

MOTOROLA Semiconductor Products Inc.

INTEGRATED CIRCUITS DATA BOOK

THIRD EDITION

GENERAL INFORMATION

Previews of Coming Linear Integrated Circuits

Interchangeability Guide

Chip Information

6

4

MIL-M-38510 Program

8

DATA SHEET SPECIFICATIONS

. . . in alpha-numerical sequence by device type number, unless otherwise noted. (See Master Index for page numbers.)

Packaging Information

10

9

APPLICATION NOTES

.

LINEAR INTEGRATED CIRCUITS DATA BOOK

Linear Integrated Circuits have achieved a level of maturity which now rivals that of their digital counterparts. In all market categories and for a wide variety of applications functions, linear ICs are serving the needs of equipment manufacturers to reduce cost and improve equipment form, factor and reliability.

They've matured, too, from the standpoint of availability. The number of off-theshelf linear circuits and their varying capabilities makes them highly useful as building blocks for system design. Moreover, the now-prevalent practice of second sourcing assures competitive pricing and quantity delivery.

The Motorola Semiconductor Products Division has been in the forefront of linear IC development since the inception of integrated circuit technology. This Linear Integrated Circuit Data Book, therefore, contains data sheets for one of the largest selections of linear ICs in the industry. Included are devices that were developed by the various Motorola R&D groups, as well as an extensive second-source inventory of the most popular circuits developed elsewhere.

For easy reference, the data sheets in this book are in alpha-numeric sequence, without regard as to product category or applications. However, to provide the user with a quick overview of Motorola's complete line of standard linear ICs, a number of selector guides separate the total line into market and/or functional divisions. This provides a quick comparison of similar devices, spelling out the most significant differences. Also included are a cross-reference table of second-source devices and other product-related information.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of any manufacturer.

Third Edition NOVEMBER 1973

© MOTOROLA INC., 1973 "All Rights Reserved" The following are trademarks of Motorola Inc.: McMOS, MDTL, MECL, MECL 10,000, MHTL, MRTL, MTTL

LINEAR INTEGRATED CIRCUITS MASTER INDEX

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC1303	Dual Stereo Preamplifier	3-17	8-2
MC1304	FM Multiplex Stereo Demodulator	3-17	8-6
MC1305	FM Multiplex Stereo Demodulator	3-17	8-6
MC1306	1/2-Watt Audio Amplifier	3-17	8-10
MC1307	FM Multiplex Stereo Demodulator	3-17	8-15
MC1310	FM Stereo Demodulator	3-17	8-19
MC1311	FM Stereo Demodulator	3-17	8-27
MC1312	Four-Channel SQ* Decoder	3-17	8-29
MC1313	Four-Channel SQ* Decoder	3-17	8-29
MC1314	Four-Channel Audio Voltage-Controlled Amplifier	4-5	-
MC1314 MC1315	Four-Channel Audio Logic Circuit	4-5	
MC1324	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix	3-16	8-32
MC1326	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix	3-16	8-36
MC1327	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix and PAL Switch	3-16	8-42
MC1328	Dual Doubly Balanced Chroma Demodulator	3-16	8-46
MC1329	Dual Doubly Balanced Chroma Demodulator	3-16	8-51
MC1330	Low-Level Video Detector	3-16	8-55
MC1331	Low-Level Video Detector	3-16	8-59
MC1339	Dual Low-Noise Stereo Preamplifier	3-17	8-61
MC1344	TV Signal Processor	3-16	8-66
MC1349	IF Amplifier	3-16	8-69
MC1350	IF Amplifier	3-16, 3-17	8-74
MC1351	TV Sound Circuit	3-16	8-78
MC1352	TV Video IF Amplifier	3-16	8-82
MC1353	TV Video IF Amplifier	3-16	8-82
MC1355	Limiting FM IF Amplifier	3-17	8-88
MC1356	FM Detector/Limiter	4-5	
MC1357	IF Amplifier and Quadrature Detector	3-16, 3-17	8-92
MC1358	TV Sound IF Amplifier	3-16	8-98
MC1359	TV Sound System	4-6	_
MC1364	Automatic Frequency Control	3-16	8-103
MC1370	TV Chroma Subcarrier Regenerator	3-16	8-107
MC1371	TV Chroma IF Amplifier	3-16	8-113
MC1375	FM IF Circuit	3-17	8-118
MC1385	Class B Audio Driver	3-17	8-122
MC1391	TV Horizontal Processor	3-16	8-124
MC1394	TV Horizontal Processor	4-6	
MC1395	PAL Chroma	4-6	· _
MC1396	PAL Luma	4-6	
MC1398	TV Color Processing Circuit	3-16	8-129
MC13120	FM IF Amplifier	4-6	_
MC1406	Six-Bit Multiplying Digital-to-Analog Converter	3-8	8-157
MC1400	Analog-Digital Control Circuit	3-8	8-169
MC1407	Eight-Bit Multiplying Digital-to-Analog Converter	3-8	8-186
			0,00

*Trademark of Columbia Broadcasting System, Inc.

l

MC1536

MC1537

MC1538

MC1539

MC1540

MC1541

MC1543

Operational Amplifier

Operational Amplifier

Operational Amplifier

Dual Sense Amplifier

Core-Memory Sense Amplifier

Power Booster

Sense Amplifier

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)	
MC1410	Video Amplifier	3-11	8-200	
MC1414	Dual Differential Comparator	3-10	8-204	
MC1420	Operational Amplifier	3-2	8-208	
MC1430	Operational Amplifier	3-2	8-212	
MC1431	Operational Amplifier	3-2	8-212	
MC1433	Operational Amplifier	3-2	8-216	
MC1435	Dual Operational Amplifier	3-3	8-221	
MC1436	Operational Amplifier	3-2	8-226	
MC1436C	Operational Amplifier	3-2	8-226	
MC1437	Operational Amplifier	3-3	8-230	
MC1438	Power Booster	3-3	8-234	
MC1439	Operational Amplifier	3-2	8-240	
MC1440	Core-Memory Sense Amplifier	3-5	8-248	
MC1441	Sense Amplifier	3-5	8-252	
MC1444	AC-Coupled 4-Channel Sense Amplifier	3-5	8-266	
MC1445	Wideband Amplifier	3-11	8-274	
MC1446	4-Channel, Low-Threshold Sense Amplifier	3-5	8-135	
MC1454	1-Watt Power Amplifier	3-15	8-290	
MC1455	Timing Circuit	3-15	8-294	
MC1456	Operational Amplifier	3-2	8-301	
MC1456C	Operational Amplifier	3-2	8-301	
MC1458	Dual Operational Amplifier	3-3	8-307	
MC1458C	Dual Operational Amplifier	3-3	8-307	
MC1460	Positive Voltage Regulator	3-12	8-311	
MC1461	Positive Voltage Regulator	3-12	8-311	
MC1463	Negative Voltage Regulator	3-14	8-323	
MC1466	Voltage and Current Regulator	3-14	8-339	
MC1468	Dual ±15-Volt Tracking Regulator	3-13	8-349	
MC1469	Positive Voltage Regulator	3-12	8-355	
MC1488	Quad MDTL Line Driver	3-6	8-145	
MC1489	Quad MDTL Line Receiver	3-9	8-151	
MC1489A	Quad MDTL Line Receiver	3-9	8-151	
MC1494	Four-Quadrant Multiplier	3-15	8-386	
MC1495	Four-Quadrant Multiplier	3-15	8-400	
MC1496	Balanced Modulator-Demodulator	3-15	8-416	
MC1505	Digital Voltmeter Subsystem (A/D Converter)	4-3	_	
MC1506	Six-Bit Multiplying Digital-to-Analog Converter	3-8	8-157	
MC1507	Analog-Digital Control Circuit	3-8	8-169	
MC1508	Eight-Bit Multiplying Digital-to-Analog Converter	3-8	8-186	
MC1510	Video Amplifier	3-11	8-200	
MC1514	Dual Differential Comparator	3-10	8-204	
MC1520	Operational Amplifier	3-2	8-208	
MC1530	Operational Amplifier	3-2	8-212	
MC1531	Operational Amplifier	3-2	8-212	
MC1533	Operational Amplifier	3-2	8-212	
MC1535 MC1535	Dual Operational Amplifier	3-3	8-210	
M01500		3-3	0-221	

3-2

3-3

3-3

3-2

3-5

3-5

3-5

8-226

8-230

8-234

8-240

8-248

8-252

8-260

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC1544	AC-Coupled 4-Channel Sense Amplifier	3-5	8-266
MC1545	Wideband Amplifier	3-11	8-274
MC1550	RF-IF Amplifier	3-11	8-280
MC1552	Video Amplifier	3-11	8-286
MC1553	Video Amplifier	3-11	8-286
MC1554	1-Watt Power Amplifier	3-15	8-290
MC1555	Timing Circuit	3-15	8-294
MC1556	Operational Amplifier	3-2	8-301
MC1558	Dual Operational Amplifier	3-3	8-307
MC1560	Positive Voltage Regulator	3-12	8-311
MC1561	Positive Voltage Regulator	3-12	8-311
MC1563	Negative Voltage Regulator	3-14	8-323
MC1566	Voltage and Current Regulator	3-14	8-339
MC1568	Dual ±15-Volt Tracking Regulator	3-13	8-349
MC1569	Positive Voltage Regulator	3-12	8-355
MC1585	Dual MOS Clock Driver	3-7	8-375
MC1590	Wideband Amplifier with AGC	3-11	8-380
MC1594	Four-Quadrant Multiplier	3-15	8-386
MC1595	Four-Quadrant Multiplier	3-15	8-400
MC1596	Balanced Modulator-Demodulator	3-15	8-416
MC1709	Operational Amplifier	3-2	8-426
MC1709C	Operational Amplifier	3-2	8-426
MC1710	Differential Comparator	3-10	8-430
MC1710C	Differential Comparator	3-10	8-434
MC1711	Dual Differential Comparator	3-10	8-436
MC1711C	Dual Differential Comparator	3-10	8-436
MC1712	Wideband DC Amplifier	3-2	8-440
MC1712C	Wideband DC Amplifier	3-2	8-440
MC1723	Positive Voltage Regulator	3-12	8-444
MC1723C	Positive Voltage Regulator	3-12	8-444
MC1733	Differential Video Amplifier	3-11	8-450
MC1733C	Differential Video Amplifier	3-11	8-450
MC1741	Operational Amplifier	3-2	8-456
MC1741C	Operational Amplifier	3-2	8-456
MC1741S	High-Slew-Rate Operational Amplifier	3-2	8-460
MC1741SC	High-Slew-Rate Operational Amplifier	3-2	8-460
MC1747	Dual Operational Amplifier	3-3	8-466
MC1747C	Dual Operational Amplifier	3-3	8-466
MC1748	Operational Amplifier	3-2	8-470
MC1748C	Operational Amplifier	3-2	8-470
MC1776	Programmable Operational Amplifier	3-2	8-472
MC1776C	Programmable Operational Amplifier	3-2	8-472
MC3301	Quad Operational Amplifier	3-3, 3-17	8-481
MC3302	Quad Comparator	3-10, 3-17	8-489
MC3401	Quad Operational Amplifier	3-3	8-493
MC3403	Quad Operational Amplifier	4-2	_
MC3430	High-Speed Quad Comparator	4-3	-
MC3431	High-Speed Quad Comparator	4-3	-
MC3432	High-Speed Quad Comparator	4-3	-
MC3433	High-Speed Quad Comparator	4-3	-
MC3450	Quad Line Receiver	3-9	8-501
MC3452	Quad Line Receiver	3-9	8-501
MC3453	Quad Line Driver	3-6	8-508

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC3459	Quad NMOS Memory Driver	4-3	
MC3460	Quad NMOS Memory Driver	4-3	_
MC3462	Quad MECL Line Receiver	4-4	- 1
MC3463	Quad MECL Line Driver	4-4	_
MC3503	Quad Operational Amplifier	4-2	_
MC3537	Hex Unified Bus Receiver	4-3	_
MC3538	Quad Unified Bus Transceiver	4-3	_
MC3570	High-Slew Operational Amplifier	4-2	_
MC5528	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC5529	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC5534	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC5535	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC5538	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC5539	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC7520	Dual Sense Amplifier	3-4	8-521
MC7521	Dual Sense Amplifier	3-4	8-521
MC7522	Dual Sense Amplifier	3-4	8-521
MC7523	Dual Sense Amplifier	3-4	8-521
MC7524	Dual Sense Amplifier	3-4	8-524
MC7525	Dual Sense Amplifier	3-4	8-524
MC7528	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC7529	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC7534	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC7535	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC7538	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC7539	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC7705C	Positive Voltage Regulator	3-13	8-526
MC7706C	Positive Voltage Regulator	3-13	8-526
MC7708C	Positive Voltage Regulator	3-13	8-526
MC7712C	Positive Voltage Regulator	3-13	8-526
MC7715C	Positive Voltage Regulator	3-13	8-526
MC7718C	Positive Voltage Regulator	3-13	8-526
MC7720C	Positive Voltage Regulator	3-13	8-526
MC7724C	Positive Voltage Regulator	3-13	8-526
MC7805C	Positive Voltage Regulator	3-13	8-532
MC7806C	Positive Voltage Regulator	3-13	8-532
MC7808C	Positive Voltage Regulator	3-13	8-532
MC7812C	Positive Voltage Regulator	3-13	8-532
MC7815C	Positive Voltage Regulator	3-13	8-532
MC7818C	Positive Voltage Regulator	3-13	8-532
MC7824C	Positive Voltage Regulator	3-13	8-532
MC7902C	Negative Voltage Regulator	3-14	8-540
MC7905C	Negative Voltage Regulator	3-14	8-540
MC7905.2C	Negative Voltage Regulator	3-14	8-540
MC7906C	Negative Voltage Regulator	3-14	8-540
MC7908C	Negative Voltage Regulator	3-14	8-540
MC7912C	Negative Voltage Regulator	3-14	8-540
MC7915C	Negative Voltage Regulator	3-14	8-540
MC7918C	Negative Voltage Regulator	3-14	8-540

1

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC7924C	Negative Voltage Regulator	3-14	8-540
MC55107	Dual Line Receiver	3-9	8-549
MC55108	Dual Line Receiver	3-9	8-549
MC55325	Dual Memory Driver	3-7	8-554
MC75107	Dual Line Receiver	3-9	8-549
MC75108	Dual Line Receiver	3-9	8-549
MC75109	Dual Line Driver	3-6	8-556
MC75110	Dual Line Driver	3-6	8-556
MC75113	Differential Party-Line Driver	3-6	8-563
MC75140	Dual Line Receiver	3-9	8-573
MC75325	Dual Memory Driver	3-7	8-554
MC75450	Dual Peripheral Driver, Positive AND	3-7	8-577
MC75451	Dual Peripheral Driver, Positive AND	3-7	8-582
MC75452	Dual Peripheral Driver, Positive NAND	3-8	8-585
MC75453	Dual Peripheral Driver, Positive OR	3-8	8-588
MC75454	Dual Peripheral Driver, Positive NOR	3-8	8-591
MC75491	Quad Light-Emitting Diode (LED) Driver	3-8	8-594
MC75492	Hex Light-Emitting Diode (LED) Driver	3-8	8-594
MCB1709	Operational Amplifier (encapsulated Beam-Lead)	3-2	8-600
MCB1710	Differential Comparator (encapsulated Beam-Lead)	3-10	8-604
MCB1723	Voltage Regulator (encapsulated Beam-Lead)	3-12	8-606
MCB1741	Operational Amplifier (encapsulated Beam-Lead)	3-2	8-608
MCB1748	Operational Amplifier (encapsulated Beam-Lead)	3-2	8-612
MCBC1709	Operational Amplifier (non-encapsulated Beam-Lead)	3-2	8-600
MCBC1710	Differential Comparator (non-encapsulated Beam-Lead)	3-10	8-604
MCBC1723	Voltage Regulator (non-encapsulated Beam-Lead)	3-12	8-606
MCBC1741	Operational Amplifier (non-encapsulated Beam-Lead)	3-2	8-608
MCBC1748	Operational Amplifier (non-encapsulated Beam-Lead)	3-2	8-612
MCC1436	Operational Amplifier (Chip)	3-2	8-614
MCC1439	Operational Amplifier (Chip)	3-2	8-616
MCC1458	Dual Operational Amplifier (Chip)	3-3	8-618
MCC1463	Negative Voltage Regulator (Chip)	3-14	8-620
MCC1469	Positive Voltage Regulator (Chip)	3-12	8-622
MCC1495	Four-Quadrant Multiplier (Chip)	3-15	8-624
MCC1536	Operational Amplifier (Chip)	3-2	8-614
MCC1539	Operational Amplifier (Chip)	3-2	8-616
MCC1558	Dual Operational Amplifier (Chip)	3-3	8-618
MCC1563	Negative Voltage Regulator (Chip)	3-14	8-620
MCC1569	Positive Voltage Regulator (Chip)	3-12	8-622
MCC1595	Four-Quadrant Multiplier (Chip)	3-15	8-624
MCC1709	Operational Amplifier (Chip)	3-2	8-626
MCC1709C	Operational Amplifier (Chip)	3-2	8-626
MCC1710	Differential Comparator (Chip)	3-10	8-628
MCC1710C	Differential Comparator (Chip)	3-10	8-628
MCC1711	Dual Differential Comparator (Chip)	3-10	8-630
MCC1711C	Dual Differential Comparator (Chip)	3-10	8-630
MCC1723	Positive Voltage Regulator (Chip)	3-12	8-632
MCC1723C	Positive Voltage Regulator (Chip)	3-12	8-632
MCC1741	Operational Amplifier (Chip)	3-2	8-634
MCC1741C	Operational Amplifier (Chip)	3-2	8-634
	Operational Amplifier (Chip)	3-2	8-636
MCC1748	- Fe contra to the feature of the fe		

1

MCCF1458 Dual Operational Amplifier (Flip-Chip) 3-3 8-638 MCCF1795 Operational Amplifier (Flip-Chip) 3-2 8-640 MCCF1795 Operational Amplifier (Flip-Chip) 3-2 8-640 MCCF1795 Operational Amplifier (Flip-Chip) 3-2 8-642 MCCF1741 Operational Amplifier (Flip-Chip) 3-2 8-642 MCC40008 1/4-Watt Audio Amplifier 3-17 8-644 MFC40004 Single Toggle Flip-Flop 3-18 8-651 MFC4060A Voltage Regulator 3-12 8-666 MFC6030A Voltage Regulator 3-12 8-664 MFC6030A Voltage Regulator	Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MCCF1709 Operational Amplifier (Flip-Chip) 3-2 8-640 MCCF1709C Operational Amplifier (Flip-Chip) 3-2 8-642 MCCF1741C Operational Amplifier (Flip-Chip) 3-2 8-642 MCCF1741C Operational Amplifier (Flip-Chip) 3-2 8-642 MCC4010A Wideband Amplifier 3-17 8-644 MFC4010A Wideband Amplifier 3-17 8-644 MFC4000A Single Toggle Flip-Flop 3-18 8-651 MFC4060A Voltage Regulator 3-12 8-666 MFC4060A Voltage Regulator 3-12 8-666 MFC4060A Voltage Regulator 3-12 8-666 MFC4060A Voltage Regulator 3-12 8-664 MFC6020 Dual Toggle Flip-Flop 3-18 8-662 MFC6032A Voltage Regulator 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-13	MCCF1458	Dual Operational Amplifier (Flip-Chip)	3-3	8-638
MCCF1709C Operational Amplifier (Flip-Chip) 3-2 8-642 MCCF1741C Operational Amplifier (Flip-Chip) 3-2 8-642 MCCF1741C Operational Amplifier (Flip-Chip) 3-2 8-642 MFC4000B 1/4/Watt Audio Amplifier 3-17 8-644 MFC4000B 1/4/Watt Audio Amplifier 3-17 8-647 MFC4004O Single Toggle Flip-Flop 3-18 8-661 MFC4060A Voltage Regulator 3-12 8-666 MFC4060A Voltage Regulator 3-12 8-666 MFC4060A Voltage Regulator 3-12 8-666 MFC4060A Voltage Regulator 3-12 8-664 MFC60010 FM IF Amplifier 3-11 8-662 MFC6030A Voltage Regulator 3-12 8-664 MFC6030A Voltage Regulator 3-12 8-664 MFC6050D Dual Toggle Flip-Flop with Rest 3-18 8-661 MFC6050A Voltage Regulator 3-17 8-679 MFC6050D Dual Toggle Flip-Flop with Rest	MCCF1558	Dual Operational Amplifier (Flip-Chip)	3-3	8-638
MCCF1741 Operational Amplifier (Flip-Chip) 3-2 8-642 MCCF1741C Operational Amplifier (Flip-Chip) 3-17 8-644 MFC4000B Wideband Amplifier 3-17 8-644 MFC4010A Wideband Amplifier 3-17 8-647 MFC4050 Audio Driver 3-17 8-651 MFC4060A Voltage Regulator 3-12 8-656 MFC4060A Voltage Regulator 3-12 8-656 MFC4061A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-666 MFC6010 FM IF Amplifier 3-12 8-664 MFC6020 Dual Toggle Flip-Flop 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6040 Electronic Attenuator 3-18 8-671 MFC6020A Dual Toggle Flip-Flop with Reset 3-18 8-673 MFC6020A Class B Audio Driver 3-17 8-679 <	MCCF1709	Operational Amplifier (Flip-Chip)	3-2	8-640
MCCF1741C Operational Amplifier (Flip-Chip) 3-2 8-642 MFC4000B 1/4Watt Audio Amplifier 3-17 8-644 MFC4010A Single Toggle Flip-Flop 3-18 8-651 MFC4060A Audio Driver 3-17 8-653 MFC4060A Voltage Regulator 3-12 8-656 MFC4060A Voltage Regulator 3-12 8-656 MFC4060A Voltage Regulator 3-12 8-656 MFC4060A Voltage Regulator 3-12 8-666 MFC600D Dual Toggle Flip-Flop 3-18 8-662 MFC6030A Voltage Regulator 3-12 8-664 MFC6030A Voltage Regulator 3-13 8-671 MFC6050 Dual Toggle Flip-Flop with Reset 3-17 8-673	MCCF1709C	Operational Amplifier (Flip-Chip)	3-2	8-640
MFC4000B 1/4-Wat Audio Amplifier 3-17 8-644 MFC4010A Wideband Amplifier 3-17 8-647 MFC4010A Wideband Amplifier 3-17 8-651 MFC4050 Audio Driver 3-17 8-653 MFC4062A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4064A Voltage Regulator 3-12 8-664 MFC6030A Voltage Regulator 3-17 8-673 MFC6030A			3-2	8-642
MFC4000B 1/4-Wat Audio Amplifier 3-17 8-644 MFC4010A Wideband Amplifier 3-17 8-647 MFC4010A Wideband Amplifier 3-17 8-651 MFC4050 Audio Driver 3-17 8-653 MFC4062A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4064A Voltage Regulator 3-12 8-664 MFC6030A Voltage Regulator 3-17 8-673 MFC6030A	MCCF1741C	Operational Amplifier (Flip-Chip)	3-2	8-642
MFC4040 Single Toggle Flip-Flop 3.18 8-651 MFC4050 Audio Driver 3.17 8-653 MFC4060A Voltage Regulator 3.12 8-656 MFC4062A Voltage Regulator 3.12 8-656 MFC4064A Voltage Regulator 3.12 8-656 MFC6050 FM IF Amplifier 3.17 8-658 MFC6030A Voltage Regulator 3.12 8-664 MFC6030A Voltage Regulator 3.18 8-671 MFC6030A Voltage Regulator 3.18 8-673 MFC6030A Leftronic Attenuator 3.18 8-671 MFC6030A Class B Audio Driver 3.17 8-679 MFC8020A			3-17	8-644
MFC4050 Audio Driver 3-17 8-653 MFC4060A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC6010 FM IF Amplifier 3-17 8-658 MFC6020 Dual Toggle Flip-Flop 3-18 8-662 MFC6032A Voltage Regulator 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6030A Voltage Regulator 3-12 8-664 MFC6040 Electronic Attenuator 3-18 8-661 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-671 MFC6030A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8030 Differential Cascode Amplifier - 8-683 <	MFC4010A	Wideband Amplifier	3-17	
MFC4050 Audio Driver 3-17 8-653 MFC4062A Voltage Regulator 3-12 8-656 MFC6010 FM IF Amplifier 3-17 8-658 MFC6020 Dual Toggle Flip-Flop 3-18 8-662 MFC6032A Voltage Regulator 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6030 Load Toggle Flip-Flop with Reset 3-18 8-661 MFC6030 Dual Toggle Flip-Flop with Reset 3-17 8-679 MFC6030 Dual Toggle Flip-Flop with Reset 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8030 Differential Cascode Amplifier - 8-683 MFC8030 Differential Cascode Amplifier 3-12 8-698		Single Toggle Flip-Flop		
MFC4060A Voltage Regulator 3-12 8-656 MFC4062A Voltage Regulator 3-12 8-656 MFC4063A Voltage Regulator 3-12 8-656 MFC4063A Voltage Regulator 3-12 8-656 MFC60010 FM IF Amplifier 3-17 8-658 MFC6030A Voltage Regulator 3-12 8-664 MFC6032A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-13 8-662 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-671 MFC6050 Dual Toggle Flip-Flop with Reset 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-683	MFC4050		3-17	
MFC4062A Voltage Regulator 3-12 8-656 MFC4063A Voltage Regulator 3-12 8-656 MFC4064A Voltage Regulator 3-12 8-656 MFC6001D FM IF Amplifier 3-17 8-658 MFC6032A Voltage Regulator 3-12 8-664 MFC603A Voltage Regulator 3-12 8-664 MFC605D Dual Toggle Flip-Flop with Reset 3-18 8-668 MFC605D Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8030 Differential Cascode Amplifier - 8-683 MFC8030 Differential Cascode Amplifier 3-17 8-659 MLM101A Operational Amplifier 3-2 8-692	MFC4060A	Voltage Regulator		
MFC4063A Voltage Regulator 3-12 8-656 MFC4064A Voltage Regulator 3-12 8-656 MFC6010 Dual Toggle Flip-Flop 3-13 8-662 MFC6030A Voltage Regulator 3-12 8-664 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-668 MFC6050 Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8040A Audio Preemplifier - 8-683 MFC8040A Audio Preemplifier 3-17 8-689 MLM104 Negative Voltage Regulator 3-13 8-700	MFC4062A			
MFC4064A Voltage Regulator 3-12 8-656 MFC6010 FM IF Amplifier 3-17 8-658 MFC6020 Dual Toggle Flip-Flop 3-18 8-662 MFC6030A Voltage Regulator 3-12 8-664 MFC6050A Electronic Attenuator 3-18 8-671 MFC6070 Audio Driver Amplifier 3-17 8-673 MFC8020A Class B Audio Driver 3-17 8-679 MFC8030 Differential Cascode Amplifier - 8-683 MFC8030 Differential Cascode Amplifier 3-17 8-699 MLM104 Negative Voltage Regulator 3-14 8-696 MLM105 Operational Amplifier 3-2 8-700				
MFC6010 FM IF Amplifier 3-17 8-658 MFC6020 Dual Toggle Flip-Flop 3-18 8-662 MFC6032A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-671 MFC8021A Class B Audio Driver 3-17 8-679 MFC8022A Class B Audio Driver 3-17 8-679 MFC8020 Differential Cascode Amplifier - 8-683 MFC8070 Zero Voltage Regulator 3-14 8-696 MLM101A Operational Amplifier 3-2 8-700				
MFC6020 Dual Toggle Flip-Flop 3-18 8-662 MFC6030A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6003A Voltage Regulator 3-13 8-664 MFC6004A Voltage Regulator 3-13 8-664 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-6671 MFC6070 Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-683 MFC8020A Class B Audio Driver 3-17 8-683 MFC8020A Audio Preamplifier 3-17 8-683 MFC8020A Audio Preamplifier 3-13 8-704 ML62070 Zero Voltage Regulator 3-14 8-6962				
MFC6030A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6034A Voltage Regulator 3-12 8-664 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-6671 MFC6070 Audio Power Amplifier 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8030 Differential Cascode Amplifier - 8-683 MFC8030 Differential Cascode Amplifier 3-17 8-687 MFC8030 Defferential Cascode Amplifier 3-12 8-698 MLM104 Negative Voltage Regulator 3-14 8-696 MLM105 Positive Voltage Regulator 3-13 8-704 MLM104 Negative Voltage Regulator 3-13 8-704 MLM105 Positive Voltage Regulator 3-				
MFC6032A Voltage Regulator 3-12 8-664 MFC6033A Voltage Regulator 3-12 8-664 MFC6040 Electronic Attenuator 3-18 8-664 MFC6040 Electronic Attenuator 3-18 8-667 MFC6040 Clest Attenuator 3-17 8-673 MFC6020 Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Class B Audio Driver 3-17 8-679 MFC8020A Audio Preamplifier 3-17 8-679 MFC8020A Audio Preamplifier 3-17 8-688 MFC8040 Audio Preamplifier 3-17 8-689 MFC8040 Audio Preamplifier 3-17 8-696 MLM104 Negative Voltage Regulator 3-12 8-698 MLM105 Positive Voltage Regulator 3-13 8-704 MLM104 Operational Amplifier 3-2 8-709 MLM105 Positive Voltage Regulator 3-10 8-711				
MF C6033A Voltage Regulator 3-12 8-664 MF C6034A Voltage Regulator 3-12 8-664 MF C6040 Electronic Attenuator 3-18 8-668 MF C6050 Dual Toggle Flip-Flop with Reset 3-18 8-673 MF C6050 Audio Power Amplifier 3-17 8-673 MF C8020A Class B Audio Driver 3-17 8-679 MF C8021A Class B Audio Driver 3-17 8-679 MF C8030 Differential Cascode Amplifier - 8-683 MF C8030 Differential Cascode Amplifier - 8-683 MF C8070 Zero Voltage Regulator 3-17 8-696 MLM101A Operational Amplifier 3-2 8-692 MLM105 Positive Voltage Regulator 3-13 8-704 MLM105 Operational Amplifier 3-2 8-698 MLM100 Operational Amplifier 3-2 8-692 MLM110 Operational Amplifier 3-2 8-696 MLM204 Negative Voltage Regulator 3-13	1			
MFC6034A Voltage Regulator 3-12 8-664 MFC6040 Electronic Attenuator 3-18 8-668 MFC6050 Dual Toggle Flip-Flop with Reset 3-18 8-671 MFC6070 Audio Dower Amplifier 3-17 8-673 MFC8020A Class B Audio Driver 3-17 8-679 MFC8021A Class B Audio Driver 3-17 8-679 MFC8022A Class B Audio Driver 3-17 8-679 MFC8030 Differential Cascode Amplifier - 8-683 MFC8070 Zero Voltage Switch 3-15 8-688 MLM101A Operational Amplifier 3-12 8-696 MLM105 Positive Voltage Regulator 3-14 8-696 MLM107 Operational Amplifier 3-2 8-704 MLM109 Positive Voltage Regulator 3-13 8-704 MLM101 Operational Amplifier 3-2 8-692 MLM101 Operational Amplifier 3-2 8-709 MLM111 Voltage Regulator 3-13 8-704 <td></td> <td></td> <td></td> <td></td>				
MF C6040 Electronic Attenuator 3-18 3-688 MF C6050 Dual Toggle Flip-Flop with Reset 3-18 8-671 MF C6070 Audio Power Amplifier 3-17 8-679 MF C8020A Class B Audio Driver 3-17 8-679 MF C8021A Class B Audio Driver 3-17 8-679 MF C8022A Class B Audio Driver 3-17 8-679 MF C8030 Differential Cascode Amplifier - 8-683 MF C8040 Audio Preamplifier 3-17 8-685 MF C8070 Zero Voltage Switch 3-15 8-688 MLM101A Operational Amplifier 3-12 8-692 MLM105 Positive Voltage Regulator 3-13 8-704 MLM105 Operational Amplifier 3-2 8-709 MLM110 Operational Amplifier 3-2 8-709 MLM110 Operational Amplifier 3-2 8-709 MLM201A Operational Amplifier 3-2 8-709 MLM201A Operational Amplifier 3-2				
MF C6050 Dual Toggle Flip-Flop with Reset 3-18 8-671 MF C6070 Audio Power Amplifier 3-17 8-673 MF C8020A Class B Audio Driver 3-17 8-679 MF C8021A Class B Audio Driver 3-17 8-679 MF C8022A Class B Audio Driver 3-17 8-679 MF C8020A Class B Audio Driver 3-17 8-679 MF C8020A Class B Audio Driver 3-17 8-679 MF C8020A Class B Audio Driver 3-17 8-683 MF C8070 Zero Voltage Switch 3-15 8-688 MLM104 Operational Amplifier 3-2 8-692 MLM105 Positive Voltage Regulator 3-13 8-704 MLM106 Operational Amplifier 3-2 8-692 MLM110 Operational Amplifier 3-2 8-692 MLM110 Operational Amplifier 3-2 8-692 MLM110 Operational Amplifier 3-2 8-692 MLM201A Operational Amplifier 3-2 8-692<				
MF C6070 Audio Power Amplifier 3-17 8-673 MF C8020A Class B Audio Driver 3-17 8-679 MF C8021A Class B Audio Driver 3-17 8-679 MF C8021A Class B Audio Driver 3-17 8-679 MF C8020A Class B Audio Driver 3-17 8-679 MF C8030 Differential Cascode Amplifier - 8-683 MF C8070 Zero Voltage Switch 3-15 8-688 MLM104 Negative Voltage Regulator 3-14 8-696 MLM105 Positive Voltage Regulator 3-13 8-704 MLM107 Operational Amplifier 3-2 8-692 MLM108 Positive Voltage Regulator 3-13 8-704 MLM109 Positive Voltage Regulator 3-13 8-704 MLM110 Operational Amplifier 3-2 8-692 MLM204 Negative Voltage Regulator 3-10 8-711 MLM205 Positive Voltage Regulator 3-12 8-698 MLM206 Positive Voltage Regulator 3-12				
MF C8020AClass B Audio Driver3-178-679MF C8021AClass B Audio Driver3-178-679MF C8022AClass B Audio Driver3-178-679MF C8030Differential Cascode Amplifier-8-683MF C8040Audio Preamplifier3-178-688MF C8070Zero Voltage Switch3-158-688MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3-128-698MLM105Positive Voltage Regulator3-138-704MLM109Positive Voltage Regulator3-138-704MLM100Operational Amplifier3-28-692MLM101Operational Amplifier3-28-709MLM110Operational Amplifier3-28-692MLM110Operational Amplifier3-28-692MLM204Negative Voltage Regulator3-108-711MLM205Positive Voltage Regulator3-148-696MLM204Negative Voltage Regulator3-128-698MLM205Positive Voltage Regulator3-138-704MLM207Operational Amplifier3-28-709MLM210Operational Amplifier3-28-692MLM211Voltage Comparator3-108-711MLM304Negative Voltage Regulator3-138-704MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-692MLM305Positive Voltage				
MFC8021AClass B Audio Driver3-178-679MFC8022AClass B Audio Driver3-178-679MFC8030Differential Cascode Amplifier-8-683MFC8040Audio Preamplifier3-178-685MFC8070Zero Voltage Switch3-158-688MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3-148-696MLM105Positive Voltage Regulator3-128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM110Operational Amplifier3-28-692MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-138-704MLM205Positive Voltage Regulator3-128-698MLM205Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM305Positive Voltage Regulator3-138-704MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-148-696MLM304Negative Voltage Re		•		
MFC8022AClass B Audio Driver3-178-679MFC8030Differential Cascode Amplifier-8-683MFC8040Audio Preamplifier3.178-685MFC8070Zero Voltage Switch3.158-688MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3.148-696MLM105Positive Voltage Regulator3.128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3.138-704MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3.108-711MLM201AOperational Amplifier3-28-692MLM205Positive Voltage Regulator3.148-696MLM205Positive Voltage Regulator3.148-696MLM205Positive Voltage Regulator3.138-704MLM205Positive Voltage Regulator3.138-704MLM207Operational Amplifier3-28-692MLM207Operational Amplifier3-28-692MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM304Negative Voltage Regulator3-138-704MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-138-704MLM305Positive Voltage Regulator3-148-696MLM304Negative Voltage Regul				
MFC8030Differential Cascode Amplifier-8-683MFC8040Audio Preamplifier3-178-685MFC8070Zero Voltage Switch3-158-688MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3-148-696MLM105Positive Voltage Regulator3-128-693MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM205Positive Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-692MLM204Negative Voltage Regulator3-138-704MLM205Positive Voltage Regulator3-138-704MLM207Operational Amplifier3-28-709MLM210Operational Amplifier3-28-692MLM211Voltage Comparator3-108-711MLM305Positive Voltage Regulator3-148-696MLM304Negative Voltage Regulator3-128-692MLM305Positive Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Vol			1	
MF C8040Audio Preamplifier3-178-685MF C8070Zero Voltage Switch3-158-688MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3-148-696MLM105Positive Voltage Regulator3-128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM109Positive Voltage Regulator3-138-704MLM101Operational Amplifier3-28-692MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-128-698MLM205Positive Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM208Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM306Positive Voltage Regulator3-128-698MLM307Operational Ampli			5-17	
MFC8070Zero Voltage Switch3-158-688MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3.148-696MLM105Positive Voltage Regulator3-128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM10Operational Amplifier3-28-709MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM206Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM208Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM306Positive Voltage Regulator3-138-704MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulato			2 1 7	
MLM101AOperational Amplifier3-28-692MLM104Negative Voltage Regulator3-148-696MLM105Positive Voltage Regulator3-128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM10Operational Amplifier3-28-709MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-688MLM205Positive Voltage Regulator3-138-704MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-138-704MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-138-704MLM306Positive Voltage Regulator3-138-704MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Compa			1	
MLM104Negative Voltage Regulator3.148-696MLM105Positive Voltage Regulator3-128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM208Positive Voltage Regulator3-138-704MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-692MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-692MLM304Operational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-138-704MLM309Positive Voltage Regulator3-138-704MLM310Operatio				
MLM105Positive Voltage Regulator3-128-698MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704ML210Operational Amplifier3-28-709MLM210Operational Amplifier3-28-692MLM301AOperational Amplifier3-28-692MLM305Positive Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-148-696MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MH0026Dual MOS Clock Driver3-78-715				1
MLM107Operational Amplifier3-28-700MLM109Positive Voltage Regulator3-138-704MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM208Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MH0026Dual MOS Clock Driver3-78-715				
MLM109Positive Voltage Regulator3-138-704MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-709MLM310Operational Amplifier3-128-698MLM307Operational Amplifier3-128-698MLM310Operational Amplifier3-28-700MLM310Operational Amplifier3-138-704MLM311Voltage Regulator3-138-704MLM311Voltage Comparator3-108-711MH0026Dual MOS Clock Driver3-78-715				
MLM110Operational Amplifier3-28-709MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-138-704MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MH0026Dual MOS Clock Driver3-78-715				
MLM111Voltage Comparator3-108-711MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM305Positive Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM304Negative Voltage Regulator3-128-698MLM305Positive Voltage Regulator3-138-704MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MH0026Dual MOS Clock Driver3-78-715				
MLM201AOperational Amplifier3-28-692MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				•
MLM204Negative Voltage Regulator3-148-696MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MH0026Dual MOS Clock Driver3-78-715				
MLM205Positive Voltage Regulator3-128-698MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				
MLM207Operational Amplifier3-28-700MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				
MLM209Positive Voltage Regulator3-138-704MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				
MLM210Operational Amplifier3-28-709MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				
MLM211Voltage Comparator3-108-711MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				
MLM301AOperational Amplifier3-28-692MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				
MLM304Negative Voltage Regulator3-148-696MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				8-711
MLM305Positive Voltage Regulator3-128-698MLM307Operational Amplifier3-28-700MLM309Positive Voltage Regulator3-138-704MLM310Operational Amplifier3-28-709MLM311Voltage Comparator3-108-711MMH0026Dual MOS Clock Driver3-78-715				8-692
MLM307 Operational Amplifier 3-2 8-700 MLM309 Positive Voltage Regulator 3-13 8-704 MLM310 Operational Amplifier 3-2 8-709 MLM311 Voltage Comparator 3-10 8-711 MMH0026 Dual MOS Clock Driver 3-7 8-715				8-696
MLM309 Positive Voltage Regulator 3-13 8-704 MLM310 Operational Amplifier 3-2 8-709 MLM311 Voltage Comparator 3-10 8-711 MMH0026 Dual MOS Clock Driver 3-7 8-715				1
MLM310 Operational Amplifier 3-2 8-709 MLM311 Voltage Comparator 3-10 8-711 MMH0026 Dual MOS Clock Driver 3-7 8-715	MLM307			8-700
MLM311 Voltage Comparator 3-10 8-711 MMH0026 Dual MOS Clock Driver 3-7 8-715	MLM309	Positive Voltage Regulator		8-704
MMH0026 Dual MOS Clock Driver 3-7 8-715		Operational Amplifier	3-2	8-709
	MLM311	Voltage Comparator	3-10	8-711
MMH0026C Dual MOS Clock Driver 3-7 8-715	MMH0026	Dual MOS Clock Driver	3-7	8-715
	MMH0026C	Dual MOS Clock Driver	3-7	8-715

MC?

UNDERSTANDING MOTOROLA'S DEVICE NUMBERING SYSTEM

A great deal of information is given in the device number on Motorola ICs. This section will present the meanings of the prefixes, numbers and suffixes used to designate Motorola linear ICs. Normally the package style and operating temperature range may be obtained from the device number.

Although there are exceptions to many of the codes listed below, these codes are generally true and can provide the user with pertinent information on the particular device type.

Prefix

MC	Packaged Integrated Circuits

- MCB Packaged Beam-lead Integrated Circuits. (Followed by F suffix when in flat pack.)
- MCBC Beam-lead Integrated Circuit chips
- MCC Unencapsulated Integrated Circuit chips
- MCCF Flip-Chip Linear Integrated Circuits
- MFC Low cost Integrated Circuits packaged in Motorola's unique "Functional Circuits" plastic package (Package suffix not used in this device series.)
- MLM Pin-for-pin equivalent to Linear Integrated Circuits made by National Semiconductor

Body Number for Motorola Proprietary Devices

1500-1599 3500-3599	Military temperature grade (-55 to +125 ⁰ C) Linear ICs
1400-1499 3400-3499	Equivalent to devices above but with Industrial temperature range (0 to $+70^{\circ}C$)
1300-1399 3300-3399	Linear ICs aimed at the Consumer industry

Suffix

- А Designates improved or modified IC type, followed by package suffix, i.e., MC1489AL. С Designates limited temperature, or limited performance device. Followed by package designation suffix, i.e., MC1709CL F Flat package G Metal can package (TO-5 types) К Metal power package (TO-3 type) L Ceramic dual in-line case (14 or 16 pin) Package Ρ Plastic package Designation PQ ICs packaged in staggered-lead plastic DIP packages Used when an IC is available in more than one plastic package. P1,P2 i.e., P1 = 8 lead plastic DIP, P2 = 14 pin plastic DIP
- R Metal power package (TO-66 type)

NOTES

LINEAR

2

INTEGRATED CIRCUITS

HIGHLIGHTS

2-1

OPERATIONAL AMPLIFIERS

The operational amplifier has always been the most popular and versatile Linear IC type. Op amps have found wide usage in control circuitry, signal processing equipment, active filters for communications systems, Modems, and many other types of equipment. With the addition of a few external components, this basic feedback type amplifier can be transformed into a multitude of functions ranging from summing amplifiers and simple inverters to integrating amplifiers and Sample and Hold circuits.

Motorola offers a broad line of op amp types. Both proprietary and popular industry-standard types are covered. The range of high precision to low cost plastic-packaged multiple op amps is spanned by over 50 device types. Two representative devices are discussed here. An overview of the entire line appears on pages 3-2 and 3-3.

HIGH SLEW RATE OPERATIONAL AMPLIFIER

High-Slew Op-Amp (MC1741S)

It is not often that the advantages of the old workhorse can be combined with the speed of the thoroughbred. However, the MC1741S op-amp has done just that; it has all the familiar easyto-use features of the industry-standard MC1741 internally compensated op-amp. In addition, it offers a guaranteed minimum slew rate of 10 V/ μ s with a typical slew rate of some 20 times greater than the comparable figure for the conventional MC1741. Power bandwidth has also increased by a factor of 20 and is now specified at 150 kHz minimum. Applications where pulses are processed or where distortion must be kept low under largesignal conditions are ideal candidates for the MC1741S. Since the unit is a pin-for-pin replacement with all other specs identical to the conventional MC1741, it is easy to update existing designs to improve their performance.

Of particular significance is the 3.0 μ s settling time (to 0.1%) of the new device. When combined with an MC1508L digital-to-analog converter, a lowcost, two-package converter with a voltage-mode output and total settling time to within ±1.0 least significant bit of 4.0 μ s can be obtained.

PROGRAMMABLE OPERATIONAL AMPLIFIER

Micro-Power, Programmable Op-Amp (MC1776)

The ability to operate with minimal power consumption from a wide range of power supply voltages is the salient feature of the MC1776 programmable op-amp. Whether two 1.2 V mercury cells or supplies up to ± 18 V are utilized, the performance features best suited for a particular application can be selected. A single resistor or a current source can be used to set all the quiescent current levels for this circuit. Thus, the designer is free to choose, for example, low bias and power supply currents, or perhaps greater gain-bandwidth and slew rate.

The MC1776 can be combined with McMOS

logic to create electronics systems well suited for critical low-drain, battery-powered equipment. The MC1776 uses a maximum of only 120 μ W at ±3.0 V and a programming current of 1.5 μ A. This assures long life from the battery.

To demonstrate the versitility of the MC1776, all static and dynamic parameters are specified at four combinations of power supply voltages and programming current. Thus, the user is assured that the op-amp will perform over this wide range of operating conditions without having to guess how changes in the programming conditions will affect a particular operating parameter.

For operating flexibility and micropower consumption considerations, the MC1776 is the logical choice.

VOLTAGE REGULATORS

The sensitivity of semiconductor devices to voltage and temperature changes makes the voltage regulator circuit an important integral part of many critical systems and subsystems. Today's designer has considerable choice in integrated regulators, with a variety of characteristics, capabilities, and prices. The integrated circuit voltage regulator offers ease of design, simplified assembly and improved performances over discrete transistor designs. Motorola offers a series of IC voltage regulators with a variety of specifications, see pages 3-12 thru 3-14. Highlighted here are two circuits that merit special attention.

BASIC REGULATOR

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = C_O is not needed for stability; however, it does improve transient response.

The Negative Three-Terminal Regulator Complements (MC7900)

The popular MC7800 series voltage regulators described above are all well suited when a positive voltage is required, but they are not intended for negative supplies. For these applications the negative complements, series MC7900 were created. These units are identical to the MC7800 series devices except that the voltage and current are of the opposite polarity. The negative regulators are supplied in the same voltages available in the positive series plus two additional voltages commonly used in MECL systems. These supplementary voltages are -2.0 V and -5.2 V, making them well suited for on-card regulation in high-speed logic systems.

The same short-circuit, thermal over-load and safe-operating area protection circuitry is employed in the negative devices making them very rugged. In addition, the devices have the same simplicity of use as the positive MC7800 series devices. Threeterminals, fixed-voltages, easy-heatsinking, and the lack of required external components are features that make the MC7900 series negative regulators applicable to nearly any electronic system power supply.

The Simplest Voltage Regulator to Use (MC7800)

The introduction of the three-terminal voltage regulator marked a milestone in integrated circuit development. Traditionally, IC voltage regulators required numerous external components, and supplied only a few milliamperes without additional current boosting transistors. They had to be programmed to the desired voltage with precision resistors, and could oscillate if proper circuit layout considerations were ignored. The MC7800 Series three-terminal fixed voltage regulators have eliminated these problems.

The new devices are housed in popular power transistor packages which conveniently connect to heatsinks if necessary. They require only three connections – Input, Output, and Ground. External components are required only if the regulator is located an appreciable distance from the supply filter capacitors or if current boosting is required to supply greater than the 1.5 Amperes the devices can provide. Ease of use and low cost make these units ideal as on-card voltage regulators, or in almost any electronic system.

The MC7800 series devices are available in seven popular fixed voltages. The last two numbers of the part type indicate the nominal output voltage. Each type features short-circuit protection, thermalshutdown, and safe-operating area compensation for the internal series pass transistors. These techniques combine to make the units extremely rugged.

With the arrival of the new MC7800 series voltage regulators, a regulated power supply is available at a minimum of cost and design effort for almost any electronic device. By adding an additional transistor package, regulated voltage can be available almost any place in a system.

INTERFACE CIRCUITS

Interface circuits is the name applied to devices that operate with both linear signals and digital logic levels. Most have both linear and digital properties. Examples of interface circuits are D/A and A/D converters, memory sense amplifiers, comparators, and line drivers and receivers.

The rapidly expanding fields of data communications and digital instrumentation make wide use of these interface devices. Line drivers and receivers, for example, are used whenever data must be transmitted over long distances in a computer or piece of peripheral equipment. Also, the industry standard MC1488-89 devices provide the level translation between a Modem and a computer terminal in accordance with the EIA RS-232C specifications. Likewise comparators are used as voltage level detectors in control and instrumentation applications.

Motorola offers a broad line of interface circuits. Two of the newest interface devices are discussed in this section while the complete lineup is outlined beginning on page 3-4.

ANALOG INPUT Vin • C1507L BIGITAL OUTPUT

8-BIT TRACKING A-TO-D CONVERTER

Versatile Analog-Digital Control Function (MC1507)

The MC1507 is the third member of the Motorola "building block" series aimed at bridging the gap between the analog and digital worlds. This device is particularly useful when combined with either the MC1508 or MC1506 monolithic Digital-to-Analog (D/A) converters to implement either Tracking or Successive Approximation Analog-to-Digital (A/D) Converter designs.

The MC1507 consists of a high-slew-rate op-amp used as an input buffer and a dual-comparator which provides two adjustable, but symmetrical, thresholds. The comparator is used in tracking A/D systems to command a counter chain to increment either up or down. The comparator section is also applicable to "dead-band" or "window" comparator designs where indication is given if an input voltage is greater than or less than a specified voltage range.

The tracking A/D converter, for which the MC1507 is primarily intended, makes use of the

high-speed capability inherent in the current mode output of the MC1508 and MC1506 D/A converters. An 8-bit tracking A/D system, for example, using a 5-MHz clock rate provides a normal conversion or update every 0.2 to 1.0 μ s, and a full-scale conversion time of 50 μ s. Adding a second MC1507 and a "panic mode" circuit decreases the full-scale conversion time to 14 μ s.

By disabling the down counting function, the tracking converter can be used as a peak-detecting track and hold circuit. This system will store the maximum value of an input waveform until it is reset. Unlike traditional sample and hold circuits utilizing the charge on a capacitor, the MC1507 system will not suffer a voltage decay after a period of time.

The versatile MC1507 has many additional applications bridging the analog and digital realms. When combined with other building blocks, solutions to numerous analog-digital interface requirements can be economically provided.

PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

Quad Line Drivers and Receivers (MC3450, MC3452, MC3453)

These devices are quad versions of the popular MC75107, MC75108 and MC75110 type dual line Driver/Receivers. They are commonly employed to transmit logic signals over long lengths of cable in large digital systems.

The MC3453 is an MTTL-compatible differential driver with a single enable input common to all four monolithic drivers in the packages.

The MC3452 is a differential line receiver featuring open-collector outputs and a common strobe input. The MC3450 is also a quad receiver; however, it provides active pull-up outputs, and a threestate strobe input, allowing the outputs to be placed in a high impedance state.

In addition to their usage to transmit data within large computer systems, the quad receivers are well suited for use as sense amplifiers with "1103" type MOS memory systems. The quad configuration results in a considerable package savings over existing devices commonly used in this type of application. Linear IC Highlights (continued)

ENTERTAINMENT CIRCUITS

The high-volume, low-cost, and highly specialized requirements of the electronic components for consumer entertainment equipment match the capabilities of today's linear ICs. A great variety of the necessary functional blocks for television, stereo phonographs, and radio receivers is now available in low-cost plastic-packaged ICs. The need for improved performance and increased reliability and, at the same time, for a lower selling price, is met by state-of-the-art monolithic circuits.

Motorola's traditional leadership in plastic transistors for the customer electronics industry is being extended with a complete lineup of low-cost ICs for those functions which can best be accomplished with monolithic integrated circuits. Both original innovative designs and popular second-source devices which have been well accepted by the industry are included in this diverse family of products. Some typical examples are highlighted here.

For Television alone, Motorola offers more than 20 different types of ICs to give the designer a wide choice of performance levels and partitioning approaches. To aid in the parade toward fully solid-state sets, Motorola offers ICs for the video IF amplifier and detector, AFT, chroma processor and detector, deflection, audio stages, and a combination device which supplies AGC, sync separator and noise-suppression circuitry. Often these ICs permit circuit complexity and performance which would not be technically and economically practical with discrete components.

A selector guide to ICs for use in television sets is provided on page 3-16. Several new TV ICs are previewed on page 4-6.

TYPICAL HORIZONTAL SECTION

TV Horizontal Processor (MC1391)

The MC1391 TV horizontal processor packs the phase detector, oscillator and pre-driver functions into a single, convenient 8-lead plastic package. The new unit provides the entire low-level horizontal signal processing function and may be used with either transistor or vacuum tube output stages. This device is one of the first inroads of ICs into the television deflection circuitry.

FEATURES:

- Internal shunt regulator
- Preset Hold control capability
- ±300 Hz typical pull-in range
- Balanced phase detector
- Variable output duty cycle for driving tube or transistor
- Low thermal frequency drift
- Small static phase error

Linear IC Highlights (continued)

For Audio . . .

Linear ICs are rapidly penetrating the audio amplifier stages of television, radio, and stereo phonographs. Both low level and power amplifier applications are realizing greater performance and lower total cost due to the reduced assembly requirements and the ability to use more complex circuitry with these advanced ICs. A wide range of IC types permits the designer a wide lattitude of flexibility to create the exact system performance and costs he requires.

TYPICAL CLASS B AMPLIFIER

Class B Audio Driver (MC1385)

The MC1385 is designed to be used in conjunction with complementary output transistors MJE2050/2150 to produce a 5-watt class B audio amplifier suitable for use in automotive, consumer, and industrial electronics.

FEATURES:

- Internal power supply transient protection
- Built-in programmable short-circuit-current limiting
- Excellent sensitivity 4.0 mV(RMS) typical
- Excellent power-supply ripple rejection 35 dB typical
- Wide operating temperature range
- Single supply operation

For Radio

Two sections in FM radios have lent themselves well to integration: The IF amplifier and detector, and the stereo multiplex decoder sections. In both high-quality tuners and in low-priced table radios, the high performance of these ICs and lower assembly costs they make possible, permit more efficient designs.

TYPICAL FM APPLICATION

FM IF Circuit (MC1375)

Combining several functions required in solidstate FM receivers, the MC1375 provides the IF amplifier, limiter, FM detector and audio preamplifier in a single 14-lead package. The unit requires a minimum of external components.

The IF amplifier/limiter section provides excellent AM rejection and uses an internal zener diode voltage regulator. The detector is a differential peak design which promotes simplified single-coil alignment. The audio preamplifier supplies a voltage gain of ten.

FEATURES:

- Good sensitivity: input limiting voltage (Knee) = 250 μV typical
- Excellent AM rejection: 55 dB typical at 10.7 MHz
- Internal zener diode regulation for the IF amplifier section
- Low harmonic distortion
- Differential peak detection: permits simplified single-coil timing
- Audio preamplifier voltage gain: 21 dB typical

2

For Automotive . . .

In response to consumer demand and government legislation, the automotive industry is undergoing a major engineering evolution. Electronics will be used to perform many of the new complex functions required for the modern automobile. Two approaches are being accepted for applying ICs to automotive electronics: custom and building block. Because of the large volume potential, almost all programs can be expected to end with a specialized custom circuit. However, in the interim, while the systems are being defined and refined, the Motorola building block approach has received wide acceptance.

Highlighted below is one of the new devices in this series of building blocks.

EQUIVALENT CIRCUIT

Quad Comparator (MC3302)

The MC3302 contains four independent comparators designed for wide operating temperatures and single positive-power-supply operation requiring very low supply current.

High density and low cost make this device ideal for automotive, consumer, and industrial applications.

FEATURES:

- Wide operating temperature range -40 to +85°C
- Single-supply operation +2.0 to +28 volts
- Differential input voltage = ±V_{CC}
- Compare voltages at ground potential
- MTTL compatible
- Low current drain $-700 \,\mu\text{A}$ typical @ V_{CC} = +5.0 to +28 Vdc
- Outputs can be connected to give the Implied
 AND function

INTEGRATED CIRCUITS SELECTOR GUIDES

LINEAR

INTEGRATED CIRCUITS

LINEAR

OPERATIONAL AMPLIFIERS

Motorola offers a broad line of operational amplifiers to meet a wide range of usages. From low-cost, industry standard types to high precision circuits the span encompasses a large range of performance capabilities. These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of package styles as well as standard and beam-lead chips.

				LIFIER	Carlos Charles	roup.					
I _{IB}		١o	Avol	Vo e		VCC, VEE	fc	BW _p	SR		
(μA max)		(nA max)		(V _{pk} min)	(kΩ)	(Vdc)	(MHz typ)	(kHz typ)	(V/µs typ)	Case	Туре
55 to +12	25°C Temp	erature Ra	inge	and a second state of the	Constant Const States and Constant Const States and Constant Const States and Constant Const States and Cons				Marine Land B		and the second second
0.003	4.0	-	Unity	10	10	±15	20	300	30	601	MLM110
0.0075	5.0	3.0	200,000	12	75	±15	0.2	1.5	0.1	60.1	MC1776‡
0.015	4.0	2.0	100,000	12	2.0	±15	1.0	40	2.5	601	MC1556
0.02	5.0	3.0	100,000	22	5.0	±28	1.0	23	2.0	601	MC1536*
0.075 0.5	2.0 5.0	10 200	50,000	10	2.0	±15	1.0	10	0.5	601	MLM107
0.5	5.0 5.0	200	50,000 50,000	10 10	2.0 2.0	±15 ±15	1.0 1.0	10 200	0.8 15	601,606,632 601	MC1741* MC1741S
20100	°C Temper			10]	2.0	T12	1.0	200		001	MC17413
No. 2 June : The Second	and the second	ature nali	and the second second	Constant and the second second	Seat of the seat			L	20		
0.003 0.075	4.0 2.0	 10	Unity 50,000	10 10	10 2.0	±15 ±15	20 1.0	300 10	30 0.5	601 601	MLM210 MLM207
	-	100 10 10 10 10 10 10 10 10 10 10 10 10		10	2.0	±15	1.0	10	0.5	100	MILWI207
2010-23-24-12-23-23-23-23-23-23-23-23-23-23-23-23-23	C Tempera	iture Hang	Contraction of Contraction		Contraction of the						
0.007	7.5	-	Unity	10	10	±15	20	300	30	. 601	MLM310
0.01	6.0	6.0	50,000	12	75	±15	0.2	1.5	0.1	601	MC1776C
0.03	10	10	70,000	11	2.0	±15	1.0	40	2.5	601	MC1456
0.04	10	10	70,000	20	5.0	±28	1.0	23	2.0	601	MC1436*
0.09	12	30	25,000	10	2.0	±15	1.0	40	2.5	601	MC1456C
0.09	12	25	50,000	20	5.0	±28	1.0	23	2.0	601	MC1436C
0.25	7.5	50	25,000	10	2.0	±15	1.0	10	0.57	601	MLM307
0.5 0.5	6.0 6.0	200 200	20,000	10	2.0	±15	1.0	10	0.8	601,606,626,632,646	MC1741C
Sector States	and and and		20,000	10	2.0	±15	1.0	200	15	601,626	MC1741S0
IONCOM	PENSATE	>									
l _{IB} (μA max)	VIO (mV max)	liO (nA max)	A _{vol} (V/V min)	VO @ (V _{pk} min)	9 <mark>Β [8</mark> (kΩ)	V _{CC} , V _{EE} (Vdc)	f _c (MHz typ)	BWp (kHz typ)	SR (V/μs typ)	Case	Туре
55 to +12	25°C Temp	erature Ra	inge								
0.075	2.0	10	50,000	10	2.0	±15	1.0	10	0.5	601	MLM101A
0.15	10	25	2,500	4.5	1.0	±6.0	2.0	100	1.4	602B,606	MC1531
0.5	3.0	60	50,000	10	1.0	±15	2.0	50	4.2	601,632	MC1539*
0.5	5.0	200	50,000	10	2.0	±15	1.0	10	0.8	601,606	MC1748*
0.5	5.0	200	25,000	10	2.0	±15	0.5	4.0	0.25	601,606,632	MC1709*
1.0	5.0	150	40,000	11	2.0	±15	0.8	2.0	2.0	602B,606,632	MC1533
2.0	10	100	1,000	3.5	7.0	±6.0	10	150	5.0	602A,606	MC1520
5.0	2.0	500	2,500	3.5	10	+12,-6.0	7.0	10	1.5	601,606,632	MC1712
10	5.0	2000	4,500	4.5	1.0	±6.0	3.0	100	1.7	602B,606	MC1530
25 to +8!	5°C Tempe	rature Rar	nge								
0.075	2.0	10	50,000	10	2.0	±15	1.0	10	0.5	601, 626	MLM201A
to +75°	C Tempera	ture Range	•								
0.25	7.5	50	25,000	10	2.0	±15	1.0	10	0.5	601,626	MLM301A
0.3	15	100	1,500	4.0	1.0	±6.0	2.0	100	1.4	602B,606,646	MC1431
0.5	6.0	200	20,000	10	2.0	±15	1.0	10	0.8	601	MC1748C
1.0	7.5	100	15,000	10	2.0	±15	2.0	50	4.2	601,626,632,646	MC1439*
1.5	7.5	500	15,000	10	2.0	±15	0.5	4.0	0.25	601,606,626,632,646	MC1709C
	7.5	500	30,000	10	2.0	±15	0.8	2.0	2.0	602B,606,632,646	MC1433
2.0											
2.0 4.0	15	200	750	3.0	7.0	±6.0	10	150	5.0	602A,606	MC1420
	15 5.0	200 2000	750 2,000	3.0 3.5	7.0 10	±6.0 +12,-6.0	10 7.0	150 10	5.0 1.5	602A,606 601,606,632	MC1420 MC1712C

*Use MCC prefix for nonencapsulated chip.

** Use MCBC prefix for nonencapsulated beam-lead device, use MCB prefix for beam-lead device in flat ceramic package.

 $\ensuremath{\mathsf{tUse}}$ MCCF prefix for nonencapsulated flip-chip.

 $\pm I_{set} \approx 1.5 \,\mu A$, $|V_{EE}| = V_{CC} = 15 \,V$.

DUAL OPERATIONAL AMPLIFIERS

Listed in increasing order of input bias current.

INTERNA	LLY COM	PENSATE	D	and a second sec			25 Set 1998 State of a			All Constraints and the second sec	
l _{IB} (μA max)	VIO (mV max)	l _{IO} (nA max)	A _{vol} (V/V min)	VO ∉ (V _{pk} min)	。 R L { (kΩ)	≗V _{CC} ,V _{EE} (Vdc)		BWp (kHz typ)	SR (V/µs typ)	Case	Туре
-55 to +12	5°C Temp	erature Ra	nge								
0.5	5.0	200	50,000	10	2.0	±15	1.1	14	0.8	601,632	MC1558*†
0.5	5.0	200	50, 0 00	10	2.0	±15	1.0	10	0.5	601,606,632	MC1747
0 to +75° (C Temperat	ture Range		na sina di seri di seri di Seri di seri di seri Recompositi di seri di					ter inde		istaajid.
0.5	6.0	200	20,000	10	2.0	±15	1.1	14	0.8	601,626,632,646	MC1458*†
0.5	6.0	200	25,000	10	2.0	±15	1.0	10	0.5	601,606,632	MC1747C
0.7	10	300	20,000	9.0	2.0	±15	1.1	14	0.8	601,626,632,646	MC1458C

*Use MCC prefix for nonencapsulated chip.

tUse MCCF for nonencapsulated flip-chip.

NONCOMPENSATED

l _{IB} (μA max)	VIO (mV max)	40	A _{vol} (V/V min)	(Vpk min)	(kΩ)	V _{CC} , V _{EE} (Vdc)	(MHz typ)	BWp (kHz typ)	SR (V/µs typ)	Case	Туре
-55 to +12	5°C Temp	erature Ra	inge					and the second sec	10,10 (2,59) - 4 (0) - 40 (3,5 - 40) - 20 (3,5 - 40) - 20 (4,5 - 40) - 40 (4,5 - 40) - 40) - 40(4,5 - 40) - 40) - 40 (4,5 - 40) - 40) - 40) - 40(4,5 - 40) - 40) - 40) - 40(4,5 - 40) - 40) - 40(4,5 - 40) - 40) - 40(4,5 - 40) - 40) - 40(4,5 - 40) - 40) - 40(4,5 - 40) - 40) - 40) - 40(4,5 - 40) - 40) - 40) - 40(4,5 - 40) - 40) - 40) - 40(4,5 - 40) - 40) - 40) - 40(4,5 - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) - 40) -	and an an exploring the second s	
0.5 3.0	5.0 3.0	200 300	25,000 4,000	12 2.5	10 10	±15 ±6.0	1.0 1.0	3.0 40	0.25 0.013	632 602B,607,632	MC1537 MC1535
0 to +75°	0 to +75°C Temperature Range										
1.5 5.0	7.5 5.0	500 500	15,000 3,500	12 2.3	10 10	±15 ±6.0	1.0 1.0	3.0 40	0.25 0.013	632,646 602B,607,632	MC1437 MC1435

QUAD OPERATIONAL AMPLIFIERS

Internally Compensated

... for automotive applications

-40 to +85°C Temperature Range

lB μA max)	VIO (mV max)	IO (nA max)	Avol (V/V min)		🦻 RL 8 (kΩ)	V _{CC} , V _{EE} (Vdc)		BWp (kHz typ)	SR (V/μs typ)	Case	Туре
0.3	-	-	1,000	10	5.0	+15	4.0	20	0.6	646	MC3301
.for ind	ustrial appl	ications	enders hier and states in the first states and states in the first states and states in the first states in the	na hang spirotainan an tai		in monthly and the	erter at mean differences	and a second second second	men and, and high	Construct T., Borran T., Charana M., Barra M., Sana T., Dagan K., Kanana M., Kanana K., Kan Kanana K., Kanana K., Kana	and the second sec
to +75 ⁰	C Tempera	ture Rang	8	Contraction of the second seco	Contracting players and p provide a Contracting pro- dimension of the service pro- contracting of the service pro- contracting of the service pro-	میران کی در ۱۰ میا باقاد از ساعت میرونی میرود میرود میرود میرونی میرود ورونی مرکز و میرود میرود و میروانان او	and a second sec	An and a second s	¹¹ China Li, Jaka Ki, Yung Yu, Angoli, Yung Linnan, J. Sanger, Japan King Y. Kata J. Sanaraharan King J. Calababat Kata King J. Sanaraharan King J. Sanaraharan Kata King J. Sanaraharan King King King King King King King King King King King King King King King		
0.3	-	_	1,000	10	5.0	+15	5.0	20	0.6	646	MC3401
	0.3 .for ind to + 75⁰ 0.3	0.3 – .for industrial app to +75 ⁰ C Tempera 0.3 –	0.3 – – .for industrial applications to +75 ⁹ C Temperature Rang 0.3 – –	0.3 - - 1,000 for industrial applications - - - to +75°C Temperature Range - 1,000	0.3 - - 1,000 10 Arr industrial applications - - - - - - - - - - - - 1,000 10 -	0.3 - 1,000 10 5.0 .for industrial applications	0.3 - - 1,000 10 5.0 +15 Arr industrial applications - - 0.000 - <td>0.3 - - 1,000 10 5.0 +15 4.0 Arr industrial applications - 1,000 10 5.0 +15 5.0 0.3 - - 1,000 10 5.0 +15 5.0</td> <td>0.3 - - 1,000 10 5.0 +15 4.0 20 Arr industrial applications - - 1,000 10 5.0 +15 5.0 20 0.3 - - 1,000 10 5.0 +15 5.0 20</td> <td>0.3 - - 1,000 10 5.0 +15 4.0 20 0.6 Arr industrial applications - - 1,000 10 5.0 +15 5.0 20 0.6 3.3 - - 1,000 10 5.0 +15 5.0 20 0.6</td> <td>0.3 - - 1,000 10 5.0 +15 4.0 20 0.6 646 Afor industrial applications to +75°C Temperature Range 0.3 - - 1,000 10 5.0 +15 5.0 20 0.6 646</td>	0.3 - - 1,000 10 5.0 +15 4.0 Arr industrial applications - 1,000 10 5.0 +15 5.0 0.3 - - 1,000 10 5.0 +15 5.0	0.3 - - 1,000 10 5.0 +15 4.0 20 Arr industrial applications - - 1,000 10 5.0 +15 5.0 20 0.3 - - 1,000 10 5.0 +15 5.0 20	0.3 - - 1,000 10 5.0 +15 4.0 20 0.6 Arr industrial applications - - 1,000 10 5.0 +15 5.0 20 0.6 3.3 - - 1,000 10 5.0 +15 5.0 20 0.6	0.3 - - 1,000 10 5.0 +15 4.0 20 0.6 646 Afor industrial applications to +75°C Temperature Range 0.3 - - 1,000 10 5.0 +15 5.0 20 0.6 646

POWER DRIVERS

INTERNALLY COMPENSATED

^I iB (μΑ max)	VIO (mV max)	IO (nA max)	A _{vol} (V/V min)	VO (V _{pk} min)	@ RL8 (Ω)	V _{CC} , V _{EE} (Vdc)	BWp (kHz typ)	SR (V/μs typ)	Case	Comments	Туре
55 to +1 200	25°C Tem –	perature –	Range 900	12	300	±15	1500	75		High current gain (70 dB) op ampl power booster I _O = 300 mA max	MC1538
0 to +75° 300	C Temper –	ature Rar –	1 96 850	11	300	tinte and the second seco	1500	75	614	High current gain (70 dB) op ampl power booster, IO = 300 mA max	MC1438

INTEGRATED CIRCUITS

LINEAR

INTERFACE CIRCUITS

Interface circuits fit in the gray area between the linear and digital realms. Usually these IC's perform the necessary translation between an analog signal input and the required digital logic levels or vice versa. To aid in selection, the devices have been divided into five main categories: Sense Amplifiers, Drivers, D/A Converters, Receivers, and Comparators.

SENSE AMPLIFIERS

The sense amplifiers listed provided the necessary translation from the outputs of core or plated-wire memories to MTTL (unless otherwise noted) logic levels. Unless noted, all devices are designed to operate from ± 5.0 volt power supplies. The output of these sense amplifiers changes logic states when the differential input voltage exceeds a specified threshold level, regardless of input polarity.

MT 1975

AREA THE AND A PROPERTY OF A SAME AND AND

ORE MEMORY	Contracting Distance in the second seco						A second se	
		Thresh Volta (m V	je @	V _{ref}	Propagation Delay		Ту	pe
Fur	iction	min	max	(mV)	(ns max)	Case	-55 to +125°C	0 to +70°C
		11 36	19 44	15 40	55	620	-	MC7520
	mentary outputs, memory data register	8.0 33	22 47	15 40	55	620	_	MC7521
	Dual channel with open- collector output, high sink	11 36	19 44	15 40	45	620		MC7522
	current capability	8.0 33	22 47	15 40	45	620	-	MC7523
	Dual with independent	11 36	19 44	15 40	40	620	_	MC7524
	strobing	8.0 33	22 47	15 40	40	620	-	MC7525
		11 36	19 44	15 40	40	620, 648*	-	MC7528
	Same as MC7524-25 except amplifier test points included	10 35	20 45	15 40	40	620	MC5528	-
o		8.0 33	22 47	15 40	40	620, 648*	MC5529	MC7529
		11 36	19 44	15 40	40	620, 648*	_	MC7534
	Same as MC7524-25 except NAND outputs	10 35	20 45	15 40	40	620	MC5534	-
		8.0 33	22 47	15 40	40	620, 648*	MC5535	MC7535
		11 36	19 44	15 40	40	620, 648*	-	MC7538
	Same as MC7528-29 except NAND outputs	10 35	20 45	15 40	40	620	MC5538	-
		8.0 33	22 47	15 40	40	620, 648*	MC5539	MC7539

*Case 648 used with commercial-temperature-range devices only.

8

8

ģ

DC coupled, decoded input, 0.5 mV input offset, output strobe capability, +5.0 V, -6.0 V power supply useful with the MCM7001 NMOS memory.

ST ROBE CIRCUIT

	Thres Volt (m	tage @	V _{ref}	Propagation Delay		Ty	pe
Function	min	max	(mV)	(ns max)	Case	-55 to +125°C	0 to +75°
0.5µs cycle time, 20ns typ response time, ±6.0V power supply	14	20	-6.0V	30	602B, 606, 632	MC1540	MC1440
0.4μs cycle time, 1.5V common-mode inputs, 1.0mV typ input offset	14	20	-5.0V	30	607, 632	MC1541	MC144
Compatible with MECL, +5.0V, -5.2V power supplies, threshold insensitive to supply variations, complementary outputs	17	23	540	35	632	MC1543	-
ATED-WIRE MEMORIES							
Function		Vo	eshold Itage – typ)	Propagation Delay (ns – max)	Case	Ty -55 to +125°C	
AC-coupled, decoded input channel so wired-OR output capability output strobe capability.	ity,		1.0	25	620	MC1544	MC1444

MC1446

±1.4 (±4.0 max) 14 typ

620

DRIVERS

Several types of interface drivers are tabulated in this section: twisted-pair drivers for transmitting data over long lines, RS-232 drivers for interfacing modems and terminals, peripheral drivers for driving lamps, relays and memories, and MOS clock drivers for providing the required clock pulses to highly-capacitive loads.

TWISTED-PAIR LINE DRIVERS									
			IO(on) mA	IO(off)	tpLH/t Input to (PHL Output			Туре
		Compatibility	(min/max)	(µA – max)	(ns – t	typ)	Case	-55 to +125°	C 0 to +70°C
Type with inhib	MC 75110 Driver common it input	MTTL	6.5/15	100	9.0/5	9.0	620 648	-	MC3453
Dual Driver of inputs for pa driver applica	rty-line	MTTL	3.5/7.0 6.5/15	100 100	9.0/9 9.0/9		632, 646 632, 646	-	MC75109 MC75110
Differential Driver with p outputs		MDTL	±18/26	_	25/1	15	632	_	MC75113†
† 0 to +75°C Temperature Range RS-232 LINE DRIVER									
_		Vdc	& VOH & Vdc	Vcc	VEE	n	/tPHL 15		Type
Function Quad Line Driver	Compatibility	- 60	min +6.0	Vdc +9.0	-9.0		/ P /65*	Case 632	0 to +75°C MC1488
	MD12, W111	-9.0	+9.0	+13.2	-13.2	130	,		1101-000

* @ 3000 ohms, 15 pF

	Input	PRR (max) VCC/VEE C = 1000 pF [@] (volts)		C	Switching Times C = 1000 pF, ns-typ LH ^t TLH ^t PHL ^t THL			Temperature		
Function	Compatibility	C = 1000 pF	e (volts)	^t PLH	^t TLH	ΦΗL	^t THL	(°C)	Case	Туре
Dual MOS Clock Driver with Strobe										
	MDTL,MTTL	2.0 MHz	5.0/-20	75	75	50	50	-55 to +125	632	MC1585
Dual MOS clock Driver										
°[>°°			0/-20	12	17	7.5	20	-55 to +125	601 632	ммноо
⊶_>>>	MTTL	-	0/-20	12	17	7.5	20	0 to +85	601 626 632	ммноо:
ne			A de la companya de La companya de la comp		X Janjer	- Denis and some	Jan and State of State	and State State and the state of the state o	ng papinan dipané a ta	
		a Union of the West of the State of the Stat		and I control and open to		Congradue Official	0.1		an tree frank Solo	engen men en e

PERIPHERAL DRIVERS

			IO(on)	^t PLH ^{/t} PHL Input to Output		Ту	/pe
	Function	Compatibility	(mA – max)		Case	-55 to +125°C	0 to +70°C
	Dual Memory Driver with logic inputs, 24-volt output capability	MDTL,MTTL	600	25/25 (to source collectors) 20/20 (to sink outputs)	620, 648#	MC55325	MC75325
-15	Dual Peripheral Positive AND Driver, plus two noncommitted NPN output transistors	MDTL,MTTL	300*	21/16	632 646	_	MC75450
	Dual Peripheral Positive AND Driver with logic gate outputs internally connected to NPN output transistors	MDTL,MTTL	300*	17/18	626	_	MC75451

#Case 648 used with industrial-temperature-range devices only.

*Each transistor

			lO(on)		/tPHL o Output		Ту	pe
Fu	nction	Compatibi			- typ)	Case	-55 to +125°C	0 to +70°C
	Dual positive NANC driver with logic gat outputs internally con nected to NPN output transistors	e pn· MDTL, MT	⊤∟ 300*	18/	16	626	~	MC 75452
	Dual positive OR D with logic gate outp internally connecte NPN output transis	d to MDTL, MT	TL 300*	12/	'17	626		MC 75453
	Dual positive NOR D with logic gate outpu internally connected NPN output transiste	t MDTL, MT	TTL 300*	25,	/19	626	_	MC 75454
ach Transistor	Y DRIVERS							
Function	Sink Current (mA-max)	Source Current (mA-max)	tPLH/tPHL Input to Collecto	Output	Collector Vo (V - ma		Case	Type 0 to + 70 ⁰

NUS I	Function	Sink Current (mA-max)	Source Current (mA-max)	tPLH/tPHL Input to Collector Output (ns - typ)	Collector Voitage (V - max)	Case	Туре 0 to + 70 ⁰ С
A WALL	Quad Segment Driver	50	50	40 / 20	10	632 646	MC75491
Safety Contraction	Hex Digit Driver	250		80 / 40	10	632 646	MC75492

The low-cost D/A converters described here find wide usage in communications, control, and instrumentation

systems. They provide a current output which is the product of a digital word and an analog reference voltage.

		Error	10	ts	TCIO		Ту	De
Function	Compatibility	(% – max)	(mA – typ)	(ns – typ)	(ppm/ ^O C – typ)	Case	-55 to +125°C	0 to +70 ⁰ 0
6-Bit Multiplying Digital-to-Analog Converters	MDTL, MTTL	±0.78	2.0	150	-	632	MC1506	MC1406
8-Bit Multiplying	MDTL,	±0.19	2.0	300	-20	620	MC1508L8	MC1408L
Digital-to-Analog	MTTL,	±0.39	2.0	200	-20	620	-	MC1408L
Converters	CMOS	±0.78	2.0	200	-20	620	-	MC1408L

A/D CONVERTERS

D/A CONVERTERS

This analog-digital control circuit is useful in high-speed tracking A/D converters, window comparators, and peak detecting sample and hold circuits.

	ANALOG DIGITAL	CONTROL CIRCL	ЛІТ				
NUMBER OF	Amplifier Slew Rate $A_V = \pm 1$ $(V/\mu s - typ)$	Amplifier Settling Time A _V = ±1 (μs - typ)	Comparator Threshold V _{ref} = 40 mV (mV — min/max)	Comparator Bias Current (μΑ – max)	Case	Temperature (^o C)	Туре
	20	0.8	±36/±44	1.5	620	-55 to +125	MC1507
	20	0.8	±30/±50	2.5	620	0 to +70	MC1407

RECEIVERS Mating with the driver types listed in the previous section are the receivers tabulated in this section:

twisted-pair receivers for computer applications, and RS-232 receivers to interface with similar drivers.

Not all a second and a second and a second a s
and the second
TWISTED PAIR LINE RECEIVERS
I WISIED TAIN LINE RECEIVERS

				Input	Input Common	tPLH/tPHL		Ту	
	Function		Compatibility	Threshold (mV – typ)	Mode Range (V – min)	Input to Output (ns – typ)	Case	-55 to +125°C	0 to +70°C
	Quad Receiv with commo 3-state strob active pullu (Quad MC75	n e input, outputs	MTTL	±25	±3.0	19/19	620 648		MC3450
	Quad Receiv with commo strobe input open collect outputs (Quad MC75	n or	MTTL	±25	±3.0	19/19	620 648	_	MC3452
چې		Active Pullup Outputs	MTTL	±25	±3.0	17/17	632, 646#	MC55107	MC7510
	Dual Line Receiver with strobe inputs	Open Collector Outputs	MTTL	±25	±3.0	19/19	632, 646#	MC55108	MC7510
	Dual Single Receiver w common re input	ith	MTTL	±100	5.5	22/22	626	-	MC7514

#Case 646 used with industrial temperature range devices only.

RS-232 LINE RECEIVERS

Function	Compatibility	Input Turn-On Threshold (Vdc – max)	Input Turn-Off Threshold (Vdc — max)	Input Hysteresis (mV – typ)	tpLH ^{/t} PHL (ns — typ)	Case	Type 0 to +75°C
Quad Line Receiver	MDTL,MTTL	1.5	1.25	250	25/25	632	MC1489
	MDTL,MTTL	2.25	1.25	1150	25/25	632	MC1489A

COMPARATORS

A comparator provides a logical output in response to the polarity of the differential voltage applied to the inputs of the device. High-speed, high-input-impedance/

precision, and low-cost quad-type comparators are tabulated to aid in the selection of the proper device type for any given circuit application.

A _{vol} (V/V min)	V _{IO} (mVdc max)	l _{IB} (μAdc max)	V((V(V((Ve		IOs ax (mAdc min)	tp (ns typ)	Case	Туре	Features	
	°C Temperatu				1			(113 () [27		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
200,000 typ	3.0	0.01	-	-	-	1.5	-	200	601,606,632	MLM111	High input impedance	
1,250	2.0	20	2.5	4.0	-1.0	0	2.0	40	601,606,632	MC1710* **	Output impedance = 200 ohms	
1,250	2.0	20	2.5	4.0	-1.0	0	2.8	40	607,632	MC1514	Dual, strobe capabili	
750	3.5	75	2.5	5.0	-1.0	0	0.5	40	603,606, 632	MC1711*	Dual with outputs wired OR, strobe capability	
25 to +85°	C Temperatur	e Range										
200,000 typ	3.0 0.01		-	-	- 1.5		-	200	601,606,632	MLM211	High input impedance	
to +75°C	Temperature	Range										
200,000 typ	7.5	0.05	-	-		1.5	-	200	601,606, 626,632	MLM311	High input impedance	
1,000	5.0	25	2.5	4.0	-1.0	0	1.6	40	601,606, 632,646	MC1710C*	Output impedance = 200 ohms	
1,000	5.0	25	2.5	4.0	-1.0	0	1.6	40	607,632,646	MC1414	Dual, strobe capabi	
700	5.0	100	2.5 5.0		-1.0 0		0.5	40	603,606, 632,646	MC1711C*	IC1711C* Dual with outputs wired OR strobe capability	
	PARATOR											
VIO ^I IB (mVdc max) (µAdc max)			V _{OL} Vdc max		Dutput Lo Curre (µAma	nt	I _{Os} (mAdc ty	p)	VIDR (Vdc max)	Case	Туре	
40 to +85 ⁰	C Temperatu	re Range										
20	0	.5	0.4		10		5.0		±V _{CC}	646	MC3302	
						Feat	ures					

*Use MCC prefix for nonencapsulated chip.

**Use MCBC prefix for nonencapsulated beam-lead device; use MCB prefix for beam-lead device in ceramic flat package.

DEFINITIONS

- Avol Open-Loop Voltage Gain VID Differential Voltage Range Input Offset Voltage VIO Iв
 - Input Bias Current

Positive Output Voltage ۷он Negative Output Voltage VOL Output Sink Current lOs tp Propagation Delay Time

3

N. I. STATION

LINEAR

INTEGRATED CIRCUITS

HIGH-FREQUENCY AMPLIFIERS

Motorola's high-frequency amplifiers simplify the design of receivers and signal processors. Many offer

AGC capability or several gain options to provide extra design flexibility.

							Gp					Туре	
Bandwidth (MHz)	VOS (Vp-p)		in kHz)		o kHz)	Avs (dB)	@ 60 MHz (dB)	Diff. Input and Output	AGC	V _{CC} , V _{EE} (Vdc)	Case	-55 to +125°C	0 to +75°C
dc to 40	4.5	6.0	20	35	20	90 (fixed)	-	Yes	No	±6.0	601	MC1510	MC1410
dc to 75	2.5	10	50	25	50	18 (fixed)	-	Yes	Yes	±5.0	602A, 607, 632	MC1545	MC1445
22 min	6.0	1.8	1.0 M	100 k	1.0 M	26 (AGC = 0)	25	No	Yes	+6.0	602B, 606	MC1550	-
40 @ A _v = 34 dB 35 @ A _v = 40 dB	4.2	10	100	16	100	30 - 40 (fixed)	-	No	No	+6.0	602B	MC1552	-
35 @ A _v = 46 dB 15 @ A _v = 52 dB	4.2	10	100	16	100	46 - 52 (fixed)	-	No	No	+6.0	602B	MC 1553	-
00 @ A _v = 4.0 dB 60 @ A _v = 25 dB	7.0	3.0	1.0 M	100 k	1.0 M	44 (AGC = 0)	45	Yes	Yes	+12	601	MC1590	-
40 @ A _v = 52 dB 90 @ A _v = 40 dB 20 @ A _v = 20 dB	4.0	4.0 30 250	1.0 1.0 1.0	20	1.0	52 40 20	-	Yes	No	±6.0	603 632	MC1733	MC1733

HIGH-FREQUENCY AMPLIFIERS

INTEGRATED CIRCUITS

LINEAR

REGULATORS

Motorola offers a broad line of voltage regulators ranging from low-cost "Functional Circuits" to high-precision units. Regulators for positive and negative voltages are available as well as a unique floating regulator, type MC1566L, whose maximum output voltage and current are limited only by the external pass transistor.

POSITIVE VOLTAGE REGULATORS

	/O /dc max	l _O (mAdc max)		-VO dc) max		in dc) max	l _{IB} (mAdc max)	Peg _{in} %VO/Vin (max)	RegL (%VO max)		PD max) T _A = +25°C	Case	Туре
-55 to	+125	C Temperat	uro Ba	nae									
4.5	40	20	3.0	30	8.5	50	2.0	0.06	0.05 mV	-	0.68	601	MLM105
2.5	37	200 500	2.7	40	8.5	40	9.0	0.015	0.13 0.05	1.8 17.5	0.68 3.0	602A 614	MC1569*
2.5	37	200 500	2.7	40	8.5	40	9.0	0.015	0.13 0.05	1.8 17.5	0.68 3.0	602A 614	MC1561
2.5	17	200 500	2.7	20	8.5	20	9.0	0.015	0.13 0.05	1.8 12	0.68 3.0	602A 614	MC1560
2.0	37	150	3.0	38	9.5	40	3.5	0.030	0.15	-	0.8	603,606, 632,607**	MC1723* *
-25 to) +85°(C Temperatu	re Ran	ge									
4.5	40	20	3.0	30	8.5	50	2.0	0.06	0.05 mV	-	0.68	601	MLM205
-10 to	+ 75 °(C Temperatu	re Ran 3.0	ge _	9.0	35	-	0.03	0.2	-	1.0	206A	MFC4060A
4.6	32	200	3.0	_	9.0	35		0.03	0.2	-	1.0	643A	MFC6030A
4.6	32	200	3.0	_	9.0	35		0.06	0.4	_	1.0	206A	MFC4062A
4.6	32	200	3.0		9.0	35	-	0.06	0.4	_	1.0	643A	MFC6032/
4.6	17	200	3.0	_	9.0	20	_	0.03	0.2	-	1.0	206A	MFC4063/
4.6	17	200	3.0		9.0	20		0.03	0.2	-	1.0	643A	MFC60334
4.6	17	200	3.0		9.0	20	-	0.06	0.4	-	1.0	206A	MFC4064A
4.6	17	200	3.0	-	9.0	20	-	0.06	0.4	-	1.0	643A	MFC60344
0 to +	-70°C	Temperature	Range										- AND THE REAL PROPERTY OF
4.5	30	20	3.0	30	8.5	40	2.0	0.06	0.05 mV	-	0.68	601	MLM305
2.5	32	200 500	3.0	35	9.0	35	12	0.030	0.13 0.05	1.8 17.5	0.68 3.0	602A 614	MC1469*
2.5	32	200 500	3.0	35	9.0	35	12	0.030	0.13 0.05	1.8 17.5	0.68 3.0	602A 614	MC1461
2.5	17	200 500	3.0	20	9.0	20	12	0.030	0.13 0.05	1.8 12	0.68 3.0	602A 614	MC1460
2.0	37	150	3.0	38	9.5	40	4.0	0.030	0.20	-	0.8	603,606, 632	MC1723C*

*Also available as nonencapsulated chip. use MCC prefix.

**Also available as nonencapsulated beam-lead device; use MCBC prefix, use MCB prefix for device in ceramic flat package.

REGULATORS (Continued)

V _O (Vdc) IO	V _{in} -V _O (Vdc)		V _{in} (Vdc)		IIB	Reg _{in}	Reg		D max)		1		
min	max	(mAdc max)	min	max	min	max	(mAdc max)	(mV max)	(mV max)	$T_C = +25^{\circ}C$	T _A = +25 ^o C	Case	Туре
			1.1.1.1	, da se la			an a the s	27.5.280					
55 to	+150	°C Junction	Temp	erature	Rang	e				المحرية الجرائية البيرة. المحمد المحمد المحمد الم			
4.7	5.3	1000 200	2.0	30	7.0	35	10	50	100 50	20 2.0	3.5 0.8	11 79	MLM10
	4.05	°						en e					
25 to	+125	°C Junction	Tempo	erature	Rang	e	and the second second	Station and the		<u>an an a</u>	a a la ciana a la ciana a la ciana de l	and the second sec	en alter en alt
4.7	5.3	1000	2.0	30	7.0	35	10	50	100	20	3.5	11	MLM20
- control -		200							50	2.0	0.8	79	
								and a second sec					
) to +	-125°C	Junction Te	empera	ature F	lange	11997 A. 27			A STATE OF THE STA			Contract of the second second	
4.8	5.2	1000	2.0	30	7.0	35	10	50	100	20	3.5	11	MLM30
		200							50	2.0	0.8	79	
4.8	5.2	750	2.0	30	7.0	35	8.0	100	100	7.5	2.0	199-04	MC7705
5.75	6.25	750	2.0	29	8.0	35	8.0	120	120	7.5	2.0	199-04	MC7706
7.7	8.3	750	2.5	27	10.5	35	8.0	160	160	7.5	2.0	199-04	MC7708
11.5	12.5	750	2.5	23	14.5	35	8.0	240	240	7.5	2.0	199-04	MC7712
14.4	15.6	750	2.5	20	17.5	35	8.0	300	300	7.5	2.0	199-04	MC7715
17.3	18.7	500	3.0	17	21	35	8.0	360	360	7.5	2.0	199-04	MC7718
19.2	20.8	500	3.0	20	23	40	8.0	400	400	7.5	2.0	199-04	MC7720
23	25	500	3.0	16	27	40	8.0	480	480	7.5	2.0	199-04	MC7724
4.8	5.2	1500	2.0	30	7.0	35	8.0	100	100	15	2.0 2.5	199-04	MC7805
	-		+	 							2.0	11 199-04	
5.75	6.25	1500	2.0	29	8.0	35	8.0	120	120	15	2.5	199-04	MC7806
			1								2.0	199-04	+
7.7	8.3	1500	2.5	27	10.5	35	8.0	160	160	15	2.5	11	MC7808
			+		ł						2.0	199-04	+
11.5	12.5	1500	2.5	23	14.5	35	8.0	240	240	15	2.5	11	MC7812
	15.0	1500	1	-	+		t				2.0	199-04	+
14.4	15.6	1500	2.5	20	17.5	35	8.0	300	300	15	2.5	11	MC7815
17.0	10.7	1000	1	47		05				45	2.0	199-04	1
17.3	18.7	1000	3.0	17	21	35	8.0	360	360	15	2.5	11	MC 78 18
	25	1000	1	10	07	10		100	400	45	2.0	199-04	+
23		1000	3.0	1 16	27	40	8.0	480	480	15	2.5	11	MC7824

TRACKING VOLTAGE REGULATORS

V0 (Vi		10		V _{in} (Vdc)		liB	Reg _{in} %Vo/Vin	Reg	Pi (Win			
min	max	(mAdc max)	min	min	max	(mAdc max)	(max)	(%V _O max)	T _C = 25°C	T _A = 25°C	Case	Туре
i5 to	+125°C	Temperature	e Range					And			and a set of the set o	
14.8	±15.2	100 [†]	2.0	±17.2	±30	+4.0,-3.0	0.006	0.07	2.1 2.5 9.0	0.8 1.0 2.4	603 632 614	MC1568
to +7	5°C Te	mperature R	ange				States of the state of the s					
14.5	±15.5	100†	2.0	±17.5	±30	+4.03.0	0.01	0.07	2.1	0.8	603 632	MC1468
-14.0	-10.0	100.	2.0	-17.5	-30	+4.0,-3.0	0.01	0.07	2.5 9.0	2.4	614	10101400

t Preset Voltage Range; range is adjustable by adding external resistors from ± 8.0 to ± 20 Vdc.

۷ (Vd		10		-VO dc)	(V	in dc)	Чв	Reg _{in} %Vo/Vin	Reg		D max)		
min	max	(mAdc max)	min	max	min	max	(mAdc max)	(max)	(%Vo max)	T _C = 25°C	T _A = +25°C	Case	Туре
55 to	+125	°C Temperati	ure Ra	nge									
-3.6	37	200 500	-2.7	35	-8.5	-40	11	0.015	0.13 0.05	1.8 9.0	0.68 2.4	602A 614	MC1563*
-0.015	-40	20	2.0	50	-8.0	-50	5.0	0.1	0.05	1.8	0.68	603	MLM104
-25 to	+85°	C Temperatu	re Ran	ge									
-0.015	-40	20	2.0	50	·8.0	-50	5.0	. 0.1	0.05	1.8	0.68	603	MLM204
					and range in a state of the second second second second second second second second second second								
0 to +3	70°C	Temperature	Range	· · · · · ·									
-3.8	-32	200 500	-3.0	40	-9.0	-35	14	0.030	0.13 0.05	1.8 9.0	0.68 2.4	602A 614	MC1463*
-0.035	-30	20	2.0	40	-8.0	-40	5.0	0.1	0.05	1.8.	0.68	603	MLM304

*Also available as nonencapsulated chip, use MCC prefix.

FIXED OUTPUT NEGATIVE VOLTAGE REGULATORS

	′O dc)	10		l·V⊖∣ dc)		ˈin dc)	IB	Regin	RegL		D max)		
min	max	(mAdc max)	min	max	min	max	(mAdc max)	(mV max)	(mV max)	$T_{C} = +25^{\circ}C$	T _A = +25 ^o C	Case	Туре
0 to -	+125°(C Junction Te	mper	ature	Range		And the second s						
-1.92	-2.08	1500	5.0	33	-7.2	- 35	8.0	40	120	15	2.0 2.5	199-04 11	MC79020
-4.8	-5.2	1500	2.0	30	-7.0	-35	8.0	100	100	15	2.0 2.5	199-04 11	MC7905C
-5.0	-5.4	1500	2.0	29.8	-7.0	-35	8.0	105	105	15	2.0 2.5	199-04 11	MC7905.2
-5.75	-6.25	1500	2.0	29	-8.0	-35	8.0	120	120	15	2.0 2.5	199-04 11	MC7906C
-7.7	-8.3	1500	2.5	27	-10.5	-35	8.0	160	160	15	2.0 2.5	199-04 11	MC7908C
-11.5	-12.5	1500	2.5	23	-14.5	-35	8.0	240	240	15	2.0 2.5	199-04 11	MC79120
-14.4	-15.6	1500	2.5	20	-17.5	-35	8.0	300	300	15	2.0 2.5	199-04 11	MC79150
17.3	-18.7	1000	3.0	17	-21	-35	8.0	360	360	15	2.0 2.5	199-04 11	MC 79180
-23	-25	1000	3.0	16	-27	-40	8.0	480	480	15	2.0 2.5	199-04 11	MC79240

SPECIAL-PURPOSE REGULATORS

	vo	Regin	Reg	Current	PD			
min	max	(max)	(max)	Regulation	(W max)	Case	Туре	Features
55 to +1	25°C Tem	perature Range						
0	1000*	0.01% +1mV	0.01% +1mV	0.1% +1mA	0.300	632	MC1566	A floating regulator, can be used as a voltage controlled current source.
) to +75	°C Temper	ature Range						
0	1000*	0.03% +3mV	0.03% +3mV	0.02% +1mA	0.360	632	MC1466	A floating regulator, can be used as a voltage controlled current source.

*Limited only by the characteristics of the external series pass transistor.

LINEAR

INTEGRATED CIRCUITS

LINEAR

SPECIAL-PURPOSE CIRCUITS

The linear-integrated-circuits listed in this section were developed by Motorola for the system design engineer to fill special-purpose requirements as indicated by the subheadings. Temperature ranges and package availability are also tailored to provide versatility.

MULTIPLIERS		 A Share and A Sha				
	Linearity Ir Error			Туре		
Function	(typ)	Range (Vdc min)	Case	-55 to +125°C	0 to +70°C	
A four-quadrant multiplier designed to operate with ±15-volt	±0.3%	±10	620	MC1594		
supplies; has internal level-shift circuitry and voltage regulator.	±0.5%	±10	620	-	MC1494	
Applications include multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/de-	X Input = 0.5% Y Input = 1.0%	±10	632	MC1595*		
modulator, electronic gain control.	X Input = 1.0% Y Input = 2.0%	±10	632	-	MC1495*	

*Also available as a nonencapsulated chip, use MCC prefix.

BALANCED MODULATOR/DEMODULATOR

			rier ression (MHz)	Common-Mode Rejection		Туре	
4-4444 4-1544 4-1544	Function	(typ)		(dB typ)	Case	-55 to +125°C	0 to +75°C
	Balanced modulator/demodulator designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier).	65 50	0.5 10	85	602A, 632	MC1596	MC1496

LOW-FREQUENCY CIRCUITS

Principality of a second state

		Output Power	Voltage Gain – typ	Total Harmonic Distortion		Туре	
23	Function	(W typ)	(V/V typ)	(% typ)	Case	-55 to +125°C	0 to +70°C
A powe	er amplifier device capable of single or split supply operation.	1.0	10, 18, 36	0.4	602B	MC1554	MC1454

POWER-CONTROL CIRCUITS			
Function	Temperature	Case	Туре
Zero voltage switch for use in ac power switching with output capable of triggering triacs.	-10 to +75°C	644A	MFC8070

TIMING CIRCUIT

	_	Supply Voltage VCC	Initial Timing Error V _{CC} = 5 & 15 V,	V _{OL} V _{CC} = 15 V I _{sink} = 50 mA	V <mark>ОН</mark> V _{CC} = 15 V I _{source} = 100 mA		Ту	
545.54 -9765 16796	Function	(Vdc – max)	C = 0.1 μF (%-typ)	(Vdc – max)	(Vdc – min)	Case	-55 to +125 ⁰ C	0 to +75 ⁰ C
	Wide range adjustable timers	16	1.0	0.75	12.75	601, 626	-	MC1455
		18	0.5	0.5	13	601	MC1555	-

LINEAR

INTEGRATED CIRCUITS

LINEAR

CONSUMER APPLICATION SELECTOR GUIDE

...reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. The tabulation contains data for a large number of components designed principally for entertainment product applications. It is arranged to simplify first-order of linear integrated circuit device lineups to satisfy primary functions for Television, Audio, Radio, Automotive and Organ applications.

ELEVISION CIRCU	2113	And the second	
SOUND			
Function	Features	Case	Туре
Sound IF, Detector, Limiter, Audio Preamplifier	80 μV, 3 dB Limiting Sensitivity, 3.5 V(RMS) Output, Sufficient for Single Transistor Output Stage	646,647	MC1351
Sound IF Detector	Interchangeable with ULN2111A	646,647	MC1357
Sound IF Detector, DC Volume Control, Preamplifier	Excellent AMR, Interchangeable with CA3065	646,647	MC1358
VIDEO			
1st and 2nd Video IF Amplifier	IF Gain @ 45 MHz – 60 dB typ AGC Range – 70 dB min	626	MC1349
	IF Gain @ 45 MHz – 46 dB typ, AGC Range – 60 dB min	626	MC1350
1st and 2nd Video IF, AGC Keyer and Amplifier	IF Gain @ 45 MHz – 53 dB typ, AGC Range – 65 dB min "Forward AGC" Provided for Tuner	646	MC1352
	Same as MC1352, with Opposite AGC for Tuner	646	MC1353
3rd IF and Video Detector	Low-Level Detection, Low Harmonic Generation, Reduced Circuit Cost and Complexity Reduced Shielding	626	MC1330
3rd IF, Video Detector, Sound IF Detector, and Sync Separator	Low-Level Detection, Separate Sound Detector, Differential Inputs	646	MC1331
AGC Keyer, AGC Amplifier, Noise Gate, Sync Separator	High-Quality Noise Gate, One IF AGC Output and Two Tuner AGC Outputs, Adjustable AGC Delay	646	MC1344
Automatic Fine Tuning	High Gain AFT System, Interchangeable with CA3064	646 686	MC1364
CHROMA	and the second		
Chroma IF Amplifier and Subcarrier System	Includes Complete Chroma IF, AGC, dc Gain and Tint Controls, Injection Locked Oscillator, Low Peripheral Parts Count	646	MC1398
Chroma Subcarrier System	Interchangeable with CA3070, APC Chroma Reference System	648	MC1370
Chroma IF Amplifier	Interchangeable with CA3071, Automatic and Manual Gain Control	646	MC1371
Dual Chroma Demodulators	Industry Standard Demodulator, Low Differential Output dc Drift	603 646, 647	MC1328
	Same as MC1328 with short-circuit protected outputs, and improved dc tracking and temp- erature coefficients on outputs.	646	MC1329
	Similar to MC1328 but with Luminance and Blanking Inputs, Internal Matrix Provides RGB Outputs	646,647	MC1326
	Same as MC1326 with short-circuit protected outputs, and improved dc tracking and tempera- ture coefficients on outputs.	646	MC1324
	Dual Doubly Balanced Demodulator with RGB Output Matrix and PAL Switch	646,647	MC132
DEFLECTION			
Horizontal Processor	Includes Phase-Detector, Oscillator and Predriver;	626	MC139

CONSUMER APPLICATION SELECTOR GUIDE (Continued)

PREAMPLIFIERS											
Function		V _{CC} (Vdc – max)	(d	A _{vol} Bmin)	TH((% ty		Z _c (Ohms		Ca	ise	Туре
Dual Preamplifier Dual Low-Noise Preamplifier Low-Noise Preamplifier		±15 16 33		80 63 80	0.1 0.1 0.1		10 10 10	0	63 64 64	46	MC1303 MC1339 MFC8040
DRIVERS											
Function		VCC dc – max)		Current mA)	<u></u>	A _{vol} (dB)		Case		Cardinal Post No.	Туре
Class A Audio Driver Class B Audio Drivers		18 35 20 45 25	150 150 150) min) peak) peak) peak) max		42 min 89 typ 87 typ 90 typ		206A 644A 644A 644A 646		MF MF	FC4050 C8020A C8021A C8022A C8022A IC1385
POWER AMPLIFIERS											
Function	P _O (Watts)	V _C (Vdc)		e _{in} ∮rated PO nV – max)		P _D (– max)		RL Dhms)	Са	ise	Туре
Audio Power Amplifiers	0.5 0.25 1.0	12 12 20	2	3.0 3.0 100		4.0 3.5 5.0		8.0 16 16	20	26 6A 3A	MC1306 MFC4000 MFC6070
ADIO CIRCUI		Gain	3 dB Limi	iting	AMB	Recov Audio C	utput	Powe	- -		
			3 dB Limi @ 10.7 N (mV (RMS)	iting 1Hz	AMR (dB – typ)		utput kHz	Powe Suppi (Volts –	r Y	Case	Туре
IF AMPLIFIERS	tector	Gain @ 10.7 MHz	@ 10.7 N	iting IHz Ityp)		Audio C ∆f = 75	utput kHz MS)	Suppl	r Y	Case 626 646,647 646,647 206A 643A 646	Туре МС138 МС138 МГС401 МГС401 МГС60 МС133
Function Function IF Amplifier Limiting FM-IF Amplifier Limiting IF Ampl/Quadrature De IF Amplifier IF Amplifier, Nonsaturating Lim IF Amplifier, Limiter, Detector,	tector	Gain @ 10.7 MHz (dB - typ) 58 - 53 42 40	@ 10.7 M (mV(RMS) - 0.175 0.600 0.4 60	iting IHz Ityp)	(dB typ) - 60 45 - 50	Audio C Δf = 75 (mV(F) 	utput kHz MS)	Suppl (Volts – 18 18 18 16 18 20	r Y	626 646,647 646,647 206A 643A	MC13 MC13 MC13 MFC40 MFC60
Function Function IF Amplifier Limiting FM-IF Amplifier Limiting IF Ampl/Quadrature De IF Amplifier IF Amplifier, Nonsaturating Lim IF Amplifier, Limiter, Detector, Audio Preamplifier	tector iter	Gain @ 10.7 MHz (dB - typ) 58 - 53 42 40	@ 10.7 M (mV(RMS) - 0.175 0.600 0.4 60	titing HIZ typ) Stereo Lar	(dB typ) - 60 45 - 50	Audio C Δf = 75 (mV(F 	utput kHz MS)	Suppl (Volts	r Y	626 646,647 646,647 206A 643A	MC139 MC139 MC139 MFC401 MFC60
Function Function IF Amplifier Limiting FM-IF Amplifier Limiting IF Ampl/Quadrature De IF Amplifier, Nonsaturating Lim IF Amplifier, Limiter, Detector, Audio Preamplifier DECODERS	tector iter	Gain © 10.7 MHz (dB - typ) 58 - 53 42 40 21 Channel peration	© 10.7 M (mV (RMS) 0.175 0.600 0.4 60 0.25 THD	titing HIZ typ) Stereo Lar	(dB - typ) - 60 45 - 50 55 - - - - - - - - - - - - - - -	Audio C Δf = 7ξ (mV/F 699 481 500 629 481 500 629 629 629 629 629 629 629 629	Featu udio M udio M udio M uless Op	Suppl (Volts 18 18 18 20 16 18 20 16 18 20 16 10 16 10 16 10 10 10 10 10 10 10 10 10 10 10 10 10	r Y	626 646,647 646,647 206A 643A 646	МС13 МС13 МГC30 МFC40 МГС60 МС13 Туре МС130 МС130 МС130
Function Function IF Amplifier Limiting FM-IF Amplifier Limiting IF Ampl/Quadrature De IF Amplifier IF Amplifier, Nonsaturating Lim IF Amplifier, Limiter, Detector, Audio Preamplifier DECODERS Function	tector iter	Gain @ 10.7 MHz (dB – typ) 58 - 53 42 40 21 Channel paration B – typ) 45 45 45 40 40	© 10,7 M (mV(RMS) 0.600 0.4 60 0.25 THD (% - typ) 0.5 0.5 0.5 0.5 0.3	titing HIZ typ) Stereo Lar	(dB - typ) - 60 45 - 50 55 - - - - - - - - - - - - -	Audio C Δf = 75 (mV(R 50) 621 500 622 500 600 600 600 600 600 600 600	reature Feature udio M udio M udio M udio M udio K udio	Suppl (Volts 18 18 18 20 16 18 20 16 18 20 16 10 16 10 16 10 10 10 10 10 10 10 10 10 10 10 10 10	r Y	626 646,647 646,647 206A 643A 646 646 646 646 646 646 646	MC13 MC13 MC13 MFC401 MFC60 MC13

Function	V _{CC} Range (Vdc)	A _{vol} (V/mV – typ)	l _{IB} (μA – max)	Unity Gain Bandwidth (MHz – typ)	R _{in} (MegΩtyp)	Case	Туре
Quad Operational Amplifier	4.0 to 28	2.0	0.3	4.0	1.0	646	MC3301
COMPAGATOD							a second and the second
COMPARATOR					and the second		Standing of the second second
Function	VCC Range (Vdc)	V _{IDR} (Vdc)	l _{1B} (μA-max)	Output Leakage Current (µA-max)	Sink Current	Case	Туре

CONSUMER APPLICATION SELECTOR GUIDE (Continued)

ORGAN CIRCU	ITS					
Function	F	V _{CC} Range (Vdc)	fTog (MHz – typ)	V _{OH} (Vdc – min)	Case	Туре
Toggle Flip-Flop	6.	0 to 16	3.0	15.5	206A	MFC4040
Dual Toggle Flip-Flop	6.	0 to 16	3.0	15.5	643A	MFC6020
внутнм						
Dual Toggle Flip-Flop with Reset	6.	0 to 16	3.0	15.5	643A	MFC6050
ATTENUATOR				na servizione en estatuare 1 de la constanta de la constanta 1 de la constanta de la constanta de la constanta de la constanta de la const		
Function	V _{CC} Range (Vdc)	THD (% – typ)	A _V (dB – typ)	Attenuation Range (dB — typ)	Case	Туре
Electronic Attenuator	9.0 to 18	0.6	13	90	643A	MFC6040

INTEGRATED CIRCUITS PREVIEWS

Preview of Coming Linear Devices

INDUSTRIAL PRODUCTS

Linear ICs have traditionally found wide application in the diverse Industrial market place. Numerous types of op amps, voltage regulators, analog multipliers and timers fill important roles in process control, instrumentation, and signal processing functions. The devices previewed below complement an already substantial lineup of Motorola Industrial products.

MC3503 MC3403 Quad Operational Amplifiers

The MC3503/3403 is a quad, true differentialinput operational amplifier designed for either single or split power supply $(\pm 15 \text{ V})$ operation.

The four internally-compensated amplifiers within a package draw a total supply current of only 2.5 mA maximum – independent of supply voltages. When the device is operated with split supplies, most specifications equal or exceed comparable parameters for the popular MC1741.

FEATURES:

- Wide supply voltage range: $3.0 V \le V \le 36 V \text{ or}$ $|\pm 1.5 V| \le V \le |\pm 18 V|$
- Low power drain: 2.5 mA maximum for all four amplifiers
- Internally compensated
- Low bias currents: 200 nA maximum

MC3570 High-Slew Operational Amplifier

The MC3570G is intended for applications requiring optimum speed. It has a typical unity gain slew rate of 100 V/ μ s with a 30 pF load. Power bandwidth is an impressive 1.5 MHz, and unity gain crossover frequency is at 15 MHz. The units are internally compensated for unity gain stability with 30^o of phase margin.

High-speed signal processing, A/D and D/A conversion, and high-frequency instrumentation are just three examples of areas which can make use of this high-speed monolithic operational amplifier.

- High slew rate: $100 \text{ V}/\mu \text{s}$
- Power bandwidth = 1.5 MHz
- Unity gain crossover at 15 MHz

LINEAR-DIGITAL INTERFACE PRODUCTS

The need to span the gap between analog information and digital processing is becoming increasingly prevalent. In fact, a whole family of linear (analog)/digital interface devices has arisen in the past few years. This category is highlighted at Motorola by a number of new monolithic D/A and A/D converters. Several of the newest elements in this rapidly expanding field are the topics of the following paragraphs.

MC3537 Hex Unified Bus Receiver MC3538 Quad Unified Bus Transceiver

Where bus-organized data transmission systems are employed, the MC3537 and MC3538 can be efficiently utilized to solve interface problems. The MC3537 contains six bus receivers, while the MC3538 contains four drivers and four receivers with each driver-receiver pair sharing common input-output pins.

Both types incorporate hysteresis in the receivers to permit excellent noise immunity, and are optimized for bus rise and fall times less than $10 \ \mu s$.

FEATURES:

- Hysteresis of 1.0 V provided in receivers
- High receiver noise immunity: 2.0 V typical
 Receiver input threshold voltage insensitive to
- temperature changes
 MTTL-compatible logic levels
- Equivalent to DM7837 and DM7838 respectively

MC1505 Digital Voltmeter Subsystem (A/D Converter)

The MC1505 is the analog front-end portion of either a $4\frac{1}{2}$ or $3\frac{1}{2}$ digit DVM. It is designed for use with the MC14435 McMOS logic subsystem to produce the complete $3\frac{1}{2}$ digit DVM function (excluding display). The MC1505 can also be used alone as a general purpose A/D converter.

The MC1505 uses the proven dual ramp A/D conversion technique. The subsystem consists of an on-chip voltage reference, a pair of voltage/current converters, an integrator, a current switch, a comparator, and associated control and calibration circuitry. The device requires only one capacitor and two potentiometers for operation.

FEATURES:

- Accuracies to 13 bits
- Single power supply of +5.0 to +18 V
- Accepts positive or negative input voltage
- Digital input and output both MTTL and McMOS compatible

MC3430

thru High-Speed Quad Comparators MC3433

Both of these comparators feature 20 ns response time and a strobe input common to the four units. However, the MC3430-31 have active pullup outputs and a three-state strobe, while the MC3432-33 are equipped with open-collector outputs.

In applications requiring numerous comparators, such as the sensing of 1103-type MOS memories, the greater package density permitted by the quad configuration results in considerable saving in circuit board space.

FEATURES:

- Response time = 20 ns typical
- Input offset voltage = 3.0 mW typical
- Choice of either three-state or open-collector outputs
- Strobe input common to all four comparators

MC3459 MC3460 Quad NMOS Memory Drivers

These quad drivers provide the interface between MTTL logic and NMOS memories. The MC3459 is a low-voltage driver for address lines while the MC3460 is a high-voltage device for driving the clock lines. The devices will drive 350 pF loads with propagation delay times of 25 ns and 35 ns respectively.

The high-voltage version uses a multiplexed pullup circuit to reduce power consumption.

FEATURES:

- Four drivers per package
- MTTL-compatible inputs
- Maximum operating frequency greater than 2.0 MHz

4-3

MC3463 Quad MECL Line Driver

The MC3463 is a quad line driver with MECL 10,000 compatible inputs. The device switches a 12 mA current sink between each of the two outputs per channel in response to the input logic condition. A pair of inhibit inputs is provided with each inhibit common to two of the channels.

Typical propagation delay time is less than 3.0 ns from the logic inputs and 5.0 ns from the inhibit inputs.

FEATURES:

- MECL 10,000 compatible
- Quad configuration
- High-speed operation
- 12 mA output current capability

MC3462 Quad MECL Line Receiver

The MC3462 is a quad MECL 10,000 compatible line receiver designed for use with the MC3463 line driver. The MC3462 has a strobe input common to all four channels, sensitivity of 8.0 mV, and propagation delay time of only 5.0 ns.

- MECL 10,000 compatible
- High-speed operation
- 8.0 mV sensitivity
- ±3.0 V common mode input voltage range

CONSUMER PRODUCTS

Linear ICs are helping the consumer obtain greater functional value for his dollar. They are permitting greater performance and complexity in entertainment equipment without increasing costs. In addition, Linear IC useage is growing exponentially in automotive electronic systems to aid in solving safety and environmental problems. The following new devices are specifically conceived for use in consumer oriented products.

Radio Circuits

MC1314 Four-Channel Audio Voltage-Controlled Amplifier

The MC1314 is a gain control and balance adjustment unit for use with the CBS SQ* system decoders. It consists of four amplifiers, with the gain of each being adjustable by varying a dc voltage. Thus with four variable resistors, the master volume and LF/RF, LB/RB and F/B balance may be controlled.

The unit also has inputs which may be connected to the MC1315 logic enhancement unit to provide increased front to back separation. This feature is highly desirable in high performance four channel stereo systems.

FEATURES:

- DC controlled gain and balance
- Compatible with MC1312 decoder and MC1315 logic enhancement unit
- Excellent tracking between all four channels
- High density
- Very low output transients

MC1315 Four-Channel Audio Logic Circuit

The MC1315 provides the basic logic function for enhancing the front to back separation in the CBS SQ* four channel decoding system. The new IC is designed to interface with the MC1312 decoder and MC1314 gain control unit. The MC1315 provides variable dc logic enhancement control signals to the MC1314.

This unit extends the performance of the basic SQ system to the levels desired for top-of-the-line systems.

FEATURES:

- Provides logic enhancement to extend front to back separation to 20 dB
- Provisions for variable enhancement control
- High density

*SQ is a trademark of Columbia Broadcasting System, Inc.

MC1356 FM Detector/Limiter

The MC1356 includes a limiting amplifier, a quadrature discriminator, and a voltage regulator. It has been designed primarily for FM receiver applications. While similar to the MC1357, it includes built-in regulation capable of supplying 20 mA to external circuitry.

- Good line and load regulation
- Low harmonic distortion
- Permits single tuning coil design
- Direct replacement for µLN-2136
- Regulator is short-circuit protected

Preview of Coming Linear Devices (continued)

TV Circuits

MC1359 Sound System

The MC1359 is a complete sound system for a television receiver. It includes the IF amplifier, detector, electronic volume control, and audio amplifier. The IC provides two watts of audio output. All this is packed into a single plastic package with two heat dissipating tabs.

The dc voltage-controlled volume attenuator saves the necessity of long lengths of shielded cable between the volume control and the audio amplifier circuitry. This advanced system provides 80 dB of audio attenuation range.

FEATURES:

- Excellent AM rejection
- DC volume control with 80 dB typical attenuation range
- Signal to noise ratio = 63 dB typical
- Few external components required

MC1394 Horizontal Processor (Negative Sync)

The MC1394 horizontal processor packs the phase detector, oscillator and pre-driver functions into a single, convenient 8-lead plastic package. The new unit provides the entire low-level horizontal signal processing function and may be used with either transistor or vacuum tube output stages. This device is a negative-sync version of the MC1391.

FEATURES:

- Negative sync pulse operation
- Internal shunt regulator
- Preset Hold control capability
- ±300 Hz typical pull-in range
- Balanced phase detector
- Variable output duty cycle for driving tube or transistor
- Low thermal frequency drift
- Small static phase error

MC1395/TBA395 PAL Chroma

The MC1395 forms a complete three-chip PAL chroma system when used with the MC1396 PAL luma and the MC1327 chroma demodulator.

It includes the APC detector, oscillator, ACC detector and controlled stage, PAL bistable, color killer, and burst gating.

FEATURES:

- Internal shunt regulator
- Balanced phase detector
- ±450 Hz typical pull-in range
- Low thermal frequency drift

MC1396/TBA396 PAL Luma

The MC1396 forms a complete three-chip PAL chroma system when used with the MC1395 PAL chroma and the MC1327 chroma demodulator.

It includes the chroma amplifier, chroma control, PAL delay line driver, luminance amplifier, black level clamp, and beam current limiter.

FEATURES:

- Tracking dc contrast and chroma level controls
- DC brightness control
- Beam current limiter operating on the contrast control
- Feedback black level clamp

MC13120/TBA120 FM IF Amplifier

The MC13120 is a six-stage differential amplifier/ limiter, balanced coincidence detector with dc volume control designed for use in radio and TV FM/IF applications.

- Low harmonic distortion
- One coil detector alignment
- DC volume control
- Excellent sensitivity

INTERCHANGEABILITY GUIDE

INTERCHANGEABILITY GUIDE

This interchangeability guide describes equivalent circuits in two ways: (1) the "Direct Replacement" which is both electrically and mechanically a direct replacement; and, (2) the "Functional Equivalent" that is generally similar and is suggested as an alternate. When a functional equivalent circuit is used for a replacement, the specific data sheet should be consulted.

Packaging availability information for each Motorola device is listed in the Linear Application Selector Guides section and also appears on the individual data sheet for the device. Exact outline dimensions are shown in the Packaging Information section of this data book.

		1		<u> </u>	
TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
CA3000		MC1550G	CA3055		MC1723G
CA3001		MC1723G	CA3056		MC1741CG
CA3002		MC1550G	CA3056A		MC1741G
CA3004		MC1550G	CA3058		MFC8070
CA 3005		MC1550G	CA3059		MFC8070
CA3006		MC1550G	CA3064	MC1364P	
CA3007		MC1550G	CA3064/5A		MC1364G
CA3008		MC1709F	CA3065	MC1358P	
CA3008A		MC1709F	CA3065/7F		MC1358PQ
CA3010		MC1709G	CA3066		MC1398P
CA3010A		MC1709G	CA3067		MC1328P
CA3011	MC1590G		CA3070	MC1370P	
CA3012	MC1590G		CA3071	MC1371P	
CA3013	MC1355P		CA3072	MC1328P	
CA3014	MC1357P		CA3075		MC1375P
CA3015		MC1709G	CA3076		MC1590G
CA3015A		MC1709G	CA3079		MFC8070
CA3016		MC1709F	CA3085		MC1723G
CA3016A		MC1709F	CA3085A		MC1723G
CA3020		MC1554G	CA3085B		MC1723G
CA3020A CA3021		MC1554G	CA3909Q		MC1310P
CA3021 CA3022		MC1590G MC1590G	CA3741CT	MC1741CG	
CA3022		MC1590G MC1590G	CA3741T	MC1741G	MC1741F
CA3023		MC1550G	LH101H		MC1741F MC1741G
CA3028B		MC1550G	LH201H		MC1741G
CA3029		MC1709CP2	LM100H		MC1723G
CA3029A		MC1709CP2	LM101AH	MLM101AG	1017200
CA3030		MC1709CP2	LM101H	MC1748G	
CA3030A		MC1709CP2	LM102H	MLM110G	
CA3031	MC1712G		LM104H	MLM104G	
CA3032	MC1712CG		LM105H	MLM105G	
CA3033		MC1533L	LM106H		MC1710G
CA3033A		MC1533L	LM107H	MLM107G	
CA3035		MC1352P	LM108AH		MC1556G
CA3037		MC1709L	LM108H		MC1556G
CA3037A		MC1709L	LM109K	MLM109K	
CA3038	MC1709L		LM110H	MLM110G	
CA3038A	MC1709L		LM111D	MLM111L	
CA3040		MC1510G	LM111F	MLM111F	
CA3041		MC1351P	LM111H	MLM111G	
CA3042		MC1357P	LM112H		MC1556G
CA3043		MC1357P	LM118H	101000	MC1539G
CA3047 CA3047A		MC1433L	LM1303N	MC1303L	
CA3047A CA3048		MC1433L MC3401P	LM1304N	MC1304P	
CA3048		MC1339P	LM1305N LM1307N	MC1305P MC1307P	
CA3052		MC1550G	LM1310N	MC1307P	

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
LM1351N	MC1351P		LM340-06T	MC7806CP	
LM139AN	MC3302P		LM340-08K	MC7808CK	
LM139D	14000021	MC3302P	LM340-08T	MC7808CP	
LM1414J	MC1414L	11000021	LM340-12K	MC7812CK	
LM1414N	MC1414L		LM340-12T	MC7812CP	
LM1458H	MC1458G		LM340-15K	MC7815CK	
LM1458N	MC1458P1		LM340-15T	MC7815CP	
LM1489AJ	MC1489AL		LM340-18K	MC7818CK	
LM1489J	MC1489L		LM340-18T	MC7818CP	
LM1496H	MC1496G		LM340-24K	MC7824CK	
LM1496N LM1514J	MC1496L MC1514L		LM340-24T	MC7824CP	1015000
LM1558H	MC1558G		LM370H		MC1590G
LM1596H	MC1596G		LM370N LM371H		MC1350P MFC6010
LM200H	11010500	MC1723CG	LM376N		MFC6030A
LM201AH	MLM201AG		LM380N		MFC9020
LM201H	MC1748CG		LM381N		MC1339P
LM202H	MLM210G		LM382N		MC1339P
LM204H	MLM204G		LM3900N	MC3401P	
LM205H	MLM205G		LM3901N	MC3302P	
LM206G		MC1710CG	LM4250CH		MC1776CG
LM207H	MLM207G	1014535	LM4250H		MC1776G
LM208H		MC1456G	LM5520J		MC7520L
LM209K	MLM209K		LM5521J		MC7521L MC7523L
LM210H LM211D	MLM210G MLM211L		LM5523J LM5525J		MC7525L
LM211E	MLM211F		LM5528J		MC7528L
LM211H	MLM211G		LM5529J		MC7529L
LM2111N	MC1357P		LM5534J		MC7534L
LM212H		MC1456G	LM5535J		MC7535L
LM218H		MC1439G	LM5538J		MC7538L
LM239AN	MC3302P		LM5539J		MC7539L
LM239D		MC3302P	LM555CH	MC1455G	
LM330H		MC1723CG	LM555D	MC1455P1	
LM301AH	MLM301AG		LM555H	MC1555G	ME06010
LM301AN	MLM301API		LM703LN LM709CH	MC1709CG	MFC6010
LM302H LM304H	MLM310G MLM304G		LM709CN	MC1709CP2	
LM305H	MLM305G		LM709H	MC1709G	
LM306H		MC1710CG	LM710CH	MC1710CG	
LM3064H	MC1364G		LM710CN	MC1710CP	
LM3064N	MC1364P		LM710H	MC1710G	
LM3065N	MC1358P		LM711CH	MC1711CG	
LM3067N		MC1328P	LM711H	MC1711G	
LM307H	MLM307G		LM723CD	MC1723CL	
LM3070N	MC1370P		LM723CH LM723D	MC1723CG MC1723L	
LM3071N LM3075N	MC1371P MC1375P		LM723D	MC1723L MC1723G	
LM308AH	WG1073F	MC1456G	LM733CD	MC1733CL	
LM308H		MC1456G	LM733CH	MC1733C	
LM309K	MLM309K		LM733D	MC1733L	
LM310H	MLM310G		LM733H	MC1733G	Į.
LM311D	MLM311L		LM741CD	MC1741CL	
LM311F	MLM311F		LM741CH	MC1741CG	
LM311H	MLM311G		LM741CN	MC1741CP1	
LM312H		MC1456G	LM741CN-14	MC1741CP2	
LM318H		MC1439G	LM741D LM741F	MC1741L MC1741F	
LM320-05K		MC7905CK	LM741F	MC1741F MC1741G	
LM320-05.2K LM320-12K		MC7905.2CK MC7912CK	LM746N	MC1328P	
LM320-12K		MC7912CK MC7915CK	LM747CC	MC1747CL	
LM339AN	MC3302P		LM747D	MD1747L	
LM339D		MC3302P	LM748CH	MC1748CG	
LM339N	MC3302P		LM748H	MC1748G	
LM340-05K	MC7805CK		LM75107N		MC75107L
LM340-05T	MC7805CP		LM75108N		MC75108L
LM340-06K	MC7806CK				

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
LM75109N	· · · · · · · · · · · · · · · · · · ·	MC75109L	N 5596A	MC1496L	
LM75110N		MC75110L	N5596K	MC1496G	
LM7520J	MC7520L		N5709A	MC1709CP2	+
LM7520N	MC7520L		N5709G	MC1709CF	
LM7521J	MC7521L		N5709T	MC1709CG	
LM7521N	MC7521L		N5709V	MC1709CP1	
LM7522J	ML7522L		N5710A	MC1710CP	
LM7522N	MC7522L		N5710T	MC1710CG	
LM7523J	MC7523L		N5711A	MC1711CP	
LM7523N	MC7523L		N5711K	MC1711CG	
LM7524J	MC7524L		N5723A		MFC6030A
LM7524N	MC7524L		N5723T	MC1723CG	
LM7525J	MC7525L		N5733K	MC1733CG	
LM7525N	MC7525L		N5741A	MC1741CP2	
LM7528J	MC7528L		N5741T	MC1741CG	
LM7528N	MC7528L		N 5741 V	MC1741CP1	
MC7529J	MC7529L		N5747A	MC1747CL	
LM7529N	MC7529L		N5747F	MC1747CL	
LM75325N	MC75325P		N5748A		MC1747CG
LM7534J	MC7534L		N5748T	MC1748CG	
LM7534N	MC7534L		N7520B	MC7520P	
LM7535J	MC7535L		N7521B	MC7521P	
LM7535N	MC7535L		N7522B	MC7522P	
LM7538J	MC7538L		N7523B	MC7523P	
LM7538N	MC7538L		N7524B	MC7524P	
LM7539J	MC7539L		N7525B	MC7525P	
LM7539N	MC7539L		PA239A	MC1339P	
LM75450AN	MC75450P		SE 501 K		MC1733G
LM75451AN	MC75451P		SE515G		MC1520F
LM75452N	MC75452P		SE515K		MC1520G
LM75453N	MC75453P		SE516A		MC1520G
MH0026CH	MMH0026CG		SE516G		MC1520F
MH0026CN	MMH0026CP1		SE516K	1	MC1520G
NE501A		MC1733CL	SE528E		MC1544L
NE501K		MC1733CG	SE528R		MC1544L
NE515A		MC1420G	SE531G		MC1539G
NE515G		MC1520F	SE531T	ţ	MC1539G
NE515K		MC1420G	SE533G		MC1776G
NE516A		MC1420G	SE533T		MC1776G
NE 516G	1	MC1520F	SE537G		MC1556G
NE516K		MC1420G	SE537T		MC1556G
NE528B		MC1444L	SE540L		MFC8020A
NE528E		MC1444L	SE550L		MC1723G
NE531G		MC1439G	SE555T	MC1555G	
NE531T	1	MC1439G	SN52101AL	MLM101AG	
NE531V		MC1439P	SN52107L	MLM107G	
NE533G		MC1776CG	SN52558L	MC1558G	
NE533T		MC1776CG	SN52702F	MC1712F	
NE 533 V		MC1776CG	SN52702L	MC1712G	
NE537G	1	MC1456G	SN52702Z	MC1712F	
NE537T		MC1456G	SN52709F	MC1709F	
NE540L		MFC8020A	SN52709L	MC1709G	
NE550A	1	MFC6030A	SN52710J	MC1710L	1
NE55 0 L	-	MC1723CG	SN52710L	MC1710G]
NE555T	MC1455G		SN52710N	MC1710P	
NE555V	MC1455P1		SN52710S	MC1710F	
N5070B	MC1370P		SN52711J	MC1711L	
N 5071A	MC1371P		SN52711L	MC1711G	
N5072A	MC1328P		SN52711S	MC1711F	1
N5111	MC1357P]	SN52733L	MC1733G	
N 5556T	MC1456G		SN52741J	MC1741L	
N5556V		MC1456G	SN52741L	MC1741G	1
N5558F	MC1458L		SN52741Z	MC1741F	
N 5558 T	MC1458G		SN52747J	MC1747L	
N 5558 V	MC1458P1		SN52748J	11017400	MC1748G
N5595A	MC1495L		SN52748L	MC1748G	10005500
N5595F	MC1495L		SN52770L	1	MC1556G

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
SN52771L		MC1556G	SN7522J	MC7522L	
SN5510F	MC1510F		SN7522N	MC7522L	
SN5510L	MC1510G		SN7523J	MC7523L	
SN55107J	MC55107L		SN7523N	MC7523L	-
SN55108J	MC55108L		SN75234J	MC75234L	
SN 55109J		MC75109L	SN75235J	MC75235L	
SN5511F		MC1510F	SN75238J	MC75238L	
SN5511L		MC1510G	SN75239J	MC75239L	
SN55110J		MC75110L	SN7524J	MC7524L	
SN5524J		MC7524L	SN7524N	MC7524L	
SN 5525J		MC7524L	SN7525J	MC7525L	
SN552702N	MC1712L		SN7525N	MC7525L	
SN56514L		MC1596G	SN 7528J	MC7528L	
SN72301AL	MLM301AG		SN7528N	MC7528L	
SN72301AN	MLM301AP1		SN7529J	MC7529L	
SN72301AP	MLM301AP1		SN7529N	MC7529L	
SN72307L	MLM 30 7G		SN75325J	MC75325L	
SN72558L	MC1458G		SN75450AN		MC75450P2
SN72558P	MC1458P1		SN75450N	MC75450P2	
SN72611S	MC1711CF		SN75451AP		MC75451P
SN72702F	MC1712CF		SN 75451P	MC75451P	
SN72702L	MC1712CG		SN75452P	MC75452P	
SN72702N	MC1712CL		SN 75453P	MC75453P	
SN72709L	MC1709CG		SN75454P	MC5454P	
SN72709N	MC1709CP2		SN75491N	MC75491P	
SN72709P	MC1709CP1		SN75492N	MC75492P	
SN72709S	MC1709CF		SN76104N	MC1304P	
SN7271N	MC1711CP2		SN76105N	MC1305P	
SN72710J	MC1710CL		SN76107N	MC1370P	
SN72710L	MC1710CG		SN76242N	MC1370P	
SN72710N	MC1710CP2		SN76243N	MC1371P	
SN72710S	MC1710CF		SN76246N	MC1328P	
SN72711J	MC1711CL		SN76514L		MC1496G
SN72711L	MC1711CG		SN76514N		MC1496L
SN72720N	MC1414L		SN 76530P	MC1330P	
SN72733L	MC1733CG		SN76564N	MC1364P	
SN72733N	MC1733CL		SN76600P	MC1350P	
SN72741J SN72741L	MC1741CL		SN76642N	MC1357P	
	MC1741CG		SN76650N	MC1352P	
SN72741N SN72741P	MC1741CP2 MC1741CP1		SN76651N SN76653N	MC1351P MC1353P	
SN72741Z	MC1741CF		SN76665N	MC1353P MC1353P	
SN72747J	MC1747CL		SN76675N	MC1355P MC1375P	
SN727475	MC1747CL		S5556T	MC1556G	
SN72748L	MC1748CG		S5558F	MC1558L	
SN72770L	100174000	MC1456G	S5558T	MC1558G	
SN72771L		MC1456G	S5596F	MC1596L	
SN7510F	MC1410F		S5596K	MC1596G	
SN7510L	MC1410G		S5709G	MC1390G]
SN75107J	MC75107L		S5709T	MC1709G	
SN75107N	MC75107L		S5710T	MC1710G	1
SN75108J	MC75109L		S5711K	MC1711G	1
SN75108N	MC75108L		S5723T	MC1723G	
SN75109J	MC75109L	<u> </u>	S5733K	MC1733G	1
SN75109N	MC75109L		S5741T	MC1741G	
SN7511L		MC1410G	55325D	MC55325L]
SN75110J	MC75110L		702DC	MC1712CL]
SN75110N	MC75110L		702DM	MC1712L	
SN75140P	MC75140P1		702FC	MC1712CF	
SN75150J		MC1488L	7 02 FM	MC1712F	
SN75150N		MC1488L	702HC	MC1712CG	1
SN75188J	MC1488L	ļ	7 0 2HM	MC1712G	
SN75189J	MC1489L		703HC		MFC6010
SN7520J	MC7520L		703HM		MFC6010
SN7520N	MC7520L		709DC	MC1709CL	
SN7521J	MC7521L		7 0 9DM	MC1709L	1
SN7521N	MC7521L	1	1		1

	MOTOPOLA	NOTODOLA	[NOTODOLA	
TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
709FC	MC1709CF		7812KC	MC7812CK	
709FM	MC1709F		7812UC	MC7812CP	
709HC	MC1709CG		7815KC	MC7815CK	
709HM 710DC	MC1709G MC1710CL		7815UC 7818KC	MC7815CP MC7818CK	
710DC	MC1710L		7818UC	MC7818CP	
710FC	MC1710CF		7824KC	MC7824CK	
710FM	MC1710F		7824UC	MC7824CP	
710HC	MC1710CG		796HC	MC1496G	
710HM	MC1710G		796HM	MC1596G	
711DC 711DM	MC1711CL MC1711L		1		c
711FC	MC1711CF				
711FM	MC1711F				
711HC	MC1711CG				
711HM	MC1711G				
719HC		MC1357P			
719HM 723DC	MC1723CL	MC1357P			
723DM	MC1723CL				
723HC	MC1723CG				
723HM	MC1723G				
729DC		MC1305P			
732DC 733DC	MC1733CL	MC1304P			
733DM	MC1733L				
733FC	MC1733CF				
733FM	MC1733F				
733HC	MC1733CG				
733HM	MC1733G				
739DC 739DM		MC1303P MC1303P			
741DC	MC1741CL	MC1303		1	
741DM	MC1741L				
741FC	MC1741CF				
741FM	MC1741F				
741HC 741HM	MC1741CG MC1741G				
741TC	MC1741G MC1741CP1				
746DC		MC1328P			
746HC		MC1328P			
747DC	MC1747CL		1		
747DM	MC1747L				
747HC 747HM	MC1747CG MC1747G				
748HC	MC1748CG				
748HM	MC1748G				
7524DC	MC7524L				
7525DC	MC7525L				
75325D 75325P	MC75325L MC75325P				
754DC	WIC7 0020F	MC1355P			
754HC		MC1355P			
754TC		MC1355P			
757DC		MC1350P			
757DM		MC1350P			
767DC 776HC	MC1776CG	MC1307P			
776HM	MC1776G				
780DC		MC1370P			
7805KC	MC7805CK				1
7805UC	MC7805CP				
7806KC	MC7806CK MC7806CP				
7806UC 7808KC	MC7806CP MC7808CK				
7808UC	MC7808CP				
781DC		MC1371P			

INTEGRATED CIRCUITS CHIP INFORMATION

. Star

LINEAR INTEGRATED CIRCUIT CHIPS

Most of the linear integrated circuit devices in this Data Book are available in chip form. Many are offered in several options – such as conventional (face up bonding), beam lead, and flip-chip versions. Motorola offers many standard linear chips from warehouse stock either directly from the factory or through franchised distributors. In addition, custom linear IC chips may be designed and produced to meet a specific need.

Specific information on chip processing, testing, and handling can be obtained in the Semiconductor Chips Data Book.

Electrical limits for stocked linear IC chips in conventional, beam lead, and flip-chip formats are included on data sheets in this book. (See page 6-4 for listing of stocked chips.)

LINEAR CHIP FORMATS

Conventional Chips encompass by far the greatest number of available linear IC chips. These silicon chips use gold backside metalization for easy eutectic bonding to the metalized area of hybrid assemblies. The interconnecting metalization and bonding pad areas are formed from evaporated aluminum. Either gold or aluminum wire may be employed for connection between on-chip bonding pads and the external circuit.

Beam-Lead Chips are distinguished from conventional chips by the presence of cantilevered beams used to interconnect the chip circuit element with the substrate circuit bonding pads. In production, a complex integrated circuit chip with a large number of interconnecting beams can be connected to the substrate, forming all necessary interconnections in a single operation, using wobble-bonding techniques. In addition, the entire surface of a beam-lead chip, except the beams, is covered with a passivating layer of silicon nitride that is as effective as a hermetically sealed package in protecting the circuit against contamination.

Flip-Chips, like beam-lead chips, can be mounted to a hybrid substrate in a single operation.

In the case of flip-chips, connection to the substrate bonding pads is made by means of raised "solder bumps" that protrude above the chip surface at the integrated-circuit bonding pads. The devices are mounted to the substrate metalization areas circuit side down by means of conventional reflow solder techniques.

STOCK CHIP AVAILABILITY

All of the chip options listed below are stock items. In addition, nearly all linear devices are available in chip form. Generally these chips are specified only at room temperature (25^oC).

Packaged Device Part Number	Standard Chip Part Number*	Beam-Lead Chip Part Number#	Flip-Chip Part Number*
MC1436	MCC1436		
MC1536	MCC1536		
MC1439	MCC1439		
MC1539	MCC1539		
MC1458	MCC1458		MCCF 1458
MC1558	MCC1558		MCCF1558
MC1463	MCC1463		
MC1563	MCC1563		
MC1469	MCC1469		
MC1569	MCC1569		x
MC1495	MCC1495		
MC1595	MCC1595		
MC1709	MCC1709	MCBC1709	MCCF1709
MC1709C	MCC1709C		MCCF1709C
MC1710	MCC1710	MCBC1710	
MC1710C	MCC1710C		
MC1711	MCC1711		
MC1711C	MCC1711C		
MC1723	MCC1723	MCBC1723	
MC1723C	MCC1723C		
MC1741	MCC1741	MCBC1741	MCCF1741
MC1741C	MCC1741C		MCCF1741C
MC1748	MCC1748	MCBC1748	
MC1748C	MCC1748C		

*Standard chips and flip-chips are sold only in multiples of 10 or 100. Add -1 to part number when ordering multiples of 10; add -2 to part number when ordering multiples of 100.

#Beam-lead devices are sold only in multiples of 5.

INTEGRATED CIRCUITS

MIL-M-38510 PROGRAM

MIL-M-38510 LINEAR INTEGRATED CIRCUITS

Under the MIL-M-38510 program, Motorola linear integrated circuits may be procured to the specifications of MIL-M-38510 and to four levels of processing which meet the screening requirements of MIL-STD-883.

This comprehensive program is structured to provide an environment in which proven methods of manufacturing, quality assurance, monitoring, screening, and testing can produce the most reliable product on the market. Because it is a "standard" hi-rel program, it is designed to facilitate delivery and to minimize specification preparation time.

Motorola has qualified a variety of linear integrated circuits under the MIL-M-38510 program. These device types are available (more will be available during 1974) as JAN-QUALIFIED product. These devices have specific detailed specifications called "slash specs".

In addition, nearly all full-temperature-range linear device types are available as JAN-PROCESSED product with the same MIL-M-38510 processing sequences as Qualified product, but with other requirements as listed on page 7-5.

Further details and specific processing information can be obtained from your Motorola representative.

Note that this program supercedes the Checkmate high-reliability processing program.

MIL-M-38510 JAN-QUALIFIED PRODUCT

JAN-QUALIFIED devices are built to the stringent specifications outlined by the Defense Electronics Supply Center (DESC). These devices must be manufactured in a government-approved facility and are screened to electrical limits outlined in government documents referred to as "slash sheets". These specifications may differ from standard Motorola electrical limits as stated in the device data sheets.

MAJOR REQUIREMENTS OF JAN-QUALIFIED PRODUCT

- 1. G.S.I. (Government Source Inspection) provided upon request.
- 2. Must be manufactured in a Government approved facility.
- 3. Product inventoried in distributor and OEM warehouses.

LINEAR ICs QUALIFIED or In Process of Qualification

MIL-M-38510 Device Type	Motorola Source Device Type
JM38510/10101BCG BGC BHB	MC1741
JM38510/10102BAB BCB BIC	MC1747
JM38510/10103BGC	MLM101A
JM38510/10104BAB BCB BGC	MLM108
JM38510/10201BCB BHB BIC	MC1723
JM38510/10301BCB BGC BHB	MC1710
JM38510/10302BCB BHB BIC	MC1711
JM38510/10304BCB BGC BHB	MLM111
JM38510/10401BCB	MC55107
JM38510/10402BCB	MC55108

HOW TO ORDER MIL-M-38510 JAN-QUALIFIED PRODUCT

Military Part No.

A typical military part number consists of the following elements:

- J M38510 /XXX XX B C B
- (1) (2) (3) (4) (5) (6) (7)
- (1) J This indicates a qualified device.
- (2) M38510 This is the military designator.
- (3) /XXX This three-digit number signifies the detail specification ("slash spec") in which the device type is found. This specification generally contains more than one device type and is written for various generic groupings (i.e., Op Amps, Voltage Regulators, etc.).
- (4) XX This two-digit number identifies the device type within the detail specification.
- (5) B This is a single letter and specifies the device class per MIL-M-38510 and will be class A, B, or C.
- (6) Case outline (see listing on page 7-5).
- (7) Lead finish (see listing on page 7-5).

Motorola Part No.

The Motorola equivalent of the JAN M38510 part number is as follows, and should be referenced when ordering your specific device requirement:

- (1) The MCXXXX designates the Motorola source device type.
- (2) The first three letters after the part number have the same meaning and order as in the JAN part numbering system; this will simplify your cross-referencing.
- (3) J, which is the last letter in the part number, designates a JAN-QUALIFIED device.

Example:

Order No.: MC1741BCBJ Device Marking: JM38510/10101BCB

MIL-M-38510 JAN-PROCESSED PRODUCT

JAN-PROCESSED product is intended to assure the same high reliability manufacturing sequences as JAN-Qualified devices, but without the requirement for government source inspection. JAN-Processed devices are available tested to either "slash-sheet" limits or to Motorola data sheet electrical limits. This part of the program replaces the Motorola Checkmate hi-rel program and encompasses all military-temperature-range linear ICs rather than just those covered under existing "slash sheets".

MAJOR REQUIREMENTS OF JAN-PROCESSED PRODUCT

- 1. No G.S.I. provided.
- 2. Government-approved facility not required.
- 3. Product supplied with MIL-M-38510 electrical specifications will be designated by an "M" suffix.
- Product supplied with Motorola standard data sheet electrical specifications will be designated by an "S" suffix.
- 5. Devices will be manufactured using design and processing guidelines contained in MIL-M-38510.
- 6. Inventories will be maintained prior to burn-in and final electrical tests.

DESIGNATIONS COMMON TO BOTH JAN-QUALIFIED AND JAN-PROCESSED PRODUCTS

Case Outline Designator

#A	1/4" x 1/4" flat pack, 14 pin
В	1/8'' x 1/4'' flat pack, 14 pin
С	1/4'' x 3/4'' dual-in-line, 14 pin
#D	1/4'' x 3/8'' flat pack, 14 pin
Е	1/4'' x 3/4'' dual-in-line, 16 pin
F	1/4'' x 3/8'' flat pack, 16 pin
G	8 lead can
н	1/4'' x 1/4'' flat pack, 10 pin
I	10 lead can
J	1/2'' x 1-1/4'' dual-in-line, 24 pin
к	3/8'' x 1/2'' flat pack, 24 pin
Z	1/4'' x 1/2'' flat pack, 24 pin
#A a	nd D outlines are interchangeable
	Lead Material and Finish

- A Kovar or Alloy 42, with hot solder dip
- B Kovar or Alloy 42, with bright acid tin plate
- C Kovar or Alloy 42, with gold plate

HOW TO ORDER MIL-M-38510 JAN-PROCESSED PRODUCT

Motorola Part No.

The part number for ordering a JAN-Processed device consists of the following elements:

MCXXXX	В	С	в	S
(1)	(2)	(3)	(4)	(5)

- (1) The MCXXXX designates the Motorola source device type.
- (2) B This is a single letter and specifies the device class per MIL-M-38510 for classes A, B, and C. Class D is an added Motorola JAN-Processing class and is the same as the MIL-M-38510 Class B except for the differences shown in the Screening Procedures table.
- (3) Case outline (see listing on this page).
- (4) Lead finish (see listing on this page).
- (5) S This is a single letter and specifies the electrical specifications to which the device is to be screened during electrical testing, and will be either an S or M. An S specifies the use of Motorola standard data sheet electrical specifications. An M specifies the use of JAN "slash sheet" electrical specifications where they exist.

Example:

Order No.: MC1741BCB (M or S) Device Marking: MC38510/1741BCB (M or S)

MIL-M-38510 Program (continued)

SCREENING PROCEDURES (To MIL-STD-883 Requirements)

This program establishes screening procedures for total lot screening of integrated circuits to assist in achieving levels of quality and reliability commensurate with the intended application. In recognition of the fact that the level of screening has a direct impact on the cost of the product as well as its quality and reliability, four standard levels of screening are provided to coincide with four device classes or levels of product assurance. Flexibility is provided in the choice of conditions and stress levels to provide screens, tailored to a particular product or application. Selection of a level **better** than that required for the specific product and application will, of course, result in unnecessary expense. A level **less** than that required will result in an unwarranted risk that reliability and other requirements will not be met. For general hi-rel applications, the Class B screening level should be considered.

	CLASS	A	CLASS	В	CLASS	С	CLASS	D
SCREEN	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT
Internal Visual (Precap)	2010 Cond A and 38510	100%	2010 Cond B and 38510	100%	2010 Cond B and 38510	100%	2010 Cond B and 38510	100%
Stabilization Bake	1008 24 hrs min, test condition C	100%	1008, 24 hrs min, test condition C	100%	1008, 24 hrs min, test condition C	100%	1008, 24 hrs min, test condition C	100%
Thermal Shock	1011, Cond A	100%		_		_		
Temperature Cycling	1010, Cond C	100%	1010, Cond C	100%	1010 Cond C	100%	1010, Cond C	100%
Mechanical Shock	2002 Cond F One Shock in Y ₁ plane only or 5 shocks at Cond B in Y ₁ plane	100%		-		_		—.
Constant Acceleration	2001 Cond E (min) in Y₂ plane then Y₁ plane	100%	2001 Cond E (min) Yı plane	100%	2001 Cond E (min) Y, plane	100%	2001 Cond E (min) Y, plane	100%
Seal (a) Fine (b) Gross	1014	100%	1014	100%	1014	100%	1014	100%
Interim Electrical Parameters	JAN slash-sheet electrical specification unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%			Motorola stand. data sheet electrical specs unless otherwise indicated	100%
Burn-in test	1015 240 hrs @ 125°C min	100%	1015 168 hrs @ 125°C min	100%		-	1015 168 hrs @ 125°C min	100%
Interim Electricals	JAN slash-sheet electrical speci- fications unless otherwise designated	100%						
Reverse Bias Burn-in	1015 Cond A or C 72 hrs at 150°C min	100%						
Final Electrical tests (a) Static tests (1) 25°C (Subgroup 1 table 1 5005) (2) Max and min	JAN slash sheet electrical specifications unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%	Motorola stand. data sheet electrical specs unless otherwise indicated	100%
(2) Max and min rated op. temperature (subgroups 2 and 3 table 1, 5005)		100%		100%		-		-
(b) Dynamic tests and/or switching tests 25°C (subgroup 4 and 9 table 1, 5005)		100%		100%		-		-
(C) Functional test 25°C (subgroup 7 table 1, 5005)		100%		100%		100%		100%
Radiographic	2012	100%		-		-		-
Qualification or quality conformance inspection	5005 Class A	per 38510	5005 Class B	per 38510	5005 Class C	per 38510	5005 Class B	*
External Visual	2009	100%	2009	100%	2009	100%	2009	100%

^eGroup A per 5005, Generic data available for groups B & C on devices

produced to Class B, C, D for JAN processed (from JAN program)

INTEGRATED CIRCUITS DATA SHEETS

8

8-1

MC1303L

DUAL STEREO PREAMPLIFIER

MONOLITHIC DUAL STEREO PREAMPLIFIER

. . . designed for amplifying low-level stereo audio signals with two preamplifiers built into a single monolithic semiconductor.

Each Preamplifier Features:

- Large Output Voltage Swing 4.0 V(rms) min
- High Open-Loop Voltage Gain = 6000 min
- Channel Separation = 60 dB min at 10 kHz
- Short-Circuit-Proof Design

MAXIMUM RATINGS (T_A = + 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v+	+15	Vdc
	v-	-15	Vdc
Power Dissipation (Package Limitation)	P _D	625	m₩
Derate above 25°C		5.0	m₩/°C
Operating Temperature Range	т _А	0 to +75	°C

CERAMIC PACKAGE CASE 632 TO-116

EQUIVALENT CIRCUIT

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (Each Preamplifier) (V⁺ = +13 Vdc, V⁻ = -13 Vdc, T_A = +25^oC unless otherwise noted)

Characteristic Definitions (linear operations)	Characteristic	Symbol	Min	Тур	Max	Unit
$A_{VOL} = \frac{e_{out}}{e_{in}}$	Open Loop Voltage Gain	Avol	6,000	10,000	-	v/v
	Output Voltage Swing (R _L = 10 kΩ)	v _{out}	4.0	5.5	-	V(rms)
	Input Bias Current $I_b = \frac{I_1 + I_2}{2}$	I _b	-	1.0	10	μA
	Input Offset Current $(I_{io} = I_1 - I_2)$	I _{io}	-	0.2	0.4	μA
	Input Offset Voltage	v _{io}	-	1.5	10	mV
	DC Power Dissipation (Power Supply = ± 13 V, V _{out} = 0)	P _D	-	-	400	mW
ein = + eout 1 = + eout 2	Channel Separation (f = 10 kHz)	$\frac{\frac{e_{out 1}}{e_{out 2}}$	60	70	-	dB

TYPICAL PREAMPLIFIER APPLICATIONS

FIGURE 6 - INFLUENCE OF OUTPUT LOADING

NOISE CHARACTERISTICS

FIGURE 7A – INFLUENCE OF SOURCE RESISTANCE & BANDWIDTH

FIGURE 7B – INFLUENCE OF VOLTAGE GAIN & BANDWIDTH

STEREO DEMODULATOR

MC1304P MC1305P

MONOLITHIC FM MULTIPLEX STEREO DEMODULATORS

... derive the left and right audio information from the detected composite signal. The MC1304P eliminates the need for an external stereo-channel separation control. The MC1305P is similar to the MC1304P but permits the use of an external stereo-channel separation control for maximum separation.

- Operation Practicable Over Wide Power-Supply Range, 8-14 Vdc
- Built-in Stereo-Indicator Lamp Driver
- Total Audio Muting Capability
- Automatic Switching Stereo-Monaural
- Monaural Squelch Capability

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage (Pins 1, 6, 9,*11, 12) (Pin 7 is grounded)	+22	Vdc
Lamp Driver Current	40	mAdc
Power Dissipation (Package Limitation) Plastic Package	625	mW
Derate above T _A = 25 ^o C	5.0	mW/ºC
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

SILICON MONOLITHIC INTEGRATED CIRCUITS

PLASTIC PACKAGE CASE 646

*Pin 8 for MC1305P

CHANNEL SEPARATION versus COMPOSITE INPUT LEVEL

See Packaging Information Section for outline dimensions.

MC1304P, MC1305P (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, T_A = $+25^{\circ}$ C unless otherwise noted. Test made with 75 μ s deemphasis network (3.9 k Ω , 0.02 μ F) unless otherwise noted).

Characteristics	Min	Тур	Max	Unit	
Input Impedance (f = 20 Hz)	12	20	-	kΩ	
Stereo Channel Separation (See Notes 1 and 2) (f = 100 Hz) (f = 1.0 kHz) (f = 10 kHz)		35 45 30		dB	
Channel Balance (Monaural Input = 200 mV[RMS]), (Moneural, Left and Right Outputs)	-	0.5	-	dB	
Total Harmonic Distortion (See Notes 1 and 3) (Modulation frequency - 1.0 kHz)	_	0.5	1.0	%	
Ultrasonic Frequency Rejection (See Note 4) (19 kHz) (38 kHz)		25 20	-	dB	
Inherent SCA Rejection (without filter) @ 60 kHz, 67 kHz and 74 kHz	_	50	-	dB	
Lamp Indicator ($R_{\rm A}$ = 120 Ω) Minimum 19 kHz Input Level for lamp on Maximum 19 kHz Input Level for lamp off	5.0	16 14	25 -	mV(RMS)	
Audio Muting Mute on (Voltage required at pin 5) Mute off (Voltage required at pin 5) Attentuation in Mute Mode (Note 5)	0.6 1.3	- - 55	1.0 2.0	Vdc Vdc dB	
Stereo-Monaural Switching Stereo (Voltage required at pin 4) Monaural (Voltage required at pin 4)	1.3	-	2.0 1.0	Vdc	
Power Dissipation (V _{CC} = 10 V) (Without lamp) (With lamp)		150 180	300 300	mW	

Note 1 — Measurement made with 200 mV(RMS) Standard Multiplex Composite Signal and L = 1, R = 0 or R = 1, L = 0. Standard Multiplex Composite signal is here defined as a signal containing left and/or right audio information with a 10% (19 kHz) pilot signal in accordance with FCC regulations.

Note 2 - Stereo channel separation is adjustable for the MC1305P with a resistor from pin 9 to ground.

Note 3 - Distortion specification also applies to Monaural Signal.

Note 4 - Referenced to 1.0 kHz output signal with Standard Multiplex Composite Input Signal.

Note 5 - This is referenced to 1.0 kHz output signal with either Standard Multiplex Composite Signal or Monaural Input Signal.

Portions of the circuits shown within the dotted areas pertain to the MC1304P or MC1305P as indicated by the titles of the circuits.

MC1304P, MC1305P (continued)

FIGURE 6 - MC1304P TYPICAL CIRCUIT CONFIGURATION[†]

V _{CC} = 8.5 Vdc 8.5 2.0 2.8 1.6 1.6 0.8 0 8.5 0.32 3.9 6.3 6.3 3.9 1.5	Typical dc voltages (All voltages measured with respect to ground (Pin 7)														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	V _{CC} = 8.5 Vdc V _{CC} = 12 Vdc	8.5 12	2.0 2.0	2.8 2.8	1.6 1.9	1.6 1.9	0.8 0.8	0	8.5 12	0.32 0.36	3.9 3.9	6.3 9.7	6.3 9.7	3.9 3.9	1.9 1.9

See Figure 3.

R_{sep} = 310-ohm nom Adjusted for maximum separation

Portions of the circuits shown within the dotted areas pertain to the MC1304P or MC1305P as indicated by the titles of the circuits.

MC1306P

AUDIO AMPLIFIER

1/2-WATT AUDIO AMPLIFIER

The MC1306P is a monolithic complementary power amplifier and preamplifier designed to deliver 1/2-Watt into a loudspeaker with a 3.0 mV(rms) typical input. Gain and bandwidth are externally adjustable. Typical applications include portable AM-FM radios, tape recorder, phonographs, and intercoms.

- 1/2-Watt Power Output (9.0 Vdc Supply, 8-Ohm Load)
- High Overall Gain 3.0 mV (rms) Sensitivity for 1/2-Watt Output
- Low Zero-Signal Current Drain 4.0 mAdc @ 9.0 V typ
- Low Distortion 0.5% at 250 mW typ

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	12	Vdc
Load Current	۱L	400	mAdc
Power Dissipation (Package Limitation) $T_A = +25^{\circ}C$	PD	625	mW
Derate above T _A = +25 ⁰ C	1/0JA	5.0	mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V⁺ = 9.0 V, R_L = 8.0 ohms, f = 1.0 kHz, (using test circuit of Figure 3), T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain	AVOL				V/V
Pre-amplifier RL = 1.0 k ohm		-	270	-	
Power-amplifier RL = 16 ohms		-	360	_	
Sensitivity (P _o = 500 mW)	S		3.0	_	mV(rms)
Output Impedance (Power-amplifier)	Zo	_	0.5		Ohm
Signal to Noise Ratio (P _o = 150 mW, f = 300 Hz to 10 kHz)	S/N	_	55	-	dB
Total Harmonic Distortion (P _o = 250 mW)	THD	-	0.5	_	%
Quiescent Output Voltage	V _o	-	V ⁺ /2	-	Vdc
Output Power (THD ≤ 10%)	Po	500	570	-	mW
Current Drain (zero signal)	۱ _D		4.0	_	mA
Power Dissipation (zero signal)	PD		36	_	mW

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - ZERO SIGNAL BIAS CURRENT

TYPICAL CHARACTERISTICS (V⁺ = 9.0 V, f = 1.0 kHz, T_A = +25^oC unless otherwise noted)

FIGURE 7 - TOTAL HARMONIC DISTORTION

FIGURE 8 - EFFECT OF BATTERY AGING

FIGURE 9 - DISTORTION

FIGURE 10 - TYPICAL CIRCUIT CONNECTION

DESIGN CONSIDERATIONS

The MC1306P provides the designer with a means to control preamplifier gain, power amplifier gain, input impedance, and frequency response. The following relationships will serve as guides.

1. Gain

The Preamplifier Stage Voltage Gain is:

$$A_{V_A} \approx \frac{R_f}{R_s}$$

and is limited only by the open-loop gain (270 V/V). For good preamplifier dc stability Rf should be no larger than 1.0-megohm. The Power Amplifier Voltage Gain is controlled in a similar manner where:

$$A_{V_B} \approx \frac{10 \text{ k}}{R_p}$$

The 10-k ohm feedback resistor is provided in the integrated circuit.

Recommended values of R_p range from 500-ohms to 3.3-k ohms. The low end is limited primarily by low-level distortion and the upper end is limited due to the voltage drive capabilities of the pre-amplifier. (A resistor can be added in the dc feedback loop, from pin 6 to ground, to increase this drive). The Overall Voltage Gain, then, is:

$$A_{VT} = \frac{R_{f} 10 k}{R_{s} R_{p}}$$

2. Input Impedance

The Preamplifier Input Impedance is:

 $Z_{\text{in}\,A}\approx R_{\text{s}}$

and the Power Amplifier Input Impedance is:

 $Z_{in B} \approx R_p$

3. Frequency Response

The low frequency response is controlled by the cumulative effect of the series coupling capacitors C1, C2, and C3. High-frequency response can be determined by the feedback capacitor, C₄, and the -3.0 dB point occurs when

$X_{C_{f}} = R_{f}$

Additional high frequency roll-off and noise reduction can be achieved by placing a capacitor from the center point of R_p to ground as shown in Figure 10.

Capacitor C4 and the RC network shown in dotted lines may be needed to prevent high frequency parasitic oscillations. The RF choke, shown in series with the output, and capacitor C6 are used to prevent the high-frequency components in a large-signal clipped audio output waveform from radiating into the RF or IF sections of a radio (Figure 10).

4. Battery Operation

The increase of battery resistance with age has two undesirable effects on circuit performance. One effect is the increasing of amplifier distortion at low signal levels. This is readily corrected by increasing the size of the filter capacitor placed across the battery (as shown in Figure 8; a 300- μ F filter capacitor gives distortions at low-tonal levels that are comparable to the "stiff" supply). The second effect of supply impedance is a lowering of power output capability for steady signals. This condition is not correctable, but is of questionable importance for music and voice signals.

5. Application Examples: (1) The audio section of the AM-FM radio (Figure 1) is adjusted for a preamplifier gain of 100 with an input impedance of 10-k ohms. The power amplifier gain is set at 10, which gives an overall voltage gain of 1000. The bandwidth has been set at 10-kHz. (2). The phono amplifier (Figure 2) is designed for a preamplifier gain of unity and a power amplifier gain of 10. The input impedance is 1.0-megohm. An adjustable treble control is provided within the feedback loop.

MC1306P (continued)

SPK D

TYPICAL PRINTED CIRCUIT BOARD LAYOUT

See Figure 3 for schematic diagram.

PARTS LIST

Component	Value
C1	200 µF
C2	0.1 μF
C3	0.05 μF
C4	1.0 μF
C5	47 pF
R1	1 ohm
R2	1 k ohm
R3	4.7 k ohms
R4	270 k ohms
MC1306	-
PC Board	-

MC1307P

STEREO DEMODULATOR

FIGURE 1 - TYPICAL CIRCUIT CONFIGURATION

TYPICAL DC VOLTA	AGES	(All me	asured	using a		A with	respect	to Pin	17 (lan	np on),	R _A =	180 oh	ms, see	Figure
Pin Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$V_{CC} = 8.5 Vdc$	8.5	2.7	3.6	-	-	0.8	0	-	8.5	4.4	6.2	6.2	4.4	1.5
$V_{CC} = 12 V dc$	12	2.9	3.9	~	-	0.9	0	+	12	4.7	9.7	9.7	4.7	1.7

See Packaging Information Section for outline dimensions.

FIGURE 2 - CIRCUIT SCHEMATIC

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage (Pins 1, 6, 9, 11, 12) (Pin 7 is grounded)	+22	Vdc
Lamp Driver Current	40	mAdc
Power Dissipation (Package	625	mW
Limitation) Derate above T _A = +25 ⁰ C	5.0	mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°c
Storage Temperature Range	65 to +150	°°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, T_A = +25^oC, tests made with a 75 μ s de-emphasis network (3.9 k Ω , 0.02 μ F) unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Input Impedance (f = 1.0 kHz)	12	20	-	kΩ
Stereo Channel Separation (See Note 1) (f = 100 Hz) (f = 1.0 kHz) (f = 10 kHz)	- 20	35 40 30	- - -	dB
Total Harmonic Distortion (See Notes 1 and 2) (Modulation Frequency = 1.0 kHz)	-	0.5	1.0	%
Channel Balance (Monaural Input = 200 mV [rms]) (Monaural, Left and Right Outputs)	-	0.5	-	dB
Ultrasonic Frequency Rejection (See Note 3) (19 kHz) (38 kHz)		25 20	-	dB
Inherent SCA Rejection (without filter) (f = 60 kHz, 67 kHz and 74 kHz) (See Note 3)	-	50	-	dB
Lamp Indicator (R _A = 180 Ω) (Minimum 19 kHz input level for lamp "on") (Maximum 19 kHz input level for lamp "off")	- 5.0	16 14	25 	mV (rms)
Power Dissipation (V _{CC} = 12 V) (Without lamp) (With lamp)		140 170	300 300	mW

Note 1 — Measurement made with 200 mV(rms) Standard Multiplex Composite Signal where L = 1, R = 0 or R = 1, L = 0. Standard Multiplex Composite Signal is here defined as a signal containing left and/or right audio information with a 10% (19 kHz) pilot signal in accordance with FCC regulations.

Note 2 - Distortion specification also applies to Monaural Signal.

Note 3 - Referenced to 1.0 kHz output signal with Standard Multiplex Composite Input Signal.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

100 90 INPUT PILOT LEVEL (mV[rms]) 80 70 60 50 VCC = 12 Vdc 40 30 LAMP "ON" 20 10 LAMP "OFF 0 L 100 250 150 200 RA, 19 kHz GAIN ADJUSTMENT (OHMS)

FIGURE 5 - MULTIPLEX SENSITIVITY

FIGURE 6 - CHANNEL SEPARATION

FIGURE 7 – CHANNEL SEPARATION

MC1310P

STEREO DEMODULATOR

Specifications and Applications Information

FM STEREO DEMODULATOR

- ... a monolithic device designed for use in solid-state stereo receivers.
- Requires no Inductors
- Low External Part Count
- Only Oscillator Frequency Adjustment Necessary
- Integral Stereo/Monaural Switch 75 mA Lamp Driving Capability
- Wide Dynamic Range: 0.5–2.8 V (p-p) Composite Input Signal
- Wide Supply Range: 8–14 Vdc
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range
- Low Distortion: Typically 0.3% THD at 560 mV (RMS) Composite Input Signal
- Excellent SCA Rejection

FM STEREO DEMODULATOR

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	14	Volts
Lamp Current	75	mA
Power Dissipation (Package limitation) Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C

Characteristic	Min	Тур	Max	Unit
Maximum Standard Composite Input Signal (0.5% THD)	2.8	-		V _(p-p)
Maximum Monaural Input Signal (1.0% THD)	2.8	-	-	V _(p-p)
Input Impedance	20	50		kΩ
Stereo Channel Separation	30	40	-	dB
Audio Output Voltage (desired channel)	-	485		mV(RMS)
Monaural Channel Balance (pilot tone "off")	-	-	1.5	dB
Total Harmonic Distortion	-	0.3		%
Ultrasonic Frequency Rejection 19 kHz 38 kHz	_	34.4 45		dB
Inherent SC A Rejection (f = 67 kHz; 9.0 kHz beat note measured with 1.0 kHz modulation "off")	_	75	_	dB
Stereo Switch Level 19 kHz input level for lamp "on" 19 kHz input level for lamp "off"	 5.0		20	mV(RMS)
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)	-	±3.5	-	. %
Current Drain (lamp "off")	-	13	-	mAdc

ELECTRICAL CHARACTERISTICS Unless otherwise noted; V_{CC} = +12 Vdc, T_A = +25^oC, 560 mV(RMS) (2.8 V_[p-p]) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV(RMS) pilot level (10%), using circuit of Figure 1.

FIGURE 2 - CIRCUIT SCHEMATIC

8-22

TYPICAL CHARACTERISTICS

LAMP ''OFF"

12

TYPICAL CHARACTERISTICS (continued)

FIGURE 10 - VCO FREE-RUNNING FREQUENCY versus TEMPERATURE

10

8 0

14.5

14 13.5 13.5 13 12.5

12

CIRCUIT OPERATION

Figure 13, on the previous page, shows the system block diagram. The upper line, comprising the 38-kHz regeneration loop operates as follows: the internal oscillator running at 76-kHz and feeding through two divider stages returns a 19-kHz signal to the input modulator. There the returned signal is multiplied with the incoming signal so that when a 19-kHz pilot tone is received a dc component is produced. The dc component is extracted by the low pass filter and used to control the frequency of the internal oscillator which consequently becomes phase-locked to the pilot tone. With the oscillator phase-locked to the pilot the 38-kHz output from the first divider is in the correct phase for decoding a stereo signal. The decoder is essentially another modulator in which the incoming signal is multiplied by the regenerated 38-kHz signal. The regenerated 38-kHz signal is fed to the stereo decoder via an internal switch, which closes when a sufficiently large 19 kHz pilot tone is received.

The 19-kHz signal returned to the 38-kHz regeneration loop modulator is in quadrature with the 19-kHz pilot tone when the loop is locked. With the third divider state appropriately connected, a 19-kHz signal in phase with the pilot tone is generated. This is multiplied with the incoming signal in the stereo switch modulator yielding a dc component proportional to the pilot tone amplitude. This component after filtering is applied to the trigger circuit which activates both the stereo switch and an indicator lamp.

APPLICATIONS INFORMATION

(Component numbers refer to Figure 1)

External Component Functions and Values

- C1 Input coupling capacitor; 2.0 μ F is recommended but a lower value is permissible if reduced separation at low frequencies is acceptable.
- R1, R2, C2, C3 See Maximum Load Resistance section.
- C4 Filter capacitor for stereo switch level detector; time constant is C4 x 53 kilohms ±30%, maximum dc voltage appearing across C4 is 0.25 V (pin 8 positive) at 100 mV(RMS) pilot level. The signal voltage across C4 is negligible.
- C5 See Phase Compensation section.
- R3, C6, C8 Phase-locked loop filter components; the following network is recommended:

When less performance is required a simpler network consisting of R3 = 100 ohms and C6 = 0.25 μ F may be used (omit C8). See Figure 9.

R4, R5, C7	Oscillator timing mended values:	network;	recom-
	C7 = 470 pF	1%	
	R4 = 16 kΩ	1%	
	R5 = 5 kΩ	Preset	

These values give ±3.5% typical capture range. Capture range may be increased by reducing C7 and increasing R4, R5 proportionally but at the cost of increasing beat-note distortion (due to oscillator-phase jitter) at high-signal levels. See Figure 12.

- Stereo Lamp Nominal rating up to 75 mA at 12 V; the circuit includes surge limiting which restricts cold-lamp current to approximately 250 mA.
- 19-kHz Output A buffer output providing a 3.0-V_{pk} square wave at 19 kHz is available at pin 10. A frequency counter may be connected to this point to measure the oscillator free-running frequency for alignment. See Alignment section.

External Monaural/Stereo Switching

If it is desired to maintain the circuit in monaural mode, the following procedure must be followed. First, the stereo switch must be disabled to prevent false lamp triggering. This can be accomplished by connecting pin 8 negative or pin 9 positive by 0.3 volt. Pin 8 may be grounded directly if desired. Note that the voltage across C4 increases to approximately 2 volts with pin 9 positive when pin 8 is grounded.

Second, the 76-kHz oscillator must be killed to prevent interference when on AM. This can be accomplished by connecting pin 14 to ground via a current limiting resistor (3.3 kilohms is recommended).

Phase Compensation/IF Roll-off Compensation

Phase-shifts in the circuit cause the regenerated 38-kHz sub-carrier to lead the original 38 kHz by approximately 2° . The coupling capacitor C5 generates an

APPLICATIONS INFORMATION (continued)

additional lead of 3.5^o (for C5 = $0.05\,\mu\text{F}$) giving a total lead of 5.5^o .

The circuit is so designed that phase lag may be generated by adding a capacitor from pin 3 to ground. The source resistance at this point is 500 ohms. A capacitance of 820 pF compensates the 5.5° phase lead: increase above this value causes the regenerated subcarrier to lag the original. However, a 5.5° phase error if left noncompensated will not degrade separation appreciably.

Note that these phase shifts occur within the phaselocked loop and affect only the regenerated 38-kHz sub-carrier: the circuit causes no significant phase or amplitude variation in the actual stereo signal prior to decoding.

Most IF amplifiers have a frequency response that limits separation to a value significantly lower than the capability of the MC1310. For example, if the response produces a 1-dB roll-off at 38 kHz, the separation will be limited to about 32 dB. This error can be compensated by using an RC lead network as shown in Figure 14. The exact values will be determined by the IF amplifier design. However, the values shown in Figure 14 are suitable for use with the MC1357 and MC1375 IF amplifiers.

Voltage Control Oscillator Compensation

Figure 10 illustrates noncompensated Oscillator Drift versus temperature. The recommended T_C of the R4, R5, C7 combination is -300 PPM. This will hold the oscillator drift to approximately $\pm 1\%$ over a temperature range of -40 to $+85^{\circ}$ C. Allowing $\pm 2\%$ for aging of the timing components acceptable performance is still obtained.

Lamp Sensitivity

It may be desirable in some cases, to change the lamp sensitivity due to differing signal levels produced by various FM detectors. The lamp sensitivity can be changed by making use of the external circuit shown. Typical sensitivities versus potentiometer rotation are also shown in Figure 15.

Alignment Procedure

The optimum alignment procedure, with no input signal applied, is to adjust R5 until 19.00 kHz is read at pin 10 on the frequency counter.

Another procedure requiring no equipment, other than the receiver itself, will result in separation of within a few dB of optimum. This latter method is merely to tune the receiver to a stereo broadcast and adjust R5 until the pilot lamp turns "on". To find the center of the lock-in range, rotate the potentiometer back and forth until the center of the lamp "on" range is found. This completes the alignment.

Alternate Timing Network

The alternate timing network shown, incorporating a trimmer capacitor rather than a potentiometer, may be used if desired. Again, to provide correct temperature compensation, the temperature coefficient of the timing network must be approximately –300 PPM.

Maximum Load Resistance

The curve shown gives absolute maximum load resistance values versus supply voltage used for full-signal handling capability. With desired load resistance choose C2, C3 capacitors to provide standard 75 μ s de-emphasis.

APPLICATIONS INFORMATION (continued)

Capture Range versus Timing Components The capture range can be changed to some extent by

In a capture range can be changed to some extent by use of different timing components. Typical values are shown in Figure 12.

Composite Signal

Due to confusion concerning the measurement of the stereo composite signal, a curve showing both RMS and p-p composite levels versus pilot level follows, see Figure 18.

Audio Output

different types of input is as follows: INPUT Single-Channel Monaural Composite Signal Signal

Composite Signal	Signal
0.45	0.5

These figures are for 3.9-kilohm load resistors and for low-audio frequencies where de-emphasis roll-off is insignificant.

MC1311P

FM STEREO DEMODULATOR

Product Preview

FM STEREO DEMODULATOR

- ... a monolithic device designed for use in solid-state stereo receivers.
- Unity Gain
- Requires no Inductors
- Low External Part Count
- Emitter-Follower Outputs
- Only Oscillator Frequency Adjustment Necessary
- Integral Stereo/Monaural Switch 100 mA Lamp Driving Capability
- Wide Dynamic Range: 0.5 2.8 Vp-p Composite Input Signal
- Excellent Supply Range and Ripple Rejection
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range
- Low Distortion: Typically 0.5% THD at 560 mV (RMS) Composite Input Signal
- Excellent SCA Rejection

FM STEREO DEMODULATOR

MONOLITHIC SILICON INTEGRATED CIRCUIT

CASE 648

See Packaging Information Section for outline dimensions.

MC1311P (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	16	Volts
Lamp Current	100	mA
Power Dissipation (Package limitation)	625	mW
Derate above T _A = +25 ^o C Operating Temperature Range (Ambient)	5.0 -30 to +85	mW/ ^o C ^o C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS Unless otherwise noted: V_{CC} = +12 Vdc, T_A = +25°C, 560 mV(RMS) (2.8 Vp-p) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV(RMS) pilot level (10%), using circuit of Figure 1.

Characteristic	Min	Тур	Max	Unit
Maximum Input Signal (1.0% THD)	2.8	-	-	Vp-p
Power Supply Ripple Rejection (100 Hz)	-	45	_	dB
Input Impedance	20	50		kΩ
Stereo Channel Separation	30	40	-	dB
Voltage Gain (Vp-p out/Vp-p in)	-	1.0	-	V/V
Monaural Channel Balance (pilot tone "off")	-	-	1.5	dB
Total Harmonic Distortion	-	0.5	_	%
Ultrasonic Frequency Réjection 19 kHz	-	34.4	-	dB
38 kHz	-	45	-	
Inherent SCA Rejection (f = 67 kHz; 9.0 kHz beat note measured with 1.0 kHz modulation "off")	-	75	-	dB
Stereo Switch Level				mV(RMS)
19 kHz input level for lamp "on"	-	-	20	
19 kHz input level for lamp "off"	5.0	-	-	1
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)	-	±3.5	-	%
Current Drain (lamp "off")	-	27	-	mAdc

SQ* DECODER

MC1312P MC1313P

MONOLITHIC CBS SQ* DECODER

. . . a matrix system designed to decode an SQ* encoded program into four separate channels. These devices conform to specifications for decoding quadraphonic records produced by the largest record companies in the world.

Both Home Entertainment (MC1312) and Automotive (MC1313) Versions Available

High Input Impedance MC1312P - 3.0 Megohms typ, MC1313P - 1.8 Megohms typ

Low Harmonic Distortion MC1312P - 0.1% typ, MC1313P - 0.25% typ

 $\begin{array}{l} \mbox{High Signal Handling Capability} \\ \mbox{MC1312P} = 2.0 \mbox{ V(RMS) min, MC1313P} = 0.8 \mbox{ V(RMS) min} \\ \mbox{MC1313 Provides Excellent Performance at V}_{CC} = +8.0 \mbox{ Vdc} \end{array}$

FOUR-CHANNEL SQ* DECODER MONOLITHIC SILICON INTEGRATED CIRCUIT

This component is sold without patent indeminity and any infringement resulting from use or result thereof shall be the sole responsibility of purchaser and shall not be the responsibility of manufacturer or distributor even though such use is in accordance with manufacturer's recommendations.

*Trademark of Columbia Broadcasting System, Inc.

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	25	Vdc
Power Dissipation (Package Limitation)	625	mW
Derate above $T_A = +25^{\circ}C$	5.0	mW/ ^o C
Operating Temperature Range MC1312P	0 to +75	°C
MC1313P	-40 to +85	
Storage Temperature Range	-65 to +150	°C

 $\label{eq:constraint} \begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.5cm} (v_{CC} \hspace{0.5cm} \text{for MC1312P} = +20 \hspace{0.5cm} \text{Vdc}, \hspace{0.5cm} v_{in} = 0.5 \hspace{0.5cm} \text{V(RMS)}, \hspace{0.5cm} \text{for MC1313P} \hspace{0.5cm} v_{CC} = +12 \hspace{0.5cm} \text{Vdc}, \hspace{0.5cm} v_{in} = 0.2 \hspace{0.5cm} \text{V(RMS)}, \hspace{0.5cm} \text{T}_{\textbf{A}} = +25^{o} \text{C} \hspace{0.5cm} \text{unless otherwise noted.} \hspace{0.5cm} \text{(See Figure 3.)} \end{array}$

Characte	ristic	Min	Тур	Max	Unit
Supply Current Drain	MC1312P	11	16	21	mA
	MC1313P	6.5	9.0	12.5	
Input Impedance	MC1312P	1.8	3.0	_	MΩ
	MC1313P	1.0	1.8	_	
Output Impedance		-	5.0		kΩ
Channel Balance (LF/RF)		~1.0	0	+1.0	dB
Voltage Gain LF/LT or RF/RT		-1.0	0	+1.0	dB
Relative Voltage Gain LB'/LF', RB'/L	=', LB'/RF', RB'/RF'	-2.0	-3.0	-4.0	dB
L_{F} ' measurements made with L_{T} inp R_{T} input.	but, R_F' measurements made with				
Maximum Input Voltage for 1%THD at	Output MC1312P	2.0	-		V(RMS)
RT or LT	MC1313P	0.8	-	-	
Total Harmonic Distortion	MC1312P	-	0.1	-	%
RT or LT	MC1313P	-	0.25	-	
Signal to Noise Ratio (Short-Circuit Ing	out V _O = 0.5 V(RMS) MC1312P	-	80	-	dB
with Output Noise Referenced to Ou Voltage, V_{O} (BW = 20 Hz to 20 kHz		-	74	-	

TYPICAL CHARACTERISTICS

FIGURE 2 - CURRENT DRAIN

FIGURE 3 - TEST CIRCUIT

*R1 is used for input impedance measurement. S1 is normally closed.

MC1312P, MC1313P (continued)

APPLICATIONS INFORMATION

FIGURE 4 - DECODING PROCESS DIAGRAM

The decoding process is shown schematically in Figure 4. The MC1312P/MC1313P circuits that perform this function consists of two preamplifiers which are fed with left total, L_T , and right total, RT, signals. The preamplifiers each feed two all-pass* networks that are used to generate two L_T signals in quadrature and two R_T signals in quadrature. The four signals are matrixed to yield left-front, left-back, right-front, and right-back signals (LF', LB',

 $R_{F'}$, $R_{B'}$). The all-pass networks are of the Wein bridge form with the resistive arms realized in the integrated circuit and the RC arms formed by external components. The values shown in Figure 1 are for a 100-Hz to 10-kHz bandwidth and a phase ripple of $\pm 8.5^{0}$ on a 90^{0} phase difference.

It is generally desirable to enhance center-front to center-back separation. This is accomplished by connecting a resistor between pins 2 and 11 (front outputs) and a resistor between pins 3 and 14 (back outputs). For a 10% front channel blending[†] and a 40% back channel blending[†], 47 kilohms between pins 2 and 11 and

*An all-pass network produces phase shift without amplitude variations.

L

F

7.5 kilohms between pins 3 and 14 is required and results in the following equations:

$$\begin{split} ^{\dagger} R_{F}^{\,\prime\prime\prime} &= 0.912 \, L_{T}^{} + 0.088 \, R_{T} \\ L_{F}^{\,\prime\prime\prime} &= 0.912 \, R_{T}^{} + 0.088 \, L_{T} \\ R_{B}^{\,\prime\prime\prime} &= \frac{\sqrt{2}}{2} \, \left[0.714 \, (JR_{T}^{} - L_{T}^{}) + 0.286 \, (R_{T}^{} - JL_{T}^{}) \right] \\ L_{B}^{\,\prime\prime\prime} &= \frac{\sqrt{2}}{2} \, \left[0.714 \, (JL_{T}^{} - R_{T}^{}) + 0.286 \, (L_{T}^{} - JR_{T}^{}) \right] \end{split}$$

To meet the EIA matrix standards with 10/40 blend use the circuit of Figure 5, which results in the following equations:

$$\begin{split} &\mathsf{R_F}'' = 0.772 \; (0.995 \; \mathsf{R_T} + 0.0972 \; \mathsf{L_T}) \\ \mathsf{L_F}'' = 0.772 \; (0.995 \; \mathsf{L_T} + 0.0972 \; \mathsf{R_T}) \\ &\mathsf{R_B}'' = \frac{\sqrt{2}}{2} \; (0.769) \; \left[0.928 \; (\mathsf{JR_T} - \mathsf{L_T}) + 0.372 \; (\mathsf{R_T} - \mathsf{JL_T}) \right] \\ &\mathsf{L_B}'' = \frac{\sqrt{2}}{2} \; (0.769) \; \left[0.928 \; (\mathsf{JL_T} - \mathsf{R_T}) + 0.372 \; (\mathsf{L_T} - \mathsf{JR_T}) \right] \end{split}$$

MC1324P

DUAL CHROMA DEMODULATOR

FIGURE 1 – MC1324 TYPICAL APPLICATION

See Packaging Information Section for outline dimensions.

MC1324P (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	V(pk)
Reference Signal Input Voltage	5.0	V(pk)
Minimum Load Resistance	2.2	k ohms
Luminance Input Voltage	12	V(p-p)
Blanking Input Voltage	7.0	V (p-p)
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°c
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 24 \text{ Vdc}$, $V_{ref} = 1.0 \text{ V}(p-p)$, $R_{L} = 3.3 \text{ k ohms}$, $T_{A} = +25^{\circ}C$ unless otherwise noted.) Characteristic Pin No. Min Typ Max

Characteristic		Pin No.	Min	Тур	Max	Unit
STATIC CHARACTERISTICS (See Figure 2.)						
Quiescent Output Voltage		1,2,4	14.3	15	16.3	Vdc
Quiescent Input Current				6.0		mA
(R _L = ∞) (R _L = 3.3 k ohms)			16.5	8.0 19	25.5	
Reference Input dc Voltage		5,12,13	_	6.8	-	Vdc
Chroma Input dc Voltage		8,9,10		3.6	-	Vdc
Differential Output Voltage		1,2,4	_	0.3	0.6	Vdc
Output Temperature Coefficient (Reference Input Voltage = 1.0 V(p-p), +25 ⁰ to +6	:5 ⁰ C)	1,2,4	-	3.0	-	mV/ ⁰ C
DYNAMIC CHARACTERISTICS (See Figure 3.)			`	.		
Detected Output Voltage (See Note 1.)		4				V(pk)
	+(B-Y) -(B-Y)		4.0 4.0	5.0 5.0	-	
Chroma Input Voltage (B-Y Output = 5.0 V[p-p]) (S	See Note 2.)	8	-	0.36	0.7	V(p-p)
Luminance Input Resistance		3	100	-	-	kΩ
Luminance Gain From Pin 3 to Outputs		1,2,4				-
(@ dc) (@ 5.0 MHz)			-	0.95 0.5	_	
Blanking Input Resistance		6				kΩ
1.0 Vdc 0 Vdc				1.1 75	-	
Detected Output Voltage (Adjust B-Y Output to 5.0 V(p-p), Luminance Voltage = 23 V)		4				V(p-p)
olo v(p.p), calimance voltage 20 v)	G-Y Output	1	0.75	1.0	1.25	
	R-Y Output	2	3.5	3.8	4.2	
Relative Output Phase (B-Y Output = 5.0 V(p-p), Luminance Voltage = 23 V)						Degrees
3.8 ∨(p-p)	B-Y to R-Y Output	4,2	101	106	111	
256° 106° 5.0 V(p-p)	B-Y to G-Y Output	4,1	248	256	264	
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage	e)	1,2,4	-	100	500	mV(p-p)
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B-Y Output = 5.0 V[p-p])		1,2,4	-	-	1.0	V (p-p)
Reference Input Resistance		12,13	-	2.0	-	kΩ
Reference Input Capacitance		12,13	-	6.0	-	pF
Chroma Input Resistance		9,10	-	2.0	-	kΩ
Chroma Input Capacitance		9,10	-	2.0	-	pF

NOTES:

1. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 V(p-p).

2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5 V (p-p). The Chroma Input Voltage at this point should be equal to or less than 0.7 V (p-p).

TEST CIRCUITS (V_{CC} = 24 Vdc, R_L = 3.3 Kilohms, T_A = +25^oC unless otherwise noted.)

FIGURE 2 - DC OUTPUT VOLTAGE TEST CIRCUIT WITH NORMAL REFERENCE INPUT VOLTAGE

TYPICAL CHARACTERISTICS

FIGURE 6 - CIRCUIT SCHEMATIC

MC1326

DUAL CHROMA DEMODULATOR

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH R G B MATRIX AND CHROMA DRIVER STAGES

 \ldots . a monolithic device designed for use in solid-state color television receivers.

- Luminance Input Provided
- Good Chroma Sensitivity 0.3 Vp-p Input for 5 Vp-p Output
- Low Differential Output DC Offset Voltage 0.6 V max
- DC Temperature Stability 3 mV/^oC typ
- Negligible Change in Output Voltage Swing with Varying 3.58 MHz Reference Input Signal
- High Ripple Rejection Achieved with MOS Filter Capacitors
- High Blue Output Voltage Swing 10 Vp-p typ
- Blanking Input Provided

8

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	Vp-p
Blanking Input Voltage	7.0	Vp-p
Power Dissipation (Package Limitation) Plastic Packages Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

PQ SUFFIX PLASTIC PACKAGE CASE 647

FIGURE 1 - MC1326 TYPICAL APPLICATION

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (V^+ = 24 Vdc, R₁ = 3.3 k ohms, T_A = +25^oC unless otherwise noted)

Characteristic	Pin No.	Min	Тур	Max	Unit
STATIC CHARACTERISTICS					
Quiescent Output Voltage See Figure 2	1, 2, 4	13	14.4	16	Vdc
Quiescent Input Current from Supply (Figure 2) (R _L = ∞) (R _L = 3.3 k ohms)		- 16.5	6.0 19	_ 25.5	mA
Reference Input DC Voltage (Figure 2)	5,12,13	_	6.2	-	Vdc
Chroma Reference Input DC Voltage (Figure 2)	8,9,10	-	3.4		Vdc
Differential Output Voltage (Reference Input Voltage = 1.0 Vp-p) See Note 1 and Figure 3	1, 2, 4	_	0.3	0.6	Vdc
Output Voltage Temperature Coefficient (Reference Input Voltage = 1.0 Vp-p, +25 ^o to +65 ^o C) See Note 1 and Figure 3	1, 2, 4	-	3.0	_	mV/ ⁰ C
DYNAMIC CHARACTERISTICS (V ⁺ = 24 Vdc, R _L = 3.3 k ohms,	Reference Input Volta	age = 1.0 Vp-	$p, T_{A} = +25^{\circ}$	C unless othe	rwise noted)
Blue Output Voltage Swing See Note 2 and Figure 4	4	8.0	10	_	Vp-p
Chroma Input Voltage (В Output = 5.0 Vp-p) [.] See Note 3 and Figure 4	8	-	0.3	0.7	Vp-p
Luminance Input Resistance	3	100	-	and an	kΩ
Luminance Gain From Pin 3 to Outputs (@ dc) (@ 5.0 MHz)	1, 2, 4	_	0.95 0.5	_	-
Blanking Input Resistance 1.0 Vdc 0 Vdc	6		1.1 '75		kΩ
Detected Output Voltage (Adjust B Output to 5.0 Vp-p, Luminance Voltage = 23 V)	4				Vp-p
See Note 4 G Output R Output	1 2	0.75 3.5	1.0 3.8	1.25 4.2	
Relative Output Phase (B Output = 5.0 Vp-p, Luminance Voltage = 23 V)					Degrees
B to R Output B to G Output 256° 100° 5.0Vp-p	4, 2 4, 1	101 248	106 256	111 264	
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1, 2, 4	-	250	500	mVp-p
B-Y Phase Shift (B-Y Reference Input to B-Y Output)	4, 13	-	3	-	Degrees
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output = 5.0 Vp-p)	1, 2, 4	_	0.7	1.5	Vp-p
Reference Input Resistance (Chroma Input = 0)	12, 13		2.0	_	kΩ
Reference Input Capacitance (Chroma Input = 0)	12, 13	-	6.0	-	pF
Chroma Input Resistance	8, 9, 10	-	2.0	_	kΩ
Chroma Input Capacitance	8, 9, 10	-	2.0	-	pF

NOTES:

With Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage = 1.0 Vp-p, all output voltages will be within specified limits and will not differ from each other by greater than 0.6 Vdc.
 With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 0.6 Vp-p.
 With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5 Vp-p. The Chroma Input Voltage at this point should be equal to or less than 0.7 Vp-p.
 With normal Reference Input Signal Voltage, adjust the Chroma Input Signal until the Blue Output Voltage = 5 Vp-p. At this point, the Red and Green voltages will fall within the specified limits.

REFERENCE 1.0 Vp-p

220 pF 🕽

TEST CIRCUITS (V+ = 24 Vdc, R_L = 3.3 Kilohms, T_A = +25^oC unless otherwise noted)

FIGURE 5 - CIRCUIT SCHEMATIC

CIRCUIT OPERATION

A double sideband suppressed carrier chroma signal flows between the bases of the two differential pairs, Q16 and Q17, Q18 and Q19. A reference signal of approximately 1 Vp-p amplitude having the same frequency as the suppressed chroma carrier with an appropriate phase relationship is supplied between the bases of the upper differential pairs Q6 and Q7, Q8 and Q9, Q10 and Q11, Q12 and Q13. The upper pairs are switched between full conduction and zero conduction at the carrier frequency rate. The collectors of the upper pairs are coss-coupled so that "doubly balanced" or "full-wave" synchronous detected chroma signals are obtained. Both positive and negative phases of the detected signal are available at opposite collector pairs.

While the detector section is almost identical to other available units, several excellent additional features are incorporated. Transistor Q1 is used as an emitter follower to which the collector load resistors of the detectors are returned. The collector impedances of the upper pair transistors are high compared with the collector load resistors, and any signal at the emitter of Q1 appears virtually unattenuated at the collectors of the upper pairs, and hence at the there detector output terminals. This feature may be used to mix the correct amount of the luminance portion of the color TV signal with the color difference signals produced by the detectors to give R-G-B outputs directly.

Capacitors C1, C2, and C3 compensate for most of the high frequency roll-off in the luminance signal. This is due to the collector capacitances of the detector transistors and the input capacitances of the emitter followers, Q2, Q3, Q4. Capacitors C1, C2, and C3 provide filtering of carrier harmonics from the detected color difference signals. This increases the available swing before clipping for the color difference signal, and reduces the high frequency components which must pass through the emitter followers (Q2, Q3, Q4) into the video output stages. Since high capacitance (>100 pF) is characteristic of the input impedance of a video output stage, the transistor emitter followers must operate at a high quiescent current (>5 mA) in order to pass large high frequency components without distortion. The filtering reduces the quiescent current required in the emitter followers and thus reduces dissipation in the integrated circuit.

If it is not required to mix the luminance signal via Q1, this transistor can be used for brightness control. If the base of Q1 is connected to a suitable variable dc voltage, this will vary the dc output levels of the three dtected outputs accordingly and thereby vary the picture brightness level.

Blanking of the picture during line and frame flyback may be achieved by applying a positive-going blanking signal to the base of Q22. With an extra external resistor in series with the Q1 base of approximately 5 k ohms, when Q22 is turned on by the blanking pulse, the base of Q1 will be pulled negative by the current in R1, thus forcing all three detected outputs to go negative by the same amount. In a conventional solid-state receiver with a single video output stage driving the base of the video output stage will blank the picture tube. When using the blanking input be certain the blanking pulse does not switch off the luminance input stage Q1 completely; this would turn off the collector supply for the demodulators and put the entire chroma demodulator out of lock at each blanking pulse.

Matrix for MC1326

$$-G-Y = 0.11 (B-Y) + 0.28 (R-Y)$$

For indicated requirements and output functions of the MC1326 chroma demodulator please refer to the typical application shown on the first page of this specification.

8

8-40

TYPICAL CHARACTERISTICS (continued) ($T_A = +25^{\circ}C$ unless otherwise noted)

8-41

MC1327

CHROMA DEMODULATOR

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH RGB MATRIX, PAL SWITCH, AND CHROMA DRIVER STAGES

 \ldots a monolithic device designed for use in solid-state color television receivers.

- Good Chroma Sensitivity 0.28 Vp-p Input Typical for 5.0 Vp-p Output
- Low Differential Output DC Offset Voltage 0.6 V Maximum
- Differential DC Temperature Stability 0.7 mV/^oC
- High Blue Output Voltage Swing 10 Vp-p Typical
- Blanking Input Provided
- Luminance Bandwidth Greater than 5.0 MHz

DUAL DOUBLY BALANCED

See Packaging Information Section for outline dimensions.

MC1327 (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	Vp-р
Blanking Input Voltage	7.0	Vp-р
Power Dissipation (Package Limitation) Plastic Packages Derate above $T_A = +25^{\circ}C$	625 5.0	mW mW/ºC
Operating Temperature Range (Ambient)	-20 to +75	°c
Storage Temperature Range	65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = 24 Vdc, R_L = 3.3 k ohms, T_A = +25^oC unless otherwise noted)

Characteristic	Pin No.	Min	Тур	Max	Unit
STATIC CHARACTERISTICS					
Quiescent Output Voltage (See Figure 2)	1,2,4	13.2	14.5	15.8	Vdc
Quiescent Input Current from Supply (Figure 2) (R _L = ∞) (R _L = 3.3 k ohms)		- 16	7.5 19	_ 26	mA
Reference Input DC Voltage (Figure 2)	5,12,13		6.2	- 20	Vdc
Chroma Reference Input DC Voltage (Figure 2)	8,9,10	_	3.4	_	Vdc
Differential Output Voltage (See Note 1 and Figure 2)	1,2,4	_	0.3	0.6	Vdc
Differential Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25 ^o C to +65 ^o C)	1,2,4	-	0.7	-	mV/ ^o C
Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25°C to +65°C)	1,2,4	_	+0.5	<u>+</u> 5.0	mV/ ^o C
DYNAMIC CHARACTERISTICS (V _{CC} = 24 Vdc, R _L = 3.3 k ohms, Referen	ce Input Voltage	= 1.0 Vp-p, T	A = +25 ⁰ C ur	less otherwise	noted)
Blue Output Voltage Swing (See Note 2 and Figure 3)	4	8.0	10	_	Vp-р
Chroma Input Voltage (B Output = 5.0 Vp-p) (See Note 3 and Figure 3)	8	-	280	550	mVp-p
Luminance Input Resistance	3	100	-	-	kΩ
Luminance Gain From Pin 3 to Outputs (@ dc) (@ 5.0 MHz, reference at 100 kHz)	1,2,4		0.95		-
(@ 5.0 MHz) Differential Luminance Gain, RGB Outputs (@ 5.0 MHz)		_	-1.8		dB dB
Blanking Input Resistance (1.0 Vdc) (0 Vdc)	6		1.1 75		kΩ
Detected Output Voltage (Adjust B Output to 5.0 Vp-p, Luminance Voltage = 23 V)	4				Vp-р
(See Note 4) G Output R Output	1 2	1.4 2.5	1.8 2.9	2.2 3.3	
PAL Switch Operating Voltage Range (7.8 kHz Square Wave)	11	0.3	_	3.0	Vp-р
R-Y Output dc Offset with PAL Switch Operation		-	- .	100	mVdc
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1,2,4	-	200	300	mVp-p
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output = 5.0 Vp-p)	1,2,4	-	0.6	1.0	Vp-р
Reference Input Resistance (Chroma Input = 0)	12,13	-	2.0	-	kΩ
Reference Input Capacitance (Chroma Input = 0)	12,13	-	6.0	-	pF
Chroma Input Resistance	8,9,10	-	2.0	-	kΩ
Chroma Input Capacitance	8,9,10	-	2.0	-	pF

NOTES: 1. Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage = 1.0 Vp-p.

2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 Vp-p.

3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5.0 Vp-p.

4. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5.0 Vp-p. At this point, the Red and Green voltages will fall within the specified limits.

MC1327 CHROMA DEMODULATOR (PAL)

 $\label{eq:test} \begin{array}{l} \textbf{TEST CIRCUITS} \\ (V_{CC} = 24 \; \text{Vdc}, \; \textbf{R}_L = 3.3 \; \text{kilohms}, \; \textbf{T}_A = +25^{o} \text{C} \; \text{unless otherwise noted}) \end{array}$

MC1328

DUAL CHROMA DEMODULATOR

CASE 647

FIGURE 1 - MC1328 TYPICAL APPLICATION

See Packaging Information Section for outline dimensions.

MC1328 (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise specified)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Power Dissipation (Package Limitation) Plastic Packages Derate above $T_A = +25^{\circ}C$ Metal Package Derate above $T_A = +25^{\circ}C$	625 5.0 680 4.5	mW mW/ ^o C mW mW/ ^o C
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

Maximum Ratings as defined in MIL-S-19500, Appendix A.

ELECTRICAL CHARACTERISTICS (V⁺ = 24 Vdc, R_L = 3.3 k ohms, Reference Input STATIC CHARACTERISTICS Voltage = 1.0 Vp-p, T_A = +25^oC unless otherwise noted)

Characteristic	Pin No. Suffix G Pkg	Pin No. Suffix P, PQ Pkgs	Min	Тур	Max	Unit
Quiescent Output Voltage See Figure 2	7,8,9	9,11,13	13	14.3	16	Vdc
Quiescent Input Current (See Figure 2) (R _L = ∞, Chroma and Reference Input Voltages = 0) (R _L = 3.3 k ohms, Chroma and Reference Input Voltages = 0)	6	8	 16.5	6.0 19	- 25.5	mA
Reference Input DC Voltage	4,5	6,7	-	6.2	-	Vdc
Chroma Input DC Voltage	2,3	3,4	-	3.4	-	Vdc
Differential Output Voltage See Note 1 and Figure 3	7,8,9	9,11,13	-	0.3	0.6	Vdc
Output Temperature Coefficient (No Output Differential Voltage > 0.6 Vdc, +25 ^o C to +65 ^o C) See Note 1 and Figure 3	7,8,9	9,11,13	-	3.0	-	mV/ ^o C

See Note 1 and Figure 3		1				
DYNAMIC CHARACTERISTICS (V ⁺ = 2 Refere	4 Vdc, RL = 3.3 k nced Input Voltage		= +25 ⁰ C uni	less otherwis	e noted)	
Detected Output Voltage (B-Y) See Note 2	9	13	8.0	9.0	-	Vp-p
Chromá Input Voltage (B-Y Output = 5.0 Vp-p) See Note 3	2	3	-	0.3	0.7	∨р-р
Detected Output Voltage (Adjust B-Y Output to 5.0 Vp-p) See Note 4 G-Y R-Y	7 8	9 11	0.75 3.5	1.0 3.8	1.25 4.2	Vp-р
Relative Output Phase (B-Y Output = 5.0 Vpp) B-Y to R-Y 4.0 Vpp B-Y to G-Y 256° 5.0 Vpp 1.0 Vpp	9-8 9-7	13-11 13-9	101 248	106 256	111 264	Degrees
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	7,8,9	9,11,13	-	250	500	mVp-p
B-Y Phase Shift (B-Y Reference Input to B-Y Output)	5-9	7-13	-	3	-	Degrees
Residual Carrier and Harmonics (with Input Signal Voltage, normal Reference Signal Voltage and B-Y = 5.0 Vp-p)	7,8,9	9,11,13	-	_	1.5	∨р-р
Reference Input Resistance (Chroma Input = 0)	4,5	6,7	-	2.0	-	k ohms
Reference Input Capacitance (Chroma Input = 0)	4,5	6,7	-	6.0	-	pF
Chroma Input Resistance	2,3	3,4	-	2.0	-	k ohms
Chroma Input Capacitance	2,3	3,4	-	2.0	-	pF

NOTES:

NOTES:
1. With Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage (1.0 Vp-p),all output voltages will be within specified limits and will not differ from each other by greater than 0.6 Vdc.
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 0.6 Vp-p.
3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the B-Y Output Voltage = 5 Vp-p. The Chroma Input Voltage at this point should be equal to or less than 0.7 Vp-p.
4. With normal Reference Input Signal Voltage, adjust the Chroma Input Signal until the B-Y Output Voltage = 5 Vp-p. At this point, the R-Y and G-Y voltages will fall within the specified limits.

 $\label{eq:test} \begin{array}{c} \textbf{TEST CIRCUITS} \\ (V^{+}=24 \; Vdc, \; R_{L}=3.3 \; k\Omega, \; T_{A}=+25^{o}C \; unless \; otherwise \; noted) \end{array}$

FIGURE 3 – TEST CIRCUIT WITH REFERENCE INPUT SIGNAL (Quiescent Current, DC Output Voltage, Difference Voltage)

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

7.0

8.0

V⁺ ≃ 24 Vdc

V⁺ = 20 Vdc

5.0

LOAD RESISTANCE (k OHMS)

6.0

4.0

FIGURE 11 - CIRCUIT SCHEMATIC

CIRCUIT OPERATION

A double sideband suppressed carrier chroma signal flows between the bases of the two differential pairs, Q15 and Q16, Q17 and Q18. A reference signal of approximately 1 Vp-p amplitude having the same frequency as the suppressed chroma carrier with an appropriate phase relationship is supplied between the bases of the upper differential pairs Q5 and Q6, Q7 and Q8, Q9 and Q10, Q11 and Q12. The upper pairs are switched between full conduction and zero conduction at the carrier frequency rate. The collectors of the upper pairs are cross-coupled so that "doubly balanced" or "full-wave" synchronous detected chroma signals are obtained. Both positive and negative phases of the detected signal are available at opposite collector pairs. Capacitors C1, C2 and C3 provide filtering of carrier harmonics from the detected color difference signals. This increases the available swing before clipping for the color difference signal, and reduces the high frequency components which must pass through the emitter followers (Q1, Q2, Q3) into the video output stages. Since high capacitance (>100 pF) is characteristic of the input impedance of a video output stage, the transistor emitter followers must operate at a high quiescent current (>5 mA) in order to pass large high frequency components without distortion. The filtering reduces the quiescent current required in the emitter followers and thus reduces dissipation in the integrated circuit.

MC1329P

DUAL CHROMA DEMODULATOR

FIGURE 1 - MC1329P TYPICAL APPLICATION

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise specified.)

	C unless other wise specified.)	,					
· ·	Rating			Value		Unit	
Power Supply Voltage	·····			30		Vdc	
Power Dissipation (Package Limitati	on)						
Plastic Package Derate above T _A = +25 ⁰ C				625 5.0		mW	
Chroma Signal Input Voltage						mW/ ^o C	
Reference Signal Input Voltage	······································			5.0 5.0		V(pk)	
Minimum Load Resistance						V(pk)	
Operating Temperature Range (Amb	line)			2.2 0 to +75		k ohms ^O C	
Storage Temperature Range	nent)			-65 to +1		°c	
Storage Temperature Range				-65 to +1	50	C	
LECTRICAL CHARACTERIST	Γ ICS (V _{CC} = 24 Vdc, R _L = 3.	.3 k ohms, V _{ref} = 1.0 \	/(р-р), Тд =	+25 ⁰ C unless	otherwise no	oted.)	
	teristics	Pin No.	Min	Тур	Max	Unit	
TATIC CHARACTERISTICS (See F	igure 2.)					-	
Quiescent Output Voltage		9,11,13	13	14.5	16	Vdc	
Quiescent Input Current		8				mA	
(R _L = ∞)			-	6.0	-		
(RL = 3.3 k ohms)			16.5	19	25.5		
Reference Input dc Voltage		6,7		6.9	-	Vdc	
Chroma Input dc Voltage		3,4	_	3.6		Vdc	
Differential Output Voltage		9-11, 9-13, 11-13		0.3	0.6	Vdc	
Output Temperature Coefficient (No Output Differential Voltage >	>0.6 Vdc, +25 ⁰ C to +65 ⁰ C)	9,11,13	-	3.0		mV/ ⁰ C	
YNAMIC CHARACTERISTICS (Pir			• •		L	. I	
••••••••••••••••••••••••••••••••••••••	1 4 bypassed to ground, chrom		5.)	T	T	1	
Detected Output Voltage See Note 1.	+(B-Y)	13	4.0	5.5		V(p-p)	
See Note 1.	-(B-Y)		4.0	5.5			
Chroma Input Voltage (B-Y Output = 5.0 V [p-p]) See No		3	-	0.36	0.7	V(p-p)	
Detected Output Voltage						V(p-p)	
(Adjust B-Y Output to 5.0 V[p-p])					() () () () () () () () () () () () () (
	G-Y	9	0.75	1.0	1.25		
	R-Y	11	3.5	3.8	4.2		
Relative Output Phase						Degrees	
(B-Y Output = 5.0 V[p-p])		10.11	101	100			
	B-Y to R-Y B-Y to G-Y	13-11 13-9	101 248	106 256	111		
3.8 V(p-p)	D-T 10 0-T	13-9	240	200	204		
2560							
						1	
106° 5.0 V (p-p	}						
1.0 V (p-p)							
1.0 V (p-p)							
ž							
/							
Demodulator Unbalance Voltage		9,11,13	-	100	500	mV(p-p	
(no Chroma Input Voltage and							
normal Reference Signal Input Vo							
Residual Carrier and Harmonics Out		9,11,13	-	-	1.0	V(p-p)	
(with Input Signal Voltage, norma	I Reterence Signal						
Voltage and B-Y = 5.0 V[p-p])		67		1 20	+		
Reference Input Resistance		6,7		2.0	-	k ohms	
Reference Input Capacitance		6,7		6.0		pF	
Chroma Input Resistance		3,4	-	1.0		k ohms	
Chroma Input Capacitance		3,4		2.0	<u> </u>	pF	

NOTES:

1. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 V(p-p).

2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the B-Y Output Voltage = 5.0 V(p-p). The Chroma Input Voltage at this point should be equal to or less than 0.7 V(p-p).

TYPICAL CHARACTERISTICS

(V_{CC} = 24 Vdc, R_L = 3.3 k Ω , T_A = +25^oC unless otherwise noted.)

FIGURE 3 – DETECTED OUTPUT

FIGURE 5 - POWER DISSIPATION

FIGURE 6 - CIRCUIT SCHEMATIC

MC1330P

VIDEO DETECTOR

MONOLITHIC LOW-LEVEL VIDEO DETECTOR

 \ldots . an integrated circuit featuring very linear video characteristics, wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and the AFC buffer.

- Conversion Gain 34 dB typ
- Video Frequency Response @ 6.0 MHz < 1.0 dB
- Input of 36 mV Produces 3.0 Vp-p Output
- High Video Output 7.7 Vp-p
- Fully Balanced Detector
- High Rejection of IF Carrier
- Low Radiation of Spurious Frequencies

LOW-LEVEL VIDEO DETECTOR

MONOLITHIC SILICON

PLASTIC PACKAGE CASE 626

Rating	Value	Unit
Power Supply Voltage	+24	Vdc
Supply Current	26	mAdc
Input Voltage	1.0	V(rms)
Power Dissipation (Package Limitation) $T_A = +25^{O}C$ Derate above $T_A = +25^{O}C$	625 5.0	mW mW/ ⁰ C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

See Packaging Information Section for outline dimensions.

Characteristic	Pin	Min	Тур	Max	Unit
Supply Voltage Range	6	12	20	24	Vdc
Supply Current	5,6		15	- 1	mA
Zero Signal dc Output Voltage	4	6.8	7.7	8.3	Vdc
Maximum Signal dc Output Voltage	4	-	0	-	Vdc
Input Signal Voltage for 3.0 Vp-p Video Output (90% Modulation)	7	-	36	-	mV(rms)
Maximum Output Voltage Swing	4	-	7.7	-	Vp-p
Carrier Rejection at Output	4	42	60	-	dB
Carrier Output Voltage (at 3.0 Vp-p output) f _{out} = f _C f _{out} = 2 f _C			1.0 3.0	-	mV(rms)
3.0 dB Bandwidth of IF Carrier	7	-	80	-	MHz
3.0 dB Bandwidth of Video Output	4	-	12.3	-	MHz
Input Resistance Input Capacitance	7	-	3.5 3.0		kilohms pF
Output Resistance	4	-	180	-	ohms
Internal Resistance (across tuned circuit)	2,3	-	4.4 1.0	-	kilohms pF
AFT Buffer Output at Carrier Frequency ①	1	-	350	-	mVp-p
AFT Buffer dc Level	1		6.5		Vdc

ELECTRICAL CHARACTERISTICS (V⁺ = 20 Vdc, Q = 30, f_C = 45 MHz, T_A = +25^oC unless otherwise noted.)

① Measured with 10 times probe.

TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

FIGURE 5 - OUTPUT VOLTAGE

FIGURE 6 - OUTPUT VOLTAGE

FIGURE 7 – DETECTOR LINEARITY

TV-IF Amplifier Information

A very compact high performance IF amplifier constructed as shown in Figure 11 minimizes the number of overall components and alignment adjustments. It can be readily combined with normal tuners and input tuning-trapping circuitry to provide the performance demanded of high quality receivers. This configuration will provide approximately 8d dB voltage gain and can accomodate the usual low impedance input network or, if desired, can take advantage of an impedance step-up from tuner to MC1350P input ($Z_{in} \approx 7.0$ kilohms). The burden of selectivity, formerly found between the third IF and detector, must now be placed at the interstage. The nominal 3 volt peak-to-peak output can be varied from 0 to 7.0 V with excellent linearity and freedom from spurious output products.

FIGURE 11 – TRANSFORMER

Primary Winding: 8 turns of AWG #26 close wound, CT Secondary Winding: 6 turns of AWG #26 close wound, CT Core: Arnold Type-TH slugs or equiv.

Alignment is most easily accomplished with an AM generator, set at a carrier frequency of 45.75 MHz, modulated with a video frequency sweep. This provides the proper realistic conditions necessary to operate the low-level detector (LLD). The detector tank is first adjusted for maximum detected dc (with a CW input), next, the video sweep modulation is applied and the interstage and input circuits aligned, step by step, as in a standard IF amplifier.

Note: A normal IF sweep generator, essentially an FM generator, will not serve properly without modification. The LLD tank attempts to "follow" the sweep input frequency, and results in variations of switching amplitude in the detector. Hence, the apparent overall response becomes modified by the response of the LLD tank, which a real signal doesn't do.

This effect can be prevented by resistively adding a 45.75 MHz CW signal to the output of the sweep generator approximately 3 dB greater than the sweep amplitude.

MC1330P General Information

The MC1330P offers the designer a new approach to an old problem. Now linear detection can be performed at much lower power signal levels than possible with a detector diode.

Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some

specific features and information on systems design with this device are given below:

 The device provides excellent linearity of output versus input, as shown in Figure 6. This graph also shows that video peak-to-peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a given variation of input CW and use the figure as a transfer function.)

2. The dc output level does change linearly with supply voltage. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply. 3. The choice of Q for the tuned circuit of pins 2 and 3 is not critical. The higher the Q, the better the rejection of 920 kHz products but the more critical the tuning accuracy required. Values of Q form 20 to 50 are recommended. (Note the internal resistance.)

4. A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so it must be handled with greater care. If not used, pin 5 may be connected directly to the supply voltage (pin 6).

5. An AFT output (pin 1) provides 350 mV of clipped carrier output, sufficient voltage to drive an AFT ratio detector, with only one additional stage.

MC1331P

VIDEO DETECTOR

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	16	Vdc
Supply Current	30	mAdc
Input Voltage	2.0	V(RMS)
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	750 6.7	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, Q = 20, f_C = 45 MHz, T_A = +25^oC unless otherwise noted.)

Characteristic	Pin	Min	Тур	Max	Unit
Supply Voltage Range	12	10	12	16	Vdc
Supply Current	12		25	-	mA
Zero Signal dc Output Voltage	5	6.4	7.0	7.6	Vdc
Maximum dc Current	5	-	5.0	-	mA
Maximum Signal dc Output Voltage	5	-	0	-	Vdc
Input Signal Voltage for 3.0 V(p-p) Video Output (90% modulation from HP608E)	13,14	× -	36	-	mV(RMS)
Maximum Output Voltage Swing	5	-	6.0	-	V(p-p)
Carrier Rejection at Output	5	-	20	-	dB
3.0 dB Bandwidth of Video Output	5	-	6.5	-	MHz
Input Resistance	13,14		3.0	-	kΩ
Input Capacitance		_	3.0	-	pF
Internal Resistance			5.0	-	kΩ
Internal Capacitance (across tuned circuit)	6,7	-	3.0	-	pF
Output Resistance	5		100	-	Ω
AFT Buffer Output Voltage at Carrier Frequency (measured with 10 times probe)	8	-	100	-	mV(p-p)
AFT Buffer dc Voltage Level	8	-	12		Vdc
Sound Detector Gain (1.0 mV(RMS), 41.25 MHz input to pin 11)	9		16	-	dB
Sound Detector Output Resistance	9		100	-	Ω
Positive Video Output Swing Voltage	4	-	8.0	-	V(p-p)
Sync Output Amplitude Voltage	2	-	11	-	V(p-p)

MC1339P

STEREO PREAMPLIFIER

MONOLITHIC DUAL STEREO PREAMPLIFIER

... designed for low noise preamplification of stereo audio signals.

- Low Audio Noise
- High Channel Separation
- Single Power Supply
- High Input Impedance
- Built-In Power Supply Filter
- Emitter Follower Output

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	+16	Vdc
Power Dissipation (Package Limitation) (Derate above $T_A = +25^{\circ}C$)	625 5.0	mW mW/ ^o C
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C

DUAL LOW-NOISE STEREO PREAMPLIFIER

MONOLITHIC SILICON EPITAXIAL PASSIVATED INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 646

MC1339P (continued)

ELECTRICAL CHARACTERISTICS (Each Preamplifier) (V_{CC} = +12 Vdc, T_A = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Power Supply Current	-	17.5	22	mA
Voltage Gain	63	66	71	dB
Gain Balance	-	0.3	2.0	dB
Channel Separation (f = 1.0 kHz) See Figure 1, S1 in position 1.	45	70	_	dB
Input Resistance	100	250	-	kilohms
Signal Output Voltage No Ioad 3.0-kilohm Ioad	-	1.5 1.0	-	V(RMS)
Output Resistance	_	100	-	ohms
Power Supply Rejection (f = 1.0 kHz) See Figure 2	-	33	-	dB
Total Harmonic Distortion without Feedback (0.5 V(RMS) into a 3.0-kilohm load, 1.0 kHz)	_	1.2	_	%
Input Bias dc Current		0.8	-	μA
Gain to Feedback Terminals (pins 3 and 12)	-	45	-	dB
Impedance at Feedback Terminals		2400	-	ohms
Equivalent Input Noise Voltage (100 Hz to 10 kHz) See Figure 1, S1 in position 2.	_	0.7	3.0	μV(RMS)

TEST CIRCUITS

FIGURE 1 – CHANNEL SEPARATION AND AUDIO NOISE

FIGURE 2 - POWER SUPPLY REJECTION

APPLICATIONS INFORMATION

The circuit diagrams shown in this section are examples of applications for the MC1339P. Included are circuits for a broadband preamplifier with tape playback and record amplifiers, and a phono preamplifier.

Broadband Amplifiers

The MC1339P is useful as a broadband amplifier in applications requiring a low-signal level low-noise amplifier. The circuit in Figure 3 fills these requirements with a voltage gain of 40 dB and an input impedance of 10 kilohms.

Figure 4 shows the response of the broadband amplifier with two different values of compensation capacitors, C1. Other capacitor values can be used; however, as the phase margin is reduced a greater possibility of oscillation exists.

FIGURE 4 - BROADBAND AMPLIFIER RESPONSE

Tape Playback Preamplifier

A low-noise, high-gain preamplifier to properly process the low-level output of the magnetic tape-heads is shown in Figure 5 illustrating a tape-head preamplifier using the MC1339P.

To faithfully reproduce recorded music from magnetic tape, special frequency compensation is required to provide the NAB standard tape playback equalization characteristics, see the response curves shown in Figure 6. The circuit shown in Figure 5 is designed to provide an output of 100 millivolts with an input signal of 2.2 millivolts at a frequency of 1.0 kHz. (Reference gain is 33 dB).

FIGURE 5 - TAPE PLAYBACK PREAMPLIFIER

+12 V

The lower -3.0 dB corner frequency (f1) is determined by the value for capacitor C1 in accordance with equation 1.

$$C1 = \frac{A_3}{2\pi z 3f1}$$
(1)

where z3 is the impedance at pin 3 (2.4 kilohms) and A3 is the amplifier gain at pin 3 (178).

The minimum high-frequency gain (5 dB below reference gain of 33 dB) of the amplifier is determined by the ratio of $\frac{R1 + R_F}{R1}$ while the value of capacitor C_F provides the bass boost corner frequency in accordance with equation 2.

$$C_{F} = \frac{1}{2\pi R_{F} f^{2}}$$
(2)

Based on measurements made on the amplifier (See Figure 5), the value of C2 is chosen for a phase margin greater than thirty degrees.

The nearest 10% tolerance component values were used in the circuit of Figure 5.

FIGURE 6 – FREQUENCY RESPONSE FOR TAPE PLAYBACK PREAMPLIFIER (TAPE SPEED 1 7/8 OR 3 3/4 IN/S)

Tape Record Preamplifier

The frequency response of a tape recording preamplifier must be the mirror image of the NAB playback equalization characteristic, so that the composite record and playback response is flat. Figure 7 shows the record characteristic superimposed on the NAB playback response and Figure 8 illustrates the output characteristic of

APPLICATIONS INFORMATION (continued)

a typical laminated core tape head. Figure 9 shows the necessary amplifier response characteristic to make a composite signal of Figures 8 and 9 that will meet the proper NAB recording characteristic of Figure 7.

FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 9 - TAPE RECORD AMPLIFIER RESPONSE

The circuit shown in Figure 10 will give the preamplifier response as presented in Figure 9.

The gain is established by the equation

GAIN =
$$\frac{R3 + z_f}{z_f}$$
 where $z_f = \frac{R2 (R1 + \frac{1}{2\pi f C3})}{R2 + (R1 + \frac{1}{2\pi f C3})}$ (3)

The high corner frequency, f2, is determined by equation 4.

$$C3 = \frac{1}{2\pi f 2 R2}$$
(4)

1

At high frequencies the feedback impedance z_f is R1 in parallel with R2 and at low frequencies is R2. Again, capacitor C1 is chosen by equation 1 to give the desired low frequency breakpoint, f1. As an example, consider a recording head requiring 30 μ A is used with a microphone with a 10-mV output. The 30- μ A current source is simulated by a 1.0 V(RMS) output driving a 33-kilohm registor, R4, at the reference frequency of 1.0 kHz. The gain requirement is therefore 100 or 40 dB. The low-frequency gain is calculated by letting R2 = 100 ohms and calculating the value of R3 for frequencies below f2.

$$A_{V} = \frac{R2 + R3}{R2} = 125 \qquad R3 = 124 (R2) \approx 12 \text{ k}\Omega.$$
(5)

A 15-kilohm resistor is used to achieve the gain necessary since the open-loop gain of the amplifier is not infinite.

The typical response for a quarter-track (3% in/s) tape-head is 3.0 dB down at 1770 Hz. Therefore, the high-corner frequency (f2) of the record amplifier should be at the same frequency. Using equation 4 the value of C3 is calculated to be 1.0 μ F. Resistor R1 is not needed to roll-off the high-frequency gain at frequencies above 20 kHz since the limited open-loop gain of the MC1339P accomplishes the same thing. The parallel LC circuit at the amplifier output is used to trap the bias oscillator signal and is tuned to that frequency.

Phonographic Preamplifier

Crystal and ceramic phono-cartridges seldom require a preamplifier due to high-output signal levels (100 mV to 1.0 V). However, magnetic cartridges have output levels of from 2.0 to 12 mV and require a preamplifier such as the MC1339P. Special equalization of the preamplifier is necessary to make the response match the RIAA recording characteristic which is used universally. The amplifier shown in Figure 11 does provide the proper response

APPLICATIONS INFORMATION (continued)

FIGURE 11 - PHONOGRAPH PREAMPLIFIER

for RIAA equalization. Figure 12 illustrates the RIAA response of the amplifier in Figure 11. The dashed line shows the ideal response with the corner frequencies indicated. The lower corner frequency (f1) is determined by the input capacitance C1 and the equation

$$f1 = \frac{A_f}{2\pi C1 z3}$$
(6)

where A_f is the feedback gain of 45 dB and z3 equals the terminal resistance at pin 3. The corner frequency f2 is determined by

$$f2 = \frac{1}{2\pi \text{ R1 C2}}$$
and f3 is calculated from
$$f3 = \frac{1}{2\pi \text{ R1 C3}}$$
(7)

Printed Circuit Board Layout

Most of the circuits in the applications section can be built on this printed circuit board layout. Printed circuit board design is not particularly critical with the MC1339P. However, usual layout practices such as keeping the input and output lines separated and providing maximum ground plane area should be used. The layout shown is for Figure 5 but it can easily be modified without any problem for the other application circuits given.

MC1344P

TV SIGNAL PROCESSOR

See Packaging Information Section for outline dimensions.

MC1344P (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage (Pin 11)	+22	Vdc
Video Input Voltage (Pin 1)	+10	Vdc
Negative RF AGC Supply Voltage (Pin 3)	-10	Vdc
Gating Voltage (Pin 9)	15	Vp-р
Sync Separator Drive Voltage (Pin 12)	7.0	Vp-p
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	m₩ mW/ ^o C
Operating Temperature Range (Ambient)	0 to +70	°C
Storage Temperature Range	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +18 Vdc, T_A = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Sync Tip dc Level of Input Signal	3.4	3.9	4.2	Vdc
Temperature Coefficient of Sync Tip (Input)	-	_	1.0	mV/°C
Sync Output Amplitude	-	16		Vp-p
Sync Output Impedance	-	_	100	Ohms
Sync Tip to Noise Threshold Separation (Input)	0.45	0.7	0.95	Vdc
IF AGC Voltage Change During RF Interval	-	0.10	0.5	Vdc
Peak AGC Charge Current	-	15	_	mAdc
Peak AGC Discharge Current	_	0.9	_	mAdc
IF AGC Voltage Range	9.0	-	-	Vdc
Positive RF AGC Voltage Range	_	10	-	Vdc
Positive RF AGC Minimum Voltage	0.5	1.5	2.0	Vdc
Negative RF AGC Voltage Range	NUM	10		Vdc
Negative RF AGC Maximum Voltage	9.5	10.2	12	Vdc
Total Supply Current, IS (Circuit of Figure 1)	-	22	-	mAdc

NORMAL SYNC SEPARATION NETWORK

TEST CIRCUIT FOR AGC AMPLIFIER MEASUREMENTS

CIRCUIT SCHEMATIC

8-68

MC1349P

IF AMPLIFIER

See Packaging Information Section for outline dimensions.

MC1349P (continued)

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted).

Rating	Value	Unit
Power Supply Voltage (V _{CC1})	+18	Vdc
Output Supply Voltage (V _{CC2})	+18	Vdc
AGC Supply Voltage	≦ V _{CC1} (pin 2)	Vdc
Differential Input Voltage	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC1} = +12 Vdc [pin 2], V_{CC2} = +15 Vdc [pins 1 and 8], T_A = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.5 V) (Figure 3)	70	80	-	dB
Power Gain (Pin 5 grounded via 5.1 k Ω resistor, input pin 4)				dB
f = 45 MHz, BW (3 dB) = 4.5 MHz, Tuned Input, pin 3 open	52	60	-	
Untuned Input, pin 3 bypassed	_	61	-	
f = 58 MHz, BQ (3 dB) = 4.5 MHz, Tuned Input, pin 3 open	-	56	-	
Untuned Input, pin 3 bypassed	-	59	-	
Maximum Differential Output Voltage Swing	-	6.0	-	Vp-p
Output Stage Current (pins 1 and 8)		9.0		mA
Amplifier Current (pin 2)	-	15	20	mAdc
Power Dissipation	-	315	400	mW
Noise Figure f = 45 MHz, Tuned Input, pin 3 open, Gain Reduction = 15 dB	-	8.5	-	dB

$\textbf{DESIGN PARAMETERS} ~ (V_{CC1} = +12 ~ Vdc, ~ [pin 2], ~ V_{CC2} = +15 ~ Vdc, ~ [pins 1 ~ and 8], ~ T_A = +25^{o}C ~ unless ~ otherwise ~ noted.)$

		Freq	Frequency		
Parameter	Symbol	45 MHz	58 MHz	Unit	
Single-Ended Input Admittance, input pin 4, AGC min				mmhos	
Pin 3 open	g11	0.74	0.95		
Pin 3 open	b 11	1.9	2.4		
Pin 3 bypassed	g11	4.1	5.4		
Pin 3 bypassed	b11	6.5	6.9		
Differential Output Admittance , AGC max				μmhos	
	g22	5.5	8.3		
	b22	270	360		
Reverse Transfer Admittance (magnitude)		1.5	2.0	μmhos	
Forward Transfer Admittance			· · · · · · · · · · · · · · · · · · ·		
Magnitude, pin 3 open		520	400	mmhos	
Angle (0 dB AGC), pin 3 open		100	130	degrees	
Magnitude, pin 3 bypassed		1020	800	mmhos	
Angle (0 dB AGC), pin 3 bypassed		120	400	degrees	
Single-Ended Input Capacitance, AGC min				pF	
Pin 3 open		6.8	6.7		
Pin 3 bypassed		2.3	20		
Differential Output Capacitance (AGC max)		1.0	1.0	pF	

FIGURE 2 - CIRCUIT SCHEMATIC

GENERAL INFORMATION

The MC1349P is an improved version of the MC1350P. Featuring higher gain, a lower noise figure, and greater AGC range; in addition, an emitter of the input amplifier is available for bypassing. This provides a low input impedance with good gain, useful for untuned input configurations.

Both input and output IF amplifier sections are gain-controlled in the MC1349P, with the input amplifier also serving as an AGC amplifier for the output section. During the initial part of AGC gain reduction, the gain of the input amplifier decreases only a few dB while the output section decreases 15 dB; further AGC acts upon the input section. Although the gain reduction curve was taken with 5.1 kilohms at pin 5, higher series resistance can be used to reduce the voltage and temperature sensitivity of the AGC. Pin 5 currents are shown on the AGC curve, see Figure 10. In use, it is important to bypass pin 2, both for IF frequencies and for low frequencies, (as shown in the test circuits). This is due to the dual function of the input amplifier. If replacing MC-1350P take precaution not to ground pin 3, (not used in the MC1350P). Due to the significantly higher gain of the MC1349P, extra care in layout should be exercised.

NOTE 1: The references to bypasses at pin 3 do not give specific values (C4, see Figures 1 and 4). In all cases, measurements were taken with a bypass at a standard value as near as possible to series resonance. The values are dependent on test frequency and circuit layout. Fully bypassing pin 3 reduces the input signal handling capability before distortion from over 100 mV(RMS) to approximately 25 mV(RMS). C4 = 0.002 μF at f = 45 MHz is a typical value for printed circuit applications.

TEST CIRCUITS

FIGURE 3 - TUNED INPUT (PIN 3 OPEN)

FIGURE 4 – UNTUNED INPUT (PIN 3 BYPASSED TO GROUND)

PARTS LIST

COMPONENT	45 MHz	58 MHz
C1	8-60 pF	50-100 pF
C2	3-35 pF	3-35 pF
C3	1-7.0 pF	1-7.0 pF
C4	82-470 pF	82-470 pF
CP	0.0015 µF	0.001 µF
L1	0.84 µH	0.33 μΗ
Lp	10 µH	10 µH
		•

T1 Primary 14 turns center-tapped Secondary 2% turns (45 MHz tuned input pin #3 open) 1% turns (all other fixtures) wound over primary

Wire: #26 AWG tinned nylon acetate wound on 1/4" diameter coil form Core: Arnold Type TH, 1/2" long or equivalent.

FIGURE 7 - SINGLE-ENDED FORWARD TRANSFER ADMITTANCE

y21 A

∠ y21 B

2000

1600

1200

800

400

0

10

| y21 | B

y21 | A

A = pin 3 open B = pin 3 bypassed to ground

20

| y21 |, MAGNITUDE OF FORWARD TRANSFER ADMITTANCE (mmhos)

TYPICAL CHARACTERISTICS

FIGURE 8 – DIFFERENTIAL OUTPUT ADMITTANCE (MAXIMUM AGC)

FIGURE 9 - NOISE FIGURE

30

FREQUENCY (MHz)

50

0.7

0.5

0.1 22

0

MC1350P

SOUND IF AMPLIFIER

See Packaging Information Section for outline dimensions.

MC1350P (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v+	+18	Vdc
Output Supply Voltage	V ₁ , V ₈	+18	Vdc
AGC Supply Voltage	VAGC	V+	Vdc
Differential Input Voltage	V _{in}	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above 25 ⁰ C	PD	625 5.0	mW mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C

ELECTRICAL CHARACTERISTICS (V^+ = +12 Vdc; T_A = +25^oC unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.0 V	/)(Figure 1)		60	68	-	dB
Power Gain (Pin 5 grounded via a 5	1 kΩ resistor)	Ap		1 · · · · · · · · · · · · · · · · · · ·		dB
f = 58 MHz, BW = 4.5 MHz)	0		-	48	-	
f = 45 MHz, BW = 4.5 MHz	See Figure 5		46	50	-	
f = 10.7 MHz, BW = 350 kHz	Car Ciaura C		-	58	-	
f = 455 kHz, BW = 20 kHz ∫	See Figure 6		-	62	-	
Maximum Differential Voltage Swin	9	V _o				V _{p-p}
0 dB AGC		-	-	20	-	
-30 dB AGC			-	8.0	-	
Output Stage Current (Pins 1 and 8)		11+18	-	5.6	-	mA
Total Supply Current (Pins 1, 2 and	8)	IS	-	14	17	mAdc
Power Dissipation		PD	-	168	204	mW

DESIGN PARAMETERS, Typical Values (V+ = +12 Vdc, T_A = +25^oC unless otherwise noted)

			Fre	quency		
Parameter	Symbol	455 kHz	10.7 MHz	45 MHz	58 MHz	Unit
Single-Ended Input Admittance	911 b11	0.31	0.36 0.50	0.39 2.30	0.5 2.75	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	Δg11 Δb11		-	60 0		μmhos
Differential Output Admittance	922 b22	4.0 3.0	4.4 110	30 390	60 510	μmhos
Output Admittance Variations with AGC (0 to 60 dB)	∆g ₂₂ ∆b ₂₂		-	4.0 90		μmhos
Reverse Transfer Admittance (Magnitude)	V12	<< 1.0	<<1.0	<< 1.0	<<1.0	μmho
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (-30 dB AGC)	Y21 < Y21 < Y21	160 -5.0 -3.0	160 -20 -18	200 -80 -69	180 -105 -90	mmhos degrees degrees
Single-Ended Input Capacitance	C _{in}	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	Co	1.2	1.2	1.3	1.6	pF

MC1350P (continued)

GENERAL OPERATING INFORMATION

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12-volt supply (V⁺) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15-volt supply (V⁺⁺) is used, because the base voltage on the output amplifier varies with AGC bias.

Connect to ground for maximum power gain test. All power-supply chokes (L_p) , are self-resonate at input frequency. $L_p \ge 20 k\Omega$ See Figure 10 for frequency response curve.

> L 1 @ 45 MHz = 7 1/4 Turns on a 1/4" coil form. @ 58 MHz = 6 Turns on a 1/4" coil form T Primary Winding = 18 Turns on a 1/4" coil form, center-tapped Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz = 1 Turn @ 58 MHz Slug = A rendol TH Material 1/2" Long

	45 MHz		58	MHz
L1	0.4 μH	0 ≥ 100	0.3 µH	ີ 2 ≧ 100
T ₁	1.3 -3.4 μH	Ω ≥ 100 @ 2 μH	1.2 -3.8 μH	Q ≥ 100 @ 2 μH
C1	50	- 160 pF	8 -	- 60 pF
C2	8	8 - 60 pF		- 35 pF

AGC AMPLIFIER SECTION INPUT AMPLIFIER SECTION BAS SUPPLIES OUTPUT AMPLIFIER SECTION

FIGURE 6 – POWER GAIN and AGC TEST CIRCUIT (455 kHz and 10.7 MHz)

Note 1. Primary: 120 μ H (center-tapped) Q_{u} = 140 at 455 kHz

Primary: Secondary turns ratio≈13 Note 2. Primary: 6.0 µH

Primary winding = 24 turns #36 AWG (close-wound on 1/4" dia. form) Core = Arnold Type TH or equiv.

Secondary winding = 1-1/2 turns #36 AWG, 1/4" dia. (wound over center-tap)

Component 455 kHz 10.7 Mł C1 - 80-450 C2 - 5.0-80 C3 0.05 μF 0.001 μ C4 0.05 μF 0.05 μ C5 0.001 μF 36 pF	
C2 – 5.0–80 C3 0.05 μF 0.001 μ C4 0.05 μF 0.05 μ	١z
C3 0.05 μF 0.001 μ C4 0.05 μF 0.05 μ	pF
C4 0.05 μF 0.05 μ	рF
	۱F
C5 0.001 // E 36 nE	F
00 [0.001 µ1] 00 pi	
C6 0.05 µF 0.05 µ	F
C7 0.05 μF 0.05 μ	F
L1 – 4.6 µH	
T1 Note 1 Note 2	2

FIGURE 4 – CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

(V⁺ = 12 V, T_A = +25^oC)

FIGURE 10 – TEST CIRCUIT RESPONSE CURVE (45 and 58 MHz)

For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

MC1351

SOUND IF AMPLIFIER

WIDE-BAND FM-AMPLIFIER; LIMITER, DETECTOR, AND AUDIO AMPLIFIER INTEGRATED CIRCUIT

 \ldots designed for IF limiting, detection, audio preamplifier and driver for the sound portion of a TV receiver.

- Excellent Limiting with 80 μ V(rms) Input Signal typ
- Large Output-Voltage Swing to 3.5 V(rms) typ
- High IF Voltage Gain 65 dB typ
- Zener Power-Supply Regulation Built-In
- Short-Circuit Protection
- A Coincidence Discriminator that Requires Only One RLC Phase Shift Network
- Preamplifier to Drive a Single External-Transistor Class-A Audio-Output Stage

CIRCUIT SCHEMATIC

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+16	Vdc
Input Voltage	Vin	0.7	V(rms)
Power Dissipation (Package Limitation) Plastic Packages Derate above +25 ⁰ C	Р _D 1/0 ЈА	625 5.0	mW mW/ ^o C
Operating Temperature Range	T _A	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V^+ = 12 Vdc, T_A = +25^oC, f = 4.5 MHz, Deviation = ±25 kHz unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage (3.0 dB Limiting)	VL	_	80	160	μV(rms)
$ \begin{array}{l} \text{AM Rejection (V}_{\text{in}} = 20 \text{ mV(rms), AM} = 30\%) (\text{See Note 1)} \\ \text{AMR} = 20 \log \begin{array}{l} \text{VOFM} \\ \text{V}_{\text{OFM}} \end{array} \begin{pmatrix} \text{f} = 4.5 \text{ MHz, Deviation} = \pm 25 \text{ kHz, } \text{Q}_{\text{L}} = 24 \\ \text{f} = 5.5 \text{ MHz, Deviation} = \pm 50 \text{ kHz, } \text{Q}_{\text{L}} = 30 \end{array} $	AMR		45 45		dB
Total Harmonic Distortion (Q _L = 24) (See Note 1) (7.5 kHz Deviation)	THD	_	1.0	-	%
Maximum Undistorted Audio Output Voltage (Pin 10) (See Note 1) (Audio Gain Adjusted Externally) (Q = 24)	V _{o(max)}		3.5	-	V(rms)
Recovered Audio (Pin 2) (See Note 1) (f = 4.5 MHz, Deviation = ± 25 kHz, Q _L = 24) (f = 5.5 MHz, Deviation = ± 50 kHz, Q _L = 30)	VA	0.35	0.50 0.80		V(rms)
Audio Preamplifier Open Loop Gain	AVP		25		dB
IF Voltage Gain	AVIF		65	-	dB
Parallel Input Resistance	R _{in}	_	9.0	-	kΩ
Parallel Input Capacitance	Cin		6.0	-	pF
Nominal Zener Voltage (IZ = 5.0 mAdc)	V _{Reg}	-	11.6	-	Vdc
Power Supply Current (IZ = 5.0 mAdc)	l D		31	· _	mAdc
Power Dissipation (Iz = 5.0 mAdc)	PD		300	375	mW

Note 1:. QL is loaded circuit Q.

8

FIGURE 1 – TEST CIRCUIT (V⁺ = +12 Vdc, T_A = +25^oC)

8-79

TYPICAL CHARACTERISTICS

FIGURE 3 – DETECTED AUDIO OUTPUT versus INPUT LEVEL @ f = 5.5 MHz, ±50 kHz DEVIATION

FIGURE 4 – DETECTOR "S" CURVE @ f = 4.5 MHz, BW = 200 kHz, Q = 24

FIGURE 6 - IF VOLTAGE GAIN versus FREQUENCY

FIGURE 5 - DETECTOR "S" CURVE @ f = 5.5 MHz, BW = 220 kHz, Q = 30

FIGURE 7 - AM REJECTION

8-80

MC1351 (continued)

TV VIDEO IF AMPLIFIER MC1352 MC1353 TV VIDEO IF AMPLIFIER WITH AGC TV VIDEO IF AMPLIFIER WITH AGC AND KEYER CIRCUIT AND KEYER CIRCUIT MONOLITHIC SILICON ... a monolithic IF amplifier with a complete gated wide-range AGC INTEGRATED CIRCUIT system for use as the 1st and 2nd IF stages and AGC kever and amplifier in color or monochrome TV receivers. Power Gain at 45 MHz, 52 dB typ P SUFFIX • Extremely Low Reverse-Transfer Admittance $- \ll 1.0 \,\mu$ mho typ PLASTIC PACKAGE CASE 646 Nearly Constant Input and Output Admittance Over AGC Range Single-Polarity Power-Supply Operation High-Gain Gated AGC System for Either Positive or Negative-Going Video Signals Control Signal Available for Delayed AGC of Tuner PQ SUFFIX Two Complementary Devices - MC1352 and MC1353 -. PLASTIC PACKAGE Offer Opposite Tuner AGC Polarity CASE 647 FIGURE 1 - TYPICAL VIDEO IF AMPLIFIER APPLICATION -• V⁺ 12 Vdc RF AGC TO TUNER 18 Vdc 18 V **<** 0.1 μF C3 3.9 (Note 2) RF AGC DELAY DE_ 10 k R2 220 10 V 车^{0.1 µF} AGC INPUT (See Figure 5) (Note ᆂ᠃ᆄ 3.3 3.9 k AUXILIARY 6.8 VIDE0 OUTPUT Į, 6 10 13 4 11 PRIMARY VIDEO

See Packaging Information Section for outline dimensions.

All windings #30 AWG tinned nylon acetate

wire tuned with Arnold Type TH slugs.

14

0.001 0.1

μF

₹50

R1 >

(Figure

5 9

820 5) k FLYBACK WINDING

MC1352

MC1353

0.25 μFτ

δ3 8

-8.0 V PULSE

0.001

μF

T20_pF

6

TURNS

TURNS

łŧ

68 pF

L1 16

10

TURNS

12 pF

MC1330

33 pF h 2 €

11

AND SOUND OUTPUT

AFT OUTPUT

7.7

1

3.9 k

Wound with #26 AWG tinned nylon

acetate wire tuned by distorting

winding.

MC1352, MC1353(continued)

MAXIMUM RATINGS (Voltages referenced to pin 4, ground; $T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply (Pin 11)	+18	Vdc
Output Supply (Pins 7 and 8)	+18	Vdc
Signal Input Voltage (Pin 1 or 2, other pin ac grounded)	10	V _{p-p}
AGC Input Voltage (Pin 6 or 10, other pin ac grounded)	+6.0	Vdc
Gating Voltage, Pin 5	+10, -20	Vdc
Power Dissipation Derate above $T_A = +25^{\circ}C$	625 5.0	mW mW/ ^o C
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (V+ = +12 Vdc, Voltages referenced to pin 4, ground; TA = +25°C unless otherwise noted)

Characteristic	Min	Тур	Max	Unit
AGC Range	-	75	-	dB
Power Gain				dB
f = 35 MHz or 45 MHz	-	52	-	
f = 58 MHz	-	50		
Maximum Differential Output Voltage Swing				V _{p-p}
0 dB AGC	-	16.8	_	
-30 dB AGC	-	8.4	-	
Voltage Range for RF-AGC at Pin 12				Vdc
Maximum	_	7.0	-	
Minimum	-	0.2		
IF Gain Change Over RF-AGC Range	-	10	-	dB
Output Stage Current (17 + 18)	-	5.7	-	mAdc
Total Supply Current (17 + 18 + 111)	-	27	31	mAdc
Total Power Dissipation	-	325	370	mW

DESIGN PARAMETERS, TYPICAL VALUES (V+ = 12 Vdc, T_A = +25°C unless otherwise noted)

Parameters	Symbol	f = 35 MHz	f = 45 MHz	f = 58 MHz	Unit
Single-Ended Input Admittance	911 ^b 11	0.55 2.25	0.70 2.80	1.1 3.75	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	Δg11 Δb11	50 0	60 0		μmhos
Differential Output Admittance	922 b22	20 430	40 570	75 780	μmhos
Output Admittance Variations with AGC (0 to 60 dB)	Δg ₂₂ Δb ₂₂	3.0 80	4.0 100		μmhos
Reverse Transfer Admittance	V12	<<1.0	≪1.0	<<1.0	μmho
Forward Transfer Admittance Magnitude Angle (Q dB AGC) Angle (-30 dB AGC)	V12 ∠V21 ∠Y21	260 -73 -52	240 -100 -72	210 -135 -96	mmhos degrees
Single-Ended Input Capacitance		9.5	10	10.5	pF
Differential Output Capacitance		2.0	2.0	2.5	pF

FIGURE 2 - CIRCUIT SCHEMATIC

MC1352, MC1353 (continued)

FIGURE 3 - POWER GAIN, AGC AND NOISE TEST CIRCUIT

GENERAL OPERATING INFORMATION

Each device, MC1352 and MC1353, consists of an AGC section and an IF signal amplifier (Figure 2) subdivided into different functions as indicated by the illustration.

A gating pulse, a reference level, and a composite video signal are required for proper operation of the AGC section. Either positive or negative-going video may be used; necessary connections and signal levels are shown in Figure 1. The essential difference is that the video is fed into Pin 10 and the AGC reference level is applied to Pin 6 for a video signal with positive-going sync while the input connections are reversed for negative-going sync.

The action of the gating section is such that the proper voltage,

NOTES:

- The 12-V supply must have a low ac impedance to prevent lowfrequency instability in the RF-AGC loop. This can be achieved by a 12-V zener diode and a large decoupling capacitor. (5 µF).
- 2. Choices of C1, C2 and C3 depend somewhat on the set designers' preference concerning AGC stability versus AGC recovery speed. Typical values are C1 = 0.1 μ F, C2 = 0.25 μ F, C3 = 10 μ F.
- To set a fixed IF-AGC operating point (e.g., for receiver alignment) connect a 22 kΩ resistor from pin 9 to pin 11 to give minimum gain, then bias pin 14 to give the correct operating point using a 200 kΩ variable resistor to ground.
- 4. Although the unit will normally be operating with a very high power gain, the pin configuration has been carefully chosen so that shielding between input and output terminals will not normally be necessary even when a standard socket is used.

 $V_{\rm C}$, is maintained across the external capacitor, C2, for a particular video level and dc reference setting. The voltage $V_{\rm C}$, is the result of the charge delivered through D1 and the charge drained by Q1. The charge delivered occurs during the time of the gating pulse, and its magnitude is determined by the amplitude of the video signal relative to the dc reference level. The voltage Vc is delivered via the IF-AGC amplifier and applied to the variable gain stage of the IF signal amplifier and is also applied to the RF-AGC amplifier, where it is compared to the fixed RF-AGC delay voltage reference by the differential amplifier, Q2 and Q3. The following stages amplify the output signal of either Q2 for MC1352, or Q3 for MC1353 and shift the dc levels causing the RF-AGC voltage to vary (positive-going for MC1352) or negative-going for MC1353.

Scale: 1 MHz/cm

The input amplifiers (Q4 and Q5) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac). Terminals 1 and 2 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q6 and Q7 causing those transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q8 and Q9. The output amplifiers are fed from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant.

FIGURE 5 - TYPICAL AGC APPLICATION CHART

Video Polarity	Pin 6 Voltage	Pin 10 Voltage	Pin 5 R1 (Ω)
Negative- Going Sync.	5.5 M	Adj. 1.0–4.0 Vdc Nom 2.0 V	0
Positive- Going Sync.	Adj. 1.0–8.0 Vdc Nom 4.5 V	4.5	3.9 k

TYPICAL CHARACTERISTICS (V⁺ = +12 Vdc, T_A = +25^oC unless otherwise noted)

FIGURE 7 - DIFFERENTIAL OUTPUT ADMITTANCE 1.0 (SINGLE-ENDED OUTPUT ADMITTANCE EXHIBITS TWICE THESE VALUES) 0.8 b22 g22, b22 (mmho) 0.6 0.4 0.2 922 n 10 20 30 70 100 50 40 FREQUENCY (MHz)

FIGURE 8 - FORWARD TRANSFER ADMITTANCE

FIGURE 10 - MC1352 AGC CHARACTERISTICS

FIGURE 9 - DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 11 – MC1353 AGC CHARACTERISTICS

For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

8-87

MC1355

8-88

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Value	Unit
Output Voltage (pins 7 & 8)	40	Vdc
Supply Current to pin 11	20	mA
Input Signal Voltage (single-ended)	5.0	Vp-р
Input Signal Voltage (differential)	10	Vp-p
Power Dissipation (package limitation) Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V⁺ = 15 Vdc, f = 10.7 MHz, T_A = +25^oC, R_S = 820 ohms unless otherwise noted)

Characteristi	c	Min	Тур	Max	Units
Power Supply Voltage Range		8.0	15	18	Vdc
Total Circuit Current		-	16	-	mAdc
Total Output Stage Current		-	4.2	-	mA
Device Dissipation	······	-	125	-	mW
Internal Zener Voltage		_	5.2	-	Vdc
Input Signal for 3 dB Limiting		-	175	250	μV(rms)
Output Current Swing		3.5	4.2	5.0	mA p-p
AM Rejection (10 mv to 1.0 v (rms) input, FM @ 100%, AM @ 80%, Foster 5	Seeley detector)	-	60	-	dB
Maximum AM Signal before Breakup (FM	@ 100%, AM @ 80%)	-	-	1.4	V(rms)
Admittance Parameters	Y ₁₁	-	120 + j320	-	μmhos
	Y12	-	j0.6		μmho
	Y21	-	8 + j5.9	-	mhos
	Y ₂₂		15 + j230	-	μmhos

FIGURE 2 - CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

FIGURE 4 – AM REJECTION TEST BLOCK DIAGRAM

FIGURE 5 - LIMITING

TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - TOTAL SUPPLY CURRENT

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

.

Rating	Value	Unit
Power Supply Voltage	16	Vdc
Input Voltage (Pin 4)	3.5	v _p
Power Dissipation (Package Limitation) Plastic Packages Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V⁺ = 12 Vdc, T_A = +25^oC unless otherwise noted)

Characteristic	Pin	Min	Тур	Max	Units
Drain Current V ⁺ = 8 V V ⁺ = 12 V	13	10 	12 15	19 21	mA
Amplifier Input Reference Voltage	6	-	1.45	-	Vdc
Detector Input Reference Voltage	2	-	3.65	-	Vdc
Amplifier High Level Output Voltage	10	1.25	1.45	1.65	Vdc
Amplifier Low Level Output Voltage	9	-	0.145	0.2	Vdc
Detector Output Voltage V ⁺ = 8 V V ⁺ = 12 V	. 1		3.7 5.4		Vdc
Amplifier Input Resistance	4	-	5.0	-	kΩ
Amplifier Input Capacitance	4	-	11	-	pF
Detector Input Resistance	12	-	70		kΩ
Detector Input Capacitance	12		2.7		pF
Amplifier Output Resistance	10	-	60	-	ohms
Detector Output Resistance	1	-	200		ohms
De-Emphasis Resistance	14	-	8.8		kΩ

DYNAMIC CHARACTERISTICS (FM Modulation Freq. = 1.0 kHz, Source Resistance = 50 ohms, $T_A = +25^{\circ}C$ for all tests.)

(V⁺ = 12 Vdc, f_0 = 4.5 MHz, Δf = ± 25 kHz, Peak Separation = 150 kHz)

Characteristics	Pin	Min	Тур	Max	Units
Amplifier Voltage Gain (V _{in} ≤50 µV[rms])	10		60		dB
AM Rejection* (V _{in} = 10 mV[rms])	1	-	36	_	dB
Input Limiting Threshold Voltage	4	-	250	-	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	-	0.72	-	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1		3	-	%
$(V^+ = 12 \text{ Vdc}, f_0 = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ kHz}, \text{ Peak Separation}$	on = 260 kHz)		······		
Amplifier Voltage Gain (V _{in} ≤50 µV[rms])	10	_	60	_	dB
AM Rejection* (V _{in} = 10 mV[rms])	1	-	40		dB
Input Limiting Threshold Voltage	4	-	250	-	μV(rms)
Recovered Audio Output Voltage (V _{in} = 10 mV[rms])	1	-	1.2	-	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1		5	-	%
(V ⁺ = 8.0 Vdc, f_0 = 10.7 MHz, Δf = ± 75 kHz, Peak Separa	tion = 550 kHz)				
Amplifier Voltage Gain (V _{in} ≤50 µV[rms])	10	-	53	-	dB
AM Rejection* (V _{in} = 10 mV[rms])	1	-	37	-	dB
Input Limiting Threshold Voltage	4		600	-	μV(rms)
Recovered Audio Output Voltage (V _{in} = 10 mV[rms])	1		0.30	-	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1	-	1.4	-	%
V^+ = 12 Vdc, f ₀ = 10.7 MHz, $\Delta f = \pm 75$ kHz, Peak Separat	ion = 550 kHz)				
	· · · · ·		1		T

Amplifier Voltage Gain (V _{in} ≤ 50 μV[rms])	10	-	53	-	dB
AM Rejection* (V _{in} = 10 mV[rms])	1	-	45	-	dB
Input Limiting Threshold Voltage	4		600	-	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	-	0.48	-	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1	-	1.4	-	%

*100% FM, 30% AM Modulation

TYPICAL CHARACTERISTICS (continued) ($f_0 = 10.7 \text{ MHz}$, $T_A = +25^{\circ}C$ unless otherwise noted.) (Use Test Circuit of Figure 13)

8-95

k (

20 20 30 20 3.0 0.003 47 0.01

pF μF 3.0 0.003

Note 1:

Information shown in Figures 15, 16, and 17 was obtained using the circuit of Figure 14.

Note 2:

Optional input to the quadrature coil may be from either pin 9 or pin 10 in the applications shown. Pin 9 has commonly been used on this type of part to avoid overload with various tuning techniques. For this reason, pin 9 is used in tests on the preceding pages (except as noted). However, a significant improvement of limiting sensitivity can be obtained using pin 10, see Figure 17, and no overload problems have been incurred with this tuned circuit configuration.

FIGURE 16 – SIGNAL-TO-NOISE RATIO

FIGURE 15 - OUTPUT DISTORTION

FIGURE 17 - RECOVERED AUDIO OUTPUT

FIGURE 18 - CIRCUIT SCHEMATIC

MC1358

.

SOUND IF AMPLIFIER

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Value	Unit
Input Signal Voltage (Pins 1 and 2)	±3.0	Vdc
Power Supply Current	50	mA
Power Dissipation (Package Limitation) Plastic Packages Derate above T _A = +25 ^o C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	-20 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V⁺ = 24 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted)

Characteristic	Pin	Min	Тур	Max	Unit
Regulated Voltage	5	10.3	11	12.2	Vdc
DC Supply Current (V^+ = 9 Vdc, R_S = 0)	5	10	16	24	mA
Quiescent Output Voltage	12	-	5.1	-	Vdc

DYNAMIC CHARACTERISTICS (V⁺ = 24 Vdc, T_A = +25^oC unless otherwise noted)

Characteristic	Min	Тур	Max	Unit
IF AMPLIFIER AND DETECTOR				
$f_0 = 4.5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}$ AM Rejection* (Vin = 10 mV [rms])	40	51	_	dB
Input Limiting Threshold Voltage		200	400	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	0.5	0.70		V(rms)
Output Distortion ($V_{in} = 10 \text{ mV} \text{ [rms]}$)		0.4	2.0	%
$f_0 = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ kHz}$	L		2.0	1%
AM Rejection* (V _{in} = 10 mV [rms])	40	53	_	dB
Input Limiting Threshold Voltage	_	200	400	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV [rms])	0.5	0.91	-	V(rms)
Output Distortion (V _{in} = 10 mV [rms])	_	0.9	-	%
Input Impedance Components (f = 4.5 MHz, measurement between pins 1 and 2) Parallel Input Resistance Parallel Input Capacitance		17 4.0	-	kΩ pF
Output Impedance Components (f = 4.5 MHz, measurement between pin 9 and GND) Parallel Output Resistance Parallel Output Capacitance	-	3.25 3.6		kΩ pF
Output Resistance, Detector Pin 7 Pin 8		7.5 250		kΩ Ω
ATTENUATOR				
Volume Reduction Range (See Figure 8) (dc Volume Control = ∞)	60	-	-	dB
Maximum Undesirable Signal (See Note 1) (dc Volume Control = ∞)	-	0.07	1.0	mV
AUDIO AMPLIFIER			•	
Voltage Gain (V _{in} = 0.1 V(rms), f = 400 Hz)	17.5	20	-	dB
Total Harmonic Distortion (V _o = 2.0 V(rms), f = 400 Hz)	-	2.0	-	%
Output Voltage (THD = 5%, f = 400 Hz)	2.0	3.0	-	V (rms)
Input Resistance (f = 400 Hz)	-	70	-	kΩ
Output Resistance (f = 400 Hz)	-	270	-	Ω

*100% FM, 30% AM Modulation.

Note 1. Undesirable signal is measured at pin 8 when volume control is set for minimum output.

TYPICAL CHARACTERISTICS $(V^+ = 24 V, T_A = +25^{\circ}C \text{ unless otherwise noted})$

 $(f_0 = 5.5 \text{ MHz})$ FIGURE 3 - AM REJECTION 60 50 AM REJECTION (dB) 40 100% FM, 30% AM 30 20 10 0.05 0.1 0.2 20 50 0.5 1.0 2.0 5.0 10 INPUT VOLTAGE (mV[rms])

FIGURE 5 - DETECTED AUDIO OUTPUT

FIGURE 7 – IF AMPLIFIER AND DETECTOR THD

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 - IF FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 13 – AUDIO VOLTAGE GAIN, AUDIO THD TEST CIRCUIT

8-101

FIGURE 14 - CIRCUIT SCHEMATIC

MC1364

AUTOMATIC FREQUENCY CONTROL

8

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted, see Note 1)

Rating	MC1364G	MC1364P	Unit
Input Signal Voltage (Pin 7 to 8)	+2.0, -10	+2.0, -10	Vdc
Output Collector Voltage (Pins 2 and 8)	20	20	Volts
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	680 5.6	625 5.0	mW mW/ ^o C
Operating Temperature Range	-40 to +85	0 to +75	°C
Storage Temperature Range	-65 to +150	-65 to +125	°C

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} (V_{CC} = +30 \ \text{Vdc}, \ \text{T}_{\text{A}} = +25 \ ^{\text{o}}\text{C}, \ \text{see Test Circuit of Figure 4 unless otherwise noted.})$

Characteristic	Min	Тур	Max	Unit
Total Device Dissipation	-	140	-	mW
Total Supply Current	aut .	12	-	mA
Current Drain, Total (Reduce V _{CC} so that V10 = 10.5 Vdc)	4.0	6.5	9.5	mA
Zener Regulating Voltage	10.9	11.8	12.8	V
Quiescent Current to Pin 2	1.0	2.0	4.0	mA
Quiescent Voltage at Pin 4 or Pin 5	5.0	6.6	8.0	V
Output Offset Voltage (Pin 4 to Pin 5)	-1.0	0	+1.0	V

DESIGN PARAMETERS, TYPICAL VALUES (V_{CC} = +30 Vdc, R_S = 1.5 k, f = 45.75 MHz).

Parameter	Symbol	Тур	Unit
Input Admittance	y ₁₁	0.4 + j1	mmho
Reverse Transfer Admittance	¥12	0 + j3.4	μmho
Forward Transfer Admittance	^y 21	110 + j140	mmhos
Output Admittance (Pin 2)	Y ₂₂	0.02 + j1	mmho

Note 1: Pin numbers used in the above tables are for the metal package, Case 686. For corresponding pin numbers for the plastic package, Case 646, see the Test Circuit, Figure 4.

TYPICAL CHARACTERISTICS (See Test Circuit of Figure 2)

FIGURE 3 – TYPICAL WIDE BAND DYNAMIC CHARACTERISTICS

The number without parenthesis is the pin number for the metal package. The number in parenthesis is the pin number for the plastic package. Metal Package, Pin 9 - no connection

Plastic Package, Pins 6,7,10,11,13 - no connection

COIL DATA FOR DISCRIMINATOR WINDINGS FOR FIGURES 1 AND 4

- L1 Discriminator Primary: 3-1/6 turns; AWG #20 enamel-covered wire close-wound, at bottom of coil form. Inductance of L1 = 0.165 μ H; Ω_0 = 120 at f_0 = 45.75 MHz. Start winding at Terminal #6; finish at Terminal #1. See Notes below.
- L2 Tertiary Windings: 2-1/6 turns; AWG #20 enamel-covered wire – close-wound over bottom end of L1. Start winding at Terminal #3; finish at Terminal #4. See Notes below.
- L3 Discriminator Secondary: 3-1/2 turns; AWG #20 enamelcovered wire, center-tapped, space wound at bottom of coil form.

Start winding at Terminal #2; finish at Terminal #5, connect center tap to Terminal #7. See Notes below.

- Notes: 1. Coil Forms; Cylindrical; -0.30" Dia. Max. 2. Tuning Core: 0.250" Dia. x 0.37" Length. Material: Carbinal J or equivalent.
 - 3. Coil Form Base: See drawing below.
 - End of coil nearest terminal board to be designated the winding start end.
 - 5. Mount the coils 3/4" apart, center to center.

MC1370P

CHROMA SUBCARRIER SYSTEM

TELEVISION CHROMA SUBCARRIER REGENERATOR

... a monolithic device designed for solid-state television receivers, provides a gated voltage controlled oscillator, phase-locked loop and dc hue control.

- Sensitive Voltage Controlled 3.58 MHz Crystal Oscillator
- High-Gain Automatic Phase Control (APC) Loop
- Wide-Range dc Control of Regenerated Subcarrier Phase
- Synchronous Automatic Chroma Control (ACC) Detector
- Internal Shunt Regulated Power Supply
- Internal Gating for Color Burst
- Complements MC1371P Color IF Amplifier
- Direct Replacement for the CA3070

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Maximum Supply Voltage (through 470 ohms to pin 10)	30	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +24 Vdc, T_A = +25^oC unless otherwise noted.)

	Characteristic	Min	Тур	Max	Unit
STATIC CHARAC	TERISTICS (See Test Circuit of Figure 2, S1, S	2 and S3 in position	1 unless otherwis	e noted.)	
Power Supply Curren	nt (S2 in position 2)	-	27	-	mA
Regulator Voltage (p	vin 10)	11	11.8	12.9	Vdc
Load Regulation (pir	10) (V _{CC} from +21 V to +27 V)	-	35	-	mVdc
Oscillator Current (p	ins 2 and 3, S1 in position 2)	4.1	6.5	7.5	mA
APC Detector Curren	nt (pin 11 or pin 12)	1.0	1.5	1.8	mA
ACC Detector Curren	nt (pin 15 or pin 16)	1.0	1.5	1.8	mA
APC Detector Leaka	ge Current (pin 11 or 12, S2 in position 3)	-	-	40	μA
ACC Detector Leaka	ge Current (pin 15 or 16, S2 in position 3)	-	<u>`</u>	30	μA
APC Detector Balance	e (voltage between pins 11 and 12)	-375	-40	+375	mVdc
ACC Detector Balance	ce (voltage between pins 15 and 16)	-300	-50	+300	mVdc
Oscillator Control Ba position 3, S3 in p	alance (voltage between pins 7 and 8, S2 in osition 2)	-330	-10	+330	mVdc
Oscillator Gate Leak	age (pin 2 and pin 3)	-	-	2.0	μA
Voltage (pin 1) (pin 13) (pin 14) (pin 6)	S2 in position 2 S1 and S2 in position 2 S2 in position 2 S2 in position 2 S2 in position 2	- 7.2 6.0 6.0	100 7.7 6.5 6.5 2.8	300 8.2 7.0 7.0	mVdc Vdc

DYNAMIC CHARACTERISTICS (E_{burst} = 200 mVp-p at pin 13, see test circuit of Figure 3 and note for setup.)

Oscillator Output Voltage	(pin 2, S1 in position 1) (pin 3, S1 in position 3)		1.6 1.6		Vp-p
Oscillator Control Sensitivity	(β)	-	10	-	Hz/mV
Oscillator Pull-in Range	(Above f _O = 3.579545 MHz) (Below f _O = 3.579545 MHz)	-	+400 -600	-	Hz
APC Loop Static Phase Error frequency offset)	(with oscillator free-running	-	0.02	-	Deg/Hz
APC Detector Sensitivity (μ)		-	5.0	-	mV/Deg
ACC Detector Sensitivity (AC burst level change)	C output level change for input	-	1.4	-	mVdc/mVp-p
Oscillator Noise Bandwidth (f	NN)	_	150	-	Hz
APC Filter Damping Coefficie	nt (K)	-	0.5	-	-
Input Impedance (pin 13) (pin 14) (pin 6)		-	2.1 2.1 2.2		kΩ

FIGURE 2 – STATIC CHARACTERISTICS TEST CIRCUIT

FIGURE 3 – DYNAMIC CHARACTERISTICS TEST CIRCUIT

NOTE: The Set-up Procedure for Dynamic Characteristics Test Circuit

The signal source is an NTSC color bar generator (minus lumiinance or Y content) applied through an adjustable 3.58 MHz attenuator. The generator horizontal output is used to trigger a pulse generator set to give an output pulse of +4.0 volts, 4.5 μs wide, at arepetition rate of 15.734 kHz. The pulse delay is adjusted to center the pulse during the burst of the color signal (compare gated portion of output at pin 2 or 3 with burst pulse of signal). With S1 set to position 2 and S2 set to position 2, the oscillator is adjusted to 3.579545 MHz by R2. R1 is adjusted to produce zero offset between pins 15 and 16. When S2 is set to position 1, the oscillator should synchronize to the incoming signal.

MC1370P (continued)

8

8-110

FIGURE 5 - CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

The MC1370 monolithic circuit provides the sub-carrier regeneration function necessary for a color television receiver to decode the NTSC color signal. An internal gate extracts the burst voltage and this signal is processed in two-phase detectors, the quadrature detector controls the phase of the local oscillator and the in-phase detector is used to provide a noise immune ACC and color killer control voltage. A shunt regulator sets the bias voltages and ensures stable operation when there are supply voltage variations

The basic 3.579545 MHz oscillator consists of the differential amplifier (Q1 and Q2) with a feed-back loop through a quartz crystal operating in series resonance from Q2 collector to the noninverting input of the amplifier represented by Q1 base. To control the oscillator frequency the phase shift of the feed-back path is made variable by the addition of Q5 and Q6. A capacitor connected between pins 7 and 8, together with the collector loads, forms a RC phase-shift network. Consequently, the oscillator signal appearing at pin 7 can be moved in phase over a 45° range by the differential bias applied to Q5 and Q6 bases. The crystal between pins 7 and 6 completes the feed-back loop. The automatic phase control to the upper differential pairs of the (Q5, Q6) oscillator is through the buffer stages Q7 and Q8. The oscillator amplifier is buffered by Q3 and Q4. Output from the oscillator is obtained from the collector of Q1 and is essentially a square wave of 9 mA peak-topeak with a frequency range of several hundred Hertz.

The control voltage for Q5 and Q6 is obtained from the phase detector Q9 and Q10. As Q1 is the current source for this pair, the voltages appearing at pins 11 and 12 will correspond to the phase difference between the oscillator current and the burst signal applied to pin 13. The loop characteristics are controlled in part by a filter connected between pins 11 and 12. This is usually a double-time constant network to yield good pull-in times with a low-noise bandwidth.

Pin 9 no connection

To ensure that the quadrature phase detector functions only during the burst portion of the incoming chroma signal, the detector is gated into conduction by a pulse from the line flyback transformer - applied at pin 4. This has the additional advantage that the average current in the phase detector has been reduced by the gate duty factor thus relaxing the input offset stability requirements of the differential pair and enabling them to be used with high dc gain

For the ACC control voltage and color-killer function a similar phase detector, Q15 and Q16, is used. However, the chroma signal input to pin 14 is phase shifted externally by 90° with respect to pin 13. As a result, Q15 and Q16 is an in-phase detector and the control voltage at pins 15 and 16 will be proportional to the amplitude of the burst. Thus filtering of pins 15 and 16 provides the control voltage for the gain control stage in the chroma IF and an indication of the incoming signal strength for the color-killer circuit.

When the phase detectors are not gated "on" by a positive pulse at pin 4, the bases of Q13 and Q14 are held above the bases of the phase detector inputs. Therefore, between gate pulses, all the current from the oscillator output Q1 passes through Q13 and Q14 to pins 2 and 3. When a phase-shift network is connected between pins 2 and 3, the phase of the oscillator drive to the demodulators can be controlled by changing the relative conduction of Q13 and Q14 with a bias on pin 1. As a result the oscillator output is controlled in phase providing a dc hue control and is gated "off" during the burst period, negating the need for burst blanking in the chroma IF amplifier.

DEFINITIONS

Oscillator Sensitivity (B)

... the change in oscillator free-running frequency for a change in differential control voltage, measured in Hertz/millivolts.

APC Detector Sensitivity (µ)

... the differential voltage change produced at the detector output for a given change in oscillator phase relative to burst phase, measured for a given burst input amplitude in millivolts/degrees.

ACC Detector Sensitivity

. . . the differential voltage produced at the detector output for a

FROM 3.579545 MHz (Hz)

given change in burst input amplitude with the oscillator locked in synchronism, measured in millivolts dc/millivolts (p-p).

Noise Bandwidth (f_N)

. . . actually noise semibandwidth, f_{NN} (= 2 X f_N); a measure of the susceptibility of the burst channel to thermal noise (i.e. dynamic phase error).

Filter Damping Coefficient (K)

. . . describes the shape of the loop input phase versus output phase response (Q ω) – K = 1 represents critical damping, K \geq 1 over damping.

MC1371P

CHROMA IF AMPLIFIER

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Amplifier Output Short-Circuit Duration	30	s
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above T _A = +25 ⁰ C	625 5.0	m₩ m₩/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +24 Vdc, T_A = +25^oC unless otherwise noted. See Test Circuit of Figure 2; switch S1 in position 1, R1 wiper at ground, R2 = 10 kilohms.)

Characteristic	Min	Тур	Max	Unit
Static Characteristics				
Quiescent Power Supply Current	17	28	31	mA
Short-Circuit Current (pin 6 momentarily grounded) (pin 9 momentarily grounded)	-	68 48		mA
First Chroma Stage Input Bias Voltage (pin 2)	-	1.7		Vdc
First Chroma Stage Output Bias Voltage (pin 6) ACC Balanced (S1 in position 1) ACC Unbalanced (S1 in position 2)	13.7 7.5	- 16.3 10.5	20 13.5	Vdc
Second Chroma Stage Input Bias Voltage (pin 7)	-	1.4	-	Vdc
Second Chroma Stage Output Bias Voltage (pin 9)	16.6	17.6	18.6	Vdc
Quiescent Bias Voltage (pin 12)	13.8	14.8	15.7	Vdc
Dynamic Characteristics (f = 3.579545 MHz, input pin 2 = 35 mV	[RMS] unless otherw	vise noted.)		
First Chroma Amplifier Stage Gain (ACC Balanced)	14	17	20	dB
Second Chroma Amplifier Stage Gain (R1 wiper at ground)	12	15.5	17	dB
Maximum Linear Output (output level at pin 9)	-	2.0	-	V(RMS)
Output Voltage, pin 9 (input pin 2 = 50 mV [RMS]) (R1 wiper at V _{CC}) (R1 wiper at ground, R2 adjusted for abrupt ac change in pin 9 output voltage)			12 12	mV(RMS)
Pin 10 Bias Voltage (R1 set for 10% of pin 9 maximum output) (R1 set for 90% of pin 9 maximum output)	16.7 2.5	20.2 3.2	21.6 4.5	Vdc
Second Amplifier Gain Stability $(V_{CC} + 15\%)$ $(V_{CC} - 15\%)$ $(T_A = +25^{\circ}C \text{ to } +75^{\circ}C)$		+0.5 -0.5 +0.5	+1.5 -1.5 -	dB
Input Impedance (pin 2)		2.0 3.5		kΩ pF
(pin 7)		2.2 3.6		kΩ pF
Output Impedance (pin 6) (pin 9)		85 85		ohms

MC1371P (continued)

TYPICAL CHARACTERISTICS (V_{CC} = +24 Vdc, f_O = 3.579545 MHz, T_A = +25^oC unless otherwise noted.)

8-115

CIRCUIT DESCRIPTION

The MC1371 is a monolithic wide-band amplifier circuit that functions as the basic control and color signal amplification stages of a color television receiver. The first stage contains the gain control function of the ACC loop and the second stage performs the dc manual gain control function. Also included is a Schmitt trigger circuit providing effective color-killer action during monochrome transmissions.

 $\Omega 1$ is a current source modulated by the input signal applied at pin 2. The current in $\Omega 1$ is divided between the differential pair ($\Omega 2$ and $\Omega 3$) in a ratio determined by the ACC voltage applied through the buffer stages, $\Omega 4$ and $\Omega 5$. Pin 14 is usually offset with respect to pin 1 by a resistor connected to ground so that at low-signal levels most of the signal current is taken by $\Omega 3$ and passed to the load resistor R5 (the input stage appears as a cascode amplifier to the signal with the intrinsic ac stability of that configuration). The amplified signal is then buffered at pin 6 by the emitter follower stage $\Omega 6$ which is protected from accidental grounding at the output by the current limiter $\Omega 7$.

At strong signals when the amplitude of the burst is high, the ACC voltages at pins 1 and 14 divert most of the signal current from Q3. The signal is "dumped" into the collector load of Q2. Q2 is connected externally at pin 13 and bypassed to ground at signal frequencies by a capacitor. However, the dc voltage at the collector of Q2 is dependent on the burst amplitude and therefore on the input signal strength. As the input signal level falls, more current is fed into Q3 by the ACC loop and the output at pin 6 remains constant while Q2 collector voltage increases. At a point predetermined by Q2 collector load (the killer-control setting) the input Q12 of the color-killer circuit is biased "on", shutting down the second chroma amplifier stage.

The second chroma stage is similar in configuration to the first stage. The signal input at pin 7 (which is the output from pin 6) modulates the current source Q8. For a maximum gain voltage setting on pin 10 the signal current passes through Q9 to the output buffer stage Q10. Q10 is protected from short circuit currents by Q11. To reduce the stage gain, current is diverted from Q9 by biasing the diode D2 into conduction. D2 can be regarded as a transistor with 100% dc negative feedback applied between collector and base. Without the feedback path the gain characteristic of the second stage is that of a differential pair, this S shaped curve would make tracking of ganged color level and contrast controls quite difficult. In this limiting form the current through D2 is directly proportional to the voltage difference between the supply and D2 anode and hence to the control voltage at pin 10. When the input to the color-killer is biased "on", Q13 is turned "off" and the voltage at the base of Q14 rises abruptly. D2 then takes all the current from Q8 and the output at pin 9 is suppressed.

8

8-117

MC1375P

FM IF CIRCUIT

See Packaging Information Section for outline dimensions.

MC1375P (continued)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	+16	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +11.2 Vdc, V_{EE} = Gnd, T_A = +25^oC unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Current Drain	-	19	29	mA
DC Voltage at pin 8 (V _{in} = 0)	-	5.4	-	Vdc
Amplifier Input Resistance (Vin = 20 mV, 10.7 MHz)	-	5.0	_	kΩ
Amplifier Input Capacitance (Vin = 20 mV, 10.7 MHz)	-	5.0	-	pF

DYNAMIC CHARACTERISTICS (V_{CC} = +11.2 Vdc, V_{EE} = Gnd, f_{mod} = 1.0 kHz, T_A = +25°C unless otherwise noted.)

Characteristics	Min	Тур	Max	Unit
IF AMPLIFIER AND DETECTOR ($f_0 = 10.7 \text{ MHz}, \Delta f = \pm 75 \text{ kHz}$)				

AM Rejection* (V _{in} = 10 mV)	-	55	-	dB
Input Limiting Threshold Voltage	-	250	600	μV(RMS)
Recovered Audio Output Voltage	500	625	-	mV(RMS)
Output Distortion (V _{in} = 10 mV[RMS])	-	0.75	-	%
Signal-to-Noise Ratio (V _{in} = 1.0 mV)	-	68	-	dB

AUDIO AMPLIFIER (Audio Test Frequency; f = 1.0 kHz)

Voltage Gain (V _{in} = 100 mV)	-	21	-	dB
Total Harmonic Distortion (V _O = 2.0 V [RMS])	-	1.2		%
Input Impedance (pin 14)	-	100	-	kΩ

*100% FM, 30% AM Signal

TYPICAL CHARACTERISTICS

(All measurements at T_A = +25°C, V_{CC} = 11.2 V; see test circuits of Figure 9 and 10.)

FIGURE 3 - RECOVERED AUDIO OUTPUT

FIGURE 6 - AUDIO AMPLIFIER THD

FIGURE 5 - SIGNAL TO NOISE

8

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating		Value	Unit
Power Supply Voltage	Steady State	25	Vdc
	Transients of 50 ms or less (Note 1)	40	Vdc
Maximum Sink or Source Curr Pin 5 or 8	ent	50	mA
Power Dissipation (Package Lin Plastic Package Derate Above T _A = +25		625 5.0	mW mW/ ^o C
Operating Temperature Range	(Ambient)	-40 to +85	°C
Storage Temperature Range		-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 14.4 Vdc, R_{L} = 3.2 ohms, f = 1.0 kHz, See Figure 1, T_{A} = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Recommended Operating Power Supply Voltage Range	9.0	14.4	16	Vdc
Power Supply Overvoltage Shutdown (Note 1)	-	22	-	Vdc
Drain Current	-	10		mA
Power Output THD = 10%	5.0	_	_	w
Input Sensitivity Voltage P _O = 1.0 W	_	4.0	_	mV(RMS)
Total Harmonic Distortion $P_O = 1.0 W$	-	0.7	-	%
Output Noise R _S = 4.7 k ohms, BW = 50 Hz - 6.0 kHz	-	2.0	_	mV(RMS)
Power-Supply Ripple Rejection Ripple = 1.0 V (р-р) @ f = 100 Hz, input shorted	-	35	-	dB
Input Impedance	-	5.0	-	kΩ

Note 1 - These specifications were set to meet typical automotive load dump requirements.

MC1391P

TV HORIZONTAL PROCESSOR

See Packaging Information Section for outline dimensions.

8

Rating	Value	Unit
Supply Current	40	mAdc
Output Voltage	40	Vdc
Output Current	30	mAdc
Sync Input Voltage (Pin 3)	5.0	V _(p-p)
Flyback Input Voltage (Pin 4)	5.0	V _(p-p)
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ^o C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (T_A = +25°C unless otherwise noted.) (See Test Circuit of Figure 2, all switches in position 1.)

Characteristic	Min	Тур	Max	Unit
Regulated Voltage (Pin 6)	8.0	8.4	8.8	Vdc
Supply Current (Pin 6)	-	20	-	mAdc
Collector-Emitter Saturation Voltage (Output Transistor Q1 in Figure 6)				Vdc
(I _C = 20 mA, Pin 1) Vdc	-	0.30	0.35	
Voltage (Pin 4)	-	2.0	-	Vdc
Oscillator Pull-in Range (Adjust R _H in Figure 2)	-	±300	-	Hz
Oscillator Hold-in Range (Adjust R _H in Figure 2)	-	±900	_	Hz
Static Phase Error ($\Delta f = 300 \text{ Hz}$)	_	0.5	_	μs
Free-running Frequency Supply Dependance (S1 in position 2)	_	±3.0	_	Hz/Vdc
Phase Detector Leakage (Pin 5) (All switches in position 2)	_	_	±1.0	μA
Sync Input Voltage (Pin 3)	2.0	_	5.0	V(p-p)
Sawtooth Input Voltage (Pin 4)	1.0	-	3.0	V(p-p)

FIGURE 4 - FREQUENCY DRIFT versus WARM-UP TIME

FIGURE 5 - MARK-SPACE RATIO

FIGURE 6 - CIRCUIT SCHEMATIC

MC1391P CIRCUIT OPERATION

The MC1391P contains the oscillator, phase detector and predriver sections needed for a television horizontal APC loop.

The oscillator is an RC type with one pin (Pin 7) used to control the timing. The basic operation can be explained easily. If it is assumed that Q7 is initially off, then the capacitor connected from Pin 7 to ground will be charged by an external resistor (R_C) connected to Pin 6. As soon as the voltage at Pin 7 exceeds the potential set at the base of Q8 by resistors R8 and R10, Q7 will turn on and Q6 will supply base current to Q5 and Q10. Transistor Q10 will set a new, lower potential at the base of Q8 determined by R8, R9 and R10. Then, transistor Q5 will discharge the capacitor through R4 until the base bias of Q7 falls below that of Q8, at which time Q7 will turn off and the cycle repeats.

The sawtooth generated at the base of Q4 will appear across R3 and turn off Q3 whenever it exceeds the bias set on Pin 8. By adjusting the potential at Pin 8, the duty cycle (MSR) at the predriver output pin (Pin 1) can be changed to accommodate either

tube or transistor horizontal output stages.

The phase detector is isolated from the remainder of the circuit by R14 and Z2. The phase detector consists of the comparator Q15, Q16 and the gated current source Q17. Negative going sync pulses at Pin 3 turn off Q12 and the current division between Q15 and Q16 will be determined by the phase relationship of the sync and the savtooth waveform at Pin 4, which is derived from the horizontal flyback pulse. If there is no phase difference between the sync and sawtooth, equal currents will flow in the collectors of Q15 and Q16 each for half the sync pulse period. The current in Q15 is turned around by Q18 so that there is no net output current at Pin 5 for balanced conditions. When a phase offset occurs, current will flow either in or out of Pin 5. This pin is connected via an external low-pass filter to Pin 7, thus controlling the oscillator.

Shunt regulation for the circuit is obtained with a zero temperature coefficient from the series combination of D1, D2 and Z1.

MC1391P APPLICATIONS INFORMATION

Although it is an integrated circuit, the MC1391P has all the flexibility of a conventional discrete component horizontal APC loop.

The internal temperature compensated voltage regulator allows a wide supply voltage variation to be tolerated, enabling operation from nonregulated power supplies. A minimum value for supply current into Pin 6 to maintain zener regulation is about 18 mA. Allowing 2mA for the external dividers

$$R_A + R_B = \frac{V_{nonreg(min)} - 8.8}{20 \times 10^{-3}}$$

Components R_A, R_B and C_A are used for ripple rejection. If the supply voltage ripple is expected to be less than 100 mV (for a 30 Volt supply) then R_A and R_B can be combined and C_A omitted.

The output pulse width can be varied from 6 μs to 48 μs by changing the voltage at Pin 8 (see Figure 5). However, care should be taken to keep the lead lengths to Pin 8 as short as possible to prevent ringing which can result in erroneous output pulses at Pin 1. The parallel impedance of RD and RE should be close to 1 k\Omega to ensure stable pulse widths.

For 15 mA drive at saturation

$$\mathsf{R}_\mathsf{F} = \frac{\mathsf{V}_{\mathsf{nonreg}} - 0.3}{15 \times 10^{-3}}$$

The oscillator free-running frequency is set by R_C and C_B connected to Pin 7. For values of R_C \ge R_{discharge} (R4 in Figure 6), a useful approximation for the free-running frequency is

$$f_{O} = \frac{1}{0.6 R_{C}C_{B}}$$

Proper choice of R_C and C_B will give a wide range of oscillator frequencies — operation at 31.5 kHz for count-down circuits is possible for example. As long as the product R_CC_B $\approx 10^{-4}$ many combinations of values of R_C and C_B will satisfy the free-running frequency requirement of 15.734 kHz. However, the sensitivity of the oscillator (β) to control-current from the phase detector is directly dependent on the magnitude of R_C, and this provides a

convenient method of adjusting the dc loop gain (fc). For a given phase detector sensitivity (μ) = 1.60 × 10⁻⁴ A/rad

fc = $\mu\beta$ and β = 3.15 x R_C Hz/mA

Increasing R_C will raise the dc loop gain and reduce the static phase error (S.P.E.) for a given frequency offset. Secondary effects are to increase the natural resonant frequency of the loop (ω_n) and give a wider pull-in range from an out-of-lock condition. The loop will also tend to be underdamped with fast pull-in times, producing good airplane flutter performance. However, as the loop becomes more underdamped impulse noise can cause shock excitation of the loop. Unlimited increase in the dc loop gain will also raise the noise bandwidth excessively causing horizontal jitter with thermal noise. Once the dc loop gain has been selected for adequate S.P.E. performance, the loop filter can be used to produce the balance between other desirable characteristics. Damping of the loop is achieved most directly by changing the resistor R_X with respect to Ry which modifies the ac/dc gain ratio (m) of the loop. Lowering this ratio will reduce the pull-in range and noise bandwidth (fnn). (Note: very large values of Ry will limit the control capability of the phase detector with a corresponding reduction in hold-in range).

Static phasing can be adjusted simply by adding a small resistor between the flyback pulse integrating capacitor and ground. The sync coupling capacitor should not be too small or it can charge during the vertical pulse and this may result in picture bends at the top of the CRT.

NOTE:

In adjusting the loop parameters, the following equations may prove useful:

fc

CC

$$f_{nn} = \frac{1 + \chi^2 T \omega_c}{4 \chi T} \qquad \chi = \frac{R_\chi}{R_Y}$$
$$\omega_n = \sqrt{\frac{\omega_c}{(1 + \chi) T}} \qquad \omega_c = 2 \pi$$
$$T = R_y$$
$$K = \frac{\chi^2 T \omega_c}{4} \qquad \text{where:}$$

K = loop damping coefficient

MC1398P

TV COLOR PROCESSING CIRCUIT

See Packaging Information Section for outline dimensions.

8

MC1398P(continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Value	Unit
Power Supply Current	35	mAdc
Horizontal Pulse Input Current	250	μA Peak
Power Dissipation (package limitation) Derate above T _A = +25 ^o C	625 5.0	mW mW/ ^O C
Operating Temperature Range (Ambient)	-20 to +75	°C
Storage Temperature Range	-65 to +150	о _С

ELECTRICAL CHARACTERISTICS (V_{CC} = +20 Vdc, R_S = 390 ohms, T_A = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Regulated Voltage (I _S = 35 mA)	9.0	9.6	11.5	Vdc
$(1_{S} = 27 \text{ mA})$	-	9.2	-	
Maximum Undistorted Chroma Output, See Note 1,E(pin 3) = E(pin 14)	0.8	1.75	-	V(p-p)
Maximum Chroma Gain E(pin 3) = E(pin 14), See Note 1	34	40	-	dB
Automatic Chroma Control Range (ACC) -3.0 dB down from maximum undistorted output ,see Note 1	-	19	-	dB
Chroma Burst Level to Kill, See Note 1	-	1.4	-	mV(p-p)
Manual Chroma Gain Control Range (△ V(pin 3) (V(pin 14) to 0 Vdc)	50	60	-	dB
Chroma Input Resistance	-	2.3	-	k ohms
Chroma Input Capacitance	-	13	-	pF
Chroma Output Impedance	-	15	-	ohms
Horizontal Input Pulse	2.2	3.0	4.0	Vp
Oscillator Output	100	-	-	mV(RMS)
Oscillator Output Impedance	-	15	- 1	ohms
Hue Control Range (△V(pin 12) (V(pin 14) to 4.3 Vdc)	100	126	_	degrees
Oscillator Pull-In Range	1200	-	·	Hz
Oscillator Noise Bandwidth (f _N)	-	900		Hz
Static Phase Error with Oscillator Detuning 25 mV(p-p) Burst Amplitude 2.0 mV(p-p) Burst Amplitude		0.20 0.25		degrees/Hz

Note 1: With 5.0 mV(p-p) burst input at pin 5 set E(pin 10) to just "unkill"

FIGURE 2 - MC1398P TEST CIRCUIT

MC1398P (continued)

FIGURE 3 - MC1398 CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted) (Figures 4 through 9, See Test Circuit of Figure 2.)

FIGURE 10 - PRINTED CIRCUIT LAYOUT OF MC1398P, MC1326, and MPSU 10 TRANSISTORS

This coil data is intended as an aid only. It is expected that many designers will want to use other approaches.

capacitor is used to adjust the oscillator exactly on frequency,

and ensures excellent oscillator lock-up. However, acceptable oscillator performance can be obtained with a fixed value of capaci-

tance (this value is dependent on the designers' choice of crystals).

MC1398P CIRCUIT DESCRIPTION

The MC1398P is capable of providing the entire color processing function between the second detector and the demodulator for television color receivers.

A band pass filter from the second detector provides a 50 mV (p-p) signal (for a saturated color bar pattern) at the input to the first chroma amplifier stage (Q₂, Q₃, Q₈, Q₉). Because of Q₂ emitter load resistor the input impedance is determined primarily by the bias resistor (R₃) and is about 2.3 kilohms. Since Q₂ is the current source for the differential pair (Q₃ and Q₉), the chroma information will pass to the load resistor (R₇) and then to the second chroma amplifier (Q₁₇). To avoid overload of Q₁₇, the maximum gain to Q₁₇ base is only X3 and by varying the bias at the base of Q₉ it is possible to reduce the stage gain by 23 dB without signal distortion; the signal being "dumped" by Q₉ collector into the supply. Since this automatic chroma control action will vary the dc bias at Q₁₇ base the emitter load of Q₁₇ is the current source Q₁₈, maintaining the dc operating current. Q₁₈

During picture scan time, the chroma signal passes through the output level control amplifier (Q10, Q11, Q15, Q21). By changing the bias on Q_{11} and Q_{15} bases the signal can either pass to the output pin 2 or be "dumped" into the supply through Q11. The use of buffer stages ${\rm Q}_{10}$ and ${\rm Q}_{21}$ prevent distortion at low-signal levels and the control range is better than 70 dB. The signal output is also buffered by Q14 and Q20, thus providing a low impedance drive of up to 2.0 V (p-p) to the demodulator, with an overall gain between pins 5 and 2 of 40 dB. To enable the chroma signal output to reach the amplifiers from Q_{17} collector, Q_{12} is held in conduction by Q_5 which in the absence of any input on pin 4 is not This high collector voltage also holds Q26 in conducting. conduction, clamping the input to the burst channel and preventing chroma information reaching the oscillator. During picture retrace time, a positive-going 4.0 μ s pulse from the line sweep transformer will turn Q_5 "on" and Q_7 "off". When Q_5 collector goes low, Q_{12} will become "cut-off" preventing the burst signal at Q_{17} collector from reaching the output pin 2. At the same time, Q26 turns "off" opening the burst channel. The high collector voltage of Q_7 turns on Q_{16} and Q_{22} . Q_{16} passes the burst signal from Q_{17} collector to the subcarrier regenerator and Q_{22} "fills-in" for Q12 during the gate period to prevent a dc shift in the pin 2 output voltage.

The gated burst signal is applied to the oscillator through Q_{27} and Q_{28} . Q_{29} , Q_{50} and Q_{35} together with Q_{27} and Q_{28} form an injection locked oscillator circuit. At series resonance of the crystal connected to pin 8 the impedance of pin 8 is very low, thereby reducing the 3.579545 MHz carrier level at the base of Q_{50} . The signal at the base of Q_{29} is not reduced but the output voltages in R_{33} and R_{42} will change. Any signals outside the response band of the crystal will appear equally at Q_{50} and Q_{29} bases and be suppressed in the output by the differential amplifier common-mode rejection ratio (about 40 dB). To maintain oscillation, a feedback signal with the correct phase is passed by Q_{35} back to the input of Q_{27} . Careful control of the resistor ratios ensures that Q_{29} and Q_{50} are operated linearly with about 350 mV (p-p) at R₃₃ and R₄₂, due to self oscillation. A burst signal as low as 2.0 mV (p-p) at the chroma input is sufficient to cause the oscillator to lock to the reference phase and frequency.

As the burst amplitude increases, the level at Q29 and Q50 collectors changes and this shift is used to provide the automatic chroma control function. Q_{42} and Q_{45} form a modified differential amplifier and with zero offset bias Q45 conducts most of the current from Q43. As an increasing burst level swings Q29 and Q_{50} collectors, the current from Q_{43} is shunted into Q_{42} . At a point predetermined by the setting of the automatic chroma control connected to pin 10, the composite lateral PNP of Q_{47} and Q_{46} will be biased into conduction. This amplifier has a gain of unity and a filter capacitor (connected to Q46 base) prevents any tendency to oscillations. Diode CRg provides thermal compensation to ensure a steady color-killer threshold point. The increasing current through Q13 emitter is used to control Q9 base, attenuating the input signal as the burst amplitude increases. The current from Q13 also keeps Q19 in saturation. When the input signal becomes too small for satisfactory color rendition, Q13 current falls and Q_{19} comes out of saturation. This means Q_{25} will saturate, clamping Q21 base and "killing" the chroma output stage. R24 in the Schmitt trigger circuit ensures that the colorkiller will have hysteresis to prevent fluttering between "on" and "off" states.

The oscillator output voltages at R₃₃ and R₄₂ are used to drive Q₃₈ and Q₃₉ into limiting so that as the burst amplitude in creases the oscillator activity to around 700 mV (p-p), there will be no change in the oscillator output amplitude at pin 13. Q₃₈ and Q₃₉ are used as current sources with a 180° phase difference for the differential pairs Q₃₀ and Q₃₁, Q₃₄ and Q₃₇. A small capacitor attached externally to Q₃₉ callector adjusts the total phase difference to 135°. Since the signal appearing in the load resistor R₅₁ will be the vector sum of Q₃₁ and Q₃₇ signals, varying the base bias of Q₃₀ and Q₃₀ and Q₄₀ will change the oscillator output providing a low impedance drive at pin 13 for the deductor.

To minimize crosstalk between the burst and chroma channels, separate bias chains are used. Further, the oscillator bias chain is zener regulated to prevent phase shifts in the reference output with power-supply variations.

MC1446L

SENSE AMPLIFIER

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+10 -10	Vdc
Differential Input Voltage	VID	±5.0	Volts
Common-Mode Input Voltage	VIC	±5.0	Volts
Output Current	10	25	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C	PD	575 3.85	mW mW/ ^o C
Operating Temperature Range	тд	0 to +75	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc ±1%, V_{EE} = -6.0 Vdc ±1%, T_A = +25°C unless otherwise noted.)

1 2 3 3 4 5	Ay Vo IIB IIO ICH ICL		600 1.4 15 0.1 1.7 0.5	- 2.4 - 0.4 60 4.0 2.6 1.0	- Vdc μA μA mA
3 3 4	1 10 1 Сн 1 СL	2.0 - -		- 0.4 60 4.0 2.6	μA μA
3	^I IO ICH ICL	2.0 - -		- 0.4 60 4.0 2.6	μA
3	^I IO ICH ICL	-	15 0.1 1.7	60 4.0 2.6	μA
3	^I IO ICH ICL		15 0.1 1.7	60 4.0 2.6	μA
3	^I IO ICH ICL		0.1	4.0	μA
4	^і сн ^і сі		1.7	2.6	
	ICL			-	mA
5	ICL			-	
5		-	0.5	1.0	1
5					1
		1			Volts
	VCH	2.0	-	-	
	VCL	-	-	0.8	
5					Volts
	V _{SH}	2.0	- 1	-	
	VSL	-	-	0.8	
4	^I S	- 1	30	150	μA
6	1 ₀₊	4.0	8.0	-	mA
6	10-	-2.5	-4.0	-	mA
6	^I cc	-	19	27	mA
6	IEE.	-	-17	-24	mA
7	VICR				Volts
l		-	+2.7		
l			-1.0	-	
ļ		-	+2.7	-	
		-	-6.0	-	
7	VIDR				Volt
l	1		±0.5	-	
		-	±2.0	-	
.					
	4 6 6 6 7	VCH VCL 5 VSH VSL 4 IS 6 IO+ 6 ICC 6 IEE 7 VICR	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

SWITCHING CHARACTERISTICS

Propagation Delay Time	8	tPHL	-	14	-	ns
Output Rise or Fall Time	8	tTLH,TTHL	-	30	_	ns
Strobe Delay Time	9	tdS		14		ns
Strobe Width (Min)	9	^t S(min)	-	20		ns
Channel Select Time	10	t _{Csel}	-	14	-	ns
Common-Mode Recovery Time (channel selected)	7	^t CMR	-	60	-	ns
Differential-Mode Recovery Time (channel selected)	8	^t DMR	-	40		ns

TEST CIRCUITS

FIGURE 2 - OUTPUT DC LEVELS

FIGURE 3 - INPUT CURRENTS

FIGURE 5 – CHANNEL SELECT TRANSFER CHARACTERISTICS

FIGURE 4 – CHANNEL SELECT AND STROBE INPUT CURRENTS

FIGURE 6 - OUTPUT CURRENTS

FIGURE 7 - INPUT COMMON-MODE CHARACTERISTICS

FIGURE 8 – CIRCUIT PROPAGATION DELAY, OUTPUT RISE AND FALL TIMES, AND DIFFERENTIAL-MODE RECOVERY TIME

FIGURE 9 - STROBE CHARACTERISTICS

FIGURE 10 - CHANNEL SELECT TIME

TYPICAL RECOVERY TIME WAVEFORMS

FIGURE 11 - COMMON-MODE RECOVERY TIME

e_{in} IV/DIV e_{out} 500 mV/DIV COMMON-MODE OUTPUT 50 ns/DIV

FIGURE 12 - DIFFERENTIAL-MODE RECOVERY TIME

DIFFERENTIAL-MODE RECOVERY TIME

8

TYPICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted)

FIGURE 14 – DC OUTPUT VOLTAGE LEVEL versus TEMPERATURE (All Inputs Grounded)

FIGURE 15 – AMPLIFIER TRANSFER CHARACTERISTICS

FIGURE 17 – STROBE INPUT TRANSFER

FIGURE 16 – CHANNEL SELECT versus OUTPUT TRANSFER CHARACTERISTICS

VC, CHANNEL SELECT INPUT VOLTAGE (VOLTS)

FIGURE 18 - COMMON-MODE GAIN versus FREQUENCY

TYPICAL CHARACTERISTICS (continued)

FIGURE 19 - VOLTAGE GAIN versus ERFOUENCY

FIGURE 20 - ADJACENT CHANNEL ISOLATION versus

CIRCUIT DESCRIPTION

The MC1446L is designed to translate a positive 4.0 mV signal from a plated wire memory to an MTTL "1" level, or a negative 4.0 mV to an MTTL "0" level. This sense amplifier also eliminates the requirement for a bipolar switch in series with the plated wire because the bit selection is done inside the sense amplifier.

- The circuit operation can be described in sections as follows:
- 1. All channels have been designed for low input offsets -0.5 V typical.
- 2. Channel "ORing" is accomplished by using common collector load resistors for four differential amplifier pairs.
- 3. Channel selection is accomplished by current steering through the four differential pairs. The circuit below the four differential pairs forms a matrix tree which can be thought of as a 1-by-4 decode matrix. The bottom transistor is the current source for the first stage of gain.
- 4. DC translation between the first and second stages of gain is done through an emitter-follower stage, two diodes and another emitter follower for each side of the differential amplifier. The currents in these translator legs are combined and run through diodes to the negative supply. These diodes are used to bias both the first and second gain stages. This also gives the appropriate gain versus temperature and dc output level versus temperature characteristics.
- 5. The top of the second stage amplifier is regulated at a voltage equal to five diode drops above ground. It can be seen that if the 700 ohm resistor in the regulator has one diode (or VBE) across it then the 2.8 k ohm resistor will have four diode drops across it. This makes a five diode drop voltage above ground that is fairly independent of the positive supply.

- 6. The current in the second stage of the amplifier is set by the 180-ohm resistor in the emitter of the current source. It can be seen that this resistor has one diode drop (approximately 750 mV) across it. Therefore, an analysis will show that the voltage drop across the 775-ohm load resistor in the second stage will be approximately two diodes when the differential amplifier is balanced. Accounting for the additional diode voltage drop of the emitter-follower output transistor will set the output dc level at two diodes above ground or very near the center of MTTL threshold.
- 7. The strobe circuit works by steering current in the second stage. When the strobe is low, the entire current of the second stage current source is steered through the 775-ohm load resistor. This clamps the output to a low state so that an input signal cannot cause an output. When the strobe is high, the current is steered through the second stage differential amplifier pair and the output will go to a level dictated by the presence of an input signal.
- 8. The output circuit of the sense amplifier may be thought of as a push-pull type. The emitter of the push transistor is brought out to a separate pin from the collector of the pull transistor. This will facilitate "Wire ORing" the outputs of several sense amplifiers. Several emitter outputs can be wired together along with only one collector pulldown transistor. The unused collectors of the pulldown transistor must be grounded. An example of the use of "Wire ORing" is to have four MC1446 devices wired-OR into a 16-channel sense amplifier in which a channel may be selected by selecting channels in parallel at the amplifier inputs and strobing the proper sense amplifier.

APPLICATIONS INFORMATION

The MC1446 is designed to convert signals as small as positive or negative 4.0 mV to MTTL logic levels. The output level of the sense amplifier with no input signal present and with the strobe high is typically 1.4 volts (typical input threshold of MTTL logic). Hence, if the strobe goes high during the absence of an input signal from the plated-wire memory, the sense amplifier output will rise to 1.4 volts. This condition could cause false outputs; therefore careful considerations must be given to strobe timing. Figure 21 illustrates a typical timing sequence of the MC1446 device as recommended for proper operation.

Figure 22 shows how these sense amplifiers are used in an

N-word-line-by-32-bit basic memory plane organized as 4-N words of 8 bits each. During a read cycle, the read current is pulsed through a selected word-line and thus generates outputs to all of the 32-bit positions in the line. The internal one-of-four decoder selects the desired channels of the eight sense amplifiers for a particular system word. When the strobe goes high, the sense amplifier outputs switch according to the data present at the amplifier inputs. The data readout on the other 24-bit lines is not lost due to the Non-Destructive Read-Out properties of a plated-wire memory. On the next read cycle the decoder of the sense amplifier in combination with the selected word-line determines the 8-bits of data to read.

MC1446L (continued)

APPLICATIONS INFORMATION (continued)

Memory organizations that have more than four words per word-line require that the sense amplifier outputs be wire-ORed. To wire-OR the outputs of several sense amplifiers all of the emitters of the output-pullup transistors are tied together. Only one collector of the pulldown transistors is tied to the wire-ORed emitters of the pullup transistors. The remaining pulldown transistors must be grounded as noted in Figure 23. Ten or more sense amplifiers may be wire-ORed together without any reduction in usable logic levels since only one sense amplifier per bit is on at any given time. Variations in propagation delay time (tpd), versus the number of wire-ORed sense amplifiers and the output capacitance are given in Figure 24.

The fast propagation delay time and low threshold of the MC1446 make it useful as the sense amplifier for the MCM7001 N-channel MOS memory. The data output of the MCM7001 is referenced around +7.5 volts; thus the power supply inputs of the MC1446, as well as the MECL-level Channel Select and Strobe inputs, are translated to MTTL and then referenced around this level, as shown in Figure 25. The minimum 200 μ A current from the memory generates an input of 20 mV, which is easily detected by the MC1446. The MC1446 otuput is a TTL-level signal with a +7.5 volt reference. This signal can be translated back to MECL levels with a zener diode as shown.

FIGURE 21 - TYPICAL TIMING SEQUENCE

APPLICATIONS INFORMATION (continued)

.8

MC1446L (continued)

DEFINITIONS

- Av the voltage gain from a channel input to amplifier output (input signal is 2 mV peak-to-peak and the strobe is high)
- CMV_{in} maximum input common-mode voltage on any channel that will not cause the amplifier to saturate
- DMV_{in} maximum input differential-mode voltage on any channel signal that will not saturate the amplifier
- I_{CC} current from the positive supply with no load (pin 12 shorted to pin 13)
- IEE current into the negative supply with both channel select pins at +3.5 volts
- IIB input current into the base of any input transistor when the opposite transistor of the differential pair is at the same voltage
- ICH input current at channel select pin when the channel select voltage is at VCH
- ICL input current at channel select pin when the channel select voltage is at VCL
- IIO difference between base currents of any input differential pair of transistors
- IO+ output source current to a load with the output remaining above 2.4 volts, excluding the amplifier's own sink current
- IO- the current that the amplifier will sink into pin 12
- tCMR time required for the amplifier to recover from the maximum specified common-mode input, (recovery – output within 10% of its quiescent state)
- tC sel time between the 50% point of the channel gate input and the 50% point of the signal input that still allows a full width signal at the amplifier output

- tDMR time required for the amplifier to recover from maximum specified differential-mode input, (recovery – output within 10% of its quiescent state)
- tdS delay time from the 50% point of the strobe input leading or trailing edge to the corresponding 50% point of the output
- tPHL the delay time from the 50% point of a 5.0 mV input leading edge to the 50% point of the amplifier output
- $t_{\mbox{THL}},~$ time between 10% and 90% points of the output
- tTLH signal with a 5.0 mV input signal
- tSmin minimum pulse width at 50% points at strobe input allows a full output (pulse rise times of less than 10 ns, amplifier differential input equal to 3 mV)
- VCH minimum voltage required at the channel select pin to cause a given channel to give 99% of the maximum gain through the amplifier
- VCL maximum voltage allowable at the channel select pin to cause a given channel to give 1% or less of the gain when channel is fully selected
- V_O output dc level with inputs grounded and strobe high
- VOH minimum output high level
- VOL maximum output low level
- VSH the minimum voltage required at the strobe pin to allow 99% of a full output
- V_{SL} the maximum voltage allowable at the strobe pin to allow 1% or less of a full output

MC1488L

LINEAR/DIGITAL INTERFACE CIRCUITS

See Packaging Information Section for outline dimensions.

8

Maximum Rating (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit Vdc	
Power Supply Voltage	V _{CC} V _{EE}	+15 -15		
Input Signal Voltage	V _{in}	-15≤V _{in} ≤7.0	Vdc	
Output Signal Voltage	v _o	±15	Vdc	
Power Derating (Package Limitation, Ceramic Dual-In-Line Package) Derate above T _A = +25 ^o C	Ρ _D 1/θ _{JA}	1000 6.7	mW mW/ ⁰ C	
Operating Temperature Range	TA	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +175	°C	

ELECTRICAL CHARACTERISTICS (V_{CC} = +9.0 \pm 1% Vdc, V_{EE} = -9.0 \pm 1% Vdc, T_A = 0 to +75^oC unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Forward Input Current (Vin = 0 Vdc)	1	١F		1.0	1.6	mA
Reverse Input Current (Vin = +5.0 Vdc)	1	IR	-	-	10	μA
Output Voltage High (V _{in} ≈ 0.8 Vdc, R _L = 3.0 kΩ, V _{CC} = +9.0 Vdc, V _{EE} = -9.0 Vdc)	2	Voн	+6.0	+7.0	_	Vdc
$(V_{in} = 0.8 \text{ Vdc}, R_L = 3.0 \text{ k}\Omega, V_{CC} = +13.2 \text{ Vdc}, V_{EE} = -13.2 \text{ Vdc})$			+9.0	+10.5	-	
Output Voltage Low (V _{in} = 1.0 Vdc, R _L = 3.0 kΩ, V _{CC} = +9.0 Vdc, V _{EE} = -9.0 Vdc)	2	VOL	6.0	-7.0	-	Vdc
$(V_{in}$ = 1.9 Vdc, R _L = 3.0 k Ω , V _{CC} = +13.2 Vdc, V _{EE} = -13.2 Vdc)			-9.0	-10.5	-	
Positive Output Short-Circuit Current	3	ISC+	+6.0	+10	+12	mA
Negative Output Short-Circuit Current	3	Isc-	-6.0	-10	-12	mA
Output Resistance (V _{CC} = V _{EE} = 0, V _O = ±2.0 V)	4	RO	300	_	-	Ohms
Positive Supply Current ($R_1 = \infty$)	5	¹ cc				mA
(V _{in} = 1.9 Vdc, V _{CC} = +9.0 Vdc)				+15	+20	
(V _{in} = 0.8 Vdc, V _{CC} = +9.0 Vdc)			-	+4.5	+6.0	
(V _{in} = 1.9 Vdc, V _{CC} = +12 Vdc)			-	+19	+25	
(V _{in} = 0.8 Vdc, V _{CC} = +12 Vdc)			-	+5.5	+7.0	
(V _{in} = 1.9 Vdc, V _{CC} = +15 Vdc)			-	-	+34	
(V _{in} = 0.8 Vdc, V _{CC} = +15 Vdc)			-	-	+12	
Negative Supply Current ($R_{\perp} = \infty$) ($V_{in} = 1.9 Vdc, V_{EE} = -9.0 Vdc$)	5	IEE	_	-13	-17	mA
(V _{in} = 0.8 Vdc, V _{EE} = -9.0 Vdc)			-	-	- 15	μA
(V _{in} = 1.9 Vdc, V _{EE} ≈ −12 Vdc)			_	-18	-23	mA
(V _{in} = 0.8 Vdc, V _{EE} = -12 Vdc)			-	-	-15	μA
(V _{in} = 1.9 Vdc, V _{EE} ≈ −15 Vdc)			-	-	-34	mÁ
(V _{in} = 0.8 Vdc, V _{EE} = -15 Vdc)			-	-	-2.5	mA
Power Dissipation		PD			1	mW
(V _{CC} = 9.0 Vdc, V _{EE} = -9.0 Vdc) (V _{CC} = 12 Vdc, V _{EE} = -12 Vdc)					333 576	

SWITCHING CHARACTERISTICS (V_{CC} = +9.0 \pm 1% Vdc, V_{EE} = -9.0 \pm 1% Vdc, T_A = +25^{o}C.)

Propagation Delay Time	(z _I = 3.0 k and 15 pF)	6	TPLH	-	275	350	ns
Fall Time	(z _i = 3.0 k and 15 pF)	6	^t THL	-	45	75	ns
Propagation Delay Time	(z _I = 3.0 k and 15 pF)	6	^t PHL	-	110	175	ns
Rise Time	(z _I = 3.0 k and 15 pF)	6	^t TLH	-	55	100	ns

CHARACTERISTIC DEFINITIONS

FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

FIGURE 5 - POWER-SUPPLY CURRENTS

FIGURE 2 - OUTPUT VOLTAGE +9 V -9 V J₁ 214 +1.9 V 3 VOL 3 | ñ ۷он 8 12 +0.8 V Vон **ģ**7 101

FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)

FIGURE 6 - SWITCHING RESPONSE

8

TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 7 - TRANSFER CHARACTERISTICS

APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488L quad driver and its companion circuit, the MC1489L quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15volts in magnitude and are positive for a logic "0" and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488L meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488L is much too

FIGURE 12 – SLEW RATE versus CAPACITANCE FOR I_{SC} = 10 mA

fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driven output. The required capacitor can be easily determined by using the relationship C = $I_{SC} \times \Delta T / \Delta V$ from which Figure 12 is derived. Accordingly, a 330-pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15-volt, 500-mA source. The MC1488L is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., V_{CC} ≥9.0 V; V_{EE} <-9.0 V). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488L effectively shorting the 300-ohm output resistors to ground. If <u>all four outputs</u> were then shorted to plus or minus 15 volts, the power dissipation in these resistors

FIGURE 13 - POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS

would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488L to withstand momentary shorts to the ±25-volt limits specified in the earlier Standard RS232B.) The addition of the diodes also permits the MC1488L to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

Other Applications

The MC1488L is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:

 Output Current Limiting – this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488L used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.

2. Power-Supply Range – as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately -2.5 volts to the minimum specified -15 volts. The MC1488L will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR

MDTL 0 3 MRTL OUTPUT -0.7 V to +3.7 V +3.0 v ≟ Y MDTL 4 NAND 0 GATE 0 INPUT 5 6 • MDTL OUTPUT -0.7 V to +5.7 V MC1488L MDTL 0-MHTL INPUT 0-10 +5 V 늪 MHTL OUTPUT -0.7 V to 10 V 8 Ţ 12 MDTL O-MMOS INPUT O-13 11 • MOS OUTPUT -10 V to 0 V 1 k ₹10 k Ţ 긑 +12 V -12 V

FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS

LINEAR/DIGITAL INTERFACE CIRCUITS

MC1489L MC1489AL

See Packaging Information Section for outline dimensions.

8

MC1489L, MC1489AL (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	10	Vdc	
Input Signal Range	V _{in}	±30	Vdc	
Output Load Current	١L	20	mA	
Power Dissipation (Package Limitation, Ceramic Dual In-Line Package) Derate above $T_A = +25^{\circ}C$	Ρ _D 1/θ _{JA}	1000 6.7	mW mW/ ^o C	
Operating Temperature Range	Τ _A	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +175	°C	

ELECTRICAL CHARACTERISTICS (Response control pin is open.) (V_{CC} = +5.0 Vdc ±1%, T_A = 0 to +75°C unless otherwise noted)

Ch	aracteristics		Figure	Symbol	Min	Тур	Max	Unit
Positive Input Current		in = +25 Vdc) n = +3.0 Vdc)	1	Ϋн	3.6 0.43	-	8.3 —	mA
Negative Input Current		in = -25 Vdc) in = -3.0 Vdc)	1	կլ	-3.6 -0.43	_	-8.3	mA
Input Turn-On Threshold Voltage $(T_A = +25^{\circ}C, V_{OL} \le 0.45 V)$		21489L 21489A L -	2	VIH	1.0 1.75	_ 1.95	1.5 2.25	Vdc
Input Turn-Off Threshold Voltage (T _A = +25 ^o C, V _{OH} ≥ 2.5 V, I _L		C1489L C1489AL	2	VIL	0.75 0.75	 0.8	1.25 1.25	Vdc
Output Voltage High	(V _{in} = 0.75 V, I _L = -((Input Open Circuit,		2	∨он	2.6 2.6	4.0 4.0	5.0 5.0	Vdc
Output Voltage Low	(Vin = 3.0 V, IL = 10	mA)	2	VOL	-	0.2	0.45	Vdc
Output Short-Circuit Current			3	^I SC		3.0	-	mA
Power Supply Current	(V	in = +5.0 Vdc)	4	1+	-	20	26	mA
Power Dissipation	(V	in = +5.0 Vdc)	4	PD	-	100	130	mW

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 Vdc \pm 1%, T_A = +25 ^{o}C)

Propagation Delay Time	(R _L = 3.9 kΩ)	5	t PLH	-	25	85	ns
Rise Time	(R _L = 3.9 kΩ)	5	tr	-	120	175	ns
Propagation Delay Time	(R _L = 390 Ω)	5	^t PHL	-	25	50	ns
Fall Time	(R _L = 390 Ω)	5	t _f	-	10	20	ns

TEST CIRCUITS

FIGURE 1 - INPUT CURRENT

FIGURE 2 – OUTPUT VOLTAGE and INPUT THRESHOLD VOLTAGE

FIGURE 3 - OUTPUT SHORT CIRCUIT CURRENT

FIGURE 5 - SWITCHING RESPONSE

FIGURE 4 - POWER SUPPLY CURRENT

FIGURE 6 - RESPONSE CONTROL NODE

C, capacitor is for noise filtering. R, resistor is for threshold shifting.

$\label{eq:type} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = 5.0 \mbox{ Vdc}, \mbox{ T}_{A} = +25^{0} \mbox{C} \mbox{ unless otherwise noted}) \end{array}$

FIGURE 11 – INPUT THRESHOLD versus POWER-SUPPLY VOLTAGE

VCC, POWER SUPPLY VOLTAGE (Vdc)

MC1489L, MC1489AL (continued)

APPLICATIONS INFORMATION

General Information

The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488L quad driver and its companion circuit, the MC1489L quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed herein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one VBE (Ref. Sect. 2.4).

The receiver shall detect a voltage between -3.0 and -25 volts as a logic "1" and inputs between +3.0 and +25 volts as a logic "0" (Ref, Sect. 2.3). On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or logic "1" (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or logic "1" input.

Device Characteristics

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise

rejection. The MC1489L input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV. The MC1489AL has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis. Each receiver section has an external response control node in

addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power-supply. Figures 6, 8 and 9 illustrate the input threshold voltage shift possible through this technique.

This response node can also be used for the filtering of highfrequency, high-energy noise pulses. Figures 12 and 13 show typical noise-pulse rejection for external capacitors of various sizes.

These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 14)

The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 15 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement.

FIGURE 13 – TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

APPLICATIONS INFORMATION (continued)

FIGURE 14 – TYPICAL TRANSLATOR APPLICATION – MOS TO DTL OR TTL

FIGURE 15 - TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET RS-232C

8

MC1506L MC1406L

Specifications and Applications Information

MONOLITHIC SIX BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

. . . designed for use where the output current is a linear product of a six-bit digital word and an analog input voltage.

- Digital Inputs are MDTL and MTTL Compatible
- Relative Accuracy ±0.78% Error maximum
- Low Power Dissipation 85 mW typical @ ±5.0 V
- Adjustable Output Current Scaling
- Fast Settling Time 150 ns typical
- Standard Supply Voltage: +5.0 V and -5.0 V to -15 V

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Digital-to-Analog Meter Readout
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- Digital Varicap Tuning
- Video Systems

- Stepping Motor Drive
- CRT Character Generation
- Digital Addition and Subtraction
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Programmable Power Supplies
- Speech Encoding

See Packaging Information Section for outline dimensions.

(MC1506 - Page 1)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+5.5 -16.5	Vdc
Digital Input Voltage	V5 thru V10	+8.0, V _{EE}	Vdc
Applied Output Voltage	vo	±5.0	Vdc
Reference Current	¹ 12	5.0	mA
Reference Amplifier Inputs	V ₁₂ , V ₁₃	V _{CC} , V _{EE}	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ⁰ C	PD	1000 6.7	mW mW/ ^o C
Operating Temperature Range MC1506L MC1406L	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{R12}$ = 2.0 mA, T_A = T_{low}* to T_{high}* unless otherwise noted. All digital inputs at low logic levels.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale IO)	10	Er	-	-	±0.78	%
Settling Time (within 1/2 LSB [includes t_d] $T_A = +25^{\circ}C$)	9	ts	-	150	300	ns
Propagation Delay Time T _A = +25 ^o C	9	^{ФНL,} ФLН	-	10	50	ns
Output Full Scale Current Drift		TCIO	-	80	-	PPM/ ^O C
Digital Input Logic Levels High Level, Logic "1" (MC1406L, MC1506L) Low Level, Logic "0" (MC1406L) (MC1506L)	3,14	Vih Vil	2.0 		 0.8 0.5	Vdc
Digital Input Current High Level, V _{IH} = 5.0 V Low Level, V _{IL} = 0.8 V	3,13	і 1 ₁ н		0	+0.01 -1.5	mA
Reference Input Bias Current (Pin 13)	3	I ₁₃	_	-0.002	-0.01	mA
Output Current Range VEE = -5.0 V VEE = -6.0 to -15 V	3	IOR	0	2.0 2.0	2.1 4.2	mA
Output Current $V_{ref} = 2.000 V, R_{12} = 1.000 k\Omega$	3	10	1.9	1.97	2.1	mA
Output Current (all bits high)	3	IO(min)	_	0	10	μΑ
Output Voltage Compliance ($E_{\Gamma} \leqslant \pm 0.78\%$ at T_{A} = +25°C)	3,4,5	Vo	_	_	±0.4	Vdc
Reference Current Slew Rate (T _A = +25 ^o C)	8,15	SR I _{ref}	_	2.0	_	mA/µs
Output Current Power Supply Sensitivity	10	PSRR ()	-	0.002	0.010	mA/V
Power Supply Current A1 thru A6; V _{IL} = 0.8 V A1 thru A6; V _{IH} = 2.0 V	3,11,12	ICC IEE		+7.2 -9.0	+11 -11	mA
Power Dissipation (all bits high) V _{EE} ≈ -5.0 Vdc V _{EE} ≈ -15 Vdc		PD		85 175	120 240	mW

8

 $\label{eq:theta} \begin{array}{ll} {}^{*}\text{T}_{high} = {}^{+}75^{0}\text{C} \text{ for MC1406L} & \text{T}_{low} = {}^{0}\text{C} \text{ for MC1406L} \\ = {}^{+}125^{0}\text{C} \text{ for MC1506L} & = {}^{-}55^{0}\text{C} \text{ for MC1506L} \end{array}$

The MC1506L consists of a reference current amplifier, and R-2R ladder, and six high-speed current switches. For many applications, only a reference resistor and a reference supply voltage need be added.

The switches are inverting in operation, therefore a low state at the input turns on the specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components which are fed to the switches. Note that there is always a remainder current that is equal to the least significant bit. This current is shunted to ground, and the maximum current is 63/64 of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.

(MC1506 – Page 3)

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE

FIGURE 6 - POSITIVE Vref

FIGURE 7 - NEGATIVE Vref

(MC1506 - Page 4)

TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)

FIGURE 9 -- TRANSIENT RESPONSE

FIGURE 12 -- TYPICAL POWER SUPPLY CURRENT versus $\mathsf{V}_{\ensuremath{\mathsf{EE}}}$

8

(MC1506 - Page 5)

TYPICAL CHARACTERISTICS (continued)

FIGURE 13 – LOGIC INPUT CURRENT versus INPUT VOLTAGE

GENERAL INFORMATION

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 volts, due to the increased voltage drop across the 400-ohm resistors in the reference current amplifier.

Output Voltage Compliance

The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter is near ground and a positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diode voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

For example, at $+25^{\circ}$ C the allowable voltage compliance on pin 4 to maintain six-bit accuracy is ± 0.4 volt. With a full scale output current of 2.0 mA, the maximum resistor value that can be connected from pin 4 to ground is 200 ohms.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1506L is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current.

The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current source pair in the reference amplifier at the lowest possible voltage, matching and optimizing the output impedance of the pair.

The MC1506L/MC1406L is guaranteed accurate to within $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.969 mA. This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA, with the loss of one LSB = 31 μ A that is the ladder remainder shunted to ground. The input current to pin 12 has a guaranteed current range value of between 1.9 to 2.1 mA, allowing

(MC1506 - Page 6)

GENERAL INFORMATION (continued)

some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA. This is an optional step since the MC1506L accuracy is essentially the same between 1.5 to 2.5 mA. Then the MC1506L full scale current is trimmed to the same value with R12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 6-bit D-to-A converters may not be used to construct a 12-bit accurate D-to-A converter. 12-bit accuracy implies a total error of $\pm 1/2$ of one part in 4096, or $\pm 0.012\%$, which is more accurate than the $\pm 0.78\%$ specification provided by the MC1506L.

Multiplying Accuracy

The MC1506L may be used in the multiplying mode with six-bit accuracy when the reference current is varied over a range of 64:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of 6.0 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 60 μ A to 4.0 mA, the 6.0 μ A contributes an error of 0.1 LSB. This is well within six-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within $\pm 1/2$ LSB, while the turn "off" is typically under 50 ns.

The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 150 ns may be realized.

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 12 for converting the reference voltage to a current, and a turnaround circuit or current mirror for feeding the ladder. The reference amplifier input current, 112, must always flow into pin 12 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6. The reference voltage source supplies the full current 112. Compensation is accomplished by Miller feedback from pin 14 to pin 13. This compensation method yields the best slew rate, typically better than 2.0 mA/ μ s, and is independent of the value of R12. R13 must be used to establish the proper impedance for compensation at pin 13. For bipolar reference signals, as in the multiplying mode, R13 can be tied to a negative voltage corresponding to the minimum input level. Another method is shown in Figure 22.

It is possible to eliminate R13 with only a small sacrifice in accuracy and temperature drift. For instance when high-speed operation is not needed, a capacitor is connected from pin 14 to V_{EE} . The capacitor value must be increased when R12 is made larger to maintain a proper phase margin. For R12 values of 1.0, 2.5, and 5.0 kilohms, minimum capacitor values are 50, 125, and 250 pF.

Connections for a negative reference voltage are shown in Figure 7. A high input impedance is the advantage of this method, but Miller feedback cannot be used because it feeds the input signal around the PNP directly into the high impedance node, causing slewing problems and high frequency peaking. Compensation involves a capacitor to VEE on pin 14, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 V above VEE. Bipolar input signals may be handled by connecting R12 to a positive reference voltage equal to the peak positive input level at pin 13.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, R12 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 12 and ground.

If pin 12 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, thus decreasing the overall bandwidth.

APPLICATIONS INFORMATION FIGURE 16 – OUTPUT CURRENT VOLTAGE CONVERSION

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0 μ s. See Motorola Application Note AN-459 for more details on this concept.

FIGURE 18

The positive voltage range may be extended by cascoding the output with a high beta common base transistor, Q1, as shown.

The output voltage range for this circuit is 0 volts to BV_{CBO} of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μ s.

FIGURE 17

(MC1506 - Page 8)

8-164

APPLICATIONS INFORMATION (continued)

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1506L requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive, with the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a commonmode signal to the reference amplifier in the D-to-A con-This allows use of its output amplifier as a verter. classic current-to-voltage converter with the non-inverting input grounded.

Since ± 15 V and ± 5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing R_O and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C_O may be decreased to maintain the same R_OC_O product if maximum speed is desired.

Programmable Power Supply

The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1-volt increments, ± 0.05 volt; or 0 to 31.5 volts in 0.5-volt increments, ± 0.25 volt.

FIGURE 19 – COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipolar or Negative Output Voltage

The circuit of Figure 20 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6-bit "1's" complement offset binary. Vref may be used as this auxiliary reference. Note that RO has been doubled to 10 kilohms because of the anticipated 20 V (p-p) output range.

FIGURE 20 – BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6-bits magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 21 - POLARITY SWITCHING CIRCUIT

(MC1506 - Page 9)

APPLICATIONS INFORMATION (continued)

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1506L can be applied as a digital attenuator. See Figure 22. One advantage of this technique is that if $R_S = 50$ ohms, no compensation capacitor is needed and a wide large signal bandwidth is achieved. The small and large signal bandwidths are now identical and are shown in Figure 15. The best frequency response is obtained by not allowing I_{12} to reach zero. R_S can be set for a ± 1.0 mA variation in relation to I_{12} . I_{12} can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word that makes ac coupling necessary.

FIGURE 22 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

Panel Meter Readout

8

The MC1506L can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R12 or V_{ref}.

FIGURE 23 - PANEL METER READOUT CIRCUIT

FIGURE 24 – DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R12₁ and R12₂ or R13₁ and R13₂. Vo will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R12₁ and R12₂ to a positive reference higher than the most positive input, and drive R13₁ and R13₂. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.

MC 1506L MC 1406L

5464748494 410

R122 12

R132 13

Ţ

102

In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12-bit D-to-A converter (see Accuracy Section).

Fast rise and fall times require the use of high speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input.

This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I_O can be set at 62 μ A so that I_{12} will have a maximum value of 3.938 mA for a digital bit input configuration of 111110.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

APPLICATIONS INFORMATION (continued)

FIGURE 26 – PEAK DETECTING SAMPLE and HOLD (Features infinite hold time and optional digital output.)

Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output amplifier for unipolar operation.

FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE

Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

FIGURE 30 – ANALOG QUOTIENT OF TWO DIGITAL WORDS

(MC1506 - Page 11)

APPLICATIONS INFORMATION (continued)

FIGURE 31 – ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)

Two Digit BCD Conversion

MC1506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten.

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

(MC1506 - Page 12)

Specifications and Applications Information

MONOLITHIC ANALOG – DIGITAL CONTROL CIRCUIT

MC1507L

MC1407L

... designed for wide application in analog-to-digital, interface and high-speed instrumentation systems. The MC1507L/MC1407L consists of a wide bandwidth operational amplifier and a high-speed, dual-threshold comparator.

The comparator, which has separate Up and Down outputs, also possesses a differential reference input that sets both comparator thresholds for equal levels – but of opposite polarities.

The high slew rate of the amplifier makes it particularly advantageous for use as a current-to-voltage converter for the MC1506L and the MC1508L-8 D-to-A converters. Moreover, the operational amplifier is useful as a high-speed buffer.

The MC1507L/MC1407L is well-suited for application with the above-mentioned monolithic D-to-A converters to produce an inexpensive high-speed tracking analog-to-digital converter.

- Operational Amplifier Features High Slew Rate 20 V/µs typical and Wide Bandwidth – 24 MHz typical Unity Gain Crossover
- Fast Dual Threshold Schottky Comparator 75 ns typical Propagation Delay Time and Input Current of Only 0.4 μA typical
- MTTL and CMOS System Compatability
- Standard Supply Voltages of +5.0 and ±15 Vdc
- Compatible with MC1508L-8 and MC1506L D-to-A Converters
- Comparator Thresholds Simultaneously Adjustable with a Single Reference Input Voltage

ANALOG-DIGITAL CONTROL CIRCUIT

MONOLITHIC SILICON INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- High-Speed Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Speech Conversion
- DAC Current-to-Voltage Converter
- Control Systems
- Signal Generators

- High-Speed Buffer
- Window Comparator
- Peak Detecting Sample and Hold
- Voltage-to-Frequency Conversion
- Fast Integrator
- Delta Modulation

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages			
Logic Voltage Supply	Vlogic	+5.5	Vdc
Positive Voltage Supply	V _{CC}	+16.5	
Negative Voltage Supply	VEE	-16.5	
Differential Input Voltage Signal		1	
Amplifier Voltage	V ₁₆ – V ₁₅	±10	V
Comparator Voltage	$V_{6} - V_{5}$	±10	
Comparator Reference Voltage	$V_{11} - V_4$	±5.0	
Common-Mode Input Voltage Swing			
Amplifier Voltage	VICRA	V _{CC} , V _{EE}	V
Comparator Voltage	VICBC	Vlogic, VEE	
Comparator Reference Voltage	VICRCref	Vlogic, VEE	
Amplifier Output Short-Circuit Duration	t _{SC}	10	s
Power Dissipation (Package Limitation)	PD		
Ceramic Dual In-Line Package	_	1000	mW
Derate above $T_A = +25^{\circ}C$		6.0	mW/ ^o C
Operating Temperature Range	ТА		°C
MC1507L		-55 to +125	
MC1407L		0 to +75	
Storage Temperature Range	T _{stg}	-65 to +150	°C

8

AMPLIFIER SECTION

		MC1507			MC1407			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V10			a second				
$R_{S} \leq 2.0 \text{ k} \Omega$, $T_{A} = +25^{\circ} \text{C}$			1.0	2.0	-	2.0	6.0	mν
$T_A = T_{low}^*$ to T_{high}^*	-+			3.0		-	7.5	
Open-Loop Voltage Gain	A _{vol} ±	10,000	35,000	- Contraction	5,000	20,000	-	V/V
(V _O = 0 to +10 V, 0 to -10 V, R _L = 5.0 kΩ, T _A = T _{Iow} to T _{hiah})			Sec. 2.					
Input Bias Current	-+							
$T_{A} = +25^{\circ}C$	IBA		0.6	1.5		1.2	2.5	μA
$T_A = T_{low} = T_{high}$		-		2.5		1.4 -	4.0	μΑ
Input Offset Current	IIOA				2			
$T_A = +25^{\circ}C$	IUA	_	0.03	0.15		0.06	0.30	μA
T _A = T _{low} to T _{high}		-	-	0.25			0.45	
Common-Mode Input Voltage Swing	VICRA	±11		-	±11			V
Common-Mode Rejection Ratio	CMRR	10,000	35,000		10,000	35,000		V/V
Output Impedance (f = 20 Hz)		-	1.8			1.8		
• • • • • • • • • • • • • • • • • • • •	z0		1.0	-	g	1,0		kΩ
Output Voltage Swing ($R_L = 5.0 \text{ k}\Omega$) V ₁₆ = -10 V or A _V = +1 mode, T _A = +25 ^o C	V _O ±	±11	±12		±11	±12		v
$V_{16} = -10$ V or $A_V = +1$ mode, $T_A = T_{low}$ to T_{high}		±10	112		±10	112	_	v
$V_{16} = 0 V, T_A = +25^{\circ}C$		+11,-1.0	+122.0	+	+11,-1.0	+12,-2.0	· · ·	
$V_{16} = 0 V$, $T_A = T_{low}$ to T_{high}		+10,-1.0		1	+10,-1.0	-		
Unity Gain Crossover Frequency	fc						1.18.1	
Compensated for Unity Gain	Ű		12	-	1994 - 1991 1997 - 1992	12	e <u>-</u>	MHz
C13 = 10 pF, (Pulse Margin = 35 ⁰ C typical)								
Open-Loop Noncompensated			24		-	24	a at a	
(Phase Margin = 0 ⁰ typical)						· · · ·		
Large-Signal Step Response								
Gain = +1, V _{in} = 0 to 10 V (See Figure 16) Slew Rate	SR	10	20		10	20		N//
Settling time to within 0.1%	tsetla	10	0.8		10	20	0.8	V/μs μs
Gain = +1, V _{in} = -10 to +10 V (See Figure 16)	setig		0.0				0.0	μ3.
Settling time to within 0.1%	t _{setia}		1.1		-	1.1	-	μs
Gain = -1, V _{in} = 0 to -10 V	5							
Slew Rate	SR	10	20	-	10	20	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	V/µs
Settling time to within 0.1% Gain = -10, V _{in} = 0 to -10 V	tsetig		0.8	-	1	0.8		μs
Slew Rate	SR	10	20		10	20		V/µs
Settling time to within 0.1%	t _{setia}		0.8			0.8	_	μs
Gain = -10, V _{in} = 0 to -1.0 V	serig						un de la composition Nota de la composition	
Slew Rate	SR	10	20	5 - C	10	20	- 1	V/µs
Settling time to within 0.1%	^t setlg		0.8			0.8		μs
Gain = -100, V_{in} = 0 to -100 mV Settling time to within 0.1%	· · ·		2.0			2.0		
	tsetlg		2.0			2.0		μs
Small-Signal Step Response Propagation Delay Time (50% to 50%)	• .+	_	18	_		18		
Gain = +1, V_{in} = -50 mV to +50 mV	^t pd [±]		10			10		ns
Power Bandwidth	BW							
Gain = +1, V _{in} = 10 V(p-p)	DVV	320	640		320	640		kHz
Dutput Source Current (Short-circuit limited)	Isource	10	17	30	10	17	30	
Dutput Sink Current		2.0	3.0		2.0	3.0		
	Isink	2.0	5.0		2.0	3.0		mA
Power Supply Sensitivity VCC varied ±10%, VEE constant	PSSA+			150			150	μV/V
VEE varied ±10%, VEE constant	PSSA PSSA	1000		150	1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	150	μν/ν

*T_{low} = -55^oC for MC1507L, 0^oC for MC1407L *T_{high} = +125^oC for MC1507L, +75^oC for MC1407L

COMPARATOR SECTION

Characteristic			MC1507			MC1407		
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Threshold, UP Output	V _{th} +	36	40	44	30	40	50	mV
Input Threshold, DOWN Output	V _{th} -	- 36	-40	-44	- 30	-40	~50	mV
Input Threshold Range	VTR	-	-150 to +320	ţ		- 150 to +320		mV
Input Bias Current T _A = +25 ^o C T _A = T _{Iow} * to T _{hiah} *	¹ IBC	1.1	0.4	1.5 2.5	L I	0.8	2.5 4.0	μΑ

8

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, V_{logic} = +5.0 Vdc, $V_{ref}(+)$ = 40 mVdc, V_6 = V_4 = 0 V, T_A = +25^oC unless otherwise noted.)

COMPARATOR SECTION (continued)

Characteristic								
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Current T _A = +25 ^o C T _A = T _{low} to T _{high}	lioc		0.01	0.15 0.25		0.02	0.25 0.40	μA
Reference Input Bias Current	ref		4.0	18	-	4.0	18	μA
Common-Mode Input Voltage Swing	VICRC	-10 to +1.0			- 10 to +1.0			v
Low Level Logic Output Voltage R L = 1.4 k Ω , TA = T _{low} to T _{high}	V _{OL} (D) V _{OL} (U)	-	0.3 0.3	0.5 0.5	-	0.3 0.3	0.5 0.5	v
High-Level Logic Output Voltage TA = T _{low} to Thigh	V _{OL} (D) V _{OL} (U)	4.0 4.0	4.95 4.95		4.0 4.0	4.95 4.95		v
Output Sink Current (each output) T _A = T _{low} to T _{high}	l _{sink}	3.2			3.2			mA
Propagation Delay Time (each output) V_{in} = 0 to V_{th} +20 mV, RL = 1.4 k Ω	^t PLH ^t PHL		75 75	÷.	-	75 75		ns
Power Supply Sensitivity of Input Thresholds V_{logic} varied ±10%, V_{EE} constant V_{EE} varied ±10%, V_{CC} constant	PSSC ⁺ PSSC ⁻	4		1.0 1.0			1.0 1.0	mV/V

AMPLIFIER AND COMPARATOR SECTIONS

Power-Supply Voltage Range (See Note 1.) Positive Supply Voltage Negative Supply Voltage Logic Supply Voltage	V _{CC} V _{EE} V _{logic}	+4.5 -4.5 +4.5	+15 -15 +5.0	+16.5 - 16.5 +5.5	+4.5 -4.5 +4.5	+15 -15 +5.0	+16.5 - 16.5 +5.5	Vdc
Power-Supply Currents Comparator V _{in} = 0, V _{EE} = -15 V, V _{CC} = +15 V, V _{logic} = 5.0 V Positive Supply Current Negative Supply Current Logic Supply Current	I _{CC} IEE Ilogic		+4.0 -10 +16	+6.0 -13 +20	-	+4.0 -10 +16	+8.0 -16 +25	mA
Power Dissipation VEE = -5.0 V VEE = -15 V	PD		190 290	255 385	-	190 290	325 485	mW

Note 1. Amplifier Output Swing decreases with reduced V_{CC} and V_{EE} supply voltages. At ±5.0-volt supplies, common-mode and output swing voltages are typically ±2.0 volts.

 $T_{10W} = -55^{\circ}C$ for MC1507L, 0°C for MC1407L

8

 $T_{high} = +125^{\circ}C$ for MC1507L, +75°C for MC1407L

THREE-QUADRANT OPERATIONAL AMPLIFIER

The amplifier is a single-gain stage especially designed for high gain and fast response. Very high impedance current sources provide a typical resistance of 20 megohms at pin 13, which is the gain node of the circuit and its major RC pole. The input of the amplifier is protected against breakdown of the NPN differential pair, and the output is short-circuit protected. Since the amplifier is a single-gain stage with all NPN transistors in the signal path, it has one limitation when compared with standard operational amplifiers. The amplifier transfer characteristic, Figure 4, shows that the output can swing no more negative than -2.0 volts with respect to the inputs. Hence, the circuit is called a three-quadrant operational amplifier. The amplifier may be used as a standard operational amplifier in the noninverting unity gain mode with an output swing of ±11 V minimum, and as an inverting amplifier to convert negative voltages to positive voltages. For output swings under 4.0 volts (p-p), as in

active filter applications, the amplifier is especially useful since it offers four-quadrant operation with very wide bandwidth.

FIGURE 4 – TYPICAL TRANSFER CHARACTERISTIC FOR THREE-QUADRANT OPERATIONAL AMPLIFIER

FIGURE 5 - OPERATING MODES OF THE THREE-

TEST CIRCUITS AND WAVEFORMS

 $\label{eq:Figure 6} \begin{array}{l} \textbf{Figure 6} - \textbf{THREE-QUADRANT OPERATIONAL} \\ \textbf{AMPLIFIER PULSE RESPONSE WAVEFORMS} \\ (Applicable to Circuits of Figures 8 or 15) \\ (A_v = -1, \ R_L = 5.0 \ k\Omega, \ C_L (total) = 100 \ \text{pF}) \end{array}$

1.0 μs/DIV

FIGURE 7 - SETTLING TIME DEFINITION

FIGURE 9 - AMPLIFIER PROPAGATION DELAY WAVEFORMS

⁵⁰ mV/DIV

AMPLIFIER GAIN SELECTION

FIGURE 17 - OFFSET VOLTAGE ADJUSTMENT

8

ADJUSTABLE DUAL THRESHOLD COMPARATOR

COMPARATOR

The comparator equivalent circuit is shown in Figure 18. It may be envisioned as two comparators with common inputs and a reference voltage source which sets equal and opposite thresholds. A positive reference voltage on pin 11 sets the thresholds as in the transfer characteristic of Figure 19. If, for example, pin 6 is grounded, when the input signal on pin 5 exceeds V_{th} (+), the UP output goes high. When the input on pin 5 exceeds V_{th} (-) in the negative direction, the DOWN output goes high.

In applications where a single output is desired, as in a window comparator, the outputs may be connected in "wired OR" if the reference voltage polarity is reversed. This inverts the output polarity so that when the input is between thresholds the outputs are in a normal high state. It also interchanges the outputs so that pin 7 responds to an input of V_{th} (+), and pin 9 to an input of V_{th} (-). See Figure 20, which is the transfer characteristic curve. When the outputs are connected together, a low output state results for an input outside the threshold window.

FIGURE 19 – COMPARATOR TRANSFER CHARACTERISTIC, POSITIVE REFERENCE VOLTAGE

FIGURE 18 – COMPARATOR EQUIVALENT CIRCUIT

FIGURE 20 – COMPARATOR TRANSFER CHARACTERISTIC, NEGATIVE REFERENCE VOLTAGE

·E = Vth - Vret

OPERATION OF OPERATIONAL AMPLIFIER OR COMPARATOR ONLY

FIGURE 21 - INDIVIDUAL AMPLIFIER OPERATION ONLY

FIGURE 22 – INDIVIDUAL COMPARATOR OPERATION ONLY

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

TYPICAL CHARACTERISTICS (continued)

APPLICATIONS INFORMATION

FIGURE 30 - SINGLE THRESHOLD COMPARATOR

FIGURE 32 - D-TO-A CURRENT-TO-VOLTAGE CONVERTER

(POSITIVE OUTPUT)

 $\frac{V_{ref}}{R14} = 2 \text{ mA}$

FIGURE 33 - D-TO-A CURRENT-TO-VOLTAGE CONVERTER (BIPOLAR OUTPUT)

FIGURE 31 - WINDOW COMPARATOR

APPLICATIONS INFORMATION (continued)

TRACKING A-TO-D CONVERTERS

A tracking A-to-D converter is a system with a digital output which continuously follows the analog input. It can be thought of as an "analog-to-digital operational amplifier" since as a system it has many similar specifications: slew rate, propagation delay, settling time, and adjustable scale factor. The tracking converter is normally used in high-speed applications which require conversion times on the order of 1-to-100 μ s.

Successive approximation conversion is the other major method used for A-to-D conversion in this speed category. The advantages of the tracking system over successive approximation system include: 1) the elimination of the sample and hold function at the input, 2) a digital output which is continuously present and can be used in asynchronously sampled systems, and 3) a conversion or update period equal to slightly more than one D-to-A converter settling time. The major disadvantage of the method is that if the system slew rate is exceeded, the conversion time increases. A full scale input step function requires a conversion time of 2ⁿ times the tracking update rate, where n is the number of bits. The full-scale conversion time can be shortened, however, using methods which will be described later, and shown in Figure 36.

Another advantage of the tracking system is that, unlike the successive approximation approach, the output always indicates a value equal to the present or very recent input level. Therefore, in many instances latches or special timing are unnecessary for data readout.

BASIC 8-BIT SYSTEM

An easily constructed tracking A-to-D converter using the MC1407L, two up/down counters, a quad NAND gate, and a monolithic D-to-A converter such as the MC1406 or MC1408L-8 is shown in Figure 34. Assuming a full scale input range of 10 volts, the reference voltage is chosen so that the UP and DOWN thresholds are at least ±1 LSB from ground. For an 8-bit converter, this would be 10 V/256 or \pm 40 mV. The converter operation is described by assuming that V_{in} = 0 and the counter output is 00000000. The D-to-A converter is pulling no current so the drop across Rin is essentially zero. Now assume Vin rises until it reaches 40 mV, which is the UP comparator threshold. The UP comparator fires and on the next positive edge of the clock, a pulse is fed to the UP input of the counter. As shown in the converter transfer characteristic, the counter output increases to 00000001. The D-to-A converter now pulls $8 \mu A$, so the summing node voltage drops down to zero. In a similar manner the system could count up to any value up to the full scale 11111111 count.

Since the D-to-A converter output current levels are rated to be accurate to within $\pm 1/2$ LSB, the comparator thresholds must be set to allow for this error. If, for instance, all the D-to-A converter error occurred at one transition, one output could be 1/2 LSB or $4 \,\mu$ A low and the next would be $4 \,\mu$ A high. This would be a current

step of 16 μ A instead of 8 μ A, and the summing node would pull back to -40 mV instead of zero. If the comparator thresholds were closer to ground than ±40 mV, this transition would cause the DOWN comparator to fire and the D-to-A current would decrease. Thus the system would oscillate between two output values for this particular transition. This may or may not be undesirable, depending on system requirements. Both outputs would be within ±1 LSB of the correct value, which is a standard A-to-D converter accuracy specification. However, the end of conversion feature described in a later section cannot be used unless the system settles to a stable value.

With thresholds of ± 1 LSB, the system has a typical hysteresis of ± 1 LSB, as shown on the transfer characteristic of Figure 35. If the input voltage is ramping up and has just fired the UP comparator, the summing node pulls back to a typical value of zero. With a change in ramp direction, the input must decrease by 1 LSB to fire the DOWN comparator. This hysteresis allows for D-to-A converter error and also lends noise immunity to the system.

An A-to-D converter using a D-to-A converter in its feedback loop cannot be any more accurate than the acuracy of the D-to-A converter plus 1/2 LSB quantization error. In the case of the MC1508L-8, MC1408L-8, MC1506, and MC1406, this D-to-A accuracy is specified as \pm 1/2 LSB. In a tracking converter with the comparator thresholds set to zero, the A-to-D converter output toggles between two values, each value within \pm 1 LSB of the correct value. The \pm 1/2 LSB error of the D-to-A converter is added to the \pm 1 LSB error of the converter, resulting in a system error of \pm 1 1/2 LSB. The comparator of figet or mismatch error (\pm E) can be trimmed out and eliminated as a source of additional error.

If the MC1507 comparator thresholds are set to ± 1 LSB, the $\pm 1/2$ LSB of the D-to-A converter must also be added, again, giving a system error of ± 1 1/2 LSB. In addition, the comparator mismatch error, (+E), must be added to both the UP threshold and the DOWN threshold.

In order to insure thresholds of at least $\pm 40 \text{ mV}$, V_{ref} for the comparator should be no lower than $\pm 44 \text{ mV}$ for the MC1507L and $\pm 50 \text{ mV}$ for the MC1407L. This results in an additional $\pm 0.2 \text{ LSB}$ error in the MC1507L and an additional $\pm 0.5 \text{ LSB}$ error in the MC1407L. Total system error for an 8-bit converter, with $\pm 1 \text{ LSB}$ threshold to eliminate toggling and to improve noise immunity, is therefore $\pm 1.7 \text{ LSB}$ for a system with the MC1507L, $\pm 2.0 \text{ LSB}$ for a system with the MC1407L.

High-speed operation is possible with this converter due to the use of current summing. No operational amplifier is used in the feedback loop, so the principal delays involved are the D-to-A converter settling time and the comparator delay time. The loop delay in Figure 34 is approximately 500 ns, allowing 150 ns for the MC1507L comparator with a small overdrive. The maximum clock frequency is determined by the loop delay.

APPLICATIONS INFORMATION (continued)

Using a clock with a period less than 500 ns would make it possible for two counts to enter the D-to-A converter before the UP comparator turns "off." The turn "on" time of the MC1508L-8 current switches is longer than the turn "off" time so with a clock of slightly over 2 MHz, the steps on the up side of the sine wave of Figure 38 would be twice as large. However, even though a faster clock provides only 7-bit resolution when tracking a sine wave, the system will still settle to 8-bit accuracy for dc or square wave inputs. This principle is used in the high speed system of Figure 36. When a clock frequency of greater than 2 MHz is used, a 100 pF capacitor between the UP and DOWN comparator outputs improves the overall settling time.

TYPICAL PERFORMANCE TABLE FOR BASIC 8-BIT SYSTEM

	2-MHz CLOCK (for continuously varying inputs)	5-MHz CLOCK (for dc or step inputs)
Normal Conversion or Update Time	0.5 µs	0.2 – 1.0 μs
Typical Full-Scale Conversion Time	128 µs	50 µs
Slew Rate (10 V Input Range)	0.08 V/µs	.0.2 V/µs
Power Bandwidth (10 V(p-p) Input)	2.6 k Hz	6.4 k H z

FIGURE 35 – 8-BIT TRACKING A-TO-D CONVERTER TRANSFER CHARACTERISTIC

8

APPLICATIONS INFORMATION (continued)

HIGH SPEED SYSTEM

When the input voltage to the tracking A-to-D converter varies more rapidly than the system slew rate, the output will be unable to follow the input and thus there is no need for the D-to-A converter to settle between each clock pulse. A second MC1507L may be employed as a window detector to indicate when the converter summing node is more than a given voltage from the comparator deadband, as shown in Figure 36. When the window detector fires, the MC4024 voltage controlled multivibrator quadruples its clock rate, and the system switches to the "Panic Mode". When the summing node comes back within 130 mV of ground, the system resumes its normal clock rate and cleanly settles into the tracking mode.

The Panic Mode system is well suited to multiplexed data acquisition systems where the voltage presented to the input may step quickly between various levels. Also, the power bandwidth has quadrupled and the system will follow 25 kHz full scale sine waves with slightly more distortion than when in the normal tracking mode.

FIGURE 36 - TRACKING A-TO-D CONVERTER HIGH-SPEED SYSTEM (With Panic Mode Operation and Voltage Reference)

TYPICAL PERFORMANCE TABLE FOR HIGH-SPEED SYSTEM

	2 MHz/8 MHz CLOCK (for continuously varying inputs)	5 MHz/20 MHz CLOCK (for dc or step inputs)						
Normal Conversion Update Time	0.5 µs	0.2 – 1 μs						
Typical Full-Scale Conversion Time	32 µs	14 μs						
Slew Rate (10 V Input Range)	0.32 V/µs	0.8 V/µs						
Power Bandwidth 10 V(p·p) Input	1 0.4 kHz	25.6 k Hz						

8

FIGURE 37 – TRACKING A-TO-D CONVERTER WAVEFORMS WITH STEP INPUT

FIGURE 38 – BASIC 8-BIT TRACKING A-TO-D CONVERTER SINE WAVE RESPONSE

 $\label{eq:loss} \begin{array}{l} 200\,\mu s/\text{DIV} \\ \text{CLOCK FREQUENCY} = 2.0\,\text{MHz} \\ \text{Digital output has been converted to analog using an ultra-high-speed D-to-A converter.} \end{array}$

20 µs/DIV CLOCK FREQUENCY = 5.0 MHz

6-BIT TRACKING A-TO-D CONVERTER

A 6-bit tracking A-to-D converter may be constructed with the MC1506. The circuit differs in one respect from the 8-bit system since the MC1506 has inverting logic inputs. In order to preserve negative feedback in the loop, a hex inverter may be used ahead of the D-to-A converter. However, if inverted logic outputs can be tolerated, the hex inverter is not necessary. By merely interchanging the UP and DOWN comparator outputs the counting direction is inverted, compensating for the inversion in the D-to-A converter.

The MC1506 has a faster settling time and one-fourth the number of output states, so the advantage of this system is higher speed.

APPLICATIONS INFORMATION (continued)

FIGURE 39 - EXPANDED PORTION OF FIGURE 38

FIGURE 41 – HIGH-SPEED 8-BIT TRACKING A TO D CONVERTER STEP RESPONSE

Clock Frequency increases from 5.0 MHz to 20 MHz with voltage controlled MC4024 in Panic Mode operation.

TYPICAL PERFORMANCE DATA FOR 6-BIT SYSTEM

	BASIC-SYSTEM	PANIC MODE SYSTEM 5 MHz/20 MHz
	3 MHz CLOCK (for continuously varying inputs)	CLOCK (for dc or step inputs)
Normal Conversion or Update Time	0.33 µs	0.2 - 1.0 µs
Typical Full-Scale Conversion Time	21 µs	4.0 μs
Slew Rate (10 V Input Range)	0.5 V/µs	3.3 V/µs
Power BAndwidth 10 V(p-p) Input	16 k Hz	105 k Hz

END OF CONVERSION

A useful feature of the dual threshold tracking A-to-D converter is a simple method of sensing end of conversion. When the system has reached equilibrium the summing-node voltage is in the comparator deadband and both UP and DOWN outputs are low. These outputs can be fed to an OR gate to provide an EOC indication, or to three NAND gates as shown in Figure 46. This is a feature which is not available with a single threshold system, since its comparator is continually changing state.

If the A-to-D converter data is stored in latches, the \overline{EOC} output can be fed to a NAND gate with the latch strobe command to insure accurate data transfer. If the strobe command occurs while the system is searching, the output from the previous conversion will be retained. However, an advantage of the tracking system is that, unlike successive approximation, its output always reflects a value equal to the present or very recent input level.

FIGURE 43 – BIPOLAR INPUT

APPLICATIONS INFORMATION (continued) TRACKING CONVERTER SYSTEM OPTIONS

FIGURE 45 - DIFFERENTIAL INPUT

FIGURE 46 - END OF CONVERSION OPTIONS

APPLICATIONS INFORMATION (continued)

FIGURE 48 – CONNECTION CONFIGURATION FOR POSITIVE INPUT AND OUTPUT

FIGURE 50 – CONNECTION CONFIGURATION FOR POSITIVE INPUT AND NEGATIVE OUTPUT

PEAK DETECTING TRACK AND HOLD CIRCUIT WITH DIGITAL OUTPUT AND INFINITE HOLD TIME

The basic tracking A-to-D converter may be used as a positive peak detecting track and hold system by disabling the DOWN counting function. This may be performed by gating or by eliminating the DOWN connections. The system may be reset to zero by the counter reset or by re-enabling the DOWN function, shorting the converter input to ground, and allowing the output to track to zero. If the DOWN gate is disconnected from the MC74193 counter, this counter input must be connected high to allow proper functioning of the UP counter.

A negative peak detecting track and hold system is implemented by modifying the input of the above circuit to accept negative input signals, as shown in Figure 47.

TRACK AND HOLD OR PEAK DETECTION WITH ANALOG OUTPUT

The basic tracking converter system may be modified for use in the track and hold function or as a peak detecting track and hold. Analog output and infinite hold time are available with the methods shown in Figures 48-51.

FIGURE 51 – CONNECTION CONFIGURATION FOR NEGATIVE INPUT AND POSITIVE OUTPUT

SUGGESTED DESIGN APPLICATIONS

FIGURE 52 - SUCCESSIVE APPROXIMATION A-TO-D CONVERTER

FIGURE 53 - HIGH-SPEED INTEGRATOR

FIGURE 54 – SET-POINT CONTROL CIRCUIT (Featuring variable deadband and hysteresis)

SUGGESTED DESIGN APPLICATIONS (continued)

Variable Deadband Set-Point Controls are used in control systems to compensate for large time constants in the controlled systems. The dual output control shown in Figure 54 controls two variables, such as heating and cooling, that keep a controlled variable, such as temperature, centered on the set point or operating point.

The set point voltage need not be produced by the potentiometer but can be a reference voltage supplied by the controlled system. As the set point moves linearly this voltage could come from an MC1508L-8 D-to-A converter which would provide digital control of the set point. Deadband could be controlled by the system in a similar manner.

FIGURE 55 – TRANSFER CHARACTERISTIC OF SET-POINT CONTROL

FIGURE 56 — HIGH-SPEED DELTA MODULATOR (with optional hysteresis)

FIGURE 57 – WIDE-RANGE VOLTAGE-TO-FREQUENCY CONVERTER (Useful As Voltage-Controlled Multivibrator, FM Modulator, or Sawtooth Generator.)

1.0

<u>ò 2.0</u>

(00000000)

TYPICAL APPLICATIONS

•

٠

(11111111)

Tracking A-to-D Converters

INPUT DIGITAL WORD

- Successive Approximation A-to-D Converters •
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation ٠
- CRT Character Generation ٠
- Digital-Digital Multiplication Analog-Digital Division
- Digital Addition and Subtraction

Audio Digitizing and Decoding

Programmable Power Supplies

Analog-Digital Multiplication

• Speech Compression and Expansion

B-2 B Ladder

VEEO3

NPN Current

Source Pai

V_{ref(+)} 14 0-----

15 0-

V_{ref(-)}

Bias Circuit

Reference

Current Amplifier

-02

GND

-013

Vcc

-0 16 COMPEN

- Stepping Motor Drive

See Packaging Information Section for outline dimensions.

MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+5.5 -16.5	Vdc
Digital Input Voltage	V5 thru V12	+5.5,0	Vdc
Applied Output Voltage	Vo	+0.5,-5.2	Vdic
Reference Current	114	5.0	mA
Reference Amplifier Inputs	V14,V15	V _{CC} ,V _{EE}	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C	PD	1000 6.7	mW mW/ ^o C
Operating Temperature Range MC1508L8 MC1408L Series	T _A	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{R_{14}}$ = 2.0 mA, MC1508L-8: T_A = -55°C to +125°C. MC1408L Series: T_A = 0 to +75°C unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale I _O) MC1508L8, MC1408L8 MC1408L7, See Note 1 MC1408L6, See Note 1	4	Er	_ _ _		±0.19 ±0.39 ±0.78	%
Settling Time to within 1/2 LSB [includes tPLH](T_A =+25°C)See Note 2	5	ts	-	300	-	ns
Propagation Delay Time T _A = +25 ^o C	5	^t PLH ^{,t} PHL	-	30	100	ns
Output Full Scale Current Drift		TCIO	-	-20	-	PPM/ ^o C
Digital Input Logic Levels (MSB) High Level, Logic "1" Low Level, Logic "0"	3	VIH VIL	2.0 . —		_ 0.8	Vdc
Digital Input Current (MSB) High Level, VIH = 5.0 V Low Level, VIL = 0.8 V	3	^н н Чг	-	0 -0.4	0.04 -0.8	mA
Reference Input Bias Current (Pin 15)	3	I ₁₅		-1.0	-3.0	μÁ
Output Current Range VEE = -5.0 V VEE = $-6.0 \text{ to } -15 \text{ V}$	3	IOR	0 0	2.0 2.0	2.1 4.2	mA
Output Current V _{ref} ≈ 2.000 V, R14 = 1000 Ω	3	10	1.9	1.99	2.1	mA
Output Current (All bits low)	3	^I O(min)	-	0	4.0	μΑ
Output Voltage Compliance ($E_r \le 0.19\%$ at $T_A = +25^{\circ}C$) Pin 1 grounded Pin 1 open, VEE below -10 V	3	Vo	_	-	-0.6,+0.5 -5.0,+0.5	Vdc
Reference Current Slew Rate	6	SR I _{ref}	-	4.0	-	mA/μs
Output Current Power Supply Sensitivity		PSRR(-)	-	0.5	2.7	μA/V
Power Supply Current (All bits low)	3	ICC IEE	-	+13.5 -7.5	+22 -13	mA
Power Supply Voltage Range $(T_A = +25^{\circ}C)$	3	V _{CCR} V _{EER}	+4.5 -4.5	+5.0 -15	+5.5 -16.5	Vdc
Power Dissipation All bits low VEE = -5.0 Vdc VEE = -15 Vdc All bits high VEE = -5.0 Vdc VEF = -15 Vdc	3	PD		105 190 90 160	170 305 —	mW

Note 1. All current switches are tested to guarantee at least 50% of rated output current. Note 2. All bits switched.

MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued)

TEST CIRCUITS

FIGURE 5 – TRANSIENT RESPONSE and SETTLING TIME

8

8-188

MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued)

TEST CIRCUITS (continued)

FIGURE 6 – REFERENCE CURRENT SLEW RATE MEASUREMENT

FIGURE 7 - POSITIVE Vref

FIGURE 8 - NEGATIVE Vref

FIGURE 9 - MC1508L-8/MC1408L SERIES EQUIVALENT CIRCUIT SCHEMATIC DIGITAL INPUTS

CIRCUIT DESCRIPTION

The MC1508L-8 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

GENERAL INFORMATION

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor may be tied to either VEE or ground, but using VEE increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to V_{EE} on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0-volts above the V_{EE} supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5,0-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.6 to +0.5 volts at +25°C, due to the current switching methods employed in the MC1508L-8. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC1508L-8 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases witched onl.

Refer to the subsequent text section on Settling Time for more details on output loading.

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing.

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -6.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1508L-8 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1508L-8 has a very low full scale current drift with temperature.

The MC1508L-8/MC1408L Series is guaranteed accurate to within $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 μ A which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC1508L-8 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC1508L-8 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.19\%$ specification provided by the MC1508L-8.

Multiplying Accuracy

The MC1508L-8 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.6 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 μ A to 4.0 mA, the 1.6 μ A contributes an error of 0.1 LSB. This is well within eight-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1508L-8 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

GENERAL INFORMATION (Continued)

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for settling to within $\pm 1/2$ LSB, for 8-bit accuracy, and 200 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These times apply when $R_L \leq 500$ ohms and $C_O \leq 25$ pF.

The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns, while bit A6 turns "on" in 150 ns and "off" in 80 ns.

The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC-1508L-8. A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 µF supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

TYPICAL CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -15 V, T_A = +25^oC unless otherwise noted.)

FIGURE 12 - OUTPUT CURRENT versus OUTPUT VOLTAGE (See text for pin 1 restrictions)

FIGURE 13 - MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range)

2.0

5500

A1

A2

Α3

A4

4.0

5.0

3.0

$\label{eq:type} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V_{CC} = +5.0 \ V, \ V_{EE} = -15 \ V, \ T_A = +25^o C \ unless \ otherwise \ noted.) \end{array}$

AFFLICATIONS INFORMATION

FIGURE 17 – OUTPUT CURRENT TO VOLTAGE CONVERSION

A3 8 $\frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256}$ $(R_0) \left[\frac{A1}{2} \right]$ A2 V_{ref} + + vo R14 4 Adjust V_{ref} , R14 or R $_{ extsf{O}}$ so that $V_{ extsf{O}}$ with all digital inputs at high level is equal to 9.961 volts. ٢. . 1 1 1 1 1 1 v

$$\begin{array}{l} 0 = \frac{2}{1} \frac{V}{k} \quad (5 \ k) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right] \\ = 10 \ V \left[\frac{255}{256} \right] = 9.961 \ V \end{array}$$

APPLICATIONS INFORMATION (continued)

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1508L-8 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of $2.0\,\mu s$.

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of $2.0 \, \mu s$. See Motorola Application Note AN-459 for more details on this concept.

FIGURE 19

The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

FIGURE 20 – EXTENDING POSITIVE VOLTAGE RANGE

The output voltage range for this circuit is 0 volts to BV_{CBO} of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (R) to V_{EE} maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least sionificant bit.

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1508L-8 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since ± 15 V and ± 5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing R_O and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C_O may be decreased to maintain the same R_OC_O product if maximum speed is desired.

APPLICATIONS INFORMATION (continued)

Programmable Power Supply

The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 volts in 0.1-volt increments, ± 0.05 volt; or 0 to 5.1 volts in 20 mV increments, ± 10 mV.

Bipolar or Negative Output Voltage

The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 8-bit "1's" complement offset binary. V_{ref} may be used as this auxiliary reference. Note that R_O has been doubled to 10 kilohms because of the anticipated 20 V(p-p) output range.

FIGURE 22 – BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

FIGURE 23 – BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT

Decrease R_O to 2.5 k Ω for a 0 to -5.0-volt output range. This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information.

APPLICATIONS INFORMATION (continued)

Polarity Switching Circuit, 8-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 24 gives 8-bit magnitude plus asign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1508L-8 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if $R_S = 50$ ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.

The best frequency response is obtained by not allowing I₁₄ to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. Ts can be set for a ± 1.0 mA variation in relation to I₁₄. I₁₄ can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word which makes ac coupling necessary.

Panel Meter Readout

The MC1508L-8 can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or V_{ref}.

FIGURE 26 - PANEL METER READOUT CIRCUIT

FIGURE 27 – DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

APPLICATIONS INFORMATION (continued)

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R14₁ and R14₂ or R15₁ and R15₂. V_O will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R14₁ and R14₂ to a positive reference higher than the most positive input, and drive R15₁ and R15₂. This yields high input impedance, bipolar differential and common-mode range.

FIGURE 28 - DIGITAL SUMMING and CHARACTER GENERATION

А

FIGURE 30 – NEGATIVE PEAK DETECTING SAMPLE AND HOLD

Fast rise and fall times require the use of high-speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input.

FIGURE 32 - PROGRAMMABLE CONSTANT CURRENT SOURCE

FIGURE 29 -- POSITIVE PEAK DETECTING SAMPLE and HOLD (Features indefinite hold time and optional digital output.)

Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

APPLICATIONS INFORMATION (continued)

FIGURE 33 - ANALOG DIVISION BY DIGITAL WORD

This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I₀ can be set at 16 μ A so that I₁₄ will have a maximum value of 3.984 mA for a digital bit input configuration of 00000001.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

FIGURE 34 - ANALOG QUOTIENT OF TWO DIGITAL WORDS

8-198

APPLICATIONS INFORMATION (continued)

Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of

4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L-6 may be used for the least significant word.

FIGURE 37 - DIGITAL QUOTIENT OF TWO ANALOG VARIABLES or ANALOG TO DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

MC1510G MC1410G

HIGH-FREQUENCY CIRCUITS

See Packaging Information Section for outline dimensions.

MC1510G, MC1410G (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+8.0	Vdc
	VEE	-8.0	Vdc
Differential Input Signal	VIDR	±5.0	Volts
Common Mode Input Swing	VICR	<u>±6.0</u>	Volts
Load Current	۱L	10	mA
Output Short Circuit Duration	t _s	5.0	s
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25 ⁰ C	PD	680 4.6	mW mW/ ^o C
Operating Temperature Range MC1410 MC1510	TA	0 to +75 -55 to +125	°C
Storage Temperature Range	⊤ _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{CC} = +6.0 \text{ Vdc}, \text{ } V_{EE} = -6.0 \text{ Vdc}, \text{ } \text{R}_{L} = 5.0 \text{ } \text{k}\Omega, \text{ } \text{T}_{A} = +25^{0}\text{C} \text{ unless otherwise noted.})$

		Street a State of the State	MC1510	a and a second sec		MC1410		
Characteristic	Symbol	Min	Тур	Мах	Min	Тур	Max	Unit
Single Ended Voltage Gain	A _{v(se)}	75	93	110	60	90	120	V/V
Output Impedance (f = 20 kHz)	Z _{out}		35			35		Ω
Input Impedance (f = 20 kHz)	Z _{in}	Contraction of the second	6.0			6.0		kΩ
Bandwidth (-3.0 dB)	BW		40		-	40	-	MHz
Output Voltage Swing (f = 100 kHz)	Vo	ante aplications des regenerations contractions contractions contractions	4.5			4.5		Vp-p
Single Ended Output Distortion (e _{in} < 0.2% Distortion)	THD		1.5	5.0		2.0	<u> </u>	%
Input Common Mode Voltage Range	VICR		±1.0	alanda ayan ayan ayan ayan ayan ayan ayan		±1.0	-	v
Common Mode Voltage Gain (V _{in} = 0.3 V rms, f = 100 kHz)	AVCM	-30	-45	(22) Annother Street and Stree	-20	-40	-	dB
Common Mode Rejection Ratio	CMRR		85	And the Production of the State	·	85		dB
Input Bias Current $\left(I_{IB} = \frac{I_1 + I_2}{2}\right)$, Differential Output = 0	1B		20	80	_	50	100	μA
Input Offset Current (I _{IO} = I ₁ - I ₂)	liol		3.0	20	-	5.0	30	μA
Output Offset Voltage Differential Mode (V _{in} = 0) Common Mode (Differential Output = 0)	V00(DM)	2.6	0.5 3.1	1,3 3,5	2.0	0.5	2.0 4.0	Vdc
Step Response	tTHL tPHL,tPLH tTLH		9.0 9.0 9.0	12 		10 9.0 10	15 15	ns
Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \ \Omega, T_A = T_{low}^* \text{ to } T_{high}^{**})$ $(R_S \le 10 \ k \ \Omega, T_A = T_{low} \text{ to } T_{high})$	ΔV ₁₀ /ΔΤ		±3.0 ±6.0			±3.0 ±6.0	-	μ ∨/⁰C
DC Power Dissipation (Power Supply = ±6.0 V)	PD		150	220	-	165	220	mW
Equivalent Average Input Noise Voltage (f = 10 Hz to 500 kHz, R _S = 0)	Vn		5.0			5.0		μ∨

*T_{low} = 0^oC for MC1410 or -55^oC for MC1510

**T_{high} = +75^oC for MC1410 or +125^oC for MC1510

8

TYPICAL CHARACTERISTICS

MC1510G, MC1410G (continued)

TYPICAL CHARACTERISTICS

TYPICAL APPLICATIONS

FIGURE 13 WEIN BRIDGE OSCILLATOR

DUAL DIFFERENTIAL COMPARATOR

See Packaging Information Section for outline dimensions.

1 k

Input

200

100

71 611

VEE Gnd

MC1514 MC1414

8-204

1 k

8

Outputs

11

100

I 14

VĚĖ

Non-Inverting

Input

200

MC1514, MC1414 (continued)

		MC1514				MC1414		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO			14. S. S. S. K.				mVdc
$(V_{O} = 1.4 \text{ Vdc}, T_{A} = 25^{\circ}\text{C})$		-	1.0	2.0	_	1.5	5.0	
$(V_0 = 1.8 \text{ Vdc}, T_A = T_{low}^*)$				3.0	_		6.5	
$(V_0 = 1.0 \text{ Vdc}, T_A = T_{high}^*)$				3.0	-	-	6.5	
Temperature Coefficient of Input Offset Voltage	ΔVIO/ΔΤ	4	3.0	÷- 2	-	5.0	- 1	μV/ ⁰ C
Input Offset Current	10	a line a series						μAdc
$(V_0 = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C})$		4	1.0	3.0	-	1.0	5.0	
(V _O = 1.8 Vdc, T _A = T _{low})		a share years a		7.0		<u> </u>	7.5	
$(V_0 = 1.0 \text{ Vdc}, T_A = T_{high})$		11 1		3.0	-		7.5	
Input Bias Current	Чв		The second s	State of the second				μAdc
(V _O = 1.4 Vdc, T _A = 25 ^o C)			12	20	-	15	25	
$(V_0 = 1.8 \text{ Vdc}, T_A = T_{low})$			and the second second	45	-	18	40	
$(V_0 = 1.0 \text{ Vdc}, T_A = T_{high})$			and a start of the	20	-	-	40	
Open Loop Voltage Gain	Avol		No. of the second s					V/V
(T _A = 25 ^o C)		1250	1700		1000	1500	- 1	
$(T_A = T_{low} \text{ to } T_{high})$		1000			800	·		
Output Resistance	RO	-	200	-	_	200	-	ohms
Differential Voltage Range	VIDR	±5.0	-		±5.0			Vdc
High Level Output Voltage	∨он	2.5	3.2	4.0	2.5	3.2	4.0	Vdc
$(V_{1D} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA})$	011		1000					
Low Level Output Voltage	VOL	a fan staar	and the second s				1	Vdc
(V _{ID} ≥ -5.0 mV, I _{OS} = 2.8 mA)		-1.0	-0.5	0	19 <u>-</u> 19	1 - C-	1995 <u>–</u> (* 1	
$(V_{ID} \ge -5.0 \text{ mV}, I_{OS} = 1.6 \text{ mA})$			-	-	-1.0	-0.5	0	
Output Sink Current	los	2.8	3.4	-	1.6	2.5		mAdc
$(V_{ID} \ge -5.0 \text{ mV}, V_{OL} \le 0.4 \text{ V}, T_A = T_{low} \text{ to } T_{high})$					19			
Input Common Mode Voltage Range	VICR	±5.0	Contraction of the		±5.0	na sentencia.	1. (- 1.)	Vdc
(V _{EE} = -7.0 Vdc)			and shared at the		1997 - S ¹¹			
Common-Mode Rejection Ratio	CMRR	80	100		70	100	-	dB
(V _{EE} = -7.0 Vdc, R _S ≤ 200 Ω)								
Strobe Low Level Current	46	2 - <u>1</u> - 3		2.5	·	2-1-12	2.5	mA
$(V_{1L} = 0)$		-201						
Strobe High Level Current	Чн			1.0	-		1.0	μA
(V _{IH} = 5.0 Vdc)								
Strobe Disable Voltage	VIL			0.4		_	0.4	Vdc
(V _{OL} ≤0.4 Vdc)		and the second second						
Strobe Enable Voltage	VIH	3.5		6.0	3.5		6.0	Vdc
(V _{OH} ≥ 2.4 Vdc)		T-GROUP	The second		1.11		1.1.1.1.1.1	
Propagation Delay Time (Figure 1)	tPLH		20	Contraction of the second	·	20		ns
	TPHL	-	40	200		40		
Strobe Response Time (Figure 2)	t _{so}	The second	15	A CONTRACTOR		15		ns
	t _{sr}		6.0		-	6.0		
Total Power Supply Current, Both Comparators	^{-si}	Sec.	12.8	18	-	12.8	18	mAdc
$(V_{O} \leq 0)$	IEE	-	11	14		11	14	

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6 Vdc, T_A = 25^oC unless otherwise noted.) (Each Comparator)

*T_{low} = -55^oC for MC1514, 0^oC for MC1414 T_{high}= +125^oC for MC1514, +75^oC for MC1414

MC1514, MC1414 (continued)

TYPICAL CHARACTERISTICS

8-206

8

[†]Worst case condition shown – no load.

TIME, 50 ns/div

OPERATIONAL AMPLIFIERS

MONOLITHIC DIFFERENTIAL OUTPUT OPERATIONAL AMPLIFIER

. . designed for use in general-purpose or wide-band differential amplifier applications, especially those requiring differential outputs.

Typical Characteristics

MC1520 MC1420

- Differential Input and Differential Output
- Wide Closed-Loop Bandwidth; 10 MHz •
- Differential Gain; 70 dB
- High Input Impedance; 2.0 megohms: •
- Low Output Impedance; 50 ohms

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V+ V ⁻	+8.0 -8.0	Vdc
Differential Input Signal		Vin	±8.0	Vdc
Load Current		^I L1, ^I L2	15	mA
Power Dissipation (Package Limitat Metal Package Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$	tion)	PD	680 4.6 500 3.3	mW mW/ ^o C mW mW/ ^o C
1	MC1520 MC1420	TA	-55 to +125 0 to + 75	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

FIGURE 2 - EQUIVALENT CIRCUIT

See Packaging Information Section for outline dimensions.

SINGLE-ENDED ELECTRICAL CHARACTERISTICS

 $(V^+ = +6.0 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted})$

		1	MC1520	12000				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain (T _{low} ② ≦ T _A ≦T _{high} ②)	AVOL	1000 60	1500 64	1	750 —	1500 64	-	V/V dB
Output Impedance (f = 20 Hz)	Zout		50	100		50	· 	ohms
Input Impedance (f = 20 Hz)	Z _{in}	0.5	2.0			2.0		megohm
Output Voltage Swing (R _L = 7.0 kΩ[Figure8])	Vo	±3,5	±4.0		±3.0	±4.0	-	V _{peak}
Input Common-Mode Voltage Swing	CMVin	±2.0	±3.0			±3.0		V _{peak}
Common-Mode Rejection Ratio	CM _{rej}	75	90		60	90	_	dB
Input Bias Current $\left(\left[I_{b} = \frac{I_{1} + I_{2}}{2} \right], T_{A} = +25^{\circ}C \right)$	Ь	Ŧ	0.8	2:0		2.0	40	μA
$\begin{array}{c} (1 & 2 & 1 \\ \text{Input Offset Current} \\ (1_{i0} = 1_{1} - 1_{2}) \\ (1_{i0} = 1_{1} - 1_{2}, T_{A} = T_{1ow}) \\ (1_{i0} = 1_{1} - 1_{2}, T_{A} = T_{high}) \end{array}$	liol	114	30 - -	100 200 200		30	200	nA
Input Offset Voltage (T _A = +25 ^o C)	V _{io}	-	5,0	10	-	5.0	15	mV
$ \begin{cases} \text{Gain} = 1.0, 10\% \text{ Overshoot} \\ \text{Gain} = 1.0, 10\% \text{ Overshoot} \\ \text{R}_1 = 10 \text{k} \Omega \\ \text{R}_2 = 10 \text{k} \Omega \\ \text{R}_3 = 5.0 \text{k} \Omega \\ \text{C}_8 = 39 \text{pF} \end{cases} $	^t f ^t pd dV _{out} /dt ①	444	80 70 5.0			80 70 5.0		ns ns V/µs
$ \begin{cases} Gain = 10, 10\% \text{ Overshoot} \\ R_1 = 10 \ k\Omega \\ R_2 = 100 \ k\Omega \\ R_3 = 10 \ k\Omega \\ C_s = 10 \ pF \end{cases} $	t _f tpd dV _{out} /dt ①	1.1.1	80 70 15			80 70 15		ns ns V/μs
	t _f t _{pd} dV _{out} /dt ①	A A A	80 70 30	-	-	80 70 30		ns ns V/µs
$\begin{cases} Open Loop, No Overshoot \\ R_1 = 50 \Omega \\ R_2 = \infty \\ R_3 = 50 \Omega \\ C_s = 0 \end{cases}$	t _f t _{pd} dV _{out} /dt ①	144	180 70 35			180 70 35		ns ns V/µs
Bandwidth: (Open Loop[Figure 4]) (Closed Loop[Unity Gain]) (Figure 5)	-	14	2.0 10	4.4	=	2.0 10		MHz
Input Noise Voltage (Open Loop) (5.0 Hz - 5.0 MHz)	V _{n(in)}	2	-11	15	· · · · · · · · · · · · · · · · · · ·	11	-	μV(rms)
Average Temperature Coefficient of Input Offset Voltage (R _S = 50 Ω, T _A = T _{low} to T _{high})	TCV _{io}	÷	2.0			2.0		μ ∨ /⁰C
DC Power Dissipation (V _o = 0)	PD	-	120	240	<u>_</u>	120	240	mW
Power Supply Sensitivity (V [±] Constant)	S±	-	250	450		250		μV/V

1 dV_{out}/dt = Slew Rate

T_{high} = +75^oC for MC1420 +125^oC for MC1520

⁽²⁾ $T_{Iow} = 0^{\circ}C$ for MC1420, -55°C for MC1520

DIFFERENTIAL ELECTRICAL CHARACTERISTICS

 $(V^+ = +6.0 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless oth}$

		MC1520				MC1420			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Gain (Open Loop)	AVOL	2000 66	3000 70	4	1500 64	3000 70	E.	V/V dB	
Input Impedance (f = 20 Hz)	Z _{in}	0.5	2.0	-		2.0		megohms	
Output Impedance (f = 20 Hz)	Z _{out}		100	200		100	-	ohms	
Common-Mode Output Voltage	V _o (CM)	-0.5	0	+0.5		0	\mathbf{F}	Vdc	
Output Voltage Swing (R _L = 7.0 kΩ)	Vo	±7,0	±8.0	-	±6.0	±8.0		V _{peak}	

TYPICAL CHARACTERISTICS

(V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc, T_A = +25^oC, unless otherwise noted.)

FIGURE	0110145	MODE	VOLTAGE	т	NS	NOISE		
NO.	NO.	MODE	GAIN	$\mathbf{R}_1(\Omega)$	R ₂ (Ω)	R3 (Ω)	CS (pF)	mV (rms)
	1	INVERTING	100	1.0 k	100 k	1.0 k	1.0	2.0
3	2	INVERTING	10	10 k	100 k	10 k	10	0.55
3	3	INVERTING	1.0	10 k	10 k	5.0 k	39	0.17
	4	NON-INVERTING	1.0	- 00	10.k	10 k	39	0.17
	1	NON-INVERTING	AVOL	0	- 00	50	1.0	1.0
4	2	NON-INVERTING	AVOL	0	- 20	50	10	2.0
	3	NON-INVERTING	AVOL	0	80	50	39	5.2
	1	NON-INVERTING	100	100	10 k	100	1.0	2.0
5	2	NON-INVERTING	10	1.0 k	9.1 k	910	10	0.55
	3	NON-INVERTING	1.0	∞	10 k	10 k	39	0.17

f, FREQUENCY (kHz)

1000

10,000

100,000

100

AV, VOLTAGE GAIN (dB)

-20

1.0

TYPICAL OUTPUT CHARACTERISTICS (V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc, unless otherwise noted.)

OPERATIONAL AMPLIFIERS

MC1530, MC1430 MC1531, MC1431

MONOLITHIC OPERATIONAL AMPLIFIER

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MC1531 (MC1431) is provided with Darlington inputs to increase input impedance; otherwise the MC1531 (MC1431) circuit is identical with the MC1530 (MC1430) circuit.

- High Open Loop Voltage Gain 4500 min (MC1530)
 2500 min (MC1531)
- High Input Impedance 10 Kilohms min (MC1530) – 1.0 Megohm min (MC1531)
- Low Output Impedance 50 Ohms max
- High Slew Rate $6.0 \text{ V}/\mu \text{s}$ typ @ A_{vs} = 10
- High Open Loop Bandwidth 2.0 MHz typ (MC1530) 0.4 MHz typ (MC1531)

MAXIMUM RATINGS (TA = 25°C unless otherwsie noted)

Rating	Symbol	Value	Unit
Power Supply Voltage MC1530, MC1531 MC1430, MC1431	V _{CC} , V _{EE} V _{CC} , V _{EE}	+9.0, -9.0 +8.0, -8.0	Vdc
Differential Input Signal	VID(max)	<u>+</u> 5.0	Volts
Load Current	١L	10	mA
Power Dissipation (Package Limitation) Metal Package Derate above T _A = +25°C Flat Package Derate above T _A = +25°C Dual In-Line Plastic Package Mc1430, MC1431 Derate above +25°C	PD	680 4.6 500 3.3 400 3.3	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1530, MC1531 MC1430, MC1431	Τ _Α	-55 to +125 0 to +75	°C
Storage Temperature Range Metal and Ceramic Package Plastic Package MC1430, MC1431	T _{stg}	-65 to +175 -55 to +150	°C

CO DOVEE

See Packaging Information Section for outline dimensions.

8-212

MC1530, MC1531, MC1430, MC1431 (continued)

			MC1530			MC1430		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	1IB	1	3.0	10	-	5. 0	15	μAdc
Input Offset Current	10	500 60 60 5	0.2	2.0	- 1	0.4	4.0	μAdc
Input Offset Voltage $T_A = +25^{\circ}C$ $T_A = T_{low}$ T $T_A = T_{high}$	VIO		1.0 	5.0 6.0 6.0	_	2.0	10 11 12	mVdc
Single-Ended Input Impedance (Open-Loop, f = 30 Hz)	zis	10	20		5.0	15	-	kΩ
Common-Mode Input Voltage Swing	VICR	± 2.0	± 2.7	Sec.2	± 2.0	± 2.5	-	Vpk
Equivalent Input Noise Voltage (Open-Loop, R _s = 50 ohms, BW = 5.0 MHz)	e _N		10			10		μV(rms)
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR	70	75		65	75	-	dB
Open-Loop Voltage Gain, T _A = +25 ^o C T _A = T _{low} to Thigh	A _{vol}	- 4500	5000	12,500	3000	5000	. —	V/V
Bandwidth (Open-Loop, -3.0 dB, no roll-off capacitance)	BW	1.0	2.0		1.0	2.0	-	MHz
Output Impedance (f = 100 Hz)	zo		25	50	-	25	50	ohms
Output Voltage Swing (RL = 1.0 k ohms)	Vo	± 4.5	± 5.2	4	± 4.0	± 5.0	-	V _{pk}
Power Supply Sensitivity ($R_{s} \leq 10 \text{ k} \Omega$)	PSRR		100	-	-	100	-	μV/V
Power Supply Current	1 _D ⁺ , 1 _D ⁻		9.2	12.5	-	9.2	12.5	mAdc
DC Quiescent Power Dissipation ($V_0 = 0$)	PD	S	110	150		110	150	mW

ELECTRICAL CHARACTERISTICS (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, T_A = +25^oC unless otherwise noted)

ELECTRICAL CHARACTERISTICS (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, T_A = +25^oC unless otherwise noted)

			MC1531			MC1431		
Characteristic	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	I _{IB}	1	0.025	0.150	· <u>-</u>	0.1	0.3	μAdc
Input Offset Current	10	-	0.003	0.025	-	0.01	0.1	μAdc
Input Offset Voltage $ \begin{array}{c} T_A = +25^0 C \\ T_A = T_{Iow} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ T_A = T_{high} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $	Vio	1.1.1	3.0 -	10 18 16.5		5.0 — —	15 - -	mVdc
Single-Ended Input Impedance (Open-Loop, f = 30 Hz)	zis	1000	2000	-	300	600		kΩ
Common-Mode Input Voltage Swing	VICR	± 2.0	± 2.4	-	± 2.0	± 2.2	-	Vpk
Equivalent Input Noise Voltage (Open-Loop, R _S = 50 ohms, BW = 5.0 MHz)	e _N	4	20			20	- -	μV(rms)
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR	65	65		60	75	-	dB
Open-Loop Voltage Gain T _A = +25 ^o C T _A = T _{low} to T _{high}	A _{vol}	 2500		7000	1500 _	3500	· · · – · –	V/V
Bandwidth (Open-Loop, -3.0 dB, no roll-off capacitance)	BW		0.4	1.1	. —	0.4	. —	MHz
Output Impedance (f = 30 Hz)	^z o		25	50	-	25	50	ohms
Output Voltage Swing (RL = 1.0 k ohms)	Vo	± 4.5	± 5.2	4	± 4.0	± 5.0	-	Vpk
Power Supply Sensitivity ($R_S \le 10 \text{ k} \Omega$)	PSRR	-	100		-	100	-	μV/V
Power Supply Current	10 ⁺ ,10 ⁻		9.2	12.5	-	9.2	12.5	mAdc
DC Quiescent Power Dissipation (VO = 0)	PD		110	150		110	150	mW

STEP RESPONSE, TYPICAL CHARACTERISTICS ($V_{CC} = +6.0 \text{ Vdc}, V_{EE} = -6.0 \text{ Vdc}, V_O = 400 \text{ mVdc}, T_A = +25^{\circ}\text{C}$)

	Symbol	MC1530 MC1430	MC1531 MC1431	
Step Response				
Gain = 100, 0% overshoot,	tthL	0.13	0.36	μs
R ₁ = 1.0 k ohm, R ₂ = 100 k ohms,	^t PHL	0.11	0.21	μs
R3 = 1.0 k ohm, C1 = 750 pF	SR	33	16	V/µs
Gain ≈ 10, 10% overshoot,	^t THL	0.34	0.30	μs
R1 = 10 k ohms, R2 = 100 k ohms,	TPHL	0.25	0.28	μs
R ₃ = 10 k ohms, C ₁ = 6800 pF	SR	6.0	5.5,	V/µs
Gain = 1.0, 5.0% overshoot,	1THL	0.28	0.37	μs
R ₁ = 10 k ohms, R ₂ = 10 k ohms,	tPHL	0.16	0.17	μs
R ₃ = 5.0 k ohms, C ₁ = 33,000 pF	SR	1.7	1.4	V/µs
1 T _{Iow} : 0°C for MC1430 -55°C for MC1530	T _{low} : 0°C for -55°C f	MC1431 or MC1531		
T _{high} : +75 ⁰ C for MC1430 +125 ⁰ C for MC1530		or MC1431		
+125°C for MC1530	+125°C	MC1531		

TYPICAL OUTPUT CHARACTERISTICS $(V_{CC} = +6.0 \text{ Vdc}, V_{EE} = -6.0 \text{ Vdc}, T_A = +25^{\circ}\text{C})$

TEST CONDITIONS FIG. NO. CURVE VOLTAGE NO. GAIN DEVICE NO. R1 (kΩ) R2 (kΩ) R3 (Ω) C1 (pF) MC1530/MC1430, MC1531/MC1431 750 100 1,2 3 100 1.0 1.0 k 5 10 MC1530/MC1430, MC1531/MC1431 10 100 10 k 6800 1 MC1530/MC1430, MC1531/MC1431 10 10 5.0 k 33,000 4 100 MC1530/MC1430 1.0 100 1.0 k 750 6 MC1530/MC1430 6800 2 3 10 10 100 10 k MC1530/MC1430 1.0 10 1.0 k 6800 10 10 1.0 5.0 k 500 4 MC1530/MC1430 10 33.000 1 MC1530/MC1430 1.0 33,000 5 1 750 100 1.0 k 7 1 100 MC1531/MC1431 1.0 10 MC1531/MC1431 10 100 10 k 6800 2 3 MC1531/MC1431 10 10 5.0 k 33,000 1 MC1530/MC1430 0 0 0 8 AVOL AVOL 1 750 2 3 MC1530/MC1430 0 0 * * 0 ŏ 6800 AVOL MC1530/MC1430 4 33,000 MC1530/MC1430 0 0 AVOL MC1531/MC1431 0 ō 0 9 1 AVOL ~ MC1531/MC1431 0 ** 0 750 2 AVOL 3 4 MC1531/MC1431 0 00 00 0 6800 AVOL ŏ 33,000 MC1531/MC1431 AVOL 0

FIGURE 5 -- LARGE SIGNAL SWING versus FREQUENCY

10 Å 5.0 0

GAIN versus FREQUENCY 45 40 35 CURVE 1 VOLTAGE GAIN (dB) 30 25 20 15 i Ciris ¥ 10 5.0 0 CURVE 3 10 k 1.0 M 100 k 10 M f, FREQUENCY (Hz)

FIGURE 7 - MC1531/MC1431 VOLTAGE

FIGURE 6 - MC1530/MC1430 VOLTAGE GAIN versus FREQUENCY

FIGURE 8 - MC1530/MC1430 OPEN LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 9 - MC1531/MC1431 OPEN LOOP VOLTAGE GAIN

MC1530/MC1430

MC1531/MC1431

8.0

OPERATIONAL AMPLIFIERS

See Packaging Information Section for outline dimensions.

1.3

15 k

AO

15

8

MC1533 MC1433

10 k

Š8.5 k

8.5

90 09

68 k

0

"G" Package "F" Package "L" & "P" Packages

INVERTING

INPUT

LAG

Y

PIN CONNECTIONS

10

OUTPUT

10

9

6 LAG

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

			MC1533			MC1433			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Open Loop Voltage Gain $(T_A = +25^{\circ}C)$ $(T_A = T_{Iow}$ to Thigh ①)	AVOL	40,000 35,000	60,000 50,000	14	30,000 20,000	60,000 50,000	=	-	
Output Impedance (f = 20 Hz)	Zout	Ą	100	150		100	150	Ω	
Input Impedance (f = 20 Hz)	Zin	500	1000	1997 (1997) 1997 (1997)	300	600		kΩ	
Output Voltage Swing $(R_L = 10 \text{ k}\Omega)$ $(R_L = 2 \text{ k}\Omega)$	Vo	±12 ±11	±13 ±12		±12 ±10	±13 ±12		V _{peak}	
Input Common Mode Voltage Swing	CMVin	+9.0 -8.0	+10 -9.0	-	+8.0 -8.0	+9.0 -9.0		V _{peak}	
Common Mode Rejection Ratio	CM _{rej}	90	100		80	100		dB	
Input Bias Current $(T_A = +25^{\circ}C)$ $(T_A = T_{1ow})$	lb		0.5 _	1.0 3.0	12	0.5	2.0 4.0	μA	
Input Offset Current $(T_A = +25^{\circ}C)$ $(T_A = T_{Iow})$ $(T_A = T_{high})$	I _{io}		0.03 	0.15 0.5 0.2		0.1	0.50 0.75 0.75	μA	
Input Offset Voltage \textcircled{C} (T _A = +25 ^o C) (T _A = T _{Iow} , T _{high})	v _{io}	4 1	1.0 _	5.0 6.0		1.0	7.5 10	mV	
$ \begin{cases} \text{Step Response } (C_2 = 10 \text{ pF}) \\ \left\{ \begin{array}{l} \text{Gain} = 100, 10\% \text{ overshoot,} \\ \text{R}_1 = 10 k\Omega, \text{R}_2 = 1.0 M\Omega, \\ \text{R}_3 = 100 \Omega, \text{C}_1 = 0.01 \mu\text{F} \end{array} \right\} \end{cases} $	t _f tpd dV _{out} /dt ③	4.4.4	0.25 0.1 6.2			0.25 0.1 6.2		μs μs V/μs	
$ \left\{ \begin{array}{l} {\rm Gain=10,noovershoot,} \\ {\rm R_1=10k\Omega,R_2=100k\Omega,} \\ {\rm R_3=10\Omega,C_1=0.1\mu F} \end{array} \right\} $	^t f ^t pd dV _{out} /dt ③	Y 4- L	0.3 0.1 2.9	- - -		0.3 0.1 2.9		μs μs V/μs	
$ \left\{ \begin{array}{l} {\rm Gain} = 1,5\% \; {\rm overshoot}, \\ {\rm R}_1 = 10{\rm k}\Omega, {\rm R}_2 = 10{\rm k}\Omega, \\ {\rm R}_3 = 10\Omega, {\rm C}_1 = 1.0\mu{\rm F} \end{array} \right. $	^t f ^t pd dV _{out} /dt ③	+V1	0.2 0.1 2.0	- - -		0.2 0.1 2.0	-	μs μs V/μs	
Average Temperature Coefficient of Input Offset Voltage $(T_A = T_{Iow} \text{ to } +25^{\circ}\text{C})$ $(T_A = +25^{\circ}\text{C to } T_{high})$	tc _{vio}	, <i>1</i>	8.0 5.0	- -		10 8.0		μV/ ⁰ C	
Average Temperature Coefficient of Input Offset Current $(T_A = T_{Iow} \text{ to } T_{high})$ $(T_A = +25^{\circ}C \text{ to } T_{high})$	TC _{lio}	4-1	0.1 0.05	+	-	0.1 0.05	_	nA/ ⁰ C	
DC Power Dissipation (Power Supply = ±15 V, V ₀ = 0)	PD	Ŧ	125	170		125	240	mW	
Positive Supply Sensitivity (V ⁻ constant)	S ⁺	+	50	150		50	200	μV/V	
Negative Supply Sensitivity (V ⁺ constant)	s-		50	150	_	50	200	$\mu V/V$	

 $(1) T_{high} = +75^{\circ}C \text{ for MC1433}, T_{low} = 0 \text{ for MC1433} \\ +125^{\circ}C \text{ for MC1533} -55^{\circ}C \text{ for MC1533}$

② Input offset voltage (V_{io}) may be adjusted to zero.
 ③ dV_{out}/dt = Slew Rate

Rating	Symbol	Value	Unit			
Power Supply Voltage	MC1533,MC1433 MC1533,MC1433	V+ V-	+20,+18 -20,-18	Vdc Vdc		
Differential Input Signal		Vin	±10	Volts		
Common Mode Input Sw	ving .	CMVin	±V ⁺	Volts		
Load Current		١L	10	mA		
Output Short Circuit Du	ration	tS	1.0	S		
Power Dissipation (Packa Metal Package Derate above $T_A = +2$ Flat Package Derate above $T_A = +2$ Dual In-Line Ceramic P Derate above $T_A = +2$ Dual In-Line Plastic Pac Derate above $T_A = +2$	5 ⁰ C 5 ⁰ C ackage 5 ⁰ C kage	PD	680 4.6 500 3.3 625 5.0 400 3.3	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C		
Operating Temperature F	Range MC1533 MC1433	Τ _Α	-55 to +125 0 to +75	°C		
Storage Temperature Ran Metal and Ceramic Pack Plastic Package	-	T _{stg}	-65 to +150 -65 to +125	°C		

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

TYPICAL CHARACTERISTICS

FIGURE 3 – TEST CIRCUIT V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC

	0	Test Conditions						
Fig. No.	Curve No.	R ₁ (Ω)	R ₂ (Ω)	R ₃ (Ω)	C ₁ (μF)	C ₂ (pF)		
4	1	10 k	10 k	10	1.0	10		
	2	10 k	100 k	10	0.1	10		
	3	10 k	1.0 M	100	0.01	10		
	3	1.0 k	1.0 M	390	0.002	10		
5	1	10 k	10 k	10	1.0	10		
1	2	10 k	100 k	10	0.1	10		
	3	10 k	1.0 M	100	0.01	10		
	4	1.0 k	1.0 M	390	0.002	10		
6	1	0	8	10	1.0	. 10		
	2	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	0.1	10		
· ·	3	0	~	100	0.01	10		
	4	0	∞	390	0.002	10		

 $\label{eq:transform} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = + \ 25^oC \ unless \ otherwise \ noted) \end{array}$

FIGURE 6 – OFFSET ADJUST CIRCUIT

FIGURE 7 – OPEN LOOP VOLTAGE GAIN versus FREQUENCY (HIGH GAIN CONFIGURATION)

 PIN CONNECTIONS

 Schematic
 A
 B
 C
 D
 E
 F
 G
 H
 J
 K

 "G" Package
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 "f" Package
 10
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 "f" Package
 10
 5
 6
 7
 8
 9
 10
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1
 1
 1
 1
 4
 2
 3
 1
 1
 1
 1
 3
 4
 5
 6
 7
 1
 1
 1
 1
 1
 1
 1
 1
 1
 2

TYPICAL CHARACTERISTICS (continued)

OPERATIONAL AMPLIFIERS

See Packaging Information Section for outline dimensions.

Number at end of terminal is pin number for ceramic packages. Number in parenthesis is pin number for metal package. Input Lag available only in ceramic packages.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	MC1535	MC1435	Unit	
Power Supply Voltage	V _{CC} V _{EE}	+10 -10	+9.0 -9.0	Vdc	
Differential Input Signal Voltage	V _{in}	±5.0	±5.0	Volts	
Common-Mode Input Swing Voltage	VICR	+5.0, -4.0	+5.0 -4.0	Volts	
Load Current	ار	20	20	mA	
Output Short-Circuit Duration	T _{SC} Continuous				
Power Dissipation (Package Limitation) Flat Ceramic Package Derate above $T_A = +25^{\circ}C$ Metal Package Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	PD	5 3 6 4 6 5	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C		
Operating Temperature Range	TA	-55 to +125	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C	

MC1535, MC1435 (continued)

		MC1535			MC1435			
Characteristics	Symbol	Min Typ		Max	Min	Тур	Max	Unit
Input Bias Current	1 _{IB}						T	
$I_{IB} = \frac{I_1 + I_2}{2}, T_A = +25^{\circ}C$ $T_A = T_{Iow} \text{ to } T_{high} \text{ (f)}$			1.2	3,0	-	1.2	5.0	μAdc
TB 2 ' A = I low to I high ()		5 . .	5. .	6.0	-	-	10	
Input Offset Current T _A = +25 ^o C	10	a starter	50	300	-	50	500	nAdc
$T_A = +25^{\circ}C$ to T_{high}	1		. JU	300	_	- 50	1500	
$T_A = T_{low} \text{ to } +25^{\circ}\text{C}$				900	-	_	1500	l
Input Offset Voltage	IVI01							mVdc
$T_A = +25^{\circ}C$	1,101	-	1.0	3.0		1.0	5.0	
T _A = T _{low} to T _{high}		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		5.0	· —	-	7.5	
Differential Input Impedance (Open-Loop, f = 20 Hz)							Ι	
Parallel Input Resistance	Rp	10	45		10	45	-	k ohms
Parallel Input Capacitance	C _p	-	6.0			-	-	pF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)	Start Start	250	1. T (3	-	250		Megohn
Common-Mode Input Voltage Swing See Figure 7.	VICR	+3.0 -2.0	+3.9 -2.7	200	+3.0 -2.0	+3.9	-	V _{pk}
Equivalent Input Noise Voltage	e _n	<u> </u>	45			45	_	nV/(Hz)
$(A_v = 100, R_s = 10 \text{ k ohms, } f = 1.0 \text{ kHz, BW} = 1.0 \text{ Hz})$	°n				·			110/(112/
Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	-70	-90	a7 -	-70	-90		dB
Open Loop Voltage Gain	Avol	4.000	7,000	10,000	3.500	7.000	-	V/V
$(T_A = T_{low} \text{ to } T_{high})$			242.53		-,			
Power Bandwidth (See Figure 2, Curve 3A.)	PBW	-	40	199 - Davies	·	40		kHz
$(A_V = 1, R_L = 2.0 \text{ kohms}, THD \le 5\%, V_0 = 20 \text{ Vp-p})$								
Unity Gain Crossover Frequency (open-loop)		-	2.0	-	-	2.0	-	MHz
Phase Margin (open-loop, unity gain)		-	75			75	-	degrees
Gain Margin			18	Same.		.18		dB
Step Response				1.16.25				
Gain = 100, 30% overshoot,	tPHL		0.3	-	5 . 4 . 1	0.3		μs
$R1 = 4.7 k\Omega, R2 = 470 k\Omega,$	tp		0.1			0.1	-	μs
R3 = 150 Ω, C1 = 1,000 pF	dV _O /dt ②	100	0.167		.—	0.167	, T⊤s s	V/μs
Gain = 10, 10% overshoot,	TPHL		1.9	-		1.9	-	μs
$R1 = 47 k\Omega, R2 = 470 k\Omega, R3 = 47 \Omega, C1 = 0.01 \mu F$	t₽ dV _O /dt ②		0.3		-	0.3		μs V/μs
(Gain = 1, 5% overshoot,			27			27		
$R1 = 47 k\Omega, R2 = 47 k\Omega,$	tPHL tp		0.25			0.25		μs μs
$R_3 = 4.7 \Omega, C_1 = 0.1 \mu F$	dVo/dt ②	200 <u>2</u> 00	0.013		1.1	0.013	-	V/μs
Dutput Impedance (f = 20 Hz)	zo	555 <u>5</u> 55	1.7			1.7		k ohm
Short-Circuit Output Current	^I sc		±17	-	-	±17		mAdc
Dutput Voltage Swing (R _L = 10 k ohms)	Vo	±2.5	±2.8		±2.3	±2.7	<u>+ </u>	Vpk
Power Supply Sensitivity								
$V_{EE} = constant, R_s \le 10 \text{ k ohms}$	S+	1.00	50	100	_	50	-	μ υ , υ
$V_{CC} = constant, R_s \leq 10 k ohms$	S-		100	100		100	-	
Power Supply Current (Total)	۱ _D +		8.3	12.5	-	8.3	15	mAdc
1	1 _D -	the second second second	8.3	12.5		8.3	15	
DC Quiescent Power Dissipation (Total)	PD	-	100	150	-	100	180	mW
(V _O = 0)	L			and the second		L	L	I
IATCHING CHARACTERISTICS								
Open Loop Voltage Gain	Avol1-Avol2	-	±1.0	-		±1.0	-	dB
nput Bias Current	¹ IB1 ⁻¹ IB2	1004 C	±0.15	245	-	±0.15	-	μA
nput Offset Current	101 ⁻¹ 102	-	±0.02			±0.02	-	μΑ
Average Temperature Coefficient IIB1-IIB2	TCI101-TCI102	12	±0.1	642		±0.1		nA/ºC
nput Offset Voltage	VI01-VI02	Constanting March	±0.1	10000	·	±0.1	-	mV
	TCV101-TCV102			1000				
	· · · · · · · · · · · · · · · · · · ·	194 C	±0.5	-	-	±0.5	-	μV/°C
Channel Separation (See Fig. 10)	e _{o1}							/ dB
(f = 10 kHz)	eo2	Property States	-60	E	I	-60	1	r

ELECTRICAL CHARACTERISTICS (Each Amplifier) (V_{CC} = +6.0 Vdc, V_{EE} = - 6.0 Vdc, T_A = +25^oC unless otherwise noted.)

T_{low}: 0°C for MC1435 -55°C for MC1535 T_{high}: +75°C for MC1435 +125°C for MC1535

² dVO/dt = Slew Rate

TYPICAL OUTPUT CHARACTERISTICS

 $(V_{CC} = +6.0 \text{ Vdc}, V_{EE} = -6.0 \text{ Vdc}, T_A = +25^{\circ}C.)$

FIGURE 1 - TEST CIRCUIT

	CURVE NO.	VOLTAGE GAIN	TEST CONDITIONS					OUTPUT	
FIGURE NO.			R ₁ (Ω)	R ₂ (Ω)	C ₁ (pF)	R ₃ (Ω)	C ₂ (pF)	NOISE mV(RMS)	
2	3 3A	{ 1 or 1	47 k 47 k	47 k 47 k	100,000 0	4.7 ∞	0 50,000	0.12 0.46	
3	1 2 3	100 or 100 10 or 10 1 or 1	4.7 k 4.7 k 47 k 47 k 47 k 47 k 47 k	470 k 470 k 470 k 470 k 470 k 47 k 47 k	1,000 0 10,000 0 100,000 0	150 ∞ 47 ∞ 4.7 ∞	0 510 0 5,000 0 50,000	1.7 2.1 1.0 2.1 0.12 0.46	
4	1 2 3	or A _{vol} Avol or A _{vol} Avol or A _{vol}	100 100 100 100 100 100	888888	1,000 0 10,000 0 100,000 0	150	0 510 0 5,000 0 50,000	8.1 8.1 5.5 5.5 4.4 4.4	

*Ceramic packages only.

FIGURE 2 – LARGE SIGNAL SWING versus FREQUENCY

f, FREQUENCY (Hz)

FIGURE 3 - VOLTAGE GAIN versus FREQUENCY

f, FREQUENCY (Hz)

FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 6 - VOLTAGE GAIN versus

TYPICAL CHARACTERISTICS (continued)

FIGURE 8 - POWER DISSIPATION versus

Induced input signal (μV of induced input signal in amplifier #2 per volt of output signal at amplifier #1)

 $e'_0 2 = e'_{in2} (\frac{RF}{RS})$, where $e'_0 2$ is the component of eo 2 due only to lack of perfect separation between the two amplifiers.

See Packaging Information Section for outline dimensions. See current MCC1536/1436 data sheet for standard linear chip information.

8-226

MC1536G, MC1436G, MC1436CG (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	MC1538G	MC1436G	MC1436CG	Unit
Power Supply Voltage	∨+ ∨-	+40 40	+34 -34	+30 -30	Vdc
Differential Input Signal	Vin		$\pm (V^+ + V^- -3)$	Volts	
Common-Mode Input Swing	CMVin		+V ⁺ , -(V ⁻ -3)	Volts	
Output Short Circuit Duration ($V^+ = V^- = 28 \text{ Vdc}, V_0 = 0$)	T _{SC}		5.0	S	
Power Dissipation (Package Limitation) Derate above T _A = +25 ⁰ C	PD		680 4.6	mW mW/ ⁰ C	
Operating Temperature Range	TA	-55 to +150 0 to +75			°C
Storage Temperature Range	T _{stg}	1	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (V⁺ = +28 Vdc, V⁻ = -28 Vdc, T_A = +25^oC unless otherwise noted)

			MC1536G		in trunch	MC1436G	Service and the service of the servi	MC1436CG			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Чb		10000		Contract in Section and a	Protocol and a second second	a fait rear		1		nAdc
$T_{A} = +25^{\circ}C$		-	8.0	20		15	40		25	90	
T _A = T _{low} to T _{high} (See Note 1)		4	1.1.1.1.1.1.1.	35	Tops	Belongter strengt	55	-	-		ļ
Input Offset Current $T_A = +25^{\circ}C$	lio		1.0	3.0	Contra Galifeeda	5.0	10	_	10	25	nAdc
$T_A = +25^{\circ}C$ to T_{high}				4.5		-	14	_			
$T_A = T_{low}$ to $+25^{\circ}C$				7.0		1111	14	- 1	-		
Input Offset Voltage	Vio				Conservation -	and the second	Contra Longelling		1		mVdc
T _A = +25 ^o C			2.0	5.0	1	5.0	10	- 1	5.0	12	
T _A = T _{low} to T _{high}			-	7.0		1	14	-	-		
Differential Input Impedance (Open-Loop, f ≤ 5.0 Hz)							PRIVAL-BRAN				
Parallel Input Resistance	Rp		10	-		10		<u></u>	10		Meg ohm
Parallel Input Capacitance	C _p	3 -	2.0			2.0	+	<u> </u>	2.0	14	pF
Common-Mode Input Impedance (f ≤ 5.0 Hz)	Z(in)	-	250	-		250		-	250		Meg ohm
Common-Mode Input Voltage Swing	CMVin	±24	±25	1	±22	±25	-	±18	±20	·	V _{pk}
Equivalent Input Noise Voltage	e _n		100			S. Same of succession					nV/(Hz)
(A _V = 100, R _s = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)			50	-	-	50	-		50	S - 3	
Common-Mode Rejection Ratio (dc)	CMrej	80	110	- 4	70	110	and the second s	50	90		dB
Large Signal dc Open Loop Voltage Gain	AVOL					-2.2					v/v
$(T_A = +25^{\circ}C)$		100,000	500,000	-	70,000	500,000	1	50,000	500,000	1.12	
$(V_{o} = \pm 10 \text{ V}, \text{ R}_{L} = 100 \text{ k ohms}) \begin{cases} T_{A} = +25^{O}\text{C} \\ T_{A} = T_{low} \text{ to } T_{high} \end{cases}$		50,000	-	-	50,000	-	-	- 1		_	
$(V_0 = \pm 10 \text{ V}, \text{ R}_L = 10 \text{ k ohms}, \text{ T}_A = +25^{\circ}\text{C})$		-	200,000			200,000		-	200,000		[
Power Bandwidth (Voltage Follower)	PBW				ada a finana a sa	Alder and the star					kHz
$(A_V = 1, R_L = 5.0 \text{ k ohms}, THD \le 5\%, V_0 = 40 \text{ Vp-p})$			23		The second s	23		-	23	-	
Unity Gain Crossover Frequency (open-loop)	f _c		1.0	ł		1,0		-	1.0	-	MHz
Phase Margin (open-loop, unity gain)	φ	-	50		-	50	Ţ	<u> </u>	50	F	degrees
Gain Margin	AGM	-	18			18			18	-	dB
Slew Rate (Unity Gain)	dV _{out} /dt	-	2.0		-	2.0	4	-	2.0	-	V/µs
Output Impedance (f ≤ 5.0 Hz)	Zout		1.0		100 - 100 -	1.0		~	1.0		k ohms
Short-Circuit Output Current	'sc		±17	1	-	±17	-	·	±19	-	mAdc
Output Voltage Swing (RL = 5.0 k ohms)	Vo						Constant Services				Vpk
V ⁺ = +28 Vdc, V ⁻ = -28 Vdc	· ·	±22	±23	-	±20	±22	-	±20	±22	·	
$V^+ = +36 Vdc, V^- = -36 Vdc$		±30	±32		-			1 . 1		-	
Power Supply Sensitivity (dc)						and the spectrum of the second s					μV/V
V^{-} = constant, $R_{s} \le 10$ k ohms	S+		15	100	12.÷	35	200		50	****	
V ⁺ = constant, R _s ≤ 10 k ohms	S-	1.1	15	100	-	35	200		50		
Power Supply Current (See Note 2)	^I D ⁺		2.2	4.0	-	2.6	5.0		2.6	5.0	mAdc
·	ID-	-	2.2	4.0	-	2.6	5.0		2.6	5.0	
DC Quiescent Power Dissipation	PD					-					mW
(V _{ol} = 0)	1	1	124	224	1996	146	280		146	280	

Note 1: T_{1ow}: 0^oC for MC1436G,CG -55^oC for MC1536G T_{high}: +75^oC for MC1436G,CG +15 0^oC for MC1436G,CG

Note 2: $V^+ = |V^-| = 5.0 \text{ Vdc to 36 Vdc for MC1536G}$ $V^+ = |V^-| = 5.0 \text{ Vdc to 30 Vdc for MC1436G}$ $V^+ = |V^-| = 5.0 \text{ Vdc to 28 Vdc for MC1436CG}$

MC1536G, MC1436G, MC1436CG (continued)

8

8-228

MC1536G, MC1436G, MC1436CG (continued)

OPERATIONAL AMPLIFIERS

HIGHLY MATCHED

MONOLITHIC DUAL OPERATIONAL AMPLIFIERS

MC1537

MC1437

... designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.

Typical Amplifier Features:

- High-Performance Open Loop Gain Characteristics –
 AVOL = 45,000 typical
 - Low Temperature Drift $-\pm 3\,\mu\text{V/}^{o}\text{C}$
- Large Output Voltage Swing -
 - ± 14 V typical @ ± 15 V Supply

MAXIMUM RATINGS (T_A = +25°C)

•

Rating	Symbol	Value	Unit
Power Supply Voltage	v+	+18	Vdc
		-18	Vdc
Differential Input Signal	V _{in}	±5.0	Volts
Common Mode Input Swing	CMVin	±V ⁺	Volts
Output Short Circuit Duration	ts	5.0	S
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C Plastic Package Derate above T _A = +25 ^o C	PD	750 6.0 625 5.0	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1537 MC1437	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

FIGURE 2 – EQUIVALENT CIRCUIT

See Packaging Information Section for outline dimensions.

MC1537, MC1437 (continued)

ELECTRICAL CHARACTERISTICS – Each Amplifier (V^+ = +15 Vdc, V^- = -15 Vdc, T_A = 25°C unless otherwise noted)

	MC153		MC1537					
Characteristic	Symbol	Min	Тур	Мах	Min	Тур	Max	Unit
Open Loop Voltage Gain (R _L = 5.0 k Ω , V ₀ = ±10 V, T _A = T _{low} (10 to T _{high} (20)	AVOL	25,000	45,000	70,000	15,000	45,000	-	-
Output Impedance (f = 20 Hz)	z _o		30	-		30	-	Ω
Input Impedance (f = 20 Hz)	Z _{in}	150	400	<u> </u>	50	150	-	kΩ
Output Voltage Swing ($R_L = 10 k\Omega$) ($R_L = 2.0 k\Omega$)	Vo	±12 ±10	±14 ±13		±12	±14		V _{peak}
Input Common-Mode Voltage Swing	CMV _{in}	±8.0	±10		±8.0	±10	-	V _{peak}
Common-Mode Rejection Ratio	CMrej	70	100		65	100	-	dB
Input Bias Current $\begin{pmatrix} I_{b} = \frac{I_{1} + I_{2}}{2} \end{pmatrix} \begin{array}{l} (T_{A} = +25^{o}C) \\ (T_{A} = T_{low} \textcircled{1}) \end{array}$	IЪ	1 X	0.2 0.5	0.5 1.5	-	0.4	1.5 2.0	μA
Input Offset Current ($I_{i0} = I_1 - I_2$) ($I_{i0} = I_1 - I_2$, $T_A = T_{IOW}$ ()) ($I_{i0} = I_1 - I_2$, $T_A = T_{high}$ ())	li _{io}]	(A)	0.05	0.2 0,5 0.2	-	0.05	0.5 0.75 0.75	μA
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = T_{low} \textcircled{0} \text{ to } T_{high} \textcircled{0})$	V _{io}	÷.	1.0	5.0 6.0		1.0	7.5	mV
$ \left\{ \begin{array}{l} \text{Step Response} \\ \left\{ \begin{array}{l} \text{Gain = 100, 5\% overshoot,} \\ \text{R}_1 = 1 \ k\Omega, \ \text{R}_2 = 100 \ k\Omega, \\ \text{R}_3 = 1.5 \ k\Omega, \ \text{C}_1 = 100 \ \text{pF}, \ \text{C}_2 = 3.0 \ \text{pF} \end{array} \right\} $	^t f ^t pd dV _{out} /dt ③	4.4.4	0.8 0.38 12	4.1		0.8 0.38 12		μs μs V/μs
$\begin{cases} Gain = 10, 10\% \text{ overshoot,} \\ R_1 = 1 k\Omega, R_2 = 10 k\Omega, \end{cases}$	t _f t _{pd} dV _{out} /dt ③		0.6 0.34 1.7			0.6 0.34 1.7		μs μs V/μs
$\begin{cases} Gain = 1, 5\% \text{ overshoot}, \\ R_1 = 10 k\Omega, R_2 = 10 k\Omega, \end{cases}$	t _f t _{pd} dV _{out} /dt ③	11-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2.2 1.3 0.25		-	2.2 1.3 0.25		ν/μs μs μs ∨/μs
Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \Omega, T_A = T_{Iow} \textcircled{1} to T_{high} \textcircled{2})$ $(R_S \le 10 k\Omega, T_A = T_{Iow} \textcircled{1} to T_{high} \textcircled{2})$	TC _{Vio}		1.5 3.0			1,5 3.0	_	µV/ºC
Average Temperature Coefficient of Input Offset Voltage $(T_A = T_{Iow}) to +25^{\circ}C)$ $(T_A = +25^{\circ}C to T_{high})$	TC _{lio}		0.7 0.7			0.7		nA/ ^o C
DC Power Dissipation (Total) (Power Supply = ± 15 V, V _o = 0)	PD		160	225		160	225	mW
Positive Supply Sensitivity (V ⁻ constant)	S+	-	10	150		10	200	μV/V
Negative Supply Sensitivity (V ⁺ constant)	S-	a de la compañía de	10	160	·	10	200	μV/V

 $(1) T_{low} = 0^{o}C \text{ for MC1437}$ $= -55^{o}C \text{ for MC1537}$

② T_{high} = +75^oC for MC1437 = +125^oC for MC1537

3dV_{out}/dt = Slew Rate

MATCHING CHARACTERISTICS

Open Loop Voltage Gain	AVOL1-AVOL2	-	±1.0			±1.0	-	dB
Input Bias Current	^l b1 ^{-l} b2	-	±0.15	-	_	±0.15		μA
Input Offset Current	1101-11102		±0.02	-		±0.02	-	μA
Average Temperature Coefficient	TClio1 TClio2		±0.2	$\sim -$		±0.2		nA/ ^o C
Input Offset Voltage	Vio1-Vio2	ł	±0.2	-	-	±0.2	<u> </u>	mV
Average Temperature Coefficient	TCVio1 - TCVio2	4	±0.5	-	1 <u>-</u> 1	±0.5	·	µV/ ^o C
Channel Separation (f = 10 kHz)	$\frac{e_{out 1}}{e_{out 2}}$		90	1		90		dB

TYPICAL OUTPUT CHARACTERISTICS

FIGURE 3 – TEST CIRCUIT V⁺ = +15 Vdc, V⁻ = 15 Vdc, T_A = 25° C

FIGURE	CURVE	VOLTAGE		TES	T CONDITI	ONS		OUTPUT NOISE
NO.	NO.	GAIN	R ₁ (Ω)	R ₂ (Ω)	R ₃ (Ω)	C ₁ (pF)	C ₂ (pF)	(mV[rms])
4	1 2 3 4	1 10 100 1000	10 k 10 k 10 k 1.0 k	10 k 100 k 1.0 M 1.0 M	1.5 k 1.5 k 1.5 k 0	5.0 k 500 100 10	200 20 3.0 3.0	0.10 0.14 0.7 5.2
5	1 2 3 4	1 10 100 1000	10 k 10 k 10 k 1.0 k	10 k 100 k 1.0 M 1.0 M	1.5 k 1.5 k 1.5 k 0	5.0 k 500 100 10	200 20 3.0 3.0	0.10 0.14 0.7 5.2
6	1 2 3 4 5	AVOL AVOL AVOL AVOL AVOL	0 0 0 0	8 8 8 8 8 8	1.5 k 1.5 k 1.5 k 0 ∞	5.0 k 500 100 10 0	200 20 3.0 3.0 3.0 3.0	5.5 10.5 21.0 39.0 —

FIGURE 4 – LARGE SIGNAL SWING versus FREQUENCY

FIGURE 6 – OPEN LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 5 - VOLTAGE GAIN versus FREQUENCY

FIGURE 7 – TOTAL POWER DISSIPATION versus POWER SUPPLY VOLTAGE

Induced output signal (μ V of induced output signal in amplifier #2 per volt of output signal at amplifier #1).

MC1538R MC1438R

MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Rating	Symbol	MC1538R	MC1438R	Unit
Power Supply Voltage	v ⁺ v⁻	+22 -22	+18 -18	Vdc
Input-Output Voltage Differential	V _{in} - V _{out}	-14.5, +44	-14, +36	Vdc
Input Voltage Swing	l∨ _{in} l	V ⁺ o	r V⁻	Vdc
Load Current	١L	350		mAdc
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +25^{\circ}C$ Thermal Resistance, Junction to Case	Ρ _D 1/θ _{JA} θJA ΡD 1/θ _{JC} θJC	3.) 24 41 17 14 7.1	6 .5 0	Watts mW/ ^o C ^o C/W Watts mW/ ^o C ^o C/W
Operating and Storage Junction Temperature Range	TJ, Tstg -		+150	°C

^	mbient Temperature	MC1438R MC1538R	TA	0 to +75 -55 to +125	°C
-					

ELECTRICAL CHARACTERISTICS

(R_L = 300 ohms, T_C = +25°C unless otherwise noted.)

				2653	MC1538R		MC1438R]
				V ⁺ = +5	V to +20 V, V [−] =	= -5 V to -20 V	V ⁺ = +	15 V, V ⁻ = -1	15 V	
Characteristic (Linear Operation)	Fig	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Voltage Gain (f = 1.0 kHz)	1	Τ-	Av	0.9	0.95	1.0	0.85	0.95	1.0	v/v
Current Gain (A _I = ∆l _o /∆l _{in})	1	-	AI	1000	3000		_	3000		A/A
Output Impedance (f = 1.0 kHz)	1	-	Zout	8. - 3	10	C	-	10	-	Ohms
Input Impedance (f = 1.0 kHz)	1	-	Zin	29-25	400		-	400	-	k ohms
Output Voltage Swing	1	3	Vout	±12	±13		±11	±12	-	Vdc
Input Bias Current	2	-	۱ _b		60	200	-	60	300	μAdc
Output Offset Voltage	2	1	Voo		25	150	-	25	200	mVdc
Small Signal Bandwidth (R _L = 300 ohms) (V _{in} = 0 Vdc, v _{in} = 100 mV [rms])	1	-	BW ^{3 dB}	-	8.0	-	-	8.0	-	MHz
Power Bandwidth (V _{out} = 20 V _{p-p} , THD = 5%)	1	3	PBW	4	1.5	-	· _	1.5	-	MHz
Total Harmonic Distortion (f = 1.0 kHz, V _{out} = 20 V _{p-p})	1	3	THD	÷	0.5	-	-	0.5	-	%
Short-Circuit Output Current (R1 = R2 = ∞) (R1 = R2 = 3.3. ohms) Adjustable Range	3 3 4,5	2	ISC	75	95 300 5.0 to 300	125 	65 	95 300 5.0 to 300	140	mAdc
Power Supply Sensitivity (V [¯] constant) (V ⁺ constant)	2	-	s⁺ s⁻	- +	1,0 1,0	-		1.0 1.0	-	mV/V
Power Supply Current (R _L = ∞, V _{in} = 0)	2	-	D+ or D-	4.5	6.0	10	2.5	6.0	15	mAdc
Power Dissipation ($R_L = \infty$, $V_{in} = 0$)	2	3	PD	150	180	300	75	180	450	mW

8

Note 1. Output offset Voltage is the quiescent dc output voltage with the input grounded.

Note 2. Short-Circuit Current, I_{SC}, is adjustable by varying R1, R2, R3 and R4. The positive current limit is set by R1 or R3, and the negative current limit is set by R2 or R4. See Figures 4 and 5 for curves of short-circuit current versus R1, R2, R3 and R4. Note 3. V⁺ = +15 V, V⁻ = -15 V.

TYPICAL CHARACTERISTICS

(5.0 mA to 100 mA)

TYPICAL CHARACTERISTICS (continued)

FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT

FIGURE 10 - OUTPUT OFFSET VOLTAGE versus TEMPERATURE

*See figures 4 and 5 for definition of R1, R2,R3, and R4.

0

FIGURE 7 - SMALL SIGNAL GAIN AND PHASE RESPONSE

FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT

FIGURE 11 - INPUT BIAS CURRENT versus TEMPERATURE

$\label{eq:typical characteristics} TYPICAL CHARACTERISTICS (continued) \\ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = +25^{\circ}C \ unless \ otherwise \ noted) \\$

TYPICAL APPLICATIONS

FIGURE 14 - NON-INVERTING AC POWER AMPLIFIER

FIGURE 15 - NON-INVERTING POWER AMPLIFIER

FIGURE 16 - NON-INVERTING VOLTAGE FOLLOWER

FIGURE 17 - INVERTING POWER AMPLIFIER

FIGURE 16 – NO

TYPICAL APPLICATIONS (continued)

FIGURE 19 – CONSTANT CURRENT SOURCE OR TRANSCONDUCTANCE AMPLIFIER

FIGURE 20 – SIGNAL DISTRIBUTION

FIGURE 21 - ASTABLE MULTIVIBRATOR

FIGURE 22 - WIEN BRIDGE OSCILLATOR

OPERATIONAL AMPLIFIERS

Vz – 2.1 V

-07V

Pin numbers adjacent to terminals apply to 8-pin packages, numbers in parenthesis apply to 14-pin packages.

See Packaging Information Section for outline dimensions.

MC1539, MC1439 (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

			MC1539		1	MC1439		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	I _{IB}							μΑ
(T _A = +25 ^o C)		-	0.20	0.50		0.20	1.0	
(T _A = T _{low} (1))			0.23	0.70	-	0.23	1.5	
Input Offset Current	10							nA
$(T_A = T_{low})$				75	-	-	150	
$(T_A = +25^{\circ}C)$			20	60	-	20	100	
$(T_A = T_{high}(1))$		Contraction of the second	And the second second	75		_	150	
Input Offset Voltage	101V		1.0			2.0	76	mV
(T _A = +25 ^o C) (T _A = T _{low} , T _{high})				3.0 4.0	_	2.0	7.5	
							·····	μV/ ⁰ C
Average Temperature Coefficient of Input Offset Voltage (T _A = T _{low} to T _{high})	^{TC} VIO	A State of S	A real of the second se	Tidaan (ng) ay tang tang tang tang tang tang tang tang				μν/ου
(R _S = 50 Ω)		 State of the second seco	3.0	and an Utapy of the second		3.0		
(R <mark>S ≤</mark> 10 kΩ)		and a strange of the	5.0		-	5.0	-	
Input Impedance	zin	150	- 300	ender ander and	100	300		kΩ
(f = 20 Hz)		and a straight and a	All of the second secon					
Input Common-Mode Voltage Swing	VICR	±11	±12		±11	±12	_	Vpk
Equivalent Input Noise Voltage	e _n		30		-	30		nV/(Hz)
(R _S = 10 kΩ, Noise Bandwidth = 1.0 Hz, f = 1.0 kHz)		An off the second se						
	CMRR	80	110	and a second second		110		
Common-Mode Rejection Ratio (f = 1.0 kHz)	CMAA	00	110		80	110		dB
Open-Loop Voltage Gain (VO = ±10 V, RL =	A _{vol}			And and a second s				
$10 \text{ k}\Omega$, $R_5 = \infty$) (T _A = +25°C to T _{high})	VOI	50,000	120,000		15,000	100,000		-
$(T_A = T_{low})$		25,000	100,000	-	15,000	100,000		
Power Bandwidth ($A_v = 1$, THD $\leq 5\%$,	PBW							kHz
$V_{O} = 20 V_{P-P}$					10	50		
(R _L = 2.0 kΩ) (R _L = 1.0 kΩ, R ₅ = 10 k)		20	50	Contraction of the second s	. 10	50		
Step Response		1000						
(Gain = 1000, no overshoot,	^t PHL		130			130	-	ns
$R1 = 1.0 k\Omega, R2 = 1.0 M\Omega, R3 = 1.0 k\Omega, \}$	t _p	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	190			190	·	ns
R4 = 30 k Ω , R5 = 10 k Ω , C1 = 1000 pF	dVo/dt (2)		6.0	and the second	·	6.0	· · ·	V/µs
(Gain = 1000, 15% overshoot,)	^t PHL		80		_	80		ns
$R1 = 1.0 k\Omega, R2 = 1.0 M\Omega, R3 = 1.0 k\Omega,$	tp		100		-	100		ns
$R4 = 0, R5 = 10 k\Omega, C1 = 10 pF$	-∙p dV⊖/dt	Contraction of the second	14		-	14		V/µs
(Gain = 100, no overshoot,	_		60	alar ang		60		ns
$R1 = 1.0 \mathrm{k}\Omega, R2 = 100 \mathrm{k}\Omega, R3 = 1.0 \mathrm{k}\Omega, R$	^t PHL		100	iner und på blev som i der Grennen av der som i der Grennen av der som i		100		ns
$\left(\begin{array}{c} R4 = 10 \text{k}\Omega, R5 = 10 \text{k}\Omega, C1 = 2200 \text{pF} \end{array} \right)$	^t p dV _O /dt		34	and a second		34	_	V/µs
(Gain = 10, 15% overshoot,			120		_	120		ns
$\left\{ R1 = 1.0 k\Omega, R2 = 10 k\Omega, R3 = 1.0 k\Omega, \right\}$	tPHL		120 80	and a second second second		80		ns
$R4 = 1.0 k\Omega, R5 = 10 k\Omega, C1 = 2200 pF$	^t p dVO/dt		6.25			6.25		V/μs
(Gain = 1, 15% overshoot,	-		160			160		
Gain = 1, 15% overshoot, $\left\{ R1 = 10 k\Omega, R2 = 10 k\Omega, R3 = 5.0 k\Omega, \right\}$	^t PHL		80		_	80	-	ns
$R4 = 390 \Omega, R5 = 10 k\Omega, C1 = 2200 pF$	^t p dV⊖/dt		4.2	And a second		4.2		V/µs
Output Impedance			4.0			4.0		kΩ
(f = 20 Hz)	zo				_	4.0		K32
Output Voltage Swing	Vo							Vpk
$(R_L = 2.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz})$	Ŭ			4	±10	±13	-	
(R _L = 1.0 kΩ, f = 1.0 kHz)		±10	±13		-	· · · · ·	e in in its	
Positive Supply Sensitivity	\$ ⁺	- 3 1 2	50	150		50	200	μV/V
$(V_{EE} \text{ constant}, R_5 = \infty)$		9440						+
Negative Supply Sensitivity $(V_{CC} \text{ constant}, R_5 = \infty)$	s⁻		50	150		50	200	μν/ν
Power Supply Current			100 C	-				+
$(V_{\Omega} = 0)$	ID+		3.0	5.0		3.0	6.7	mAdc
-	-о I _D -	Store and	3.0	5.0		3.0	6.7	1

(1) $T_{10w} = 0^{\circ}C$ for MC1439 - 55°C for MC1539

T_{high} = +75⁰C for MC1439 +125⁰C for MC1539 $O_{dVO/dt} = Slew Rate$

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC} V _{EE}	+18 +18	Vdc	
Differential Input Signal Voltage	Vin	$\pm (V_{CC} + V_{EE})$	Vdc	
Common-Mode Input Swing Voltage	VICR	+V _{CC} ,- V _{EE}	Vdc	
Load Current	ار	15	mA	
Output Short-Circuit Duration	ts	Continuous		
Power Dissipation (Package Limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Packages MC1439 Derate above $T_A = +25^{\circ}C$	PD	680 4.6 750 6.0 625 5.0	mW mW/ ^o C mW mW/ ^o C mW	
Operating Temperature Range MC1539 MC1439	Τ _Α	-55 to +125 0 to +75	°C	
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	T _{stg}	-65 to +150 -55 to +125	°C	

FIGURE 4 - CIRCUIT SCHEMATIC

Pin numbers adjacent to terminals apply to 8 pin packages, numbers in parenthesis apply to 14 pin packages. Pin 7 is electrically connected to the substrate and VEE for Case 646 only. *Patent pending.

$\label{eq:vcc} \begin{array}{l} \textbf{TYPICAL OUTPUT CHARACTERISTICS} \\ (v_{CC} = +15 \; \text{Vdc}, \; v_{EE} = -15 \; \text{Vdc}, \; \text{T}_{A} = +25^{o}\text{C.}) \end{array}$

FIGURE NO.		TEST CONDITIONS (FIGURE 6)								
	CURVE NO.	VOLTAGE GAIN	R1 (Ω)	R ₂ (Ω)	R3 (Ω)	R4 (Ω)	R ₅ (Ω)	C1 (pF)		
	1.	Avol	0	00	0	00	80	0		
	2	1 .	10 k	10 k	5.0 k	390	10 k	2200		
7,8,10,12	3	10	1.0 k	10 k	1.0 k	1.0 k	10 k	2200		
	4	100	1.0 k	100 k	1.0 k	10 k	10 k	2200		
	. 5	1000	1.0 k	1.0 M	1.0 k	30 k	10 k	1000		
	6	1000	1.0 k	1.0 M	1.0 k	0	10 k	10		
13	ALL	1	10 k	10 k	5.0 k	390	10 k	2200		
14	ALL	10	1.0 k	10 k	1.0 k	1.0 k	10 k	2200		
15	ALL	100	1.0 k	100 k	1.0 k	10 k	10 k	2200		
16	ALL	1000	1.0 k	1.0 M	1.0 k	30 k	10 k	2200		

FIGURE 5 - EQUIVALENT CIRCUIT

FIGURE 6 - TEST CIRCUIT

$$\label{eq:transformation} \begin{split} \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V_{CC} = +15 \ Vdc, \ V_{EE} = -15 \ Vdc, \ T_{A} = +25^{o}C, \ unless \ otherwise \ noted.) \end{split}$$

Pin numbers adjacent to terminals apply to 8-pin packages, numbers in parenthesis apply to 14-pin packages.

$$\label{eq:transformation} \begin{split} & \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V_{CC} = +15 \ Vdc, \ V_{EE} = -15 \ Vdc, \ T_A = +25^oC, \ unless \ otherwise \ noted.) \end{split}$$

FIGURE 15 - ACL = 100 RESPONSE versus TEMPERATURE

FIGURE 16 - ACL = 1000 RESPONSE versus TEMPERATURE

Pin numbers adjacent to terminals apply to 8-pin packages, numbers in parenthesis apply to 14-pin packages.

TYPICAL CHARACTERISTICS (continued) (V_{CC} = +15 Vdc, V_{EE} = ~15 Vdc, T_A = +25^oC, unless otherwise noted.)

FIGURE 25 - VOLTAGE-FOLLOWER PULSE RESPONSE

TYPICAL APPLICATIONS

Pin numbers adjacent to terminals apply to 8-pin packages, numbers in parenthesis apply to 14-pin packages.

*Properly Compensated

FIGURE 28 - SUMMING AMPLIFIER

FIGURE 29 - +15 VOLT REGULATOR

TYPICAL APPLICATIONS (continued)

FIGURE 30 - LOAD REGULATION FOR

FIGURE 31 - REGULATOR OUTPUT VOLTAGE (under pulsed load condition)

Horizontal Scale: 200 µs/Div Vertical Scale: 1 mV/Div

Number in parenthesis represents pin number for ceramic dual in-line package.

See Packaging Information Section for outline dimensions.

MC1540, MC1440 (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+10	Vdc
	V-	- 10	Vdc
Differential Input Signal	Vin	±5.0	Vdc
Common Mode Input Voltage	CMVin	±5.0	Vdc
Load Current	١L	25	mA
Power Dissipation (Package Limitation)	PD		
Metal Can		680	mW
Derate above T _A = +25 ^o C		4.6	mW/ ^o C
Flat Package		500	mW
Derate above $T_A = +25^{\circ}C$	1	3.3	mW/ºC
Ceramic Dual In-Line Package	1	625	mW
Derate above $T_A = +25^{\circ}C$		5.0	mW/ºC
Operating Temperature Range	TA		
MC1440F,G	L	0 to +75	°C
MC1540F,G	L	-55 to +125	
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

 $(V^+ = +6 \text{ Vdc} \pm 1\%, V^- = -6 \text{ Vdc} \pm 1\%, C_{ext} = 0.01 \,\mu\text{F}, T_A = +25^{\circ}\text{C}$ unless otherwise noted) Pin number references are for devices in flat package and metal can. See block diagram for dual in-line package pin numbers.

			MC1540			MC1440			[
Characteristic	Fig. No.	Symbol	Min	Тур	Мах	Min	Тур	Max	Unit	
Input Threshold Voltage $(V_6 = -6.0 Vdc, T_A = 25^{\circ}C)$ $(V_6 = -6.0 V, T_A = T_{low}^*)$ $(V_6 = -6.0 V, T_A = T_{high}^*)$	1	Vth	14 12 12	17 17 17	20 24 22	12 10 10	17 17 17	24 30 30	mV	
Input Offset Voltage	1	Vio		1.0	5.0		1.0	6,0	mV	
Input Bias Current $(V_3 = V_4 = 0, T_A = 25^{\circ}C)$ $(V_3 = V_4 = 0, T_A = T_{low}^*)$	2	Iъ	1.4	7:5	50 100		7.5	75 100	μA	
Input Offset Current	2	lio		2.0	10		2.0	15	μA	
Output Voltage High $(V_3 = V_4 = 0)$	3	Voн	5.9		-	5.8	-	-	Vdc	
Output Voltage Low (V3 = V4 = 0, V10 = +6.0 Vdc, I8 = 6.0 mAdc) (V10 = +6.0 Vdc, I8 = 6.0 mAdc, TA = Thigh*)	3	Vol	14 14 14	1.4	350 400		-	400 450	mVdc	
Amplifier Voltage Gain {V ₃ = 15 mV peak)	4	Av		85			85	-	-	
Strobe Load Current (Vg = 0)	-	۱s	ŧ		1,2	-	-	1.5	mAdc	
Strobe Reverse Current (Vg = +5.0 Vdc) (Vg = +6.0 Vdc, T _A = T _{high} *)	-	I _R		1	2.0 25	-	-	5.0 30	µAdc	
Propagation Delay Input to Amplifier Output (V3 = 25 mV pulse, V9 = +2.0 Vdc)	5	^t 3+10+	4	10	15	-	10	20	ns	
Input to Gate Output (V ₃ = 25 mV pulse, V ₉ = +2.0 Vdc)	5	t3+8-	T.	20	30		20	50		
Strobe to Gate Output (V ₃ = V ₄ = 0, V ₉ = +2.0 V pulse)	6	t9+8-	Ŧ	10	15	-	10	30		
Recovery Time Differential Mode (V ₃ = 400 mV pulse)	7	^t R(dm)		20	50		20	90	ns	
Common Mode (V ₃ = 1.8 V pulse)	8	^t R(cm)	Ţ	20	50	-	20	60		
Power Dissipation	-	PD	1000	120	180	-	120	250	mW	

 $T_{low} = -55^{\circ}C$ for MC1540 or $0^{\circ}C$ for MC1440, $T_{high} = +125^{\circ}C$ for MC1540 or $+75^{\circ}C$ for MC1440.

MC1540, MC1440 (continued)

- Input Bias Current the average input current defined as (13+14)/2
- l_{io} Input Offset Current the difference between input current values, $\left|l_{3}-l_{4}\right|$
- IR Strobe Reverse Current leakage current when the strobe input is high
- IS Strobe Load Current amount of current drain from the circuit when the strobe pin is grounded
- ^PD Power Dissipation amount of power dissipated in the unit as defined by $|I_2 \times V^+| + |I_5 \times V^-|$
- ^tR Recovery Time The time that is required for the device to recover from the specified differential and common-mode overload inputs prior to strobe as reference to the 10% point

of the trailing edge of an input pulse. The device is considered recovered when the threshold after a differential overload disturbance is within 1.0 mV of the threshold value without the disturbance, or, for common-mode disturbance, when the level at pin 10 is within 100 mV of the quiescent value.

- $\begin{array}{ll} t_{x\pm y\pm} & \mbox{Propagation Delay} \mbox{The time that is required for the output} \\ pulse at pin y to achieve 50% of its final velue or the 1.5 V \\ level referenced to 50% of the input pulse at pin x. (The + and denote positive and negative-going pulse transition.) \end{array}$
- V_{OH} Output Voltage High high-level output voltage when the output gate is turned off
- V_{OL} Output Voltage Low low-level output voltage when the output gate is turned on
- V_{th} Input Threshold input pulse amplitude that causes the output to begin saturation
- Vio Input Offset Voltage the difference in Vth at each input

FIGURE 3 - OUTPUT VOLTAGE LEVELS

FIGURE 5 - PROPAGATION DELAY (STROBE HIGH)

FIGURE 2 - INPUT BIAS CURRENT TEST CIRCUIT +6 Vdc

FIGURE 4 - AMPLIFIER VOLTAGE GAIN

FIGURE 6 - PROPAGATION DELAY (STROBE INPUT)

8

Dual-channel gated sense amplifier with separate wideband differential input amplifiers. Either input can be gated on from saturated logic levels. The sense amplifier features adjustable threshold, saturated logic output levels, and a strobe input that accommodates saturated logic levels. Designed to detect bipolar signals from either of two sense lines. Operates with core memory cycle times less than $0.5 \,\mu s$.

Typical Amplifier Features:

- Nominal Threshold 17 mV
- Input Offset Voltage 1.0 mV typical

MC1541 MC1441

- Propagation Delay Input to Gate-Output - 20 ns Input to Amplifier-Output - 10 ns Gate Response Time - 15 ns Strobe Response Time - 15 ns
- Common Mode Input Range 1.5 Volts
- Differential Mode Input Range With Gate On - 600 mVWith Gate Off - 1.5 Volts
- Power Dissipation 140 mW typical

See Packaging Information Section for outline dimensions.

L SUFFIX CERAMIC PACKAGE CASE 632 TO-116

CIRCUIT SCHEMATIC

Number at terminal end denotes pin number for flat (F) package. Number in parenthesis denotes pin number for dual in-line ceramic (L) package-,

LOGIC DIAGRAM

FIGURE 1 - TYPICAL OPERATION

MC1541, MC1441 (continued)

ELECTRICAL CHARACTERISTICS

 $(T_{low} = -50.0 \text{ Vdc} \pm 1\%, V^{-} = 5.0 \text{ Vdc} \pm 1\%, V_{th}(p_{in} 11) = -5.0 \text{ Vdc} \pm 1\%, C_{ext} = 0.01 \mu F, T_A = 25^{\circ}C \text{ unless otherwise noted}) \\ (T_{low} = -55^{\circ}C \text{ for MC1541 or 0^{\circ}C \text{ for MC1541 } n_{thg}h = +125^{\circ}C \text{ for MC1541 or +75^{\circ}C \text{ for MC1441}}. Pin numbers referenced in table denote flat package; to ascertain corresponding pin number for dual in-line package refer to the equivalent circuit.) }$

Characteristic	Fig. No.	Symbol	Min	Тур	Max	Unit
Input Threshold Voltage $(T_A = +25^{\circ} C)$ $(T_{low} \leq T_A \leq T_{high})$ MC1441 MC1541	8	v _{th}	14 13 12	17 - 17	20 21 22	mV
Input Offset Voltage	8	v _{io}	-	1.0	6.0	mV
Input Bias Current $(V_1 = V_2 = V_3 = V_4 = 0)$ $(V_1 = V_2 = V_3 = V_4 = 0, T_A = T_{low})$	9	I _b	-	5.0 -	25 50	μΑ
Input Offset Current	9	I _{io}	-	1.0	2.0	μA
Output Voltage High ($V_1 = V_2 = V_3 = V_4 = 0$, $I_{OH} = 200 \ \mu A$)		v _{он}	3.0	-	-	Vdc
Output Voltage Low $(V_1 = V_2 = V_3 = V_4 = 0, V_{12} = +5.0 \text{ Vdc}, I_7 = 10 \text{ mAdc})$ $(V_{12} = +5.0 \text{ Vdc}, I_7 = 10 \text{ mAdc}, T_A = + T_{high})$	10	v _{ol}	-	-	350 400	mVd
Strobe Load Current (V ₁₀ = 0)		I _S	-	-	1.5	mAd
Strobe Reverse Current ($V_{10} = +5.0 \text{ Vdc}$) ($V_{10} = +5.0 \text{ Vdc}$, $T_A = T_{high}$)		I _{SR}	-	-	2.0 25	μAd
Input Gate Voltage Low $(V_1 = V_3 = 25 \text{ mVdc}, V_2 = V_4 = 0)$	11	V _{GL}	-	0.7	-	Vdc
Input Gate Voltage High $(V_1 = V_3 = 25 \text{ mVdc}, V_2 = V_4 = 0)$	11	V _{GH}	-	1.6	-	Vdc
Input Gate Load Current $(V_8 \text{ or } V_9 = 0)$	-	I _G	-	-	2.5	mAd
Input Gate Reverse Current (V_8 or $V_9 = 5.0$ Vdc) ($T_A = 25^{\circ}$ C)	-	I _{GR}	-	-	2.0	μAd
(T _A = T _{high}) Common Mode Range Input Gate High Input Gate Low	13	v _{см}	-	- ±1.5 ±1.5	25 - -	Vđơ
Differential Mode Range Input Gate High	14	v _{DH}	-	±600	-	mV
Input Gate Low		v _{DL}	-	±1.5	-	Vdo
Power Dissipation	1	P _D	-	140	180	mW

SWITCHING CHARACTERISTICS

Characteristic	Fig. No.	Symbol	Min	Тур	Max	Unit
Propagation Delay Input to Amplifier Output (V ₁ = 25 mV pulse, V ₁₀ = +2.0 Vdc)	8	^t IA	-	10	15	ns
Input to Output ($V_1 = 25 \text{ mV pulse}$, $V_{10} = +2.0 \text{ Vdc}$)	8	^t ıo	· _	20	30	
Strobe to Output ($V_1 = V_2 = V_3 = V_4 = 0$, $V_{10} = +2.0$ V pulse)	12	^t so	-	15	20	
Gate Input to Amplifier Input ($V_1 = 25 \text{ mV pulse}$, $V_9 = 2.0 \text{ V pulse}$)	11	^t GI	-	10	15	
Gate Input to Amplifier Output (V ₁ = 25 mVdc, V ₉ = 2.0 V pulse)	11	^t GA	-	30	35	
Recovery Time Differential Mode Input Gate High Input Gate Low V 1 or V 3 = 400 mV pulse	14 -	^t DR	-	30 0	- -	ns
Common Mode Input Gate High V_1 or $V_3 = 1.5$ V pulse Input Gate Low V_1 or V successful to the second secon	13	^t CMR	- -	15 15	30 30	

MC1541, MC1441 (continued)

FIGURE 3 – TYPICAL THRESHOLD versus THRESHOLD VOLTAGE ADJUST

FIGURE 4 - TYPICAL INPUT THRESHOLD versus V⁻

.

FIGURE 5 – TYPICAL INPUT THRESHOLD versus INPUT PULSE WIDTH

MC1541, MC1441 (continued)

Number at terminal end denotes the pin number for flat package only; to ascertain the corresponding pin number for the dual in line packages refer to the circuit schematic on the second page.

FIGURE 11 – MINIMUM TIME FROM CHANNEL GATE INPUT TO AMPLIFIER INPUT PROPAGATION DELAY FROM CHANNEL GATE INPUT TO AMPLIFIER OUTPUT

(Pin numbers shown on this page denote the pin numbers for the flat package only; to ascertain the corresponding pin numbers for the dual in-line package, refer to the circuit schematic on the second page.)

(A) Minimum Time from Gate Input to Amplifier Input – tGI

FIGURE 12 - PROPAGATION DELAY FROM STROBE INPUT TO OUTPUT

FIGURE 14 – DIFFERENTIAL RECOVERY AND DIFFERENTIAL RANGE

(Pin numbers shown on this page denote the pin numbers for the flat package only; to ascertain the corresponding pin numbers for the dual in-line package, refer to the circuit schematic on the second page.)

DEFINITIONS

Pin numbers referenced in the definitions below denote the flat package only; to ascertain the corresponding pin number for the dual in-line package refer to the circuit schematic.

- IB Input Bias Current The average input current defined as (I1 + I2 + I3 + I4)/4.
- IG Channel Gate Load Current The amount of current drain from the circuit when the channel gate input (Pin 8 or 9) is grounded.
- IGR Channel Gate Reverse Current The leakage current when the channel gate input (Pin 8 or 9) is high.
- Input Offset Current The difference between amplifier input current values 11-12 or 13-14.
- IS Strobe Load Current The amount of current drain from the circuit when the strobe pin is grounded.
- ISR Strobe Reverse Current The leakage current when the strobe input is high.
- PD Power Dissipation The amount of power dissipated in the unit.
- tCMR Common Mode Recovery Time The time required for the voltage at pin 12 to be within 100 mV of the dc value (after overshoot or ringing) as referenced to the 10% point of the trailing edge of a common mode overload signal.
- tDR Differential Recovery Time The time required for the device to recover from the specified differential input prior to strobe enable as referenced to the 10% point of the trailing edge of an input pulse. The device is considered recovered when the threshold with the overload signal appued is within 1.0 mV of the threshold with no overload input.
- tGI Minimum Time Between Channel Gate Input and Signal Input – The minimum time between 50% point of channel gate input (Pin 8 or 9) and 50% point of signal input (Pins 1, 2, 3, or 4) that still allows a full width signal at amplifier output.
- t_{GA} Propagation Delay, Channel Gate Input to Am plifier Output – The time required for the amplifier output at pin 13 to reach 50% of its final value as referenced to 50% of the input gate pulse at pin 8 or 9 (Amplifier input = 25 mVdc).
- tIA Propagation Delay, Input to Amplifier Output The time required for the amplifier output

pulse at pin 13 to achieve 50% of its final value referenced to 50% of the input pulse at pins 1 and 2 or 3 and 4.

- tIO Propagation Delay, Input to Output The time required for the gate output pulse at pin 7 to reach the 1.5 Volt level as referenced to 50% of the input pulse at pins 1 and 2 or 3 or 4.
- tso Strobe Propagation Delay to Output The time required for the output pulse at pin 7 to reach the 1.5 Volt level as referenced to the 1.5 Volt level of the strobe input at pin 10.
- VCM Maximum Common Mode Input Range The common mode input voltage which causes the output voltage level of the amplifier to decrease by 100 mV. (This is independent of the channel gate input level.)
- VDH Maximum Differential Input Range, Gate Input High – The differential input which causes the input stage to begin saturation.
- VDL Maximum Differential Input Range, Gate Input Low – The differential input signal which causes the output voltage level of the amplifier to decrease by 100 mV.
- VGH Channel Gate Input Voltage High Gate pulse amplitude that allows the amplifier output pulse to just reach 100% of its final value. (Amplifier input is set at 25 mVdc).
- VGL Channel Gate Input Voltage Low Gate pulse amplitude that allows the amplifier output to just reach a 100 mV level. (Amplifier input is set at 25 mVdc).
- V_{io} Input Offset Voltage The difference in V_{th} between inputs at pins 1 and 2 or 3 and 4,
- VOH Output Voltage High The high-level output voltage when the output gate is turned off.
- VOL Output Voltage Low The low-level output voltage when the output gate is saturated and the output sink current is 10 mA.
- Vth Input Threshold Input pulse amplitude at pins 1, 2, 3 or 4 that causes the output gate to just reach VOL.

MC1543L

DUAL SENSE AMPLIFIER

See Packaging Information Section for outline dimensions.

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC} V _{EE}	+10 -10	Vdc Vdc	
Differential Input Voltage	VID	±5.0	Vdc	
Common-Mode Input Voltage	VICM	±5.0	Vdc	
Load Current	١L	25	mA	
Power Dissipation (Package Limitation) Ceramic Dual-In-Line Package Derate above T _A = +25 ⁰ C	PD	1000 6.7	mW mW/ ⁰ C	
Operating Temperature Range	TA	-55 to +125	°c	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (Each Amplifier) (V_{CC} = +5.0 Vdc \pm 5%, V_{EE} = -5.2 Vdc \pm 5%, V_{ref} = 0.54 V \pm 1%, T_A = +25^oC unless otherwise noted.)

Characteristic	Fig.No.	Symbol	Min	Тур	Max	Unit
Input Threshold Voltage	8	∨тн	17	20	23	mV
Power Supply Currents	6	Icc	-	9.5	12	mAdc
$(V_2 = V_3 = V_{11} = V_{12} = V_{14} = 0)$	6	^I EE	- 1	26.5	33	mAdc
Input Bias Current	7	I _{1B}	-	3.5	10	μAdc
Input Offset Current	7	10	-	0.05	0.5	μAdc
Output Voltage High	9	Voн	-0.85	-0.8	-0.67	Vdc
Output Voltage Low	9	VOL		-1.7	-1.46	Vdc
Strobe Threshold Level	10	VST	-	-1.30	-	Vdc
Strobe Input Current High	10	ISH ISH	-	25	50	μAdc
Strobe Input Current Low	10	ISL	-	0.01	0.1	μAdc
Input Common Mode Range	14	VCMR	3.0	4.0	-	Vdc
Input Threshold Range (by varying V _{ref})	8	VTHR	-	10-40	_	mV
Power Dissipation	6	PD	_	185	230	mW
Reference Supply Input Current (Pin 13)	6	Iref		10	40	μA
WITCHING CHARACTERISTICS						
Propagation Delay (Input to Output)	1	tiO	-	28	35	ns
Propagation Delay (Strobe to Output)	12	tso	-	16	20	ns
Strobe Release Time	12	tSR	-	18	30	ns
Recovery Time (Differential-Mode) (e _{in} = 400 mVdc)	13	^t DR	-	10	15	ns
Recovery Time (Common-Mode) (e _{in} = 3.0 Vdc)	14	^t CMR	-	3.0	15	ns
Strobe Width Minimum	12	ts	-	8.0	-	ns
EMPERATURE TESTS (-55°C to +125°C)						
Input Threshold Voltage	8	VTH				mV
т _А = -55 ^о С		1	18	21.5	25	
$T_A = +125^{\circ}C$			15	18.5	22	1
Input Bias Current	7	ΪВ	2.2	7.0	20	μAdc
Input Offset Current	7	10	0.02	0.1	1.0	μAdc

EQUIVALENT CIRCUIT

 $\label{eq:VCC} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = +5.0 \ \text{Vdc}, \ V_{EE} = -5.2 \ \text{Vdc}, \ V_{ref} \ \text{set for } 20 \ \text{mV} \ \text{Threshold}, \ T_A = +25^{\circ}\text{C} \ \text{unless otherwise noted.}) \end{array}$

45 40

35

30 25

L 104NI ^{(HL}A

10 5.0

0

0.4

0.6

INPUT THRESHOLD (mV)

FIGURE 1 – TYPICAL INPUT THRESHOLD versus TEMPERATURE

FIGURE 2 – TYPICAL INPUT THRESHOLD versus REFERENCE VOLTAGE

Recommended voltage for 20 mV

Threshold: Vref = 0.540 Volt

1.0

1.2

1.4

V_{ref}, REFERENCE VOLTAGE (VOLTS) FIGURE 3B – TYPICAL INPUT THRESHOLD versus V_{EE}

0.8

TYPICAL CHARACTERISTICS (continued) (V_{CC} = +5.0 Vdc, V_{EE} = -5.2 Vdc, V_{ref} set for 20 mV Threshold, T_A = +25^oC unless otherwise noted.)

to voltmeter

-5.2 Vdc

TEST CIRCUITS (continued)

FIGURE 12 – PROPAGATION DELAY – STROBE TO OUTPUT and STROBE RELEASE TIME

FIGURE 13 – DIFFERENTIAL MODE RECOVERY TIME (See definition section)

8-264

TEST CIRCUITS (continued)

FIGURE 14 – COMMON MODE RECOVERY TIME COMMON MODE INPUT RANGE (See definition section)

DEFINITIONS

- $I_{1O} \mbox{ Input Offset Current} \mbox{The difference between amplifier input current values } I_{1A} I_{2A}| \mbox{ or } |I_{1B} I_{2B}|.$
- I_{SH} Strobe High Current The amount of input current when the strobe pin is grounded.
- ISL Strobe Low Current The leakage current when the strobe input is tied to the negative supply.
- PD Power Dissipation The amount of power dissipated in the unit.
- tCMR Common-Mode Recovery Time The minimum time by which the strobe input may follow the high level common mode input signal without causing a signal to appear at the amplifier output.
- tDR Differential-Mode Recovery Time Differential recovery time, the minimum time by which the strobe input may follow the high level differential input signal without causing a signal to appear at the amplifier output.
- t_{IO} Propegation Delay, Amplifier Input to Amplifier Output The time required for the amplifier output to reach 50% of its final value as referenced to 50% of the level of the pulse input.(Amplifier input = 25% over set threshold or approximately 25 mVdc.)
- ts Strobe Width The amount of time the strobe must be high to obtain a given output. Minimum strobe width is that minimum time required to cause the output to complete a full swing VOL to VOH or VOH to VOL.

- t_{SO} Propagation Delay, Strobe Input to Amplifier Output The time required for the amplifier output pulse to achieve 50% of its final value referenced to 50% of the strobe input pulse at pins 4 or 10.
- t_{SR} Strobe Release Time The time required for the output to change to 50% of its swing after the strobe reaches 50% of its level going low. A dc level of 50 mV is the input signal.
- V_{CMR} Maximum Common-Mode Input Range The common-mode input voltage which causes the output voltage level of the amplifier to change by 100 mV (strobe high).
- V_{OH} Output Voltage High The high-level output voltage at pins 6 and 8 with no input – or at pins 5 and 9 with input above threshold.
- VOL Output Voltage Low The low-level output voltage at pins 5 and 9 with no input – or at pins 6 and 8 with input above threshold.
- $V_{\mbox{ST}}$ Strobe Threshold Level The voltage at which the strobe turns the amplifier to the ON state.
- V_{TH} Input Threshold Input pulse amplitude at pins 2, 3, 11, or 12 that causes the output gate to just reach its new value, V_{OL} or V_{OH}.
- V_{THR} Input Threshold Range The maximum spread of input threshold level that can be attained by varying the threshold voltage reference, V_{ref}.

IDEAL FOR PLATED-WIRE, THIN-FILM AND OTHER HIGH-SPEED LOW-LEVEL SENSING APPLICATIONS

MC1544L MC1444L

MC1544L/MC1444L features four input channels with decoded selection, two stages of gain employing capacitive coupling, and a MTTL compatible output gate. AC coupling reduces access times by eliminating the problems usually associated with input line offset voltages.

- Threshold Level 1.0 mV typ
- Propagation Delay Time 18 ns typ
- Decoded Input Channel Selection
- MTTL Compatible Inputs and Outputs
- Wired OR Output Capability
- DC Level Restore Gate on Capacitors Eliminates Repetition Rate Problems Common to ac-Coupled Circuits
- Output Strobe Capability

MONOLITHIC SILICON EPITAXIAL PASSIVATED INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.

RATING	SYMBOL	VALUE	UNIT
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -8.0	Vdc
Common-Mode Input Voltage	∨ _{СМ} + ∨ _{СМ} –	+5.0 6.0	Vdc
Differential-Mode Input Voltage	VDM+ VDM-	+5.0 —6.0	Vdc
Capacitor Restore, Channel Select, and Strobe Input Voltage	V _{CR} , V _{CS} , V _S	+5.5	Vdc
Power Dissipation (Package Limitation) Derate above T _A = +25 ⁰ C	٩D	1.0 6.7	W mW/°C
Operating Temperature Range MC1544L MC1444L	т _А	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+175	°C

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

CHANNEL A 0-14 CHANNEL B 0-15 CHANNEL B 0-15	0 VCC 10 VEE 5 GN	10 	JTPUT				-	r														1
CHANNELD	1 1 CAPAC	O STROBE	E					TEST CURRENT/VOLTAGE VALUES														
	O CHANNEL SEL ANNEL SELECT A	.ECT B						μA		1	1A	-		r		OLTS	.,		ι.	<u> </u>	r	
ELECTRICAL CHARACTE									СМ-	1 _{0L}	¹ ОН 0.4			V1L2	VIH2 3.5	4.75	V _{CC} 5.0	V _{CCH} 5.25			VEEH	ł
(T _A = +25 ^o C unless otherwise not	.ed)		Pin					200	10	1		1		UTAGES A					-5.7	-6.0	-6.3	ł
CHARACTERISTIC		Symbol	Under Test	Min	Тур	Max	Unit	11	12	IOL	юн			VIL2	VIH2	1			T	Ver	VEEH	GN
Input Threshold Voltage (Note 1)	MC1544I	VTH	13	0.5	1.0	1.5	mV	-	12	-OL	10H	V1L	VIH	VIL2	- VIH2	VCCL	VCC 12	Vссн	VEEL	5 VEE	VEEH	
Tlow* to Thigh*		VTH					-	_	-	-	-	-								+ +		10
	MC1444L	<u> </u>	13	0.3	1.0	2.3	mV	-	-	-		-	-	-	-		12	-	-	5	-	10
Input Bias Current (Note 1)		Ъ	13	-	20	-	μA			-	-		-	13, 14	7,8	-		12	-	-	5	10
Input Offset Current		lio	13, 14	-	1.0	-	μA	-	-	-	-	-	-	13, 14	7,8	-	-	12	-	-	5	10
Channel Select Input Current (Note 2)	High Level	^I CSH	7	-	1.8	3.0	mA	-	-	-	-	-	-	-	7	-	-	12	-	-	5	10
	Low Level	CSL	7	-	0.6	1.0	mΑ	-	-	-	-	-	-	7		-	-	12	-	-	5	10
Capacitor Restore Input Current	High Level	ICRH	11	~	0	10	μA	-	-	-	-	-	-		11	-	-	12		-	5	10
	Low Level	ICRL	11	-	-2.5	-3.5	mA	-	-	-	-	-	-	11	-	-	-	12	-	-	5	10
Strobe Input Current Low	/High Level	۱ _S	6		40	200	μA	-	-	-	-	-	~	-	6	-	-	12		-	5	10
Channel Select Input Voltage (Note 3)	High Level	V _{CSH}	7		1.6	2.1	v		-	-	-		7	3, 8 13, 15	-	-	12	-	-	5	-	10
(Note S)	Low Level	VCSL	7	0.7	1.2	-	v	-	-	-	-	7	-	1, 8 13, 15	-	-	12	-	-	5.	-	10
Channel Select Input Voltage	High Level	V _{CSH}	8	-	1.5	2.1	v	-	-	-	-	~~	8	1,3 7,13		- '	12	-	-	5	-	10
(Note 3)	Low Level	VCSL	8	0.7	1.0	_	v	_	-	-	-	8	-	1,7 13,15	-	-	12	-	-	5	-	11
Capacitor Restore Input Voltage	High Level		11		1.5	2.0	v	-	-		-	-	11	-	6	-	12	-	-	5	-	10
(Note 4)	Low Level	VCRL	11	0.8	1.5	-	v	-	-	-	-	11	-	_	6	-	12	-	-	5	-	1
Strobe Input Voltage	High Level	VSH	6	-	1.5	2.0	v	-	-	-	-	-	6	11	-	-	12	-	_	5	-	11
(Note 4)	Low Level	VSL	6	0.8	1.5	-	v	-	-	_	_	6	_	11	-	-	12		_	5	-	1
Output Voltage	High Level	VOH	9	2.4	3.6	_	v	-	-	† _	9	6	-	_	-	12	-	-	5			11
	Low Level	VOL	9	_	0.4	0.5	v	-	-	9	-		_	_	-	12	_	_	_	_	-	1
Power Supply Currents	Positive	ICC	12	15	22	30	mA	-	-	+-	_		-	6, 13, 14	7, 8, 11	_	_	12		-	5	1
	Negative	IEE	5	15	20	30	mA	_	_	-	~		_		7, 8, 11	_		12	_	_	5	,
Common-Mode Range Voltage (N		+	13, 14	10	4.7		Vdc		-	\vdash	_	_	_	-	7,8,11	_	12	-		5	-	1
		VCM ⁺	13, 14	-	4./	-	Vdc	13, 14		-			_	-	7,8	<u> </u>	12			5	_	· ·

*MC1544 T_{low} = -55° C, T_{high} = +125^oC; MC1444 T_{low} = 0^oC, T_{high} = +75^oC.

 NOTES: 1. Only one input test is shown, other inputs are tested in the same manner and are selected according to the truth table in Figure 1.
 Pin B is tested in the same manner.
 This convents of all convisitents channels total less than 1.0/A which guarantees that these channels are than 1.0/A which guarantees that these channels are SWITCHING CHARACTERISTICS (T_A = +25^oC unless otherwise noted) SWITCHING CHARACTERISTICS (T_A = +25°C unless otherwise noted)

Characteristic		Symbol	Figure	Min	Тур	Max	Unit
Propagation Delay Time	<u> </u>	^t pd- ^t pd+	1,5	-	18 40	25 -	ns
Strobe to Input Lead Time		t _{si}	1, 5	-	10	-	ns
Strobe to Output Delay Time		t _{so} - t _{so} +	1, 6	-	18 30	25 -	ns
Channel Select to Input Lead Time		t _{csi}	1, 5	-	15	-	ins
Channel Select to Output Delay Time		t _{cso} - t _{cso} +	1, 7	-	25 40	-	ns
Capacitor Restore to Input Lead Time		tari	1, 5	-	10	-	ns
Capacitor Restore Time (50 mV Offset)		t _{cr}	1, 8	-	15	-	ns
Common-Mode Recovery Time	e _{in1} = +2.0V e _{in1} = -2.0V	^t CMR ⁺ ^t CRM ⁻	19	-	50 50	-	ns
Differential-Mode Recovery Time	e _{in1} = +1.0V e _{in1} = -1.0V	^t DMR ⁺	20	-	65 65	_	ns

8-269

FIGURE 8 - t_{cr}

DEFINITIONS

- Input current to the base of any input transistor when the base of the other transistor of the differential pair is at the same voltage Positive power supply current ^ICC
- **I**CRH The current into the channel select input when the input is at a high-level of 3.5 volts CRL The current out of the capacitor restore input when the input is at a low-level of
- 0 volts ICSH The input current to a channel select input when that input is at a high-level of
- 3.5 volts ICSL The current into a channel select input when the input is at a low-level of 0 volts
- Negative power supply current IEE.
- The difference between the base currents of any input differential pair of transistors lio when the base voltages are equal
- Output logic "1" state source current юн

۱b

- ΙOΓ Output logic "0" state sink current
- The current into the strobe input when the input is at a high-level of 3.5 volts Isн
- The current into the strobe input when the input is at a low-level of 0 volts ISL
- The minimum time between the 50% level of the trailing edge of a + or 2 volt ^tCMR+ common-mode signal ($t_r \leq 15$ ns) and the 50% level of the trailing edge of a \pm or -2 volt common-mode signal ($t_r \leq 15$ ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 21
- The minimum time between the 50% level of the leading edge of a 50 mV input tcr offset signal and the 50% level of the leading edge of the capacitor restore pulse as shown in Figure 8
- The minimum time between the 50% level of the leading edge of the capacitor restore tcri signal and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 5
- The minimum time between the 50% level of the leading edge of the channel select tcsi and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 5
- The delay time from the 50% level of the trailing edge of the channel select signal t_{cso+} to the 1.5 volt level of the positive edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 7
- The delay time from the 50% level of the leading edge of the channel select signal t_{cso-} to the 1.5 volt level of the negative edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 7
- The minimum time between the 50% level of the trailing edge of a + or 1 volt tomr±differential-mode signal (t_r = t_f \leq 15 ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 22
- The delay time from the 50% level of the trailing edge of a 5 mV input signal to the 1.5 volt level of the positive edge of the output as shown in Figure 5 t_{pd+}
- The delay time from the 50% level of the leading edge of a 5 mV input signal to the t_{pd-} 1.5 volt level of the negative edge of the output as shown in Figure 5
- The minimum time between the 50% level of the leading edge of the strobe and the 50% level of the leading edge of the input signal as shown in Figure 5 t_{si}
- The delay time from the 50% level of the trailing edge of the strobe to the 1.5 volt t_{so+} level of the positive edge of the output when the input is held at the "1" level as shown in Figure 6
- The delay time from the 50% level of the leading edge of the strobe to the 1.5 volt t_{so-} level of the negative edge of the output when the input is held at the "1" level as shown in Figure 6
 - Positive power supply voltage
- Vcc vссн Maximum operating positive power supply voltage
- VCCL Minimum operating positive power supply voltage
- The maximum common-mode input voltage that will not saturate the amplifier VCM⁺
- The minimum common-mode input voltage that will not break down the amplifier ∨см-
- VCRH The minimum high-level voltage at the capacitor restore input required to insure
- that the capacitors are clamped i.e., the input threshold voltage is greater than 10 mV Vсві The maximum low-level voltage at the capacitor restore input which will allow normal operation during the threshold test
- Vcsн The minimum high-level voltage at a channel select input required to insure that the total of the base currents of all unselected inputs is less than 1.0 μ A
- The maximum low-level voltage at a channel select input required to insure that the Vcsi total of the base currents of all unselected inputs is less than $1.0 \,\mu A$
- VDM The maximum differential-mode input voltage that will not saturate the amplifier
- Negative power supply voltage VEE
- Maximum operating negative power supply voltage VEEH
- Minimum operating negative power supply voltage VEEL
- ۷он Logic "1" state output voltage
- Logic "0" state output voltage VOL
- Vsн The minimum high-level voltage at the strobe input which will allow normal operation during the threshold test
- VSL The maximum low-level voltage at the strobe input which will result in V_{OH} at the output regardless of input signals
- The minimum input signal $(e_{in\;1})$ required to drive the MTTL III gates to obtain the e_0 waveform shown in Figure 4 Vth

FIGURE 21 – COMMON-MODE	
	fferential) is superimposed on the is shown separately for reference
only.	
and the first statement of the	
COMMON-MODE INPUT ^{2 V} /DIV	COMMON-MODE INPUT 2 V/DIV
SIGNAL INPUT 10 mV/DIV	SIGNAL INPUT 10 mV/DIV
CAPACITOR RESTORE 5 V/DIV	CAPACITOR RESTORE 5 V/DIV
STROBE INPUT ⁵ V/DIV	STROBE INPUT 5 V/DIV
OUTPUT 2.5 V/DIV	OUTPUT 2.5 V/DIV
25 ns/DIV	25 ns/DIV
EIGURE 22 - DIEEERENTIAL M	IODE CHARACTERISTICS
FIGURE 22 – DIFFERENTIAL-N	
FIGURE 22 – DIFFERENTIAL-N Note: The 5mV Input Signal is s Input and is shown separate	superimposed on the Differential
Note: The 5mV Input Signal is	superimposed on the Differential ly for reference only.
Note: The 5mV Input Signal is Input and is shown separate	superimposed on the Differential
Note: The 5mV Input Signal is Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ^{1 V} /DIV
Note: The 5mV Input Signal is Input and is shown separate	superimposed on the Differential ly for reference only.
Note: The 5mV Input Signal is Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ^{1 V} /DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV	Uperimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV	Uperimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV STROBE INPUT ⁵ V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV STROBE INPUT ⁵ V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV STROBE INPUT ⁵ V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV STROBE INPUT ⁵ V/DIV OUTPUT ^{2.5} V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV STROBE INPUT ⁵ V/DIV OUTPUT ^{2.5} V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT ¹ V/DIV SIGNAL INPUT ¹⁰ mV/DIV CAPACITOR RESTORE ⁵ V/DIV STROBE INPUT ⁵ V/DIV OUTPUT ^{2.5} V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV
Note: The 5mV Input Signal is a Input and is shown separate DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV	Superimposed on the Differential ly for reference only. DIFFERENTIAL INPUT 1 V/DIV SIGNAL INPUT 10 mV/DIV CAPACITOR RESTORE 5 V/DIV STROBE INPUT 5 V/DIV OUTPUT 2.5 V/DIV

HIGH-FREQUENCY CIRCUITS

MC1545 MC1445

MC1545, MC1445 (continued)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+12 -12	Vdc Vdc
Differential Input Signal	VID	±5.0	Volts
Load Current	١L	25	mA
Power Dissipation (Package Limitation) Flat Package Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Metal Can Derate above $T_A = +25^{\circ}C$	PD	500 3.3 625 5.0 680 4.6	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1445 MC1545	Τ _Α	0 to +75 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

ELECTRICAL CHARACTERISTICS

(V_{CC} = +5.0 Vdc, V_{EE} = 5.0 Vdc, at T_A = +25^oC, specifications apply to both input channels unless otherwise noted)

Characteristic		Fig. No.	Symbol	Min	Тур	Max	Unit
Single-Ended Voltage Gain	MC1445 MC1545	1, 12	A _{vs}	16 16	19 18	22 20	dB
Bandwidth	MC1445 MC1545	1, 12	BW	_ 50	75 75	-	MHz
Input Impedance (f = 50 kHz)	MC1445 MC1545	5, 14	zis	3.0 4.0	10 10		k ohms
Output Impedance (f = 50 kHz)		6, 15	z _{os}	-	25		Ohms
Output Voltage Swing (R _L = 1.0 k ohm, f = 50 kHz)		4, 13	V _{OD}	1.5	2.5	-	V _{p-p}
Input Bias Current (I _{1B} = (I ₁ + I ₂)/2)	MC1445 MC1545	16	Iв	-	15 15	30 25	μAdc
Input Offset Current		16	10	-	2.0		μAdc
Input Offset Voltage	MC1445 MC1545	17	Vio	-	_ 1.0	7.5 5.0	mVdc
Quiescent Output dc Level		17	Vo	-	0.2	-	Vdc
Output dc Level Change (Gate Voltage Change: +5.0 V to 0 V)		17	△V _O	-	15	-	mV
Common-Mode Rejection Ratio (f = 50 kHz)		9, 18	CMRR	-	85	-	dB
Input Common-Mode Voltage Swing		18	VICR	-	±2.5	_	Vp
Gate Characteristics Gate Voltage Low (See Note 1)	MC1445 MC1545	8	VGOL	0.20 0.45	0.40 0.70	-	Vdc
Gate Voltage High (See Note 2)	MC1445 MC1545		VGOH		1.3 1.5	3.0 2.2	
Gate Current Low (Gate Voltage = 0 V)	MC1445 MC1545	18	IGOL	-		4.0 2.5	mA
Gate Current High (Gate Voltage = +5.0 V)	MC1445 MC1545	18	IGOH	-	-	4.0 2.0	μA
Step Response (e _{in} = 20 mV)	MC1445 MC1545	19	^t PLH		6.5 6.5	 10	ns
	MC1445 MC1545		^t PHL		6.3 6.3	- 10	
	MC1445 MC1545		tr	-	6.5 6.5	10	
	MC1445 MC1545		tf	_ _	7.0 7.0	 10	
Wideband Input Noise (5.0 Hz - 10 MHz, R _S = 50 ohms)		10, 20	V _{N(in)}	-	25	-	μV(rms)
DC Power Dissipation	MC1445 MC1545	11, 20	PD		70 70	150 110	mW

Note 1 V_{GOL} is the gate voltage which results in channel A gain of unity or less and channel B gain of 16 dB or greater. Note 2 V_{GOH} is the gate voltage which results in channel B gain of unity or less and channel A gain of 16 dB or greater.

MC1545, MC1445 (continued)

Number in parenthesis denotes pin for F and L packages, number at left in each case denotes corresponding pin for G package.

FIGURE 13 - OUTPUT VOLTAGE SWING TEST CIRCUIT

FIGURE 14 - INPUT IMPEDANCE TEST CIRCUIT

+5.0 V -5.0 V

FIGURE 15 - OUTPUT IMPEDANCE TEST CIRCUIT

FIGURE 17 - INPUT OFFSET VOLTAGE AND QUIESCENT

OUTPUT LEVEL TEST CIRCUIT

FIGURE 16 - INPUT BIAS CURRENT AND INPUT OFFSET CURRENT TEST CIRCUIT

+5.0 V FIGURE 18 - GATE CURRENT (HIGH AND LOW),

COMMON-MODE REJECTION AND COMMON-MODE INPUT RANGE TEST CIRCUIT

Number in parenthesis denotes pin for F and L packages, number at left in each case denotes corresponding pin for G package.

MC1550

HIGH-FREQUENCY CIRCUITS

... a versatile, common-emitter, common-base cascode circuit for use in communications applications. See Application Notes AN-215, AN-247 and AN-299 for additional information.

- Constant Input Impedance over entire AGC range
- Extremely Low y₁₂ 4.3 μmhos at 60 MHz
- High Power Gain 30 dB @ 60 MHz (0.5 MHz BW)
- Good Noise Figure 5 dB @ 60 MHz

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	V+	20	Vdc
AGC Supply Voltage	VAGC	20	Vdc
Differential Input Voltage, Pin 1 to Pin 4 (R _S = 500 ohms)	V _{in}	±5.0	V(rms)
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25 ^o C Flat Package Derate above T _A = +25 ^o C	PD	680 4.6 500 3.3	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

CIRCUIT DESCRIPTION

The MC1550 is built with monolithic fabrication techniques utilizing diffused resistors and small-geometry transistors. Excellent AGC performance is obtained by shunting the signal through the AGC transistor Q₁ maintaining the operating point of the input transistor Q₁. This keeps the input impedance constant over the entire AGC range.

Constant over the entire Acc Tange. The amplifier is intended to be used in a common-base configuration (Q_1 and Q_2) with Q_2 acting as an AGC transistor. The input signal is applied between pins 1 and 4, where pin 4 is ac-coupled to ground. DC source resistance, between pins 1 and 4 should be small (less than 100 ohms). Fins 2 and 3 should be connected together and grounded. Pins 8 and 10 should be bypassed to ground. The positive supply voltage is applied between pins 6 and 9. The substrate is connected to pin 7 and should be grounded. The substrate is connected to pin 7 and should be grounded.

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (V⁺ = +6 Vdc, $T_A = +25^{\circ}C$)

۶ ⁶.

Characteristic	Conditions	Figure	Symbol	Min	Тур	Max	Unit
DC CHARACTERISTICS							
Output Voltage	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	٧ _o	3.80 5.90	_	4.65 6.00	Vdc
Test Voltage	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	V8	2.85 3.25		3.40 3.80	Vdc
Supply Drain Current	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	۱ _D	-	-	2.2 2.5	mAdc
AGC Supply Drain Current	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	. 1	IAGC	-	-	-0.2 0.18	mAdc

SMALL-SIGNAL CHARACTERISTICS

Small-Signal Voltage Gain	f = 500 kHz	2	Av	22	-	29	dB
Bandwidth	-3.0 dB	2	BW	22	-	1	MHz
Transducer Power Gain	f = 60 MHz, BW = 6 MHz	3	Ap	-	25	-	dB
	f = 100 MHz, BW = 6 MHz			-	21		

TYPICAL CHARACTERISTICS

(V⁺ = 6.0 Vdc, T_A = +25^oC unless otherwise noted)

FIGURE 1 - DC CHARACTERISTICS TEST CIRCUIT

FIGURE 3 - POWER GAIN TEST CIRCUIT @ 60 MHz

FIGURE 2 - VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT

FIGURE 4 – DRAIN CURRENT TEMPERATURE CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

FIGURE 6 - INPUT RESISTANCE AND CAPACITANCE versus AGC VOLTAGE

FIGURE 7 – OUTPUT RESISTANCE AND CAPACITANCE versus FREQUENCY

FIGURE 9 – MAXIMUM TRANSDUCER POWER GAIN versus FREQUENCY

FIGURE 8 – OUTPUT RESISTANCE AND CAPACITANCE versus AGC VOLTAGE

FIGURE 10 – TRANSDUCER POWER GAIN versus TEMPERATURE

TYPICAL CHARACTERISTICS (continued)

FIGURE 13 – NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 14 – y₂₁, FORWARD-TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 15 – Y21, FORWARD-TRANSFER ADMITTANCE versus AGC VOLTAGE

TYPICAL CHARACTERISTICS (V⁺ = 6.0 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted)

FIGURE 17 - y11, INPUT-ADMITTANCE versus FREQUENCY

FIGURE 19 — s₁₁ AND s₂₂, INPUT AND OUTPUT REFLECTION COEFFICIENT

The γ_{12} shown in Figure 16 illustrates the extremely low feedback of the MC1550 with no contribution from the external mounting circuitry. However, in many cases the external circuitry may contribute as much or more to the total feedback than does the MC1550.

To perform more accurate design calculations of gain, stability, and input - output impedances it is recommended that the designer first determine the total feedback of device plus circuitry.

This can be done in one of two ways:

- (1) Measure the total y12 or s12 of the MC1550 installed in its mounting circuitry, or
- (2) Measure the y12 of the circuitry alone (without the MC1550 installed) and add the circuit y12 to the y12 for the MC1550 given in Figure 16.

FIGURE 18 - y22, OUTPUT-ADMITTANCE versus FREQUENCY

TYPICAL CHARACTERISTICS (continued)

(V⁺ = 6.0 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted)

FIGURE 23 – s₁₂, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

Pin 6 connected	to	case
-----------------	----	------

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	v ⁺	9	Vdc
Input Voltage, Pin 1 to Pin 2 (R _S = 500 ohms)	v _{in}	1.0	V(rms)
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	P _D	680 4.6	mW mW/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

CIRCUIT SCHEMATICS FIGURE 1 - MC1552 (LOW GAIN) FIGURE 2 - MC1553 (HIGH GAIN) ∙۷۰ ٥٧ 9 k ₹ 500 0 5 500 3 pF 2 of -16 2 of ۷:-V. 6 ٩t 1.6 11 150 Ş 80 \$ 3 k ₹ 61 50 80 31 61 GND C GND C -----12 k 12 130 60 99 30 **6**4 5 d 93 40 **6**5 GAIN OPTION EXT. C GND EXT. C GND GAIN OPTION

See Packaging Information Section for outline dimensions.

MC1552G, MC1553G (continued)

Characterist	tic	Fig. No.	Gain * Option	Symbol	Min	Тур	Max	Unit
Voltage Gain	MC1552	3	50 100	V _{out} /V _{in}	44 87	50 100	56 113	V/V
	MC1553		200 400		175 350	200 400	225 450	
Voltage Gain Variation (T _A = -55°C to -125°C)		3	All	-		±0.2	-	dB
Bandwidth	MC1552	3,6	50 100	BW	21 17	40 35	_	MHz
	MC1553		200 400		17 7.5	35 15	=	
Input Impedance (f = 100 kHz, $R_L = 1 k\Omega$)	· ·		All	z _{in}	7	10		kΩ
Output Impedance (f = 100 kHz, $R_{S} = 50 \Omega$)		-	All	Z _{out}	-	16	50	Ω
DC Output Voltage		3	All	V _{out} (dc)	2.5	2.9	3.2	Vdc
DC Output Voltage Variation ($T_A = -55^{\circ}C$ to $+125^{\circ}C$)		3	All	△V _{out} (dc)		±0.05	_	Vdc
Output Voltage Swing ($Z_L \ge 1 k\Omega$, $V_{in} = 100 mV$	[rms])	3	All	v _{out}	3.6	4, 2		Vp-j
Power Dissipation		-	All	P _D	-	75	120	mW
Delay Time	MC1552	3, 4	50 100	t _{pd}		8 9	=	ns
	MC1553		200 400		_	10 25	_	
Rise Time	MC1552	3,4	50 100	tr	-	9 12	16 20	ns
	MC 1553		200 400			11 30	20 45	
Overshoot	y a fallen i gelek kanton en	3, 4	All	$(V_{os}^{}/V_{p}^{})100$		5	-	%
Noise Figure ($R_S = 400 \Omega$, $f_0 = 30 MHz$,	BW = 3 MHz)	-	All	NF	-	5	-	dB
Total Harmonic Distortion (V _{out} = 2 Vp-p, f = 200 kH	z, $R_L = 1 k\Omega$)	-	All	THD	_	0.2	_	%

ELECTRICAL CHARACTERISTICS (V+ = +6 Vdc, T_A = +25 *C unless otherwise noted)

* To obtain the voltage-gain characteristic desired, use the following pin connections:

Туре	Voltage Gain	Pin Connections						
MC1552	50	Pin 3 Open						
WIG1552	100	Ground Pin 3						
MC1553	200	Connect Pin 3 to Pin 4						
101333	400	Pins 3 and 4 Open						

 $1.\ {\rm Ground}\ {\rm Pin}\ 6$ as close to can as possible to minimize overshoot. Best results by directly grounding can,

 $2. \ {\rm If} \ {\rm large \ input \ and \ output \ coupling \ capacitors \ are \ used, place \ {\rm shield \ between \ them \ to \ avoid \ input-output \ coupling.}$

3. A high-frequency capacitor must always be used to bypass the power supply. This capacitor should be as close to the circuit as possible.

4. Voltage gain can be adjusted to any value between 50 and 3000 by connecting an external resistor from Pin 4 to ground on MC1552, or from Pin 3 to ground on MC1553, as shown in

NOTES

Figure 8. Under these conditions, the following equations must be used to determine C_1 and C_2 rather than the circuits shown in Figure 5.

$$\begin{array}{l} \mbox{Fig. 5b } C_1 = \frac{1}{2 \pi f_{g}(1.7 \times 104)} \mbox{Farads;} \ C_2 = \\ \mbox{8 } C_1 (V_{out} / V_{in}) \ \mbox{Barads} \\ \mbox{Fig. 5c } C_1 = \frac{V_{out} / V_{in}}{2 \pi f_{g}(1.5 \times 104)} \ \mbox{Farads} \end{array}$$

Fig. 5d C₂ =
$$\frac{V_{out}/V_{in}}{2\pi f_c (3 \times 10^3)}$$
 Farads

MC1552G, MC1553G (continued)

TYPICAL CHARACTERISTICS

FIGURE 6 - VOLTAGE GAIN versus FREQUENCY

TEST CIRCUITS FOR FREQUENCY RESPONSE FIGURE 5b – CAPACITIVE COUPLED INPUT $(R_s < 5 \text{ k}\Omega)$

FIGURE 5c - CAPACITIVE COUPLED INPUT (R_s < 500 Ω)

FIGURE 5d - TRANSFORMER COUPLED INPUT

FIGURE 7 – MAXIMUM NEGATIVE SWING SLEW RATE versus LOAD CAPACITANCE

FIGURE 8 – VOLTAGE GAIN ADJUSTMENT BY USE OF EXTERNAL RESISTOR

8

8-289

MC1554G MC1454G

1-WATT

POWER AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED

... designed to amplify signals to 300-kHz with 1-Watt delivered to a direct coupled or capacitively coupled load.

- Low Total Harmonic Distortion 0.4% (Typ) @ 1 Watt
- Low Output Impedance 0.2 Ohm
- Excellent Gain Temperature Stability

METAL PACKAGE CASE 602B

(bottom view) Pin 7 connected to case

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (T_C = $+25^{\circ}$ C unless otherwise noted)

Frequency compensation shown in Figures 6 and 7.

Characteristic	Figure	RL (Ohms)	Gain Option*	Symbol	MC1554 (-55 to +125°C)			MC1454 (0 to +70 ⁰ C)			
					Min	Тур	Max	Min	Тур	Max	Unit
Output Power (for e _{out} <5.0% THD)	1	16	-	Pout	1.0	1.1	1	-	1.0	-	Watt
Power Dissipation (@ Pout = 1.0 W)	1	16	-	PD		0.9	1.2		0.9		Watt
Voltage Gain	1	16 16 16	10 18 36	Av	8.0	10 18 36	12 	-	10 18 36	-	V/V
Input Impedance	1	_	10	Zin	7.0	10		3.0	10		kΩ
Output Impedance	1	-	10	Zout		0.2	-		0.4	-	Ω
Power Bandwidth (for e _{out} <5.0% THD)	2	16 16 16	10 18 36	,	1.4	270 250 210			270 250 210	-	kHz
Total Harmonic Distortion (for e _{in} <0.05% THD, f = 20 Hz to 20 kHz)	2			THD							%
Pout = 1.0 Watt (sinewave)		16	10		-	0.4		·	0.4	-	
Pout = 0.1 Watt (sinewave)		16	10		5	0.5	-		0.5		L
Zero Signal Current Drain	3	∞	-	ID.	7	11	15	-	11	20	mAdc
Output Noise Voltage	3	16	10	Vn	-	0.3	-		0.3	-	mV(rms
Output Quiescent Voltage (Split Supply Operation)	4	16		Vout(dc)	-	±10	±30	-	±10	-	mVdc
Positive Supply Sensitivity (V constant)	5	90	-	s+	-	-40	-	-	-40		mV/V
Negative Supply Sensitivity (V ⁺ constant)	5	80	-	S-	-	-40	-		-40		mV/V

*To obtain the voltage gain characteristic desired, use the following pin connections: Voltage Gain 10

Pin Connection

Pins 2 and 4 open, Pin 5 to ac ground Pins 2 and 5 open, Pin 4 to ac ground

Pin 2 connected to Pin 5, Pin 4 to ac ground

10

18

MC1554G, MC1454G (continued)

MAXIMUM RATINGS (T_C = +25^oC unless otherwise noted)

Rating		Symbol	Value	Unit
Total Power Supply Voltage		V ⁺ + V ⁻	18	Vdc
Peak Load Current		l _{out}	0.5,	Ampere
Audio Output Power		Pout	1.8	Watts
Power Dissipation (package limitation) T _A = +25 ^o C Derate above 25 ^o C T _C = +25 ^o C Derate above 25 ^o C		Ρ _D 1/θJ _A Ρ _D 1/θJ _C	600 4.8 1.8 14.4	mW mW/ ^O C Watts mW/ ^O C
Operating Temperature Range	MC1454 MC1554	TA	0 to +70 -55 to +125	°C
Storage Temperature Range		T _{stg}	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

In order to avoid local VHF instability, the following set of rules must be adhered to:

- 1. An R-C stabilizing network (0.1 μF in series with 10 ohms) should be placed directly from pin 9 to ground, as shown in Figures 6 and 7, using short leads, to eliminate local VHF instability caused by lead inductance to the load.
- Excessive lead inductance from the V+ supply to pin 10 can cause high frequency instability. To prevent this, the V+ by-pass capacitor should be connected with short leads from the V+ pin to ground. If this capacitor is remotely located a series R-C network (0.1 µF and 10 ohms) should be used directly from pin 10 to ground as shown in Figures 6 and 7.
- Lead lengths from the external components to pins 7, 9, and 10 of the package should be as short as possible to insure good VHF grounding for these points.

Due to the large bandwidth of the amplifier, coupling must be avoided between the output and input leads. This can be assured by either (a) use of short leads which are well isolated, (b) narrow-banding the overall amplifier by placing a capacitor from pin 1 to ground to form a low-pass filter in combination with the source impedance, or (c) use of a shielded input cable. In applications which require upper band-edge control the input low-pass filter is recommended.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

FIGURE 12 - VOLTAGE GAIN versus FREQUENCY (RL = ∞)

FIGURE 13 – MAXIMUM DEVICE DISSIPATION (SINE WAVE)

TIMING CIRCUIT

MONOLITHIC SILICON INTEGRATED CIRCUIT

1. Ground

2. Trigger 3. Output

4. Reset

7. Discharge 8. V_{CC}

5. Control Voltage 6. Threshold

P1 SUFFIX

PLASTIC PACKAGE

CASE 626 (Top View)

(MC1455P1 only)

MC1555 MC1455

Specifications and Applications Information

MONOLITHIC TIMING CIRCUIT

The MC1555/MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.

- Direct Replacement for NE555/SE555 Timers
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL

8

- Temperature Stability of 0.005% per ^oC
- Normally "On" or Normally "Off" Output

FIGURE 1 – 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+18	Vdc
Discharge Current (Pin 7)	17	200	mA
Power Dissipation (Package Limitation)	PD		
Metal Can		680	mW
Derate above $T_A = +25^{\circ}C$		4.6	mW/ ⁰ C
Plastic Dual In-Line Package		625	mW
Derate above T _A = +25 ^o C		5.0	mW/ºC
Operating Temperature	TA		°C
Range (Ambient) MC1555		-55 to +125	
MC1455		0 to +70	
Storage Temperature Range	T stg	-65 to +150	°C

FIGURE 3 - GENERAL TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = +5.0 V to +15 V unless otherwise noted.)

Characteristics	Symbol	MC1555			MC1455			
		Min	Тур	Max	Min	Тур	Мах	Unit
Supply Voltage	Vcc	4.5	-	18	4.5		16	V
Supply Current	Iр				Contraction of the second			mA
V _{CC} = 5.0 V, R _L = ∞	_	- 1	3.0	5.0		3.0	6.0	
V _{CC} = 15 V, R _L = ∞		-	10	12	The state of the s	10	15	
Low State, (Note 1)			·					
Timing Error (Note 2)			1.0		and a state of the	A Contraction	Contraction of the second	
R_A , $R_B = 1.0 k\Omega$ to 100 k Ω		l		1.1		A Providence		
Initial Accuracy C = 0.1 μ F			0.5	2.0	And	1.0	-	%
Drift with Temperature		· ·	30	100	-	50	-	PPM/ ^O
Drift with Supply Voltage			0.005	0.02	And the second s	0.01	-	%/Voli
Threshold Voltage	V _{th}	-	2/3		-	2/3	-	×Vcc
Trigger Voltage	VT				and the second second			v
V _{CC} = 15 V		4.8	5.0	5.2	<u> </u>	5.0		
V _{CC} = 5.0 V		1.45	1.67	1.9		1.67	<u> </u>	
Trigger Current	Γ	-	0.5	- .	1	0.5	-	μA
Reset Voltage	VR	0.4	0.7	1.0	0.4	0.7	1.0	v
Reset Current	I _R	-	0.1	_	-	0.1		mA
Threshold Current (Note 3)	l lth	-	0.1	0.25	Contractory of the second	0.1	0.25	μA
Control Voltage Level	V _{CL}				the second second	Deriva resident	Sector States	V
V _{CC} = 15 V		9.6	10	10.4	9.0	10	11	
V _{CC} = 5.0 V		2.9	3.33	3.8	2.6	3.33	4.0	
Output Voltage Low	VOL				And the second second	and shares and		
(V _{CC} = 15 V)						And and the state		v
I _{sink} = 10 mA		-	0.1	0.15		0.1	0.25	
I _{sink} = 50 mA		-	0.4	0.5	-	0.4	0.75	
l _{sink} = 100 mA		-	2.0	2.2		2.0	2.5	
$I_{sink} = 200 \text{ mA}$		-	2.5	-	Contraction of the second s	2.5	-	
$(V_{CC} = 5.0 V)$					100 200 - 20			
$I_{sink} = 8.0 \text{ mA}$		-	0.1	0.25	-	Strike and share a proving		
I _{sink} = 5.0 mA			-		-	0.25	0.35	
Output Voltage High	Voн						Province in the second second	v
$(I_{source} = 200 \text{ mA})$			105			195	Superior States	
$V_{CC} = 15 V$			12.5	-		12.5	Transford Transford	
(I _{source} = 100 mA) V _{CC} = 15 V		13	13.3	_	12.75	13.3		
$V_{CC} = 5.0 V$		3.0	3.3	_	2.75	3.3		
Rise Time of Output	tolh	-	100			100	-	ns
Fall Time of Output	tOHL	1	100		-	100	and the second se	ns

NOTES:

1. Supply current when output is high is typically 1.0 mA less. 3. This will determine the maximum value of R_A + R_B for 15 V operation. 2. Tested at V_{CC} = 5.0 V and V_{CC} = 15 V.

The maximum total R = 20 megohms.

FIGURE 5 - SUPPLY CURRENT

FIGURE 6 - HIGH OUTPUT VOLTAGE

FIGURE 7 – LOW OUTPUT VOLTAGE @ $V_{CC} = 5.0 \, Vdc$

FIGURE 8 - LOW OUTPUT VOLTAGE @ $V_{CC} = 10 Vdc$

FIGURE 9 – LOW OUTPUT VOLTAGE @ V_{CC} = 15 Vdc

FIGURE 12 – PROPAGATION DELAY versus TRIGGER VOLTAGE

FIGURE 10 – DELAY TIME versus SUPPLY VOLTAGE

FIGURE 11 – DELAY TIME versus TEMPERATURE

MC1555, MC1455 (continued)

The MC1555 is a monolithic timing circuit which uses as its timing elements an external resistor – capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage.

Monostable Mode

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode. refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 V_{CC} the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high This condition allows the capacitor to charge at an exstate ponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 $V_{\mbox{CC}}$ the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation t = 1.1 RA C. Various combinations of R and C and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.

FIGURE 14 - MONOSTABLE CIRCUIT

GENERAL OPERATION (continued)

⁺V_{CC}(5 to 15 V) ŚRL Şпд 64 MC1555 5 Şяв MC1455 Output 3 6 • 0.01 ςc ŚRL ¢2 φı ÷ =

FIGURE 17 - ASTABLE CIRCUIT

FIGURE 16 - TIME DELAY

Astable Mode

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between 1/3 V_{CC} and 2/3 V_{CC}. See Figure 17.

The external capacitor charges to 2/3 V_{CC} through R_A and R_B and discharges to 1/3 V_{CC} through R_B. By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.

The charge time (output high) is given by: t_1 = 0.695 ($R_A + R_B$) C The discharge time (output low) by: t_2 = 0.695 (R_B) C

Thus the total period is given by: $T = t_1 + t_2 = 0.695 (R_A + 2R_B) C$

The frequency of oscillation is then:
$$f = \frac{1}{T} = \frac{1.44}{(R_A+2R_B) C}$$

and may be easily found as shown in Figure 19.

The duty cycle is given by: DC =
$$\frac{B}{R_A + 2R_B}$$

To obtain the maximum duty cycle R_A must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mA).

The minimum value of RA is given by:

$$R_{A} \ge \frac{V_{CC} (Vdc)}{I_{7} (A)} \ge \frac{V_{CC} (Vdc)}{0.2}$$

 $(R_A = 5.1 \, k\Omega, C = 0.01 \, \mu F, R_L = 1.0 \, k\Omega;$ $R_B = 3.9 \, k\Omega, V_{CC} = 15 \, V)$

FIGURE 19 - FREE-RUNNING FREQUENCY

MC1555, MC1455 (continued)

APPLICATIONS INFORMATION

Linear Voltage Ramp

In the monostable mode, the resistor can be replaced by a constant current source to provide a linear ramp voltage. The capacitor still charges from 0 to 2/3 $V_{\mbox{CC}}.$ The linear ramp time is given $\frac{\text{tor stin}}{\text{t}} = \frac{2}{3} \frac{\text{V}_{\text{CC}}}{1}$

V_{CC} - V_B - V_{BE} where I = If VB is much larger than VBE, RE

then t can be made independent of V_{CC}.

Missing Pulse Detector

RL

Output

3

5

ς 0.01 μF

1

The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequency or a missing pulse allows completion of the timing cycle, causing a change in the output level.

FIGURE 22

8

2 Ċ

Input

7

6

RA

c c

2N4403

or Equiv

+V_{CC} (5 to 15 V)

4

MC1555

MC1455

FIGURE 21 -- LINEAR VOLTAGE RAMP WAVEFORMS

 $(R_{E} = 10 \text{ k}\Omega, R2 = 100 \text{ k}\Omega, R1 = 39 \text{ k}\Omega, C = 0.01 \mu\text{F}, V_{CC} = 15 \text{ V})$

FIGURE 20 - LINEAR VOLTAGE SWEEP CIRCUIT

 $t = 100 \,\mu s/cm$

t = 500 µs/cm

MC1555, MC1455 (continued)

APPLICATIONS INFORMATION (continued)

Pulse Width Modulation

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 5. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.

FIGURE 25 – PULSE WIDTH MODULATION WAVEFORMS (R_A = 10 k $\Omega,$ C = 0.02 $\mu F,$ V_CC = 15 V)

t = 0.5 ms/cm

Test Sequences

Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 ms. The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

FIGURE 26

OPERATIONAL AMPLIFIERS

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

MC1556G **MC1456G MC1456CG**

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information, see Application Note AN-522.

- Low Input Bias Current 15 nA max
- Low Input Offset Current 2.0 nA max
- Low Input Offset Voltage 4.0 mV max
- Fast Slew Rate 2.5 V/μs typ
- Large Power Bandwidth 40 kHz typ
- Low Power Consumption 45 mW max
- Offset Voltage Null Capability
- Output Short-Circuit Protection
- Input Over-Voltage Protection

VOLTAGE-FOLLOWER PULSE RESPONSE

INPUT

OUTPUT

EQUIVALENT CIRCUIT

2 µs/DIVISION

See Packaging Information Section for outline dimensions.

MC1556G, MC1456G, MC1456CG (continued)

MAXIMUM RATINGS (T _A = +25 ^o C unless otherwi	se noted)		MC1456G	
Rating	Symbol	MC1556G	MC1456CG	Unit
Power Supply Voltage	v ⁺	+22	+18	Vdc
	v~	-22	-18	
Differential Input Signal	Vin	±۱	Volts	
Common-Mode Input Swing	CMVin	±۱	Volts	
Load Current	ΙL	2	0	mA
Output Short Circuit Durssion	ts	Cont	tinuous	
Power Dissipation (Package Limitation)	PD	6	30	mW
Derate above T _A = +25 ^o C	_	4	.6	mW/ ^o C
Operating Temperature Range	TA	-55 to +125	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V^+ = +15 Vdc, V^- = -15 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted)

ELECTRICAL CHARACTERISTICS (V =+15 Vdc,	•	-15 vuc,		AC1556G	N N	C1456G	and the second second	MC1456CG			ר	
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	1	чь				Filmer and	Carlo Sector			1	14 B	nAdc
$T_{\Delta} = +25^{\circ}C$.0	-	8.0	15		15	.30	·	15	90	
T _A = T _{low} to T _{high} (See Note 1)				-	30	_	-	40	· _			
Input Offset Current		11.1						property of				nAdc
$T_A = +25^{\circ}C$		io	_	1.0	2.0	-	5.0	10	,	5.0	30	
$T_A = +25^{\circ}C$ to T_{high}			-	-	3.0	_	An propher for the	14				
$T_A = T_{low}$ to +25°C			-	-	5,0	-	Service and reality of the service o	14			14	
Input Offset Voltage		Vio				Sector Sector	Constanting of	Source Heat		1		mVdc
$T_A = +25^{\circ}C$		1 101	-	2.0	4.0	and the second	5.0	10	. <u> </u>	5.0	12	
T _A = T _{low} to T _{high}				-	6.0	The second second	- 	14	-			
Differential Input Impedance (Open-Loop, f = 20 Hz)	1						States and states	Contraction of the		1.1.1		1
Parallel Input Resistance		Rp	-	5.0	-		3.0	Construction of the second		3.0	-	Megohms
Parallel Input Capacitance		C _p	-	6.0	-		6.0		<u> </u>	6.0		pF
Common-Mode Input Impedance (f = 20 Hz)		Z _{in}	-	250	-	-	250		· -	250		Megohms
Common-Mode Input Voltage Swing	1	CMVin	±12	±13	-	±11	±12		±10.5	±12	-	Vpk
Equivalent Input Noise Voltage	2	en									÷	nV/(Hz)½
$(A_V = 100, R_s = 10 \text{ k ohms}, f = 1.0 \text{ kHz}, BW = 1.0 \text{ Hz})$			-	45			45		-	45	-	
Common-Mode Rejection Ratio (f = 100 Hz)	3	CM _{rej}	80	110	-	70	110		-	110	-	dB
Open-Loop Voltage Gain, (Vout = ±10 V, RL = 2.0 k ohms)	4,5,6	AVOL				Salar and						V/V
T _A = +25 ^o C			100,000	200,000	-	70,000	100,000	Line Arthurth	25,000	100,000	-	
TA = Tlow to Thigh	1]	40,000	-	-	40,000	-		-	-	,	
Power Bandwidth	9	PBW	-	40	·	-	40	- 1		40		kHz
(A _V = 1, R _L = 2.0 k ohms, THD≤5%, V _{out} = 20 Vp–p)						100		and the				
Unity Gain Crossover Frequency (open-loop)	5	fc	-	1.0	-		1.0	Sel region for		1.0		MHz
Phase Margin (open-loop, unity gain)	5,7		. . .	70	-	Sant-men	70		-	70	. —	degrees
Gain Margin	5,7		-	18	-	-	18	-		18	-	dB
Slew Rate (Unity Gain)		dV _{out} /dt	-	2.5	-		2.5	-	<u> </u>	2.5	·	V/µs
Output Impedance (f = 20 Hz)		Zout	-	1.0	2.0		1.0	2.5		1.0	-	kohms
Short-Circuit Output Current	8	ISC		-17, +9.0	-		-17, +9.0	-	-	-17, +9.0	-	mAdc
Output Voltage Swing (RL = 2.0 k ohms)	10	Vout	±12	±13	-	±11	±12	-	±10	±12	-	Vpk
Power Supply Sensitivity					Y							μV/V
V [*] = constant, R _s ≤ 10 k ohms		S+		50	100	-	75	200		75	. <u> </u>	
V ⁺ = constant, R _s ≤ 10 k ohms		S-		50	100	and the Description of the	75	200	-	75	· - "	
Power Supply Current		1 ^{D+}	-	1.0	1.5		1.3	3.0		1.3	4.0	mAdc
		ID-		1.0	1,5	and and states of	1.3	3.0	5. . – 1.	1.3	4.0	
DC Quiescent Power Dissipation	11	PD	-	30	45		40	90		40	120	mW
(V _{out} = 0)						Constant of			· ·	· ·		

Note 1: T_{Iow}: 0⁰ for MC1456G and MC1456CG -55⁰C for MC1556G

ŧ

Thigh: +75^oC for MC1456G and MC1456CG +125^oC for MC1556G

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - OPEN-LOOP PHASE SHIFT

PD, POWER DISSIPATION (mW)

20 10 7.0 5.0 4.0 3.0 2.0 0 ±2.0 ±4.0

FIGURE 8 – OUTPUT SHORT-CIRCUIT CURRENT versus TEMPERATURE

±6.0 ±8.0 ±10 ±12 ±14

V⁺, V⁻, POWER SUPPLY VOLTAGE (Vdc)

V_{out} = 0

±16 ±18 ±20 ±22

MC1556G, MC1456G, MC1456CG (continued)

FIGURE 12 - INVERTING FEEDBACK MODEL

FIGURE 14 - LOW-DRIFT SAMPLE AND HOLD

MC1556G, MC1456G, MC1456CG (continued)

TYPICAL APPLICATIONS (continued)

FIGURE 16 – LOGARITHMIC AMPLIFIER

2 MC1456, C MC1556 3 + 1 10 k V⁻

FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT

See Application Note AN-261 for further detail.

See Packaging Information Section for outline dimensions.

See current MCCF1558/1458 data sheet for flip-chip information.

MC1558, MC1458, MC1458C(continued)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating		Sym	bol	MC1	558	мс	1458,C		Unit			
Power Supply Voltage		∨* - ∨*		+2 -2		25	+18 -18		Vdc			
Differential Input Signal		Vir	n		:	±30			Volts			
Common-Mode Input Swing (2)		CMV	/in		2	<u>+</u> 15			Volts	7		
Output Short Circuit Duration		ts			Cont	tinuous				1		
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25 ^o C		PC				680 4.6			mW mW/ ^o C	1		
Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$					e	625 5.0		r	mW mW/ ^o C			
Ceramic Dual In-Line Package Derate above T _A = +25 ⁰ C						750 6.0			mW/ ⁰ C mW/ ⁰ C			
Operating Temperature Range		Τ¢	۹.	-55 to	+125	01	o +75		°C			
Storage Temperature Range		Τ _{st}	g	-65 to	+150	-65	to +150		°C	1		
ELECTRICAL CHARACTERISTICS (V ⁺ = +15 Vdc, V ⁻	= -15 Vda	c, T _A =	+250	C unless	other	wise no	ed)			-		
			N	AC 1558		Contraction of	MC1458	(Jacobio et al.		MC1458C		
Characteristics	Symb	юі і	Min	Тур	Max	Min	Түр	Max	Min	Тур	Max	Unit
Input Bias Current $T_A = +25^{\circ}C$ (2)	Iр		-	0.2	0.5		0.2	0.5		0.2	0.7	μAdc
$T_A = T_{low}$ to T_{high}	_		-	-	1.5	and an and a second s		0.8		· · · <u>-</u> · · ·	1.0	
Input Offset Current $T_A = +25^{\circ}C$ $T_A = T_A = T_A$	lio		-	0.03	0.2		0.03	0.2	1.11 1.17	0.03	0.3	μAdc
$T_A = T_{IOW}$ to T_{high} Input Offset Voltage ($R_S \le 10 \text{ k} \Omega$)			_	-	0.5		And the second second	0.3			0.4	
$T_{A} = +25^{O}C$	IV _{io}			1.0	5.0	Contraction of the	2.0	6.0		2.0	10	mVdc
$T_A = T_{low}$ to T_{high}			_	-	6.0	Construction of the	20	7.5	1.20	2.0	12	
Differential Input Impedance (Open-Loop, f = 20 Hz)							and the second					
Parallel Input Resistance	Rp		0.3	1.0		0.3	1.0	Sec.		1.0		Megohm
Parallel Input Capacitance	C _p		-	6.0			6.0		1 <u>-</u> 1	6.0	-	pF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)		200	-		200			200		Megohm
Common-Mode Input Voltage Swing	CMV		±12	±13	-	±12	±13		±11	±13	- 11 14- - + - 11	Vpk
Equivalent Input Noise Voltage	e _n						Constant of Constant	and the second				nV/(Hz)
(A _V = 100, R _s = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)			-	45	-	and al maintenant	45			45	241	
Common-Mode Rejection Ratio (f = 100 Hz)	CMre	ei	70	90	-	70	90		60	90	· · · · ·	dB
$ \left. \begin{array}{l} \text{Open-Loop Voltage Gain} \\ T_A = +25^9 C \\ T_A = T_{Iow} \text{ to Thigh} \end{array} \right\} (V_0 = \pm 10 \text{ V}, \text{ R}_L = 2.0 \text{ k ohms}) \\ T_A = +25^9 C \\ T_A = T_{Iow} \text{ to Thigh} \end{array} \right\} (V_0 = \pm 10 \text{ V}, \text{ R}_L = 10 \text{ k ohms}) $	Avo	L 51	0,000 5,000	200,000	1.1.1.1	20.000	100,000		 20,000 15,000	100,000		V/V
Power Bandwidth (A _V = 1, R _L = 2.0 k ohms, THD≤5%, V _O = 20 V p-p)	Рви	/	-	14	4		14		n <u>–</u> tyr L	14		kHz
Unity Gain Crossover Frequency (open-loop)	f _c		-	1,1	-	and an entropy of the second sec	1.1		-	1.1	-	MHz
Phase Margin (open-loop, unity gain)			-	65		-	65	Santa and		65		degrees
Gain Margin		100	-	11		and the second second	11	an a		11	·	dB
Slew Rate (Unity Gain)	dVout	/dt		0.8		allen de la serie de la se	0.8		·	0.8		V/µs
Output Impedance (f = 20 Hz)	Zou	t		75	-	and a start of the second	75	ALL TREAM		75	-	ohms
Short-Circuit Output Current	^I sc		-	20			20		- '	20		mAdc
Output Voltage Swing (R _L = 10 k ohms) R _L = 2 k ohms (T _A = T _{low} to t _{high})	V _o		±12 ±10	±14 ±13	1	±12 ±10	±14 ±13	Ŧ	±11 ±9.0	±14 ±13		Vpk
Average Temperature Coefficient of Input Offset Voltage (R _S = 50 ohms, T _A = T _{Iow} to T _{high})	hcvi	0	-	15	-		15			15		μV/ ⁰ C
Power Supply Sensitivity $V^{-} = \text{constant}, R_{S} \leq 10 \text{ k ohms}$	S+			30	150		30	150	_	30	- - 	μV/V
V^+ = constant, $R_s \le 10$ k ohms	S-		-	30	150	Contraction State	30	150	_	30	-	
Power Supply Current	ים ^ן קו			2.3 2.3	5.0 5.0		2.3 2.3	5.6 5.6	· - ·	2.3 2.3	8.0 8.0	mAdc
DC Quiescent Power Dissipation (Vo = 0)	PD			70	150		70	170		70	240	mW

 \bigcirc For supply voltages of less than ±15 V, the maximum differential input voltage is equal to ±(V⁺ + |V⁻|). \bigcirc For supply voltages of less than ±15 V, the maximum input voltage is equal to the supply voltage (+V⁺, -|V⁻|).

8-308

MC1558, MC1458, MC1458C (continued)

MC1558, MC1458, MC1458C (continued)

MC1560, MC1561 MC1460, MC1461

POSITIVE VOLTAGE REGULATORS

MONOLITHIC VOLTAGE REGULATOR

 \ldots . designed to deliver continuous load current up to 500 mA without use of an external power transistor.

- Electronic "Shut-Down" Control and Short-Circuit Protection
- Excellent Load Regulation (Low Output Impedance = 20 milliohms typ from dc to 100 kHz)
- High Power Capability: To 17.5 Watts
- Excellent Transient Response and Temperature Stability
- High Ripple Rejection = 0.002 %/V typ
- Single External Transistor Can Boost Load Current to Greater than 10 Amperes
- Input Voltages to 40 Volts (MC1561)

CASE 614

CASE 602A

See Packaging Information Section for outline dimensions.

Characteristic Definitions (linear operation)	Characteristic		Symbol	Min	Тур	Max	Units
$(R_{SC} = 2.7 \text{ ohms unless otherwise noted})$ CONNECTION FOR $V_0 \ge 3.5 \text{ v}$	Input Voltage (See Note 1) (0 to +75°C) (-55°C to +125°C) (0 to +75°C)	MC1460 MC1560 MC1461	Vin	9.0 8.5 9.0	-	20 20 35	Vdc
	(-55°C to +125°C) Output Voltage Range	MC1561 MC1460, MC1560 MC1461 MC1561	Vo	8.5 2.5 2.5 2.5	-	40 17 32 37	Vdc
	Reference Voltage (V _{in} = 15 V) (Pin 8 to ground)		V _{ref}	3.2	3.5	3.8	Vdc
Vret C _n = 6.8 k	Minimum Input-Output Voltage Differential (See Note 2)		V _{in} -V _o		21	3.0	Vdc
$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ Select R1 to give desired V ₀ : R1 \approx (2 V ₀ - 7) k Ω	(R _{SC} = 0)	MC1460, MC1461 MC1560, MC1561		_	2.1	2.7	
+V in $\frac{1}{2}$ CONNECTION FOR $V_0 \leq 3.5 V$ $V_{0} \rightarrow 0$ $\frac{3}{26}$ $\frac{1}{4} + \frac{85}{26} + \frac{1}{2} + 1$	Bias Current (V _{in} = 15 V) (I _L = 1.0 mAdc, R ₂ = 6.8 kΩ, I _B = I _{in} I _L)	MC1460, MC1461 MC1560, MC1561	IВ	-	5.0 4.0	12 9.0	mAdc
	Output Noise (C _n = 0.1 μF, f = 10 Hz to 5.0 MHz)		vn	_	0.150	_	mV (rm
$\begin{array}{c c} V_{ref} & CASE \\ R1 & 2 & O(10) \\ C_n & C_o \end{array} \qquad \begin{array}{c} I_L \\ \downarrow \\ $		MC1460, MC1461	тс _{Vo}	_	±0.002		%/ºC
R2 0.1 μF 10 μF	(-55° to +125°C)	MC1560, MC1561		-	±0.002	-	
는 는 는 는 는 는 는 는 는 lect R2 to give desired V ₀ : R2≈(2 V ₀) kΩ Select R1: R1≈(7,0 kΩ – R2) kΩ	(R _{SC} ≦ 0.3 ohms) R Package		1	1.0 1.0		500 200	mAdc
	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	nt voltage MC1460, MC1461 MC1560, MC1561	Regin	-	0.003 0.002	0.030 0.015	%/V _c
$15 V \qquad 3 \qquad 1 \qquad 1.0 \qquad 1_L \rightarrow V_0 = 10$ $15 V \qquad 3 \qquad 1 \qquad 1.0 \qquad 1_L \rightarrow V_0 = 10$ $13 k \qquad 2 \qquad 0 \qquad 0 \qquad 1_L \rightarrow V_0 = 10$ $13 k \qquad 2 \qquad 0 \qquad 0 \qquad 1_L \rightarrow V_0 = 1$	Load Regulation T _J = Constant (1.0 mA \leq I _L \leq 20 m T _C = 25 ^o C (See Note 5)	A) MC1460 MC1560 MC1461 MC1561	Reg _{load}		0.5 0.3 0.7 0.4	2.0 1.2 2.4 1.6	mV
$6.8 \text{ k} \underbrace{\frac{1}{2}}_{\underline{\mu}} = \underbrace{\frac{1}{2}}_{\underline{\mu}} \underbrace{\frac{1}{2}}_{\underline{\mu}$	(1.0 mA≤ IL ≤ 50 mA)	R Package G Package		-	0.005 0.01	0.05 0.13	%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Impedance (See Note 6) (R _{SC} = 1.0 ohms, f = 10 kHz, V _{in} =) (I _L = 25 mAdc for G Package)	14 Vdc) MC1460 MC1560 MC1461 MC1561	Zout		25 15 35 20	100 60 120 80	milliohm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shutdown Current (V _{in} = 20 Vdc) (V _{in} = 35 Vdc)	MC1460 MC1560 MC1461 MC1561			80 20 140 70	300 50 500 150	μAdd
<u>Ξ 6.8 k</u> 0.1 μF 10 μF	$R_3 \approx \frac{V_{in} - 1.4}{1.0 \text{ mA}}$						

Ratin	ig	Symbol	Symbol Value			
Input Voltage	MC1460, MC1560 MC1461 MC1561	Vin	3	20 15 10	Vdc	
			G Package	R Package		
Load Current		ιL	250	600	mA	
Current, Pin 2		lpin 2	10	10	mA	
Current, Pin 9		Ipin 9	5.0	5.0		
	nd Thermal Characteristics					
т _А = 25 ⁰ С		PD	0.68	3.0	Watts	
Derate above TA =	= 25 ⁰ C	1/0 JA	5.44	24	mW/ºC	
Thermal Resistance	e, Junction to Air	θJA	184	41.6	°C/W	
T _C = 25 ^o C		PD	1.8	17.5*	Watts	
Derate above T c =	= 25 ^o C	1/0 JC	14.4	140	mW/ºC	
Thermal Resistance	e, Junction to Case	θJC	69.4	7.15	°C/W	
Operating and Stora Range	ge Junction Temperature	Tj, T _{stg}	-65 to	+150	°C	

*The MC1460R and MC1560R are limited to 12 watts maximum by the voltage and current maximum ratings.

OPERATING TEMPERATURE RANGE

Ambient Temperature	ТА		°C
MC1460, MC1461		0 to +75	
MC1560, MC1561		-55 to +125	

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".
- Note 2. This parameter states that the MC1560/1561 and MC1460/1461 will regulate properly with the input-output voltage differential $(V_{in} V_0)$ as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with $(V_{in} V_0)$ as low as 2.1 Vdc as shown in the typical column.
- Note 3. "Temperature Coefficient of Output Voltage" is defined as:

MC1560, TCV₀ =
$$\frac{\pm (V_0 \text{ max} - V_0 \text{ min})(100)}{2 (180^{\circ}\text{C})(V_0 \otimes 25^{\circ}\text{C})} = \%/^{\circ}\text{C}$$

MC1460,
$$TCV_0 = \frac{\pm (V_0 \max - V_0 \min)(100)}{2 (75^{\circ}C)(V_0 \otimes 25^{\circ}C)} = \%^{\circ}C$$

The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

- Note 4. The input signal can be introduced by use of a transformer which will allow the output of an audio oscillator to be coupled in series with the dc input to the regulator. (The large ac input impedance of the regulator will not load the oscillator.) A 24 V, 1.0 ampere filament transformer with the audio oscillator connected to the 110 V primary winding is satisfactory for this test. v_{in} ≈ 1.0 V (rms).
- Note 5. Load regulation is specified for small (\leq +17°C) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

ad Regulation =
$$\frac{V_0 | I_L = 1.0 \text{ mA} - V_0 | I_L = 50 \text{ mA}}{V_0 | I_L = 1.0 \text{ mA}} \times 100$$

Note 6. The resulting low level output signal (v_o) will require the use of a tuned voltmeter to obtain a reading. Special care should be used to insure that the measurement technique does not include connection resistance, wire resistance, and wire lead inductance (i.e., measure close to the case). Note that No. 22 AWG hook-up wire has approximately 4.0 milliohms/in. dc resistance and an inductive reactance of approximately 10 milliohms/in. at 100 kHz. Avoid use of alligator clips or banan aplug-jack combination.

GENERAL OPERATING INFORMATION

Lo

There is a general tendency to consider a voltage regulator as simply a dc circuit and to prepare breadboard construction accordingly. The excellent high-frequency performance and fast response capability of this integrated-circuit regulator, however, makes extra breadboarding care worthwhile when compared with the limited performance achieved in other regulators when low-frequency transistors are used in the feedback amplifier. Due to the use of VHF transistors in the integrated circuit, some VHF care (short, welldressed leads) must be exercised in the construction and wiring of circuits ("printed-circuit" boards provide an excellent component interconnection technique). The circuit must be grounded by a low-inductance connection to the case of the "R" package, or to pin 10 of the "G" package.

A series 4.7-k Ω resistor at Pin 5 (Figure 1) will eliminate any VHF instability problems which may result from lead lengths longer than a few inches at the regulator output. The resistor body should be as close to Pin 5 as physically possible (<1/2 inch) although the length of the lead to the load is not critical. If temperature stability is of major concern, a 4.7-k Ω resistor should also be placed in series with Pin 6 in order to cancel any drift due to bias current changes.

If long input leads are used, it may be necessary to bypass Pin 3 with a 0.1- μ F capacitor (to ground).

The "Shut-Down Control", Pin 2, can be actuated for all possible output voltages and any values of C_0 and C_n with no damage to the circuit. The standard logic levels of RTL, DTL, or TTL can be used (see Figure 20). This control can be used to eliminate power consumption by circuit loads which can be put in a "standby" mode, as an ac and dc "squelch" control for communications circuits, and as a dissipation control to protect the regulator under sustained output short-circuiting (see Figures 21 and 25). As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the IC chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures (see Figure 23, a and b). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels.

Due to the small value of input current at Pin 8, the external resistors, R1 and R2, can be selected with little regard to their par-

allel resistance. Further, no match to a diffused-resistor temperature coefficient is required; but R1 and R2 should have the same temperature coefficient to keep their ratio independent of temperature.

 C_n values in excess of 0.1 μF are rarely needed to reduce noise. In cases where more output noise can be tolerated, a smaller capacitor can be used (C_n min. \approx 0.001 μF).

The connection to Pin 5 can be made by a separate lead directly to the load. Thus "remote sensing" can be achieved and undesired impedances (including that of a milliammeter used to measure I_L) can be greatly reduced in their effect on Z_{OUt}. A 10-ohm resistor placed from pin 1 to pin 5 (close to the IC) will eliminate undesirable lead-inductance effects.

Short-circuit current-limiting is achieved by selecting a value for R_{SC} which will threshold the internal diode string when the desired maximum load current flows (see Figure 5). If the device dissipation and dc safe area limits (Figure 15) are not exceeded, it can be continuously short-circuited at the output without damage.

TYPICAL CONNECTIONS

8-316

There is a general tendency to consider a voltage regulator as simply a dc circuit and to prepare circuit layout accordingly. The excellent high-frequency performance and fast response capability of this integrated-circuit regulator, however, makes extra layout care worthwhile. Since short, well-dressed leads must be used, printed-circuit boards provide an excellent component interconnection technique.

The circuit layout, shown in Figure 31 for the "R" or power package IC, applies also to the lower power "G" package circuit shown in Figure 32. The R package circuits will deliver up to 500 mA into a load and the G package, 200 mA.

The circuit schematic, Figure 33, is for output voltages above 3.5 Vdc and the parts list is as follows:

PARTS LIST

Component	Value Description
R1 R2	Select $1/4$ Watt Carbon – See Note 1 6.8 k Ω
R _{SC}	Select 1/2 Watt Carbon - See Note 2
*R _A *R _B	$\left. \begin{array}{c} 3 \ \Omega \\ 3 \ \Omega \end{array} \right\} $ 1/4 Watt Carbon
*R′L	Select for current of 1 mA minimum
с _о	10 μF Sprague 1500 Series, Dickson D10C Series or Equivalent
C _n	0.1 µF Ceramic Disc -
*C _A	0.1 μF 🏅 Centralab DDA104,
*C _B	0.1 μF ¹ Sprague TG-P10, or Equivalent
*Heatsink	— Thermalloy #6168 — IERC LB 66B1-77U series
*Socket	(Not Shown) Robinson Nugent #0001306 Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1

*Optional Parts, See Note 3 on next page.

NEGATIVE VOLTAGE REGULATOR

Specifications and Applications Information

MC1563 MC1463

See Packaging Information Section for outline dimensions. (MC1563 - Pg. 1)

29

MC 1563R MC 1463R

(NEGATIVE REGULATOR)

V_{in} -20 Vdc

0.001

\$ 820

3

8-323

500 mA max

V0 - 15Vdc

Rating	Symbol	Va	ue	Unit
Input Voltage	Vin			Vdc
MC1463	1	-3		
MC1563		-4	0	
		G Package	R Package	
Peak Load Current	l_ pk	250	600	mA
Current, Pin 2	Ipin 2	10	10	mA
Power Dissipation and Thermal Characteristics				
$T_A = 25^{\circ}C$	PD	0.68	2.4	Watts
Derate above T _A = 25 ^o C	1/øJA	5.44	16	mW/°C
Thermal Resistance, Junction to Air	φJA	184	62	°C/W
$T_{C} = 25^{\circ}C$	PD	1.8	9.0	Watts
Derate above T _C = 25 ⁰ C	$1/\phi_{JC}$	14.4	61	mW/°C
Thermal Resistance, Junction to Case	φJC	69.4	17	°C/W
Operating and Storage Junction Temperature Range	Tj, T _{stg}	-65 to	5 +175	°C

OPERATING TEMPERATURE RANGE

Ambient Temperature	TA		°C
MC1463		0 to +75	
MC1563		-55 to +125	

ELECTRICAL CHARACTERISTICS (I_L = 100 mAdc, T_C = +25°C unless otherwise noted.)

	1				MC1563			MC1463		
Characteristic	Fig.	Note	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage $(T_A = T_{low} \textcircled{0} to T_{high} \textcircled{2})$	4	1	Vin	-8.5	4	-40	-9.0	-	-35	Vdc
Output Voltage Range	4	-	Vo	-3.6	-	-37	-3.8	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	4		V _{ref}	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc
Minimum Input-Output Voltage Differential (R _{sc} = 0)	4	2	V _{in} - V _O	-	1.5	2.7		1.5	3.0	Vdc
Bias Current (Standby Current) (I _L = 1.0 mAdc, I _B = I _{in} - I _L)	4	-	IВ	-	7.0	11	-	7.0	14	mAdc
Output Noise ($C_n = 0.1 \ \mu\text{F}$, f = 10 Hz to 5.0 MHz)	4	-	۷n		120	-		120	199 7 1997 - 1997	μV(rms)
Temperature Coefficient of Output Voltage	4	3	TCVO		±0.002	-	-	±0.002		%/ ^o C
Operating Load Current Range (R _{sc} = 0.3 ohm) R Package (R _{sc} = 2.0 ohms) G Package	4	-	ا ل_	1.0 1.0	T.	500 200	1.0 1.0	_	500 200	mAdc
Input Regulation	4	4	Regin	-	0.002	0.015	-	0.003	0.030	%/Vo
Load Regulation (T _J = Constant [1.0 mA \leq I _L \leq 20 mA]) (T _C = +25 ^o C [1.0 mA \leq I _L \leq 50 mA]) R Package G Package	6	5	Reg	1 1 1	0.4 0.005 0.01	1.6 0.05 0.13		0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (f = 1.0 kHz)	7	-	z _o	-	20	-		35	10-	milliohms
Shutdown Current (V _{in} = -35 Vdc)	8	-	l _{sd}	-	7.0	15	÷	14	50	μAdc

(1) $T_{1ow} = 0^{o}C$ for MC1463 = -55^oC for MC1563

Thigh = +75°C for MC1463 = +125°C for MC1563

(MC1563 - Pg. 2)

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode.
- Note 2. This parameter states that the MC1563/MC1463 will regulate properly with the input-output voltage differential $|V_{in} V_O|$ as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with $|V_{in} V_O|$ as low as 1.5 Vdc as shown in the typical column.
- Note 3. "Temperature Coefficient of Output Voltage" is defined as: + (Vo max Vo min) (100)

$$TCV_{O} = \frac{+ (V_{O} \max - V_{O} \min) (100)}{\Delta T_{A} (V_{O} \otimes T_{A} = +25^{\circ}C)}$$

where Δ T_A = +180^oC for the MC1563 +75^oC for the MC1463

The output-voltage adjusting resistors (R_A and R_B) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output voltage per volt change in the input voltage and is expressed as

Input Regulation = $\frac{v_0}{V_0 (v_{in})}$ 100 (%/V₀).

where v_0 is the change in the output voltage V_0 for the input change $v_{in}.$

The following example illustrates how to compute maximum output voltage change for the conditions given:

$$Regin = 0.015\%/V_O$$

$$V_O = 10 Vdc$$

$$v_{in} = 1.0 V(rms)$$

$$v_O = \frac{(Regin)(v_{in})(V_O)}{100}$$

$$= \frac{(0.015)(1.0)(10)}{100}$$

$$= 0.0015 V(rms)$$

Note 5. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation =
$$\frac{VO|I_{L} = 1.0 \text{ mA}|^{-}VO|I_{L} = 50 \text{ mA}|}{VO|I_{L} = 1.0 \text{ mA}|} \times 100$$

 $\label{eq:test} \begin{array}{l} \textbf{TEST CIRCUITS} \\ (I_L = 100 \text{ mAdc}, \ T_C = +25^{o}\text{C} \ \text{unless otherwise noted.}) \end{array}$

(MC1563 - Pg. 3)

GENERAL DESIGN INFORMATION

- 1. Output Voltage, VO
 - a) Output Voltage is set by resistors RA and RB (see Figure 9). Set $R_B = 6.8$ k ohms and determine R_A from the graph of Figure 11 or from the equation:

$R_A \approx (2 |V_0| - 7) k\Omega$

- b) Output voltage can be varied by making RA adjustable as shown in Figures 9 and 10.
- c) Output voltage, V_O, is determined by the ratio of R_A and R_B therefore optimum temperature performance can be achieved if ${\sf R}_{\sf A}$ and ${\sf R}_{\sf B}$ have the same temperature coefficient.
- d) $V_0 = V_{ref} (1 + R_A)$; therefore the tolerance on RB

output voltage is determined by the tolerance of Vref and R_A and R_B.

- 2. Short-Circuit Current, Isc
 - Short-Circuit Current, I_{SC} is determined by $R_{SC}.\ R_{SC}$ may be chosen with the aid of Figure 11 when using the typical circuit connection of Figure 9. See Figure 27 for current limiting during NPN current boost.

3. Compensation, C_c A 0.001 μF capacitor (C_c, see Figure 9), will provide adequate compensation in most applications, with or without current boost. Smaller values of Cc will reduce stability and larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of Cc should be close to the MC1563/MC1463 with short lead lengths.

 Noise Filter Capacitor, C_n A 0.1 μF capacitor, C_n, from pin 3 to ground will typically
 The value reduce the output noise voltage to 120 µV(rms). The value of Cn can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.

5. Output Capacitor, Co

The value of C_0 should be at least 10 μ F in order to provide good stability.

6 Shutdown Control

One method of turning "OFF" the regulator is to draw 1 mA from pin 2 (See Figure 8). This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at pin 2 will cause automatic shutdown for high junction temperatures (see Figure 35). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MECL , MRTL , MDTL or MTTL* can also be used to turn the regulator "ON" or "OFF" (see Figures 30 and 31).

7. Remote Sensing

The connection to pin 8 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure IL) on zo can be greatly reduced (see Figure 33).

FIGURE 9 - TYPICAL CIRCUIT CONNECTION

FIGURE 10 - RA versus VO

(MC1563 - Pg. 4)

TYPICAL CHARACTERISTICS (continued)

FIGURE 18 - EFFECTS OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL

FIGURE 19 - EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION

FIGURE 20 - INPUT TRANSIENT RESPONSE

100 µs/DIV

FIGURE 21 - LOAD TRANSIENT RESPONSE

(MC1563 - Pg. 6)

OPERATION AND APPLICATIONS

This section describes the operation and design of the MC1563 (MC1463) negative voltage regulator and also provides information on useful applications.

SUBJECT SEQUENCE INDEX

	Specif	ication Pg. No.	Specific	ation Pg. No.
بر ون بر مرد	Theory of Operation	7	Remote Sensing	12
37 27	NPN Current Boosting	9	An Adjustable Zero-Temperature-Coefficient	13
	PNP Current Boosting	10	Voltage Source	
	Positive and Negative Power Supplies	11	Thermal Shutdown	13
	Shutdown Techniques	11	Thermal Considerations	13
	Voltage Boosting	12	PC Board Layout and Information	15

THEORY OF OPERATION

The usual series voltage regulator shown in Figure 23, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 24. The gain-determining resistors may be external, enabling a wide range of output voltages. This is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1563) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulatorwithin-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1563 negative voltage regulator.

FIGURE 24 - The "Regulator-Within-A-Regulator" Approach

(MC1563 - Pg. 7)

FIGURE 25 (Recommended External Circuitry is Depicted With Dotted Lines.)

MC1563 (MC1463) Operation

Figure 25 shows the MC1563 (MC1463) Negative Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k Ω) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator.

8

(MC1563 – Pg. 8)

The shutdown control, in effect, consists of a PNP transistor across the reference zener diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to $V_{in}/60 \ k\Omega$ or 500 μ A for a -30 V input.

Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately -3.5 Vdc with a typical temperature coefficient of 0.002%/0C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (R_A and R_B) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, C_n , is introduced externally into the level shift network (via pin 3) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is $0.1 \, \mu F$ and should have a voltage rating in excess of the desired output voltage. Smaller capacitors ($0.001 \, \mu F$ minimum) may be used but will cause a slight increase in output noise. Larger values of C_n will reduce the noise as well as delay the start-up of the regulator.

Output Regulator

The output of the shift amplifier is fed internally to the noninverting input of the output error amplifier. The

GND μF Şв₿ 6.8 k з ase 1 ₹∠ 9 RL MC1563R ٢ c, MC1463R 8 100 C, 6 0.001 ٧o Vin Rsc 2N3771 or Equiv

FIGURE 26 - Typical NPN Current Boost Connection

inverting input to this amplifier is the Output Sense connection (pin 8) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, R_{SC} , is connected in the emitter of this transistor to sample the full load current. This connection enables a four-diode string to limit the drive current to the power transistors in a conventional manner.

Stability and Compensation

As has been seen, the MC1563 employs two amplifiers, each using negative feedback. This implies the possibility of frequency instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 7) and pin 5. The recommended value of 0.001 μ F will insure stability and still provide acceptable transient response (see Figure 21). It is also necessary to use an output capacitor, C₀ (typically 10 μ F) directly from the output (pin 6) to ground. When an external transistor is used to boost the current, C₀ = 100 μ F is recommended (see Figure 26).

NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 26, are recommended. The circuit shown in Figure 26 can supply up to approximately 4.0 amperes (subject to safe area limitations). At higher currents the V_{BE} of the pass transistor may itself exceed the threshold of the current limit even for R_{SC} = 0. Figure 2 illustrates the use of an additional external diode from pin 4 for higher current operation or for pass transistors exhibiting higher V_{BE}'s. It will probably be necessary to determine R_{SC} experimentally for each case where a pass transistor is used because V_{BE} varies from device to device.

The circuit of Figure 26 when set up for a -10 V output

 $(R_A = 13 \text{ k}\Omega)$ supply and operating with a – 15 V input, with a R_{sc} of 0.1 Ω , will yield a change in output voltage of only 26 mV over a load current range of from 1 mA to 3.5 A. This corresponds to a dc output impedance of only 7.5 milliohms or a percentage load regulation of 0.26% for a full 3.5-ampere load current change. Figure 27 indicates how the short circuit current varies with the value of R_{sc} for this circuit.

PNP CURRENT BOGSTING

A PNP power transistor can also be used to boost the load current capabilities. To improve the efficiency of the PNP boost configuration, particularly for small output voltages, the circuit of Figure 28, is recommended. An auxiliary -9 volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 10-ampere regulator of Figure 28 this represents a savings of 22 watts when compared with operating the regulator from the single -9 V supply. It can supply current to 10 amperes while requiring an input voltage to the collector of the pass transistor of -6.8 volts minimum. The pass transistor is limited to 10 amperes by the added short-circuit current network in its emitter (R_{sc2}) and the IC regulator is limited to 500 mA in the conventional manner (R_{sc1}). The MJ450 exhibits a minimum hFE of 20 at 10 amperes, thus requiring only 500 mA from the MC1563R. Regulation of this circuit is comparable to that of the NPN boost configuration.

For higher output voltages the additional unregulated power supply is not required. The collector of the PNP boost transistor can tie directly to pin 5 and the internal current limit circuit will provide short-circuit protection using R_{sc} (see Figure 11). Transistor Q2 and R_{sc2} will not be required and pin 2 should be returned to ground.

FIGURE 29 - A ± 15 Vdc Complementary Tracking Regulator With Auxiliary +5.0 V Supply

(MC1563 - Pg. 10)

POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1563 is driven from a floating source it is possible to use it as a positive regulator by grounding the negative output terminal. The MC1563 may also be used with the MC1569 to provide completely independent positive and negative power regulators with comparable performance. When used in this manner a silicon diode such as the 1N4001 must be connected as a clamp on the output with the cathode to ground and the anode to the negative output voltage. This is to prevent the positive voltage in the system from forcing the output to a positive value and preventing the MC1563 from starting up.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 29 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3 k-ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero, +|VO| must equal -|VO|.

For the configuration shown in Figure 29, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5-volt supply which is boosted to a 2-ampere capability by Q1 and Q2. (The +5-volt supply, as shown,

is not short-circuit protected.) The -15-volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt supply varies 20 mV over the zero to +300-mAdc load current range. The +5-volt supply varies less than 5 mV for $0 \le I_L \le 200$ mA with the other two voltages remaining unchanged. See MC1561 data sheet or MC1569 data sheet for information concerning latch-up when using plus and minus regulations.

SHUTDOWN TECHNIQUES

Pin 2 of the MC1563 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of a PNP transistor: which, if turned "ON", will deny current to all the biasing current sources. This action causes the output to go to essentially zero volts and the only current drawn by the IC regulator will be the small start current through the 60 k-ohm start resistor ($V_{in}/60 \ k\Omega$). This feature provides additional versatility in the applications of the MC1563. Various sub-systems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as over-heating, over-voltage, shorted output, etc.

As an illustration of the first case, consider a system consisting of both positive-supply logic (MTTL) and negative-supply logic (MECL). The MECL logic may be used in a high-speed arithmetic processor whose services are not continuously required. Substantial power may

FIGURE 32 - Voltage Boosting Circuit

thus be conserved if the MECL circuitry remains unpowered except when needed. The negative regulator can be shutdown using any of the standard logic swings. For saturated logic control, Figure 30 shows a circuit that allows the normal positive output swing to cause the regulator to shutdown when the logic output is in the low voltage state. The negative output levels of a MECL gate can also be used for shutdown control as shown in Figure 31.

VOLTAGE BOOSTING

Some applications may require a high output voltage which may exceed the voltage rating of the MC1563. This must be solved by assuring that the IC regulator is operated within its limits. Three points in the regulator need to be considered:

- 1. The input voltage (pin 4),
- 2. the output voltage (pin 6) and,
- 3. the output sense lead (pin 8).

A reduced input voltage can be provided by using a separate supply. The output voltage may be zener-level shifted, and the sense line can tie to a portion of the output voltage through a resistive divider. The voltage boost circuit of Figure 32 uses this approach to provide a -90 volt supply. This circuit will exhibit regulation of 0.001% over a 100 mA load current range.

REMOTE SENSING

The MC1563 offers a remote sensing capability. This is important when the load is remote from the regulator, as the resistances of the interconnecting lines (VEE and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 33 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.

FIGURE 33 - Remote Sensing Circuit

(MC1563 - Pg. 12)

FIGURE 34 - An Adjustable "Zero-TC" Voltage Source

AN ADJUSTABLE ZERO-TEMPERATURE-COEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE

The MC1563, when used in conjunction with low-TC resistors, makes an excellent reference-voltage generator. If the -3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 1 and 9 can be tied together and no resistors are needed. This will provide a voltage reference having a typical temperature coefficient of $0.002\%/^{\circ}$ C. By adding two resistors, R_A and R_B, any voltage between -3.5 Vdc and -37 Vdc can be obtained with the same low TC (see Figure 34)

THERMAL SHUTDOWN

By setting a fixed voltage at pin 2, the MC1563 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the base-emitter junction of the shutdown transistor (-1.9 x) 10^{-3} V/°C). By setting -0.61 Vdc externally, at pin 2, the regulator will shutdown when the chip temperature reaches approximately 140°C. Figure 35 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

In the case where an external pass transistor is employed; its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 36. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application,

FIGURE 35 - Junction Temperature Limiting Shutdown Circuit

the designer must use caution not to exceed the specified maximum junction temperature (+175°C). Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A short-circuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current (500 mA). Care should be taken not to exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 22).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, T_A , or a change in the power dissipated in the IC regulator. The effects of ambient

*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors. temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as $\pm 0.002\%$ /°C, typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

- 1. junction temperature change due to the change in the power dissipation
- 2. output voltage decrease due to the finite output impedance of the control amplifier
- 3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," GCVO, can be used to describe this effect and is typically +0.03%/watt for the MC1563R. For an example of the relative magnitudes of these effects, consider the following conditions:

Given:	MC1563R

with
$$V_{in} = -10 \text{ Vdc}$$

 $V_{O} = -5 \text{ Vdc}$

and $I_L = 100 \text{ mA to } 200 \text{ mA}$

 $(\Delta I_L = 100 \text{ mA})$

assume $T_A = +25^{\circ}C$

TO-66 Type Case with heatsink

FIGURE 36 - Thermal Shutdown When Using External Pass Transistors

(MC1563 - Pg. 14)

assume
$$\theta_{CS} = 0.2^{\circ}C/W$$

and $\theta_{SA} = 2^{\circ}C/W$

It is desired to find the $\triangle VO$ which results from this $\triangle IL$. Each of the three previously stated effects on VO can now be separately considered.

1. $\triangle V_O$ due to $\triangle T_J$ OR $\Delta V_O = (V_O) (\triangle P_D)(TCV_O)(\theta_{JC} + \theta_{CS} + \theta_{SA})$ $\triangle V_O = (5 V)(5 V x 0.1 A)(\pm 0.002\%/^{\circ}C)(19.2^{\circ}C/W)$ $\triangle V_O \approx \pm 1.0 \text{ mW}$ 2. $\triangle V_O$ due to z_O

 $|\triangle V_{\mathbf{O}}| = (-z_{\mathbf{O}})(I_{\mathbf{L}})$ $|\triangle V_{\mathbf{O}}| = -(2 \times 10^{-2})(10^{-1}) = -2 \text{ mV}$ 3. $\bigtriangleup V_O$ due to gradient coefficient, GCV_O

$$\begin{split} |\triangle V_O| &= (GCV_O)(V_O)(\triangle P_D) \\ |\triangle V_O| &= (+3 \times 10^{-4}/W)(5 \text{ volts})(5 \times 10^{-1}W) \\ |\triangle V_O| &= +0.8 \text{ mV} \end{split}$$

Therefore the total ΔV_O is given by

OR $|\Delta V_{O} \text{ total}| = \pm 1.0 - 2.0 + 0.8 \text{ mV}$ $-2.2 \text{ mV} \leq |V_{O} \text{ total}| \leq -0.2 \text{ mV}$

Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

Typical Printed Circuit Board Layout

(MC1563 - Pg. 15)

FIGURE 37 - Location of Components

Note 1:

When Radj is used it is necessary to remove the copper which shorts out Radi.

Note 2:

Extra holes are available in the circuit board to permit two resistors to be paralleled to obtain the desired value of R_{sc}.

Note 3:

If pin 2 is used to shut down the regulator, remove the copper which shorts pin 2 to ground.

Note 4:

Remote sensing can be achieved by removing the copper which shorts pin 8 to pin 6 and connecting pin 8 directly to the "minus" load terminal. The circuit board ground should be connected to the unregulated power supply ground at the "plus" load terminal.

PARTS LIST Component Value Description Select 1/4 or 1/2 watt carbon 6.**8** k Select IRC Model X-201, Mallory Model MTC-1 or equivalent Select 1/2 watt carbon Select For minimum current of 1 mAdc 10 µF Sprague 1500 Series, Dickson D10C series or equivalent 0.1 µF Ceramic Disc - Centralab DDA 104, or equivalent Sprague TG-P10, or equivalent 0.001 µF Jumper MC1563R or MC1463R

Heatsink Thermalloy #6168 B or equivalent Robinson Nugent #0001306 or equivalent (Not Shown) Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1 or equivalent Circuit DOT, Inc. #PC1113 or equivalent 1155 W. 23rd St. Tempe, Arizona 85281

Optional

RA

RB

R_{adj}

 R_{sc}

R΄_L

с_о

c_n

сc J1

Q1

*нs

*Socket

PC Board

(MC1563 - Pg. 16)

MULTI-PURPOSE REGULATORS

Specifications and Applications Information

MONOLITHIC VOLTAGE AND CURRENT REGULATOR

MC1566L MC1466L

This unique "floating" regulator can deliver hundreds of volts – limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466/ MC1566 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance.

- Voltage/Current Regulation with Automatic Crossover
- Excellent Line Voltage Regulation, 0.01% +1.0 mV
- Excellent Load Voltage Regulation, 0.01% +1.0 mV
- Excellent Current Regulation, 0.1% +1.0 mA
- Short-Circuit Protection
- Output Voltage Adjustable to Zero Volts
- Internal Reference Voltage
- Adjustable Internal Current Source

TYPICAL APPLICATIONS

PRECISION WIDE-RANGE VOLTAGE and CURRENT REGULATOR

EPITAXIAL PASSIVATED

See Packaging Information Section for outline dimensions.

Symbol Value Unit Rating Auxiliary Voltage Vaux Vdc MC1466 MC1566 30 35 Power Dissipation (Package Limitation) Derate above $T_A = +50^{\circ}C$ 750 6.0 mW mW/^oC PD $1/_{\theta_{JA}}$ **Operating Temperature Range** °C TA MC1466 0 to +75 -55 to +125 MC1566 οс -65 to +150 Storage Temperature Range T_{stg}

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

ELECTRICAL CHARACTERISTICS (T_A = +25^oC, V_{aux} = +25 Vdc unless otherwise noted)

Characteristic Definition	Characteristic		Symbol	Min	Тур	Max	Units
		2) MC1466 MC1566	V _{aux}	21 20	-	30 35	Vdc
		MC1466 MC1566	laux	1 1	9.0 7.0	12 8.5	mAdc
V _{WXX} 13 MC1466*		MC1466 MC1566	VIR	17.3 17.5	18.2 18.2	19.7 19	Vdc
		MC1466 MC1566	I _{ref}	0.8 0.9	1.0 1.0	1.2 1.1	mAdc
$= \begin{array}{c c} & & & \\ \hline \\ \hline$		MC1466 MC1566	18	1 1	6.0 3.0	12 6.0	μAdc
		MC1466 MC1566	PD	-	-	360 300	mW
, 2N2222 +V. ●	Input Offset Voltage, Voltage Cor Amplifier (See Note 4)	ntrol MC1466 MC1566	V _{iov}	0 3.0	15 15	40 25	mVdc
	Load Voltage Regulation (See Note 5)	MC1466 MC1566	ΔV _{iov}	-	1.0 0.7	3.0 1.0	mV
V _{BUX} 13 WC1466* 13 WC1466* 10 11 12 12 12 12 12 12 12 12 12		MC1466 MC1566	∆V _{ref} /V _{ref}	-	0.015 0.004	0.03 0.01	%
2 	Line Voltage Regulation (See Note 6)	MC1466 MC1566	ΔV _{iov}	-	1.0 0.7	3.0 1.0	mV
$ \begin{array}{c} \downarrow I_{ref} \\ \downarrow I_{ref} \\ R2 \\ 9.5 k \pm 1\% \end{array} \xrightarrow{0.04 k \pm 10} \begin{array}{c} 0.04 \\ C_0 \\ 1.0 \mu F \\ \hline \\ \pm 50 \\ - \\ \pm \\ \end{array} \begin{array}{c} F_L \\ F_L \\ - \\ \hline \\ \end{array} \begin{array}{c} 0 \\ - \\ \end{array} $		MC1466 MC1566	∆V _{ref} /V _{ref}	-	0.015 0.004	0.03 0.01	%
	Temperature Coefficient of Output (T _A = 0 to +75°C) (T _A = -55 to +25°C) (T _A = +25 to +125°C)	ut Voltage MC1466 MC1566 MC1566	TCVo		0.01 0.006 0.004		%/ ^o C
2012222 V m 9 0,1 12 k 10 pF V m 9 12 k 10 pF 200 pF 20	Input Offset Voltage, Current Co Amplifier (See Note 4) (Voltage from pin 10 to pin 11)	MC1466	Vioi	0 3.0	15 15	40 25	mVdc
	Load Current Regulation (See Note 7)	MC1466 MC1566	۵۱۲/۱۲			0.2 0.1	%
		MC1466 MC1566	∆I _{ref}	-	-	1.0 1.0	mAdc
Pins 1 and 4 no connection.	(MC1566L - Pg. 2)						

8

NOTE 1:

The instantaneous input voltage, V_{AUX} , must not exceed the maximum value of 30 volts for the MC1466 or 35 volts for the MC1566. The instantaneous value of V_{aux} must be greater than 20 volts for the MC1566 or 21 volts for the MC1566 or 21 volts for the MC1466 for proper internal regulation. NOTE 2:

The auxiliary supply voltage $V_{\text{aux}},$ must "float" and be electrically isolated from the unregulated high voltage supply, Vin-

NOTE 3

Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship: ١r

$$ef(mA) = \frac{8.55}{R_1 (k\Omega)}$$

NOTE 4:

A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero.

NOTE 5

Load Voltage Regulation is a function of two additive components, ΔV_{iov} and ΔV_{ref} , where ΔV_{iov} is the change in input offset voltage (measured between pins 8 and 9) and ΔV_{ref} is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is:

a. With S1 open (I₄ = 0) measure the value of V_{iov} (1) and Vref (1)

b. Close S1, adjust R4 so that $I_4 = 500 \,\mu\text{A}$ and note Viov (2) and Vref (2).

Then $\Delta V_{iov} = V_{iov} (1) - V_{iov} (2)$

% Reference Regulation =

$$\frac{[V_{ref}(1) - V_{ref}(2)]}{V_{ref}(1)} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$$

Load Voltage Regulation = $\frac{\Delta V_{ref}}{\Delta V_{iov}}$ (100%) + ΔV_{iov} Vref NOTE 6: Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, ΔV_{iov} and ΔV_{ref} (see note 5). The measurement procedure is: a. Set the auxiliary voltage, V_{aux}, to 22 volts for the MC1566 or the MC1466. Read the value of View (1) and Vref (1). Change the V_{aux} to 28 volts for the MC1566 or the MC466 and note the value of V_{iew} (2) and V_{ref}(2). Then compute Line Voltage Regulation: b. $\Delta V_{iov} = \Delta V_{iov} (1) - V_{iov} (2)$ % Reference Regulation = $\frac{[V_{ref}(1) - V_{ref}(2)]}{V_{ref}(1)} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$ Vref (1) Line Voltage Regulation = $\frac{\Delta V_{ref}}{\Delta V_{iov}}$ (100%) + ΔV_{iov} · Vref NOTE 7:

- Load Current Regulation is measured by the following procedure
- a. With S2 open, adjust R3 for an initial load current, $I_L(1)$, such that V_0 is 8.0 Vdc.
- b. With S2 closed, adjust RT for V_0 = 1.0 Vdc and read IL(2). Then Load Current Regulation =

 $[12]^{[12]}$ (100%) + 1_{ref} ¹L(1)

where Iref is 1.0 mAdc, Load Current Regulation is the load in a direction opposite that of load current and does not pass through the current sense resistor, R_s.

FIGURE 5 BLOCK DIAGRAM INTERNAL O 12 REGULATED +11 02 4 φ +18.5 V -О ООТРОТ č +Vaux INTERNAL VOLTAGE REGULATOR REFERENCE CURRENT SOURCE VOLTAGE CONTROL AMPLIFIEF CURRENT CONTROL AMPLIFIER OR OUTPUT AMPLIFIEF INTERNAL COMPENSATION -----O COMPENSATION 69 +7.25 V 08 VOLTAGE SENSE IN 010 01 CURRENT SENSE INPUT INPUT CIRCUIT SCHEMATIC 10 Q2 3.0 19.6 k 🗧 **§** 8.0 k 4.3 k € ₹ 15 k 13 CRE CRI CRE 16 (CRS VB VB2 СВ4 🕊 С В З 🛨 7.5 k 16 k 550 \$ CR2 🛡 30 15 k * CRI 7.25 V 2.2 6 ٧٩ Q3 40 611 010 REFERENCE CURRENT SOURCE VOLTAGE CONTROL AMPLIFIER CURRENT CONTROL AMPLIFIER OUTPUT AMPLIFIER INTERNAL VOLTAGE REGULATOR 0R (MC1566L - Pg. 3)

11. CR6 is recommended when $V_{0}\!>\!150$ Vdc and should be rated such that Peak Inverse Voltage $\!>\!V_{0}.$

(MC1566L - Pg. 4)

OPERATION AND APPLICATIONS

This section describes the operation and design of the MC1566/MC1466 voltage and current regulator and also provides information on useful applications.

SUBJECT SEQUENCE

Theory of Operation Applications Transient Failures Voltage/Current-Mode Indicator

THEORY OF OPERATION

The schematic of Figure 5 can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CR1 and CR5 with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance (VB1 = VB2), the output voltage, (V12 - V7), is at a value that is twice the drop across either of the two diode strings: V12 - V7 = 2 (VCR1 + VCR2 + VCR3 + VCR4). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit.

The voltage controlled current source (Figure 8) is a PNP-NPN composite which, due to the high NPN beta,

FIGURE 7 – REFERENCE VOLTAGE REGULATOR

yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage (VB_2) is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor R1. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between VB₂ and V₁₂, making the ΔVBE 's very small in percentage. Circuit reference voltage is derived from the product of I_R and R_R; if I_R is set at 1 mA (R1 = 8.5 k Ω), then R_R (in k Ω) = V₀. Other values of current may be used as long as the following restraints are kept in mind: 1) package dissipation will be increased by about 11 mW/mA and 2) bias current for the voltage control amplifier is 3 μ A, temperature dependent, and is extracted from the reference current. The reference current should

FIGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE

be at least two orders of magnitude above the largest expected bias current.

Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high-gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, ROS, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of 1/2 milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without ROS, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as:

$$g_{\rm m} = \frac{1}{2r_{\rm e} + R_{\rm E}} \tag{1}$$

where

$$r_e \approx \frac{0.026}{I_E}$$
 and

 R_E = added emitter degenerating resistance.

For $I_E = 0.5 \text{ mA}$,

$$g_{\rm m} = \frac{1}{104 + 30} = \frac{1}{134} = 7.5 \text{ mA/volt.}$$
 (2)

FIGURE 9 - VOLTAGE CONTROL AMPLIFIER

FIGURE 10 - CURRENT CONTROL CIRCUIT

This level is further boosted by the output stage such that in the constant voltage mode overall transconductance is about 300 mA/volt.

A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin 10 while the output current is sampled across RS by pin 11. When II, RS is 15 mV below the reference value, voltage V1 begins to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of V_2/R_S . If V_2 is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Since the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" (1% +1 mA, Figure 11). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than VR. Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor.

8-344

Transistor Q9 and five diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an "OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional stage (Q9) must be included to invert the logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 mA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source.

Note that the negative (substrate) side of the MC1566/MC1466 is 7.25 volts lower than the output voltage, and the reference regulator guarantees that the positive side is 11 volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating" above and below V_0 . VCE across Q9 is only two or three VBE's depending on the number of transistors used in the series pass configuration.

Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Q12 and Q13) have minimum beta's of 20, then the overall regulator transconductance will be:

$$g_{mT} = (400) 300 \text{ mA/volt} = 120 \text{ A/volt}.$$
 (3)

For a change in current of 500 mA the output voltage will drop only:

$$\Delta V = \frac{0.5}{120} = 4.2 \text{ mV}.$$
 (4)

The analysis thus far does not consider changes in V_R due to output current changes. If I_L increases by 500 mA the collector current of Q9 decreases by 1.25 mA, causing the collector current of Q5 to increase by 30 μ A. Accordingly, I_R will be decreased by $\approx 0.30 \mu$ A which will drop the output by 0.03%. This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing I_R. Note again, however, that the maximum power rating of the package must be kept in mind. For example if I_R = 4 mA, power dissipation is

$$P_D = 20 V (8 mA) + (11 V x 3 mA) = 193 mW.$$
 (5)

This indicates that the circuit may be safely operated up to 118° C using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts,

$$P_D = 35 V (8 mA) + 26 V (3 mA) = 358 mW.$$
 (6)

which dictates that the maximum operating temperature must be less than 91°C to keep package dissipation within specified limits.

Line voltage regulation is also a function of the voltage change between pins 8 and 9, and the change of V_{ref} . In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in V_{aux} . Note that line voltage regulation is not a function of V_{in} . Note also that the instantaneous value of V_{aux} must always be between 20 and 35 volts.

Figure 6 shows six external diodes (CR₁ to CR₆) added for protective purposes. CR₁ should be used if the output voltage is less than 20 volts and CR₂, CR₃ are absent. For V₀ higher than 20 volts, CR₁ should be discarded in favor of CR₂ and CR₃. Diode CR₄ prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of such a transistor failure mode seems remote, CR₄ may be deleted. To prevent instantaneous differential and common-mode breakdown of the current sense amplifier, CR₅ must be placed across the current limit resistor R₈.

Load transients occasionally produce a damaging reversal of current flow from output to input $V_0 > 150$ volts (which will destroy the IC). Diode CR₆ prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes CR₁, CR₂, CR₃, and CR₅ may be general purpose silicon units such as 1N4001 or equivalent whereas CR₄ and CR₆ should have a peak inverse voltage rating equal to V_{in} or greater.

APPLICATIONS

Figure 2 shows a typical 0-to-40 volts, 0.5-ampere regulator with better than 0.01% performance, The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the MC1566/ MC1466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 mA.

Figure 1 is a 0-to-15 volts, 10-ampere regulator with the pass transistor configuration necessary to boost the load current to 10 amperes. Note that C_0 has been increased to 1000 μ F following the general rule:

$$C_0 = 100 \ \mu F / A I_L$$

The prime advantage of the MC1566/MC1466 is its use as a high voltage regulator, as shown in Figure 3. This 0-to-250 volts 0.1-ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output pass transistors.

The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of 100 mA, with a V_{CE} approximately equal to 260 volts. Thus this point falls on the dc line of the safe area curve, insuring that the transistor will not enter secondary breakdown.

In this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is short-circuit protected. This is due to the fact that load current is diminished as output voltage drops (V_{CE} increases as V₀ drops) as seen in Figure 15. By careful design the load current at a short, I_{SC} can be made low enough such that the combined V_{CE} (V_{in}) and I_{SC} still falls within the case operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compa-

8

tible with a short-circuit current of 100 mA. Yet current foldback allows us to design for a maximum regulated load current of 500 mA. The pertinent design equations are:

The terms ISC and Ik correspond to the short-circuit current and maximum available load current as shown in Figure 15.

25**0** Vo, OUTPUT VOLTAGE (Vdc) 200 150 100 50

FIGURE 15 - TYPICAL FOLDBACK PERFORMANCE

Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type of wiring is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops do not destroy the excellent regulation of the MC1566/ MC1466.

400 ١ĸ

I_o, OUTPUT CURRENT (mAdc)

TRANSIENT FAILURES

0

0

^Isc

200

In industrial areas where electrical machinery is used the normal ac line often contains bursts of voltage running

from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditions this energy is dissipated across the internal zener connected between pins 9 and 7. This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7-volt zener (CR1) between pin 9 and pin 7. To prevent this failure mode, two solutions have been successfully applied. The first method involves the use of an external zener and resistor that shunt more of the transient energy around the IC (Figure 17). The second method is a transient suppression network consisting of capacitors that equalize high frequency components across both the auxiliary and main supply. Figure 18 illustrates the use of five capacitors for the full wave rectified main supply and Figure 19 uses six capacitors when a full wave bridge is used.

VOLTAGE/CURRENT – MODE INDICATOR

There may be times when it is desirable to know when the MC1566/MC1466 is in the constant current mode or constant voltage mode. A mode indicator can be easily added to provide this feature. Figure 20 shows how a PNP transistor has replaced a protection doide between pins 8 and 9 of Figure 2. When the MC1566/MC1466 goes from constant voltage mode to constant current mode, Vo will drop below V8 and the PNP transistor will turn on. The 1-mA current supplied by pin 8 will now be shunted to ground through R1 in parallel with R2, which provides a control voltage, VC. This voltage VC can then control a Schmitt trigger which drives front panel lamps to indicate "constant current" or "constant voltage."

800

FIGURE 17 - A 0-TO-250 VOLT, 0.1-AMPERE REGULATOR

(MC1566L - Pg. 10)

DUAL VOLTAGE REGULATORS

MC1568 MC1468

MAXIMUM RATINGS (T_C = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol		Unit		
Input Voltage	V _{CC} , V _{EE} 30				Vdc
Peak Load Current	Ірк		mA		
Power Dissipation and Thermal Characteristics		G Package	R Package	L Package	
T _A = +25 ^o C	PD	0.8	2.4	1.0	Watts
Derate above $T_A = +25^{\circ}C$	1/ / JA	5.4	16	6.7	mW/ ⁰ C
Thermal Resistance, Junction to Air	θJA	185	62	150	°C/W
T _C = +25 ^o C	PD	2.1	9.0	2.5	Watts
Derate above $T_{C} = +25^{\circ}C$	1/0 JC	14	61	20	mW/ ⁰ C
Thermal Resistance, Junction to Case	θJC	70	17	50	°C/W
Storage Junction Temperature Range	TJ,Tstg		°C		
Minimum Short-Circuit Resistance	B _{SC} (min)		Ohms		

-

Ambient l'emperature		
MC1468	0 to +75	
MC1568	-55 to +125	

0.0

 $\label{eq:Electrical characteristics} \begin{array}{l} (V_{CC} = +20 \ \text{V}, \ \text{V}_{EE} = -20 \ \text{V}, \ \text{C1} = C2 = 1500 \ \text{pF}, \ \text{C3} = C4 = 1.0 \ \mu\text{F}, \ \text{R}_{\text{SC}}^{-} = \text{R}_{\text{SC}}^{-} = 4.0 \ \Omega, \\ I_{\text{L}}^{+} = I_{\text{L}}^{-} = 0, \ \text{T}_{\text{C}} = +25 \ \text{O} \ \text{curlss otherwise noted.} \end{array} (\text{See Figure 1.})$

			MC1568					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage	v _o	±14.8	±15	±15.2	±14.5	±15	±15.5	Vdc
Input Voltage	Vin	-		±30	-		±30	Vdc
Input-Output Voltage Differential	V _{in} - V _O	2.0	-	-	2.0			Vdc
Output Voltage Balance	V _{Bal}		±50	±150	-	±50	±300	mV
Line Regulation Voltage (Vin = 18 V to 30 V) (Tlow ¹⁰ to Thigh ²⁰)	Reg _{in}			10 20			10 20	mV
Load Regulation Voltage (I _L = 0 to 50 mA, T _J = constant) (T _A = T _{Iow} to T _{high})	RegL	-		10 30	Ξ		10 30	mV
Output Voltage Range L Package (See Figure 4.) R and G Packages (See Figures 2 and 13.)	VOR	±8.0 ±14.5	-	±20 ±20	±8.0 ±14.5		±20 ±20	Vdc
Ripple Rejection (f = 120 Hz)	RR		75			75	1	dB
Output Voltage Temperature Stability (T _{Iow} to T _{high})	TS _{VO}		0.3	1.0		0.3	1.0	%
Short-Circuit Current Limit (R _{SC} = 10 ohms)	ISC		60	-	-	60		mA
Output Noise Voltage (BW = 100 Hz - 10 k Hz)	∨ _N	ł	100	1		100		µV(RMS
Positive Standby Current (V _{in} = +30 V)	[∣] B ⁺		2.4	4.0		2,4	4.0	mA
Negative Standby Current (V _{in} = -30 V)	¹ B ⁻	-	1.0	3.0		1.0	3.0	mA
Long-Term Stability	∆V _O /∆t	-	0.2	-		0.2		%/k Hr

(1) $T_{10W} = 0^{\circ}C$ for MC1468

= -55°C for MC1568

2 $T_{high} = +75^{\circ}C$ for MC1468 = +125^{\circ}C for MC1568

.

TYPICAL APPLICATIONS

FIGURE 1 - BASIC 50-mA REGULATOR

C1 and C2 should be located as close to the device as possible. A 0.1 μF ceramic capacitor (Cin) may be required on the input lines if the device is located an appreciable distance from the rectifier filter capacitors.

C3 and C4 may be increased to improve load transient response and to reduce the output noise voltage. At low temperature operation, it may be necessary to bypass C4 with a 0.1 μF ceramic disc capacitor.

FIGURE 2 - VOLTAGE ADJUST AND BALANCE ADJUST CIRCUIT

FIGURE 4 -- OUTPUT VOLTAGE ADJUSTMENT FOR 8.0 V $\leq |\pm V_0| \leq 14.5$ V (Ceramic-Packaged Devices Only, L Suffix.)

12 10

8.0 ~ 0.028

calculated from R1 R_{int} (ϕ + V_z)

Where: $R_{int} = An$ Internal Resistor = $R_1 = 1 k\Omega$ $\phi = 0.68 V$

Vz = 6.6 V

FIGURE 3 – ±1.5-AMPERE REGULATOR (Short-Circuit Protected, with Proper Heatsinking) (Metal-Packaged Devices Only, R Suffix)

TYPICAL CHARACTERISTICS (V_{CC} = +20 V, V_{EE} = -20 V, V_O = \pm 15 V, T_A = +25^oC unless otherwise noted.)

8-352

$\label{eq:transformation} \begin{array}{l} TYPICAL \ CHARACTERISTICS \ (continued) \\ (V_{CC} = +20 \ V, \ V_{EE} = -20 \ V, \ V_{O} = \pm 15 \ V, \ T_{A} = +25^{o}C \ unless \ otherwise \ noted.) \end{array}$

POSITIVE VOLTAGE REGULATORS

MC1569 MC1469

Specifications and Applications Information

MONOLITHIC VOLTAGE REGULATOR

The MC1569/MC1469 is a positive voltage regulator designed to deliver continuous load current up to 500 mAdc. Output voltage is adjustable from 2.5 Vdc to 37 Vdc. The MC1569 is specified for use within the military temperature range (-55 to $+125^{\circ}$ C) and the MC1469 within the 0 to $+70^{\circ}$ C temperature range.

For systems requiring a positive regulated voltage, the MC1569 can be used with performance nearly identical to the MC1563 negative voltage regulator. Systems requiring both a positive and negative regulated voltage can use the MC1569 and MC1563 as complementary regulators with a common input ground.

- Electronic "Shut-Down" Control
- Excellent Load Regulation (Low Output Impedance 20 milliohms typ)
- High Power Capability: up to 17.5 Watts
- Excellent Temperature Stability: ±0.002 %/°C typ
- High Ripple Rejection: 0.002 %/V typ

The index to the content of this data sheet appears on page 20. See current MCC1569/1469 data sheet for standard linear chip information.

See Packaging Information Section for outline dimensions.

MC1569-Pg. 1

FIGURE 2 -- TYPICAL NPN CURRENT BOOST CONNECTION (V_O = 5.0 Vdc, I_L = 10 Adc [max])

MAXIMUM RATINGS (T_C = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Va	Unit	
Input Voltage MC1469 MC1569		3	Vdc	
		G Package	R Package	
Peak Load Current	I PK	250	600	mA
Current, Pin 2 Current, Pin 9	^I pin 2 ^I pin 9	10 5.0	10 5.0	mA
Power Dissipation and Thermal Characteristics				
$T_{A} = +25^{O}C$	PD	0.68	3.0	Watts
Derate above $T_A = +25^{\circ}C$	1/θ JA	5.44	24	mW/ ^o C
Thermal Resistance, Junction to Air	θJA	184	41,6	°C/W
т _с = +25 ^о С	PD	1.8	17.5	Watts
Derate above $T_{C} = +25^{\circ}C$	1/0 JC	14.4	140	mW/ ^o C
Thermal Resistance, Junction to Case	θJC	69.4	7.15	°C/W
Operating and Storage Junction Temperature	т _ј , т _{stg}	-65 to	+150	°C

OPERATING TEMPERATURE RANGE

Ambient Temperature	Тд		°C
MC1469		0 to +75	
MC1569		-55 to +125	

ELECTRICAL CHARACTERISTICS

 $(T_{C} = +25^{\circ}C \text{ unless otherwise noted}) \text{ (Load Current} = 100 \text{ mA for "R" Package device,} \\ = 10 \text{ mA for "G" Package device,}$

					MC1569			MC1469		
Characteristic	Fig.	Note	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Input Voltage $(T_A = T_{low} \textcircled{1}{0} to T_{high} \textcircled{2})$	4	1	V _{in}	8.5		40	9.0		35	Vdc
Output Voltage Range	4,5		Vo	2.5	-	37	2.5		32	Vdc
Reference Voltage (Pin 8 to Ground)	4		V _{ref}	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential (R _{sc} = 0)	4	2	V _{in} – VO	-	2.1	2.7	-	2.1	3.0	Vdc
Bias Current (I _L = 1.0 mAdc, R ₂ ≈ 6.8 k ohms, I _{IB} = I _{in} - I _L)	4		Iв	-	4.0	9.0		5.0	12	mAdc
Output Noise ($C_N = 0.1 \ \mu$ F, f = 10 Hz to 5.0 MHz)	4		۷N	-	0.160			0.150		mV (rms)
Temperature Coefficient of Output Voltage	4	3	тсуо	-	±0.002	-	24	±0.002		%/ºC
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4		١	1.0 1.0		500 200	1.0 1.0	-	500 200	mAdc
Input Regulation	6	4	Reg _{in}		0.002	0.015	-	0.003	0.030	%/Vo
Load Regulation (T _J = Constant [1.0 mA≤IL≤20 mA]) (T _C = +25°C [1.0 mA≤IL≤50 mA]) R Package G Package	7	5	Reg _{load}		0.4 0.005 0.01	1.6 0.05 0.13		0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (C _c = 0.001 µF, R _{sc} = 1.0 ohm, f = 1.0 kHz, V _{in} = +14 Vdc, V _O = +10 Vdc)	8	6	z _o	-	20	80	-	35	120	milliohms
Shutdown Current (V _{in} = +35 Vdc)	9	1	^I sd	-	70	160	-	140	500	μAdc

(1) $T_{10W} = 0^{\circ}C$ for MC1469 = -55°C for MC1569

(2) $T_{high} = +75^{\circ}C$ for MC1469 = +125°C for MC1569

MC1569-Pg. 2

- Note 2. This parameter states that the MC1569/MC1469 will regulate properly with the input-output voltage differential ($V_{in} V_O$) as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with ($V_{in} V_O$) as low as 2.1 Vdc as shown in the typical column. (See Figure 21.)
- Note 3. "Temperature Coefficient of Output Voltage" is defined as:

MC1569, TCV_O = $\frac{\pm (V_O \max - V_O \min) (100)}{(180^{\circ}C) (V_O @ 25^{\circ}C)} = \%/^{\circ}C$

MC1469, TCV_O =
$$\frac{\pm (V_O \max - V_O \min) (100)}{(75^{\circ}C) (V_O \otimes 25^{\circ}C)} = \%/^{\circ}C$$

The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output

voltage per volt change in the input voltage and is expressed as

Input Regulation =
$$\frac{v_0}{V_0 (v_{in})}$$
 100 (%/V₀),

where v_0 is the change in the output voltage $V_{\dot{O}}$ for the input change $v_{\dot{I}n}.$

The following example illustrates how to compute maximum output voltage change for the conditions given:

$$\begin{aligned} & \text{Reg}_{in} = 0.015 \ \%/V_{O} \\ & V_{O} = 10 \ Vdc \\ & v_{in} = 1.0 \ V(\text{rms}) \\ & v_{o} = (\frac{(\text{Reg}_{in}) \ (v_{in}) \ (V_{O})}{100} \\ & = (0.015) \ (1.0) \ (10) \end{aligned}$$

= 0.0015 V (rms)

Note 5. Load regulation is specified for small (≤+17°C) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation =
$$\frac{|V_0||_L = 1.0 \text{ mA}] - |V_0||_L = 50 \text{ mA}}{|V_0||_L = 1.0 \text{ mA}} \times 100$$

GENERAL DESIGN INFORMATION

1. Output Voltage, VO

- a) For $V_{O} \ge 3.5$ Vdc Output voltage is set by resistors R1 and R2 (see Figure 4). Set R2 = 6.8 k ohms and determine R1 from the graph of Figure 10 or from the equation: R1 ≈ (2 V_{O} - 7) k Ω
- b) For 2.5 ≤ V_Q ≤ 3.5 Vdc Output voltage is set by resistors R1 and R2 (see Figure 5). Resistors R1 and R2 can be determined from the graph of Figure 11 or from the equations:

$R2 \approx 2 (V_0) k\Omega$ $R1 \approx (7 k\Omega - R2) k\Omega$

- c) Output voltage, $V_{\mbox{O}}$ is determined by the ratio of R1 and R2, therefore optimum temperature performance can be achieved if R1 and R2 have the same temperature coefficient.
- d) Output voltage can be varied by making R1 adjustable as shown in Figure 43.
- e) If $V_0 = 3.5$ Vdc (to supply MRTL* for example), tie pins 6, 8 and 9 together. R1 and R2 are not needed in this case.
- 2. Short Circuit Current, Isc

Short Circuit Current, I_{sc} , is determined by R_{sc} . R_{sc} may be chosen with the aid of Figure 12 or the expression:

$$R_{sc} \approx \frac{0.6}{I_{sc}}$$
 ohm

where $\rm I_{SC}$ is measured in amperes. This expression is also valid when current is boosted as shown in Figures 2, 29 and 30.

3. Compensation, C_c

A 0.001 $\mu \rm E$ capacitor, C_c, from pin 4 to ground will provide adequate compensation in most applications, with or with-out current boost. Smaller values of C_c will reduce stability and larger values of C_c will degrade pulse response and out-put impedance versus frequency. The physical location of C_c should be close to the MC1569/MC1469 with short lead lengths.

4. Noise Filter Capacitor, C_N

A 0.1 μ F capacitor, C_N , from pin 7 to ground will typically reduce the output noise voltage to 150 μ V (rms). The value of C_N can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 μ F is recommended.

5. Output Capacitor, CO

The value of C_O should be at least 1.0 μ F in order to provide good stability. The maximum value recommended is a function of current limit resistor R_{sc}:

$$C_{O} \max \approx \frac{250 \, \mu F}{R_{sc}}$$

where R_{SC} is measured in ohms. Values of C_0 greater than this will degrade the pulse response characteristics and increase the settling time.

6. Shut-Down Control

One method of turning "OFF" the regulator is to apply a dc voltage at pin 2. This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output shortcircuiting (see Figures 34, 39 and 40). As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures (see Figure 39). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MRTL, MDTL or MTTL can also be used to turn the regulator "ON" or "OFF". 7. Remote Sensing

The connection to pin 5 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure I_L) on z_0 can be greatly reduced (see Figure 37).

FIGURE 10 - R1 versus VO

MC1569-Pg. 4

0

20

40

60

IL, LOAD CURRENT (mA)

80

TYPICAL CHARACTERISTICS

Unless otherwise noted: $C_N = 0.1 \,\mu\text{F}$, $C_c = 0.001 \,\mu\text{F}$, $C_O = 1.0 \,\mu\text{F}$, $T_C = +25^{\circ}\text{C}$,

MC1569-Pg. 5

100

0

5.0

10

15

20

Vin, INPUT VOLTAGE (VOLTS)

25

30

35 40

TYPICAL CHARACTERISTICS (continued)

Unless otherwise noted: $C_N = 0.1 \,\mu\text{F}$, $C_c = 0.001 \,\mu\text{F}$, $C_O = 1.0 \,\mu\text{F}$, $T_C = +25^{\circ}\text{C}$,

V_{in} nom = +9.0 Vdc, V_O nom = +5.0 Vdc,

IL >200 mA for R package only.

V_{in}, INPUT VOLTAGE (VOLTS) 20.5 18 15.5 = 10 μs tr = tf 13 $C_c = 0.1 \mu F$ $C_{c} = 0.01 \,\mu F$ 9.998

FIGURE 21 - INPUT TRANSIENT RESPONSE

100 µs/DIV

FIGURE 22 - TEMPERATURE DEPENDENCE OF SHORT-CIRCUIT LOAD CURRENT

FIGURE 24 - FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, CO = 2.0 μ F

MC1569-Pg. 6

8-360

OPERATIONS AND APPLICATIONS

This section describes the operation and design of the MC1569 positive voltage regulator and also provides information on useful applications.

SUBJECT SEQUENCE

Theory of Operation NPN Current Boosting **PNP Current Boosting** Switching Regulator Positive and Negative Power Supplies Shutdown Techniques Voltage Boosting Remote Sensing An Adjustable-Zero-Temperature-Coefficient Voltage Source

Thermal Shutdown Thermal Considerations Latch-Up

THEORY OF OPERATION

The usual series voltage regulator shown in Figure 25, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 26. The gain-determining resistors may be external, enabling a wide range of output voltages. This is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1569) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulatorwithin-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1569 positivevoltage regulator.

8

FIGURE 25 - SERIES VOLTAGE REGULATOR

MC1569 Operation

Figure 27 shows the MC1569 Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k Ω) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator. The shutdown control consists of an NPN transistor across the reference zener diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to $V_{in}/60 \text{ k}\Omega$ or 500 μ A for a 30 V input.

Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately 3.5 Vdc with a typical temperature coefficient of 0.002 %/°C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (R I and R2) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, C_N , is introduced externally into the level shift network (via pin 7) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is $0.1 \, \mu F$ and should have a voltage rating in excess of the desired output voltage. Smaller capacitors (0.001 μF minimum) may be used but will cause a slight increase in output noise. Larger values of C_N will reduce the noise as well as delay the start-up of the regulator.

Output Regulator

The output of the level shift amplifier (pin 9) is fed to the noninverting input (pin 6) of the output error amplifier. The inverting input to this amplifier is the Output Sense connection (pin 5) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, R_{SC} , is connected in the emitter of this transistor to sample the full load current. By placing an external low-level NPN transistor. across R_{SC} as shown in Figure 27, output current can be limited to a predetermined value:

$$I_{L} \max \approx \frac{0.6}{R_{sc}} \text{ or } R_{sc} = \frac{0.6}{I_{L} \max}$$

where I_L max is the maximum load current (amperes) and R_{sc} is the value of the current limiting resistor (ohms).

Stability and Compensation

As has been seen, the MC1569 employs two amplifiers, each using negative feedback. This implies the possibility of instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 4) and ground. The recommended value of 0.001 μ F will insure stability and still provide acceptable transient response (see Figure 28, A and B). It is also necessary to use an output capacitor, C_O (typically 1.0 μ F) from the output, V_O, to ground. When an external transistor is used to boost the current, C_O = 1.0 μ F is also recommended (see Figure 2).

TYPICAL NPN CURRENT BOOST CONNECTIONS

FIGURE 29A - 5 VOLT 5-AMPERE REGULATOR

FIGURE 29B - 5-VOLT 5-AMPERE REGULATOR

FIGURE 30 – PNP CURRENT BOOST CONNECTION

NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 29 are recommended. The transistor shown in Figure 29A, the 2N3055 can supply currents to 5.0 amperes (subject, of course, to the safe area limitations). To improve the efficiency of the NPN boost configuration, particularly for small output voltages, the circuit of Figure 29 is recommended. An auxiliary 9.5-volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 5.0 ampere regulator of Figure 29 this represents a savings of 17.5 watts when compared with operating the regulator from the single 9.5 V supply. It can supply current to 5.0 amperes while requiring an input voltage to the collector of the pass transistor is limited to 5.0 amperes by the added short-circuit current network in its emitter (R_{sc}), (Figure 29B).

PNP CURRENT BOOSTING

A typical PNP current boost circuit is shown in Figure 30. Voltages from 2.5 Vdc to 37 Vdc and currents of many amperes can be obtained with this circuit.

Since the PNP transistor must not be turned on by the MC1569 bias current (I_{IB}) the resistor R_{in} must meet the following condition

$$R_{in} < \frac{V_{BE}}{I_{IB}}$$

where V_{BE} is the base-to-emitter voltage required to turn on the PNP pass transistor, (typically 0.6 Vdc for silicon and 0.2 Vdc for germanium).

For germanium pass transistors, a silicon diode may be placed in series with the emitter to provide an additional voltage drop. This allows a larger value of R_{in} than would be possible if the diode were omitted. The diode will, however, be required to carry the maximum load current.

SELF-OSCILLATING SWITCHING REGULATOR

In all of the current boosting circuits shown thus far it has been assumed that the input-output voltage differential can be minimized to obtain maximum efficiency in both the external pass element as well as the MC1569. This may not be possible in applications where only a single supply voltage is available and high current levels preclude zener diode pre-regulating approaches. In such applications a switching-mode voltage regulator is highly desirable since the pass device is either ON or OFF. The theoretical efficiency of an ideal switching regulator is 100%. Realizable efficiencies of 90% are within the realm of possibility thus obviating the need for large power dissipating components. The output voltage will contain a ripple component; however, this can be made quite small if the switching frequency is made relatively high so filtering techniques are effective. Figure 31 shows a functional diagram for a self-oscillating voltage regulator. The comparator-driver will sense the voltage across the inductor, this voltage being related to the load current, IL, by

MC1569-Pg. 10

$$L \frac{dI_L}{dt} = V$$

For a first approximation this can be assumed to be a linear relationship.

Initially, V_O will be low and Q1 will be ON. The voltage at the non-inverting input will approach $\beta_1 V_{in}$, when:

$$\beta_1 \mathbf{V}_{\text{in}} = \frac{\mathbf{V}_{\text{ref}} \mathbf{R}_a}{\mathbf{R}_a + \mathbf{R}_b} + \frac{\mathbf{V}_c \mathbf{R}_b}{\mathbf{R}_a + \mathbf{R}_b}$$

When this output voltage is reached the comparator will switch, turning Q1 OFF. The diode, CR1, will now become forward biased and will supply a path for the inductor current. This current and the sense voltage will start to decrease until the output voltage reaches

$$\beta_2 V_{in} = \frac{V_{ref}R_a}{R_a + R_b}$$

where the comparator will again switch turning Q1 ON, and the cycle repeats. Thus the output voltage is approximately V_{ref} plus a ripple component.

The frequency of oscillation can be shown to be

$$f = \frac{V_{O} (V_{in} - V_{O})}{L V_{C} l(max) - l_{O}}$$
(1)

where

I (max) = The maximum value of inductor current

 I_{O} = The minimum inductor current.

Normally this frequency will be in the range of approximately 2 kHz to 6 kHz. In this range, inductor values can be small and are compatible with the switching times of the pass transistor and diode. The switching time of the comparator is quite fast since positive feedback aids both turn-on and turn-off times. The limiting factors are the diode and pass transistor rise and fall times which should be quite fast or efficiency will suffer.

Figure 32 shows a self oscillating switching regulator which in many respects is similar to the PNP current boost previously discussed. The 6.8 k Ω resistor in conjunction with R1 sets the reference voltage, V_{ref}. Q1 and CR1 are selected for fast switching times as well as the necessary power dissipation ratings. Since a linear inductor is assumed, the inductor cannot be allowed to saturate at maximum load currents and should be chosen accordingly. If core saturation does occur, peak transistor and diode currents will be large and power dissipation will increase.

FIGURE 31 – BASIC SELF-OSCILLATING SWITCHING REGULATOR

Co

As a design center is required for a practical circuit, assume the following requirements:

$$V_0 = +10$$
 Volts

 $\Delta V_0 = 50 \text{ mV}$

f≅5 kHz

I(max) = 1.125 A

 $I_0 = 1 A$

$$\Delta V \approx V_{\rm in} \frac{R_{\rm b}}{R_{\rm a}}.$$
 (2)

Using Equation (1), the inductor value can be found:

$$L = \frac{(28-10)}{2(1.125-1)} \frac{10}{28} \left(\frac{1}{5 \times 10^3}\right)$$

\$\approx 7 mH.

For the test circuit, a value of 6 mH was selected. Using for a first approximation

$$C_{O} = \frac{(V_{in} - V_{O})(V_{O})}{8L f^{2} V_{in} (\Delta V)}$$
$$= \frac{(28 - 10)10}{8(7 x 10^{-3})(5 x 10^{3})^{2} (28) (50 x 10^{-3})}$$
$$\approx 95 \,\mu F$$

As shown, a value of $100 \,\mu\text{F}$ was selected. Since little current is required at pin 6, R_a can be large. Assume $R_a = 47 \,k\Omega$ and then use Equation (2) to determine R_b :

$$50 \ge 10^{-3} = \frac{28}{47 \le \Omega} R_b$$

 $R_b = \frac{47}{28} 50 \approx 85\Omega.$

Since the internal impedance presented by pin 9 is on the order of 60Ω , a value of $R_b = 10\Omega$ is adequate.

Diodes CR2, CR3, and R_c may be added to prevent saturation of the error amplifier to increase switching

speed. When the output stage of the error amplifier approaches saturation, CR2 becomes forward biased and clamps the error amplifier. Resistor R_c should be selected to supply a total of 1 mAdc to CR2 and CR3.

To show correlation between the predicted and tested specifications the following data was obtained:

$$V_{in} = +28 (\pm 1\%)$$
 Volts
 $V_O = +10$ Volts
 $\Delta V_O = 60 \text{ mV}$
 $f = 7 \text{ kHz}$
 $@ I_L = 1A$

which checks quite well with the predicted values. R_b can be adjusted to minimize the ripple component as well as to trim the operating frequency. Also this frequency will change with varying loads as is normal with this type of circuit. Pin 2 can still be used for shut-down if so desired. R_{sc} should be set such that the ratio of load current to base drive current is 10:1 in this case $I_1 \approx 100$ mA and $R_{sc} = 6.5\Omega$.

POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1569 is driven from a floating source it is possible to use it as a negative regulator by grounding the positive output terminal. The MC1569 may also be used with the MC1563 to provide completely independent positive and negative voltage regulators with comparable performance.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 33 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3-k ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero, +VO must equal |-VO|.

For the configuration shown in Figure 33, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5-volt supply which is boosted to a 2-ampere capability by Q1 and Q2. (The +5-volt supply, as shown,

is not short-circuit protected.) The -15-volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt supply varies 20 mV over the zero to +300 mAdc load current range. The +5-volt supply varies less than 5 mV for $0 \le I_L \le 200$ mA with the other two voltages remaining unchanged. See page 19 for additional information.

SHUTDOWN TECHNIQUES

Pin 2 of the MC1569 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of an NPN transistor; which, if turned "ON", will turn the zener "OFF" and deny current to all the biasing current sources. This action causes the output to go to essentially zero volts and the only current drawn by the IC regulator will be the small start current through the 60-k-ohm start resistor ($V_{in}/60 \ k\Omega$). This feature provides additional versatility in the applications of the MC1569. Various subsystems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as overheating, over-voltage, shorted output, etc.

To activate shutdown, one simply applies a potential greater than two diode drops with a current capability of 1 mA. Note that if a hard supply (i.e., +3 V) is applied directly to pin 2, the shutdown circuitry will be destroyed since there is no inherent current limiting. Maximum rating for the drive current into pin 2 is 10 mA, while 1 mA is adequate for shutdown.

FIGURE 33 - A ±15 Vdc COMPLEMENTARY TRACKING REGULATOR WITH AUXILIARY +5.0 V SUPPLY

FIGURE 34 - ELECTRONIC SHUT-DOWN USING A MDTL GATE

FIGURE 35 – AUTOMATIC LATCH INTO SHUT-DOWN WHEN OUTPUT IS SHORT-CIRCUITED WITH MANUAL RE-START

Figure 34 shows how the regulator can be controlled by a logic gate. Here, it is assumed that the regulator operates in its normal mode – as a positive regulator referenced to ground – and that the logic gate is of the saturating type, operating from a positive supply to ground. The high logic level should be greater than about 1.5 V and should source no more than 10 mA into pin 2.

The gate shown is of the MDTL type. MRTL and MTTL can also be used as long as the drive current is within safe limits (this is important when using MTTL, where the output stage uses an active pull-up).

In some cases a regulator can be designed which can handle the power dissipation resulting from normal operation but cannot safely dissipate the power resulting from a sustained short-circuit. The circuit of Figure 35 solves this problem by shutting down the regulator when the output is short-circuited.

VOLTAGE BOOSTING

The MC1569 has a maximum output voltage capability of 37 volts which covers the bulk of the user requirements. However, it is possible to obtain higher output voltages. One such voltage boosting circuit is shown in Figure 36.

Since high voltage NPN silicon devices are readily available, the only problem is the voltage limitations of the MC1569. This can be overcome by using voltage shift techniques to limit the voltage to 35 volts across the MC1569 while referencing to a higher output voltage.

The zener diode in the base lead of the NPN device is used to shift the output voltage of the MC1569 by approximately 75 volts to the desired high voltage level, in this case 100 volts. Another voltage shift is accomplished by the resistor divider on the output to accommodate the required 25 volt reference to the MC1569. The 2 k Ω resistor is used to bias the zener diode so the current through the 4.7 k Ω resistor can be controlled by the MC1569. The 1N4001 diode protects the MC1569 from supplying load current under short circuit conditions and Q2 serves to limit base current to Q1. For R_{sc} as shown, the short circuit current will be approximately 100 mA.

In order to use a single supply voltage, $V_{in}(2)$ can be derived from $V_{in}(1)$ with a zener diode, shunt preregulator.

It can be seen that loop gain has been reduced by the resistor divider and hence the closed loop bandwidth will be less. This of course will result in a more stable system, but regulator performance is degraded to some degree.

REMOTE SENSING

The MC1569 offers a remote sensing capability. This is important when the load is remote from the regulator,

as the resistance of the interconnecting lines (V_O and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 37 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.

AN ADJUSTABLE ZERO-TEMPERATURE-COEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE.

The MC1569, when used in conjunction with low TC resistors, makes an excellent reference-voltage generator. If the 3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 8 and 9 can be tied together and no resistors are needed. This will provide a voltage

reference having a typical temperature coefficient of 0.002%/°C. By adding two resistors, R1 and R2, any voltage between 3.5 Vdc and 37 Vdc can be obtained with the same low TC (see Figure 38).

THERMAL SHUTDOWN

By setting a fixed voltage at pin 2, the MC1569 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the baseemitter junction of the shutdown transistor and the diode in series with pin 2 (-3.4×10^{-3} V/°C). By setting 1.0 Vdc externally at pin 2, the regulator will shutdown when the chip temperature reaches approximately +140°C. Figure 39 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

FIGURE 38 - AN ADJUSTABLE "ZERO-TC" VOLTAGE SOURCE

FIGURE 37 – REMOTE SENSING CIRCUIT

FIGURE 39 - JUNCTION TEMPERATURE LIMITING SHUTDOWN CIRCUIT

8-369

MC1569, MC1469 (continued)

In the case where an external pass transistor is employed, its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 40. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application, the designer must use caution not to exceed the specified maximum junction temperature (+150°C). Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A shortcircuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current. Care should be taken not to

*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.

exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 41).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, T_A , or a change in the power dissipated in the IC regulator. The effects of ambient temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as $\pm 0.002\%/^{\circ}C$, typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

- 1. junction temperature change due to the change in the power dissipation
- 2. output voltage decrease due to the finite output impedance of the control amplifier
- 3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," GCVO, can be used to describe this effect and is typically -0.06%/watt for the MC1569. For an example of the relative magnitudes of these effects, consider the following conditions:

Given MC1569

with $V_{in} = 10 \text{ Vdc}$

$$V_0 = 5 V_{dc}$$

and $I_L = 100 \text{ mA to } 200 \text{ mA}$ ($\Delta I_L = 100 \text{ mA}$) assume $T_A = +25^{\circ}\text{C}$

TO-66 Case with heatsink

assume $\theta_{CS} = 0.2^{\circ}C/W$

and $\theta_{SA} = 2^{\circ}C/W$

 $\theta_{\rm JC} = 7.15^{\rm o}{\rm C/W}$ (from maximum ratings table)

It is desired to find the ΔV_O which results from this ΔI_L . Each of the three previously stated effects on V_O can now be separately considered.

1. $\Delta V_{\mbox{O}}$ due to $\Delta T_{\mbox{J}}$

 $\Delta V_{O} = (V_{O})(\Delta P_{D})(TCV_{O})(\theta_{JC} + \theta_{CS} + \theta_{SA})$ OR $\Delta V_{O} = (5V)(5 V \times 0.1A)(\pm 0.002\%/^{\circ}C)(9.35^{\circ}C/W)$

 $\Delta V_{O} \approx \pm 0.5 \text{ mV}$

2. ΔV_O due to z_O

 $|\Delta V_0| = (-z_0)(I_L)$

 $|\Delta V_{\rm O}| = -(2 \times 10^{-2})(10^{-1}) = -2 \, \rm mV$

3. ΔV_O due to gradient coefficient, GCV_O

 $|\triangle V_{O}| = (GCV_{O})(V_{O})(\triangle P_{D})$

 $|\Delta V_0| = (-6 \times 10^{-4}/W)(5 \text{ volts})(5 \times 10^{-1}W)$

 $|\Delta V_{O}| = -1.6 \text{ mV}$

Therefore the total ΔV_{O} is given by

 $|\Delta V_{O} \text{ total}| = \pm 0.5 - 2.0 - 1.6 \text{ mV}$

OR

 $-4.1 \text{ mV} \leq |V_{O} \text{ total}| \leq -3.1 \text{ mV}$

Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

MC1569-Pg. 17

MC1569, MC1469 (continued)

FIGURE 42 - LOCATION OF COMPONENTS

 ${}^{*}C_{i}$ – May be required if long input leads are used.

MC1569-Pg. 18

MC1569, MC1469 (continued)

Component	Value	Description						
R1 R2	Select 6.8 k	1/4 or 1/2 watt carbon						
*RA	Select	IRC Model X-201 Mallory Model MTC-1 or equivalent						
R _{sc}	Select	1/2 watt carbon						
*RL'	Select	For minimum current of 1 mAdc						
сo	1.0 μF	Sprague 1500 Series, Dickson D10C series or equivalent						
C _N C _c *C _i	0.1 µF 0.001 µF 0.01 µF	Ceramic Disc — Centralab DDA 104, Sprague TG-P10, or equivalent						
Q1 Q2	MC1569R or MC1469R 2N5223, 2N706, or equivalent							
*HS	_	Heatsink Thermalloy #6168B						
*Socket	(NotShown)	Robinson Nugent #0001306 Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1						
PC Board	_	Circuit Dot, Inc. #PC1113						
*Optional		1155 W. 23rd St., Tempe, Ariz. 85281						

PARTS LIST

LATCH-UP

Latch-up of these and other regulators can occur if:

- 1. There are plus and minus voltagés available
- 2. A load exists between V_0^+ and V_0^- (This "common load" may be something inconspicuous e.g. an operational amplifier. Nearly everyone who uses + and voltages will have a common load from V_{CC} to $V_{EE.}$) 3. V_{in}^+ and V_{in}^- are not applied at the same time.

The above conditions result in one of the two outputs becoming reverse-biased which prevents the regulator from turning ON . Latch-up can be prevented by the circuit configurations shown in Figures 44 and 45.

> FIGURE 44 1N4001 OB EQUIV 2N706 0 F MC1569 MC1469 H - H C01.0 µF ~ 0.001 µF R2 EQUIV (10) 0.1

MC1569-Pg. 19

INDEX

	MC1569 Specification Page No.
Circuit Schematic (MC1569)	8
Complementary Tracking Voltage Regulator	1,12
Dual Power Supplies	1,12
Electrical Characteristics	2
General Design Information	4
Latch-Up	19
Maximum Ratings	2
Mechanical Outline Drawings	2
NPN Current Boost	1,10
PNP Current Boost	10
Printed Circuit Board Layout	17
Shutdown Techniques	4,13
Switching Regulator	10
Theory of Operation	7,8,9
Test Circuits	3
Thermal Considerations	16
Thermal Shutdown	15
Typical Characteristics (Curves)	5,6
Typical Circuit Connection	1,4,18
Voltage Boosting	14
Zero TC Voltage Reference Source	15

MC1569-Pg. 20

.

MC1585L

DUAL CLOCK DRIVER

8

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Voltage Supply Range 1 (See Figure 3)	V _{R1}	10	Vdc
Voltage Supply Range 2 (See Figure 3)	V _{R2}	30	Vdc
Voltage Supply Range 3 (See Figure 3)	V _{R3}	22	Vdc
Input Voltage	V _{in(max)}	10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	т _А	-55 to +125	°C
Power Dissipation Ceramic Package Derate above T _A = +25 ⁰ C	Ρ _D 1/θ JA	1000 6.7	mW mW/ ^o C

FIGURE 3 - SUPPLY VOLTAGE RANGE DEFINITION

SWITCHING CHARACTERISTICS (CL = 1000 pF, TA = $+25^{\circ}$ C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time, Low to High Level	^t PLH	-	75	125	ns
Transition Time, Low to High Level	tTLH	-	75	125	ns
Propagation Delay Time, High to Low Level	^t PHL	-	50	75	ns
Transition Time, High to Low Level	tTHL	-	50	75	ns

The above characteristics were measured with V_{CC1} = 5.0 volts, V_{EE} = -20 volts, V_{CC2} = 0 volts, and C_L = 1000 pF. The switching times are measured as shown in Figure 5.

FIGURE 6 - AC TEST CIRCUIT

MC1585L (continued)

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERIS	TICS							т	EST CU	RRENTAN	DVOLT	AGE VAL	UES		
$(T_A = +25^{\circ}C \text{ unless otherwise noted})$ (Pin 2 is shorted to pin 3 and pin 5 is						Function	Lo Cur	ad rents		iput tages		Supply V	oltages		
ed to pin 6.)						Symbol	ιон	10L	VIL	⊻ін	VCC1L	VCC1H	VEE	V _{CC2}	
						Unit	m	A			Vol	ts			
		Pin Under	Τe	st Lim	its	Value	-1.0	+1.0	1.1	1.78	4.5	5.5	-15	+5.0	
Characteristic	Symbol	Test	Min	Тур	Max	Unit	TEST	CURR	ENT/VO	LTAGE AF	PLIEDT	O PINS L	ISTED I	BELOW	GND
Input Currents: Forward	μL	8	-	-	-1.6	mA	-	-	8	9		12	11	4	10
Reverse Leakage	Чн	8	-	-	+50	μA	-	-	-	8,9	-	12	11	4	10
Output Voltage: High Output	∨он	7	+3.7	-	-	Volts	7		8	9	12	-	11	4	10
Low Output	VOL	7	-	-	~13.4	Volts		7	-	8,9	-	12	11	4	10
Supply Current V _{CC1} High Output	ICC1H	12			+10	mA	-	-	8,13	9,14		12	11	4	10
V _{CC1} Low Output	ICC1L	12	-		+7.0	mA	-	-		8,9,13,14	-	12	11	4	10
VEE High Output	^I EEH	11	-	-	-25	mA	-		8,13	9,14	-	12	11	4	10
VEE Low Output	IEEL	11	-	-	-64	mA			-	8,9,13,14	-	12	11	4	10
V _{CC2} High Output	ICC2H	4	-	-	+15	mA	-		8,13	9,14	-	12	11	4	10
V _{CC2} Low Output	ICC2L	4	-	-	+57	mA		-	-	8,9,13,14	1000	12	11	4	10

TYPICAL CHARACTERISTICS

FIGURE 8 – MAXIMUM DIFFERENTIAL LEVEL SHIFT POWER DISSIPATION (WITH BOTH INPUTS HIGH)

FIGURE 9 – MAXIMUM DIFFERENTIAL LEVEL SHIFT POWER DISSIPATION (At least one input low)

TYPICAL CHARACTERISTICS (cont.)

FIGURE 11 – MAXIMUM POWER DISSIPATION OF INTERNAL RESISTOR (R3)

FIGURE 12 – MAXIMUM BIAS POWER DISSIPATION IN Q9, Q10 (INDEPENDENT OF OUTPUT STATE)

FIGURE 13 – POWER DISSIPATION OF OUTPUT CURRENT OF ACTIVE PULLUP versus BIAS CURRENT versus VOLTAGE

APPLICATIONS INFORMATION

The total power dissipation in the MOS clock driver is the sum of a dc and an ac component. The total of these components must not exceed the package power dissipation limit at the maximum temperature of operation. The package limitation on power dissipation is shown in Figure 7.

AC Power Dissipation

The ac component of power dissipation is given in equation 1.

$$P_{ac} = C_{L} \cdot [(V_{CC2}) \cdot (V_{EE})]^{2} (PRR)$$
(1)

where
$$\mathbf{C}_{\boldsymbol{L}}$$
 is the load capacitance and PRR is the pulse repetition rate.

DC Power Dissipation

For ease of calculation, the dc power dissipation is divided into two parts: 1) differential level shift power 2) output pullup current source power.

Differential Level Shift Power

In Figure 1 it may be seen that the differential level shift consists of the input PNP transistors, Q1, Q2, Q3, and bias resistor, R1. The values of maximum level shift power versus junction temperature are given in Figures 8 and 9 for several values of VEE and both input conditions. If the duty cycle is defined as in equation 2, the total level shift power is given in equation 3.

Duty Cycle =
$$\frac{\text{Time Both Inputs are High}}{\text{Total Time}}$$
 (2)

Level Shift Power = (Value from Figure 8) • (Duty Cycle)+ (3) (Value from Figure 9) • (1-Duty Cycle)

Output Pullup Current Source

The output pullup current source consists of transistors Q9, Q10 and resistor R3. The power dissipated in the output pullup current

APPLICATIONS INFORMATION (continued)

source depends upon temperature, supply voltages, bias current drawn from the collector-base short of transistor Q10 and output logic level. Neglecting the emitter-base drop of transistor Q10 the value of bias current is determined from equation 4.

$$I_{1B} = \frac{V_{CC2} - V_{EE}}{R3}$$
(4)

If the internal bias resistor is used the maximum value of bias current versus temperature is as shown in Figure 10. The maximum power dissipated in the internal bias resistor and the maximum power dissipated in Q9 and Q10 (due to bias current) are independent of output logic level and are shown in Figures 11 and 12. The maximum power dissipation due to collector current in Q9 is approximately zero when the output is high but when the output is low the power dissipation is as shown in Figure 13. The total output pullup current-source power dissipation is thus defined by equation 5.

P(max) current source = (Value from Figure 11) + (Value from	
Figure 12)	(5)
+(Value from Figure 13)x(Duty Cycle)

Example Calculation

Suppose it is desired to use the MOS clock driver in an application which requires the following:

 $V_{CC1} = +5.0 \text{ volts}$ $V_{EE} = -15 \text{ volts}$ $V_{CC2} = +5.0 \text{ volts}$ PRR = 1.0 MHzDuty Cycle = 10%

Load capacitance, 500 pF @ T_A(max) +70^oC A calculation of dc and ac power is necessary to find whether or not package limitations will be exceeded. Since each power dissipation figure either decresses or remains constant with temperature, it is assumed that $T_J \geqslant +25^{\circ}C$ and points at $+25^{\circ}C$ will be used in this calculation. The total differential level-shift power may be found from Figures 8 and 9 and equation 3 to be:

Level-Shift Power = 92.5 mW

If the internal bias resistor is used, Figure 10 shows the value of the bias current to be 4.9 mA, and the power dissipation of the internal bias resistor is found from Figure 11 to be 90 mW.

The power dissipation in Q9 and Q10 due to bias current is found from Figure 12 to be 4.0 mW.

The power dissipation in Q9 when the output is low is found from Figure 13 to be 490 mW.

The total power dissipated in the output pullup current source can now be found from equation 5 to be:

Power (current source) = 143 mW

The total dc dissipation, the sum of differential level-shift dissipation and output pullup current-source dissipation, is 235.5 mW. The ac dissipation may be found from equation 1 to be 200 mW.

The total power dissipation for one clock driver is thus 435.5 mW. If both clock drivers are used in an identical fashion the total package dissipation is 871 mW. Referring to Figure 7 it is seen that safe operation to approximately $+45^{O}C$ is possible. If external resistors are used for R3 to produce the same bias current as above, a net total savings in power dissipation of 180 mW can be made reducing the total package dissipation to 691 mW

MC1590G

HIGH-FREQUENCY CIRCUITS

See MCBC1590/MCB1590F for beam-lead device information.

8

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+18	Vdc
Output Supply	v ₅ , v ₆	+18	Vdc
AGC Supply	VAGC	V _{CC}	Vdc
Differential Input Voltage	V _{in}	5.0	Vdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	680 4.6	mW mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, f = 60 MHz, BW = 1.0 MHz, T_A = +25^oC unless otherwise noted, see Figure 16 for test circuit.)

Characteristic	Symbol	Min	Тур	Max	Unit
AGC Range, V ₂ = 5.0 Vdc to 7.0 Vdc		60	68	-	dB
Single-Ended Power Gain	Gp	40	45	-	dB
Noise Figure (R _s = 50 ohms)	NF	-	6.0	-	dB
Output Voltage Swing (Pin 5) Differential Output – 0 dB AGC -30 dB AGC	V5	-	14 6.0	,	V _{p-p}
Single-Ended Output — 0 dB AGC -30 dB AGC		-	7.0 3.0		
Output Stage Current (Pins 5 and 6)	15 + 16	-	5.6	-	mA
Total Supply Power Current (V ₀ = 0)	Ъ	-	14	17	mAdc
Power Dissipation (V _{in} = 0)	PD	-	168	200	mW

ADMITTANCE PARAMETERS ($V_{CC} = +12 \text{ Vdc}, T_A = +25^{\circ}\text{C}$)

SCATTERING PARAMETERS (V_{CC} = +12 Vdc, T_A = +25^oC, Z_o = 50 Ω)

		Т		
Parameter	Symbol	f = 30 MHz	f = 60 MHz	Unit
Single-Ended Input	911	0.4	0.75	mmhos
Admittance	^b 11	1.2	3.4	
Single-Ended Output	922	0.05	0.1	mmho
Admittance	b22	0.50	1.0	
Forward Transfer	Ψ21	150	150	mmhos
Admittance (Pin 1 to Pin 5)	θ21	-45	-105	degrees
Reverse Transfer	912	-0	-0	µmhos
Admittance*	b12	-5.0	-10	

[•] The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance (including test circuit) is 0.025 pF and is a more practical value for design calculations than the internal feedback of the device alone. (See Figure 6)

		Τy		
Parameter	Symbol	f = 30 MHz	f = 60 MHz	Unit
Input Reflection Coefficient	S11	0.95	0.93	
	θ11	-7.3	-16	degrees
Output Reflection	S22	0.99	0.98	-
Coefficient	θ22	-3.0	-5.5	degrees
Forward Transmission	S21	16.8	14.7	
Coefficient	θ21	128 ·	64.3	degrees
Reverse Transmission	S12	0.00048	0.00092	
Coefficient	θ12	84.9	79.2	degrees

 $\label{eq:VCC} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = 12 \mbox{ Vdc}, \mbox{ T}_{A} = +25^{o} \mbox{C} \mbox{ unless otherwise noted}) \end{array}$

(See test circuit, Figure 16) 80 24 70 ID, POWER SUPPLY CURRENT (mAdc) f = 60 MHz 18 60 G_p, POWER GAIN (dB) 50 40 Ap 12 30 20 6.0 10 ۵ 0 0 2.0 4.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (Vdc)

FIGURE 5 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 6 - REVERSE TRANSFER ADMITTANCE versus FREQUENCY (See Parameter Table, page 2 of MC1590 specification)

FIGURE 8 - SINGLE-ENDED OUTPUT ADMITTANCE

FIGURE 7 - NOISE FIGURE versus FREQUENCY

FIGURE 9 - SINGLE-ENDED INPUT ADMITTANCE

TYPICAL CHARACTERISTICS (continued)

8

8-383

TYPICAL CHARACTERISTICS (continued)

FIGURE 15 – S12, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

0.001

0.0015

TYPICAL APPLICATIONS

FIGURE 16 - 60-MHz POWER GAIN TEST CIRCUIT

FIGURE 17 - VIDEO AMPLIFIER

FIGURE 19 - 100-MHz MIXER

Core, (T44-6 Micro Metal or Equiv)

TYPICAL APPLICATIONS (continued) FIGURE 20 – TWO-STAGE 60 MHz IF AMPLIFIER (Power Gain \approx 80 dB, BW \approx 1.5 MHz)

T1: Primary Winding = 15 Turns, #22 AWG Wire, 1/4" ID Air Core Secondary Winding = 4 Turns, #22 AWG Wire, Coefficient of Coupling ≈ 1.0

T2: Primary Winding = 10 Turns, #22 AWG Wire, 1/4'' ID Air Core Secondary Winding = 2 Turns, #22 AWG Wire, Coefficient of Coupling ≈ 1.0

FIGURE 21 - SPEECH COMPRESSOR

MC1594L MC1494L

Specifications and Applications Information

MONOLITHIC FOUR-QUADRANT MULTIPLIER . . . designed for use where the output voltage is a linear product of LINEAR FOUR-QUADRANT two input voltages. Typical applications include: multiply, divide, MULTIPLIER INTEGRATED square root, mean square, phase detector, frequency doubler, balanced CIRCUIT modulator/demodulator, electronic gain control. The MC1594/1494 is a variable transconductance multiplier with MONOLITHIC SILICON internal level-shift circuitry and voltage regulator. Scale factor, input EPITAXIAL PASSIVATED offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection. • Operates With ±15 V Supplies • Excellent Linearity - Maximum Error (X or Y): ± 0.5% (MC1594) -----± 1.0% (MC1494) (top view) • Wide Input Voltage Range - ±10 volts • Adjustable Scale Factor, K (0.1 nominal) • Single-Ended Output Referenced to Ground Simplified Offset Adjust Circuitry ٠ Frequency Response (3 dB Small-Signal) - 1.0 MHz ٠ CERAMIC PACKAGE Power Supply Sensitivity – 30 mV/V typical CASE 620 TYPICAL LINEARITY ERROR FOUR-OUADBANT

	CONTEI Specification	NTS	Specification	
Subject Sequence	Page No.	Subject Sequence	Page No.	
Maximum Ratings	2	AC Operation	8	
Electrical Characteristics	2	DC Applications	9	
Test Circuits	3	AC Applications	11	
Characteristic Curves	4	Definitions	13	
Circuit Description	5	General Information Index	14	
Circuit Schematic	5	Package Outline Dimensions	14	
DC Operation	6			

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+18	Vdc
	v-	-18	
Differential Input Signal	V9-V6	± 6+11 Ry < 30	Vdc
	V10-V13	± 6+11 RX < 30	
Common-Mode Input Voltage			Vdc
V _{CMY} = V ₉ = V ₆	VCMY	±11.5	
V _{CMX} = V ₁₀ = V ₁₃	∨смх	±11.5	
Power Dissipation (Package Limitation)			
T _A = +25°C	PD	750	mW
Derate above $T_A = +25^{\circ}C$	1/θ _{JA}	5.0	mW/ ⁰
Operating Temperature Range	TA		°C
MC1594		-55 to +125	
MC1494		0 to + 75	
Storage Temperature Range	T _{stg}	-65 to +150	°C

 $\begin{array}{c} \textbf{ELECTRICAL CHARACTERISTICS} \ (V^{*}=+15\ V,\ V^{*}=-15\ V,\ T_{\textbf{A}}=+25^{o}\text{C},\ \textbf{R1}=16\ \textbf{k}\Omega,\ \textbf{R}_{\textbf{X}}=30\ \textbf{k}\Omega,\ \textbf{R}_{\textbf{Y}}=62\ \textbf{k}\Omega,\ \textbf{R}_{\textbf{L}}=47\ \textbf{k}\Omega,\ \textbf{unless otherwise noted} \end{array}$

Characteristic	Fig.	Symbol	MC1594			MC1494			
			Min	Тур	Max	Min	Тур	Max	Unit
Linearity Output error in Percent of full scale $-10 \vee \vee_X \ll +10 \vee (\vee_y = \pm 10 \vee)$ $-10 \vee < \vee_X \ll +10 \vee (\vee_X = \pm 10 \vee)$ $T_A = +25^{9}C$	1	ERX or ERY		± 0.3	± 0.5	-	± 0.5	± 1.0	%
$T_A = T_{high}$			Ŧ		± 0.8	-		± 1.3	
T _A = T _{low} ②	2.3.4			+	± 0.8			± 1.3	
Voltage Range (V _X = V _Y = V _{in}) Resistance (X or Y Input) Offset Voltage (X Input) (Note 1) (Y Input) (Note 1) Bias Current (X or Y Input) Offset Current (X or Y Input)	2,3,4	Vin Rin IViox IVioy Ib Ilio	±10 + + + + +	- 300 0.1 0.4 0.5 28	- 1.6 1.6 1.5 150	±10 	300 0.2 0.8 1.0 50	- 2.5 2.5 2.5 400	V _{pk} MΩ V μA
Output Voltage Swing Capability Impedance Offset Voltage (Note 1) Offset Current (Note 1)	3,4	Vo Ro Voo Ioo	±10 - -	 850 0.8 17	- - 1.6 34	±10 - -	 850 1.2 25	- 2.5 52	V _{pk} kΩ V μΑ
Temperature Stability (Drift) T _A = Thigh to Tiow Output Offset (X = 0, Y = 0) Voltage Current X Input Offset (Y = 0) Y Input Offset (X = 0) Scale Factor Total dc Accuracy Drift (X = 10, Y = 10)		ТСV ₀₀ ТСІ ₀₀ TCV _{I0X} TCV _{I0Y} TCK TCE	11111	1.3 27 0.3 1.5 0.07 0.09			1.3 27 0.3 1.5 0.07 0.09		mV/ ^o C nA/ ^o C mV/ ^o C %/ ^o C
Dynamic Response Small Signal (3 dB) X Y Power Bandwidth (47 k) 3 ⁰ Relative Phase Shift 1% Absolute Error	5	BW3dB(X) BW3dB(Y) PBW fø f 0	1111	0.8 1.0 440 240 30			0.8 1.0 440 240 30		MHz kHz
Common Mode Input Swing (X or Y) Gain (X or Y)	6	CMV ACM	±.10.5	-65	+ 1	±10.5	-65	-	V _{pk} dB
Power Supply Current	7	اط+ اط-	1	6.0 6.5	9.0 9.0		6.0 6.5	12 12	mAdc
Quiescent Power Dissipation Sensitivity		Pd S⁺ S⁻	1 1 1	185 13 30	260 50 100		185 13 30	350 100 200	mW mV/V
Regulated Offset Adjust Voltages Positive Negative	7	v tr v tr	+3,5	+4.3	+5.0 -5.0	+3.5	+4.3	+5.0	Vdc
Negative Temperature Coefficient (V_R^+ or V_R^-) Power Supply Sensitivity (V_R^+ or V_R^-)		V _Ř TCV _R SŘ, SŘ	-3,5	-4.3 0.03 0.6	-5.0	-3.5	-4.3 0.03 0.6	-5.0	mV/ ⁰ C mV/V

Note 1: Offsets can be adjusted to zero with external potentiometers. $\underbrace{ 0}_{T_{high}} = \pm 125^{\circ} C \text{ for MC1594} \\ \pm 75^{\circ} C \text{ for MC1494} \\ 0^{\circ} C \text{ for MC1494}$

(MC1594 - Pg. 2)

8

8-390

1.2 Regulator (Figure 15)

The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides two convenient regulated supply voltages which can be used in the offset adjust circuitry. The regulated output voltage at pin 2 is approximately +4.3 V while the regulated voltage at pin 4 is approximately -4.3 V. For optimum temperature stability of these regulated voltages, it is recommended that $|l_2| = |l_4| = 1.0 \text{ mA}$ (equivalent load of 8.6 kΩ). As will be shown later, there will normally be two 20 k-ohm potentiometers and 0.4

The regulator also establishes a constant current reference that controls all of the constant current sources in the MC1594. Note that all current sources are related to current l_1 which is determined by R1. For best temperature performance, R1should be $16~\mathrm{k\Omega}$ so that $l_1 \approx 0.5~\mathrm{mA}$ for all applications.

1.3 Multiplier (Figure 15)

The multiplier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and is discussed in detail in Application Note AN-489, "Analysis and Basic Operation of the MC1595". The result of this analysis is that the differential output current of the multiplier is given by:

$$I_{A} - I_{B} = \Delta I \approx \frac{2V_{X} V_{Y}}{R_{X} R_{Y} I_{1}}$$

Therefore, the output is proportional to the product of the two input voltages.

1.4 Differential Current Converter (Figure 15)

This portion of the circuitry converts the differential output current (I_A-I_B) of the multiplier to a single-ended output current (I_0) :

or

$$I_0 = \frac{2V_X V_Y}{R_X R_Y I_1}$$

The output current can be easily converted to an output voltage by placing a load resistor R_L from the output (pin 14) to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by:

$$V_{0} = \frac{2R_{L}V_{X}V_{Y}}{R_{X}R_{Y}I_{1}} = KV_{X}V_{Y}$$

where K (scale factor) = $\frac{2R_L}{R_X R_Y I_1}$

2. DC OPERATION

2.1 Selection of External Components

For low frequency operation the circuit of Figure 16 is recommended. For this circuit, $R_X=30\,k\Omega,\,R_Y=62\,k\Omega,\,R1=16\,k\Omega$ and hence $I_1\approx 0.5\,$ mA. Therefore, to set the scale factor, K, equal to 1/10, the value of R_L can be calculated to be:

$$K = \frac{1}{10} = \frac{2RL}{RXRY11}$$

or
$$R_{L} = \frac{R_{X}R_{Y}I_{1}}{(2)(10)} = \frac{(30 \text{ k})(62 \text{ k})(0.5 \text{ mA})}{20}$$

RL = 46.5 k

Thus, a reasonable accuracy in scale factor can be achieved by making R_1 a fixed 47 k Ω resistor. However, if it is desired

FIGURE 16 – TYPICAL MULTIPLIER CONNECTION

that the scale factor be exact, R_L can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to 1/10. This is merely a convenient factor to use if the V_X and V_Y input voltages are expected to be large, say ±10 V. Obviously with V_X = V_Y = 10 V and a scale factor of unity, the device could not hope to provide a 100 V output, so the scale factor of ten. For many applications it may be desirable to set K = 1/2 or K = 1 or even K = 100. This can be accomplished by adjusting R_X, R_Y and R_L appropriately.

The selection of R_L is arbitrary and can be chosen after resistors R_X and R_Y are found. Note in Figure 16 that R_Y is 62 kΩ while R_X is 30 kΩ. The reason for this is that the "Y" side of the multiplier exhibits a second order non-linearity whereas the "X" side exhibits a simple non-linearity. By making the R_Y resistor approximately twice the value of the R_X resistor, the linearity on both the "X" and "Y" sides are made equal. The selection of the R_X and R_Y resistors R_X and R_Y isotrons R_X and R_Y should be selected according to the following equations:

$R_X \ge 3 V_X$ (max) in $k\Omega$ when V_X is in volts

 $R_{Y} \ge 6 V_{Y}$ (max) in $k\Omega$ when V_{Y} is in volts

For example, if the maximum input on the "X" side is ± 1 volt, resistor R_X can be selected to be 3 k Ω . If the maximum input on the "Y" side is also ± 1 volt, then resistor R_Y can be selected to be 6 k Ω (6.2 k Ω nominal value). If a scale factor of K = 10 is desired, the load resistor is found to be 47 k Ω . In this example, the multiplier provides a gain of 20 dB.

2.2 Operational Amplifier Selection

The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor RL to provide a low impedance output voltage from the op-ampl. Since the offset current and bias currents of the op-ampl. will cause errors in the output voltage, particularly with temperature, one with very low bias and offset currents is recommended. The MC1566/MC1456 or MC1741/MC1741C are excellent choices for this application.

Since the MC1594 is capable of operation at much higher frequencies than the op-ampl., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-ampl.

2.3 Stability

The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stray or input capacitance at the multiplier output adds additional phase shift. It may therefore be necessary to add (particularly in the case of internally compensated op-ampls.) a small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with R_L should be adequate to insure stability over production and temperature variations, etc.

An externally compensated op-ampl. might be employed using slightly heavier compensation than that recommended for unity-gain operation.

2.4 Offset Adjustment

The non-inverting input of the op-ampl.provides a convenient point to adjust the output offset voltage. By connecting this point to the wiper arm of a potentiometer (P3), the output offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure).

The input offset adjustment potentiometers, P1 and P2 will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, 22, 24 and 25).

2.5 Offset and Scale Factor Adjustment Procedure

The adjustment procedure for the circuit of Figure 16 is: A. X Input Offset

- (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "Y" input (pin 9)
- (b) connect "X" input (pin 10) to ground
- (c) adjust X-offset potentiometer, P2 for an ac null at the output

B. Y Input Offset

(a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 10)

(b) connect "Y" input (pin 9) to ground

(c) adjust Y-offset potentiometer, P1 for an ac null at the output

C. Output Offset

(a) connect both "X" and "Y" inputs to ground (b) adjust output offset potentiometer, P3, until the output voltage $\rm V_{0},$ is zero volts dc

- D. Scale Factor
 - (a) apply +10 Vdc to both the "X" and "Y" inputs
 - (b) adjust P4 to achieve –10.00 V at the output (c) apply –10 Vdc to both "X" and "Y" inputs and check for V₀ = –10.00 V
- E. Repeat steps A through D as necessary.

The ability to accurately adjust the MC1594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash.

2.6 Temperature Stability

While the MC1594 provides excellent performance in itself, overall performance depends to a large degree on the quality of the external components. Previous discussion shows the direct dependence on R_X, R_Y, and R_L and indirect dependence ence on R1 (through 1₁). Any circuit subjected to temperature variations should be evaluated with these effects in mind.

2.7 Bias Currents

The MC1594 multiplier, like most linear IC's, requires a dc bias current into its input terminals. The device cannot be capacitively coupled at the input without regard for this bias current. If inputs V_X and V_Y are able to supply the small bias current ($\approx 0.5~\mu A$) resistors, R (Figure 16) can be omitted. If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor R can be any reasonable value up to 100 kΩ. For minimum noise and optimum temperature performance, the value of resistor R should be as low as practical.

2.8 Parasitic Oscillation

When long leads are used on the inputs, oscillation may occur. In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using short leads. The purpose of the network

(MC1594 - Pg. 7)

is to reduce the "Q" of the source-tuned circuits which cause the oscillation.

Inability to adjust the circuit to within the specified accuracy may be an indication of oscillation.

3. AC OPERATION

3.1 General

For ac operation, such as balanced modulation, frequency doubler, AGC, etc., the op-ampl. will usually be omitted as well as the output offset adjust potentiometer. The output offset adjust potentiometer is omitted since the output will normally be ac-coupled and the dc voltage at the output is of no concern providing it is close enough to zero volts that it will not cause clipping in the output waveform. Figure 17

shows a typical ac multiplier circuit with a scale factor $K\!\approx\!1.$ Again, resistor R_X and R_Y are chosen as outlined in the previous section, with R_L chosen to provide the required scale factor.

 $e_x(max) = e_y(max) = .1 V_1$

The offset voltage then existing at the output will be equal to the offset current times the load resistance. The output offset current of the MC1594 is typically 17 μ A and 35 μ A maximum. Thus, the maximum output offset would be about 160 mV.

3.2 Bandwidth

The bandwidth of the MC1594 is primarily determined by two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the output terminal. For the circuit shown in Figure 17, assuming a total output capacitance (C₀) of 10 pF, the 3 dB bandwidth would be approximately 3.4 MHz. If the load resistor were 47 kΩ, the bandwidth would be approximately 340 kHz.

Secondly, a "zero" is present in the frequency response characteristic for both the "X" and "X" inputs which causes the output signal to rise in amplitude at a 6 dB/octave slope at frequencies beyond the breakpoint of the "zero". The "zero" is caused by the parasitic and substrate capacitance which is related to resistors R_X and R_Y and the transistors associated with them. The effect of these transmission

"zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the bypassing of R_X and R_Y at high frequencies. Since the R_Y resistor is approximately twice the value of the R_X resistor, the zero associated with the "Y" input will occur at approximately one octave below the zero associated with the "X" input. For R_X = 30 kΩ and R_Y = 62 kΩ, the zeros occur at 1.5 MHz for the "X" input and 700 kHz for the "Y" input. These two measured breakpoints correspond to a shunt capacitance of about 3.5 pF. Thus, for the circuit of Figure 17, the "X" input zero and "Y" input zero will be at approximately 15 MHz and 7 MHz respectively.

It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found by means of complex convolution in the frequency (Laplace) domain. This means that if the "X" input does not involve a frequency, it is not necessary to consider the "X" side frequency response in the output product. Likewise, for the "Y" side. Thus, for applications such as a wideband linear AGC amplifier which has a dc voltage as one input, the multiplier frequency response has one zero and one pole. For applications which involve an ac voltage on both the "X" and "Y" side, such as a balanced modulator, the product voltage response will have two zeros and one pole, hence, peaking may be present in the output.

From this brief discussion, it is evident that for ac applications; (1) the value of resistors R_X , R_Y and R_L should be kept as small as possible to achieve maximum frequency response, and (2) it is possible to select a load resistor R_L such that the dominant pole (R_L, C_0) cancels the input zero $(R_X, 3.5 \, pF \, or \, R_Y, 3.5 \, pF)$ to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10. Examination of the frequency characteristics of the "X" and "Y" inputs will demonstrate that for videband amplifier applications, the best tradeoff with frequency response and gain is achieved by using the "Y" input for the ac signal.

For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recommended. For modulator-demodulator applications, the MC1596 may be used up to 100 MHz. For wideband multiplier applications, the MC1595 (using small collector loads and ac coupling) can be used.

3.3 Slew-Rate

The MC1594 multiplier is not slew-rate limited in the ordinary sense that an op-ampl. is. Since all the signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. However, it should be noted that the quiscent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation:

Slew-Rate
$$\frac{\Delta V_0}{\Delta T} = \frac{I_0}{C}$$

Thus, if Co is 10 pF, the maximum slew-rate would be:

$$\frac{\Delta V_o}{\Delta T} = \frac{0.5 \times 10^{-3}}{10 \times 10^{-12}} = 50 \text{ V/}\mu\text{s}$$

This can be improved if necessary by addition of an emitterfollower or other type of buffer.

3.4 Phase-Vector Error

All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per se. The phase-vector

(MC1594 - Pg. 8)

error is best explained by an example. If the "X" input is described in vector notation as

X = A 🖞 0⁰

and the "Y" input is described as

Y=В <u>X</u> 0⁰

then the output product would be expected to be

$$V_0 \approx AB \not \leq 0^0$$
 (see Figure 18)

However, due to a relative phase shift between the ''X'' and ''Y'' channels, the output product will be given by

 $V_0 = AB \measuredangle \phi$

Notice that the magnitude is correct but the phase angle of the product is in error. The vector, V, associated with this error is the "phase-vector error". The startling fact about the phase-vector error is that it occurs and accumulates much more rapidly than the amplitude error associated with frequency response. In fact, a relative phase shift of only 0.57° will result in a 1% phase-vector error. For most applications, this error is meaningless. If phase of the output product is not important, such as in the case of double sideband modulation or demodulation, then a 1% phase-vector error will represent a 1% amplitude error at the phase angle of interest.

FIGURE 18 - PHASE-VECTOR ERROR

3.5 Circuit Layout

If wideband operation is desired, careful circuit layout must be observed. Stray capacitance across R_X and R_Y should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit).

4. DC APPLICATIONS

4.1 Squaring Circuit

If the two inputs are connected together, the resultant function is squaring:

$$V_0 = KV^2$$

where K is the scale factor (see Figure 19).

However, a more careful look at the multiplier's defining equation will provide some useful information. The output voltage, without initial offset adjustments is given by:

 $V_0 = K(V_x + V_{iox} - V_{x off}) (V_y + V_{ioy} - V_{y off}) + V_{oo}$

(See "Definitions" for an explanation of terms) With V_x = V_y = V (squaring) and defining

$$x = V_{iox} - V_{xoff}$$

The output voltage equation becomes

 $V_{o} = K V_{x}^{2} + K V_{x} (\epsilon_{x} + \epsilon_{y}) + K \epsilon_{x} \epsilon_{y} + V_{oo}$

This shows that all error terms can be eliminated with only three adjustment potentiometers, eliminating one of the input offset adjustments. For instance, if the "X" input offset adjustment is eliminated, $\epsilon_{\rm X}$ is determined by the internal offset, $V_{\rm IOX},$ but $\epsilon_{\rm Y}$ is adjustable to the extent that the ($\epsilon_{\rm X}+\epsilon_{\rm Y}$) term can be zeroed. Then the output offset adjustment is used to adjust the $V_{\rm OO}$ term and thus zero the remaining error terms. An ac procedure for nulling with three adjustments is:

A. AC Procedure:

- 1. Connect oscillator (1 kHz, 15 Vpp) to input
- Monitor output at 2 kHz with tuned voltmeter and adjust P4 for desired gain (Be sure to peak response of voltmeter)
- Tune voltmeter to 1 kHz and adjust P1 for a minimum output voltage
- Ground input and adjust P3 (output offset) for zero volts dc out
- 5. Repeat steps 1 through 4 as necessary.

(MC1594 - Pg. 9)

B. DC Procedure:

- 1. Set V_X = V_Y = 0 V and adjust P3 (output offset potentiometer) such that V_0 = 0.0 Vdc
- Set V_X = V_Y = 1.0 V and adjust P1 (Y input offset potentiometer) such that the output voltage is -0.100 volts
- 3. Set $V_X = V_Y = 10$ Vdc and adjust P4 (load resistor) such that the output voltage is -10.00 volts
- 4. Set $V_X = V_Y = -10$ Vdc and check that $V_O = -10V$ Repeat steps 1 through 4 as necessary.

4.2 Divide

Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21.

The characteristic "failure" mode of the divide circuit is latch-up. One way it can occur is if V_X is allowed to go negative or, in some cases, if V_X approaches zero.

Figure 20 illustrates why this is so. For $V_X > 0$ the transfer function through the multiplier is non-inverting. Its output is fed to the inverting input of the op-ampl. Thus, operation is in the negative feedback mode and the circuit is dc stable. Should V_X change polarity, the transfer function through the multiplier becomes inverting, the amplifier has positive feedback and latch-up results. The problem resulting from

FIGURE 20 - BASIC DIVIDE CIRCUIT USING MULTIPLIER

 $V_{\boldsymbol{X}}$ being near zero is a result of the transfer through the multiplier being near zero. The op-ampl. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up.

The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated, phase reversal results, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clambing the output swing of the op-ampl. to approximately ± 10.7 volts. Five-percent tolerance, 10-volt zeners are used to assure adequate output swing but still limit the output voltage of the Mc1594.

Setting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself. One approach, however, is to break the feedback loop, null out the multiplier circuit, and then close the loop.

A simpler approach, since it does not involve breaking the loop (thus making it more practical on a production basis), is:

- Set V_Z = 0 volts and adjust the output offset potentiometer (P3) until the output voltage (V₀) remains at some (not necessarily zero) constant value as V_X is varied between +1.0 volt and +10 volts.
- 2. Maintain V_Z at 0 volts, set V_X at +10 volts and adjust the Y input offset potentiometer (P1) until $V_0 = 0$ volts.
- 3. With V_X = V_Z, adjust the X input offset potentiometer (P2) until the output voltage remains at some (not necessarily 10 volts) constant value as V_Z = V_X is varied between +1.0 volt and +10 volts.
- 4. Maintain V_X = V_Z and adjust the scale factor potentiometer (R_L) until the average value of V_o is -10 volts as V_Z = V_X is varied between +1.0 volt and +10 volts.
- Repeat steps 1 through 4 as necessary to achieve optimum performance.

Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomi-

8-395

nator voltage. As a result, if V_X is set to 10 volts and 0.5% accuracy is available, then 5% accuracy can be expected when V_X is only 1 volt.

In accordance with an earlier statement, $V_{\boldsymbol{X}}$ may have only one polarity, positive, while $V_{\boldsymbol{Z}}$ may be either polarity.

4.3 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 23) protects against accidental latch-up.

This circuit too, may be adjusted in the closed-loop mode:

- 1. Set V_Z = -0.01 Vdc and adjust P3 (output offset) for V_O = 0.316 Vdc.
- 2. Set V_Z to -0.9 Vdc and adjust P2 (''X'' adjust) for V₀ = +3 Vdc.
- 3. Set Vz to -10 Vdc and adjust P4 (gain adjust) for V_0 = +10 Vdc.

Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

Note: Operation near zero volts input may prove very inaccurate, hence, it may not be possible to adjust V_0 to 0 but rather only to within 100 to 400 mV of zero.

5. AC APPLICATIONS

5.1 Wideband Amplifier With Linear AGC

If one input to the MC1594 is a dc voltage and a signal voltage is applied to the other input, the amplitude of the output signal can be controlled in a linear fashion by varying the dc voltage. Hence, the multiplier can function as a dc coupled, wideband amplifier with linear AGC control.

In addition to the advantage of Linear AGC control, the multiplier has three other distinct advantages over most other types of AGC systems. First, the AGC dynamic range is theoretically infinite. This stems from the basic fact that with zero volts dc applied to the AGC, the output will be zero regardless of the input. In practice, the dynamic range is limited by the ability to adjust the input offset adjust potentiometers. By using cermet multi-turn potentiometers, a dynamic range of 80 dB can be obtained. The second advantage of the multiplier is that variation of the AGC voltage has no effect on the signal handling capability of the signal port, nor does it alter the input impedance of the signal port. This feature is particularly important in AGC systems which are phase sensitive. A third advantage of the multiplier is that the output-voltage-swing capability and output impedance are unchanged with variations in AGC voltage

The circuit of Figure 24 demonstrates the linear AGC amplifier. The amplifier can handle 1 V(rms) and exhibits a gain of approximately 20 dB. It is AGC'd through a 60 dB dynamic range with the application of an AGC voltage from 0 Vdc to 1 Vdc. The bandwidth of the amplifier is determined by the load resistor and output stray capacitance. For this reason, an emitter-follower buffer has been added to extend the bandwidth in excess of 1 MHz.

5.2 Balanced Modulator

When two-time variant signals are used as inputs, the result-

FIGURE 23 - SQUARE ROOT CIRCUIT

(MC1594 - Pg. 11)

ing output is suppressed-carrier double-sideband modulation. In terms of sinusoidal inputs, this can be seen in the following equation:

 $V_0 = K(e_1 \cos \omega_m t) (e_2 \cos \omega_c t)$

14-

where ω_m is the modulation frequency and ω_c is the carrier frequency. This equation can be expanded to show the suppressed carrier or balanced modulation:

$$V_0 = \frac{K^2 t^2}{2} \left[\cos(\omega_c + \omega_m) t + \cos(\omega_c - \omega_m) t \right]$$

Unlike many modulation schemes, which are non-linear in nature, the modulation which takes place when using the MC1594 is linear. This means that for two sinusoidal inputs, the output will contain only two frequencies, the sum and difference, as seen in the above equation. There will be no spectrum centered about the second harmonic of the carrier, or any multiple of the carrier. For this reason, the filter requirements of a modulation system are reduced to the minimum. Figure 25 shows the MC1594 configuration to perform this function.

Notice that the resistor values for R_X, R_Y, and R_L have been modified. This has been done primarily to increase the bandwidth by lowering the output impedance of the MC1594 and then lowering R_X and R_Y to achieve a gain of 1. The e_c can be as large as 1 volt peak and e_m as high as 2 volts peak. No output offset adjust is employed since we-are interested only in the ac output components.

The input R's are used to supply bias current to the multiplier inputs as well as provide matching input impedance. The output frequency range of this configuration is determined by the 4.7 k ohm output impedance and capacitive loading. Assuming a 6 pF load, the small-signal bandwidth is 5.5 MHz.

The circuit of Figure 25 will provide a typical carrier rejection of \geq 70 dB from 10 kHz to 1.5 MHz.

The adjustment procedure for this circuit is quite simple. (1) Place the carrier signal at pin 10. With no signal applied to pin 9, adjust potentiometer P1 such that an ac null is obtained at the output.

(2) Place a modulation signal at pin 9. With no signal applied to pin 10, adjust potentiometer P2 such that an ac null is obtained at the output.

Again, the ability to make careful adjustment of these offsets will be a function of the type of potentiometers used for P1 and P2. Multiple turn cermet type potentiometers are recommended.

5.3 Frequency Doubler

If for Figure 25 both inputs are identical;

Then the output is given by

$$e_0 = e_m e_c = E^2 \cos^2 \omega t$$

which reduces to

$$e_0 = \frac{E^2}{2} (1 + \cos 2\omega t)$$

This equation states that the output will consist of a dc term equal to one half the peak voltage squared and the second harmonic of the input frequency. Thus, the circuit acts as a frequency doubler. Two facts about this circuit are worthy of note. First, the second harmonic of the input frequency is the only frequency appearing at the output. The fundamental does not appear. Second, if the input is sinusoidal, the output will be sinusoidal and requires <u>no</u> filtering.

The circuit of Figure 25 can be used as a frequency doubler with input frequencies in excess of 2 MHz.

5.4 Amplitude Modulator

The circuit of Figure 25 is also easily used as an amplitude modulator. This is accomplished by simply varying the input offset adjust potentiometer (P1) associated with the modu-

(MC1594 - Pg. 12)

lation input. This procedure places a dc offset on the modulation input of the multiplier such that the carrier still passes thru the multiplier when the modulating signal is zero. The result is amplitude modulation. This is easily seen by examining the basic mathematical expression for amplitude modulation given below. For the case under discussion, with K = 1.

 $e_0 = (E + E_m \cos \omega_m t) (E_c \cos \omega_c t)$

where ${\sf E}$ is the dc input offset adjust voltage. This expression can be written as:

 $e_0 = E_0 [1 + M \cos \omega_C t] \cos \omega_C t$

where
$$E_0 = EE_c$$

and $M = \frac{E_m}{E} = modulation index$

This is the standard equation for amplitude modulation. From this, it is easy to see that 100% modulation can be achieved by adjusting the input offset adjust voltage to be exactly equal to the peak value of the modulation, $E_{\rm m}$. This is done by observing the output waveform and adjusting the input offset potentiometer, P1, until the output exhibits the familiar amplitude modulation waveform.

5.5 Phase Detector

If the circuit of Figure 25 has as its inputs two signals of identical frequency but having a relative phase shift the output will be a dc signal which is directly proportional to the cosine of phase difference as well as the double frequency term.

 $e_c = E_c \cos \omega_c t$

$$e_m = E_m \cos(\omega_c t + \phi)$$

$$e_0 = e_c e_m = E_c E_m \cos \omega_c t \cos (\omega_c t + \phi)$$

or
$$e_0 = \frac{E_c E_m}{2} [\cos\phi + \cos(2\omega_c t + \phi)]$$

The addition of a simple low pass filter to the output (which eliminates the second cosine term) and return of R_L to an offset adjustment potentiometer will result in a dc output voltage which is proportional to the cosine of the phase difference. Hence, the circuit functions as a synchronous detector.

6. DEFINITIONS OF SPECIFICATIONS

Because of the unique nature of a multiplier, i.e., two inputs and one output, operating specifications are difficult to define and interpret. Indebd the same specification may be defined in several completely different ways depending upon which manufacturer is doing the defining. In order to clear up some of this mystery, the following definitions and examples are presented.

6.1 Multiplier Transfer Function

The output of the multiplier may be expressed by this equation:

 $V_{o} = K (V_{x} \pm V_{iox} - V_{xoff}) (V_{y} \pm V_{ioy} - V_{yoff}) \pm V_{oo}$ (1)

where K = scale factor (see 6.5)

V_x = "x" input voltage

 $V_{y} \approx "y"$ input voltage

 $V_{ioy} = "y"$ input offset voltage

Vx off = "x" input offset adjust voltage

 $V_{y \text{ off}} = "\gamma"$ input offset adjust voltage V_{OO} = output offset voltage

The voltage transfer characteristic below indicates "X", "Y" and output offset voltages.

FIGURE 26

6.2 Linearity

Linearity is defined to be the maximum deviation of output voltage from a straight line transfer function. It is expressed as a percentage of full-scale output and is measured for V_X and V_y separately either using an "X-Y" plotter (and checking the deviation from a straight line) or by using the method shown in Figure 1. The latter method nulls the output signal with the input signal, resulting in distortion components proportional to the linearity.

Example: 0.35% linearity means

$$p = \frac{V_X V_Y}{10} \pm (0.0035) (10 \text{ volts})$$

6.3 Input Offset Voltage

ν

The input offset voltage is defined from Equation (1). It is measured for V_x and V_y separately and is defined to be that do input offset adjust voltage ("x" or "y") that will result in minimum ac output when ac (5 Vpp, 1 kHz) is applied to the other input ("y" or "x" respectively). From Equation(1) we have:

 $V_{o(ac)} = K (0 \pm V_{iox} - V_{x off}) (sin \omega t)$

adjust $V_{x \text{ off}}$ so that $(\pm V_{iox} - V_{x \text{ off}}) = 0$.

6.4 Output Offset Current and Voltage

Output offset current (I_{00}) is the dc current flowing in the output lead when $V_X = V_y = 0$ and "X" and "Y" offset voltages are adjusted to zero.

Output offset voltage (Voo) is:

$$V_{00} = I_{00} R_L$$

where RL is the load resistance.

Note: Output offset voltage is defined by many manufacturers with all inputs at zero but without adjusting "X" and "Y" offset voltages to zero. Thus it includes input offset terms, an output offset term and a scale factor term.

6.5 Scale Factor

Scale factor is the K term in Equation (1). It determines the "gain" of the multiplier and is expressed approximately by the following equation.

$$K = \frac{2R_L}{R_XR_YI_1}$$
 where R_X and $R_Y \gg \frac{kT}{qI_1}$

and I₁ is the current out of pin 1.

(MC1594 - Pg. 13)

6.6 Total DC Accuracy

The total dc accuracy of a multiplier is defined as error in multiplier output with dc (\pm 10 Vdc) applied to both inputs. It is expressed as a percent of full scale. Accuracy is not specified for the MC1594 because error terms can be nulled by the user.

6.7 Temperature Stability (Drift)

Each term defined above will have a finite drift with temperature. The temperature specifications are obtained by readjusting the multiplier offsets and scale factor at each new temperature (see previous definitions and the adjustment procedure) and noting the change.

Assume inputs are grounded and initial offset voltages have been adjusted to zero. Then output voltage drift is given by:

6.8 Total DC Accuracy Drift

This is the temperature drift in output voltage with 10 volts applied to each input. The output is adjusted to 10 volts at $T_A=+25^{0}C$. Assuming initial offset voltages have been adjusted to zero at $T_A=+25^{0}C$, then:

$$\begin{split} & \mathsf{V}_{o} = [\mathsf{K} \pm \mathsf{K} \ (\mathsf{TC}\mathsf{K}) \ (\triangle\mathsf{T}) \] \ [10 \ \pm \ (\mathsf{TC}\mathsf{V}_{iox}) \ (\triangle\mathsf{T}) \] \ [10 \ \pm \ (\mathsf{TC}\mathsf{V}_{ioy}) \ (\triangle\mathsf{T}) \] \ [10 \ \pm \ (\mathsf{TC}\mathsf{V}_{oo}) \ (\triangle\mathsf{T}) \] \end{split}$$

6.9 Power Supply Rejection

Variation in power supply voltages will cause undesired variation of the output voltage. It is measured by superimposing a 1-volt, 100-Hz signal on each supply (\pm 15 V) with each input grounded. The resulting change in the output is expressed in mV/V.

6.10 Output Voltage Swing

Output voltage swing capability is the maximum output voltage swing (without clipping) into a resistive load (note-output offset is adjusted to zero).

If an op-ampl. is used, the multiplier output becomes a virtual ground - the swing is then determined by the scale factor and the op-ampl. selected.

GENERAL INFORMATION INDEX

1. CIRCUIT DESCRIPTION

- 1.1 Introduction
- 1.2 Regulator 1.3 Multiplier
- .3 Multiplier
- 1.4 Differential Current Converter

2. DC OPERATION

- 2.1 Selection of External Components
- 2.2 Operational Amplifier Selection
- 2.3 Stability
- 2.4 Offset Adjustment
- 2.5 Offset and Scale Factor Adjustment Procedure
- 2.6 Temperature Stability
- 2.7 Bias Currents
- 2.8 Parasitic Oscillation

3. AC OPERATION

- 3.1 General
- 3.2 Bandwidth
- 3.3 Slew-Rate
- 3.4 Phase-Vector Error 3.5 Circuit Layout
- -----
- 4. DC APPLICATIONS 4.1 Squaring Circuit
- 4.1 Squaring Circuit 4.2 Divide
- 4.3 Square Root
- 5. AC APPLICATIONS
- 5.1 Wideband Amplifier with Linear AGC
- 5.2 Balanced Modulator
- 5.3 Frequency Modulator
- 5.4 Amplitude Modulator
- 5.5 Phase Detector

6. DEFINITIONS OF SPECIFICATIONS

- 6.1 Multiplier Transfer Function
- 6.2 Linearity 6.3 Input Offset Vol
- 6.3 Input Offset Voltage 6.4 Output Offset Current
- 6.4 Output Offset Current and Voltage
- 6.5 Scale Factor
- 6.6 Total DC Accuracy
- 6.7 Temperature Stability (Drift)
- 6.8 Total DC Accuracy Drift
- 6.9 Power Supply Rejection
- 6.10 Output Voltage Swing

(MC1594 - Pg. 14)

MULTIPLIER

MC1595L MC1495L

Specifications and Applications Information

See Packaging Information Section for outline dimensions.

See current MCC1595/1495 data sheet for standard linear chip information.

ELECTRICAL CHARACTERISTICS (V⁺ = +32V, V⁻ = -15 V, T_A = +25^oC, I₃ = I₁₃ = 1 mA, R_X = R_Y = 15 k Ω , R_L = 11 k Ω unless otherwise noted)

Characteristic	R _L = 11 k\2 unl	Figure	Symbol	Min	Тур	Max	Unit
Linearity: Output Error in Percent of Full Scale:		5			.,,,		%
$T_A = +25^{\circ}C$ -10 < V _X < +10 (V _Y = ±10 V)	MC1495		ERX	_	<u>+</u> 1.0	<u>+</u> 2.0	
	MC1595			-	<u>+</u> 0.5	<u>+</u> 1.0	
$-10 < V_Y < +10 (V_X = \pm 10 V)$	MC1495 MC1595		ERY	-	<u>+</u> 2.0 <u>+</u> 1.0	<u>+</u> 4.0 <u>+</u> 2.0	
T _A = 0 to +70 ^o C -10 < V _X < +10 (V _Y = ±10 V)	MC1495		6		<u>+</u> 1.5	_ =	
$-10 < V_X < +10 (V_X = \pm 10 V)$ $-10 < V_Y < +10 (V_X = \pm 10 V)$			E _{RX}	-	<u>+</u> 3.0	_	
$T_A = -55^{\circ}C$ to $+125^{\circ}C$	MC1595						
$-10 < V_X < +10 (V_Y = \pm 10 V) -10 < V_Y < +10 (V_X = \pm 10 V)$			E _{RX} E _{RY}	-	<u>+</u> 0.75 <u>+</u> 1.50		
Squaring Mode Error:		+					
Accuracy in Percent of Full Scale After Offset and Scale Factor Adjustment		5	ESQ				%
$T_A = +25^{\circ}C$	MC1495			-	<u>+</u> 0.75		
$T_A = 0$ to $+70^{\circ}$ C	MC1595 MC1495			-	<u>+</u> 0.5 <u>+</u> 1.0		{
$T_A = -55^{\circ}C$ to +125°C	MC1595				+ 0.75		
Scale Factor (Adjustable)	······		<u> </u>	<u>†</u>			ł
$(K = \frac{2R_L}{I_3R_XR_Y})$			к		0.1		
I3 RX RY		_	ĸ		0.1		-
Input Resistance (f = 20 Hz)	MC1495	7	R _{INX}	-	20		MegOhms
(1 - 20 HZ)	MC1595 MC1495		RINY	-	35 20	-	
	MC1595			-	35	-	
Differential Output Resistance (f = 20 Hz)		8	Ro	-	300		k Ohms
Input Bias Current							
$I_{bx} = \frac{(I_9 + I_{12})}{2}$, $I_{by} = \frac{(I_4 + I_8)}{2}$	MC1495	6	l _{bx}	-	2.0	12	μΑ
2 2	MC1595 MC1495		1.	-	2.0 2.0	8.0 12	
	MC1595		by		2.0	8.0	
Input Offset Current							
lg - l12	MC1495 MC1595	6	liox	-	0.4 0.2	2.0 1.0	μA
I4 - I8	MC1495		liov	-	0.4	2.0	
	MC1595			-	0.2	1.0	
Average Temperature Coefficient of Input Offset Current		6	TC _{lio}				nA/ ⁰ C
$(T_A = 0 \text{ to } +70^{\circ}\text{C})$	MC1495			-	2.0	-	
$(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	MC1595		_	-	2.0	-	
Output Offset Current	MC1495	-6	100		20	100	μΑ
1.14 .21	MC1595			-	10	50	
Average Temperature Coefficient of		6	TClool			-	nA/ ⁰ C
Output Offset Current (T _A = 0 to +70 ^o C)	MC1495				20		
$(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	MC1595				20	-	
Frequency Response		0.10		I			
3.0 dB Bandwidth, R _L = 11 k Ω 3.0 dB Bandwidth, R _L = 50 Ω (Transcon	ductance Bandwidth)	9,10	BW3dB	_	3.0 80		MHz MHz
3° Relative Phase Shift Between V χ and			TBW3 dB		750	-	kHz
1% Absolute Error Due to Input-Output F	Phase Shift		f_{θ}	-	30	-	kHz
Common Mode Input Swing (Either Input)	MC1495	11	CMV	±10.5	±12	_	Vdc
	MC1595			±10.5 ±11.5	±12 ±13	-	
Common Mode Gain		11	Асм		_		dB
(Either Input)	MC1495 MC1595			-40 -50	-50 -60	-	
Common Mode Quiescent		12	V ₀₁	-	21		Vdc
Output Voltage			V _{o2}	-	21	-	
Differential Output Voltage Swing Capabili	ty	9	Vo	-	±14	-	V _{peak}
Power Supply Sensitivity		12	S+ S ⁻	-	5.0 10		mV/V
Power Supply Current		12	17	-	6.0	7.0	mA
· · · · · · · · · · · · · · · · · · ·		12	PD		135	170	mW

Rating	Symbol	Value	Unit
Applied Voltage (V2-V1, V14-V1, V1-V9, V1-V12, V1-V4, V1-V8, V12-V7, V9-V7, V8-V7, V4-V7)	Δ٧	30	Vdc
Differential Input Signal	V ₁₂ -V9 V4-V8	±(6+1 ₁₃ R _X) ±(6+1 ₃ R _Y)	Vdc Vdc
Maximum Bias Current	3 13	10 10	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C	PD	750 5.0	mW mW/ ^o C
Operating Temperature Range	TA		°c
MC1495 MC1595		0 to +70 -55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

TEST CIRCUITS

8-402

TEST CIRCUITS (continued)

FIGURE 8 - OUTPUT RESISTANCE

FIGURE 10 – BANDWIDTH (RL = 50 Ω)

FIGURE 9 – BANDWIDTH (R $_L$ = 11 k Ω)

FIGURE 11 – COMMON-MODE GAIN and COMMON-MODE INPUT SWING

TEST CIRCUITS (continued)

FIGURE 14 - OFFSET ADJUST CIRCUIT (ALTERNATE)

8

TYPICAL CHARACTERISTICS

8-405

8

OPERATION AND APPLICATIONS INFORMATION

1. Theory of Operation

The MC1595 (MC1495) is a monolithic, four-quadrant multiplier which operates on the principle of variable transconductance. The detailed theory of operation is covered in Application Note AN-489, Analysis and Basic Operation of the MC1595. The result of this analysis is that the differential output current of the multiplier is given by

$$I_{A} - I_{B} = \triangle I = \frac{2V_{X}V_{Y}}{R_{X}R_{Y}I_{3}}$$

where I_A and I_B are the currents into pins 14 and 2, respectively, and V_X and V_Y are the X and Y input voltages at the multiplier input terminals.

2. Design Considerations

2.1 General

The MC1595 (MC1495) permits the designer to tailor the multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidth) which may in turn restrict another parameter (e.g. maximum output voltage swing). Each important parameter is discussed in detail in the following paragraphs.

2.1.1 Linearity, Output Error, ERX or ERY

Linearity error is defined as the maximum deviation of output voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below).

For example, if the maximum deviation, $V_{E(max)}$, is $\pm 100 \text{ mV}$ and the full scale output is 10 volts, then the percentage error is

$$E_{R} = \frac{V_{E}(max)}{V_{O}(max)} \times 100 = \frac{100 \times 10^{-3}}{10} \times 100 = \pm 1.0\%.$$

Linearity error may be measured by either of the following methods:

- 1. Using an X Y plotter with the circuit shown in Figure 5, obtain plots for X and Y similar to the one shown above.
- 2. Use the circuit of Figure 4. This method nulls the level shifted output of the multiplier with the original input. The peak output of the null operational amplifier will be equal to the error voltage, VE(max).

One source of linearity error can arise from large signal nonlinearity in the X and Y-input differential amplifiers. To avoid introducing error from this source, the emitter degeneration resistors R_X and R_Y must be chosen large enough so that nonlinear base-emitter voltage variation can be ignored. Figures 17 and 18 show the error expected from this source as a function of the values of R_X and R_Y with an operating current of 1.0 mA in each side of the differential amplifiers (i.e., $I_3 = I_{13} = 1.0$ mA).

2.1.2 3 dB-Bandwidth and Phase Shift

Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low value load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout.

Phase shift in the multiplier circuit results from two sources: phase shift common to both X and Y channels (due to the load resistor-output capacitance pole mentioned above) and relative phase shift between X and Y channels. (due to differences in transadmittance in the X and Y channels). If the input to output phase shift is only 0.6°, the output product of two sine waves will exhibit a vector error of 1%. A 3° relative phase shift between V_X and V_Y results in a vector error of 5%.

2.1.3 Maximum Input Voltage

 $V_{X(max)}, V_{Y(max)}$ maximum input voltages must be such that:

$$V_{X(max)} < I_{13} R_Y$$

$$V_{Y(max)} < I_3 R_Y$$
.

Exceeding this value will drive one side of the input amplifier to "cutoff" and cause non-linear operation.

Currents I₃ and I₁₃ are chosen at a convenient value (observing power dissipation limitation) between 0.5 mA and 2.0 mA, approximately 1.0 mA. Then R_X and R_Y can be determined by considering the input signal handling requirements.

For
$$V_X(max) = V_Y(max) = 10$$
 volts;
 $R_X = R_Y > \frac{10 V}{1.0 mA} = 10 k\Omega$.

211.11.

The equation
$$I_A \cdot I_B = \frac{2V_XV_Y}{R_XR_YI_3}$$

F

is derived from
$$I_A - I_B = \frac{2\sqrt{\chi}\sqrt{\gamma}}{(R_\chi + \frac{2kT}{q_{13}})(R_\gamma + \frac{2kT}{q_{3}})I_3}$$

a. . . .

with the assumption $R_{X} \! \gg \! \frac{2kT}{qI_{13}}$ and $R_{Y} \! \gg \! \frac{2kT}{qI_{3}}$.

At $T_A = +25^{\circ}C$ and $I_{13} = I_3 = 1 \text{ mA}$,

$$\frac{2kT}{q!_{13}} = \frac{2kT}{q!_{3}} = 52 \Omega$$
.

Therefore, with $R_X = R_Y = 10 \ k\Omega$ the above assumption is valid. Reference to Figure 19 will indicate limitations of $V_X(max)$ or $V_Y(max)$ due to V_1 and V_2 . Exceeding these limits will cause saturation or "cutoff" of the input transistors. See Step 4 of Section 3 (General Design Procedure) for further details.

2.1.4 Maximum Output Voltage Swing

The maximum output voltage swing is dependent upon the factors mentioned below and upon the particular circuit being considered.

For Figure 20 the maximum output swing is dependent upon V⁺ for positive swing and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quiescent level for transitors Q_5 , Q_6 , Q_7 , and Q_8 . This potential

MC1595L, MC1495L (continued)

OPERATION AND APPLICATIONS INFORMATION (continued)

should be related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials.

FIGURE 20 - BASIC MULTIPLIER

If an operational amplifier is used for level shift, as shown in Figure 21, the output swing (of the multiplier) is greatly reduced. See Section 3 for further details.

3. General Design Procedure

Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the X and Y inputs to limit the maximum multiplier input to ± 5.0 volts (V $_X = V_Y(max)$) for a ± 10 -volt input (V $_X' = V_Y'(max)$). (See Figure 21). If an overall scale factor of 1/10 is desired, then

$$V_{0} = \frac{V_{X}' V_{Y}'}{10} = \frac{(2V_{X}) (2V_{Y})}{10} = 4/10 V_{X} V_{Y}.$$

Therefore, K = 4/10 for the multiplier (excluding the divider network).

Step 1. The first step is to select current 1₃ and current 1₁₃. There are no restrictions on the selection of either of these currents except the power dissipation of the device. 1₃ and 1₁₃ will normally be one or two milliamperes. Further, 1₃ does not have to be equal to 1₁₃, and there is normally no need to make them different. For this example, let

To set currents I₃ and I₁₃ to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3,

FIGURE 21 - MULTIPLIER WITH OP-AMPL. LEVEL SHIFT

it can be seen that the resistor values necessary are given by:

$$\begin{aligned} R_{13} + 500 \ \Omega &= \frac{|V^-| - 0.7 \ V}{I_{13}} \\ R_3 + 500 \ \Omega &= \frac{|V^-| - 0.7 \ V}{I_3} \\ \text{Let } V^- &= -15 \ V \\ \text{Then } R_{13} + 500 &= \frac{14.3 \ V}{1 \ \text{mA}} \text{ or } R_{13} = 13.8 \ \text{k}\Omega \\ \text{Let } R_{13} &= 12 \ \text{k}\Omega \\ \text{Similarly, } R_3 &= 13.8 \ \text{k}\Omega \\ \text{Let } R_3 &= 15 \ \text{k}\Omega \end{aligned}$$

However, for applications which require an accurate scale factor, the adjustment of R₃ and consequently, 1₃, offers a convenient method of making a final trim of the scale factor. For this reason, as shown in Figure 21, resistor R₃ is shown as a fixed resistor in series with a potentiometer.

For applications not requiring an exact scale factor (balanced modulator, frequency doubler, AGC amplifier, etc.), pins 3 and 13 can be connected together and a single resistor from pin 3 to ground can be used. In this case, the single resistor would have a value of one-half the above calculated value for R 13.

Step 2. The next step is to select ${\sf R}_X$ and ${\sf R}_Y.$ To insure that the input transistors will always be active, the following conditions should be met:

$$\frac{v_X}{R_X} < \iota_{13} \qquad \frac{v_Y}{R_Y} < \iota_3.$$

A good rule of thumb is to make $I_3R_Y \geqslant 1.5~V_{Y(max)}$ and $I_{13}~RX \geqslant 1.5~V_{X(max)}.$

The larger the I_3R_Y and $I_{13}R_X$ product in relation to V_Y and V_X respectively, the more accurate the multiplier will be (see Figures 17 and 18).

Let
$$R_X = R_Y = 10 k\Omega$$

Then
$$I_3R_Y = 10 V$$

since $V_X(max)$ = $V_Y(max)$ = 5.0 volts the value of R_X = R_Y = 10 k Ω is sufficient.

Step 3. Now that $\mathsf{R}_X,\,\mathsf{R}_Y$ and I_3 have been chosen, R_L can be determined:

$$K = \frac{2H_{L}}{R_{X}R_{Y}I_{3}} = \frac{4}{10}$$

or $\frac{(2) (R_{L})}{(10 \text{ k}) (10 \text{ k}) (1 \text{ mA})} = \frac{4}{10}$
Thus $R_{L} = 20 \text{ k}\Omega$.

Step 4. To determine what power-supply voltage is necessary for this application, attention must be given to the circuit schematic shown in Figure 3. From the circuit schematic it can be seen that in order to maintain transistors 0_1 , 0_2 , 0_3 and 0_4 in an active

region when the maximum input voltages are applied (V_X' = V_Y' = 10 V or V_X = 5.0 V, V_Y = 5.0 V), their respective collector voltage should be at least a few tenths of a volt higher than the maximum input voltage. It should also be noticed that the collector voltage of transistors Ω_3 and Ω_4 are at a potential which is two diode-drops below the voltage at pin 1. Thus, the voltage at pin 1 should be about two volts higher than the maximum input voltage. Therefore, to handle +5.0 volts at the inputs, the voltage at pin 1 must be at least +7.0 volts. Let V₁ = 9.0 Vdc.

Since the current following into pin 1 is always equal to 21₃, the voltage at pin 1 can be set by placing a resistor, R_1 from pin 1 to the positive supply:

$$R_{1} = \frac{V^{+} - V_{1}}{2I_{3}}$$
Let $V^{+} = +15 V$
Then $R_{1} = \frac{15 V - 9 V}{(2) (1 \text{ mA})}$
 $R_{1} = 3 \text{ k}\Omega.$

Note that the voltage at the base of transistors Q_5 , Q_6 , Q_7 and Q_8 is one diode-drop below the voltage at pin 1. Thus, in order that these transistors stay active, the voltage at pins 2 and 14 should be approximately halfway between the voltage at pin 1 and the positive-supply voltage. For this example, the voltage at pins 2 and 14 should be approximately 11 volts.

Step 5. Level Shifting

For dc applications, such as the multiply, divide and squareroot functions, it is usually desirable to convert the differential output to a single-ended output voltage referenced to ground. The circuit shown in Figure 22 performs this function. It can be shown that the output voltage of this circuit is given by:

$$V_0 = (12 - 114) R_1$$

And since $I_A - I_B = I_2 - I_{14} = \frac{2I_XI_Y}{I_3} = \frac{2V_XV_Y}{I_3R_XR_Y}$

 $\label{eq:Volume} \begin{array}{l} \mbox{Then} \quad V_o = \frac{2R_LV\chi'V\gamma'}{4R_XR_XI_3} \ \ \, \mbox{where} \ \, V\chi'V\gamma' \ \ \, \mbox{is the voltage at the} \\ \mbox{input to the voltage dividers.} \end{array}$

FIGURE 22 - LEVEL SHIFT CIRCUIT

MC1595L, MC1495L (continued)

OPERATION AND APPLICATIONS INFORMATION (continued)

The choice of an operational amplifier for this application should have low bias currents, low offset current, and a high common-mode input voltage range as well as a high common-mode rejection ratio. The MC1556, and MC1741 operational amplifiers meet these requirements.

Referring to Figure 21, the level shift components will be determined. When $V_X = V_Y = 0$, the currents I_2 and I_{14} will be equal to I_{13} . In Step 3, R_L was found to be 20 k Ω and in Step 4, V_2 and V_{14} were found to be approximately 11 volts. From this information, R_0 can be found easily from the following equation (neglecting the operational amplifiers bias current):

$$\frac{V_2}{R_L} + I_{13} = \frac{V^+ - V_2}{R_0}$$

And for this example, $\frac{11 \text{ V}}{20 \text{ k}\Omega} + 1 \text{ mA} = \frac{15 \text{ V} - 11 \text{ V}}{\text{R}_0}$

Solving for R_0 , $R_0 = 2.6 k\Omega$

Thus, select $R_0 = 3.0 \text{ k}\Omega$

For $R_0 = 3.0 \text{ k}\Omega$, the voltage at pins 2 and 14 is calculated to be

 $V_2 = V_{14} = 10.4$ volts.

The linearity of this circuit (Figure 21) is likely to be as good or better than the circuit of Figure 5. Further improvements are

possible as shown in Figure 23 where R_Y has been increased substantially to improve the Y linearity, and R_X decreased somewhat so as not to materially affect the X linearity, this avoids increasing R_L significantly in order to maintain a K of 0.1.

The versatility of the MC1595 (MC1495) allows the user to to optimize its performance for various input and output signal levels.

4. Offset and Scale Factor Adjustment

4.1 Offset Voltages

Within the monolithic multiplier (Figure 3) transistor baseemitter junctions are typically matched within 1 mV and resistors are typically matched within 2%. Even with this careful matching, an output error can occur. This output error is comprised of X-input offset voltage, Y-input offset voltage, and outputoffset voltage. These errors can be adjusted to zero with the techniques shown in Figure 21. Offset terms can be shown analytically by the transfer function:

$$V_{o} = K(V_{X} \pm V_{IOX} \pm V_{X off}) (V_{Y} \pm V_{IOY} \pm V_{Y off}) \pm V_{oo}$$
⁽¹⁾

Where K = scale factor

V_X = X input voltage V_Y = Y input voltage V_{IOX} = X input offset voltage

VIOY = Y input offset voltage VX off= X input offset adjust voltage

VY off = Y input offset adjust voltage

V₀₀ = output offset voltage.

FIGURE 23 - MULTIPLIER WITH IMPROVED LINEARITY

X, Y and Output Offset Voltages

For most dc applications, all three offset adjust potentiometers (P_1 , P_2 , P_4) will be necessary. One or more offset adjust potentiometers can be eliminated for ac applications (See Figures 28, 29, 30, 31).

If well regulated supply voltages are available, the offset adjust circuit of Figure 13 is recommended. Otherwise, the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes.

4.2 Scale Factor

The scale factor, K, is set by P₃(Figure 21). P₃ varies I₃ which inversely controls the scale factor K. It should be noted that current I₃ is one-half the current through R₁. R₁ sets the bias level for Q₅, Q₆, Q₇, and Q₈ (See Figure 3). Therefore, to be sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting P₃ over wide voltage ranges (see Section 3, General Design Procedure).

4.3 Adjustment Procedures

The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21)

1. X Input Offset

- (a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "Y" input (pin 4)
 - (b) Connect "X" input (pin 9) to ground

(c) Adjust X offset potentiometer, P_2 , for an ac null at the output

2. Y Input Offset

- (a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 9)
 - (b) Connect "Y" input (pin 4) to ground

(c) Adjust "Y" offset potentiometer, P1, for an ac null at the output

3. Output Offset

(a) Connect both "X" and "Y" inputs to ground (b) Adjust output offset potentiometer, P_4 , until the output voltage V_0 is zero volts dc

4. Scale Factor

(a) Apply +10 Vdc to both the "X" and "Y" inputs
(b) Adjust P₃ to achieve + 10.00 V at the output.
5. Repeat steps 1 through 4 as necessary.

The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers P_1 through P_4 . Multi-turn, infinite resolution potentiometers with low-temperature coefficients are recommended.

5. DC Applications

5.1 Multiply The circuit shown in Figure 21 may be used to multiply signals from dc to 100 kHz. Input levels to the actual multiplier are 5.0 V (max). With resistive voltage dividers the maximum could be very large – however, for this application twoto-one dividers have been used so that the maximum input level is 10 V. The maximum output level has also been designed for 10 V (max).

5.2 Squaring Circuit

If the two inputs are tied together, the resultant function is squaring; that is V_0 = $K\,V^2$ where K is the scale factor. Note that all error terms can be eliminated with only three adjustment potentiometers, thus eliminating one of the input offset adjustments. Procedures for nulling with adjustments are given as follows:

1. AC Procedure:

(a) Connect oscillator (1 kHz, 15 Vpp) to input

(b) Monitor output at 2 kHz with tuned voltmeter and adjust $\ensuremath{P_3}$ for desired gain (be sure to peak response of the voltmeter)

(c) Tune voltmeter to 1 kHz and adjust $\ensuremath{\text{P}_1}$ for a minimum output voltage

(d) Ground input and adjust P_4 (output offset) for zero volts dc output

(e) Repeat steps a through d as necessary.2. DC Procedure:

(a) Set $V_X = V_Y = 0$ V and adjust P₄ (output offset

potentiometer) such that $V_0 = 0.0$ Vdc (b) Set $V_X = V_Y = 1.0$ V and adjust P₁ (Y input offset potentiometer) such that the output voltage is +0.100 volts

(c) Set $V_X = V_Y = 10$ Vdc and adjust P₃ such that the output voltage is + 10.00 volts

(d) Set $V_X = V_Y = -10$ Vdc. Repeat steps a through d as necessary.

FIGURE 24 - BASIC DIVIDE CIRCUIT

5.3 Divide Circuit

Consider the circuit shown in Figure 24 in which the multiplier is placed in the feedback path of an operational amplifier. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-) input. Assuming that the bias current of the operational amplifier is negligible, then $I_1 = I_2$ and

$$\frac{KV_XV_Y}{B1} = \frac{-V_Z}{B2}$$
(1)

Solving for V_Y,
$$V_Y = \frac{-R1}{R2} \frac{V_Z}{V_X}$$
 (2)

• •

If R1 = R2

If

$$V_{Y} = \frac{-V_{Z}}{KV_{X}}$$
(3)
B1 = KB2

$$V_{Y} = \frac{-V_{Z}}{V_{Y}} . \tag{4}$$

Hence, the output voltage is the ratio of V_Z to V_X and provides a divide function. This analysis is, of course, the ideal condition. If the multiplier error is taken into account, the output voltage is found to be

$$V_{Y} = -\left[\frac{R1}{R2 \kappa}\right] \frac{V_{Z}}{V_{X}} + \frac{\Delta E}{\kappa V_{X}}, \qquad (5)$$

where ΔE is the error voltage at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set, particularly at small values of Vy. For example, assume that R1 = R2, and K = 1/10. For these conditions the output of the divide circuit is given by:

$$V_{Y} = \frac{-10 V_{Z}}{V_{X}} + \frac{10 \Delta E}{V_{X}}$$
 (6)

From equation 6, it is seen that only when $V_X = 10$ V is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when V_X is small, (0.1 volt) the error voltage of the divide circuit can be expected to be a hundred times the error of the basic multiplier circuit.

In terms of percentage error,

percentage error =
$$\frac{\text{error}}{\text{actual}} \times 100\%$$

or from equation (5),

$$P.E._{D} = \frac{\begin{bmatrix} \Delta E \\ \overline{KV_{X}} \\ \hline R_{2} K \end{bmatrix} \underbrace{V_{Z}}_{V_{X}}} = \begin{bmatrix} R_{2} \\ R_{1} \end{bmatrix} \underbrace{\Delta E}_{V_{Z}} \cdot$$
(7)

From equation 7, the percentage error is inversely related to voltage V_Z (i.e., for increasing values of V_Z, the percentage error decreases).

A circuit that performs the divide function is shown in Figure 25.

Two things should be emphasized concerning Figure 25.

- The input voltage (V'_X) must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of V_Z.
- 2. Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connection shown in Figure 21; necessitated to insure negative feedback around the loop.

A Suggested Adjustment Procedure for the Divide Circuit

- 1. Set $V_Z = 0$ volts and adjust the output offset potentiometer (P₄) until the output voltage (V₀) remains at some (not necessarily zero) constant value as V_X' is varied between +1.0 volt and +10 volts.
- 2. Keep V_Z at 0 volts, set V_X' at +10 volts and adjust the Y input offset potentiometer (P₁) until V₀ = 0 volts.
- 3. Let $V_X' = V_Z$ and adjust the X input offset potentiometer (P₂) until the output voltage remains at some (not necessarily - 10 volts) constant value as $V_Z = V_X'$ is varied between +1.0 and +10 volts.
- 4. Keep $V_X' = V_Z$ and adjust the scale factor potentiometer (P₃) until the average value of V_0 is 10 volts as $V_Z = V_X'$ is varied between +1.0 volt and +10 volts.
- 5. Repeat steps 1 through 4 as necessary to achieve optimum performance.

5.4 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function

FIGURE 26 - BASIC SQUARE ROOT CIRCUIT

as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 27) protects against accidental latch-up.

This circuit also may be adjusted in the closed-loop mode as follows:

- 1. Set V_Z to -0.01 volts and adjust P₄ (output offset) for V₀ = +0.316 volts, being careful to approach the output from the positive side to preclude the effect of the output diode clamping.
- 2. Set Vz to -0.9 volts and adjust P2 (X adjust) for V0 = +3.0 volts.
- 3. Set Vz to -10 volts and adjust P3 (scale factor adjust) for V_0 = +10 volts.
- 4. Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

6. AC Applications

The applications that follow demonstrate the versatility of the monolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units have circuits that, although they optimize dc multiplication operation, can hinder ac applications.

6.1 Frequency doubling often is done with a diode where the fundamental plus series of harmonics are generated. However, extensive filtering is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually is small in magnitude and requires amplification.

When a multiplier is used to double frequency the second harmonic is obtained directly, except for a dc term, which can be removed with ac coupling.

$$e_{0} = KE^{2}\cos^{2}\omega t$$
$$e_{0} = \frac{KE^{2}}{2} (1 + \cos 2\omega t).$$

A potted multiplier can be used to obtain the double frequency component, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted.

In a typical doubler circuit, conventional \pm 15-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allowed. The circuit generates wave-forms that are double frequency; less than 1% distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kHz; reducing the scale factor by decreasing the load resistors can further expand the bandwidth.

A slightly modified version of the MC1595 (MC1495) – the MC1596 (MC1496) – has been successfully used as a doubler to obtain 400 MHz. (See Figure 28.)

6.2 Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is 1.6 kHz and the carrier is 40 kHz.

FIGURE 27 - SQUARE ROOT CIRCUIT

FIGURE 28 - FREQUENCY DOUBLER

When two equal cosine waves are applied to X and Y, the result is a wave shape of twice the input frequency. For this example the input was a 10 kHz signal, output was 20 kHz.

FIGURE 29 - BALANCED MODULATOR

The defining equation for balanced modulation is

$$K(E_m \cos \omega_m t) (E_c \cos \omega_c t) =$$

$$\frac{\mathsf{KE}_{c}\mathsf{E}_{m}}{2}\left[\cos\left(\omega_{c}+\omega_{m}\right)\mathsf{t}+\cos\left(\omega_{c}-\omega_{m}\right)\mathsf{t}\right]$$

where $\omega_{\rm C}$ is the carrier frequency, $\omega_{\rm m}$ is the modulator frequency and K is the multiplier gain constant.

AC coupling at the output eliminates the need for level translation or an operational amplifier; a higher operating frequency results.

A problem common to communications is to extract the intelligence from single-sideband received signal. The ssb signal is of the form

$$e_{ssb} = A \cos (\omega_c + \omega_m) t$$

and if multiplied by the appropriate carrier waveform, $\cos \omega_{c}t$,

$$e_{ssb}e_{carrier} = \frac{AK}{2} [\cos(2\omega_c + \omega_m)t + \cos(\omega_c)t].$$

If the frequency of the band-limited carrier signal, ω_c , is ascertained in advance the designer can insert a low-pass filter and obtain the (AK/2) (cos ω_c t) term with ease. He also can use an operational amplifier for a combination level shift-active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not accessible, so the user must accept the level shift action.

6.3 Amplitude Modulation

The multiplier performs amplitude modulation, similar to balanced modulation, when a dc term is added to the modulating signal with the Y offset adjust potentiometer. (See Figure 30.)

Here, the identity is

$$E_m(1 + m \cos \omega_m t) E_c \cos \omega_c t = KE_m E_c \cos \omega_c t +$$

$$\frac{\text{KE}_{m}\text{E}_{c}m}{2}\left[\cos(\omega_{c}+\omega_{m})t+\cos(\omega_{c}-\omega_{m})t\right]$$

where m indicates the degree of modulation. Since m is adjustable, via potentionmeter P_1 , 100% modulation is possible. Without extensive tweaking, 96% modulation may be obtained where ω_c and ω_m are the same as in the balanced-modulator example.

6.4 Linear Gain Control

To obtain linear gain control, the designer can feed to one of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose a 200 kHz sine wave, 1.0 volt peak-to-peak, is the signal to which a gain control will be added. The dynamic range of the control voltage V_C is 0 to +1.0 volt. These must be ascertained and the proper values of R_X and R_Y can be selected for optimum performance. For the 200-kHz operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency. (See Figure 31.)

FIGURE 30 - AMPLITUDE MODULATION

96% MODULATION

8

 \sim

The signal is applied to the unit's Y input. Since the total input range is limited to 1.0 volt p-p, a 2.0-volt swing, a current source of 2.0 mA and an $\rm R_Y$ value of 1.0 kilohm is chosen. This takes best advantage of the dynamic range and insures linear operation in the Y-channel.

Since the X input varies between 0 and +1.0 volt, the current source selected was 1.0 mA and the R_X value chosen was 2.0 kilohms. This also insures linear operation over the X input dynamic range.

 $\begin{array}{l} Choosing R_L = 100 \mbox{ assures wide-bandwidth operation. Hence,} \\ the scale factor for this configuration is \end{array}$

$$K = \frac{R_{L}}{R_{X}R_{Y}I_{3}}$$
$$= \frac{100}{(2 k)(1 k)(2 x 10^{+3})} V^{-1}$$
$$= \frac{1}{40} V^{-1} \cdot$$

The 2 in the numerator of the equation is missing in this scalefactor expression because the output is single-ended and ac coupled.

To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been used with frequency compensation to allow a gain of 40 at 200 kHz. The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly.

FIGURE 31 – LINEAR GAIN CONTROL

8-414

MC1595L, MC1495L (continued)

OPERATIONS AND APPLICATIONS INFORMATION INDEX

1. THEORY OF OPERATION

2. DESIGN CONSIDERATIONS

- 2.1 General
- 2.1.1 Linearity, Output Error, ERX or ERY 2.1.2 3 dB Bandwidth and Phase Shift
- 2.1.3 Maximum Input Voltage
- 2.1.4 Maximum Output Voltage Swing

3. GENERAL DESIGN PROCEDURES

4. OFFSET AND SCALE FACTOR ADJUSTMENT

- 4.1 Offset Voltages
- 4.2 Scale Factor
- 4.3 Adjustment Procedure

5. DC APPLICATIONS

- 5.1 Multiply
- 5.2 Squaring Circuit
- 5.3 Divide Circuit
- 5.4 Square Root

6. AC APPLICATIONS

- 6.1 Frequency Doubler
- 6.2 Balanced Modulator
- 6.3 Amplitude Modulation
- 6.4 Linear Gain Control

8

BALANCED MODULATOR-DEMODULATOR

MC1596 MC1496

See Packaging Information Section for outline dimensions.

MC1596, MC1496 (continued)

MAXIMUM RATINGS	$T_{\Delta} = +2$	5 ⁰ C unless	otherwise noted)
-----------------	-------------------	-------------------------	------------------

Rating	Symbol	Value	Unit
Applied Voltage $(V_6 - V_7, V_8 - V_1, V_9 - V_7, V_9 - V_8, V_7 - V_4, V_7 - V_1, V_8 - V_4, V_6 - V_8, V_2 - V_5, V_3 - V_5)$	ΔV	30	Vdc
Differential Input Signal	$v_7 - v_8$ $v_4 - v_1$	+5.0 ±(5+15R _e)	Vdc
Maximum Bias Current	15	10	mA
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Metal Package Derate above $T_A = +25^{\circ}C$	PD	575 3.85 680 4.6	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC 1496 MC 1596	TA	0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS*} (V^+ = +12 \text{ Vdc}, V^- = -8.0 \text{ Vdc}, I_5 = 1.0 \text{ mAdc}, R_L = 3.9 \text{ k}\Omega, R_e = 1.0 \text{ k}\Omega, R_e = 1.0$

 $T_A = +25^{\circ}C$ unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted.)

Chavataviatia				MC1596		MC1496				
Characteristic	Fig	Note	Symbol	Min	Тур	Мах	Min	Тур	Max	Unit
$ \begin{array}{ll} \mbox{Carrier Feedthrough} & f_C = 1.0 \mbox{ kHz} \\ V_C = 60 \mbox{ mV(rms) sine wave and} & f_C = 1.0 \mbox{ kHz} \\ \mbox{offset adjusted to zero} & f_C = 10 \mbox{ MHz} \\ V_C = 300 \mbox{ mVp-p square wave:} \end{array} $	7	1	VCFT	ц. т.	40 140	4	1 1	40 140	-	μV(rms) mV(rms)
offset adjusted to zero $f_C = 1.0 \text{ kHz}$ offset not adjusted $f_C = 1.0 \text{ kHz}$					0.04 20	0.2 100		0.04 20	0.4 200	
$ \begin{array}{l} Carrier Suppression \\ f_S = 10 \ \text{kHz}, \ 300 \ \text{mV(rms)} \\ f_C = 500 \ \text{kHz}, \ 60 \ \text{mV(rms)} \ \text{sine wave} \\ f_C = 10 \ \text{MHz}, \ 60 \ \text{mV(rms)} \ \text{sine wave} \end{array} $	7	2	V _{CS}	50	65 50	1.1	40	65 50	11	dB k
Transadmittance Bandwidth (Magnitude) ($R_L = 50$ ohms) Carrier Input Port, $V_C = 60$ mV(rms) sine wave $f_S = 1.0$ kHz, 300 mV(rms) sine wave Signal Input Port, $V_S = 300$ mV(rms) sine wave	10	8	BW3dB		300 80			300 8 0	_	MHz
V _C = 0.5 Vdc Signal Gain V _S = 100 mV(rms), f = 1.0 kHz; V _C = 0.5 Vdc	12	3	Avs	2.5	3.5	-	2.5	3.5	- Terres	V/V
Single-Ended Input Impedance, Signal Port, f = 5.0 MHz Parallel Input Resistance Parallel Input Capacitance	8	-	r _{ip} c _{ip}		200 2.0	+	-	200 2.0	1.1	kΩ pF
Single-Ended Output Impedance, f = 10 MHz Parallel Output Resistance Parallel Output Capacitance	8		r _{op} c _{op}	1	40 5.0		-	40 5.0		kΩ pF
Input Bias Current $I_{bS} = \frac{I_1 + I_4}{2}$; $I_{bC} = \frac{I_7 + I_8}{2}$	9	-	I _{bS} I _{bC}		12 12	25 25	·	12 12	30 30	μΑ
Input Offset Current $I_{ioS} = I_1 - I_4; I_{ioC} = I_7 - I_8$	9	-	li _{ioS} li _{ioC}		0.7 0.7	5,0 5.0		0.7 0.7	7.0 7.0	μA
Average Temperature Coefficient of Input Offset Current (T _A = -55° C to $+125^{\circ}$ C)	9		TC _{lio}		2.0	7	-	2.0	-	nA/ ⁰ C
Output Offset Current (1 ₆ - 1 ₉)	9	-	lioo	-	14	50	-	14	80	μА
Average Temperature Coefficient of Output Offset Current $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	9	-	TCloo		90			90	1	nA/ ^o C
Common-Mode Input Swing, Signal Port, f _S = 1.0 kHz	11	4	CMV		5.0	-	-	5.0		Vp-p
Common-Mode Gain, Signal Port, $f_S = 1.0 \text{ kHz}$, $ V_C = 0.5 \text{ Vdc}$	11	-	ACM	-	-85	-	-	-85	-	dB
Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9)	12	-	v _o	-	8.0	4	13 <u>-</u>	8.0	1. 	Vdc
Differential Output Voltage Swing Capability	12		Vout		8.0			8.0	-	Vp-p
Power Supply Current ¹ 6 ⁺ 19	9	6	1 ⁺ D	-	2.0	3.0	-	2.0	4.0	mAdc
I10			ā	-	3.0	4.0	-	3.0	5.0	
DC Power Dissipation	9	5	PD	-	33	-	-	33	E.	mW

* Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

8

GENERAL OPERATING INFORMATION*

Note 1 - Carrier Feedthrough

Carrier feedthrough is defined as the output voltage at carrier frequency with only the carrier applied (signal voltage = 0).

Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer (R_1 of Figure 7).

Note 2 - Carrier Suppression

Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.

Carrier suppression is very dependent on carrier input level, as shown in Figure 24. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum carrier level results in unnecessary device and circuit carrier feed-through, which again degenerates the suppression figure. The MC1596 has been characterized with a 60 mV(rms) sinewave carrier input signal. This level provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz, and is generally recommended for balanced modulator applications.

Carrier feedthrough is independent of signal level, V_S . Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair – or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Note 3 and Figure 22). Note also that an optimum carrier level is recommended in Figure 24 for good carrier suppression and minimum spurious sideband generation.

At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.

Note 3 - Signal Gain and Maximum Input Level

Signal gain (single-ended) at low frequencies is defined as the voltage gain,

$$A_{VS} = \frac{V_o}{V_S} = \frac{R_L}{R_e + 2r_e} \text{ where } r_e = \frac{26 \text{ mV}}{I_5 \text{ (mA)}}.$$

A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" (V_C = 0.5 Vdc). This in effect forms a cascode differential amplifier.

Linear operation requires that the signal input be below a critical value determined by R_{F} and the bias current I_{5}

$V_S \leq I_5 R_E$ (Volts peak).

Note that in the test circuit of Figure 12, $V_{\mbox{\scriptsize S}}$ corresponds to a maximum value of 1 volt peak.

Note 4 - Common-Mode Swing

The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen (see Note 6).

Note 5 - Power Dissipation

Power dissipation, P_D, within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming $V_9 = V_6$, $I_5 = I_6 = I_9$ and ignoring

base current, $P_D = 2 I_5 (V_6 - V_{10}) + I_5 (V_5 - V_{10})$ where subscripts refer to pin numbers.

Note 6 — Design Equations

The following is a partial list of design equations needed to operate the circuit with other supply voltages and input conditions. See Note 3 for $\rm R_{e}$ equation.

A. Operating Current

The internal bias currents are set by the conditions at pin 5. Assume:

then:

$$\begin{array}{ll} \mathsf{R}_5 = \frac{\mathsf{V}^- - \phi}{\mathsf{I}_5} - 500 \ \Omega & \text{where:} \quad \mathsf{R}_5 \text{ is the resistor between pin} \\ & 5 \text{ and ground} \\ \phi = 0.75 \ \mathsf{V} \ \mathsf{at} \ \mathsf{T}_A = + 25^{\mathsf{o}}\mathsf{C} \end{array}$$

The MC1596 has been characterized for the condition I_5 = 1.0 mA and is the generally recommended value.

B. Common-Mode Quiescent Output Voltage

$$V_6 = V_9 = V^+ - I_5 R_1$$

Note 7 - Biasing

The MC1596 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2 volts collector-base bias on all transistors while not exceeding the voltages given in the absolute maximum rating table:

$$30 \text{ Vdc} \ge [(V_6, V_9) - (V_7, V_8)] \ge 2 \text{ Vdc}$$
$$30 \text{ Vdc} \ge [(V_7, V_8) - (V_1, V_4)] \ge 2.7 \text{ Vdc}$$
$$30 \text{ Vdc} \ge [(V_1, V_4) - (V_5)] \ge 2.7 \text{ Vdc}.$$

The foregoing conditions are based on the following approximations:

$$V_6 = V_9$$
, $V_7 = V_8$, $V_1 = V_4$.

Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.

Note 8 – Transadmittance Bandwidth

Carrier transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by:

$$v_{21C} = \frac{i_0 \text{ (each sideband)}}{v_s \text{ (signal)}} | v_0 = 0.$$

Signal transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by:

$$v_{21S} = \frac{i_0 (\text{signal})}{v_s (\text{signal})} | v_c = 0.5 \text{ Vdc}, v_o = 0.$$

*Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

MC1596, MC1496 (continued)

Note 9 - Coupling and Bypass Capacitors C1 and C2

Capacitors C_1 and C_2 (Figure 7) should be selected for a reactance of less than 5.0 ohms at the carrier frequency.

Note 10 - Output Signal, Vo

The output signal is taken from pins 6 and 9, either balanced or single-ended. Figure 14 shows the output levels of each of the two output sidebands resulting from variations in both the carrier and modulating signal inputs with a single-ended output connection.

Note 11 - Signal Port Stability

Under certain values of driving source impedance, oscillation may occur. In this event, an RC suppression network should be

connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.

An alternate method for low-frequency applications is to insert a 1 k-ohm resistor in series with the inputs, pins 1 and 4. In this case input current drift may cause serious degradation of carrier suppression.

TEST CIRCUITS

FIGURE 7 - CARRIER REJECTION AND SUPPRESSION

FIGURE 9 – BIAS AND OFFSET CURRENTS

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

FIGURE 8 -- INPUT-OUTPUT IMPEDANCE

FIGURE 10 - TRANSCONDUCTANCE BANDWIDTH

TEST CIRCUITS (continued)

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

TYPICAL CHARACTERISTICS

Typical characteristics were obtained with circuit shown in Figure 7, f_C = 500 kHz (sine wave), V_C = 60 mV(rms), f_S = 1 kHz, V_S = 300 mV(rms), T_A = +25^oCunless otherwise noted.

FIGURE 13 - SIDEBAND OUTPUT versus CARRIER LEVELS

FIGURE 16 – SINGLE-ENDED OUTPUT IMPEDANCE versus FREQUENCY

TYPICAL CHARACTERISTICS (continued)

Typical characteristics were obtained with circuit shown in Figure 7, f_C = 500 kHz (sine wave), $V_C = 60 \text{ mV}(\text{rms})$, $f_S = 1 \text{ kHz}$, $V_S = 300 \text{ mV}(\text{rms})$, $T_A = +25^{\circ}C$ unless otherwise noted.

TT 0.01 L 0.05 0.1 0.5 1.0 5.0 10 50 fC, CARRIER FREQUENCY (MHz)

TYPICAL CHARACTERISTICS (continued)

OPERATIONS INFORMATION

The MC1596/MC1496, a monolithic balanced modulator circuit, is shown in Figure 5.

This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of the two input signals.

Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.

The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output.

The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.

For low-level operation at both input ports, the output signal will contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes.

For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output. The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions.

Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the following expression:

$V = (15) (R_E)$ volts peak.

This expression may be used to compute the minimum value of R_E for a given input voltage amplitude.

The gain from the modulating signal input port to the output is the MC1596/MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.

As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1596/ MC1496 for a low-level modulating signal input and the following carrier input conditions:

- 1) Low-level dc
- 2) High-level dc
- 3) Low-level ac
- 4) High-level ac

These gains are summarized in Table 1, along with the frequency components contained in the output signal.

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

OPERATIONS INFORMATION (continued)

FIGURE 25 – TABLE 1 VOLTAGE GAIN AND OUTPUT FREQUENCIES

Carrier Input Signal (V _C)	Approximate Voltage Gain	Output Signal Frequency(s)
Low-level dc	$\frac{R_L V_C}{2(R_E + 2r_e) \left(\frac{KT}{q}\right)}$	fM
High-level dc	RL RE + 2re	fM
Low-level ac	$\frac{R_{L} V_{C}(rms)}{2\sqrt{2}\left(\frac{KT}{q}\right)(R_{E} + 2r_{e})}$	fC ±fM
High-level ac	0.637 R _L R _E + 2r _e	

NOTES:

- 1. Low-level Modulating Signal, V_M , assumed in all cases. V_C is Carrier Input Voltage.
- 2. When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs, $f_C + f_M$ and $f_C f_M$.
- All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two.
- 4. $R_L \approx Load$ resistance.
- 5. RE = Emitter resistance between pins 2 and 3.
- 6. re = Transistor dynamic emitter resistance, at +25°C;

$$r_e \approx \frac{26 \text{ mV}}{15 \text{ (mA)}}$$

7. K = Boltzmann's Constant, T = temperature in degrees Kelvin, q = the charge on an electron.

 $\frac{\text{KT}}{\alpha} \approx 26 \text{ mV}$ at room temperature.

APPLICATION INFORMATION

Double sideband suppressed carrier modulation is the basic application of the MC1596/MC1496. The suggested circuit for this application is shown on the front page of this data sheet.

In some applications, it may be necessary to operate the MC1596/MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.

AM Modulator

The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.

All that is required to shift from suppressed carrier to AM operation is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal.

However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28.

Product Detector

The MC1596/MC1496 makes an excellent SSB product detector (see Figure 29).

This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9 MHz.

The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the 0.1 μ F capacitors on pins 7 and 8 should be increased to 1.0 μ F. Also, the output filter at pin 9 can be tailored to a specific intermediate frequency and audio amplifier input impedance.

As in all applications of the MC1596/MC1496, the emitter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.

This circuit may also be used as an AM detector by introducing

carrier signal at the carrier input and an AM signal at the SSB input.

The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential amplifier. If the carrier signal is modulated, a 300 mV(rms) input level is recommended.

Doubly Balanced Mixer

The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks.

The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV(rms).

Figure 30 shows a mixer with a broadband input and a tuned output.

Frequency Doubler

The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.

Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively.

Phase Detection and FM Detection

The MC1596/MC1496 will function as a phase detector. Highlevel input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals.

An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then provide an output which is a function of the input signal frequency.

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

TYPICAL APPLICATIONS

FIGURE 28 - AM MODULATOR CIRCUIT

51

750

50 k

CARRIER ADJUST

± ν_C 0.1 μF

CARRIER -)

٧s

750 \$

INPUT .

MODULATING SIGNAL INPUT FIGURE 29 – PRODUCT DETECTOR (+12 Vdc SINGLE SUPPLY)

FIGURE 31 - LOW-FREQUENCY DOUBLER

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

TYPICAL APPLICATIONS (continued)

FIGURE 32 - 150 to 300 MHz DOUBLER

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIER

MONOLITHIC OPERATIONAL AMPLIFIER

MC1709 MC1709C

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- High-Performance Open Loop Gain Characteristics
 AVOL = 45,000 typical
- Low Temperature Drift $-\pm 3.0 \,\mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance Zout = 150 ohms typical

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V ⁺ V-	+18 -18	Vdc
Differential Input Signal		V _{in}	±5.0	Volts
Common Mode Input Swing		CMVin	±V ⁺	Volts
Load Current		۱	10	mA
Output Short Circuit Duration		tS	5.0	s
Power Dissipation (Package Limitation) Metal Can Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$		Ро	680 4.6 500 3.3 625 5.0 750 6.0	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C mW
Operating Temperature Range	MC1709 MC1709C	TA	-55 to +125 0 to +75	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Packages		T _{stg}	-65 to +150 -55 to +125	°C

Schematic	А	в	С	D	Е	F	G	H
"G" & "P1" Packages	1	2	3	4	5	6	7	8
"F" Package	2	3	4	5	6	7	8	9
"P2" & "L" Packages	3	4	5	6	9	10	11	12

See Packaging Information Section for outline dimensions.

8

MC1709, MC1709C (continued)

			MC1709	An Internet and the second sec		MC1709C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain ($R_L = 2.0 \text{ k}\Omega$. ($V_0 = \pm 10 \text{ V}, T_A = T_{low} \text{ to } T_{high}$)(25,000	45,000	70,000	15,000	45,000	_	-
Output Impedance (f = 20 Hz)	Z _{out}		150			150		Ω
Input Impedance (f = 20 Hz)	z _{in}	150	400		50	250		kΩ
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ)	V _o	±12 ±10	±14 ±13		±12 ±10	±14 ±13	_	V _{peak}
Input Common-Mode Voltage Swing	CMV _{in}	±8	±10		±8.0	±10	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90		65	90		dB
Input Bias Current $(T_A = +25^{\circ}C)$ $(T_A = T_{Iow})$	۱ _b		0.2 0.5	0.5 1.5		0.3	1.5 2.0	μA
Input Offset Current ($T_A = +25^{\circ}C$) ($T_A = T_{Iow}$) ($T_A = T_{high}$)	II _{io}		0.05	0.2 0.5 0.2		0.1	0.5 0.75 0.75	μΑ
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = T_{low} \text{ to } T_{high})$	V _{io}	4	1.0	5.0 6.0	-	2.0	7.5 10	mV
$ \begin{cases} \text{Step Response} \\ \text{Gain} = 100, 5.0\% \text{ overshoot}, \\ \text{R}_1 = 1.0 \text{k}\Omega, \text{R}_2 = 100 \text{k}\Omega, \\ \text{R}_3 = 1.5 \text{k}\Omega, \text{C}_1 = 100 \text{pF}, \text{C}_2 = \\ 3.0 \text{pF} \end{cases} $	t _f t _{pd} dV _{out} /dt ①		0.8 0.38 12	$\label{eq:second} \left(\begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$	_	0.8 0.38 12		μs μs V/μs
$\begin{cases} Gain = 10, 10\% \text{ overshoot}, \\ R_1 = 1.0 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \\ R_3 = 1.5 \text{ k}\Omega, C_1 = 500 \text{ pF}, C_2 = 20 \text{ pF}, \\ Gain = 1, 5.0\% \text{ overshoot}, \\ R_1 = 10 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, R_3 = \end{cases}$	t _f	1 + 3 + 1	0.6 0.34 1.7 2.2 1.3			0.6 0.34 1.7 2.2 1.3		μs μs V/μs μs μs
$ \begin{array}{c} \left(1.5 \ \mathrm{k\Omega}, \mathrm{C_1} = 5000 \ \mathrm{pF}, \mathrm{C_2} = 200 \ \mathrm{pF} \end{array} \right) \\ \hline \text{Average Temperature Coefficient of} \\ \text{Input Offset Voltage} \\ (\mathrm{R_S} = 50 \ \mathrm{\Omega}, \mathrm{TA} = \mathrm{T_{low}} \ \mathrm{to} \ \mathrm{T_{high}}) \\ (\mathrm{R_S} \leq 10 \ \mathrm{k\Omega}, \mathrm{TA} = \mathrm{T_{low}} \ \mathrm{to} \ \mathrm{T_{high}}) \end{array} $	dV _{out} /dt ①		0.25 3.0 6.0		*	0.25 3.0 6.0	· · · · · · · · · · · · · · · · · · ·	∨/μs μV/ ⁰ C
DC Power Dissipation (Power Supply = ± 15 V, V _O = 0)	PD		80	165	-	80	200	mW
Positive Supply Sensitivity (V ⁻ constant)	. S ⁺		25	150	-	25	200	μV/V
Negative Supply Sensitivity (V ⁺ constant)	S-		25	150	_	25	200	μV/V

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

(1) $dV_{out}/dt = Slew Rate$

Thigh = +75°C for MC1709C, +125°C for MC1709 $T_{IOW} = 0^{\circ}C \text{ for MC1709C} \\ -55^{\circ}C \text{ for MC1709}$

₹ ^RL

Ē It C₂

Fig.		Test Conditions							
No.	Curve No.	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	C1(bŁ)	C ₂ (pF)			
3	1	10 k	10 k	1.5 k	5.0 k	200			
	2	10 k	100 k	1.5 k	500	20			
	3	10 k	1.0 M	1.5 k	100	3.0			
	4	1.0 k	1.0 M	0	10	3.0			
4	1	1.0 k	1.0 M	0	10	3.0			
	2	10 k	1.0 M	1.5 k	100	3.0			
-	3	10 k	100 k	1.5 k	500	20			
	4	10 k	10 k	1.5 k	5.0 k	200			
5	1	0	æ	1.5 k	5.0 k	200			
(2	0	œ	1.5 k	500	20			
	3	0	æ	1.5 k	100	3.0			
	4	0	8	0	10	3.0			

$\label{eq:VPICAL CHARACTERISTICS} \mbox{ (continued)} $$ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = +25^0 C \ unless \ otherwise \ noted.) $$$

8-428

MC1709, MC1709C (continued)

See current MCC1709/1709C data sheet for standard linear chip information. See current MCBC1709/MCB1709F data sheet for Beam-Lead device information. See current MCCF1709, 1709C data sheet for flip-chip information.

MC1710

DIFFERENTIAL COMPARATOR

MONOLITHIC DIFFERENTIAL **VOLTAGE COMPARATOR**

... designed for use in level detection, low-level sensing, and memory applications.

- Differential Input Characteristics -Input Offset Voltage = 1.0 mV Offs
- Fast R

- Outpu . ٧o
- Low 0

Offset Voltage Drift = • Fast Response Time – 40 • Output Compatible With V _O = +3.2 V to -0.5 V • Low Output Impedance -	All Saturating typical	g Logic Forms —		F SUFFI
MAXIMUM RATINGS (T _A = +25°(Rating	C unless other	wise noted)	Unit	CASE 60 TO-91
Power Supply Voltage	V _{CC} max V _{EE} max	+14 -7.0	Vdc Vdc	
Differential Input Signal Voltage	VID	±5.0	Volts	
Common Mode Input Swing Voltage	VICR	±7.0	Volts	
Peak Load Current	١	10	mA]
Power Dissipation (package limitations) Metal Package Derate above T _A = +25 ^o C	PD	680 4.6	mW mW/ ^o C	P
Flat Package		500	mW.	
Derate above $T_A = +25^{\circ}C$		3.3	mW/ ^o C	Schematic
Ceramic Dual In-Line Package Derate above T _A = +25°C		625 5.0	mW mW/°C	"G" Packag
Operating Temperature Range	TA	-55 to +125	°C	"F" Packag
Storage Temperature Range	T _{stg}	-65 to +150	°C	"L" Packag

See Packaging Information Section for outline dimensions.

See current MCC1710/1710C data sheet for standard linear chip information.

See current MCBC1710/MCB1710F for beam-lead device information

DIFFERENTIAL

EQUIVALENT CIRCUIT

Characteristic Definitions (linear operation)	Characteristic	Symbol	Min	Тур	Max	Unit
	Input Offset Voltage V _O = 1.4 Vdc, T _A = +25°C V _O = 1.8 Vdc, T _A = -55°C V _O = 1.0 Vdc, T _A = +125°C	v _{i0}		1.0 - -	2.0 3.0 3.0	mVdc
C Δ R _S < 200Ω	Temperature Coefficient of Input Offset Voltage	∆V _{IO} /∆T	-	3.0	-	µV/°C
	Input Offset Current $V_{O} = 1.4 \text{ Vdc}, T_{A} = +25^{\circ}\text{C}$ $V_{O} = 1.8 \text{ Vdc}, T_{A} = -55^{\circ}\text{C}$ $V_{O} = 1.0 \text{ Vdc}, T_{A} = +125^{\circ}\text{C}$	10		1.0 - -	3.0 7.0 3.0	μAdc
$\begin{array}{c} \bullet \\ \hline \\$	Input Bias Current $V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ $V_O = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}$	ΪB		12 -	20 45 20	μAdc
$A_{vol} = \frac{e_{out}}{e_{in}}$	Open Loop Voltage Gain $T_A = +25^{\circ}C$ $T_A = -55 \text{ to } +125^{\circ}C$	A _{vol}	1250 1000	1700 -	_ _	v/v
± °/₫	Output Resistance	r _o	-	200	-	ohms
	Differential Voltage Range	VID	±5.0	-	-	Vdc
	Positive Output Voltage V1D≥5.0 mV, 0≤10≤5.0 mA	v _{он}	2.5	3.2	4.0	Vdc
	Negative Output Voltage V _{ID} ≥-5.0 mV	VOL	-1.0	-0.5	0	Vdc
	$ \begin{array}{l} \mbox{Output Sink Current} \\ \mbox{V}_{ID} \geq -5.0 \mbox{ mV}, \mbox{V}_{O} \leqslant 0, \\ \mbox{T}_{A} = +25^{\circ} \mbox{C} \\ \mbox{V}_{ID} \geq -5.0 \mbox{ mV}, \mbox{V}_{O} \geqslant 0, \\ \mbox{T}_{A} = -55^{\circ} \mbox{C} \end{array} $	l _{Os}	2.0 1.0	2.5 2.0	-	mAdc
E F	Input Common-Mode Voltage Range	VICR	±5.0		-	Volts
	Common-Mode Rejection Ratio V _{EE} = -7.0 Vdc, R _S ≤200Ω	CMRR	80	100	-	dB
$V_{b} = 95 \text{ mV} - V_{10}$	Propagation Delay Time For Positive and Negative Going Input Pulse	tp		40	_	ns
	Power Supply Current V _O ≤ 0 Vdc	۱ _{D+} ۱ ^{D-}	_	6.4 5.5	9.0 7.0	mAdc
	Power Consumption		_	115	150	mW

ELECTRICAL CHARACTERISTICS ($V_{CC} = +12 V_{dc} V_{EE} = -6 V_{dc} \cdot T_A = +25^{\circ}C$ unless otherwise noted)

8

MC1710C

DIFFERENTIAL COMPARATOR

MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

... designed for use in level detection, low-level sensing, and memory applications.

- Differential Input Characteristics Input Offset Voltage = 1.5 mV Offset Voltage Drift = 5.0 µV/^oC
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms V_O = +3.2 V to -0.5 V typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+14 - 7.0	Vdc Vdc
Differential-Mode Input Signal Voltage	VID	<u>+</u> 5.0	Volts
Common-Mode Input Swing	VICR	<u>+</u> 7.0	Volts
Peak Load Current	١L	10	mA
Power Dissipation (package limitations) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Ceramic and Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$	PD	680 4.6 500 3.3 625 5.0	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range*	т _А	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

* For fuel temperature range (–55 ^{0}C to +125 ^{0}C) and characteristic curves, see MC1710 data sheet.

Schematic	А	В	С	D	E	F
"G" Package	1	2	3	4	7	8
"F" Package	1	2	3	5	6	8
"L" and "P" Packages	2	3	4	6	9	11

See Packaging Information Section for outline dimensions.

See current MCC1710/1710C data sheet for standard linear chip information.

Characteristic Definitions	Characteristic	Symbol	Min	Тур	Max	Unit
	Input Offset Voltage $V_0 = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ $V_0 = 1.2 \text{ Vdc}, T_A = +70^{\circ}\text{C}$	VIO	-	1.5 - -	5.0 6.5 6.5	mVdc
C Δ A R _S < 200 Ω	Temperature Coefficient of Input Offset Voltage	Δν _{ιΟ} /Δτ	-	5.0	-	μV/ ^ο C
	Input Offset Current $V_0 = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ $V_0 = 1.2 \text{ Vdc}, T_A = +70^{\circ}\text{C}$	10		1.0 - -	5.0 7.5 7.5	µAdc
$ \begin{array}{c} \bullet \\ \bullet \\$	Input Bias Current $V_0 = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ $V_0 = 1.2 \text{ Vdc}, T_A = +70^{\circ}\text{C}$	¹ IB	-	15 25 -	25 40 40	µAdc
$A_{vol} = \frac{e_{out}}{e_{in}}$	Voltage Gain $T_A = +25^{\circ}C$ $T_A = 0 \text{ to } +70^{\circ}C$	A _{vol}	1000 800	1500 —	1 1	V/V
÷ ¹ 2	Output Resistance	ro	-	200	-	ohms
	Differential-Mode Voltage Range	VIDR	<u>+</u> 5.0	-	-	Vdc
	Positive Output Voltage $V_{in} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA}$	∨он	2.5	3.2	4.0	Vdc
	Negative Output Voltage $V_{in} \ge -5.0 \text{ mV}$	VOL	- 1.0	-0.5	0	Vdc
	$ \begin{array}{c} \text{Output Sink Current} \\ \text{V}_{in} \geqslant 5.0 \text{ mV}, \text{ V}_{O} \geqslant 0 \\ \text{T}_{A} = +25^{0}\text{C} \\ \text{T}_{A} = 0^{0}\text{C} \end{array} $	۱ _s	1.6 0.5	2.5 —	_	mAdc
E Contraction of the second se	Input Common-Mode Range VEE = -7.0 Vdc	VICR	<u>+</u> 5.0	-	-	Volts
Vin C QA	Common-Mode Rejection Ratio $R_S \le 200 \ \Omega$	CMRR	70	100	-	dB
$ \begin{array}{c} $	Propagation Delay Time For Positive and Negative Going Input Pulse	₽HL/LH	_	40	_	ns
	Power Supply Current $V_{O} \leq 0 V dc$	ICC IEE	-	6.4 5.5	9.0 7.0	mAdc
	Power Consumption			110	150	mW

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = +25^oC unless otherwise noted)

DIFFERENTIAL COMPARATORS

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

 \ldots designed for use in level detection, low-level sensing, and memory applications.

- Typical Characteristics:
- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 µV/^oC
- Fast Response Time 40 ns
 Output Compatible with All Saturating Logic Forms

MC1711 MC1711C

- V_0 = +4.5 V to -0.5 V typical
- Low Output Impedance 200 ohms

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC} V _{EE}	+14 -7.0	Vdc	
Differential Input Signal Voltage	VIDR	±5.0	Volts	
Common-Mode Input Swing Voltage	VICR	±7.0	Volts	
Peak Load Current	۱ _۲	50	mA	
Power Dissipation (package limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Ceramic Package Derate above $T_A = +25^{\circ}C$	PD	680 4.6 500 3.3	mW mW/ ^o C mW mW/ ^o C	
Ceramic and Plastic Dual In-Line Packa Derate above T _A = +25 ⁰ C	ges	625 5.0	mW mW/ ⁰ C	
Operating Temperature Range MC1 MC1	711 T _A 711C	-55 to +125 0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

See Packaging Information Section for outline dimensions.

Connected to pin 4 via the substrate on some plastic units.

MC1711, MC1711C (continued)

ELECTRICAL CHARACTERISTICS (each comparator) (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = +25°C unless otherwise noted.)

		MC1711			MC1711C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage (V _{ICR} = 0 Vdc, T _A = +25 ^o C) (V _{ICR} ≠ 0 Vdc, T _A = +25 ^o C) (V _{ICR} = 0 Vdc, T _A = T _{Iow} to T _{high} *') (V _{ICR} ≠ 0 Vdc, T _A = T _{Iow} to T _{high})	VIO		1.0 1.0	3.5 5.0 4.5 6.0		1.0 1.0 	5.0 7.5 6.0 10	mVdc	
Temperature Coefficient of Input Offset Voltage	Δνιο/Δτ		5.0			5.0		μV/ ^o C	
Input Offset Current $(V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C})$ $(V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$ $(V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$ $(V_O = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C})$ $(V_O = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C})$	10		0.5	10 20 	-	0.5 	15 25 25	μAdc	
Input Bias Current $(V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C})$ $(V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$ $(V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$ $(V_O = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C})$ $(V_O = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C})$	JIB		25	75 150 		25 	100 150 150	μAdc	
Voltage Gain (T _A = +25 ^o C) (T _A = T _{Iow} to T _{high})	A _{vol}	700 500	1500		700 500	1500 —		V/V	
Output Resistance	R _O		200	and all and a strength of the	-	200	-	ohms	
Differential Voltage Range	VIDR	±5.0			±5.0	-	-	Vdc	
High Level Output Voltage $(V_{ D} \ge 10 \text{ mVdc}, 0 \le I_0 \le 5.0 \text{ mA})$	V _{OH}	2.5	3.2	5.0	2.5	3.2	5.0	Vdc	
Low Level Output Voltage (V _{ID} ≥ -10 mVdc)	VOL	-1.0	-0.5	0	-1.0	-0.5	0	Vdc	
Strobed Output Level (V _{strobe} ≤ 0.3 Vdc)	V _{OL(st)}	-1.0		0	-1.0	-	0	Vdc	
Output Sink Current ($V_{in} \ge -10 \text{ mV}, V_O \ge 0$)	^I Os	0.5	0.8		0.5	0.8	.—	mAdc	
Strobe Current (V _{strobe} = 100 mVdc)	l _{st}		1.2	2.5		1.2	2.5	mAdc	
Input Common-Mode Range (V _{EE} = -7.0 Vdc)	VICR	±5.0		PEONAL PROPERTY	±5.0	-		Volts	
Response Time $(V_b = 5.0 \text{ mV} + V_{10})$	tR		40		-	40	-	ns	
Strobe Release Time	tSR		12	an participation of the second	-	12		ns	
Power Supply Current $(V_{O} \leq 0 Vdc)$	ICC IEE		8.6 3.9		1 1	8.6 3.9		mAdc	
Power Consumption		and a set of the set o	130	200	-	130	200	mW	

 $T_{low} = -55^{\circ}C$ for MC1711, 0°C for MC1711C Thigh = +125°C for MC1711, +75°C for MC1711C

8

TYPICAL CHARACTERISTICS

8-438

FIGURE 7 - COMMON-MODE PULSE RESPONSE

FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING

OPERATIONAL AMPLIFIERS

MONOLITHIC WIDEBAND DC AMPLIFIER

. . . designed for use as an operational amplifier utilizing operating characteristics as a function of the external feedback components.

- Open Loop Gain AVOL = 3600 typical
- Low Temperature Drift $-\pm 2.5 \,\mu V/^{O}C$
- Output Voltage Swing ±5.3 V typical @ +12 V and -6 V Supplies

MC1712

MC1712C

Low Output Impedance - Z_{out} = 200 ohms typical

1									
WIDEBA INTEG MONO EPITAX	RAT		CI	RC LIC		г I			
	G SUFFIX METAL PACKAGE CASE 601								
		Lead	4 cc	onne	cted	to c	ase		
F SUFFI CERAMIC PAC CASE 60 TO-91	скад	E	Ą		~	ÿ			
L SUFFIX CERAMIC PACKAGE CASE 632 TO-116									
	W	CE	RAN C	AIC ASE	PAC 632	KAC	ΞE		
PI			RAN C	ASE TO-	PAC 632	KAC	3E		
			RAN C	ASE TO-	PAC 632	KAC	ЭE н		
Schematic A		NNE	CTIC	ASE TO-	PAC 632 116	KA(
Schematic A	A B	NN E		AIC ASE TO- DNS E	PAC 632 116 F	G KAC	Н		

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (Total between V ⁺ and V ⁻ terminals)	V ⁺ + V ⁻	21	Vdc
Differential Input Signal	Vin	±5.0	Volts
Common Mode Input Swing	CMVin	+1.5 -6.0	Volts
Peak Load Current	١L	50	mA
Power Dissipation (Package Limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Ceramic Package Derate above $T_A = +25^{\circ}C$ Dual In-Line Ceramic Package Derate above $T_A = +25^{\circ}C$	PD	680 4.6 500 3.3 625 5.0	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1712 MC1712C	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

See Packaging Information Section for outline dimensions.

MC1712, MC1712C (continued) ELECTRICAL CHARACTERISTICS (T_A = +25°C unless otherwise noted)

$\label{eq:characteristic} \hline \hline \\ \hline \\ Open-Loop Voltage Gain (R_L = 100 k\Omega) \\ (V^+ = 6.0 Vdc, V^- = -3.0 Vdc, V_0 = \pm 2.5 V) \\ (V^+ = 12 Vdc, V^- = -6.0 Vdc, V_0 = \pm 5.0 V) \\ (V^+ = 12 Vdc, V^- = -6.0 Vdc, V_0 = \pm 5.0 Vdc, \\ T_A = T_{low} (\mathcal{O}, T_{high} \mathcal{O}) \\ (V^+ = 6.0 Vdc, V^- = -3.0 Vdc, V_0 = \pm 2.5 V, \\ T_A = T_{low} to T_{high} \end{pmatrix}$	AVOL	Min 600	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{l} (v^+=6.0 \; \forall dc, \; V^-=-3.0 \; \forall dc, \; V_0=\pm 2.5 \; v) \\ (v^+=12 \; \forall dc, \; V^-=-6.0 \; \forall dc, \; V_0=\pm 5.0 \; v) \\ (v^+=12 \; \forall dc, \; V^-=-6.0 \; \forall dc, \; V_0=\pm 5.0 \; \forall dc, \\ T_A=T_{Iow} \bigoplus, \; T_{high} \bigoplus) \\ (v^+=6.0 \; \forall dc, \; V^-=-3.0 \; \forall dc, \; V_0=\pm 2.5 \; V, \end{array} $	AVOL	600			1		1	1
$ \begin{array}{l} (v^{+}=12 \; \forall dc, V^{-}=-6.0 \; \forall dc, V_{0}=\pm 5.0 \; \forall) \\ (v^{+}=12 \; \forall dc, V^{-}=-6.0 \; \forall dc, V_{0}=\pm 5.0 \; \forall dc, \\ T_{A}=T_{Iow} \underbrace{0}_{}, \; T_{high} \underbrace{0}_{}) \\ (v^{+}=6.0 \; \forall dc, V^{-}=-3.0 \; \forall dc, \; V_{0}=\pm 2.5 \; V, \end{array} $		j 600				0.7.7	48.45	V/V
			900	1500	500	800 3400	1500 6000	
T _A = T _{low} (1), T _{high} (1)) (V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc, V _o = ±2.5 V,	1	2500	3600	6000	2000	3400	6000	
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, V_0 = \pm 2.5 \text{ V},$		2000	-	7000	1500	-	7000	1
$T_A = T_{low} t_0 T_{high}$							1	1
		500	-	1750	400	-	1750	
Output Impedance	Zout	· .	S. 12 S. 12-	E STELL				ohms
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc, f = 20 Hz) (V ⁺ = 12 Vdc, V ⁻ = -6.0 Vdc, f = 20 Hz)		-	300	700	-	300 200	800 600	
			200	500		200	600	<u> </u>
Input Impedance (V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc, f = 20 Hz)	Zin	22	70		16	55	_	k ohm
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f = 20 \text{ Hz},$		44	10		10	55	_	
$T_A = T_{low}, T_{high}$	1	8.0		-	10	32	-	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz})$	1	16	40		-	~	-	
$(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, f = 20 \text{ Hz}, T_{A} = T_{low}, T_{high})$		6.0	1.					1
	+	0.0						
Output Voltage Swing (V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc, R _L = 100 k Ω)	Vo	±2.5	±2.7	 A set a 2 set a set a A set a set a set a set a A set a set a set a set a set a A set a se 	±2.5	±2.7		Vpeak
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, R_L = 100 \text{ k}\Omega)$		±5.0	±5.3		±5.0	±5.3	_	
(V ⁺ = +6.0 Vdc, V ⁻ = -3.0 Vdc, R _L = 10 kΩ)	1	±1.5	±2.0	1997 - 1997	±1.5	±2.0	-	
$(V^+ = +12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, R_L = 10 \text{ k}\Omega)$		±3.5	±4.0	÷	±3.5	±4.0	-	
Input Common-Mode Voltage Swing	CMVin	n an mhair an a- Thairte an Ann an Ann						Vpeal
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$	1	+0.5	n a na ann an	1. <u>1</u> . 13	+0.5	-	-	
(V ⁺ = 12 Vdc, V ⁻ = -6.0 Vdc)	1	-1.5 +0.5			-1.5 +0.5	-	_	
		-4.0		and the constant and the constant and the constant	-4.0	_	-	
Common-Mode Rejection Ratio	CMrej	11.7 2.32		in a second				dB
(V ⁺ = 6.0 Vdc, V [−] = −3.0 Vdc, f ≤ 1.0 kHz)	161	80	100		70	95	-	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$		80	100		70	95	-	
Input Bias Current	ŀь							μA
$T_{A} = +25^{\circ}C$		and the second sec		and a second s			5.0	
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$ $ 1^+ 2^- (V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$			1.2 2.0	3,5 5.0	-	1.5 2.5	5.0 7.5	
$1_{b} = \frac{1 + 12}{2}$ (V ⁺ = 12 Vdc, V ⁻ = -6.0 Vdc) T _A = T _{Iow}		in the second second second second second	2003000 1 / 16: V	26.2019.00		2.0	/.0	
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc)		1	2.5	7.5	-	2.5	8.0	
$(V^+ = 12 Vdc, V^- = -6.0 Vdc)$		n al an	4.0	10	-	4.0	12	
Input Offset Current (I _{i0} = I ₁ - I ₂)	lio	an Constant Constant	a ann ann ann ann ann ann ann ann ann a	and and a second se				μΑ
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc) (V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc,		nis v court by much walks of the	0.1	0.5	-	0.3	2.0	
$T_A = T_{low} \text{ to } T_{high}$	1		Sector and the sector	1.5	-	_	2.5	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$		n nan in an in An in an i	0.2	0.5	-	0.5	2.0	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc},$		ار دولی می در میکند. به میکند از در در در باری در این	And the second s					
T _A = T _{low} to T _{high})			n an ann an Star Anna an Anna Anna an Anna Anna Anna Ann	1.5	-	-	2.5	
Input Offset Voltage (R _S = 2.0 kΩ)	Vio	ni (di Grandi II) (film) ni poppi (di Ling) na sina ni godi da Cata na sina sina	en e	प्लियिचे व्याहरणोडी थे। १९ ४ - में ३५ अल्पन - अहेल्झा । बिद्धाल्डाय संस्कृतिहरू जन्म १९				m∨
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$ $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc},$		and a start of the second of t	1.3	3.0	-	1.7	6.0	
$T_A = T_{low}, T_{high}$				4.0	-	-	7.5	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$		A. S. Linning, Schematical and the second	1,1	2.0	-	1.5	5.0	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc},$			and a set of the set o					
$T_A = T_{low}, T_{high}$		-	cherry Sci.	3.0	-	-	6.5	
Step Response	Vos		though the state of the					
$\begin{cases} V^+ = 12 Vdc, V^- = -6.0 Vdc \\ Gain = 100, V_{in} = 1.0 mV, \end{cases}$			20 10	40	-	20	40 30	%
$R_1 = 1.0 k\Omega, R_2 \approx 100 k\Omega,$	t _f t _{pd}		10	30	-	10 10		ns ns
$(C_2 = 50 \text{ pF}, R_3 = \infty, C_1 = \text{open})$	dVout/dt 2		12	an an ar brian an a	-	12	-	∇/μ
V ⁺ = 12 Vdc, V ⁻ ≈ -6.0 Vdc	Vos	مها و ۲۰۱۱ و آنک دو استان اس و ۲۰۱۸ و ۲۰۱۹ سی ری مراجع اس ۱۹۹۹ - چینان مراجع استان میشنان	10	50	-	10	50	%
) Gain = 1.0, V_{in} = 10 mV,	tf		25	120	-	25	120	ns
$R_1 = 10 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, C_2 = 0.01 \mu\text{F}, R_3 = 20\Omega, C_2 = \text{open}$	t _{pd} dV _{out} /dt(2)	and the second sec	16 1,5	An and a second se	-	16 1.5	-	ns V/µ
Average Temperature Coefficient of		an an training a second	n de el son al dis mignet. A dis agrico de mignetico	 Weiter witterig Weiter ditterig 		1.0		μν/ο
Input Offset Voltage ($R_S = 50\Omega$)	TCVio			to here a prime an other and a sub-				μν/
$(T_A = +25^{\circ}C \text{ to } T_{high})$			2.5		-	-	-	
$(T_A = T_{low} \text{ to } + 25^{\circ}C)$	1		2.0		· -	-	-	
(T _A = T _{low} , T _{high})				and being a second	-	5.0		
Average Temperature Coefficient	TClio	and a constitution of	ر می اینده از میکند با میکند. اینده میکند که میکند میکند از میکند میکنده میکند که ماکند میکند م	nar san ann ann an Staiffilis Ann an Staiffilis Ann an Staiffilis				nA/0
Input Offset Current (T _A = +25 ^o C to T _{hiah})		erice in constantion of anti-	0.05	ng transfer ann an Anna An Anna Anna Anna Anna An Bhagan anna Anna Anna An Anna Anna Anna Anna	-	4.0		
$(T_A = T_{low} \text{ to } +25^{\circ}\text{C})$		н. - Дана 	1.5	porte agence Third a const the state of the second se	-	6.0	_	
DC Power Dissipation	PD	ni i Gunda Natio				<u> </u>		mW
$(V_{out} = 0, V^+ = 6.0 Vdc, V^- = -3.0 Vdc)$	· U		17	30	-	17	30	
$(V_{out} = 0, V^+ = 12 Vdc, V^- = -6.0 Vdc)$			70	120	-	70	120	
Positive Supply Sensitivity	S ⁺							μν/
$(V^- \text{ constant} = -6.0 \text{ Vdc},$		i an gu	60	200	-	60	300	
$V^+ = 12 V dc to 6.0 V dc)$		na a class francés de la composition de La composition de la c	h dinho shendi laga parah sana hatalara sa sana ara a Ana a sana farana fa t	ین میں بینے کا یہ ۔ یہ یہ یہ میں سینے کا یہ ج			l	
Negative Supply Sensitivity	s-	الامرسية، الالتربية الامرسية، المقدمة الاستيارية		alla de logo castor e logo contra especialemento logo contra especialemento de logo	· ·			$\mu V / N$
(V ⁺ constant = 12 Vdc,			60	200	-	60	300	1

 $(1) T_{10W} = 0^{0}C \text{ for MC1712C, } T_{high} = +75^{0}C \text{ for MC1712C} \\ -55^{0}C \text{ for MC1712} + 125^{0}C \text{ for MC1712}$

 $@dV_{out}/dt = Slew Rate$

TYPICAL OUTPUT CHARACTERISTICS (V⁺ = 12 Vdc, V⁻ = -6.0 Vdc, $T_A = +25^{\circ}C$)

FIGURE 3 - VOLTAGE GAIN versus FREQUENCY

FIGURE 5 – OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

MC1712, MC1712C (continued)

TYPICAL CHARACTERISTICS(continued)

FIGURE 9 – OUTPUT NOISE VOLTAGE versus SOURCE IMPEDANCE

.

POSITIVE VOLTAGE REGULATORS

RSC = 0.33

12 k

10 |

2N3055 OR EQUIV

MC1723 (MC1723C)

5 (7)

6 (10)

10 (2)

1 (3)

2 (4)

9(13)

± 100 pF

(12) 8

(11) 7

(6) 4

(5) 3

Vin = 20 Vdc

0.1 µF 十

V₀ = +15 Vdc

2 Adc max

MC1723 MC1723C

See Packaging Information Section for outline dimensions.

8

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Pulse Voltage from V _{CC} to V _{EE} (50 ms)	V _{in(p)}	50	V _{peak}
Continuous Voltage from V _{CC} to V _{EE}	Vin	40	Vdc
Input-Output Voltage Differential	V _{in} – V _O	40	Vdc
Maximum Output Current	ιL	150	mAdc
Current from V _{ref}	Iref	15	mAdc
Current from Vz	, Iz	25	mA
Power Dissipation and Thermal Characteristics Flat Ceramic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air Metal Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Case Dual In-Line Ceramic Package Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	P _D 1/θJ _A θJA PD 1/θJ _A θJA θJC PD 1/θJ _A θJA	500 3.3 300 0.8 5.4 184 2.1 14 70 1.0 6.7 150	mW mW/°C °C/W Watt mW/°C °C/W Watts mW/°C °C/W Watt mW/°C °C/W
Operating and Storage Junction Temperature Range Metal Package Dual In-Line Ceramic and Ceramic Flat Packages	Τ _J , Τ _{stg}	-65 to +150 -65 to +175	°C
Operating Ambient Temperature Range MC1723C MC1723	Тд	0 to +75 -55 to +125	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = +25^{\circ}C$, V_{in} 12 Vdc, $V_O = 5.0$ Vdc, $I_L = 1.0$ mAdc, $R_{SC} = 0$, C1 = 100 pF, $C_{ref} = 0$ and divider impedance as seen by the error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in Figure 1)

		MC1723			MC1723C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	9.5	Constant and Const	40	9.5		40	Vdc
Output Voltage Range	Vo	2.0		37	2.0	-	37	Vdc
Input-Output Voltage Differential	V _{in} -V _O	3.0		38	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.95	7.15	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain (IL = 0, Vin = 30 V)	I _{IB}		2.3	3.5	-	2.3	4.0	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) C _{ref} = 0 C _{ref} = 5.0 μF	VN		20 2.5			20 2.5		μV(RMS)
Average Temperature Coefficient of Output Voltage (T $_{\rm low}$ $0 < T_{\rm A} < T_{\rm high}$ 2)	TCVO		0.002	0.015		0.003	0.015	%/ ^o C
Line Regulation $(T_A = +25^{\circ}C) \begin{cases} 12 \ V < V_{in} < 15 \ V \\ 12 \ V < V_{in} < 40 \ V \\ (T_{low} \bigcirc < T_A < T_{high} @) \\ 12 \ V < V_{in} < 15 \ V \end{cases}$	R eg _{in}		0.01 0.02	0,1 0,2 0,3	-	0.01 0.1 -	0.1 0.5 0.3	%∨ _O
$\begin{array}{l} \text{Load Regulation (1.0 mA < I_ <50 mA)} \\ \text{T}_{A} = +25^{9}\text{C} \\ \text{T}_{low} \textcircled{1} < \text{T}_{A} < \text{T}_{high} \textcircled{2} \end{array}$	Regload		0.03	0.15 0.6		0.03	0.2 0.6	%VO
Ripple Rejection (f = 50 Hz to 10 kHz) C _{ref} = 0 C _{ref} = 5.0 μF	RejR		74 86		-	74 86	-	dB
Short Circuit Current Limit (R_{SC} = 10 Ω , V _O = 0)	^I SC		65			65		mAdc
Long Term Stability	$\Delta V_O / \Delta t$	a call the second se	0.1			0.1	-	%/1000 Hr

(1) $T_{Iow} = 0^{\circ}C$ for MC1723C = -55°C for MC1723 (2) $T_{high} = +75^{\circ}C$ for MC1723C = +125°C for MC1723

TYPICAL CHARACTERISTICS

(V_{in} = 12 Vdc, V_O = 5.0 Vdc, I_L = 1.0 mAdc, R_{SC} = 0, T_A = +25^oC unless otherwise noted.)

FIGURE 5 – LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING

FIGURE 6 – LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

FIGURE 7 – LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

IO, OUTPUT CURRENT (mA)

FIGURE 9 - CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE 0.8 200 SENSE VOLTAGE CURRENT LIMIT SENSE VOLTAGE (VOLT) 0.7 160 LIMITING CURRENT (mA) 0.6 120 LIMIT CURRENT RSC = 5 Ω 80 0.5 LIMIT CURRENT RSC = 10 Ω 0.4 40 +50 +100 +150 -50 TJ, JUNCTION TEMPERATURE (°C)

8

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 – LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

t, TIME (µs)

FIGURE 13 – LINE TRANSIENT RESPONSE

FIGURE 15 – OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY

TYPICAL APPLICATIONS

Pin numbers adjacent to terminals are for the metal and ceramic flat packages; pin numbers in parenthesis are for the ceramic dual in-line package.

FIGURE 19 – +5 V, 1-AMPERE HIGH EFFICIENCY REGULATOR

FIGURE 18 - +5 V, 1-AMPERE SWITCHING REGULATOR

FIGURE 21 - -15 V NEGATIVE REGULATOR

TYPICAL APPLICATIONS (continued)

FIGURE 22 – +12 V, 1-AMPERE REGULATOR USING PNP CURRENT BOOST

Pin numbers adjacent to terminals are for the metal and ceramic flat packages; pin numbers in parenthesis are for the ceramic dual in-line package.

MC1733 C

HIGH-FREQUENCY CIRCUITS

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V ⁺ V ⁻	+8.0 -8.0	Volts
Differential Input Voltage		Vin	±5.0	Volts
Common-Mode Input Voltage		CMVin	±6.0	Volts
Output Current		I _o	10	mA
Internal Power Dissipation (Note 1 Metal Can Package Ceramic Dual In-Line Package)	PD	500 500	mW
Operating Temperature Range	MC1733C MC1733	TA	0 to +75 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc, at T_A = +25^oC unless otherwise noted)

		MC1733			MC1733C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Units	
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)	A _{vd}	300 90 9.0	400 100 10	500 110 11	250 80 8.0	400 100 10	600 120 12		
Bandwidth (R _s = 50 Ω) Gain 1 Gain 2 Gain 3	BW		40 90 120			40 90 120		MHz	
Rise Time (R _s = 50 Ω, V ₀ = 1 Vp-p) Gain 1 Gain 2 Gain 3	t _r		10.5 4.5 2.5	10	_	10.5 4.5 2.5		ns	
Propagation Delay (R _s = 50 Ω, V _o = 1 Vp-p) Gain 1 Gain 2 Gain 3	^t pd		7.5 6.0 3.6		 	7.5 6.0 3.6		ns	
Input Resistance Gain 1 Gain 2 Gain 3	R _{in}	20	4.0 30 250	$V_{\rm e} h_{\rm e} V_{\rm e}$	- 10 -	4.0 30 250	_	kΩ	
Input Capacitance (Gain 2)	C _{in}	Construction of the second	2,0		_	2.0	-	pF	
Input Offset Current	l ¹ io]		0.4	3.0	_	0.4	5.0	μA	
Input Bias Current	ľb	the second part they	9.0	20		9.0	30	μΑ	
Input Noise Voltage ($R_s = 50 \Omega$, BW = 1 kHz to 10 MHz)	Vn		12	1.11		12		μV(rms)	
Input Voltage Range	Vin	±1.0		<u> </u>	±1.0	-		v	
Common-Mode Rejection RatioGain 2 $(V_{CM} = \pm 1 \text{ V}, f \le 100 \text{ kHz})$ Gain 2 $(V_{CM} = \pm 1 \text{ V}, f = 5 \text{ MHz})$	CM _{rej}	60	86 60	And Andrewson (Construction of the Construction of the Constructio	60 —	86 60	-	dB	
Supply Voltage Rejection Ratio Gain 2 $(\Delta V_s = \pm 0.5 V)$	S ⁺ , S [−]	50	70	in the second se	50	70	-	dB	
Output Offset Voltage Gain 1 Gain 2 and Gain 3	V _{oo}		0.6 0.35	1.5 1.0		0.6 0.35	1.5 1.5	v	
Output Common-Mode Voltage	CMVo	2.4	2.9	3.4	2.4	2.9	3.4	v	
Output Voltage Swing	Vo	3.0	4.0	4	3.0	4.0		Vp-p	
Output Sink Current	۱ _o	2.5	3.6		2.5	3.6	-	mA	
Output Resistance	Rout	-	20		-	20		Ω	
Power Supply Current	I _D	And Annual States	18	24		18	24	mA	

8

8

OPERATIONAL AMPLIFIERS

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

No Frequency Compensation Required

MC1741 MC1741C

- . Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Va	lue	Unit
		MC1741C	MC1741	
Power Supply Voltage	V+ V-	+18 +22 -18 -22		Vdc Vdc
Differential Input Signal	Vin	±3	30	Volts
Common Mode Input Swing (Note 1)	CMVin	±	15	Volts
Output Short Circuit Duration (Note 2)	tS	Conti		
Power Dissipation (Package Limitation) Metal Can Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	PD	68 4. 50 3. 6 5 7 7 6	mW mW/ ^o C mW mW/ ^o C mW/ ^o C mW/ ^o C	
Operating Temperature Range	TA	0 to +75 -55 to +125		°C
Storage Temperature Range Metal, Flat and Ceramic Packages Plastic Packages	T _{stg}	-65 to -55 to	°C	

Note 1. For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage.

OPERATIONAL AMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT G SUFFIX METAL PACKAGE **CASE 601**

P2 SUFFIX PLASTIC PACKAGE CASE 646 (MC1741C only)

F SUFFIX CERAMIC PACKAGE CASE 606 TO-91

P1 SUFFIX PLASTIC PACKAGE CASE 626 (MC1741C only)

PIN CONNECTIONS									
Schematic	А	в	С	D	E	F	G		
"G" & "P1" Packages	1	2	3	4	5	6	7		
"F" Package	2	3	4	5	6	7	8		
"P2" & "L" Packages	3	4	5	6	9	10	11		

See Packaging Information Section for outline dimensions. See current MCBC1741/MCB1741F data sheet for beam-lead chip information.

See current MCCF1741,C data sheet for flip-chip information.

MC1741, MC1741C (continued)

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = 15 Vdc, T_A = +25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
		Rain	111	ITHEA		170		
Deen Loop Voltage Gain (R _L = 2.0 k Ω) (V _O = ± 10 V, T _A = +25 ^O C)	AVOL	50,000	200,000		20,000	100,000	-	-
$(V_0 = \pm 10 V, T_A = T_{low} (1) \text{ to } T_{high} (2))$		25,000			15,000	-	-	
· · · · · · · · · · · · · · · · · · ·			No. 1911					
Dutput Impedance (f = 20 Hz)	Zo		75		-	75	_	Ω
Input Impedance (f = 20 Hz)	Z _{in}	0.3	1.0	And Advantages in the second	0.3	1.0	-	MegΩ
Output Voltage Swing	Vo							Vpeak
$(R_{L} = 10 \text{ k}\Omega, T_{A} = +25^{\circ}\text{C})$ $(R_{L} = 2.0 \text{ k}\Omega, T_{A} = +25^{\circ}\text{C})$		⇒±12	±14		±12	±14 ±13	_	
$(R_L = 2.0 \text{ k}\Omega, T_A = T_{low}(1) \text{ to } T_{high}(2))$		±10 ±10	±13		±10 ±10	±13		
the a 2.0 km, the a flow of to thigh (2)			An and a second se		TIO			
nput Common-Mode Voltage Swing	CMVin	±12	±13		±12	±13		Vpeak
common-Mode Rejection Ratio		- Contraction - Contraction						
(f = 20 Hz)	CM _{rej}	20	90		70	90	-	dB
nput Bias Current	11.			An order and a second s		+		μΑ
$(T_A = +25^{\circ}C)$	́Ть	And a state of the	0.2	0.5		0.2	0.5	µ~
$(T_A = T_{low}(1))$		A Second State of the seco	0.5	1.5	· _		0.5	
				Constant Constant		ļ	,	
nput Offset Current	lio	A second se	Charles and the same of the same					μΑ
(T _A = +25 ^o C)		San	0.03	0.2	-	0.03	0.2	
$(T_A = T_{low})$ to $T_{high} $				0.5	-	-	0.3	
			And the second s	and a second sec				
nput Offset Voltage (R _S = ≦ 10 kΩ)	Vio	A second se					N 1.	mV
$(T_{A} = +25^{\circ}C)$	1.51	and a second sec	1.0	5.0	-	2.0	6.0	
			And the second sec				ĺ	
$\{T_A = T_{low} (1) \text{ to } T_{high} (2)\}$		Staff (AU) Handlers	Westpellung - warden	6.0			7.5	
Step Response			The Log	and a second sec		1		
Gain = 100, R ₁ = 1.0 kΩ,	tf		29 8.5			29 8.5		μs μs
$R_2 = 100 \text{ k}\Omega, R_3 = 1.0 \text{ k}\Omega$	^t pd dV _{out} /dt ③	Annual Contraction of the Annual Contraction	1.0			1.0	_	μ3 V/μs
	dvout/ut @					1.0		ν/μs
Gain = 10, R ₁ = 1.0 kΩ,	tf		3.0	the states and the		3.0		μs
$R_2 = 10 k\Omega, R_3 = 1.0 k\Omega$			1.0	and a second sec	_	1.0		us
H2 - 10 K32, H3 - 1.0 K32	t _{pd} dV _{out} /dt ③		1.0	San Strate	_	1.0	_	μ. V/μs
				and a start of the second				
Gain = 1, R ₁ = 10 kΩ,	tf	Charles in a section of the section	0.6		-	0.6	-	μs
$R_2 = 10 k\Omega, R_3 = 5.0 k\Omega$	tpd		0.38	Contraction of the second seco	-	0.38	_	μs
	dV _{out} /dt ③	Alasha - Shine - 19	0.8	A Constant of the second secon	-	0.8	-	V/µs
werage Temperature Coefficient of		Complete Andrew States				+		
Input Offset Voltage	TCVIO		Martin Contractor					μ∨/ ⁰ C
$(R_S = 50 \Omega, T_A = T_{low} (1) \text{ to } T_{high} (2))$			3.0	A Contract of the strength of		3.0	-	
$(R_S = 10 \text{ k}\Omega, T_A = T_{\text{low}}(1) \text{ to } T_{\text{high}}(2))$			6.0		-	6.0	-	
verage Temperature Coefficient of		And a second sec				1		
Input Offset Current	TC _{lio}		Constant of the Constant of th	The second				pA/ ^O C
$(T_A = T_{low})$ to $T_{high}(2)$			50		<u> </u>	50	-	
OC Power Dissipation	PD			Contraction of the second			· · ·	mW
(Power Supply = \pm 15 V, V ₀ = 0)			50	85		50	85	
ositive Supply Sensitivity								
(V ⁻ constant)	S ⁺		30	150	·	30	150	μV/V
legative Supply Sensitivity	6-	Contraction of the second s					······	
(V ⁺ constant)	S-		30	150		30	150	μV/V
ower Bandwidth		1211-121					* * <u>.</u>	+
$(A_V = 1, R_L = 2.0 k\Omega,$	PBW		10		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	10		kHz
THD = 5%, $V_0 = 20 V_{p-p}$)	1	been a state water	And the second se	A CONTRACTOR		1 10.	i	1

 $(1) T_{low} = 0^{\circ}C \text{ for MC1741C}$ $= -55^{\circ}C \text{ for MC1741}$ 2 T_{high} = +75°C for MC1741C = +125°C for MC1741

3 dV_{out}/dt = Slew Rate

Plastic package offered in limited temperature range only.

8-457

8

TYPICAL CHARACTERISTICS

(V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

FIGURE 2 - POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)

FIGURE 3 - OPEN LOOP FREQUENCY RESPONSE

FIGURE 4 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 6 - INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 7 - INPUT BIAS CURRENT versus TEMPERATURE

MC1741, MC1741C (continued)

FIGURE 10 – COMMON-MODE REJECTION RATIO versus FREQUENCY

8

OPERATIONAL AMPLIFIERS

MC1741S MC1741SC

HIGH SLEW-RATE INTERNALLY-COMPENSATED OPERATIONAL AMPLIFIER

The MC1741S/MC1741SC is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1741 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D-to-A converters due to its fast settling time and high slew rate.

TYPICAL APPLICATION OF OUTPUT CURRENT TO

- High Slew Rate 10 V/µs Guaranteed Minimum
- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

Pins not shown are not connected.

Settling time to within 1/2 LSB (±19.5 mV) is approximately 4.0 μ s from the time that all bits are switched. *The value of C may be selected to minimize overshoot and ringing (C \approx 150 pF).

See Packaging Information Section for outline dimensions.

Adjust $V_{\text{ref}},\,R1$ or R_0 so that V_0 with all digital inputs at high level is equal to 9.961 volts.

$$V_{0} = \frac{2 V}{1 k} (5 k) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right] = 10 V \left[\frac{255}{256} \right] = 9.961 V$$

MC1741S, MC1741SC (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

		Valu		
Rating	Symbol	MC1741SC	MC1741S	Unit
Power Supply Voltage	V _{CC} V _{EE}	+18 -18	+22 -22	Vdc
Differential Input Signal Voltage	V _{in}	±3	0	Volts
Common-Mode Input Voltage Swing (See Note 1)	VICR	±1	Volts	
Output Short-Circuit Duration (See Note 2)	ts	Contin	uous	
Power Dissipation (Package Limitation)	PD			
Metal Package		68	0	mW
Derate above $T_A = +25^{\circ}C$		4.	6	mW/ ^o C
Plastic Dual In-Line Package		62	5	mW
Derate above $T_A = +25^{\circ}C$		5.0	D	mW/ ^o C
Operating Temperature Range	TA	0 to +75	-55 to +125	°c
Storage Temperature Range	T stq			°C
Metal Package		-65 to	+150	
Plastic Package		-55 to	+125	

Note 1. For supply voltages less than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage. Note 2. Supply voltage equal to or less than 15 Vdc.

FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Contraction of the second	Contraction of Contra			MC1741SC**			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
		PBW							kHz	
Size Afate (Figures 10 and 11) SR 10 20 - V(-) to V(-) 10 12 - 10 12 - Setting Time (Figures 10 and 11) 1'settig - 3.0 - - 3.0 - (Gain - 1, Eight = 20 mV, see Figures 7 and 8) 1'TLH - 9.25 - - 0.20 0.00 0.20 0.20 <t< td=""><td>$A_v = 1, R_L = 2.0 \text{ k}\Omega, \text{ THD} = 5\%, V_O = 20 \text{ V}(p-p)$</td><td></td><td>150</td><td>200</td><td>-</td><td>150</td><td>200</td><td>_</td><td></td></t<>	$A_v = 1, R_L = 2.0 \text{ k}\Omega, \text{ THD} = 5\%, V_O = 20 \text{ V}(p-p)$		150	200	-	150	200	_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Large-Signal Transient Response					9		1. 11 A.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Slew Rate (Figures 10 and 11)	SR					a service a			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V(-) to V(+)		10	20	-	10	20	- · ·	V/µs	
(to within 0.1%) 2.1% 3.	V(+) to V(-)		10	12	Same -	10	12	·		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Settling Time (Figures 10 and 11)	tsetla		3.0	A Contraction	- 12	3.0	-	μs	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(to within 0.1%)	j ang	And Andrew Street Control of Street							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Small-Signal Transient Response		1200 422	Service States	Salar Street	2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Gain = 1, Ein = 20 mV, see Figures 7 and 8)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	tTI H	Sand Street Street	0.25	-		0.25		μs	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time			0.25		š			μs	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Propagation Delay Time		100 million (100 million)	a straight when the state	1				μs	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	Co. Contraction of the second	<u>ц</u>	- · ·		1.1	%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			+10		+35	+10		+35	mA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· ·		10		200	1 - 10				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Avol	50.000	000 000	Para Contractor	200.000	00000		-	
Output Impedance (f = 20 Hz) z_0 -76 $ 75$ $-$ Input Impedance (f = 20 Hz) z_{in} 0.3 1.0 $ 0.3$ 1.0 $-$ Output Voitage Swing V_0 ± 12 ± 14 $ \pm 12$ ± 14 $-$ R_L = 10 k\Omega, T_A = +25°C H_1 ± 12 ± 14 $ \pm 10$ ± 13 $-$ R_L = 2.0 k\Omega, T_A = +25°C H_1 ± 12 ± 13 $ \pm 10$ ± 13 $-$ Input Bias Current (See Figure 2) T_A ± 10 $ 0.2$ 0.5 $ 0.2$ 0.5 $ 0.2$ 0.5 $ 0.2$ 0.5 $ 0.3$ 0.2 $ 0.3$ 0.2 $ 0.3$ 0.2 $ 0.3$ 0.2 0.5 $ 0.2$ 0.5 $ 0.2$ 0.5 $ 0.2$ 0.5 $ 0.2$ 0.5 $ 0.3$ 0.2 $ 0.3$ 0.2 $ 0.3$ 0				200,000		24		1. The		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			25,000	-	1		A starting and			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z _o	100	Park Official Street	-				Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	• • •		0.3	1.0	ł.	0.3	1.0	· · · · · · · · · · · · · · · · · · ·	MΩ	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Vo							Vpk	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			±12	±14	-	±12	±14	-	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R _L = 2.0 kΩ, T _A = +25 ⁰ C		±10	±13	-	±10	±13			
Common-Mode Rejection Ratio (f = 20 Hz) CMRR 70 90 - 70 90 - Input Bias Current (See Figure 2) $T_A = +25^{\circ}C$ I_{IB} - 0.2 0.5 - 0.2 0.5 - 0.2 0.5 Input Bias Current (See Figure 2) I_{IB} - 0.5 1.5 - 0.2 0.5 T_A = +25°C - 0.5 1.5 - - 0.8 Input Offset Current $ I_{IO} $ - 0.03 0.2 - 0.3 T_A = +25°C - - 0.5 - - 0.3 0.2 T_A = +25°C - - 0.5 - - 0.3 0.2 T_A = +25°C - - 0.5 - - 0.3 0.2 T_A = +25°C - - 0.03 0.2 - - 0.3 T_A = +25°C - - 0.03 - - 0.5 - - 0.5 Average Temperature Coefficient of Input <td>$R_{L} = 2.0 k\Omega$, $T_{A} = T_{low}$ to T_{high}</td> <td></td> <td>±10</td> <td></td> <td>+</td> <td>±10</td> <td>19 - 19</td> <td>-</td> <td></td>	$R_{L} = 2.0 k\Omega$, $T_{A} = T_{low}$ to T_{high}		±10		+	±10	19 - 19	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Common-Mode Voltage Swing	VICR	±12	±13		±12	±13	·	Vpk	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Common-Mode Rejection Ratio (f = 20 Hz)	CMRR	70	90	-	70	90		dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Bias Current (See Figure 2)	lip	Construction of the local sector						μΑ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	0.2	0.5		0.2	0.5		
			-	Con The State of t	A State of the Sta		이 이루는 것	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Constant States						μA	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.02	0.2		0.02	0.2	μ.Α.	
			State State	0.05	and the second second second		1	10 C		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					0.5		-	0.3	ļ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1101							mV	
				1.0	State of the local data in the second states		2.0	1 S. M. 1997 S. M. 1997		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_	a construction of the second s	and the second	6.0		. T	7.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		TCVIO							µV/⁰C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Contraction of the							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Start and Colored Start			8			1	
Average Temperature Coefficient of Input Offset Current $(T_A = T_{IOV} to T_{high})$ $ TC_{I_{IO}} $ $=$ 50 $=$ $=$ 50 $=$ DC Power Dissipation (See Figure 9) (Power Supply = ±15 V, V_0 = 0)PD $=$ 50 85 $=$ 50 85 Positive Voltage Supply Sensitivity (VEE constant)S ⁺ $=$ 2.0 150 $=$ 2.0 150			-		-			2010 -1 00-1		
Other Current (T_A = T_{low to Thigh})-50-50-DC Power Dissipation (See Figure 9) (Power Supply = ±15 V, V_0 = 0)PD-5085-Positive Voltage Supply Sensitivity (VEE constant)S ⁺ -2.0150-150	R _S = 10 kΩ			6.0		-	6.0	1973) <u>114</u> 1971 - 1972 - 1973		
Other Current (T_A = T_{low to Thigh})-50-50-DC Power Dissipation (See Figure 9) (Power Supply = ±15 V, V_0 = 0)PD-5085-Positive Voltage Supply Sensitivity (VEE constant)S ⁺ -2.0150-150		TCIO							pA/ ^o C	
DC Power Dissipation (See Figure 9) (Power Supply = ±15 V, V _O = 0) P _D - 50 85 - 50 85 Positive Voltage Supply Sensitivity (VEE constant) S ⁺ - 2.0 150 - 2.0 150 - 150 -	Offset Current		No.							
(Power Supply = ±15 V, V _O = 0) - 50 85 - 50 85 Positive Voltage Supply Sensitivity (VEE constant) S ⁺ - 2.0 150 - 2.0 150 - 50 85	$(T_A = T_{low} \text{ to } T_{high})$		-	50	-	-	50	-	1	
(Power Supply = ±15 V, V _O = 0) - 50 85 - 50 85 Positive Voltage Supply Sensitivity (VEE constant) S ⁺ - 2.0 150 - 2.0 150 - 50 85		PD		1				-	mW	
Positive Voltage Supply Sensitivity S ⁺ 2.0 150 - 2.0 150			-	50	85	187 <u>4</u> 88	50	85		
(V _{EE} constant) – 2.0 150 – 2.0 150				Contraction of the					$\mu V/V$	
		Ĭ		20	150	174223	20	150	" ","	
ivegative voltage supply sensitivity [5]		+	Contrast of	2.0	100	13 14	2.0	1.00	+	
(V _{CC} constant) - 10 150 - 10 150		5-							μV/V	

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

*T_{low} = 0 for MC1741SC = -55 ^oC for MC1741S T_{high} = +75^oC for MC1741SC = +125 ^oC for MC1741S

**Plastic package offered in limited temperature range device only.

πu

RISE TIME

OVERSHOOT VOS

7

 $\label{eq:VCC} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = +15 \ Vdc, \ V_{EE} = -15 \ Vdc, \ T_A = +25^o C \ unless \ otherwise \ noted.) \end{array}$

8-463

MC1741S, MC1741SC (continued)

FIGURE 9 – POWER DISSIPATION versus POWER SUPPLY VOLTAGES

FIGURE 10 - LARGE-SIGNAL TRANSIENT WAVEFORMS

FIGURE 11 – SLEW RATE AND SETTLING TIME TEST CIRCUIT

SETTLING TIME

 $\label{eq:VCC} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (\text{continued}) \\ (\text{V}_{CC} = +15 \ \text{Vdc}, \ \text{V}_{EE} = -15 \ \text{Vdc}, \ \text{T}_{A} = +25^{\circ}\text{C} \ \text{unless otherwise noted.}) \end{array}$

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.

SETTLING TIMÉ MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown, in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1% of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

$$t_{setlg} = \sqrt{x^2 + y^2 + z^2}$$

can be used to determine the actual amplifier settling time, where

tsetla = observed settling time

- x = amplifier settling time (to be determined)
- y = false summing junction settling time
- z = oscilloscope settling time

It should be remembered that to settle within $\pm 0.1\%$ requires 7RC time constants.

The $\pm 0.1\%$ factor was chosen for the MC1741S settling time as it is compatible with the $\pm 1/2$ LSB accuracy of the MC1508L-8 digital-to-analog converter. This D-to-A converter features $\pm 0.19\%$ maximum error.

MC1741S, MC1741SC (continued)

FIGURE 12 - WAVEFORM AT FALSE SUMMING NODE

TYPICAL APPLICATION

FIGURE 14 - 12.5-WATT WIDEBAND POWER AMPLIFIER

OPERATIONAL AMPLIFIER

MC1747 MC1747C

See Packaging Information Section for outline dimensions.

MC1747, MC1747C (continued)

MAXIMUM RATINGS (TA +25°C unless otherwise noted.)

Rating	Symbol	MC1747	MC1747C	Unit
Power Supply Voltages	V _{CC} V _{EF}	+22 -22	+18 -18	Vdc
Differential Input Signal Voltage – (1)	VID	<u>+</u>	· Volts	
Common-Mode Input Swing Voltage ②	VICR	+	Volts	
Output Short-Circuit Duration	tOS	Cont		
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = +60 ⁰ C	PD	7	mW mW/ ⁰ C	
Voltage (Measurement between Offset Null and VEE)		<u>+</u>	Volts	
Operating Temperature Range	TA	-55 to +125	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} +15 Vdc, V_{EE} -15 Vdc, T_A = +25^oC unless otherwise noted.) T

	1		MC1747			MC1747C		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Чв		1.1					nAdc
$T_A = +25^{\circ}C$			80	500	-	80	500	
T _A = T _{high} ③			30	500	1 -	· 30	800	
$T_A = T_{IOW}$ (3)			300	1500		30	800	
Input Offset Current	10							nAdc
$T_A = +25^{\circ}C$			20	200		20	200	
TA = Thigh			7.0	200	-	7.0	300	
TA = TION		<u> 1997–199</u>	85	500		7.0	300	-
Input Offset Voltage ($R_S \le 10 k\Omega$)	IV10	and the second sec	No					mVdc
$T_{A} = +25^{\circ}C$		and a state of the	1.0	5.0	-	1.0	6.0	
T _A = T _{low} to T _{high}		A second se	1.0	6.0		1.0	7.5	
Offset Voltage Adjustment Range			± 15		-	<u>+</u> 15		mV
Differential Input Impedance (Open-loop, f = 20 Hz)								
Parallel Input Resistance	Rp	0.3	2.0		0.3	2.0	-	Megohms
Parallel Input Capacitance	Cp	and the second s	1,4		-	1.4		pF
Common-Mode Input Voltage Swing	VICR	And	the second se					Volts
$T_{low} \leqslant T_A \leqslant T_{high}$		± 12	± 13		<u>± 12</u>	<u>+</u> 13		
Common-Mode Rejection Ratio ($R_S = 10 k\Omega$)	CMRR	Contraction of the second	the state of the s	and a start of the				dB
$T_{low} \leq T_A \leq T_{high}$		70	90	A CONTRACTOR	70	90		
Open-Loop Voltage Gain	Avol		The second se	and shares a				Volts
$T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high} $(V_O = \pm 10 \text{ V}, \text{ R}_L = 2.0 \text{ k}\Omega)$		50,000	200,000		25,000	200,000	-	
$T_A = T_{low}$ to T_{high}		25,000		and a set of the set o	15,000	-		
Transient Response (Unity Gain)			total sources					
(V_{in} = 20 mV, R _L = 2.0 k Ω , C _L \leq 100 pF)								
Rise Time	^t PLH	-	0.3		-	0.3	-	μs
Overshoot Percentage			5.0	Street and the second second		5.0		%
Slew Rate (Unity Gain)	SR		0.5		-	0.5	_	V/µs
Output Impedance	zo		75	200 A	-	75		ohms
Short-Circuit Output Current	los		25		-	25		mAdc
Channel Separation			120	a mar i and a second	_	120		dB
Output Voltage Swing ($T_{IOW} \leq T_A \leq T_{high}$)	Vo				1			Vpk
$R_{\rm L} = 10 \rm k\Omega$		+ 12	± 14	1.711 - The second	+ 12	+ 14	_	трк
$R_{L} = 2.0 k \Omega$		+ 10	+ 13	and a second second second	+ 10	+ 13	-	
Power Supply Sensitivity (Tlow to Thigh)								μν/ν
$V_{EE} = Constant, R_S \le 10 k\Omega$	s+		30	150	-	30	150	1
$V_{CC} = Constant, R_S \leq 10 k\Omega$	s-	3	30	150	_	30	150	
Power Supply Current (each amplifier)				Salary and States	1			mAdc
$T_{A} = +25^{\circ}C$			1.7	2.8	_	1.7	2.8	
$T_A = T_{low}$		Constraint Constraints	2.0	3.3	_	2.0	3.3	1
$T_A = T_{high}$		h ve yn itte rriger	1.5	2.5	l	2.0	3.3	
DC Power Dissipation (each amplifier)	PD							mW
$T_{A} = +25^{\circ}C$		A CONTRACTOR	50	85	_	50	85	1
$T_A = T_{low}$			60	100	- 1	60	100	1
TA = Thigh		A set of the set of th	45	75	- 1	60	100	1

For supply voltages of less than ± 15 V, the maximum differential input voltage is equal to ± (V_{CC} + |V_{EE}|).
 For supply voltages of less than ± 15 V, the maximum input voltage is equal to the supply voltage (+V_{CC}, -|V_{EE}|).
 T_{Iow}: 0°C for MC1747CL -55°C for MC1747L

.

Thigh: +75°C for MC1747L +125°C for MC1747L

8

FIGURE 2 - CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

FIGURE 3 - EQUIVALENT CIRCUIT

MC1747, MC1747C (continued)

TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

FIGURE 10 – HIGH-IMPEDANCE, HIGH-GAIN INVERTING AMPLIFIER

OPERATIONAL AMPLIFIERS MC1748G MC1748CG HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER ... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON EPITAXIAL

- Noncompensated MC1741G
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

See Packaging Information Section for outline dimensions.

See current MCC1748/1748C data sheet for standard linear chip information.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	MC1748G MC1748CG	Unit
Power Supply Voltage	v+ v-	+22 +18 -22 -18	Vdc
Differential Input Signal	V _{in}	±30	Volts
Common-Mode Input Swing ①	CMVin	±15	Volts
Output Short Circuit Duration	ts	Continuous	
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	680 4.6	mW mW/ ⁰ C
Operating Temperature Range	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150 -65 to +150	°C

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

		S ILLE	AC1748G	No. of Concession, Name	MC1748CG			
Characteristics	Symbol	Min Typ		Max Min		Typ Ma		Unit
Input Bias Current	l b							μAdc
T _A = +25 ^o C		A second se	0.08	0.5	- 1	0.08	0.5	
$T_A = T_{low}$ to T_{high}		Andrew Contraction	0.3	1.5	-		0.8	
Input Offset Current	I _{io}							μAdc
T _A = +25 ^o C		and a second	0.02	0.2	-	0.02	0.2	
T _A = T _{low} to T _{high}			0.08	0.5	-	-	0.3	
Input Offset Voltage ($R_{S} \le 10 \text{ k} \Omega$)	Vio	Netters	and a series of the series of	Na Service				mVdc
$T_A = +25^{\circ}C$			1,0	5.0	-	1.0	6.0	
$T_A = T_{low}$ to T_{high}			anna fa an na fan a	6.0	-	-	7.5	
Differential Input Impedance (Open-Loop, f = 20 Hz)		A.C. C. Argenet		Contraction of the second s				
Parallel Input Resistance	Rp	0.3	2.0	And an and a second sec	0.3	2.0		Megohr
Parallel Input Capacitance	Cp		1.4	-	-	1.4	-	pF
Common-Mode Input Impedance (f = 20 Hz)	Z _(in)	Contraction of the	200	Provide State	-	'200		Megohm
Common-Mode Input Voltage Swing	CMVin	±12	±13		±12	±13	-	V _{pk}
Common-Mode Rejection Ratio (f = 100 Hz)	CMrej	70	90		70	90		dB
Open-Loop Voltage Gain, (Vo = ±10 V, RE = 2.0 k ohms)	AVOL	Start Charles	and second second second					V/V
$T_A = +25^{\circ}C$		50,000	200,000		20,000	200,000	-	
$T_A = T_{low}$ to T_{high}		25,000		-	15,000	-	-	
Step Response (V_{in} = 20 mV, C_c = 30 pF, R_L = 2 k Ω , C_L = 100 pF)				and allowing the		· · ·		
Rise Time	tr		0.3	-		0.3	_	μs
Overshoot Percentage			5.0		-	5.0		%
Slew Rate	dV _{out} /dt		0.8	-	· · · · ·	. 0.8		V/µs
Output Impedance (f = 20 Hz)	Zout	And and a second	75		-	75		ohms
Short-Circuit Output Current	^I SC	and a standard	25		-	25		mAd
Output Voltage Swing (RL = 10 k ohms)	V _o	±12	±14		±12	±14	-	Vpk
$R_L = 2 k \text{ ohms} (T_A = T_{low} \text{ to } t_{high})$		±10	±13	<u>ж</u>	±10	<u>+</u> 13	·	
Power Supply Sensitivity		Contraction of the						μV/V
V^{-} = constant, $R_s \le 10$ k ohms	S+	4	30	150		30	150	
V^+ = constant, $R_s \le 10$ k ohms	S-	The shade and the second	30	150	-	30	150	
Power Supply Current	1D+	New Contraction	1.67	2.83	-	1.67	2.83	mAdo
	1 _D -	And And Street Street Street	1.67	2.83	-	1.67	2.83	
DC Quiescent Power Dissipation	PD			- and				mW
$(\vee_{o} = 0)$		12,000	50	85	-	50	85	

0 For supply voltages less than ±15 V, the Maximum Input Voltage is equal to the Supply Voltage.

T_{low}: 0°C for MC1748CG -55°C for MC1748G
 T_{high}: +75°C for MC1748CG +125°C for MC1748G

OPERATIONAL AMPLIFIERS

MC1776G MC1776CG

Specifications and Applications Information MONOLITHIC MICROPOWER PROGRAMMABLE OPERATIONAL AMPLIFIER PROGRAMMABLE OPERATIONAL AMPLIFIER This extremely versatile operational amplifier features low-power consumption, high input impedance and low input noise levels. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source EPITAXIAL PASSIVATED applied to the Iset input. This allows the amplifier's characteristics INTEGRATED CIRCUIT to be optimized for input current, power consumption and input voltage, and current noise despite wide variations in operating power supply voltages. METAL PACKAGE • ±1.2 V to ±18 V Operation CASE 601 Wide Programming Range ٠ . Low Noise Offset Null Capability • No Frequency Compensation Required Low Input Bias Currents Short-Circuit Protection RESISTIVE PROGRAMMING (See Figure 1.) R_{set} to GROUND R_{set} to NEGATIVE SUPPLY PIN CONNECTIONS (Recommended for supply voltage less than ±6.0 V) Q vcc 7 Q VCC INVERTING INPUT o OUTPUT NONINVERTING C VFF Vcc - 0.6 INPUT OFFSET Rset VCC -0.6 -VEE 40 VFF NULL R_{set} VEE Typical R_{set} Values Typical R_{set} Values V_{CC} , V_{EE} |set = 1.5 μ A | I_{set} = 15 μ A l_{set} = 1.5 μA I_{set} = 15 μA V_{CC}, V_{EE} ±1.5V 1.6 MΩ 160 k Ω 3.6 M.O. +6.0V 360 k Ω ±3.0V 3.6 MΩ 360 kΩ +10V 6.2 MΩ 620 kΩ 7.5 MΩ ±6.0∨ 7.5 MΩ 750 kΩ +12V 750 kΩ 20 MΩ 2.0 MΩ **10** MΩ 1.0 MΩ ±15 V ±15 v NANOWATT AMPLIFIER APPLICATION ACTIVE PROGRAMMING FET CURRENT SOURCE **BIPOLAR CURRENT SOURCE** 1 M +1.2 V Q VCC 100 k /n 40-1.2 V VEE 8 22 M Pn = 600 nW

Pins not shown are not connected.

See Packaging Information Section for outline dimensions.

8-472

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} , V _{EE}	±18	Vdc
Differential Input Voltage	VID	±30	Vdc
Common-Mode Input Voltage V_{CC} and $ V_{EE} < 15 V$ V_{CC} and $ V_{EE} \ge 15 V$	VICM	V _{CC} , V _{EE} ±15	Vdc
Offset Null to VEE Voltage	V _{off} -V _{EE}	±0.5	Vdc
Programming Current	lset	500	μA
Programming Voltage (Voltage from I _{set} terminal to ground)	V _{set}	(V _{CC} - 2.0 V) to V _{CC}	Vdc
Output Short-Circuit Duration *	t _s	Indefinite	s
Operating Temperature Range MC1776 MC1776C	тд	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	680 4.6	mW mW/C ⁰

*May be to ground or either Supply Voltage. Rating applies up to a case temperature of +125°C or ambient temperature of +75°C and I_{set} $\leq 30 \,\mu$ A.

SCHEMATIC DIAGRAM

		25.22	MC1776			MC1776C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage ($R_{S} \leq 10 k\Omega$)	Viol	2222						mV	
$T_{A} = +25^{\circ}C$			2.0	5.0	11 <u>-</u> 12	2.0	6.0		
$T_{low}^* \leq T_A \leq T_{high}^*$				6.0		$z = z_{z}$	7.5		
Input Offset Current	10	1000 C				a sayar k		nA	
T _A = +25 ^o C			0.7	3.0	an 4 na S	0.7	6.0		
TA = T _{high}		-		5.0	5 - 1	1940 B	6.0		
$T_A = T_{low}$		-		10	· · ·	1 	10		
Input Bias Current	ПВ							nA	
T _A = +25 ^o C		-	2.0	7.5	$\gamma = 1$	2.0	10		
T _A = T _{high}				7.5			10		
$T_A = T_{low}$			-	20	<u> </u>	-	20		
Input Resistance	R _{in}	-	50	—	-	50		MΩ	
Input Capacitance	C _{in}	24 A	2.0		200 - 2002	2.0	1	pF	
Offset Voltage Adjustment Range	VIOR		9.0		-	9.0	_	mV	
Large Signal Voltage Gain	Avol	10000						V/V	
R _L ≥ 75 kΩ, V _O = ±1.0 V, T _A = +25 ^O C		50 k	200 k	-	25 k	200 k	11 - 11		
$R_L \ge 75 \text{ k}\Omega$, $V_O = \pm 1.0 \text{ V}$, $T_{low} \le T_A \le T_{high}$		25 k		-	25 k				
Output Resistance	RO		5.0	-	24 2 - 1 -	5.0		kΩ	
Output Short-Circuit Current	losc		3.0	-	ang a ta parta	3.0		mA	
Supply Current	ICC, IEE	Sec. 33						μA	
T _A = +25 ^o C			13	20	3 1 B	13	20		
T _{low} ≤ T _A ≤ T _{high}		-	-	25			25		
Power Dissipation	PD	1000						μW	
$T_A = +25^{\circ}C$	0		78	120		78	120		
T _{low} ≤ T _A ≤ T _{high}		-	_	150	1. - -		150		
Transient Response (Unity Gain)		0.555				1.1.1.1.1.1			
$V_{in} = 20 \text{ mV}, R_{I} \ge 5.0 \text{ k}\Omega, C_{I} = 100 \text{ pF}$		States -			(3, 1)				
Rise Time	tт∟н		3.0	-	1990 - Alban S	3.0	승규 옷을	μs	
Overshoot	OS	-	0		· · - · ·	0	- 1	%	
Slew Rate (R _L \geq 5.0 k Ω)	SR		0.03	-		0.03	-	V/µs	
Output Voltage Swing	Vo			Cathorn			1994 S (1997)	V	
$R_L \ge 75 k\Omega$, $T_{low} \le T_A \le T_{high}$	-	±2.0	±2.4		±2.0	±2.4			
Input Voltage Range	VID		1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -			I		v	
$T_{low} \leq T_A \leq T_{high}$		±1.0	-		±1.0	-			
Common-Mode Rejection Ratio	CMRR	20055		S. S. S. S.		1		dB	
$R_S \leq 10 k\Omega$, $T_{Iow} \leq T_A \leq T_{high}$		70	86		70	86	요금하네		
Supply Voltage Rejection Ratio	PSRR	1.55	S	S. 3. 5.				μV/V	
$R_{S} \leq 10 k\Omega$, $T_{Iow} \leq T_{A} \leq T_{high}$			25	150	한 제도 처네.	25	200		

ELECTRICAL CHARACTERISTICS (V_{CC} = +3.0 Vdc, V_{EE} = -3.0 Vdc, I_{set} = 1.5 µA, T_A = +25^oC unless otherwise noted.)

*T_{low} = -55^oC for MC1776 0^oC for MC1776C T_{high} = +125^oC for MC1776 +70^oC for MC1776C

VOLTAGE OFFSET NULL CIRCUIT

TRANSIENT-RESPONSE TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (V_{CC} = +3.0 V, V_{EE} = -3.0 V, I_{set} = 15 µA, T_A = +25^oC unless otherwise noted.)

.

		A Part of the second	MC1776					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 kΩ)	Vio!							mV
$T_A = +25^{\circ}C$			2.0	5.0	-	2.0	6.0	
$T_{low}^* \leq T_A \leq T_{high}^*$				6.0		-	7.5	
Input Offset Current	01	The Walter and		and the second second				nA
T _A = +25 ^o C			2.0	15	·	2.0	25	
$T_A = T_{high}$				15	-		25	
$T_A = T_{low}$		phone is the second sec		40	-	-	40	
Input Bias Current	Чв	CARE AND AND PROPERTY AND	Constant of the second second	al and an and a state of				nA
T _A = +25 ^o C		an shake at	15	50	-	15	50	
T _A = T _{high}				50		- 1	50	
$T_A = T_{low}$		and the second s		120		-	100	
Input Resistance	Rin		5.0	not of the state o		5.0	-	MΩ
Input Capacitance	C _{in}	And a gradient	2.0	and click of the		2.0		pF
Offset Voltage Adjustment Range	VIOR		18		-	18		mV
Large Signal Voltage Gain	Avol		A CONSTRUCTION	Contraction of the second				V/V
R _L ≥5.0 kΩ, V _O = ±1.0 V, T _A = +25 ^o C		50 k	200 k	Particle Addition of the second	25 k	200 k	-	
$R_L \ge 5.0 k\Omega$, $V_O = 1.0 V$, $T_{low} \le T_A \le T_{high}$		25 k	-	ar al constant and a second	25 k		-	
Output Resistance	RO		1.0	And an and a second s	-	1.0	-	kΩ
Output Short-Circuit Current	losc		5.0			5.0	-	mA
Supply Current	ICC, IEE						l.	μA
$T_A = +25^{\circ}C$		to the second	130	160	-	130	170	
T _{Iow} ≪T _A ≪T _{high}			-	180		-	180	
Power Dissipation	PD	in the second second second second	Construction of the Artist	Contraction of the Products				μW
$T_A = +25^{\circ}C$		All Speech come	780	960	-	780	1020	
T _{low} ≪T _A ≪T _{high}		and a second to and the	And an	1080	-	- ·	1080	
Transient Response (Unity Gain)	1	Contract of the second state	Constant and the	National States of the States				÷
V _{in} = 20 mV, R _L ≥5.0 kΩ, C _L = 100 pF]	Contraction of the second seco	an ann agus a suid a na an Chann ann an Anna an Anna an Chann an Anna an Anna an Anna an	All states and second second				
Rise Time	t TLH	Constitution of the	0.6	ana shiri da cantar ba	-	0.6		μs
Overshoot	os		5.0			5.0		%
Slew Rate (RL≥5.0 kΩ)	SR	Carlor and a constraint of the second se	0.35	of table of the solution of the		0.35		V/µs
Output Voltage Swing	Vo	And Article Street, and	1. M	Programme and a second second				V
R _L ≥5.0 kΩ, T _{low} ≤T _A ≤T _{high}		±1.9	±2.1	annalyzin String of the one	±2.0	±2.1	- "r	
Input Voltage Range	VID							V
$T_{low} \leq T_A \leq T_{high}$.±1.0		Carlier Colors	±1.0	-		
Common-Mode Rejection Ratio	CMRR							dB
$R_{S} \leq 10 k\Omega$, $T_{Iow} \leq T_{A} \leq T_{high}$		70	86		70	86	-	
Supply Voltage Rejection Ratio	PSRR			President and a second second				$\mu V/V$
$R_{S} \leq 10 k\Omega$, $T_{low} \leq T_{A} \leq T_{high}$	1	and a state of the second s	25	150		25	200	

*T_{low} = -55^oC for MC1776 0^oC for MC1776C T_{high} = +125^oC for MC1776 +70^oC for MC1776C

.

		MC1776 MC1776						
Characteristic	Symbol	Min	Тур	Max	Min	Түр	Max	Unit
Input Offset Voltage ($R_S \leq 10 k\Omega$)	Vio						and a second	mV
$T_A = +25^{\circ}C$		1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	2.0	5.0	$\mathbb{C}^{n+1} \to \mathbb{C}^{n}$	2.0	6.0	
$T_{low}^* \leq T_A \leq T_{high}^*$				6.0			7.5	
Input Offset Current	10							nA
$T_A = +25^{\circ}C$	1.01	-	0.7	3.0		0.7	6.0	
$T_A = T_{high}$		222	-	5.0	· · · · ·	· · · · · · · · · · · · · · · · · · ·	6.0	
$T_A = T_{low}$			-	10			10	1
Input Bias Current	11B	10000						nA
$T_A = +25^{\circ}C$	1		2.0	7.5	1	2.0	10	
$T_A = T_{high}$	ļ		1000	7.5		-	10	
$T_A = T_{low}$		Ŧ		20	anti Tar		20	
Input Resistance	R _{in}		50	-		50	1 	MΩ
Input Capacitance	C _{in}		2.0	-	1. A . A . A . A . A . A . A . A . A . A	2.0		рF
Offset Voltage Adjustment Range	VIOR		9.0			9.0	$\left(\frac{1}{2} \left(1 + 1 \right) - \frac{1}{2} \left(\frac{1}{2} \left(1 + 1 \right) \right) \right) = 0$	mV
Large Signal Voltage Gain	Avol						And the second	V/V
$R_{L} \ge 75 \text{ k}\Omega, V_{O} = \pm 10 \text{ V}, T_{A} = \pm 25^{O}\text{C}$		200 k	400 k		50 k	400 k	이 우리하네.	
$R_L \ge 75 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$, $T_{\text{low}} \le T_A \le T_{\text{high}}$		100 k		S	50 k			
Output Resistance	RO	1000	5.0	-		5.0	1. 1 	kΩ
Output Short-Circuit Current	losc	-	3.0	-		3.0	-	mA
Supply Current	ICC, EE							μA
$T_{A} = +25^{\circ}C$			20	25	$(1,2) \rightarrow (1,2)$	20	30	
T _{low} ≪T _A ≪T _{high}				30	신금신신	÷.	35	
Power Dissipation	PD	1000						mW
T _A = +25 ^o C			-	0.75	19-52	-	0.9	
Tlow≪TA≪Thigh		-	-	0,9	1999 - 1999 -		1,05	
Transient Response (Unity Gain)								
V _{in} = 20 mV, R _L ≥ 5.0 kΩ, C _L = 100 pF		10000						
Rise Time	^t TLH		1.6	100	1. <u>1.</u>	1.6		μs
Overshoot	OS	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	0	-		0		%
Slew Rate ($R_L \ge 5.0 \ k\Omega$)	SR	-	0.1	-	ni, s∓ragi	0.1	<u>.</u>	V/µs
Output Voltage Swing	Vo							V
$R_L \ge 75 k\Omega$, $T_A = +25^{\circ}C$	1	±12	±14	-	±12	±14		
$R_L \ge 75 k\Omega$, $T_{low} \le T_A \le T_{high}$		±10	-	-	±10	-	100년 4월	
Input Voltage Range	VID							v
Tlow≪TA≪Thigh		±10			±10	s(13 ∀ 9,63	a da an Casas	
Common-Mode Rejection Ratio	CMRR		1.500	1.000				dB
$R_{S} \leq 10 k\Omega$, $T_{low} \leq T_{A} \leq T_{high}$		70	90	-	70	90		
Supply Voltage Rejection Ratio	PSRR							μV/V
R _S ≪10 kΩ, T _{low} ≪T _A ≪T _{high}			25	150	신음성	25	200	

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, I_{set} = 1.5 μ A, T_A = +25^oC unless otherwise noted.)

*T_{Iow} = -55^oC for MC1776 0^oC for MC1776C T_{high} = +125^oC for MC1776 +70^oC for MC1776C

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, I_{set} = 15 μ A, T_A = +25°C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (V _{CC} = +	Symbol		MC1776		MC1776C			
Characteristic		Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage ($R_S \leq 10 k\Omega$)	IVI0	1991.19.5						mV
$T_{A} = +25^{\circ}C$		-	2.0	5.0	-	2.0	6.0	
T _{low} * ≪T _A ≪T _{high} *	(1	- The Second	6.0		-	· 7.5	
Input Offset Current	01/1			nan paranan ana ang ang ang ang ang ang ang ang		1		nA
$T_A = +25^{\circ}C$		A second s	2.0	15		2.0	25	
$T_A = T_{high}$		a service of the serv	nin na handrade san da san Ang san ang san ang	15		- '	25	
T _A = T _{low}		Branning and a second s	an de la grief de la grief de la grief de la de la grief de la gri	40		<u> </u>	40	
Input Bias Current	Чв	Constitution of the second sec	and a second s and a second s and a second s and a second seco					nA
$T_{A} = +25^{\circ}C$		A second se	15	50		15	50	
$T_A = T_{high}$	1	C Net Large Large	San San San	50		-	50	
$T_A = T_{low}$		and the second sec		120		-	100	
Input Resistance	R _{in}	Concernance and the second	5.0			5.0	_	MΩ
Input Capacitance	C _{in}	1.00	2.0	San Yang Katalan San Yang Katalan San Yang Katalan San Yang Katalan		2.0		pF
Offset Voltage Adjustment Range	VIOR	1.000 (1.000) (1.000)	18			18		mV
Large Signal Voltage Gain	A _{vol}		Distance in the second	ent lans states and an		ļ		V/V
$R_L \ge 5.0 \text{ k}\Omega, V_O = \pm 10 \text{ V}, T_A = +25^{O}C$		100 k	400 k		50 k	400 k		
$R_L \ge 75 k\Omega$, $V_O = \pm 10 V T_{low} \le T_A \le T_{high}$		75 k	 All the second se		50 k	-	-	
Output Resistance	RO	A LOUIS AND A LOUI	1.0	Armen and A		1.0		kΩ`
Output Short-Circuit Current	losc	Wanglowski, W. and State	12	interest of the second se		12		mA
Supply Current	ICC, IEE	Provide and the second second	and the second second	a series and a series of the s				μA
$T_A = +25^{\circ}C$		Alle de la disente de la companya de	160	180		160	190	
Tlow≤TA≤Thigh		anna a sua <u>sua sua sua sua sua sua sua sua sua sua </u>	And the second s	200			200	
Power Dissipation	PD	CR:	Service Courses and a service of the	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				mW
$T_A = +25^{\circ}C$		a sea an	and the second sec	5.4			5.7	
$T_{low} \leq T_A \leq T_{high}$			harmon and the second	6.0		-	6.0	
Transient Response (Unity Gain)		alleran and all all		Andre Bergen and Anna San ya				
$V_{in} = 20 \text{ mV}, \text{ R}_{L} \ge 5.0 \text{ k}\Omega, \text{ C}_{L} = 100 \text{ pF}$		the many water appropring		Price 1 2 - through office or multi-second second		0.05		
Rise Time	^t TLH	And and a second	0.35	and a set of the set o		0.35	-	μs %
Overshoot Slew Rate ($R_1 \ge 5.0 \text{ k}\Omega$)	OS		10 0.8	and the second secon		0.8		
Output Voltage Swing	SR	Construction of the second	0.0	n and a second s		0.8		V/µs
$R_{I} \ge 5.0 \text{ k}\Omega, T_{A} = +25^{\circ}\text{C}$	٧ ₀	±10	±13	and the second s	±10	±13	_	v
$R_{L} \ge 75 k\Omega, T_{A} = +25 C$ $R_{L} \ge 75 k\Omega, T_{Iow} \le T_{A} \le T_{high}$		±10 ±10	213	n and a second sec	±10 ±10			
Input Voltage Range		2114	and the second sec	Bot energy (Do. 1997) and a	710	<u> </u>		v
$T_{low} \leqslant T_A \leqslant T_{high}$	VID	±10	And Antipage of the second sec	an a	±10	_		v
low ≤ 'A ≤ 'high Common-Mode Rejection Ratio	CMRR		al de la concepción de la	177. 179. 43 (S.)	210	<u>↓</u>		dB
$R_S \leq 10 k\Omega$, $T_{low} \leq T_A \leq T_{high}$	Civinn	70	90	1973, 19 ja od 1981. 19	70	90		ав
Supply Voltage Rejection Ratio	PSRR	Wern off any functions	30	Contraction of the second s				μV/V
	Four	and the second s	25	150		25	200	μν/ν
$R_S \leq 10 k\Omega$, $T_{low} \leq T_A \leq T_{high}$		Concession Concertained	Z 3	194		20	200	

*T_{Iow} = -55^oC for MC1776 0^oC for MC1776C

T_{high} = +125⁰C for MC1776 +70⁰C for MC1776C

MC1776G, MC1776CG (continued)

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 2 – POSITIVE STANDBY SUPPLY CURRENT versus SET CURRENT

FIGURE 5 – INPUT BIAS CURRENT versus AMBIENT TEMPERATURE

FIGURE 4 - INPUT BIAS CURRENT versus SET CURRENT

FIGURE 6 – GAIN-BANDWIDTH PRODUCT (GBW) versus SET CURRENT

MC1776G, MC1776CG (continued)

TYPICAL CHARACTERISTICS (continued)

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

APPLICATIONS INFORMATION

FIGURE 13 - WEIN BRIDGE OSCILLATOR

FIGURE 14 - MULTIPLE FEEDBACK BANDPASS FILTER

where f_0 and GBW are expressed in Hz. GBW is available from Figure 6 as a function of Set Current, $I_{\text{set}}.$

FIGURE 15 – MULTIPLE FEEDBACK BANDPASS FILTER (1.0 kHz)

FIGURE 16 - GATED AMPLIFIER

FIGURE 17 - HIGH INPUT IMPEDANCE AMPLIFIER

MC3301P

OPERATIONAL AMPLIFIER

MONOLITHIC QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER FOR AUTOMOTIVE APPLICATIONS

These internally compensated operational amplifiers are designed specifically for single positive power supply applications found in automotive and consumer electronics. Each MC3301P contains four independent amplifiers – making it ideal for automotive safety, pollution, and comfort controls. Some typical applications are tachometer, voltage regulator, logic circuits, power control and other similar usages.

- Wide Operating Temperature Range -40 to +85°C
- Single-Supply Operation +4.0 to +28 Vdc
- Internally Compensated
- Wide Unity Gain Bandwidth 4.0 MHz typical
- Low Input Bias Current 50 nA typical
- High Open-Loop Gain 2000 V/V typical

MONOLITHIC QUAD

OPERATIONAL AMPLIFIER

INTEGRATED CIRCUIT

FIGURE 3 - INVERTING AMPLIFIER

FIGURE 4 -- NONINVERTING AMPLIFIER

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+28	Vdc
Noninverting Input Current	l _r	5.0	mA
Sink Current	lsink	50	mA
Source Current	source	50	mA
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	625 5.0	mW mW/ ^o C
Operating Temperature Range	ТА	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~ [V_{CC} = +15 ~ Vdc, ~ R_L = 5.0 ~ k\Omega, ~ T_A = +25^{o}C ~ (each ~ amplifier) ~ unless ~ otherwise ~ noted]$

Characteristic	Fig.No.	Note	Symbol	Min	Тур	Max	Unit
Open-Loop Voltage Gain $T_A = +25^{\circ}C$ $-40^{\circ}C \leq T_A \leq +85^{\circ}C$	5		A _{vol}	1000 —	2000 1600	-	V/V
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded	6	1	I _{DO} I _{DG}	-	6.9 7.8	10 14	mAdc
Input Bias Current, $R_L = \infty$ $T_A = +25^{\circ}C$ $-40^{\circ}C \leq T_A \leq +85^{\circ}C$	7	2	lΒ	_	50 100	300 -	nAdc
Current Mirror Gain (I _r = 200 µAdc)	7	3	AI	0.80	0.98	1.16	A/A
Current Mirror Gain Drift -40°C $\leq T_A \leq +85°C$				_	<u>+</u> 2.5	_	%
Output Current Source Capability (V _{OH} = 0.4 Vdc) (V _{OH} = 9.0 Vdc) Sink Capability (V _{OL} = 0.4 Vdc)	8		[†] source ^I sink	3.0 0.5	10 7.0 0.87	-	mAdc
Output Voltage High Voltage Low Voltage (Inverting Input Driven) (Noninverting Input Driven)	6		V _{OH} V _{OL} (inv) V _{OL} (non)	13.5 	14.2 0.03 0.6		Vdc
Input Resistance (Inverting input only)			Rin	0.1	1.0	-	Meg Ω
Slew Rate ($C_{L} = 100 pF, R_{L} = 5.0 k$)			SR	-	0.6	-	V/µs
Unity Gain Bandwidth		4	BW		4.0	anaw	MHz
Phase Margin		4	φm	-	70	-	Degrees
Power Supply Rejection (f = 100 Hz)			PSSR	-	55	-	dB
Channel Separation (f = 1.0 kHz)			eo1/eo2		65	-	dB

NOTES:

- The quiescent current drain will increase approximately 0.3 mA for each inverting or noninverting input that is grounded.
- Input bias current can be defined only for the inverting input.
 Input bias current can be defined only for the inverting input.
 The noninverting input is not a true "differential input" as with a conventional IC operational amplifier. As such this

input does not have a requirement for input bias current.

 Current mirror gain is defined as the current demanded at the inverting input divided by the current into the noninverting input.

4. Bandwidth and phase margin are defined with respect to the voltage gain from the inverting input to the output.

MC3301P (continued)

FIGURE 7 – INPUT BIAS CURRENT AND CURRENT MIRROR GAIN

FIGURE 8 - OUTPUT CURRENT

(MC3301-Page 3)

8

TYPICAL CHARACTERISTICS

 $(V_{CC} = +15 \text{ Vdc}, R_{L} = 5.0 \text{ k}\Omega, T_{A} = +25^{\circ}\text{C}$ [each amplifier] unless otherwise noted.)

FIGURE 10 – OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 11 - OUTPUT RESISTANCE versus FREQUENCY

FIGURE 12 – SUPPLY CURRENT versus SUPPLY VOLTAGE 10 IDG IDO, IDG, SUPPLY CURRENT (mAdc) (POSITIVE INPUTS GROUNDED 8.0 IDO 6.0 (POSITIVE INPUTS OPEN) -4.0 2.0 0 0 3.0 6.0 9.0 12 15 18 21 24 27 30 SUPPLY VOLTAGE (Vdc)

FIGURE 13 – LINEAR SOURCE CURRENT versus SUPPLY VOLTAGE 20 16 SOURCE CURRENT (mAdc 12 VOH = 0.4 Vdc 8.0 4.0 0 21 24 27 3.0 6.0 9.0 12 15 18 30 SUPPLY VOLTAGE (Vdc)

FIGURE 14 – LINEAR SINK CURRENT versus SUPPLY VOLTAGE

M 10 M 0 5.0 0.0 5.0 12 13 10 21 2 SUPPLY VOLTAGE (Vdc)

OPERATION AND APPLICATIONS

Basic Amplifier

The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load l_1 is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q2 is biased class A by the current source l_2 . The magnitude of l_2 (specified l_{sink}) is a limiting factor in capacitively coupled

linear operation at the output. The sink current of the device can be forced to exceed the specified level by keeping the output dc voltage above ≈ 1.0 volt resulting in an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18 on the following page. No external compensation is required.

FIGURE 15 BLOCK DIAGRAM

A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the non-inverting input, $I_{\rm r}$, flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to $I_{\rm r}$. Since the alpha

FIGURE 16 - A BASIC GAIN STAGE

Biasing Circuitry

The circuitry common to all four amplifiers is shown in Figure 19, see next page. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers. The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the V_{BE} of Q8. The PNP current sources (Q5, etc.) are set to the magnitude V_{BE}/R1 by transistor

current gain of Q3 \approx 1, its collector current is approximately equal to I_r also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

Q6. Transistor Q7 reduces base current loading. The voltage across resistor R2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the V_{BE} drops of transistor Q9 and diode CR5. The current thus set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage. Q11 (Figure 15) provides circuit protection from signals that are negative with respect to ground.

(MC3301-Page 5)

NORMAL DESIGN PROCEDURE

- 1. Output Q-Point Biasing
 - A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures 3 and 4 (see the first page of this specification). The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the 10 μ A to 200 μ A range.
 - B. V_{CC} Reference Voltage (see Figures 3 and 4)

The noninverting input is normally returned to the V_{CC} voltage (which should be well filtered) through a resistor, R_r , allowing the input current, I_r , to be within the range of 10 μA to 200 μA . Choosing the feedback resistor, R_f , to be equal to $\%~R_r$ will now bias the amplifier output dc level to approximately $\frac{V_{CC}}{2}$. This allows the maximum dynamic

range of the output voltage.

C. Reference Voltage other than V_{CC} (see Figure 20) The biasing resistor R_r may be returned to a voltage (V_r) other than V_{CC}. By setting R_f = R_r, (still keeping I_r between 10 μ A and 200 μ A) the output dc level will be equal to V_r. The expression for determining V_{Odc} is:

$$V_{\text{Odc}} = \frac{(A_{\text{I}})(V_{\text{r}})(R_{\text{f}})}{R_{\text{r}}} + \left(1 - \frac{R_{\text{f}}}{R_{\text{r}}} A_{\text{I}}\right)\phi$$

where ϕ is the V_{RF} drop of the input transistors (approximately 0.6 Vdc @ +25°C and assumed equal). A₁ is the current mirror gain.

- 2. Gain Determination
 - A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of

(MC3301-Page 6)

NORMAL DESIGN PROCEDURE (continued)

 I_{sink} becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of R_f to R_i , in the same manner as for a conventional operational amplifier:

$$A_v = -\frac{R_f}{R_i}$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 400 kHz with 20 dB of closed loop gain or 40 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF.

B. Noninverting Amplifier

The MC3301P may be used in the noninverting mode (see Figure 4, first page). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately $\frac{26}{1_{\rm F}}$ ohms, where $1_{\rm F}$ is input current in milliamperes. The noninverting ac gain expression is given by:

$$A_{v} = \frac{(R_{f})(A_{I})}{R_{i} + \frac{26}{I_{r} (mA)}}$$

The bandwidth of the noninverting configuration for a given R_f value is essentially independent of the gain chosen. For R_f = 510 $k\Omega$ the bandwidth will be in excess of 200 kHz for noninverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

TYPICAL APPLICATIONS

(MC3301-Page 7)

TYPICAL APPLICATIONS (continued)

FIGURE 26 - LOGIC "NOR" GATE

FIGURE 27 - R-S FLIP-FLOP

FIGURE 29 - POSITIVE-EDGE DIFFERENTIATOR

FIGURE 28 - ASTABLE MULTIVIBRATOR

FIGURE 30 - NEGATIVE-EDGE DIFFERENTIATOR

(MC3301-Page 8)

QUAD COMPARATOR

MC3302P

MONOLITHIC QUAD SINGLE-SUPPLY COMPARATOR

These comparators are designed specifically for single positivepower-supply Consumer Automotive and Industrial electronic applications. Each MC3302P contains four independent comparators – suiting it ideally for usages requiring high density and low-cost.

- Wide Operating Temperature Range -40 to +85°C
- Single-Supply Operation +2.0 to +28 Vdc
- Differential Input Voltage = ±V_{CC}
- Compare Voltages at Ground Potential
- MTTL Compatible
- Low Current Drain 700 μA typical @ V_{CC} +5.0 to +28 Vdc
- Outputs can be Connected to Give the Implied AND Function

Rating	Symbol	Value	Unit
Power Supply Range	V _{CC}	+2.0 to +28	Vdc
Output Sink Current (See Note 1)	10	20	mA
Differential Input Voltage	VIDR	±V _{CC}	Vdc
Common-Mode Input Voltage Range (See Note 2)	VICR	-0.3 to +V _{CC}	Vdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	625 5.0	mW mW/ ⁰ C
Operating Temperature Range	Τ _Α	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Note 1. Requires an external resistor, RL, to limit current below maximum rating.

Note 2. If either (+) or (-) inputs of any comparator go more than several tenths of a volt below ground, a parasitic transistor turns "on" causing high input current and possible faulty outputs.

See Packaging Information Section for outline dimensions.

Characteristic Definitions (1/4 Circuit Shown)	Characteristic	Symbol	Min	Тур	Max	Unit
	Input Offset Voltage (V _{ref} = 1.2 Vdc) (T _A = +25 ^o C) (T _A = -40 to +85 ^o C)	VIO		3.0 —	20 40	mVdc
	Input Offset Current	10	-	3.0	-	nAdc
$V_{rel} \underbrace{\bullet}_{12} \underbrace{\downarrow}_{12} \underbrace{\downarrow}_{12} \underbrace{\downarrow}_{12} \underbrace{\downarrow}_{13} \underbrace{\downarrow}_{110} \underbrace{\downarrow}_{$	Input Bias Current (T _A = +25 ^o C) (T _A = -40 to +85 ^o C)	lıβ		30 -	500 1000	nAdc
	Voltage Gain (T _A = +25 ^o C, R _L = 15 kΩ)	A _{vol}	2,000	30,000	-	v/v
	Transconductance	gm	-	2.0	-	mhos
	Differential Input Voltage Range	VIDR	±V _{CC}	-	-	Vdc
	Output Leakage Current (Output Voltage High)	loff	_	_	1.0	μAdc
	Negative Output Voltage (I _s = 2.0 mA, V _{CC} = +5.0 to +28 Vdc)	VOL	_	150	400	mVdc
	Output Sink Current $(V_{CC} = +5.0 \text{ Vdc})$ $(T_A = +25^{\circ}\text{C}, \text{ V}_{OL} = 400 \text{ mV})$ $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{OL} = 800 \text{ mV})$	I _s	2.0	6.0 -	<u>-</u>	mAdc
	Input Common-Mode Range (V _{CC} = +28 Vdc)	VICR	0-26	_	_	Volts
↓ · · · · · · · · · · · · · · · · · · ·	Common-Mode Rejection Ratio	CMRR	-	60	-	dB
	Propagation Delay Time For Positive and Negative-Going Input Pulse	₽HL/LH	-	2.0	-	μs
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Slew Rate (R _L = 15 k Ω)	^t SR ⁻ ^t SR ⁺	-	200 50	-	V/µs
	Power Supply Current (Total of four comparators) (I _s = 0, V _{CC} = +5.0 to +28 Vdc)	JD	-	0.7	1.5	mAdc

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, T_A = +25^oC (each comparator) unless otherwise noted.)

$$\label{eq:transformation} \begin{split} & \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = +15 \mbox{ Vdc}, \mbox{T}_{A} = +25^{o} \mbox{C} \mbox{ (each comparator) unless otherwise noted.}) \end{split}$$

FIGURE 5 - INPUT BIAS CURRENT

TYPICAL APPLICATIONS

FIGURE 6 - FREE-RUNNING SQUARE-WAVE OSCILLATOR

FIGURE 7 - TIME DELAY GENERATOR

TYPICAL APPLICATIONS (continued)

FIGURE 8 - COMPARATOR WITH HYSTERESIS

*Input common-mode voltage range includes ground (0 Vdc) and V() can go to approximately 0 Vdc.

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+18	Vdc
Non-inverting Input Current	lin lin	5.0	mA
Power Dissipation Derate above $T_A = +25^{\circ}C$	PD	625 5.0	mW mW/ ^O C
Operating Temperature Range	ТА	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS [V_{CC} = +15 Vdc, R_L = 5.0 k Ω , T_A = +25^oC (each amplifier) unless otherwise noted]

Characteristic	Fig. No.	Note	Symbol	Min	Тур	Max	Unit
Open-Loop Voltage Gain $T_A = +25^{\circ}C$ $0^{\circ}C ≤ T_A ≤ +75^{\circ}C$	5,9,10	1	A _{vol}	1000 800	2000	-	V/V
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded	6,12	2	I _{DO} I _{DG}	_	6.9 7.8	10 14	mAdc
Input Bias Current, $R_L = \infty$ $T_A = +25^{\circ}C$ $0^{\circ}C \leq T_A \leq +75^{\circ}C$	5	3	IВ	-	50 —	300 500	nAdc
Output Current Source Capability Sink Capability	5 13 14	4	I _{source} I _{sink}	5.0 0.5	10 1.0		mAdc
Output Voltage High Voltage Low Voltage Undistorted Output Swing (0 ^o C < T _A < +75 ^o C)	7 7 8	5 5 6	V _{OH} V _{OL} V _{O(p-p)}	13.5 10	14.2 0.03 13.5	0.1 	Vdc V _(p-p)
Input Resistance	5		R _{in}	0.1	1.0	-	MEG Ω
Slew Rate (CL = 100 pF, RL = 5.0 k)			SR		0.6	_	V/µs
Unity Gain Bandwidth		1	BW	-	5.0		MHz
Phase Margin			^ф т	-	70	-	Degrees
Power Supply Rejection (f = 100 Hz)		7	PSSR		55	-	dB
Channel Separation (f = 1.0 kHz)			e _{o1} /e _{o2}	-	65		dB

NOTES

- 1. Open loop voltage gain is defined as the voltage gain from the inverting input to the output.
- The quiescent current will increase approximately 0.3 mA for each noninverting input which is grounded. Leaving the noninverting input open causes the apparent input bias current to increase slightly (100 nA) at high temperatures.
- Input bias current can be defined only for the inverting input. The noninverting input is not a true "differential input" – as with a conventional IC operational amplifier. As such this input does not have a requirement for input bias current.
- Sink current is specified for linear operation. When the device is used as a gate or a comparator (non-linear operation), the sink capability of the device is approximately 5.0 milliamperes.
 When used as a noninverting amplifier, the minimum output
- voltage is the V_{BE} of the inverting input transistor. 6. Peak-to-peak restrictions are due to the variations of the qui-
- reak-to-peak restrictions are due to the variations of the quiescent dc output voltage in the standard configuration (Figure 8).
- Power supply rejection is specified at closed loop unity gain, and therefore indicates the supply rejection of both the biasing circuitry and the feedback amplifier.

MC3401P (continued)

FIGURE 7 - OUTPUT VOLTAGE SWING

$\begin{array}{l} \text{SIMPLIFIED TEST CIRCUITS} \\ (\text{V}_{\text{CC}} = +15 \; \text{Vdc}, \; \text{R}_{\text{L}} = 5.0 \; \text{k}\Omega, \; \text{T}_{\text{A}} = +25^{\text{O}}\text{C} \\ [\text{each amplifier}] \; \text{unless otherwise noted}) \end{array}$

FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT

IDO is total supply current with "+" input open. IDG is total supply current with "+" input grounded.

FIGURE 8 - PEAK-TO-PEAK OUTPUT VOLTAGE

for $R_r \cong 2R_f$

8-495

.

 $\label{eq:transformation} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{CC} = +15 \mbox{ Vdc}, \mbox{ R}_L = 5.0 \mbox{ k}\Omega, \mbox{ T}_A = +25^0 \mbox{C} \\ \mbox{ [each amplifier] unless otherwise noted.} \end{array}$

FIGURE 11 - OUTPUT RESISTANCE versus FREQUENCY

f, FREQUENCY FIGURE 13 – LINEAR SOURCE CURRENT versus SUPPLY VOLTAGE 14 12 Isource, SOURCE CURRENT (mAdc) 10 8.0 6.0 4.0 2.0 0 'n 2.0 4.0 6.0 8.0 10 12 14 16 18 20

VCC, SUPPLY VOLTAGE (Vdc)

FIGURE 14 – LINEAR SINK CURRENT versus SUPPLY VOLTAGE

OPERATION AND APPLICATIONS

Basic Amplifier

The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load l_1 is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q2 is biased class A by the current source l_2 . The magnitude l_2 (specified l_{sink}) is a limiting factor in capacitively coupled

linear operation at the output. The sink current of the device can be forced to exceed the specified level with an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18. No external compensation is required.

A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the non-inverting input, l_{in2} , flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to l_{in2} . Since the

Biasing Circuitry

The circuitry common to all four amplifiers is shown in Figure 19. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.

The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the VBE of Q8. The PNP current sources (Q5, etc.) are set to the magnitude VBE/R1 by transistor

alpha current gain of $\Omega 3 \approx 1$, its collector current $\approx I_{in2}$ also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

FIGURE 17 – OBTAINING A NONINVERTING INPUT

Q6. Transistor Q7 reduces base current loading. The voltage across resistor R2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the V_{BE} drops of transistor Q9 and diode CR5. The current thus set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage.

OPERATION AND APPLICATIONS (continued)

FIGURE 18 - A BASIC OPERATIONAL AMPLIFIER

NORMAL DESIGN PROCEDURE

- 1. Output Q-Point Biasing
 - A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures 3 and 4. The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the 5 µA to 100 µA range.
 - B. V_{CC} Reference Voltage (see Figures 3 and 4)

approximately $\frac{V_{CC}}{2}$. This allows for maximum dynamic range of the output voltage.

C. Reference Voltage other than V_{CC} (See Figure 20).

The biasing resistor R_r may be returned to a voltage (V_r)

other than V_{CC}. By setting R_f = R_r, (still keeping I_r between 5 μ A and 100 μ A) the output dc level will be equal to V_r. Neglecting error terms, the expression for determining V_{Odc} is:

$$V_{Odc} = \frac{(V_r) (R_f)}{R_r} + \left(1 - \frac{R_f}{R_r}\right)\phi$$

where ϕ is the V_{BE} drop of the input transistors (approximately 0.7 Vdc @ +25^oC).

The error terms not appearing in the above equation can cause the dc operating point to vary up to 20% from the expected value. Error terms are minimized by setting the input current within the range of 5 μ A to 100 μ A.

2. Gain Determination

A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc/bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of

NORMAL DESIGN PROCEDURE (continued)

 I_{sink} becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of R_f to R_i , in the same manner as for a conventional operational amplifier:

$$A_v = -\frac{R_f}{R_i}$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 5.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 500 kHz with 20 dB of closed loop gain or 50 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF.

B. Noninverting Amplifier

Although recommended as an inverting amplifier, the MC 3401P may be used in the noninverting mode (see Figure 4). The amplifier gain in this configuration is subject to the same error terms that affect the output Q point biasing so the gain may deviate as much as $\pm 20\%$ from that expected. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is 26

approximately $\frac{26}{l_r}$ ohms, where l_r is input current in milliamperes. The noninverting gain expression is given by:

$$A_{v} = \frac{R_{f}}{R_{i} + \frac{26}{L_{v}(mA)}} = \pm 20\%$$

The bandwidth of the noninverting configuration for a given R_f value is essentially independent of the gain chosen. For $R_f=510~k\Omega$ the bandwidth will be in excess of 200 kHz for noninverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

TYPICAL APPLICATIONS

FIGURE 22 - AMPLIFIER AND DRIVER FOR A 50-OHM LINE

FIGURE 23 - BASIC BANDPASS AND NOTCH FILTER

TYPICAL APPLICATIONS (continued)

FIGURE 25 – VOLTAGE REGULATOR

 $\label{eq:VO} \begin{array}{l} V_0 = V_Z + 0.6 \ Vdc \\ NOTE 1: \ R is used to bias the zener. \\ NOTE 2: \ If the Zener TC is positive, and equal in magnitude to the negative TC of the input to the operational amplifier (\approx 2.0 mV/°C), the output is zero-TC. A 7.0-Volt Zener will give approximately zero-TC. \end{array}$

FIGURE 26 – ZERO CROSSING DETECTOR

QUAD LINE RECEIVER

QUAD LINE RECEIVERS

WITH COMMON THREE-STATE STROBE INPUT

MONOLITHIC SILICON

INTEGRATED CIRCUITS

Specifications and Applications Information

MC3450 MC3452

MONOLITHIC QUAD MTTL COMPATIBLE LINE RECEIVERS

The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance state.

The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function.

The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to

provide best compatability with standard decoder devices.

FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A

4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES

- Receiver Performance Identical to the Popular MC75107/MC75108 Series
- Four Independent Receivers with Common Strobe Input
- Implied "AND" Capability with Open Collector Outputs
- Useful as a Quad 1103 type Memory Sense Amplifier

16 (top view) L SUFFIX CERAMIC PACKAGE STIC PACKAGE CASE 620 **CASE 648** CONNECTION DIAGRAM 16 VCC INPUTS 15 INPUTS в 14 OUTPUT A 3 13 OUTPUT B STROBE 4 12 VEE OUTPUT C 6 +|6 11 OUTPUT D INPUTS С 10 7 INPUTS D

9

GND 8

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = 0 to $+70^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} , V _{EE}	±7.0	Vdc
Differential-Mode Input Signal Voltage Range	VIDR	±6.0	Vdc
Common-Mode Input Voltage Range	VICR	±5.0	Vdc
Strobe Input Voltage	V _{I(S)}	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = +25 ^o C Plastic Dual In-Line Package Derate above T _A = +25 ^o C	PD	1000 6.6 1000 6.6	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (T_A = 0 to +70^oC unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Vdc
and the second	VEE	-4.75	-5.0	-5.25	1.
Output Load Current	^I OL	-	-	16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0	-	+3.0	Vdc
Input Voltage Range (any input to Ground)	VIR	-5.0	-	+3.0	Vdč

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = 0 to +70^oC unless otherwise noted.)

			MC3450			MC3452			
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High Level Input Current to Receiver Input	¹ ін(і)	7	1000 - 10	-	75	<u> </u>	· - ·	75	μA
Low Level Input Current to Receiver Input	111(1)	8		-	-10	1 1 - 1	· ·	-10	μA
High Level Input Current to Strobe Input VIH(S) = +2.4 V VIH(S) = +5.25 V	IIH(S)	5			40 1.0	-		40 1.0	μA mA
Low Level Input Current to Strobe Input VIH(S) = +0.4 V	IL(S)	5			-1.6		19 19	-1.6	mA
High Level Output Voltage	Voн	3	2.4			-	-	-	Vdc
High Level Output Leakage Current	ICE X	3		-	-	· · · · ·	-	250	μA
Low Level Output Voltage	VOL	3		-	0.4	-		0.4	Vdc
Short-Circuit Output Current	los	6	-18	-	-70	-	-	-	mA
Output Disable Leakage Current	loff	9	100 - Carlos	-	40		-		μA
High Logic Level Supply Current from V _{CC}	ГССН	4		45	60		45	60	mA
High Logic Level Supply Current from VEE	IEEH	4	122	-17	-30	-	-17	-30	mA

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = +25^oC unless otherwise noted.)

				MC3450			MC 3452		
Characteristic	Symbol	Fig.	Min	Түр	Max	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs)	^t PHL(D)	10		-	25			25	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs)	^t PLH(D)	10	÷	-	25			25	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	^t POH(S)	11		-	21)a [−] '''''	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHO(S)	11	-	-	18				ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPOL(S)	11	-	-	27	-	-	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	^t PLO(S)	11	-	-	29			198 7 -001	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	^t PHL(S)	12		-	-	<u>a</u>		25	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	^t PLH(S)	12		-	1.7	-		25	ns

FIGURE 3 - ICEX, VOH, AND VOL

(MC3450)

TEST TABLE

	V	/1 V		2	V3		V4		
	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	11
	+2.975 V	-	+3.0 V	-	+3.0 V	-	GND	-	
Vон	-3.0 V	-	-2.975 V	-	GND	-	-3.0 V		+0.4 mA
		+2.975 V	-	+3.0 V	-	+3.0 V	-	GND	-
CEX	-	-3.0 V	~	-2.975 V	-	GND	-	-3.0 V	
	+3.0 V	+3.0 V	+2.975 V	+2.975 V	GND	GND	+3.0 V	+3.0 V	
VOL	-2.975 V	-2.975 V	-3.0 V	-3.0 V	-3.0 V	-3.0 V	GND	GND	-16 mA

Channel A shown under test. Other channels are tested similarly.

FIGURE 5 - IIH(S) AND IIL(S)

TEST CIRCUITS (continued)

FIGURE 6 – IOS

Channel A shown under test, other channels are tested similarly. Only one output shorted at a time.

FIGURE 8 - IIL

Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from +3.0 V to -3.0 V.

FIGURE 9 - Ioff

Output of Channel A shown under test, other outputs are tested similarly for V1 = 0.4 V and +2.4 V.

Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from +3.0 V to -3.0 V.

tested similarly for $v_1 = 0.4$ v and ± 2.4 v.

FIGURE 10 - RECEIVER PROPAGATION DELAY tPLH(D) AND tPHL(D)

Output of Channel B shown under test, other channels are tested similarly.

S1 at "A" for MC3452 S1 at "B" for MC3450 C_L = 15 pF total for MC3452 C_L = 50 pF total for MC3450

TEST CIRCUITS (continued)

FIGURE 11 - STROBE PROPAGATION DELAY TIMES tPLO(S), tPOL(S), tPHO(S) and tPOH(S)

	∨1	V2	S1	S2	СL
tPLO(S)	100 mV	GND	Closed	Closed	15 pF
tPOL(S)	100 mV	GND	Closed	Open	50 pF
tPHO(S)	GND	100 mV	Closed	Closed	15 pF
^t POH(S)	GND	100 mV	Open	Closed	50 pF

C_L includes jig and probe capacitance. E_{in} waveform characteristics:

 t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90%. PRR = 1.0 MHz

Duty Cycle = 50%

FIGURE 12 – STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

$$\begin{split} E_{In} & \text{waveform characteristics:} \\ t_{TLH} \text{ and } t_{THL} \leqslant 10 \text{ ns measured } 10\% \text{ to } 90\% \\ \text{PRR} = 1.0 \text{ MH}_{z} \\ \text{Duty Cycle} = 500 \text{ ns} \end{split}$$

MC3450, MC3452 (continued)

The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to ±50 , volts. In this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.

FIGURE 15 – SINGLE-ENDED UNI-BUS* LINE RECEIVER APPLICATION FOR MINICOMPUTERS

The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applications, such as are encountered in minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates V_{ref} , should be designed so that the V_{ref} voltage is halfway between $V_{O_{\rm H}}({\rm min})$ and $V_{O_{\rm L}}({\rm max})$. The maximum input overdrive required to guarantee a given logic state is extremely small, 25 mV maximum. This low-input overdrive encountered in the variences differential noise immunity. Also the high-input impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects.

APPLICATIONS INFORMATION

FIGURE 14 - BIDIRECTIONAL DATA TRANSMISSION

The three-state capability of the MC3450 permits bidirectional data transmission as illustrated.

FIGURE 16 – WIRED "OR" DATA SELECTION USING THREE-STATE LOGIC

MC3450, MC3452 (continued)

APPLICATIONS INFORMATION (continued)

-

FIGURE 17 - PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

For further information on Data Transmission Systems see Motorola Application Note AN-708, "Line Driver and Receiver Considerations".

QUAD LINE DRIVER

MC3453

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages	Vin	5.5	Volts
Common-Mode Output Voltage Range	VOCR	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ⁰ C	PD	1000 6.6	mW mW/ ^o C
Operating Temperature Range	т _А	0 to +70	°C
Storage Temperature Range Plastic and Ceramic Dual In-Line Packages	⊤ _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Volts
	VEE	-4.75	-5.0	-5.25	
Common-Mode Output Voltage Range	VOCR				Volts
Positive		0	-	+10	
Negative		0		-3.0	

Note 1. These voltage values are in respect to the ground terminal.

Note 2. When not using all four channels, unused outputs must be grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Min	Max	Unit
High-Level Input Voltage (at any input)	VIH	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	0	0.8	Volts

*The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

ELECTRICAL CHARACTERISTICS (T_A = 0 to +70°C unless otherwise noted.)

Characteristic##	Symbol	Min	Typ#	Max	Unit
High-Level Input Current (Logic Inputs)	Чн				
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)	L L	-	-	40	μΑ
$(V_{CC} = Max, V_{EE} = Max, V_{IHL} = V_{CC} Max)$		-	-	1.0	mA
Low-Level Input Current (Logic Inputs)	116	-	-	-1.6	mA
$(V_{CC} = Max, V_{EE} = Max, V_{ILL} = 0.4 V)$	-				
High-Level Input Current (Inhibit Input)	Чн				
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)		-	-	40	μA
$(V_{CC} = Max, V_{EE} = Max, V_{H_1} = V_{CC} Max)$		-	-	1.0	mA
Low-Level Input Current (Inhibit Input)	LI IL	-	-	-1.6	mA
$(V_{CC} = Max, V_{EE} = Max, V_{ILI} = 0.4 V)$					
Output Current ("on" state)	I _{O(on)}				mA
(V _{CC} = Max, V _{EE} = Max)	01011/	-	11	15	
(V _{CC} = Min, V _{EE} = Min)		6.5	11	-	
Output Current ("off" state)	lO(off)	-	5.0	100	μA
(V _{CC} = Min, V _{EE} = Min)					
Supply Current from V _{CC} (with driver enabled)	CC(on)	-	35	50	mA
$(V_{1L_{L}} = 0.4 V, V_{1H_{1}} = 2.0 V)$					
Supply Current from VEE (with driver enabled)	EE(on)	-	65	90	mA
(V _{ILL} = 0.4 V, V _{IHI} = 2.0 V)					
Supply Current from V _{CC} (with driver inhibited)	^I CC(off)	-	35	50	mA
$(V_{1L_{L}} = 0.4 V, V_{1L_{1}} = 0.4 V)$					
Supply Current from VEE (with driver inhibited)	IEE(off)	~~	25	40	mA
$(V_{ L } = 0.4 V, V_{ L } = 0.4 V)$					

#All typical values are at V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25^oC.

##For conditions shown as Minor Max, use the appropriate value specified under recommended operating conditions for the applicable device type.

Ground unused inputs and outputs.

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input to	tPLHL	-	9.0	15	ns
Output Y or Z ($R_L = 50$ ohms, $C_L = 40 \text{ pF}$)	^t PHLL	-	9.0	15	
Propagation Delay Time from Inhibit Input	tPLH ₁	-	16	25	ns
to Output Y or Z ($R_L = 50$ ohms, $C_L = 40 \text{ pF}$)	^t PHL _I	-	20	25	

FIGURE 2 – LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 3 – INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 6 – CIRCUIT SCHEMATIC (1/4 Circuit Shown)

See Packaging Information Section for outline dimensions.

8

MC5528, MC5529, MC7528, MC7529 (continued)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-7.0	Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation	PD	575	mW
Derate above $T_A = +25^{\circ}C$	_	3.85	mW ^o C
Operating Temperature Range	TA		°C
MC5528, MC5529		-55 to +125	
MC7528, MC7529		0 to +70	
Storage Temperature Range	T _{stq}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V ±5%, V_{EE} = -5.0 V ±5%, T_A = T_{low}# to T_{high}# unless otherwise noted.)

			M	C5528 () MC5529)#		MC7528 # MC7529	¥	
Characteristic		Symbol	Min	Түр	Max	Min	Тур	Max	Unit
	EV _{th}) AC5528,MC7528 AC5529,MC7529	V _{th}	10 8.0	15	4.4	11 8.0	15	-	mV
	AC5528,MC7528 AC5529,MC7529		35 33	40		36 33	40 	-	
	AC5528,MC7528 AC5529,MC7529			15	20 22	_	15 	19 22	
	AC5528,MC7528 AC5529,MC7529			40	45 47	_	40	44 47	
Differential and Reference Input Bias Current ($V_{1D} = V_{ref} = 0V$, $V_{inS} = +5.25 V$, $V_S = \pm 5.25 V$)		ÌВ		30	100		30	75	μA
Differential Input Offset Current ($V_{ID} = V_{ref} = 0 V$, $V_{inS} = \pm 5.25 V$, $V_S = \pm 5.25 V$)		IOD	4	0.5	-	-	0.5		μA
Input Voltage, Logic ''1'' ($V_{ID} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = 2.0 \text{ V}, I_{L} = 400 \ \mu\text{A}, V_{S} = \pm 4.75 \text{ V}, V_{O} > 2.4 \text{ V}$)		V _{in"1"}	2.0	T.		2.0	-	-	v
Input Voltage, Logic ''0'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 0.8 V, I _L = 16 mA, V _S = ±4.75 V, V _{OL} < 0.4 V)		Vin"0"			0.8			0.8	V
$ \begin{array}{l} \mbox{Input Current, Logic ''1''} \\ (V_{ID} = 0 \ V, \ V_{ref} = 20 \ mV, \ V_{inS} = 2.4 \ V, \ V_S = \pm 5.25 \ V) \ N \\ (V_{ID} = 0 \ V, \ V_{ref} = 20 \ mV, \ V_{inS} = +5.25 \ V, \ N \\ V_S = \pm 5.25 \ V) \end{array} $	1C5528,MC5529 1C7528,MC7529	lin"1"		5.0	40		0.02	 1.0	μA mA
Input Current, Logic ''0'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 0.4 V, V _S = ±5.25 V.)	l _{in''0''}	ł	-1.0	-1.6		-1.0	-1.6	mA
Output Voltage, Logic ''1'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 2.0 V, I _L = -400 µA, V _S = ±4.75 V)		V0''1''	2.4	3.9	-	2.4	3.9	-	v
Output Voltage, Logic ''0'' (V_{ID} = 40 mV, V_{ref} = 20 mV, V_{inS} = 0.8 V, I_L = 16 mA, V_S = ±4.75 V)		۷ ⁰⁰		0.25	0.40	-	0.25	0.40	V
Short-Circuit Output Current (V_{ID} = 40 mV, V_{ref} = 20 mV, V_{inS} = +5.25 V, V_S = ±5.25 V)		losc	-2.1	-2.8	-3.5	-2.1	-2.8	-3.5	mA
V_{CC} Supply Current ($V_{1D} = V_{inS} = 0 V$, $V_{ref} = 20 mV$, $V_{S} = \pm 5.25 V$)		^I CC	÷	29	40	-	29	40	mA
$ \begin{array}{l} V_{EE} \mbox{ Supply Current} \\ (V_{1D} = V_{inS} = 0 \ V, \ V_{ref} = 20 \ mV, \ V_{S} = \pm 5.25 \ V) \end{array} $		^I EE	Ŧ	-13	-18	_	-13	. –18	mA

 $\fbox{\ \ for \ 0^0C \leq T_A \leq 70^0C \ operation; electrical characteristics for MC5528 and MC5529 are guaranteed the same as MC7528 and MC7529 respectively. } }$

$T_{Iow} = -55^{\circ}C$ for MC5528, MC5529, 0°C for MC7528, MC7529 Thigh = +125°C for MC5528, MC5529; +70°C for MC7528, MC7529

MC5528, MC5529, MC7528, MC7529 (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V ±5%, V_{EE} = -5.0 V ±5%, T_A = +25^oC unless otherwise noted.)

		MC5528 MC5529			MC7528 MC7529			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AC Common-Mode Input Firing Voltage (V _{ref} = 20 mV, V _{inS} = 5.0 V)	VCMF		±2.5	-	· · ·	±2.5	·	v
Propagation Delay Time, Differential Input to Logic ''1'' Output (V _{ref} = 20 mV)	^t PLHD		20	40	_	20	40	ns
Propagation Delay Time, Differential Input to Logic ''0'' Output (V _{ref} = 20 mV)	^t PHLD		28	-	·	28		ns
Propagation Delay Time, Strobe Input to Logic "1" Output (V _{ref} = 20 mV)	^t PHLS	-	10	30	-	10	30	ns
Propagation Delay Time, Strobe Input to Logic ''0'' Output (V _{ref} = 20 mV)	tPHLS		20		-	20		ns
Overload Recovery Time, Differential Input	tRD	1. Salar and the salar	10			10	_	ns
Overload Recovery Time, Common-Mode Input	tRCM		5.0			5.0		ns
Minimum Cycle Time	t(min)		200			200		ns

② Positive current is defined as current into the referenced pin.
 ③ Pin 1 to have ≥100 pF capacitor connected to ground.
 ④ Each test point to have ≤15 pF capacitive load to ground.

DUAL SENSE AMPLIFIERS

MC5534 MC5535 MC7534 MC7535

MONOLITHIC DUAL SENSE AMPLIFIERS WITH INVERTED OUTPUTS

This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits. These circuits are identical to the MC7524 except that an additional stage has been added to each output gate to provide an inverted output.

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High dc Logic Noise Margin
 1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs
- Normally High Outputs Accomodate the Wired-OR of Several Sense Amplifiers

8

See Packaging Information Section for outline dimensions.

MC5534, MC5535, MC7534, MC7535 (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-7.0	Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation	PD	575	mW
Derate above T _A = +25 ⁰ C	_	3.85	mW ^o C
Operating Temperature Range	TA		°C
MC5534, MC5535		-55 to +125	
MC7534, MC7535		0 to +70	
Storage Temperature Range	T _{stg}	-55 to +150	.°C

$\textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1in} (v_{CC} = +5.0 \hspace{0.1in} v \hspace{0.1in} \pm 5\%, \hspace{0.1in} v_{EE} = -5.0 \hspace{0.1in} v \hspace{0.1in} \pm 5\%, \hspace{0.1in} \tau_{A} = \tau_{Iow} \# \hspace{0.1in} \text{to} \hspace{0.1in} \tau_{high} \# \hspace{0.1in} \text{unless otherwise noted.})$

			MC5534 (1 MC5535)#				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{l} \mbox{Differential Input Threshold Voltage (V_{inS} = +5.0 V, V_{ID} = \pm V_{th}) \\ (V_{ref} = 15 \mbox{ mV}, V_L = +5.25 \mbox{ V}, I_L < 250 \mu A) \\ \mbox{ MC5535, MC75} \end{array} $		10 8.0	15	-	11 8.0	. 15		mW
(V _{ref} = 40 mV, V _L = +5.25 V, I _L < 250 μA) MC5534, MC79 MC5535, MC79		35 33	40	-	36 33	40 		
(V _{ref} = 15 mV, I _L = 20 mA, V _O = < 0.4 V) MC5534, MC75 MC5535, MC75		-	15	20 22	+	15	19 22	
$(V_{ref} = 40 \text{ mV}, I_{L} = 200 \text{ mA}, V_{O} = <0.4 \text{ V})$ MC5534, MC75 MC5535, MC75			40	45 47		40	44 47	
Differential Reference Input Bias Current ($V_{ID} = V_{ref} = 0 V$, $V_{inS} = +5.25 V$, $V_{S} = \pm 5.25 V$)	IB.	-	30	100		30	75	μA
Differential Input Offset Current ($V_{ID} = V_{ref} = 0 V$, $V_{inS} = +5.25 V$, $V_{S} = \pm 5.25 V$)	IOD		0.5	_	-	0.5		μA
Input Voltage, Logic "0" (VID = 40 mV, Vref = 20 mV, VinS = 0.8 V, VL = +5.25 V, VS = ± 4.75 V, IL = <250 μ A)	Vin''0''	-		0.8			0.8	v
Input Voltage, Logic ''1'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 2.0 V, I _L = 20 mA, V _S = ± 4.75 V, V _D = <0.4 V)	Vin''1''	2.0	-	-	2.0			v
Input Current, Logic "0" ($V_{ID} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = 0.4 \text{ V}, V_{S} = \pm 5.25 \text{ V}$)	¹ in"0"	-	-1.0	-1.6		-1.0	-1.6	mA
Input Current, Logic "1" (V_{1D} = 0 V, V_{ref} = 20 mV, V_{inS} = 2.4 V, V_S = ±5.25 V) MC5534, MC55 MC7534, MC75		4	5.0	40		0.02	-1.0	μA mA
Output Voltage, Logic ''0'' (V_{1D} = 40 mV, V _{ref} = 20 mV, V _{inS} = 2.0 V, I _L = 20 mA, V _S = ±4.75 V)	V0''0''	_	0.25	0.40	4	0.25	0.40	v
Output Leakage Current (V _{1D} = 40 mV, V _{ref} = 20 mV, V _{inS} = 0.8 V, V _L = 5.25 V, V _S = \pm 4.75 V) ^I OL		0.01	250		0.01	250	μA
V_{CC} Supply Current ($V_{1D} = V_{inS} = 0 V$, $V_{ref} = 20 mV$, $V_{S} = \pm 5.25 V$)	'cc	_	28	38		28	38	mA
$ \begin{array}{l} V_{EE} \; Supply \; Current \\ (V_{ID} = V_{inS} \approx 0 \; V, \; V_{ref} \approx 20 \; mV, \; V_{S} \approx \pm 5.25 \; V) \end{array} $	IEE	-	-13	+18	1	-13	-18	mA

$T_{Iow} = -55^{\circ}C$ for MC5534, MC5535, $0^{\circ}C$ for MC7534, MC7535 Thigh = +125°C for MC5534, MC5535, +70°C for MC7534, MC7535

MC5534, MC5535, MC7534, MC7535 (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V \pm 5%, V_{EE} = -5.0 V \pm 5%, T_A = +25^oC unless otherwise noted.)

		MC5534 MC5535			MC7534 MC7535			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AC Common-Mode Input Firing Voltage (V _{ref} = 20 mV, V _{inS} = 5.0 V)	VCMF	Contraction of the second s	±2.5			±2.5		V
Propagation Delay Time, Differential Input to Logic "1" Output $(V_{ref}=20\mbox{ mV})$	^t PLHD		24	-		24	-	ns
Propagation Delay Time, Differential Input to Logic ''0'' Output $\{V_{ref}=20\ mV\}$	tPHLD		20	40	· _	20	40	ns
Propagation Delay Time, Strobe Input to Logic ''1'' Output (V _{ref} = 20 mV)	tPLHS	Contraction of the second	16	4	_	16	-	ns
Propagation Delay Time. Strobe Input to Logic "0" Output (V _{ref} = 20 mV)	^t PHLS		10	30		10	30	ns
Overload Recovery Time, Differential Input	tRD	Sec. 1. 1979	10			10	-	ns
Overload Recovery Time, Common-Mode Input	^t RCM	200	5.0			5.0	-	ns
Minimum Cycle Time	t(min)		200	and the second s	vaire	200	-	ns

DUAL SENSE AMPLIFIERS

MC5538 MC5539 MC7538 MC7539

MONOLITHIC DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST POINTS AND INVERTED OUTPUTS

This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits. These devices are identical to MC5528/MC7528 with the exception of the inverted outputs.

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High dc Logic Noise Margin 1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs
- Test Points Available for Strobe Timing
- Inverted Outputs to Accomodate Wired-OR Outputs of Several Sense Amplifiers

See Packaging Information Section for outline dimensions.

MC5538, MC5539, MC7538, MC7539 (continued)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	V _{CC}	+7.0	Vdc
	VEE	-7.0	Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation	PD	575	mW
Derate above T _A = +25 ^o C		3.85	mW ^o C
Operating Temperature Range	ТА		°C
MC5538, MC5539		-55 to +125	
MC7538, MC7539		0 to +70	
Storage Temperature Range	T _{stq}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V \pm 5%, V_{EE} = -5.0 V \pm 5%, T_A = T_{low}# to T_{high}# unless otherwise noted.)

			M	C5538 (1 MC5539)#		MC7538# MC7539	¥	
Characteristic		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Differential Input Threshold Voltage (V _{inS} = +5.0 V, V _I (V _{ref} = 15 mV, V _L = +5.25 V, I _L $< 250 \mu$ A)	MC5538, MC7538 MC5539, MC7539	V _{th}	10 8.0	15	4	11 8.0	15	-	mV
$(V_{ref} = 40 \text{ mV}, V_{L} = +5.25 \text{ V}, I_{L} < 250 \mu\text{A})$	MC5538, MC7538 MC5539, MC7539		36 33	40		36 33	40. -	-	
$\{V_{ref} = 15 \text{ mV}, I_L = 120 \text{ mA}, V_L < 0.4 \text{ V}\}$	MC5538, MC7538 MC5539, MC7539			15	20 22	-	15	19 22	
$(V_{ref} = 40 \text{ mV}, _{L} = +20 \text{ mA}, V_{L} < 0.4 \text{ V})$	MC5538, MC7538 MC5539, MC7539			40	45 47	-	40	44 47	
Differential and Reference Input Bias Current ($V_{ID} = V_{ref} = 0 V$, $V_{inS} = +5.25 V$, $V_S = \pm5.25 V$)		IВ		30	100		30	75	μΑ
Differential Input Offset Current ($V_{ID} = V_{ref} = 0 V$, $V_{inS} = +5.25 V$, $V_S = \pm 5.25 V$)		IOD		0.5	1	-	0.5		μΑ
Input Voltage, Logic ''1'' ($V_{ID} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = +2.0 \text{ V}, I_{L} = 20 \text{ V}_{S} = \pm 4.75 \text{ V}, V_{L} < 0.4 \text{ V}$)	mA,	Vin''1''	2.0			2.0	-	· _	V
Input Voltage, Logic "0" ($V_{ID} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = +0.8 \text{ V}, V_{L} = +5 \text{ V}_{S} = \pm 4.75 \text{ V}, I_{L} < 250 \mu\text{A}$)	5.25 V,	V _{in''0''}			0.8	-	_	0.8	. V
Input Current, Logic "1" (VID = 0 V, Vref = 20 mV, VinS = 2.4 V, VS = ± 5.25 (VID = 0 V, Vref = 20 mV, VinS = ± 5.25 V, VS = ± 5.25 V)	V) MC5538, MC5539 MC7538, MC7539	lin"1"		5.0	40 	-	0.02	1.0	μA mA
Input Current, Logic "0" (V_{ID} = 40 mV, V_{ref} = 20 mV, V_{inS} = 0.4 V, V_S = ±5.	25 V)	lin"O"		-1.0	-1.6	-	-1.0	-1.6	mA
Output Voltage, Logic "0" (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 2.0 V, I _L = 20 r	mA, V _S = ±4.75 V)	V0''0''		0.25	0.40		0.25	0.40	V
		'cc		28	38		28	38	mA
$V_{EE} Supply Current$ $(V_{ID} = V_{inS} = 0 V, V_{S} = \pm 5.25 V)$		IEE.		-13	-18	-	-13	-18	mA

 \bigoplus For 0°C \leqslant T_A \leqslant 70°C operation, electrical characteristics for MC5538 and MC5539 are guaranteed the same as MC7538 and MC7539 respectively.

 $\label{eq:transform} \begin{array}{l} \# \quad {\sf T}_{low} = -55^o {\sf C} \mbox{ for MC5538}, \mbox{ MC5539}; \mbox{ } 0^o {\sf C} \mbox{ for MC7538}, \mbox{ MC7539} \\ \\ {\sf T}_{high} = +125^o {\sf C} \mbox{ for MC5538}, \mbox{ MC5539}; \mbox{ } +70^o {\sf C} \mbox{ for MC7538}, \mbox{ MC7538}, \mbox{ MC7538}, \mbox{ MC7538}, \mbox{ MC7538}, \mbox{ MC7538}, \mbox{ } \\ \end{array}$

MC5538, MC5539, MC7538, MC7539 (continued)

 $\textbf{ELECTRICAL CHARACTERISTICS}~(\textit{V}_{CC} = +5.0~\textit{V} \pm 5\%,~\textit{V}_{EE} = -5.0~\textit{V} \pm 5\%,~\textit{T}_{A} = +25^{o}\textit{C}~\textit{unless otherwise noted.})$

		MC5538 MC5539			MC7538 MC7539			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AC Common-Mode Input Firing Voltage (V _{ref} = 20 mV, V _{inS} = 5.0 V)	V _{CMF}		±2.5		n (1997) Antonio (1997) Antonio (1997)	±2.5		v
Propagation Delay Time, Differential Input to Logic ''1'' Output ($V_{ref} = 20 \text{ mV}$)	^t PLHD	-	24		a a state a st	24		ns
Propagation Delay Time, Differential Input to Logic ''0'' Output ($V_{ref} = 20 \text{ mV}$)	tPHLD		20	40	-	20	40	ns
Propagation Delay Time, Strobe Input to Logic ''1'' Output (V _{ref} = 20 mV)	^t PHLS	Long.	16		n solar Ga r ad	16		ns
Propagation Delay Time, Strobe Input to Logic ''0'' Output (V _{ref} = 20 mV)	^t PHLS	-	10	30		10	30	ns
Overload Recovery Time, Differential Input	tRD	-	10		2	10		ns
Overload Recovery Time, Common-Mode Input	^t RCM	- Hereit	5.0		<u>-</u>	5.0	44	ns
Minimum Cycle Time	t(min)	-	200	-		200	19 <u>1</u> 19	ns

② Positive current is defined as current into the referenced pin.
 ③ Pin 1 to have ≥100 pF capacitor connected to ground.
 ④ Each test point to have ≤15 pF capacitive load to ground.

See Packaging Information Section for outline dimensions.

8

-

ELECTRICAL CHARACTERISTICS (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = 0 to +70^oC unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Threshold Voltage Vref = 15 mV V _{ref} = 40 mV	MC7520Ĺ,MC7522L MC7521L,MC7523L MC7520L,MC7522L MC7520L,MC7523L	V _{th}	11 8.0 36 33	15 15 40 40	19 22 44 47	mV
Common-Mode Input Firing Voltage		VCMF	_	· ±3.0	_	Volts
Input Bias Current		lin	-	30	75	μA
Input Offset Current		lio	-	0.5	-	μA
Input Impedance (f = 1.0 kHz)		Z _(in) D		2.0	-	k ohms
Input Voltage Logic "1" Level (Strobe Inputs)	Vin ''0'' = 0.8 V	V _{in} ''1''	2.0	-	-	Volts
Input Voltage Logic "0" Level (Strobe Inputs)	Vin ''1'' = 2.0 V	V _{in} ''0''	-	-	0.8	Volt
Input Current Logic "0" Level (Strobe Inputs)	Vin ''0'' = 0.4 V	^l in "0"	-		-1.6	mA
Input Current Logic "1" Level (Strobe Inputs)	V _{in} "1" = 2.4 V V _{in} "1" = V ⁺	^l in "1"	_	-	40 1.0	μA mA
Output Voltage Logic "1" Level	V _{in} "1" = 2.0 V	V _{out} "1"	2.4	3.9	-	Volts
Output Voltage Logic "0" Level	Vin ''0'' = 0.8 V	V _{out} ''0''	-	0.25	0.4	Volt
ā	Output MC7520L,MC7521L Output MC7520L,MC7521L Output MC7522L,MC7523L	ISC	3.3 2.1 2.1	-	5.0 3.5 3.5	mA
V ⁺ Supply Current (T _A = +25 ^o C)	MC7520L,MC7521L MC7522L,MC7523L	۱+	_ _	28 27		mA
V ⁻ Supply Current (T _A = +25 ^o C)	MC7520L,MC7521L MC7522L,MC7523L	1-	-	-14 -15	-	mA

SWITCHING CHARACTERISTICS (V^+ = 5.0 V, V^- = -5.0 V, T_A = +25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Differential-Mode Input Overload Recovery Time	^t OR DM	-	20		ns
Common-Mode Input Overload Recovery Time	^t OR CM	-	20	-	ns
Minimum Cycle Time	^t c (min)	-	200	-	ns

Propagation Delay Time					ns
(Differential Input to Q Output)	tpd "1" DQ		20	40	
	^t pd ''0'' DQ	-	30		
(Differential Input to Q Output)	^t pd ''1'' DQ		25	-	
	^t pd ''0'' DQ	-	35	55	
(Strobe Input to Q Output)	^t pd ''1'' SQ	-	15	30	
	^t pd ''0'' SQ	-	25	-	
(Strobe Input to Q Output)	^t pd ''1'' SQ	-	15	-	
	t _{pd} ''0'' SQ	-	35	55	
(Gate Q Input to Q Output)	^t pd ''1'' G _Q Q	-	10	20	
	^t pd ''0'' G _Q Q	-	15	-	
(Gate Q Input to Q Output)	^t pd "1" GQŪ	· _	15		
	t _{pd} "0" G _Ω Ω		20	30	
(Gate Q Input to Q Output)	t _{pd} "1" GōŌ	-	15	-	
	t _{pd} ''0'' G <u>∂</u> Ω		10	20	
MC7522L, MC7523L					
Propagation Delay Time					ns
(Differential Input to Output)	^t pd ''1'' D	-	20	-	
	^t pd ''0'' D	-	30	45	
(Strobe Input to Output)	^t pd ''1'' S	-	15	-	
	^t pd ''0'' S	-	25	40	

(Gate Input to Output)

^tpd ''1'' G

^tpd ''0'' G

10

15

25

MC7520L thru MC7523L (continued)

Rating	Symbol	Value	Units
Power Supply Voltage	V+	+7.0	Vdc
	V-	-7.0	Vdc
Differential Input Signal Voltage	V _{in}	±5.0	Vdc
Strobe and Gate Input Voltage	V _{in S,G}	±5.5	Vdc
Power Dissipation	PD	575	mW
Derate above $T_A = +25^{\circ}C$	_	3.85	mW ^o C
Operating Temperature Range	т _А	0 to +70	°C
Storage Temperature Range	T _{stg}	65 to +150	°C

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

DUAL SENSE AMPLIFIERS

MONOLITHIC DUAL SENSE AMPLIFIERS

This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits.

Features:

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination

MC7524L MC7525L

- High dc Logic Noise Margin 1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs

2 2.2 k 2.7 1 k 2.7 k 1.5 k A2 0-3 INPUTS A1 0-2 14 0 OUTPUT A STROBE A O 2.7 k 2.7 k 🕏 1.5 k 1.6 B2 O INPUTS B10-6 -O OUTPUT B STROBE BO

14

Ο Ο Ο Ο ΤΡΟΤ Α

12 O OUTPUT B

INPUTS A1C

A₂C

B₂C

STROBE B O

STROBE A O

INPUTS

MC7524L, MC7525L (continued)

Rating	Symbol	Value	Units
Power Supply Voltage	V+ V-	+7.0 -7.0	Vdc Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation Derate above T _A = +25 ^o C	PD	575 3.85	mW mW ^o C
Operating Temperature Range	TA	0 to +70	°c
Storage Temperature Range	T _{stg}	-55 to +150	°c

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

ELECTRICAL CHARACTERISTICS (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = 0 to +70^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Threshold Voltage	V _{th}				mV
V _{ref} = 15 mV MC7524L		11	15	19	
MC7525L		8.0	15	22	
V _{ref} = 40 mV MC7524L		36	40	44	
MC7525L		33	40	47	
Common-Mode Input Firing Voltage	VCMF	-	±3.0	-	Volts
Input Bias Current	lin	-	30	75	μA
Input Offset Current	lio	-	0.5		μA
Input Impedance (f = 1.0 kHz)	Z _{(in) D}	-	2.0	-	k ohms
Input Voltage Logic "1" Level (Strobe Inputs) Vin(0) = 0.8 V	Vin (1)	2.0	-	_	Volts
Input Voltage Logic "0" Level (Strobe Inputs) Vin(1) = 2.0 V	V _{in (0)}	-	-	0.8	Volt
Input Current Logic "0" Level (Strobe Inputs) Vin(0) = 0.4 V	¹ in (0)	-	-1.0	-1.6	mA
Input Current Logic "1" Level (Strobe Inputs) Vin(1) = 2.4 V	¹ in (1)		-	40	μA
V _{in(1)} = V ⁺		-	-	1.0	mA
Output Voltage Logic "1" Level Vin(1) = 2.0 V, Vin(0) = 0.8 V	Vout (1)	2.4	3.9	-	Volts
Output Voltage Logic "0" Level Vin(0) = 0.8 V	V _{out} (0)	-	0.25	0.4	Volt
Short-Circuit Output Current	I _{sc(out)}	2.1	-	3.5	mA
V ⁺ Supply Current @ T _A = +25 ^o C	1+	-	25	-	mA
V ⁻ Supply Current @ T _A = +25 ^o C	1-		-15	-	mA

SWITCHING CHARACTERISTICS (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = +25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time	tpd (1) D	-	15	40	ns
(Differential Input to Output)	tpd (0) D	-	40	-	
Propagation Delay Time	tpd (1) S	_	15	30	ns
(Strobe Input to Output)	^t pd (0) S	-	35	-	
Differential-Mode Input Overload Recovery Time	^t OR DM	-	20	_	ns
Common-Mode Input Overload Recovery Time	tOR CM	-	20	-	ns
Minimum Cycle Time	^t c (min)	-	200	-	ns

MC7700CP Series

POSITIVE VOLTAGE REGULATORS

MC7700CP SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

The MC7700CP Series positive voltage regulators are identical to the popular MC7800CP Series devices, except that they are specified for only half the output current. Like the MC7800CP devices, the MC7700CP three-terminal regulators are intended for local, on-card voltage regulation.

Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 750 mA.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199-04
 - (Pin Compatible with the VERSAWATT[†] or TO-220)

[†]Trademark of Radio Corporation of America.

See Packaging Information Section for outline dimensions.

THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS

MONOLITHIC SILICON INTEGRATED CIRCUITS

TYPE NO./VOLTAGE

MC7705CP	5.0 Volts
MC7706CP	6.0 Volts
MC7708CP	8.0 Volts
MC7712CP	12 Volts
MC7715CP	15 Volts
MC7718CP	18 Volts
MC7720CP	20 Volts
MC7724CP	24 Volts

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
- * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = C_O improves stability and transient response.

MC7700CP Series MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit	
Input Voltage (5.0 V - 18 V) (20 V - 24 V)	V _{in}	35 40	Vdc	
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	Ρ _D 1/θ ja θ ja	2.0 20 50	Watts mW/ ^o C ^o C/W	
$T_{C} = +25^{\circ}C$ Derate above $T_{C} = +110^{\circ}C$ Thermal Resistance, Junction to Case	Ρ _D 1/θ JC θ JC	7.5 500 2.0	Watts mW/ ^o C ^o C/W	
Storage Junction Temperature Range	T _{stg}	-20 to +150	°C	
Operating Junction Temperature Range	Tj	0 to +125	°C	

MC7705CP ELECTRICAL CHARACTERISTICS (Vin = 10 V, IO = 250 mA, 0°C <TJ <+125°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	v _o	4.8	5.0	5.2	Vdc
Input Regulation $(T_{\perp} = +25^{\circ}C, I_{\Omega} = 50 \text{ mA})$	Reg _{in}				mV
7.0 Vdc \leq V _{in} \leq 25 Vdc 8.0 Vdc \leq V _{in} \leq 12 Vdc		-	7.0 2.0	50 25	
$(T_J = +25^{O}C, I_O = 250 \text{ mA})$ 7.0 Vdc $\leq V_{in} \leq 25 \text{ Vdc}$ 8.0 Vdc $\leq V_{in} \leq 12 \text{ Vdc}$		 _	35 8.0	100 50	
Load Regulation $T_J=+25^oC,5.0~\text{mA}\leqslant I_O\leqslant750~\text{mA}\\ 125~\text{mA}\leqslant I_O\leqslant375~\text{mA}$	Regload		11 4.0	100 50	mV
Output Voltage (7.0 Vdc \leq V _{in} \leq 20 Vdc, 5.0 mA \leq I _O \leq 500 mA,P \leq 7.5 W)	Vo	4.75	_	5.25	Vdc
Quiescent Current (T _J = +25 ⁰ C)	IВ	-	4.3	8.0	mA
Quiescent Current Change 7.0 Vdc \leqslant Vin \leqslant 25 Vdc 5.0 mA \leqslant I_O \leqslant 750 mA	ΔIB		-	1.3 0.5	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤f ≤100 kHz)	VN	-	40	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	70	-	dB
Input-Output Voltage Differential I _O = 500 mA, T _J = +25 ^o C	V _{in} -V _O	-	2.0	-	Vdc
Output Resistance (I _O = 250 mA)	RO	-	30	-	mΩ
Short-Circuit Current Limit (T _J = +25 ⁰ C)	^I SC	-	375	-	mA
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, $0^{o}C \leqslant T_{A} \leqslant +125^{o}C$	тсv _о	-	-1.0	-	mV/ ⁰ C

$\textbf{MC7706CP ELECTRICAL CHARACTERISTICS} (V_{in} = 11 \text{ V}, I_{O} = 250 \text{ mA}, 0^{o}\text{C} < T_{J} < +125^{o}\text{C} \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	5.75	6.0	6.25	Vdc
Input Regulation (T ₁ = +25 ^o C, I ₀ = 50 mA)	Reg _{in}				mV
8.0 Vdc $\leq V_{in} \leq 25$ Vdc 9.0 Vdc $\leq V_{in} \leq 13$ Vdc			9.0 3.0	60 30	
$(T_J = +25^{0}C, I_O = 250 \text{ mA})$ 8.0 Vdc $\leq V_{in} \leq 25$ Vdc 9.0 Vdc $\leq V_{in} \leq 13$ Vdc			43 10	120 60	
Load Regulation $T_J = +25^{0}C, 5.0 \text{ mA} \leqslant I_O \leqslant 750 \text{ mA} \\ 125 \text{ mA} \leqslant I_O \leqslant 375 \text{ mA} $	Regload		13 5.0	120 60	mV
Output Voltage 8.0 Vdc \leqslant V _in \leqslant 21 Vdc, 5.0 mA \leqslant I _O \leqslant 500 mA,P \leqslant 7.5 W	Vo	5.7	-	6.3	Vdc
Quiescent Current ($T_J = +25^{\circ}C$)	^I B	-	4.3	8.0	mA
Quiescent Current Change 8.0 Vdc \leq V _{in} \leq 25 Vdc 5.0 mA \leq I _O \leq 750 mA	۵۱ _B	-		1.3 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	45	-	μV
Long-Term Stability	ΔV _O /Δt	-	-	24	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	65	-	dB
Input-Output Voltage Differential IO = 500 mA, TJ = +25°C	V _{in} -V _O	-	2.0		Vdc
Output Resistance (I _O = 250 mA)	RO	-	35	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC	-	275	-	mA
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, 0^oC \leqslant T_A \leqslant +125°C	тсv _о	-	-1.0	-	mV/ ^o C

$\textbf{MC7708CP ELECTRICAL CHARACTERISTICS} (V_{in} = 14 \text{ V}, \text{I}_{O} = 250 \text{ mA}, 0^{9}\text{C} < \text{T}_{J} < +125^{9}\text{C} \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	7.7	8.0	8.3	Vdc
Input Regulation (T_I = +25 ^o C, I _O = 50 mA)	Reg _{in}				mV
10.5 Vdc \leq V _{in} \leq 25 Vdc 11 Vdc \leq V _{in} \leq 17 Vdc		-	12 5.0	80 40	
(T _J = +25 ⁰ C, I _O = 250 mA) 10.5 Vdc ≪ V _{in} ≪25 Vdc 11 Vdc ≪ V _{in} ≪17 Vdc		-	50 22	160 80	
Load Regulation $T_J = +25^{9}C, 5.0 \text{ mA} \leqslant I_O \leqslant 750 \text{ mA}$ $125 \text{ mA} \leqslant I_O \leqslant 375 \text{ mA}$	Regioad		26 9.0	160 80	mV
Output Voltage 10.5 Vdc \leqslant V $_{in}$ \leqslant 23 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 500 mA ,P \leqslant 7.5 W	vo	7.6	-	8.4	Vdc
Quiescent Current (T _J = +25 ^o C)	IB	-	4.3	8.0	mA
Quiescent Current Change 10.5 Vdc $\leq V_{in} \leq 25$ Vdc 5.0 mA $\leq I_O \leq 750$ mA	۵۱ _B			1.0 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤100 kHz)	V _N	-	52	-	μ∨
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	32	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	62	-	dB
Input-Output Voltage Differential I _O = 500 mA, T _J = +25 ^o C	V _{in} -V _O	-	2.0	-	Vdc
Output Resistance (I _O = 250 mA)	RO	-	40	-	mΩ
Short-Circuit Current Limit ($T_J = +25^{\circ}C$)	^I sc	-	225		mA
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, 0^OC \leqslant T_A \leqslant +125 OC	тсv _о	-	-1.0	-	mV/ ^o C

$\label{eq:mcreative} \textbf{MC7712CP ELECTRICAL CHARACTERISTICS} \text{ (V}_{in} = 19 \text{ V}, \text{ I}_{O} = 250 \text{ mA}, 0^{0}\text{C} < \text{T}_{J} < +125^{0}\text{C} \text{ unless otherwise noted.)}$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	11.5	12	12.5	Vdc
Input Regulation (T ₁ = $+25^{\circ}C$, I ₀ = 50 mA)	Reg _{in}				mV
14.5 Vdc $\leq V_{in} \leq 30$ Vdc 16 Vdc $\leq V_{in} \leq 22$ Vdc			13 6.0	120 60	
$(T_J = +25^{\circ}C, I_O = 250 \text{ mA})$ 14.5 Vdc $\leq V_{in} \leq 30 \text{ Vdc}$ 16 Vdc $\leq V_{in} \leq 22 \text{ Vdc}$			55 24	240 120	
Load Regulation $T_J=+25^{0}\text{C}, 5.0 \text{ mA} \leqslant \text{I}_{O} \leqslant 750 \text{ mA} \\ 125 \text{ mA} \leqslant \text{I}_{O} \leqslant 375 \text{ mA}$	Regload	-	46 17	240 120	mV
Output Voltage 14.5 Vdc \leqslant V_{in} \leqslant 27 Vdc, 5.0 mA \leqslant I_O \leqslant 500 mA,P \leqslant 7.5 W	v _o	11.4	-	12.6	Vdc
Quiescent Current (T _J = +25 ⁰ C)	۱ _B	-	4.4	8.0	mA
Quiescent Current Change 14.5 Vdc $\leq V_{in} \leq 30$ Vdc 5.0 mA $\leq I_Q \leq 750$ mA	ΔIB	-	_	1.0 0.5	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤f ≤100 kHz)	VN	-	75	-	μ∨
Long-Term Stability	$\Delta V_0 / \Delta t$	-	-	48	mV/1.0k Hrs
Ripple Rejection ($I_0 = 20 \text{ mA}, f = 120 \text{ Hz}$)	RR	-	61	-	dB
Input-Output Voltage Differential I _O = 500 mA, T _J = +25 ^o C	V _{in} -V _O	-	2.0	_	Vdc
Output Resistance (IO = 250 mA)	RO	-	75	-	mΩ
Short-Circuit Current Limit ($T_J = +25^{\circ}C$)	^I sc	-	175	-	mA
Average Temperature Coefficient of Output Voltage I $_0$ = 5.0 mA, $0^oC \leqslant T_A \leqslant$ +125 oC	тсv _О		-1.0	-	mV/ ⁰ C

$\textbf{MC7715CP ELECTRICAL CHARACTERISTICS} (V_{in} = 23 \text{ V}, I_{O} = 250 \text{ mA}, 0^{O}\text{C} < T_{J} < +125^{O}\text{C} \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _j = +25 ^o C)	V _O	14.4	15	15.6	Vdc
Input Regulation (T _{.1} = +25 ^o C, I _O = 50 mA)	Reg _{in}				mV
17.5 Vdc \leq V _{in} \leq 30 Vdc		-	14	150	
20 Vdc \leq V _{in} \leq 26 Vdc		-	6.0	75	
$(T_J = +25^{\circ}C, I_O = 250 \text{ mA})$					
17.5 Vdc \leq V _{in} \leq 30 Vdc			57	300	
$20 \text{ Vdc} \leq \text{V}_{in} \leq 26 \text{ Vdc}$		-	27	150	
Load Regulation	Regload				mV
T _J = +25 ^o C, 5.0 mA ≤I _O ≤750 mA		-	68	300	
125 mA ≤ I _O ≤ 375 mA		-	25	150	
Output Voltage	Vo	14.25	-	15.75	Vdc
17.5 Vdc \leq V _{in} \leq 30 Vdc, 5.0 mA \leq I _O \leq 500 mA, P \leq 7.5 W					
Quiescent Current (T _J = +25 ⁰ C)	IВ	-	4.4	8.0	mA
Quiescent Current Change	ΔIB				mA
17.5 Vdc ≪ V _{in} ≪ 30 Vdc		-	-	1.0	
5.0 mA ≤ I _O ≤ 750 mA		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤100 kHz)	VN	-	90	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	60	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	60	-	dB
Input-Output Voltage Differential	Vin-VO	_	2.0	-	Vdc
$I_0 = 500 \text{ mA}, T_J = +25^{\circ}C$					
Output Resistance (I _O = 250 mA)	RO	-	95	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^O C)	^I sc	-	115	-	mA
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, $0^{9}C \leqslant T_{A} \leqslant +125^{9}C$	тсv _О	-	-1.0	-	mV/ ^o C

$\textbf{MC7718CP ELECTRICAL CHARACTERISTICS} (V_{in} = 27 \text{ V}, I_{O} = 250 \text{ mA}, 0^{o}\text{C} < \textbf{T}_{J} < +125^{o}\text{C}, unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	17.3	18	18.7	Vdc
Input Regulation (TJ = +25 ^o C, IO = 50 mA)	Reg _{in}				mV
21 Vdc ≤ V _{in} ≤ 33 Vdc 24 Vdc ≤ V _{in} ≤ 30 Vdc			25 10	180 90	
(T _J = +25 ⁰ C, I _O = 250 mA) 21 Vdc ≼ V _{in} ≼33 Vdc 24 Vdc ≼ V _{in} ≼30 Vdc			90 50	360 180	
Load Regulation $T_J = +25^{o}C, 5.0 \text{ mA} \leqslant I_O \leqslant 500 \text{ mA} \\ 125 \text{ mA} \leqslant I_O \leqslant 375 \text{ mA}$	Regload		110 55	360 180	mV
Output Voltage 21 Vdc \leqslant V $_{in}$ \leqslant 33 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 500 mA,P \leqslant 7.5 W	Vo	17.1	-	18.9	Vdc
Quiescent Current (T _J = +25 ^o C)	I _B	-	4.5	8.0	mA
Quiescent Current Change 21 Vdc ≤ V _{in} ≤ 33 Vdc 5.0 mA ≤ I _O ≤ 500 mA	ΔIB	-		1.0 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	110	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	72	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	59		dB
Input-Output Voltage Differential I _O = 500 mA, T _J = +25 ^o C	V _{in} -V _O	-	2.0	-	Vdc
Output Resistance (I _O = 250 mA)	RO	-	110	-	mΩ
Short-Circuit Current Limit (T _J = +25 ⁰ C)	Isc	-	100	-	mA
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, 0 ^OC \leqslant T_A \leqslant +125 ^OC	тсv _о	-	-1.0	-	mV/ ⁰ C

MC7720CP ELECTRICAL CHARACTERISTICS (V_{in} = 29 V, I_O = 250 mA, 0°C <T_J <+125°C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	19.2	20	20.8	Vdc
Input Regulation (TJ = $+25^{\circ}C$, IO = 50 mA)	Reg _{in}				mV
23 Vdc \leqslant V _{in} \leqslant 35 Vdc 26 Vdc \leqslant Vin \leqslant 32 Vdc		-	27 11	200 100	
(T _J = +25 ^o C, I _O = 250 mA) 23 Vdc ≤ V _{in} ≤ 35 Vdc 26 Vdc ≤ V _{in} ≤ 32 Vdc			100 56	400 200	
Load Regulation $T_J=+25^{0}C, 5.0 \text{ mA} \leqslant I_{O} \leqslant 750 \text{ mA} \\ 125 \text{ mA} \leqslant I_{O} \leqslant 375 \text{ mA}$	Regload		123 65	400 200	mV
Output Voltage 23 Vdc \leqslant Vin \leqslant 35 Vdc, 5.0 mA \leqslant I_O \leqslant 500 mA,P \leqslant 7.5 W	vo	19	-	21	Vdc
Quiescent Current (T _J = +25 ^o C)	^I B	-	4.5	8.0	mA
Quiescent Current Change 23 Vdc \leq V _{in} \leq 35 Vdc 5.0 mA \leq 1 ₀ \leq 750 mA	ΔIB			1.0 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	130	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	80	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	58	-	dB
Input-Output Voltage Differential I _O = 500 mA, T _J = +25 ⁰ C	V _{in} -V _O	-	2.0	-	Vdc
Output Resistance (I _O = 250 mA)	RO	-	123	-	mΩ
Short-Circuit Current Limit (T _J = +25 ⁰ C)	Isc	-	90	_	mÄ
Average Temperature Coefficient of Output Voltage I $_O$ = 5.0 mA, $0^{o}C \leqslant T_A \leqslant +125^{o}C$	τċνο	-	-1.0	-	mV/ ⁰ C

MC7724CP ELECTRICAL CHARACTERISTICS ($V_{in} = 33$, $I_O = 250$ mA, $0^{\circ}C < T_J < +125^{\circ}C$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	vo	23	24	25	Vdc
Input Regulation $(T_1 = +25^{\circ}C, _{\Omega} = 50 \text{ mA})$	Reg _{in}				mV
$27 \text{ Vdc} \leq \text{V}_{in} \leq 38 \text{ Vdc}$			31	240	
$30 \text{ Vdc} \leq \text{V}_{in} \leq 36 \text{ Vdc}$		-	14	120	
(T _J = +25 ^o C, I _O = 250 mA) 27 Vdc ≼ V _{in} ≼38 Vdc		_	118	480	
$30 \text{ Vdc} \leq \text{V}_{in} \leq 36 \text{ Vdc}$		-	70	240	
Load Regulation	Regload				mV
T _J = +25 ⁰ C, 5.0 mA ≤I _O ≤500 mA		-	150	480	
125 mA \leq 1 ₀ \leq 375 mA		-	85	240	
	vo	22.8	-	25.2	Vdc
$27 \text{ Vdc} \leq \text{V}_{in} \leq 38 \text{ Vdc}, 5.0 \text{ mA} \leq \text{I}_{O} \leq 500 \text{ mA}, \text{P} \leq 7.5 \text{ W}$					
Quiescent Current (T _J = +25 ^o C)	IВ	·	4.6	8.0	mA
Quiescent Current Change	ΔIB				mA
$27 \text{ Vdc} \leq V_{in} \leq 38 \text{ Vdc}$		-	-	1.0	
5.0 mA ≤1 ₀ ≤500 mA			-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	∨ _N	-	170	-	μV
Long-Term Stability	$\Delta V_0 / \Delta t$	-	-	96	mV/1.0k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		56	-	dB
Input-Output Voltage Differential I _O = 500 mA, T _J = +25 ^o C	V _{in} -V _O	-	2.0	-	Vdc
Output Resistance (I _O = 250 mA)	RO	-	150	-	mΩ
Short-Circuit Current Limit (T _J = +25 ⁰ C)	^I sc	-	150	-	mA
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, 0°C \leqslant T_A \leqslant +125°C	тсv _о	-	-1.0	-	mV/ ^o C

DEFINITIONS

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current - That part of the input current that is not delivered to the load.

Output Noise Voltage — The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

VOLTAGE REGULATORS

MC7800C SERIES THREE TERMINAL POSITIVE VOLTAGE REGULATORS

MC7800C Series

The MC7800C Series of three-terminal positive voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. Available in seven fixed output voltage options from 5.0to-24 volts, these regulators employ internal current limiting, thermal shutdown, and safe area compensation — making them essentially blow-out proof. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. The last two digits of the part number indicate nominal output voltage.

- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199-04 (Pin Compatible with the VERSAWATT[†] or TO-220) Or Hermetic TO-3 Type Metal Power Package (Case 11)

- * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = CO is not needed for stability; however, it does improve transient response

See Packaging Information Section for outline dimensions.

[†]Trademark of Radio Corporation of America.

MC7800C Series MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V - 18 V) (24 V)	V _{in}	35 40	Vdc
Power Dissipation and Thermal Characteristics Plastic Package T _A = +25 ⁰ C	PD	2.0	Watts
Derate above T _A = +25 ⁰ C Thermal Resistance, Junction to Air	^{1/θ} JA ^θ JA	20 50	mW/ ^o C ^o C/W
$T_C = +25^{\circ}C$ Derate above $T_C = +95^{\circ}C$ (See Figure 1) Thermal Resistance, Junction to Case	Ρ _D 1/θ _{JC} θ _{JC}	15 500 2.0	Watts mW/ ^o C ^o C/W
Metal Package T _A = +25 ⁰ C Derate above T _A = +25 ⁰ C Thermal Resistance, Junction to Air	Ρ _D 1/θ _{JA} θ JA	2.5 28.6 35	Watts mW/ ^o C ^o C/W
$T_{C} = +25^{\circ}C$ Derate above $T_{C} = +65^{\circ}C$ (See Figure 2) Thermal Resistance, Junction to Case	P _D 1/θ _{JC} θ _{JC}	15 250 4.0	Watts mW/ ⁰ C ⁰ C/W
Storage Junction Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	т	0 to +125	°C

$\label{eq:mcrassical} \text{MC7805C ELECTRICAL CHARACTERISTICS (V_{in} = 10 \text{ V}, I_{O} = 500 \text{ mA}, 0^{\circ}\text{C} < T_{J} < +125^{\circ}\text{C} \text{ unless otherwise noted.)}$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	V _O	4.8	5.0	5.2	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{in}				mV
7.0 Vdc ≤V _{in} ≤25 Vdc		-	7.0	50	
$8.0 \text{ Vdc} \leq \text{V}_{in} \leq 12 \text{ Vdc}$		-	2.0	25	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$					
7.0 Vdc $\leq V_{in} \leq 25$ Vdc		-	35	100	
8.0 Vdc \leq V _{in} \leq 12 Vdc		-	8.0	50	
Load Regulation	Regioad				mV
T _J = +25 ⁰ C, 5.0 mA ≤ I _O ≤ 1.5 A		-	11	100	
250 mA ≤ I _O ≤ 750 mA		-	4.0	50	
Output Voltage	Vo				Vdc
$(7.0 \text{ Vdc} \le \text{V}_{in} \le 20 \text{ Vdc}, 5.0 \text{ mA} \le \text{I}_0 \le 1.0 \text{ A}, \text{P} \le 15 \text{ W})$, i i i i i i i i i i i i i i i i i i i	4.75	-	5.25	
Quiescent Current (T _J = +25 ^o C)	۱ _B	-	4.3	8.0	mA
Quiescent Current Change	ΔIB				mA
7.0 Vdc ≤V _{in} ≤25 Vdc			-	1.3	
5.0 mA ≤ I _O ≤1.5 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤100 kHz)	VN		40	-	μV
Long-Term Stability	$\Delta V_0 / \Delta t$	-	-	20	mV/1.0 k H R
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		70	-	dB
Input-Output Voltage Differential	V _{in} -V _O				Vdc
$(I_0 = 1.0 \text{ A}, \text{ T}_J = +25^{\circ}\text{C})$		-	2.0	-	
Output Resistance	RO	-	30	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC	-	750	-	mA
Average Temperature Coefficient of Output Voltage	тсуо		I		mV/°C
$I_{\rm O} = 5.0 \text{ mA}, 0^{\rm O} \text{C} \le T_{\rm A} \le +125^{\rm O} \text{C}$			-1.0	-	

$\label{eq:mcross} \text{MC7806C ELECTRICAL CHARACTERISTICS} \ (\text{V}_{\text{in}} = 11 \ \text{V}, \ \text{I}_{\text{O}} = 500 \ \text{mA}, \ 0^{\text{O}}\text{C} < \text{T}_{\text{J}} < +125^{\text{O}}\text{C} \ \text{unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	5.75	6.0	6.25	Vdc
Input Regulation ($T_J = +25^{\circ}C$, $I_O = 100 \text{ mA}$)	Reg _{in}				mV
8.0 Vdc ≤ V _{in} ≤25 Vdc 9.0 Vdc ≤ V _{in} ≤13 Vdc (T ₋₁ = +25 ^o C, I _O = 500 mA)		-	9.0 3.0	60 30	
8.0 Vdc ≤ V _{in} ≤ 25 Vdc 9.0 Vdc ≤ V _{in} ≤ 13 Vdc		,— —	43 10	120 60	
Load Regulation T _J = +25 ^o C, 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Reg _{load}		13 5.0	120 60	mV
Output Voltage (8.0 Vdc \leq V _{in} \leq 21 Vdc, 5.0 mA \leq I _O \leq 1.0 A, P \leq 15 W)	Vo	5.7	_	6.3	Vdc
Quiescent Current (T _J = +25 ^o C)	۱ _B	-	4.3	8.0	mA
Quiescent Current Change 8.0 Vdc \leq V _{in} \leq 25 Vdc 5.0 mA \leq I _O \leq 1.5 A	۵۱ _B		-	1.3 0.5	mA
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤ f ≤100 kHz)	VN	-	45	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	24	mV/1.0 k HRS
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	65	-	dB
Input-Output Voltage Differential (I _O = 1.0 A, T _J = +25 ^o C)	V _{in} -V _O	-	2.0	-	Vdc
Output Resistance (I _O = 500 mA)	RO	-	35	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC	-	550	-	mA
Average Temperature Coefficient of Output Voltage $i_0 = 5.0 \text{ mA}, 0^{9}\text{C} \le T_A \le +125^{9}\text{C}$	тсv _о	_	-1.0	_	mV/ ^o C

$MC7808C \ ELECTRICAL \ CHARACTERISTICS \ (V_{in} = 14 \ V, \ I_O = 500 \ mA, \ 0^oC < T_J < +125^oC \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	vo	7.7	8.0	8.3	Vdc
Input Regulation $(T_{,j} = +25^{\circ}C, I_{O} = 100 \text{ mA})$	Reg _{in}				mV
$10.5 \text{ Vdc} \le \text{V}_{in} \le 25 \text{ Vdc}$			12	80	
11 Vdc \leq V _{in} \leq 17 Vdc (T ₁ = +25 ^o C, I _O = 500 mA)	1	-	5.0	40	
$10.5 \text{ Vdc} \le \text{V}_{in} \le 25 \text{ Vdc}$		-	50	160	
$11 \text{ Vdc} \leq \text{V}_{in} \leq 17 \text{ Vdc}$		-	22	80	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.5$ A			26	160	
250 mA ≤ I _O ≤ 750 mA		-	9.0	80	
Output Voltage	Vo				Vdc
$(10.5 \text{ Vdc} \le \text{V}_{in} \le 23 \text{ Vdc}, 5.0 \text{ mA} \le \text{I}_{O} \le 1.0 \text{ A}, \text{P} \le 15 \text{ W})$		7.6		8.4	
Quiescent Current (T _J = +25 ^o C)	ЧB		4.3	8.0	mA
Quiescent Current Change	ΔIB				mA
10.5 Vdc ≤ V _{in} ≤ 25 Vdc 5.0 mA ≤ I _O ≤ 1.5 A		-	-	1.0 0.5	
		-		0.5	-
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤ f ≤100 kHz)	VN	-	52	-	μV
Long-Term Stability	ΔV _O /Δt	_	-	32	mV/1.0 k HRS
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		62	-	dB
Input-Output Voltage Differential	V _{in} -V _O				Vdc
(I _O = 1.0 A, T _J = +25 ^o C)		-	2.0	~	
Output Resistance (I _O = 500 mA)	RO	-	40		mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC	-	450	-	mA
Average Temperature Coefficient of Output Voltage	TCVO				mV/ ^o C
$I_0 = 5.0 \text{ mA}, 0^{\circ}C \le T_A \le +125^{\circ}C$		- 1	-1.0	-	

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	11.5	12	12.5	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{in}		1		mV
14.5 Vdc ≤V _{in} ≤ 30 Vdc			13	120	
16 Vdc ≤V _{in} ≤22 Vdc (T _J = +25 ^o C, I _O = 500 mA)	1 1		6.0	60	
$14.5 \text{ Vdc} \le V_{in} \le 30 \text{ Vdc}$			55	240	
$16 \text{ Vdc} \leq \text{V}_{in} \leq 22 \text{ Vdc}$			24	120	
	- Bage i	·····	h		mV
$T_J = +25^{\circ}C$, 5.0 mA $\le I_O \le 1.5$ A	Regload	-	46	240	i m v
$250 \text{ mA} \leq 10 \leq 750 \text{ mA}$			17	120	1
Output Voltage	Vo		t		Vdc
$(14.5 \text{ Vdc} \le \text{V}_{in} \le 27 \text{ Vdc}, 5.0 \text{ mA} \le \text{I}_{O} \le 1.0 \text{ A}, \text{P} \le 15 \text{ W})$	Ū	11.4	-	12.6	
Quiescent Current (T _J = +25 ^o C)	1 _B	-	4.4	8.0	mA
Quiescent Current Change	ΔIB				mA
14.5 Vdc ≤V _{in} ≤ 30 Vdc		-	-	1.0	
$5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}$			-	0.5	1
Output Noise Voltage (T _A = $+25^{\circ}$ C, 10 Hz \leq f \leq 100 kHz)	VN		75		μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	48	mV/1.0kHRS
Ripple Rejection (1 _O = 20 mA, f = 120 Hz)	RR		61	-	dB
Input-Output Voltage Differential	V _{in} -V _O				Vdc
$(I_0 = 1.0 \text{ A}, T_J = +25^{\circ}\text{C})$			2.0	-	
Output Resistance (I _O = 500 mA)	RO	-	75		mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC	-	350		mA
Average Temperature Coefficient of Output Voltage	тсv _о				mV/ ^o C
$(I_0 = 5.0 \text{ mA}, 0^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C})$			-1.0	-	

$MC7812C \ ELECTRICAL \ CHARACTERISTICS \ (V_{in} = 19 \ V, I_{O} = 500 \ mA, 0^{o}C < T_{J} < +125^{o}C, unless \ otherwise \ noted.)$

$MC7815C \ ELECTRICAL \ CHARACTERISTICS \ (V_{in} = 23 \ V, \ I_O = 500 \ mA, \ 0^oC < T_J < +125^oC, \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	14.4	15	15.6	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{in}				mV
17.5 Vdc ≤V _{in} ≤ 30 Vdc		-	14	150	1
20 Vdc \leq V _{in} \leq 26 Vdc (T ₁ = +25 ^o C, I _O = 500 mA)		-	6.0	75	
$(1) = +25^{\circ}$, $(0 = 500 \text{ mA})$ 17.5 Vdc $\leq V_{in} \leq 30 \text{ Vdc}$		_	57	300	
$20 \text{ Vdc} \le V_{in} \le 26 \text{ Vdc}$		-	27	150	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\le I_O \le 1.5$ A	oroad	-	68	300	
$250 \text{ mA} \leq 1_{\text{O}} \leq 750 \text{ mA}$		-	25	150	
Output Voltage	Vo				Vdc
$(17.5 \text{ Vdc} \le \text{V}_{in} \le 30 \text{ Vdc}, 5.0 \text{ mA} \le \text{I}_{O} \le 1.0 \text{ A}, \text{P} \le 15 \text{ W})$		14.25		15.75	
Quiescent Current ($T_J = +25^{\circ}C$)	ЧB	-	4.4	8.0	mA
Quiescent Current Change	Δ ⁱ B				mA
17.5 Vdc ≤V _{in} ≤30 Vdc		-	-	1.0	
5.0 mA ≤ I _O ≤ 1.5 A			-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	VN		90	-	μV
Long-Term Stability	$\Delta V_0 / \Delta t$	-	-	60	mV/1.0kHR
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	60	-	dB
Input-Output Voltage Differential	V _{in} -V ₀				Vdc
$(I_{O} = 1.0 \text{ A}, T_{J} = +25^{\circ}\text{C})$		-	2.0	-	
Output Resistance (IO = 500 mA)	RO	-	95	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	ISC	-	230	-	mA
Average Temperature Coefficient of Output Voltage	тсv _о				mV/ ⁰ C
$I_{O} = 5.0 \text{ mA}, 0^{\circ}C \le T_{A} \le +125^{\circ}C$		-	-1.0	-	

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	17.3	18	18.7	Vdc
Input Regulation (T ₁ = $+25^{\circ}$ C, I ₀ = 100 mA)	Reg _{in}				mV
21 Vdc ≤V _{in} ≤ 33 Vdc 24 Vdc ≤V _{in} ≤30 Vdc		-	25 10	180 90	
(T _J = +25 ⁰ C, I _O = 500 mA) 21 Vdc ≤ V _{in} ≤ 33 Vdc 24 Vdc ≤ V _{in} ≤ 30 Vdc		-	90 50	360 180	
Load Regulation T _J = +25°C, 5.0 mA \leq I _O \leq 1.0 A 250 mA \leq I _O \leq 750 mA	Regload	-	110 55	360 180	mV
Output Voltage (21 Vdc ≤ V _{in} ≤ 33 Vdc, 5.0 mA ≤ I _O ≤ 1.0 A, P ≤ 15 W)	٧ ₀	17.1	-	18.9	Vdc
Quiescent Current (T _J = +25 ⁰ C)	^і в		4.5	8.0	mA
Quiescent Current Change 21 Vdc $\leq V_{in} \leq 33$ Vdc 5.0 mA $\leq I_O \leq 1.0$ A	۵۱ ^B			1.0 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤100 kHz)	VN		110	-	μV
Long-Term Stability	ΔV _O /Δt	-	-	72	mV/1.0kHRS
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		59	-	dB
Input-Output Voltage Differential (I _O = 1.0 A, T _J = +25 ^o C)	V _{in} -V _O	_	2.0	_	Vdc
Output Resistance (I _O = 500 mA)	RO	-	110	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC		200	-	mA
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, $0^{o}C \le T_{A} \le +125^{o}C$	тсv _о	_	-1.0	-	mV/ ^o C

MC7818C ELECTRICAL CHARACTERISTICS (V_{in} = 27 V, I_O = 500 mA, 0° C < T_J < +125^oC, unless otherwise noted.)

$\textbf{MC7824C ELECTRICAL CHARACTERISTICS} (V_{in} = 33 \text{ V}, I_{O} = 500 \text{ mA}, 0^{o}\text{C} < \text{T}_{J} < +125^{o}\text{C}, \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	23	24	25	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{in}				mV
27 Vdc_≤V _{in} ≤38 Vdc		-	31	240	
30 Vdc ≤ V _{in} ≤ 36 Vdc (T _J = +25 ^o C, I _O = 500 mA)			14	120	
$27 \text{ Vdc} \le V_{in} \le 38 \text{ Vdc}$		-	118	480	
$30 \text{ Vdc} \le \text{V}_{in} \le 36 \text{ Vdc}$		-	70	240	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C, 5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		-	150	480	
250 mA ≤1 ₀ ≤750 mA			85	240	
Output Voltage	Vo				Vdc
$(27 \text{ Vdc} \le \text{V}_{\text{in}} \le 38 \text{ Vdc}, 5.0 \text{ mA} \le \text{I}_0 \le 1.0 \text{ A}, \text{P} \le 15 \text{ W})$		22.8	-	25.2	
Quiescent Current ($T_J = +25^{\circ}C$)	۱ _B	_	4.6	8.0	mA
Quiescent Current Change	ΔIB				mA
27 Vdc \leq V _{in} \leq 38 Vdc			-	1.0	1
$5.0 \text{ mA} \le 1_0 \le 1.0 \text{ A}$		-	-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	VN	-	170	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	96	mV/1.0 k HRS
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		56	-	dB
Input-Output Voltage Differential	Vin-Vo		2.0	-	Vdc
(I _O = 1.0 A, T _J = +25 ^o C)					
Output Resistance (I _O = 500 mA)	RO	-	150	-	mΩ
Short-Circuit Current Limit (T _J = +25 ^o C)	^I SC	-	150		mA
Average Temperature Coefficient of Output Voltage	TCVO		•		mV/ ^o C
I _O = 5.0 mA, 0 ⁰ C ≤ T _A ≤+125 ⁰ C	Ű	-	-1.0	-	

TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 2 – MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3 PACKAGE)

FIGURE 4 – PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

FIGURE 6 – RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES

TYPICAL CHARACTERISTICS (continued)

FIGURE 8 – QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE 48 4.6 IB, QUIESCENT CURRENT (mA) V_{in} = 10 V V₀ = 5.0 V I₀ = 20 mA 4.4 4.2 4 0 3.8 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

 $\Omega uiescent \ Current \ - \ That \ part \ of the input current that is not delivered to the load.$

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

APPLICATIONS INFORMATION

Design Considerations

The MC7800C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected

The MC7800C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_{O} = \frac{5 V}{R} + I_{O}$$

IQ = 1.5 mA over line and load changes

For example, a 1-ampere current source would require R to be a 5-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.

FIGURE 12 - CURRENT BOOST REGULATOR

The MC7800C series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by V_{BE} of the pass transistor.

to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. If an aluminum electrolytic capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 13 - SHORT-CIRCUIT PROTECTION

XX = 2 digits of type number indicating voltage.

The circuit of Figure 12 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, $R_{sc\prime}$ and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

NEGATIVE VOLTAGE REGULATORS

MC7900C SERIES THREE-TERMINAL THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS NEGATIVE FIXED The MC7900C Series of fixed output negative voltage regulators **VOLTAGE REGULATORS** are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage MONOLITHIC SILICON options as the MC7800C devices. In addition, two extra voltage INTEGRATED CIRCUITS options commonly employed in MECL systems are also available in the negative MC7900C Series. Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 1.0 ampere. No External Components Required \bigcirc Internal Thermal Overload Protection GND OUTPU" Internal Short-Circuit Current Limiting K SUFFIX Output Transistor Safe-Area Compensation METAL PACKAGE CASE 11 Ο Packaged in the Plastic Case 199-04 (TO-3 TYPE) (Pin Compatible with the VERSAWATT[†] or TO-220) (bottom viewi Or Hermetic TO-3 Type Metal Power Package SCHEMATIC DIAGRAM P SUFFIX PLASTIC PACKAGE CASE 199-04 GND Pin 1 GND (B) Pin 2 Output (E) Pin 3 Input (C) ¥ R1 Heat sink surface connected to pin 3. R2 \$ STANDARD APPLICATION ovo 10 3 or Case Input MC79XXC Output 20 pf -16 c_{in} 91 co** 10 10 pF 0.33 µF 20 k 20 k 240 2 4 1.1.6 ₹0.3 A common ground is required between the 750 input and the output voltages. The input volt-age must remain typically 2.0 V more negative even during the high point on the input ripple voltage. XX = these two digits of the type number indicate voltage. * = Cin is required if regulator is located an appreciable distance from power supply DEVICE TYPE/NOMINAL OUTPUT VOLTAGE filter MC7902C - 2.0 Volts MC7906C ~ 6.0 Volts MC7915C - 15 Volts = CO improves stability and transient re-MC7905C - 5.0 Volts MC7908C - 8.0 Volts MC7918C - 18 Volts sponse. MC7905.2C - 5.2 Volts MC7912C - 12 Volts MC7924C - 24 Volts

[†]Trademark of Radio Corporation of America.

See Packaging Information Section for outline dimensions.

MC7900C Series

MC7900C Series MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.0 V - 18 V) (24 V)	V _{in}	-35 -40	Vdc
Power Dissipation and Thermal Characteristics Plastic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +95^{\circ}C$ (See Figure 1) Thermal Resistance, Junction to Case	P _D 1/θ JA θ JA P _D 1/θ JC θ JC	2.0 20 50 15 500 2.0	Watts mW/ ^o C ^o C/W Watts mW/ ^o C ^o C/W
Metal Package T _A = +25 ⁰ C Derate above T _A = +25 ⁰ C Thermal Resistance, Junction to Air	Р _D 1/0 јд 0 јд	2.5 28.6 35	Watts mW/ ^o C ^o C/W
$T_C = +25^{\circ}C$ Derate above $T_C = +65^{\circ}C$ Thermal Resistance, Junction to Case	Ρ _D 1/θ JC θ JC	15 250 4.0	Watts mW/ ^O C ^O C/W
Storage Junction Temperature Range	T _{stg}	-20 to +150	°C
Operating Junction Temperature Range	Тј	0 to +125	°C

$MC7902C \ ELECTRICAL \ CHARACTERISTICS \ (V_{in} = -10 \ V, \ I_O = 500 \ mA, \ 0^{o}C < T_J < +125^{o}C \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	vo	-1.92	-2.00	-2.08	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{in}				mV
-7.0 Vdc \geq V _{in} \geq -25 Vdc		-	8.0	20	
-8.0 Vdc \geq V _{in} \geq -12 Vdc		-	4.0	10	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$					
-7.0 Vdc \geq V _{in} \geq -25 Vdc		-	18	40	
-8.0 Vdc \geq V _{in} \geq -12 Vdc		-	8.0	20	
Load Regulation T _J = +25 ^o C, 5.0 mA $\leq I_O \leq 1.5$ A 250 mA $\leq I_O \leq 750$ mA	Reg _{load}	_	70 20	120 60	mV
Output Voltage -7.0 Vdc \ge V _{in} \ge -20 Vdc, 5.0 mA \le I _O \le 1.0 A, P \le 15 W	vo	-1.90	-	-2.10	Vdc
Quiescent Current (T _J = +25 ^o C)	IВ	-	4.3	8.0	mA
Quiescent Current Change -7.0 Vdc \ge V _{in} \ge -25 Vdc 5.0 mA \le I _O \le 1.5 A	ΔIB	-		1.3 0.5	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	40	_ `	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	_	20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	65	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ⁰ C	V _{in} -V _O	-	3.5	-	Vdc
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, $0^{o}C \leqslant T_{A} \leqslant +125^{o}C$	тсv _о	-	-1.0	-	mV/ ⁰ C

$MC7905C \ ELECTRICAL \ CHARACTERISTICS \ (V_{in} = -10 \ V, \ I_O = 500 \ mA, \ 0^{o}C < T_J < +125^{o}C, \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-4.8	-5.0	-5.2	Vdc
Input Regulation (T = +25°C, I _O = 100 mA)	Reg _{in}				mV
-7.0 Vdc \geq Vin \geq -25 Vdc		-	7.0	50	
-8.0 Vdc ≥ V _{in} ≥ -12 Vdc		-	2.0	25	
(T _J = +25 ^o C, I _O = 500 mA)					
-7.0 Vdc≥V _{in} ≥-25 Vdc		-	35	100	
$-8.0 \text{ Vdc} \ge V_{\text{in}} \ge -12 \text{ Vdc}$		-	8.0	50	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C, 5.0 \text{ mA} \leq I_{O} \leq 1.5 \text{ A}$		-	11	100	
250 mA ≤ I _O ≤750 mA		-	4.0	50	
Output Voltage -7.0 Vdc \geqslant V $_{in} \geqslant$ -20 Vdc, 5.0 mA \leqslant I $_{O} \leqslant$ 1.0 A, P \leqslant 15 W	Vo	-4.75	-	-5.25	Vdc
Quiescent Current ($T_J = +25^{\circ}C$)	IВ	-	4.3	8.0	mA
Quiescent Current Change	ΔIB				mA
-7.0 Vdc ≥ V _{in} ≥ -25 Vdc		-	-	1.3	
5.0 mA ≤I _O ≤ 1.5 A		-	-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	VN	-	40	-	μ∨
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		70	-	dB
Input-Output Voltage Differential $I_{O} = 1.0 \text{ A}, \text{ T}_{J} = +25^{O}\text{C}$	V _{in} -V _O	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, 0 ^O C \ll T_A \ll +125 ^O C	тсv _о	-	-1.0	-	mV/ ^o C

 $\textbf{MC7905.2C ELECTRICAL CHARACTERISTICS} (V_{in} = -10 \text{ V}, \text{ I}_{O} = 500 \text{ mA}, 0^{9}\text{C} < \text{T}_{J} < +125^{9}\text{C}, \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	vo	-5.0	-5.2	-5.4	Vdc
Input Regulation (T ₁ = +25 ^o C, I _O = 100 mA)	Reg _{in}				mV
$-7.2 \text{ Vdc} \ge V_{in} \ge -25 \text{ Vdc}$		· _	8.0	52	
$-8.0 \text{ Vdc} \ge V_{in} \ge -12 \text{ Vdc}$		-	2.2	27	
$(T_1 = +25^{\circ}C, I_0 = 500 \text{ mA})$					
-7.2 Vdc \ge V _{in} \ge -25 Vdc		-	37	105	
-8.0 Vdc ≥ V _{in} ≥-12 Vdc		-	8.5	52	
Load Regulation	Regload				mV
T」= +25 ⁰ C, 5.0 mA ≤I _O ≤ 1.5 A			12	105	
250 mA ≤1 ₀ ≤750 mA		-	4.5	52	
Output Voltage	Vo	-4.94	-	-5.46	Vdc
-7.2 Vdc \ge V _{in} \ge -20 Vdc, 5.0 mA \le I _O \le 1.0 A, P \le 15 W					
Quiescent Current (T _J = +25 ^o C)	IВ	-	4.3	8.0	mA
Quiescent Current Change	ΔIB				mA
-7.2 Vdc \geq V _{in} \geq -25 Vdc	_	-	-	1.3	
5.0 mA ≤I _O ≤ 1.5 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤f ≤100 kHz)	∨ _N		42	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	· -	-	20	mV/1.0 k Hrs
Ripple Rejection ($I_0 = 20 \text{ mA}, f \approx 120 \text{ Hz}$)	RR		68	-	dB
Input-Output Voltage Differential $I_{O} = 1.0 \text{ A}, T_{J} = +25^{\circ}\text{C}$	V _{in} -V _O	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, $0^{o}C \leqslant T_{A} \leqslant +125^{o}C$	тсv _о		-1.0	-	mV/ ^o C

$MC7906C \ ELECTRICAL \ CHARACTERISTICS \ (v_{in}$ = -11 V, I_0 = 500 mA, 0°C < T_J < +125°C \ unless \ otherwise \ noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	Vo	-5.75	-6.0	-6.25	Vdc
Input Regulation (T _J = +25 ^o C, I _O = 100 mA)	Reg _{in}				mV
-8.0 Vdc \ge V _{in} \ge -25 Vdc		-	9.0	60	
-9.0 Vdc ≥ V _{in} ≥ -13 Vdc		-	3.0	30	
(T _J = +25 ^o C, I _O = 500 mA)					
-8.0 Vdc ≥ V _{in} ≥-25 Vdc			43	120	
-9.0 Vdc ≥ V _{in} ≥ -13 Vdc			10	60	
Load Regulation	Regload				mV
T」= +25 ^o C, 5.0 mA ≤l _O ≤ 1.5 A		-	13	120	
250 mA $≤$ 1 ₀ $≤$ 750 mA		-	5.0	60	
Output Voltage	Vo	-5.7	_	-6.3	Vdc
-8.0 Vdc \ge V _{in} \ge -21 Vdc, 5.0 mA \le I _O \le 1.0 A, P \le 15 W)	_				
Quiescent Current ($T_J = +25^{\circ}C$)	IВ		4.3	8.0	mA
Quiescent Current Change	ΔIB				mA
-8.0 Vdc ≥ V _{in} ≥-25 Vdc		_	-	1.3	
5.0 mA ≤ I _O ≤ 1.5 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤100 kHz)	VN	-	45	-	μ∨
Long-Term Stability	$\Delta V_0 / \Delta t$	-	-	24	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		65	-	dB
Input-Output Voltage Differential	V _{in} -V _O	_	2.0	-	Vdc
I _O = 1.0 A, T _J = +25 ^o C			1		
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^{o}C \leqslant T_A \leqslant +125^{o}C$	тсv _О	-	-1.0	-	mV/ ⁰ C

$MC7908C \ ELECTRICAL \ CHARACTERISTICS \ (v_{in}$ = -14 V, I_O = 500 mA, 0°C < T_J < +125°C \ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-7.7	-8.0	-8.3	Vdc
Input Regulation (T _J = $+25^{\circ}C$, I _C = 100 mA)	Reg _{in}				mV
-10.5 Vdc \geq V _{in} \geq -25 Vdc		-	12	80	
-11 Vdc \ge V _{in} \ge -17 Vdc		-	5.0	40	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$					
-10.5 Vdc ≥ V _{in} ≥ -25 Vdc		-	50	160	
-11 Vdc \geq V _{in} \geq -17 Vdc		-	22	80	
Load Regulation	Regload				mV
T」= +25 ⁰ C, 5.0 mA ≤1 ₀ ≤1.5 A			26	160	
250 mA ≤1 ₀ ≤750 mA		-	9.0	80	
Output Voltage -10.5 Vdc \ge V _{in} \ge -23 Vdc, 5.0 mA \le I ₀ \le 1.0 A, P \le 15 W	٧ ₀	-7.6	-	-8.4	Vdc
Quiescent Current (T _J = +25 ^o C)	1 _B	-	4.3	8.0	mA
Quiescent Current Change	ΔIB				mA
-10.5 Vdc ≥ V _{in} ≥-25 Vdc		-		1.0	
$5.0 \text{ mA} \leq 1_0 \leq 1.5 \text{ A}$		_	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	52	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	32	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	62	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ^o C	V _{in} -V _O		2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, $0^{o}C \leqslant T_{A} \leqslant +125^{o}C$	тсv _о	-	-1.0	-	mV/ ^o C

$\textbf{MC7912C ELECTRICAL CHARACTERISTICS} (V_{in} = -19 \text{ V}, \text{ I}_{O} = 500 \text{ mA}, 0^{o}\text{C} < \text{T}_{J} < +125^{o}\text{C}, \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	-11.5	-12	-12.5	Vdc
Input Regulation (T _J = $+25^{\circ}$ C, I _O = 100 mA)	Reg _{in}				mV
-14.5 Vdc \geq V _{in} \geq -30 Vdc			13	120	
-16 Vdc≥V _{in} ≥-22 Vdc		-	6.0	60	
$(T_{J} = +25^{\circ}C, I_{O} = 500 \text{ mA})$					
-14.5 Vdc ≥ V _{in} ≥-30 Vdc			55	240	
-16 Vdc≥V _{in} ≥-22 Vdc		-	24	120	
Load Regulation	Regload	······································			mV
T」= +25 ^o C, 5.0 mA ≤1 _O ≤ 1.5 A		-	46	240	
250 mA ≤ 1 ₀ ≤ 750 mA		-	17	120	
Output Voltage	Vo	-11.4	-	-12.6	Vdc
-14.5 Vdc \ge V _{in} \ge -27 Vdc, 5.0 mA \le I _O \le 1.0 A, P \le 15 W					
Quiescent Current (T _J = +25 ^o C)	IВ		4.4	8.0	mA
Quiescent Current Change	ΔIB				mA
-14.5 Vdc ≥ V _{in} ≥-30 Vdc		-		1.0	
5.0 mA ≤I _O ≤1.5 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤100 kHz)	VN		75	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	48	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		61	-	dB
Input-Output Voltage Differential $I_{O} = 1.0 \text{ A}, T_{J} = +25^{O}\text{C}$	V _{in} -V _O		2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^{O}C \leqslant T_A \leqslant +125^{O}C$	тсv _о	-	-1.0		mV/ ⁰ C

MC7915C ELECTRICAL CHARACTERISTICS (v_{in} = -23 V, I_0 = 500 mA, 0^{o} C <T J < +125^oC, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-14.4	-15	-15.6	Vdc
Input Regulation	Reg _{in}				mV
(T _J = +25 ^o C, I _O = 100 mA) -17.5 Vdc ≥ V _{in} ≥-30 Vdc			14	150	
$-20 \text{ Vdc} \ge V_{in} \ge -26 \text{ Vdc}$		_	6.0	75	
$(T_1 = +25^{\circ}C, I_0 = 500 \text{ mA})$			0.0	10	
$-17.5 \text{ Vdc} \ge V_{in} \ge -30 \text{ Vdc}$		_	57	300	
-20 Vdc \geq V _{in} \geq -26 Vdc		-	27	150	
Load Regulation	Regload			1	mV
T」= +25 ⁰ C, 5.0 mA ≤I _O ≤1.5 A		_	68	300	
250 mA ≤ I _O ≤ 750 mA		-	25	150	
Output Voltage	Vo	-14.25	-	-15.75	Vdc
-17.5 Vdc \ge V _{in} \ge -30 Vdc, 5.0 mA \le I _O \le 1.0 A, P \le 15 W					
Quiescent Current ($T_J = +25^{\circ}C$)	IВ		4.4	8.0	mA
Quiescent Current Change	ΔIB				mA
-17.5 Vdc ≥ V _{in} ≥-30 Vdc			-	1.0	
$5.0 \text{ mA} \leq 1_0 \leq 1.5 \text{ A}$		-	-	0.5	
Output Noise Voltage (T _A = +25 ⁰ C, 10 Hz ≤f ≤100 kHz)	VN		90	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-	-	60	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	60	-	dB
Input-Output Voltage Differential	V _{in} -V _O		2.0		Vdc
I _O = 1.0 A, T _J = +25 ^o C					
Average Temperature Coefficient of Output Voltage	TCVO		-1.0	-	mV/ºC
I _O = 5.0 mA, 0 ^o C ≤ T _A ≤ +125 ^o C			1	1	

$\textbf{MC7918C ELECTRICAL CHARACTERISTICS} ~~(\textit{V}_{in} = -27~\textit{V}, \textit{I}_{O} = 500~\textit{mA}, \textit{0}^{o}\textit{C} < \textit{T}_{J} < +125^{o}\textit{C}, \textit{unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-17.3	-18	-18.7	Vdc
Input Regulation (T ₁ = +25 ^o C, I ₀ = 100 mA)	Reg _{in}				mV
-21 Vdc \geq V _{in} \geq -33 Vdc		-	25	180	
-24 Vdc≥V _{in} ≥-30 Vdc		-	10	90	
(T _J = +25 ^o C, I _O = 500 mA)				1	
-21 Vdc \geq V _{in} \geq -33 Vdc		-	90	360	
-24 Vdc≥V _{in} ≥-30 Vdc		-	50	180	
Load Regulation	Regload				mV
T」= +25 ^o C, 5.0 mA ≤I _O ≤ 1.0 A		-	110	360	
250 mA ≤1 ₀ ≤750 mA			55	180	
Output Voltage -21 Vdc \ge V _{in} \ge -33 Vdc, 5.0 mA \le I ₀ \le 1.0 A, P \le 15 W	vo	-17.1	-	-18.9	Vdc
Quiescent Current ($T_J = +25^{\circ}C$)	IВ	-	4.5	8.0	mA
Quiescent Current Change	ΔIB				mA
-21 Vdc≥V _{in} ≥-33 Vdc		-	-	1.0	
5.0 mA ≤1 ₀ ≤1.0 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN	-	110	-	μV
Long-Term Stability	$\Delta V_O / \Delta t$	-		72	mV/1.0 k Hrs
Ripple Rejection ($I_0 = 20 \text{ mA}$, f = 120 Hz)	RR		59	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ^o C	V _{in} -V _O	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, $0^oC \leqslant T_A \leqslant +125^oC$	тсv _О	-	-1.0	-	mV/ ⁰ C

 $MC7924C \ ELECTRICAL \ CHARACTERISTICS \ (V_{in} = -33 \ V, I_O = 500 \ mA, 0^{o}C < T_J < +125^{o}C, \ unless \ otherwise \ noted.)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-23	-24	-25	Vdc
Input Regulation (T _J = +25 ^o C, $ _{O}$ = 100 mA)	Reg _{in}				mV
-27 Vdc \geq V _{in} \geq -38 Vdc		-	31	240	
-30 Vdc \ge V _{in} \ge -36 Vdc			14	120	
(T _J = +25 ^o C, I _O = 500 mA)					
-27 Vdc≥V _{in} ≥-38 Vdc		-	118	480	
-30 Vdc ≥ V _{in} ≥-36 Vdc			70	240	
Load Regulation	Regload				mV
T」= +25 ⁰ C, 5.0 mA ≤I _O ≤ 1.0 A			150	480	
250 mA ≤I _O ≤750 mA		-	85	240	
Output Voltage	Vo	-22.8	-	-25.2	Vdc
-27 Vdc \geqslant V $_{in}$ \geqslant -38 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 1.0 A, P \leqslant 15 W	_				
Quiescent Current ($T_J = +25^{\circ}C$)	1B		4.6	8.0	mA
Quiescent Current Change	Δi _B				mA
-27 Vdc≥V _{in} ≥-38 Vdc		-	-	1.0	
5.0 mA \leq I _O \leq 1.0 A		-	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz \leq f \leq 100 kHz)	VN		170	-	μ∨
Long-Term Stability	$\Delta V_O / \Delta t$		-	96	mV/1.0 k Hrs
Ripple Rejection ($I_0 = 20 \text{ mA}$, f = 120 Hz)	RR	-	56	-	dB
Input-Output Voltage Differential I _O = 1.0 A, T _J = +25 ^o C	V _{in} -V _O	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA, 0 ^O C \leqslant T _A \leqslant +125 ^O C	тсv _О	-	-1.0	-	mV/ºC

TYPICAL CHARACTERISTICS (T_A = +25^oC unless otherwise noted.)

FIGURE 2 -- MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3 TYPE PACKAGE)

FIGURE 4 – RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

FIGURE 6 – OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

FIGURE 1 – MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (CASE 199-04)

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 – QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

DEFINITIONS

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

 $\Omega uiescent\ Current\ -\ That\ part\ of\ the\ input\ current\ that\ is\ not\ delivered\ to\ the\ load.$

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

APPLICATIONS INFORMATION

Design Considerations

The MC7900C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected

FIGURE 8 - CURRENT REGULATOR

The MC7902, -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:

The quiescent current for this regulator is typically 4.3 mA. The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems. to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. If an aluminum electrolytic capacitor is used, its value should be 1.0 μ F or larger. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead registance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

*Mounted on common heat sink, Motorola MS-10 or equivalent.

When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/R_{SC}. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

When current-boost power transistors are used, 47-ohm base-toemitter resistors (R) must be used to bypass the quiescent current at no load. These resistors, in conjunction with the VBE of the NPN transistors, determine when the pass transistors begin conducting. The 1-ohm and 4-ohm dropping resistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation.

DUAL LINE RECEIVERS

MC55107 MC55108 MC75107 MC75108

MONOLITHIC DUAL LINE RECEIVERS

The MC55107/MC75107 and MC55108/MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC55107/MC75107 circuit features an active pull-up (totem-pole) output. The MC55108/MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC55108/ MC75108 receivers). Thus a level of logic is implemented without extra delay.

The MC55107/MC75107 and MC55108/MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.

- High Common-Mode Rejection Ratio
- High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of ±3.0 V
- Differential Input Common-Mode Voltage of More Than ±15 V
- Using External Attenuator • Strobe Inputs for Receiver Selection
- Strobe inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- MTTL or MDTL Drive Capability
 High DC Noise Margins
- High DC Noise Wargins

TRUTH TABLE						
DIFFERENTIAL	STROBES		OUTPUT			
A-B	G	Y				
V _{1D} ≥ 25 mV	L or H	L or H	н			
	L or H	L	н			
- 25 mV < V _{1D} < 25 mV	L	L or H	н			
· [н	н	INDETERMINATE			
	LorH	L	н			
V _{1D} ≤ -25 mV	L	L, or H	н			
Г	н	н	L			

8

See Packaging Information Section for outline dimensions.

MC55107, MC75107, MC55108, MC75108 (continued)

MAXIMUM RATINGS (T_A = T_{low}* to T_{high}* unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} V _{EE}	+7.0 -7.0	Vdc
Differential-Mode Input Signal Voltage Range	VID	<u>+</u> 6.0	Vdc
Common-Mode Input Voltage Range	VICR	<u>+</u> 5.0	Vdc
Strobe Input Voltage	V _{1(S)}	5.5	Vdc
Power Dissipation (Package Limitation)	PD		
Plastic and Ceramic Dual-In-Line Packages Derate above T _A = +25 ^ο C		625 3.85	mW mW/ ^o C
Operating Temperature Range MC55107, MC55108 MC75107, MC75108	Тд	-55 to +125 0 to +70	٥ ^С
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

		MC59	5107, MC5	5108	MC7			
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4.5 -4.5	+5.0 -5.0	+5.5 -5.5	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Vdc
Output Sink Current	'os			- 16		N. F.	- 16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0		+5.0	- 5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	VICR	- 3.0	-	+3.0	- 3.0	1.28 T 3.1	+3.0	Vdc
Input Voltage Range, any differential input to ground	VIR	-50		+3.0	-5.0		+3.0	Vdc
Operating Temperature Range	TA	-55	-	+125	0	5.5	+70	°C

DEFINITIONS OF INPUT LOGIC LEVELS

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (between differential inputs)	VIDH	1	0.025	5.0	Vdc
Low-Level Input Voltage (between differential inputs)	VIDL	1	-5.0†	-0.025	Vdc
High-Level Input Voltage (at strobe inputs)	V _{IH(S)}	3	2.0	5.5	Vdc
Low-Level Input Voltage (at strobe inputs)	V _{IL(S)}	3	0	0.8	Vdc

 \dagger The algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level (V_{IDL})

ELECTRICAL CHARACTERISTICS (T_A = T_{low}* to T_{high}* unless otherwise noted)

							MC55108,MC75108		
Characteristic	Symbol	Test Fig.	Min	Тур #	Max	Min	Түр #	Max	Unit
High-Level Input Current to 1A or 2A Input (V _{CC} = Max, V _{EE} = Max, V _{ID} = 0.5 V, V _{IC} = -3.0 V to $+3.0$ V) \ddagger	ін	2		30	75		30	75	μA
Low-Level Input Current to 1A or 2A Input (V_{CC} = Max, V_{EE} = Max, V_{ID} = -2.0 V, V_{IC} = -3.0 V to +3.0 V) \ddagger	¹ IL	2			- 10			- 10	μA
High-Level Input Current to 1G or 2G Input (V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = 2.4 V)‡ (V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = V _{CC} Max)‡	¹ ін	4		-	40 1.0			40 1.0	μA mA
Low-Level Input Current to 1G or 2G Input (V _{CC} = Max, V _{EE} = Max, V _{IL(S)} = 0.4 V)‡	ΊL	4			- 1.6			- 1.6	mA
High-Level Input Current to S Input (V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = 2.4 V)‡ (V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = V _{CC} Max)‡	ЧН	4	1.1	-	80 2.0			80 2.0	μA mA
Low-Level Input Current to S Input (V _{CC} = Max, V _{EE} = Max, V _{IL(S)} = 0.4 V)‡	հե	4			-3.2			-3.2	mA
High-Level Output Voltage (V _{CC} = Min, V _{EE} = Min, I _{load} = -400 μA, V _{IC} = -3.0 V to +3.0 V)‡	∨он	3	2.4	-	1		Р		v
Low-Level Output Voltage (V _{CC} = Min, V _{EE} = Min, I _{sink} = 16 mA V _{IC} = -3.0 V to +3.0 V)‡	VOL	3	-	-	0.4			0.4	V
High-Level Leakage Current (V _{CC} = Min, V _{EE} = Min, V _{OH} = V _{CC} Max)‡	CE X	3	-		-			250	μA
Short-Circuit Output Current # # (V _{CC} = Max, V _{EE} = Max) ‡	losc	5	- 18	-	- 70				mA
High Logic Level Supply Current from V _{CC} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C) ‡	¹ ССН+	6	-	18	30		18	30	mA
High Logic Level Supply Current from V _{EE} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C)‡	Іссн-	6	0	-8.4	-15	0	8.4	-15	mA

‡For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type. #All typical values are at V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25^oC. ##Not more than one output should be shorted at a time.

 $T_{low} = 55^{\circ}C$ for MC55107 and MC55108, = 0 for MC75107 and MC75108 = +125^{\circ}C for MC55107 and MC75108 = +70^{\circ}C for MC75107 and MC75108

MC55107, MC75107, MC55108, MC75108 (continued)

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_{A} = +25^{o}C)

		1	MC55107,MC75107 MC55108,MC75109						
Characteristic	Symbol	Test Fig.	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time, low-to-high level from differential inputs A and B to output ($R_L = 390 \Omega$, $C_L = 50 pF$) ($R_L = 390 \Omega$, $C_L = 15 pF$)	^t PLH(D)	7		17	25	1 1	- 19		ns
Propagation Delay Time, high-to-low level from differential inputs A and B to output ($R_L = 390 \Omega$, $C_L = 50 pF$) ($R_L = 390 \Omega$, $C_L = 15 pF$)	^t PHL(D)	7	E Constant	17	25 -		_ 19	 25	ns
$\label{eq:propagation Delay Time, low-to-high level, from strobe input to G or S output \begin{array}{l} (R_L = 390 \ \Omega, \ C_L = 50 \ pF) \\ (R_L = 390 \ \Omega, \ C_L = 15 \ pF) \end{array} $	tPLH(S)	7		10	15	-	_ 13	_ 20	ns
Propagation Delay Time, high-to-low level, from strobe input G or S to output ($R_L = 390 \Omega$, $C_L = 50 pF$) ($R_L = 390 \Omega$, $C_L = 15 pF$)	^t PHL(S)	7		8.0 -	15		- 13	_ 20	ns

TEST CIRCUITS

FIGURE 1 – VIDH and VIDL

NOTE: When testing one channel, the inputs of the other channel are grounded.

FIGURE 3 - VIH(S), VIL(S), VOH, VOL, and IOH

TEST TABLE

8

MC55107 MC75107	MC55108 MC75108	VID	STROBE 1G or 2G	STROBE S
TE	ST		APPLY	
Voн	ICEX	+25 mV	VIH(S)	VIH(S)
VOH	CEX	-25 mV	VIL(S)	VIH(S)
V _{OH}	CEX	-25 mV	VIH(S)	VIL(S)
VOL	VOL	-25 mV	VIH(S)	VIH(S)

NOTES: 1. $V_{1C} = -3.0 V$ to +3.0 V. 2. When testing one channel, the inputs of the other channel should be grounded.

NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair are grounded

TEST CIRCUITS (continued)

TEST	INPUT 1A	INPUT 2A	STROBE 1G	STROBE S	STROBE 2G
I _{IH} at Strobe 1G	+25 mV	Gnd	VIH(S)	Gnd	Gnd
I _{IH} at Strobe 2G	Gnd	+25 mV	Gnd	Gnd	VIH(S)
IIH at Strobe S	+25 mV	+25 mV	Gnd	VIH(S)	Gnd
IIL at Strobe 1G	-25 mV	Gnd	VIL(S)	4.5 V	Gnd
IIL at Strobe 2G	Gnd	-25 mV	Gnd	4.5 V	VIL(S)
I _{IL} at Strobe S	-25 mV	-25 mV	4.5 V	V _{IL(S)}	4.5 V

FIGURE 5 - IOS

2. Not more than one output should be tested at one time.

FIGURE 6 - I_{CC} and I_{EE}

MC55107, MC75107, MC55108, MC75108 (continued)

TEST CIRCUITS (continued) FIGURE 7 – PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz $t_{p2} = 1$ ms, PRR = 500 kHz.

Strobe input pulse is applied to Strobe 1G when Inputs 1A-1B are being tested, to Strobe S when Inputs 1A-1B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.

3. C $_{\mbox{L}}$ includes probe and jig capacitance.

4. All diodes are 1N916 or equivalent.

TYPICAL APPLICATION

DUAL MEMORY DRIVER

MC75325

MC55325

DUAL MEMORY DRIVER

The MC55325/75325 is a monolithic integrated circuit memory driver with logic inputs, and is designed for use with magnetic memories.

The device contains two 600-mA source-switch pairs and two 600-mA sink-switch pairs. Source selection is determined by one of two logic inputs, and source turn-on is determined by the source strobe. Likewise, sink selection is determined by one of two logic inputs, and sink turn-on is determined by the sink strobe. With this arrangement selection of one of the four switches provides turn-on with minimum time skew of the output current rise.

- 600-mA Output Capability
- Output Short-Circuit Protection
- Input Clamp Diodes
- Dual Sink and Dual Source Outputs
- MDTL and MTTL Compatibility
- 24-Volt Output Capability

INTEGRATED CIRCUIT

DUAL MEMORY DRIVER

MONOLITHIC SILICON

RESS I	INPL	JTS	STROBE I	NPUTS	IS OUTPUTS			
RCE	SI	νĸ	SOURCE	SINK	SOURCE		SINK	
В	с	D	S1	S2	w	х	Y	z
н	×	×	L	н	On	Off	Off	Off
L	X	х	lι	н	Off	On	Off	Off
×	L	н	н	L	Off	Off	On	Of
×	н	L	н	L	Off	Off	Off	On
×	X	х	н	н	Off	Off	Off	Of
н	ĺн	н	×	l x	Off	Off	Off	Of
	RCE B H L X	RCE SII B C H X L X X L X H X X	RCE SINK B C D H X X L X X X L H X H L X X X	RCE SINK SOURCE B C D S1 H X X L L X X L X L H H X L H H X H L H X X H H	RCE SINK SOURCE SINK B C D S1 S2 H X L H L X L H L X L H X L H L X H H L X X H H	RCE SINK SOURCE SINK SOU B C D S1 S2 W H X L H On L X L H Off X L H H Off X L H H Off X X H H Off	RCE SINK SOURCE SINK SOURCE B C D S1 S2 W X H X L H On Off Off	RCE SINK SOURCE SINK SOURCE SI B C D S1 S2 W X Y H X L H On Off Off Off L X L H Off SU X X H H Off Off Off Off Off Off SU X X H H Off Off Off Off Off Off SU X

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage (Note 1)	V _{CC1} V _{CC2}	7.0 25	Vdc Vdc
Input Voltage	Vin	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic and Plastic Dual In-Line Pkg. Derate above $T_A = +25^{\circ}C$	PD	1.0 6.6	W mW/ ^o C
Operating Temperature Range MC55325 MC75325	Τ _Α	-55 to +125 0 to +70	°C
Storage Temperature Range	τ _{stg}	-65 to +150	°C

Note 1. Voltage values are with respect to the network ground terminal.

SWITCHING CHARACTERISTICS (V_{CC1} = 5.0 V, C_L = 25 pF, T_A = 25^oC)

Characte	ristic	Symbol	r	าร
Characte		Symbol	Тур	Max
Propagation Delay Time to Source	Collectors			
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High-Level Output	t PLH	25	50
	High-to-Low-Level Output	^t PHL	25	50
Transition Time to Source Output	S			
(V _{CC2} = 20 V, R _L = 1 k ohms)	Low-to-High-Level Output	tTLH	55	-
	High-to-Low-Level Output	^t THL	7.0	-
Propagation Delay Time to Sink O	utputs			
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High-Level Output	TPLH	20	45
	High-to-Low-Level Output	^t PHL	20	45
Transition Time to Sink Outputs				
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High-Level Output	tTLH	7.0	15
	High-to-Low-Level Output	THL	9.0	20
Storage Time to Sink Outputs		ts	15	30
(VCC2 = 15 V, Ri = 24 ohms)			I	

This is advance information on a new introduction and specifications are subject to change without notice. See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (T_A = T_{low} # to T_{high} # unless otherwise noted.

		The second second	AC5532	5	MC75325			
Characteristic	Symbol	Min	Тур*	Max	Min	Typ*	Max	Unit
High-Level Input Voltage	VIH	2.0			2.0	-	-	V
Low-Level Input Voltage	VIL	2 - Vale - Vale - Cher	And the second s	0.8	-	-	0.8	V
Input Clamp Voltage (V _{CC1} = 4.5 V, V _{CC2} = 24 V, I _I = -10 mA, T _A = 25 ^o C)	VI		-1.3	-1.7		-1.3	-1.7	V
	loff		3.0	500 150		3.0	200 200	μA
High-Level Sink Output Voltage $(V_{CC1} = 4.5 V, V_{CC2} = 24 V, I_O = 0)$	V _{OH}	19	23	÷	19	23	-	V
Saturation Voltage** Source Outputs (V _{CC1} = 4.5 V, V _{CC2} = 15 V, I _{source} \approx -600 mA, R _L = 24 ohms, Note 2) T _A = T _{Iow} to T _{high} T _A = 25 ⁹ C	V _{sat}		0.43	0.9		0.43	0.9	V
Sink Outputs (V _{CC1} = 4.5 V, V _{CC2} = 15 V, I _{sink} \approx 600 mA, R _L = 24 ohms, Note 2) T _A = T _{low} to T _{high} T _A = 25°C			0.43	0.9	-	0.43	0.9	
Input Current at Maximum Input Voltage (V _{CC1} = 5.5 V, V _{CC2} = 24 V, V _I = 5.5 V) Address Inputs Strobe Inputs	ij.			1.0 2.0		-	1.0 2.0	mA
High-Level Input Current (V _{CC1} = 5.5 V, V _{CC2} = 24 V, V ₁ = 2.4 V) Address Inputs Strobe Inputs	Чн		3.0 6.0	40 80		3.0 6.0	40 80	μA
Low-Level Input Current (V _{CC1} = 5.5 V, V _{CC2} = 24 V, V ₁ = 0.4 V) Address Inputs Strobe Inputs	իլ		-1.0 -2.0	-1.6 -3.2		-1.0 -2.0	-1.6	mA
Supply Current, All Sources and Sinks "Off" $(V_{CC1} = 5.5 \text{ V}, V_{CC2} = 24 \text{ V}, T_A = 25^{\circ}\text{C})$ From V_{CC1} From V_{CC2}	ICC(off)		14 7,5	22 20		14 7.5	22 20	mA
Supply Current from V _{CC1} , Either Sink "On" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{sink} = 50 mA, T _A = 25 ^o C)	ICC1		55	70	-	55	70	mA
Supply Current from V _{CC2} , Either Source "On" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{source} = -50 mA, T _A = 25 ^o C)	ICC2		32	50	-	32	50	mA

*All typical values are at $T_A = 25^{\circ}C$.

 $\# T_{10W} = -55^{0}C$ for MC55325, 0⁰C for MC75325

**Not more than one output is to be "on" at any one time.

T_{high} = +125^oC for MC55325, +70^oC for MC75325

NOTE 2. Saturation voltage must be measured using pulse techniques: pulse width = 200 μ s, duty cycle $\leq 2\%$.

MC75109 MC75110

MONOLITHIC DUAL LINE DRIVERS

The MC75109 and MC75110 dual line drivers feature independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally six milliamperes for the MC75109 and twelve millamperes for the MC75110.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, $I_O(off)$, is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.

- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output (6.0 mA or 12 mA typical)
- High Output Impedance
- High Common-Mode Output Voltage Range (-3.0 V to +10 V)
- Inhibitor Available for Driver Selection

	TRUTH TABLE										
			INHIE	BITOR							
L	OGIC	CINPUTS INPUTS		OUTPUTS							
	Α	В	С	D	Y	Z					
L	or H	LorH	L	L or H	н	н					
L	. or H	L or H	L or H	L	н	н					
	L	L or H	н	н	L	н					
1.	or H	L	н	н	L	н					
	н	н	н	н	н	L					

Low output represents the "on" state. High output represents the "off" state.

See Packaging Information Section for outline dimensions.

MC75109, MC75110 (continued)

MAXIMUM RATINGS ($T_A = 0$ to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltages (See Note 1)	V _{CC} V _{EE}	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages (See Note 1)	Vin	5.5	Volts
Common-Mode Output Voltage Range (See Note 1)	VOCR	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ⁰ C	PD	1000 3.85	mW mW/ ^o C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range Ceramic Dual In-Line Package Plastic Dual In-Line Package	T stg	-65 to +150 -55 to +150	°C

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Volts
Common-Mode Output Voltage Range	VOCR				Volts
Positive		0	-	+10	
Negative		0	-	-3.0	

Note 1. These voltage values are in respect to the ground terminal. Note 2. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (at any input)	VIH	1,2	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	1,2	0	0.8	Volts

* The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

			MC75109			MC75110			
Characteristic # #	Symbol	Test Fig.	Min	Typ ≠	Max	Min	Typ =	Max	Unit
High-Level Input Current to 1A, 1B, 2A or 2B	Чн	1							
(V _{CC} = Max, V _{EE} = Max, V _{IHL} = 2.4 V)# (V _{CC} = Max, V _{EE} = Max, V _{IHL} = V _{CC} Max)					40 1.0	-	12일 12일	40 1.0	μA mA
Low-Level Input Current to 1A, 1B, 2A or 2B	μLL	1							mA
$(V_{CC} = Max, V_{EE} = Max, V_{ILL} = 0.4 V)$	L		100	-	-3.0			-3.0	
$\begin{array}{l} \mbox{High-Level Input Current into 1C or 2C} \\ (V_{CC} = Max, V_{EE} = Max, V_{IH_{I}} = 2.4 \ V) \\ (V_{CC} = Max, V_{EE} = Max, V_{IH_{I}} = V_{CC} \ Max) \end{array}$		2	1.1	-	40 1.0			40 1.0	μA mA
Low-Level Input Current into 1C or 2C (V _{CC} = Max, V _{EE} = Max, V _{ILI} = 0.4 V)	414	2		-	-3.0	- -		-3.0	mA
High-Level Input Current into D (V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V) (V _{CC} = Max, V _{EE} = Max, V _{IH1} = V _{CC} Max)	Чн	2		1	80 2.0			80 2.0	μA mA
Low-Level Input Current into D (V _{CC} = Max, V _{EE} = Max, V _{ILI} = 0.4 V)	μLL	2	1		-6.0	-		-6.0	mA
Output Current ("on" state) (V _{CC} = Max, V _{EE} = Max) (V _{CC} = Min, V _{EE} = Min)	IO(on)	3	3.5	6.0	7.0	6.5	12	15 -	mA
Output Current ("off" state) (V _{CC} = Min, V _{EE} = Min)	^I O(off)	3		-	100			100	μΑ
Supply Current from V _{CC} (with driver enabled) ($V_{ILL} = 0.4 V$, $V_{IHI} = 2.0 V$)	CC(on)	4	4	25	30		28	. 35	mA
Supply Current from V _{EE} (with driver enabled) (V _{ILL} = 0.4 V, V _{IHI} = 2.0 V)	IEE(on)	4	-	-23	-30		-41	-50	mA
Supply Current from V _{CC} (with driver inhibited) (V _{ILL} = 0.4 V, V _{ILI} = 0.4 V)	I _{CC} (off)	4	-	18		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21		mA
Supply Current from V _{EE} (with driver inhibited) (V _{ILL} = 0.4 V, V _{ILI} = 0.4 V)	IEE (off)	4	-	-10		- -	-17		mA

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~~ (T_A \simeq 0 ~ to ~ +70^{o} C ~ unless ~ otherwise ~ noted.)$

#All typical values are at V_CC = +5.0 V, V_EE = -5.0 V.

##For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type.

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input A or B to Output Y or Z (RL = 50 ohms, Cl = 40 pF)		5				ns
	TPLH1			9.0	15	
	^t PHL		-	9.0	15	
Propagation Delay Time from Inhibitor Input C or D to Output Y or Z (R _ = 50 ohms, C _ = 40 pF)		5				ns
	^t PLH ₁		_	16	25	
	1PHL			13	25	

SWITCHING CHARACTERISTICS ($V_{CC} = +5.0 \text{ V}$, $V_{EE} = -5.0 \text{ V}$, $T_A = +25^{\circ}\text{C.}$)

TEST CIRCUITS

TEST AT ANY LOGIC INPUT	LOGIC INPUTS NOT UNDER TEST	ALL INHIBITOR	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
V _{IHL}	Open	V _{IH}	H (See Note 1)	L (See Note 1)
VILL	Vcc	VIH1	L (See Note 1)	H (See Note 1)
ін	4.5 V	V _{IHI}	Gindi	Gind
հեր	Gnd	VIH	. Gnd	Gnd

NOTES: 1. Low output represents the "on" state, high output represents the "off" state. 2. Each input is tested separately. 3. Arrows indicate actual direction of current flow.

FIGURE 2 – VIH, VIL, IIH, IIL

TEST TABLE

TEST AT ANY	ALL LOGIC INPUTS	INHIBITOR INPUTS NOT UNDER TEST	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
VIH,	VIHL	Open	H(See Note 1)	L(See Note 1)
• IH1	VILL	Open	L(See Note 1)	H(See Note 1)
N	VIHL	Vcc	H(See Note 1)	H(See Note 1)
VILI	VILL	Vcc	H(See Note 1)	H(See Note 1)
Чн	Gnd	4.5 V	Gind	Gnd
1161	Gnd	Gnd	Gnd	Gind

.

TEST CIRCUITS (continued)

FIGURE 3- IO(on) and IO(off)

TEST TABLE TEST Ground all output pins not under test. INHIBITOR INPUTS LOGIC INPUTS 1B or 2B 1A or 2A 1C or 2C D VIL VIL at output VIH VIH VIL v_{1H} lO(on) 1 Y or 2 Y VIH VIL at output v_{1H} ¹O(on) v_{1H} v_{IH} v_{IH} 1Z or 2Z at output ^IO(off) ⊻ін ViH VIH VIH 1Y or 2Y VIL V_{IL} at output VIH lO(off) VIL v_{1H} ۷ін 1Z or 2Z VIH VIL VIL VIL at output Either Either O(off) VIL VIH 1Y, 2Y, 1Z, or 2Z state state VIL VIH

FIGURE 4 - ICC and IEE

8

ļ

TEST TABLE					
	TEST	ALL LOGIC	ALL INHIBITOR INPUTS		
ICC(on)	Driver enabled	VIL	V _{IH}		
EE(on)	Driver enabled	VIL	VIH		
ICC(off)	Driver inhibited	VIL	VIL		
IEE (off)	Driver inhibited	VIL	VIL		

TEST CIRCUITS (continued)

FIGURE 5 - PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \ \Omega$, $t_r = t_f = 10 \pm 5 \ ns$, $t_{p1} = 500 \ ns$, PRR = 1 MHz, $t_{p2} = 1 ms, PRR = 500 kHz.$ 2. C_L includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.

8

CIRCUIT DIAGRAM

MC75113L

DIFFERENTIAL PARTY-LINE DRIVER

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Positive Power Supply Voltage (Pin 7)	V _{CC}	+8.0	Volts
Negative Power Supply Voltage (Pin 1)	VEE	-8.0	Volts
Positive Input Voltage (Pins 3,4,5,6)	V _{in}	+8.0	Volts
Negative Input Voltage (Pins 3,4,5,6)	Vin	-4.0	Volts
Output Voltage (Pins 11,12)	v _o	+8.0/-3.0	Volts
Storage Temperature Range	T _{stq}	-65 to +150	°C
Operating Temperature Range	ТА	0 to +75	°C
Power Dissipation (Package Limitation)	PD	1000	mW
Derate Above T _A = +25 ^o C	1 <i>/θ</i> JA	6.7	mW/ ^o C

ELECTRICAL CHARACTERISTICS (T_A = 0 to +75^oC unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Positive Power Supply Current	1	'cc	-	+46	+61	mA
Negative Power Supply Current	1	^I EE	-	-32	-44	mA
Positive Output Current (short circuit)	2	¹ 011	+18	+20	+26	mA
Negative Output Current (short circuit)	2	1012	-18	-20	-26	mA
Differential Output Current	3	ΔIOD	-	±2.0	-	mA
Positive Output "On" Common-Mode Range	4	V ₀₁	+2.7	-	-	V
Negative Output "On" Common-Mode Range	4	V ₀₂	-2.7	-	-	V
Positive Output "Off" Common-Mode Range	5	V _{O3}	+3.0	-	-	V
Negative Output "OFF" Common-Mode Range	5	V _{O4}	-2.5	-	-	V
Positive Output "Off" Common-Mode Range	6	V _{O5}	-2.4	-		V
Negative Output "Off" Common-Mode Range	6	V _{O6}	+3.0	-	-	V
Power "Off" Positive Output Common-Mode Range	7	V07	-2.0	-	-	V
Power "Off" Negative Output Common-Mode Range	7	V _{O8}	-2.0	-	-	V
Forward Input Current	8	ΙF	-		-2.6	mA
Reverse Input Current	8	^I IR	-	-	+50	μA

SWITCHING CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted, see Figure 9)

Characteristic	Symbol	Min	Тур	Max	Unit
"ON" Propagation Delay (Positive Output)	tPLH 11	-	25	30	ns
Rise Time (Positive Output)	tTLH 11		10	15	ns
"OFF" Propagation Delay (Positive Output)	^t PHL 11		15	20	ns
Fall Time (Positive Output)	tthl 11	_	10	15	ns
"ON" Propagation Delay (Negative Output)	^t PHL 12		25	30	ns
Fall Time (Negative Output)	tTHL 12	-	10	15	ns
"OFF" Propagation Delay (Negative Output)	tPLH 12	-	15	20	ns
Rise Time (Negative Output)	tTLH 12	-	10	15	ns

TEST CIRCUITS

FIGURE 4 – OUTPUT "ON" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

FIGURE 5 – OUTPUT "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

FIGURE 6 – OUTPUT "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

FIGURE 7 – POWER "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

TABLE I -- INPUT LOGIC VOLTAGE FOR TEST CIRCUITS

Temperature (^O C)	V _{IL} (Volts)	VIH (Volts)
0 ⁰	1.16	1.85
+25 ⁰	1.08	1.78
+75 ⁰	0.94	1.64

FIGURE 1 - POWER SUPPLY CURRENTS

FIGURE 2 - POSITIVE and NEGATIVE OUTPUT **CURRENTS** (Short Circuit)

FIGURE 3 - DIFFERENTIAL OUTPUT CURRENT

8

TEST CIRCUITS (continued)

FIGURE 8 - INPUT CURRENT TESTS

8-566

APPLICATIONS INFORMATION

INTRODUCTION

The MC75113L is a differential line driver with currentmode outputs which are designed for driving balanced terminated transmission lines such as twisted-pair cable in computer systems applications.

An example of a differential data transmission system is shown in Figure 10. Because the lines are balanced in a differential system, externally induced noise will appear equally on both inputs to the line receiver. Since the line receiver responds only to differential signals, this noise is rejected. This immunity to noise makes the differential method of data transmission far superior to single-ended transmission.

FIGURE 10 - DIFFERENTIAL TRANSMISSION SYSTEM

Another advantage of differential line driver systems over single-ended line driver systems is that a noise spike coupled into adjacent lines from the positive-going signal line is cancelled by an equal and opposite noise spike coupled from the negative-going signal line. In single-ended systems, a shield would be required for each transmission line to prevent coupling to adjacent lines in the cable.

One approach to differential data transmission uses the open-collector output circuitry shown in Figure 11. This output circuit could be called a "Pull-Only" output since current flows in only one direction regardless of which collector is conducting. The MC75109/MC75110 is an example of a driver which utilizes this scheme. Figure 12 illustrates that when driving with the MC75109/MC75110, the current flow through the terminating resistors generates a differential voltage on the lines which changes polarity in response to the logic condition applied to the driver's inputs. The MC75109/MC75110 also has a provision to

MC75113L (continued)

APPLICATIONS INFORMATION (continued)

shut down the current source transistor Q3 (Figure 11) so that isolation from other drivers is possible. This feature permits differential operation in party-line systems.

OPERATION OF THE MC75113L

The MC75113L, unlike the MC75109/MC75110 uses a unique "Push-Pull" output circuit shown in Figure 13. The figure shows that when Q1 is "on" and Q2 is "off", the current from both outputs is zero; but when Q1 is "off" and Q2 is "on", the currents from both outputs are nearly equal and opposite. When the output currents are turned "off", D1 and transistor Q2 prevent current flow to or from either output terminal over a wide range of output voltages. Thus with this type of design, numerous drivers

can be connected in parallel to the same pair of lines (party-line mode) and those drivers in the "off" state will not load a driver in the "on" state. The output current in both logic states is shown in Figure 14.

One advantage of this type of system is apparent in Figure 15. Due to the symmetry of the line currents in "Push-Pull" systems ground-loop currents are minimized. These ground-loop currents produce voltages that subtract from the useful common-mode operating range of the drivers and receivers. The MC75113L has a typical mismatch of 2.0 mA between the current source and sink while the MC75110 has a typical "Pull Only" current of 10 mA. Therefore, the typical ground-loop current is only 1.0 mA in the "Pull-Only" system.

FIGURE 13 - SIMPLIFIED OUTPUT STAGE OF MC75113L "PUSH-PULL" DRIVER

If Q1 is "on", Q2 is "off", Diode D1 is "off" and current IS 1 flows through Q1 and IS 2 to VEE. However, if Q1 is "off", and Q2 is "on", the current IS 1 flows through diode D1 to output A and current from output B flows through Q2 to current sink IS 2.

EQUIVALENT CIRCUIT

FIGURE 14 - "PUSH-PULL" SYSTEM SHOWING BOTH LOGIC CONDITIONS

FIGURE 15 – COMPARISON OF GROUND CURRENTS IN "PUSH-PULL" AND "PULL-ONLY" DATA TRANSMISSION SYSTEMS

"Pull-Only" Differential Line Driver Typical Mismatch of Output Currents Indicated (10 mA)

DIFFERENTIAL PARTY-LINE OPERATION

Often in large computer systems it is desirable to attach several drivers and receivers at different points along a transmission line. Figure 16 shows an example of such a Party-Line or Data Bus System. Only one driver may be active at a time but all receivers may be active simultaneously. Such sharing or multiplexing of transmission lines results in considerable savings and flexibility in systems interconnections. Isolation of inactive drivers from the active driver is essential in party-line operation. The MC75113L guarantees this isolation even when power supplies of some of the drivers in the system are "off". This important feature makes it unnecessary to simultaneously power-up all system components when the use of only a few is required. As noted previously, all types of differential driver systems have the advantage of differential noise cancellation not available with single-ended driver systems. However, in multiple driver or party-line systems the MC75113L, with "Push-Pull" outputs, has the additional advantage of eliminating the uncancelled common-mode noise spike which occurs during the "enable" and "inhibit" cycles (required for party-line operation in "Pull-Only" differential line drivers).

LINE TERMINATION

In any high-speed data transmission system proper termination to prevent reflections is necessary. Transmission line pairs in close proximity to ground such as

APPLICATIONS INFORMATION (continued)

FIGURE 16 - A DIFFERENTIAL PARTY-LINE SYSTEM

microstrip, stripline, ribbon cable, and shielded twistedpair, exhibit two distinct characteristics impedances. The common-mode characteristic impedance (z_{cm}) is due to the two lines being at the same potential and carrying equal currents in the same direction. The differential-mode characteristic impedance (zdm) is due to the lines being at equal but opposite potentials and carrying equal currents in opposite directions. Since both common-mode noise and differential-mode data signals will be present on the transmission lines, the lines must be terminated so that both types of signals will be absorbed rather than reflected at the termination points. The differential-mode characteristic impedance of a particular line may be measured from the circuit in Figure 17A. The pulse transformer is used to assure equal and opposite voltage and current excursions on the pair of lines. The value of zdm for each line is equal to the value of the resistor needed to prevent differential-mode reflections from appearing on the lines. The circuit of Figure 17B may be used to measure the

value of common-mode characteristic impedance, z_{cm}. The

FIGURE 17A - CIRCUIT FOR zdm MEASUREMENT

FIGURE 17B - CIRCUIT FOR zcm MEASUREMENT

When $R_T = z_{cm}$, no Common-Mode reflections occur.

APPLICATIONS INFORMATION (continued)

value of resistors which prevent common-mode reflections is $z_{\rm Cm}.$ When measuring $z_{\rm Cm}$ and $z_{\rm dm}$ for lines which are part of a cable containing many lines, it is important to terminate the remaining lines in approximately the same way as they will eventually be terminated. This is because the number of grounded conductors and terminated conductors in the cable will affect the value of $z_{\rm Cm}$ and $z_{\rm dm}$ measured.

Since 2 $z_{\rm CM}$ > $z_{\rm dm}$, it is always possible to choose a delta bridge of resistors which will correctly terminate both the common-mode and differential-mode signals. The common-mode signal is correctly terminated by a resistor of value $z_{\rm CM}$ to ground from each line. The differential-mode signal is correctly terminated by a resistor whose value may be calculated from Equation 1.

R2 =
$$\frac{2(z_{dm} (z_{cm}))}{2 z_{cm} - z_{dm}}$$
 (1)

Additional information regarding common-mode and differential-mode characteristic impedance may be found in References 1 and 2. (In the References $z_{CM} = z_{0e}$, the "even" mode characteristic impedance, the $z_{dM} = 2z_{00}$, the "odd" mode characteristic impedance.)

USE WITH POPULAR DIFFERENTIAL RECEIVERS

The differential-output signal of the MC75113L is zero when the output is "off". However, popular differential line receivers such as the MC75107, which have thresholds of approximately ± 25 mV, require a positive differential signal to turn "off" and a negative differential signal to turn "off." Therefore, when using the MC75113L (which has no negative output signal) with this type of line receiver the line must be offset in voltage to provide the required negative differential signal. This is easily accomplished using the termination scheme shown in Figure 18.

The value of R6 is equal to $z_{\rm CM}.$ The value of R2 may be calculated from Equation 1. The value of R1 and R3 may be calculated from Equation 2 and 3 using the desired value of offset voltage, $V_{\rm IO},$ and supply voltages, $V_{\rm CC}$ and $V_{\rm EE}.$

$$R1 = \frac{z_{dm}}{2} \times \frac{V_{CC}}{V_{IO}}$$
(2)

$$R3 = \frac{-z_{dm}}{2} \times \frac{V_{EE}}{V_{IO}}$$
(3)

The resistor values R4 and R5 are chosen so that the parallel combinations of R1 and R4 and also R3 with R5 each equal $z_{Cm}\colon$

$$R4 = \frac{z_{\rm cm} \ (R1)}{R1 - z_{\rm cm}}$$
(4)

$$R5 = \frac{z_{\rm cm} (R3)}{R3 - z_{\rm cm}}$$
(5)

The choice of offset voltage, V_{IO} , depends upon the differential mode characteristic impedance. Since the minimum total differential signal produced by the MC75113L onto a properly terminated transmission path is:

V driver min =
$$\frac{18 \text{ mA}}{2} \text{ x} (z_{\text{dm}})$$
 (volts) (6)

The amount of offset voltage for equal noise margin on both sides of the receiver's zero volt threshold should be:

$$V_{10} = \frac{V \text{ driver min}}{2} = 4.5 \text{ mA x } z_{dm} \text{ (volts)}$$
 (7)

FIGURE 18 – TERMINATION SCHEME FOR USE WITH POPULAR DIFFERENTIAL RECEIVERS

APPLICATIONS INFORMATION (continued)

EXAMPLE OF CALCULATION OF TERMINATION RESISTOR VALUES

Suppose the MC75113L is to be used with V_{CC} = +5.0 volts and V_{EE} = -6.0 volts to drive a transmission line with z_{cm} = 85 Ω and z_{dm} = 112 Ω . The offset voltage required for equal noise margin on both sides of the receiver's zero-volt threshold is found by Equation 7 to be:

$$V_{10} = 4.5 \text{ mA x} (112) = 0.504 \text{ volts}$$
 (8)

From Figure 17 it may be seen that R6 = z_{CM} = 85 $\Omega.$ R2 is found from Equation 1:

$$R2 = \frac{2(112)(85)}{2(85) - 112} = 328 \Omega$$
 (9)

R1 and R3 are found from Equations 2 and 3 to be:

$$R1 = \frac{112}{2} \times \frac{5}{0.504} - 556 \,\Omega \tag{10}$$

$$R3 = \frac{-112}{2} \times \frac{-6.0 \text{ V}}{0.504} = 667 \ \Omega \tag{11}$$

R3 and R5 are found from Equation 4 and 5:

$$R4 = \frac{85 (556)}{556 - 85} = 100 \Omega$$
 (12)

$$\mathsf{R5} = \frac{85\ (667)}{667-85} = 97\ \Omega \tag{13}$$

The resulting structure is shown in Figure 19.

FIGURE 19 – EXAMPLE CALCULATION OF TERMINATION AND RECEIVER BIASING RESISTORS

REFERENCES

- Ivor Catt, "Crosstalk (Noise) in Digital Systems", IEEE Transactions on Electronic Computers, Vol. EC-16, No. 6, pp. 743-763, December 1967.
- S. B. Cohn, "Shielded Coupled-Strip Transmission Lines," IRE Transactions Microwave Theory and Techniques, Vol. MTT-3, pp. 29-38, October 1955.
- 3. Motorola Application Note AN-708, "Line Driver and Receiver Considerations."

MC75140P1

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = 0 to $+70^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	7.0	Volts
Reference Voltage	V _{ref}	5.5	Volts
Line Input Voltage (with respect to Ground)	VI(L)	-2.0 to +5.5	Volts
Line Input Voltage (with respect to V _{ref})	VI(L)-Vref	±5.0	Volts
Strobe Input Voltage	V _{I(S)}	5.5	Volts
Power Dissipation (Package Limitation)	PD		
Plastic Dual In-Line Package	_	830	mW
Derate above $T_A = +25^{\circ}C$		6.6	mW/ ^o C
Operating Temperature Range (Ambient)	ТА	0 to +70	°C
Storage Temperature Range	T _{stq}	-65 to +150	°c

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Nom	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.5	Volts
Reference Voltage Range	V _{ref R}	1.5	utur	3.5	Volts
Input Voltage Range (Line or Strobe)	VIR	0	-	5.5	Volts
Operating Ambient Temperature Range	TA	0	-	+70	°C

$\textbf{ELECTRICAL CHARACTERISTICS} ~~ (V_{CC} = 5.0~V~\pm10\%,~V_{ref} = 1.5~to~3.5~V,~T_{A} = 0~to~+70^{\circ}C~unless~otherwise~noted.)$

Characteristic	Symbol	Min	Тур*	Max	Unit
High-Level Line Input Voltage	VIH(L)	V _{ref} + 100		-	mV
Low-Level Line Input Voltage	VIL(L)	'	-	V _{ref} - 100	mV
High-Level Strobe Input Voltage	VIH(S)	2.0	-	-	Volts
Low-Level Strobe Input Voltage	VIL(S)	-		0.8	Volt
High-Level Output Voltage $V_{IL(L)} = V_{ref} - 100 \text{ mV}, V_{IL(S)} = 0.8 \text{ V}, I_{OH} = -400 \mu\text{A}$	VOH	2.4	_		Volts
Low Level Output Voltage V _{IH} (L) = V _{ref} + 100 mV, V _{IL} (S) = 0.8 V, I _{OL} = 16 mA V _{IL} (L) = V _{ref} - 100 mV, V _{IH} (S) = 2.0 V, I _{OL} = 16 mA	VOL	_	-	0.4 0.4	Volt
Strobe Input Clamp Voltage I _{1(S)} = -12 mA	V _{I(S)}		_	- 1.5	Volts
Strobe Input Current (at max Input Voltage) VI(S) = 5.5 V	l1(S)	-	-	2.0	mA
High-Level Input Currents Strobe (V ₁ (g) = 2.4 V) Line (V ₁ (L) = V _{CC} , V _{ref} = 1.5 V) Reference (V _{ref} = 3.5 V, V ₁ (L) = 1.5 V)	(H(S) 1H(L) IH(ref)		 35 70	80 100 200	μA
Low-Level Input Currents Strobe ($V_{I}(S) = 0.4 V$) Line ($V_{I}(L) = 0 V$, $V_{ref} = 1.5 V$) Reference ($V_{ref} = 0 V$, $V_{I}(L) = 1.5 V$)	IL(S) IL(L) IL(ref)			-3.2 -10 -20	mA μA μA
Short-Circuit Output Current** V _{CC} = 5.5 V	los	- 18		-55	mA
Supply Current (output high) VI(S) = 0 V, VI(L) = Vref - 100 mV	ГССН	_	18	30	mA
Supply Current (output low) VI(S) = 0 V, VI(L) = Vref + 100 mV	ICC L		20	35	mA

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, V_{ref} = 2.5 V, C_L = 15 pF, R_L = 400 Ω , T_A = +25^oC unless otherwise noted.) See Figure 1.

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time (low-to-high level output from Line input)	^t PLH(L)	-	22	35	ns
Propagation Delay Time (high-to-low level output from Line input)	^t PHL(L)	-	22	30	ns
Propagation Delay Time (low-to-high level output from Strobe input)	^t PLH(S)		12	22	ns
Propagation Delay Time (high-to-low level output from Strobe input)	^t PHL(S)		8.0	15	ns

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - SCHMITT TRIGGER

FIGURE 4 - TRANSFER CHARACTERISTICS FOR SCHMITT TRIGGER 4.0 $T_{A} = +25^{\circ}C$ VD, DUTPUT VOLTAGE (VOLTS) 3.0 2.0

1.5

Vin, INPUT VOLTAGE (VOLTS)

2.0

2.5

3.0

3.5

1.0

0 0

0.5

1.0

FIGURE 5 - GATED OSCILLATOR

FIGURE 7 - DUAL BUS TRANSCEIVER

MC75450

PERIPHERAL DRIVER

DUAL PERIPHERAL POSITIVE "AND" DRIVER

The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- Separate Gate and Output Transistor for Maximum Design Flexibility
- High Output Breakdown Voltage: VCER = 30 Volts minimum

MAXIMUM RATINGS ($T_A = 0$ to +70°C unless otherwise noted)

Rating

Power Supply Voltage (See Note 1)

Collector-Emitter Voltage (See Note 2)

Power Dissipation (Package Limitation)

Derate above $T_A = +25^{\circ}C$

Operating Temperature Range

Storage Temperature Range

Collector Current (continuous) (See Note 3)

Plastic and Ceramic Dual In-Line Packages

Input Voltage (See Note 1)

V_{CC}-to-Substrate Voltage

Collector-Base Voltage

Emitter-Base Voltage

Collector-to-Substrate Voltage

NOTES:	1.	Voltage values are with respect to network ground terminal.	
--------	----	---	--

2. This value applies when the base-emitter resistance (${\rm R}_{\rm BE})$ is equal to or less than 500 ohms.

Symbol

Vcc

Vin

VCB

VCE

VEB

PD

ТA

⊤_{stg}

Value

+7.0

5.5

35

35

35

30

5.0

300

830

6.6

0 to +70

-65 to +150

8-577

13 0-

12

2A

2Y

 Both halves of these dual circuits may conduct the rated current simultaneously.

See Packaging Information Section for outline dimensions.

9 02E

11 -02В

7 - OGND 8

RECOMMENDED OPERATING CONDITIONS (See Note 4)

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	v _{cc}	4.75	5.0	5.25	Vdc

Note 4. The substrate, pin 8, must always be at the most negative device voltage for proper operation.

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to +70°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ*	Max	Unit
MTTL GATES						
High-Level Input Voltage	VIH	1	2.0			Vdc
Low-Level Input Voltage	VIL	2	-	-	0.8	Vdc
High-Level Output Voltage (V _{CC} = 4.5 V, V _{IL} = 0.8 V, I _{OH} = -400 μA)	VOH	2	2.4	3.3	_	Vdc
Low-Level Output Voltage (V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 16 mA)	VOL	1	-	0.22	0.4	Vdc
High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) Input A Input G (V _{CC} = 5.25 V, V _{in} = 5.5 V) Input A Input G	Чн	3			40 80 1.0 2.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V) Input A Input G	11E	4	_	_	-1.6 -3.2	mA
Short-Circuit Output Current** (V _{CC} = 5.25 V)	IOS	5	-18	_	-55	mA
Supply Current High-Level Output (V _{CC} = 5.25 V, V _{in} = 0) Low-Level Output (V _{CC} = 5.25 V, V _{in} = 5.0 V)		6	_	2.0 6.0	4.0 11	mA
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)	V _{in}	4	-		-1.5	V
OUTPUT TRANSISTORS						
Characteristic	Symbol	Min	Тур	N	1ax	Unit
Collector-Base Breakdown Voltage (I _C = 100 µA, I _E = 0)	VCBO	35	_		-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 µA, R _{BE} = 500 ohms)	VCER	30			_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \ \mu A, I_C = 0)$	VEBO	5.0	_		-	Vdc
Static Forward Transfer Ratio (See Note 5) ($V_{CE} = 3.0 \text{ V}, I_C = 100 \text{ mA}, T_A = +25^{\circ}\text{C}$) ($V_{CE} = 3.0 \text{ V}, I_C = 300 \text{ mA}, T_A = +25^{\circ}\text{C}$) ($V_{CE} = 3.0 \text{ V}, I_C = 100 \text{ mA}, T_A = 0^{\circ}\text{C}$) ($V_{CE} = 3.0 \text{ V}, I_C = 300 \text{ mA}, T_A = 0^{\circ}\text{C}$)	hFE	25 30 20 25				
Base-Emitter Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _C = 30 mA, I _C = 300 mA)	V _{BE}	-	0.85 1.05		.0 .2	Vdc
Collector-Emitter Saturation Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	V _{CE(sat)}		0.25 0.5).4).7	Vdc

Note 5. These parameters must be measured using pulse techniques; $t_W = 300 \,\mu$ s, duty cycle $\leq 2\%$.

*All typical values at V_{CC} = 5.0 V, T_A = +25^oC.

**Not more than one output should be shorted at a time.

MC75450 (continued)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
MTTL GATES						
Propagation Delay Time ($C_1 = 15 \text{ pF}, R_1 = 400 \text{ ohms}$)		7		I		ns
Low-to-High-Level Output	TPLH		_	14	-	
High-to-Low-Level Output	TPHL			6.0	-	
OUTPUT TRANSISTORS "						
Switching Times (I _C = 200 mA, I _{B(1)} = 20 mA, I _{B(2)} = -40 mA, V _{BE(off)} = -1.0 V, C _L = 15 pF, R _L = 50 ohms)		8				ns
Delay Time	td		·	9.0	-	
Rise Time	tr		r ann	11	-	
Storage Time	ts			14	-	
Fall Time	tf		-	8.0		
GATES AND TRANSISTORS COMBINED.#						
Propagation Delay Time ($I_C = 200 \text{ mA}, C_1 = 15 \text{ pF}, R_1 = 50 \text{ ohms}$)		9		[ns
Low-to-High-Level Output	τρ L H			21	-	
High-to-Low Level Output	TPHL			16		
Transition Time [#] (I _C = 200 mA, C _I = 15 pF, R _I = 50 ohms)		9				ns
Low-to-High-Level Output	tt LH			7.0		
High-to-Low-Level Output	^t THL		_	8.0		

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}, T_{\Delta} = +25^{\circ}\text{C}$ unless otherwise noted.)

#Voltage and current values are nominal; exact values vary slightly with transistors parameters.

DC TEST CIRCUITS FOR MTTL GATES

FIGURE $1 - V_{IH}, V_{OL}$

Both inputs are tested simultaneously.

FIGURE 2 - VIL, VOH

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 4 - IIL, Vin

DC TEST CIRCUITS FOR MTTL GATES (continued)

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE

VOLTAGE WAVEFORMS

TEST CIRCUITS (continued) FIGURE 8 – SWITCHING TIMES, EACH TRANSISTOR

NOTES: A. The pulse generator has the following characteristics: $t_W = 0.3 \ \mu s$, duty cycle $\leq 1\%$, $z_0 \approx 50 \ \Omega$. B. CL includes probe and jig capacitance.

VOLTAGE WAVEFORMS

FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR

VOLTAGE WAVEFORMS

DUAL PERIPHERAL POSITIVE "AND" DRIVER

... designed for use as a general-purpose interface circuit in MDTL and MTTL type systems. The MC75451P is a dual peripheral positive AND driver consisting of logic gate outputs internally connected to the bases of two high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- High Output Breakdown Voltage;
 V_{CER} = 30 Volts minimum

PLASTIC PACKAGE CASE 626

2

1B

2A

1

Positive Logic: Y = AB

GND

VCC 2B

1A

1

MAXIMUM RATINGS $(T_A = +25^{\circ}C)$

Rating	Symbol	Value	Unit						
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc						
Input Voltage (See Notes 1 and 2)	V _{in}	5.5	Vdc						
Output Voltage (See Notes 1 and 3)	٧o	30	Vdc						
Output Current (continuous)	10	300	mA						
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above T _A = +25 ^o C	PD	830 6.6	mW mW/ ⁰ C						
Operating Temperature Range	Тд	0 to +70	°C						
Storage Temperature Range	т _{stg}	-65 to +150	°C						
NOTE 1. Voltage values are with respect to network	rk ground ter	minal.							
NOTE 2. Input voltage should be zero or positive v	with respect 1	to device groun	d terminal.						
NOTE 3. This is the maximum voltage which shou the "off" state.	NOTE 3. This is the maximum voltage which should be applied to any output when it is in								

A B Y L L L (''on'' state)
L H L ("on" state)
H L L ("on" state)
H H H ("off" state)
high level, L = low leve

See Packaging Information Section for outline dimensions.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	Vdc

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to $+70^{\circ}$ C unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Тур*	Max	Unit
High-Level Input Voltage		VIH	1	2.0	-	-	Vdc
Low-Level Input Voltage		VIL	2	-	-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)		V _{in}	4	_		-1.5	Vdc
High-Level Output Current (V _{CC} = 4.75 V, V _{IH} = 2.0 V, V _{OH} = 30 V)		Гон	1	_	_	100	μA
Low-Level Output Voltage ($V_{CC} = 4.75 V, V_{ L} = 0.8 V, I_{OL} = 100 mA$) ($V_{CC} = 4.75 V, V_{ L} = 0.8 V, I_{OL} = 300 mA$)	<u>,</u>	VOL	2	_	0.25 0.5	0.4 0.7	Vdc
High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) (V _{CC} = 5.25 V, V _{in} = 5.5 V)		ЦН	3	_		40 1.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V)		hι	4	-	-1.0	-1.6	mA
Supply Current $(V_{CC} = 5.25 \text{ V}, V_{in} \approx 5.0 \text{ V})$ $(V_{CC} = 5.25 \text{ V}, V_{in} \approx 0)$	High-Level Output Low-Level Output	ICCH ICCL	5	-	7.0 52	11 65	mA

*Typical values are at V_{CC} = 5.0 V, T_A = $+25^{\circ}$ C.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time		6				ns
$(I_{O} \approx 200 \text{ mA}, \text{C}_{L} = 15 \text{ pF}, \text{R}_{L} = 50 \text{ ohms})$						
Low-to-High-Level Output	tPLH		-	17		
High-to-Low-Level Output	^t PHL			18	-	
Transition Time		6				ns
$(I_0 \approx 200 \text{ mA}, \text{C}_{L} = 15 \text{ pF}, \text{R}_{L} = 50 \text{ ohms})$	ł					
Low-to-High-Level Output	ttlh			6.0	-	
High-to-Low-Level Output	^t THL			11	-	

FIGURE 1 - VIH, IOH

TEST CIRCUITS

FIGURE 2 - VIL, VOL

8-583

FIGURE 3 – IIH

FIGURE 5 - ICCH, ICCL

FIGURE 6 - SWITCHING TIMES AND WAVEFORMS

FIGURE 4 – I_{IL}, V_{in}

MC75452P

PERIPHERAL DRIVER

DUAL PERIPHERAL POSITIVE "NAND" DRIVER

... designed for use as a general-purpose interface circuit in MDTL and MTTL type systems. The MC75452P is a dual peripheral positive NAND driver consisting of logic gate outputs internally connected to the bases of two high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- High Output Breakdown Voltage;
 VCER = 30 Volts minimum

MAXIMUM RATINGS $(T_A = +25^{\circ}C)$

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	Vin	5.5	Vdc
Output Voltage (See Notes 1 and 3)	Vo	30	Vdc
Output Current (continuous)	10	300	mA
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	PD	830 6.6	mW mW/ ^o C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
NOTE 1. Voltage values are with respect to net	work ground te	rminal.	
NOTE 2. Input voltage should be zero or positi		-	
NOTE 3. This is the maximum voltage which sh the "off" state.	nould be applied	i to any output	when it is in

А	в	Y
L	L	H ("off" state)
L	н	H ("off" state)
н	L	H ("off" state)
н	н	L ("on" state)

See Packaging Information Section for outline dimensions.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC}	4.75	5. 0	5.25	Vdc

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to +70^oC unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Тур*	Max	Unit
High-Level Input Voltage		VIH	1	2.0	-	-	Vdc
Low-Level Input Voltage		VIL	2		-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)		Vin	4	_		-1.5	Vdc
High-Level Output Current (V _{CC} = 4.75 V, V _{IL} = 0.8 V, V _{OH} = 30 V)		ЮН	2	_	_	100	μA
$ Low-Level Output Voltage \\ (V_{CC} = 4.75 V, V_{1H} = 2.0 V, I_{OL} = 100 \text{ mA}) \\ (V_{CC} = 4.75 V, V_{1H} = 2.0 V, I_{OL} = 300 \text{ mA}) $		VOL	1	-	0.25 0.5	0.4 0.7	Vdc
High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) (V _{CC} = 5.25 V, V _{in} = 5.5 V)		Чн.	3	_		40 1.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V)		μL	4		-1.0	-1.6	mA
Supply Current (V _{CC} = 5.25 V, V _{in} = 0 V) (V _{CC} = 5.25 V, V _{in} = 5.0 V)	High-Level Output Low-Level Output	ICCH ICCL	5	·	11 56	14 71	mA

*Typical values are at V_{CC} = 5.0 V, T_A = $+25^{\circ}$ C.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = $+25^{\circ}$ C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time		6				ns
$(I_0 \approx 200 \text{ mA}, C_L = 15 \text{ pF}, R_L = 50 \text{ ohms})$	1	1				
Low-to-High-Level Output	TPLH	1	-	18	-	
High-to-Low-Level Output	tPHL		-	16	-	
Transition Time		6				ns
$(I_0 \approx 200 \text{ mA}, C_L = 15 \text{ pF}, R_L = 50 \text{ ohms})$		1				
Low-to-High-Level Output	ttlH	1		8.0	-	
High-to-Low-Level Output	^t THL		-	9.0	-	

$\textbf{FIGURE 1} = \textbf{V}_{\textbf{IH}}, \textbf{V}_{\textbf{OL}}$

TEST CIRCUITS

FIGURE 2 - VIL, IOH

(Current into a terminal is shown as a positive value. Arrows indicate actual direction of current flow.)

TEST CIRCUITS (continued)

FIGURE 4 – I_{IL}, V_{in}

FIGURE 5 - ICCH, ICCL

FIGURE 6 - SWITCHING TIMES AND WAVEFORMS

MC75453P

PERIPHERAL DRIVER

8-588

MC75453P (continued)

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	Vdc

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to $+70^{\circ}$ C unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Typ*	Max	Unit
High-Level Input Voltage		VIH	1	2.0	-		Vdc
Low-Level Input Voltage		VIL	2	-	-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)	· · · · · · · · · · · · · · · · · · ·	Vin	4	-	_	-1.5	Vdc
High-Level Output Current (V _{CC} = 4.75 V, V _{IH} = 2.0 V, V _{OH} = 30 V)		ЮН	1	_	-	100	μA
Low-Level Output Voltage (V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OL} = 100 mA) (V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OL} = 300 mA)		VOL	2		0.25 0.5	0.4 0.7	Vdc
High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) (V _{CC} = 5.25 V, V _{in} = 5.5 V)		Чн	3			40 1.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V)		11L	4	-	-1.0	-1.6	mA
Supply Current (V _{CC} = 5.25 V, V _{in} = 5.0 V) (V _{CC} = 5.25 V, V _{in} = 0)	High-Level Output Low-Level Output	ICCH ICCL	5		8.0 54	11 68	mA

*Typical values are at V_{CC} = 5.0 V, T_A = +25^oC.

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 V, T_A = +25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time		6				ns
$(I_0 \approx 200 \text{ mA}, C_L = 15 \text{ pF}, R_L = 50 \text{ ohms})$						
Low-to-High-Level Output	tPLH			15		
High-to-Low-Level Output	^t PHL			17	-	
Transition Time		6				ns
$(I_0 \approx 200 \text{ mA, CL} = 15 \text{ pF, RL} = 50 \text{ ohms})$						
Low-to-High-Level Output	ttlH		_	5.0	-	
High-to-Low-Level Output	^t THL		-	8.0	-	

TEST CIRCUITS

FIGURE 1 - VIH, IOH

(Current into terminal is shown as a positive value. Arrows indicate direction of current flow.) FIGURE 2 -

FIGURE 2 – V_{1L} , V_{OL}

TEST CIRCUITS (continued)

FIGURE 5 - ICCH, ICCL

Both gates are tested simultaneously.

FIGURE 6 - SWITCHING TIMES AND WAVEFORMS

PERIPHERAL DRIVER

MC75454P

MAXIMUM RATINGS (TA - +25°C)

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	Vin	5.5	Vdc
Output Voltage (See Notes 1 and 3)	Vo	30	Vdc
Output Current (continuous)	10	300	mA
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above T _A = +25 ⁰ C	PD	830 6.6	mW mW/ ⁰ C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	⊤ _{stg}	-65 to +150	°C
NOTE 1. Voltage values are with respect to netw NOTE 2. Input voltage should be zero or positive NOTE 3. This is the maximum voltage which sho the "off" state.	with respect	to device groun	

See Packaging Information Section for outline dimensions.

TRUTH TABLE

А	в	Y
L	L	H ("off" state)
L	н	L ("on" state)
н	L	L ("on" state)
н	н	L ("on" state)

H = high level, L = low level.

MC75454P (continued)

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	Vdc

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to +70^oC unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Тур*	Max	Unit
High-Level Input Voltage		VIH	1	2.0	-		Vdc
Low-Level Input Voltage		VIL	2		-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} ≠ −12 mA)		Vin	4	-	-	-1.5	Vdc
High-Level Output Current (V _{CC} = 4.75 V, V _{IL} = 0.8 V, V _{OH} = 30 V)		ЮН	2		_	100	μA
Low-Level Output Voltage (V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 100 mA) (V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 300 mA)		VOL	1	-	0.25 0.5	0.4 0.7	Vdc
High-Level Input Current ($V_{CC} = 5.25 V$, $V_{in} = 2.4 V$) ($V_{CC} = 5.25 V$, $V_{in} = 5.5 V$)		Чн	3	-		40 1.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V)		46	4	-	-1.0	-1.6	mA
Supply Current (V _{CC} = 5.25 V, V _{in} = 0 V) (V _{CC} = 5.25 V, V _{in} = 5.0 V)	High-Level Output Low-Level Output	ICCH ICCL	5	-	13 61	17 79	mA

*Typical values are at V_{CC} = 5.0 V, T_A = +25°C.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25^oC unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time		6				ns
$(I_0 \approx 200 \text{ mA}, C_1 = 15 \text{ pF}, R_1 = 50 \text{ ohms})$		1				
Low-to-High-Level Output	tPLH		-	25	-	
High-to-Low-Level Output	^t PHL		-	19	-	
Transition Time		6				ns
$(I_0 \approx 200 \text{ mA}, \text{C}_{L} = 15 \text{ pF}, \text{R}_{L} = 50 \text{ ohms})$	1					
Low-to-High-Level Output	ттен	1	-	5.0		
High-to-Low-Level Output	^t THL		-	8.0	-	

TEST CIRCUITS

(Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow) ${\rm FIGURE}\, 2 - {\rm V_{IL}}, {\rm IOH}$

TEST CIRCUITS (continued)

FIGURE 5 - ICCH, ICCL

8

MOS-LED DISPLAY DRIVERS

MC75491 MC75492

Specifications and Applications Information

QUAD LED SEGMENT DRIVER - MC75491 HEX LED DIGIT DRIVER - MC75492

The MC75491 and MC75492 are designed to interface MOS logic to common cathode light-emitting diode readouts in serially addressed multi-digit displays. Using a segment address and digit scan LED drive method in a time multiplexing system results in a minimizing of the number of required drivers.

- Low Input Current Requirement for MOS Compatibility
- Low Standby Power Drain

8 Input 4

Output 4 7

See Packaging Information Section for outline dimensions.

MC75491, MC75492 (continued)

MAXIMUM RATINGS (T_A = 0 to +70^oC unless otherwise noted.)

		Va		
Rating	Symbol	MC75491	MC75492	Unit
Bias Supply Voltage (See Note 1)	V _{SS}	10	10	Vdc
Input Voltage (See Note 2)	V _{in}	-5.0 to V _{SS}	-5.0 to V _{SS}	Vdc
Collector Voltage (See Note 3)	v _c	- 4 <u>0</u> 12 10 - 5 (Att	10	Vdc
Collector-to-Emitter Voltage	VCE	10	~	Vdc
Collector-to-Input Voltage	V _{CI}	10	10	Vdc
Emitter Voltage (V _{in} ≥5.0 Vdc)	VE	10	-	Vdc
Emitter-to-Input Voltage	VEI	5.0	-	Vdc
Continuous Collector Current (Each Collector) (All Collectors)	^I C	50 200	250 600	mA mA
Power Dissipation (Package Limitation) Ceramic and Plastic Dual In-Line Packages Derate above T _A = +25 ⁰ C	PD	830 6.6		mW mW/ ⁰ C
Operating Temperature Range	ТА	0 to	+70	°C
Storage Temperature Range	T stg	-65 to	+150	°C

Note 1. VSS terminal voltage is with respect to any other device terminal.

Note 2. With the exception of the inputs, the GND terminal must always be the most negative device voltage for proper operation.

Note 3. Voltage values are with respect to GND terminal unless otherwise noted.

ELECTRICAL CHARACTERISTICS (V_{SS} = 10 Vdc, T_A = 0 to +70^oC unless otherwise noted.)

		MC75491			MC75492			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Low-Level Collector-to-Emitter Voltage ($V_{in} = 8.5 V$ thru 1.0 k Ω , $I_{OL} = 50 mA$, $V_E = 5.0 V$)	VCEL					2		Vdc
$T_A = +25^{\circ}C$ $T_A = 0 \text{ to } +70^{\circ}C$			0.9	1.2 1.5	_		-	
High-Level Collector Current $V_{CH} = 10 V, V_E = 0, I_{in} = 40 \mu A$ $V_{CH} = 10 V, V_E = 0, V_{in} = 0.7 V$	СН		-	100 100	-	-	-	μΑ
Low-Level Output Voltage (V _{in} = 6.5 V thru 1.0 kΩ, I _{OL} = 250 mA) T _A = +25 ^o C T _A = 0 to +70 ^o C	VOL				-	0.9	1.2 1.5	Vdc
High-Level Output Current $V_{OH} = 10 \text{ V}, I_{in} = 40 \ \mu\text{A}$ $V_{OH} = 10 \text{ V}, V_{in} = 0.5 \text{ V}$	юн				`	-	200 200	μΑ
Input Current at Maximum Input Voltage V _{in} = 10 V, I _{OL} = 20 mA	lin		2.2	3.3		2.2	3.3	mA
Emitter Current – Reverse Bias I _C = 0, V _{in} = 0, V _E = 5.0 V	IER			100			-	μΑ
Bias Supply Current (V _{SS} = 10 V)	ISS	1. A. A.		1.0		-	1.0	mA

SWITCHING CHARACTERISTICS ($V_{SS} = 7.5 \text{ V}$, $T_A = +25^{\circ}C$ unless otherwise noted.)

Propagation Delay Time, High-to-Low Level R _L = 200 Ω , V _{IH} = 4.5 V, C _L = 15 pF, V _E = 0	^t PHL	20*	-	-	· _	ns
$R_{L} = 39 \Omega, V_{IH} = 7.5 V, C_{L} = 15 pF$				40	-	
Propagation Delay Time, Low-to-High Level C _L = 15 pF, V _E = 0, R _L = 200 Ω, V _{IH} = 4.5 Vdc	[™] ₽LH	- 40* -	-	_	<u> </u>	ns
$C_{L} = 15 \text{ pF}, R_{L} = 39 \Omega, V_{IH} = 7.5 \text{ Vdc}$		Hard Control of Contro	-	80	-	

*To collector output.

8

$\label{eq:VSS} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ (V_{SS} = +10 \ \text{Vdc}, \ \textbf{T}_A = +25^{0} \text{C} \ \text{unless otherwise noted.}) \end{array}$

8-596

TYPICAL CHARACTERISTICS and SWITCHING TIME CIRCUITS

FIGURE 8 – MC75491 SWITCHING CIRCUIT

FIGURE 10 – MC75492 SWITCHING CIRCUIT

FIGURE 9 - SWITCHING WAVEFORM DEFINITIONS

FIGURE 11 - QUAD-OR-HEX RELAY DRIVER

FIGURE 12 - OUAD-OR-HEX LAMP DRIVER

TYPICAL APPLICATIONS (continued)

TYPICAL APPLICATIONS (continued)

8

OPERATIONAL AMPLIFIERS

MCBC1709 MCB1709F

MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1709 and MCB1709F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- High-Performance Open Loop Gain Characteristics AVOL = 45,000 typical
- Low Temperature Drift $-\pm 3.0 \ \mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance Z_{out} = 150 ohms typical

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	+18	Vdc
	V-	-18	
Differential Input Signal	Vin	±5.0	Volts
Common Mode Input Swing	CMVin	±V ⁺	Volts
Load Current	1	10	mA
Output Short Circuit Duration	tS	5.0	s
Power Dissipation	PD	500	mW
Derate above $T_A = +25^{\circ}C$		3.3	mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

See Packaging Information Section for outline dimensions.

MCBC1709, MCB1709F (continued)

		м	CBC1709 and MCB1	709F	
Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain ($V_0 = \pm 10$ V, $T_A = -55^{\circ}C$ to +125°C)	AVOL	25,000	45,000	70,000	
Output Impedance (f = 20 Hz)	Zout	-	150	_	Ω
Input Impedance (f = 20 Hz)	Z _{in}	150	400		kΩ
Output Voltage Swing ($R_L = 10 k\Omega$) ($R_L = 2.0 k\Omega$)	Vo	±12 ±10	±14 ±13		V _{peak}
Input Common-Mode Voltage Swing	CMVin	±8.0	±10	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90		dB
Input Bias Current $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C)$	۱ _b	-	0.2 0.5	0.5 1.5	μΑ
Input Offset Current $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C)$ $(T_A = +125^{\circ}C)$	llio		0.05 	0.2 0.5 0.2	μΑ
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	v _{io}	_ _	1.0	5.0 6.0	mV
$ \left\{ \begin{array}{l} \text{Step Response} \\ \text{Gain = 100, 5.0\% overshoot,} \\ \text{R}_1 = 1.0 k \Omega, \text{R}_2 = 100 k \Omega, \\ \text{R}_3 = 1.5 k \Omega, \text{C}_1 = 100 \text{pF}, \text{C}_2 = \\ 3.0 \text{pF} \end{array} \right. $	t _f ^t pd d∨ _{out} /dt ⊕		0.8 0.38 12	- - -	μs μs V/μs
$ \left\{ \begin{array}{l} {\rm Gain=10,10\%overshoot,} \\ {\rm R}_1=1.0k\Omega,{\rm R}_2=10k\Omega, \\ {\rm R}_3=1.5k\Omega,{\rm C}_1=500{\rm pF}, {\rm C}_2=20{\rm pF} \end{array} \right\} $	t _f t _{pd} dV _{out} /dt ①		0.6 0.34 1.7	-	μs μs V/μs
$ \left\{ \begin{array}{l} {\rm Gain=1,5.0\% \ overshoot,} \\ {\rm R}_1=10 \ k\Omega, {\rm R}_2=10 \ k\Omega, {\rm R}_3= \\ {\rm 1.5 \ k\Omega, C_1=5000 \ pF, C_2=200 \ pF} \end{array} \right\} $	t _f t _{pd} dV _{out} /dt ①		2.2 1.3 0.25		μs μs V/μs
Average Temperature Coefficient of Input Offset Voltage ($R_S = 50 \ \Omega$, $T_A = -55^{\circ}C$ to +125°C) ($R_S \leq 10 \ k\Omega$, $T_A = -55^{\circ}C$ to +125°C)	TC _{Vio}		3.0 6.0		µV/ ^o C
DC Power Dissipation (Power Supply = ±15 V, V ₀ = 0)	PD	_	80	165	mW
Positive Supply Sensitivity (V ⁻ constant)	s+	_	25	150	μV/V
Negative Supply Sensitivity (V ⁺ constant)	S-	-	25	150	μV/V

ELECTRICAL CHARACTERISTICS (V^+ = +15 Vdc, V^- = -15 Vdc, T_A = +25^oC unless otherwise noted)

1 dV_{out}/dt = Slew Rate

TYPICAL CHARACTERISTICS

Fig.	c N.		Test Conditions						
No.	Curve No.	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	C ₁ (pF)	C ₂ (pF)			
3	1	10 k	10 k	1.5 k	5.0 k	200			
	2	10 k	100 k	1.5 k	500	20			
	3	10 k	1.0 M	1.5 k	100	3.0			
	4	1.0 k	1.0 M	0	10	3.0			
4	1	1.0 k	1.0 M	0	10	3.0			
	2	10 k	1.0 M	1.5 k	100	3.0			
	3	10 k	100 k	1.5 k	500	20			
	4	10 k	10 k	1.5 k	5.0 k	200			
5	1	0	æ	1.5 k	5.0 k	200			
-	2	0	~	1.5 k	500	20			
	3	0	œ	1.5 k	100	3.0			
1	4	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	10	3.0			

8

TYPICAL CHARACTERISTICS (continued)

8-602

V+ and V-, POWER SUPPLY VOLTAGE (VOLTS)

V+ and V-, POWER SUPPLY VOLTAGE (VOLTS)

MCBC1709, MCB1709F (continued)

TYPICAL CHARACTERISTICS (continued)

(V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted.)

Silicon Thickness = 2.0 mils nominal

PACKAGING AND HANDLING

The MCBC1709 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

DIFFERENTIAL COMPARATOR

MCBC1710 MCB1710F

Advance Information

MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

Beam-lead sealed-junction technology and fabrication make the MCBC1710 and MCB1710F devices excellent choices for military, aerospace, and commercial applications. These devices are designed for use in level detection, low-level sensing, and memory applications.

- Differential Input Characteristics Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 µV/°C
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms V_O = +3.2 V to - 0.5 V Typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+14	Vdc
	VEE	-7.0	Vdc
Differential Input Signal	VID	±5.0	Volts
Common Mode Input Swing	VICR	±7.0	Volts
Peak Load Current	IL.	10	mA
Power Dissipation (package limitations) Flat Package Derate above T _A = +25°C	PD	500 3.3	mW mW/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

EQUIVALENT CIRCUIT

This is advance information on a new introduction and specifications are subject to change without notice. See Packaging Information Section for outline dimensions.

MCBC1710, MCB1710F (continued)

	- / 7	MCE]		
Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _O = 1.4 Vdc)	V _{IO}	-	1.0	2.0	mVdc
Input Bias Current (V _O = 1.4 Vdc)	ΙВ	-	12	20	μAdc
Output Resistance	ro	-	200		Ohms
Positive Output Voltage $(V_{in} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA})$	V _{OH}	2.5	3.2	4.0	Vdc
Negative Output Voltage (V _{in} ≥-5.0 mV)	VOL	-1.0	-0.5	0	Vdc
Output Sink Current (V _{in} ≥-5.0 mV, V _{out} ≥0)	۱ _s	2.0	2.5	-	mAdc
Common Mode Rejection Ratio (V_O = -7.0 Vdc, R _S \leq 200 Ω)	CMRR	-	100	-	dB
Propagation Delay Time For Positive and Negative Going Input Pulse	^t pd	-	40	-	ns
Power Supply Current (V _O ≤0 Vdc)	ID+ ID-		6.4 5.5	9.0 7.0	mAdc
DC Quiescent Power Dissipation	PD	-	115	150	mW

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = 25^oC unless otherwise noted)

See current MC1710/1710C data sheet for additional information.

BONDING DIAGRAM

PACKAGING AND HANDLING The MCBC1710 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of

12 - BEAM CHIP

polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

MCBC1723 MCB1723 F

Advance Information

MONOLITHIC BEAM-LEAD VOLTAGE REGULATOR

The MCBC1723/MCB1723F is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line Regulation
- Adjustable Short-Circuit Protection

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Pulse Voltage from V _{CC} to V _{EE} (50 ms)	V _{in(p)}	50	V _{peak}
Continuous Voltage from V _{CC} to V _{EE}	Vin	40	Vdc
Input-Output Voltage Differential	V _{in} -V _O	40	Vdc
Maximum Output Current	1	150	mAdc
Current from V _{ref}	^I ref	15	mAdc
Operating Temperature Range	т _А	-55 to +125	°C
Junction Temperature Range	Tj	-65 to +150	°C

This is advance information on a new introduction and specifications are subject to change without notice.

MCBC1723, MCB1723F (continued)

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = -C1 = 100 \text{ pF}$, $C_{ref} = 0$ and divider impedance as seen by the error amplifier	+25 ⁰ C, V _{in} = ≤10.kΩ co	= 12 Vdc, V _o = nnected as sho	5 Vdc, IL = 1 wn in Figure	l mAdc, r _{sc} = 1)	0,
		MCE	C1723/MCB1	723F	
Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage Range	Vin	9.5	_	40	Vdc

	39111001		1 190		1 Onit
Input Voltage Range	Vin	9.5	_	40	Vdc
Output Voltage Range	Vo	2.0	-	37	Vdc
Input-Output Voltage Differential	V _{in} -V _O	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.95	7.15	7.35	Vdc
Standby Current Drain (I _L = 0, V _{in} = 30 V)	IВ	-	2.3	3.5	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) C _{ref} = 0 C _{ref} = 5.0 μF	Vn		20 2.5		μV(rms)
Line Regulation (12 V < V _{in} < 15 V) (12 V < V _{in} < 40 V)	Reg _{in}		0.01 0.02	0.1 0.2	%∨ _Q
Load Regulation (1.0 mA $\leq I_{L} \leq 50$ mA)	Regioad	-	0.03	0.15	%vo
Ripple Rejection (f = 50 Hz to 10 kHz) C _{ref} = 0 C _{ref} = 5.0 µF	Rej _R	-	74 86		dB
Short Circuit Current Limit (r_{sc} = 10 Ω , V _O = 0)	Isc	-	65	-	mAdc

PACKAGING AND HANDLING

The MCBC1723 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier. Care must be exercised when removing the chips pickup is useful for this purpose.

OPERATIONAL AMPLIFIERS

MONOLITHIC OPERATIONAL AMPLIFIER

MCBC1741

MCB1741F

Beam-lead sealed-junction technology and fabrication make the MCBC1741 and MCB1741F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	+22	Vdc
	V-	-22	
Differential Input Signal	Vin	±30	Volts
Common Mode Input Swing (Note 1)	CMVin	±15	Volts
Output Short Circuit Duration (Note 2)	tS	Continuous	
Power Dissipation	PD	500	mW
Derate above T _A = +25 ^o C (Flat Package)		3.3	mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	٥ç

Note 1. For supply voltages less than $\pm\,15$ V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 V.

FIGURE 2 - OFFSET ADJUST CIRCUIT

See Packaging Information Section for outline dimensions.

MCBC1741, MCB1741F (continued)

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

	1 1	M			
Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain ($R_L = 2.0 \text{ k}\Omega$) ($V_0 = \pm 10 \text{ V}, T_A = \pm 25^{\circ}\text{C}$)	AVOL	50,000	200,000	_	NUM
$(V_0 = \pm 10 V, T_A = -55 \text{ to } +125^{\circ}C)$		25,000	-	-	
Output Impedance (f = 20 Hz)	Zo	_	75	_	Ω
Input Impedance (f = 20 Hz)	z _{in}	0.3	1.0		MegΩ
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ) (R _L = 2.0 kΩ, T _A = -55 to +125 ⁰ C)	Vo	±12 ±10 ±10	±14 ±13 -		V _{peak}
Input Common-Mode Voltage Swing	CMV _{in}	±12	±13	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90	-	dB
Input Bias Current ($T_A = +25^{\circ}C$) ($T_A = -55^{\circ}C$)	۱ _Р		0.2 0.5	0.5 1.5	μΑ
Input Offset Current ($T_A = +25^{\circ}C$) ($T_A = -55$ to +125 $^{\circ}C$)	l'iol	-	0.03	0.2 0.5	μΑ
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	v _{io}		1.0	5.0 6.0	mV
Step Response Gain = 100, R ₁ = 1.0 kΩ, R ₂ = 100 kΩ, R ₃ = 1.0 kΩ	t _f t _{pd} dV _{out} /dt ①		29 8.5 1.0	-	μs μs V/μs
Gain = 10, R ₁ = 1.0 k Ω , R ₂ = 10 k Ω , R ₃ = 1.0 k Ω	t _f tpd dVout/dt ①		3.0 1.0 1.0	-	μs μs V/μs
Gain = 1, R ₁ = 10 k Ω , R ₂ = 10 k Ω , R ₃ = 5.0 k Ω	t _f t _{pd} dV _{out} /dt ①		0.6 0.38 0.8		μs μs V/μs
Average Temperature Coefficient of Input Offset Voltage ($R_S = 50 \ \Omega, TA = -55^{\circ}C \text{ to } +125^{\circ}C$) ($R_S = 10 \ k\Omega, T_A = -55^{\circ}C \text{ to } +125^{\circ}C$)	TC _{Vio}	_	3.0 6.0	-	μV/ ⁰ C
Average Temperature Coefficient of Input Offset Current (T _A = -55 to +125 ⁰ C)	TC _{Vio}	_	50		pA/ ^o C
DC Power Dissipation (Power Supply = $\pm 15 \text{ V}, \text{ V}_0 = 0$)	PD		50	85	mW
Positive Supply Sensitivity (V constant)	S ⁺	_	30	150	μV/V
Negative Supply Sensitivity (V ⁺ constant)	S-		30	150	μV/V
^p ower Bandwidth (A _V = 1, R _L = 2.0 kΩ, THD = 5%, V ₀ = 20 V _P -p)	рВМ	_	10		kHz

(1) $dV_{out}/dt = Slew Rate$

 $\label{eq:transformation} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = +25^oC \ unless \ otherwise \ noted.) \end{array}$

$\label{eq:product} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (\text{continued}) \\ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = +25^oC \ unless \ otherwise \ noted.) \end{array}$

FIGURE 11 - BONDING DIAGRAM

Silicon Thickness = 2.0 mils nominal

PACKAGING AND HANDLING

The MCBC1741 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

OPERATIONAL AMPLIFIERS

MCBC1748 MCB1748F

Advance Information

HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1748 and MCB1748F devices excellent choices for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- Noncompensated MCBC1741
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (T _A = +25 ^o C unless otherwise noted)								
Rating	Symbol	Value	Unit					
Power Supply Voltage	V ⁺ V ⁻	+18 -18	Vdc					
Differential Input Signal	Vin	±5.0	Volts					
Common Mode Input Swing ①	CMVin	±V ⁺	Volts					
Load Current	L.	10	mA					
Output Short Circuit Duration	ts	5.0	s					
Power Dissipation Derate above T _A = +25 ⁰ C (Flat Package)	PD	500 3.3	mW mW/ ⁰ C					
Operating Temperature Range	TA	-55 to +125	°C					
Storage Temperature Range	⊤ _{stg}	-65 to +150	°C					

0 For supply voltages less than \pm 15 V, the Maximum Input Voltage is equal to the Supply Voltage.

This is advance information on a new introduction and specifications are subject to change without notice. See Packaging Information Section for outline dimensions.

MCBC1748, MCB1748F (continued)

Characteristics	Symbol	Min	Тур	Max	Unit
Open-Loop Voltage Gain, (Vo = +10 V, RL = 2.0 k ohms)	AVOL	50,000	200,000	_	-
Output Impedance (f = 20 Hz)	Zo	-	75	_	ohms
Common Mode Input Impedance (f = 20 Hz)	Zin	-	200	_	Megohms
Output Voltage Swing (R _L = 10 k ohms) R _L = 2 k ohms (T _A = -55 to +125 ^o C)	Vo	±12 ±10	±14 ±13	-	Vpk
Common-Mode Input Voltage Swing	CMV _{in}	-	±13		Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	-	90	-	dB
Input Bias Current	I _b	-	0.08	0.5	μAdc
Input Offset Current	lio	-	0.02	0.2	μAdc
Input Offset Voltage (R _S ≤10 kΩ)	Vio	-	1.0	5.0	mVdc
Step Response (V_{in} = 20 mV, C_c = 30 pF, R_L = 2 k Ω , C_L = 100 pF) Rise Time Overshoot Percentage	t _r		0.3 5.0 0.8	-	μs % V/μs
Slew Rate	dV _{out} /dt		25		mAdc
Short-Circuit Output Current Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance Parallel Input Capacitance	ISC Rp Cp		2.0 1.4		Megohms
Power Supply Sensitivity V [−] = constant, R _S ≤10 k ohms V ⁺ = constant, R _S ≤10 k ohms	S+ S-		30 30	150 150	μV/V
Power Supply Current	ID+ ID-		1.67 1.67	2.83 2.83	mAdc
DC Quiescent Power Dissipation (V ₀ = 0)	PD	-	50	85	mW

ELECTRICAL CHARACTERISTICS (V^+ = +15 Vdc, V^- = -15 Vdc, T_A = +25°C unless otherwise noted)

BONDING DIAGRAM

PACKAGING AND HANDLING

The MCBC1748 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of

16-BEAM CHIP

polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

OPERATIONAL AMPLIFIERS

MCC1536 MCC1436

HIGH VOLTAGE, INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1536 and MCC1436 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Maximum Supply Voltage ±40 Vdc
- Output Voltage Swing -
 - $\pm 30 V_{pk}(min)(V^+ = +36 V, V^- = -36 V)$ $\pm 22 V_{pk}(min)(V^+ = +28 V, V^- = -28 V)$
- Input Bias Current 20 nA max
- Input Offset Current 3.0 nA max Offset Voltage Null Capability
- Fast Slew Rate 2.0 V/µs typ
 Input Over-Voltage Protection
- Internally Compensated

MANINA DATINGO (T

AVOL – 500,000 typ

 Characteristics Independent of Power Supply Voltages – (±5.0 Vdc to ±36 Vdc)

0500

OPERATIONAL AMPLIFIER CHIP MONOLITHIC SILICON INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED

Rating		Symbol	MCC1536	MCC1436	Unit
Power Supply Voltage		V ⁺	+40	+34	Vdc
		v~	-40	-34	
Differential Input Signal (1)		V _{in}	±(V ⁺ + V ⁻ -3)		Volts
Common-Mode Input Swing		CMVin	+V ⁺ , -(V ⁻ -3)		Volts
Output Short Circuit Duration ($V^+ = V^- = 28 \text{ Vdc}, V_0 = 0$)	<u></u>	TSC	5	.0	s
Operating Temperature Range	MCC1536 MCC1436	Τ _Α	-55 to +125 0 to +75		°C
Junction Temperature Range		T _{stg}	-65 to	+150	°C

(1)The absolute voltage applied to either input terminal must not exceed +V⁺, -($|V^{-}|$ -3).

			MCC153	MCC 1436				
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	x Unit
Input Bias Current	Iр		8.0	20	-	15	40	nAdc
Input Offset Current	I _{io}		1.0	3.0		5.0	10	nAdc
Input Offset Voltage	v _{io}		2.0	5.0	-	5.0	10	mVdc
Differential Input Impedance (Open-Loop, f < 5.0 Hz) Parallel Input Resistance Parallel Input Capacitance	R _p C _p	1	10 2:0			10 2.0		Meg ohm pF
Common-Mode Input Impedance (f ≤ 5.0 Hz)	Z(in)		250		-	250		Meg ohn
Common-Mode Input Voltage Swing	CMVin	-	±25	(and	-	±25		Vpk
Common-Mode Rejection Ratio (dc)	CMrei		110			110	-	dB
Large Signal dc Open Loop Voltage Gain	AVOL		in a second					V/V
$\{V_0 = \pm 10 \text{ V}, \text{ R}_L = 100 \text{ k ohms}\}$		100,000	500,000		70,000	500,000		
(V _o = ±10 V, R _L = 10 k ohms)		$\frac{1}{2}$	200,000	- 14 C	-	200,000		
Power Bandwidth (Voltage Follower) (A _V = 1, R _L = 5.0 k ohms, THD \leq 5%, V _o = 40 Vp-p)	P _{BW}		23		-	23		kHz
Unity Gain Crossover Frequency (open-loop)			1.0		-	1.0	-	MHz
Phase Margin (open-loop, unity gain)		-	50	8. 4		50	-	degrees
Gain Margin		-	18			18	-	dB
Slew Rate (Unity Gain)	dV _{out} /dt		2.0		-	2.0	-	V/µs
Output Impedance (f ≤ 5.0 Hz)	Zout	-	1.0	-		1.0	-	k ohms
Short-Circuit Output Current	^I SC	-	±17		· · · · · ·	±17	-	mAdc
Output Voltage Swing (R _L = 5.0 k ohms) V ⁺ = +28 Vdc, V ⁻ = -28 Vdc V ⁺ = +36 Vdc, V ⁻ = -36 Vdc	vo	±22 ±30	±23 ±32		±20	±22 -	-	Vpk
Power Supply Sensitivity (dc) V^- = constant, $R_g \le 10 \text{ k}$ ohms V^+ = constant, $R_g \le 10 \text{ k}$ ohms	S+ S-	-	15 15	100 100	1 1 1 1 1 1 1 1 1 1 1	35 35	200 200	μV/V
Power Supply Current	^I D+		2.2 2.2	4.0 4.0		2.6 2.6	5.0 5.0	mAdc
DC Quiescent Power Dissipation (Voi = 0)	PD		124	224	_	146	280	mW

MCC1536, MCC1436 (continued)

ELECTRICAL CHARACTERISTICS (V⁺ = +28 Vdc, V⁻ = -28 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1536/1436 data sheet for additional information.

MCC1536/MCC1436 BONDING DIAGRAM

All dimensions are nominal and in mils (10^{-3} inches) . Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

PACKAGING AND HANDLING

The MCC1536/MCC1436 operational amplifier is now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCC1539 MCC1439

MONOLITHIC OPERATIONAL AMPLIFIER CHIP

 \ldots designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information see Motorola Application Note AN-439.

The MCC1539 and MCC1439 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Low Input Offset Voltage 3.0 mV max
- Low Input Offset Current 60 nA max
- Large Power-Bandwidth ~ 20 Vp-p Output Swing at 20 kHz min
- Output Short-Circuit Protection
- Input Over-Voltage Protection
- Class AB Output for Excellent Linearity
- Slew Rate 34 V/µs typ

*Patent Pending

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Symbol	Value	Unit
V+ V-	+18 -18	Vdc Vdc
Vin	$\pm [V^+ + V^-]$	Vdc
CMVin	+V ⁺ , - V ⁻	Vdc
١	15	mA
tS	Contir	nuous
TA	-55 to +125 0 to +75	°C
ΤJ	-65 to +150	°C
	V ⁺ V ⁻ CMV _{in} IL ts T _A	$\begin{array}{c c} V^{+} & +18 \\ V^{-} & -18 \\ \hline V_{in} & \pm [V^{+} + V^{-}] \\ \hline CMV_{in} & +V^{+} , - V^{-}] \\ \hline I_{L} & 15 \\ \hline t_{S} & Contin \\ \hline T_{A} & -55 \text{ to } +125 \\ 0 \text{ to } +75 \end{array}$

OPERATIONAL AMPLIFIER CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON

MCC1539, MCC1439 (continued)

			MCC1539					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	۱ _b		0.20	0.50	-	0.20	1.0	μA
Input Offset Current	lio	-	20	60	-	20	100	nA
Input Offset Voltage	Viol	-	1.0	3.0	-	2.0	7.5	mV
Average Temperature Coefficient of Input	TCVio							μV/ ⁰ C
Offset Voltage								
$(R_{S} = 50 \ \Omega)$		1	3.0	1		3.0	-	
	_		nd tagên lê ji	ta di kara s				
Input Impedance	Zin		300		-	300		kΩ
Input Common-Mode Voltage Swing	CMVin	1. 1. . . 1	±12			±12	-	V _{pk}
Common Mode Rejection Ratio (f = 1.0 kHz)	CM _{rej}		110		-	110	-	dB
Open Loop Voltage Gain (V _o = ± 10 V, R _L = 10 kΩ)	Avol	50,000	120,000		15,000	100,000	-	
Power Bandwidth ($A_v = 1$, THD $\leq 5\%$,	PBW							kHz
(V _o =20 Vp-p, R _L = 1.0 kΩ)			50		-	50	-	
Step Response	+	1 Aven				+		
Gain = 1000, no overshoot,	tf	1995- - 03	130	4	-	130	-	ns
	^t pd		190		-	190	-	ns
	dV _{out} /dt		6.0	고 그 같	_	6.0	-	V/µs
Gain = 1000, 15% overshoot,	tf		80		_	80	_	ns
	tpd		100		_	100	_	ns
	dV _{out} /dt		14	la Bartana Bartana	-	14	_	V/μs
Gain = 100, no overshoot,	1	and and a second second second	60			60		
	tf		Sec. Sec.		-		-	ns
	^t pd		100		-	100	-	ns
	dV _{out} /dt		34	land a star	-	34	-	V/µs
Gain = 10, 15% overshoot,	^t f		120		-	120	-	ns
	^t pd		80		(80	-	ns
	dV _{out} /dt		6.25	Maria Barta and Bartanak	-	6.25	-	V/µs
Gain = 1, 15% overshoot,	tf		160	-	-	160	-	ns
	^t pd	the state of the s	80		- (80	-	ns
	dV _{out} /dt	A second se	4.2	All Market and All All All All All All All All All Al		4.2	-	V/µs
Output Impedance (f = 20 Hz)	Z _{out}		4.0		-	4.0	-	kΩ
Output Voltage Swing	Vout							Vpk
(R _L = 2.0 kΩ, f = 1.0 kHz)					±10	±13	-	•
(R _L = 1.0 kΩ, f = 1.0 kHz)		±10	±13	The second second second	-	-	-	
Positive Supply Sensitivity (V ⁻ constant)	S ⁺		50	150	-	50	200	μ <u>ν</u> /ν
Vegative Supply Sensitivity (V ⁺ constant)	S-		50	150	-	50	200	μV/V
Power Supply Current	1							
$(V_0 = 0)$	¹ D ⁺	Section of Transport	3.0	5.0	-	3.0	6.7	mAdc
	ID-		3.0	5.0	-	3.0	6.7	•
DC Quiescent Power Dissipation $(V_0 = 0)$	PD		90	150	- 1	90	200	mW

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1539/1439 data sheet for additional information.

PACKAGING AND HANDLING

The MCC1539/MCC1439 operational amplifier is now available as a single monolithic die or encapsulated in the TO-99 and TO-116 hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCC1558 MCC1458

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1558 and MCC1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIER CHIP INTEGRATED CIRCUIT MONOLITHIC SILICON

Rating		Symbol	MCC1558	MCC1458	Unit
Power Supply Voltage		V ⁺	+22	+18	Vdc
		V-	-22	-18	
Differential Input Signal		Vin	±30		Volts
Common-Mode Input Swing		CMVin	±15		Volts
Output Short Circuit Duration		ts	Conti	nuous	
Operating Temperature Range	MCC1558 MCC1458	Тд	-55 to +125 0 to +75		°C
Junction Temperature Range		T.I	-65 to	o +150	°C

MCC1558, MCC1458 (continued)

Characteristic		MCC1558						
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Iь		r 0.2	0.5		0.2	0.5	μAdc
Input Offset Current	Iio	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	0.03	0.2	-	0.03	0.2	μAdc
Input Offset Voltage (R _S ≤ 10 k ohms)	v _{io}		1.0	5.0	-	2.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance	Rp		1.0			1.0		Megohm
Parallel Input Capacitance	Cp		6.0		_	6.0	-	pF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)		200	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		200		Megohms
Common-Mode Input Voltage Swing	CMV _{in}		±13	<u>.</u>	_	±13	·	Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CMrei		90		_	90		dB
Open-Loop Voltage Gain (Vo = ±10 V, RL = 2.0 k ohms)	AVOL	50,000	200,000		20,000	100,000		V/V
Power Bandwidth $(A_V = 1, R_L = 2.0 \text{ k ohms, THD} \le 5\%,$ $V_Q = 20 V_{P-P}$	Рвw		14		-	14		kHz
Unity Gain Crossover Frequency (open-loop)			1.1		-	1.1		MHz
Phase Margin (open-loop, unity gain)			65	la anti-	-	65		degrees
Gain Margin	1	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	11	÷	-	11		dB
Slew Rate (Unity Gain)	dV _{out} /dt		0.8		-	0.8		V/μs
Output Impedance (f = 20 Hz)	Zout	L.	75		· _	75		ohms
Short-Circuit Output Current	^I SC		. 20		_	20		mAdc
Output Voltage Swing (R _L = 10 k ohms)	Vo	±12	±14		±12	±14		Vpk
Power Supply Sensitivity $V^- = \text{constant}, R_S \le 10 \text{ k ohms}$ $V^+ = \text{constant}, R_S \le 10 \text{ k ohms}$	S ⁺ S⁻		30 30	150 150	-	30 30	150 150	μV/V
Power Supply Current	'D ⁺ 'D ⁻		2.3 2.3	5.0 5.0		2.3 2.3	5.6 5.6	mAdc
DC Quiescent Power Dissipation (V ₀ = 0)	PD		70	150	-	70	170	mW

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1558/MC1458 data sheet for additional information.

MCC1558/MCC1458 BONDING DIAGRAM

All dimensions are nominal and in mils (10^{-3} inches) . Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

PACKAGING AND HANDLING

The MCC1558/MCC1458 dual operational amplifiers are now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

NEGATIVE VOLTAGE REGULATORS

MCC1563 MCC1463

MONOLITHIC NEGATIVE VOLTAGE REGULATOR CHIP

The MCC1563/MCC1463 is a "three terminal" negative regulator designed to deliver continuous load current up to 500 mAdc and provide a maximum negative input voltage of -40 Vdc. Output current capability can be increased to greater than 10 Adc through use of one or more external transistors.

The MCC1563 and MCC1463 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Electronic "Shutdown" and Short-Circuit Protection
- Low Output Impedance 20 Milliohms typ
- Excellent Temperature Stability TCV₀ = ±0.002%/°C typ
- High Ripple Rejection 0.002% typ
- 500 mA Current Capability

NEGATIVE-POWER SUPPLY

VOLTAGE REGULATOR CHIP

MCC1563, MCC1463 (continued)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating		Symbol	MCC1563	MCC1463	Unit
Input Voltage		Vin	-40	-35	Vdc
Peak Load Current	_oad Current		600		mA
Current, Pin 2	irrent, Pin 2		10		mA
Operating Temperature Range	MCC1563 MCC1463	ТА	-55 to +125 0 to +75		°C
Junction Temperature Range		Тј	-65 to +7	175	°C

ELECTRICAL CHARACTERISTICS (I $_{L}$ = 100 mAdc, T_A = +25^oC unless otherwise noted)

		MCC1563						
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage	Vin			-40	-	-	-35	Vdc
Output Voltage Range	Vo	-3.6		-37	-3.8	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	V _{ref}	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc
Minimum Input-Output Voltage Differential (R _{SC} = 0)	V _{in} - V _o	-	1.5	2.7		1.5	3.0	Vdc
Bias Current (I _ = 1.0 mAdc, I _b = I _{in} - I _)	lp		7.0	11		7.0	14	mAdc
Output Noise (C _n = 0.1 μF, f = 10 Hz to 5.0 MHz)	vn		120	a de la constante de la consta		120		µV(rms)
Temperature Coefficient of Output Voltage	TCVo	and the second sec	±0.002			±0.002	 ,	%/ ^o C
Input Regulation	Regin		0.002			0.003		%/Vo
Load Regulation (T _J = Constant [1.0 mA $\leq I_{L} \leq 20$ mA])	Reg		0,4	The second secon		0.7		mV
Output Impedance (f = 1.0 kHz)	Zo		20	a sela ta su di Cara di Sana		35		milliohms
Shutdown Current (V _{in} = -35 Vdc)	^I sd		7.0	15		14	50	μAdc

See current MC1563/1463 data sheet for additional information

MCC1563/MCC1463 BONDING DIAGRAM

All dimensions are nominal and in mils (10^{-3} inches) . Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

PACKAGING AND HANDLING

The MCC1563/MCC1463 voltage regulator is now available as a single monolithic die or encapsulated in the Case 602A and Case 614 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

POSITIVE VOLTAGE REGULATORS

MCC1569 MCC1469

MONOLITHIC VOLTAGE REGULATOR CHIP

The MCC1569 and MCC1469 are positive voltage regulators designed to deliver continuous load current up to 500 mAdc. Output voltage is adjustable from 2.5 Vdc to 37 Vdc. Systems requiring both a positive and negative regulated voltage can use the MCC1569 and MCC1563 as complementary regulators with a common input ground.

The MCC1569 and MCC1469 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Electronic "Shut-Down" Control
- Excellent Load Regulation (Low Output Impedance 20 milliohms typ)
- High Power Capability: Up to 17.5 Watts
- Excellent Temperature Stability: ±0.002%/°C typ
- High Ripple Rejection: 0.002%/V typ

MCC1569, MCC1469 (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating		Symbol	MCC1569 MCC1469	Unit
Input Voltage		V _{in}	40 35	Vdc
Peak Load Current		l _{pk}	600	mA
Current, Pin 2		lpin 2	10	mA
Current, Pin 9		^I pin 9	5.0	
Operating Temperature Range	MCC1569 MCC1469	TA	-55 to +125 0 to +75	°C
Junction Temperature Range		Tj	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted)

		MCC1569			MCC1469			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage	Vin	1000		40		-	35	Vdc
Output Voltage Range	Vo	2.5	-	37	2.5	-	32	Vdc
Reference Voltage (Pin 8 to Ground)	Vref	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential	Vin-Vo	in the states of the	2.1	2.7		2.1	3.0	Vdc
Bias Current ($I_L = 1.0 \text{ mAdc}, R_2 = 6.8 \text{ k ohms}, I_b = I_{in} - I_L$)	Чb		4.0	9,0	-	5.0	12	mAdc
Output Noise ($C_n = 0.1 \mu\text{F}$, f = 10 Hz to 5.0 MHz)	٧n	and the second s	0.150			0.150		mV (rms)
Temperature Coefficient of Output Voltage	TCVo		±0.002			±0.002	-	%/ ^o C
Input Regulation	Reg _{in}		0.002			0.003		%/Vin
Output I Impedance (C _c = 0.001 μ F, R _{SC} = 1.0 ohm, f = 1.0 kHz, V _{in} = +14 Vdc, V _o = +10 Vdc)	Z _{out}		20			35		milliohms
Shutdown Current (V _{in} = +35 Vdc)	^I sd		70	150		140	500	μAdc

See current MC1569/1469 data sheet for additional information.

MCC1569/MCC1469 BONDING DIAGRAM

All dimensions are nominal and in mils (10^{-3} inches) . Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

PACKAGING AND HANDLING

The MCC1569/MCC1469 voltage regulator is now available as a single monolithic die or encapsulated in the Case 602A and Case 614 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose. The non-spill type shipping carrier consists of a compart-

mentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

MCC1595 MCC1495

MONOLITHIC FOUR-QUADRANT MULTIPLIER CHIP

... designed for uses where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MCC1595 and MCC1495 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

*When used with an operational amplifier.

- Excellent Linearity 0.5% typ Error on X-Input, 1% typ Error on Y-Input – MCC1595
- Excellent Linearity 1% typ Error on X-Input, 2% typ Error on Y-Input – MCC1495
- Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range ± 10 Volts

LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT CHIP

MONOLITHIC SILICON EPITAXIAL PASSIVATED

Rating		Symbol	Value	Unit
Applied Voltage (V2-V1, V14-V1, V1-V9, V V1-V8, V12-V7, V9-V7, V8	-V ₁₂ , V ₁ -V ₄ , -V ₇ , V ₄ -V ₇)	۵V	30	Vdc
Differential Input Signal		V ₁₂ -V9 V4-V8	±(6+I ₁₃ R _X) ±(6+I ₃ R _Y)	Vdc Vdc
Maximum Bias Current		13	10 10	mA
Operating Temperature Range	MCC1595 MCC1495	тд	-55 to +125 0 to +70	°C
Junction Temperature Range		т.	-65 to +150	°C

MCC1595, MCC1495 (continued)

ELECTRICAL CHARACTERISTICS (V⁺ = +32 V, V⁻ = -15 V, T_A = 25^oC, I₃ = I₁₃ = 1 mA, R_X = R_Y = 15 kΩ, R₁ = 11 kΩ unless otherwise noted)

R _L = 11 kΩ unless otherwise noted)										
Characteristic		Symbol	Min	Тур	Max	Unit				
Linearity:										
Output Error in Percent of Full Scale:						%				
$-10 < V_X < +10 (V_Y = \pm 10 V)$	MCC1495	ERX	-	1.0						
	MCC1595	-	-	0.5	-					
$-10 < V_{Y} < +10 (V_{X} = \pm 10 V)$	MCC1495 MCC1595	ERY	_	2.0 1.0	_					
Squaring Mode Error:										
Accuracy in Percent of Full Scale After		ESQ				%				
Offset and Scale Factor Adjustment	MCC1495		1	0.75						
	MCC1595		-	0.5	_					
Scale Factor (Adjustable)										
$(K = \frac{2R_L}{I_3R_XR_Y})$				0.1	-					
$(K = \frac{1}{3R_XR_Y})$		к	-	0.1	-	_				
Input Resistance	MCC1495	RINX	-	20	-	Megohms				
(f = 20 Hz)	MCC1595		-	35	-					
	MCC1495	RINY	-	20	-					
	MCC1595		~	35	-					
Differential Output Resistance (f = 20 Hz)		Ro	-	300	-	k Ohms				
Input Bias Current										
$I_{bx} = \frac{(I_9 + I_{12})}{2}$, $I_{by} = \frac{(I_4 + I_8)}{2}$	MCC1495	I _{bx}		2.0	12	μA				
$\frac{1}{2}$, $\frac{1}{2}$	MCC1595	· bx	~	2.0	8.0	,				
	MCC1495	Iby	~	2.0	12					
	MCC1595		~	2.0	8.0					
Input Offset Current										
19 - 1 ₁₂	MCC1495	liox	-	0.4	2.0	μA				
	MCC1595			0.2	1.0					
$ 1_4 - 1_8 $	MCC1495 MCC1595	lioy	~	0.4 0.2	2.0 1.0					
Output Offset Current		1100				μА				
14 - 12	MCC1495			20	100					
	MCC1595		-	10	50					
Frequency Response		0.04		20						
3.0 dB Bandwidth 3^{0} Relative Phase Shift Between V $_{\rm X}$ and V $_{\rm Y}$		BW3dB	-	3.0 750	-	MHz kHz				
1% Absolute Error Due to Input-Output Phase Shift		f_{ϕ} f_{θ}	-	30	_	kHz				
Common Mode Input Swing		CMV				Vdc				
(Either input)	MCC1495		-	±12	_	Vac				
	MCC1595			±13	_					
Common Mode Quiescent		V ₀ 1	-	21	-	Vdc				
Output Voltage		V ₀ 2		21	-					
Differential Output Voltage Swing Capability	·····	Vout	·	±14	-	Vpeak				
Power Supply Sensitivity		S ⁺	-	5.0	-	mV/V				
·		S-	-	10	-					
Power Supply Current		17	-	6.0	7.0	mA				
DC Power Dissipation		PD	-	135	170	mW				

See current MC1595/1495 data sheet for additional information.

MCC1595/MCC1495 BONDING DIAGRAM

All dimensions are nominal and in mils (10^{-3} inches) . Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

PACKAGING AND HANDLING

The MCC1595/MCC1495 is the Four-Quadrant Multiplier now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCC1709 MCC1709C

MONOLITHIC OPERATIONAL AMPLIFIER CHIP

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1709 and MCC1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- High-Performance Open Loop Gain Characteristics
 AVOL = 45,000 typical
- Low Temperature Drift $-\pm 3.0 \,\mu V/^{O}C$
- Large Output Voltage Swing $-\pm$ 14 V typical @ \pm 15 V Supply
- Low Output Impedance Z_{out} = 150 ohms typical

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V ⁺ V ⁻	+18 -18	Vdc
Differential Input Signal		Vin	±5.0	Volts
Common Mode Input Swing		CMVin	±V ⁺	Volts
Load Current		١L	10	mA
Output Short Circuit Duration		tS	5.0	s
Operating Temperature Range	MCC1709 MCC1709C	ТА	-55 to +125 0 to +75	°C
Junction Temperature Range		Tj	-55 to +150	°C

MCC1709, MCC1709C (continued)

			MCC1709			MCC17090	;	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain {V ₀ = ±10 V}	AVOL	25,000	45,000	70,000	15,000	45,000	_	-
Output Impedance (f = 20 Hz)	Zout		150			150	_	Ω
Input Impedance (f = 20 Hz)	Z _{in}		400			250	_	kΩ
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ)	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V _{peak}
Input Common-Mode Voltage Swing	CMV _{in}	an a successful states A first sector of the states A successful states and the states	±10			±10	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	V Martin and a gradient and the state of the second sec	90		_	90	_	dB
Input Bias Current	IЪ		0.2	0.5		0.3	1.5	μA
Input Offset Current	I _{io}	and a second sec	0.05	0.2	-	0.1	0.5	μA
Input Offset Voltage	v _{io}	All an addition in an All and a second state of the second state of the second state of the second state of the sec	1.0	5.0		2.0	7.5	mV
Step Response				A COLOR		·····	1	
Gain = 100, 5.0% overshoot	^t f ^t pd dV _{out} /dt		0.8 0.38 12			0.8 0.38 12		μs μs V/μs
Gain = 10, 10% overshoot	^t f ^t pd dV _{out} /dt		0.6 0.34 1.7			0.6 0.34 1.7	-	μs μs V/μs
Gain = 1, 5.0% overshoot	^t f ^t pd dV _{out} /dt		2.2 1.3 0.25			2.2 1.3 0.25		μs μs V/μs
Power Supply Current	ו _D + ו	-	2.7 2.7	5.5 5.5		2.7 2.7	6.7 6.7	mAdc
DC Quiescent Power Dissipation (Power Supply = ± 15 V, V ₀ = 0)	PD		80	165	. –	80	200	mW
Positive Supply Sensitivity (V ⁻ constant)	S ⁺		25	150		25	200	μV/V
Negative Supply Sensitivity (V ⁺ constant)	S-		25	150	_	25	200	μV/V

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1709/1709C data sheet for additional information

PACKAGING AND HANDLING

The MCC1709/MCC1709C operational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

DIFFERENTIAL COMPARATORS

MCC1710 MCC1710C

MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR CHIP

 \ldots . designed for use in level detection, low-level sensing, and memory applications.

The MCC1710 and MCC1710C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Differential Input Characteristics Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 μV/^oC
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms Vout = +3.2 V to -0.5 V typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS (T_A = 25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+ V-	+14 -7.0	Vdc
Differential Input Signal	V _{in}	±5.0	Volts
Common Mode Input Swing	CMVin	±7.0	Volts
Peak Load Current	۱L	10	mA
Operating Temperature MCC1710 Range MCC1710C	TA	-55 to +125 0 to +75	°C
Junction Temperature Range	Тj	-65 to +150	°C

MONOLITHIC SILICON EPITAXIAL PASSIVATED

All dimensions are nominal and in mils (10^{-3} inches). Die Dimensions Thickness = 8.0 Bonding Pads = 4.0 x 4.0

CIRCUIT SCHEMATIC 8 2.8 k 1.1 k 500 **5**500 INVERTING 3.9 k INPUT 30 62V7 20 ---O OUTPUT NON-INVERTING INPUT 1.7 k 100 6 I GND Ó

(SUBSTRATE) V

,

MCC1710, MCC1710C(continued)

· · · · · · · · · · · · · · · · · · ·		4	MCC1710)		MCC17100	3	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage (V ₀ = 1.4 Vdc)	Vio		1.0	2.0		1.5	5.0	mVdc
Input Bias Current (V _o = 1.4 Vdc)	۱ _b		12	20		15	25	μAdc
Output Resistance	R _{out}	-	200	-		200		Ohms
Positive Output Voltage ($V_{in} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA}$)	∨он	2.5	3.2	4.0	2.5	3.2	4.0	Vdc
Negative Output Voltage (V _{in} ≧ -5.0 mV)	VOL	-1.0	-0,5	0	-1.0	-0.5	0	Vdc
Output Sink Current ($V_{in} \ge -5.0 \text{ mV}, V_{out} \ge 0$)	۱ _s	2.0	2.5	-	2.0	2.5	-	mAdc
Common Mode Rejection Ratio $(V^{-} = -7.0 \text{ Vdc}, \text{R}_{S} \leq 200 \Omega)$	CM _{rej}	-	100			100	-	dB
Propagation Delay Time For Positive and Negative Going Input Pulse	tpd	-	40		-	40	. —	ns
Power Supply Current	^I D ⁺	-	6.4	9.0		6.4	9.0	mAdc
(V _{out} ≦0 Vdc)	1 _D -		5.5	7.0		5.5	7.0	
DC Quiescent Power Dissipation	PD	2000 - 2000 1970 - 2000 - 2000 1970 - 2000 - 2000 - 2000	115	150		110	150	mW

ELECTRICAL CHARACTERISTICS (V⁺ = +12 Vdc, V⁻ = -6.0 Vdc, T_A = 25° C unless otherwise noted)

See current MC1710/1710C data sheet for additional information.

PACKAGING AND HANDLING

The MCC1710/MCC1710C differential comparator is now available as a single monolithic die or encapsulated in the TO-91, TO-99, and TO-116 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose. The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

DIFFERENTIAL COMPARATORS

MCC1711 MCC1711C

MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR CHIP

... designed for use in level detection, low-level sensing, and memory applications.

The MCC1711 and MCC1711C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 μV/^oC
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms Vout = +4.5 V to -0.5 V Typical
- Low Output Impedance 200 Ohms

MAXIMUM RATINGS (T_A = 25^oC unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V+	+14	Vdc
		V-	-7.0	Vdc
Differential Input Signal		Vin	±5.0	Volts
Common Mode Input Swing		CMVin	±7.0	Volts
Peak Load Current		ιL	50	mA
Operating Temperature Range	MCC1711 MCC1711C	TA	-55 to +125 0 to +75	°C
Junction Temperature Range		TJ	-65 to +150	°C

DUAL DIFFERENTIAL COMPARATOR CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON EPITAXIAL PASSIVATED

Thickness = 8.0

Bonding Pads = 4.0 x 4.0

MCC1711, MCC1711C (continued)

		MCC1711			MCC1711C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (V _o = 1.4 Vdc)	V _{io}		1.0	3.5	—	1.0	5.0	mVdc
Input Bias Current (V ₀ = 1.4 Vdc)	۱ _b		25	75	10.00	25	100	μAdc
Output Resistance	R _{out}		200		-	200	-	Ohms
Positive Output Voltage $(V_{in} \ge 10 \text{ mVdc}, 0 \le I_0 \le 5.0 \text{ mA})$	V _{OH}	2.5	3.2	5.0	2.5	3.2	5.0	Vdc
Negative Output Voltage (V _{in} ≧ −10 mVdc)	VOL	-1.0	-0.5	0	-1.0	-0.5	0	Vdc
Strobed Output Level (V _{strobe} ≦ 0.3 Vdc)	V _{OL(st)}	-1.0		0	-1.0	-	0	Vdc
Output Sink Current (V _{in} ≧ -10 mV, V _o ≧ 0)	۱ _S	0,5	0.8		0.5	0.8		mAdc
Strobe Current (V _{strobe} = 100 mVdc)	l _{st}		1.2	2.5		1.2	2.5	mAdc
Response Time $(V_b = 5.0 \text{ mV} + V_{i0})$	t _R		40			40		ns
Strobe Release Time	tSR		12		` <u> </u>	12	-	ns
Power Supply Current (V ₀ ≦ 0 Vdc)	^۱ D ⁺ ۱ _D -		8.6 3.9			8.6 3.9		mAdc
Power Consumption		er en geregen geden og en geregen og en g en geregen og en g en geregen og en geregen	130	200		130	200	mW

ELECTRICAL CHARACTERISTICS (each comparator) (V⁺ = +12 Vdc, V⁻ = -6.0 Vdc, T_A = 25^oC unless otherwise noted)

See current MC1711/1711C data sheet for additional information.

PACKAGING AND HANDLING

The MCC1711/MCC1711C dual differential comparator is now available as a single monolithic die or encapsulated n the TO-91, TO-100, and TO-116 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

MCC1723 MCC1723C

MONOLITHIC VOLTAGE REGULATOR CHIP

The MCC1723/MCC1723C is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors.

The MCC1723 and MCC1723C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line Regulation
- Adjustable Short-Circuit Protection

VOLTAGE REGULATOR CHIP

MCC1723, MCC1723C (continued)

Rating		Symbol	Value	Unit
Pulse Voltage from V^+ to V^- (50 ms)	MCC1723	Vin(p)	50	V _{peak}
Continuous Voltage from V ⁺ to V ⁻		Vin	40	Vdc
Input-Output Voltage Differential		Vin-Vo	40	Vdc
Maximum Output Current		١L	150	mAdc
Current from V _{ref}		ref	15	mAdc
Operating Temperature Range	MCC1723 MCC1723C	TA	-55 to +125 0 to +75	°C
Junction Temperature Range		Τj	-65 to +150	°C

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = +25^{\circ}C$, $V_{in} = 12$ Vdc, $V_o = 5$ Vdc, $I_L = 1$ mAdc, $R_{SC} = 0$, C1 = 100 pF, $C_{ref} = 0$ and divider impedance as seen by the error amplifier ≤ 10 kΩ connected as shown in Figure 1)

					·····				
			MCC1723	Stranger (Stranger (Rogel		MCC1723C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Voltage Range	Vin	9.5		40	9.5		40	Vdc	
Output Voltage Range	Vo	2.0	2004 - 1 00-1	37	2.0	-	37	Vdc	
Input-Output Voltage Differential	V _{in} -V _o	3.0	-	38	3.0	-	38	Vdc	
Reference Voltage	Vref	6.95	7.15	7.35	6.80	7.15	7.50	Vdc	
Standby Current Drain (I _L = 0, V _{in} = 30 V)	I _{sb}		2.3	3.5	-	2.3	4.0	mAdc	
Output Noise Voltage (f = 100 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \mu\text{F}$	Vn	F_{A}	20 2.5		_	20 2.5	· _	μV(rms)	
Line Regulation (12 V < V _{in} < 15 V) (12 V < V _{in} < 40 V)	Reg _{in}		0.01 0.02	0.1 0.2		0.01 0.1	0.1 0.5	% V _o	
Load Regulation (1.0 mA<1L<50 mA)	Regload		0.03	0.15		0.03	0.2	% Vo	
Ripple Rejection (f = 50 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \mu\text{F}$	Rej _R		74 86		, 	74		dB	
Short Circuit Current Limit $(R_{SC} = 10 \ \Omega, V_0 = 0)$	'sc		65		-	65	-	mAdc	

See current MC1723/1723C data sheet for additional information.

PACKAGING AND HANDLING

The MCC1723/MCC1723C voltage regulator is now available as a single monolithic die or encapsulated in the Motorola Case 603-03 hermetic package. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCC1741 MCC1741C

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1741 and MCC1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating		Symbol	Va	lue	Unit
			MCC1741C	MCC1741	
Power Supply Voltage		V+ V-	+18 -18	+22 -22	Vdc Vdc
Differential Input Signal		Vin	±3	0	Volts
Common Mode Input Swing (Note 1)	CMVin	.±1	5	Volts
Output Short Circuit Duration (Note	2)	ts	Contir	nuous	
	C1741 C1741C	Τ _Α	-55 to 0 to		°C
Junction Temperature Range		Тj	-65 to	+150	°C

Note 1. For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage. Note 2. Supply voltage equal to or less than 15 V.

OPERATIONAL AMPLIFIER CHIP

All dimensions are nominal and in mils (10^{-3} inches) . Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

MCC1741, MCC1741C (continued)

			MCC1741		MCC1741C			
Characteristic	Symbol	Min	Тур	Max	Min	Түр	Max	Un
Open Loop Voltage Gain ($R_L = 2.0 \text{ k}\Omega$) ($V_0 = \pm 10 \text{ V}$)	AVOL	50,000	200,000		20,000	100,000	_	-
Output Impedance (f = 20 Hz)	Zo		75		-	75	_	Ω
Input Impedance (f = 20 Hz)	Z _{in}	an an grad an	1.0		-	1.0	-	Meg
Output Voltage Swing (RL = 10 kΩ)	vo	±12	±14		±12	±14	_	Vpe
(R _L = 2.0 kΩ)		±10	±13		±10	±13	-	
Input Common-Mode Voltage Swing	CMVin		±13	and the second		±13	-	Vpe
Common-Mode Rejection Ratio (f = 20 Hz)	СМ _{геј}	L.	90		-	90	-	dE
Input Bias Current	۱b		0.2	0.5	-	0.2	0.5	д4
Input Offset Current	io	100 C	0.03	0.2	-	0.03	0.2	μA
Input Offset Voltage (R _S = ≦ 10 kΩ)	V _{io}		1.0	5.0	-	2.0	6.0	m\
Step Response	tr		29		-	29	_	μs
Gain = 100	tpd		8.5		_	8.5	- 1	μ. μ.
	dV _{out} /dt 1	-	1.0		-	1.0	- 1	V/µ
Gain = 10	tę	_	3.0	4	-	3.0	23 =	μs
	^t pd	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0	Charles and the second	-	1.0	- 1	μs
	dV _{out} /dt (1)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1.0	and a second s	-	1.0	-	V/
Gain = 1	tf		0.6			0.6		μ
	tpd		0.38			0.38		μ
	dV _{out} /dt 1	÷	0.8			0.8	· · · -	v/
Power Supply Current	'D ⁺ 'D [−]		1.67 1.67	2.83 2.83	-	1.67 1.67	2.83 2.83	m
DC Quiescent Power Dissipation (Power Supply = ± 15 V, V ₀ = 0)	P _D	-	50	85	· · · · _ ·	50	85	m
Positive Supply Sensitivity (V ⁻ constant)	S ⁺	÷	30	150	_	30	150	μV.
Negative Supply Sensitivity (V ⁺ constant)	S-		30	150	_	30	150	<i>μ</i> V/

ELECTRICAL CHARACTERISTICS ($V^+ \approx +15 \text{ Vdc}$, $V^- \approx 15 \text{ Vdc}$, $T_A \approx +25^{\circ}C$ unless otherwise noted)

PACKAGING AND HANDLING

The MCC1741/MCC1741C operational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCC1748 MCC1748C

HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1748 and MCC1748C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Noncompensated MC1741G
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

OPERATIONAL AMPLIFIER CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON EPITAXIAL PASSIVATED

MCC1748, MCC1748C (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating		Symbol	MCC1748	MCC1748C	Unit
Power Supply Voltage		V _{CC} V _{EE}	+22 -22	+18 -18	Vdc
Differential Input Signal Voltage		- V _{in}	±	30	Volts
Common-Mode Input Swing Voltage 🧃)	VICR	±	15	Volts
Output Short-Circuit Duration		ts	Conti	nuous	-
Operating Temperature Range	MCC1748 MCC1748C	ТА	-55 to 0 to	+125 +75	°C
Junction Temperature Range		Тј	-65 to	o +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

			MCC1748		N	ICC1748C		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	1 _{IB}		0.08	0.5	-	0.08	0.5	μAdc
Input Offset Current	101		0.02	0.2	-	0.02	0.2	µAdc
Input Offset Voltage (R _S ≤ 10 k Ω)	VIO		1,0	5.0		1.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz)		12.22						
Parallel Input Resistance	Rp		2.0			2.0		Megohm
Parallel Input Capacitance	C _p		1,4	-	-	1.4	-	pF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)		200	12	-	200		Megohm
Common-Mode Input Voltage Swing	VICR	100	±13	-		±13		Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR		90		-	90	-	dB
Open-Loop Voltage Gain ($V_0 = \pm 10 \text{ V}, \text{ R}_L = 2.0 \text{ k ohms}$)	A _{vol}	50,000	200,000	19.14 19.14 19.14	20,000	200,000	-	V/V
Step Response ($V_{in} = 20 \text{ mV}$, $C_c = 30 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$)				Start Street				[
Rise Time	^t PLH		0.3			0.3	-	μs
Overshoot Percentage			5.0		-	5.0		%
Slew Rate	dV _O /dt		0.8			0.8	·	V/µs
Output Impedance (f = 20 Hz)	z _o		76			75		ohms
Short-Circuit Output Current	'so		25		-	25	-	mAdd
Output Voltage Swing (RL = 10 k ohms)	Vo	±12	±14		±12	±14		Vpk
$R_L = 2 \text{ k ohms} (T_A = T_{low} \text{ to } T_{high})$	_	±10	±13	-	±10	±13		
Power Supply Sensitivity								μV/V
V _{EE} = constant, R _s ≤ 10 k ohms	S+		30	150	~	30	150	[
V_{CC} = constant, $R_s \le 10$ k ohms	S-		30	150		30	150	
Power Supply Current	ID+		1.67	2.83	-	1.67	2.83	mAdc
	¹ D [−]	100 - 200	1.67	2.83	-	1.67	2.83	
DC Quiescent Power Dissipation	PD							mW
(V _O = 0)			•50	85	-	50	85	

 \odot For supply voltages less than +15 V, the Maximum Input Voltage is equal to the Supply Voltage. See current MC1748/1748C data sheet for additional information.

PACKAGING AND HANDLING

The MCC1748/MCC1748C operational amplifier is now available as a single monolithic die or encapsulated in the TO-99 hermetic package. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCCF1558 MCCF1458

DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF1558 and MCCF1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 90-10 solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT

Rating		Symbol	MCCF 1558	MCCF1458	Unit
Power Supply Voltage		V _{CC} V _{EE}	+22 -22	+ 18 - 18	Vdc
Differential Input Signal		VID	±:	30	Volts
Common-Mode Input Swing		VIC	±	15	Volts
Output Short Circuit Duration		tS	Conti	nuous	
Operating Temperature Range	MCCF 1558 MCCF 1458	TA	-55 to 0 to		°C
Junction Temperature Range		Τj	-65 to		°C

MCCF1558, MCCF1458 (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

			MCCF1558					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	ι _B		0.2	0.5	-	0.2	0.5	μAdc
Input Offset Current	110	100-000	0.03	0.2	-	0.03	0.2	μAdc
Input Offset Voltage (R _S ≤ 10 k ohms)	v ₁₀		1.0	5.0	-	2.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance	Rp	÷	1.0			1.0	_	Megohm
Parallel Input Capacitance	Сp	And the second second	6.0			6.0		pF
Common-Mode Input Impedance (f = 20 Hz)	z _{in}		200	and a second sec	-	200	-	Megohms
Common-Mode Input Voltage Swing	VIC		±13		-	±13	-	Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR	-	90			90		dB
Open-Loop Voltage Gain (V _O = ±10 V, R _L = 2.0 k ohms)	A _{vol}	50,000	200,000		20,000	100,000	1864	V/V
Power Bandwidth $(A_V = 1, R_L = 2.0 \text{ k ohms, THD} \le 5\%,$ $v_O = 20 \text{ Vp-p})$	PBW		14		-	14		kHz
Unity Gain Crossover Frequency (open-loop)		222	1.1	-		1.1		MHz
Phase Margin (open-loop, unity gain)		Contraction of the second	65			65		degrees
Gain Margin			11			11	- [']	dB
Slew Rate (Unity Gain)	dV _O /dt	S. 40	0.8	-	-	0.8		V/µs
Output Impedance (f = 20 Hz)	z _o		75		-	75	· · ·	ohms
Short-Circuit Output Current	١ _S	10000	20			20		mAdc
Output Voltage Swing (R _L = 10 k ohms)	v _o	±12	±14	E.	±12	±14		Vpk
Power Supply Sensitivity VEE = constant, $R_s \leq 10$ k ohms V _{CC} = constant, $R_s \leq 10$ k ohms	S ⁺ S⁻		30 30	150 150		30 30	150 150	μV/V
Power Supply Current	DCC DEE		2.3 2.3	5.0 5.0	· · · · · · ·	2.3 2.3	5.6 5.6	mAdc
DC Quiescent Power Dissipation (V _O = 0)	PD		70	150		70	170	mW

See current MC1558/MC1458 data sheet for additional information.

EACH CHIP IS MARKED WITH A MOTOROLA EMSIGNIA, THE TOP POINTING TO THE SIDE WHERE PAD 1 IS LOCATED The popular 1558 type dual operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flipchips, as well as in a variety of plastic and hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

Bump Diameter at Base 0.006 ± 0.001 L____ SOLDER BUMPS, 10 PLACES Bump Height: 0.0040 ± 0.0005 Each bump centerline to be located within 0.001 of its true position with respect to any other bump centerline.

OPERATIONAL AMPLIFIERS

MCCF1709 MCCF1709C

MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF1709 and MCCF1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 90-10 solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.

- High-Performance Open Loop Gain Characteristics
 A_{VOI} = 45,000 typical
- Low Temperature Drift $-\pm 3.0 \,\mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance z₀ = 150 ohms typical

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+18 -18	Vdc
Differential Input Signal		VID	±5.0	Volts
Common Mode Input Swing		VIC	±VS	Volts
Load Current		١L	10	mA
Output Short Circuit Duration		tS	5.0	s
Operating Temperature Range	MCCF1709 MCCF1709C	TA	-55 to +125 0 to +75	°C
Junction Temperature Range		Τj	-55 to +150	°C

OPERATIONAL AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT

MCCF1709, MCCF1709C (continued)

			MCCF1709			MCCF1709C		1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain (V _O = ±10V)	A _{voi}	25,000	45,000	70,000	15,000	45,000	-	-
Output Impedance (f = 20 Hz)	z _o		150	4	-	150	-	Ω
Input Impedance (f = 20 Hz)	zin		400		_	250	-	k S2
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ)	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13	-	Vpeak
Input Common-Mode Voltage Swing	VIC		±10	and the second s	-	±10	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR		90		_	90	_	dB
Input Bias Current	^I IВ		0.2	0.5	-	0.3	1.5	μA
Input Offset Current	140		0.05	0.2	-	0.1	0.5	μA
Input Offset Voltage	1101	-	1.0	5.0	-	2.0	7.5	mV
Step Response								
Gain = 100, 5.0% overshoot	^t ⊤HL ^t d dVO/dt	T T T	0.8 0.38 12	1.1.1	-	0.8 0.38 12		μs μs V/μs
Gain = 10, 10% overshoot	^t ⊤HL ^t d dV _O /dt	1. N. A	0.6 0.34 1.7	1.4.7		0.6 0.34 1.7		μs μs V/μs
Gain = 1, 5.0% overshoot	t⊤HL t _d dVO/dt		2.2 1.3 0.25		-	2.2 1.3 0.25		μs μs V/μs
Power Supply Current	DCC		2.7	5.5	-	2.7	6.7	mAdc
	DEE	(2.7	5.5	-	2.7	6.7	
DC Quiescent Power Dissipation (Power Supply = ±15 V, V _O = 0)	PD		80	165		80	200	mW
Positive Supply Sensitivity (VEE constant)	s+		25	150	-	25	200	μV/V
Negative Supply Sensitivity (V _{CC} constant)	ST		25	150		25	200	μV/V

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

See current MC1709/1709C data sheet for additional information.

Bump Dia, at Base: 0.006 ± 0.001 in. Bump Height: 0.0040 ± 0.0005 in. Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.

PACKAGING AND HANDLING

The popular 1709 type operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flip-chips, as well as in a variety of plastic and hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

OPERATIONAL AMPLIFIERS

MCCF1741 MCCF1741C

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC FLIP-CHIP OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF1741 and MCCF1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 90-10 solder on a chrome-copper-gold base. The interconnecting metalization is evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Va	lue	Unit
		MCCF1741C	MCCF1741	
Power Supply Voltage	V _{CC} V _{EE}	+18 -18	+22 -22	Vdc
Differential Input Signal	VID	±	30	Volts
Common Mode Input Swing (Note 1)	VIC	±1	5	Volts
Output Short Circuit Duration (Note 2)	ts	Contir	nuous	
Operating Temperature Range	TA	0 to +75	~55 to +125	°C
Junction Temperature Range	Tj	-65 to	+150	°C

Note 1 For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2 Supply voltage equal to or less than 15 V.

OPERATIONAL AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT

FIGURE 2 - OFFSET ADJUST CIRCUIT

MCCF1741, MCCF1741C (continued)

			MCCF1741	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		MCCF1741C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain ($R_L = 2.0 \text{ k}\Omega$) ($V_O = \pm 10 \text{ V}$)	A _{vol}	50,000	200,000		20,000	100,000	_	
Output Impedance (f = 20 Hz)	zo		75			75		Ω
input Impedance (f = 20 Hz)	zin		1.0			1.0	_	Meg Ω
Output Voltage Swing $(R_L = 10 k\Omega)$ $(R_L = 2.0 k\Omega)$	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13	-	V _{peak}
Input Common-Mode Voltage Swing	VIC		±13			±13		Vpeak
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR		90		-	90		dB
Input Bias Current	Чв		0.2	0.5	-	0.2	0.5	μА
Input Offset Current	140		0.03	0.2		0.03	0.2	μA
Input Offset Voltage (R _S = ≦ 10 kΩ)	1V101		1.0	5.0		2.0	6.0	mV
Step Response Gain = 100	tTHL t _d dV _O /dt (1)	¥.	29 8.5 1.0			29 8.5 1.0		μs μs V/μs
Gain = 10	t⊤HL t _d dV _O /dt ①	1	30 10 10		-	3.0 1.0 1.0		μs μs V/μs
Gain = 1	tTHL td dV _O /dt (1)		0.6 0.38 0.8	-	-	0.6 0.38 0.8		μs μs V/μs
Power Supply Current	^I DCC ^I DEE		1.67 1.67	2.83 2.83		1.67 1.67	2.83 2.83	mA
DC Quiescent Power Dissipation (Power Supply = ± 15 V, V ₀ = 0)	PD		50	85		50	85	mW
Positive Supply Sensitivity (VEE constant)	S+		30	150	-	30	150	μV/V
Negative Supply Sensitivity (V _{CC} constant)	s-		30	150		30	150	μV/V

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = 15 Vdc, T_A = +25^oC unless otherwise noted.)

 $(1) \ dV_O/dt = Slew Rate See current MC1741/1741C data sheet for additional information .$

MCCF1741/MCCF1741C BONDING DIAGRAM AND DEVICE DIMENSIONS

PACKAGING AND HANDLING

The popular 1741 type operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flip-chips, as well as in a variety of plastic hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

Bump Dia. at Base: 0.006 ± 0.001 in. Bump Height: 0.0040 ± 0.0005 in.

Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.

MFC4000B

AUDIO AMPLIFIER

TYPICAL APPLICATION

MAXIMUM RATINGS (T_A = + 25°C unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	12	Vdc
Power Dissipation (Package Limitation) (Soldered on a circuit board and held in free air)	1.0	Watt
Derate above $T_A = +25^{\circ}C$	10	mW/ ^o C
Operating Temperature Range	-10 to +75	°C

See Packaging Information Section for outline dimensions.

MFC4000B (continued)

ELECTRICAL CHARACTERISTICS* (V_{CC} = 9.0 Vdc, R_L = 16 Ohms, T_A = +25^oC unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Zero Signal Current Drain	-	3.0	5.0	mAdc
Sensitivity P _O = 250 mW(RMS)	-	-	240	mV(RMS)
Output Power Total Harmonic Distortion ≤10%	250	350	-	mW(RMS
Total Harmonic Distortion $P_O = 50 \text{ mW(RMS)}$ $P_O = 50 \text{ mW(RMS)}, V_{CC} = 6.0 \text{ Vdc}$		0.7 4.5		%

*As measured in test circuit shown in Figure 1.

FIGURE 1 - TEST CIRCUIT

8

8-645

TOTAL HARMONIC DISTORTION versus OUTPUT POWER

OUTPUT POWER, mW(RMS)

FIGURE 5 - TOTAL HARMONIC DISTORTION versus SUPPLY VOLTAGE

500 1000

CURRENT DRAIN, mA

MFC4010A

HIGH FREQUENCY CIRCUIT

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	18	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Limitation) Derate above 25 ⁰ C	PD	0.5	Watt mW/ ^O C
Operating Temperature Range	TA	-10 to +75	°c

ELECTRICAL CHARACTERISTICS (V⁺ = 6.0 Vdc, T_A = 25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain (Figure 3) (f = 1.0 kHz)	Avol	60	68	-	dB
h Parameters (1)	h11	-	1.0	-	k ohms
(f = 1.0 kHz)	h ₁₂	-	10 ⁻⁶	-	-
	h21	-	1000	-	
	h ₂₂		10 ⁻⁵	-	mhos
Output Noise Voltage (Figure 3) (BW = 20 Hz to 20 kHz, R _S = 1.0 k ohms)	en(out)	-	3.0	·	mV(rms)
Current Drain	۱ _D	-	3.0	-	mA

HIGH FREQUENCY CHARACTERISTICS (V⁺ = 12 Vdc, f = 10.7 MHz, $T_A = 25^{\circ}C$ unless otherwise noted)

Power Gain (Figure 1) (e _{in} = 0.1 mVrms)	_	-	42	-	dB
Noise Figure (Figure 1) (R _S ≈740 Ohms)	NF	-	6.0	_	dB
γ Parameters(1) (f = 10.7 MHz, I ₂ = 2.0 mA)	У11 У12 У21 У22		1.3 + j1.5 -3.4 + j8.1 -0.33 + j0.68 120 + j0	-	mmhos μmhos mhos μmhos

(1) Device only, without external passive components.

AUDIO PERFORMANCE CHARACTERISTICS

(for Test Circuit Figure 3)

*TAPE PREAMPLIFIER PERFORMANCE (for Circuit Figure 2)

FIGURE 7 – RECORD VOLTAGE GAIN versus FREQUENCY

FIGURE 8 – PLAYBACK VOLTAGE GAIN versus FREQUENCY

Note:

The record/playback characteristics shown in Figures 8 and 9 were taken with the preamplifier driven by a 50 ohm source. The curves are typical of a desired response for the preamplifier; how-ever, every type of tape recording and playback head is different and this circuit will not necessarily satisfy all requirements. No particular tape head was used as a basis for circuit design. The circuit is only an example showing the equalization network configuration.

The ideal preamplifier will have an input impedance approximately 10 times the highest impedance of the tape head and every preamplifier circuit must be designed using a test tape to verify the response of the design.

10.7 MHz y PARAMETERS

FIGURE 11 – FORWARD TRANSFER ADMITTANCE

FIGURE 12 - OUTPUT ADMITTANCE

10.7 MHz PERFORMANCE (Circuit of Figure 1)

8

MFC4040

SINGLE TOGGLE FLIP-FLOP

SINGLE TOGGLE FLIP-FLOP

- Wide Operating Voltage Range 6.0 to 16 Volts
- Regulated Supply Not Required
- Economical 4-Lead Plastic Package

SINGLE TOGGLE FLIP-FLOP

Silicon Monolithic Functional Circuit

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Value	Volts
Power Supply Voltage	19	Vdc
Output Sinking Current	10	mA
Negative Input Voltage	0.5	Vdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range	-10 to +75	°C

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (V _{CC} = 12 Vdc, V _{in} = 4.0 V(p-p) Square Pulse, f = 10 kHz, 50% Duty Cycle, t _{PHL} = 1.0 V/	′/μs,
$T_A = +25^{\circ}C$ unless otherwise noted.)	

Characteristic	Min	Тур	Max	Unit
Operating Power Supply Voltage	6.0	-	16	Vdc
Toggle Frequency	-	3.0	-	MHz
Output Voltage (High) (V _{CC} = 6.0 Vdc) (V _{CC} = 16 Vdc)	5.5 15.5	-		Vdc
Output Voltage (Low) (V _{CC} = 6.0 Vdc) (V _{CC} = 16 Vdc)			0.3 0.5	Vdc
Operating Drain Current (V _{CC} = 16 Vdc)	-	-	32	mAdc
Output Sinking Current $(V_O \leq 1.0 \text{ Vdc})$	-	2.0	-	mAdc
Rise Time	-	250	_	ns
Storage Time	-	350	_	ns
Fall Time	-	60	-	ns
Input Resistance	10	_	_	kΩ
Output Resistance (Output High)	_	-	2.8	kΩ

INPUT PULSE REQUIREMENTS

Vih Vil

	Characteristic	Min	Max	Unit	
_	Pulse Magnitude	+4.0	-	Volts	
ADING TRAILING EDGE	Zero Level	· _	+1.0	Volts	
DGE	Leading Edge		No Requirement		
t	Zero Level	-1.0	-	Volts ms	

MFC4050

AUDIO DRIVER

Advance Information

CLASS "A" AUDIO DRIVER

. . . designed for driving Class "A" PNP power output transistor stage applications.

- Drives to 4 Watts of Output Power
- Ideal for 12 Volt Automotive Equipment
- No Gain Selection of Power Transistors Necessary
- Economical 4-Lead Package

CLASS "A" AUDIO DRIVER Silicon Monolithic

Functional Circuit

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	18	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Dissipation)	PD	1.0	Watt
Derate above 25 ^o C	1/0 _{JA}	10	mW/ ^o C
Operating Temperature Range	ТА	-10 to +75	°C

See Packaging Information Section for outline dimensions.

FIGURE 2 - CIRCUIT SCHEMATIC

-

MFC4060A MFC4062A MFC4063A MFC4064A

MONOLITHIC VOLTAGE REGULATORS

This series of voltage regulators is designed to deliver load currents to 200 mAdc. Output current capability can be increased to several amperes through the use of external pass transistors. These devices are industrial quality regulators designed for consumer applications requiring high volume and low cost.

- Excellent Line and Load Regulation
- Economical Four-Lead Package

VOLTAGE REGULATORS

See Packaging Information Section for outline dimensions.

MFC4060A, MFC4062A, MFC4063A, MFC4064A (continued)

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

	Rating	Symbol	Value	/ Unit
Input Voltage	MFC4060A/MFC4062A MFC4063A/MFC4064A	Vin	38 22	Vdc Vdc
Maximum Load Current		ار ا	200	mAdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$		РD	1.0 10	Watt mW/ ^o C
Operating Temperature Ra	ange (Ambient)	TA	-10 to +75	°C
Storage Temperature Rang	je	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = +25^{\circ}C$, $V_{in} = 12$ Vdc, $V_O = 5.0$ Vdc, $I_L = 1.0$ mAdc, See Figure 1.)

			AFC4060	A		WFC4062	A		AFC4063	C4063A MFC			FC4064A	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	9.0	-	38	9.0	ł	38	9.0	Ą	22	9.0	-	22	Vdc
Output Voltage Range	vo	V _{ref}	-	35	Vref	-	35	Vref	A.	19	Vref	-	19	Vdc
Input-Output Voltage Differential	V _{in} -V _o	3.0	-	-	3.0	-	-	3.0	Ţ.	1	3.0		-	Vdc
Reference Voltage	V _{ref}	3.6	4.1	4.6	3.6	4.1	4.6	3.6	4.1	4.6	3.6	4.1	4.6	Vdc
Standby Current Drain (I _L = 0, V _{in} = 20 V)	Чв	-	3.7	6.0	-	3.7	7.0		3.7	6.0		3 .7	7.0	mAdc
Average Temperature Co- efficient of Output Voltage ($T_A = -10$ to +75°C)	тс _{VO}	-	0.003	0.03	-	0.003	0.03	$\mathcal{X}_{\mathcal{I}}$	0.003	0.03	-	0.003	0.03	%/ ^o C
Line Regulation $(V_0 = 7.5 V)$ $12 V \le V_{in} \le 18$ $12 V \le V_{in} \le 30$	Reg _{in}		 0.01	 0.03	11	11	 0.06		0.01	0.03			0.06	%/V _{in}
Load Regulation (1.0 mA $< I_L < 50$ mA)	RegL	-	0.03	0.2	-	1	0,4	0	0.03	0.2	-		0.4	%

LINE REGULATION $\%/v_{in} = \frac{\Delta v_0 \times 100}{\Delta v_{in} \times v_0}$

FM IF AMPLIFIER

FM LIMITING IF AMPLIFIER

. a monolithic silicon integrated circuit designed especially for 10.7 MHz IF applications.

Highlights Include:

- High Stable Gain @ 10.7 MHz (40 dB typ)
- Low Feedback Capacitance (|y₁₂| = 0.01 mmho typ)
- Non-Saturating Limiting (With Suitable Load)
- Compatible With CA3053 and µA703 (See Figures 7 and 8)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Symbol	Value	Unit
V+	20	Vdc
V4	20	Vdc
V2, V5	±5.0	Volts
PD	1.0	Watt
1/θ _{JA}	10	mW/ ⁰ C
TA	-10 to +75	°c
	ν+ V4 V2, V5 PD 1/θ JA	V+ 20 V4 20 V2, V5 ±5.0 PD 1.0 1/θ JA 10

FM IF AMPLIFIER

Silicon Monolithic

Functional Circuit

See Packaging Information Section for outline dimensions.

MFC6010 (continued)

Circuit for ID ID V+ = 12 Vdc	Characteristic	Symbol	Min	Тур	Max	Unit
	Total Current Drain	ЧD	-	-	10	mA
5 51	Output Quiescent Current	۱a	1.75	3.2	5.0	mA
Circuit for to ♥ V* = 12 Vdc	Output Saturation Voltage	V(sat)	-	3.5	_	Volts
Circuit for I_Q $V^+ = 12 Vdc$	Forward Transadmittance	¥21	25	-	-	mmhos
	Reverse Transadmittance	Y12	-	0.01	-	mmho
	Input Capacitance	C _{in}	-	6.0		pF
Circuit for 1/211 V+ = 12 Vdc	Input Conductance	G _{in}	-	0.4	-	mmho
\$ 240	Output Capacitance	Cout	-	2.5	-	pF
0.01 µF 2 93 ± 0.01 0.01 µF 50	Output Conductance	G _{out}	-	35	-	μmhos
$ \begin{array}{c} 50 \\ \hline 0 \\ \pm 10 \\ m \\ \hline 0 \\ $	Noise Figure (R _S = 750 Ω)	NF	-	7.0		dB
10.7 MHz	Maximum Stable Gain (Stern Factor = 3)	Av	-	40	_	dB
‡ 0.01 μF	Input Voltage (3.0 dB Limiting)	e _{in}	-	60	-	mV

ELECTRICAL CHARACTERISTICS (V⁺ = 12 Volts, f = 10.7 MHz, T_A = +25^oC, unless otherwise noted.)

FIGURE 2 - LIMITING CHARACTERISTICS

FIGURE 4 - CURRENT DRAIN AND OUTPUT CURRENT

TEST CIRCUITS

APPLICATIONS INFORMATION

Because of the low reverse transfer admittance of the MFC6010, stability will be dependent mainly upon circuit layout. With careful design, very high gain (in the order of 40 dB) may be achieved at 10.7 MHz. The bias and supply currents may be varied from their normal values (shown in Figure 4) by shunting additional resistance from pin 6 to ground or to the supply line.

Although less gain may be realized when using the MFC6010 as a limiter, it is recommended that it be operated in a non-saturated mode. This mode of operation results in a high output impedance at limiting. Therefore the operation of the demodulator circuit is not subject to variable loading of the limiter output.

In order to avoid driving the amplifier transistor components of the MFC6010 into saturation, the load resistance must be

chosen to ensure that current limiting occurs before the collector voltage drops to a value low enough to forward bias the collectorbase junction. In a transformer coupled circuit, the maximum allowable load can be derived from

$$R_{L} = \frac{2(V^{+} - V_{5})}{I_{0}}$$

where values for I_0 may be determined from Figure 4 (providing the bias currents have not been altered from their normal values). In order to avoid degradation of AM rejection, the input signal should not exceed one volt (rms).

COMPATIBLE FOIL PATTERNS

FIGURE 7 $- \mu$ A703 and MFC6010

FIGURE 8 - CA3053* and MFC6010

⁺Foil patterns shown are intended to show pin-for-pin interconnection. Any change in the number of components is dictated by the requirements of the individual design.

DUAL TOGGLE FLIP-FLOP

DUAL TOGGLE FLIP-FLOP

- Wide Operating Voltage Range 6.0 to 16 Volts
- Regulated Supply Not Required
- Economical 6-Lead Plastic Package

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Value	Volts
Power Supply Voltage	19	Vdc
Output Sinking Current	10	mA
Negative Input Voltage	0.5	Vdc
Power Dissipation (Package Limitation) Derate above T _A = +25 ⁰ C	1.0 10	Watts mW/ ^o C
Operating and Storage Junction Temperature Range	-40 to +125	oc
Operating Temperature	-10 to +75	°C

DUAL TOGGLE FLIP-FLOP Silicon Monolithic

Functional Circuit

CASE 643A PLASTIC PACKAGE

See Packaging Information Section for outline dimensions.

Characteristic	Min	Тур	Max	Unit
Operating Power Supply Voltage	6.0	_	16	Vdc
Toggle Frequency	See .	3.0	-	MHz
Output Voltage (High) (V _{CC} = 6.0 Vdc) (V _{CC} = 16 Vdc)	5.5 15.5			Vdc
Output Voltage (Low) (V _{CC} = 6.0 Vdc) (V _{CC} = 16 Vdc)			0.3 0.5	Vdc
Operating Drain Current (V _{CC} = 16 Vdc)	_		32	mAdc
Output Sinking Current (V _O ≤ 1.0 Vdc)	_	2.0	_	mAdc
Rise Time	-	250	-	ns
Storage Time	-	350	-	ns
Fall Time		60	-	ns
Input Resistance	10	-	-	kΩ
Output Resistance (Output High)	-	-	2.8	kΩ

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, V_{in} = 4.0 V, Square Pulse, f = 10 kHz, 50% Duty Cycle, t_{PHL} = 1.0 V/µs, T_A = +25^oC unless otherwise noted.)

INPUT PULSE REQUIREMENTS

Characteristic	Min	Max	Unit
Pulse Magnitude	+4.0	-	Volts
Zero Level	~	+1.0	Volts
Leading Edge		No Requirement	
Trailing Edge dv/dt	-1.0	-	Volts ms

FIGURE 2 - RMS CURRENT DRAIN versus SUPPLY VOLTAGE

See Packaging Information Section for outline dimensions.

MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted).

Rating	Symbol	Value	Unit
Input Voltage MFC6030A, MFC6032A MFC6033A, MFC6034A	V _{in}	38 22	Vdc
Maximum Load Current	۱	200	mAdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{O}C$	PD	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range (Ambient)	Тд	-10 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	oC

ELECTRICAL CHARACTERISTICS ($V_{in} = +12 \text{ Vdc}, V_O = +5.0 \text{ Vdc}, I_L = 1.0 \text{ mAdc}, R_{sc} = 0, T_A = +25^{\circ}C \text{ unless otherwise noted.}$ (See Figure 1)

			Jee i igui											
Characteristic		N	AFC6030	A	MFC6032A		N	1FC6033	6033A MFC6034A			A		
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	ax Unit
Input Voltage Range	Vin	9.0	-	38	9.0	-	38	9.0	-	22	9.0	-	22	Vdc
Output Voltage Range	vo	VRef	-	35	VRef	-	35	VRef	-	19	VRef	-	19	Vdc
Input-Output Voltage Differential	V _{in} -V _O	3.0	-	1	3.0	-	+	3.0	1	l	3.0	-		Vdc
Reference Voltage (R1 = 0)	∨ _{ref}	3.6	4.1	4.6	3.6	4.1	4.6	3.6	4.1	4.6	3.6	4.1	4.6	Vdc
Standby Current Drain (I _L = 0, V _{in} = 20 V)	IВ	-	3.7	6.0	1	3.7	7.0	4	3.7	6.0		3.7	7.0	mAdc
Average Temperature Co- efficient of Output Volt- age (T _A = -10 to+75 ⁰ C)		1	0.003	0.03	4	0.003	0.03	1	0.003	0.03	lana Arr	0.003	0.03	%/ ^o C
Line Reg. $(V_0 = 7.5 V)$ (12 V < V _{in} < 18) (12 V < V _{in} < 30)	Reg _{in}	1 1	 0.01	 0.03	1 1		0.06	1 1	0.01	0.03	-	-	0.06	%/V _{in}
Load Regulation (1.0 mA<1L<50 mA)	RegL	-	0.03	0.2	-	-	0.4	ł	0.03	0.2			0.4	%/V _O
Short-Circuit Current Limit (R _{sc} = 100 ohms, V _O = 0)	I _{sc}	+	6.5	+	1	6.5	+	4	6.5	-		6.5	_	mAdc

LINE REGULATION %/V_{in} = $\frac{\Delta V_0 \times 100}{\Delta V_{in} \times V_0}$ LOAD REGULATION % = $\frac{\Delta V_0}{V_0} \times 100$ $\label{eq:short-circuit current} \begin{array}{l} \text{SHORT-CIRCUIT CURRENT} \\ \text{I}_{SC} = \frac{\text{V}_{BE}}{\text{R}_{sc}} \approx \frac{0.65 \; (\text{at T}_{J} = +25^{\text{O}}\text{C})}{100 \; \text{ohms}} \end{array}$

TYPICAL CHARACTERISTICS

 $(V_{in} = 12 \text{ Vdc}, V_0 = 5.0 \text{ Vdc}, I_1 = 1.0 \text{ mAdc}, R_{sc} = 0, T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 4 – MAXIMUM LOAD CURRENT versus INPUT-OUTPUT VOLTAGE

MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

8-666

MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

TYPICAL APPLICATIONS (continued)

FIGURE 12 – CURRENT BYPASS (Load current range, 400-to-500 mA)

FIGURE 15 – VOLTAGE BOOSTED 40-VOLT, 100 mA REGULATOR (with short-circuit current limiting)

FIGURE 13 - 100 mA CONSTANT CURRENT SOURCE

ELECTRONIC ATTENUATOR

°C

0 to +75

See Packaging Information Section for outline dimensions.

Operating Temperature Range

Circuit	Characteristic	Min	Тур	Max	Unit
	Operating Power Supply Voltage	9.0	-	18	Vdc
	Control Terminal Sink Current (e _{in} = 0)	_	-	2.0	mAdc
	Maximum Input Voltage	-	-	0.5	V(RMS)
50 μF PC 10 06	Voltage Gain	11	13	-	dB
	Attenuation Range (R _C = 33 k ohms)	70	90	-	dB
	Total Harmonic Distortion (Pin 2 Gnd) (e _{in} = 100 mV (RMS), e _o = A _v x e _{in})	-	0.6	1.0	%

ELECTRICAL CHARACTERISTICS (e_{in} = 100 mV (RMS), f = 1.0 kHz, R1 = 0, V_{CC} = 16 Vdc, T_A = +25^oC unless otherwise noted.)

TYPICAL ELECTRICAL CHARACTERISTICS

(V_{CC} = 16 Vdc, T_A = +25^oC unless otherwise noted.)

8

8-670

DUAL TOGGLE FLIP-FLOP

DUAL TOGGLE FLIP-FLOP WITH RESET

- Wide Operating Voltage Range 6.0 to 16 Volts
- Regulated Supply Not Required
- Ideal for Remote Control Applications
- Economical 6-Lead Plastic Package
- Reset (R) Available to Set Output to 0 Regardless of Previous History

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Value	Volts
Power Supply Voltage	19	Vdc
Output Sinking Current	15	mA
Negative Input Voltage	0.5	Vdc
Power Dissipation (Package Limitation) Derate above T _A = +25 ⁰ C	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range	+10 to +75	°C

DUAL TOGGLE FLIP-FLOP WITH RESET

Silicon Monolithic Functional Circuit

CASE 643A PLASTIC PACKAGE

Ch	Min	Тур	Max	Unit	
Operating Power Supply Voltage	9	6.0	-	16	Vdc
Toggle Frequency		-	3.0		MHz
Output Voltage (High)			1		Vdc
(V _{CC} = 6.0 Vdc)	Q1	3.7			
	Q2	5.5	-	-	
(V _{CC} = 16 Vdc)	Q1	10	-	-	
	Q2	15.5			
Output Voltage (Low)					Vdc
(V _{CC} = 6.0 Vdc)		-	-	0.5	
(V _{CC} = 16 Vdc)			-	1.0	
Operating Drain Current		-	-	32	mAdc
Output Sinking Current		-	8.0	-	mAdc
$(V_O \leq 1.0 \text{ Vdc})$					
Rise Time		-	250	-	ns
Storage Time		-	350	-	ns
Fall Time		-	60		ns
Input Resistance		. 10		-	kΩ
Output Resistance (Output High	n)	-	-	6.0	kΩ

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, V_{in} = 4.0 V, Square Pulse, f = 10 kHz, 50% Duty Cycle, tp_{HL} = 1.0 V/µs (Min), $T_A = +25^{\circ}$ C unless otherwise noted.)

INPUT PULSE REQUIREMENTS

	Characteristic	Symbol	Min	Max	Unit
	Pulse Magnitude	VIH	+4.0	-	Volts
ILING GE	Zero Level	VIL	-	+1.0	Volts
t	Leading Edge		+0.1	-	V/µs
	Trailing Edge	$\frac{dv}{dt}$	-1.0	_	Volts µs

FIGURE 2 - RMS CURRENT DRAIN versus SUPPLY VOLTAGE

۷ін

VIL . O TR

ł

LEADING

EDGE

AUDIO POWER AMPLIFIER

1-WATT AUDIO POWER AMPLIFIER

. . . designed primarily for low-cost audio amplifiers in phonograph, TV and radio applications.

- 100 mV Sensitivity for 1-Watt*
- Low Distortion 1% @ 1-Watt typ*
- Short-Circuit Proof Short Term (10 seconds typ)
- No Heatsink Required for 1-Watt Output at $T_A = 55^{\circ}C^{**}$
- Excellent Hum Rejection

*Circuit Dependent **Voltage Dependent

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	20	Vdc
Power Dissipation Derate above T _A = +25 ^o C	Ρ _D 1/θ JA	1.0 8.0	Watt mW/ ⁰ C
Operating Temperature Range	ТА	-10 to +55	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	θ JA*	125	°C/W

*Thermal resistance is measured in still air with fine wires connected to the leads, representing the "worst case" situation.

For a larger power requirement, pin 1 must be soldered to at least one sq. in. of copper foil on the printed circuit board. The θ_{JA} will be no greater than +90°C/W. Thus, 1.39 Watts could be dissipated at +25°C, which must be linearly derated at 11.1 mW/°C from +25°C to +150°C.

1-WATT AUDIO POWER AMPLIFIER

Silicon Monolithic Functional Circuit

CASE 643A PLASTIC PACKAGE

See Packaging Information Section for outline dimensions.

unless otherwise noted)					
Characteristic	Symbol	Min	Тур	Max	Unit
Quiescent Output Voltage	Vo	-	8.0	-	Vdc
Quiescent Drain Current (ein = 0)	^I D	-	5.0	18	mA
Sensitivity, Input Voltage (e _{in} adjusted for e _o = 4.0 V(rms) @ 1.0 kHz, Power Output = 1.0 Watt)	e _{in}	-	100	150	mV
Total Harmonic Distortion (e ₀ = 4.0 V(rms) @ 1.0 kHz, Power Output = 1.0 Watt) (e _{in} adjusted for e ₀ = 1.26 V(rms) @ 1.0 kHz, Power Output = 100 mW)	THD	-	1.0 1.0	10 3.0	%
Hum and Noise (IHF Standard A201, 1966)	-	-	-40	-	dB

ELECTRICAL CHARACTERISTICS (V⁺ = 16 Vdc, See Figure 2 for test circuit, $T_A = +25^{\circ}C$ unless otherwise noted)

APPLICATIONS INFORMATION

Shown in Figures 7 and 11 are low cost 1 W phono amplifiers with a sensitivity (@ 1 kH2) of approximately 450 mV. The input impedance of both amplifiers is approximately equal to R4 and the gain is determined by (R7 + R10)/R5. To change the gain of the amplifier, change the value of R5 and hold (R7 + R10) between 1 M and 2.2 M. This allows the use of a small and less expensive capacitor for C2.

The bass boost effect shown in the frequency response curves (Figures 10 and 14) is provided by the parallel combination of C4 and R10 and can be eliminated by removing C4 and replacing (R7 + R10) with a 2.2 Megohm resistor. High frequency compensation is provided by C6 and the low frequency roll-off is determined by the impedance network of C2 and R5, C3 and R4, and C8 and the speaker. The series combination of R_A and C_A from pin 6 to ground may be required for stability, depending on printed circuit board layout, speaker reactance, and lead lengths.

Device ac short-circuit capability was tested in both the 8-ohm and 16-ohm amplifiers by shorting pin 6 thru a 500 microfarad capacitor to ground for a period of ten seconds with the amplifier operating at full rated output. The speaker can be connected to V⁺ (alternate connection shown below) or ground (Figures 7 and 11). Printed circuit board art work is shown for both systems in Figures 16 and 18. A picture of the completed board for the grounded speaker system is shown in Figure 21.

ALTERNATE CONNECTION FOR SPEAKER TO V⁺ (See Figure 20 for Parts List)

MFC8020A MFC8021A MFC8022A

CLASS B AUDIO DRIVERS

 \ldots . designed as preamplifiers and driver circuits for complementary output transistors.

• Driver for Auto Radios - and up to 20-Watt Amplifiers

- High Gain 7.0 mV for 1.0 Watt, RL = 3.2 Ohms
- High Input Impedance 500-Kilohm Capability
- Output Biasing Diodes Included
- No Special hFE Matching of Outputs Required

CASE 644A PLASTIC PACKAGE

CLASS B AUDIO DRIVERS SILICON MONOLITHIC FUNCTIONAL CIRCUITS

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

		Value		
Rating	MFC8020A	MFC8021A	MFC8022A	Unit
Power Supply Voltage	35	20	45	Vdc
Power Dissipation	1.0	1.0	1.0	Watt
Derate above T _A = +25 ^o C	10	10	10	mW/ ^o C
Peak Output Current (pins 5 & 8)	150	150	150	mA
Operating Temperature Range	-10 to +75	-10 to +75	-10 to +75	°C
Storage Temperature Range	-55 to +125	-55 to +125	-55 to +125	°C
THERMAL CHARACTERISTIC	Ś			
Characteristic			Value	Unit
Thermal Resistance			100	°C/W
Junction Temperature			125	°C

See Packaging Information Section for outline dimensions.

MFC8020A, MFC8021A, MFC8022A (continued)

ELECTRICAL CHARACTERISTICS (T _A =	+25 ^o C unless otherwise noted) (See Figure 2)
--	---

Characteristic		Min	Тур	Max	Unit
Drain Current (e _{in} = 0)					mA
$V_{CC} = 30 Vdc$	MFC8020A	-	10	30	
$V_{CC} = 14 \text{ Vdc}$	MFC8021A	-	7.0	30	
$V_{CC} = 40 V dc$	MF C8022A	-	12	30	
Sensitivity (P _O = 1.0 Watt, f = 1.0 kHz)					mV
$e_0 = 8.95 V(RMS), R_1 = 165 \Omega$	MFC8020A	-	89	112	
$e_0 = 3.2 V(RMS), R_1 = 65 \Omega$	MFC8021A	-	32	40	
$e_0 = 12.65 \text{ V(RMS)}, R_L = 165 \Omega$	MFC8022A	-	126	160	
Total Harmonic Distortion (f = 1.0 kHz)					%
V_{CC} = 30 V, e_0 = 8.95V(RMS), R_L = 165 Ω	MF C8020A	-	0.7	5.0	
V_{CC} = 14 V, e ₀ = 3.2V(RMS), R _L =65 Ω	MFC8021A	-	1.0	5.0	
V_{CC} = 40 V, e_o = 12.65 V(RMS), R_L = 165 Ω	MF C8022A	-	1.5	5.0	
Open-Loop Gain					dB
$V_{CC} = 30 V, R_1 = 165 \Omega$	MF C8020A	-	89	-	_
$V_{CC} = 14 \text{ V}, \text{ R}_{\text{L}} = 65 \Omega$	MFC8021A	_	87		
$V_{CC} = 40 \text{ V}, \text{ R}_{L} = 165 \Omega$	MF C8022A	-	90	-	
Ripple Rejection	and a stand of the standard st				dB
$f = 60 Hz$, $A_v = 100$, $e_{in} = 0$, Power Supply		-	27	-	
Ripple = 1.0 V(RMS)					
Equivalent Input Noise					μV
e _{in} = 0, R _S = 1.0 k Ω, BW = 100 Hz - 10 k	Hz	-	18	-	
Quiescent Output Voltage (ein = 0)					Vdc
$V_{CC} = 30 V$	MF C8020A	-	15	-	
$V_{CC} = 14 V$	MFC8021A		7.0	-	
$V_{CC} = 40 V$	MFC8022A	-	20	-	

FIGURE 2 – TEST CIRCUIT

MFC8020A, MFC8021A, MFC8022A (continued)

TYPICAL AUTO RADIO AUDIO APPLICATION and CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 4 – TOTAL HARMONIC DISTORTION versus OUTPUT POWER

FIGURE 5 – TOTAL HARMONIC DISTORTION versus FREQUENCY

APPLICATIONS INFORMATION for MFC8021A (AUTO RADIO AUDIO)

The MFC8021A combines all the voltage gain required for an automotive radio audio amplifier into one package reducing the circuit-board area requirement. The circuit shown in Figure 3 has an input sensitivity of approximately 7.2 millivolts for a one-watt output. Sensitivity can be adjusted by changing the value of R4. The circuit performance is a function of the output device hFE, as shown in Figure 4. Figure 4 can be used to determine the minimum hFE of the output transistors. The bandwidth of the amplifier is determined by the capacitor, C1. If C1 is increased to 390 oF the high frequency 3.0 dB point is typically 20 kHz.

An illustration of the copper side of the printed-circuit board layout is shown in Figure 7. The output transistors are mounted on the heatsink which for auto radio audio applications should have a maximum thermal resistance of 18°C/W for each device or 9.0°C/W when both output transistors are mounted on the same heatsink.

FIGURE 6 - FREQUENCY RESPONSE

FIGURE 7 – PRINTED CIRCUIT BOARD for AUTOMOTIVE RADIO AUDIO 10-and-20 WATT AMPLIFIERS (COPPER SIDE)

TYPICAL 10-and-20 WATT AMPLIFIER APPLICATION AND CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

APPLICATIONS INFORMATION for MFC8020A and MFC8022A (10-Watt and 20-Watt Amplifiers)

The MFC8020A and MFC8022A are high-voltage parts capable of driving 10-to-20 watt audio amplifiers. The gain of the circuit shown in Figure 8 changes when the value of R4 is varied and the bandwidth is determined by C_1 . Emitter resistors are required at the higher voltages used for 10-to-20 watt audio amplifiers to provide thermal stability. The value of RE is a function of the heatsink thermal resistance and supply voltage. The heatsink requirements for operation at $+65^{\circ}C$ (with both devices mounted on the same heatsink) is about 14°C/W for the 10-watt amplifier and 8.0°C/W for the 20-watt amplifier. If the maximum ambient operating temperature is reduced then the heatsink can be reduced in size as calculated by

$$\theta_{SA} = \frac{T_J - (\theta_{JS}) P_D - T_A}{P_D}$$

where

 θ_{SA} = Heatsink thermal resistance

T_J = Maximum junction operating temperature

 θ_{JS} = Junction to heatsink thermal resistance (includes all surface interface components for thermal resistance such as the insulating washer)

PD = Maximum power dissipation of transistors (This occurs at about 60% of maximum output power) 6.0 W for 10 W, 7.2 W for 12 W

T_A = Maximum ambient temperature

The printed circuit board layout is shown in Figure 7.

HIGH FREQUENCY CIRCUIT

DIFFERENTIAL/CASCODE AMPLIFIER

... designed for applications requiring differential or cascode amplifiers.

- Extremely Flexible Amplifier
- Diode Available for Biasing
- Economical 8-Staggered Lead Package

Functional Circuit

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	20	Vdc
Differential Input Voltage	V _{in}	±5.0	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Limitation)	PD	1.0	Watt
Derate above 25 ⁰ C	1/0 _{JA}	10	mW/ ^o C
Operating Temperature Range	тд	-10 to +75	°C

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (T_A = 25^oC unless otherwise noted)

AUDIO PREAMPLIFIER

LOW NOISE AUDIO PREAMPLIFIER

- ... designed for high-gain, low-noise applications.
- Special Monolithic ''State-of-the-Art'' Process to Insure Low Noise 1.0 μV (Typ)
- Can be Externally Equalized for NAB, RIAA
- Low Distortion 0.1% (Typ) @ Ay = 100
- Large Dynamic Range 7.0 V (rms) Out
- Low Output Impedance 100 Ohms (Max)

LOW NOISE AUDIO PREAMPLIFIER Silicon Monolithic

Functional Circuit

8

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	33	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Limitation)	PD	1.0	Watt
Derate above $T_A = 25^{\circ}C$	1 <i>/θ</i> JA	10	mW/ ⁰ C
Operating Temperature Range	ТА	-10 to +75	°C

FIGURE 1 – TYPICAL WIDEBAND AMPLIFIER CIRCUIT (A_V = 60 dB)

See Packaging Information Section for outline dimension».

Circuit Characteristic Symbol Min Тур Max Unit V⁺ = 30 Vdc Drain Current 12 mA 8.0 ۱D -10 1.0 µF 3 ⋺⊦ >110 v_{in} = 0 270 H 0.1 µF 30 Vdc тнр **Total Harmonic Distortion** _ <0.1 0.25 % $(v_0 = 1.0 V, f = 1.0 kHz)$ 100 3 ⋺⊦ 110 JμF Zout ╢ Input Impedance Zin 75 k ohms -------0.1 µ 270 k ٤ 22 100 75 Output Impedance Zout ohms -----_ ♥ V⁺ = 30 Vdc 6 Open Loop Voltage Ĝain AVOL 80 ----dB 0.1 µF 3 $(v_{in} = 100 \,\mu V(rms) @ f = 1.0 \,kHz)$ 升 ×in C 270 4 = 30 Vdc •v⁺ **þ**6 100 ₹ 1.0 3.0 Wideband Input Noise e_n ---μV 1.0 µF 3 (rms) (-3.0 dB Bandwidth, 10 Hz to 110 k 16 kHz, Ay = 60 dB @ 1.0 kHz, $\left(e_{n}=\frac{e_{o}}{A_{V}}\right)$ **₹**⁶²⁰ 0.1 µF 270 k 8 10 1 Ht 0.1 µF 7 ş 0.001 µF 75 I -=

ELECTRICAL CHARACTERISTICS (T_A = 25^oC unless otherwise noted)

FIGURE 2 - CIRCUIT SCHEMATIC

FIGURE 3 - INPUT NOISE

FIGURE 4 - OPEN LOOP TOTAL HARMONIC DISTORTION

ZERO VOLTAGE SWITCH

See Packaging Information Section for outline dimensions.

VEE

С

Rating	Symbol	Value	Unit
DC Voltage	V ₅₋₈	15	Vdc
DC Voltage	V ₄₋₈	15	Vdc
DC Voltage	V ₇₋₈	15	Vdc
Peak Supply Current	¹ 6	35	mA
Power Dissipation Derate above T _A = +25 ⁰ C	Ρ _D 1/ _{θ JA}	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range	TA	- 10 to +75	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

FIGURE 2 - OUTPUT PULSE DEFINITION

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Characteristic Definitions	Characteristic	Symbol	Min	Тур	Max	Unit
10 k 120 V(RMS) 60 Hz 2 W	V _S with Inhibit Output (Sw 1: A or B)	VSIO		9.0	11	Vdc
	Output Leakage Current (Sw 1: A or B)	IOL	_	5.0	100	μA
A 1 2 MFC8070	Input Current 1 (Sw 1: A)	1	-	5.0	15	μA
$\begin{bmatrix} 100 & 300 \\ \mu F \end{bmatrix} \xrightarrow{12} \xrightarrow{68} \xrightarrow{3} \begin{bmatrix} 8 \\ 8 \end{bmatrix} \times \begin{bmatrix} 8$	Input Current 2 (Sw 1: B)	12	-	5.0	15	μA
9.1 k	Inhibit Threshold Voltage (Sw 1: A or B)	Vтні	V _{ref} +100 mV	V _{ref} +10 mV	-	Vdc
120 V(RMS) 60 Hz 20 K	V _S with Pulse Output (Sw 1: A or B)	VSPO	6.0	8.5	_	Vdc
	Peak Output Current (Sw 1: A or B)	^I O pk	50	80	-	mA
9.1 k SW 1 A B 2 MFC8070 3 Vref	Pulse Threshold Voltage (Sw 1: A or B)	VTHP	-	V _{ref} -10 mV	V _{ref} -100 mV	Vdc
VS 100 360 VTHP 8 8 k	Output Pulse Width (Sw 1: A or B, See Figure 2)	<i>τ</i> Α, <i>τ</i> Β V <i>τ</i> Α, V <i>τ</i> Β	-	70 ±4.5	-	μs V
120 V(RMS) 60 Hz 2 W	Output Current With Input Short (Sw. 1: B; Sw. 2: A) (Sw. 1: A; Sw. 2: B)	ISC	-	5.0 5.0	100 100	μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0.0 · · · / , 0W 2. 0)			5.0	100	

TEST CIRCUIT AND TYPICAL CHARACTERISTICS

TYPICAL ZERO VOLTAGE SWITCH APPLICATIONS FOR TRIAC CONTROL

Basic triac trigger circuit utilizing the zero crossing detector and the input comparator to control triacs with gate current requirements to 500 mA.

FIGURE 6 – TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING DC SUPPLY

R2 must be the external sensor for the internal short and open protection to be operative.

FIGURE 7 - TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING AC SUPPLY

Recommended Mo	torola triacs for use in	n circuit.
Maximum Continuous Current (A [RMS])	Triac Family	Case No.
10	2N6151/2N6153 2N6346A/2N6349A	90 (Plastic) 221-024 (Plastic)
10	2N6139/2N6144	86, 250
25	2N6157/2N6165	174, 175, 235
40	2N5441/2N5446	237, 238, 239

PIN COMPARISON OF MFC8070 AND GEL300F1 (PA424/CA3059)

COMPATIBLE PRINTED CIRCUIT FOIL PATTERN FOR MFC8070, GEL300F1 (PA424) AND CA3059

OPERATIONAL AMPLIFIERS

BALANCE 0 5

MLM101A, MLM201A, MLM301A (continued)

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

		VALUE	
Rating	Symbol	MLM101A MLM201A MLM301A	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±22 ±22 ±18	Vdc
Differential Input Voltage	V _{in}	< ±30>	Volts
Common-Mode Input Swing (Note 1)	VICR	<	Volts
Output Short-Circuit Duration	ts	Continuous	
Power Dissipation (Package Limitation) Metal Can Derate above $T_A = +75^{\circ}C$ Plastic Dual In-Line Package (MLM201A/ Derate above $T_A = +25^{\circ}C$ 301A)	РD	500 6.8 625 5.0 5.0	mW mW/°C mW mW/ ⁰ C
Operating Temperature Range	TA	-55 to +125 -25 to +85 0 to +75	°C
Storage Temperature Range	Τ _{stg}		°C

Note 1. For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS (T_A = $+25^{\circ}$ C unless otherwise noted.) Unless otherwise specified, these specifications apply for supply voltages from ± 5.0 V to ± 20 V for the MLM101A and MLM201A, and from ± 5.0 V to ± 15 V for the MLM301A.

			MLM1014 MLM2014			MLM301A			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage (R _S ≤50 kΩ)	Vio	Sec. 3	0.7	2.0		2.0	7.5	mV	
Input Offset Current	10		1.5	10		3.0	.50	nA	
Input Bias Current	1 _{1B}	4	30	75		70	250	nA	
Input Resistance	Rin	1.5	4.0	2000	0.5	2.0		Megohms	
Supply Current $V_S = \pm 20 V$ $V_S = \pm 15 V$	ai	AA	1.8	3.0 _		1.8		mA	
Large Signal Voltage Gain $V_S = \pm 15 V$, $V_O = \pm 10 V$, $R_L > 2.0 k\Omega$)	Av	50	160	4	25	160		V/mV	

The following specifications apply over the operating temperature range.

Input Offset Voltage (R _S ≤ 50 kΩ)	Vio	-	4	3.0	-	-	10	mV
Input Offset Current	lio		a state and	20	-	-	70	nA
Average Temperature Coefficient of Input Offset Voltage $T_A(min) \leqslant T_A \leqslant T_A(max)$	Δ ν _{ιο} /Δτ		3.0	15		6.0	30	μV/°C
Average Temperature Coefficient of Input Offset Current $+25^{\circ}C \in T_A \leq T_A(max)$ $T_A(min) \leq T_A \leq 25^{\circ}C$	Δι ₁₀ /Δτ	A T	0.01 0.02	0.1 0.2	·	0.01 0.02	0.3 0.6	nA/°C
Input Bias Current	ПВ	2253		100		-	300	nA
Large Signal Voltage Gain V _S = \pm 15 V, V _O = \pm 10 V, R _L > 2.0 k Ω	A _v	25	, I		15		· - ·	V/mV
Input Voltage Range $V_S = \pm 20 V$ $V_S = \pm 15 V$	Vin	±15 -		11	±12	-	·	v
Common-Mode Rejection Ratio $R_S \leq 50 \ k\Omega$	CMRR	80	96		70	90	_	dB
Supply Voltage Rejection Ratio $R_S \leqslant 50 \ k\Omega$	PSSR	80	96		70	96	-	dB
Output Voltage Swing $V_S = \pm 15 V, R_L = 10 k\Omega$ $R_L = 2.0 k\Omega$	Vo	±12 ±10	±14 ±13		±12 ±10	+14 ±13	а Т	v
Supply Current ($T_A = T_A(max)$, $V_S = \pm 20 V$)	l D	-	1.2	2.5		[mA

MLM101A, MLM201A, MLM301A (continued)

TYPICAL CHARACTERISTICS

(V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25^oC unless otherwise noted.)

8-694

45

10

0

1.0 k

C1 = 30 pl

10 k

10 M

10 M

100 k

f, FREQUENCY (Hz)

+20

0

-20

1.0

10

100 1.0 k 10 k

f, FREQUENCY (Hz)

100 k

1.0 M

10 M

TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25^oC unless otherwise noted.)

See Packaging Information Section for outline dimensions.

MLM104G, MLM204G, MLM304G (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	MLM104G	MLM204G	MLM304G	Unit
Input Voltage	V _{in}	50	50	40	Vdc
Input-Output Voltage Differential	V _{in} -V _o	50	50	40	Vdc
Power Dissipation (See Note 1)	PD	680	680	680	mW
Operating Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°C
Lead Temperature (soldering, t = 10 s)	TS	300	300	300	°C

ELECTRICAL CHARACTERISTICS (See Note 2)

			MLM104G MLM204G			MLM304G		11-14
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	-8.0		-50	-8.0		-40	Volts
Output Voltage Range	V _o	-0.015		-40	-0.035	·	-30	Volts
Output-Input Voltage Differential I _O = 20 mA I _O = 5.0 mA	V _{in} -V _o	2.0 0.5		50 50	2.0 0.5		40 40	Volts
Load Regulation $0 \leq I_0 \leq 20 \text{ mA}, R_{SC} = 15\Omega$	Regload		1.0	5.0		1.0	5.0	mV
Line Regulation V ₀ ≤-5.0 V, △ V _{in} = 0.1 V	Reg _{in}		0.056	0,1		0.056	0.1	%
Ripple Rejection (See Figure 1) (C ₁ = 10 μ F, f = 120 Hz) V _{in} \leq -15 V -7.0 V \geq V _{in} \geq -15 V	Rej _R		0.2 0.5	0.5 1.0		0.2 0.5	0.5 1.0	mV/V
Output Voltage Scale Factor R ₁ = 2.4 k Ω (See Figures 1,2 and 3)	SF	1.8	2.0	2.2	1.8	2.0	2.2	V/k Ω
Temperature Stability $V_0 \leq -1.0 V$ $V_0 \leq -1.0 V$, $0^{\circ}C \leq T_A \leq +70^{\circ}C$	TCV ₀ △V ₀ /△T		0.3	1.0		0.3	 1.0	%
Output Noise Voltage (See Figure 1) (10 Hz \leq f \leq 10 kHz) V ₀ \leq -5.0 V, C ₁ = 0 C ₁ = 10 μ F	V _n		0.007 15		-	0.007 15	_	% µV
Standby Current Drain (I _L = 5.0 mA) $V_0 = 0$ $V_0 = -40 V$ $V_0 = -30 V$	۱ _В		1.7 3.6	2.5 5.0		1.7 3.6	2.5 _ 5.0	mA
Long Term Stability $V_0 \leq -1.0 V$	S		0.1	1.0	-	0.1	1.0	%

Note 1. The maximum junction temperature of the MLM104G is +150°C, for the MLM204G - +100°C, and for the MLM304G - +85°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of 150°C/W - junction to ambient, or 45°C/W - junction to case.

Note 2. These specifications apply for junction temperatures of -55°C to +150°C for the MLM104G; -25°C to +100°C for the MLM204G; and 0 to +85°C for the MLM304G. The specifications also apply for input and output voltages within the indicated ranges (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.

See Packaging Information Section for outline dimensions.

MLM105G, MLM205G, MLM305G (continued)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	MLM105G	MLM205G	MLM305G	Unit
Input Voltage	V _{in}	50	50	40	Vdc
Input-Output Voltage Differential	V _{in} -V _o	40	40	40	Vdc
Power-Dissipation (See Note 1)	PD	680	680	680	mW
Operating Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	- 65 to +150	°C
Lead Temperature (soldering, t = 10 s)	т _S	300	300	300	°C

ELECTRICAL CHARACTERISTICS (See Note 2)

			MLM105G MLM205G		- 1	MLM305G			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Voltage Range	V _{in}	8.5		50	8.5		40	Volts	
Output Voltage Range	Vo	4,5	-	40	4.5		30	Volts	
Output-Input Voltage Differential	V _{in} -V _o	3.0	-	30	3.0		30	Volts	
Load Regulation (See Figure 1) $(0 \le I_0 \le 12 \text{ mA})$	Regload							%	
R _{SC} = 18 Ω, T _A = +25 ^o C		-	0.02	0.05	-	0.02	0.05		
$R_{SC} = 10 \Omega$, $T_A = T_{high}^*$			0.03	0.1	-	0.03	0.1		
R _{SC} = 18 Ω, T _A = T _{low} **			0.03	0.1		0.03	0.1		
Line Regulation V_{in} ·V _o \leq 5.0 V V_{in} ·V _o \geq 5.0 V	Regin	141	0.025 0.015	0.06 0.03		0.025 0.015	0.06 0.03	%/V	
Ripple Rejection (See Figure 1) $C_{ref} = 10 \ \mu F$, f = 120 Hz	Δν _ο ν _ο Δν _i	-	0.003	0.01	1.0	0.003	0.01	%/V	
Temperature Stability $T_{IOW}^{**} \leq T_A \leq T_{high}^{*}$	TCVo	1	0.3	1.0		0.3	1.0	%	
Feedback Sense Voltage	V _{ref}	1.63	1.7	1.81	1.63	1.7	1.81	Volts	
Output Noise Voltage (See Figure 1) (10 Hz $\leq f \leq 10$ kHz) C _{Ref} = 0 C _{Ref} > 0.1 μ F	V _n	1.1	0.005 0.002	1.4		0.005 0.002		%	
Standby Current Drain Vin = 50 V Vin = 40 V	IВ		0.8	2.0		0.8	2.0	mA	
Long Term Stability	S	-	0.1	1.0	·	0.1	1.0	%	
*T _{high} = +125 ^o C for MLM105G +85 ^o C for MLM205G +70 ^o C for MLM305G	**Tlow =	-25 ⁰ C fo	or MLM1050 or MLM2050 or MLM3050	i		Lungen ,	.		

0°C for MLM305G

Note 1. The maximum junction temperature of the MLM105G is +150°C, for the MLM205G - +100°C, and for the MLM305G - +85°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of 150°C/W - junction to ambient, or 45^oC/W - junction to case.

Note 2. These specifications apply for junction temperatures of -55°C to +150°C for the MLM105G, -25°C to +85°C for the MLM205G, and 0 to +70°C for the MLM305G. Specifications also apply for input and output voltages within the indicated ranges and for a divider impedance sensed by the feedback terminal of 2.0 kilohms (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.

OPERATIONAL AMPLIFIERS

INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER

A general purpose operational amplifier series well suited for applications requiring lower input currents than are available with the popular MC1741. These improved input characteristics permit greater accuracy in sample and hold circuits and long interval integrators.

- Internally Compensated
- Low Offset Voltage: 2.0 mV max (MLM107G)
- Low Input Offset Current: 10 nA max (MLM107G)
- Low Input Bias Current: 75 nA max (MLM107G)

OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED

METAL PACKAGE CASE 601

See Packaging Information Section for outline dimensions.

MLM107G, MLM207G, MLM307G (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	MLM107G	MLM207G	MLM307G	Unit
Power Supply Voltages	V _{CC} V _{EE}	+22 -22	+22 -22	+18 -18	Vdc
Differential Input Signal Voltage	VID	±30	±30	±30	Volts
Common-Mode Input Swing (Note 1)	VICR	±15	±15	±15	Volts
Output Short-Circuit Duration	tOS	T	Indefinite		
Power Dissipation (Package Limitation) (Note 2)	PD	500	500	500	mW
Operating Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°C

ELECTF	RICAL	CHAR	ACTE	RISTICS	(T _A = +25	5 ⁰ C unless	otherwise	noted,	see Note 3.)	

			ALM1070		N			
Characteristics	Symbol	Min	Typ	Max	Min	Тур	Max	Unit
Input Offset Voltage	Viol							mV
Rs ≤10 kΩ, T _Δ = +25 ⁰ C			0.7	2.0	_	-	-	
$R_S \leq 10 k\Omega$, $T_A = T_{low}$ to T_{high}				3.0		-	-	
R _S ≤ 50 kΩ, T _A = +25 ^o C				1-	- 1	2.0	7.5	
R _S ≤50 kΩ, T _A = T _{low} to T _{high}					_	-	10	
Input Offset Current	101	A State						nA
$T_{A} = +25^{\circ}C$			1.5	10	- 1	3.0	50	
T _A = T _{low} to T _{high}		2332		20		-	70	
Input Bias Current	Чв	1000		a second				nA
$T_{A} = +25^{\circ}C$			30	75	-	70	250	
T _A = T _{low} to T _{high}		1922		100	_	-	300	
Input Resistance	R _{in}	1.5	4.0	-	0.5	2.0	-	Megohms
Supply Current	¹ D		5396-S		2	1		mA
$V_{S} = \pm 20 V, T_{A} = \pm 25^{\circ}C$		100	1.8	3.0	-	-	-	
$V_{S} = \pm 20 V$, $T_{A} = T_{high}$ $V_{S} = \pm 15 V$, $T_{A} = \pm 25^{0}C$			1.2	2.5		1.8	3.0	
		1000	a and a second				+	V/mV
Large-Signal Voltage Gain V _S = ±15 V, V _O = ±10 V, R _L > 2.0 k Ω , T _A = +25 ^o C	Av	50	160		25	160	_	v/mv
$V_{S} = \pm 15 V, V_{O} = \pm 10 V, R_{L} \ge 2.0 k\Omega, T_{A} = T_{low}$		25			15	-	-	
Average Temperature Coefficient of Input Offset Voltage	ITCVIO	1000				ł	t	μV/°C
$T_{low} \le T_A \le T_{high}$	1,00101		3.0	15	- 1	6.0	30	<i>µv</i> , 0
Average Temperature Coefficient of Input Offset Current						t	1	nA/ºC
$+25^{\circ}C \le T_{A} \le T_{high}$	TC ₁₀		0.01	0.1	_	0.01	0.3	
$T_{10w} \le T_A \le +25^{\circ}C$			0.02	0.2		0.02	0.6	
Output Voltage Swing (T _A = T _{low} to T _{high})	Vo		25555			1	1	v
$V_{S} = \pm 15 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$		±12	±14		±12	+14		
$R_{L} = 2.0 k\Omega$		±10	±13		±10	±13	-	
Input Voltage Range (T _A = T _{low} to T _{high})	V _{in R}					T	I	V
$V_{S} = \pm 20 V$		±15			- 1	-	-	
V _S = ±15 V			-		±12	- '	-	
Common-Mode Rejection Ratio ($T_A = T_{low}$ to T_{high})	CMRR				1			dB
R _S ≤50 kΩ		80	96		70	90		L
Supply-Voltage Rejection Ratio (T _A = T _{low} to T _{high})	VSRR						1.	dB
R _S		80	96		70	96	-	1

Note 1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. For operating at elevated temperatures, the device must For operating at elevated temperatures, the device must be derated based on a maximum junction temperature of $+150^{\circ}$ C for the MLM107G, and 100° C for the MLM207G and MLM307G. The TO-99 package is derated based on a thermal resistance of $+150^{\circ}$ C/W, junction to ambient, or $+45^{\circ}$ C/W, junction to case. Note 3. Unless otherwise noted, these specifications apply for: $$\mathsf{T}_{\mathsf{low}}$ \ensuremath{\mathsf{T}_{\mathsf{high}}}$$

 $\begin{array}{c} T_{low} & T_{high} \\ \pm 5.0 \ \forall \leq \forall_S \leq \pm 20 \ \forall, \ -55^{\circ}C \leq T_A \leq \pm 125^{\circ}C, \ \text{MLM107G} \end{array}$ $\pm 5.0 \ \forall \le \forall_S \le \pm 20 \ \forall, \ -25^{\circ}C \le T_A \le \ +85^{\circ}C, \ MLM207G$ $\pm 5.0 V \le V_{S} \le \pm 15 V$, $O^{o}C \le T_{A} \le \pm 70^{o}C$, MLM307G

TYPICAL CHARACTERISTICS ($V_{CC} = +15 V$, $V_{EE} = -15 V$, $T_{A} = +25^{\circ}C$ unless otherwise noted.)

FIGURE 3 - MINIMUM VOLTAGE GAIN

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 2 - MINIMUM OUTPUT VOLTAGE SWING

FIGURE 4 - TYPICAL SUPPLY CURRENTS

FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE

VOLTAGE REGULATOR

MLM109 MLM209 MI M309

MONOLITHIC POSITIVE THREE - TERMINAL FIXED VOLTAGE REGULATOR

A versatile positive fixed +5.0-volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged.

In most applications only one external component, a capacitor, is required in conjunction with the MLM109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator.

- High Maximum Output Current Over 1.0 Ampere in TO-3 type Package - Over 200 mA in TO-39 Package
- Minimum External Components Required
- Internal Short-Circuit Protection
- Internal Thermal Overload Protection
- Excellent Line and Load Transient Rejection
- Designed for Use with Popular MDTL and MTTL Logic

distance from power supply filter.

Although no output capacitor is needed for stability, it does improve transient response.

MLM109, MLM209, MLM309 (continued)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	Vin	35	Vdc
Power Dissipation	PD	Internally Limited	
Junction Temperature Range	Тј		°C
MLM109		-55 to +150	
MLM209		-55 to +150	
MLM309		0 to +125	
Storage Temperature Range	T _{stg}	-65 to +150	oC
Lead Temperature (soldering, t = 60 s)	тs	300	°C

ELECTRICAL CHARACTERISTICS

		MLM109 / MLM209			MLM309 (2)			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ⁰ C)	vo	4.7	5.05	5.3	4.8	5.05	5.2	Vdc
Input Regulation (T _J = +25 ^o C)	Reg _{in}		4.0	50	-	4.0	50	m∨
7.0 ≤ $V_{in} \le 25 V$ Load Regulation (T _J = +25 ^o C) Case 11.01 (type TO-3) 5.0 mA ≤ 1 _O ≤ 1.5A Case 79.02 (TO-39) 5.0 mA ≤ 1 _O ≤ 0.5A	Regload		50 20	100		50 20	100	m∨
Output Voltage Range 7.0 V \leq V _{in} \leq 25 V 5.0 mA \leq I _O \leq I _{max} , P \leq P _{max}	vo	4.6		5.4	4.75		5.25	Vdc
Quiescent Current (7.0 V \leq V _{in} \leq 25 V) Quiescent Current Change (7.0 V \leq V _{in} \leq 25 V) 5.0 mA \leq 1 _Q \leq 1 _{max}	IВ IВ		5.2	10 0.5 0.8	-	5.2 - -	10 0.5 0.8	mAdc
Output Noise Voltage ($T_A = +25^{\circ}C$) 10 Hz $\leq f \leq 100$ kHz	VN	Ŧ	40	-	-	40		μ∨
Long Term Stability	S	2 C.M.	5 C.	10			20	mV
Thermal Resistance, Junction to Case ③ Case 11-01 (type TO-3) Case 79-02 (TO-39)	θJC	4	3.0 15	-		3.0 15		°C/W

NOTES

 $(1) Unless otherwise specified, these specifications apply for -55°C <math>\leq T_{J} \leq +150°$ (-25°C $\leq T_{J} \leq +150°$ C for the MLM209). For Case 79.02 (TO 39) V_{in} = 10 V, I_O = 0.1 A, I_{max} = 0.2 A and P_{max} = 2.0 W. For Case 11.01 (type TO-3) V_{in} = 10 V, I_O = 0.5 A, I_{max} = 1.0 A and P_{max} = 20 W.

(2) Unless otherwise specified, these specifications apply for 0°C ≤ T_J ≤ +125°C, V_{in} = 10V. For Case 79 02 (TO-39) I_O = 0.1A, I_{max} = 0.2A and P_{max} = 2.0 W. For Case 11:01 (type TO-3) I_O = 0.5 A, I_{max} = 1.0 A and P_{max} = 20 W.

(3) Without a heat sink, the thermal resistance of the Case 79-02 (TO-39) package is about 150°C/W, while that of the Case 11-01 (type TO-3) package is approximately 35°C/W. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the heat sink.

TYPICAL CHARACTERISTICS

(V_{in} = 10 V, T_A = +25^oC unless otherwise noted.)

TYPICAL CHARACTERISTICS (continued) ($V_{in} = 10 V, T_A = +25^{\circ}C$ unless otherwise noted.)

FIGURE 4 – MAXIMUM AVERAGE POWER DISSIPATION (MLM309G)

FIGURE 5 - OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 7 – PEAK OUTPUT CURRENT (G PACKAGE)

FIGURE 6 - PEAK OUTPUT CURRENT (K PACKAGE)

MLM109, MLM209, MLM309 (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 - OUTPUT VOLTAGE

FIGURE 13 - QUIESCENT CURRENT

FIGURE 10 – DROPOUT CHARACTERISTIC (K PACKAGE)

FIGURE 14 - QUIESCENT CURRENT

TYPICAL APPLICATIONS

FIGURE 16 - CURRENT REGULATOR

FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR

FIGURE 17 – 5.0-VOLT, 3.0-AMPERE REGULATOR (with plastic boost transistor)

FIGURE 19 – 5.0-VOLT, 10-AMPERE REGULATOR

FIGURE 18 – 5.0 VOLT, 4.0-AMPERE TRANSISTOR (with plastic Darlington boost transistor)

FIGURE 20 – 5.0-VOLT, 10-AMPERE REGULATOR (with Short-Circuit Current Limiting for Safe-Area Protection of pass transistors)

OPERATIONAL AMPLIFIER

MONOLITHIC OPERATIONAL AMPLIFIER VOLTAGE FOLLOWER

The MLM110G, MLM210G, and MLM310G are functionally, electrically, and pin-for-pin equivalent to the LM110, LM210, and LM310 respectively.

- Input Bias Current: 10 nA maximum over Temperature Range
- Small-Signal Bandwidth: 20 MHz typical
- Slew Rate: 30 Volts/µs typical
- Supply Voltage Range: ± 5.0 V to ± 18 V

OPERATIONAL AMPLIFIER VOLTAGE FOLLOWER INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED

METAL PACKAGE CASE 601

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol	MLM110G	MLM210G	MLM310G	Unit
Power Supply Voltage	V _{CC} (max) V _{EE} (max)	+18 -18	+18 -18	+18 -18	Vdc
Input Voltage (Note 1)	VIC	± 15	± 15	±15	Volts
Output Short Circuit Duration (Note 2)	T _{sc}		Indefinite		
Power Dissipation (Package Limitation) (Note 3)	PD	500	500	500	mW
Operating Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°C
Lead Temperature (soldering, t = 10 s)	TS	300	300	300	°C

ELECTRICAL CHARACTERISTICS (See Note 4)

		MLM110G MLM210G				MLM310G		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage T _A = +25 ^o C T _A = T _{Iow} * to T _{high} **	VIO	1 1	1.5	4.0 6.0	1.1	2.5 	7.5 10	mV
Input Bias Current T _A = +25 ⁰ C T _A = T _{Iow} to T _{high}	IВ	-	1.0 _	3.0 10	1.1	2.0 _	7.0 10	nA
Input Resistance	ri	1010	1012	-	1010	1012		ohms
Input Capacitance	Ci		1.5	-		1.5	- 4	pF
Large-Signal Voltage Gain (V _S = \pm 15 V, V _O = +10 V) T _A = +25°C, R _L = 8.0 k ohms T _A = T _{Iow} to Thigh, R _L = 10 k ohms	Avs	0.999 0.999	0.9999	-	0.999 0.999	0.9999	-	V/V
Output Resistance $T_A = +25^{\circ}C$	ro	-	0.75	2.5	-	0.75	2.5	ohms
Small-Signal Bandwidth	BW	-	20	-	-	20		MHz
Slew Rate	SR	-	30	-		30		V/µs
Supply Current T _A = +25 ⁰ C T _A = T _{high}	۵	-	3.9 2.0	5.5 4.0		3.9 _	5.5	mA
Offset Voltage Temperature Drift $-55^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $T_{A} = +125^{\circ}C$ $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	Δν ₁₀ /Δτ	-	6.0 12 -	-		- - 10	-	μV/ ^o C
Output Voltage Swing V _S = ± 15 V, R _L = 10 k ohms	vo	±10	· -	-	± 10	4 S	-	Volts
Supply Voltage Rejection Ratio $\pm 5/0 V \leqslant V_S \leqslant \pm 18 V$	PSRR	70	80	-	70	80	- 	dB

 $T_{10W} = -55^{\circ}C$ for MLM110G = -25^{\circ}C for MLM210G

= 0°C for MLM310G

**T_{high} = +125^oC for MLM110G = +85^oC for MLM210G

- = +70°C for MLM310G
- Note 1. For supply voltages less than \pm 15 volts, the absolute maximum input voltage is equal to the supply voltage.
- Note 2. A continuous short-circuit duration capability is specified A commodes another threat duration capability is specified for MLM110G and MLM210G as follows: case temperatures up to +125°C and ambient temperatures up to +70°C, for the MLM310G up to +70°C case temperature and +55°C ambient temperature apply. A resistor (greater than 2.0 kilohms) must be inserted in series with the input when the amplifier is driven from a low impedance source, thus preventing damage when the output is shorted.
- Note 3. The maximum junction temperature of the MLM110 is +150°C, for the MLM210G +100°C, and for the MLM310G +85°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of 150° C/W – junction to ambient, or 45° C – junction to case.
- Note 4. All listed specifications apply for \pm 5.0 V \leq V_S \leq \pm 18 V and $T_A = +25^{\circ}C$ unless otherwise noted.
- Note 5. Increased output swing under load can be obtained by connecting an external resistor between the booster and $V_{\mbox{\scriptsize EE}}$ terminals (pins 4 and 5).

See Packaging Information Section for outline dimensions.

MLM111, MLM211, MLM311 (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

		Va	lue	
Rating	Symbol	MLM111 MLM311 MLM211		Unit
Total Supply Voltage	V _{CC} + V _{EE}		36	Vdc
Output to Negative Supply Voltage	VO-VEE	50	40	Vdc
Ground to Negative Supply Voltage	VEE	30	30	Vdc
Differential Input Voltage	VID	±30	±30	Vdc
Input Voltage (See Note 1)	Vin	±15	±15	Vdc
Power Dissipation (Pkg. Limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Plastic [*] and Ceramic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$	PD	4 5 3 6	80 6 00 .3 25 .0	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperatures Range MLM111 MLM211 MLM311	ТА	-55 to +125 -25 to +85 -	- 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	oC

*MLM311P1 only is available in the plastic dual in-line package.

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25^oC unless otherwise noted.)

Characteristic			MLM111 MLM211			MLM311			
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit mV nA nA V/mV ns V mA nA nA	
$ \begin{array}{l} \mbox{Input Offset Voltage (See Note 2.)} \\ \mbox{R}_S \leqslant 50 \ \mbox{k} \Omega, \ \mbox{T}_A = +25^o C \\ \mbox{R}_S \leqslant 50 \ \mbox{k} \Omega, \ \mbox{T}_{Iow}^* \leqslant \mbox{T}_A \leqslant \mbox{T}_{high}^* \end{array} $	V10		0.7	3.0 4.0	-	2.0	7.5 10	mV	
Input Offset Current (See Note 2.) $T_A = +25^{\circ}C$ $T_{Iow} \leqslant T_A \leqslant T_{high}$	011	4	4.0	10 20		6.0	50 70	nA	
Input Bias Current $T_A = +25^{\circ}C$ $T_{low} \leqslant T_A \leqslant T_{high}$	¹ IB	-	60	100 150		100	250 300	nA	
Voltage Gain	Av	-	200		and a strength of the	200	1.000	V/mV	
Response Time (See Note 3.)	^t TLH	4	200			200		ns	
$ \begin{array}{l} \mbox{Saturation Voltage} \\ T_A = +25^OC, \ V_{ID} \leqslant -5.0 \ mV, \ I_O = 50 \ mA \\ V_{ID} \leqslant -10 \ mV, \ I_O = 50 \ mA \\ T_{Iow} \leqslant T_A \leqslant T_{high}, \ V_{CC} \geqslant 4.5 \ V, \ V_{EE} = 0 \\ V_{ID} \leqslant -6.0 \ mV, \ I_{sink} \leqslant 8.0 \ mA \\ V_{ID} \leqslant -10 \ mV, \ I_{sink} \leqslant 8.0 \ mA \\ \end{array} $	Vol		0.75	1.5 0.4 		0.75 		v	
Strobe "On" Current	1s		3.0		2004 - B	3.0	-	mA	
$ \begin{array}{l} \text{Output Leakage Current} \\ T_{\text{A}} = +25^{\text{O}}\text{C}, \ V_{\text{ID}} \geqslant 5.0 \ \text{mV}, \ V_{\text{O}} = 35 \ \text{V} \\ V_{\text{ID}} \geqslant 10 \ \text{mV}, \ V_{\text{O}} = 35 \ \text{V} \\ T_{\text{Iow}} \leqslant T_{\text{A}} \leqslant T_{\text{high}}, \ V_{\text{ID}} \geqslant 5.0 \ \text{mV}, \ V_{\text{O}} = 35 \ \text{V} \end{array} $	IOL		0.2 	10 0.5		0.2	50	nA	
Input Voltage Range Tlow ≤TA ≤Thigh	VIR	_	±14			±14		V	
Positive Supply Current	'cc	-	+5.1	+6.0	the state of the s	+5.1	+7.5	mA	
Negative Supply Current	IEE.		-4.1	-5.0		-4.1	-5.0	mA	

Thigh = +125^oC for MLM111 = +85^oC for MLM211 $T_{10W} = -55^{\circ}C$ for MLM111

= -25⁰C for MLM211 = 0 for MLM311

= +70°C for MLM311

This rating applies for ±15-volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input Note 1. voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less.

Note 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0-mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.

Note 3. The response time specified is for a $100\mbox{-}mV$ input step with 5.0-mV overdrive.

MLM111, MLM211, MLM311 (continued)

TYPICAL CHARACTERISTICS

0 -0.5 -1.0 -1.5 -1.5 COMMON-WODE LIMIT REFERENCED -2.0 -2.5 MLM111 AND MLM211 ONLY POSITIVE T0 VCC (VCC - V) COMMON-MODE LIMIT NEGATIVE COMMON-MODE LIMIT +120 +140 +80 +100 +20 -60 -40 -20 0 +40 +60 T, TEMPERATURE (°C)

FIGURE 3 - COMMON-MODE LIMITS versus TEMPERATURE

FIGURE 5 – EQUIVALENT OFFSET ERROR versus INPUT RESISTANCE

MLM111, MLM211, MLM311(continued)

APPLICATIONS INFORMATION

FIGURE 6 - ZERO-CROSSING DETECTOR DRIVING

MMH0026 MMH0026C

Specifications and Applications Information

DUAL MOS CLOCK DRIVER

 \ldots designed for high-speed driving of highly capacitive loads in a MOS system.

- Fast Transition Times 20 ns with 1000 pF Load
- High Output Swing 20 Volts
- High Output Current Drive ± 1.5 Amperes
- High Repetition Rate 5.0 to 10 MHz Depending on Load
- MTTL and MDTL Compatible Inputs
- Low Power Consumption when in MOS "0" State 2.0 mW
- +5.0-Volt Operation for N-Channel MOS Compatibility

80 NC

(Top View)

See Packaging Information Section for outline dimensions.

MMH0026, MMH0026C (continued)

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	Symbol		Value		Unit
Differential Supply Voltage	V _{CC} -V _{EE}		+22		Vdc
Input Current	lin		+100		mA
Input Voltage	Vin	V _{EE} + 5.5			Vdc
Peak Output Current	Opk	±1.5			A
· · · · · · · · · · · · · · · · · · ·		G Pkg.	L Pkg.	PI Pkg.	
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$	PD	680	1000	830	mW
Thermal Resistance, Junction to Air $T_C = 25^{\circ}C$	θJA PD	220 2.1	150 3.0	150 1.8	°C/W W
Thermal Resistance, Junction to Case	θJC	70	50	70	^o C/W
Junction Temperature	Тј	+175	+175	+150	°C
Operating Temperature Range	ТА				°C
MMH0026 MMH0026C		-55 to +125 0 to +85	-55 to +125 0 to +85	 0 to +85	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC}-V_{EE} = 10 V$ to 20 V, $C_L = 1000 pF$, $T_A = -55$ to $+125^{\circ}C$ for MMH0026 and 0 to $+85^{\circ}C$ for MMH0026C for min and max values; $T_A = +25^{\circ}C$ for all typical values unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Logic "1" Level Input Voltage VO = VEE + 1.0 Vdc	VIH	VEE + 2.5	V _{EE} + 1.5		Vdc
Logic ''1'' Level Input Current V _{in} -V _{EE} = 2.5 Vdc, V _O = V _{EE} + 1.0 Vdc	μц	_	10	15	mA
Logic "0" Level Input Voltage V _O = V _{CC} =1.0 Vdc	VIL	-	VEE + 0.6	VEE + 0.4	Vdc
Logic "0" Level Input Current $V_{in}-V_{EE} = 0 Vdc, V_{O} = V_{CC} - 1.0 Vdc$	hι	-	-0.005	-10	μA
Logic "0" Level Output Voltage V _{CC} = +5.0 Vdc, V _{EE} = -12 Vdc, V _{in} = -11.6 Vdc V _{in} -V _{EE} = 0.4 Vdc	VOH	4.0 V _{CC} -1.0	4.3 V _{CC} -0.7	-	Vdc
Logic ''1'' Level Output Voltage V _{CC} = +5.0 Vdc, V _{EE} = -12 Vdc, V _{in} = -9.5 Vdc V _{in} -V _{EE} = 2.5 Vdc	VOL	_	-11.5 VEE + 0.5	-11 V _{EE} + 1.0	Vdc
'On'' Supply Current V _{CC} -V _{EE} = 20 Vdc, V _{in} -V _{EE} = 2.5 Vdc	ICCL	-	30	40	mA
"Off" Supply Current V _{CC} -V _{EE} = 20 Vdc, V _{in} -V _{EE} = 0 V	1ссн		10	100	μA

SWITCHING CHARACTERISTICS (See Figure 2.) ($V_{CC}-V_{EE}$ = 10 V to 20 V, C_L = 1000 pF, T_A = -55 to +125^oC for MMH0026 and 0 to +85^oC for MMH0026C for min and max values; T_A = +25^oC for all typical values unless otherwise noted.)

Propagation Time High to Low Low to High	tPHL tPLH	5.0 5.0	7.5 12	12 15	ns
Transition Time (High to Low) $V_{CC}-V_{EE} = 17 Vdc, C_L = 250 pF$ $V_{CC}-V_{EE} = 17 Vdc, C_L = 500 pF$ $V_{CC}-V_{EE} = 20 Vdc, C_L = 1000 pF$	^t THL		12 15 20	 18 35	ns
Transition Time (Low to High) $V_{CC}-V_{EE} = 17 \text{ Vdc}, C_L = 250 \text{ pF}$ $V_{CC}-V_{EE} = 17 \text{ Vdc}, C_L = 500 \text{ pF}$ $V_{CC}-V_{EE} = 20 \text{ Vdc}, C_L = 1000 \text{ pF}$	тсн		10 12 17	 16 25	ns

TEST CIRCUIT

FIGURE 2 - AC TEST CIRCUIT AND WAVEFORMS

TYPICAL APPLICATIONS

FIGURE 4 – DC-COUPLED RAM MEMORY ADDRESS OR PRECHARGE DRIVER (POSITIVE-SUPPLY ONLY)

 $\label{eq:transformation} \begin{array}{c} \textbf{TYPICAL CHARACTERISTICS} \\ (\textbf{V}_{CC} = + \ 20 \ \textbf{V}, \ \textbf{V}_{EE} = 0 \ \textbf{V}, \ \textbf{T}_{A} = + 25^{o} C \ \textbf{unless otherwise noted.}) \end{array}$

FIGURE 6 - SUPPLY CURRENT versus TEMPERATURE 9.0 DUTY CYCLE = 20% f=1MHz CL=0pF ICC, SUPPLY CURRENT (mA) 0'0 0'0 VCC-VEE = +20 V VCC-VEE = +17 V 5.0 -50 -25 +25 +50 +75 +100 +125 -75 0 T, TEMPERATURE (°C)

FIGURE 8 - TRANSITION TIMES versus LOAD CAPACITANCE

 $\label{eq:type} \begin{array}{l} \textbf{TYPICAL CHARACTISTICS} \ (continued) \\ (V_{CC} = + 20 \ V, \ V_{EE} = 0 \ V, \ T_A = +25^{\circ}C \ unless \ otherwise \ noted.) \end{array}$

FIGURE 15 – MAXIMUM DC POWER DISSIPATION versus DUTY CYCLE (SINGLE DRIVER)

FIGURE 12 – PROPAGATION DELAY TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)

FIGURE 14 – DC-COUPLED SWITCHING versus C_{in} (See Figure 4.)

FIGURE 16 – AC POWER DISSIPATION versus FREQUENCY (SINGLE DRIVER)

APPLICATIONS INFORMATION

OPERATION OF THE MMH0026

The simplified schematic diagram of MMH0026, shown in Figure 17, is useful in explaining the operation of the device. Figure 17 illustrates that as the input voltage level goes high, diode D1 provides an 0.7-volt "dead zone" thus ensuring that O2 is turned "on" and Q4 is turned "off" before Q7 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if Q7 and Q4 were allowed to be "on" simultaneously for an instant of time. Diode D2 prevents "zenering" of Q4 and provides an initial discharge path for the output capacitive load by way of Q2.

As the input voltage level goes low, the stored charge in $\Omega 2$ is used advantageously to keep $\Omega 2$ "on" and $\Omega 4$ "off" until $\Omega 7$ is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of C_{in} goes negative with respect to V_{EE} causing $\Omega 9$ to conduct momentarily thus assuring rapid turn "off" of $\Omega 7$.

FIGURE 17 - SIMPLIFIED SCHEMATIC DIAGRAM (Ref.: Figure 1)

The complete circuit, Figure 1, basically creates Darlington devices of transistors Q7, Q4 and Q2 in the simplified circuit of Figure 17. Note in Figure 1 that when the input goes negative with respect to VEE, diodes D7 through D10 turn "on" assuring faster turn "off" of transistors Q1, Q2, Q6 and Q7. Resistor R6 insures that the output will charge to within one V_{BE} voltage drop of the V_{CC} supply.

SYSTEM CONSIDERATIONS

Overshoot:

In most system applications the output waveform of the MMH0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount of resistance required is given by: $R_S = 2\sqrt{L/C_L}$ where L is the inductance of the line and CL is the load capacitance. In most cases a series of damping resistor in the range of 10-to-50 ohms will be sufficient. The damping resistor also affects the transition times of the outputs. The speed reduction is given by the formula:

 $t_{THL} \approx t_{TLH} = 2.2 \text{ R}_{S} \text{ C}_{L}$ (R_S is the damping resistor). Crosstalk:

The MMH0026 is sensitive to crosstalk when the output voltage level is high ($V_O \approx V_{CC}$). With the output in the high voltage level state, O3 and Q4 are essentially turned "off". Therefore, negative-going crosstalk will pull the output down until Q4 turns "on" sufficiently to pull the output back towards V_{CC} . This problem can be minimized by placing a "bleeding" resistor from the output to ground. The "bleeding" resistor should be of sufficient size so that Q4 conducts only a few milliamperes. Thus, when noise is coupled, Q4 is already "on" and the line is quickly clamped by Q4. Also note that in Figure 1 D6 clamps the output one diode-voltage drop above V_{CC} for positive-going crosstalk.

Power Supply Decoupling:

The decoupling of V_{CC} and V_{EE} is essential in most systems. Sufficient capacitive decoupling is required to supply the peak surge currents during switching. At least a 0.1_{μ} F to 1.0_{μ} F low inductive capacitor should be placed as close to each driver package as the layout will permit.

Input Driving:

For those applications requiring split power supplies $(V_{EE} < GND)$, ac coupling, as illustrated in Figure 3, should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performance is attained when the voltage at

APPLICATIONS INFORMATION (continued)

the input of the MMH0026 discharges to just above the device's threshold voltage (about 1.5 V). Figure 7 shows optimum values for C_{in} versus the desired output pulse width. The value for C_{in} may be roughly predicted by:

$$C_{in} = (2 \times 10^{-3}) (PW_0).$$
 (1

For an output pulse width of 500 ns, the optimum value for $C_{\mbox{in}}$ is:

 $C_{in} = (2 \times 10^{-3}) (500 \times 10^{-9}) = 1000 \text{ pF}.$

If single supply operation is required (VEE = GND), then dc coupling as illustrated in Figure 4 can be employed. For maximum switching performance, a speed-up capacitor should be employed with dc coupling. Figures 13 and 14 show typical switching characteristics for various values of input resistance and capacitance.

POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

or

$$T_{J} = T_{A} + P_{D} (\theta_{JA})$$

 $T_{I} = T_{A} + P_{D} (\theta_{IC} + \theta_{CA})$

where

T_J = junction temperature

T_A = ambient temperature

P_D = power dissipation

 $\theta_{\rm JC}$ = thermal resistance, junction to case

 θ_{CA} = thermal resistance, case to ambient

 θ_{JA} = thermal resistance, junction to ambient.

Power Dissipation for the MMH0026 MOS Clock Driver: The power dissipation of the device (P_D) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. This power dissipation, when substituted into equation (3), should not yield a junction temperature, TJ, greater than TJ(max) at the maximum encountered ambient temperature. TJ(max) is specified for three integrated circuit packages in the maximum ratings section of this data sheet.

TABLE 1 - THERMAL CHARACTERISTICS OF "G", "L" AND "P1" PACKAGES

PACKAGE TYPE	θ _{JA} (^o C/W) Still Air		θ _{JC} (^o C/W) Still Air			
(Mounted in Socket)	MAX	ТҮР	MAX	ТҮР		
"G" (Metal Package)	220	175	70	40		
"L" (Ceramic Package)	150	100	50	. 27		
"P1" (Plastic Package)	150	100	70	40		

FIGURE 18 – MAXIMUM POWER DISSIPATION versus AMBIENT TEMPERATURE (As related to package)

With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (2) or (3) and the maximum thermal resistance values given in Table 1 or alternately, by using the curves plotted in Figure 18. If, however, the power dissipation determined by a given system produces a calculated junction temperature in excess of the recommended maximum rating for a given package type, something must be done to reduce the junction temperature.

There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring T_J to an acceptable value. Secondly, the θ_{CA} term can be reduced. Lowering the θ_{CA} term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

(2)

(3)

MMH0026, MMH0026C (continued)

APPLICATIONS INFORMATION (continued)

The following examples illustrate the thermal considerations necessary to increase the power capability of the MMH0026.

Assume that the ceramic package is to be used at a maximum ambient temperature (T_A) of $+70^{\circ}C$. From Table 1: $\theta_{JA}(max) = 150^{\circ}C/watt$, and from the maximum rating section of the data sheet: $T_J(max) = +175^{\circ}C$. Substituting the above values into equation (3) yields a maximum allowable power dissipation of 0.7 watts. Note that this same value may be read from Figure 18. Also note that this power dissipation value is for the device mounted in a socket.

Next, the maximum power consumed for a given system application must be determined. The power dissipation of the MOS clock driver is conveniently divided into dc and ac components. The dc power dissipation is given by:

$$P_{dc} = (V_{CC} - V_{EE}) \times (I_{CCL}) \times (Duty Cycle)$$
(4)
where I_{CCL} = 40 mA ($\frac{V_{CC} - V_{EE}}{20 V}$).

Note that Figure 15 is a plot of equation (4) for three values of $(V_{CC}-V_{EE})$. For this example, suppose that the MOS clock driver is to be operated with $V_{CC} = +16$ V and $V_{EE} = GND$ and with a 50% duty cycle. From equation (4) or Figure 15, the dc power dissipation (per driver) may be found to be 256 mW. If both drivers within the package are used in an identical way, the total dc power dissipation is 700 mW, the maximum ac power that can be dissipated for this example becomes:

 $P_{ac} = 0.7 - 0.512 = 188 \text{ mW}$ The ac power for each driver is given by:

 $P_{ac} = (V_{CC} - V_{EE})^2 \times f \times C_L$ where f = frequency of operation

C_L = load capacitance (including all strays and wiring).

Figure 16 gives the maximum ac power dissipation versus switching frequency for various capacitive loads with $V_{CC} = 16$ V and $V_{EE} = GND$. Under the above conditions, and with the aid of Figure 16, the safe operating area beneath Curve A of Figure 19 can be generated. Since both drivers have a maximum ac power dissipation of 188 mW, the maximum ac power per driver becomes 94 mW. A horizontal line intersecting all the capacitance load lines at the 94 mW level of Figure 16 will yield the maximum frequency of operation for each of the capacitive loads at the specified power level. By using the previous formulas and constants, a new safe operating area can be generated for any output voltage swing and duty cycle desired.

Note from Figure 19, that with highly capacitive loads, the maximum switching frequency is very low. The switching frequency can be increased by varying the following factors:

- (a) decrease TA
- (b) decrease the duty cycle
- (c) lower package thermal resistance θ_{JA} .

In most cases conditions (a) and (b) are fixed due to system requirements. This leaves only the thermal resistance $\theta_{\rm JA}$ that can be varied.

Note from equation (2) that the thermal resistance is comprised of two parts. One is the junction-to-case thermal resistance (θ_{JC}) and the other is the case-to-ambient thermal resistance (θ_{CA}). Since the factor θ_{JC} is a function of the die size and type of bonding employed, it cannot be varied. However, the θ_{CA} term can be changed as previously discussed, see Page 7.

FIGURE 19 – LOAD CAPACITANCE versus FREQUENCY FOR "L" PACKAGE ONLY (Both drivers used in identical way)

Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 20. In the previous example, with the ceramic package, no heat sink and in a still air environment, $\theta_{JA}(max)$ was 150°C/W.

For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the θ_{CA} for natural convection from Figure 21 is 44°C/W. From Table 1 $\theta_{JC}(max) = 50°C/W$ for the ceramic

(5)

MMH0026, MMH0026C (continued)

APPLICATIONS INFORMATION (continued)

FIGURE 20 - THERMALLOY* HEAT SINKS

package. Therefore, the new $\theta_{JA}(\text{max})$ with the 6012B heat sink added becomes:

 $\theta_{JA}(max) = 50^{\circ}C/W + 44^{\circ}C/W = 94^{\circ}C/W.$

Thus the addition of the heat sink has reduced $\theta_{JA}(max)$ from 150°C/W down to 94°C/W. With the heat sink, the maximum power dissipation by equation (3) at $T_A = +70^{\circ}$ C is:

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{94^{\circ}C/W} = 1.11$$
 watts

This gives approximately a 58% increase in maximum power dissipation. The safe operating area under Curve C of Figure 19 can now be generated as before with the aid of Figure 16 and equation (5).

FIGURE 21 – CASE TEMPERATURE RISE ABOVE AMBIENT versus POWER DISSIPATED USING

Forced Air Considerations:

As illustrated in Figure 22, forced air can be employed to reduce the θ_{JA} term. Note, however, that this curve is expressed in terms of typical θ_{JA} rather than maximum θ_{JA} . Maximum θ_{JA} can be determined in the following manner:

From Table 1 the following information is known:

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

(a) $\theta_{JA}(typ) = 100^{\circ}C/W$ (b) $\theta_{JC}(typ) = 27^{\circ}C/W$

Since:

Then:

$$\theta_{CA} = \theta_{JA} - \theta_{JC} \tag{7}$$

(6)

Therefore, in still air

 $\theta_{CA}(typ) = 100^{\circ}C/W - 27^{\circ}C/W = 73^{\circ}C/W$

From Curve 1 of Figure 22 at 500 LFPM and equation (7),

 $\theta_{CA}(typ) = 53^{\circ}C/W - 27^{\circ}C/W = 26^{\circ}C/W.$

Thus $\theta_{CA}(typ)$ has changed from 73°C/W (still air) to 26°C/W (500 LFPM), which is a decrease in typical θ_{CA} by a ratio of 1:2.8. Since the typical value of θ_{CA} was reduced by a ratio of 1:2.8, $\theta_{CA}(max)$ of 100°C/W should also decrease by a ratio of 1:2.8.

This yields an $\theta_{CA}(max)$ at 500 LFPM of 36°C/W.

Therefore, from equation (6):

 $\theta_{JA}(max) = 50^{\circ}C/W + 36^{\circ}C/W = 86^{\circ}C/W.$

Therefore the maximum allowable power dissipation at 500 LFPM and T_A = +70°C is from equation (3):

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{+86^{\circ}C/W} = 1.2$$
 watts.

APPLICATIONS INFORMATION (continued)

As with the previous examples, the dc power at 50% duty cycle is subtracted from the maximum allowable device dissipation (P_D) to obtain a maximum P_{ac} . The safe operating area under Curve D of Figure 19 can now be generated from Figure 16 and equation (5).

Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of θ_{CA} for still air and forced air such as illustrated in Figure 23. For example the 6012B heat sink has an $\theta_{CA} = 17^{\circ}$ C/W at 500 LFPM as noted in Figure 23. From equation (6):

Max $\theta_{JA} = 50^{\circ}C/W + 17^{\circ}C/W = 67^{\circ}C/W$

From equation (3) at $T_A = +70^{\circ}C$

$$P_{\rm D} = \frac{175^{\circ}{\rm C} - 70^{\circ}{\rm C}}{67^{\circ}{\rm C/W}} \ 1.57 \ \text{watts}.$$

As before this yields a safe operating area under Curve E in Figure 19.

Note from Table 1 and Figure 22 that if the 14-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath), that typical θ_{JA} is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine a safe operating area for this condition.

Given data from Table 1:

typical
$$\theta_{JA} = 100^{\circ}C/W$$

typical $\theta_{JC} = 27^{\circ}C/W$

From Curve 2 of Figure 22, $\theta_{JA}(typ)$ is 75°C/W for a PC mount and no air flow. Then the typical θ_{CA} is 75°C/W – 27°C/W = 48°C/W. From Table 1 the typical value of θ_{CA} for socket mount is 100°C/W – 27°C/W = 73°C/W. This shows that the PC board mount results in a decrease in typical θ_{CA} by a ratio of 1:1.5 below the typical value of θ_{CA} in a socket mount. Therefore, the maximum value of socket mount θ_{CA} of 100°C/W should also decrease by a ratio of 1:1.5 when the device is mounted in a PC board. The maximum θ_{CA} becomes:

$$\theta_{CA} = \frac{100^{\circ}C/W}{1.5} = 66^{\circ}C/W$$
 for PC board mount

Therefore the maximum θ_{JA} for a PC mount is from equation (6).

 $\theta_{JA} = 50^{\circ}C/W + 66^{\circ}C/W = 116^{\circ}C/W.$

With maximum θ_{JA} known, the maximum power dissipation can be found and the safe operating area determined as before. See Curve B in Figure 19.

CONCLUSION

In most cases, heat sink manufacturer's publish only θ_{CA} socket mount data. Although θ_{CA} data for PC mounting is generally not available, this should present no problem. Note in Figure 22 that an air flow greater than 250 LFPM yields a socket mount heta JA approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of θ_{CA} on the type environment and measurement techniques employed. For example, θ_{CA} would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

INTEGRATED CIRCUITS

PACKAGING

INTEGRATED CIRCUITS APPLICATION NOTES

10-1

APPLICATION NOTE ABSTRACTS

The application notes listed in this section have been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the AN number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

AN-204A The MC1530, MC1531 Integrated Operational Amplifiers

Two new high performance monolithic operational amplifiers feature exceptionally high input impedance and high open loop gain. This note describes the function of each stage in the circuit, methods of frequency compensating and DC biasing. Four applications are discussed: a summing circuit, an integrator, a DC comparator, and transfer function simulation.

AN-226 Thermal Measurements on Semiconductors

This note describes the techniques used by Motorola to obtain the thermal resistance of transistors, rectifiers, and thyristors.

AN-245A An Integrated Core Memory Sense Amplifier

This application note discusses core memories and related design considerations for a sense amplifier. Performance and environmental specifications for the amplifier design are carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and measured performance is discussed. The amplifier features a small uncertainty region (6 mV max), adjustable voltage gain, and fast cycle time $(0.5 \,\mu s)$.

AN-247A An Integrated Circuit RF-IF Amplifier

A new, versatile integrated circuit for RF-IF applications is introduced which offers high gain, extremely low internal feedback and wide AGC range. The circuit is a common-emitter, common-base pair (the cascade connection) with an AGC transistor and associated biasing circuitry. The amplifier is built on a very small die and is economically comparable to a single transistor, yet it offers performance advantages unobtainable with a single device. This application note describes the AC and DC operation of the circuit, a discussion of Y-parameters for calculating optimum power and voltage gain, and a variety of applications as an IF single-tuned amplifier, IF staggertuned amplifier, oscillator, video-audio amplifier and modulator. A discussion of noise figure is also included.

AN-248 The MC1533 Monolithic Operational Amplifier

This note introduces a high voltage monolithic operational amplifier featuring high open loop gain,

large common mode input signal, and low drift. The function of each stage in the circuit is analyzed, and methods for frequency compensating the amplifier are discussed. DC biasing parameters are also examined. Four applications using the amplifier are discussed: a source follower, a twin tee filter and oscillator, a voltage regulator, and a high input impedance voltmeter.

AN-261A Transistor Logaritmic Conversion Using an Operational Amplifier

The design of a log amplifier using a common base transistor configuration as the feedback element of an integrated circuit operational amplifier circuit is discussed in this application note. Six decades of logarithmic conversion are obtained with less than 1%error of output voltage. The possible causes of error are discussed followed by two applications: direct multiplication of two numbers, and solution of the equation $Z = X^n$.

AN-273A More Value out of Integrated Operational Amplifier Data Sheets

The operational amplifier is rapidly becoming a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also, each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input offset circuits are also reviewed with respect to closed loop operation.

AN-290B Mounting Procedure for, and Thermal Aspects of, Thermopad Plastic Power Devices

Many Motorola power devices are now available in the Plastic Thermopad packages. Three package types are presently available. This application note provides information concerning the handling and mounting of these packages, as well as information on some thermal aspects.

AN-299 An IC Wideband Video Amplifier with AGC

This application describes the use of the MC1550 as a wideband video amplifier with AGC. The analysis of a single stage amplifier with 28 dB of gain and 22 MHz bandwidth is given with the results extended to a 78 dB video amplifier with 10 MHz bandwidth.

AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier

This application note discusses four different applications for the MC1554, along with a circuit description including DC characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

AN-403 Single Power Supply Operation of IC Op Amps A split zener biasing technique that permits use of the MC1530/1531, MC1533, and MC1709 operational amplifiers and their restricted temperature counterparts MC1430/1431, MC1433 and MC1709C from a single power supply voltage is discussed in detail. General circuit considerations as well as specific AC and DC device considerations are outlined to minimize operating and design problems.

AN-404 A Wideband Monolithic Video Amplifier

This note describes the basic principles of AC and DC operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.

AN-407 A General Purpose IC Differential Output Operational Amplifier

This application note discusses four different applications for the MC1520 and a complete description of the device itself. The final sections of the note discuss such topics as operation from single and split power supplies, frequency compensation, and various feedback schemes.

AN-411 The MC1535 Monolithic Dual Op Amp

This note discusses two dual operational amplifier applications and an input compensation scheme for fast slew rate for the MC1535. A complete AC and DC circuit analysis is presented in addition to many of the pertinent electrical characteristics and how they might affect the system performance.

AN-421 Semiconductor Noise Figure Considerations

A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figure, and noise figurefrequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various methods of data sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.

AN-432B A Monolithic Integrated FM Stereo Decoder System

This application note discusses the circuit approach that has been taken in the realization of the first monolithic integrated stereo multiplex decoder built for consumer usage, as well as some of the details concerning its incorporation in an FM stereo receiver.

AN-439 MC1539 Op Amp and its Applications

This application note discusses the MC1539, a second generation operational amplifier. The general use and operation of the amplifier is discussed with special mention made of improved operation over that of its first generation predecessor—the 709 type amplifier.

In addition to the detailed discussion on the DC and AC operation of the device, considerable emphasis is placed on operational performance. Many applications are offered to demonstrate the device capability, including a high frequency feed-forward scheme, and a source follower application.

AN-453 Zero Point Switching Techniques

This note discusses two unique pulse-type thyristor triggering circuits which meet the exact timing requirements of zero-point switching. They dissipate very little power and can be used with either sensitive or "shorted" gate devices.

AN-459 A Simple Technique for Extending Op Amp Power Bandwidth

The design of fast response amplifiers is presented without the use of "tricky" compensation procedures.

AN-460 Using Transient Response to Determine Operational Amplifier Stability

Analysis and an example are given for a technique that evaluates the stability of any particular feedback amplifier configuration by analyzing its response to a step-function input.

AN-471 Analog-to-Digital Conversion Techniques

The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms from a system point of view and is intended to assist the reader in determining which conversion technique is best suited for a given application.

AN-473 A Monolithic High-Power Series Voltage Regulator

This note discusses MC1560/MC1561 voltage regulator in terms of internal operation, development of these circuits, and how they are advantageously used in supply fabrication.

APPLICATION NOTE ABSTRACTS (continued)

AN-474 The MC1541–A Gated Dual-Channel Sense Amplifier for Core Memories

The MC1541 sense amplifier can provide many magnetic core memory systems with lower system cycle times and a lower package count than with previous sense amplifiers. Circuit operation, design considerations, interface problems and typical applications are discussed.

AN-475 Using the MC1545–A Monolithic, Gated-Video Amplifier

Because of the unique design of the MC1545, this amplifier can be used as a gated video amplifier, sense amplifier, amplitude modulator, frequency shift keyer, balanced modulator, pulse amplifier, and many other applications. This note describes the AC and DC operation of the circuit and presents applications of the device as a video switch, amplitude modulator, balanced modulator, pulse amplifier, and others.

AN-480 Regulators Using Operational Amplifiers

The theory of op amp voltage regulator design is discussed. The problem areas associated with such designs are also detailed. The MC1560 is used as a OTC voltage reference in the op amp regulator designs that are shown. It is shown that regulation from 0.01% to 0.001% is possible.

AN-489 Analysis and Basic Operation of the MC1595

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

AN-491 Gated Video Amplifier Applications The MC1545

This application note reviews the basic operation of the MC1545 and discusses some of the more popular applications for the MC1545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.

AN-498 Voltage and Current Boost Techniques Using The MC1560-61

The stability requirements for the current boosted MC1560-61 are discussed. Both internal and external compensation techniques are shown, along with heat-sink design information and typical circuits, including a self-oscillating switching regulator, and a voltage boost circuit.

AN-499 Shutdown Techniques for the MC1560-61/69 Monolithic Voltage Regulators

This note discusses the many ways one can use the shutdown control for the MC1560 Monolithic Voltage Regulator. These include logic control, short circuit detection, over voltage detection, junction temperature control, and thermal feedback. Also discussed, are current foldback and methods of restarting automatically from the shutdown state. The techniques discussed apply equally to the MC1560, MC1561, and MC1569 positive voltage regulators.

AN-500 Development, Analysis, and Basic Operation of the MC1560-61 Monolithic Voltage Regulators

In this note, the anlysis and basic operation of the MC1560 and the MC1561 voltage regulators are discussed. The tests and parameters used on the data sheet are considered, and the problems of specifying a monolithic voltage regulator are identified. The basic circuit configurations are shown with some insight for the typical performance one can expect.

AN-513 A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

AN-522 The MC1556 Operational Amplifier and its Applications

This application note discusses the MC1556, a second generation, internally compensated monolithic operational amplifier. Particular emphasis is placed on its distinct advantages over the early 709-type amplifier and the more recent 741-type amplifier.

Along with a description of its operation this note presents a discussion on various applications of the MC1556, highlighting its capabilities, and points out its characteristics so the reader may make effective use of the device.

AN-531 MC1596 Balanced Modulator

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators for AM, SSB, and suppressed carrier AM; demodulators for the previously mentioned modulation forms; frequency doublers and HF/VHF double balanced mixers.

AN-533 Semiconductors for Plated-Wire Memories

An introduction to the operation and electrical characteristics of plated-wire memories is provided in conjunction with the applications of semiconductors that interface with the plated-wire memories.

Devices discussed include drivers, sense amplifiers, and decoders. Memory organization and memory-related semiconductor applications are also mentioned.

AN-543 Integrated Circuit IF Amplifiers for AM/FM and FM Radios

This application note discusses the design and performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.

AN-545 Television Video IF Amplifier Using Integrated Circuits

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, MC1353 and the MC1330.

AN-547 A High-Speed Dual Differential Comparator, The MC1514

This application note discusses a few of the many uses for the MC1514 dual comparator. Many applications such as sense amplifiers, multivibrators, and peak level detectors are presented.

AN-552 The Control Engineer's Guide to IC Applications

This report is a guide to the use of integrated circuits, and as such provides practical solutions to a number of common problems encountered in circuits used for sensing and control which must operate in an industrial environment. The report is divided into two parts-digital ICs and linear ICs.

AN-553 A New Generation of Integrated Avionic Synthesizers

The need to generate signals of a multitude of different frequencies for avionic systems has resulted in complex solutions in the past. With the introduction of certain standard product integrated circuits, frequency synthesis using digital phase locked loop techniques presents a more practical solution. Several different types of servo phase locked loop systems are discussed and a practical design example is given. Results of design examples are presented along with possible applications.

AN-557 Analog-to-Digital Cyclic Converter

The A/D cyclic converter discussed in this note provides medium speed $(1-5\mu s/bit)$ and medium accuracy (7 or 8 bits) operation. A Cyclic converter uses the successive approximation technique in which an unknown analog input voltage is successively compared to a reference voltage to determine each bit of the digital output.

AN-559 Simple RAMP A/D Converter

A simple single ramp A/D converter which incorporates a calibration cycle to insure an accuracy of 12 bits is discussed. The circuit uses standard ICs and requires only one precision part—the reference voltage used in the calibration. This converter is useful in a number of instrumentation and measurement applications.

AN-564 An ADF Frequency Synthesizer Utilizing Phase Locked-Loop Integrated Circuits

This application note describes an IC phase locked-loop frequency synthesizer suitable for the local osciallator function in aircraft Automatic Direction Finder (ADF) equipment.

AN-587 Analysis and Design of the Op Amp Current Source

A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented.

AN-588 A 20 kHz, 1kW Line Operated Inverter

This report describes a 1 kilowatt ultrasonic inverter for use in 208-volt, line-operated, computer main-frame power supply systems. This particular design has an output capability of 5 Volts at 200 Amperes.

AN-589 Generate Custom Waveforms Digitally

A method of generating custom waveforms using IC counters, a read-only memory, and a new monolithic D/A Converter is described. Performance of a prototype model is noted as well as possible applications.

AN-590 Servo Motor Drive Amplifiers

The design of transformerless, AC servo amplifiers using power darlington transistors and IC op amps are discussed. Two types of power amplifiers are illustrated, one using single +28 Volt power supply, the second using high voltage transistors in complementary configuration for operating directly off the line.

Four different op amp preamplifiers and 90 phase shifters are also described.

AN-594 A Frequency Synthesizer for Aircraft Automatic Direction Finding Systems

This report describes a phase locked loop frequency synthesizer suitable as the local oscillator in an ADF system. The synthesizer is designed for receivers using a 455 kHz IF system. Motorola application note AN-564 describes a similar system for receivers using a 10.7 MHz IF.

AN-597 Power Control Using the Zero Voltage Switch This application note discusses the advantages of zero-voltage switching using the Motorola MFC8070. A temperature control circuit is shown which demonstrates the design flexibility of CMOS and opticalcoupler combinations.

AN-599 Mounting Techniques For Metal Packaged Power Semiconductors

For cooler, more reliable operation, proper mounting procedures must be followed if the interface thermal resistance between the semiconductor package and heat sink is to be minimized. Discussed are aspects of preparing the mounting surface, using thermal compounds, and fastening techniques. Typical interface thermal resistance is given for a number of packages.

AN-702 High Speed Digital-To-Analog and Analog-To-Digital Techniques

A brief overview of some of the more popular techniques for accomplishing D/A and A/D techniques. In particular those techniques which lead themselves to high speed conversion.

AN-703 Designing Digitally-Controlled Power Supplies

This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in any application.

AN-705 Pulse Width Modulation for Small DC Motor Control

This application note explains the use of modern pulse width modulation techniques as an efficient and economical solution to small DC motor control. Several practical circuit design approaches using discrete, operational amplifier and integrated circuit devices are described and illustrated.

AN-708 Line Driver and Receiver Considerations

This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and applications examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for almost every type of transmission system.

