 | Vdc  |
| DC Current Drain per Pin                                | 1                | 10                            | mAdc |
| Operating Temperature Range – AL Device<br>CL/CP Device | TA               | -55 to +125<br>-40 to +85     | °C   |
| Storage Temperature Range                               | T <sub>stg</sub> | -65 to +150                   | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that  $V_{in}$  and  $V_{out}$  be constrained to the range  $V_{SS} \leqslant (V_{in}$  or  $V_{out}) \leqslant V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD.



|            | PIN ASSIG         | NMENT | <br>r | ٦. |
|------------|-------------------|-------|-------|----|
|            | <i>,</i>          |       | 1.    |    |
| 1 🗖        | м                 | VDD   | 24    |    |
| 2          | ST                | CE 1  | 23    |    |
| з 🗖        | Dout 0            | CE 2  | 22    |    |
| 4 🗖        | Din 0             | CE 3  | 21    | 1  |
| 5 🗖        | Dout 1            | LE    | 20    |    |
| 6 🗖        | Din 1             | Ť     | 19/   |    |
| 7          | Dout 2            | A5    | 18    |    |
| 8 <b>C</b> | D <sub>in 2</sub> | A4    | 17    |    |
| 9 🗖        | Dout 3            | A3    | 16    |    |
| 10         | Din 3             | A2    | 15    |    |
| 11 🗖       | WE                | A1    | 14    |    |
| 12         | ∨ <sub>SS</sub>   | A0    | 13    |    |
|            | L                 |       |       |    |

## ELECTRICAL CHARACTERISTICS

|                                      |                 | VDD | Tic   | w*   | ·       | 25 <sup>0</sup> C                                                                                               |           | Th    | igh <sup>*</sup> | 1       |
|--------------------------------------|-----------------|-----|-------|------|---------|-----------------------------------------------------------------------------------------------------------------|-----------|-------|------------------|---------|
| Characteristic                       | Symbol          | Vdc | Min   | Max  | Min     | Тур                                                                                                             | Max       | Min   | Max              | Unit    |
| Output Voltage "0" Level             | VOL             | 5.0 |       | 0.05 |         | 0                                                                                                               | 0.05      | -     | 0.05             | Vdc     |
| V <sub>in</sub> V <sub>DD</sub> or 0 |                 | 10  |       | 0.05 |         | 0                                                                                                               | · 0.05    |       | 0.05             | 1       |
|                                      |                 | 15  |       | 0.05 |         | 0.                                                                                                              | 0.05      | -     | 0.05             | l       |
| "1" Level                            | ∨он             | 5.0 | 4.95  | -    | 4.95    | 5.0                                                                                                             |           | 4.95  | -                | Vdc     |
| Vin 0 or VDD                         |                 | 10  | 9.95  |      | 9.95    | 10                                                                                                              | -         | 9.95  |                  |         |
|                                      |                 | 15  | 14.95 | -    | 14.95   | 15                                                                                                              |           | 14.95 | -                |         |
| Input Voltage# "O" Level             | VIL             |     |       |      |         |                                                                                                                 |           |       |                  | Vdc     |
| (V <sub>O</sub> 4.5 or 0.5 Vdc)      |                 | 5.0 |       | 1.5  |         | 2.25                                                                                                            | 1.5       | - 1   | 1.5              |         |
| (VO 9.0 or 1.0 Vdc)                  | 1               | 10  |       | 3.0  |         | 4.50                                                                                                            | 3.0       |       | 3.0              | 1       |
| (V <sub>O</sub> = 13.5 or 1.5 Vdc)   |                 | 15  |       | 4.0  |         | 6.75                                                                                                            | 4.0       | -     | 4.0              |         |
| "1" Level                            | VIH             |     |       |      |         |                                                                                                                 |           |       |                  |         |
| (V <sub>O</sub> = 0.5 or 4.5 Vdc)    |                 | 5.0 | 3.5   |      | 3.5     | 2.75                                                                                                            | -         | 3.5   | -                | Vdc     |
| (V <sub>O</sub> = 1.0 or 9.0 Vdc)    |                 | 10  | 7.0   | -    | 7.0     | 5.50                                                                                                            | -         | 7.0   | -                |         |
| (VO = 1.5 or 13.5 Vdc)               |                 | 15  | 11.0  | · —  | 11.0    | 8.25                                                                                                            | ~~        | 11.0  | -                |         |
| Output Drive Current (AL Device)     | ЮН              |     |       |      |         |                                                                                                                 |           |       |                  | mAdc    |
| (VOH = 2.5 Vdc) Source               |                 | 5.0 | -1.2  | -    | -1.0    | -1.7                                                                                                            |           | -0.7  | -                |         |
| (V <sub>OH</sub> 4.6 Vdc)            |                 | 5.0 | -0.25 |      | -0.2    | -0.36                                                                                                           | ~         | -0.14 | -                |         |
| (V <sub>OH</sub> = 9.5 Vdc)          |                 | 10  | 0.62  | -    | -0.5    | -0.9                                                                                                            | -         | -0.35 |                  | 1       |
| (V <sub>OH</sub> = 13.5 Vdc)         |                 | 15  | -1.8  | -    | -1.5    | -3.5                                                                                                            | -         | -1.1  |                  |         |
| (VOL = 0.4 Vdc) Sink                 | <sup>I</sup> OL | 5.0 | 0.64  |      | 0.51    | 0.88                                                                                                            | -         | 0.36  | -                | mAdc    |
| (V <sub>OL</sub> = 0.5 Vdc)          | 02              | 10  | 1.6   | — ·  | 1.3     | -2.25                                                                                                           |           | 0.9   | -                |         |
| (VOL = 1.5 Vdc)                      |                 | 15  | 4.2   |      | 3.4     | 8.8                                                                                                             |           | 2.4   |                  |         |
| Output Drive Current (CL/CP Device)  | юн              |     | t     |      | f       | · · · ·                                                                                                         |           |       |                  | mAdc    |
| (V <sub>OH</sub> 2.5 Vdc) Source     | ·0H             | 5.0 | -1.0  |      | -0,8    | -1.7                                                                                                            |           | -0.6  | -                | 1       |
| (V <sub>OH</sub> = 4.6 Vdc)          |                 | 5.0 | -0.2  |      | -0.16   | -0.36                                                                                                           | _         | -0.12 | _                |         |
| (V <sub>OH</sub> = 9.5 Vdc)          |                 | 10  | -0.5  |      | -0.4    | -0.9                                                                                                            |           | -0.3  | _                |         |
| $(V_{OH} = 13.5 \text{ Vdc})$        |                 | 15  | -1.4  |      | -1.2    | -3.5                                                                                                            |           | -1.0  | -                |         |
| $(V_{OI} = 0.4 \text{ Vdc})$ Sink    | <sup>I</sup> OL | 5.0 | 0.52  |      | 0.44    | 0.88                                                                                                            |           | 0.36  | _                | mAdc    |
| (V <sub>OL</sub> = 0.5 Vdc)          | . 'OL           | 10  | 1.3   |      | 1.1     | 2.25                                                                                                            |           | 0.9   |                  | 1117100 |
| $(V_{OL} = 1.5 Vdc)$                 |                 | 15  | 3.6   | -    | 3.0     | 8.8                                                                                                             | -         | 2.4   |                  |         |
| Input Current (AL Device)            |                 | 15  |       | ±0.1 |         | ±0.00001                                                                                                        | .±0.1     |       | ± 1.0            | μAdc    |
|                                      | lin             |     |       |      | +       |                                                                                                                 |           | ļ     |                  |         |
| Input Current (CL/CP Device)         | lin             | 15  |       | ±1.0 |         | ±0.00001                                                                                                        | ±1.0      |       | ±14.0            | μAdc    |
| Input Capacitance                    | Cin             |     |       | . –  | -       | 5.0                                                                                                             | 7.5       | -     | -                | pF      |
| (V <sub>in</sub> = 0)                |                 |     |       |      | 1       |                                                                                                                 |           |       |                  | L       |
| Quiescent Current (AL Device)        | DD              | 5.0 |       | 5.0  |         | 0.050                                                                                                           | 5.0       |       | 150              | μAdc    |
| (Per Package)                        |                 | 10  |       | 10   |         | 0.100                                                                                                           | 10        | — .   | 300              |         |
|                                      |                 | 15  |       | 20   | -       | 0.150                                                                                                           | 20        | -     | 600              |         |
| Quiescent Current (CL/CP Device)     | 1DD             | 5.0 | -     | 50   |         | 0.050                                                                                                           | 50        | -     | 375              | µAdc    |
| (Per Package)                        |                 | 10  | -     | 100  |         | 0.100                                                                                                           | 100       | -     | 750              |         |
|                                      |                 | 15  |       | 200  | -       | 0.150                                                                                                           | 200       | - 1   | 1500             |         |
| Total Supply Current**†              | ιT              | 5.0 |       |      | IT = (1 | .98 µA/kHz                                                                                                      | ) f + Inn |       |                  | μAdc    |
| (Dynamic plus Quiescent,             |                 | 10  | l .   |      |         | 96 µA/kHz                                                                                                       |           |       |                  |         |
| Per Package)                         |                 | 15  | ]     |      |         | 86 µA/kHz                                                                                                       |           |       |                  |         |
| (CL = 50 pF on all outputs, all      | ļ [             |     | 1     |      |         | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |           |       |                  | 1       |
| buffers switching)                   |                 |     |       |      |         |                                                                                                                 |           |       |                  |         |
| Three-State Leakage Current          | ITL             | 15  |       | ±0.1 |         | +0.00001                                                                                                        | ± 0.1     | _     | ±3.0             | μAdc    |
| (AL Device)                          | , , , ,         | -   |       |      | ļ       |                                                                                                                 |           | ( I   |                  | 1       |
| Three-State Leakage Current          | ITL             | 15  |       | ±1.0 |         | +0.00001                                                                                                        | ± 1.0     |       | ± 7.5            | μAdc    |
| (CL/CP Device)                       | 116             | 15  | 1     | ÷1.0 | 1       | 1 0.00001                                                                                                       | - 1.0     |       | = 1.5            | 1 """"  |

\*T<sub>iow</sub> = -55°C for AL Device, -40°C for CL/CP Device. T<sub>high</sub> = +125°C for AL Device, +85°C for CL/CP Device. #Noise immunity specified for worst-case input combination. Noise Margin for both "1" and "0" level = 1.0 Vdc min @ VDD = 5.0 Vdc. 2.0 Vdc min @ VDD = 1.0 Vdc.

Noise wargin for both 1 and 0 level = 1.0 Vac min @ V\_D = 5.0 Vac  $(2.0 \text{ Vac min @ V_D} = 10 \text{ Vac}) = 2.5 \text{ Vdc min @ V_D} = 10 \text{ Vdc} = 2.5 \text{ Vdc min @ V_D} = 15 \text{ Vdc}$ 1 To calculate total supply current at loads other than 50 pF:  $T_T(C_L) = T_T(50 \text{ pF}) + 4 \times 10^{-3} (C_L - 50) \text{ VDD} f$ where:  $T_T$  is in  $\mu$ A (per package),  $C_L$  in pF,  $V_D$  in Vdc, and f in kHz is input frequency. \*\*The formulas given are for the typical characteristics only at 25°C.

| Characteristic                                          | Figure | Symbol                 | VDD       | Min      | Тур  | Max  | Uni   |
|---------------------------------------------------------|--------|------------------------|-----------|----------|------|------|-------|
| Output Rise Time                                        | 1      | <b>t</b> TLH           |           |          |      |      | ns    |
| tтцн = (3.0 ns/pF) Сц + 30 ns                           |        |                        | 5.0       | - 1      | 180  | 360  | (     |
| tTLH = (1.5 ns/pF) CL + 25 ns                           |        |                        | 10        | - ·      | 90   | 180  | 1     |
| $t_{TLH} = (1.1 \text{ ns/pF}) C_{L} + 10 \text{ ns}$   |        |                        | 15        | -        | 65   | 130  |       |
| Output Fall Time                                        | 1      | <b><sup>t</sup>THL</b> |           |          |      |      | ns    |
| tTHL = (1.5 ns/pF) CL + 25 ns                           |        |                        | 5.0       |          | 100  | 200  | [     |
| tTHL = (0.75 ns/pF) CL + 12.5 ns                        | 1.1    |                        | 10        | - 1      | 50   | 100  |       |
| $t_{THL} = (0.55 \text{ ns/pF}) C_{L} + 9.5 \text{ ns}$ |        |                        | 15        | -        | 40   | 80   | · ·   |
| Read Cycle Time                                         | 1, 2   | tcyc(R)                | 5.0       | <u> </u> | 2000 | 6000 | ns    |
|                                                         |        | 0,0(11)                | 10        | -        | 750  | 2200 | 1     |
|                                                         |        |                        | 15        |          | 500  | 1650 |       |
| Write Cycle Time                                        | 3,4    | tcyc(W)                | 5.0       |          | 1200 | 3600 | ns    |
| ····· · · · · · · · · · · · · · · · ·                   |        | Cyclin                 | 10        | 1 1      | 750  | 2200 |       |
|                                                         |        |                        | 15        | 1 -      | 500  | 1650 | 1     |
| Address to Strobe Setup Time                            | 1, 3   | t <sub>su</sub> (A-ST) | 5.0       | 1500     | 500  | _    | ns    |
|                                                         | 1.5    | sula-ST                | 10        | 450      | 150  |      |       |
|                                                         | )      |                        | 15        | 350      | 120  | _    |       |
| Strobe to Address Hold Time                             | 1.3    |                        | 5.0       | 150      | 50   |      |       |
| Strobe to Address Hold Time                             | 1,3    | th(ST-A)               | 5.0<br>10 | 100      | 0    | · -  | ns    |
|                                                         |        |                        | 15        | 75       | 0    | _    | 1     |
|                                                         |        |                        |           |          |      |      |       |
| Address to Chip Enable Serup Time                       | 2,4    | t <sub>su</sub> (A-CE) | 5.0       | 1800     | 600  | -    | ns    |
| ,                                                       |        |                        | 10        | 600      | 200  |      |       |
|                                                         |        |                        | 15        | 450      | 150  |      |       |
| Chip Enable to Address Hold Time                        | 2,4    | th(ĈĒ-A)               | 5.0       | 450      | 150  | . –  | ns    |
|                                                         |        | (                      | 10        | 300      | 100  |      |       |
|                                                         |        |                        | 15        | 225      | 75   | -    |       |
| Strobe or Chip Enable Pulse Width When Reading          | 1,2    | tWL(R)                 | 5.0       | 1800     | 450  | -    | n     |
|                                                         |        |                        | 10        | 450      | 150  | -    | }     |
|                                                         |        |                        | 15        | 350      | 100  | -    |       |
| Strobe or Chip Enable Pulse Width When Writing          | 3,4    | twl(w)                 | 5.0       | 3600     | 1200 |      | n     |
|                                                         |        |                        | 10        | 1800     | 600  |      |       |
|                                                         |        |                        | 15        | 1350     | 400  | -    |       |
| Read Setup Time                                         | 1      | t <sub>su</sub> (R)    | 5.0       | 0        | -100 | -    | n     |
|                                                         |        |                        | 10        | 0        | -40  | -    |       |
| · .                                                     | 1      |                        | 15        | 0        | -30  | -    |       |
| Read Hold Time                                          | 1      | th(R)                  | 5.0       | 540      | 180  | -    | ns    |
|                                                         | 1      |                        | 10        | 240      | 60   | -    |       |
|                                                         |        |                        | 15        | 180      | 45   | -    |       |
| Data Setup Time                                         | 3,4    | t <sub>su</sub> (D)    | 5.0       | 1800     | 600  | -    | n     |
| · · · · · · · · · · · · · · · · · · ·                   |        | -50(D)                 | 10        | 600      | 200  |      | 1     |
|                                                         |        | 1 1                    | 15        | 450      | 150  |      | ł .   |
| Data Hold Time                                          | 3,4    | th (D)                 | 5.0       | 600      | 200  |      | n     |
|                                                         | 5,4    | <sup>t</sup> h(D)      | 10        | 150      | 50   |      | 1 112 |
|                                                         | 1.     |                        | 15        | 120      | 30   | _    |       |

## SWITCHING CHARACTERISTICS\* ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}C$ )

\*The formula given is for the typical characteristics only.

(continued)

## SWITCHING CHARACTERISTICS\* ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}C$ ) (continued)

| Characteristic                                  | Figure | Symbol     | VDD | Min | Тур  | Max    | Unit |
|-------------------------------------------------|--------|------------|-----|-----|------|--------|------|
| Write Enable Setup Time                         | 3,4    | tsu(WE)    | 5.0 | 720 | 240  | -      | ns   |
|                                                 |        |            | 10  | 240 | 80   | - 1    |      |
|                                                 |        |            | 15  | 180 | 55   | -      |      |
| Write Enable Hold Time                          | 3,4    | th(WE)     | 5.0 | 150 | 50   | -      | ns   |
|                                                 |        |            | 10  | 60  | 20   | -,     |      |
|                                                 |        |            | 15  | 45  | 15   | -      |      |
| Read Access Time from Strobe                    | 1, 3   | tacc(R-ST) | 5.0 | -   | 2000 | 6000   | ns   |
|                                                 |        |            | 10  | -   | 700  | 2100   |      |
|                                                 |        |            | 15  | -   | 350  | 1600   |      |
| Read Access Time from Chip Enable               | 2      | tacc(R-CE) | 5.0 | -   | 2100 | 6300   | ns   |
|                                                 |        |            | 10  |     | 750  | 2250   |      |
|                                                 |        |            | 15  | -   | 400  | 1700   |      |
| Output Enable/Disable Delay from Chip Enable or | 2,4    | tR(CE),    | 5.0 | -   | 400  | 1200   | ns   |
| Write Enable                                    |        | tR(WE)     | 10  | _   | 200  | 600    |      |
|                                                 |        |            | 15  | -   | 150  | 450    |      |
| Three-State Enable/Disable Output Delay         | 2      | t(T)       | 5.0 | -   | 400  | 1200   | ns   |
|                                                 |        |            | 10  | -   | 160  | 480    |      |
| •                                               |        |            | 15  | -   | 120  | 360    |      |
| Latch to Output Propagation Delay               | 1      | tĒ         | 5.0 | -   | 500  | - 1500 | ns   |
|                                                 |        |            | 10  | -   | 200  | 600    |      |
|                                                 |        | 1          | 15  | -   | 150  | 450    |      |

\*The formula given is for the typical characteristics only.





FIGURE 1 - READ CYCLE WAVEFORMS UTILIZING STROBE TO ACCESS MEMORY

 $1-\overline{CE}1,\,\overline{CE}2,\,\overline{CE}3$  and  $\overline{T}$  are low, M is high. 2 --  $\overline{WE}$  may be held high during the complete read cycle.

FIGURE 2 - READ CYCLE WAVEFORMS UTILIZING CHIP ENABLE TO ACCESS MEMORY



2 - High impedance output state occurs when any CE is high and M is low, or when T is high.
3 - The output displays data from the previous state.

4 - tWL(R) ≥ tacc(R CE)max



#### FIGURE 3 - WRITE CYCLE WAVEFORMS UTILIZING STROBE

FIGURE 4 – WRITE CYCLE WAVEFORM UTILIZING CHIP ENABLE







| TRUTH TABLE |     |    |     |     |        |                 |  |  |  |  |  |  |  |
|-------------|-----|----|-----|-----|--------|-----------------|--|--|--|--|--|--|--|
| CE1         | CE2 | OD | R/W | DIn | Output | Mode            |  |  |  |  |  |  |  |
| н           | х   | х  | X   | х   | High Z | Not Selected    |  |  |  |  |  |  |  |
| х           | L   | ×  | X   | X   | High Z | Not Selected    |  |  |  |  |  |  |  |
| Χ.          | X   | н  | н   | X   | High Z | Output Disabled |  |  |  |  |  |  |  |
| L           | н   | н  | L   | X   | High Z | Write           |  |  |  |  |  |  |  |
| L           | н   | L  | L   | x   | Din    | Write           |  |  |  |  |  |  |  |
| L           | н   | L  | н   | x   | DOut   | Read            |  |  |  |  |  |  |  |

3-27

Decoder

(Enable)

5 0 A5 6 **)** A6 7

Column

Select

DI1 0

DI2 0-13

DI3 013 DI4 015

OD 018

11

Data

Control

## MAXIMUM RATINGS (Voltages referenced to VSS Pin 8)

| Rating                      | Symbol           | Value                        | Unit |
|-----------------------------|------------------|------------------------------|------|
| DC Supply Voltage           | Vcc              | -0.5 to +7.0                 | Vdc  |
| Voltage on Any Pin          | Vin              | -0.3 to V <sub>CC</sub> +0.3 | Vdc  |
| Operating Temperature Range | TA               | -40 to +85                   | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150                  | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

DC CHARACTERISTICS (T<sub>A</sub> = 0 to 70°C,  $V_{CC}$  = 5 V ± 5%)

|                                                                                               |                                     | MCM145101, 1 |       |       | MCN  | /1451 | 01-3 MCM14510 |      |     | 01-8 |      |
|-----------------------------------------------------------------------------------------------|-------------------------------------|--------------|-------|-------|------|-------|---------------|------|-----|------|------|
| Characteristic                                                                                | Symbol                              | Min          | Тур   | Max   | Min  | Тур   | Max           | Min  | Тур | Max  | Unit |
| Input Current                                                                                 | l <sub>in</sub> (2)                 | -            | 5.0   | -     | -    | 5.0   | -             | -    | 5.0 |      | nAdc |
| Input High Voltage                                                                            | VIH                                 | 2.2          | -     | Vcc   | 2.2  | -     | Vcc           | 2.2  | -   | Vcc  | Vdc  |
| Input Low Voltage                                                                             | VIL                                 | -0.3         |       | 0.65  | -0.3 | -     | 0.65          | -0.3 | -   | 0.65 | Vdc  |
| Output High Voltage<br>(I <sub>OH</sub> = -1.0 mA)                                            | V <sub>OH</sub>                     | 2.4          |       | -     | 2.4  | -     | -             | 2.4  | -   | -    | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 2.0 mA)                                              | VOL                                 | -            | . — . | 0.4   | -    | -     | 0.4           | -    | -   | 0.4  | Vdc  |
| Output Leakage Current<br>(CE1 = 2.2 V, V <sub>OL</sub> = 0 V to V <sub>CC</sub> )            | 1LO <sup>(2)</sup>                  | `-           | -     | ± 1.0 | -    | -     | ±1.0          | -    | -   | ±2.0 | μAdc |
| Operating Current<br>( $V_{in} = V_{CC}$ , except $\overline{CE1} \le 0.65 V$ , outputs open) | ICC1                                | <u> </u>     | 9.0   | 22    | -    | 9.0   | 22            | -    | 11  | 25   | mAdc |
| Operating Current<br>( $V_{in} = 2.2 V$ , except $\overline{CE1} \le 0.65 V$ , outputs open)  | ICC2                                | -            | 13    | 27    | -    | 13    | 27            | -    | 15  | 30   | mAdc |
| Standby Current<br>(CE2 ≤ 0.2 V)                                                              | <sup>1</sup> CCL <sup>(2),(4)</sup> |              | -     | 10    | -    | -     | 200           | -    | -   | 500  | μAdc |

### CAPACITANCE

| Characteristic                              | Symbol          | Тур | Max  | Unit |
|---------------------------------------------|-----------------|-----|------|------|
| Input Capacitance (V <sub>in</sub> = O V)   | C <sub>in</sub> | 4.0 | 8.0  | pF   |
| Output Capacitance (V <sub>out</sub> = 0 V) | Cout            | 8.0 | 12.0 | pf   |

## LOW V<sub>CC</sub> DATA RETENTION CHARACTERISTICS (Excluding MCM145101-8) $T_A = 0^{\circ}C$ to $70^{\circ}C$

| Parameter                                          | Test Co     | Test Conditions          |                  |                                | Тур. (1) | Max | Units |
|----------------------------------------------------|-------------|--------------------------|------------------|--------------------------------|----------|-----|-------|
| V <sub>CC</sub> for Data Retention                 |             |                          | VDR              | 2.0                            | -        | -   | Vdc   |
| MCM145101 or MCM145101-1 Data<br>Retention Current |             | V <sub>DR</sub> = 2.0 V, | ICCDR1           | -                              | 0.14     | 10  | µAdc  |
| MCM145101-3 Data Retention Current                 | CE2 ≤ 0.2 V | V <sub>DR</sub> = 2.0 V, | ICCDR2           | -                              | 0.70     | 200 | μAdo  |
| Chip Deselect to Data Retention Time               |             | 5.                       | <sup>t</sup> CDR | 0                              | -        | -   | ns    |
| Operation Recovery Time                            |             |                          | <sup>t</sup> R   | <sup>t</sup> RC <sup>(3)</sup> | · -      |     | ns    |

NOTES: 1. Typical values are  $T_A = 25^{\circ}C$  and nominal supply voltage.

2. Current through all inputs and outputs included in I<sub>CCL</sub> measurement.

t<sub>RC</sub> = Read Cycle Time.
 Low current state is for CE2 = 0 only.







## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

## AC TEST CONDITIONS

| Condition                  |              | Value            |
|----------------------------|--------------|------------------|
| Input Pulse Levels         |              | +0.65 V to 2.2 V |
| Input Rise and Fall Times  |              | 20 ns            |
| Output Load -              | 1 TTL Gate a | nd CL = 100 pF   |
| Timing Measurement Referen | ce Level     | 1.5 Volt         |

## READ CYCLE

|                                                         |                 | MCM14 | 5101-1 | MCM14   | 5101,.3 | MCM145101-8 |     |
|---------------------------------------------------------|-----------------|-------|--------|---------|---------|-------------|-----|
| Parameter                                               | Symbol          | Min   | Max    | Min Max |         | Min         | Max |
| Read Cycle                                              | tRC             | 450   | -      | 650     | -       | 800         | ÷   |
| Access Time                                             | <sup>t</sup> A  | -     | 450    |         | 650     | -           | 800 |
| Chip Enable (CE1) to Output                             | tCO1            | -     | 400    | -       | 600     | · -         | 800 |
| Chip Enable (CE2) to Output                             | tCO2            | -     | 500    | -       | 700     |             | 850 |
| Output Disable to Output                                | tod             | -     | 250    | -       | 350     |             | 450 |
| Data Output to High Z State                             | <sup>t</sup> DF | 0     | 130    | -0      | 150     | 0           | 200 |
| Previous Read Data Valid with Respect to Address Change | tOH1            | 0     |        | 0       | -       | 0           | 0   |
| Previous Read Data Valid with Respect to Chip Enable    | tOH2            | 0     | -      | 0       | -       | 0           | 0   |

#### WRITE CYCLE

| Write Cycle                | twc              | 450 | - | 650 | - | 800 | - |
|----------------------------|------------------|-----|---|-----|---|-----|---|
| Write Delay                | tAW              | 130 |   | 150 | - | 200 |   |
| Chip Enable (CE1) to Write | <sup>t</sup> CW1 | 350 | _ | 550 |   | 650 | - |
| Chip Enable (CE2) to Write | <sup>t</sup> CW2 | 350 | - | 550 | - | 650 |   |
| Data Setup                 | tDW              | 250 |   | 400 | - | 450 | - |
| Data Hold                  | tDH              | 50  | - | 100 |   | 100 | - |
| Write Pulse                | twp              | 250 | - | 400 | - | 450 |   |
| Write Recovery             | twr              | 50  | - | 50  |   | 100 | _ |
| Output Disable Setup       | tDS              | 130 | - | 150 |   | 200 | - |



NOTES: 1. OD may be tied low for separate I/O operation. 2. During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.



## **Product Preview**

## 4096X1-BIT STATIC RANDOM ACCESS MEMORIES

The MCM146504 is a 4096X1-bit static random access memory. fabricated with high density, high reliability CMOS silicon-gate technology. The device has TTL compatible inputs and outputs. It is designed to retain data at low supply voltages, to further reduce supply current requirements.

The MCM146504 is useful in memory applications where low-power and non-volatility is required. It is assembled in 18 pin dual in-line package with the industry standard pin-outs.

- Single Low Voltage Power Supply
- Static Operation
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible
- Common Data Input and Output Capability
- Three-State Outputs

i >

 $\nabla$ 

 $\nabla$ 

 $\mathbf{\Sigma}$ 

 $\mathbf{x}$ 

AO

A1

A2

Α8

Α7

A6

Data Input

D ---

M ...

s

- Low Power Dissipation Standby 10 mW (Typical)
- Ideal for Battery Backup Operation
- Access Time 450 ns (Maximum)
- Pinout and Functional Replacement for Harris – HM6504 Intersil - IM6504

Row

Select

Input

Data

Control and

Clock

٠

Column Select

A3 A4 A5 A11 A10 A9



Data

Output

# **CMOS LSI**

(LOW-POWER COMPLEMENTARY MOS)

## 4096X1-BIT STATIC **RANDOM ACCESS MEMORIES**

PIN ASSIGNMENT



#### **PIN NAMES**

| A0 A11          | Address Input        |
|-----------------|----------------------|
| D               | Data Input           |
| Q               | Data Output          |
| ŝ               | Chip Select          |
| Vcc             | Power Suppiy (+ 5 V) |
| V <sub>SS</sub> | Ground               |
| Ŵ               | Write Enable         |

#### TRUTH TABLE

| ŝ | w | D | 0           | Mode         |
|---|---|---|-------------|--------------|
| н | х | × | HI-Z        | Not Selected |
| L | L | L | HIZ         | Write "O"    |
| L | L | н | HIZ         | Write ''1''  |
| L | н | × | Output data | Read         |

This is advance information and specifications are subject to change without notice.

3-31

Buffer

MCM146504



This is advance information and specifications are subject to change without notice.

# MCM146508, MCM146518

## $\label{eq:maximum ratings} \textbf{MAXIMUM RATINGS} (\textsf{Voltages Referenced to V}_{SS})$

| DC Supply Voltage VDD -0.5 to +7.0                                                                                                                                                                                                                                               |                             | 00               |                               |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-------------------------------|------|
| Input Voltage, All Inputs         Vin         -0.3 to VDD + 0.3           Operating Temperature Range         TA         -40 to +85           MCM146508/MCM146518         -40 to +85         -40 to +85           MCM146508-1/MCM146518-1         -40 to +85         -55 to +125 | Rating                      | Symbol           | Value                         | Unit |
| Operating Temperature Range         TA           MCM146508/MCM146518         -40 to +85           MCM146508-1/MCM146518-1         -40 to +85           MCM146508-2/MCM146518-2         -55 to +125                                                                               | DC Supply Voltage           | VDD              | -0.5 to +7.0                  | Vdc  |
| MCM146508/MCM146518         -40 to +85           MCM146508-1/MCM146518-1         -40 to +85           MCM146508-2/MCM146518-2         -55 to +125                                                                                                                                | Input Voltage, All Inputs   | Vin              | -0.3 to V <sub>DD</sub> + 0.3 | Vdc  |
| MCM146508-1/MCM146518-1 -40 to +85<br>MCM146508-2/MCM146518-2 -55 to +125                                                                                                                                                                                                        | Operating Temperature Range | ТА               |                               | °C   |
| MCM146508-2/MCM146518-2 -55 to +125                                                                                                                                                                                                                                              | MCM146508/MCM146518         |                  | ~40 to +85                    |      |
| 7                                                                                                                                                                                                                                                                                | MCM146508-1/MCM146518-1     | i i              | -40 to +85                    |      |
| Storage Temperature Range T <sub>stg</sub> -65 to +150                                                                                                                                                                                                                           | MCM146508-2/MCM146518-2     |                  | -55 to +125                   |      |
|                                                                                                                                                                                                                                                                                  | Storage Temperature Range   | T <sub>stg</sub> | -65 to +150                   | °C   |

## DC CHARACTERISTICS (V\_DD = 5.0 V $\pm$ 10%, T\_A = 25 $^{o}C$ )

|                                                                                                      |        |                       | MCM146508-1<br>MCM146518-1 |       |                       | 1146508<br>1146518 |       | MC<br>MC |     |       |      |
|------------------------------------------------------------------------------------------------------|--------|-----------------------|----------------------------|-------|-----------------------|--------------------|-------|----------|-----|-------|------|
| Characteristic                                                                                       | Symbol | Min                   | Түр                        | Max   | Min                   | Тур                | Max   | Min      | Тур | Max   | Unit |
| Input Current                                                                                        | hin    | -                     | 5.0                        | ÷     | -                     | 5.0                | -     | -        | 5.0 | 1     | nAdc |
| Input High Voltage                                                                                   | VIH    | V <sub>DD</sub> - 2.0 | -                          | VDD   | V <sub>DD</sub> - 2.0 | -                  | VDD   |          | -   | VDD   | Vdc  |
| Input Low Voltage                                                                                    | VIL    | -0.3                  | -                          | 0.8   | -0.3                  | -                  | 0.8   | -0.3     | -   | 0.8   | Vdc  |
| Output High Voltage<br>(I <sub>OH</sub> = -1.0 mA)                                                   | ∨он    | 2.4                   | -                          | -     | 2.4                   | -                  | -     | 2.4      | -   | -     | Vdc  |
| Output Low Voltage<br>(IOL = 2.0 mA)                                                                 | VOL    | -                     | -                          | 0.4   | -                     | ` <b>-</b>         | 0.4   | -        | -   | 0.4   | Vdc  |
| Output Leakage Current<br>(V <sub>OL</sub> = 0 V to V <sub>DD</sub> )                                | 10L    | -                     | -                          | ± 1.0 | -                     | -                  | ± 1.0 | -        | -   | ± 1.0 | μAdc |
| Standby Current<br>$(V_{1H} = \overline{E} = \overline{S1} = \overline{S2} = V_{DD})$                | IDDSB  | -                     | 0.1                        | 10    | -                     | 1.0                | 100   | -        | 1.0 | 100   | nAdc |
| Data Retention Current<br>$(V_{DD} = 2.2 V = V_{IH} = \overline{E} = \overline{S1} = \overline{S2})$ | IDDDR  | -                     | 0.1                        | 1.0   | -                     | 0,1                | 10    | -        | 0.1 | 10    | µAdc |
| Operating Current<br><sup>(t</sup> ELEH = 1.0 μs)                                                    | DDOP   | -                     | -                          | -     | -                     | -                  | -     | -        | -   | -     | mAdc |

## CAPACITANCE

| Characteristic                            | Symbol          | Тур | Max | Unit |
|-------------------------------------------|-----------------|-----|-----|------|
| Input Capacitance (V <sub>in</sub> = 0 V) | C <sub>in</sub> | 4.0 | 8.0 | рF   |
| Output Capacitance (Vout = 0 V)           | Cout            | 8.0 | 12  | pF   |

### AC OPERATING CONDITIONS

| Condition                                                                                      | Value                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Input Pulse Levels                                                                             | +0.8 V to V <sub>DD</sub> - 2.0 V                                     |  |  |  |  |
| Input Rise and Fall Times                                                                      | 20 ns                                                                 |  |  |  |  |
| Output Load                                                                                    | 1 TTL Gate and CL = 50 pF                                             |  |  |  |  |
| Timing Measurement Reference Level                                                             | 1.5 V                                                                 |  |  |  |  |
| Supply Voltage                                                                                 | 5.0 V ±10%                                                            |  |  |  |  |
| Temperature Range<br>MCM146508/MCM146518<br>MCM146508-1/MCM146518-1<br>MCM146508-2/MCM146518-2 | -40°C to +85°C<br>-40°C to +85°C<br>-55°C to +85°C<br>-55°C to +125°C |  |  |  |  |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

## MCM146508, MCM146518

#### AC CHARACTERISTICS

| Parameter                      |                   | MCM146508-1<br>MCM146518-1 |     | MCM146508-2<br>MCM146518-2 |     | MCM146508<br>MCM146518 |     |      |
|--------------------------------|-------------------|----------------------------|-----|----------------------------|-----|------------------------|-----|------|
|                                | Symbol            | Min                        | Max | Min                        | Max | Min                    | Max | Unit |
| Read or Write Cycle Time       | TELEL             | 500                        | -   | 500                        | -   | 760                    | -   | ns   |
| Enable Pulse Width, Low        | <sup>t</sup> ELEH | 300                        | -   | 300                        | -   | 460                    | -   | ns   |
| Enable Pulse Width, High       | TEHEL             | 200                        | -   | 200                        | -   | 300                    | -   | ns   |
| Enable Access Time             | <sup>t</sup> ELOV |                            | 300 | -                          | 300 | -                      | 460 | ns   |
| Address Setup                  | TAVEL             | 7.0                        | -   | 7.0                        | -   | 15                     | -   | ns   |
| Address Hold                   | <sup>t</sup> ELAX | 90                         | -   | 90                         | -   | 150                    |     | ns   |
| Data Setup                     | <sup>t</sup> DVWH | 200                        | -   | 200                        |     | 300                    |     | ns   |
| Data Hold                      | twhdx             | 0                          | -   | 0                          | -   | 0                      |     | ns   |
| Write Pulse Width              | tWLWH             | 200                        | -   | 200                        | -   | 300                    | -   | ns   |
| Write Enable to Output Disable | twloz             | -                          | 180 | -                          | 180 |                        | 285 | ns   |
| Output Disable (MC146508 Only) | <sup>t</sup> EHQZ | -                          | 180 | -                          | 180 | -                      | 285 | ns   |
| Output Disable (MC146518 Only) | <sup>t</sup> SHQZ |                            | 180 |                            | 180 |                        | 285 | ns   |
| Write Disable to Output Enable | tWHOX             | -                          | 180 | -                          | 180 | -                      | 285 | ns   |
| Output Enable (MC146508 Only)  | <sup>t</sup> ELQX |                            | 180 | .—                         | 180 | -                      | 285 | ns   |
| Output Enable (MC146518 Only)  | <sup>t</sup> SLQX | -                          | 180 | -                          | 180 | -                      | 285 | ns   |
| Select to Write Pulse Setup    | tWLSH             | 200                        | -   | 200                        | -   | 300                    | -   | ns   |
| Select to Write Pulse Hold     | <sup>t</sup> SLWH | 200                        | -   | 200                        |     | 300                    | -   | ns   |
| Enable to Write Pulse Setup    | tWLEH             | 200                        | -   | 200                        |     | 300                    |     | ns   |
| Enable to Write Pulse Hold     | <sup>t</sup> ELWH | 200                        | -   | 200                        | -   | 300                    | _   | ns   |

#### TIMING PARAMETER ABBREVIATIONS

ignal name from which interval is defined → transition direction for first signal → signal name to which interval is defined → transition direction for second signal →



The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

# MCM146508, MCM146518



5 NOTES:

 MCM146518 selected only if both S1 and S2 are low and deselected if either S1 or S2 is high. S1 and S2 are connected to E on the MCM146508.
 The address within the memory will change only on falling E.

XXXVX

7

Next Cycle (Same as 0)

3





## $\label{eq:maximum ratio} \textbf{MAXIMUM RATINGS} \ (Voltages referenced to V_{SS})$

| Rating                                                | Symbol | Value                    | Unit |
|-------------------------------------------------------|--------|--------------------------|------|
| DC Supply Voltage                                     | VDD    | -0.5 to +18              | Vdc  |
| Input Voltage, All Inputs                             | Vin    | -0.5 to VDD + 0.5        | Vdc  |
| DC Current Drain per Pin                              | I      | 10                       | mAdc |
| Operating Temperature Range AL Device<br>CL-CP Device | TA     | -55 to +125<br>40 to +85 | OC   |
| Storage Temperature Range                             | Tstg   | 65 to +150               | °C   |

This device contains circuitry to protect the This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applica-tions of any voltage higher than maximum rated voltages to this high impedance circuit. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or Von)

or V<sub>DD</sub>).

#### ELECTRICAL CHARACTERISTICS

|                                            |                 | VDD | Tlow*                                                                                                          |      | 25 <sup>0</sup> C |            |       | Thigh* |          | 1    |
|--------------------------------------------|-----------------|-----|----------------------------------------------------------------------------------------------------------------|------|-------------------|------------|-------|--------|----------|------|
| Characteristic                             | Symbol          | Vdc | Min                                                                                                            | Ma×  | Min               | Тур        | Max   | Min    | Max      | Unit |
| Output Voltage "0" Leve                    | VOL             | 5.0 | -                                                                                                              | 0.01 | an -              | 0          | 0.01  | -      | 0.05     | Vdc  |
|                                            |                 | 10  | -                                                                                                              | 0.01 | -                 | 0          | 0.01  | -      | 0.05     | 1    |
|                                            |                 | 15  |                                                                                                                | 0.01 | -                 | 0          | 0.01  |        | 0.05     |      |
| ''1'' Leve                                 | и Уон           | 5.0 | 4.99                                                                                                           |      | 4.99              | 5.0        | ~     | 4.95   | -        | Vdc  |
|                                            | U.I.            | 10  | 9.99                                                                                                           | -    | 9.99              | 10         |       | 9.95   | -        |      |
|                                            |                 | 15  | 14.99                                                                                                          | ~    | 14.99             | 15         | -     | 14.95  | -        |      |
| Noise Immunity #                           | VNI             |     |                                                                                                                |      |                   |            |       |        |          | Vdc  |
| (V <sub>out</sub> = 0.8 Vdc)               |                 | 5.0 | 1.5                                                                                                            | -    | 1.5               | 2.25       | -     | 1.4    | <u> </u> |      |
| (-V <sub>out</sub> - 1.0 Vdc)              |                 | 10  | 3.0                                                                                                            | -    | 3.0               | 4.50       | -     | 2.9    | -        |      |
| ( Vout - 1.5 Vdc)                          |                 | 15  | 3.75                                                                                                           | -    | 3.75              | 6.75       | -     | 3.75   | -        |      |
| ( Vout · 0.8 Vdc)                          | VNH             | 5.0 | 1.4                                                                                                            |      | 1.5               | 2.25       |       | 1.5    | _        | Vdc  |
| (Vout · 1.0 Vdc)                           |                 | 10  | 2.9                                                                                                            | -    | 3.0               | 4.50       | -     | 3.0    | -        |      |
| (Vout · 1.5 Vdc)                           |                 | 15  | 3.65                                                                                                           | -    | 3.75              | 6.75       | -     | 3.75   | -        |      |
| Output Drive Current (AL Device)           | ГОН             |     |                                                                                                                |      |                   |            |       |        |          | mAd  |
| (VOH 2.5 Vdc) Source                       |                 | 5.0 | -1.2                                                                                                           | - 1  | →1.0              | -1.7       | -     | -0.7   | -        | 1    |
| (VOH 4.6 Vdc)                              |                 | 5.0 | -0.25                                                                                                          | -    | -0.2              | -0.36      |       | -0.14  | -        | 1    |
| (VOH 9.5 Vdc)                              |                 | 10  | -0.62                                                                                                          | ·    | -0.5              | -0,9       |       | -0.35  | -        |      |
| (VOH - 13.5 Vdc)                           |                 | 15  | 1.8                                                                                                            | -    | -1.5              | -3.5       |       | -1.1   | -        |      |
| (VOL = 0.4 Vdc) Sink                       | 101             | 5.0 | 0.64                                                                                                           |      | 0.51              | 0.88       | -     | 0.36   | -        | mAd  |
| (V <sub>OL</sub> = 0.5 Vdc)                | .01             | 10  | 1.6                                                                                                            | _    | 1.3               | 2.25       | -     | 0.9    | -        |      |
| (V <sub>OL</sub> = 1.5 Vdc)                |                 | 15  | 4.2                                                                                                            | _    | 3.4               | 8.8        | -     | 2.4    | -        |      |
| Output Drive Current (CL/CP Devic          | е) ОН           |     |                                                                                                                |      |                   |            |       |        |          | mAd  |
| (VOH - 2.5 Vdc) Source                     |                 | 5.0 | -1.0                                                                                                           | _    | -0.8              | -1.7       | _     | -0.6   | _        |      |
| (V <sub>OH</sub> = 4.6 Vdc)                |                 | 5.0 | -0.2                                                                                                           | -    | -0.16             | -0.36      | _     | -0.12  | -        |      |
| (V <sub>OH</sub> = 9.5 Vdc)                |                 | 10  | -0.5                                                                                                           | - 1  | -0.4              | -0.9       | _     | -0.3   |          |      |
| (VOH = 13.5 Vdc)                           |                 | 15  | -1.4                                                                                                           | -    | -1.2              | -3.5       | -     | -1.0   |          |      |
| (VOL = 0.4 Vdc) Sink                       | 101             | 5.0 | 0.52                                                                                                           | -    | 0.44              | 0.88       |       | 0.36   |          | mAde |
| $(\dot{V}_{OI} = 0.5 \text{ Vdc})$         | .OC             | 10  | 1.3                                                                                                            | -    | 1.1               | 2.25       |       | 0.9    |          |      |
| (V <sub>OL</sub> = 1.5 Vdc)                |                 | 15  | 3.6                                                                                                            | -    | 3.0               | 8.8        | -     | 2.4    |          |      |
| Input Current (AL Device)                  |                 | 15  | _                                                                                                              | +0.1 | _                 | 0.00001    | · 0.1 | _      | • 1.0    | μAdo |
| Input Current (CL/CP Device)               |                 | 15  | _                                                                                                              | ±1.0 |                   | +0.00001   | ±1.0  |        | 1.0      | µAdd |
|                                            | <sup>1</sup> in |     | <u> </u>                                                                                                       | ±1.0 |                   |            | ~ 1.0 | -      | 1.0      |      |
| Input Capacitance<br>(V <sub>in</sub> - 0) | C <sub>in</sub> | -   | -                                                                                                              | -    | -                 | 5.0        | -     | -      | -        | pF   |
| Quiescent Current (AL Device)              | 1DD             | 5.0 |                                                                                                                | 5.0  |                   | 0.010      | 5.0   |        | 150      | μAdo |
| (Per Package)                              |                 | 10  | -                                                                                                              | 10   |                   | 0.020      | 10    | -      | 300      | 1    |
| <u> </u>                                   |                 | 15  |                                                                                                                | 20   | -                 | 0.030      | 20    | -      | 600      |      |
| Quiescent Current (CL/CP Device)           | <sup>1</sup> DD | 5.0 | ~                                                                                                              | 50   | -                 | 0.010      | 50    | -      | 375      | µАd  |
| (Per Package)                              |                 | 10  | - 1                                                                                                            | 100  | -                 | 0.020      | 100   | _      | 750      |      |
|                                            |                 | 15  | -                                                                                                              | 200  | -                 | 0.030      | 200   |        | 1500     |      |
| Total Supply Current**1                    | +T              | 5.0 | and a second of the second |      |                   |            |       |        | μAde     |      |
| (Dynamic plus Quiescent,                   |                 | 10  |                                                                                                                |      |                   | .2 μA/kHz) |       |        |          | 1    |
| Per Package)                               | 1 1             | 15  | $I_T = (4.8 \mu A/kHz) f + I_{DD}$                                                                             |      |                   |            |       |        |          |      |
| (CL - 50 pF on all outputs, all            |                 | -   |                                                                                                                |      |                   |            | 00    |        |          |      |
| buffers switching)                         |                 |     |                                                                                                                |      | -                 |            |       |        |          | 1    |

$$\begin{split} ^{*}T_{I_{DW}} &= -55^{9}C \text{ for AL Device, } -40^{9}C \text{ for CL/CP Device.} \\ T_{high} &= +125^{9}C \text{ for AL Device, } +85^{9}C \text{ for CL/CP Device.} \\ \#Noise immunity specified for worst-case input combination. \\ To calculate total supply current at loads other than 50 pF: \\ I_T(C_L) &= I_T(50 \, \text{pF}) + 1 \times 10^{-3} \, (C_L - 50) \, \text{VpDf} \end{split}$$

where: 1 is in A (per package), (2 in pF, VDD in Vdc, and f in kHz is input frequency.
 \*\*The formulas given are for the typical characteristics only at 25<sup>o</sup>C.

## SWITCHING CHARACTERISTICS\* (CL = 50 pF, TA = 25°C)

| Characteristic                                                                                                                                                                                 | Symbol               | VDD       | Min  | Тур  | Max                                   | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------|------|---------------------------------------|------|
| Output Rise Time                                                                                                                                                                               | tTLH                 | ,         | -    |      |                                       | ns   |
| tтьн, tтнь = (3.0 ns/pF) Сь + 30 ns                                                                                                                                                            |                      | 5.0       | - ·  | 180  | 360                                   | 1 C  |
| tTLH, tTHL = (1.5 ns/pF) CL + 15 ns                                                                                                                                                            |                      | 10        |      | 90   | 180                                   |      |
| tTLH, tTHL = (1.1 ns/pF) CL+ 10 ns                                                                                                                                                             |                      | 15        |      | 65   | 130                                   |      |
| Output Fall Time                                                                                                                                                                               | <sup>t</sup> THL     |           |      |      |                                       | ns   |
| tTLH_tTHL = (1.5 ns/pF) CL + 25 ns                                                                                                                                                             | 1                    | 5.0       |      | 100  | 200                                   |      |
| tTLH. tTHL = (0.75 ns/pF) CL + 12.5 ns                                                                                                                                                         | 1 1                  | 10        | _    | 50   | 100                                   |      |
| tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns                                                                                                                                                          |                      | 15        | -    | 40   | 80                                    |      |
| Clock Read Access Delay Time                                                                                                                                                                   | taccc                |           |      |      |                                       | ns   |
| taccc = (1.7 ns/pF) CL + 1265 ns                                                                                                                                                               |                      | 5.0       |      | 1350 | 4000                                  |      |
| $t_{accc} = (0.66 \text{ ns/pF}) C_{L} + 517 \text{ ns}$                                                                                                                                       | 1                    | 10        | _    | 550  | 1600                                  |      |
| $t_{accc} = (0.5 \text{ ns/pF}) C_{L} + 325 \text{ ns}$                                                                                                                                        |                      | 15        | -    | 350  | 1200                                  |      |
| Enable Access Delay Time                                                                                                                                                                       | tanon                |           |      |      |                                       | ns   |
| $t_{1} = (1.7 \text{ ps/pE}) C_1 + 160 \text{ ps}$                                                                                                                                             | taccEn               | 5.0       | -    | 245  | 615                                   | 1 13 |
| $t_{accr} = (0.66 \text{ ns/pF}) C_1 + 77 \text{ ns}$                                                                                                                                          |                      | 10        | - 1  | 110  | 265                                   | 1    |
| $t_{accEn} = (0.66 \text{ ns/pF}) \text{ CL} + 77 \text{ ns}$<br>$t_{accEn} = (0.56 \text{ ns/pF}) \text{ CL} + 77 \text{ ns}$<br>$t_{accEn} = (0.5 \text{ ns/pF}) \text{ CL} + 50 \text{ ns}$ |                      | 15        | -    | . 75 | 190                                   |      |
| Clock Pulse Width*                                                                                                                                                                             | twh                  | 5.0       | 450  | 150  |                                       | ns   |
|                                                                                                                                                                                                | -144-                | 10        | 165  | 55   | _                                     |      |
|                                                                                                                                                                                                |                      | 15        | 125  | 35   |                                       |      |
|                                                                                                                                                                                                | tWL                  | 5.0       | 3600 | 1200 |                                       | ns   |
|                                                                                                                                                                                                |                      | 10        | 1425 | 475  |                                       | 113  |
|                                                                                                                                                                                                | í í                  | 15        | 1070 | 300  |                                       |      |
| Maximum Low Clock Pulse Width #                                                                                                                                                                | twi                  | 5.0       | 2.0  | 10   |                                       | ms   |
|                                                                                                                                                                                                | -vv L                | 10        | 0.9  | 3.0  |                                       |      |
|                                                                                                                                                                                                |                      | 15        | 0.9  | 0.3  | _                                     |      |
| Address Setup-Time                                                                                                                                                                             |                      | 5.0       | 0.1  | 0.5  |                                       |      |
|                                                                                                                                                                                                | <sup>t</sup> su(A)   | 10        | 0    | 0    | _                                     | ns   |
|                                                                                                                                                                                                | -                    | 15        | 0    | 0    | _                                     |      |
| Address Hold Time                                                                                                                                                                              |                      |           | 0    | 0    | · · · · · · · · · · · · · · · · · · · |      |
| Address citing Time                                                                                                                                                                            | <sup>t</sup> h(A)    | 5.0<br>10 | 0    | -    | -                                     | .ns  |
|                                                                                                                                                                                                |                      | 10        | 0    | 0    | -                                     |      |
| Olash ta Fastula Catala Tilan                                                                                                                                                                  |                      |           |      |      |                                       |      |
| Clock to Enable Setup Time                                                                                                                                                                     | t <sub>su</sub> (cl) | 5.0       | 4275 | 1425 |                                       | ns   |
|                                                                                                                                                                                                |                      | 10        | 1725 | 575  |                                       |      |
|                                                                                                                                                                                                |                      | 15        | 1295 | 400  |                                       |      |
| Clock to Enable Hold Time                                                                                                                                                                      | th-(cl)              | 5.0       | 150  | 0    |                                       | 'ns  |
|                                                                                                                                                                                                |                      | 10        | 75   | 0    | i – .                                 | -    |
|                                                                                                                                                                                                | •                    | 15        | 55   | . 0. |                                       | 1    |

\*The clock can remain high indefinitely with the data remaining latched.

#If clock stays low too long, the dynamically stored data will leak off and will have to be recalled.



#### FIGURE 2 - SWITCHING TIME TEST CIRCUIT (Refer to timing diagram)





MEMORY READ CYCLE TIMING DIAGRAMS

#### CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM14524, the customer may specify the content of the memory. Address Inputs: Words are numbered 0 through 255 and are addressed using sequential addressing of Address leads A0 through A7 with A0 as the least significant digit.  $\begin{array}{l} \mbox{Logic "0" is defined as a "low" Address input (V_{1L}). \\ \mbox{Logic "1" is defined as a "high" Address input (V_{1H}). \end{array}$ ADDRESS WORD A6 Α5 A3 A0 Α7 Α4 A2 A 1 Word õ 0 ñ 0 Ó 0 0 n 0 0 0 Word 1 0 0 0 0 0 1 0 0 Word 2 0 0 0 0 0 1 0 Word 3 0 0 0 0 0 1 1 Word 255

3

# MCM14524

|                                 |        | TRUTH   | TABLE              |                    |         |
|---------------------------------|--------|---------|--------------------|--------------------|---------|
| CLOCK                           | ENABLE | 80      | B1                 | B2                 | B3      |
|                                 |        | •       | •                  | •                  | •       |
| V <sub>DD</sub> V <sub>SS</sub> | 1      | Address | <pre>Address</pre> | <pre>Address</pre> | Address |
|                                 | 1      |         | OUTPU              | DATA               | ••••••• |
| V <sub>SS</sub>                 |        |         | LATO               | HES                |         |
| X                               | 0      | 0       | 0                  | 0                  | 0       |

X = Don't Care

\*Indicates contents of specified Address will appear at outputs as stated above.

Two methods may be used to transmit the custom memory pattern to Motorola.

#### METHOD A: PUNCHED COMPUTER CARDS

A binary coded decimal equivalent of each desired output may be punched in standard computer cards (four cards are required for all 256 words) in numerical (word number) order. 64 words per card are punched in columns 12 thru 75 using the Binary to Hexadecimal conversion table. Columns 77 and 78 are used to number the cards, which must be in numerical order. Please use characters as shown in the table when punching computer cards.

| BINARY TO HEXA-<br>DECIMAL CON-<br>VERSION TABLE           BINARY         CARD           DESIRED         CARD           0         0         0           0         0         0           0         0         0           0         0         1           0         0         1           0         0         1           0         1         0           0         1         1           0         1         0           0         1         1           0         1         1           1         0         0           1         1         0           1         1         0           1         1         0           1         1         0           1         1         0           1         1         0           1         1         0                                                                                                                                                                                                                                                                                                 |   |                               |   |   |   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------|---|---|---|--|--|--|--|--|--|
| WORD         CARD           DESIRED         CHARACTER           0         0         0           0         0         1           0         0         1           0         1         0           0         1         1           0         1         1           0         1         1           0         1         1           0         1         0           0         1         1           0         1         0           1         0         0           1         0         0           1         0         0           1         0         1           0         1         0           1         0         1           0         1         0           1         0         0           1         1         0                                                                                                                                                                                                                                                                                                                         |   | DECIMAL CON-<br>VERSION TABLE |   |   |   |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W | OF                            | D |   |   |  |  |  |  |  |  |
| 0         1         0         2           0         1         1         3           0         1         0         4           0         1         0         4           0         1         0         4           0         1         0         1         5           0         1         1         7         1         0         6           1         1         0         0         8         1         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |   |                               |   |   |   |  |  |  |  |  |  |
| 0 0 1 1 3<br>0 1 0 0 4<br>0 1 0 1 5<br>0 1 1 0 6<br>0 1 1 1 7<br>1 0 0 0 8<br>1 0 0 1 9<br>1 0 1 0 8<br>1 0 1 0 4<br>1 0 1 0 A<br>1 0 1 0 A<br>1 0 1 0 C<br>1 1 0 0 C<br>1 1 0 0 C<br>1 1 0 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                               |   |   |   |  |  |  |  |  |  |
| 0 1 0 0 4<br>0 1 0 1 5<br>0 1 1 0 6<br>0 1 1 1 6<br>0 1 1 1 7<br>1 0 0 0 8<br>1 0 0 1 9<br>1 0 1 0 A<br>1 0 1 0 A<br>1 0 1 0 A<br>1 0 1 0 C<br>1 1 0 0 C<br>1 1 0 1 D<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                               |   |   |   |  |  |  |  |  |  |
| 0     1     0     1     5       0     1     1     0     6       0     1     1     7       1     0     0     8       1     0     1     9       1     0     1     0       1     0     1     8       1     1     0     C       1     1     0     C       1     1     0     E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 | 0                             | 1 | 1 | 3 |  |  |  |  |  |  |
| 0 1 1 0 6<br>0 1 1 7<br>1 0 0 0 8<br>1 0 0 1 4<br>1 0 0 1 8<br>1 0 1 0 4<br>1 0 1 8<br>1 0 0 C<br>1 1 0 0 C<br>1 1 0 0 C<br>1 1 0 1 C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 | 1                             | 0 | 0 |   |  |  |  |  |  |  |
| 0 1 1 1 7<br>1 0 0 0 8<br>1 0 0 1 9<br>1 0 1 0 A<br>1 0 1 0 A<br>1 0 1 B<br>1 1 0 0 C<br>1 1 0 1 D<br>1 1 0 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 1                             |   |   | 5 |  |  |  |  |  |  |
| 1 0 0 0 8<br>1 0 0 1 9<br>1 0 1 0 A<br>1 0 1 1 8<br>1 1 0 0 C<br>1 1 0 1 D<br>1 1 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 1                             | 1 |   |   |  |  |  |  |  |  |
| 1 0 0 1 9<br>1 0 1 0 A<br>1 0 1 1 B<br>1 1 0 0 C<br>1 1 0 1 D<br>1 1 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 | 1                             | 1 | 1 | 7 |  |  |  |  |  |  |
| 1 0 1 0 A<br>1 0 1 1 B<br>1 1 0 0 C<br>1 1 0 1 D<br>1 1 0 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 | 0                             | 0 | 0 | 8 |  |  |  |  |  |  |
| 1 0 1 1 B<br>1 1 0 0 C<br>1 1 0 1 D<br>1 1 1 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 0                             | 0 | 1 | 9 |  |  |  |  |  |  |
| 1 1 0 0 C<br>1 1 0 1 D<br>1 1 1 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 | 0                             | 1 | 0 | А |  |  |  |  |  |  |
| 1 1 0 1 D<br>1 1 1 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | 0                             | 1 | 1 | в |  |  |  |  |  |  |
| 1 1 0 1 D<br>1 1 1 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | 1                             | 0 | 0 | С |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i | 1                             |   |   | D |  |  |  |  |  |  |
| 1111 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | 1                             | 1 | 0 |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 | 1                             | 1 | 1 | F |  |  |  |  |  |  |

ROM SAMPLE WORD PROGRAMMING FOR PUNCHED CARD

|                |     |     | AD  | DRESS | SINPU | тs |    |     | S/  | AMPLE<br>OUTF |     | D   |                   |                   |
|----------------|-----|-----|-----|-------|-------|----|----|-----|-----|---------------|-----|-----|-------------------|-------------------|
| WORD<br>NUMBER | A7  | A6  | A5  | A4    | A3    | A2 | A1 | AO  | в3  | 82            | в1  | в0  | CARD<br>CHARACTER |                   |
| 0              | 0   | 0   | 0   | 0     | 0     | 0  | 0  | .0  | 0   | 0             | 0   | 0   | 0                 |                   |
| 1              | 0   | 0   | 0   | 0     | 0     | 0  | 0  | 1   | 0   | 0             | 1   | 1   | 3                 | Shown in column   |
| 2              | 0   | 0   | 0   | 0     | Ó     | 0  | 1  | 0   | 0   | 0             | 1   | 1   | 3                 | > 12 – 15 on card |
| 3              | 0   | 0.  | 0   | 0     | 0     | 0  | 1  | 1   | 0   | 0             | 0   | 0   | 0                 | below             |
| •              |     | ••• | 1.  | 1.    | 1 •   | 1. | •  |     | 1.  | •             | 1 • | 1 . | •                 |                   |
| •              | .   | .   | .   | •     | •     | .  | .  | 1 • | •   |               | 1.  | •   | •                 |                   |
| •              | •   | •   | 1.  | .     |       | .  | .  | •   |     | 1.            |     |     | .                 |                   |
| 255            | 1 1 | 1   | 1 1 | 1 1   | 1 1   | 1  | 1  | 1 1 | ] 1 | ) o           | 1   | 0   | A                 |                   |



#### METHOD B: TRUTH TABLE

For customers who do not have access to punch cards, Motorola will accept Truth Tables. When filling out the table, use the 0 to F hexidecimal character in column "C".

CUSTOM PR 4 Read Only M

WORD C

| WORD     | С |   |
|----------|---|---|
| 0        |   | 1 |
| 1        |   |   |
| 2        |   | 1 |
| 3        |   |   |
| 4        |   |   |
| 5        |   | 1 |
| 6        |   |   |
| 7        |   |   |
| 8        |   |   |
| 9        |   |   |
| 10       |   |   |
| 11       |   |   |
| 12       |   |   |
| 13       |   |   |
| 14       |   | l |
| 15       |   |   |
| 16       |   |   |
| 17       |   |   |
| 18       |   |   |
| 19       |   |   |
| 20       |   |   |
| 21       | _ |   |
| 22       |   |   |
| 23       |   |   |
| 24       |   | l |
| 25       |   |   |
| 26       |   |   |
| 27       |   |   |
| 28       |   |   |
| 29       |   |   |
| 30       | - |   |
| 3,1      |   |   |
| 32       |   |   |
| 33       |   |   |
| 34       |   |   |
| 35       |   |   |
| 36       |   |   |
| 37       |   |   |
| 38       |   |   |
| 39       |   |   |
| 40       |   |   |
| 41       | - |   |
| 42       | - |   |
| 43       |   |   |
| 44       | - |   |
| 45       |   |   |
| 46       |   |   |
| 47       |   |   |
| 48<br>49 |   |   |
|          |   |   |
| 50       |   |   |
| لىمما    | L |   |

| 102           103           104           105           106           107           108           109           110           111           112           113           114           115           116           117           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150                             |   |    | ٦D |   | ŀ | С |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|---|---|---|
| 104           105           106           107           108           109           110           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151 | 1 | 02 | 2  |   | Ĺ |   |
| 105           106           107           108           109           110           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151               | 1 | 0: | 3  |   |   |   |
| 106           107           108           109           110           111           112           113           114           115           116           117           118           119           120           121           123           124           125           126           127           128           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                         | 1 | 04 | 4  |   |   |   |
| 107           108           109           110           111           112           113           114           115           16           117           118           119           120           121           122           123           124           125           126           127           128           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                          | 1 | 05 | 5  |   | Γ |   |
| 108           109           110           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                         | 1 | 06 | 6  |   | Γ |   |
| 109           110           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                       | ł | 07 | 7  |   |   |   |
| 110           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                   | 1 | 08 | 3  | _ | L |   |
| 111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           142           143           144           145           146           148           149           151                                                                                                                                             | 1 | 09 | 9  |   | L |   |
| 112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           144           145           146           147           148           149           151                                                                                                                                             |   |    |    |   | L |   |
| 113           114           115           116           117           118           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           151                                                                                                                                                           |   |    | _  | _ | L |   |
| 114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                         | 1 | 12 | 2  | _ |   |   |
| 115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                         |   |    |    |   | L |   |
| 116           117           118           119           120           121           122           123           124           125           126           127           128           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150                                                                                                                                                                                                     | 1 | 14 | 4  | _ | L |   |
| 117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                                                                   |   | _  | -  |   | L |   |
| 118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           142           143           144           145           146           144           145           146           147           148           149           151                                                                                                                                                                                       |   |    |    |   | Ĺ |   |
| 119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                                                                                                                                   | - |    | _  | _ | L |   |
| 120<br>121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>144<br>145<br>144<br>145<br>146<br>144<br>145<br>146<br>147<br>148<br>149<br>155<br>156<br>157<br>166<br>177<br>188<br>198<br>198<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                          | - | -  | _  |   | L |   |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |    |    |   | L |   |
| 122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>144<br>144<br>145<br>144<br>145<br>144<br>147<br>148<br>149<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | _  |    |   | L |   |
| 123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>144<br>144<br>145<br>144<br>145<br>144<br>147<br>148<br>149<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |    |    |   |   |   |
| 124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |    |    |   | L |   |
| 125           126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                                                                                                                                                                     |   |    | _  |   | L |   |
| 126           127           128           129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                                                                                                                                                                                   |   |    |    | _ | L |   |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | _  | _  |   | L |   |
| 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>146<br>147<br>148<br>149<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |    | _  | _ |   |   |
| 129           130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                                                                                                                                                                                                                             |   |    |    |   | L |   |
| 130           131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                                                                                                                                                                                                                                                                                             | - | -  | -  |   |   |   |
| 131           132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           146           146           147           148           149           150                                                                                                                                                                                                                                                                                                                                                                             |   | _  | -  |   | L | _ |
| 132           133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                                                                                                                                                                                                                                                                                                                         |   | _  | _  |   | L |   |
| 133           134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                                                                                                                                                                                                                                                                                                                                       | • |    | _  |   | L |   |
| 134           135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                                                                                                                                                                                                                                                                                                                                                     | - | _  | _  | _ | L |   |
| 135           136           137           138           139           140           141           142           143           144           145           146           147           148           149           151                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |    |    |   | Ĺ | _ |
| 136           137           138           139           140           141           142           143           144           145           146           147           148           149           150           151                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - | _  | _  | _ | L |   |
| 137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |    | _  |   | L |   |
| 138           139           140           141           142           143           144           145           146           147           148           149           150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |    |    | _ | L |   |
| 139           140           141           142           143           144           145           146           147           148           149           150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | _  |    | _ |   |   |
| 140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |    | _  | _ | L |   |
| 141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    |    |   | L |   |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |    |    |   | Ļ |   |
| 143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |    |    | _ | L |   |
| 144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |    |    |   | L |   |
| 145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - |    | _  |   |   |   |
| 146<br>147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | _  | -  | _ | L |   |
| 147<br>148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - | _  | _  |   | - |   |
| 148<br>149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | _  | _  | _ | L |   |
| 149<br>150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | _  |    | _ | L |   |
| 150<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    |    |   | L |   |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - |    | _  | _ |   | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |    |    | _ | - |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |    |    |   | ┡ |   |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | 52 | 2  |   | L |   |

| WORD<br>153 | C        |     |
|-------------|----------|-----|
|             | <u> </u> | 1.0 |
|             |          |     |
| 154         |          |     |
| 155         |          |     |
| 156         | -        |     |
| 157         |          |     |
| 158         | -        |     |
| 159         |          | a 1 |
| 160         |          |     |
| 161         | -        |     |
|             |          |     |
| 162         |          |     |
| 163         |          |     |
| 164         |          |     |
| 165         |          |     |
| 166         |          |     |
| 167         |          |     |
| 168         |          | [ . |
| 169         |          | 1.1 |
| 170         |          |     |
| 171         |          |     |
| 172         | -        |     |
| 173         |          |     |
| 174         |          |     |
| 175         |          |     |
|             |          |     |
| 176         |          |     |
| 177 -       |          |     |
| 178         |          |     |
| 179         |          | 1.1 |
| 180         |          |     |
| 181         |          |     |
| 182         |          |     |
| 183         |          |     |
| 184         |          |     |
| 185         |          |     |
| 186         |          |     |
| 187         |          |     |
| 188         | _        |     |
| 188         |          |     |
|             | _        |     |
| 190         |          |     |
| 191         |          |     |
| 192         |          |     |
| 193         |          |     |
| 194         |          |     |
| 195         |          |     |
| 196         |          |     |
| 197         |          | 1   |
| 198         |          | 1.1 |
| 199         |          | •   |
| 200         |          |     |
| 200         |          |     |
|             |          |     |
| 202         |          |     |
| 203         |          |     |

| WORD       | С |    |
|------------|---|----|
| 204        |   |    |
| 205        |   |    |
| 206        |   |    |
| 207        |   |    |
| 208        |   |    |
| 209        |   |    |
| 210        |   |    |
| 211        |   |    |
| 212        |   |    |
| 213        |   |    |
| 214        |   |    |
| 215        |   |    |
| 216        |   |    |
| 217        |   | ľ  |
| 218        |   |    |
| 219        | Ŀ |    |
| 220        |   |    |
| 221        |   |    |
| 222        |   |    |
| 223        |   |    |
| 224        |   |    |
| 225<br>226 |   |    |
| 220        |   |    |
| 228        |   |    |
| 229        | - | ١. |
| 230 /      |   |    |
| 231        |   |    |
| 232        |   |    |
| 233        |   |    |
| 234        |   |    |
| 235        |   |    |
| 236        | - |    |
| 237<br>238 |   |    |
| 238        |   |    |
| 239        |   |    |
| 240        |   |    |
| 241        |   |    |
| 242        |   |    |
| 244        |   |    |
| 245        |   | ŀ. |
| 246        |   | ľ  |
| 247        |   |    |
| 248        |   |    |
| 249        |   |    |
| 250        |   |    |
| 251        |   |    |
| 252        |   |    |
| 253        |   |    |
| 254        |   | ľ  |
| 255        |   | ١. |



# Bipolar Memories TTL, MECL-RAM, PROM

4 4-2



# MCM93415

#### **1024-BIT RANDOM ACCESS MEMORY**

The MCM93415 is a 1024-bit Read/Write RAM organized 1024 words by 1 bit.

The MCM93415 is designed for buffer control storage and high performance main memory applications, and has a typical access time of 35 ns.

The MCM93415 has full decoding on-chip, separate data input and data output lines, and an active low chip select. The device is fully compatible with standard DTL and TTL logic families and features an uncommitted collector output for ease of memory expansion.

- Uncommitted Collector Output
- TTL Inputs and Output
- Non-Inverting Data Output
- High Speed --Access Time - 35 ns Typical Chip Select - 15 ns Typical
- Power Dissipation Decreases with Increasing Temperature
- Power Dissipation 0.5 mW/Bit Typical
- Organized 1024 Words X 1 Bit





6 🗖 Α4

7 🗖 Dout

8 🗆 Gnd

CS

WF

Din

Dout

A7 11

A6 □ 10

Α5 **3** 9

**Pin Designation** 

Chip Select A0-A9 Address Inputs

Write Enable

Data Input

Data Output

MCM93415

#### FUNCTIONAL DESCRIPTION

The MCM93415 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, AO to A9.

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of Chip Select  $\overline{(CS)}$  from the address without affecting system performance.

The read and write operations are controlled by the state of the active low Write Enable (WE, Pin 14). With WE held low and the chip selected, the data at D<sub>in</sub> is written into the addressed location. To read, WE is held high and the chip selected. Data in the specified location is presented at D<sub>out</sub> and is non-inverted.

Uncommitted collector outputs are provided to allow wired-OR applications. In any application an external pull-up resistor of R<sub>L</sub> value must be used to provide a high at the output when it is off. Any R<sub>L</sub> value within the range specified below may be used.

 $\frac{V_{CC}(Min)}{I_{OL} - FO(1.6)} \leq \mathsf{R}_{L} \leq \frac{V_{CC}(Min) - V_{OH}}{n(I_{CEX}) + FO(0.04)}$ 

 $R_L$  is in k $\Omega$ n = number of wired-OR outputs tied together FO = number of TTL Unit Loads (UL) driven

ICEX = Memory Output Leakage Current

VOH = Required Output High Level at Output Node

IOL = Output Low Current

The minimum R<sub>L</sub> value is limited by output current sinking ability. The maximum R<sub>L</sub> value is determined by the output and input leakage current which must be supplied to hold the output at V<sub>OH</sub>. One Unit Load = 40  $\mu$ A High/1.6 mA Low.

TRUTH TABLE

|    | Inputs |                 | Output            |              |
|----|--------|-----------------|-------------------|--------------|
| cs | WE     | D <sub>in</sub> | Open<br>Collector | Mode         |
| н  | . X .  | ×               | н                 | Not Selected |
| L  | L      | L               | н                 | Write "O"    |
| L  | Ļ.     | н               | н                 | Write ''1''  |
| L  | н      | x               | Dout              | Read         |

H = High Voltage Level

L = Low Voltage Level

X = Don't Care (High or Low)

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

#### **GUARANTEED OPERATING RANGES** (Note 2)

|                | Suppl  | ý Voltage | (Vcc)  |                                       |
|----------------|--------|-----------|--------|---------------------------------------|
| Part Number    | Min    | Nom       | Max    | Ambient Temperature (T <sub>A</sub> ) |
| MCM93415DC, PC | 4.75 V | 5.0 V     | 5.25 V | 0°C to +75°C                          |
| MCM93415FM, DM | 4.50 V | 5.0 V     | 5.50 V | -55°C to +125°C                       |

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

|        |                           | Limits |      |      |                                                |                                        |  |  |
|--------|---------------------------|--------|------|------|------------------------------------------------|----------------------------------------|--|--|
| Symbol | ol Characteristic Min     |        | Max  | Unit | 1                                              | Conditions                             |  |  |
| VOL    | Output Low Voltage        |        | 0.45 | Vdc  | V <sub>CC</sub> = Min,                         | I <sub>OL</sub> = 16 mA                |  |  |
| VIH    | Input High Voltage        | 2.1    | 1    | Vdc  | Guaranteed                                     | Input High Voltage for All Inputs      |  |  |
| VIL    | Input Low Voltage         |        | 0.8  | Vdc  | Guaranteed                                     | Input Low Voltage for All Inputs       |  |  |
| կլ     | Input Low Current         |        | -400 | μAdc | V <sub>CC</sub> = Max, V <sub>in</sub> = 0.4 V |                                        |  |  |
| Чн     | Input High Current        | 1      | 40   | µAdc | V <sub>CC</sub> = Max,                         | V <sub>in</sub> = 4.5 V                |  |  |
|        |                           |        | 1.0  | mAdc | V <sub>CC</sub> = Max,                         | V <sub>in</sub> = 5.25 V               |  |  |
| CEX    | Output Leakage Current    |        | 100  | μAdc | V <sub>CC</sub> = Max,                         | V <sub>out</sub> = 4.5 V               |  |  |
| VCD    | Input Diode Clamp Voltage |        | -1.5 | Vdc  | V <sub>CC</sub> = Max,                         | I <sub>in</sub> = -10 mA               |  |  |
| ICC .  | Power Supply Current      |        | 130  | mAdc | T <sub>A</sub> = Max                           |                                        |  |  |
|        | · · · · ·                 |        | 155  | mAdc | T <sub>A</sub> = 0 <sup>o</sup> C              | $V_{CC} = Max,$<br>All Inputs Grounded |  |  |
|        |                           |        | 170  | mAdc | TA = Min                                       | An inputs Grounded                     |  |  |



# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

#### AC TEST LOAD AND WAVEFORM

Loading Condition





Input Pulses

|                  |                                              | MCM934 | MCM93415DC, PC MCM93415DM, FM |     | MCM93415DM, FM |      |                  |
|------------------|----------------------------------------------|--------|-------------------------------|-----|----------------|------|------------------|
| Symbol           | Characteristic (Notes 2, 3)                  | Min    | Max                           | Min | Max            | Unit | Conditions       |
| READ MODE        | DELAY TIMES                                  |        |                               |     |                | ns   |                  |
| <sup>t</sup> ACS | Chip Select Time                             | 1      | 35                            |     | 45             |      | See Test Circuit |
| TRCS             | Chip Select Recovery Time                    |        | 35                            |     | 50             |      | and Waveforms    |
| <sup>t</sup> AA  | Address Access Time                          |        | 45                            |     | 60             |      |                  |
| WRITE MODE       | DELAY TIMES                                  |        |                               |     |                | ns   |                  |
| tws              | Write Disable Time                           |        | 35                            |     | 45             |      | See Test Circuit |
| <sup>t</sup> WR  | Write Recovery Time                          |        | 40                            |     | 50             |      | and Waveforms    |
|                  | INPUT TIMING REQUIREMENTS                    |        |                               |     |                | ns   |                  |
| tw               | Write Pulse Width (to guarantee write)       | 30     |                               | 40  | 1              |      | See Test Circuit |
| twsD             | Data Setup Time Prior to Write               | 5      |                               | 5   |                |      | and Waveforms    |
| twhd             | Data Hold Time After Write                   | 5      |                               | 5   | ] ]            |      |                  |
| tWSA             | Address Setup Time (at t <sub>W</sub> = Min) | 10     |                               | 15  | ] ]            |      |                  |
| tWHA             | Address Hold Time                            | 10     |                               | 10  |                |      |                  |
| twscs            | Chip Select Setup Time                       | 5      |                               | 5   |                |      |                  |
| tWHCS            | Chip Select Hold Time                        | 5      |                               | 5   |                | }    |                  |

#### READ OPERATION TIMING DIAGRAM



(All Time Measurements Referenced to 1.5 V)

4-5

# MCM93415

#### WRITE CYCLE TIMING



(All Time Measurements Referenced to 1.5 V)

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

|          | $\theta_{JA}$ (Junction | n to Ambient)        |                                  |
|----------|-------------------------|----------------------|----------------------------------|
| Package  | Blown                   | Still                | $\theta_{JC}$ (Junction to Case) |
| D Suffix | 50 <sup>0</sup> C/W     | 85 <sup>0</sup> C/W  | 15 <sup>0</sup> C/W              |
| F Suffix | 55°C/W                  | 90 <sup>0</sup> C/W  | 15 <sup>0</sup> C/W              |
| P Suffix | 65°C/W                  | 100 <sup>0</sup> C/W | 25 <sup>0</sup> C/W              |

NOTE 3: The AC limits are guaranteed to be the worst case bit in the memory.



# MCM93425

#### 1024-BIT RANDOM ACCESS MEMORY

The MCM93425 is a 1024-bit Read/Write RAM, organized 1024 words by 1 bit.

The MCM93425 is designed for high performance main memory and control storage applications and has a typical address time of 35 ns.

The MCM93425 has full decoding on-chip, separate data input and data output lines, and an active low-chip select and write enable. The device is fully compatible with standard DTL and TTL logic families. A three-state output is provided to drive bus-organized systems and/or highly capacitive loads.

- Three-State Output
- TTL Inputs and Output
- Non-Inverting Data Output
- High Speed --

Access Time – 35 ns Typical Chip Select – 15 ns Typical

- Power Dissipation 0.5 mW/Bit Typical
- Power Dissipation Decreases With Increasing Temperature





A0-A9

WE

Din

Dout

Address Inputs

Write Enable

Data Output

Data Input

### FUNCTIONAL DESCRIPTION

The MCM93425 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Word selection is achieved by means of a 10-bit address, AO-A9.

The Chip Select  $(\overline{CS})$  input provides for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active low Write Enable (WE, Pin 14). With  $\overline{WE}$  and  $\overline{CS}$  held

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

| Storage Temperature<br>Ceramic Package (D and F Suffix) | -55 <sup>0</sup> C to +165 <sup>0</sup> C |
|---------------------------------------------------------|-------------------------------------------|
| Plastic Package (P Suffix)                              | -55°C to +125°C                           |
| Operating Junction Temperature, TJ                      | · · · · · · · · · · · · · · · · · · ·     |
| Ceramic Package (D and F Suffix)                        | <165 <sup>0</sup> C                       |
| Plastic Package (P Suffix)                              | <125°C                                    |
| V <sub>CC</sub> Pin Potential to Ground Pin             | -0.5 V to +7.0 V                          |
| Input Voltage (dc)                                      | -0.5 V to +5.5 V                          |
| Voltage Applied to Outputs (Output High)                | -0.5 V to +5.5 V                          |
| Output Current (dc) (Output Low)                        | +20 mA                                    |
| Input Current (dc)                                      | -12 mA to +5.0 mA                         |

low, the data at  $D_{in}$  is written into the addressed location. To read,  $\overline{WE}$  is held high and  $\overline{CS}$  held low. Data in the specified location is presented at  $D_{out}$  and is non-inverted.

The three-state output provides drive capability for higher speeds with capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high-impedance state.

TRUTH TABLE

|    | Inputs |     | Output |              |
|----|--------|-----|--------|--------------|
| cs | WE     | Din | Dout   | Mode         |
| н  | X      | X   | High Z | Not Selected |
| L  | ι L    | ΥL. | High Z | Write "O"    |
| L  | L      | н   | High Z | Write "1"    |
| L  | н      | х   | Dout   | Read         |

H = High Voltage Level

L = Low Voltage Level

X = Don't Care (High or Low)

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

## GUARANTEED OPERATING RANGES (Notes 2 and 3)

|                | Supply Voltage (V <sub>CC</sub> ) |       |        |                                         |
|----------------|-----------------------------------|-------|--------|-----------------------------------------|
| Part Number    | Min                               | Nom   | Max    | Ambient Temperature (T <sub>A</sub> )   |
| MCM93425DC, PC | 4.75 V                            | 5.0 V | 5.25 V | 0 <sup>0</sup> C to + 75 <sup>0</sup> C |
| MCM93425FM, DM | 4.50 V                            | 5.0 V | 5.50 V | -55°C to +125°C                         |

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

|        |                      |                   | Limi | ts    |       |                                                         |  |  |  |
|--------|----------------------|-------------------|------|-------|-------|---------------------------------------------------------|--|--|--|
| Symbol | Charact              | eristic           | Min  | Max   | Units | Conditions                                              |  |  |  |
| VOL    | Output Low Voltage   |                   | -    | 0.45  | Vdc   | V <sub>CC</sub> = Min, I <sub>OL</sub> = 16 mA          |  |  |  |
| VIH    | Input High Voltage   |                   | 2.1  |       | Vdc   | Guaranteed Input High Voltage for all Inputs            |  |  |  |
| VIL    | Input Low Voltage    |                   | 1    | 0.8   | Vdc   | Guaranteed Input Low Voltage for all Inputs             |  |  |  |
| ЧL     | Input Low Current    |                   |      | -400  | μAdc  | V <sub>CC</sub> = Max, V <sub>in</sub> = 0.4 V          |  |  |  |
| Чн     | Input High Current   |                   | 1    | 40    | μAdc  | $V_{CC} = Max$ , $V_{in} = 4.5 V$                       |  |  |  |
|        |                      |                   |      | 1.0   | mAdc  | V <sub>CC</sub> = Max, V <sub>in</sub> = 5.25 V         |  |  |  |
| loff   | Output Current (High | Z) .              | 1.   | 50    | μAdc  | V <sub>CC</sub> = Max, V <sub>out</sub> = 2.4 V         |  |  |  |
|        |                      |                   |      | - 50  |       | V <sub>CC</sub> = Max, V <sub>out</sub> = 0.5 V         |  |  |  |
| los    | Output Current Short | Circuit to Ground | 1.   | - 100 | mAdc  | V <sub>CC</sub> = Max                                   |  |  |  |
| Voн    | Output High Voltage  | MCM93425DC, PC    | 2.4  |       | Vdc   | I <sub>OH</sub> = -10.3 mA, V <sub>CC</sub> = 5.0 V ±5% |  |  |  |
|        |                      | MCM93425FM, DM    | 2.4  |       | Vdc   | I <sub>OH</sub> = -5.2 mA                               |  |  |  |
| VCD    | Input Diode Clamp Vo | Itage             | 1    | -1.5  | Vdc   | V <sub>CC</sub> = Max, 1 <sub>in</sub> = -10 mA         |  |  |  |
| ICC .  | Power Supply Current |                   |      | 130   | mAdc  | T <sub>A</sub> = Max                                    |  |  |  |
|        |                      |                   |      | 155   | mAdc  | $T_A = 0^{\circ}C$ $V_{CC} = Max,$                      |  |  |  |
|        |                      |                   |      | 170   | mAdc  | T <sub>A</sub> = Min All Inputs Grounded                |  |  |  |

# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

### AC TEST LOAD AND WAVEFORMS

#### Loading Conditions





Input Pulses

|                  |                                              | MCM934 | 25DC, PC | MCM9342     | 25DM, FM |       |                  |
|------------------|----------------------------------------------|--------|----------|-------------|----------|-------|------------------|
| Symbol           | Characteristic (Notes 2, 4)                  | Min    | Max      | Min         | Max      | Units | Conditions       |
| READ MODE        | DELAY TIMES                                  |        |          | · · · · · · |          | ns    |                  |
| TACS             | Chip Select Time                             |        | 35       |             | 45       |       | See Test Circuit |
| TZRCS            | Chip Select to High Z                        | 1      | 35       |             | 50       |       | and Waveforms    |
| <sup>t</sup> AA  | Address Access Time                          |        | 45       |             | 60       |       |                  |
| WRITE MODE       | DELAY TIMES                                  |        |          |             |          | ns    |                  |
| tzws             | Write Disable to High Z                      | 1      | 35       |             | 45       |       | See Test Circuit |
| <sup>t</sup> W R | Write Recovery Time                          | 1      | 40       |             | 5U       |       | and Waveforms    |
|                  | INPUT TIMING REQUIREMENTS                    |        | 1        |             |          | ns    |                  |
| tw               | Write Pulse Width (to guarantee write)       | 30     |          | 40          |          |       | See Test Circuit |
| twsD             | Data Setup Time Prior to Write               | 5      | [        | 5           |          |       | and Waveforms    |
| twhd             | Data Hold Time After Write                   | 5      | [        | 5           |          |       |                  |
| tWSA             | Address Setup Time (at t <sub>W</sub> = Min) | 10     |          | 15          |          |       |                  |
| twha             | Address Hold Time                            | 10     |          | 10          |          |       |                  |
| twscs            | Chip Select Setup Time                       | 5      | 1        | 5           |          |       |                  |
| TWHCS            | Chip Select Hold Time                        | 5      |          | 5           |          |       |                  |

#### READ OPERATION TIMING DIAGRAM



#### Propagation Delay from Address Inut



(All time measurements referenced to 1.5 V)

# MCM93425



WRITE CYCLE TIMING

(All above measurements reference to 1.5 V)

#### WRITE ENABLE TO HIGH Z DELAY



## Propagation Delay from Chip Select to High Z



(All tZXXX parameters are measured at a delta of 0.5 V from the logic level and using Load C)

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

|          | $\theta_{JA}$ (Junction |                      |                                  |
|----------|-------------------------|----------------------|----------------------------------|
| Package  | Blown                   | Still                | $\theta_{JC}$ (Junction to Case) |
| D Suffix | 50 <sup>0</sup> C/W     | 85 <sup>0</sup> C/W  | 15°C/W                           |
| F Suffix | 55°C/W                  | 90 <sup>0</sup> C/W  | 15 <sup>0</sup> C/W              |
| P Suffix | 65 <sup>0</sup> C/W     | 100 <sup>0</sup> C/W | 25 <sup>0</sup> C/W              |

NOTE 3: Output short circuit conditions must not exceed 1 second duration.

NOTE 4: The maximum address access time is guaranteed to be the worst case bit in the memory.



### 512-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM5303/5003 and MCM5304/5004 are monolithic bipolar 512-bit Programmable Read Only Memories (PROMs) organized as 64 eight-bit words. These memories are field programmable, i.e., the user can custom program these memories himself. Metal interconnections establish each bit initially in the logic "0" state. By "blowing" appropriate nichrome resistors and thus breaking metalization links these bits can be changed to the logic "1" state to meet specific program requirements. Detailed programming instructions are contained in this data sheet.

The MCM5303/5003 and MCM5304/5004 have six address inputs to select the proper word and two chip enable inputs, as well as outputs for each of the eight bits.

The MCM5303 and MCM5304 are specified over an operating temperature range of  $-55^{\circ}$ C to  $+125^{\circ}$ C. The MCM5003 and MCM5004 are specified over an operating temperature range of  $0^{\circ}$ C to  $+70^{\circ}$ C.

The MCM5303 and MCM5003 have positive enables with open collector outputs. The MCM5304 and MCM5004 have positive enables with 2.0 kilohm pullup resistors on the collector outputs.

#### MAXIMUM RATINGS Symbol Value Unit Rating -0.5 to +7.0 Supply Voltage VCC Vdc Input Voltage -1.0 to +5.5 Vdc Vin Output Voltage (Open collectors) -0.5 to +7.0 Vdc ۷он Thermal Resistance 100 °C/W θJA oc **Operating Temperature Range** ТA MCM5303, MCM5304 -55 to +125 MCM5003, MCM5004 0 to +70 Storage Temperature Range Tsta -55 to +165 °C

#### FEATURES:

- Positive Logic for Both Inputs and Outputs Logic "0" = Output Device ON (VOL) Logic "1" = Output Device OFF (VOH)
- Logic Levels Compatible with MDTL and All MTTL Families
- Ninth Bit Available for Circuit Test
- Access Time < 75 ns</li>
- Outputs Sink 12 mA Open Collector, 10 mA with Pullup Resistors
- Field Programmable by Blowing Nichrome Links
- Hermetic Package

#### APPLICATIONS:

- Look Up Tables
- Micro Programs
- Decode Functions
- Code Conversion
- Number Conversion
- Random Logic
- Character Generation



11 🗖 61

12 N.C.

**\_\_**14

(Test) B8

G2 13

# MCM5303/MCM5003, MCM5304/MCM5004

| DC ELECTRICAL CHARACTERISTICS (1 | $T_A = -55^{\circ}C$ to +125°C for MCM5303 and MCM5304,                                |
|----------------------------------|----------------------------------------------------------------------------------------|
| (                                | D <sup>o</sup> C to +70 <sup>o</sup> C for MCM5003 and MCM5004 unless otherwise noted) |

| Characteristic                                                                                                                                                                     |                                               | Symbol     | Min          | Max          | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|--------------|--------------|------|
| Input Forward Current<br>(VIL = 0.4 Vdc, V <sub>CC</sub> = 5.25 Vdc)                                                                                                               |                                               | ЧL         | _            | 1.6          | mAdc |
| Input Leakage Current<br>(VIH = VCC = 5.25 Vdc)                                                                                                                                    |                                               | чн         | -            | 100          | μAdc |
| Logic "0" Output Voltage*<br>$(T_A = 0^{\circ}C \text{ to } + 125^{\circ}C \text{ for MCM5303 and I})$<br>$0^{\circ}C \text{ to } + 70^{\circ}C \text{ for MCM5003 and M}$         |                                               | VOL        |              |              | Vdc  |
| (I <sub>OL</sub> = 12 mAdc, V <sub>CC</sub> = 4.75 Vdc)<br>(I <sub>OL</sub> = 10 mAdc, V <sub>CC</sub> = 4.75 Vdc)                                                                 | Open Collectors<br>Pullup Resistors           |            | · . <u>-</u> | 0.45<br>0.45 |      |
| (T <sub>A</sub> = -55 <sup>o</sup> C for MCM5303 and MCM5304<br>(I <sub>OL</sub> = 12 mAdc, V <sub>CC</sub> = 4.75 Vdc)<br>(I <sub>OL</sub> = 10 mAdc, V <sub>CC</sub> = 4.75 Vdc) | 4)<br>Open Collectors<br>Pullup Resistors     |            | -            | 0.50<br>0.50 |      |
| Logic "1" Output Voltage<br>(IOH = -0.5 mAdc, V <sub>CC</sub> = 4.75 Vdc)                                                                                                          | Pullup Resistors                              | Voн        | 2.5          | -            | Vdc  |
| Output Leakage Current<br>(VCC = VCEX = 5.25 Vdc)                                                                                                                                  | Open Collectors                               | CEX        | -            | 200          | μAdc |
| Power Supply Drain Current<br>(Enable and all other inputs<br>grounded, V <sub>CC</sub> = 5.0 Vdc)                                                                                 | Open Collectors<br>Pullup Resistors           | lcc        |              | 95<br>120    | mAdo |
| AC ELECTRICAL CHARACTERISTIC                                                                                                                                                       | CS (V <sub>CC</sub> = 5.0 Vdc, T <sub>A</sub> | = 25°C)    |              |              |      |
| Access Times* (30pF Load)<br>Address to Output<br>Enable to Output                                                                                                                 |                                               | tAO<br>tEO | 25<br>25     | 120          | ns   |

•Pin 13 is schematically connected to G2. For optimum propagation delay and VOL characteristics, externally tie Pin 13 to Pin 23 (G2).











## PROGRAMMING THE MCM5303/5003 AND MCM5304/5004

The table and diagram below give instructions for field programming the MCM5303/5003 and MCM5304/5004. All data given is for ambient temperatures of 25°C. If necessary, further programming aid can be obtained from Motorola engineering and product marketing personnel by contacting your nearest Motorola sales office.

#### Programming Voltage Limits

|                                       | Symbol          | Value        | Unit |
|---------------------------------------|-----------------|--------------|------|
| Address and Chip Enable Voltages      | VIH             | -4.0 to +5.0 | Vdc  |
|                                       | VIL             | −6.0 to −5.2 |      |
| Power Supply Voltage                  | Vcc             | +5.0 ±5%     | Vdc  |
| G1 Voltage                            | V <sub>G1</sub> | -6.0 ±5%     | Vdc  |
| G2 Voltage                            | V <sub>G2</sub> | 0.0          | Vdc  |
| Program Voltage at Desired Bit Output | VBP             | -6.0 ±5%     | Vdc  |

#### Programming Procedure

- Select the address code desired. Connect low (logic "0") inputs to ~6.0 Vdc nominal. Leave high (logic "1") inputs unconnected.
- With the output voltage of a 120-mA current generator clamped to -6.0 Vdc, apply a negative-going current pulse of 800 ms duration to any output to be programmed as a logic "1".
- 3. Repeat step 2 for each output to be programmed as a logic "1", one bit at a time.
- 4. Select next address code desired and repeat steps 2 and 3.





# MCM5303/MCM5003, MCM5304/MCM5004



#### TRUTH TABLE FORMAT



#### WHY THE NINTH BIT?

The ninth bit was designed into the MCM5303/ MCM5003 and the MCM5304/MCM5004 because field programmable ROMs present testing problems not encountered with conventional mask-programmable ROMs.

Three areas of testing are affected: Program Element Testing, Functional Testing, and AC Testing. The ninth bit helps to solve the problem of Program Element Testing by assuring that links can be blown

without destroying any of the normal 64x8 bit array.

Functional and ac performance are assured by verifying that changes do occur at the outputs as the addresses change. This is important in that all of the outputs are in a logic "0" state regardless of the address selected, and no way is available to determine whether the functions are correctly operating without the ninth testing bit.



# MCM7620 MCM7621

#### 2048-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7620/MCM7621 have common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available with opencollector or three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

All pinouts are compatible to industry-standard PROMs and ROMs.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 Second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 µA Logic "0", 40 µA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial and Military Temperature and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                | Symbol           | Value                   | Unit |  |
|-------------------------------------------------------|------------------|-------------------------|------|--|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |  |
| Output Voltage (operating)                            | VOH              | +7.0                    | Vdc  |  |
| Supply Current ICC                                    |                  | 650                     | mAdc |  |
| Input Current                                         | · Iin            | -20                     | mAdc |  |
| Output Sink Current                                   | I <sub>0</sub>   | 100                     | mAdc |  |
| Operating Temperature Range<br>MCM76xxDM<br>MCM76xxDC | TA               | -55 to +125<br>0 to +70 | °C   |  |
| Storage Temperature Range                             | T <sub>stq</sub> | -55 to +150             | °C   |  |
| Maximum Junction Temperature                          | T                | +175                    | °C   |  |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

# MTTL

#### 2048-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7620 - 512 × 4 - Open-Collector MCM7621 - 512 × 4 - Three-State





# MCM7620, MCM7621

## DC OPERATING CONDITIONS AND CHARACTERISTICS

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                |       | Symbol | Min          | Nom        | Max          | Unit |
|------------------------------------------|-------|--------|--------------|------------|--------------|------|
| Supply Voltage<br>MCM76x×DM<br>MCM76x×DC |       | Vcc    | 4.50<br>4.75 | 5.0<br>5.0 | 5.50<br>5.25 | Vdc  |
| Input High Voltage                       | · · · | VIH    | 2.0          |            | ·            | Vdc  |
| Input Low Voltage                        |       | VIL    | _            |            | 0.8          | Vdc  |

#### DC CHARACTERISTICS

|          |                                         |                                                                                                | Open-Collector<br>Output |      |       | Three-State<br>Output |      |       | ]    |  |
|----------|-----------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|------|-------|-----------------------|------|-------|------|--|
| Symbol   | Parameter                               | Test Conditions                                                                                | Min                      | Тур  | Max   | Min                   | Тур  | Max   | Unit |  |
| IRA, IRE | Address/Enable "1"                      | VIH = VCC Max                                                                                  | -                        | -    | 40    |                       | -    | 40    | µAdc |  |
| FA, FE   | Input Current "0"                       | V1L = 0.45 V                                                                                   | - 1                      | -0.1 | -0.25 |                       | -0.1 | -0.25 | mAdc |  |
| VOH      | Output Voltage "1"                      | IOH = -2.0 mA, VCC = VCC Min                                                                   | N/A                      | -    | -     | 2.4                   | 3.4  | -     | Vdc  |  |
| VOL      | "0"                                     | I <sub>OL</sub> = +16 mA, V <sub>CC</sub> = V <sub>CC</sub> Min                                | -                        | 0.35 | 0.45  | -                     | 0.35 | 0.45  | Vdc  |  |
| OHE      | Output Disabled "1"                     | VOH, VCC = VCC Max                                                                             | -                        | -    | 100   |                       | -    | 100   | µAdc |  |
| OLE      | Current "O"                             | V <sub>OL</sub> = +0.3 V, V <sub>CC</sub> = V <sub>CC</sub> Max                                | - 1                      | -    | N/A   | -                     | - 1  | -100  | µAdc |  |
| юн       | Output Leakage "1"                      | VOH, VCC = VCC Max                                                                             | -                        | -    | 100   | í í                   | -    | N/A   | μAdc |  |
| VCL      | Input Clamp Voltage                     | l <sub>in</sub> = -10 mA                                                                       | -                        | ·    | -1.5  |                       | -    | -1.5  | Vdc  |  |
| los      | Output Short Circuit Current            | V <sub>CC</sub> = V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max | N/A                      | -    | N/A   | 15                    | -    | 70    | mAdc |  |
| 'cc      | Power Supply Current<br>MCM7620/MCM7621 | V <sub>CC</sub> = V <sub>CC</sub> Max<br>All Inputs Grounded                                   |                          | 60   | 100   | -                     | 60   | 100   | mAdo |  |

#### **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic     |      | Тур | Unit |
|--------------------|------|-----|------|
| Input Capacitance  | Cin  | 8.0 | pF   |
| Output Capacitance | Cout | 8.0 | ρF   |

## AC OPERATING CONDITIONS AND CHARACTERISTICS

| Full operating voltage and temperature unless otherwise noted) |                 | 0 to +70 <sup>0</sup> C |     | -55 to +125 <sup>0</sup> C |     | ]    |  |
|----------------------------------------------------------------|-----------------|-------------------------|-----|----------------------------|-----|------|--|
| Characteristic                                                 | Symbol          | Тур                     | Max | Тур                        | Max | Unit |  |
| Address to Output Access Time                                  | <sup>t</sup> AA | 45                      | 70  | 45                         | 85  | ns   |  |
| Chip Enable Access Time                                        | <sup>t</sup> EA |                         |     |                            |     | ns   |  |
| MCM7620/7621                                                   |                 | 15                      | 25  | 15                         | 30  |      |  |



#### PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

#### PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying input highs (V<sub>1</sub>H) to the  $\overline{\text{CS}}$  input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- Disable the programming circuitry by applying an Output Voltage Disable of less than V<sub>OPD</sub> to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise  $V_{CC}$  to  $V_{PH}$  with rise time equal to  $t_r$ .
- 5. After a delay equal to or greater than  $t_d$ , apply a pulse with amplitude of  $V_{OPE}$  and duration of  $t_p$  to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed while the  $V_{CC}$  input is raised to  $V_{PH}$  by applying

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_d. \label{eq:transform}$ 

- 7. Lower  $V_{CC}$  to 4.5 Volts following a delay of  $t_d$  from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (VIL) to the CS input.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol         | Parameter                         | Min   | Тур  | Max   | Unit |
|----------------|-----------------------------------|-------|------|-------|------|
| VIH            | Address Input                     | 2.4   | 5.0  | 5.0   | v    |
| VIL            | Voltage(1)                        | 0.0   | 0.4  | 0.8   | · V  |
| VPH            | Programming/Verify                | 11.75 | 12.0 | 12.25 | v    |
| VPL            | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v    |
| ICCP           | Programming Voltage Current Limit | 600   | 600  | 650   | mA   |
|                | Programming (V <sub>CC</sub> )    |       |      |       |      |
| t <sub>r</sub> | Voltage Rise and                  | 1     | 1    | 10    | μs   |
| tf             | Fall Time                         | 1     | 1    | 10,   | μs   |
| td             | Programming Delay                 | 10    | 10   | 100   | μs   |
| tp             | Programming Pulse Width           | 100   | -    | 1000  | μs   |
| DC             | Programming Duty Cycle            | - 1   | 50   | 90    | %    |
|                | Output Voltage                    |       |      |       |      |
| VOPE           | Enable                            | 10.0  | 10.5 | 11.0  | v    |
| VOPD           | Disable(2)                        | 4.5   | 5.0  | 5.5   | v    |
| OPE            | Output Voltage Enable Current     | 2     | 4    | 10    | mA   |
| тс             | Case Temperature                  |       | 25   | 75    | °C   |

TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

4-17



# FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS



## 4096-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7640 through 43 PROMs comprise a completely compatible family having common dc electrical characteristics and identical programming requirements. They are fully-decoded, highspeed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

All pinouts are compatible to industry-standard PROMs and ROMs.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 Second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 μA Logic "0", 40 μA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing; Over Commercial and Military Temperature and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                | Symbol           | Value                   | Unit |
|-------------------------------------------------------|------------------|-------------------------|------|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |
| Output Voltage (operating)                            | ∨он              | +7.0                    | Vdc  |
| Supply Current                                        | 1cc              | 650                     | mAdc |
| Input Current                                         | lin              | -20                     | mAdc |
| Output Sink Current                                   | I <sub>0</sub>   | 100                     | mAdc |
| Operating Temperature Range<br>MCM76xxDM<br>MCM76xxDC | TA               | -55 to +125<br>0 to +70 | °C   |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |
| Maximum Junction Temperature                          | TJ               | +175                    | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)



# MCM7640 thru MCM7643

## DC OPERATING CONDITIONS AND CHARACTERISTICS

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                | Symbol | Min          | Nom        | Max          | Unit |
|------------------------------------------|--------|--------------|------------|--------------|------|
| Supply Voltage<br>MCM76××DM<br>MCM76××DC | Vcc    | 4.50<br>4.75 | 5.0<br>5.0 | 5.50<br>5.25 | Vdc  |
| Input High Voltage                       | ViH    | 2.0          |            | -            | Vdc  |
| Input Low Voltage                        | VIL    |              | -          | 0.8          | Vdc  |

### DC CHARACTERISTICS

|             |                                                            |                                                                                                                            | Open-Collector<br>Output |            | Three-State<br>Output |     |             | 7           |              |
|-------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-----------------------|-----|-------------|-------------|--------------|
| Symbol      | Parameter                                                  | Test Conditions                                                                                                            | Min                      | Тур        | Max                   | Min | Тур         | Max         | Unit         |
| IRA, IRE    | Address/Enable "1"<br>Input Current "0"                    | V <sub>IH</sub> = V <sub>CC</sub> Max<br>V <sub>IL</sub> = 0.45 V                                                          | -                        | <br>-0.1   | 40<br>-0.25           | -   | -<br>-0.1   | 40<br>-0.25 | µAdc<br>mAdc |
| VOH<br>VOL  | Output Voltage "1"<br>"0"                                  | $I_{OH} = -2.0 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$<br>$I_{OL} = +16 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$          | N/A<br>-                 | 0.35       | 0.45                  | 2.4 | 3.4<br>0.35 | 0.45        | Vdc<br>Vdc   |
| OHE<br>IOLE | Output Disabled "1"<br>Current "0"                         | V <sub>OH</sub> , V <sub>CC</sub> = V <sub>CC</sub> Max<br>V <sub>OL</sub> = +0.3 V, V <sub>CC</sub> = V <sub>CC</sub> Max | _                        | -          | 100<br>N/A            | -   | -           | 100<br>-100 | μAdc<br>μAdc |
| іон         | Output Leakage "1"                                         | VOH, VCC = VCC Max                                                                                                         | -                        |            | 100                   | -   | -           | N/A         | #Adc         |
| VCL         | Input Clamp Voltage                                        | l <sub>in</sub> = -10 mA                                                                                                   | -                        | -          | -1.5                  | -   | -           | -1.5        | Vdc          |
| los         | Output Short Circuit Current                               | V <sub>CC</sub> = V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max                             | N/A                      | -          | N/A                   | 15  | -           | 70          | mAdc         |
| Icc         | Power Supply Current<br>MCM7640/MCM7641<br>MCM1642/MCM7643 | V <sub>CC</sub> = V <sub>CC</sub> Max<br>All Inputs Grounded                                                               |                          | 100<br>100 | 140<br>140            | -   | 100<br>100  | 140<br>140  | mAdc<br>mAdc |

#### **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic     | Symbol '        | Тур   | Unit |
|--------------------|-----------------|-------|------|
| Input Capacitance  | C <sub>in</sub> | 8.0   | pF   |
| Output Capacitance | Cout            | · 8.0 | pF   |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

| (Full operating voltage and temperature unless otherwise noted) |     | 0 to +70°C          |                                                | -55 to +125°C                                                                                                                            |                                                                                                                                                                            |
|-----------------------------------------------------------------|-----|---------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol                                                          | Тур | Max                 | Тур                                            | Max                                                                                                                                      | Unit                                                                                                                                                                       |
| tAA                                                             | 45  | 70                  | 45                                             | 85                                                                                                                                       | ns                                                                                                                                                                         |
| tEA                                                             |     |                     |                                                | [                                                                                                                                        | ns                                                                                                                                                                         |
|                                                                 | 30  | 40                  | 30                                             | 50                                                                                                                                       |                                                                                                                                                                            |
|                                                                 | 15  | 25                  | 15                                             | 30 .                                                                                                                                     |                                                                                                                                                                            |
|                                                                 | tAA | SymbolTyptAA45tEA30 | t <sub>AA</sub> 45 70<br>t <sub>EA</sub> 30 40 | Symbol         Typ         Max         Typ           tAA         45         70         45           tEA         30         40         30 | Symbol         Typ         Max         Typ         Max           tAA         45         70         45         85           tEA         30         40         30         50 |



## MCM7640 thru MCM7643

#### PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

#### **PROGRAMMING PROCEDURE**

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying input highs (V<sub>IH</sub>) to the  $\overline{CS}$  input(s). CS inputs (MCM7640/41 only) must remain at V<sub>IH</sub> for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- 3. Disable the programming circuitry by applying an Output Voltage Disable of less than V<sub>OPD</sub> to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise  $V_{CC}$  to  $V_{PH}$  with rise time equal to  $t_r$ .
- 5. After a delay equal to or greater than t<sub>d</sub>, apply a pulse with amplitude of V<sub>OPE</sub> and duration of t<sub>p</sub> to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the  $V_{CC}$  input is raised to  $V_{PH}$  by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_{H}$ .

- 7. Lower  $V_{CC}$  to 4.5 Volts following a delay of  $t_d$  from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (V<sub>II</sub>) to the CS input(s).
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol         | Parameter                         | Min   | Тур  | Max   | Ünit |
|----------------|-----------------------------------|-------|------|-------|------|
| VIH            | Address Input                     | , 2.4 | 5.0  | 5.0   | v    |
| VIL            | Voltage(1)                        | 0.0   | 0.4  | 0.8   | v    |
| VPH            | Programming/Verify                | 11.75 | 12.0 | 12.25 | V    |
| VPL            | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v    |
| ICCP           | Programming Voltage Current Limit | 600   | 600  | 650   | mA   |
|                | Programming (V <sub>CC</sub> )    |       |      |       |      |
| tr             | Voltage Rise and                  | 1     | 1    | 10    | μs   |
| t <sub>f</sub> | Fall Time                         | 1     | 1    | 10    | μs   |
| td             | Programming Delay                 | 10    | 10   | 100   | μs   |
| tp             | Programming Pulse Width           | 100   | _    | 1000  | μs   |
| DC             | Programming Duty Cycle            | - 1   | 50   | 90    | %    |
|                | Output Voltage                    |       |      |       |      |
| VOPE           | Enable                            | 10.0  | 10.5 | 11.0  | v    |
| VOPD           | Disable(2)                        | 4.5   | 5.0  | 5.5   | v    |
| OPE            | Output Voltage Enable Current     | 2     | 4    | 10    | mA   |
| TC             | Case Temperature                  |       | 25   | 75    | °C   |

TABLE 1 PROGRAMMING SPECIFICATIONS

Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

# MCM7640 thru MCM7643



FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS



## 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7680/81 together with the MCM7620/21, MCM7640/43 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7680 and 81 are pin compatible replacement for the 512  $\times$  8 with pin 2 connected as A9 on the 1024  $\times$  8.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 μA Logic "0", 40 μA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case
  - N<sup>2</sup> Sequencing, Over Commercial and Military Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

## ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                | Symbol           | Value                   | Unit |
|-------------------------------------------------------|------------------|-------------------------|------|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |
| Output Voltage (operating)                            | VOH              | +7.0                    | Vdc  |
| Supply Current                                        | ICC              | 650                     | mAdc |
| Input Current                                         | lin              | -20                     | mAdc |
| Output Sink Current                                   | I <sub>o</sub>   | 100                     | mAdc |
| Operating Temperature Range<br>MCM76x×DM<br>MCM76××DC | TA               | -55 to +125<br>0 to +70 | °C   |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |
| Maximum Junction Temperature                          | TJ               | +175                    | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

| MCM7680<br>MCM7681                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------|
| MTTL<br>8192-BIT PROGRAMMABLE<br>READ ONLY MEMORIES<br>MCM7680 – 1024 × 8 – Open-Collector<br>MCM7681 – 1024 × 8 – Three-State |
| CERAMIC PACKAGE<br>CASE 623                                                                                                    |
| PIN ASSIGNMENT                                                                                                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                         |

## DC OPERATING CONDITIONS AND CHARACTERISTICS

## **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter          | Symbol | Min  | Nom | Max  | Unit |
|--------------------|--------|------|-----|------|------|
| Supply Voltage     | Vcc    |      |     |      | Vdc  |
| MCM76××DM          |        | 4.50 | 5.0 | 5.50 |      |
| MCM76××DC          |        | 4.75 | 5.0 | 5.25 | 1    |
| Input High Voltage | ViH    | 2.0  | -   |      | Vdc  |
| Input Low Voltage  | VIL    | _    | - 1 | 0.8  | Vdc  |

#### DC CHARACTERISTICS

|                                    |                                                                |                                                                                                                   | Ор       | en-Colle<br>Output | ctor        | T     | hree-Sta<br>Output |                    |              |
|------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|--------------------|-------------|-------|--------------------|--------------------|--------------|
| Symbol                             | Parameter                                                      | Test Conditions                                                                                                   | Min      | Тур                | Max         | Min   | Тур                | Max                | Unit         |
| IRA, IRE                           | Address/Enable ''1''<br>Input Current ''0''                    | V <sub>IH</sub> = V <sub>CC</sub> Max<br>V <sub>IL</sub> = 0.45 V                                                 |          | -0.1               | 40<br>-0.25 | -     | -<br>-0.1          | <b>40</b><br>-0.25 | µAdc<br>mAdc |
| V <sub>OH</sub><br>V <sub>OL</sub> | Output Voltage ''1''<br>''0''                                  | $I_{OH} = -2.0 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$<br>$I_{OL} = +16 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$ | N/A<br>— | _<br>0.35          | 0.45        | 2.4   | 3.4<br>0.35        | <br>0.45           | Vdc<br>Vdc   |
| OHE                                | Output Disabled "1"<br>Current "0"                             | $V_{OH}$ , $V_{CC} = V_{CC}$ Max<br>$V_{OL} = +0.3$ V, $V_{CC} = V_{CC}$ Max                                      |          | -                  | 100<br>N/A  | ·     | -                  | 100<br>-100        | μAdc<br>μAdc |
| юн                                 | Output Leakage "1"                                             | VOH, VCC = VCC Max                                                                                                | ·        | -                  | 100         |       | -                  | N/A                | µAdc         |
| VCL                                | Input Clamp Voltage                                            | l <sub>in</sub> = -10 mA                                                                                          | -        | -                  | -1.5        | -     | -                  | -1.5               | Vdc          |
| los                                | Output Short Circuit Current                                   | V <sub>CC</sub> = V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max                    | N/A      |                    | N/A         | 15    | -                  | 70                 | mAdc         |
| lcc                                | Power Supply Current<br>MCM7680/MCM7681DC<br>MCM7680/MCM7681DM | V <sub>CC</sub> = V <sub>CC</sub> Max<br>All Inputs Grounded                                                      |          | 110<br>110         | 150<br>170  | <br>- | 110<br>110         | 150<br>170         | mAdc<br>mAdc |

### **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}$ C, periodically sampled rather than 100% tested.)

|              | Characteristic | Symbol           | Тур | Unit |
|--------------|----------------|------------------|-----|------|
| Input Capaci | tance          | C <sub>in</sub>  | 8.0 | pF   |
| Output Capa  | citance        | C <sub>out</sub> | 8.0 | pF   |

## AC OPERATING CONDITIONS AND CHARACTERISTICS

| Full operating voltage and temperature unless otherwise noted) | _               | 0 to | o + 70°C | -55 to | +125 <sup>0</sup> C | ]    |
|----------------------------------------------------------------|-----------------|------|----------|--------|---------------------|------|
| Characteristic                                                 | Symbol          | Тур  | Max      | Тур    | Max                 | Unit |
| Address to Output Access Time                                  | tAA             | 45   | 70       | 45     | 85                  | ns   |
| Chip Enable Access Time                                        | <sup>t</sup> EA |      |          |        |                     | ns   |
| MCM7680/81                                                     |                 | 30   | 40       | 30     | 50                  |      |



#### PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

#### **PROGRAMMING PROCEDURE**

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- Disable the chip by applying inputs highs (VIH) to the CS inputs. CS inputs must remain at VIH for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- Disable the programming circuitry by applying an Output Voltage Disable of less than V<sub>OPD</sub> to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise V<sub>CC</sub> to V<sub>PH</sub> with rise time equal to t<sub>r</sub>.
- 5. After a delay equal to or greater than  $t_d$ , apply a pulse with amplitude of  $V_{OPE}$  and duration of  $t_p$  to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the V<sub>CC</sub> input is raised to V<sub>PH</sub> by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_d$ .

- 7. Lower V<sub>CC</sub> to 4.5 Volts following a delay of  $t_d$  from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (VIL) to the CS inputs.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- 11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol         | Parameter                         | Min   | Тур  | Max   | Unit    |
|----------------|-----------------------------------|-------|------|-------|---------|
| VIH            | Address Input                     | 2.4   | 5.0  | 5.0   | v       |
| VIL            | Voltage(1)                        | 0.0   | 0.4  | 0.8   | v       |
| VPH            | Programming/Verify                | 11.75 | 12.0 | 12.25 | v       |
| VPL            | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v       |
| ICCP           | Programming Voltage Current Limit | 600   | 600  | 650   | mA      |
|                | Programming (V <sub>CC</sub> )    |       |      |       |         |
| t <sub>r</sub> | Voltage Rise and                  | 1     | 1    | 10    | μs      |
| tf             | Fall Time                         | 1     | 1    | 10    | μs      |
| td             | Programming Delay                 | 10    | 10   | 100   | μs      |
| tp             | Programming Pulse Width           | 100   | -    | 1000  | μs      |
| DC             | Programming Duty Cycle            |       | 50   | 90    | %       |
|                | Output Voltage                    |       |      |       |         |
| VOPE           | Enable                            | 10.0  | 10.5 | 11.0  | - · · v |
| VOPD           | Disable(2)                        | 4.5   | 5.0  | 5.5   | v V     |
| OPE            | Output Voltage Enable Current     | 2     | 4    | 10    | mA      |
| тс             | Case Temperature                  |       | 25   | 75    | °c      |

#### TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

MCM7680, MCM7681



## FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS



# **Advance Information**

### 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7684/85 together with the MCM7620/21/40/41/42/43/ 80/81 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both opencollector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7684 and 85 are pin compatible replacement for the  $1024 \times 4$  with pin 8 connected as A10 on the  $2048 \times 4$ .

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and
- Programming Procedure
   Simple, High-Speed Programming Procedure
- (0.1 second per 1024 Bits, Typical)
   Expandable Open-Collector or Three-State Outputs and Chip Enable Input
- Inputs and Outputs TTL-Compatible
   Low Input Current 250 μA Logic "0", 40 μA Logic "1"
   Full Output Drive 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial and Military
- Temperature Ranges

   Pin-Compatible with Industry-Standard PROMs and ROMs

| Rating                                                | Symbol           | Value                   | Unit |
|-------------------------------------------------------|------------------|-------------------------|------|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |
| Input Voltage                                         | Vin              | +5.5                    | Vdo  |
| Output Voltage (operating)                            | ∨он              | +7.0                    | Vdc  |
| Supply Current                                        | Icc              | 650                     | mAdc |
| Input Current                                         | lin              | -20                     | mAdc |
| Output Sink Current                                   | I <sub>o</sub>   | 100                     | mAdc |
| Operating Temperature Range<br>MCM76x×DM<br>MCM76××DC | TA               | -55 to +125<br>0 to +70 | °C   |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |
| Maximum Junction Temperature                          | TJ               | +175                    | °C   |

#### NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

This is advance information and specifications are subject to change without notice.

# **MCM7684 MCM7685** MTTI 8192-BIT PROGRAMMABLE READ ONLY MEMORIES MCM7684 - 2048 × 4 - Open-Collector MCM7685 - 2048 × 4 - Three-State D SUFFIX CERAMIC PACKAGE CASE 726 PIN ASSIGNMENT A6 Vcc 1 18 2 - 45 Α7 3 - 4 A8 16 4 C A3 A9 15 5 C A0 01 14 6 🗖 A1 02 13 A2 12 7 🗖 03 A10 8 🗆 04 - 11 Gnd cs □10 9 🗖

# MCM7684, MCM7685

## DC OPERATING CONDITIONS AND CHARACTERISTICS

## RECOMMENDED DC OPERATING CONDITIONS

| Parameter          | Symbol | Min  | Nom | Max  | Unit  |
|--------------------|--------|------|-----|------|-------|
| Supply Voltage     | Vcc    |      |     |      | Vdc   |
| MCM76××DM          |        | 4.50 | 5.0 | 5.50 |       |
| MCM76××DC          |        | 4.75 | 5.0 | 5.25 |       |
| Input High Voltage | VIH    | 2.0  | -   |      | ` Vdc |
| Input Low Voltage  | VIL    |      |     | 0.8  | Vdc   |

Three State

0.11.

#### DC CHARACTERISTICS

(Over Recommended Operating Temperature Range)

|              | included Operating Temperature                                   |                                                                                                 | Ор       | Output   | ctor               |     | Output      |             |              |
|--------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|----------|--------------------|-----|-------------|-------------|--------------|
| Symbol       | Parameter                                                        | Test Conditions                                                                                 | Min      | Тур      | Max                | Min | Тур         | Max         | Unit         |
| IRA, IRE     | Address/Enable ''1''<br>Input Current ''0''                      | V <sub>IH</sub> = V <sub>CC</sub> Max<br>V <sub>II</sub> = 0.45 V                               | -        | -0.1     | <b>40</b><br>-0.25 | -   | -0.1        | 40<br>-0.25 | µAdc<br>mAdc |
| VOH<br>VOL   | Output Voltage ''1''<br>''0''                                    | I <sub>OH</sub> = -2.0 mA, V <sub>CC</sub> Min<br>I <sub>OL</sub> = +16 mA, V <sub>CC</sub> Min | N/A<br>- | 0.35     | <br>0.45           | 2.4 | 3.4<br>0.35 | 0.45        | Vđc<br>Vdc   |
| IOHZ<br>IOLZ | Output Disabled "1"<br>Current "0"                               | V <sub>OH</sub> , V <sub>CC</sub> Max<br>V <sub>OL</sub> = +0.3 V, V <sub>CC</sub> Max          |          | -        | 100<br>N/A         | -   | -           | 100<br>-100 | μAdc<br>μAdc |
| юн           | Output Leakage "1"                                               | VOH, VCC Max                                                                                    | -        |          | 100                | -   | -           | N/A         | μAdc         |
| VIC          | Input Clamp Voltage                                              | l <sub>in</sub> = -10 mA                                                                        | -        | -        | -1.5               | -   | -           | -1.5        | Vdc          |
| IOS          | Output Short Circuit Current                                     | V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max                    | N/A      | -        | N/A                | 15  | -           | 70          | mAdc         |
| lcc          | Power Supply Current<br>MCM7684/MCM7685 DC<br>MCM7684/MCM7685 DM | V <sub>CC</sub> Max<br>All Inputs Grounded                                                      | -        | 80<br>80 | 120<br>140         | -   | 80<br>80    | 120<br>140  | mAdc<br>mAdc |

#### **CAPACITANCE** (f = 1.0 MHz, $T_{\dot{A}}$ = 25°C, periodically sampled rather than 100% tested.)

| Characteristic     | Symbol | Тур | Unit |
|--------------------|--------|-----|------|
| Input Capacitance  | Cin    | 8.0 | pF   |
| Output Capacitance | Cout   | 8.0 | pF   |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

| Full operating voltage and temperature unless otherwise noted) |        | 0 to | +70 <sup>0</sup> C | -55 to | +125°C |      |
|----------------------------------------------------------------|--------|------|--------------------|--------|--------|------|
| Characteristic                                                 | Symbol | Тур  | Max                | Тур    | Max    | Unit |
| Address to Output Access Time                                  | tAA    | 45   | 70                 | 45.    | 85     | ns   |
| Chip Enable Access Time                                        | tEA    | 15   | 25                 | 15     | 30     | ns   |
| 1                                                              |        |      |                    |        |        |      |



## MCM7684, MCM7685

#### PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. 'An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying an input high (V<sub>IH</sub>) to the  $\overline{\text{CS}}$  input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- Disable the programming circuitry by applying an Output Voltage Disable of less than V<sub>OPD</sub> to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise V<sub>CC</sub> to V<sub>PH</sub> with rise time equal to t<sub>r</sub>.
- 5. After a delay equal to or greater than  $t_d$ , apply a pulse with amplitude of  $V_{OPE}$  and duration of  $t_p$  to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the V<sub>CC</sub> input is raised to V<sub>PH</sub> by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_d$ .

- 7. Lower  $V_{CC}$  to 4.5 Volts following a delay of  $t_d$  from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (VIL) to the CS inputs.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol           | Parameter                         | Min   | Тур  | Max   | Unit |
|------------------|-----------------------------------|-------|------|-------|------|
| ⊻ін              | Address Input                     | 2.4   | 5.0  | 5.0   | V    |
| VIL              | Voltage(1)                        | 0.0   | 0.4  | 0.8   | v    |
| Vph              | Programming/Verify                | 11.75 | 12.0 | 12.25 | v    |
| VPL              | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v    |
| ICCP             | Programming Voltage Current Limit | 600   | 600  | 650   | mA   |
|                  | Programming (V <sub>CC</sub> )    |       |      |       |      |
| t <sub>r</sub> · | Voltage Rise and                  | 1     | 1    | 10    | μs   |
| tf               | Fall Time                         | 1     | 1    | 10    | μs   |
| td               | Programming Delay                 | 10    | 10   | 100   | μs   |
| tp               | Programming Pulse Width           | 100   | -    | 1000  | μs   |
| DC               | Programming Duty Cycle            |       | 50   | 90    | %    |
|                  | Output Voltage                    |       |      |       |      |
| VOPE             | Enable                            | 10.0  | 10.5 | 11.0  | v    |
| VOPD             | Disable(2)                        | 4.5   | 5.0  | 5.5   | v    |
| OPE              | Output Voltage Enable Current     | 2     | 4    | 10    | mA   |
| TC               | Case Temperature                  |       | 25   | 75    | °C   |

TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

MCM7684, MCM7685



#### FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS

# MECL MEMORIES GENERAL INFORMATION

Complete information is available in the MECL Data Book. Contact your sales representative or authorized distributor for information.

| TABLE 1 – LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED | TABLE 1 – | LIMITS B | EYOND WHICH | I DEVICE LIFE MA | Y BE IMPAIRED |
|-----------------------------------------------------------|-----------|----------|-------------|------------------|---------------|
|-----------------------------------------------------------|-----------|----------|-------------|------------------|---------------|

| Characteristic                                             | Symbol           | Rating               | Unit |
|------------------------------------------------------------|------------------|----------------------|------|
| Supply Voltage                                             | VEE              | -8.0 to 0            | V    |
| Input Voltage (V <sub>CC</sub> = 0)                        | Vin              | 0 to V <sub>EE</sub> | V    |
| Output Source Current — Continuous<br>Surge                | lout             | 50<br>100            | mA   |
| Junction Temperature – Ceramic Package①<br>Plastic Package | Тј               | 165<br>150           | °C   |
| Storage Temperature                                        | T <sub>stg</sub> | -55 to +150          | °Ç   |

(1) Maximum  $T_J$  may be exceeded ( $\leq 250^{\circ}$ C) for short periods of time ( $\leq 240$  hours) without significant reduction in device life.

| Characteristic                                                     | Symbol | Rating                            | Unit |  |
|--------------------------------------------------------------------|--------|-----------------------------------|------|--|
| Supply Voltage (V <sub>CC</sub> = 0)                               | VEE    | -4.94 to -5.46                    | v    |  |
| Output Drive — MCM10100 Series<br>MCM10500 Series                  |        | 50 Ω to -2.0 V<br>100 Ω to -2.0 V | Ω    |  |
| Operating Temperature Range③<br>MCM10100 Series<br>MCM10500 Series | ТА     | 0 to 75<br>- 55 to + 125          | °C   |  |

(2) Functionality only. Data sheet limits are specified for -5.19 to -5.21 V. (3) With airflow  $\ge 500$  lfpm.

# **MECL MEMORIES (continued)**

#### TABLE 3 - DC TEST PARAMETERS

Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear feet per minute is maintained.  $V_{EE} = -5.2 \text{ V} \pm 0.010 \text{ V}$ .

| Forcing              |                    | -55 <sup>0</sup> C | 0°C        | 25 <sup>0</sup> C |           | 75 <sup>0</sup> C | 125 <sup>0</sup> C |
|----------------------|--------------------|--------------------|------------|-------------------|-----------|-------------------|--------------------|
| Function             | Parameter          | MCM10500*          | MCM10100** | MCM10100**        | MCM10500* | MCM10100**        | MCM10500*          |
| VIHmax               | V <sub>OHmax</sub> | -0.880             | -0.840     | -0.810            | -0.780    | -0.720            | -0.630             |
|                      | VOHmin             | -1.080             | -1.000     | -0.960            | -0.930    | -0.900            | -0.825             |
|                      | VOHAmin            | -1.100             | -1.020     | -0.980            | -0.950    | -0.920            | 0.845              |
| VIHAmin              |                    | -1.255             | -1.145     | - 1.105           | -1.105    | -1.045            | -1.000             |
| VILAmin              |                    | -1.510             | -1.490     | -1.475            | -1.475    | - 1.450           | -1.400             |
|                      | VOLAmin            | -1.635             | -1.645     | -1.630            | -1.600    | -1.605            | -1.525             |
|                      | VOLAmax            |                    | -1.665     | -1.650            | -1.620    | -1.625            | -1.545             |
| VILmin               | VOLmin             | -1.920             | -1.870     | -1.850            | -1.850    | - 1.830           | -1.820             |
| · V <sub>ILmin</sub> | INLmin             | 0.5                | 0.5        | 0.5               | 0.5       | 0.3               | 0.3                |

\* Driving 100  $\Omega$  to -2.0 V.

\*\*Driving 50  $\Omega$  to -2.0 V.



FIGURE 1 – SWITCHING TIME TEST CIRCUIT

# **MECL MEMORIES (continued)**



#### FIGURE 2 - CHIP SELECT ACCESS TIME WAVEFORM

## FIGURE 3 – ADDRESS ACCESS TIME WAVEFORM



### FIGURE 4 - SETUP AND HOLD WAVEFORMS (WRITE MODE)





# MCM10143 8 X 2 MULTIPORT REGISTER FILE (RAM)

#### 8 x 2 MULTIPORT REGISTER FILE (RAM)

The MCM10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

#### WRITE

The word to be written is selected by addresses  $A_0-A_2$ . Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by  $A_0-A_2$ .

#### READ

When the clock is high any two words may be read out simultaneously, as selected by addresses  $B_0-B_2$  and  $C_0-C_2$ , including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates ( $B_0-B_1$ ), ( $C_0-C_1$ ).

### t<sub>pd</sub>:

Clock to Data out = 5 ns (typ) (Read Selected) Address to Data out = 10 ns (typ) (Clock High) Read Enable to Data out = 2.8 ns (typ) (Clock high, Addresses present) PD = 610 mW/pkg (typ no load)

|       | TRUTH TABLE |     |                 |          |    |                       |     |     |                 |      |     |  |  |  |
|-------|-------------|-----|-----------------|----------|----|-----------------------|-----|-----|-----------------|------|-----|--|--|--|
| *MODE | -           |     | IN              | · OUTPUT |    |                       |     |     |                 |      |     |  |  |  |
|       | **Clock     | WE0 | WE <sub>1</sub> | Do       | D1 | REB                   | REC | QВ0 | QB <sub>1</sub> | QC0  | QC1 |  |  |  |
| Write | L⊸≁H        | L · | L               | H,       | н  | .н.                   | н   | L   | L               | - L. | L   |  |  |  |
| Read  | н           | ø   | ¢.              | ø        | 0  | <ul> <li>L</li> </ul> | L   | н   | н               | н    | н   |  |  |  |
| Read  | H→L         | ø   | ¢               | φ        | 0  | L                     | L   | н   | н               | н.   | н   |  |  |  |
| Read  | L→H→L       | н   | н               | 0        | φ· | Ł                     | L   | н   | н               | н    | н   |  |  |  |
| Write | L→H         | L   | L               | L.       | н  | н                     | ∴н  | ι.  | L               | L    | L   |  |  |  |
| Read  | н           | φ   | φ́              | φ·       | .0 | L                     | L   | E,  | н               | L.   | н   |  |  |  |

Note: Clock occurs sequentially through Truth Table

\*Note: A0-A2, B0-B2, and C0-C2 are all set to same address location throughout Table.

φ = Don't Care



L SUFFIX CERAMIC PACKAGE CASE 623

#### **PIN ASSIGNMENT**





#### BLOCK DIAGRAM

4

# MCM10143

|                                      |                                             | 0        | °C             |      | +25°C |      | +7  | 5°C            |             |
|--------------------------------------|---------------------------------------------|----------|----------------|------|-------|------|-----|----------------|-------------|
| Characteristics                      | Symbol                                      | Min      | Max            | Min  | Тур   | Max  | Min | Max            | Unit        |
| Power Supply Drain Current           | ΙE                                          | _        | 150            | -    | 118   | 150  | -   | 150            | mAdc        |
| Input Current                        | linH                                        |          |                |      |       |      |     |                | μAdc        |
| Pins 10, 11, 19                      |                                             | · — .    | 245            |      |       | 245  |     | 245            |             |
| All other pins                       |                                             | _        | 200            | -    | -     | 200  | -   | 200            |             |
| Switching Times ①                    |                                             |          |                |      |       |      |     |                | ns          |
| Read Mode                            |                                             |          |                |      |       |      |     |                |             |
| Address Input                        | <sup>t</sup> B <sup>±</sup> OB <sup>±</sup> | 4.0      | 15.3           | 4.5  | 10    | 14.5 | 4.5 | 15.5           |             |
| Read Enable                          | tREQB+                                      | 1.1      | 5.3            | 1.2  | 3.5   | 5.0  | 1.2 | 5.5            |             |
| Data                                 | <sup>t</sup> Clock+QB-                      | 1.7      | 7.3            | 2.0  | 5.0   | 7.0  | 2.0 | 7.6            |             |
| Setup                                |                                             |          |                |      | ^     |      |     |                |             |
| Address                              | tsetup(B-Clock-)                            | _        | -              | 8.5  | 5.5   |      | -   | . –            |             |
| , Hold                               |                                             |          |                |      |       |      |     |                | ĺ           |
| Address                              | thold (Clock – B+)                          | -        | l –            | -1.5 | -4.5  | -    | — · | -              |             |
| Write Mode                           |                                             |          |                |      |       |      |     |                |             |
| Setup                                |                                             |          |                | κ.   |       |      |     |                |             |
| Write Enable                         | tsetup (WE - Clock +)                       |          | 1              | 7.0  | 4.0   | -    | -   | -              |             |
|                                      | tsetup(WE+Clock-)                           | -        | -              | 1.0  | -2.0  |      | -   | -              |             |
| Address                              | tsetup (A-Clock+)                           | -        | -              | 8.0  | 5.0   | -    | -   | _              |             |
| Data                                 | tsetup(D-Clock+)                            | · —      | -              | 5.0  | 2.0   | -    | -   |                |             |
| Hold                                 |                                             |          | [              |      |       |      |     |                |             |
| Write Enable                         | <sup>t</sup> hold(Clock+WE+)                | <u> </u> | - 1            | 5.5  | 2.5   | -    | . — | -              |             |
|                                      | <sup>t</sup> hold(Clock+WE-)                | -        | -              | 1.0  | -2.0  | -    | -   | -              |             |
| Address                              | <sup>t</sup> hold(Clock+A+)                 |          | -              | 1.0  | -3.0  | -    | -   | — <sup>1</sup> | 1. A. 1. A. |
| Data                                 | <sup>t</sup> hold (Clock + D +)             | -        | -              | 1.0  | -2.0  | -    | -   | -              |             |
| Write Pulse Width                    | PWWE                                        | -        | <del>.</del> . | 8.0  | 5.0   | -    | -   | -              |             |
| Rise Time, Fall Time<br>(20% to 80%) | tr, tf                                      | -1.1     | 4.2            | 1.1  | 2.5   | 4.0  | 1.1 | 4.5            |             |

# ELECTRICAL CHARACTERISTICS

()AC timing figures do not show all the necessary presetting conditions.



4

# MCM10143





256 X 1-BIT RANDOM ACCESS MEMORY



#### TRUTH TABLE

| MODE        |     | INPUT |     | OUTPUT |
|-------------|-----|-------|-----|--------|
|             | cs• | WE    | Din | Dout   |
| Write ''O'' | L   | L     | L   | L      |
| Write "1"   | L   | L     | н   | L      |
| Read        | L   | , H   | ø   | ٩      |
| Disabled    | H . | φ     | φ   | L      |

 $\overline{CS} = \overline{CS1} + \overline{CS2} + \overline{CS3}$ φ = Don't Care



The MCM10144/10544 is a 256 word X 1-bit RAM, Bit selection is achieved by means of an 8-bit address A0 through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (CS inputs low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$ low the chip is in the write mode-the output is low and the data present at Din is stored at the selected address. With WE high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Dout

- Typical Address Access Time = 17 ns
- Typical Chip Select Access Time = 4.0 ns .
- 50 k Input Pulldown Resistors on Chip Select
- Power Dissipation (470 mW typ @ 25°C) Decreases with Increasing Temperature
- Pin-for-Pin Replacement for F10410

#### 1 AO Vcc 116 Dout ] 15 2 A 1 WF з Г A2 714 AЗ Din 113 CS1 5 F Α7 112 CS2 711 6 [ 46 CS3 Α5 10 CERAMIC PACKAGE VEE A4 ] 9 8[



**F SUFFIX** 

CASE 650

#### PIN ASSIGNMENT

# **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | 5°C | 0   | °C  | +2  | 5°C | + 75 | 5°C | +12 | 5°C |      |
|----------------------------|--------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|
| Characteristic             | Symbol | Min | Max | Min | Max | Min | Max | Min  | Max | Min | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 140 | -   | 135 | _   | 130 | -    | 125 | -   | 125 | mAdc |
| Input Current High         | linH   |     | 375 | -   | 220 | —   | 220 | -    | 220 | -   | 220 | μAdc |

-55<sup>o</sup>C and +125<sup>o</sup>C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                                      |                                 | MCM | 10144                       | мсм | 10544                       |      |                                      |
|------------------------------------------------------|---------------------------------|-----|-----------------------------|-----|-----------------------------|------|--------------------------------------|
|                                                      |                                 |     | = 0 to<br>5 <sup>0</sup> C, | 1 7 | -55 to<br>5 <sup>0</sup> C, |      |                                      |
|                                                      | · .                             | _   | E =<br>Vdc                  | _   | E =<br>Vdc                  |      |                                      |
| 1. <b>1</b> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                                 | ± ! | 5%                          | ±   | 5%                          |      |                                      |
| Characteristics                                      | Symbol                          | Min | Max                         | Min | Max                         | Unit | Conditions                           |
| Read Mode                                            |                                 |     |                             |     |                             | ns   | Measured from 50% of                 |
| Chip Select Access Time                              | tACS                            | 2.0 | 10                          | 2.0 | 10                          |      | input to 50% of output.              |
| Chip Select Recovery Time                            | tRCS                            | 2.0 | 10                          | 2.0 | 10                          |      | See Note 2.                          |
| Address Access Time                                  | <sup>t</sup> AA                 | 7.0 | 26                          | 7.0 | 26                          |      |                                      |
| Write Mode                                           |                                 |     |                             |     |                             | ns   | t <sub>WSA</sub> = 8.0 ns            |
| Write Pulse Width                                    | tw                              | 25  | . —                         | 25  | —                           |      | Measured at 50% of                   |
| Data Setup Time Prior to Write                       | twsd                            | 2.0 | <sup>·</sup>                | 2.0 | , É                         |      | input to 50% of output.              |
| Data Hold Time After Write                           | twhD                            | 2.0 | -                           | 2.0 | —                           |      | tw = 25 ns.                          |
| Address Setup Time Prior to Write                    | twsa                            | 8.0 | -                           | 8.0 |                             | 5    |                                      |
| Address Hold Time After Write                        | twha                            | 0.0 | -                           | 0.0 | -                           |      |                                      |
| Chip Select Setup Time Prior to<br>Write             | twscs                           | 2.0 |                             | 2.0 |                             |      | -<br>                                |
| Chip Select Hold Time After Write                    | twhcs                           | 2.0 |                             | 2.0 | _                           |      |                                      |
| Write Disable Time                                   | tws                             | 2.5 | 10                          | 2.5 | 10                          |      | -                                    |
| Write Recovery Time                                  | twr                             | 2.5 | 10                          | 2.5 | 10                          |      |                                      |
| Rise and Fall Time                                   | t <sub>r</sub> , t <sub>f</sub> |     |                             | -   |                             | ns   | Measured between 20% and 80% points. |
| Address to Output                                    |                                 | 1.5 | 7.0                         | 1.5 | 7.0                         |      |                                      |
| CS or WE to Output                                   |                                 | 1.5 | 5.0                         | 1.5 | 5.0                         |      |                                      |
| Capacitance                                          |                                 |     |                             |     |                             | рF   | Measured with a pulse                |
| Input Capacitance                                    | Cin                             | t — | 5.0                         | -   | 5.0                         |      | technique.                           |
| Output Capacitance                                   | Cout                            | -   | 8.0                         | -   | 8.0                         |      |                                      |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10144; 100  $\Omega$ , MCM10544.  $C_L \le 5.0 \text{ pF}$  (including jig and stray capacitance). Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

**10TOROLA** 

# MCM10145/MCM10545

**16 X 4-BIT REGISTER FILE** (RAM)



The MCM10145/10545 is a 16 word  $\times$  4-bit RAM. Bit selection is achieved by means of a 4-bit address A0 through A3.

The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (CS input low) is controlled by the WE input. With WE low the chip is in the write mode-the output is low and the data present at Dn is stored at the selected address. With WE high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Q<sub>n</sub>.

- Typical Address Access Time = 10 ns
- Typical Chip Select Access Time = 4.5 ns
- 50 kΩ Pulldown Resistors on All Inputs
- Power Dissipation (470 mW typ @ 25<sup>0</sup>C) Decreases with Increasing Temperature

|--|

L SUFFIX CERAMIC PACKAGE CASE 620





FIGURE 1 - CHIP ENABLE STROBE MODE





**F SUFFIX** CERAMIC PACKAGE CASE 650

4-41

### **ELECTRICAL CHARACTERISTICS**

|                            |        | - 5 | 5°C | 0   | °c  | +2! | 5°C | +7  | 5°C | + 12 | 5°C |      |
|----------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|
| Characteristic             | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Min  | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 135 | -   | 130 | -   | 125 | -   | 120 | -    | 120 | mAdc |
| Input Current High         | linH   | -   | 375 |     | 220 | . — | 220 | -   | 220 | - "  | 220 | μAdc |

-55<sup>0</sup>C and +125<sup>0</sup>C test values apply to MC105xx devices only.

## SWITCHING CHARACTERISTICS (Note 1)

| · · · · · · · · · · · · · · · · · · ·       |                                 | мсм  | 10145                       | мсм        | 10545                       |      |                         |
|---------------------------------------------|---------------------------------|------|-----------------------------|------------|-----------------------------|------|-------------------------|
|                                             |                                 | +7   | = 0 to<br>5 <sup>0</sup> C, | +12        | –55 to<br>5 <sup>0</sup> C, |      |                         |
|                                             |                                 | -5.2 | E =<br>Vdc<br>5%            | -5.2       | E =<br>Vdc<br>5%            |      |                         |
| Characteristics                             | Symbol                          | Min  | Max                         | Min        | Max                         | Unit | Conditions              |
| Read Mode                                   |                                 |      |                             |            |                             | ns   | Measured from 50% of    |
| Chip Select Access Time                     | tACS                            | 2.0  | 8.0                         | 2.0        | 10                          |      | input to 50% of output: |
| Chip Select Recovery Time                   | <sup>t</sup> RCS                | 2.0  | 8.0                         | 2.0        | 10                          |      | See Note 2.             |
| Address Access Time                         | t'AA                            | 4.0  | 15                          | 4.0        | 18                          |      |                         |
| Write Mode                                  |                                 |      |                             |            |                             | ns   | twsa = 5 ns             |
| Write Pulse Width                           | tw                              | 8.0  | -                           | 8.0        | _                           |      | Measured at 50% of      |
| Data Setup Time Prior to Write              | twsp                            | 0    | <u> </u>                    | 0          | _                           | 1    | input to 50% of output. |
| Data Hold Time After Write                  | twhD                            | 3.0  | _                           | 4.0        |                             |      | t <sub>W</sub> = 8 ns.  |
| Address Setup Time Prior to Write           | twsA                            | 5.0  | . —                         | 5.0        | -                           |      |                         |
| Address Hold Time After Write               | tWHA                            | 1.0  |                             | 3.0        |                             |      |                         |
| Chip Select Setup Time Prior to<br>Write    | twscs                           | · 0  | -                           | 5.0        | `                           |      |                         |
| Chip Select Hold Time After Write           | twncs                           | 0    | ·                           | 0          | ·                           |      |                         |
| Write Disable Time                          | tws                             | 2.0  | 8.0                         | 2.0        | 10                          |      | ×                       |
| Write Recovery Time                         | twB                             | 2.0  | 8.0                         | 2.0        | 10                          |      |                         |
| Chip Enable Strobe Mode                     |                                 |      |                             |            |                             | ns   | Guaranteed but not      |
| Data Setup Prior to Chip Select             | tCSD                            | 0    | -                           |            |                             |      | tested on standard      |
| Write Enable Setup Prior to<br>Chip Select  | tÇSW                            | 0    | -                           | -          | -                           |      | product. See Figure 1.  |
| Address Setup Prior to Chip Select          | tCSA                            | 0    | _                           | _          |                             |      |                         |
| Data Hold Time After Chip Select            | tCHD                            | 2.0  |                             | 1 <u>-</u> |                             |      |                         |
| Write Enable Hold Time After<br>Chip Select | <sup>t</sup> CHW                | 0    | -                           |            |                             |      |                         |
| Address Hold Time After Chip<br>Select      | <sup>t</sup> CHA                | 4.0  | -                           | -          | -                           |      |                         |
| Chip Select Minimum Pulse Width             | tcs                             | 18   | _                           | -          | _                           |      |                         |
| Rise and Fall Time                          | t <sub>r</sub> , t <sub>f</sub> |      |                             |            |                             | ns   | Measured between 20%    |
| Address to Output                           | 4/4                             | 1.5  | 7.0                         | 1.5        | 7.0                         |      | and 80% points.         |
| CS to Output                                |                                 | 1.5  | 5.0                         | 1.5        | 5.0                         |      |                         |
| Capacitance                                 | 1                               |      |                             |            |                             | pF   | Measured with a pulse   |
| Input Capacitance                           | Cin                             |      | 6.0                         | -          | 6.0                         |      | technique.              |
| Output Capacitance                          | Cout                            | - 1  | 8.0                         | l _ '      | 8.0                         |      |                         |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10145; 100  $\Omega$ , MCM10545.  $C_L \le 5.0 pF$  (including jig and Stray Capacitance). Delay should be derated 30 ps/pF for capacitive loads up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.



1024 X 1-BIT RANDOM ACCESS MEMORY



The MCM10146/10546 is a 1024 X 1-bit RAM. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM ( $\overline{CS}$  input low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$ low, the chip is in the write mode, the output,  $D_{out}$ , is low and the data state present at  $D_{in}$  is stored at the selected address. With  $\overline{WE}$ high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at  $D_{out}$ . (See Truth Table.)

- Pin-for-Pin Compatible with the 10415
- Power Dissipation (520 mW typ @ 25<sup>0</sup>C)
   Decreases with Increasing Temperature
- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns
- 50 kΩ Pulldown Resistor on Chip Select Input



# **ELECTRICAL CHARACTERISTICS**

|                            |        | -55    | 5°C    |        |        | +25°C + |        | +7     | +75°C  |        | +125 <sup>0</sup> C |      |
|----------------------------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|---------------------|------|
| Characteristic             | Symbol | Min    | Max    | Min    | Max    | Min     | Max    | Min    | Max    | Min    | Max                 | Unit |
| Power Supply Drain Current | IEE    |        | 155    | -      | 150    |         | 145    | -      | 125    | —      | 125                 | mAdc |
| Input Current High         | linH   |        | 375    | -      | 220    |         | 220    | -      | 220    | -      | 220                 | μAdc |
| Logic "0" Output Voltage   | VOL    | -1.970 | ~1.655 | -1.920 | -1.665 | -1.900  | -1.650 | -1.880 | -1.625 | -1.870 | -1.545              | Vdc  |

NOTE: -55°C and +125°C test values apply to MCM105XX only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                   |                                 | МСМ                    | 10146                       | мсм                                | 10546                        |      | · ,                                                                                                              |
|-----------------------------------|---------------------------------|------------------------|-----------------------------|------------------------------------|------------------------------|------|------------------------------------------------------------------------------------------------------------------|
|                                   |                                 | +7                     | = 0 to<br>5 <sup>0</sup> C, | +12                                | – 55 to<br>5 <sup>0</sup> C, |      |                                                                                                                  |
|                                   |                                 | VEE = -5.2 Vdc<br>± 5% |                             | V <sub>EE</sub> = -5.2 Vdc<br>± 5% |                              |      |                                                                                                                  |
| Characteristics                   | Symbol                          | Min                    | Max                         | Min                                | Max                          | Unit | Conditions                                                                                                       |
| Read Mode                         |                                 |                        |                             |                                    |                              | ns   | Measured at 50% of input                                                                                         |
| Chip Select Access Time           | TACS                            | 2.0                    | 7.0                         | 2.0                                | 8.0                          |      | to 50% of output.                                                                                                |
| Chip Select Recovery Time         | TRCS                            | 2.0                    | 7.0                         | 2.0                                | 8.0                          |      | See Note 2.                                                                                                      |
| Address Access Time               | tAA                             | 8.0                    | 29                          | 8.0                                | 40                           |      |                                                                                                                  |
| Write Mode                        |                                 |                        |                             |                                    |                              | ns   | twsA = 8.0 ns.                                                                                                   |
| Write Pulse Width                 | tw                              | 25                     | · -                         | 25                                 | -                            |      | Measured at 50% of input                                                                                         |
| (To guarantee writing)            |                                 |                        | ļ                           |                                    |                              |      | to 50% of output.                                                                                                |
| Data Setup Time Prior to Write    | twsp                            | 5.0                    | <u> </u>                    | 5.0                                |                              |      | tw = 25 ns                                                                                                       |
| Data Hold Time After Write        | twhD                            | 5.0                    |                             | 5.0                                | -                            |      |                                                                                                                  |
| Address Setup Time Prior to Write | twsA                            | 8.0                    | - 1                         | 10                                 | - 1                          | [    |                                                                                                                  |
| Address Hold Time After Write     | tWHA                            | 2.0                    | -                           | 8.0                                |                              | 1    | · · · · · · · · · · · · · · · · · · ·                                                                            |
| Chip Select Setup Time Prior to   | twscs                           | 5.0                    | -                           | 5.0                                | · · ·                        | .    | and the second |
| Write                             |                                 |                        | ļ                           |                                    |                              | 1    |                                                                                                                  |
| Chip Select Hold Time After Write | twhcs                           | 5.0                    | -                           | 5.0                                | -                            |      |                                                                                                                  |
| Write Disable Time                | tws                             | 2.8                    | 7.0                         | 2.8                                | 12                           |      |                                                                                                                  |
| Write Recovery Time               | tWR                             | 2.8                    | 7.0                         | 2.8                                | . 12                         |      |                                                                                                                  |
| Rise and Fall Time                | t <sub>r</sub> , t <sub>f</sub> |                        |                             |                                    | 1                            | ns   | Measured between 20% and                                                                                         |
| CS or WE to Output                |                                 | 1.5                    | 4.0                         | 1.5                                | 4.0                          |      | 80% points.                                                                                                      |
| Address to Output                 |                                 | 1.5                    | 8.0                         | 1.5                                | 8.0                          |      |                                                                                                                  |
| Capacitance                       | +                               |                        |                             |                                    |                              | pF   | Measured with a pulse                                                                                            |
| Input Capacitance                 | Cin                             | -                      | 5.0                         | -                                  | 5.0                          |      | technique.                                                                                                       |
| Output Capacitance                | Cout                            | -                      | 8.0                         | -                                  | 8.0                          |      |                                                                                                                  |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10146; 100  $\Omega$ , MCM10546.  $C_L \le 5.0$  pf including jig and stray capacitance. For Capacitance Loading  $\le 50$  pF, delay should be derated by 30 ps/pF.

The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.



128 X 1-BIT **RANDOM ACCESS MEMORY** 



The MCM1047/10547 is a fast 128-word X 1-bit RAM. Bit selection is achieved by means of a 7-bit address, A0 through A6.

The active low chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system

The operating mode ( $\overline{CS}$  inputs low) is controlled by the WE input. With WE low the chip is in the write mode-the output is low and the data present at  $\mathsf{D}_{in}$  is stored at the selected address. With  $\overline{\text{WE}}$  high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at Dout

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (420 mW typ @ 25<sup>o</sup>C) Decreases with Increasing Temperature
- Similar to F10405



#### TRUTH TABLE

| MODE      |     | INPUT |     | OUTPUT |
|-----------|-----|-------|-----|--------|
|           | cs• | WE    | Din | Dout   |
| Write "O" | L   | L     | L   | L.     |
| Write "1" | L   | L     | н   | L      |
| Read      | L   | н     | φ   | ٩      |
| Disabled  | н   | φ     | φ   | L      |

**F SUFFIX** 

CERAMIC PACKAGE

φ = Don't Care



### **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | 5°C | 0   | °c  | +2  | 5°C | +7  | 5°C | +12 | 5°C |      |
|----------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Characteristic             | Symbol | Min | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 115 |     | 105 |     | 100 | -   | 95  |     | 95  | mAdc |
| Input Current High         | lin H  | -   | 375 | -   | 220 | -   | 220 | -   | 220 | -   | 220 | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                       |                                 | MCM                   | 10147                            | MCM1 | 10547                   |      |                                      |
|---------------------------------------|---------------------------------|-----------------------|----------------------------------|------|-------------------------|------|--------------------------------------|
|                                       |                                 | T <sub>A</sub> = 0 to | o +75 <sup>0</sup> C,            |      | to +125 <sup>0</sup> C, |      |                                      |
|                                       |                                 | VEE = -5.             | VEE = -5.2 Vdc ±5% VEE = -5.2 Vd |      | 2 Vdc ±5%               |      |                                      |
| Characteristics                       | Symbol                          | Min                   | Max                              | Min  | Max                     | Unit | Conditions                           |
| Read Mode                             |                                 |                       |                                  |      |                         | ns.  | Measured from 50% of                 |
| Chip Select Access Time               | <sup>t</sup> ACS                | 2.0                   | 8.0                              | *    | •                       |      | input to 50% of output.              |
| Chip Select Recovery Time             | <sup>t</sup> RCS                | 2.0                   | 8.0                              | •    | •                       |      | See Note 2.                          |
| Address Access Time                   | <sup>t</sup> AA                 | 5.0                   | 15                               | * .  | •                       |      |                                      |
| Write Mode                            |                                 |                       |                                  |      |                         | ns   | twsa = 4.0 ns                        |
| Write Pulse Width                     | tw                              | 8.0                   | -                                | •    | _ ···                   |      | Measured at 50% of input             |
| Data Setup Time Prior to Write        | twsD                            | 1.0                   |                                  | • .  | -                       |      | to 50% of output.                    |
| Data Hold Time After Write            | twhD                            | . 3.0                 |                                  | •    |                         |      | tw = 8.0 ns.                         |
| Address Setup Time Prior to Write     | tWSA                            | 4.0                   | ·                                | *    | -                       |      |                                      |
| Address Hold Time After Write         | tWHA                            | 3.0                   |                                  | *    |                         |      |                                      |
| Chip Select Setup Time Prior to Write | twscs                           | 1.0                   | -                                | *    | -                       |      |                                      |
| Chip Select Hold Time After Write     | <sup>t</sup> WHCS               | 10                    | ' <del></del> -                  | *    |                         |      |                                      |
| Write Disable Time                    | tws                             | 2.0                   | 8.0                              | • .  | *                       |      |                                      |
| Write Recovery Time                   | twn                             | 2.0                   | 8.0                              | *    | *                       |      |                                      |
| Rise and Fall Time                    | t <sub>r</sub> , t <sub>f</sub> | 1.5                   | 5.0                              | *    | *                       | ns   | Measured between 20% and 80% points. |
| Capacitance                           |                                 |                       |                                  |      |                         | рF   | Measured with a pulse                |
| Input Capacitance                     | Cin                             | -                     | 5.0                              | . –  | •                       |      | technique.                           |
| Output Capacitance                    | Cout                            | -                     | 8.0                              | -    | *                       |      |                                      |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10147; 100  $\Omega$ , MCM10547.

 $C_L \leq 5.0 \text{ pF}$  (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.



## 64 X 1-BIT RANDOM ACCESS MEMORY



The MCM10148/10548 is a fast 64-word X 1-bit RAM. Bit selection is achieved by means of a 6-bit address, A0 through A5.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system performance.

The operating mode ( $\overline{CS}$  inputs low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$  low the chip is in the write mode-the output is low and the data present at  $D_{in}$  is stored at the selected address. With  $\overline{WE}$  high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at  $D_{out}$ .

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (420 mW typ @ 25<sup>o</sup>C)
   Decreases with Increasing Temperature

TRUTH TARLE

|             | 1110 | THIAD |     |        |
|-------------|------|-------|-----|--------|
| MODE        |      | INPUT |     | OUTPUT |
|             | CS.  | WE    | Din | Dout   |
| Write ''0'' | L    | L     | L   | L      |
| Write "1"   | L    | L     | н   | L      |
| Read        | L    | н     | φ   | ٩      |
| Disabled    | н    | φ     | φ   | L      |

 $\bullet \overline{\text{CS}} \approx \overline{\text{CS1}} + \overline{\text{CS2}} + \overline{\text{CS3}} \phi = \text{Don't Care}.$ 

F SUFFIX CERAMIC PACKAGE CASE 650 4

## **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | -55°C |     | 0°C |     | + 25 <sup>0</sup> C |     | +75 <sup>0</sup> C |     | 5°C |      |
|----------------------------|--------|-----|-------|-----|-----|-----|---------------------|-----|--------------------|-----|-----|------|
| Characteristic             | Symbol | Min | Max   | Min | Max | Min | Max                 | Min | Max                | Min | Max | Unit |
| Power Supply Drain Current | IEE    |     | 115   |     | 105 |     | 100                 | -   | 95                 | -   | 95  | mAdc |
| Input Current High         | linH   | -   | 375   | -   | 220 |     | 220                 | -   | 220                | -   | 220 | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                                  |                 | MCM1<br>T <sub>A</sub> = 0 to | +75 <sup>0</sup> C, | T <sub>A</sub> ≈ -55 | 10548<br>to + 125 <sup>0</sup> C, |      |                          |
|--------------------------------------------------|-----------------|-------------------------------|---------------------|----------------------|-----------------------------------|------|--------------------------|
| Characteristics                                  | Symbol          | VEE = -5.2<br>Min             | Aax                 | VEE =5.<br>Min       | 2 Vdc ±5%<br>Max                  | Unit | Conditions               |
| Read Mode                                        | Symbol          | WIII                          | IVIAX               | WIG                  | IVIAA                             | ns   | Measured from 50% of     |
| Chip Select Access Time                          |                 |                               | 7.5 ·               | 19 - C               |                                   | 115  | input to 50% of output.  |
|                                                  | tACS            | 1.00                          | 7.5                 |                      | *                                 |      | See Note 2.              |
| Chip Select Recovery Time<br>Address Access Time | tRCS            |                               |                     |                      |                                   |      | See Note 2.              |
| Address Access 1 Ime                             | <sup>t</sup> AA | ·                             | 15                  |                      | *                                 |      |                          |
| Write Mode                                       |                 |                               |                     |                      |                                   | ns   | twsa = 5.0 ns            |
| Write Pulse Width                                | tw              | 8.0                           | ·                   | •                    |                                   |      | Measured at 50% of input |
| Data Setup Time Prior to Write                   | twsD            | 3.0                           |                     | •                    | - 1                               |      | to 50% of output.        |
| Data Hold Time After Write                       | tWHD            | 2.0                           |                     | •                    |                                   |      | tw ≈ 8.0 ns.             |
| Address Setup Time Prior to Write                | tWSA            | 5.0                           |                     | *                    | -                                 |      |                          |
| Address Hold Time After Write                    | twha            | 3.0                           |                     | *                    | -                                 |      |                          |
| Chip Select Setup Time Prior to Write            | twscs           | 3.0                           | -                   | •                    |                                   |      |                          |
| Chip Select Hold Time After Write                | twhcs           |                               |                     | *                    |                                   |      |                          |
| Write Disable Time                               | tws             | 2.0                           | 7.5                 | *                    | *                                 |      |                          |
| Write Recovery Time                              | tWR             | 2.0 <sup>·</sup>              | 7.5                 | * '                  | +                                 |      |                          |
| Rise and Fall Time                               | tr, tr          | 1.5                           | 5.0                 | . *                  | *                                 | ns   | Measured between 20%     |
|                                                  |                 |                               |                     |                      |                                   |      | and 80% points.          |
| Capacitance                                      |                 |                               |                     |                      |                                   | pF   | Measured with a pulse    |
| Input Capacitance                                | Cin             | -                             | 5.0                 | - ·                  | *                                 |      | technique,               |
| Output Capacitance                               | Cout            | , i                           | 8.0                 | -                    | *                                 |      |                          |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10148; 100  $\Omega$ , MCM10548.

 $C_L \le 5.0 \ pF$  (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.



# MCM10152/MCM10552

### 256 X 1-BIT **RANDOM ACCESS MEMORY**



CS3

VEE

Α5 \_\_\_\_\_10

A4

] 9

1 1

8 [

The MCM10152/10552 is a 256-word X 1-bit RAM. Bit selection is achieved by means of an 8-bit address A0 through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (CS inputs low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$ low the chip is in the write mode-the output is low and the data present at D<sub>in</sub> is stored at the selected address. With  $\overline{\mathsf{WE}}$  high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Dout

- Typical Address Access Time = 11 ns
- Typical Chip Select Access Time = 4.0 ns
- 50 k $\Omega$  Input Pulldown Resistors on All Inputs
- Power Dissipation (570 mW typ @ 25<sup>0</sup>C) Decreases with Increasing Temperature
- Pin-for-Pin Compatible with F10410/10414

#### TRUTH TABLE

| MODE        |     | INPUT |                 | OUTPUT |
|-------------|-----|-------|-----------------|--------|
|             | cs• | WE    | D <sub>in</sub> | Dout   |
| Write ''O'' | L   | L     | L               | . L    |
| Write "1"   | L.  | L     | н               | L      |
| Read        | L   | н     | φ               | Q      |
| Disabled    | н   | φ     | φ               | L      |

Ø = Don't Care



# **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | -55 <sup>0</sup> C |     | °C  | C +25 <sup>0</sup> C |     | +75°C |     | +125 <sup>0</sup> C |     |      |
|----------------------------|--------|-----|--------------------|-----|-----|----------------------|-----|-------|-----|---------------------|-----|------|
| Characteristic             | Symbol | Min | Max                | Min | Max | Min                  | Max | Min   | Max | Min                 | Max | Unit |
| Power Supply Drain Current | IEE    |     | 140                | -   | 135 | -                    | 130 | -     | 125 |                     | 125 | mAdc |
| Input Current High         | linH   |     | 375                | -   | 220 |                      | 220 | -     | 220 | -                   | 220 | µAdc |

-55<sup>O</sup>C and +125<sup>O</sup>C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                       |                                 | MCM | 10152                                | МСМ | 10552                                 |      |                          |
|---------------------------------------|---------------------------------|-----|--------------------------------------|-----|---------------------------------------|------|--------------------------|
|                                       |                                 |     | to +75 <sup>0</sup> C,<br>.2 Vdc ±5% |     | to +125 <sup>0</sup> C,<br>.2 Vdc ±5% |      |                          |
| Characteristics                       | Symbol                          | Min | Max                                  | Min | Max                                   | Unit | Conditions               |
| Read Mode                             |                                 |     |                                      |     |                                       |      | Measured from 50% of     |
| Chip Select Access Time               | <sup>t</sup> ACS                | 2.0 | 7.5                                  | *   |                                       |      | input to 50% of output.  |
| Chip Select Recovery Time             | tRCS                            | 2.0 | 7.5                                  | +   | . •                                   |      | See Note 2.              |
| Address Access Time                   | tAA                             | 7.0 | 15                                   | . * | *                                     |      |                          |
| Write Mode                            |                                 |     |                                      |     |                                       | ns   | tWSA = 5.0 ns            |
| Write Pulse Width                     | tw                              | 10  |                                      | •   | -                                     |      | Measured at 50% of input |
| Data Setup Time Prior to Write        | twsD                            | 2.0 |                                      | * . | -                                     |      | to 50% of output.        |
| Data Hold Time After Write            | twhD                            | 2.0 | -                                    | *   | · -                                   |      | t <sub>W</sub> = 10 ns.  |
| Address Setup Time Prior to Write     | tWSA                            | 5.0 | -                                    | · • | -                                     | 1.1  |                          |
| Address Hold Time After Write         | twha                            | 3.0 |                                      | *   | -                                     |      |                          |
| Chip Select Setup Time Prior to Write | twscs                           | 2.0 |                                      | .*  | ·                                     | . I  |                          |
| Chip Select Hold Time After Write     | tWHC8                           | 2.0 | -                                    | *   | -                                     |      |                          |
| Write Disable Time                    | tWS                             | 2.5 | 7.5                                  | . * | *                                     |      |                          |
| Write Recovery Time                   | tWR                             | 2.5 | 7.5                                  | *   | •                                     |      |                          |
| Rise and Fall Time                    | t <sub>r</sub> , t <sub>f</sub> | 1.5 | 5.0                                  | *   | *                                     | ns   | Measured between 20% and |
|                                       |                                 |     |                                      |     |                                       |      | 80% points.              |
| Capacitance                           |                                 |     |                                      |     |                                       | pF   | Measured with a pulse    |
| Input Capacitance                     | Cin                             | -   | 5.0                                  | · _ | *                                     |      | technique,               |
| Output Capacitance                    | Cout                            | -   | 8.0                                  |     | . * *                                 |      |                          |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10152; 100  $\Omega$ , MCM10552.

 $C_L \leqslant 5.0 \mbox{ pF}$  (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.



## 32 x 8-BIT PROGRAMMABLE READ-ONLY MEMORY



4-51

## **ELECTRICAL CHARACTERISTICS**

|                                                  |        | - 5         | 5°C     | -0     | °C         | +25 | 5°C              | + 75       | o <sup>o</sup> C | + 12         | 5°C          |      |
|--------------------------------------------------|--------|-------------|---------|--------|------------|-----|------------------|------------|------------------|--------------|--------------|------|
| Characteristic                                   | Symbol | Min         | Max     | Min    | Max        | Min | Max              | Min        | Max              | Min          | Max          | Unit |
| Power Supply Drain Current                       | IEE    | -           | 160     | -      | 150        |     | 145              | . –        | 140              |              | 160          | mAdc |
| Input Current High                               | linH   | -           | 450     | -      | 265        | -   | 265              | -          | 265              | -            | 265          | μAdc |
| Logic "0" Output Voltage<br>MCM10139<br>MCM10539 | VOL    | <br>- 2.060 | - 1.655 | -2.010 | -1.665<br> |     | -1.650<br>-1.620 | -1.970<br> | - 1.625          | _<br>- 1.960 | _<br>- 1.545 | Vdc  |

## SWITCHING CHARACTERISTICS (Note 1)

|                                                                             |                                     | MCM10139                                                                                         | MCM10539                                                                      | -                                                          |
|-----------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|
| Characteristic                                                              | Symbol                              | $(V_{EE} = -5.2 \text{ Vdc } \pm 5\%;)$<br>$T_{A'} = 0^{\circ}\text{C to } +75^{\circ}\text{C})$ | $(V_{EE} = -5.2 \text{ Vdc} \pm 5 \%);$<br>T <sub>A</sub> = -55°C to + 125°C) |                                                            |
| Chip Select Access Time<br>Chip Select Recovery Time<br>Address Access Time | tACS<br>tRCS<br>tAA                 | 15 ns Max<br>15 ns Max<br>20 ns Max                                                              | *                                                                             | Measured from 50% of input to 50%<br>of output. See Note 2 |
| Rise and Fall Time                                                          | t <sub>r</sub> , t <sub>f</sub>     | 3.0 ns Typ                                                                                       | *                                                                             | Measured between 20% and 80% points.                       |
| Input Capacitance<br>Output Capacitance                                     | C <sub>in</sub><br>C <sub>out</sub> | 5.0 pF Max<br>8.0 pF Max                                                                         | *                                                                             | Measured with a pulse technique.                           |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \ \Omega$ , MCM10139; 100  $\Omega$ , MCM10539.  $C_L \leq 5.0 \ pF$  including jig and stray capacitance. For Capacitance Loading  $\leq 50 \ pF$ , delay should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.



# FIGURE 1 - MANUAL PROGRAMMING CIRCUIT

FIGURE 2 - AUTOMATIC PROGRAMMING CIRCUIT



4

#### RECOMMENDED PROGRAMMING PROCEDURE\*

The MCM10139 is shipped with all bits at logical "0" (low). To write logical "1s", proceed as follows.

#### MANUAL (See Figure 1)

Step 1 Connect V<sub>EE</sub> (Pin 8) to -5.2 V and V<sub>CC</sub> (Pin 16) to 0.0 V. Address the word to be programmed by applying -1.2 to -0.6 volts for a logic "1" and -5.2 to -4.2 volts for a logic "0" to the appropriate address inputs.

Step 2 Raise V<sub>CC</sub> (Pin 16) to +6.8 volts.

Step 3 After V<sub>CC</sub> has stabilized at +6.8 volts (including any ringing which may be present on the V<sub>CC</sub> line), apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic "1".

Step 4 Return V<sub>CC</sub> to 0.0 Volts.

#### CAUTION

To prevent excessive chip temperature rise,  $V_{CC}$  should not be allowed to remain at +6.8 volts for more than 1 second.

Step 6 If verification is positive, proceed to the next bit to be programmed.

#### AUTOMATIC (See Figure 2)

Step 2After a minimum delay of 100  $\mu$ s and a maximum delay<br/>of 1.0 ms, apply a 2.5 mA current pulse to the first bit to<br/>be programmed  $(0.1 \le PW \le 1 \text{ ms})$ .

 
 Step 3
 Repeat Step 2 for each bit of the selected word specified as a logic "1", (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms.)

 Step 4
 After all the desired bits of the selected word have been programmed, change address data and repeat

 Steps 2 and 3.

**NOTE:** If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for  $V_{CC}$  to remain at +6.8 volts during the entire programming time.

 
 Step 5
 After stepping through all address words, return V<sub>CC</sub> to 0.0 volts and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once. During verification V<sub>IH</sub> should be -1.0 to -0.6 volts.

\*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

#### **PROGRAMMING SPECIFICATIONS**

|                                                    |                  |       | Limits |        |       |                            |
|----------------------------------------------------|------------------|-------|--------|--------|-------|----------------------------|
| Characteristic                                     | Symbol           | Min   | Тур    | Max    | Units | Conditions                 |
| Power Supply Voltage                               | VEE              | -5.46 | -5.2   | -4.94  | Vdc   |                            |
| To Program                                         | VCCP             | +6.04 | +6.8   | + 7.56 | Vdc   |                            |
| To Verify                                          | VCCV             | 0     | 0      | 0      | Vdc   |                            |
| Programming Supply Current                         | ICCP             | -     | 200    | 600    | mA    | V <sub>CC</sub> = +6.8 Vdc |
| Address Voltage                                    | VIH Program      | -1.2  | -      | -0.6   | Vdc   |                            |
| Logical "1"                                        | VIH Verify       | -1.0  | - 1    | -0.6   | Vdc   |                            |
| Logical "0"                                        | VIL              | -5.2  | -      | -4.2   | Vdc   |                            |
| Maximum Time at V <sub>CC</sub> = V <sub>CCP</sub> | _                | -     | -      | 1.0    | sec   |                            |
| Output Programming Current                         | IOP              | 2.0   | 2.5    | 3.0    | mAdc  |                            |
| Output Program Pulse Width                         | tp               | 0.5   |        | 1.0    | ms    |                            |
| Output Pulse Rise Time                             | -                | -     | · _    | 10     | μs    |                            |
| Programming Pulse Delay (1)                        |                  | r.    |        |        | 1     |                            |
| Following V <sub>CC</sub> change                   | · t <sub>d</sub> | 0.1   | - 1    | 1.0    | ms    |                            |
| Between Output Pulses                              | t <sub>d</sub> 1 | 0.01  | ·      | 1.0    | ms    |                            |

NOTE 1. Maximum is specified to minimize the amount of time V<sub>CC</sub> is at +6.8 volts.

4-54



256 X 4-BIT PROGRAMMABLE READ-ONLY MEMORY



|   | <u>`</u> | ر   | 1  |
|---|----------|-----|----|
| 1 | VCP      | Vcc | 16 |
| 2 | A1       | D0  | 15 |
| 3 | A2       | D1  | 14 |
| 4 | A0       | CS  | 13 |
| 5 | A6       | D2  | 12 |
| 6 | A5       | D3  | 11 |
| 7 | A7       | A4  | 10 |
| 8 | VEE      | А3  | 9  |
|   |          |     |    |

The MCM10149/10549 is a 256-word X 4-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 1 (high) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled  $(\overline{CS} = high)$ , all outputs are forced to a logic 0 (low).

- Typical Address Access Time of 20 ns
- Typical Chip Select Access Time of 8.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (540 mW typ @ 25<sup>0</sup>C)
   Decreases with Increasing Temperature



### **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | 5°C | 0   | °C  | +2  | 5°C | + 7 | 5°C | +12 | 5°C |      |
|----------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Characteristic             | Symbol | Min | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 140 | -   | 135 | -   | 130 | -   | 125 | -   | 125 | mAdc |
| Input Current High         | linH   | -   | 450 | -   | 265 |     | 265 | -   | 265 | -   | 265 | µAdc |

-55°C and +125°C test values apply to MC105xx devices only.

### SWITCHING CHARACTERISTICS (Note 1)

|                           |                                 | T <sub>A</sub> = 0 | 110149<br>to +75 <sup>0</sup> C,<br>.2 Vdc ± 5% | T <sub>A</sub> = -55 | 110549<br>to +125 <sup>0</sup> C,<br>.2 Vdc ±5% |      |                                      |
|---------------------------|---------------------------------|--------------------|-------------------------------------------------|----------------------|-------------------------------------------------|------|--------------------------------------|
| Characteristics           | Symbol                          | Min                | Max                                             | Min                  | Max                                             | Unit | Conditions                           |
| Read Mode                 |                                 |                    |                                                 |                      |                                                 | ns   | Measured from 50% of                 |
| Chip Select Access Time   | <sup>t</sup> ACS                | 2.0                | 10                                              | *                    | •                                               |      | input to 50% of output.              |
| Chip Select Recovery Time | tRCS                            | 2.0                | 10                                              | * <sup>1</sup>       | *                                               |      | See Note 1.                          |
| Address Access Time       | tAA                             | 7.0                | 25                                              | *                    | *                                               |      |                                      |
| Rise and Fall Time        | t <sub>r</sub> , t <sub>f</sub> | 1.5                | 7.0                                             | *                    | *                                               | ns   | Measured between 20% and 80% points. |
| Capacitance               |                                 |                    |                                                 |                      |                                                 | pF   | Measured with a pulse                |
| Input Capacitance         | Cin                             | -                  | 5.0                                             |                      | 5.0                                             |      | technique,                           |
| Output Capacitance        | Cout                            | - ,                | 8.0                                             | -                    | 8.0                                             |      |                                      |

NOTES: 1. Test circuit characteristics: R<sub>T</sub> = 50 Ω, MCM10149; 100 Ω, MCM10549.

CL ≤ 5.0 pF (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

4.  $V_{CP} = V_{CC} = Gnd$  for normal operation.

\*To be determined; contact your Motorola representative for up-to-date information.

#### PROGRAMMING THE MCM10149

During programming of the MCM10/149, input pins 7, 9, and 10 are addressed with standard MECL 10K logic levels. However, during programming input pins 2, 3, 4, 5, and 6 are addressed with 0 V  $\leq$  V<sub>IH</sub>  $\leq$  + 0.25 V and V<sub>EE</sub>  $\leq$  V<sub>IL</sub>  $\leq$  -3.0 V. It should be stressed that this deviation from standard input levels is required only during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

With these requirements met, and with  $V_{CP}$  =  $V_{CC}$  = 0 V and  $V_{EE}$  = - 5.2 V ± 5%, the address is set up. After a minimum of 100 ns delay, VCP (pin 1) is ramped up to +12 V  $\pm$  0.5 V (total voltage VCP to VEE is now 17.2 V, +12 V -[-5.2 V]). The rise time of this VCP voltage pulse should be in the 1-10  $\mu s$  range, while its pulse width  $(t_{w1})$  should be greater than 100  $\mu$ s but less than 1 ms. The VCP supply current at +12 V will be approximately 525 mA while current drain from V<sub>CC</sub> will be approximately 175 mA. A current limit should therefore be set on both of these supplies. The current limit on the  $V_{CP}$ supply should be set at 700 mA while the V<sub>CC</sub> supply should be limited to 250 mA. It should be noted that the VEE supply must be capable of sinking the combined current of the  $\mathsf{V}_{\textbf{CC}}$  and V<sub>CP</sub> supplies while maintaining a voltage of -5.2 V ± 5%.

Coincident with, or at some delay after the V<sub>CP</sub> pulse has reached its 100% level, the desired bit to be fused can be selected. This is done by taking the corresonding output pin to a voltage of  $\pm 2.85 \text{ V} \pm 5\%$ . It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor (100 ohm for MCM10549) to -2.0 V. Current into the selected output is 5 mA maximum.

After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13. The 0% to 100% rise time of this current pulse should be 250 ns max. Its pulse width should be greater than 100  $\mu$ s. Pulse magnitude is 50 mA  $\pm$  5.0 mA. The voltage clamp on this current source is to be -6.0 V.

After the fusing current source has returned 0 mA, the bit select pulse is returned to it initial level, i.e., the output is returned through its load to -2.0 V. Thereafter, V<sub>CP</sub> is returned to 0 V. Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V<sub>CP</sub> has returned to 0 V. The remaining bits are programmed in a similar fashion.

<sup>+</sup> NOTE: For devices that program incorrectly, return serialized units with individual truth tables. Non compliance voids warranty.

#### **PROGRAMMING SPECIFICATIONS**

The following timing diagrams and fusing information represent programming specifications for the MCM10149.



The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the V<sub>CP</sub> pulse, i.e., V<sub>CP</sub> = 0 V. Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V<sub>CP</sub> returns to 0 V.

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of  $\leq$  15% is to be observed.

Definitions and values of timing symbols are as follows.

| Symbol          | Definition                                                         | Value                            |
|-----------------|--------------------------------------------------------------------|----------------------------------|
| <sup>t</sup> r1 | Rise Time,<br>Programming Voltage                                  | $\geq$ 1 $\mu$ s                 |
| <sup>t</sup> w1 | Pulse Width,<br>Programming Voltage                                | $\geqslant$ 100 $\mu$ s $<$ 1 ms |
| <sup>t</sup> D1 | Delay Time,<br>Programming Voltage<br>Pulse to Bit<br>Select Pulse | ≥ 0                              |
| tw2             | Pulse Width, Bit Select                                            | ≥ 100 μs                         |
| <sup>t</sup> D2 | Delay Time, Bit Select<br>Pulse to Programming<br>Voltage Pulse    | ≥ 0                              |
| <sup>t</sup> D3 | Delay Time, Bit Select<br>Pulse to Programming<br>Current Pulse    | ≥ 1 μs                           |
| <sup>t</sup> r3 | Rise Time, Programming<br>Current Pulse                            | 250 ns max                       |
| t <sub>w3</sub> | Pulse Width,<br>Programming<br>Current Pulse                       | ≥ 100 μs                         |
| <sup>t</sup> D4 | Delay Time,<br>Programming Current<br>Pulse to Bit<br>Select Pulse | ≥ 1 μs                           |
|                 |                                                                    |                                  |

#### MANUAL PROGRAMMING CIRCUIT



\$ 2



# **Memory Boards**

5



# **Advance Information**

# ADD-ON MEMORY CARD FOR THE LSI-11 FAMILY

The MMS1102 is a dual height ( $5.187'' \times 8.94''$ ) add-on memory card for the LSI-11 family of computers. It is compatible with the LSI-11/2 and LSI-11 processors as well as the PDP 11V03 computer systems. It incorporates byte parity storage as well as generation and detection logic.



## **Specification Highlights**

| INTERFACE      | LSI-11, "Q" Bus-Plus.                                                                                                                                                                                                          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAPACITY       | 8K words × 16 bits, 16K words × 16 bits, 32K words × 16 bits.                                                                                                                                                                  |
| PARITY         | Optional on-board storage, generation and detection logic for both upper and lower byte.<br>Parity option does not degrade access times.                                                                                       |
| SPEED          | The MMS1102-3X has a read access time under 300 ns. Read access time is defined here<br>as the time from receipt of SYNC H to the transmission of RPLY H, assuming that the<br>SYNC H to DIN H time is no greater than 160 ns. |
| ADDRESSING     | Switch-selectable, to start on any 4K word boundary between 0 and 128K.                                                                                                                                                        |
| I/O PAGE USE   | Three switches allow any one of the lowest three kilowords of the I/O page to be used as Read/Write memory.                                                                                                                    |
| BATTERY BACKUP | Jumper selectable; allows the MMS1102 to be operated from a separate uninterrupted power source (+5 BBU and +12 BBU).                                                                                                          |
| REFRESH        | Implemented internal to the MMS1102 and totally transparent to the system.                                                                                                                                                     |

This is advance information and specifications are subject to change without notice.

5-3

#### MMS1102-XX ORDERING INFORMATION

| Storage Capacity | Part Number<br>(With Parity and Controller) | Part Number<br>(No Parity) |
|------------------|---------------------------------------------|----------------------------|
| 16 Kilobytes     | MMS1102-31PC                                | MMS1102-31                 |
| 32 Kilobytes     | MMS1102-32PC                                | MMS1102-32                 |
| 64 Kilobytes     | MMS1102-34PC                                | MMS1102-34                 |

#### MMS1102-3X - AC OPERATING CHARACTERISTICS

|                    | Read A  | ccess (ns) | Write Access (ns) |            |  |
|--------------------|---------|------------|-------------------|------------|--|
|                    | Typical | Worst Case | Typical           | Worst Case |  |
| Access Time*       | 250     | 300        | 125               | 175        |  |
| Cycle Time**       | 470     | 500        | 350               | 400        |  |
| Refresh Latency*** | 175     | 400        | 175               | 400        |  |

\*As measured from receipt of RSYNC H to transmission of TRPLY H.

\*\*This is the reciprocal of the maximum continuous transfer rate, assuming no refresh interference.

\*\*\*Occurs approximately once every 16 microseconds.

#### MMS1102 POWER REQUIREMENTS

|                 |       |       |             | Current Requi | irements (mA) |               |            |
|-----------------|-------|-------|-------------|---------------|---------------|---------------|------------|
|                 |       |       | Star        | ndby          | Act           | ive           |            |
| Nominal Voltage | Min   | Мах   | Typical     | Worst<br>Case | Typical       | Worst<br>Case | Input Pins |
| +5 VDC (Total)  | 4.75  | 5.25  | 725<br>925* | 800<br>1000*  | 775<br>1000*  | 850<br>1100*  | AA2, BA2   |
| +12 VDC         | 11.40 | 12.60 | 100         | 150           | 250           | 400           | AD2, BD2   |
| +5 VDC (BBU)    | 4.75  | 5.25  | 400         | 500           | 450           | 550           | AV1 **     |
| +12 VDC (BBU)   | 11.40 | 12.60 | 100         | 150           | 250           | 400           | AS1***     |

\*Parity version only.

\*\*In systems without battery backup this voltage is obtained from the regular +5 V rail via an on-board jumper.

\*\*\*The +12 V supply requirement can be met via an on-board jumper from the regular +12 V rail.

#### **MMS1102 BACKPLANE CONNECTOR PIN ASSIGNMENT**

| Row  | ,         | 4           | В       |           |
|------|-----------|-------------|---------|-----------|
| Side | 1         | 2           | · 1     | 2         |
| Pin  |           |             |         |           |
| A    | ·         | +5 V        | BDCOK H | +5 V      |
| В    |           | ` <u> </u>  |         | _         |
| · C  | BAD16 L** | GND         |         | GND       |
| D    | BAD17 L   | +12 V       | -       | +12 V     |
| E    |           | BDOUT L     |         | BDAL 2 L  |
| F.   | -         | BRPLY L     | II I.   | BDAL 3 L  |
| н    |           | BDIN L      |         | BDAL 4 L  |
| J    | GND       | BSYNC L     | GND     | BDAL 5 L  |
| k κ  |           | BWTBT L     |         | BDAL 6 L  |
| - L  |           | — ,         |         | BDAL 7 L  |
| M    | GND       | BIAKI L 🕻 🚛 | GND     | BDAL 8 L  |
| N    | ·         | BIAKO L     |         | BDAL 9 L  |
| Р    | :         | BBS7L       |         | BDAL 10 L |
| R    | BREF L    | BDMGIL (*** | _       | BDAL 11 L |
| s    | +12 V BBU | BDMGO L     |         | BDAL 12 L |
| T    | GND       |             | GND     | BDAL 13 L |
| U    | -         | BDAL 0 L    | _       | BDAL 14 L |
| v    | +5 V BBU  | BDAL 1 L    | +5 V    | BDAL 15 L |

\*Must be hardwired on backplane or damage to MOS devices may result.

\*\*Or PRTYER or PRTYCK.

\*\*\*Hardwired on MMS1102.



# **Advance Information**

#### 16K x 16 LSI-11 ADD-IN SEMICONDUCTOR MEMORY

The Motorola MMS1110 is a 16K-word x 16-bit plug-in main memory system designed for use with DEC's LSI-11 microcomputer system. The MMS1110 mounts directly into a H9270 backplane slot and is both hardware and software compatible with the LSI-11 system.

The memory module employs the MCM6604 4K Dynamic RAM components, mounted on a single PC

board that contains timing, control and bus interface logic. Memory refreshing is controlled by the LSI-11.

Address select changes are possible with jumpers to provide up to 28K of main memory. A parity option, which generates, stores, and checks parity on the MMS1110, is available for custom LSI-11 systems.



#### **MMS1110 FEATURES**

- High Density
- Low Cost
- Fast Access and Cycle Times
- High Reliability
- Byte Operation

Modular Expandability (Address Select Jumpers)

| Options Available |                   |
|-------------------|-------------------|
| MMS1110-1         | 12K x 16          |
| MMS1110-2         | 8K x 16           |
| MMS1110P          | 16K x 18 (parity) |
| MMS1110-3         | 4K x 16           |

This is advance information and specifications are subject to change without notice.

5-5

#### SPECIFICATIONS

#### CAPACITY

16K words per board

#### WORD LENGTH

16 bits

#### PERFORMANCE

| Access Time                  | 450 ns max  |
|------------------------------|-------------|
| Read Cycle Time              | 800 ns min  |
| Write Cycle Time             | 800 ns min  |
| Read-Modify-Write Cycle Time | 1275 ns min |

## DC POWER REQUIREMENTS

|            | Stand      | Standard With Parity |            |            |
|------------|------------|----------------------|------------|------------|
|            | Active*    | Standby              | Active*    | Standby    |
| +5 V ± 5%  | 6.0 W max  | 6.0 W max            | 7.5 W max  | 7.5 W max  |
| +12 V ± 5% | 12.5 W max | 2.8 W max            | 14.0 W max | 3.1 W max  |
| Total      | 18.5 W max | 8.8 W max            | 21.5 W max | 10.6 W max |

\*Continuous operation such as DMA

#### MODES OF OPERATION

Read — Word Write — Word/Byte Read-Modify-Write Cycle — Word/Byte

### INTERFACE CHARACTERISTICS

Compatible with DEC Q bus\*\*

#### **STANDARD I/O SIGNALS**

| Sync         | (BSYNC L)            |
|--------------|----------------------|
| Data In      | (BDIN L)             |
| Data Out     | (BDOUT L)            |
| Reply        | (BRPLY L)            |
| Refresh      | (BREF L)             |
| Write Byte   | (BWTBT L)            |
| Date/Address | (BDAL0 L – BDAL15 L) |
| Power Up     | (BDCOK H)            |
|              |                      |

# PHYSICAL DIMENSIONS OF BOARD

10.45" x 8.9" x 0.44"

#### ENVIRONMENT

Operating Non-Operating Humidity 0°C to +55°C -40°C to +125°C To 90% without condensation

\*\*Trademark of Digital Equipment Corporation

5



## **Advance Information**

### PDP-11\* UNIBUS\* COMPATIBLE RANDOM ACCESS MEMORIES, UP TO 128 KILOBYTES OF STORAGE CAPACITY PLUS OPTIONAL PARITY CONTROLLER ON A SINGLE CARD

The MMS1117 family of memory systems offers owners of PDP-11\* computers an opportunity to easily add storage capacity and parity features to their system. Each member of the family is contained on a single plug-in circuit card that interfaces mechanically and electrically with the following models of UNIBUS\* PDP-11\* processors: 11/04, 11/05, 11/10, 11/34, 11/35, 11/40, 11/45, 11/50, 11/55, and 11/60. It plugs into a single hex SPC slot in any of the following backplanes: DD11-B, DD11-C, DD11-D and DD11-P. The MMS1117 can provide up to 128K 8-bit bytes of main memory on a single module. Quick address select changes are possible via onboard switches. In addition, 1 or 2 kilowords of I/O page can selectively be made available for random access storage. Optional parity as well as full parity generation, detection, and exception control circuits can be provided on the same card with the memory. No additional bus loading is imposed on the system by the addition of the fully compatible parity controller option.



#### **MMS1117 FEATURES**

- High Density
- Low Cost
- Fast Access and Cycle Times
- Low Power

- Fully UNIBUS Compatible
- High Reliability
- One UNIBUS Load

\*Trademark of Digital Equipment Corporation

This is advance information and specifications are subject to change without notice.

#### MMS1117 OPTION DESIGNATOR SUFFIX

1

| Typical Read |                     | Total Storage Capacity (in Kilobytes) |        |        |        |  |  |
|--------------|---------------------|---------------------------------------|--------|--------|--------|--|--|
| Access Time  | Parity Options      | 32K                                   | 64K    | 96K    | 128K   |  |  |
| 290 ns       | Parity + Controller | -32-PC                                | -34-PC | -36-PC | -38-PC |  |  |
|              | Parity Data Only    | -32-P                                 | -34-P  | -36-P  | -38-P  |  |  |
|              | No Parity           | -32                                   | -34    | -36    | -38    |  |  |
| 360 ns       | Parity + Controller | -42-PC                                | -44-PC | -46-PC | -48-PC |  |  |
|              | Parity Data Only    | -42-P                                 | -44-P  | -46-P  | -48-P  |  |  |
|              | No Parity           | -42                                   | -44    | -46    | -48    |  |  |
| 390 ns       | Parity + Controller | -52-PC                                | -54-PC | -56-PC | -58-PC |  |  |
|              | Parity Data Only    | -52-P                                 | -54-P  | -56-P  | -58-P  |  |  |
|              | No Parity           | -52                                   | -54    | -56    | -58    |  |  |

#### ACCESS AND CYCLE TIMES

| Option Designator<br>Suffix | N       | rite       | R       | ead        | Cycle   |            |  |
|-----------------------------|---------|------------|---------|------------|---------|------------|--|
|                             | Typical | Worst Case | Typical | Worst Case | Typical | Worst Case |  |
| -3X                         | 105     | 125        | 290     | 315        | 375     | 390        |  |
| -4X                         | 115     | 135        | 360     | 390        | 480     | 500        |  |
| -5X                         | 115     | 135        | 390     | 420        | 560     | 585        |  |

#### MMS1117 POWER REQUIREMENTS

| Nominal Voltage |         |           | Current Re    | quirements    |                    |  |  |
|-----------------|---------|-----------|---------------|---------------|--------------------|--|--|
|                 | Voltage | Tolerance | StandbyTyp/WC | Active-Typ/WC |                    |  |  |
|                 | Min     | Max       | (Amps)        | (Amps)        | Input Pins         |  |  |
| +5 Vdc          | 4.75    | 5.25      | 2.0/2.5       | 2.0/2.5       | DA2, EA2, FA2      |  |  |
| +15 Vdc         | 15      | 20        | 0.15/0.20     | 0.35/0.70     | AV1, AR1, CE1, CU1 |  |  |
| -15 Vdc         | -7.0    | -20       | 0.015/0.030   | 0.015/0.030   | FB2                |  |  |

#### MMS1117 BACK PLANE CONNECTOR PIN ASSIGNMENT

| Row   | A                  |     | В         |        | С                                     |     | D    |                                               | E    |      | F   |      |
|-------|--------------------|-----|-----------|--------|---------------------------------------|-----|------|-----------------------------------------------|------|------|-----|------|
| Side  | 1                  | 2   | 1         | 2      | 1                                     | 2   | 1    | 2.                                            | 1    | 2    | 1   | 2    |
| Pin A |                    |     |           |        | ٢٠٠                                   |     |      | +5 V                                          |      | +5 V |     | +5 V |
| Pin B |                    |     |           |        | 1                                     |     | 1    |                                               |      |      |     | 15 V |
| Pin C |                    | Gnd |           | Gnd    | PA                                    | Gnd |      | Gnd                                           | A12  | Grid |     | Gnd  |
| Pin D |                    |     | +58B      |        |                                       | D15 |      |                                               | A17  | A15  |     |      |
| Pin E |                    |     | *SSyn     | *PA DE | ***VDD                                | D14 |      |                                               | MSyn | A16  |     |      |
| Pin F |                    |     |           | •      |                                       | D13 |      |                                               | A02  | C1   | 1   |      |
| Pin H |                    |     | · · · · · |        | D11                                   | D12 |      |                                               | A01  | A00  |     |      |
| Pin J |                    |     |           |        |                                       | D10 |      |                                               | SSyn | CO   |     |      |
| Pin K |                    |     |           |        | · · · · · · · · · · · · · · · · · · · | D09 |      | [ **                                          | A14  | A13  |     |      |
| Pin L |                    |     |           |        | 1                                     | D08 | Init | 1                                             | A11  |      | 1.  |      |
| Pin M |                    |     |           |        |                                       | D07 |      | ٢ **                                          |      |      |     |      |
| Pin N | • *P1              |     |           |        | DCL0                                  | D04 |      | L **                                          |      | A08  |     |      |
| Pin P | *P0                |     |           |        |                                       | D05 |      | ٢ ••                                          | A10  | A07  |     |      |
| Pin R | ***V <sub>DD</sub> |     |           |        |                                       | D01 |      | L **                                          | A09  |      | 1   |      |
| Pin S |                    |     |           |        | РВ                                    | D00 |      | ٢ ** .                                        |      |      | 1   |      |
| Pin T | Gnd                |     | Gnd       |        | Gnd                                   | D03 | Gnd  | 1 **                                          | Gnd  |      | Gnd |      |
| Pin U |                    |     |           |        | ***V <sub>DD</sub>                    | D02 | 1    | <u>                                      </u> | A06  | A04  | 1   |      |
| Pin V | ***V <sub>DD</sub> |     |           |        |                                       | D06 | 1    |                                               | A05  | A03  | 1   |      |

\*Options for use with External Parity Controller. \*\*Grant Continuity Jumpers

\*\*\*VDD is any voltage between +15 Vdc and +20 Vdc on any one of the four listed pins.



# **Advance Information**

#### 16K x 18 BIT PDP-11 ADD-IN SEMICONDUCTOR MEMORY

The Motorola MMS1118 is a 16K x 18 bit plug-in main memory system designed for DEC's PDP-11/04 and 34 computer family. The MMS1118 mounts directly into DEC's Modified UNIBUS\* and is both hardware and software compatible in the PDP-11 systems with or without parity.

The system employs the low power MCM6605A-2 4K Dynamic RAM component. These RAM components are mounted on a single PC board that contains timing, control and bus interface logic.

With DEC's memory management unit, the MMS1118 can provide up to 127K words of main memory. Quick address select changes are possible with onboard jumpers. The low power and fast access time of the MMS1118 will greatly enhance the cost performance of a PDP-11 computer.



#### **MMS1118 FEATURES**

- High Density
- Low Cost
- Fast Access and Cycle Times
- Low Power
- Byte Operation
- High Reliability

\*Trademark of Digital Equipment Corporation

This is advance information and specifications are subject to change without notice.

- Modular Expandability (Address Select Jumpers)
- Module Interchangeability
- Short Circuit Memory Protection
- Optional Systems Available MMS1118-1 12K x 18 MMS1118-2 8K x 18
- Power Down/Card Select Option
- Compatible with DD11L Backplane (Consult Factory)

5-9

#### SPECIFICATIONS CAPACITY MODES OF OPERATION 8K, 12K and 16K words per board Read --- Word Write --- Word/Byte WORD LENGTH 18 bits INTERFACE CHARACTERISTICS Compatible with DEC's Modified UNIBUS\* PERFORMANCE Access Time 550 ns max STANDARD I/O SIGNALS Master Sync --- MSYN Byte Select --- CO Internal Slave Sync — INTSSYN Parity Bits — PO, P1 DC Low — DCLO Read Cycle Time 700 ns min Write Cycle Time 700 ns min Parity Bits DC Low Read/Write — C1 Slave Sync — SSYN Cycle Time with Refresh Interrupt , 1400 ns min Address - AO-A17 Parity Detect - PARDET DC CURRENT REQUIREMENTS Data - DO-D15 Active\*\* Standby 1.9 A max $+ 5V \pm 5\%$ 1.9 A max PHYSICAL DIMENSIONS OF BOARD + 15V±5% 400 mA max 60 mA max 15.7" x 8.94" x 0.44 $-15V \pm 20\%$ 15 mA max 10 mA max ENVIRONMENT Operating 0°C to 55°C - 40°C to 125°C \*\*Continuous operation such as DMA Non-operating Humidity 90% without condensation



29

| Jumpe                                                                                                                                                                                                                                                                      | r table for starting ad                                                                                                                                                              | Idres                         | ses                             |                                    |                             |                                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|------------------------------------|-----------------------------|---------------------------------|--|--|--|
| Starting Address                                                                                                                                                                                                                                                           | Addresses below                                                                                                                                                                      |                               | Jumper selection                |                                    |                             |                                 |  |  |  |
| (Octal)                                                                                                                                                                                                                                                                    | starting address                                                                                                                                                                     | Α                             | В                               | С                                  | D                           | Е                               |  |  |  |
| 000000<br>020000<br>060000<br>120000<br>140000<br>140000<br>220000<br>240000<br>240000<br>260000<br>300000<br>320000<br>320000<br>340000<br>400000<br>400000<br>400000<br>400000<br>500000<br>540000<br>560000<br>600000<br>600000<br>600000<br>600000<br>700000<br>740000 | 0K<br>4K<br>8K<br>16K<br>20K<br>24K<br>28K<br>36K<br>40K<br>44K<br>48K<br>56K<br>64K<br>64K<br>72K<br>66K<br>64K<br>72K<br>80K<br>84K<br>96K<br>100K<br>104K<br>112K<br>116K<br>120K | 11111111110000000000000000011 | 1111100000001111111110000000011 | 1000011111000011111000011111000011 | 011001100110011001100110011 | 0101010101010101010101010101010 |  |  |  |

ADDRESSING

|                   | Jumper table for t                                 | o brace   | otions           |          |
|-------------------|----------------------------------------------------|-----------|------------------|----------|
|                   | Memory capacity                                    | - Ju<br>F | mper select<br>H | ion<br>J |
| 16K<br>12K<br>14K | (normal use)<br>only<br>(Lower 2K of I/O           | 1         | 0<br>1           | 1<br>1   |
| 15K               | page assigned to<br>memory)***<br>(Lower 3K of I/O | 1         | 1                | 0        |
|                   | page assigned to memory)***                        | 0         | 1                | 0        |

\*\*\*Set switches A-E for starting address of 100000 (Octal) 1=OPEN=HIGH 0=CLOSED=LOW



# **Advance Information**

#### 128K × 18 SEMICONDUCTOR MEMORY

The Motorola MMS3418 Memory Array Card provides 128K words by 18 bits of memory. It is designed for use with a memory control card such as Motorola's MMSCC-2 in systems requiring a very large memory. Multiple memory array cards can be used to increase word length and/or number of words stored.

|                |        | E AL     | 10 20         | 626                                                                                                             |                                         |               | East -  | 2276                                                                                                           |                |        |
|----------------|--------|----------|---------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------|----------------------------------------------------------------------------------------------------------------|----------------|--------|
| Î ÎÎ,          |        |          |               |                                                                                                                 |                                         | EST-C         |         |                                                                                                                |                | 32     |
|                |        | ليو في ا |               |                                                                                                                 |                                         |               |         |                                                                                                                | CET a          |        |
|                |        |          | lest-         |                                                                                                                 |                                         | ESh:          |         | <b>5</b>                                                                                                       | E a            |        |
|                |        | τ.       |               |                                                                                                                 |                                         | <u>83</u> •   |         | <b>E</b> Shi                                                                                                   |                |        |
|                |        |          |               |                                                                                                                 |                                         |               |         |                                                                                                                |                |        |
| 10 <b>9</b> (* |        |          |               |                                                                                                                 |                                         |               |         |                                                                                                                | ेह्य र         |        |
|                |        |          |               |                                                                                                                 |                                         |               | . Cat   | 152                                                                                                            |                |        |
|                |        |          |               |                                                                                                                 | , ust                                   |               |         |                                                                                                                |                |        |
|                |        |          | 1 - 1         |                                                                                                                 | ann an |               |         |                                                                                                                |                |        |
|                | Luliss |          |               |                                                                                                                 |                                         |               |         | in in the second se |                | 53478  |
|                |        |          | 1.44 Cam      |                                                                                                                 |                                         |               |         | â                                                                                                              |                |        |
|                |        |          |               |                                                                                                                 | tra da                                  |               |         |                                                                                                                |                |        |
| ·····          |        |          |               | and the                                                                                                         |                                         |               |         | in the second                                                                                                  | -              |        |
|                |        |          |               | in the second | i Maria                                 |               |         |                                                                                                                |                |        |
| ····· {        |        |          | Ref. Pro.     |                                                                                                                 |                                         |               | - Water |                                                                                                                | 1. <b>1999</b> |        |
|                |        | · • •    |               |                                                                                                                 |                                         | in the second |         |                                                                                                                | in the second  | alle a |
|                |        |          | -             |                                                                                                                 | <sup>s</sup> testin                     |               | Cash-   | con-                                                                                                           |                |        |
|                | ****** | · · · ·  |               |                                                                                                                 |                                         |               | na an   |                                                                                                                |                |        |
|                |        |          | e la compañía |                                                                                                                 |                                         |               | 1220    |                                                                                                                |                |        |
|                | •:•    |          |               |                                                                                                                 |                                         |               | -<br>   |                                                                                                                | (B)            |        |
| <br>           | 2<br>2 | 1.00     |               | 95                                                                                                              |                                         |               |         |                                                                                                                | <b>8</b> 2     |        |

Basically the MMS3418 is an array of 144 highdensity, 16-pin, 16K dynamic RAM devices arranged in eight rows of eighteen. Buffer and driver circuits on the card interface the array to system circuitry. Gate and multiplexer circuits, which are controlled by external signals, function to connect the proper combination of address, strobe, and enable signals to the array to provide read, write, and distributed refresh operations. Sequencing and timing is a function of the associated system circuits.

This is advance information and specifications are subject to change without notice.

5-11

## SPECIFICATIONS

#### CAPACITY

128K Words per Board (K = 1024)

#### WORD LENGTH

18 Bits per Board

### <sup>1</sup> CYCLE TIME

| Read Cycle Time                 | 700 ns max   |
|---------------------------------|--------------|
| Write Cycle Time                | 700 ns max   |
| Determined by associated memory | control card |

#### ACCESS TIME

475 ns max

#### MODES OF OPERATION

Read 18 Bits, Write 18 Bits, Distributed Refresh

| DC POWER REQUIREMENTS |           |           |  |
|-----------------------|-----------|-----------|--|
| Voltage               | Active    | Standby   |  |
| +5 V ± 5%             | 2 A max   | 2 A max   |  |
| +15 V ± 5%            | 1 A max   | 0.6 A max |  |
| $-9 V \pm 10\%$       | 0.1 A max | 0.1 A max |  |

#### ENVIRONMENT

Operating Temperature0 to 70°CNon-Operating Temperature-40 to 125°CHumidity to 90% without condensation

#### BOARD DIMENSIONS

See outline diagram

#### **INPUT/OUTPUT SIGNALS**

| Name                     | Description                     | Connector Pin                    |
|--------------------------|---------------------------------|----------------------------------|
| D0 to D17                | Bidirectional data, 18 bits     | P1-9 to P1-26                    |
| A1 to A11,<br>A12 to A14 | Memory address, 14 bits         | P2-8 to P2-18,<br>P2-48 to P2-50 |
| RA0 to RA6               | Refresh address, 7 bits         | P2-51 to P2-57                   |
| R/W                      | Read or write control, 1 signal | P2-21                            |
| BS                       | Board select, 1 signal          | P2-30                            |
| DATA ENABLE              | Data output enable, 1 signal    | P2-32                            |
| RASO to RAS7             | Row address strobe, 8 signals   | P2-72 to P2-65                   |
| REF                      | Refresh control, 1 signal       | P2-24                            |
| CAS                      | Column address strobe, 1 signal | P2-26                            |
| CAE                      | Column address enable, 1 signal | P2-25                            |

#### MMS3418 MEMORY ARRAY CARD BLOCK DIAGRAM



CT

5-13

MMS3418



MMS3418 MEMORY ARRAY CARD TIMING DIAGRAM (ALL TIMES IN NANOSECONDS)

BOARD OUTLINE AND DIMENSIONS



5



# **Advance Information**

#### **16K x 8 NON-VOLATILE SEMICONDUCTOR MEMORY**

The Motorola MMS68102 is a 16K x 8-Bit Non-Volatile Memory System designed for use with the M6800 EXORciser System.\*

The system employs the MCM6605 22 pin 4K dynamic RAM component. These RAM components are mounted on a single PC board that contains timing, control, and bus interface logic. The refresh requirement is handled by stealing cycles from the processor. CMOS logic is used in the refresh and powerfail circuits to allow low power battery backup operation. The MMS68102, using an external battery backup circuit, has the capability of refreshing itself while power is removed from the EXORciser power supply. This refresh capability enables the module to retain its stored data during a power loss.

The MMS68102 may be paralleled to provide 64K words of memory. Onboard jumpers provide easy address select changes.



#### MMS68102 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- High Reliability
- Modular Expandability (Address Select Switches)
- Trademark of Motorola, Inc.

This is advance information and specifications are subject to change without notice.

- Module Interchangeability
- Low Power Battery Backup Operation
- Systems Available MMS68102-1 8K x 8 MMS68102A 16K x 9 MMS68102A-1 8K x 9

CAPACITY

16K words per board

WORD LENGTH 8 bits

#### PERFORMANCE

| Access Time**      | 280 ns max         |
|--------------------|--------------------|
| Read Cycle Time    | 1.0 <b>µ</b> s min |
| Write Cycle Time   | 1.0 <b>µ</b> s min |
| Refresh Cycle Time | 1.0 µs min         |
|                    |                    |

\*\*Measured from rising edge of MEMCLK

#### DC POWER REQUIREMENTS 16K x 8(9)

|                    | Active*** | Standby  | Battery<br>Backup |
|--------------------|-----------|----------|-------------------|
| $+5V \pm 5\%$      | 4.2 Wmax  | 4.2 Wmax |                   |
| $+12V \pm 5\%$     | 3.4 Wmax  | 1.4 Wmax | .3 Wmax           |
| Total              | 7.6 Wmax  | 5.6 Wmax | .3 Wmax           |
| MODES OF OPERATION |           |          |                   |

Read Cycle

Write Cycle

White Oyole

\*\*\*Continuous operation such as DMA

#### **PREPROGRAMMING:**

★ CAUTION. The MMS68102 comes prewired in the following manner:

(1) Master Refresh

(2) VUA

- (3) Lower 32K Address Boundary
- For Alterations of the above see Table 1.

A fully populated MMS68102 can be programmed with jumpers to occupy a 16K Memory Address Space, but must be mapped on a 32K boundary.

The independent 4K blocks of the MMS68102 are shown as blocks A, B, C, & D in Figure 1. These blocks need not be mapped into any contiguous address space, but should not be mapped into the same one.



#### SPECIFICATIONS

INTERFACE CHARACTERISTICS M6800 EXORciser Compatible

| STANDARD I/O SIGNALS |  |
|----------------------|--|
| Memory Clock         |  |
| Valid Memory Address |  |
| Read/Write           |  |
| Address              |  |
| Data                 |  |
| Valid User Address   |  |
| Refresh Request      |  |
| Refresh Grant        |  |
| Battery +12 Volts    |  |

(MEMCLK) (VMA) (R/W) (AO-A15) (DO-D7) (VUA) (REFREQ) (REFGRANT) (BAT + 12)

(STDBY) Pin V (REFCLK) Pin 27 (D8) Pin 28

ADDITIONAL I/O SIGNALS

| Power Fail (12 Volt Signal)    |
|--------------------------------|
| Refresh Clock (12 Volt Signal) |
| Parity Data                    |

PHYSICAL DIMENSIONS OF BOARD 6" x 9.75" x .5"

#### ENVIRONMENT

Operating Non-Operating Humidity 0°C to 70°C – 40°C to 125°C To 90% without condensation

#### Table 1

| OPTIONS                         | JUMPERS IN | JUMPERS OUT |
|---------------------------------|------------|-------------|
| VUA                             | E4         | E5          |
| VMA                             | E5         | E4 .        |
| Master Refresh<br>Slave Refresh | E1 & E6    | E1 & E6     |
| Lower 32K                       | E3         | E2          |
| Upper 32K                       | E2         | E3          |

#### ADDRESSING

An example of mapping block A into address space (12K-16K) is as follows:

Lower 32K is selected with E2 out & E3 in.

Block A enable Pin 9 or 10 of J1, from Table 3, is connected to Pin 7 of J1, from Table 2, for the (12K-16K) address space.



| LOWER 32K | UPPER 32K | J1  |
|-----------|-----------|-----|
|           |           | PIN |
| 0K-4K     | 32K-36K   | 1   |
| 4K-8K     | 36K-40K   | 3   |
| 8K-12K    | 40K-44K   | 5   |
| 12K-16K   | 44K-48K   | 7   |
| 16K-20K   | 48K-52K   | 2   |
| 20K-24K   | 52K-56K   | 4   |
| 24K-28K   | 56K-60K   | 6   |
| 28K-32K   | 60K-64K   | 8   |

#### Table 3

| J1      | BLOCK ENABLE |
|---------|--------------|
| PIN     |              |
| 9 & 10  | A            |
| 11 & 12 | В            |
| 13 & 14 | C ·          |
| 15 & 16 | D            |



# **Advance Information**

#### 16K x 8 SEMICONDUCTOR MEMORY FOR M6800 SYSTEMS

The Motorola MMS68103 is a 16K-word × 8-bit plug-in memory module designed for use with M6800 based systems.

The module employs high density, 16-pin, 4K dynamic RAM components, mounted on a single PC board that contains timing, control, and bus interface logic. A hidden refresh scheme requires no additional cycles or interface from the CPU. This permits the use of valuable CPU time for purposes other than refreshing.

The MMS68103 can provide up to 64K words of memory. Address select changes are easily made with on-board address jumpers.



#### MMS68103 FEATURES

- Hidden Refresh
- High Density
- Low Cost
- Fast Access and Cycle Times
- High Reliability.
- Modular Expandability (Address Select Jumpers)
- MEK6800D2 Compatible
- MicroModule Compatible
- Options Available
   MMS68103-1 8K x 8
   MMS68103A 16-K x 9
   MMS68103A-1 8K x 9

This is advance information and specifications are subject to change without notice.

#### SPECIFICATIONS

#### CAPACITY

16K words per board

#### WORD LENGTH

8 bits

#### PERFORMANCE

| Access Time        | 475 ns max         |             |
|--------------------|--------------------|-------------|
| Read Cycle Time    | 1.0 μs min.        | 2.5 µs max* |
| Write Cycle Time   | 1.0 μs min.        | 2.5 μs max* |
| *(256 BØ2 cycles r | equired within 640 | μS)         |

#### DC POWER REQUIREMENTS

| 1                    | Active*       | Standby    |
|----------------------|---------------|------------|
| +5 V ± 5%            | 6.0 W max     | 6.0 W max  |
| +12 V ± 5%           | 4.0 W max     | 2.0 W max  |
| -12 V ± 10%          | 0.02 W max    | 0.02 W max |
| Total                | 10.02 W max   | 8.02 W max |
| *Continuous operatio | n such as DMA |            |

#### MODES OF OPERATION

Read Cycle Write Cycle

#### INTERFACE CHARACTERISTICS

MC6800 Compatible

#### STANDARD I/O SIGNALS

| Bus Ø2             | (BØ2)    |
|--------------------|----------|
| Valid User Address | (VUA)    |
| Read/Write         | (R/W)    |
| Address            | (A0-A15) |
| Data               | (D0-D7)  |

#### PHYSICAL DIMENSIONS OF BOARD

6.00" x 9.75" x 0.44"

#### ENVIRONMENT

| Operating     | 0°C to 70°C                 |
|---------------|-----------------------------|
| Non-Operating | –40°C to 125°C              |
| Humidity      | To 90% without condensation |

# **MMS68104**

#### 16K x 8 SEMICONDUCTOR MEMORY FOR M6800 SYSTEMS

The Motorola MMS68104 is a 16K x 8-bit plug in memory system designed for use with the MEK6800D2 Kit. The system employs the high density 16 pin 4K dynamic RAM component. These RAM components are mounted on a single PC board that contains timing, control, and bus interface logic. The system employs a handshake refresh that interfaces with the CPU.

The MMS68104 can provide up to 64K words of memory. Address select changes are easily made with onboard address jumpers.



5-19

#### **MMS68104 FEATURES**

- High Density
- Low Cost
- High Reliability
- Modular Expandability (Address Select Jumpers)

|                                                    |                                  | SPECIF                 | ICATIONS                      |                              |                                |            |
|----------------------------------------------------|----------------------------------|------------------------|-------------------------------|------------------------------|--------------------------------|------------|
| CAPACITY                                           |                                  |                        | INTERFACE CHAP                | ACTERISTIC                   | CS                             |            |
| 16K words per boa                                  | rd                               |                        | MC6800 Compat                 | tible                        |                                |            |
| WORD LENGTH                                        |                                  |                        | STANDARD I/O SI               | GNALS                        |                                |            |
| 8 bits                                             |                                  |                        | Memory Clock                  | (MEMCLK)                     | Refresh Grant                  | (REF GNT)  |
| PERFORMANCE                                        |                                  |                        | Valid Memory<br>Address       | (VMA)                        | Refresh Request                | (REF REQ)  |
| Access Time<br>Read Cycle Time<br>Write Cycle Time | 650ns ma<br>1.5μs mi<br>1.5μs mi | n                      | Read/Write<br>Address<br>Data | (R/W)<br>(AO-A15)<br>(D0-D7) |                                |            |
| <ul> <li>From leading edg</li> </ul>               | e of MEMULK                      |                        | PHYSICAL DIMEN                | SIONS OF BO                  | DARD                           |            |
| DC CURRENT REQU                                    | JIREMENTS                        |                        | 6.00'' x 9.75'' x 0           | .44''                        |                                |            |
| +5V±5%                                             | Active**<br>920 mA max           | Standby<br>920 mA max  | ENVIRONMENT                   |                              |                                |            |
| +12V ±5%<br>-12V ±10%                              | 450 mA max<br>10 mA max          | 80 mA max<br>10 mA max | Operating<br>Non-Operating    |                              | 0°C to 50°C<br>- 40°C to 125°C |            |
| Total                                              | 1.4 A max<br>ation such as DMA   | 1.1 Å max              | Humidity                      |                              | To 90% without co              | ndensation |

The MMS68104 can be programmed with jumpers to occupy 16K in a 64K memory address space in independent 8K blocks. To map the first 8K block into an address space, connect either J1-10, 13, 14 or 16 to the indicated pin in the following table. To map the second 8K block into an address space, connect either J1-9, 11, 12 or 15 to the indicated pin in the following table.

| HEXADECIMAL<br>ADDRESS | ADDRESS<br>SPACE | PIN NUMBER<br>ON J1 |
|------------------------|------------------|---------------------|
| 0000 — 1FFF            | 0к — 8к          | 1                   |
| 2000 3FFF              | 8K — 16K         | 2                   |
| 4000 — 5FFF            | 16K — 24K        | 4                   |
| 6000 — 7FFF            | 24K — 32K        | 6                   |
| 8000 — 9FFF            | 32K — 40K        | 3                   |
| A000 BFFF              | 40K — 48K        | 5                   |
| C000 — DFFF            | 48K 56K          | 7                   |
| E000 — FFFF            | 56K — 64K        | 8                   |

#### MEMORY EXPANSION

Four MMS68104 memory boards may be connected to the same bus to provide up to 64K words. When two or more MMS68104s are connected to the same bus, E1 should be removed from all but one of the memory boards. (E1 is a green zero ohm jumper located near the connector edge on the MMS68104.) This enables the one MMS68104 to act as the master when requesting refresh cycles which all of the memory boards utilize.

#### **APPLICATION TO MEK6800D2 KIT**

The following is a description of the modifications and additions that are needed for using the MMS68104 memory card in the MEK6800D2 kit.

- 1. Unplug 6810 RAMS (U14, U16, U18, U19) on kit board.
- 2. Cut foil path to U7, pin 4. Tie pin 4 to +5V.
- 3. Plus, the following additions: See Figure 1.
- 4. For further information on adding data terminal and memory expansion refer to Application Note 771.





Cn



APPLIES TO MEMORY BOARD REV A



# **Advance Information**

#### 32K x 8 SEMICONDUCTOR MEMORY FOR 8080A SYSTEMS

The Motorola MMS80810 is a 32K-word x 8 bit plug in memory system designed for use with 8080A based systems and is pin compatible with SBC 80/10 single board computer.

The system employs the high density 16 pin 4K dynamic RAM component. The RAM components are mounted on a single PC board that contains timing, control and bus interface logic. Refresh logic is also con-

tained on the memory board. A refresh cycle is generated by on-board refresh logic and is asynchronous to the CPU.

A fully populated MMS80810 can be programmed with jumpers to occupy 32K words out of a possible 64K memory space in independent 8K segments. The 8K segments must begin at 8K boundaries. Address select changes are easily made with on-board address jumpers.



#### **MMS80810 FEATURES**

- · High density
- Low cost
- · Fast access and cycle times
- · High Reliability
- Modular Expandability (Address Select Jumpers)
- Modular Interchangeability
- Optional Systems Available:
  - MMS80810-1 16K x 8

This is advance information and specifications are subject to change without notice.

## SPECIFICATIONS

#### CAPACITY

32K words per board

#### WORD LENGTH

#### 8 bits

#### PERFORMANCE

| Access Time                 | 400 ns max*           |
|-----------------------------|-----------------------|
| Read Cycle Time             | 760 ns min*           |
| Write Cycle Time            | 760 ns min*           |
| *Refresh cycle can extend t | hese times by 760 ns. |

#### MODES OF OPERATION

Read Cycle Write Cycle

#### INTERFACE CHARACTERISTICS SBC 80/10 Compatible

#### STANDARD I/O SIGNALS

| MRDC/       |
|-------------|
| MWTC/       |
| INIT/       |
| ADR0/-ADRF/ |
| DATO/-DAT7/ |
| XACK/       |
|             |

PHYSICAL DIMENSIONS OF BOARD

12" x 6.75" x 0.5"

#### ENVIRONMENT

| Operating     |  |
|---------------|--|
| Non-Operating |  |
| Humidity      |  |
|               |  |

0°C to 70°C - 40°C to 125°C To 90% without condensation

#### DC POWER REQUIREMENTS

| 1              | 32K x 8    |           | 16K x 8     |           |  |
|----------------|------------|-----------|-------------|-----------|--|
|                | Active*    | Standby   | Active*     | Standby   |  |
| $+5V \pm 5\%$  | 6.0 W max  | 6.0 W max | 6.0 W max   | 6.0 W max |  |
| +12V ±5%       | 7.5 W max  | 3.0 W max | 6.5 W max   | 1.5 W max |  |
| $-5V \pm 10\%$ | 0.1 W max  | 0.1 W max | 0.1 W max   | 0.1 W max |  |
| Total          | 13.6 W max | 9.1 W max | 12.6 W. max | 7.6 W max |  |

\*Continuous operation such as DMA

| I.C. SOCKET MEMORY ADDRESS PIN OUT |         |       |  |  |
|------------------------------------|---------|-------|--|--|
| HEXADECIMAL                        | ADDRESS | PIN # |  |  |
| ADDRESS                            | SPACE   | ON J1 |  |  |
| 0000-1FFF                          | 0K-8K   | 1     |  |  |
| 2000-3FFF                          | 8K-16K  | 3     |  |  |
| 4000-5FFF                          | 16K-24K | 5     |  |  |
| 6000-7FFF                          | 24K-32K | 7     |  |  |
| 8000-9FFF                          | 32K-40K | 2     |  |  |
| A000-BFFF                          | 40K-48K | 4     |  |  |
| C000-DFFF                          | 48K-56K | 6     |  |  |
| E000-FFFF                          | 56K-64K | 8     |  |  |





| 8K BLOCK ENABLES |                                     |  |
|------------------|-------------------------------------|--|
| Block            | Pin #<br>ON J1                      |  |
| A<br>B<br>C<br>D | 9, 10<br>11, 12<br>13, 14<br>15, 16 |  |

Table 2.

The independent 8K blocks of the MMS80810 are shown as blocks A, B, C & D in Figure 1. These blocks need not be mapped into any contiguous address space, but should not be mapped into the same one.

An example of mapping block A into address space (8K-16K) is as follows:

Block A Enable Pin 9 or 10 of J1, from Table 2 is connected to Pin 3 of J1, from Table 1, for the (8K-16K) address space. For 16K, blocks A & B will be populated.



6-1

# **Mechanical Data**



# **MECHANICAL DATA**

The packaging availability for each device is indicated on the individual data sheets. Dimensions for the packages are given in this section.



PLASTIC PACKAGE CASE 646



|     | MILLIMETERS |       | INC       | INCHES |  |
|-----|-------------|-------|-----------|--------|--|
| DIM | MIN         | MAX   | MIN       | MAX    |  |
| A   | 18.16       | 19.56 | 0.715     | 0.770  |  |
| B   | 6.10        | 6.60  | 0.240     | 0.260  |  |
| C   | 4.06        | 5.08  | 0.160     | 0.200  |  |
| D   | 0.38        | 0.53  | 0.015     | 0.021  |  |
| F   | 1.02        | 1.78  | 0.040     | 0.070  |  |
| G   | 2.54 BSC    |       | 0.100 BSC |        |  |
| H   | 1.32        | 2.41  | 0.052     | 0.095  |  |
| J   | 0.20        | 0.38  | 0.008     | 0.015  |  |
| K   | 2.92        | 3.43  | 0.115     | 0.135  |  |
| L   | 7.62 BSC    |       | 0.300     | BSC    |  |
| M   | 00          | 100   | 00        | 100    |  |
| N   | 0.51        | 1.02  | 0.020     | 0.040  |  |

N

NOTES:

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "I" TO
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.

CASE 646-05

# **16-PIN PACKAGES**

CERAMIC PACKAGE CASE 620





1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. PACKAGE INDEX: NOTCH IN LEAD





- DIM "A" AND "B" DO NOT INCLUDE GLASS RUN-OUT.
   DIM "F" MAY NARROW TO 0.76 mm (0.030) WHERE THE LEAD ENTERS
- THE CERAMIC BODY.



|     | MILLIMETERS |       | INC       | HES             |
|-----|-------------|-------|-----------|-----------------|
| DIM | MIN         | MAX   | MIN       | МАХ             |
| A   | 19.05       | 19.94 | 0.750     | 0.785           |
| B   | 6.10        | 7.49  | 0.240     | 0.295           |
| C   | -           | 5.08  | -         | 0.200           |
| D   | 0.38        | 0.53  | 0.015     | 0.021           |
| F   | 1.40        | 1.78  | 0.055     | 0.070           |
| G   | 2.54 BSC    |       | 0.100 BSC |                 |
| H   | 0.51        | 1.14  | 0.020     | 0.045           |
| J   | 0.20        | 0.30  | 0.008     | 0.012           |
| K   | 3.18        | 5.08  | 0.125     | 0.200           |
| L   | 7.62 BSC    |       | 0.300     | BSC             |
| M   | -           | 150   |           | 15 <sup>0</sup> |
| N   | 0.51        | 1.02  | 0.020     | 0.040           |

CASE 620-06

CERAMIC PACKAGE CASE 650



1. LEAD NO. 1 IDENTIFIED BY TAB ON LEAD OR DOT ON COVER. LEAD WITHIN 0.13 mm (0.005) TOTAL OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION.



|     | MILLIMETERS |        | INCHES    |       |
|-----|-------------|--------|-----------|-------|
| DIM | MIN         | MAX    | MIN       | MAX   |
| Α   | 9.40        | 10.16  | 0.370     | 0.400 |
| В   | 6.22        | 7.24   | 0.245     | 0.285 |
| C   | 1.52        | 2.03   | 0.060     | 0.080 |
| D   | 0.41        | 0.48   | 0.016     | 0.019 |
| F   | 0.08        | 0.15   | 0.003     | 0.006 |
| G   | 1.27 BSC    |        | 0.050 BSC |       |
| H   | 0.64        | 0.89   | 0.025     | 0.035 |
| K   | 6.35        | · 9.40 | 0.250     | 0.370 |
| L   | 18.92       | -      | 0.745     |       |
| N   | -           | 0.51   | -         | 0.020 |
| R   | -           | 0.38   |           | 0.015 |

CASE 650-03

# - 16-PIN PACKAGES (Continued) -

CERAMIC PACKAGE CASE 690





|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 20.07       | 20.57 | 0.790     | 0.810 |
| B   | 7.11        | 7.62  | 0.280     | 0.300 |
| C   | 2.67        | 3.81  | 0.105     | 0.150 |
| D   | 0.38        | 0.53  | 0.015     | 0.021 |
| F   | 0.76        | 1.40  | 0.030     | 0.055 |
| G   |             | BSC   | 0.100 BSC |       |
| Н   | 0.76        | 1.78  | 0.030     | 0.070 |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |
| K   | 3.56        | 4.06  | 0.140     | 0.160 |
| L   | 7.62 BSC    |       | 0.300 BSC |       |
| М   | -           | 100   | -         | 100   |
| N   | 0.38        | 1.40  | 0.015     | 0.055 |

CASE 690-11

| MM | M |
|----|---|
|    |   |

NOTE: 1. LEADS WITHIN 0.13 mm (0.005) RADIUS 0F TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.

|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 20.07       | 20.57 | 0.790     | 0.810 |
| B   | 7.11        | 7.62  | 0.280     | 0.300 |
| C   | 2.67        | 3.94  | 0.105     | 0.155 |
| D   | 0.38        | 0.53  | 0.015     | 0.021 |
| F   | 0.76        | 1.40  | 0.030     | 0.055 |
| G   | 2.54 BSC    |       | 0.100 BSC |       |
| н   | 0.76        | 1.78  | 0.030     | 0.070 |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |
| K   | 3.18        | 5.08  | 0.125     | 0.200 |
| L   | 7.62 BSC    |       | 0.300     |       |
| M   | -           | 100   | -         | 100   |
| N   | 0.38        | 1.40  | 0.015     | 0.055 |

CASE 690-12

PLASTIC PACKAGE CASE 648







CASE 648-05

NOTES:

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM
- MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.

4. "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1, 8, 9, and 16).

5. ROUNDED CORNERS OPTIONAL.



- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

|     | MILLIMETERS |       | INCHES |       |
|-----|-------------|-------|--------|-------|
| DIM | MIN         | MAX   | MIN    | MAX   |
| A   | 22.22       | 23.24 | 0.875  | 0.915 |
| B   | 6.10        | 6.60  | 0.240  | 0.260 |
| C   | 3.94        | 4.57  | 0,155  | 0.180 |
| D   | 0.36        | 0.56  | 0.014  | 0.022 |
| F   | 1.27        | 1.78  | 0.050  | 0.070 |
| G   | 2.54        | BSC   | 0.100  | BSC   |
| H   | 1.02        | 1.52  | 0.040  | 0.060 |
| J   | 0.20        | 0.30  | 0.008  | 0.012 |
| K   | 2.92        | 3.43  | 0.115  | 0.135 |
| L   | 7.62 BSC    |       | 0.300  |       |
| M   | 00          | 150   | 00     | 150   |
| N   | 0.51        | 1.02  | 0.020  | 0.040 |

CASE 707-02



22-PIN PACKAGES -

CERAMIC PACKAGE CASE 677









 
 23.34
 30.86
 1.135
 1.213

 12.70
 14.22
 0.500
 0.560

 3.05
 3.94
 0.120
 0.155

 0.38
 0.51
 0.015
 0.020
 D .89 1.40 0.035 0.055 2.54 BSC 0.100 BSC 0.89 F G 0.89 1.40 0.035 0.055 H 
 0.30
 1.40
 0.505
 0.305

 0.20
 0.30
 0.008
 0.012

 2.92
 3.68
 0.115
 0.145

 14.86
 15.87
 0.585
 0.625
 J К L M 15<sup>0</sup> 150 1.14 0.020 0.045 0.51 N

CASE 684-04



CERAMIC PACKAGE CASE 623A



NOTES: 1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.



PARALLEL).

CONDITION. (WHEN FORMED



|     | MILLIMETERS |                 | INCHES    |       |
|-----|-------------|-----------------|-----------|-------|
| DIM | MIN         | MAX             | MIN       | MAX   |
| Α   | 31.24       | 32.26           | 1.230     | 1.270 |
| B   | 12.70       | 13.72           | 0.500     | 0.540 |
| C   | 4.06        | 5.84            | 0.160     | 0.230 |
| D   | 0.41        | 0.51            | 0.016     | 0.020 |
| F   | 1.27        | 1.52            | 0.050     | 0.060 |
| G   | 2.54        | BSC             | 0.100 BSC |       |
| J   | 0.20        | 0.30            | 0.008     | 0.012 |
| К   | 2.29        | 4.06            | 0.090     | 0.160 |
| L   | 15.24 BSC   |                 | 0.600     | BSC   |
| М   | 00          | 15 <sup>0</sup> | 00        | 150   |
| N   | 0.51        | 1.27            | 0.020     | 0.050 |

CASE 623A-01

# 24-PIN PACKAGES (Continued)

CERAMIC PACKAGE





|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 27.64       | 30.99 | 1.088     | 1.220 |
| B   | 14.94       | 15.34 | 0.588     | 0.604 |
| C   | 2.67        | 4.32  | 0.105     | 0.170 |
| D   | 0.38        | 0.53  | 0.015     | 0.021 |
| F   | 0.76        | 1.40  | 0.030     | 0.055 |
| G   | 2.54        | BSC   | 0,100 BSC |       |
| H   | 0.76        | 1.78  | 0.030     | 0.070 |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |
| ĸ   | 2.54        | 4.19  | 0.100     | 0.165 |
| L   | 14.99       | 15.49 | 0.590     | 0.610 |
| М   | -           | 100   | -         | 100   |
| N   | 1.02        | 1.52  | 0.040     | 0.060 |

CASE 716-06





|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 27.64       | 30.99 | 1.088     | 1.220 |
| B   | 14.94       | 15.34 | 0.588     | 0.604 |
| C   | 3.18        | 5.08  | 0.125     | 0.200 |
| D   | 0.38        | 0.53  | 0.015     | 0.021 |
| F   | 0.76        | 1.40  | 0.030     | 0.055 |
| G   | 2.54        | BSC   | 0.100 BSC |       |
| H   | 0.76        | 1.78  | 0.030     | 0.070 |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |
| K   | 2.54        | 4.19  | 0.100     | 0.165 |
| L   | 14.99       | 15.49 | 0.590     | 0.610 |
| M   | -           | 100   | 1         | 100   |
| N   | 1.02        | 1.52  | 0.040     | 0.060 |

CASE 716-07

# 24-PIN PACKAGES (Continued)

PLASTIC PACKAGE CASE 709



NOTES:

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.



|     | MILLIMETERS |       | INCHES |       |
|-----|-------------|-------|--------|-------|
| DIM | MIN         | MAX   | MIN    | MAX   |
| Α   | 31.37       | 32.13 | 1.235  | 1.265 |
| B   | 13.72       | 14.22 | 0.540  | 0.560 |
| C   | 3.94        | 5.08  | 0.155  | 0.200 |
| D   | 0.36        | 0.56  | 0.014  | 0.022 |
| F   | 1.02        | 1.52  | 0.040  | 0.060 |
| G   | 2.54        | BSC   | 0.100  | BSC   |
| Н   | 1.65        | 2.03  | 0.065  | 0.080 |
| J   | 0.20        | 0.38  | 0.008  | 0.015 |
| K   | 2.92        | 3.43  | 0.115  | 0.135 |
| L   | 15.24       |       | 0.600  |       |
| M   | 00          | 150   | 00     | 150   |
| N   | 0.51        | 1.02  | 0.020  | 0.040 |

CASE 709-02

ł

SELECTOR GUIDES CROSS-REFERENCE

# NMOS Memories RAM, EPROM, ROM

CMOS Memories RAM, ROM

4

2

3

# Bipolar Memories TTL, MECL-RAM, PROM

<sup>5</sup> Memory Boards

