

NOTOFOLA Semniconductor Prodercts Inc.

Volume 7/Series A

prepared by

Semiconductor Data Library

MOS MEMORIES

This book presents technical data for the broad line of Motorola MOS Memories. Complete specifications for the individual parts are provided in the form of data sheets. Additional sections are provided to include pertinent information on application ideas, reliability concepts and data, and interface components. This book will greatly simplify the task of choosing the best combination of circuits for optimum system architecture.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent right of any manufacturer.

CONTENTS

Page No.
Numerical Index iii
CHAPTER 1 - GENERAL INFORMATION 1-1
Introduction 1-3
Performance 1-3
Power Dissipation 1-3
Memory Density 1-4
Interfacing Requirements 1-4
Special Applications 1-4
MOS - The Difference 1-4
Memory Glossary 1-6
Motorola Device Numbering System 1-8
CHAPTER 2 - RANDOM ACCESS MEMORIES $2-1$
Device Summary 2-2
Data Sheets:
MCM2102 1024×1 Bit, Static 2-3
MCM2102A 1024×1 Bit, Static 2-7
MCM2111A 256×4 Bit, Static 2-9
MCM2112A 256×4 Bit, Static 2-13
MCM6604 4096×1 Bit, Dynamic, 16 pin. 2-17
MCM6605A 4096×1 Bit, Dynamic, 22 pin. 2.25
MCM6616 $16,384 \times 1$ Bit, Dynamic. 2-39
MCM 14505 64×1 Bit, Static, CMOS 2-41
MCM 14537 256×1 Bit, Static, CMIOS 2-51
MCM 14552 64×4 Bit, Static, CMOS 2-59
CHAPTER 3 - READ ONLY MEMORIES 3-1
Device Summary 3-3
Mask-Programmable ROM Processing 3-4
Data Sheets:
MCM6550 7168 Bit, Static, Rhythm 3-5
MCM6560-62 8K, Static, Code Converter 3-13
MCM6570-79 : 8K, Character Generator, Horizontal Scan 3-27
MCM6580, 81, 83 8K, Character Generator, Vertical Scan $3-41$
MCM6590-91 16K Code Converter 3-49
MCM14524 256×4 Bit, CMOS 3-63
CHAPTER 4 - M6800 SYSTEM MEMORIES 4-1
Device Summary 4-2
Data Sheets:
MCM6810A 128×8 Bit Static RAM 4-3
MCM68111A 256×4 Bit Static RAM 4.7
MCM68112A 256×4 Bit Static RAM 4-11
MCM6815A 4096×1 Bit Dynamic RAM 4-15
MCM6830A 1024×8 Bit Static ROM 4-29
MCM68317 2048×8 Bit Static ROM 4-35
МСМ6832 2048×8 Bit Static ROM 4-37
MCM68708 1024×8 Bit Alterable ROM $4-43$
CHAPTER 5 - APPLICATION NOTES 5-1
Introduction 5-2
A CRT Display System Using NMOS Memories 5-3
A Non-Volatile Microprocessor Memory Using 4K N-Channel MOS RAMs 5-18
The Design of an N-Channel $16 \mathrm{~K} \times 16$ Bit Memory System for the PDP-11. 5-34
CHAPTER 6 - RELIABILITY INFORMATION 6-1
Basic Concepts 6-3
Random Failure 6-3
Wearout 6.4
Sampling Procedures 6-7
The Source of Reliability 6-8
Design 6.8
Processing 6-8
Screening 6-10
System Implementation 6-12
Assessing System Requirements 6-12
Comparing Competitors' Data 6-13
Motorola Data 6-15
Processing and Handling 6-19
Conclusion 6-20
References 6-21
CHAPTER 7 - MEMORY INTERFACE 7-1
Introduction 7-2
Data Sheets:
MC3459 Quad NMOS Address Line Driver 7-3
MC3460, 66 Gate Controlled Four Channel MOS Clock Driver 7.7
MC8505
MOS Dynamic Memory Address Refresh
MOS Dynamic Memory Address Refresh Logic Circuit 7-20
MC10177 Triple MECL-to-NMOS Translator 7-25
MC75365 Quad MOS Clock Driver 7-28
MC75368, 58 Dual MECL-to-MOS Drivers 7-36
MMH0026, C Dual MOS Clock Driver 7-43

NUMERICAL INDEX

Page No.
MCM2102 1024×1 Bit Static RAM 2-3
MCM2102-1 1024×1 Bit Static RAM 2-3
MCM2102-2 1024×1 Bit Static RAM 2-3
MCM2102A 1024×1 Bit Static RAM 2-7
MCM2102A2 1024×1 Bit Static RAM 2-7
MCM2102A4 1024×1 Bit Static RAM 2-7
MCM2111A 256×4 Bit Static RAM 2-9
MCM2111A2 256×4 Bit Static RAM 2-9
MCM2111A4 256×4 Bit Static RAM 2-9
MCM2112A 256×4 Bit Static RAM 2-13
MCM2112A2 256×4 Bit Static RAM 2-13
MCM2112A4 256×4 Bit Static RAM 2-13
MCM6550 7168 Bit Static Rhythm ROM 3-5
MCM6560 1024×8 or 2048×4 Static ROM 3-13
MCM6561 Binary Code Converter 3-13
MCM6562 Binary Code Converter 3-13
MCM6570 7×9 Horizontal-Scan Static Character Generator. 3-27
MCM6571 Shifted ASCII Characters and Greek 3-27
MCM6571A Shifted ASCII Characters and Greek 3-27
MCM6572 Non-Shifted ASCII Characters and Greek 3-27
MCM6573 Japanese Characters 3-27
MCM6574 Math Symbols and Pictures 3-27
MCM6575 Alphanumeric Control Characters 3-27
MCM6576 British Standard Characters 3-27
MCM6577 German Standard Characters 3-27
MCM6578 French Standard Characters 3-27
MCM6579 General European Standard Characters 3-27
MCM6580 7×9 Vertical-Scan Static Character Generator 3-41
MCM6581 Shifted ASCII Characters and Greek 3-41
MCM6583 Japanese Characters 3-41
MCM6590 2048×8 Static ROM 3-49
MCM6591 Universal Code Converter 3-49
MCM6604 16-pin 4096×1 Bit Dynamic RAM 2-17
MCM6604-2 16-pin 4096×1 Bit Dynamic RAM 2-17
MCM6604-4 16-pin 4096×1 Bit Dynamic RAM 2-17

NUMERICAL INDEX (continued)

MCM6605A 22-pin 4096×1 Bit Dynamic RAM 2-25
MCM6605A1 22-pin 4096×1 Bit Dynamic RAM 2-25
MCM6605A2 22-pin 4096×1 Bit Dynamic RAM 2-25
MCM6616 $\quad 16,384 \times 1$ Bit Dynamic RAM 2-39
MCM6810A $\quad 128 \times 8$ Bit Static RAM 4.3
MCM68111A 256×4 Bit Static RAM 4-7
MCM68112A 256×4 Bit Static RAM 4-11
MCM6815A 22-pin 4096×1 Bit Dynamic RAM 4-15
MCM6815A2 22-pin 4096×1 Bit Dynamic RAM 4-15
MCM6830A 1024×8 Bit Static ROM 4-29
MCM68317 2048×8 Bit Static ROM 4-35
MCM6832 2048×8 Bit Static ROM 4-37
MCM68708 1024×8 Bit Alterable ROM 4.43
MCM14505A 64×1 Bit Static CMOS RAM 2-41
MCM14505C 64×1 Bit Static CMOS RAM $2-41$
MCM14524A 256×4 Bit CMOS ROM 3-63
MCM14524C 256×4 Bit CMOS ROM 3-63
MCM14537A 256×1 Bit CMOS RAM 2-51
MCM14537C 256×1 Bit CMOS RAM 2-51
MCM14552A 64×4 Bit CMOS RAM 2-59
MCM14552C 64×4 Bit CMOS RAM 2-59

General Information/Chapter 1

CHAPTER 1 - GENERAL INFORMATION

INTRODUCTION

Memories are among the most important parts used in digital data-processing systems. Compared with the total system components needed, their share is growing at a faster rate than any other single portion. One of the recent and most promising additions to the memory arsenal is semiconductor memories. Since their appearance in the late 60's, they have had increasing acceptance all over the electronic industry. As a result, the semiconductor memory market is growing at a faster rate than other electronic market segments.

This rapid rate of growth has been characterized by a wide proliferation of memory components. The choice of the correct semiconductor memory for a particular application has become more difficult. The purpose of this data book is to assist the user in his decision-making process by making him familiar with Motorola's large family of MOS Memories and their characteristics.

In order to select the correct memory for his system, the user must be aware of many considerations. Among them are performance, power dissipation, memory density, interface requirements and special applications.

PERFORMANCE

The performance of a memory is widely interpreted to mean the maximum access time or minimum write cycle time guaranteed by the device specifications. Since the speed of a circuit depends on the gain of the devices comprising the circuit, performance is a strong function of technology. In general TTL, ECL and other bipolar memories are the fastest devices, offering both short access times and short write cycle times. An example would be the MCM10144 MECL RAM shown in Figure 1.

The device speeds of MOS memories, although not as fast as bipolar devices, have closed the gap considerably. For example, the 7001 RAM is fabricated with an N -Channel, charge-pump technique, and has an access time considerably less than 100 ns . Figure 2 illustrates the typical access times currently achieved with various memories of the different technologies.

POWER DISSIPATION

MOS technology currently enjoys the position
of being the lowest consumer of power, with complementary MOS processes such as the McMOS process consuming the least. This is due to the nature of the insulated gate field effect transistor, as contrasted to bipolar techniques.

For MOS designs, power dissipation is primarily a function of whether the circuit is static or dynamic. A static memory will retain data as long as power is applied since the memory array stores data by means of cross-coupled latches which draw dc power. As a result, the power dissipation for static memories is the same during operation and standby conditions. (Although the 7001 offers static operation, this memory is an exception and has low standby power because of the low charge-pump current and the fact that the 7001 has a clock.)

In contrast, dynamic memories can be designed to use the clock input to drastically reduce power dissipation during standby. The MCM6604 RAM, for example, typically draws less than 1 mA during standby - the current required to maintain one active buffer to sense the low-level clock input. The MCM6605 RAM, which uses a high-level clock, consumes practically no power when the part is not operating. The only current is due to junction leakage and is typically a few microamperes.

Power dissipated during standby is a function of the duty cycle of the active refresh cycles which are required to maintain memory. The memory is stored dynamically on a capacitor comprised of PN junction capacitance, thin-oxide gate capacitance and parasitic capacitance. Because of the leakage at the junction, data storage is temporary and the memory must be refreshed periodically to restore the decaying nodes to full voltage levels. Since memory chips are designed and laid out in arrays, a chip can be refreshed by sequencing through the column addresses. The MCM6605, organized internally as 32×128, requires only 32 cycles for a refresh sequence. Assuming one cycle takes 500 ns and the time between refresh is 2 ms , the refresh duty cycle is 1.25\%. When the power is added, with 98.75% in standby and 1.25% active, the total is still remarkably low - typically 2.6 mW .

MEMORY DENSITY

One of the distinct advantages of MOS technology is the packing densities achievable. More MOS devices can be packed into a given area than bipolar devices. In addition, MOS processing techniques are more forgiving than bipolar techniques, allowing larger chip sizes. For both reasons, MOS packs more into a chip, requiring far fewer chips per board or per system.

MOS memory density can be further broken down into two parts: density achievable with bits per chip and density achievable with board area per chip. As for the first, dynamic memories allow more bits per chip for a given chip size than static memories. Therefore, dynamic MOS memories are the most cost effective for bulk storage applications.

The densities achievable at the board level depend not only on the bits per chip but on the size of the package as well. Clever circuit design has allowed pin multiplexing and resulted in a 16-pin 4096-bit memory. This package consideration allows the user to put more chips on a given board.

INTERFACING REQUIREMENTS

Since a memory requires certain timing and voltage levels at the pins of the device, interfacing requirements become very important and must be considered in final board density. Static MOS and bipolar memories are the easiest to interface within a system and therefore require the fewest number of interface parts. By contrast, dynamic memories require clocks and refresh circuitry. Additional interface parts are required to provide these functions.

It is not automatically apparent which approach will lead to the smallest board layout. The static MOS and bipolar memories do not have the per part storage capability of the dynamic MOS memories. Therefore, for even a modest board, the additional parts required for dynamic operation may be fewer than the additional parts otherwise required for memory capacity. Each user must determine the tradeoffs for himself.

As another example of spacing and interface tradeoffs, the MCM6604 is packaged in a 16 -pin case, which is considerably smaller than the 22-pin case used for the MCM6605. However, the MCM6604 requires more interface parts than the MCM6605 to provide the extra clocks and circuitry required for address multiplexing. Here again, the size of the system will determine whether or not the additional overhead devices will be smaller
than the area consumed by the 22-pin MCM6605.
Input and output characteristics must also be considered. For example, CMOS devices operated at high voltage supplies need high level inputs. This will require a level translation from a TTL driver. As for outputs, there is a considerable difference between 3 -state outputs, differential outputs and open drain outputs. The first is efficient for wire-ORing the parts on a bus. The second is fast but requires a sense amplifier. The last requires an external resistor.

SPECIAL APPLICATIONS

When a system has special requirements, the choice of memory becomes more limited. For example, high performance (50 ns) requirements can be met only by bipolar memories. Restrictive power requirements may dictate the use of CMOS memories. And microprocessor applications necessitate the use of 3 -state output buffering. These considerations may dictate the choice of memory to be used.

One special application which is becoming more important is that of microprocessor-oriented systems. In the past, semiconductor memories have been tailored to meet the requirements of mainframe, bulk storage and have been organized accordingly. In the future, there will be a trend toward by 4 , by 8 and by 16 output memories designed to minimize interface requirements in microprocessor applications.

MOS - THE DIFFERENCE

Each technology has its own particular advantages. Bipolar, for example, is fast. However, in almost every other area, MOS has the edge. MOS packing densities are greater, for example, producing physically smaller and cheaper systems. MOS power consumption is generally lower, with McMOS at the one end to provide ultra-low power consumption. MOS is lenient with voltage requirements, with CMOS again providing the least sensitivity and the most noise immunity. And MOS is approaching bipolar even on speed.

One of the greatest advantages of MOS is that its full potential has not yet been reached. Significant advances occur almost daily. And the limit to packing density has not yet been approached. MOS will become more and more dominant and its particular advantage of packing density combined with low power dissipation continues to make inroads into nearly all electronic applications.

FIGURE 1 - COMPARISON OF TYPICAL RANDOM ACCESS MEMORIES WITH DIFFERENT TECHNOLOGIES

Memory	Structure	Organization and Package	Performance		Power Dissipation		Power Supplies (V)	Interface Circuits Required
			AccessTime(ns)	Write Cycle Time (ns)				
					Operating (mW)	$\begin{gathered} \text { Standby } \\ (\mathrm{mW}) \end{gathered}$		
MCM6605	N-Channel Dynamic	$\begin{aligned} & 4096 \times 1 \\ & 22 \text { pin } \end{aligned}$	210	490	335	8.0	$\begin{gathered} \hline+12,+5 \\ -5 \end{gathered}$	TTL inputs 3-state TTL output Refresh circuitry CE clock driver
7001	N-Channel Charge pump	$\begin{aligned} & 1024 \times 1 \\ & 22 \text { pin } \end{aligned}$	60	180	650	0.5	$\begin{gathered} +15,+8 \\ -3 \end{gathered}$	TTL inputs Differential open drain sense amp Charge pump oscillator CE clock driver
MCM6810	N-Channel Static	$\begin{aligned} & 128 \times 8 \\ & 24 \text { pin } \end{aligned}$	575	500	350	350	+5	TTL inputs TTL output
MCM10144	ECL Static	$\begin{aligned} & 256 \times 1 \\ & 16 \text { pin } \end{aligned}$	30	40	520	520	$\begin{aligned} & -5.2 \\ & -2.0 \end{aligned}$	ECL inputs ECL output (pulldown resistor)
MCM14537	CMOS Static	$\begin{aligned} & 256 \times 1 \\ & 16 \mathrm{pin} \end{aligned}$	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	10	0.023	+15	High level inputs High level 3-state output

FIGURE 2 - TYPICAL ACCESS TIMES FOR MEMORIES WITH DIFFERENT TECHNOLOGIES

Access Time	Time between application of address and availability of data at the output ("read time").
Address	(Noun) Code that identifies a specific location in a memory. (Verb) Selection of stored information for retrieval from a computer's memory.
ASCII	American Standard Code for Information Interchange (eight bit code).
Associative Memory	Addresses the data actually stored in the memory, not the location (see "CAM').
Bit	Acronym for BInary digit (can be 0 or 1).
Byte	A grouping of a conveniently small number of adjacent bits that form a sub-unit of information. Through common usage, a by te is usually defined as containing eight bits.
Cache Memory	High-speed, low-capacity memory; similar to "scratch pad memory", but with larger capacity.
CAM	Content Addressable Memory. Retrieves information not by selecting a physical location, but by addressing the content (see "associative memory").
Capacity	Total number of bits that can be stored within a memory. Usually a power of 2 (e.g. $2^{10}=1024$, called " 1 K ").
CARAM	Acronym for Content Addressable Random Access Memory.
Cell	Basic storage element to memorize one bit of information.
Character Generator	Type of generator which creates letters, numerals, or symbols in desired sequence for any viewing medium. ROMs are commonly programmed to perform this function.
Charge Pump	Device based on a MOS transistor, where a small charge (current) flows from source to substrate when a pump frequency is applied to the gate. Used as a constant current source to replace load devices in some memory cells.
cmos	Complementary MOS; circuit with both P - and N-Channel FETs on the same MOS wafer.
Cycle Time	Also called read-write cycle time. Measure of how long it takes to obtain information from a memory and then to write back information into the memory.
Driver	Device that can be controlled with normal logic levels, while its output is capable of sinking or sourcing high current (driving heavy capacitive loads).
DRO Memory	Destructive Read-Out memory, in which reading the contents of a storage cell destroys the contents of that location.
Dynamic Memory	Fast memory where the parasitic capacitance of MOS-FET gates within a storage cell is used for temporary storage of information. Due to junction leakage currents this is possible for only a finite time. Prior to the loss of data the information must be refreshed by some electrical methods.
Interface	Circuit to provide compatibility between systems with different logic levels or operating voltages.
LSB	Least Significant Bit; the lowest weighted digit of a binary number.
LSI	Large Scale Integration.
McMOS	Acronym for Motorola Complementary MOS. Trademark.
Mainframe Memory	The main working memory of a data processing system. Has medium storage capacity (up to 128 K bytes).
MECL	Acronym for Motorola Emitter Coupled Logic. Trademark.

MOS	Metal Oxide Semiconductor, usually refers to the insulated gate FET.		
MSB	Most Significant Bit; the highest weighted digit of a binary number.		
MSI	Medium Scale Integration.		
MTBF	Mean Time Before Failure.	\quad	Non Destructive Read-Out Memory, where the read operation does not cause the
:---			
NDRO Memory			
storage cell to lose the stored information. Most semiconductor memories are of			
this type.			

UNDERSTANDING MOTOROLA'S DEVICE NUMBERING SYSTEM

The device number of Motorola integrated circuit memories gives some information about device function and characteristics. The MCM prefix stands for Motorola integrated Circuit Memories. This is followed by a four or five digit number which denotes a specific memory function and set of characteristics. The suffix contains information on circuit redesign, speed categories, package type, and/or allowed temperature range. The convention differs somewhat between the suffix for a McMOS MC14500 series memory and other MOS memories, as shown in the following examples:

Example 1 - NMOS Memory

MCM6605AL1

The 1 indicates the fast version.
The L indicates a ceramic dual in-line package is used. (A P suffix would indicate plastic.)
The A indicates that the device is an improved version of the MCM6605.

Example 2 - McMOS MC14500 series Memory MCM14524AL
T The L, as with NMOS, indicates ceramic dual in-line package. (P would indicate plastic.)

The A indicates a full temperature range part (-55 to $+125^{\circ} \mathrm{C}$). A C suffix would indicate limited temperature range (-40 to $+85^{\circ} \mathrm{C}$).

Random Access Memories (RAM)/Chapter 2

RANDOM ACCESS MEMORIES

Random Access Memories are useful wherever temporary storage is required. They find application in large mainframe memory systems, minicomputers, and conventional digital control circuits.

RAMs which are specifically intended for use with the M6800 Microcomputer Family are shown in Chapter 4.

| Device
 No. | No. of
 Bits | Description | Organization | Access
 (nime max) | Power
 Supplies
 (V) | No. of
 Pins | Case |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Page No. | N |
| :---: |

SILICON GATE NMOS

MCM2102 MCM2102-1 MCM2 102-2	$\begin{aligned} & 1024 \\ & 1024 \\ & 1024 \\ & \hline \end{aligned}$	Static Static, High Speed Static	$\begin{aligned} & 1024 \times 1 \\ & 1024 \times 1 \\ & 1024 \times 1 \\ & \hline \end{aligned}$	1000 500 650	$\begin{aligned} & +5 \\ & +5 \\ & +5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 620,648 \\ & 620,648 \\ & 620,648 \\ & \hline \end{aligned}$	$\begin{aligned} & 2-3 \\ & 2-3 \\ & 2-3 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { MCM2102A* } \\ & \text { MCM2102A2* } \\ & \text { MCM2102A4** } \end{aligned}$	$\begin{aligned} & 1024 \\ & 1024 \\ & 1024 \end{aligned}$	Static, Verv High Speed Static, Very High Speed Static, Very High Speed	$\begin{aligned} & 1024 \times 1 \\ & 1024 \times 1 \\ & 1024 \times 1 \end{aligned}$	$\begin{aligned} & 350 \\ & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & +5 \\ & +5 \\ & +5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 620,648 \\ & 620,648 \\ & 620,648 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 2.7 \end{aligned}$
MCM2111A MCM2111A2 MCM2111A4	$\begin{aligned} & 1024 \\ & 1024 \\ & 1024 \end{aligned}$	Static, Common I/O and Output Disable Static, Common I/O and Output Disable Static, Common I/O and Output Disable	$\begin{aligned} & 256 \times 4 \\ & 256 \times 4 \\ & 256 \times 4 \end{aligned}$	$\begin{aligned} & 350 \\ & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & +5 \\ & +5 \\ & +5 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 680,707 \\ & 680,707 \\ & 680,707 \end{aligned}$	$\begin{aligned} & 2-9 \\ & 2-9 \\ & 2-9 \end{aligned}$
MCM2112A MCM2112A2 MCM2112A4	$\begin{aligned} & 1024 \\ & 1024 \\ & 1024 \end{aligned}$	Static, Common I/O Static, Common I/O Static, Common I/O	$\begin{aligned} & 256 \times 4 \\ & 256 \times 4 \\ & 256 \times 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 250 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \\ & +5 \\ & +5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 620,648 \\ & 620,648 \\ & 620,648 \\ & \hline \end{aligned}$	$\begin{aligned} & 2-13 \\ & 2-13 \\ & 2-13 \\ & \hline \end{aligned}$
MCM6604 MCM6604-2 MCM6604-4	$\begin{aligned} & 4096 \\ & 4096 \\ & 4096 \end{aligned}$	Dynamic Dynamic Dynamic	$\begin{aligned} & 4096 \times 1 \\ & 4096 \times 1 \\ & 4096 \times 1 \end{aligned}$	$\begin{aligned} & 350 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & +12,+5,-5 \\ & +12,+5,-5 \\ & +12,+5,-5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 690,648 \\ & 690,648 \\ & 690,648 \end{aligned}$	$\begin{aligned} & 2-17 \\ & 2-17 \\ & 2-17 \end{aligned}$
MCM6605A MCM6605A1 MCM6605A2	$\begin{aligned} & 4096 \\ & 4096 \\ & 4096 \end{aligned}$	Dynamic Dynamic Dynamic	$\begin{aligned} & 4096 \times 1 \\ & 4096 \times 1 \\ & 4096 \times 1 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & +12,+5,-5 \\ & +12,+5,-5 \\ & +12,+5,-5 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 677,708 \\ & 677,708 \\ & 677,708 \end{aligned}$	$\begin{aligned} & 2-25 \\ & 2-25 \\ & 2-25 \end{aligned}$
MCM6616*	16384	Dynamic	16384×1	350	+12, +5, -5	16	TBA	2-39

METAL GATE CMOS

MCM14505A	64	Static, -55 to $+125^{\circ} \mathrm{C}$	64×1	$550 \#$	+3 to +18	14	632	$2-41$
MCM14505C	64	Static, -40 to $+85^{\circ} \mathrm{C}$	64×1	$650 \#$	+4.5 to +16	14	632,646	$2-41$
MCM14537A	256	Static, -55 to $+125^{\circ} \mathrm{C}$	256×1	$4000 \#$	+3 to +18	16	690	$2-51$
MCM14537C	256	Static, -40 to $+85^{\circ} \mathrm{C}$	256×1	$6000 \#$	+4.5 to +16	16	690	$2-51$
MCM14552A	256	Static, -55 to $+125^{\circ} \mathrm{C}$	64×4	$3000 \#$	+3 to +18	24	684	$2-59$
MCM14552C	256	Static, -40 to $+85^{\circ} \mathrm{C}$	64×4	$6000 \#$	+4.5 to +16	24	684,709	$2-59$

*To be announced \#Measured with $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

1024-BIT STATIC RANDOM ACCESS MEMORY

The MCM2102 is a 1024 -bit random access memory fabricated with high-density, high-reliability, N-channel, silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of static operation.

- 1024 Word by 1 Bit Organization
- Access Time $=500 \mathrm{~ns}($ MCM2102L1/P1)

650 ns (MCM2102L2/P2)
1000 ns (MCM2102L/P)

- Low Power Dissipation - 150 mW Typical
- Static Operation
- Single +5 -Volt Supply
- Direct TTL/DTL Compatibility
- Three-State Output
- Chip Enable for Memory Expansion
- Cost Effective Data Storage

MOS

(N-CHANNEL, SILICON-GATE)

1024-BIT STATIC RANDOM ACCESS MEMORY

L SUFFIX
CERAMICPACKAGE CASE 620

PSUFFIX PLASTIC PACKAGE CASE 648

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{\text {SS }}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
Input Low Voltage	$V_{I L}$	-0.3	-	0.65	$V_{d c}$
Input High Voltage	V_{IH}	2.2	-	5.25	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current (All Inputs; $\mathrm{V}_{\text {in }}=0$ to 5.25 V)	I in	-	-	10	$\mu \mathrm{A}$
Output Leakage Current (Three-State) $\left(\overline{C E}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \text { to } 4 \mathrm{~V}\right)$	'LO	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left(1 \mathrm{OH}^{\prime}=-100 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $\left(1 \mathrm{OL}^{2}=1.9 \mathrm{~mA}\right)$	V_{OL}	-	-	0.45	Vdc
Power Supply Current $\left(T_{A}=0^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	${ }^{\prime} \mathrm{CC}$	-	30	70	mA

CAPACITANCE (Periodically sampled rather than 100\% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\text {in }}$	-	3.0	5.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\text {out }}$	-	7.0	10	pF

PACKAGE DIMENSIONS

CASE 620-04

CASE 648-03

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	19.05	19.94	0.750	0.785
B	6.10	49	0.240	95
C	-	5.08		0.200
0	0.38	0.53	0.01	0.021
F	1.40	1.78	0.055	0.070
6	2.54 BSC		0.100 BSC	
H	0.51	1.14	0.020	0.045
J	0.20	0.30	0.008	0.012
K	2.54	-	0.100	
L	7.49	8.89	0.295	0.350
M		15°		15°
N	0.51	1.02	. 02	

NOTES:

1. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. PKG. INDEX: NOTCH IN LEAD

NOTCH IN CERAMIC OR INK DOT.
3. DIM "A" AND "B" DO NOT

INCLUDE GLASS RUN-OUT.
4. DIM "L" TO INSIDE OF LEADS (MEASURED 0.51 mm (0.020) BELOW BODY)

	MILLIMETERS			INCHES	
DIM	MIN	MAX	MIN	MAX	
A	20.70	21.34	0.815	0.840	
B	6.10	6.60	0.240	0.260	
C	4.06	4.57	0.160	0.180	
D	0.38	0.51	0.015	0.020	
F	1.02	1.52	0.040	0.060	
G	2.54	BSC	0.100	BSC	
H	1.32	1.83	0.052	0.072	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.37	7.87	0.290	0.310	
M	-	10°	-	10°	
N	0.51	1.02	0.020	0.040	
\mathbf{P}	0.13	0.38	0.005	0.015	
\mathbf{Q}	0.51	0.76	0.020	0.030	

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED parallel

AC CHARACTERISTICS
(All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$; Load $=1 \mathrm{TTL}$ MC7400 Series Gate, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$)
READ CYCLE

Characteristic	Symbol	Min	Max	Unit
Read Cycle Time MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	${ }^{\text {t cyc }}$ (R)	$\begin{gathered} 1000 \\ 500 \\ 650 \end{gathered}$	-	ns
Chip Enable to Output Delay MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	${ }^{\text {t }} \mathrm{CO}$		$\begin{aligned} & 500 \\ & 350 \\ & 400 \end{aligned}$	ns
Output Data Valid Time Data Hold Time from Address Data Hold Time from Disable	$\begin{aligned} & \text { tDHA } \\ & \text { tDHD } \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 0 \end{gathered}$		ns
Read Access Time MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	tacc	-	$\begin{gathered} 1000 \\ 500 \\ 650 \end{gathered}$	ns

Characteristic	Symbol	Min	Max	Unit
Write Cycle Time MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	$t_{\text {cyc }}(\mathrm{W})$	$\begin{gathered} 1000 \\ 500 \\ 650 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Address Setup Time MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	${ }^{t}$ AS	$\begin{aligned} & 200 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
Chip Enable Setup Time MCM2102L and MCM2102P MCM2102L 1 and MCM2102P1 MCM2102L2 and MCM2102P2	${ }^{\text {t CEES }}$	$\begin{aligned} & 900 \\ & 400 \\ & 550 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Pulse Width MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	tW	$\begin{aligned} & 750 \\ & 300 \\ & 400 \end{aligned}$		ns
Write Recover Time	tWR	50	-	ns
Data Setup Time MCM2102L and MCM2102P MCM2102L1 and MCM2102P1 MCM2102L2 and MCM2102P2	${ }^{\text {t }} \mathrm{DS}$	$\begin{aligned} & 800 \\ & 330 \\ & 450 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	100	-	ns

MCM2102 (continued)

FIGURE 3 - ACCESS TIME versus $V_{\text {CC }}$

FIGURE 5 - ICC SUPPLY CURRENT versus $V_{C C}$

FIGURE 4 - ACCESS TIME versus AMBIENT TEMPERATURE

FIGURE 6 - ICC SUPPLY CURRENT versus AMBIENT TEMPERATURE

Product Preview

1024-BIT STATIC RANDOM ACCESS MEMORY

The MCM2102A is a 1024 -bit random access memory fabricated with high-density, high-reliability, N-channel, silicon-gate, depletionload technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of static operation.

- 1024 Word by 1 Bit Organization
- Access Time $=250$ ns (L2, P2)

350 ns (L, P)
450 ns (L4, P4)

- Low Power Dissipation
- Static Operation
- Single +5 -Volt Supply
- Direct TTL/DTL Compatibility
- Three-State Output
- Chip Enable for Memory Expansion
- Cost Effective Data Storage

MOS

(N-CHANNEL, SILICON-GATE, DEPLETION LOAD)

1024-BIT STATIC RANDOM ACCESS MEMORY

Advance Information

256 X 4-BIT STATIC RANDOM ACCESS MEMORY

The MCM2111A is a 256×4-bit random access memory fabricated with high-density, high-reliability, N -channel, silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of static operation.

- 1024 Bits Organized as 256×4
- Access Time $=250$ ns (L2/P2)

$$
\begin{aligned}
& =350 \mathrm{~ns}(\mathrm{~L} / \mathrm{P}) \\
& =450 \mathrm{~ns}(\mathrm{~L} 4 / \mathrm{P} 4)
\end{aligned}
$$

- Static Operation (No Clocks or Refreshing Required)
- Single +5 -Volt Supply
- Direct TTL/DTL Compatibility
- Three-State Output
- Output Disable
- Chip Enable for Memory Expansion
- Cost Effective Data Storage

Note 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

[^0]This is advance information and specifications are subject to change without notice.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to V_{SS}).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V_{CC}	4.75	5.0	5.25	Vdc
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-0.3	-	0.8	Vdc
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	5.25	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current (All Inputs; $\mathrm{V}_{\text {in }}=0$ to 5.25 V)	I in	-	-	10	$\mu \mathrm{A}$
I/O Leakage Current (Three-State) $\left(\overline{C E}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \text { to } 4 \mathrm{~V}\right)$	'LI/O	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left(\mathrm{IOH}_{\mathrm{OH}}=-150 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $\left(I_{\mathrm{OL}}=2.1 \mathrm{~mA}\right)$	V_{OL}	-	-	0.4	Vdc
Power Supply Current $\left(T_{A}=0^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	I'c	-	40	70	mA

CAPACITANCE (Periodically sampled rather than 100% tested.)

Characteristic	Symbol	Min	Typ	Max
Input/Output Capacitance $\left(V_{1 / O}=0 V, f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	-	8.0	-
Input Capacitance, Other Inputs $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	C_{in}	-	pF	

AC CHARACTERISTICS

(All timing with $t_{r}=t_{f}=\mathbf{2 0} \mathrm{ns}$; Load $=1 \mathrm{TTL}$ MC7400 Series Gate, $C_{L}=100 \mathrm{pF}$)
READ CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	MCM2111AL, P		MCM2111AL2, P2		MCM2111AL4, P4		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\left.\mathrm{t}_{\text {cyc }} \mathrm{R}\right)$	350	-	250	-	450	-	ns
Access Time	${ }^{\text {acc }}$	-	350	-	250	-	450	ns
Chip Enable to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	180	-	130	-	230	ns
Output Enable to Output Delay	${ }^{\text {t }} \mathrm{OE}$	-	180	-	130	-	230	ns
Data Hold from Address	${ }^{\text {t }}$ DHA	40	-	40	-	40	-	ns
Data Hold From Disable	${ }^{\text {t }}$ DHD	0	80	0	60	0	90	ns
Data Hold from Write	${ }^{\text {t }}$ DHW	0	80	0	60	0	90	ns

WRITE CYCLE (Input puise levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	MCM2111AL,P		MCM2111AL2,P2		MCM2111AL4,P4		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	$\mathrm{t}_{\text {cyc }}(\mathrm{W})$	350	-	250	-	450	-	ns
Chip Enable Pulse Width	${ }^{\text {t }} \mathrm{CE}$	250	-	180	-	300	-	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	20	-	20	-	ns
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	0	-	0	-	0	-	ns
Address to Write Release	${ }^{t}$ AWR	350	-	250	-	450	-	ns
Write Pulse Width	${ }^{\text {t }}$ W	250	-	180	-	300	-	ns
Data Setup Time	${ }^{\text {t }}$ D	150	-	100	-	190	-	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	0	-	0	-	0	-	ns

FIGURE 1 - READ CYCLE TIMING

FIGURE 2 - WRITE CYCLE TIMING

P7 = Don't Care

CIRCUIT DESCRIPTION

The MCM2111A memory matrix consists of 1024 static storage cells. The matrix is separated into four 256 -bit memories operated in parallel to produce 256 4-bit words. A particular word is selected by a 1 -of- 32 (AO-A4) row address and a 1 -of- 8 (A5-A7) column address.

The I/O data lines are multiplexed to serve as data inputs during write cycles and as data outputs during read cycles. A read cycle is defined by the overlap of $\overline{C E} 1=\overline{C E} 2=V_{I L}$. $O D=V_{I L}$, and $R / W=V_{I H}$. During this time, the I / O ports will act as active outputs. A write cycle occurs at the overlap of $\overline{C E} 1=\overline{C E} 2=V_{I L}$ and $R / W=V_{I L}$. The I/O ports will be high impedance and data can easily be written in.

When $\overline{C E} 1$ or $\overline{C E} 2=V_{I H}$, the chip is disabled; the I/O ports will be high impedance and data presented to these pins will be ignored. This feature of the MCM2111A allows wire-ORing of the part.

READ CYCLE

During a read cycle, the MCM2111A will drive the four I/O ports to their correct levels, as defined by the data stored at the address given. A series of successive read cycles may be performed holding $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2$, and $O \mathrm{D}$ at
$\mathrm{V}_{\text {IL }}$ and R/W at $\mathrm{V}_{\text {IH }}$. In this case, the data out is valid $t_{\text {acc }}$ nanoseconds after the change in address. Alternatively, the address may be applied with the chip deselected. In this case, valid data will occur tCO nanoseconds after the last $\overline{C E}=V_{I L}$ and tOE nanoseconds after $O D=V_{I L}$.

WRITE CYCLE

During a series of write cycles, $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE}} 2$ may be held at $\mathrm{V}_{1 \mathrm{~L}}$. However, R/W must be strobed according to the timing diagram. The minimum address setup time, ${ }^{t}$ AS, must be observed.

In order to write data into the MCM2111A, the I/O buffers on the chip should be high impedance. $O D=V_{1 H}$ may be used for this purpose as shown in the Write Timing Diagram, maintaining the I/O buffers in three-state for the entire cycle. However, OD need not be used and can remain at $V_{\text {IL }}$. In this case, the I/O buffers can become active during the time between $\overline{C E} 1=\overline{C E} 2=V_{I L}$ and $R / W=$ $V_{\text {IL }}$ (tw). The buffers will remain active for tDHW nanoseconds after the R/W $=V_{1 L}$ transition. Therefore, the I/O buffers will be in the three-state condition only for a guaranteed tw - tDS - (tDHW max) nonoseconds before input data must be valid.

PACKAGE DIMENSIONS

Advance Information

256×4-BIT STATIC RANDOM ACCESS MEMORY

The MCM2112A is a 256×4-bit random access memory fabricated with high-density, high-reliability, N-channel, silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of static operation.

- 1024 Bits Organized as 256×4
- Access Time $=250 \mathrm{~ns}$ (L2, P2)

350 ns (L,P)
450 ns (L4, P4)

- Static Operation (No Clocks or Refreshing Required)
- Single +5 -Volt Supply
- Direct TTL/DTL Compatibility
- Three-State Output
- Chip Enable for Memory Expansion
- Cost Effective Data Storage

ABSOLUTE MAXIMUM RATINGS1 ${ }^{1}$ (Referenced to $\mathrm{V}_{\text {SS }}$)				
Rating	Symbol	Value	Unit	
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc	
Input Voltages	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc	
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

[^1]
MOS

(N-CHANNEL, SILICON-GATE)

256×4-BIT STATIC RANDOM ACCESS MEMORY

with Common Data Inputs/Outputs

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{\text {SS }}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V_{CC}	4.75	5.0	5.25	Vdc
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-0.3	-	0.8	Vdc
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	5.25	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current (All Inputs; $V_{\text {in }}=0$ to 5.25 V)	I in	-	-	10	$\mu \mathrm{A}$
1/O Leakage Current (Three-State) $\left(\overline{C E}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \text { to } 4 \mathrm{~V}\right)$	'LI/O	-	-	10	
Output High Voltage $\left(I_{\mathrm{OH}}=-150 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=2.1 \mathrm{~mA})$	V_{OL}	-	-	0.4	Vdc
Power Supply Current $\left(T_{A}=0^{\circ} \mathrm{C}, V_{C C}=5.25 \mathrm{~V}\right)$	${ }^{1} \mathrm{CC}$	-	40	70	mA

CAPACITANCE (Periodically sampled rather than 100% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input/Output Capacitance $\left(V_{I / O}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	-	8.0	-	pF
Input Capacitance, Other Inputs $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	C_{in}	-	3.0	-	pF

AC CHARACTERISTICS
(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$; Load $=1 \mathrm{TTL}$ MC7400 Series Gate, $\mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0} \mathrm{pF}$)
READ CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	MCM2112AL, P		MCM2112AL2,P2		MCM2112AL4,P4		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\text {cyc }}$ (R)	350	-	250	-	450	-	ns
Access Time	tacc	-	350	-	250	-	450	ns
Chip Enable to Output Delay	${ }_{\text {t }}$	-	180	-	130	-	230	ns
Data Hold from Address	${ }^{\text {t }}$ DHA	40	-	40	-	40	-	ns
Data Hold from Disable	tDHD	0	80	0	60	0	90	ns
Data Hold from Write	tDHW	0	80	0	60	0	90	ns

WRITE CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	MCM2112AL, P		MCM2112AL2,P2		MCM2112AL4,P4		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	${ }^{\text {t cyc }}$ (W)	350	-	250	-	450	-	ns
Chip Enable Pulse Width	${ }^{\text {t }} \mathrm{CE}$	250	-	180	-	300	-	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	20	-	20	-	ns
Address Hold Time	${ }^{t}$ AH	0	-	0	-	0	-	ns
Address to Write Release	${ }^{\text {taWR }}$	350	-	250	-	450	-	ns
Write Pulse Width	tw	250	-	180	-	300	-	ns
Data Setup Time	tos	150	-	100	-	190	-	ns
Data Hold Time	${ }^{\text {t }}$ DH	0	-	0	-	0	-	ns

MCM2112A (continued)

FIGURE 1 - READ CYCLE TIMING

FIGURE 2 - WRITE CYCLE TIMING

CIRCUIT DESCRIPTION

The MCM2112A memory matrix consists of 1024 static storage cells. The matrix is separated into four 256-bit memories operated in parallel to produce 256 4-bit words. A particular word is selected by a 1 -of- 32 (A0-A4) row address and a 1 -of-8 (A5-A7) column address

The I/O data lines are multiplexed to serve as data inputs during write cycles and as data outputs during read cycles. A read cycle is defined by the overlap of $\overline{C E}=V_{I L}$ and $R / W=V_{I H}$. During this time, the I/O ports will act as active outputs. A write cycle occurs at the overlap of $\overline{C E}=V_{I L}$ and $R / W=V_{I L}$. The I/O ports will be high impedance and data can easily be written in.

When $\overline{C E}=V_{I H}$ the chip is disabled; the I/O ports will be high impedance and data presented to these pins will be ignored. This feature of the MCM2112A allows wireORing of the part.

READ CYCLE

During a read cycle, the MCM2112A will drive the four I/O ports to their correct levels, as defined by the data
stored at the address given. A series of successive read cycles may be performed holding $\overline{C E}$ at VIL and R/W at $V_{\text {IH }}$. In this case, the data out is valid $t_{\text {acc }}$ nanoseconds after the change in address. Alternatively, the address may be applied with the chip disabled. In this case, valid data will occur t CO nanoseconds after the chip is enabled.

WRITE CYCLE

During a series of write cycles, R/W may be held at VIL. However, $\overline{C E}$ must be strobed according to the timing diagram. The minimum address setup time, tAS, must be observed.

In order to write data into the MCM2112A, the $1 / O$ buffers on the chip should be high impedance. This will occur for either R/W $=$ VIL or $\overline{C E}=V_{I H}$. However, there is a delay from these signals until the high impedance state occurs. The write timing of the MCM2112A guarantees a high impedance state before data in is required to be stable. The minimum time guaranteed is equal to tw - tDS - (tDHWmax).

PACKAGE DIMENSIONS

Advance Information

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6604 is a 4096-bit high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 4096 one-bit words and fabricated using Motorola's highly reliable N -channel silicon gate technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM6604 requires only six address lines and permits packaging in Motorola's standard 16 -pin dual in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The MCM6604 incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.

- Organized as 4096 Words of 1 Bit
- Maximum Access Time $=250 \mathrm{~ns}$ (L2, P2)

$$
300 \text { ns (L4,P4) }
$$

$$
350 \mathrm{~ns}(\mathrm{~L}, \mathrm{P})
$$

- Minimum Read and Write Cycle Time $=$

400 ns (L2,P2)
450 ns (L4,P4)
500 ns (L,P)

- Low Power Dissipation

555 mW Maximum (Active)
24 mW Maximum (Standby)

- TTL Compatible
- 3-State Output
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Standard 16-Pin Package
- Compatible with the Popular 2104/MK4096

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to V_{BB}	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.3 to +20	$\mathrm{~V}^{2} \mathrm{dc}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

PIN ASSIGNMENT

This device contains circuitry to protect the inputsagainst damage due to high static voltages or electric fields; however, it is advised that normal precautions be tak en to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS (Referenced to $\mathrm{V}_{\text {SS }}=$ Ground)

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage		VDD	11.4	12.0	12.6	Vdc
		$V_{C C}$	4.5	5.0	5.5	Vdc
		$V_{\text {BB }}$	-4.5	-5.0	-5.5	Vdc
Input High Voltage	An, $\overline{C S}, D_{\text {in }}$ $\overline{\text { RAS }}, \overline{\mathrm{CAS}}, \overline{\text { Write }}$	VIH	$\begin{aligned} & \hline 2.4 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & \hline \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	Vdc
Input Low Voltage	All Inputs	VIL	-1.0	-	0.8	Vdc

DC CHARACTERISTICS $\left(V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B B}=-5.0 \mathrm{~V} \pm 10 \%\right)$

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current, Any Input $\left(V_{\text {in }}=0 \text { to } V_{C C}\right)$	1 in	-	-	10	$\mu \mathrm{A}$
Output High Voltage $(10=-3.0 \mathrm{~mA})$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $\left(I_{\mathrm{O}}=2.0 \mathrm{~mA}\right)$	V_{OL}	-	-	0.4	Vdc
Output Leakage Current (Output Disabled by $\overline{\mathrm{CS}}$ Input)	'LO	-	-	10	$\mu \mathrm{A}$
Average Supply Current, Active Mode $\left(T_{c y c}(W)=\min \right)$	'DDA ICCA IBBA	-	-	$\begin{array}{r} 44 \\ 100 \\ 100 \\ \hline \end{array}$	mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current, Standby Mode	$\begin{aligned} & \text { IDDS } \\ & I^{\mathrm{CCS}} \\ & \mathrm{I}_{\mathrm{BBS}} \end{aligned}$	-	-	$\begin{gathered} 2.0 \\ 10 \\ 100 \end{gathered}$	$\begin{aligned} & m \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

PACKAGE DIMENSIONS

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested.)

	Characteristic	Symbol	Max	Unit
Input Capacitance	A_{n}			
	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \mathrm{D}_{\mathrm{in}}, \overline{\text { Write, } \overline{\mathrm{CS}}}$	$\mathrm{C}_{\mathrm{in}(\mathrm{EFF})}$	10	pF
Output Capacitance		$\mathrm{C}_{\mathrm{out}(E F F)}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

RECOMMENDED AC OPERATING CONDITIONS $\left(V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MCM6604L, P		MCM6604L2, P2		MCM6604L4,P4		Unit
		Min	Max	Min	Max	Min	Max	
Random Read or Write Cycle Time	${ }^{\text {cheyc }}$	500	-	400	-	450	-	ns
Read-Modify-Write Cycle Time	$\mathrm{t}_{\text {cyc }}$ (RMW)	700	-	540	-	620	-	ns
Row Address Strobe Precharge Time	tRP	150	-	150	-	150	-	ns
Row to Column Strobe Lead Time (Note 1)	${ }^{\text {tr }}$ CL	110	150	70	110	90	130	ns
Column Address Strobe Pulse Width	t CPW	200	-	140	-	170	-	ns
Address Setup Time	${ }^{\text {t }}$ AS	0	-	0	-	0	-	ns
Address Hold Time	${ }^{\text {t }} \mathrm{A}$ H	100	-	60	-	80	-	ns
$\overline{\mathrm{RAS}}$ Address Release Time	${ }^{\text {t }}$ AR	250	-	170	-	210	-	ns
Read Command Setup Time	tres	0	-	0	-	0	-	ns
Read Command Hold Time	${ }^{\text {tren }}$	100	-	60	-	80	-	ns
Read Command Pulse Width	trPW	300	-	200	-	250	-	ns
Write Command Hold Time (Note 2)	tWCH	150	-	110	-	130	-	ns
Write Command Pulse Width	tWP	200	-	140	-	170	-	ns
Column to Row Strobe Lead Time	${ }^{\text {t }}$ CRL	-50	+50	-40	+40	-45	+45	ns
Write Command to Column Strobe Lead Time	${ }^{\text {t }}$ CWL	200	-	140	-	170	-	ns
Data In Setup Time	${ }^{\text {t }}$ DS	0	-	0	-	0	-	ns
Data In Hold Time	${ }^{\text {t }}$ DH	150	-	110	-	130	-	ns
Refresh Period	treF	-	2.0	-	2.0	-	2.0	ms
Modify Time	${ }^{\text {t MOD }}$	0	10	0	10	0	10	$\mu \mathrm{s}$

1. If tRCL is greater than the maximum recommended value shown in this table,
$t_{\text {cyc }}$ and t RAC will increase by the amount that $t_{R C L}$ exceeds the value shown.
2. The Write Command Hold Time is important only when normal random write cycles are being performed. During a read-write or a read-modify-write cycle, the limiting parameter is the Write Command Pulse Width.

AC CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\right.$, Load $=1 \mathrm{MC} 74 \mathrm{H} 00$ Series TTL Gate, $\left.\mathrm{C}_{\mathrm{L}(E F F)}=50 \mathrm{pF}\right)$

Characteristic	Symbol	MCM6604L, P	MCM6604L2,P2	MCM6604L4,P4	Unit
		Max	Max	Max	
Access Time from Row Address Strobe (tRCL $\leqslant 150 \mathrm{~ns}$ for MCM6604L,P) ($\mathrm{t}_{\mathrm{RCL}} \leqslant 110 \mathrm{~ns}$ for MCM6604L2,P2) ($\mathrm{t}_{\mathrm{RCL}} \leqslant 130 \mathrm{~ns}$ for MCM6604L4,P4)	trac	350	250	300	ns
Access Time from Column Address Strobe	${ }^{\text {t }}$ CAC	200	150	175	ns
Output Buffer Turn-Off Delay	$t_{\text {off }}$	100	65	85	ns

ADDRESSING

The MCM6604 has six address inputs (A0 through A5) that are common to two address registers, one register for the row address and another for the column address. The column register has an additional latch that accommodates the Chip Select ($\overline{\mathrm{CS}}$) signal. At the start of a memory cycle, the row address is latched into the address register with the Row Address Strobe ($\overline{\mathrm{RAS}}$) signal. Next, the 6 -bit column address is placed on the address bus along with the $\overline{\text { Chip Select }}$ signal, and they are latched into the column register with the Column Address Strobe ($\overline{\mathrm{CAS}}$). Since the Chip Select signal is latched well into the memory cycle, its decoding time will not increase the memory system access or cycle time.

DATA OUTPUT

In order to simplify the memory system design and reduce the total package count, the MCM6604 contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

A chip will be unselected during a memory cycle if:
(1) The chip receives both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals, but no Chip Select signal.
(2) The chip receives a $\overline{\text { CAS }}$ signal but no $\overline{\text { RAS }}$ signal. With this condition, the chip will be unselected regardless of the state of Chip $\overline{\text { Select input. }}$
If, during a read, write, or read-modify-write cycle, the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\text { Chip }}$ $\overline{\text { Select. The state of the output latch and buffer of a }}$ selected chip during the following type of memory cycles would be:
(1) Read Cycle - On the negative edge of $\overline{\mathrm{CAS}}$, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(2) Write Cycle - If the Write input is switched to a logic 0 before the $\overline{\mathrm{CAS}}$ transition, the output latch and buffer will be switched to
the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next $\overline{\text { CAS }}$ signal.
(3) Read-Modify-Write - Same as a read cycle.

DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the $\overline{W r i t e}$ and $\overline{C A S}$ signals. The last of these signals to make a negative transition will strobe the data into the latch. If the $\overline{W r i t e}$ input is switched to a logic 0 at the beginning of a write cycle, the falling edge of $\overline{\mathrm{CAS}}$ strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of $\overline{\mathrm{CAS}}$.

If a read-modify-write cycle is being performed, the $\overline{\text { Write }}$ input would not make its negative transition until after the $\overline{C A S}$ signal was enabled. Thus, the data would not be strobed into the latch until the negative transition of Write. The data setup and hold times would now be referenced to the negative edge of the $\overline{\text { Write }}$ signal. The only other timing constraints for a write-type cycle is that both the $\overline{\text { CAS }}$ and $\overline{\text { Write signals remain in the logic } 0 \text { state }}$ for a sufficient time to accomplish the permanent storage of the data into the selected cell.

INPUT/OUTPUT LEVELS

All of the inputs to the MCM6604 are TTL compatible. The inputs feature high impedance and low capacitance ($<10 \mathrm{pF}$) characteristics which will minimize the driver requirements in a memory system. The three-state data output buffer is TTL compatible and has sufficient current
sink capability (2 mA) to drive one high speed TTL load. The output buffer also has a separate $V_{\text {CC }}$ pin so that it can be powered from the same supply as the logic being employed.

POWER DISSIPATION

Since the MCM6604 is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power of the MCM6604 increases when selected and most of this increase is encountered on the address strobe edge. Hence, the power will be a function of the duty cycle.

In a memory system, the $\overline{\mathrm{CAS}}$ signal must be supplied to all the memory chips to insure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive an $\overline{R A S}$ signal will not dissipate any power on the $\overline{\text { CAS }}$ edge except for that required to turn off the chip outputs. Thus, in order to insure minimum system power, the $\overline{\text { RAS }}$ signal should be decoded so that only the chips to be selected receive an $\overline{\mathrm{RAS}}$ signal. If the $\overline{\mathrm{RAS}}$ signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

REFRESH

The MCM6604 is refreshed by sequentially cycling through the 64 row addresses every 2 milliseconds or less. It is not necessary to supply the $\overline{\text { CAS }}$ to the chip while it is being refreshed. Any read, write, or read-modify-write cycle will refresh a selected row. However, if a write cycle is used to perform a refresh cycle the chip must be unselected.

MCM6605A L/L1/L2 MCM6605A P/P1/P2

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6605A is a 4096-bit high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 4096 one-bit words, these memories are fabricated using selective oxidation N -channel silicon gate technology to optimize device speed, power and density tradeoffs.

All address and control inputs are TTL compatible except for a single high-level clock (Chip Enable). Complete address decoding is done on chip and address latches are incorporated for ease of use. Refresh of the entire memory can be accomplished by sequentially cycling through addresses A0-A4 (32 cycles) a maximum of every 2.0 milliseconds.

The MCM6605A uses a three-transistor memory cell to simplify internal sense amplifier requirements. Output data is inverted with respect to input data. The outputs are 3 -state TTL configuration and require no external sense amplifier. Outputs are in the high impedance (floating) state when either the Chip Enable is in the low state or the Chip Select is in the high state.

- Organized as 4096 Words of 1 Bit

	L1, P1	L2,P2	L, P
- Maximum Access Time $=$	150 ns	200 ns	300 ns
- Minimum Read Cycle Time $=$	280 ns	360 ns	470 ns
- Minimum Write Cycle Time $=$	390 ns	490 ns	590 ns
- Minimum Read Modify Write			
Cycle Time $=$	390 ns	490 ns	590 ns

- Low Power Dissipation 335 mW Typical (Active)
2.6 mW Typical (Standby with Refresh)
- Easy Refresh - Only 32 Cycles Every 2.0 ms
- TTL Compatible
- 3-State Output
- Address Latches On Chip
- Power Supply Pins on Package Corners for Layout Simplification
- Typical Applications:

Main Memory
Buffer Memory
Peripheral Storage

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to V_{BB}	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.3 to +20	$\mathrm{~V}_{\mathrm{dc}}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, SILICON-GATE)

This device contains circuitry to protect the inputsagainst damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avo id application of any voltage higher than maximum rated volt ages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{\text {SS }}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {DD }}$	11.4	12	12.6	Vdc
	$V_{C C}$	4.5	5.0	5.5	Vdc
	$\mathrm{V}_{\text {SS }}$	0	0	0	Vdc
	$V_{B B}$	-5.25	-5.0	-4.75	Vdc
Logic Levels Input High Voltage ($A_{n}, D_{i n}, R / W, \overline{C S}$)	$V_{\text {IH }}$	3.0	-	$V_{D D}+1.0$	Vdc
Input Low Voltage ($A_{n}, \mathrm{D}_{\text {in }}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{CS}}$)	$\mathrm{V}_{\text {IL }}$	-1.0	-	0.8	Vdc
Chip Enable High Voltage	$\mathrm{V}_{\text {CEH }}$	$\mathrm{V}_{\text {DD }}-1.0$	-	$\mathrm{V}_{\text {DD }}+1.0$	Vdc
Chip Enable Low Voltage	$V_{\text {CEL }}$	-1.0	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Current }\left(A_{n}, D_{\text {in }}, R / W, \overline{C S}, \text { Preset }\right) \\ & \left(V_{\text {in }}=0 \text { to } V_{D D}+1.0 \mathrm{~V}\right) \end{aligned}$	1 in	-	-	10	$\mu \mathrm{A}$
Input Chip Enable Current $\left(V_{\text {In }} \quad 0 \text { to } V_{D D}+1.0 V\right)$	I'CE	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left(I_{O}=-100 \mu \mathrm{~A}\right)$	$\overline{\mathrm{VOH}}$	2.4	-	V_{CC}	Vdc
Output Low Voltage $\left(I_{O}=2.0 \mathrm{~mA}\right)$	VOL	$\mathrm{V}_{\text {SS }}$	-	0.45	Vdc
Output Leakage Current $\left(V_{O}=0.45 \mathrm{~V} \text { to } V_{C C}, C E=V_{C E L} \text {, or } \overline{C S}=V_{I H}\right)$	'LO	-	-	10	$\mu \mathrm{A}$
Average Supply Current, Active Mode $\left(T_{c y c}(W)=\min \right)$	IDDA	-	28	36	mA
	ICCA	-	0.05	1.0	mA
	IBBA	-	-	100	$\mu \mathrm{A}$
Supply Current, Standby Mode$\left(C E=V_{C E L}\right)$	${ }^{\text {I DDS }}$	-	1.0	20	$\mu \mathrm{A}$
	${ }^{1} \mathrm{CCS}$	-	-	10	$\mu \mathrm{A}$
	${ }^{\text {BBS }}$	-	1.0	20	$\mu \mathrm{A}$

EFFECTIVE CAPACITANCE (Test Circuit of Figure 1, full operating voltage and temperature range, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance (A $n_{n}, \mathrm{D}_{\text {in }}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{CS}}$, Preset)	$\mathrm{C}_{\text {in }}(E F F)$	-	4.0	5.0	pF
Chip Enable Capacitance	$\mathrm{C}_{\text {CE }}(E F F)$	-	25	30	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$ (EFF)	-	4.0	5.0	pF

FIGURE 1 - MEASUREMENT OF EFFECTIVE CAPACITANCE

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)
OPERATING MODES

Mode	Control States		Output
	R/W	$\overline{\text { CS }}$	
Active (CE = High)			
Read Only	H	L	Valid
Read/Write	$\mathrm{H} \rightarrow \mathrm{L}$	L	Valid
Write Only	L	L	Valici
Read Refresh	$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{L} \rightarrow \mathrm{H}$	Valid \rightarrow Floating
Refresh Only	L	H	Floating
Chip Disable (Unselected)	H	H	Floating
Standby (CE Low)	X	X	Floating

> X = Don't Care

RECOMMENDED AC OPERATING CONDITIONS (Read, Write, and Read Modify Write Cycles)

Parameter	Symbol	Min	Max	Unit
Address Setup Time	${ }^{\text {t }}$ AS	0	-	ns
Address Hold Time	${ }^{\text {A }}$ H	60	-	ns
CE Pulse Transition Time	t	-	100	ns
CE Off Time MCM6605AL,P/L2,P2 MCM6605AL1,P1	${ }^{\text {t }}$ SB	$\begin{array}{r} 120 \\ 90 \\ \hline \end{array}$	-	ns
Chip Select Delay Time	${ }^{\text {t }}$ CSD	-	70	ns
Chip Select Hold Time	${ }^{\text {t }}$ CSH	0	-	ns
Read Write Delay Time	$\mathrm{t}_{\text {RWD }}$	-	70	ns
Read Write Hold Time	trwh	0	-	ns
Time Between Refresh	${ }_{\text {t REF }}$	-	2.0	ms

AC CHARACTERISTICS

[All timing with $\mathrm{t}_{\mathrm{T}}=\mathbf{2 0} \mathrm{ns}$; Load $=1 \mathrm{TTL}$ Gate (MC74H00 Series), $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (effective)]

READ CYCLE (R/W $\left.=V_{I H}, \overline{C S}=V_{I L}\right)$

Characteristic	Symbol	MCM6605AL, P		MCM6605AL1,P1		MCM6605AL2,P2		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	${ }^{\text {t cyc }}$ (R)	470	-	290	-	360	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	310	2000	160	2000	200	2000	ns
Chip Enable to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	280	-	130	-	180	ns
Read Access Time	${ }^{\text {acc }}$	-	300	-	150	-	200	ns

READ CYCLE TIMING

WRITE CYCLE (R/W $=\mathrm{V}_{\text {IL }}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {IL }}$)
REFRESH CYCLE $\left(R / W=V_{I L}, \overline{C S}=V_{I H}\right)$

Characteristic	Symbol	MCM6605AL, P		MCM6605AL1,P1		MCM6605AL2,P2		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{W})$	590	-	390	-	490	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	430	2000	260	2000	330	2000	ns
Read-Write Release Time	trwR	430	2000	260	2000	330	2000	ns
Write Pulse Width	tw	210	-	140	-	160	-	ns
Read-Write to Chip Enable Separation Time	${ }^{\text {t } R C}$	0	-	0	-	0	-	ns
Data Delay Time	${ }^{\text {t }}$ DD	-	70	-	70	-	70	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	50	-	20	-	50	-	ns

WRITE AND REFRESH CYCLE TIMING

MJM - Don't Care

READ-MODIFY-WRITE (R/W $\left.=V_{I H} \rightarrow V_{I L}, \overline{C S}=V_{I L}\right)$
READ REFRESH (See Note 1)

Characteristic	Symbol	MCM6605AL, P		MCM6605AL1,P1		MCM6605AL2,P2		Unit
		Min	Max	Min	Max	Min	Max	
Read-Modify-Write Cycle Time	$\mathrm{t}_{\mathrm{cyc}}$ (R/W)	590	-	390	-	490	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	430	2000	260	2000	330	2000	ns
Read-Write Release Time	${ }^{\text {t }}$ RWR	430	2000	260	2000	330	2000	ns
Write Pulse Width	tw	210	-	140	-	160	-	ns
Data Setup Time	${ }^{\text {t }}$ DS	0	-	0	-	0	-	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	50	-	20	-	50	-	ns
Read-Write to Chip Enable Separation Time	${ }_{\text {t }}^{\text {RC }}$	0	-	0	-	0	-	ns
Chip Enable to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	280	-	130	-	180	ns
Read Access Time	$\mathrm{t}_{\mathrm{acc}}$	-	300	-	150	-	200	ns

Note 1: A read refresh cycle is possible by bringing $\overline{\mathrm{CS}}$ high after output data is valid and then bringing R/W low to the write position.

READ MODIFY WRITE TIMING

TYPICAL CHARACTERISTICS CURVES

FIGURE 4 - IDD SUPPL.Y CURRENT versus $V_{D D}$

FIGURE 6 - IDD SUPPLY CURRENT versus AMBIENT TEMPERATURE

FIGURE 3 - ACCESS TIME versus AMBIENT TEMPERATURE

FIGURE 5 - IDD SUPPLY CURRENT versus CYCLE TIME

FIGURE 7 - REFRESH TIME versus AMBIENT TEMPERATURE

TYPICAL SUPPLY CURRENT TRANSIENT WAVEFORMS

FIGURE 8 - CHIP ENABLE VOLTAGE

FIGURE 9 - idD SUPPLY CURRENT

FIGURE 11 - ibB SUPPLY CURRENT

FIGURE 10 - icc SUPPLY CURRENT

$$
\text { FIGURE } 12 \text { - iCE SUPPLY CURRENT }
$$

FUNCTIONAL DESCRIPTION

The MCM6605A 4096-bit dynamic RAM uses a three transistor storage cell in an inverting cell configuration. The single high-level clock (Chip Enable) starts an internal three-phase clock generator which controls the read and write functions of the device. The $\phi 1$ signal, which is high when CE is low (standby mode), preconditions the nodes in the dynamic RAM in preparation for a memory cycle. The $\phi 2$ signal, which comes on as CE goes high, is the read control and transfers data from storage onto bit sense lines. The $\phi 3$ signal, which comes after $\phi 2$ only during a write or refresh cycle, transfers data from the bit sense lines back into storage. The $\phi 3$ signal occurs only if the R / W input is low.

To perform a read cycle, CE is brought high to initiate a $\phi 2$ signal and latch the input addresses. The column decoders select one column in each of the four storage quadrants (see the block diagram) and transfers data from storage onto the 128 bit sense lines. The row
decoder selects one of these 128 bit sense lines for read and write operations. During the $\phi 2$ signal, the data on this selected bit sense line is Exclusive ORed with the state of the appropriate data control cell to supply the correct output data. After this data is received by the external system, CE may be brought low to the standby position. This assumes that the R/W signal is held high to prevent an internal $\phi 3$ being generated.

To perform a write or refresh operation, CE is brought high and everything is identical to a read operation up until the 128 bit sense lines are charged with the selected columns of stored data. When R/W is brought low (if it is not already there), a $\phi 3$ signal is generated after $\phi 2$ is over. The $\phi 3$ signal takes the data from the 128 bit sense lines and returns it to the 128 storage locations it came from. Because of the design of the memory array, this $\phi 2 \cdot \phi 3$, read-write operation inverts the data. Therefore, one extra row of memory cells, called data control cells, is used to
keep track of the polarity of stored data in order to be able to correctly recover it. During the write operation, the input data is Exclusive ORed with these control cells before being stored in the array. A refresh cycle does not modify any of the bit sense lines, but simply returns the data (now inverted) into storage.

All timing signals for the MCM6605A are specified around these operations. The following is a brief description of the input pins and relevant timing requirements.
Chip Enable - CE is a single high level clock which initiates all memory cycles. CE can remain low as long as desired for specific applications as long as the 2.0 ms refresh requirements are met.

Chip Select - This signal controls only the I/O buffers. When $\overline{\mathrm{CS}}$ is high, the input is disconnected and the output is in the 3 -state high-impedance state. A refresh cycle is, therefore, a write cycle with $\overline{\mathrm{CS}}$ high. $\overline{\mathrm{CS}}$ has no critical timing with respect to any other signal except that there is a finite delay between activation and data out.
Read/Write - When high, R/W inhibits the internal $\phi 3$ signal, thereby keeping the memory from writing. When R/W is low, a $\phi 3$ will occur soon after $\phi 2$ is finished. For a read cycle, R/W should be high within tRWD of CE to insure that a $\phi 3$ does not start. The only timing requirement on the R/W input for writing is a minimum write pulse defined as the overlap of $\overline{C S}, C E$, and R / W. Refresh cycles require that $\overline{\mathrm{CS}}$ be high to inhibit the input buffer before a $\phi 3$ occurs. Thus $\overline{\mathrm{CS}}$ should be high within tCSD for a refresh cycle, or before R/W goes low for a readrefresh cycle.
Data \ln - The input data must be valid for a sufficient time to override the data stored on the selected bit sense line. It must remain valid for the "write pulse" defined under Read/Write. Signals on the $\mathrm{D}_{\text {in }}$ pin are ignored when either $\overline{C S}$ or R/W is high, or CE is low.
Data Out - Output data is inverted from input data and is valid $t_{\text {acc }}$ after CE goes high. The data will remain valid as long as CE is high and $\overline{C S}$ remains low. With either CE low or $\overline{\mathrm{CS}}$ high, the output is in a high-impedance state. The data output is initially precharged high when CE goes high and is then either discharged to ground or left high depending on the stored data. This precharging followed by valid data occurs regardless of the state of the R/W input, making the write cycle actually a read-write cycle. The output will also try to precharge during a refresh cycle but will be kept at high impedance by the $\overline{\mathrm{CS}}$ being high. If $\overline{\mathrm{CS}}$ is originally low and is then brought high (within the t^{2} CSD specification) the output may start to precharge before being cut off and returned to high impedance.

[^2]$\mathrm{V}_{\mathbf{C C}}$ - Output buffer supply. This supply goes only to the data output buffer and draws current only when driving an output load high.
Preset - This pin should be tied to ground. During device testing Preset can be used to preset the data control cells to a logic zero. One $200 \mathrm{~ns}, 12 \mathrm{~V}$ pulse will set all 32 cells simultaneously. Preset has no system use; its only purpose is to ensure a good logic level in the control cells after first power up. In system use, this good logic level will come naturally after the first few refresh cycles.

APPLICATIONS INFORMATION

Power Supplies

The MCM6605A is a dynamic RAM which has essentially zero power drain when in the standby (CE low) mode. When operating, the $V_{D D}$ supply may experience transients in the order of 100 mA for a short time (Figure 9). The $V_{B B}$ supply, which has very low dc drain while operating, may see transients of about 40 mA during the edges of $C E$. Therefore, appropriate bypassing of both supplies is recommended. This bypassing has been simplified by the location of the power supply pins on the corners of the package.

The $V_{C C}$ line supplies only the input leakage of a TTL load on Data Out and should never exceed about $100 \mu \mathrm{~A}$, presenting little bypassing requirement.

Power dissipation for a system of N chips is much lower than N times the 335 mW typical dissipation for a full speed operating chip. This is because the unselected rows in a memory array card are operating in the standby mode of near zero dissipation. This zero standby power is actually unachievable because of the requirements for refresh. Therefore, power dissipation for an array of $N \times M$ chips operating at t_{1} cycle time, tREF refresh increment, and maximum CE down time between cycles is:
$P_{D} \approx M\left(\frac{490 \mathrm{~ns}}{\mathrm{t}_{1} \mathrm{~ns}}\right) 335 \mathrm{~mW}+(\mathrm{N}-1)(\mathrm{M})\left(\frac{15.7}{\text { treF } \mu \mathrm{s}}\right) 335 \mathrm{~mW}$
For a 550 -ns-cycle-time, 64 k by 16 system (16 by 16 chip array) with refresh at 2.0 ms , the approximate power dissipation is:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & \approx 16\left(\frac{490}{550}\right) 335+(15)(16)\left(\frac{15.7}{2000}\right) 335 \\
& \approx 4775 \mathrm{~mW}+630 \mathrm{~mW}=5.4 \mathrm{~W}
\end{aligned}
$$

A similar one megabyte system, eight bytes wide, would have a dissipation of only 24 W . If the low standby power capability were not used, over 600 W would be dissipated.

Refresh

The MCM6605A is refreshed by performing a refresh (or write) cycle on each of the 32 combinations of the least significant address bits (AO-A4) within a 2.0 ms time period. (A5-A11 must remain constant at proper logic levels.) This refresh can be done in a burst mode (32 cycles starting every 2.0 ms) or in a distributed mode where one cycle is done every $62.5 \mu \mathrm{~s}$.

A refresh abort can be accomplished by treating a refresh cycle as a read-modify-write cycle with $\overline{\mathrm{CS}}$ high. This type of cycle can be aborted any time until the R/W signal has been brought low to allow a $\phi 3$ clock to begin.

Non-Volatile Storage

In many digital systems, it is extremely important to retain data during emergencies such as power failure. Unfortunately, however, most random access read/write semiconductor memories such as the MCM6605A are volatile. That is, if power is removed from the semiconductor memory, stored information is lost. Therefore, non-volatility for a specified period of time becomes highly desirable - as a necessity to maintain irreplaceable information or as a convenience to avoid the time consuming and troublesome task of having to reload the memory.

The extremely low standby power dissipation of the MCM6605A makes it ideal for main memory applications requiring battery backup for non-volatility. For example, the MCM6605A can be employed in an 8 K byte nonvolatile main memory system application for microprocessors. The memory system can be partitioned into three major sections as illustrated in Figure 13. The first section contains the address buffers and the Read/Write and Chip Select decoding logic. The second section consists of the
data bus buffering transceivers and the memory array (which consists of 16 MCM6605As) organized into two rows of 4 K bytes each.

The third section of the block diagram comprises refresh and control logic for the memory system. This logic interfaces the timing of the refresh handshaking with the microprocessor (MPU) clock circuitry. It handles requests for refresh, the generation of refresh addresses, the synchronization of a Power Fail signal, the multiplexing of the external Memory Clock with the internal clock (used during standby), and the generation of a -5 V supply on the board using a charge-pump method.

The refresh control logic is illustrated in Figure 14. It handles the refreshing of the memory during both operating and standby modes. The timing for this logic is given in Figure 15. Figure 16 gives the memory timing for the standby mode only. Decoding of the memory clock (CE A $_{A}$ and $C E_{B}$) and the circuitry to synchronize the Power Fail signal are shown in Figure 17, with the timing given in Figure 18.

The memory device clock ($C E_{A}$ and CE_{B}) during standby is created by a monostable multivibrator (MC14528) and buffered from the memory array by three MC14503 buffers in parallel. This clock is multiplexed with the Memory Clock by use of the three-state feature of the

FIGURE 13 - NON-VOLATILE MEMORY SYSTEM BLOCK DIAGRAM

MC14503. The Memory Clock (used during normal operation) is translated to 12 V levels by use of an MC3460 Clock Driver. Decoding of the CE_{A} and CE_{B} signals (i.e., clocking only the memory bank addressed) to conserve power is accomplished by the logic within the MC3460.
Since the Power Fail signal will occur asynchronously with both the Memory Clock and the refreshing operation (Refresh Clock), it is necessary to synchronize the Power Fail signal to the rest of the system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip-flop is used as the basic synchronization device. The leading edge of the Refresh Clock triggers a $3 \mu \mathrm{~s}$ monostable multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 ns monostable which creates the CE pulse during standby operation. The 3μ s pretrigger signal is used to set half of the MC14027 flip-flop, the output of which, (B), then inhibits a changeover from the standby to the operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the Power

Fail signal change states just prior to or during a refresh cycle. The trailing edge of the 500 ns monostable clears the MC14027 flip-flop, enabling the second flip-flop in the package. The state of Power Fail and Power Fail is applied to the K and J inputs of this second flip-flop and is synchronized by clocking with Memory Clock. The outputs of this flip-flop, labeled Bat and Bat, lock the system into the refresh mode and multiplex in the internal clock for standby operation when Bat $=$ " 1 ". The voltage to logic not required for the refresh only mode of operation is removed to conserve power.

By using CMOS for the refresh logic and capacitance drivers, and a low current refresh oscillator, the standby current required for the 8 K byte system is extremely small, as noted in Table 1. This low standby current requirement can be easily supplied for several days with standard type +12 V batteries. For more detailed information on this sytem and a large mainframe memory system, see Application Notes AN-732 and AN-740.

FIGURE 14 - REFRESH CONTROL LOGIC

FIGURE 15 - REFRESH TIMING

FIGURE 16 - MEMORY TIMING IN STANDBY MODE

FIGURE 17 - POWER FAIL LOGIC AND CHIP ENABLE DRIVER

FIGURE 18 - POWER UP/DOWN SYNCHRONIZATION

TABLE 1 - STANDBY MODE CURRENT ALLOCATION

Circuit Section	Typical Current
+12 V Current (VDD) for 16 MCM6605A's	5 mA
Charge Pump	3 mA
Comparator	2 mA
Capacitance Drivers	4 mA
Total	14 mA

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

PACKAGE DIMENSIONS

Product Preview

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6616 is a 16,384-bit high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM6616 requires only seven address lines and permits packaging in Motorola's standard 16 -pin dual in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The MCM6616 incorporates a one-transistor cell design and dynamic storage techniques, requiring a refresh cycle every 2.0 milliseconds.

The MCM6616 is a drop-in replacement for the MCM6604, with the CS input of the MCM6604 (pin 13) replaced by an additional address input, A6.

- Organized as 16,384 Words of 1 Bit
- Maximum Access Time $=350 \mathrm{~ns}$
- Minimum Read and Write Cycle Time $=500 \mathrm{~ns}$
- Low Power Dissipation
- TTL Compatible
- 3-State Output
- On-Chip Latches for Address and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Standard 16-Pin Package
- Drop-In Replacement for MCM6604
- Industry Standard Pinout

MOS

(N-CHANNEL)
16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

64-BIT STATIC RANDOM ACCESS MEMORY

The MCM14505 64-bit random access memory is fully decoded on the chip and organized as 64 one-bit words (64×1). Medium speed operation and micropower supply requirements make this device useful for scratch pad or buffer memory applications where power must be conserved or where battery operation is required.

When used with a battery backup, the MCM 14505 can be utilized as an alterable read-only memory, allowing the battery to retain information in the memory when the system is powered down, and allowing the battery to charge when power is applied. The micropower requirements of this memory allow quiescent battery operation for great lengths of time without significant discharging.

- Quiescent Power Dissipation $=0.3 \mu \mathrm{~W} /$ package typical at $V_{D D}=10 \mathrm{Vdc}$
- Noise Immunity $=45 \%$ of $V_{\text {DD }}$ typical
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to $18 \mathrm{Vdc}(\mathrm{MCM} 14505 \mathrm{AL})$
4.5 Vdc to $16 \mathrm{Vdc}(\mathrm{MCM} 14505 \mathrm{CL} / \mathrm{CP}$)
- Single Read/Write Control Line
- Wired-OR Output Capability (3-State Output) for Memory Expansion
- Access Time $=180$ ns typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$
- Write Cycle Time $=275$ ns typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$
- Fully Buffered Low Capacitance Inputs

MAXIMUM RATINGS (Voltages referenced to $\mathrm{V}_{\text {SS }}$, Pin 7)				
Rating		Symbol	Value	Unit
DC Supply Voltage	MCM14505AL MCM14505CL/CP	$V_{\text {DD }}$	$\begin{aligned} & +18 \text { to }-0.5 \\ & +16 \text { to }-0.5 \\ & \hline \end{aligned}$	Vdc
Input Voltage, All Inputs		$V_{\text {in }}$	$\mathrm{V}_{\text {DD }}$ to -0.5	Vdc
DC Current Drain per Pin		1	10	mAdc
Operating Temperature Range MCM14505AL MCM14505CL/CP		$\mathrm{T}_{\text {A }}$	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MAXIMUM RATINGS (Voltages referenced to V_{SS}, Pin 7)

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{D D}$ Vdc	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit						
			Min	Max	Min	Typ	Max	Min	Max							
Output Voltage ${ }^{\text {" } 0 \text { " Level }}$	$V_{\text {out }}$	5.0	-	0.01	-	0	0.01	-	0.05	Vdc						
		10	-	0.01	-	0	0.01	-	0.05							
		15	-	0.05	-	0	0.05	-	0.25							
		5.0	4.99	-	4.99	5.0	-	4.95	-	Vdc						
		10	9.99	-	9.99	10	-	9.95	-							
		15	14.95	-	14.95	15	-	14.75	-							
Noise Immunity \# V	V_{NL}									Vdc						
$\left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right)$		5.0	1.5	-	1.5	2.25	-	1.4	-							
$\left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right)$		10	3.0	-	3.0	4.50	-	2.9	-							
$\left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right)$		15	4.5	-	4.5	6.75	-	4.4	-							
$\left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right)$	V_{NH}	5.0	1.4	-	1.5	2.25	-	1.5	-	Vdc						
$\left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right)$		10	2.9	-	3.0	4.50	-	3.0	-							
$\left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right)$		15	4.4	-	4.5	6.75	-	4.5	-							
Output Drive Current (AL Device)	${ }^{1} \mathrm{OH}$	5.0	-0.62	-	-0.50	-1.7	-	$\begin{aligned} & -0.35 \\ & -0.35 \end{aligned}$	-	mAdc						
$(\mathrm{V} \mathrm{OH}=2.5 \mathrm{Vdc}) \quad$ Source																
$(\mathrm{V} \mathrm{OH}=9.5 \mathrm{Vdc})$		10	-0.62	-	-0.50	-0.9			-							
$(\mathrm{VOH}=13.5 \mathrm{Vdc})$		15	-1.8	-	-1.5	-3.5	-	-1.1	-							
$\left(\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{Vdc}\right)$ Sink	${ }^{\prime} \mathrm{OL}$	5.0	0.30	-	0.25	0.35	-	0.18	-	mAdc						
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	0.90	-	0.75	1.2	-	0.50	-							
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	2.2	-	1.7	4.5	-	1.2	-							
Output Drive Current (CL/CP Device)	${ }^{1} \mathrm{OH}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & -0.23 \\ & -0.23 \\ & -0.69 \end{aligned}$	-	-0.20	-1.7	-	$\begin{aligned} & -0.16 \\ & -0.16 \end{aligned}$	-	mAdc						
$(\mathrm{VOH}=2.5 \mathrm{Vdc}) \quad$ Source																
$\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$				-	-0.20	-0.9			-							
$\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$				-	-0.60	-3.5	-	-0.48	-							
($\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$) Sink	IOL	5.0	0.20	-	0.15	0.35	-	0.10	-	mAdc						
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	0.60	-	0.50	1.2	-	0.40	-							
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	0.90	-	0.75	4.5	-	0.60	-							
Input Current	$1{ }_{\text {in }}$	-	-	-	-	0.01	100	-	-	nAdc						
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	-	-	-	pF						
Strobe, CE 1, $\mathrm{Din}_{\text {in }}, \mathrm{A}_{\mathrm{n}}$																
Read/Write, CE2																
Quiescent Dissipation (AL Device)	P_{Q}	5.0	-	0.025	-	0.00015	0.025	-	1.5	mW						
		10	-	0.10	-	0.0003	0.10	-	6.0							
		15	-	0.30	-	0.001	0.30	-	18							
Quiescent Dissipation (CL/CP Device)	P_{Q}	5.0	-	0.25	-	0.00015	0.25	-	7.5	mW						
		10	-	1.0	-	0.0003	1.0	-	30							
		15	-	3.0	-	0.001	3.0	-	90							
Power Dissipation** \dagger	$P_{\text {D }}$	5.0	$\begin{aligned} & \mathrm{P}_{\mathrm{D}}=(6.4 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=(25.6 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=(57.8 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \end{aligned}$							mW						
		10														
		15														

${ }^{*} T_{\text {low }}=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
\#Noise immunity specified for worst-case input combination.
\dagger For dissipation at different external load capacitance (C_{L}) use the formula:

$$
P_{T}\left(C_{L}\right)=P_{D}+1 \times 10^{-3}\left(C_{L}-15 p F\right) V_{D D^{2}}
$$

where: P_{T}, P_{D} in $m W$ (per package), C_{L} in $p F, V_{D D}$ in $V d c$, and f in $M H z$ is input frequency.
**The formula given is for the typical characteristics only.

SWITCHING CHARACTERISTICS ($\left.T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{\mathrm{t}}=20 \mathrm{~ns}\right)$

Characteristic	Symbol	$V_{\text {DD }}$	Typ All Types	Max		Unit
				AL Device	CL/CP Device	
Minimum Strobe Down Time	${ }^{\text {t }}$ STL	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 100 \\ & 50 \\ & 75 \end{aligned}$	$\begin{gathered} 400 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 500 \\ & 125 \\ & 95 \end{aligned}$	ns
Address Setup Time	$\mathrm{t}_{\text {setup }}(\mathrm{A})$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} -100 \\ -40 \\ -25 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 80 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 300 \\ & 120 \\ & 90 \\ & \hline \end{aligned}$	ns
Data Setup Time	$\mathrm{t}_{\text {setup (D) }}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 140 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 75 \\ 55 \end{gathered}$	ns
Read Setup Time	$\mathrm{t}_{\text {setup (R) }}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 90 \\ & 20 \\ & 15 \end{aligned}$	$\begin{gathered} 180 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} 270 \\ 60 \\ 45 \\ \hline \end{gathered}$	ns
Write Setup Time	$\mathrm{t}_{\text {setup }}$ (W)	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 80 \\ & 25 \\ & 11 \end{aligned}$	$\begin{gathered} 275 \\ 75 \\ 55 \end{gathered}$	$\begin{gathered} 400^{\prime} \\ 100 \\ 75 \end{gathered}$	ns
Address Release Time	$\left.\mathrm{trel}_{\text {re }} \mathrm{R}\right)$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 10 \\ 5.0 \end{array}$	$\begin{aligned} & 50 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 25 \\ & 20 \end{aligned}$	ns
Data Hold Time	$t_{\text {hold (}}$ ()	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 35 \\ 10 \\ 7.5 \end{array}$	$\begin{aligned} & 50 \\ & 15 \\ & 10 \end{aligned}$	ns
Read Release Time	${ }^{\text {rel }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -90 \\ & -25 \\ & -10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
Write Release Time	$t_{\text {rel }}(W)$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 10 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	ns
Read Cvcle Time	${ }^{\text {t }} \mathrm{cyc}(\mathrm{R})$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 650 \\ & 300 \\ & 225 \end{aligned}$	$\begin{aligned} & 750 \\ & 400 \\ & 300 \end{aligned}$	ns
Write Cvcle Time	${ }^{\mathrm{t}} \mathrm{cyc}(\mathrm{W})$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 440 \\ & 275 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 700 \\ & 550 \\ & 415 \\ & \hline \end{aligned}$	ns
Read Access Time $\left(C_{L}=15 \mathrm{pF}\right)$	${ }^{\text {tacc }}$ (R)	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 400 \\ & 180 \\ & 110 \end{aligned}$	$\begin{aligned} & 550 \\ & 270 \\ & 200 \end{aligned}$	$\begin{aligned} & 650 \\ & 350 \\ & 260 \end{aligned}$	ns
Output Disable Delay (10\% Output Change into $1.0 \mathrm{k} \Omega$ Load)	$t_{\text {dis }}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 200 \\ 80 \\ 60 \end{gathered}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \end{aligned}$	ns

FIGURE 1 - READ CYCLE TIMING DIAGRAM

FIGURE 2 - WRITE CYCLE TIMING DIAGRAM

Notes:

1. Cycle R/W to ground and then to $V_{D D}$ prior to measurement to insure turnon of the device under test
2. For the P -channel characteristics, $V_{D S}=V_{O H}-V_{D D}$.
3. For the N-channel characteristics, $V_{D S}$ is measured directly.
4. For the drain current, $I_{D}=\frac{E}{100}$ Amp

OPERATING CHARACTERISTICS

In considering the operation of the MCM 14505 CMOS memory, refer to the functional circuit diagram of Figure 7 and timing diagrams shown in Figures 1 and 2. The basic memory cell is a cross-coupled flip-flop consisting of two inverter gates and two P-channel devices for read/write control. The push-pull cell provides high speed as well as low power.

During a read cycle, when the strobe line is high the write selection drivers are disabled and the data from the selected row is available on columns $1 \mathrm{~b}, 2 \mathrm{~b}, 3 \mathrm{~b}$, and 4 b . The A4 and A5 address bits are decoded to select output data from one of the four columns. The output data is available on the data output pin only when the strobe and read/write lines are high simultaneously and after the read access time, $\mathrm{t}_{\mathrm{acc}}(\mathrm{R})$, has occurred (see Figure 1). Note that the output is initially disabled and always goes to the logic " 0 " state (low voltage) before data is valid. The output is in the highimpedance state (disabled) when the strobe line or the R/W line is in the low state. The memory is strobed for reading or writing only when the strobe, CE1, and CE2 are high simultaneously. The R/W line can be a dc voltage during a read or write cycle and need not be pulsed, as shown in the timing diagrams. For this case the R/W line should be a logic " 1 " (high) for reading and a logic " 0 " for writing.

When the strobe line is high, the column read/write inhibit gates and the row decoder inhibit gates are disabled, the selected
row is in the low state, and the unselected 15 rows retain their logic " 1 " level due to the row capacitance that exists when the row decoder inhibit gates are disabled. This capacitive storage mechanism requires a maximum strobe width (see Figure 3) equal to the junction reverse bias RC time constant. When the strobe is returned to a logic " 0 " the rows are forced to VDD by the row decoder inhibit gates (pullup devices). Similarly the column read/write inhibit gates (pulldown devices) force the column lines to a logic " 0 " state.

Two column lines are associated with each memory cell in order to write into the cell. The write selection drivers are enabled when the R/W line is a logic " 0 " and the strobe line is a logic " 1 ". The input data is written into the column selected by the column decoder. For instance, if a " 1 " is to be written in the memory cell associated with row 1 and column 1, then row 1 would be enabled (logic " 0 ") while column 1b is forced high and column 1a is forced low by the write selection drivers. If a logic " 0 " is to be written into the cell, then column $1 a$ is forced high and 16 is forced low. The data that is retained in the memory cell is the data that was present on the data input pin at the moment the strobe goes low when R/W is low, or when R/W goes high when the strobe is high.

APPLICATIONS INFORMATION

Figure 8 shows a 256 -word by n-bit static RAM memory sy stem The outputs of four MCM14505 devices are tied together to form 256 words by 1 bit. Additional bits are attained by paralleling the inputs in groups of four. Memories of larger words can be attained by decoding the most significant bits of the address and ANDing them with the strobe input.

Fan-in and fan-out of the memory is limited only by speed requirements. The extremely low input and output leakage current (100 nA maximum) keep the output voltage levels from changing significantly as more outputs are tied together. With the output levels independent of fan-out, most of the power supply range is available as logic swing, regardless of the number of units wired together. As a result, high noise immunity is maintained under all conditions.

Power dissipation is $0.1 \mu \mathrm{~W}$ per bit at a $1.0-\mathrm{kHz}$ rate for a 5.0 -volt power supply, while the static power dissipation is 2.0 nW per bit. This low power allows non-volatile information storage when the memory is powered by a small standby battery.

Figure 9 shows an optional standby power supply circuit for making a CMOS memory "non-volatile". When the usual power fails, a battery is used to sustain operation or maintain stored information. While normal power supply voltage is present, the battery is trickle-charged through a resistor which sets the charging rate. V_{B} is the sustaining voltage, and V^{+}is the ordinary voltage from a power supply. VDD connects to the power pin on the memory. Low-leakage diodes are recommended to conserve battery power.

The memory system shown in Figure 8 can be interfaced directly with the other devices in the McMOS family. No external components are required.

At the inputs to the CMOS memory, TTL devices can interface directly if an open-collector logic gate such as the MC7407 is used as shown in Figure 10. Driver circuits are not required since the input capacitance is low (4.0 to 6.0 pF). The address, data, and read/write inputs do not need to be fast since they can be changed for the duration when the strobe pulse is low, tSTL (see Figures 1 and 2). For high-speed operation, a push-pull driver should be used if more than five strobe inputs must be driven at one time. One circuit of the type shown in Figure 10 can be used for every ten strobe inputs.

Figures 11, 12, and 13 show methods of interfacing the memory output to TTL logic at various memory voltages. If a $V_{D D}$ of 5.0 volts is used for slow-speed, low-power applications, one transistor and one resistor must be used (Figure 11). The MCM14505AL will drive one low-power TTL gate directly.

If a V_{DD} of 10 volts is used, the output of the memory device can fan out to two low-power TTL gates (Figure 12a) or to a discrete transistor (Figure 12b). The discrete transistor circuit provides higher speed and/or high fan-out. A pulldown resistor at the base of the transistor is not needed for fast turn-off because of the push-pull output of the memory. Turn-on time of the transistor is much faster in Figure 12 b since the voltage rise is only 0.75 volt. The low output capacitance of the MCM 14505 means that several outputs can be wire-ORed without significantly degrading performance. The read access time is increased by only 20 ns typically for 16 outputs tied together when Figure 12b is used.

Five low-power TTL. gates can be driven from the memory output if a $V_{D D}$ of 15 volts is used (Figure 13a). Figure 13b shows the interface if a discrete transistor is used. The 1.0 kilohm resistor in the base is required to insure that not more than 10 mA flows through the output as listed in the maximum ratings. If a 2.0 kilohm collector resistor is used (fan-out $=3$), the turn-on time of the transistor is only slightly faster than in the circuit shown in Figure 12b due to the lower output impedance when $V_{D D}=15$ volts. The voltage at the memory data output has to rise to only 1.3 volts to insure driving a fan-out of three TTL devices.

If a 510 -ohm collector resistor is used, 20 TTL loads may be driven. The read access time is increased about 20 ns when four memory outputs are tied together since the output voltage must rise to 3.7 volts before the transistor can sink the full I_{OL} for a fan-out of 20 TTL devices. Almost any NPN transistor with a minimum beta of 15 can be used for the interface shown in Figures 11, 12 and 13.

The high source current from the push-pull output stage of the MCM14505 makes for a simpler interface circuit since a low source current memory requires a differential comparator to achieve highspeed operation.

FIGURE 8 - CMOS 256-WORD BY n-BIT STATIC READ/WRITE MEMORY

FIGURE 13 - CMOS-TO-TTL INTERFACE
FOR $V_{D D}=15 \mathrm{~V}$
a. Using Low-Power TTL Gates

b. Using Discrete Devices

*2.0 kilohms for F.O. $=3$
-510 ohms for F.O. $=20$

PACKAGE DIMENSIONS

L SUFFIX CERAMIC PACKAGE CASE 632

NOTES:

1. DIM "A" AND "B" DO NOT INCLUDE GLASS RUN-OUT.
2. DIM "L" TO INSIDE OF LEADS (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW BODY)
Devices packaged in Case 632 fall within one of the given sets of dimensions. Further identification is available upon request.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	16.8	19.9	0.660	0.785
B	5.59	7.11	0.220	0.280
C	-	5.08	-	0.200
D	0.381	0.584	0.015	0.023
F	0.77	1.77	0.030	0.070
G	2.54 BSC	0.100 BSC		
J	0.203	0.381	0.008	0.015
K	2.54	-	0.100	-
L	7.62 BSC	0.300 BSC		
M	-	15	15	-
N	0.51	0.76	0.020	150
P	-	8.25	-	0.325

All JEDEC dimensions and notes apply. TO-116 CASE 632-02

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	19.05	19.94	0.750	0.785
B	6.10	7.49	0.240	0.295
C	-	5.08	-	0.200
D	0.38	0.58	0.015	0.023
F	1.40	1.77	0.055	0.070
G	2.54 BSC		0.100 BSC	
H	1.91	2.29	0.075	0.090
J	0.20	0.38	0.008	0.015
K	2.54	4.06	0.100	0.160
L	7.49	8.89	0.295	0.350
M	-	150	-	150
N	0.51	1.02	0.020	0.040

CASE 632-04

P SUFFIX

PLASTIC PACKAGE
CASE 646

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	18.16	18.80	0.715	0.740
B	6.10	6.60	0.240	0.260
C	4.06	4.57	0.160	0.180
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	0.060
G	2.54 BSC		0.100	
BSC				
H	1.32	1.83	0.052	0.072
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.37	7.87	0.290	0.310
M	-	10^{0}	-	10^{0}
N	0.51	1.02	0.020	0.040
P	0.13	0.38	0.005	0.015
\mathbf{Q}	0.51	0.76	0.020	0.030

MCM14537AL MCM14537CL

256-BIT STATIC RANDOM ACCESS MEMORY

The MCM 14537 is a static random access memory (RAM) organized in a 256×1-bit pattern and constructed with MOS P-channel and N -channel enhancement mode devices in a single monolithic structure. The circuit consists of eight address inputs (A_{n}), one data input (D_{in}), one write enable input ($\overline{\mathrm{WE}}$), one strobe input ($\overline{\mathrm{ST}}$), two chip enable inputs ($\overline{\mathrm{CE}}_{n}$), and one data output ($\mathrm{D}_{\mathrm{out}}$).

Using both chip enable inputs as extensions of the address inputs, a 10 -bit address scheme may be employed. Four MCM 14537 devices may be used to comprise a 1024-bit memory without additional address decoding. The $\overline{\mathrm{CE}}$ and $\overline{\mathrm{ST}}$ inputs are dissimilary designed to enable usage of the memory in a variety of applications. An output latch is provided on the chip for storing the data read or written into memory, making a data-out storage register unnecessary. The CE inputs control the data output for third-state (high output impedance) or active operation which makes the memory very useful in a bus oriented system. When $\overline{\mathrm{CE} 2}$ is high the chip is fully disabled. When $\overline{\mathrm{CE}} 1$ is high the output is in the third state but data can be written into the output latch during a read cycle. This enables the use of the memory for fast reading by using the $\overline{C E 1} 1$ input to enable the latch. The memory is also designed so that dc signals can operate the memory with no maximum pulse width required on the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{ST}}$ lines.

Medium speed operation and micropower operation make the device useful in scratch pad and buffer applications where micropower or battery operation and high noise immunity are required.

- Quiescent Power Dissipation $=2.5 \mu \mathrm{~W} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of VDD typical
- Wired-OR Output Capability (3-state output) for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time $=700$ ns typical @ $V_{D D}=10 \mathrm{Vdc}$
- Fully Decoded and Buffered

MAXIMUM RATINGS (Voltages referenced to $\mathrm{V}_{\text {SS }}$, Pin 8)

MAXIMUM RATINGS (Voltages referenced to $\mathrm{V}_{\text {SS }}$, Pin 8)				
Rating		Symbol	Value	Unit
DC Supply Voltage	MCM14537AL MCM14537CL	$V_{\text {DD }}$	$\begin{aligned} & +18 \text { to }-0.5 \\ & +16 \text { to }-0.5 \end{aligned}$	Vdc
Input Voltage, All Inputs		$\mathrm{V}_{\text {in }}$	$V_{\text {DD }}$ to -0.5	Vdc
DC Current Drain per Pin		1	10	mAdc
Operating Temperature - MCM14537ALRange - MCM14537CL		$\mathrm{T}_{\text {A }}$	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leqslant\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leqslant \mathrm{V}_{\text {DD }}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

MCM14537 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{\text {DD }}$ Vdc	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage \quad " 0 " Level	$\mathrm{V}_{\text {out }}$	5.0	-	0.01	-	0	0.01	-	0.05	Vdc
		10	-	0.01	-	0	0.01	-	0.05	
		15	-	0.05	-	0	0.05	-	0.25	
		5.0	4.99	-	4.99	5.0	-	4.95	-	Vdc
		10	9.99	-	9.99	10	-	9.95	-	
		15	14.95	-	14.95	15	-	14.75	-	
$\begin{gathered} \text { Noise Immunity } \# \\ \left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ \left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\wedge V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \\ \left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ \left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{gathered}$	V_{NL}									Vdc
		5.0	1.5	-	1.5	2.25	-	1.4	-	
		10	3.0	-	3.0	4.50	-	2.9	-	
		15	4.5	-	4.5	6.75	-	4.4	-	
	V_{NH}	5.0	1.4	-	1.5	2.25	-	1.5	-	Vdc
		10	2.9	-	3.0	4.50	-	3.0	-	
		15	4.4	-	4.5	6.75	-	4.5	-	
Output Drive Current (AL Device)	${ }^{1} \mathrm{OH}$									mAdc
$(\mathrm{VOH}=2.5 \mathrm{Vdc}) \quad$ Source		5.0	-0.62	-	-0.50	-1.7	-	-0.35	--	
$\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$		10	-0.62	-	-0.50	-0.9	-	-0.35	-	
$\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$		15	-1.8	-	-1.5	-3.5	-	-1.1	-	
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \quad$ Sink	${ }^{1} \mathrm{OL}$	5.0	0.50	-	0.40	0.78	-	0.28	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	1.1	-	0.90	2.0	-	0.65	-	
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	4.2	-	3.4	7.8	-	2.4	-	
Output Drive Current (CL/CP Device)	${ }^{1} \mathrm{OH}$									mAdc
		5.0	-0.23	-	-0.20	-1.7	-	-0.16	-	
$\left(\mathrm{VOH}^{\text {O }}=9.5 \mathrm{Vdc}\right)$		10	-0.23	-	-0.20	-0.9.	-	-0.16	-	
$\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$		15	-0.69	-	-0.60	-3.5	-	-0.48	-	
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink	${ }^{\prime} \mathrm{OL}$	5.0	0.23	-	0.20	0.78	-	0.16	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	0.60	-	0.50	2.0	-	0.40	-	
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	1.8	-	1.5	7.8	-	1.2	-	
Input Current	$\mathrm{I}_{\text {in }}$	-	-	-	-	10	-	-	-	pAdc
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	-	-	-	pF
Quiescent Dissipation (AL Device)	P_{Q}	5.0	-	0.5	-	0.0025	0.5	-	9.0	mW
		10	-	2.0	-	0.010	2.0	-	36	
		15	-	6.0	--	0.023	6.0	-	100	
Quiescent Dissipation (CL/CP Device)	${ }^{\text {PQ }}$	5.0	-	2.5	-	0.0025	0.5	-	39	mW
		10	-	10	-	0.010	2.0	-	100	
		15	-	30	-	0.023	6.0	-	300	
Power Dissipation** \dagger (Dynamic plus Quiescent) ($C_{L}=15 \mathrm{pF}$)	$P_{\text {D }}$	5.0			$\begin{aligned} & \mathrm{P}_{\mathrm{D}}=(6.4 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=\left(25.6 \mathrm{~mW} / \mathrm{MHz}+\mathrm{P}_{\mathrm{Q}}\right. \\ & \mathrm{P}_{\mathrm{D}}=(57.6 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \end{aligned}$					mW
		10								
		15								

${ }^{*} \mathrm{~T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
\#Noise immunity specified for worst-case input combination.
\dagger For dissipation at different external load capacitance (C_{L}) use the formula:

$$
P_{T}\left(C_{L}\right)=P_{D}+1 \times 10^{-3}\left(C_{L}-15 p F\right) V_{D D^{2 f}}{ }^{2 f}
$$

where: P_{T}, P_{D} in $m W$ (per package), C_{L} in $p F, V_{D D}$ in $V d c$, and f in MHz is input frequency.
**The formula given is for the typical characteristics only.

PACKAGE DIMENSIONS

SWITCHING CHARACTERISTICS* (TA $\left.=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	$\mathrm{V}_{\text {DD }}$	Min		Typ All Types	Max		Unit
				AL Device	CL/CP Device		AL Device	CL/CP Device	
$\begin{aligned} \text { Output Rise Time }\left(C_{L}\right. & =15 \mathrm{pF}) \\ \mathrm{t}_{\mathrm{r}} & =(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{r}} & =(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{r}} & =(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8.0 \mathrm{~ns} \end{aligned}$	3	t_{r}	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	--	-	$\begin{aligned} & 70 \\ & 35 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 175 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time }\left(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right) \\ & \mathrm{t}_{\mathrm{f}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{f}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+24 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{f}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+17 \mathrm{~ns} \end{aligned}$	3	t_{f}	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{aligned} & 70 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 175 \\ & 75 \\ & 55 \end{aligned}$	$\begin{gathered} 200 \\ 110 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Read Access Time from } \overline{\mathrm{ST}} \text { or } \overline{\mathrm{CE}} 2\left(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right) \\ & \mathrm{t}_{\mathrm{acc}}=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2480 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.7 \mathrm{nspF}) \mathrm{C}_{\mathrm{L}}+690 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+393 \mathrm{~ns} \\ & \hline \end{aligned}$	4,5	tacc (R)	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 450 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & 115 \end{aligned}$	$\begin{gathered} 2500 \\ 700 \\ 400 \end{gathered}$	$\begin{aligned} & 4000 \\ & 1400 \\ & 1050 \end{aligned}$	$\begin{aligned} & 6000 \\ & 2000 \\ & 1500 \end{aligned}$	ns
Output Enable Delay from $\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$	5,6	$\mathrm{tacc}^{\text {(}} \mathrm{EE}_{\mathrm{n}}$)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 23 \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	ns
Setup Time from A_{n} to $\overline{\mathrm{ST}}$ or $\overline{\mathrm{CE}} 2$	4,5,6,7	${ }^{\text {tsetup (}}$ ()	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \\ & 140 \\ & \hline \end{aligned}$	$\begin{gathered} 1200 \\ 400 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 1800 \\ 600 \\ 450 \\ \hline \end{gathered}$	ns
Hold Time from A_{n} to $\overline{S T}$ or $\overline{\mathrm{CE}} 2$	4,5,6,7	${ }^{\text {thold (}}$ ()	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
Data Hold Time	7	thold (D)	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 480 \\ & 160 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 960 \\ & 320 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 \\ & 500 \\ & 375 \\ & \hline \end{aligned}$	ns
Data Setup Time	7	$\mathrm{t}_{\text {setup (}}$ ()	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1200 \\ & 600 \\ & 420 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2400 \\ & 1200 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & 3600 \\ & 1800 \\ & 1350 \\ & \hline \end{aligned}$	ns
$\overline{\text { Write Enable Hold Time }}$	7	thold($\overline{W E}$)	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 40 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & 150 \\ & 60 \\ & -45 \\ & \hline \end{aligned}$	ns
$\overline{\text { Write Enable Setup Time }}$	7	$\mathrm{t}_{\text {setup }}(\overline{\mathrm{WE}})$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & 480 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
$\overline{\text { Write Enable }}$ to $\mathrm{D}_{\text {out }}$ Disable**	4	t WE	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & 480 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
$\overline{\text { Strobe or }} \overline{\mathrm{CE}} 2$ Pulse Width When Reading	4,5,6	PW(R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 450 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 \\ & 450 \\ & 340 \\ & \hline \end{aligned}$	ns
$\overline{\text { Strobe }}, \overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ Pulse Width When Writing	7	PW(W)	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	-	$\begin{aligned} & 1200 \\ & 600 \\ & 420 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 840 \\ & 630 \\ & \hline \end{aligned}$	$\begin{gathered} 2400 \\ 1260 \\ 945 \end{gathered}$	ns
$\begin{aligned} & \text { Write Recovery Time, }\left(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right) \\ & \mathrm{t}_{\mathrm{W}}=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+219 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{W}}=(0.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+70 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{W}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47.5 \mathrm{~ns} \end{aligned}$	4	${ }^{t} \mathrm{R}$ (W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \end{gathered}$	$\begin{aligned} & 480 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \end{aligned}$	ns
$\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ to Dout Disable Delay **	6	${ }^{\text {t }} \overline{C E}_{n}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	ns
Read Setup Time	4,5	$\mathrm{t}_{\text {setup }}(\mathrm{R})$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline-100 \\ & -40 \\ & -30 \\ & \hline \end{aligned}$	$\begin{array}{r} -30 \\ -10 \\ -7.5 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
Read Hold Time	4,5	thold(R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 180 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
Read Cycle Time	4,5	${ }^{\text {t cyc }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 2500 \\ 700 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 4000 \\ & 1400 \\ & 1050 \\ & \hline \end{aligned}$	$\begin{aligned} & 6000 \\ & 2100 \\ & 1575 \end{aligned}$	ns
Write Cycle Time	7	${ }^{\text {t cyc }}$ (W)	$\begin{array}{r} \hline 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 1400 \\ 700 \\ 500 \end{gathered}$	$\begin{aligned} & 3400 \\ & 1400 \\ & 1050 \\ & \hline \end{aligned}$	$\begin{aligned} & 4800 \\ & 2100 \\ & 1575 \end{aligned}$	ns

*The formula given is for the typical characteristics only.
** 10% output change into a $1.0 \mathrm{k} \Omega$ load.

FIGURE 3 - AC TEST CIRCUIT

FIGURE 4 - READ CYCLE WAVEFORMS UTILIZING STROBE-TO-ACCESS MEMORY

FIGURE 5 - READ CYCLE WAVEFORMS UTILIZING CE2 FOR ACCESS MEMORY

FIGURE 6 - READ CYCLE WAVEFORMS UTILIZING $\overline{\text { CE1 }}$ AND $\overline{\text { CE2 }}$ TO ACCESS MEMORY

FIGURE 7 - WRITE CYCLE WAVEFORMS

LOGIC/BLOCK DIAGRAM

FUNCTION	CE1	CE2	ST	WE	$\mathrm{D}_{\text {in }}$	$\mathrm{D}_{\text {out }}$	COMMENTS
Address changing valid	\times	\times	1	\times	\times	R/A	Dout will be active if $\overline{C E 1}$ and $\overline{C E 2}=$ " 0 " and $\overline{W E}=$ " 1 ".
	\times	1	X	\times	\times	R	$\overline{\mathrm{CE}}=$ " 11 ", fully disables internal logic and output.
Address changing not valid	\times	0	0	\times	X	R/A	Changing address in this mode may result in altered data.
Dout disabled in high resistance state	1	\times	X	\times	X	R	$\overline{\mathrm{CE} 1}=$ " 1 " disables write cycle and Dout.
	\times	1	\times	\times	\times	R	The chip is fully disabled.
	X	\times	\times	0	\times	R	$\overline{W E}=$ " 0 " enables writing into memory if $\overline{C E 1}, \overline{C E 2}$, and $\overline{\mathrm{ST}}=$ " 0 ".
Dout enabled in active state	0	0	\times	1	\times	A	If $\overline{S T}=" 1 "$, the output stores and reads the previous data from or written into memory.
Read addressed memory location into output latch.	0	0	0	1	\times	A	The output reads the present contents that are addressed.
	1	0	0	1	\times	R	The addressed location is read into output latch with output in the " R^{\prime} state.
Disable reading from memory	x	1	\times	\times	x	R	Address changing can take place in this condition.
	\times	\times	1	\times	\times	R/A	
Write into memory	0	0	0	0	A	R	$D_{\text {in }}$ is written into memory and into the output latch
Write disabled	$\begin{aligned} & 1 \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	1 \times \times 1 \times	\times \times \times \times 1	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{gathered} \hline R \\ R \\ R / A \\ R / A \end{gathered}$	$\begin{aligned} & \overline{W E}=" 1 \text { " is a read enable. } \\ & \overline{W E}={ }^{\prime} 0^{\prime \prime} \text { is a write enable. } \end{aligned}$

$R=$ High resistance state at $D_{\text {out }}$
$A=A n$ active level of either $V_{S S}$ or $V_{D D}$
$R / A=A n R$ or A condition depending on the don't care condition
$X=$ Don't care condition (must be in the " 1 " or " 0 " state)
$1=A$ high level at $V_{D D}$
$0=A$ low level at $V_{S S}$

TYPICAL APPLICATION FOR SERIAL WORDS UTILIZING BUS TECHNIQUES

256-BIT STATIC RANDOM ACCESS MEMORY

The MCM14552 is a static random access memory (RAM) organized in a 64×4 bit pattern. The three chip enable inputs can be used as extensions of the six address inputs, creating 9 -bit address scheme. Eight MCM14552 devices may be used to comprise a 2048-bit memory (512×4) without additional address decoding.

The mode control (M) is used to change the control logic characteristic of the circuit. For example, with M high, the 3-state input ($\overline{\mathrm{T}}$) fully controls the 3 -state characteristic of the output. With M low, the output 3-state characteristic is controlled by chip enable inputs ($\overline{\mathrm{CE}}$), write enable input ($\overline{\mathrm{WE}})$ and $\overline{\mathrm{T}}$. The latch enable ($\overline{L E}$) input provides flexibility for holding output data unchanged during write operations as well as increasing the outputting of paired words.

The memory is designed so that dc signals may operate the memory, with no maximum pulse width restrictions.

Medium speed, micropower operation, and control flexibility make the device useful in scratch pad or buffer applications where battery operation or high noise immunity are required.

- Quiescent Power Dissipation $=10 \mu \mathrm{~W} /$ package typical $@ \mathrm{~V}_{\mathrm{DD}}=$ 10 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- Wired-OR Output Capability (3-state output) for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time $=700$ ns typical @ VDD $=10 \mathrm{Vdc}$
- Fully Decoded and Buffered

MAXIMUM RATINGS (Voltages referenced to V_{SS}, Pin 8)

Rating	Symbol	Value	Unit
$\begin{array}{ll}\text { DC Supply Voltage } & \\ & \text { MCM14552AL } \\ \text { MCM14552CL/CP }\end{array}$	$V_{D D}$	$\begin{aligned} & +18 \text { to }-0.5 \\ & +16 \text { to }-0.5 \end{aligned}$	Vdc
Input Voltage, All Inputs	$V_{\text {in }}$	$\mathrm{V}_{\text {DD }}$ to -0.5	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range - MCM14552AL MCM14552CL/CP	${ }^{\top}$ A	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

[^3]ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$v_{D D}$Vdc	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage \quad " 0 " Level	$\mathrm{V}_{\text {out }}$	5.0	-	0.01	-	0	0.01	-	0.05	Vdc
		10	-	0.01	-	0	0.01	-	0.05	
		15	-	0.05	-	0	0.05	-	0.25	
		5.0	4.99	-	4.99	5.0	-	4.95	-	Vdc
		10	9.99	-	9.99	10	-	9.95	-	
		15	14.95	-	14.95	15	-	14.75	-	
$\begin{aligned} & \hline \text { Noise Immunity } \# \\ & \left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{aligned}$	V_{NL}									Vdc
		5.0	1.5	-	1.5	2.25	-	1.4	-	
		10	3.0	-	3.0	4.50	-	2.9	-	
		15	4.5	-	4.5	6.75	-	4.4	-	
	V_{NH}	5.0	1.4	-	1.5	2.25	-	1.5	-	Vdc
		10	2.9	-	3.0	4.50	-	3.0	--	
		15	4.4	-	4.5	6.75	-	4.5	-	
Output Drive Current (AL Device)	${ }^{1} \mathrm{OH}$									mAdc
$(\mathrm{VOH}=2.5 \mathrm{Vdc}) \quad$ Source		5.0	-0.62	-	-0.50	-1.7	-	-0.35	-	
$\left(\mathrm{VOH}^{(1)}=9.5 \mathrm{Vdc}\right)$		10	-0.62	-	-0.50	-0.9	-	-0.35	-	
$\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$		15	-1.8	-	-1.5	-3.5	-	-1.1	-	
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \quad$ Sink	${ }^{1} \mathrm{OL}$	5.0	0.50	-	0.40	0.78	-	0.28	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	1.1	-	0.90	2.0	-	0.65	-	
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	4.2	-	3.4	7.8	-	2.4	-	
Output Drive Current (CL/CP Device)	${ }^{1} \mathrm{OH}$									mAdc
$\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) \quad$ Source		5.0	-0.23	-	-0.20	-1.7	-	-0.16	-	
$(\mathrm{VOH}=9.5 \mathrm{Vdc})$		10	-0.23	-	-0.20	-0.9	-	-0.16	-	
$(\mathrm{VOH}=13.5 \mathrm{Vdc})$		15	-0.69	-	-0.60	-3.5	-	-0.48	-	
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink	${ }^{1} \mathrm{OL}$	5.0	0.23	-	0.20	0.78	-	0.16	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	0.60	-	0.50	2.0	-	0.40	-	
$(\mathrm{V}$ OL $=1.5 \mathrm{Vdc})$		15	1.8	-	1.5	7.8	-	1.2	-	
Input Current	$\mathrm{I}_{\text {in }}$	-	-	-	-	10	-	-	-	pAdc
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	-	-	-	pF
Quiescent Dissipation (AL Device)	P_{Q}	5.0	-	0.5	-	0.005	0.5	-	9.0	mW
		10	-	2.0	-	0.01	2.0	-	36	
		15	-	6.0	-	0.02	6.0	-	108	
Quiescent Dissipation (CL/CP Device)	${ }^{\text {PQ }}$	5.0	-	2.5	-	0.005	2.5	-	39	mW
		10	-	10	-	0.01	10	-	100	
		15	-	30	-	0.02	30	-	300	
Power Dissipation** \dagger (Dynamic plus Quiescent) ($C_{L}=15 \mathrm{pF}$)	${ }^{\text {P }}$	5.0			$\begin{aligned} & \mathrm{P}_{\mathrm{D}}=(6.4 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=(25.6 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=(57.6 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \end{aligned}$					mW
		10								

$\begin{aligned} & * \\ & \mathrm{~T}_{\text {low }}=-55^{\circ} \mathrm{C} \text { for AL Device, }-40^{\circ} \mathrm{C} \text { for CL/CP Device. } \\ & \mathrm{T}_{\text {l }}=+125^{\circ} \mathrm{C} \text { for AL Device }+85^{\circ} \mathrm{C} \text { for } \mathrm{CL} / \mathrm{CP} \text { Device }\end{aligned}$
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
\#Noise immunity specified for worst-case input combination.
\dagger For dissipation at different external load capacitance (C_{L}) use the formula:

$$
P_{T}\left(C_{L}\right)=P_{D}+2 \times 10^{-3}\left(C_{L}-15 p F\right) V_{D D^{2 f}}
$$

where: P_{T}, P_{D} in $m W$ (per package), C_{L} in $p F, V_{D D}$ in $V d c$, and f in MHz is input frequency.
**The formula given is for the typical characteristics only.

SWITCHING CHARACTERISTICS* $\left(C_{L}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	VDD Vdc	Typ All Types	Max		Unit
					AL Device	CL/CP Device	
$\begin{aligned} & \text { Output Rise Time } \\ & t_{r}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{r}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{r}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8 \mathrm{~ns} \\ & \hline \end{aligned}$	1	t_{r}	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 175 \\ & 75 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 110 \\ & 80 \end{aligned}$	ns
$\begin{aligned} & \hline \text { Output Fall Time } \\ & t_{\mathrm{f}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{f}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+24 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{f}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+17 \mathrm{~ns} \\ & \hline \end{aligned}$	1	t_{f}	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 70 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 175 \\ & 75 \\ & 55 \end{aligned}$	$\begin{aligned} & 200 \\ & 110 \\ & 80 \\ & \hline \end{aligned}$	ns
Read Cycle Time	1,2	${ }^{\text {chey }}$ (R)	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{array}{r} 2000 \\ 750 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 3000 \\ & 1100 \\ & 825 \\ & \hline \end{aligned}$	$\begin{aligned} & 6000 \\ & 2200 \\ & 1650 \\ & \hline \end{aligned}$	ns
Write Cycle Time	3,4	${ }^{\text {t cyc }}$ (W)	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 1200 \\ 750 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & 1800 \\ & 1100 \\ & 825 \\ & \hline \end{aligned}$	$\begin{aligned} & 3600 \\ & 2200 \\ & 1650 \\ & \hline \end{aligned}$	ns
Address to Strobe Setup Time	1,3	$\mathrm{t}_{\text {setup }}(\mathrm{A}-\overline{\mathrm{ST}})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 150 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 225 \\ & 170 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 450 \\ 350 \end{gathered}$	ns
$\overline{\text { Strobe }}$ to Address Hold Time	1,3	thold($\overline{\text { ST }}$-A)	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 50 \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 75 \\ & 35 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & 75 \\ & \hline \end{aligned}$	ns
Address to Chip Enable Setup Time	2,4	$\mathrm{t}_{\text {setup }}(\mathrm{A} \cdot \overline{C E})$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	ns
Chip Enable to Address Hold Time	2,4	thold ($\overline{\mathrm{CE}}-\mathrm{A})$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 150 \\ 100 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & 225 \\ & 150 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	ns
$\overline{\text { Strobe or }} \overline{\text { Chip Enable Pulse Width When Reading }}$	1,2	PW(R)	$\begin{array}{r} \hline 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & \hline 450 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 900 \\ & 225 \\ & 170 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1800 \\ 450 \\ 350 \\ \hline \end{gathered}$	ns
$\overline{\text { Strobe or Chip Enable Pulse Width When Writing }}$	3,4	PW(W)	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 1200 \\ & 600 \\ & 400 \\ & \hline \end{aligned}$	$\begin{gathered} 1800 \\ 900 \\ 675 \\ \hline \end{gathered}$	$\begin{aligned} & 3600 \\ & 1800 \\ & 1350 \\ & \hline \end{aligned}$	ns
Read Setup Time	1	$\left.\mathrm{t}_{\text {setup (}} \mathrm{R}\right)$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} -100 \\ -40 \\ -30 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 10 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
Read Hold Time	1	$\left.t_{\text {hold (}} \mathrm{R}\right)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 180 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
Data Setup Time	3,4	$\mathrm{t}_{\text {setup (D) }}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	ns
Data Hold Time	3,4	thold(D)	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 200 \\ 50 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 75 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 150 \\ & 120 \\ & \hline \end{aligned}$	ns

*The formula given is for the typical characteristics only.
(continued)

SWITCHING CHARACTERISTICS $\left(C_{L}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (continued)

Characteristic	Figure	Symbol	V_{DD}Vdc	Typ All Types	Max		Unit
					AL Device	CL/CP Device	
Write Enable Setup Time	3,4	$\mathrm{t}_{\text {setup }}(\overline{W E})$	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & 480 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	ns
$\overline{\text { Write Enable }}$ Hold Time	3,4	thold($\overline{W E}$)	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \end{aligned}$	$\begin{gathered} 100 \\ 40 \\ 30 \end{gathered}$	$\begin{aligned} & 150 \\ & 60 \\ & 45 \end{aligned}$	ns
Read Access Time from $\overline{\text { Strobe }}$	1,3	tacc (R-S]	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 2000 \\ 700 \\ 350 \end{gathered}$	$\begin{aligned} & 3000 \\ & 1050 \\ & 800 \end{aligned}$	$\begin{aligned} & 6000 \\ & 2100 \\ & 1600 \end{aligned}$	ns
Read Access Time from $\overline{\text { Chip Enable }}$	2	$\mathrm{tacc}_{\text {a }}(\mathrm{R}-\overline{\mathrm{CE}})$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 2100 \\ 750 \\ 400 \\ \hline \end{gathered}$	$\begin{aligned} & 3150 \\ & 1100 \\ & 825 \\ & \hline \end{aligned}$	$\begin{aligned} & 6300 \\ & 2250 \\ & 1700 \\ & \hline \end{aligned}$	ns
Output Enable/Disable Delay from Chip Enable or Write Enable	2,4	$\begin{aligned} & \operatorname{tr}_{\mathrm{R}}(\overline{\mathrm{CE}}), \\ & \mathrm{t}_{\mathrm{t}}(\overline{\mathrm{WE}}) \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 400 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	ns
Three-State Enable/Disable Output Delay	2	${ }^{t}(\mathrm{~T})$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 600 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 1200 \\ 480 \\ 360 \\ \hline \end{gathered}$	ns
$\overline{\text { Latch to Output Propagation Delay }}$	1	t	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 600 \\ 450 \\ \hline \end{gathered}$	ns

FIGURE 1 - READ CYCLE WAVEFORMS UTILIZING STROBE TO ACCESS MEMORY

FIGURE 2 - READ CYCLE WAVEFORMS UTILIZING CHIP ENABLE TO ACCESS MEMORY

FIGURE 3 - WRITE CYCLE WAVEFORMS UTILIZING STROBE

FIGURE 4 - WRITE CYCLE WAVEFORM UTILIZING CHIP ENABLE

TRUTH TABLE

Function	CE 1	$\overline{C E} 2$	CE 3	$\overline{\mathrm{T}}$	$\overline{\text { LE }}$	M	ST	WE	$\mathrm{D}_{\text {in }}$	D ${ }_{\text {out }}$	Comments
Adctioss	\times	\times	\times	\times	X	\times	1	\times	\times	B/A	Dout will be active if all
Changum	\times	x	1	\times	\times	\times	x	\times	\times	R/A	$\overline{\mathrm{CE}} \quad 0, \mathrm{~T}-0$ and $\overrightarrow{W E} \cdot 1$
Valld	\times	1	\times	R/A	or if M - 1 and $\bar{T}=0$						
	1	\times	F/A								
Address: Changing Not Vallet	0	${ }^{1}$	0	\times	\times	\times	0	\times	x	H/A	Dout will be active if $\bar{T} \quad 0$ and $\overline{W E} \quad 1$ or if $M \quad 1$ and $\bar{T} \quad 0$
$\begin{aligned} & \text { Dou, Disabled } \\ & \text { in heyh resistance state) } \end{aligned}$	x	\times	1	x	x	0	x	\times	\times	R	Disables write circuitry
	\times	1	x	\times	x	0	\times	\times	\times	R	
	1	\times	\times	\times	\times	0	\times	x	\times	R	
	\times	x	\times	1	\times	\times	\times	\times	\times	R	$\overline{\mathrm{T}} \cdot 1$ always disables $\mathrm{D}_{\text {out }}$
	x	x	\times	X	\times	0	x	0	\times	R	M - 0 and write operation disables $\mathrm{D}_{\text {out }}$
Dout Enabled (In active state)	${ }^{0}$	0	0	0	x	\times	\times	1	\times	A	Read operation, $\mathrm{D}_{\text {out }}$ active
	\times	\times	\times	0	x	1	\times	\times	\times	A	Read or write, $\mathrm{D}_{\text {out }}$ active
Read Addressed Memory Location Into Output Latch	0	0	0	\times	0	\times	0	\times	\times	R/A	If $\overline{W E}=0, \mathrm{D}_{\text {in }}-\mathrm{D}_{\text {out }}$
Disable Reading From Memory	\times	\times	1	x	x	x	x	x	x	R/A	
	\times	1	\times	x	\times	\times	\times	\times	\times	R/A	
	1	x	\times	R/A							
	x	x	x	\times	\times	\times	1	\times	\times	R/A	
	\times	\times	\times	\times	X	\times	\times	0	\times	R/A	
Write Into Memory	0	0	0	\times	\times	\times	0	0	A	R/A	
Write Disableci	\times	\times	1	\times	\times	X	\times	\times	\times	R/A	
	\times	1	\times	\times	X	X	\times	\times	\times	R/A	
	1	x	\times	X	X	X	x	\times	\times	R/A	
	\times	\times	\times	\times	X	\times	1	\times	\times	R/A	
	\times	λ	\times	X	\times	\times	\times	1	x	R/A	
Output Latch Enabled	0	0	0	X	0	\times	0	\times	\times	R/A	
Output Latch Disabled	\times	\times	1	X	X	x	\times	\times	\times	R/A	
	\times	1	\times	R/A							
	1	\times	R/A								
	\times	\times	\times	\times	1	\times	\times	\times	\times	R/A	
	\times	\times	\times	\times	\times	\times	1	\times	\times	R/A	

FIGURE 5 - 512 WORD $\times 16$ BIT MEMORY BOARD Data Inputs

PACKAGE DIMENSIONS

Read Only Memories (ROM)/Chapter 3

READ ONLY MEMORIES

Motorola's Read Only Memories include both pre-programmed memories and maskprogrammable memories for custom applications.

The character generators are useful in CRT displays as well as in digital printers. Together with the code converters, which facilitate interface circuitry when going from one character standard to another, they provide a wide choice of devices for data display systems. ROMs are also available to provide the rhythm patterns for electronic organs.

ROMs which are specifically intended for use with the M6800 Microcomputer Family are shown in Chapter 4.
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Device } \\
\text { No. }\end{array} & \begin{array}{c}\text { No. of } \\
\text { Bits }\end{array} & \text { Description } & \begin{array}{c}\text { Access } \\
\text { Time } \\
\text { (ns max) }\end{array} & \begin{array}{c}\text { Power } \\
\text { Supplies } \\
\text { (V) }\end{array} & \begin{array}{c}\text { No. of } \\
\text { Pins }\end{array}
$$ \& Organization

Case\end{array}\right\}\)| Page No. |
| :--- |

METAL GATE NMOS

MCM6550*	7168	Mask-Programmable, Static, Rhythm	16 Patterns of 24 or 32 Beats	$\begin{gathered} { }^{\mathrm{t}_{\mathrm{cyc}}}= \\ 1 \mathrm{~ms} \end{gathered}$	$+15,+5,-3$	40	699, 711	3.5
MCM6560* Pre-Pr MCM6561 MCM6562	8192 ammed	Mask-Programmable, Addressable andard Memories: Binary Code Converter Binary Code Converter	$\begin{gathered} 1024 \times 8 \text { or } \\ 2048 \times 4 \\ 1024 \times 8 \\ 1024 \times 8 \end{gathered}$	350	+12, +5, -3	24	684,709	3.13
MCM6570* Pre-Pr MCM6571 MCM6571A MCM6572 MCM6573 MCM6574 MCM6575 MCM6576 MCM6577 MCM6578 MCM6579	8192 ammed	Mask-Programmable 9×7 Character Generator, Horizontal Scan, Shift Capability tandard Memories: ASCII Characters and Greek, Shifted ASCII Characters and Greek, Shifted ASCII and Greek, Not Shifted Japanese Characters, Not Shifted Math Symbols and Pictures, Shifted Alphanumeric Control Characters, Sh British Standard Characters, Shifted German Standard Characters, Shifted French Standard Characters, Shifted General European Standard Characte	$128 c \times(9 \times 7)$ fted	500	$+12,+5,-3$	24	684, 709	3.27
MCM6580* Pre-Pr MCM6581 MCM6583	8192 ammed	Mask-Programmable 7×9 Character Generator, Vertical Scan, Shift Capability andard Memories: ASCII Characters and Greek, Shifted Japanese Characters, Not Shifted	$128 c \times(7 \times 9)$	400	+12, +5, -3	24	684,709	3.41
$\begin{aligned} & \hline \text { MCM6590* } \\ & \text { Pre-Pr } \\ & \text { MCM6591 } \end{aligned}$	16384 rmmed	Mask-Programmable, Static andard Memory: Universal Code Converter	2048×8	800	+12, +5, -3	24	684	3.49

METAL GATE CMOS

MCM14524A*	1024	Mask-Programmable, -55 to $+125^{\circ} \mathrm{C}$	256×4	2650\#	+3 to +18	16	620	3-63
MCM14524C*	1024	Mask-Programmable, -40 to $+85^{\circ} \mathrm{C}$	256×4	3975 \#	+4.5 to +16	16	620, 648	

*Mask-programmable ROMs are manufactured according to a bit-pattern supplied by the customer. A special device number (SCM $\times \times \times x$) is assigned to each individual pattern. \#Measured with $V_{D D}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

MASK PROGRAMMABLE ROM PROCESSING

The programming formats used to customize Motorola's mask-programmable NMOS ROMs are detailed on each data sheet. The formats were generated with both the customer and the automation of mask generation being prime considerations. The use of hexadecimal format on cards and paper tape allows the efficient reduction and transmission of the data to the factory.

Once the data for a custom ROM is received at the factory, the customer's inputs are checked and submitted to our computer aided mask preparation facilities, where work is initiated to generate masks containing the customized pattern information.

This technique also allows Motorola to return to the customer a printout for verification of the formatted data prior to generation of the masks and start of wafer processing. The customer data base is also used to generate the computer test format which allows accurate and complete testing even on prototype samples.

It is with this simplified and automated procedure that Motorola is able to provide both short cycle times and volume production.

7168-BIT STATIC ROM RHYTHM GENERATOR

The MCM6550 is a mask-programmable Read Only Memory fabricated with high-performance, N -channel, metal-gate technology. It is designed as a rhythm ROM, with 7168 bits organized as 16 rhythm patterns of either 24 or 32 beats per rhythm, and with 14 outputs. An internal counter counts either 24 or 32 beats according to the input at the $24 / 32$ Select pin. No external counters or one-shots are necessary. The outputs are directly compatible with TTL and DTL.

- 24 or 32 Beats per Rhythm With Counter on Chip
- 16 Rhythms
- 14 Outputs; Any Two May Be Wire-ORed
- On-Chip One-Shot With Capacitance Controlled Pulse Width to Strobe the Outputs
- Second On-Chip One-Shot With Capacitance Controlled Pulse Width to Strobe the Downbeat Output
- Outputs Can Drive Higher Output Voltages Than TTL by Increasing VCC Voltage Above 5 Volts

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ (Referenced to $V_{S S}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{DD}	-0.3 to +20	$\mathrm{Vdc}_{\mathrm{CC}}$
	V_{CC}	-0.3 to +20	
	$\mathrm{~V}_{\mathrm{BB}}$	-15 to +0.3	
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +20	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{S S}=$ Ground)

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {DD }}$	13	15	17	Vdc
	V_{CC}	4.5	5.0	17	Vdc
	$V_{\text {BB }}$	-3.5	-3.0	-2.5	Vdc
Input High Voltage	VIH	3.0	-	V_{CC}	Vdc
Input Low Voltage	$V_{\text {IL }}$	0	-	0.6	Vdc

DC CHARACTERISTICS (Positive currents flow into the chip, negative currents out.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current $\left(V_{1 H}=5.0 \mathrm{Vdc}, V_{C C}=5.0 \mathrm{Vdc}\right)$	${ }_{1} \mathrm{H}$	-	-	100 :	$\mu \mathrm{Adc}$
Input Forward Current $\left(V_{I L}=0.4 \mathrm{Vdc}\right)$	IIL	-800	-330	-	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-100 \mu \mathrm{Adc})$	V_{OH}	4.0	-	-	Vdc
Output Low Voltage $\left(I_{\mathrm{OL}}=2.0 \mathrm{mAdc}\right)$	V_{OL}	-	-	0.4	Vdc
Supply Current	${ }^{1} \mathrm{DD}$	-	10	20	mAdc
	${ }^{\text {ICC }}$	-	9.0	20	mAdc
	${ }^{\prime} \mathrm{BB}$	-2.0	-1.0	-	mAdc
Power Dissipation	${ }^{\text {PD }}$	-	200	500	mW

CAPACITANCE (Periodically Sampled Rather Than 100\% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	-	10	pF
Output Capacitance $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	-	12	pF

AC CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Cycle Time (Tempo)	$\mathrm{t}_{\mathrm{cyc}}$	1.0	-	dc	ms
Clock Down Time	${ }^{\text {t }}$ SB	1.1 (tpWO)	-	-	-
Off Time	toff	1.25 (tpWD) ${ }^{-\mathrm{t}_{\text {cyc }}}$	-	--	-
Output Pulse Width	tpwo	-	$6 \mathrm{C}_{\mathrm{L} 1} / 0.1 \mu \mathrm{~F}$	-	ms
Downbeat Pulse Width	tPWD	-	$120 \mathrm{C}_{\text {L2 }} / 0.1 \mu \mathrm{~F}$	-	ms

FIGURE 1 - TIMING DIAGRAMS

TYPICAL CHARACTERISTIC CURVES

MEMORY OPERATION (Using Negative Logic)

Most positive level $=0$, most negative level $=1$

The MCM6550 has a total of 7168 bits arranged to have 512 bits of information programmed for each of 14 outputs. These 512 bits are further arranged as 16 rhythms with 32 programmed bits per rhythm.

When the memory is ON, one of the Rhythm Select inputs (RS0 thru RS15) is chosen by applying $V_{\text {IL }}$ to the appropriate pin. All other RS inputs are normally held at $\mathrm{V}_{\text {IH }}$. These inputs are connected to the internal X -decoder, which routes the appropriate rhythm to the output.

The Clock input is used to increment an internal 5 -bit counter which in turn is used in the Y -decoder. The two acting together sequence thru the 32 bits per rhythm, repeating the rhythm as long as the $R S_{n}$ inputs do not change and the memory is ON.

24/32 Select

This input to the MCM6550 selects either 24 or 32 bits per rhythm. This is achieved by modifying the operation of the internal counter. When 32 bits are chosen, the counter counts from 0 to 31 - a total of 32 counts. As long as the clock oscillates and the part is ON, the counter continues counting $0-31,0-31$ and so on. (When the part is OFF, the counter resets to zero.) This counter increments on the rising edge of Clock. To obtain 32 -bit operation, the 24/32 Select input is left open and an internal resistor will pull $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{1 \mathrm{H}}$.

In order to obtain the 24-bit operation, set the 24/32 Select input with $V_{\text {in }}=V_{\text {IL }}$. The internal counter is modified to count from 0 thru 11, then skip to counts 16 thru 27, then back to a 0 thru 11, and so on. The total number of counts 0.11 and 16.27 is 24 .

RS_{n}

The Rhythm Select inputs are used to select the appropriate rhythms. When only one RS input is low, the output
of the chip is straightforward. The information comes out as programmed. However, two or more RS inputs may be pulled low at the same time, mixing the information from two or more 32 -bit strings. The mixed bits are ORed; i.e., when any one bit is programmed for $V_{\text {out }}=V_{O L}$ ("one") the output will be V_{OL}. Only when all bits are programmed for $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{OH}}$ ("zero") will the output be VOH .
D_{n}
There are 14 outputs on the MCM6550, labeled DO thru D13. These outputs are normally high (VOH). When a "zero" is read, the output remains high. When a "one" is read, the output goes low at the falling edge of Clock for pulse width tPWO.

Two outputs may be tied together, logically providing an AND function. Only when both outputs are individually programmed high does the common output remain high. As long as either or both of the separate outputs are programmed low, the common output goes low for pulse width tpWO before returning to the normally high state.

An external loading capacitor $C_{L 1}$ is connected to Pin 38. This capacitor controls the internal strobe generator which in turn controls the length of tPWO.

Downbeat (DBO)

The Downbeat output is normally low. When the count in the internal counter is either zero or 16 , Downbeat goes high for pulse width tPWD at the falling edge of Clock, assuming the chip is ON. If the chip is turned OFF during a Downbeat, the output pulse will nonetheless last the full tPWD. The duration of tPWD is determined by the loading capacitor $C_{L 2}$ at P in 37. Downbeat occurs every 12 cycles in the 24 -count mode, and every 16 cycles in the 32 -count mode.

CUSTOM PROGRAMMING FOR MCM6550

By the programming of a single photomask, the customer may specify the content of the MCM6550. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:*

1. Hexadecimal coding using IBM Punch Cards
2. Hexadecimal coding using ASCII Paper Tape Punch

Programming the MCM6550 is a straightforward procedure. The desired beats (a beat is defined as $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{OL}}$ for time tpWO) are marked on a coding sheet, such as the one provided for your convenience at the end of this data sheet. (These sheets are not to be submitted to Motorola.) One coding sheet is required for each rhythm.

If a 32 count is used ($4 / 4$ timing), all 32 beats are filled in. For a 24 count ($3 / 4$ timing), beats 12 thru 15 and 28 thru 31 are left blank. Once this information is completed, the coding is converted to hexadecimal, treating marked-in blocks as "ones". and blanks as "zeros".

When all sheets have been completed, these hex characters are transferred to punch cards starting with Rhythm 0 , Beat 0 and ending with Rhythm 15, Beat 31. Even though the 24 -count mode does not utilize 8 of the available beats, these beats must be programmed with hex zeros - 16 for beats 12 thru 15 and an additional 16 for beats 28 thru 31 .

CARD PUNCH FORMAT

The hexadecimal equivalent (from the coding sheet) should be placed on 80 -column punch cards as follows:

```
Columns
1. 7 Blank
8 Asterisk(*)
9-72 Hex coding
73-76 Blank
77-78 Card number (starting 01; thru 32)
79-80 Blank
```

Column 9 on the first card contains the hexadecimal equivalent of $0,0, D 13, \mathrm{D} 12$. Column 10 contains the equivalent of D11 thru D8, column 11 contains D7 thru D4, and column 12 D3 thru D0. These four hex characters program all 14 outputs for Beat 0 , Rhythm 0 . The next four hex characters program the information for Beat 1 , and so on. The first card contains a total of 64 hex characters, equivalent to the data for the first 16 beats of Rhythm 0. The second card programs the remaining 16 beats. The remaining Rhythms are programmed in numeric sequence. At two cards per Rhythm, a total of 32 cards are required.

PAPER TAPE FORMAT

The programming of paper tape is nearly identical to card punch programming. Information is grouped in 32 lines of 64 hex characters, each line terminated with a carriage return and line feed. Note that blanks and card numbers are not included. The hex characters and the lines follow the same sequence as card punch format.

The software program which reads the tape recognizes the first carriage return and line feed as the start of data. Therefore, the customer has the option of using the first characters of the tape for internal identification, terminating with a carriage return and line feed, thereby initiating data entry.

[^4]The coding format below is given for your convenience in preparing character information for MCM6550 programming. THIS FORMAT IS NOT TO BE USED TO

TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

RHYTHM SELECT \qquad (0.15)

Beat	
$\begin{gathered} 32 \\ \text { Count } \end{gathered}$	$\begin{array}{c\|} \hline 24 \\ \text { Count } \end{array}$
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	
13	
14	
15	
16	12
17	13
18	14
19	15
20	16
21	17
22	18
23	19
24	20
25	21
26	22
27	23
28	7
29	-
30	\%
31	1/1

BINARY TO HEXADECIMAL
CONVERSION

MSB			LSB	
0	0	D13	D12	
D11	D10	D9	D8	
D7	D6	D5	D4	Hexadecimal
D3	D2	D1	D0	Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	0
1	1	1	0	E
1	1	1	1	F

$$
1=V_{O L}
$$

$$
0=\mathrm{V}_{\mathrm{OH}}
$$

package dimensions

NOTES:

1. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT
SEATING PLANE,AT MAXIMUM SEATING PLANE,AT MAXIMU
MATERIAL CONDITION.
2. DIMENSION "L"TO INSIDE

OF LEADS (MEASURED 0.51 mm
(0.020) BELOW PACKAGE BASE)

	MILLIMETERS			INCHES	
	MIN	MAX	MIN	MAX	
	50.04	51.05	1.970	2.010	
B	13.46	14.22	0.530	0.560	
C	3.05	3.94	0.120	0.155	
D	0.38	0.51	0.015	0.020	
F	0.89	1.40	0.035	0.055	
G	2.54	BSC	0.100	BSC	
H	0.89	1.40	0.035	0.055	
J	0.20	0.28	0.008	0.011	
K	3.05	3.68	0.120	0.145	
L	14.86	15.87	0.585	0.625	
M	-	150			
N	0.51	1.14	-	150	

L SUFFIX
 CERAMIC PACKAGE CASE 699-04

PIN ASSIGNMENT

ASTIC PACKAGE CASE 711 -01

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	51.82	52.32	2.040	2.060
B	13.72	14.22	0.540	0.560
C	4.57	5.08	0.180	0.200
0	0.36	0.51	0.014	0.020
F	1.02	1.52	0.040	0.060
G	2.41	2.67	0.095	0.105
H	1.65	2.16	0.065	0.085
J	0.20	0.30	0.008	0.012
K	3.68	4.19	0.145	0.165
L.	14.99	15.49	0.590	0.610
M	0^{0}	10°	0°	10^{0}
N	0.51	1.02	0.020	0.040

8192-BIT BINARY ADDRESSABLE READ ONLY MEMORIES

The MCM6560 is a mask programmable 8192-bit static Read Only Memory fabricated with N-Channel metal gate technology. A single mask provides memory organization and two programmable Chip Selects. The Chip Select decoding allows up to four MCM6560 devices to be wire-ORed without external decoding.

- Static Operation
- TTL Compatibility
- Compatible with CMOS Operating at 5.0 V
- 3-State Outputs for Wired-OR Capability
- Two Organizations: 1024×8 or 2048×4
- 350 ns Maximum Access Time
- Standard $+5.0 \mathrm{~V},+12 \mathrm{~V}$ and -3.0 V Power Supplies

The MCM6561 and MCM6562 are organized as 1024×8 bits and pre-programmed with six character conversion codes: ASCII to Selectric, EBCDIC, and a modified 8-bit Hollerith; Selectric to ASCII, EBCDIC to ASCII, and a modified 8-bit Hollerith to ASCII.

Selectric is a registered trademark of IBM.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ (Voltages referenced to $V_{\text {SS }}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{CC}	-0.3 to +6.0	Vdc
	V_{DD}	-0.3 to +15	
	$\mathrm{~V}_{\mathrm{BB}}$	-10 to +0.3	
Address/Control Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +15	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, LOW THRESHOLD)
8K BINARY ADDRESSABLE READ ONLY MEMORIES

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{S S}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {DD }}$	10.8	12	13.2	Vdc
	$V_{\text {CC }}$	4.75	5.0	5.25	Vdc
	$\mathrm{V}_{\text {SS }}$	0	0	0	Vdc
	$V_{B B}$	-3.3	-3.0	-2.7	Vdc
Input Logic "1" Voltage (Driven by TTL)	$\mathrm{V}_{1 \mathrm{H}}{ }^{\text {* }}$	3.0	-	$\mathrm{V}_{\text {CC }}$	Vdc
(Driven by Other Than TTL)		4.0	-	$V_{\text {CC }}$	Vdc
Input Logic " 0 " Voltage	$V_{\text {IL }}$	0	-	0.8	Vdc

*A $4.0 \mathrm{~V} \mathrm{~V}_{1 H}$ is required at the chip regardless of the type of driver used. However, internal MOS pullup devices on the chip can pull one TTL driver from 3.0 V to 4.0 V , without affecting access time. These pullup devices may not pull non-TTL drivers above 3.0 V .

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Forward Current $\left(V_{1 L}=0.4 \mathrm{Vdc}\right)$	IIL	-	-	-1.6	mAdc
Input Leakage Current $\left(\mathrm{V}_{1 H}=5.25 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\right)$	${ }^{1} \mathrm{H}$	-	-	100	$\mu \mathrm{Adc}$
Output Leakage Current (High Impedance)	${ }^{1} \mathrm{OL}$	-	-	10	$\mu \mathrm{Adc}$
Output Low Voltage $\left(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{mAdc}\right)$	V_{OL}	0	-	0.4	Vdc
Output High Voltage $\left(I_{\mathrm{OH}}=-40 \mu \mathrm{Adc}\right)$	V_{OH}	3.0	-	-	Vdc
Power Supply Current	$\begin{aligned} & \text { IDD } \\ & \text { ICC } \\ & I_{B B} \end{aligned}$	-	-	$\begin{gathered} 25 \\ 125 \\ 100 \end{gathered}$	mAdc mAdc $\mu \mathrm{Adc}$
Power Dissipation	$P_{\text {D }}$	-	600	1000	mW

CAPACITANCE (Periodically sampled rather than 100\% tested)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $(f=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	4.0	7.0	pF
Output Capacitance $(f=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	6.0	10	pF

AC CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
[All timing with $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$; Load $=1$ TTL Gate (MC7400 Series), $\mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$]
TIMING (Typical values measured at $25^{\circ} \mathrm{C}$ and nominal suppies)

Characteristic	Symbol	Min	Typ	Max	Unit
Address Access Time (See Figure 1A)	$\mathrm{t}_{\text {acc }}$	-	225	350	ns
Output Select Time (See Figure 1B)	tos	-	100	150	
Output Deselect Time (See Figure 1B)	tOD	-	100	150	ns

FIGURE 1 - TIMING DIAGRAMS
. ADDRESS ACCESS TIMING DIAGRAM
(Chip Selected)

Note: Row Select inputs are set in a dc state.
B. CHIP SELECT TIMING DIAGRAM
(Addresses Established)

Output Not defined - High Impedance

FIGURE 2 - $V_{C C}$ SUPPLY CURRENT versus TEMPERATURE

FIGURE 4 - OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

FIGURE 6 - ADDRESS ACCESS TIME versus $V_{\text {DD }}$ SUPPLY VOLTAGE

FIGURE 3 - VDD SUPPLY CURRENT versus TEMPERATURE

FIGURE 5 - OUTPUT SOURCE CURRENT versus OUTPUT VOLTAGE

FIGURE 7 - ADDRESS ACCESS TIME versus TEMPERATURE

MEMORY OPERATION (Using Positive Logic)
Most positive level $=1$, most negative level $=0$

Address

To select any location, apply the appropriate binary code to the Address inputs A0 thru A9 (1024 $\times 8$) or A10 (2048 $\times 4$). The output data will remain valid as long as the Address and Chip Select (CS) inputs remain stable and valid.

Chip Select (CS) Inputs

Each CS input may be programmed for a don't care, logic " 1 ", or logic " 0 " operation when the custom memory mask is generated. The CS inputs enable the output devices and give valid output data when they are at the programmed logic level. With the CS inputs at a false logic level, the outputs assume a high impedance state. By programming the CS inputs, up to four MCM6560 devices may be operated in parallel without adding external circuitry.

Address Access Time, tacc

The time delay between the latest change in any Address input and the corresponding change on any Output line with all other inputs held stable and the chip selected. Output Select Time, toS

The time delay between activation of CS inputs and the appearance of valid data on any Output line with all other inputs held stable.

Output

For these devices positive logic levels are assumed. When the outputs are disabled, a high impedance state is present.

PACKAGE DIMENSIONS

L SUFFIX

CERAMIC PACKAGE

CASE 684-04

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	29.34	30.86	1.155	1.215
B	12.70	14.22	0.500	0.560
C	3.05	3.94	0.120	0.155
D	0.38	0.51	0.015	0.020
F	0.89	1.40	0.035	0.055
G	2.54	BSC	0.100	BSC
H	0.89	1.40	0.035	0.055
J	0.20	0.30	0.008	0.012
K	2.92	3.68	0.115	0.145
L	14.86	15.87	0.585	0.625
M	-	15°	-	15°
N	0.51	1.14	0.020	0.045

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE WITH MAXIMUM MATERIAL CONDITION.
2. LEAD NO. 1 CUT FOR IDENTIFICATION, OR BUMP ON TOP.
3. DIM "L" TO INSIDE OF LEADS. (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW PKG BASE)

P SUFFIX PLASTIC PACKAGE CASE 709-01

	MILLIMETERS			INCHES	
	DIM	MIN	MAX	MIN	
MAX					
A	31.37	32.13	1.235	1.265	
B	13.72	14.22	0.540	0.560	
C	4.57	5.08	0.180	0.200	
D	0.36	0.51	0.014	0.020	
F	1.02	1.52	0.040	0.060	
G	2.41	2.67	0.095	0.105	
H	1.78	2.03	0.070	0.080	
J	0.20	0.30	0.008	0.012	
K	3.05	3.56	0.120	0.140	
L	14.73	15.24	0.580	0.600	
M	0	0	10^{0}	0^{0}	
N	0.51	1.02	10^{0}		

NOTES:

1. LEADS, TRUE POSITIONED WITHIN $0.25 \mathrm{~mm}(\mathbf{0 . 0 1 0)}$ DIA at SEATING PLANE AT MAXIMUM MATERIAL CON. DITION. (DIM. "D")
2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

CUSTOM PROGRAMMING FOR MCM6560

By the programming of a single photomask for the MCM6560, the customer may specify the pin assignment option (1024 $\times 8$ or 2048×4), the content of the memory and the method of selecting the outputs.

Information for custom memory content may be sent to Motorola in the following forms, in order of preference : *

1. Hexadecimal coding using IBM Punch Cards
(Figures 8 and 11).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figures 9 thru 11).
As Figure 11 indicates, a zero programmed in the memory appears at D_{n} as $V_{O L}$. A programmed one appears

as $\mathrm{VOH}_{\mathrm{OH}}$.

To specify the pin assignment option and to program the mode of selecting the chip, the information in Figure 12 is required. This information must be in written form and must accompany the punched cards or paper tape. (A copy of Figure 12 may be used for this purpose.) For example, the MCM6561L is pre-programmed to pinout option A and true Chip Select option I.
*Note: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

FIGURE 8 - CARD PUNCH FORMAT

FIGURE 9 - PAPER TAPE FORMAT

Frames

Leader	Blank Tape
1 to M	Allowed for customer use (M $\leqslant 64)$
$M+1, M+2$	CR; LF (Carriage Return; Line
	Feed)
$M+3$ to $M+66$	First line of pattern information
	(64 hex figures per line)
$M+67, M+68$	CR; LF
$M+69$ to $M+2112$	Remaining 31 lines of hex figures, each line followed by a Carriage
	Return and Line Feed
Blank Tape	

Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Option A (1024 x 8)

Frame $M+3$ contains the hexadecimal equivalent of
bits D7 thru D4 of byte 0 . Frame $M+4$ contains bits D3 thru D0. These two hex figures together program byte 0 . Likewise, frames $M+5$ and $M+6$ program byte 1 , while $M+7$ and $M+8$ program byte 2 . Frames $M+3$ to $M+66$ comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

Option B (2048×4)

Frame $M+3$ contains the hexadecimal equivalent of byte 0 , bits D3 thru D0. Frame $M+4$ contains byte 1 , frame $M+5$ byte 2 , and so on. Frames $M+3$ to $M+66$ sequentially program bytes 0 to 31 (the first 32 bytes). The line is terminated with a CR and LF.

Both Options

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32×64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

As an example, a printout of the punched tape for Figure 13 would read as shown in Figure 10 (a CR and LF is implicit at the end of each line).

FIGURE 10 －PRINTOUT OF PUNCHED TAPE
CUSTOMER IDENTIFICATION USING ONLY ALPHANUMERIC CHARACTERS
AgBl B233358736B8B430FA3912938E847478EEF565E4EB636CE81EER9A9A031B
21ED2EF6277269E16FF38877998D98906AE7BD66F9BE71ACAFF91E2D140987FF
A07DC®A3A5A6BEAA24A95A9812116584D4D84E55C5444BC3CC481E429C9A1790
3 C4D2E5622D2C941 CF530CD7 1 D8 D889日CA472BC6503ADI AC3F59 1 E5F14g9日 Fg

FIGURE 11 －BINARY TO HEXADECIMAL CONVERSION

MSB			LSB	
D7	D6	D5	D4	Hexadecimal
D3	D2	D1	D0	Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	0
1	1	1	0	E
1	1	1	1	F

FIGURE 12 －FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
MCM6560 MOS READ ONLY MEMORY

Customer \qquad

Customer Part No． \qquad Rev． \qquad

Pin－Out Option： A (1024×8)B (2048×4)

True Chip Select options：

	CS1	CSO		
I	0	0	\square	1 is most positive input
II	0	1	\square	0 is most negative input
III	1	0	\square	X is no connection or
IV	1	1	\square	don＇t care situation
V	X	1	\square	
VI	X	0	\square	
VII	X	X	\square	

The MCM6561 and MCM6562 binary ROMs are organized as 1024 words of 8 bits. The devices are pre-programmed and contain the code conversions shown to the right. $\mathrm{CSO}=\mathrm{CS} 1=0$.

ADDRESS (A)		CODES	
From	To	From	To
0	127	Selectric	ASCII
128	255	ASCII	Selectric
256	511	Hollerith	ASCII
512	639	ASCII	Hotlerith
640	895	EBCDIC	ASCII
896	1023	ASCII	EBCDIC

Tables 13 through 18 present the coding used in the MCM6561 and MCM6562. The addresses are given both in decimal and hexadecimal form in these figures. The outputs are given in hexadecimal form only. The format is illustrated in the example to the right.

Example:

Address	Output	
A $10 \ldots$ A0 23_{10} 00000010111_{2}	D7 \ldots D0 01100011_{2}	
23_{10}	17_{16}	63_{16}

FIGURE 13 - SELECTRIC LINE CODE TO ASCII CODE

Address		Output MCM6561 MCM6562									
0	0	A0	32	20	21	64	40	AO	96	60	3 C
1	1	B1	33	21	ED	65	41	7 D	97	61	4D
2	2	B2	34	22	2E	66	42	C0	98	62	2E
3	3	33	35	23	F6	67	43	A3	99	63	56
4	4	35	36	24	27	68	44	A5	100	64	22
5	5	B7	37	25	72	69	45	A6	101	65	D2
6	6	36	38	26	69	70	46	BE	102	66	C9
7	7	B8	39	27	E1	71	47	AA	103	67	41
8	8	B4	40	28	6 F	72	48	24	104	68	CF
9	9	30	41	29	F3	73	49	A9	105	69	53
10	A	FA	42	2A	8B	74	4A	5A	106	6A	OC
11	B	39	43	2B	77	75	4 B	28	107	6 B	D7
12	C	12	44	2 C	99	76	4 C	12	108	6C	1D
13	D	93	45	2D	8 D	77	4D	11	109	6D	8D
14	E	8 E	46	2E	08	78	4 E	05	110	6 E	88
15	F	84	47	2 F	00	79	4F	84	111	6 F	00
16	10	74	48	30	6A	80	50	D4	112	70	CA
17	11	78	49	31	E7	81	51	D8	113	71	47
18	12	EE	50	32	BD	82	52	4E	114	72	2B
19	13	F5	51	33	66	83	53	55	115	73	C6
20	14	65	52	34	F0	84	54	C5	116	74	50
21	15	E4	53	35	BB	85	55	44	117	75	3A
22	16	EB	54	36	71	86	56	4B	118	76	D1
23	17	63	55	37	AC	87	57	C3	119	77	AC
24	18	6 C	56	38	AF	88	58	CC	120	78	3 F
25	19	E8	57	39	F9	89	59	48	121	79	59
26	1 A	1 E	58	3 A	1 E	90	5A	1 E	122	7A	1 E
27	1B	E2	59	38	2 D	91	5B	42	123	7 B	5F
28	1 C	9A	60	3 C	14	92	5 C	9 C	124	7 C	14
29	1D	OA	61	3 D	09	93	5D	OA	125	70	09
30	1 E	03	62	3 E	87	94	5 E	17	126	7E	OF
31	1F	1 B	63	3 F	FF	95	5 F	90	127	7F	00

FIGURE 14 - ASCII TO SELECTRIC LINE CODE

Address		Output MCM6561 MCM6562									
128	80	AF	160	A0	00	192	C0	42	224	E0	77
129	81	1B	161	A 1	AO	193	C1	E7	225	E1	27
130	82	8B	162	A 2	E4	194	C2	DB	226	E2	1B
131	83	1 E	163	A3	C3	195	C3	D7	227	E3	17
132	84	OF	164	A4	48	196	C4	55	228	E4	95
133	85	4E	165	A5	44	197	C5	D4	229	E5	14
134	86	BB	166	A6	C5	198	C6	F3	230	E6	33
135	87	BE	167	A 7	24	199	C7	71	231	E7	B1
136	88	2E	168	A8	4B	200	C8	59	232	E8	99
137	89	BD	169	A9	C9	201	C9	66	233	E9	A6
138	8A	1D	170	AA	47	202	CA	F0	234	EA	30
139	8B	AA	171	$A B$	72	203	CB	56	235	EB	96
140	8C	6A	172	AC	B7	204	CC	D8	236	EC	18
141	8D	2D	173	AD	BB	205	CD	E1	237	ED	21
142	8 E	8E	174	AE	E2	206	CE	D2	238	EE	12
143	8F	7E	175	AF	B8	207	CF	E8	239	EF	28
144	90	5 F	176	B0	09	208	D0	74	240	FO	B4
145	91	4D	177	B1	81	209	D1	F6	241	F1	36
146	92	OC	178	B2	82	210	D2	65	242	F2	A5
147	93	8 D	179	B3	03	211	D3	69	243	F3	A9
148	94	3 C	180	B4	88	212	D4	50	244	F4	90
149	95	A0	181	B5	84	213	D5	53	245	F5	93
150	96	6 F	182	B6	06	214	D6	63	246	F6	A3
151	97	DE	183	B7	05	215	D7	EB	247	F7	2B
152	98	AO	184	B8	87	216	D8	D1	248	F8	11
153	99	AC	185	89	8B	217	D9	F9	249	F9	39
154	9 A	9 C	186	BA	F5	218	DA	CA	250	FA	OA
155	9B	9 F	187	BB	35	219	DB	41	251	FB	41
156	9 C	5 C	188	BC	60	220	DC	41	252	FC	41
157	9 D	6C	189	BD	B2	221	DD	41	253	FD	41
158	9 E	6C	190	BE	C6	222	DE	41	254	FE	41
159	9 F	5 C	191	BF	78	223	DF	7 B	255	FF	3 F

FIGURE 15 - MODIFIED 8-BIT HOLLERITH TO ASCII

Address		Output													
		MCM6561	MCM6562												
256	100	20	20	274	112	16	16	292	124	55	55	310	136	17	17
257	101	31	31	275	113	93	97	293	125	56	56	311	137	1B	1 B
258	102	32	32	276	114	94	94	294	126	57	57	312	138	88	90
259	103	33	33	277	115	95	1 E	295	127	58	58	313	139	89	91
260	104	34	34	278	116	96	99	296	128	59	59	314	13A	8A	92
261	105	35	35	279	117	04	04	297	129	B9	B9	315	13B	8B	93
262	106	36	36	280	118	98	9A	298	12A	5 C	5 C	316	13C	8C	94
263	107	37	37	281	119	99	9 B	299	$12 B$	2C	2C	317	13D	05	05
264	108	38	38	282	11 A	9 A	9 C	300	12C	25	25	318	13E	06	06
265	109	60	60	283	11B	9 B	9D	301	12D	5 F	5 F	319	13F	07	07
266	10 A	3 A	3A	284	11C	14	14	302	12E	3E	3E	320	140	2D	2D
267	10 B	23	23	285	11D	15	15	303	12 F	3 F	3 F	321	141	4A	4A
268	10C	40	40	286	11E	9 E	9 E	304	130	5A	5 A	322	142	4B	4B
269	10 D	27	27	287	11F	1 A	1 A	305	131	81	8D	323	143	4C	4C
270	10E	3D	3D	288	120	30	30	306	132	82	1 C	324	144	4D	4D
271	10F	22	22	289	121	2 F	2F	307	133	83	8E	325	145	4E	4E
272	110	39	39	290	122	53	53	308	134	84	8F	326	146	4F	4F
273	111	91	96	291	123	54	54	309	135	OA	OA	327	147	50	50

(continued)

FIGURE 15 - MODIFIED 8-BIT HOLLERITH TO ASCII (continued)

Address		Output													
		MCM6561	MCM6562												
328	148	51	51	374	176	B6	B6	420	1A4	64	64	466	1D2	AA	AA
329	149	B1	B1	375	177	B7	B7	421	1 A 5	65	65	467	1D3	$A B$	$A B$
330	14A	5D	21	376	178	B8	B8	422	1 A 6	66	66	468	1D4	AC	AC
331	14B	24	24	377	179	80	8 C	423	1 A 7	67	67	469	105	AD	AD
332	14C	2 A	2A	378	17 A	F4	F4	424	1 A 8	68	68	470	1D6	AE	$A E$
333	14D	29	29	379	17 B	F5	F5	425	1 A 9	C3	C4	471	1D7	AF	AF
334	14E	3 B	3 B	380	17C	F6	F6	426	1 AA	C4	C5	472	1D8	B0	B0
335	14 F	5 E	5 E	381	17 D	F7	F7	427	1 AB	C5	C6	473	1D9	00	10
336	150	52	52	382	17E	F8	F8	428	1 AC	C6	C7	474	1DA	EE	ED
337	151	11	11	383	17F	F9	F9	429	1 AD	C7	C8	475	ADB	EF	EE
338	152	12	12	384	180	26	26	430	1 AE	C8	C9	476	1 DC	FO	EF
339	153	13	13	385	181	41	41	431	1 AF	C9	CA	477	1 DD	F1	FO
340	154	9D	85	386	182	42	42	432	1 BO	69	69	478	1DE	F2	F1
341	155	85	86	387	183	43	43	433	1B1	AO	9 F	479	1DF	F3	F2
342	156	08	08	388	184	44	44	434	$1 \mathrm{B2}$	A1	AO	480	1 EO	BA	BB
343	157	87	87	389	185	45	45	435	1B3	A2	A 1	481	1E1	D9	D9
344	158	18	18	390	186	46	46	436	1B4	A3	A2	482	1E2	DA	DA
345	159	19	19	391	187	47	47	437	185	A4	A3	483	1E3	DB	DB
346	15A	92	88	392	188	48	48	438	186	A5	A4	484	1E4	DC	DC
347	15B	8 F	89	393	189	A8	A 7	439	187	A6	A5	485	1E5	DD	DD
348	15C	1 C	8A	394	18A	5B	A8	440	188	A 7	A6	486	1 E 6	DE	DE
349	15D	1D	1 D	395	18B	2 E	2 E	441	189	10	00	487	1 E 7	DF	DF
350	15E	1 E	8B	396	18 C	3C	3 C	442	1 BA	E8	E 7	488	1E8	EO	EO
351	15F	1 F	1 F	397	18D	28	28	443	1 BB	E9	E8	489	1E9	D8	D8
352	160	7D	7D	398	18E	2B	2B	444	1 BC	EA	E9	490	1EA	E2	E2
353	161	7E	7E	399	18F	21	7 C	445	1 BC	EB	EA	491	1EB	E3	E3
354	162	73	73	400	190	49	49	446	1BE	EC	EB	492	1EC	E4	E4
355	163	74	74	401	191	01	01	447	1 BF	ED	EC	493	1ED	E5	5D
356	164	75	75	402	192	02	02	448	1 CO	7C	BA	494	1EE	E6	E5
357	165	76	76	403	193	03	03	449	1 C 1	6 A	6 A	495	1EF	E 7	E6
358	166	77	77	404	194	9 C	80	450	1 C 2	6 B	6 B	496	1 FO	E1	E1
359	167	78	78	405	195	09	09	451	1 C 3	6C	6 C	497	1 F 1	BB	BC
360	168	79	79	406	196	86	81	452	1 C 4	6D	6 D	498	1F2	BC	BD
361	169	D1	D2	407	197	7 F	7 F	453	1 C 5	6 E	6 E	499	$1 F 3$	BD	$B E$
362	16 A	D2	D3	408	198	97	82	454	1 C 6	6 F	6 F	500	1F4	BE	BF
363	$16 B$	D3	D4	409	199	8D	83	455	$1 \mathrm{C7}$	70	70	501	1F5	BF	CO
364	16C	D4	D5	410	19A	8E	84	456	1 C 8	71	71	502	1F6	CO	C1
365	16D	D5	5 B	411	19B	OB	OB	457	1 C 9	CA	CB	503	1F7	C1	C2
366	16E	D6	D6	412	19C	OC	OC	458	1 CA	CB	CC	504	1F8	C2	C3
367	16F	D7	D7	413	19D	OD	OD	459	1 CB	CC	CD	505	1 F 9	90	95
368	170	7 A	7 A	414	19F	OE	OE	460	1 CC	CD	CE	506	1 FA	FA	FA
369	171	9 F	F3	415	19F	OF	OF	461	1 CD	2E	CF	507	1 FB	FB	FB
370	172	B2	B2	416	1 AO	7 B	7 B	462	1CE	CF	DO	508	1 FC	FC	FC
371	173	B3	B3	417	1 A 1	61	61	463	1 CF	DO	D1	509	1 FD	FD	FD
372	174	B4	B4	418	1 A 2	62	62	464	1D0	72	72	510	1 FE	FE	FE
373	175	B5	B5	419	1 A 3	63	63	465	1D1	A9	A9	511	1 FF	FF	FF

FIGURE 16 - ASCII TO MODIFIED 8-BIT HOLLERITH

Address		Output													
		MCM6561	MCM6562												
512	200	D9	B9	523	20B	9 B	9 B	534	216	82	12	545	221	1 F	4A
513	201	91	91	524	20C	9 C	9 C	535	217	C6	36	546	222	OF	OF
514	202	92	92	525	200	90	9D	536	218	A8	58	547	223	OB	OB
515	203	93	93	526	20E	9 E	9 E	537	219	A9	59	548	224	2 B	4B
516	204	87	17	527	20F	9 F	9 F	538	21A	8 F	1 F	549	225	4 C	2 C
517	205	CD	3D	528	210	B9	D9	539	21B	C7	37	550	226	10	80
518	206	CE	3E	529	211	A1	51	540	21C	AC	32	551	227	OD	OD
519	207	CF	3F	530	212	A2	52	541	21D	AD	5D	552	228	10	8D
520	208	A6	56	531	213	A3	53	542	21E	AE	15	553	229	2D	4D
521	209	95	95	532	214	8 C	1 C	543	21F	AF	5 F	554	22A	2C	4 C
522	20A	C5	35	533	215	8D	10	544	220	00	00	555	22B	1E	8 E

(continued)

FIGURE 16 - ASCII TO MODIFIED 8-BIT HOLLERITH (continued)

Address		Output													
		MCM6561	MCM6562												
556	22C	4B	2B	577	241	11	81	598	256	45	25	619	26B	32	C2
557	22D	20	40	578	242	12	82	599	257	46	26	620	26C	33	C3
558	22E	1 B	88	579	243	13	83	600	258	47	27	621	26D	34	C4
559	22F	41	21	580	244	14	84	601	259	48	28	622	26E	35	C5
560	230	40	20	581	245	15	85	602	25A	CO	30	623	26F	36	C6
561	231	01	01	582	246	16	86	603	25B	1 A	60	624	270	37	C7
562	232	02	02	583	247	17	87	604	25C	4A	2A	625	271	38	C8
563	233	03	03	584	248	18	88	605	25D	2A	ED	626	272	B0	DO
564	234	04	04	585	249	90	90	606	25E	2 F	4F	627	273	62	62
565	235	05	05	586	24A	21	41	607	25F	4D	2D	628	274	63	63
566	236	06	06	587	24B	22	42	608	260	09	09	629	275	64	64
567	237	07	07	588	24C	23	43	609	261	51	A1	630	276	65	65
568	238	08	08	589	24D	24	44	610	262	52	A2	631	277	66	66
569	239	80	10	590	24 E	25	45	611	263	53	A3	632	278	67	67
570	23A	OA	OA	591	24F	26	46	612	264	54	A4	633	279	68	68
571	23B	2E	4E	592	250	27	47	613	265	55	A5	634	27A	E0	70
572	23C	1 C	8 C	593	251	28	48	614	266	56	A6	635	27B	50	A0
573	23D	OE	OE	594	252	AO	50	615	267	57	A7	636	27C	30	8 F
574	23E	4E	2E	595	253	42	22	616	268	58	A8	637	270	60	60
575	23F	4F	2F	596	254	43	23	617	269	DO	B0	638	27E	61	61
576	240	OC	OC	597	255	44	24	618	26A	31	C1	639	27F	97	97

FIGURE 17 - EBCDIC TO ASCII

Address		Output													
		MCM6561	MCM6562												
640	280	00	00	677	2A5	OA	OA	714	2CA	FE	A8	751	2EF	BF	3F
641	281	01	01	678	2A6	17	17	715	2CB	AE	2 E	752	2FO	00	BB
642	282	02	02	679	$2 A 7$	1 B	1B	716	2CC	BC	3 C	753	2F1	00	BC
643	283	03	03	680	2A8	00	90	717	2 CD	A8	28	754	2F2	00	BD
644	284	00	80	681	2A9	00	91	718	2CE	$A B$	2B	755	2F3	00	BE
645	285	09	09	682	2AA	00	92	719	2CF	FC	7 C	756	2F4	00	BF
646	286	00	81	683	2 AB	00	93	720	2D0	A6	26	757	2F5	00	CO
647	287	7F	7F	684	2AC	00	94	721	2D1	00	A9	758	2F6	00	C1
648	288	00	82	685	$2 A D$	05	05	722	2D2	00	AA	759	2F7	00	C2
649	289	00	83	686	2AE	06	06	723	2D3	00	$A B$	760	2F8	00	C3
650	28A	00	84	687	2AF	07	07	724	2D4	00	AC	761	2F9	00	60
651	28B	OB	OB	688	2 BO	00	95	725	2D5	00	$A D$	762	2FA	BA	3A
652	28C	OC	OC	689	2B1	00	96	726	2D6	00	AE	763	2FB	A3	23
653	28D	OD	OD	690	282	16	16	727	2D7	00	AF	764	2FC	CO	40
654	28E	OE	OE	691	2B3	00	97	728	2D8	00	B0	765	2FD	A 7	27
655	28F	OF	OF	692	2B4	00	98	729	2D9	00	B1	766	2FE	BD	3D
656	290	10	10	693	2B5	14	1E	730	2DA	A1	21	767	2FF	A2	22
657	291	11	11	694	286	00	99	731	2DB	A4	24	768	300	00	C4
658	292	12	12	695	2B7	04	04	732	2DC	AA	2A	769	301	E1	61
659	293	13	13	696	2B8	00	9A	733	2DD	A9	29	770	302	E2	62
660	294	E0	85	697	2B9	00	9 B	734	2DE	BB	28	771	303	E3	63
661	295	DC	86	698	2BA	00	9 C	735	2DF	DE	5 E	772	304	E4	64
662	296	08	08	699	2BB	00	9 D	736	2E0	AD	2D	773	305	E5	65
663	297	00	87	700	2BC	00	14	737	2E1	AF	2F	774	306	E6	66
664	298	18	18	701	2BD	15	15	738	2E2	00	B2	775	307	E7	67
665	299	19	19	702	2BE	00	9 E	739	2E3	00	B3	776	308	E8	68
666	29A	00	88	703	2BF	1 A	1A	740	2E4	00	B4	777	309	E9	69
667	29B	00	89	704	2CO	AO	20	741	2E5	00	B5	778	30A	00	C5
668	29C	1 C	8A	705	2C1	00	9 F	742	2E6	00	B6	779	30B	FB	C6
669	29D	1 D	1D	706	2 C 2	00	AO	743	2E7	00	B7	780	30 C	00	C7
670	29E	1E	8B	707	2C3	00	A1	744	2F8	00	B8	781	30D	00	C8
671	29F	1 F	1 F	708	2 C 4	00	A2	745	2E9	00	B9	782	30 E	00	C9
672	2AO	00	8 C	709	2C5	00	A3	746	2EA	00	BA	783	30F	00	CA
673	2A1	00	8D	710	2C6	00	A4	747	2EB	AC	2 C	784	310	00	CB
674	2A2	00	2 C	711	2C7	00	A5	748	2EC	A5	25	785	311	EA	6A
675	2A3	00	8E	712	2C8	00	A6	749	2ED	DF	5 F	786	312	EB	68
676	2A4	00	8F	713	2C9	00	A7	750	2EE	BE	3E	787	313	EC	6C

FIGURE 17 - EBCDIC TO ASCII (continued)

Address		Output													
		MCM6561	MCM6562												
788	314	ED	6 D	815	32F	00	D7	842	34A	00	E7	869	365	D6	56
789	315	EE	6 E	816	330	00	D8	843	34B	00	E8	870	366	D7	57
790	316	EF	6 F	817	331	00	D9	844	34C	00	E9	871	367	D8	58
791	317	F0	70	818	332	00	DA	845	34D	00	EA	872	368	D9	59
792	318	F1	71	819	333	00	DB	846	34 E	00	EB	873	369	DA	5A
793	319	F2	72	820	334	00	DC	847	34F	00	EC	874	36A	00	F4
794	31 A	00	CC	821	335	00	DD	848	350	00	7 D	875	36B	00	F5
795	31B	FD	CD	822	336	00	DE	849	351	CA	4A	876	36C	00	F6
795	31C	00	CE	823	337	00	DF	850	352	CB	4 B	877	36D	00	F7
797	31D	00	CF	824	338	00	E0	851	353	CC	4 C	878	36E	00	F8
798	31 E	00	DO	825	339	00	E1	852	354	$C D$	4 D	879	36F	00	F9
799	31 F	00	D1	826	33A	00	E2	853	355	CE	4E	880	370	B0	30
800	320	00	D2	827	33B	00	E3	854	356	CF	4F	881	371	B1	31
801	321	00	7E	828	33C	00	E4	855	357	DO	50	882	372	B2	32
802	322	F3	73	829	33D	DD	5D	856	358	D1	51	883	373	B3	33
803	323	F4	74	830	33E	00	E5	857	359	D2	52	884	374	B4	34
804	324	F5	75	831	33F	00	E6	858	35A	00	ED	885	375	B5	35
805	325	F6	76	832	340	00	7B	859	35B	00	EE	886	376	B6	36
806	326	F7	77	833	341	C1	41	860	35C	00	EF	887	377	B7	37
807	327	F8	78	834	342	C2	42	861	35D	00	F0	888	378	B8	38
808	328	F9	79	835	343	C3	43	862	35E	00	F1	889	379	89	39
809	329	FA	7A	836	344	C4	44	863	35 F	00	F2	890	37A	00	FA
810	32 A	00	D3	837	345	C5	45	864	360	00	5C	891	37 B	00	FB
811	32 B	00	D4	838	346	C6	46	865	361	00	F3	892	37C	00	FC
812	32 C	00	D5	839	347	C7	47	866	362	D3	53	893	37D	00	FD
813	32 D	DB	5B	840	348	C8	48	867	363	D4	54	894	37E	00	FE
814	32 E	00	D6	841	349	C9	49	868	364	D5	55	895	37F	00	FF

FIGURE 18 - ASCII TO EBCDIC

Address		Output													
		MCM6561	MCM6562												
896	380	00	00	928	3AO	40	40	960	3C0	7 C	7 C	992	3EO	14	79
897	381	01	01	929	$3 A 1$	5A	5A	961	3 C 1	C1	C1	993	3E1	81	81
898	382	02	02	930	3A2	7F	7 F	962	3 C 2	C2	C2	994	3E2	82	82
899	383	03	03	931	3A3	78	7 B	963	3 C 3	C3	C3	995	3E3	83	83
900	384	37	37	932	3A4	5B	5B	964	3 C 4	C4	C4	996	3E4	84	84
901	385	2D	2D	933	3A5	6C	6C	965	3C5	C5	C5	997	3E5	85	85
902	386	2E	2E	934	3A6	50	50	966	3C6	C6	C6	998	3E6	86	86
903	387	2 F	2F	935	3A7	7 D	70	967	3 C 7	C7	C7	999	3E7	87	87
904	388	16	16	936	3A8	4D	4D	968	3C8	C8	C8	1000	3E8	88	88
905	389	05	05	937	3A9	5D	5D	969	3C9	C9	C9	1001	3E9	89	89
906	38A	25	25	938	3AA	5 C	5 C	970	3CA	D1	D1	1002	3EA	91	91
907	38B	OB	OB	939	$3 A B$	4 E	4 E	971	3 CB	D2	D2	1003	3EB	92	92
908	38C	OC	OC	940	3AC	6B	6 B	972	3CC	D3	D3	1004	3EC	93	93
909	38D	OD	OD	941	3AD	60	60	973	$3 C D$	D4	D4	1005	3ED	94	94
910	38 E	OE	OE	942	3AE	4B	4B	974	3CE	D5	D5	1006	3EE	95	95
911	38F	OF	OF	943	3AF	61	61	975	3CF	D6	D6	1007	3EF	96	96
912	390	10	10	944	3B0	F0	F0	976	3D0	D7	D7	1008	3FO	97	97
913	391	11	11	945	3B1	F1	F1	977	3D1	D8	D8	1009	3F1	98	98
914	392	12	12	946	3B2	F2	F2	978	3D2	D9	D9	1010	3F2	99	99
915	393	13	13	947	3B3	F3	F3	979	3D3	E2	E2	1011	3F3	A2	A2
916	394	35	35	948	3B4	F4	F4	980	3D4	E3	E3	1012	3F4	A3	A3
917	395	3D	3D	949	385	F5	F5	981	3D5	E4	E4	1013	3F5	A4	A4
918	396	32	32	950	3B6	F6	F6	982	3D6	E5	E5	1014	3F6	A5	A5
919	397	26	26	951	3B7	F7	F7	983	3D7	E6	E6	1015	3F7	A6	A6
920	398	18	18	952	3B8	F8	F8	984	3D8	E7	E7	1016	3F8	A7	A 7
921	399	19	19	953	389	F9	F9	985	3D9	E8	E8	1017	3F9	A8	A8
922	39A	3F	3F	954	3BA	7A	7A	986	3DA	E9	E9	1018	3FA	A9	A9
923	39B	24	27	955	3BB	5 E	5E	987	3DB	A9	AD	1019	3FB	8B	C0
924	39C	1 C	22	956	3BC	4 C	4 C	988	3DC	15	E0	1020	3FC	4F	4F
925	39D	1 D	1 D	957	$3 B D$	7 E	7E	989	3DD	BD	BD	1021	3FD	9B	Do
926	39E	1E	35	958	3BE	6E	6 E	990	3DE	5 F	5 F	1022	3FE	4A	A1
927	39F	1 F	1F	959	3BF	6 F	6F	991	3DF	6D	6D	1023	3FF	07	07

APPLICATIONS INFORMATION

The Selectric code contained in the MCM6561/62 is the IBM Correspondence Selectric Line Code. This code, which is defined by bits $B, A, 8,4,2,1$, is transmitted over the telephone line by the IBM Selectric Terminal \#2741. If the typewriter bail code (R1, R2, R2A, R5, T1, T2) is required, then it is necessary to convert the Selectric code to bail and vice versa as shown in Figures 19 and 20.

The EBCDIC to ASCII code converter requires an inverter gate on address $A 7$ as shown in Figure 21.

To accommodate the full 12 -bit Hollerith to ASCII code conversion, the MCM6561/62 requires additional logic to condense the first 7 address bits of the Hollerith code into the 3 least significant address bits of the ROM as given in Figure 22. Figure 23 illustrates how the 8 output bits of the ROM can be converted to the 12 -bit Hollerith code by employing a standard decoder (MC4006).

The MCM6560-62 requires three power supplies: -3.0 volts, +5.0 volts, and +12 volts. The memory requires only

FIGURE 19 - SELECTRIC LINE CODE TO BAIL CODE CONVERSION

small currents from the -3.0 volt supply, such that charge pump techniques using +5.0 volts can be used. Figure 24 shows a supply circuit that will generate the required -3.0 volts for $V_{B B}$.

When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit spikes or "glitches" on their outputs when the ac power is switched on and off. For example, the bench power supply programmed to deliver +12 volts may have large transients below ground when the ac power is switched on and off. If this possibility exists, it is suggested that the user switch the dc side of the power supply or protect the device power pins $(+12,+5.0$ and -3.0 volt) against reverse biasing with clamp diodes. A hot carrier diode such as the MBD501 is suggested for this purpose.

FIGURE 20 - BAIL CODE TO SELECTRIC LINE CODE CONVERSION

FIGURE 21 - EBCDIC TO ASCII CODE CONVERSION

FIGURE 22 - HOLLERITH TO ASCII CODE CONVERSION

FIGURE 23 - ASCII TO HOLLERITH CODE CONVERSION

FIGURE 24 - SUBSTRATE BIAS CHARGE PUMP SUPPLY

8192-BIT READ ONLY MEMORIES ROW SELECT CHARACTER GENERATORS

The MCM6570 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 characters in a 7×9 matrix, and has the capability of shifting certain characters that normally extend below the baseline, such as j, y, g, p, and q. Circuitry is supplied internally to effectively lower the whole matrix for this type of character - a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic " 1 "s and " 0 "s stored in a 7×9 matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the 7×9 character in one of two pre-programmed positions on the 16 -row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The MCM6571, MCM6571A, and MCM6572 thru MCM6579 are pre-programmed versions of the MCM6570. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Static Operation
- TTL Compatibility
- cmOS Compatibility (5 V)
- Shifted Character Capability (Except MCM6572, MCM6573)
- Maximum Access Time $=500 \mathrm{~ns}$

ABSOLUTE MAXIMUM RATINGS (See Note 1 , Voltages referenced to $V_{\text {SS }}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{CC}	-0.3 to +6.0	Vdc
	V_{DD}	-0.3 to +15	
Data Input Voltage	V_{BB}	-10 to +0.3	
Operating Temperature Range	$\mathrm{V}_{\text {in }}$	-0.3 to +15	Vdc
Storage Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, LOW THRESHOLD)
8 K
READ ONLY MEMORIES
HORIZONTAL-SCAN CHARACTER GENERATORS WITH SHIFTED CHARACTERS

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to $\mathrm{V}_{\text {SS }}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	VDD	10.8	12	13.2	Vdc
	$V_{\text {cc }}$	4.75	5.0	5.25	Vdc
	$\mathrm{V}_{\text {SS }}$	0	0	0	$V \mathrm{dc}$
	$V_{\text {BB }}$	-3.3	-3.0	-2.7	Vdc
Input Logic " 1 " Voltage(Driven by TTL) (Driven by Other Than TTL)	$\mathrm{V}_{1 \mathrm{H}}{ }^{\text {* }}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	-	$V_{C C}$ $V_{C C}$	Vdc Vdc
Input Logic " 0 " Voltage	$V_{\text {IL }}$	0	-	0.8	$V \mathrm{dc}$

*A 4.0 V V $1 H$ is required at the chip regardless of the type of driver used. However, internal MOS pullup devices on the chip can pull one TTL driver from 3.0 V to 4.0 V , without affecting access time. These pullup devices may not pull non-TTL drivers above 3.0 V .

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Forward Current $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}\right)$	IIL	--	-	-1.6	mAdc
Input Leakage Current $\left(V_{1 H}=5.25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\right)$	I/H	-	-	100	$\mu \mathrm{Adc}$
Output Low Voltage (Blank) $\left(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{mAdc}\right)$	VOL	0	-	0.4	Vdc
Output High Voltage (Dot) $(1 \mathrm{OH}=-40 \mu \mathrm{Adc})$	V OH	3.0	-	-	Vdc
Power Supply Current	$\begin{aligned} & I_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{BB}} \\ & \hline \end{aligned}$		-	$\begin{gathered} \hline 10 \\ 125 \\ 100 \\ \hline \end{gathered}$	mAdc mAdc μ Adc
Power Dissipation	P_{D}	-	600	800	mW

CAPACITANCE (Periodically sampled rather than 100\% tested)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	4.0	7.0	pF
Output Capacitance $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	4.0	7.0	pF

AC CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
[All timing with $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$; Load $=\mathbf{1} \mathrm{TTL}$ Gate (MC7400 Series), $\mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$].
TIMING (Typical values measured at $25^{\circ} \mathrm{C}$ and nominal supplies)

Characteristic	Symbol	Min	Typ	Max	Unit
Address Access Time (See Figure 1A)	$\mathrm{t}_{\text {acc }}(\mathrm{A})$	-	350	500	
Row Select Access Time (See Figure 1B)	$\mathrm{t}_{\mathrm{acc}}(\mathrm{RS})$	-	300	500	ns

FIGURE 1 - TIMING DIAGRAMS
A. ADDRESS ACCESS TIMING DIAGRAM
Output
Note: Row Select inputs are
set in a dc state.

FIGURE 2 - VCC SUPPLY CURRENT versus TEMPERATURE

FIGURE 4 - OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

FIGURE 6 - ACCESS TIME versus
$V_{D D}$ SUPPLY VOLTAGE

FIGURE 3 - VDD SUPPLY CURRENT versus TEMPERATURE

FIGURE 5 - POWER DISSIPATION versus $V_{D D}$ SUPPLY VOLTAGE

FIGURE 7 - ACCESS TIME versus TEMPERATURE

MEMORY OPERATION (Using Positive Logic)

Most positive level $=1$, most negative level $=0$

Address

To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 thru A6).

Row Select

To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RS1 thru RS4).

Shifted Characters

These devices have the capability of displaying char-
acters that descend below the bottom line (such as lower case letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character can be programmed to occupy either of the two positions in a 7×16 matrix. (Shifted characters are not available on MCM6572 or MCM6573.)

Output

For these devices, an output dot is defined as a logic " 1 " level, and an output blank is defined as a logic " 0 " level.

DISPLAY FORMAT

Figure 8 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM6570 allows the user to locate the basic 7×9 font anywhere in the 7×16 array. In addition, a shifted font can be placed anywhere in the same 7×16 array. For example, the basic MCM6571 font is established in rows R14 thru R6. All other rows are automatically blanked. The shifted font is established in rows R11 thru R3, with all other rows blanked. Thus, while any one character is contained in a 7×9 array, the MCM6571 requires a 7×12 array on the CRT screen to contain both normal and descending characters. Other
uses of the shift option may require as much as the full 7×16 array, or as little as the basic 7×9 array (when no shifting occurs, as in the MCM6572).

The MCM6570 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM6571 from bottom to top, whereas an up counter will scan the MCM6571A from top to bottom (see Figures 14 and 15 for row designation).

FIGURE 8 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM6571 AND MCM6572

CUSTOM PROGRAMMING FOR MCM6570

By the programming of a single photomask, the customer may specify the content of the MCM6570. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:*

1. Hexadecimal coding using IBM Punch Cards (Figures 10 and 11).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 12).

Programming of the MCM6570 can be achieved by using the following sequence:

1. Create the 128 characters in a 7×9 font using the format shown in Figure 9. Note that information at output D6 appears in column one, D5 in column two, thru DO information in column seven. The dots filled in and programmed as a logic " 1 " will appear at the outputs as V_{OH}; the dots left blank will be at V_{OL}. (Blank formats appear at the end of this data sheet for your
convenience; they are not to be submitted to Motorola, however.)
2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S).
3. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns S and D3. For the bottom eight rows, the bit in column S must be zero, so these locations have been omitted. For the top row, the bit in column S will be zero for an unshifted character, and one for a shifted character.
4. Transfer the hexadecimal figures either to punched cards (Figure 10) or to paper tape (Figure 12).
5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 thru 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.
6. Provide, in writing, the information indicated in Figure 13 (a copy of Figure 13 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

FIGURE 10 - CARD PUNCH FORMAT

Columns

$1-10$	Blank
11	Asterisk (*)
$12 \cdot 29$	Hex coding for first character
30	Slash (/)
$31-48$	Hex coding for second character
49	Slash (/)
$50-67$	Hex coding for third character
68	Slash (/)
$69 \cdot 76$	Blank
$77 \cdot 78$	Card number (starting 01; thru 43)
$79 \cdot 80$	Blank

Column 12 on the first card contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Column 13 contains D3 thru DO. Columns 14 and 15 contain the information for the next row. The entire first character is coded in columns 12 thru 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM6571 are correctly coded and punched in Figure 11.

[^5]FIGURE 11 - EXAMPLE OF CARD PUNCH FORMAT
(First 9 Characters of MCM6571)

FIGURE 12 - PAPER TAPE FORMAT

Frames

Leader
1 to M
$M+1, M+2$
$M+3$ to $M+66$
$M+67, M+68$
$M+69$ to $M+2378$
$M+69$ to $M+2378$ Remaining 35 lines of hex figures, each line followed by a Carriage Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the
start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $M+3$ contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame M + 4 contains D3 thru D0. Frames $M+5$ and $M+6$ program the second row of the first character. Frames $M+3$ to $M+66$ comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain 36×64 or 2304 hex figures. Since 18 hex figures are required to program each 7×9 character, the full $128(2304 \div 18)$ characters are programmed.

FIGURE 13 - FORMAT FOR ORGANIZATIONAL DATA

ORGANIZATIONAL DATA MCM6570 MOS READ ONLY MEMORY

Customer

Customer Part No. \qquad Rev. \qquad

Row Number for top row of non-shifted font \qquad

Row Number for bottom row of non-shifted font \qquad

Row Number for top row of shifted font

MCM6570 thru MCM6579（continued）

FIGURE 14 －MCM6571 PATTERN

		0000	0001	0010	011	100	101	110	111	000	001	010	011	100	101	110	11
		D6	06．．． 00	D6 ．．． 00	06．．． 00	06.	De．	$06 \ldots 00$	D	\％ 6	D6 ．．． 00	06 ．．． 00	os．	D6 ．．． 00	¢ 6	D6 ．．．Do	D8 ．．．． $\mathrm{DO}^{\text {d }}$
000		㗊㗊㗊															
001				｜吅品品㗊							枵㗊踄		㗊㗊㗊			㰻踄别	
010	ns								路㗊㗊				㗊枵㗊				
011	1:				淏品㗊堮						路蹋㗊						
100	:															弾㗊喏	
101	．					岵路							枵職㗊	㗊别㗊			㗊㗊㗊品
110	$\left.\right\|^{\vdots}$														㗊㗊品品		
111	AB								别㗊㗊					㗊器㗊	㗊㗊	踄器	

FIGURE 15 －MCM6571A PATTERN

$A_{A}^{A 3 \ldots A 0}$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		－6 \ldots ．${ }^{0}$	${ }^{06} \ldots \infty$	06．．．${ }^{0}$	06．．．00	06．．． 00	06 ．．．Do	${ }^{0} 6$	${ }^{0} 6$	${ }^{06}$	06	${ }^{\text {of }}$	06．．． 00	06．．．00	06．．． 00	－8	－8
000	na	㬽品品品	路踄品			噳品品品品				｜品品品㗊品							\|㗊㗊㗊㗊
001	ns		登㗊品品品				｜品品品品品						㗊品㗊品			蹋㧽㗊	
010	но	品品品品㗊品		｜踄㗊㗊｜					哭㗊㗊㗊品		哭㗊㗊㗊				㗊㗊品㗊品	嘖㗊㗊㗊品	
011			踄聐㗊										＂踄品㗊品品				
100			品㗊茄品品					＂						聐品品品品			
101															踄路㗊		
110	$\begin{array}{\|c\|} \hline n_{00} \\ \vdots \\ \hline \end{array}$	｜	踄品品品		哭品品品品		䍉品品品						䍉品品品品				踄品品㗊
111	Tно							品品品品品品	㗊品品品品	㗊品品㗊	（80品品品				｜	㽞㧽㗊品	

FIGURE 16 －MCM6572 PATTERN＊＊

$A 6 \ldots A^{4}$		0000	0001	0010	0011	0100	101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		D6 ．．． 00	06．．． 00	D6 ．．． 00	08．．． 00	D6．．． 00	66．．． 00	${ }^{6}$	26．．．00	D6．DO	06．．． 00	6 $\ldots . .00$	6	D6．．． 00	D	－6．．． 0	D6 ．．．．00
000	ค० ค8																
001	Ro Rs				㗊品品品								㗊品㗊品				
010		㗊㗊㗊	㗊韶						嗃踄品品								
011				鮎㗊蹋													
100	R8								吅蹋踄		叶部踄		＂	暗噩品			
101	Fo												㗊㫛品				㗊品品
110	AO	$\begin{aligned} & \text { 品品品詔 } \\ & \text { 品品品品 } \\ & \text { 㗊品品 } \\ & \text { 品品 } \end{aligned}$									㗊枵品品						
111	R8	蹅㗊品										㗊㗊㗊					骴哩

FIGURE 17 －MCM6573 PATTERN＊＊

$A 6 \cdot A 4 \cdot A 0$		0000	0001	0010	0011	0100	0101	0110	011	1000	1001	1010	1011	1100	1101	1110	111
		06．．．00	06．．．00	06．．．00	06．．．00	06．．．00	06．．．00	$06 \ldots 00$	$06 \ldots 00$	$06 . .00$	$06 \ldots 00$	06．．．00	06．．．00	$06 . .00$	$06 . .00$	06．．．00	06．．．00
000	no				\square									\square	\square		
001																	
010																	
011																	
100	\%o						\square										
101																	
110						\square		\square									
11																	

[^6]
MCM6570 thru MCM6579（continued）

FIGURE 18 －MCM6574 PATTERN

$A_{A B} \ldots A^{4} \ldots A^{\prime}$		0000	0001	0010	0011	100	101	0110	0111	1000	1001	1010	1011	1100	1101	1110	11
		$06 \ldots 00$	$06 . .00$	06．．．00	$06 \ldots$	$06 \ldots 0$	$06 \ldots 00$	06．．．00	$06 \ldots 00$	06．．．00	${ }^{6}$	06．．．00	06．．．00	06．．．00	06．．．00		©．．． 0
000	ня																
001	$\begin{array}{\|c} \hline \text { Ro } \\ \vdots \\ \text { R8 } \end{array}$																
010	кө																
011	R8																
100		路踄踄				揖椲踄				＂							
101																	
110		踄聐㗊	踄㗊㗊品品				（㗊品品品品品	㗊暗㗊｜									
111																	

FIGURE 19 －MCM6575 PATTERN

$A_{A 6 \ldots A 4}^{A 3 \ldots A 0}$		0000	0001	0010	0011	100	0101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
		06．．．00	06．．．00	06.	06．．．00	06．Do	$06 \ldots 00$	06．．．00	$06 \ldots 00$	$06 \ldots 00$	06.00	$06 \ldots 00$	$06 \ldots 00$	06．．． 0^{0}	$06 \ldots 00$	06．．．00	$06 \ldots \mathrm{Do}$
000	ค 8																
001	קо																
010	но															器品踄品	
011	$\left.\right\|_{R O}$														（㗊㗊㗊品	路㗊品	
100	$\begin{array}{\|c\|} \hline \text { Ro } \\ \vdots \\ \hline \end{array}$					颯暗㗊品		得哭㗊		（190					－${ }^{\text {Haga }}$		
101	Ro									譡品品品				詔品㗊㗊品			踄品㗊品
110			踄踄品		踄品㗊品	踄品嘆		踄器㗊｜			㗊噩品		H80		蹦踄㗊	筎踄品品	铝㗊㗊品
111	Ro			踄㗊品品品	詔㗊㗊㗊品	嵒踄㗊	㗊踄㗊				＂	㗊品㗊品品			器㗊㗊	㰻㗊㗊	｜䓵品詔品

FIGURE 20 －MCM6576 PATTERN

		0000	001	010	011	100	101	10		200	007	101	101	10	10		
		${ }^{\circ}$	\cdots	06	0.	$06 \ldots$	06．．． 0	06．．．00	06 ． 00	06．．．io	$06 . .00$	08.00	${ }_{06} \ldots$	06	06.00	0	
¢00		\square		\square													
001									造品品品品								
010			\square													踄品	
011			\|odo									\square	\square				
100																	
101																	
110										\square				\square			
111															\square		

$=$ Shifed character．The character is shifted three rows to R3 at the top of the font and R11 at the bottom

FIGURE 21 －MCM6577 PATTERN

$A 6 A^{A} \cdots A^{2}$		0000	0001	0010	0011	0100.	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		D6．	26．D0	06.00	D6．．Do	06	06．．．D0	D6．．．00	06．．． 00	D6．D0	06．．． 00	06.00	D6．．．D0	06	06.00	06	06 ．${ }^{0} 0$
000	$\begin{gathered} \text { RO } \\ \vdots \\ \text { मै } \end{gathered}$																
001	$\begin{gathered} \text { คо } \\ \vdots \\ \text { R8 } \end{gathered}$																
010	A8								㗊踥㗊								
011.	$\begin{gathered} \text { RO } \\ \vdots \\ \text { RB } \end{gathered}$																
100	$\begin{gathered} \text { RO } \\ \vdots \\ \text { ค8 } \end{gathered}$															暗㗊品哩	
101	คо ค 8																㗊品㗊品
110	но R																
111	คо		路路路品														

[^7]FIGURE 22 －MCM6578 PATTERN

$A_{A} 3 \ldots A 0$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	110	1111
		06．D0	06． 00	06 ．．．00	¢ 6	$06 . .00$	06．．．00	06 00	06．．．00	06．．． 00	D6．．．D0	06．．D0	06．．．00	06．．．00	06．．． 0^{0}	06 ．．． 00	D6．．． 00
000	ค8																
001	Ro คө																
010	Ro нв													吅吅吅咕			
011	Ro R8																
100	Ro													晧品品品品	M	喑㗊堮	
101	Ro ค8												枵跬㗊			㗊㗊品	㗊㗊㗊
110	RO																㗊㗊哂
111	Ro R8	\％ 7 㫛品筑												＂路㗊㗊		韍㗊㗊	踄誩品

FIGURE 23 －MCM6579 PATTERN

$A_{A} A_{3} \ldots A^{4}$		0000	001	010	11	100	101	110	11	000	001	1010	11	1100	1101	1110	1111
		6.	06	06	${ }^{2} 6$	${ }^{\text {p } 6}$	06	06	$06 \ldots 00$	06．．．00	06．．．00	06	06．．．00	06．．．00	$06 \ldots 0$	06．．00	06
000							踄㗊										
001	RB			路䀦品品									｜茄㗊㗊㗊品				
010	ค																
011																	
100	Rо R8												－ºgago				
101																	
110	Ro																
111				［偘㫛品品品			㗊品㗊㗊										Toigiso

APPLICATIONS INFORMATION

One important application for the MCM6570-79 is in CRT display systems (Figure 24). A set of buffer shift registers or random access memories applies a 7 -bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked serially out to the Z -axis where it modulates the raster to form the character.

The MCM6570-79 require three power supplies: -3.0 volts, +5.0 volts, and +12 volts. The character generator requires only small currents from the -3.0 volt and +12 volt supplies, such that charge pump techniques using +5.0 volts can be used.
Figure 25 shows a supply circuit that will generate the required -3.0 volts for $V_{B B}$. The +12 -volt supply of

Figure 26 will supply the 6.0 mA that is typically required. Increased current capability is possible by modifying the circuits. Use of these small, low-cost supplies makes a single +5.0 -volt system possible.

When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit spikes or "glitches" on their outputs when the ac power is switched on and off. For example, the bench power supply programmed to deliver +12 volts may have large transients below ground when the ac power is switched on and off. If this possibility exists, it is suggested that the user switch the dc side of the power supply or protect the device power pins (+12 , +5.0 , and -3.0 volt) against reverse biasing with clamp diodes. A hot carrier diode such as the MBD501 is suggested for this purpose.

FIGURE 24 - CRT DISPLAY APPLICATION USING MCM6571

FIGURE 25 - SUBSTRATE BIAS CHARGE PUMP SUPPLY

FIGURE 26 - GATE VOLTAGE CHARGE PUMP SUPPLY

PACKAGE DIMENSIONS

CASE 684-04						CASE 709-01						
DIM	MILLIM	ETERS	MIN	MES	NOTES: 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE WITH MAXIMUM MATERIAL CONDITION. 2. LEAD NO. 1 CUT FOR IDENTIFICATION, OR BUMP ON TOP. 3. DIM "L"TO INSIDE OF LEADS. (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW PKG BASE)	DIM	MILLIMETERS		INCHES		NOTES: 1. LEADS, TRUE POSITIONED WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA AT SEATING PLANE AT MAXIMUM MATERIAL CON. DITION. (DIM. "D") 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.	
A	29.34	30.86	1.155	1.215		A	3137	32.13	1235	1265		
B	12.70	14.22	0.500	0.560		A	13.72	14.22	1.235	0.560		
C	3.05	3.94	0.120	0.155		C	4.57	5.08	0.180	0.200		
D	0.38	0.51	0.015	0.020		0	0.36	0.51	0.014	0.020		
F	0.89	1.40	0.035	0.055		F	1.02	1.52	0.040	0.060		
6	2.54 BSC		0.100 BSC			G	2.41	2.67	0.095	0.105		
H	0.89	1.40	0.035	0.055		H	1.78	2.03	0.070	0.080		
J	0.20	0.30	0.008	0.012		J	0.20	0.30	0.008	0.012		
K	2.92	3.68	0.115	0.145		K	3.05	3.56	0.120	0.140		
L	14.86	15.87	0.585	0.625		L	14.73	15.24	0.580	0.600		
M	-	15^{0}	-	15^{0}		M	0^{0}	10°	0^{0}	10°		
N	0.51	1.14	0.020	0.045		N	0.51	1.02	0.020	0.040		

The formats below are given for your convenience in preparing character information for MCM6570 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

\qquad
Character Number

Character Number

Character Number

Character Number \qquad
MSB

LSB HEX

Character Number \qquad
MSB
LSB HEX

Character Number \qquad
Character Number
MSB

MSB
LSB
HEX

8192-BIT READ ONLY MEMORIES COLUMN SELECT CHARACTER GENERATORS

The MCM6580 is a mask-programmable 8192-bit vertical scan (column select) character generator. It contains 128 characters in a 7×9 matrix. A Shift Control Command (SCC) bit can be programmed so that a high logic level will appear at the SCC output, in addition to the coding at DO-D8, to indicate to external circuitry that the character is to be shifted.

A seven-bit address code is used to select one of the 128 available characters programmed in the memory. Each character is defined as a specific combination of logic " 1 " s and " 0 " s stored in a 7×9 matrix. When a specific three-bit binary column select code is applied, a word of nine parallel bits appears at the output. The columns can be sequentially selected, providing a seven-word sequence of nine parallel bits per word for each character selected by the address inputs.

The MCM6581 is a pre-programmed version of the MCM6580, with a modified USASCII code. It contains the upper and lower case English alphabet, lower case Greek alphabet, and various mathematical symbols and punctuation marks. The MCM6583 is also a pre-programmed MCM6580 and contains the upper case English alphabet, Japanese characters, and various mathematical symbols and punctuation marks. The MCM6581 uses the SCC bit for appropriate characters; the MCM6583 holds SCC $=$ " 0 " for all characters.

- Static Operation
- TTL Compatibility
- CMOS Compatibility (5 V)
- 128 Characters of 64 Bits (7×9) and Shift Control
- Maximum Access Time $=400 \mathrm{~ns}$

ABSOLUTE MAXIMUM RATINGS (See Note 1 , Voltages referenced to $V_{\text {SS }}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{CC}	-0.3 to +6.0	Vdc
	V_{DD}	-0.3 to +15	
Address/Control Input Voltage	V_{BB}	-10 to +0.3	
Operating Temperature Range	$\mathrm{V}_{\text {in }}$	-0.3 to +15	$\mathrm{Vdc}_{\mathrm{dc}}$
Storage Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, LOW THRESHOLD)
8K
READ ONLYMEMORIES
VERTICAL-SCAN
CHARACTER GENERATORS

This device contains circuitry to protect the inputsagainst damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to V_{SS}).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	VDD	10.8	12	13.2	Vdc
	$V_{\text {CC }}$	4.75	5.0	5.25	$V \mathrm{dc}$
	$\mathrm{V}_{\text {SS }}$	0	0	0	Vdc
	$V_{B B}$	-3.3	-3.0	-2.7	$V \mathrm{dc}$
Input Logic " 1 " Voltage(Driven by TTL) (Driven by Other Than TTL)	$\mathrm{V}_{1 \mathrm{H}}{ }^{*}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$-$	v_{CC} V_{CC}	Vdc Vdc
Input Logic " 0 " Voltage	$V_{\text {IL }}$	0	-	0.8	Vdc

*A $4.0 \mathrm{~V} \mathrm{~V}_{1 H}$ is required at the chip regardless of the type of driver used. However, internal MOS pullup devices on the chip can pull one TTL driver from 3.0 V to 4.0 V , without affecting access time. These pullup devices may not pull non-TTL drivers above 3.0 V .

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Forward Current $\left(\mathrm{V}_{1 \mathrm{~L}}=0.4 \mathrm{Vdc}\right)$	IIL	--	-	-1.6	mAdc
Input Leakage Current $\left(\mathrm{V}_{1 H}=5.25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}\right)$	1/H	-	-	100	$\mu \mathrm{Adc}$
Output Low Voltage (Blank) \qquad $(1 \mathrm{OL}=1.6 \mathrm{mAdc})$	V_{OL}	0	-	0.4	Vdc
Output High Voltage (Dot) $(1 \mathrm{OH}=-40 \mu \mathrm{Adc})$	V_{OH}	3.0	-	$V_{C C}$	Vdc
Power Supply Current	$\begin{aligned} & I_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{BB}} \end{aligned}$		-	$\begin{array}{r} 30 \\ 140 \\ 100 \\ \hline \end{array}$	mAdc mAdc μ Adc
Power Dissipation	P_{D}	-	700	800	mW

CAPACITANCE (Periodically sampled rather than 100\% tested)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $(f=1.0 \mathrm{MHz})$	C_{in}	-	4.0	7.0	pF
Output Capacitance $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	4.0	7.0	pF

AC CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
[All timing with $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathbf{n s}$; Load $=1 \mathrm{TTL}$ Gate (MC7400 Series), $\mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$]
TIMING (Typical values measured at $25^{\circ} \mathrm{C}$ and nominal supplies)

Characteristic	Symbol	Min	Typ	Max	Unit
Address Access Time (See Figure 1A)	$\mathrm{t}_{\text {acc }}$ (A)	-	225	400	ns
Column Select Access Time (See Figure 1B)	$\mathrm{t}_{\text {acc }}$ (CS)	-	225	400	ns

FIGURE 1 - TIMING DIAGRAMS
A. ADDRESS ACCESS TIMING DIAGRAM

Note: Column Select inputs are set in a dc state.
B. COLUMN SELECT ACCESS TIMING DIAGRAM

Note: Address inputs are set in a dc state

FIGURE 2 - $V_{C C}$ SUPPLY CURRENT versus TEMPERATURE

FIGURE 4 - OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

FIGURE 6 - ADDRESS ACCESS TIME versus $V_{D D}$ SUPPLY VOLTAGE

FIGURE 3 - VDD SUPPLY CURRENT versus TEMPERATURE

FIGURE 5 - OUTPUT SOURCE CURRENT versus OUTPUT VOLTAGE

FIGURE 7 - ADDRESS ACCESS TIME versus TEMPERATURE

Address

To select one of the 128 characters，apply the appro－ priate binary code to the Address inputs（A0 thru A6）．

Column Select

To select one of the seven columns of the addressed character to appear at the nine output lines，apply the appropriate binary code to the Column Select inputs（CSO thru CS2）．When CS0 $=$ CS1 $=$ CS2 $=0$ ，the outputs are held low．

Shift Control Command（SCC）

For characters which are programmed to be shifted， the SCC output goes to a＂ 1 ＂for all columns（C1 thru C7） of the character．The SCC will be at a logic＂ 0 ＂for all non－ shifted characters．The MCM6581 uses the SCC for appro－ priate characters；the MCM6583 has $S C C=$＂ 0 ＂for all characters．

Address Access Time， $\mathbf{t a c c}(\mathrm{A})$

The time delay between a change in the Address inputs and a corresponding change at the output lines with all other inputs held stable．

Column Select Access Time， $\mathbf{t a c c}(\mathrm{CS})$

The time delay between a change in the Column Select inputs and the appearance of valid information at the out－ put lines，with all other inputs held stable．

Output

For these devices，an output dot is defined as a logic＂ 1 ＂ level，and an output blank is defined as a logic＂ 0 ＂level．

Device Protection Considerations

When powering this device from laboratory or system power supplies，it is important that the Absolute Maximum Ratings not be exceeded or device failure can result．Some power supplies exhibit spikes or＂glitches＂on their outputs when the ac power is switched on and off．For example， the bench power supply programmed to deliver +12 volts may have large transients below ground when the ac power is switched on and off．If this possibility exists，it is suggested that the user switch the dc side of the power supply or protect the device power pins $(+12,+5.0$ and -3.0 volt）against reverse biasing with clamp diodes．A hot carrier diode such as the MBD501 is suggested for this purpose．

DISPLAY FORMAT

Figure 8 shows the relationship between the logic levels at the Column Select inputs and the corresponding column at the outputs．Note that all outputs are held low（at V_{OL} ） when CS0 $=$ CS1 $=$ CS2 $=0$ ．Examples of pre－programmed characters within the MCM6581 and MCM6583 are shown below．

FIGURE 8 －COLUMN SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM6581 AND MCM6583

COLUMN SELECT TRUTH TABLE				MCM6581		MCM6583 （Shift not available．）
cs2	CS 1	cso	OUTPUT	COLUMN NO．	COLUMN NO．	COLUMN NO．
0	0	0	0	C1 C7	C1 C7	C1 C7
0	0	1	C1			
0	1	0	C2	D1 붐ํㅁํํ		
0	1	1	C3	D2 ${ }^{\text {d }}$ ㅁㅁㅁㅁㅁㅁ	D2 ${ }^{\text {cabaga }}$	
1	0	0	C4		－	D3
1	0	1	C5	D4	D5	
			C5	D5 ${ }^{\text {caua }}$	D5 ${ }^{\text {coun }}$	
1	1	0	C6	D6 배ํㅁㅁㅁㅁㅁㅁ	D6 ¢ ${ }^{\text {coubab }}$	D6 ${ }^{\text {¢ }}$－
1	1	1	C7	D7 ${ }^{\text {baxa }}$		D7 ${ }^{\text {\％}}$－
				D8 電口ロロロロロ	D8 \％ロロロロロロ	D8 闙ロロロロロロ
				Scc \square	SCC	$\operatorname{scc} \square$

CUSTOM PROGRAMMING FOR MCM6580

By the programming of a single photomask, the customer may specify the content of the MCM6580. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference: *

1. Hexadecimal coding using IBM Punch Cards (Figures 11 and 12).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 13).
Programming of the MCM6580 can be achieved by using the following sequence:
3. Create the 128 characters in a 7×9 font using the format shown in Figure 9. Note that information at output D0 appears in row one, D1 in row two, thru D8 information in row nine. The dots filled in and programmed as a logic " 1 " will appear at the outputs as V_{OH}; the dots left blank will be at V_{OL}. (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)
4. Indicate which characters are shifted by filling in the extra square (dot) at the bottom left (designated as SCC).
5. Convert the characters to hexadecimal coding (Figure 10) treating dots as ones and blanks as zeros. To do this, first rotate the format sheet 90° so that the hex coding squares appear at the left. The hex equivalents of SCC and D8, with the two high order bits both equal zero, are written in the left column of the hex coding table. The hex
equivalents of D7 thru D4 are written in the center column, and the hex equivalents of D3 thru DO in the right column. Note that SCC is programmed only once, in column C1. For columns C2 thru C7, SCC is zero; this makes the three high order bits zero and D8 the only significant factor, with the hex column " 0 " or " 1 ".
6. Transfer the hex figures either to punched cards (Figure 11) or to paper tape (Figure 13).
7. Submit the programming information to Motorola, together with the Customer's name, Customer's part number, and revision number.

* Note: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.
FIGURE 10 - BINARY TO HEXADECIMAL CONVERSION

MSB			LSB	
0	0	SCC	D8	
D7	D6	D5	D4	Hexadecimal
D3	D2	D1	D0	Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	0
1	1	1	0	E
1	1	1	1	F

FIGURE 9 - CHARACTER FORMAT

Character Number (CUSTOMER $\begin{gathered}\text { (NPUT) } \\ \text { INS }\end{gathered}$

\times| 0 | L | b | b | n | t |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| 0 | L | r | r | 0 | 0 |
| m | 0 | 0 | 0 | 0 | 0 |

FIGURE 11 - CARD PUNCH FORMAT

Columns
1-10
11 33
34-54
55
56-76
77-78 79-80

12-32 Hex coding for first character
Blank
Asterisk (*)
Slash (/)
Hex coding for second character Slash (/)
Blank
Card number (starting 01; thru 64)
Blank

Column 12 on the first card contains the hexadecimal equivalent of SCC and D8 for C1 of the first character. Column 13 contains D7 thru D4, and column 14 contains D3 thru D0. Columns 15 thru 17 contain information for C2 (SCC is programmed only with C1). The entire first character is coded in columns 12 thru 32 . Each card contains the coding for two characters. 64 cards are required to program the entire 128 characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first six characters of the MCM6581 are correctly coded and punched in Figure 12.

FIGURE 12 - EXAMPLE OF CARD PUNCH FORMAT
(First 6 Characters of MCM6581)

FIGURE 13 - PAPER TAPE FORMAT

FIGURE 14 －MCM6581 PATTERN

$A 3 \ldots A 0$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		c1．．．c）	c1．．．c7	c1．．．cr	c1．．．c）	$\mathrm{c}^{1} \ldots \mathrm{c}$ c	c1 ．．c ${ }^{\text {c }}$	c1．．．c）${ }^{\text {c }}$	c1．．．c）	c1．．．c）	c1．．．c7	c1．．．c ${ }^{\text {c }}$	c1．．．c）	c1．．．c）	$\mathrm{c}_{1} \ldots \mathrm{c} 7$	c1．．．c7	c1．．．c）${ }^{\text {c }}$
000	DB				枵蹋噩					㗊㗊煰			吅吅器				
001	$\begin{gathered} \text { Do } \\ \vdots \\ \text { Do } \end{gathered}$			器吅㗊品											品品品品 800 agopog噼潞啹 0000an		
010	$\begin{gathered} 00 \\ \vdots \\ 0 \\ 0 \end{gathered}$	吅㗊㗊品		䪖㗊路							吅郘品			吅吅㗊			㗊㗊甥
011	$\begin{gathered} 100 \\ \vdots \\ 08 \end{gathered}$											㗊噩品	㗊㗊品				
100	00 \vdots 08										㗊晧㗊			＂		＂ 8 踄器	
101	D8															吅吅吅品	㗊㗊
110	00 08	㗊㗊品	㗊㗊品											㗊噩品			
111	D8										（8080		䛒暗堮	㗊㗊		啚㗊嗃	

FIGURE 15 －MCM6583 PATTERN＊

The formats below are given for your convenience in preparing character information for MCM6580 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

Character Number \qquad Character Number \qquad

Character Number \qquad Character Number

Character Number \qquad Character Number \qquad
Character Number \qquad

Character Number \qquad

Character Number \qquad Character Number \qquad

16, 384-BIT READ ONLY MEMORIES

The MCM6590 and MCM6591 static 2048×8-bit Read Only Memories are fabricated using N-channel metal gate technology. The MCM6590 is a mask programmable device with a programmable chip select option.

The MCM6591 is a pre-programmed version of the MCM6590 containing six character conversion codes (ASCII to Selectric, EBCDIC, and a modified 8-bit Hollerith; Selectric to ASCII, EBCDIC to ASCII, and a modified Hollerith to ASCII) as well as 128 USASCII characters using mixed character fonts of 5×7 and 7×7 dot matrices with extra check bits.

- Static Operation
- TTL Compatibility
- CMOS Compatibility (5 V)
- 3-State Outputs
- 2048 Words by 8-Bit Organization
- 800 ns Maximum Access Time
- Programmable Chip Select
- Wire-OR Capability

Selectric is a registered trademark of IBM.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ (Referenced to $V_{S S}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{DD}	-0.3 to +15	Vdc
	V_{CC}	-0.3 to +6.0	
	$\mathrm{~V}_{\mathrm{BB}}$	-10 to +0.3	
Address/Control Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +15	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are ex ceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, LOW THRESHOLD)

16K
READ ONLY MEMORIES

CASE 684

PIN ASSIGNMENT

-MCM6591 is pre-programmed to be selected with a low input at CS.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to V_{SS} = Ground)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{\text {DD }}$	10.8	12	13.2	Vdc
	V_{CC}	4.75	5.0	5.25	Vdc
	$V_{\text {BB }}$	-3.3	-3.0	-2.7	$V d \mathrm{c}$
Input High Voltage ($A_{n}, C S$)	$\mathrm{V}_{\text {IH }}$	3.0	-	$\mathrm{V}_{\text {CC }}$	Vdc
Input Low Voltage ($\mathrm{A}_{\mathrm{n}}, \mathrm{CS}$)	$V_{\text {IL }}$	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current ($A_{n}, C S$) ($V_{\text {IH }}=V_{\text {IL }}$ min to $V_{\text {IH }}^{\text {max }}$)	1 in	-	-	10.	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \left(V_{C C}=5.25 \mathrm{~V}\right) \\ & \hline \end{aligned}$	'LO	-	-	10	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-40 \mu \mathrm{~A})$	V_{OH}	3.0	-	$\mathrm{V}_{\text {CC }}$	Vdc
Output Low Voltage $\left(\mathrm{IOL}_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL }}$	0	-	0.4	Vdc
Supply Current (Chip Deselected or Selected)	$\begin{aligned} & \text { IDD } \\ & \text { ICC } \\ & \text { IBB } \end{aligned}$	-	-	$\begin{gathered} \hline 15 \\ 45 \\ 100 \end{gathered}$	mAdc mAdc $\mu \mathrm{Adc}$

CAPACITANCE (Periodically Sampled Rather Than 100\% Tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $(f=1 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	6.0	8.0	pF
Output Capacitance $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	6.0	10	pF

AC CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leqslant \mathbf{2 0} \mathbf{n s}$;
Load = 1 TTL Gate (MC7400 Series) biased to draw $1.6 \mathrm{~mA} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.)

Characteristic	Symbol	Min	Typ*	Max	Unit
Address Access Time	$\mathrm{t}_{\text {acc }}$	-	450^{*}	800	ns
Output Select Time	tOS	-	200^{*}	300	ns
Output Deselect Time	$\mathrm{t}^{*} \mathrm{OD}$	-	200^{*}	300	ns

*Typical values measured at $25^{\circ} \mathrm{C}$ and nominal supply voltages.

FIGURE 1 - TIMING DIAGRAM

TYPICAL CHARACTERISTIC CURVES

FIGURE 2 - ACCESS TIME versus TEMPERATURE

FIGURE 4 - OUTPUT DESELECT TIME versus TEMPERATURE

FIGURE 6 - IDD SUPPLY CURRENT versus VDD*

FIGURE 3 - OUTPUT SELECT TIME versus TEMPERATURE

FIGURE 5 - ICC SUPPLY CURRENT versus $V_{\text {CC }}$ *

FIGURE 7 - OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

*These curves represent averaged MCM6591 currents over address cycling in the selected mode. More dense patterns can be expected to shift these curves upward, bounded by the maximum dc values stated in the DC Characteristics Table.

CUSTOM PROGRAMMING FOR MCM6590

By the programming of a single photomask for the MCM6590, the customer may specify the content of the memory and the method of selecting the outputs.

Information for custom memory content may be sent to Motorola in the following forms, in order of preference: *

1. Hexadecimal coding using IBM Punch Cards (Figures 8 and 9).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figures 9 and 10).
As Figure 9 indicates, a zero programmed in the memory appears at D_{n} as V_{OL}. A programmed one appears as VOH .

To program the mode of selecting the chip, the information in Figure 11 is required. This information must be in written form and must accompany the punched cards or paper tape. (A copy of Figure 11 may be used for this purpose.)
*Note: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

FIGURE 9 - BINARY TO HEXADECIMAL CONVERSION

MSB			LSB	
D7	D6	D5	D4	Hexadecimal D3
D2	D1	D0		
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

FIGURE 10 - PAPER TAPE FORMAT

Frames	
Leader	Blank Tape
1 to M	Allowed for customer use ($M \leqslant 64$)
$M+1, M+2$	CR; LF (Carriage Return; Line
$M+3$ to $M+66$	Feed) First line of pattern information $M+67, M+68$
(64 hex figures per line) CR; LF	
$M+69$ to $M+4426$	Remaining 63 lines of hex figures, each line followed by a Carriage
Return and Line Feed	

Frames 1 to M are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will
be assumed to be programming data.)
Frame $M+3$ contains the hexadecimal equivalent of bits D7 thru D4 of byte 0 . Frame $\mathrm{M}+4$ contains bits D3 thru DO. These two hex figures together program byte 0 . Likewise, frames $M+5$ and $M+6$ program byte 1 , while $M+7$ and $M+8$ program byte 2 . Frames $M+3$ to $M+66$ comprise the first line of the printout, and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

The remaining 63 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 64 lines of data contain 64×64 or 4096 characters. Since each character programs 4 bits of information, a full 16,384 bits are programmed.

As an example, suppose the code conversion in Figure 13 is re-programmed from address 0 to address 127. A printout of the punched tape would read as shown below (a CR and LF is implicit at the end of each line):

ORGANIZATIONAL DATA MCM6590L MOS READ ONLY MEMORY

Customer

Customer Part No.

Rev. \qquad

True Chip Select Options:
I.
1 \square
II.
0

III.
x

1 is most positive input 0 is most negative input X is a no connection or don't care situation.

MCM6591 PATTERN INFORMATION

The MCM6591 is pre-programmed as a code converter and character generator, with the Chip Select input active low. When Address A10 is low, the character generator function is selected. When A10 is high, the device provides the code conversion selected by the other address inputs. The table to the right lists the location of the various functions.

ADDRESS		FUNCTION	

FIGURE 12 －MCM6591 CHARACTER GENERATOR CODE

Addresses 0 to 1023 of the MCM6591 have been pro－ grammed with the 128 USASCII characters shown，using

	$\begin{gathered} A 0 \\ \vdots \\ A 5 \end{gathered}$	$\begin{array}{\|lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 0 & \cdots & 0 \\ 0 & & 0 \\ 0 & & 0 \end{array}$	$\begin{array}{\|lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 1 & \cdots & 1 \\ 0 & & 0 \\ 0 & & 0 \end{array}$	$\begin{array}{\|ccc} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 0 & & 0 \\ 1 & & 1 \\ 0 & & 0 \\ \hline \end{array}$	$\left.\begin{array}{\|lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 0 & & 0 \end{array} \right\rvert\,$	$\begin{array}{\|ccc\|} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 0 & \cdots & 0 \\ 0 & & 0 \\ 1 & & 1 \\ \hline \end{array}$	$\begin{array}{\|lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 1 & \cdots & 1 \\ 0 & & 0 \\ 1 & & 1 \end{array}$	$\begin{array}{\|lll\|} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 1 \\ 0 & \cdots & 0 \\ 1 & & 1 \\ 1 & & 1 \\ \hline \end{array}$	$\begin{array}{lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 1 & \cdots & 1 \\ 1 & & 1 \\ 1 & & 1 \end{array}$
0000	$\begin{gathered} \text { Do } \\ \vdots \\ \text { D7 } \end{gathered}$	－ あ － 뜸ㅁㅁㅁ ロロロロロロロ	 ，－澶品品品品品	－ 00000000	몸ㅁㅁㅁㅁㅁㅁ밈 모으믕 －00ロ0日ロ	00 吅略吅 ㅁㅁㅁㅁㅁㅁ잉吅吅昭 －000000ロ	－日明明品 － － －$\quad 0 \quad 0 \quad 0 \quad 18$ 	路 ロロロローロロロロ ロロロロロロロロ －몸ㅁㅁㅁ ロロロロロローロ	00000 O 0 － 0 000 00．0．000
0001	$\begin{gathered} \text { DO } \\ \vdots \\ \text { D7 } \end{gathered}$	嶰吅吅解啝吅 －Mロロロロロロ吅㫜吅回 吅吅吅回品	00000 몸ㅁ믄 吅吅吅	ㅁロㅁㅁㅁㅁㅁㅁ 믐ㅁㅁㅁㅁㅇㅁ 	 － 0 昰 20므밍 吅昭 	－ ロローロロロロ	믐ロㅁㅁ昰昭吅 － 믐ㅁㅁㅁ －ロローロロロロ	 － －ロロロロロロロ	 －몸ㅁㅁㅁㅡ․ － 믐ㅁㅁㅁ
00	DO D7	 にロロロロロ 	ㅁ․․․․․․․․ － 吅略略品吅口回回回	 吅吅品品 －ロロロロロロロ	 －몸믕 －EERO日官 ㅂㅁㅁㅁㅁㅁㅁ ロロッシャロロ 	－ － ロローロロロロロ	몸ㅁㅁㅁㅁㅁㅁㅁㅁ잉 －0． 0000 㫜啊昭吅		 000000 • － 뭄ㅁㅁㅁ
00	DO D7	 문ㅁㅁㅁ吅明吅 믐ㅁㅁㅁ 	ㅁㅁㅁㅁㅁㅁㅁㅁ 	 몸ㅁㅁㅁㅁㅁㅁ吅昭吅 ㅁㅁㅁㅁㅁㅁ뭄 －ロロロロロロロ	－ 음ㅁ믈 － 	－ － 00000 © － －	－ 0 ロロロロ － － 	mogooge 믐ㅁㅁ믐 － 	－ 0 ロロロー － － 00000 － － －00ロ000
0100	$\begin{gathered} \text { DO } \\ \vdots \\ \text { D7 } \end{gathered}$	ロロロロロロロ 몸ㅁㅁㅁㅁㅁㅁㅁ煰品品吅潞吅 몸ㅁㅁㅁㅁㅁ뭉 			몸ㅁㅁ웅 	㫜日昭 吅明吅 बロロロロロロロ		홈몸ㅁㅁ믐 － －ロロロロロロ	
0101		 － －© © ロロロロ		 듬ㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ ロロロロロロロロ	－ 믐ㅁㅁㅇㅜ 모우웅 － 몸ㅁㅁㅁ잉 		0000000° 0000000 －000000		ロロロロロロ00 －0000000
0110	DO D7	－ －ロロローロロ			－ － 	－ 0 昰 － 므므웅 － ㅁㅁㅁㅁㅁ 		00 8 8000 － －므므응 －ロロロロロロロ	
0111	DO	 －Mnmoロロロ － 				 －㗇吅品 00000000	몸ㅁㅁㅁㅁํㅁㅁ ER日ロロロロロ 		 ㅁㅁㅁㅁ응

FIGURE 12 －MCM6591 CHARACTER GENERATOR CODE（continued）
－Usable Character © Check Bits

	AO	0 1 0 1 0 1 0 \cdots 0 0 0 0 0	$\begin{array}{lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 1 & \cdots & 1 \\ 0 & & 0 \\ 0 & & 0 \end{array}$			$\begin{array}{lll} 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 0 \\ 0 & & 0 \\ 1 & & 1 \end{array}$	$\begin{array}{lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 1 & \cdots & 1 \\ 0 & & 0 \\ 1 & & 1 \end{array}$	$\begin{array}{lll} \hline 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 0 & \cdots & 0 \\ 1 & & 1 \\ 1 & & 1 \end{array}$	$\begin{array}{lll}0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 1 & \cdots & 1 \\ 1 & & 1 \\ 1 & & 1\end{array}$
1000	DO \vdots D7	－ロロロロロロロ ตロロロロロ병 व日月	－ロロロロロロ －ロロロロロロ － 	 － －ロローローロ	 － －ロロロロローロ 		－ロロロロロロ －ㅁํㅁㅁ믐 －－ロロロロロロ 	 ＊ロロロロ回宛 陣ロロロロロロ ＊ロロロロロロロ ®ロロロロロロ	 口回口回回口
1001	DO ： D7	－ －몹ㅁㅁㅁㅁㅁ －ロ0ロロロロロ	 吅・ロロロロ 뭄ㅁㅁ뭉暗时回时 －ロロロロロロ	ロロロローツロロ ロロロロッロロロ ロロロロㅂロロ ロロロロロロロロ	－ロロロローロ － －ロロロロロロ －ロロロロロロ ローロロロロロロ	－ロロロロロロロ －ロロロロロロロ －믐ㅁㅁㅁㅁㅁ ㅂロㅁㅁㅁㅁ 		＊ロロローロロロ －8ロローロロロ 	
1010	D0 \vdots D7	 － －믐ㅁㅁㅁㅁㅁ －ロロロロ	－ －ロロロ回回 	－ロロロ日ロロロ －ロロロロロロロ －뭄ㅁㅁㅁㅁ －	－ロロロロロ ロロロロシーロ 	 ㅁㅁㅁㅁㅁㅁㅁ ロロロローロロロ	 －－ロロロロロ ロロロロロロロ	※ロロロ吅品 － －00．0ロロロ	 －ロロローロロ ロ円ロロツロロロ
10	$\begin{gathered} \text { DO } \\ \vdots \\ \text { D7 } \end{gathered}$	 무홈ㅁㅁㅁㅁ －ロロローロロロ －ロロロロロロ	 모붐ㅁ뭉 ロロロローロ	的的的的品 ロロリロロローロ ローロロロロロロ 튼ㅁㅁㅁㅁㅁㅁ ロロロロロロロロ		몸ㅁㅁㅁㅁㅁㅁㅁ －ロロロロロ回 믑ㅁㅁㅁㅁ ㅁㅁㅁㅁㅁㅁㅁㅁ ロロロロロロロロ	ロロロ略ロロロ 믑ロㅁㅁ 뭄ㅁㅁㅁㅁㅁ	 ロロッロロロロ ロロ㽗ロロロロ ㅁำロロロロ ロロローロロロロ	ロロロロロロロロ ロロロロロロロロ ロロロロロ回回 － ロロロロロロロ
1100	$\begin{gathered} \text { DO } \\ \vdots \\ \text { D7 } \end{gathered}$	ロロロロロ⿴囗口 ロロシロロロロロ 븝ロロロ ローロロロロロロ ロロロロロロロロ ロロロロロロロ	 －ロロローローロ ตロロローロロ 	 －ロロロロロロロ	ロロロロロロロロ 염ㅁㅁㅁㅁ뭉 m － －©	뭄ㅁㅁㅁㅁㅁ ロロロロロロロロ 日ロロロ붐 －ロロロロロロ	ロロロロロロロロ ㅁロㅁํํㅁㅁㅁ －ロロロロロロ回 	ロロロロロ图ロロ ロロロロロロロロ －ロロロロロロロ －Mロロロロロ回ロロ回ロロ回口	ロロロロロロロロ 붑ㅁㅁㅁㅁㅁ 苆ロロロ回回
11	$\begin{gathered} \mathrm{DO} \\ \vdots \\ \mathrm{D7} \end{gathered}$	ロロロロロロロロ ロロロロロロロロ	ロロロロロロロロ ロロロロロロロロ 	 ㅁㅁㅁ부붐 －0ロロロロ日	몸ㅁㅁㅁㅁ 몸ㅁㅁㅁㅁํ 略昰回品 	ロロロロロのロロ 『ロロロロロロロ	ロロロロロロロロ 몸ㅁㅁㅁㅁㅁ 튼… 	ㅁロロロロロロ 몸ㅁ무잉 므붕 －ロロロロロ回向	ロロロロロロロ『 ㅁロㅁํํㅁ뭉
1110	DO $:$ D7	ロロロロロロロロ － －ロローロ	몸ㅁㅁㅁㅁㅁ ＊M 日 －ーローロー・	 	ロロロロロロロロ 뭄ㅁㅁㅁㅁ 	ロロロロロロロロ 믄ロㅁㅁ －ロロロロロロ	 	ロロロロロロロロ ㅁㅁㅁㅁ뭉ㅁ 	ロロロロロロ뭉 ㅁロㅁ뭄
1111	DO $:$ D7	ロロロロロロロロ ロロロロロロロロ 	몸ㅁㅁㅁㅁㅁ 븜ㅁ무웅 ロローロロロロロ 			ロロシロロロロ 뭅ㅁㅁㅁㅁㅁ ロロロロロロロロ －ロロロロロロロ वロㅁㅁㅁㅁㅁ 00ロロロロロロ	 ロロッロロ回回 －回口回回口回	ㅁㅁㅁㅁㅁㅁㅁ － ロロロロロロロロ ロロロロロロロロ『ロロロロロロロ	몸ロㅁㅁ 몸ㅁㅁㅁㅁ口回回口回口回

Tables 13 through 18 present the coding used in the code conversion sections of the MCM6591. A10 is held high for all code conversions.

The addresses are given both in decimal and hexa-
decimal form in these figures. The outputs are given in hexadecimal form only. The format is illustrated in the following example.

Example:

	ddress	Out
	A10... A0	D7... D0
104710	10000010111_{2}	011000112
${ }^{1047} 10$	41716	6316

Table Format

FIGURE 13 - SELECTRIC TO ASCII

Address		Out									
1024	400	AO	1056	420	21	1088	440	AO	1120	460	3C
1025	401	B1	1057	421	ED	1089	441	7 D	1121	461	4D
1026	402	B2	1058	422	2E	1090	442	CO	1122	462	2E
1027	403	33	1059	423	F6	1091	443	A3	1123	463	56
1028	404	35	1060	424	27	1092	444	A5	1124	464	22
1029	405	B7	1061	425	72	1093	445	A6	1125	465	D2
1030	406	36	1062	426	69	1094	446	BE	1126	466	C9
1031	407	B8	1063	427	E1	1095	447	AA	1127	467	41
1032	408	B4	1064	428	6F	1096	448	24	1128	468	CF
1033	409	30	1065	429	F3	1097	449	A9	1129	469	53
1034	40A	FA	1066	42A	8B	1098	44A	5A	1130	46A	OC
1035	40B	39	1067	42B	77	1099	44B	28	1131	468	D7
1036	40 C	12	1068	42C	99	1100	44 C	12	1132	46C	1D
1037	40D	93	1069	42D	8D	1101	44D	11	1133	46D	8D
1038	40E	8E	1070	42E	08	1102	44E	05	1134	46E	88
1039	40F	84	1071	42F	00	1103	44F	84	1135	46F	00
1040	410	74	1072	430	6A	1104	450	D4	1136	470	CA
1041	411	78	1073	431	E7	1105	451	D8	1137	471	47
1042	412	EE	1074	432	BD	1106	452	4 E	1133	472	2B
1043	413	F5	1075	433	66	1107	453	55	1139	473	C6
1044	414	65	1076	434	FO	1108	454	C5	1140	474	50
1045	415	E4	1077	435	BB	1109	455	44	1141	475	3A
1046	416	EB	1078	436	71	1110	456	4B	1142	476	D1
1047	417	63	1079	437	AC	1111	457	C3	1143	477	AC
1048	418	6C	1080	438	AF	1112	458	CC	1144	478	3F
1049	419	E8	1081	439	F9	1113	459	48	1145	479	59
1050	41A	1E	1082	43A	1E	1114	45A	1E	1146	47 A	1E
1051	41B	E2	1083	43B	2D	1115	45B	42	1147	47B	5 F
1052	41C	9A	1084	43C	14	1116	45C	9C	1148	47C	14
1053	41D	OA	1085	43D	09	1117	45D	OA	1149	47D	09
1054	41E	03	1086	43E	87	1118	45E	17	1150	47E	OF
1055	41F	1B	1087	43F	FF	1119	45F	90	1151	47F	00

FIGURE 14 - ASCII TO SELECTRIC

Address		Out									
1152	480	AF	1184	4AO	00	1216	4CO	42	1248	4E0	77
1153	481	1 B	1185	4A1	A0	1217	4 C 1	E7	1249	4E1	27
1154	482	8 B	1186	4 A 2	E4	1218	4C2	DB	1250	4E2	1 B
1155	483	1 E	1187	4A3	C3	1219	4 C 3	D7	1251	4E3	17
1156	484	OF	1188	4A4	48	1220	4 C 4	55	1252	4E4	95
1157	485	4E	1189	4A5	44	1221	4C5	D4	1253	4E5	14
1158	486	BB	1190	4A6	C5	1222	4C6	F3	1254	4E6	33
1159	487	BE	1191	4 A 7	24	1223	4 C 7	71	1255	4E7	B1
1160	488	2 E	1192	4 AB	4B	1224	4C8	59	1256	4E8	99
1161	489	BD	1193	4 A 9	C9	1225	$4 \mathrm{C9}$	66	1257	4E9	A6
1162	48A	1D	1194	4AA	47	1226	4 CA	F0	1258	4EA	30
1163	48B	AA	1195	4 AB	72	1227	4 CB	56	1259	4EB	96
1164	48C	6 A	1196	4 AC	B7	1228	4CC	D8	1260	4EC	18
1165	48D	2D	1197	4AD	BB	1229	$4 C D$	E1	1261	4ED	21
1166	48E	8 E	1198	4 AE	E2	1230	4CE	D2	1262	4EE	12
1167	48F	7E	1199	4AF	B8	1231	4 CF	E8	1263	4EF	28
1168	490	5 F	1200	4B0	09	1232	4DO	74	1264	4FO	B4
1169	491	4D	1201	4B1	81	1233	4D1	F6	1265	4F1	36
1170	492	OC	1202	4B2	82	1234	4D2	65	1266	4F2	A5
1171	493	8D	1203	4B3	03	1235	4D3	69	1267	4F3	A9
1172	494	3C	1204	4B4	88	1236	4D4	50	1268	4F4	90
1173	495	AO	1205	4B5	84	1237	4D5	53	1269	4F5	93
1174	496	6 F	1206	4B6	06	1238	4D6	63	1270	4F6	A3
1175	497	DE	1207	$4 \mathrm{B7}$	05	1239	4D7	EB	1271	4F7	2B
1176	498	AO	1208	4B8	87	1240	4D.8	D1	1272	4F8	11
1177	499	AC	1209	4B9	8B	1241	4D9	F9	1273	4F9	39
1178	49A	9 C	1210	4BA	F5	1242	4DA	CA	1274	4FA	OA
1179	49B	9 F	1211	4BB	35	1243	4DB	41	1275	4FB	41
1180	49C	5 C	1212	4BC	60	1244	4DC	41	1276	4FC	41
1181	49D	6C	1213	4BD	B2	1245	4DD	41	1277	4FD	41
1182	49E	6C	12.14	$4 B E$	C6	1246	4DE	41	1278	4FE	41
1183	49F	5 C	1215	4BF	78	1247	4DF	7 B	1279	4FF	3 F

FIGURE 15 - MODIFIED 8-BIT HOLLERITH TO ASCII

Address		Out
1280	500	20
1281	501	31
1282	502	32
1283	503	33
1284	504	34
1285	505	35
1286	506	36
1287	507	37
1288	508	38
1289	509	60
1290	$50 A$	$3 A$
1291	$50 B$	23
1292	$50 C$	40
1293	$50 D$	27
1294	$50 E$	$3 D$
1295	$50 F$	22
1296	510	39
1297	511	91

Address		Out
1298	512	16
1299	513	93
1300	514	94
1301	515	95
1302	516	96
1303	517	04
1304	518	98
1305	519	99
1306	$51 A$	$9 A$
1307	$51 B$	$9 B$
1308	$51 C$	14
1309	$51 D$	15
1310	51 E	9 E
1311	51 F	1 A
1312	520	30
1313	521	2 F
1314	522	53
1315	523	54

Address		Out
1316	524	55
1317	525	56
1318	526	57
1319	527	58
1320	528	59
1321	529	B9
1322	$52 A$	5 C
1323	$52 B$	2 C
1324	52 C	25
1325	52 D	5 F
1326	52 E	3 E
1327	52 F	3 F
1328	530	5 A
1329	531	81
1330	532	82
1331	533	83
1332	534	84
1333	535	0 A

Address		Out
1334	536	17
1335	537	$1 B$
1336	538	88
1337	539	89
1338	$53 A$	$8 A$
1339	$53 B$	$8 B$
1340	$53 C$	$8 C$
1341	$53 D$	05
1342	$53 E$	06
1343	$53 F$	07
1344	540	$2 D$
1345	541	$4 A$
1346	542	$4 B$
1347	543	$4 C$
1348	544	$4 D$
1349	545	$4 E$
1350	546	$4 F$
1351	547	50
(continued)		

FIGURE 15 - MODIFIED 8-BIT HOLLERITH TO ASCII (continued)

Address		Out
1352	548	51
1353	549	B1
1354	54A	5D
1355	54B	24
1356	54C	2A.
1357	54D	29
1358	54 E	3 B
1359	54F	5 E
1360	550	52
1361	551	11
1362	552	12
1363	553	13
1364	554	9D
1365	555	85
1366	556	08
1367	557	87
1368	558	18
1369	559	19
1370	55A	92
1371	55B	8 F
1372	55 C	1 C
1373	550	1D
1374	55 E	1E
1375	55 F	1F
1376	560	7 D
1377	561	7 E
1378	562	73
1379	563	74
1380	564	75
1381	565	76
1382	566	77
1383	567	78
1384	568	79
1385	569	01
1386	56A	D2
1387	56B	D3
1388	56C	D4
1389	56D	D5
1390	56E	D6
1391	56 F	D7
1392	570	7A
1393	571	9 F
1394	572	B2
1395	573	B3
1396	574	B4
1397	575	B5

Address		Out
1398	576	$B 6$
1399	577	$B 7$
1400	578	B8
1401	579	80
1402	$57 A$	F4
1403	$57 B$	F5
1404	$57 C$	F6
1405	$57 D$	$F 7$
1406	$57 E$	$F 8$
1407	$57 F$	$F 9$
1408	580	26
1409	581	41
1410	582	42
1411	583	43
1412	584	44
1413	585	45
1414	586	46
1415	587	47
1416	588	48
1417	589	$A 8$
1418	$58 A$	$5 B$
1419	$58 B$	$2 E$
1420	$58 C$	$3 C$
1421	$58 D$	28
1422	$58 E$	$2 B$
1423	$58 F$	21
1424	590	49
1425	591	01
1426	592	02
1427	593	03
1428	594	$9 C$
1429	595	09
1430	596	86
1431	597	$7 F$
1432	598	97
1433	599	$8 D$
1434	$59 A$	$8 E$
1435	$59 B$	$0 B$
1436	$59 C$	$0 C$
1437	$59 D$	$0 D$
1438	$59 F$	$0 E$
1439	$59 F$	$0 F$
1440	$5 A 0$	$7 B$
1441	$5 A 1$	61
1442	$5 A 2$	62
1443	$5 A 3$	63

Address		Out
1444	$5 A 4$	64
1445	$5 A 5$	65
1446	$5 A 6$	66
1447	$5 A 7$	67
1448	$5 A 8$	68
1449	$5 A 9$	$C 3$
1450	$5 A A$	$C 4$
1451	$5 A B$	$C 5$
1452	$5 A C$	$C 6$
1453	$5 A D$	$C 7$
1454	$5 A E$	$C 8$
1455	$5 A F$	$C 9$
1456	$5 B 0$	69
1457	$5 B 1$	$A O$
1458	$5 B 2$	$A 1$
1459	$5 B 3$	$A 2$
1460	$5 B 4$	$A 3$
1461	$5 B 5$	$A 4$
1462	$5 B 6$	$A 5$
1463	$5 B 7$	$A 6$
1464	$5 B 8$	$A 7$
1465	$5 B 9$	10
1466	$5 B A$	$E 8$
1467	$5 B B$	$E 9$
1468	$5 B C$	$E A$
1469	$5 B D$	$E B$
1470	$5 B E$	$E C$
1471	$5 B F$	$E D$
1472	$5 C 0$	$7 C$
1473	$5 C 1$	$6 A$
1474	$5 C 2$	$6 B$
1475	$5 C 3$	$6 C$
1476	$5 C 4$	$6 D$
1477	$5 C 5$	$6 E$
1478	$5 C 6$	$6 F$
1479	$5 C 7$	70
1480	$5 C 8$	71
1481	$5 C 9$	$C A$
1482	$5 C A$	$C B$
1483	$5 C B$	$C C$
1484	$5 C C$	$C D$
1485	$5 C D$	$2 E$
1486	$5 C E$	$C F$
1487	$5 C F$	$D 0$
1488	$5 D 0$	72
1489	$5 D 1$	$A 9$

Address		Out
1490	5D2	AA
1491	503	$A B$
1492	5D4	$A C$
1493	505	$A D$
1494	5D6	$A E$
1495	5D7	AF
1496	5D8	B0
1497	5D9	00
1498	5DA	EE
1499	5DB	EF
1500	5DC	FO
1501	5DD	F1
1502	5DE	F2
1503	5DF	F3
1504	5EO	BA
1505	5E1	D9
1506	5E2	DA
1507	5E3	DB
1508	5E4	DC
1509	5 E 5	DD
1510	5E6	DE
1511	5E7	DF
1512	5E8	E0
1513	5E9	D8
1514	5EA	E2
1515	5EB	E3
1516	5EC	E4
1517	5ED	E5
1518	5EE	E6
1519	5EF	E7
1520	5F0	E1
1521	5F1	BB
1522	5F2	BC
1523	5F3	BD
1524	5F4	BE
1525	5F5	BF
1526	5F6	CO
1527	5F7	C1
1528	5F8	C2
1529	5F9	90
1530	5FA	FA
1531	5FB	FB
1532	5FC	FC
1533	5FD	FD
1534	5FE	FE
1535	5FF	FF

FIGURE 16 - ASCII TO MODIFIED 8 -BIT HOLLERITH

Address		Out
1536	600	D9
1537	601	91
1538	602	92
1539	603	93
1540	604	87
1541	605	CD
1542	606	CE
1543	607	CF
1544	608	A6
1545	609	95
1546	60 A	C5

Address		Out
1547	60 B	9 B
1548	60 C	9 C
1549	60 D	9 D
1550	60 E	9 E
1551	60 F	9 F
1552	610	B 9
1553	611	A 1
1554	612	A 2
1555	613	A 3
1556	614	8 C
1557	615	8 D

Address		Out
1558	616	82
1559	617	C6
1560	618	A8
1561	619	A9
1562	61 A	8 F
1563	61 B	$\mathrm{C7}$
1564	61 C	AC
1565	61 D	AD
1566	61 E	AE
1567	61 F	AF
1568	620	00

Address		Out
1569	621	1 F
1570	622	OF
1571	623	OB
1572	624	2 B
1573	625	4 C
1574	626	10
1575	627	OD
1576	628	1 D
1577	629	2 D
1578	62 A	2 C
1579	62 B	1 E

FIGURE 16 - ASCII TO MODIFIED 8-BIT HOLLERITH (continued)

Address		Out
1580	62 C	4 B
1581	62 D	20
1582	62 E	1 B
1583	62 F	41
1584	630	40
1585	631	01
1586	632	02
1587	633	03
1588	634	04
1589	635	05
1590	636	06
1591	637	07
1592	638	08
1593	639	80
1594	63 A	0 A
1595	63 B	2 E
1596	63 C	1 C
1597	63 D	0 E
1598	63 E	4 E
1599	63 F	4 F
1600	640	0 C

Address		Out
1601	641	11
1602	642	12
1603	643	13
1604	644	14
1605	645	15
1606	646	16
1607	647	17
1608	648	18
1609	649	90
1610	$64 A$	21
1611	$64 B$	22
1612	$64 C$	23
1613	$64 D$	24
1614	64 E	25
1615	64 F	26
1616	650	27
1617	651	28
1618	652	$A 0$
1619	653	42
1620	654	43
1621	655	44

Address		Out
1622	656	45
1623	657	46
1624	658	47
1625	659	48
1626	65 A	CO
1627	65 B	1 A
1628	65 C	4 A
1629	65 D	2 A
1630	65 E	2 F
1631	65 F	4 D
1632	660	09
1633	661	51
1634	662	52
1635	663	53
1636	664	54
1637	665	55
1638	666	56
1639	667	57
1640	668	58
1641	669	DO
1642	66 A	31

Address		Out
1643	$66 B$	32
1644	66 C	33
1645	66 D	34
1646	66 E	35
1647	66 F	36
1648	670	37
1649	671	38
1650	672	B0
1651	673	62
1652	674	63
1653	675	64
1654	676	65
1655	677	66
1656	678	67
1657	679	68
1658	$67 A$	E0
1659	$67 B$	50
1660	$67 C$	30
1661	67 D	60
1662	67 E	61
1663	67 F	97

Address		Out
1664	680	00
1665	681	01
1666	682	02
1667	683	03
1668	684	00
1669	685	09
1670	686	00
1671	687	$7 F$
1672	688	00
1673	689	00
1674	$68 A$	00
1675	$68 B$	$0 B$
1676	$68 C$	$0 C$
1677	$68 D$	$0 D$
1678	$68 E$	$0 E$
1679	$68 F$	$0 F$
1680	690	10
1681	691	11
1682	692	12
1683	693	13
1684	694	EO
1685	695	DC
1686	696	08
1687	697	00
1688	698	18
1689	699	19
1690	$69 A$	00
1691	$69 B$	00
1692	$69 C$	$1 C$
1693	$69 D$	$1 D$
1694	$69 E$	$1 E$
1695	$69 F$	$1 F$
1696	$6 A 0$	00
1697	$6 A 1$	00
1698	$6 A 2$	00
1699	$6 A 3$	00
1700	$6 A 4$	00

Address		Out
1701	$6 A 5$	$0 A$
1702	$6 A 6$	17
1703	$6 A 7$	$1 B$
1704	$6 A 8$	00
1705	$6 A 9$	00
1706	$6 A A$	00
1707	$6 A B$	00
1708	$6 A C$	00
1709	$6 A D$	05
1710	$6 A E$	06
1711	$6 A F$	07
1712	$6 B 0$	00
1713	$6 B 1$	00
1714	$6 B 2$	16
1715	$6 B 3$	00
1716	$6 B 4$	00
1717	$6 B 5$	14
1718	$6 B 6$	00
1719	$6 B 7$	04
1720	$6 B 8$	00
1721	$6 B 9$	00
1722	$6 B A$	00
1723	$6 B B$	00
1724	$6 B C$	00
1725	$6 B D$	15
1726	$6 B E$	00
1727	$6 B F$	$1 A$
1728	$6 C 0$	$A 0$
1729	$6 C 1$	00
1730	$6 C 2$	00
1731	$6 C 3$	00
1732	$6 C 4$	00
1733	$6 C 5$	00
1734	$6 C 6$	00
1735	$6 C 7$	00
1736	$6 C 8$	00
1737	$6 C 9$	00

Address		Out
1738	6CA	FE
1739	6CB	AE
1740	6CC	$B C$
1741	6CD	A8
1742	6CE	$A B$
1743	6CF	FC
1744	6D0	A6
1645	6D1	00
1746	6D2	00
1747	6D3	00
1748	6D4	00
1749	6 D 5	00
1750	6D6	00
1751	6D7	00
1752	6D8	00
1753	6D9	00
1754	6DA	A1
1755	6DB	A4
1756	6DC	AA
1757	6DD	A9
1758	6DE	BB
1759	6DF	DE
1760	6E0	AD
1761	6E1	AF
1762	6E2	00
1763	6E3	00
1764	6E4	00
1765	6E5	00
1766	6E6	00
1767	6E7	00
1768	6E8	00
1769	6E9	00
1770	6EA	00
1771	6EB	AC
1772	6EC	A5
1773	6ED	DF
1774	6EE	BE

Address		Out
1775	6EF	BF
1776	6F0	00
1777	6F1	00
1778	6F2	00
1779	6F3	00
1780	6F4	00
1781	6F5	00
1782	6F6	00
1783	6F7	00
1784	6F8	00
1785	6F9	00
1786	6FA	BA
1787	6FB	A3
1788	6FC	C0
1789	6FD	A 7
1790	6FE	BD
1791	6FF	A2
1792	700	00
1793	701	E1
1794	702	E2
1795	703	E3
1796	704	E4
1797	705	E5
1798	706	E6
1799	707	E7
1800	708	E8
1801	709	E9
1802	70A	00
1803	70B	FB
1804	70 C	00
1805	700	00
1806	70E	00
1807	70F	00
1808	710	00
1809	711	EA
1810	712	EB
1811	713	EC

Address		Out									
1812	714	ED	1839	72F	00	1866	74A	00	1893	765	D6
1813	715	EE	1840	730	00	1867	74 B	00	1894	766	D7
1814	716	EF	1841	731	00	1868	74C	00	1895	767	D8
1815	717	F0	1842	732	00	1869	74D	00	1896	768	D9
1816	718	F. 1	1843	733	00	1870	74E	00	1897	769	DA
1817	719	F2	1844	734	00	1871	74F	00	1898	76A	00
1818	71A	00	1845	735	00	1872	750	00	1899	76B	00
1819	71B	FD	1846	736	00	1873	751	CA	1900	76C	00
1820	71C	00	1847	737	00	1874	752	CB	1901	760.	00
1821	71D	00	1848	738	00	1875	753	CC	1902	76E	00
1822	71E	00	1849	739	00	1876	754	CD	1903	76F	00
1823	71F	00	1850	73A	00	1877	755	CE	1904	770	B0
1824	720	00	1851	73B	00	1878	756	CF	1905	771	B1
1825	721	00	1852	73C	00	1879	757	D0	1906	772	B2
1826	722	F3	1853	73D	DD	1880	758	D1	1907	773	B3
1827	723	F4	1854	73E	00	1881	759	D2	1908	774	B4
1828	724	F5	1855	73F	00	1882	75A	00	1909	775	B5
1829	725	F6	1856	740	00	1883	75B	00	1910	776	B6
1830	726	F7	1857	741	C1	1884	75C	00	1911	777	B7
1831	727	F8	1858	742	C2	1885	750	00	1912	778	B8
1832	728	F9	1859	743	C3	1886	75E	00	1913	779	B9
1833	729	FA	1860	744	C4	1887	75F	00	1914	77 A	0C
1834	72A	00	1861	745	C5	1888	760	00	1915	77B	00
1835	72 B	00	1862	746	C6	1889	761	00	1916	77C	00
1836	72C	00	1863	747	C7	1890	762	D3	1917	770	00
1837	72D	DB	1864	748	C8	1891	763	D4	1918	77E	00
1838	72 E	00	1865	749	C9	1892	764	D5	1919	77F	00
FIGURE 18 - ASCII TO EBCDIC											
Address		Out									
1920	780	00	1952	7 AO	40	1984	7 CO	7 C	2016	7E0	14
1921	781	01	1953	7 A 1	5 A	1985	7 C 1	C1	2017	7E1	81
1922	782	02	1954	7 A 2	7F	1986	7 C 2	C2	2018	7E2	82
1923	783	03	1955	7 A 3	7 B	1987	7 C 3	C3	2019	7E3	83
1924	784	37	1956	7 A 4	5 B	1988	$7 \mathrm{C4}$	C4	2020	7E4	84
1925	785	2D	1957	7 A 5	6 C	1989	$7 \mathrm{C5}$	C5	2021	7E5	85
1926	786	2 E	1958	7 A 6	50	1990	$7 \mathrm{C6}$	C6	2022	7E6	86
1927	787	2 F	1959	7 A 7	7 D	1991	$7 \mathrm{C7}$	C7	2023	7E7	87
1928	788	16	1960	7A8	4D	1992	$7 \mathrm{C8}$	C8	2024	7E8	88
1929	789	05	1961	7 A 9	5D	1993	$7 \mathrm{C9}$	C9	2025	7E9	89
1930	78 A	25	1962	7AA	5 C	1994	7 CA	D1	2026	7EA	91
1931	78B	OB	1963	$7 A B$	4 E	1995	7 CB	D2	2027	7EB	92
1932	78 C	OC	1964	7AC	6B	1996	7 CC	D3	2028	7EC	93
1933	78 D	OD	1965	7 AD	60	1997	7 CD	D. 4	2029	7ED	94
1934	78E	OE	1966	7AE	4B	1998	7 CE	D5	2030	7EE	95
1935	78F	OF	1967	7AF	61	1999	7CF	D6	2031	7EF	96
1936	790	10	1968	7B0	F0	2000	700	D7	2032	7F0	97
1937	791	11	1969	7B1	F1	2001	7D1	D8	2033	7F 1	98
1938	792	12	1970	782	F2	2002	7D2	D9	2034	7F2	99
1939	793	13	1971	7B3	F3	2003	703	E2	2035	7F3	A2
1940	794	35	1972	7B4	F4	2004	7 D 4	E3	2036	7F4	A3
1941	795	3D	1973	785	F5	2005	$7 \mathrm{D5}$	E4	2037	7F5	A4
1942	796	32	1974	$7 \mathrm{B6}$	F6	2006	7 D 6	E5	2038	7F6	A5
1943	797	26	1975	7B7	F7	2007	7 D 7	E6	2039	7F7	A6
1944	798	18	1976	7B8	F8	2008	$7 \mathrm{D8}$	E7	2040	7F8	A 7
1945	799	19	1977	789	F9	2009	$7 \mathrm{D9}$	E8	2041	7F9	A8
1946	79A	3F	1978	7BA	7 A	2010	7DA	E9	2042	7FA	A9
1947	79B	24	1979	7BB	5 E	2011	7DB	A9	2043	7FB	8B
1948	79 C	1 C	1980	7 BC	4 C	2012	7DC	15	2044	7FC	4F
1949	79D	1D	1981	$7 B D$	7E	2013	7DD	BD	2045	7FD	9 B
1950	79E	1E	1982	7BE	6 E	2014	7DE	5F	2046	7FE	4A
1951	79F	1 F	1983	7 BF	6 F	2015	7DF	6D	2047	7FF	07

APPLICATIONS INFORMATION

Typical applications for the MCM6590 include microprocessor control storage, CPU microprogramming, code converters, character generators, look-up tables, and random logic replacement.

Figure 19 shows a system controller based on devices from the M6800 Microcomputer Family, and using the MCM6590 to store control programs. Software instructions in the ROMs cause the system to read data from the input
lines, perform computations in the RAM, and direct appropriate response by the outputs.

In this minimum system configuration, the need for decoding of the high order address bits is avoided by selecting each device on the address bus with one of the high order address lines (A11-A15). The MCM6590 ROMs are selected by A12 and A13, and the PIA is selected by A14.

FIGURE 19 - MICROPROCESSOR-BASED SYSTEM CONTROLLER

Note: Only address and data bus signals shown. Unused chip selects are enabled.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	29.34	30.86	1.155	1.215		
B	12.70	14.22	0.500	0.560		
C	3.05	3.94	0.120	0.155		
D	0.38	0.51	0.015	0.020		
F	0.89	1.40	0.035	0.055		
G	2.54		BSC	0.100		BSC
H	0.89	1.40	0.035	0.055		
J	0.20	0.30	0.008	0.012		
K	2.92	3.68	0.115	0.145		
L	14.86	15.87	0.585	0.625		
M	-	15^{0}	-	15^{0}		
N	0.51	1.14	0.020	0.045		

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE WITH MAXIMUM MATERIAL CONDITION.
2. LEAD NO. 1 CUT FOR IDENTIFICATION, OR BUMP ON TOP
3. DIM "L" TO INSIDE

OF LEADS. (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW PKG BASE)

CASE 684-04

1024-BIT READ ONLY MEMORY

The MCM14524 is a complementary MOS mask programmable Read Only Memory (ROM). This device is ordered as a factory special with its unique pattern specified by the user.

This ROM is organized in a 256×4-bit pattern. The contents of a specified address $\ll A 0, A 1, A 2, A 3, A 4, A 5, A 6, A 7>1$ will appear at the four data outputs ($B 0, B 1, B 2, B 3$) following the negative going edge of the clock. When the clock goes high, the data present at the outputs will be latched. The memory Enable may be taken low asynchronously, forcing the data outputs low and resetting the output latches. This device finds application wherever low power or high noise immunity is a design consideration.

- Diode Protection on All Inputs
- Noise Immunity $=45 \%$ of VDD typical
- Quiescent Power Dissipation - $25 \mathrm{nW} /$ package typical @ 5 Vdc
- Single Supply Operation - Either Positive or Negative
- Memory Enable Allows Expansion
- Output Latches Provide a Useful Storage Register

CLOCK	ENABLE	B0	B1	B2	B3
$V_{D D}$ — $v_{S S}$	1	<Address>	<Address>	<Address>	<Address>
$\mathrm{v}_{S S} \sim \mathrm{v}_{\mathrm{DD}}$	1	OUTPUT DATA LATCHES			
x	0	0	0	0	0

$x=$ Don't Care
*Indicates contents of specified Address will appear at outputs as stated above.

McMOS

(LOW-POWER COMPLEMENTARY MOS)

1024-BIT
(256×4)
READ ONLY MEMORY

LSUFFIX
CERAMIC PACKAGE CASE 620

PSUFFIX
plastic package CASE 648

MAXIMUM RATINGS (Voltages referenced to $\mathrm{V}_{\text {SS }}$, Pin 8)

Rating		Symbol	Value	Unit
DC Supply Voltage MCM 14524AL MCM 14524CL/CP		$V_{\text {DD }}$	$\begin{aligned} & +18 \text { to }-0.5 \\ & +16 \text { to }-0.5 \end{aligned}$	Vdc
Input Voltage, All Inputs		$V_{\text {in }}$	$\mathrm{V}_{\text {DD }}$ to -0.5	Vdc
DC Current Drain per Pin		1	10	mAdc
Operating Temperature - MCM 14524AL Range MCM $14524 \mathrm{CL} / \mathrm{CP}$		T_{A}	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or $V_{D D}$.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{\text {DD }}$ Vdc	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage \quad " 0 " Level	$\mathrm{V}_{\text {out }}$	5.0	-	0.01	-	0	0.01	-	0.05	Vdc
		10	-	0.01	-	0	0.01	-	0.05	
		15	-	0.05	-	0	0.05	-	0.25	
		5.0	4.99	-	4.99	5.0	-	4.95	-	Vdc
		10	9.99	-	9.99	10	-	9.95	-	
		15	14.95	-	14.95	15	-	14.75	-	
$\begin{gathered} \hline \text { Noise Immunity } \# \\ \left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ \left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{gathered}$	$\mathrm{V}_{\text {NL }}$									Vdc
		5.0	1.5	-	1.5	2.25	-	1.4	-	
		10	3.0	-	3.0	4.50	-	2.9	-	
		15	4.5	-	4.5	6.75	-	4.4	-	
$\begin{aligned} & \left(\Delta V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ & \left(\Delta V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{aligned}$	V_{NH}	5.0	1.4	-	1.5	2.25	-	1.5	-	Vdc
		10	2.9	-	3.0	4.50	-	3.0	-	
		15	4.4	-	4.5	6.75	-	4.5	-	
Output Drive Current (AL Device)	${ }^{1} \mathrm{OH}$									mAdc
$(\mathrm{VOH}=2.5 \mathrm{Vdc}) \quad$ Source		5.0	-0.62	-	-0.50	-1.5	-	-0.35	-	
$\left(\mathrm{VOH}^{(1)}=9.5 \mathrm{Vdc}\right)$		10	-0.62	-	-0.50	-0.9	-	-0.35	-	
($\left.\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$		15	-1.8	-	-1.5	-3.2	-	-1.1	-	
($\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$) Sink	'OL	5.0	0.50	-	0.40	0.80	-	0.28	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	1.1	-	0.90	2.0	-	0.65	-	
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	4.2	-	3.4	8.0	-	2.4	-	
Output Drive Current (CL/CP Device)	${ }^{1} \mathrm{OH}$									mAdc
($\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}$) Source		5.0	-0.23	-	-0.20	-1.7	-	-0.16	-	
$\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$		10	-0.23	-	-0.20	-0.9	-	-0.16	-	
$\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$		15	-0.69	-	-0.60	-3.5	-	-0.48	-	
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink	${ }^{\prime} \mathrm{OL}$	5.0	0.23	-	0.20	0.78	-	0.16	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	0.60	-	0.50	2.0	-	0.40	-	
$(\mathrm{VOL}=1.5 \mathrm{Vdc})$		15	1.8	-	1.5	7.8	-	1.2	-	
Input Current	1 in	-	-	-	-	10	-	-	-	pAdc
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	-	-	-	pF
Quiescent Dissipation (AL Device)	${ }^{P} \mathrm{Q}$	5.0	-	0.025	-	0.000025	0.025	-	1.5	mW
		10	-	0.10	-	0.00010	0.10	-	6.0	
		15	-	0.30	-	0.00023	0.30	-	18	
Quiescent Dissipation (CL/CP Device)	${ }^{\text {PQ }}$	5.0	-	0.25	-	0.000025	0.25	-	3.5	mW
		10	-	1.0	-	0.00010	1.0	-	14	
		15	-	3.0	-	0.00023	3.0	-	42	
$\begin{aligned} & \text { Power Dissipation** } \dagger \\ & \text { (Dynamic plus Quiescent) } \\ & \left(C_{L}=15 \mathrm{pF}\right) \\ & \hline \end{aligned}$	P_{D}	5.0			$\begin{aligned} & P_{D}=(7.0 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=(30 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \\ & \mathrm{P}_{\mathrm{D}}=(75 \mathrm{~mW} / \mathrm{MHz}) \mathrm{f}+\mathrm{P}_{\mathrm{Q}} \end{aligned}$					mW
		10								

*T ${ }^{\text {low }}=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device.
\#Noise immunity specified for worst-case input combination.
\dagger For dissipation at different external load capacitance (C_{L}) use the formula:

$$
P_{T}\left(C_{L}\right)=P_{D}+1 \times 10^{-3}\left(C_{L}-15 p F\right) V_{D D^{2 f}}
$$

where: P_{T}, P_{D} in $m W$ (per package), C_{L} in $p F, V_{D D}$ in $V d c$, and f in MHz is input clock frequency.
**The formula given is for the typical characteristics only.

SWITCHING CHARACTERISTICS ($\left.\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{\text {DD }}$	Min		Typ All Type	Max		Unit
			AL Device	CL/CP Device		AL Device	CL/CP Device	
Clock Read Access Delay Time $\begin{aligned} & \mathrm{t}_{\mathrm{acc}}=(1.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1310 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.43 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+518 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.29 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+351 \mathrm{~ns} \end{aligned}$	${ }^{\text {tacc }} \mathrm{C}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	-	-	$\begin{gathered} 1325 \\ 525 \\ 355 \end{gathered}$	$\begin{gathered} 2650 \\ 1050 \\ 790 \end{gathered}$	$\begin{aligned} & 3975 \\ & 1575 \\ & 1185 \end{aligned}$	ns
$\begin{aligned} & \text { Enable Access Delay Time } \\ & \mathrm{t}_{\text {acce }}=(1.14 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+173 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.57 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+71 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{n}}=(0.29 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+51 \mathrm{~ns} \end{aligned}$	${ }^{\text {acce }}{ }_{n}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	-	-	$\begin{aligned} & 190 \\ & 80 \\ & 55 \end{aligned}$	$\begin{aligned} & 380 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 570 \\ & 240 \\ & 180 \end{aligned}$	ns
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+49 \mathrm{~ns}}^{\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}=(1.14 \mathrm{~ns} / \mathrm{pF}) C_{L}+18 \mathrm{~ns}} \\ & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=(0.86 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	-	$\begin{aligned} & 75 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 175 \\ & 75 \\ & 55 \end{aligned}$	$\begin{gathered} 200 \\ 110 \\ 85 \end{gathered}$	ns
Minimum Clock Pulse Width*	$\mathrm{PW}_{\mathrm{CH}}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	-	$\begin{aligned} & 150 \\ & 55 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 110 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 165 \\ & 125 \\ & \hline \end{aligned}$	ns
	${ }^{\text {PW }}$ CL	$\begin{array}{r} \hline 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	- - -	-	$\begin{gathered} 1200 \\ 475 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 2400 \\ 950 \\ 715 \\ \hline \end{gathered}$	$\begin{aligned} & 3600 \\ & 1425 \\ & 1070 \end{aligned}$	ns
Maximum Low Clock Pulse Width\#	$\mathrm{PW}_{\mathrm{CL}}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 1.5 \\ 0.15 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 0.9 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 3.0 \\ & 0.3 \\ & \hline \end{aligned}$	-	-	ms
Address Setup Time	${ }^{\text {s setupA }}$ A	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	-	-	ns
Address Hold Time	tholdA	$\begin{array}{r} \hline 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	-	ns
Minimum Clock to Enable Setup Time	${ }^{\text {tsetup }}$ C	$\begin{array}{r} \hline 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	- - -	-	$\begin{gathered} 1425 \\ 575 \\ 400 \end{gathered}$	$\begin{gathered} 2850 \\ 1150 \\ 865 \\ \hline \end{gathered}$	$\begin{aligned} & 4275 \\ & 1725 \\ & 1295 \end{aligned}$	ns
Minimum Clock to Enable Hold Time	tholdC	$\begin{array}{r} \hline 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{aligned} & 150 \\ & 75 \\ & 55 \end{aligned}$	ns

*The clock can remain high indefinitely with the data remaining latched.
\#lf clock stays low too long, the dy namically stored data will leak off and will have to be recalled.

FIGURE 1 - OUTPUT DRIVE CURRENT
TEST CIRCUIT

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
(Refer to timing diagram)

MEMORY READ CYCLE TIMING DIAGRAMS

† In this mode of operation, the negative going edge of Enable \ddagger The data outputs are valid without the logic " 1 " pulse occurring should occur on or before the clock negative edge. during the access cycle as shown in a) above.

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM14524, the customer may specify the content of the memory.

Address Inputs:
Words are numbered 0 through 255 and are addressed using sequential addressing of Address leads AO through A7 with AO as the least significant digit.
Logic " 0 " is defined as a "low" Address input ($V_{I L}$).
Logic " 1 " is defined as a "high" Address input ($V_{1 H}$).

WORD	ADDRESS								
Word	0		A7	A6	A5	A4	A3	A2	A1
Word	1	0	0	0	0	0	0	0	0
Word	2	0	0	0	0	0	0	0	1
Word	3	0	0	0	0	0	0	1	0
\cdot	\cdot	0	0	0	0	0	0	1	1
.	
Word 255	

Two methods may be used to transmit the custom memory pattern to Motorola．

METHOD A：PUNCHED COMPUTER CARDS

A binary coded decimal equivalent of each desired output may be punched in standard computer cards（four cards are required for all 256 words）in numerical（word number）order． 64 words per card are punched in columns 12 thru 75 using the Binary to Hexadecimal conversion table．Columns 77 and 78 are used to number the cards，which must be in numerical order．Please use characters as shown in the table when punching computer cards．

BINARY TO HEXA． DECIMAL CON－ VERSION TABLE	
BINARY WORD DESIRED	$\begin{gathered} \text { CARD } \\ \text { CHARACTER } \end{gathered}$
$00_{0}^{0} 0000$	0
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1
0010	2
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3
01000	4
$\begin{array}{lllll}0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}$	5
$\begin{array}{lllll}0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}$	6
$\begin{array}{lllll}0 & 1 & 1\end{array}$	7
100000	8
$\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}$	9
$\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}$	A
$\begin{array}{llll}101 & 1\end{array}$	B
11000	C
$\begin{array}{lllll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}$	D
1110	E
$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	F

WORD NUMBER	ADDRESS INPUTS								SAMPLE WORD OUTPUTS				CARD CHARACTER	
	A7	A6	A5	A4	A3	A2	A1	A0	B3	B2	B1	B0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	0	0	1	1	3	$\left\{\begin{array}{l}\text { Shown in columns } \\ 12-15 \text { an card }\end{array}\right.$
2	0	0	0	0	0	0	1	0	0	0	1	1	3	$\int 12-15$ on card
3	0	0	0	0	0	0	1	1	0	0	0	0	0	）below
－	－	－	－	－	－	－	－	－	－	－	－	－	－	
－	－	－	－	－	－	－	－	－	－	－	－	－	－	
－	－	－	－	－	－	－	－	－	－	－	－	－	－	
255	1	1	1	1	1	1	1	1	1	0	1	0	A	

METHOD B: TRUTH TABLE

Use of the truth table presents a simple and direct way to input the memory pattern desired to Motorola. When filling out the table please use a " 1 " for a high, and a " 0 " for a low.

CUSTOM PROGRAM for the MCM14524 Read Only Memory

WORD	BIT			
	3	2	1	0
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				

WORD	BIT			
	3	2	1	0
204				
205				
206				
207				
208				
209				
210				
211				
212				
213				
214				
215				
216				
217				
218				
219				
220				
221				
222				
223				
224				
225				
226				
227				
228				
229				
230				
231				
232				
233				
234				
235				
236				
237				
238				
239				
240				
241				
242	,			
243				
244				
245				
246				
247				
248				
249				
250				
251				
252				
253				
254				
255				

PACKAGE DIMENSIONS

M6800 System Memories/Chapter 4

(4)
The M6800 family of parts has been designed to set the standard for microcomputer system architecture. Included in this family are a number of Random Access Memories and Read Only Memories to fill the needs of a variety of applications. Both static and dynamic memories are available.

| Device
 No. | No. of
 Bits | Description | Organization | Access
 Time
 $(n s m a x)$ | Power
 Supplies
 (V) | No. of
 Pins | Case |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Page No. |
| :---: |

RANDOM ACCESS MEMORIES (Silicon Gate NMOS)

MCM6810A MCM68111A MCM68112A	$\begin{aligned} & 1024 \\ & 1024 \\ & 1024 \end{aligned}$	Static Static, Common I/O and Output Disable Static, Common 1/O	$\begin{aligned} & 128 \times 8 \\ & 256 \times 4 \\ & 256 \times 4 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & +5 \\ & +5 \\ & +5 \end{aligned}$	$\begin{aligned} & 24 \\ & 18 \\ & 16 \end{aligned}$	684 680,707 620,648	$4-3$ 4.7 4.11
MCM6815A MCM6815A2	$\begin{aligned} & 4096 \\ & 4096 \end{aligned}$	Dynamic Dynamic	$\begin{aligned} & 4096 \times 1 \\ & 4096 \times 1 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & +12,+5,-5 \\ & +12,+5,-5 \end{aligned}$	22 22	$\begin{aligned} & 677,708 \\ & 677,708 \end{aligned}$	$\begin{aligned} & 4-15 \\ & 4-15 \end{aligned}$

READ ONLY MEMORIES (Silicon Gate NMOS unless otherwise noted)

MCM6830A*	8192	Mask-Programmable	1024×8	500	+5	24	684	4-29
MCM68317*\#	16384	Mask-Programmable	2048×8	500	+5	24	684	4-35
MCM6832* \dagger	16384	Mask-Programmable	2048×8	550	+12, +5,-5	24	684	4-37
MCM68708\#	8192	Alterable	1024×8	500	+12, +5, -5	24	TBA	4.43

*Mask-programmable ROMs are manufactured according to a bit-pattern supplied by the customer. A special device number (SCM $\times x \times x$) is assigned to each individual pattern.
\#To be announced
\dagger Metal Gate NMOS

Advance Information

128×8-BIT STATIC RANDOM ACCESS MEMORY

The MCM6810A is a byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in byte increments. Memory expansion is provided through multiple Chip Select inputs.

- Organized as 128 Bytes of 8 Bits
- Static Operation
- Bi-Directional Three-State Data Input/Output
- Six Chip Select Inputs (Four Active Low, Two Active High)
- Single 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=500$ ns

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$V_{\text {CC }}$	-0.3 to +7.0	$V_{d c}$
Input Voltage	$V_{\text {in }}$	-0.3 to +7.0	$V_{d c}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MCM6810A RANDOM ACCESS MEMORY BLOCK DIAGRAM

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V_{CC}	4.75	5.0	5.25	Vdc^{\prime}
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.25	Vdc
Input Low Voltage	V_{IL}	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Current }\left(A_{n}, R / W, C S_{n}, \overline{C S}_{n}\right) \\ & \quad\left(V_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}\right) \end{aligned}$	$\mathrm{I}_{\text {in }}$	-	-	2.5	μ Adc
Output High Voltage $\left(\mathrm{IOH}_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	V_{OL}	-	-	0.4	Vdc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \quad\left(\mathrm{CS}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right. \text {) } \end{aligned}$	'LO	-	-	10	μ Adc
Supply Current $\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-	-	130	mAdc

CAPACITANCE ($f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

RECOMMENDED AC OPERATING CONDITIONS

Parameter	Symbol	Min	Unit
Address Setup Time	${ }^{\mathrm{t}} \mathrm{AS}$	30	ns
Address Hold Time	${ }^{\mathrm{t}} \mathrm{AH}$	0	ns
Chip Select Pulse Width	${ }^{\mathrm{t}} \mathrm{CS}$	400	ns

FIGURE 1 - AC TEST LOAD

READ CYCLE (All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, Load of Figure 1 ; Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	Min	Max	Unit
Read Cycle Time	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{R})$	500	-	
Access Time	$\mathrm{t}_{\mathrm{acc}}$	ns		
Chip Select to Output Delay	t_{CO}	-	500	
Data Hold from Address	$\mathrm{t}_{\mathrm{DHA}}$	ns		
Data Hold from Deselection	$\mathrm{t}_{\mathrm{DHD}}$	10	300	
Data Hold from Write	$\mathrm{t}_{\mathrm{DHW}}$	10	-	

WRITE CYCLE (All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load of Figure 1 ; Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	Min	Max	Unit
Write Cycle Time	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{W})$	500	-	
Write Pulse Width	t_{W}	400	ns	
Address to Write Release	$\mathrm{t}_{\mathrm{AWR}}$	500		ns
Data Setup Time	t_{DS}	225	-	
Data Hold Time	t_{DH}	0	-	ns

WRITE CYCLE TIMING

PACKAGE DIMENSIONS

NOTES

1. LEADS WIT HIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE WITH MAXIMUM MATERIAL CONDITION 2. LEAD NO. 1 CUT FOR IDENTIFICATION, OR BUMP ON TOP.
2. DIM "L" TO INSIDE OF LEADS. (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW PKG BASE)

> MCM68111AL MCM68111AP

Product Preview

$256 \times 4-$ BIT STATIC RANDOM ACCESS MEMORY

The MCM68111A is a 256×4-bit static RAM designed for use in bus-organized systems. It is fabricated with high-density, high-reliability, N-channel, silicon-gate, depletion load technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in 4-bit increments. Memory expansion is provided through two Chip Select inputs.

- 1024 Bits Organized as 256×4
- Static Operation
- Bi-Directional Three-State Data Input/Output
- Two Chip Select Inputs for Memory Expansion
- Output Disable
- Single 5-Volt Power Supply
- Direct TTL/DTL Compatibility
- Maximum Access Time $=450 \mathrm{~ns}$

ABSOLUTE MAXIMUM RATINGS (See Note 1; Referenced to ${ }^{\text {SS }}$)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT. ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

mos

(N-CHANNEL, SILICON-GATE, DEPLETION LOAD)

256×4-BIT STATIC RANDOM ACCESS MEMORY

with Common Data Inputs/Outputs and Output Disable

L SUFFIX

CERAMIC PACKAGE CASE 680

P SUFFIX
PLASTIC PACKAGE CASE 707

MCM68111A RANDOM ACCESS MEMORY BLOCK DIAGRAM

This is advance information and specifications are subject to change without notice.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{S S}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V_{CC}	4.75	5.0	5.25	$V_{d c}$
Input Low Voltage	V_{IL}	-0.3	-	0.8	$V_{d c}$
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	5.25	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current (All Inputs: $V_{\text {in }}=0$ to 5.25 V)	1 n	-	1.0	2.5	$\mu \mathrm{Adc}$
Output Leakage Current (Three-State) $\left(\overline{C S}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \text { to } 2.4 \mathrm{~V}\right)$	'LO	-	-	10	$\mu \mathrm{Adc}$
Output High Voltage $\left(I_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $\left(1_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	v_{OL}	-	-	0.4	Vdc
Power Supply Current $\left(T_{A}=0^{\circ} \mathrm{C}, V_{C C}=5.25 \mathrm{~V}\right)$	${ }^{\text {I CC }}$	-	40	70	mAdc

CAPACITANCE (Periodically sampled rather than 100% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input/Output Capacitance $\left(V_{1 / O}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$	-	8.0	12.5	pF
Input Capacitance, Other Inputs $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\text {in }}$	-	3.0	7.5	pF

AC CHARACTERISTICS

(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$; Load of Figure 1)
READ CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	Min	Max	Unit
Read Cycle Time	$\mathrm{t}_{\text {cyc (R) }}$	450	-	ns
Access Time	tace	-	450	ns
Chip Select to Output Delay	${ }^{\text {r }} \mathrm{CO}$	-	230	ns
Output Enable to Output Delay	toE	-	230	ns
Data Hold from Address	tDHA	10	-	ns
Data Hold from Disable	tDHD	10	90	ns
Data Hold from Write	tDHW	0	90	ns

WRITE CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	Min	Max	Unit
Write Cycle Time	$\mathrm{t}_{\text {cyc }}(\mathrm{W})$	450	-	ns
Chip Select Pulse Width	${ }^{\text {t }}$ CS	300	-	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	ns
Address Hold Time	${ }_{\text {t }}^{\text {A }}$ H	0	-	ns
Address to Write Release	${ }^{\text {tawR }}$	450	-	ns
Write Pulse Width	tw	300	-	ns
Data Setup Time	tos	190	-	ns
Data Hold Time	${ }^{\text {t }}$ DH	0	-	ns

FIGURE 1 - AC TEST LOAD

*Output Disable may be hard-wired to $V_{\text {SS }}$ and left unused. If th is is done, $R / W=V_{1 L}$ is used to insure a three-state $1 / O$ buffer before valid data input is required for a write cycle. Using the timing shown, 20 ns is allowed between the three-state condition and
 extended by widening t_{W}.

DESCRIPTION OF BUS INTERFACE

The MCM68111A is compatible with the M6800 bus. The high-impedance address inputs offer low leakage currents and low capacitance. They are readily connected to the address bus. The $\overline{\mathrm{CS}}$ inputs, R/W, and Output Disable also offer these advantages.

The MCM68111A uses a three-state I/O buffer, allowing the memory to be connected to the data bus. The I/O buffer will be at a high impedance state when the memory is either deselected $\left(\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}\right)$, is in the write mode $\left(R / W=V_{I L}\right)$, or the output is disabled $\left(O D=V_{I H}\right)$. During this time, the I/O ports exhibit low leakage currents and low capacitance. When the memory is selected, outputs enabled, and in the read mode ($\mathrm{R} / \mathrm{W}=\mathrm{V}_{1} \mathrm{H}$), the I/O buffers will actively drive the data bus to its proper levels.

PACKAGE DIMENSIONS

Product Preview

256×4-BIT STATIC RANDOM ACCESS MEMORY

The MCM68112A is a 256×4-bit static RAM designed for use in bus-organized systems. It is fabricated with high-density, high-reliability, N-channel, silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in 4 -bit increments. Memory expansion is provided through a Chip Select input.

- 1024 Bits Organized as 256×4
- Static Operation
- Bi-Directional Three-State Data Input/Output
- Chip Select Input for Memory Expansion
- Single 5 -Volt Power Supply
- Direct TTL/DTL Compatibility
- Maximum Access Time $=450 \mathrm{~ns}$

ABSOLUTE MAXIMUM RATINGS (See Note 1; Referenced to $V_{\text {SS }}$)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT. ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, SILICON-GATE)

256×4-BIT STATIC RANDOM ACCESS MEMORY

This is advance information and specifications are subject to change without notice.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{\text {SS }}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V_{CC}	4.75	5.0	5.25	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.25	Vdc

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current (All Inputs; $\mathrm{V}_{\text {in }}=0$ to 5.25 V)	lin	-	1.0	2.5	μ Adc
Output Leakage Current (Three-State) $\left(C S=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \text { to } 2.4 \mathrm{~V}\right)$	'LO	-	-	10	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Output High Voltage } \\ & \left(I_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right) \end{aligned}$	$\overline{\mathrm{VOH}}$	2.4	-	-	Vdc
$\begin{gathered} \text { Output Low Voltage } \\ (1 \mathrm{OL}=1.6 \mathrm{~mA}) \end{gathered}$	V_{OL}	-	-	0.4	Vdc
$\begin{aligned} & \text { Power Supply Current } \\ & \quad\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right) \end{aligned}$	${ }^{\prime} \mathrm{CC}$	-	40	70	mAdc

CAPACITANCE (Periodically sampled rather than 100% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input/Output Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	-	8.0	-	pF
Input Capacitance, Other Inputs $\left(\mathrm{V}_{\text {in }}=0 . \mathrm{V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	C_{in}	-	3.0	-	pF

AC CHARACTERISTICS

(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$; Load of Figure 1)
READ CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	Min	Max	Unit
Read Cycle Time	$t_{\text {cyc }}$ (R)	450	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	450	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	230	ns
Data Hold from Address	tDHA	10	-	ns
Data Hold from Deselection	${ }^{\text {t }}$ DHD	10	90	ns
Data Hold from Write	tDHW	0	90	ns

WRITE CYCLE (Input pulse levels $=0.8 \mathrm{~V}$ to 2.0 V)

Characteristic	Symbol	Min	Max	Unit
Write Cycle Time	$\mathrm{t}_{\text {crac }}(W)$	450	-	ns
$\overline{\text { Chip Select Puise Width }}$	${ }_{\text {t }}^{6}$	300	-	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	ns
Address Hold Time	${ }_{t}{ }_{\text {A }}$	0	-	ns
Address to Write Release	${ }^{\text {tawR }}$	450	-	ns
Write Pulse Width	tw	300	-	ns
Data Setup Time	tos	190	-	ns
Data Hold Time	${ }^{\text {t DH }}$	0	-	ns

MCM68112A (continued)

FIGURE 1 - AC TEST LOAD

FIGURE 2 - READ CYCLE TIMING

FIGURE 3 - WRITE CYCLE TIMING

$=$ Don't Care

DESCRIPTION OF BUS INTERFACE

The MCM68112A is compatible with the M6800 bus. The high-impedance address inputs offer low leakage currents and low capacitance. They are readily connected to the address bus. The $\overline{\mathrm{CS}}$ and R/W control inputs also offer these advantages.

The MCM68112A uses a three-state I/O buffer, allowing the memory to be connected to the data bus. The $1 / 0$ buffer will be at a high impedance state when the memory is either deselected ($\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}$) or is in the write mode $\left(\mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{IL}}\right)$. During this time, the I / O ports exhibit low leakage currents and low capacitance. When the memory is both selected and in the read mode ($\mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{IH}}$), the I / O buffers will actively drive the data bus to its proper levels.

EXPANDED BLOCK DIAGRAM

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PACKAGE DIMENSIONS

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	19.05	19.94	0.750	0.785
B	6.10	7.49	0.240	0.295
C	-	5.08	-	0.200
D	0.38	0.53	0.015	0.021
F	1.40	1.78	0.055	0.070
6	2.54 BSC		0.100 BSC	
H	0.51	1.14	0.020	0.045
J	0.20	0.30	0.008	0.012
K	2.54	-	0.100	-
L	7.49	8.89	0.295	0.350
M	-	15^{0}	$-$	15^{0}
N	0.51	1.02	0.020	0.040

notes:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. PKG. INDEX: NOTCH IN LEAD

NOTCH IN CERAMIC OR INK DOT.
3. DIM "A" AND "B" DO NOT INCLUDE GLASS RUN-OUT.
4. DIM "L" TO INSIDE OF LEADS (MEASURED $0.51 \mathrm{~mm}(0.020)$ BELOW (MEASU
BODY)

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	20.70	21.34	0.815	0.840
B	6.10	6.60	0.240	0.260
C	4.06	4.57	0.160	0.180
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100	BSC
H	1.32	1.83	0.052	0.072
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.37	7.87	0.290	0.310
M	-	10°	-	10°
N	0.51	1.02	0.020	0.040
P	0.13	0.38	0.005	0.015
\mathbf{Q}	0.51	0.76	0.020	0.030

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED parallel

Advance Information

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM6815A is a 4096×1-bit dynamic RAM designed for use in busorganized systems. It is fabricated withahigh-density, highly-reliable, N -channel, silicon-gate technology. Except for the high-level Chip Enable clock, all inputs are TTL compatible. The output is three-state TTL compatible.

Refresh of the entire memory can be accomplished by sequentially cycling through addresses A0-A4 (32 cycles) a maximum of every 2.0 ms at $70^{\circ} \mathrm{C}$ ambient temperature. For standby operation, considerable power can be saved by refreshing every 10 ms at $50^{\circ} \mathrm{C}$ ambient temperature. In addition, widened power supply tolerances are allowed during standby.

The MCM6815A is an ideal Random Access Memory for the M6800 Microcomputer Family, operating well within the timing requirements of the system. Memory expansion is provided for through a Chip Select input.

- Organized as 4096 Words of 1 Bit
- Maximum Access Time $=\quad 200 \mathrm{~ns} 300 \mathrm{~ns}$
- Minimum Read Cycle Time $=\quad 360 \mathrm{~ns} 470 \mathrm{~ns}$
- Minimum Write Cycle Time $=\quad 490 \mathrm{~ns} 590 \mathrm{~ns}$
- Minimum Read-Modify-Write Cycle Time $=490$ ns 590 ns
- Low Power Dissipation 335 mW Typical (Active) $550 \mu \mathrm{~W}$ Typical (Standby with Refresh at $50^{\circ} \mathrm{C}$)
- Easy Refresh - Only 32 Cycles Every 2.0 ms at $70^{\circ} \mathrm{C}$ or Every 10 ms During System Standby at $50^{\circ} \mathrm{C}$
- TTL Compatible
- 3-State Output
- Address Latches On Chip
- Power Supply Pins on Package Corners for Layout Simplification
- Typical Applications:

Main Memory
Buffer Memory

Peripheral Storage
Non-Volatile Memory System

MOS
(N-CHANNEL, SILICON-GATE)
4096-BIT DYNAMIC RANDOM ACCESS MEMORY

[^8]ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to V_{BB}	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.3 to +20	$\mathrm{~V}_{\mathrm{dc}}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{S S}$).

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {DD }}$	11.4	12	12.6	Vdc
	$V_{\text {CC }}$	4.5	5.0	5.5	Vdc
	$\mathrm{V}_{\text {SS }}$	0	0	0	Vdc
	$V_{\text {BB }}$	-5.25	-5.0	-4.75	Vdc
Logic Levels Input High Voltage ($\left.A_{n}, D_{i n}, R / W, \overline{C S}\right)$	$\mathrm{V}_{\text {IH }}$	3.0	-	$V_{D D}+1.0$	Vdc
Input Low Voltage ($A_{n}, \mathrm{D}_{\text {in }}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{CS}}$)	$V_{\text {IL }}$	-1.0	-	0.8	Vdc
Chip Enable High Voltage	$\mathrm{V}_{\text {CEH }}$	$\mathrm{V}_{\text {DD }}-1.0$	-	$\mathrm{V}_{\text {DD }}+1.0$	Vdc
Chip Enable Low Voltage	$V_{\text {CEL }}$	-1.0	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(A_{n}, D_{i n}, R / W, \overline{C S}\right.$, Preset) $\left(V_{\text {in }}=0 \text { to } V_{D D}+1.0 \mathrm{~V}\right)$	$\mathrm{I}_{\text {in }}$	-	-	10	$\mu \mathrm{A}$
Input Chip Enable Current $\left(\mathrm{V}_{\text {in }}=0 \text { to } \mathrm{V}_{\mathrm{DD}}+1.0 \mathrm{~V}\right)$	IICE	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left(I_{O}=-100 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	V_{CC}	Vdc
Output Low Voltage $(10=2.0 \mathrm{~mA})$	V_{OL}	$\mathrm{V}_{\text {SS }}$	-	0.45	Vdc
Output Leakage Current $\left(V_{O}=0.45 \mathrm{~V} \text { to } V_{C C}, C E=V_{C E L} \text {, or } \overline{C S}=V_{I H}\right)$	'LO	-	-	10	$\mu \mathrm{A}$
Average Supply Current, Active Mode$\left(T_{\mathrm{cyc}}(W)=\min \right)$	IDDA	-	28	36	mA
	ICCA	-	0.05	1.0	mA
	IBBA	-	-	100	$\mu \mathrm{A}$
Supply Current, Standby Mode$\left(C E=V_{C E L}\right)$	IDDS	-	1.0	20	$\mu \mathrm{A}$
	I'CCS	-	-	10	$\mu \mathrm{A}$
	IBBS	-	1.0	20	$\mu \mathrm{A}$

EFFECTIVE CAPACITANCE (Test Circuit of Figure 1, full operating voltage and temperature range, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance (A $A_{n}, D_{\text {in }}, R / W, \overline{C S}$, Preset)	$\mathrm{C}_{\text {in }}(E F F)$	-	4.0	5.0	pF
Chip Enable Capacitance	$\mathrm{C}_{\text {CE }}$ (EFF)	-	25	30	pF
Output Capacitance	$\mathrm{C}_{\text {out (EFF) }}$	-	4.0	5.0	pF

FIGURE 1 - MEASUREMENT OF EFFECTIVE CAPACITANCE

RECOMMENDED OPERATING CONDITIONS FOR STANDBY WITH REFRESH
(Refresh cycles only, all other parameters unchanged.)

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {DD }}$	10.8	12.0	13.2	Vdc
	$V_{C C}$	Not Required			-
	$V_{B B}$	-5.5	-5.0	-4.5	Vdc
Time Between Refresh ($\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$)	${ }^{\text {t REF }}$	-	-	10	ms

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)
OPERATING MODES

Mode	Control States		Output
	R/W	$\overline{\text { CS }}$	
Active (CE = High)			
Read Only	H	L	Valid
Read/Write	$\mathrm{H} \rightarrow \mathrm{L}$	L	Valid
Write Only	L	L	Valid
Read Refresh	$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{L} \rightarrow \mathrm{H}$	Valid \rightarrow Floating
Refresh Only	L	H	Floating
Chip Disable (Unselected)	H	H	Floating
Standby (CE = Low)	X	X	Floating

> X = Don't Care

RECOMMENDED AC OPERATING CONDITIONS (Read, Write, and Read Modify Write Cycles)

Parameter	Symbol	Min	Max	Unit
Address Setup Time	${ }^{\text {t }}$, ${ }_{\text {S }}$	0	-	ns
Address Hold Time	${ }^{\text {ta }}$ A	60	-	ns
CE Pulse Transition Time	t	-	100	ns
CE Off Time	${ }^{\text {t }}$ SB	120	-	ns
Chip Select Delay Time	${ }^{\text {t }}$ CSD	-	70	ns
Chip Select Hold Time	tesh	0	-	ns
Read Write Delay Time	$t_{\text {RWW }}$	-	70	ns
Read Write Hold Time	${ }^{\text {tRWH }}$	0	-	ns
Time Between Refresh	treF	-	2.0	ms

AC CHARACTERISTICS
[All timing with $\mathrm{t}_{\mathrm{T}}=\mathbf{2 0} \mathrm{ns}$; Load $=1 \mathrm{TTL}$ Gate (MC74H00 Series), $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (effective)]

READ CYCLE (R/W $\left.=V_{I H}, \overline{C S}=V_{I L}\right)$

		MCM6815AL,P		MCM6815AL2,P2		
Characteristic	Symbol	Min	Max	Min	Max	Unit
Read Cycle Time	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{R})$	470	-	360	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	310	2000	200	2000	ns
Chip Enable to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	280	-	180	ns
Read Access Time	tacc	-	300	-	200	ns

NWM - Don't Care

WRITE CYCLE (R/W $\left.=V_{I L}, \overline{C S}=V_{I L}\right)$ REFRESH CYCLE (R/W $\left.=V_{I L}, \overline{C S}=V_{I H}\right)$

Characteristic	Symbol	MCM6815AL,P		MCM6815AL2,P2		Unit
		Min	Max	Min	Max	
Write Cycle Time	${ }^{\text {cycy }}$ (W)	590	-	490	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	430	2000	330	2000	ns
Read-Write Release Time	trwR	430	2000	330	2000	ns
Write Pulse Width	tw	210	-	160	-	ns
Read-Write to Chip Enable Separation Time	${ }^{\text {tre }}$	0	-	0	-	ns
Data Delay Time	${ }^{1} \mathrm{DD}$	-	70	-	70	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	50	-	50	-	ns

WRITE AND REFRESH CYCLE TIMING

READ-MODIFY-WRITE (R/W $\left.=\mathrm{V}_{\text {IH }} \rightarrow \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {IL }}\right)$
READ REFRESH (See Note 1)

		MCM6815AL,P		MCM6815AL2,P2		
Characteristic	Symbol	Min	Max	Min	Max	Unit
Read-Modify-Write Cycle Time	${ }^{\text {t }} \mathrm{cyc}(\mathrm{R} / \mathrm{W})$	590	-	490	-	ns
Chip Enable On Time	${ }^{\text {t }} \mathrm{CE}$	430	2000	330	2000	ns
Read-Write Release Time	$t_{\text {thWR }}$	430	2000	330	2000	ns
Write Pulse Width	${ }^{\text {tw }}$ W	210	-	160	-	ns
Data Setup Time	${ }^{\text {t }}$ DS	0	-	0	-	ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	50	-	50	-	ns
Read-Write to Chip Enable Separation Time	${ }^{\text {t } R C}$	0	-	0	-	ns
Chip Enable to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	280	-	180	ns
Read Access Time	${ }^{\text {tacc }}$	-	300	-	200	ns

Note 1: A read refresh cycle is possible by bringing $\overline{\mathrm{CS}}$ high after output data is valid and then bringing R / W low to the write position.

READ MODIFY WRITE TIMING

TYPICAL CHARACTERISTICS CURVES

FIGURE 4-IDD SUPPLY CURRENT versus $V_{D D}$

FIGURE 6 - IDD SUPPLY CURRENT versus AMBIENT TEMPERATURE

FIGURE 3 - ACCESS TIME versus AMBIENT TEMPERATURE

FIGURE 5 - IDD SUPPLY CURRENT versus CYCLE TIME

FIGURE 7 - REFRESH TIME versus AMBIENT TEMPERATURE

TYPICAL SUPPLY CURRENT TRANSIENT WAVEFORMS

FIGURE 8 - CHIP ENABLE VOLTAGE

FIGURE 11 - ibB SUPPLY CURRENT

FIGURE 10 - icc SUPPLY CURRENT

FIGLRE 12 - ice SUPPLY CURRENT

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The MCM6815A 4096-bit dynamic RAM uses a three transistor storage cell in an inverting cell configuration. The single high-level clock (Chip Enable) starts an internal three-phase clock generator which controls the read and write functions of the device. The $\phi 1$ signal, which is high when CE is low (standby mode), preconditions the nodes in the dynamic RAM in preparation for a memory cycle. The $\phi 2$ signal, which comes on as CE goes high, is the read control and transfers data from storage onto bit sense lines. The $\phi 3$ signal, which comes after $\phi 2$ only during a write or refresh cycle, transfers data from the bit sense lines back into storage. The $\phi 3$ signal occurs only if the R/W input is low.

To perform a read cycle, CE is brought high to initiate a $\phi 2$ signal and latch the input addresses. The column decoders select one column in each of the four storage quadrants (see the block diagram) and transfers data from storage onto the 128 bit sense lines. The row
decoder selects one of these 128 bit sense lines for read and write operations. During the $\phi 2$ signal, the data on this selected bit sense line is Exclusive ORed with the state of the appropriate data control cell to supply the correct output data. After this data is received by the external system, CE may be brought low to the standby position. This assumes that the R/W signal is held high to prevent an internal $\phi 3$ being generated.

To perform a write or refresh operation, CE is brought high and everything is identical to a read operation up until the 128 bit sense lines are charged with the selected columns of stored data. When R/W is brought low (if it is not already there), a $\phi 3$ signal is generated after $\phi 2$ is over. The $\phi 3$ signal takes the data from the 128 bit sense lines and returns it to the 128 storage locations it came from. Because of the design of the memory array, this $\phi 2-\phi 3$, read-write operation inverts the data. Therefore, one extra row of memory cells, called data control cells, is used to
keep track of the polarity of stored data in order to be able to correctly recover it. During the write operation, the input data is Exclusive ORed with these control cells before being stored in the array. A refresh cycle does not modify any of the bit sense lines, but simply returns the data (now inverted) into storage.

All timing signals for the MCM6815A are specified around these operations. The following is a brief description of the input pins and relevant timing requirements.
Chip Enable - CE is a single high level clock which initiates all memory cycles. CE can remain low as long as desired for specific applications as long as the 2.0 ms refresh requirements are met.
$\overline{\text { Chip Select }}$ - This signal controls only the 1/O buffers. When $\overline{\mathrm{CS}}$ is high, the input is disconnected and the output is in the 3 -state high-impedance state. A refresh cycle is, therefore, a write cycle with $\overline{\mathrm{CS}}$ high. $\overline{\mathrm{CS}}$ has no critical timing with respect to any other signal except that there is a finite delay between activation and data out.

Read/Write - When high, R/W inhibits the internal $\phi 3$ signal, thereby keeping the memory from writing. When R / W is low, a $\phi 3$ will occur soon after $\phi 2$ is finished. For a read cycle, R/W should be high within tRWD of CE to insure that a $\phi 3$ does not start. The only timing requirement on the R/W input for writing is a minimum write pulse defined as the overlap of $\overline{C S}, C E$, and R / W. Refresh cycles require that $\overline{\mathrm{CS}}$ be high to inhibit the input buffer before a $\phi 3$ occurs. Thus $\overline{\mathrm{CS}}$ should be high within t CSD for a refresh cycle, or before R/W goes low for a readrefresh cycle.

Data \ln - The input data must be valid for a sufficient time to override the data stored on the selected bit sense line. It must remain valid for the "write pulse" defined under Read/Write. Signals on the $D_{\text {in }}$ pin are ignored when either $\overline{\mathrm{CS}}$ or R / W is high, or CE is low.
Data Out - Output data is inverted from input data and is valid $t_{\text {acc }}$ after CE goes high. The data will remain valid as long as CE is high and $\overline{\mathrm{CS}}$ remains low. With either CE low or $\overline{\mathrm{CS}}$ high, the output is in a high-impedance state. The data output is initially precharged high when CE goes high and is then either discharged to ground or left high depending on the stored data. This precharging followed by valid data occurs regardless of the state of the R/W input, making the write cycle actually a read-write cycle. The output will also try to precharge during a refresh cycle but will be kept at high impedance by the $\overline{\mathrm{CS}}$ being high. If $\overline{\mathrm{CS}}$ is originally low and is then brought high (within the tCSD specification) the output may start to precharge before being cut off and returned to high impedance.
Addresses - The addresses are latched when CE goes high, and may be removed after an appropriate hold time.
$V_{S S}$ - Circuit ground.
VBB - The reverse bias substrate supply. Forward biasing this supply with respect to VSS will destroy the memory device.

VDD - Positive supply voltage.
$V_{C C}$ - Output buffer supply. This supply goes only to the data output buffer and draws current only when driving an output load high.

Preset - This pin should be tied to ground. During device testing Preset can be used to preset the data control cells to a logic zero. One 200 ns, 12 V pulse will set all 32 cells simultaneously. Preset has no system use; its only purpose is to ensure a good logic level in the control cells after first power up. In system use, this good logic level will come naturally after the first few refresh cycles.

APPLICATIONS INFORMATION

Power Supplies

The MCM6815A is a dynamic RAM which has essentially zero power drain when in the standby (CE low) mode. When operating, the VDD supply may experience transients in the order of 100 mA for a short time (Figure 9). The $V_{B B}$ supply, which has very low dc drain while operating, may see transients of about 40 mA during the edges of CE. Therefore, appropriate bypassing of both supplies is recommended. This bypassing has been simplified by the location of the power supply pins on the corners of the package.

The $V_{C C}$ line supplies only the input leakage of a TTL load on Data Out and should never exceed about $100 \mu \mathrm{~A}$, presenting little bypassing requirement.

Power dissipation for a system of N chips is much lower than N times the 335 mW typical dissipation for a full speed operating chip. This is because the unselected rows in a memory array card are operating in the standby mode of near zero dissipation. This zero standby power is actually unachievable because of the requirements for refresh. Therefore, power dissipation for an array of $\mathrm{N} \times \mathrm{M}$ chips operating at t_{1} cycle time, tREF refresh increment, and maximum CE down time between cycles is:
$P_{D} \approx M\left(\frac{490 n s}{t_{1} \mathrm{~ns}}\right) 335 \mathrm{~mW}+(\mathrm{N}-1)(\mathrm{M})\left(\frac{15.7}{\text { tREF }^{\mathrm{ns}}}\right) 335 \mathrm{~mW}$
For a 550 -ns-cycle-time, 64 k by 16 system (16 by 16 chip array) with refresh at 2.0 ms , the approximate power dissipation is:

$$
\begin{aligned}
P_{D} & \approx 16\left(\frac{490}{550}\right) 335+(15)(16)\left(\frac{15.7}{2000}\right) 335 \\
& \approx 4775 \mathrm{~mW}+630 \mathrm{~mW}=5.4 \mathrm{~W}
\end{aligned}
$$

A similar one megabyte system, eight bytes wide, would have a dissipation of only 24 W . If the low standby power capability were not used, over 600 W would be dissipated.

Refresh

The MCM6815A is refreshed by performing a refresh (or write) cycle on each of the 32 combinations of the least significant address bits (AO.A4) within a 2.0 ms time period. (A5-A11 must remain constant at proper logic levels.) This refresh can be done in a burst mode (32 cycles starting every 2.0 ms) or in a distributed mode where one cycle is done every $62.5 \mu \mathrm{~s}$.

A refresh abort can be accomplished by treating a refresh cycle as a read-modify-write cycle with $\overline{\mathrm{CS}}$ high. This type of cycle can be aborted any time until the R/W signal has been brought low to allow a $\phi 3$ clock to begin.

Non-Volatile Storage

In many digital systems, it is extremely important to retain data during emergencies such as power failure. Unfortunately, however, most random access read/write semiconductor memories such as the MCM6815A are volatile. That is, if power is removed from the semiconductor memory, stored information is lost. Therefore, non-volatility for a specified period of time becomes highly desirable - as a necessity to maintain irreplaceable information or as a convenience to avoid the time consuming and troublesome task of having to reload the memory.

The extremely low standby power dissipation of the MCM6815A makes it ideal for main memory applications requiring battery backup for non-volatility. For example, the MCM6815A can be employed in an 8 K byte nonvolatile main memory system application for microprocessors. The memory system can be partitioned into three major sections as illustrated in Figure 13. The first section contains the address buffers and the Read/Write and Chip Select decoding logic. The second section consists of the
data bus buffering transceivers and the memory array (which consists of 16 MCM6815As) organized into two rows of 4 K bytes each.

The third section of the block diagram comprises refresh and control logic for the memory system. This logic interfaces the timing of the refresh handshaking with the microprocessor (MPU) clock circuitry. It handles requests for refresh, the generation of refresh addresses, the synchronization of a Power Fail signal, the multiplexing of the external Memory Clock with the internal clock (used during standby), and the generation of a -5 V supply on the board using a charge-pump method.

The refresh control logic is illustrated in Figure 14. It handles the refreshing of the memory during both operating and standby modes. The timing for this logic is given in Figure 15. Figure 16 gives the memory timing for the standby mode only. Decoding of the memory clock (CE A and $C E_{B}$) and the circuitry to synchronize the Power Fail signal are shown in Figure 17, with the timing given in Figure 18.

The memory device clock ($C E_{A}$ and $C E_{B}$) during standby is created by a monostable multivibrator (MC14528) and buffered from the memory array by three MC14503 buffers in parallel. This clock is multiplexed with the Memory Clock by use of the three-state feature of the

FIGURE 13 - NON-VOLATILE MEMORY SYSTEM BLOCK DIAGRAM

MC14503. The Memory Clock (used during normal operation) is translated to 12 V levels by use of an MC3460 Clock Driver. Decoding of the $C E_{A}$ and CE_{B} signals (i.e., clocking only the memory bank addressed) to conserve power is accomplished by the logic within the MC3460.

Since the Power Fail signal will occur asynchronously with both the Memory Clock and the refreshing operation (Refresh Clock), it is necessary to synchronize the Power Fail signal to the rest of the system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip-flop is used as the basic synchronization device. The leading edge of the Refresh Clock triggers a $3 \mu \mathrm{~s}$ monostable multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 ns monostable which creates the CE pulse during standby operation. The $3 \mu \mathrm{~s}$ pretrigger signal is used to set half of the MC14027 flip-flop, the output of which, (B), then inhibits a changeover from the standby to the operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the Power
$\overline{\text { Fail signal change states just prior to or during a refresh }}$ cycle. The trailing edge of the 500 ns monostable clears the MC14027 flip-flop, enabling the second flip-flop in the package. The state of Power Fail and Power Fail is applied to the K and J inputs of this second flip-flop and is synchronized by clocking with Memory Clock. The outputs of this flip-flop, labeled Bat and Bat, lock the system into the refresh mode and multiplex in the internal clock for standby operation when Bat $=$ " 1 ". The voltage to logic not required for the refresh only mode of operation is removed to conserve power.

By using CMOS for the refresh logic and capacitance drivers, and a low current refresh oscillator, the standby current required for the 8 K byte system is extremely small, as noted in Table 1. This low standby current requirement can be easily supplied for several days with standard type +12 V batteries. For more detailed information on this sytem and a large mainframe memory system, see Application Notes AN-732 and AN-740.

FIGURE 14 - REFRESH CONTROL LOGIC

FIGURE 16 - MEMORY TIMING IN STANDBY MODE

FIGURE 17 - POWER FAIL LOGIC AND CHIP ENABLE DRIVER

FIGURE 18 - POWER UP/DOWN SYNCHRONIZATION

TABLE 1 - STANDBY MODE CURRENT ALLOCATION

Circuit Section	Typical Current
+12 V Current (VDD) for 16 MCM 6815 A 's	5 mA
Charge Pump	3 mA
Comparator	2 mA
Capacitance Drivers	$\frac{4 \mathrm{~mA}}{14 \mathrm{~mA}}$
Total	

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not
necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not assumed for inaccuracies. Furthermore, such information does not
convey to the purchaser of the semiconductor devices described any convey to the purchaser of the semiconductor devices des
license under the patent rights of Motorala Inc. or others.

PACKAGE DIMENSIONS

DIM	MILLMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	27.05	27.94	1.065	1.100
C	2.16	3.68	0.085	0.145
D	0.43	0.58	0.017	0.023
F	1.02 REF	0.040	REF	
G	2.54	BSC	0.100 BSC	
H	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	3.18	4.45	0.125	0.175
L	9.65	10.67	0.380	0.420
M	-	70	-	70
N	0.64	1.27	0.025	0.050

NOTES

LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL

CERAMIC PACKAGE CASE 677.03

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	28.83	29.59	1.135	1.165
B	8.64	9.14	0.340	0.360
C	4.57	5.08	0.180	0.200
D	0.36	0.51	0.014	0.026
F	1.02	1.52	0.040	0.060
G	2.41	2.67	0.095	0.105
H	1.78	2.03	0.070	0.080
J	0.20	0.30	0.008	0.012
K	3.05	3.56	0.120	0.140
L	9.65	10.16	0.380	0.400
M	0^{0}	10°	0°	10°
N	0.51	1.02	0.020	0.040

PLASTIC PACKAGE
CASE 708-01

Advance Information

1024 X 8-BIT READ ONLY MEMORY

The MCM6830A is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Four Chip Select Inputs (Programmable)
- Single 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=500 \mathrm{~ns}$

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT. ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, SILICON-GATE)

1024×8-BIT READ ONLY MEMORY

PIN ASSIGNMENT		
Gnd 0	A0	24
2 -0	A1	23
-1	A2	22
$4 \square \mathrm{D} 2$	A3	21
5003	A4	20
-04	A5	19
7 705	A6	18
8 -06	A	17
$9 \mathrm{O}_{1}$	A8	16
10■cso	A9	15
- cs1	cs3	14
- V_{cc}	cs2	13

This is advance information and specifications are subject to change without notice.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V_{CC}	4.75	5.0	5.25	Vdc
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	5.25	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}\right)$	1 in	-	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(1 \mathrm{OH}^{2}=-205 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	V_{OL}	-	-	0.4	Vdc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \quad\left(\mathrm{CS}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right. \text {) } \end{aligned}$	'LO	-	-	10	$\mu \mathrm{Adc}$
Supply Current $\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{\prime} \mathrm{CC}$	-	-	130	mAdc

CAPACITANCE ($f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)
(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\mathrm{cyc}}$	500	-	
Access Time	$\mathrm{t}_{\mathrm{acc}}$	-	ns	
Chip Select to Output Delay	t_{CO}	-	500	ns
Data Hold from Address	$\mathrm{t}_{\mathrm{DHA}}$	10	300	
Data Hold from Deselection	$\mathrm{t}_{\mathrm{DHD}}$	10	-	

FIGURE 1 - AC TEST LOAD

TIMING DIAGRAM

77/7/ = Don't care

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM6830A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM6830A should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The procedure for generating and verifying a system is shown in Figure 4. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

Note: Motorola can accept magnetic tape and truth table table formats. For further information, contact your local Motorola sales representative.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data				
0	0	0	0	Hexadecimal Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	D
1	1	1	1	E

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column
112 Byte " 0 " Hexadecimal equivalent for outputs D7 thru D4 (D7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs D3 thru D0 (D3 = M.S.B.)
3 14-75 Alternate steps 1 and 2 for consecutive bytes.
$4 \quad$ 77.78 Card number (starting 01)
$5 \quad 79.80$ Total number of cards (32)

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA MCM6830A MOS READ ONLY MEMORY

Customer:

Motorola Use Only:

Company

Part No.
Originator
\qquad
\qquad
\qquad Specif. No.: \qquad
Phone No. \qquad
Quote \qquad

Part No. \qquad

Enable Options:

$\operatorname{cs0}$	\square	\square
CS1	\square	\square
cs2	\square	\square
$\operatorname{cs3}$	\square	\square

Input Logic Levels:
1 is most positive
0 is most negative

FIGURE 4 - SYSTEM DESIGN AND VERIFICATION PROCEDURE

MCM68317L

Product Preview

16,384-BIT READ ONLY MEMORY

The MCM68317 is a 16,384 -bit high-speed Read Only Memory designed for high-performance, low-cost applications. Organized as 2048 eight-bit bytes, the device optimizes speed, power, and density trade-offs.

For ease of use, the memory operates from a single +5 volt power supply. No clocks or refreshing are required because of static operation. All inputs are TTL compatible, and the outputs are three-state TTL compatible.

The MCM68317 is a logical extension of the MCM68708, an 8192-bit AROM. An additional address, A10, replaces the VDD power supply at pin 19, and CS2 replaces the Program input at pin $18 . \mathrm{V}_{\mathrm{BB}}$ is removed, leaving pin 21 with no connection.

- Organized as 2048 Bytes of 8 -Bits
- Static Operation
- Single +5 Volt Power Supply
- Access Time $=500 \mathrm{~ns}$
- Low Power Dissipation
- Two Chip Select Inputs Available for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Logical Extension of the MCM68708 AROM

MOS

(NCHANNEL)

2048×8-BIT STATIC

 READ ONLY MEMORY

MCM68317 READ ONLY MEMORY BLOCK DIAGRAM

This is advance information and specifications are subject to change without notice.

MCM6832L

Advance Information

2048×8-BIT READ ONLY MEMORY

The MCM6832 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel metal-gate technology. For ease of use, the device is compatible with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through a Chip Select input. The active level of the Chip Select input and the memory content are defined by the customer.

- Organized as 2048 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Programmable Chip Select
- TTL Compatible
- Maximum Access Time $=550 \mathrm{~ns}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ (Referenced to $V_{S S}$)

Rating	Symbol	Value	Unit
Supply Voltages	V_{DD}	-0.3 to +15	Vdc
	V_{CC}	-0.3 to +6.0	
	$\mathrm{~V}_{\mathrm{BB}}$	-10 to +0.3	
Address/Control Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +15	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL, LOW THRESHOLD)

2048×8-BIT READ ONLY MEMORY

PIN ASSIGNMENT

MCM6832 READ ONLY MEMORY BLOCK DIAGRAM

This is advance information and specifications are subject to change without notice.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $\mathrm{V}_{\text {SS }}=$ Ground)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{\text {DD }}$	11.4	12	12.6	Vdc
	$V_{C C}$	4.75	5.0	5.25	Vdc
	$\mathrm{V}_{\text {BB }}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage ($A_{n}, C S$)	$\mathrm{V}_{\text {IH }}$	3.0	-	V_{CC}	Vdc
Input Low Voltage ($A_{n}, C S$)	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	Vac

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current ($\mathrm{A}_{\mathrm{n}}, \mathrm{CS}$) $\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}\right)$	$\mathrm{I}_{\text {in }}$	-	-	10	$\mu \mathrm{Adc}$
Output Leakage Current (Three-State) $\left(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \text { to }-2.4 \mathrm{~V}, \mathrm{CS}=0.4 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.4 \mathrm{~V}\right)$	'LO	-	-	10	$\mu \mathrm{Adc}$
Output High Voltage $\left(I_{O H}=-100 \mu \mathrm{~A}\right)$	V_{OH}	3.7	-	V_{CC}	Vdc
$\begin{gathered} \text { Output Low Voltage } \\ \quad(1 \mathrm{OL}=1.6 \mathrm{~mA}) \end{gathered}$	VOL	0	-	0.4	Vdc
Supply Current (Chip Deselected or Selected)	$\begin{aligned} & \hline \mathrm{IDD} \\ & \mathrm{I} \mathrm{CC} \\ & \mathrm{IBB} \\ & \hline \end{aligned}$	-	- - -	$\begin{gathered} 25 \\ 45 \\ 500 \end{gathered}$	mAdc mAdc μ Adc

CAPACITANCE (Periodically Sampled Rather Than 100\% Tested.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Capacitance $(f=1 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	5.0	7.5	pF
Output Capacitance $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	5.0	10	pF

(

AC CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with $\mathbf{t}_{\mathbf{r}}=\mathbf{t f}_{\mathbf{f}} \leqslant \mathbf{2 0} \mathbf{n s}$; Load = 1 TTL Gate (MC7400 Series) biased to draw $1.6 \mathrm{~mA} ; \mathrm{C}_{\mathrm{L}}=130 \mathrm{pF}$.)

Characteristic	Symbol	Min	Typ*	Max	Unit
Address Access Time	tacc *	-	320^{*}	550	ns
Output Select Time	tOS	-	175^{*}	300	ns
Output Deselect Time	tOD	30	100^{*}	150	ns

*Typical values measured at $25^{\circ} \mathrm{C}$ and nominal supply voltages.

Figure 1 - AC TESt LOAD

* Includes Jig Capacitance

FIGURE 2 - TIMING DIAGRAM
A. ADDRESS ACCESS TIMING DIAGRAM
(Chip Selected)

B. CHIP SELECT TIMING DIAGRAM (Addresses Established)

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM6832, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM6832 should be submitted on an Organizational Data form such as that shown in Figure 4.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software. 2. Hexadecimal coding using IBM Punch Cards.

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The procedure for generating and verifying a system is shown in Figure 5. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 2048 bytes.

Note: Motorola can accept magnetic tape and truth table table formats. For further information, contact your local Motorola sales representative.

FIGURE 3 - BINARY TO HEXADECIMAL CONVERSION

MSB			LSB	
D7	D6	D5	D4	Hexadecimal D3
D2	D1	D0		
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 3) may be placed on 80 column IBM punch cards as follows: Step Column

112 Byte " 0 " Hexadecimal equivalent for outputs D7 thru D4 (D7 = M.S.B.)
Byte " 0 " Hexadecimal equivalent for outputs D3 thru D0 (D3 = M.S.B.)
$3 \quad 14.75$ Alternate steps 1 and 2 for consecutive bytes.
4 77-78 Card number (starting 01)
$5 \quad 79.80$ Total number of cards (64)

True Chip Select Options:
I.
11. 0 \qquad

1 is most positive input
0 is most negative input

FIGURE 5 - SYSTEM DESIGN AND VERIFICATION PROCEDURE

Product Preview

1024 X 8-BIT READ ONLY MEMORY

The MCM68708 is an 8192-bit Alterable Read Only Memory designed for system debug usage and similar applications requiring non-volatile memory that must be reprogrammed periodically. The transparent lid on the package allows the memory content to be erased with ultraviolet light. The memory can then be electrically reprogrammed.

- Organized as 1024 Bytes of 8 -Bits
- Static Operation
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$, and -5 V .
- Access Time $=500 \mathrm{~ns}$
- Low Power Dissipation
- Chip Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Compatible with the 2708

MOS

(NCHANNEL, SILICON-GATE)
1024×8-BIT ALTERABLE READ ONLY MEMORY

MCM68708 READ ONLY MEMORY BLOCK DIAGRAM

This is advance information and specifications are subject to change without notice.

Application Notes/Chapter 5

INTRODUCTION

Today's highly developed NMOS technology has produced a wide variety of NMOS memory products that can be utilized in a multitude of digital processing applications. Since the variety of these applications is so broad, it is impractical to cover all of them. However, the application notes in this section do discuss some of the most common storage applications.

For reference purposes, all the available Motorola application notes and their abstracts are tabulated in the Application Information section of the Motorola Semiconductor Data Library Master Index. A copy of the current Application Note Catalog may be obtained by sending your request to:

Technical Information Center Motorola Semiconductor Products Inc.
P.O. Box 20912
Phoenix, Arizona 85036

A CRT DISPLAY SYSTEM USING NMOS MEMORIES

The emerging NMOS semiconductor technology offers electronic equipment manufacturers improved circuit performance and density. Development of the NMOS process brings a new era of high-density memory technology, and it shows great promise for replacing core and other type memories. For CRT display manufacturers, however, NMOS technology is here today with the introduction of the MCM6571 8K Character Generator and the MC6545 quad 80-bit Shift Register. This paper describes a CRT display system using these devices.

BASIC CRT OPERATION

The basic elements of a display system is the CRT and the circuitry necessary to deflect and modulate the electron beam. The system must be capable of generating graphics and/or alphanumeric characters. The operation of most video display systems is similar to a TV set. The electron gun shoots a beam of electrons toward a screen coated with a light emitting phosphor. Wherever the beam strikes, a dot of light is emitted. The beam is deflected vertically and horizontally by either electrostatic or elec-
tromagnetic fields. The Z -axis grid can switch the electron beam on and off. By modulating the beam with the Z -axis grid, dots and line segments can be formed on the screen.

Due to the fact that the screen phosphor can hold the image for only a short time, the image must be constantly refreshed. The refresh rate is usually between 30 and 60 Hz . Because of the Z -axis modulation and the refresh requirement, two types of components are especially important to an alphanumeric CRT display: a character generator for modulating the Z -axis to form the character, and a storage device to retain the information to be refreshed on the screen.

CHARACTER FORMATION

The most popular type of character formation being used today is the dot matrix method. Figure 1(a) shows the dot matrix which must be generated at every character location to form the image. Any size dot matrix is possible, but 5×7 and 7×9 are the most popular configurations with the 7×9 offering clearer definition. Any character can be formed within the matrix by illuminating the proper dots (see Figure 1(b)).

Figure 1
Systems using the dot matrix formation will usually generate a raster on the screen of the CRT. If a horizontal AC field is applied to the electron beam, it traces and retraces a line across the screen. If, at the same time, a vertical AC field of a lower frequency is applied and if the beam is shut off during retrace, many lines are generated, and a horizontal raster scan is formed (see Figure 2). Interchanging the frequencies generates a vertical scan. Dot matrices can be formed and separated at every character location by blanking the electronic beam in between matrices. The character location map shown in Figure 9 demonstrates this formation. The numbers indicating column and line location are explained later. As

FIGURE 2
mentioned before, a character can be formed in each matrix by illuminating the proper dots.

The device that determines which dots are to be illuminated is called a character generator. Actually, it is a read-only memory containing a dot matrix preprogrammed for each character. Because of pin limitations, the entire dot matrix usually cannot be read out at one time. Instead, characters are read out a row or a column at a time. A row character generator would most efficiently be used with a horizontal scan and a column character generator, with a vertical scan display.

8K-BIT CHARACTER GENERATOR

NMOS technology has produced a new character generator with greater storage capability than the older PMOS devices. The MCM6570 is an 8192 bit, row character generator that can be mask programmed with any desired set of 128 characters. This device can be programmed in Japanese, Hebrew, or any special type of character or symbol format. It generates each character in a 7×9 matrix, and it is capable of automatically shifting descenders (such as $\mathrm{g}, \mathrm{j}, \mathrm{p}, \mathrm{q}$, and y). It is directly TTL compatible. This device can also interface directly with other NMOS devices and with Complementary MOS when using a +5 volt power supply.

A 7-bit character code (see Figure 3) is used to select any one of the 128 available characters. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected. As the row select inputs are sequentially addressed, the ROM will automatically place the 7×9 character in one of two pre-programmed positions on the 16 row matrix (see Figure 6), with the positions defined by the four row select inputs. Maximum access time is 500 ns ; however, if a device is programmed with shifted characters, the access time can be reduced to 300 ns .

The MCM6571 is a pre-programmed version of the MCM6570 with a modified USASCII code input. It contains the upper and lower case English alphabet, commonly used lower case Greek letters, numbers 0 to 9 and various mathematical symbols and punctuation marks. In fact any type of specialized symbols can be generated. Figure 6 shows which row of the character matrix is generated for each of the possible row select
inputs. When a descending character is selected, rows R14 thru R12 are automatically blanked. The next nine rows form the descending character matrix. Thus, while any one character is contained in a 7×9 matrix, a 7×12 matrix must be available on the CRT screen to contain both normal and descending characters. The MCM6571 uses a down count to display the rows of the character from top to bottom. The MCM6570 mask-programmable ROM allows a choice of either an up or a down count for this function.

The MCM6570 requires three power supplies: $-3,+5$, and +12 volts. In systems using only +5 volts, special requirements of -3 and +12 volts can be an inconvenience. Because the device requires only small amounts of current from these supplies, and charge pump techniques using +5 volt supply can be used. A supply shown in Figure 4 will generate the required -3 volts at less than 100μ a. In Figure 5, a +12 supply is shown that will provide the 6 ma that typically is required from the 12 V source.

STORAGE

As discussed earlier, the image on the CRT must be constantly refreshed; thus, a storage device is required to retain the information. Two types of storage devices can be used in this application: Random Access Memories and shift registers. RAM's offer the cost advantages resulting from high volume use and offer minimum access time when interfacing with a computer. Also, because of the random-access feature, no buffer storage is required. Shift registers are also low-cost devices offering simple editing functions; in particular, insertion operations.

FIGURE 3

FIGURE 4 -- - 3 VOLT POWER SUPPLY

ROW SELECT TRUTH TABLE				
RS3	RS2	RS1	RSO	OUTPUT
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{R} 1 \\ & \mathrm{R} 2 \\ & \mathrm{R} 3 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { R4 } \\ & \text { R5 } \\ & \text { R6 } \\ & \text { R7 } \end{aligned}$
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { R8 } \\ & \text { R9 } \\ & \text { R10 } \\ & \text { R11 } \end{aligned}$
1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	$\begin{aligned} & \text { R12 } \\ & \text { R13 } \\ & \text { R14 } \\ & \text { R15 } \end{aligned}$

FIGURE 5 - + 12 VOLT POWER SUPPLY

FIGURE 6

The necessity of a buffer register is an unattractive requirement of shift storage. Buffer storage is necessary because of the way the characters are written on the screen (see Figure 7). As the electron beam moves across the screen, each character code is applied in turn to the character generator and the first row of each character is read out. At the end of the row, the electron beam retraces and begins moving across the screen again. The same set of character codes must be presented to the character generator again so that the second row can be written. This procedure must be repeated until all nine rows have been written. With shift register storage, the information for a particular line would not be available after the first row was written, unless the information were shifted all the way around. If the shift register is large, system speed limitations would result. The buffer register can be eliminated, if small shift registers (storage
capability of only one or two lines) are used in parallel. An ideal feature of these small shift registers would be 3 -state outputs.

An excellent device for this application is the MC6545 Quad 80 -bit shift register. It is an NMOS device and thus, is TTL compatible and also it will interface with other NMOS and with CMOS devices. The Quad 80 features internal recirculate logic, and a single clock with frequency capability of D.C. to 5 MHz . The shift register's static storage mode is when the clock logic level is " 0 ".

THE SYSTEM

A CRT display system designed and built using the MCM6571 for character generation and the MC6545 for storage is shown in block form in Figure 8. It can display up to 640 characters (16 lines with 40

FIGURE 7

FIGURE 8
characters/line) and has a refresh rate of 60 Hz . The system is built on six circuit boards divided into the following function areas:

1) Counter and Retrace Control
2) Memory
3) Character Generation and CRT Drive
4) Input Address and Data, and Cursor Generation
5) Communications I/O and Memory Select
6) Power Supplies

The CRT display used is a Tektronix 604. It can be mounted in a standard 19 " rack and the X, Y, and Z inputs can be driven by +5 and +12 volt supply circuitry. The other circuit blocks are mounted along side the 604. The counter is the central coordinator of the system, and it performs the following functions:

1. Associates a set of data bits in the shift registers with a character location on the screen
2. Signals the retrace control logic at the end of a row for horizontal retrace, and at the end of a frame for vertical retrace.
3. Provides timing signals for;
a. Serializing the parallel data from the character generator onto the Z -axis.
b. Initiating a Read or Write cycle requested from the computer.
c. Erasing the screen.
d. Entering data in the output data register.
e. Clocking the shift register.
4. Selects the row of each character being brought out of the character generator.

Retrace control drives the logic for the X and Y amplifier inputs of the display unit and signals the Z -axis to turn off the electron beam during retrace. Memory stores the character code for each character location on
the screen (even if it is a blank). Data from the memory drives the character generator which provides the dot matrix, one row at a time. This parallel data is converted and applied serially to the Z-axis. Communications input/ output section accepts Read and Write requests from the computer, and enables the address and data bits into the Registers. It disables the recirculate input on the shift register when a write is required. Address Compare checks for equality between the data in the input address register and the counter address. When this equality is detected, one of several things can happen:
a. If the Write Request flip-flop has been set, Address Compare begins a Write cycle.
b. If the Read Request flip-flop has been set, Address Compare enables the data at this location into the Output Data Register.
c. In any case, Address Compare enables the cursor. If no equality is detected during a frame, and if there has been no computer request; the address in the Address Register is illegal and the screen is erased. Figure 9 shows the address map. The Cursor block generates a blinking cursor in row 2 (see Figure 6) of the character location in the Address Register.

COUNTER AND RETRACE CONTROL

A logic diagram of this board is shown in Figure 10. The counter is driven from an oscillator formed from two MC8602 one-shots in a single package. (1). The desirability of this type of oscillator will be discussed later in the memory section. The operating frequency is 5.0 MHz for a refresh rate of precisely 60 Hz . Because the counter is synchronous, the oscillator drives all the devices in the chain.

The first stage of the counter is an MC8310 (3) which has been connected to count decimally from 0 to 8 . The dot matrix columns 1 through 7 are being written when the count in this register is 1 through 7 . During counts 0 and 8 , the Z -axis is blanked to form a space between horizontally adjacent characters. (4) and (5) are used to generate the time " T 0 ", " T 8 ", and " $\mathrm{T} 0+$ (or) T 8 ". In addition to the clock input, (3) is enabled by (2) and (9). The function of (2) is to delay the beginning of trace by two clock pulses. The necessity for this delay will be discussed later. Circuit (9) is the horizontal retrace flip-flop which enables this MC8310 (3) during the trace operation and disables it during retrace (see Figure 11). As mentioned earlier in order to write one line of characters the codes must be presented to the character generator once for each row of the dot matrix. In addition, the shift register must be shifted completely around between the beginning of one trace and the start of the next. The shift register is 80 -bits long and the number of characters in a
line is 40 . Thus, the other 40 must be shifted during retrace; as will be explained later, this second set of 40 character codes is for the line following the first set of 40. Since the time for trace is nine times as long as the time for retrace, the second 40 bits must be shifted faster. To obtain this fast shift, (9) disables (3), effectively taking it out of the counter, and enables (6), which is the second stage of the counter, to be driven at the clock frequency. During trace, (6) is driven at the clock frequency divided by 9 .

An MC8310 (6), and two MC7472's, (7) and (8), form a 6 -bit counter stage to count decimally from 0 to 39 . The count in this stage determines the horizontal character position on the screen. During retrace, this stage goes through its full count at the clock frequency and during trace, at the clock frequency divided by 9. At the end of each count the Horizontal Retrace flip-flop, (9), is toggled. Figure 12 shows the necessity of (2). During retrace the character codes are being shifted at a rate of

FIGURE 11

FIGURE 12
5.0 MHz ; the maximum access time for the character generator and shift register is $500+75=575-\mathrm{ns}$. If there were no delay after the completion of retrace, the output for character location 0 would be required after 200 -ns. By inserting a delay of two clock pulses this timing is increased to $600-\mathrm{ns}$.

The next stage of the counter is an MC8316, (10), a 4-bit counter which counts octally 2 to 16 (see Figure 10). The count in this device determines which dot matrix row is to be read out of the character generator. It is enabled when the count in the previous stage is completed and just before the Horizontal Retrace flip-flop (9) is set. This function is controlled by an MC3011 (11), that also serves as clock for the Shift During Retrace flip-flop, an MC7479 (12). As mentioned before, the data must normally be shifted during retrace. When one line of characters has just been completed and another is to begin, the shift must be inhibited. Thus, the Shift During Retrace flip-flop is clocked as each row is completed. If additional rows in the character line must still be written, the D input will be at logic " 0 " and the shift will be enabled. If the completion of the row is also the completion of the line (the count in $(10)=16$), the D input will be a " 1 " and the flip-flop set, and this will inhibit Shift During Retrance. An MC3011, (11) decodes the count in (10) and drives the D input of (12).

The outputs of both gates of the MC3011 (11) are "ANDED" to form an enable for the last counter stage, MC8316 (14). It counts octally from 0 to 17 . The count in this device determines the vertical character position or character line. At the end of the last count, the vertical retrace flip-flop is set. A vertical retrace takes the same amount of time as a horizontal retrace thus the Vertical Retrace flip-flop is reset by the Horizontal Retrace flip-flop. The Master Clear flip-flop initializes the system when power is first applied.

MEMORY SELECT

The Memory Select section (see Figure 13) forms the Shift Register Clock, and enables the Write and Output Enable inputs of the selected shift registers (MC6545). An MC4038 decodes the 3 highest order bits of the counter to generate an Output Enable. A set of MC3006 logic gates generates a Write Enable for the selected pair of shift registers when a Write cycle is being executed, and an Address Compare indicates that the desired location has been reached.

When the Horizontal Retrace flip-flop is reset, an MC3031 uses output C of the counter to clock data out of the shift registers. When the Horizontal Retrace flip-flop is set, and a Shift During Retrace is required, the counter clock is enabled by the MC3031 to form the Shift Register Clock. The MC3031 output goes to an MC7440 high fan-out driver which in turn drives the clock inputs of all 16 shift registers.

At this point, the desirability of the double one-shot oscillator for the counter clock becomes apparent. The Shift Register Clock is required to be in the high state for

FIGURE 13
at least 90 -ns and in the low state for at least- 90 ns. Since the counter clock runs at 5.0 MHz (200-ns), a duty cycle close to 50% at the shift register clock input is required. The counter clock pulses go through an MC3031 and an MC7440 before reaching the shift register clock input; thus, some skew in the positive and negative propagation times may occur. To compensate for this skew, the pulse widths of the two one-shots can be adjusted as required.

MEMORY

The Memory section (see Figure 14) consists of sixteen MC6545 shift registers arranged in pairs and 16 MC8T26 three-state buffers. Each pair holds 80 seven-bit character codes for two lines of display. The MC8T26 buffers are required so that only one pair of shift registers is being accessed at a time.

CHARACTER GENERATION

The output data from the shift registers goes to the Character Generation section (see Figure 15). If the system is in a Read cycle, the data is enabled into the Output Data Register made up of two MC7475's. In any case, the data goes to the character generator as does the row select count from the counter. The specified row for the character is read out of the character generator and stored in the Output Row Register at T0 + T8 time. The Output Row Register is applied to an 8 -channel data selector, MC8312. This device selects each row input to be enabled to the single output according to the input count. This is supplied by the three lowest order bits of the counter. Thus, the parallel data is converted to serial data. At T0 and T8 times, the grounded input pin is enabled.

FIGURE 14

The MC8312 also has an enable input which is driven by the cursor generator to be described later.

The output of the MC8312 goes to the Z-axis driver which consists of 3 collector-or'ed MC7417's driving an output transistor. The Z-axis driver output goes to " 0 " during vertical and horizontal retrace and whenever the data input from the MC8312 is " 0 ".

CRT DRIVE

The output drivers for the X and Y axes are shown in Figure 16. Each is driven by a cross-coupled gate/flip-flop, MC7400, which is, in turn, set and reset by two pulses tapped from the outputs of an MC7442 and MC4007. During retrace, these devices generate a series of timing pulses from the same counter bits that determine horizontal character location. Thus, retrace time can begin a short time after blanking begins, and it can end a short time before blanking ends. This method eliminates any distortion that might result from characters being displayed in the non-linear area of the raster edges.

COMMUNICATION I/O

The read/write logic is designed for use with a 16 -bit bus-oriented minicomputer. The display system uses four addresses on the bus. A bus interface card generates four signals, $\overline{\text { SELO }}, \overline{\mathrm{SEL} 2}, \overline{\mathrm{SELA}}$, and $\overline{\text { SEL6, }}$, to indicate when these four addresses are selected. A control signal, C1L, indicates whether a bus-read or a bus-write cycle is being executed by the external control minicomputer. In order to respond to the minicomputer, the display system must generate two signals: 1) Ready, to indicate whether or not the system is busy doing an operation, and 2) SSYN, to indicate that a bus cycle is complete.

The four possible types of operations have been assigned as follows:

1) A bus write using either $\overline{\text { SEL2 }}$ or $\overline{\text { SEL6 }}$ is for writing data into the refresh memory. $\overline{\text { SEL2 }}$ is for the bottom 8 lines of the display and $\overline{\text { SEL6, }}$, the top 8 lines.
2) A bus write using either $\overline{\text { SELO }}$ or $\overline{\operatorname{SEL4}}$ is for specifying which location is to be read. $\overline{\text { SELO }}$ indicates the bottom 8 lines of the display and $\overline{\text { SEL4 }}$, the top 8 lines.
3) A bus read using either $\overline{\text { SEL2 }}$ or $\overline{\text { SEL6 }}$ is for determining the status of the Ready signal.
4) A bus read using either $\overline{\text { SELO }}$ or $\overline{\text { SEL4 }}$ is for retrieving the data requested in 2). For these operations, the 16 -bit word of the minicomputer is divided into two sections. The seven least significant bits specify the character code, and the remaining nine specify the address.

The communications I/O logic is shown in Figure 17. A write operation is executed in the following manner (see Figure 18(a)):

1) Address and data are applied to the input lines of the CRT display system (Input Address and Data, and Cursor Generation are discussed in a later section). At the same time, C1L input goes to zero which enables the OR gate inputs to the Read and Write Request flip-flops.
2) A minimum of $150-\mathrm{ns}$ later, $\overline{\text { SEL2 }}$ or $\overline{\text { SEL6 }}$ goes to zero which sets the Write Request flip-flop. In turn, it sets the SSYN flip-flop. Ready goes to zero, and the input address and data are enabled into the Registers.
3) The SSYN is transmitted back to the minicomputer
which waits 75 -ns and then changes $\overline{\text { SELX }}$ back to a one.
4) The SSYN flip-flop is reset and the SSYN signal goes to a zero.
5) When the Address Compare signal goes to a " 1 ", indicating that the address register and the counter

FIGURE 16
contain the same address, the Write Request is clocked into the Write flip-flop. This flip-flop enables the necessary logic to write the new data into memory. The Write flip-flop is set directly when an erase is being executed.
6) At the next T8 to T0 times respectively, the Write Request and Write flip-flops are reset and Ready goes to a " 1 ". The system can now accept a new request.

A read operation (for specifying the location to be read) is done in a similar manner except the $\overline{\text { SELO }}$ or $\overline{\text { SEL4 }}$ are used.

To transfer data from the Output Data Register (see Figure 15) to the minicomputer or to check the status of the CRT system, the following sequence occurs (see Figure 18(b)):

1. C1L goes to a one.
2. A minimum of $150-\mathrm{ns}$ later, one of the $\overline{\text { SELX }}$ signals goes to a zero.
3. The SSYN signal goes to a one for at least 75 -ns.
4. The SELX signal returns to a one and SSYN goes to a zero.

INPUT ADDRESS AND DATA

The Address Register consists of two MC4015's and a MC7479 (see Figure 19). The input address is enabled into the register when the Read Request or Write Request flip-flop is set. The input to bit 9 of the Address Register is dependent on the $\overline{\mathrm{SELX}}$ input. If $\overline{\mathrm{SEL} 0}$ or $\overline{\mathrm{SEL} 2}$ is used, a zero is entered into bit 9 which means the bottom 8 lines of the display will be accessed. If $\overline{\text { SEL4 }}$ or $\overline{\text { SEL6 }}$ is

FIGURE 17
used, a one is entered into bit 9 and the top 8 lines will be accessed.

Ten MC8242 exclusive NOR gates are constantly comparing the input and counter addresses. They are open collector output devices: therefore, when they all indicate
a compare, the output goes to a " 1 ". The Address Compare flip-flop is set at the first positive edge of the B output of the counter. If a read or a write has been requested, it can be done at this time. Also the Address Compare flip-flop enables the cursor row compare logic and inhibits an Erase.

FIGURE 18

When Address Compare or a Read or Write Request goes from " 0 " to " 1 ", the Erase Inhibit flip-flop is set. After each frame is written, the $\overline{\mathrm{Q}}$ side of the Erase Inhibit flip-flop is clocked into the Erase flip-flop. As long as the latter stays reset, nothing happens. An illegal address can be entered into the Address Register however (an illegal address would be when the 4 lowest order bits of the Address Register contain a decimal number between 10 and 16). Since the counter does not duplicate the illegal address, the Address Compare flip-flop and, consequently, the Erase Inhibit flip-flop do not switch. At the end of the frame, then, the Erase flip-flop is set.

Setting the Erase flip-flop forces:

1. The input data to the shift registers to the character code for a blank.
2. The Address and Input Data Registers to all 0's.
3. The Erase Inhibit, Address Compare, and Write flip-flop's set.

This clears the screen of all data and moves the cursor location to address 0 .

CURSOR GENERATION

The cursor is written at the location in the Address Register. It is written in row 2 of the dot matrix (see Figure 6). Four MC7405's are collector OR'ed (see Figure 20) to output a " 1 " each time that row select 2 and address compare exist at the same time. An MC7490 then divides the frequency of this output by five to make the cursor blink. The output of the MC7405's and the MC7490 are "ANDED" and, as mentioned earlier, the signal is used to drive the enable input of the parallel to serial converter for the Z-axis, MC8312.

FIGURE 19

FIGURE 20

CONCLUSION

This system design shows one way of using the new NMOS devices in CRT systems for both storage and character generation. The simplicity of the design is possible because of the TTL compatibility and convenient power requirements of the NMOS parts. The capability of generating 128 characters in a 7×9 matrix and automatically shifting descender characters ($\mathrm{g}, \mathrm{j}, \mathrm{p}, \mathrm{q}$, and y) means a substantial reduction in external circuitry. The MC6545 Quad 80-bit Shift Register allows maximum design flexibility with features like a 3 -state output, internal recirculate logic, a single clock input, and a frequency range of D.C. of 5 MHz . It will fit into small systems as a main storage device and into large systems as buffer storage. With these devices, NMOS has indeed arrived for the CRT display manufacturers.

A NON-VOLATILE MICROPROCESSOR MEMORY USING 4K N-CHANNEL MOS RAMS

INTRODUCTION

Most read/write semiconductor memories are volatile, i.e., if power is removed from the memory the stored information will be lost. In many cases of power failure, non-volatility for a specific period of time is required either as a necessity (irreplaceable information) or as a convenience (to avoid reloading the memory).

This paper describes the design of an 8192-byte nonvolatile memory system using dynamic RAMs and CMOS control logic in order to significantly reduce the power requirement in the standby mode of operation with respect to the normal operating mode.

This system was designed to be an add-on memory for the EXORciser,* a system development tool in the M6800 Microcomputer family.

MEMORY DEVICE DESCRIPTION

The memory device used in this system is the MCM6605A, a 4096 -word x 1 -bit dynamic Random Access Memory (RAM). The dynamic characteristic of this memory device requires that refreshing of the memory cells be performed at periodic intervals in order to retain the stored data. This device was chosen for the following features: high bit density per chip and correspondingly low price per bit, standby mode with low power dissipation, TTL compatibility of inputs and outputs, and speed characteristics compatible with microprocessors and the EXORciser.

Figure 1 is a functional block diagram of the MCM6605A. The device uses a three-transistor storage cell in an inverting cell configuration. The single external highlevel Chip Enable clock starts an internal three-phase clock generator which controls data handling and routing on the memory chip. The lower 5 address lines (A 0 to A4) control the decoding of the 32 columns, and the upper 7 address lines control the decoding of the 128 rows within the memory chip. The Chip Select (CS) input is used for memory expansion and controls the I/O buffers: when $\overline{\mathrm{CS}}$ is low the data input and output are connected to the memory data cells, and when $\overline{\mathrm{CS}}$ is high the data input is disconnected and the data output is in the high impedance state. Refreshing is required every 2 ms and is accomplished by performing a write cycle with $\overline{\mathrm{CS}}$ high on all 32 columns

[^9]selected by A0 through A4. The read/write line controls the generation of the internal $\phi 3$ signal which transfers data from the bit sense lines into storage.

All inputs and outputs with the exception of the highlevel Chip Enable signal are TTL compatible, and the outputs feature three-state operation to facilitate wired-OR operation. The Chip Enable signal has ground and +12 V logic levels. Power requirements are typically 330 mW per device in the active mode from $+12 \mathrm{~V},+5 \mathrm{~V}$, and -5 V power supplies, and 2.6 mW in standby with refresh from the +12 V and -5 V power supplies (the +5 V supply powers the output buffers and is not required during standby operation).

Memory timing is outlined in Figure 2 and operates as follows for a read cycle (Figure 2a). The Chip Enable line is brought high after the correct addresses are set up, which starts the internal three-phase clock and latches the addresses into an internal register. Chip Select must be brought low in order to connect the data input and output to the data cells, and the Read/Write line must be brought high to inhibit the $\phi 3$ cycle which writes data into the storage cells. A write cycle (Figure 2b) occurs in exactly the same manner as a read cycle except that the R / W line is placed in the Write mode, which gates the input data onto the bit sense lines, and enables a $\phi 3$ cycle to write into the data cells. A write and a refresh cycle are the same with the exception of $\overline{\text { Chip Select, }}$ which is held high for a refresh cycle and low for a write cycle.

The Read-Modify-Write cycle shown in Figure 2 c is a read followed by a write within the same CE cycle. $\overline{\mathrm{CS}}$ is brought low shortly after the leading edge of $C E$ and R / W is held high long enough for the Data Out to become valid. The R / W line can then be strobed low for a minimum write time to enter the Data In (which has been placed on the input) into the data cells.

By holding the Chip Select high during refresh, the input data is inhibited from modifying the bit sense lines and the original data is returned to the data cells during $\phi 3$ of the cycle. This refreshing action recharges the storage cells and must be done at least every 2 ms if the memory is to retain the information. The fact that the data is stored on a capacitor in a dynamic memory (rather than the "On" transistor of a static memory) requires that the capacitor be recharged periodically. This capacitive storage produces a low power standby mode of operation where only refreshing takes place, which is the foundation of this low current drain non-volatile memory design. The memory

FIGURE 1 - MCM6605A 4K RAM Block Diagram
device typically dissipates 330 mW in the active mode but only 2.6 mW in the standby mode (refreshing only).

MEMORY SYSTEM DESIGN REQUIREMENTS

This memory system was designed with the following major design goals:

First, non-volatility for a period of time in the range of 7 to 10 days from a reasonably sized battery. It is also desirable for the system to operate from one battery voltage during the standby mode to simplify the battery requirements. Second, the memory size was desired to be 8 K bytes on a PC card easily expandable upward and addressable in 4 K byte blocks. Third, the memory system must be able to interface with the MC6800 microprocessor which has a basic cycle time of $1 \mu \mathrm{~s}$. Fourth, the memory system controller must handle all refresh requirements in a manner as invisible as possible to microprocessor operation.

MEMORY SYSTEM DESCRIPTION

A block diagram of the memory system is detailed in Figure 3. This block diagram can be split into three main
sections as follows. The first section is comprised of the address buffers, Read/Write and Chip Select decoding logic. The second section consists of the data bus buffering and the memory array itself. The memory array consists of sixteen memory devices (4 K words x 1 -bit) organized into two rows of 4096 bytes each. The third section of the block diagram comprises the refresh and control logic for the memory system. This logic handles the timing of the refresh handshaking with the EXORciser to request a refresh cycle, the generation of the refresh addresses, synchronization of the Power Fail signal, multiplexing of the external Memory Clock with the internal clock (used during standby), and generation of the -5 V supply on the board by a charge pump method.

Figure 4 is a worst case timing diagram of the read and write cycles of the EXORciser and the 4 K memory system. The timing is composed of two phases. During phase $1(\phi 1)$ addresses are set up and during phase $2(\phi 2)$ data is transferred. Figure 5 is a timing diagram of the memory system in standby showing refresh cycles only. This timing analysis will be referred to in the following discussions of the memory control circuitry.

FIGURE 2a - Read Cycle Timing (Minimum Cycle)

FIGURE 2b - Write and Refresh Cycle Timing (Minimum Cycle)

Timing shown for MCM6605A.

FIGURE 2c - Read-Modify-Write Timing (Minimum Cycle)

FIGURE 3 - Non-Volatile Memory System Block Diagram

FIGURE 4 - EXORciser/4K Memory System Timing Diagram

FIGURE 5 - Memory Timing in Standby Mode

ADDRESS BUFFERS AND DECODING

Figure 6 is a logic diagram of the address buffers, decoding logic and refresh address multiplexer. Address and data lines from the EXORciser are buffered from the capacitance of the memory array in order to provide a small load to the bus. This increases the EXORciser flexibility because it can easily be expanded. Since the addresses are valid on the EXORciser bus 300 ns into $\phi 1,200 \mathrm{~ns}$ is available to set up the address on the memories. The worst case input capacitance on the address lines of the MCM6605A is $5 \mathrm{pF} /$ input. A system of 16 memory devices (8 K bytes) presents a total capacitive load on the address lines of only 100 pF (20 pF stray capacitance). Since 200 ns is available to set up the addresses on the memory devices, no high current buffers are required to drive the memories. A0 through A4 must be multiplexed with the refresh addresses so that all 32 columns will be refreshed every 2 ms . Because of the requirement of low current drain in the standby mode, an MC14503* CMOS buffer with a three-state output is used to meet the multiplexing requirement. The buffers have sufficient current drive capability to drive the address line capacitance within 100 ns . An open collector TTL gate is used to translate to +12 V CMOS levels. A0 through All are driven with Ground and 12 V logic levels so that +5 V is not required in the standby mode. A5 through A11 are clamped to Ground during a refresh cycle so that they will remain stable.

The high order address lines (A12 through A15) are used to decode one 4 K block of memory out of the 16 total possible blocks in the 65 K address map. The addresses and their complements are routed through hexadecimal switches to MC7430 NAND gates in order to create a CS signal for each 4 K byte of memory. By rotating the hexadecimal switches (S3 and S4), all combinations of true and complement addresses can be routed to the NAND gates, thereby selecting one of the sixteen 4 K blocks. VMA and $\overline{\mathrm{REF}}_{\mathrm{A}}$ are also inputs to these NAND gates: VMA is a Valid Memory Address signal on the bus indicating that the address lines are valid and $\overline{\mathrm{REF}}_{\mathrm{A}}$ is a control signal indicating that a refresh cycle is taking place. During a refresh cycle, $\overline{\mathrm{REF}}_{\mathrm{A}}$ goes low forcing $\overline{\mathrm{CS}}_{\mathrm{A}}$ and $\overline{\mathrm{CS}}_{\mathrm{B}}$ high (a refresh cycle for the memory devices is a write cycle with the $\overline{\text { Chip Select }}$ held high). The output of the MC7430 is translated to $12-\mathrm{V}$ CMOS levels with the open collector gates and buffered with the MC14503 threestate buffer. The capacitive loading on each set of three paralleled drivers is 60 pF , allowing Chip Select to be decoded and valid 120 ns after addresses are valid on the data bus. During the standby mode (Bat $=$ " 1 ") the CMOS buffer is disabled allowing the 3.3 k ohm resistors to pull $\overline{\mathrm{CS}}_{\mathrm{A}}$ and $\overline{\mathrm{CS}}_{\mathrm{B}}$ high for continuous refreshing.

The Read/Write signal is received by an MC8T26** and then decoded in the following manner: A write inhibit feature is provided using switches S1 and S2 for each $4 K$ byte block of memory so that in a ROM simultation application the memory can be protected from extraneous write operations due to programming or operator errors.

The Ready-Modify-Write cycle of the MCM6605A is used in this application because it requires a shorter data valid time (t Data Stable) than a normal write cycle (see Figures $2 b$ and $2 c$). This feature is desirable because the EXORciser places valid data on the bus for the last 300 ns of a Write cycle. In order to delay the write pulse to the memory array until the data is valid on the Data Inputs of the memory array, a write inhibit pulse is combined with the EXORciser R/W signal in the MC7420 NAND gates. This write inhibit pulse is generated by the MC8602 monostable multivibrator triggered from the leading edge of the Memory Clock bus signal. The effect of this added delay can be seen from Figure 4 when comparing the memory array R/W line for a read and a write cycle. Note that for a write cycle, the R/W of the memory array is inhibited from dropping to the Write mode until memory input data is valid.
The refresh control signal $\left(\overline{\operatorname{REF}}_{\mathrm{A}}\right)$ is combined with the output of the MC7420 in an MC7408 AND gate in order to force a write signal on the memory R / W lines while in a refresh cycle. Translation and buffering is accomplished in a similar manner as with the Chip Select signals. When in the standby mode (Bat $=$ " 1 ") the MC14503 buffers are disabled allowing the 3.3 k resistor to establish a zero level on the R/W line of the memory array for continuous refreshing.

DATA BUFFERS AND MEMORY ARRAY

The EXORciser data bus is bidirectional, while the MCM6605A memory has separate data inputs and outputs. The MC8T26 data bus receiver/driver buffers the capacitance of the memory array (very low, about 30 pF per data line) and combines the Data Input and Data Output of the memory array into one bidirectional bus as shown in Figure 7. The $\overline{\text { Data Out }}$ of the memory devices is inverted from the Data In, requiring an extra inverter (MC7404) in the data path when working with a noninverting bus (i.e., the data is returned to the bus in the same sense it was received).

During a memory write cycle, the data is valid on the data bus $200 \mathrm{~ns}\left(\mathrm{~T}_{\mathrm{ASD}}\right)$ after the leading edge of the Memory Clock. With a 50 ns delay through the bus translators, the data setup requirement of the memories (210 ns) is easily met (see Figure 4). A memory read cycle requires a data setup time on the data bus of 120 ns . The access time of the memory from the leading edge of the CE signal plus the bus transceiver delay is 305 ns , which is compatible with the setup time required.

REFRESH AND CONTROL LOGIC

The refresh control logic shown in Figure 8 handles the refreshing of the memory during both operating and standby modes. The timing is shown in Figure 9.

The refresh timing is controlled by an astable multivibrator constructed with an MC3302 comparator. This

[^10]

FIGURE 6 - Address Buffers and Decoding Logic
(continued on next page)

FIGURE 6 - Address Buffers and Decoding Logic (continued from precedirig page)

FIGURE 7 - Data Buffers and Memory Array

FIGURE 8 - Refresh Control Logic

FIGURE 9 - Refresh Timing

device was chosen for its low current consumption (1.5 mA max) and single supply voltage operation, both important for battery operation. The refresh requirement of 32 refresh cycles every 2 ms is handled by stealing cycles from the processor. This cycle stealing results in a 1.6% slower program execution rate than the basic microprocessor clock frequency. During the refresh cycle, the clocks to the microprocessor are "stretched" during the $\phi 1$ high and the $\phi 2$ low times by 1μ s as shown in Figure 9. During this 1μ s period, the memory executes a refresh cycle. In order to minimize the effects of memory refresh on microprocessor program execution, the 32 refresh cycles are distributed over the 2 ms period, one occuring every $64 \mu \mathrm{~s}$. Refresh could be done in a burst of 32 cycles every 2 ms but this would cause a larger gap in program execution, which in this case was undesirable.

The MC3302 produces the 64μ s signal shown in Figure 5 to time the refresh requirement, and also is used in the generation of the -5 V supply required by the MCM6605 memory. Since these functions are required in the standby mode, which is powered by the battery, a CMOS buffer is used in a charge pump circuit to minimize current drain from the battery. This charge pump creates -5 V at 3 mA from the $12-\mathrm{V}$ battery to satisfy the bias requirements of the memory devices.

The Refresh Clock is used to increment the address counter (MC14024) and to clock the refresh handshaking logic (MC14027). Refresh Request goes low on the leading edge of the Refresh Clock, thus requesting a refresh cycle. Logic in the clock generation circuitry stretches the high portion of $\phi 1$ and the low portion of $\phi 2$ while sending back a Refresh Grant signal. This stretching of the $\phi 1$ signal delays program execution during this cycle. The leading edge of Refresh Grant starts the refresh cycle and cancels Refresh Request. The trailing edge of Refresh Grant returns the refresh logic to the normal state and the memory is ready for a memory access. The trailing edge of the Refresh Clock then increments the refresh address counter in preparation for the next refresh cycle.

Decoding of the memory clock $\left(\mathrm{CE}_{\mathrm{A}}\right.$ and $\left.\mathrm{CE}_{\mathrm{B}}\right)$ and the circuitry to synchronize the Power Fail signal is shown in Figure 10, with the timing given in Figure 11.

The memory device clock (CE_{A} and CE_{B}) during standby is created by a monostable multivibrator (MC14528) and buffered from the memory array by three MC14503 buffers in parallel. This clock is multiplexed with the Memory Clock by use of the three-state feature of the MC14503. The Memory Clock (used during normal operation) is translated to $12-\mathrm{V}$ levels by use of MC75451 drivers. Decoding of the CE_{A} and CE_{B} signals (i.e., clocking only the memory bank addressed) to conserve power is accomplished by the MC7400 gates in conjunction with the MC75451 drivers.

Since the Power Fail signal will occur asynchronously with both the Memory Clock and the refreshing operation (Refresh Clock), it is necessary to synchronize the Power Fail signal to the rest of the system in order to avoid aborting a memory access cycle or a refresh cycle. An

MC14027 dual flip-flop is used as the basic synchronization device. The leading edge of the Refresh Clock triggers a $3 \mu \mathrm{~s}$ monostable multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 ns monostable which creates the CE pulse during standby operation. The 3μ s pretrigger signal is used to direct set half of the MC14027 flip-flop, the output of which, (B), then inhibits a changeover from the standby to the operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the Power Fail signal change states just prior to or during a refresh cycle. The trailing edge of the 500 ns monostable clears the MC14027 flip-flop, enabling the second flip-flop in the package. The state of Power Fail and Power Fail is applied to the K and J inputs of this second flip-flop and is synchronized by clocking with Memory Clock. The out puts of this flip-flop, labeled Bat and $\overline{B a t}$, lock the system into the refresh mode and multiplex in the internal clock for standby operation when Bat $=" 1$ ".

SYSTEM PERFORMANCE

Figure 12 is a photograph of the breadboard of this dynamic memory system. This breadboard was interfaced with an EXORciser system and tested using a comprehensive memory test program written in-house.

Figure 13 is a photograph of waveshapes associated with alternate reads and writes in one 4 K bank of the memory system. Included also is the M6800 program used to generate these waveforms. This type of operation produces repetitive signals on the memory board in order to aid troubleshooting. Note the refresh cycle sandwiched in among the read and write cycles, and that the decoding of the CE signals produces no clocks on CE_{A} (accesses are to bank B), except during refresh.

Figure 14 shows the printed circuit memory array used to interconnect the memories. The addresses are bussed between the 4 K memory chips in the horizontal direction. Data lines are bussed in the vertical direction. The MCM6605 4K RAM has power and ground pins on the corners of the package allowing wide, low impedance power and ground interconnects within the memory array. Decoupling capacitors were used as follows within the memory array: +12 V - one $0.1 \mu \mathrm{~F}$ ceramic per package, +5 V - one $0.01 \mu \mathrm{~F}$ ceramic for every three packages, and -5 V - one $0.01 \mu \mathrm{~F}$ ceramic for every three packages. Figure 15 is a photograph showing the ripple on the power supplies caused by accesses to one 4 K byte bank of memory as shown in the photograph. The +12 V line supplies the most current to the array and is the one on which the most care in decoupling (wide PC lines and distributed capacitance) should be taken. Placement of the VDD pin on the corner of the package allows the designer the option to do this easily.

FIGURE 10 - Power Fail Logic

FIGURE 11 - Power Up/Down Synchronization

FIGURE 12 - Memory System Breadboard

M6800 Program to Generate Waveforms Shown

Address	Data	Mnemonic	Comment
0000	B6	LDA \#@55	Load data to be written (55)
0001	55		
0002	B7	STA A \%3000	Store data in address 3000
0003	30		
0004	00		
0005	F6	LDA B \%3000	Read data from address 3000
0006	30		
0007	00		
0008	$7 E$	JMP \%0002	Loop back
0009	00		
000 A	02		

FIGURE 13 - Alternate Read and Write Memory Accesses

FIGURE 15 - Power Line Ripple

The de power dissipation of this memory system is shown in Table 1. Of these current drains, the most critical to non-volatile operation is the current requirement in the standby mode in which the current would probably be supplied from a battery. A breakdown of the typical current required from +12 V to maintain the memory in the standby mode is shown in Table 2.

By using CMOS for the refresh logic and capacitance
drivers, a dynamic memory, and a low current refresh oscillator, the standby current has been reduced to a level that can be supplied easily by a battery. Table 3 is a brief list of various capacity $12-\mathrm{V}$ batteries that could be used to power a system of this type in the standby mode. Support time runs from one-half to 35 days and can be made as long as desired if sufficient battery capacity is available.

TABLE $1-8 \mathrm{~K} \times 8$ Non-Volatile Memory System Power Requirements ($1-\mathrm{MHz}$ EXOR ciser Clock Rate)

Mode	Power Supply	Current	
		Maximum	
Operating	$+12 \mathrm{~V}^{*}$	100 mA	300 mA
	+5 V	600 mA	860 mA
Standby	+12 V	14 mA	20 mA
	+5 V	$\mathrm{No}+5 \mathrm{~V}$ Supply required	

*Because memory is dynamic, the +12 V current requirement is dependent on rate of memory access.

TABLE 2 - Standby Mode Current Allocation

Circuit Section	Typical Current
+12 V Current ($\left.V_{D O}\right)$	5 mA
Charge Pump	3 mA
Comparator	2 mA
Capacitance Drivers	$\frac{4 \mathrm{~mA}}{14 \mathrm{~mA}}$
Total	

TABLE 3 - Battery Characteristics

Battery	Ampere- Hours	Size $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$	Weight	Support Time *
Globe GC 12200	20	$6.9^{\prime \prime} \times 6.5^{\prime \prime} \times 4.9^{\prime \prime}$	16.75 ibs.	35 days $(850 \mathrm{hrs})$
Globe GC 1245-1	4.5	$6^{\prime \prime} \times 2.5^{\prime \prime} \times 4^{\prime \prime}$	4.5 lbs	8 days $(192 \mathrm{hrs})$
Globe GC 1215-1	1.5	$7^{\prime \prime} \times 1.3^{\prime \prime} \times 2.6^{\prime \prime}$	1.5 lbs	2.6 days $(63.75 \mathrm{hrs})$
Burgess MP 202	0.6	$3.4^{\prime \prime} \times 1.4^{\prime \prime} \times 2.3^{\prime \prime}$	11.6 oz	1.25 days $(30 \mathrm{hrs})$
Burgess 12.0 V 225 Bh	0.225	$3.5^{\prime \prime} \mathrm{H} \times 1^{\prime \prime}$ Diam.	4.65 oz	0.47 day $(11.25 \mathrm{hrs})$

* Assumes 20 mA average current drain (14 mA for memory and 6 mA for power fail detection circuitry) and a battery voltage range during discharge from 13 to 11 V .

SUMMARY

This application note has described the design of an 8 K byte memory system, based on the MCM6605A 4 K x 1 dynamic RAM, to provide non-volatile operation with a minimum of standby current. Tests on the breadboard memory system indicate standby currents typically 14 mA from a 12 V battery. The discussion has shown that a dynamic memory refresh requirement can be handled with
minimal control logic. For memory sizes in the area of 8 K bytes, the higher bit density of the 4 K chip makes the system design cost effective when compared to an equivalent static memory design. In the area of non-volatility, the standby mode inherent in a dynamic memory makes it a "hands down" winner when compared to a static memory design of this size.

THE DESIGN OF AN N-CHANNEL $16 \mathrm{~K} \times 16$ BIT MEMORY SYSTEM FOR THE PDP-II

INTRODUCTION

When PMOS dynamic random access memories were introduced, they offered, for the first time, memory systems with a cost/performance exceeding that of cores. Although they have been fairly successful in competing with core memories for mainframe applications, there were many shortcomings. For example, some memories required critical overlapping clock pulses which complicated the design and placed an extreme burden on the layout. The logic levels for both input and output were not compatible with standard logic, such as TTL, which meant that translators had to be used. The actual cost of these translators is small compared to the penalty paid for the added complexity of the memory board, additional power, and extended system cycle time. Also additional bypassing is required and the board layout complicated by the ac noise generated from the translators.

With the advent of N -channel and advanced design techniques, a whole new breed of MOS memories has emerged. One such memory is the MCM6605A. The MCM6605A is a 4096 -word by 1 -bit dynamic memory that does not exhibit any of the undesirable features mentioned earlier. For example: This memory requires only one clock that has no critical overlaps. All inputs and outputs are TTL compatible, and the memory access time is fast (210 ns max). Other features include chip select for easy memory expansion and three-state output. Because of the high density, low power, and high speed of this semiconductor memory, it is ideal for mainframe memory applications.

This paper briefly covers the operation and features of the MCM6605A, and then illustrates the design of a PDP-11 add-on mainframe memory system employing the MCM6605A. The memory system to be described contains 16 K words by 16 bits or 32 K bytes of semiconductor memory and the associated electronics necessary to control and interface the semiconductor memory to the PDP-11. The whole memory system can be mounted on a single P.C. board because of the small amount of support electronics required and the high density of the MCM6605A memory.

The support electronics can be easily partitioned into three sections or functions: bus interface, refresh timing and control, and memory control and interface. A detailed description is given of the logic and interface devices necessary to perform each of these functions.

The paper is concluded with a summary on the performance of this add-on memory system with the PDP-11 computer.

MCM6605A OPERATION

The MCM6605A is a dynamic random access memory that contains 4096 bits of storage organized into 4096 words by 1 bit. This semiconductor memory, which comes in a standard 22-pin package, see Figure 1, is fabricated with an N -channel silicon gate process to optimize speed, power, and density tradeoffs. By employing the standard three transistor cell arrangement, the internal sense amplifier requirements were simplified.

FIGURE 1 - MCM6605A Pin Assignment

In addition to the high speed (210 ns access) and low power ($82 \mu \mathrm{~W} /$ bit active and $0.63 \mu \mathrm{~W} /$ bit standby), the MCM6605A has additional features such as TTL-compatible inputs with latch capability on the address inputs, threestate output with chip select control for easy memory expansion in the word direction, only 32 refresh cycles required every 2 ms , and the power supply pins on the corner of the package to simplify power supply distribution and bypassing on the board. One high-voltage clock is required and there is no critical timing or signal overlap.

The net result of these features can provide a big saving in system costs, not only because of the lower cost of the semiconductor memory per bit, but because of the increased packaging density per board, less support electronics, bipolar logic compatibility, reduced power, and lower assembly costs. All of these savings will be apparent in the memory system to be covered in the following sections.

A detailed description of the operation of the MCM6605A is necessary for the design of the memory controller. The 4096 bits of storage are divided equally
into four quadrants as noted in the block diagram given in Figure 2. In addition to the storage, the chip contains input address latches, row and column decoder logic plus additional logic to control the input and output of data to the storage area.

The MCM6605A uses three internal clock signals to control reading from, or writing into, the storage cells. These three clock signals ($\phi 1, \phi 2$, and $\phi 3$ shown in Figure 2) are controlled by Chip Enable (CE) and Read/Write (R/W) to perform the various read, write, refresh, or combination cycles possible with the MCM6605. The timing for these cycles is given in Figures 3 and 4.

The $\phi 1$ clock is on whenever CE is low (standby position) and precharges the dynamic circuitry of the MCM6605A in preparation for the start of a memory cycle.

Read Cycle

The one high level clock line, CE , is brought high to initiate all cycles. The rising edge of CE turns off the $\phi 1$ precharge and initiates the $\phi 2$ clock. The $\phi 2$ clock does several things in sequence. First, it latches the input addresses into buffers and drives the column decoders. These decoders use addresses A0 to A4 to select one column
of 64 storage cells on each side of the chip and transfer the 128 stored data bits onto precharged bit sense lines. The row decoders use A5 to A11 to select one bit of the 128 bit sense lines. This selected bit is exclusive NORed with a data control cell (the purpose of which is explained under write cycle below) and is used to drive an output buffer/latch. The $\phi 2$ signal terminates at this time after latching the data into the output buffer. The cycle can be terminated at this point by bringing CE low to standby, allowing $\phi 1$ to precharge the memory before the next cycle. During this simple read cycle, R/W must remain high to inhibit writing.

Write Cycle

The write cycle is the same as a read cycle, up until $\phi 2$ terminates with 128 bit sense lines holding the two columns of data. When $\phi 2$ goes off, a $\phi 3$ signal is initiated anytime R / W is in the write position. This $\phi 3$ clock transfers the data on the 128 bit sense lines back into the storage array. The line selected by the row decoder (A5 - A11), however, has been overridden by input data. The write cycle is terminated by bringing CE low into standby. The $\phi 2-\phi 3$ sequence of bringing data from the

storage cells onto bit sense lines and then putting the data back into the cells inverts the stored data since the read operation is inverting but the write operation is not. In order to keep track of the polarity of the stored data, a row of data control cells is added to the array and is driven by the same column decoder which drives the
storage cells. The data control cells are identical to the storage cells and are inverted each time a write cycle is performed. By performing an exclusive NOR function of both input and output data with the control cell tied to the same column, the relative polarity is always discernable and inversions do not cause loss of data.

FIGURE 3 - Read Cycle Timing

FIGURE 4 - Write and Refresh Cycle Timing

Refresh Cycle

The write operation described above actually refreshes 127 bits in the selected columns while it is writing into one bit. If the Chip Select (CS) signal is held high to inhibit the input data, then a write cycle would merely refresh all 128 bits. Therefore, one write cycle with $\overline{\mathrm{CS}}$ high (now called a refresh cycle) on each of the 32 combinations of A0 through A4 will refresh the entire memory as long as each address combination is used every 2 ms .

When the memory is first powered up, the data control cells may not come up with a valid logic level and several refresh cycles may be required to insure a solid logic level. In system usage, this would cause no difficulty, since data would not normally be immediately written into the memory system. For memory test purposes, a preset input (pin 3) is included to preset these data control cells with a 200 ns pulse. This preset pin should be permanently grounded in systems unless there is some unusual requirement.

Keeping the above memory operation in mind, the first phase of the design will be the PDP-11 interface.

MEMORY SYSTEM

First of all, the memory system can be divided into four distinct functions or sections as illustrated in Figure 5: the memory - CPU interface, refresh address and control, memory timing control, and the memory array.

FIGURE 5 - Memory System Block Diagram

1. Memory - CPU Interface

To interface with the PDP-11 computer, the following bus lines are required: 18 address, 16 data, and 4 control. The least significant address bit, $\overline{\mathrm{A}} 00$, is actually used with the control bits C 0 and C 1 to determine if a write cycle is to be done on the lower byte (data bits D0 - D7) or upper byte (data bits D8-D15) as illustrated in Figure 6. The next 12 address bits, $\overline{\text { A }} 1$ through $\overline{\mathrm{A}} 12$, go directly to the memories to select one word from 4096 words; see Figure 7. Address bits $\overline{\mathrm{A}} 13$ and $\overline{\mathrm{A}} 14$ are used to select one 4 K memory block from the 16 K words per memory board.

Address bits $\overline{\mathrm{A}} 15, \overline{\mathrm{~A}} 16$ and $\overline{\mathrm{A}} 17$ permit the mainmemory capacity of the PDP-11 to be expanded to 128 K words. Thus, only eight 16 K memory boards are required

FIGURE 6 - Memory Control Truth Table (PDP-11)
for the complete main-memory capacity of the PDP-11. The jumper box, illustrated in Figure 7, can be wired to decode address bits $\overline{\mathrm{A}} 15, \overline{\mathrm{~A}} 16$ and $\overline{\mathrm{A}} 17$ for the selection of only one of the eight memory boards.

The bus lines require special circuits to receive and transmit data so that the transmission-line characteristics of the lines will be maintained. The circuits chosen for this job were the MC3450/MC3452 quad line receivers and the MC4042 quad pre-driver.

The MC3450/MC3452 Bus Receiver

The MC3459 is a quad receiver that features three-state outputs; the MC3452 has open collector outputs. These line receivers were chosen because of the following features:
(1) High input impedance keeps loading of the line to a minimum.
(2) Minimum overdrive to switch receiver is 25 mW , which provides high noise immunity.
(3) The differential input amplifier stage of the receiver can be used to provide either true or complement signals; see Figure 7.
(4) Four receivers per package greatly reduce the total package count.

In order to use the MC3450 or MC3452 as a single-ended line receiver, one input to the differential receiver has to be tied to a reference voltage. For optimum noise immunity, the reference voltage should be set halfway between the minimum high and maximum low voltage specified for the line. Minimum high for this system is 2.5 V and maximum low is 1.4 V . The optimum reference voltage ($\mathrm{V}_{\mathrm{ref}}$) for these limits would be 1.95 V . The reference voltage generator is given in Figure 7. The voltage generator is designed to give a constant $\mathrm{V}_{\text {ref }}$ of 1.95 V regardless of the line receiver current drain. The 1N914 diode is used to track the base-emitter voltage of the 2 N 3904 with temperature, thus providing relatively constant output voltage over temperature. Note that true and complement signals ($\mathrm{A} 00 / \overline{\mathrm{A}} 00$) in Figure 7 are easily generated by attaching the $\mathrm{V}_{\text {ref }}$ voltage to either the non-inverting or inverting inputs respectively.

FIGURE 7 - CPU/Memory Address and Control Interfaces

The MC4042 Bus Driver

The only bus lines for this memory system that require bi-directional transfer are the 16 data lines illustrated in Figure 8. Data transmission on the bus must be done with open collector drivers that are capable of sinking 50 mA with a V_{OL} less than 0.8 V . Also, the driver output must be strobed high when data is not being transmitted. The MC4042 quad pre-driver meets these requirements. The memory data register (MDR) is included in the data interface. The MDR is required to retain valid data on the bus because the memory CE signal is terminated before the system read cycle is complete.

2. Memory Timing Control

Before discussing the design of the memory control section, it might be helpful to review the interaction required between the CPU and memory system for a read or write cycle. The following discussion will use the system timing diagrams shown in Figures 9 and 10 extensively.

System Read Cycle

Figure 9 shows the sequence of events that must occur to successively transfer data from the memory to the CPU. At the start of a read cycle, the CPU sends the address of the storage location it wishes to receive data from, and the

FIGURE 9 - Typical System Read Cycle Time

FIGURE 10 - Typical System Write Cycle Time
control lines ($\overline{\mathrm{C}} 0, \overline{\mathrm{C}} 1$) tell the memory system that the operation to be performed is a read cycle. The logic state of $\overline{\mathrm{C}} 0$ and $\overline{\mathrm{C}} 1$ for a read cycle is given in Figure 6. The CPU waits for at least 150 ns to allow for address deskewing and decoding before signaling the start of a read cycle with a master synchronization signal ($\overline{\mathrm{MSYN}}$). The remaining signals shown in Figure 9, with the exception of the slave synchronization signal ($\overline{\mathrm{SSYN}}$), are the same as those given in Figure 3. When the control board receives MSYN, the CS and CE signals are sent to the memories. At the end of the 210 ns Chip Enable clock, the memory controller must generate $\overline{\mathrm{SSYN}}$ to indicate that the data read from the memories is valid. When $\overline{\mathrm{SSYN}}$ is sent, the CPU strobes in the data and terminates the cycle by releasing $\overline{\text { MSYN. }}$

System Write Cycle

With a write cycle, the data and the address of where the data is to be stored are placed on the bus as indicated
in Figure 10. The logic states of $\overline{\mathrm{C}} 0, \overline{\mathrm{C}} 1$, and $\overline{\mathrm{A}} 00$ (Figure 6) determine whether the write cycle to be performed is a byte or a word. As with the read cycle, 150 ns is allowed for deskewing and decoding before MSYN is sent. The remaining signals given in Figure 10 are the same as those given in Figure 4. When the memory board receives $\overline{M S Y N}$, the data, $\overline{\mathrm{CS}}$, and CE signals are sent to the memories. At the end of the 330 ns Chip Enable pulse, the memory controller sends $\overline{\mathrm{SSYN}}$ to the CPU to signal that the data has been stored. The CPU then terminates the write cycle by releasing $\overline{\text { MSYN }}$.

It should be apparent from the preceding discussion that the timing required for either a read or write cycle is extremely simple and that no critical overlapping of signals is required. The complete memory control section is given in Figure 11. Keeping the above memory timing description in mind, the memory control section performs in the following manner.

FIGURE 11 - Memory Control Section

Memory Control - Read Mode

Although the CE clock time of the MCM6605A for a read cycle is 120 ns less than that for a write cycle, the CE time for both the read and write cycles was made equal to simplify the memory controller.

For the read cycle, the logic states of control lines C 0 and C 1 force the read/write buffers into the logic " 1 " state. A memory board enable ($\overline{\mathrm{MBE}}$) signal is generated from the memory - CPU interface circuitry (Figure 7) when the MSYN line goes low with the presence of a valid memory board address. The $\overline{\mathrm{MBE}}$ signal propagates through the one-of-four demultiplexer (MC4007) and a $\overline{\mathrm{CS}}$ signal is sent to the row of memories determined by addresses A13 and A14. The jumper box allows the memory board to be only partially populated for smaller size memory requirements.

The $\overline{\mathbf{C S}}$ signal also enables the data bus drivers with $\overline{\text { Transmit, and the leading edge of } \overline{\mathrm{CS}} \text { triggers the MC8602 }}$ one-shot which sets the memory CE clock pulse width (330 ns min). To conserve power, the memory CE clock driver is decoded so that only one row of memories will receive a clock pulse (see CE clock address in Figure 11).

On the trailing edge of the CE pulse, the valid data will be strobed into the MDR and the J-K flip-flop is clocked to a logic " 1 ". This enables the $\overline{\text { SSYN }}$ line, which tells the CPU that the data on the bus is valid. After the CPU strobes in the valid data, the CPU releases MSYN which terminates $\overline{\text { SSYN }}$ by resetting the J-K flip-flop. The termination of $\overline{\text { SSYN }}$ completes the read cycle.

Note in Figure 11 that the $\overline{\mathrm{Q}}$ output of the J-K flip-flop is labeled Refresh Enable Delay ($\overline{\mathrm{RED}}$). This output is sent to the refresh control logic to delay the start of a refresh cycle if requested during a CPU cycle (see refresh control). The delay is necessary to insure the minimum tsB time of the memory; see Figures 3 and 4.

Memory Control - Write Mode

The controller performs in the same manner as the read mode with the following exceptions. The control lines force the Read/Write buffers into the write mode and they also disable the Transmit signal.

On the trailing edge of the memory CE clock pulse, the $\overline{\text { SSYN }}$ line is set low to signal the CPU that the data is stored. The cycle is then terminated with the release of $\overline{\text { MSYN }}$ which resets the $\overline{\text { SSYN }}$ flip-flop.

Memory Control - Refresh Mode

To perform the refresh cycle, the memory controller is forced into a write mode with a refresh request (REF = logic " 1 "). The REF signal also enables the refresh address and disables the $\overline{\mathrm{MBE}}$ signal (see Figure 7). The $\overline{\mathrm{MBE}}$ signal is disabled to prevent the memories from receiving a $\overline{\mathrm{CS}}$ signal and the CPU a $\overline{\text { SSYN }}$ signal.

The CE clock one-shot is triggered on the leading edge of REF and CE is sent to all of the memories (see section on clock driver). On the trailing edge of CE, a 120 ns one-shot is triggered to delay the start of a CPU cycle that could be requested during a refresh cycle. This
signal insures the minimum tsB time of the memory by keeping the $\overline{\text { MBE }}$ signal disabled for at least 120 ns after the trailing edge of CE (see refresh control).

3. Refresh Address and Control

In order to insure that data is retained, the whole memory must be completely refreshed every 2 ms as noted earlier. This can be accomplished by insuring that a write cycle is performed on each of the 32 column addresses at least once every 2 ms . There are two ways in which refresh can be performed. One method would be to initiate at the end of a 2 ms period a burst of 32 column refreshes, one refresh cycle followed immediately by another. The second would be to steal one column refresh cycle every $62.4 \mu \mathrm{~s}$. The latter approach was taken since it would present the least interference to programs being executed by the CPU.

To implement refresh, the following logic is needed: a 16 kHz clock, one 3 -input NAND gate, two D latches, a 5 -bit ripple counter, and a 5 -channel digital multiplexer as illustrated in Figure 12. The 16 kHz can be generated with the MC4024, a voltage controlled multivibrator. The frequency of the MC4024 is adjusted to 16 kHz by setting the voltage on the dc control input with the 5 k ohm variable resistor. The control section is comprised of two flip-flops and the NAND gate. On the positive edge of the 16 kHz clock, a logic " 1 " propagates through the two flip-flops and REF is switched to a logic " 1 ". Of course, this assumes that no memory cycle is presently being processed ($\overline{\mathrm{MBE}}$ input a logic " 1 "). If a memory cycle is being executed at the time a refresh cycle is requested (MBE a logic " 0 "), then flip-flop \#2 will not be set until the end of the memory cycle being executed ($\overline{\mathrm{MBE}}$ switched to a logic " 1 "). When REF is switched to a logic " 1 ", the control logic of Figure 11 is set to perform a write cycle, and the external address coming from the CPU is switched to the refresh address. This gating of the addresses can be accomplished with the quad 2 -input multiplexer (MC8322) and the MC7451 as shown in Figure 12. The refresh address is generated with the 5 -bit ripple counter comprised of the MC7493 and one-half of an MC7473. The refresh cycle is terminated on the trailing edge of the $\overline{R D D}$ pulse by switching flip-flop \#2 (REF) to a logic "0".

These three sections of the memory system are integrated into a single logic schematic shown in Figure 13. For clarity of interconnection between the memory array and the memory control section of the system, the address buffers and clock drivers are also included in the schematic. These devices will be covered in the following discussion of the memory array.

4. Memory Array

The memory array contains sixty-four MCM6605A memories arranged in a matrix of four rows and sixteen columns as noted in Figure 14. The sixteen columns are divided into two groups of eight each with separate read/ write control signals. This partitioning scheme provides for

FIGURE 12 - Refresh Address and Refresh Control
a byte as well as a word transfer. Also included in the memory array are address buffers and clock drivers.

The MC3459 Address Line Driver

Although the address inputs of the MCM6605A exhibit low input capacitance (5 pF max) , the total parallel input capacitance of these lines in the array can exceed 300 pF . Standard TTL logic gates have insufficient current drive capability to rapidly switch a high capacitive load, therefore, a high speed buffer, such as the MC3459, is required; see Figure 15. The MC3459 has sufficient output current to typically switch a 360 pF load in 20 ns . This fast switching of the lines can cause a considerable amount of overshoot so a 10 -ohm series damping resistor is recommended. The output of the MC3459 also has an internal 2.5 k ohm pullup resistor to provide a higher $\mathrm{V}_{\mathrm{OH}}(3.2 \mathrm{~V}$ at $-640 \mu \mathrm{~A}$) than standard TTL logic gates. This higher V_{OH} meets the minimum $\mathrm{V}_{\mathrm{IH}}(3.0 \mathrm{~V})$ requirement of the MCM6605.

The MC3460 Clock Driver

The MC3460 quad clock driver, see Figure 16, was
employed to meet the high voltage requirements of the memory CE input. The clock driver has internal logic to either select one of the four clock drivers for a normal same time for a refresh cycle. Two enable inputs are also provided for additional memory expansion to 64 K words without additional address decoding. Other features of the MC3460 include fast switching (25 ns typical for a 480 pF load), and low dc power for the VDD supply (348 mW \max for all four drivers in the logic " 0 " state).

For the memory array given, each clock driver has to fan out to 16 memory chips. To drive this number of memory chips, an external 6.2 k ohm pullup resistor is required for each driver output to insure a minimum V_{OH} of $\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ at a maximum leakage current of $160 \mu \mathrm{~A}$. A minimum 20 ohm damping resistor is also recommended on the CE lines to reduce overshoot.

The memory system described was laid out on a standard size PDP-11 two-sided PC board as illustrated in Figure 17. A photo of the actual memory board is given in Figure 18.

FIGURE 13 - Memory System Schematic

FIGURE 14 - Memory Array

FIGURE 15 - MC3459 Pin Assignment

FIGURE 16 - MC3460 Pin Assignment

SYSTEM PERFORMANCE

System Access and Cycle Time

The performance of this memory system was measured under program control on the PDP-11 computer. The following cycle times were measured from the 50% point on the leading edge of $\overline{\text { MSYN }}$ to the trailing edge of $\overline{\text { SSYN }}$ (see Figures 9 and 10).

System Access: 305 ns (from $\overline{\text { MSYN }}$ to data valid on
the bus)
System Read Cycle: 830 ns
System Write Cycle: 730 ns
A considerable amount of the cycle time is spent by the CPU in acknowledging $\overline{\text { SSYN }}$. Some of this wasted time could be used to advantage during a write cycle. That is, the SSYN could be sent to the CPU earlier by clocking the SSYN latch with a one-shot that has a smaller pulse width than the CE one shot.

System Power Considerations

The MCM6605A is a dynamic RAM that has essentially zero power drain when in the standby mode (CE is a logic " 0 "). However, when the memory is active, the V ${ }^{\text {DD }}$ and V_{BB} supplies have considerable dynamic current transients as noted in Figure 19. To insure that the noise does not exceed 0.35 V on the V_{DD} supply, a low inductance $0.1 \mu \mathrm{~F}$ capacitor is required on the V_{DD} line for every two memory chips. For a 20 ns rise time on the chip enable clock, the bypass capacitors should not be separated more than 1.2 inches. The $V_{B B}$ line requires only one $0.01 \mu \mathrm{~F}$ capacitor for every four memory devices.

FIGURE 19 - Typical Supply Current Transient Waveforms

The V_{CC} line supplies current only to the output buffer and, therefore, requires only a $0.01 \mu \mathrm{~F}$ bypass for every eight memory chips.

The dc power dissipation of the memory system is given in Table 1. This dc power was measured while running worst-case noise test patterns on the memory systems.

TABLE 1 - Typical Power Requirements

 for $16 \mathrm{~K} \times 16$-Bit Memory Board| PowerSupply
 Volts | Standby Power
 Watts | Active Power
 Watts |
| :---: | :---: | :---: |
| $+12\left(\mathrm{~V}_{\mathrm{DD}}\right)$ | 0.84 | 1.10 |
| $-5.0\left(\mathrm{~V}_{\mathrm{BB}}\right)$ | 0.80 | 0.80 |
| $+5.0\left(\mathrm{~V}_{\mathrm{CC}}\right)$ | 4.5 | 4.75 |

There are certain data transfers such as direct memory access (DMA) that would greatly increase the VDD power. The following equation can be used to calculate the maximum active VDD power for a DMA type data transfer:

$$
\begin{gathered}
\mathrm{P}_{\mathrm{D}}=\mathrm{M}\left(\frac{\mathrm{MCT}}{\mathrm{SCT}}\right)\left(\mathrm{I}_{\mathrm{DDA}}\right)\left(\mathrm{V}_{\mathrm{DD}}\right)+(\mathrm{N}-1)(\mathrm{M}) \mathrm{x} \\
{\left[\left(\frac{\mathrm{MCT}}{\mathrm{~T}}\right)\left(\mathrm{I}_{\mathrm{DDA}}\right)\left(\mathrm{V}_{\mathrm{DD}}\right)+\left(\frac{\mathrm{T}-\mathrm{MCT}}{\mathrm{~T}}\right)\left(\mathrm{I}_{\mathrm{DDS}}\right)\left(\mathrm{V}_{\mathrm{DD}}\right)\right]}
\end{gathered}
$$

where: $N=\frac{\text { system word size }}{4096}$
$\mathrm{M}=$ number of bits per word
MCT = semiconductor memory cycle time
SCT = system cycle time

$$
\begin{aligned}
\mathrm{T} & =\frac{2 \mathrm{~ms}}{\text { number of REF cycles }} \\
\mathrm{I}_{\mathrm{DDA}} & =\text { active IDD current } \\
\text { IDDS } & =\text { standby IDD current }
\end{aligned}
$$

Using this equation, the maximum active $V_{D D}$ power for this memory system is 4.46 W . This power figure was determined by using a system cycle time of 830 ns and the following MCM6605A parameters:

(1)	MCT	$=490 \mathrm{~ns}$
(2)	$V_{\text {DD }}$	$=12.6 \mathrm{~V}$
(3)	IDDA	$=36 \mathrm{~mA} \mathrm{max}$
(4)	IDDS	$=20 \mu \mathrm{Amax}$
(5)	T	$=62.5 \mu \mathrm{~s}$

The calculated power figure does not include the clock driver power. Even with the worst case DMA power figure, the power per bit is extremely favorable compared to other memory systems with comparable performance. In the standby mode with refresh, the average dc power figures taken from Table 1 show a typical $23.4 \mu \mathrm{~W} /$ bit for this system.

SUMMARY

This report has covered the features and operation of the MCM6605A N-channel MOS memory, and the complete design of a PDP-11 memory system employing this device. This design also incorporates some of the newest semiconductor memory interface parts to reduce package count and enhance system performance.

Because of the high density, high speed, and low power of the new 4 K RAMs, such as the MCM6605A, they should find rapid and wide acceptance for mainframe memory systems applications such as the one just covered.

Reliability Information/Chapter 6

Reliability

Paramount in the mind of every semiconductor user is the question of device performance versus time. After the applicability of a particular device has been established, its effectiveness depends on the length of troublefree service it can offer. The reliability of a device is exactly that an expression of how well it will serve the customer. The following discussion will attempt to present an overview of Motorola's MOS Reliability efforts.

BASIC CONCEPTS

It is essential to begin with an explanation of the various parameters of reliability. These are probably summarized best in the Bathtub Curve (Figure 1). The reliability performance of a device is characterized by three phases: infant mortality, random failure and wearout. When a device is produced there is often a small distribution of failure mechanisms which will exhibit themselves under relatively moderate stress levels and therefore appear early. This period of early failures, termed infant mortality, can often be reduced significantly through proper manufacturing controls and screening techniques. The most effective period is that in which only occasional random failure mechanisms appear. This typically spans a long period of time with a very low failure rate. The final period is that in which the devices literally wear out due to continuous phenomena which existed at the time of manufacture. Using reasonable design techniques and selectivity in applications, this period can easily be shifted beyond the lifetime required by the user.

FIGURE 1 - THE BATHTUB CURVE

Random Failure

Both the infant mortality and random failure rate regions can be described through the same types of calculations. During this time the probability of having no failures to a specific point in time can be expressed by the equation

$$
P_{o}=e^{-\lambda t}
$$

where λ is the failure rate and t is time. Since λ is changing rapidly during infant mortality, the expression does not become useful until the random period, where λ is relatively constant. In this equation λ is failures per unit of time. It is usually expressed in percent failures per thousand hours. Other forms include FIT (Failures In Time $=$ [$\% / 10^{3} \mathrm{hrs}$] $\times 10^{-4}=10^{-9}$ failures per hour) and MTTF (Mean Time To Failure) or MTBF (Mean Time Between Failures), both being equal to $1 / \lambda$ and having units of hours.

Since reliability evaluations usually involve only samples of an entire population of devices, the concepts of the Central Limit Theorem apply and λ is calculated using the χ^{2} distribution through the equation:

$$
\begin{gathered}
\lambda \leqslant \frac{\chi^{2}(\alpha, 2 r+2)}{2 n t} \\
\text { where } \alpha=\frac{100-C L}{100} \\
C L=\text { Confidence Limit in percent } \\
r \quad=\text { Number of rejects } \\
n=\text { Number of devices } \\
\mathrm{t}
\end{gathered} \begin{aligned}
& =\text { Duration of test }
\end{aligned}
$$

The confidence limit is the degree of conservatism desired in the calculation. The Central Limit Theorem states that the values of any sample of units out of a large population will produce a normal distribution. A 50\% confidence limit is termed the best estimate and is the mean of this distribution. A 90% confidence limit is a very conservative value and results in a higher λ which represents the point at which 90% of the area of the distribution is to the left of that value (Figure 2). The term $(2 r+2)$ is called the degrees of freedom and is an expression of the number of rejects in a form suitable to x^{2} tables.

FIGURE 2 - CONFIDENCE LIMITS AND THE DISTRIBUTION OF SAMPLE FAILURE RATES

The number of rejects is a critical factor since the. definition of rejects often differs between manufacturers. While Motorola uses data sheet limits to determine failures, sometimes rejects are counted only if they are catastrophic. Due to the increasing chance of a test not being representative of the entire population as sample size and test time are decreased, the χ^{2} calculation produces surprisingly high values of λ for short test durations even though the true long term failure rate may be quite low. For this reason relatively large amounts of data must be gathered to demonstrate the real long term failure rate. Since this would require years of testing on thousands of devices, methods of accelerated testing have been developed.

Years of semiconductor device testing has shown that temperature will accelerate failures and that this behavior fits the form of the Arrhenius equation:

$$
R(t)=R_{0}(t) e^{-\theta / k T}
$$

where $R(t)=$ Reaction rate as a function of time and temperature
$R_{0}=A$ constant
$\mathrm{t}=$ Time
$\theta \quad=$ Activation energy in electon volts
k. = Boltzman's constant
$\mathrm{T}=$ Temperature in degrees Kelvin
To provide time-temperature equivalents this equation is applied to failure rate calculations in the form

$$
\mathrm{t}=\mathrm{t}_{0} \mathrm{e}^{\theta / \mathrm{kT}}
$$

where

$$
\begin{aligned}
& \mathrm{t}=\text { time } \\
& \mathrm{t}_{0}=\mathrm{A} \text { constant }
\end{aligned}
$$

The Arrhenius equation essentially states that reaction rate increases exponentially with temperature. This produces a straight line when plotted on log-linear paper with a slope expressed by θ. θ may be physically interpreted as the energy threshold of a particular reaction or failure mechanism. The activation energy exhibited by MOS integrated circuits varies from about 0.7 eV for serious contamination problems to about 1.3 eV . Although the relationships do not prohibit devices from having poor failure rates and high activation energies, good performance usually does imply a high θ. Studies by Bell Telephone Laboratories have indicated that an overall θ for semiconductors is 1.0 eV . This value has been accepted by the Rome Air Development Command for timetemperature acceleration in powered burn-in as specified in Method 1015.1 of MIL-STD-883A. Data taken by Motorola on MOS devices has verified this number and it is therefore applied as our standard time-temperature regression for
extrapolation of high temperature failure rates to temperatures at which the devices will be used (Figure 3).

To accomplish this, the time in device hours (t 1) and temperature (T 1) of the test are plotted as point P1. A vertical line is drawn at the temperature of interest (T2) and a line with a 1.0 eV slope is drawn through point P 1 . Its intersection with the vertical line defines point P 2 , and determines the number of equivalent device hours (t 2). This number may then be used with the χ^{2} formula to determine the failure rate at the temperature of interest. Assuming T1 of $125^{\circ} \mathrm{C}$ at t 1 of 10,000 hours, a t2 of 7.8 million hours results at a T 2 of $50^{\circ} \mathrm{C}$. If one reject results in the 10,000 device hours of testing at $125^{\circ} \mathrm{C}$, the failure rate at that temperature will be $20 \% / 1000$ hours using a 60% confidence level. One reject at the equivalent 7.8 million device hours at $50^{\circ} \mathrm{C}$ will result in a $0.026 \% / 1000$ hour failure rate, as illustrated in Figure 4.

Three parameters determine the failure rate quoted by the manufacturer: the failure rate at the test temperature, the activation energy employed, and the difference between the test temperature and the temperature of the quoted λ. A term often used in this manipulation is the "acceleration factor" which is simply the equivalent device hours at the lower temperature divided by the actual test device hours.

Wearout

Every device will eventually fail, but with reasonable care in design and application the wearout phase can be extended far beyond the lifetime required. During wearout, as in infant mortality, the failure rate is changing rapidly and therefore loses its value. The parameter used to describe performance in this area is "Median Life" and is the point at which 50% of the devices have failed. There are currently only two significant wearout mechanisms: electromigration of circuit metallization and electrolytic corrosion in plastic devices.

Electromigration is the current induced mass transport of metallization due to high temperature and current density. It is strongly affected by the type of metallization as well as the grain structure and surface sealing. It is therefore important that the designer predict the maximum junction temperature of the device, the current on all space limited lines and the process characteristics such as thickness variation, grain size, and step coverage. With these parameters fixed, a median life goal can be selected and the metal width chosen accordingly. Reasonable consideration in the design phase coupled with careful die inspection can therefore eliminate this phenomena as one of practical concern.

FIGURE 3 - NORMALIZED TIME-TEMPERATURE REGRESSIONS FOR VARIOUS ACTIVATION ENERGY VALUES

For increased flexibility in working with a broad range of device hours, the time-temperature regression lines have been normalized to $500^{\circ} \mathrm{C}$ and the time scale omitted, permitting the user to define the scale based on his own requirements.

FIGURE 4 - FAILURE RATE

A more pertinent mechanism is the electrolytic corrosion of die metallization by moisture and applied voltage. Although it can occur in hermetic packages which are not properly sealed, hermeticity testing can easily limit it to plastic packaging. In plastic devices there is never enough adhesion between the plastic and the other components to overcome the stresses developed due to differing coefficients of thermal expansion. As a result moisture can enter the device along the interface of the lead frame and the plastic, pass between the surface of the wire and the plastic and reach the surface of the die. If contaminants are present in the water or in the package an electrolyte is created which will corrode the metallization in the presence of an electric field. The median life is determined by many factors such as:

1. Matching of thermal expansion coefficients of the leadframe, wire, die and plastic
2. Purity of the encapsulant
3. Adhesion of the encapsulant
4. Length and width of the leadframe interface
5. Integrity of the final die passivation layer.

Plastic package corrosion is evaluated by exposing the device to extremes of temperature and humidity while under bias. Through consistent bias configurations and control of the environment, temperature-humidity-bias (THB) testing can be an invaluable indicator of performance. Typical test parameters are $85^{\circ} \mathrm{C}$ and 85% relative humidity. Pressure cooker test and operating tests under tropical conditions are also employed but are more difficult to repeat consistently. The problem with all the tests, however, is the difficulty in relating the results to the environment in which the customer will use the device. To accomplish this a model has been developed which substitutes vapor pressure for temperature in the Arrhenius equation. When available data points
are used to adjust the constants, the plot in Figure 5 is the result. Based on several variations of THB conditions and extrapolated performance from burn-in tests, this model provides a good estimate of performance across the range of temperature and humidity environments possible in the customers application.

Sampling Procedures

There are primarily three methods of measuring how well a lot of product meets the quality and reliability requirements of the customer: 100\% testing using a Percent Defective Allowable (PDA), sampling based on an Acceptance Quality Limit (AQL), and sampling based on a Lot Tolerance Percent Defective (LTPD). Since 100\% testing is time consuming and expensive, sampling procedures are typically employed to assure acceptably low defect levels.

A PDA is simply a reject percentage above which the lot will be rejected. Depending on how the PDA was derived, it may or may not be statistically sound. The availability of theoretically accurate sampling plans in the various military specifications has led to wide use of AQL and LTPD plans. Depending on lot size and sample size, three different probability distributions may be used to derive the sampling plan: the Binomial, the Hypergeometric and the Poisson. The assumptions of a particular sample size (n) and acceptance number (c) and the use of these distributions will generate an Operating Characteristic (OC) Curve as in Figure 6. The AQL is defined at the 95% probability of lot acceptance level while the LTPD is defined at the 10% level. The AQL point describes the Producer's Risk of rejecting good lot (5\%) while the LTPD point describes the Consumer's Risk of accepting bad lot (10\%) given that the incoming product contains the percent defective p .

FIGURE 5 - VAPOR PRESSURE MODEL

FIGURE 6 - OPERATING CHARACTERISTIC CURVE

It is important to remember that although the concepts of Producer's and Consumer's Risk are utilized to describe AQLs and LTPDs, both are merely indicators of the performance of the original population. Both plans are widely used by manufacturers and users alike. By definition, LTPDs employ fixed sample sizes while AQL plans adjust the sample size according to the lot size. As in the case of failure rate determination, the criteria established to determine rejects and their interpretation are key factors in determining the performance of lots during inspection.

THE SOURCE OF RELIABILITY

One of the most popular sayings about reliability is that it must be "built in", not "tested in". Every manufacturing process exhibits a distribution of quality and reliability. The intent of the saying is that this distribution must be controlled to assure a high mean value, a narrow range and a consistent shape. Through proper design and process control this can be accomplished, thereby reducing the task of screening programs which attempt to eliminate the lower tail of the distribution.

Design

A close interface must be maintained between reliability and design. For this reason a large part of the reliability staff is dedicated to a day by day interface with the device design and modeling groups. Through this mutual effort new techniques are evaluated and proven before they are committed to production. Special test vehicles are generated and experiments performed to verify that the performance of new approaches meets or exceeds the standards of the product line. This effort is not only a beneficial application of reliability but an absolute necessity to provide the rapid product development demanded by the dynamic integrated circuit marketplace.

Processing

In addition to the design interface, reliability engineers work closely with process engineers in both the wafer and assembly areas. As each new process is developed, it is also tested to assure that it presents no hazards to the reliability of the ultimate product. This testing is an extensive qualification program which is performed independently on processes, packages and designs.

New wafer processes are qualified using process control patterns and prototypes of production devices. Each new package is tested using methods based on MIL-STD-883A. Assembly process changes are qualified by employing them in the construction and testing of well characterized products. After these primary level qualifications, wafer processes are generically qualified in new packaging systems to assure process-package compatibility. While assembly oriented qualifications center around the thermal-mechanical sequences of MIL-STD-883A, wafer process qualifications emphasize dynamic high temperature stress testing. (see Figures 7 and 8.)

After testing has proven the performance of the process, it is specified and documented to provide a baseline for process control. Beyond the detailed process control efforts of the process engineering groups, an In-Process Quality Assurance (IPQA) group exists to assure that process control is meeting its objectives. IPQA accomplishes this through surveillance of both the wafer and assembly areas (see Figure 9). There are two major inspection points in the wafer processing areas: CV Plotting and Final Visual. Samples from each wafer lot are stringently tested for voltage shift and inspected for gold backing and visual defects. The three major inspection points in the Assembly Area are Die High Power, Die BondWire Bond and Pre-Cap.

FIGURE 7 - PACKAGE EVALUATION

Test	MIL-STD-883 Test Method	Test Condition
Operating Life	1005	N/A
High Temperature Storage	1008	C
Temperature Cycle	1010	C
Thermal Shock	1011	C
Thermal Resistance	N / A	N / A
Mechanical Shock	2002	B
Constant Acceleration	2001	D
Vibration, Variable Frequency	2007	A
Wire Pull (Hermetic)	2011	D
Temperature-Humidity-Bias (Plastic)	N / A	$8{ }^{\circ} \mathrm{C} / 85 \%$ RH/10V
Moisture Resistance	1004	1
Salt Atmosphere	1009	A
Solderability	2003	$260^{\circ} \mathrm{C}$
Lead Fatigue	2004	$\mathrm{B2}$
Marking Permanency	2008	B
Physical Dimensions	2008	A

All of these inspection points are known as "Gate Inspections" and are performed on lots of material. Wafers are grouped into lots which generally consist of thirty to fifty wafers while individual devices are grouped into assembly orders consisting of 500 to 2000 devices. Each lot or assembly order is submitted to In-Process Quality Assurance Gate Inspection. If accepted, they are passed to the next operation, while failed material is returned to Production for 100\% screening. Only the wafers or devices that meet all established standards are accepted for continued processing.
"Monitor" inspections are performed in the assembly area on each individual machine and operator. The monitors are designed to control the operation, and provide feedback of quality
problems to the responsible production supervision. Periodic line audits are used to check for:

1. Documented procedures on each operation
2. Proper usage of specifications
3. Up-to-date calibration of equipment
4. Proper settings on equipment
5. Housekeeping
6. Safety precautions.

Comprehensive training programs are provided for all domestic and off-shore personnel, new plant start-ups, changes in specifications, or process changes. The primary objective is to evaluate the material in process and assure that MOS products meet the levels of reliability and quality which are consistent with the requirements of our customers.

FIGURE 8 - INITIAL EVALUATION OF NEW PRODUCT

SCREENING

During the past thirty years that semiconductor products have existed, a wide variety of screening techniques have evolved to eliminate the lower tail of the process distribution discussed previously. These techniques may be categorized in two ways, as illustrated by the two axes of the matrix in Figure 10. The performing agency varies depending on the type and purpose of the test. Most screens utilized by the industry today are based on MIL-STD-883A and are employed by Motorola in the various categories of Figure 10.

Several 100% visual screens are performed during assembly using both stereozoom and metalurgical microscopes. Subsequent sampling is performed by In-Process Quality Assurance as described above. Assembly mechanical tests for hermetic product consist of:

1. Gross leak sampling
2. Temperature cycling
3. Krypton-85 fine leak testing.

Other tests available as adders include stabilization bake and centrifuge. Stabilization bake originated with Mesa transistors which had exposed junctions. The high temperature bake had a significant effect on stabilizing the junction leakage and low current beta. Since integrated circuits have no exposed junctions, Motorola has found no benefit in stabilization bake. The intent of centrifuge is to exert a force on the wire bonds which would detect latent failures. Calculations have shown that even at $30,000 \mathrm{Gs}$, a higher than normal military requirement, the force on a wire is in the order of 100 mg . This is insignificant compared to a wire pull average of at least 7000 mg . Since each wire bonder is sampled continuously to provide constant control, centrifuge becomes a needless screen. Occasionally die bonds can fail in acentrifuge test, but Motorola controls this factor by employing stringent fillet and wetting criteria in a 100% visual screen enforced by In-Process QA.

FIGURE 10 - TESTING CATEGORIES

Category	Visual Inspection	Mechanical Testing	Electrical Testing	Environmental Stress
100%	Assembly	Assembly	Final Test	Production Burn-In
Sampling	In-Process QA	In-Process QA Outgoing QA	Outgoing QA	Outgoing QA
Qualification Testing	Reliability Engineering			

Many vendors offer extensive screening programs as an adder. Although some features definitely improve reliability, many are far from cost effective. As in the case of stabilization bake and centrifuge for hermetics, many unnecessary screens are applied to plastic product. Stabilization bake is often touted as a screening procedure for plastics, but this is usually the standard cure cycle through which every plastic device is processed. Temperature cycling and thermal shock are tests commonly employed to test for latent wire bond failures. This was a significant problem when the industry was using aluminum wire on various silicone compounds, and continues to be for those vendors who have not properly balanced the thermal expansion coefficients of the package components. Motorola, like many of the large suppliers, has spent years of research and testing in optimizing its epoxy Novolac plastic package to the extent that temperature intermittence has been virtually eliminated. In addition, recent
work by Fitch* has shown that repeated temperature excursions over the military temperature range definitely degrade the THB life of plastic product.

At the end of the assembly process, production final test screens the product with a comprehensive series of dc, functional, and speed oriented electrical tests. These tests are normally more stringent than data sheet requirements and are sampled by Outgoing Quality Assurance. Outgoing QA establishes controls on the equipment, procedures and test programs. Through the use of such monitoring and standard correlation units, this In-Line Quality System (Figure 11) certifies that each unit has been screened to program limits such that all specifications are met or exceeded. Complementing the In-Line systems is a statistical sampling program based on MIL-STD-883A, Method 5005.2. This Group A inspection to Class B levels is detailed in Figure 12.

FIGURE 11 - MOS OUTGOING QUALITY ASSURANCE

*Fitch, William and Carpenter, Marvin: The Effect of Thermal Shock and High Temperature Storage on the Temperature Humidity Bias Life of Plastic

Encapsulated TTL Gates, RLC \#1239 Motorola Integrated Circuit Reliability Report, Revised February 1975.

FIGURE 12 - GROUP A ELECTRICAL TESTS ${ }^{1}$

Subgroups 2	Class B LTPD	AQL
Subgroup 1 Static tests at $25^{\circ} \mathrm{C}$	5/2	0.78
Subgroup 2 Static tests at maximum rated operating temperature	7/2	1.1
Subgroup 3 Static tests at minimum rated operating temperature	7/2	1.1
Subgroup 4 Dynamic tests at $25^{\circ} \mathrm{C}$	5/2	0.78
Subgroup 5 Dynamic tests at maximum rated operating temperature	7/2	1.1
Subgroup 6 Dynamic tests at minimum rated operating temperature	7/2	1.1
Subgroup 7 Functional tests at $25^{\circ} \mathrm{C}$	5/2	0.78
Subgroup 8 Functional tests at maximum and minimum rated operating temperatures	10/2	1.6
Subgroup 9 Switching tests at $25^{\circ} \mathrm{C}$	7/2	1.1
Subgroup 10 Switching tests at maximum rated operating temperature	10/2	1.6
Subgroup 11 Switching tests at minimum rated operating temperature	10/2	1.6

1 The specific parameters to be included for tests in each subgroup shall be as specified in the applicable procurement document. Where no parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test to satisfy Group A requirements.
2 A single sample may be used for all subgroup testing.

In addition to these two programs, all MOS product lines are monitored continuously via an MOS Ongoing Reliability Evaluation (MORE) Program for mechanical, environmental and operating life performance. This program evaluates the most recently manufactured product on a scheduled basis with methods derived from MIL-STD883A (see Figure 13). MORE provides current generic data for process control feedback and, just as important, a "no charge" assurance of comMOS products.

When necessary, production burn-in is per- formed on particular device types. Burn-in procedures are always available at competitive adders. Qualification testing by Reliability Engineering has been described, and Motorola's reliability data is presented in the following section.

SYSTEM IMPLEMENTATION

Assessing System Requirements

The reliability needs of each system and application differ significantly, so the various aspects of component performance must be analyzed separately. The two parameters which should be addressed initially are infant mortality and long term random failure rate. Systems with large
numbers of components require greater component reliability. Infant mortality should be estimated and used to calculate service costs. This data should be balanced against the cost of a functional burn-in and possibly a board or system burn-in. Long term reliability goals should be established for the system and used to calculate the necessary long term failure rate for the components. Long term failure rates cannot be effectively improved by short burn-ins unless they include infant mortality failures. (Infant mortality is included in Motorola's data.) Infant mortality can be effectively screened by short term accelerated stress testing such as a 24 to 48 hour high temperature functional burn-in. The concepts defined earlier can be used to relate the burn-in to equivalent system hours. Often, customers who are experiencing problems fail to distinquish between infant mortality, long term reliability and wearout. It is imperative that failure patterns be sufficiently investigated and recorded to accomplish this. Buying a Hi Rel device will not solve a problem caused by poor handling or an unforseen overstress in the application.

The system environment should be given careful consideration when choosing between plastic and hermetic packages. Sustained high temperature and humidity will accelerate the corrosion
wearout mechanism in plastic according to the model in Figure 5. Office environments, however, will rarely produce a detectable difference in plastic and hermetic packages. Since the die and wire bonding systems are totally encapsulated in plastic, these packages can often outperform hermetics for both thermal conductivity, and mechanical shock and vibration resistance. The potential for moisture condensation should be evaluated in light of the lead material and finish, whether the package is hermetic or plastic. Unusually moist or contaminated atmospheres can rapidly corrode ferrous metals under bias, regardless of the finish material.

Cost effectiveness is also influenced by the number of defective units received by the customer. For various reasons, a small percentage of product is defective as received. This may be due to handling, correlation, shipping damage or a host of minor difficulties. The percentage of these defects should be less than one percent and any significant levels should be discussed with the vendor immediately.

Comparing Competitors' Data

Every manufacturer has a slightly different method of generating his reliability data. It is therefore difficult for a user inexperienced in reliability calculations to make a valid comparison. Toward this end the concepts introduced earlier will be of great value. The following list should be verified before any conclusions of vendor superiority are drawn.

1. Confidence limit
2. Reject criteria (degradation, data sheet, functional, catastrophic, specific mechanisms)
3. Temperature of test
4. Activation energy
5. Distortion of failure rate due to a low number of device hours
6. Biasing configuration
7. Test monitoring (system failures can produce impressive results due to less stringent stress being applied to the device).

Only if all these factors are considered can a truly objective comparison be made.

FIGURE 13A - PRODUCTION LINE PROCESS EVALUATION (Independent of package unless otherwise noted)

Test	Condition or Procedure
Subgroup A1 Electrical dc and Functional	All parameters per detail device specification at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. (Go/No go)
Subgroup A2 Electrical dc and Functional	Critical parameters per detail device specification at minimum and maximum rated operating temperature. ($\mathrm{Go} / \mathrm{No}$ go)
Subgroup A3 Electrical Switching	Critical switching parameters per detail device specification at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. (Go/No go)
Subgroup A4 Electrical Continuity	Plastic package only; all pins at $125^{\circ} \mathrm{C}$. (Go/No go)
Subgroup C1 Storage Life End Points: Electrical	1000 hours at maximum rated storage temperature. Functional and dc at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; read and record at 168 hours, 500 hours, 1000 hours, and each 1000 hours until termination.
Subgroup C2 Operating Life or Steady State Bias End Points: Electrical	1000 hours minimum at maximum rated operating temperature. Conditions specified per device type in 12MRB06389A. Functional and dc at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; read and record at 168 hours, 500 hours, 1000 hours, and each 1000 hours until termination.
Subgroup C3 Accelerated Steady State Life End Points: Electrical	48 hours minimum at $200^{\circ} \mathrm{C}$ static. Burn-in circuit per 12MRB06389A (CMOS ceramic only). Functional and de parameters at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Read and record.

FIGURE 13B - HERMETIC PACKAGE EVALUATION

Test	Method	MIL-STD-883A Condition or Procedure		
$\begin{array}{c}\text { Subgroup B1 } \\ \text { Solderability }\end{array}$	2003.1	Temperature $=260^{\circ}$ C maximum. Omit Aging.		
$\begin{array}{l}\text { Subgroup B2 } \\ \text { Lead Fatigue }\end{array}$	2004.1	Condition B2		
$\begin{array}{l}\text { Subgroup B3 } \\ \text { Seal } \\ \text { a. Fine } \\ \text { b. Gross }\end{array}$	1014.1	$\begin{array}{l}\text { Condition B } \\ \text { Condition C2. Omit vacuum of Step 2. }\end{array}$		
$\begin{array}{l}\text { Subgroup B4 } \\ \text { Physical Dimensions }\end{array}$	2016	Per case outline drawing	$]$	Resistance to solvent
:---				

FIGURE 13C - PLASTIC PACKAGE EVALUATION

Test	Method	MIL-STD-883A Condition or Procedure
Subgroup B1 Solderability	2003.1	Temperature $=260^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. Omit Aging.

FIGURE 14 - MEMORY FAILURE RATE

Motorola Data

Motorola MOS failure rates are generated by dynamic high temperature stress testing at the maximum ratings of the device, or higher. A 60\% confidence level is employed in the standard χ^{2} calculation and the Arrhenius model, with a 1.0 eV activation energy, is used to extrapolate the data to typical operating temperatures. 1.0 eV was chosen based on the work done at Bell Telephone Laboratories, its acceptance by the Rome Air Development Command for MIL-STD-883A, and its consistency with our MOS data. Since junction temperature is the most meaningful parameter for reliability data, the failure rate curves are constructed from extrapolations to $80^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C} \mathrm{TJ}_{\mathrm{J}}$ (see Figure 14).

Wafer process variations are continuously monitored by classification probe and capacitance voltage testing in the wafer area, and by MORE sampling in Outgoing Quality Assurance. In addition to this, a system of periodic reliability tests is being implemented with Process Control patterns to establish the process distribution and track significant variations. Current tests with 15 V static bias at $150^{\circ} \mathrm{C}$ for 500 hours produced the plots of threshold stability shown in Figure 15.

In an effort to investigate system reliability of the MCM6605AL, 32K bytes of core in a PDP-11-15 minicomputer were replaced with 64 of the dynamic, N -channel, silicon gate memories. The memory board was then exposed to $70^{\circ} \mathrm{C}$ in a temperature-controlled environment ($T_{J} \approx 80^{\circ} \mathrm{C}$) with the following (worst-case) voltage conditions: $V_{D D}=11.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BB}}=-4.75 \mathrm{~V}$. The system was programmed to monitor the memory board with a comprehensive and sensitive series of patterns. After more than 1300 hours of continuous operation there were no failures. A second test under more stringent refresh conditions has performed for $\mathbf{6 6 0}$ hours with no failures.

An ongoing improvement program has produced impressive results in plastic package temper-ature-humidity-bias performance. Based on CMOS testing, the Weibull plots of Figure 16 demonstrate this trend. There is a full two fold increase in median life since the data used to generate the vapor pressure model in Figure 5. Although it is not known if a parallel shift of this curve to the latest $85 / 85$ results (ML $=4200$ hours) is justified, the extrapolated performance to normal environments is impressive.

FIGURE 15- PROCESS CONTROL PATTERN THRESHOLD STABILITY TESTS

(PC-78, From MCM6605A Wafer; $V_{T O}=2\left(V_{1)}-V_{2,1} 11=10 \mu \mathrm{~A}, 12=40 \mu \mathrm{~A}\right)$

Fig. 15a - Test Fixture

Fig. 15b - Small Device \#1

Fig. 15d - Large Device

FIGURE 16 - PERFORMANCE HISTORY (TEMPERATURE HUMIDITY BIAS, WEIBULL PROBABILITY)

Periodically samples of competitors' product bought from distributors are tested with Motorola methods. To date no other vendor has performed as well as Motorola (see Figure 17). This data was gathered on CMOS product, but is an excellent indicator of the Motorola plastic packaging system. Testing of LSI devices under THB conditions is more difficult since static bias does not stress internal circuitry and cannot be easily related to field use. On the other hand, dynamic bias at even low frequencies is often degraded beyond meaningful levels by board leakage due to condensation. Establishing valid THB models for LSI is an industry wide problem and programs are currently underway at Motorola to bridge the gap between testing and field performance.

Proper evaluation of rejects and feedback to
processing can occur only through intensive failure analysis. To support the processing areas, product groups and R \& QA, a Product Analysis Laboratory exists. "State-of-the-art" analytical tools are at its disposal including mass spectrometry, Auger, electron microprobe, scanning electron microscopy (with voltage contrast strobe capability) and others too numerous to mention. This capability is complemented by computer tracking systems to evaluate failure patterns and distributions. A simplified example is illustrated in the bar chart of Figure 18.

Detailed information on specific device types is available through individual reliability reports. This series also includes program plans, CMOS and N-Channel generic reports and a plastic packaging report.

FIGURE 17 - VENDOR COMPARISON

B - Other Testing		
Vendor	1000 Hour Burn-In \% Failure	Thermal Shock and Temperature Cycling
1	5.7	0
2	44.0	13.3
3	40.0	0
4	12.0	1.8
Motorola	2.3	0

Processing and Handling

No matter how good the reliability data, screening procedures, or incoming inspection, devices are still subject to degradation or destruction by processing and handling. All MOS vendors use input protection devices and most perform well, but there is no device which totally protects the circuit against all conditions. Most users are familiar with good static prevention procedures, but there are few, if any, who could not have prevented a small percentage of inprocess failures by a careful review of their assembly lines. Every point at which a MOS device is handled apart from its conductive foam or rail should be evaluated. Conductive work surfaces and wrist straps (making contact with skin) should be tied to ground through a nominal one megohm resistor. Test equipment should be checked to assure grounded sockets during insertion and the absence of voltage spikes. Printed circuit board handling should be consistent with device handling using conductive bags or edge connectors. Conformal coating processes (which can extend the application range of plastic) or cleaning procedures should not be overlooked as possible sources of difficulty. Service personnel should be educated in handling procedures since even when service is completed successfully, valuable failure information can be masked by static damage. With reasonable effort very little static damage can be expected, but considering the higher cost of LSI, a review is always worthwhile.

FIGURE 18 - FAILURE CAUSE

Improper board cleaning procedures can often degrade plastic product performance. High purity flourocarbon systems are preferred to water based systems which can more easily introduce contaminants, particularly in the presence of wetting agents. Cooling the device during the clean or pressurized systems can also enhance the entrance of moisture and contaminants into the package along the lead-plastic interface. Even if contaminants are not present, a thorough bake should be performed to prevent premature introduction of an electrolyte.

CONCLUSION

This discussion has attempted to educate the user with the pertinent concepts of reliability, quality assurance, vendor selection and product use. Motorola's reputation for reliability and customer support has been established by the philosophy of its leadership and is being perpetuated through the efforts of MOS Reliability and Quality Assurance. Customer assistance is always available through sales offices, marketing or R \& QA personnel directly.

REFERENCES

Amstadter, Bertram L.: Reliability Mathematics, McGraw-Hill, New York, 1971.
Black, J. R.: "Electromigration - A Brief Survey and Some Recent Results", 1967 IEEE Transactions on Electron Devices, Vol. ED-16, No. 4, April 1967, pp. 338-347.

Cheney, G. T.; Freyman, R. L.; and Mammeke, A. A. (Bell Labs): "Reliability of $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ IGFET Integrated Circuits"', 9th Annual Proceedings, Reliability Physics, 1971, p. 62.

Fitch, William: "The Degradation of Bonding Wires and Sealing Glasses with Extended Thermal Cycling", 1975 International Reliability Physics Symposium and 13th Annual Proceedings, Reliability Physics, 1975.
Fitch, William and Carpenter, Marvin: "The Effect of Thermal Shock and High Temperature Storage on the Temperature Humidity Bias Life of Plastic Encapsulated TTL Gates", Motorola Integrated Circuit Reliability Report RLC \#1239, Revised February 1975.
Goldthwaite, Lynn R. (Bell Labs): "Failure Rate Study for the Lognormal Lifetime Model", Proceedings of the 7th National Symposium on Reliability and Quality Assurance, January 1961, p. 208.

Halleck, Marion C.: "The IC Plastic Package - A Simple Method for Predicting Package Performance", 10th Annual Proceedings, Reliability Physics, April 5-7, 1972.
Lampi, E. E., and Labuda, E. F. (Bell Labs): "A Reliability Study of Insulated Gate Field Effect Transistors with $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ Gate Structures", 10th Annual Proceedings, Reliability Physics, 1972.

McDonnell-Douglas Data Report SRDL 7002, "Failure Rate Predictions", January 25, 1972.
MIL-M-38510A, General Specifications for Microcircuits, 3 July 1972.
MIL-STD-105D, Sampling Procedures and Tables for Inspection, 29 April 1963. By attributes: Duncan, Acheson J.: Quality Control and Industrial Statistics, 4th Edition, Richard D. Irwin Inc., Homewood, Illinois, 1974.

MIL-STD-883A, Test Methods and Procedures for Microelectronics, 15 November 1974.
Peck, D. S. (Bell Labs): "The Analysis of Data from Accelerated Stress Tests", 9th Annual Proceedings, Reliability Physics, 1971, p. 69.

Peck, D. S. (Bell Labs): "The Design and Evaluation of Reliable Plastic-Encapsulated Semiconductor Devices", 8th Annual Reliability Physics Symposium, 1970, p. 81.
Peck, D. S. (Bell Labs): "Semiconductor Device Life and System Removal Rates", Proceedings, 1968 Annual Symposium on Reliability, No. 68C33-1, p. 593.
Reynolds, F. H. (British Post Office): "The Response of the Threshold Voltages of the Transistors in Simple MOS Circuits to Tests at Elevated Temperatures", 9th Annual Proceedings, Reliability Physics, 1971, p. 46.
Ryerson, Clifford M.: "The Mathematics of Reliability", Proceedings of the 8th National Symposium on Reliability and Quality Assurance, January 1962, pp. 163-176.

Vaccaro, Joseph (RADC): "Reliability Physics - An Assessment", Proceedings, 1970 Annual Symposium on Reliability, IEEE Col 70CZ-R, p. 348.

Zierdt, C. H., Jr. (Bell Labs): "Procurement Specification Techniques for High-Rel Transistors, Proceedings, 1967 Annual Symposium on Reliability, IEEE Catalog No. 7C50, pp. 388-407.

Memory Interface/Chapter 7

INTRODUCTION

Probably nowhere else has semiconductor technology achieved greater complexities and higher circuit densities in practical, real-world products than in today's advanced NMOS memories. These devices permit greater memory capacity per unit volume and lower costs per bit than imaginable only a few years ago.

However, these memory IC's do not function alone. As an approximate rule of thumb, for each three memory packages in a typical system, one package of support interface circuitry is required. Some memory IC's require only low-voltage address and control line drivers and higher-voltage clock drivers. Other types require a sense amplifier in addition to the drivers.

The address and clock drivers are necessary since the inputs to MOS memories appear as highly capacitive loads and substantial peak currents are required to charge or discharge this capacitance rapidly. These currents are generally in excess of that available from standard logic gates.

The output from these MOS memories is generally a low level pulse which requires amplification and buffering to make it compatible with logic systems. The sense amplifier can be constructed of MOS devices and placed on the chip with the memory cells or left to the system engineer to provide bipolar interface circuitry, as is generally the case in the older generation memories or the new higher-speed types.

Motorola continuously studies the advancing memory field, along with new technologies and architectures, to define new drivers and sense amplifiers to meet the coming needs of memory systems.

Specifications and Applications Information

QUAD NMOS MEMORY ADDRESS DRIVER

The MC3459 is designed for high-speed driving of the highly capacitive Address select inputs for NMOS Memories. It is also useful in numerous applications requiring a high-current MTTL NAND gate. It is pin-compatible with the popular MC7400 Quad NAND gate.

- Fast Propagation Delay Time -

$$
20 \text { ns Typical with } 360 \text { pF Load }
$$

- Output Voltages Compatible with NMOS Memories
- Inputs Compatible in MTTL and MDTL Logic Families
- Output Loading Factor - 50

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {CC }}$	8.5	Vdc
Input Voltage	v_{1}	5.5	Vdc
Power Dissipation (Package Limitation Ceramic Package @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $T_{A}=25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / R_{\theta J A} \end{gathered}$	$\begin{gathered} 1000 \\ 6.6 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Plastic Package @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $T_{A}=25^{\circ} \mathrm{C}$	$\stackrel{P_{D}}{1 / R_{\theta J A}}$	$\begin{aligned} & 830 \\ & 6.6 \end{aligned}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C} \mathrm{C}}{ }$
Ceramic Package @ $T_{C}=25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / R_{\theta J C} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 20 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Plastic Package @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	1.8	Watts
Derate above $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$1 / R_{\theta J C}$	14	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	0 to 70	${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic Package Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$ and $0 \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$)

Characteristic	Symbol	Min	Typ(1)	Max	Unit
Input Voltage - High Logic State	$\mathrm{V}_{1} \mathrm{H}$	2.0	-	-	\checkmark
Input Voltage - Low Logic State	$V_{\text {IL }}$	-	-	0.8	V
$\begin{aligned} & \text { Input Current - High Logic State } \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 1, \mathrm{H} 1 \\ & 1, \mathrm{H} 2 \end{aligned}$			$\begin{aligned} & 80 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Input Current - Low Logic State $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)$	IIL	-	-	-3.6	mA
Input Clamp Voltage $\left(I_{I C}=-12 \mathrm{~mA}\right)$	V IC	-	-	-1.5	v
$\begin{aligned} & \hline \text { Output Voltage }- \text { High Logic State } \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-640 \mu \mathrm{~A}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{OH} 1}$ VOH_{2}	$\begin{aligned} & 3.2 \\ & 2.4 \\ & \hline \end{aligned}$	-	-	V
Output Clamp Voltage $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OC}}=5.0 \mathrm{~mA}\right)$	VOC	-	5.8	6.75	V
$\begin{array}{\|l} \hline \text { Output Voltage - Low Logic State } \\ \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=640 \mu \mathrm{~A}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=80 \mathrm{~mA}\right) \end{array}$	$\mathrm{V}_{\mathrm{OL} 1}$ $\mathrm{V}_{\mathrm{OL} 2}$	-	-	$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	V
Power Supply Current - Outputs High Logic State $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}\right)$	${ }^{1} \mathrm{CCH}$	-	12	18	mA
Power Supply Current - Outputs Low Logic State $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right)$	${ }^{\prime} \mathrm{CCL}$	-	85	122	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=360 \mathrm{pF}$)

Characteristic	Symbol	Min	Typ	Max	Unit
Propagation Delay Time - High to Low Logic State	tPHL	-	21	32	ns
Propagation Delay Time - Low to High Logic State	tPLH 2	-	16	26	ns

(1) Typical values measured at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

MC3459 (continued)

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES

TYPICAL PREFORMANCE CURVES

FIGURE 4 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT
(Expanded Scale)

FIGURE 5 - OUTPUT VOLTAGE - LOW LOGIC STATE versus OUTPUT CURRENT

APPLICATIONS SUGGESTIONS

A majority of the new N -Channel MOS memories have TTL logic compatible inputs that exhibit extremely low input current and capacitance (typically 5 pF to $\mathbf{1 0} \mathrm{pF}$). However, in a typical memory system (Figure 6) where some of the inputs such as Address lines have to be common, the total parallel input capacitance can be over 300 pF . Standard TTL logic gates have insufficient current drive capability to rapidly switch a high capacitive load; a high speed buffer, such as the MC3459, is required.

A considerable amount of noise can be generated during switching due to the high speed and high current drive capability of the MC3459. The high capacitive discharge current during the high to low transition, plus current spikes can result in a considerable amount of noise being generated on the ground lead. Current spikes are due to both the upper and lower output drive transistors being on for a short period of time during switching. This causes a very low impedance path between $V_{C C}$ and ground.

In order to minimize the effects of these currents, the following layout rules should be followed:

1. The V_{CC} supply pin of each package should be bypassed with a low inductance $0.01 \mu \mathrm{~F}$ capacitor. The $0.01 \mu \mathrm{~F}$ capacitor will sustain the high surge currents required during switching.
2. There is a large amount of current out of the ground node during switching - the noise seen at this node
will be proportional to the ground impedance. The impedance of the ground bus can be reduced by increasing its width. At least a 50 mil ground width is recommended.
Some of the NMOS memories with TTL logic compatible inputs do not actually meet the TTL logic level requirements in the input high state voltage ($\mathrm{V}_{1 \mathrm{H}}$). There are N -Channel MOS memories with a VIH minimum ranging from 2.4 V to 4.0 V . The MC3459 can directly interface with those N -Channel memories having a $\mathrm{V}_{1 \mathrm{H}}$ minimum of 3.0 V . The higher driver output levels can be accomplished by adding a pull-up resistor to V_{CC} or by increasing the VCC voltage. There are some N -Channel MOS memories, such as the MCM7001, that have a supply requirement of 7.5 V . The high maximum supply voltage rating of the MC3459 can accommodate a $7.5 \vee V_{C C}$ supply without affecting its input TTL logic compatibility. Figure 4 gives the typical $\mathrm{VOH}_{\mathrm{OH}}$ versus I_{OH} characteristics for both $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$. An expanded output characteristic curve of Figure 4 is illustrated in Figure 5.

The MC3459 can be used in a variety of applications including, high fan-out buffer (drives 50 standard TTL loads) and low impedance transmission line driver.

FIGURE 6 - TYPICAL APPLICATION
$16 \mathrm{~K} \times \mathrm{N}$ Memory System Employing

Specifications and Applications Information

QUAD NMOS MEMORY CLOCK DRIVERS WITH REFRESH SELECT LOGIC

The MC3460 and MC3466 are quad drivers for use with high-level clock lines in NMOS RAM systems. The MC3460 version is specified for 4 K memory applications with a VDD1 power supply voltages to +13 V . The MC3466 version is specified for mating with the MCM7001A 1 K RAM and is guaranteed with a supply voltage VDD1 to 18 V . Both versions may be used with the VDD2 pin connected to a separate supply $>\mathrm{V}_{\mathrm{DD}} 1$ to increase the high logic state output voltage.

The channel control logic is organized so that all four drivers may be deactivated for STANDBY operation, or single driver may be activated for READ/WRITE operation or all four drivers may be activated for REFRESH operation.

- Control Logic Optimized for Use in MOS RAM Systems
- High Speed Switching
- VDD1 and VDD2 Variable Over Wide Range of Voltage to 18 and 22 V Respectively (MC3466)
- Output Voltages Compatible with Many Popular MOS RAMs
- MTTL and MDTL Compatible Inputs

MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$V_{\text {cc }}$	+7.0	Vdc
MC3460	$V_{\text {DD1 }}$	+14	Vdc
MC3466		+19	
MC3460	$\mathrm{V}_{\text {DD2 }}$	+18	Vdc
MC3466		+23	
Input Voltage	v_{1}	+5.5	Vdc
Power Dissipation (Package Limitation)			
Ceramic Package @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	$\stackrel{\mathrm{PD}_{\mathrm{D}}}{1 / \mathrm{R}_{\theta J A}}$	$\begin{gathered} 1000 \\ 6.6 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\begin{gathered} \text { Plastic Package @ } T_{A}=25^{\circ} \mathrm{C} \\ \text { Derate above } T_{A}=25^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 830 \\ 6.6 \end{gathered}$	$\underset{\mathrm{mW}}{\mathrm{~mW} /{ }^{\circ} \mathrm{C}}$
Ceramic Package @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $T_{C}=25^{\circ} \mathrm{C}$	P_{D} $1 / R_{\theta J C}$	$\begin{aligned} & 3.0 \\ & 20 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Plastic Package @ $T_{C}=25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / R_{\theta J C} \end{gathered}$	$\begin{aligned} & 1.8 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Watts } \\ & \mathrm{mW} /{ }^{\circ} \mathrm{C} \end{aligned}$
Operating Ambient Temperature R ange	$\mathrm{T}_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ		${ }^{\circ} \mathrm{C}$
Ceramic Package		175	
Plastic Package		150	

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	MC3460			MC3466			Unit
		Min	Typ	Max	Min	Typ	Max	
Power Supply Voltages(Note 1)	$V_{\text {CC }}$	4.75	5.0	5.25	4.75	5.0	5.25	Vdc
	$V_{\text {DD1 }}$	4.75	-	13	4.75	-	18	Vdc
	$V_{\text {DD2 }}$	VDD1	-	17	VDD1	-	22	Vdc
	$\begin{aligned} & \mathrm{V}_{\text {DD2 }} \\ & \mathrm{V}_{\text {DD1 }} \\ & \hline \end{aligned}$	0	-	10	0	-	10	Vdc
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	0	-	70	0	-	70	${ }^{\circ} \mathrm{C}$

Note 1: Not to Exceed Maximum Recommended Operating Voltages

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ranges. Typical values measured at $T_{A}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	MC3460			MC3466			Unit
		M in	Typ	Max	Min	Typ	Max	
Output Voltage - High Logic State $\begin{aligned} \left(V_{D O 2}\right. & \left.=V_{D D 1}+3.0 \mathrm{~V}, V_{I L}=0.8 \mathrm{~V}\right) \\ \mathrm{IOH}^{\prime} & =-2.0 \mathrm{~mA} \\ \mathrm{IOH}^{2} & =-40 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{OH} 1}$	$\begin{aligned} & \text { VDD1 }^{-1} \\ & 1.0 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\text {DD } 1-} \\ 0.8 \end{gathered}$	-	VDD1- 1.3	VDD1- 1.1	-	Vdc
Output Voltage - High Logic State $\left(V_{D D 2}=V_{D D 1}, V_{1 L}=0.8 \mathrm{~V}\right)$ (See Applications Section of Data Sheet) $\begin{aligned} & \mathrm{IOH}=-100 \mu \mathrm{~A} \\ & \mathrm{IOH}=-40 \mathrm{~mA} \end{aligned}$	VOH_{2}	$\begin{aligned} & \text { VDD1- } \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { VDD1- }^{\prime} \\ & 0.8 \end{aligned}$	$-$	$V_{D D 1}{ }^{-}$ 2.5	$V_{D D 1}{ }^{-}$ 1.6	-	Vdc
Output Voltage - Low Logic State $\left(\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=+10 \mathrm{~mA}\right)$	VOL1	-	-	0.35	-	-	0.35	Vdc
$\begin{gathered} \text { Output Voltage - Low Logic State } \\ \left(\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{IOL}_{\mathrm{OL}}=40 \mathrm{~mA}\right) \\ 11 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD} 2} \leqslant 17 \mathrm{~V} \\ 11 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD} 2} \leqslant 22 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{OL} 2}$	-	-	0.55 -	-	-	$\overline{-}$	Vdc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ranges. Typical values measured at $T_{A}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	MC3460			MC3466			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Clamp Voltage $\left(V_{I L}=0 \mathrm{~V}, I O C=5.0 \mathrm{~mA}\right)$	VOC	-	-	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{DD} 1^{+}} \\ 1.0 \end{array}$	-	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD1}}{ }^{+} \\ 1.0 \end{gathered}$	Vdc
Input Voltage - High Logic State	$\mathrm{V}_{\text {IH }}$	2.0	-	-	2.0	-	-	Vdc
Input Voltage - Low Logic State	$V_{\text {IL }}$	-	-	0.8	-	-	0.8	Vdc
Input Clamp Voltage $\left(1 C_{1}=-12 m A\right)$	$V_{\text {IC }}$	-	-	-1.5	-	-	-1.5	Vdc
Input Current - High Logic State $\left(V_{1}=5.0 \mathrm{~V}\right)$ Channel Select Inputs Refresh Select and Enable Inputs	${ }^{1} \mathrm{H}$	-	-	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	-	-	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$
Input Current - Low Logic State $\left(\mathrm{V}_{1 \mathrm{~L}}=0.4 \mathrm{~V}\right)$ Channel Select Inputs Refresh Select and Enable Inputs	IIL	$-$	-	$\begin{aligned} & -1.6 \\ & -6.4 \end{aligned}$	-	-	$\begin{aligned} & -1.6 \\ & -6.4 \end{aligned}$	mA
$\begin{gathered} \text { Power Supply Current - Output - High Logic State } \\ \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=0 \mathrm{~V}, \mathrm{I} \mathrm{OH}=0 \mathrm{~mA},\right. \\ \mathrm{MC} 3460 \mathrm{~V}_{\mathrm{DD} 1}=13 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=17 \mathrm{~V}, \\ \left.M C 3466 \mathrm{~V}_{\mathrm{DD} 1}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=22 \mathrm{~V}\right) \end{gathered}$	$\begin{aligned} & \text { ICCH } \\ & \text { IDD 1HP } \\ & \text { IDD 1HN } \\ & \text { IDD2H } \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 28 \\ 0.5 \\ -6.0 \\ 6.0 \end{array}$		-	$\begin{array}{r} 28 \\ 0.5 \\ -6.0 \\ 6.0 \end{array}$	mA
$\begin{gathered} \text { Power Supply Current - Output - Low Logic State } \\ \left(\mathrm{V}_{\mathrm{CC}}=+5.25, \mathrm{~V}_{1 \mathrm{H}}=5.0 \mathrm{~V}, \mathrm{IOL}=0 \mathrm{~mA},\right. \\ \mathrm{MC} 3460 \mathrm{~V}_{\mathrm{DD} 1}=13 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=17 \mathrm{~V}, \\ \left.M C 3466 \mathrm{~V}_{\mathrm{DD} 1}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=22 \mathrm{~V}\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{ICCL} \\ & \text { IDD1L } \\ & \text { IDD2L } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 2.0 \\ & 23 \end{aligned}$	-	-	$\begin{aligned} & 48 \\ & 2.0 \\ & 30 \end{aligned}$	mA
Power Supply Current - Output - High Logic State $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{1 L}=0 \mathrm{~V}, I_{\mathrm{OH}}=0 \mathrm{~mA},\right. \\ & \mathrm{MC} 3460 \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=13 \mathrm{~V}, \\ & \left.M C 3466 \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}\right) \end{aligned}$	IDD1H IDD2H	-	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	mA

SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{MC} 3460: \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=480 \mathrm{pF}\right.$;
$\left.\mathrm{MC} 3466: \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=480 \mathrm{pF}\right)$

Characteristic	Symbol	MC3460			MC3466			Unit
		Min	Typ	Max	Min	Typ	Max	
Propagation Delay Time - READ/WRITE Mode								ns
Output High to Low Level	${ }^{\text {t }} \mathrm{DHL} 1$	-	15	24	-	15	24	
Output Low to High Level	t DLH1	-	15	23	-	15	23	
Transition Time - READ/WRITE Mode								ns
Output High to Low Level	${ }^{\text {t }}$ HL 1	-	14	23	-	15	24	
Output Low to High Level	t TLH 1	-	14	23	-	15	24	
Propagation Delay Time - REFRESH Mode								ns
Output High to Low Level	${ }^{\text {t }} \mathrm{DHL} 2$	-	20	35	-	-	-	
Output Low to High Level	t ${ }^{\text {DLH2 }}$	-	16	27	-	-	-	
Transition Time - REFRESH Mode								ns
Output High to Low Level	${ }^{\text {t }}$ THL2	-	20	36	-	-	-	
Output Low to High Level	t ${ }^{\text {LLH2 }}$	-	16	27	-	-	-	

FIGURE 1 - SWITCHING TEST WAVEFORMS - MC3460

Input Pulse Characteristics
PRR $=1 \mathrm{MHz}$ READ/WRITE Mode
PRR $=100 \mathrm{kHz}$ REFRESH Mode $\mathrm{PW}=500 \mathrm{~ns}$
${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{LH}}={ }^{\mathrm{t}} \mathrm{T}_{\mathrm{THL}} \leqslant 5.0 \mathrm{~ns}$

FIGURE 2 - SWITCHING TEST WAVEFORMS - MC3466

FIGURE 3 - SWITCHING TEST CIRCUIT FOR READ/WRITE MODE - MC3460

FIGURE 5 - SWITCHING TEST CIRCUIT FOR READ/WRITE MODE - MC3466

TYPICAL PERFORMANCE CURVES

FIGURE 7 - DELAY TIMES versus LOAD CAPACITANCE (READ/WRITE MODE)

FIGURE 8 - TRANSITION TIMES versus LOAD CAPACITANCE (READ/WRITE MODE)

TYPICAL PERFORMANCE CURVES

FIGURE 9 - DELAY TIMES versus LOAD CAPACITANCE (REFRESH MODE)

FIGURE 11 - SWITCHING TIMES versus TEMPERATURE (READ/WRITE MODE)

FIGURE 13 - POWER DISSIPATION versus FREQUENCY

FIGURE 10 - TRANSITION TIMES versus LOAD CAPACITANCE (REFRESH MODE)

FIGURE 12 - SWITCHING TIMES versus TEMPERATURE (REFRESH MODE)

FIGURE 14 - OUTPUT VOLTAGE - LOW LOGIC STATE versus OUTPUT CURRENT

TYPICAL PERFORMANCE CURVES

FIGURE 15 - OUTPUT VOLTAGE - HIGH LOGIC OUTPUT STATE versus OUTPUT CURRENT

FIGURE 16 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT

FIGURE 17 - TYPICAL 16K WORD BY N BIT MEMORY ARRAY

APPLICATIONS INFORMATION

The MC3460 and MC3466 are designed specifically for dynamic N -Channel MOS random access memories (RAM's) that require a single high-voltage clock. The unique design and electrical characteristics of these clock drivers will enhance the performance, as well as reduce the cost, of dynamic MOS RAM systems.

Dynamic N -Channel MOS RAM's that require a high voltage clock have extremely low standby power when the clock is in the logic " 0 " state (Gnd). To take advantage of this low-power mode, the memory system should be partitioned such that only the memory chips of a selected word receive a clock signal (see memory system in Figure 17). However, to reduce the amount of time spent refreshing the memory system, all memory chips of the system should be clocked for each refresh cycle.

The logic necessary to accomplish this desirable system feature has been incorporated in the clock drivers. Note from the block diagram and the truth table (on the front page of this data sheet) that the selection of a clock driver is dependent on the logic state of the $\overline{\text { REFRESH }}$ and CHANNEL SELECT inputs. All four drivers are selected when the REFRESH SELECT input (Pin 5) is at a logic " 0 " state. However, when the REFRESH SELECT input is at a logic " 1 " state, only those drivers that have their respective CHANNEL SELECT inputs at a logic " 0 " state will be selected. The timing and clock driver output pulse width are controlled by a logic " 0 " signal applied to one of the three ENABLE inputs. The other two ENABLE inputs allow the memory system to be expanded without additional address decoding.

Figure 17 illustrates one possible clock driver configuration that can be employed to drive a 16 K word memory system comprised of 4 K dynamic MOS RAM's. The MC4007 is a one-of-four decoder that decodes the memory address sent from the CPU. Since the decoder outputs drive the clock driver SELECT inputs, only one of the four clock drivers will be selected. The timing and clock driver output pulse width can be accomplished with a simple one-shot (MC8602). The $\overline{\mathrm{Q}}$ output of the MC8602
drives an ENABLE input of the MC3460/MC3466 and the clock pulse width is determined by the RC component values.

For a memory refresh cycle, the REFRESH SELECT input of the MC3460/MC3466 is switched to a logic " 0 " state which will select all of the clock drivers as noted earlier. On the falling edge of the REFRESH SELECT signal, the one-shot is fired and at the same time all four clock drivers are selected for the refresh cycle since the $\overline{\text { REFRESH SELECT signal }}$ is in the zero state (See Figure 17). At the end of the refresh cycle, the REFRESH $\overline{S E L E C T}$ signal is switched to the logic " 1 " state and the memory system is set to accommodate another CPU memory request. The memory system access time will be enhanced with this scheme because no additional gating is required to accommodate the refresh cycle.

SYSTEM CONSIDERATIONS

Bypass and Layout - A considerable amount of noise can be generated during switching due to the high speed and high current drive capability of these drivers. The high charge or discharge current spikes during transitions can result in a considerable amount of noise being generated on the ground and VDD1 leads. These current spikes are primarily due to capacitive load current. However, there is an additional component to the total current spike which is due to both the upper and lower output driver transistors conducting for a short period of time during switching. This causes a low impedance path between the VDD1 supply and ground during part of the transition time.

In order to minimize the effects of these surge currents, the following layout rules should be followed:

1. The $V_{D D 1}$ supply pin of each package should be bypassed with a low inductance $0.1 \mu \mathrm{~F}$ capacitor The $0.1 \mu \mathrm{~F}$ capacitor will sustain the high surge currents required during switching.
2. The surge current that flows out of the driver ground pin during switching will generate noise. This noise will be proportional to the ground impedance at the ground pin. To insure minimum ground noise, the ground path to this pin should be as wide as possible. At least a 50 mil to 100 mil ground line is recommended.

Fanout Considerations - In a memory system, the number of memory CHIP ENABLE inputs that can be driven by a single clock driver will depend on the input capacitance and the input leakage current required at a specified minimum logic " 1 " state (VCEH). Since the memory CHIP ENABLE input capacitance will affect the clock transition times, the total parallel input capacitance should not exceed that value which will cause the clock driver transition times to be slower than those specified for the memory. For a majority of the 4 K RAM's, the chip enable input capacitance is less than 40 pF . With a 30 pF loading, each driver of this device can drive up to sixteen 4 K memory chips.

Although the input leakage current of each memory CHIP ENABLE is extremely small, the total leakage current of the CHIP ENABLE inputs when paralleled in a memory system can exceed the output current of the clock driver in the high output state (V_{OH}). With the MC3460/MC3466 there are two methods that can be employed to increase the output current. The MC3460/ MC3466 has split high voltage power supplies (VDD1 and $\mathrm{V}_{\mathrm{DD} 2}$) as noted in Figure 18 . With $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}}$, the maximum output current, that guarantees a minimum V_{OH} of $\mathrm{V}_{\mathrm{DD} 1}-1.0 \mathrm{Volt}$, is $-100 \mu \mathrm{~A}$. However, the output current can be greatly increased if a voltage greater than $\mathrm{V}_{\mathrm{DD}} 1$ is applied to $\mathrm{V}_{\mathrm{DD} 2}$. For $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} 1$
+3.0 Volts, 1 OH can be increased to -2.0 mA for a VOH minimum of VDD1 -1.0 Volt. For most $4 K$ RAM's, this current is sufficient to drive to 200 memory chips. However, if a higher voltage is not available for VDD2 then the current can be increased by employing a pull-up resistor to $V_{\text {DD1 }}$. The following formula can be used to determine what value of pull-up resistor is needed to meet a given fanout requirement.

$$
\begin{equation*}
R \leqslant \frac{V_{D D 1}-V_{O H}(\min)}{I_{R}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{R}=N\left(I_{I C E}\right)-I_{O H} \tag{2}
\end{equation*}
$$

${ }^{\mathrm{I}} \mathrm{OH}$ is the clock driver output current for $\mathrm{V}_{\mathrm{OH}}(\min) \geqslant \mathrm{V}_{\mathrm{CEH}}(\min)$
lICE is the memory CHIP ENABLE input leakage current specification.
N is the number of CHIP ENABLE inputs to be driven by the clock driver.

For the memory system given in Figure 17, assume that each word has 16 bits. If the MCM 66054 K RAM were employed, then the pull-up resistor value would be calculated in the following manner.

From the MCM6605 Specifications;

$$
V_{C E H}(\min)=V_{D D}-1.0 \mathrm{Volt} @ I_{I C E}=10 \mu \mathrm{~A} .
$$

From the MC3460 Specifications;

$$
\begin{aligned}
& \text { For } V_{D D 1}=V_{D D 2} \text { the minimum } V_{O H} \text { is } \\
& V_{D D 1}-1.0 \text { Volt @ an } \mathrm{I} O H=100 \mu \mathrm{~A}
\end{aligned}
$$

Since the $\mathrm{V}_{\mathrm{OH}}(\min)$ required by the MCM6605 is VDD1-1.0 Volt, equation (1) reduces to:

$$
R \leqslant \frac{V_{D D 1}-\left(V_{D D 1}-1.0 \text { Volt }\right)}{I_{R}}
$$

or

$$
\begin{equation*}
R \leqslant \frac{1.0 \mathrm{Volt}}{I_{\mathrm{R}}} \tag{3}
\end{equation*}
$$

From equation (2), since $N=16, I_{R}=16(10 \mu \mathrm{~A})$ $-100 \mu \mathrm{~A}=60 \mu \mathrm{~A}$. Substituting in this value of I_{R} into Equation (3) yields the following value for R :

$$
R \leqslant \frac{1.0 \mathrm{Volt}}{60 \mu \mathrm{~A}}=16.6 \mathrm{k}
$$

Overshoot - The finite inductance of the memory chip ENABLE line can cause the clock driver to overshoot during switching. With fast switching clock drivers, the overshoot can exceed the maximum logic levels specified for the CHIP ENABLE input. To insure that the overshoot voltage does not exceed the maximum CHIP ENABLE input ratings the following two techniques can be employed:

The simplest scheme is to place a damping resistor R_{S}

In series with the clock line, (See Figure 17). The critical value of R_{S} can be calculated from the formula:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{S}} \cong \sqrt[2]{\frac{\mathrm{L}_{S}}{\mathrm{C}_{\mathrm{L}}}} \tag{4}
\end{equation*}
$$

where L_{S} is the clock line inductance and C_{L} is the load capacitance.
For most memory systems the value of R_{S} will range from 10 ohms to 50 ohms.

The series damping resistor will also affect the transition times of the damped output waveform. Thus, the maximum value that may be used for RS will be determined by the maximum switching times specified for the CHIP ENABLE input. The following equation can be used to determine the maximum value of R_{S}.

$$
\begin{equation*}
\mathrm{t}_{\mathrm{T}}(\max) \leqslant 2.2 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{L}} \tag{5}
\end{equation*}
$$

In some high performance memory systems the switching times required may be too fast to accomodate the addition of a damping resistor. For these systems the overshoot can be limited by placing clamp diodes at the far end of the CHIP ENABLE line as noted in Figure 19. Fast recovery diodes are required to insure proper clamping on both the leading and trailing edges of the CLOCK pulse.

Power Considerations - Circuit performance and longterm circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:
or

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(R_{\theta J C}+R_{\theta C A}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(R_{\theta J A}\right) \tag{7}
\end{equation*}
$$

where
$T_{J}=$ junction temperature
$T_{A}=$ ambient temperature
$P_{D}=$ power dissipation
$R_{\theta J C}=$ thermal resistance, junction to case
$R_{\theta C A}=$ thermal resistance, case to ambient
$R_{\theta J A}=$ thermal resistance, junction to ambient

The power dissipation of the device (P_{D}) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. The power dissipation as a function of capacitive loading and frequency can be obtained from Figure 13. The value found in Figure 13 should not yield a junction temperature, T_{J}, greater than $T_{J}(\max)$ at the maximum encountered ambient temperature. $T_{J}(\max)$ is specified for the integrated circuit packages in the maximum ratings section of this data sheet.

FIGURE 18 - SIMPLIFIED OUTPUT CONFIGURATION

THE MC3466 IN HIGH PERFORMANCE

 '7001 SYSTEMSThe MC3466 is specified to meet the more stringent driving requirements of high speed N -channel memories such as the MCM7001A. Figures 20 and 21 show photographs of oscilloscope waveforms for the MC3466 driving up to six MCM7001A memories. The memories were operated with a +15 Volt supply and the MC3466 used a +17 Volt supply tied to VDD1 and VDD2. Two clamp diodes were used at the end of the line to clamp the overshoot as noted previously in Figure 19.

With this driver connection, where the VDD1 supply is at a higher voltage than the memory VDD supply, the VDD1 and VDD supplies should track each other within the following range $3.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{DD}} 1-\mathrm{V}_{\mathrm{DD}} \geqslant 1.5 \mathrm{~V}$ to insure the minimum output $\mathrm{VOH}_{\mathrm{OH}}$ level and to limit the amount of current the clamp diode has to sink during the clock high state period.

For the MC3466 driving two MCM7001A memories, Figure 20 shows the driver supplying about 250 mA peak current when the CHIP SELECT voltage switches from a "low" to "high", with a transition time of $15 \mathrm{~ns}(1.5 \mathrm{~V}$ to 13.5 V level) and a high to low transition time of only 8 ns. When driving four MCM7001A memories, the peak current reaches about 400 mA with a CHIP SELECT rise time of 22 ns .

Figure 21 shows that for a fanout of 6 memories, the transition time increases to 28 ns . The MC3461 (dual NMOS memory sense amplifier) is used to detect the data

FIGURE 19 - APPLICATION OF CLAMPING DIODES TO LIMIT OVERSHOOT

of the output memory and translate to MECL 10,000 levels. The use of the MC10125 will translate the MECL levels to TTL levels in only 5 ns. The total delay from the 50% level of the falling clock edge at the MC3466 input to the 50% point at the data output of the MC10125 is only 62 ns when driving two memories and 67 ns for four memories.

Figure 22 shows the logic diagram for building a $32 \mathrm{~K} \times 1$ memory board with TTL interface and MCM7001A memories using a multiplex approach. Addresses A0 to A9 and the DIN signals go to all the memory devices. The address bits A 10 and A11 are used to select 1 of 4 rows (WRITE ENABLE lines) when writing into the memory. The addresses, A12, A13, and A14 are decoded using the MC3466 to drive the CHIP SELECT lines. Only two MC3466's are required. Each driver in the MC3466 drives the CHIP SELECT line connected to four memories. During a read operation, the data from 4 of the 32 mem ories are latched into the MC3461. Addresses A10 and A11 are used to select which one of the four memories is to be read on the DATA OUT line. This configuration is especially useful in interweaving of fast, large memory systems so that the data can be read out consecutively in one CPU cycle time.

A $4 \mathrm{~K} \times 18$ memory board is shown in Figure 23 with TTL interface using a more straightforward approach. Only six MC3466's are required to drive the CHIP SELECT lines. The memory can be expanded to 256 K words by using two 1-of-8 decoders on the control board and connecting the outputs to the proper BOARD ENABLE.

FIGURE 20 - CURRENT AND VOLTAGE CHARACTERISTICS FOR THE MC3460 DRIVER DRIVING 2 AND 4 MCM7001A MEMORIES

FIGURE 21 - RISE TIME AND ACCESS TIME VARIATIONS FOR AN MC3466 DRIVER DRIVING 1,2,4, AND 6 MCM7001A MEMORIES

FIGURE 22-32K $\times 1$ MEMORY BOARD
(TTL INTERFACE)

MOS DYNAMIC MEMORY ADDRESS REFRESH LOGIC CIRCUITRY

The MC8505 is a high speed address refresh logic circuit designed for application with MOS dynamic memories. Fabricated using bipolar integrated circuit technology, this device contains an internal 6 -bit counter, counter reset control, and necessary multiplexing circuitry to either propagate memory addresses from the CPU (normal operating mode), or to sequentially cycle through the low order input address lines of dynamic MOS memories (refresh mode).

The MC8505 can be used for 16, 32, or 64 cycle refresh for either 1 K or 4 K MOS dynamic memories by proper choice of refresh clock frequency and utilization of 4,5 , or 6 output memory address lines. High input impedance and a low propagation delay allow the MC8505 to be tied directly to the CPU address bus with minimal loading and negligible increase in total memory cycle.

- 16, 32, or 64 Cycle Refresh
- Refresh for 1 K or 4 K Memories
- Bus Compatible
- Address Delay Time $=60$ ns typical
- 5-V Power Supply
- Counter Reset Control

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to Gnd	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +165	${ }^{\circ} \mathrm{C}$

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
DC OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	4.75	5.25	Vdc
Logic Levels (All Inputs)				
Input High Threshold Voltage	$\mathrm{V}_{1 \mathrm{HT}}$	1.4	-	
Input Low Threshold Voltage	$\mathrm{V}_{\text {ILT }}$	-	1.0	

DC ELECTRICAL CHARACTERISTICS

Characteristic		Symbol	Min	Max	Unit
Input High Current ($\left.\mathrm{V}_{\mathrm{in}}=2.4 \mathrm{Vdc}\right)$	Address Inputs Refresh Clock Reset	$\begin{aligned} & 1_{\mathrm{AH}} \\ & { }^{\prime} \mathrm{CH} \\ & I_{\mathrm{RH}} \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.24 \\ 1.7 \\ 1.5 \end{gathered}$	mAdc
Input Low Current $\left(V_{\text {in }}=0\right)$	Address Inputs Refresh Clock Reset	${ }^{\prime} \mathrm{AL}$ ${ }^{1} \mathrm{CL}$ $I_{\text {RL }}$	-	$\begin{aligned} & -0.2 \\ & -1.4 \\ & -1.2 \end{aligned}$	mAdc
Output High Voltage ($10=-300 \mu \mathrm{Adc}$)		V_{OH}	2.4	-	Vdc
Output Low Voltage (${ }_{\mathrm{O}}=3.2 \mathrm{mAdc}$)		V_{OL}	-	0.5	Vdc
Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$		P_{D}	-	280	mW
Input Capacitance		$\mathrm{C}_{\text {in }}$	-	5.0	pF

PIN ASSIGNMENT

PACKAGE DIMENSIONS

MC8505P (continued)

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Load $=1 \mathrm{TTL}$ Gate, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
AC OPERATING CONDITIONS

Parameter	Symbol	Min	Unit
Address Mode Pulse Width*	t_{AP}	200	ns
Reset Pulse Width	t_{RP}	100	ns

*Minimum time for burst refresh.

AC ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Typ	Max	Unit
Input-Output Address Delay	t_{AD}	60	80	ns
Address Enable Delay	t_{AE}	70	100	ns
Refresh Address Delay	t_{CD}	120	145	ns
Reset Delay	t_{RD}	100	120	ns
Reset Release Delay	t_{RR}	35	55	ns

TIMING DIAGRAM

SWITCHING TIME TEST CIRCUIT

High-impedance probes (>1.0 megohm) must be used.
$C_{T}=10 \mathrm{pF}=$ total parasitic capacitance, which includes probe, wiring, and load capacitances

MC8505P (continued)

APPLICATIONS INFORMATION

All dynamic MOS random access memories require a periodic refresh operation to insure that stored data is retained. A refresh operation consists of a specified number of write cycles (some memories require a read cycle) on the least significant address bits of the memory within a given period of time. The number of write or read cycles will vary depending on the memory circuit. Presently available dynamic MOS RAMs require either 16, 32, or 64 write or read cycles within a 2 ms period.

Unfortunately the periodic refresh requirement of dynamic MOS RAMs increases the cost and reduces the overall performance of a memory system. For example, additional logic is required to insure that the memory system is properly refreshed, as indicated in the memory system diagram of Figure 1. The MC8505 was designed to simplify and minimize the logic necessary to perform the refresh operation.

The MC8505 contains a 6 -bit binary ripple counter that is used to generate the 64 sequential address states required for the 64 -cycle refresh memories. Only four or five bits of the counter are required for those memories having 16 or 32 -cycle refresh.

A multiplexer is also included with the counter so that both the counter and the CPU address can be gated to the
least significant address bits of the MOS RAM. The refresh clock (see logic diagram) determines which address the multiplexer gates to memory address. When the refresh clock is at a logic " 0 " $\left(V_{I L}\right)$, the bus address inputs are gated to the memory address. The address of the counter is gated to the memory address during a refresh cycle when the refresh clock input is switched to a logic " 1 " $\left(\mathrm{V}_{\mid \mathrm{H}}\right)$. After a refresh cycle is complete, the negative-going edge of the refresh clock increments the counter for the next refresh operation.

The high input impedance feature of the MC8505 eliminates the need for high impedance buffers on the CPU address lines, thus reducing CPU interface circuitry. The high input impedance buffers are required to prevent loading of the CPU address bus.

The low power (280 mW max) of the MC8505 is another important feature, especially for memory systems requiring battery backup for non-volatility. The reset input can also be used to save power in a standby mode. One technique to conserve power is to remove all power from the memory board except to the MOS RAMs. The board is then powered up every 2 ms and the proper number of refresh cycles are performed with a high speed clock. By resetting the counter on power up, the most significant bit of the

FIGURE 1 - TYPICAL DYNAMIC MOS MEMORY SYSTEM BLOCK DIAGRAM

counter can be used to signify refresh is complete so power can be removed until the next refresh period.

Figure 2 illustrates how the MC8505 is employed in the memory system. The least significant address' bits of the CPU are connected directly to inputs $\overline{\mathrm{A}} 0_{\text {in }}$ through $\overline{\mathrm{A}} 5$ in of the MC8505. The refresh control logic generates the proper number of refresh enable signals within each 2 ms period. This refresh enable signal initiates a refresh cycle by switching the counter of the MC8505 to the lower address bits of the memory. At the completion of a refresh cycle, the refresh signal is disabled. On the trailing edge of this signal, the 6-bit counter is incremented and the bus address is once again enabled. High speed address
buffers are required (MC3459's) to switch the high capacitive load that is due to paralleling the memory addresses.

Note from the specifications on the refresh clock that the I^{CH} current is 1.7 mA at $\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$. To accomodate this high input refresh clock current with standard TTL logic requires a pullup resistor less than 1.8 k ohms to V_{CC}. If high speed TTL is employed, then no pullup resistor is required.

The MC8505 is supplied in a 16 -pin package, and replaces at least four MSI and SSI parts. This universal function can be used with all dynamic MOS memories and its simplicity and low cost will further enhance the costperformance of dynamic MOS memory systems.

FIGURE 2 - MEMORY SYSTEM EMPLOYING THE MC8505
 MC10177

Advance Information

- Max Load: 350 pF
- $P_{D}=1.0 \mathrm{~W}$ typ $/ \mathrm{pkg} @ 5.0 \mathrm{MHz}$
- Operating Rate: 5.0 MHz typ.
(all 3 translators in use simultaneously)
- INPUT: MECL 10,000 (differential)
- OUTPUT: NMOS $+0.5 \mathrm{~V} \mathrm{~V}_{\text {OLmax }}^{*}$
$+3.0 \mathrm{~V} \mathrm{VOHmin}^{*}$
*May be raised by increasing V_{SS}.
-ay Ne raisea Dy micreasing VS.

The MC10177 consists of three MECL to MOS translators which convert MECL 10,000 logic levels to NMOS levels. It is designed for use in N -channel memory systems as a Read/Write, Data/Address driver. It may also be used as a high fanout (30) MECL to TTL translator, or in other applications requiring the capability to drive high capacitive loads. A separate lead from each of the three translators is brought out of the package. These leads may be connected to V_{SS} or to an external capacitor (0.01 to $0.05 \mu \mathrm{~F}$ to ground), for waveform improvement, and short circuit protection. When connection is made to an external capacitor, V_{SS} line fluctuations due to transient currents are also reduced.

POSITIVE LOGIC

NEGATIVE LOGIC

$V_{C C}=G$ nd $=P$ ins 1,16
$V_{E E}=P$ in $8=-5.2 \mathrm{Vdc} \pm 5 \%$
$V_{S S}=P$ in $9(+5.0 \mathrm{Vdc}$ or $+6.0 \mathrm{Vdc} \pm 10 \%)$
eLECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

In general test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner.

 CASE 620

$+85^{\circ} \mathrm{C}$											-0.810 -1.850 -0.700 -1.825		-1.035 AGE/CURR	$\begin{array}{\|l\|} \hline-1.4 / 5 \\ \hline-1.440 \\ \hline \end{array}$ RENT APP	$\|-5.2\|$		$+6.0$ S LIS	$+1.0$		-15	0.05	$\begin{gathered} \left(\mathbf{V}_{\mathrm{Cc}}\right) \\ \mathrm{Gnd} \end{gathered}$		
											+20													
Characteristic	Symbol	$\begin{array}{\|c} \text { Pin } \\ \text { Under } \\ \text { Test } \end{array}$	MC 10177L Test Limits										Ow											
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		Unit			$\mathrm{V}_{1 \mathrm{I}_{\text {max }}}$	$V_{\text {IL min }}$	VIHAmin	VILAmax	VEE	${ }^{\text {V }}$ SC	$V_{\text {SS }}$	Iol 1	'ol2		${ }^{1} \mathrm{OH}$	C\#
			Min	Max	Min	Typ	Max	Min	Max															
Power Supply Drain	IE	8	-	-	-	-	96	-	-	mAdc	-	-	-	-	8	-	-	-	-	-	-	1,16		
Negative Positive Output Low Output High	'sso ISSL. ISSH	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	-	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	-	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \\ & 44 \end{aligned}$	-	-	mAdc	$\begin{array}{\|l} 10,12,14 \\ 11,13,15 \end{array}$	$\begin{array}{\|c\|} \hline- \\ 11,13,15 \\ 10,12,14 \\ \hline \end{array}$	-	-		9	-	-	-	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	-			
Input Current	$\mathrm{I}_{\text {inH }}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & \text { - } \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\int_{1}^{1.0}$	- - - - - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$		$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & 10 \\ & 13 \\ & 12 \\ & 15 \\ & 14 \end{aligned}$	- - - - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	1	9	- - - - - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$			
Input Leakage Current	'сво	$\begin{aligned} & 11 \\ & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|c\|} \hline-1.0 \\ j \end{array}$		-	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \mu \mathrm{Adc} \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	-	-	-	$\begin{array}{\|l} \hline 8,11 \\ 8,13 \\ 8,15 \\ \hline \end{array}$	1	-	-	-	-	-	$\begin{gathered} 1,16 \\ 1 \end{gathered}$		
Logic "1" Output Voltage	V_{OH}	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\overline{-}$	-	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	-	Vdc Vdc	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & - \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	9	$\overline{9}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$		
Logic "0" Output Voltage	V_{OL}	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.5 \\ 0.6 \\ \hline \end{array}$	-	-	$\begin{aligned} & 0.5 \\ & 0.6 \\ & \hline \end{aligned}$	-	$\begin{array}{l\|} \hline 0.5 \\ 0.6 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	-	-	8	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	-	2	$\overline{2}$	-	-	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$		
Logic " 1 " Threshold Voltage	$\mathrm{V}_{\text {OHA }}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & \hline 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\overline{-}$	Vdc Vdc	-	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	9	$\overline{\overline{9}}$	-	-	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$		
Logic "0" Threshold Voltage	$v_{\text {OLA }}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	$\begin{aligned} & \hline 0.5 \\ & 0.6 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	-	$\begin{array}{l\|} \hline 0.5 \\ 0.6 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & \hline \end{aligned}$	$\overline{-}$	2	$\overline{2}$	$\overline{-}$	-	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$		
Output Short-Circuit Current	ISC	2	-50	-90	-50	-	-90	-50	-90	mAdc	15	14	-	-	8	9	-	-	-	-	-	1,2,16		
											-1.29 V	-1.69 V	Puise In	Pulse Out	-5.2 V									
Switching Times (350 pF Load) Propagation Delay Rise Time (10\% to 90\%) Fall Time (10\% to 90\%)	$\begin{gathered} t_{15+2+} \\ t_{15-2-} \\ t_{14+2-} \\ t_{14-2+} \\ t_{2+} \\ t_{2-} \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$		- - - - - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\left.\right\|^{\text {ns }}$	$\begin{aligned} & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 14 \\ & \\ & 14 \end{aligned}$	$\overbrace{1}^{11}$	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \\ & 15 \\ & \\ & 15 \end{aligned}$	$\left.\right\|_{1} ^{2}$	8	1	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\left.\right\|^{3,5,7}$	$\left.\right\|_{1} ^{1,16}$		
Supply Source Current (@ 5.0 MHz) (350 pF Load)	'ss	9	-	-	-	83	-	-	-	mA	10,12,14	-	11,13,15	-	8	-	9	-	-	-	3,5,7	1,16		

SWITCHING WAVEFORMS @ $25^{\circ} \mathrm{C}$
Switching times are measured after the device under test reaches a stabilized temperature (air flow $\geqslant 500$ ffpm)

Specifications and Applications Information

QUAD MOS CLOCK DRIVER OR HIGH-VOLTAGE, HIGH-CURRENT NAND DRIVER

The MC75365 is intended for driving the highly capacitive Address, Control and Timing inputs on a variety of MOS RAMs such as the " 1103 " and " 7001 " types. It is designed to operate from the MTTL 5.0 V power supply and the $V_{S S}$ and $V_{B B}$ power supplies used with the memories in most applications. Operation is recommended at $\mathrm{V}_{\mathrm{CC}} \simeq \mathrm{V}_{\mathrm{CC} 2}+3 \mathrm{~V}$, but the part is useable over a wide latitude of supply voltages. $V_{C C 2}$ may be tied directly to V_{CC} in many conditions.

- Pin Compatible with Intel 3207 and Interchangeable with T. I. SN75365
- MTTL and MDTL Compatible, Diode-Clamped Inputs
- Two Common Enable Inputs per Gate Pair
- Low Standby Power Consumption Transient
- Capable of Driving High Capacitive Loads
- Fast Switching Operation

QUAD MOS CLOCK DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUITS

L SUFFIX CERAMIC PACKAGE CASE 620	P SUFFIX PLASTIC PACKAGE CASE 648

MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\mathrm{V}_{\mathrm{CC}} 1$ $V_{C C 2}$ V_{CC}	$\begin{aligned} & -0.5 \text { to } 7.0 \\ & -0.5 \text { to } 25 \\ & -0.5 \text { to } 30 \end{aligned}$	V
Input Voltage	V_{1}	5.5	V
Input Differential Voltage (see Note 1)	$V_{\text {ID }}$	5.5	V
```Power Dissipation (Package Limitation) Ceramic Package @ \(T_{A}=25^{\circ} \mathrm{C}\) Derate above \(T_{A}=25^{\circ} \mathrm{C}\) Plastic Package @ \(T_{A}=25^{\circ} \mathrm{C}\) Derate above \(T_{A}=25^{\circ} \mathrm{C}\) Ceramic Package @ \(T_{C}=25^{\circ} \mathrm{C}\) Derate above \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) Plastic Package @ \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) Derate above \(T_{C}=25^{\circ} \mathrm{C}\)```		$\begin{gathered} 1000 \\ 6.6 \\ 830 \\ 6.6 \\ 3.0 \\ 20 \\ 1.8 \\ 14 \end{gathered}$	$\underset{\mathrm{mW}}{\mathrm{mW}}{ }^{\circ} \mathrm{C}$   mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	0 to 70	${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic Package Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1 . This is the differential voltage between any two inputs to any single gate.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
Power Supply Voltages	$V_{C C 1}$	4.75	5.0	5.25	$V$
	$V_{\mathrm{CC} 2}$	4.75	20	24	
	$V_{\mathrm{CC} 3}$	$V_{\mathrm{CC} 2}$	24	28	
Difference between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CC} 2}$	0	4.0	10	V	
Operating Temperature Range	$\mathrm{V}_{\mathrm{CC} 3}-\mathrm{V}_{\mathrm{CC} 2}$	0			

ELECTRICAL CHARACTERISTICS (Unless otherwise noted $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}$,
$C_{L}=200 \mathrm{pF}, R_{D}=24 \Omega$, See Figures 1 and 2.)

Characteristic	Symbol	Min	Typ*	Max	Unit
Input Voltage - High Logic State	$V_{\text {IH }}$	2.0	-	-	V
Input Voltage - Low Logic State	$V_{\text {IL }}$	-	-	0.8	V
Input Clamp Voltage $\left(I_{I C}=-12 \mathrm{~mA}\right)$	VIC	-	-	1.5	V
Input Current - Maximum Input Voltage $\left(V_{1 H}=5.5 \mathrm{~V}\right)$	I/H1	-	-	1.0	mA
$\begin{aligned} & \text { Input Current - High Logic State } \\ & \left(V_{I H}(1)=2.4 \mathrm{~V}\right) \\ & \left(V_{I H}(2) \text { or } V_{I H}(3)=2.4 \mathrm{~V}\right) \\ & \hline \end{aligned}$	${ }_{1} \mathrm{H} 2$	-	-	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$
$\begin{gathered} \text { Input Current - Low Logic State } \\ \text { ( } \left.V_{I L}(1)=0.4 \mathrm{~V}\right) \\ \left(V_{I L}(2) \text { or } V_{I L}(3)=0.4 \mathrm{~V}\right) \\ \hline \end{gathered}$	IIL	--	$\begin{aligned} & -1.0 \\ & -2.0 \end{aligned}$	$\begin{aligned} & -1.6 \\ & -3.2 \end{aligned}$	mA
$\begin{aligned} & \text { Output Voltage - High Logic State } \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}\right) \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{OH} 1}$   $\mathrm{VOH}_{2}$   $\mathrm{V}_{\mathrm{OH}}$   $\mathrm{V}_{\mathrm{OH} 4}$	$\begin{aligned} & v_{\mathrm{CC} 2}-0.3 \\ & v_{\mathrm{CC} 2}-1.2 \\ & v_{\mathrm{CC} 2}-1.0 \\ & v_{\mathrm{CC} 2}-2.3 \end{aligned}$	$\begin{aligned} & v_{C C 2}-0.1 \\ & v_{C C 2}-0.9 \\ & v_{C C 2}-0.7 \\ & v_{C C 2}-1.8 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	V
Output Clamp Voltage $\left(V_{I L}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OC}}=20 \mathrm{~mA}\right)$	VOC	-	-	$\mathrm{V}_{\mathrm{CC} 2}+1.5$	V
$\begin{aligned} & \text { Output Voltage - Low Logic State } \\ & \left(\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}\right) \\ & \left(15 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 28 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}\right) \\ & \hline \end{aligned}$	$V_{\text {OL1 }}$   $\mathrm{V}_{\mathrm{OL} 2}$	-	$\begin{aligned} & 0.15 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	V
$\begin{aligned} & \text { Power Supply Currents - Outputs High Logic State } \\ & \left(\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=28 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}\right) \\ & \\ & \left(\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=24 \mathrm{~V}\right. \\ & \left.\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I} \mathrm{CC1(H)} \\ & \mathrm{I}^{\mathrm{CC} 2(\mathrm{H})} \\ & { }^{\mathrm{I} C \mathrm{C} 3(\mathrm{H})} \\ & { }^{\mathrm{CCC} 2(\mathrm{H})} \\ & \mathrm{I}_{\mathrm{CC}(\mathrm{H}} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 4.0 \\ -2.2 \\ 2.2 \\ - \end{gathered}$	$\begin{gathered} 8.0 \\ -3.2 /+0.25 \\ 3.5 \\ 0.25 \\ 0.5 \end{gathered}$	mA
$\begin{aligned} & \text { Power Supply Currents - Output Low Logic State } \\ & \left(\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=28 \mathrm{~V}\right. \\ & \left.\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}, \mathrm{IOL}=0 \mathrm{~mA}\right) \end{aligned}$	$\begin{aligned} & \operatorname{ICC1}(L) \\ & { }^{\prime} \mathrm{CC} 2(\mathrm{~L}) \\ & \operatorname{ICC}(\mathrm{L}) \end{aligned}$	-	$31$	$\begin{aligned} & 47 \\ & 2.5 \\ & 25 \end{aligned}$	mA
$\begin{aligned} & \hline \text { Power Supply Currents - Standby Condition } \\ & \left(\mathrm{V}_{\mathrm{CC} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}\right. \\ & \left.\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}, \mathrm{IOL}^{2}=0 \mathrm{~mA}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{I} \mathrm{Cc} 2(\mathrm{~s}) \\ & \text { 'ccels) } \end{aligned}$	-	-	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	mA

*Typical Values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$

SWITCHING CHARACTERISTICS (Unless otherwise noted $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}$,
$C_{L}=200 p F, R_{D}=24 \Omega$, See Figures 1 and 2.)

Characteristic	Symbol	Min	Typ	Max	Unit
Propagation Delay Time, Low to High State Output	tPLH	10	31	48	
Propagation Delay Time, High to Low State Output	tPHL	10	30	46	
Delay Time, Low to High State Output	tDLH	-	11	20	
Delay Time, High to Low State Output	tDHL	-	10	18	
Transition Time, Low to High State Output	tTLH	-	20	33	ns
Transition Time, High to Low State Output	tTHL	-	20	33	

FIGURE 1 - SWITCHING CHARACTERISTIC TEST CIRCUIT


FIGURE 2 - SWITCHING CHARACTERISTICS WAVEFORMS


Input Pulse Characteristics:
$P R R=1.0 \mathrm{MHz}, P W=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}} \leqslant 10 \mathrm{~ns}$

TYPICAL PERFORMANCE CURVES

FIGURE 3 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT


FIGURE 5 - OUTPUT VOLTAGE - LOW LOGIC STATE versus OUTPUT CURRENT


FIGURE 4 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT


FIGURE 6 - TOTAL POWER DISSIPATION versus FREQUENCY (All Four Drivers)


TYPICAL PERFORMANCE CURVES

FIGURE 7 - PROPAGATION DELAY TIME LOW TO HIGH STATE OUTPUT versus AMBIENT TEMPERATURE


FIGURE 9 - PROPAGATION DELAY TIME LOW TO HIGH STATE OUTPUT versus $\mathrm{V}_{\mathrm{CC}}$ SUPPLY VOLTAGE


FIGURE 11 - PROPAGATION DELAY TIME LOW TO HIGH LOGIC STATE versus LOAD CAPACITANCE


FIGURE 8 - PROPAGATION DELAY TIME HIGH TO LOW STATE OUTPUT versus AMBIENT TEMPERATURE


FIGURE 10 - PROPAGATION DELAY TIME HIGH TO LOW STATE OUTPUT versus VCC2 SUPPLY VOLTAGE


FIGURE 12 - PROPAGATION DELAY TIME HIGH TO LOW STATE OUTPUT versus LOAD CAPACITANCE


## APPLICATIONS SUGGESTIONS

## POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(R_{\theta J C}+R_{\theta C A}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(R_{\theta J A}\right) \tag{2}
\end{equation*}
$$

where
$T_{J}=$ junction temperature
$T_{A}=$ ambient temperature
$P_{D}=$ power dissipation
$R_{\theta J C}=$ thermal resistance, junction to case
$\mathrm{R}_{\theta C A}=$ thermal resistance, case to ambient
$\mathrm{R}_{\theta J A}=$ thermal resistance, junction to ambient.
Power Dissipation for the MC75365 MOS Clock Driver: The power dissipation of the device ( $\mathrm{PD}_{\mathrm{D}}$ ) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. The variation of power dissipation with frequency and load capacitance for the MC75365 is illustrated in Figure 6. The power dissipation, when substituted into equation (2), should not yield a junction temperature, $\mathrm{T}_{\mathrm{J}}$, greater than $\mathrm{T}_{\mathrm{J}}(\mathrm{max})$ at the maximum encountered ambient temperature. $T_{J}(\max )$ is specified for two integrated circuit packages in the maximum ratings section of this data sheet.
With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (1) and (2) and the maximum thermal resistance values given in Table 1 shown on the following page.

TABLE 1 - THERMAL CHARACTERISTICS OF "L" AND "P" PACKAGES

PACKAGE TYPE   (Mounted in Socket)	$\begin{gathered} \mathrm{R}_{\theta \text { JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { Still Air } \\ \hline \end{gathered}$		$\begin{gathered} \mathbf{R}_{\theta \mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { Still Air } \end{gathered}$	
	MAX	TYP	MAX	TYP
"L" (Ceramic Package)	150	100	50	27
"P'" (Plastic Package)	150	100	70	40

If the power dissipation determined by a given system produces a junction temperature in excess of the recommended maximum rating for a given package type, something must be done to reduce the junction temperature.
There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring $T_{J}$ to an acceptable value. Secondly, the $\mathrm{R}_{\theta} \mathrm{CA}$ term can be reduced. Lowering the $\mathrm{R}_{\theta \mathrm{CA}}$ term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

## Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 13.

FIGURE 13 - THERMALLOY* HEAT SINKS

*Manufactured by Thermalloy Co. of Texas.
From Table 1, $\mathrm{R}_{\theta \mathrm{JA}}($ max $)$ for the ceramic package with no heat sink and in a still air environment is $150^{\circ} \mathrm{C} / \mathrm{W}$.
For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the $\mathrm{R}_{\theta \mathrm{CA}}$ for natural convection from Figure 14 is $44^{\circ} \mathrm{C} / \mathrm{W}$. From Table $1 \mathrm{R}_{\theta \mathrm{JC}}(\max )=50^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic package. Therefore, the new $\mathrm{R}_{\theta J \mathrm{JA}}(\max )$ with the 6012B heat sink added becomes:
$R_{\theta J A}(\max )=50^{\circ} \mathrm{C} / \mathrm{W}+44^{\circ} \mathrm{C} / \mathrm{W}=94^{\circ} \mathrm{C} / \mathrm{W}$.
Thus the addition of the heat sink has reduced R ${ }_{\theta}$ JA (max) from $150^{\circ} \mathrm{C} / \mathrm{W}$ down to $94^{\circ} \mathrm{C} / \mathrm{W}$. With the heat sink, the maximum power dissipation by equation (2) at $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ is:

$$
\mathrm{PD}_{\mathrm{D}}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{+94^{\circ} \mathrm{C} / \mathrm{W}}=1.11 \text { watts. }
$$

This gives approximately a $60 \%$ increase in maximum power dissipation over the power dissipation which is allowable with no heat sink.

FIGURE 14 - CASE TEMPERATURE RISE ABOVE AMBIENT versus POWER DISSIPATED USING NATURAL CONVECTION


Forced Air Considerations:
As illustrated in Figure 15, forced air can be employed to reduce the $\mathrm{R}_{\theta J A}$ term. Note, however, that this curve is expressed in terms of typical $\mathrm{R}_{\theta \text { JA }}$ rather than maximum $\mathrm{R}_{\theta} J A$. Maximum $\mathrm{R}_{\theta J A}$ can be determined in the following manner:
From Table 1 the following information is known:
(a) $\mathrm{R}_{\theta J \mathrm{~J}}$ (typ) $=100^{\circ} \mathrm{C} / \mathrm{W}$
(b) $\mathrm{R}_{\theta J C}$ (typ $)=27^{\circ} \mathrm{C} / \mathrm{W}$

Since:

$$
\begin{equation*}
R_{\theta J A}=R_{\theta J C}+R_{\theta C A} \tag{3}
\end{equation*}
$$

Then:

$$
\begin{equation*}
R_{\theta C A}=R_{\theta J A}-R_{\theta J C} \tag{4}
\end{equation*}
$$

Therefore, in still air

$$
\mathrm{R}_{\theta \mathrm{CA}}(\text { typ })=100^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=73^{\circ} \mathrm{C} / \mathrm{W}
$$

From Curve 1 of Figure 14 at 500 LFPM and equation (4),
$\mathrm{R}_{\theta \mathrm{CA}}($ typ $)=53^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=26^{\circ} \mathrm{C} / \mathrm{W}$.
Thus $\mathrm{R}_{\theta \mathrm{CA}}$ (typ) has changed from $73^{\circ} \mathrm{C} / \mathrm{W}$ (still air) to $26^{\circ} \mathrm{C} / \mathrm{W}$ ( 500 LFPM), which is a decrease in typical $R_{\theta C A}$ by a ratio of $1: 2.8$. Since the typical value of $\mathrm{R}_{\theta \text { CA }}$ was reduced by a ratio of $1: 2.8, \mathrm{R}_{\theta \mathrm{CA}}(\max )$ of $100^{\circ} \mathrm{C} / \mathrm{W}$ should also decrease by a ratio of 1:2.8.
This yields an $\mathrm{R}_{\theta} \mathrm{CA}(\max )$ at 500 LFPM of $36^{\circ} \mathrm{C} / \mathrm{W}$. Therefore, from equation (3):
$R_{\theta J A}(\max )=50^{\circ} \mathrm{C} / \mathrm{W}+36^{\circ} \mathrm{C} / \mathrm{W}=86^{\circ} \mathrm{C} / \mathrm{W}$.
Therefore the maximum allowable power dissipation at 500 LFPM and $\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ is from equation (2):

$$
P_{D}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{86^{\circ} \mathrm{C} / \mathrm{W}}=1.2 \text { watts. }
$$

FIGURE 15 - TYPICAL THERMAL RESISTANCE ( R $_{\theta}$ JA) OF "L" PACKAGE versus AIR VELOCITY


## Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of $\mathrm{R}_{\theta \mathrm{CA}}$ for still air and forced air such as illustrated in Figure 16. For example the 6012B heat sink has an $R_{\theta C A}=17^{\circ} \mathrm{C} / \mathrm{W}$ at 500 LFPM as noted in Figure 15.
From equation (3):

$$
\operatorname{Max} \mathrm{R}_{\theta \mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}+17^{\circ} \mathrm{C} / \mathrm{W}=67^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
\text { From equation (2) at } \mathrm{T}_{A}=+70^{\circ} \mathrm{C}
$$

$$
P_{D}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{67^{\circ} \mathrm{C} / \mathrm{W}} 1.57 \text { watts. }
$$

FIGURE 16 - THERMAL RESISTANCE R OCA versus AIR VELOCITY


Note from Table 1 and Figure 15 that if the 16 -pin ceramic package is mounted directly to the PC board ( 2 oz. cu. underneath), that typical $R_{\theta \text { JA }}$ is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine the maximum power dissipation for this condition.

Given data from Table 1:

$$
\begin{aligned}
& \text { typical } R_{\theta J A}=100^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { typical } R_{\theta J C}=27^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

From Curve 2 of Figure $15, \mathrm{R}_{\theta \mathrm{JA}}$ (typ) is $75^{\circ} \mathrm{C} / \mathrm{W}$ for a PC mount and no air flow. Then the typical R RCA is $75^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=48^{\circ} \mathrm{C} / \mathrm{W}$. From Table 1 the typical value of $\mathrm{R}_{\theta \mathrm{CA}}$ for socket mount is $100^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}$ $=73^{\circ} \mathrm{C} / \mathrm{W}$. This shows that the PC board mount results in a decrease in typical $\mathrm{R}_{\theta}$ CA by a ratio of $1: 1.5$ below the typical value of $R_{\theta C A}$ in a socket mount. Therefore, the maximum value of socket mount $\mathrm{R}_{\theta \mathrm{CA}}$ of $100^{\circ} \mathrm{C} / \mathrm{W}$ should also decrease by a ratio of 1:1.5 when the device is mounted in a PC board. The maximum $\mathrm{R}_{\theta \mathrm{CA}}$ becomes:

$$
\mathrm{R}_{\theta C A}=\frac{100^{\circ} \mathrm{C} / \mathrm{W}}{1.5}=66^{\circ} \mathrm{C} / \mathrm{W} \text { for PC board mount }
$$

Therefore the maximum $\mathrm{R}_{\theta \mathrm{JA}}$ for a PC mount is from equation (3).
$R_{\theta J A}=50^{\circ} \mathrm{C} / \mathrm{W}+66^{\circ} \mathrm{C} / \mathrm{W}=116^{\circ} \mathrm{C} / \mathrm{W}$.
With maximum $\mathrm{R}_{\theta J A}$ known, the maximum power dissipation can be found. If $\mathrm{TA}_{A}=70^{\circ} \mathrm{C}$ then from equation (2) the maximum power dissipation may be found to be 905 mW .
In most cases, heat sink manufacturer's publish only $\mathrm{R}_{\theta \text { CA }}$ socket mount data. Although data for PC mounting is generally not available, this should present no problem. Note in Figure 15 that an air flow greater than 250 LFPM yields a socket mount $\mathrm{R}_{\theta}$ JA approximately $6 \%$ greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of $\mathrm{R}_{\theta C A}$ of the type environment and measurement techniques employed. For example, $\mathrm{R}_{\theta} \mathrm{CA}$ would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

## Specifications and Applications Information

## DUAL MECL-to-MOS DRIVERS

The MC75368 and MC75358 are dual MECL-to-MOS driver and interface circuits. The devices accept standard MECL 10,000 and IBM grounded-reference ECL input signals and create high-current and high-voltage output levels suitable for driving MOS circuits. Specifically, they may be used to drive address, control, and timing inputs for several types of MOS RAMs including high-speed MCM7001 1 K NMOS RAM. The devices may also be used as MECL-to-MTTL translators.

These two devices differ in that the MC75368 is optimized for higher voltage capability and the MC75358 version is made to operate at somewhat reduced maximum voltages.

- Dual MECL-to-MOS Driver
- Dual MECL-to-MTTL Driver
- Versatile Interface Circuit for Use Between MECL and HighCurrent, High-Voltage Systems



## DUAL MECL-to-MOS

 DRIVERSSILICON MONOLITHIC INTEGRATED CIRCUITS


MAXIMUM RATINGS (Unless otherwise noted, voltages measured with respect to GND terminals, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Rating	Symbol	Value	Unit
Power Supply Voltages $\begin{aligned} \\ \\ \text { MC75368 } \\ \text { MC75358 } \\ \text { MC75368 } \\ \text { MC75358 }\end{aligned}$	$\mathrm{V}_{\text {CC1 }}$	-0.5 to 7.0	Vdc
	$\mathrm{V}_{\mathrm{CC} 2}$	$\begin{aligned} & -0.5 \text { to } 22 \\ & -0.5 \text { to } 18 \end{aligned}$	Vdc
	$\mathrm{V}_{\text {cc3 }}$	$\begin{aligned} & -0.5 \text { to } 30 \\ & -0.5 \text { to } 24 \end{aligned}$	Vdc
	$V_{E E}$	-8.0 to 0.5	Vdc
Most Negative of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 2}$, or $\mathrm{V}_{\mathrm{CC}}$ with respect to $V_{E E}$	-	-0.5	Vdc
Input Voltage	$V_{1}$	-8.0 to 0.5	Vdc
Inter-Input Voltage(1)	-	5.5	Vdc
Most negative Input Voltage with respect to VEE	$V_{1} \cdot V_{E E}$	-5.0	Vdc
Power Dissipation (Package Limitatio   Ceramic Package @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Derate above $T_{A}=25^{\circ} \mathrm{C}$   Plastic Package @ $T_{A}=25^{\circ} \mathrm{C}$   Derate above $T_{A}=25^{\circ} \mathrm{C}$   Ceramic Package @ $T_{C}=25^{\circ} \mathrm{C}$   Derate above $T_{C}=25^{\circ} \mathrm{C}$   Plastic Package @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD   $1 / R_{\theta J A}$   $P_{D}$   $1 / R_{\theta J A}$   $P_{D}$   $1 / R_{\theta J C}$   $P_{D}$   $1 / R_{\theta J C}$	$\begin{array}{r} 1000 \\ 6.6 \\ 830 \\ 6.6 \\ 3.0 \\ 20 \\ 1.8 \\ 14 \end{array}$	$\underset{m W /{ }^{\circ} \mathrm{C}}{\mathrm{mW}}$   mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$T_{\text {A }}$	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T stg	-65 to 150	${ }^{\circ} \mathrm{C}$

(1) With respect to any pair of inputs to either of the input gates.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	MC75358			MC75368			Unit
		Min	Typ	Max	Min	Typ	Max	
Power Supply Voltages	$\mathrm{V}_{\mathrm{CC} 1}$	4.75	5.0	5.25	4.75	5.0	5.25	V
	$\mathrm{V}_{\mathrm{CC} 2}$	4.75	16	18	4.75	20	22	V
	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{v}_{\mathrm{CC} 2}$	20	22	$\mathrm{v}_{\mathrm{CC} 2}$	24	28	v
	$\mathrm{V}_{\mathrm{CC} 3} \cdot \mathrm{~V}_{\mathrm{CC} 2}$	0	4.0	10	0	4.0	10	V
	$V_{E E}$	-4.68	-5.2	-5.72	-4.68	$-5.2$	-5.72	V
Operating Ambient Temperature Range	${ }^{T}$ A	0	-	70	0	-	70	${ }^{\text {C }}$
DEFINITION OF INPUT LOGIC LEVELS								
Input Voltage - High Logic State (Any Input) (1)	$\mathrm{V}_{\text {IH }}$	-1.5	-	-0.7	-1.5	-	-0.7	V
Input Voltage - Low Logic State (Any Input) (1)	VIL	$V_{\text {EE }}$	-	$\mathrm{VIH}^{-150}$	VEE	-	$\mathrm{V}_{1 \mathrm{H}^{-150}}$	mV
Input Differential Voltage - High Logic State (2)	VIDH	150	-	-	150	-	-	mV
Tnput Differential Voltage - Low Logic State (2)	VIDL	-150	-	-	-150	-	-	mV

(1) The definition of these Logic Levels use Algebraic System of notation.
(2) The input differential voltage is measured from the more positive inverting input ( $A$ or $B$ ) with respect to the non-inverting input (C) of the same gate.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply over recommended power supply and temperature ranges. Typical values measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=20$, $V_{C C 3}=24 \mathrm{~V}$ for $\mathrm{MC75368}$ and $\mathrm{V}_{\mathrm{CC} 2}=16, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}$ for MC75358.

Characteristic	Symbol	MC75358			MC75368			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Voltage - High Logic State $\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IDL}}=$   $\left.-150 \mathrm{mV}, \mathrm{IOH}^{2}=-100 \mu \mathrm{~A}\right)$	$\mathrm{VOH}_{\text {O }}$	$\mathrm{V}_{\text {cc2 }}-0.3$	$\mathrm{V}_{\text {cc2 }}-0.1$	-	$\mathrm{V}_{\text {cc2 }}-0.3$	VCC2-0.1	-	V
$\left(\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}+3.0 \mathrm{~V}, \mathrm{~V}_{\text {IDL }}=\right.$	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {cc2 }}$-1.2	$\mathrm{V}_{\text {cc2 }}-0.9$	-	$\mathrm{v}_{\text {CC2 }}$-1.2	VCC2-0.9	-	
$\left(\mathrm{V}_{\text {CC3 }}=\mathrm{V}_{\text {CC2 }}, \mathrm{V}_{\text {IDL }}=-150 \mathrm{mV}\right.$,	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{V}_{\text {cc2 }}-1.0$	$\mathrm{V}_{\mathrm{CC} 2}-0.7$	-	$\mathrm{v}_{\text {cc2 }}$-1.0	$\mathrm{V}_{\mathrm{Cc} 2}-0.7$	-	
$\begin{aligned} \left(v_{C C 3}\right. & =v_{C C 2}, \\ I_{\text {IDH }} & =-10 \mathrm{~mA}) \end{aligned}$	$\mathrm{V}_{\mathrm{OH} 4}$	$\mathrm{V}_{\mathrm{CC} 2}-2.3$	$\mathrm{v}_{\text {CC2 }}-1.8$	-	$\mathrm{v}_{\mathrm{CC} 2}-2.3$	$\mathrm{V}_{\text {CC2 }}$-1.8	-	
Output Voltage - Low Logic State $\left(V_{I D H}=150 \mathrm{mV}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL1 }}$	-	0.15	0.3	-	0.15	0.3	v
$\begin{gathered} \left(V_{1 D H}=150 \mathrm{mV}, \mathrm{IOL}^{\prime}=30 \mathrm{~mA}\right) \\ 10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 22 \mathrm{~V} \\ 10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 28 \mathrm{~V} \\ \hline \end{gathered}$	$\mathrm{v}_{\mathrm{OL} 2}$	-	0.2 -	0.4 -	-	$\begin{gathered} - \\ 0.2 \end{gathered}$	$\begin{gathered} - \\ 0.4 \\ \hline \end{gathered}$	
Output Clamp Voltage $\left(\mathrm{V}_{\mathrm{IDH}}=500 \mathrm{mV}, \mathrm{I}_{\mathrm{OC}}=20 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OC}}$	-	-	$\mathrm{V}_{\mathrm{CC} 2}{ }^{+1.5} \mathrm{~V}$	-	-	$\mathrm{V}_{\mathrm{CC2}}{ }^{+1.5} \mathrm{~V}$	$v$
$\begin{aligned} & \text { Input Current - High Logic State } \\ & \left(V_{E E}=-5.72 \mathrm{~V}, \mathrm{~V}_{I L}=-5.72 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{1 \mathrm{H}}=-0.7 \mathrm{~V}\right) \\ & \hline \end{aligned}$	I/H	-	300	800	-	300	800	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Current - Low Logic State } \\ & \left(\mathrm{V}_{1 H}=-0.7 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=-2.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{EE}}=-5.72 \mathrm{~V}, \mathrm{~V}_{1 H}=-0.7 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{1 \mathrm{~L}}=-5.72 \mathrm{~V}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IIL1 } \\ & \text { IIL2 } \end{aligned}$	-	-	$\begin{gathered} -10 \\ -100 \end{gathered}$	-	-	$\begin{gathered} -10 \\ -100 \end{gathered}$	$\mu \mathrm{A}$
	$\begin{aligned} & \text { ICC1(H) } \\ & { }^{I} \mathrm{CC} 2(\mathrm{H}) \\ & \\ & \\ & \\ & \\ & \hline \end{aligned}$	-	$\begin{array}{r} 21 \\ -1.1 \\ \hline 0.6 \\ -21 \\ \hline \end{array}$	$\begin{array}{r} 38 \\ +0.25 \\ -1.6 \\ 1.0 \\ -38 \\ \hline \end{array}$	- - -	$\begin{array}{r} 21 \\ -1.1 \\ 0.6 \\ -21 \\ \hline \end{array}$	$\begin{array}{r} 38 \\ +0.25 \\ -1.6 \\ 1.0 \\ -38 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{gathered} \text { Power Supply Current - Both Outputs } \\ \text { Low Logic State } \\ \left(\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.72 \mathrm{~V},\right. \\ \mathrm{V}_{1 H}(\mathrm{~A}) \text { and }(\mathrm{B})=-0.7 \mathrm{~V} \\ \left.\mathrm{~V}_{1}(\mathrm{C})=-2.0 \mathrm{~V}, 1 \mathrm{OL}=0\right) \\ \mathrm{MC75368}-\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC3}}=28 \mathrm{~V} \\ M C 75358-\mathrm{V}_{\mathrm{CC} 2}=18 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC3}}=22 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { ICC1(L) } \\ & \text { 'CC2(L) } \\ & \text { ICC3(L) } \\ & \text { IEE(L) } \end{aligned}$	- - -	$\begin{array}{r} 13 \\ 0.5 \\ \\ 3.0 \\ -21 \end{array}$	$\begin{array}{r} 24 \\ 1.0 \\ 5.7 \\ -38 \end{array}$	- - -	$\begin{array}{r} 13 \\ 0.5 \\ 4.0 \\ -21 \end{array}$	$\begin{array}{r} 24 \\ 1.0 \\ 7.0 \\ -38 \end{array}$	mA   mA   mA   mA
	${ }^{\prime} \mathrm{CC} 2(\mathrm{H})$   ${ }^{\prime} \mathrm{CC} 3(\mathrm{H})$	-	-	0.25 0.25		-	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	mA mA
$\begin{aligned} & \text { Power Supply Current - Stand By } \\ & \text { Condition } \\ & \left(\mathrm{V}_{\mathrm{CC} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{I H}(\mathrm{~A})\right. \\ & \text { and }(\mathrm{B})=-0.7 \mathrm{~V}, \mathrm{~V}_{I L}(\mathrm{C})= \\ & \left.-2.0 \mathrm{~V}, \mathrm{IOL}_{\mathrm{O}}=0\right) \\ & \mathrm{MC75368}-\mathrm{V}_{\mathrm{CC} 2}=22 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC} 3}=22 \mathrm{~V} \\ & \mathrm{MC75358}-\mathrm{V}_{\mathrm{CC} 2}=18 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$	${ }^{\prime} \mathrm{Cc} 2(\mathrm{~S})$   'cc3(s)	- -	-	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{array}{r} 0.25 \\ 0.25 \end{array}$	mA mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, $\mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}$ for

Characteristic	Symbol	MC75358			MC78368			Unit
		Min	Typ	Max	Min	Typ	Max	
Delay Time - Low to High Output Logic Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}\right) \end{aligned}$	tol	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ 13 \\ 14 \end{gathered}$	$\begin{aligned} & \overline{24} \\ & 26 \end{aligned}$	-	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	ns
```Delay Time - High to Low Output Logic Level ( }\mp@subsup{\textrm{VCC3}}{\mathrm{ C-2 }}{24 V ( }\mp@subsup{\textrm{V}}{\textrm{CC3}}{}=20\textrm{V} (}\mp@subsup{\textrm{V}}{\textrm{CC3}}{}=16\textrm{V}```	${ }^{\text {t }} \mathrm{DHL}$		$\begin{aligned} & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & 24 \\ & 26 \end{aligned}$	-	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & 24 \\ & 26 \end{aligned}$	ns
```Transition Time, Low-to-High Output Logic Level \(\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right)\) \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right)\) \(\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}\right.\) )```	${ }^{\text {t }}$ L LH	-	$\begin{aligned} & 17 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & 29 \\ & 30 \end{aligned}$	-	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns
$\begin{aligned} \hline \text { Transition Time, High-to-Low Output Logic Level } \\ \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}\right) \\ \hline \end{aligned}$	${ }^{\text {t }}$ HL	-	$\begin{aligned} & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & 29 \\ & 29 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 18 \\ & - \end{aligned}$	$\begin{aligned} & 33 \\ & 30 \end{aligned}$	ns
$\begin{gathered} \text { Propagation Delay Time, Low-to-High Logic Level } \\ \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}\right) \\ \hline \end{gathered}$	${ }^{\text {tPLH }}$		$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 53 \\ & 56 \end{aligned}$	-	$\begin{aligned} & 31 \\ & 33 \end{aligned}$	$\begin{aligned} & 54 \\ & 55 \end{aligned}$	ns
$\begin{aligned} & \text { Propagation Delay Time, High-to-Low Logic Level } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}\right) \end{aligned}$	tPHL	-	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 53 \\ & 55 \end{aligned}$		$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 57 \\ & 56 \end{aligned}$	ns

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
FIGURE 3 - SWITCHING TIMES WAVEFORM


## APPLICATIONS INFORMATION MODES OF OPERATION

FIGURE 4 - POSITIVE-NOR GATE


FUNCTION TABLE				
CONFIGURATION	INPUTS			OUTPUT Y
	A	B	C	
		L		H
C at $\mathrm{V}_{\mathrm{BB}}$		$\times$	$\mathrm{V}_{\mathrm{BB}}$	L
	$\times$		$\mathrm{V}_{\mathrm{BB}}$	L

H - High Level, L - Low Level, X - Irrelevant $V_{B B}$ - Reference Supply voltage for MECL 10,000 .

FIGURE 6 - NON-INVERTING GATE


FUNCTION TABLE

CONFIGURATION	INPUTS	$\begin{gathered} \text { OUTPUT } \\ Y \end{gathered}$
	A B C	
A and B at $\mathrm{V}_{\mathrm{BB}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}} \mathrm{~V}_{\mathrm{BB}} \mathrm{~L} \\ & \mathrm{~V}_{\mathrm{BB}} \mathrm{~V}_{\mathrm{BB}} \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$A$ at $V_{B B}$. B connected low	$V_{B B}$ $L$ $L$   $V_{B B}$ $L$ $H$	$\begin{aligned} & L \\ & H \end{aligned}$
$B$ at $V_{B B}$. A connected low	$\begin{array}{ll} L & V_{B B} L \\ L & V_{B B} H \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

The MC75368 and MC75358 are identical except that the MC75368 version has been selected for slightly higher voltage capability. The two devices are interchangeable in most applications. Both can operate over a wide range of $V_{C C 2}$ and $V_{\text {CC3 }}$ supply voltages.

The need for four separate power supplies $V_{C C 1}, V_{C C 2}$, $V_{\text {CC3 }}$ and VEE can be avoided in many cases by tying $V_{C C 2}$ to $V_{C C 3}$. However, performance advantages can be obtained by connecting either one or both $\mathrm{V}_{\mathrm{CC}}$ pins to an additional power supply of higher voltage than $\mathrm{V}_{\mathrm{CC}}$. Both $V_{\text {CC3 }}$ pins do not have to be held at the same voltage. For MECL-to-TTL level converter applications both $V_{C C 2}$ and $\mathrm{V}_{\mathrm{CC}}$ are generally connected to $\mathrm{a}+5.0 \mathrm{~V}$ power source.

By providing two out-of-phase ( A and B ) inputs and one in-phase ( $C$ ) input, each gate can be used as positive NOR, or as a inverting or non-inverting gate. This flexibility is achieved by connecting an externally supplied MECL 10,000 Series reference supply voltage ( $V_{B B}$ ) to the appropriate input as shown in Figures 4 thru 6. An

FIGURE 5 - DIFFERENTIAL MECL LINE RECEIVER

$$
\overline{\mathrm{C}}=\mathrm{A} \text { and } / \mathrm{or} \mathrm{~B}
$$

FUNCTION TABLE			
CONFIGURATION	INPUTS	OUTPUT	
	A	B	C
Y			
A and B connected			
together	H	H	L
A not used but	L	L	H
connected low	L	H	L
B not used but	L	L	H
connected low	H	L	L

FIGURE 7 - USE OF DAMPING RESISTOR TO REDUCE OR ELIMINATE OUTPUT TRANSIENT OVERSHOOT IN CERTAIN MC75358 AND MC75368 APPLICATIONS

unused out-of-phase input should be tied low or connected to the other out-of-phase input of the same gate. The required $V_{B B}$ voltage source may be obtained from MECL 10,000 Series devices such as the MC10115 line receiver, or by connecting the output of a MECL 10,000 gate, like the MC10102, to the respective out-of-phase inputs (as an example connect pins 4 and 5 to 2 of the MC10102 to obtain a $V_{B B}$ reference voltage).

When driven differentially, the MC75368 and MC75358 may be used as a differential MECL line receiver, without the need for the $\mathrm{V}_{\mathrm{BB}}$ reference voltage.

Undesirable output transient overshoot due to load or wiring inductance and the fast switching speeds of the MC75368 and MC75358 can be eliminated or reduced by adding a small amount of series resistance. The value of this damping resistance is dependent on specific load characteristics and switching speed but typical values lie in the range of 10 to 30 ohms. This is illustrated in Figure 7.

FIGURE 8 - $32 \mathrm{~K} \times 2$ MEMORY BOARD (MECL SYSTEM)



## Specifications and Applications Information

## DUAL MOS CLOCK DRIVER

. designed for high-speed driving of highly capacitive loads in a MOS system.

- Fast Transition Times - 20 ns with 1000 pF Load
- High Output Swing - 20 Volts
- High Output Current Drive $- \pm 1.5$ Amperes
- High Repetition Rate -5.0 to 10 MHz Depending on Load
- MTTL and MDTL Compatible Inputs
- Low Power Consumption when in MOS " 0 " State -2.0 mW
- +5.0-Volt Operation for N-Channel MOS Compatibility


DUAL MOS CLOCK DRIVER

MONOLITHIC SILICON INTEGRATED CIRCUIT


MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value			Unit
Differential Supply Voltage	$\mathrm{V}_{\text {CC }}{ }^{-V_{E E}}$	+22			Vdc
Input Current	$\mathrm{I}_{\text {in }}$	+100			mA
Input Voltage	$\mathrm{V}_{\text {in }}$	$\mathrm{VEE}^{+5.5}$			Vdc
Peak Output Current	Topk	$\pm 1.5$			A
					$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Power Dissipation and Thermal Characteristics					
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	680	1000	830	
Thermal Resistance, Junction to Air	${ }^{\text {J JA }}$	220	150	150	
$\mathrm{T}^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	2.1	3.0	1.8	
Thermal Resistance, Junction to Case	${ }^{\boldsymbol{J} \mathrm{J}}$	70	50	70	
Junction Temperature	TJ	+175	+175	+150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$				${ }^{\circ} \mathrm{C}$
MMH0026   MMH0026C		$\left\lvert\, \begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+85 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+85 \end{gathered}\right.$	$0 \text { to }+85$	
Storage Temperature Range	${ }^{\text {s }}$ stg	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}=10 \mathrm{~V}\right.$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for MMH 0026 and 0 to $+85^{\circ} \mathrm{C}$ for MMH0026C for min and max values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for all typical values unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Logic " } 1 \text { " Level Input Voltage } \\ & V_{O}=V_{E E}+1.0 \mathrm{Vdc} \end{aligned}$	$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\mathrm{EE}}+2.5$	$\mathrm{V}_{\mathrm{EE}}+1.5$	-	Vdc
Logic " 1 " Level Input Current $V_{\text {in }}-V_{E E}=2.5 \mathrm{Vdc}, V_{\mathrm{O}}=V_{E E}+1.0 \mathrm{Vdc}$	IIH	-	10	15	mA
$\begin{aligned} & \text { Logic " } 0 \text { " Level Input Voltage } \\ & V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{Vdc} \end{aligned}$	$V_{\text {IL }}$	-	$V_{E E}+0.6$	$V_{E E}+0.4$	Vdc
$\begin{aligned} & \text { Logic " } 0 \text { " Level Input Current } \\ & V_{\text {in }}-V_{E E}=0 \mathrm{Vdc}, V_{O}=V_{C C}-1.0 \mathrm{Vdc} \end{aligned}$	IIL	-	-0.005	-10	$\mu \mathrm{A}$
$\begin{aligned} & \text { Logic " } 0 \text { " Level Output Voltage } \\ & V_{C C}=+5.0 \mathrm{Vdc}, V_{E E}=-12 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}=-11.6 \mathrm{Vdc} \\ & V_{\text {in }}-V_{E E}=0.4 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	$\begin{gathered} 4.0 \\ v_{\mathrm{CC}}-1.0 \end{gathered}$	$\begin{gathered} 4.3 \\ v_{\mathrm{CC}}-0.7 \end{gathered}$		Vdc
$\begin{aligned} & \text { Logic " } 1 \text { " Level Output Voltage } \\ & V_{C C}=+5.0 \mathrm{Vdc}, \mathrm{~V}_{E E}=-12 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}=-9.5 \mathrm{Vdc} \\ & V_{\text {in }}-V_{E E}=2.5 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} -11.5 \\ v_{E E}+0.5 \end{gathered}$	$\begin{gathered} -11 \\ v_{E E}+1.0 \end{gathered}$	Vdc
$\begin{aligned} & \text { "On" Supply Current } \\ & V_{C C}-V_{E E}=20 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{Vdc} \end{aligned}$	${ }^{1} \mathrm{CCL}$	-	30	40	mA
"Off" Supply Current $V_{C C}-V_{E E}=20 \mathrm{Vdc}, V_{\text {in }}-V_{E E}=0 \mathrm{~V}$	${ }^{1} \mathrm{CCH}$	-	10	100	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS (See Figure 2.) $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}=10 \mathrm{~V}\right.$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{MMH0026}$ and 0 to $+85^{\circ} \mathrm{C}$ for MMH0026C for min and max values; $T_{A}=+25^{\circ} \mathrm{C}$ for all typical values unless otherwise noted.)

Propagation Time					
High to Low	tPHL	5.0	7.5	12	ns
Low to High	tPLH	5.0	12	15	
Transition Time (High to Low)	${ }^{\text {T THL }}$				ns
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		-	12	-	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		-	15	18	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		-	20	35	
Transition Time (Low to High)	${ }^{\text {t }}$ L H				ns
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		-	10	-	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		-	12	16	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		-	17	25	

FIGURE 2 - AC TEST CIRCUIT AND WAVEFORMS


TYPICAL APPLICATIONS

FIGURE 3 - AC-COUPLED MOS CLOCK DRIVER


FIGURE 4 - DC-COUPLED RAM MEMORY ADDRESS OR PRECHARGE DRIVER (POSITIVE-SUPPLY ONLY)


Pins not shown are not connected.

MMH0026, MMH0026C (continued)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)


FIGURE 7 - OPTIMUM INPUT CAPACITANCE versus OUTPUT PULSE WIDTH


FIGURE 9 - PROPAGATION DELAY TIMES versus TEMPERATURE


FIGURE 6 - SUPPLY CURRENT versus TEMPERATURE


FIGURE 8 - TRANSITION TIMES versus LOAD CAPACITANCE


FIGURE 10 - TRANSITION TIMES versus TEMPERATURE


TYPICAL CHARACTISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 11 - TRANSITION TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)


FIGURE 13 - DC-COUPLED SWITCHING RESPONSE versus $\mathrm{R}_{\text {in }}$ (See Figure 4.)


FIGURE 15 - MAXIMUM DC POWER DISSIPATION


FIGURE 12 - PROPAGATION DELAY TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)


FIGURE 14 - DC-COUPLED SWITCHING versus $\mathrm{C}_{\text {in }}$ (See Figure 4.)


FIGURE 16 - AC POWER DISSIPATION versus FREQUENCY (SINGLE DRIVER)


## APPLICATIONS INFORMATION

## OPERATION OF THE MMH0026

The simplified schematic diagram of MMH0026, shown in Figure 17, is useful in explaining the operation of the device. Figure 17 illustrates that as the input voltage level goes high, diode D1 provides an 0.7 -volt "dead zone" thus ensuring that Q2 is turned "on" and Q4 is turned "off" before Q7 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if Q7 and Q4 were allowed to be "on" simultaneously for an instant of time. Diode D2 prevents "zenering" of Q4 and provides an initial discharge path for the output capacitive load by way of 02.
As the input voltage level goes low, the stored charge in Q2 is used advantageously to keep Q2 "on" and Q4 "off" until Q7 is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of $C_{i n}$ goes negative with respect to $V_{\text {EE }}$ causing Q 9 to conduct momentarily thus assuring rapid turn "off" of Q7.

FIGURE 17 - SIMPLIFIED SCHEMATIC DIAGRAM (Ref.: Figure 1)


The complete circuit, Figure 1, basically creates Darlington devices of transistors Q7, Q4 and Q2 in the simplified circuit of Figure 17. Note in Figure 1 that when the input goes negative with respect to VEE, diodes D7 through D10 turn "on" assuring faster turn "off" of transistors Q1, Q2, Q6 and Q7. Resistor R6 insures that the output will charge to within one $\mathrm{V}_{\mathrm{BE}}$ voltage drop of the $V_{\text {CC }}$ supply.

## SYSTEM CONSIDERATIONS

## Overshoot:

In most system applications the output waveform of the MMH0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount of resistance required is given by: $R_{S}=2 \sqrt{L / C_{L}}$ where $L$ is the inductance of the line and $C_{L}$ is the load capacitance. In most cases a series of damping resistor in the range of 10 -to- 50 ohms will be sufficient. The damping resistor also affects the transition times of the outputs. The speed reduction is given by the formula:
$\mathrm{t} T \mathrm{HL} \approx \mathrm{t} T \mathrm{H}=2.2 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{L}}$ ( $\mathrm{R}_{\mathrm{S}}$ is the damping resistor).

## Crosstalk:

The MMH0026 is sensitive to crosstalk when the output voltage level is high ( $V_{O} \approx V_{C C}$ ). With the output in the high voltage level state, Q 3 and Q 4 are essentially turned "off". Therefore, negative-going crosstalk will pull the output down until Q 4 turns "on" sufficiently to pull the output back towards VCC. This problem can be minimized by placing a "bleeding" resistor from the output to ground. The "bleeding" resistor should be of sufficient size so that Q4 conducts only a few milliamperes. Thus, when noise is coupled, $\mathbf{Q 4}$ is already "on" and the line is quickly clamped by Q4. Also note that in Figure 1 D6 clamps the output one diode-voltage drop above $V_{\text {CC }}$ for positive-going crosstalk.

## Power Supply Decoupling:

The decoupling of $V_{C C}$ and $V_{E E}$ is essential in most systems. Sufficient capacitive decoupling is required to supply the peak surge currents during switching. At least a $0.1-\mu \mathrm{F}$ to $1.0-\mu \mathrm{F}$ low inductive capacitor should be placed as close to each driver package as the layout will permit.

## Input Driving:

For those applications requiring split power supplies ( $V_{E E}<G N D$ ), ac coupling, as illustrated in Figure 3, should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performance is attained when the voltage at

## APPLICATIONS INFORMATION (continued)

the input of the MMH0026 discharges to just above the device's threshold voltage (about 1.5 V ). Figure 7 shows optimum values for $\mathrm{C}_{\text {in }}$ versus the desired output pulse width. The value for $\mathrm{C}_{\text {in }}$ may be roughly predicted by:

$$
\begin{equation*}
\mathrm{C}_{\text {in }}=\left(2 \times 10^{-3}\right)\left(\mathrm{PW}_{\mathrm{O}}\right) \tag{1}
\end{equation*}
$$

For an output pulse width of 500 ns , the optimum value for $\mathrm{C}_{\text {in }}$ is:

$$
C_{\text {in }}=\left(2 \times 10^{-3}\right)\left(500 \times 10^{-9}\right)=1000 \mathrm{pF} .
$$

If single supply operation is required ( $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ ), then dc coupling as illustrated in Figure 4 can be employed. For maximum switching performance, a speed-up capacitor should be employed with dc coupling. Figures 13 and 14 show typical switching characteristics for various values of input resistance and capacitance.

## POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(\theta_{J A}\right) \tag{3}
\end{equation*}
$$

where
$T_{J}=$ junction temperature
$T_{A}=$ ambient temperature
$P_{D}=$ power dissipation
$\theta \mathrm{JC}=$ thermal resistance, junction to case
${ }^{6} \mathrm{CA}=$ thermal resistance, case to ambient
$\theta_{\mathrm{JA}}=$ thermal resistance, junction to ambient.
Power Dissipation for the MMH0026 MOS Clock Driver:
The power dissipation of the device ( $\mathrm{PD}_{\mathrm{D}}$ ) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. This power dissipation, when substituted into equation (3), should not yield a junction temperature, $T_{J}$, greater than $T_{J}(\max )$ at the maximum encountered ambient temperature. $T_{J}(\max )$ is specified for three integrated circuit packages in the maximum ratings section of this data sheet.

TABLE 1 - THERMAL CHARACTERISTICS OF "G", "L" AND "P1" PACKAGES

PACKAGE TYPE   (Mounted in Socket)	$\theta$ JA   Still Air		$\theta$ JC/   Still Air	
	MAX	TYP	MAX	TYP
"G" (Metal Package)	220	175	70	40
"L'" (Ceramic Package)	150	100	50	27
'"P1" (Plastic Package)	150	100	70	40

FIGURE 18 - MAXIMUM POWER DISSIPATION versus AMBIENT TEMPERATURE (As related to package)


With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (2) or (3) and the maximum thermal resistance values given in Table 1 or alternately, by using the curves plotted in Figure 18. If, however, the power dissipation determined by a given system produces a calculated junction temperature in excess of the recommended maximum rating for a given package type, something must be done to reduce the junction temperature.

There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring $T J$ to an acceptable value. Secondly, the $\theta_{\mathrm{CA}}$ term can be reduced. Lowering the $\theta_{\mathrm{CA}}$ term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

## APPLICATIONS INFORMATION (continued)

The following examples illustrate the thermal considerations necessary to increase the power capability of the MMH0026.

Assume that the ceramic package is to be used at a maximum ambient temperature ( $T_{A}$ ) of $+70^{\circ} \mathrm{C}$. From Table 1: $\theta_{\mathrm{JA}}(\max )=150^{\circ} \mathrm{C} /$ watt, and from the maximum rating section of the data sheet: $\mathrm{T}_{\mathrm{J}}(\max )=+175^{\circ} \mathrm{C}$. Substituting the above values into equation (3) yields a maximum allowable power dissipation of 0.7 watts. Note that this same value may be read from Figure 18. Also note that this power dissipation value is for the device mounted in a socket.

Next, the maximum power consumed for a given system application must be determined. The power dissipation of the MOS clock driver is conveniently divided into dc and ac components. The dc power dissipation is given by:

$$
\begin{gather*}
P_{d c}=\left(V_{C C}-V_{E E}\right) \times\left(I_{C C L}\right) \times(\text { Duty Cycle })  \tag{4}\\
\text { where } I_{C C L}=40 \mathrm{~mA}\left(\frac{V_{\mathrm{CC}}-V_{E E}}{20 \mathrm{~V}}\right) .
\end{gather*}
$$

Note that Figure 15 is a plot of equation (4) for three values of ( $\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{EE}}$ ). For this example, suppose that the MOS clock driver is to be operated with $\mathrm{V}_{\mathrm{CC}}=+16 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ and with a $50 \%$ duty cycle. From equation (4) or Figure 15, the dc power dissipation (per driver) may be found to be 256 mW . If both drivers within the package are used in an identical way, the total dc power is 512 mW . Since the maximum total allowable power dissipation is 700 mW , the maximum ac power that can be dissipated for this example becomes:

$$
P_{\mathrm{ac}}=0.7-0.512=188 \mathrm{~mW}
$$

The ac power for each driver is given by:

$$
\begin{equation*}
P_{a c}=\left(V_{C C}-V_{E E}\right)^{2} \times f \times C_{L} \tag{5}
\end{equation*}
$$

where $f=$ frequency of operation
$C_{L}=$ load capacitance (including all strays and wiring).

Figure 16 gives the maximum ac power dissipation versus switching frequency for various capacitive loads with $V_{C C}=16 \mathrm{~V}$ and $V_{E E}=G N D$. Under the above conditions, and with the aid of Figure 16, the safe operating area beneath Curve A of Figure 19 can be generated.
Since both drivers have a maximum ac power dissipation of 188 mW , the maximum ac power per driver becomes 94 mW . A horizontal line intersecting all the capacitance load lines at the 94 mW level of Figure 16 will yield the maximum frequency of operation for each of the capacitive loads at the specified power level. By
using the previous formulas and constants, a new safe operating area can be generated for any output voltage swing and duty cycle desired.

Note from Figure 19, that with highly capacitive loads, the maximum switching frequency is very low. The switching frequency can be increased by varying the following factors:
(a) decrease $T_{A}$
(b) decrease the duty cycle
(c) lower package thermal resistance $\theta$ JA.

In most cases conditions (a) and (b) are fixed due to system requirements. This leaves only the thermal resistance $\theta_{\mathrm{JA}}$ that can be varied.

Note from equation (2) that the thermal resistance is comprised of two parts. One is the junction-to-case thermal resistance ( $\theta \mathrm{JC}$ ) and the other is the case-toambient thermal resistance ( $\theta \mathrm{CA}$ ). Since the factor $\theta \mathrm{JC}$ is a function of the die size and type of bonding employed, it cannot be varied. However, the $\theta_{\text {CA }}$ term can be changed as previously discussed, see Page 7.

FIGURE 19 - LOAD CAPACITANCE versus FREQUENCY FOR "L" PACKAGE ONLY
(Both drivers used in identical way)


## Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 20. In the previous example, with the ceramic package, no heat sink and in a still air environment, $\theta_{\mathrm{JA}}(\max )$ was $150^{\circ} \mathrm{C} / \mathrm{W}$.

For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the $\theta$ CA for natural convection from Figure 21 is $44^{\circ} \mathrm{C} / \mathrm{W}$. From Table $1 \theta_{\mathrm{JC}}(\max )=50^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic

## APPLICATIONS INFORMATION (continued)

FIGURE 20 - THERMALLOY* HEAT SINKS


6007A

*Manufactured by Thermalloy Co. of Texas.
package. Therefore, the new $\theta$ JA (max) with the 6012B heat sink added becomes:

$$
\theta_{\mathrm{JA}}(\max )=50^{\circ} \mathrm{C} / \mathrm{W}+44^{\circ} \mathrm{C} / \mathrm{W}=94^{\circ} \mathrm{C} / \mathrm{W} .
$$

Thus the addition of the heat sink has reduced $\theta$ JA (max) from $150^{\circ} \mathrm{C} / \mathrm{W}$ down to $94^{\circ} \mathrm{C} / \mathrm{W}$. With the heat sink, the maximum power dissipation by equation (3) at $\mathrm{T}_{\mathrm{A}}=$ $+70^{\circ} \mathrm{C}$ is:

$$
\mathrm{P}_{\mathrm{D}}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{94^{\circ} \mathrm{C} / \mathrm{W}}=1.11 \text { watts. }
$$

This gives approximately a $58 \%$ increase in maximum power dissipation. The safe operating area under Curve C of Figure 19 can now be generated as before with the aid of Figure 16 and equation (5).

FIGURE 21 - CASE TEMPERATURE RISE ABOVE AMBIENT versus POWER DISSIPATED USING NATURAL CONVECTION


## Forced Air Considerations:

As illustrated in Figure 22, forced air can be employed to reduce the $\theta_{J A}$ term. Note, however, that this curve is expressed in terms of typical $\theta$ JA rather than maximum $\theta_{\mathrm{JA}}$. Maximum $\theta_{\mathrm{JA}}$ can be determined in the following manner:
From Table 1 the following information is known:
(a) $\quad \theta_{\mathrm{JA}}($ typ $)=100^{\circ} \mathrm{C} / \mathrm{W}$
(b) $\theta \mathrm{JC}($ typ $)=27^{\circ} \mathrm{C} / \mathrm{W}$

Since:

$$
\begin{equation*}
\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}} \tag{6}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\theta \mathrm{CA}=\theta \mathrm{JA}-\theta_{\mathrm{JC}} \tag{7}
\end{equation*}
$$

Therefore, in still air

$$
\theta \mathrm{CA}(\text { typ })=100^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=73^{\circ} \mathrm{C} / \mathrm{W}
$$

From Curve 1 of Figure 22 at 500 LFPM and equation (7),

$$
\theta \mathrm{CA}(\text { typ })=53^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=26^{\circ} \mathrm{C} / \mathrm{W}
$$

Thus $\theta$ CA (typ) has changed from $73^{\circ} \mathrm{C} / \mathrm{W}$ (still air) to $26^{\circ} \mathrm{C} / \mathrm{W}$ ( 500 LFPM), which is a decrease in typical $\theta$ CA by a ratio of $1: 2.8$. Since the typical value of $\theta$ CA was reduced by a ratio of $1: 2.8, \theta \mathrm{CA}(\max )$ of $100^{\circ} \mathrm{C} / \mathrm{W}$ should also decrease by a ratio of 1:2.8.
This yields an $\theta \mathrm{CA}($ max $)$ at 500 LFPM of $36^{\circ} \mathrm{C} / \mathrm{W}$.
Therefore, from equation (6):

$$
\theta_{\mathrm{JA}}(\max )=50^{\circ} \mathrm{C} / \mathrm{W}+36^{\circ} \mathrm{C} / \mathrm{W}=86^{\circ} \mathrm{C} / \mathrm{W}
$$

Therefore the maximum allowable power dissipation at 500 LFPM and $T_{A}=+70^{\circ} \mathrm{C}$ is from equation (3):

$$
P_{D}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{+86^{\circ} \mathrm{C} / \mathrm{W}}=1.2 \text { watts. }
$$

## APPLICATIONS INFORMATION (continued)

FIGURE 22 - TYPICAL THERMAL RESISTANCE ( $\theta$ JA) OF "L" PACKAGE versus AIR VELOCITY


As with the previous examples, the dc power at $50 \%$ duty cycle is subtracted from the maximum allowable device dissipation ( $P_{D}$ ) to obtain a maximum $\mathrm{P}_{\mathrm{ac}}$. The safe operating area under Curve $D$ of Figure 19 can now be generated from Figure 16 and equation (5).

## Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of $\theta_{\text {CA }}$ for still air and forced air such as illustrated in Figure 23. For example the 6012 B heat sink has an $\theta_{\mathrm{CA}}=17^{\circ} \mathrm{C} / \mathrm{W}$ at 500 LFPM as noted in Figure 23. From equation (6):

Max $\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}+17^{\circ} \mathrm{C} / \mathrm{W}=67^{\circ} \mathrm{C} / \mathrm{W}$
From equation (3) at $\mathrm{TA}_{A}=+70^{\circ} \mathrm{C}$

$$
P_{D}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{67^{\circ} \mathrm{C} / \mathrm{W}} 1.57 \text { watts. }
$$

FIGURE 23 - THERMAL RESISTANCE $\theta$ CA versus AIR VELOCITY

As before this yields a safe operating area under Curve E in Figure 19.
Note from Table 1 and Figure 22 that if the 14 -pin ceramic package is mounted directly to the PC board ( 2 oz . cu. underneath), that typical $\theta$ JA is considerably less than for socket mount with still air and no heat sink The following procedure can be employed to determine a safe operating area for this condition.
Given data from Table 1:

$$
\begin{aligned}
& \text { typical } \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { typical } \theta_{\mathrm{JC}}=27^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

From Curve 2 of Figure $22, \theta_{\mathrm{JA}}(\mathrm{typ})$ is $75^{\circ} \mathrm{C} / \mathrm{W}$ for a PC mount and no air flow. Then the typical $\theta_{\mathrm{CA}}$ is $75^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=48^{\circ} \mathrm{C} / \mathrm{W}$. From Table 1 the typical value of $\theta \mathrm{CA}$ for socket mount is $100^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=$ $73^{\circ} \mathrm{C} / \mathrm{W}$. This shows that the PC board mount results in a decrease in typical $\theta_{\text {CA }}$ by a ratio of $1: 1.5$ below the typical value of $\theta \mathrm{CA}$ in a socket mount. Therefore, the maximum value of socket mount $\theta$ CA of $100^{\circ} \mathrm{C} / \mathrm{W}$ should also decrease by a ratio of $1: 1.5$ when the device is mounted in a PC board. The maximum $\theta \mathrm{CA}$ becomes:

$$
\theta_{C A}=\frac{100^{\circ} \mathrm{C} / \mathrm{W}}{1.5}=66^{\circ} \mathrm{C} / \mathrm{W} \text { for } \mathrm{PC} \text { board mount }
$$

Therefore the maximum $\theta_{\text {JA }}$ for a PC mount is from equation (6).

$$
\theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W}+66^{\circ} \mathrm{C} / \mathrm{W}=116^{\circ} \mathrm{C} / \mathrm{W} .
$$

With maximum $\theta$ JA known, the maximum power dissipation can be found and the safe operating area determined as before. See Curve B in Figure 19.

## CONCLUSION

In most cases, heat sink manufacturer's publish only $\theta_{\text {CA }}$ socket mount data. Although $\theta_{\text {CA }}$ data for PC mounting is generally not available, this should present no problem. Note in Figure 22 that an air flow greater than 250 LFPM yields a socket mount $\theta$ JA approximately $6 \%$ greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of $\theta$ CA on the type environment and measurement techniques employed. For example, $\theta$ CA would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

## GENERAL INFORMATION

## APPLICATION NOTES


[^0]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^1]:    This is advance information and specifications are subject to change without notice.

[^2]:    Addresses - The addresses are latched when CE goes high, and may be removed after an appropriate hold time.
    VSS - Circuit ground.
    $\mathrm{V}_{\mathrm{BB}}$ - The reverse bias substrate supply. Forward biasing this supply with respect to $V_{S S}$ will destroy the memory device.
    VDD - Positive supply voltage.

[^3]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leqslant\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leqslant V_{D D}$.

    Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$

[^4]:    *Note: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

[^5]:    *Note: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

[^6]:    Shifted characters are not used．

[^7]:    ＝Shitted character．The Character is shifed theerows to A3 at he top of the font and Al at the botion．

[^8]:    This is advance information and specifications are subject to change without notice.

[^9]:    *Trademark of Motorola Inc.

[^10]:    * MC14503 to be introduced-replacement for MM80C97.
    **MC8T26 to be introduced-replacement for N8T26.

