(A)
 MOTOROLA MEMORY DATA

(4) MOTOROLA MEMORIES

Prepared by Technical Information Center

Motorola has developed a very broad range of MOS and bipolar memories for virtually any digital data processing system application. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

New Motorola memories are being introduced continually. For late releases, additional technical information or pricing, contact your nearest authorized Motorola distributor or Motorola sales office.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Table of Contents

Page
Alphanumeric Index v
CHAPTER 1
Selector Guide 1-2
Cross-Reference 1-8
CHAPTER 2 - NMOS Memories
RAMs
MCM2114,21L14 $1 \mathrm{~K} \times 4$ Static 2-3
MCM2115A, 2125A $1 \mathrm{~K} \times 1$ Static 2-8
MCM2147
$4 \mathrm{~K} \times 1$ Static 2-9
MCM4027A $4 \mathrm{~K} \times 1$ Dynamic 2-14
MCM4096
$4 \mathrm{~K} \times 1$ Dynamic 2-24
$16 \mathrm{~K} \times 1$ Dynamic 2-32
$16 \mathrm{~K} \times 1$ Dynamic 2-39
4K $\times 1$ Dynamic $2-43$
$4 \mathrm{~K} \times 1$ Dynamic 2-52
$4 \mathrm{~K} \times 1$ Static 2-66
$64 \mathrm{~K} \times 1$ Dynamic 2-69
$128 \mathrm{~K} \times 8$ Static 2-74
EPROMs
MCM2532, 25A32 $4 \mathrm{~K} \times 8$ 2-78
MCM2708, 27A08 $1 \mathrm{~K} \times 8$ 2-84
MCM2716, 27A16 $2 \mathrm{~K} \times 8$ 2-90
MCM68708,68A708 $1 \mathrm{~K} \times 8$ 2-95
MCM68764,68A764 $8 \mathrm{~K} \times 8$ 2-101
TMS2716, 27A16
$2 \mathrm{~K} \times 8$ 2-106
ROMs
MCM6670,6674
MCM66700, 710,714,720,$128 \times(7 \times 5)$ Character Generators2-112
730,734,740,750,751,760,770,780,790
$128 \times(9 \times 7)$ Character Generators 2-118
MCM68A30A, 68B30A $1 \mathrm{~K} \times 8$ Binary 2.132
MCM68A308,68B308 $1 \mathrm{~K} \times 8$ Binary 2-137MCM68A316A2K $\times 8$ Binary2-142
MCM68A316E $2 \mathrm{~K} \times 8$ Binary 2-146
$4 K \times 8$ Binary2-150
MCM68A364,68B364 8K $\times 8$ Binary 2-154
CHAPTER 3 - CMOS Memories
RAMs
MCM14505 64×1 Static 3-3
MCM14537 256×1 Static 3-12
MCM14552 64×4 Static 3-20
MCM145101 256×1 Static 3-27
MCM146504 $4 K \times 1$ Static 3-31.MCM146508,6518
$1 \mathrm{~K} \times 1$ Static 3-32
ROM
MCM14524 256×4 3-36

Table of Contents (continued)

CHAPTER 4 - Bipolar Memories
TTL RAMs
MCM93415 1024×1 4-3
MCM93425 1024×1 4-7
TTL PROMs
MCM5303/5003,5304/5004
64×8 4-11
MCM7620,7621 512×4 4-15
MCM7640,7641, 7642, 7643 512×8 and 1024×4 4-19
МСМ7680,7681 1024×8 4-23
MCM7684, 7685 $2 \mathrm{~K} \times 4$ 4-27
MECL Memories General Information 4-31
MECL RAMs
MCM10143 8×2 4-34
MCM10144 256×1 4-39
MCM10145 16×4 4-41
MCM10146 1024×1 4-43
MCM10147 128×1 4-45
MCM10148 64×1 4-47
MCM10152 256×1 4-49
MECL PROMs MCM10139 32×8 4-51
MCM10149 256×4 4-55
CHAPTER 5 - Memory Subsystems
Board-Level
MMS1102 32K, 16 K , or $8 \mathrm{~K} \times 18$ or 16 Add-In Memory 5-3
MMS1110 $16 \mathrm{~K} \times 16$ LSI-11. Add-In Semiconductor Memory 5-5
MMS1117 PDP-11 Unibus Compatible RAM 5-7
MMS1118 $16 \mathrm{~K} \times 18$ PDP-11 Add-In Semiconductor Memory 5-9
MMS3418 $28 \mathrm{~K} \times 18$ Semiconductor Memory 5-11
MMS68102 $16 \mathrm{~K} \times 8$ Nonvolatile Semiconductor Memory 5-15
MMS68103 $16 \mathrm{~K} \times 8$ Semiconductor Memory for M6800 Systems 5-17
MMS68104 $16 \mathrm{~K} \times 8$ Semiconductor Memory for MEK6800 D2 Kit 5-19
MMS80810 32K $\times 8$ Semiconductor Memory for 8080A Systems 5-23
CHAPTER 6 - MECHANICAL DATA 6-1

Alphanumeric Index

Device Page Device Page
MCM21L14 2-3
MCM66L41 2-66
MCM25A32 2-78
MCM27A08 2-84
MCM27A16 2-90
MCM68A10 2-74
MCM68A30A 2-132
MCM68A308 2-137MCM68A316A2-142
MCM68A316E 2-146
MCM68A332 2-150
MCM68A364 2-154
MCM68A708 2-95
MCM68A764 2-101
MCM68B10 2.74
MCM68B30A 2-132MCM68B3082-137
MCM68B364 2-154
MCM2114 2-3
MCM2115A 2-8
MCM2125A 2-8
MCM2147 2-9
MCM2532 2-78
MCM2708 2-84
MCM2716 2.90MCM4027A2-14MCM40962-24
MCM4116A 2-32
MCM4516 2-39
MCM5003 4-11
MCM5004 4-11
MCM5303 4-11
MCM5304 4-11
MCM6604A 2-43
MCM6605A 2-52
MCM6641 2-66
MCM6664 2-69
MCM6670 2-112
MCM6674 2-112
MCM6810 2-74
MCM7620 4-15
MCM7621 4-15
MCM7640 4-19
MCM7641 4-19
MCM7642 4-19
MCM7643 4-19
MCM7680 4-23
MCM7684 4-27
MCM7685 4-27
MCM10139 4-51
MCM10143 4-34
MCM10144 4-39
MCM10145 4-41
MCM10146 4-43
MCM10147 4-45
MCM10148 4-47
MCM10149 4-55
MCM10152 4-49
MCM14505 3-3
MCM14524 3-36
MCM14537 3-12
MCM14552 3.20
MCM66700 2-118
MCM66710 2-118
MCM66714 2-118
MCM66720 2-118
MCM66730 2-118
MCM66734 2-118
MCM66740 2-118
MCM66750 2-118
MCM66751 2-118
MCM66760 2-118
MCM66770 2-118
MCM66780 2-118
MCM66790 2-118
MCM68708 2.95
MCM68764 2-101
MCM93415 4-3
MCM93425 4-7
MCM145101 3-27
MCM146504 $3-31$
MCM146508 3-32
MCM146518 3-32
MMS1102 5-3
MMS1110 5-5
MMS1117 5-7
MMS1118 5-9
MMS3418 5-11
MMS68102 5-15
MMS68103 5-17
MMS68104 5-19
MMS80810 5-23
TMS27A16 2-106
TMS2716 2-106
MCM7681 4-23

CROSS-REFERENCE

MEMORIES SELECTION GUIDE

NOTES

Boldface denotes industry standard part numbers.

Operating temperature ranges -

MOS: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CMOS: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ECL: Consult individual data sheets
TTL: Military, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FOOTNOTES

ss Second source
1 MOS power supplies Three $+12, \pm 5 \mathrm{~V}$
One +5 V
All MOS outputs are three-state except the 6570 and 6580 series which are open-collector.
2 Character generators include shifted and unshifted characters, ASCII, alphanumeric control, math, Japanese, British, German, European, and French symbols.

MEMORIES SELECTION GUIDE (continued)
RAMs

Organization	Part Number	Access Time (ns max)	Number of Power Supplies	Number of Pins	Second Source

MOS DYNAMIC RAMs

4096×1	MCM4096-6	250	3	16	ss
4096×1	MCM4096-16	300	3	16	ss
4096×1	MCM4096-11	350	3	16	ss
4096×1	MCM4027A-2	150	3	16	ss
4096×1	MCM4027A-3	200	3	16	ss
4096×1	MCM4027A-4	250	3	16	ss
4096×1	MCM6604A	350	3	16	
4096×1	MCM6604A-2	250	3	16	
4096×1	MCM6604A-4	300	3	16	
4096×1	MCM6605A	300	3	22	
4096×1	MCM6605A-2	200	3	22	
$16,384 \times 1$	MCM4116A-15	150	3	16	ss
$16,384 \times 1$	MCM4116A-20	200	3	16	ss
$16,384 \times 1$	MCM4116A-25	250	3	16	ss
$16,384 \times 1$	MCM4116A-30	300	3	16	ss
$16,384 \times 1$	MCM4516A-15*	150	1	16	ss
65,536 $\times 1$	MCM6664A-15*	150	1	16	ss

MOS STATIC RAMs

$\begin{aligned} & 128 \times 8 \\ & 128 \times 8 \\ & 128 \times 8 \end{aligned}$	MCM6810 MCM68A10 MCM68B10	450 360 250	1 1 1	24 24 24	
1024×4	MCM2114-20	200	1	18	ss
1024×4	MCM2114-25	250	1	18	ss
1024×4	MCM2114-30	300	1	18	ss
1024×4	MCM2114-45	450	1	18	ss
1024×4	MCM21L14-20	200	1	18	ss
1024×4	MCM21L14-25	250	1	18	ss
1024×4	MCM21L14-30	300	,	18	ss
1024×4	MCM21L14-45	450	1	18	ss
1024×1	MCM2115A	45	- 1	16	
1024×1	MCM2125A	45	1	16	
4096×1	MCM6641-20	200	1	18	ss
4096×1	MCM6641-25	250	1	18	ss
4096×1	мСМ6641-30	300	1	18	ss
4096×1	MCM6641-45	450	1	18	ss
4096×1	MCM66L41-20	200	1	18	ss
4096×1	MCM66L41-25	250	1	18	ss
4096×1	MCM66L41-30	300	1	18	ss
4096×1	MCM66L41-45	450	1	18	ss
4096×1	MCM2147-55*	55	,	18	ss
4096×1	MCM2147-70*	70	1	18	ss
4096×1	MCM2147-85*	85	1	18	ss

*To be introduced.
See Notes on Page 1-2.

Organization	Part Number	Access Time (ns max)	Number of Power Supplies	Number of Pins	Second Source

CMOS STATIC RAMs

64×1	MCM14505	$180^{* *}$	1	14	
256×1	MCM14537	$700^{* *}$	1	16	
64×4	MCM14552	$700^{* *}$	1	24	
256×4	MCM145101-1	450	1	22	ss
256×4	MCM145101-3	650	1	22	$s s$
256×4	MCM145101-8	800	1	22	$s s$
4096×1	MCM146504	450	1	18	$s s$
1024×1	MCM146508**	460	1	16	$s s$
1024×1	MCM146508-1*	300	1	16	ss
1024×1	MCM146518**	460	1	18	$s s$
1024×1	MCM146518-1*	300	1	18	$s s$

**Typical access time @ VDD $=10 \mathrm{Vdc}$.

Organization	Part Number	Access Time (ns max)	Output	Number Pins	Second Source

ECL BIPOLAR RAMs

8×2	MCM10143	15	ECL Output	24	
256×1	MCM10144	26	ECL Output	16	ss
16×4	MCM10145	15	ECL Output	16	ss
1024×1	MCM10146	29	ECL Output	16	ss
128×1	MCM10147	15	ECL Output	16	ss
16×4	MCM10148	15	ECL Output	16	
256×1	$M C M 10152$	15	ECL Output	16	ss

TTL BIPOLAR RAMs

256×4	MCM93412*	45	Open-Collector	22	ss
256×4	MCM93422* *	45	Three-State	22	ss
1024×4	MCM93415* *	45	Open-Collector	16	ss
1024×4	MCM93425**	45	Three-State	16	ss

[^0]MEMORIES SELECTION GUIDE (continued)
EPROMs

Organization•	Part Number	Access Time (ns max)	Number of Power Supplies	Number of Pins	Second Source

MOS EPROMs

1024×8	MCM2708	450	3	24	$s s$
1024×8	MCM27A08	300	3	24	$s s$
1024×8	MCM68708	450	3	24	$s s$
1024×8	MCM68A708	300	3	24	
2048×8	TMS2716	450	3	24	$s s$
2048×8	TMS27A16	300	3	24	ss
2048×8	MCM2716*	450	1	24	$s s$
2048×8	MCM27A16*	350	1	24	$s s$
4096×8	MCM2532*	450	1	24	
8192×8	$M C M 68764^{*}$	450	1	24	$s s$

PROMs

Organization	Part Number	Access Time (ns max)	Output	Number Pins
Second Source				

ECL PROMs

32×8	MCM10139	25	ECL Output	16	$s s$
256×4	MCM10149	30	ECL Output	16	ss

TTL PROMs

$\begin{aligned} & 64 \times 8 \\ & 64 \times 8 \end{aligned}$	$\begin{aligned} & \text { MCM5003/5303 } \\ & \text { MCM5004/5304 } \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	Open-Collector 2K Pull-Up	24 24	ss ss
512×4	MCM7620	70	Open-Collector	16	ss
512×4	MCM7621	70	Three-State	16	ss
512×4	MCM7640	70	Open-Collector	24	ss
512×4	MCM7641	70	Three-State	24	ss
$\begin{aligned} & 1024 \times 4 \\ & 1024 \times 4 \end{aligned}$	MCM7642 MCM7643	70 70	Open-Collector Three-State	18 18	ss ss
$\begin{aligned} & 1024 \times 8 \\ & 1024 \times 8 \end{aligned}$	MCM7680 MCM7681	70 70	Open-Collector Three-State	24 24	ss $s s$
2048×4 2048×4	MCM7684* MCM7685*	70 70	Open-Collector Three-State	18 18	ss ss

[^1]MEMORIES SELECTION GUIDE (continued)
ROMs

Organization	Part Number	Access Time (ns max)	Number of Power Supplies	Number of Pins	Second Source

MOS STATIC ROMs
Character Generators ${ }^{2}$

$128 \times(7 \times 5)$	MCM6670	350	1	18	
$128 \times(7 \times 5)$	MCM6674	350	1	18	
$128 \times(9 \times 7)$	MCM66700	350	1	24	ss
$128 \times(9 \times 7)$	MCM66710	350	1	24	ss
$128 \times(9 \times 7)$	MCM66714	350	1	24	ss
$128 \times(9 \times 7)$	MCM66720	350	1	24	ss
$128 \times(9 \times 7)$	MCM66730	350	1	24	ss
$128 \times(9 \times 7)$	MCM66734	350	1	24	
$128 \times(9 \times 7)$	MCM66740	350	1	24	ss
$128 \times(9 \times 7)$	MCM66750	350	1	24	ss
$128 \times(9 \times 7)$	MCM66760	350	1	24	ss
$128 \times(9 \times 7)$	$M C M 66770$	350	1	24	
$128 \times(9 \times 7)$	$M C M 66780$	350	1	24	
$128 \times(9 \times 7)$	$M C M 66790$	350	1	24	

Binary ROMs

1024×8	MCM68A30-8	350	1	24	
1024×8	MCM68A308-7	350	1	24	
2048×8	MCM68A316-91	350	1	24	
1024×8	MCM68B30A	250	1	24	ss
1024×8	MCM68A30A	350	1	24	ss
1024×8	MCM68B308	250	1	24	ss
1024×8	MCM68A308	350	1	24	ss
2048×8	MCM68A316E	350	1	24	ss
2048×8	MCM68A316A	350	1	24	ss
4096×8	MCM68A332	350	1	24	ss
4096×8	MCM68A332-2*	350	1	24	
8192×8	MCM68A364*	350	1	24	ss
8192×8	MCM68A364-3*	350	1	24	
8192×8	MCM68B364-3*	250	1	24	

CMOS ROM

256×4	MCM14524	1200	1	16	

*To be introduced.
See Notes on Page 1-2.

MEMORY SYSTEMS

For most purposes, memory systems are as unique and individualistic as is the variety of equipment in which they are used. There are, however, some computer systems - microcomputers and minicomputers - whose widespread acceptance results in the use of large numbers of memory systems of a specific architecture. Some of these have been identified, resulting in the standard, inventoried systems described below. Due to large-volume requirement and broad-based sales, these systems represent excellent values.

ADD-IN SYSTEMS FOR MICROCOMPUTERS

Application	Organization				
	$32 \mathrm{~K} \times 8$	$16 \mathrm{~K} \times 9$ Parity Option	$16 \mathrm{~K} \times 8$	$8 \mathrm{~K} \times 9$ Parity Option	$\mathbf{8 K} \times 8$
For 6800 Systems					
Dynamic RAMs Standard			MMS68100		MMS68100-1
Non-Volatile		MMS68102A	MMS68102	MMS68102A1	MMS68102-1
$\begin{aligned} & \text { for D2 Kit } \\ & \text { Pseudo-Static RAMs } \end{aligned}$		MMS68103A	MMS68104 MMS68103	MMS68103A1	MMS68103-1
For 8080A Systems Dynamic RAMs	MMS80810		MMS80810-1		

ADD-IN SYSTEMS FOR MINICOMPUTERS

MODULES FOR GENERAL-PURPOSE APPLICATIONS

THE OFFICIAL MOS MEMORY CROSS-REFERENCE

From Motorola
APRIL 1979

PART NUMBER	ORGANIZATION DESCRIPTION	MOTOROLA'S ACCESS TIME (ns max)	NO. OF PINS	POWER SUPPLIES	MOTOROLA PIN-TO-PIN REPLACEMENT
AMD					
Am2716	2048×8 EPROM	450	24	+5V	MCM2716
Am4044	4096×1 SRAM	200-450	18	+5V	MCM66L41
Am9016	16,384 $\times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
Am9114	1024×4 SRAM	200-450	18	+5 V	MCM2114
Am91L14	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM21L14
Am9124	1024×4 SRAM	200-450	18	+5V	MCM2114
Am9147	4096×1 SRAM	55-85	18	+5V	MCM2147
Am9208B	1024×8 SRAM	350	24	+5V	MCM68A308
Am9217	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316A
Am9218	2048×8 SROM	350	24	+5V	MCM68A316E
Am9232	4096×8 SROM	350	24	+5V	MCM68A332
Am9708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM68708
AMI					
S2114	1024×4 SRAM	200-450	18	+5V	MCM2114
S2114L	1024×4 SRAM	200-450	18	+5V	MCM21L14
S2147	4096×1 SRAM	70-100	18	+5V	MCM2147
S4264	8192×8 SROM	350	24	+5V	MCM68A364
S5101	256×4 SRAM	450-800	22	$+5 \mathrm{~V}$	MCM145101
S6508	1024×1 SRAM	300-460	16	+5V	MCM146508
S6518	1024×1 SRAM	300-460	18	+5V	MCM146518
S6810	128×8 SRAM	250-450	24	$+5 \mathrm{~V}$	MCM6810
S6830	1024×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A30A
S6831A	2048×8 SROM	350	24	+5V	MCM68A316A
S6831B	2048×8 SROM	350	24	+5V	MCM68A316E
FAIRCHILD					
F16K	$16,384 \times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
2114	1024×4 SRAM	200-450	18	+5V	MCM2114
F2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
F27081	1024×8 EPRROM	300	24	+12, $\pm 5 \mathrm{~V}$	MCM27A08
2716	2048×8 EPROM	450	24	+5V	MCM2716
3508	1024×8 SROM	350	24	+5V	MCM68A308
F3516E	2048×8 SROM	350	24	+5V	MCM68A316E
FM4027	4096×1 DRAM	$120-250$	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
4096	4096×1 DRAM	250-350	16	+12, $\pm 5 \mathrm{~V}$	MCM4096
F68810	128×8 SRAM	250-450	24	$+5 \mathrm{~V}$	MCM68810
F68B308	1024×8 SROM	250-350	24	+5V	MCM68B308
F68708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM68708
FUJITSU					
MB2147	4096×1 SRAM	70-100	18	+5V	MCM2147
MBM2716	2048×8 EPROM	450	24	+5V	MCM2716
MB4044	4096×1 SRAM	200450	18	+5V	MCM6641
MB8114	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM2114
MB8116	$16,384 \times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
MB8224	4096×1 DRAM	250-350	16	+12, $\pm 5 \mathrm{~V}$	MCM4096
MB8227	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
MB8308	1024×8 SROM	350	24	+5V	MCM68A308
MB8518H	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
GENERAL INSTRUMENT					
RO3-8316A	2048×8 SROM	350	24	+5V	MCM68A316A
RO3-9316	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316E
RO3-9332A	4096×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A332
RO3-9364B	8092×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A364
HITACHI					
HM462716	2048×8 EPROM	450	24	+5V	MCM2716
HM435101	256×4 SRAM	450.800	22	+5V	MCM145101
HM462708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
HM468A10	128×8 SRAM	350	24	+5V	MCM68A10
HM46830	1024×8 SROM	350	24	+5V	MCM68A30A
HM4704L	4096×1 DRAM	150-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
HM4716	$16,384 \times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
HM472114A	1024×4 SRAM	$200-450$	18	+5V	MCM21L14
HM4847	4096×1 SRAM	55-85	18	+5V	MCM2147

PART NUMBER	ORGANIZATION DESCRIPTION	MOTOROLA'S ACCESS TIME (ns max)	NO. OF PINS	POWER SUPPLIES	MOTOROLA PIN-TO-PIN REPLACEMENT
INTEL					
2104A	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
2114	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM2114
2114L	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM21L14
2117	16,384 $\times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
2147	4096×1 SRAM	70-100	18	+5V	MCM2147
2308	1024×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A308
2316 A	2048×8 SROM	350	24	+5V	MCM68A316A
2316 E	2048×8 SROM	350	24	+5V	MCM68A316E
$2708-1$	1024×8 EPROM	300	24	+12, $\pm 5 \mathrm{~V}$	MCM27A08
2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
2716	2048×8 EPROM	450	24	+5V	MCM2716
2716-1	2048×8 EPROM	350	24	+5V	MCM27A16
2716-2	2048×8 EPROM	350	24	+5V	MCM27A16
5101	256×4 SRAM	450.800	22	+5V	MCM145101
INTERSIL					
D2114	1024×4 SRAM	200-450	18	+5V	MCM2114
MK4027	4096×1 DRAM	150-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
IM6508	1024×1 SRAM	300-460	16	+5V	MCM146508
IM6508-1	1024×1 SRAM	300-460	18	$+5 \mathrm{~V}$	MCM146518
IM7027	4096×1 DRAM	120.250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
IM7114	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM21L14
IM7116	16,384 $\times 1$ DRAM	150.300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
IM7141	4096×1 SRAM	200-450	18	+5V	MCM6641
IM7141L	4096×1 SRAM	200450	18	$+5 \mathrm{~V}$	MCM66L41
ITT					
ITT4027	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
ITT4116	16,384 $\times 1$ DRAM	150.300	16	$+12, \pm 5 \mathrm{~V}$	MCM4116
MIC					
MIC2316E	2048×8 SROM	350	24	+5V	MCM68A316E
MIC2332	4096×8 SROM	350	24	+5V	MCM68A332
MOSTEK					
MK2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
MK2716	2048×8 EPROM	450	24	+5V	MCM2716
MK4027.	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
MK4096	4096×1 DRAM	250.350	16	+12, $\pm 5 \mathrm{~V}$	MCM4096
MK4104	4096×1 DRAM	200-450	18	+5V	MCM6641
MK4114	1024×4 SRAM	200-450	18	+5V	MCM2114
MK4116	16,384 $\times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
MK 30000	1024×8. SROM	350	24	+5V	MCM68A308
MK31000	2048×8 SROM	350	24	+5V	MCM68A316A
MK32000	4096×8 SROM	350	24	+5V	MCM68A332
MK34000	2048×8 SROM	350	24	+5V	MCM68A316E
MK36000	8192×8 SROM	350	24	+5V	MCM68A364
MK36000-4	8192×8 SROM	250	24	+5V	MCM68B364
NATIONAL					
MM2114	1024×4 SRAM	200-450	18	+5 V	MCM2114
MM2147	4096×1 SRAM	55-85	18	+5V	MCM2147
MM2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
MM2716	2048×8 EPROM	450	24	$+5 \mathrm{~V}$	MCM2716
MM5235	8192×8 SROM	350	24	+5V	MCM68A364
MM5257	4096×1 SRAM	200-450	18	+5V	MCM6641
MM5257L	4096×1 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM66L41
MM5290	$16,384 \times 1$ DRAM	150-300	16	$+12, \pm 5 \mathrm{~V}$	MCM4116A
NEC/EA					
μ PD414A	4096×1 DRAM	150-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
μ PD414	4096×1 DRAM	$250 \cdot 350$	16	+12, $\pm 5 \mathrm{~V}$	MCM4096
μ PD416	16,384 $\times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
μ PD2114L	1024×4 SRAM	200-450	18	+5V	MCM21L14
$\mu \mathrm{PD} 2147$	4096×1 SRAM	55-85	18	$+5 \mathrm{~V}$	MCM2147
$\mu \mathrm{PD} 2716$	2048×8 EPROM	450	24	+5V	MCM2716
μ PD4104	4096×1 SRAM	200-450	18	+5V	MCM66L41
μ PD5101	256×4 SRAM	$450-800$	22	+5V	MCM145101
μ PD6508	1024×1 SRAM	$300-460$	16	$+5 \mathrm{~V}$	MCM146508
EA2308/8308 $\mu \mathrm{PD}$ or	1024×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A308
EA2316A/8316A μ PD or	2048×8 SROM	350	24	+5 V	MCM68A316A
${ }_{\text {EPA }}{ }^{\text {P }}$ or $16 \mathrm{E} / 8316 \mathrm{E}$	2048×8 SROM	350	24	+5V	MCM68A316E
EA2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
$\mu \mathrm{PD}$ or EA2716	2048×8 EPROM	450	24	+5V	MCM2716

PART NUMBER	ORGANIZATION DESCRIPTION	MOTOROLA'S ACCESS TIME (ns max)	NO. OF PINS	POWER SUPPLIES	MOTOROLA PIN.TO.PIN REPLACEMENT
NITRON					
NC6570	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66700
NC6571	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66710
NC6572	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66720
NC6573	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66730
NC6574	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66740
NC6575	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66750
NC6832	2048×8 SROM	550	24	+12, $\pm 5 \mathrm{~V}$	MCM6832
SIGNETICS					
2607	1024×8 SROM	350	24	+5V	MCM68A308
2608	1024×8 SROM	350	24	+5V	MCM68A30A
2609	$128 \times(9 \times 7)$ SROM	350	24	+5V	MCM66700
2660	4096×1 DRAM	120-250	- 16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
2614	1024×4 SRAM	200-450	18	+5V	MCM21L14
261.6	2048×8 SROM	350	24	+5V	MCM68A316E
2633	4096×8 SROM	350	24	+5V	MCM68A332
2664	8192×8 SROM	350	24	+5V	- MCM68A364
2690	$16,384 \times 1$ DRAM	250-350	16	+12, $\pm 5 \mathrm{~V}$	MCM4116A
2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
2716	2048×8 EPROM	450	24	+5V	MCM2716
4027	4096×1 DRAM	150-250	16	$+12, \pm 5 \mathrm{~V}$	MCM4027A
5101	256×4 SRAM	450.800	. 22	+5V	MCM145101
SYNERTEK					
SY2114	1024×4 SRAM	200-450	18	+5V	MCM21L14
SY2147	4096×1 SRAM	55.85	18	+5V	MCM2147
SY2316A	2048×8 SROM	350	24	+5V	MCM68A316A
SY2316B	2048×8 SROM	350	24	+5V	MCM68A316E
SY2716	2048×8 EPROM	450	24	+5V	MCM2716
SY5101	256×4 SRAM	450-800	22	$+5 \mathrm{~V}$	MCM145101
TEXAS INSTRUMENTS					
TMS 2516	2048×8 EPROM	450	24	+5V	MCM2716
TMS 2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
TMS 2716	2048×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	TMS 2716
TMS 4027	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
TMS 4044	4096×1 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM6641
TMS 4045	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM2114
TMS 4116	16,384 $\times 1$ DRAM	150-300	16	$+12, \pm 5 \mathrm{~V}$	MCM4116A
TMS 4700	1024×8 SROM	350	24	+5V	MCM68A308
TMS 4732	4096×8 SROM	350	24	+5V	MCM68A332

Part Number Guide

NMOS Memories RAM, EPROM, ROM

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2114 is a 4096-bit random access memory fabricated with high density, high reliability N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM2114 is designed for memory applications where simple interfacing is the design objective. The MCM2114 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select $(\overline{\mathrm{S}})$ lead allows easy selection of an individual package when the three-state outputs are OR-tied.

The MCM2114 series has a maximum current of 100 mA . Low power versions (i.e., MCM21L14 series) are available with a maximum current of only 70 mA .

- 1024 Words by 4-Bit Organization
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Fully Static: Cycle Time = Access Time
- Fully TTL/DTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Low Power Version Available

MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME

MCM2114-20 MCM21L14-20	200 ns	MCM2114-30 MCM21L14-30	300 ns
MCM2114-25 MCM21L14-25	250 ns	MCM2114-45 MCM21L14-45	450 ns

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to V_{SS}	-0.5 to +7.0	$\mathrm{Vdc}^{\mathrm{Vdc}}$
DC Output Current	5.0	mA
Power Dissipation	1.0	Watt P Operating Temperature Range
Storage Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

($T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	MCM2114			MCM21L14			Unit
		Min	Nom	Max	Min	Nom	Max	
Input Load Current (All Input Pins, $V_{\text {in }}=0$ to 5.5 V)	'LI	-	-	10	-	\cdots	10	$\mu \mathrm{A}$
$\begin{aligned} & \text { I/O Leakage Current } \\ & \left(\overline{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \end{aligned}$	"LO	-	-	10	-	-	10	$\mu \mathrm{A}$
Power Supply Current $\left(V_{\text {in }}=5.5, I_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	'CC1	-	80	95	-	-	65	mA
Power Supply Current. $\left(\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}, 1_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC} 2$	-	-	100	-	-	70	mA
Input Low Voltage	$V_{\text {IL }}$	-0.5	--	0.8	-0.5	-	0.8	\checkmark
Input High Voltage	V_{IH}	2.0	-	6.0	2.0	-	6.0	V
$\begin{gathered} \text { Output Low Current } \\ V_{\mathrm{OL}}=0.4 \mathrm{~V} \\ \hline \end{gathered}$	${ }^{1} \mathrm{OL}$	2.1	6.0	-	2.1	6.0	--	mA
$\begin{gathered} \text { Output High Current } \\ V_{\mathrm{OH}}=2.4 \mathrm{~V} \\ \hline \end{gathered}$	${ }^{1} \mathrm{OH}$	--	-1.4	-1.0	-	-1.4	-1.0	mA
Output Short Circuit Current	$\mathrm{IOS}^{(2)}$	-	-	40	-	-	40	mA

Note: 2. Duration not to exceed 30 seconds.

CAPACITANCE

($f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	C_{in}	5.0	pF
Input/Output Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	5.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature uniess otherwise noted.)
Input Pulse Levels. 0.8 Volt to 2.4 Volts
Input Rise ańd Fall Times . 10 ns
Input and Output Timing Levels . 1.5 Volts
Output Load. 1 TTL Gate and CL $=100 \mathrm{pF}$

AC OPERATING CONDITIONS AND CHARACTERISTICS
 Read (Note 3), Write (Note 4) Cycles

RECOMMENDED AC OPERATING CONDITIONS ($T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$)

Parameter	Symbo!	MCM2114-20 MCM211.14-20		$\begin{array}{\|c\|} \hline \text { MCM2114-25 } \\ \text { MCM21L14-25 } \end{array}$		MCM2114-30MCM21L14-30		$\begin{aligned} & \text { MCM2114-45 } \\ & \text { MCM21L14-45 } \end{aligned}$		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	${ }^{\text {tr }}$ C	200	-	250	--	300	-	450	-	ns
Access Time	${ }^{1} \mathrm{~A}$	-	200	-	250	-	300	--	450	ns
Chip Selection to Output Valid	${ }^{\text {t }}$ SO	-	70	-	85	-	100	-	120	ns
Chip Selection to Output Active	${ }^{\text {t }}$ S X	20	-	20	-	20	-	20	-	ns
Output 3-State From Deselection	${ }^{\text {t OTD }}$	-	60	-	70	-	80	-	100	ns
Output Hold From Address Change	${ }^{\text {t OHA }}$	50	-	50	-	50	--	50	-	ns
Write Cycle Time	${ }^{\text {tw }}$ W	200	-	250	-	300	-	450	-	ns
Write Time	${ }^{\text {tw }}$	120	-	135	-	150	-	200	-	ns
Write Release Time	${ }^{\text {t }}$ WR	0	-	0	-	0	-	0	-	ns
Output 3-State From Write	${ }^{\text {t OTW }}$	-	60	--	70	-	80	-	100	ns
Data to Write Time Overlap	${ }^{\text {t }}$ OW	120	-	135	-	150	-	200	-	ns
Data Hold From Write Time	${ }^{\text {t }} \mathrm{DH}$	0	-	0	-	0	-	0	-	ns

Notes: 3. A Read occurs during the overlap of a low \bar{S} and a high \bar{W}.
4. A Write occurs during the overlap of a low \bar{S} and a low \bar{W}.

Note: 5. \bar{W} is high for a Read cycle.

Notes: 6. If the \bar{S} low transition occurs simultaneously with the \bar{W} low transition, the output buffers remain in a high-impedance state.
7. \bar{W} must be high during all address transitions.

WAVEFORMS

Waveform	Input	Output
	must be	WILL BE
	\checkmark VALID	VALID
	CHANGE	will change
$\sqrt{1 i} 1$	FROMHTOL	FROM HTOL
777	CHANGE	WILL CHANGE
$1 / 1$	FROML TOH	FROMLTOH
	DON' CARE	Changing
$1 \times 8 \times 8$	ANY CHANGE	State
	PERMITTED	UNKNOWN
		$\begin{gathered} \text { HIGH } \\ \text { IMPEDANCE } \end{gathered}$

MCM2114, MCM21L14

TYPICAL CHARACTERISTICS

SUPPLY CURRENT versus SUPPLY VOLTAGE

OUTPUT SOURCE CURRENT versus OUTPUT VOLTAGE

SUPPLY CURRENT versus AMBIENT TEMPERATURE

OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

MCM2114, MCM21L14

NORMALIZED ACCESS TIME versus TEMPERATURE

TYPICAL ACCESS TIME versus TEMPERATURE

MCM2114/MCM21L14 BIT MAP

	$\begin{aligned} & 1023 \longleftarrow \longleftarrow \\ & 1007 \end{aligned}$	$1023 \longleftarrow 1008$ 1007	$\left\lvert\, \begin{aligned} & 1023 \longleftarrow \longleftarrow \\ & 1007 \end{aligned}\right.$
$1 / \mathrm{O}_{3}$ (PIN NO. 12)	$1 / \mathrm{O}_{4}$ (PIN NO. 11)	1/O ${ }_{1}($ PIN NO. 14)	$1 / \mathrm{O}_{2}$ (PIN NO. 13)
16		16	16

To determine the precise location on the die of a word in memory, reassign address numbers to the address pins as in the table below. The bit locations can then be determined directly from the bit map.

PIN NUMBER	reassigned ADDRESS NUMBER	PIN NUMBER	REASSIGNED ADDRESS NUMBER
1	A6	6	A1
2	A5	7	A2
3	A4	15	$\overline{\text { A9 }}$
4	A3	16	$\overline{\text { A }}$
5	AO	17	$\overline{\text { A7 }}$

MCM2115A MCM2125A

Product Preview

The MCM2115A and MCM2125A families are high-speed, 1024 words by one-bit random-access memories fabricated using HMOS, high-performance N-channel silicon-gate technology. Both open collector (MCM 2115A) and three-state output (MCM2125A) are available. The devices use fully static circuitry throughout and require no clocks of refreshing to operate. Data out has the same polarity as the input data.

Access times are fully compatible with the industry-produced 1 K Bipolar RAMs, yet offer 20% to 50% reduction in power over their Bipolar equivalents.

All inputs and outputs are directly TTL compatible. A seperate chip select allows easy selection of an individual device when outputs are OR-tied.

- Organized as 1024 Words of 1 Bit
- Single +5 V Operation
- Maximum Access Time $=45 \mathrm{~ns}$ and 70 ns
- Low Operating Power Dissipation

[^2]
Advance Information

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2147 is a 4096 -bit static random access memory organized as 4096 words by 1 -bit using Motorola's N-channel silicongate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.
\bar{E} controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after $\overline{\mathrm{E}}$ goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \bar{E} remains high. This feature results in system power savings as great as 85% in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2147 is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory - No Clock or Timing Strobe Required
- Single +5 V Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible-Al! Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time - MCM2147-55 = 55 ns max MCM2147-70 $=70$ ns max
MCM2147.85 $=85 \mathrm{~ns} \max$
MCM2147-100 $=100$ ns max

PIN NAMES

$A 0-A 11$	Address Input
\vec{W}	Write Enable
\vec{E}	Chip Enable
D	Data Input
Q	Data Output
$V_{C C}$	Power $(+5 \mathrm{~V})$
$V_{S S}$	Ground

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	Mode	Output	Power
H	X	Not Selected	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

This is advance information and specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Value	Unit
Temperature Under Bias	-10 to +85	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to V_{CC}	-0.5 to +7.0	Vdc^{\prime}
DC Output Current	20	mA
Power Dissipation	1.0	Watt $^{\circ}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS $\left(T_{A}=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ unless otherwise noted.)

Parameter	Symbol	MCM2147-55			MCM 2147-70			MCM2147-85			MCM2147-100			Unit
		Min	Typ	Max										
Input Load Current (All Input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V)	IIL	-	0.01	10	-	0.01	10	-	0.01	10	-	0.01	10	$\mu \mathrm{A}$
Output Leakage Current $\left(E=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \text { to } 5.5 \mathrm{~V}\right)$	'OL	-	0.1	50	-	0.1	50	-	0.1	50	-	0.1	50	$\mu \mathrm{A}$
Power Supply Current ($E=V_{1 L}$, Outputs Open, $T_{A}=25^{\circ} \mathrm{C}$)	' CCl	-	120	170	-	100	150	-	95	130	-	90	110	mA
Power Supply Current $\left(E=V_{I L}\right.$, Outputs Open, $\left.T_{A}=0^{\circ} \mathrm{C}\right)$	$\mathrm{I} \mathrm{Cc} 2$	-	-	180	-	-	160	-	-	140	-	-	120	mA
Standby Current $\left(E=V_{I H}\right)$	${ }^{\text {ISB }}$	-	15	30	-	10	20	-	15	25	-	10	20	mA
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	-0.3	-	0.8	-0.3	-	0.8	-0.3	-	0.8	V
Input High Voltage	VIH	2.0	-	6.0	2.0	-	6.0	2.0	-	6.0	2.0	-	6.0	V
Output Low Voltage $(1 \mathrm{OL}=8.0 \mathrm{~mA})$	V OL	-	-	0.4	-	-	0.4	-	-	0.4	-	-	0.4	V
Output High Voltage $(1 \mathrm{OH}=-4.0 \mathrm{~mA})$	V_{OH}	2.4	-	-	2.4	-	-	2.4	-	-	2.4	-	-	V

Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.

CAPACITANCE

(f $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance $\left(V_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	10	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated
from the equation: $C=\frac{I \Delta_{t}}{\Delta V}$.
AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)

FIGURE 1 - OUTPUT LOAD

\qquad
Input Rise and Fall Times . 10 ns
Input and Output Timing Levels . 1.5 Volts
Output Load. See Figure 1

AC OPERATING CONDITIONS AND CHARACTERISTICS, Read, Write Cycles ($T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	MCM2147-55		MCM2147-70		MCM2 147-85		MCM2 147-100		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Address Valid to Address Don't Care (Cycle Time When Chip Enable is Held Active)	${ }^{\text {t }}$ AVAX	55	-	70	-	85	-	100	-	ns
Chip Enable Low to Chip Enable High	tavov	-	55	-	70	-	85	-	100	ns
Address Valid to Output Valid (Access)	telqvi*	-	55	-	70	-	85	-	100	ns
Chip Enable Low to Output Valid (Access)	${ }^{\text {telqV2 }}{ }^{*}$	-	65	-	80	-	95	-	110	ns
Address Valid to Output Invalid	${ }_{t} \mathrm{AVOX}$	10	-	10	-	10	-	10	-	ns
Chip Enable Low to Output Invalid	telox	10	-	10	-	10	-	10	-	ns
Chip Enable High to Output High Z	${ }^{\text {t EHOZ }}$	0	40	0	40	0	40	0	40	ns
Chip Selection to Power-Up Time	tPU	0	-	0	-	0	-	0	-	ns
Chip Deselection to Power-Down Time	tPD	0	30	0	30	0	30	0	30	ns
Address Valid to Chip Enable Low (Address Setup)	${ }^{\text {t }}$ AXEL	0	-	0	-	0	-	0	-	ns
Chip Enable Low to Write High	tELWH	45	-	55	-	70	-	80	-	ns
Address Valid to Write High	$\mathrm{t}_{\text {AVWH }}$	45	-	55	-	70	-	80	-	ns
Address Valid to Write Low (Address Setup)	tavWL	0	-	0	-	0	-	0	-	ns
Write Low to Write High (Write Pulse Width)	tWLWH	35	-	40	-	55	-	65	-	ns
Write High to Address Don't Care	tWHAX	10	-	15	-	15	-	15	-	ns
Data Valid to Write High	tDVWH	25	-	30	-	45	-	55	-	ns
Write High to Data Don't Care (Data Hold)	tWHDX	10	-	10	-	10	-	10	-	ns
Write Low to Output High Z	twLoz	0	30	0	35	0	45	0	50	ns
Write High to Output Valid	tWHOV	0	-	0	-	0	-	0	-	ns

*tELQV1 is access from chip enable when the 2147 is deselected for at least 55 ns prior to this cycle. tELQV2 is access from chip enable for $0 \mathrm{~ns}<$ deselect time $<55 \mathrm{~ns}$. If deselect time $=0 \mathrm{~ns}$, then t ELQV $=\mathrm{t}_{\mathrm{A}} \mathrm{AVQV}$.

TIMING PARAMETER ABBREVIATIONS

The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WRITE CYCLE TIMING

Waveform Symbol	WAVEFORMS	
	input	Output
	must be	WHLL BE
	VALID	VALIo
	CHANGE	will change
1	FROMHTOL	FROM HTOL
$\sqrt{1717}$	CHANGE FROMLTOH	WILL CHANGE from to m
1171	FROMLTOH.	FROMLTOH
888888	DON'T CARE:	CHANGING:
	ANY CHANGE	state
	permitted	UNKNOWN
-	-	HIGH IMPEDANCE

DEVICE DESCRIPTION

The MCM2147 is produced with a high-performance MOS technology which combines on-chip substrate bias generation with device scaling to achieve high speed. The speed-power product of this process is about four times better than earlier MOS processes.

This gives the MCM2147 its high speed, low power and ease-of-use. The low-power standby feature is controlled with the \bar{E} input. \bar{E} is not a clock and does not have to be cycled. This allows the user to tie $\overline{\mathrm{E}}$ directly to system addresses and use the line as part of the normal decoding logic. Whenever the MCM2147 is deselected, it automatically reduces its power requirements.

SYSTEM POWER SAVINGS

The automatic power-down feature adds up to significant system power savings. Unselected devices draw low standby power and only the active devices draw active power. Thus the average power consumed by a device declines as the system size increases, asymptotically approaching the standby power level as shown in Figure 2.

The automatic power-down feature is obtained without any performance degradation, since access time from chip enable is \leqslant access time from address valid. Also the fully static design gives access time equal cycle time so multiple read or write operations are possible during a single select period. The resultant data rates are 14.3 MHz and 18 MHz for the MCM2147-70 and MCM2147-55 respectively.

DECOUPLING AND BOARD LAYOUT considerations

The power switching characteristic of the MCM2147 requires careful decoupling. It is recommended that a $0.1 \mu \mathrm{~F}$ to $0.3 \mu \mathrm{~F}$ ceramic capacitor be used on every other device, with a $22 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ bulk electrolytic decoupler every 16 devices. The actual values to be used will depend on board layout, trace widths and duty cycle.

Power supply gridding is recommended for PC board layout. A very satisfactory grid can be developed on a two-layer board with vertical traces on one side and horizontal traces on the other, as shown in Figure 3. If fast drivers are used, terminations are recommended on input signal lines to the MCM2147 because significant reflections are possible when driving their high impedance inputs. Terminations may be required to match the impedance of the line to the driver.

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4027A is a 4096×1 bit high-speed dynamic Random Access Memory. It has smaller die size than the MCM4027 providing improved speed selections. The MCM4027A is fabricated using Motorola's highly reliable N -channel silicon-gate technology.

By multiplexing row and column address inputs, the MCM4027A requires only six address lines and permits packaging in Motorola's standard 16 -pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The MCM4027A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.

- Maximum Access Time $=120 \mathrm{~ns}-$ MCM4027AC1

$$
\begin{aligned}
& 150 \mathrm{~ns} \text { - MCM4027AC2 } \\
& 200 \mathrm{~ns} \text { - MCM4027AC3 } \\
& 250 \mathrm{~ns} \text { - MCM4027AC4 }
\end{aligned}
$$

- Maximum Read and Write Cycle Time =

$$
\begin{aligned}
& 320 \mathrm{~ns} \text { - MCM4027AC1, C2 } \\
& 375 \mathrm{~ns}-\mathrm{MCM} 4027 \mathrm{AC}, \mathrm{C}
\end{aligned}
$$

- Low Power Dissipation - 470 mW Max (Active)

27 mW Max (Standby)

- 3-State Output for OR-Ties
- On-Chip Latches for Address, Chip Select, and Data in
- Power Supply Pins on Package Corners for Optimum Layout
- Industry Standard 16-Pin Package
- Page-Mode Capability
- Compatible with the Popular 2104/MK4096/MCM6604
- Second Source for MK4027

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

CSUFFIX
FRIT-SEAL PACKAGE
CASE 620

TRUTH TABLE

Inputs				Data Out				Cycle Power	Ref
RAS	CAS	CS	WE	Previous	Interim	Present			
L	L	L	L	Valid data	High Imp.	Input data	Full-operating	Yes	Write cycle
L	L	L	H	Valid data	High Imp.	Valid data (celI)	Full-operating	Yes	Read cycle
L	L	H	X	Valid data	High Imp.	High Imp.	Full-operating	Yes	Deselected-refresh
L	H	X	X	Valid data	Valid data	Valid data	Reduced operating	Yes	RAS only-refresh
H	L	X	X	Valid data	High Imp.	High Imp.	Standby	No	Standby-output disabled
H	H	X	X	Valid data	Valid data	Valid data	Standby	No	Standby-output valid

[^3]

OPERATING CHARACTERISTICS

ADDRESSING

The MCM4027A has six address inputs (A0-A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe ($\overline{\mathrm{CAS}}$). At the beginning of a memory cycle, the six low order address bits A0 through A5 are strobed into the chip with $\overline{\mathrm{RAS}}$ to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6-A11) are placed on the address pins. This address is then strobed into the chip with $\overline{\mathrm{CAS}}$. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by $A O$ to complete the data selection. The Chip Select ($\overline{\mathrm{CS}})$ is latched into the port along with the column addresses.

DATA OUTPUT ${ }^{\text {' }}$

In order to simplify the memory system designed and reduce the total package count, the MCM4027A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

A chip will be unselected during a memory cycle if:
(1) The chip receives both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals, but no Chip Select signal.
(2) The chip receives a $\overline{\mathrm{CAS}}$ signal but no $\overline{\mathrm{RAS}}$ signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.
If, during a read, write, or read-modify-write cycle,
the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and Chip $\overline{\text { Select. The state of the output latch and buffer of a }}$ selected chip during the following type of memory cycles would be:
(1) Read Cycle - On the negative edge of $\overline{\mathrm{CAS}}$, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(2) Write Cycle - If the $\overline{W E}$ input is switched to a logic 0 before the $\overline{\mathrm{CAS}}$ transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(3) Read-Modify-Write - Same as read cycle.

DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the $\overline{\mathrm{WE}}$ and $\overline{\mathrm{CAS}}$ signals. The last of these signals to make a negative transition will strobe the data into the latch. If the $\overline{W E}$ input is switching to a logic $\dot{0}$ in the beginning of a write cycle, the falling edge of $\overline{\mathrm{CAS}}$ strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of $\overline{\mathrm{CAS}}$.

If a read-modify-write cycle is being performed, the $\overline{W E}$ input would not make its negative transistion until after the $\overline{C A S}$ signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of $\overline{W E}$. The data setup and hold times would now be referenced to the negative edge of the $\overline{W E}$ signal. The only other timing constraints for a write-type-cycle is that both the $\overline{C A S}$ and $\overline{W E}$ signals remain in the logic 0 state for' a sufficient time to accomplish the permanent storage of the data into the selected cell.

INPUT/OUTPUT LEVELS

All of the inputs to the MCM4027A are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability. (3.2 mA) to drive two TTL. loads. The output buffer also has a separate $V_{C C}$ pin so that it can be powered from the same supply as the logic being employed.

REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCM4027A must be refreshed once every 2 ms . Any cycle in which a $\overline{\mathrm{RAS}}$ signal occurs accomplishes a refresh operation. Any read, write, or read-modify-urite cycle will refresh an entire internally selected row. How. ever, it a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the RAS cycle. This refresh mode will not shorten the refresh cycle time; however, the system standby power can be reduced by approximately 30%.

If the $\overline{R A S}$ only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Applying $\overline{\mathrm{CAS}}$ to the chip will restore activity of the output buffer.

POWER DISSIPATION

Since the MCN4027A is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027A is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycle.

In a memory system, the $\overline{C A S}$ signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a $\overline{R A S}$ signal will not dissipate any power on the CAS edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the $\overline{\mathrm{RAS}}$ signal should be decoded so that only the chips to be selected receive a $\overline{R A S}$ signal. If the $\overline{R A S}$ signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable. Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser any license under the patent rights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product(s) to which the information applies and to discontinue manufacture of the product(s) at any time.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS (Referenced to $\mathrm{V}_{\text {SS }}=$ Ground.)

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	$V_{\text {DD }}$	10.8	12.0	13.2	Vdc	2
	$V_{C C}$	VSS	5.0	VDD	Vdc	3
	$\mathrm{V}_{\text {SS }}$	0	0	0	Vdc	2
	$V_{B B}$	-4.5	-5.0	-5.5	Vdc	2
Logic 1 Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$V_{\text {IHC }}$	2.4	5.0	7.0	Vdc	2,4
Logic 1 Voltage, all inputs except $\overline{\text { RAS }}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{V}_{\text {IH }}$	2.2	5.0	7.0	Vde	2,4
Logic O Voltage, all inputs	$V_{\text {IL }}$	-1.0	0	0.8	Vdc	2,4

DC CHARACTERISTICS $\mathrm{V}_{D D}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B B}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$.) Notes 1,5

Characteristic	Symbol	Min	Typ	Max	Units	Notes
Average VDD Power Supply Current	'DD1			35	mA	6
$V_{\text {CC }}$ Power Supply Current	ICC				mA	7
Average $\mathrm{V}_{\text {BB }}$. Power Supply Current	IBB			250	$\mu \mathrm{A}$	
Standby $V_{\text {DD }}$ Power Supply Current	lod2			2	mA	9
Average $V_{D D}$ Power Supply Current during " $\overline{\text { RAS only" cycles }}$	IDD3			25	mA	6
Input Leakage Current (any input)	$1 /(L)$			10	$\mu \mathrm{A}$	8
Output Leakage Current	$1 \mathrm{O}(\mathrm{L})$			10	$\mu \mathrm{A}$	9,10
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	V_{OH}	2.4			Vdc	
Output Logic 0 Voltage @ $\mathrm{l}_{\text {out }}=3.2 \mathrm{~mA}$	$\mathrm{VOL}^{\text {O }}$			0.4	Vdc	

NOTES 1 through 11:

1. T_{A} is specified for operation at frequencies to $t_{R C} \geqslant t_{R C}(\min)$. Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible provided that all ac parameters are met.
2. All voltages referenced to $V_{S S}$.
3. Output voltage will swing from $V_{S S}$ to $V_{C C}$ when enabled, with no output load. For purposes of maintaining data in standby mode, $V_{\text {CC }}$ may be reduced to $V_{S S}$ without affecting refresh operations, or data retention. However, the $\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this mode.
4. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 v).
5. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
6. Current is proportional to cycle rate. IDD1 (max) is measured at the cycle rate specified by $\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$.
7. ICC depends on output loading. During readout of high level data $V_{C C}$ is connected through a low impedance (135Ω typ) to Data Out. At all other times ICC consists of leakage currents only.
8. All device pins at 0 volts except $V_{B B}$ which is at -5 volts and the pin under test which is at +10 volts.
9. Output is disabled (high-impedance) and $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ are both at a logic 1. Transient stabilization is required prior to measurement of this parameter.
$10.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {Out }} \leqslant+10 \mathrm{~V}$.
10. Effective capacitance is calculated from the equation:

$$
C=\frac{\Delta Q}{\Delta V} \text { with } \Delta V=3 \text { volts. }
$$

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100\% tested) Note 11

	Characteristic	Symbol	Max	Unit
Input Capacitance	$(\mathrm{AO}-\mathrm{A5}), \mathrm{D}_{\mathrm{in} \mathrm{\prime}}, \overline{\mathrm{CS}}$	$\mathrm{C}_{\text {in(EFF) }}$	5.0	pF
	$\overline{R A S}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$		10.0	
Output Capacitance		$C_{\text {out(EFF) }}$	7.0	pF

ABSOLUTE MAXIMUM RATINGS (See Notes 1 and 2)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {BB }}{ }^{*}$	$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to +20	$\mathrm{Vdc}_{\text {dc }}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Output Current (Short Circuit)	$\mathrm{I}_{\text {out }}$	50	mAdc

* $\left(\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{BB}}>4.5 \mathrm{~V}\right)$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS ARE EXCEEDED. Functional operation shouid be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

RECOMMENDED AC OPERATING CONDITIONS $\left(V_{D D}=12 \mathrm{~V}+10 \%, V_{C C}=5.0 \mathrm{~V}=10 \%, V_{B B}=-5.0 \mathrm{~V}+10 \%, V_{S S}=0 \mathrm{~V}\right.$,
$T_{A}=0$ to $70^{\circ} \mathrm{C}$.) Notes $1,5,12,18$

Parameter	Symbol	MCM4027AC1		MCM4027AC2		MCM4027AC3		MCM4027AC4		Units	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	'RC	320		320		375		375		ns	13
Read Write Cycle Time	'RWC	320		320		375		375		ns	13
Page Mode Cycle Time	'PC	160		170		225		285		ns	13
Access Time From Row Address Strobe	${ }^{1}$ RAC		120		150		200		250	ns	14. 16
Access Time From Column Address Strobe	${ }^{1}$ CAC		80		100		135		165	ns	15. 16
Output Buffer and Turn-Off Delay	${ }^{\prime}$ OFF		35		40		50		60	ns	
Row Address Strobe Precharge Time	${ }^{\text {'RP }}$	100		100		120		120		ns	
Row Address Strobe Pulse Width	${ }^{\text {tr }}$ RAS	120	10,000	150	10,000	200	10,000	250	10,000	ns	
Row Address Strobe Hold Time	${ }^{\text {t}} \mathrm{R}$ SH	80		100		135		165		ns	
Column Address Strobe Pulse Width	${ }^{\text {' }} \mathrm{CAS}$ -	80		100		135		165		ns	
Column Address Strobe Hold Time	CSH	120		150		200		250		ns	
Row :o Column Strobe Lead Time	'RCD	15	40	20	50	25	65	35	85	ns	17
Row Address Setup Time	${ }^{\prime} A S R$	0		0		0		0		ns	
Row Address Hold Time	'RAH	15		20		25		35		ns	
Column Address Setup Time	'ASC	- 5		. 10		. 10		10		ns	
Column Address Hold Time	${ }^{1} \mathrm{CAH}$	40		45		55		75		ns	
Column Address Hold Time Referenced to RAS	${ }^{1} \mathrm{AR}$	80		95		120		160		ns	
Chip Select Setup Time	${ }^{\text {CSC }}$	0		. 10		10		10		ns	
Chip Select Hold Time	${ }^{\prime} \mathrm{CH}$	40		45		55		75		ns	
Chip Select Hold Time Referenced to RÄS	'CHR	80		95		120		160		ns	
Transition Time Rise and Fall	'T	3	35	3	35	3	50	3	50	ns	18
Read Command Setup Time	${ }^{\text {'RCS }}$	0		0		0		0		ns	
Read Command Hold Time	${ }^{1} \mathrm{RCH}$	0		0		0		0		ns	
Write Command Hold Time.	${ }^{\text {W }}$ WCH	40		45		55		75		ns	
Write Command Hold Time Referenced to RAS	'WCR	80		95		120		160		ns	
Write Command Pulse Width	'WP	40		45		55		75		ns	
Write Command to Row Strobe Lead Time	'RWL.	50		50		70		85		ns	
Write Command to Column Strobe Lead Time	${ }^{\text {'CWL }}$	50		50		70		85		ns	,
Data in Setup Time	${ }^{\text {'DS }}$	0		0		0		0		ns	19
Data in Hold Time	${ }^{1} \mathrm{DH}$	40		45		55		75		ns	19
Data in Hold Time Referenced to RAS	${ }^{\text {² }}$ DHR	80		95		120		160		ns.	
Column to Row Strobe Precharge Time	${ }^{\text {' CRP }}$	0		0		0		0	-	ns	
Column Precharge Time	${ }^{1} \mathrm{CP}$	60		60		80		110		ns	
Refresh Period	'RFSH		2		2		2		2	ms	
Write Command Setup Time	'WCS	0		0		0		0		ns	
CAS to WRITE Delay	${ }^{\text {t }}$ CWD	60		60		80		90		ns	20
$\overline{\text { RAS }}$ to WRITE Delay	'RWD	100		110		145		175		ns	20
Data Out Hold Time	${ }^{1} \mathrm{DOH}$	10		10		10		10		$\mu \mathrm{s}$.

NOTES 12 through 20:

12. AC measurements assume $\mathrm{t}_{\mathbf{T}}=5 \mathrm{~ns}$.
13. The specifications for $\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWW}}(\underset{\mathrm{min}}{ })$ are used onfy to indicate cycle time at which proper operation over the fult temperature range $10^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$) is assured.
14. Assumes that ${ }^{t} R C D \leqslant t_{R C D}(\max)$.
15. Assumes that $t_{R C D} \geqslant t_{R C D}$ (max).
16. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
 can be met. ${ }^{t} R C D(\max)$ is specified as a reference point only; if ${ }^{t_{R C D}}$ is greater than the specified $t_{R C D}(\max)$ limit, then access time is controlled exclusively by $t_{\text {CAC }}$.
17. $V_{1 H C}(\min)$ or $V_{I H}(\min)$ and $V_{I L}(\max)$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$.
18. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in random write cycles and to $\overline{\text { WRITE }}$ leading edge in delayed write or read-modify write cycles.
19. tWCS, ${ }^{t}$ CWD, and $t_{R W D}$ are not restrictive operating parameters. They are included in the data sheet as electrical characterisitcs only: If tWCS \geqslant twCS(min), the cycle is an early write cycle and Data Out witl contain the data written into the selected cell. If ${ }^{t_{C W D}} \geqslant \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWD}} \geqslant \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of Data Out (at access time) is indeterminate:

MCM4027A

READ CYCLE TIMING

WRITE CYCLE TIMING

MCM4027A

READ-MODIFY-WRITE TIMING

RAS ONLY REFRESH TIMING

Dout

$$
\begin{aligned}
& v_{\mathrm{OH}} \longrightarrow \\
& \mathrm{~V}_{\mathrm{OL}} \longrightarrow
\end{aligned}
$$

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

Advance Information

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4096 is a 4096-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 4096 one-bit words and fabricated using Motorola's highly reliable N -channel silicon gate technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address input, the MCM4096 requires only six address lines and permits packaging in Motorola's standard 16 -pin dual in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The MCM4096 incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.

- Organized as 4096 Words of 1 Bit
- Maximum Access Time $=250 \mathrm{~ns}$ - MCM4096 L6, C6

$$
\begin{aligned}
& 300 \mathrm{~ns} \text { - MCM4096L16, C16 } \\
& 350 \mathrm{~ns} \text { - MCM4096L11, C11 }
\end{aligned}
$$

- Minimum Read and Write Cycle Time =

$$
\begin{aligned}
& 375 \mathrm{~ns}-\text { MCM4096 L6, C6 } \\
& 425 \mathrm{~ns}-\text { MCM4096L16, C16 } \\
& 500 \mathrm{~ns}-\mathrm{MCM} 4906 \mathrm{~L} 11, \mathrm{C} 11
\end{aligned}
$$

- Low Power Dissipation

445 mW Maximum (Active)
19 mW Maximum (Standby)

- 3-State Output
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Standard 16-Pin Package
- Compatible with the Popular 2104/MK4096/4027/MCM6604/ MCM6604A

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\mathrm{BB}}{ }^{*}$	$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to +20	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Output Current (Short Circuit)	$\mathrm{I}_{\text {out }}$	50	mAdc

* $\left.\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{DD}} \geqslant 4.5 \mathrm{~V}\right)$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. At power turn-on, the $V_{B B}$ supply must come up before or coincident with $V_{D D}$.

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

This device contcins circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

This is advance information and specifications are subject to change without notice.

DC OPERATING CONDITIONS AND CHARACTERISTICS
 (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS (Reterenced to $\mathrm{V}_{\text {SS }}=$ Ground)

Parameter	Symbol	4096-6		4096-16		4096-11		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Supply Voltage	$V_{\text {DD }}$	11.4	12.6	11.4	12.6	11.4	12.6	Vdc	1
	V_{CC}	$V_{\text {SS }}$	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	V SS	VDD	Vdc	1,2
	$\mathrm{V}_{\text {SS }}$	0	0	0	0	0	0	Vdc	1
	$V_{\text {BB }}$	-4.5	-5.5	-4.5	-5.5	-4.5	-5.5	Vdc	1
Logic 1 Voltage, $\overline{\text { RAS }}$, CAS,$\overline{\text { WRITE }}$	$\mathrm{V}_{\text {IHC }}$	2.7	7.0	2.7	7.0	3.0	7.0	Vdc	1,3
Logic 1 Voltage, all inputs except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{V}_{\text {IH }}$	2.4	7.0	2.4	7.0	2.4	7.0	Vdc	1,3
Logic 0 Voltage, all inputs	$\mathrm{V}_{\text {IL }}$	-1.0	0.8	-1.0	0.8	-1.0	0.8	Vdc	1,3

DC CHARACTERISTICS $\left(V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	4096-6		4096-16		4096-11		Units	Notes
		Min	Max	Min	Max	Min	Max		
Average $\mathrm{V}_{\text {DD }}$ Power Supply Current	IDD1	-	35	-	30	-	25	mA	4
$\mathrm{V}_{\text {CC }}$ Power Supply Current	İC	-	-	-	-	-	-	mA	5
Average $V_{\text {BB }}$ Power Supply Curent	${ }^{\text {B }}$ B	-	75	-	75	-	75	$\mu \mathrm{A}$	
Standby $\mathrm{V}_{\text {DD }}$ Power Supply Current	$1 \mathrm{DD2}$	-	1.5	-	1.5	-	. 1.5	mA	7
Average $\mathrm{V}_{\text {DD }}$ Power Supply Current during "兂AS only" cycles	${ }^{\text {I D }}$ (3	-	25	-	22	-	18	mA	4
Input Leakage Current (any input)	IILIL)	-	5	-	5	-	5	$\mu \mathrm{A}$	6
Output Leakage Current	$\mathrm{I}_{\mathrm{O}}(\mathrm{L})$	-	10	-	10	-	10	$\mu \mathrm{A}$	7,8
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	VOH	2.4	-	2.4	-	2.4	-	Vdc	2
Output Logic 0 Votlage @ ${ }_{\text {out }}=3.2 \mathrm{~mA}$	V_{OL}	-	0.4	-	0.4	-	0.4	V dc	

NOTES:

1. All voltages referenced to $V_{S S}$. $V_{B B}$ must be applied before and removed after other supply voltages.
2. Output voltage will swing from $V_{S S}$ to $V_{C C}$ if $V_{C C}<V_{D D}-4$ volts. If $V_{C C} \geqslant V_{D D}-4$ volts, the output will swing from $V_{S S}$ to a voltage somewhat less than V_{DD}.
3. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 V).
4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.
5. ICC depends upon output loading. The $V_{C C}$ supply is connected to the output buffer only.
6. All device pins at 0 volts except $V_{B B}$ which is at -5 volts and the pin under test which is at +10 volts.
7. Output is disabled (open-circuit) and $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at a logic 1.
8. $0 \vee \leqslant V_{\text {out }} \leqslant+10 \mathrm{~V}$.

EFFECTIVE CAPACITANCE (Full operating voitage and temperature range, periodically sampled rather than 100% tested.)

	Characteristic	Symbol	Max	Unit
Input Capacitance	$(\mathrm{AO}-\mathrm{A5}) \mathrm{D}_{\mathrm{in}}, \overline{\mathrm{CS}}$	$\mathrm{C}_{\text {in }}(E F F)$	10	pF
	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$		7.0	
Output Capacitance		$\mathrm{C}_{\text {out(EFF }}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

RECOMMENDED AC OPERATING CONDITIONS (NOTES 13 and 15)
$\left(V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \vee \pm 10 \%, V_{S S}=0 \mathrm{~V}, \top_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MCM4096-6		MCM4096-16		MCM4096 - 11		Units	Notes
		Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	${ }^{1} \mathrm{RC}$	375	-	425	-	500	-	ns	9
Access Time from Row Address Strobe	${ }^{\text {t RAC }}$	-	250	-	300	-	350	ns	9, 11
Access Time from Column Address Strobe	${ }^{t} \mathrm{CAC}$	-	140	-	165	-	200	ns	10, 11
Output Buffer and Turn-Off Delay	tofF	0	65	0	80	0	100	ns	
Row Address Strobe Precharge Time	${ }^{t} R P$	115	-	125	-	. 150	-	ns	
Row Address Strobe Pulse Width	tras	250	10,000	300	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	${ }^{\text {t CAS }}$	140	-	165	-	200	-	ns	10
Row to Column Strobe Lead Time	${ }_{\text {tr }}$	60	110	80	135	100	150	ns	12
Row Address Setup Time	${ }^{t}$ ASR	0	-	0	-	0	-	ns	
Row Address Hold Time	${ }^{\text {t }} \mathrm{RAH}$	60	-	80	-	100	-	ns .	
Chip Select Hold Time	${ }^{t} \mathrm{CH}$	100	-	100	-	100	-	ns	
Transition Time (Rise and Fall)	${ }_{\text {T }}$	3.0	50	3.0	50	3.0	50	ns	13
Read Command Setup Time	tr CS	0	-	0	-	0	-	ns	
Read Command Hold Time	${ }^{t} \mathrm{RCH}$	0	-	0	-	0	-	ns	
Write Command Hold Time	WCH	110	-	130	-	150	-	ns	
Write Command Pulse Width	${ }^{\text {t }} \mathrm{WP}$	110	-	130	-	150	-	ns	
Column to Row Strobe Lead Time	${ }^{t}$ CRL	-40	+40	-50	+50	-50	$+50$	ns	
Write Command to Column Strobe Lead Time	${ }^{\text {t }}$ CWL	110	-	130	-	150	-	ns	
Data in Setup Time	${ }^{t} \mathrm{DS}$	0	-	0	-	0	-	ns	14
Data in Hold Time	${ }^{t} \mathrm{DH}$	110	-	130	-	150	-	ns	14
Refresh Period	tRFSH	-	2.0	-	2.0	-	2.0	ms	
Modify Time	${ }^{4}$ Mod	0	10	0	10	0	10	$\mu \mathrm{s}$	
Data Out Hold Time	${ }^{t} \mathrm{DOH}$	10	-	10	-	10	-	$\mu \mathrm{S}$	

NOTES:
9. Assumes that $t_{R C L}+t_{T} \leqslant t_{R C L}$ (max).
10. Assumes that ${ }^{t} \mathrm{RCL}^{+} \mathrm{t}_{\mathrm{T}} \geqslant \mathrm{t}_{\mathrm{RCL}}$ (max).
11. Measured with a load circuit equivalent to 1 TTL load and 100 pF .
12. Operation within the t RCL (max) limit ensures that t RAC (max) can be met. t RCL (max) is specified as a reference point only; if t $\mathrm{t}_{\mathrm{RCL}}$ is greater than the specified t RCL (max) limit, then access time is controlled exclusively by tcAC.
13. $V_{I H C}(\min)$ or $V_{I H}(\min)$ and $V_{I L}(\max)$ are reference levels for measuring timing of input signals. Also, transistion times are measured between $V_{\text {IHC }}$ or $V_{I H}$ and $V_{\text {IL }}$.
14. These parameters are referenced to $\overline{C A S}$ leading edge in random write cycles and to $\overline{\text { WRITE leading edge in delayed write or read-modify- }}$ write cycles.
15. After the application of supply voltages or after extended periods of operation without clocks, the device must perform a minimum of eight initialization cycles (any valid memory cycle containing both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$) prior to normal operation.

MCM4096

READ CYCLE TIMING

WRITE CYCLE TIMING

READ-MODIFY-WRITE TIMING

$\overline{\text { RAS }}$ ONLY REFRESH TIMING

OPERATING CHARACTERISTICS

ADDRESSING

The MCM4096 has six address inputs (A0-A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe ($\overline{\mathrm{CAS}}$): At the beginning of a memory cycle, the six low order address bits A0 through A5 are strobed into the chip with $\overline{\text { RAS }}$ to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6-A11) are placed on the address pins. This address is then strobed into the chip with $\overline{\mathrm{CAS}}$. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by $A 0$ to complete the data selection. The Chip Select ($\overline{\mathrm{CS}}$) is latched into the port along with the column addresses.

DATA OUTPUT

in order to simplify the memory system designed and reduce the total package count, the MCM4027 contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

A chip will be unselected during a memory cycle if:
(1) The chip receives both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals, but no Chip Select signal.
(2) The chip receives a $\overline{\text { CAS }}$ signal but no $\overline{\text { RAS }}$ signal. With this condition, the chip will be unselected regardless of the state of Chip $\overline{\text { Select input. }}$
If, during a read, write, or read-modify-write cycle,
the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{Chip}}$ $\overline{\text { Select. }}$. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:
(1) Read Cycle - On the negative edge of $\overline{\mathrm{CAS}}$, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(2) Write Cycle - If the $\overline{W E}$ input is switched to a logic 0 before the $\overline{\mathrm{CAS}}$ transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained untit the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(3) Read-Modify-Write - Same as read cycle.

DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the $\overline{W E}$ and $\overline{C A S}$ signals. The last of these signals to make a negative transition will strobe the data into the latch. If the $\overline{W E}$ input is switching to a logic 0 in the beginning of a write cycle, the falling edge of $\overline{C A S}$ strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of $\overline{C A S}$.

If a read-modify-write cycle is being performed, the $\overline{W E}$ input would not make its negative transistion until after the CAS signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of $\overline{W E}$. The data setup and hold times would now be referenced to the negative edge of the $\overline{W E}$ signal. The only other timing constraints for a write-type-cycle is that both the $\overline{C A S}$ and $\overline{W E}$ signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

INPUT/OUTPUT LEVELS

All of the inputs to the MCM4096 are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability $(3.2 \mathrm{~mA})$ to drive two TTL loads. The output buffer also has a separate $V_{\text {CC }}$ pin so that it can be powered from the same supply as the logic being employed.

REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCM4096 must be refreshed once every 2 ms . Any cycle in which a $\overline{\mathrm{RAS}}$ signal occurs accomplishes a refresh operation. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the $\overline{\mathrm{RAS}}$ cycle. This refresh mode will not shorten the refresh cycle time, however the system standby power can be reduced by approximately 30%.

If the $\overline{\mathrm{RAS}}$ only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Apptying $\overline{\mathrm{CAS}}$ to the chip will restore activity of the output buffer.

POWER DISSIPATION

Since the MCM4096 is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027 is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycle.

In a memory system, the $\overline{\mathrm{CAS}}$ signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a $\overline{R A S}$ signal will not dissipate any power on the $\overline{\mathrm{CAS}}$ edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the $\overline{R A S}$ signal should be decoded so that only the chips to be selected receive a $\overline{\text { RAS }}$ signal. If the $\overline{\text { RAS }}$ signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4116A is a 16,384 -bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly retiable N -channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By muliplexing row and column address inputs, the MCM4116A requires only seven address lines and permits packaging in Motorola's standard 16 -pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The data output of the MCM4116A is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.

The MCM4116A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- Industry Standard 16-Pin Package
- $16,384 \times 1$ Organization
- $\pm 10 \%$ Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation - 462 mW Active, 20 mW Standby (Max)
- Fast Access Time Options: 150 ns - MCM4116AL-15, AC-15

200 ns - MCM4116AL-20, AC-20
250 ns - MCM4116AL-25, AC-25
300 ns - MCM4116AL-30, AC-30

- Easy Upgrade from 16-Pin 4K RAMs
- Pin Compatible with 2117, 2116, 6616, μ PD416, and 4116

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbal	Value	Unit
Voltage on Any Pin Relative to V_{BB}	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to +20	$\mathrm{Vdc}_{\mathrm{dc}}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation.	P_{D}	1.0	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RAT. INGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL)
16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
 (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	$V_{\text {DD }}$	10.8	12.0	13.2	Vdc	1
	$V_{\text {CC }}$	4.5	5.0	5.5	Vdc	1, 2
	$\mathrm{V}_{\text {SS }}$	0	0	0	Vdc	1
	$V_{B B}$	-4.5	-5.0	-5.5	Vdc	1
Logic 1 Voltage, RAS, $\overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{V}_{\text {IHC }}$	2.7	-	7.0	Vdc	1
Logic 1 Voltage, all inputs except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$V_{\text {IH }}$	2.4	-	7.0	Vdc	1
Logic 0 Voltage, all inputs	$V_{\text {IL }}$	-1.0	-	0.8	Vdc	1

DC CHARACTERISTICS $V_{D D}=12 \cdot V: 10 \%, V_{C C}-5.0 \mathrm{~V}: 10 \%, V_{B B}-5.0 \mathrm{~V}: 10 \%, V_{S S}=0 \mathrm{~V}, T_{A}=0$ to $70^{\circ} \mathrm{C}$.

Characteristic	Symbol	Min	Max	Units	Notes
Average $V_{\text {DD }}$ Power Supply Current	'DD1	-	35	mA	4
$\mathrm{V}_{\text {CC }}$ Power Supply Current	${ }^{1} \mathrm{CC}$	-	-	mA	5
Average $V_{B B}$ Power Supply Current	${ }^{\prime} \mathrm{BB1,3}$	-	200	$\mu \mathrm{A}$	
Standby $V_{B B}$ Power Supply Current	'BB2	-	100	$\mu \mathrm{A}$	
Standby $V_{D D}$ Power Supply Current	IDD2	-	1.5	mA	6
Average $V_{D D}$ Power Supply Current during "RAS only" cycles	'0D3	-	27	mA	4
Input Leakage Current (any input)	II(L)	-	10	$\mu \mathrm{A}$	
Output Leakage Current	${ }^{1} \mathrm{O}(\mathrm{L})$	-	10	$\mu \mathrm{A}$	6,7
Output Logic 1 Voltage @ ${ }_{\text {out }}$ - -5 mA	V_{OH}	2.4	-	V dc	2
Output Logic 0 Voitage @ $\mathrm{l}_{\text {out }}=4.2 \mathrm{~mA}$	V_{OL}	-	0.4	Vdc	

NOTES:

1. All voltages referenced to $V_{S S}$. $V_{\text {EB }}$ must be applied before and removed after other supply voltages.
2. Output voltage will swing from $V_{S S}$ to $V_{C C}$ under open circuit conditions. For purposes of maintaining date in power down mode, $V_{C C}$ may be reduced to $V_{S S}$ without affecting refresh operations. $V_{O H}(m i n)$ specification is not guaranteed in this mode.
3. Several cycles are required after power up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate
4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate
5. ICC depends upon output loading. The $V_{C C}$ supply is connected to the output buffer only
6. Output is disabled (open circuit) and RAS and CAS are both at a logic 1.
7. $O V \leqslant V_{\text {out }}+5.5 \mathrm{~V}$.
8. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=\frac{1 \Delta_{t}}{\Delta V}$

BLOCK DIAGRAM

AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9, 14) (Read, Write, and Read-Modify-Write Cycles)

RECOMMENDED AC OPERATING CONDITIONS
$\left(V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}.\right)$

Parameter	Symbol	MCM4116A-15		MCM4116A-20		MCM4116A-25		MCM4116A-30		Units	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	${ }^{\text {tra }}$	375	-	375	-	410	-	480	\rightarrow	ns	
Read Write Cycle Time	$t_{\text {RWW }}$	375	-	375	-	515	-	660	-	ns	
Access Time from Row Address Strobe	trac	-	150	-	200	-	250	-	300	ns	10,12
Access Time from Column Address Strobe	${ }^{\text {t }}$ CAC	-	90	-	135	-	165	-	200	ns	11,12
Output Buffer and Turn-off Delay	toff	0	50	0	50	0	60	0	60	ns	17
Row Address Strobe Precharge Time	${ }_{\text {t }}^{\text {RP }}$	100.	-	120	-	150	-	180	-	ns	
Row Address Strobe Pulse Width	tras	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	${ }^{\text {t CAS }}$	90	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	${ }^{\text {t }}$ RCD	20	60	25	65	35	85	60	100	ns	13
Row Address Setup Time	${ }^{\text {t }}$ ASR	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	${ }^{\text {t } R A M}$	20	-	25	-	35	-	60	-	ns	
Column Address Setup Time	${ }^{\text {t }}$ ASC	-10	-	-10	-	-10	-	-10	-	ns	
Column Address Hold Time	${ }^{\text {t }}$ CAH	45	-	55	-	75	-	100	-	ns	
Column Address Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{t} \mathrm{AR}$	105	-	120	-	160	-	200	-	ns	
Transition Time (Rise and Fall)	t	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	${ }_{\text {t }}^{\text {RCS }}$	0	-	0	-	0	-	0	-	ns	
Read Command Hold Time		0	-	0	-	0	-	0	-	ns	
Write Command Hold Time	twCH	45	-	55	-	75	-	100	-	ns	
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {t W }}$ WR	105	-	120	-	160	-	200	-	ns	
Write Command Pulse Width	twp	45	-	55	-	75	-	100	-	ns	
Write Command to Row Strobe Lead Time	${ }^{\text {t }}$ \%WL	60	-	80	-	100	-	180	-	ns	
Write Command to Column Strobe Lead Time	${ }^{\text {t }} \mathrm{CWL}$	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	${ }^{\text {D }}$ D	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	tDH	45	-	55	-	75	-.	100	-	ns	15
Data in Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {t }}$ DHR	105	-	120	-	160	-	200	-	ns	
Column to Row Strobe Precharge Time	${ }^{\text {t }}$ CRP	-20	-	-20	-	-20	-	-20	-	ns	
RAS Hold Time	${ }^{\text {t } R S H}$	100	-	135	-	165	-	200	-	ns	
Refresh Period	trFSH	-	2.0	-	2.0	-	2.0	-	2.0	ms	
WRITE Command Setup Time	twCS	-20	-	-20	-	-20	-	-20	-	ns	
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	70	-	95	-	125	-	180	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	tRWD	120	-	160	-	210	-	280	-	ns	16
$\overline{\text { CAS Precharge Time (Page mode cycle only) }}$	${ }^{\text {t }} \mathrm{CP}$	60	-	80	-	100	-	100	-	ns	
Page Mode Cycle Time	tPC	170	-	225	-	275	-	325	-	ns	
$\overline{\text { CAS }}$ Hold Time	${ }^{\text {t }} \mathrm{CSH}$	150	-	200	\checkmark	250	-	300	-	ns	

NOTES: (continued)
9. $A C$ measurements assume $t_{T}=5.0 \mathrm{~ns}$.

10: Assumes that $t_{R C D}+t_{T} \leqslant t_{R C D}($ max $)$.
11. Assumes that $t_{R C D}+t_{T} \geqslant t_{R C D}($ max $)$.

Parameter	Symbol	$\mathrm{T}_{\mathbf{y p}}$	Max	Units	Notes
Input Capacitance $(\mathrm{AO}-\mathrm{A} 5), \mathrm{D}_{\text {in }}$	C_{11}	4.0	5.0	pF	9
Input Capacitance $\overline{\text { RAS }, \overline{\mathrm{CAS}}, \mathrm{WRITE}}$	C_{12}	8.0	10	pF	9
Output Capacitance (D Dout$)$	C_{o}	5.0	7.0	pF	7,9

12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
13. Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}(\max)$ can be met. $t_{R C D}$ (max) is specified as a reference point only; if $\mathrm{t}_{\mathrm{RCD}}$ is greater than the specified $t_{\text {RCD }}$ (max) limit, then access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
14. $\mathrm{V}_{I H C}(\min)$ or $\mathrm{V}_{I H}(\min)$ and $\mathrm{V}_{\mathrm{IL}}(\max)$ are reference levels for measuring timing of input signals. Also, transistion times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in random write cycles and to $\overline{\text { WRITE }}$ leading edge in delayed write or read-modifywrite cycles.
16. tWCS, t^{\prime} CWD and $t_{\text {RWD }}$ are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS \geqslant tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If t $C W D \geqslant{ }^{2}$ CWD (min) and $t_{\text {RWD }} \geqslant \mathrm{t}_{\text {RWD }}$ (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
17. Assumes that ${ }^{\mathrm{t}} \mathrm{CRP}>50 \mathrm{~ns}$.

READ CYCLE TIMING

write cycle timing

READ-WRITE/READ-MODIFY-WRITE CYCLE

RAS ONLY REFRESH TIMING
Note: $\overline{\text { CAS }}=$ VIHC $^{\text {W }} \overline{\text { WRITE }}=$ Don't Care

[^4]$\mathrm{VOH}-$
$\mathrm{VOL}_{\mathrm{O}}-$ \qquad

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

MCM4116A

MCM4116A BIT ADDRESS MAP
Row Address A6 A5 A4 A3 A2 A1 A0
Column Address A6 A5 A4 A3 A2 A1 A0
 Hex Dec A6 A5 A4 A3 A2 A1 A0 $\begin{array}{lllllllll}76 & 118 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 77 & 119 & 1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$

16	30	0	0	1	0	1	1	0
17	31	0	0	1	0	1	1	1
14	28	0	0	1	0	1	0	0
15	29	0	0	1	0	1	0	1
12	26	0	0	1	0	0	1	0
13	27	0	0	1	0	0	1	1
10	24	0	0	1	0	0	0	0
11	25	0	0	1	0	0	0	1
1 E	22	0	0	1	1	1	1	0
$1 F$	23	0	0	1	1	1	1	1
1 C	20	0	0	1	1	1	0	0
$1 D$	21	0	0	1	1	1	0	1
$1 A$	18	0	0	1	1	0	1	0
$1 B$	19	0	0	1	1	0	1	1
18	16	0	0	1	1	0	0	0
19	17	0	0	1	1	0	0	1
$0 E$	14	0	0	0	1	1	1	0
$0 F$	15	0	0	0	1	1	1	1
$0 C$	12	0	0	0	1	1	0	0
$0 D$	13	0	0	0	1	1	0	1
$0 A$	10	0	0	0	1	0	1	0
OB	11	0	0	0	1	0	1	1
08	8	0	0	0	1	0	0	0
09	9	0	0	0	1	0	0	1
06	6	0	0	0	0	1	1	0
07	7	0	0	0	0	1	1	1
04	4	0	0	0	0	1	0	0
05	5	0	0	0	0	1	0	1
02	2	0	0	0	0	0	1	0
03	3	0	0	0	0	0	1	1
00	0	0	0	0	0	0	0	0
01	1	0	0	0	0	0	0	1
1								
1								

Product Preview

16,384-BIT DYNAMIC RAM

The MCM4516 is a 16,384-bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, N -channel, silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM4516 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM4516 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the $\overline{\mathrm{RAS}}$-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 16,384 Words of 1 Bit
- Single +5 Volt Operation
- Fast 120 ns Operation
- Low Power Dissipation:

200 mW Maximum (Active)
20 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 64K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- $\overline{\text { RAS-only Refresh Mode }}$
- $\overline{\text { CAS }}$ Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatibility from the 16K RAM (MCM4116) to the 64 K RAM (MCM6664)

OUTPUT BUFFER TRUTH TABLE				
Internal Early Write	$\overline{C A S}$	Refresh	Internal)	Output Buffer
H	X	x	(X)	Hi-Z
X	H	X	(X)	Hi-Z
L	L	L	(H)	Maintains Previous Data
L	L	H	(L)	Active

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^5]
MCM4516

PIN ASSIGNMENT COMPARISON

PIN VARIATIONS			
PIN NUMBER	MCM4116	MCM4516	MCM6664
1	$\mathrm{V}_{\mathrm{BB}}(-5 \mathrm{~V})$	REFRESH	REFRESH
8	$V_{D D}(+12 \mathrm{~V})$	$V_{\text {CC }}$	$V_{C C}(+5 \mathrm{~V})$
9	$\mathrm{V}_{\text {CC }}(+5 \mathrm{~V})$	N/C	A7

> ON-CHIP REFRESH FEATURES/BENEFITS
> Reduce System Refresh Controller Design Problem Reduce System Parts Count
> Reduce System Noise Increasing System Reliability Reduce System Power During Refresh

	$\mathrm{VOH}_{\text {out }}$
	VOL_{-}

HI.Z

MCM4516

SELF REFRESH MODE (Battery Backup)
($\overline{\mathrm{CAS}}{ }^{1}$, Addresses, Data-In, and Write are Don't Care)

AUTOMATIC PULSE REFRESH CYCLE

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6604A is a 4096-bit, high-speed, dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 4096 one-bit words and fabricated using Motorola's highly reliable N-channel silicon gate technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM6604A requires only six address lines and permits packaging in Motorola's standard 16-pin dual in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The MCM6604A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64-row addresses requiring a refresh cycle every 2.0 milliseconds.

- Organized as 4096 Words of 1 Bit
- Maximum Access Time $=250$ ns - MCM6604AL2, C2

$$
\begin{aligned}
& 300 \mathrm{~ns}-\mathrm{MCM6604AL4}, \mathrm{C} 4 \\
& 350 \mathrm{~ns}-\mathrm{MCM6604AL}, \mathrm{C}
\end{aligned}
$$

- Minimum Read and Write Cycle Time =

$$
\begin{aligned}
& 375 \mathrm{~ns}-\text { MCM6604AL2, C2 } \\
& 425 \mathrm{~ns}-\text { MCM6604AL4, C4 } \\
& 500 \mathrm{~ns}-\text { MCM6604AL, C }
\end{aligned}
$$

- Low Power Dissipation

500 mW Typical (Active)
18 mW Typical (Standby)

- 3-State Output
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Standard 16-Pin Package
- Compatible with the Popular 2104/MK4096/4096/4027/MK4027

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Synibol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\mathrm{BB}}{ }^{*}$	$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.3 to +20	$\mathrm{Vdc}_{\mathrm{dc}}$
Operating Temperature Range	$\mathrm{T}_{\mathbf{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Output Current (Short Circuit)	$\mathrm{I}_{\text {out }}$	50	mAdc

$*\left(V_{S S}-V_{D D} \geqslant 4.5 \mathrm{~V}\right)$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. $V_{B B}$ must be applied prior to V_{CC} and V_{DD}. V_{BB} must also be the last power supply switched off.

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

[^6]
MCM6604A

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS (Referenced to $\mathrm{V}_{\text {SS }}=$ Ground)

Parameter		Symbol	Min	Nom	Max	Unit
Supply Voltage		$V_{\text {DD }}$	11.4	12.0	12.6	Vdc
		$v_{\text {CC }}$	4.5	5.0	5.5	Vdc
		$\mathrm{V}_{\text {BB }}$	-4.5	-5.0	-5.5	Vodc
Input High Voltage	$\text { An, } \overline{\mathrm{CS}}, \mathrm{D}_{\mathrm{in}}$ $\overline{\text { RAS }}, \overline{\mathbf{C A S}} \overline{\mathbf{W E}}$	VIH	$\begin{aligned} & 2.4 \\ & 2.7 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	Vdc
Input Low Voltage	All Inputs	$V_{\text {IL }}$	-1.0	-	0.8	Voc

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current, Any Input $\left(\mathrm{V}_{\mathrm{in}}=0 \text { to } 7.0 \mathrm{~V}\right)$	I in	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left(1_{0}=-5.0 \mathrm{~mA}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $(10=2.0 \mathrm{~mA})$	V_{OL}	-	-	0.4	Vdc
Output Leakage Current (Output Disabled by $\overline{\mathbf{C S}}$ Input)	'LO	-	-	10	$\mu \mathrm{A}$
Average Supply Current, Active Mode $\left(T_{\text {cyc }}(W)=\min \right)$.	$\begin{aligned} & \text { IODA } \\ & \text { ICCA } \\ & \text { IBBA } \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 38 \\ & 20 \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 75 \end{gathered}$	mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current, Standby Mode	' DDS ${ }^{\prime} \mathrm{Ccs}$ ${ }^{\prime}$ BBS	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 1.3 \\ - \\ - \end{gathered}$	$\begin{gathered} 2.0 \\ 10 \\ 75 \end{gathered}$	mA $\mu \mathrm{A}$ $\mu \mathrm{A}$

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100\% tested.)

	Characteristic	Symbol	Max	Unit
Input Capacitance	$\frac{A O-A 5}{\overline{R A S}, \overline{C A S}, D_{i n} ; \overline{W E}, \overline{C S}}$	$\mathrm{C}_{\text {in }}(\mathrm{EFF})$	$\begin{aligned} & 10 \\ & 7.0 \end{aligned}$	pF
Output Capacitance		Cout(EFF)	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Read, Write, and Read-Modify-Write Cycles)
RECOMMENDED AC OPERATING CONDITIONS $\left(V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B B}=-5.0 \mathrm{~V} \pm 10 \%, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$)

Parametar	Symbol	MCM6604AL, C		MCM6604AL2, C2		MCM6604AL4.C4		Unit
		Min	Max	Min	Max	Min	Max	
Random Read or Write Cycle Time	${ }^{\text {t }} \mathrm{RC}$	500	-	375	-	425	-	ns
Row Address Strobe Pulse Width	${ }^{\text {tRAS }}$	350	10,000	250	10,000	300	10,000	ns
Row Address Strobe Hold Time	${ }_{\text {trsh }}$	200	-	140	-	170	-	ns
Row Address Strobe Precharge Time	${ }^{\text {t }}$ RP	150	--	125	-	125	-	ns
Row to Column Strobe Lead Time (Note 1)	${ }^{1} \mathrm{RCL}$	110	150	70	1.10	90	130	ns
Column Address Strobe Pulse Width	${ }^{\text {t }}$ CAS	200	10,000	140	10,000	170	10,000	ns
Column to Row Strobe Lead Time	${ }^{\text {t }} \mathrm{CRL}$	-50	+50	-40	+40	-50	+50	ns
Address Setup Time	${ }^{\text {t }}$ AS	0	-	0	-	0	-	ns
Address Hold Time	${ }_{\text {t }}$ AH	100	-	60	-	80	-	ns
$\overline{\text { RAS }}$ Address Release Time	taR	250	-	170	-	210	-	ns
Read Command Setup Time	${ }^{\text {t RCS }}$	0	-	0	-	0	-	ns
Read Command Hold Time	${ }^{\text {t RCH }}$	100	-	60	-	80	-	ns
Write Command to Column Strobe Lead Time	${ }^{\text {t }}$ CWL	200	-	140	-	170	-	ns
Write Command Hold Time (Note 2)	${ }^{\text {t WCH }}$	150	-	110	-	130	-	ns
Write Command Puise Width	${ }^{\text {t }} \mathrm{WP}$	200	-	140	-	170	-	ns
Data In Setup Time	${ }^{t}$ DS	0	-	0	-	0	-	ns
Data In Hold Time	${ }^{\text {t }} \mathrm{DH}$	150	--	110	-	130	--	ns
Refresh Period	${ }^{\text {t REF }}$	-	2.0	-	2.0	-	2.0	ms

1. If tRCL is greater than the maximum recommended value shown in this table,
${ }^{t_{c y c}}$ and $t_{R A C}$ will increase by the amount that $t_{\text {RCL }}$ exceeds the value shown.
2. The Write Command Hold Time is important only when normal random write cycles are being performed. During a read-write or a read-modify-write cycle, the limiting parameter is the Write Command Pulse Width.

AC CHARACTERISTICS $\left(t_{T}=t_{r}=t_{f}=10 \mathrm{~ns}\right.$, Load $=1 \mathrm{MC} 74 \mathrm{H} 00$ Series TTL Gate, $\left.C_{L}(E F F)=50 \mathrm{pF}\right)$

Characteristic	Symbol	MCM6604AL.C	MCM6604AL2, C2	MCM6604AL4, C4	Unit
		Max	Max	Max	
Access Time from Row Address Strobe $\begin{aligned} & \left(110 \mathrm{~ns} \leqslant \mathrm{t}_{\mathrm{RCL}}+\mathrm{t} \mathrm{~T} \leqslant 150 \mathrm{~ns}\right. \text { for MCM6604AL, C) } \\ & \left(70 \mathrm{~ns} \leqslant \mathrm{t}_{\mathrm{RCL}}+\mathrm{t} \mathrm{~T} \leqslant 110 \mathrm{~ns} \text { for MCM6604ALL } \mathrm{C}\right) \\ & \left(90 \mathrm{~ns} \leqslant \mathrm{t}_{\mathrm{RCL}}+\mathrm{t} \mathrm{~T} \leqslant 130 \mathrm{~ns} \text { for MCM6604AL4, C4) }\right) \end{aligned}$	${ }^{\text {tRAC }}$	350	250	300	ns
Access Time from Column Address Strobe	${ }^{\text {t }}$ CAC	200	140	170	ns
Output Buffer Turn-Off Delay	$\mathrm{t}_{\mathrm{off}}$	100	65	85	ns

READ CYCLE TIMING

MCM6604A

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read-Modify-Write Cycle)

RECOMMENDED AC OPERATING CONDITIONS $\left(V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Note: Parameters not listed are the same ss for a Read or Write Cycle.

Parameter	Symbol	MCM6604AL, C		MCM6604AL2. C2		MCM6604AL4, C4		Unit
		Min	Max	Min	Max	Min	Max	
Read-Modify-Write Cycle Time	trwC	700	-	515	-	595	-	ns
Row Address Strobe Pulse Width	trwRAS	550	10,000	390	10,000	470	10,000	ns
Column Address Strobe Pulse Width	${ }^{\text {t RWWCAS }}$	400	10,000	280	10,000	340	10,000	ns
RAS Hold Time	${ }^{\text {t }}$ RWL	200	-	140	-	170	-	ns
Modify Time	${ }^{\text {t MOD }}$	0	10,000	0	10,000	0	10,000	ns

RAS ONLY REFRESH TIMING

OPERATING CHARACTERISTICS

DATA OUTPUT

In order to simplify the memory system design and reduce the total package count, the MCM6604A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

A chip will be unselected during a memory cycle if:
(1) The chip receives both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals, but no Chip Select signal.
(2) The chip receives a $\overline{\mathrm{CAS}}$ signal but no $\overline{\mathrm{RAS}}$ signal. With this condition, the chip will be unselected regardless of the state of $\overline{\text { Chip }}$ Select input.
If, during a read, write, or read-modify-write cycle, the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{Chip}}$ Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:
(1) Read Cycle - On the negative edge of $\bar{C} \overline{A S}$, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(2) Write Cycle - If the $\overline{W E}$ input is switched to a logic 0 before the $\overline{\mathrm{CAS}}$ transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(3) Read-Modify-Write - Same as a read cycle.

DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the $\overline{W E}$ and $\overline{C A S}$ signals. The last of these signals to make a negative transition will strobe the data into the latch. If the $\overline{W E}$ input is switched to a logic 0 at the beginning of a write cycle, the falling edge of CAS strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of $\overline{\mathrm{CAS}}$.

If a read-modify-write cycle is being performed, the $\overline{W E}$ input would not make its negative transistion until after the $\overline{\mathrm{CAS}}$ signal was enabled. Thus, the data would not be strobed into the latch until the negative transition
of $\overline{W E}$. The data setup and hold times would now be referenced to the negative edge of the $\overline{W E}$ signal. The only other timing constraints for a write-type cycle is that both the $\overline{C A S}$ and $\overline{W E}$ signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

INPUT/OUTPUT LEVELS

All of the inputs to the MCM6604A are TTL compatible, except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{WE}}$. The latter control inputs require a slightly higher input voltage, $\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}$ minimum, which can be met with memory address buffers such as the MC3459.

The inputs feature high impedance and low capacitance $(<10 \mathrm{pF})$ characteristics which will minimize the driver requirements in a memory system. The three-state data output buffer is TTL compatible and has sufficient current sink capability (2 mA) to drive one high-speed TTL load. The output buffer also has a separate $V_{C C}$ pin so that it can be powered from the same supply as the logic being employed.

REFRESH

In order to ensure or maintain valid data, each of the 64 internal rows of the MCM6604A must be refreshed once every 2 ms . Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle, the chip must be deselected.

The MCM6604A can also be refreshed by employing only the $\overline{\mathrm{RAS}}$ cycle. This refresh mode will not shorten the refresh cycle time; the minimum switching time for $\overline{R A S}$ still holds. However, the system standby power can be reduced by approximately 30%. It should atso be noted that, regardless of the type of refresh cycle employed, all of the minimum and maximum timing restrictions including address setup and hold times must be observed.

TIMING CONSIDERATIONS

The timing of $\overline{\operatorname{RAS}}$ and $\overline{\mathrm{CAS}}$ as well as their timing relationships must be understood by the designer in order to obtain maximum performance in a system. The $\overline{R A S}$ and $\overline{\mathrm{CAS}}$ clocks have minimum and maximum pulse widths, trAS (tRWRAS) and tCAS (tRWCAS), respectively. These clock limits must not be violated to ensure proper device operation and data integrity. Once a cycle has been initiated by driving $\overline{R A S}$ and/or $\overline{\text { CAS }}$ low, it must not be aborted prior to fulfilling the minimum clock signal pulse width(s). Also, a new cycle cannot be initiated until the minimum precharge time, $t_{R P}$, has been met.

The read access time ($\mathrm{t} A C C$) is a function of the row to column strobe lead time ($\mathrm{t}_{\mathrm{RCL}}$), the $\overline{\mathrm{CAS}}$ transistion from high to low ($\mathrm{t} f$), and the access time from column address

MCM6604A

strobe ($\mathrm{t}_{\mathrm{CAC}}$) as noted in the following equation:

$$
\begin{equation*}
t_{A C C}=t_{R C L}+t_{f}+t_{C A C} \tag{1}
\end{equation*}
$$

If the $t_{R C L}+t_{f}$ time is less than or equal to the specified tRCL maximum limit, then the device access time becomes:

$$
\begin{align*}
& \text { tACC }=\text { tRAC (access time from the leading } \tag{2}\\
& \text { edge of } \overline{R A S})
\end{align*}
$$

Note from the ac electrical characteristics that trAC is specified for a given timing skew of trCL; for the MCM6604AL, the tRAC is 350 ns maximum for $110 \mathrm{~ns} \leqslant$ $t_{R C L}+t_{f} \leqslant 150 \mathrm{~ns}$. The $\mathbf{4 0} \mathrm{ns}$ variation in the falling edge of CAS, for a given trAC maximum, is given to allow for system timing skew in the generation of $\overline{\mathrm{CAS}}$. This will ensure minimum system access time since the timing skew of $\overline{\mathrm{CAS}}$ has been accounted for at the device.

The gating of chip select ($\overline{\mathrm{CS}}$) is also designed to minimize svstem access time. Note from the timing diagrams
that $\overline{\mathrm{CS}}$ does not have to be valid until the leading edge of $\overline{\text { CAS. }}$. Since the memory device does not have to be selected at the start of a memory cycle, the system decode time for $\overline{\mathrm{CS}}$ does not enter into the system access time.

The minimum overlap of $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ during a memory cycle is defined by $\mathrm{t}_{\mathrm{RSH}}$. A minimum overlap is required to keep the write control logic on for a sufficient time to ensure adequate charge or discharge of the selected storage capacitor during a write cycle.

The termination of the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ down time is defined by tCRL. This parameter defines the maximum lead $(-)$ or lag $(+)$ time that the trailing edge of $\overline{C A S}$ can have with respect to the trailing edge of RAS. Note that for a memory system requiring minimum cycle time, CAS may lead $\overline{\text { RAS }}$ by the specified amount, although CAS cannot $\mathrm{lag} \overline{\mathrm{RAS}}$. This restriction must be placed on tCRL for minimum cycle time since tRSH would be violated; CAS can lag RAS for the specified maximum time provided the minimum $t_{\text {RSH }}$ time is not violated.

[^7]
4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6605A is a 4096-bit high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories'and peripheral storage. Organized as 4096 one-bit words, these memories are fabricated using selective oxidation N -channel silicon gate technology to optimize device speed, power and density tradeoffs.

All address and control inputs. are TTL compatible except for a single high-level clock (Chip Enable). Complete address decoding is done on chip and address latches are incorporated for ease of use. Refresh of the entire memory can be accomplished by sequentially cycling through addresses A0-A4 (32 cycles) a maximum of every 2.0 milliseconds.

The MCM6605A uses a three-transistor memory cell to simplify internal sense amplifier requirements. Output data is inverted with respect to input data. The outputs are 3 -state TTL configuration and require no external sense amplifier. Outputs are in the high impedance (floating) state when either the Chip Enable is in the low state or the Chip Select is in the high state.

- Organized as 4096 Words of 1 Bit

	L1, P1	L2,P2	L, P
- Maximum Access Time $=$	150 ns	200 ns	$\mathbf{3 0 0} \mathrm{~ns}$
- Minimum Read Cycle Time $=$	290 ns	360 ns	470 ns
- Minimum Write Cycle Time $=$	390 ns	490 ns	590 ns
- Minimum Read Modify Write			
Cycle Time $=$			

- Low Power Dissipation 335 mW Typical (Active) 2.6 mW Typical (Standby with Refresh)
- Easy Refresh - Only 32 Cycles Every 2.0 ms
- TTL Compatible
- 3-State Output
- Address Latches On Chip
- Power Supply Pins on Package Corners for Layout Simplification
- Typical Applications:

Main Memory
Buffer Memory
Peripheral Storage

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {BB }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.3 to +20	$\mathrm{Vdc}_{\mathrm{di}}$
Operating Yemperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

*See Applications Information

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated volt. ages to this high-impedance circuit.

MCM6605A

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $\mathrm{V}_{S S}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voitage	$V_{D D}$	11.4	12	12.6	Vdc
	$V_{\text {CC }}$	4.5	5.0	5.5	Vdc
	$V_{\text {SS }}$	0	0	0	$\checkmark \mathrm{dc}$
	$V_{\text {BB }}$	-5.25	-5.0	-4.75	$\checkmark \mathrm{dc}$
Logic Leveis Input High Voltage ($\left.A_{n}, D_{i n}, R / W, C S\right)$	${ }^{*} \mathrm{~V}_{\text {IH }}$	3.0	-	$V_{D D}+0.6$	Vdc
Input Low Voitage ($A_{n}, D_{\text {in }}, R / W, \overline{C S}$)	$V_{\text {IL }}$	-1.0	-	0.8	Vdc
Chip Enabie High Voltage	$V_{\text {CEH }}$	$V_{D D}-0.6$	-	VDD +0.6	$\checkmark \mathrm{dc}$
Chip Enable Low Voltage	$\mathrm{V}_{\text {CEL }}$	-1.0	-	0.8	$\checkmark \mathrm{dc}$

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Current (} \left.A_{n}, D_{\text {in }}, R / W, \overline{C S}, \text { Preset }\right) \\ & \left(V_{\text {in }}=0 \text { to } V_{D D}+1.0 \mathrm{~V}\right) \end{aligned}$	$\mathrm{I}_{\text {in }}$	-	-	10	$\mu \mathrm{A}$
Input Chip Enable Current $\left(V_{\text {in }}=0 \text { to } V_{D O}+1.0 \mathrm{~V}\right)$	${ }^{1} \mathrm{CE}$	-	-	10	$\mu \mathrm{A}$
Output High Voitage $(10=-100 \mu \mathrm{~A})$	V OH	2.4	-	$V_{\text {CC }}$	Vdc
Output Low Voltage $(10=2.0 \mathrm{~mA})$	V_{OL}	$\mathrm{V}_{\text {SS }}$	-	0.45	Vdc
Output Leakage Current $\left(V_{O}=0.45 \vee \text { to } V_{C C}, C E=V_{C E L} \text {, or } \overline{C S}=V_{1 H}\right)$	'LO	-	-	10	$\mu \mathrm{A}$
Average Suppiy Current, Active Mode $\left(\mathrm{T}_{\mathrm{CYC}}(\mathrm{W})=\mathrm{min}\right)$	${ }^{\prime}$ DDA	-	28	36	mA
	${ }^{1}$ CCA	-	0.05	1.0	mA
	IBBA	-	-	100	$\mu \mathrm{A}$
Supply Current, Standby Mode$(C E=0.45 \mathrm{~V})$	I DDS	-	1.0	20	$\mu \mathrm{A}$
	ICCS	-	-	10	$\mu \mathrm{A}$
	1 BBS	-	1.0	20	$\mu \mathrm{A}$

EFFECTIVE CAPACITANCE (Test Circuit of Figure 1, full operating voltage and temperature range, periodically sampled rather than 100% tested.)

Characteristic	Symboi	Min	Typ	Max	Unit
Input Capacitance $\left(A_{n}, \mathrm{D}_{\text {in }}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{C}}\right.$, Preset	$\mathrm{C}_{\text {in }}(E F F)$	-	4.0	5.0	pF
Chip Enabie Capacitance	$\mathrm{C}_{\mathrm{CE}(\mathrm{EFF})}$	-	25	30	pF
Output Capacitance	$\mathrm{C}_{\text {out }(E F F)}$	-	4.0	5.0	pF

FIGURE 1 - MEASUREMENT OF EFFECTIVE CAPACITANCE

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)
OPERATING MODES

Mode	Control States		Output
	R/W	$\overline{\text { CS }}$	
Active (CE = High)			Valid
Read Only	H	L	Valid
Read/Write	$\mathrm{H} \rightarrow \mathrm{L}$	L	Valid
Write Only	L	L	Valid \rightarrow Floating
Read Refresh	$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{L} \rightarrow \mathrm{H}$	Floating
Refresh Only	L	H	Floating
Chip Disable (Unselecied)	H	H	Floating
Standby (CE = Low)	X	X	

$X=$ Don't Care

RECOMMENDED AC OPERATING CONDITIONS (Read, Write, and Read Modify Write Cycles)

Parameter	Symbol	Min	Max	Unit
Address Setup Time	${ }_{\text {t }}$ AS	0	-	ns
Address Hold Time	${ }^{1} \mathrm{AH}$	60	-	ns
CE Pulse Transition Time	tr	10	100	ns
CE Off Time MCM6605A L,P/L2,P2 MCM6605AL1,P1	${ }^{\text {t }}$ B	$\begin{array}{r} 120 \\ 90 \\ \hline \end{array}$	-	ns
Chip Select Delay Time	tCSD	-	70	ns
Chip Select Hold Time	${ }^{\text {t CSH }}$	0	-	ns
Read Write Delay Time	trwo	-	70	ns
Read Write Hold Time	${ }^{\text {t }}$ BWH	0	-	ns
Time Between Refresh	treF	-	2.0	ms

AC CHARACTERISTICS
[All timing with $\mathbf{t T}_{\mathbf{T}}=\mathbf{2 0} \mathbf{n s}$; Load = $\mathbf{1} \mathrm{TTL}$ Gate (MC74H00 Series), $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (effective)]

READ CYCLE $\left(R / W=V_{I H}, \overline{C S}=V_{I L}\right)$

Characteristic	Symbol	MCM6605AL, P		MCM6605AL1,P1		MCM6605AL2,P2		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\text {cyc }}$ (R)	470	-	290	-	360	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	310	2000	160	2000	200	2000	ns
Chip Enable to Output Deláy	${ }^{\text {t }} \mathrm{CO}$	-	280	-	130	-	180	ns
Read Access Time	${ }^{\text {tacc }}$	-	300	-	150	-	200	ns

READ CYCLE YIMING

WRITE CYCLE (R/W = VIL, $\left.\overline{C S}=V_{I L}\right)$
REFRESH CYCLE $\left(R / W=V_{I L}, \overline{C S}=V_{I H}\right)$

Characteristic	Symbol	MCM6605AL, P		MCM6605AL1,P1		MCM6605AL2,P2		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{W})$	590	-	390	-	490	--	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	430	2000	260	2000	330	2000	ns
Read-Write Release Time	trwR	410	2000	240	2000	310	2000	ns
Write Pulse Width	tw	210	--	160	-	160	-	ns
Read-Write to Chip Enable Separation Time	${ }^{t} \mathrm{RC}$	0	--	0	--	0	-	ns
Data Delay Time*	${ }^{1} \mathrm{DD}$	-	70	-	70	-	70	ns
Data Hold Time	${ }^{\text {t }} \mathrm{OH}$	50	-	20	-	50	-	ns

*If a write pulse (t W) is employed on the R/W line during a write cycle, then the input data setup time is measured from the leading edge of the write pulse. The tDS time is the same as that of the read-modify-write cycle.

WRITE AND REFRESH CYCLE TIMING

MCM6605A

READ-MODIFY-WRITE ($R / W=V_{I H} \rightarrow V_{I L}, \overline{C S}=V_{I L}$) READ REFRESH (See Note 1)

Characteristic	Symboa	MCM6605AL,P		MCM6605AL1,P1		MCM6605AL2,P2		Unit
		Min	Max	Min	Max	Min	Max	
Read-Modify-Write Cycle Time	${ }^{\text {c }} \mathrm{Cyc}(\mathrm{R} / \mathrm{W})$	590	-	390	-	490	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	430	2000	260	2000	330	2000	ns
Read-Write Release Time	trwR	410	2000	240	2000	310	2000	ns
Write Pulse Width	tw	210	--	160	--	160	-	ns
Data Setup Time	${ }^{\text {t }} \mathrm{DS}$	0	-	0	-	0	-	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	50	\cdots	20	-	50	-	ns
Read-Write to Chip Enable Separation Time	${ }^{\text {t }} \mathrm{RC}$	0	--	0	-	0	-	ns
Chip Enable to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	280	-	130	-	180	ns
Read Access Time	tacc	-	300	--	150	-	200	ns

Note 1: A read refresh cycle is possible by bringing $\overline{\mathrm{CS}}$ high after output data is valid and then bringing R / W low to the write position.

READ MODIFY WRITE TIMING

FIGURE 2 - ACCESS TIME versus $V_{\text {DD }}$

FIGURE 4 - IDD SUPPLY CURRENT versus $V_{D D}$

FIGURE 6 - I DD SUPPLY CURRENT
versus AMBIENT TEMPERATURE

FIGURE 3 - ACCESS TIME versus AMBIENT TEMPERATURE

FIGURE 5 - IDD SUPPLY CURRENT versus CYCLE TIME

FIGURE 7 - REFRESH TIME versus AMBIENT TEMPERATURE

TYPICAL SUPPLY CURRENT TRANSIENT WAVEFORMS

FIGURE 9 - iDD SUPPLY CURRENT

FIGURE 10 - icc SUPPLY CURRENT

FUNCTIONAL DESCRIPTION

The MCM6605A 4096-bit dynamic RAM uses a three transistor storage cell in an inverting cell configuration. The single high-level clock (Chip Enable) starts an internal three-phase clock generator which controls the read and write functions of the device. The $\phi 1$ signal, which is high when CE is low (standby mode), preconditions the nodes in the dynamic RAM in preparation for a memory cycle. The $\phi 2$ signal, which comes on as CE goes high, is the read control and transfers data from storage onto bit sense lines. The $\phi 3$ signal, which comes after $\phi 2$ only during a write or refresh cycle, transfers data from the bit sense lines back into storage. The $\phi 3$ signal occurs only if the R/W input is low.

To' perform a read cycle, CE is brought high to initiate a $\phi 2$ signal and latch the input addresses. The column decoders select one column in each of the four storage quadrants (see the block diagram) and transfers data from storage onto the 128 bit sense lines. The row
decoder selects one of these 128 bit sense lines for read and write operations. During the $\phi 2$ signal, the data on this selected bit sense line is Exclusive ORed with the state of the appropriate data control cell to supply the correct output data. After this data is received by the external system, CE may be brought low to the standby position. This assumes that the R/W signal is held high to prevent an internal $\phi 3$ being generated.

To perform a write or refresh operation, CE is brought high and everything is identical to a read operation up until the 128 bit sense lines are charged with the selected columns of stored data. When R/W is brought low (if it is not already there), a $\phi 3$ signal is generated after $\phi 2$ is over. The $\phi 3$ signal takes the data from the 128 bit sense lines and returns it to the 128 storage locations it came from. Because of the design of the memory array, this $\phi 2-\phi 3$, read-write operation inverts the data. Therefore, one extra row of memory cells, called data control cells, is used to

MCM6605A

keep track of the polarity of stored data in order to be able to correctly recover it. During the write operation, the input data is Exclusive ORed with these control cells before being stored in the array. A refresh cycle does not modify any of the bit sense lines, but simply returns the data (now inverted) into storage.

All timing signals for the MCM6605A are specified around these operations. The following is a brief description of the input pins and relevant timing requirements.
Chip Enable - CE is a single high level clock which initiates all memory cycles. CE can remain low as long as desired for specific applications as long as the 2.0 ms refresh requirements are met.
$\overline{\text { Chip Select }}$ - This signal controls only the 1/O buffers. When $\overline{\mathrm{CS}}$ is high, the input is disconnected and the output is in the 3 state high-impedance state. A refresh cycle is, therefore, a write cycle with $\overline{\mathrm{CS}}$ high. $\overline{\mathrm{CS}}$ has no critical timing with respect to any other signal except that there is a finite delay between activation and data out.
Read/Write - When high, R/W inhibits the internal $\phi 3$ signal, thereby keeping the memory from writing. When R/W is low, a $\phi 3$ will occur soon after $\phi 2$ is finished. For a read cycle, R/W should be high within tRWD of CE to insure that a $\phi 3$ does not start. The only timing requirement on the R/W input for writing is a minimum write pulse defined as the overlap of $\overline{C S}, C E$, and R / W. Refresh cycles require that $\overline{\mathrm{CS}}$ be high to inhibit the input buffer before a $\phi 3$ occurs. Thus $\overline{\mathrm{CS}}$ should be high within t CSD for a refresh cycle, or before R/W goes low for a readrefresh cycle.

Data In - The input data must be valid for a sufficient time to override the data stored on the selected bit sense line. It must remain valid for the "write pulse" defined under Read/Write. Signals on the $D_{\text {in }}$ pin are ignored when either $\overline{\mathrm{CS}}$ or R / W is high, or CE is low.
Data Out - Output data is inverted from input data and is valid $t_{\text {acc }}$ after CE goes high. The data will remain valid as long as CE is high and $\overline{\mathrm{CS}}$ remains low. With either CE low or $\overline{C S}$ high, the output is in a high-impedance state. The data output is initially precharged high when CE goes high and is then either discharged to ground or left high depending on the stored data. This precharging followed by valid data occurs regardless of the state of the R/W input, making the write cycle actually a read-write cycle. The output will also try to precharge during a refresh cycle but will be kept at high impedance by the $\overline{\mathrm{CS}}$ being high. If $\overline{\mathrm{CS}}$ is originally low and is then brought high (within the $t_{\text {CSD }}$ specification) the output may start to precharge before being cut off and returned to high impedance.

Addresses - The addresses are latched when CE goes high, and may be removed after an appropriate hold time.
VSS - Circuit ground.
$V_{B B}$ - The reverse bias substrate supply. Forward biasing this supply with respect to VSS will destroy the memory device.
VDD - Positive supply voltage.

VCC-Output buffer supply. This supply goes only to the data output buffer and draws current only when driving an output load high.
Preset - This pin should be tied to ground. During device testing Preset can be used to preset the data control cells to a logic zero. One 200 ns . 12 V pulse will set all 32 cells simultaneously. Preset has no system use; its only purpose is to ensure a good logic level in the control cells after first power up. In system use, this good logic level will come naturally after the first few refresh cycles.

APPLICATIONS INFORMATION

Power Supplies

The MCM6605A is a dynamic RAM which has essentially zero power drain when in the standby (CE low) mode. When operating, the VDD supply may experience transients in the order of 100 mA for a short time (Figure 9). The $V_{B B}$ supply, which has very low dc drain while operating. may see transients of about 40 mA during the edges of CE. Therefore, appropriate bypassing of both supplies is recommended. This bypassing has been simplified by the location of the power supply pins on the corners of the package.

The VCC line supplies only the input leakage of a TLL load on Data Out and should never exceed about $100 \mu \mathrm{~A}$, presenting little bypassing requirement.

Power dissipation for a system of \mathbf{N} chips is much. lower than N times the 335 mW typical dissipation for a full speed operating chip. This is because the unselected rows in a memory array card are operating in the standby mode of near zero dissipation. This zero standby power is actually unachievable because of the requirements for refresh. Therefore, power dissipation for an array of $\mathrm{N} \times \mathrm{M}$ chips operating at t_{1} cycle time, t REF refresh increment, and maximum CE down time between cycles is:
$P_{D} \approx M\left(\frac{490 n s}{t_{1} n s}\right) 335 \mathrm{~mW}+(N-1)(M)\left(\frac{15.7}{\text { tREF } \mu \mathrm{s}}\right) 335 \mathrm{~mW}$
For a 550 -ns-cycle-time, 64 k by 16 system (16 by 16 chip array) with refresh at 2.0 ms , the approximate power dissipation is:

$$
\begin{aligned}
P_{D} & \approx 16\left(\frac{490}{550}\right) 335+(15)(16)\left(\frac{15.7}{2000}\right) 335 \\
& \approx 4775 \mathrm{~mW}+630 \mathrm{~mW}=5.4 \mathrm{~W}
\end{aligned}
$$

A similar one megabyte system, eight bytes wide, would have a dissipation of only 24 W . If the low standby power capability were not used, over 600 W would be dissipated.

Refresh

The MCM6605A is refreshed by performing a refresh (or write) cycle on each of the 32 combinations of the least significant address bits (A0-A4) within a 2.0 ms time period. (A5-A11 must remain constant at proper logic levels.) This refresh can be done in a burst mode (32 cycles starting every 2.0 ms) or in a distributed mode where one cycle is done every $62.5 \mu \mathrm{~s}$.

A refresh abort can be accomplished by treating a refresh cycle as a read-modify-write cycle with CS high. This type of cycle can be aborted any time until the R/W signal has been brought low to allow a $\phi 3$ clock to begin.

Non-Volatile Storage

In many digital systems, it is extremely important to retain data during emergencies such as power failure. Unfortunately, however, most random access read/write semiconductor memories such as the MCM6605A are volatile. That is, if power is removed from the semiconductor memory, stored information is lost. Therefore, non-volatility for a specified period of time becomes highly desirable - as a necessity to maintain irreplaceable information or as a convenience to avoid the time consuming and troublesome task of having to reload the memory.

The extremely low standby power dissipation of the MCM6605A makes it ideal for main memory applications requiring battery backup for non-volatility. For example, the MCM6605A can be employed in an 8 K byte nonvolatile main memory system application for microprocessors. The memory system can be partitioned into three major sections as illustrated in Figure 13. The first section contains the address buffers and the Read/Write and Chip Select decoding logic. The second section consists of the
data bus buffering transceivers and the memory array (which consists of 16 MCM 6605 As) organized into two rows of 4 K bytes each.

The third section of the block diagram comprises refresh and control logic for the memory system. This logic interfaces the timing of the refresh handshaking with the microprocessor (MPU) clock circuitry. It handles requests for refresh, the generation of refresh addresses, the synchronization of a Power Fail signal, the multiplexing of the external Memory Clock with the internal clock (used during standby), and the generation of a -5 V supply on the board using a charge:pump method.

The refresh control logic is illustrated in Figure 14. It handles the refreshing of the memory during both operating and standby modes. The timing for this logic is given in Figure 15. Figure 16 gives the memory timing for the standby mode only. Decoding of the memory clock (CEA and CE_{B}) and the circuitry to synchronize the $\overline{\text { Power Fail }}$ signal are shown in Figure 17, with the timing given in Figure 18.

The memory device clock (CE $_{A}$ and CE_{B}) during standby is created by a monostable multivibrator (MC14528) and buffered from the memory array by three MC14503 buffers in parallel. This clock is multiplexed with the Memory Clock by use of the three-state feature of the

FIGURE 13 - NON-VOLATILE MEMORY SYSTEM BLOCK DIAGRAM

MC14503. The Memory Clock (used during normal operation) is translated to 12 V levels by use of an MC3460 Clock Driver. Decoding of the $C E_{A}$ and $C E_{B}$ signals (i.e., clocking only the memory bank addressed) to conserve power is accomplished by the logic within the MC3460.

Since the Power Fail signal will occur asynchronously with both the Memory Clock and the refreshing operation (Refresh Clock), it is necessary to synchronize the Power Fail signal to the rest of the system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip-flop is used as the basic synchronization device. The leading edge of the Refresh Clock triggers a $3 \mu \mathrm{~s}$ monostable multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 ns monostable which creates the CE pulse during standby operation. The $3 \mu \mathrm{~s}$ pretrigger signal is used to set half of the MC14027 flip-flop, the output of which, (B), then inhibits a changeover from the standby to the operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the Power

Fail signal change states just prior to or during a refresh cycle. The trailing edge of the 500 ns monostable clears the MC14027 flip-flop, enabling the second flip-flop in the package. The state of Power Fail and Power Fail is applied to the K and J inputs of this second flip-flop and is synchronized by clocking with Memory Clock. The outputs of this flip-flop, labeled Bat and Bat, lock the system into the refresh mode and multiplex in the internal clock for standby operation when Bat $=$ " 1 ". The voltage to logic not required for the refresh only mode of operation is removed to conserve power.

By using CMOS for the refresh logic and capacitance drivers, and a low current refresh oscillator, the standby current required for the 8 K byte system is extremely small, as noted in Table 1. This low standby current requirement can be easily supplied for several days with standard type +12 V batteries. For more detailed information on this sytem and a large mainframe memory system, see Application Notes AN-732 and AN-740.

FIGURE 14 - REFRESH CONTROL LOGIC

FIGURE 15-REFRESH TIMING

FIGURE 16 - MEMORY TIMING IN STANDBY MODE

FIGURE 17 - POWER FAIL. LOGIC AND CHIP ENABLE DRIVER

FIGURE 18 - POWER UP/DOWN SYNCHRONIZATION

TABLE 1 - STANDBY MODE CURRENT ALLOCATION

Circuit Section	Typical Current
+12 V Current (VDO) for $16 \mathrm{MCM6605A} \mathrm{~s}$	5 mA
Charge Pump	3 mA
Comparator	2 mA
Capacitance Drivers	4 mA
Total	14 mA

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefuly checked and is believed to be entirety reliable. However, no responsibitity is assumed for inaccuracies. furthermore, such information does no convey to the license under the patent rights of Motorola Inc. or others

4096-BIT STATIC RANDOM ACCESS MEMORIES

The MCM6641 series 4096×1-bit random access memory is fabricated with high density, high reliability N -channel silicongate technology. For ease of use, the device operates from a single 5 -volt power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. The fully static operation allows chip selects to be tied low further simplifying system timing. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the data input.

The MCM6641 is designed for memory applications where simple interfacing is the design objective, and is assembled in 18 pin dual in-line packages with the industry standard pin-outs.

- Single $\pm 10 \%+5 \mathrm{~V}$ Supply
- Fully Static Operation-No Clock, Timing Strobe, Pre-Charge, or Refresh Required
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible
- Common Data Input and Output Capability
- Three-State Outputs for OR-Tie Capability
- Power Dissipation MCM6641 Less Than 550 mW (Maximum) MCM66L41 Less Than 385 mW (Maximum)
- Standby Power Dissipation Less Than 125 mW (Typical)
- Plug-in Replacement for TMS4044

MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME

\cdots	MCM6641-20 MCM66L41-20	200 ns	MCM6641-30 MCM66L41-30	300 ns
	MCM6641-25 MCM66L41-25	250 ns	MCM6641-45 MCM66L41-45	450 ns

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORIES

AO-A11	Address Input
D	Data Input
Q	Data Output
\bar{S}	Chip Select
V_{CC}	Power Supply $(+5 \mathrm{~V})$
$V_{\text {SS }}$	Ground
\bar{W}	Write Enable

TRUTH TABLE

$\overline{\mathbf{S}}$	\bar{W}	\mathbf{D}	\mathbf{Q}	Mode
H	X	X	HI-Z	Not Selected
L	L	L	HI-Z	Write "O"
L	L	H	HI-Z	Write "1"
L	H	X	Output data	Read

MCM6641, MCM66L41

ABSOLUTE MAXIMUM RATINGS (See Note 1$)$

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to VSS	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fieids; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

$\left(V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	MCM6641			MCM66L41			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Load Current (All Input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V)	${ }^{1} \mathrm{LI}$	-	-	10	-	-	10	$\mu \mathrm{A}$
Output Leakage Current $\left(\overline{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \text { to } \mathrm{V}_{\mathrm{CC}}\right)$	${ }^{\prime} \mathrm{LO}$	-	-	10	-	-	10	$\mu \mathrm{A}$
Power Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-	80	100	-	55	70	mA
Input Low Voltage	$V_{\text {IL }}$	-0.5	-	0.8	-0.5	--	0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	6.0	2.0	-	6.0	V
Output Low Voltage $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	V_{OL}	-	0.15	0.4	-	0.15	0.4	V
Output High Voltage $\mathrm{I}_{\mathrm{OH}}=1.0 \mathrm{~mA}$	V_{OH}	2.4	-	-	2.4			V
Output Short Circuit Current	$1 \mathrm{OS}^{(2)}$	-	-	40	-	-	40	mA

Typical values are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$
Note: 2. Duration not to exceed 30 seconds.

CAPACITANCE
(f $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested.)

Characteristic	Symbot	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	10	pF

ST ANDBY OPERATION

(Typical Supply Values)

Device	Supply	Operating	Standby	Max Standby Power
MCM6641	$V_{C C}$	+5 V	+2.4 V	225 mW
MCM66L41	$V_{\text {CC }}$	+5 V	+2.4 V	150 mW

The MCM6641 series is offered in an 18 -pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mountinghole rows on $300-\mathrm{mil}$ centers. The series is designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)
Input Pulse Levels. 0.8 Volt to 2.0 Volts
Input Rise and Fall Times
10 ns
Input and Output Timing Levels . 1.5 Volts
Output Load. 1 TTL Gate and $C_{L}=100$ pF

AC OPERATING CONDITIONS AND CHARACTERISTICS Read (Note 3), Write (Note 4) Cycles

RECOMMENDED AC OPERATING CONDITIONS $\left(T_{A}=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	MCM6641-20MCM66L41-20		MCM6641-25 MCM66L41-25		MCM6641-30 MCM66L41-30		MCM6641-45 MCM66L41-45		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	t_{RC}	200	--	250	-	300	-	450	-	ns
Access Time	${ }^{\text {t }}$ A	-	200	-	250	--	300	-	450	ns
Chip Selection to Output Valid	${ }^{\text {t }}$ SO	--	70	-	85	-	100	-	120	ns
Chip Sefection to Output Active	${ }^{\text {t }}$ S \times	10	-	10	-	10	-	10	-	ns
Output 3-State From Deselection	${ }^{\text {t OTD }}$	-	40	-	60	-	80	-	100	ns
Output Hold From Address Change	${ }^{\text {t OHA }}$	50	-	50	-	50	-	50	-	ns
Write Cycle Time	${ }^{\text {t }}$ WC	200	-	250	-	300	-	450	-	ns
Write Time	${ }^{\text {t }}$ W	100	-	125	-	150	-	200	-	ns
Write Release Time	${ }^{\text {t }}$ WR	0	--	0	-	0	-	0	-	ns
Output 3-State From Write	totw	-	40	-	60	-	80	-	100	ns
Data to Write Time Overlap	${ }^{\text {t }}$ DW	100	-	125	-	150	-	200	--	ns
Data Hold From Write Time	${ }^{\text {t }} \mathrm{DH}$	0	-	0	-	0	-	0	-	ns

READ CYCLE TIMING (Note 5)

Notes: 3. A Read occurs during the overlap of a low $\overline{\mathrm{S}}$ and a high \bar{W}.
4. A Write occurs during the overlap of a low \bar{S} and a low \bar{W}.
5. \bar{W} is high for a Read cycle.
6. If the $\overline{\mathbf{S}}$ low transition occurs simultaneously with the \bar{W} low transition, the output buffers remain in a high impedance rate.

WRITE CYCLE TIMING (Note 6)

Product Preview

65,536-BIT DYNAMIC RAM

The MCM6664 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6664 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6664 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the $\overline{\text { RAS-only refresh mode, refresh }}$ control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 65,536 Words of 1 Bit
- Single $+5 \vee$ Operation
- Fast 150 ns Operation
- Low Power Dissipation

250 mW Maximum (Active)
30 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- $\overline{\mathrm{RAS}}$-only Refresh Mode
- $\overline{\text { CAS }}$ Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatible from the 16K RAM (MCM4116)

OUTPUT BUFFER TRUTH TABLE			
Internat Early Write	CAS	Refresh Control (CAS Internal)	Output Buffer
H	X	X	(X)
X	H	Hi-Z	
L	L	L	(H)
Hi-Z			
L	L	H	(L)

[^8]This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MCM6664

BLOCK DIAGRAM

4116 TO 6664 COMPARISON

MCM6664

On-Chip Refresh Features/Benefits

Reduce System Refresh Controller Design Problem Reduce System Parts Count

Reduce System Noise Increasing System Reliability
Reduce System Power During Refresh

READ CYCLE TIMING

WRITE CYCLE TIMING

[^9]Hiz

MCM6664

SELF REFRESH MODE (Battery Backup)
($\overline{\text { CAS }}{ }^{1}$, Addresses; Data-In, and Write are Don't Care)

AUTOMATIC PULSE REFRESH CYCLE
(CAS 1 , Addresses, Data-In, and Write are Don't Care)

${ }^{1} \overline{\mathrm{CAS}}$ controls the output data. If $\overline{\mathrm{CAS}}$ remains low the previous output will remain valid. When $\overline{\mathrm{CAS}}$ is brought high, the output will assume a high-impedance state.

RAS-ONLY REFRESH CYCLE

(Data-in and Write are Don't Care, $\overline{\text { CAS }}$ is HIGH)

READ-WRITE/READ-MODIFY-WRITE CYCLE

128×8-BIT STATIC RANDOM ACCESS MEMORY

The MCM6810 is a byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in byte increments. Memory expansion is provided through multiple Chip Select inputs.

- Organized as 128 Bytes of 8 Bits
- Static Operation
- Bidirectional Three-State Data Input/Output
- Six Chip Select Inputs (Four Active Low, Two Active High)
- Single 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=450 \mathrm{~ns}-\mathrm{MCM6810}$

360 ns - MCM68A 10
250 ns - MCM68B10

ORDERING INFORMATION

Speed	Device	Temperature Range
1.0 MHz	MC6810P, L	0 to $70^{\circ} \mathrm{C}$
	MC6810CP, CL	-40 to $+85^{\circ} \mathrm{C}$
MIL-STD-883B	MC6810BJCS	-55 to $+125^{\circ} \mathrm{C}$
MIL-STD-883C	MC6810CJCS	
1.5 MHz	MC68A10P, L	0 to $+70^{\circ} \mathrm{C}$
	MC68A10CP, CL	-40 to $+85^{\circ} \mathrm{C}$
2.0 MHz	MC68B10P,	0 to $+70^{\circ} \mathrm{C}$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	T_{L} to T_{H} 0 to 70 -40 to 85 -55 to 125	${ }^{\circ} \mathrm{C}$
		.	
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	${ }^{\circ} \mathrm{JA}$	82.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however. it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this- high impedance circuit.

ELECTRICAL CHARACTERISTICS $\mathrm{I}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, T_{A}=T_{L}$ to T_{H} unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current ($A_{n}, R / W, \mathrm{CS}_{\mathrm{n}}, \overline{\mathrm{CS}}_{\mathrm{n}}$) $\left(V_{\text {in }}=0\right.$ to 5.25 V$)$	1 In	--	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(I_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right)$	V^{OH}	2.4	-	-	Vdc
Output Low Voltage $\left(I_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	$V_{\text {OL }}$	\cdots	-	0.4	Vdc
Output Leakage Current (Three-State) $\left.\mathrm{CS}=0.8 \mathrm{~V} \text { or } \overrightarrow{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	${ }^{\text {ITSI }}$	\cdots	-	10	$\mu \mathrm{Adc}$
Supply Current 1.0 MHz (VCC $=5.25 \mathrm{~V}$, all other pins grounded) 1.5 .2 .0 MHz	${ }^{1} \mathrm{CC}$	-	-	$\begin{gathered} 80 \\ 100 \\ \hline \end{gathered}$	mAdc
Input Capacitance ($A_{n}, R / \bar{W}, \mathrm{CS}_{n}, \overline{\mathrm{CS}}_{n}$) $\left(V_{\text {in }}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right)$	$C_{\text {in }}$	-	-	7.5	pF
```Output Capacitance ( \(\mathrm{D}_{\mathrm{n}}\) ) \(\left(V_{\text {out }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}, \operatorname{cS} \varnothing=01\right.\)```	$\mathrm{C}_{\text {out }}$	-	-	12.5	pF

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Input High Voltage	$V_{1 H}$	2.0	-	5.25	$V d c$
Input Low Voltage	$V_{1 L}$	-0.3	-	0.8	$V d c$

BLOCK DIAGRAM


## MCM6810, MCM68A10, MCM68B10

AC TEST CONDITIONS

Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	See Figure 1

AC OPERATING CONDITIONS AND CHARACTERISTICS
Figure 1 - AC test load

READ CYCLE $\left(V_{C C}=5.0 \mathrm{~V}: 5 \%, V_{S S}=0, T_{A}=T_{L}\right.$ to $T_{H}$ unless otherwise noted.)

Characteristic	Symbol	MCM6810		MCM68A 10		MCM68B10		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{R})$	450	-	360	-	250	-	ns
Access Time	${ }_{\text {tacc }}$	-	450	-	360	-	250	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	20	-	20	-	ns
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	0	-	0	-	0	-	ns
Data Delay Time (Read)	${ }^{\text {t D D }}$	-	230	-	220	-	180	ns
Read to Select Delay Time	trcs	0	-	0	-	0	-	ns
Data Hold from Address	${ }^{\text {I }}$ DHA	10	-	10	-	10	-	ns
Output Hold Time	${ }^{\text {IH }}$	10	-	10	-	10	-	ns
Data Hold from Read	${ }^{\text {t }} \mathrm{DHR}$,	10	80	. 10	60	10	60	ns
Read Hold from Chip Select	${ }^{\text {tr }}$ H	0	-	0	-	0	-	ns


$=$ Don't Care
Note: CS and $\overline{C S}$ can be enabled for consecutive. read cycles provicted $R / W$ remains at $V_{\text {IH }}$.

WRITE CYCLE $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=T_{L}\right.$ to $T_{H}$ unless otherwise noted.)

Characteristic	Symbol	MCM6810		MCM68A10		MCM68B10		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	${ }^{\text {chay }}$ (W)	450	-	360	-	250	-	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	20	-	20	-	ns
Address Hold Time	${ }^{t} \mathrm{AH}$	0	-	0	-	0	-	ns
Chip Select Pulse Width	${ }^{\text {t }}$ CS	300	-	250	-	210	-	ns
Write to Chip Select Delay Time	${ }^{\text {tw }}$ WCS	0	-	0	-	0	-	ns
Data Setup Time (Write)	${ }^{\text {t }}$ DSW	190	-	80	-	60	-	ns
Input Hold Time	${ }^{1} \mathrm{H}$	10	-	10	-	10	-	ns
Write Hold Time from Chip Select	t WH	0	-					



7/27/ Don't care
Note: CS and $\overline{\mathrm{CS}}$ can be enabled for consecutive write cycles provided $R / W$ is strobed to $V_{I H}$ before or coincident with the Address change, and remains high for time tas

## Advance Information

## 4096 X 8-BIT UV ERASABLE PROM

The MCM2532/25A32 is a 32,768 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window in the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM2532.

- Single +5 V Power Supply
- Organized as 4096 Bytes of 8 Bits
- Automatic Power-Down Mode (Standby)
- Fully Static Operation (No Clocks)
- TTL Compatible During both Read and Program
- Maximum Access Time $=450$ ns MCM 2532

350 ns MCM25A32

- Pin Compatible with MCM68A332 Mask Programmable ROMs


This is advance information and specifications are subject to change without notice.

MCM2532 MCM25A32

## MOS

(N-CHANNEL, SILICON-GATE)
$4096 \times 8-B I T$
UV ERASABLE PROM


L SUFFIX SIDEBRAZE CERAMIC PACKAGE ALSO AVAILABLE - CASE 716

PIN ASSIGNMENT


	*PIN NAMES
A	. Address
DQ	. . . Data Input/Output
$\bar{E} / \overline{\text { Progr }}$	. . . Dual Function Enable (Power-down/Program Pulse)
$V_{C C}$	. . . . +5 V Supply
VPP	+25 V Program Voltage
	Grou

*New Industry standard nomenclature

Mode	PIN NUMBER				
	$\begin{gathered} 9-11, \\ 13-17 \\ \text { Do } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{v}_{\mathrm{SS}} \end{gathered}$	$\frac{20}{\mathrm{E} / \text { Progr }}$	$\begin{gathered} 21 \\ V_{P P} \end{gathered}$	$\begin{gathered} 24 \\ v_{C c} \end{gathered}$
Read	Data out	$\mathrm{V}_{\text {SS }}$	$V_{\text {IL }}$	0 to 5 V	$\mathrm{V}_{\mathrm{CC}}$
Output Disable	Hi-Z	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IH }}$	0 to 25 V	$V_{C C}$
Standby	Hi-Z	$v_{\text {SS }}$	$\mathrm{V}_{1 \mathrm{H}}$	0 to 5 V	$V_{C C}$
Program	Data in	$\mathrm{V}_{\text {SS }}$	Pulsed	VPPH	$V_{\text {cc }}$
			$V_{\text {IH }}$ to $V_{\text {IL }}$		
Program Verify	Data out	$V_{\text {SS }}$	$V_{\text {IL }}$	0 to 5 V	$\mathrm{V}_{\mathrm{CC}}$
Program Inhibit	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {IH }}$	VPPH	$\mathrm{V}_{\mathrm{CC}}$

ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input/Output Voltages with   Respect to V SS 2	+6 to -0.3	Vdc
VPP Supply Voltage with Respect to $\mathrm{V}_{\text {SS }}$	+28 to -0.3	Vdc

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## BLOCK DIAGRAM

Data Input/Outpuit


DC OPERATING CONDITIONS AND CHARACTERISTICS
(Fully operating voltage and temperature range uniess otherwise noted)

RECOMMENDED DC READ OPERATING CONDITIONS ( $T_{A}=0^{\circ}$ to $\mathbf{7 0 0}^{\circ} \mathrm{C}$ )

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage*	MCM2732	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
	MCM27A32		4.5	5.0	5.5	$V_{d c}$
		$V_{\text {PP }}$	0	5.0	$V_{C C}+0.6$	$V_{d c}$
Input High Voltage	$V_{\text {IH }}$	2.2	-	$V_{C C}+1.0$	$V_{d c}$	
Input Low Voltage	$V_{\text {IL }}$	-0.1	-	0.65	$V \mathrm{Vdc}$	

READ OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and $\bar{E}$ Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	1 in	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}$	ILO	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current* (Standby)	$\bar{E}=V_{\text {IH }}$	ICC1	-	10	25	mA
$V_{\text {CC }}$ Supply Current* (Active)	$\stackrel{\text { E }}{ }=V_{\text {IL }}$	${ }^{\text {CCC2 }}$	-	50	160	mA
VPP Supply Current*	$\begin{gathered} V_{P P}=5.85 \mathrm{~V} \\ V_{P P}=0 \mathrm{~V} \end{gathered}$	IPP1	-	-	$\begin{gathered} 400 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output High Voltage	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	${ }^{\mathrm{NOH}}$	2.4	-	-	V

${ }^{*}$ CC must be applied simultaneously or prior to $V_{P P}$. $V_{C C}$ must also be switched off simultaneously with or after $V_{P P}$. With $V_{P P}$ connected directly to $V_{C C}$ during the read operation, the supply current would be the sum of IPP1 and ICC. The additional 0.6 V tolerance on $\mathrm{V}_{\mathrm{PP}}$ makes it possible to use a driver circuit for switching the $V_{P P}$ supply from $V_{C C}$ in Read mode to +25 V for programming. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

CAPACITANCE
( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Typ	Max
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	6.0
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	pF	

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=I \Delta t / \Delta V$.

## AC READ OPERATING CONDITIONS AND CHARACTERISTICS

 ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}, V_{C C}$ and $V_{P P}=5.0 \mathrm{~V}( \pm 10 \%$ MCM25A32, $\pm 5 \%$ MCM2532) unless otherwise noted)

Characteristic	Symbol	MCM27A32		MCM2732		Unit
		Min	Max	Min	Max	
Address Valid to Output Valid ( $\overline{\mathrm{E}} / \overline{\text { Progr }}=\mathrm{V}_{\text {IL }}$ )	tavov	-	350	-	450	ns
$\bar{E}$ to Output Valid	telov	-	350	-	450	ns
$\overline{\mathbf{E}}$ ta Hi-Z Output	tehoz	0	100	0	100	ns
Data Hold from Address ( $\bar{E}=V_{\text {IL }}$ )	${ }^{\text {taxax }}$	0	-	0	-	ns

READ MODE TIMING DIAGRAMS ( $\bar{E}=V_{I L}$ )


[^10] normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

## STANDBY MODE



# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS 

$$
\left(T_{A}=0 \text { to }+70^{\circ} \mathrm{C}\right)
$$

RECOMMENDED PROGRAMMING OPERATION CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}, ~ V P P P L$	4.75	5.0	5.25	Vdc
	VPPH	24	25	26	Vdc
Input High Voltage for Data	$\mathrm{V}_{\text {IH }}$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+1$	Vdc
Input Low Voltage for Data	$V_{\text {IL }}$	-0.1	-	0.65	Vdc

*VCC must be applied simultaneously or prior to $V_{\text {PP }}$. $V_{C C}$ must aiso be switched off simultaneously with or after $V_{\text {PP }}$. The device must not be inserted into or removed from a board with $V_{P P}$ at +25 V . VPP must not exceed the +26 V maximum specifications.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and $\overline{\mathrm{E}} / \overline{\text { Progr }}$ Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V} / 0.45 \mathrm{~V}$	ILI	-	-	10	$\mu \mathrm{Adc}$
Vpp Supply Current	$\overline{E /} /$ Progr $=V_{1 L}$	IPP1	-	-	400	$\mu$ Adc
VPP Programming Pulse Supply Current	$\bar{E} / \overline{\text { Progr }}=V_{1 H}$	IPP2	-	-	30	mAdc
$\mathrm{V}_{\text {CC }}$ Supply Current		${ }^{1} \mathrm{CC}$	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	taVEL	2.0	-	$\mu \mathrm{s}$
VPp Setup Time	${ }_{\text {t PHEL }}$	0	-	ns
Data Setup Time	tDVEL	2.0	-	$\mu \mathrm{s}$
Address Hold Time	tehax	2.0	-	$\mu \mathrm{s}$
VPP to Enable Low Time	tplel	0	-	ns
Data Hold Time	tehoz	2.0	-	$\mu \mathrm{s}$
VPp Hold Time	tEHPL	0	-	ns
Enable (Program) Active Time	teler	1*	55	ms
Enable ( $\bar{E} / \overline{\text { Progr }}$ ) Pulse Transition Time	t T(PE)	5	-	ns
$\mathrm{V}_{\text {Pp }}$ Rise and Fall Time from 5 to 25 V		0.5	2	$\mu \mathrm{s}$.

*If shorter than $45 \mathrm{~ms}(\mathrm{~min})$ pulses are used, the same number of pulses should be applied after the specific data has been verified.


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the VPP input (pin 21 ) should be raised to +25 V . The $V_{C C}$ supply voltage is the same as for the READ operation. Programming data is entered in 8 -bit words through the data out (DO) terminals while $\bar{E} / \overline{\text { Progr }}$ is high. Only " 0 's" will be programmed when " 0 ' $s$ " and " 1 ' $s$ " are entered in the data word.

After address and data setup, a 50 ms program pulse ( $V_{I H}$ to $V_{I L}$ ) is applied to the $\bar{E} / \overline{\text { Progr }}$ input. A program pulse is applied to each address location to be programmed. Locations may be programmed individually, sequentially, or at random. The maximum program pulse width is 55 ms ; therefore, programming must not be attempted with a dc signal applied to the $\bar{E} / \overline{\text { Progr input. }}$

Multiple MCM2532s may be prograrnmed in parallel with the same data by connecting together like inputs and applying the program pulse to the $\bar{E} / \overline{\text { Progr }}$ inputs. Different data may be programmed into multiple MCM2532s connected in parallel by using the PROGRAM INHIBIT mode. Except for the $\bar{E} / /$ Progr pin, all like inputs may be common:

PROGRAM VERIFY for the MCM2532 is the read operation.

## READ OPERATION

After access time, data is valid at the outputs in the READ mode.

## ERASING INSTRUCTIONS

The MCM2532/25A32 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity $X$ exposure time) is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model $30-000$ " UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASEtime is 36 minutes. The lamps should be used without shortwave filters and the MCM2532/25A32 should be positioned about one inch away from the UV-tubes.

## TIMING PARAMETER ABBREVIATIONS



The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, point of view. Thus, the access time is shown as a maxi mum since the device never provides data later than that time.

WAVEFORMS

Waveform Symbol	tnput	Output
	must be VALID	WILL BE VALID
$0111$	Change FROMHTOL	WILL Change FROM HTOL
	change   FROMLTOH	will change FROMLTOH
$\overline{x \times 8 \times 8}$	dont care:   any change   PERMITTED	changing state UNKNOWN
		HIGH IMPEDANCE

## MCM2708 <br> MCM27A08

## $1024 \times 8$ ERASABLE PROM

The MCM2708/27A08 is an 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM2708/27A08.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V
- Maximum Access Time $=300 \mathrm{~ns}-\mathrm{MCM27A08}$

450 ns - MCM2708

- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs


## MOS

(N-CHANNEL, SILICON-GATE)
$1024 \times 8$-BIT UV ERASABLE PROM


PIN CONNECTION DURING READ OR PROGRAM

Mode	Pin Number						
	9-11, 13-17	12	18	19	20	21	24
Read	Dout	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	$V_{\text {IL }}$	$V_{B B}$	$\mathrm{V}_{\mathrm{Cc}}$
Program	Din	$V_{S S}$	Pulsed   VIHP	$V_{D D}$	$\mathrm{V}_{\text {IHW }}$	$V_{B B}$	$\mathrm{V}_{\mathrm{CC}}$



PIN ASSIGNMENT


BLOCK DIAGRAM


DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.0	5.25	$\mathrm{Vdc}^{\prime}$
	$\mathrm{V}_{\mathrm{DD}}$	11.4	12	12.6	Vdc
	$\mathrm{V}_{\mathrm{BB}}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	3.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	$\mathrm{V}_{\mathrm{SS}}$	-	0.65	Vdc

READ OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and CS Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$ or $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$	$1{ }_{\text {in }}$	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$	ILO	-	1	10	$\mu \mathrm{A}$
V DD Supply Current	Worst-Case Supply Currents All Inputs High$\overline{\mathrm{CS}} / \mathrm{WE}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{1}$ DD	-	50	65	mA
$\mathrm{V}_{\text {CC Supply Current }}$ (Note 2)		${ }^{\text {ICC }}$	-	6	10	mA
$\mathrm{V}_{\text {BB }}$ Supply Current		IBB	-	30	45	mA
Output Low Voltage	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output High Voltage	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$	$\mathrm{VOH}^{1}$	3.7	-	-	V
Output High Voltage	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{VOH}^{2}$	2.4	-	-	V
Power Dissipation (Note 2)	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$P_{\text {D }}$	-	-	800	mW

Note 2:
The total power dissipation is specified at 800 mW . It is not calculable by summing the various current (IDD, ICC, and IBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{S S}$. The $I_{D D}, I_{C C}$, and $I_{B B}$ currents should be used to determine power supply capacity only.
$V_{B B}$ must be applied prior to $V_{C C}$ and $V_{D D} . V_{B B}$ must also be the'last power supply switched off.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$, Load per Note 3)

Characteristic	Symbol	MCM27A08			MCM2708			Unit
		Min	Typ	Max	Min	Typ	Max	
Address to Output Delay.	${ }^{\text {taO }}$	-	220	300	-	280	450	ns
Chip Select to Output Delay	${ }^{\text {coo }}$	-	60	120	-	60	120	ns
Data Hold from Address	toha	0	-	-	0	-	-	ns
Data Hold from Deselection	tDHD	0	-	120	0	-	120	ns

CAPACITANCE (periodically sampled rather than 100\% tested.)

Characteristic	Condition	Symbol	Typ	Max	Unit
Input Capacitance   $(f=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{in}}$	4.0	6.0	pF
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

Note 3:
Output Load $=1$ TTL Gate and $C_{L}=100 \mathrm{pF}$ (Includes Jig Capacitance)
Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V
Outputs: 0.8 V and 2.4 V


READ OPERATION TIMING DIAGRAM


DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	Vdc
	$V_{\text {DD }}$	11.4	12	12.6	Vdc
	$V_{B B}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage for All Addresses and Data	$\mathrm{V}_{1} \mathrm{H}$	3.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc
Input Low Voltage (except Program)	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.65	Vdc
$\overline{\mathrm{CS}} / \mathrm{WE}$ Input High Voltage (Note 4)	$\mathrm{V}_{\text {IHW }}$	11.4	12	12.6	Vdc
Program Pulse Input High Voltage (Note 4)	$\mathrm{V}_{\text {IHP }}$	25	-	27	Vdc
Program Pulse Input Low Voltage (Note 5)	$V_{\text {ILP }}$	$\mathrm{V}_{\text {SS }}$	-	1.0	Vdc

Note 4: Referenced to $\mathrm{V}_{\text {SS }}$.
Note 5: $V_{\text {IHP }}-V_{\text {ILP }}=25 \mathrm{~V}$ min.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and $\overline{\text { CS }} /$ WE Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	1 LI	-	-	10	$\mu \mathrm{Adc}$
Program Pulse Source Current		$I_{\text {IPL }}$	-	-	3.0	mAdc
Program Pulse Sink Current		IPH	-	-	20	mAdc
VDD Supply Current	Worst-Case Supply Currents All Inputs High $\overline{C S} / W E=5 \mathrm{~V}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}$	IDD	-	50	65	mAdc
$V_{\text {CC }}$ Supply Current		ICC	-	6	10	mAdc
$V_{\text {BB }}$ Supply current		'BB	-	30	45	mAdc

## AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	${ }^{t}$ AS	10	-	$\mu \mathrm{s}$
$\overline{C S} / W E$ Setup Time	${ }^{t} \mathrm{CSS}$	10	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t }}$ DS	10	-	$\mu \mathrm{s}$
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	1.0	-	$\mu \mathrm{s}$
$\overline{\text { CS/WE Hold Time }}$	${ }^{\text {t }} \mathrm{CH}$	0.5	-	$\mu \mathrm{s}$
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	1.0	-	$\mu \mathrm{s}$
Chip Deselect to Output Float Delay	${ }^{\text {t }} \mathrm{DF}$	0	120	ns
Program to Read Delay	${ }^{1}$ DPR	-	10	$\mu \mathrm{s}$
Program Pulse Width	${ }^{\text {t P W }}$	0.1	1.0	ms
Program Pulse Rise Time	${ }_{t} \mathrm{PR}$	0.5	2.0	$\mu \mathrm{s}$
Program Pulse Fall Time	${ }^{\text {t PFF }}$	0.5	2.0	$\mu \mathrm{s}$



Note 6: The $\overline{\mathrm{C}} / \mathrm{WE}$ transition must occur after the Program Pulse transition and before the Address Transition.

[^11]
## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for programming mode, the $\overline{C S}$ WE input (Pin 20) should be raised to +12 V . Programming data is entered in 8 -bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages ( $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BB}}$ ) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, $T_{\text {Ptotal }}=N \times{ }^{t} \mathrm{PW} \geqslant 100 \mathrm{~ms}$. The required number of program loops ( N ) is a function of the program pulse width ( $t_{\text {PW }}$ ), where: $0.1 \mathrm{~ms} \leqslant \mathrm{t}_{\text {PW }} \leqslant$ 1.0 ms ; correspondingly N is: $100 \leqslant \mathrm{~N} \leqslant 1000$. There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., $N$ program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the $\overline{C S} / W E$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to $V_{\text {ILP }}$ with an active device, because this pin sources a small amount of current ( $\|_{I P L}$ ) when $\overline{C S} / W E$ is at $V_{\text {IHW }}$ ( 12 V ) and the program pulse is at $\mathrm{V}_{\text {ILP }}$.

## EXAMPLES FOR PROGRAMMING

Always use the $T_{\text {Ptotal }}=N \times t_{\text {PW }} \geqslant 100 \mathrm{~ms}$ relationship.

1. All 8192 bits should be programmed with a 0.2 ms program pulse width.
The minimum number of program loops:

$$
N=\frac{T_{\text {Ptotal }}}{t_{\text {PW }}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 . \text { One program loop }
$$

consists of words 0 to 1023.
2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms . The minimum number of program loops, $N=\frac{100}{0.5}=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s.
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 . The minimum number of program loops is the same as in the previous example, $N=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s . Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

## ERASING INSTRUCTIONS

The MCM2708/27A08 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV-intensity $x$ exposure time) is $12.5 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM2708/27A08 should be positioned about one inch away from the UV-tubes.

## (A) MOTOROLA

## MCM2716 <br> MCM27A16

## Advance Information

## $2048 \times 8$-BIT UV ERASABLE PROM

The MCM2716/27A16 is a 16,384 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMS are available for large volume production runs of systems initially using the MCM2716/27A16.

- Single $\pm 10 \% 5 \mathrm{~V}$ Power Supply
- Automatic Power-down Mode (Standby)
- Organized as 2048 Bytes of 8 Bits
- Low Power Dissipation
- TTL Compatible During Read and Program
- Maximum Access Time $=450$ ns MCM2716

350 ns MCM27A16

- Pin Equivalent to Intel's 2716
- Pin Compatible to MCM68A316E Mask Programmable ROMs

Mode	PIN NUMBER					
	$\begin{gathered} 9-11 \\ 13-17 \\ \text { DO } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{v}_{\mathrm{SS}} \end{gathered}$	$\begin{gathered} 18 \\ \bar{E} / \text { Progr } \end{gathered}$	$\begin{gathered} 20 \\ \overline{\mathbf{G}} \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{~V}_{\mathrm{PP}} \end{gathered}$	$\begin{gathered} 24 \\ v_{\mathrm{CC}} \end{gathered}$
Read	Data out	VSS	$V_{\text {IL }}$	VIL	$\mathrm{V}_{\mathrm{CC}}$	$V_{\text {CC }}$
Output Disable	Hiz	VSS	Don't Care	$\mathrm{V}_{\text {IH }}$	$V_{C C}$	$\mathrm{V}_{\mathrm{CC}}$
Standby	Hiz	$V_{\text {SS }}$	$V_{\text {IH }}$	Don't Care	$\mathrm{V}_{\mathrm{CC}}$	$V_{C C}$
Program	Data in	$\mathrm{V}_{\text {SS }}$	$\begin{aligned} & \text { Pulsed } \\ & V_{I L} \text { to } V_{1 H} \end{aligned}$	$\mathrm{V}_{\text {IH }}$	VIHP	$\mathrm{V}_{\mathrm{Cc}}$
Program Verify	Data out	$\mathrm{v}_{\text {SS }}$	$V_{\text {IL }}$	$V_{\text {IL }}$	VIHP	$\mathrm{V}_{\mathrm{Cc}}$
Program Inhibit	Hi Z	VSS	$V_{\text {IL }}$	$\mathrm{V}_{1} \mathrm{H}$	$V_{\text {IHP }}$	$\mathrm{v}_{\mathrm{Cc}}$

ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $\mathrm{V}_{\text {SS }}$ during Read	+6 to -0.3	$\mathrm{Vdc}^{\prime}$
$\mathrm{V}_{\text {PP }}$ Supply Voltage with Respect to $\mathrm{V}_{\text {SS }}$	+28 to -0.3	Vdc

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## MOS

(N-CHANNEL, SILICON-GATE)
$2048 \times 8$-BIT UV ERASABLE PROM


## PIN ASSIGNMENT



*PIN NAMES
A $\ldots$. Address
DQ . . . Data Input/Output
$\overline{\text { E/Progr }} \ldots$. . Chip Enable/Program
$\overline{\mathrm{G}} \ldots$. Output Enable

[^12]This is advance information and specifications are subject to change without notice

## BLOCK DIAGRAM



## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC READ OPERATING CONDITIONS (T $\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$ )


READ OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address, $\bar{G}$ and $\overline{\mathrm{E}} /$ Progr Input Sink Current	$V_{\text {in }}=5.25 \mathrm{~V}$	1 in	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$V_{\text {out }}=5.25 \mathrm{~V}, \overline{\mathrm{G}}=5.0 \mathrm{~V}$	LLO	-	-	10	$\mu \mathrm{A}$
$V_{\text {CC }}$ Supply Current* (Standby)	$\bar{E} /$ Progr $=V_{1 H}, \bar{G}=V_{1 L}$	ICC1	-	10	25	mA
$V_{\text {CC }}$ Supply Current* (Active)	$\overline{\mathrm{G}}=\overline{\mathrm{E}} /$ Progr $=\mathrm{V}_{1} \mathrm{~L}$	${ }^{1} \mathrm{CC} 2$	-	57	100	mA
$V_{\text {PP }}$ Supply Current*	$V_{P P}=5.85 \mathrm{~V}$	1 PP 1	-	$\cdots$	5.0	mA
Output Low Voltage	$\mathrm{l}^{\mathrm{OL}}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output High Voltage	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V

*V $V_{\text {CC }}$ must be applied simultaneously or prior to $V_{\text {PP }} V_{\text {CC }}$ must also be switched off simultaneously with or after $V_{\text {Pp }}$. With $V_{\text {PP }}$ connected directly to $V_{\text {CC }}$ during the read operation, the supply current would be the sum of Ipp1 and ICC. The additional 0.6 V tolerance on VPP makes it possible to use a driver circuit for switching the $V_{P P}$ supply pin from $V_{C C}$ in Read mode to $+25 V$ for programming. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

## CAPACITANCE

(f $=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the
equation: $C=\frac{1 \Delta_{t}}{\Delta V}$.

AC OPERATING CONDITIONS AND CHARACTERISTICS
( $T_{A}=0$ to $+70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 10 \%$ unless otherwise noted.)

Input Pulse Levels. . . . .Input Rise and Fall TimesCharacteristic	$0.8 \text { Volt to } 2 .$		utput	$\Delta t \mathrm{Ti}$			$2.0$
	Condition	Symbol	MCM27A16		MCM2716		Units
			Min	Max	Min	Max	
Address Valid to Output Valid	$\overline{\mathrm{E}} /$ Progr $=\mathrm{G}=\mathrm{V}_{16}$	tavov	-	350	-	450	ns
$\bar{E} /$ Progr to Output Valid	(Note 2)	telav	-	350	-	450	ns
Output Enable to Output Valid	$\bar{E} /$ Progr $=V_{16}$	tGLQV	-	120	-	120	ns
$\bar{E} /$ Progr to Hi 2 Output		tehaz	0	100	0	100	ns
Output Disable to Hi Z Output	$E /$ Progr $=V_{\text {IL }}$	${ }^{\text {t }} \mathrm{GHOZ}$	0	100	0	100	ns
Data Hold from Address	$\overline{\mathrm{E}} /$ Progr $=\mathrm{G}=\mathrm{V}_{1} \mathrm{~L}$	tAXDX	0	-	0	-	ns

FIGURE 1 - AC TEST LOAD

READ MODE TIMING DIAGRAMS
(Chip Enable $\left.=V_{I L}\right)$


STANDBY MODE
(Output Enable $=V_{\text {IL }}$ )


## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

$$
\left(T_{A}=0 \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{C C}=5.0 \mathrm{~V} \pm 10 \%\right)
$$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
	$V_{P P}$	24	25	26	$V \mathrm{Vdc}$
Input High Voltage for Data	$V_{I H}$	2.2	-	$V_{C C}+1$	$V \mathrm{Vc}$
Input Low Voltage for Data	$V_{I L}$	-0.1	-	0.8	$V d c$

" $V_{C C}$ must be applied simulataneously or prior to $V_{P P}$. $V_{C C}$ must also be switched off simultaneously with or after $V_{P P}$. The device must not be inserted into or removed from a board with $V_{P P}$ at +25 V . VPP must not exceed the +26 V maximum specifications.
PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address, $\overline{\mathrm{G}}$ and $\overline{\mathrm{E}} /$ Progr input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V} / 0.45$	$\mathrm{I}_{\mathrm{LI}}$	-	-	10	$\mu$ Adc
Vpp Supply Current	$\bar{E} /$ Progr $=V_{1 /}$	Ipp1	-	-	5.0	mAdc
VPP Programming Pulse Supply Current	$\overline{\mathrm{E}} /$ Progr $=\mathrm{V}_{1} \mathrm{H}$	IPP2	-	-	$\begin{array}{r}30 \\ , \\ \hline\end{array}$	mAdc
$V_{\text {CC }}$ Supply Current		${ }^{1} \mathrm{CC}$	-	-	100	mAdc

## AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	${ }^{\text {t }}$ AVEH	2.0	-	$\mu \mathrm{s}$
Output Enable High to Program Pulse	${ }^{\text {t }}$ GHEH	2.0	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t DVEH }}$	2.0	-	$\mu \mathrm{s}$
Address Hold Time	${ }^{\text {t ELAX }}$	2.0	-	$\mu \mathrm{s}$
Output Enable Hold Time	${ }^{\text {t ELGLL}}$	2.0	-	$\mu \mathrm{s}$
Data Hold Time	telaz	2.0	-	$\mu \mathrm{s}$
Output Disable to Hi Z Output	${ }^{\text {t GHOL }}$	0	120	ns
Output Enable to Valid Data ( $\overline{\mathrm{E} / \text { Progr }}=\mathrm{V}_{\text {IL }}$ )	tGLQV	-	120	ns
Program Pulse Width	tehel	45	55	ms
Program Pulse Rise Time	tpR	5	-	ns
Program Pulse Fall Time	tPF	5	-	ns

PROGRAMMING OPERATION TIMING DIAGRAM


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the VPP input (pin 21 ) should be raised to +25 V . The $\mathrm{V}_{\mathrm{CC}}$ supply voltage is the same as for the READ operation and G is at $\mathrm{V}_{\mathrm{IH}}$. Programming data is entered in 8 -bit words through the data out (DQ) terminals. Only " 0 ' $s$ " will be programmed when " 0 ' s " and " 1 's" are entered in the data word.

After address and data setup, a 50 ms program pulse ( $V_{I L}$ to $V_{I H}$ ) is applied to the $\bar{E} /$ Progr input. A program pulse is applied to each address location to be programmed. Locations may be programmed individually, sequentially, or at random. The maximum program pulse width is 55 ms ; therefore, programming must not be attempted with a dc signal applied to the $\overline{\mathrm{E}} /$ Progr input.

Multiple MCM2716s may be programmed in parallel with the same data by connecting together like inputs and applying the program pulse to the $\bar{E} /$ Progr inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using the PROGRAM INHIBIT mode. Except for the $\bar{E} /$ Progr pin, all like inputs (including Qutput Enable) may be common.

## TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined -$\rfloor$
transition direction for first signal
signal name to which interval is defined
transition direction for second signal
The transition definitions used in this data sheet are:
$\mathrm{H}=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

The PROGRAM VERIFY mode with VPP at 25 V is used to determine that all programmed bits were correctly programmed.

## READ OPERATION

After access time, data is valid at the outputs in the READ mode. With stable system addresses, effectively faster access time ( 120 ns ) can be obtained by gating the data onto the bus with a low Output Enable input ( $V_{\text {IL }}$ ).

A high level Output Enable input $\left(V_{I H}\right)$ puts the MCM2716 in the Output Disable mode with outputs in the high impedance state. This mode allows two or more devices to have outputs OR-tied together on the same data bus. Only one of the MCM2716s in this configuration should have output enable at $\mathrm{V}_{\text {IL }}$ to prevent contention on the data bus.

The Standby mode is available to reduce active power dissipation from 525 mW to 132 mW . The outputs are in the high impedance state when the $\bar{E} /$ Progr input pin is high $\left(\mathrm{V}_{\mathrm{IH}}\right)$ independent of the Output Enable input.

## ERASING INSTRUCTIONS

The MCM2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV-intensity $X$ exposure time) is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2716/27A16 should be positioned about one inch away from the UV-tubes.

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

## WAVEFORMS

Waveform Symbol	input	Output
	must be	WILL BE
		valid
	Change	WILL CHANGE
$11$	FROMHTOL	fromhtol
$\sqrt{7 / 71}$	change	will change
$\xrightarrow{1 / 11}$	FROMLTOH	fromltoh
	don't care	changing
2x8888	ANY CHANGE	STATE
	PERMITTED	UNKNOWN
		HIGH IMPEDANCE

## MCM68708 MCM68A708

## 1024 X 8 ERASABLE PROM

The MCM68708/68A708 is a 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM68708/68A708.

- Organized as 1024 Bytes of 8 Bits
- Fully Static Operation
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V
- Maximum Access Time $=300$ ns - MCM68A708

450 ns - MCM68708

- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs
- Bus Compatible to the M6800 Family

PIN CONNECTION DURING READ OR PROGRAM

Mode	Pin Number						
	9-11, 13-17	12	18	19	20	21	24
Read	Dout	$V_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {DD }}$	$V_{\text {IL }}$	$V_{\text {BB }}$	$V_{\text {cc }}$
Program	$\mathrm{D}_{\text {in }}$	VSS	Pulsed   VIHP	VDD	VIHW	$\vee_{B B}$	$V_{\text {cc }}$



MCM68708/68A708 READ ONLY MEMORY BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Rating	Value	Unit
Operating. Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}$ with Respect to $\mathrm{V}_{\text {BB }}$	+20 to -0.3	Vdc
$\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {SS }}$ with Respect to $\mathrm{V}_{\text {B }}$	+15 to -0.3	Vdc
All Input or Output Voltages with Respect to $V_{B B}$ during Read	+15 to -0.3	Vdc
CS/WE Input with Respect to $V_{B B}$ during Programming	+20 to -0.3	Vdc
Program Input with Respect to $V_{\text {BB }}$	+35 to -0.3	Vdc
Power Dissipation	1.8	Watts

DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
	$V_{\text {DD }}$	11.4	12	12.6	$V_{d c}$
	$V_{\text {BB }}$	-5.25	-5.0	-4.75	$V_{d c}$
Input High Voltage	$V_{\text {IH }}$	$V_{S S}+2.0$	-	$V_{C C}$	$V_{d c}$
Input Low Voltage	$V_{\text {IL }}$	$V_{S S}-0.3$	-	$V_{S S}+0.8$	$V_{d c}$

READ OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and CS Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$ or $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$	$1{ }_{\text {in }}$	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$	'LO	-	1	10	$\mu \mathrm{A}$
$V_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$\overline{\mathrm{CS}} / \mathrm{WE}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	1 DD	-	50	65	mA
$\mathrm{V}_{\text {CC S Supply Current }}$ (Note 2)		ICC	-	6	10	mA
$\mathrm{V}_{\text {BB }}$ Supply Current		IBB	-	30	45	mA
Output Low Voltage	$\mathrm{IOL}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	$\mathrm{V}_{\text {SS }}+0.4$	V
Output High Voltage	${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$	VOH	$\mathrm{v}_{\text {SS }}+2.4$	-	-	V
Power Dissipation (Note 2)	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$P_{\text {D }}$	-	-	800	mW

Note 2:
The total power dissipation is specified at 800 mW . It is not calculable by summing the various currents (IDD, ICC, and IBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{S S}$. The $I_{D D} I_{C C}$, and $I_{B B}$ currents should be used to determine power supply capacity only.
$\mathrm{V}_{\mathrm{BB}}$ must be applied prior to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{DD}} . \mathrm{V}_{\mathrm{BB}}$ must also be the last power supply switched off.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
(All timing with $\mathrm{t}_{\mathbf{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$, Load per Note 3 )

Characteristic	Symbol	MCM68A708			MCM68708			Unit
		Min	Typ	Max	Min	Typ	Max	
Address to Output Delay	${ }^{\text {taO }}$	-	220	300	-	280	450	ns
Chip Select to Outpu: Delay	${ }^{\text {t }} \mathrm{CO}$	-	60	120	-	60	120	ns
Data Hold from Address	tDHA	10	-	-	10	-	-	ns
Data Hold from Deselection	tDHD	10	-	120	10	-	120	ns

CAPACITANCE (periodically sampled rather than 100\% tested.)

Characteristic	Condition	Symbol	Typ	Max	Unit
Input Capacitance   $(f=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

Note 3:
Output Load $=1 \mathrm{TTL}$ Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Includes Jig Capacitance)
Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V Outputs: 0.8 V and 2.4 V


READ OPERATION TIMING DIAGRAM


DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.75	5.0	5.25	Vdc
	$V_{\text {DD }}$	11.4	12	12.6	Vdc
	$V_{B B}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage for All Addresses and Data	$V_{\text {IH }}$	3.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc
Input Low Voltage (except Program)	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.65	Vdc
$\overline{\text { CS/WE Input High Voltage (Note 4) }}$	VIHW	11.4	12	12.6	Vdc
Program Puise Input High Voltage (Note 4)	$\mathrm{V}_{\text {IHP }}$	25	-	27	$V \mathrm{dc}$
Program Pulse input Low Voltage (Note 5)	$V_{\text {ILP }}$	$\mathrm{V}_{\text {SS }}$	-	1.0	Vdc

Note 4: Referenced to $V_{S S}$.
Note 5: $\mathrm{V}_{\text {IHP }}-\mathrm{V}_{\text {ILP }}=25 \mathrm{~V} \mathrm{~min}$.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and CS/WE Input Sink Current	$V_{\text {in }}=5.25 \mathrm{~V}$	'LI	-	--	10	$\mu$ Adc
Program Pulse Source Current		$1 / \mathrm{PL}$	--	-	3.0	mAdc
Program Pulse Sink Current		1 IPH	-	-	20	mAdc
$V_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High $\overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{DD}$	-	50	65	mAdc
$V_{\text {CC }}$ Supply Current		${ }^{1} \mathrm{CC}$	-	6	10	mAdc
$V_{\text {BB }}$ Supply current		18 B	-	30	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	${ }^{t}$ AS	10	-	$\mu \mathrm{s}$
CS/WE Setup Time	${ }^{\text {t }} \mathrm{CSS}$	10	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t }}$ DS	10	-	$\mu \mathrm{s}$
Address Hold Time	${ }^{t} \mathrm{AH}$	1.0	-	$\mu \mathrm{s}$
$\overline{\text { CS/WE Hold Time }}$	${ }^{\text {t }} \mathrm{CH}$	0.5	-	$\mu \mathrm{s}$
Data Hold Time	${ }^{t} \mathrm{DH}$	1.0	-	$\mu \mathrm{s}$
Chip Deselect to Ouptut Float Delay	${ }^{\text {t }} \mathrm{DF}$	0	120	ns.
Program to Read Delay	${ }^{t}$ DPR	-	10	$\mu \mathrm{s}$
Program Pulse Width	${ }^{\text {t PW }}$	0.1	1.0	ms
Program Puise Rise Time	${ }^{\text {t P P }}$	0.5	2.0	$\mu \mathrm{s}$
Program Pulse Fall Time	${ }^{\text {t PF }}$	0.5	2.0	$\mu \mathrm{s}$

PROGRAMMING OPERATION TIMING DIAGRAM


Note 6: The $\overline{\mathrm{C}} / \mathrm{WE}$ transistion must occur after the Program Pulse transition and before the Address Transistion.

## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for programming mode, the $\overline{\mathrm{CS}} / \mathrm{WE}$ input ( Pin 20 ) should be raised to +12 V . Programming data is entered in 8 -bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages ( $V_{C C}, V_{D D}, V_{B B}$ ) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input ( Pin 18 ). A program loop is a full pass through all addresses. Total programming time, $T_{P_{\text {total }}}=N \times \mathrm{t}_{\mathrm{pW}} \geqslant 100 \mathrm{~ms}$. The required number of program loops $(N)$ is a function of the program pulse width (tPW), where: $0.1 \mathrm{~ms} \leqslant \mathrm{t}_{\mathrm{PW}} \leqslant$ 1.0 ms ; correspondingly N is: $100 \leqslant \mathrm{~N} \leqslant 1000$. There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., $N$ program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the $\overline{\mathrm{CS}} / \mathrm{WE}$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to $V_{\text {ILP }}$ with an active device, because this pin sources a small amount of current ( $I_{I P L}$ ) when $\overline{C S} / W E$ is at $V_{\text {IHW }}$ $(12 \mathrm{~V})$ and the program pulse is at $\mathrm{V}_{\text {ILP. }}$.

## EXAMPLES FOR PROGRAMMING

Always use the $T_{P \text { total }}=N \times t_{p W} \geqslant 100 \mathrm{~ms}$ relationship.

1. All 8092 bits should be programmed with a 0.2 ms program pulse width.
The minimum number of program loops:

$$
N=\frac{T_{P \text { total }}}{t_{P W}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 . \text { One program loop }
$$

consists of words 0 to 1023.
2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms . The minimum number of program loops, $N=\frac{100}{0.5}=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s .
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 . The minimum number of program loops is the same as in the previous example, $N=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s . Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

## ERASING INSTRUCTIONS

The MCM68708/68A708 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV-intensity $x$ exposure time) is $12.5 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM68708/68A708 should be positioned about one inch away from the UV-tubes.

## MCM68764 MCM68A764

## Advance Information

## 8192 X 8-BIT UV ERASABLE PROM

The MCM68764/68A764 is a 65,536 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically or for replacing 64 K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM68764/68A764.

- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 8192 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time $=450$ ns MCM68764

350 ns MCM68A764

- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A364 Mask Programmable ROM

MODE SELECTION

Mode	PIN NUMBER			
	$\begin{gathered} \hline 9-11, \\ \text { 13-17, } \\ \text { DQ } \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{v}_{\mathrm{SS}} \end{gathered}$	$\begin{gathered} 20 \\ E / V_{P P} \end{gathered}$	$\begin{gathered} 24 \\ v_{C C} \end{gathered}$
Read	Data out	$V_{\text {SS }}$	$V_{\text {IL }}$	VCC
Output Disable	Hi-Z	$V_{S S}$	$\mathrm{V}_{\text {IH }}$	$V_{C C}$
Standby	Hi-Z	$V_{S S}$	$\mathrm{V}_{\text {IH }}$	$V_{\text {CC }}$
Program	Data in	$\mathrm{V}_{\text {SS }}$	$\begin{gathered} \text { Pulsed } \\ V_{\text {ILP }} \text { to } V_{\text {IHP }} \end{gathered}$	$\mathrm{V}_{\text {cc }}$

ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $\mathrm{V}_{\text {SS }}$ during Read	+6 to -0.3	$\mathrm{~V}_{\mathrm{dc}}$
V PP Supply Voltage with Respect to $\mathrm{V}_{\text {SS }}$	+28 to -0.3	Vdc

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voitages for extended periods of time could affect device reliability.

## MOS

(N-CHANNEL, SILICON-GATE)
$8192 \times 8$-BIT UV ERASABLE PROM


PIN ASSIGNMENT


*PIN NAMES
A . . . Address
DQ . . . Data Input/Output
$\bar{E} /$ VPP $^{\ldots} \ldots$ Chip Enable/Program
$\overline{\mathrm{G}} \ldots$. Output Enable

*New industry standard nomenclature

## BLOCK DIAGRAM



DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC READ OPERATING CONDITIONS (T $\mathrm{A}_{\mathrm{A}}=\mathbf{0}^{\circ}$ to $\mathbf{+ 7 0}^{\circ} \mathrm{C}$ )

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage *	MCM68764	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
	MCM68A764		4.5	5.0	5.5	
Input High Voltage		$V_{I H}$	2.0	-	$V_{C C}+1.0$	$V_{d c}$
Input Low Voltage	$V_{I L}$	-0.1	-	0.8	$V_{d c}$	

READ OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	1 in	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}$	$\mathrm{I}_{\mathrm{L}} \mathrm{O}$	-	-	10	$\mu \mathrm{A}$
E/VPp Input Sink Current	$\begin{aligned} & \vec{E} / V_{P P}=V_{I L} \\ & \vec{E} / V_{P P}=V_{I H} \\ & \vec{E} / V_{P P}=V_{I H P} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{EL}} \\ \mathrm{I}_{\mathrm{EH}}=\mathrm{I}_{\mathrm{PL}} \\ \mathrm{I}_{\mathrm{PH}} \\ \hline \end{gathered}$		- - -	$\begin{gathered} 10 \\ 200 \\ 30 \end{gathered}$	$\mu \mathrm{A}$   $\mu A$   mA
$V_{\text {CC }}$ Supply Current (Active)	$E / V_{P P}=V_{\text {IL }}$	ICC1	-	-	160	mA
$\mathrm{V}_{\text {CC }}$ Supply Current (Standby)	$E / V_{P P}=V_{1 H}$	1 CC 2	-	-	25	mA
Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	0.1	0.45	V
Output High Voltage	$1 \mathrm{OH}^{\prime}=-400 \mu \mathrm{~A}$	$\mathrm{VOH}^{\text {O }}$	2.4	4.0	-	V

## CAPACITANCE

(f $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\dot{C}=\frac{1 \Delta_{t}}{\Delta V}$.

[^13]DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
$\left(T_{A}=0\right.$ to $\left.+70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 5 \%\right)$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
Input High Voltage for All Addresses and Data	$V_{I H}$	2.0	-	$V_{C C}+1$	$V_{d c}$
Input Low Voltage for All Addresses and Data	$V_{I L}$	-0.1	-	0.8	$V_{d c}$
Program Pulse Input High Voltage	$V_{\text {IHP }}$	24	25	26	$V_{d c}$
Program Pulse Input Low Voltage	$V_{\text {ILP }}$	2.0	$V_{\text {CC }}$	6.0	$V_{d c}$

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	'LI	-	-	10	$\mu \mathrm{Adc}$
Program Puise Current (VPP = 25 V )		IPH	-	-	30	mAdc
VPP Programming Puise Current ( V PP $=5 \mathrm{~V}$ )		$I_{P L}=I_{E H}$	-	-	200	$\mu \mathrm{A}$
${ }^{\text {CCC Supply Current }}$		${ }^{1} \mathrm{CC}$	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	tAVPH	2.0	-	$\mu \mathrm{s}$
Data Setup Time	t DVPH	2.0	-	$\mu_{s}$
Chip Enable to Valid Data	telov	450	-	ns
Chip Disable to Data In	tehov	2.0	-	$\mu \mathrm{s}$
Program Pulse Width*	tPHPL	1.0	55	ms
Program Pulse Rise Time	tPR	0.5	2.0	$\mu_{\text {s }}$
Program Pulse Fall Time	tPF	0.5	2.0	$\mu \mathrm{s}$

*The minimum programming time is twice the programming time after successful verification of the programmed pattern, but maximum programming time is 55 ms .

## PROGRAMMING OPERATION TIMING DIAGRAM



AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
Input Pulse Levels ........... . . . . 0.8 Volt to 2.2 Volts
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . 20 ns

Input Timing Levels . . . . . . . . . . . . . . 1 Volt and 2 Volts
Output Timing Levels . . . . . . . . . . . . 0.8 Volt to 2 Volts
Output Load . . . . . . . . . . 100 pF + 174 Series TTL Load

Characteristic	Condition	Symbol	MCM68A764		MCM68764		Units
			Min	Max	Min	Max	
Address Valid to Output Valid	$\mathrm{E}=\mathrm{V}_{1} \mathrm{~L}$	${ }^{t}$ AVQV	-	350	-	450	ns
E to Output Valid		tELQV	-	350	-	450	ns
E to Hi-Z Output	-	tEHQZ	0	100	0	100	ns
Data Hold from Address	$\bar{E}=V_{I L}$	${ }^{\text {t }}$ AXDX	0	-	0	-	ns

READ MODE TIMING DIAGRAM


## MCM68764, MCM68A764

## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for Program Mode, the $\bar{E} / V P P$ input (Pin 20) should be between +2.0 and +6.0 V , which will tristate the outputs and allow data to be setup on the DQ terminals. The $V_{C C}$ voltage is the same as for the Read operation. Only " 0 's" will be programmed when " 0 's" and " 1 ' $s$ " are entered in the 8 -bit data word.

After address and data setup, 25 volt programming pulse ( $V_{\text {IH }}$ to $V_{\text {IHP }}$ ) is applied to the E/VPP input. A program pulse is applied to each address location to be programmed. Locations may be programmed individually, sequentially, or at random. The maximum program pulse width is 55 ms and the maximum program pulse amplitude is 26.0 V .

Multiple MCM68764s may be programmed in parallel by connecting like inputs and applying the program pulse to the $\bar{E} /$ VPP inputs. Different data may be programmed into multiple MCM68764s connected in parallel by selectively applying the programming pulse only to the MCM68764s to be programmed.

## TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined
transition direction for first signal
signal name to which interval is defined
transition direction for second signal

The transition definitions used in this data sheet are:
$\mathrm{H}=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## READ OPERATION

After access time, data is valid at the outputs in the Read mode. A single input ( $\bar{E} / V_{p p}$ ) enables the outputs and puts the chip in active or standby mode. With E/VPP $=$ " 0 " the outputs are enabled and the chip is in active mode, with E/VPP $=$ " 1 " the outputs are tristated and the chip is in standby mode. During standby mode, the power dissipation is reduced from 880 mW to 132 mW .

Multiple MCM68764 may share a common data bus with like outputs OR-tied together. In this configuration the $\bar{E} / V P P$ input should be high on all unselected MCM 68764 s to prevent data contention.

## ERASING INSTRUCTIONS

The MCM68764 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity $X$ exposure time) is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68764 should be positioned about one inch away from the UV-tubes.

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

## TMS2716 TMS27A16

## $2048 \times 8$ ERASABLE PROM

The TMS2716 and TMS27A16 are 16,384-bit Erasable and Electrically ${ }^{\text {Reprogrammable PROMs designed for system debug }}$ usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. The TMS2716 is pin compatibie with 2708 EPROMs, allowing easy memory size doubling.

- Organized as 2048 Bytes of 8 Bits
- Fully Static Operation (No Clocks, No Refresh)
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$, and -5 V
- Maximum Access Time $=300 \mathrm{~ns}-$ TMS27A16

450 ns - TMS2716

- Chip-Select Input for Memory Expansion
- TTL Compatible - No Pull-up Resistors Required
- Three-State Outputs for OR-Tie Capability
- The TMS2716 is Pin Compatible to MCM2708 and MCM68708 EPROMs




## MOS

(N-CHANNEL, SILICON-GATE)

## $2048 \times 8$-BIT UV ERASABLE PROM



ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Operating Temperature	0 to + 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}$ with Respect to $\mathrm{V}_{\mathrm{BB}}$	+20 to -0.3	Vdc
$\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {SS }}$ with Respect to $\mathrm{V}_{\mathrm{BB}}$	+15 to -0.3	Vdc
All Input or Output Voitage with Respect to $\mathrm{V}_{\mathrm{BB}}$ During fead	+15 to -0.3	Vdc
(E) Input with Respect to $V^{\text {BB }}$ During Programming	+20 to -0.3	Vdc
Program Input with Respect to $V^{\text {BB }}$	+35 to -0.3	Vdc
Power Dissipation	1.8	Watts

## PIN CONNECTION DURING

 READ OR PROGRAM| Mode | Pin Number |  |  |
| :---: | :---: | :---: | :---: |
|  | $9-11$ <br> $13-17$ | 18 | 24 |
|  | D out | $V_{1 L}$ or <br> $V_{\text {IH }}$ | $V_{\text {CC }}$ |
|  | Din $_{\text {in }}$ | Pulsed <br> $V_{\text {IHP }}$ | $V_{\text {IHW }}$ |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

## RECOMMENDED DC READ OPERATING CONDITIONS

Parameter		Symbol	Min	Nom	Max	Unit
Supply Voltage	$\begin{aligned} & \text { TMS2716 } \\ & \text { TMS27A16 } \end{aligned}$	${ }^{\text {CC }}$	4.75	5.0	5.25	Vdc
		$V_{\text {DD }}$	11.4	12	12.6	Vdc
		$V_{B B}$	-5.25	-5.0	-4.75	Vdc
		${ }^{\text {V }}$ CC	4.5	5.0	5.5	$\checkmark \mathrm{dc}$
		$V_{\text {DD }}$	10.8	12	13.2	$\checkmark \mathrm{dc}$
		$V_{\text {BB }}$	-5.5	-5.0	-4.5	Vdc
Input High Voltage		$\mathrm{V}_{1} \mathrm{H}$	2.2	-	$V_{\text {CC }}+1.0$	Vdc
Input Low Voltage		$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.65	Vdc

READ OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbal	Min	TVp	Max	Unit
Address Input Sink Current	$V_{\text {in }}=V_{\text {CC }}$ max or $V_{\text {in }}=V_{\text {IL }}$	1 in	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$V_{\text {out }}=V_{\text {CC }}$ max and $\bar{S}=5 \mathrm{~V}$	ILO	--	1	10	$\mu \mathrm{A}$
VOD Supply Current	Worst-Case Supply Currents	IDD	-	-	65	mA
$V_{\text {CC }}$ Supply Current	All lnputs High	${ }^{1} \mathrm{CC}$	--	-	12	mA
$V_{\text {BB }}$ Supply Current	$(E)=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{1} \mathrm{BB}$	-	-	45	$m A$
Output Low Voitage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	$\mathrm{VOL}^{\text {OL }}$	-	--	0.45	$\checkmark$
Output High Voltage	${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$	$\mathrm{VOH}^{\mathrm{OH}}$	3.7	-	-	$V$
Output High Voltage	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH} 2}$	2.4	-	$\cdots$	V

$V_{B B}$ must be applied prior to $V_{C C}$ and $V_{D D} . V_{B B}$ must also be the last power supply switched off.

CAPACITANCE (periodically sampled rather than 100\% tested)

Characteristic	Condition	Symbol	Typ	Max	Unit
Input Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, Load per Note 2 )

Characteristic	Symbol	TMS2716		TMS27A16		Unit
		Min	Max	Min	Max	
Address to Output Delay	tavov	-	450	-	300	ns
Chip Select to Output Delay	${ }^{\text {t }}$ SLQV	-	120	-	120	ns
Data Hold from Address	taxaz	10	-	10	-	ns
Data Hold from Deselection	${ }^{\text {t }}$ SHOZ	10	120	10	120	ns

NOTE 2: Output Load $=1$ TTL Gate and $C_{L}=100$ pF (Includes Jig Capacitance)
Timing Measurement Reference Levels - Inputs: 0.8 V and 2.8 V
AC TEST LOAD
Outputs: 0.8 V and 2.4 V


## TIMING LIMITS

The table of timing values shows either a minimum or a maximum iimit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maxi mum since the device never provides data later than that time.

## TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined -_
transition direction for first signal
signal name to which interval is defined
transition direction for second signal

The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)


## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	Vdc
	$V_{\text {DD }}$	11.4	12	12.6	$V \mathrm{dc}$
	$\mathrm{V}_{\text {BB }}$	-5.25	$-5.0$	-4.75	Vdc
Input High Voltage for Data	$V_{\text {IHD }}$	3.8	-	$\mathrm{V}_{\mathrm{CC}}+1$	Vdc
Input Low Voltage for Data	$V_{\text {ILD }}$	$\mathrm{V}_{\text {SS }}$	-	0.65	Vdc
Input High Voitage for Addresses	$V_{\text {IHA }}$	3.8	-	$\mathrm{V}_{\mathrm{CC}+1}$	Vdc
Input Low Voltage for Addresses	$\mathrm{V}_{\text {ILA }}$	$\mathrm{V}_{\text {SS }}$	-	0.4	Vdc
Program Enable (E) Input High Voltage (Note 3)	$V_{\text {IHW }}$	11.4	12	12.6	Vdc
Program Enable (E) Input Low Voltage (Note 3)	$\mathrm{V}_{\text {ILW }}=\mathrm{V}_{\text {CC }}$	4.75	5.0	5.25	Vdc
Program Pulse Input High Voltage (Note 3)	$\mathrm{V}_{\text {IHP }}$	25	-	27	Vdc
Program Pulse Input Low Voltage (Note 4)	$V_{\text {ILP }}$	$\mathrm{V}_{\text {SS }}$	-	1.0	Vdc

NOTE 3: Referenced to $V_{S S}$.
NOTE 4: $V_{\text {HHP }}-V_{\text {ILP }}=25 \mathrm{~V}$ min.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit -
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	ILI	-	-	10	$\mu$ Adc
Program Pulse Source Current		$1 / \mathrm{PL}$	-	-	3.0	mAdc
Program Pulse Sink Current		IIPH	-	-	20	mAdc
$V_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$(E)=5 \mathrm{~V}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}$	IDD	-	-	65	mAdc
$V_{\text {CC }}$ Supply Current		${ }^{1} \mathrm{CC}$	-	-	15	mAdc
$V_{\text {BB }}$ Supply current		${ }^{\prime} \mathrm{BB}$	-	-	45	mAdc

## AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	${ }^{\text {t }}$ AVPH	10	-	$\mu \mathrm{s}$
(E) Setup Time	${ }^{\text {teHPH }}$	10	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t }}$ DVPH	10	-	$\mu \mathrm{s}$
Address Hold Time	tPLAX	1.0	-	$\mu \mathrm{s}$
(E) Hold Time	tPLEL	0.5	-	$\mu \mathrm{s}$
Data Hold Time	tPLDX	1.0	-	$\mu \mathrm{s}$
Program to Read Delay	telov	-	10	$\mu \mathrm{s}$
Program Pulse Width	${ }_{\text {tPHPL }}$	0.1	1.0	ms
Program Pulse Rise Time	tPR	0.5	2.0	$\mu \mathrm{s}$
Program Pulse Fall Time	${ }^{\text {t PFF }}$	0.5	2.0	$\mu \mathrm{s}$

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.


NOTE 5: This Program Enable tranistion must occur after the Program Pulse transition and before the Address Transition.

WAVEFORM DEFINITIONS					
Waveform Symbol	Input	Output	Waveform Symbol	Inprit	Output
	MUST BE VALID	WILL BE VALID	$8 \times \times \times \times \times$	DO'NT CARE ANY CHANGE PERMITTED	CHANGING state UNKNOWN
$J I I$	CHANGE   FROMHTOL	WILL CHANGE FROMHTOL			HIGH   IMPEDANCE
$\sqrt{1 / 11}$	CHANGE   FROMLTOH	WILL. CHANGE FROMLTOH			

## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for programming mode, the $\mathrm{V}_{\mathrm{CC}}(\mathrm{E})$ input (Pin 24) should be raised to +12 V . Programming data is entered in 8 -bit words through the data output terminals (DOO to DQ7).

The $V_{D D}$ and $V_{B B}$ supply voltages are the same as for the READ operation.

After address and data setup, one program pulse per address is applied to the program input. A program loop is a full pass through all addresses. Total programming time/ address, $T_{\text {Ptotal }}=\mathrm{N} \times$ tPHPL $\geqslant 100 \mathrm{~ms}$. The required number of program loops ( N ) is a function of the program pulse width (tPHPL) where: $0.1 \mathrm{~ms} \leqslant \mathrm{tPHPL} \leqslant 1.0 \mathrm{~ms}$; correspondingly, N is: $100 \leqslant \mathrm{~N} \leqslant 1000$. There must be N successive loops through all 2048 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., $N$ program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the Program Enable ( E ) falling edge transition must occur before the first address transition; when changing from a PROGRAM to a READ cycle. The program pin should be pulled down to VILP with an active device, because this pin sources a small amount of current ( $I_{\text {IPL }}$ ) when $(\mathrm{E})$ is at $\mathrm{V}_{\text {IHW }}(12 \mathrm{~V}$ ) and the program pulse is at VILP.

## EXAMPLE FOR PROGRAMMING

Always use the $T_{\text {Ptotal }}=N \times$ tPHPL $\geqslant 100 \mathrm{~ms}$ relationship.

1. All 16,384 bits should be prograrnmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$
N=\frac{T \text { Ptotal }}{t P H P L}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 .
$$

One program loop consists of words 0 to 2047.
2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The' program pulse width is 0.5 ms . The minimum number of program loops, $\mathrm{N}=100 / 0.5=200$. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1 s .
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 . The minimum number of program loops is the same as in the previous example, $\mathrm{N}=\mathbf{2 0 0}$. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

## ERASING INSTRUCTIONS

The TMS2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., $U V$-intensity $X$ exposure time) is $12.5 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model $30-000$ " UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the TMS2716/27A16 should be positioned about one inch away from the UV-tubes.

## 128c $\times 7 \times 5$ CHARACTER GENERATOR

The MCM6670 is a mask-programmable horizontal-scan (row select) character generator containing 128 characters in a $5 \times 7$ matrix. A 7 -bit address code is used to select one of the 128 available characters, and a 3 -bit row select code chooses the appropriate row to appear at the outputs. The rows are sequentially displayed, providing a 7 -word sequence of 5 parallel bits per word for each character selected by the address inputs.

The MCM6674 is a preprogrammed version of the MCM6670. The complete pattern of this device is contained in this data sheet.

- Fully Static Operation
- TTL Compatibility
- Single $\pm 10 \%+5$ Volt Power Supply
- 18-Pin Package
- Diagonal Corner Power Supply Pins
- Fast Access Time, 350 ns (max)

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Vatue	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	$\mathrm{Vdc}^{\prime}$
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RA TINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT ING. CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.


## MOS

(N-CHANNEL, SILICON GATE)
$128 \mathrm{c} \times 7 \times 5$
HORIZONTAL-SCAN CHARACTER GENERATOR


[^14]DC OPERATING CONDITIONS AND CHARACTERISITCS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.25	Vdc
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}\right)$	in	-	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(I_{O H}=-205 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	$V_{C C}$	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	Vdc
```Output Leakage Current (Three-State) \(\left(C S=2.0 \mathrm{~V}\right.\) or \(\mathrm{CS}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V}\) to 2.4 V )```	'LO	-	-	10	$\mu$ Adc
Supply Current $\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-	-	130	mAdc

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)

Characteristic	Symbol	Typ	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	5.0	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	5.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	1 TTL Gate and $C_{\mathrm{L}}=30 \mathrm{pF}$

AC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\text {cyc }}$	350	-	ns
Address Access Time	$\mathrm{tacc}_{\text {ach }}(\mathrm{A})$	-	350	ns
Row Select Access Time	$\mathrm{tacc}_{\text {ach }}$ (R) ${ }^{\text {d }}$	\cdots	350	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	150	ns

CUSTOM PROGRAMMING FOR MCM6670

By the programming of a single photomask, the customer may specify the content of the MCM6670. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:

1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5).
Programming of the MCM6670 can be achieved by using the following sequence:
3. Create the 128 characters in a 5×7 font using the format shown in Figure 1. Note that information at output D4 appears in column one, D3 in column two, thru DO information in column five. The dots filled in and programmed as a logic " 1 " will appear at the outputs
as V_{OH}; the dots left blank will be at V_{OL}. RO is always programmed to be blank (V_{OL}). (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)
4. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. The information for D4 must be a hex one or zero, and is entered in the left block. The information for D3 thru D0 is entered in the right block, with D3 the most significant bi+ for the hex coding, and DO the least significant.
5. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).
6. Transmit this data to Motorola, along with the customer name, customer part number and revision, and an indication that the source device is the MCM6670.
7. Information should be submitted on an organizational data form such as that shown in Figure 2.

FIGURE 1 - CHARACTER FORMAT

FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

FIGURE 3 - CARD PUNCH FORMAT

Columns

1.9 Blank

10-25 Hex coding for first character
26 Slash (/)
27.42 Hex coding for second character

43 Slash (/)
44-59 Hex coding for third character
60 Slash (/)
61-76 Hex coding for fourth character
77.78 Blank

79-80 Card number (starting 01 ; thru 32)

Column 10 on the first card contains either a zero or a one to program D4 of row R0 for the first character. Column 11 contains the hex character for D3 thru DO. Columns 12 and 13 contain the information to program R1. The entire first character is coded in columns 10 thru 25. Each card contains the coding for four characters; 32 cards are required to program the entire 128 characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. Figure 3 provides an illustration of the correct format.

FIGURE 4 - EXAMPLE OF CARD PUNCH FORMAT
(First 12 Characters of MCM6670P4)

$\begin{array}{ll}\text { Leader } & \text { Blank Tape } \\ 1 \text { to } M & \text { Allowed for customer use }(M \leqslant 64)\end{array}$
$\begin{array}{ll}\text { Leader } & \text { Blank Tape } \\ 1 \text { to } M & \text { Allowed for customer use }(M \leqslant 64)\end{array}$
$M+1, M+2 \quad C R ;$ LF (Carriage Return; Line Feed)
$M+3$ to $M+66$ First line of pattern information (64 hex figures per line)
$M+67, M+68$
$M+69$ to
$M+2114$
Remaining 31 lines of hex figures, each line followed by a Carriage Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the
start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $\mathrm{M}+3$ contains a zero or a one to program D4 of row RO for the first character. Frame $M+4$ contains the hex character for D3 thru DO, completing the programming information for R0. Frames $M+5$ and $M+6$ contain the information to program R1. The entire first character is coded in Frames $M+3$ thru $M+18$. Four complete characters are programmed with each line. A total of 32 lines program all 128 characters (32×4). The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part.

FIGURE 6 - MCM6674 PATTERN

The formats below are given for your convenience in preparing character information for MCM6670 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

Character Number \qquad

Character Number \qquad

Character Number \qquad

Character Number \qquad Character Number \qquad

Character Number

Character Number

Character Number \qquad

Character Number

Character Number \qquad

\[

\]

Character Number \qquad

Character Number \qquad
MSB LSB HEX

Character Number

MSB LSB HEX

MOTOROLA

, 8192-BIT READ ONLY MEMORIES ROW SELECT CHARACTER GENERATORS

The MCM66700 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 -characters in' a 7×9 matrix, and has the capability of shifting certain characters that normally extend below the baseline such as j, y, g, p, and q. Circuitry is supplied internalify to effectively lower the whole matrix for this type of character-a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic is and Os stored in a 7×9 matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the 7×9 character in one of two preprogrammed positions on the 16 -row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The devices listed are preprogrammed versions of the MCM66700. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Fully Static Operation
- Fully TTL Compatible with Three-State Outputs
- CMOS and MPU Compatible, Single $\pm 10 \% 5$ Volt Supply
- Shifted Character Capability
(Except MCM66720, MCM66730, and MCM66734)
- Maximum Access Time $=350 \mathrm{~ns}$
- 4 Programmable Chip Selects (0, 1, or X)
- Pin-for-Pin Replacement for the MCM6570, Including All Standard Patterns

MCM66700 MCM66710 MCM66714 MCM66720 MCM66730 MCM66734 MCM66740 MCM66750 MCM66751 MCM66760 MCM66770 MCM66780 MCM66790

MOS

(N-CHANNEL, SILICON-GATE)

8K READ ONLY MEMORIES
 HORIZONTAL-SCAN
 CHARACTER GENERATORS WITH SHIFTED CHARACTERS

ABSOLUTE MAXIMUM RATINGS (See Note 1 , Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{CC}	-0.3 to 7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to 7.0	$\mathrm{Vdc}_{\mathrm{dc}}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher-than-recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{S S}$)

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	$V_{d c}$
Input Logic " 1 " Voltage	$V_{\text {IH }}$	2.0	-	$V_{C C}$	Vdc
Input Logic " 0 " Voltage	$V_{\text {IL }}$	-0.3	-	0.8	$V \mathrm{Vdc}$

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current $\left(V_{\mathrm{IH}}=5.5 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{Vdc}\right)$	$\mathrm{I}_{1 \mathrm{H}}$	-	-	2.5	μ Adc
Output Low Voltage (Blank) $(1 \mathrm{OL}=1.6 \mathrm{mAdc})$	V_{OL}	0	-	0.4	Vdc
Output High Voltage (Dot) (${ }_{\mathrm{OH}}=-205 \mu \mathrm{Adc}$)	V_{OH}	2.4	-	-	Vdc
Power Supply Current	${ }^{1} \mathrm{CC}$	-	-	80	mAdc
Power Dissipation	${ }^{\text {P }}$	-	200	440	mW

CAPACITANCE (Periodically sampled rather than 100\% tested)

Input Capacitance $(f=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	4.0	7.0	pF
Output Capacitance $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	4.0	7.0	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

MCM66700 Series

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

AC CHARACTERISTICS

Characteristic	Symbol	Typ	Max	Unit
Address Access Time	$\mathrm{t}_{\text {acc }}(\mathrm{A})$	250	350	ns
Row Select Access Time	$\mathrm{t}_{\mathrm{acc}(\mathrm{RS})}$	250	350	ns
Chip Select to Output Delay	$\mathrm{t} \mathbf{C O}$	100	150	ns

TIMING DIAGRAM

7777 = Don't care

MCM66700 Series

MEMORY OPERATION (Using Positive Logic)

Most positive level $=1$, most negative level $=0$.

Address

To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 through A6).

Row Select

To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RSO through RS3).

Shifted Characters

These devices have the capability of displaying characters that descend below the bottom line (such as lowercase letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character
can be programmed to occupy either of the two positions in a 7×16 matrix. (Shifted characters are not available on MCM66720, MCM66730, or MCM66734.)

Output

For these devices, an output dot is defined as a logic 1 level. and an output blank is defined as a logic 0 level.

Programmable Chip Select

The MCM66700 has four Chip Select inputs that can be programmed with a 1,0 , or don't care (not connected). A don't care must always be the highest chip select pin or pins. All standard patterns have Don't Care Chip Selectexcept MCM66751.

DISPLAY FORMAT

Figure 1 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM66700 allows the user to locate the basic 7×9 font anywhere in the 7×16 array. In addition, a shifted font can be placed anywhere in the same 7×16 array. For example, the basic MCM66710 font is established in rows R14 through R6. All other rows are autornatically blanked. The shifted font is established in rows R11 through R3, with all other rows blanked. Thus, while any one character is contained in a 7×9 array, the MCM66710 requires a 7×12 array on the CRT screen to contain both normal and descending characters. Other
uses of the shift option may require as much as the full 7×16 array, or as little as the basic 7×9 array (when no shifting occurs, as in the MCM66720).

The MCM66700 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM66710 from bottom to top, whereas an up counter will scan the MCM66714 from top to bottom (see Figures 7 and 8 for row designation).

FIGURE 1 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM66710 AND MCM66720

MCM66700 Series

CUSTOM PROGRAMMING FOR MCM66700

By the programming of a single photomask, the customer may specify the content of the MCM66700. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:*

1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4)
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5)

Programming of the MCM66700 can be achieved by using the follow sequence:

1. Create the 128 characters in a 7×9 font using the format shown in Figure 2. Note that information at output D6 appears in column one, D5 in column two, through D0 information in column seven. The dots filled in and programmed as a logic 1 will appear at the outputs as V_{OH}; the dots left blank will be at V_{OL}. (Blank formats appear at the end of this data sheet for your convenience;
they are not to be submitted to Motorola, however.)
2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S)
3. Convert the characters to hexadecimal coding treating dots as 1 s and blanks as 0 s , and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns S and D3. For the bottom eight rows, the bit in Column S must be 0 , so these locations have been omitted. For the top row, the bit in Column S will be 0 for an unshifted character, and 1 for a shifted character.
4. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).
5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 through 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.
6. Provide, in writing, the information indicated in Figure 6 (a copy of Figure 10 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

FIGURE 2 - CHARACTER FORMAT
FIGURE 3 - CARD PUNCH FORMAT

Columns

$1-10$	Blank
11	Asterisk (*)
$12-29$	Hex coding for first character
30	Slash (/)
$31-48$	Hex coding for second character
49	Slash (/)
$50-67$	Hex coding for third character
68	Slash (/)
$69-76$	Blank
$77-78$	Card number (starting 01 ; through 43)
$79-80$	Blank

Column 12 on the first card contains the hexadecimal equivalent of column S and D6 through D4 for the top row of the first character. Column 13 contains D3 through DO. Columns 14 and 15 contain the information for the next row. The entire first character is coded in columns 12 through 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM66710 are correctly coded and punched in Figure 4.

[^15](First 9 Characters of MCM66710)

FIGURE 5 - PAPER TAPE FORMAT

Frames

Leader
1 to M
$M+1, M+2$
$M+3$ to $M+66$
$M+67, M+68$
$M+69$ to $M+2378$

Blank Tape
Allowed for customer use ($M \leqslant 64$) CR; LF (Carriage Return; Line Feed)
First line of pattern information (64 hex figures per line)
CR; LF
Remaining 35 lines of hex figures, each line followed by a Carriage Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the
start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $M+3$ contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame $M+4$ contains D3 thru DO. Frames $M+5$ and $M+6$ program the second row of the first character. Frames $M+3$ to $M+66$ comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain 36×64 or 2304 hex figures. Since 18 hex figures are required to program each 7×9 character, the full 128 (2304 $\div 18$) characters are programmed.

FIGURE 6 - FORMAT FOR ORGANIZATIONAL DATA

ORGANIZATIONAL DATA MCM66700 MOS READ ONLY MEMORY

Customer
Customer Part No. \qquad Rev. \qquad

Row Number for top row of non-shifted font

Row Number for bottom row of non-shifted font \qquad
Row Number for top row of shifted font \qquad
Programmable Chip Select information: $1=$ Active High $0=$ Active Low $X=$ Don't Care (Not Connected)
\qquad

FIGURE 7 - MCM66710 PATTERN

$A B A^{A}$			$\begin{array}{\|c\|} \hline 0000 \\ \hline 06 \quad 00 \\ \hline \end{array}$	0001	0010	0011	0100	0101	0110	0111.	1000	1001	1010	1011	1100	1101	1110	1111	
			06	06 - 0	06... 00	06 -.. 00	08. 00	06... 00	06 . . 00	06 ... 00	-6. 00	08.00	Ds 00	08.00	0800	06 00	$08 \quad 00$		
		مص:14 ${ }^{\text {mex }}$ $\left.\right\|_{\text {пб }}$																	
		R6																	
		A14 96																	
		п6																	
		R6																	
	$\left.110\right\|_{\mathrm{R}} ^{\mathrm{R} / 4}$	的																	
		86																	

FIGURE 8 - MCM66714 PATTERN

FIGURE 9 －MCM66734 PATTERN＊

$A 5$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		08.00	© 00	$\infty \quad 00$	∞ ¢ $\quad 00$	∞ e $\quad \infty$	\bigcirc	06	D6 00	\％6 Do	D8 00	06 Do	0600	$06 \quad 00$	${ }^{06}$ D0	D6 Do	${ }^{6}$
000	no																
001	no																
010																	
011																	
100	คо ค8																
101																	
110	Ro						$\begin{array}{r} 6-5 \\ \hline 6 \end{array}$						量				
111	$\begin{gathered} \text { RO } \\ \vdots \\ \text { R8 } \end{gathered}$																

FIGURE 10 －MCM66720 PATTERN＊＊

$A_{A B \cdot A 4}^{A 3 \cdots A 0}$		0000	1	0010	011	0	107	110	111	000	001	010	011	100	101	，	111
		－s	06－ 00	06 Do	06．Do	06 ．Do	0600	06 Do	D6 00	06 Do	0600	0600	${ }^{\circ} 6$	06 Do	0600	06 00	06 00
000	not												是				
001	ค0																
010	no																
01																	
100	ค 0																
101	¢0																
110	na	㗊品器															
111	[
\cdots Shitiod cherecter we not und．																	

MCM66700 Series

FIGURE 11 －MCM66730 PATTERN＊＊

$A 6 \ldots A^{4} \ldots A_{0}$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	111
		$06 \ldots 00$	06．．．00	06 $0^{0} 00$	06．．．00	0	00.00	06 \ldots ． 0	$06 \ldots 00$	${ }^{\circ} 6$	06 $\ldots 00$	06	${ }^{\circ}$	D	08.00	$06 \ldots$	0
000				｜													
001	R00																
010						嚧㗊品品								＂			
011							（ivoga品										
100	Ro																
101	ค0																
110						\square											
111	［ ${ }_{\text {mo }}$																

FIGURE 12 －MCM66740 PATTERN

		0000	0001	0010	0011	0100	0101	0110	111	1000	1001	010	1011	1100	1101	1 \％	111
		08.	08	$06 \ldots$	0	\％6．	06	$06 \ldots 00$	$06 \ldots 0$	06	\％ 6	∞	\％	－	${ }_{6}$	${ }^{6}$	0
000					路品品品品						｜				｜㗊㗊㗊品		
901												路路品品					
010																	
011																	
100	R00													＂			
101	－0				路鲾品		－品品品號		80800	＂							踄品品品品
110			｜㗊踄品	谔品品品品						＂		｜					蹋品品品品
＇1＇				｜			踄品品品品		｜ro			㗊品㗊品品｜		㗊器㗊			

FIGURE 13 - MCM66750 PATTERN

$A 8 . A_{A}^{A 3} \cdot A 0$		0000	001	010	011	0100	109	110	0111	1000	1001	010	1011	100	101	110	111
		06	06	0	06	040	00.00	060	01.00	04.00	04.00	04.00	0600	00.00	01.00	000	06
000																	
001	-																
010																	
011																	
100	no																
101																	
110	${ }^{\circ} \mathrm{O}$																
111	$\begin{array}{\|c\|} \hline n_{0} \\ \vdots \\ n_{0} \\ \hline \end{array}$																

MCM66751 - Same as MCM66750 except CS1 $=0, \operatorname{CS} 2=0, C S 3=X$, and $\operatorname{CS4}=X$.
FIGURE 14 - MCM66760 PATTERN

MCM66700 Series

FIGURE 15 - MCM66770 PATTERN

		0000	0001	0010	0011	0100	0101	0110	011	1000	1001	1010	1011	1100	1101	1110	111
		06 \% 00	08	\bigcirc	00.00	06 00	080	0	08	08	06	$0 \times$	06	06	6	06	080
$\infty \times$	N0													\pm			
$\infty 01$	${ }^{20}$													tou...			
10														\pm		4	
${ }^{1}$												$\%$	4		+17*		
100		\square									\square					CW	
101							-										
40							\square	${ }^{12}$			$!$						
"						\pm		4				-					

FIGURE 16 - MCM66780 PATTERN

FIGURE 17 - MCM66790 PATTERN

${ }^{13}$.		0000	0001	0010	0011	0100	0.01	0110	011	1000	1001	1010	1011	1200	1101	1110	111
		0	06	0^{06}	06	06	08	06	0%	06	06	06	06	06	06	0600	06
000																	
${ }^{\infty} 1$			\qquad			\square				\square							
010			E	\square								\|a		-			
011												it	+!				
100								\square	$\frac{1}{6}$								
101							:										
110																	
1"									coc^{2}			-					

MCM66700 Series

			MCM66700 Series Pin Assignment		MCM6570 Series Pin Assignment	
MCM6570 Series	MCM66700 Equivalent	Description	$1-\sqrt{\operatorname{cs} 3}$	RS3 R^{24}	1 $G^{\mathrm{V}_{\mathrm{BB}}}$	RS3 m_{24}
MCM6571	MCM66710	ASCII, shifted	$2 \square^{\circ} \mathrm{cc}$	RS2ص23	$2 \mathrm{~V}^{\prime} \mathrm{cc}$	RS2 p^{23}
MCM6571A	MCM66714	ASCII, shifted	3 cs4	RS 1 ¢ 22	$3 \square^{V_{D O}}$	RS 1 ص 22
MCM6572	MCM66720	ASCll	$4 \square{ }^{46}$	RSOص 21	$4 \square 96$	RSOص21
MCM6573	MCM66730	Japanese	$5 \square 5$	$06{ }^{20}$	5 O 0	060
MCM6573A	MCM66734	Japanese	6 - 03	D4 $0^{\text {¢ }} 19$	$6 \square 03$	04.19
M CM6574	MCM66740	Math Symbols	-1	D2 p^{18}	7 O	$02 \bigcirc 18$
MCM6575	MCM66750	Alphanumeric Control	$8{ }^{8}$	D0ص17	$8 \square{ }^{-1}$	00017
MCM6576	MCM66760	British, shifted	$9 \square 4$	A 16	9 CA	A1ص16
MCM6577	MCM66770	German, shifted	$10 \square \mathrm{cs} 1$	A 015	10 GNC	$A 0 \sqsupseteq 15$
MCM6578	MCM66780	French, shifted	${ }_{11}{ }^{\text {A }} 3$	CS2 ${ }^{14}$	$11 \square A^{3}$	NC. ${ }^{14}$
MCM6579	MCM66790	European, shifted	$12{ }^{\text {A2 }}$	$\mathrm{vSS} \square^{13}$	$12 \square A 2$	$v_{\text {SS }} \mathrm{p}^{13}$

APPLICATIONS INFORMATION

One important application for the MCM66700 series is in CRT display systems (Figure 18). A set of buffer shift registers or random access memories applies a 7 -bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked
serially out to the Z -axis where it modulates the raster to form the character.

The MCM66700 series require one power supply of +5.0 volts. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Sorne power supplies exhibit spikes or glitches on their outputs when the ac power is switched on and off.

FIGURE 18 - CRT DISPLAY APPLICATION USING MCM66710

The formats below are given for your convenience in preparing character information for MCM66700 programming THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

Character Number
MSB

LSB HEX

Character Number

Character Number

Character Number _____ LSB HEX

Character Number

MCM68A30A MCM68B30A

MOS

1024 X 8-BIT READ ONLY MEMORY

The MCM68A30A/MCM68B30A are mask-programmable byteorganized memories designed for use in bus-organized systems. They are fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Four Chip Select Inputs (Programmable)
- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350 \mathrm{~ns}-$ MCM68A30A

$$
250 \mathrm{~ns} \text { - MCM68B30A }
$$

ABSOLUTE MAXIMUM RATINGS (See Note 11

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Volrage	V_{m}	-0.3 to +70	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{stg}	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage mav occur if ABSOLUTE MAXIMUM RATINGS are ex ceeded Functional operation should be restricted to RECOMMENDED OPERAT. ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	Unit
Input High Voltage	$V_{1 H}$	2.0	-	5.5	$V d c$
Input Low Voltage	$V_{I L}$	-0.3		0.8	$V_{d c}$

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(V_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right)$	1 , ${ }^{\text {n }}$	-	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	V_{OH}	2.4	\cdots	-	Vdc
Output Low Voltage $\left.{ }^{1} \mathrm{OL}=16 \mathrm{~mA}\right)$	v_{OL}		-	0.4	Vdc
Output Leakage Current (Three State) $\left(\mathrm{CS}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	${ }^{1} \mathrm{LO}$		\cdots	10	$\mu \mathrm{Adc}$
Supply Current $\left(V_{C C}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	--	.	130	mAdc

CAPACITANCE (f : $1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$, periodically sampled
rather than 100% tested.)

Charaoteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated volt ages to this high-impedance circuit

MCM68A30A, MCM68B30A

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)
(All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	MCM68A30AL		MCM68B30AL		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }}$ cyc	350	-	250	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	350	-	250	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	150	-	125	ns
Data Hold from Address	t DHA	10	-	10	-	ns
Data Hold from Deselection	${ }^{\text {t }} \mathrm{DHD}$	10	150	10	125	ns

FIGURE 1 - AC TEST LOAD

TIMING DIAGRAM

MCM68A30A, MCM68B30A

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A30A/MCM68B30A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A30A/MCM68B30A should be submitted on an Organizational Data form such as that shown in Figure 3. ("No Connect" must always be the highest order Chip Select pin(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (MCM2708, MCM27A08, or MCM68708).
4. Hand punched paper tape (Figure 3).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data				
$\mathbf{0}$	0	0	0	Hexadecimal Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	0
1	1	1	1	E

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows. Step Column
112 Byte "0" Hexadecimal equivatent for outputs D7 thru D4 (D7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs D3 thru DO (D3 = M.S.B.)
3 14.75 Alternate steps 1 and 2 for consecutive bytes.
$4 \quad 77-80 \quad$ Card number (starting 0001)

Blank Tape

Allowed for customer use ($M \leqslant 64$) CR; LF (Carriage Return; Line Feed)
First line of pattern information (64 hex figures per line)
CR; LF
Remaining 31 lines of hex figures, each line followed by a Carriage Return and Line Feed
Blank Tape

- Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alpha. numerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Option A (1024 $\times 8$)
Frame $M+3$ contains the hexadecimal equivalent of
bits D7 thru D4 of byte 0 . Frame $M+4$ contains bits D3 thru D0. These two hex figures together program byte 0 . Likewise, frames $M+5$ and $M+6$ program byte 1 , while $M+7$ and $M+8$ program byte 2. Frames $M+3$ to $M+66$ comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

Option B (2048×4)

Frame $M+3$ contains the hexadecimal equivalent of byte 0 , bits D3 thru DO. Frame $M+4$ contains byte 1 , frame $M+5$ byte 2 , and so on. Frames $M+3$ to $M+66$ sequentially program bytes 0 to 31 (the first 32 bytes). The line is terminated with a CR and LF.

Both Options

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32×64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

As an example, a printout of the punched tape for Figure 13 would read as shown in Figure 10 (a CR and LF is implicit at the end of each line).

FIGURE 4 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

MCM68A308 MCM68B308

MOS

(N-CHANNEL, SILICON-GATE)

1024 X 8-BIT READ ONLY MEMORY

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.5	5.0	5.5	Vdc
Input High Voltage	$V_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	Vdc
DC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
Input Current $\left(\mathrm{V}_{\mathrm{in}}=0 \text { to } 5.5 \mathrm{~V}\right)$	Iin	-		2.5	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	V_{OH}.	2.4		-	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	V_{OL}	-		0.4	Vdc
Output Leakage Current (Three-State) $\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	'LO	-		10	$\mu \mathrm{Adc}$
Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-		130	mAdc

ABSOLUTE MAXIMUM RATINGS (See Note ${ }^{1}$)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	V_{in}	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recom. mended voltages for extended periods of time could affect device reliability.

M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM

MCM68A308, MCM68B308

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	MCM68A308		MCM68B308		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }} \mathrm{yc}$	350	-	250	-	ns
Access Time	tacc	-	350	-	250	ns
Chip Select to Output Delay	${ }^{\text {t }}$ SO	-	150	--	150	ns
Data Hold from Address	${ }^{\text {t }}$ DHA	10	-	10	-	ns
Data Hold from Deselection	${ }^{\text {t }} \mathrm{DHD}$	10	150	10	150	ns

CAPACITANCE
(f $=2.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
figure 1 - ac test load

- Includes Jig Capacitance

TIMING DIAGRAM

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A308/MCM68B308, the customer may specify the content of the memory and the method of enabling the outputs. (A "no-connect" must always be the highest order chip-select(s).)

Information on the general options of the MCM68A308/MCM68B308 should be submitted on an Organizational Data form such as that shown in Figure 4.

Information for customer memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM one MCM68A708 or equivalent.
4. Hand punched paper tape (Figure 3).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data					Hexadecimal Character
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	A	
1	0	1	1	B	
1	1	0	0	C	
1	1	0	1	0	
1	1	1	0	E	
1	1	1	1	F	

IBM PUNCH CARDS
The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column
12 Byte " 0 " Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs Q 3 thru Q 0 (Q3 = M.S.B.)
3 14-75 Alternate steps 1 and 2 for consecutive bytes.
4 77-80 Card number (starting 0001)

FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

Frames

Leader
1 to M
$M+1, M+2$
$M+3$ to $M+66$
$M+67, M+68$
$M+69$ to $M+2112$
Blank Tape
Allowed for customer use ($M \leqslant 64$)
CR; LF (Carriage Return: Line Feed)
First line of pattern information (64 hex figures per line)
CR; LF
Remaining 31 lines of hex figures, each line followed by a Carriage Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin
with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $M+3$ contains the hexadecimal equivalent of bits Q 7 thru Q 4 of byte 0 . Frame $\mathrm{M}+4$ contains bits Q3 thru Q0. These two hex figures together program byte 0 . Likewise, frames $M+5$ and $M+6$ program byte 1 , while $M+7$ and $M+8$ program byte 2 . Frames $M+3$ to $M+66$ comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32×64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

MCM68A308, MCM68B308

FIGURE 4 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

MCM68A316A

2048×8-BIT READ ONLY MEMORY

The MCM68A316A is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of fully static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read-only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for

Simplified Memory Expansion

- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350 \mathrm{~ns}$
- Plug-in Compatible with 2316A

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING. CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM

MOS

(N-CHANNEL, SILICON-GATE)
2048×8-BIT READ ONLY MEMORY

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	Vdc
DC CHARACTERISTICS					
Characteristic	Symbal	Min		Max	Unit
Input Current $\left(V_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right)$	1 in	-		2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(1_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right)$	VOH	2.4		-	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	$\mathrm{V}_{\text {OL }}$	-		0.4	V dc
Output Leakage Current (Three-State) $\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	${ }^{\prime} \mathrm{LO}$	-		10	μ Adc
Supply Current $\left(V_{C C}=5.5 \vee, T_{A}=0^{\circ} \mathrm{C}\right)$	${ }^{\prime} \mathrm{Cc}$	-		130	mAdc

CAPACITANCE

(f $=2.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\mathbf{c y c}}$	350	-	ns
Access Time	$\mathrm{t}_{\mathrm{acc}}$	-	350	ns
Chip Select to Output Delay	t_{SO}	-	150	ns
Data Hold from Address	$\mathrm{t}_{\mathrm{DHA}}$	10	-	ns
Data Hold from Deselection	t_{H}	10	150	ns

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68316A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316A should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (TMS2716 or MCM2716).
4. Hand-punched paper tape.

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 2048 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Oata				
0	0	0	0	Hexadecımal Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	0
1	1	1	1	E

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:
Step Column
112 Byte " 0 ' Hexadecimal equivalent for outputs Q 7 thru 04 (Q7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs Q 3 thru $00(\mathrm{Q} 3=\mathrm{M} . \mathrm{S} . \mathrm{B}$.
3 14-75 Alternate steps 1 and 2 for consecutive bytes.
4 77-80 Card number (starting 0001)
Total number of cards (64)

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
 MCM68A316A MOS READ ONLY MEMORY

Customer:

MCM68A316E

MOS

(NCHANNEL, SILICON-GATE)

2048×8 BIT READ ONLY MEMORY

The MCM68A316E is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refeshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for

Simplified Memory Expansion

- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350$ ns
- Plug-in Compatible with 2316 E
- Pin Compatible with 2708 and MCM2716 EPROMs

PIN ASSIGNMENT

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	Vdc
Input High Voltage	$V_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	VIL	-0.3	-	0.8	Vdc
DC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
Input Current $\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right)$	1 in	-		2.5	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	V_{OH}	2.4		-	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	v_{OL}	-		0.4	Vdc
Output Leakage Current (Three-State) $\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	${ }_{\text {I }}^{\text {LO }}$	-		10	$\mu \mathrm{Adc}$
Supply Current $\left(V_{C C}=5.5 \vee, T_{A}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-		130	mAdc

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

CAPACITANCE

($\mathrm{f}=2.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Input Capacitance •	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM

MCM68A316E

- Includes Jig Capacitance

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.
All timing with $\boldsymbol{t}_{\mathrm{r}}=\mathbf{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\text {cyc }}$	350	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	350	ns
Chip Select to Output Delay	t_{SO}	-	150	ns
Data Hold from Address	$\mathrm{t}^{\text {DHA }}$	10	-	ns
Data Hold from Deselection	t_{H}	10	150	ns

timing diagram

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A316E, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316E should be submitted on an Organizational Data form such as that shown in Figure 3. ("No-Connect" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of three forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (TMS2716 or MCM2716).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 2048 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data				
0	0	0	0	Hexadecimal Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	0
1	1	1	1	E

IBM PUNCH CARDS
The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

112 Byte " 0 " Hexadecimal equivalent for outputs Q 7 thru Q4 (Q7 = M.S.B.)
Byte " 0 " Hexadecimal equivalent for outputs Q3 thru 00 (Q3 = M.S.B.)
Alternate steps 1 and 2 for consecutive bytes.
Card number (starting 0001)
Total number of cards (64)

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

MCM68A332

4096 X 8-BIT READ ONLY MEMORY

The MCM68A332 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer

MOS

(NCHANNEL, SILICON-GATE)

4096 X 8-BIT READ ONLY MEMORY

 Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.- Fully Static Operation
- Three-State Data Output for OR-Ties
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single $\pm 10 \% 5$-Volt Power Supply
- Fully TTL Compatible
- Maximum Access Time $=350$ ns
- Directly Compatible with 4732
- Pin Compatible with 2708 and 2716 EPROMs
- Preprogrammed MCM68A332-2 Available

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage (VCC must be applied at least 100μ s before proper device operation is achieved./	$V_{\text {CC }}$	4.5	5.0	5.5	Vdc
Input High Voltage	$V_{\text {IH }}$	2.0	-	5.5	$\checkmark \mathrm{dc}$
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	$V \mathrm{dc}$
DC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
$\begin{aligned} & \text { Input Current } \\ & \quad\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right) \end{aligned}$	$\mathrm{I}_{\text {in }}$	-		2.5	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Output High Voltage } \\ & \text { (I } \mathrm{OH}=-205 \mu \mathrm{~A}) \end{aligned}$	V^{OH}	2.4		-	Vdc
Output Low Voltage $\left(I_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	VOL	-		0.4	Vdc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \quad\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right. \text {) } \end{aligned}$	'LO	-		10	$\mu \mathrm{Adc}$
Supply Current $\left(V_{C C}=5.5 V, T_{A}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-		80	mAdc

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

CAPACITANCE

($\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}^{\prime}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	5.0	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	9.0	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or elec tric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\text {cyc }}$	350	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	350	ns
Chip Select to Output Delay	$\mathrm{t}^{\mathrm{s} O}$	-	150	ns
Data Hold from Address	$\mathrm{t}^{\mathrm{D}} \mathrm{DA}$	10	-	ns
Data Hold from Deselection	$\mathrm{t}^{\mathrm{H}} \mathrm{H}$	10	150	ns

TIMING DIAGRAM

Waveform Symbol	Input	Output	Waveform Symbol	Input	Output	Waveform Symbol	Input	Output
	must be VALID	WILL be VALID		DON'T CARE ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN		-	HIGH IMPEDANCE

MCM68A332 CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A332, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A332 should be submitted on an Organizational Data form such as that shown in Figure 3. (A "No-Connect" or "Don't Care" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. IBM Punch Cards:
A. Hexadecimal Format
B. Intel Format
C. Binary Negative-Postive Format
2. EPROMs-two 16K (MCM2716 or TMS2716) or four 8K (MCM2708)
3. Paper tape output of the Motorola M6800 software
4. Hand punched paper tape

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 4096 bytes.

IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

Step	Column	
1	12	Byte " 0 " Hexadecimal equivalent for outputs Q7 through Q4 ($\mathrm{Q} 7=\mathrm{M} . S . \mathrm{B}$.)
2	13	Byte " 0 " Hexarecimal equivalent for outputs Q3 through Q 0 ($\mathrm{Q} 3=$ M.S.B.)
3	14-75	Alternate steps 1 and 2 for consecutive bytes.
4	77-79	Card number (starting 001).
5		Total number of cards must equal 128.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data				
0	0	0	0	Hexadecimal Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	D
1	1	1	1	E

PRE-PROGRAMMED MCM68A332P2, MCM68A332C2

The - 2 standard ROM pattern contains sine-lookup and arctanlookup tables.

Locations 0000 through 2001 contain the sine values. The sine's first quadrant is divided into 1000 parts with sine values corresponding to these angles stored in the ROM. Sin $\pi / 2$ is included and is rounded to 0.9999 .

The arctan values contain angles in radians corresponding to the arc tangents of 0 through 1 in steps of 0.001 and are contained in locations 2048 through 4049.

Locations 2002 through 2047 and 4050 through 4095 are zero filled.

All values are represented in absolute decimal format with four digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the two least significant digits in the upper byte. The decimal point is assumed to be to the left of the most significant digit.

Example: $\sin \left(\frac{1}{1000} \frac{\pi}{2}\right)=0.0016$ decimal

Address	Contents	
0002	0000	0000
0003	0001	0110

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA MCM68A332 MOS READ ONLY MEMORY

Customer:
Company \qquad
Part No. \qquad
Originator \qquad
Phone No. \qquad
\qquad

Chip Select Options: Active High

MCM68A364 MCM68B364

Advance Information

8192×8-BIT READ ONLY MEMORY

The MCM68A364/MCM68B364 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Chip Enable input and the memory content is defined by the user. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Fully Static Operation
- Automatic Power Down
- Low Power Dissipation - 150 mW active (typical) 30 mW standby (typical)
- Single $\pm 10 \% 5$-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Chip Enable
- TTL Compatible
- Maximum Access Time - 250 ns - MCM68B364

$$
350 \mathrm{~ns}-\text { MCM68A364 }
$$

- Pin Compatible with 8 K - MCM68A308, 16K - MCM68A316E, and 32 K - MCM68A332 Mask-Programmable ROMs

This is advance information and specifications are subject to change without notice.

mos

(N-CHANNEL, SILICON-GATE)

8192×8-BIT READ ONLY MEMORY

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage ($V_{C C}$ must be applied at least 100μ s before proper device operation is achieved)	V_{CC}	4.5	5.0	5.5	Vdc
Input High Voltage Input Low Voltage	$\begin{aligned} & \mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{\text {IL }} \end{aligned}$	$\begin{gathered} 2.0 \\ -0.3 \end{gathered}$	-	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(\mathrm{V}_{\mathrm{in}}=0 \text { to } 5.5 \mathrm{~V}\right)$	I_{in}	. -	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(1 \mathrm{OH}^{2}=-205 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=3.2 \mathrm{~mA})$	VOL	-	-	0.4	Vdc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \left(\overline{\mathrm{E}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right) \end{aligned}$	ILO	-	-	10	μ Adc
$\begin{aligned} & \text { Supply Current - Active } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{\text {I CC }}$	-	30	60	mAdc
Supply Current - Standby $\left(V_{C C}=5.5 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}, \bar{E}=V_{\|H\|}\right)$	'SB	-	6.0	15	mAdc

CAPACITANCE

($f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range -	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range -	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MCM68A364/MCM68B364

AC OPERATING CONDITIONS AND CHARACTERISTICS
 Read Cycle

RECOMMENDED AC OPERATING CONDITIONS
($T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%$. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, load of Figure 1.)

Parameter	Symbol	MCM68B364		MCM68A364		Unit
		Min	Max	Min	Max	
Address Valid to Address Don't Care (Cycle Time when Chip Enable is held Active)	${ }^{t} A V A X$	250	-	350	-	ns
Chip Enable Low to Chip Enable High	teLEH	250	-	350	-	ns
Address Valid to Output Valid (Access)	tAVQV	-	250	-	350	ns
Chip Enable Low to Output Valid (Access)	telov	-	250	-	350	ns
Address Valid to Output Invalid	tavox	10	-	10	-	ns
Chip Enable Low to Output Invalid	${ }^{\text {telox }}$	10	-	10	--	ns
Chip Enable High to Output High Z	${ }^{\text {t E H }}$ (PQZ	0	70	0	80	ns
Chip Selection to Power Up Time	tpu	0	-	0	-	ns
Chip Deselection to Power Down Time	tPD	-	100	-	120	ns
Address Valid to Chip Enable Low (Address Setup)	${ }^{\text {t }}$ AVEL	0	-	0	-	ns

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined -
transition direction for first signal
signal name to which interval is defined
transition direction for second signal
The transition definitions used in this data sheet are:
$H=$ transition to high
$\mathrm{L}=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

FIGURE 1 - AC TEST LOAD

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A364/MCM68B364, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A364/MCM68B364 should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. IBM Punch Cards
A. Hexadecimal Format
B. INTEL Hexadecimal Format
C. Binary Negative-Positive Format
2. EPROMs - four 16K (MCM2716, or TMS2716, or eight 8K (MCM2708).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 8,192 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data				
	0	0	Hexadecimal Character	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	0
1	1	1	0	E
1	1	1	1	F

IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

Step	Column	
1	12	Byte " 0 " Hexadecimal equivalent for outputs Q7 through Q 4 ($\mathrm{O} 7=$ M.S.B.)
2	13	Byte " 0 " Hexadecimal equivalent for outputs O 3 through $\mathrm{Q} 0(\mathrm{O} 3=$ M.S.B.)
3	14-75	Alternate steps 1 and 2 for consecutive bytes
4	77-79	Card number (starting 001)
5		Total number of cards must equal 256

MCM68A364/MCM68B364 MOS READ ONLY MEMORY
Customer:

	Motorola Use Only:
Company	
	Quote:
Part No.	
	Part No.: ___
Originator ___	
	Specif. No.:

Enable Options:

Chip Enable

MCM68A364/MCM68B364

PRE-PROGRANMED MCM68A364P3/C3, MCM68B364P3/C3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64 K ROM.
Locations 0000 through 3599 contain log base 10 values. The arguments for the \log table range from 1.00 through 9.99 incrementing in steps of $1 / 100$. Each log value is represented by an eight- digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from .000 through .999 incrementing in steps of $1 / 1000$. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.
All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consequitive locations.

Example: $\quad \log _{10}(1.01)=.00432137$ decimal		
	Address	Contents
4	0000	0000
	5	0100
	6	0011
	7	0011
	0111	

CMOS Memories RAM, ROM

64-BIT STATIC RANDOM ACCESS MEMORY

The MCM14505 64-bit random access memory is fully decoded on the chip and organized as 64 one-bit words (64×1). Medium speed operation and micropower supply requirements make this device useful for scratch pad or buffer memory applications where power must be conserved or where battery operation is required.

When used with a battery backup, the MCM14505 can be utilized as an alterable read-only memory, allowing the battery to retain information in the memory when the system is powered down, and allowing the battery to charge when power is applied. The micropower requirements of this memory allow quiescent battery operation for great lengths of time without significant discharging.

- Quiescent Current $=50 \mathrm{nA} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of VDD typical
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Single Read/Write Control Line
- Wired-OR Output Capability (3-State Output) for Memory Expansion
- Access Time $=180$ ns typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$
- Write Cycle Time $=275$ ns typical at $V_{D D}=10 \mathrm{Vdc}$
- Fully Buffered Low Capacitance Inputs
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

MAXIMUM RATINGS (Voltages referenced to $V_{S S}$)

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {DD }}$	-0.5 to +18	Vdc
Input Voltage, All Inputs	$V_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range - AL Device CL/CP Device	$\mathrm{T}_{\text {A }}$	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leqslant\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leqslant V_{D D}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$.

MCM14505

CMOS LSI

(LOW.POWER COMPLEMENTARY MOS)

64-BIT (64×1) STATIC RANDOM ACCESS MEMORY

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$\begin{aligned} & V_{\mathrm{DD}} \\ & \mathrm{Vdc}^{2} \end{aligned}$	Tlow*					Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage " 0 " Level $V_{\text {in }} V_{D D}$ or 0 $V_{\text {in }} 0$ or $V_{D D}$ " 1 " Level	V_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$-$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{gathered} 0.05 \\ 0.05 \\ 0.05 \end{gathered}$	V dc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	-	$\begin{array}{r} 4.95, \\ 9.95 \\ 14.95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	Vdc
$\begin{gathered} \text { Noise Immunity }{ }^{\#} \\ \left(\because V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ \left(\because V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\wedge V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \\ \left(\therefore V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ \left(\because V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\therefore V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{gathered}$	V_{NL}	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.25 \\ 4.50 \\ 6.75 \\ \hline \end{array}$	-	$\begin{aligned} & 1.4 \\ & 2.9 \\ & 4.4 \\ & \hline \end{aligned}$	-	Vdc
	V_{NH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.9 \\ & 4.4 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	-	Vdc
$\begin{array}{rlr} \hline \text { Output Drive Current } & \text { (AL Device) } \\ \left(\mathrm{V}_{\mathrm{OH}}\right. & =2.5 \mathrm{Vdc}) & \text { Source } \\ \left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \\ \hline \end{array}$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	- - - -	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.5 \\ & \hline \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	mAdc
	${ }^{\prime} \mathrm{OL}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.3 \\ & 0.9 \\ & 2.2 \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.25 \\ 0.75 \\ 1.7 \\ \hline \end{gathered}$	$\begin{gathered} 0.35 \\ 1.2 \\ 4.5 \\ \hline \end{gathered}$	-	$\begin{gathered} 0.18 \\ 0.50 \\ 1.2 \\ \hline \end{gathered}$	--	mAdc
$\begin{array}{ll} \hline \text { Output Drive Current }(\mathrm{CL} / \mathrm{CP} \text { Device) } \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \\ \hline \end{array}$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.4 \end{aligned}$	- - - -	$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \\ \hline \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	- - - -	$\begin{gathered} -0.6 \\ -0.12 \\ -0.3 \\ -1.0 \\ \hline \end{gathered}$	-	mAdc
	${ }^{\prime} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.2 \\ & 0.6 \\ & 3.9 \\ & \hline \end{aligned}$	--	$\begin{gathered} \hline 0.15 \\ 0.5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{gathered} 0.35 \\ 1.2 \\ 4.5 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.6 \\ & \hline \end{aligned}$	-	mAdc
Input Current (AL Device)	1 in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Current (CL/CP Device)	1 in	15	-	± 1.0	-	± 0.00001	± 1.0	-	± 14	$\mu \mathrm{Adc}$
Input Capacitance $\left(v_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	--		-	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package)	${ }^{1} \mathrm{DD}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current (CL/CP Device) (Per Package)	'DD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} \hline 50 \\ 100 \\ 200 \\ \hline \end{gathered}$		$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$		$\begin{gathered} 375 \\ 750 \\ 1500 \\ \hline \end{gathered}$	μ Adc
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} T$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & I_{T}=11 \\ & I_{T}=12 \\ & I_{T}=13 \end{aligned}$	$\begin{aligned} & 28 \mu \mathrm{~A} / \mathrm{kHz} \\ & .56 \mu \mathrm{~A} / \mathrm{kHz} \\ & .85 \mu \mathrm{~A} / \mathrm{kHz} \end{aligned}$	$\begin{aligned} & f+1 D \\ & f+I D l \\ & f+I D l \end{aligned}$			$\mu \mathrm{Adc}$
Three-State Leakage Current (AL Device)	ITL	15	--	± 0.1	-	$\cdot 0.00001$	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$
Three-State Leakage Current (GL/GP Device)	${ }^{\prime} \mathrm{TL}$	15	-	± 1.0	-	*0.00001	± 1.0	-	± 7.5	$\mu \mathrm{Adc}$

${ }^{*} T_{\text {low }}=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
Thigh $=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device
\#Noise immunity specified for worst-case input combination.
tTo calculate total supply current at loads other than 50 pF :
$I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+1 \times 10^{-3}\left(C_{L}-50\right) V_{D D^{f}}$
where: I_{T} is in μA (per package), C_{L} in $\mathrm{pF}, V_{D D}$ in $V d c$, and f in kHz is input frequency.
**The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* ($C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$V_{\text {DD }}$	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & { }^{\mathrm{t} T L H}=(2.43 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+58.5 \mathrm{~ns} \\ & \mathrm{t} \mathrm{~T} L H=(1.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+36 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.72 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+39 \mathrm{~ns} \end{aligned}$	${ }^{\text {t }}$ L H	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 180 \\ 90 \\ 75 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 150 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(2.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+52 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.96 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+32 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.69 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \end{aligned}$	${ }^{\text {t }} \mathrm{HL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \\ & 65 \end{aligned}$	$\begin{aligned} & 320 \\ & 160 \\ & 130 \end{aligned}$	ns
Propagation Delay Time Read Access Time $\begin{aligned} & \mathrm{t}_{\mathrm{acc}}(R)=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+385 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}(R)=(10.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+175 \mathrm{~ns} \\ & \mathrm{tacc}_{\mathrm{acc}}(R)=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+105 \mathrm{~ns} \end{aligned}$	tacc (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 455 \\ & 210 \\ & 130 \end{aligned}$	$\begin{aligned} & 750 \\ & 400 \\ & 300 \end{aligned}$	ns
Strobe Down Time	${ }^{\text {twL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 125 \\ & 95 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 75 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
Address Setup Time	$t_{s u}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \\ & 90 \end{aligned}$	$\begin{aligned} & -100 \\ & -40 \\ & -25 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Setup Time	${ }_{\text {tsu }}(\mathrm{D})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 75 \\ 55 \end{gathered}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Setup Time	${ }^{\text {tsu }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 270 \\ 60 \\ 45 \end{gathered}$	$\begin{aligned} & 90 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Setup Time	$\mathrm{t}_{\text {su }}(\mathrm{W})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 400 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & 80 \\ & 25 \\ & 11 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Address Release Time	$\mathrm{t}_{\text {rel }}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 75 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 5.0 \end{aligned}$	- - -	ns
Data Hold Time	th(D)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Release Time	$\mathrm{trel}^{\text {re }}$ ($\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -90 \\ & -25 \\ & -10 \end{aligned}$	-	ns
Write Release Time	$\mathrm{t}_{\text {rel }}(\mathrm{W})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 30 \end{aligned}$	-	ns
Read Cycle Time	${ }_{\text {teyc }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 750 \\ & 400 \\ & 300 \end{aligned}$	ns
Write Cycle Time	${ }_{\text {teyc }}(W)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 440 \\ & 275 \\ & 200 \end{aligned}$	$\begin{aligned} & 700 \\ & 550 \\ & 415 \end{aligned}$	ns
Output Disable Delay (10\% Output Change into $1.0 \mathrm{k} \Omega$ Load)	$t_{\text {dis }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	ns

[^16]
MCM14505

FIGURE 1 - READ CYCLE TIMING DIAGRAM

FIGURE 2 - WRITE CYCLE TIMING DIAGRAM

FIGURE 3 - MAXIMUM STROBE PULSE WIDTH versus TEMPERATURE

FIGURE 4 - TYPICAL READ ACCESS TIME versus LOAD CAPACITANCE

FIGURE 6 - TYPICAL OUTPUT SINK CAPABILITY versus TEMPERATURE

OPERATING CHARACTERISTICS

In considering the operation of the MCM 14505 CMOS memory, refer to the functional circuit diagram of Figure 7 and timing diagrams shown in Figures 1 and 2. The basic memory cell is a cross-coupled flip-flop consisting of two inverter gates and two P-channel devices for read/write control. The push-pull cell provides high speed as well as low power.

During a read cycle, when the strobe line is high the write selection drivers are disabled and the data from the selected row is available on columns $1 \mathrm{~b}, 2 \mathrm{~b}, 3 \mathrm{~b}$, and 4 b . The A 4 and A5 address bits are decoded to select output data from one of the four columns. The output data is available on the data output pin only when the strobe and read/write lines are high simultaneously and after the read access time, $\mathrm{t}_{\mathrm{acc}}(\mathrm{R}$), has occurred (see Figure 1). Note that the output is initially disabled and always goes to the logic " 0 " state (low voltage) before data is valid. The output is in the highimpedance state (disabled) when the strobe tine or the R/W line is in the low state. The memory is strobed for reading or writing only when the strobe, CE1, and CE2 are high simultaneously. The R/W line can be a dc voltage during a read or write cycle and need not be pulsed, as shown in the timing diagrams. For this case the R/W line should be a logic " 1 " (high) for reading and a logic " 0 " for writing.

When the strobe line is high, the column read/write inhibit gates and the row decoder inhibit gates are disabled, the selected
row is in the low state, and the unselected 15 rows retain their logic " 1 " level due to the row capacitance that exists when the row decoder inhibit gates are disabled. This capacitive storage mechanism requires a maximum strobe width (see Figure 3) equal to the junction reverse bias RC time constant. When the strobe is returned to a logic " 0 " the rows are forced to $V_{D D}$ by the row decoder inhibit gates (pullup devices). Similarly the column read/write inhibit gates (pulldown devices) force the column lines to a logic " 0 " state.

Two column lines are associated with each memory cell in order to write into the cell. The write selection drivers are enabled when the R/W line is a logic " 0 " and the strobe line is a logic " 1 ". The input data is written into the column selected by the column decoder. For instance, if a " 1 " is to be written in the memory cell associated with row 1 and column 1 , then row 1 would be enabled (logic " 0 ") while column 1b is forced high and column 1a is forced low by the write selection drivers. If a logic " 0 " is to be written into the cell, then column 1a is forced high and 1 b is forced low. The data that is retained in the memory cell is the data that was present on the data input pin at the moment the strobe goes low when R / W is low, or when R / W goes high when the strobe is high.

APPLICATIONS INFORMATION

Figure 8 shows a 256 -word by n-bit static RAM memory system The outputs of four MCM14505 devices are tied together to form 256 words by 1 bit. Additional bits are attained by paralleling the inputs in groups of four. Memories of larger words can be attained by decoding the most significant bits of the address and ANDing them with the strobe input.

Fan-in and fan-out of the memory is limited only by speed requirements. The extremely low input and output leakage current (100 nA maximum) keep the output voltage levels from changing significantly as more outputs are tied together. With the output levels independent of fan-out, most of the power supply range is available as logic swing, regardless of the number of units wired together. As a result, high noise immunity is maintained under all conditions.

Power dissipation is $0.1 \mu \mathrm{~W}$ per bit at a $1.0-\mathrm{kHz}$ rate for a 5.0 -volt power supply, while the static power dissipation is 2.0 nW per bit. This low power allows non-volatile information storage when the memory is powered by a small standby battery.

Figure 9 shows an optional standby power supply circuit for making a CMOS memory "non-volatile". When the usual power fails, a battery is used to sustain operation or maintain stored information. While normal power supply voltage is present, the battery is trickle-charged through a resistor which sets the charging rate. V_{B} is the sustaining voltage, and V^{+}is the ordinary voltage from a power supply. $V_{D D}$ connects to the power pin on the memory. Low-leakage diodes are recommended to conserve battery power.

The memory system shown in Figure 8 can be interfaced directly with the other devices in the McMOS family. No external components are required.

At the inputs to the CMOS memory, TTL devices can interface directly if an open-collector logic gate such as the MC7407 is used as shown in Figure 10. Driver circuits are not required since the input capacitance is low (4.0 to 6.0 pF). The address, data, and read/write inputs do not need to be fast since they can be changed for the duration when the strobe pulse is low, $\mathrm{I}_{\mathrm{STL}}$ (see Figures 1 and 2). For high-speed operation, a push-pull driver should be used if more than five strobe inputs must be driven at one time. One circuit of the type shown in Figure 10 can be used for every ten strobe inputs.

Figures 11, 12, and 13 show methods of interfacing the memory output to TTL logic at various memory voltages. If a $V_{D D}$ of 5.0 volts is used for slow-speed, low-power applications, one transistor and one resistor must be used (Figure 11). The MCM14505AL will drive one low-power TTL gate directly.

If a $V_{D D}$ of 10 volts is used, the output of the memory device can fan out to two low-power TTL gates (Figure 12a) or to a discrete transistor (Figure 12b). The discrete transistor circuit provides higher speed and/or high fan-out. A pulldown resistor at the base of the transistor is not needed for fast turn-off because of the push-pull output of the memory. Turn-on time of the transistor is much faster in Figure 12 b since the voltage rise is only 0.75 voit. The low output capacitance of the MCM 14505 means that several outputs can be wire-ORed without significantly degrading performance. The read access time is increased by only 20 ns typically for 16 outputs tied together when Figure 12 b is used.

Five low-power TTL. gates can be driven from the memory output if a $V_{D D}$ of 15 volts is used (Figure 13a). Figure 13b shows the interface if a discrete transistor is used. The 1.0 kilohm resistor in the base is required to insure that not more than 10 mA flows through the output as listed in the maximum ratings. If a 2.0 kilohm collector resistor is used (fan-out $=3$), the turn-on time of the transistor is only slightly faster than in the circuit shown in Figure 12b due to the lower output impedance when $V_{D D}=15$ volts. The voltage at the memory data output has to rise to only 1.3 volts to insure driving a fan-out of three TTL devices.

If a 510 -ohm collector resistor is used, 20 TTL loads may be driven. The read access time is increased about 20 ns when four memory outputs are tied together since the output voltage must rise to 3.7 volts before the transistor can sink the full IOL for a fan-out of 20 TTL devices. Almost any NPN transistor with a minimum beta of 15 can be used for the interface shown in Figures 11, 12 and 13.

The high source current from the push-pull output stage of the MCM14505 makes for a simpler interface circuit since a low source current memory requires a differential comparator to achieve highspeed operation.

FIGURE 8 - CMOS 256-WORD BY n-BIT STATIC READ/WRITE MEMORY

FIGURE 12 - CMOS-TO-TTL INTERFACE
FOR $V_{D D}=10 \mathrm{~V}$

FIGURE 13 - CMOS-TO-TTL INTERFACE

256-BIT STATIC RANDOM ACCESS MEMORY

The MCM14537 is a static random access memory (RAM) organized in a 256×1-bit pattern and constructed with MOS P-channel and N -channel enhancement mode devices in a single monolithic structure. The circuit consists of eight address inputs (A_{n}), one data input (D_{in}), one write enable input (WE), one strobe input (ST), two chip enable inputs ($C E_{n}$), and one data output ($D_{\text {out }}$).

Using both chip enable inputs as extensions of the address inputs, a 10 -bit address scheme may be employed. Four MCM 14537 devices may be used to comprise a 1024 -bit memory without additional address decoding. The CE and ST inputs are dissimilary designed to enable usage of the memory in a variety of applications. An output latch is provided on the chip for storing the data read or written into memory, making a data-out storage register unnecessary. The CE inputs control the data output for third-state (high output impedance) or active operation which makes the memory very useful in a bus oriented system. When CE2 is high the chip is fully disabled. When CE1 is high the output is in the third state but data can be written into the output latch during a read cycle. This enables the use of the memory for fast reading by using the CE 1 input to enable the latch. The memory is also designed so that dc signats can operate the memory with no maximum pulse width required on the $C E$ and ST lines.

Medium speed operation and micropower operation make the device useful in scratch pad and buffer applications where micropower or battery operation and high noise immunity are required.

- Quiescent Current $=0.5 \mu \mathrm{~A} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time $=700$ ns typical @ $V_{D D}=10 \mathrm{Vdc}$
- Fully Decoded and Buffered
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

MAXIMUM RATINGS (Vottages referenced to $V_{S S}$)

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {DD }}$	-0.5 to +18	Vdc
Input Voltage, All Inputs	$V_{\text {in }}$	-0.5 to $V_{D D}+0.5$	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range - AL Device CL/CP Device	$\mathrm{T}_{\text {A }}$	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

256-BIT (256×1) STATIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leqslant\left(\mathrm{V}_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leqslant V_{D D}$
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $\left.V_{D D}\right)$

MCM14537

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{D D}$ Vde	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
\qquad	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.05 \\ 0.05 \\ 0.05 \\ \hline \end{gathered}$	Vdc
"1" Level $v_{\text {in }} \quad 0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	-	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	-	Vdc
Noise Immunity \# $\left(\therefore \mathrm{V}_{\text {out }} \approx 0.8 \mathrm{Vdc}\right)$ $\left(\because V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right)$ ($1 V_{\text {out }} * 1.5 \mathrm{Vdc}$)	V_{NL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.25 \\ 4.50 \\ 6.75 \\ \hline \end{array}$	-	$\begin{aligned} & 1.4 \\ & 2.9 \\ & 4.4 \\ & \hline \end{aligned}$	$-$	Vdc
$\begin{aligned} & \left(\because \mathrm{V}_{\text {out }} \leqslant 0.8 \mathrm{~V} \mathrm{dc}\right) \\ & \left(\because \mathrm{V}_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{aligned}$	V_{NH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.9 \\ & 4.4 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	--	$\begin{array}{r} 1.5 \\ 3.0 \\ 4.5 \\ \hline \end{array}$	-	Vdc
Output Drive Current (AL Device) $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \\ \hline \end{gathered}$	- - - -	$\begin{array}{r} -1.0 \\ -0.2 \\ -0.5 \\ -1.5 \\ \hline \end{array}$	$\begin{aligned} & -1.7 \\ & -0.36 \\ & -0.9 \\ & -3.5 \\ & \hline \end{aligned}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \quad \text { Sink } \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\prime} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	mAdc
$\begin{array}{\|ll} \hline \text { Output Drive Current }(C L / C P \text { Device }) \\ \left(\mathrm{VOH}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ (\mathrm{VOH}=4.6 \mathrm{Vdc}) \\ \left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) \\ \left(\mathrm{VOH}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{1} \mathrm{OH}$	$\begin{gathered} 5.0 \\ 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{array}{r} -1.0 \\ -0.2 \\ -0.5 \\ -1.4 \\ \hline \end{array}$	- - - -	$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \\ \hline \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	-	$\begin{gathered} -0.6 \\ -0.12 \\ -0.3 \\ -1.0 \\ \hline \end{gathered}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \\ \hline \end{array}$	${ }^{\prime} \mathrm{OL}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	mAdc
Input Current (AL Device)	1 in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Current (CL/CP Device)	$\mathrm{I}_{\text {in }}$	15	-	± 1.0	\square	± 0.00001	± 1.0	-	± 14	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$c_{\text {in }}$	-		-	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package)	'DD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 200 \\ & 400 \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 400 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1800 \\ & 3600 \\ & 7200 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current (CL/CP Device) (Per Package)	${ }^{\prime} \mathrm{DO}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 100 \\ & 200 \\ & 400 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1800 \\ & 3600 \\ & 7200 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current * \dagger (Dynamic plus Quiescent. Per Package) ($C_{L}-50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & I_{T}=(1.46 \mu \mathrm{~A} / \mathrm{kHz}) f+I_{D D} \\ & I_{T}=(2.91 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(4.37 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$
Three-State Leakage Current (AL Device)	${ }^{\prime} \mathrm{TL}$	15	*	± 0.1	-	:0.00001	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$
Three-State Leakage Current (CL/CP Device)	$I_{\text {TL }}$	15	-	± 1.0	-	+0.00001	± 1.0	-	± 7.5	$\mu \mathrm{Adc}$

${ }^{-} T_{\text {low }}=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
${ }^{2}$ Noise immunity specified for worst-case input combination
Noise Margin for both " 1 " and " 0 " level $=1.0 \mathrm{Vdc} \min @ V_{D D}=5.0 \mathrm{Vdc}$

$$
\begin{aligned}
& 2.0 \mathrm{Vdc} \min @ V_{D D}=10 \mathrm{Vdc} \\
& 2.5 \mathrm{Vdc} \min @ V_{D D}=15 \mathrm{Vdc}
\end{aligned}
$$

tTo calculate total supply current at loads other than 50 pF
$I_{T}\left(C_{L}\right)=I T(50 \mathrm{pF})+1 \times 10^{-3}\left(C_{L}-50\right) V_{D D^{f}}$
where: I_{T} is in μA (per package), C_{L} in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in Vdc , and f in KHz is input frequency.
**The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* (C $\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	$V_{\text {DD }}$	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \text { tTLH }=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \text { t } T L H=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \text { t } T \mathrm{LH}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	3	tTLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 180 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \text { t THL }=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \text { tTHL }=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	3	${ }^{\text {t }} \mathrm{HL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { Read Access Time from ST or CE2 } \\ & \mathrm{t}_{\text {acc }}=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2480 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+690 \mathrm{~ns} \\ & \mathrm{t}_{\text {ace }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+393 \mathrm{~ns} \end{aligned}$	4.5	tacc (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & 115 \end{aligned}$	$\begin{gathered} 2500 \\ 700 \\ 400 \\ \hline \end{gathered}$	$\begin{aligned} & 6000 \\ & 2000 \\ & 1500 \end{aligned}$	ns
Output Enable Delay from CE1 or CE2	5,6	$\mathrm{tacc}\left(\overline{\mathrm{CE}}_{\mathrm{n}}\right)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	ns
Setup Time from A_{n} to $\overline{S T}$ or $\overline{\mathrm{CE}} 2$	4, 5, 6, 7	$\mathrm{t}_{\text {su }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1800 \\ 600 \\ 450 \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 140 \end{aligned}$	-	ns
Hold Time from A_{n} to $\overline{\mathrm{ST}}$ or $\overline{\mathrm{CE}} 2$	4, 5, 6, 7	$t_{\text {h }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Hold Time	7	$t_{\text {H }}(\mathrm{D})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 1400 \\ 500 \\ 375 \\ \hline \end{gathered}$	$\begin{aligned} & 480 \\ & 160 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Setup Time	7	$\mathrm{t}_{\text {su }}$ (D)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3600 \\ & 1800 \\ & 1350 \\ & \hline \end{aligned}$	$\begin{array}{r} 1200 \\ 600 \\ 420 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Enable Hold Time	7	$\operatorname{th}(\overline{W E})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 150 \\ 60 \\ 45 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \end{aligned}$	-	ns
Write Enable Setup Time	7	${ }^{\text {s }}$ (${ }_{\text {(}}$ (EE)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	-	ns
Write Enable to Dout Disable**	4	twE	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Strobe or CE2 Pulse Width When Reading	4, 5, 6	${ }^{t}$ WL(R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 1350 \\ 450 \\ 340 \\ \hline \end{gathered}$	$\begin{aligned} & 450 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$	-	ns
$\overline{\text { Strobe, }} \overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ Pulse Width When Writing	7	${ }^{\text {tw }}$ L(W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 2400 \\ 1260 \\ 945 \\ \hline \end{gathered}$	$\begin{gathered} 1200 \\ 600 \\ 420 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Recovery Time $\begin{aligned} & \mathrm{t}_{\mathrm{W}}=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+219 \mathrm{~ns} \\ & \mathrm{t} W=(0.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+70 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{W}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47.5 \mathrm{~ns} \end{aligned}$	4	${ }^{\text {R }}$ ((W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 70 \\ 25 \\ 20 \\ \hline \end{array}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
CE1 or CE2 to Dout Disable Delay**	6	, ${ }^{\mathbf{C}} \overline{\mathrm{CE}}_{\mathrm{n}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	ns
Read Setup Time	4, 5	${ }^{\text {tsu }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -100 \\ -40 \\ -30 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Hold Time	4, 5	$t_{\text {L }}(\mathrm{R})$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 180 \\ 60 \\ 45 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Cycle Time	4,5	${ }^{\text {teyc (R) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 700 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 6000 \\ & 2100 \\ & 1575 \\ & \hline \end{aligned}$	ns
Write Cycle Time	7	${ }_{\text {teyc }}$ (W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & -1 \\ & - \end{aligned}$	$\begin{gathered} 1400 \\ 700 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & 4800 \\ & 2100 \\ & 1575 \\ & \hline \end{aligned}$	ns

The formula given is for the typical characteristics only.
${ }^{* *} 10 \%$ output change into a $1.0 \mathrm{k} \Omega$ load.

MCM14537

FIGURE 4 - READ CYCLE WAVEFORMS UTILIZING STROBE-TO-ACCESS MEMORY

FIGURE 5-READ CYCLE WAVEFORMS UTILIZING CE2 FOR ACCESS MEMORY

FIGURE 6 - READ CYCLE WAVEFORMS UTILIZING $\overline{C E 1}$ AND $\overline{\text { CE2 }}$ TO ACCESS MEMORY

FIGURE 7 - WRITE CYCLE WAVEFORMS

LOGIC/BLOCK DIAGRAM

FUNCTION	$\overline{C E 1}$	$\overline{C E 2}$	$\overline{\text { ST }}$	WE	$\mathrm{D}_{\text {in }}$	Dout	COMMENTS
Address changing valid	\times	\times	1	\times	\times	R/A	$D_{\text {Out }}$ will be active if $\overline{\text { CE1 }}$ and $\overline{C E} 2=$ " 0 " and $\bar{W} E=" 1$ ".
	\times	1	\times	\times	\times	R	$\overline{C E 2}=" 1 "$, fulty disables internal logic and output.
Address changing not valid	\times	0	0	\times	X	R/A	Changing address in this mode may result in altered data.
Dout disabled in high resistance state	1	\times	x	\times	x	R	$\overline{\mathrm{CE}}={ }^{\prime} 1$ " disables write cycle and Dout.
	\times	1	\times	\times	\times	R	The chip is fully disabled.
	\times	x	\times	0	X	R	$\overline{W E}=$ " 0 " enables writing into memory if CE1, $\overline{\mathrm{CE}}$, and $\overline{S T}=" 0$ ".
Dout enabled in active state	0	0	x	1	x	A	If $\overline{\mathrm{ST}}=$ " 1 ", the output stores and reads the previous data from or written into memory.
Read addressed memory location into output latch.	0	0	0	1	X	A	The output reads the present contents that are addressed.
	1	0	0	1	-	-	The addressed location is read into output lateh with output in the "R" state.
Disable reading from memory	x	1	\times	x	\times	R	Address changing can take place in this condition.
	\times	\times	1	\times	\times	R/A	
Write into memory	0	0	0	0	A	R	$\mathrm{D}_{\text {in }}$ is written into memory and into the output latch
Write disabled	1 \times \times \times \times	\times \times \times \times \times	 \times \times \times \times \times	\times \times \times \times 1	\times \times \times \times \times \times	$\begin{gathered} R \\ R \\ R / A \\ R / A \end{gathered}$	$\overline{W E}=$ " 1 " is a read enable. $\overline{W E}=$ " 0 " is a write enable.

$R=$ High resistance state at Dout
$A=A n$ active level of either $V_{S S}$ or $V_{D D}$
$R / A=A n R$ or A condition depending on the don't care condition
$X=$ Don't care condition \{must be in the " 1 " or " 0 " state)
$1=A$ high level at $V_{D D}$
$0=A$ low level at $V_{S S}$

TYPICAL APPLICATION FOR SERIAL WORDS UTILIZING BUS TECHNIQUES

256-BIT STATIC RANDOM ACCESS MEMORY

The MCM14552 is a static random access memory (RAM) organized in a 64×4 bit pattern. The three chip enable inputs can be used as extensions of the six address inputs, creating 9 -bit address scheme. Eight MCM 14552 devices may be used to comprise a 2048 -bit memory (512×4) without additional address decoding.

The mode control (M) is used to change the control logic characteristic of the circuit. For example, with M high, the 3 -state input (T) fully controls the 3 -state characteristic of the output. With M low, the output 3 -state characteristic is controlled by chip enable inputs (CE), write enable input (WE) and T.

The memory is designed so that do signals may operate the memory, with no maximum pulse width restrictions.

Medium speed, micropower operation, and control flexibility make the device useful in scratch pad or buffer applications where battery operation or high noise immunity are required.

- Quiescent Current $=50 \mu \mathrm{~A} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time $=700$ ns typical @ $V_{D D}=10 \mathrm{Vdc}$
- Fully Decoded and Buffered
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

CMOS LSI

(LOWPOWER COMPLEMENTARY MOS)

256-BIT (64×4) STATIC RANDOM ACCESS MEMORY

L SUFFIX
CERAMIC PACKAGE
CASE 623

P SUFFIX
PLASTIC PACKAGE
CASE 709
ORDERING INFORMATION

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leqslant\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leqslant V_{D D}$
Unused inputs must always be tied to an appropriate logic voltage level fe.g., either V_{SS} or V_{DD}.

MAXIMUM RATINGS (Voltages referenced to $\mathrm{V}_{\text {SS }}$)

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{D D}$	-0.5 to +18	Vdc
Input Voltage, All Inputs	$V_{\text {in }}$	-0.5 to $V_{D D}+0.5$	$V_{d c}$
DC Current Drain per Pin	I	10	mAdc
Operating Temperature Range - AL Device	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
	$\mathrm{CL/CP}$ Device		-40 to +85
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	Tlow*					Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
$\begin{array}{\|cc} \hline \text { Output Voltage } \\ V_{\text {in }} V_{D D} \text { or } 0 & " 0 " \text { Level } \\ & \\ V_{\text {in }} 0 \text { or } V_{D D} & " 1 " \text { Level } \end{array}$	V_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	---	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	--	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	--	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	V dc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	--	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	--	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input $\mathrm{Voltage}{ }^{7 \prime}$ $" 0 "$ Level $\left(\mathrm{V}_{\mathrm{O}} 4.5\right.$ or 0.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}} 9.0\right.$ or 1.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}: 0.5\right.$ or 4.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=1.0\right.$ or 9.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}: 1.5\right.$ or 13.5 Vdc$)$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	\cdots	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	\cdots	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.5 \\ 3.0 \\ 4.0 \\ \hline \end{array}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	Vdc
	$\mathrm{V}_{1} \mathrm{H}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{array}$	- - - -	3.5 7.0 11.0	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{array}$	-	Vdc
Output Drive Current (AL Device) $(\mathrm{VOH}=2.5 \mathrm{Vdc})$ Source $(\mathrm{VOH}=4.6 \mathrm{Vdc})$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $(\mathrm{VOH}=13.5 \mathrm{Vdc})$ $(\mathrm{VOL}=0.4 \mathrm{Vdc})$ Sink $(\mathrm{VOL}=0.5 \mathrm{Vdc})$ $(\mathrm{VOL}=1.5 \mathrm{Vdc})$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	-	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.5 \\ & \hline \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \\ \hline \end{gathered}$	-	mAdc
	'OL	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	mAdc
$\begin{array}{cc} \hline \text { Output Drive Current }(C L / C P \text { Device) } \\ \left(\mathrm{V}_{\mathrm{OH}} 2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOH}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOL}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \\ \hline \end{array}$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.4 \end{aligned}$	-	$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \end{gathered}$	$\begin{aligned} & -1.7 \\ & -0.36 \\ & -0.9 \\ & -3.5 \end{aligned}$	--	$\begin{gathered} -0.6 \\ -0.12 \\ -0.3 \\ -1.0 \\ \hline \end{gathered}$	$-$	mAdc
	${ }^{1} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	--	$\begin{array}{r} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{array}$	-	mAdc
Input Current (AL Device)	1 in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Current (CL/CP Device)	$\mathrm{I}_{\text {in }}$	15	-	± 1.0	\square	± 0.00001	± 1.0	-	± 14.0	$\mu \mathrm{Adc}$
input Capacitance $\left(v_{i n}-0\right)$	$\mathrm{C}_{\text {in }}$	-		-	-	5.0	7.5	-	-	pF
Quiescent Cuirent (AL Device) (Per Package)	'DD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	\cdots	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	--	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	--	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current (CL/CP Device) (Per Package)	100	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	$-$	$\begin{array}{r} 375 \\ 750 \\ 1500 \\ \hline \end{array}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) $1 C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{\prime} T$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & I_{T}=11 \\ & I_{T}=13 \\ & I_{T}=15 \end{aligned}$	$\begin{aligned} & 98 \mu \mathrm{~A} / \mathrm{kHz} \\ & 96 \mu \mathrm{~A} / \mathrm{kHz} \\ & 86 \mu \mathrm{~A} / \mathrm{kHz} \end{aligned}$	$\begin{aligned} & f+i D D \\ & f+i D D \\ & f+i D D \end{aligned}$			$\mu \mathrm{Adc}$
Three-State Leakage Current (AL Device)	ITL	15	-	± 0.1	-	+0.00001	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$
Three-State Leakage Current (CL/CP Device)	ITL	15	\cdots	± 1.0	--'	+0:00001	± 1.0	--	± 7.5	$\mu \mathrm{Adc}$

*Tlow $=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
-Noise immunity specified for worst-case input combination.
Noise Margin for both " 1 " and " 0 " level $=1.0 \mathrm{Vdc} \min @ V_{D D}=5.0 \mathrm{Vdc}$

$$
\begin{aligned}
& 2.0 \mathrm{Vdc} \min @ V_{D D}=10 \mathrm{Vdc} \\
& 2.5 \mathrm{Vdc} \min @ V_{D D}=15 \mathrm{Vdc}
\end{aligned}
$$

\dagger To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+4 \times 10^{-3}\left(C_{L}-50\right) V_{D O^{f}}
$$

where: I_{T} is in μA (per package), C_{L} in $\rho F, V_{D D}$ in $V d c$, and f in $k H z$ is input frequency.
** The formulas given are for the typical characteristics onty at $25^{\circ} \mathrm{C}$.

MCM14552

SWITCHING CHARACTERISTICS* (C $\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	VDD	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{t} T \mathrm{LH}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{T} L H}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t} T \mathrm{LH}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	1	tTLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 180 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & t_{T H L}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \text { t }_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	1	${ }^{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Read Cycle Time	1,2	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 2000 \\ 750 \\ 500 \end{gathered}$	$\begin{aligned} & 6000 \\ & 2200 \\ & 1650 \end{aligned}$	ns
Write Cycle Time	3,4	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{W})$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\overline{-}$	$\begin{gathered} 1200 \\ 750 \\ 500 \end{gathered}$	$\begin{aligned} & 3600 \\ & 2200 \\ & 1650 \end{aligned}$	ns
Address to Strobe Setup Time	1,3	$t_{\text {su }}(\mathrm{A}-\overline{\mathrm{ST}})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1500 \\ 450 \\ 350 \end{gathered}$	$\begin{aligned} & 500 \\ & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Strobe to Address Hold Time	1,3	th($\overline{S T} \cdot \mathrm{~A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & 75 \end{aligned}$	$\begin{gathered} 50 \\ 0 \\ 0 \\ \hline \end{gathered}$	-	ns
Address to Chip Enable Serup Time	2,4	${ }^{\text {s }}$ su $(A-C E)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 600 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	-	ns
Chip Enable to Address Hold Time	2.4	$t_{\text {h }}(\overline{C E}-A)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 300 \\ & 225 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Strobe or Chip Enable Pulse Width When Reading	1.2	tWL(R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1800 \\ 450 \\ 350 \end{gathered}$	$\begin{aligned} & 450 \\ & 150 \\ & 100 \end{aligned}$	-	ns
Strobe or Chip Enable Pulse Width When Writing	3,4	${ }^{\text {t W L }}$ (W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3600 \\ & 1800 \\ & 1350 \end{aligned}$	$\begin{gathered} 1200 \\ 600 \\ 400 \\ \hline \end{gathered}$	-	ns
Read Setup Time	1	${ }_{\text {t }}^{\text {su }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \\ & -40 \\ & -30 \\ & \hline \end{aligned}$	-	ns
Read Hold Time	1	$t_{\text {L }}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 540 \\ & 240 \\ & 180 \end{aligned}$	$\begin{aligned} & 180 \\ & 60 \\ & 45 \end{aligned}$	-	ns
Data Setup Time	3,4	${ }^{\text {tsu }}$ (D)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1800 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	$\begin{array}{r} 600 \\ 200 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Hold Time	3.4	th(D)	5.0	600	200	-	ns
			$\begin{aligned} & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 150 \\ 120 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 30 \\ \hline \end{array}$	-	

MCM14552

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (continued)

Characteristic	Figure	Symbol	VOD	Min	Typ	Max	Unit
Write Enable Setup Time	3,4	${ }^{\text {t }}$ su($\overline{W E}$)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Enable Hold Time	3,4	$t^{\prime}(\overline{W E})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 150 \\ & 60 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \end{aligned}$	-	ns
Read Access Time from Strobe	1.3	tacc (R-ST)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 2000 \\ 700 \\ 350 \\ \hline \end{gathered}$	$\begin{aligned} & 6000 \\ & 2100 \\ & 1600 \end{aligned}$	ns
Read Access Time from Chip Enable	2	$\mathrm{tacc}_{\text {a }}(\mathrm{R}-\overline{\mathrm{CE}})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 2100 \\ 750 \\ 400 \\ \hline \end{gathered}$	$\begin{aligned} & 6300 \\ & 2250 \\ & 1700 \\ & \hline \end{aligned}$	ns
Output Enable/Disable Delay from Chip Enable or Write Enable	2, 4	${ }^{t} \mathrm{R}(\overline{\mathrm{CE}})$, ${ }^{1} \mathrm{R}$ (WE)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 1200 \\ 600 \\ 450 \\ \hline \end{gathered}$	ns
Three-State Enable/Disable Output Delay	2	${ }_{\text {t }}(\bar{T})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} 1200 \\ 480 \\ 360 \\ \hline \end{gathered}$	ns
Latch to Output Propagation Delay	1	${ }^{\text {t }} \overline{\text { LE }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 600 \\ 450 \\ \hline \end{gathered}$	ns

*The formula given is for the typical characteristics only.

FIGURE 1 - READ CYCLE WAVEFORMS UTILIZING STROBE TO ACGESS MEMORY

Notes: $\quad 1-\overline{C E} 1, \overline{C E} 2, \overline{C E} 3$ and \bar{T} are low, M is high
2 … $\overline{W E}$ may be held high during the complete read cycle.

FIGURE 2 - READ CYCLE WAVEFORMS UTILIZING CHIP ENABLE TO ACCESS MEMORY

FIGURE 3 - WRITE CYCLE WAVEFORMS UTILIZING STROBE

FIGURE 4 - WRITE CYCLE WAVEFORM UTILIZING CHIP ENABLE

TRUTH TABLE

An R or A condition depending on the don't care condition. $\quad 0 \quad$ A low ievel at $V_{S S}$
FIGURE 5 - 512 WORD $\times 16$ BIT MEMORY BOARD Data Inputs

256×4 BIT STATIC RAM

The MCM145101 family of CMOS RAMs offers uitra low power and fully static operation with a single 5 volt supply. The CMOS 1024-bit devices are organized in 256 words by 4 bits. Separate data inputs and data outputs permit maximum flexibility in bus-oriented systems. Data retention at a power supply as low as 2.0 volts over temperature readily aliows design into applications using battery backup for nonvolatility. The MCM145101 is fully static and does not require clocking in standby mode.

The MCM145101 is fabricated using the Motorola advanced ionimplanted, silicon-gate technology for high performance and high reliability.

- Low Standby Power
- Fast Access Time
- Single + 5.0 Volt Supply
- Fully TTL Compatible-All inputs and Outputs
- Three-State Output
- Fully Static Operation
- Data Retention to 2.0 Volts
- Direct Replacement for:

Intel 5101 Series
AMI S5101 Series
Hitachi MH435101 Series

- Pin Replacement for Harris HM6501 Series

Type Number	Typical Current @ 2 Vdc ($\mu \mathrm{A})$	Typical Current @ 5 Vdc $(\mu \mathrm{A})$	Max Access $(\mathbf{n s})$
MCM145101L, MCM145101P	0.14	0.2	650
MCM145101-1L, MCM145101-1P	0.14	0.2	450
MCM145101-3L, MCM145101-3P	0.70	1.0	650
MCM145101-8L, MCM145101-8P	-	10	800

PIN ASSIGNMENT						
			㿽A	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \\ & 6 \\ & 6 \\ & 7 \\ & \text { ind } \\ & 11 \\ & 12 \end{aligned}$		
TRUTH TABLE						
$\overline{\text { CE1 }}$	CE2	OD	R/W	$\mathrm{D}_{\text {In }}$	Output	Mode
H	X	\times	X	X	High Z	Not Selected
X	L	X	X	x	High Z	Not Selected
X .	x	H	H	x	High \mathbf{Z}	Output Disabled
L	H	H	L	x	High \mathbf{Z}	Write
L	H	L	L	X	$\mathrm{Din}_{\text {In }}$	Write
L	H	L	H	x	Dout	Read

MCM145101

MAXIMUM RATINGS (Voitages referenced to $\mathrm{V}_{\text {SS }}$ Pin 8)

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathbf{C C}}$	-0.5 to +7.0	V_{dc}
Voltage on Any Pin	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathbf{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

DC CHARACTERISTICS ($T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$)

Characteristic	Symbol	MCM145101, 1			MCM145101-3			MCM145101.8			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Current	$\mathrm{I}_{\text {in }}{ }^{(2)}$	-	5.0	-	-	5.0	-	-	5.0	-	nAdc
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2	-	V_{CC}	2.2	-	v_{CC}	2.2	-	V_{CC}	Vdc
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.65	-0.3	-	0.65	-0.3.	-	0.65	Vdc
Output High Voltage $(1 \mathrm{OH}=-1.0 \mathrm{~mA})$	V_{OH}	2.4	-	-	2.4	-	-	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=2.0 \mathrm{~mA})$	V_{OL}	-	-	0.4	-	-	0.4	-	-	0.4	Vdc
Output Leakage Current $\left(\overline{\mathrm{CE} 1}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{ILO}^{(2)}$	-	-	± 1.0	-	-	± 1.0	-	-	± 2.0	μ Adc
Operating Current ($\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$, except $\overline{\mathrm{CE}} \leqslant 0.65 \mathrm{~V}$, outputs open)	${ }^{\text {ccel }}$	-	9.0	22	-	9.0	22	-	11	25	mAdc
Operating Current ($\mathrm{V}_{\text {in }}=2.2 \mathrm{~V}$, except $\overline{\mathrm{CE}} \leqslant 0.65 \mathrm{~V}$, outputs open)	'cC2	-	13	27	-	13	27	-	15	30	mAdc
Standby Current $(C E 2 \leqslant 0.2 \mathrm{~V})$	${ }^{1} \mathrm{CCL}^{(2),(4)}$	-	-	10	-	-	200	-	-	500	$\mu \mathrm{Adc}$

CAPACITANCE

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance $\left(V_{\text {in }}=O \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	8.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12.0	pF

LOW VCC DATA RETENTION CHARACTERISTICS (Excluding MCM145101-8) $\mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Parameter	Test Conditions		Symbol	Min	Typ. ${ }^{\text {(1) }}$	Max	Units
$\mathrm{V}_{\text {CC }}$ for Data Retention	CE2 $\leqslant 0.2 \mathrm{~V}$		$V_{\text {DR }}$	2.0	-	-	Vdc
MCM145101 or MCM145101-1 Data Retention Current		$\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}$,	ICCDR1	-	0.14	10	$\mu \mathrm{Adc}$
MCM145101-3 Data Retention Current		$\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}$,	ICCDR2	-	0.70	200	$\mu \mathrm{Adc}$
Chip Deselect to Data Retention Time		?	${ }^{t} \mathrm{CDR}$	0	-	-	ns
Operation Recovery Time			${ }^{\text {tR }}$	$\mathrm{t}_{\mathrm{RC}}{ }^{(3)}$	-	-	ns

NOTES: 1. Typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. Current through alt inputs and outputs included in ICCL measurement.
3. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.
4. Low current state is for CE2 $=0$ only.

MCM145101

LOW VCC DATA RETENTION WAVEFORM

TYPICAL ICCDR versus TEMPERATURE

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Fulf operating voltage and temperature unless otherwise noted)

AC TEST CONDITIONS

Condition	Value
Input Pulse Levels	+0.65 V to 2.2 V
Input Rise and Fall Times	20 ns
Output Load - $\quad 1 \mathrm{TTL}$ Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	
Timing Measurement Reference Level	1.5 Volt

READ CYCLE

Parameter	Symbal	MCM145101-1		MCM145101, 3		MCM145101-8	
		Min	Max	Min	Max	Min	Max
Read Cycle	- ${ }_{\text {R }}{ }^{\text {d }}$	450	-	650	-	800	-
Access Time	${ }^{t} \mathrm{~A}$	-	450	-	650	-	800
Chip Enable ($\overline{\mathrm{CE} 1}$ \} to Output	${ }^{\text {t }} \mathrm{CO} 1$	-	400	-	600	-	800
Chip Enable (CE2) to Output	${ }^{\text {t }} \mathrm{CO} 2$	-	500	-	700	-	850
Output Disable to Output	tod	-	250	-	350	-	450
Data Output to High Z State	${ }^{\text {t }} \mathrm{DF}$	0	130	0	150	0	200
Previous Read Data Valid with Respect to Address Change	${ }^{\mathrm{t}} \mathrm{OH}^{\text {c }}$	0	-	0	-	0	0
Previous Read Data Valid with Respect to Chip Enable	${ }^{\text {t }} \mathrm{OH} 2$	0	-	0	-	0	0

WRITE CYCLE

Write Cycle	${ }^{\text {tw }}$ W	450	-	650	-	800	$-$
Write Delay	${ }^{\text {t }}$ AW	130	-	150	-	200	-
Chip Enable (CE1) to Write	${ }^{\text {t }}$ CW1	350	-	550	-	650	-
Chip Enable (CE2) to Write	${ }^{\text {t }}$ CW2	350	-	550	-	650	-
Data Setup	tDW	250	-	400	-	450	-
Data Hold	${ }^{\text {t }} \mathrm{DH}$	50	-	100	-	100	-
Write Pulse	${ }^{\text {t }}$ WP	250	-	400	-	450	-
Write Recovery	twr	50	-	50	-	100	-
Output Disable Setup	${ }^{\text {t DS }}$	130	-	150	\leftarrow	200	-

MCM145101

NOTES: 1. OD may be tied low for separate $1 / O$ operation.
2. During the write cycle, $O D$ is "high" for common I / O and "don't care" for separate I/O operation.

Product Preview

4096X1-BIT STATIC RANDOM ACCESS MEMORIES

The MCM146504 is a 4096×1-bit static random access memory, fabricated with high density, high reliability CMOS silicon-gate technology. The device has TTL compatible inputs and outputs. It is designed to retain data at low supply voltages, to further reduce supply current requirements.

The MCM146504 is useful in memory applications where low-power and non-volatility is required. It is assembled in 18 pin dual in-line package with the industry standard pin-outs.

- Single Low Voltage Power Supply
- Static Operation
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible
- Common Data Input and Output Capability
- Three-State Outputs
- Low Power Dissipation - Standby 10 mW (Typical)
- Ideal for Battery Backup Operation
- Access Time - 450 ns (Maximum)
- Pinout and Functional Replacement for

Harris - HM6504
Intersil - IM6504

This is advance information and specifications are subject to change without notice.

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

4096X1-BIT STATIC RANDOM ACCESS MEMORIES

PIN NAMES

AO~A11	Address Input
D	Data Input
Q	Data Output
\bar{S}	Chip Select
$V_{C C}$	Power Suppiy $(+5 \mathrm{~V})$
$V_{S S}$	Ground
\bar{W}	Write Enable

TRUTH TABLE

$\overline{\mathbf{S}}$	$\overline{\text { w }}$	D	0	Mode
H	\times	\times	HI-Z	Not Selected
L	L	L	HİZ	Write " 0 "
L	L	H	Hi.Z	Write "1"
L	H	\times	Output data	Read

MCM146508 MCM146518

Advance Information

1024×1 BIT STATIC RANDOM ADDRESS MEMORY

The MCM146508 and MCM146518 are fully static 1024×1 RAMS fabricated using high performance silicon gate CMOS technology. They offer low-power operation from a single 5.0 V supply with data retention to 2.0 V . The MCM146508 has the two select lines and the enable line brought out as a single enable line.

- Low Standby and Operating Power
- Single 5.0 V Supply
- Data Retention to 2.0 V
- Fast Access Time
- Address Latches
- Three-State Outputs
- Fully TTL Compatible Inputs/Outputs
- Fully Static Operation
- Direct Replacement for

Harris HM6508/HM6518
Intersil IM6508/IM6518

| | TABLE 1 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type Number | Package
 Suffixes | Typical Current | | Maximum
 Access
 Time | Operating
 Temperature
 Range |
| MCM146508/MCM146518 | | $0.1 \mu \mathrm{~A}$ | $5.0 \mu \mathrm{~A}$ | 460 ns | -40 to $+85^{\circ} \mathrm{C}$ |
| MCM146508-1/MCM146518-1 | L / P | $0.01 \mu \mathrm{~A}$ | $1.0 \mu \mathrm{~A}$ | 300 ns | -40 to $+85^{\circ} \mathrm{C}$ |
| MCM146508-2/MCM146518-2 | L | $0.01 \mu \mathrm{~A}$ | $1.0 \mu \mathrm{~A}$ | 300 ns | -55 to $+125^{\circ} \mathrm{C}$ |

This is advance information and specifications are subject to change without notice

MCM146508, MCM146518

MAXIMUM RATINGS (Voltages Referenced to $V_{S S}$)

Rating	Symboi	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to +7.0	Vdc
Input Voltage, All Inputs	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	Vdc
Operating Temperature Range	T_{A}		${ }^{\circ} \mathrm{C}$
MCM146508/MCM146518		-40 to +85	
MCM146508-1/MCM146518-1		-40 to +85	
MCM146508-2/MCM146518-2		-55 to +125	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS $\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	MCM146508-1 MCM146518-1			MCM146508 MCM146518			$\begin{aligned} & \text { MCM146508-2 } \\ & \text { MCM146518-2 } \\ & \hline \end{aligned}$			Unit
		Min	Typ	Max	Min	Тур	Max	Min	Typ	Max	
Input Current	$\mathrm{I}_{\text {in }}$	-	5.0	-	-	5.0	-	-	5.0	-	nAdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{DD}}-2.0$	-	$V_{\text {DD }}$	$\mathrm{V}_{\text {DD }}-2.0$	-	$V_{\text {DD }}$	-	-	$V_{\text {DD }}$	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	-0.3	-	0.8	-0.3	-	0.8	Vdc
Output High Voltage $(1 \mathrm{OH}=-1.0 \mathrm{~mA})$	V OH	2.4	-	-	2.4	-	-	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=2.0 \mathrm{~mA})$	VOL	-	-	0.4	-	-	0.4	-	-	0.4	Vdc
Output Leakage Current ($\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$ to V_{DD})	${ }^{1} \mathrm{OL}$	-	-	± 1.0	-	-	± 1.0	-	-	± 1.0	$\mu \mathrm{Adc}$
Standby Current $\left(V_{I H}=\bar{E}=\overline{S 1}=\overline{S 2}=V_{D D}\right)$	IDDSB	-	0.1	10	-	1.0	100	-	1.0	100	nAdc
Data Retention Current $\begin{aligned} & \left(V_{D D}=2.2 \mathrm{~V}=\mathrm{V}_{1 \mathrm{H}}=\right. \\ & \mathrm{E}=\overline{\mathrm{S} 1}=\overline{\mathrm{S} 2}) \end{aligned}$	IDDDR	-	0.1	1.0	-	0.1	10	-	0.1	10	$\mu \mathrm{Adc}$
Operating Current ($\mathrm{tELEH}^{2}=1.0 \mu \mathrm{~s}$)	I DDOP	-	-	-	-	-	-	-	-	-	mAdc

CAPACITANCE

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	8.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

AC OPERATING CONDITIONS

Condition	Value
Input Pulse Levels	+0.8 V to $\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$
Input Rise and Fall Times	20 ns
Output Load	1 TTL Gate and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Timing Measurement Reference Level	1.5 V
Supply Voltage	$5.0 \mathrm{~V} \pm 10 \%$
Temperature Range	
MCM146508/MCM146518	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MCM146508-1/MCM146518-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MCM146508-2/MCM146518-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^17]AC CHARACTERISTICS

Parameter	Symbol	MCM146508-1 MCM146518-1		MCM146508-2 MCM146518-2		MCM 146508 MCM 146518		Unit
		Min	Max	Min	Max	Min	Max	
Read or Write Cycle Time	${ }^{\text {t E ELEL }}$	500	-	500	-	760	-	ns
Enable Pulse Width, Low	teLEH	300	-	300	-	460	-	ns
Enable Pulse Width, High	tehel	200	-	200	-	300	-	ns
Enable Access Time	telov	-	300	-	300	-	460	ns
Address Setup	${ }^{\text {t }}$ AVEL	7.0	-	7.0	-	15	-	ns
Address Hold	${ }^{\text {t ELAX }}$	90	-	90	-	150	-	ns
Data Setup	t DVWH	200	-	200	-	300	-	ns
Data Hold	tWHDX	0	-	0	-	0	-	ns
Write Pulse Width	${ }^{\text {t WLWH }}$	200	-	200	-	300	-	ns
Write Enable to Output Disable	${ }^{\text {t WLOZ }}$	-	180	-	180	-	285	ns
Output Disable (MC146508 Only)	tehQZ	-	180	-	180	-	285	ns
Output Disable (MC146518 Only)	${ }^{\text {t }}$ SHQZ	-	180	-	180	-	285	ns
Write Disable to Output Enable	twhox	-	180	-	180	-	285	ns
Output Enable (MC146508 Only)	${ }^{\text {t ELOX }}$	-	180	-	180	-	285	ns
Output Enable (MC146518 Only)	${ }^{\text {t }}$ SLQX	-	180	-	180	-	285	ns
Select to Write Pulse Setup	${ }^{\text {tWLSH }}$	200	-	200	-	300	-	ns
Select to Write Pulse Hold	${ }^{\text {t }}$ SLWH	200	-	200	--	300	-	ns
Enable to Write Pulse Setup	tWLEH	200	-	200	-	300	-	ns
Enable to Write Pulse Hold	${ }^{\text {t ELWH }}$	200	-	200	-	300	-	ns

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined -1
transition direction for first signal
signal name to which interval is defined
transition direction for second signal

The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time leven though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

[^18]READ CYCLE TIMING

Time Reference	Inputs					Output	Function
	\bar{E}	$\overline{\mathbf{S}}$	$\overline{\text { w }}$	A	D	0	
-1	H	H	\times	\times	\times	z	Disabled
0	-	\times	H	\checkmark	x	z	Address Latched
1	L	L	H	\times	\times	\times	Output Enabled
2	L	L	H	\times	\times	v	Output Valid
3	\checkmark	L	H	\times	\times	v	Output Latched
4	H	H	\times	\times	\times	z	Disabled (Same as - 1)
5	L	\times	H	v	x	2	Next Cycle (Same as 0)

WRITE CYCLE TIMING

TRUTH TABLE

Time Reference	Inputs					Output	Function
	\bar{E}	$\overline{\mathrm{S}}$	\bar{W}	A	D	Q.	
-1	H	\times	\times	x	x	z	Disabled
0	\downarrow	\times	\times	v	\times	z	Address Latched
1	L	1	L	\times	v	z	Write Mode
2	$\stackrel{1}{L}$	Γ	L	x	v	z	Data Written
3	-	\times	\times	\times	\times	z	Write Completed
4	H	\times	\times	x	\times	z	Disabled (Same as -1)
5	V	\times	\times	V	\times	z	Next Cycle (Same as 0)

NOTES:

1. MCM146518 selected only if both $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ are low and deselected if either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ is high. $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ are connected to $\overline{\mathrm{E}}$ on the MCM146508.
2. The address within the memory will change only on falling $\overline{\mathrm{E}}$.

1024-BIT READ ONLY MEMORY

The MCM14524 is a complementary MOS mask programmable Read Only Menory (ROM). This device is ordered as a factory special with its unique pattern specified by the user.

This ROM is organized in a 256×4-bit pattern. The contents of a specified address $(<A 0, A 1, A 2, A 3, A 4, A 5, A 6, A 7>)$ will appear at the four data outputs ($B 0, B 1, B 2, B 3$) following the negative going edge of the clock. When the clock goes high, the data present at the output will be latched. The memory Enable may be taken low asynchronously, forcing the data outputs low and resetting the output latches. This device finds application wherever low power or high noise immunity is a design consideration.

- Diode Protection on All Inputs
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- Quiescent Current - $10 \mathrm{nA} /$ package typical @ 5 Vdc
- Single Supply Operation - Either Positive or Negative
- Memory Enable Allows Expansion
- Output Latches Provide a Useful Storage Register
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load to Two HTL Loads Over the Rated Temperature Range

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

1024-BIT
(256 x 4)
READ ONLY MEMORY

MAXIMUM RATINGS IVoltages eferenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	VDO	05 to +18	Vdc
Input Voltage. All Inputs	$V_{\text {in }}$	-05w VDD^{+05}	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range AL Device: Cl CP Device	T^{\wedge}	$\begin{gathered} 55 t u+125 \\ 40 t u+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{514}	65 (0) 150	${ }^{0} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of an y voltage higher than maximum rated voltages to this high impedance circuit.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$

ELECTRICAL CHARACTERISTICS

- Tlow $=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device.
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device
\#Noise immunity specified for worst case input combination.
\dagger To calculate total supply current at loads other than 50 pF :
$I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+1 \times 10^{-3}\left(C_{L}-50\right) V_{D D^{f}}$
where: I_{T} is in μA (per package), C_{L} in $p F, V_{D D}$ in $V d c$, and f in $k H z$ is input frequency.
* The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$

SWITCHING CHARACTERISTICS* (C $\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	VDD	Min	Typ	Max	Unit
	tTLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 180 \\ & 90 \\ & 65 \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & t_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \text { t } \mathrm{TLH}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\mathbf{t}_{\mathrm{THL}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$-$	$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { Clock Read Access Delay Time } \\ & t_{\text {acce }}=(1.7 \mathrm{~ns} / \mathrm{pF}) C_{L}+1265 \mathrm{~ns} \\ & \mathrm{t}_{\text {acc }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+517 \mathrm{~ns} \\ & \text { tacc }=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+325 \mathrm{~ns} \end{aligned}$	$\mathrm{tacc}_{\mathrm{C}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 1350 \\ 550 \\ 350 \end{gathered}$	$\begin{array}{r} 4000 \\ 1600 \\ .1200 \end{array}$	ns
$\begin{aligned} & \text { Enable Access Delay Time } \\ & t_{\text {acc }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+160 \mathrm{~ns} \\ & \mathrm{t}_{\text {acc }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+77 \mathrm{~ns} \\ & \mathrm{t}_{\text {ace }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+50 \mathrm{~ns} \end{aligned}$	${ }^{\text {taccen }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 245 \\ 110 \\ \quad 75 \end{array}$	$\begin{aligned} & 615 \\ & 265 \\ & 190 \\ & \hline \end{aligned}$	ns
Clock Pulse Width ${ }^{\text {² }}$	*WH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 165 \\ & 125 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 55 \\ 35 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
	${ }^{\text {t }}$ L L	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3600 \\ & 1425 \\ & 1070 \end{aligned}$	$\begin{aligned} & 1200 \\ & 475 \\ & 300 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Maximum Low Clock Pulse Width \#	tWL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 . \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.9 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 3.0 \\ & 0.3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ms
Address Setup-Time	${ }^{\text {tsu }}$ (A$)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	ns
Address Hold Time	$t_{\text {th }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Clock to Enable Setup Time	$\mathrm{t}_{\text {su }}(\mathrm{cl})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 4275 \\ 1725 \\ 1295 \\ \hline \end{array}$	$\begin{aligned} & 1425 \\ & 575 \\ & 400 \\ & \hline \end{aligned}$	$-$	ns
Clock to Enable Hold Time	$t_{17}(\mathrm{c} 1)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ \times 0 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns

*The clock can remain high indefinitely with the data remaining latched.
\# If clock stays low too long, the dynamically stored data will leak off and will have to be recalled.

FIGURE 1 - OUTPUT DRIVE CURRENT TEST CIRCUIT

FIGURE 2 - SWITCHING TIME TEST CIRCUIT (Refer to timing diagram)

MEMORY READ CYCLE TIMING DIAGRAMS

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM14524, the customer may specify the content of the memory.

Address Inputs:
Words are numbered 0 through 255 and are addressed using
sequential addressing of Address leads AO through A7 with AO as the least significant digit.
Logic " 0 " is defined as a "low" Address input ($V_{1 L}$).
Logic " 1 " is defined as a "high" Address input ($V_{1 H}$).

WORD	ADDRESS							
Word	0	0	A6	A5	A4	A3	A2	A1
Word	1	0	0	0	0	0	0	0
Word	2	0	0	0	0	0	0	0
Word	3	0	0	0	0	0	0	1
0	.	0	0	0	0	0	0	1
0
Word 255

TRUTH TABLE

CLOCK	ENABLE	B0	B1	B2	B3
$V_{D D} \longrightarrow V_{S S}$	1	<Address>	〈Address>	<Address)	<Address>
$\mathrm{v}_{\text {SS }} \ldots \mathrm{v}_{\text {DD }}$	1	OUTPUT DATA LATCHES			
\times	0	0	0	0	0

X = Don't Care
-Indicates contents of specified Address will appear at outputs as stated above

Two methods may be used to transmit the custom memory pattern to Motorola.

METHOD A: PUNCHED COMPUTER CARDS

A binary coded decimal equivalent of each desired output may be punched in standard computer cards (four cards are required for all 256 words) in numerical (word number) order. 64 words per card are punched in columns 12 thru 75 using the Binary to Hexadecimal conversion table. Columns 77 and 78 are used to number the cards, which must be in numerical order. Please use characters as shown in the table when punching computer cards

BINARY TO HEXA. DECIMAL CONVERSION TABLE	
BINARY WORD DESIRED	CARD CHARACTER
0000	O
$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	1
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1\end{array}$	2
0011	3
0100	4
$\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}$	5
$\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}$	6
$\begin{array}{lllll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}$	\%
1000	8
1001	9
1010	A
1011	B
1100	C
11001	-
11110	E
11.11	F

ROM SAMPLE WORD PROGRAMMING FOR PUNCHED CARD

WORD NUMBER	ADDRESS INPUTS								SAMPLE WORD OUTPUTS				$\begin{gathered} \text { CARD } \\ \text { CHARACTER } \end{gathered}$	Shown in columns 12-15 on card below
	A7	A6	A5	A4	A3	A2	A1	AO	B3	B2	B1	B0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	0	0	1	1	3	
2	0	0	0	0	0	0	1	0	0	0	1	1	3	
3	0	0.	0	0	0	0	1	1	0	0	0	0	0	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	*	*	
255	1	1	1	1	1	1	1	1	1	0	1	0	A	

METHOD B: TRUTH TABLE

For customers who do not have access to punch cards, Motorola will accept Truth Tables. When filling out the table, use the 0 to F hexidecimal character in column " C "

CUSTOM PROGRAM for the MCM14524 Read Only Memory

WORD	C
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
3.1	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	\cdot
47	
48	
49	
50	

WORD	C
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	

WORD	C
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	
149	
150	
151	
152	

WORD	C
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176.	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	.
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	

Bipolar Memories TTL, MECL-RAM, PROM

(A) MOTOROLA

1024-BIT RANDOM ACCESS MEMORY

The MCM93415 is a 1024 -bit Read/Write RAM organized 1024 words by 1 bit.

The MCM93415 is designed for buffer control storage and high performance main memory applications, and has a typical access time of 35 ns .

The MCM93415 has full decoding on-chip, separate data input and data output lines, and an active low chip select. The device is fully compatible with standard DTL and TTL logic families and features an uncommitted collector output for ease of memory expansion.

- Uncommitted Collector Output
- TTL Inputs and Output
- Non-Inverting Data Output
- High Speed -

> Access Time -35 ns Typical
> Chip Select -15 ns Typical

- Power Dissipation Decreases with Increasing Temperature
- Power Dissipation $0.5 \mathrm{~mW} /$ Bit Typical
- Organized 1024 Words X 1 Bit

FUNCTIONAL DESCRIPTION

The MCM93415 is a fully decoded 1024 -bit Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A0 to A9.

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of Chip Select ($\overline{\mathrm{CS}}$) from the address without affecting system performance.

The read and write operations are controlled by the state of the active low Write Enable ($\overline{W E}, \operatorname{Pin} 14$). With $\overline{W E}$ held low and the chip selected, the data at $\mathrm{D}_{\text {in }}$ is written into the addressed location. To read, WE is held high and the chip selected. Data in the specified location is presented at $D_{\text {out }}$ and is non-inverted.

Uncommitted collector outputs are provided to allow wiredOR applications. In any application an external pull-up resistor of R_{L} value must be used to provide a high at the output when it is off. Any R_{L} value within the range specified below may be used.

$$
\frac{V_{C C}(\operatorname{Min})}{I_{O L}-F O(1.6)} \leqslant R_{L} \leqslant \frac{V_{C C}(\operatorname{Min})-V_{O H}}{n\left(I_{C E X}\right)+F O(0.04)}
$$

R_{L} is in $k \Omega$
$n=$ number of wired.OR outputs tied together
$\mathrm{FO}=$ number of TTL Unit Loads (UL) driven
'CEX = Memory Output Leakage Current
$\mathrm{V}_{\mathrm{OH}}=$ Required Output High Level at Output Node
IOL = Output Low Current
The minimum R_{L} value is limited by output current sinking ability. The maximum R_{L} value is determined by the output and input leakage current which must be supplied to hold the output. at V_{OH}. One Unit Load $=40 \mu \mathrm{~A}$ High $/ 1.6 \mathrm{~mA}$ Low.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature Ceramic Package (D and F Suffix) Plastic Package (P Suffix)	$-55^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Operating Junction Temperature, T J	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ceramic Package (D and F Suffix) Plastic Package (P Suffix)	$<165^{\circ} \mathrm{C}$
V_{CC} Pin Potential to Ground Pin	$<125^{\circ} \mathrm{C}$
Input Voltage (dc)	-0.5 V to +7.0 V
Voltage Applied to Outputs (Output High)	-0.5 V to +5.5 V
Output Current (dc) (Output Low)	+20 mA
Input Current (dc)	-12 mA to +5.0 mA

TRUTH TABLE

Inputs			Output	Mode
$\overline{\mathrm{CS}}$	WE	$\mathrm{D}_{\text {in }}$	Open Collector	
H	X	\times	H	Not Selected
L	L	L	H	Write " 0 "
L.	L	H	H	Write "1"
L	H	\times	Dout	Read

$H=$ High Voltage Level
$L=$ Low Voltage Level
$X=$ Don't Care (High or Low)

NOTE 1: Device damage may occur if. ABSOLUTE MAXIMUM RATINGS are exceeded.
guaranteed operating ranges (Note 2)

Part Number	Supply Voltage (V_{CC})			(
	Min	Nom	Max	
MCM93415DC, PC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
MCM93415FM, DM	4.50 V	5.0 V	5.50 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Fuil operating voltage and temperature range unless otherwise noted)

Symbol	Characteristic	Limits		Unit	Conditions	
		Min	Max			
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.45	Vdc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	2.1		Vdc	Guaranteed Input High Voltage for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		0.8	Vdc	Guaranteed Input Low Vottage for All Imputs	
IIL	Input Low Current		-400	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$	
${ }_{1} \mathrm{H}$	Input High Current		40	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	
			1.0	mAdc	$\mathrm{V}_{\text {CC }}=\mathrm{Max}^{2}, \mathrm{~V}_{\text {in }}=5.25 \mathrm{~V}$	
${ }^{\text {I CEX }}$	Output Leakage Current		100	$\mu \mathrm{Adc}$	$V_{C C}=$ Max, $V_{\text {out }}=4.5 \mathrm{~V}$	
V_{CD}	Input Diode Clamp Voltage		-1.5	Vdc	$V_{C C}=M a x, I_{\text {in }}=-10 \mathrm{~mA}$	
${ }^{\prime} \mathrm{CC}$	Power Supply Current		130	mAdc	$\mathrm{T}_{\mathrm{A}}=$ Max	$V_{\mathrm{CC}}=\mathrm{Max},$ All Inputs Grounded
			155	mAdc	$T_{A}=0^{\circ} \mathrm{C}$	
			170	mAdc	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

AC TEST LOAD AND WAVEFORM

Symbol	Characteristic (Notes 2, 3)	MCM93415DC, PC		MCM934 15DM, FM		Unit	Conditions
		Min	Max	Min	Max		
READ MODE	DELAY TIMES					ns	
${ }^{t} \mathrm{ACS}$	Chip Select Time		35		45		See Test Circuit
${ }^{t}$ RCS	Chip Select Recovery Time		35		50		and Waveforms
${ }^{1} A A$	Address Access Time		45		60		
WRITE MODE	DELAY TIMES					ns	
tws	Write Disable Time		35		45		See Test Circuit
twr	Write Recovery Time		40		50		and Waveforms
	INPUT TIMING REQUIREMENTS					ns	
${ }^{t} w$	Write Pulse Width (to guarantee write)	30		40			See Test Circuit
${ }^{t}$ WSD	Data Setup Time Prior to Write	5		5			and Waveforms
${ }^{\text {twho }}$	Data Hold Time After Write	5		5			
twsA	Address Setup Time (at $\mathrm{t}_{\mathrm{W}}=\mathbf{M i n}$)	10		15			
tWHA	Address Hold Time	10		10			
twscs	Chip Select Setup Time	5		5			
twhes	Chip Select Hold Time	5		5			

READ OPERATION TIMING DIAGRAM

(All Time Measurements Referenced to 1.5 V)

MCM93415

WRITE CYCLE TIMING

(All Time Measurements Referenced to 1.5 V) if extended temperature or modified-operating conditions are desired

Package	$\theta_{\text {JA (Junction to Ambient) }}$		Blown
	Still	${ }^{\circ} \mathrm{JC}$ (Junction to Case)	
D Suffix	$50^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
F Suffix	$55^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
P Suffix	$65^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$

NOTE 3: The AG limits are guaranteed to be the worst case bit in the memory

1024-BIT RANDOM ACCESS MEMORY

The MCM93425 is a 1024-bit Read/Write RAM, organized 1024 words by 1 bit.

The MCM93425 is designed for high performance main memory and control storage applications and has a typical address time of 35 ns .

The MCM93425 has full decoding on-chip, separate data input and data output lines, and an active low-chip select and write enable. The device is fully compatible with standard DTL and TTL logic families. A three-state output is provided to drive bus-organized systems and/or highly capacitive loads.

- Three-State Output
- TTL Inputs and Output
- Non-Inverting Data Output
- High Speed -

Access Time - 35 ns Typical
Chip Select - 15 ns Typical

- Power Dissipation - $0.5 \mathrm{~mW} /$ Bit Typical
- Power Dissipation Decreases With Increasing Temperature

TTL
1024 X 1 BIT RANDOM ACCESS MEMORY

PIN ASSIGNMENT

Pin Description

$\overline{\mathbf{C S}}$	Chip Select
A0-A9	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$D_{\text {in }}$	Data Input
$D_{\text {out }}$	Data Output

MCM93425

FUNCTIONAL DESCRIPTION

The MCM93425 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Word selection is achieved by means of a 10 -bit address, AO-A9.

The Chip Select (CS) input provides for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlied by the state of the active low Write Enable ($\overline{W E}$, Pin 14). With $\overline{W E}$ and $\overline{C S}$ held
low, the data at $D_{\text {in }}$ is written into the addressed location. To read, $\overline{W E}$ is held high and $\overline{C S}$ held low. Data in the specified location is presented at $D_{\text {out }}$ and is non-inverted.

The three-state output provides drive capability for higher speeds with capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high-impedance state.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature Ceramic Package (D and F Suffix) Plastic Package (P Suffix)	$-55^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Operating Junction Temperature, T_{J} Ceramic Package (D and F Suffix) Plastic Package (P Suffix)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ Pin Potential to Ground Pin	$<165^{\circ} \mathrm{C}$
Input Voltage (dc)	$<125^{\circ} \mathrm{C}$
Voltage Applied to Outputs (Output High)	-0.5 V to +7.0 V
Output Current (dc) (Output Low)	-0.5 V to +5.5 V
Input Current (dc)	+5.5 V

TRUTH TABLE

Inputs				Output
Mode				
	$\overline{\text { WE }}$	D $_{\text {in }}$	Dout	Moden
H	X	X	High Z	Not Selected
L	L	L	High Z	Write " $0^{\prime \prime}$
L	L	H	High Z	Write "1"
L	H	X	Dout	Read

$H=$ High Voltage Level
$L=$ Low Voltage Level
$X=$ Don't Care (High or Low)

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

GUARANTEED OPERATING RANGES (Notes 2 and 3)

Part Number	Supply Voltage (V_{CC})			Ambient Temperature (T_{A})
	Min	Nom	Max	
MCM93425DC, PC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
MCM93425FM, DM	4.50 V	5.0 V	5.50 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

Symbol	Characteristic		Limits		Units	Conditions	
			Min	Max			
V_{OL}	Output Low Voltage			0.45	$V \mathrm{dc}$	$V_{C C}=\mathrm{Min}$	$\mathrm{OL}=16 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.1		Vdc	Guaranteed	nput High Voltage for all Inputs
$V_{\text {IL }}$	Input Low Voltage			0.8	Vdc	Guaranteed	nput Low Voltage for all Inputs
IIL	Input Low Current			-400	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$
${ }_{1 / \mathrm{H}}$	Input High Current			40	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Ma}$	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$
				1.0	mAdc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$V_{\text {in }}=5.25 \mathrm{~V}$
Ioff	Output Current (High Z)			50	MAdc	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {out }}=2.4 \mathrm{~V}$	
				-50		$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$	
IOS	Output Current Short Circuit to Ground			-100	mAdc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Ma}$	
V_{OH}	Output High Voltage	MCM93425DC, PC	2.4		Vdc	$\mathrm{I}_{\mathrm{OH}}=-10.3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	
		MCM93425FM, DM	2.4		Vdc	$V_{C C}=M a x, I_{\text {in }}=-10 \mathrm{~mA}$	
V_{CD}	Input Diode Clamp Voltage			-1.5	Vdc		
${ }^{\text {I CC }}$	Power Supply Current			130	mAdc	$\mathrm{T}_{\mathrm{A}}=$ Max	$V_{C C}=\operatorname{Max}$ All Inputs Grounded
				155	mAdc	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
				170	mAdc	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

AC TEST LOAD AND WAVEFORMS

Loading Conditions

Input Pulses
All input Pulses

Symbol	Characteristic (Notes 2, 4)	MCM93425DC, PC		MCM93425DM, FM		Units	Conditions
		Min	Max	Min	Max		
READ MODE	DELAY TIMES					ns	
${ }^{t} A C S$	Chip Select Time		35		45		See Test Circuit
${ }_{\text {t }}$	Chip Select to High Z		35		50		and Waveforms
${ }^{\text {t }}$ A A	Address Access Time		45		60		
WRITE MODE ${ }^{\text {t ZWW }}$ ${ }^{t} W R$	DELAY TIMES					ns	
	Write Disable to High Z		35		45		See Test Circuit ${ }^{\prime}$
	Write Recovery Time		40		50		and Waveforms
	INPUT TIMING REQUIREMENTS Write Pulse Width (to guarantee write) Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time (at $\mathrm{t}_{\mathrm{W}}=\mathrm{Min}$) Address Hold Time Chip Select Setup Time Chip Select Hold Time					ns	See Test Circuit and Waveforms
${ }^{t} w$		30		40			
${ }^{\text {twSD }}$		5		5			
${ }^{\text {twho }}$		5		5			
${ }^{\text {t WSA }}$		10		15			
twha		10		10			
${ }^{\text {tw }}$ WSCs		5		5			
${ }^{\text {twhes }}$		5		5			

READ OPERATION TIMING DIAGRAM

MCM93425

WRITE CYCLE TIMING

(All above measurements reference to 1.5 V)

WRITE ENABLE TO HIGH Z DELAY

Load C

Propagation Delay from Chip Select to High Z

(All $\mathbf{Z X X X}$ parameters are measured ar a detta of 0.5 V from the logic level and using Lac)

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

Package	$\theta_{\text {JA (Junction to Ambient) }}$		
	Blown	Still	
D Suffix (Junction to Case)	$50^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
F Suffix	$55^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
P Suffix	$65^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$

NOTE 3: Output short circuit conditions must not exceed 1 second duration.
NOTE 4: The maximum address access time is guaranteed to be the worst case bit in the memory.

512-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM5303/5003 and MCM5304/5004 are monolithic bipolar 512-bit Programmable Read Only Memories (PROMs) organized as 64 eight-bit words. These memories are fieid programmable, i.e., the user can custom program these memories himself. Metal interconnections establish each bit initially in the logic " 0 " state. By "blowing" appropriate nichrome resistors and thus breaking metalization links these bits can be changed to the logic " 1 " state to meet specific program requirements. Detailed programming instructions are contained in this data sheet.

The MCM5303/5003 and MCM5304/5004 have six address inputs to select the proper word and two chip enable inputs, as well as outputs for each of the eight bits.

The MCM5303 and MCM5304 are specified over an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The MCM5003 and MCM5004 are specified over an operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The MCM5303 and MCM5003 have positive enables with open collector outputs. The MCM5304 and MCM5004 have positive enables with 2.0 kilohm pullup resistors on the collector outputs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	Vdc
Input Voltage	V_{in}	-1.0 to +5.5	Vdc
Output Voltage (Open collectors)	V_{OH}	-0.5 to +7.0	Vdc
Thermal Resistance	θ_{JA}	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range			
MCM5303, MCM5304 MCM5003, MCM5004	T_{A}		${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-55 to +125	0 to +70

FEATURES:

- Positive Logic for Both Inputs and Outputs Logic " 0 " = Output Device ON (V_{OL}) Logic " 1 " = Output Device OFF (V_{OH})
- Logic Levels Compatible with MDTL and All MTTL Families
- Ninth Bit Available for Circuit Test
- Access Time $<75 \mathrm{~ns}$
- Outputs Sink 12 mA Open Collector, 10 mA with Pullup Resistors
- Field Programmable by Blowing Nichrome Links
- Hermetic Package

APPLICATIONS:

- Look Up Tables
- Code Conversion
- Micro Programs
- Number Conversion
- Decode Functions
- Random Logic
- Charaćter Generation

MTTL

512-BIT PROGRAMMABLE READ ONLY MEMORY

4

DC ELECTRICAL CHARACTERISTICS $\mathbb{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for MCM5303 and MCM5304,
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for MCM5003 and MCM5004 unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Input Forward Current $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}\right)$	IL	-	1.6	mAdc
Input Leakage Current $\left(V_{i H}=V_{C C}=5.25 \mathrm{Vdc}\right)$	1 IH	-	100	$\mu \mathrm{Adc}$
```Logic " 0 " Output Voltage" (T \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for MCM5303 and MCM5304, \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) for MCM5003 and MCM5004) ( \(\mathrm{O}_{\mathrm{LL}}=12 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\) ) Open Collectors ( \(1 \mathrm{OL}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\) ) ( \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) for MCM5303 and MCM5304) ( \({ }^{(1)}=12 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\) ) Open Collectors ( \(\mathrm{IOL}^{\circ}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\) ) Pullup Resistors```	$\mathrm{V}_{\mathrm{OL}}$		$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.50 \\ & 0.50 \end{aligned}$	Vdc
Logic " 1 " Output Voltage   $\left(I_{\mathrm{OH}}=-0.5 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\right)$   Pullup Resistors	$\mathrm{V}_{\mathrm{OH}}$	2.5	-	Vdc
Output Leakage Current   $\left(V_{C C}=V_{C E X}=5.25 \mathrm{Vdc}\right)$   Open Collectors	ICEX	-	200	$\mu \mathrm{Adc}$
Power Supply Drain Current (Enable and all other inputs   Open Collectors grounded, $\left.\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}\right)$ Pullup Resistors	Icc	-	$\begin{gathered} 95 \\ 120 \end{gathered}$	mAdc

AC ELECTRICAL CHARACTERISTICS ( $\left.\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Access Times* (30pF Load)			
Address to Output	$\mathrm{t}_{\mathrm{AO}}$	25	120
Enable to Output	$\mathrm{t}_{\mathrm{EO}}$	25	ns

*Pin 13 is schematically connected to G2. For optimum propagation delay and $V_{\text {OL }}$ characteristics, externally tie Pin 13 to. Pin 23 (G2).
SWITCHING TIME TEST CIRCUIT


BLEOCK DIAGRAM


PROGRAMMING THE MCM5303/5003 AND MCM5304/5004
The table and diagram below give instructions for field programming the MCM5303/5003 and MCM5304/5004. All data given is for ambient temperatures of $25^{\circ} \mathrm{C}$. If necessary, further programming aid can be obtained from Motorola engineering and product marketing personnel by contacting your nearest Motorola sales office.
Programming Voltage Limits

	Symbol	Value	Unit
Address and Chip Enable Voltages	$\mathrm{V}_{1 \mathrm{H}}$	-4.0 to +5.0	Vdc
	$\mathrm{V}_{1 \mathrm{~L}}$	-6.0 to -5.2	
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	$+5.0 \pm 5 \%$	Vdc
G1 Voltage	$\mathrm{V}_{\mathrm{G} 1}$	$-6.0 \pm 5 \%$	Vdc
G2 Voltage	$\mathrm{V}_{\mathrm{G} 2}$	0.0	Vdc
Program Voltage at Desired Bit Output	$\mathrm{V}_{\mathrm{BP}}$	$-6.0 \pm 5 \%$	Vdc

## Programming Procedure

1. Seiect the address code desired. Connect low (logic "0") inputs to -6.0 Vdc nominal. Leave high (logic " 1 ") inputs unconnected.
2. With the output voltage of a $120-\mathrm{mA}$ current generator clamped to -6.0 Vdc , apply a negative going current pulse of 800 ms duration to any output to be programmed as a logic " 1 ".
3. Repeat step 2 for each output to be programmed as a logic " 1 ". one bit at a time.
4. Select next address code desired and repeat steps 2 and 3.



TRUTH TABLE FORMAT


## WHY THE NINTH BIT?

The ninth bit was designed into the MCM5303/ MCM5003 and the MCM5304/MCM5004 because field-programmable ROMs present testing problems not encountered with conventional mask-programmable ROMs.

Three areas of testing are affected: Program Element Testing, Functional Testing, and AC Testing. The ninth bit helps to solve the problem of Program Element Testing by assuring that links can be blown
without destroying any of the normal $64 \times 8$ bit array
Functional and ac performance are assured by verifying that changes do occur at the outputs as the addresses change. This is important in that all of the outputs are in a logic " 0 " state regardless of the address selected, and no way is available to determine whether the functions are correctly operating without the ninth testing bit.

## 2048-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7620/MCM7621 have common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available with opencollector or three-state outputs. All bits are manufactured storing a logical " 1 " (outputs high), and can be selectively programmed for logical " 0 " (outputs low).

The field-programmable PROM can be custom programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations

All pinouts are compatible to industry-standard PROMs and ROMs.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 Second per 1024 Bits, Typical)
- Expandable - Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current - $250 \mu \mathrm{~A}$ Logic " 0 ", $40 \mu \mathrm{~A}$ Logic " 1 " Full Output Drive - 16 mA Sink, 2.0 mA Source
- Fast Access Time - Guaranteed for Worst-Case N2 Sequencing, Over Commercial and Military Temperature and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	$V_{C C}$	+7.0	Vdc
Input Voltage	$V_{\text {in }}$	+5.5	Vdc
Output Voltage (operating)	$\mathrm{V}_{\mathrm{OH}}$	+7.0	Vde
Supply Current	${ }^{1} \mathrm{CC}$	650	mAdc
Input Current	1 in	-20	mAdc
Output Sink Current	$\mathrm{I}_{0}$	100	mAdc
Operating Temperature Range $\begin{aligned} & \text { MCM } 76 \times \times \text { DM } \\ & \text { MCM } 76 \times \times D C \end{aligned}$	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T stg	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+175	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

## MTTL

2048-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7620-512×4-Open-Collector MCM7621-512×4-Three-State


## DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit	
Supply Voltage	$V_{C C}$				Vdc	
MCM76x×DM		4.50	5.0	5.50		
MCM76××DC			4.75	5.0	5.25	
Input High Voltage	$V_{I H}$	2.0	-	-	Vdc	
Input Low Voltage	$V_{I L}$	-	-	0.8	Vdc	

DC CHARACTERISTICS


CAPACITANCE $\left(f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, periodically sampled rather than $100 \%$ tested.)

	Characteristic	Symbo!	Typ
Input Capacitance	$\mathrm{C}_{\text {in }}$	$\mathbf{8 . 0}$	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

TIMING DIAGRAM


## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical " 1 " (Output High). Any desired bit/output can be programmed to a Logical " 0 " (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
2. Disable the chip by applying input highs $\left(\mathrm{V}_{1 \mathrm{H}}\right)$ to the $\overline{\mathrm{CS}}$ input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
3. Disable the programming circuitry by applying an Output Voltage Disable of less than $V_{\text {OPD }}$ to the output of the PROM. The output may be left open to achieve the disable.
4. Raise $V_{C C}$ to $V_{P H}$ with rise time equal to $t_{r}$.
5. After a delay equal to or greater than $t_{d}$, apply a pulse with amplitude of $\mathrm{V}_{\text {OPE }}$ and duration of $t_{p}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
6. Other bits in the same word may be programmed while the $V_{C C}$ input is raised to $V_{P H}$ by applying
his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.
output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of $t_{d}$.
7. Lower $V_{C C}$ to 4.5 Volts following a delay of $t_{d}$ from the last programming enable pulse applied to an output.
8. Enable the PROM for verification by applying a logic " 0 " $\left(V_{I L}\right)$ to the $\overline{\mathrm{CS}}$ input.
9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

TABLE 1
PROGRAMMING SPECIFICATIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{1} \mathrm{H}$	Address Input	2.4	5.0	5.0	V
$V_{\text {IL }}$	Voltage(1)	0.0	0.4	0.8	V
$V_{\text {PH }}$	Programming/Verify	11.75	12.0	12.25	V
$V_{P L}$	Voltage to $V_{\text {CC }}$	4.5	4.5	5.5	$\checkmark$
${ }^{\text {I CCP }}$	Programming Voltage Current Limit	600	600	650	mA
	Programming ( $V_{\mathrm{CC}}$ )				
${ }_{\text {t }}$	Voltage Rise and	1	1	10	$\mu \mathrm{s}$
$t_{f}$	Fall Time	1	1	10.	$\mu \mathrm{s}$
$t_{d}$	Programming Delay	10	10	100	$\mu \mathrm{s}$
${ }^{\text {t }}$ p	Programming Pulse Width	100	-	1000	$\mu \mathrm{s}$
DC	Programming Duty Cycle	-	50	90	\%
	Output Voltage				
VOPE	Enable	10.0	10.5	11.0	V
$V_{\text {OPD }}$	Disable(2)	4.5	5.0	5.5	V
IOPE	Output Voltage Enable Current	2	4	10	mA
$\mathrm{T}_{\mathrm{C}}$	Case Temperature	-	25	75	${ }^{\circ} \mathrm{C}$

[^19]FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS


## 4096-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7640 through 43 PROMs comprise a completely compatible family having common dc electrical characteristics and identical programming requirements. They are fully-decoded, highspeed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical " 1 " (outputs high), and can be selectively programmed for logical " 0 " (outputs low).

The field-programmable PROM can be custom programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

All pinouts are compatible to industry-standard PROMs and ROMs.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure
(0.1 Second per 1024 Bits, Typical)
- Expandable - Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current - $250 \mu \mathrm{~A}$ Logic " 0 ", $40 \mu \mathrm{~A}$ Logic " 1 " Full Output Drive -16 mA Sink, 2.0 mA Source
- Fast Access Time - Guaranteed for Worst-Case $\mathrm{N}^{2}$ Sequencing; Over Commercial and Military Temperature and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	$V_{C C}$	+7.0	$V \mathrm{dc}$
Input Voltage	$V_{\text {in }}$	+5.5	$V \mathrm{dc}$
Output Voltage (operating)	VOH	+7.0	$V \mathrm{dc}$
Supply Cur rent	${ }^{1} \mathrm{CC}$	650	mAdc
Input Current	1 in	-20	, mAdc
Output Sink Current	10	100	mAdc
Operating Temperature Range MCM $76 \times \times$ DM MCM $76 \times x$ DC	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+175	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

## MTTL

4096-BIT PROGRAMMABLE READ ONLY MEMORIES

> MCM7640-512×8-Open-Collector
> MCM7641-512×8-Three-State
> MCM7642-1024×4-Open-Coliector
> MCM7643-1024×4-Three-State


DC OPERATING CONDITIONS AND CHARACTERISTICS
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage MCM $76 \times x$ DM MCM76××DC	$V_{\text {CC }}$	$\begin{array}{r} 4.50 \\ 4.75 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$	$\begin{array}{r} 5.50 \\ 5.25 \\ \hline \end{array}$	Vdc
Input High Voltage	$V_{\text {IH }}$	2.0	-	-	Vdc
Input Low Voltage	$V_{\text {IL }}$	-	-	0.8	Vdc

DC CHARACTERISTICS

			Open-Collector Output			Three-State Output			
Symbol	Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Unit
IRA, IRE IFA, IFE	Address/Enable $" 1 "$    Input Current $" 0 "$	$\begin{aligned} & V_{I H}=V_{C C} \text { Max } \\ & V_{I L}=0.45 V \end{aligned}$	-	$-0.1$	$\begin{gathered} 40 \\ -0.25 \end{gathered}$	-	-0.1	$\begin{gathered} 40 \\ -0.25 \end{gathered}$	$\mu$ Adc mAdc
$\mathrm{VOH}$ $\mathrm{V}_{\mathrm{OL}}$	$\begin{array}{ll}\text { Output Voitage } & \text { "1" } \\ & \text { " } 0 \text { " }\end{array}$	$\begin{aligned} & I_{O H}=-2.0 \mathrm{~mA}, V_{C C}=V_{C C} M \text { Min } \\ & I_{O L}=+16 \mathrm{~mA}, V_{C C}=V_{C C} M \text { in } \end{aligned}$	$N / A$	$0 . \overline{-}$	$\overline{0.45}$	$2.4$	$\begin{gathered} \hline 3.4 \\ 0.35 \end{gathered}$	$0.45$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$
IOHE   IOLE	Output Disabled " 1 "   Current $" 0 "$	$\begin{aligned} & V_{\mathrm{OH}}, V_{C C}=V_{C C} \operatorname{Max} \\ & V_{\mathrm{OL}}=+0.3, ~ V, V_{C C}=V_{C C} \operatorname{Max} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 100 \\ & \text { N/A } \end{aligned}$	-	-	$\begin{gathered} 100 \\ -100 \end{gathered}$	$\mu$ Adc $\mu$ Adc
${ }^{1} \mathrm{OH}$	Output Leakage "1"	$\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {CC }}$ Max	-	-	100	-	-	N/A	$\mu \mathrm{Adc}$
$\mathrm{V}_{\mathrm{CL}}$	Input Clamp Voltage	$\mathrm{I}_{\text {in }}=-10 \mathrm{~mA}$	-	-	-1.5	-	-	4.5	Vdc
Ios	Output Short Circuit Current	$\begin{aligned} & V_{C C}=V_{C C} \text { Max, } V_{\text {out }}=0.0 \mathrm{~V} \\ & \text { One Output Only for } 1 \text { s Max } \end{aligned}$	N/A	-	N/A	15	-	70	mAdc
Icc	Power Supply Current MCM7640/MCM7641 MCM1642/MCM7643	$V_{C C}=V_{C C} \operatorname{Max}$   All Inputs Grounded	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	mAdc   mAdc

CAPACITANCE ( $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested:)

	Characteristic	Symbol '	Typ
Input Capacitance	$\mathrm{C}_{\text {in }}$	Unit	
Output Capacitance	$\mathrm{C}_{\text {out }}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

ull ope	ted)		0 to $+70^{\circ} \mathrm{C}$		-55 to $+125^{\circ} \mathrm{C}$		Unit
Characteristic		Symbol	Typ	Max	Typ	Max	
Address to Output Access Time		${ }^{\text {t }}$ AA	45	70	45	85	ns
Chip Enable Access Time	MCM7640/7641 MCM7642/7643	tEA	30 15	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	30 15	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	ns



## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical " 1 " (Output High). Any desired bit/output can be programmed to a Logical " 0 " (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
2. Disable the chip by applying input highs ( $\mathrm{V}_{\mathbf{I H}}$ ) to the $\overline{\mathrm{CS}}$ input(s). CS inputs (MCM7640/41 only) must remain at $\mathrm{V}_{\mathrm{IH}}$ for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
3. Disable the programming circuitry by applying an Output Voltage Disable of less than VOPD to the output of the PROM. The output may be left open to achieve the disable.
4. Raise $V_{C C}$ to $V_{P H}$ with rise time equal to $t_{r}$.
5. After a delay equal to or greater than $t_{d}$, apply a pulse with amplitude of $\mathrm{V}_{\text {OPE }}$ and duration of $\mathrm{t}_{\mathrm{p}}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
6. Other bits in the same word may be programmed
his own programmer to satisfy the sepcifications described in Table 1 , or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.
while the $V_{C C}$ input is raised to $V_{P H}$ by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of $t_{d}$.
7. Lower $V_{C C}$ to 4.5 Volts following a delay of $t_{d}$ from the last programming enable pulse applied to an output.
8. Enable the PROM for verification by applying a logic " 0 " ( $V_{I L}$ ) to the $\overline{C S}$ input(s).
9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

TABLE 1
PROGRAMMING SPECIFICATIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{1 H}$	Address Input	2.4	5.0	5.0	V
$V_{\text {IL }}$	Voltage(1)	0.0	0.4	0.8	V
VPH	Programming/Verify	11.75	12.0	12.25	V
VPL	Voltage to $V_{C C}$	4.5	4.5	5.5	V
ICCP	Programming Voltage Current Limit	600	600	650	mA
	Programming ( $\mathrm{V}_{\mathrm{CC}}$ )				
$\mathrm{t}_{\mathrm{r}}$	Voltage Rise and	1	1	10	$\mu s$
$\mathrm{tf}_{f}$	Fall Time	1	1	10	$\mu \mathrm{s}$
$t_{d}$	Programming Delay	10	10	100	$\mu \mathrm{s}$
${ }^{\text {p }}$ p	Programming Pulse Width	100	-	1000	$\mu \mathrm{s}$
DC	Programming Duty Cycle	-	50	90	\%
	Output Voltage				
V OPE	Enable	10.0	10.5	11.0	$v$
$V_{\text {OPD }}$	Disable (2)	4.5	5.0	5.5	$\checkmark$
IOPE	Output Voltage Enable Current	2	4	10	mA
$\mathrm{T}_{\mathrm{C}}$	Case Temperature	-	25	75	${ }^{\circ} \mathrm{C}$

[^20]FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS


## 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7680/81 together with the MCM7620/21,MCM7640/43 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical " 1 " (outputs high), and can be selectively programmed for logical " 0 " (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7680 and 81 are pin compatible replacement for the $512 \times 8$ with pin 2 connected as A9 on the $1024 \times 8$.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 second per 1024 Bits, Typical)
- Expandable - Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current - $250 \mu \mathrm{~A}$ Logic " 0 ", $40 \mu \mathrm{~A}$ Logic " 1 " Full Output Drive - 16 mA Sink, 2.0 mA Source
- Fast Access Time - Guaranteed for Worst-Case

N2 Sequencing, Over Commercial and Military
Temperature Ranges

- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	$\mathrm{V}_{\mathrm{CC}}$	+7.0	$V \mathrm{dc}$
Input Voltage	$V_{\text {in }}$	+5.5	$V \mathrm{dc}$
Output Voltage (operating)	$\mathrm{V}_{\mathrm{OH}}$	$+7.0$	Vdc
Supply Current	${ }^{1} \mathrm{CC}$	650	mAdc
Input Current	1 in	-20	mAdc
Output Sink Current	$\mathrm{I}_{0}$	100	mAdc
Operating Temperature Range   MCM $76 \times \times D M$   MCM $76 \times x D C$	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJ	+175	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

## MTTL <br> 8192-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7680-1024 $\times 8$ - Open-Collector MCM7681-1024 $\times 8$ - Three-State


## DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage   MCM $76 \times \times \mathrm{DM}$   MCM $76 \times \times \mathrm{DC}$	$\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & 4.50 \\ & 4.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.50 \\ 5.25 \\ \hline \end{array}$	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	-	Vdc
Input Low Voltage	$V_{\text {IL }}$	-	-	0.8	Vdc

DC CHARACTERISTICS

			Open-Collector Output			Three-State Output			
Symbol	Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Unit
${ }^{\text {IRA, IRE }}$	Address/Enable '"1"	$V_{\text {IH }}=V_{\text {CC }}$ Max	-	-	40	-	-	40	$\mu$ Adc
IFA, 'FE	Input Current ' 0 "	$V_{\text {IL }}=0.45 \mathrm{~V}$	-	-0.1	-0.25	-	-0.1	-0.25	mAdc
$\mathrm{V}_{\mathrm{OH}}$	Output Voltage "1"	$\mathrm{I}^{\mathrm{OH}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Min}$	N/A	-	-	2.4	3.4	--	Vdc
$\mathrm{V}_{\mathrm{OL}}$	" 0 "	$\mathrm{I}_{\mathrm{OL}}=+16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Min}$	-	0.35	0.45	-	0.35	0.45	Vdc
'OHE	Output Disabled "1"	$\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CC }}$ Max	-	-	100	-	-	100	MAdc
1OLE	Current " 0 "	$\mathrm{V}_{\text {OL }}=+0.3 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {CC }} \mathrm{Max}$	-	-	N/A	-	-	-100	$\mu \mathrm{Adc}$
${ }^{\mathrm{I}} \mathrm{OH}$	Output Leakage "1"	$\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {CC }}$ Max	-	-	100	-	-	N/A	$\mu \mathrm{Adc}$
$\mathrm{V}_{\mathrm{CL}}$	Input Clamp Voltage	$\mathrm{I}_{\text {in }}=-10 \mathrm{~mA}$	-	-	-1.5	-	-	-1.5	$V \mathrm{dc}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current	$V_{C C}=V_{C C} \text { Max, } V_{\text {out }}=0.0 \mathrm{~V}$ $\text { One Output Only for } 1 \text { s Max }$	N/A	$\cdots$	N/A	15	-	70	mAdc
ICC	Power Supply Current MCM7680/MCM7681DC MCM $7680 / \mathrm{MCM} 7681 \mathrm{DM}$	$v_{C C}=v_{C C} \operatorname{Max}$   All Inputs Grounded	-	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 150 \\ & 170 \end{aligned}$	-	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 150 \\ & 170 \end{aligned}$	mAdc   mAdc

CAPACITANCE ( $f=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

	Characteristic	Symbol	Typ
Input Capacitance	$\mathrm{C}_{\text {in }}$	8.0	Unit
Output Capacitance	$\mathrm{C}_{\text {out }}$	pF	

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)



## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical " 0 " (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
2. Disable the chip by applying inputs highs $\left(\mathrm{V}_{\mathrm{IH}}\right)$ to the $\overline{C S}$ inputs. CS inputs must remain at $V_{1 H}$ for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
3. Disable the programming circuitry by applying an Output Voltage Disable of less than $V_{\text {OPD }}$ to the output of the PROM. The output may be left open to achieve the disable.
4. Raise $V_{C C}$ to $V_{P H}$ with rise time equal to $t_{r}$.
5. After a delay equal to or greater than $t_{d}$, apply a pulse with amplitude of $V_{\text {OPE }}$ and duration of $t_{p}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
6. Other bits in the same word may be programmed
his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.
while the $V_{C C}$ input is raised to $V_{P H}$ by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of $t_{d}$.
7. Lower $V_{C C}$ to 4.5 Volts following a delay of $t_{d}$ from the last programming enable pulse applied to an output.
8. Enable the PROM for verification by applying a logic " 0 " $\left(V_{I L}\right)$ to the $\overline{C S}$ inputs.
9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

TABLE 1
PROGRAMMING SPECIFICATIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IH }}$	Address Input	2.4	5.0	5.0	V
$V_{\text {IL }}$	Voltage (1)	0.0	0.4	0.8	$V$
$V_{\text {PH }}$	Programming/Verify	11.75	12.0	12.25	$V$
VPL	Voltage to $\mathrm{V}_{\mathrm{CC}}$	4.5	4.5	5.5	$V$
${ }^{1} \mathrm{CCP}$	Programming Voltage Current Limit	600	600	650	$m A$
	Programming ( $V_{\mathrm{CC}}$ )				
$t_{r}$	Voltage Rise and	1	1	10	$\mu s$
$\mathrm{tf}_{f}$	Fall Time .	1	1	10	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d}}$	Programming Delay	10	10	100	$\mu s$
$t_{p}$	Programming Pulse Width	100	-	1000	$\mu s$
DC	Programming Duty Cycle	-	50	90	\%
	Output Voltage				
VOPE	Enable	10.0	10.5	11.0	$v$
VOPD	Disable (2)	4.5	5.0	5.5	$V$
IOPE	Output Voltage Enable Current	2	4	10	mA
TC	Case Temperature	-	25	75	${ }^{\circ} \mathrm{C}$

[^21]FIGURE 1 - TYPICAL. PROGRAMMING WAVEFORMS


## Advance Information

## 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7684/85 together with the MCM7620/21/40/41/42/43/ 80/81 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both opencollector and three-state outputs. All bits are manufactured storing a logical " 1 " (outputs high), and can be selectively programmed for logical " 0 " (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7684 and 85 are pin compatible replacement for the $1024 \times 4$ with pin 8 connected as A10 on the $2048 \times 4$.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure
( 0.1 second per 1024 Bits, Typical)
- Expandable - Open-Collector or Three-State

Outputs and Chip Enable Input

- Inputs and Outputs TTL-Compatible

Low Input Current - $250 \mu \mathrm{~A}$ Logic " 0 ", $40 \mu \mathrm{~A}$ Logic " 1 "
Full Output Drive - 16 mA Sink, 2.0 mA Source

- Fast Access Time - Guaranteed for Worst-Case N2 Sequencing, Over Commercial and Military
Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	$V_{\text {cc }}$	+7.0	Vdc
Input Voltage	$V_{\text {in }}$	+5.5	Vd d
Output Voltage (operating)	$\mathrm{V}_{\mathrm{OH}}$	+7.0	Vdc
Supply Current	ICC	650	mAdc
Input Current	1 in	-20	mAdc
Output Sink Current	10	100	mAdc
Operating Temperature Range MCM $76 \times x$ DM   MCM76xxDC	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJ	+175	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

## MTTL <br> 8192-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7684-2048 $\times$ 4-Open-Collector MCM7685-2048×4-Three-State


## DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

, Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$				Vdc
MCM76××DM		4.50	5.0	5.50	
MCM76××DC		4.75	5.0	5.25	
Input High Voltage	$V_{1 H}$	2.0	-	-	
Input Low Voltage	$V_{1 L}$	-	-	0.8	$V d c$

DC CHARACTERISTICS

(Over Recommended Operating Temperature Range)			Open-Collector Output			Three-State Output			
Symbal	Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Unit
IRA. IRE IFA, IFE	Address/Enable Input Current " 0 "	$\begin{aligned} & V_{1 H}=V_{C C} \text { Max } \\ & V_{\text {IL }}=0.45 \mathrm{~V} \end{aligned}$	-	$-0.1$	$\begin{gathered} 40 \\ -0.25 \\ \hline \end{gathered}$	-	$-0.1$	$\begin{array}{r} 40 \\ -0.25 \\ \hline \end{array}$	$\mu \mathrm{Adc}$   mAdc
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	Output Voltage ${ }^{\text {" } 1 \text { " }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=+16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Min} \end{aligned}$	$\mathrm{N} / \mathrm{A}$	$0.35$	$0.45$	$2.4$	$\begin{gathered} 3.4 \\ 0.35 \end{gathered}$	$\stackrel{-}{0.45}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$
$\begin{aligned} & \hline \mathrm{OHZ} \\ & \mathrm{I} \mathrm{OLZ} \\ & \hline \end{aligned}$	Output Disabled " $1 "$   Current " 0 "	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}, \mathrm{~V}_{\mathrm{CC}} \text { Max } \\ & \mathrm{V}_{\mathrm{OL}}=+0.3 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}} \operatorname{Max} \\ & \hline \end{aligned}$			$\begin{aligned} & 100 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	-	-	$\begin{gathered} 100 \\ -100 \end{gathered}$	$\mu \mathrm{Adc}$   $\mu \mathrm{Adc}$
${ }^{\text {IOH}}$	Output Leakage "1".	$\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{CC}}$ Max	-	-	100	-	-	N/A	$\mu \mathrm{Adc}$
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\text {in }}=-10 \mathrm{~mA}$	-	-	-1.5	-	-	-1.5	Vdc
Ios	Output Short Circuit Current	$\begin{aligned} & V_{\text {CC }} \text { Max, } V_{\text {out }}=0.0 \mathrm{~V} \\ & \text { One Output Only for } 1 \mathrm{~s} \text { Max } \end{aligned}$	N/A	-	N/A	15	-	70	mAdc
${ }^{\text {ICC }}$	Power Supply Current MCM7684/MCM7685 DC MCM7684/MCM7685 DM	VCC Max   All Inputs Grounded	-	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	mAdc mAdc

CAPACITANCE ( $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

	Characteristic	Symbol	Typ
Input Capacitance	$\mathrm{C}_{\text {in }}$	8.0	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

Full ope		0 to $+70^{\circ} \mathrm{C}$		-55 to $+125^{\circ} \mathrm{C}$		
Characteristic	Symbol	Typ	Max	Typ	Max	Unit
Address to Output Access Time	${ }^{t}$ AA	45	70	45.	85	ns
Chip Enable Access Time	${ }^{t}$ EA	15	25	15	30	ns




## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical " 1 " (Output High). Any desired bit/output can be programmed to a Logical " 0 " (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
2. Disable the chip by applying an input high $\left(V_{I H}\right)$ to the $\overline{\mathrm{CS}}$ input. The chip select is TTL.compatible. An open circuit should not be used to disable the chip.
3. Disable the programming circuitry by applying an Output Voltage Disable of less than $V_{\text {OPD }}$ to the output of the PROM. The output may be left open to achieve the disable.
4. Raise $V_{C C}$ to $V_{P H}$ with rise time equal to $t_{r}$.
5. After a delay equal to or greater than $t_{d}$, apply a pulse with amplitude of $V_{\text {OPE }}$ and duration of $t_{p}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
6. Other bits in the same word may be programmed
his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.
while the $V_{\mathrm{CC}}$ input is raised to $\mathrm{V}_{\mathrm{PH}}$ by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of $t_{d}$.
7. Lower $V_{C C}$ to 4.5 Volts following a delay of $t_{d}$ from the last programming enable pulse applied to an output.
8. Enable the PROM for verification by applying a logic " 0 " $\left(\mathrm{V}_{I}\right)$ to the $\overline{\mathrm{CS}}$ inputs.
9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

TABLE 1
PROGRAMMING SPECIFICATIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{1 \mathrm{H}}$	Address Input	2.4	5.0	5.0	V
$V_{\text {IL }}$	Voltage (1)	0.0	0.4	0.8	V
$\mathrm{V}_{\text {PH }}$	Programming/Verify	11.75	12.0	12.25	V
VPL	Voltage to $\mathrm{V}_{\mathrm{CC}}$	4.5	4.5	5.5	$\checkmark$
${ }^{\text {I CCP }}$	Programming Voltage Current Limit	600	600	650	mA
	Programming ( $\mathrm{V}_{\mathrm{CC}}$ )				
${ }^{\text {t }}$	Voltage Rise and	1	1	10	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time	1	1	10	$\mu \mathrm{s}$
$t_{d}$	Programming Delay	10	10	100	$\mu \mathrm{s}$
$t_{p}$	Programming Pulse Width	100	-	1000	$\mu \mathrm{s}$
DC	Programming Duty Cycle	-	50	90	\%
	Output Voltage				
VOPE	Enable	10.0	10.5	11.0	V
$V_{\text {OPD }}$	Disable(2)	4.5	5.0	5.5	$V$
IOPE	Output Voltage Enable Current	2	4	10	mA
TC	Case Temperature	-	25	75	${ }^{\circ} \mathrm{C}$

[^22]FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS


## MECL MEMORIES GENERAL INFORMATION

Complete information is available in the MECL Data Book. Contact your sales representative or authorized distributor for information.

TABLE 1 - LIMITS beyond Which device life may be impaired

Characteristic	Symbol	Rating	Unit
Supply Voltage	$V_{\text {EE }}$	-8.0 to 0	V
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{\text {in }}$	0 to $V_{E E}$	V
$\begin{gathered} \hline \text { Output Source Current - Continuous } \\ \text { Surge } \\ \hline \end{gathered}$	'out	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	mA
Junction Temperature - Ceramic Package (1) Plastic Package	$T_{J}$	$\begin{aligned} & 165 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Maximum $T_{J}$ may be exceeded $\left(\leqslant 250^{\circ} \mathrm{C}\right)$ for short periods of time ( $\leqslant 240$ hours) without significant reduction in device life.

TABLE 2 - LIMITS BEY OND WHICH PERFORMANCE MAY BE DEGRADED

Characteristic	Symbol	Rating	Unit
Supply Voltage ( $V_{C C}=0$ ) 2	$V_{\text {EE }}$	-4.94 to -5.46	$\checkmark$
$\begin{array}{r} \text { Output Drive - MCM10100 Series } \\ \text { MCM10500 Series } \end{array}$	-	$\begin{gathered} 50 \Omega \text { to }-2.0 \mathrm{~V} \\ 100 \Omega \text { to }-2.0 \mathrm{~V} \end{gathered}$	$\Omega$
Operating Temperature Range   MCM10100 Series   MCM10500 Series	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} 0 \text { to } 75 \\ -55 \text { to }+125 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$

(2.) Functionality only. Data sheet limits are specified for -5.19 to -5.21 V .
(3) With airflow 200 Ifpm.

## MECL MEMORIES (continued)

TABLE 3 - DC TEST PARAMETERS
Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear feet per minute is maintained. $V_{E E}=-5.2 \mathrm{~V} \pm 0.010 \mathrm{~V}$.

Forcing   Function	Parameter	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
		MCM10500*	MCM10100**	MCM10100**	MCM10500*	MCM10100**	MCM10500*
$V_{\text {IHmax }}$	$V_{\text {OHmax }}$	-0.880	- 0.840	-0.810	-0.780	-0.720	-0.630
	${ }^{\circ} \mathrm{OHmin}$	-1.080	-1.000	-0.960	-0.930	-0.900	-0.825
	Vohamin	-1.100	-1.020	-0.980	-0.950	-0.920	-0.845
IHAmin   $V_{\text {ILAmin }}$		-1.255	-1.145	-1.105	-1.105	-1.045	-1.000
		-1.510	-1.490	-1.475	-1.475	-1.450	-1.400
	$V_{\text {OLAmin }}$	-1.635	-1.645	-1.630	-1.600	-1.605	-1.525
	VOLAmax	-1.655	-1.665	-1.650	-1.620	-1.625	-1.545
$V_{\text {ILmin }}$   $V_{\text {ILmin }}$	$\checkmark$ OLmin	-1.920	-1.870	-1.850	-1.850	-1.830	-1.820
	IINLmin	0.5	0.5	0.5	0.5	0.3	0.3

*Driving $100 \Omega$ to -2.0 V .
**Driving $50 \Omega$ to -2.0 V .


All timing measurements referenced to $50 \%$ of input levels.
$R_{T}=50 \Omega$
$C_{L} \leqslant 5.0$ pF (including jig and strav capacitance)
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

## MECL MEMORIES (continued)

FIGURE 2 - CHIP SELECT ACCESS TIME WAVEFORM


FIGURE 3 - ADDRESS ACCESS TIME WAVEFORM


FIGURE 4 - SETUP AND HOLD WAVEFORMS (WRITE MODE)


## $8 \times 2$ MULTIPORT REGISTER FILE <br> (RAM)

The MCM10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

## WRITE

The word to be written is selected by addresses $A_{0}-A_{2}$. Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by $A_{0}-A_{2}$.

## READ

When the clock is high any two words may be read out simultaneously, as selected by addresses $\mathrm{B}_{0}-\mathrm{B}_{2}$ and $\mathrm{C}_{0}-\mathrm{C}_{2}$, including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on

PIN ASSIGNMENT the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates $\left(\mathrm{B}_{0}-\mathrm{B}_{1}\right),\left(\mathrm{C}_{0}-\mathrm{C}_{1}\right)$.
${ }^{t}$ pd:
Clock to Data out $=5 \mathrm{~ns}$ (typ)
(Read Selected)
Address to Data out $=10 \mathrm{~ns}$ (typ)
(Clock High)

(Clock high, Addresses present)
$P_{D}=610 \mathrm{~mW} / \mathrm{pkg}$ (typ no load)

TRUTH TABLE											
-MODE	INPUT							OUTPUT			
	* * Clock	$\overline{W E}_{0}$	$\overline{W E}_{1}$	$\mathrm{D}_{0}$	$\mathrm{D}_{1}$	$\overline{\text { ¢E }}_{8}$	$\overline{\mathrm{RE}}_{\mathrm{C}}$	$\mathrm{QBO}_{0}$	OB 1	$\mathrm{QC}_{0}$	QC 1
Write	$\mathrm{L} \rightarrow \mathrm{H}$	L	L	${ }^{\mathrm{H}}$	H	$\mathrm{H}^{+}$	H	L	L	L	L
Read	H	¢	$\bigcirc$	¢	$\bigcirc$	L	L	H	H	H	H
Read	$\mathrm{H} \rightarrow \mathrm{L}$	$\phi$	$\phi$	$\phi$	$\bigcirc$	L	L	H	H	H	H
Read	$\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$	H	H	$\bigcirc$	0	$L$	$L$	H	H	H	H
Write	$\mathrm{L} \rightarrow \mathrm{H}$	L	$L$	L.	H	H	H	L.	L	L	L
Read	H	$\phi$	$\phi$	$\bigcirc$	¢	$L$	L	L.	H	L	H

[^23]
## MCM10143



ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	IE	-	150	-	118	150	-	150	mAdc
Input Current Pins 10, 11, 19 All other pins	$\mathrm{l}_{\mathrm{inH}}$	-	245 200	-	-	245 200	-	245 200	$\mu$ Adc
Switching Times (1)   Read Mode   Address Input   Read Enable   Data   Setup   Address   Hold   Address   Write Mode   Setup   Write Enable   Address   Data   Hold   Write Enable   Address   Data   Write Pulse Width   Rise Time, Fall Time (20\% to 80\%)									ns
	$\mathrm{t}_{\mathrm{B}} \pm \mathrm{OB} \pm$	4.0	15.3	4.5	10	14.5	4.5	15.5	
	t $\overline{\mathrm{RE}}-\mathrm{QB}+$	1.1	5.3	1.2	3.5	5.0	1.2	5.5	
	t Clock + Q -	1.7	7.3	2.0	5.0	7.0	2.0	7.6	
	tsetup(B-Clock-)	-	-	8.5	5.5	-	-	-	
	thold (Clock-B+)	-	-	-1.5	-4.5	-	-	-	
	$\mathrm{t}_{\text {setup }}(\overline{\mathrm{WE}}-$ Clock + )	-	-	7.0	4.0	-	-	-	
	${ }^{\text {t }}$ setup ( $\overline{W E}+$ Clock - )	-	-	1.0	-2.0	-	-	-	
	$\mathrm{t}_{\text {setup ( }}$ ( -Clock + )	-	-	8.0	5.0	-	-	-	
	tsetup( D -Clock + )	-	-	5.0	2.0	-	-	-	
	thold (Clock $+\overline{\text { WE }}+$ )	-	-	5.5	2.5	-	-	-	
	thold (Clock $+\overline{W E}-$ )	-	-	1.0	-2.0	-	-	-	
	thold (Clock + A + )	-	-	1.0	-3.0	-	-	-	
	thold (Clock + D + )	-	-	1.0	-2.0	-	-	-	
	PWWE	-	-	8.0	5.0	-	-	-	
	$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	1.1	4.2	1.1	2.5	4.0	1.1	4.5	

(1)AC timing figures do not show all the necessary presetting conditions.

## MCM10143

## READ TIMING DIAGRAMS

Access (Clock High)


Enable


FIGURE 2

Setup and Hold


FIGURE 4

## Enable Setup



Enable Hold


FIGURE 6



Address


Figure 9


The MCM10144/10544 is a 256 word $X$ 1-bit RAM. Bit selection is achieved by means of an 8-bit address A0 through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM ( $\overline{C S}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{\text {in }}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Dout.

- Typical Address Access Time = 17 ns
- Typical Chip Select Access Time $=4.0 \mathrm{~ns}$
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on Chip Select
- Power Dissipation ( 470 mW typ@ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

- Pin-for-Pin Replacement for F10410

TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{C S} *$	$\overline{W E}$	$D_{\text {in }}$	$D_{\text {out }}$
Wrițe "0"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	Q
Disabied	H	$\phi$	$\phi$	L

- $\overline{\mathrm{CS}}=\overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2}+\overline{\mathrm{CS} 3}$
$\phi=$ Don't Care.


F SUFFIX
CERAMIC PACKAGE CASE 650

PIN ASSIGNMENT


## MCM10144/MCM10544

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125{ }^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	IEE	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu$ Adc

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10144		MCM10544		Unit	Conditions
		$\begin{gathered} \mathrm{T}_{A}=0 \text { to } \\ +75^{\circ} \mathrm{C}, \\ V_{\mathrm{EE}}= \\ -5.2 \mathrm{Vdc} \\ \pm 5 \% \end{gathered}$		$\left\lvert\, \begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{to} \\ +125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{EE}}= \\ -5.2 \mathrm{Vdc} \\ \pm 5 \% \end{gathered}\right.$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time   Chip Select Recovery Time   Address Access Time	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{ACS} \\ & \mathrm{t}_{\mathrm{t}} \mathrm{RCS} \\ & { }^{\mathrm{t} A A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 26 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 26 \end{aligned}$	ns	Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write   Address Hold Time After Write   Chip Select Setup Time Prior to Write   Chip Select Hold Time After Write Write Disable Time   Write Recovery Time	${ }^{t} W$   tWSD   tWHD   tWSA   tWHA   twSCS   twhes   tws   twR	$\begin{aligned} & 25 \\ & 2.0 \\ & 2.0 \\ & 8.0 \\ & 0.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	- - - - - - - 10 10	$\begin{aligned} & 25 \\ & 2.0 \\ & 2.0 \\ & 8.0 \\ & 0.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & 10 \\ & 10 \end{aligned}$	ns	$\mathrm{t}_{\mathrm{WSA}}=8.0 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. $\mathrm{t}_{\mathrm{W}}=25 \mathrm{~ns}$
Rise and Fall Time   Address to Output $\overline{\mathrm{CS}}$ or $\overline{W E}$ to Output	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{array}{r} 1.5 \\ 1.5 \end{array}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns	Measured between 20\% and $80 \%$ points.
Capacitance Input Capacitance Output Capacitance	$C_{\text {in }}$ Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, M C M 10144 ; 100 \Omega, M C M 10544 . C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance). Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

## 16 X 4-BIT REGISTER FILE <br> (RAM)



## MCM10145/MCM10545

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	Unit
		Min Max	Min Max	Min Max	Min Max	Min Max	
Power Supply Drain Current	lee	- 135	- 130	- 125	- 120	- 120	mAdc
Input Current High	1 inH	- 375	- 220	- 220	- 220	- 220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM 10145   $\mathrm{~T}_{\mathrm{A}}=0$ to   $+75^{\circ} \mathrm{C}$,   $\mathrm{VEE}^{2}=$   -5.2 Vdc   $\pm 5 \%$		MCM10545   $\mathrm{T}_{\mathrm{A}}=-55 \mathrm{to}$   $+125^{\circ} \mathrm{C}$,   $\mathrm{V}_{\mathrm{EE}}=$   -5.2 Vdc   $\pm 5 \%$		Unit	Conditions
		Min	Max	Min	Max		
Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & 15 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 18 \end{aligned}$	ns	Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write   Address Hold Time After Write Chip Select Setup Time Prior to Write   Chip Select Hold Time After Write Write Disable Time Write Recovery Time	${ }^{t} W$   twSD   tWHD   tWSA   tWHA   twSCS   twhCS   tws   twR	$\begin{gathered} 8.0 \\ 0 \\ 3.0 \\ 5.0 \\ 1.0 \\ 0 \\ \\ 0 \\ 2.0 \\ 2.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & 8.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 0 \\ 4.0 \\ 5.0 \\ 3.0 \\ 5.0 \\ \\ 0 \\ 2.0 \\ 2.0 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns	${ }^{\mathrm{t}} \mathrm{WSA}=5 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. $\mathrm{t}_{\mathrm{W}}=8 \mathrm{~ns}$
Chip Enable Strobe Mode   Data Setup Prior to Chip Select   Write Enable Setup Prior to   Chip Select   Address Setup Prior to Chip Select   Data Hold Time After Chip Select   Write Enable Hold Time After   Chip Select   Address Hold Time After Chip   Select   Chip Select Minimum Pulse Width	${ }^{t}$ CSD   ${ }^{t} \mathrm{CSW}$   ${ }^{t} \mathrm{CSA}$   ${ }^{t} \mathrm{CHD}$   ${ }^{t} \mathrm{CHW}$   ${ }^{t} \mathrm{CHA}$   ${ }^{t} \mathrm{CS}$	0 0   0   2.0   0   4.0   18		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$-$	ns	Guaranteed but not tested on standard product. See Figure 1.
Rise and Fall Time Address to Output $\overline{\mathrm{CS}}$ to Output	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tff}^{\text {f }}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns	Measured between 20\% and $80 \%$ points.
Capacitance Input Capacitance Output Capacitance	$C_{i n}$   Cout	-	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, M C M 10145 ; 100 \Omega, M C M 10545 . C_{L} \leqslant 5.0$ pF (including jig and Stray Capacitance). Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive loads up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

## MCM10146/MCM10546

## $1024 \times 1$-BIT RANDOM ACCESS MEMORY



The MCM10146/10546 is a $1024 \times 1$-bit RAM. Bit selection is achieved by means of a 10 -bit address, A0 to A9.

The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM (CS input low) is con'trolled by the $\bar{W} \bar{E}$ input. With $\overline{W E}$ low, the chip is in the write mode, the output, Dout, is low and the data state present at $\mathrm{D}_{\text {in }}$ is stored at the selected address. With WE high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at Dout. (See Truth Table.)

- Pin-for-Pin Compatible with the 10415
- Power Dissipation ( 520 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns
- $50 \mathrm{k} \Omega$ Pulldown Resistor on Chip Select Input


## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	${ }^{\text {I E E }}$	-	155	-	150	-	145	-	125	-	125	mAdc
Input Current High	$\mathrm{l}_{\text {inH }}$	-.	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$
Logic '0' Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.970	$-1.655$	-1.920	-1.665	-1.900	-1.650	$-1.880$	-1.625	-1.870	-1.545	V dc

NOTE: $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MCM 105 XX only.

SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	$\begin{gathered} \text { MCM } 10146 \\ \mathrm{~T}_{\mathrm{A}}=0 \text { to } \\ +75^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \\ \pm 5 \% \end{gathered}$		MC	546	Unit	Conditions
				$\begin{aligned} \mathrm{T}_{A} & =-55 \text { to } \\ & +125^{\circ} \mathrm{C} \\ \mathrm{VEE} & =-5.2 \mathrm{Vdc} \\ & \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & t_{\mathrm{A}}^{\mathrm{ACCS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & 40 \\ & \hline \end{aligned}$	ns	Measured at $50 \%$ of input to $50 \%$ of output.   See Note 2.
Write Mode   Write Pulse Width   (To guarantee writing)   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write   Address Hold Time After Write   Chip Select Setup Time Prior to   Write   Chip Select Hold Time After Write   Write Disable Time   Write Recovery Time	$\begin{gathered} \text { tW } \\ \text { tWSD } \\ \text { tWHD } \\ \text { tWSA } \\ \text { tWHA } \\ \text { tWSCS } \\ \text { twh } \\ \text { tWHCS } \\ \text { tWS } \\ \text { tWR } \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & 5.0 \\ & 5.0 \\ & 8.0 \\ & 2.0 \\ & 5.0 \\ & \\ & 5.0 \\ & 2.8 \\ & 2.8 \end{aligned}$	- - - - - - - 7.0 7.0	$\begin{aligned} & 25 \\ & 5.0 \\ & 5.0 \\ & 10 \\ & 8.0 \\ & 5.0 \\ & \\ & 5.0 \\ & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & 12 \\ & 12 \end{aligned}$	ns	${ }^{t} \text { WSA }=8.0 \mathrm{~ns} .$   Measured at 50\% of input to $50 \%$ of output. $t_{w}=25 \mathrm{~ns}$
Rise and Fall Time $\overline{\mathrm{CS}}$ or $\overline{W E}$ to Output   Address to Output	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	ns	Measured between 20\% and 80\% points.
Capacitance Input Capacitance Output Capacitance	$C_{\text {in }}$ Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, M C M 10146 ; 100 \Omega, M C M 10546 . C_{L} \leqslant 5.0$ pf including jig and stray capacitance. For Capacitance Loading $\leqslant 50 \mathrm{pF}$, delay should be derated by $30 \mathrm{ps} / \mathrm{pF}$.
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.


The MCM1047/10547 is a fast 128 -word $X$ 1-bit RAM. Bit selection is achieved by means of a 7 -bit address, A0 through A6.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system performance.

The operating mode ( $\overline{C S}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{i n}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at Dout.

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- $50 \mathrm{k} \Omega$ input Pulldown Resistors on All Inputs
- Power Dissipation ( 420 mW typ@ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

- Similar to F10405

PIN ASSIGNMENT


LSUFFIX
CERAMIC PACKAGE
CASE 620

TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{C S}{ }^{*}$	$\overline{W E}$	$D_{\text {in }}$	Dout
Write "O"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	Q
Disabled	H	$\phi$	$\phi$	L

$\cdot \overline{\mathrm{CS}}=\overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2} \quad \phi=$ Don't Care.

F SUFFIX
CERAMIC PACKAGE CASE 650

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	IEE	-	115	-	105	-	100	-	95	-	95	mAdc
Input Current High	linh	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC $105 \times x$ devices only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCN	147			Unit	Conditions
		$\begin{aligned} \mathrm{T}_{A} & =0 \text { to }+75^{\circ} \mathrm{C}, \\ V_{E E} & =-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}+5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time   Chip Select Recovery Time   Address Access Time	$\begin{aligned} & \text { taCS } \\ & \mathrm{t}_{\mathrm{A} R \mathrm{~B}} \\ & { }^{\mathrm{t} A A} \\ & \hline \end{aligned}$	2.0 2.0 5.0	$\begin{gathered} 8.0 \\ 8.0 \\ 15 \\ \hline \end{gathered}$	*	**	ns	Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode						ns	tWSA $=4.0 \mathrm{~ns}$
Write Pulse Width	tw	8.0 ..	-	*	-		Measured at 50\% of input
Data Setup Time Prior to Write	${ }^{\text {t WSD }}$	1.0	-	*	-		to $50 \%$ of output.
Data Hold Time After Write	${ }^{\text {t WHD }}$	. 3.0	-	*	-		${ }^{t} \mathrm{~W}=8.0 \mathrm{~ns}$.
Address Setup Time Prior to Write	tWSA	- 4.0	-	*	-		
Address Hold Time After Write	tWHA	3.0	-	*	-		
Chip Select Setup Time Prior to Write	twscs	1.0	-	*	-		
Chip Select Hold Time After Write	twhCs	1.0	-	*	-		
Write Disable Time	tws	2.0	8.0	*	*		
Write Recovery Time	tWR	2.0	8.0	*	*		
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	5.0	*	*	ns	Measured between 20\% and 80\% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	$\mathrm{C}_{\mathrm{in}}$	-	5.0	-	*		technique.
Output Capacitance	$\mathrm{C}_{\text {out }}$	-	8.0	-	*		

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega$, MCM10147; $100 \Omega$, MCM10547.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance).
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
*To be determined; contact your Motorola representative for up-to-date information.


PIN ASSIGNMENT



L SUFFIX CERAMIC PACKAGE

CASE 620

The MCM10148/10548 is a fast 64-word $X$ 1-bit RAM. Bit selection is achieved by means of a 6-bit address, AO through A5.

The activelow chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system performance.

The operating mode ( $\overline{C S}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{\text {in }}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at Dout.

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on All Inputs
- Power Dissipation ( 420 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

TRUTH TABLE

MODE	INPUT			OUTPUT
	CS'	WE	$\mathrm{D}_{\text {in }}$	Dout
Write " 0 "	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	0
Disabled	H	$\phi$	$\phi$	L

$\bullet \overline{\mathrm{CS}} \leq \overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2}+\overline{\mathrm{CS} 3} \quad \phi=$ Don't Care

F SUFFIX
CERAMICPACKAGE CASE 650

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	IEE	--	115	-	105	-	100	-	95	-	95	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

Characteristics						Unit	Conditions
		$\begin{aligned} T_{A} & =0 \text { to }+75^{\circ} \mathrm{C}, \\ V_{E E} & =-5.2 \mathrm{Vdc}+5 \% . \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C}, \\ & V_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode						ns	Measured from $50 \%$ of input to $50 \%$ of output. See Note 2.
Chip Select Access Time	${ }^{t}$ ACS	-	7.5	-	*		
Chip Select Recovery Time	tres	$\cdots$	7.5	--	*		
Address Access Time	${ }^{t}$ AA	-	15	--	*		
Write Mode			-			ns	tWSA $=5.0 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. ${ }^{\mathrm{t}} \mathrm{~W}=8.0 \mathrm{~ns} .$
Write Pulse Width	tw	8.0					
Data Setup Time Prior to Write	*WSD	3.0					
Data Hold Time After Write	${ }^{\text {tWHD }}$	2.0	--				
Address Setup Time Prior to Write	tWSA	5.0	-				
Address Hold Time After Write	${ }^{\text {tWHA }}$	3.0	--				
Chip Select Setup Time Prior to Write	twscs	3.0	-				
Chip Select Hold Time After Write	twHCS	0	--				
Write Disable Time	${ }^{\text {t }}$ WS	2.0	7.5				
Write Recovery Time	twr	2.0	7.5				
Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	5.0	*	*	ns	Measured between 20\% and $80 \%$ points.
Capacitance			5.08.0	--	*	pF	Measured with a pulse technique.
Input Capacitance ${ }^{\text {c }}$	$\mathrm{c}_{\text {in }}$	-					
Output Capacitance	$\mathrm{C}_{\text {out }}$	-					

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega$, MCM 10148; 100 $\Omega$, MCM10548.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including ;ig and stray capacitance)
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximums Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
*To be determined; contact your Motorola representative for up-to-date information.


PIN ASSIGNMENT


The MCM $10152 / 10552$ is a 256 -word $\times 1$-bit RAM. Bit selection is achieved by means of an 8-bit address AO through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM ( $\overline{C S}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{\text {in }}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Oout.

- Typical Address Access Time $=11 \mathrm{~ns}$
- Typical Chip Select Access Time $=4.0 \mathrm{~ns}$
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on All Inputs
- Power Dissipation ( 570 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

- Pin-for-Pin Compatible with F10410/10414

TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{C S} *$	$\overline{W E}$	$D_{\text {in }}$	$D_{\text {Out }}$
Write "O"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	Q
Disabled	H	$\phi$	$\phi$	L

[^24]CERAMIC PACKAGE
CASE 620

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	'ee	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10152		MCM10552		Unit	Conditions
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+75^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{EE}} & =-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & { }^{\mathrm{t} A A} \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ 7.0 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 15 \\ & \hline \end{aligned}$	*	*		Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time Prior to Write Address Hold Time After Write Chip Select Setup Time Prior to Write Chip Select Hold Time After Write Write Disable Time Write Recovery Time	${ }^{t}$ W   ${ }^{t}$ WSD   ${ }^{t}$ WHD   tWSA   ${ }^{t}$ WHA   ${ }^{t}$ WSCS   twhes   tws'   tWR	$\begin{aligned} & 10 \\ & 2.0 \\ & 2.0 \\ & 5.0 \\ & 3.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} - \\ - \\ - \\ - \\ - \\ - \\ 7.5 \\ 7.5 \end{gathered}$			ns	${ }^{t} W S A=5.0 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. $\mathrm{t}_{\mathrm{w}}=10 \mathrm{~ns} .$
Rise and Fall Time	$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{f}}$	1.5	5.0	*	*	ns	Measured between 20\% and 80\% points.
Capacitance Input Capacitance Output Capacitance	$\mathrm{C}_{\text {in }}$ Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	*	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega$, MCM10152; $100 \Omega$, MCM10552.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance).
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consuit iviECL System Design Handibook.
*To be determined; contact your Motorola representative for up-to-date information.


L SUFFIX
CERAMIC PACKAGE CASE 620


FSUFFIX
CERAMIC PACKAGE CASE 650


- Typical Address Access Time $=15 \mathrm{~ns}$
- Typical Chip Select Access Time $=10 \mathrm{~ns}$
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on all inputs
- Power Dissipation ( 520 mW typ @ $25^{\circ} \mathrm{C}$ ) Decreases with Increasing Temperature

The MCM10139/10539 is a 256-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 0 (low) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled ( $\overline{\mathrm{CS}}=$ high ), all outputs are forced to a logic 0 (low).

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$-0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	$l_{\text {EE }}$	-	160	-	150	-	145	-	140	-	160	mAdc
Input Current High	$\mathrm{I}_{\text {inH }}$	-	450	-	265	-	265	-	265	-	265	$\mu$ Adc
Logic " 0 " Output Voltage MCM10139   MCM10539	VOL	$-2.060$	-1.655	-2.010	-1.665 -	$\left\lvert\, \begin{aligned} & -1.990 \\ & -1.990 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -1.650 \\ & -1.620 \end{aligned}\right.$	-1.970	$\left\lvert\, \begin{gathered}-1.625 \\ -\end{gathered}\right.$	$\left\|\begin{array}{c} - \\ -1.960 \end{array}\right\|$	$-1.545$	Vdc

SWITCHING CHARACTERISTICS (Note 1)

Characteristic	Symbol	MCM10139	MCM10539	Conditions
		$\begin{gathered} \left(V_{E E}=-5.2 \mathrm{Vdc} \pm 5 \% ;\right. \\ \left.T_{A}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \left(V_{E E}=-5.2 \text { Vdc } \pm 5 \% ;\right. \\ & \left.T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$	
Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{A}} \mathrm{f} C \mathrm{~S} \\ & \mathrm{t}^{2} \mathrm{~S} \\ & \mathrm{t}_{\mathrm{A}} \\ & \hline \end{aligned}$	15 ns Max 15 ns Max 20 ns Max	$\begin{aligned} & * \\ & * \\ & *\end{aligned}$	Measured from $50 \%$ of input to $50 \%$. of output. See Note 2
Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	3.0 ns Typ	*	Measured between 20\% and 80\% points.
Input Capacitance Output Capacitance	$\mathrm{C}_{\text {in }}$   Cout	5.0 pF Max 8.0 pF Max	*	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, M C M 10139 ; 100 \Omega, M C M 10539 . C_{L} \leqslant 5.0$ pFincluding jig and stray capacitance. For Capacitance Loading $\leqslant b 0 \mathrm{pF}$, delay should be derated by $\overline{30} \mathrm{ps} / \mathrm{p} \overline{\mathrm{F}}$.
2. The maximum Address Access $T$ ime is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

[^25]FIGURE 1 - MANUAL PROGRAMMING CIRCUIT


FIGURE 2 - AUTOMATIC PROGRAMMING CIRCUIT


## RECOMMENDED PROGRAMMING PROCEDURE*

The MCM10139 is shipped with all bits at logical " 0 " (low). To write logical " $1 \mathrm{~s}^{\prime \prime}$, proceed as follows.

## MANUAL (See Figure 1).

Step 1 Connect $V_{E E}\left(\right.$ Pin 8) to -5.2 V and $\mathrm{V}_{\mathrm{CC}}($ Pin 16) to 0.0 V . Address the word to be programmed by applying -1.2 to -0.6 volts for ${ }^{2}$ logic " 1 " and -5.2 to -4.2 volts for a logic " 0 " to the appropriate address inputs.

Step 2 Raise $V_{C C}($ Pin 16) to +6.8 volts.
Step 3 After VCC has stabilized at +6.8 volts (including any ringing which may be present on the $V_{C C}$ line), apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic " 1 ".

Step 4 Return $V_{C C}$ to 0.0 Volts.

## CAUTION

To prevent excessive chip temperature rise, VCC should not be allowed to remain at +6.8 volts for more than 1 second.

Step 5 Verify that the selected bit has programmed by connecting a $460 \Omega$ resistor to -5.2 volts and measuring the voltage at the output pin. If a logic " 1 " is not detected at the output, the procedure should be repeated once. During verification $V_{\text {IH }}$ should be -1.0 to -0.6 volts.

Step 6 If verification is positive, proceed to the next bit to be programmed.

## AUTOMATIC (See Figure 2)

Step 1. Connect $V_{E E}(\operatorname{Pin} 8)$ to -5.2 volts and $V_{C C}(P$ in 16) to 0.0 volts. Apply the proper address data and raise $V_{C C}$ (Pin 16) to +6.8 volts.

Step 2 After a minimum delay of $100 \mu \mathrm{~s}$ and a maximum delay of 1.0 ms , apply a 2.5 mA current pulse to the first bit to be programmed ( $0.1 \leqslant \mathrm{PW} \leqslant 1 \mathrm{~ms}$ ).

Step 3 Repeat Step 2 for each bit of the selected word specified as a logic " 1 ". (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms .)

Step 4 After all the desired bits of the selected word have been programmed, change address data and repeat Steps 2 and 3.
NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for $\mathrm{V}_{\mathrm{CC}}$ to remain at +6.8 volts during the entire programming time.

Step 5 After stepping through all address words, return $V_{C C}$ to 0.0 volts and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once. During verification $\mathrm{V}_{1 \mathrm{H}}$ should be -1.0 to -0.6 volts.
*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

PROGRAMMING SPECIFICATIONS

Characteristic	Symbol	Limits			Units	Conditions
		Min	Typ	Max		
Power Supply Voltage	$V_{\text {EE }}$	-5.46	-5.2	-4.94	Vdc	
To Program	$V_{\text {CCP }}$	+6.04	+6.8	+7.56	Vode	
To Verify	$V_{\text {CCV }}$	0	0	0	Vdc	
Programming Supply Current	${ }^{1} \mathrm{CCP}$	-	200	600	mA	$\mathrm{V}_{\mathrm{CC}}=+6.8 \mathrm{Vdc}$
Address Voltage	$\mathrm{V}_{\text {IH }}$ Program	-1.2	-	-0.6	Vdc	
Logical "1"	$V_{\text {IH }}$ Verify	-1.0	-	-0.6	Vdc	
Logical " 0 "	$V_{\text {IL }}$	-5.2	-	-4.2	Vdc	
Maximum Time at $\mathrm{V}_{\mathbf{C C}}=\mathrm{V}_{\mathbf{C C P}}$	-	-	-	1.0	sec	
Output Programming Current	${ }^{1} \mathrm{OP}$	2.0	2.5	3.0	mAdc	
Output Program Pulse Width	${ }^{1} \mathrm{p}$	0.5	-	1.0	ms	
Output Pulse Rise Time	-	-	-	10	$\mu \mathrm{s}$	
Programming Pulse Delay (1)						
Following $\mathrm{V}_{\text {CC }}$ change	${ }^{t}{ }_{d}$	0.1	-	1.0	ms	
Between Output Pulses	$t_{d} 1$	0.01	-	1.0	ms	

NOTE 1. Maximum is specified to minimize the amount of time $V_{C C}$ is at +6.8 voits.

## PIN ASSIGNMENT



The MCM10149/10549 is a 256 -word $\times 4$-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 1 (high) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled ( $\overline{C S}=$ high ), all outputs are forced to a logic 0 (low).

- Typical Address Access Time of 20 ns
- Typical Chip Select Access Time of 8.0 ns
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on All Inputs
- Power Dissipation ( 540 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature


L SUFFIX CERAMICPACKAGE CASE 620


F SUFFIX
CERAMIC PACKAGE CASE 650


## MCM10149/MCM10549

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	IEE	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	1 inH	-	450	-	265	-	265	-	265	-	265	$\mu \mathrm{Adc}$

$55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to $\mathrm{MC} 105 \times x$ devices only.
SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10149		MCM10549		Unit	Conditions
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+75^{\circ} \mathrm{C} \\ \mathrm{VEE}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C}, \\ & V_{E E}=-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{ACS} \\ & { }^{\mathrm{t}} \mathrm{RCS} \\ & { }^{\mathrm{t}} \mathrm{AA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 25 \end{aligned}$	*	*	ns	Measured from 50\% of input to $50 \%$ of output. See Note 1.
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	7.0	*	*	ns	Measured between 20\% and $80 \%$ points.
Capacitance Input Capacitance Output Capacitance	$\mathrm{C}_{\text {in }}$   Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{MCM} 10149 ; 100 \Omega$, MCM10549.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance)
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper ùse of MECL Memories in a system environment, consult MECL System Design Handbook.
4. $V_{C P}=V_{C C}=G n d$ for normal operation.
*To be determined; contact your Motorola representative for up-to-date information.

## PROGRAMMING THE MCM10149 $\dagger$

During programming of the MCM10149, input pins 7, 9, and 10 are addressed with standard MECL 10 K logic levels. However, during programming input pins 2, 3, 4, 5, and 6 are addressed with $0 V \leqslant V_{I H} \leqslant+0.25 V$ and $V_{E E} \leqslant V_{I L} \leqslant$ -3.0 V . It should be stressed that this deviation from standard input levels is required only during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

With these requirements met, and witin ${ }^{\prime} C P=$ $V_{C C}=0 \mathrm{~V}$ and $V_{E E}=-5.2 \mathrm{~V} \pm 5 \%$, the address is set up. After a minimum of 100 ns delay, $V_{C P}$ (pin 1) is ramped up to $+12 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (total voltage $V_{C P}$ to $V_{E E}$ is now $17.2 \mathrm{~V},+12 \mathrm{~V}-$ $[-5.2 \mathrm{~V}]$ ). The rise time of this $V_{C P}$ voltage pulse should be in the $1-10 \mu$ s range, while its pulse width $\left(t_{W \uparrow}\right)$ should be greater than $100 \mu \mathrm{~s}$ but less than 1 ms . The $\mathrm{V}_{\mathrm{CP}}$ supply current at +12 $\checkmark$ will be approximately 525 mA while current drain from $V_{C C}$ will be approximately 175 mA . A current limit should therefore be set on both of these supplies. The current limit on the $V_{C P}$ supply should be set at 700 mA while the $V_{C C}$ supply should be limited to 250 mA . It should be noted that the $V_{E E}$ supply must be capable of sinking the combined current of the $V_{C C}$ and $V_{C P}$ supplies while maintaining a voltage of $-5.2 \vee \pm 5 \%$.

Coincident with, or at some delay after the $V_{C P}$ pulse has reached its $100 \%$ level, the desired bit to be fused can be selected. This is done by taking the corresonding output pin to a voltage of $+2.85 \mathrm{~V} \pm 5 \%$. It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor ( 100 ohm for MCM10549) to $-2.0 \vee$. Current into the selected output is 5 mA maximum.

After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13 . The $0 \%$ to $100 \%$ rise time of this current pulse should be 250 ns max. Its pulse width should be greater than $100 \mu \mathrm{~s}$. Pulse magnitude is $50 \mathrm{~mA} \pm 5.0 \mathrm{~mA}$. The voltage clamp on this current source is to be $-6.0 \vee$.

After the fusing current source has returned 0 mA , the bit select puise is returned to it initial level, i.e., the output is returned through its load to -2.0 V . Thereafter, $\mathrm{V}_{\mathrm{CP}}$ is returned to 0 V . Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after $V_{C P}$ has returned to 0 V . The remaining bits are programmed in a similar fashion.
$\dagger$ NOTE: For devices that program incorrectly, return serialized units with individual truth tables.
Non compliance voids warranty.

## PROGRAMMING SPECIFICATIONS

The following timing diagrams and fusing information represent programming specifications for the MCM10149.


The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the $V_{C P}$ pulse, i.e., $V_{C P}=0 V$. Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after $V_{\mathrm{CP}}$ returns to 0 V .

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of $\leqslant 15 \%$ is to be observed.

Definitions and values of timing symbols are as follows.

Symbol	Definition	Value
${ }_{t} 1$	Rise Time, Programming Voltage	$\geqslant 1 \mu \mathrm{~s}$
${ }^{\text {w }} 1$	Pulse Width, Programming Voltage	$\geqslant 100 \mu \mathrm{~s}<1 \mathrm{~ms}$
${ }^{t} \mathrm{D} 1$	Delay Time, Programming Voltage Pulse to Bit Select Pulse	$\geqslant 0$
${ }_{\text {w }}$ 2	Pulse Width, Bit Select	$\geqslant 100 \mu \mathrm{~s}$
${ }^{\text {to }}$ (	Delay Time, Bit Select Puise to Programming Voltage Pulse	$\geqslant 0$
${ }^{t}$ D3	Delay Time, Bit Select Pulse to Programming Current Pulse	$\geqslant 1 \mu \mathrm{~s}$
${ }_{\text {t }}$ 3	Rise Time, Programming Current Pulse	250 ns max
${ }_{\text {tw3 }}$	Pulse Width, Programming Current Pulse	$\geqslant 100 \mu \mathrm{~s}$
${ }^{t} \mathrm{D} 4$	Detay Time,   Programming Current   Pulse to Bit   Select Pulse	$\geqslant 1 \mu \mathrm{~s}$

## MCM10149/MCM10549

MANUAL PROGRAMMING CIRCUIT



Memory Boards

## Advance Information

## ADD-ON MEMORY CARD FOR THE LSI-11 FAMILY

The MMS1 102 is a dual height ( $5.187^{\prime \prime} \times 8.94^{\prime \prime}$ ) add-on memory card for the LSI- 11 family of computers. It is compatible with the LSI-11/2 and LSI-11 processors as well as the PDP $11 \mathrm{VO3}$ computer systems. It incorporates byte parity storage as well as generation and detection logic.


## Specification Highlights

INTERFACE	LSI-11, "Q" Bus-Plus.
CAPACITY	8K words $\times 16$ bits, 16 K words $\times 16$ bits, 32 K words $\times 16$ bits.
Optional on-board storage, generation and detection logic for both upper and lower byte.	
PARITY	Parity option does not degrade access times.
The MMS1102-3X has a read access time under 300 ns . Read access time is defined here	
as the time from receipt of SYNC H to the transmission of RPLY H, assuming that the	
SYNC H to DIN H time is no greater than 160 ns.	

## MMS1102

MMS1102-XX ORDERING INFORMATION

Storage Capacity	Part Nurnber   (With Parity and Controller)	Part Nurnber   (No Parity)
16 Kilobytes	MMS1102-31PC	MMS1102-31
32 Kilobytes	MMS1102-32PC	MMS1102-32
64 Kilobytes	MMS1102-34PC	MMS1102-34

MMS1102-3X - AC OPERATING CHARACTERISTICS

	Read Access (ns)			Write Access (ns)	
	Typical	Worst Case	Typical	Worsi Case	
Access Time*	250	300	125	175	
Cycle Time**	470	500	350	400	
Refresh Latency***	175	400	175	400	

*As measured from receipt of RSYNC $H$ to transmission of TRPLY H.
**This is the reciprocal of the maximum continuous transfer rate, assuming no refresh interference.
*** Occurs approximately once every 16 microseconds.

MMS1102 POWER REQUIREMENTS

Nominal Voltage	Min	Max	Current Requirements (mA)				Input Pins
			Standby		Active		
			Typical	Worst Case	Typical	Worst Case	
+5 VDC (Total)	4.75	5.25	$\begin{aligned} & \hline 725 \\ & 925 * \end{aligned}$	$\begin{gathered} 800 \\ 1000^{*} \end{gathered}$	$\begin{gathered} 775 \\ 1000^{*} \end{gathered}$	$\begin{gathered} 850 \\ 1100^{*} \end{gathered}$	AA2, BA2
+12 VDC	11.40	12.60	100	150	250	400	AD2, BD2
+5 VDC ( BBU )	4.75	5.25	400	500	450.	550	AV1**
+12 VDC (BBU)	11.40	12.60	100	150	250	400	AS1***

*Parity version only.
** in systems without battery backup this voltage is obtained from the regular +5 V rail via an on-board jumper.
***The +12 V supply requirement can be met via an on-board jumper from the regular +12 V rail.

MMS1102 BACKPLANE CONNECTOR PIN ASSIGNMENT

Row	A		B	
Side	1	2	1	2
Pin	-			
A	-	+5V	BDCOK H	+5V
B	-	-	-	-
C	BAD16 L**	GND	-	GND
D	BAD17 L	+12 V	-	+12 V
E	-	BDOUTL	-	BDAL 2 L
F	-	BRPLY L	-	BDAL 3 L
H	-	BDIN L	-	BDAL 4 L
J	GND	BSYNC L	GND	BDAL 5 L
K	\}	BWTBT L	\}	BDAL 6 L
L				BDAL 7 L
M	GND	BIAKIL $\}_{* * *}$	GND	BDAL 8 L
N	-	BIAKO L	-	BDAL 9L
P	- .	BBS7 L	-	BDAL 10 L
R	BREF L	BDMGIL $\}_{\text {*** }}$	-	BDAL 11 L
S	+12 V BBU	BDMGOL ${ }^{\text {P***}}$	-	BDAL 12 L
T	GND	-	GND	BDAL 13 L
U	-	BDAL OL	-	BDAL 14 L
V	$+5 \mathrm{VBBU}$	BDAL 1 L	+5 V	BDAL 15 L

*Must be hardwired on backplane or damage to MOS devices may result.
**Or PRTYER or PRTYCK.
***Hardwired on MMS1102.

## Advance Information

$16 \mathrm{~K} \times 16$

## LSI-11 ADD-IN SEMICONDUCTOR MEMORY

The Motorola MMS1110 is a 16 K -word $\times 16$-bit plug-in main memory system designed for use with DEC's LSI-11 microcomputer system. The MMS1110 mounts directly into a H9270 backplane slot and is both hardware and software compatible with the LSI-11 system.

The memory module employs the MCM6604 4 K Dynamic RAM components, mounted on a single PC
board that contains timing, control and bus interface logic. Memory refreshing is controlled by the LSI-11.

Address select changes are possible with jumpers to provide up to 28 K of main memory. A parity option, which generates, stores, and checks parity on the MMS1110, is available for custom LSI-11 systems.


MMS1110 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- High Reliability
- Byte Operation
- Modular Expandability (Address Select Jumpers)
- Options Available

MMS1110-1	$12 \mathrm{~K} \times 16$
MMS1110-2	$8 \mathrm{~K} \times 16$
MMS1110P	$16 \mathrm{~K} \times 18$ (parity)
MMS1110-3	$4 \mathrm{~K} \times 16$

This is advance information and specifications are subject to change without notice

## SPECIFICATIONS

## CAPACITY

16 K words per board

## WORD LENGTH

16 bits

## PERFORMANCE

Access Time	450 ns max
Read Cycle Time	800 ns min
Write Cycle Time	800 ns min
Read-Modify-Write Cycle Time	1275 ns min

## DC POWER REQUIREMENTS

	Standard		With Parity	
	Active*	Standby	Active*	Standby
+5V $\pm 5 \%$	6.0 W max	6.0 W max	7.5 W max	7.5 W max
+12V $\pm 5 \%$	12.5 W max	2.8 W max	14.0 W max	3.1 W max
Total	18.5 W max	8.8 W max	21.5 W max	10.6 W max
* Continuous	such as DMA			

## MODES OF OPERATION

Read-Word
Write -- Word/Byte
Read-Modify-Write Cycle - Word/Byte

## INTERFACE CHARACTERISTICS

Compatible with DEC Q bus**

STANDARD I/O SIGNALS
Sync (BSYNC L)
Data in (BDIN L)
Data Out (BDOUT L)
Reply (BRPLY L)
Refresh (BREF L)
Write Byte (BWTBT L)
Date/Address (BDALOL - BDAL15 L)
Power Up (BDCOK H)

## PHYSICAL DIMENSIONS OF BOARD

$10.45^{\prime \prime} \times 8.9^{\prime \prime} \times 0.44^{\prime \prime}$

## ENVIRONMENT

Operating	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Non-Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Humidity	To $90 \%$ without condensation

[^26]
## MMS1117

## Advance Information

## PDP-11* UNIBUS* COMPATIBLE RANDOM ACCESS MEMORIES, UP TO 128 KILOBYTES OF STORAGE CAPACITY PLUS OPTIONAL PARITY CONTROLLER ON A SINGLE CARD

The MMS1117 family of memory systems offers owners of PDP-11* computers an opportunity to easily add storage capacity and parity features to their system. Each member of the family is contained on a single plug-in circuit card that interfaces mechanically and electrically with the following models of UNIBUS* PDP-11* proces. sors: $11 / 04,11 / 05,11 / 10,11 / 34,11 / 35,11 / 40,11 / 45$, $11 / 50,11 / 55$, and $11 / 60$. It plugs into a single hex SPC slot in any of the following backplanes: DD11-B, DD11-C, DD11-D and DD11-P.

The MMS1117 can provide up to 128 K 8 -bit bytes of main memory on a single module. Quick address select changes are possible via onboard switches. In addition, 1 or 2 kilowords of I/O page can selectively be made available for random access storage. Optional parity as well as full parity generation, detection, and exception control circuits can be provided on the same card with the memory. No additional bus loading is imposed on the system by the addition of the fully compatible parity controller option.


## MMS1117 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- Low Power
*Trademark of Digital Equipment Corporation
- Fully UNIBUS Compatible
- High Reliability
- One UNIBUS Load

MMS1117 OPTION DESIGNATOR SUFFIX

Typical Read Access Time	Parity Options	Total Storage Capacity (in Kilobytes)			
		32K	64K	96 K	128K
290 ns	Parity + Controller Parity Data Only No Parity	$\begin{gathered} -32-\mathrm{PC} \\ -32 \cdot \mathrm{P} \\ -32 \\ \hline \end{gathered}$	$\begin{gathered} -34-\mathrm{PC} \\ -34 \cdot \mathrm{P} \\ -34 \\ \hline \end{gathered}$	$\begin{aligned} & .36-P C \\ & .36-P \\ & -36 \\ & \hline \end{aligned}$	$\begin{gathered} -38-\mathrm{PC} \\ -38-\mathrm{P} \\ -38 \\ \hline \end{gathered}$
360 ns	Parity + Controller Parity Data Only No Parity	$\begin{gathered} -42 \cdot P C \\ -42 \cdot P \\ -42 \end{gathered}$	$\begin{gathered} -44 \cdot P C \\ -44-P \\ -44 \end{gathered}$	$\begin{gathered} -46-P C \\ -46-P \\ -46 \end{gathered}$	$\begin{gathered} -48-P C \\ .48-P \\ .48 \end{gathered}$
390 ns	Parity + Controller Parity Data Only No Parity	$\begin{gathered} \hline-52 \cdot P \mathrm{PC} \\ -52 \cdot \mathrm{P} \\ -52 \end{gathered}$	$\begin{gathered} -54-P C \\ -54-P \\ -54 \end{gathered}$	$\begin{gathered} -56-\mathrm{PC} \\ -56-\mathrm{P} \\ .56 \end{gathered}$	$\begin{gathered} -58-P C \\ -58-P \\ -58 \end{gathered}$

ACCESS AND CYCLE TIMES

Option Designator   Suffix	Write		Read		Cycle	
	Typical	Worst Case	Typical	Worst Case	Typical	Worst Case
$-3 X$	105	125	290	315	375	390
$-4 \times$	115	135	360	390	480	500
$-5 X$	115	135	390	420	560	585

MMS1117 POWER REQUIREMENTS

Nominal Voltage			Current Requirements		Input Pins
	Voltage Tolerance		Standby-Typ/WC (Amps)	Active-Typ/WC (Amps)	
	Min	Max			
+5 Vdc	4.75	5.25	2.012.5	2.0/2.5	DA2, EA2, FA2
$+15 \mathrm{Vdc}$	15	20	0.15/0.20	0.35/0.70	AV1, AR1, CE1, CU1
$-15 \mathrm{Vdc}$	-7.0	$-20$	0.015/0.030	0.015/0.030	FB2

MMS1117 BACK PLANE CONNECTOR PIN ASSIGNMENT

Row   Side	A		B		C		D		E		F	
	1	2	1	2	1	2	1	2.	1	2	1	2
Pin A		,			[**			+5V		+5V		+5V
Pin B					[**							$-15 \mathrm{~V}$
Pin C		Gnd		Gnd	PA	Gnd		Gnd	A12	Gnd		Gnd
Pin D			+58B	.		D15			A17	A15		
Pin E			*SSyn	*PA DE	*** $\mathrm{V}_{\text {DD }}$	D14			MSyn	A16		
Pin $F$						D13.			A02	C1		
Pin H					D11	D12			A01	A00		
Pin J						D10	.		SSyn	CO		
Pin K						D09		$\int^{* *}$	A14	A13		
Pin L .					.	D08	Init	[**	A11			
Pin M						D07		[**				
Pin N	*P1				DCLO	D04		[**		A08		
Pin $P$	*P0					005		[**	A10	A07		
Pin R	${ }^{* * *} V_{\text {DD }}$					D01		[**	A09			
Pin S					PB	D00		[**				
Pin $T$	Gnd		Gnd		Gnd	D03	Gnd	[**	Gnd		Gnd	
Pin U					${ }^{* * *} \mathrm{~V}_{\text {DD }}$	D02			A06	A04		
Pin V	${ }^{* * *} V_{\text {DD }}$					D06			A05	A03		

*Options for use with External Parity Controller.
**Grant Continuity Jumpers
***V$V_{D D}$ is any voltage between +15 Vdc and +20 Vdc on any one of the four listed pins.

## Advance Information

## 16K x 18 BIT <br> PDP-11 ADD-IN SEMICONDUCTOR MEMORY

The Motorola MMS 1118 is a $16 \mathrm{~K} \times 18$ bit plug-in main memory system designed for DEC's PDP-11/04 and 34 computer family: The MMS1118 mounts directly into DEC's Modified UNIBUS* and is both hardware and software compatible in the PDP-11 systems with or without parity.
The system employs the low power MCM6605A-2 4K Dynamic RAM component. These RAM components are
mounted on a single PC board that contains timing, control and bus interface logic.

With DEC's memory management unit, the MMS1118 can provide up to 127 K words of main memory. Quick address select changes are possible with onboard jumpers. The low power and fast access time of the MMS1 118 will greatly enhance the cost performance of a PDP-11 computer.


## MMS1118 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- Low Power
- Byte Operation
- High Reliability
*Trademark of Digital Equipment Corporation
- Modular Expandability (Address Select Jumpers)
- Module Interchangeability
- Short Circuit Memory Protection
- Optional Systems Available

MMS1118-1 $12 \mathrm{~K} \times 18$
MMS1118-2 $8 \mathrm{~K} \times 18$

- Power Down/Card Select Option
- Compatible with DD11L Backplane (Consult Factory)


## MMS1118

## SPECIFICATIONS

CAPACITY
$8 \mathrm{~K}, 12 \mathrm{~K}$ and 16 K words per board

18 bits

PERFORMANCE
Access Time
Read Cycle Time
Write Cycle Time
Cycle Time with Refresh Interrupt .
**
DC CURRENT REQUIREMENTS
$+5 V \pm 5 \%$
$+15 V \pm 5 \%$
$-15 V \pm 20 \%$
$-15 \mathrm{~V} \pm 20 \%$

$$
\begin{aligned}
& \frac{\text { Active** }}{1.9 \mathrm{~A} \max } \\
& 400 \mathrm{~mA} \max \\
& 15 \mathrm{~mA} \max
\end{aligned}
$$

MODES OF OPERATION
Read - Word
Write - Word/Byte

INTERFACE CHARACTERISTICS
Compatible with DEC's Modified UNIBUS*

STANDARD I/O SIGNALS
Master Sync - MSYN
Byte Select - CO
Read/Write -C1
Slave Sync - SSYN
Parity Detect - PARDET

PHYSICAL DIMENSIONS OF BOARD
$15.7^{\prime \prime} \times 8.94^{\prime \prime} \times 0.44^{\prime \prime}$

## ENVIRONMENT

Operating
Non-operating
Humidity

Internal Slave Sync	- INTSSYN
Parity Bits	- PO. P1
DC Low	- DCLO
Address	- AO-A17
Data	- DO-D15

$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$90 \%$ without condensation

## BACKPLANE OPTIONS



Semiconductor memory   backplane DDII-C, D,P
Without battery backup   Cut: E4, E6, E10, E13
With battery backup   Cut: Er, E7, E10


Core backplane   DDIl-F
With -15 V on CB2:
Cut E4, E6, E8, E9
Without -15 V on CB2
With $-5 V$ on BV2
Cut: E5, E6, E8, E9, E13

[^27]ADDRESSING

Jumper table for starting addresses						
Starting Address(Octal)	Addresses below starting address	Jumper selection				
		A	B	C		E
000000	OK	1	1	1		0
020000	4K	1	1	0		1
040000	8K	1	1	0		0
060000	12K	1	1	0	0	1
100000	16K	1	1	0	0	0
120000	20K	1	0	1		1
140000	24 K	1	0	1		0
160000	28K	1	0	1		1
200000	32 K	1	0	1		0
220000	36 K	1	0	0		1
240000	40K	1	0	0		0
260000	44K	1	0	0		1
300000	48 K	1	0	0		0
320000	52 K	0	1	1		1
340000	56 K	0	1	1		0
360000	60K	0	1	1		1
400000	64 K	0	1	1		0
420000	68 K	0	1	- 0		1
440000	72 K	0	1	0		0
460000	76 K	0	1	0		1
500000	80 K	0	1	0		0
520000	84 K	0	0	1		1
540000	88 K	0	0	1		0
560000	92K	0	0	1		1
600000	96K	0	0	1		0
620000	100 K	0	0	0		1
640000	104 K	0	0	0		0
660000	108 K	0	0	0		1
700000	112 K	0	0	0		0
720000	116 K	1	1	1	1	1
740000	120 K	1	1	1	1	0


***Set switches A-E for starting address of 100000 (Octal) $1=\mathrm{OPEN}=\mathrm{HIGH}$
$0=$ CLOSED $=$ LOW

## Advance Information

## $128 \mathrm{~K} \times 18$ SEMICONDUCTOR MEMORY

The Motorola MMS3418 Memory Array Card provides 128 K words by 18 bits of memory. It is designed for use with a memory control card such as
Motorola's MMSCC-2 in systems requiring a very
large memory. Multiple memory array cards can be used to increase word length and/or number of words stored.


Basically the MMS3418 is an array of 144 highdensity, 16-pin, 16K dynamic RAM devices arranged in eight rows of eighteen. Buffer and driver circuits on the card interface the array to system circuitry. Gate and multiplexer circuits, which are controlled
by external signals, function to connect the proper combination of address, strobe, and enable signals to the array to provide read, write, and distributed refresh operations. Sequencing and timing is a function of the associated system circuits.

This is advance information and specifications are subject to change without notice.

## SPECIFICATIONS

## CAPACITY

128K Words per Board ( $K=1024$ )

WORD LENGTH
18 Bits per Board
${ }^{1}$ CYCLE TIME
Read Cycle Time 700 ns max
Write Cycle Time 700 ns max
Determined by associated memory control card

## ACCESS TIME

475 ns max

## MODES OF OPERATION

Read 18 Bits, Write 18 Bits, Distributed Refresh

DC POWER REQUIREMENTS

Voltage	Active	Standby
$+5 \mathrm{~V} \pm 5 \%$	$2 \mathrm{~A} \max$	$2 \mathrm{~A} \max$
$+15 \mathrm{~V} \pm 5 \%$	$1 \mathrm{~A} \max$	$0.6 \mathrm{~A} \max$
$-9 \mathrm{~A} \pm 10 \%$	$0.1 \mathrm{~A} \max$	$0.1 \mathrm{~A} \max$

## ENVIRONMENT

Operating Temperature $\quad 0$ to $70^{\circ} \mathrm{C}$
Non-Operating Temperature -40 to $125^{\circ} \mathrm{C}$
Humidity to $90 \%$ without condensation
BOARD DIMENSIONS
See outline diagram

INPUT/OUTPUT SIGNALS

Name	Description	Connector Pin
D0 to D17	Bidirectional data, 18 bits	P1-9 to P1-26
$\begin{aligned} & \text { A1 to A11, } \\ & \text { A12 to A14 } \end{aligned}$	Memory address, 14 bits	$\begin{aligned} & P 2-8 \text { to } P 2-18, \\ & P 2-48 \text { to } P 2-50 \end{aligned}$
RA0 to RA6	Refresh address, 7 bits	P2-51 to P2-57
R/W	Read or write control, 1 signal	P2-21
$\overline{B S}$	Board select, 1 signal	P2-30
DATA ENABLE	Data output enable, 1 signal	P2-32
$\overline{\text { RAS0 }}$ to $\overline{\text { RAS7 }}$	Row address strobe, 8 signals	$\mathrm{P} 2-72$ to P2-65
$\overline{\text { REF }}$	Refresh control, 1 signal	P2-24
$\overline{C A S}$	Column address strobe, 1 signal	P2-26
CAE	Column address enable, 1 signal	P2-25




BOARD OUTLINE AND DIMENSIONS


## MMS68102

## Advance Information

## 16K x 8 NON-VOLATILE SEMICONDUCTOR MEMORY

The Motorola MMS68102 is a $16 \mathrm{~K} \times 8$-Bit Non-Volatile Memory System designed for use with the M6800 EXORciser System.*

The system employs the MCM6605 22 pin 4K dynamic RAM component. These RAM components are mounted on a single PC board that contains timing, control, and bus interface logic. The refresh requirement is handled by stealing cycles from the processor. CMOS logic is used in the refresh and powerfail circuits to allow low power battery backup operation.

The MMS68102, using an external battery backup circuit, has the capability of refreshing itself while power is removed from the EXORciser power supply. This refresh capability enables the module to retain its stored data during a power loss.

The MMS68102 may be paralleled to provide 64 K words of memory. Onboard jumpers provide easy address select changes.


## MMS68102 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- High Reliability
- Modular Expandability (Address Select Switches)
- Module Interchangeability
- Low Power Battery Backup Operation
- Systems Available MMS68102-1 8K x 8

MMS68102A 16K x 9
MMS68102A-1 8K $\times 9$

* Trademark of Motorola, Inc.

This is advance information and specifications are subject to change without notice

## SPECIFICATIONS

CAPACITY
16K words per board

## WORD LENGTH <br> 8 bits

PERFORMANCE
Access Time**
Read Cycle Time
Write Cycle Time
Refresh Cycle Time
**Measured from rising edge of MEMCLK
DC POWER REQUIREMENTS $16 \mathrm{~K} \times 8$ (9)

	Active***	Standby	Battery   Backup
$+5 \mathrm{~V} \pm 5 \%$	4.2 Wmax	4.2 Wmax	-
$+12 \mathrm{~V} \pm 5 \%$	$\frac{3.4 \mathrm{Wmax}}{}$	$\frac{1.4 \mathrm{Wmax}}{}$	$\frac{.3 \mathrm{Wmax}}{}$
Total	7.6 Wmax	5.6 Wmax	.3 Wmax

MODES OF OPERATION
Read Cycle
Write Cycle
***Continuous operation such as DMA
PREPROGRAMMING:

* CAUTLON. The MMS68102 comes prewired in the following manner:
(1) Master Refresh
(2) VUA
(3) Lower 32 K Address Boundary

For Alterations of the above see Table 1.

INTERFACE CHARACTERISTICS
M6800 EXORciser Compátible

STANDARD I/O SIGNALS	
Memory Clock	
Valid Memory Address	(MEMCLK)
Read/Write	(RMW)
Address	(AO-A15)
Data	(D0-D7)
Valid User Address	(VUA)
Refresh Request	(REFREQ)
Refresh Grant	(REFGRANT)
Battery +12 Volts	(BAT+12)

ADDITIONAL I/O SIGNALS
Power Fail ( 12 Volt Signal)
Refresh Clock ( 12 Volt Signal)
(STDBY) Pin $V$ ( $\overline{\text { REFCLK }}$ ) Pin 27
( $\overline{\mathrm{D} 8}$ ) Pin 28

PHYSICAL DIMENSIONS OF BOARD
$6^{\prime \prime} \times 9.75^{\prime \prime} \times .5^{\prime \prime}$
ENVIRONMENT

Operating
Non-Operating
Humidity
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
To $90 \%$ without condensation

## Table'1

OPTIONS	JUMPERS $\mathbb{N}$	JUMPERS OUT
VUA	E4	E5
VMA	E5	E4
Master Refresh	E1 \& E6	
Slave Refresh		E1 \& E6
Lower 32K	E3	E2
Upper 32K	E2	E3

## ADDRESSING

A fully populated MMS68102 can be programmed with jumpers to occupy a 16 K Memory Address Space, but must be mapped on a 32 K boundary.
The independent 4 K blocks of the MMS68102 are shown as blocks A, B, C, \& D in Figure 1. These blocks need not be mapped into any contiguous address. space, but should not be mapped into the same one.

An example of mapping block $A$ into address space ( $12 \mathrm{~K}-16 \mathrm{~K}$ ) is as follows:
Lower 32 K is selected with E2 out \& E3 in.
Block A enable Pin 9 or 10 of $\mathrm{J1}$, from Table 3, is connected to Pin 7 of J 1 , from Table 2 , for the ( $12 \mathrm{~K}-16 \mathrm{~K}$ ) address space.


Figure 1

Table 2

LOWER 32 K	UPPER 32 K	J 1
		PIN
OK-4K	$32 \mathrm{~K}-36 \mathrm{~K}$	1
$4 \mathrm{~K}-8 \mathrm{~K}$	$36 \mathrm{~K}-40 \mathrm{~K}$	3
$8 \mathrm{~K}-12 \mathrm{~K}$	$40 \mathrm{~K}-44 \mathrm{~K}$	5
$12 \mathrm{~K}-16 \mathrm{~K}$	$44 \mathrm{~K}-48 \mathrm{~K}$	7
$16 \mathrm{~K}-20 \mathrm{~K}$	$48 \mathrm{~K}-52 \mathrm{~K}$	2
$20 \mathrm{~K}-24 \mathrm{~K}$	$52 \mathrm{~K}-6 \mathrm{~K}$	4
$24 \mathrm{~K}-28 \mathrm{~K}$	$56 \mathrm{~K}-60 \mathrm{~K}$	6
$28 \mathrm{~K}-32 \mathrm{~K}$	$60 \mathrm{~K}-64 \mathrm{~K}$	8

Table 3

J 1	BLOCK ENABLE
PIN	
$9 \& 10$	A
$11 \& 12$	B
$13 \& 14$	C
$15 \& 16$	D

## MOTOROLA

## Advance Information

## 16K x 8 SEMICONDUCTOR MEMORY FOR M6800 SYSTEMS

The Motorola MMS68103 is a 16 K -word $\times 8$-bit plug-in memory module designed for use with M6800 based systems.

The module employs high density, 16 -pin, 4 K dynamic RAM components, mounted on a single PC board that contains timing, control, and bus interface logic. A hidden refresh scheme requires no
additional cycles or interface from the CPU. This permits the use of valuable CPU time for purposes other than refreshing

The MMS68103 can provide up to 64 K words of memory. Address select changes are easily made with on-board address jumpers.


## MMS68103 FEATURES

- Hidden Refresh
- High Density
- Low Cost
- Fast Access and Cycle Times
- High Reliability
- Modular Expandability (Address Select Jumpers)
- MEK6800D2 Compatible
- MicroModule Compatible
- Options Available

MMS68103-1 8K x 8
MMS68103A 16-K x 9
MMS68103A-1 8K x9

This is advance information and specifications are subject to change without notice

## SPECIFICATIONS

## CAPACITY

16 K words per board

WORD LENGTH
8 bits

PERFORMANCE

Access Time	475 ns max	
Read Cycle Time	$1.0 \mu \mathrm{~s}$ min.	$2.5 \mu \mathrm{~s}$ max*
Write Cycle Time	$1.0 \mu \mathrm{~s}$ min.	$2.5 \mu \mathrm{~s}$ max*
*(256 Bø2 cycles required within $640 \mu \mathrm{~s})$		

## DC POWER REQUIREMENTS

	Active*	Standby
$+5 \mathrm{~V} \pm 5 \%$	6.0 W max	6.0 W max
$+12 \mathrm{~V} \pm 5 \%$	4.0 W max	2.0 W max
$-12 \mathrm{~V} \pm 10 \%$	$\underline{0.02 \mathrm{~W} \text { max }}$	$\underline{0.02 \mathrm{~W} \text { max }}$
Total	10.02 W max	8.02 W max
Continuous operation such as DMA		

## MODES OF OPERATION

Read Cycle
Write Cycle

INTERFACE CHARACTERISTICS
MC6800 Compatible

STANDARD I/O SIGNALS

Bus 02	
Valid User Address	(Bø2)
Read/Write	(VUA)
Address	(R/W)
Data	$(A O-A 15)$
(DO-D7)	

PHYSICAL DIMENSIONS OF BOARD
$6.00^{\prime \prime} \times 9.75^{\prime \prime} \times 0.44^{\prime \prime}$

ENVIRONMENT

Operating	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Non-Operating	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Humidity	To $90 \%$ without condensation

## MMS68104

## $16 K \times 8$ SEMICONDUCTOR MEMORY FOR M6800 SYSTEMS

The Motorola MMS68104 is a $16 \mathrm{~K} \times 8$-bit plug in memory system designed for use with the MEK6800D2 Kit.

The system employs the high density 16 pin 4 K dynamic RAM component. These RAM components are mounted on a single PC board that contains timing, con-
trol, and bus interface logic. The system employs a handshake refresh that interfaces with the CPU.

The MMS68104 can provide up to 64 K words of memory. Address select changes are easily made with onboard address jumpers.


## MMS68104 FEATURES

- High Density
- Low Cost
- High Reliability
- Modular Expandability (Address Select Jumpers)


## SPECIFICATIONS

## CAPACITY

16 K words per board
WORD LENGTH
8 bits
PERFORMANCE


Read Cycle Time
O MEMCLK $1.5 \mu \mathrm{~s} \mathrm{~min}$
DC CURRENT REQUIREMENTS

	Active**	Standby
$+5 \mathrm{~V} \pm 5 \%$	$920 \mathrm{~mA} \max$	$920 \mathrm{~mA} \max$
$+12 \mathrm{~V} \pm 5 \%$	$450 \mathrm{~mA} \max$	$80 \mathrm{~mA} \max$
$-12 \mathrm{~V} \pm 10 \%$	$\frac{10 \mathrm{~mA} \max }{1.4 \mathrm{~A} \max }$	$\frac{10 \mathrm{~mA} \max }{1.1 \mathrm{~A} \max }$

INTERFACE CHARACTERISTICS
MC6800 Compatible
STANDARD I/O SIGNALS

Memory Clock	(MEMCLK)	Refresh Grant	(REF GNT)
Valıd Memory			
$\quad$ Address	(VMA)	Refresh Request	(REF REQ)
Read Write	(RNW)		
Address	$($ AO-A15)		
Data	$\overline{(D O-D 7)}$		

PHYSICAL DIMENSIONS OF BOARD
$6.00^{\prime \prime} \times 9.75^{\prime \prime} \times 0.44^{\prime \prime}$

## ENVIRONMENT

Operatıng	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Non-Operatıng	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Humidity	To $90 \%$ without condensation

## ADDRESSING

The MMS68104 can be programmed with jumpers to occupy 16 K in a 64 K memory address space in independent 8 K blocks. To map the first 8 K block into an address space, connect either $\mathrm{J} 1-10,13,14$ or 16 to the indicated pin in the following table. To map the second 8 K block into an address space, connect either $\mathrm{J} 1-9,11,12$ or 15 to the indicated pin in the following table.

HEXADECIMAL   AODRESS	ADDRESS	PIN NUMBER
ON J1		
$0000-1$ FFF	SPACE	1
$2000-3 F F F$	$8 K-16 \mathrm{~K}$	2
$4000-5 F F F$	$16 \mathrm{~K}-24 \mathrm{~K}$	4
$6000-7 F F F$	$24 \mathrm{~K}-32 \mathrm{~K}$	6
$8000-9 F F F$	$32 \mathrm{~K}-40 \mathrm{~K}$	3
A000-BFFF	$40 \mathrm{~K}-48 \mathrm{~K}$	5
C000-DFFF	$48 \mathrm{~K}-56 \mathrm{~K}$	7
E000-FFFF	$56 \mathrm{~K}-64 \mathrm{~K}$	8

MEMORY EXPANSION
Four MMS68104 memory boards may be connected to the same bus to provide up to 64 K words. When two or more MMS68104s are connected to the same bus, E1 should be removed from all but one of the memory boards. (E1 is a green zero ohm jumper located near the connector edge on the MMS68104.) This enables the one MMS68104 to act as the master when requesting refresh cycles which all of the memory boards utilize.

## APPLICATION TO MEK6800D2 KIT





## Advance Information

## 32K x 8 SEMICONDUCTOR MEMORY FOR 8080A SYSTEMS

The Motorola MMS80810 is a 32 K -word $\times 8$ bit plug in memory system designed for use with 8080A based systems and is pin compatible with SBC 80/10 single board computer.

The system employs the high density 16 pin 4 K dynamic RAM component. The RAM components are mounted on a single PC board that contains timing, control and bus interface logic. Refresh logic is also con-
tained on the memory board. A refresh cycle is generated by on-board refresh logic and is asynchronous to the CPU.

A fully populated MMS80810 can be programmed with jumpers to occupy 32 K words out of a possible 64 K memory space in independent 8 K segments. The 8 K segments must begin at 8 K boundaries. Address select changes are easily made with on-board address jumpers.


## MMS80810 FEATURES

- High density
- Low cost
- Fast access and cycle times
- High Reliability
- Modular Expandability (Address Select Jumpers)
- Modular Interchangeability
- Optional Systems Available:

MMS80810-1, 16K x 8

## SPECIFICATIONS

## CAPACITY

32 K words per board

## WORD LENGTH

8 bits
PERFORMANCE

Access Time	400 ns max*
Read Cycle Time	760 ns min *
Write Cycle Time	$760 \mathrm{~ns} \mathrm{~min}{ }^{*}$

*Refresh cycle can extend these times by 760 ns .

## MODES OF OPERATION

Read Cycle
Write Cycle

INTERFACE CHARACTERISTICS
SBC 80/10 Compatible
STANDARD I/O SIGNALS

Read	MRDC/
Write	MWTC/
System Reset	INIT//
Address	ADRO/-ADRF//
Data	DATO/-DAT7/
Transfer Acknowledge	XACK/

PHYSICAL DIMENSIONS OF BOARD
$12^{\prime \prime} \times 6.75^{\prime \prime} \times 0.5^{\prime \prime}$
ENVIRONMENT

Operating	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Non-Operating	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Humidity	To $90 \%$ without
	condensation

$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ condensation

DC POWER REQUIREMENTS
$32 \mathrm{~K} \times 8$
Active*
$+5 V \pm 5 \%$
$+12 \vee \pm 5 \%$
$-5 \vee \pm 10 \%$
Total

6.0 W Wax
7.5 W max
0.1 W max
13.6 W max

Standby

6.0 $W$ max
3.0. $W$ max
0.1 $W$ max
9.1 $W$ max

$16 K \times 8$
Active*
Standby

6.0	W max	6.0	W max
6.5	W max	1.5	W max
0.1	W max	0.1	W max
12.6	W. max	7.6	W max

*Continuous operation such as DMA

I.C. SOCKET MEMORY ADDRESS PIN OUT		
HEXADECIMAL ADDRESS	ADDRESS SPACE	PIN \# ON J1
$\begin{aligned} & 0000-1 \text { FFF } \\ & 2000-3 F F F \\ & 4000-5 F F F \\ & 6000-7 F F F \\ & 8000-9 F F F \\ & \text { A000-BFF } \\ & \text { C000-DFFF } \\ & \text { EOOO-FFFF } \end{aligned}$	OK-8K   8K-16K   16K-24K   24K-32K   $32 \mathrm{~K}-40 \mathrm{~K}$   40K-48K   56K-64K	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 5 \\ & 7 \\ & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$


8K BLOCK ENABLES	
Block	Pin \#
	ON J1
A	9,10
B	11,12
C	13,14
D	15,16

Table 2.
Table 1.


The independent 8 K blocks of the MMS80810 are shown as blocks A, B, C \& D in Figure 1. These blocks need not be mapped into any contiguous address space, but should not be mapped into the same one.
An example of mapping block $A$ into address space ( $8 \mathrm{~K}-16 \mathrm{~K}$ ) is as follows:
Block A Enable Pin 9 or 10 of J 1 , from Table 2 is connected to Pin 3 of J 1 , from Table 1, for the ( $8 \mathrm{~K}-16 \mathrm{~K}$ ) address space. For 16 K , blocks $A \& B$ will be populated.


## MECHANICAL DATA

The packaging availability for each device is indicated on the individual data sheets. Dimensions for the packages are given in this section.

## 14-PIN PACKAGES



|  | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 19.05 | 19.94 | 0.750 | 0.785 |
| B | 6.10 | 7.49 | 0.240 | 0.295 |
| C | - | 5.08 | - | 0.200 |
| D | 0.38 | 0.58 | 0.015 | 0.023 |
| F | 1.40 | 1.77 | 0.055 | 0.070 |
| G | 2.54 BSC | 0.100 BSC |  |  |
| H | 1.91 | 2.29 | 0.075 | 0.090 |
| J | 0.20 | 0.38 | 0.008 | 0.015 |
| K | 3.18 | 5.08 | 0.125 | 0.200 |
| L | 7.62 BSC | 0.300 BSC |  |  |
| M | - | $15^{0}$ | - | $15^{0}$ |
| N | 0.51 | 1.02 | 0.020 | 0.040 |



NOTES:

1. ALL RULES AND NOTES ASSOCIATED WITH MO-001 AA OUTLINE SHALL APPLY.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION "A" AND "B" (632-06) DO NOT INCLUDE GLASS RUN.OUT.
4. LEADS WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA OF TRUE POSITION AT SEATING PLANE AND MAXIMUM MATERIAL CONDITION.

CASE 632-06

PLASTIC PACKAGE
CASE 646


## NOTES:

	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
	18.16	19.56	0.715	0.770	
B	6.10	6.60	0.240	0.260	
C	4.06	5.08	0.160	0.200	
D	0.38	0.53	0.015	0.021	
F	1.02	1.78	0.040	0.070	
G	2.54		BSC	0.100 BSC	
H	1.32	2.41	0.052	0.095	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300 BSC		
M	$0^{\circ}$	100	$0^{\circ}$	$10^{\circ}$	
N	0.51	1.02	0.020	0.040	

CASE 646-05

## 16-PIN PACKAGES

## CERAMICPACKAGE

 CASE 620

CERAMIC PACKAGE
CASE 650

1. LEADS WITHIN 0.13 mm ( 0.005 ) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL. CONDITION.
2. PACKAGE INDEX: NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT.
3. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL
4. DIM "A" AND "B" DO NOT INCLUDE GLASS RUN:OUT.
5. DIM "F" MAY NARROW TO 0.76 mm (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	19.05	19.94	0.750	0.785
B	6.10	7.49	0.240	0.295
C	-	5.08	-	0.200
D	0.38	0.53	0.015	0.021
F	1.40	1.78	0.055	0.070
G	2.54 BSC	0.100 BSC		
H	0.51	1.14	0.020	0.045
J	0.20	0.30	0.008	0.012
K	3.18	5.08	0.125	0.200
L	7.62 BSC		0.300	BSC
M	-	150		
N	0.51	1.02	-	$15^{0}$

CASE 620-06



DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.40	10.16	0.370	0.400
B	6.22	7.24	0.245	0.285
C	1.52	2.03	0.060	0.080
D	0.41	0.48	0.016	0.019
F	0.08	0.15	0.003	0.006
G	1.27 BSC	0.050 BSC		
H	0.64	0.89	0.025	0.035
K	6.35	.9 .40	0.250	0.370
L	18.92	-	0.745	-
N	-	0.51	-	0.020
R	-	0.38	-	0.015

CASE 650-03
CERAMIC PACKAGE
CASE 690

NOTE:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.


	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	20.07	20.57	0.790	0.810
B	7.11	7.62	0.280	0.300
C	2.67	3.81	0.105	0.150
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54 BSC		0.100 BSC	
H	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	3.56	4.06	0.140	0.160
L	7.62 BSC	0.300 BSC		
M	-	$10^{0}$		
N	0.38	1.40	0.015	$10^{0}$

CASE 690-11

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	20.07	20.57	0.790	0.810
B	7.11	7.62	0.280	0.300
C	2.67	3.94	0.105	0.155
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54 BSC		0.100	
BSC				
J	0.76	1.78	0.030	0.070
K	0.20	0.30	0.008	0.012
L	3.18	5.08	0.125	0.200
M	-		BSC	$10^{\circ}$
N	0.38	1.40	0.300	

CASE 690-12

PLASTIC PACKAGE
CASE 648


DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	18.80	21.34	0.740	0.840
B	6.10	6.60	0.240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
H	0.38	2.41	0.015	0.095
$J$	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
M	$0{ }^{0}$	$10^{0}$	$0{ }^{0}$	$10^{0}$
N	0.51	1.02	0.020	0.040

CASE 648-05

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED
PARALLEL.
3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
4. "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS $1,8,9$, and 16).
5. ROUNDED CORNERS OPTIONAL.

## MECHANICAL DATA (Continued)

## 18-PIN PACKAGES

## GERAMIC PACKAGE CASE 680



NOTES:

1. LEADS WITHIN 0.13 mm ( 0.005 ) RAD OF True position at seating plane at MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	22.48	23.24	0.885	0.915
B	7.16	7.57	0.282	0.298
C	3.18	4.27	0.125	0.168
D	0.38	0.58	0.015	0.023
F	0.76	1.40	0.030	0.055
G	2.54 BSC	0.100 BSC		
H	1.02	1.52	0.040	0.060
J	0.20	0.30	0.008	0.012
K	2.68	4.44	0.105	0.175
L	7.37	7.87	0.290	0.310
M	-	100	-	100
N	0.38	1.40	0.015	0.055

CASE 680-06

PLASTIC PACKAGE
CASE 707

notes:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN $0.25 \mathrm{~mm}(0.010)$ AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	22.22	23.24	0.875	0.915		
B	6.10	6.60	0.240	0.260		
C	3.94	4.57	0.155	0.180		
D	0.36	0.56	0.014	0.022		
F	1.27	1.78	0.050	0.070		
G	2.54		BSC	0.100		BSC
H	1.02	1.52	0.040	0.060		
J	0.20	0.30	0.008	0.012		
K	2.92	3.43	0.115	0.135		
L	7.62	BSC	0.300			
M	0	0	$15 C$			
N	0.51	1.02	0	0		

CASE 707-02

PLASTIC PACKAGE
CASE 701-01


NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUM OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (DIM "G").
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	23.11	23.88	0.910	0.940
B	6.10	6.60	0.240	0.260
C	4.06	4.57	0.160	0.180
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.0	0.100 BSC
H	1.32	1.83	0.052	0.072
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.37	7.87	0.290	0.310
M	$0^{\circ}$	$10^{\circ}$	0	$0^{\circ}$
N	0.51	1.02	0.020	0.040

CASE 701-01

## 22-PIN PACKAGES

CERAMIC PACKAGE
CASE 677


NOTES:

1. LEADS WITHIN 0.13 mm ( 0.005 ) RADIUS OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L." TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. EXPOSED CONTACT TO LEAD 1 , OPTIONAL.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	27.15	27.71	1.069	1.091
B	9.65	10.06	0.380	0.396
C	2.79	3.56	0.110	0.140
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54	BSC	0.100	
BSC				
H	0.51	1.52	0.020	0.060
J	0.20	0.30	0.008	0.012
K	3.18	4.45	0.125	0.175
L	9.91	10.41	0.390	0.410
M	-	$10^{0}$	-	10
N	0.64	1.27	0.025	0.050

CASE 677-05

## MECHANICAL DATA (Continued)

## 22-PIN PACKAGES (Continued)

PLASTIC PACKAGE
CASE 708


NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN $0.25 \mathrm{~mm}(0.010)$ AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.


	MILLIMETERS			INCHES	
	MIN	MAX	MIN	MAX	
A	28.83	29.59	1.135	1.165	
B	8.64	9.14	0.340	0.360	
C	4.57	5.08	0.180	0.200	
D	0.36	0.51	0.014	0.020	
F	1.02	1.52	0.040	0.060	
G	2.41	2.67	0.095	0.105	
H	1.78	2.03	0.070	0.080	
J	0.20	0.30	0.008	0.012	
K	3.05	3.56	0.120	0.140	
L	9.65	10.16	0.380	0.400	
M	$0^{0}$	$10^{\circ}$	$0^{0}$	$10^{\circ}$	
N	0.51	1.02	0.020	0.040	

CASE 708-01

## 24-PIN PACKAGES

CERAMIC PACKAGE CASE 684


NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE WITH MAXIMUM MATERIAL CONDITION
2. LEAD NO. 1 CUT FOR IDENTIFICATION, OR BUMP ON TOP
3. DIM " $L$ " TO INSIDE

OF LEADS. (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW PKG BASE)



DIM	MILLIMETERS			INCHES	
	MIN	MAX	MIN	MAX	
A	29.34	30.86	1.155	1.215	
B	12.70	14.22	0.500	0.560	
C	3.05	3.94	0.120	0.155	
D	0.38	0.51	0.015	0.020	
F	0.89	1.40	0.035	0.055	
G	2.54 BSC	0.100		BSC	
H	0.89	1.40	0.035	0.055	
J	0.20	0.30	0.008	0.012	
K	2.92	3.68	0.115	0.145	
L	14.86	15.87	0.585	0.625	
M	-	$15^{0}$	-	150	
N	0.51	1.14	0.020	0.045	

CASE 684-04

## 24-PIN PACKAGES (Continued)

CERAMIC PACKAGE
CASE 623


DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	31.24	32.26	1.230	1.270
B	12.70	13.72	0.500	0.540
C	4.06	5.59	0.160	0.220
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54 BSC		0.100	
B	0.20	0.30	0.008	0.012
K	2.29	4.06	0.090	0.160
L	15.24 BSC	0.600		BSC
M	$0^{\circ}$		$15^{0}$	0
N	0.51	1.27	150	

CASE 623-03

CERAMIC PACKAGE CASE 623A


NOTES:

1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).


DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	31.24	32.26	1.230	1.270
B	12.70	13.72	0.500	0.540
C	4.06	5.84	0.160	0.230
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54	BSC	0.10	BSC
J	0.20	0.30	0.008	0.012
K	2.29	4.06	0.090	0.160
L	15.24	BSC	0.60	BSC
M	$0{ }^{0}$	$15^{\circ}$	$0^{\circ}$	$15^{0}$
N	0.51	1.27	0.020	0.050

CASE 623A-01

## MECHANICAL DATA (Continued)

## 24-PIN PACKAGES (Continued)

CERAMIC PACKAGE
CASE 716


NOTE:

1. LEADS TRUE POSITIONED WITHIN 0.25 mm ( 0.010 ) DIA. (AT SEATING PLANE) AT MAXIMUM MATERIAL CONDITION.
2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	27.64	30.99	1.088	1.220
B	14.94	15.34	0.588	0.604
C	2.67	4.32	0.105	0.170
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54 BSC	0.100 BSC		
H	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	2.54	4.19	0.100	0.165
L	14.99	15.49	0.590	0.610
M	-	$10^{0}$	-	$10^{0}$
N	1.02	1.52	0.040	0.060

CASE 716-06


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	27.64	30.99	1.088	1.220
B	14.94	15.34	0.588	0.604
C	3.18	5.08	0.125	0.200
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54 BSC	0.100		BSC
H	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	2.54	4.19	0.100	0.165
L	14.99	15.49	0.590	0.610
M	-	$10^{0}$	-	$10^{0}$
N	1.02	1.52	0.040	0.060

CASE ${ }^{7} 16$-07

## MECHANICAL DATA (Continued)

## 24-PIN PACKAGES (Continued)

## PLASTIC PACKAGE

## CASE 709



## NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN $0.25 \mathrm{~mm}(0.010)$ AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD

	MILLIMETERS			INCHES	
	MIN	MAX	MIN	MAX	
	31.37	32.13	1.235	1.265	
B	13.72	14.22	0.540	0.560	
C	3.94	5.08	0.155	0.200	
D	0.36	0.56	0.014	0.022	
F	1.02	1.52	0.040	0.060	
G	2.54	BSC	0.100		
BSC					
H	1.65	2.03	0.065	0.080	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	15.24		BSC	0.60	
M	$0^{\circ}$		150	0.60	
N	0.51	$15^{0}$	$0^{\circ}$	$15^{0}$	

CASE 709-02

NOTES

NOTES

NOTES

NOTES

NOTES

# SELECTOR 

GUIDES
CROSS-REFERENCE

NMOS Memories
RAM, EPROM, ROM

CMOS Memories RAM, ROM

Memory Boards


[^0]:    *To be introduced.
    See Notes on Page 1-2.

[^1]:    *To be introduced.
    See Notes on Page 1-2.

[^2]:    This is advance information and specifications are subject to change without notice.

[^3]:    $H=$ High, $L=$ Low, $X=$ Don't Care

[^4]:    'Dout

[^5]:    This is advance information and specifications are subject to change without notice.

[^6]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fieids; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^7]:    Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and

[^8]:    This is advance information and specifications are subject to change without notice.

[^9]:    Dout
    $\mathrm{VOH}_{\mathrm{OH}}$
    $\mathrm{V}_{\mathrm{OL}}-$

[^10]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that

[^11]:    Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

[^12]:    *New industry standard nomenclature

[^13]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

[^14]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^15]:    *NOTE: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

[^16]:    *The formula is for the typical characteristics only.

[^17]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^18]:    Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

[^19]:    (1) Address and chip select should not be left open for $V_{1 H}$.
    (2) Disable condition will be met with output open circuit.

[^20]:    (1) Address and chip select should not be left open for $V_{I H}$.
    (2) Disable condition will be met with output open circuit.

[^21]:    (1) Address and chip select should not be left open for $V_{\text {IH }}$.
    (2) Disable condition will be met with output open circuit.

[^22]:    (1) Address and chip select should not be left open for $V_{1 H}$.
    (2) Disable condition will be met with output open circuit.

[^23]:    * Note: Clock occurs sequentially through Truth Table
    - Note: AO-A 2, BO.B2, and CO.C2 are all set to same address location throughout Table.
    $\phi=$ Don't Care

[^24]:    - $\overline{\mathrm{CS}}=\overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2}+\overline{\mathrm{CS} 3} \quad \phi=$ Don't Care.

[^25]:    * To be determined; contact your Motorola representative for up-to-date information.

[^26]:    * Trademark of Digital Equipment Corporation

[^27]:    Power options selectable by zero ohm resistors shown above

