 INTEGRATED CIRCUITS DATA BOOK

DATA SHEET SPECIFICATIONS

... in alpha-numerical sequence by device type number, unless otherwise noted. (See Master Index for page numbers.)

Packaging Information

LINEAR INTEGRATED CIRCUITS DATA BOOK

Linear Integrated Circuits have achieved a level of maturity which now rivals that of their digital counterparts. In all market categories and for a wide variety of applications functions, linear ICs are serving the needs of equipment manufacturers to reduce cost and improve equipment form, factor and reliability.

They've matured, too, from the standpoint of availability. The number of off-theshelf linear circuits and their varying capabilities makes them highly useful as building blocks for system design. Moreover, the now-prevalent practice of second sourcing assures competitive pricing and quantity delivery.

The Motorola Semiconductor Products Division has been in the forefront of linear IC development since the inception of integrated circuit technology. This Linear Integrated Circuit Data Book, therefore, contains data sheets for one of the largest selections of linear ICs in the industry. Included are devices that were developed by the various Motorola R\&D groups, as well as an extensive second-source inventory of the most popular circuits developed elsewhere.

For easy reference, the data sheets in this book are in alpha-numeric sequence, without regard as to product category or applications. However, to provide the user with a quick overview of Motorola's complete line of standard linear ICs, a number of selector guides separate the total line into market and/or functional divisions. This provides a quick comparison of similar devices, spelling out the most significant differences. Also included are a cross-reference table of second-source devices and other product-related information.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of any manufacturer.

The following are trademarks of Motorola Inc.: McMOS, MDTL, MECL, MECL 10,000, MHTL, MRTL, MTTL

LINEAR INTEGRATED CIRCUITS MASTER INDEX

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC1303	Dual Stereo Preamplifier	3-17	8-2
MC1304	FM Multiplex Stereo Demodulator	3-17	8-6
MC1305	FM Multiplex Stereo Demodulator	3-17	8-6
MC1306	1/2-Watt Audio Amplifier	3-17	8-10
MC1307	FM Multiplex Stereo Demodulator	3-17	8-15
MC1310	FM Stereo Demodulator	3-17	8-19
MC1311	FM Stereo Demodulator	3-17	8-27
MC1312	Four-Channel SQ* Decoder	3-17	8-29
MC1313	Four-Channel SQ* Decoder	3-17	8-29
MC1314	Four-Channel Audio Voltage-Controlled Amplifier	4-5	-
MC1315	Four-Channel Audio Logic Circuit	4.5	-
MC1324	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix	3-16	8-32
MC1326	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix	3-16	8-36
MC1327	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix and PAL Switch	3-16	8-42
MC1328	Dual Doubly Balanced Chroma Demodulator	3-16	8-46
MC1329	Dual Doubly Balanced Chroma Demodulator	3-16	8-51
MC1330	Low-Level Video Detector	3-16	8-55
MC1331	Low-Level Video Detector	3-16	8-59
MC1339	Dual Low-Noise Stereo Preamplifier	3-17	8-61
MC1344	TV Signal Processor	3-16	8-66
MC1349	IF Amplifier	3-16	8-69
MC1350	IF Amplifier	3-16, 3-17	8-74
MC1351	TV Sound Circuit	3-16	8-78
MC1352	TV Video IF Amplifier	3-16	8-82
MC1353	TV Video IF Amplifier	3-16	8-82
MC1355	Limiting FM IF Amplifier	3-17	8-88
MC1356	FM Detector/Limiter	4-5	-
MC1357	IF Amplifier and Quadrature Detector	3-16, 3-17	8-92
MC1358	TV Sound IF Amplifier	3-16	8-98
MC1359	TV Sound System	4-6	-
MC1364	Automatic Frequency Control	3-16	8-103
MC1370	TV Chroma Subcarrier Regenerator	3-16	8-107
MC1371	TV Chroma IF Amplifier	3-16	8-113
MC1375	FM IF Circuit	3-17	8-118
MC1385	Class B Audio Driver	3-17	8-122
MC1391	TV Horizontal Processor	3-16	8-124
MC1394	TV Horizontal Processor	4-6	-
MC1395	PAL Chroma	4.6	-
MC1396	PAL Luma	4-6	-
MC1398	TV Color Processing Circuit	3-16	8-129
MC13120	FM IF Amplifier	4-6	-
MC1406	Six-Bit Multiplying Digital-to-Analog Converter	3-8	8-157
MC1407	Analog-Digital Control Circuit	3-8	8-169
MC1408	Eight-Bit Multiplying Digital-to-Analog Converter	3-8	8-186

*Trademark of Columbia Broadcasting System, Inc.

MASTER INDEX (continued)

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC1410	Video Amplifier	3-11	8-200
MC1414	Dual Differential Comparator	3-10	8-204
MC1420	Operational Amplifier	3-2	8-208
MC1430	Operational Amplifier	3-2	8-212
MC1431	Operational Amplifier	3-2	8-212
MC1433	Operational Amplifier	3-2	8-216
MC1435	Dual Operational Amplifier	3-3	8-221
MC1436	Operational Amplifier	3-2	8-226
MC1436C	Operational Amplifier	3-2	8-226
MC1437	Operational Amplifier	3-3	8-230
MC1438	Power Booster	3-3	8-234
MC1439	Operational Amplifier	3-2	8-240
MC1440	Core-Memory Sense Amplifier	3-5	8-248
MC1441	Sense Amplifier	3-5	8-252
MC1444	AC-Coupled 4-Channel Sense Amplifier	3-5	8-266
MC1445	Wideband Amplifier	3-11	8-274
MC1446	4-Channel, Low-Threshold Sense Amplifier	3-5	8-135
MC1454	1-Watt Power Amplifier	3-15	8-290
MC1455	Timing Circuit	3-15	8-294
MC1456	Operational Amplifier	3-2	8-301
MC1456C	Operational Amplifier	3-2	8-301
MC1458	Dual Operational Amplifier	3-3	8-307
MC1458C	Dual Operational Amplifier	3-3	8-307
MC1460	Positive Voltage Regulator	3-12	8-311
MC1461	Positive Voltage Regulator	3-12	8-311
MC1463	Negative Voltage Regulator	3-14	8-323
MC1466	Voltage and Current Regulator	3-14	8-339
MC1468	Dual ± 15-Volt Tracking Regulator	3-13	8-349
MC1469	Positive Voltage Regulator	3-12	8-355
MC1488	Quad MDTL Line Driver	3-6	8-145
MC1489	Quad MDTL Line Receiver	3-9	8-151
MC1489A	Quad MDTL Line Receiver	3-9	8-151
MC1494	Four-Quadrant Multiplier	3-15	8-386
MC1495	Four-Quadrant Multiplier	3-15	8-400
MC1496	Balanced Modulator-Demodulator	3-15	8-416
MC1505	Digital Voltmeter Subsystem (A/D Converter)	4-3	-
MC1506	Six-Bit Multiplying Digital-to-Analog Converter	3-8	8-157
MC1507	Analog-Digital Control Circuit	3-8	8-169
MC1508	Eight-Bit Multiplying Digital-to-Analog Converter	3-8	8-186
MC1510	Video Amplifier	3-11	8-200
MC1514	Dual Differential Comparator	3-10	8-204
MC1520	Operational Amplifier	3-2	8-208
MC1530	Operational Amplifier	3-2	8-212
MC1531	Operational Amplifier	3-2	8-212
MC1533	Operational Amplifier	3-2	8-216
MC1535	Dual Operational Amplifier	3-3	8-221
MC1536	Operational Amplifier	3-2	8-226
MC1537	Operational Amplifier	3-3	8-230
MC1538	Power Booster	3-3	8-234
MC1539	Operational Amplifier	3-2	8-240
MC1540	Core-Memory Sense Amplifier	3-5	8-248
MC1541	Sense Amplifier	3-5	8-252
MC1543	Dual Sense Amplifier	3-5	8-260

MASTER INDEX (continued)

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC1544	AC-Coupled 4-Channel Sense Amplifier	$3-5$	8-266
MC1545	Wideband Amplifier	3-11	8-274
MC1550	RF-IF Amplifier	3-11	8-280
MC1552	Video Amplifier	3-11	8-286
MC1553	Video Amplifier	3-11	8-286
MC1554	1-Watt Power Amplifier	3-15	8-290
MC1555	Timing Circuit	3-15	8-294
MC1556	Operational Amplifier	3-2	8-301
MC1558	Dual Operational Amplifier	3-3	8-307
MC1560	Positive Voltage Regulator	3-12	8-311
MC1561	Positive Voltage Regulator	3-12	8-311
MC1563	Negative Voltage Regulator	3-14	8-323
MC1566	Voltage and Current Regulator	3-14	8-339
MC1568	Dual ± 15-Volt Tracking Regulator	3-13	8-349
MC1569	Positive Voltage Regulator	3-12	8-355
MC1585	Dual MOS Clock Driver	3-7	8-375
MC1590	Wideband Amplifier with AGC	3-11	8-380
MC1594	Four-Quadrant Multiplier	3-15	8-386
MC1595	Four-Quadrant Multiplier	3-15	8-400
MC1596	Balanced Modulator-Demodulator	3-15	8-416
MC1709	Operational Amplifier	3-2	8-426
MC1709C	Operational Amplifier	3-2	8-426
MC1710	Differential Comparator	3-10	8-430
MC1710C	Differential Comparator	3-10	8-434
MC1711	Dual Differential Comparator	3-10	8-436
MC1711C	Dual Differential Comparator	3-10	8-436
MC1712	Wideband DC Amplifier	3-2	8-440
MC1712C	Wideband DC Amplifier	3-2	8-440
MC1723	Positive Voltage Regulator	3-12	8-444
MC1723C	Positive Voltage Regulator	3-12	8-444
MC1733	Differential Video Amplifier	3-11	8-450
MC1733C	Differential Video Amplifier	3-11	8-450
MC1741	Operational Amplifier	3-2	8-456
MC1741C	Operational Amplifier	3-2	8-456
MC1741S	High-Slew-Rate Operational Amplifier	3-2	8-460
MC1741SC	High-Slew-Rate Operational Amplifier	3-2	8-460
MC1747	Dual Operational Amplifier	3-3	8-466
MC1747C	Dual Operational Amplifier	3-3	8-466
MC1748	Operational Amplifier	3-2	8-470
MC1748C	Operational Amplifier	3-2	8-470
MC1776	Programmable Operational Amplifier	3-2	$8-472$
MC1776C	Programmable Operational Amplifier	3-2	8-472
MC3301	Quad Operational Amplifier	3-3, 3-17	8-481
MC3302	Quad Comparator	3-10, 3-17	8-489
MC3401	Quad Operational Amplifier	3-3	8-493
MC3403	Quad Operational Amplifier	4-2	-
MC3430	High-Speed Quad Comparator	4-3	-
MC3431	High-Speed Quad Comparator	4-3	-
MC3432	High-Speed Quad Comparator	4-3	-
MC3433	High-Speed Quad Comparator	4-3	-
MC3450	Quad Line Receiver	3-9	8-501
MC3452	Quad Line Receiver	3-9	8-501
MC3453	Quad Line Driver	3-6	8-508

MASTER INDEX (continued)

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC3459	Quad NMOS Memory Driver	4-3	-
MC3460	Quad NMOS Memory Driver	4-3	-
MC3462	Quad MECL Line Receiver	4-4	-
MC3463	Quad MECL Line Driver	4-4	-
MC3503	Quad Operational Amplifier	4-2	-
MC3537	Hex Unified Bus Receiver	4-3	
MC3538	Quad Unified Bus Transceiver	4-3	-
MC3570	High-Slew Operational Amplifier	4-2	-
MC5528	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC5529	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	$8-512$
MC5534	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC5535	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC5538	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC5539	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC7520	Dual Sense Amplifier	3-4	8-521
MC7521	Dual Sense Amplifier	3-4	8-521
MC7522	Dual Sense Amplifier	3-4	8-521
MC7523	Dual Sense Amplifier	3-4	8-521
MC7524	Dual Sense Amplifier	3-4	8-524
MC7525	Dual Sense Amplifier	3-4	8-524
MC7528	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC7529	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-4	8-512
MC7534	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC7535	Dual Sense Amplifier with Inverted Outputs	3-4	8-515
MC7538	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC7539	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-4	8-518
MC7705C	Positive Voltage Regulator	3-13	8-526
MC7706C	Positive Voltage Regulator	3-13	8-526
MC7708C	Positive Voltage Regulator	3-13	8-526
MC7712C	Positive Voltage Regulator	3-13	8-526
MC7715C	Positive Voltage Regulator	3-13	8-526
MC7718C	Positive Voltage Regulator	3-13	8-526
MC7720C	Positive Voltage Regulator	3-13	8-526
MC7724C	Positive Voltage Regulator	3-13	8-526
MC7805C	Positive Voltage Regulator	3-13	8-532
MC7806C	Positive Voltage Regulator	3-13	8-532
MC7808C	Positive Voltage Regulator	3-13	8-532
MC7812C	Positive Voltage Regulator	3-13	8-532
MC7815C	Positive Voltage Regulator	3-13	8-532
MC7818C	Positive Voltage Regulator	3-13	8-532
MC7824C	Positive Voltage Regulator	3-13	8-532
MC7902C	Negative Voltage Regulator	3-14	8-540
MC7905C	Negative Voltage Regulator	3-14	8-540
MC7905.2C	Negative Voltage Regulator	3-14	8-540
MC7906C	Negative Voltage Regulator	3-14	8-540
MC7908C	Negative Voltage Regulator	3-14	8-540
MC7912C	Negative Voltage Regulator	3-14	8-540
MC7915C	Negative Voltage Regulator	3-14	8-540
MC7918C	Negative Voltage Regulator	3-14	8-540

MASTER INDEX (continued)

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MC7924C	Negative Voltage Regulator	3-14	8-540
MC55107	Dual Line Receiver	3-9	8-549
MC55108	Dual Line Receiver	3-9	8-549
MC55325	Dual Memory Driver	3-7	8-554
MC75107	Dual Line Receiver	3-9	8-549
MC75108	Dual Line Receiver	3-9	8-549
MC75109	Dual Line Driver	3-6	8-556
MC75110	Dual Line Driver	3-6	8-556
MC75113	Differential Party-Line Driver	3-6	8-563
MC75140	Dual Line Receiver	3-9	8-573
MC75325	Dual Memory Driver	3-7	8-554
MC75450	Dual Peripheral Driver, Positive AND	3-7	8-577
MC75451	Dual Peripheral Driver, Positive AND	3-7	8-582
MC75452	Dual Peripheral Driver, Positive NAND	3-8	8-585
MC75453	Dual Peripheral Driver, Positive OR	3-8	8-588
MC75454	Dual Peripheral Driver, Positive NOR	3-8	8-591
MC75491	Quad Light-Emitting Diode (LED) Driver	3-8	8-594
MC75492	Hex Light-Emitting Diode (LED) Driver	3-8	8-594
MCB1709	Operational Amplifier (encapsulated Beam-Lead)	3-2	8-600
MCB1710	Differential Comparator (encapsulated Beam-Lead)	3-10	8-604
MCB1723	Voltage Regulator (encapsulated Beam-Lead)	3-12	8-606
MCB1741	Operational Amplifier (encapsulated Beam-Lead)	3-2	8-608
MCB1748	Operational Amplifier (encapsulated Beam-Lead)	3-2	8-612
MCBC1709	Operational Amplifier (non-encapsulated Beam-Lead)	3-2	8-600
MCBC1710	Differential Comparator (non-encapsulated Beam-Lead)	3-10	8-604
MCBC1723	Voltage Regulator (non-encapsulated Beam-Lead)	3-12	8-606
MCBC1741	Operational Amplifier (non-encapsulated Beam-Lead)	3-2	8-608
MCBC1748	Operational Amplifier (non-encapsulated Beam-Lead)	3-2	8-612
MCC1436	Operational Amplifier (Chip)	3-2	8-614
MCC1439	Operational Amplifier (Chip)	3-2	8-616
MCC1458	Dual Operational Amplifier (Chip)	3-3	8-618
MCC1463	Negative Voltage Regulator (Chip)	3-14	8-620
MCC1469	Positive Voltage Regulator (Chip)	3-12	8-622
MCC1495	Four-Quadrant Multiplier (Chip)	3-15	8-624
MCC1536	Operational Amplifier (Chip)	3-2	8-614
MCC1539	Operational Amplifier (Chip)	3-2	8-616
MCC1558	Dual Operational Amplifier (Chip)	3-3	8-618
MCC1563	Negative Voltage Regulator (Chip)	3-14	8-620
MCC1569	Positive Voltage Regulator (Chip)	3-12	8-622
MCC1595	Four-Quadrant Multiplier (Chip)	3-15	8-624
MCC1709	Operational Amplifier (Chip)	3-2	8-626
MCC1709C	Operational Amplifier (Chip)	3-2	8-626
MCC1710	Differential Comparator (Chip)	3-10	8-628
MCC1710C	Differential Comparator (Chip)	3-10	8-628
MCC1711	Dual Differential Comparator (Chip)	3-10	8-630
MCC1711C	Dual Differential Comparator (Chip)	3-10	8-630
MCC1723	Positive Voltage Regulator (Chip)	3-12	8-632
MCC1723C	Positive Voltage Regulator (Chip)	3-12	8-632
MCC1741	Operational Amplifier (Chip)	3-2	8-634
MCC1741C	Operational Amplifier (Chip)	3-2	8-634
MCC1748	Operational Amplifier (Chip)	3-2	8-636
MCC1748C	Operational Amplifier (Chip)	3-2	8-636

MASTER INDEX (continued)

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 8)
MCCF1458	Dual Operational Amplifier (Flip-Chip)	3-3	8-638
MCCF1558	Dual Operational Amplifier (Flip-Chip)	3-3	8-638
MCCF1709	Operational Amplifier (Flip-Chip)	3-2	8-640
MCCF1709C	Operational Amplifier (Flip-Chip)	3-2	8-640
MCCF1741	Operational Amplifier (Flip-Chip)	3-2	8-642
MCCF1741C	Operational Amplifier (Flip-Chip)	3-2	8-642
MFC4000B	1/4-Watt Audio Amplifier	3-17	8-644
MFC4010A	Wideband Amplifier	3-17	8-647
MFC4040	Single Toggle Flip-Flop	3-18	8-651
MFC4050	Audio Driver	3-17	8-653
MFC4060A	Voltage Regulator	3-12	8-656
MFC4062A	Voltage Regulator	3-12	8-656
MFC4063A	Voltage Regulator	3-12	8-656
MFC4064A	Voltage Regulator	3-12	8-656
MFC6010	FM IF Amplifier	3-17	8-658
MF C6020	Dual Toggle Flip-Flop	3-18	8-662
MFC6030A	Voltage Regulator	3-12	8-664
MFC6032A	Voltage Regulator	3-12	8-664
MFC6033A	Voltage Regulator	3-12	8-664
MFC6034A	Voltage Regulator	3-12	8-664
MFC6040	Electronic Attenuator	3-18	8-668
MFC6050	Dual Toggle Flip-Flop with Reset	3-18	8-671
MFC6070	Audio Power Amplifier	3-17	8-673
MFC8020A	Class B Audio Driver	3-17	8-679
MFC8021A	Class B Audio Driver	3-17	8-679
MFC8022A	Class B Audio Driver	3-17	8-679
MFC8030	Differential Cascode Amplifier	-	8-683
MFC8040	Audio Preamplifier	3-17	8-685
MFC8070	Zero Voltage Switch	3-15	8-688
MLM101A	Operational Amplifier	3-2	8-692
MLM104	Negative Voltage Regulator	3-14	8-696
MLM105	Positive Voltage Regulator	3-12	8-698
MLM107	Operational Amplifier	3-2	8-700
MLM109	Positive Voltage Regulator	3-13	8-704
MLM110	Operational Amplifier	3-2	8-709
MLM111	Voltage Comparator	3-10	8-711
MLM201A	Operational Amplifier	3-2	8-692
MLM204	Negative Voltage Regulator	3-14	8-696
MLM205	Positive Voltage Regulator	3-12	8-698
MLM207	Operational Amplifier	3-2	8-700
MLM209	Positive Voltage Regulator	3-13	8-704
MLM210	Operational Amplifier	3-2	8-709
MLM211	Voltage Comparator	3-10	8-711
MLM301A	Operational Amplifier	3-2	8-692
MLM304	Negative Voltage Regulator	3-14	8-696
MLM305	Positive Voltage Regulator	3-12	8-698
MLM307	Operational Amplifier	3-2	8-700
MLM309	Positive Voltage Regulator	3-13	8-704
MLM310	Operational Amplifier	3-2	8-709
MLM311	Voltage Comparator	3-10	8-711
MMH0026	Dual MOS Clock Driver	3-7	8-715
MMH0026C	Dual MOS Clock Driver	3-7	8-715

UNDERSTANDING MOTOROLA'S DEVICE NUMBERING SYSTEM

A great deal of information is given in the device number on Motorola ICs. This section will present the meanings of the prefixes, numbers and suffixes used to designate Motorola linear ICs. Normally the package style and operating temperature range may be obtained from the device number.

Although there are exceptions to many of the codes listed below, these codes are generally true and can provide the user with pertinent information on the particular device type.

Prefix

MC Packaged Integrated Circuits
MCB Packaged Beam-lead Integrated Circuits. (Followed by F suffix when in flat pack.)
MCBC Beam-lead Integrated Circuit chips
MCC Unencapsulated Integrated Circuit chips
MCCF Flip-Chip Linear Integrated Circuits
MFC Low cost Integrated Circuits packaged in Motorola's unique "Functional Circuits" plastic package (Package suffix not used in this device series.)

MLM Pin-for-pin equivalent to Linear Integrated Circuits made by National Semiconductor

Body Number for Motorola Proprietary Devices

1500-1599
3500-3599 Military temperature grade (-55 to $+125^{\circ} \mathrm{C}$) Linear ICs
1400-1499
3400-3499
Equivalent to devices above but with Industrial temperature range (0 to $+70^{\circ} \mathrm{C}$)
1300-1399
3300-3399
Linear ICs aimed at the Consumer industry

Suffix

A Designates improved or modified IC type, followed by package suffix, i.e., MC1489AL.
C Designates limited temperature, or limited performance device. Followed by package designation suffix, i.e., MC1709CL

F Flat package
G Metal can package (TO-5 types)
$K \quad$ Metal power package (TO-3 type)
L Ceramic dual in-line case (14 or 16 pin)
P Plastic package
PQ ICs packaged in staggered-lead plastic DIP packages
P1,P2 Used when an IC is available in more than one plastic package. i.e., $P 1=8$ lead plastic DIP, $P 2=14$ pin plastic DIP
$R \quad$ Metal power package (TO-66 type)

NOTES

INTEGRATED CIRCUITS
HIGHLIGHTS

Linear IC Highlights (continued)

OPERATIONAL AMPLIFIERS

The operational amplifier has always been the most popular and versatile Linear IC type. Op amps have found wide usage in control circuitry, signal processing equipment, active filters for communications systems, Modems, and many other types of equipment. With the addition of a few external components, this basic feedback type amplifier can be transformed into a multitude of functions ranging from summing amplifiers and simple inverters to integrating amplifiers and Sample and Hold circuits.

Motorola offers a broad line of op amp types. Both proprietary and popular industry-standard types are covered. The range of high precision to low cost plastic-packaged multiple op amps is spanned by over 50 device types. Two representative devices are discussed here. An overview of the entire line appears on pages 3-2 and 3-3.

HIGH SLEW RATE OPERATIONAL AMPLIFIER

High-Slew Op-Amp (MC1741S)

It is not often that the advantages of the old workhorse can be combined with the speed of the thoroughbred. However, the MC1741S op-amp has done just that; it has all the familiar easy-to-use features of the industry-standard MC1741 internally compensated op-amp. In addition, it offers a guaranteed minimum slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ with a typical slew rate of some 20 times greater than the comparable figure for the conventional MC1741. Power bandwidth has also increased by a factor of 20 and is now specified at 150 kHz minimum.

Applications where pulses are processed or where distortion must be kept low under largesignal conditions are ideal candidates for the MC1741S. Since the unit is a pin-for-pin replacement with all other specs identical to the conventional MC1741, it is easy to update existing designs to improve their performance.

Of particular significance is the $3.0 \mu \mathrm{~s}$ settling time (to 0.1%) of the new device. When combined with an MC1508L digital-to-analog converter, a lowcost, two-package converter with a voltage-mode output and total settling time to within ± 1.0 least significant bit of $4.0 \mu \mathrm{~s}$ can be obtained.

Linear IC Highlights (continued)

PROGRAMMABLE OPERATIONAL AMPLIFIER

Micro-Power, Programmable Op-Amp (MC1776)

The ability to operate with minimal power consumption from a wide range of power supply voltages is the salient feature of the MC1776 programmable op-amp. Whether two 1.2 V mercury cells or supplies up to $\pm 18 \mathrm{~V}$ are utilized, the performance features best suited for a particular application can be selected. A single resistor or a current source can be used to set all the quiescent current levels for this circuit. Thus, the designer is free to choose, for example, low bias and power supply currents, or perhaps greater gain-bandwidth and slew rate.

The MC1776 can be combined with McMOS
logic to create electronics systems well suited for critical low-drain, battery-powered equipment. The MC1776 uses a maximum of only $120 \mu \mathrm{~W}$ at $\pm 3.0 \mathrm{~V}$ and a programming current of $1.5 \mu \mathrm{~A}$. This assures long life from the battery.

To demonstrate the versitility of the MC1776, all static and dynamic parameters are specified at four combinations of power supply voltages and programming current. Thus, the user is assured that the op-amp will perform over this wide range of operating conditions without having to guess how changes in the programming conditions will affect a particular operating parameter.

For operating flexibility and micropower consumption considerations, the MC1776 is the logical choice.

Linear IC Highlights (continued)

VOLTAGE REGULATORS

The sensitivity of semiconductor devices to voltage and temperature changes makes the voltage regulator circuit an important integral part of many critical systems and subsystems. Today's designer has considerable choice in integrated regulators, with a variety of characteristics, capabilities, and prices. The integrated circuit voltage regulator offers ease of design, simplified assembly and improved performances over discrete transistor designs. Motorola offers a series of IC voltage regulators with a variety of specifications, see pages 3-12 thru 3-14. Highlighted here are two circuits that merit special attention.

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

* $=\mathrm{C}_{\text {in }}$ is required if regulator is located an appreciable distance from power supply filter.
** $=\mathrm{C}_{\mathrm{O}}$ is not needed for stability; however, it does improve transient response.

The Negative Three-Terminal Regulator
 Complements (MC7900)

The popular MC7800 series voltage regulators described above are all well suited when a positive voltage is required, but they are not intended for negative supplies. For these applications the negative complements, series MC7900 were created. These units are identical to the MC7800 series devices except that the voltage and current are of the opposite polarity. The negative regulators are supplied in the same voltages available in the positive series plus two additional voltages commonly used in MECL systems. These supplementary voltages are -2.0 V and -5.2 V , making them well suited for on-card regulation in high-speed logic systems.

The same short-circuit, thermal over-load and safe-operating area protection circuitry is employed in the negative devices making them very rugged. In addition, the devices have the same simplicity of use as the positive MC7800 series devices. Threeterminals, fixed-voltages, easy-heatsinking, and the lack of required external components are features that make the MC7900 series negative regulators applicable to nearly any electronic system power supply.

The Simplest Voltage Regulator to Use (MC7800)

The introduction of the three-terminal voltage regulator marked a milestone in integrated circuit development. Traditionally, IC voltage regulators required numerous external components, and supplied only a few milliamperes without additional current boosting transistors. They had to be programmed to the desired voltage with precision resistors, and could oscillate if proper circuit layout considerations were ignored. The MC7800 Series three-terminal fixed voltage regulators have eliminated these problems.

The new devices are housed in popular power transistor packages which conveniently connect to heatsinks if necessary. They require only three connections - Input, Output, and Ground. External components are required only if the regulator is located an appreciable distance from the supply filter capacitors or if current boosting is required to supply greater than the 1.5 Amperes the devices can provide. Ease of use and low cost make these units ideal as on-card voltage regulators, or in almost any electronic system.

The MC7800 series devices are available in seven popular fixed voltages. The last two numbers of the part type indicate the nominal output voltage. Each type features short-circuit protection, thermalshutdown, and safe-operating area compensation for the internal series pass transistors. These techniques combine to make the units extremely rugged.

With the arrival of the new MC7800 series voltage regulators, a regulated power supply is available at a minimum of cost and design effort for almost any electronic device. By adding an additional transistor package, regulated voltage can be available almost any place in a system.

COMPLEMENTARY REGULATORS

Linear IC Highlights (continued)

INTERFACE CIRCUITS

Interface circuits is the name applied to devices that operate with both linear signals and digital logic levels. Most have both linear and digital properties. Examples of interface circuits are D/A and A / D converters, memory sense amplifiers, comparators, and line drivers and receivers.

The rapidly expanding fields of data communications and digital instrumentation make wide use of these interface devices. Line drivers and receivers, for example, are used whenever data must be transmitted over long distances in a computer or piece of peripheral equipment. Also, the industry standard MC1488-89 devices provide the level translation between a Modem and a computer terminal in accordance with the EIA RS-232C specifications. Likewise comparators are used as voltage level detectors in control and instrumentation applications.

Motorola offers a broad line of interface circuits. Two of the newest interface devices are discussed in this section while the complete lineup is outlined beginning on page 3-4.

8-BIT TRACKING A-TO-D CONVERTER

Versatile Analog-Digital Control Function (MC1507)

The MC1507 is the third member of the Motorola "building block" series aimed at bridging the gap between the analog and digital worlds. This device is particularly useful when combined with either the MC1508 or MC1506 monolithic Digital-to-Analog (D/A) converters to implement either Tracking or Successive Approximation Analog-toDigital (A/D) Converter designs.

The MC1507 consists of a high-slew-rate op-amp used as an input buffer and a dual-comparator which provides two adjustable, but symmetrical, thresholds. The comparator is used in tracking A/D systems to command a counter chain to increment either up or down. The comparator section is also applicable to "dead-band" or "window" comparator designs where indication is given if an input voltage is greater than or less than a specified voltage range.

The tracking A/D converter, for which the MC1507 is primarily intended, makes use of the
high-speed capability inherent in the current mode output of the MC1 508 and MC1 506 D/A converters. An 8 -bit tracking A/D system, for example, using a $5-\mathrm{MHz}$ clock rate provides a normal conversion or update every 0.2 to $1.0 \mu \mathrm{~s}$, and a full-scale conversion time of $50 \mu \mathrm{~s}$. Adding a second MC1507 and a "panic mode" circuit decreases the full-scale conversion time to $14 \mu \mathrm{~s}$.

By disabling the down counting function, the tracking converter can be used as a peak-detecting track and hold circuit. This system will store the maximum value of an input waveform until it is reset. Unlike traditional sample and hold circuits utilizing the charge on a capacitor, the MC1507 system will not suffer a voltage decay after a period of time.

The versatile MC1507 has many additional applications bridging the analog and digital realms. When combined with other building blocks, solutions to numerous analog-digital interface requirements can be economically provided.

Linear IC Highlights (continued)

PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

Quad Line Drivers and Receivers

(MC3450, MC3452, MC3453)

These devices are quad versions of the popular MC75107, MC75108 and MC75110 type dual line Driver/Receivers. They are commonly employed to transmit logic signals over long lengths of cable in large digital systems.

The MC3453 is an MTTL-compatible differential driver with a single enable input common to all four monolithic drivers in the packages.

The MC3452 is a differential line receiver featuring open-collector outputs and a common strobe
input. The MC3450 is also a quad receiver; however, it provides active pull-up outputs, and a threestate strobe input, allowing the outputs to be placed in a high impedance state.

In addition to their usage to transmit data within large computer systems, the quad receivers are well suited for use as sense amplifiers with " 1103 " type MOS memory systems. The quad configuration results in a considerable package savings over existing devices commonly used in this type of application.

Linear IC Highlights (continued)

ENTERTAINMENT CIRCUITS

The high-volume, low-cost, and highly specialized requirements of the electronic components for consumer entertainment equipment match the capabilities of today's linear ICs. A great variety of the necessary functional blocks for television, stereo phonographs, and radio receivers is now available in low-cost plastic-packaged ICs. The need for improved performance and increased reliability and, at the same time, for a lower selling price, is met by state-of-the-art monolithic circuits.

Motorola's traditional leadership in plastic transistors for the customer electronics industry is being extended with a complete lineup of low-cost ICs for those functions which can best be accomplished with monolithic integrated circuits. Both original innovative designs and popular second-source devices which have been well accepted by the industry are included in this diverse family of products. Some typical examples are highlighted here.

For Television alone, Motorola offers more than 20 different types of ICs to give the designer a wide choice of performance levels and partitioning approaches. To aid in the parade toward fully solid-state sets, Motorola offers ICs for the video IF amplifier and detector, AFT, chroma processor and detector, deflection, audio stages, and a combination device which supplies AGC, sync separator and noise-suppression circuitry. Often these ICs permit circuit complexity and performance which would not be technically and economically practical with discrete components.

A selector guide to ICs for use in television sets is provided on page 3-16. Several new TV ICs are previewed on page 4-6.

TYPICAL HORIZONTAL SECTION

TV Horizontal Processor (MC1391)

The MC1391 TV horizontal processor packs the phase detector, oscillator and pre-driver functions into a single, convenient 8 -lead plastic package. The new unit provides the entire low-level horizontal signal processing function and may be used with either transistor or vacuum tube output stages. This device is one of the first inroads of ICs into the television deflection circuitry.

FEATURES:

- Internal shunt regulator
- Preset Hold control capability
- $\pm 300 \mathrm{~Hz}$ typical pull-in range
- Balanced phase detector
- Variable output duty cycle for driving tube or transistor
- Low thermal frequency drift
- Small static phase error

Linear IC Highlights (continued)

For Audio . . .

Linear ICs are rapidly penetrating the audio amplifier stages of television, radio, and stereo phonographs. Both low level and power amplifier applications are realizing greater performance and lower total cost due to the reduced assembly requirements and the ability to use more complex circuitry with these advanced ICs. A wide range of IC types permits the designer a wide lattitude of flexibility to create the exact system performance and costs he requires.

TYPICAL CLASS B AMPLIFIER

Class B Audio Driver (MC1385)

The MC1385 is designed to be used in conjunction with complementary output transistors MJE 2050/2150 to produce a 5 -watt class B audio amplifier suitable for use in automotive, consumer, and industrial electronics.

FEATURES:

- Internal power supply transient protection
- Built-in programmable short-circuit-current limiting
- Excellent sensitivity - 4.0 mV (RMS) typical
- Excellent power-supply ripple rejection - 35 dB typical
- Wide operating temperature range
- Single supply operation

Linear IC Highlights (continued)

For Radio

Two sections in FM radios have lent themselves well to integration: The IF amplifier and detector, and the stereo multiplex decoder sections. In both high-quality tuners and in low-priced table radios, the high performance of these ICs and lower assembly costs they make possible, permit more efficient designs.

TYPICAL FM APPLICATION

FM IF Circuit (MC1375)

Combining several functions required in solidstate FM receivers, the MC1375 provides the IF amplifier, limiter, FM detector and audio preamplifier in a single 14-lead package. The unit requires a minimum of external components.

The IF amplifier/limiter section provides excellent AM rejection and uses an internal zener diode voltage regulator. The detector is a differential peak design which promotes simplified single-coil alignment. The audio preamplifier supplies a voltage gain of ten.

FEATURES:

- Good sensitivity: input limiting voltage (Knee) $=250 \mu \mathrm{~V}$ typical
- Excellent $A M$ rejection: 55 dB typical at 10.7 MHz
- Internal zener dinde regulation for the IF amplifier section
- Low harmonic distortion
- Differential peak detection: permits simplified single-coil timing
- Audio preamplifier voltage gain: 21 dB typical

For Automotive . . .

In response to consumer demand and government legislation, the automotive industry is undergoing a major engineering evolution. Electronics will be used to perform many of the new complex functions required for the modern automobile. Two approaches are being accepted for applying ICs to automotive electronics: custom and building block. Because of the large volume potential, almost all programs can be expected to end with a specialized custom circuit. However, in the interim, while the systems are being defined and refined, the Motorola building block approach has received wide acceptance.

Highlighted below is one of the new devices in this series of building blocks.

EQUIVALENT CIRCUIT

Quad Comparator (MC3302)

The MC3302 contains four independent comparators designed for wide operating temperatures and single positive-power-supply operation requiring very low supply current.

High density and low cost make this device ideal for automotive, consumer, and industrial applications.

FEATURES:

- Wide operating temperature range --40 to $+85^{\circ} \mathrm{C}$
- Single-supply operation +2.0 to +28 volts
- Differential input voltage $= \pm \mathrm{V}_{\mathrm{CC}}$
- Compare voltages at ground potential
- MTTL compatible
- Low current drain - $700 \mu \mathrm{~A}$ typical
@ $V_{C C}=+5.0$ to +28 Vdc
- Outputs can be connected to give the Implied AND function

INTEGRATED CIRCUITS SELECTOR GUIDES

OPERATIONAL AMPLIFIERS

Motorola offers a broad line of operational amplifiers to meet a wide range of usages. From low-cost, industry standard types to high precision circuits the span encompasses a large range of performance capabilities.

These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of package styles as well as standard and beam-lead chips.

OPERATIONAL AMPLFIERS

Listed in order of increasing input bias current within temperature group.

INTERNALL Y COMPENSATED

$\begin{gathered} \mathrm{I}_{\mathrm{IB}} \\ (\mu \mathrm{~A} \text { max }) \end{gathered}$	$\frac{V_{10}}{\left(m V_{\text {max }}\right)}$	$\begin{gathered} 1 / 0 \\ (n A \max) \end{gathered}$	Avol (V/V min)	$\underset{\left(v_{p k}\right.}{\left.V_{\text {min }}\right)}$	$\begin{gathered} R_{\mathbf{L}} \\ (\mathbf{k} \Omega) \end{gathered}$	$\begin{gathered} \& \mathrm{~V}_{\mathrm{CC},}, \mathrm{~V}_{\mathrm{Vdc}} \mathrm{EE} \end{gathered}$	$\begin{gathered} f_{c} \\ \left(M z_{\text {typ }}\right) \end{gathered}$	$\begin{gathered} \mathrm{BW}_{\mathbf{p}} \\ \text { (kHz typ) } \end{gathered}$	$\begin{gathered} \text { SR } \\ (\mathrm{V} / \mu \mathrm{s} \text { typ }) \end{gathered}$	Case	Type

55 to $+125^{\circ} \mathrm{C}$ Temperature Range

0.003	4.0	-	Unity	10	10	± 15	20	300	30	601	MLM110
0.0075	5.0	3.0	200,000	12	75	± 15	0.2	1.5	0.1	60.1	MC1776 \ddagger
0.015	4.0	2.0	100,000	12	2.0	± 15	1.0	40	2.5	601	MC1556
0.02	5.0	3.0	100,000	22	5.0	± 28	1.0	23	2.0	601	MC1536*
0.075	2.0	10	50,000	10	2.0	± 15	1.0	10	0.5	601	MLM107
0.5	5.0	200	50,000	10	2.0	± 15	1.0	10	0.8	601,606,632	MC1741* ** \dagger
0.5	5.0	200	50,000	10	2.0	± 15	1.0	200	15	601	MC1741S

-25 to $+85^{\circ} \mathrm{C}$ Temperature Range

0 to $+75^{\circ} \mathrm{C}$ Temperature Range

0.007	7.5	-	Unity	10	10	± 15	20	300	30	601	601
0.01	6.0	6.0	50,000	12	75	± 15	0.2	1.5	0.1	MLM 310	
0.03	10	10	70,000	11	2.0	± 15	1.0	40	2.5	601	MC1776C $\neq 1$
0.04	10	10	70,000	20	5.0	± 28	1.0	23	2.0	601	MC1456
0.09	12	30	25,000	10	2.0	± 15	1.0	40	2.5	601	MC1436*
0.09	12	25	50,000	20	5.0	± 28	1.0	23	2.0	601	MC1456C
0.25	7.5	50	25,000	10	2.0	± 15	1.0	10	0.57	601	MC1436C
0.5	6.0	200	20,000	10	2.0	± 15	1.0	10	0.8	$601,606,626,632,646$	MLM307
0.5	6.0	200	20,000	10	2.0	± 15	1.0	200	15	601,626	MC1741C* +

NONCOMPENSATED

-55 to $+125^{\circ} \mathrm{C}$ Temperature Range

0.075	2.0	10	50,000	10	2.0	± 1.5	1.0	10	0.5	601	MLM101A
0.15	10	25	2,500	4.5	1.0	± 6.0	2.0	100	1.4	602B,606	MC1531
0.5	3.0	60	50,000	10	1.0	± 15	2.0	50	4.2	601,632	MC1539*
0.5	5.0	200	50,000	10	2.0	± 15	1.0	10	0.8	601,606	MC1748***
0.5	5.0	200	25,000	10	2.0	± 15	0.5	4.0	0.25	601,606,632	MC1709*** +
1.0	5.0	150	40,000	11	2.0	± 15	0.8	2.0	2.0	602B,606,632	MC1533
2.0	10	100	1,000	3.5	7.0	± 6.0	10	150	5.0	602A, 606	MC1520
5.0	2.0	500	2,500	3.5	10	+12,-6.0	7.0	10	1.5	601,606,632	MC1712
10	5.0	2000	4,500	4.5	1.0	± 6.0	3.0	100	1.7	602B, 606	MC1530

25 to $+85^{\circ} \mathrm{C}$ Temperature Range

0.075	2.0	10	50,000	10	2.0	± 15	1.0	10	0.5	601, 626	MLM201A
0 to $+75^{\circ} \mathrm{C}$ Temperature Range.											
0.25	7.5	50	25,000	10	2.0	± 15	1.0	10	0.5	601,626	MLM301A
0.3	15	100	1,500	4.0	1.0	± 6.0	2.0	100	1.4	602B,606,646	MC1431
0.5	6.0	200	20,000	10	2.0	± 15	1.0	10	0.8	601	MC1748C*
1.0	7.5	100	15,000	10	2.0	± 15	2.0	50	4.2	601,626,632,646	MC1439*
1.5	7.5	500	15,000	10	2.0	± 15	0.5	4.0	0.25	601,606,626,632,646	MC1709C* \dagger
2.0	7.5	500	30,000	10	2.0	± 15	0.8	2.0	2.0	602B,606,632,646	MC1433
4.0	15	200	750	3.0	7.0	± 6.0	10	150	5.0	602A,606	MC1420
7.5	5.0	2000	2,000	3.5	10	+12,-6.0	7.0	10	1.5	601,606,632	MC1712C
15	10	4000	3,000	4.0	1.0	± 6.0	3.0	100	1.7	602B,606,646	MC1430

[^0]OPERATIONAL AMPLIFIERS (Continued)
DUAL OPERATIONAL AMPLIFIERS
Listed in inoreasing order of input bias current.
INTERNALLY COMPENSATED

$\begin{gathered} \mathrm{I}_{\mathrm{IB}} \\ \left(\mu \mathrm{~A} \mathrm{max}^{2}\right) \end{gathered}$	$\begin{gathered} V_{10} \\ (\operatorname{mV} \text { max }) \end{gathered}$	$\begin{gathered} \mathrm{I}_{10} \\ \text { (nA max) } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{A}_{\text {vol }} \\ \text { (V/V } \text { min }) \end{array}$	$\mathbf{v}_{\mathrm{V}_{\mathrm{O}}}{ }_{\text {min })^{@}}$	$\begin{gathered} \mathbf{R}_{\mathrm{L}}{ }_{(k)}{ }^{8} \end{gathered}$	$\& \underset{\substack{(V d c)}}{V_{\mathrm{Cc},} \mathrm{~V}_{\mathrm{EE}}}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}} \\ (\mathrm{MHz} \text { typ }) \end{gathered}$	$\begin{gathered} \mathrm{BW}_{\mathbf{p}} \\ \text { (kHz typ) } \end{gathered}$	SR (V/ $/ \mu \mathrm{s}$ typ)	Case	Type
${ }^{5} 5$ to $+125^{\circ} \mathrm{C}$ Temperature Range											
0.5	5.0	200	50,000	10	2.0	± 15	1.1	14	0.8	601,632	MC1558* \dagger
0.5	5.0	200	50,000	10	2.0	± 15	1.0	10	0.5	601,606,632	MC1747
0 to $+75^{\circ} \mathrm{C}$ Temperature Range											
0.5	6.0	200	20,000	10	2.0	± 15	1.1	14	0.8	601,626,632,646	MC1458* \dagger
0.5	6.0	200	25,000	10	2.0	± 15	1.0	10	0.5	601,606,632	MC1747C
0.7	10	300	20,000	9.0	2.0	± 15	1.1	14	0.8	601,626,632,646	MC1458C

Use NCC prefix for nonencapsulated chip.
U/se MCCF for nonencapsulated flipchip.
NONCOMPENSATED

| $\underset{\left(\mu \mathrm{A} \mathrm{~A}_{\text {max }}\right)}{\mathrm{IB}_{2}}$ | V_{10} | | Avol (V/V min) | $\underset{\left(v_{p k} V_{\text {min }}\right)^{@}}{ }$ | $\mathrm{R}_{(\mathrm{k} \Omega)}^{8}$ | $\underset{\substack{\mathrm{V}_{\mathrm{Cd}}, \mathrm{~V}_{\mathrm{dc}}}}{\mathrm{~V}_{\mathrm{EE}}}$ | $\begin{gathered} f_{c} \\ (M H z \quad \text { typ }) \end{gathered}$ | ${\underset{i c h}{B W_{p}}}_{\text {(kHz typ) }}$ | $\begin{gathered} \text { SR } \\ (V / \mu s \text { typ }) \end{gathered}$ | ase | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | .55 to $+125^{\circ} \mathrm{C}$ Temperature Range

0.5	5.0	200	25,000	12	10	± 15	1.0	3.0	0.25	
3.0	3.0	300	4,000	2.5	10	± 6.0	1.0	40	0.013	$6028,607,632$

0 to $+75^{\circ}$ C Temperature Range

1.5	7.5	500	15,000	12	10	± 15	1.0	3.0	0.25	632,646
5.0	5.0	500	3,500	2.3	10	± 6.0	1.0	40	0.013	MC 1437
$602 \mathrm{~B}, 607,632$	MC 1435									

QUAD OPER ATIONAL AMPLIFIERS

Internally Compensated

. . for automotive applications

40 to $+85^{\circ} \mathrm{C}$ Temperature Range

$\begin{gathered} \mathrm{I}_{\mathrm{IB}} \\ (\mu \mathrm{~A} \text { max }) \end{gathered}$	$\begin{gathered} V_{10} \\ \left(m V_{\text {max }}\right) \end{gathered}$	$\begin{gathered} 1 / 0 \\ \text { (nA max) } \end{gathered}$	$\begin{array}{\|c\|} \mathbf{A}_{\text {vol }} \\ (\mathrm{V} / \mathrm{V} \text { min }) \end{array}$	$\begin{gathered} v_{0}{ }^{@} \\ \left(\mathbf{v}_{\mathbf{p k}}{ }^{\text {min }}\right. \end{gathered}$	${\underset{(k \Omega)}{R_{L}}{ }^{8},}^{8}$		$\begin{gathered} f_{c} \\ (M H z \text { typ }) \end{gathered}$	$\begin{gathered} \mathrm{BW}_{\mathrm{p}} \\ \text { (kHz typ) } \end{gathered}$	$\begin{gathered} \text { SR } \\ \text { (V/ } / \mu \mathrm{s} \text { typ }) \end{gathered}$	Case	Type
0.3	-	-	1,000	10	5.0	+15	4.0	20	0.6	646	MC3301

. for industrial applications
0 to $+75^{\circ} \mathrm{C}$ Temperature Range

0.3	-	-	1,000	10	5.0	+15	5.0	20	0.6	646

POWER DRIVERS

INTERNALLY COMPENSATED

-55 to $+125^{\circ}$ C Temperature Range

200	-	-	900	12	300	± 15	-	1500	75	614 High current gain (70 dB) op ampl power booster 1O $=300$ mA max	MC1538

0 to $+75^{\circ} \mathrm{C}$ Temperature Range

| 300 | - | - | 850 | 11 | 300 | ± 15 | - | 1500 | 75 | 614
 High current gain (70 dB)
 op ampl power booster,
 $10=300 \mathrm{~mA}$ max | $\mathrm{MC1438}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

INTERFACE CIRCUITS

Interface circuits fit in the gray area between the linear and digital realms. Usually these IC's perform the necessary translation between an analog signal input and the required digital logic levels or vice versa. To aid in
selection, the devices have been divided into five main categories: Sense Amplifiers, Drivers, D/A Converters, Receivers, and Comparators.

SENSE AMPLIFIERS

The sense amplifiers listed provided the necessary translation from the outputs of core or plated-wire memories to MTTL (unless otherwise noted) logic levels. Unless noted, all devices are designed to operate from
± 5.0 volt power supplies. The output of these sense amplifiers changes logic states when the differential input voltage exceeds a specified threshold level, regardless of input polarity.

CORE MEMORY

Function				$\begin{aligned} & V_{\text {ref }} \\ & (\mathrm{mV}) \end{aligned}$	Propagation Delay (ns max)	Case	Type	
		min	max				-55 to $+125^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$
		$\begin{aligned} & 11 \\ & 36 \end{aligned}$	$\begin{aligned} & 19 \\ & 44 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	55	620	-	MC7520
		$\begin{gathered} 8.0 \\ 33 \end{gathered}$	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	55	620	-	MC7521
Dual channel with opencollector output, high sink current capability		$\begin{aligned} & 11 \\ & 36 \end{aligned}$	$\begin{aligned} & 19 \\ & 44 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	45	620	-	MC7522
		$\begin{aligned} & 8.0 \\ & 33 \end{aligned}$	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	45	620	-	MC7523
	Dual with independent strobing	$\begin{aligned} & 11 \\ & 36 \end{aligned}$	$\begin{aligned} & 19 \\ & 44 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	620	-	MC7524
		$\begin{array}{r} 8.0 \\ 33 \end{array}$	22 47	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	620	-	MC7525
	Same as MC7524-25 except amplifier test points included	$\begin{aligned} & 11 \\ & 36 \end{aligned}$	$\begin{aligned} & 19 \\ & 44 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	$\begin{aligned} & 620, \\ & 648^{*} \end{aligned}$	-	MC7528
		$\begin{aligned} & 10 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	620	MC5528	-
		$\begin{array}{r} 8.0 \\ 33 \end{array}$	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	$\begin{array}{r} 620, \\ 648 * \\ \hline \end{array}$	MC5529	MC7529
	Same as MC7524-25 except NAND outputs	$\begin{aligned} & 11 \\ & 36 \end{aligned}$	$\begin{aligned} & 19 \\ & 44 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	$\begin{aligned} & 620, \\ & 648 * \end{aligned}$	-	MC7534
		$\begin{aligned} & 10 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	620	MC5534	-
		$\begin{gathered} 8.0 \\ 33 \end{gathered}$	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	$\begin{aligned} & 620, \\ & 648^{*} \end{aligned}$	MC5535	MC7535
	Same as MC7528-29 except NAND outputs	$\begin{aligned} & 11 \\ & 36 \end{aligned}$	$\begin{aligned} & 19 \\ & 44 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	$\begin{aligned} & 620, \\ & 648^{*} \end{aligned}$	-	MC7538
		$\begin{aligned} & 10 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	620	MC5538	-
		$\begin{gathered} 8.0 \\ 33 \end{gathered}$	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	40	$\begin{aligned} & 620, \\ & 648^{*} \end{aligned}$	MC5539	MC7539

[^1]SENSE AMPLIFIERS (continued)
CORE MEMORY (Continued)

Function	Threshold Voltage @ (mV)		$\begin{aligned} & \mathrm{V}_{\mathrm{ref}} \\ & (\mathrm{mV}) \end{aligned}$	Propagation Delay (ns max)	Case	Type	
	min	max				55 to $+125^{\circ} \mathrm{C}$	0 to $+75^{\circ} \mathrm{C}$
0.5μ s cycle time, 20ns typ response time, $\pm 6.0 \mathrm{~V}$ power supply	14	20	-6.0V	30	$\begin{gathered} 602 B \\ 606, \\ 632 \end{gathered}$	MC1540	MC1440
	14	20	5.0 V	30	$\begin{gathered} 607 \\ 632 \end{gathered}$	MC1541	MC1441
Compatible with MECL, $+5.0 \mathrm{~V},-5.2 \mathrm{~V}$ power supplies, threshold insensitive to supply variations, complementary outputs	17	23	540	35	632	MC1543	-

PLATED-WIRE MEMORIES

Function	$\begin{gathered} \text { Threshold } \\ \text { Voltage } \\ \text { (mV - typ) } \end{gathered}$	Propagation Delay (ns - max)	Case	Type	
				.55 to $+125^{\circ} \mathrm{C}$	0 to $+75^{\circ} \mathrm{C}$
	± 1.0	25	620	MC1544	MC1444
DC coupled, decoded input, 0.5 mV input offset, output strobe capability, $+5.0 \mathrm{~V},-6.0 \mathrm{~V}$ power supply useful with the MCM 7001 NMOS memory.	$\begin{gathered} \pm 1.4 \\ (\pm 4.0 \mathrm{max}) \end{gathered}$	14 typ	620	-	MC1446

Several types of interface drivers are tabulated in this section: twisted-pair drivers for transmitting data over long lines, RS-232 drivers for interfacing modems and
terminals, peripheral drivers for driving lamps, relays and memories, and MOS clock drivers for providing the required clock pulses to highly-capacitive loads.

TWISTED-PAIR LINE DRIVERS

10 to $+75^{\circ} \mathrm{C}$ Temperature Range

RS-232 LINE DRIVER

Function	Compatibility	V_{OL} Vdc min	$\& \begin{gathered} \mathrm{VOH} \\ \mathrm{Vdc} \\ \mathrm{~min} \end{gathered}$	V_{cc} Vdc	$\underset{V_{\text {EE }}}{\mathbf{V d c}^{\prime}}$	$\underset{\substack{\text { ns } \\ \text { typ }}}{\substack{\text { tPL } \\ \hline}}$	Case	$\begin{gathered} \text { Type } \\ 0 \text { to }+75^{\circ} \mathrm{C} \end{gathered}$
Quad Line Driver	MDTL, MTTL	$\begin{aligned} & \hline-6.0 \\ & -9.0 \end{aligned}$	$\begin{aligned} & +6.0 \\ & +9.0 \end{aligned}$	$\begin{gathered} +9.0 \\ +13.2 \end{gathered}$	$\begin{gathered} \hline-9.0 \\ -13.2 \end{gathered}$	150/65*	632	MC1488

[^2]INTERFACE CIRCUITS (Continued)
DRIVERS (continued).
MOS CLOCK DRIVERS

PERIPHERAL DRIVERS

[^3]INTERFACE CIRCUITS (Continued)

DRIVERS (continued)
PERIPHERAL DRIVERS (conlinued)

* Each Transistor.

MOS.LED DISPLAY DRIVERS

Function	Sink Current (mA-max)	Source Current (mA-max)	${ }^{\text {tPLH }} /{ }^{/ t}$ PHL Input to Collector Output (ns - typ)	Collector Voltage (V - max)	Case	Type $0 \text { to }+70^{\circ} \mathrm{C}$
Quad Segment Driver	50	50	$40 / 20$	10	$\begin{aligned} & 632 \\ & 646 \end{aligned}$	MC75491
Hex Digit Driver	250	--	$80 / 40$	10	$\begin{aligned} & 632 \\ & 646 \end{aligned}$	MC75492

D/A CONVERTERS

The low-cost D/A converters described here find wide usage in communications, control, and instrumentation
systems. They provide a current output which is the pro duct of a digital word and an analog reference voltage. duen dital

DIGITAL TO-ANALOG CONVERTERS

Function	Compatibility	$\begin{gathered} \text { Error } \\ (\%-\max) \end{gathered}$	$\left(m A^{\prime O}-t y p\right)$	$\stackrel{\text { ts }}{\text { (ns-typ) }}$	$\left\lvert\, \begin{gathered} \text { TCIO } \\ \text { (ppm } \left./{ }^{\circ} \mathrm{C}-\mathrm{typ}\right) \end{gathered}\right.$	Case	Type	
							-55 to $+125^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$
6.Bit Multiplying Digital-to-Analog Converters	MDTL, MTTL	± 0.78	2.0	150	-	632	MC1506	MC1406
8 -Bit Multiplying Digital-to-Analog Converters	MDTL, MTTL, CMOS	$\begin{array}{r} \pm 0.19 \\ \pm 0.39 \\ \pm 0.78 \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & -20 \\ & -20 \\ & -20 \end{aligned}$	$\begin{aligned} & 620 \\ & 620 \\ & 620 \end{aligned}$	MC1508L8	MC1408L8 MC1408L7 MC1408L6

A/D CONVERTERS

This analog-digital control circuit is useful in high-speed tracking A/D converters, window comparators, and peak detecting sample and hold circuits.

ANALOGDIGITAL CONTROL CIRCUIT

Amplifier Slew Rate $\begin{gathered} A_{V}= \pm 1 \\ (V / \mu s-t y p) \end{gathered}$	Amplifier Settling Time $\begin{gathered} A_{V}= \pm 1 \\ (\mu \mathrm{~s}-\operatorname{typ}) \end{gathered}$	Comparator Threshold $\begin{gathered} V_{\text {ref }}=40 m V \\ (m V-\min / \max) \end{gathered}$	Comparator Bias Current ($\mu \mathbf{A}$ - max)	Case	$\begin{aligned} & \text { Temperature } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Type
20	0.8	$\pm 36 / \pm 44$	1.5	620	-55 to +125	MC1507
20	0.8	$\pm 30 / \pm 50$	2.5	620	0 to +70	MC1407

INTERFACE CIRCUITS (Continued)

RECEIVERS

Mating with the driver types listed in the previous section are the receivers tabulated in this section:
twisted-pair receivers for computer applications, and RS-232 receivers to interface with similar drivers.

TWISTEDPAIR LINE RECEIVERS

\#Case 646 used with industrial temperaturesange devices only.

RS 232 LINE RECEIVERS

Function	Compatibility	$\begin{gathered} \text { Input } \\ \text { Turn-On } \\ \text { Threshold } \\ \text { (Vdc - max) } \end{gathered}$	Input Turn-Off Threshold (Vdc - max)	Input Hysteresis (mV - typ)	$\begin{aligned} & \mathrm{tPLH} / \mathrm{tPHL} \\ & (\mathrm{~ns}-\mathrm{typ}) \end{aligned}$	Case	$\begin{gathered} \text { Type } \\ 0 \text { to }+75^{\circ} \mathrm{C} \end{gathered}$
Quad Line Receiver	MDTL,MTTL MDTL,MTTL	$\begin{gathered} 1.5 \\ 2.25 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{gathered} 250 \\ 1150 \end{gathered}$	$\begin{aligned} & 25 / 25 \\ & 25 / 25 \end{aligned}$	$\begin{aligned} & 632 \\ & 632 \end{aligned}$	MC1489 MC1489A

INTERFACE CIRCUITS (Continued)

COMPARATORS

A comparator provides a logical output in response to the polarity of the differential voltage applied to the inputs of the device. High-speed, high-input-impedance/
precision, and low-cost quad-type comparators are tabulated to aid in the selection of the proper device type for any given circuit application.

$\begin{gathered} \text { Avol }_{\text {vol }} \\ \text { (V min } \end{gathered}$	V_{10} (mVdc max)	$\underset{(\mu \mathrm{Adc} \text { max })}{\mathrm{I}_{\text {I }}}$	VOH(Vdc)		V_{OL}(Vdc)		'Os (mAdc min)	$\operatorname{tp}_{\text {(ns typ) }}$	Case	Type	Features
			min	max	min	max					

55 to $+125^{\circ}$ C Temperature Range.

200,000 typ	3.0	0.01	-	-	-	1.5	-	200	$601,606,632$	MLM111	High input impedance
1,250	2.0	20	2.5	4.0	-1.0	0	2.0	40	$601,606,632$	MC1710***	Output impedance $=$ 200 ohms
1,250	2.0	20	2.5	4.0	-1.0	0	2.8	40	607,632	MC1514	Dual, strobe capability
750	3.5	75	2.5	5.0	-1.0	0	0.5	40	603,606, 632	MC1711 *	Dual with outputs wired OR, strobe capability

.25 to $+85^{\circ} \mathrm{C}$ Temperature Range

$\begin{gathered} 200,000 \\ \text { typ } \end{gathered}$	3.0	0.01	-	-	-	1.5	-	200	601,606,632	MLM211	High input impedance

0 to $+75^{\circ} \mathrm{C}$ Temperature Range

$\begin{gathered} 200,000 \\ \text { typ } \end{gathered}$	7.5	0.05	-	-	-	1.5	-	200	$\begin{aligned} & 601,606 \\ & 626,632 \end{aligned}$	MLM311	High input impedance
1,000	5.0	25	2.5	4.0	$\cdot 1.0$	0	1.6	40	$\begin{aligned} & 601,606 \\ & 632,646 \end{aligned}$	MC1710C*	Output impedance $=$ 200 ohms
1,000	5.0	25	2.5	4.0	- 1.0	0	1.6	40	607,632,646	MC1414	Dual, strobe capability
700	5.0	100	2.5	5.0	-1.0	0	0.5	40	$\begin{aligned} & 603,606, \\ & 632,646 \end{aligned}$	MC1711C*	Dual with outputs wired OR strobe capability

OUAD COMPARATOR

$\begin{gathered} V_{10} \\ \left(m V_{\text {dc }} \text { max }\right) \end{gathered}$	I/B (μ Adc max)	V_{OL} (Vdc max)	Output Leakage Current ($\mu \mathrm{A}$ max)	$\begin{gathered} \text { IOs } \\ \text { (mAdc typ) } \end{gathered}$	$V_{\text {IDR }}$ (Vdc max)	Case	Type

$$
-40 \text { to }+85^{\circ} \mathrm{C} \text { Temperature Range }
$$

20	0.5	0.4	10	5.0	$\pm \mathrm{V}_{\mathrm{CC}}$	646	MC3302

Features
These comparators are designed specifically for single positive-power-supply operation from +2.0 to +28 Vdc . Each monolithic device contains four independent comparators, yet total package power supply current drain is 1.5 mA max.
*Use MCC prefix for nonencapsulated chip.
**Use MCBC prefix for nonencapsulated beam-lead device; use MCB prefix for beam-lead device in ceramic flat pack age

$A_{\text {vol }}$	Open-Loop Voltage Gain	$V_{O H}$	Positive Output Voltage
$V_{I D}$	Differential Voltage Range	$V_{O L}$	Negative Output Voltage
$V_{I O}$	Input Offset Voltage	I_{Os}	Output Sink Current
IIB	Input Bias Current	It	Propagation Delay Time

HIGH-FREQUENCY AMPLIFIERS

Motorola's high-frequency amplifiers simplify the design of receivers and signal processors. Many offer

AGC capability or several gain options to provide extra design flexibility.

HIGH-FREQUENCY AMPLIFIERS

$\begin{aligned} & \text { Bandwidth } \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{gathered} \mathrm{VOS}_{\mathrm{OS}} \\ \left(\mathrm{Vpp}^{2}\right) \end{gathered}$	$\begin{gathered} \left\|z_{i n}\right\| \\ (k \Omega @ k H z) \\ \hline \end{gathered}$		$\begin{gathered} \left\|z_{\mathrm{o}}\right\| \\ (\Omega @ \mathrm{kHz}) \\ \hline \end{gathered}$		Avs (dB)	$G p$$@ 60 \mathrm{MHz}$$(\mathrm{dB})$	Diff. Input and Output	AGC	$\underset{(\mathrm{Vdc})}{\mathrm{V}_{\mathrm{Cc}}, \mathrm{~V}_{\mathrm{EE}}}$	Case	Type			
				$\begin{gathered} -55 \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 0 \text { to } \\ +75^{\circ} \mathrm{C} \end{gathered}$										
	4.5	6.0	20			35	20	$\begin{gathered} 90 \\ \text { (fixed) } \end{gathered}$			No	± 6.0	601	MC1510	MC1410
dc to 75	2.5	10	50	25	50	$\begin{gathered} 18 \\ \text { (fixed) } \end{gathered}$	-	Yes	Yes	± 5.0	$\begin{gathered} \hline 602 \mathrm{~A}, \\ 607, \\ 632 \\ \hline \end{gathered}$	MC1545	MC1445		
22 min	6.0	1.8	1.0 M	100 k	1.0 M	$\begin{gathered} 26 \\ (\mathrm{AGC}=0) \end{gathered}$	25	No	Yes	+6.0	$\begin{array}{c\|} \hline 602 \mathrm{~B}, \\ 606 \end{array}$	MC1550	-		
$\begin{aligned} & 40 @ A_{v}=34 \mathrm{~dB} \\ & 35 @ A_{v}=40 \mathrm{~dB} \end{aligned}$	4.2	10	100	16	100	$\begin{gathered} 30-40 \\ \text { (fixed) } \end{gathered}$	-	No	No	+6.0	602B	MC1552	-		
$\begin{aligned} & 35 @ A_{v}=46 \mathrm{~dB} \\ & 15 @ A_{V}=52 \mathrm{~dB} \end{aligned}$	4.2	10	100	16	100	$\begin{aligned} & 46-52 \\ & \text { (fixed) } \end{aligned}$	-	No	No	+6.0	602B	MC1553	-		
$\begin{array}{r} 100 @ A_{V}=4.0 \mathrm{~dB} \\ 60 @ A_{V}=25 \mathrm{~dB} \end{array}$	7.0	3.0	1.0 M	100 k	1.0 M	$\begin{gathered} 44 \\ (A G C=0) \end{gathered}$	45	Yes	Yes	+12	601	MC1590	-		
$\begin{aligned} 40 @ A_{v} & =52 \mathrm{~dB} \\ 90 @ A_{V} & =40 \mathrm{~dB} \\ 120 @ A_{V} & =20 \mathrm{~dB} \end{aligned}$	4.0	$\begin{array}{r} \hline 4.0 \\ 30 \\ 250 \\ \hline \end{array}$	1.0 1.0 1.0	20	1.0	$\begin{aligned} & 52 \\ & 40 \\ & 20 \\ & \hline \end{aligned}$	-	Yes	No	± 6.0	$\begin{aligned} & 603 \\ & 632 \end{aligned}$	MC1733	MC1733C		

REGULATORS

Motorola offers a broad line of voltage regulators ranging from low－cost＂Functional Circuits＂to high－precision units．Regulators for positive and negative voltages are available as well as a unique floating
regulator，type MC1566L，whose maximum output voltage and current are limited only by the external pass transistor．

POSITIVE VOLTAGE REGULATORS

$\begin{aligned} & \mathrm{v}_{\mathrm{O}} \\ & \mathrm{dc} \end{aligned}$	${ }_{(\text {madc max })}^{10}$			$\begin{gathered} v_{\text {in }} \\ \left(V_{d c}\right) \end{gathered}$		${ }_{\text {（madc }}^{\text {IB }}$	$\underset{\substack{\left.\mathrm{Feg}_{\mathrm{in}} \\ \% \mathrm{VOONO}_{\text {Oin }}^{(\mathrm{max}}\right)}}{ }$		$\begin{gathered} P_{D} \\ \left(W_{\text {max }}\right) \end{gathered}$			Type
min／max		min	max	min	max			（\％ $\mathrm{V}_{\text {O }}$ max ）	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Case	

55 to $+125^{\circ} \mathrm{C}$ Temperature Range

4.5	40	20	3.0	30	8.5	50	2.0	0.06	0.05 mV	－	0.68	601	MLM105
2.5	37	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	2.7	40	8.5	40	9.0	0.015	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{gathered} 1.8 \\ 17.5 \end{gathered}$	$\begin{gathered} 0.68 \\ 3.0 \end{gathered}$	$\begin{gathered} 602 A \\ 614 \end{gathered}$	MC1569＊
2.5	37	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	2.7	40	8.5	40	9.0	0.015	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{gathered} 1.8 \\ 17.5 \end{gathered}$	$\begin{gathered} 0.68 \\ 3.0 \end{gathered}$	$\begin{gathered} 602 \mathrm{~A} \\ 614 \end{gathered}$	MC1561
2.5	17	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	2.7	20	8.5	20	9.0	0.015	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 12 \end{aligned}$	$\begin{gathered} 0.68 \\ 3.0 \end{gathered}$	$\begin{gathered} 602 \mathrm{~A} \\ 614 \end{gathered}$	MC 1560
2.0	37	150	3.0	38	9.5	40	3.5	0.030	0.15	－	0.8	$\begin{gathered} 603,606 \\ 632,607^{*} \end{gathered}$	MC1723＊＊＊

25 to $+85^{\circ}$ C Temperature Range

4.5	40	20	3.0	30	8.5	50	2.0	0.06	0.05 mV	－	0.68		MLM205

4.6	32	200	3.0	－	9.0	35	－	0.03	0.2	－	1.0	206A	MFC4060A
4.6	32	200	3.0	－	9.0	35	－	0.03	0.2	－	1.0	643A	MFC6030A
4.6	32	200	3.0	－	9.0	35	－	0.06	0.4	－	1.0	206A	MFC4062A
4.6	32	200	3.0	－	9.0	35	－	0.06	0.4	－	1.0	643A	MFC6032A
4.6	17	200	3.0	－	9.0	20	－	0.03	0.2	－	1.0	206A	MFC4063A
4.6	17	200	3.0	－	9.0	20	－	0.03	0.2	－	1.0	643A	MFC6033A
4.6	17	200	3.0	－	9.0	20	－	0.06	0.4	－	1.0	206A	MFC4064A
4.6	17	200	3.0	－	9.0	20	－	0.06	0.4	－	1.0	643A	MFC6034A

0 to $+70^{\circ} \mathrm{C}$ Temperature Range

4.5	30	20	3.0	30	8.5	40	2.0	0.06	0.05 mV	－	0.68	601	MLM305
2.5	32	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	3.0	35	9.0	35	12	0.030	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{gathered} 1.8 \\ 17.5 \end{gathered}$	$\begin{gathered} 0.68 \\ 3.0 \end{gathered}$	$\begin{gathered} 602 \mathrm{~A} \\ 614 \end{gathered}$	MC 1469＊
2.5	32	$\begin{aligned} & 200 \\ & 500 \\ & \hline \end{aligned}$	3.0	35	9.0	35	12	0.030	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{gathered} 1.8 \\ 17.5 \\ \hline \end{gathered}$	$\begin{gathered} 0.68 \\ 3.0 \end{gathered}$	$\begin{gathered} 602 \mathrm{~A} \\ 614 \end{gathered}$	MC1461
2.5	17	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	3.0	20	9.0	20	12	0.030	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 12 \end{aligned}$	$\begin{gathered} 0.68 \\ 3.0 \end{gathered}$	$\begin{gathered} 602 A \\ 614 \end{gathered}$	MC1460
2.0	37	150	3.0	38	9.5	40	4.0	0.030	0.20	－	0.8	$\begin{gathered} 603,606, \\ 632 \\ \hline \end{gathered}$	MC1723C＊

＊Also available as nonencapsulated chip．use MCC prefix．
＊＊Also available as nonencapsulated beam－lead device；use MCBC prefix，use MCB prefix for device in ceramic flat package．

FIXED OUTPUT POSITIVE VOLTAGE REGULATORS

$\begin{gathered} V_{O} \\ (\mathrm{Vdc}) \end{gathered}$		$\begin{gathered} \text { Io } \\ \text { (mAdc max) } \end{gathered}$	$\left\|v_{i n}-v_{0}\right\|$(Vdc)		$\begin{gathered} V_{\text {in }} \\ (\mathrm{Vdc}) \end{gathered}$		$\begin{gathered} \mathrm{l}_{1 B} \\ \text { (mAdc max) } \end{gathered}$	$\begin{gathered} \mathrm{Reg}_{\text {in }} \\ (\mathrm{mV} \mathrm{max}) \end{gathered}$	$\underset{\left(\mathrm{mV} \mathrm{Reg}_{\mathrm{max}}\right)}{\mathrm{R}_{2}}$	$\begin{gathered} P_{D} \\ \left(W_{\text {max }}\right) \end{gathered}$		Case	Type
min	max		min	max	min	max				$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		

-55 to $+150^{\circ} \mathrm{C}$ Junction Temperature Range

4.7	5.3	1000 200	2.0	30	7.0	35	10	50	100 50	20 2.0	3.5 0.8	11 79	MLM 109

25 to $+125^{\circ} \mathrm{C}$ Junction Temperature Range

4.7	5.3	1000 200	2.0	30	7.0	35	10	50	100 50	20 2.0	3.5 0.8	11 79	MLM209

0 to $+125^{\circ} \mathrm{C}$ Junction Temperature Range

4.8	5.2	$\begin{gathered} 1000 \\ 200 \end{gathered}$	2.0	30	7.0	35	10	50	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 11 \\ & 79 \end{aligned}$	MLM309
4.8	5.2	750	2.0	30	7.0	35	8.0	100	100	7.5	2.0	199-04	MC7705C
5.75	6.25	750	2.0	29	8.0	35	8.0	120	120	7.5	2.0	199.04	MC7706C
7.7	8.3	750	2.5	27	10.5	35	8.0	160	160	7.5	2.0	199.04	MC7708C
11.5	12.5	750	2.5	23	14.5	35	8.0	240	240	7.5	2.0	199-04	MC7712C
14.4	15.6	750	2.5	20	17.5	35	8.0	300	300	7.5	2.0	199-04	MC7715C
17.3	18.7	500	3.0	17	21	35	8.0	360	360	7.5	2.0	199-04	MC7718C
19.2	20.8	500	3.0	20	23	40	8.0	400	400	7.5	2.0	199-04	MC7720C
23	25	500	3.0	16	27	40	8.0	480	480	7.5	2.0	199-04	MC7724C
4.8	5.2	1500	2.0	30	7.0	35	8.0	100	100	15	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 199-04 \\ 11 \end{gathered}$	MC7805C
5.75	6.25	1500	2.0	29	8.0	35	8.0	120	120	15	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 199-04 \\ 11 \end{gathered}$	MC7806C
7.7	8.3	1500	2.5	27	10.5	35	8.0	160	160	15	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 199.04 \\ 11 \\ \hline \end{gathered}$	MC7808C
11.5	12.5	1500	2.5	23	14.5	35	8.0	240	240	15	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 199.04 \\ 11 \end{gathered}$	MC7812C
14.4	15.6	1500	2.5	20	17.5	35	8.0	300	300	15	$\begin{array}{r} 2.0 \\ 2.5 \\ \hline \end{array}$	$\begin{gathered} 199-04 \\ 11 \end{gathered}$	MC7815C
17.3	18.7	1000	3.0	17	21	35	8.0	360	360	15	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 199-04 \\ 11 \\ \hline \end{gathered}$	MC7818C
23	25	1000	3.0	16	27	40	8.0	480	480	15	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 199.04 \\ 11 \\ \hline \end{gathered}$	MC7824C

TRACKING VOLTAGE REGULATORS

$\begin{aligned} & \mathrm{V}_{\mathrm{OR}}{ }^{\dagger} \\ & (\mathrm{Vdc}) \end{aligned}$		$\begin{gathered} \mathrm{IO} \\ \text { (mAdc max }{ }^{2} \end{gathered}$	$\left\lvert\, \begin{gathered} \left\lvert\, \begin{array}{c} \mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{o}} \\ \left(\mathrm{Vdc}^{\prime}\right) \\ \mathrm{min} \end{array}\right. \\ \hline \end{gathered}\right.$	$\begin{aligned} & \mathrm{V}_{\text {in }} \\ & \text { (Vdc) } \\ & \hline \end{aligned}$		$\underset{(m A d c}{\left.I_{\text {max }}\right)}$	$\begin{gathered} R_{e g_{i}} \\ \% V_{0} / V_{\text {in }} \\ (\max) \end{gathered}$	$\mathrm{Reg}_{\mathrm{L}}$ (\%VO max $)$	$\begin{gathered} P_{D} \\ \left(W_{\text {max }}\right) \end{gathered}$		Case	Type
min	max			min	max				$\mathrm{T}^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		

-55 to $+125^{\circ} \mathrm{C}$ Temperature Range

									2.1	0.8	603	
± 14.8	± 15.2	$100{ }^{\dagger}$	2.0	± 17.2	± 30	+4.0,-3.0	0.006	0.07	2.5	1.0	632	MC1568

0 to $+75^{\circ} \mathrm{C}$ Temperature Range

[^4]
NEGATIVE VOLTAGE REGULATORS

55 to $+125^{\circ} \mathrm{C}$ Temperature Range

-3.6	37	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	-2.7	35	-8.5	-40	11	0.015	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 9.0 \end{aligned}$	$\begin{gathered} 0.68 \\ 2.4 \end{gathered}$	$\begin{gathered} 602 \mathrm{~A} \\ 614 \end{gathered}$	MC1563*
-0.015	-40	20	2.0	50	-8.0	- 50	5.0	0.1	0.05	1.8	0.68	603	MLM104

-25 to $+85^{\circ}$ C Temperature Range

-0.015	-40	20	2.0	50	8.0	-50	5.0	0.1	0.05	1.8	0.68	603	MLM 204

0 to +70 C Temperature Range

-3.8	-32	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	-3.0	40	-9.0	-35	14	0.030	$\begin{aligned} & 0.13 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 9.0 \end{aligned}$	$\begin{gathered} 0.68 \\ 2.4 \end{gathered}$	$\begin{gathered} 602 A \\ 614 \end{gathered}$	MC1463*
-0.035	-30	20	2.0	40	-8.0	-40	5.0	0.1	0.05	1.8	0.68	603	MLM304

Atso avallable as nonencapsulated chip, use MCC prefix.

FIXED OUTPUT NEGATIVE VOLTAGE REGULATORS

$\underset{(\mathrm{Vdc})}{\mathrm{V}_{\mathrm{O}}}$		$\begin{gathered} \text { IO } \\ \text { (mAdc max) } \end{gathered}$	$\begin{aligned} & \left\|V_{\text {in }} \cdot V_{\mathrm{O}}\right\| \\ & \left(\mathrm{Vdc}_{\mathrm{dc}}\right) \end{aligned}$		$\begin{gathered} V_{\text {in }} \\ (\mathrm{Vdc}) \end{gathered}$		$\begin{gathered} \text { I/B } \\ (\text { mAdc max }) \end{gathered}$	$R_{i n}$ (mV max)	$\begin{gathered} \operatorname{Reg}_{L} \\ (\mathrm{mV} \text { max }) \end{gathered}$	$\begin{aligned} & P_{D} \\ & \text { (W max }) \end{aligned}$		Case	Type
min	max		min	max	min	max				$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		

0 to $+125^{\circ}$ C Junction Temperature Range

SPECIAL-PURPOSE REGULATORS

V_{0}		Reg $_{\text {in }}$ (max)	$\begin{aligned} & \operatorname{Reg}_{\mathrm{L}} \\ & (\max) \end{aligned}$	Current Regulation	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ \left(\mathrm{~W}_{\text {max }}\right) \end{gathered}$	Case	Type	Features
min	max							
55 to $+125^{\circ} \mathrm{C}$ Temperature Range								
0	1000*	$0.01 \%+1 \mathrm{mV}$	$0.01 \%+1 \mathrm{mV}$	$0.1 \%+1 \mathrm{~mA}$	0.300	632	MC1566	A floating regulator, can be used as a voltage controiled current source.
0 to $+75^{\circ} \mathrm{C}$ Temperature Range								
0	1000*	0.03\% +3mV	0.03\% +3mV	$0.02 \%+1 \mathrm{~mA}$	0.360	632	MC1466	A floating regulator, can be used as a voltage controlled current source.

[^5]
SPECIAL－PURPOSE CIRCUITS

The linear－integrated－circuits listed in this section were developed by Motorola for the system design engineer to fill special－purpose requirements as indicated
by the subheadings．Temperature ranges and package availability are also tailored to provide versatility

MULTIPLIERS

Function	Linearity Error （typ）	Input Voltage Range （Vdc min）	Case	Type	
				-55 to $+125^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$
A four－quadrant multiplier designed to operate with ± 15－volt supplies；has internal level－shift circuitry and voltage regulator．	$\pm 0.3 \%$	± 10	620	MC1594	－
	$\pm 0.5 \%$	± 10	620	－	MC1494
Applications include multiply，divide，square root，mean square， phase detector，frequency doubler，balanced modulator／de－ modulator，electronic gain control．	$\begin{aligned} & X \text { Input }=0.5 \% \\ & Y \text { Input }=1.0 \% \end{aligned}$	± 10	632	MC1595＊	－
	$\begin{aligned} & X \text { Input }=1.0 \% \\ & Y \text { Input }=2.0 \% \end{aligned}$	± 10	632	－	MC1495＊

Also avallable as a nonencapsulated chip，use MCC prefix．

BALANCED MODULATOR／DEMODULATOR

Function	Carrier Suppression dB＠ $\mathbf{f}(\mathrm{MHz})$ （typ）		Common－Mode Rejection （dB typ）	Case	Type		
			-55 to $+125^{\circ} \mathrm{C}$		0 to $+75^{\circ} \mathrm{C}$		
Balanced modulator／demodulator designed for use where the output voltage is a product of an input voltage（signal）and a switching function（carrier）．	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{array}{r} 0.5 \\ 10 \end{array}$		85	$\begin{gathered} \text { 602A } \\ 632 \end{gathered}$	MC1596	MC1496

LOW－FREQUENCY CIRCUITS

Function	Output Power （W typ）	Voltage Gain－typ （V／V typ）	Total Harmonic Distortion （\％typ）	Case	Type	
					－55 to $+125^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$
A power amplifier device capable of single or split supply operation．	1.0	10，18， 36	0.4	602B	MC1554	MC1454

POWER－CONTROL CIRCUITS

Function	Temperature	Case	Type
Zero voltage switch for use in ac power switching with output capable of triggering triacs．	-10 to $+75^{\circ} \mathrm{C}$	644 A	$\mathrm{MFC8070}$

TIMING CIRCUIT

Function	Supply Voltage $V_{C C}$ （Vdc－max）	Initial Timing Error$\begin{gathered} V_{C C}=5 \& 15 \mathrm{~V} \\ C=0.1 \mu \mathrm{~F}(\%-\mathrm{typ}) \end{gathered}$	$\begin{gathered} V_{O L} \\ V_{C C}=15 \mathrm{~V} \\ I_{\text {sink }}=50 \mathrm{~mA} \\ (V d c-\max) \end{gathered}$	$\begin{gathered} V_{O H} \\ V_{C C}=15 \mathrm{~V} \\ I_{\text {source }}=100 \mathrm{~mA} \\ (\mathrm{Vdc}-\mathrm{min}) \end{gathered}$	Case	Type	
						-55 to $+125^{\circ} \mathrm{C}$	0 to $+75^{\circ} \mathrm{C}$
Wide range adjustable timers	16	1.0	0.75	12.75	$\begin{aligned} & 601, \\ & 626 \end{aligned}$	－	MC1455
	18	0.5	0.5	13	601	MC1555	－

CONSUMER APPLICATION SELECTOR GUIDE

...reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. The tabulation contains data for a large number of components designed principally for entertainment
product applications. It is arranged to simplify first-order of linear integrated circuit device lineups to satisfy primary functions for Television, Audio, Radio, Automotive and Organ applications.

TELEVISION CIR CUITS
SOUND

Function	Features	Case	Type
Sound IF, Detector, Limiter, Audio Preamplifier	$80 \mu \mathrm{~V}, 3 \mathrm{~dB}$ Limiting Sensitivity, 3.5 V(RMS) Output, Sufficient for Single Transistor Output Stage	646,647	MC1351
Sound IF Detector	Interchangeable with ULN2111A	646,647	MC1357
Sound IF Detector, DC Volume Control, Preamplifier	Excellent AMR, Interchangeable with CA3065	646,647	MC1358

VIDEO

+	1st and 2nd Video IF Amplifier	IF Gain @ $45 \mathrm{MHz}-60 \mathrm{~dB}$ typ AGC Range - 70 dB min	626	MC1349
\cdots		IF Gain @ $45 \mathrm{MHz}-46 \mathrm{~dB}$ typ, AGC Range - 60 dB min	626	MC1350
,	1st and 2nd Video IF, AGC Keyer and Amplifier	IF Gain @ $45 \mathrm{MHz}-53 \mathrm{~dB}$ typ. AGC Range -65 dB min "Forward AGC" Provided for Tuner	646	MC1352
-		Same as MC1352, with Opposite AGC for Tuner	646	MC1353
	3rd IF and Video Detector	Low-Level Detection, Low Harmonic Generation, Reduced Circuit Cost and Complexity Reduced Shielding	626	MC1330
	3rd IF, Video Detector, Sound IF Detector, and Sync Separator	Low-Level Detection, Separate Sound Detector, Differential Inputs	646	MC1331
	AGC Keyer, AGC Amplifier, Noise Gate, Sync Separator	High-Quality Noise Gate, One IF AGC Output and Two Tuner AGC Outputs, Adjustable AGC Delay	646	MC1344
	Automatic Fine Tuning	High Gain AFT System, Interchangeable with CA3064	$\begin{aligned} & 646 \\ & 686 \end{aligned}$	MC1364
	CHROMA			
	Chroma IF Amplifier and Subcarrier System	Includes Complete Chroma IF, AGC, dc Gain and Tint Controls, Injection Locked Oscillator, Low Peripheral Parts Count	646	MC1398
	Chroma Subcarrier System	Interchangeable with CA3070, APC Chroma Reference System	648	MC1370
	Chroma IF Amplifier	Interchangeable with CA3071, Automatic and Manual Gain Control	646	MC1371
	Dual Chroma Demodulators	Industry Standard Demodulator, Low Differential Output dc Drift	$\begin{gathered} 603 \\ 646,647 \\ \hline \end{gathered}$	MC1328
		Same as MC1328 with short-circuit protected outputs, and improved dc tracking and temperature coefficients on outputs.	646	MC1329
		Similar to MC1328 but with Luminance and Blanking Inputs, Internal Matrix Provides RGB Outputs	646,647	MC1326
		Same as MC1326 with short-circuit protected outputs, and improved dc tracking and temperature coefficients on outputs.	646	MC1324
		Dual Doubly Balanced Demodulator with RGB Output Matrix and PAL Switch	646,647	MC1327
	DEFLECTION			
	Horizontal Processor	Includes Phase-Detector, Oscillator and Predriver; Linear Balanced Phase Detector; Adjustable dc Loop Gain	626	MC1391

CONSUMER APPLICATION SELECTOR GUIDE (Continued)
AUDIO CIRCUITS
PREAMPLIFIERS

Function	$\mathbf{V}_{\mathbf{C c}}$ (Vdc $-\mathbf{m a x})$	$\mathbf{A}_{\text {vol }}$ (dB $\mathbf{m i n})$	$\mathbf{T H D}$ $(\%$ typ)	$\mathbf{z}_{\mathbf{o}}$ (Ohms typ)	Case	Type
Dual Preamplifier	± 15	80	0.1	100	632	MC1303
Dual Low-Noise Preamplifier	16	63	0.1	100	646	MC1339
Low-Noise Preamplifier	33	80	0.1	100	644 A	MFC8040

DRIVERS

Function	$\begin{gathered} V_{C C} \\ (\mathrm{Vdc}-\max) \end{gathered}$	Drive Current (mA)	$A_{\text {vol }}$ (dB)	Case	Type
Class A Audio Driver	18	30 min	42 min	206A	MFC4050
Class B Audio Drivers	35	150 peak	89 typ	644A	MFC8020A
	20	150 peak	87 typ	644A	MFC8021A
	45	150 peak	90 typ	644A	MFC8022A
	25	50 max	-	646	MC1385

POWER AMPLIFIERS

Function	$\stackrel{\mathrm{PO}_{\text {(Watts) }}}{ }$	$\underset{\left(\mathrm{Vdc}_{\mathrm{max}}\right)}{\mathrm{V}^{2}}$	$\begin{gathered} \mathrm{e}_{\text {in }} \\ @ \operatorname{rated} \mathrm{P}_{\mathrm{O}} \\ (\mathrm{mV}-\max) \end{gathered}$	$\begin{gathered} P_{D} \\ (\max)-\max \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}} \\ \text { (Ohms) } \end{gathered}$	Case	Type
Audio Power Amplifiers	0.5	12	3.0	4.0	8.0	626	MC1306
	0.25	12	3.0	3.5	16	206A	MFC4000B
	1.0	20	100	5.0	16	643A	MFC6070

RADIO CIRCUITS
IF AMPLIFIERS

Function	$\begin{gathered} \text { Gain } \\ @ 10.7 \mathrm{MHz} \\ \text { (dB }- \text { typ }) \end{gathered}$	$\begin{gathered} 3 \mathrm{~dB} \text { Limiting } \\ @ 10.7 \mathrm{MHz} \\ (\mathrm{mV}(\mathrm{RMS}) \text { typ) } \end{gathered}$	AMR (dB - typ)	Recovered Audio Output $\begin{aligned} & \Delta f=75 \mathrm{kHz} \\ & (\mathrm{mV}(\mathrm{RMS}) \end{aligned}$	Power Supply (Volts - max)	Case	Type
IF Amplifier	58	-	-	--	18	626	MC1350
Limiting FM-IF Amplifier	-	0.175	60	690	18	646,647	MC1355
Limiting IF Ampl/Quadrature Detector	53	0.600	45	480	16	646,647	MC1357
IF Amplifier	42	0.4	-	--	18	206A	MFC4010A
IF Amplifier, Nonsaturating Limiter	40	60	50	500	20	643A	MFC6010
IF Amplifier, Limiter, Detector, Audio Preamplifier	21	0.25	55	625	16	646	MC1375

DECODERS

Function	Channel Separation (dB - typ)	$\begin{aligned} & \text { THD } \\ & (\% \text { - typ }) \end{aligned}$	Stereo - Indicator Lamp Driver (mA - max)	Features	Case	Type
FM Multiplex Stereo Decoders	$\begin{aligned} & 45 \\ & 45 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.3 \\ & 0.5 \end{aligned}$	$\begin{gathered} 40 \\ 40 \\ 40 \\ 75 \\ 100 \end{gathered}$	Audio Muting Audio Muting Coilless Operation Coilless Operation, Emitter Follower Outputs, and Unity Gain	$\begin{aligned} & 646 \\ & 646 \\ & 646 \\ & 646 \\ & 648 \end{aligned}$	MC1304 MC1305 MC1307 MC1310 MC1311
Four-Channel SQ* Decoders	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.25 \end{gathered}$	-	$V_{C C}=20 \mathrm{Vdc}$ nom $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}$ nom	$\begin{aligned} & 646 \\ & 646 \end{aligned}$	MC 1312 MC1313

AUTOMOTIVE CIRCUITS

OPERATIONAL AMPLIFIER

Function	$V_{C C}$ Range (Vdc)	$\stackrel{A_{\text {vol }}}{(\mathrm{V} / \mathrm{mV}-\mathrm{typ})}$	$\begin{gathered} \mathbf{l}_{18} \\ \left(\mu \mathrm{~A}-\mathrm{max}^{2}\right) \end{gathered}$	Unity Gain Bandwidth (MHz - typ)	$\underset{(\operatorname{Meg} \Omega \text { typ })}{\mathbf{R}_{\text {in }}}$	Case	Type
Quad Operational Amplifier	4.0 to 28	2.0	0.3	4.0	1.0	646	MC3301

COMPARATOR

Function	$v_{c c}$ Range (Vdc)	$V_{\text {IDR }}$ (Vdc)	$\begin{gathered} \mathrm{I}_{1 B} \\ (\mu \mathrm{~A}-\max) \end{gathered}$	Output Leakage Current ($\mu \mathrm{A}$-max)	Sink Current	Case	Type
Quad Comparator	2.0 to 28	$\pm \mathrm{V}_{\mathrm{CC}}$	0.5	1.0	6.0	646	MC3302

CONSUMER APPLICATION SELECTOR GUIDE (Continued)

\section*{ORGAN CIRCUITS
 FREQUENCY DIVIDERS
 | Function | $V_{c c}$
 Range
 (Vdc) | $\begin{gathered} \left.{ }^{\mathrm{f}} \mathrm{Tog}^{-\mathrm{typ}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{VOH}_{\mathrm{OH}} \\ (\mathrm{Vdc}-\mathrm{min}) \end{gathered}$ | Case | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Toggle Flip-Flop | 6.0 to 16 | 3.0 | 15.5 | 206A | MFC4040 |
| Dual Toggle Flip-Flop | 6.0 to 16 | 3.0 | 15.5 | 643A | MFC6020 |

RHYTHM

Preview of Coming Linear Devices

INDUSTRIAL PRODUCTS

Linear ICs have traditionally found wide application in the diverse Industrial market place. Numerous types of op amps, voltage regulators, analog multipliers and timers fill important roles in process control, instrumentation, and signal processing functions. The devices previewed below complement an already substantial lineup of Motorola Industrial products.

MC3503
 MC3403
 Quad Operational Amplifiers

The MC3503/3403 is a quad, true differentialinput operational amplifier designed for either single or split power supply ($\pm 15 \mathrm{~V}$) operation.

The four internally-compensated amplifiers within a package draw a total supply current of only 2.5 mA maximum - independent of supply voltages. When the device is operated with split supplies, most specifications equal or exceed comparable parameters for the popular MC1741.

FEATURES:

- Wide supply voltage range: $3.0 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 36 \mathrm{~V}$ or $| \pm 1.5 \mathrm{~V}| \leqslant \mathrm{V} \leqslant| \pm 18 \mathrm{~V}|$
- Low power drain: 2.5 mA maximum for all four amplifiers
- Internally compensated
- Low bias currents: 200 nA maximum

MC3570 High-Slew Operational Amplifier

The MC3570G is intended for applications requiring optimum speed. It has a typical unity gain slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ with a 30 pF load. Power bandwidth is an impressive 1.5 MHz , and unity gain crossover frequency is at 15 MHz . The units are internally compensated for unity gain stability with 30° of phase margin.

High-speed signal processing, A/D and D/A conversion, and high-frequency instrumentation are just three examples of areas which can make use of this high-speed monolithic operational amplifier.

FEATURES:

- High slew rate: $100 \mathrm{~V} / \mu \mathrm{s}$
- Power bandwidth $=1.5 \mathrm{MHz}$
- Unity gain crossover at 15 MHz

LINEAR-DIGITAL INTERFACE PRODUCTS

The need to span the gap between analog information and digital processing is becoming increasingly prevalent. In fact, a whole family of linear (analogl/digital interface devices has arisen in the past few years. This category is highlighted at Motorola by a number of new monolithic D / A and A / D converters. Several of the newest elements in this rapidly expanding field are the topics of the following paragraphs.

MC3537 Hex Unified Bus Receiver MC3538 Quad Unified Bus Transceiver

Where bus-organized data transmission systems are employed, the MC3537 and MC3538 can be efficiently utilized to solve interface problems. The MC3537 contains six bus receivers, while the MC3538 contains four drivers and four receivers with each driver-receiver pair sharing common input-output pins.

Both types incorporate hysteresis in the receivers to permit excellent noise immunity, and are optimized for bus rise and fall times less than $10 \mu \mathrm{~s}$.

FEATURES:

- Hysteresis of 1.0 V provided in receivers
- High receiver noise immunity: 2.0 V typical
- Receiver input threshold voltage insensitive to temperature changes
- MTTL-compatible logic levels
- Equivalent to DM7837 and DM7838 respectively

MC3430

thru High-Speed Quad Comparators

 MC3433Both of these comparators feature 20 ns response time and a strobe input common to the four units. However, the MC3430-31 have active pullup outputs and a three-state strobe, while the MC343233 are equipped with open-collector outputs.

In applications requiring numerous comparators, such as the sensing of 1103-type MOS memories, the greater package density permitted by the quad configuration results in considerable saving in circuit board space.

FEATURES:

- Response time $=20$ ns typical
- Input offset voltage $=3.0 \mathrm{~mW}$ typical
- Choice of either three-state or open-collector outputs
- Strobe input common to all four comparators

MC1505 Digital Voltmeter Subsystem (A/D Converter)

The MC1505 is the analog front-end portion of either a $41 / 2$ or $31 / 2$ digit DVM. It is designed for use with the MC14435 McMOS logic subsystem to produce the complete $31 / 2$ digit DVM function (excluding display). The MC1505 can also be used alone as a general purpose A/D converter.

The MC1505 uses the proven dual ramp A/D conversion technique. The subsystem consists of an on-chip voltage reference, a pair of voltage/ current converters, an integrator, a current switch, a comparator, and associated control and calibration circuitry. The device requires only one capacitor and two potentiometers for operation.

FEATURES:

- Accuracies to 13 bits
- Single power supply of +5.0 to +18 V
- Accepts positive or negative input voltage
- Digital input and output both MTTL and McMOS compatible

MC3459 MC3460
 Quad NMOS Memory Drivers

These quad drivers provide the interface between MTTL logic and NMOS memories. The MC3459 is a low-voltage driver for address lines while the MC3460 is a high-voltage device for driving the clock lines. The devices will drive 350 pF loads with propagation delay times of 25 ns and 35 ns respectively.

The high-voltage version uses a multiplexed pullup circuit to reduce power consumption.

FEATURES:

- Four drivers per package
- MTTL-compatible inputs
- Maximum operating frequency greater than 2.0 MHz

MC3463 Quad MECL Line Driver

The MC3463 is a quad line driver with MECL 10,000 compatible inputs. The device switches a 12 mA current sink between each of the two outputs per channel in response to the input logic condition. A pair of inhibit inputs is provided with each inhibit common to two of the channels.

Typical propagation delay time is less than 3.0 ns from the logic inputs and 5.0 ns from the inhibit inputs.

FEATURES:

- MECL 10,000 compatible
- Quad configuration
- High-speed operation
- 12 mA output current capability

MC3462 Quad MECL Line Receiver

The MC3462 is a quad MECL 10,000 compatible line receiver designed for use with the MC3463 line driver. The MC3462 has a strobe input common to all four channels, sensitivity of 8.0 mV , and propagation delay time of only 5.0 ns .

FEATURES:

- MECL 10,000 compatible
- High-speed operation
- 8.0 mV sensitivity
- $\pm 3.0 \mathrm{~V}$ common mode input voltage range

CONSUMER PRODUCTS

Linear ICs are helping the consumer obtain greater functional value for his dollar. They are permitting greater performance and complexity in entertainment equipment without increasing costs. In addition, Linear IC useage is growing exponentially in automotive electronic systems to aid in solving safety and environmental problems. The following new devices are specifically conceived for use in consumer oriented products.

Radio Circuits

MC1314 Four-Channel Audio VoltageControlled Amplifier

The MC1314 is a gain control and balance adjustment unit for use with the CBS SQ* system decoders. It consists of four amplifiers, with the gain of each being adjustable by varying a dc voltage. Thus with four variable resistors, the master volume and $L_{F} / R_{F}, L_{B} / R_{B}$ and F / B balance may be controlled.

The unit also has inputs which may be connected to the MC1315 logic enhancement unit to provide increased front to back separation. This feature is highly desirable in high performance four channel stereo systems.

FEATURES:

- DC controlled gain and balance
- Compatible with MC1312 decoder and MC1315 logic enhancement unit
- Excellent tracking between all four channels
- High density
- Very low output transients

MC1315 Four-Channel Audio Logic Circuit

The MC1315 provides the basic logic function for enhancing the front to back separation in the CBS SQ* four channel decoding system. The new IC is designed to interface with the MC1312 decoder and MC1314 gain control unit. The MC1315 provides variable dc logic enhancement control signals to the MC1314.

This unit extends the performance of the basic SQ system to the levels desired for top-of-the-line systems.

FEATURES:

- Provides logic enhancement to extend front to back separation to 20 dB
- Provisions for variable enhancement control
- High density
*SQ is a trademark of Columbia Broadcasting System, Inc.

MC1356 FM Detector/Limiter

The MC1356 includes a limiting amplifier, a quadrature discriminator, and a voltage regulator. It has been designed primarily for FM receiver applications. While similar to the MC1357, it includes built-in regulation capable of supplying 20 mA to external circuitry.

FEATURES:

- Good line and load regulation
- Low harmonic distortion
- Permits single tuning coil design
- Direct replacement for $\mu \mathrm{LN}-2136$
- Regulator is short-circuit protected

TV Circuits

MC1359 Sound System

The MC1359 is a complete sound system for a television receiver. It includes the IF amplifier, detector, electronic volume control, and audio amplifier. The IC provides two watts of audio output. All this is packed into a single plastic package with two heat dissipating tabs.

The dc voltage-controlled volume attenuator saves the necessity of long lengths of shielded cable between the volume control and the audio amplifier circuitry. This advanced system provides 80 dB of audio attenuation range.

FEATURES:

- Excellent AM rejection
- DC volume control with 80 dB typical attenuation range
- Signal to noise ratio $=63 \mathrm{~dB}$ typical
- Few external components required

MC1394 Horizontal Processor (Negative Sync)

The MC1394 horizontal processor packs the phase detector, oscillator and pre-driver functions into a single, convenient 8 -lead plastic package. The new unit provides the entire low-level horizontal signal processing function and may be used with either transistor or vacuum tube output stages. This device is a negative-sync version of the MC1391.

FEATURES:

- Negative sync pulse operation
- Internal shunt regulator
- Preset Hold control capability
- $\pm 300 \mathrm{~Hz}$ typical pull-in range
- Balanced phase detector
- Variable output duty cycle for driving tube or transistor
- Low thermal frequency drift
- Small static phase error

MC1395/TBA395 PAL Chroma

The MC1395 forms a complete three-chip PAL chroma system when used with the MC1396 PAL luma and the MC1327 chroma demodulator.

It includes the APC detector, oscillator, ACC detector and controlled stage, PAL bistable, color killer, and burst gating.

FEATURES:

- Internal shunt regulator
- Balanced phase detector
- $\pm 450 \mathrm{~Hz}$ typical pull-in range
- Low thermal frequency drift

MC1396/TBA396 PAL Luma

The MC1396 forms a complete three-chip PAL chroma system when used with the MC1395 PAL chroma and the MC1327 chroma demodulator.

It includes the chroma amplifier, chroma control, PAL delay line driver, luminance amplifier, black level clamp, and beam current limiter.

FEATURES:

- Tracking dc contrast and chroma level controls
- DC brightness control
- Beam current limiter operating on the contrast control
- Feedback black level clamp

MC13120/TBA 120 FM IF Amplifier

The MC13120 is a six-stage differential amplifier/ limiter, balanced coincidence detector with dc volume control designed for use in radio and TV FM/IF applications.

FEATURES:

- Low harmonic distortion
- One coil detector alignment
- DC volume control
- Excellent sensitivity GUIDE

INTERCHANGEABILITY GUIDE

This interchangeability guide describes equivalent circuits in two ways: (1) the "Direct Replacement" which is both electrically and mechanically a direct replacement; and, (2) the "Functional Equivalent" that is generally similar and is suggested as an alternate. When a functional equivalent circuit is used for a replacement, the specific data sheet should be consulted.

Packaging availability information for each Motorola device is listed in the Linear Application Selector Guides section and also appears on the individual data sheet for the device. Exact outline dimensions are shown in the Packaging Information section of this data book.

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
CA 3000		MC1550G
CA 3001		MC1723G
CA 3002		MC1550G
CA 3004		MC1550G
CA 3005		MC1550G
CA3006		MC1550G
CA 3007		MC1550G
CA 3008		MC1709F
CA3008A		MC1709F
CA 3010		MC1709G
CA3010A		MC1709G
CA 3011	MC1590G	
CA3012	MC1590G	
CA 3013	MC1355P	
CA3014	MC1357P	
CA 3015		MC1709G
CA3015A		MC1709G
CA3016		MC1709F
CA3016A		MC1709F
CA3020		MC1554G
CA3020A		MC1554G
CA3021		MC1590G
CA3022		MC1590G
CA3023		MC1590G
CA3028A		MC1550G
CA3028B		MC1550G
CA3029		MC1709CP2
CA3029A		MC1709CP2
CA3030		MC1709CP2
CA3030A		MC1709CP2
CA3031	MC1712G	
CA 3032	MC1712CG	
CA 3033		MC1533L
CA3033A		MC1533L
CA3035		MC1352P
CA3037		MC1709L
CA 3037 A		MC1709L
CA3038	MC1709L	
CA3038A	MC1709L	
CA3040		MC1510G
CA 3041		MC1351P
CA3042		MC1357P
CA 3043		MC1357P
CA3047		MC1433L
CA 3047A		MC1433L
CA3048		MC3401P
CA3052		MC1339P
CA3053		MC1550G

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
CA 3055		MC1723G
CA3056		MC1741CG
CA3056A		MC1741G
CA3058		MFC8070
CA3059		MFC8070
CA3064	MC1364P	
CA 3064/5A		MC1364G
CA3065	MC1358P	
CA 3065/7 F		MC1358PQ
CA3066		MC1398P
CA3067		MC1328P
CA3070	MC1370P	
CA3071	MC1371P	
CA 3072	MC1328P	
CA3075		MC1375P
CA 3076		MC1590G
CA 3079		MFC8070
CA 3085		MC1723G
CA 3085A		MC1723G
CA 3085B		MC1723G
CA39090		MC1310P
CA3741CT	MC1741CG	
CA3741T	MC1741G	
LH101F		MC1741F
LH101H		MC1741G
LH201H		MC1741G
LM100H		MC1723G
LM101AH	MLM101AG	
LM101H	MC1748G	
LM102H	MLM110G	
LM 104H	MLM104G	
LM105H	MLM105G	
LM106H		MC1710G
LM107H	MLM107G	
LM108AH		MC1556G
LM108H		MC1556G
LM109K	MLM109K	
LM110H	MLM110G	
LM111D	MLM111L	
LM111F	MLM111F	
LM111H	MLM111G	
LM112H		MC1556G
LM118H		MC1539G
LM1303N	MC1303L	
LM1304N	MC1304P	
LM1305N	MC1305P	
LM1307N	MC1307P	
LM1310N	MC1310P	

INTERCHANGEABILITY GUIDE (continued)

$\begin{array}{l}\text { TYPE }\end{array}$	$\begin{array}{l}\text { MOTOROLA } \\ \text { DIRECT }\end{array}$	$\begin{array}{l}\text { MOTOROLA } \\ \text { FUNCTIONAL } \\ \text { RUMBER }\end{array}$
REPLACEMENT		

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
LM340-06T	MC7806CP	
LM340-08K	MC7808CK	
LM340-08T	MC7808CP	
LM340-12K	MC7812CK	
LM340-12T	MC7812CP	
LM340-15K	MC7815CK	
LM340-15T	MC7815CP	
LM340-18K	MC7818CK	
LM340-18T	MC7818CP	
LM340-24K	MC7824CK	
LM340-24T	MC7824CP	
LM370H		MC1590G
LM370N		MC1350P
LM371H		MFC6010
LM376N		MFC6030A
LM380N		MFC9020
LM381N		MC1339P
LM382N		MC1339P
LM3900N	MC3401P	
LM3901N	MC3302P	
LM4250CH		MC1776CG
LM4250H		MC1776G
LM5520J		MC7520L
LM5521J		MC7521L
LM5523J		MC7523L
LM5525J		MC7525L
LM5528J		MC7528L
LM5529J		MC7529L
LM5534J		MC7534L
LM5535J		MC7535L
LM5538J		MC7538L
LM5539J		MC7539L
LM555CH	MC1455G	
LM555D	MC1455P1	
LM555H	MC1555G	
LM703LN		MFC6010
LM709CH	MC1709CG	
LM709CN	MC1709CP2	
LM709H	MC1709G	
LM710CH	MC1710CG	
LM710CN	MC1710CP	
LM710H	MC1710G	
LM711CH	MC1711CG	
LM711H	MC1711G	
LM723CD	MC1723CL	
LM723CH	MC1723CG	
LM723D	MC1723L	
LM723H	MC1723G	
LM733CD	MC1733CL	
LM733CH	MC1733C	
LM733D	MC1733L	
LM733H	MC1733G	
LM741CD	MC1741CL	
LM741CH	MC1741CG	
LM741CN	MC1741CP1	
LM741CN-14	MC1741CP2	
LM741D	MC1741L	
LM741F	MC1741F	
LM741H	MC1741G	
LM746N	MC1328P	
LM747CC	MC1747CL	
LM747D	MD1747L	
LM748CH	MC1748CG	
LM748H	MC1748G	
LM75107N LM75108N		MC75107L MC75108L
LM75108N		

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
LM75109N		MC75109L	N5596A	MC1496L	
LM75110N		MC75110L	N5596K	MC1496G	
LM7520J	MC7520L		N5709A	MC1709CP2	
LM7520N	MC7520L		N5709G	MC1709CF	
LM7521J	MC7521L		N5709T	MC1709CG	
LM7521N	MC7521L		N5709V	MC1709CP1	
LM7522J	ML7522L		N5710A	MC1710CP	
LM7522N	MC7522L		N5710T	MC1710CG	
LM7523J	MC7523L		N5711A	MC1711CP	
LM7523N	MC7523L		N5711K	MC1711CG	
LM7524J	MC7524L		N5723A		MFC6030A
LM7524N	MC7524L		N5723T	MC1723CG	
LM7525J	MC7525L		N5733K	MC1733CG	
LM7525N	MC7525L		N5741A	MC1741CP2	
LM7528J	MC7528L		N5741T	MC1741CG	
LM7528N	MC7528L		N5741V	MC1741CP1	
MC7529J	MC7529L		N5747A	MC1747CL	
LM7529N	MC7529L		N5747F	MC1747CL	
LM75325N	MC75325P		N5748A		MC1747CG
LM7534J	MC7534L		N5748T	MC1748CG	
LM7534N	MC7534L		N7520B	MC7520P	
LM7535J	MC7535L		N7521B	MC7521P	
LM7535N	MC7535L		N7522B	MC7522P	
LM7538J	MC7538L		N7523B	MC7523P	
LM7538N	MC7538L		N7524B	MC7524P	
LM7539J	MC7539L		N7525B	MC7525P	
LM7539N	MC7539L		PA239A	MC1339P	
LM75450AN	MC75450P		SE501K		MC1733G
LM75451AN	MC75451P		SE515G		MC1520F
LM75452N	MC75452P		SE515K		MC1520G
LM75453N	MC75453P		SE516A		MC1520G
MH0026CH	MMH0026CG		SE516G		MC1520F
MH0026CN	MMH0026CP1		SE516K		MC1520G
NE501A		MC1733CL	SE528E		MC1544L
NE501K		MC1733CG	SE528R		MC1544L
NE515A		MC1420G	SE531G		MC1539G
NE515G		MC1520F	SE531T		MC1539G
NE515K		MC1420G	SE533G		MC1776G
NE516A		MC1420G	SE533T		MC1776G
NE 516 G		MC1520F	SE537G		MC1556G
NE516K		MC1420G	SE537T		MC1556G
NE528B		MC1444L	SE540L		MFC8020A
NE528E		MC1444L	SE550L		MC1723G
NE531G		MC1439G	SE555T	MC1555G	
NE531T		MC1439G	SN52101AL	MLM101AG	
NE531 V		MC1439P	SN52107L	MLM107G	
NE533G		MC1776CG	SN52558L	MC1558G	
NE533T		MC1776CG	SN52702F	MC1712F	
NE533V		MC1776CG	SN52702L	MC1712G	
NE537G		MC1456G	SN52702Z	MC1712F	
NE537T		MC1456G	SN52709F	MC1709F	
NE540L		MFC8020A	SN52709L	MC1709G	
NE550A		MFC6030A	SN52710J	MC1710L	
NE550L		MC1723CG	SN52710L	MC1710G	
NE555T	MC1455G		SN52710N	MC1710P	
NE555V	MC1455P1		SN52710S	MC1710F	
N5070B	MC1370P		SN52711J	MC1711L	
N5071A	MC1371P		SN52711L	MC1711G	
N5072A	MC1328P		SN52711S	MC1711F	
N5111	MC1357P		SN52733L	MC1733G	
N5556T	MC1456G		SN52741J	MC1741L	
N5556V		MC1456G	SN52741L	MC1741G	
N5558F	MC1458L		SN52741Z	MC1741F	
N5558T	MC1458G		SN52747J	MC1747L	
N5558V	MC1458P1		SN52748J		MC1748G
N5595A	MC1495L		SN52748L	MC1748G	
N5595F	MC1495L		SN52770L		MC1556G

INTERCHANGEABILITY GUIDE (continued)

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	$\begin{aligned} & \text { MOTOROLA } \\ & \text { FUNCTIONAL } \\ & \text { EQUIVALENT } \end{aligned}$	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
SN52771L		MC1556G	SN7522J	MC7522L	
SN5510F	MC1510F		SN7522N	MC7522L	
SN5510L	MC1510G		SN7523J	MC7523L	
SN55107J	MC55107L		SN7523N	MC7523L	
SN55108J	MC55108L		SN75234J	MC75234L	
SN55109J		MC75109L	SN75235J	MC75235L	
SN5511F		MC1510F	SN75238J	MC75238L	
SN5511L		MC1510G	SN75239J	MC75239L	
SN55110J		MC75110L	SN7524J	MC7524L	
SN5524J		MC7524L	SN7524N	MC7524L	
SN5525J		MC7524L	SN7525J	MC7525L	
SN552702N	MC1712L		SN7525N	MC7525L	
SN56514L		MC1596G	SN7528J	MC7528L	
SN72301AL	MLM301AG		SN7528N	MC7528L	
SN72301AN	MLM301AP1		SN7529J	MC7529L	
SN72301AP	MLM301AP1		SN7529N	MC7529L	
SN72307L	MLM307G		SN75325J	MC75325L	
SN72558L	MC1458G		SN75450AN		MC75450P2
SN72558P	MC1458P1		SN75450N	MC75450P2	
SN72611S	MC1711CF		SN75451AP		MC75451P
SN72702F	MC1712CF		SN75451P	MC75451P	
SN72702L	MC1712CG		SN75452P	MC75452P	
SN72702N	MC1712CL		SN75453P	MC75453P	
SN72709L	MC1709CG		SN75454P	MC5454P	
SN72709N	MC1709CP2		SN75491N	MC75491P	
SN72709P	MC1709CP1		SN75492N	MC75492P	
SN72709S	MC1709CF		SN76104N	MC1304P	
SN7271N	MC1711CP2		SN76105N	MC1305P	
SN72710J	MC1710CL		SN76107N	MC1370P	
SN72710L	MC1710CG		SN76242N	MC1370P	
SN72710N	MC1710CP2		SN76243N	MC1371P	
SN72710S	MC1710CF		SN76246N	MC1328P	
SN72711J	MC1711CL		SN76514L		MC1496G
SN72711L	MC1711CG		SN76514N		MC1496L
SN72720N	MC1414L		SN76530P	MC1330P	
SN72733L	MC1733CG		SN76564N	MC1364P	
SN72733N	MC1733CL		SN76600P	MC1350P	
SN72741J	MC1741CL		SN76642N	MC1357P	
SN72741L	MC1741CG		SN76650N	MC1352P	
SN72741N	MC1741CP2		SN76651N	MC1351P	
SN72741P	MC1741CP1		SN76653N	MC1353P	
SN72741Z	MC1741CF		SN76665N	MC1353P	
SN72747J	MC1747CL		SN76675N	MC1375P	
SN72747N	MC1747CL		S5556T	MC1556G	
SN72748L	MC1748CG		S5558F	MC1558L	
SN72770L		MC1456G	S5558T	MC1558G	
SN72771L		MC1456G	S5596F	MC1596L	
SN7510F	MC1410F		S5596K	MC1596G	
SN7510L	MC1410G		S5709G	MC1709F	
SN75107J	MC75107L		S5709T	MC1709G	
SN75107N	MC75107L		S5710T	MC1710G	
SN75108J	MC75109L		S5711K	MC1711G	
SN75108N	MC75108L		S5723T	MC1723G	
SN75109J	MC75109L		S5733K	MC1733G	
SN75109N	MC75109L		S5741T	MC1741G	
SN7511L		MC1410G	55325D	MC55325L	
SN75110J	MC75110L		702DC	MC1712CL	
SN75110N	MC75110L		702DM	MC1712L	
SN75140P	MC75140P1		702FC	MC1712CF	
SN75150J		MC1488L	702FM	MC1712F	
SN75150N		MC1488L	702HC	MC1712CG	
SN75188J	MC1488L		702 HM	MC1712G	
SN75189J	MC1489L		703 HC		MFC6010
SN7520J	MC7520L		703HM		MFC6010
SN7520N	MC7520L		709DC	MC1709CL	
SN7521J	MC7521L		709DM	MC1709L	
SN7521N	MC7521L				

TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
709FC	MC1709CF		7812 KC	MC7812CK	
709FM	MC1709F		7812UC	MC7812CP	
709HC	MC1709CG		7815 KC	MC7815CK	
709HM	MC1709G		7815UC	MC7815CP	
710DC	MC1710CL		7818 KC	MC7818CK	
710DM	MC1710L		7818UC	MC7818CP	
710 FC	MC1710CF		7824 KC	MC7824CK	
710FM	MC1710F		7824UC	MC7824CP	
710 HC	MC1710CG		796HC	MC1496G	
710 HM	MC1710G		796HM	MC1596G	
711 DC	MC1711CL				
711 DM	MC1711L				
711 FC	MC1711CF				
711 FM	MC1711F				
711 HC	MC1711CG				
711 HM	MC1711G				
719 HC		MC1357P			
719 HM		MC1357P			
723DC	MC1723CL				
723DM	MC1723L				
723HC	MC1723CG				
723HM	MC1723G				
729DC		MC1305P			
732DC		MC1304P			
733DC	MC1733CL				
733DM	MC1733L				
733FC	MC1733CF				
733FM	MC1733F				
733 HC	MC1733CG				
733 HM	MC1733G				
739DC		MC1303P			
739DM		MC1303P			
741 DC	MC1741CL				
741 DM	MC1741L				
741 FC	MC1741CF				
741 FM	MC1741F				
741 HC	MC1741CG				
741 HM	MC1741G				
741 TC	MC1741CP1				
746 DC		MC1328P			
746HC		MC1328P			
747 DC	MC1747CL				
747DM	MC1747L				
747 HC	MC1747CG				
747 HM	MC1747G				
748 HC	MC1748CG				
748 HM	MC1748G				
7524DC	MC7524L				
7525DC	MC7525L				
75325D	MC75325L				
75325P	MC75325P				
754DC		MC1355P			
754HC		MC1355P			
754 TC		MC1355P			
757DC		MC1350P			
757 DM		MC1350P			
767DC		MC1307P			
776 HC	MC1776CG				
776 HM	MC1776G				
780DC		MC1370P			
7805 KC	MC7805CK				
7805UC	MC7805CP				
7806K C	MC7806CK				
7806UC	MC7806CP				
7808KC	MC7808CK				
7808UC	MC7808CP				
781DC		MC1371P			

INTEGRATED CIRCUITS CHIP INFORMATION
\square

LINEAR INTEGRATED CIRCUIT CHIPS

Most of the linear integrated circuit devices in this Data Book are available in chip form. Many are offered in several options - such as conventional (face up bonding), beam lead, and flip-chip versions. Motorola offers many standard linear chips from warehouse stock either directly from the factory or through franchised distributors. In addition, custom linear IC chips may be designed and produced to meet a specific need.

Specific information on chip processing, testing, and handling can be obtained in the Semiconductor Chips Data Book.

Electrical limits for stocked linear IC chips in conventional, beam lead, and flip-chip formats are included on data sheets in this book. (See page 6-4 for listing of stocked chips.)

LINEAR CHIP FORMATS

Conventional Chips encompass by far the greatest number of available linear IC chips. These silicon chips use gold backside metalization for easy eutectic bonding to the metalized area of hybrid assemblies. The interconnecting metalization and bonding pad areas are formed from evaporated aluminum. Either gold or aluminum wire may be employed for connection between on-chip bonding pads and the external circuit.

Beam-Lead Chips are distinguished from conventional chips by the presence of cantilevered beams used to interconnect the chip circuit element with the substrate circuit bonding pads. In production, a complex integrated circuit chip with a large number of interconnecting beams can be connected to

Flip-Chips, like beam-lead chips, can be mounted to a hybrid substrate in a single operation.

In the case of flip-chips, connection to the substrate bonding pads is made by means of raised "solder bumps" that protrude above the chip surface at the integrated-circuit bonding pads. The devices are mounted to the substrate metalization areas circuit side down by means of conventional reflow solder techniques.

STOCK CHIP AVAILABILITY

All of the chip options listed below are stock items. In addition, nearly all linear devices are available in chip form. Generally these chips are specified only at room temperature $\left(25^{\circ} \mathrm{C}\right)$.

Packaged Device Part Number	Standard Chip Part Number*	Beam-Lead Chip Part Number\#	Flip-Chip Part Number*
MC1436	MCC1436		
MC1536	MCC1536		
MC1439	MCC1439		
MC1539	MCC1539		MCCF1458
MC1458	MCC1458		MCCF1558
MC1558	MCC1558		
MC1463	MCC1463		
MC1563	MCC1563		
MC1469	MCC1469		MCCF1709
MC1569	MCC1569		
MC1495	MCC1495		
MC1595	MCC1595		
MC1709	MCC1709	MCBC1709	
MC1709C	MCC1709C		MCBC1710
MC1710	MCC1710	MCB9C	
MC1710C	MCC1710C		MCCF1741
MC1711	MCC1711		MCCF1741C
MC1711C	MCC1711C		
MC1723	MCC1723	MCBC1723	
MC1723C	MCC1723C		MCBC1741
MC1741	MCC1741		MCB171C
MC1741C	MCC1741C	MCBC1748	
MC1748	MCC1748		MCC1748C

[^6]

INTEGRATED CIRCUITS
MIL-M-38510
PROGRAM

MIL-M-38510 LINEAR INTEGRATED CIRCUITS

Under the MIL-M-38510 program, Motorola linear integrated circuits may be procured to the specifications of MIL-M-38510 and to four levels of processing which meet the screening requirements of MIL-STD-883.

This comprehensive program is structured to provide an environment in which proven methods of manufacturing, quality assurance, monitoring, screening, and testing can produce the most reliable product on the market. Because it is a "standard" hi-rel program, it is designed to facilitate delivery and to minimize specification preparation time.

Motorola has qualified a variety of linear integrated circuits under the MIL-M-38510 program. These device types are available (more will be available during 1974) as JAN-QUALIFIED product. These devices have specific detailed specifications called "slash specs".

In addition, nearly all full-temperature-range linear device types are available as JAN-PROCESSED product with the same MIL-M-38510 processing sequences as Qualified product, but with other requirements as listed on page 7-5.

Further details and specific processing information can be obtained from your Motorola representative.

Note that this program supercedes the Checkmate high-reliability processing program.

MIL-M-38510 JAN-QUALIFIED PRODUCT

JAN-QUALIFIED devices are built to the stringent specifications outlined by the Defense Electronics Supply Center (DESC). These devices must be manufactured in a government-approved facility and are screened to electrical limits outlined in government documents referred to as "slash sheets". These specifications may differ from standard Motorola electrical limits as stated in the device data sheets.

MAJOR REQUIREMENTS OF JAN-QUALIFIED PRODUCT

1. G.S.I. (Government Source inspection) provided upon request.
2. Must be manufactured in a Government approved facility.
3. Product inventoried in distributor and OEM warehouses.

LINEAR ICs QUALIFIED or In Process of Qualification

MIL-M-38510 Device Type	Motorola Source Device Type
JM38510/10101BCG BGC BHB	MC1741
JM38510/10102BAB BCB BIC	MC1747
JM38510/10103BGC	MLM101A
JM38510/10104BAB BCB BGC	MLM108
JM38510/10201BCB BHB BIC	MC1723
JM38510/10301BCB BGC BHB	MC1710
JM38510/10302BCB BHB BIC	MC1711
JM38510/10304BCB BGC BHB	MLM111
JM38510/10401BCB	MC55107
JM38510/10402BCB	MC55108

HOW TO ORDER

MIL-M-38510 JAN-QUALIFIED

 PRODUCTMilitary Part No.

A typical military part number consists of the following elements:

J	M38510	$/ X X X$	$X X$	B	C	B
(1)	(2)	(3)	(4)	(5)	(6)	(7)

(1) J - This indicates a qualified device.
(2) M38510 - This is the military designator.
(3) $/ X X X$ - This three-digit number signifies the detail specification ("slash spec") in which the device type is found. This specification generally contains more than one device type and is written for various generic groupings (i.e., Op Amps, Voltage Regulators, etc.).
(4) $\quad X X$ - This two-digit number identifies the device type within the detail specification.
(5) B - This is a single letter and specifies the device class per MIL-M-38510 and will be class A, B, or C.
(6) Case outline (see listing on page 7-5).
(7) Lead finish (see listing on page 7-5).

Motorola Part No.

The Motorola equivalent of the JAN M38510 part number is as follows, and should be referenced when ordering your specific device requirement:

$$
M C X X X X \quad \text { BCB } \quad J
$$

(1)
(2)
(3)
(1) The MCXXXX designates the Motorola source device type.
(2) The first three letters after the part number have the same meaning and order as in the JAN part numbering system; this will simplify your cross-referencing.
(3) J, which is the last letter in the part number, designates a JAN-QUALIFIED device.

Example:

Order No.: MC1741BCBJ
Device Marking: JM38510/10101BCB

MIL-M-38510 JAN-PROCESSED PRODUCT

JAN-PROCESSED product is intended to assure the same high reliability manufacturing sequences as JAN-Qualified devices, but without the requirement for government source inspection. JAN-Processed devices are available tested to either "slash-sheet" limits or to Motorola data sheet electrical limits. This part of the program replaces the Motorola Checkmate hi-rel program and encompasses all military-temperature-range linear ICs rather than just those covered under existing "slash sheets".

MAJOR REQUIREMENTS OF JAN-PROCESSED PRODUCT

1. No G.S.I. provided.
2. Government-approved facility not required.
3. Product supplied with MIL-M- 38510 electrical specifications will be designated by an " M " suffix.
4. Product supplied with Motorola standard data sheet electrical specifications will be designated by an " S " suffix.
5. Devices will be manufactured using design and processing guidelines contained in MIL-M-38510.
6. Inventories will be maintained prior to burn-in and final electrical tests.

DESIGNATIONS COMMON TO BOTH JAN-QUALIFIED AND JAN-PROCESSED PRODUCTS

Case Outline Designator

\#A	$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ flat pack, 14 pin
B	$1 / 8^{\prime \prime} \times 1 / 4^{\prime \prime}$ flat pack, 14 pin
C	$1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ dual-in-line, 14 pin
\#D	$1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ flat pack, 14 pin
E	$1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ dual-in-line, 16 pin
F	$1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ flat pack, 16 pin
G	8 lead can
H	$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime \prime}$ flat pack, 10 pin
I	10 lead can
J	$1 / 2^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ dual-in-line, 24 pin
K	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$ flat pack, 24 pin
Z	$1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ flat pack, 24 pin

\#A and D outlines are interchangeable
Lead Material and Finish
A Kovar or Alloy 42, with hot solder dip
B Kovar or Alloy 42, with bright acid tin plate
C Kovar or Alloy 42, with gold plate

HOW TO ORDER
 MIL-M-38510 JAN-PROCESSED PRODUCT

Motorola Part No.

The part number for ordering a JAN-Processed device consists of the following elements:
$\operatorname{MCXXXX} \quad \mathrm{B} \quad \mathrm{C} \quad$ B \quad S
(1)
(2)
(3)
(4) (5)
(1) The MCXXXX designates the Motorola source device type.
(2) B - This is a single letter and specifies the device class per MIL-M-38510 for classes A, B, and C. Class D is an added Motorola JAN-Processing class and is the same as the MIL-M-38510 Class B except for the differences shown in the Screening Procedures table.
(3) Case outline (see listing on this page).
(4) Lead finish (see listing on this page).
(5) S - This is a single letter and specifies the electrical specifications to which the device is to be screened during electrical testing, and will be either an S or M. An S specifies the use of Motorola standard data sheet electrical specifications. An M specifies the use of JAN "slash sheet" electrical specifications where they exist.

Example:

Order No.: MC1741BCB (M or S)
Device Marking: MC38510/1741BCB (M or S)

SCREENING PROCEDURES
 (To MIL-STD-883 Requirements)

This program establishes screening procedures for total lot screening of integrated circuits to assist in achieving levels of quality and reliability commensurate with the intended application. In recognition of the fact that the level of screening has a direct impact on the cost of the product as well as its quality and reliability, four standard levels of screening are provided to coincide with four device classes or levels of product assurance.

Flexibility is provided in the choice of conditions and stress levels to provide screens, tailored to a particular product or application. Selection of a level better than that required for the specific product and application will, of course, result in unnecessary expense. A level less than that required will result in an unwarranted risk that reliability and other requirements will not be met. For general hi-rel applications, the Class B screening level should be considered.

CLASS A
CLASS B
CLASS C
CLASS D

SCREEN	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT
Internal Visual (Precap)	2010 Cond A and 38510	100\%	2010 Cond B and 38510	100\%	2010 Cond B and 38510	100\%	2010 Cond B and 38510	100\%
Stabilization Bake	100824 hrs min, test condition C	100\%	$\begin{aligned} & 1008,24 \text { hrs } \\ & \text { min, test } \\ & \text { condition C } \end{aligned}$	100\%	$\begin{aligned} & 1008,24 \text { hrs } \\ & \text { min, test } \\ & \text { condition C } \end{aligned}$	100\%	1008, 24 hrs min, test condition C	100\%
Thermal Shock	1011, Cond A	100\%		-		-		-
Temperature Cycling	1010, Cond C	100\%	1010, Cond C	100\%	1010 Cond C	100\%	1010, Cond C	100\%
Mechanical Shock	2002 Cond F One Shock in Y, plane only or 5 shocks at Cond B in Y, plane	100\%		-		-		-
Constant Acceleration	2001 Cond E (\min) in Y_{2} plane then Y, plane	100\%	2001 Cond E (min) Y_{1} plane	100\%	$\begin{aligned} & 2001 \text { Cond } \mathrm{E} \\ & (\mathrm{~min}) \mathrm{Y}_{1} \\ & \text { plane } \end{aligned}$	100\%	2001 Cond E (min) Y_{1} plane	100\%
Seal (a) Fine (b) Gross	1014	100\%	1014	100\%	1014	100\%	1014	100\%
Interim Electrical Parameters	JAN slash-sheet electrical specification unless otherwise designated	100\%	JAN slash-sheet electrical specifications unless otherwise designated	100\%		-	Motorola stand. data sheet electrical specs unless otherwise indicated	100\%
Burn-in test	$\begin{aligned} & 1015 \\ & 240 \mathrm{hrs} @ \\ & 125^{\circ} \mathrm{C} \text { min } \\ & \hline \end{aligned}$	100\%	$\begin{aligned} & 1015 \\ & 168 \mathrm{hrs} @ \\ & 125^{\circ} \mathrm{Cmin} \end{aligned}$	100\%		-	$\begin{aligned} & 1015 \\ & 168 \mathrm{hrs} @ \\ & 125^{\circ} \mathrm{C} \text { min } \end{aligned}$	100\%
Interim Electricals	JAN slash-sheet electrical specifications unless otherwise designated	100\%						
Reverse Bias Burn-in	1015 Cond A or C 72 hrs at $150^{\circ} \mathrm{C}$ min	100\%						
Final Electrical tests (a) Static tests (1) $25^{\circ} \mathrm{C}$ (Subgroup 1 table 1 5005)	JAN slash-sheet electrical specifications unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%	Motorola stand. data sheet electrical specs unless otherwise indicated	100\%
rated op. temperature (subgroups 2 and 3 table 1, 5005)		100\%		100\%		-		-
(b) Dynamic tests and/or switching tests $25^{\circ} \mathrm{C}$ (subgroup 4 and 9 table 1, 5005)		100%		100%		-		-
(C) Functional test $25^{\circ} \mathrm{C}$ (subgroup 7 table 1, 5005)		100\%		100\%		100\%		100\%
Radiographic	2012	100\%		-		-		-
Qualification or quality conformance inspection	5005 Class A	$\begin{gathered} \text { per } \\ 38550 \end{gathered}$	$\begin{aligned} & 5005 \\ & \text { Class B } \end{aligned}$	$\begin{array}{\|c} \text { per } \\ 38510 \\ * \end{array}$	$\begin{aligned} & 5005 \\ & \text { Class C } \end{aligned}$	$\begin{gathered} \text { per } \\ 38510 \\ 3 \end{gathered}$	5005 Class B	*
External Visual	2009	100\%	2009	100\%	2009	100\%	2009	100\%

*Group A per 5005, Generic data available for groups B \& C on devices
produced to Class B, C, D for JAN processed (from JAN program)

MONOLITHIC DUAL STEREO PREAMPLIFIER

. . . designed for amplifying low-level stereo audio signals with two preamplifiers built into a single monolithic semiconductor.

Each Preamplifier Features:

- Large Output Voltage Swing - 4.0 V (rms) min
- High Open-Loop Voltage Gain $=6000 \mathrm{~min}$
- Channel Separation $=60 \mathrm{~dB}$ min at 10 kHz
- Short-Circuit-Proof Design

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating.	Symbol	Value	Unit
Power Supply Voltage	V^{+}	+15	Vdc
	V^{-}	-15	Vdc
Power Dissipation (Package Limitation) Derate above $25^{\circ} \mathrm{C}$	P_{D}	625	mW
Operating Temperature Range	T_{A}	0 to +75	${ }^{\circ} \mathrm{C}$

See Packaging Information Section for outline dimensions.

MC1303L (continued)

ELECTRICAL CHARACTERISTICS (Each Preamplifier) $\left(\mathrm{V}^{+}=+13 \mathrm{Vdc}, \mathrm{V}^{-}=-13 \mathrm{Vdc}\right.$,
$T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic Definitions (linear operations)	Characteristic	Symbol	Min	Typ	Max	Unit

TYPICAL PREAMPLIFIER APPLICATIONS

FIGURE 2 - BROADBAND AUDIO AMPLIFIER

FIGURE 3 - NAB TAPE HEAD EQUALIZATION

MC1303L (continued)

FIGURE 4 - POWER DISSIPATION versus
SUPPLY VOLTAGE

FIGURE 5-OUTPUT LINEARITY

FIGURE 6 - INFLUENCE OF OUTPUT LOADING

NOISE CHARACTERISTICS

FIGURE 7A - INFLUENCE OF SOURCE RESISTANCE \& BANDWIDTH

FIGURE 7B - INFLUENCE OF VOLTAGE GAIN \& BANDWIDTH

MC1304P MC1305P

MONOLITHIC FM MULTIPLEX STEREO DEMODULATORS

. . . derive the left and right audio information from the detected composite signal. The MC1304P eliminates the need for an external stereo-channel separation control. The MC1305P is similar to the MC1304P but permits the use of an external stereo-channel separation control for maximum separation.

- Operation Practicable Over Wide Power-Supply Range, 8-14 Vdc
- Built-in Stereo-Indicator Lamp Driver
- Total Audio Muting Capability
- Automatic Switching - Stereo-Monaural
- Monaural Squelch Capability

MAXIMUM RATINGS (TA ${ }^{\prime}+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage (Pins 1, 6, 9,*11, 12) (Pin 7 is grounded)	+22	Vdc
Lamp Driver Current	40	mAdc
Power Dissipation (Package Limitation) Plastic Package Derate above T $_{\mathrm{A}}=25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

- Pin 8 for MC1305P

MC1304P, MC1305P (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. Test made with $75 \mu \mathrm{~s}$ deemphasis network ($3.9 \mathrm{k} \Omega, 0.02 \mu \mathrm{~F}$) unless otherwise noted).

Characteristics	Min	Typ	Max	Unit
Input Impedance $(f=20 \mathrm{~Hz})$	12	20	-	k Ω
Stereo Channel Separation (See Notes 1 and 2) $\begin{aligned} & (f=100 \mathrm{~Hz}) \\ & (f=1.0 \mathrm{kHz}) \\ & (f=10 \mathrm{kHz}) \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 35 \\ & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	dB
Channel Balance (Monaural Input $=200 \mathrm{mV}[\mathrm{RMS}]$). (Moneural, Left and Right Outputs)	-	0.5	-	dB
Total Harmonic Distortion (See Notes 1 and 3) (Modulation frequency - 1.0 kHz)	-	0.5	1.0	\%
Ultrasonic Frequency Rejection (See Note 4) $\begin{aligned} & (19 \mathrm{kHz}) \\ & (38 \mathrm{kHz}) \end{aligned}$	$-$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	-	dB
Inherent SCA Rejection (without filter) @ $60 \mathrm{kHz}, 67 \mathrm{kHz}$ and 74 kHz	-	50	-	dB
Lamp Indicator ($\mathrm{R}_{\mathrm{A}}=120 \Omega$) Minimum 19 kHz Input Level for lamp on Maximum 19 kHz Input Level for lamp off	$\overline{5.0}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	25	mV(RMS)
Audio Muting Mute on (Voltage required at pin 5) Mute off (Voltage required at pin 5) Attentuation in Mute Mode (Note 5)	$\begin{aligned} & 0.6 \\ & 1.3 \end{aligned}$	$\frac{-}{55}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & V d c \\ & V d c \\ & d B \end{aligned}$
Stereo-Monaural Switching Stereo (Voltage required at pin 4) Monaural (Voltage required at pin 4)	1.3	-	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	Vdc
Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$) (Without lamp) (With lamp)	-	$\begin{aligned} & 150 \\ & 180 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	mW

Note 1 - Measurement made with $200 \mathrm{mV}(\mathrm{RMS})$ Standard Multiplex Composite Signal and $L=1, R=0$ or $R=1, L=0$. Standard Multiplex Composite signal is here defined as a signal containing left and/or right audio information with a 10% (19 kHz) pilot signal in accordance with FCC regulations.
Note 2 - Stereo channel separation is adjustable for the MC1305P with a resistor from pin 9 to ground.
Note 3 - Distortion specification also applies to Monaural Signal.
Note 4 - Referenced to 1.0 kHz output signal with Standard Multiplex Composite Input Signal.
Note 5 - This is referenced to 1.0 kHz output signal with either Standard Multiplex Composite Signal or Monaural Input Signal.

FIGURE 1 - DISTORTION COMPONENTS IN AUDIO SIGNAL

FIGURE 2 - TOTAL HARMONIC DISTORTION

FIGURE 3 - MULTIPLEX SENSITIVITY

FIGURE 4 - MC1304 CIRCUIT SCHEMATIC

MC1304P, MC1305P (continued)

FIGURE 6 - MC1304P TYPICAL CIRCUIT CONFIGURATION ${ }^{\dagger}$

Typical dc voltages (All voltages measured with respect to ground, $\operatorname{Pin} 7, \mathrm{R}_{\mathrm{A}}=0$)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$\mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{Vdc}$	8.5	2.0	2.8	1.6	1.6	0.8	0	4.6^{*}	8.5	3.9	6.3	6.3	3.9	1.9
$\mathrm{~V}_{\mathrm{CC}}=12 \mathrm{Vdc}$	12	2.0	2.8	1.9	1.9	0.8	0	$4.6^{* *}$	12	3.9	9.7	9.7	3.9	1.9

* $1.5 \mathrm{k} \Omega$ in series with pin 8
**2.7 k Ω in series with pin 8 FIGURE $7-$ MC1305P TYPICAL CIRCUIT CONFIGURATION ${ }^{\dagger}$

Typical dc voltages (All voltages measured with respect to ground (Pin 7)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
$\mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{Vdc}$	8.5	2.0	2.8	1.6	1.6	0.8	0	8.5	0.32	3.9	6.3	6.3	3.9
$\mathrm{~V}_{\mathrm{CC}}=12 \mathrm{Vdc}$	12	2.0	2.8	1.9	1.9	0.8	0	12	0.9				

Portions of the circuits shown within the dotted areas pertain to the MC1304P or MC1305P as indicated by the titles of the circuits.

1/2-WATT AUDIO AMPLIFIER

The MC1306P is a monolithic complementary power amplifier and preamplifier designed to deliver $1 / 2$-Watt into a loudspeaker with a 3.0 mV (rms) typical input. Gain and bandwidth are externally adjustable. Typical applications include portable AM-FM radios, tape recorder, phonographs, and intercoms.

- 1/2-Watt Power Output (9.0 Vdc Supply, 8-Ohm Load)
- High Overall Gain -3.0 mV (rms) Sensitivity for $1 / 2-$ Watt Output
- Low Zero-Signal Current Drain - 4.0 mAdc @ 9.0 V typ
- Low Distortion - 0.5\% at 250 mW typ

1/2-WATT AUDIO AMPLIFIER

See Packaging Information Section for outline dimensions.

MC1306P (continued)

MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	12	Vdc
Load Current	IL	400	mAdc
Power Dissipation (Package I.imitation) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / \theta \mathrm{J}_{\mathrm{A}} \end{gathered}$	$\begin{aligned} & 625 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	T_{A}	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.0 \mathrm{ohms}, f=1.0 \mathrm{kHz}\right.$, (using test circuit of F igure 3), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Open Loop Voltage Gain Pre-amplifier $R_{L}=1.0 \mathrm{k} \mathrm{ohm}$ Power-amplifier $R_{L}=16 \mathrm{ohms}$	AVol	-	$\begin{aligned} & 270 \\ & 360 \\ & \hline \end{aligned}$	-	v/v
Sensitivity $\left(P_{0}=500 \mathrm{~mW}\right)$	S	-	3.0	-	mV (rms)
Output Impedance (Power-amplifier)	Z_{0}	-	0.5	-	Ohm
Signal to Noise Ratio $\left(P_{\mathbf{O}}=150 \mathrm{~mW}, \mathrm{f}=300 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}\right)$	S/N	-	55	-	dB
Total Harmonic Distortion $\left(P_{0}=250 \mathrm{~mW}\right)$	THD	-	0.5	-	\%
Quiescent Output Voltage	V_{0}	-	$\mathrm{v}^{+/ 2}$	-	Vdc
Output Power (THD $\leq 10 \%$)	P_{0}	500	570	-	mW
Current Drain (zero signal)	$\mathrm{I}^{\text {D }}$	-	4.0	-	mA
Power Dissipation (zero signal)	$P_{\text {D }}$	-	36	-	mW

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - ZERO SIGNAL BIAS CURRENT

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 7 - TOTAL HARMONIC DISTORTION

FIGURE 8 - EFFECT OF BATTERY AGING ON LOW-LEVEL DISTORTION

FIGURE 9 - DISTORTION

FIGURE 10 - TYPICAL CIRCUIT CONNECTION

DESIGN CONSIDERATIONS

The MC1306P provides the designer with a means to control preamplifier gain, power amplifier gain, input impedance, and frequency response. The following relationships will serve as guides.

1. Gain

The Preamplifier Stage Voltage Gain is:

$$
A_{V_{A}} \approx \frac{R_{f}}{R_{S}}
$$

and is limited only by the open-loop gain ($270 \mathrm{~V} / \mathrm{V}$). For good preamplifier de stability R_{f} should be no larger than 1.0 -megohm.

The Power Amplifier Voltage Gain is controlled in a similar manner where:

$$
A V_{B} \approx \frac{10 k}{R_{p}}
$$

The $10-\mathrm{k}$ ohm feedback resistor is provided in the integrated circuit.

Recommended values of R_{p} range from 500 -ohms to $3.3-\mathrm{k}$ ohms. The low end is limited primarily by low-level distortion and the upper end is limited due to the voltage drive capabilities of the pre-amplifier. (A resistor can be added in the dc feedback loop, from pin 6 to ground, to increase this drive). The Overall Voltage Gain, then, is:

$$
A_{V T}=\frac{R_{f} 10 k}{R_{s} R_{p}}
$$

2. Input Impedance

The Preamplifier Input Impedance is:

$$
Z_{\text {in }} A \approx R_{\mathrm{S}}
$$

and the Power Amplifier Input Impedance is:

$$
Z_{i n} B \approx R_{p}
$$

3. Frequency Response

The low frequency response is controlled by the cumulative effect of the series coupling capacitors C1, C2, and C3. Highfrequency response can be determined by the feedback capacitor, C_{f}, and the $-3.0 d B$ point occurs when

$$
X_{C_{f}}=R_{f}
$$

Additional high frequency roll-off and noise reduction can be achieved by placing a capacitor from the center point of R_{p} to ground as shown in Figure 10.

Capacitor C4 and the RC network shown in dotted lines may be needed to prevent high frequency parasitic oscillations. The RF choke, shown in series with the output, and capacitor C6 are used to prevent the high-frequency components in a large-signal clipped audio output waveform from radiating into the RF or IF sections of a radio (Figure 10).

4. Battery Operation

The increase of battery resistance with age has two undesirable effects on circuit performance. One effect is the increasing of amplifier distortion at low signal levels. This is readily corrected by increasing the size of the filter capacitor placed across the battery (as shown in Figure 8; a 300- F F filter capacitor gives distortions at low-tonal levels that are comparable to the "stiff" supply). The second effect of supply impedance is a lowering of power output capability for steady signals. This condition is not correctable, but is of questionable importance for music and voice signals.
5. Application Examples: (1) The audio section of the AM-FM radio (Figure 1) is adjusted for a preamplifier gain of 100 with an input impedance of $10-\mathrm{k}$ ohms. The power amplifier gain is set at 10, which gives an overall voltage gain of 1000. The bandwidth has been set at $10-\mathrm{kHz}$. (2). The phono amplifier (Figure 2) is designed for a preamplifier gain of unity and a power amplifier gain of 10 . The input impedance is 1.0 -megohm. An adjustable treble control is provided within the feedback loop.

TYPICAL PRINTED CIRCUIT BOARD LAYOUT

LOCATION OF COMPONENTS

PARTS LIST

Component	Value
C1	$200 \mu \mathrm{~F}$
C2	$0.1 \mu \mathrm{~F}$
C3	$0.05 \mu \mathrm{~F}$
C4	$1.0 \mu \mathrm{~F}$
C5	47 pF
R1	1 ohm
R2	1 k ohm
R3	4.7 k ohms
R4	270 k ohms
MC1306	-
PC Board	-

FIGURE 1 - TYPICAL CIRCUIT CONFIGURATION

TYPICAL DC VOLTAGES (All measured using a VTVM with respect to Pin 7 (lamp on), $R_{A}=180$ ohms, see Figure 3)

Pin Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\mathrm{~V}_{\mathrm{CC}}=8.5 \mathrm{Vdc}$	8.5	2.7	3.6	-	-	0.8	0	-	8.5	4.4	6.2	6.2	4.4	1.5
$\mathrm{~V}_{\mathrm{CC}}=12 \mathrm{Vdc}$	12	2.9	3.9	-	-	0.9	0	-	12	4.7	9.7	9.7	4.7	1.7

See Packaging Information Section for outline dimensions.

MC1307P (continued)

FIGURE 2 - CIRCUIT SCHEMATIC

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage (Pins 1, 6, 9, 112) (Pin 7 is grounded)	+22	Vdc
Lamp Driver Current	40	mAdc
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-6 to +75	${ }^{\circ} \mathrm{C}$

MC1307P (continued)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, tests made with a $75 \mu \mathrm{~s}$ de-emphasis network ($3.9 \mathrm{k} \Omega, 0.02 \mu \mathrm{~F}$) unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Input Impedance $(f=1.0 \mathrm{kHz})$	12	20	-	k Ω
Stereo Channel Separation (See Note 1) $\begin{aligned} & (f=100 \mathrm{~Hz}) \\ & (f=1.0 \mathrm{kHz}) \\ & (\mathrm{f}=10 \mathrm{kHz}) \end{aligned}$	20	$\begin{aligned} & 35 \\ & 40 \\ & 30 \\ & \hline \end{aligned}$	-	dB
Total Harmonic Distortion (See Notes 1 and 2) (Modulation Frequency $=1.0 \mathrm{kHz}$)	-	0.5	1.0	\%
Channel Balance (Monaural Input $=200 \mathrm{mV}$ [rms]) (Monaural, Left and Right Outputs)	-	0.5	-	dB
Ultrasonic Frequency Rejection (See Note 3) $\begin{aligned} & (19 \mathrm{kHz}) \\ & (38 \mathrm{kHz}) \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$		dB
Inherent SCA Rejection (without filter) ($\mathrm{f}=60 \mathrm{kHz}, 67 \mathrm{kHz}$ and 74 kHz) (See Note 3)	-	50	-	dB
Lamp Indicator ($\mathrm{R}_{\mathrm{A}}=180 \Omega$) (Minimum 19 kHz input level for lamp "on") (Maximum 19 kHz input level for lamp "off")	5.0	$\begin{aligned} & 16 \\ & 14 \\ & \hline \end{aligned}$	25	mV (rms)
Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$) (Without lamp) (With lamp)	-	$\begin{aligned} & 140 \\ & 170 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$	mW

Note 1 - Measurement made with $200 \mathrm{mV}(\mathrm{rms})$ Standard Multiplex Composite Signal where $L=1, R=0$ or $R=1, L=0$.
Standard Multiplex Composite Signal is here defined as a signal containing left and/or right audio information with a 10%
(19 kHz) pilot signal in accordance with FCC regulations.
Note 2 - Distortion specification also applies to Monaural Signal.
Note 3 - Referenced to 1.0 kHz output signal with Standard Multiplex Composite Input Signal.

TYPICAL CHARACTERISTICS

FIGURE 3 - DISTORTION COMPONENTS IN AUDIO SIGNAL

MC1307P (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 4 - TOTAL HARMONIC DISTORTION

FIGURE 6 - CHANNEL SEPARATION

FIGURE 5 - MULTIPLEX SENSITIVITY

FIGURE 7 - CHANNEL SEPARATION

Specifications and Applications Information

FM STEREO DEMODULATOR

. a monolithic device designed for use in solid-state stereo receivers.

- Requires no Inductors
- Low External Part Count
- Only Oscillator Frequency Adjustment Necessary
- Integral Stereo/Monaural Switch 75 mA Lamp Driving Capability
- Wide Dynamic Range: 0.5-2.8V(p-p) Composite Input Signal
- Wide Supply Range: 8-14 Vdc
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range
- Low Distortion: Typically 0.3% THD at 560 mV (RMS)

Composite Input Signal

- Excellent SCA Rejection

[^7]
MC1310P (continued)

MAXIMUM RATINGS (T ${ }_{A}=+25^{\circ}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	14	Volts
Lamp Current	75	mA
Power Dissipation (Package limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & 625 \\ & 5.0 \end{aligned}$	
Operating Temperature Range (Ambient)	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Unless otherwise noted; $V_{C C}=+12 V d c, T_{A}=+25^{\circ} \mathrm{C}, 560 \mathrm{mV}(R M S)\left(2.8 V_{[p-p]}\right)$ standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV (RMS) pilot level (10%), using circuit of Figure 1

Characteristic	Min	Typ	Max	Unit
Maximum Standard Composite Input Signal (0.5\% THD)	2.8	-	-	$V_{(p-p)}$
Maximum Monaural Input Signal (1.0\% THD)	2.8	-	-	$V_{(p-p)}$
Input Impedance	20	50	-	$\mathrm{k} \Omega$
Stereo Channel Separation	30	40	-	dB
Audio Output Voltage (desired channel)	-	485	-	mV (RMS)
Monaural Channel Balance (pilot tone "off")	-	-	1.5	dB
Total Harmonic Distortion	-	0.3	-	\%
$\begin{array}{ll}\text { Ultrasonic Frequency Rejection } \\ & 19 \mathrm{kHz} \\ & 38 \mathrm{kHz}\end{array}$	-	$\begin{gathered} 34.4 \\ 45 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	dB
Inherent SC A Rejection ($f=67 \mathrm{kHz} ; 9.0 \mathrm{kHz}$ beat note measured with 1.0 kHz modulation "off")	-	75	-	dB
Stereo Switch Level 19 kHz input level for lamp "on" 19 kHz input level for lamp "off"	$\frac{-}{5.0}$	-	20	mV (RMS)
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)	-	± 3.5	-	\%
Current Drain (lamp "off")	-	13	-	mAdc

MC1310P (continued)

TYPICAL CHARACTERISTICS
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; $560 \mathrm{mV}(\mathrm{RMS})\left(2.8 \mathrm{~V}_{[\mathrm{p}-\mathrm{p}]}\right)$ standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV (RMS) pilot level (10%), using circuit of Figure 1.
FIGURE 3-CHANNEL SEPARATION versus

COMPOSITE INPUT LEVEL

FIGURE 5 - CHANNEL SEPARATION versus VCO FREE-RUNNING FREOUENCY

FIGURE 7 - THD versus COMPOSITE INPUT LEVEL*

[^8]FIGURE 4 - CHANNEL SEPARATION versus FREQUENCY

FIGURE 6 - CHANNEL SEPARATION versus SUPPLY VOLTAGE

FIGURE 8 - DISTORTION versus FREQUENCY*

TYPICAL CHARACTERISTICS (continued)

*Measured with Low Pass Filter (BW = 15 kHz)

FIGURE 13 - SYSTEM BLOCK DIAGRAM

MC1310P (continued)

CIRCUIT OPERATION

Figure 13, on the previous page, shows the system block diagram. The upper line, comprising the $38-\mathrm{kHz}$ regeneration loop operates as follows: the internal oscillator running at $76-\mathrm{kHz}$ and feeding through two divider stages returns a $19 \cdot \mathrm{kHz}$ signal to the input modulator. There the returned signal is multiplied with the incoming signal so that when a $19-\mathrm{kHz}$ pilot tone is received a dc component is produced. The dc component is extracted by the low pass filter and used to control the frequency of the internal oscillator which consequently becomes phase-locked to the pilot tone. With the oscillator phase-locked to the pilot the $38-\mathrm{kHz}$ output from the first divider is in the correct phase for decoding a stereo signal. The decoder is essentially another modulator in which the incoming signal is multiplied by
the regenerated $38-\mathrm{kHz}$ signal. The regenerated $38-\mathrm{kHz}$ signal is fed to the stereo decoder via an internal switch, which closes when a sufficiently large 19 kHz pilot tone is received.

The $19 \cdot \mathrm{kHz}$ signal returned to the $38-\mathrm{kHz}$ regeneration loop modulator is in quadrature with the $19-\mathrm{kHz}$ pilot tone when the loop is locked. With the third divider state appropriately connected, a $19-\mathrm{kHz}$ signal in phase with the pilot tone is generated. This is multiplied with the incoming signal in the stereo switch modulator yielding a dc component proportional to the pilot tone amplitude. This component after filtering is applied to the trigger circuit which activates both the stereo switch and an indicator lamp.

APPLICATIONS INFORMATION

(Component numbers refer to Figure 1)

External Component Functions and Values

\(\left.$$
\begin{array}{ll}\text { C1 } & \begin{array}{l}\text { Input coupling capacitor; } 2.0 \mu \mathrm{~F} \text { is } \\
\text { recommended but a lower value is } \\
\text { permissible if reduced separation at low } \\
\text { frequencies is acceptable. }\end{array} \\
\text { R1, R2, C2, C3 } & \begin{array}{l}\text { See Maximum Load Resistance section. } \\
\text { C4 } \\
\text { Filter capacitor for stereo switch level } \\
\text { detector; time constant is C4 } \times 53 \\
\text { kilohms } \pm 30 \%, ~ m a x i m u m ~ d c ~ v o l t a g e ~\end{array}
$$

appearing across C4 is 0.25 \mathrm{~V} (pin 8

positive) at 100 \mathrm{mV} (RMS) pilot level.\end{array}\right\}\)| The signal voltage across C4 is neg- |
| :--- |
| ligible. |
| C5 |
| R3, C6, C8 \quadSee Phase Compensation section.
 Phase-locked loop filter components;
 the following network is recommended: |

When less performance is required a simpler network consisting of R3 $=100$ ohms and $\mathrm{C} 6=0.25 \mu \mathrm{~F}$ may be used (omit C8). See Figure 9.
R4, R5, C7 Oscillator timing network; recommended values:

$C 7=470 \mathrm{pF}$	1%
R4 $=16 \mathrm{k} \Omega$	1%
R5 $=5 \mathrm{k} \Omega$	

These values give $\pm 3.5 \%$ typical capture range. Capture range may be increased by reducing C7 and increasing R4, R5 proportionally but at the cost of increasing beat-note distortion (due to oscillator-phase jitter) at high-signal levels. See Figure 12.
Stereo Lamp Nominal rating up to 75 mA at 12 V ; the circuit includes surge limiting which restricts cold-lamp current to approximately 250 mA .
$19-\mathrm{kHz}$ Output A buffer output providing a $3.0-\mathrm{V}_{\mathrm{pk}}$ square wave at 19 kHz is available at pin 10. A frequency counter may be connected to this point to measure the oscillator free-running frequency for alignment. See Alignment section.

External Monaural/Stereo Switching

If it is desired to maintain the circuit in monaural mode, the following procedure must be followed. First, the stereo switch must be disabled to prevent false lamp triggering. This can be accomplished by connecting pin 8 negative or pin 9 positive by 0.3 volt. Pin 8 may be grounded directly if desired. Note that the voltage across C4 increases to approximately 2 volts with pin 9 positive when pin 8 is grounded.

Second, the $76-\mathrm{kHz}$ oscillator must be killed to prevent interference when on AM. This can be accomplished by connecting pin 14 to ground via a current limiting resistor (3.3 kilohms is recommended).

Phase Compensation/IF Roll-off Compensation

Phase-shifts in the circuit cause the regenerated 38 kHz sub-carrier to lead the original 38 kHz by approximately 2°. The coupling capacitor C5 generates an

APPLICATIONS INFORMATION (continued)

additional lead of 3.5° (for $\mathrm{C} 5=0.05 \mu \mathrm{~F}$) giving a total lead of 5.5°.

The circuit is so designed that phase lag may be generated by adding a capacitor from pin 3 to ground. The source resistance at this point is 500 ohms. A capacitance of 820 pF compensates the 5.5° phase lead: increase above this value causes the regenerated subcarrier to lag the original. However, a 5.5° phase error if left noncompensated will not degrade separation appreciably.

Note that these phase shifts occur within the phaselocked loop and affect only the regenerated $38-\mathrm{kHz}$ sub-carrier: the circuit causes no significant phase or amplitude variation in the actual stereo signal prior to decoding.

Most IF amplifiers have a frequency response that limits separation to a value significantly lower than the capability of the MC1310. For example, if the response produces a $1-\mathrm{dB}$ roll-off at 38 kHz , the separation will be limited to about 32 dB . This error can be compensated by using an RC lead network as shown in Figure 14. The exact values will be determined by the IF amplifier design. However, the values shown in Figure 14 are suitable for use with the MC1357 and MC1375 IF amplifiers.

FIGURE 14 - IF COMPENSATION NETWORK

Voltage Control Oscillator Compensation

Figure 10 illustrates noncompensated Oscillator Drift versus temperature. The recommended TC of the R4, R5, C7 combination is -300 PPM. This will hold the oscillator drift to approximately $\pm 1 \%$ over a temperature range of -40 to $+85^{\circ} \mathrm{C}$. Allowing $\pm 2 \%$ for aging of the timing components acceptable performance is still obtained.

Lamp Sensitivity

It may be desirable in some cases, to change the lamp sensitivity due to differing signal levels produced by various FM detectors. The lamp sensitivity can be changed by making use of the external circuit shown. Typical sensitivities versus potentiometer rotation are also shown in Figure 15.

FIGURE 15 - PILOT SENSITIVITY versus POTENTIOMETER ROTATION

Alignment Procedure

The optimum alignment procedure, with no input signal applied, is to adjust R5 until 19.00 kHz is read at pin 10 on the frequency counter.

Another procedure requiring no equipment, other than the receiver itself, will result in separation of within a few $d B$ of optimum. This latter method is merely to tune the receiver to a stereo broadcast and adjust R5 until the pilot lamp turns "on". To find the center of the lock-in range, rotate the potentiometer back and forth until the center of the lamp "on" range is found. This completes the alignment.

Alternate Timing Network

The alternate timing network shown, incorporating a trimmer capacitor rather than a potentiometer, may be used if desired. Again, to provide correct temperature compensation, the temperature coefficient of the timing network must be approximately -300 PPM.

FIGURE 16

Maximum Load Resistance

The curve shown gives absolute maximum load resistance values versus supply voltage used for full-signal handling capability. With desired load resistance choose C2, C3 capacitors to provide standard 75μ s de-emphasis.

MC1310P (continued)

APPLICATIONS INFORMATION (continued)

FIGURE 17 - MAXIMUM LOAD RESISTANCE versus SUPPLY VOLTAGE

Audio Output
The ratio $G=\frac{\mathrm{p}-\mathrm{p} \text { audio output (one-channel) }}{\mathrm{p}-\mathrm{p} \text { input signal }}$ for
different types of input is as follows:
INPUT

Single-Channel	Monaural
Composite Signal	Signal
0.45	0.5

These figures are for 3.9 -kilohm load resistors and for low-audio frequencies where de-emphasis roll-off is insignificant.

Capture Range versus Timing Components

The capture range can be changed to some extent by use of different timing components. Typical values are shown in Figure 12.

Composite Signal

Due to confusion concerning the measurement of the stereo composite signal, a curve showing both RMS and p-p composite levels versus pilot level follows, see Figure 18.

FIGURE 18 - COMPOSITE LEVEL versus PILOT
(L or R Modulation Only)

Product Preview

FM STEREO DEMODULATOR

. . . a monolithic device designed for use in solid-state stereo receivers.

- Unity Gain
- Requires no Inductors
- Low External Part Count
- Emitter-Follower Outputs
- Only Oscillator Frequency Adjustment Necessary
- Integral Stereo/Monaural Switch 100 mA Lamp Driving Capability
- Wide Dynamic Range: 0.5-2.8 Vp-p Composite Input Signal
- Excellent Supply Range and Ripple Rejection
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range
- Low Distortion: Typically 0.5% THD at 560 mV (RMS) Composite Input Signal
- Excellent SCA Rejection

FIGURE 1 - TYPICAL APPLICATION AND TEST CIRCUIT

Pin Functions
$\operatorname{Pin} 1=$ Input
Pin 2 =Amplifier Output
Pin 3 = Left Channel Output
Pin $4=$ Left Emitter Follower Output
Pin 5 = Right Emitter Follower Output
Pin $6=$ Right Channel Output
Pin $7=$ Lamp Indicator
Pin $8=$ Ground
Pin $9=$ Switch Filter
Pin $10=$ Switch Filter
Pin $11=19 \mathrm{kHz}$ Output
Pin $12=$ Modulator Input
Pin $13=$ Loop Filter
Pin 14 = Left Filter
Pin $15=$ Oscillator RC Network $\operatorname{Pin} 16=V_{C C}$

MC1311P (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	16	Volts
Lamp Current	100	mA
Power Dissipation (Package limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-30 to +85	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$		

ELECTRICAL CHARACTERISTICS Unless otherwise noted: $V_{C C}=+12 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}, 560 \mathrm{mV}(\mathrm{RMS}$) (2.8 Vp-p) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV (RMS) pilot level (10%), using circuit of Figure 1 .

Characteristic	Min	Typ	Max	Unit
Maximum Input Signal (1.0% THD)	2.8	-	-	Vp-p
Power Supply Ripple Rejection (100 Hz)	-	45	-	dB
Input Impedance	20	50	-	k Ω
Stereo Channel Separation	30	40	-	dB
Voltage Gain (Vp-p out/Vp-p in)	-	1.0	-	V/V
Monaural Channel Balance (pilot tone "off")	-	-	1.5	dB
Total Harmonic Distortion	-	0.5	-	\%
$\begin{array}{ll}\text { Ultrasonic Frequency Rejection } & 19 \mathrm{kHz} \\ & 38 \mathrm{kHz}\end{array}$	$-$	$\begin{gathered} 34.4 \\ 45 \end{gathered}$	-	dB
Inherent SCA Rejection ($f=67 \mathrm{kHz} ; 9.0 \mathrm{kHz}$ beat note measured with 1.0 kHz modulation "off")	-	75	-	dB
Stereo Switch Level 19 kHz input level for lamp "on" 19 kHz input level for lamp "off"	$\frac{-}{5.0}$	-	20	mV (RMS)
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)	-	± 3.5	-	\%
Current Drain (lamp "off")	-	27	-	mAdc

MONOLITHIC CBS SQ* DECODER

a matrix system designed to decode an SQ^{*} encoded program into four separate channels. These devices conform to specifications for decoding quadraphonic records produced by the largest record companies in the world.

Both Home Entertainment (MC1312) and Automotive (MC1313) Versions Available
High Input Impedance
MC1312P - 3.0 Megohms typ, MC1313P - 1.8 Megohms typ
Low Harmonic Distortion

$$
\text { MC } 1312 P-0.1 \% \text { typ, MC } 1313 P-0.25 \% \text { typ }
$$

High Signal Handling Capability
MC1312P-2.0 V(RMS) min, MC1313P-0.8 V(RMS) min
MC1313 Provides Excellent Performance at $V_{C C}=+8.0 \mathrm{Vdc}$

- Trademark of Columbia Broadcasting System, Inc.

See Packaging Information Section for outline dimensions.

MC1312P, MC1313P (continued)

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	25	Vdc
Power Dissipation (Package Limitation)	625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	MC1312P	
	MC1313P	0 to +75
${ }^{\circ} \mathrm{C}$		
Storage Temperature Range	-40 to +85	-65 to +150

ELECTRICAL CHARACTERISTICS (V_{CC} for $\mathrm{MC} 1312 \mathrm{P}=+20 \mathrm{Vdc}, \mathrm{V}_{\text {in }}=0.5 \mathrm{~V}(\mathrm{RMS})$, for $M C 1313 P \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{V}_{\text {in }}=0.2$ V (RMS), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.) (See Figure 3.)

Characteristic	Min	Typ	Max	Unit
Supply Current Drain MC1312P MC1313P	$\begin{aligned} & 11 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 9.0 \end{aligned}$	$\begin{gathered} 21 \\ 12.5 \end{gathered}$	mA
$\begin{array}{ll}\text { Input Impedance } & \text { MC1312P } \\ & \text { MC1313P }\end{array}$	$\begin{aligned} & 1.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$	-	$\mathrm{M} \Omega$
Output Impedance	-	5.0	-	k Ω
Channel Balance (L_{F} / R_{F})	-1.0	0	+1.0	dB
Voltage Gain L_{F} / L_{T} or R_{F} / R_{T}	-1.0	0	+1.0	dB
Relative Voltage Gain $L_{B^{\prime}} / L_{F^{\prime}}, R_{B^{\prime}} / L_{F^{\prime}}, L_{B^{\prime}} / R_{F^{\prime}}, R_{B^{\prime}} / R_{F^{\prime}}$ $L_{F^{\prime}}$ measurements made with L_{T} input, $R_{F^{\prime}}$ measurements made with R_{T} input.	-2.0	-3.0	-4.0	dB
Maximum Input Voltage for 1\%THD at Output MC1312P R_{T} or L_{T} MC1313P	$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$	-	-	V(RMS)
Total Harmonic Distortion MC1312P R_{T} or L_{T} MC1313P	-	$\begin{gathered} 0.1 \\ 0.25 \end{gathered}$	-	\%
Signal to Noise Ratio (Short-Circuit Input $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ (RMS) MC1312P with Output Noise Referenced to Output $\mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V}$ (RMS) MC1313P Voltage, $\left.\mathrm{V}_{\mathrm{O}}\right)(\mathrm{BW}=20 \mathrm{~Hz}$ to 20 kHz$)$	-	$\begin{aligned} & 80 \\ & 74 \end{aligned}$	-	dB

TYPICAL CHARACTERISTICS

FIGURE 2 - CURRENT DRAIN

FIGURE 3 - TEST CIRCUIT

- R1 is used for input impedance measuremènt.

S 1 is normally closed.

APPLICATIONS INFORMATION

FIGURE 4 - DECODING PROCESS DIAGRAM

L_{T} and R_{T} are composite signals from SQ encoded records or SQ broadcast.

The decoding process is shown schematically in Figure 4. The MC1312P/MC1313P circuits that perform this function consists of two preamplifiers which are fed with left total, L_{T}, and right total, R_{T}, signals. The preamplifiers each feed two all-pass* networks that are used to generate two L_{T} signals in quadrature and two R_{T} signals in quadrature. The four signals are matrixed to yield left-front, left-back, right-front, and right-back signals (L_{F}, $L_{B^{\prime}}$, $R_{F^{\prime}}, R_{B}{ }^{\prime}$.

The all-pass networks are of the Wein bridge form with the resistive arms realized in the integrated circuit and the RC arms formed by external components. The values shown in Figure 1 are for a $100-\mathrm{Hz}$ to $10-\mathrm{kHz}$ bandwidth and a phase ripple of $\pm 8.5^{\circ}$ on a 90° phase difference.

It is generally desirable to enhance center-front to center-back separation. This is accomplished by connecting a resistor between pins 2 and 11 (front outputs) and a resistor between pins 3 and 14 (back outputs). For a 10% front channel blending ${ }^{\dagger}$ and a 40% back channel blending ${ }^{\dagger}$, 47 kilohms between pins 2 and 11 and
7.5 kilohms between pins 3 and 14 is required and results in the following equations:
${ }^{\dagger} R_{F^{\prime \prime}}=0.912 L_{T}+0.088 R_{T}$
$L_{F}{ }^{\prime \prime}=0.912 R_{T}+0.088 L_{T}$
$R_{B}{ }^{\prime \prime}=\frac{\sqrt{2}}{2}\left[0.714\left(J R_{T}-L_{T}\right)+0.286\left(R_{T}-J L_{T}\right)\right]$

$$
L_{B}^{\prime \prime}=\frac{\sqrt{2}}{2}\left[0.714\left(J L_{T}-R_{T}\right)+0.286\left(L_{T}-J R_{T}\right)\right]
$$

To meet the EIA matrix standards with $10 / 40$ blend use the circuit of Figure 5, which results in the following equations:
$R_{F}{ }^{\prime \prime}=0.772\left(0.995 R_{T}+0.0972 L_{T}\right)$
$L_{F}{ }^{\prime \prime}=0.772\left(0.995 L_{T}+0.0972 R_{T}\right)$
$R_{B}{ }^{\prime \prime}=\frac{\sqrt{2}}{2}(0.769)\left[0.928\left(J R_{T}-L_{T}\right)+0.372\left(R_{T}-J L_{T}\right)\right]$
$L_{B}{ }^{\prime \prime}=\frac{\sqrt{2}}{2}(0.769)\left[0.928\left(J L_{T}-R_{T}\right)+0.372\left(L_{T}-J R_{T}\right)\right]$

* An all-pass network produces phase shift without amplitude variations.

FIGURE 5 - EIA STANDARD BLEND

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH R G B MATRIX AND CHROMA DRIVER STAGES

... a monolithic device designed for use in solid-state color tele vision receivers.

- Luminance Input Provided
- Good Chroma Sensitivity - 0.36 Vp-p Input for 5 Vp-p Output
- Low Differential Output DC Offset Voltage - 0.6 V max
- DC Temperature Stability $-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ
- Negligible Change in Output Voltage Swing and Varying $3.58-\mathrm{MHz}$ Reference Input Signal
- High Ripple Rejection Achieved with MOS Filter Capacitors
- High Blue Output Voltage Swing - 10 V (p-p) typ
- Blanking Input Provided
- Improved MC1326
- Short-Circuit Protected Outputs

FIGURE 1 - MC1324 TYPICAL APPLICATION

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	$\mathrm{~V}(\mathrm{pk})$
Reference Signal Input Voltage	5.0	$\mathrm{~V}(\mathrm{pk})$
Minimum Load Resistance	2.2	k ohms
Luminance Input Voltage	12	$\mathrm{~V}(\mathrm{p}-\mathrm{p})$
Blanking Input Voltage	7.0	$\mathrm{~V}(\mathrm{p}-\mathrm{p})$
Power Dissipation (Package Limitation) Plastic Package Derate above TA $=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	0 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=24 \mathrm{Vdc}, V_{\text {ref }}=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}), R_{\mathrm{L}}=3.3 \mathrm{kohms}, T_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Pin No.	Min	Typ	Max	Unit
STATIC CHARACTERISTICS (See Figure 2.)					
Quiescent Output Voltage	1,2,4	14.3	15	16.3	Vdc
Quiescent Input Current $\begin{aligned} & \left(R_{L}=\infty\right) \\ & \left(R_{L}=3.3 \mathrm{k} \text { ohms }\right) \end{aligned}$		$\overline{16.5}$	$\begin{array}{r} 6.0 \\ 19 \\ \hline \end{array}$	$\overline{25.5}$	mA
Reference Input dc Voltage	5,12,13	-	6.8	-	Vdc
Chroma Input dc Voltage	8,9,10	-	3.6	-	Vdc
Differential Output Voltage	1,2,4	-	0.3	0.6	Vdc
Output Temperature Coefficient (Reference Input Voltage $=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}),+25^{\circ}$ to $+65^{\circ} \mathrm{C}$)	1,2,4	-	3.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DYNAMIC CHARACTERISTICS (See Figure 3.)

Detected Output Voltage (See Note 1.) $\begin{aligned} & +(B-Y) \\ & -(B-Y) \\ & \hline \end{aligned}$	4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	-	$V(p k)$
Chroma Input Voltage (B-Y Output = 5.0 V [p-p]) (See Note 2.)	8	-	0.36	0.7	$V(p-p)$
Luminance Input Resistance	3	100	-	-	$\mathrm{k} \Omega$
Luminance Gain From Pin 3 to Outputs (@dc) (@ 5.0 MHz)	1,2,4	-	$\begin{gathered} 0.95 \\ 0.5 \end{gathered}$	-	-
Blanking Input Resistance 1.0 Vdc 0 Vdc	6	-	$\begin{aligned} & 1.1 \\ & 75 \end{aligned}$	-	k Ω
Detected Output Voltage (Adjust B-Y Output to $5.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$, Luminance Voltage $=23 \mathrm{~V}$) G-Y Output R-Y Output	$\begin{aligned} & 4 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 0.75 \\ 3.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 3.8 \end{aligned}$	$\begin{gathered} 1.25 \\ 4.2 \end{gathered}$	$V(p-p)$
Relative Output Phase ($B-Y$ Output $=5.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$, Luminance Voltage $=23 \mathrm{~V}$) B-Y to R-Y Output B-Y to G-Y Output	$\begin{aligned} & 4,2 \\ & 4,1 \end{aligned}$	$\begin{aligned} & 101 \\ & 248 \end{aligned}$	$\begin{aligned} & 106 \\ & 256 \end{aligned}$	$\begin{aligned} & 111 \\ & 264 \end{aligned}$	Degrees
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1,2,4	-	100	500	$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B-Y Output $=5.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}])$	1,2,4	-	-	1.0	$V(p-p)$
Reference Input Resistance	12,13	-	2.0	-	k Ω
Reference Input Capacitance	12,13	-	6.0	-	pF
Chroma Input Resistance	9,10	-	2.0	-	$\mathrm{k} \Omega$
Chroma Input Capacitance	9,10	-	2.0	-	pF

NOTES:

1. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to $1.2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage $=5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$. The Chroma Input Voltage at this point should be equal to or less than $0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.

TEST CIRCUITS

$\left(V_{C C}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3\right.$ Kilohms, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)
FIGURE 2 - DC OUTPUT VOLTAGE TEST CIRCUIT WITH NORMAL REFERENCE INPUT VOLTAGE (B, R, AND G)

TYPICAL CHARACTERISTICS

FIGURE 5 - POWER DISSIPATION

MC1324P (continued)

FIGURE 6 - CIRCUIT SCHEMATIC

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH R G B MATRIX AND CHROMA DRIVER STAGES

\ldots a monolithic device designed for use in solid-state color television receivers.

- Luminance Input Provided
- Good Chroma Sensitivity - 0.3 Vp-p Input for 5 Vp-p Output
- Low Differential Output DC Offset Voltage - 0.6 V max
- DC Temperature Stability $-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ
- Negligible Change in Output Voltage Swing with Varying 3.58 MHz Reference Input Signal
- High Ripple Rejection Achieved with MOS Filter Capacitors
- High Blue Output Voltage Swing - 10 Vp-p typ
- Blanking Input Provided

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	$\mathrm{Vp}-\mathrm{p}$
Blanking Input Voltage	7.0	$\mathrm{Vp}-\mathrm{p}$
Power Dissipation (Package Limitation)	625	mW
Plastic Packages		
Derate above T $_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C} \mathrm{C}$

DUAL DOUBLY BALANCED
CHROMA DEMODULATOR
WITH
R G B OUTPUT MATRIX
MONOLITHIC SILICON
INTEGRATED CIRCUIT

FIGURE 1 - MC 1326 TYPICAL APPLICATION

[^9]
MC1326 (continued)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}$ ohms, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Pin No.	Min	Typ	Max	Unit

STATIC CHARACTERISTICS

Quiescent Output Voltage See Figure 2	1, 2, 4	13	14.4	16	Vdc
Quiescent Input Current from Supply (Figure 2) $\begin{aligned} & \left(R_{L}=\infty\right) \\ & \left(R_{L}=3.3 \mathrm{k} \text { ohms }\right) \end{aligned}$		$\stackrel{-}{16.5}$	$\begin{array}{r} 6.0 \\ 19 \end{array}$	$\stackrel{-}{25.5}$	mA
Reference Input DC Voltage (Figure 2)	5,12,13	-	6.2	-	Vdc
Chroma Reference Input DC Voltage (Figure 2)	8,9,10	-	3.4	-	Vdc
Differential Output Voltage (Reference Input Voltage $=1.0 \mathrm{Vp}-\mathrm{p}$) See Note 1 and Figure 3	1, 2, 4	-	0.3	0.6	Vdc
Output Voltage Temperature Coefficient (Reference Input Voltage $=1.0 \mathrm{Vp}-\mathrm{p},+25^{\circ}$ to $+65^{\circ} \mathrm{C}$) See Note 1 and Figure 3	1,2,4	-	3.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DYNAMIC CHARACTERISTICS $\left(\mathrm{V}^{+}=24 \mathrm{Vdc}, R_{L}=3.3 \mathrm{k}\right.$ ohms, Reference Input Voltage $=1.0 \mathrm{Vp}-\mathrm{p}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Blue Output Voltage Swing See Note 2 and Figure 4	4	8.0	10	-	Vp-p
Chroma Input Voltage (B Output $=5.0 \mathrm{Vp}-\mathrm{p}$) See Note 3 and Figure 4	8	-	0.3	0.7	Vp-p
Luminance Input Resistance	3	100	-	-	$k \Omega$
Luminance Gain From Pin 3 to Outputs (@dc) (@ 5.0 MHz)	1, 2, 4	-	$\begin{gathered} 0.95 \\ 0.5 \end{gathered}$	-	-
Blanking Input Resistance 1.0 Vdc 0 Vdc	6	$-$	$\begin{aligned} & 1.1 \\ & 75 \end{aligned}$	$-$	k Ω
Detected Output Voltage (Adjust B Output to $5.0 \mathrm{Vp}-\mathrm{p}$, Luminance Voltage $=23 \mathrm{~V}$) See Note 4 G Output R Output	4 1 2	$\begin{gathered} 0.75 \\ 3.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 3.8 \end{aligned}$	$\begin{gathered} 1.25 \\ 4.2 \end{gathered}$	Vp-p
Relative Output Phase (B Output $=5.0 \mathrm{Vp}$-p, Luminance Voltage $=23 \mathrm{~V}$) B to R Output	$\begin{aligned} & 4,2 \\ & 4,1 \end{aligned}$	$\begin{aligned} & 101 \\ & 248 \end{aligned}$	$\begin{aligned} & 106 \\ & 256 \end{aligned}$	$\begin{aligned} & 111 \\ & 264 \end{aligned}$	Degrees
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1, 2, 4	-	250	500	$m \vee p-p$
B-Y Phase Shift (B-Y Reference Input to B-Y Output)	4,13	-	3	-	Degrees
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output $=5.0 \mathrm{Vp}-\mathrm{p}$)	1, 2, 4	-	0.7	1.5	$V \mathrm{p}$-p
Reference Input Resistance (Chroma Input = 0)	12, 13	-	2.0	-	$k \Omega$
Reference Input Capacitance (Chroma Input = 0)	12, 13	-	6.0	-	pF
Chroma Input Resistance	8, 9, 10	-	2.0	-	k Ω
Chroma Input Capacitance	8, 9, 10	-	2.0	-	pF

NOTES:

1. With Chroma Input Signal Voltage $=0$ and normal Reference Input Signal V oltage $=1.0 \mathrm{Vp}$-p, all output voltages will be within specified limits and will not differ from each other by greater than 0.6 Vdc .
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to $0.6 \mathrm{Vp}-\mathrm{p}$.
3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage $=5 \mathrm{Vp}-\mathrm{p}$. The Chroma Input Voltage at this point should be equal to or less than $0.7 \mathrm{Vp-p}$.
4. With normal Reference Input Signal Voltage, adjust the Chroma Input Signal until the Blue Output Voltage $=5 \mathrm{Vp}$-p. At this point, the Red and Green voltages will fall within the specified limits.

TEST CIRCUITS

($\mathrm{V}+=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3$ Kilohms, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 4 - DYNAMIC TEST CIRCUIT

CIRCUIT OPERATION

A double sideband suppressed carrier chroma signal flows between the bases of the two differential pairs, Q16 and Q17, Q18 and Q19. A reference signal of approximately $1 \mathrm{Vp}-\mathrm{p}$ amplitude having the same frequency as the suppressed chroma carrier with an appropriate phase relationship is supplied between the bases of the upper differential pairs Q6 and Q7, Q8 and Q9, Q10 and Q11, Q12 and Q13. The upper pairs are switched between full conduction and zero conduction at the carrier frequency rate. The collectors of the upper pairs are cross-coupled so that "doubly balanced" or "full-wave", synchronous detected chroma signals are obtained. Both positive and negative phases of the detected signal are available at opposite collector pairs.
While the detector section is almost identical to other available units, several excellent additional features are incorporated. Transistor Q1 is used as an emitter follower to which the collector load resistors of the detectors are returned. The collector impedances of the upper pair transistors are high compared with the collector load resistors, and any signal at the emitter of Q1 appears virtually unattenuated at the collectors of the upper pairs, and hence at the three detector output terminals. This feature may be used to mix the correct amount of the luminance portion of the color TV signal with the color difference signals produced by the detectors to give R-G-B outputs directly.
Capacitors C1, C2, and C3 compensate for most of the high frequency roll-off in the luminance signal. This is due to the collector capacitances of the detector transistors and the input capacitances of the emitter followers, Q2, Q3, Q4. Capacitors C1, C2, and C3 provide filtering of carrier harmonics from the detected color difference signals. This increases the available swing before clipping for the color difference signal, and reduces the high frequency components which must pass through the emitter followers (Q2, Q3, Q4) into the video output stages. Since high capacitance ($\mathbf{~} \mathbf{1 0 0} \mathrm{pF}$) is characteristic of the input impedance of a video output stage, the transistor emitter followers must operate at a
high quiescent current ($>5 \mathrm{~mA}$) in order to pass large high fre quency components without distortion. The filtering reduces the quiescent current required in the emitter followers and thus reduces dissipation in the integrated circuit.
If it is not required to mix the luminance signal via Q1, this transistor can be used for brightness control. If the base of Q1 is connected to a suitable variable dc voltage, this will vary the dc output levels of the three detected outputs accordingly and thereby vary the picture brightness level.
Blanking of the picture during line and frame flyback may be achieved by applying a positive-going blanking signal to the base of Q22. With an extra external resistor in series with the Q1 base of approximately 5 k ohms, when Q22 is turned on by the blank ing pulse, the base of Q 1 will be pulled negative by the current in R1, thus forcing all three detected outputs to go negative by the same amount. In a conventional solid-state receiver with a single video output stage driving the picture tube cathode, a negativegoing signal at the base of the video output stage will blank the picture tube. When using the blanking input be certain the blanking pulse does not switch off the luminance input stage Q1 completely; this would turn off the collector supply for the demodulators and put the entire chroma demodulator out of lock at each blanking pulse.

Matrix for MC1326

$\frac{R-Y \text { gain }}{B-Y \text { gain }}=0.77$

$$
-G \cdot Y=0.11(B-Y)+0.28(R-Y)
$$

For indicated requirements and output functions of the MC1326 chroma demodulator please refer to the typical application shown on the first page of this specification.

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
(Figures 6 through Figure 10 Reference Test Circuit of Figure 2)
FIGURE 6 - DC OUTPUT VOLTAGE

FIGURE 8 - DC OUTPUT VOLTAGE

FIGURE 9 - POWER DISSIPATION

FIGURE 10 - DC OUTPUT VOLTAGE

FIGURE 11 - DETECTED OUTPUT VOLTAGE
(Reference Test Circuit of Figure 4)

MC1326 (continued)

TYPICAL CHARACTERISTICS (continued)

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
(Figures 12 through Figure 17 Reference Test Circuit of Figure 4)

FIGURE 14 - RED OUTPUT

FIGURE 16 - LUMINANCE BANDWIDTH

FIGURE 13 - GREEN OUTPUT

figure 15 - bLUE OUTPUT

FIGURE 17 - CHROMA BANDWIDTH

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH RGB MATRIX, PAL SWITCH, AND CHROMA DRIVER STAGES

. . . a monolithic device designed for use in solid-state color television receivers.

DUAL DOUBLY BALANCED CHROMA DEMODULATOR with
RGB OUTPUT MATRIX AND PAL SWITCH
MONOLITHIC SILICON
INTEGRATED CIRCUIT

- Good Chroma Sensitivity - 0.28 Vp-p Input Typical for 5.0 Vp -p Output
- Low Differential Output DC Offset Voltage - 0.6 V Maximum
- Differential DC Temperature Stability $-0.7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
- High Blue Output Voltage Swing - 10 Vp -p Typical
- Blanking Input Provided
- Luminance Bandwidth Greater than 5.0 MHz

PSUFFIX
PLASTIC PACKAG
CASE 646

PQ SUFFIX PLASTIC PACKAGE CASE 647

FIGURE 1 - TYPICAL APPLICATION CIRCUIT

MC1327 (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal I nput Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	$\mathrm{Vp}-\mathrm{p}$
Blanking Input Voltage	7.0	$\mathrm{Vp-p}$
Power Dissipation (Package Limitation) Plastic Packages Derate above TA $=+25{ }^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	-20 to +75	$\mathrm{~mW}^{\circ}{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}\right.$ ohms, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Pin No.	Min	Typ	Max	Unit
STATIC CHARACTERISTICS					
Quiescent Output Voltage (See Figure 2)	1,2,4	13.2	14.5	15.8	Vdc
Quiescent Input Current from Supply (Figure 2) $\begin{aligned} & \left(R_{\mathrm{L}}=\infty\right) \\ & \left(R_{\mathrm{L}}=3.3 \mathrm{k} \text { ohms }\right) \end{aligned}$		16	$\begin{gathered} 7.5 \\ 19 \end{gathered}$	26	mA
Reference Input DC Voltage (Figure 2)	5,12,13	-	6.2	-	Vdc
Chroma Reference Input DC Voltage (Figure 2)	8,9,10	-	3.4	-	Vdc
Differential Output Voltage (See Note 1 and Figure 2)	1,2,4	-	0.3	0.6	Vdc
Differential Output Voltage Temperature Coefficient (See Note 1 and Figure 2) $\left(+25^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C}\right)$	1,2,4	-	0.7	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Voltage Temperature Coefficient (See Note 1 and Figure 2) $\left(+25^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C}\right)$	1,2,4	-	+0.5	± 5.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DYNAMIC CHARACTERISTICS $\left(V_{C C}=24 \mathrm{Vdc}, R_{L}=3.3 \mathrm{k}\right.$ ohms, Reference Input Voltage $=1.0 \mathrm{Vp}-\mathrm{p}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Blue Output Voltage Swing (See Note 2 and Figure 3)	4	8.0	10	-	Vp-p
Chroma Input Voltage (B Output $=5.0 \mathrm{Vp}$-p) (See Note 3 and Figure 3)	8	-	280	550	mVp -p
Luminance Input Resistance	3	100	-	-	k Ω
Luminance Gain From Pin 3 to Outputs (@ dc) (@ 5.0 MHz , reference at 100 kHz)	1,2,4	-	$\begin{array}{r} 0.95 \\ -1.8 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	dB
Differential Luminance Gain, RGB Outputs (@ 5.0 MHz)		-	0.3	-	dB
```Blanking Input Resistance (1.0 Vdc) ( 0 Vdc )```	6	-	$\begin{aligned} & 1.1 \\ & 75 \end{aligned}$	-	k $\Omega$
Detected Output Voltage (Adjust B Output to $5.0 \mathrm{Vp}-\mathrm{p}$, Luminance $\text { Voltage }=23 \mathrm{~V} \text { ) }$   (See Note 4) G Output   R Output	$4$ $\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.3 \end{aligned}$	Vp-p
PAL Switch Operating Voltage Range ( 7.8 kHz Square Wave)	11	0.3	-	3.0	Vp-p
R-Y Output dc Offset with PAL Switch Operation		-	-	100	$m V d c$
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1,2,4	-	200	300	mVp -p
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output $=5.0 \mathrm{Vp}-\mathrm{p}$ )	1,2,4	-	0.6	1.0	Vp-p
Reference Input Resistance (Chroma Input = 0)	12,13	-	2.0	-	$k \Omega$
Reference Input Capacitance (Chroma Input = 0)	12,13	-	6.0	-	pF
Chroma Input Resistance	8,9,10	-	2.0	-	$k \Omega$
Chroma Input Capacitance	8,9,10	-	2.0	-	pF

NOTES: 1. Chroma Input Signal Voltage $=0$ and normal Reference Input Signal Voltage $=1.0 \mathrm{Vp}-\mathrm{p}$.
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to $1.2 \mathrm{Vp}-\mathrm{p}$.
3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage $=5.0 \mathrm{Vp}-\mathrm{p}$.
4. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage $=5.0 \mathrm{Vp}$-p. At this point, the Red and Green voltages will fall within the specified limits.

MC1327 CHROMA DEMODULATOR (PAL)


MC1327 (continued)

## TEST CIRCUITS

$\left(V_{C C}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3\right.$ kilohms, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 2 - DC OUTPUT VOLTAGE TEST CIRCUIT WITH NORMAL REFERENCE INPUT VOLTAGE (B, R, AND G)


FIGURE 3 - DYNAMIC TEST CIRCUIT


## MONOLITHIC DUAL DOUBLY BALANCED CHROMA DEMODULATOR

- Good Chroma Sensitivity (0.3 Vp-p Input Produces 5.0 Vp-p Output)
- Good dc Temperature Stability ( $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ)
- Low Output dc Offset Voltages ( 0.6 V max)
- Pin Compatible with ULN-2114, ULN-2114A
- Negligible Change in Output Voltage Swing With Varying 3.58 MHz Reference Signal
- High Ripple Rejection Due To Built-In MOS Filter Capacitors
- High Output Voltage Swing (10 Vp-p Typ) - B-Y


FIGURE 1 - MC1328 TYPICAL APPLICATION


See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

Rating	Value	Unit
Power Supply Voltege	30	Vdc
Power Dissipation (Package Limitation)   Plastic Packages   Derate above $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$   Metal Package   Derate above $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	$\begin{array}{r} 625 \\ 5.0 \\ 680 \\ 4.5 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	$k$ ohms
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Maximum Ratings as defined in MIL.S-19500, Appendix A.
ELECTRICAL CHARACTERISTICS ${\left(V^{+}\right.}^{+}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}$ ohms, Reference Input
STATIC CHARACTERISTICS $\quad$ Voltage $=1.0 \mathrm{Vp}-\mathrm{p}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Pin No. Suffix G Pkg	Pin No.   Suffix P, PQ Pkgs	Min	Typ.	Max	Unit
Quiescent Output Voltage See Figure 2	7,8,9	9,11,13	13	14.3	16	Vdc
Quiescent Input Current (See Figure 2)   ( $R_{L}=\infty$, Chroma and Reference Input Voltages $=0$ )   ( $R_{L}=3.3 \mathrm{k}$ ohms, Chroma and Reference Input Voltages $=0$ )	6	8	$16.5$	$6.0$   19	$25.5$	mA
Reference Input DC Voltage	4.5	6.7	-	6.2	-	Vdc
Chroma Input DC Voltage	2,3	3,4	-	3.4	-	Vdc
Differential Output Voltage See Note 1 and Figure 3	7,8,9	9,11,13	-	0.3	0.6	Vdc
Output Temperature Coefficient (No Output Differential Voltage $>0.6 \mathrm{Vdc},+25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ ) See Note 1 and Figure 3	7,8,9	9,11,13	-	3.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DYNAMIC CHARACTERISTICS $\mathrm{N}^{+}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}$ ohms,
Referenced Input Voltage $=1.0 \mathrm{Vp}-\mathrm{p}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Detected Output Voltage (B-Y)   See Note 2	9	13	8.0	9.0	-	Vp-p
Chroma Input Voltage (B-Y Output $=5.0 \mathrm{Vp}-\mathrm{p}$ ) See Note 3	2	3	-	0.3	0.7	Vp-p
```Detected Output Voltage (Adjust B-Y Output to 5.0 Vp-p) See Note 4 G-Y R-Y```	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{gathered} 0.75 \\ 3.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 3.8 \end{aligned}$	$\begin{array}{r} 1.25 \\ 4.2 \\ \hline \end{array}$	Vp-p
Relative Output Phase (B-Y Output $=5.0 \mathrm{Vp}-\mathrm{p})$	$\begin{aligned} & 9-8 \\ & 9-7 \end{aligned}$	$\begin{gathered} 13-11 \\ 13-9 \end{gathered}$	$\begin{aligned} & 101 \\ & 248 \end{aligned}$	$\begin{aligned} & 106 \\ & 256 \end{aligned}$	$\begin{aligned} & 111 \\ & 264 \end{aligned}$	Degrees
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	7,8,9	9,11,13	-	250	500	$m \vee p-p$
B-Y Phase Shift (B-Y Reference Input to B-Y Output)	5-9	7.13	-	3	-	Degrees
Residual Carrier and Harmonics (with Input Signal Voltage, normal Reference Signal Voltage and $\mathrm{B}-\mathrm{Y}=5.0 \mathrm{Vp-p}$)	7,8,9	9,11,13	-	-	1.5	Vp-p
Reference Input Resistance (Chroma Input = 0)	4,5	6,7	-	2.0	-	k ohms
Reference Input Capacitance (Chroma Input =0)	4,5	6,7	-	6.0	-	pF
Chroma Input Resistance	2,3	3,4	-	2.0	-	k ohms
Chroma Input Capacitance	2,3	3,4	-	2.0	-	pF

NOTES:

1. With Chroma Input Signal Voltage $=0$ and normal Reference Input Signal Voltage (1.0 Vp -p), all output voltages will be within specified limits and will not differ from each other by greater than 0.6 Vdc .
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to $0.6 \mathrm{Vp-p}$.
3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the B-Y Output Voltage $=5 \mathrm{Vp}$-p. The Chroma Inpu Voltage at this point should be equal to or less than 0.7 Vp -p.
4. With normal Reference Input Signal Voltage, adjust the Chroma Input Signal until the B-Y Output Voltage $=5 \mathrm{Vp}-\mathrm{p}$. At this point, the R-Y and G-Y voltages will fall within the specified limits.

MC1328 (continued)

TEST CIRCUITS
$\left(\mathrm{V}^{+}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
FIGURE 2 - TEST CIRCUIT WITH NO REFERENCE INPUT SIGNAL

FIGURE 3 - TEST CIRCUIT WITH REFERENCE INPUT SIGNAL
(Quiescent Current, DC Output Voltage, Difference Voltage)

TYPICAL CHARACTERISTICS

FIGURE 4 - DETECTED OUTPUT

Figure 5 - detected output

TYPICAL CHARACTERISTICS (continued)

FIGURE 10 - POWER DISSIPATION

MC1328 (continued)

FIGURE 11 - CIRCUIT SCHEMATIC

CIRCUIT OPERATION

A double sideband suppressed carrier chroma signal flows between the bases of the two differential pairs, Q15 and Q16, Q17 and Q18. A reference signal of approximately $1 \mathrm{Vp}-\mathrm{p}$ amplitude having the same frequency as the suppressed chroma carrier with an appropriate phase relationship is supplied between the bases of the upper differential pairs Q5 and Q6, Q7 and Q8, Q9 and Q10, Q11 and Q12. The upper pairs are switched between full conduction and zero conduction at the carrier frequency rate. The collectors of the upper pairs are cross-coupled so that "doubly balanced" or "full-wave" synchronous detected chroma signals are obtained. Both positive and negative phases of the detected signal are available at opposite collector pairs.

Capacitors C1, C2 and C3 provide filtering of carrier harmonics from the detected color difference signals. This increases the available swing before clipping for the color difference signal, and reduces the high frequency components which must pass through the emitter followers ($\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3$) into the video output stages. Since high capacitance ($>100 \mathrm{pF}$) is characteristic of the input impedance of a video output stage, the transistor emitter followers must oper ate at a high quiescent current ($>5 \mathrm{~mA}$) in order to pass large high frequency components without distortion. The filtering reduces the quiescent current required in the emitter followers and thus reduces dissipation in the integrated circuit.

DUAL DOUBLY BALANCED CHROMA DEMODULATOR

MONOLITHIC SILICON integrated circuit

FIGURE 1 - MC1329P TYPICAL APPLICATION

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise specified.)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & 625 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Chroma Signal Input Voltage	5.0	V (pk)
Reference Signal Input Voltage	5.0	$\mathrm{V}(\mathrm{pk})$
Minimum Load Resistance	2.2	k ohms
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{kohms}, \mathrm{V}_{\text {ref }}=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristics	Pin No.	Min	Typ	Max	Unit
STATIC CHARACTERISTICS (See Figure 2.)					
Quiescent Output Voltage	9,11,13	13	14.5	16	Vdc
Quiescent Input Current $\begin{aligned} & \left(R_{L}=\infty\right) \\ & \left(R_{L}=3.3 \mathrm{k} \text { ohms }\right) \end{aligned}$	8	$\stackrel{-}{16.5}$	$\begin{aligned} & 6.0 \\ & 19 \end{aligned}$	$\stackrel{-}{25.5}$	mA
Reference Input dc Voltage	6,7	-	6.9	-	Vdc
Chroma Input dc Voltage	3,4	-	3.6	-	Vdc
Differential Output Voltage	$\begin{gathered} 9-11,9-13, \\ 11-13 \\ \hline \end{gathered}$	-	0.3	0.6	Vdc
Output Temperature Coefficient (No Output Differential Voltage $>0.6 \mathrm{Vdc},+25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$)	9,11,13	-	3.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DYNAMIC CHARACTERISTICS (Pin 4 bypassed to ground, chroma (3.56 MHz) on pin 3.)

Detected Output Voltage See Note 1. $+(B-Y)$ $-(B-Y)$	13	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$V(p-p)$
Chroma Input Voltage (B-Y Output = 5.0 V [p-p]) See Note 2.	3	-	0.36	0.7	$V(p-p)$
Detected Output Voltage (Adjust B-Y Output to $5.0 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$)	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{gathered} 0.75 \\ 3.5 \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{gathered} 1.25 \\ 4.2 \\ \hline \end{gathered}$	$V(p-p)$
Relative Output Phase $\text { (B-Y Output }=5.0 \mathrm{~V}[p-\mathrm{p}]) \text { B-Y to } \mathrm{R}-\mathrm{Y}$	$\begin{aligned} & 13-11 \\ & 13-9 \end{aligned}$	$\begin{aligned} & 101 \\ & 248 \end{aligned}$	$\begin{aligned} & 106 \\ & 256 \end{aligned}$	$\begin{aligned} & 111 \\ & 264 \end{aligned}$	Degrees
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	9,11,13	-	100	500	$m \vee(p-p)$
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and $B-Y=5.0 \mathrm{~V}[p-p])$	9,11,13	-	-	1.0	$V(p-p)$
Reference Input Resistance	6,7	-	2.0	-	k ohms
Reference Input Capacitance	6,7	-	6.0	-	pF
Chroma Input Resistance	3.4	-	1.0	-	k ohms
Chroma Input Capacitance	3,4	-	2.0	-	pF

NOTES:

1. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to $1.2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the B-Y Output Voltage $=5.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$. The Chroma Input Voltage at this point should be equal to or less than $0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p})$

TYPICAL CHARACTERISTICS
$\left(V_{C C}=24 \mathrm{Vdc}, R_{L}=3.3 \mathrm{k} \Omega 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 2 - TEST CIRCUIT WITH REFERENCE INPUT SIGNAL
(Quiescent Current, DC Output Voltage, Difference Voltage)

FIGURE 3 - DETECTED OUTPUT

FIGURE 4 - DETECTED OUTPUT VOLTAGE

FIGURE 5 - POWER DISSIPATION

FIGURE 6 - CIRCUIT SCHEMATIC

MONOLITHIC LOW-LEVEL VIDEO DETECTOR

an integrated circuit featuring very linear video characteristics, wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and the AFC buffer.

- Conversion Gain - 34 dB typ
- Video Frequency Response @ $6.0 \mathrm{MHz}<1.0 \mathrm{~dB}$
- Input of 36 mV Produces $3.0 \mathrm{Vp}-\mathrm{p}$ Output
- High Video Output - 7.7 Vp-p
- Fully Balanced Detector
- High Rejection of IF Carrier
- Low Radiation of Spurious Frequencies

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	+24	Vdc
Supply Current	26	mAdc
Input Voltage	1.0	$\mathrm{~V}(\mathrm{rms})$
Power Dissipation (Package Limitation) $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	0 to +75	${ }^{\circ} \mathrm{C}$

See Packaging Information Section for outline dimensions.

MC1330P (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=20 \mathrm{Vdc}, \mathrm{Q}=30, \mathrm{f}_{\mathrm{C}}=45 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Pin	Min	Typ	Max	Unit
Supply Voltage Range	6	12	20	24	Vdc
Supply Current	5,6	-	15	-	mA
Zero Signal dc Output Voltage	4	6.8	7.7	8.3	Vdc
Maximum Signal dc Output Voltage	4	-	0	-	Vdc
Input Signal Voltage for 3.0 Vp-p Video Output (90\% Modulation)	7	-	36	-	mV(rms)
Maximum Output Voltage Swing	4	-	7.7	-	Vp-p
Carrier Rejection at Output	4	42	60	-	dB
```Carrier Output Voltage (at 3.0 Vp-poutput) fout = fC fout = 2fC```		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	-	mV (rms)
3.0 dB Bandwidth of IF Carrier	7	-	80	-	MHz
3.0 dB Bandwidth of Video Output	4	-	12.3	-	MHz
Input Resistance Input Capacitance	7	-	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	-	kilohms pF
Output Resistance	4	-	180	-	ohms
$\left.\begin{array}{l}\text { Internal Resistance } \\ \text { Internal Capacitance }\end{array}\right\}$ (across tuned circuit)	2,3	-	$\begin{aligned} & 4.4 \\ & 1.0 \end{aligned}$	-	kilohms pF
AFT Buffer Output at Carrier Frequency (1)	1	-	350	-	mVp-p
AFT Buffer dc Level	1	-	6.5	-	Vdc

(1) Measured with 10 times probe.

FIGURE 3 - CIRCUIT SCHEMATIC


MC1330P (continued)

TYPICAL CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 4 - TEST CIRCUIT


FIGURE 6 - OUTPUT VOLTAGE


FIGURE 8 - VIDEO FREQUENCY RESPONSE


FIGURE 5 - OUTPUT VOLTAGE


FIGURE 7 - DETECTOR LINEARITY


FIGURE 9 - CARRIER FREQUENCY PERFORMANCE


FIGURE 10 - COLOR IF AMPLIFIER TYPICAL APPLICATION


## TV-IF Amplifier Information

A very compact high performance IF amplifier constructed as shown in Figure 11 minimizes the number of overall components and alignment adjustments. It can be readily combined with normal tuners and input tuning-trapping circuitry to provide the performance demanded of high quality receivers. This configuration will provide approximately 84 dB voltage gain and can accomodate the usual low impedance input network or, if desired, can take advantage of an impedance step-up from tuner to MC1350P input ( $\mathrm{Z}_{\mathrm{in}} \approx 7.0$ kilohms). The burden of selectivity, formerly found between the third IF and detector, must now be placed at the interstage. The nominal 3 volt peak-to-peak output can be varied from 0 to 7.0 V with excellent linearity and freedom from spurious output products.

FIGURE 11 - TRANSFORMER


Primary Winding: 8 turns of AWG \#26 close wound, CT Secondary Winding: 6 turns of AWG \#26 close wound, CT Core: Arnold Type.TH slugs or equiv.

Alignment is most easily accomplished with an AM generator, set at a carrier frequency of 45.75 MHz , modulated with a video frequency sweep. This provides the proper realistic conditions necessary to operate the low-level detector (LLD). The detector tank is first adjusted for maximum detected dc (with a CW input), next, the video sweep inodulation is applied and the interstage and input circuits aligned, step by step, as in a standard IF amplifier.

Note: A normal IF sweep generator, essentially an FM generator, will not serve properly without modification. The LLD tank attempts to "follow" the sweep input frequency, and results in variations of switching amplitude in the detector. Hence, the apparent overall response becomes modified by the response of the LLD tank, which a real signal doesn't do.
This effect can be prevented by resistively adding a 45.75 MHz CW signal to the output of the sweep generator approximately 3 dB greater than the sweep amplitude.

## MC1330P General Information

The MC1330P offers the designer a new approach to an old problem. Now linear detection can be performed at much lower power signal levels than possible with a detector diode.
Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some
specific features and information on systems design with this device are given below:

1. The device provides excellent linearity of output versus input, as shown in Figure 6. This graph also shows that video peak-to-peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a given variation of input CW and use the figure as a transfer function.)
2. The dc output level does change linearly with supply voltage. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply. 3. The choice of $Q$ for the tuned circuit of pins 2 and 3 is not critical. The higher the $Q$, the better the rejection of 920 kHz products but the more critical the tuning accuracy required. Values of $Q$ from 20 to 50 are recommended. (Note the internal resistance.) 4. A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so it must be handled with greater care. If not used, pin 5 may be connected directly to the supply voltage (pin 6).
3. An AFT output (pin 1) provides 350 mV of clipped carrier output, sufficient voltage to drive an AFT ratio detector, with only one additional stage.

## Product Preview

## MONOLITHIC LOW-LEVEL VIDEO DETECTOR

... an integrated circuit featuring very linear video characteristics and wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer, AFC buffer, sound IF detector, and sync separator.

- Conversion Gain - 34 dB typical
- Video Frequency Response at $6.0 \mathrm{MHz}<3.0 \mathrm{~dB}$
- Input of 36 mV Produces $3.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ Output
- High Video Output - 6.0 V(p-p)
- Fully Balanced Detector
- Separate Sound Detector
- Differential Inputs


## LOW-LEVEL VIDEO DETECTOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 - OUTPUT VOLTAGE



See Packaging Information Section for outline dimensions.

## MC1331P (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	16	Vdc
Supply Current	30	mAdc
Input Voltage	2.0	V(RMS)
Power Dissipation (Package Limitation)	750	mW
Plastic Package		
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6.7	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{Q}=20, \mathrm{f}_{\mathrm{C}}=45 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Pin	Min	Typ	Max	Unit
Supply Voltage Range	12	10	12	16	Vdc
Supply Current	12	-	25	-	mA
Zero Signal dc Output Voltage	5	6.4	7.0	7.6	$V d c$
Maximum dc Current	5	-	5.0	-	mA
Maximum Signal dc Output Voltage	5	-	0	-	Vdc
Input Signal Voltage for $3.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ Video Output ( $90 \%$ modulation from HP608E)	13,14	$\bigcirc \quad-$	36	-	mV (RMS)
Maximum Output Voltage Swing	5	-	6.0	-	$V(p-p)$
Carrier Rejection at Output	5	-	20	-	dB
3.0 dB Bandwidth of Video Output	5	-	6.5	-	MHz
Input Resistance   Input Capacitance	13,14	-	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
	6.7		$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	-	pF
Output Resistance	5	-	100	-	$\Omega$
AFT Buffer Output Voltage at Carrier Frequency (measured with 10 times probe)	8	-	100	-	$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
AFT Buffer dc Voltage Level	8	-	12	-	Vdc
Sound Detector Gain   ( 1.0 mV (RMS), 41.25 MHz input to pin 11)	9	-	16	-	dB
Sound Detector Output Resistance	9	-	100	-	$\Omega$
Positive Video Output Swing Voltage	4	-	8.0	-	$V(p-p)$
Sync Output Amplitude Voltage	2	-	11	-	$V(p-p)$




See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (Each Preamplifier) $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Power Supply Current	-	17.5	22	mA
Voltage Gain	63	66	71	dB
Gain Balance	-	0.3	2.0	dB
Channel Separation ( $f=1.0 \mathrm{kHz}$ ) See Figure 1, S1 in position 1.	45	70	-	dB
Input Resistance	100	250	-	kilohms
Signal Output Voltage   No load   3.0-kilohm load	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	V(RMS)
Output Resistance	-	100	-	ohms
Power Supply Rejection ( $f=1.0 \mathrm{kHz}$ ) See Figure 2	-	33	-	dB
Total Harmonic Distortion without Feedback ( $0.5 \mathrm{~V}(\mathrm{RMS}$ ) into a $3.0-\mathrm{kil}$ ohm load, 1.0 kHz )	-	1.2	-	\%
Input Bias dc Current	-	0.8	-	$\mu \mathrm{A}$
Gain to Feedback Terminals (pins 3 and 12)	-	45	-	dB
Impedance at Feedback Terminals	-	2400	-	ohms
Equivalent Input Noise Voltage ( 100 Hz to 10 kHz ) See Figure 1, S1 in position 2.	-	0.7	3.0	$\mu \mathrm{V}$ (RMS)

## TEST CIRCUITS

FIGURE 1 - CHANNEL SEPARATION AND

AUDIO NOISE


FIGURE 2 - POWER SUPPLY REJECTION


## APPLICATIONS INFORMATION

The circuit diagrams shown in this section are examples of applications for the MC1339P. Included are circuits for a broadband preamplifier with tape playback and record amplifiers, and a phono preamplifier.

## Broadband Amplifiers

The MC1339P is useful as a broadband amplifier in applications requiring a low-signal level low-noise amplifier. The circuit in Figure 3 fills these requirements with a voltage gain of 40 dB and an input impedance of 10 kilohms.

FIGURE 3 - BROADBAND AMPLIFIER


Figure 4 shows the response of the broadband amplifier with two different values of compensation capacitors, C1. Other capacitor values can be used; however, as the phase margin is reduced a greater possibility of oscillation exists.

FIGURE 4 - BROADBAND AMPLIFIER RESPONSE


Tape Playback Preamplifier
A low-noise, high-gain preamplifier to properly process the low-level output of the magnetic tape-heads is shown in Figure 5 illustrating a tape-head preamplifier using the MC1339P.

To faithfully reproduce recorded music from magnetic tape, special frequency compensation is required to provide the NAB standard tape playback equalization characteristics, see the response curves shown in Figure 6. The circuit shown in Figure 5 is designed to provide an output of 100 millivolts with an input signal of 2.2 millivolts at a frequency of 1.0 kHz . (Reference gain is 33 dB ).

FIGURE 5 - TAPE PLAYBACK PREAMPLIFIER


The lower -3.0 dB corner frequency $(f 1)$ is determined by the value for capacitor $C 1$ in accordance with equation 1.

$$
\begin{equation*}
C 1=\frac{A_{3}}{2 \pi z 3 f 1} \tag{1}
\end{equation*}
$$

where $z 3$ is the impedance at pin 3 ( 2.4 kilohms) and A3 is the amplifier gain at pin 3 (178)

The minimum high-frequency gain ( 5 dB below reference gain of 33 dB ) of the amplifier is determined by the ratio of $\frac{R 1+R_{F}}{R 1}$ while the value of capacitor $C_{F}$ provides the bass boost corner frequency in accordance with equation 2.

$$
\begin{equation*}
C_{F}=\frac{1}{2 \pi R_{F} f 2} \tag{2}
\end{equation*}
$$

Based on measurements made on the amplifier (See Figure 5), the value of $C 2$ is chosen for a phase margin greater than thirty degrees.
The nearest $10 \%$ tolerance component values were used in the circuit of Figure 5.

FIGURE 6 - FREQUENCY RESPONSE FOR TAPE PLAYBACK PREAMPLIFIER (TAPE SPEED $17 / 8$ OR 3 3/4 IN/S)


## Tape Record Preamplifier

The frequency response of a tape recording preamplifier must be the mirror image of the NAB playback equalization characteristic, so that the composite record and playback response is flat. Figure 7 shows the record characteristic superimposed on the NAB playback response and Figure 8 illustrates the output characteristic of

## APPLICATIONS INFORMATION (continued)

a typical laminated core tape head. Figure 9 shows the necessary amplifier response characteristic to make a composite signal of Figures 8 and 9 that will meet the proper NAB recording characteristic of Figure 7.

FIGURE 7 - NAB TAPE EQUALIZATION CHARACTERISTIC CURVES


FIGURE 8 - TYPICAL TAPE HEAD OUTPUT CHARACTERISTICS (constant flux)


FIGURE 9 - TAPE RECORD AMPLIFIER RESPONSE



The circuit shown in Figure 10 will give the preamplifier response as presented in Figure 9.
The gain is established by the equation

$$
\begin{equation*}
\text { GAIN }=\frac{R 3+z_{f}}{z_{f}} \text { where } z_{f}=\frac{R 2\left(R 1+\frac{1}{2 \pi f C 3}\right)}{R 2+\left(R 1+\frac{1}{2 \pi f C 3}\right)} \tag{3}
\end{equation*}
$$

The high corner frequency, f2, is determined by equation 4.

$$
\begin{equation*}
C 3=\frac{1}{2 \pi f 2 R 2} \tag{4}
\end{equation*}
$$

At high frequencies the feedback impedance $z_{f}$ is $R 1$ in parallel with R2 and at low frequencies is R2. Again, capacitor C1 is chosen by equation 1 to give the desired low frequency break point, f1. As an example, consider a recording head requiring $30 \mu \mathrm{~A}$ is used with a microphone with a $10-\mathrm{mV}$ output. The $30-\mu \mathrm{A}$ current source is simulated by a $1.0 \mathrm{~V}(\mathrm{RMS})$ output driving a 33 -kilohm resistor, $R 4$, at the reference frequency of 1.0 kHz . The gain requirement is therefore 100 or 40 dB . The low-frequency gain is calculated by letting R2 $=100$ ohms and calculating the value of R3 for frequencies below $f 2$.

$$
\begin{equation*}
A_{v}=\frac{R 2+R 3}{R 2}=125 \quad R 3=124(R 2) \approx 12 k \Omega \tag{5}
\end{equation*}
$$

A 15-kilohm resistor is used to achieve the gain necessary since the open-loop gain of the amplifier is not infinite.
The typical response for a quarter-track $(33 / 4 \mathrm{in} / \mathrm{s})$ tape-head is 3.0 dB down at 1770 Hz . Therefore, the high-corner frequency (f2) of the record amplifier should be at the same frequency. Using equation 4 the value of C 3 is calculated to be $1.0 \mu \mathrm{~F}$. Resistor R1 is not needed to roll-off the high-frequency gain at frequencies above 20 kHz since the limited open-loop gain of the MC1339P accomplishes the same thing. The parallel LC circuit at the amplifier output is used to trap the bias oscillator signal and is tuned to that frequency.

## Phonographic Preamplifier

Crystal and ceramic phono-cartridges seldom require a preamplifier due to high-output signal levels $(100 \mathrm{mV}$ to 1.0 V$)$. However, magnetic cartridges have output levels of from 2.0 to 12 mV and require a preamplifier such as the MC1339P. Special equalization of the preamplifier is necessary to make the response match the RIAA recording characteristic which is used universally. The amplifier shown in Figure 11 does provide the proper response

## MC1339P (continued)

## APPLICATIONS INFORMATION (continued)

FIGURE 11 - PHONOGRAPH PREAMPLIFIER


FIGURE 12 - FREQUENCY RESPONSE OF PHONO-PREAMPLIFIER (compensated for RIAA Equalization)

for RIAA equalization. Figure 12 illustrates the RIAA response of the amplifier in Figure 11. The dashed line shows the ideal response with the corner frequencies indicated. The lower corner frequency ( $f 1$ ) is determined by the input capacitance C1 and the equation

$$
\begin{equation*}
f 1=\frac{A_{f}}{2 \pi C 1 z 3} \tag{6}
\end{equation*}
$$

where $A_{f}$ is the feedback gain of 45 dB and $z 3$ equals the terminal resistance at pin 3 . The corner frequency f2 is determined by

$$
\begin{align*}
& \qquad f 2=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 2}  \tag{7}\\
& \text { and } f 3 \text { is calculated from } f 3=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 3}
\end{align*}
$$

Printed Circuit Board Layout
Most of the circuits in the applications section can be built on this printed circuit board layout. Printed circuit board design is not particularly critical with the MC1339P. However, usual layout practices such as keeping the input and output lines separated and providing maximum ground plane area should be used. The layout shown is for Figure 5 but it can easily be modified without any problem for the other application circuits given.

FIGURE 13 - PRINTED CIRCUIT BOARD (copper side shown)


## Product Preview

## TV SIGNAL PROCESSOR

. . . a monolithic TV circuit with sync separator, advanced noise inversion, AGC comparator, and versatile RF AGC delay amplifier for use in color or monochrome TV receivers.

- Video Internally Delayed for Total Noise Inversion
- Low Impedance, Noise Cancelled Sync Output
- Refined AGC Gate
- Small IF AGC Output Change During RF AGC Interval
- Positive and Negative Going RF AGC Outputs
- Noise Threshold May Be Externally Adjusted
- Time Constants for Sync Separator Externally Chosen
- Stabilized for $\pm 10 \%$ Supply Variations


## TV SIGNAL

 PROCESSORMONOLITHIC SILICON INTEGRATED CIRCUIT



[^10]
## MC1344P (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage (Pin 11)	+22	Vdc
Video Input Voltage (Pin 1)	+10	Vdc
Negative RF AGC Supply Voltage (Pin 3)	-10	Vdc
Gating Voltage (Pin 9)	15	Vp-p
Sync Separator Drive Voltage (Pin 12)	7.0	Vp-p
Power Dissipation (Package Limitation)   Plastic Package   Derate above TA $^{\prime}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+18 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Sync Tip dc Level of Input Signal	3.4	3.9	4.2	Vdc
Temperature Coefficient of Sync Tip (Input)	-	-	1.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Sync Output Amplitude	-	16	-	$\mathrm{Vp}-\mathrm{p}$
Sync Output Impedance	-	-	100	Ohms
Sync Tip to Noise Threshold Separation (Input)	0.45	0.7	0.95	Vdc
IF AGC Voltage Change During RF Interval	-	0.10	0.5	Vdc
Peak AGC Charge Current	-	15	-	mAdc
Peak AGC Discharge Current	-	0.9	-	mAdc
IF AGC Voltage Range	9.0	-	-	Vdc
Positive RF AGC Voltage Range	-	10	-	Vdc
Positive RF AGC Minimum Voltage	0.5	1.5	2.0	Vdc
Negative RF AGC Voltage Range	-	10	-	Vdc
Negative RF AGC Maximum Voltage	9.5	10.2	12	Vdc
Total Supply Current, IS (Circuit of Figure 1)	-	22	-	mAdc


CIRCUIT SCHEMATIC


## MC1349P

... an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and television applications over the temperature range 0 to $+70^{\circ} \mathrm{C}$.

- Power Gain - 60 dB typ at 45 MHz (pin 3 open)
-56 dB typ at 58 MHz (pin 3 open)
-61 dB typ at 45 MHz (pin 3 bypassed)
-59 dB typ at 58 MHz (pin 3 bypassed)
- AGC Range - 80 dB typ, dc to 45 MHz
- High Output Impedance
- Low Reverse Transfer Admittance
- 15-Volt Operation, Single-Polarity Power Supply
- Improved Noise Figure versus AGC



See Packaging Information Section for outline dimensions.

## MC1349P (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Rating	Value	Unit
Power Supply Voltage (VCC1)	+18	Vdc
Output Supply Voltage ( $\mathrm{V}_{\mathrm{CC} 2}$ )	+18	Vdc
AGC Supply Voltage	$\leq \mathrm{V}_{\text {CC } 1}(\mathrm{pin} 2)$	Vdc
Differential Input Voltage	5.0	Vdc
Power Dissipation (Package Limitation)   Plastic Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & 625 \\ & 5.0 \end{aligned}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{C}}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C 1}=+12 \mathrm{Vdc}\right.$ [pin 2], $\mathrm{V}_{\mathrm{CC} 2}=+15 \mathrm{Vdc}$ [pins 1 and 8 ], $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
AGC Range, $45 \mathrm{MHz}(5.0 \mathrm{~V}$ to 7.5 V ) (Figure 3)	70	80	-	dB
Power Gain (Pin 5 grounded via $5.1 \mathrm{k} \Omega$ resistor, input pin 4) $\mathrm{f}=45 \mathrm{MHz}, \mathrm{BW}(3 \mathrm{~dB})=4.5 \mathrm{MHz}$, Tuned Input, pin 3 open Untuned Input, pin 3 bypassed $\mathrm{f}=58 \mathrm{MHz}, \mathrm{BQ}(3 \mathrm{~dB})=4.5 \mathrm{MHz}$, Tuned Input, pin 3 open Untuned Input, pin 3 bypassed	$\begin{gathered} 52 \\ - \\ - \end{gathered}$	$\begin{aligned} & 60 \\ & 61 \\ & 56 \\ & 59 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	dB
Maximum Differential Output Voltage Swing	-	6.0	-	Vp-p
Output Stage Current (pins 1 and 8)	-	9.0	-	mA
Amplifier Current ( pin 2 )	-	15	20	mAdc
Power Dissipation	-	315	400	mW
Noise Figure   $f=45 \mathrm{MHz}$, Tuned Input, pin 3 open, Gain Reduction $=15 \mathrm{~dB}$	-	8.5	-	dB

DESIGN PARAMETERS $\left(\mathrm{V}_{\mathrm{CC} 1}=+12 \mathrm{Vdc}\right.$, $[\mathrm{pin} 2], \mathrm{V}_{\mathrm{CC} 2}=+15 \mathrm{Vdc}$, [pins 1 and 8$], \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Symbol	Frequency		Unit
		45 MHz	58 MHz	
Single-Ended Input Admittance, input pin 4, AGC min   Pin 3 open   Pin 3 open   Pin 3 bypassed   Pin 3 bypassed	$\begin{aligned} & \mathrm{g} 11 \\ & \text { b11 } \\ & \text { g11 } \\ & \text { b11 } \end{aligned}$	$\begin{gathered} 0.74 \\ 1.9 \\ 4.1 \\ 6.5 \end{gathered}$	$\begin{gathered} 0.95 \\ 2.4 \\ 5.4 \\ 6.9 \end{gathered}$	mmhos
Differential Output Admittance, AGC max	$\begin{aligned} & \mathrm{g} 22 \\ & \mathrm{~b} 22 \end{aligned}$	$\begin{gathered} 5.5 \\ 270 \end{gathered}$	$\begin{array}{r} 8.3 \\ 360 \end{array}$	$\mu \mathrm{mhos}$
Reverse Transfer Admittance (magnitude)		1.5	2.0	$\mu \mathrm{mhos}$
Forward Transfer Admittance   Magnitude, pin 3 open   Angle ( 0 dB AGC), pin 3 open   Magnitude, pin 3 bypassed   Angle ( 0 dB AGC), pin 3 bypassed		$\begin{gathered} 520 \\ 100 \\ 1020 \\ 120 \end{gathered}$	$\begin{aligned} & 400 \\ & 130 \\ & 800 \\ & 400 \end{aligned}$	mmhos degrees mmhos degrees
Single-Ended Input Capacitance, AGC min   Pin 3 open   Pin 3 bypassed		$\begin{aligned} & 6.8 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 20 \end{aligned}$	pF
Differential Output Capacitance (AGC max)		1.0	1.0	pF

## MC1349P (continued)

FIGURE 2 - CIRCUIT SCHEMATIC


## GENERAL INFORMATION

The MC1349P is an improved version of the MC1350P. Fea turing higher gain, a lower noise figure, and greater AGC range; in addition, an emitter of the input amplifier is available for bypassing. This provides a low input impedance with good gain, useful for untuned input configurations.

Both input and output IF amplifier sections are gain-controlled in the MC1349P, with the input amplifier also serving as an AGC amplifier for the output section. During the initial part of AGC gain reduction, the gain of the input amplifier decreases only a few $d B$ while the output section decreases 15 dB ; further $A G C$ acts upon the input section. Although the gain reduction curve was taken with 5.1 kilohms at pin 5 , higher series resistance can be used to reduce the voltage and temperature sensitivity of the AGC. Pin 5 currents are shown on the AGC curve, see Figure 10. In use, it is important to bypass pin 2, both for IF frequencies
and for low frequencies, (as shown in the test circuits). This is due to the dual function of the input amplifier. If replacing MC1350P take precaution not to ground pin 3, (not used in the MC1350P). Due to the significantly higher gain of the MC1349P, extra care in layout should be exercised.

NOTE 1: The references to bypasses at pin 3 do not give specific values (C4, see Figures 1 and 4). In all cases, measurements were taken with a bypass at a standard value as near as possible to series resonance. The values are dependent on test frequency and circuit layout. Fully bypassing pin 3 reduces the input signal handling capa bility before distortion from over $100 \mathrm{mV}(\mathrm{RMS})$ to approximately 25 mV (RMS). $\mathrm{C} 4=0.002 \mu \mathrm{~F}$ at $\mathrm{f}=45$ MHz is a typical value for printed circuit applications.



PARTS LIST

COMPONENT	45 MHz	58 MHz
C1	$8-60 \mathrm{pF}$	$50-100 \mathrm{pF}$
C2	3.35 pF	3.35 pF
C3	$1-7.0 \mathrm{pF}$	$1-7.0 \mathrm{pF}$
C4	82.470 pF	$82-40 \mathrm{pF}$
CP	$0.0015 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$
L1	$0.84 \mu \mathrm{H}$	$0.33 \mu \mathrm{H}$
LP 2	$10 \mu \mathrm{H}$	$10 \mu \mathrm{H}$

[^11]
## MC1349P (continued)

TYPICAL CHARACTERISTICS

FIGURE 5 - SINGLE-ENDED INPUT ADMITTANCE (PIN 3 OPEN)


FIGURE 7 - SINGLE-ENDED FORWARD
TRANSFER ADMITTANCE


Figure 9 - NOISE FIGURE


FIGURE 6 - SINGLE-ENDED INPUT ADMITTANCE (PIN 3 BYPASSED TO GROUND)


FIGURE 8 - DIFFERENTIAL OUTPUT ADMITTANCE (MAXIMUM AGC)


FIGURE 10 - GAIN REDUCTION

. . . an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over the temperature range 0 to $+75^{\circ} \mathrm{C}$. The MC1352 is similar in design but has a keyed-AGC amplifier as an integral part of the same chip.

- Power Gain - 50 dB typ at 45 MHz ,
-48 dB typ at 58 MHz
- AGC Range - 60 dB min, dc to 45 MHz
- Nearly Constant Input and Output Admittance Over the Entire AGC Range
- y21 Constant ( -3.0 dB ) to 90 MHz
- Low Reverse Transfer Admittance $-\ll 1.0 \mu$ mho typ
- 12-Volt Operation, Single-Polarity Power Supply



See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	+18	Vdc
Output Supply Voltage	$V_{1}, V_{8}$	+18	Vdc
AGC Supply Voltage	$\mathrm{V}_{\text {AGC }}$	$\mathrm{V}^{+}$	Vdc
Differential Input Voltage	$\mathrm{V}_{\text {in }}$	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{aligned} & 625 \\ & 5.0 \end{aligned}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}^{+}=+12 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
AGC Range, $45 \mathrm{MHz}(5.0 \mathrm{~V}$ to 7.0 V ) (Figure 1)		60	68	-	dB
	$A_{p}$	- 46 -	$\begin{aligned} & 48 \\ & 50 \\ & 58 \\ & 62 \\ & \hline \end{aligned}$	-	dB
```Maximum Differential Voltage Swing 0 dB AGC -30 dB AGC```	$\mathrm{V}_{0}$	-	$\begin{aligned} & 20 \\ & 8.0 \end{aligned}$	-	$V_{p-p}$
Output Stage Current (Pins 1 and 8)	$11+18$	-	5.6	-	mA
Total Supply Current (Pins 1, 2 and 8)	Is	-	14	17	mAdc
Power Dissipation	$P_{\text {D }}$	-	168	204	mW

DESIGN PARAMETERS, Typical Values ($\mathrm{V}+=+12 \mathrm{Vdc}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Frequency				Unit
		455 kHz	10.7 MHz	45 MHz	58 MHz	
Single-Ended Input Admittance	$\begin{aligned} & \mathrm{g} 11 \\ & \mathrm{~b}_{11} \\ & \hline \end{aligned}$	$\begin{gathered} 0.31 \\ 0.022 \end{gathered}$	$\begin{aligned} & 0.36 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 2.30 \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ 2.75 \end{gathered}$	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	$\begin{aligned} & \Delta \mathrm{g}_{11} \\ & \Delta \mathrm{~b}_{11} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{gathered} 60 \\ 0 \\ \hline \end{gathered}$	-	μ mhos
Differential Output Admittance	$\begin{aligned} & \mathrm{g}_{22} \\ & \mathrm{~b}_{22} \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 3.0 \\ \hline \end{array}$	$\begin{gathered} \hline 4.4 \\ 110 \\ \hline \end{gathered}$	$\begin{array}{r} 30 \\ 390 \\ \hline \end{array}$	$\begin{array}{r} \hline 60 \\ 510 \\ \hline \end{array}$	μ mhos
Output Admittance Variations with AGC (0 to 60 dB)	$\begin{aligned} & \Delta \mathrm{g}_{22} \\ & \Delta \mathrm{~b}_{22} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 90 \end{aligned}$	-	μ mhos
Reverse Transfer Admittance (Magnitude)	$\mid \mathrm{y} 12 \mathrm{l}$	<<1.0	<<1.0	<<1.0	<<1.0	$\mu \mathrm{mho}$
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (-30 dB AGC)	$\begin{aligned} &\left\|y_{21}\right\| \\ &< y_{21} \\ &< y_{21} \end{aligned}$	$\begin{array}{r} 160 \\ -5.0 \\ -3.0 \end{array}$	$\begin{aligned} & 160 \\ & -20 \\ & -18 \end{aligned}$	$\begin{aligned} & 200 \\ & -80 \\ & -69 \end{aligned}$	$\begin{gathered} 180 \\ -105 \\ -90 \end{gathered}$	mmhos degrees degrees
Single-Ended Input Capacitance	$\mathrm{C}_{\text {in }}$	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	C_{0}	1.2	1.2	1.3	1.6	pF

FIGURE 2 - TYPICAL GAIN REDUCTION
(Figures 5 and 6)

FIGURE 3 - NOISE FIGURE (Figure 5)

GENERAL OPERATING INFORMATION

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of $\mathbf{O 4}$ and $\mathbf{Q 5}$ causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12 -volt supply (V^{+}) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15 -volt supply (V^{++}) is used, because the base voltage on the output amplifier varies with AGC bias.

FIGURE 5 - POWER GAIN, AGC and NOISE FIGURE TEST CIRCUIT (45 MHz and 58 MHz)

*Connect to ground for maximum power gain test.
All power-supply chokes (L_{p}), are self-resonate at
input frequency. $L_{p} \geqq 20 \mathrm{k} \Omega$
See Figure 10 for frequency response curve.
$\mathrm{L}_{1} @ 45 \mathrm{MHz}=71 / 4$ Turns on a $1 / 4^{\prime \prime}$ coil form.
@ $58 \mathrm{MHz}=6$ Turns on a $1 / 4^{\prime \prime}$ coil form
T1 Primary Winding $=18$ Turns on a $1 / 4^{\prime \prime}$ coil form, center-tapped Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz $=1$ Turn @ 58 MHz
Slug $=$ Arnold TH Material $1 / 2^{\prime \prime}$ Long

	45 MHz		58 MHz	
L_{1}	$0.4 \mu \mathrm{H}$	$0 \geqq 100$	$0.3 \mu \mathrm{H}$	$0 \geqq 100$
$\mathrm{~T}_{1}$	$1.3-3.4 \mu \mathrm{H}$	$0 \geqq 100 @ 2 \mu \mathrm{H}$	$1.2-3.8 \mu \mathrm{H}$	$0 \geqq 100 @ 2 \mu \mathrm{H}$
C_{1}	$50-160 \mathrm{pF}$		$8-60 \mathrm{pF}$	
C_{2}	$8-60 \mathrm{pF}$		$3-35 \mathrm{pF}$	

FIGURE 4 - CIRCUIT SCHEMATIC

FIGURE 6 - POWER GAIN and AGC TEST CIRCUIT (455 kHz and 10.7 MHz)

Note 1. Primary: $120 \mu \mathrm{H}$ (center-tapped) $\mathrm{Q}_{\mathrm{u}}=140$ at 455 kHz
Primary: Secondary turns ratio ≈ 13
Note 2. Primary: $6.0 \mu \mathrm{H}$
Primary winding $=24$ turns \#36 AWG (close-wound on 1/4" dia. form)
Core $=$ Arnold Type TH or equiv.
Secondary winding $=1-1 / 2$ turns \#36 AWG, 1/4" dia. (wound over center-tap)

	Frequency	
Component	$\mathbf{4 5 5} \mathrm{kHz}$	10.7 MHz
C 1	-	$80-450 \mathrm{pF}$
C 2	-	$5.0-80 \mathrm{pF}$
C 3	$0.05 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$
C 4	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
C 5	$0.001 \mu \mathrm{~F}$	36 pF
C 6	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
C 7	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
L1	-	$4.6 \mu \mathrm{H}$
T1	Note 1	Note 2

TYPICAL CHARACTERISTICS

$$
\left(\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
$$

FIGURE 9 - DIFFERENTIAL OUTPUT ADMITTANCE

FIGURE 8 - FORWARD TRANSFER ADMITTANCE

FIGURE 10 - TEST CIRCUIT RESPONSE CURVE (45 and 58 MHz)

FIGURE 11 - DIFFERENTIAL OUTPUT VOLTAGE

[^12]

WIDE-BAND FM-AMPLIFIER; LIMITER, DETECTOR, AND AUDIO AMPLIFIER INTEGRATED CIRCUIT
. . . designed for IF limiting, detection, audio preamplifier and driver for the sound portion of a TV receiver.

- Excellent Limiting with $80 \mu \mathrm{~V}$ (rms) Input Signal typ
- Large Output-Voltage Swing - to $3.5 \mathrm{~V}(\mathrm{rms})$ typ
- High IF Voltage Gain - 65 dB typ
- Zener Power-Supply Regulation Built-In
- Short-Circuit Protection
- A Coincidence Discriminator that Requires Only One RLC Phase Shift Network
- Preamplifier to Drive a Single External-Transistor Class-A AudioOutput Stage

TV SOUND CIRCUIT
MONOLITHIC SILICON
EPITAXIAL PASSIVATED

BLOCK DIAGRAM

CIRCUIT SCHEMATIC

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (TA ${ }_{A}=+25^{\circ}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}+$	+16	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	0.7	$\mathrm{~V}_{\text {(rms) }}$
Power Dissipation (Pack age Limitation) Plastic Packages Derate above $+25^{\circ} \mathrm{C}$	PD_{D} $1 / \theta \mathrm{JA}$	625	mW
Operating Temperature Range	T_{A}	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	0 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=4.5 \mathrm{MHz}\right.$, Deviation $= \pm 25 \mathrm{kHz}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Voltage (-3.0 dB Limiting)	V_{L}	-	80	160	μ Virms)
$\begin{aligned} & \text { AM Rejection (} \left.V_{\text {in }}=20 \mathrm{mV}(\mathrm{rms}), A M=30 \%\right) \text { (See Note 1) } \\ & V_{\text {OFM }} \\ & \text { AMR }=20 \text { log } V_{\text {OAM }} \end{aligned}\left\{\begin{array}{l} f=4.5 \mathrm{MHz}, \text { Deviation }= \pm 25 \mathrm{kHz}, Q_{L}=24 \\ f=5.5 \mathrm{MHz}, \text { Deviation }= \pm 50 \mathrm{kHz}, Q_{L}=30 \end{array}\right.$	AMR	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		dB
Total Harmonic Distortion ($\mathrm{Q}_{\mathrm{L}}=24$) (See Note 1) (7.5 kHz Deviation)	THD	-	1.0	-	\%
Maximum Undistorted Audio Output Voltage (Pin 10) (See Note 1) (Audio Gain Adjusted Externally) $(\mathrm{Q}=24)$	V_{o} (max)	-	3.5	-	V(rms)
$\begin{aligned} & \text { Recovered Audio (Pin 2) (See Note 1) } \\ & \left(f=4.5 \mathrm{MHz} \text {, Deviation }= \pm 25 \mathrm{kHz}, \mathrm{Q}_{\mathrm{L}}=24\right) \\ & \left(\mathrm{f}=5.5 \mathrm{MHz} \text {, Deviation }= \pm 50 \mathrm{kHz}, \mathrm{Q}_{\mathrm{L}}=30\right) \end{aligned}$	$\mathrm{V}_{\text {A }}$	0.35	$\begin{aligned} & 0.50 \\ & 0.80 \end{aligned}$	-	V (rms)
Audio Preamplifier Open Loop Gain	AVP	-	25	-	dB
IF Voltage Gain	AVIF	-	65	-	dB
Parallel Input Resistance	$\mathrm{R}_{\text {in }}$	-	9.0	-	$k \Omega$
Parallel Input Capacitance	$\mathrm{C}_{\text {in }}$	-	6.0	-	pF
Nominal Zener Voltage ($I_{Z}=5.0 \mathrm{mAdc}$)	$\bar{V}_{\text {Reg }}$	-	11.6	-	Vdc
Power Supply Current ($1 \mathrm{Z}=5.0 \mathrm{mAdc}$)	${ }^{1} \mathrm{D}$	-	31	-	mAdc
Power Dissipation ($\mathrm{Z}^{2}=5.0 \mathrm{mAdc}$)	$P_{\text {D }}$	-	300	375	mW

Note 1: Q_{L} is loaded circuit Q.

FIGURE 1 - TEST CIRCUIT ($\left.\mathbf{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

TYPICAL CHARACTERISTICS

FIGURE 2 - DETECTED AUDIO OUTPUT versus INPUT LEVEL @ $\mathbf{f = 4 . 5} \mathbf{~ M H z}, \pm \mathbf{2 5} \mathbf{k H z}$ DEVIATION

FIGURE 4 - DETECTOR " S " CURVE @ $\mathrm{f}=4.5 \mathrm{MHz}$, $B W=200 \mathrm{kHz}, \mathrm{Q}=24$

FIGURE 6 - IF VOLTAGE GAIN versus FREQUENCY

FIGURE 3 - DETECTED AUDIO OUTPUT versus INPUT LEVEL @ $f=5.5 \mathrm{MHz}, \pm 50 \mathrm{kHz}$ DEVIATION

FIGURE 5 - DETECTOR " S " CURVE @ $\mathrm{f}=5.5 \mathrm{MHz}$, $B W=220 \mathrm{kHz}, \mathrm{Q}=\mathbf{3 0}$

FIGURE 7 - AM REJECTION

MC1351 (continued)

MC1352 MC1353

TV VIDEO IF AMPLIFIER WITH AGC AND KEYER CIRCUIT

. . . a monolithic IF amplifier with a complete gated wide-range AGC system for use as the 1st and 2nd IF stages and AGC keyer and amplifier in color or monochrome TV receivers.

TV VIDEO IF AMPLIFIER WITH AGC AND KEYER CIRCUIT

MONOLITHIC SILICON INTEGRATED CIRCUIT

- Power Gain at $45 \mathrm{MHz}, 52 \mathrm{~dB}$ typ
- Extremely Low Reverse-Transfer Admittance - << 1.0μ mho typ
- Nearly Constant Input and Output Admittance Over AGC Range
- Single-Polarity Power-Supply Operation
- High-Gain Gated AGC System for Either Positive or NegativeGoing Video Signals
- Control Signal Available for Delayed AGC of Tuner
- Two Complementary Devices - MC1352 and MC1353 Offer Opposite Tuner AGC Polarity

See Packaging Information Section for outline dimensions.

MC1352, MC1353(continued)

MAXIMUM RATINGS (Voltages referenced to pin 4, ground; $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Power Supply (Pin 11)	+18	Vdc
Output Supply (Pins 7 and 8)	+18	Vdc
Signal Input Voltage (Pin 1 or 2, other pin ac grounded)	10	V_{p-p}
AGC Input Voltage (Pin 6 or 10, other pin ac grounded)	+6.0	Vdc
Gating Voltage, Pin 5	$+10,-20$	Vdc
Power Dissipation	625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}+=+12 \mathrm{Vdc}, \mathrm{Voltages}$ referenced to pin 4 , ground; $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
AGC Range	-	75	-	dB
$\begin{aligned} & \text { Power Gain } \\ & f=35 \mathrm{MHz} \text { or } 45 \mathrm{MHz} \\ & f=58 \mathrm{MHz} \\ & \hline \end{aligned}$	-	$\begin{aligned} & 52 \\ & 50 \end{aligned}$	-	dB
$\begin{aligned} & \text { Maximum Differential Output Voltage Swing } \\ & 0 \mathrm{~dB} \text { AGC } \\ & -30 \mathrm{~dB} \mathrm{AGC} \end{aligned}$	-	$\begin{gathered} 16.8 \\ 8.4 \\ \hline \end{gathered}$	-	V_{p-p}
Voltage Range for RF-AGC at Pin 12 Maximum Minimum	$-$	$\begin{array}{r} 7.0 \\ 0.2 \\ \hline \end{array}$	$-$	Vdc
IF Gain Change Over RF-AGC Range	-	10	-	dB
Output Stage Current ($1_{7}+18$)	-	5.7	-	mAdc
Total Supply Current ($17+1_{8}+I_{11}$)	-	27	31	mAdc
Total Power Dissipation	-	325	370	mW

DESIGN PARAMETERS, TYPICAL VALUES ($\mathrm{V}+=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters	Symbol	$\mathrm{f}=35 \mathrm{MHz}$	$\mathbf{f = 4 5 \mathrm { MHz }}$	$\mathrm{f}=58 \mathrm{MHz}$	Unit
Single-Ended Input Admittance	$\begin{aligned} & \mathrm{g}_{11} \\ & \mathrm{~b}_{11} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.55 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$	$\begin{gathered} 1.1 \\ 3.75 \end{gathered}$	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	$\begin{aligned} & \Delta \mathrm{g}_{11} \\ & \Delta \mathrm{~b}_{11} \end{aligned}$	$\begin{gathered} 50 \\ 0 \end{gathered}$	$\begin{gathered} 60 \\ 0 \end{gathered}$	-	$\mu \mathrm{mhos}$
Differential Output Admittance	$\begin{aligned} & \mathrm{g} 22 \\ & \mathrm{~b}_{22} \\ & \hline \end{aligned}$	$\begin{array}{r} 20 \\ 430 \\ \hline \end{array}$	$\begin{gathered} 40 \\ 570 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ 780 \\ \hline \end{gathered}$	$\mu \mathrm{mhos}$
Output Admittance Variations with AGC (0 to 60 dB)	$\begin{aligned} & \Delta \mathrm{g}_{22} \\ & \Delta \mathrm{~b}_{22} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 100 \\ & \hline \end{aligned}$	-	$\mu \mathrm{mhos}$
Reverse Transfer Admittance	$\|\mathrm{y} 12\|$	<<1.0	<<1.0	<<1.0	$\mu \mathrm{mho}$
Forward Transfer Admittance Magnitude Angle (Q dB AGC) Angle (-30 dB AGC)	$\begin{aligned} & \left\|y_{12}\right\| \\ & \angle y_{21} \\ & \angle y_{21} \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \\ & -73 \\ & -52 \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ -100 \\ -72 \\ \hline \end{gathered}$	$\begin{array}{r} 210 \\ -135 \\ -96 \\ \hline \end{array}$	mmhos degrees
Single-Ended Input Capacitance		9.5	10	10.5	pF
Differential Output Capacitance		2.0	2.0	2.5	pF

FIGURE 2 - CIRCUIT SCHEMATIC

MC1352, MC1353 (continued)

FIGURE 3 - POWER GAIN, AGC AND NOISE TEST CIRCUIT

L1@ 35 or $45 \mathrm{MHz}=7.1 / 4$ Turns on a $1 / 4^{\prime \prime}$ coll form

$\begin{aligned} &{ }^{\mathrm{T}} 1 \text { Primary Winding }=18 \text { Turns on a } 1 / 4 " \text { coil form } \\ & \text { Secondary }\end{aligned}$
Winding of or 35 or or 45 MHz and 1
Turn for 88 MHz
Turn for 58 MHz
M
M

GENERAL OPERATING INFORMATION

Each device, MC1352 and MC1353, consists of an AGC section and an IF signal amplifier (Figure 2) subdivided into different functions as indicated by the illustration.

A gating pulse, a reference level, and a composite video signal are required for proper operation of the AGC section. Either positive or negative-going video may be used; necessary connections and signal levels are shown in Figure 1. The essential difference is that the video is fed into Pin 10 and the AGC reference level is applied to Pin 6 for a video signal with positive-going sync while the input connections are reversed for negative-going sync.

The action of the gating section is such that the proper voltage,

NOTES:

1. The $12-\mathrm{V}$ supply must have a low ac impedance to prevent lowfrequency instability in the RF-AGC loop. This can be achieved by a $12-\mathrm{V}$ zener diode and a large decoupling capacitor. ($5 \mu \mathrm{~F}$).
2. Choices of $\mathrm{C} 1, \mathrm{C} 2$ and C 3 depend somewhat on the set designers' preference concerning AGC stability versus AGC recovery speed. Typical values are $\mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=0.25 \mu \mathrm{~F}, \mathrm{C} 3=10 \mu \mathrm{~F}$.
3. To set a fixed IF-AGC operating point (e.g., for receiver alignment) connect a 22 ks resistor from pin 9 to pin 11 to give minimum gain, then bias pin 14 to give the correct operating point using a 200 ks variable resistor to ground.
4. Although the unit will normally be operating with a very high power gain, the pin configuration has been carefully chosen so that shielding between input and output terminals will not normally be necessary even when a standard socket is used.
V_{C}, is maintained across the external capacitor, $C 2$, for a particular video level and dc reference setting. The voltage V_{C}, is the result of the charge delivered through D1 and the charge drained by Q1. The charge delivered occurs during the time of the gating pulse, and its magnitude is determined by the amplitude of the video signal relative to the dc reference level. The voltage V_{C} is delivered via the IF-AGC amplifier and applied to the variable gain stage of the IF signal amplifier and is also applied to the RF-AGC amplifier, where it is compared to the fixed RF-AGC delay voltage reference by the differential amplifier, Q2 and O3. The following stages amplify the output signal of either Q2 for MC1352, or Q3 for MC1353 and shift the dc levels causing the RF-AGC voltage to vary (positive-going for MC1352 or negative-going for MC1353).

FIGURE 4 - TEST CIRCUIT RESPONSE CURVE
(45 and 58 MHz)

Scale: $1 \mathrm{MHz} / \mathrm{cm}$

The input amplifiers (Q4 and Q5) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac). Terminals 1 and 2 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q6 and Q7 causing those transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q8 and Q9. The output amplifiers are fed from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant.

FIGURE 5 - TYPICAL AGC APPLICATION CHART

Video Polarity	Pin 6 Voltage	Pin 10 Voltage	Pin 5 R1 (Ω)
Negative- Going Sync.	5.5 MM	Adj. $1.0-4.0 \mathrm{Vdc}$	0
Positive- Going Sync.	Adj. $1.0-8.0 \mathrm{Vdc}$ Nom 4.5 V	4.5	Nom 2.0 V

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 6 - SINGLE-ENDED INPUT ADMITTANCE

FIGURE 8 - FORWARD TRANSFER ADMITTANCE

FIGURE 10 - MC1352 AGC CHARACTERISTICS

FIGURE 7 - DIFFERENTIAL OUTPUT ADMITTANCE

FIGURE 9 - DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 11 - MC1353 AGC CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 12 - TYPICAL NOISE FIGURE

BALANCED MONOLITHIC FOUR-STAGE

 HIGH-GAIN FM/IF AMPLIFIER... designed for use with Foster-Seeley discriminator or ratio detector in high quality FM systems.

- High AM Rejection (60 dB typ)
- Wide Range of Supply Voltages (8 to 18 Vdc)
- Low Distortion (0.5\% typ)

LIMITING FM
IF AMPLIFIER
MONOLITHIC SILICON INTEGRATED CIRCUIT

FIGURE 1 - TYPICAL FM-IF APPLICATION

When using the device as a non-saturating limiter the load must be chosen to prevent voltage saturation of the output stage. The load impedance can be calculated from:

$$
R_{L} \leq \frac{2\left(V^{+}-5.3\right)}{5.0} \text { kilohms }
$$

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Output Voltage (pins 7 \& 8)	40	Vdc
Supply Current to pin 11	20	mA
Input Signal Voltage (single-ended)	5.0	Vp .p
Input Signal Voltage (differential)	10	Vp-p
Power Dissipation (package limitation)	625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=15 \mathrm{Vdc}, \mathrm{f}=10.7 \mathrm{MHz}\right.$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=820$ ohms unless otherwise noted)

Characteristic	Min	Typ	Max	Units
Power Supply Voltage Range	8.0	15	18	Vdc
Total Circuit Current	-	16	-	mAdc
Total Output Stage Current	-	4.2	-	mA
Device Dissipation	-	125	-	mW
Internal Zener Voltage	-	5.2	-	Vdc
Input Signal for 3 dB Limiting	-	175	250	$\mu \mathrm{V}$ (rms)
Output Current Swing	3.5	4.2	5.0	mA p-p
AM Rejection (10 mv to 1.0 v (rms) input, FM @ 100\%, AM @ 80\%, Foster Seeley detector)	-	60	-	dB
Maximum AM Signal before Breakup (FM @ 100\%, AM @ 80\%)	-	-	1.4	$V(\mathrm{rms})$
$\begin{array}{ll}\text { Admittance Parameters } & \mathrm{Y}_{11} \\ & \mathrm{Y}_{12} \\ & \mathrm{Y}_{21} \\ & \mathrm{Y}_{22}\end{array}$	- - - -	$\begin{gathered} 120+j 320 \\ j 0.6 \\ 8+j 5.9 \\ 15+j 230 \end{gathered}$	- - - -	μ mhos $\mu \mathrm{mho}$ mhos μ mhos

FIGURE 2 - CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - AM REJECTION TEST BLOCK DIAGRAM

FIGURE 5 - LIMITING

FIGURE 6 - AM REJECTION

MC1355 (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - TOTAL SUPPLY CURRENT

See Packaging Information Section for outline dimensions

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	16	Vdc
Input Voltage (Pin 4)	3.5	V_{p}
Power Dissipation (Package Limitation) Plastic Packages Derate above $T_{A}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathbf{0}$ to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Pin	Min	Typ	Max	Units
Drain Current $\mathrm{V}^{+}=8 \mathrm{~V}$ $\mathrm{~V}^{+}=12 \mathrm{~V}$	13	10	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 19 \\ & 21 \\ & \hline \end{aligned}$	mA
Amplifier Input Reference Voltage	6	-	1.45	-	Vdc
Detector Input Reference Voltage	2	-	3.65	-	Vdc
Amplifier High Level Output Voltage	10	1.25	1.45	1.65	Vdc
Amplifier Low Level Output Voltage	9	-	0.145	0.2	Vdc
$\begin{array}{ll}\text { Detector Output Voltage } & \mathrm{V}^{+}=8 \mathrm{~V} \\ & \mathrm{~V}^{+}=12 \mathrm{~V}\end{array}$	1	$-$	$\begin{aligned} & 3.7 \\ & 5.4 \\ & \hline \end{aligned}$	$-$	Vdc
Amplifier Input Resistance	4	-	5.0	-	$k \Omega$
Amplifier Input Capacitance	4	-	11	-	pF
Detector Input Resistance	12	-	70	-	$\mathrm{k} \Omega$
Detector Input Capacitance	12	-	2.7	-	pF
Amplifier Output Resistance	10	-	60	-	ohms
Detector Output Resistance	1	-	200	-	ohms
De-Emphasis Resistance	14	-	8.8	-	$\mathrm{k} \Omega$

DYNAMIC CHARACTERISTICS (FM Modulation Freq. $=1.0 \mathrm{kHz}$, Source Resistance $=50$ ohms, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for all tests.) $\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz}, \Delta \mathrm{f}= \pm 25 \mathrm{kHz}\right.$, Peak Separation $\left.=150 \mathrm{kHz}\right)$

Characteristics	Pin	Min	Typ	Max	Units
Amplifier Voltage Gain $\left(\mathrm{V}_{\text {in }} \leq 50 \mu \mathrm{~V}[\mathrm{rms}]\right)$	10	-	60	-	dB
AM Rejection ${ }^{*}\left(\mathrm{~V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	36	-	dB
Input Limiting Threshold Voltage	4	-	250	-	$\mu \mathrm{V}(\mathrm{rms})$
Recovered Audio Output Voltage $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	0.72	-	$\mathrm{V}(\mathrm{rms})$
Output Distortion $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	3	-	$\%$

$\left(V^{+}=12 \mathrm{Vdc}, \mathrm{f}_{\mathrm{o}}=5.5 \mathrm{MHz}, \Delta \mathrm{f}= \pm 50 \mathrm{kHz}\right.$, Peak Separation $=260 \mathrm{kHz}$)

Amplifier Voltage Gain ($\mathrm{V}_{\text {in }} \leq 50 \mu \mathrm{~V}$ [rms])	10	-	60	-	dB
AM Rejection* ($\mathrm{V}_{\text {in }}=10 \mathrm{mV}$ [rms $]$)	1	-	40	-	dB
Input Limiting Threshold Voltage	4	-	250	-	$\mu \mathrm{V}$ (rms)
Recovered Audio Output Voltage ($\mathrm{V}_{\text {in }}=10 \mathrm{mV}$ [rms])	1	-	1.2	-	V (rms)
Output Distortion ($\mathrm{V}_{\text {in }}=10 \mathrm{mV}$ [rms])	1	-	5	-	\%

$\left(\mathrm{V}^{+}=8.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}\right.$, Peak Separation $=550 \mathrm{kHz}$)

Amplifier Voltage Gain $\left(\mathrm{V}_{\text {in }} \leq 50 \mu \mathrm{~V}[\mathrm{rms}]\right)$	10	-	53	-	dB
AM Rejection ${ }^{*}\left(\mathrm{~V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	37	-	dB
Input Limiting Threshold Voltage	4	-	600	-	$\mu \mathrm{V}(\mathrm{rms})$
Recovered Audio Output Voltage $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	0.30	-	$\mathrm{V}(\mathrm{rms})$
Output Distortion $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	1.4	-	$\%$

$\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}\right.$, Peak Separation $=550 \mathrm{kHz}$)

Amplifier Voltage Gain ($\left.\mathrm{V}_{\mathrm{in}} \leq 50 \mu \mathrm{~V}[\mathrm{rms}]\right)$	10	-	53	-	dB
AM Rejection* $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	45	-	dB
Input Limiting Threshold Voltage	4	-	600	-	$\mu \mathrm{V}(\mathrm{rms})$
Recovered Audio Output Voltage $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	0.48	-	$\mathrm{V}(\mathrm{rms})$
Output Distortion $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	1	-	1.4	-	$\%$

TYPICAL CHARACTERISTICS

($\mathrm{V}+=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$\left(f_{0}=4.5 \mathrm{MHz}\right)$
FIGURE 2 - AM REJECTION

FIGURE 4 - DETECTED AUDIO OUTPUT

FIGURE 6 - DETECTOR TRANSFER CHARACTERISTIC

$$
\left(f_{0}=5.5 \mathrm{MHz}\right)
$$

FIGURE 3 - AM REJECTION

FIGURE 5 - DETECTED AUDIO OUTPUT

FIGURE 7 - DETECTOR TRANSFER CHARACTERISTIC

TYPICAL CHARACTERISTICS (continued)
($f_{O}=10.7 \mathrm{MHz}, T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)
(Use Test Circuit of Figure 13)
FIGURE 8 - AM REJECTION

FIGURE 10 - LIMITING

FIGURE 12 - DETECTOR TRANSFER CHARACTERISTIC

FIGURE 9 - AFC VOLTAGE DRIFT (1.0 mV INPUT CARRIER @ 10.7 MHz)

FIGURE 11 - SIGNAL-TO-NOISE RATIO

FIGURE 14 - FM RADIO TYPICAL APPLICATION CIRCUIT

FIGURE 15 - OUTPUT DISTORTION

Note 1 :
Information shown in Figures 15, 16, and 17 was obtained using the circuit of Figure 14.
Note 2:
Optional input to the quadrature coil may be from either pin 9 or pin 10 in the applications shown. Pin 9 has commonly been used on this type of part to avoid overload with various tuning techniques. For this reason, pin 9 is used in tests on the preceding pages (except as noted). However, a significant improvement of limiting sensitivity can be obtained using pin 10, see Figure 17, and no overload problems have been incurred with this tuned circuit configuration.

FIGURE 16 - SIGNAL-TO-NOISE RATIO

FIGURE 17 - RECOVERED AUDIO OUTPUT

FIGURE 18 - CIRCUIT SCHEMATIC

... a versatile monolithic device incorporating IF limiting, detection, electronic attenuation, audio amplifier, and audio driver capabilities.

- Direct Replacement for the CA3065
- Differential Peak Detector Requiring a Single Tuned Circuit
- Electronic Attenuator Replaces Conventional ac Volume

Control - Range $>60 \mathrm{~dB}$

- Excellent AM Rejection @ 4.5 and 5.5 MHz
- High Stability
- Low Harmonic Distortion
- Audio Drive Capability - 6.0 mAp-p
- Minimum Undesirable Output Signal @ Maximum Attenuation

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T ${ }_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Input Signal Voltage (Pins 1 and 2)	± 3.0	Vdc
Power Supply Current	50	mA
Power Dissipation (Package Limitation) Plastic Packages Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-20 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Pin	Min	Typ	Max	Unit
Regulated Voltage	5	10.3	11	12.2	
VC Supply Current $\left(\mathrm{V}^{+}=9\right.$ Vdc, $\left.\mathrm{R}_{\mathrm{S}}=0\right)$	5	10	16	24	mA
Quiescent Output Voltage	12	-	5.1	-	Vdc

DYNAMIC CHARACTERISTICS $\left(\mathrm{V}^{+}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Min	Typ	Max	Unit

IF AMPLIFIER AND DETECTOR
$f_{0}=4.5 \mathrm{MHz}, \Delta f= \pm 25 \mathrm{kHz}$

AM Rejection* $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	40	51	-	dB
Input Limiting Threshold Voltage	-	200	400	$\mu \mathrm{~V}(\mathrm{rms})$
Recovered Audio Output Voltage $\left(\mathrm{V}_{\mathrm{in}}=10 \mathrm{mV}[\mathrm{rms}]\right)$	0.5	0.70	-	$\mathrm{V}(\mathrm{rms})$
Output Distortion $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{rms}]\right)$	-	0.4	2.0	$\%$

$\mathrm{f}_{0}=5.5 \mathrm{MHz}, \Delta \mathrm{f}= \pm 50 \mathrm{kHz}$				
AM Rejection* ($\mathrm{V}_{\text {in }}=10 \mathrm{mV}$ [rms])	40	53	-	dB
Input Limiting Threshold Voltage	-	200	400	$\mu \mathrm{V}$ (rms)
Recovered Audio Output Voltage ($\mathrm{V}_{\mathrm{in}}=10 \mathrm{mV}$ [rms])	0.5	0.91	-	V (rms)
Output Distortion ($\mathrm{V}_{\text {in }}=10 \mathrm{mV}$ [rms])	-	0.9	-	\%
Input Impedance Components ($f=4.5 \mathrm{MHz}$, measurement between pins 1 and 2) Parallel Input Resistance Parallel Input Capacitance	-	$\begin{aligned} & 17 \\ & 4.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Output Impedance Components ($\mathrm{f}=4.5 \mathrm{MHz}$, measurement between pin 9 and GND) Parallel Output Resistance Parallel Output Capacitance	-	$\begin{array}{r} 3.25 \\ 3.6 \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Output Resistance, Detector Pin 7 Pin 8	-	7.5 250	-	$\begin{gathered} \mathrm{k} \Omega \\ \Omega \\ \hline \end{gathered}$

ATTENUATOR

Volume Reduction Range (See Figure 8) (dc Volume Control $=\infty$)	60	-	-
Maximum Undesirable Signal (See Note 1) (dc Volume Control $=\infty$)	-	0.07	1.0

AUDIO AMPLIFIER

Voltage Gain $\left(V_{\text {in }}=0.1 \mathrm{~V}(\mathrm{rms}), \mathrm{f}=400 \mathrm{~Hz}\right)$	17.5	20	-	dB
Total Harmonic Distortion $(\mathrm{V}, 2.0 \mathrm{~V}(\mathrm{rms}), \mathrm{f}=400 \mathrm{~Hz})$	-	2.0	-	$\%$
Output Voltage $(T H D=5 \%, f=400 \mathrm{~Hz})$	2.0	3.0	-	$\mathrm{V}(\mathrm{rms})$
Input Resistance $(\mathrm{f}=400 \mathrm{~Hz})$	-	70	-	$\mathrm{k} \Omega$
Output Resistance $(\mathrm{f}=400 \mathrm{~Hz})$	-	270	-	Ω

* 100% FM, 30% AM Modulation.

Note 1. Undesirable signal is measured at pin 8 when volume control is set for minimum output.

MC1358(continued)

TYPICAL CHARACTERISTICS
($\mathrm{V}^{+}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 4 - DETECTED AUDIO OUTPUT

FIGURE 6 - IF AMPLIFIER AND DETECTOR THD

$$
\left(f_{o}=5.5 \mathrm{MHz}\right)
$$

FIGURE 3 - AM REJECTION

FIGURE 5 - DETECTED AUDIO OUTPUT

FIGURE 7 - IF AMPLIFIER AND DETECTOR THD

FIGURE 10 - IF FREQUENCY RESPONSE

FIGURE 12 - AM REJECTION, DETECTED AUDIO, THD, ATTENUATION TEST CIRCUIT

FIGURE 9 - AUDIO AMPLIFIER THD

FIGURE 11 - IF FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 13 - AUDIO VOLTAGE GAIN, AUDIO THD TEST CIRCUIT

FIGURE 14 - CIRCUIT SCHEMATIC

AUTOMATIC FREQUENCY CONTROL

MC1364

See Packaging Information Section for outline dimensions.

MC1364 (continued)

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted, see Note 1)

Rating	MC1364G	MC1364P	Unit
Input Signal Voltage (Pin 7 to 8)	$+2.0,-10$	$+2.0,-10$	Vdc
Output Collector Voltage (Pins 2 and 8)	20	20	Volts
Power Dissipation (Package Limitation)	680	625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Operating Temperature Range	-40 to +85	0.0	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	-65 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+30 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, see Test Circuit of Figure 4 unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Total Device Dissipation	-	140	-	mW
Total Supply Current	-	12	-	mA
Current Drain, Total (Reduce $\mathrm{V}_{\text {CC }}$ so that $\mathrm{V} 10=10.5 \mathrm{Vdc}$)	4.0	6.5	9.5	mA
Zener Regulating Voltage	10.9	11.8	12.8	V
Quiescent Current to Pin 2	1.0	2.0	4.0	mA
Quiescent Voltage at Pin 4 or Pin 5	5.0	6.6	8.0	V
Output Offset Voltage (Pin 4 to Pin 5)	-1.0	0	+1.0	V

DESIGN PARAMETERS, TYPICAL VALUES ($\left.\mathrm{V}_{\mathrm{CC}}=+30 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=1.5 \mathrm{k}, \mathrm{f}=45.75 \mathrm{MHz}\right)$.

Parameter	Symbol	Typ	Unit
Input Admittance	y_{11}	$0.4+\mathrm{j} 1$	mmho
Reverse Transfer Admittance	y_{12}	$0+\mathrm{j} 3.4$	$\mu \mathrm{mho}$
Forward Transfer Admittance	y_{21}	$110+\mathrm{j} 140$	mmhos
Output Admittance (Pin 2)	y_{22}	$0.02+\mathrm{j} 1$	mmho

Note 1: Pin numbers used in the above tables are for the metal package, Case 686. For corresponding pin numbers for the plastic package, Case 646, see the Test Circuit, Figure 4.

TYPICAL CHARACTERISTICS
(See Test Circuit of Figure 2)

FIGURE 2 - TYPICAL NARROW BAND DYNAMIC CHARACTERISTICS

FIGURE 3 - TYPICAL WIDE BAND DYNAMIC CHARACTERISTICS

The number without parenthesis is the pin number for the metal package. The number in parenthesis is the pin number for the plastic package.

Metal Package, Pin 9 - no connection
Plastic Package, Pins $6,7,10,11,13-$ no connection

COIL DATA FOR DISCRIMINATOR WINDINGS FOR FIGURES 1 AND 4

L1 - Discriminator Primary: 3-1/6turns; AWG \#20 enamel-covered wire - close-wound, at bottom of coil form. Inductance of $\mathrm{L} 1=0.165 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{O}}=120$ at $\mathrm{f}_{\mathrm{O}}=45.75 \mathrm{MHz}$.
Start winding at Terminal \#6; finish at Terminal \#1. See Notes below.
L2 - Tertiary Windings: 2-1/6 turns; AWG \#20 enamel-covered wire - close-wound over bottom end of L1.
Start winding at Terminal \#3; finish at Terminal \#4. See Notes below.

L3 - Discriminator Secondary: 3-1/2 turns; AWG \#20 enamelcovered wire, center-tapped, space wound at bottom of coil form.
Start winding at Terminal \#2; finish at Terminal \#5, connect center tap to Terminal \#7. See Notes below.

Notes: 1. Coil Forms; Cylindrical; $-0.30^{\prime \prime}$ Dia. Max.
2. Tuning Core: $0.250^{\prime \prime}$ Dia. $\times 0.37^{\prime \prime}$ Length. Material: Carbinal J or equivalent.
3. Coil Form Base: See drawing below.
4. End of coil nearest terminal board to be designated the winding start end.
5. Mount the coils $3 / 4^{\prime \prime}$ apart, center to center.

FIGURE 5 - CIRCUIT SCHEMATIC

MC1364 (continued)

FIGURE 6 - PRINTED CIRCUIT BOARD AND PARTS ARRANGEMENT (Copper Side)

TELEVISION CHROMA SUBCARRIER REGENERATOR

a monolithic device designed for solid-state television receivers, provides a gated voltage controlled oscillator, phase-locked loop and dc hue control.

- Sensitive Voltage Controlled 3.58 MHz Crystal Oscillator
- High-Gain Automatic Phase Control (APC) Loop
- Wide-Range dc Control of Regenerated Subcarrier Phase
- Synchronous Automatic Chroma Control (ACC) Detector
- Internal Shunt Regulated Power Supply
- Internal Gating for Color Burst
- Complements MC1371P Color IF Amplifier
- Direct Replacement for the CA3070

TELEVISION CHROMA SUBCARRIER REGENERATOR

MONOLITHIC SILICON INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 648

FIGURE 1 - MC1370P SYSTEM BLOCK DIAGRAM

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Maximum Supply Voltage (through 470 ohms to pin 10)	$\mathbf{3 0}$	Vdc
Power Dissipation (Package Limitation)		
Plastic Package	625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit

STATIC CHARACTERISTICS (See Test Circuit of Figure 2, S1, S2 and S3 in position 1 unless otherwise noted.)

Power Supply Current (S2 in position 2)	-	27	-	mA
Regulator Voltage (pin 10)	11	11.8	12.9	Vdc
Load Regulation (pin 10) (V_{CC} from +21 V to +27 V)	-	35	-	mVdc
Oscillator Current (pins 2 and 3, S1 in position 2)	4.1	6.5	7.5	mA
APC Detector Current (pin 11 or pin 12)	1.0	1.5	1.8	mA
ACC Detector Current (pin 15 or pin 16)	1.0	1.5	1.8	mA
APC Detector Leakage Current (pin 11 or 12, S 2 in position 3)	-	-	40	$\mu \mathrm{A}$
ACC Detector Leakage Current (pin 15 or 16, S2 in position 3)	-	-	30	$\mu \mathrm{A}$
APC Detector Balance (voltage between pins 11 and 12)	-375	-40	+375	$m \mathrm{mdc}$
ACC Detector Balance (voltage between pins 15 and 16)	-300	-50	+300	$m \mathrm{mdc}$
Oscillator Control Balance (voltage between pins 7 and 8, S2 in position 3, S3 in position 2)	-330	-10	+330	$m \mathrm{mdc}$
Oscillator Gate Leakage (pin 2 and pin 3)	-	-	2.0	$\mu \mathrm{A}$
Voltage (pin 1) S2 in position 2 (pin 13) S1 and S2 in position 2 (pin 14) S2 in position 2 (pin 6) S2 in position 2	$\begin{gathered} - \\ 7.2 \\ 6.0 \\ 6.0 \\ - \end{gathered}$	$\begin{aligned} & 100 \\ & 7.7 \\ & 6.5 \\ & 6.5 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 8.2 \\ & 7.0 \\ & 7.0 \end{aligned}$	mVdc Vdc

DYNAMIC CHARACTERISTICS ($E_{\text {burst }}=200 \mathrm{mVp}-\mathrm{p}$ at pin 13 , see test circuit of Figure 3 and note for setup.)

Oscillator Output Voltage $($ pin 2, S1 in position 1) $($ pin 3, S1 in position 3)	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & \hline \end{aligned}$	-	Vp-p
Oscillator Control Sensitivity (β)	-	10	-	$\mathrm{Hz} / \mathrm{mV}$
Oscillator Pull-in Range (Above $f_{\mathrm{O}}=3.579545 \mathrm{MHz}$) (Below $f_{\mathrm{O}}=3.579545 \mathrm{MHz}$ (B)	-	$\begin{aligned} & +400 \\ & -600 \\ & \hline \end{aligned}$	-	Hz
APC Loop Static Phase Error (with oscillator free-running frequency offset)	-	0.02	-	Deg/Hz
APC Detector Sensitivity (μ)	-	5.0	-	$\mathrm{mV} / \mathrm{Deg}$
ACC Detector Sensitivity (ACC output level change for input burst level change)	-	1.4	-	$\mathrm{mVdc} / \mathrm{mVp}$-p
Oscillator Noise Bandwidth (f_{NN})	-	150	-	Hz
APC Filter Damping Coefficient (K)	-	0.5	-	-
Input Impedance (pin 13) (pin 14) (pin 6)	-	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.2 \\ & \hline \end{aligned}$	-	k Ω

FIGURE 2 - STATIC CHARACTERISTICS TEST CIRCUIT

FIGURE 3 - DYNAMIC CHARACTERISTICS TEST CIRCUIT

NOTE: The Set-up Procedure for Dynamic Characteristics Test Circuit

The signal source is an NTSC color bar generator (minus lumiinance or Y content) applied through an adjustable 3.58 MHz attenuator. The generator horizontal output is used to trigger a pulse generator set to give an output pulse of +4.0 volts, $4.5 \mu \mathrm{~s}$ wide, at a repetition rate of 15.734 kHz . The pulse delay is adjusted
to center the pulse during the burst of the color signal (compare gated portion of output at pin 2 or 3 with burst pulse of signal). With S1 set to position 2 and S2 set to position 2, the oscillator is adjusted to 3.579545 MHz by R2. R1 is adjusted to produce zero offset between pins 15 and 16 . When S2 is set to position 1 , the oscillator should synchronize to the incoming signal.

FIGURE 5 - CIRCUIT SCHEMATIC

Pin 9 no connection.

CIRCUIT DESCRIPTION

The MC1370 monolithic circuit provides the sub-carrier regeneration function necessary for a color television receiver to decode the NTSC color signal. An internal gate extracts the burst voltage and this signal is processed in two-phase detectors, the quadrature detector controls the phase of the local oscillator and the in-phase detector is used to provide a noise immune ACC and color killer control voltage. A shunt regulator sets the bias voltages and ensures stable operation when there are supply voltage variations.

The basic 3.579545 MHz oscillator consists of the differential amplifier (Q 1 and Q 2) with a feed-back loop through a quartz crystal operating in series resonance from Q 2 collector to the non inverting input of the amplifier represented by 01 base. To control the oscillator frequency the phase shift of the feed-back path is made variable by the addition of Q5 and Q6. A capacitor connected between pins 7 and 8, together with the collector loads, forms a RC phase-shift network. Consequently, the oscillator signal appearing at pin 7 can be moved in phase over a 45° range by the differential bias applied to Q5 and Q6 bases. The crystal between pins 7 and 6 completes the feed-back loop. The automatic phase control to the upper differential pairs of the (Q5, Q6) oscillator is through the buffer stages Q7 and Q8. The oscillator amplifier is buffered by Q3 and Q4. Output from the oscillator is obtained from the collector of Q1 and is essentially a square wave of 9 mA peak-topeak with a frequency range of several hundred Hertz.

The control voltage for Q5 and Q6 is obtained from the phase detector Q9 and Q10. As Q1 is the current source for this pair, the voltages appearing at pins 11 and 12 will correspond to the phase difference between the oscillator current and the burst signal applied to pin 13. The loop characteristics are controlled in part
by a filter connected between pins 11 and 12 . This is usually a double-time constant network to yield good pull-in times with a low-noise bandwidth.

To ensure that the quadrature phase detector functions only during the burst portion of the incoming chroma signal, the detector is gated into conduction by a pulse from the line flyback transformer - applied at pin 4. This has the additional advantage that the average current in the phase detector has been reduced by the gate duty factor thus relaxing the input offset stability requirements of the differential pair and enabling them to be used with high dc gain.

For the ACC control voltage and color-killer function a similar phase detector, Q15 and Q16, is used. However, the chroma signal input to pin 14 is phase shifted externally by 90° with respect to pin 13. As a result, Q15 and Q16 is an in-phase detector and the control voltage at pins 15 and 16 will be proportional to the amplitude of the burst. Thus filtering of pins 15 and 16 provides the control voltage for the gain control stage in the chroma IF and an indication of the incoming signal strength for the color-killer circuit.

When the phase detectors are not gated "on" by a positive pulse at pin 4, the bases of Q13 and Q14 are held above the bases of the phase detector inputs. Therefore, between gate pulses, all the current from the oscillator output Q1 passes through Q13 and Q14 to pins 2 and 3. When a phase-shift network is connected between pins 2 and 3 , the phase of the oscillator drive to the demodulators can be controlled by changing the relative conduction of Q13 and Q14 with a bias on pin 1. As a result the oscillator output is controlled in phase providing a dc hue control and is gated "off" during the burst period, negating the need for burst blanking in the chroma IF amplifier.

MC1370P (continued)

TYPICAL CHARACTERISTICS

TELEVISION CHROMA IF AMPLIFIER
a monolithic device designed to provide the basic control and color signal amplification stages of a solid-state color television receiver. The MC1371 is a combination of two wideband chroma amplifiers and a color control circuit.

- Schmitt Color-Killer Circuit with Adjustable Trigger Level
- Linear Action dc Manual Gain Control
- Short-Circuit Protected
- Gain Stabilized Against Supply Voltage and Temperature Changes
- Low Phase Distortion
- Excellent Gain Linearity Over Full Output Range
- Direct Replacement for the CA3071

TELEVISION CHROMA IF AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT

MC1371P (continued)

MAXIMUM RATINGS ${ }^{(T}{ }_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Amplifier Output Short-Circuit Duration	30	s
Power Dissipation (Package Limitation)		
Plastic Dual In-Line Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	625	mW
Operating Temperature Range (Ambient)	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	0 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. See Test Circuit of Figure $2 ;$ switch S1 in position 1, R1 wiper at ground, R2 $=10$ kilohms.)

Characteristic	Min	Typ	Max	Unit
Static Characteristics				
Quiescent Power Supply Current	17	28	31	mA
Short-Circuit Current (pin 6 momentarily grounded) (pin 9 momentarily grounded)	-	$\begin{aligned} & 68 \\ & 48 \end{aligned}$		mA
First Chroma Stage Input Bias Voltage (pin 2)	-	1.7	-	Vdc
First Chroma Stage Output Bias Voltage (pin 6) ACC Balanced (S1 in position 1) ACC Unbalanced (S1 in position 2)	$\begin{gathered} 13.7 \\ 7.5 \\ \hline \end{gathered}$	$\begin{array}{r} 16.3 \\ 10.5 \\ \hline \end{array}$	$\begin{gathered} 20 \\ 13.5 \\ \hline \end{gathered}$	Vdc
Second Chroma Stage Input Bias Voltage (pin 7)	-	1.4	-	Vdc
Second Chroma Stage Output Bias Voltage (pin 9)	16.6	17.6	18.6	Vdc
Quiescent Bias Voltage (pin 12)	13.8	14.8	15.7	Vdc

Dynamic Characteristics ($f=3.579545 \mathrm{MHz}$, input pin $2=35 \mathrm{mV}$ [RMS] unless otherwise noted.)

First Chroma Amplifier Stage Gain (ACC Balanced)	14	17	20	dB
Second Chroma Amplifier Stage Gain (R1 wiper at ground)	12	15.5	17	dB
Maximum Linear Output (output level at pin 9)	-	2.0	-	V(RMS)
Output Voltage, pin 9 (input pin $2=50 \mathrm{mV}$ (RMS]) (R 1 wiper at V_{CC}) (R1 wiper at ground, R2 adjusted for abrupt ac change in pin 9 output voltage)	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mV (RMS)
Pin 10 Bias Voltage (R1 set for 10% of pin 9 maximum output) (R1 set for 90% of pin 9 maximum output)	$\begin{gathered} 16.7 \\ 2.5 \\ \hline \end{gathered}$	$\begin{gathered} 20.2 \\ 3.2 \\ \hline \end{gathered}$	$\begin{gathered} 21.6 \\ 4.5 \\ \hline \end{gathered}$	Vdc
Second Amplifier Gain Stability $\begin{aligned} & \left(V_{C C}+15 \%\right) \\ & \left(V_{C C}-15 \%\right) \\ & \left(T_{A}=+25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} +0.5 \\ -0.5 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +1.5 \\ -1.5 \end{array}$	dB
Input Impedance (pin 2) (pin 7)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \\ & 2.2 \\ & 3.6 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	k Ω pF k Ω pF
Output Impedance (pin 6) (pin 9)	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	-	ohms

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+24 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=3.579545 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$
FIGURE 2 - TEST CIRCUIT

FIGURE 3 - MANUAL GAIN CONTROL LINEARITY

FIGURE 4 - FIRST STAGE GAIN WITH ACC BIAS

FIGURE 5 - AMPLIFIER LINEARITY

FIGURE 6 - CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

The MC1371 is a monolithic wide-band amplifier circuit that functions as the basic control and color signal amplification stages of a color television receiver. The first stage contains the gain control function of the ACC loop and the second stage performs the de manual gain control function. Also included is a Schmitt trigger circuit providing effective color-killer action during monochrome transmissions.

Q1 is a current source modulated by the input signal applied at pin 2. The current in Q1 is divided between the differential pair (Q2 and Q3) in a ratio determined by the ACC voltage applied through the buffer stages, Q4 and Q5. Pin 14 is usually offset with respect to pin 1 by a resistor connected to ground so that at low-signal levels most of the signal current is taken by Q3 and passed to the load resistor $R 5$ (the input stage appears as a cascode amplifier to the signal with the intrinsic ac stability of that configuration). The amplified signal is then buffered at pin 6 by the emitter follower stage Q6 which is protected from accidental grounding at the output by the current limiter Q7.

At strong signals when the amplitude of the burst is high, the ACC voltages at pins 1 and 14 divert most of the signal current from Q3. The signal is "dumped" into the collector load of Q2. Q2 is connected externally at pin 13 and bypassed to ground at signal frequencies by a capacitor. However, the dc voltage at the collector of Q2 is dependent on the burst amplitude and therefore
on the input signal strength. As the input signal level falls, more current is fed into Q3 by the ACC loop and the output at pin 6 remains constant while Q 2 collector voltage increases. At a point predetermined by 02 collector load (the killer-control setting) the input Q12 of the color-killer circuit is biased "on", shutting down the second chroma amplifier stage.

The second chroma stage is similar in configuration to the first stage. The signal input at pin 7 (which is the output from pin 6) modulates the current source Q8. For a maximum gain voltage setting on pin 10 the signal current passes through $\mathbf{Q 9}$ to the output buffer stage Q10. Q10 is protected from short circuit currents by Q11. To reduce the stage gain, current is diverted from Q9 by biasing the diode D2 into conduction. D 2 can be regarded as a transistor with 100\% dc negative feedback applied between collector and base. Without the feedback path the gain characteristic of the second stage is that of a differential pair, this S shaped curve would make tracking of ganged color level and contrast controis quite difficult. In this limiting form the current through D2 is directly proportional to the voltage difference between the supply and D2 anode and hence to the control voltage at pin 10. When the input to the color-killer is biased "on", Q13 is turned "off" and the voltage at the base of Q 14 rises abruptly. D2 then takes all the current from Q8 and the output at pin 9 is suppressed.

FIGURE 7 - TYPICAL CHROMA APPLICATIONS CIRCUIT (MC1370, MC1371, and MPS U10)

FM IF AMPLIFIER, LIMITER, FM DETECTOR, AND AUDIO PREAMPLIFIER
... a monolithic device designed for use in solid-state FM receivers.

- Excellent Sensitivity: Input Limiting Voltage (Knee) $=250 \mu \mathrm{~V}$ typical
- Excellent AM Rejection: 55 dB typical at 10.7 MHz
- Internal Zener Diode Regulation for the IF Amplifier Section
- Low Harmonic Distortion
- Differential Peak Detection: Permits Simplified Single-Coil Tuning
- Audio Preamplifier Voltage Gain: 21 dB typical
- Minimum Number of External Parts Required
- Direct Replacement for CA3075

FM IF AMPLIFIER, LIMITER, FM DETECTOR AND AUDIO PREAMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unle ss otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	+16	Vdc
Power Dissipation (Package Limitation)	625	mW
Plastic Package	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+11.2 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Current Drain	-	19	29	
DC Voltage at pin $8\left(\mathrm{~V}_{\text {in }}=0\right)$	-	5.4	-	
Amplifier Input Resistance $\left(\mathrm{V}_{\text {in }}=20 \mathrm{mV}, 10.7 \mathrm{MHz}\right)$	-	5.0	-	Vdc
Amplifier Input Capacitance $\left(\mathrm{V}_{\text {in }}=20 \mathrm{mV}, 10.7 \mathrm{MHz}\right)$	-	5.0	-	$\mathrm{k} \Omega$

DYNAMIC CHARACTERISTICS $\left(V_{C C}=+11.2 \mathrm{Vdc}, V_{E E}=G n d, f_{\bmod }=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristics	Min	Typ	Max	Unit

IF AMPLIFIER AND DETECTOR ($\mathrm{f} \mathrm{O}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}$)

AM Rejection* $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}\right)$	-	55	-	dB
Input Limiting Threshold Voltage	-	250	600	$\mu \mathrm{~V}(\mathrm{RMS})$
Recovered Audio Output Voltage	500	625	-	$\mathrm{mV}(\mathrm{RMS})$
Output Distortion $\left(\mathrm{V}_{\text {in }}=10 \mathrm{mV}[\mathrm{RMS}]\right)$	-	0.75	-	$\%$
Signal-to-Noise Ratio $\left(\mathrm{V}_{\text {in }}=1.0 \mathrm{mV}\right)$	-	68	-	dB

AUDIO AMPLIFIER (Audio Test Frequency; $\boldsymbol{f}=1.0 \mathrm{kHz}$)

Voltage Gain ($\mathrm{V}_{\text {in }}=100 \mathrm{mV}$)	-	21	-	dB
Total Harmonic Distortion $\left(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}[\mathrm{RMS}]\right)$	-	1.2	-	
Input Impedance (pin 14)	-	100	-	$\mathrm{k} \Omega$

*100\% FM, 30\% AM Signal

MC1375P (continued)

TYPICAL CHARACTERISTICS
(All measurements at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=11.2 \mathrm{~V}$; see test circuits of Figure 9 and 10.)

FIGURE 2 - AM REJECTION

FIGURE 4 - IF AMPLIFIER AND DETECTOR THD

FIGURE 6 - AUDIO AMPLIFIER THD

FIGURE 3-RECOVERED AUDIO OUTPUT

FIGURE 5 - SIGNAL TO NOISE

FIGURE 7 - CURRENT DRAIN versus SUPPLY VOLTAGE

Product Preview

MONOLITHIC CLASS B AUDIO DRIVER

.. designed to be used in conjunction with class B output transistors MJE2050/MJE2150 to produce a class B audio amplifier suitable for auto radio. It is ideal for low-voltage, single-supply audio driver applications as found in Automotive, Consumer and Industrial Electronics.

- Internal Power Supply Transient Protection
- Built-in Programmable Short-Circuit Current Limiting
- Excellent Sensitivity - 4.0 mV (RMS) typical
- Class B Operation
- Excellent Power-Supply Ripple Rejection - 35 dB typical

See Packaging Information Section for outline dimensions.

MC1385P (continued)

MAXIMUM RATINGS $1 T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage Transients of 50 ms or less (Note 1)	25	Vdc
Vdc		
Maximum Sink or Source Current Pin 5 or 8	40	mA
Power Dissipation (Package Limitation) Plastic Package Derate Above TA $=+25^{\circ} \mathrm{C}$	50	mW
Operating Temperature Range (Ambient)	625	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=14.4 \mathrm{Vdc}, R_{L}=3.2 \mathrm{ohms}, f=1.0 \mathrm{kHz}\right.$, See Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Recommended Operating Power Supply Voltage Range	9.0	14.4	16	Vdc
Power Supply Overvoltage Shutdown (Note 1)	-	22	-	Vdc
Drain Current	-	10		mA
Power Output $T H D=10 \%$	5.0	-	-	W
Input Sensitivity Voltage $\mathrm{P}_{\mathrm{O}}=1.0 \mathrm{~W}$	-	4.0	-	mV(RMS)
Total Harmonic Distortion $\mathrm{P}_{\mathrm{O}}=1.0 \mathrm{~W}$	-	0.7	-	\%
$\begin{aligned} & \text { Output Noise } \\ & \mathrm{R}_{\mathrm{S}}=4.7 \mathrm{k} \text { ohms, } \mathrm{BW}=50 \mathrm{~Hz}-6.0 \mathrm{kHz} \end{aligned}$	-	2.0	-	mV(RMS)
Power-Supply Ripple Rejection Ripple $=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) @ \mathrm{f}=100 \mathrm{~Hz}$, input shorted	-	35	-	dB
Input Impedance	-	5.0	-	k Ω

Note 1 - These specifications were set to meet typical automotive load dump requirements.

TV HORIZONTAL PROCESSOR

. . low-level horizontal sections including phase detector, oscillator and pre-driver - a device designed for use in all types of television receivers.

- Internal Shunt Regulator
- Preset Hold Control Capability
- $\pm 300 \mathrm{~Hz}$ Typical Pull-In
- Linear Balanced Phase Detector
- Variable Output Duty Cycle for Driving Tube or Transistor
- Low Thermal Frequency Drift
- Small Static Phase Error
- Adjustable dc Loop Gain

TV HORIZONTAL PROCESSOR

MONOLITHIC SILICON INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.

MC1391P (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Unit
Supply Current	40	mAdc
Output Voltage	40	Vdc
Output Current	30	mAdc
Sync Input Voltage (Pin 3)	5.0	$V_{(p-p)}$
Flyback Input Voltage (Pin 4)	5.0	$V_{(p-p)}$
Power Dissipation (Package Limitation) Plastic Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\begin{gathered} 625 \\ 5.0 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C} \mathrm{C}}{\mathrm{~m}_{2}}$
Operating Temperature Range (Ambient)	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.) (See Test Circuit of Figure 2, all switches in position 1.)

Characteristic	Min	Typ	Max	Unit
Regulated Voltage (Pin 6)	8.0	8.4	8.8	Vdc
Supply Current (Pin 6)	-	20	-	mAdc
```Collector-Emitter Saturation Voltage (Output Transistor Q1 in Figure 6) (IC = 20 mA, Pin 1) Vdc```	-	0.30	0.35	Vdc
Voltage (Pin 4)	-	2.0	-	Vdc
Oscillator Pull-in Range (Adjust $\mathrm{R}_{H}$ in Figure 2)	-	$\pm 300$	-	Hz
Oscillator Hold-in Range (Adjust $\mathrm{R}_{\mathrm{H}}$ in Figure 2)	-	$\pm 900$	-	Hz
Static Phase Error $(\Delta f=300 \mathrm{~Hz})$	-	0.5	-	$\mu \mathrm{s}$
Free-running Frequency Supply Dependance (S1 in position 2)	-	$\pm 3.0$	-	$\mathrm{Hz} / \mathrm{Vdc}$
Phase Detector Leakage (Pin 5)   (All switches in position 2)	-	-	$\pm 1.0$	$\mu \mathrm{A}$
Sync Input Voltage (Pin 3)	2.0	-	5.0	$V(p-p)$
Sawtooth Input Voltage (Pin 4)	1.0	-	3.0	$V(p-p)$

TYPICAL CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 2 - TEST CIRCUIT


FIGURE 3 - FREQUENCY versus TEMPERATURE


FIGURE 4 - FREQUENCY DRIFT versus WARM-UP TIME


FIGURE 5 - MARK-SPACE RATIO


## MC1391P (continued)

FIGURE 6 - CIRCUIT SCHEMATIC


## MC1391P CIRCUIT OPERATION

The MC1391P contains the oscillator, phase detector and predriver sections needed for a television horizontal APC loop.

The oscillator is an RC type with one pin (Pin 7) used to control the timing. The basic operation can be explained easily. If it is assumed that $\mathrm{Q7}$ is initially off, then the capacitor connected from Pin 7 to ground will be charged by an external resistor ( $\mathrm{R}_{\mathrm{C}}$ ) connected to Pin 6. As soon as the voltage at Pin 7 exceeds the potential set at the base of Q8 by resistors R8 and R10, Q7 will turn on and Q 6 will supply base current to Q 5 and Q10. Transistor Q10 will set a new, lower potential at the base of $\mathbf{Q 8}$ determined by R8, R9 and R10. Then, transistor 05 will discharge the capacitor through R4 until the base bias of 07 falls below that of Q8, at which time Q7 will turn off and the cycle repeats.

The sawtooth generated at the base of 04 will appear across R3 and turn off Q3 whenever it exceeds the bias set on Pin 8. By adjusting the potential at Pin 8, the duty cycle (MSR) at the predriver output pin (Pin 1) can be changed to accommodate either
tube or transistor horizontal output stages.
The phase detector is isolated from the remainder of the circuit by R14 and Z2. The phase detector consists of the comparator Q15, Q16 and the gated current source Q17. Negative going sync pulses at Pin 3 turn off Q12 and the current division between Q15 and Q16 will be determined by the phase relationship of the sync and the sawtooth waveform at Pin 4, which is derived from the horizontal flyback pulse. If there is no phase difference between the sync and sawtooth, equal currents will flow in the collectors of Q15 and Q16 each for half the sync pulse period. The current in Q15 is turned around by Q18 so that there is no net output current at Pin 5 for balanced conditions. When a phase offset occurs, current will flow either in or out of Pin 5. This pin is connected via an external low-pass filter to Pin 7, thus controlling the oscillator

Shunt regulation for the circuit is obtained with a zero temperature coefficient from the series combination of D1, D2 and Z1.

## MC1391P APPLICATIONS INFORMATION

Although it is an integrated circuit, the MC1391P has all the flexibility of a conventional discrete component horizontal APC loop.

The internal temperature compensated voltage regulator allows a wide supply voltage variation to be tolerated, enabling operation from nonregulated power supplies. A minimum value for supply current into Pin 6 to maintain zener regulation is about 18 mA . Allowing 2mA for the external dividers

$$
R_{A}+R_{B}=\frac{V_{\text {nonreg }}(\min )-8.8}{20 \times 10^{-3}}
$$

Components $\mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}$ and $\mathrm{C}_{\mathbf{A}}$ are used for ripple rejection. If the supply voltage ripple is expected to be less than 100 mV (for a 30 Volt supply) then $R_{A}$ and $R_{B}$ can be combined and $C_{A}$ omitted.

The output pulse width can be varied from $6 \mu \mathrm{~s}$ to $48 \mu \mathrm{~s}$ by changing the voltage at Pin 8 (see Figure 5). However, care should be taken to keep the lead lengths to Pin 8 as short as possible to prevent ringing which can result in erroneous output pulses at Pin 1. The parallel impedance of $R_{D}$ and $R_{E}$ should be close to $1 \mathrm{k} \Omega$ to ensure stable pulse widths.
For 15 mA drive at saturation

$$
R_{F}=\frac{V_{\text {nonreg }}-0.3}{15 \times 10^{-3}}
$$

The oscillator free-running frequency is set by $R_{C}$ and $C_{B}$ connected to Pin 7 . For values of $\mathrm{R}_{\mathrm{C}} \gg \mathrm{R}_{\text {discharge }}$ ( R 4 in Figure 6), a useful approximation for the free-running frequency is

$$
\mathrm{f}_{\mathrm{O}}=\frac{1}{0.6 R_{C} C_{B}}
$$

Proper choice of $R_{C}$ and $C_{B}$ will give a wide range of oscillator frequencies - operation at 31.5 kHz for count-down circuits is possible for example. As long as the product $R_{C} C_{B} \approx 10^{-4}$ many combinations of values of $\mathrm{R}_{\mathrm{C}}$ and $\mathrm{C}_{\mathrm{B}}$ will satisfy the free-running frequency requirement of 15.734 kHz . However, the sensitivity of the oscillator $\langle\beta\rangle$ to control-current from the phase detector is directly dependent on the magnitude of $\mathrm{R}_{\mathrm{C}}$, and this provides a
convenient method of adjusting the dc loop gain (fc).
For a given phase detector sensitivity $(\mu)=1.60 \times 10^{-4} \mathrm{~A} / \mathrm{rad}$

$$
\mathrm{fc}_{\mathrm{C}}=\mu \beta \text { and } \beta=3.15 \times \mathrm{R}_{\mathrm{C}} \mathrm{~Hz} / \mathrm{mA}
$$

Increasing $\mathrm{R}_{\mathrm{C}}$ will raise the dc loop gain and reduce the static phase error (S.P.E.) for a given frequency offset. Secondary effects are to increase the natural resonant frequency of the loop $\left(\omega_{n}\right)$ and give a wider pull-in range from an out-of-lock condition. The loop will also tend to be underdamped with fast pull-in times, producing good airplane flutter performance. However, as the loop becomes more underdamped impulse noise can cause shock excitation of the loop. Unlimited increase in the dc loop gain will also raise the noise bandwidth excessively causing horizontal jitter with thermal noise. Once the dc loop gain has been selected for adequate S.P.E. performance, the loop filter can be used to produce the balance between other desirable characteristics. Damping of the loop is achieved most directly by changing the resistor $\mathrm{R}_{X}$ with respect to $R_{Y}$ which modifies the ac/dc gain ratio (m) of the loop. Lowering this ratio will reduce the pull-in range and noise bandwidth (fnn). (Note: very large values of Ry will limit the control capability of the phase detector with a corresponding reduction in hold-in range).

Static phasing can be adjusted simply by adding a small resistor between the flyback pulse integrating capacitor and ground. The sync coupling capacitor should not be too small or it can charge during the vertical pulse and this may result in picture bends at the top of the CRT.
NOTE:
In adjusting the loop parameters, the following equations may prove useful:
$f_{n n}=\frac{1+\chi 2 T \omega_{c}}{4 \chi T}$
$\chi=\frac{R_{X}}{R_{Y}}$
$\omega_{n}=\sqrt{\frac{\omega_{c}}{(1+\chi)^{T}}}$
$\omega_{\mathrm{c}}=2 \pi \mathrm{fc}$
$K=\frac{\chi^{2} T \omega_{c}}{4}$

$$
T=R_{y} C_{C}
$$

where:

## TV COLOR PROCESSING CIRCUIT

. . . a chroma IF amplifier with automatic chroma control, color killer, dc chroma control, and injection lock reference system followed by dc hue control.

MC1398P is a monolithic device designed for use in solid-state color television receivers.

- Minimum Number of External Components
- DC Control of Both Chroma Amplitude and Hue Shift
- Crystal-Controlled Internal Feedback Oscillator
- Built-in Noise Immunity
- Schmitt Trigger Color Killer
- Automatic Chroma Control
- Internal Burst Gate and Gate Pulse Shaping Circuit
- High Oscillator Lock-in Sensitivity
- Built-in Supply Regulation



See Packaging Information Section for outline dimensions.

MC1398P(continued)

MAXIMUM RATINGS ( $T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Value	Unit
Power Supply Current	35	mAdc
Horizontal Pulse Input Current	250	$\mu \mathrm{~A}$ Peak
Power Dissipation (package limitation)	625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=390 \mathrm{ohms}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
$\begin{aligned} \hline \text { Regulated Voltage (IS } & =35 \mathrm{~mA}) \\ & \left({ }^{\mathrm{S}}=27 \mathrm{~mA}\right) \end{aligned}$	$9.0$	$\begin{aligned} & 9.6 \\ & 9.2 \end{aligned}$	$11.5$	Vdc
Maximum Undistorted Chroma Output, See Note $1, \mathrm{E}_{(\text {pin }}$ 3) $\left.=\mathrm{E}_{(\text {pin }} 14\right)$	0.8	1.75	-	$V(p-p)$
Maximum Chroma Gain $E_{(\text {pin } 3)}=E_{(\text {pin 14) }}$. See Note 1	34	40	-	dB
Automatic Chroma Control Range (ACC)   -3.0 dB down from maximum undistorted output, see Note 1	-	19	-	dB
Chroma Burst Level to Kill, See Note 1	-	1.4	-	$m V(p-p)$
Manual Chroma Gain Control Range $\left(\Delta V_{(\text {pin } 3)}\right) V_{(\text {pin 14) }}$ to $\left.0 V d c\right)$	50	60	-	dB
Chroma Input Resistance	-	2.3	-	k ohms
Chroma Input Capacitance	-	13	-	pF
Chroma Output Impedance	-	15	-	ohms
Horizontal Input Pulse	2.2	3.0	4.0	Vp
Oscillator Output	100	-	-	mV (RMS)
Oscillator Output Impedance	-	15	-	ohms
Hue Control Range $\left(\Delta V_{(\text {pin 12) }}\left(V_{(\text {pin 14) }}\right.\right.$ to 4.3 Vdc$)$	100	126	-	degrees
Oscillator Pull-In Range	1200	-	-	Hz
Oscillator Noise Bandwidth ( $\mathrm{f}_{\mathrm{N}}$ )	-	900	-	Hz
Static Phase Error with Oscillator Detuning $25 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ Burst Amplitude $2.0 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ Burst Amplitude	-	$\begin{aligned} & 0.20 \\ & 0.25 \\ & \hline \end{aligned}$	-	degrees $/ \mathrm{Hz}$

Note 1: With $5.0 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ burst input at pin 5 set $\mathrm{E}_{\text {(pin 10 }}$ ) to just "unkill"

FIGURE 2 - MC1398P TEST CIRCUIT


FIGURE 3 - MC1398 CIRCUIT SCHEMATIC


TYPICAL CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
(Figures 4 through 9, See Test Circuit of Figure 2.)

FIGURE 4 - INPUT/OUTPUT CHARACTERISTICS


FIGURE 6 - HUE CONTROL OPERATION


FIGURE 8 - STATIC PHASE ERROR


Figure 5 - regulated voltage


FIGURE 7 - OSCILLATOR OUTPUT versus PIN 12 VOLTAGE


FIGURE 9 - TEMPERATURE STABILITY of the MC1398 OSCILLATOR
(I/C only subjected to temperature change)


FIGURE 10 - PRINTED CIRCUIT LAYOUT OF MC1398P, MC1326, and MPSU 10 TRANSISTORS


## MC1398P APPLICATIONS INFORMATION

MC1398P is a multifunction circuit with considerable gain associated with the chroma amplifier and oscillator sections. It is important to the circuit layout utilizing the MC1398P that the chroma amplifier, oscillator, and oscillator output/hue section grounds are separated from each other. Ground loop problems will interfere with oscillation stability and lock-up if this precaution is not observed.

Care must be exercised to avoid coupling from the oscillator output to the crystal circuitry connected to pin 8 . Stray coupling of these two points can result in excessive oscillator shift; or in some cases, oscillator drop-out during adjustment of the hue control.

A suitable circuit layout for the MC1398P is shown in Figure 10
An adjustable capacitor ( $1.5-20 \mathrm{pF}$ in parallel with a fixed 22 pF capacitor) is shown in series with the 3.58 MHz crystal. This capacitor is used to adjust the oscillator exactly on frequency, and ensures excellent oscillator lock-up. However, acceptable oscillator performance can be obtained with a fixed value of capacitance (this value is dependent on the designers' choice of crystals).


COILCRAFT FORM \#10-32 OR EQUIV UNIVERSAL AWG \#36 WIRE OR EQUIV $\mathrm{L}=26 \mu \mathrm{H}$
$T_{2}$ :
INPUT OUTPUT


COILCRAFT FORM \#10-32 OR EQUIV
UNIVERSAL AWG \#36 WIRE OR EQUIV
$L_{p}=12 \mu \mathrm{H}$ primary winding
$L_{S}=8.8 \mu \mathrm{H}$ secondary winding
$K=0.4$

This coil data is intended as an aid only. It is expected that many designers will want to use other approaches.

## MC1398P CIRCUIT DESCRIPTION

The MC1398P is capable of providing the entire color processing function between the second detector and the demodulator for television color receivers.

A band pass filter from the second detector provides a 50 mV ( $\mathrm{p}-\mathrm{p}$ ) signal (for a saturated color bar pattern) at the input to the first chroma amplifier stage $\left(Q_{2}, Q_{3}, Q_{8}, Q_{g}\right)$. Because of $Q_{2}$ emitter load resistor the input impedance is determined primarily by the bias resistor $\left(\mathrm{R}_{3}\right)$ and is about 2.3 kilohms. Since $\mathrm{O}_{2}$ is the current source for the differential pair ( $\mathrm{O}_{3}$ and $\mathrm{Q}_{9}$ ), the chroma information will pass to the load resistor $\left(R_{7}\right)$ and then to the second chroma amplifier $\left(\mathrm{Q}_{17}\right)$. To avoid overload of $\mathrm{Q}_{17}$, the maximum gain to $Q_{17}$ base is only $X 3$ and by varying the bias at the base of $\mathrm{Q}_{g}$ it is possible to reduce the stage gain by 23 dB without signal distortion; the signal being "dumped" by $\mathrm{O}_{9}$ collector into the supply. Since this automatic chroma control action will vary the dc bias at $Q_{17}$ base the emitter load of $Q_{17}$ is the current source $\mathrm{Q}_{18}$, maintaining the dc operating current. $\mathrm{Q}_{18}$ collector is bypassed externally to prevent ac signal attenuation.

During picture scan time, the chroma signal passes through the output level control amplifier ( $\mathrm{Q}_{10}, \mathrm{Q}_{11}, \mathrm{Q}_{15}, \mathrm{Q}_{21}$ ). By changing the bias on $\mathrm{Q}_{11}$ and $\mathrm{Q}_{15}$ bases the signal can either pass to the output pin 2 or be "dumped" into the supply through $\mathrm{Q}_{11}$. The use of buffer stages $\mathrm{Q}_{10}$ and $\mathrm{Q}_{21}$ prevent distortion at low-signal levels and the control range is better than 70 dB . The signal output is also buffered by $\mathrm{Q}_{14}$ and $\mathrm{Q}_{20}$, thus providing a low impedance drive of up to $2.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ to the demodulator, with an overall gain between pins 5 and 2 of 40 dB . To enable the chroma signal output to reach the amplifiers from $\mathrm{Q}_{17}$ collector, $\mathrm{Q}_{12}$ is held in conduction by $\mathrm{O}_{5}$ which in the absence of any input on pin 4 is not conducting. This high collector voltage also holds $\mathrm{Q}_{26}$ in conduction, clamping the input to the burst channel and preventing chroma information reaching the oscillator. During picture retrace time, a positive-going $4.0 \mu \mathrm{~s}$ pulse from the line sweep transformer will turn $\mathrm{O}_{5}$ "on" and $\mathrm{O}_{7}$ "off". When $\mathrm{Q}_{5}$ collector goes low, $\mathrm{Q}_{12}$ will become "cut-off" preventing the burst signal at $\mathrm{Q}_{17}$ collector from reaching the output pin 2. At the same time, $\mathrm{O}_{26}$ turns "off" opening the burst channel. The high collector voltage of $Q_{7}$ turns on $Q_{16}$ and $Q_{22}$. $Q_{16}$ passes the burst signal from $\mathrm{Q}_{17}$ collector to the subcarrier regenerator and $\mathrm{Q}_{22}$ "fills-in" for $\mathrm{Q}_{12}$ during the gate period to prevent a dc shift in the pin 2 output voltage.

The gated burst signal is applied to the oscillator through $\mathrm{Q}_{27}$ and $Q_{28} . Q_{29}, Q_{50}$ and $Q_{35}$ together with $Q_{27}$ and $Q_{28}$ form an injection locked oscillator circuit. At series resonance of the crystal connected to pin 8 the impedance of pin 8 is very low, thereby reducing the 3.579545 MHz carrier level at the base of $\mathrm{Q}_{50}$. The signal at the base of $\mathrm{Q}_{29}$ is not reduced but the output voltages in $R_{33}$ and $R_{42}$ will change. Any signals outside the
response band of the crystal will appear equally at $\mathrm{O}_{50}$ and $\mathrm{O}_{29}$ bases and be suppressed in the output by the differential amplifier common-mode rejection ratio (about 40 dB ). To maintain oscillation, a feedback signal with the correct phase is passed by $\mathrm{Q}_{35}$ back to the input of $\mathrm{Q}_{27}$. Careful control of the resistor ratios ensures that $\mathrm{Q}_{29}$ and $\mathrm{Q}_{50}$ are operated linearly with about 350 mV ( $\mathrm{p}-\mathrm{p}$ ) at $\mathrm{R}_{33}$ and $\mathrm{R}_{42}$, due to self oscillation. A burst signal as low as $2.0 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ at the chroma input is sufficient to cause the oscillator to lock to the reference phase and frequency.

As the burst amplitude increases, the level at $\mathrm{O}_{29}$ and $\mathrm{O}_{50}$ collectors changes and this shift is used to provide the automatic chroma control function. $\mathrm{Q}_{42}$ and $\mathrm{Q}_{45}$ form a modified differential amplifier and with zero offset bias $\mathrm{Q}_{45}$ conducts most of the current from $\mathrm{O}_{43}$. As an increasing burst level swings $\mathrm{O}_{29}$ and $\mathrm{Q}_{50}$ collectors, the current from $\mathrm{Q}_{43}$ is shunted into $\mathrm{Q}_{42}$. At a point predetermined by the setting of the automatic chroma control connected to pin 10, the composite lateral PNP of $\mathrm{Q}_{47}$ and $\mathrm{O}_{46}$ will be biased into conduction. This amplifier has a gain of unity and a filter capacitor (connected to $\mathrm{Q}_{46}$ base) prevents any tendency to oscillations. Diode $\mathrm{CR}_{9}$ provides thermal compensation to ensure a steady color-killer threshold point. The increasing current through $\mathrm{Q}_{13}$ emitter is used to control $\mathrm{Q}_{9}$ base, attenuating the input signal as the burst amplitude increases. The current from $Q_{13}$ also keeps $Q_{19}$ in saturation. When the input signal becomes too small for satisfactory color rendition, $\mathrm{Q}_{13}$ current falls and $\mathrm{Q}_{19}$ comes out of saturation. This means $\mathrm{Q}_{25}$ will saturate, clamping $\mathrm{Q}_{21}$ base and "killing" the chroma output stage. $\mathrm{R}_{24}$ in the Schmitt trigger circuit ensures that the colorkiller will have hysteresis to prevent fluttering between "on" and "off" states.

The oscillator output voltages at $R_{33}$ and $R_{42}$ are used to drive $\mathrm{O}_{38}$ and $\mathrm{O}_{39}$ into limiting so that as the burst amplitude increases the oscillator activity to around $700 \mathrm{mV}(\mathrm{p}-\mathrm{p})$, there will be no change in the oscillator output amplitude at pin 13. $\mathrm{Q}_{38}$ and $\mathrm{Q}_{39}$ are used as current sources with a $180^{\circ}$ phase difference for the differential pairs $\mathrm{O}_{30}$ and $\mathrm{Q}_{31}, \mathrm{Q}_{34}$ and $\mathrm{O}_{37}$. A small capacitor attached externally to $\mathrm{Q}_{39}$ collector adjusts the total phase difference to $135^{\circ}$. Since the signal appearing in the load resistor $R_{51}$ will be the vector sum of $Q_{31}$ and $Q_{37}$ signals, varying the base bias of $\mathrm{Q}_{30}$ and $\mathrm{Q}_{34}$ will change the oscillator output phase over the $135^{\circ}$ range. $\mathrm{Q}_{40}$ and $\mathrm{Q}_{41}$ buffer the oscillator output providing a low impedance drive at pin 13 for the demodulator.

To minimize crosstalk between the burst and chroma channels, separate bias chains are used. Further, the oscillator bias chain is zener regulated to prevent phase shifts in the reference output with power-supply variations.


## FOUR-CHANNEL LOW-THRESHOLD SENSE AMPLIFIER

. . . a sense amplifier designed to convert positive or negative 4.0 mV signals from plated-wire memories to transistor-transistor logic levels (MTTL). The problems encountered with ac-coupled plated-wire sense amplifiers are eliminated with this direct-coupled sense amplifier.

- Positive or Negative 4.0 mV Signal to Any of Four Input Channels Produces a Logic 1 or 0 Output
- Useful with the MCM7001 NMOS Memory
- Wired "OR" Capability at Amplifier Output Results in Fewer Associated Circuits
- 1 by 4 Internal Decoder Simplifies Channel Selection
- Fast Recovery Time from Overload Signals - 40 ns typ
- Good Isolation Between ON and OFF Channels
- Channel Select and Strobe Operate from Standard MTTL Levels

FOUR-CHANNEL LOW-THRESHOLD SENSE AMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT




See Packaging Information Section for outline dimensions.

## MC1446L (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & \hline+10 \\ & -10 \end{aligned}$	Vdc
Differential Input Voltage	VID	$\pm 5.0$	Volts
Common-Mode Input Voltage	VIC	$\pm 5.0$	Volts
Output Current	${ }^{1} \mathrm{O}$	25	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	$\begin{array}{r} 575 \\ 3.85 \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	TA	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Voltage Gain	1	$A_{V}$	-	600	-	-
Output Voltage Level $\begin{array}{ll}  & \mathrm{e}_{\text {in }}=0 \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} & \mathrm{e}_{\text {in }}=+4.0 \mathrm{mV} \\ & \mathrm{e}_{\text {in }}=-4.0 \mathrm{mV} \end{array}$	2	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & 0.4 \\ & 2.0 \end{aligned}$	$\begin{gathered} 1.4 \\ - \\ - \end{gathered}$	$\begin{gathered} 2.4 \\ - \\ 0.4 \end{gathered}$	Vdc
Input Bias Current	3	I/B	-	15	60	$\mu \mathrm{A}$
Input Offset Current	3	110	-	0.1	4.0	$\mu \mathrm{A}$
Channel Select Current High Level Low Level	4	$\begin{aligned} & \mathrm{I} \mathrm{CH} \\ & \mathrm{I} \mathrm{CL} \end{aligned}$	-	$\begin{aligned} & 1.7 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.0 \end{aligned}$	mA
Channel Select Voltage   High Level   Low Level	5	$\mathrm{V}_{\mathrm{CH}}$ $\mathrm{v}_{\mathrm{CL}}$	$2.0$	-	$\begin{gathered} - \\ 0.8 \end{gathered}$	Volts
Strobe Voltage High Level Low Level	5	$V_{\text {SH }}$ $V_{S L}$	$2.0$	-	$\begin{gathered} - \\ 0.8 \end{gathered}$	Volts
Strobe Input Current	4	Is	-	30	150	$\mu \mathrm{A}$
Output Source Current	6	${ }^{1} \mathrm{O}+$	4.0	8.0	-	mA
Output Sink Current	6	$10-$	-2.5	-4.0	-	mA
Positive Supply Current	6	${ }^{1} \mathrm{CC}$	-	19	27	mA
Negative Supply Current	6	IEE	-	-17	-24	mA
Input Common-Mode Voltage Range Channel Selected Channels Not Selected	7	$V_{\text {ICR }}$	- - -	$\begin{aligned} & +2.7 \\ & -1.0 \\ & +2.7 \\ & -6.0 \end{aligned}$	- - -	Volts
Input Differential-Mode Voltage Range   Channel Selected   Channels Not Selected		VIDR	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	Volts

## SWITCHING CHARACTERISTICS

Propagation Delay Time	8	tPHL	-	14	-	ns
Output Rise or Fall Time	8		-	30	-	ns
Strobe Delay Time	9	$\mathrm{t}_{\mathrm{d}}$	-	14	-	ns
Strobe Width (Min)	9	${ }^{\text {t }}$ (min)	-	20	-	ns
Channel Select Time	10	${ }^{\text {t }}$ Csel	-	14	-	ns
Common-Mode Recovery Time (channel selected)	7	${ }^{\text {t }}$ CMR	-	60	-	ns
Differential-Mode Recovery Time (channel selected)	8	${ }^{\text {t }}$ DMR	-	40	-	ns

## TEST CIRCUITS



FIGURE 3 - INPUT CURRENTS


FIGURE 5 - CHANNEL SELECT TRANSFER CHARACTERISTICS


FIGURE 2 - OUTPUT DC LEVELS


FIGURE 4 - CHANNEL SELECT AND STROBE INPUT CURRENTS


FIGURE 6 - OUTPUT CURRENTS



FIGURE 9 - STROBE CHARACTERISTICS
FIGURE 10 - CHANNEL SELECT TIME


TYPICAL RECOVERY TIME WAVEFORMS

FIGURE 11 - COMMON-MODE RECOVERY TIME


FIGURE 12 - DIFFERENTIAL-MODE RECOVERY TIME


MC1446L (continued)

TYPICAL CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 13 - VOLTAGE GAIN versus TEMPERATURE


FIGURE 15 - AMPLIFIER TRANSFER CHARACTERISTICS


FIGURE 17 - STROBE INPUT TRANSFER
CHARACTERISTICS (Input High)


FIGURE 14 - DC OUTPUT VOLTAGE LEVEL versus TEMPERATURE (All Inputs Grounded)


FIGURE 16 - CHANNEL SELECT versus OUTPUT TRANSFER CHARACTERISTICS


FIGURE 18 - COMMON-MODE GAIN versus FREQUENCY

f, FREQUENCY (mHz)

FIGURE 19 - VOLTAGE GAIN versus FREQUENCY


FIGURE 20 - ADJACENT CHANNEL ISOLATION versus FREQUENCY


## CIRCUIT DESCRIPTION

The MC1446L is designed to translate a positive 4.0 mV signal from a plated wire memory to an MTTL " 1 " level, or a negative 4.0 mV to an MTTL " 0 " level. This sense amplifier also eliminates the requirement for a bipolar switch in series with the plated wire because the bit selection is done inside the sense amplifier.

The circuit operation can be described in sections as follows:

1. All channels have been designed for low input offsets 0.5 V typical.
2. Channel "ORing" is accomplished by using common collector load resistors for four differential amplifier pairs.
3. Channel selection is accomplished by current steering through the four differential pairs. The circuit below the four differential pairs forms a matrix tree which can be thought of as a 1-by-4 decode matrix. The bottom transistor is the current source for the first stage of gain.
4. DC translation between the first and second stages of gain is done through an emitter-follower stage, two diodes and another emitter follower for each side of the differential amplifier. The currents in these translator legs are combined and run through diodes to the negative supply. These diodes are used to bias both the first and second gain stages. This also gives the appropriate gain versus temperature and dc output level versus temperature characteristics.
5. The top of the second stage amplifier is regulated at a voltage equal to five diode drops above ground. It can be seen that if the 700 ohm resistor in the regulator has one diode (or $V_{B E}$ ) across it then the 2.8 k ohm resistor will have four diode drops across it. This makes a five diode drop voltage above ground that is fairly independent of the positive supply.
6. The current in the second stage of the amplifier is set by the 180 -ohm resistor in the emitter of the current source. It can be seen that this resistor has one diode drop (approximately 750 mV ) across it. Therefore, an analysis will show that the voltage drop across the 775 -ohm load resistor in the second stage will be approximately two diodes when the differential amplifier is balanced. Accounting for the additional diode voltage drop of the emitter-follower output transistor will set the output dc level at two diodes above ground or very near the center of MTTL threshold.
7. The strobe circuit works by steering current in the second stage. When the strobe is low, the entire current of the second stage current source is steered through the 775 -ohm load resistor. This clamps the output to a low state so that an input signal cannot cause an output. When the strobe is high, the current is steered through the second stage differential amplifier pair and the output will go to a level dictated by the presence of an input signal.
8. The output circuit of the sense amplifier may be thought of as a push-pull type. The emitter of the push transistor is brought out to a separate pin from the collector of the pull transistor. This will facilitate "Wire ORing" the outputs of several sense amplifiers. Several emitter outputs can be wired together along with only one collector pulldown transistor. The unused collectors of the pulldown transistor must be grounded. An example of the use of "Wire ORing" is to have four MC1446 devices wired-OR into a 16-channel sense amplifier in which a channel may be selected by selecting channels in parallel at the amplifier inputs and strobing the proper sense amplifier.

## APPLICATIONS INFORMATION

The MC1446 is designed to convert signals as small as positive or negative 4.0 mV to MTTL logic levels. The output level of the sense amplifier with no input signal present and with the strobe high is typically 1.4 volts (typical input threshold of MTTL logic). Hence, if the strobe goes high during the absence of an input signal from the plated-wire memory, the sense amplifier output will rise to 1.4 volts. This condition could cause false outputs; therefore careful considerations must be given to strobe timing. Figure 21 illustrates a typical timing sequence of the MC1446 device as recommended for proper operation.

Figure 22 shows how these sense amplifiers are used in an

N -word-line-by-32-bit basic memory plane organized as $4-\mathrm{N}$ words of 8 bits each. During a read cycle, the read current is pulsed through a selected word-line and thus generates outputs to all of the 32 -bit positions in the line. The internal one-of-four decoder selects the desired channels of the eight sense amplifiers for a particular system word. When the strobe goes high, the sense amplifier outputs switch according to the data present at the amplifier inputs. The data readout on the other 24-bit lines is not lost due to the Non-Destructive Read-Out properties of a plated-wire memory. On the next read cycle the decoder of the sense amplifier in combination with the selected word-line determines the 8 -bits of data to read.

## APPLICATIONS INFORMATION (continued)

Memory organizations that have more than four words per word-line require that the sense amplifier outputs be wire-ORed. To wire-OR the outputs of several sense amplifiers all of the emitters of the output-pullup transistors are tied together. Only one collector of the pulldown transistors is tied to the wire-ORed emitters of the pullup transistors. The remaining pulldown transistors must be grounded as noted in Figure 23. Ten or more sense amplifiers may be wire-ORed together without any reduction in usable logic levels since only one sense amplifier per bit is on at any given time. Variations in propagation delay time ( $\mathrm{t}_{\mathrm{pd}}$ ), versus the number of wire-ORed sense amplifiers and the output capacitance are given in Figure 24.

The fast propagation delay time and low threshold of the MC1446 make it useful as the sense amplifier for the MCM7001 N-channel MOS memory. The data output of the MCM7001 is referenced around +7.5 volts; thus the power supply inputs of the MC1446, as well as the MECL-level Channel Select and Strobe inputs, are translated to MTTL and then referenced around this level, as shown in Figure 25. The minimum $200 \mu \mathrm{~A}$ current from the memory generates an input of 20 mV , which is easily detected by the MC1446. The MC1446 otuput is a TTL-level signal with a +7.5 volt reference. This signal can be translated back to MECL levels with a zener diode as shown.

FIGURE 21 - TYPICAL TIMING SEQUENCE

*The strobe pulse width is smaller than the amplifier input pulse width.

FIGURE 22 - N-WORD-LINE-BY-32-BIT MEMORY PLANE ORGANIZED AS 4-N WORDS OF 8 BITS EACH


## MC1446L (continued)

## APPLICATIONS INFORMATION (continued)



FIGURE 25 - SENSE AMPLIFIER FOR MCM 7001 MEMORY


## MC1446L (continued)

## DEFINITIONS

AV the voltage gain from a channel input to amplifier output (input signal is 2 mV peak-to-peak and the strobe is high)
$C M V_{\text {in }}$ maximum input common-mode voltage on any channel that will not cause the amplifier to saturate
$D M V_{\text {in }}$ maximum input differential-mode voltage on any channel signal that will not saturate the amplifier
ICC current from the positive supply with no load (pin 12 shorted to pin 13)
IEE current into the negative supply with both channel select pins at +3.5 volts
I/B input current into the base of any input transistor when the opposite transistor of the differential pair is at the same voltage
${ }^{\prime} \mathrm{CH}$ input current at channel select pin when the channel select voltage is at $\mathrm{V}_{\mathrm{CH}}$
ICL input current at channel select pin when the channel select voltage is at $\mathrm{V}_{\mathrm{CL}}$
IIO difference between base currents of any input differential pair of transistors
IO+ output source current to a load with the output remaining above 2.4 volts,excludingthe amplifier's own sink current
${ }^{1} \mathrm{O}$ - $\quad$ the current that the amplifier will sink into pin 12
${ }^{t}$ CMR time required for the amplifier to recover from the maximum specified common-mode input, (recovery - output within 10\% of its quiescent state)
${ }^{\mathrm{t}} \mathrm{C}$ sel time between the $50 \%$ point of the channel gate input and the $50 \%$ point of the signal input that still allows a full width signal at the amplifier output
tDMR time required for the amplifier to recover from maximum specified differential-mode input, (recovery - output within $10 \%$ of its quiescent state)
$t_{d S}$ delay time from the $50 \%$ point of the strobe input leading or trailing edge to the corresponding 50\% point of the output
tPHL the delay time from the $50 \%$ point of a 5.0 mV input leading edge to the $50 \%$ point of the amplifier output
${ }^{\text {t }}$ THL, time between $10 \%$ and $90 \%$ points of the output
t TLH signal with a 5.0 mV input signal
tSmin minimum pulse width at $50 \%$ points at strobe input allows a full output (pulse rise times of less than 10 ns , amplifier differential input equal to 3 mV )
$\mathrm{V}_{\mathrm{CH}}$ minimum voltage required at the channel select pin to cause a given channel to give $99 \%$ of the maximum gain through the amplifier
VCL maximum voltage allowable at the channel select pin to cause a given channel to give $1 \%$ or less of the gain when channel is fully selected
$V_{O} \quad$ output dc level with inputs grounded and strobe high
$\mathrm{V}_{\mathrm{OH}} \quad$ minimum output high level
VOL maximum output low level
$\mathrm{V}_{\mathrm{SH}}$ the minimum voltage required at the strobe pin to allow $99 \%$ of a full output

VSL the maximum voltage allowable at the strobe pin to allow $1 \%$ or less of a full output

MC1488L

## QUAD LINE DRIVER

The MC1488L is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

Features:

- Current Limited Output

$$
\pm 10 \mathrm{~mA} \text { typ }
$$

- Power-Off Source Impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with All Motorola MDTL and MTTL Logic Families


## QUAD MDTL LINE DRIVER RS-232C <br> MONOLITHIC SILICON INTEGRATED CIRCUIT



CIRCUIT SCHEMATIC
(1/4 OF CIRCUIT SHOWN)


See Packaging Information Section for outline dimensions.

Maximum Rating ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \hline \end{aligned}$	$\begin{aligned} & +15 \\ & -15 \\ & \hline \end{aligned}$	Vdc
Input Signal Voltage	$v_{\text {in }}$	$-15 \leq \mathrm{V}_{\mathrm{in}} \leq 7.0$	Vdc
Output Signal Voltage	$\mathrm{v}_{\mathrm{O}}$	$\pm 15$	Vdc
Power Derating (Package Limitation, Ceramic Dual-In-Line Package) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\stackrel{\mathrm{P}_{\mathrm{D}}}{1 / \mathrm{JA}^{2}}$	$\begin{array}{r} 1000 \\ 6.7 \end{array}$	$\underset{\mathrm{mW}}{\mathrm{~mW} /{ }^{\circ} \mathrm{C}}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0\right.$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Forward Input Current ( $\mathrm{V}_{\text {in }}=0 \mathrm{Vdc}$ )	1	$I_{F}$	-	1.0	1.6	mA
Reverse Input Current ( $\left.\mathrm{V}_{\text {in }}=+5.0 \mathrm{Vdc}\right)$	1	$I_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Voltage High } \\ & \quad\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=+13.2 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EE}}=-13.2 \mathrm{Vdc}\right) \end{aligned}$	2	$\mathrm{V}_{\mathrm{OH}}$	$\begin{array}{r} +6.0 \\ +9.0 \end{array}$	$\begin{array}{r} +7.0 \\ +10.5 \end{array}$	-	Vdc
Output Voltage Low $\left(V_{\text {in }}=1.0 \mathrm{Vdc}, R_{L}=3.0 \mathrm{k} \Omega, V_{C C}=+9.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{in}}=1.9 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=+13.2 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-13.2 \mathrm{Vdc}\right)$	2	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & -6.0 \\ & -9.0 \end{aligned}$	$\begin{gathered} -7.0 \\ -10.5 \end{gathered}$		Vdc
Positive Output Short-Circuit Current	3	'SC+	+6.0	+10	+12	mA
Negative Output Short-Circuit Current	3	${ }^{\prime} \mathrm{SC}^{-}$	-6.0	-10	-12	mA
Output Resistance ( $\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0,\left\|\mathrm{~V}_{\mathrm{O}}\right\|= \pm 2.0 \mathrm{~V}\right)$	4	$\mathrm{R}_{\mathrm{O}}$	300	-	-	Ohms
$\begin{aligned} & \text { Positive Supply Current }\left(R_{1}=\infty\right) \\ & \left(V_{\text {in }}=1.9 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=1.9 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=1.9 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{Vdc}\right) \end{aligned}$	5	${ }^{\prime} \mathrm{Cc}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} +15 \\ +4.5 \\ +19 \\ +5.5 \\ - \end{gathered}$	$\begin{aligned} & +20 \\ & +6.0 \\ & +25 \\ & +7.0 \\ & +34 \\ & +12 \end{aligned}$	mA
Negative Supply Current ( $\mathrm{R}_{\mathrm{L}}=\infty$ ) $\left(\mathrm{V}_{\text {in }}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)$   $\left(V_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)$   $\left(\mathrm{V}_{\text {in }}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}\right)$   $\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}\right)$   $\left(\mathrm{V}_{\text {in }}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}\right)$   $\left(V_{\text {in }}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}\right)$	5	$I_{\text {EE }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} -13 \\ - \\ -18 \\ - \\ - \end{gathered}$	$\begin{aligned} & -17 \\ & -15 \\ & -23 \\ & -15 \\ & -34 \\ & -2.5 \end{aligned}$	mA   $\mu \mathrm{A}$   mA   $\mu \mathrm{A}$   mA   mA
Power Dissipation $\left(V_{C C}=9.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)$   $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}\right)$		$P_{\text {D }}$	-	-	$\begin{array}{r} 333 \\ 576 \end{array}$	mW

SWITCHING CHARACTERISTICS $\left(V_{C C}=+9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{V}_{\text {EE }}=-9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$

Propagation Delay Time ( $z_{1}=3.0 \mathrm{k}$ and 15 pF )	6	${ }^{\text {P PLH }}$	-	275	350	ns
Fall Time $\quad\left(z_{1}=3.0 \mathrm{k}\right.$ and 15 pF$)$	6	${ }^{\text {t THL }}$	-	45	75	ns
Propagation Delay Time ( $\mathrm{z}_{1}=3.0 \mathrm{k}$ and 15 pF )	6	tPHL	-	110	175	ns
Rise Time $\quad\left(\mathrm{z}_{1}=3.0 \mathrm{k}\right.$ and 15 pF$)$	6	${ }^{\text {t }}$ LLH	-	55	100	ns

## CHARACTERISTIC DEFINITIONS



FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT


FIGURE 5 - POWER-SUPPLY CURRENTS


FIGURE 2 - OUTPUT VOLTAGE


FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)


FIGURE 6 - SWITCHING RESPONSE


MC1488L (continued)

TYPICAL CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 7 - TRANSFER CHARACTERISTICS
versus POWER-SUPPLY VOLTAGE


FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE


CL, CAPACITANCE (pF)

FIGURE 8 - SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE


FIGURE 10 - OUTPUT VOLTAGE AND CURRENT-LIMITING CHARACTERISTICS


FIGURE 11 - MAXIMUM OPERATING TEMPERATURE versus POWER-SUPPLY VOLTAGE


## APPLICATIONS INFORMATION

FIGURE 13 - POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS
The Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488L quad driver and its companion circuit, the MC1489L quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15volts in magnitude and are positive for a logic " 0 " and negative for a logic " 1 ". These voltages are so defined when the drivers are terminated with a 3000 to 7000 -ohm resistor. The MC1488L meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488L is much too

FIGURE 12 - SLEW RATE versus CAPACITANCE
FOR ISC $=10 \mathrm{~mA}$

fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship $\mathrm{C}={ }^{\prime} \mathrm{SC} \times \Delta \mathrm{T} / \Delta \mathrm{V}$ from which Figure 12 is derived. Accordingly, a 330-pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15 -volt, $500-\mathrm{mA}$ source. The MC1488L is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., $V_{C C} \geqslant 9.0 \mathrm{~V} ; V_{E E} \leqslant-9.0 \mathrm{~V}$ ). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488L effectively shorting the 300 -ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors

would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488L to withstand momentary shorts to the $\pm 25$-volt limits specified in the earlier Standard RS232B.) The addition of the diodes also permits the MC1488L to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

## Other Applications

The MC1488L is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:

1. Output Current Limiting - this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488L used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.
2. Power-Supply Range - as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately -2.5 volts to the minimum specified -15 volts. The MC1488L will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

## MC1488L (continued)

FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR


FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS


## QUAD LINE RECEIVERS

The MC1489 monolithic quad line receivers are designed to inter face data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

- Input Resistance -3.0 k to 7.0 kilohms
- Input Signal Range $- \pm 30$ Volts
- Input Threshold Hysteresis Built In
- Response Control
a) Logic Threshold Shifting
b) Input Noise Filtering



See Packaging Information Section for outline dimensions.

## MC1489L, MC1489AL (continued)

MAXIMUM RATINGS ${ }^{(T} T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	10	V dc
Input Signal Range	$V_{\text {in }}$	$\pm 30$	Vdc
Output Load Current	$T_{L}$	20	mA
Power Dissipation (Package Limitation, Ceramic Dual In-Line Package) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JA} \end{gathered}$	$\begin{gathered} 1000 \\ 6.7 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Response control pin is open.) ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
$\begin{array}{ll}\text { Positive Input Current } & \left(\mathrm{V}_{\text {in }}=+25 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\text {in }}=+3.0 \mathrm{Vdc}\right)\end{array}$	1	${ }^{1} \mathrm{H}$	$\begin{gathered} 3.6 \\ 0.43 \end{gathered}$	-	8.3 -	mA
Negative Input Current	1	IIL	$\begin{gathered} -3.6 \\ -0.43 \end{gathered}$	-	-8.3	mA
Input Turn-On Threshold Voltage $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OL}} \leq 0.45 \mathrm{~V}\right)$   MC1489L	2	VIH	$\begin{gathered} 1.0 \\ 1.75 \end{gathered}$	$1.95$	$\begin{gathered} 1.5 \\ 2.25 \end{gathered}$	Vdc
Input Turn-Off Threshold Voltage $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OH}} \geq 2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=-0.5 \mathrm{~mA}\right)$   MC1489L	2	VIL	$\begin{aligned} & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$	$\overline{-}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	Vdc
Output Voltage High $\left(\mathrm{V}_{\text {in }}=0.75 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=-0.5 \mathrm{~mA}\right)$    (Input Open Circuit, $\left.I_{L}=-0.5 \mathrm{~mA}\right)$	2	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	Vdc
Output Voltage Low $\quad\left(\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}\right)$	2	$\mathrm{V}_{\mathrm{OL}}$	-	0.2	0.45	Vdc
Output Short-Circuit Current	3	ISC	-	3.0	-	mA
Power Supply Current $\quad\left(\mathrm{V}_{\text {in }}=+5.0 \mathrm{Vdc}\right)$	4	$1^{+}$	-	20	26	mA
Power Dissipation ( $\left.\mathrm{V}_{\text {in }}=+5.0 \mathrm{Vdc}\right)$	4	$\mathrm{P}_{\mathrm{D}}$	-	100	130	mW

SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Propagation Delay Time	$\left(R_{L}=3.9 \mathrm{k} \Omega\right)$	5	${ }^{\text {tPLH }}$	-	25	85	ns
Rise Time	$\left(R_{L}=3.9 \mathrm{k} \Omega\right)$	5	$\mathrm{t}_{\mathrm{r}}$	-	120	175	ns
Propagation Delay Time	$\left(R_{L}=390 \Omega\right)$	5	tphL	-	25	50	ns
Fall Time	$\left(R_{L}=390 \Omega\right)$	5	$\mathrm{t}_{\mathrm{f}}$	-	10	20	ns

MC1489L, MC1489AL (continued)

## TEST CIRCUITS



FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT


FIGURE 5 - SWITCHING RESPONSE
FIGURE 6 - RESPONSE CONTROL NODE

$\mathrm{C}_{\mathrm{T}}=15 \mathrm{pF}=$ total parasitic capacitance, which includes
probe and wiring capacitances

MC1489L, MC1489AL (continued)

TYPICAL CHARACTERISTICS
$\left(V_{C C}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 7 - INPUT CURRENT


FIGURE 9 - MC1489A INPUT THRESHOLD VOLTAGE ADJUSTMENT


FIGURE 8 - MC1489 INPUT THRESHOLD VOLTAGE ADJUSTMENT


FIGURE 10 - INPUT THRESHOLD VOLTAGE versus TEMPERATURE


FIGURE 11 - INPUT THRESHOLD versus POWER-SUPPLY VOLTAGE


## MC1489L, MC1489AL (continued)

## APPLICATIONS INFORMATION

## General Information

The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488L quad driver and its companion circuit, the MC1489L quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed herein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one $V_{B E}$ (Ref. Sect. 2.4).

The receiver shall detect a voltage between -3.0 and -25 volts as a logic " 1 " and inputs between +3.0 and +25 volts as a logic " 0 " (Ref. Sect. 2.3). On some interchange leads, an open circuit or power "OFF" condition ( 300 ohms or more to ground) shall be decoded as an "OFF" condition or logic " 1 " (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or logic " 1 " input.

## Device Characteristics

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise

FIGURE 12 - TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

rejection. The MC1489L input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV . The MC1489AL has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis.

Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power-supply. Figures 6, 8 and 9 illustrate the input threshold voltage shift possible through this technique.

This response node can also be used for the filtering of highfrequency, high-energy noise pulses. Figures 12 and 13 show typical noise-pulse rejection for external capacitors of various sizes.

These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 14)

The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 15 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement.

FIGURE 13 - TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND


## APPLICATIONS INFORMATION (continued)



FIGURE 15 - TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET RS-232C


## Specifications and Applications

 Information
## MONOLITHIC SIX BIT, MULTIPLYING

 DIGITAL-TO-ANALOG CONVERTERdesigned for use where the output current is a linear product of a six-bit digital word and an analog input voltage.

- Digital Inputs are MDTL and MTTL Compatible
- Relative Accuracy - $\pm 0.78 \%$ Error maximum
- Low Power Dissipation - 85 mW typical @ $\pm 5.0 \mathrm{~V}$
- Adjustable Output Current Scaling
- Fast Settling Time - 150 ns typical
- Standard Supply Voltage: +5.0 V and -5.0 V to -15 V

SIX BIT, MULTIPLYING
DIGITAL-TO-ANALOG CONVERTER
MONOLITHIC SILICON INTEGRATED CIRCUIT


TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Digital-to-Analog Meter Readout
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- Digital Varicap Tuning
- Video Systems
- Stepping Motor Drive
- CRT Character Generation
- Digital Addition and Subtraction
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Programmable Power Supplies
- Speech Encoding

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	$V$ alue	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} +5.5 \\ -16.5 \end{gathered}$	Vdc
Digital Input Voltage	$\mathrm{V}_{5}$ thru $\mathrm{V}_{10}$	+8.0, $\mathrm{V}_{\mathrm{EE}}$	Vdc
Applied Output Voltage	$\mathrm{V}_{\mathrm{O}}$	$\pm 5.0$	Vdc
Reference Current	112	5.0	mA
Reference Amplifier Inputs	$\mathrm{V}_{12}, \mathrm{~V}_{13}$	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 1000 \\ 6.7 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}$
$\begin{array}{ll}\text { Operating Temperature Range } & \\ & \text { MC1506L } \\ & \text { MC1406L }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \frac{\mathrm{V}_{\text {ref }}}{\mathrm{R} 12}=2.0 \mathrm{~mA}, T_{\mathrm{A}}=T_{\text {low }}\right.$ * to $T_{\text {high* }}$ unless otherwise noted. All digital inputs at low logic levels.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Relative Accuracy (Error relative to full scale IO)	10	$E_{r}$	-	-	$\pm 0.78$	\%
Settling Time (within 1/2 LSB [includes $\mathrm{t}_{\mathrm{d}}$ ] $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )	9	${ }^{\text {t }}$	-	150	300	ns
Propagation Delay Time $T_{A}=+25^{\circ} \mathrm{C}$	9	$\begin{aligned} & \text { tpHL, } \\ & \text { tpLH } \end{aligned}$	-	10	50	ns
Output Full Scale Current Drift		$\left\|\mathrm{TCl}_{\mathrm{O}}\right\|$	-	80	-	PPM $/{ }^{\circ} \mathrm{C}$
```Digital Input Logic Levels High Level, Logic "1" (MC1406L, MC1506L) Low Level, Logic "0' (MC1406L) (MC1506L)```	3,14	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	2.0 -	-	$\begin{aligned} & - \\ & 0.8 \\ & 0.5 \end{aligned}$	Vdc
Digital Input Current High Level, $V_{I H}=5.0 \mathrm{~V}$ Low Level, $V_{I L}=0.8 \mathrm{~V}$	3,13	$\begin{aligned} & 1 / H \\ & 1 / 1 \\ & \hline \end{aligned}$	-	$\begin{gathered} 0 \\ -0.7 \\ \hline \end{gathered}$	$\begin{array}{r} +0.01 \\ -1.5 \\ \hline \end{array}$	mA
Reference Input Bias Current (Pin 13)	3	113	-	-0.002	-0.01	mA
$\begin{aligned} & \text { Output Current Range } \\ & V_{E E}=-5.0 \mathrm{~V} \\ & V_{E E}=-6.0 \text { to }-15 \mathrm{~V} \end{aligned}$	3	IOR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	mA
$\begin{aligned} & \text { Output Current } \\ & V_{\text {ref }}=2.000 \mathrm{~V}, \mathrm{R}_{12}=1.000 \mathrm{k} \Omega \end{aligned}$	3	'0	1.9	1.97	2.1	mA
Output Current (all bits high)	3	$10^{(m i n)}$	-	0	10	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Voltage Compliance } \\ & \left(E_{r} \leqslant \pm 0.78 \% \text { at } T_{A}=+25^{\circ} \mathrm{C}\right) \end{aligned}$	3,4,5	V_{0}	-	-	± 0.4	Vdc
$\begin{aligned} & \text { Reference Current Slew Rate } \\ & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \end{aligned}$	8,15	SR Iref	-	2.0	-	$\mathrm{mA} / \mu \mathrm{s}$
Output Current Power Supply Sensitivity	10	PSRR(-)	-	0.002	0.010	mA/V
Power Supply Current A1 thru A6; $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ A1 thru A6; $\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$	3,11,12	$\begin{aligned} & \text { ICC } \\ & \text { IEE } \\ & \hline \end{aligned}$	-	$\begin{array}{r} +7.2 \\ -9.0 \\ \hline \end{array}$	$\begin{array}{r} +11 \\ -11 \\ \hline \end{array}$	mA
Power Dissipation (all bits high) $\begin{aligned} & V_{E E}=-5.0 \mathrm{Vdc} \\ & V_{E E}=-15 \mathrm{Vdc} \end{aligned}$		$P_{\text {D }}$	-	$\begin{gathered} 85 \\ 175 \\ \hline \end{gathered}$	$\begin{array}{r} 120 \\ 240 \\ \hline \end{array}$	mW

[^13]
MC1506L, MC1406L (continued)

The MC1506L consists of a reference current amplifier, and R-2R ladder, and six high-speed current switches. For many applications, only a reference resistor and a reference supply voltage need be added.

The switches are inverting in operation, therefore a low state at the input turns on the specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components which are fed to the switches. Note that there is always a remainder current that is equal to the least significant bit. This current is shunted to ground, and the maximum current is $63 / 64$ of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.

COMPLETE CIRCUIT SCHEMATIC

(Digital Inputs; pins 5, $6,7,8,9,10$)

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT

FIGURE 5 - MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE

FIGURE 7 - NEGATIVE V ref

FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE

FIGURE 6 - POSITIVE $V_{\text {ref }}$

FIGURE 8 - REFERENCE CURRENT SLEW RATE MEASUREMENT TEST CIRCUIT

MC1506L, MC1406L (continued)

TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)

FIGURE 10 - RELATIVE ACCURACY TEST CIRCUIT

FIGURE 11 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE

FIGURE 12 - TYPICAL POWER SUPPLY CURRENT versus VEE

TYPICAL CHARACTERISTICS (continued)

FIGURE 13 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

FIGURE 15 - REFERENCE INPUT FREQUENCY RESPONSE

GENERAL INFORMATION

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 volts, due to the increased voltage drop across the 400 -ohm resistors in the reference current amplifier.

Output Voltage Compliance

The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter is near ground and a positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diode voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

For example, at $+25^{\circ} \mathrm{C}$ the allowable voltage compliance on pin 4 to maintain six-bit accuracy is ± 0.4 volt. With a full scale output current of 2.0 mA , the maximum resistor value that can be connected from pin 4 to ground is 200 ohms.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1506L is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current.

The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current source pair in the reference amplifier at the lowest possible voltage, matching and optimizing the output impedance of the pair.

The MC1506L/MC1406L is guaranteed accurate to within $\pm 1 / 2$ LSB at $+25^{\circ} \mathrm{C}$ at a full scale output current of 1.969 mA . This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA , with the loss of one LSB $=31 \mu \mathrm{~A}$ that is the ladder remainder shunted to ground. The input current to pin 12 has a guaranteed current range value of between 1.9 to 2.1 mA , allowing

GENERALINFORMATION (continued)

some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA . This is an optional step since the MC1506L accuracy is essentially the same between 1.5 to 2.5 mA . Then the MC1506L full scale current is trimmed to the same value with R12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 6-bit D-to-A converters may not be used to construct a 12-bit accurate D-to-A converter. 12-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 4096 , or $\pm 0.012 \%$, which is more accurate than the $\pm 0.78 \%$ specification provided by the MC1506L.

Multiplying Accuracy

The MC1506L may be used in the multiplying mode with six-bit accuracy when the reference current is varied over a range of $64: 1$. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of $6.0 \mu \mathrm{~A}$ extra current at the output terminal. If the reference current in the multiplying mode ranges from $60 \mu \mathrm{~A}$ to 4.0 mA , the $6.0 \mu \mathrm{~A}$ contributes an error of 0.1 LSB. This is well within six-bit accuracy

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a dc reference current is 0.5 to 4.0 mA .

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within $\pm 1 / 2$ LSB, while the turn "off" is typically under 50 ns.

The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 150 ns may be realized.

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 12 for converting the reference voltage to a current, and a turn-
around circuit or current mirror for feeding the ladder. The reference amplifier input current, 112, must always flow into pin 12 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6. The reference voltage source supplies the full current I12. Compensation is accomplished by Miller feedback from pin 14 to pin 13. This compensation method yields the best slew rate, typically better than $2.0 \mathrm{~mA} / \mu \mathrm{s}$, and is independent of the value of R12. R13 must be used to establish the proper impedance for compensation at pin 13. For bipolar reference signals, as in the multiplying mode, R13 can be tied to a negative voltage corresponding to the minimum input level. Another method is shown in Figure 22.

It is possible to eliminate R13 with only a small sacrifice in accuracy and temperature drift. For instance when high-speed operation is not needed, a capacitor is connected from pin 14 to VEE. The capacitor value must be increased when R12 is made larger to maintain a proper phase margin. For R12 values of $1.0,2.5$, and 5.0 kilohms, minimum capacitor values are 50,125 , and 250 pF .

Connections for a negative reference voltage are shown in Figure 7. A high input impedance is the advantage of this method, but Miller feedback cannot be used because it feeds the input signal around the PNP directly into the high impedance node, causing slewing problems and high frequency peaking. Compensation involves a capacitor to $V_{E E}$ on pin 14, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 V above V_{EE}. Bipolar input signals may be handled by connecting R12 to a positive reference voltage equal to the peak positive input level at pin 13.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, $R 12$ should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5.0 V , a clamp diode is recommended between pin 12 and ground.

If pin 12 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, thus decreasing the overall bandwidth.

MC1506L, MC1406L (continued)

APPLICATIONS INFORMATION

FIGURE 16 - OUTPUT CURRENT VOLTAGE CONVERSION

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of $2.0 \mu \mathrm{~s}$.

FIGURE 17

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of $2.0 \mu \mathrm{~s}$. See Motorola Application Note AN-459 for more details on this concept.

FIGURE 18

The positive voltage range may be extended by cascoding the output with a high beta common base transistor, Q1, as shown.

The output voltage range for this circuit is 0 volts to $B V_{\text {CBO }}$ of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.

APPLICATIONS INFORMATION (continued)

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1506L requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive, with the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a commonmode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since $\pm 15 \mathrm{~V}$ and +5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing R_{O} and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C_{O} may be decreased to maintain the same $\mathrm{R}_{\mathrm{O}} \mathrm{C}_{\mathrm{O}}$ product if maximum speed is desired.

Programmable Power Supply

The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1 -volt increments, ± 0.05 volt; or 0 to 31.5 volts in 0.5 -volt increments, ± 0.25 volt.

FIGURE 19 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipolar or Negative Output Voltage

The circuit of Figure 20 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6 -bit " 1 's" complement offset binary. Vref may be used as this auxiliary reference. Note that R_{O} has been doubled to 10 kilohms because of the anticipated 20 V ($p-p$) output range.

FIGURE 20 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6-bits magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 21 - POLARITY SWITCHING CIRCUIT
(6-Bit Magnitude Plus Sign D-to-A Converter)

APPLICATIONS INFORMATION (continued)

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1506L can be applied as a digital attenuator. See Figure 22. One advantage of this technique is that if $\mathrm{R}_{\mathrm{S}}=50$ ohms, no compensation capacitor is needed and a wide large signal bandwidth is achieved. The small and large signal bandwidths are now identical and are shown in Figure 15.

FIGURE 22 - PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

Panel Meter Readout

The MC1506L can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R12 or $V_{\text {ref }}$.

FIGURE 23 - PANEL METER READOUT CIRCUIT

The best frequency response is obtained by not allowing 112 to reach zero. R_{S} can be set for $a \pm 1.0 \mathrm{~mA}$ variation in relation to 112 . 112 can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word that makes ac coupling necessary.

FIGURE 24 - DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to $R 121$ and $R 122$ or $R 13_{1}$ and $R 13_{2}$. V_{O} will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R121 and R122 to a positive reference higher than the most positive input, and drive R131 and R132. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.

APPLICATIONS INFORMATION (continued)

FIGURE 25 - DIGITAL SUMMING and CHARACTER GENERATION

In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12 -bit D-to-A converter (see Accuracy Section).

FIGURE 27 - PROGRAMMABLE PULSE GENERATOR

Fast rise and fall times require the use of high speed switching transistors for the differential pair, Q4 and $\mathbf{Q 5}$. Linear ramps and sine waves may be generated by the appropriate reference input.

FIGURE 29 - ANALOG DIVISION BY DIGITAL WORD

This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I_{0} can be set at $62 \mu \mathrm{~A}$ so that 112 will have a maximum value of 3.938 mA for a digital bit input configuration of 111110.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

FIGURE 26 - PEAK DETECTING SAMPLE and HOLD (Features infinite hold time and optional digital output.)

Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output amplifier for unipolar operation.

FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE

Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

FIGURE 30 - ANALOG QUOTIENT OF TWO DIGITAL WORDS

MC1506L, MC1406L (continued)

APPLICATIONS INFORMATION (continued)

FIGURE 31 - ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)

Two Digit BCD Conversion

MC1506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, $10: 1$ current scaling can be achieved with a
resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten.

FIGURE 32 - DIGITAL QUOTIENT of TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

(MC1506 - Page 12)

Specifications and Applications Information

MONOLITHIC ANALOG - DIGITAL CONTROL CIRCUIT

...designed for wide application in analog-to-digital, interface and high-speed instrumentation systems. The MC1507L/MC 1407 L consists of a wide bandwidth operational amplifier and a high-speed, dual-threshold comparator.
The comparator, which has separate Up and Down outputs, also possesses a differential reference input that sets both comparator thresholds for equal levels - but of opposite polarities.
The high slew rate of the amplifier makes it particularly advantageous for use as a current-to-voltage converter for the MC1506L and the MC1508L-8 D-to-A converters. Moreover, the operational amplifier is useful as a high-speed buffer.
The MC1507L/MC1407L is well-suited for application with the above-mentioned monolithic D-to-A converters to produce an inexpensive high-speed tracking analog-to-digital converter.

- Operational Amplifier Features High Slew Rate - $20 \mathrm{~V} / \mu \mathrm{s}$ typical and Wide Bandwidth - 24 MHz typical Unity Gain Crossover
- Fast Dual Threshold Schottky Comparator - 75 ns typical Propagation Delay Time and Input Current of Only 0.4 $\mu \mathrm{A}$ typical
- MTTL and CMOS System Compatability
- Standard Supply Voltages of +5.0 and $\pm 15 \mathrm{Vdc}$
- Compatible with MC1508L-8 and MC1506L D-to-A Converters
- Comparator Thresholds Simultaneously Adjustable with a Single Reference Input Voltage

TYPICAL APPLICATIONS

- High-Speed Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- High-Speed Buffer
- Speech Conversion
- DAC Current-to-Voltage Converter
- Control Systems
- Window Comparator
- Peak Detecting Sample and Hold
- Voltage-to-Frequency Conversion
- Fast Integrator
- Signal Generators - Delta Modulation

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ untess otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages Logic Voltage Supply Positive Voltage Supply Negative Voltage Supply	$V_{\text {logic }}$ $V_{C C}$ VEE	$\begin{array}{r} +5.5 \\ +16.5 \\ -16.5 \end{array}$	Vdc
Differential Input Voltage Signal Amplifier Voltage Comparator Voltage Comparator Reference Voltage	$\begin{gathered} v_{16}-v_{15} \\ v_{6}-v_{5} \\ v_{11}-v_{4} \end{gathered}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 5.0 \end{aligned}$	V
Common-Mode Input Voltage Swing Amplifier Voltage Comparator Voltage Comparator Reference Voltage	VICRA VICRC $V_{\text {ICRC }}$ ref	$V_{C C}, V_{E E}$ $V_{\text {logic }}, V_{E E}$ $V_{\text {logic, }} V_{E E}$	V
Amplifier Output Short-Circuit Duration	${ }^{\text {t }}$ S	10	s
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 1000 \\ 6.0 \end{gathered}$	$\underset{\mathrm{mW}}{\mathrm{~mW}} \mathrm{o}^{\mathrm{o}} \mathrm{C}$
$\begin{array}{ll}\text { Operating Temperature Range } & \\ & \text { MC1507L } \\ & \text { MC1407L }\end{array}$	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

FIGURE 3 - CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+15 \mathrm{Vdc}, V_{E E}=-15 \mathrm{Vdc}, V_{\text {logic }}=+5.0 \mathrm{Vdc}, V_{\text {ref }}(t)=40 \mathrm{mVdc}, V_{6}=V_{4}=0 \mathrm{~V}\right.$,
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MC1507			MC1407			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage } \\ & R_{S} \leqslant 2.0 \mathrm{k} \leqslant \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=\mathrm{T}_{\text {low }}{ }^{*} \text { to } \mathrm{T}_{\text {high }}{ }^{*} \end{aligned}$	$\left\|\mathrm{V}_{10}\right\|$		10	$\begin{array}{\|r\|} 2.0 \\ 3: 0 \\ \hline \end{array}$	-	2.0	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	mV
$\begin{aligned} & \text { Open-Loop Voltage Gain } \\ & \left(\mathrm{V}_{\mathrm{O}}=0 \text { to }+10 \mathrm{~V}, 0 \text { to }-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{ks},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \end{aligned}$	$\mathrm{A}_{\text {vol }}{ }^{ \pm}$	10.000	$35,000$		5,000	20,000	-	V/V
$\begin{aligned} & \text { Input Bias Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }}=T_{\text {high }} \end{aligned}$	${ }^{\prime}$ IBA		0.6	$\begin{aligned} & 15 \\ & 2.5 \\ & \hline \end{aligned}$	-	1.2	$\begin{array}{r} 2.5 \\ 4.0 \\ \hline \end{array}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	IIOA		0.03	0.15 0.25	-	0.06	$\begin{array}{r} 0.30 \\ 0.45 \\ \hline \end{array}$	$\mu \mathrm{A}$
Common-Mode Input Voltage Swing	VICRA	± 11	Wrob	-	± 11	-	-	V
Common-Mode Rejection Ratio	CMRR	10,000	35,000	-	10,000	35,000	-	V/V
Output Impedance ($\mathrm{f}=20 \mathrm{~Hz}$)	z_{0}	-	18	- -7	-	1.8	-	k Ω
$\begin{aligned} & \text { Output Voltage Swing }\left(R_{L}=5.0 \mathrm{k} \Omega\right) \\ & V_{16}=-10 \mathrm{~V} \text { or } A_{V}=+1 \text { mode, } T_{A}=+25^{\circ} \mathrm{C} \\ & V_{16}=-10 \mathrm{~V} \text { or } A_{V}=+1 \text { mode, } T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & V_{16}=0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & V_{16}=0 \mathrm{~V}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}} \pm$	± 11 ± 10 $+11 .-1.0$ $+10 .-1.0$	$\begin{gathered} \pm 12 \\ +12,-20 \end{gathered}$		$\begin{array}{r} \pm 11 \\ \pm 10 \\ +11,-1.0 \\ +10,-1.0 \\ \hline \end{array}$	$\begin{gathered} \pm 12 \\ - \\ +12,-2.0 \\ - \\ \hline \end{gathered}$	-	v
```Unity Gain Crossover Frequency Compensated for Unity Gain \(\mathrm{C} 13=10 \mathrm{pF}\), (Pulse Margin \(=35^{\circ} \mathrm{C}\) typical) Open-Loop Noncompensated (Phase Margin \(=0^{\circ}\) typical)```	${ }^{\mathrm{f}} \mathrm{C}$		12   24		$\begin{array}{r}+ \\ - \\ - \\ \hline\end{array}$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	-	MHz
Large-Signal Step Response   Gain $=+1, V_{\text {in }}=0$ to 10 V (See Figure 16)   Slew Rate   Settling time to within $0.1 \%$   Gain $=+1, V_{\text {in }}=-10$ to $+10 \vee$ (See Figure 16)   Settling time to within $0.1 \%$   Gain $=-1, V_{\text {in }}=0$ to -10 V   Slew Rate   Settling time to within $0.1 \%$   Gain $=-10, V_{\text {in }}=0$ to -10 V   Slew Rate   Settling time to within $0.1 \%$   Gain $=-10, V_{\text {in }}=0$ to -1.0 V   Slew Rate   Settling time to within $0.1 \%$   Gain =-100, $\mathrm{V}_{\text {in }}=0$ to -100 mV   Settling time to within 0.1\%	SR $\mathrm{t}_{\text {setlg }}$ $\mathrm{t}_{\text {setig }}$ SR $\mathrm{t}_{\text {setlg }}$ SR $\mathrm{t}_{\text {setig }}$ SR $\mathrm{t}_{\text {setlg }}$ $\mathrm{t}_{\text {setlg }}$	10   $=$   10   $-$   10   10	20   0.8   1.1   20   0.8   20   0.8   20   0.8   20		10   $-$   10   -   10   -   10	20   1.1   20   0.8   20   0.8   20   0.8   2.0	-8 0.8 - - - - -	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
Small-Signal Step Response Propagation Delay Time (50\% to 50\%) Gain $=+1, V_{\text {in }}=-50 \mathrm{mV}$ to +50 mV	${ }^{t} \mathrm{pd}^{ \pm}$		$18$		-	18	-	ns
Power Bandwidth $\text { Gain }=+1, V_{\text {in }}=10 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	BW	$\begin{array}{r} 320 \\ \hline \end{array}$	$640$		320	640	-	kHz
Output Source Current (Short-circuit limited)	$\mathrm{I}_{\text {source }}$	10	17	30	10	17	30	mA
Output Sink Current	$\mathrm{I}_{\text {sink }}$	2.0	- 3.0	-	2.0	3.0	-	mA
Power Supply Sensitivity $V_{C C}$ varied $\pm 10 \%, V_{E E}$ constant $V_{E E}$ varied $\pm 10 \%, V_{C C}$ constand	$\begin{aligned} & \text { PSSA }{ }^{+} \\ & \text {PSSA }^{-} \end{aligned}$			150   150	-	-	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$

*T ${ }_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1507L, $0^{\circ} \mathrm{C}$ for MC1407L
${ }^{*} \mathrm{~T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1507L, $+75^{\circ} \mathrm{C}$ for MC1407L
COMPARATOR SECTION

Characteristic	Symbol	MC1507			MC1407			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Threshold, UP Output	$\mathrm{V}_{\text {th }}{ }^{+}$	36	40	44.	30	40	50	mV
Input Threshold, DOWN Output	$V_{\text {th }}{ }^{-}$	- -36	-40	-44	-30	-40	-50	mV
Input Threshold Range	$\left\|V_{\text {TR }}\right\|$		$\begin{array}{\|r\|} \hline-150 \mathrm{to} \\ +320 \\ \hline \end{array}$	$-2$	-	$\begin{array}{r} -150 \text { to } \\ +320 \\ \hline \end{array}$	-	mV
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }}{ }^{*} \text { to } T_{\text {high }}{ }^{*} \end{aligned}$	IIBC		$0.4$	1.5   1.5   25$\|$	-	0.8	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+15 \mathrm{Vdc}, V_{E E}=-15 \mathrm{Vdc}, V_{\text {logic }}=+5.0 \mathrm{Vdc}, V_{\text {ref }}(+)=40 \mathrm{mVdc}, V_{6}=V_{4}=0 \mathrm{~V}\right.$, $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)
COMPARATOR SECTION (continued)

Characteristic	Symbol	MC1507			MC1407			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	'100		0.01	$\begin{aligned} & 0.15 \\ & 0.25 \\ & \hline \end{aligned}$	-	0.02	$\begin{aligned} & 0.25 \\ & 0.40 \end{aligned}$	$\mu \mathrm{A}$
Reference Input Bias Current	'ref	-	4.0	18	-	4.0	18	$\mu \mathrm{A}$
Common-Mode Input Voltage Swing	VICRC	$\begin{array}{\|c\|} \hline-10 \text { to } \\ +1.0 \\ \hline \end{array}$	$4$	$4$	$\begin{array}{r} -10 \text { to } \\ +1.0 \\ \hline \end{array}$	-	-	V
Low-Level Logic Output Voltage $R_{L}=1.4 \mathrm{k} \Omega, T_{A}=T_{\text {low }}$ to $T_{\text {high }}$	$V_{O L}(D)$   $\mathrm{V}_{\mathrm{OL}}(\mathrm{U})$		$\begin{array}{\|c\|} 0.3 \\ 0.3 \\ \hline \end{array}$	$0.5$	-	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V
High-Level Logic Output Voltage $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$	$V_{O L}(\mathrm{D})$ $V_{O L}(U)$	4.0   4.0	$\begin{aligned} & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$	z-	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.95 \\ 4.95 \\ \hline \end{array}$	-	V
Output Sink Current (each output) $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$	$I_{\text {sink }}$	3.2			3.2	-	-	mA
Propagation Delay Time (each output) $V_{\text {in }}=0 \text { to } V_{\text {th }}+20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=1.4 \mathrm{k} \Omega$	$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$		75 75	+ +	-	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$	-	ns
Power Supply Sensitivity of Input Thresholds $V_{\text {logic }}$ varied $\pm 10 \%, V_{\text {EE }}$ constant $V_{E E}$ varied $\pm 10 \%, V_{C C}$ constant	$\begin{aligned} & \text { PSSC }^{+} \\ & \text {PSSC }^{-} \end{aligned}$			10   10	-	-	1.0	$\mathrm{mV} / \mathrm{V}$

AMPLIFIER AND COMPARATOR SECTIONS

Power-Supply Voltage Range (See Note 1.)   Positive Supply Voltage   Negative Supply Voltage   Logic Supply Voltage		$\begin{array}{r} +4.5 \\ -4.5 \\ +4.5 \end{array}$	$\begin{array}{r} +15 \\ -15 \\ +5.0 \end{array}$	$\begin{array}{r} +16.5 \\ -16.5 \\ +5.5 \end{array}$	$\begin{array}{r} +4.5 \\ -4.5 \\ +4.5 \\ \hline \end{array}$	$\begin{array}{r} +15 \\ -15 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +16.5 \\ -16.5 \\ +5.5 \end{array}$	Vdc
Power-Supply Currents Comparator $\mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {logic }}=5.0 \mathrm{~V}$   Positive Supply Current   Negative Supply Current   Logic Supply Current	$\begin{gathered} \text { ICC } \\ \text { IEE } \\ \text { I logic } \\ \hline \end{gathered}$		$\begin{aligned} & +40 \\ & -10 \\ & +16 \end{aligned}$	$\begin{array}{r} 46.0 \\ -13 \\ +20 \end{array}$	-	$\begin{array}{r} +4.0 \\ -10 \\ +16 \end{array}$	$\begin{aligned} & +8.0 \\ & -16 \\ & +25 \end{aligned}$	mA
Power Dissipation $\begin{aligned} & V_{E E}=-5.0 \mathrm{~V} \\ & V_{E E}=-15 \mathrm{~V} \end{aligned}$	$P_{\text {D }}$		$\begin{aligned} & 190 \\ & 290 \end{aligned}$	255   385	-	$\begin{aligned} & 190 \\ & 290 \end{aligned}$	$\begin{aligned} & 325 \\ & 485 \end{aligned}$	mW

Note 1. Amplifier Output Swing decreases with reduced $V_{C C}$ and $V_{E E}$ supply voltages. At $\pm 5.0$-volt supplies, common-mode and output swing voltages are typically $\pm 2.0$ volts.
*T $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1507L, $0^{\circ} \mathrm{C}$ for MC1407L
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1507L, $+75^{\circ} \mathrm{C}$ for MC1407L

## THREE-QUADRANT OPERATIONAL AMPLIFIER

The amplifier is a single-gain stage especially designed for high gain and fast response. Very high impedance current sources provide a typical resistance of 20 megohms at pin 13, which is the gain node of the circuit and its major RC pole. The input of the amplifier is protected against breakdown of the NPN differential pair, and the output is short-circuit protected. Since the amplifier is a single-gain stage with all NPN transistors in the signal path, it has one limitation when compared with standard operational amplifiers. The amplifier transfer characteristic, Figure 4, shows that the output can swing no more negative than -2.0 volts with respect to the inputs. Hence, the circuit is called a three-quadrant operational amplifier. The amplifier may be used as a standard operational amplifier in the noninverting unity gain mode with an output swing of $\pm 11 \mathrm{~V}$ minimum, and as an inverting amplifier to convert negative voltages to positive voltages. For output swings under 4.0 volts ( $p-p$ ), as in
active filter applications, the amplifier is especially useful since it offers four-quadrant operation with very wide bandwidth.

FIGURE 4 - TYPICAL TRANSFER CHARACTERISTIC FOR THREE-QUADRANT OPERATIONAL AMPLIFIER


TEST CIRCUITS AND WAVEFORMS
FIGURE 6 - THREE-QUADRANT OPERATIONAL AMPLIFIER PULSE RESPONSE WAVEFORMS (Applicable to Circuits of Figures 8 or 15) $\left(A_{V}=-1, R_{L}=5.0 \mathrm{k} \Omega, C_{L}(\right.$ total $\left.)=100 \mathrm{pF}\right)$


FIGURE 7 - SETTLING TIME DEFINITION


FIGURE 9 - AMPLIFIER PROPAGATION DELAY WAVEFORMS

$50 \mathrm{mV} / \mathrm{DIV}$

$t_{\text {pd }} \pm$ increases to 20 ns with $\mathrm{V}_{\text {in }}= \pm 200 \mathrm{mV}$
Note: The unity gain circuit of Figure 14 vields nearly identical results.

MC1507L , MC1407L (continued)

## AMPLIFIER GAIN SELECTION



FIGURE 13 - VOLTAGE GAIN $=-1$


FIGURE 15 - VOLTAGE GAIN = - 1


Optimum settling time: with $\mathrm{V}_{\text {in }}=10 \mathrm{~V}$ step, slews and settles to $0.1 \%$ in 800 ns.

NONINVERTING MODE

FIGURE 12 - VOLTAGE GAIN $\geqslant+2$


FIGURE 14 - VOLTAGE GAIN $=+1$


FIGURE 16 - VOLTAGE GAIN = +1


FIGURE 17 - OFFSET VOLTAGE ADJUSTMENT


## MC1507L, MC1407L (continued)

## ADJUSTABLE DUAL THRESHOLD COMPARATOR

## COMPARATOR

The comparator equivalent circuit is shown in Figure 18. It may be envisioned as two comparators with common inputs and a reference voltage source which sets equal and opposite thresholds. A positive reference voltage on pin 11 sets the thresholds as in the transfer characteristic of Figure 19. If, for example, pin 6 is grounded, when the input signal on pin 5 exceeds $V_{\text {th }}(+)$, the UP output goes high. When the input on pin 5 exceeds $V_{\text {th }}(-)$ in the negative direction, the DOWN output goes high.
In applications where a single output is desired, as in a window comparator, the outputs may be connected in "wired OR" if the reference voltage polarity is reversed. This inverts the output polarity so that when the input is between thresholds the outputs are in a normal high state. It also interchanges the outputs so that pin 7 re sponds to an input of $\mathrm{V}_{\text {th }}(+)$, and pin 9 to an input of $V_{\text {th }}(-)$. See Figure 20, which is the transfer characteristic curve. When the outputs are connected together, a low output state results for an input outside the threshold window.

FIGURE 19 - COMPARATOR TRANSFER CHARACTERISTIC, POSITIVE REFERENCE VOLTAGE


FIGURE 18 - COMPARATOR EQUIVALENT CIRCUIT

$v_{\text {tef }}=v_{11} \cdot v_{4}$
$E \rightarrow$ Misniatch Error - See Electrical Characteristics Tables ' $E=V_{\text {th }}-V_{\text {tet }}$

FIGURE 20 - COMPARATOR TRANSFER CHARACTERISTIC, NEGATIVE REFERENCE VOLTAGE


OPERATION OF OPERATIONAL AMPLIFIER OR COMPARATOR ONLY

FIGURE 21 - INDIVIDUAL AMPLIFIER OPERATION ONLY


FIGURE 22 - INDIVIDUAL COMPARATOR OPERATION ONLY


MC1507L , MC1407L (continued)

TYPICAL CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)


FIGURE 25 - TYPICAL POWER SUPPLY CURRENT versus $\mathrm{V}_{\mathrm{EE}}$


FIGURE 27 - COMPARATOR RESPONSE versus INPUT OVERDRIVE


FIGURE 24 - TYPICAL SOURCE CURRENT LIMIT versus TEMPERATURE (OPERATIONAL AMPLIFIER)


FIGURE 26 - POWER SUPPLY CURRENT versus TEMPERATURE


FIGURE 28 - COMPARATOR THRESHOLD versus $V_{\text {ref }}$


Vref, REFERENCE INPUT VOLTAGE (mV)

# FIGURE 29 - COMPARATOR THRESHOLD 

 versus TEMPERATURE

APPLICATIONS INFORMATION

FIGURE 30 - SINGLE THRESHOLD COMPARATOR


FIGURE 32 - D-TO-A CURRENT-TO-VOLTAGE CONVERTER (POSITIVE OUTPUT)


FIGURE 31 - WINDOW COMPARATOR


FIGURE 33 - D-TO-A CURRENT-TO-VOLTAGE CONVERTER (BIPOLAR OUTPUT)


## APPLICATIONS INFORMATION (continued)

## TRACKING A-TO-D CONVERTERS

A tracking A-to-D converter is a system with a digital output which continuously follows the analog input. It can be thought of as an "analog-to-digital operational amplifier" since as a system it has many similar specifications: slew rate, propagation delay, settling time, and adjustable scale factor. The tracking converter is normally used in high-speed applications which require conversion times on the order of 1 -to- $100 \mu \mathrm{~s}$.

Successive approximation conversion is the other major method used for A-to-D conversion in this speed category. The advantages of the tracking system over successive approximation system include: 1) the elimination of the sample and hold function at the input, 2) a digital output which is continuously present and can be used in asynchronously sampled systems, and 3) a conversion or update period equal to slightly more than one D-to-A converter settling time. The major disadvantage of the method is that if the system slew rate is exceeded, the conversion time increases. A full scale input step function requires a conversion time of $2^{\text {n }}$ times the tracking update rate, where $n$ is the number of bits. The full-scale conversion time can be shortened, however, using methods which will be described later, and shown in Figure 36.

Another advantage of the tracking system is that, unlike the successive approximation approach, the output always indicates a value equal to the present or very recent input level. Therefore, in many instances latches or special timing are unnecessary for data readout.

## BASIC 8-BIT SYSTEM

An easily constructed tracking A-to-D converter using the MC1407L, two up/down counters, a quad NAND gate, and a monolithic D-to-A converter such as the MC1406 or MC1408L-8 is shown in Figure 34. Assuming a full scale input range of 10 volts, the reference voltage is chosen so that the UP and DOWN thresholds are at least $\pm 1$ LSB from ground. For an 8 -bit converter, this would be $10 \mathrm{~V} / 256$ or $\pm 40 \mathrm{mV}$. The converter operation is described by assuming that $\mathrm{V}_{\text {in }}=0$ and the counter output is 00000000 . The D-to-A converter is pulling no current so the drop across $R_{\text {in }}$ is essentially zero. Now assume $V_{\text {in }}$ rises until it reaches 40 mV , which is the UP comparator threshold. The UP comparator fires and on the next positive edge of the clock, a pulse is fed to the UP input of the counter. As shown in the converter transfer characteristic, the counter output increases to 00000001 . The D-to-A converter now pulls $8 \mu \mathrm{~A}$, so the summing node voltage drops down to zero. In a similar manner the system could count up to any value up to the full scale 11111111 count.

Since the D-to-A converter output current levels are rated to be accurate to within $\pm 1 / 2$ LSB, the comparator thresholds must be set to allow for this error. If, for instance, all the D-to-A converter error occurred at one transition, one output could be $1 / 2$ LSB or $4 \mu \mathrm{~A}$ low and the next would be $4 \mu \mathrm{~A}$ high. This would be a current
step of $16 \mu \mathrm{~A}$ instead of $8 \mu \mathrm{~A}$, and the summing node would pull back to -40 mV instead of zero. If the comparator thresholds were closer to ground than $\pm 40 \mathrm{mV}$, this transition would cause the DOWN comparator to fire and the D-to-A current would decrease. Thus the system would oscillate between two output values for this particular transition. This may or may not be undesirable, depending on system requirements. Both outputs would be within $\pm 1$ LSB of the correct value, which is a standard A-to-D converter accuracy specification. However, the end of conversion feature described in a later section cannot be used unless the system settles to a stable value.

With thresholds of $\pm 1$ LSB, the system has a typical hysteresis of $\pm 1$ LSB, as shown on the transfer characteristic of Figure 35. If the input voltage is ramping up and has just fired the UP comparator, the summing node pulls back to a typical value of zero. With a change in ramp direction, the input must decrease by 1 LSB to fire the DOWN comparator. This hysteresis allows for D-to-A converter error and also lends noise immunity to the system.

An A-to-D converter using a D-to-A converter in its feedback loop cannot be any more accurate than the acuracy of the D-to-A converter plus $1 / 2$ LSB quantization error. In the case of the MC1508L-8, MC1408L-8, MC1506, and MC1406, this D-to-A accuracy is specified as $\pm 1 / 2$ LSB. In a tracking converter with the comparator thresholds set to zero, the A-to-D converter output toggles between two values, each value within $\pm 1$ LSB of the correct value. The $\pm 1 / 2$ LSB error of the D-to-A converter is added to the $\pm 1$ LSB error of the converter, resulting in a system error of $\pm 11 / 2$ LSB. The comparator offset or mismatch error ( $\pm E$ ) can be trimmed out and eliminated as a source of additional error.

If the MC1507 comparator thresholds are set to $\pm 1$ LSB, the $\pm 1 / 2$ LSB of the D-to-A converter must also be added, again, giving a system error of $\pm 11 / 2$ LSB. In addition, the comparator mismatch error, ( $+E$ ), must be added to both the UP threshold and the DOWN threshold.

In order to insure thresholds of at least $\pm 40 \mathrm{mV}$, $V_{\text {ref }}$ for the comparator should be no lower than $\pm 44$ mV for the MC1507L and $\pm 50 \mathrm{mV}$ for the MC1407L. This results in an additional $\pm 0.2$ LSB error in the MC1507L and an additional $\pm 0.5$ LSB error in the MC1407L. Total system error for an 8-bit converter, with $\pm 1$ LSB threshold to eliminate toggling and to improve noise immunity, is therefore $\pm 1.7 \mathrm{LSB}$ for a system with the MC1507L, $\pm 2.0$ LSB for a system with the MC1407L.

High-speed operation is possible with this converter due to the use of current summing. No operational amplifier is used in the feedback loop, so the principal delays involved are the D-to-A converter settling time and the comparator delay time. The loop delay in Figure 34 is approximately 500 ns, allowing 150 ns for the MC1507L comparator with a small overdrive. The maximum clock frequency is determined by the loop delay.

## MC1507L , MC1407L (continued)

## APPLICATIONS INFORMATION (continued)

Using a clock with a period less than 500 ns would make it possible for two counts to enter the D-to-A converter before the UP comparator turns "off." The turn "on" time of the MC1508L- 8 current switches is longer than the turn "off" time so with a clock of slightly over 2 MHz , the steps on the up side of the sine wave of Figure 38 would be twice as large. However, even though a faster clock provides only 7 -bit resolution when tracking a sine wave, the system will still settle to 8 -bit accuracy for dc or square wave inputs. This principle is used in the high speed system of Figure 36. When a clock frequency of greater than 2 MHz is used a 100 pF capacitor between the UP and DOWN com

TYPICAL PERFORMANCE TABLE FOR BASIC 8-BIT SYSTEM

	$2-\mathrm{MHz}$ CLOCK   (for continuously   varying inputs)	$5-\mathrm{MHz}$ CLOCK   (for dc or step   inputs)
Normal Conversion   or Update Time	$0.5 \mu \mathrm{~s}$	$0.2-1.0 \mu \mathrm{~s}$
Typical Full-Scale   Conversion Time	$128 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$
Slew Rate   $(10 \mathrm{~V}$ Input Range)	$0.08 \mathrm{~V} / \mu \mathrm{s}$	$0.2 \mathrm{~V} / \mu \mathrm{s}$
Power Bandwidth   $(10 \mathrm{~V}(p-p)$ Input)	2.6 kHz	6.4 kHz

FIGURE 34 - TRACKING A-TO-D CONVERTER: BASIC 8-BIT SYSTEM


FIGURE 35 - 8-BIT TRACKING A-TO-D CONVERTER
TRANSFER CHARACTERISTIC


## MC1507L , MC1407L (continued)

## APPLICATIONS INFORMATION (continued)

## HIGH-SPEED SYSTEM

When the input voltage to the tracking A-to-D converter varies more rapidly than the system slew rate, the output will be unable to follow the input and thus there is no need for the D-to-A converter to settle between each clock pulse. A second MC1507L may be employed as a window detector to indicate when the converter summing node is more than a given voltage from the comparator deadband, as shown in Figure 36. When the window detector fires, the MC4024 voltage controlled
multivibrator quadruples its clock rate, and the system switches to the "Panic Mode". When the summing node comes back within 130 mV of ground, the system resumes its normal clock rate and cleanly settles into the tracking mode.

The Panic Mode system is well suited to multiplexed data acquisition systems where the voltage presented to the input may step quickly between various levels. Also, the power bandwidth has quadrupled and the system will follow 25 kHz full scale sine waves with slightly more distortion than when in the normal tracking mode.

FIGURE 36 - TRACKING A-TO-D CONVERTER HIGH-SPEED SYSTEM (With Panic Mode Operation and Voltage Reference)


FIGURE 37 - TRACKING A-TO-D CONVERTER WAVEFORMS WITH STEP INPUT


FIGURE 38 - BASIC 8-BIT TRACKING A-TO-D CONVERTER SINE WAVERESPONSE

$200 \mu \mathrm{~s} / \mathrm{DIV}$ CLOCK FREQUENCY $=2.0 \mathrm{MHz}$
Digital output has been converted to analog using an ultra-high-speed D-to-A converter.

FIGURE 40 - BASIC 8-BIT TRACKING A-TO-D CONVERTER STEP RESPONSE

$20 \mu \mathrm{~s} / \mathrm{DIV}$
CLOCK FREQUENCY $=5.0 \mathrm{MHz}$

FIGURE 39 - EXPANDED PORTION OF FIGURE 38


FIGURE 41 - HIGH-SPEED 8-BIT TRACKING A TO D CONVERTER STEP RESPONSE

$20 \mu \mathrm{~s} /$ DIV
Clock Frequency increases from 5.0 MHz to 20 MHz with voltage controlled MC4024 in Panic Mode operation.

	BASIC-SYSTEM   3 MHz CLOCK   (for continuously varying inputs)	PANIC MODE SYSTEM $5 \mathrm{MHz} / 20 \mathrm{MHz}$ CLOCK   (for dc or step inputs)
Normal Conversion or Update Time	$0.33 \mu \mathrm{~s}$	0.2-1.0 $\mu \mathrm{s}$
Typical Full-Scale Conversion Time	$21 \mu \mathrm{~s}$	$4.0 \mu \mathrm{~s}$
Slew Rate (10 V Input Range)	$0.5 \mathrm{~V} / \mu \mathrm{s}$	$3.3 \mathrm{~V} / \mu \mathrm{s}$
Power BAndwidth $10 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ Input	16 kHz	105 kHz

APPLICATIONS INFORMATION (continued)
TRACKING CONVERTER SYSTEM OPTIONS

FIGURE 42 - UP/DOWN COUNTER WITH SINGLE-CLOCK INPUT


FIGURE 44 - NEGATIVE INPUT


## END OF CONVERSION

A useful feature of the dual threshold tracking A-to-D converter is a simple method of sensing end of conversion. When the system has reached equilibrium the summing-node voltage is in the comparator deadband and both UP and DOWN outputs are low. These outputs can be fed to an OR gate to provide an $\overline{\mathrm{EOC}}$ indication, or to three NAND gates as shown in Figure 46. This is a feature which is not available with a single threshold system, since its comparator is continually changing state.

If the A-to-D converter data is stored in latches, the $\overline{\mathrm{EOC}}$ output can be fed to a NAND gate with the latch strobe command to insure accurate data transfer. If the strobe command occurs while the system is searching, the output from the previous conversion will be retained. However, an advantage of the tracking system is that, unlike successive approximation, its output always reflects a value equal to the present or very recent input level.

FIGURE 43 - BIPOLAR INPUT


FIGURE 45 - DIFFERENTIAL INPUT


FIGURE 46 - END OF CONVERSION OPTIONS


## APPLICATIONS INFORMATION (continued)

FIGURE 47 - DIGITAL TRACK AND HOLD


FIGURE 48 - CONNECTION CONFIGURATION FOR POSITIVE INPUT AND OUTPUT


FIGURE 50 - CONNECTION CONFIGURATION FOR POSITIVE INPUT AND NEGATIVE OUTPUT


PEAK DETECTING TRACK AND HOLD CIRCUIT WITH DIGITAL OUTPUT AND INFINITE HOLD TIME

The basic tracking A-to-D converter may be used as a positive peak detecting track and hold system by disabling the DOWN counting function. This may be performed by gating or by eliminating the DOWN connections. The system may be reset to zero by the counter reset or by re-enabling the DOWN function, shorting the converter input to ground, and allowing the output to track to zero. If the DOWN gate is disconnected from the MC74193 counter, this counter input must be connected high to allow proper functioning of the UP counter.

A negative peak detecting track and hold system is implemented by modifying the input of the above circuit to accept negative input signals, as shown in Figure 47.
TRACK AND HOLD OR PEAK DETECTION WITH ANALOG OUTPUT

The basic tracking converter system may be modified for use in the track and hold function or as a peak detecting track and hold. Analog output and infinite hold time are available with the methods shown in Figures 48-51.

FIGURE 49 - CONNECTION CONFIGURATION FOR NEGATIVE INPUT AND OUTPUT


FIGURE 51 - CONNECTION CONFIGURATION FOR NEGATIVE INPUT AND POSITIVE OUTPUT


## SUGGESTED DESIGN APPLICATIONS

FIGURE 52 - SUCCESSIVE APPROXIMATION A-TO-D CONVERTER


FIGURE 53-HIGH-SPEED INTEGRATOR


50 ns Div

FIGURE 54 - SET-POINT CONTROL CIRCUIT (Featuring variable deadband and hysteresis)


## MC1507L , MC1407L (continued)

## SUGGESTED DESIGN APPLICATIONS (continued)

FIGURE 55 - TRANSFER CHARACTERISTIC OF SET-POINT CONTROL

Variable Deadband Set-Point Controls are used in control systems to compensate for large time constants in the controlled systems. The dual output control shown in Figure 54 controls two variables, such as heating and cooling, that keep a controlled variable, such as temperature, centered on the set point or operating point.

The set point voltage need not be produced by the potentiometer but can be a reference voltage supplied by the controlled system. As the set point moves linearly this voltage could come from an MC1508L-8 D-to-A converter which would provide digital control of the set point. Deadband could be controlled by the system in a similar manner.


FIGURE 56 - HIGH-SPEED DELTA MODULATOR
(with optional hysteresis)


FIGURE 57 - WIDE-RANGE VOLTAGE-TO-FREQUENCY CONVERTER
(Useful As Voltage-Controlled Multivibrator, FM Modulator, or Sawtooth Generator.)


## Specifications and Applications Information

## MONOLITHIC EIGHT-BIT MULTIPLYING

 DIGITAL-TO-ANALOG CONVERTEREIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

MONOLITHIC SILICON INTEGRATED CIRCUIT
. . . designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage.

- Relative Accuracy: $\pm 0.19 \%$ Error maximum (MC1508L-8, MC1408L-8)
- Seven and Six-Bit Accuracy Available (MC1408L-7, MC1408L-6)
- Fast Settling Time - 300 ns typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible
- Output Voltage Swing - +0.5 V to -5.0 V
- High-Speed Multiplying Input Slew Rate $4.0 \mathrm{~mA} / \mu \mathrm{s}^{\circ}$
- Standard Supply Voltages: +5.0 V and


LSUFFIX CERAMIC PACKAGE CASE 620


TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Audio Digitizing and Decoding
- Successive Approximation A-to-D Converters
- Programmable Power Supplies
- 2 1/2 Digit Panel Meters and DVM's
- Analog-Digital Multiplication
- Waveform Synthesis
- Digital-Digital Multiplication
- Sample and Hold
- Analog-Digital Division
- Peak Detector
- Programmable Gain and Attenuation
- Digital Addition and Subtraction
- Speech Compression and Expansion
- CRT Character Generation
- Stepping Motor Drive

[^14]MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} +5.5 \\ -16.5 \end{array}$	Vdc
Digital Input Voltage	$V_{5}$ thru $V_{12}$	+5.5,0	Vdc
Applied Output Voltage	$\mathrm{V}_{\mathrm{O}}$	+0.5,-5.2	Vdc
Reference Current	114	5.0	mA
Reference Amplifier Inputs	$V_{14}, V_{15}$	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	Vdc
Power Dissipation (Package Limitation) Ceramic Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{array}{r} 1000 \\ 6.7 \end{array}$	$\underset{\mathrm{mW}}{\mathrm{~mW}}{ }^{\circ} \mathrm{C}$
Operating Temperature Range     MC1508L8       MC1408L Series	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \frac{\mathrm{Vref}}{\mathrm{R14}}=2.0 \mathrm{~mA}, \mathrm{MC} 1508 \mathrm{~L}-8: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$.
MC 1408L Series: $T_{A}=0$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Relative Accuracy (Error relative to full scale Io) MC1508L-8, MC1408L8 MC1408L-7, See Note 1 MC1408L6, See Note 1	4	$E_{r}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \pm 0.19 \\ & \pm 0.39 \\ & \pm 0.78 \end{aligned}$	\%
Settling Time to within $1 / 2 \mathrm{LSB}$ [includes tPLH] $\left.\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}\right)$ See Note 2	5	ts	-	300	-	ns
Propagation Delay Time $T_{A}=+25^{\circ} \mathrm{C}$	5	tPLH, TPHL	-	30	100	ns
Output Full Scale Current Drift		$\mathrm{TClO}_{0}$	-	-20	-	PPM $/{ }^{\circ} \mathrm{C}$
Digital Input Logic Levels (MSB) High Level, Logic " 1 " Low Level, Logic " 0 "	3	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$2.0$		$\begin{gathered} - \\ 0.8 \end{gathered}$	Vdc
Digital Input Current (MSB) High Level, $\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}$ Low Level, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	3	$\begin{aligned} & I_{1 H} \\ & I_{1 I} \end{aligned}$	-	$\begin{gathered} 0 \\ -0.4 \end{gathered}$	$\begin{aligned} & 0.04 \\ & -0.8 \end{aligned}$	mA
Reference Input Bias Current (Pin 15)	3	115	-	-1.0	-3.0	$\mu \mathrm{A}$
Output Current Range $\begin{aligned} & V_{E E}=-5.0 \mathrm{~V} \\ & V_{E E}=-6.0 \text { to }-15 \mathrm{~V} \end{aligned}$	3	'OR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 4.2 \end{aligned}$	mA
$\begin{aligned} & \text { Output Current } \\ & \mathrm{V}_{\text {ref }}=2.000 \mathrm{~V}, \mathrm{R} 14=1000 \Omega \end{aligned}$	3	. ${ }^{0}$	1.9	1.99	2.1	mA
Output Current (All bits low)	3	'O(min)	-	0	4.0	$\mu \mathrm{A}$
Output Voltage Compliance ( $\mathrm{E}_{\mathrm{r}} \leq 0.19 \%$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )   Pin 1 grounded   Pin 1 open, $\mathrm{V}_{\text {EE }}$ below -10 V	3	$\mathrm{V}_{0}$	-	-	$\begin{aligned} & -0.6,+0.5 \\ & -5.0,+0.5 \end{aligned}$	Vdc
Reference Current Slew Rate	6	SR $1_{\text {ref }}$	-	4.0	-	$\mathrm{mA} / \mu \mathrm{s}$
Output Current Power Supply Sensitivity		PSRR(-)	-	0.5	2.7	$\mu \mathrm{A} / \mathrm{V}$
Power Supply Current (All bits low)	3	$\begin{aligned} & \mathrm{I} \mathrm{CC} \\ & \mathrm{I} E \mathrm{E} \end{aligned}$	-	$\begin{gathered} +13.5 \\ -7.5 \end{gathered}$	$\begin{aligned} & +22 \\ & -13 \end{aligned}$	mA
Power Supply Voltage Range $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$	3	$\begin{aligned} & V_{\text {CCR }} \\ & V_{\text {EER }} \end{aligned}$	$\begin{aligned} & +4.5 \\ & -4.5 \end{aligned}$	$\begin{aligned} & +5.0 \\ & -15 \end{aligned}$	$\begin{array}{r} +5.5 \\ -16.5 \end{array}$	Vdc
Power Dissipation All bits low $V_{E E}=-5.0 \mathrm{Vdc}$   $V_{E E}=-15 \mathrm{Vdc}$   All bits high $\begin{aligned} & V_{E E}=-5.0 \mathrm{Vdc} \\ & V_{E E}=-15 \mathrm{Vdc} \end{aligned}$	3	$P_{\text {D }}$	- - -	$\begin{array}{r} 105 \\ 190 \\ \\ 90 \\ 160 \end{array}$	$\begin{gathered} 170 \\ 305 \\ - \end{gathered}$	mW

Note 1. All current switches are tested to guarantee at least $50 \%$ of rated output current.
Note 2. All bits switched.

MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued)

TEST CIRCUITS
Figure 3 - Notation definitions test circuit

$V_{1}$ and I/ apply to inputs A1

$$
\text { thru } A 8
$$

The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

$$
\begin{aligned}
& { }^{\prime} O=K\left\{\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right\} \\
& \text { where } K \cong \frac{V_{r e f}}{R 14} \\
& \text { and } A_{N}=" 1 " \text { if } A_{N} \text { is at high level } \\
& A_{N}=" O A_{N} \text { if } A_{N} \text { is at low level }
\end{aligned}
$$

FIGURE 5 - TRANSIENT RESPONSE and SETTLING TIME


## TEST CIRCUITS (continued)

## FIGURE 6 - REFERENCE CURRENT SLEW RATE MEASUREMENT


$\frac{d l}{d t}=\frac{1}{R_{L}} \frac{d V}{d t} \underset{\substack{\text { Slewing } \\ \text { Time }}}{0} 2.0 \mathrm{~mA}$


FIGURE 9 - MC1508L-8/MC1408L SERIES EQUIVALENT CIRCUIT SCHEMATIC
DIGITAL INPUTS


## CIRCUIT DESCRIPTION

The MC1508L-8 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides
a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is $255 / 256$ of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

# MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued) 

## GENERAL INFORMATION

## Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must aiways flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current I14. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of $1.0,2.5$ and 5.0 kilohms, minimum capacitor values are 15 , 37, and 75 pF . The capacitor may be tied to either $\mathrm{V}_{\mathrm{EE}}$ or ground, but using $V_{E E}$ increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to $\mathrm{V}_{E E}$ on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 -volts above the $\mathrm{V}_{\text {EE }}$ supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15 .

When a dc reference voltage is used, capacitive bypass to ground is recommended. The $5.0-\mathrm{V}$ logic supply is not recommended as a reference voltage. If a well regulated $5.0-\mathrm{V}$ supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5.0 V , a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

## Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.6 to +0.5 volts at $+25^{\circ} \mathrm{C}$, due to the current switching methods employed in the MC1508L-8. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC1508L-8 may be extended to -5.0 V volts by opening the circuit at pin 1 . The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will vield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of $R_{L}$ up to 500 ohms do not significantly affect performance, but a 2.5 -kilohm load increases "worst case" settling time to $1.2 \mu \mathrm{~s}$ (when all bits are switched on).

Refer to the subsequent text section on Settling Time for more details on output loading

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1 . The value of this voltage will be the maximum allowable negative output swing.

## Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -6.0 volts, due to the increased voltage drop across the 350 -ohm resistors in the reference current amplifier.

## Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1508L-8 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1508L-8 has a very low full scale current drift with temperature.

The MC1508L-8/MC1408L Ser ies is guaranteed accurate to within $\pm 1 / 2$ LSB at $+25^{\circ} \mathrm{C}$ at a full scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA , with the loss of one LSB $=8.0 \mu \mathrm{~A}$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA . This is an optional step since the MC1508L-8 accuracy is essentially the same between 1.5 and 2.5 mA . Then the MC1508L-8 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16 -bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 , or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.19 \%$ specification provided by the MC1508L-8.

## Multiplying Accuracy

The MC1508L-8 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of $1.6 \mu \mathrm{~A}$ extra current at the output terminal. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4.0 mA , the $1.6 \mu \mathrm{~A}$ contributes an error of 0.1 LSB . This is well within eight-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1508L-8 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a dc reference current is 0.5 to 4.0 mA .

## GENERAL INFORMATION (Continued)

## Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for settling to within $\pm 1 / 2$ LSB, for 8 -bit accuracy, and 200 ns to $1 / 2$ LSB for 7 and 6 -bit accuracy. The turn off is typically under 100 ns . These times apply when $R_{L} \leqslant 500$ ohms and $C_{O} \leqslant 25$ pF.

The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns . In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns , while bit A6 turns "on" in 150 ns and "off" in 80 ns .

The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC-1508L-8. A 1.0 -kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns . Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 10 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

$\mathrm{V}_{\mathrm{I}}$, LOGIC INPUT VOLTAGE (Vdc)

FIGURE 12 - OUTPUT CURRENT versus OUTPUT VOLTAGE (See text for pin 1 restrictions)


FIGURE 11 - TRANSFER CHARACTERISTIC versus TEMPERATURE (A5 thru A8 thresholds lie within range for A1 thru A4)


FIGURE 13 - MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range)


## TYPICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 14 - REFERENCE INPUT FREQUENCY RESPONSE


```
Unless otherwise specified:
\(\mathrm{R} 14=\mathrm{R} 15=1.0 \mathrm{k} \Omega\)
\(\mathrm{C}=15 \mathrm{pF}\), pin 16 to \(\mathrm{V}_{\mathrm{EE}}\)
\(\mathrm{R}_{\mathrm{L}}=50 \Omega\), pin 4 to GND
Curve A: Large Signal Bandwidth Method of Figure 7
\(\mathrm{V}_{\text {ref }}=2.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) offset 1.0 V above GND
Curve B: Small Signal Bandwidth
Method of Figure \(7 \mathrm{R}_{\mathrm{L}}=250 \Omega\)
\(V_{\text {ref }}=50 \mathrm{mV}(p-p)\) offset 200 mV above GND
Curve C: Large and Small Signal Bandwidth
Method of Figure 25 (no op-ampl, \(\mathrm{R}_{\mathrm{L}}=50 \Omega\))
\(\mathrm{R}_{\mathrm{S}}=50 \Omega\)
\(V_{\text {ref }}=2.0 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{S}}=100 \mathrm{mV}(\mathrm{p}-\mathrm{p})\) centered at 0 V
```

FIGURE 15 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE (all bits low)


FIGURE 16 - TYPICAL POWER SUPPLY CURRENT versus $V_{E E}$ (all bits low)


APPLICATIONS INFORMATION
FIGURE 17 - OUTPUT CURRENT TO VOLTAGE CONVERSION


Theoretical $V_{0}$
$v_{O}=\frac{V_{\text {ref }}}{R 14}\left(R_{O}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{r e f}$, R14 or $R_{O}$ so that $V_{O}$ with all digital inputs at high level is equal to 9.961 volts.
$v_{O}=\frac{2 v}{1 k}(5 k)\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]$ $=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}$

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1508L-8 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of $2.0 \mu \mathrm{~s}$.

FIGURE 18


An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of $2.0 \mu \mathrm{~s}$. See Motorola Application Note AN-459 for more details on this concept.


The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

## FIGURE 20 - EXTENDING POSITIVE VOLTAGE RANGE



The output voltage range for this circuit is 0 volts to $B V_{C B O}$ of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor ( R ) to $\mathrm{V}_{E E}$ maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.

## Combined Output Amplifier and Voltage Reference

For many of its applications the MC1508L-8 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since $\pm 15 \mathrm{~V}$ and +5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing $R_{O}$ and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. $C_{O}$ may be decreased to maintain the same $\mathrm{R}_{\mathrm{O}} \mathrm{C}_{\mathrm{O}}$ product if maximum speed is desired.

## APPLICATIONS INFORMATION (continued)

## Programmable Power Supply

The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 volts in 0.1 -volt increments, $\pm 0.05$ volt, or 0 to 5.1 volts in 20 mV increments, $\pm 10 \mathrm{mV}$.

FIGURE 21 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT


## Bipolar or Negative Output Voltage

The circuit of Figure $\mathbf{2 2}$ is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 8 -bit " 1 's" complement offset binary. V ${ }_{\text {ref }}$ may be used as this auxiliary reference. Note that $\mathrm{R}_{\mathrm{O}}$ has been doubled to 10 kilohms because of the anticipated $20 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ output range.

FIGURE 22 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

$V_{O}=\frac{V_{\text {ref }}}{R_{14}}\left(R_{O}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]-\frac{V_{r e f}}{R_{B}}\left(R_{O}\right)$

FIGURE 23 - BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT


## APPLICATIONS INFORMATION (continued)

## Polarity Switching Circuit, 8-Bit Magnitude

Plus Sign D-to-A Converter
Bipolar outputs may also be obtained by using a polarity switch ing circuit. The circuit of Figure 24 gives 8 -bit magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and $\mathbf{- 1 . 0}$. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.


Programmable Gain Amplifier or Digital Attenuator
When used in the multiplying mode the MC1508L-8 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if $R_{S}=50$ ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.

The best frequency response is obtained by not allowing $l_{14}$ to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. $\mathrm{R}_{\mathrm{S}}$ can be set for a $\pm 1.0 \mathrm{~mA}$ variation in relation to $I_{14}$. $I_{14}$ can never be negative.

The output current is al ways unipolar. The quiescent dc output current level changes with the digital word which makes ac coupling necessary.

FIGURE 25 - PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT


## Panel Meter Readout

The MC1508L-8 can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or $V_{\text {ref }}$

FIGURE 26 - PANEL METER READOUT CIRCUIT


FIGURE 27 - DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION


## APPLICATIONS INFORMATION (continued)

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R141 and R142 or R151 and R152. VO will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R141 and R14 2 to a positive reference higher than the most positive input, and drive R151 and R152. This yields high input impedance, bipolar differential and common-mode range.

FIGURE 28 - DIGITAL SUMMING and CHARACTER GENERATION


FIGURE 30 - NEGATIVE PEAK DETECTING SAMPLE AND HOLD


FIGURE 31 - PROGRAMMABLE PULSE GENERATION


Fast rise and fall times require the use of high-speed switching transistors for the differential pair, Q 4 and Q 5 . Linear ramps and sine waves may be generated by the appropriate reference input.

FIGURE 32 - PROGRAMMABLE CONSTANT CURRENT SOURCE


Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

## APPLICATIONS INFORMATION (continued)

FIGURE 33 - ANALOG DIVISION BY DIGITAL WORD


This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, IO can be set at $16 \mu \mathrm{~A}$ so that l 14 will have a maximum value of 3.984 mA for a digital bit input configuration of 00000001

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

FIGURE 35 - ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)


$$
\begin{aligned}
& v_{O}=-I_{O 1} R_{O}=\frac{v_{\text {ref }}}{R 14_{1}}\{A\} R_{O} \\
& I_{O_{2}}=\frac{\{B\}\left|v_{O}\right|}{R 14_{2}}=\frac{\{B\}}{R 14_{2}}\left[R_{O}\left(\frac{v_{\text {ref }}}{R 14_{1}}\right)\{A\}\right] \\
& \text { Since } R_{O}=R 14_{2} \text { and } K=\frac{v_{\text {ref }}}{R 14_{1}} \\
& I_{O 2}=K\{A\}\{B\} \quad K \text { can be an analog variable. }
\end{aligned}
$$

## MC1508L-8, MC1408L-8, MC1408L-7, MC1408L-6 (continued)

APPLICATIONS INFORMATION (continued)


Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of
4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L-6 may be used for the least significant word.

FIGURE 37 - DIGITAL QUOTIENT OF TWO ANALOG VARIABLES
or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter An UP/DOWN counter and dual threshold comparator can be and dual threshold comparator can be used to provide faster operation and continuous conversion.


## WIDEBAND VIDEO AMPLIFIER

. .. designed for use as a high-frequency differential amplifier with operating characteristics that provide a flat frequency response from dc to 40 MHz .

- High Gain Characteristics

$$
A_{V}=93 \text { typ }
$$

- Wide Bandwidth - dc to 40 MHz typ
- Large Output Voltage Swing
4.5 Vp-p typical @ $\pm 6.0$ V Supply
- Low Output Distortion

THD $\leqslant 1.5 \%$ typ




See Packaging Information Section for outline dimensions.

## MC1510G, MC1410G (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+8.0	Vdc
	VEE	-8.0	Vdc
Differential Input Signal	$V_{\text {IDR }}$	$\pm 5.0$	Volts
Common Mode Input Swing	VICR	$\pm 6.0$	Volts
Load Current	IL	10	mA
Output Short Circuit Duration	$\mathrm{t}_{\text {s }}$	5.0	s
Power Dissipation (Package Limitation) Metal Can Derate above $T_{A}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	$\begin{array}{r} 680 \\ 4.6 \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range   MC1410   MC1510	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+6.0 \mathrm{Vdc}, V_{E E}=-6.0 \mathrm{Vdc}, R_{L}=5.0 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1510.			MC1410			Unit	
		Min	Typ	Max	Min	Typ	Max		
Single Ended Voltage Gain	$\mathrm{A}_{\mathrm{v} \text { (se) }}$	-75	93	110	60	90	120	V/V	
Output Impedance $(f=20 \mathrm{kHz})$	$\mathrm{Z}_{\text {out }}$		$35$		-	35	-	$\Omega$	
Input Impedance $(f=20 \mathrm{kHz})$	$z_{i n}$		$6.0$		-	6.0	-	$k \Omega$	
Bandwidth ( -3.0 dB )	BW	-	40	-	-	40	-	MHz	
Output Voltage Swing $(\mathrm{f}=100 \mathrm{kHz})$	$\mathrm{V}_{0}$		$4.5$		-	4.5	-	Vp-p	
Single Ended Output Distortion ( $\mathrm{e}_{\text {in }}<0.2 \%$ Distortion)	THD		$1.5$	$5.0$	-	2.0	-	\%	
Input Common Mode Voltage Range	VICR		$\pm 1.0$		-	$\pm 1.0$	-	V	
Common Mode Voltage Gain $\left(V_{\text {in }}=0.3 \mathrm{Vrms}, f=100 \mathrm{kHz}\right)$	A ${ }_{\text {cm }}$	$-30$	$-45$	$4$	-20	-40	-	dB	
Common Mode Rejection Ratio	CMRR	$\checkmark$	- 85	-	-	85	-	dB	
Input Bias Current $\left(I_{1 B}=\frac{I_{1}+I_{2}}{2}\right), \text { Differential Output }=0$	$\left\|\\|_{18}\right\|$		$20$	80	-	50	100	$\mu \mathrm{A}$	
Input Offset Current $\left(1_{10}=1_{1}-1_{2}\right)$	H101		$3.0$	$20$	-	5.0	30	$\mu \mathrm{A}$	
```Output Offset Voltage Differential Mode ( \(\mathrm{V}_{\text {in }}=0\) ) Common Mode (Differential Output \(=0\) )```	$\begin{aligned} & \mathrm{V}_{\mathrm{OO}(\mathrm{DM})} \\ & \mathrm{V}_{\mathrm{OO}(\mathrm{CM})} \end{aligned}$	$26$	$05$	$\frac{1.3}{3.5}$	$2.0$	$\begin{aligned} & 0.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	Vdc	
Step Response	$\begin{gathered} \mathrm{t}_{\mathrm{TH}} \mathrm{HL} \\ \mathrm{t} \text { PHL, } \mathrm{tPLH} \\ \mathrm{t}_{\mathrm{T} L H} \end{gathered}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	12 12	$-$	$\begin{aligned} & 10 \\ & 9.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & - \\ & 15 \end{aligned}$	ns	
$\begin{aligned} & \text { Average Temperature Coefficient of } \\ & \text { Input Offset Voltage } \\ & \text { (} \mathrm{R}_{S}=50 \Omega, \mathrm{~T}_{A}=\mathrm{T}_{\text {low }}{ }^{*} \text { to } \mathrm{T}_{\text {high }}{ }^{* *} \text {) } \\ & \left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}\right) \\ & \hline \end{aligned}$	$\Delta V_{10} / \Delta T$		$\begin{array}{r} \pm 3.0 \\ \pm 60 \end{array}$		-	$\begin{aligned} & \pm 3.0 \\ & \pm 6.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
DC Power Dissipation (Power Supply $= \pm 6.0 \mathrm{~V}$)	PD		150	220	-	165	220	mW	
Equivalent Average Input Noise Voltage $\left(f=10 \mathrm{~Hz} \text { to } 500 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0\right)$	V_{n}		5.0		-	5.0	-	$\mu \mathrm{V}$	

MC1510G, MC1410G (continued)

TYPICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 3
POWER DISSIPATION versus SUPPLY VOLTAGE

FIGURE 5
VOLTAGE GAIN versus TEMPERATURE

FIGURE 7
INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 4
VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 6
DC OUTPUT VOLTAGE versus TEMPERATURE

FIGURE 8
OUTPUT NOISE VOLTAGE versus SOURCE IMPEDANCE

MC1510G, MC1410G (continued)

TYPICAL CHARACTERISTICS

FIGURE 9
LIMITING CHARACTERISTICS @ 30 MHz

FIGURE 10 LIMITING CHARACTERISTICS versus FREQUENCY

TYPICAL APPLICATIONS

FIGURE 11
ENVELOPE DETECTOR

FIGURE 12
SINGLE STAGE WIDEBAND AMPLIFIER

FIGURE 13
WEIN BRIDGE OSCILLATOR

MC1514 MC1414

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

... designed for use in level detection, low-level sensing, and memory applications.

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current
2.8 mA Minimum (Each Comparator) for MC1514
1.6 mA minimum (Each Comparator) for MC1414
- Differential Input Characteristics

Input Offset Voltage $=1.0 \mathrm{mV}$ for MC1514
$=1.5 \mathrm{mV}$ for MC1414
Offset Voltage Drift $=3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for MC1514
$=5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for MC1414

- Short Propagation Delay Time - 40 ns typical
- Output Compatible with All Saturating Logic Forms

$$
\mathrm{V}_{\mathrm{O}}=+3.2 \mathrm{~V} \text { to }-0.5 \mathrm{~V} \text { typical }
$$

MAXIMUM RATINGS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +14 \\ & -7.0 \end{aligned}$	Vdc
Differential Mode Input Voltage Range	VIDR	± 5.0	Vdc
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 7.0	Vdc
Peak Load Current	IL	10	mA
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_{A}=25^{\circ} \mathrm{C}$ Ceramic Flat Package Derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Plastic Dual In -Line Package Derate above $T_{A}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 1000 \\ 6.0 \\ 500 \\ 3.3 \\ 625 \\ 5.0 \end{gathered}$	
Operating Temperature Range $\begin{aligned} & \text { MC1514 } \\ & \\ & \text { MC1414 }\end{aligned}$	${ }^{T} A$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

See Packaging Information Section for outline dimensions.

MC1514, MC1414 (continued)

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+12 \mathrm{Vdc}, V_{E E}=-6 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.) (Each Comparator)

Characteristic	Symbol	MC1514			MC1414			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}{ }^{*}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}{ }^{*}\right) \end{aligned}$	V_{10}	$-$	1.0 $-$ $-$	2.0 3.0 3.0	-	1.5	$\begin{aligned} & 5.0 \\ & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	mVdc
Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$	-	3.0	- 8	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $\begin{aligned} & \left(\mathrm{V}_{O}=1.4 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{O}=1.8 \mathrm{Vdc}, T_{A}=T_{\text {low }}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, T_{A}=T_{\text {high }}\right) \end{aligned}$	110		10 - -	$\begin{array}{r} 3.0 \\ 7.0 \\ 3.0 \\ \hline \end{array}$	-	1.0	$\begin{aligned} & 5.0 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\mu \mathrm{Adc}$
Input Bias Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{Vdc}, T_{A}=T_{\text {low }}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, T_{A}=T_{\text {high }}\right) \end{aligned}$	IIB		12	$\begin{aligned} & 20 \\ & 45 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 40 \end{aligned}$	μ Adc
Open Loop Voltage Gain $\begin{aligned} & \left(T_{A}=25^{\circ} C\right) \\ & \left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	$A_{\text {vol }}$	1250 1000	1700		$\begin{gathered} 1000 \\ 800 \end{gathered}$	1500		V/V
Output Resistance	R_{O}	-	200	-	-	200	-	ohms
Differential Voltage Range	VIDR	± 5.0	-	T -2	± 5.0	-	-	Vdc
High Level Output Voltage $\left(V_{I D} \geqslant 5.0 \mathrm{mV}, 0 \leqslant 10 \leqslant 5.0 \mathrm{~mA}\right)$	V_{OH}	25	3.2		2.5	3.2	4.0	Vdc
Low Level Output Voltage $\left(\mathrm{V}_{1 D} \geqslant-5.0 \mathrm{mV}, \mathrm{I}^{\mathrm{OS}}=2.8 \mathrm{~mA}\right)$ $\left(V_{I D} \geqslant-5.0 \mathrm{mV}, \mathrm{I}_{\mathrm{OS}}=1.6 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL }}$	-10	-0.5	0	-1.0	-0.5		Vdc
$\begin{array}{\|l} \begin{array}{l} \text { Output Sink Current } \\ \left(V_{\text {ID }} \geqslant-5.0 \mathrm{mV}, \mathrm{~V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}\right) \end{array} \end{array}$	'os		3.4		1.6	2.5	-	mAdc
Input Common Mode Voltage Range $\left(V_{E E}=-7.0 \mathrm{Vdc}\right)$	VICR				± 5.0	-	-	Vdc
Common-Mode Rejection Ratio $\left(\mathrm{V}_{\mathrm{EE}}=-7.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}} \leqslant 200 \Omega\right.$)	CMRR	80	100		70	100	-	dB
Strobe Low Level Current $\left(V_{1 L}=0\right)$	IIL			2.5	-	-	2.5	mA
Strobe High Level Current $\left(\mathrm{V}_{1 \mathrm{H}}=5.0 \mathrm{Vdc}\right)$	1/H			10	-	-	1.0	$\mu \mathrm{A}$
Strobe Disable Voltage $\left(\mathrm{V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{Vdc}\right)$	$V_{\text {IL }}$			0.4	-	-	0.4	Vdc
Strobe Enable Voltage ($\mathrm{V}_{\mathrm{OH}} \geqslant 2.4 \mathrm{Vdc}$)	$\mathrm{V}_{1 \mathrm{H}}$	3.5		6.0	3.5	-	6.0	Vdc
Propagation Delay Time (Figure 1)	$\begin{aligned} & \text { tPLH } \\ & t_{\text {PH }} \end{aligned}$		20		-	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	-	ns
Strobe Response Time (Figure 2)	$\begin{aligned} & \mathrm{t}_{\mathrm{so}} \\ & \mathrm{t}_{\mathrm{sr}} \end{aligned}$		$\frac{15}{60}$		-	$\begin{array}{r} 15 \\ 6.0 \end{array}$	-	ns
Total Power Supply Current, Both Comparators $\left(\mathrm{V}_{\mathrm{O}} \leqslant 0\right)$	$\begin{aligned} & \text { ICC } \\ & \text { IEE } \\ & \hline \end{aligned}$		$\begin{aligned} & 128 \\ & 11 \end{aligned}$	$\begin{aligned} & 18 \\ & 14 \end{aligned}$	-	$\begin{gathered} 12.8 \\ 11 \end{gathered}$	$\begin{aligned} & 18 \\ & 14 \end{aligned}$	mAdc
Total Power Consumption, Both Comparators	$\mathrm{P}_{\text {D }}$	-	230	300	-	230	300	mW

${ }^{*} T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1514, $0^{\circ} \mathrm{C}$ for MC1414
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1514, $+75^{\circ} \mathrm{C}$ for MC1414

FIGURE 1 - PROPAGATION DELAY TIME

FIGURE 2 - STROBE RESPONSE TIME

TYPICAL CHARACTERISTICS
(Each Comparator)

FIGURE 5 - INPUT OFFSET CURRENT
versus TEMPERATURE

FIGURE 7 - GAIN VARIATION WITH POWER SUPPLY VOLTAGE

FIGURE 4 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 6 - INPUT BIAS CURRENT

FIGURE 8 - VOLTAGE GAIN versus TEMPERATURE

FIGURE 10 - POWER DISSIPATION versus TEMPERATURE

FIGURE 11 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS

FIGURE 12 - SINK CURRENT versus TEMPERATURE

FIGURE 13 - CROSSTALK ${ }^{\dagger}$

${ }^{\dagger}$ Worst case condition shown - no load.
TIME, 50 ns/div

MC1520
 MC1420

MONOLITHIC DIFFERENTIAL OUTPUT OPERATIONAL AMPLIFIER

. . . designed for use in general-purpose or wide-band differential amplifier applications, especially those requiring differential outputs.

Typical Characteristics

- Differential Input and Differential Output
- Wide Closed-Loop Bandwidth; 10 MHz
- Differential Gain; 70 dB
- High Input Impedance; 2.0 megohms:
- Low Output Impedance; 50 ohms

OPERATIONAL AMPLIFIER
MONOLITHIC SILICON INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	+8.0	Vdc
Differential Input Signal	V^{-}	-8.0	
Load Current	$\mathrm{V}_{\text {in }}$	± 8.0	Vdc
Power Dissipation (Package Limitation)	$\mathrm{I}_{\mathrm{L} 1}, \mathrm{I}_{\mathrm{L} 2}$	15	mA
Metal Package	P_{D}		
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		680	mW
Flat Package		4.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		500	mW
Operating Temperature Range MC 1520	$\mathrm{~T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ}{ }^{\circ} \mathrm{C}$
		0 to +75	
Storage Temperature Range	MC 1420		$\mathrm{~T}_{\text {stg }}$

CIRCUIT SCHEMATICS

FIGURE 1 - CIRCUIT SCHEMATIC

FIGURE 2 - EQUIVALENT CIRCUIT

contains pin number for metal can package
contains pin number tor flat package

SINGLE-ENDED ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

		MC1520			MC1420			Unit
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain $\left(T_{\text {low }} \text { (2) } \leqq T_{A} \leqq T_{\text {high }} \text { (2) }\right)$	AVOL	$\begin{gathered} 1000 \\ 60 \end{gathered}$	$\begin{aligned} & 1500 \\ & 64 \end{aligned}$	$-$	750	$\begin{gathered} 1500 \\ 64 \end{gathered}$	-	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~dB} \end{aligned}$
Output Impedance ($\mathrm{f}=20 \mathrm{~Hz}$)	$Z_{\text {out }}$		50.	100	-	50	-	ohms
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	0.5	2.0		-	2.0	-	megohms
$\begin{aligned} & \text { Output Voltage Swing } \\ & \quad\left(R_{L}=7.0 \mathrm{k} \Omega[\text { Figure }]\right) \end{aligned}$	V_{0}	± 3.5	± 4.0		± 3.0	± 4.0	-	$V_{\text {peak }}$
Input Common-Mode Voltage Swing	$\mathrm{CMV}_{\text {in }}$	42.0	± 3.0	- S^{3}	-	± 3.0	-	$V_{\text {peak }}$
Common-Mode Rejection Ratio	$\mathrm{CM}_{\text {rej }}$	75	90	1, - -	60	90	-	dB
Input Bias Current $\left(\left[I_{b}=\frac{I_{1}+I_{2}}{2}\right], T_{A}=+25^{\circ} \mathrm{C}\right)$	Ib				-	2.0	40	$\mu \mathrm{A}$
$\begin{array}{\|l} \hline \text { Tnput Offset Current } \\ \left(I_{\text {io }}=I_{1}-I_{2}\right) \\ \left(I_{\text {io }}=I_{1}-I_{2}, T_{A}=T_{\text {low }}\right) \\ \left(I_{\text {io }}=I_{1}-I_{2}, T_{A}=T_{\text {high }}\right) \end{array}$	$H_{i o}$		30 - -	100 200 200	-	30	200	nA
$\begin{aligned} & \text { Input Offset Voltage } \\ & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \end{aligned}$	$\left\|V_{i o}\right\|$		5.0	10	-	5.0	15	mV
$\begin{aligned} & \text { Step Response } \\ & \left\{\begin{array}{l} \text { Gain }=1.0,10 \% \text { Overshoot } \\ R_{1}=10 \mathrm{k} \Omega \\ R_{2}=10 \mathrm{k} \Omega \\ R_{3}=5.0 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{s}}=39 \mathrm{pF} \end{array}\right. \end{aligned}$	$\begin{gathered} t_{f} \\ t_{p d} \\ \mathrm{t}_{\text {out }} / \mathrm{dt}(1) \end{gathered}$		80 70 50		-	$\begin{aligned} & 80 \\ & 70 \\ & 5.0 \end{aligned}$	-	$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
$\left\{\begin{array}{l} \text { Gain }=10,10 \% \text { Overshoot } \\ R_{1}=10 \mathrm{k} \Omega \\ \mathrm{R}_{2}=100 \mathrm{k} \Omega \\ \mathrm{R}_{3}=10 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{s}}=10 \mathrm{pF} \end{array}\right.$	$\begin{gathered} \mathrm{t}_{\mathrm{f}} \\ \mathrm{t}_{\mathrm{pd}} \\ \mathrm{dV} \mathrm{~V}_{\text {out }} / \mathrm{dt}(1) \end{gathered}$		$\begin{aligned} & 80 \\ & 70 \\ & 15 \end{aligned}$		-	$\begin{aligned} & 80 \\ & 70 \\ & 15 \end{aligned}$	-	$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
$\left\{\begin{array}{l} \text { Gain }=100, \text { No Overshoot } \\ R_{1}=1.0 \mathrm{k} \Omega \\ R_{2}=100 \mathrm{k} \Omega \\ R_{3}=1.0 \mathrm{k} \Omega \\ C_{s}=1.0 \mathrm{pF} \end{array}\right.$	$\begin{gathered} t_{\mathrm{t}} \\ \mathrm{~d}_{\mathrm{pd}} \\ \mathrm{t}_{\text {out }} / \mathrm{dt}(1) \end{gathered}$		$\begin{aligned} & 80 \\ & 70 \\ & 30 \end{aligned}$		-	$\begin{aligned} & 80 \\ & 70 \\ & 30 \end{aligned}$	$-$	$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
$\left\{\begin{array}{l} \text { Open Loop, No Overshoot } \\ R_{1}=50 \Omega \\ R_{2}=\infty \\ R_{3}=50 \Omega \\ C_{s}=0 \end{array}\right.$	$\left\|\begin{array}{c} \mathrm{tf}_{\mathrm{f}} \\ \mathrm{~d}_{\mathrm{pd}} \\ \mathrm{t}_{\mathrm{out}} / \mathrm{dt}(1) \end{array}\right\|$		$\begin{aligned} & 180 \\ & 70 \\ & 35 \end{aligned}$		-	$\begin{aligned} & 180 \\ & 70 \\ & 35 \end{aligned}$	$-$	$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
Bandwidth: (Open Loop[Figure 4]) (Closed Loop[Unity Gain]) (Figure 5)	-		$\begin{aligned} & 2.0 \\ & 10 \end{aligned}$		-	$\begin{aligned} & 2.0 \\ & 10 \end{aligned}$	$-$	MHz
Input Noise Voltage (Open Loop) $(5.0 \mathrm{~Hz}-5.0 \mathrm{MHz})$	$V_{n}(\mathrm{in})$		11	15	-	11	-	$\mu \mathrm{V}$ (rms)
Average Temperature Coefficient of Input Offset Voltage ($R_{S}=50 \Omega, T_{A}=T_{\text {low }}$ to $T_{\text {high }}$)	$\left\|\mathrm{TCV}_{\text {io }}\right\|$				-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
DC Power Dissipation $\left(V_{0}=0\right)$	$P_{\text {D }}$		120	240	-	120	240	mW
Power Supply Sensitivity ($\mathrm{V} \pm$ Constant)	$\mathrm{S}^{ \pm}$		250	450	-	250	-	$\mu \mathrm{V} / \mathrm{V}$

[^15]DIFFERENTIAL ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)
TEST CIRCUIT

$\begin{gathered} \text { Figure } \\ \text { no. } \\ \hline \end{gathered}$	$\begin{gathered} \text { CURVE } \\ \text { NO. } \end{gathered}$	MODE	VOltage GAIN	TEST CONDITIONS				NOISE OUTPUT mV (rms)
				$\mathrm{R}_{1}(\Omega)$	$\mathrm{R}_{2}(\Omega)$	$\mathrm{R}_{3}(\Omega)$	$\mathrm{CS}_{\text {S }}(\mathrm{pF})$	
3	1	INVERTING	100	1.0 k	100 k	1.0 k	1.0	2.0
	2	INVERTING	10	10 k	100 k	10 k	10	0.55
	3	INVERTING	1.0	10 k	10 k	5.0 k	39	0.17
	4	NON-INVERTING	1.0	∞	10.k	10 k	39	0.17
4	1	NON-INVERTING	AVOL	0	-	50	1.0	1.0
	2	NON-INVERTING	AVOL	0	∞	50	10	2.0
	3	NON-INVERTING	AVol	0	∞	50	39	5.2
5	1	NON-INVERTING	100	100	10 k	100	1.0	2.0
	2	NON-INVERTING	10	1.0 k	9.1 k	910	10	0.55
	3	NON-INVERTING	1.0	∞	10 k	10 k	39	0.17

FIGURE 5 - CLOSED LOOP VOLTAGE GAIN versus FREQUENCY

MC1520, MC1420 (continued)

TYPICAL OUTPUT CHARACTERISTICS
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}\right.$, unless otherwise noted.)

FIGURE 6 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

FIGURE 8 - SINGLE ENDED OUTPUT VOLTAGE versus LOAD RESISTANCE

FIGURE 7 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 9 - OUTPUT NOISE VOLTAGE versus SOURCE RESISTANCE

MC1530, MC1430 MC1531, MC1431

MONOLITHIC OPERATIONAL AMPLIFIER

. . . designed for use as a summing amplifier, inte grator, or amplifier with operating characteristics as a OPERATIONAL AMPLIFIERS INTEGRATED CIRCUIT function of the external feedback components.
The MC1531 (MC1431) is provided with Darlington inputs to increase input impedance; otherwise the MC1531 (MC1431) circuit is identical with the MC1530 (MC1430) circuit.

- High Open Loop Voltage Gain - 4500 min (MC1530)
- 2500 min (MC1531)
- High Input Impedance - 10 Kilohms min (MC1530)
- 1.0 Megohm min (MC1531)
- Low Output Impedance - 50 Ohms max
- High Slew Rate $-6.0 \mathrm{~V} / \mu \mathrm{s}$ typ $@ \mathrm{~A}_{\mathrm{vs}}=10$
- High Open Loop Bandwidth - 2.0 MHz typ (MC1530)
0.4 MHz typ (MC1531)
MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwsie noted)

Rating	Symbol	Value	Unit
Power Supply Voltage MC1530, MC1531 MC1430, MC1431	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ $V_{C C}, V_{E E}$	$\begin{aligned} & +9.0,-9.0 \\ & +8.0,-8.0 \end{aligned}$	Vdc
Differential Input Signal	$V_{\text {ID }}$ (max)	± 5.0	Volts
Load Current	I_{L}	10	mA
Power Dissipation (Package Limitation) Metal Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Flat Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Dual In-Line Plastic Package MC1430, MC1431 Derate above $+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	$\begin{array}{r} 680 \\ 4.6 \\ 500 \\ 3.3 \\ \\ 400 \\ 3.3 \end{array}$	
Operating Temperature Range MC1530, MC1531 MC1430, MC1431	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Package Plastic Package MC1430, MC1431	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+175 \\ & -55 \text { to }+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

F SUFFIX

CERAMIC PACKAGE
G SUFFIX
METAL PACKAGE CASE 6028

See Packaging Information Section for outline dimensions.

MC1530, MC1531, MC1430, MC1431 (continued)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

		MC1530			MC1430			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
Input Bias Current	$1 / 8$	-	3.0	10	-	5.0	15	$\mu \mathrm{Adc}$
Input Offset Current	110	-	02	2.0	-	0.4	4.0	$\mu \mathrm{Adc}$
Input Offset Voltage $T_{A}=+25^{\circ} C^{\prime}$ $T_{A}=T_{\text {low }}$ $T_{A}=T_{\text {high }}(1)$	V_{10}	-	10	$\begin{aligned} & 5.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	-	2.0 -	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	mVdc
Single-Ended Input Impedance (Open-Loop, $\mathrm{f}=30 \mathrm{~Hz}$)	${ }^{\text {is }}$	10	20	-	5.0	15	-	k Ω
Common-Mode Input Voltage Swing	VICR	± 20	± 27	-	± 2.0	± 2.5	-	$V_{p k}$
Equivalent Input Noise Voltage (Open-Loop, $\mathrm{R}_{\mathrm{s}}=50$ ohms, $\mathrm{BW}=5.0 \mathrm{MHz}$)	${ }^{\mathrm{N}}$		10	-	-	10	-	$\mu \mathrm{V}$ (rms)
Common-Mode Rejection Ratio ($f=100 \mathrm{~Hz}$)	CMRR	70	75	-	65	75	-	dB
$\begin{aligned} & \text { Open-Loop Voltage Gain, } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$A_{\text {vol }}$	4500	5000	12.500		5000	-	V/V
Bandwidth (Open-Loop, -3.0 dB, no roll-off capacitance)	BW	10	2.0		1.0	2.0	-	MHz
	z_{0}		25	50	-	25	50	ohms
Output Voltage Swing ($\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$ ohms)	V_{O}	± 4.5	± 5.2	-	± 4.0	± 5.0	-	$V_{p k}$
Power Supply Sensitivity ($\mathrm{R}_{\mathrm{s}} \leqslant 10 \mathrm{k} \Omega$)	PSRR	\square	100		-	100	-	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	${ }^{1}{ }^{+}, 1 D^{-}$		92	12.5	-	9.2	12.5	mAdc
DC Quiescent Power Dissipation ($\mathrm{V}_{\mathrm{O}}=0$)	$P_{\text {D }}$	\bigcirc	110	150	-	110	150	mW

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

		Mc1531	MC1531		MC1431			
Characteristic	Symbol*	Min	Typ	Max	Min	Typ	Max	Unit
Input Bias Current	$1{ }_{1 B}$	\checkmark	0.025	0.150	-	0.1	0.3	$\mu \mathrm{Adc}$
Input Offset Current	110	\%	0.003	0.025	-	0.01	0.1	$\mu \mathrm{Adc}$
Input Offset Voltage $T_{A}=+25^{\circ} \mathrm{C}$ $T_{A}=T_{\text {low }}(1)$ $T_{A}=T_{\text {high }}(1)$	$\mathrm{V}_{\text {io }}$		30	10 18 16.5	-	5.0	15	mVdc
Single-Ended Input Impedance (Open-Loop, $\mathrm{f}=30 \mathrm{~Hz}$)	$\mathrm{z}_{\text {is }}$	1000	- 2000		300	600	-	k Ω
Common-Mode Input Voltage Swing	$\mathrm{V}_{\text {ICR }}$	± 20	5×24		± 2.0	± 2.2	-	$V_{p k}$
Equivalent Input Noise Voltage (Open-Loop, $\mathrm{R}_{\mathrm{s}}=50$ ohms, $\mathrm{BW}=5.0 \mathrm{MHz}$)	${ }^{\mathrm{N}}$		20		-	20	-	$\mu \mathrm{V}$ (rms)
Common-Mode Rejection Ratio ($\mathrm{f}=100 \mathrm{~Hz}$)	CMRR	65	65		60	75	-	dB
$\begin{aligned} & \text { Open-Loop Voltage Gain } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$A_{\text {vol }}$	2500	3500	7000		3500	-	V/V
Bandwidth (Open-Loop, -3.0 dB , no roll-off capacitance)	BW	-	0.4		-	0.4	-	MHz
Output Impedance ($f=30 \mathrm{~Hz}$)	z_{0}		25	50	-	25	50	ohms
Output Voltage Swing ($\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$ ohms)	V_{O}	± 4.5	± 5.2		± 4.0	± 5.0	-	$V_{p k}$
Power Supply Sensitivity ($\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$)	PSRR		100		-	100	-	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$1 D^{+}, 10^{-}$		9.2	12.5	-	9.2	12.5	mAdc
DC Quiescent Power Dissipation ($\mathrm{V}_{\mathrm{O}}=0$)	$P_{\text {D }}$	\%	110	150	-	110	150	mW

STEP RESPONSE, TYPICAL CHARACTERISTICS
$\left(V_{C C}=+6.0 \mathrm{Vdc}, V_{E E}=-6.0 \mathrm{Vdc}, V_{O}=400 \mathrm{mVdc}, T_{A}=+25^{\circ} \mathrm{C}\right)$

TYPICAL OUTPUT CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{E E}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

FIG. NO.	CURVE NO.	voltage GAIN	DEVICE NO.	TEST CONDITIONS			
				$\mathrm{R}_{1}(\mathrm{k} \Omega)$	$\mathrm{R}_{2}(\mathrm{k} \Omega)$	$\mathrm{R}_{3}(\Omega)$	$\mathrm{C}_{1}(\mathrm{pF})$
5	1,2	100	MC1530/MC1430, MC1531/MC1431	1.0	100	1.0 k	750
	3	10	MC1530/MC1430, MC1531/MC1431	10	100	10 k	6800
	4	1	MC1530/MC1430, MC1531/MC1431	10	10	5.0 k	33,000
6	1	100	MC1530/MC1430	1.0	100	1.0 k	750
	2	10	MC1530/MC1430	10	100	10 k	6800
	3	10	MC1530/MC1430	1.0	10	1.0 k	6800
	4	1	MC1530/MC1430	10	10	5.0 k	33,000
	5	1	MC1530/MC1430	1.0	1.0	500	33,000
7	1	100	MC1531/MC1431	1.0	100	1.0 k	750
	2	10	MC1531/MC1431	10	100	10 k	6800
	3	1	MC1531/MC1431	10	10	5.0 k	33,000
8	1	AVOL	MC1530/MC1430	0	∞	0	0
	2	AVOL	MC1530/MC1430	0	∞	0	750
	3	AVOL	MC1530/MC1430	0	∞	0	6800
	4	A VOL	MC1530/MC1430	0	∞	0	33,000
9	1	AVOL	MC1531/MC1431	0	∞	0	0
	2	AVOL	MC1531/MC1431	0	∞	0	750
	3	AVOL	MC1531/MC1431	0	∞	0	6800
	4	AVOL	MC1531/MC1431	0	∞	0	33,000

FIGURE 5 - LARGE SIGNAL SWING versus FREQUENCY

FIGURE 7 - MC1531/MC1431 VOLTAGE GAIN versus FREQUENCY

FIGURE 6 - MC 1530/MC1430 VOLTAGE GAIN versus FREQUENCY

FIGURE 8 - MC 1530/MC1430 OPEN LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 11 - OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

FIGURE 12 - COMMON-MODE SWING versus POWER SUPPLY VOLTAGE

FIGURE 13 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

MONOLITHIC OPERATIONAL AMPLIFIER

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- High-Performance Open Loop Gain Characteristics AVOL $=60,000$ typical
- Low Temperature Drift $- \pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing $\pm 13 \mathrm{~V}$ typical @ $\pm 15 \mathrm{~V}$ Supply
- Low Output Impedance $-Z_{\text {out }}=100$ ohms typical

See Packaging Information Section for outline dimensions

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MC1533			MC1433			Unit
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain $\begin{aligned} & \left.\left(T_{A}=+25^{\circ} \mathrm{C}\right) \text { to } T_{\text {high }}(1)\right) \\ & \left(T_{A}=T_{\text {low }}\right. \end{aligned}$	AVOL.	$\begin{aligned} & 40.000 \\ & 35.000 \end{aligned}$	$\begin{aligned} & 60,000 \\ & 50,000 \end{aligned}$		$\begin{aligned} & 30,000 \\ & 20,000 \end{aligned}$	$\begin{aligned} & 60,000 \\ & 50,000 \\ & \hline \end{aligned}$	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	$Z_{\text {out }}$		100	150	-	100	150	Ω
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$		1000		300	600	-	k Ω
$\begin{gathered} \text { Output Voltage Swing } \\ \left(R_{L}=10 \mathrm{k} \Omega\right) \\ \left(R_{L}=2 \mathrm{k} \Omega\right) \\ \hline \end{gathered}$	v_{o}	$\begin{aligned} & \pm 12 \\ & \pm 11 \end{aligned}$	$\begin{array}{r} \pm 13 \\ +12 \\ \hline \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$V_{\text {peak }}$
Input Common Mode Voltage Swing	$C M V_{\text {in }}$	$\begin{aligned} & +9.0 \\ & -8.0 \end{aligned}$	$\begin{array}{r} 10 \\ -9.0 \end{array}$		$\begin{array}{r} +8.0 \\ -8.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & -9.0 \end{aligned}$	-	$V_{\text {peak }}$
Common Mode Rejection Ratio	$\mathrm{CM}_{\text {rej }}$	90	100	S	80	100	-	dB
$\begin{array}{\|c} \hline \text { Input Bias Current } \\ \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ \left(T_{A}=T_{\text {low }}\right) \\ \hline \end{array}$	'b		0.5	1.0 3.0	-		$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$
$\begin{array}{\|c} \hline \text { Input Offset Current } \\ \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ \left(T_{A}=T_{\text {low }}\right) \\ \left(T_{A}=T_{\text {high }}\right) \\ \hline \end{array}$	$\left\|i_{\text {io }}\right\|$		0.03	0.15 0.5 0.2	-	0.1	$\begin{aligned} & 0.50 \\ & 0.75 \\ & 0.75 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Voltage (2) } \\ & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}, \mathrm{T}_{\text {high }}\right) \end{aligned}$	$\left\|V_{i o}\right\|$		1.0	5.0	-	1.0	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	mV
$\begin{aligned} & \begin{array}{l} \text { Step Response }\left(C_{2}=10 \mathrm{pF}\right) \\ \left\{\begin{array}{l} \text { Gain }=100,10 \% \text { overshoot, } \\ R_{1}=10 \mathrm{k} \Omega, R_{2}=1.0 \mathrm{M} \Omega, \\ R_{3}=100 \Omega, C_{1}=0.01 \mu \mathrm{~F} \end{array}\right\} \end{array} \\ & \left\{\begin{array}{l} \text { Gain }=10, \text { no overshoot, } \\ R_{1}=10 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, \\ R_{3}=10 \Omega, C_{1}=0.1 \mu \mathrm{~F} \end{array}\right\} \\ & \left\{\begin{array}{l} \text { Gain }=1,5 \% \text { overshoot, } \\ R_{1}=10 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, \\ R_{3}=10 \Omega, C_{1}=1.0 \mu \mathrm{~F} \end{array}\right\} \end{aligned}$	t_{f} $t_{\text {pd }}$ $d V_{\text {out }} / d t_{3}(3)$ t_{f} $t_{\text {pd }}$ $d V_{\text {out }} / d t_{3}$ t_{f} $t_{\text {pd }}$ $d V_{\text {out }} / \mathrm{dt}(3)$		0.25 0.1 6.2 0.3 0.1 2.9 0.2 0.1 2.0		- - - - - - - - -	$\begin{gathered} 0.25 \\ 0.1 \\ 6.2 \\ 0.3 \\ 0.1 \\ 2.9 \\ 0.2 \\ 0.1 \\ 2.0 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \mathrm{~V} / \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \\ \mathrm{~V} / \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \\ \mathrm{~V} / \mu \mathrm{S} \end{gathered}$
$\begin{aligned} & \text { Average Temperature Coefficient } \\ & \text { of Input Offset Voltage } \\ & \text { (} T_{A}=T_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \text {) } \\ & \text { (} T_{A}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }} \text {) } \end{aligned}$	$\left\|T C_{V i o}\right\|$		$\begin{array}{r} 80 \\ 5.0 \end{array}$		-	$\begin{aligned} & 10 \\ & 8.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
```Average Temperature Coefficient of Input Offset Current ( \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) ) ( \(T_{A}=+25^{\circ} \mathrm{C}\) to \(\mathrm{T}_{\text {high }}\) )```	$\left\|T C_{\text {lio }}\right\|$		$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$		-	$\begin{gathered} 0.1 \\ 0.05 \end{gathered}$	-	$n A /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { DC Power Dissipation } \\ & \quad\left(\text { Power Supply }= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0\right) \end{aligned}$	${ }^{\text {P }}$		$125$	$170$	-	125	240	mW
Positive Supply Sensitivity ( $\mathrm{V}^{-}$constant)	$\mathrm{S}^{+}$		50	$150$	-	50	200	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity ( $\mathrm{V}^{+}$constant)	$\mathrm{s}^{-}$		$50$	$150$	-	50	200	$\mu \mathrm{V} / \mathrm{V}$



MAXIMUM RATINGS ( $\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage MC1533,MC1433    MC1533,MC1433	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & +20,+18 \\ & -20,-18 \end{aligned}$	Vdc   Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm 10$	Volts
Common Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm \mathrm{V}^{+}$	Volts
Load Current	IL	10	mA
Output Short Circuit Duration	ts	1.0	$s$
Power Dissipation (Package Limitation)   Metal Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Flat Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Dual In-Line Ceramic Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Dual In-Line Plastic Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 680 \\ 4.6 \\ 500 \\ 3.3 \\ 625 \\ 5.0 \\ 400 \\ 3.3 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC1533 MC1433	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -65 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS
FIGURE 3 - TEST CIRCUIT
$\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$


Fig.   No.	Curve   No.	Test Conditions				
		$\mathbf{R}_{\mathbf{2}}(\Omega)$	$\mathbf{R}_{\mathbf{3}}(\Omega)$	$\mathbf{C}_{\mathbf{1}}(\mu \mathrm{F})$	$\mathbf{C}_{\mathbf{2}}(\mathbf{p F})$	
		10 k	10 k	10	1.0	10
		10 k	100 k	10	0.1	10
		10 k	1.0 M	100	0.01	10
		1.0 k	1.0 M	390	0.002	10
5		10 k	10 k	10	1.0	10
	2	10 k	100 k	10	0.1	10
	3	10 k	1.0 M	100	0.01	10
	4	1.0 k	1.0 M	390	0.002	10
6	1	0	$\infty$	10	1.0	10
	2	0	$\infty$	10	0.1	10
	3	0	$\infty$	100	0.01	10
	4	0	$\infty$	390	0.002	10

MC1533, MC1433 (continued)

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 4 - LARGE-SIGNAL SWING versus FREQUENCY


FIGURE 7 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY (HIGH GAIN CONFIGURATION)



FIGURE 9 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE


FIGURE 10 - COMMON MODE SWING versus POWER SUPPLY VOLTAGE


FIGURE 11 - INPUT NOISE VOLTAGE versus SOURCE RESISTANCE


## MONOLITHIC DUAL OPERATIONAL AMPLIFIERS


. . . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.

Typical Amplifier Features:

- High Open Loop Gain Characteristics $-\mathrm{A}_{\mathrm{vol}}=7,000$
- Low Temperature Drift $- \pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Input Offset Voltage -1.0 mV
- Low Input Noise Voltage $-0.5 \mu \mathrm{~V}$



[^16]
## MC1535, MC1435 (continued)



Number at end of terminal is pin number for ceramic packages.
Number in parenthesis is pin number for metal package. Input Lag available only in ceramic packages.

MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	MC1535	MC1435	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{aligned} & +9.0 \\ & -9.0 \end{aligned}$	Vdc
Differential Input Signal Voltage	$V_{\text {in }}$	$\pm 5.0$	$\pm 5.0$	Volts
Common-Mode Input Swing Voltage	$V_{\text {ICR }}$	+5.0, -4.0	+5.0-4.0	Volts
Load Current	$I_{L}$	20	20	mA
Output Short-Circuit Duration	$T_{\text {SC }}$	Continuous		
Power Dissipation (Package Limitation)   Flat Ceramic Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Metal Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Ceramic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{array}{r} 500 \\ 3.3 \\ 680 \\ 4.6 \\ 625 \\ 5.0 \end{array}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	TA	-55 to +125	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{0} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Each Amplifier) $\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristics	Symbol	MC1535			MC1435			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} I_{B}=\frac{I_{1}+I_{2}}{2}, T_{A}=+25^{\circ} C \\ T_{A}=T_{\text {low }} \text { to } T_{\text {high }}(1) \end{aligned}$	I'B		12	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	-	1.2	$\begin{aligned} & 5.0 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
$\begin{aligned} & \hline \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=+25^{\circ} \mathrm{C} \text { to } T_{\text {high }} \\ & T_{A}=T_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$	$\mid 1 \mathrm{lo\mid}$		50   -   -	$\begin{array}{r} 300 \\ 300 \\ 900 \end{array}$	-	$50$	$\begin{array}{\|l} 500 \\ 1500 \\ 1500 \\ \hline \end{array}$	nAdc
$\begin{array}{\|l} \hline \text { Input Offset Voltage } \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{array}$	$\left\|V_{10}\right\|$	-   $-\quad$	10	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	-	1.0	$\begin{aligned} & 5.0 \\ & 7.5 \\ & \hline \end{aligned}$	mVdc
Differential Input Impedance (Open-Loop, $\mathrm{f}=20 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance	$\begin{aligned} & R_{p} \\ & C_{p} \\ & \hline \end{aligned}$	$10$	$45$		10	45	-	k ohms pF
Common-Mode Input Impedance ( $\mathrm{f}=20 \mathrm{~Hz}$ )	${ }^{2}$ (in)	4	250	-	-	250	-	Megohms
Common-Mode Input Voltage Swing See Figure 7.	$\mathrm{V}_{\text {ICR }}$	$\begin{array}{r} +3.0 \\ -2.0 \\ \hline \end{array}$	$\begin{array}{r} +3.9 \\ -2.7 \\ \hline \end{array}$	$-$	$\begin{aligned} & +3.0 \\ & -2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.9 \\ -2.7 \\ \hline \end{array}$	-	$V_{p k}$
Equivalent Input Noise Voltage $\left(\mathrm{A}_{\mathrm{V}}=100, \mathrm{R}_{\mathrm{s}}=10 \mathrm{k} \text { ohms, } \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{BW}=1.0 \mathrm{~Hz}\right)$	$e_{n}$	$5$	$45$	$=$	-	45	-	$n \mathrm{~V} /(\mathrm{Hz})^{1 / 2}$
Common-Mode Rejection Ratio ( $\mathrm{f}=100 \mathrm{~Hz}$ )	$\mathrm{CM}_{\text {rej }}$	-70	- 90		-70	-90	-	dB
Open Loop Voltage Gain ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ )	$A_{\text {vol }}$	$4,000$	$7,000$	10,000	3,500	7,000	-	V/V
Power Bandwidth (See Figure 2, Curve 3A.) $\left(A_{V}=1, R_{L}=2.0 \text { kohms, } T H D \leq 5 \%, V_{O}=20 \mathrm{Vp}-\mathrm{p}\right)$	$P_{B W}$				-	40	-	kHz
Unity Gain Crossover Frequency (open-loop)			2.0		-	2.0	-	MHz
Phase Margin (open-loop, unity gain)		$\cdots$	75		-	75	-	degrees
Gain Margin			18		-	18	-	dB
Step Response $\left\{\begin{array}{l}\text { Gain }=100,30 \% \text { overshoot, } \\ R 1=4.7 \mathrm{k} \Omega, R 2=470 \mathrm{k} \Omega, \\ R 3=150 \Omega, C 1=1,000 \mathrm{pF}\end{array}\right.$ $\left\{\begin{array}{l}\text { Gain }=10,10 \% \text { overshoot, } \\ R 1=47 \mathrm{k} \Omega, R 2=470 \mathrm{k} \Omega, \\ R 3=47 \Omega, C 1=0.01 \mu \mathrm{~F}\end{array}\right.$ $\left\{\begin{array}{l}\text { Gain }=1,5 \% \text { overshoot, } \\ R 1=47 \mathrm{k} \Omega, R 2=47 \mathrm{k} \Omega, \\ R 3=4.7 \Omega, C 1=0.1 \mu \mathrm{~F}\end{array}\right.$			$\begin{array}{c\|} \hline 0.3 \\ 0.1 \\ 0.167 \\ 1.9 \\ 0.3 \\ 0.111 \\ 27 \\ 0.25 \\ 0.013 \\ \hline \end{array}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.3 \\ 0.1 \\ 0.167 \\ 1.9 \\ 0.3 \\ 0.111 \\ 27 \\ 0.25 \\ 0.013 \end{gathered}$		$\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$
Output Impedance ( $\mathrm{f}=20 \mathrm{~Hz}$ )	$z_{0}$	$\sim$	1.7		-	1.7	-	k ohms
Short-Circuit Output Current	ISC	4	$\pm 17$		-	$\pm 17$	-	mAdc
Output Voltage Swing ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ ohms)	$\mathrm{V}_{\mathrm{O}}$	$\pm 2.5$	$\pm 2.8$	$\underline{4}$	$\pm 2.3$	$\pm 2.7$	-	$V_{p k}$
Power Supply Sensitivity   $\mathrm{V}_{\mathrm{EE}}=$ constant, $\mathrm{R}_{\mathrm{s}} \leqslant 10 \mathrm{k}$ ohms   $\mathrm{V}_{\mathrm{CC}}=$ constant, $\mathrm{R}_{\mathrm{s}} \leqslant 10 \mathrm{k}$ ohms	$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$		$\begin{aligned} & 50 \\ & 100 \end{aligned}$		-	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	-	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current (Total)	$\begin{aligned} & \mathrm{ID}^{+} \\ & 1 \mathrm{D}^{-} \\ & \hline \end{aligned}$		$\begin{aligned} & 8.3 \\ & 8.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.5 \\ 12.5 \\ \hline \end{array}$	-	$\begin{aligned} & 8.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	mAdc
DC Quiescent Power Dissipation (Total) $\left(V_{O}=0\right)$	${ }^{\text {P }}$	$-1$	$100$	$\square$	-	100	180	mW

MATCHING CHARACTERISTICS

Open Loop Voltage Gain	$\mathrm{A}_{\text {vol1 }}-\mathrm{A}_{\text {vol }}$	-	$\pm 1.0$	-	-	$\pm 1.0$	-	dB
Input Bias Current	$1_{1 B 1} 1^{-1}$ IB2	-2.	$\pm 0.15$		-	$\pm 0.15$	-	$\mu \mathrm{A}$
Input Offset Current   Average Temperature Coefficient $I_{I B 1}-I_{\text {IB2 }}$	$l_{101^{-1} 102}$ TC1/01-TC11O2		$\begin{aligned} & \pm 0.02 \\ & \pm 0.1 \end{aligned}$		-	$\begin{aligned} & \pm 0.02 \\ & \pm 0.1 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{gathered}$
Input Offset Voltage Average Temperature Coefficient	$\begin{array}{\|c\|} \hline V_{101}-V_{102} \\ T C V_{101}-T C V_{102} \\ \hline \end{array}$		$\begin{array}{\|c\|}  \pm 0.1 \\ \pm 0.5 \end{array}$		-	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \end{aligned}$	-	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$
Channel Separation (See Fig. 10) $(f=10 \mathrm{kHz})$	$\frac{e_{01}}{e_{02}}$		$-60$		-	-60	-	

(1) Tlow: $0^{\circ} \mathrm{C}$ for MC1435
$-55^{\circ} \mathrm{C}$ for MC1535
$T_{\text {high }}:+75^{\circ} \mathrm{C}$ for MC1435
$+125^{\circ} \mathrm{C}$ for MC1535

MC1535, MC1435 (continued)

TYPICAL OUTPUT CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$

FIGURE 1 - TEST CIRCUIT


$\begin{aligned} & \text { FIGURE } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CURVE } \\ & \text { NO. } \end{aligned}$	VOLTAGE GAIN	TEST CONDITIONS					$\begin{gathered} \text { OUTPUT } \\ \text { NOISE } \\ \text { mV(RMS) } \end{gathered}$
			$\mathrm{R}_{1}\left(s^{\prime}\right)$	$\mathrm{R}_{2}(\Omega)$	$C_{1}(\mathrm{pF})$	$\mathrm{R}_{3}\left({ }^{(2)}\right.$	$C_{2}(\mathrm{pF})$	
2	$3{ }_{3}{ }^{\text {a }}$	$\begin{cases}\text { or } & 1\end{cases}$	$\begin{aligned} & 47 k \\ & 47 k \end{aligned}$	$\begin{aligned} & 47 k \\ & 47 \mathrm{k} \end{aligned}$	$\begin{gathered} 100,000 \\ 0 \end{gathered}$	$\begin{gathered} 4.7 \\ \infty \end{gathered}$	$\begin{gathered} 0 \\ 50,000 \end{gathered}$	$\begin{aligned} & 0.12 \\ & 0.46 \end{aligned}$
3	$1$		$\begin{aligned} & 4.7 \mathrm{k} \\ & 4.7 \mathrm{k} \\ & 47 \mathrm{k} \\ & 47 \mathrm{k} \\ & 47 \mathrm{k} \\ & 47 \mathrm{k} \end{aligned}$	470 k 470 k 470 k 470 k 47 k 47 k	$\begin{gathered} 1,000 \\ 0 \\ 10,000 \\ 0 \\ 100,000 \\ 0 \end{gathered}$	$\begin{array}{r} 150 \\ \infty \\ 47 \\ \infty \\ 4.7 \\ \infty \end{array}$	$\begin{gathered} 0 \\ 510 \\ 0 \\ 5,000 \\ 0 \\ 50,000 \end{gathered}$	$\begin{aligned} & 1.7 \\ & 2.1 \\ & 1.0 \\ & 2.1 \\ & 0.12 \\ & 0.46 \end{aligned}$
4	1 2 3	or $\mathrm{A}_{\mathrm{vol}}$   $A_{\text {vol }}$ for $A_{\text {vol }}$ $\left\{\begin{array}{r}A_{\text {vol }} \\ \text { or } A_{\text {vol }}\end{array}\right.$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\infty$ $\infty$ $\infty$ $\infty$ $\infty$	$\begin{gathered} 1,000 \\ 0 \\ 10,000 \\ 0 \\ 100,000 \\ 0 \end{gathered}$	$\begin{array}{r} 150 \\ \infty \\ 47 \\ \infty \\ 4.7 \\ \infty \end{array}$	$\begin{gathered} 0 \\ 510 \\ 0 \\ 5,000 \\ 0 \\ 50,000 \end{gathered}$	$\begin{aligned} & 8.1 \\ & 8.1 \\ & 5.5 \\ & 5.5 \\ & 4.4 \\ & 4.4 \end{aligned}$

FIGURE 2 - LARGE SIGNAL SWING
versus FREQUENCY


FIGURE 4 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY

f, FREQUENCY ( $\mathrm{H}_{2}$ )

FIGURE 3 - VOLTAGE GAIN versus FREQUENCY


FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE


MC1535, MC1435 (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 6 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE


FIGURE 7 - COMMON MODE SWING


FIGURE 8 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE


FIGURE 9 - OUTPUT WIDEBAND NOISE VOLTAGE versus SOURCE RESISTANCE


FIGURE 10 - INDUCED INPUT SIGNAL
(CHANNEL SEPARATION) versus FREQUENCY



Induced input signal ( $\mu \mathrm{V}$ of induced input signal in amplifier $\# 2$
per volt of output signal at amplifier \#1)
$e^{\prime}{ }_{0} 2=e^{\prime}$ in2 $\left(\frac{R F}{R S}\right)$ where $e_{o}{ }_{2}$ is the component of
$e_{0} 2$ due only to lack of perfect separation between the
two amplifiers.

## HIGH VOLTAGE, INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER

. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Maximum Supply Voltage $- \pm 40$ Vdc (MC1536G)
- Output Voltage Swing -
$\pm 30 \mathrm{~V}_{\mathrm{pk}}(\mathrm{min})\left(\mathrm{V}^{+}=+36 \mathrm{~V}, \mathrm{~V}^{-}=-36 \mathrm{~V}\right)(\mathrm{MC1536G})$
$\pm 22 \mathrm{~V}_{\mathrm{pk}(\min )}\left(\mathrm{V}^{+}=+28 \mathrm{~V}, \mathrm{~V}^{-}=-28 \mathrm{~V}\right)$
- Input Bias Current - 20 nA max (MC1536G)
- Input Offset Current - 3.0 nA $\max$ (MC1536G)
- Fast Slew Rate $-2.0 \mathrm{~V} / \mu \mathrm{s}$ typ
- Internally Compensated
- Offset Voltage Null Capability
- Input Over-Voltage Protection
- AVOL - 500,000 typ
- Characteristics Independent of Power Supply Voltages $( \pm 5.0 \mathrm{Vdc}$ to $\pm 36 \mathrm{Vdc}$ )

OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED


FIGURE 1 - DIFFERENTIAL AMPLIFIER WITH $\pm 20 \mathrm{~V}$ COMMON-MODE INPUT VOLTAGE RANGE


See Packaging Information Section for outline dimensions.
See current MCC1536/1436 data sheet for standard linear chip information.

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Micis36e	MC14366	MC 1436CG	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{v}^{+} \\ & \mathrm{v}^{-} \end{aligned}$	$\begin{array}{r} +40 \\ -40 \\ \hline \end{array}$	$+34$ $-34$	$\begin{aligned} & +30 \\ & -30 \\ & \hline \end{aligned}$	Vdc
Differential Input Signal	$v_{\text {in }}$	$\pm\left(\mathrm{V}^{+}+\left\|\mathrm{V}^{-}\right\|-3\right)$			Volts
Common-Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$+\mathrm{v}^{+},-\left(\left\|\mathrm{V}^{-}\right\|-3\right)$			Volts
Output Short Circuit Duration ( $\mathrm{V}^{+}=\left\|\mathrm{V}^{-}\right\|=28 \mathrm{Vdc}, \mathrm{V}_{0}=0$ )	${ }^{\text {T }}$ SC	5.0			$s$
Power Dissipation (Package Limitation) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{array}{r} 680 \\ 4.6 \\ \hline \end{array}$			$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +150	0 to +75		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150			${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+28 \mathrm{Vdc}, \mathrm{V}^{-}=-28 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Mc15366			MC1436G			MC1436CG			Unit
		Min	Tve	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Bias Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \text { (See Note 1) } \end{aligned}$	$\mathrm{I}_{\mathrm{b}}$	$=$	8.0	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$v^{4}$	15	$\begin{aligned} & 40 \\ & 55 \end{aligned}$	-	25	90	nAdc
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }} \\ & \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$	$\|l\| i o l^{\text {i }}$			$\begin{aligned} & 30 \\ & 4.5 \\ & 70 \end{aligned}$		5.0   $-$	$\left.\begin{gathered} 10 \\ 14 \\ 14 \end{gathered} \right\rvert\,$	-	$\begin{aligned} & 10 \\ & - \end{aligned}$	25	nAdc
$\begin{aligned} & \text { Input Offset Voltage } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	$\left\|\mathrm{v}_{\text {io }}\right\|$		20	$\begin{array}{r} 5.0 \\ 70 \\ \hline \end{array}$		5.	$\square$	-	5.0   -	12   -	mVdc
Differential Input Impedance (Open-Loop, f $\leq 5.0 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance	$\begin{aligned} & \mathrm{R}_{\mathrm{p}} \\ & \mathrm{C}_{\mathrm{p}} \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$			$\square$		-	$\begin{array}{r} 10 \\ 2.0 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline \text { Meg ohms } \\ \mathrm{pF} \end{array}$
Common-Mode Input Impedance ( $f \leq 5.0 \mathrm{~Hz}$ )	$z_{\text {(in) }}$	-	250	-		250		-	250	-	Meg ohms
Common-Mode Input Voltage Swing	$\mathrm{CMV}_{\text {in }}$	$\pm 24$	$\pm 25$	-	$\pm 22$	$\pm 25$	-4	$\pm 18$	$\pm 20$	-	$\mathrm{V}_{\mathrm{pk}}$
Equivalent Input Noise Voltage $\left(\dot{A}_{V}=100, R_{s}=10 \mathrm{k} \text { ohms, } f=1.0 \mathrm{kHz}, B W=1.0 \mathrm{~Hz}\right)$	$\mathrm{e}_{\mathrm{n}}$	$=$	50.					-	50	-	$n \mathrm{~V} /(\mathrm{Hz})^{1 / 2}$
Common-Mode Rejection Ratio (dc)	$\mathrm{CM}_{\text {rej }}$	80	110	-	70	110	-	50	90	-	dB
Large Signal dc Open Loop Voltage Gain $\begin{aligned} & \left(V_{O}= \pm 10 \mathrm{~V}, R_{L}=100 \mathrm{k} \text { ohms }\right) \quad\left\{\begin{array}{l} T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{array}\right. \\ & \left(V_{O}= \pm 10 \mathrm{~V}, R_{L}=10 \mathrm{k} \text { ohms, } T_{A}=+25^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{\text {AVOL }}$	$\begin{aligned} & 100,000 \\ & 50,000 \end{aligned}$	$\left[\begin{array}{c} 500,000 \\ 200,000 \end{array}\right]$		70,000   50,000	$\begin{gathered} 1 \\ 500,000 \\ - \\ 200,000 \end{gathered}$		50,000 -	500,000 - 200,000	-	v/v
Power Bandwidth (Voltage Follower) $\left(A_{V}=1, R_{L}=5.0 \mathrm{k} \text { ohms, } T H D \leq 5 \%, V_{0}=40 \mathrm{Vp}-\mathrm{p}\right)$	${ }^{\text {P }}$ WW		23			23		-	23	-	kHz
Unity Gain Crossover Frequency (open-loop)	$\mathrm{f}_{\mathrm{c}}$	-	1.0	-	$\checkmark$	10	4	-	1.0	-	MHz
Phase Margin (open-loop, unity gain)	$\phi$	-	50	$=$		50	-	-	50	-	degrees
Gain Margin	$\mathrm{A}_{\mathrm{GM}}$	-	18		-	18	-	-	18	-	dB
Slew Rate (Unity Gain)	dV ${ }_{\text {out }} / \mathrm{dt}$		2.0			20.		-	2.0	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance ( $5 \leq 5.0 \mathrm{~Hz}$ )	$\mathrm{z}_{\text {out }}$	-	1.0	-	-	1.0	-	-	1.0	-	k ohms
Short-Circuit Output Current	Isc		$\pm 17$	-	-	$\pm 17$		-	$\pm 19$	-	mAdc
$\begin{aligned} & \text { Output Voltage Swing ( } R_{L}=5.0 \mathrm{k} \text { ohms) } \\ & \mathrm{V}^{+}=+28 \mathrm{Vdc}, \mathrm{~V}^{-}=-28 \mathrm{Vdc} \\ & \mathrm{~V}^{+}=+36 \mathrm{Vdc}, \mathrm{~V}^{-}=-36 \mathrm{Vdc} \end{aligned}$	Vo	$\begin{array}{r} +22 \\ +30 \\ \hline \end{array}$	$\begin{array}{r} +23 \\ +32 \\ \hline \end{array}$		$\pm 20$	$\pm 22$		$\pm 20$	$\begin{array}{r} \pm 22 \\ - \\ \hline\end{array}$	-	$\mathrm{V}_{\mathrm{pk}}$
Power Supply Sensitivity (dc)   $\mathrm{V}^{-}=$constant, $\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k}$ ohms   $\mathrm{V}^{+}=$constant, $\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k}$ ohms	$\begin{aligned} & \text { s+ } \\ & \text { s- } \end{aligned}$		$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\left.\begin{array}{r}4 \\ 35 \\ 35\end{array} \right\rvert\,$	$\begin{gathered} 200 \\ 200 \\ \hline \end{gathered}$	-	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	-	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current (See Note 2)	$\begin{aligned} & \mathrm{I}^{+} \\ & \mathrm{I}^{+} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.2 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 40 \\ 4.0 \\ \hline \end{array}$		$\begin{array}{r} 26 \\ 2.6 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2.6 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(\mathrm{V}_{\mathbf{0 1}}=0\right)$	$P_{\text {D }}$	$8$	$124$	$224$				-	146	280	mW

Note 1: Tlow: $0^{\circ} \mathrm{C}$ for MC1436G, CG
$-55^{\circ} \mathrm{C}$ for MC1536G
$T_{\text {high: }}+75^{\circ} \mathrm{C}$ for MC1436G,CG $+150^{\circ} \mathrm{C}$ for MC1536G

Note 2: $\quad \mathrm{V}^{+}=|\mathrm{V}-|=5.0 \mathrm{Vdc}$ to 36 Vdc for MC1536G
$\mathrm{V}^{+}=|\mathrm{V}-|=5.0 \mathrm{Vdc}$ to 30 Vdc for MC1436G $\mathrm{V}^{+}=\left|\mathrm{V}^{-}\right|=5.0 \mathrm{Vdc}$ to 28 Vdc for MC1436CG


FIGURE 9 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 10 - INVERTING FEEDBACK MODEL


FIGURE 11 - NON-INVERTING FEEDBACK MODEL


FIGURE 12 - AUDIO AMPLIFIER


FIGURE 13 - CIRCUIT SCHEMATIC


FIGURE 14 - EQUIVALENT CIRCUIT


## MC1537 <br> MC1437

## HIGHLY MATCHED MONOLITHIC DUAL OPERATIONAL AMPLIFIERS

... designed for use as summing amplifiers, integrators, or amplifiers
with operating characteristics as a function of the external feedback
components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.

Typical Amplifier Features:

- High-Performance Open Loop Gain Characteristics -

AVOL $=45,000$ typical

- Low Temperature Drift $- \pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing -
$\pm 14 \mathrm{~V}$ typical @ $\pm 15 \mathrm{~V}$ Supply

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	+18	Vdc
	$\mathrm{V}^{-}$	-18	Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm \mathrm{V}^{+}$	Volts
Output Short Circuit Duration	ts	5.0	s
Power Dissipation (Package Limitation) Ceramic Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Plastic Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$		
		750	mW
		6.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
		625	mW
		5.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$T_{A}$		${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { MC1537 } \\ & \text { MC1437 } \end{aligned}$		$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

FIGURE 1 - CIRCUIT SCHEMATIC


LSUFFIX CERAMIC PACKAGE CASE 632
TO. 116

FIGURE 2 - EQUIVALENT CIRCUIT


See Packaging Information Section for outline dimensions.

MC1537, MC1437 (continued)
ELECTRICAL CHARACTERISTICS - Each Amplifier $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

		MC1537			MC1437			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
Open Loop Voltage Gain $\begin{aligned} \left(R_{L}\right. & =5.0 \mathrm{k} \Omega, \mathrm{~V}_{O}= \pm 10 \mathrm{~V} \\ T_{A} & \left.=T_{\text {low }}(1) \text { to } T_{\text {high (2) }}\right) \end{aligned}$	AVOL	$25,000$	45,000	70,000	15,000	45,000	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	$\mathrm{Z}_{0}$	$4$	$30$	$=$	-	30	-	$\Omega$
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	$150$	400	$-$	50	150	-	k $\Omega$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \quad\left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \\ & \hline \end{aligned}$	$\mathrm{v}_{0}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r}  \pm 14 \\ \pm 13 \end{array}$	$-$	$\pm 12$	$\pm 14$	-	$V_{\text {peak }}$
Input Common-Mode Voltage Swing	CMV in	+80.	$\pm 10$		$\pm 8.0$	$\pm 10$	-	$V_{\text {peak }}$
Common-Mode Rejection Ratio	$\mathrm{CM}_{\text {rej }}$	70	100	-	65	100	-	dB
Input Bias Current $\left(I_{\mathrm{b}}=\frac{I_{1}+I_{2}}{2}\right) \quad \begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }}(1)\right. \end{aligned}$	$\mathrm{I}_{\mathrm{b}}$		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$0.5$	-	$\begin{gathered} 0.4 \\ - \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$
$\begin{array}{\|l} \hline \text { Input Offset Current } \\ \left(I_{\text {io }}=I_{1}-I_{2}\right) \\ \left(I_{\text {io }}=I_{1}-I_{2}, T_{A}=T_{\text {low }}(1)\right. \text { ) } \\ \left(I_{\text {io }}=I_{1}-I_{2}, T_{A}=T_{\text {high }}\right. \text { (2) ) } \end{array}$	$1{ }_{10} \mid$		$0.05$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & 0.2 \end{aligned}$	$-$	$\begin{gathered} 0.05 \\ - \end{gathered}$	$\begin{gathered} 0.5 \\ 0.75 \\ 0.75 \end{gathered}$	$\mu \mathrm{A}$
$\begin{aligned} & \begin{array}{l} \text { Input Offset Voltage } \\ \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ \left(T_{A}=T_{\text {low }} \text { (1) to } T_{\text {high }}\right. \text { (2) ) } \end{array} \end{aligned}$	$\left\|V_{i o}\right\|$		$10$	$\begin{aligned} & 50 \\ & 6.0 \end{aligned}$	-		$\begin{aligned} & 7.5 \\ & 10 \\ & \hline \end{aligned}$	mV
$\begin{aligned} & \left.\begin{array}{l} \left\{\begin{array}{l} \text { Step Response } \\ R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, \\ R_{3}=1.5 \mathrm{k} \Omega, C_{1}=100 \mathrm{pF}, C_{2}=3.0 \mathrm{pF} \end{array}\right. \end{array}\right\} \\ & \left\{\begin{array}{l} \text { Gain }=10,10 \% \text { overshoot, } \\ R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, \\ R_{3}=1.5 \mathrm{k} \Omega, C_{1}=500 \mathrm{pF}, C_{2}=20 \mathrm{pF} \end{array}\right\} \\ & \left\{\begin{array}{l} \text { Gain }=1,5 \% \text { overshoot, } \\ R_{1}=10 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, \\ R_{3}=1.5 \mathrm{ks}, C_{1}=5000 \mathrm{pF}, C_{2}=200 \mathrm{pF} \end{array}\right\} \end{aligned}$	$\begin{gathered} \mathrm{t}_{\mathrm{f}} \\ \mathrm{t}_{\mathrm{pd}} \\ \mathrm{~d} V_{\text {out }} / \mathrm{dt}(3) \\ \mathrm{t}_{\mathrm{f}} \\ \mathrm{t}_{\mathrm{pd}} \\ \mathrm{~d} V_{\text {out }} / \mathrm{dt}(3) \\ \mathrm{t}_{\mathrm{f}} \\ \mathrm{t}_{\mathrm{pd}} \\ \mathrm{~d} V_{\text {out }} / \mathrm{dt}(3) \\ \hline \end{gathered}$		108   0.8   0.38   12   0.6   0.34   1.7   2.2   1.3   0.25		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	0.8 0.38 12 0.6 0.34 1.7 2.2 1.3 0.25	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\mu \mathrm{S}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{S}$   $\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Average Temperature Coefficient of } \\ & \text { Input Offset Voltage } \\ & \text { ( } \left.R_{S}=50 \Omega, T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high (2) }}\right) \\ & \left(R_{S} \leqq 10 \mathrm{k} \Omega, T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high (2) }}\right. \text { ) } \end{aligned}$	\|TC ${ }_{\text {Viol }}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$		-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Voltage $\begin{aligned} & \left(T_{A}=T_{\text {low }} \text { (1) to }+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }} \text { (2) }\right) \end{aligned}$	$\left\|T C_{\text {lio }}\right\|$		$0.7$		-	$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	-	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
DC Power Dissipation (Total)   (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ )	$P_{\text {D }}$		$160$	$225$	-	160	225	mW
Positive Supply Sensitivity ( $\mathrm{V}^{-}$constant)	$\mathrm{S}^{+}$		$10$	$150$	-	10	200	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity ( $\mathrm{V}^{+}$constant)	$\mathrm{S}^{-}$		$10$	$150$	-	10	200	$\mu \mathrm{V} / \mathrm{V}$
$\text { (1) } \begin{aligned} T_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC1437 } \\ & =-55^{\circ} \mathrm{C} \text { for MC1537 } \end{aligned}$	$\text { (2) } \begin{aligned} T_{\text {high }} & =+75^{\circ} \mathrm{C} \text { for MC } 1437 \\ & =+125^{\circ} \mathrm{C} \text { for } \mathrm{MC} 1537 \end{aligned}$				(3) $d V_{\text {out }} / \mathrm{dt}=$ Slew Rate			

## MATCHING CHARACTERISTICS

Open Loop Voltage Gain	AVOL1-A ${ }^{\text {- }}$ VOL2	-	$\pm 1.0$		-	$\pm 1.0$	-	dB		
Input Bias Current	${ }_{\mathrm{b} 11^{-1} \mathrm{~b} 2}$	-	$\pm 0.15$	$3$	-	$\pm 0.15$	-	$\mu \mathrm{A}$		
Input Offset Current	$\left\|\left\\|_{\text {io } 1}\left\|-\\|_{\text {io2 }}\right\|\right.\right.$	-	$\pm 0.02$	-	-	$\pm 0: 02$	-	$\mu \mathrm{A}$		
Average Temperature Coefficient	$\left\|T C_{\text {lio1 } 1}\right\| \cdot\left\|T C_{\text {lio } 2}\right\|$	+	$\pm 0.2$		-	$\pm 0.2$	-	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$		
Input Offset Voltage	$\left\|\mathrm{V}_{\mathrm{io} 1}\right\|-\left\|\mathrm{V}_{\mathrm{io} 2}\right\|$		$\pm 0.2$		-	$\pm 0.2$	-	mV		
Average Temperature Coefficient	$\left\|T C_{V i o 1}\right\|^{-\mid T C}{ }_{\text {Vio2 }} \mid$	$5$	$\pm 0.5$	$\frac{14}{2}$	-	$\pm 0.5$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Channel Separation $(f=10 \mathrm{kHz})$	$\frac{e_{\text {out } 1}}{\mathrm{e}_{\text {out } 2}}$		90		-	90	-	dB		

MC1537, MC1437 (continued)

TYPICAL OUTPUT CHARACTERISTICS

FIGURE 3 - TEST CIRCUIT
$\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


FIGURE 4 - LARGE SIGNAL SWING versus FREQUENCY


FIGURE 6 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY


FIGURE 5 - VOLTAGE GAIN versus FREQUENCY


FIGURE 7 - TOTAL POWER DISSIPATION versus POWER SUPPLY VOLTAGE



FIGURE 12 - INDUCED OUTPUT SIGNAL (CHANNEL SEPARATION) versus FREQUENCY



## MC1538R

## MC1438R

## MONOLITHIC POWER BOOSTER

The MC1538/MC1438 is designed as a high current gain amplifier ( 70 dB ), with unity voltage gain that can deliver load currents up to $\pm 300$ mAdc. This device is ideally suited to follow an operational amplifier (such as MC1556/MC1456) for driving low impedance loads and improving the overall circuit performance.

- High Input Impedance - 0.4 Meg-Ohm typ - when driving the MC1538/MC1438, the gain of an operational amplifier will approach the unloaded open-loop gain. Internal power dissipation of the operational amplifier will be independent of output voltage and therefore thermal drift will be reduced.
- Large Power Bandwidth - 1.5 MHz typ - considerably better than present operational amplifiers. Bandwidth and slew rate will be limited by the operational amplifier, not the MC1538/MC1438.
- Low Output Impedance - 10 Ohms typ - allows the MC1538/ MC1438 to drive a capacitive load with greatly reduced phase shift compared with an operational amplifier. Output voltage swing capability is much increased when driving small load impedances.
- Adjustable Current Limit $- \pm 5.0 \mathrm{mAdc}$ to $\pm 300 \mathrm{mAdc}$
- Excellent Power-Supply Rejection - $1.0 \mathrm{mV} / \mathrm{V}$ typ
- Current Gain - 3000 typ


TYPICAL APPLICATIONS


See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (TC $=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MC1538R	MC1438R	Unit
Power Supply Voltage	$\begin{aligned} & \mathbf{v}^{+} \\ & \mathbf{v}^{-} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Input-Output Voltage Differential	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}$	$-14.5,+44$	$-14,+36$	Vdc
Input Voltage Swing	$\left\|V_{\text {in }}\right\|$	$\mathrm{V}^{+}$or $\mathrm{V}^{-}$		Vdc
Load Current	IL	350		mAdc
Power Dissipation and Thermal Characteristics $T_{A}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Case	$P_{D}$   1/日JA   $\theta_{\text {JA }}$   $P_{D}$   $1 / \theta_{\mathrm{JC}}$   $\theta \mathrm{JC}$	$\begin{array}{r}3 . \\ 2 \\ 41 \\ 17 \\ 14 \\ 7.1 \\ \hline\end{array}$		Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$

OPERATING TEMPERATURE RANGE
$\left.\begin{array}{|l|c|c|c|c|}\hline \text { Ambient Temperature } & \text { MC1438R } \\ \text { MC1538R }\end{array} \quad \begin{array}{c}0 \text { to }+75 \\ -55 \text { to }+125\end{array}\right]$

## ELECTRICAL CHARACTERISTICS

( $R_{L}=300$ ohms, $T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic (Linear Operation)	Fig	Note	Symbol	$V^{+}-+5 \mathrm{~V}$ to 1538 R   $20 \mathrm{~V}, \mathrm{~V}^{-}-5 \mathrm{~V}$ to -20 V			$\begin{array}{\|c\|} \hline \text { MC1438R } \\ V^{+}=+15 V, V^{-}=-15 \mathrm{~V} \end{array}$			Unit
				Min	Typ	Max	Min	Typ	Max	
Voltage Gain ( $f=1.0 \mathrm{kHz}$ )	1	-	AV	0.9	0.95	+1.0	0.85	0.95	1.0	V/V
Current Gain ( $\left.A_{1}=\Delta I_{0} / \Delta I_{\text {in }}\right)$	1	-	$A_{1}$		3000		-	3000	-	A/A
Output Impedance ( $\mathbf{f}=1.0 \mathrm{kHz}$ )	1	-	$\mathrm{Z}_{\text {out }}$		10		-	10	-	Ohms
Input Impedance ( $\mathrm{f}=1.0 \mathrm{kHz}$ )	1	-	$\mathrm{Z}_{\text {in }}$		400		-	400	-	k ohms
Output Voitage Swing	1	3	$\mathrm{V}_{\text {out }}$	$\pm 12$	$\pm 13$		$\pm 11$	$\pm 12$	-	Vdc
Input Bias Current	2	-	$\mathrm{I}_{\mathrm{b}}$		60	200	-	60	300	$\mu \mathrm{Adc}$
Output Offset Voitage	2	1	$\mathrm{V}_{0}$		25	150	-	25	200	mVdc
Small Signal Bandwidth $\begin{aligned} & \left(R_{L}=300 \text { ohms }\right) \\ & \left(V_{\text {in }}=0 \mathrm{Vdc}, v_{\text {in }}=100 \mathrm{mV}[\mathrm{rms}]\right) \end{aligned}$	1	-	$\mathrm{BW}_{3} \mathrm{~dB}$		$8.0$		-	8.0	-	MHz
Power Bandwidth $\left(V_{\text {out }}=20 V_{\text {p-p. }}, T H D=5 \%\right)$	1	3	PBW		$1.5$		-	1.5	-	MHz
$\begin{aligned} & \text { Total Harmonic Distortion } \\ & \left(f=1.0 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=20 \mathrm{~V}_{\text {p-p }}\right) \end{aligned}$	1	3	THD		0.5		-	0.5	-	\%
Short-Circuit Output Current $\begin{aligned} & (R 1=R 2=\infty) \\ & (R 1=R 2=3.3 . \text { ohms }) \end{aligned}$   Adjustable Range	$\begin{gathered} 3 \\ 3 \\ 4,5 \end{gathered}$	2	${ }^{\text {I }} \mathrm{SC}$	$75$	$\begin{gathered} 95 \\ 300 \\ 5.0 \text { to } 300 \\ \hline \end{gathered}$	125	65	$\begin{gathered} 95 \\ 300 \\ 5.0 \text { to } 300 \\ \hline \end{gathered}$	$140$	mAdc
Power Supply Sensitivity ( $\mathrm{V}^{-}$constant)   ( $\mathrm{V}^{+}$constant)	2	-	$\begin{aligned} & \mathrm{s}^{+} \\ & \mathrm{S}^{-} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		-	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	-	$\mathrm{mV} / \mathrm{V}$
Power Supply Current $\left(R_{L}=\infty, v_{i n}=0\right)$	2	-	$10^{+}$or ${ }^{\prime} \mathrm{D}$	4.5	$6.0$	10 . 4	2.5	6.0	15	mAdc
Power Dissipation $\left(R_{L}=\infty, V_{i n}=0\right)$	2	3	$P_{\text {D }}$	$150$	$180$	$\square$	75	180	450	mW

Note 1. Output offset Voltage is the quiescent dc output voltage with the input grounded.
Note 2. Short-Circuit Current, ISC, is adjustable by varying R1, R2, R3 and R4. The positive current limit is set by R1 or R3, and the negative current limit is set by R2 or R4. See Figures 4 and 5 for curves of short-circuit current versus R1, R2, R3 and R4.
Note 3. $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$.


TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 4 - SHORT-CIRCUIT CURRENT versus R1 OR R2
( $\mathbf{1 0 0} \mathbf{~ m A}$ to $\mathbf{3 0 0} \mathbf{~ m A}$ )


FIGURE 5 - SHORT-CIRCUIT CURRENT versus R3 OR R4 ( 5.0 mA to 100 mA )


MC1538R, MC1438R (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 6 - POWER SUPPLY
CURRENT versus SHUNT RESISTANCE


FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT


IL, LOAD CURRENT (mAdc)

FIGURE 10 - OUTPUT OFFSET VOLTAGE versus TEMPERATURE


[^17]FIGURE 7 - SMALL SIGNAL GAIN AND PHASE RESPONSE


FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT


IL, LOAD CURRENT (mAdc)

FIGURE 11 - INPUT BIAS CURRENT versus TEMPERATURE


TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)


TYPICAL APPLICATIONS

FIGURE 14 - NON-INVERTING AC POWER AMPLIFIER

FIGURE 16 - NON-INVERTING VOLTAGE FOLLOWER


FIGURE 15 - NON-INVERTING POWER AMPLIFIER


FIGURE 17 - INVERTING POWER AMPLIFIER


## TYPICAL APPLICATIONS (continued)

FIGURE 18 - PROGRAMMABLE VOLTAGE SOURCE


FIGURE 20 - SIGNAL DISTRIBUTION


FIGURE 19 - CONSTANT CURRENT SOURCE OR TRANSCONDUCTANCE AMPLIFIER


FIGURE 21 - ASTABLE MULTIVIBRATOR


FIGURE 22 - WIEN BRIDGE OSCILLATOR


## MONOLITHIC OPERATIONAL AMPLIFIER

. . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information see Motorola Application Note AN-439.

- Low Input Offset Voltage -3.0 mV max
- Low Input Offset Current - 60 nA max
- Large Power-Bandwidth - 20 Vp-p Output Swing at 20 kHz min
- Output Short-Circuit Protection
- Input Over-Voltage Protection
- Class AB Output for Excellent Linearity
- Slew Rate $-34 \mathrm{~V} / \mu$ s typ


See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS $I V_{C C}=+15 \mathrm{Vdc}, V_{E E}=-15 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

Characteristic	Symbol	MC1539			MC1439			Unit
		Min	Typ	Max	Min	Typ	Max	
tnput Bias Current $\begin{aligned} & \left(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}(1)\right) \end{aligned}$	$1_{\text {IB }}$	- -1	0.20	$\begin{aligned} & 0.50 \\ & 0.70 \end{aligned}$	-	$\begin{aligned} & 0.20 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Current $\begin{aligned} & \left(T_{A}=T_{\text {low }}\right) \\ & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {high (1) }}\right) \end{aligned}$	$\|10\|$	+	20	75 60 75		20	$\begin{aligned} & 150 \\ & 100 \\ & 150 \end{aligned}$	nA
Input Offset Voltage $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }} \cdot T_{\text {high }}\right) \end{aligned}$	$\left\|V_{10}\right\|$		1.0	6.0   4.0	-	2.0 -	7.5	mV
Average Temperature Coefficient of Input Offset Voltage ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ ) $\begin{aligned} & \left(R_{S}=50 \mathrm{~s} 2\right) \\ & \left(R_{S} \leq 10 \mathrm{k} \Omega 2\right) \end{aligned}$	$\left.\right\|^{T C} \mathrm{~V}_{V_{\text {IO }}} \mid$		$\begin{array}{r} 30 \\ 50 \end{array}$		-	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$-$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	150	- 300	+	100	300	-	ks2
Input Common-Mode Voltage Swing	$V_{\text {ICR }}$	111	$\pm 12$	$\mathrm{z}^{2}$	$\pm 11$	$\pm 12$	-	$\mathrm{V}_{\mathrm{pk}}$
$\begin{aligned} & \text { Equivalent Input Noise Voltage } \\ & \left(R_{S}=10 \mathrm{k} \Omega, \text { Noise Bandwidth }=1.0 \mathrm{~Hz},\right. \\ & f=1.0 \mathrm{kHz}) \end{aligned}$	$\mathrm{e}_{\mathrm{n}}$		$30$		-	30	-	$n \mathrm{~V} /(\mathrm{Hz})^{1 / 2}$
Common-Mode Rejection Ratio $(f=1.0 \mathrm{kHz})$	CMRR	80	$110$		80	110	-	dB
$\begin{gathered} \text { Open-Loop Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right. \\ \left.10 \mathrm{kS}, \mathrm{R}_{5}=\infty\right)\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right) \end{gathered}$	$\mathrm{A}_{\text {vol }}$	50,000   25,000	$\begin{aligned} & 120 ; 000 \\ & 100,000 \end{aligned}$		$\begin{aligned} & 15,000 \\ & 15,000 \end{aligned}$	$\begin{aligned} & 100,000 \\ & 100,005 \end{aligned}$		-
```Power Bandwidth ( \(A_{v}=1, T H D \leq 5 \%\), \(\left.\mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp-p}\right)\) \(\left(R_{L}=2.0 \mathrm{k} \Omega 2\right)\) \(\left(R_{L}=1.0 \mathrm{k} \Omega, R_{5}=10 \mathrm{k}\right)\)```	PBW	$20$	$50$		10	50	-	kHz
	$t_{P H L}$ t_{p} $d V_{O} / d t(2)$ $t_{P H L}$ t_{p} $d V_{O} / d t$ $t_{P H L}$ t_{p} $d V_{O} / d t$ $t_{P H L}$ t_{p} $d V_{O} / d t$ $t_{P H L}$ t_{p} $d V_{0} / d t$		130 100 60 80 100 14 60 100 34 120 80 6.25 160 80 42		- - - - - - - - - - - - - - -	130 190 6.0 80 100 14 60 100 34 120 80 6.25 160 80 4.2		ns ns $\mathrm{V} / \mu \mathrm{s}$ ns ns $\mathrm{V} / \mu \mathrm{s}$ ns ns $\mathrm{V} / \mu \mathrm{s}$ ns ns $\mathrm{V} / \mu \mathrm{s}$ ns ns $\mathrm{V} / \mu \mathrm{s}$
Output Impedance $(f=20 \mathrm{~Hz})$	z_{0}		4.0		-	4.0	-	$\mathrm{k} \Omega$
Output Voltage Swing $\begin{aligned} & \left(R_{L}=2.0 \mathrm{k} \Omega, f=1.0 \mathrm{kHz}\right) \\ & \left(R_{L}=1.0 \mathrm{k} \Omega, f=1.0 \mathrm{kHz}\right) \end{aligned}$	v_{0}	± 10			± 10	± 13	$-$	V_{pk}
Positive Supply Sensitivity ($V_{E E}$ constant, $R_{5}=\infty$)	S^{+}		50	\square	-	50	200	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity (V_{CC} constant, $\mathrm{R}_{5}=\infty$)	s^{-}		50	150	-	50	200	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current $\left(V_{O}=0\right)$	$\begin{aligned} & \mathrm{I}^{+} \\ & \mathrm{I}^{-} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.7 \end{aligned}$	mAdc

$\begin{aligned}(1) T_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC1439 } \\ & -55^{\circ} \mathrm{C} \text { for MC1539 }\end{aligned} \quad \begin{aligned} \mathrm{T}_{\text {high }}= & +75^{\circ} \mathrm{C} \text { for MC1439 } \\ & +125^{\circ} \mathrm{C} \text { for MC1539 }\end{aligned}$
(2) $d V_{o} / d t=$ Slew Rate

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +18 \\ & +18 \end{aligned}$	Vdc
Differential Input Signal Voltage	$V_{\text {in }}$	$\pm\left(\mathrm{V}_{\mathrm{CC}}+\left\|\mathrm{V}_{\mathrm{EE}}\right\|\right)$	Vdc
Common-Mode Input Swing Voltage	$V_{\text {ICR }}$	$+\mathrm{V}_{\text {CC }}-\left\|\mathrm{V}_{\mathrm{EE}}\right\|$	Vdc
Load Current	IL	15	mA
Output Short-Circuit Duration	${ }^{\text {t }}$	Conti	
Power Dissipation (Package Limitation) Metal Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Ceramic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Plastic Dual In-Line Packages MC1439 Derate above $T_{A}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	$\begin{array}{r} 680 \\ 4.6 \\ 750 \\ 6.0 \\ 625 \\ 5.0 \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC1539 MC1439	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

FIGURE 4 - CIRCUIT SCHEMATIC

FIGURE 5 - EQUIVALENT CIRCUIT

FIGURE 6 - TEST CIRCUIT

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

FIGURE 7 - LARGE-SIGNAL SWING versus FREQUENCY

FIGURE 9 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 11 - OUTPUT VOLTAGE SWING (to clipping) versus SUPPLY

FIGURE 8 - OPEN-LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 10 - OPEN-LOOP PHASE-SHIFT versus FREQUENCY

FIGURE 12 - CLOSED-LOOP GAIN versus FREQUENCY

* ${ }^{\text {A CL }}=$ Closed-Loop Gain
f, FREQU
numbers in parenthesis apply to 14 -pin packages.

TYPICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FIGURE 13 - ACL* $=1$ RESPONSE versus TEMPERATURE

FIGURE 15 - $\mathbf{A}_{\mathbf{C L}}=\mathbf{1 0 0}$ RESPONSE versus TEMPERATURE

FIGURE 17 - SPECTRAL NOISE DENSITY

FIGURE 14 - $A_{C L}=10$ RESPONSE versus TEMPERATURE

FIGURE 16 - $\mathbf{A}_{\mathbf{C L}}=1000$ RESPONSE versus TEMPERATURE

FIGURE 18 - OUTPUT NOISE versus SOURCE RESISTANCE

[^18]TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

FIGURE 19 - POWER DISSIPATION versus TEMPERATURE

FIGURE 21 - POWER BANDWIDTH (LARGE-SIGNAL SWING versus FREQUENCY)

FIGURE 23 - COMMON-MODE REJECTION RATIO versus FREQUENCY

FIGURE 20 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

VCC AND VEE, POWER SUPPLY VOLTAGE (VOLTS)

FIGURE 22 - COMMON-MODE INPUT VOLTAGE versus SUPPLY VOLTAGE

FIGURE 24 - COMMON-MODE REJECTION RATIO versus TEMPERATURE

Pin numbers adjacent to terminals apply to 8-pin packages, number in parenthesis apply to 14-pin packages.

MC1539, MC1439 (continued)

TYPICAL APPLICATIONS
Pin numbers adjacent to ter minals apply to 8 -pin packages, numbers in parenthesis apply to 14-pin pack ages
FIGURE 26 - VOLTAGE FOLLOWER

$z_{0 C L}=z_{00 L}\left[\frac{1+\frac{R_{F}}{R_{i}}}{A_{01}}\right]=4 \mathrm{k}\left[\frac{1+0}{10^{5}}\right] \approx 0.040 \mathrm{HM}$

FIGURE 27 - DIFFERENTIAL AMPLIFIER

$e_{0}=-\left[\frac{R_{F}}{R_{1}} e_{1}+\frac{R_{F}}{R_{2}} e_{2}\right]+\left[1+\frac{R_{F}}{R_{3}}\right] e_{3}$

$$
\text { For } R_{3}=\frac{R_{1}, R_{2}}{R_{1}+R_{2}}
$$

$R_{B}=$ Parallel Combination of $R_{1}, R_{2}, R_{3}, R_{F}$.

$$
e_{0}=-\left[\frac{R_{F}}{R_{1}} e_{1}+\frac{R_{F}}{R_{2}} e_{2}+\frac{R_{F}}{R_{3}} e_{3}\right]
$$

*Properly Compensated

FIGURE 29 - + 15 VOLT REGULATOR

TYPICAL APPLICATIONS (continued)

MONOLITHIC SENSE AMPLIFIER

. . . consisting of a wideband differential amplifier, a dc restoration circuit which also incorporates facilities to externally adjust the threshold, and an MDTL output gate which is strobed from saturated logic. It is designed to detect bipolar differential signals derived by a core memory with cycle times as low as $0.5 \mu \mathrm{~s}$.

- Differential Threshold Characteristics:

Adjustable Threshold - $10-25 \mathrm{mV}$
Nominal Threshold $-17 \mathrm{mV} @ \mathrm{~V}_{6}=-6 \mathrm{~V}$
Input Offset Voltage -1.0 mV typical
Threshold Drift $--10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical

- Fast Response Time - 20 ns typical
- Short Recovery Time:

50 ns max @ $e_{i n}=1.8 \mathrm{~V}$ Common Mode
50 ns max @ $\mathrm{e}_{\mathrm{in}}=400 \mathrm{mV}$ Differential Mode

CIRCUIT SCHEMATIC

Number at end of terminal represents pin number for devices in flat package and metal can.
Number in parenthesis represents pin number for ceramic dual in-line package.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

ELECTRICAL CHARACTERISTICS

($\mathrm{V}^{+}=+6 \mathrm{Vdc} \pm 1 \%, \mathrm{~V}^{-}=-6 \mathrm{Vdc} \pm 1 \%, \mathrm{C}_{\mathrm{ext}}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
Pin number references are for devices in flat package and metal can.
See block diagram for dual in-line package pin numbers.

Characteristic	Fig. No.	Symbol	N MC1540			MC1440			Unit
			Min	Typ	Max	Min	Typ	Max	
Input Threshold Voltage $\begin{aligned} & \left(\mathrm{V}_{6}=-6.0 \mathrm{Vdc}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{6}=-6.0 \mathrm{~V}, \mathrm{~T}_{A}=\mathrm{T}_{\text {low }}{ }^{*}\right) \\ & \left(\mathrm{V}_{6}=-6.0 \mathrm{~V}, \mathrm{~T}_{A}=\mathrm{T}_{\text {high }}{ }^{*}\right) \end{aligned}$	1	$V_{\text {th }}$	$\begin{array}{c\|} \hline 14 \\ 12 \\ 12 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \frac{17}{17} \end{gathered}$	2 20 24 22	$\begin{aligned} & 12 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 30 \\ & 30 \end{aligned}$	mV
Input Offset Voltage	1	$V_{\text {io }}$		-1.0	5.0	-	1.0	6.0	mV
Input Bias Current $\begin{aligned} & \left(V_{3}=V_{4}=0, T_{A}=25^{\circ} \mathrm{C}\right) \\ & \left(V_{3}=V_{4}=0, T_{A}=T_{\text {low }}{ }^{*}\right) \end{aligned}$	2	Ib		75	$\begin{array}{r} 50 \\ 100 \end{array}$	-	7.5	$\begin{gathered} 75 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
Input Offset Current	2	$\mathrm{I}_{\text {io }}$	$-$	-20	+ 10	-	2.0	15	$\mu \mathrm{A}$
Output Voltage High $\left(v_{3}=v_{4}=0\right)$	3	V_{OH}	5.9			5.8	-	-	Vdc
$\begin{aligned} & \text { Output Voltage Low } \\ & \left(V_{3}=V_{4}=0, V_{10}=+6.0 \mathrm{Vdc}, I_{8}=6.0 \mathrm{mAdc}\right) \\ & \left(\mathrm{V}_{10}=+6.0 \mathrm{Vdc}, \mathrm{I}_{8}=6.0 \mathrm{mAdc}, T_{A}=T_{\text {high }}{ }^{*}\right) \end{aligned}$	3	V_{OL}			3 350 400	-	$-$	$\begin{aligned} & 400 \\ & 450 \end{aligned}$	mVdc
Amplifier Voltage Gain ($V_{3}=15 \mathrm{mV}$ peak)	4	AV		85		-	85	-	-
Strobe Load Current $\left(V_{9}=0\right)$	-	IS			12	-	-	1.5	mAdc
Strobe Reverse Current $\begin{aligned} & \left(V_{9}=+5.0 \mathrm{Vdc}\right) \\ & \left(V_{9}=+6.0 \mathrm{Vdc}, T_{A}=T_{\text {high }}{ }^{*}\right) \end{aligned}$	-	IR			$\begin{array}{r} 20 \\ 25 \end{array}$	-	-	$\begin{aligned} & 5.0 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$
Propagation Delay Input to Amplifier Output $\left(V_{3}=25 \mathrm{mV}\right.$ pulse, $\left.\mathrm{V}_{9}=+2.0 \mathrm{Vdc}\right)$ Input to Gate Output $\left(V_{3}=25 \mathrm{mV}\right.$ pulse, $\left.\mathrm{V}_{9}=+2.0 \mathrm{Vdc}\right)$ Strobe to Gate Output $\left(V_{3}=V_{4}=0, V_{9}=+2.0 \vee \text { pulse }\right)$	5 5	$\begin{aligned} & \mathrm{t}_{3}+10+ \\ & \mathrm{t}_{3}+8- \\ & \mathrm{t}_{9}+8- \end{aligned}$		10 20 10	15 30 15 15$\|$	- - -	10 20 10	$\begin{aligned} & 20 \\ & 50 \\ & 30 \end{aligned}$	ns
Recovery Time Differential Mode ($\mathrm{V}_{3}=400 \mathrm{mV}$ pulse) Common Mode ($\mathrm{V}_{3}=1.8 \mathrm{~V}$ pulse)	7 8	$t_{R}(d m)$ $t_{R}(\mathrm{~cm})$		20 20	50 50 50	- -	20 20	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	ns
Power Dissipation	-	P_{D}		\| 120	180	-	120	250	mW

[^19]AV Amplifier Voltage Gain - the ratio of output voltage at pin 1 to the input voltage at pin 3 or 4
Ib Input Bias Current - the average input current defined as $(13+14) / 2$
$I_{\text {io }}$ Input Offset Current - the difference between input current values, $\left|I_{3}-I_{4}\right|$
I_{R} Strobe Reverse Current - leakage current when the strobe input is high
IS Strobe Load Current - amount of current drain from the circuit when the strobe pin is grounded
PD Power Dissipation - amount of power dissipated in the unit as defined by $\|_{2} \times \mathbf{V}^{+}|+| I_{5} \times \mathbf{V}^{-1}$
t_{R} Recovery Time - The time that is required for the device to recover from the specified differential and common-mode overload inputs prior to strobe as reference to the 10% point
of the trailing edge of an input pulse. The device is consid ered recovered when the threshold after a differential over load disturbance is within 1.0 mV of the threshold value with out the disturbance, or, for common-mode disturbance, when the level at pin 10 is within $\mathbf{1 0 0} \mathbf{~ m V}$ of the quiescent value.
$\mathbf{t}_{\mathbf{x} \pm \mathbf{y} \pm}$
Propagation Delay - The time that is required for the output pulse at pin y to achieve 50% of its final value or the 1.5 V level referenced to 50\% of the input pulse at pin x. (The + and - denote positive and negative-going pulse transition.)
Output Voltage High - high-level output voltage when the output gate is turned off
Output Voltage Low - low-level output voltage when the output gate is turned on
Input Threshold - input pulse amplitude that causes the output to begin saturation
Input Offset Voltage - the difference in $V_{\text {th }}$ at each input

FIGURE 3 - OUTPUT VOLTAGE LEVELS

FIGURE 5 - PROPAGATION DELAY (STROBE HIGH)

FIGURE 2 - INPUT BIAS CURRENT TEST CIRCUIT

FIGURE 4 - AMPLIFIER VOLTAGE GAIN

FIGURE 6 - PROPAGATION DELAY (STROBE INPUT)

RECOVERY TIME TEST CIRCUIT

FIGURE 8 - COMMON MODE RECOVERY TIME TEST CIRCUIT

Pin numbers shown for devices in flat package and metal can. See block diagram for dual in-line package pin numbers.

FIGURE 11 - TYPICAL THRESHOLD versus POWER SUPPLIES $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Threshold Adjust Attached to V^{-})

FIGURE 10 - TYPICAL THRESHOLD versus TEMPERATURE

FIGURE 12 - TYPICAL THRESHOLD versus THRESHOLD VOLTAGE ADJUST FOR $\mathrm{V}^{-}=\mathbf{6 . 0} \mathrm{V}$

For a more detailed discussion regarding application of sense amplifiers, see Motorola Application Note AN-245. "The MC1540 - An Integrated Core Memory Sense Amplifier.'

Dual-channel gated sense amplifier with separate wideband differential input amplifiers. Either input can be gated on from saturated logic levels. The sense amplifier features adjustable threshold, saturated logic output levels, and a strobe input that accommodates saturated logic levels. Designed to detect bipolar signals from either of two sense lines. Operates with core memory cycle times less than 0.5μ s.

Typical Amplifier Features:

- Nominal Threshold - 17 mV
- Input Offset Voltage -1.0 mV typical
- Propagation Delay Input to Gate-Output - 20 ns Input to Amplifier-Output - 10 ns Gate Response Time - 15 ns Strobe Response Time - 15 ns
- Common Mode Input Range - 1.5 Volts
- Differential Mode Input Range

With Gate On - 600 mV
With Gate Off - 1.5 Volts

- Power Dissipation - 140 mW typical

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & +10 \\ & -10 \end{aligned}$	Vdc Vdc
Differential Input Signal	$\mathrm{V}_{\text {in }}$	± 5	Vdc
Common Mode Input Voltage	$\mathrm{CMV}_{\text {in }}$	± 5	Vde
Load Current	${ }_{\mathrm{I}} \mathrm{L}$	25	mA
Power Dissipation (Package Limitation) Flat Package Derate above $25^{\circ} \mathrm{C}$ Ceramic Dual In-Line Package Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 500 \\ & 3.3 \\ & 600 \\ & 4.8 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & \text { Operating Temperature Range } \\ & \text { MC1541F, MC1541L } \\ & \text { MC1441F, MC1441L, } \end{aligned}$	T_{A}	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

CIRCUIT SCHEMATIC

Number at terminal end denotes pin number for flat (F) package.
Number in parenthesis denotes pin
Number in parenthesis denotes pin number for dual in-line ceramic (L) package.

LOGIC DIAGRAM

FIGURE 1 - TYPICAL OPERATION

MC1541, MC1441 (continued)

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=+5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~V}^{-}=5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~V}_{\mathrm{th}}(\operatorname{pin} 11)=-5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{C}_{\text {ext }}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
($T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1541 or $0^{\circ} \mathrm{C}$ for MC1441, $\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1541 or $+75^{\circ} \mathrm{C}$ for MC1441. Pin numbers referenced in table
denote flat package; to ascertain corresponding pin number for dual in-line package refer to the equivalent circuit.)

Characteristic	Fig. No.	Symbol	Min	Typ	Max	Unit
Input Threshold Voltage $\begin{aligned} & \left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\text {low }} \leqq \mathrm{T}_{\mathrm{A}} \leqq \mathrm{~T}_{\text {high }}\right) \end{aligned}$	8	$\mathrm{v}_{\text {th }}$	$\begin{aligned} & 14 \\ & 13 \\ & 12 \end{aligned}$	$\begin{gathered} 17 \\ - \\ 17 \end{gathered}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	mV
Input Off set Voltage	8	$\mathrm{V}_{\text {io }}$	-	1.0	6.0	mV
Input Bias Current $\begin{aligned} & \left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0\right) \\ & \left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{low}}\right) \end{aligned}$	9	I_{b}		5.0 -	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Current	9	I_{io}	-	1.0	2.0	$\mu \mathrm{A}$
Output Voltage High $\left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0, \mathrm{I}_{\mathrm{OH}}=200 \mu \mathrm{~A}\right)$		V_{OH}	3.0	-	-	Vdc
Output Voltage Low $\begin{aligned} & \left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0, \mathrm{~V}_{12}=+5.0 \mathrm{Vdc}, \mathrm{I}_{7}=10 \mathrm{mAdc}\right) \\ & \left(\mathrm{V}_{12}=+5.0 \mathrm{Vdc}, \mathrm{I}_{7}=10 \mathrm{mAdc}, \mathrm{~T}_{\mathrm{A}}=+\mathrm{T}_{\text {high }}\right) \end{aligned}$	10	v_{OL}	-	-	$\begin{aligned} & 350 \\ & 400 \end{aligned}$	mVdc
Strobe Load Current $\left(\mathrm{V}_{10}=0\right)$		I_{S}	-	-	1.5	mAdc
Strobe Reverse Current $\begin{aligned} & \left(\mathrm{V}_{10}=+5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{10}=+5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right) \end{aligned}$		$\mathrm{I}_{\text {SR }}$	-	-	$\begin{gathered} 2.0 \\ 25 \end{gathered}$	$\mu \mathrm{Adc}$
Input Gate Voltage Low $\left(\mathrm{V}_{1}=\mathrm{V}_{3}=25 \mathrm{mVdc}, \mathrm{~V}_{2}=\mathrm{V}_{4}=0\right)$	11	$\mathrm{V}_{\text {GL }}$	-	0.7	-	Vdc
Input Gate Voltage High $\left(\mathrm{V}_{1}=\mathrm{V}_{3}=25 \mathrm{mVdc}, \mathrm{~V}_{2}=\mathrm{V}_{4}=0\right)$	11	$\mathrm{V}_{\text {GH }}$	-	1.6	-	Vdc
Input Gate Load Current $\left(V_{8} \text { or } V_{9}=0\right)$		I_{G}	-	-	2.5	mAdc
$\begin{aligned} & \text { Input Gate Reverse Current }\left(\mathrm{V}_{8} \text { or } \mathrm{V}_{9}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right) \end{aligned}$	-	I_{GR}	-	-	$\begin{gathered} 2.0 \\ 25 \end{gathered}$	$\mu \mathrm{Adc}$
Common Mode Range Input Gate High Input Gate Low	13	V_{CM}	-	$\begin{array}{r} \pm 1.5 \\ \pm 1.5 \\ \hline \end{array}$	-	Vdc
Differential Mode Range Input Gate High Input Gate Low	14	$\begin{aligned} & \mathrm{v}_{\mathrm{DH}} \\ & \mathrm{v}_{\mathrm{DL}} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \pm 600 \\ & \pm 1.5 \end{aligned}$	-	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{Vdc} \end{aligned}$
Power Dissipation		${ }^{\text {P }}$ D	-	140	180	mW

SWITCHING CHARACTERISTICS

Characteristic	Fig. No.	Symbol	Min	Typ	Max	Unit
```Propagation Delay Input to Amplifier Output \(\left(\mathrm{V}_{1}=25 \mathrm{mV}\right.\) pulse, \(\left.\mathrm{V}_{10}=+2.0 \mathrm{Vdc}\right)\)```	8	${ }^{\mathrm{t}}$ A	-	10	15	ns
Input to Output $\left(\mathrm{V}_{1}=25 \mathrm{mV} \text { pulse, } \mathrm{V}_{10}=+2.0 \mathrm{Vdc}\right)$	8	${ }^{\text {IO }}$	-	20	30	
Strobe to Output $\left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0, \mathrm{~V}_{10}=+2.0 \mathrm{~V} \text { pulse }\right)$	12	${ }^{\text {S }}$ SO	-	15	20	
Gate Input to Amplifier Input $\left(\mathrm{V}_{1}=25 \mathrm{mV} \text { pulse, } \mathrm{V}_{9}=2.0 \mathrm{~V} \text { pulse }\right)$	11	${ }^{\text {G GI }}$	-	10	15	
Gate Input to Amplifier Output $\left(\mathrm{V}_{1}=25 \mathrm{mVdc}, \mathrm{V}_{9}=2.0 \mathrm{~V}\right.$ pulse $)$	11	${ }^{\text {t }}$ GA	-	30	35	
```Recovery Time Differential Mode \(\left.\begin{array}{l}\text { Input Gate High } \\ \text { Input Gate Low }\end{array}\right\} \mathrm{V}_{1}\) or \(\mathrm{V}_{3}=400 \mathrm{mV}\) pulse```	14	${ }^{t} \mathrm{DR}$	-	$\begin{aligned} & 30 \\ & 0 \end{aligned}$	-	ns
Common Mode $\left.\begin{array}{l}\text { Input Gate High } \\ \text { Input Gate Low }\end{array}\right\} \mathrm{V}_{1}$ or $\mathrm{V}_{3}=1.5 \mathrm{~V}$ pulse	13	${ }^{\mathrm{t}} \mathrm{CMR}$	-	15 15	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	

FIGURE 2 - TYPICAL INPUT THRESHOLD versus TEMPERATURE

FIGURE 4 - TYPICAL INPUT THRESHOLD versus \mathbf{V}^{-}

FIGURE 3 - TYPICAL THRESHOLD versus THRESHOLD VOLTAGE ADJUST

FIGURE 5 - TYPICAL INPUT THRESHOLD versus INPUT PULSE WIDTH

MC1541, MC1441 (continued)

FIGURE 6 - INPUT-OUTPUT TRANSFER CHARACTERISTICS

FIGURE 7 - CHANNEL GATE INPUT-AMPLIFIER

FIGURE 8 - INPUT THRESHOLD FOR OUTPUT VOLTAGE SWING FROM $V_{O H}$ TO $V_{O L}$ PROPAGATION DELAY FROM INPUT TO OUTPUT

FIGURE 9 - INPUT BIAS CURRENT TEST CIRCUIT

FIGURE 10 - OUTPUT VOLTAGE LEVELS

FIGURE 11 - MINIMUM TIME FROM CHANNEL GATE INPUT TO AMPLIFIER INPUT PROPAGATION DELAY FROM CHANNEL GATE INPUT TO AMPLIFIER OUTPUT
(A) Minimum Time from Gate Input to Amplifier Input - tGI

(Pin numbers shown on this page denote the pin numbers for the flat package only; to ascertain the corresponding pin numbers for the dual in-line package, refer to the circuit schematic on the second page.)

FIGURE 12 - PROPAGATION DELAY FROM STROBE INPUT TO OUTPUT

FIGURE 13 - COMMON-MODE RECOVERY AND COMMON-MODE RANGE

FIGURE 14 - DIFFERENTIAL RECOVERY AND DIFFERENTIAL RANGE

(Pin numbers shown on this page denote the pin numbers for the
flat package only; to ascertain the corresponding pin numbers for the dual in-line package, refer to the circuit schematic on the second page.)

DEFINITIONS

Pin numbers referenced in the definitions below denote the flat package only; to ascertain the corresponding pin number for the dual in-line package refer to the circuit schematic.

IB Input Bias Current - The average input current. defined as $\left(I_{1}+I_{2}+I_{3}+I_{4}\right) / 4$.

IG Channel Gate Load Current - The amount of current drain from the circuit when the channel gate input (Pin 8 or 9) is grounded.
IGR Channel Gate Reverse Current - The leakage current when the channel gate input (Pin 8 or 9) is high.
lio Input Offset Current - The difference between amplifier input current values $\left|I_{1}-I_{2}\right|$ or $\left|I_{3}-|4|\right.$.

IS Strobe Load Current - The amount of current drain from the circuit when the strobe pin is grounded.

ISR Strobe Reverse Current - The leakage current when the strobe input is high.
PD Power Dissipation - The amount of power dissipated in the unit.
tCMR Common Mode Recovery Time - The time required for the voltage at pin 12 to be within 100 mV of the dc value (after overshoot or ringing) as referenced to the 10% point of the trailing edge of a common mode overload signal.
tDR Differential Recovery Time - The time required for the device to recover from the specified differential input prior to strobe enable as referenced to the 10% point of the trailing edge of an input pulse. The device is considered recovered when the threshold with the overload signal applied is within 1.0 mV of the threshold with no overload input.
tGI Minimum Time Between Channel Gate Input and Signal Input - The minimum time between 50% point of channel gate input ($\operatorname{Pin} 8$ or 9) and 50% point of signal input (Pins 1, 2, 3, or 4) that still allows a full width signal at amplifier output.
${ }^{\text {t GA }}$ Propagation Delay, Channel Gate Input to Am plifier Output - The time required for the amplifier output at pin 13 to reach 50% of its final value as referenced to 50% of the input gate pulse at pin 8 or 9 (Amplifier input $=\mathbf{2 5} \mathrm{mVdc}$).
tIA Propagation Delay, Input to Amplifier Output The time required for the amplifier output
pulse at pin 13 to achieve 50\% of its final value referenced to 50% of the input pulse at pins 1 and 2 or 3 and 4.
tio Propagation Delay, Input to Output - The time required for the gate output pulse at pin 7 to reach the 1.5 Volt level as referenced to 50% of the input pulse at pins 1 and 2 or 3 or 4.
tSO Strobe Propagation Delay to Output - The time required for the output pulse at pin 7 to reach the 1.5 Volt level as referenced to the 1.5 Volt level of the strobe input at pin 10.
VCM Maximum Common Mode Input Range - The common mode input voltage which causes the output voltage level of the amplifier to decrease by 100 mV . (This is independent of the channel gate input level.)

VDH Maximum Differential Input Range, Gate Input High - The differential input which causes the input stage to begin saturation.
VDL Maximum Differential Input Range, Gate Input Low - The differential input signal which causes the output voltage level of the amplifier to decrease by 100 mV .
VGH Channel Gate Input Voltage High - Gate pulse amplitude that allows the amplifier output pulse to just reach 100\% of its final value. (Amplifier input is set at 25 mVdc).

VGL Channel Gate Input Voltage Low - Gate pulse amplitude that allows the amplifier output to just reach a 100 mV level. (Amplifier input is set at 25 mVdc).
$V_{\text {io }} \quad$ Input Offset Voltage - The difference in $V_{\text {th }}$ between inputs at pins 1 and 2 or 3 and 4,
VOH Output Voltage High - The high-level output voltage when the output gate is turned off.
VOL Output Voltage Low - The low-level output voltage when the output gate is saturated and the output sink current is 10 mA .
$V_{\text {th }} \quad$ Input Threshold - Input pulse amplitude at pins 1,2,3 or 4 that causes the output gate to just reach V_{OL}.

MC1543L

MONOLITHIC DUAL MECL CORE MEMORY SENSE AMPLIFIER

. . . a dual dc coupled sense amplifier providing output levels com patible with emitter-coupled logic levels. The MC1543L offers adjustable threshold and excellent threshold stability over a wide range of power-supply voltage variation.

- Input Threshold - Adjustable from 10 to 40 mV (Positive or Negative Signals)
- Both OR and NOR Outputs Available
- Low Power Dissipation
- Threshold Insensitive $V_{C C}$ or $V_{E E}$ Voltage Variation
- Each Amplifier is Separately Strobed

See Packaging Information Section for outline dimensions.

MC1543L (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Vol tage	V_{CC}	+10	Vdc
	V_{EE}	-10	Vdc
Differential Input Voltage	V_{ID}	± 5.0	Vdc
Common-Mode Input Voltage	$\mathrm{V}_{\mathrm{ICM}}$	± 5.0	Vdc
Load Current	I_{L}	25	mA
Power Dissipation (Package Limitation) Ceramic Dual-In-Line Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}		1000
Operating Temperature Range		mW	
Storage Temperature Range	T_{A}	-55 to +125	$\mathrm{~mW}^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Each Amplifier) $\left(V_{C C}=+5.0 \mathrm{Vdc} \pm 5 \%, V_{E E}=-5.2 \mathrm{Vdc} \pm 5 \%, V_{\text {ref }}=0.54 \mathrm{~V} \pm 1 \%\right.$,
$T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Fig. No.	Symbol	Min	Typ	Max	Unit
Input Threshold Vol tage	8	$V_{\text {TH }}$	17	20	23	mV
Power Supply Currents $\left(V_{2}=V_{3}=V_{11}=V_{12}=V_{14}=0\right)$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { ICC } \\ & \text { IEE } \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 9.5 \\ 26.5 \end{array}$	$\begin{aligned} & 12 \\ & 33 \end{aligned}$	mAdc mAdc
Input Bias Current	7	1 IB	-	3.5	10	$\mu \mathrm{Adc}$
Input Offset Current	7	110	-	0.05	0.5	$\mu \mathrm{Adc}$
Output Voltage High	9	V_{OH}	-0.85	-0.8	-0.67	$V \mathrm{dc}$
Output Voltage Low	9	$\mathrm{VOL}^{\text {OH}}$	-	-1.7	-1.46	Vdc
Strobe Threshold Level	10	$\mathrm{V}_{\text {ST }}$	-	-1.30	-	Vdc
Strobe Input Current High	10	${ }^{\text {I SH }}$	-	25	50	$\mu \mathrm{Adc}$
Strobe Input Current Low	10	${ }^{\text {ISL }}$	-	0.01	0.1	$\mu \mathrm{Adc}$
Input Common Mode Range	14	$V_{\text {CMR }}$	3.0	4.0	-	Vdc
Input Threshold Range (by varying $\mathrm{V}_{\text {ref }}$)	8	$V_{\text {THR }}$	-	10-40	-	mV
Power Dissipation	6	PD	-	185	230	mW
Reference Supply Input Current (Pin 13)	6	Iref	-	10	40	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS

Propagation Delay (Input to Output)	1	to	-	28	35	ns
Propagation Delay (Strobe to Output)	12	tSO	-	16	20	ns
Strobe Release Time	12	tSR	-	18	30	ns
Recovery Time (Differential-Mode) $\left(\mathrm{e}_{\mathrm{in}}=400 \mathrm{mVdc}\right)$	13	${ }^{\text {t }} \mathrm{DR}$	-	10	15	ns
Recovery Time (Common-Mode) $\left(\mathrm{e}_{\mathrm{in}}=3.0 \mathrm{Vdc}\right)$	14	${ }^{\text {t }}$ CMR	-	3.0	15	ns
Strobe Width Minimum	12	tS	-	8.0	-	ns

TEMPERATURE TESTS $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Input Threshold Voltage		8	$V_{\text {TH }}$				mV
	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$			18	$\begin{aligned} & 21.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \end{aligned}$	
Input Bias Current		7	IIB	2.2	7.0	20	$\mu \mathrm{Adc}$
Input Offset Current		7	110	0.02	0.1	1.0	μ Adc

MC1543L (continued)

EQUIVALENT CIRCUIT

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}, \mathrm{V}_{\text {ref }}\right.$ set for 20 mV Threshold, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

FIGURE 1 - TYPICAL INPUT THRESHOLD versus TEMPERATURE

FIGURE 2 - TYPICAL INPUT THRESHOLD versus REFERENCE VOLTAGE

FIGURE 3A - TYPICAL INPUT THRESHOLD versus VCC

FIGURE 3B - TYPICAL INPUT THRESHOLD versus $V_{E E}$

MC1543L (continued)

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}, \mathrm{V}_{\text {ref }}\right.$ set for 20 mV Threshold, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

TEST CIRCUITS
$\left(V_{C C}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}, \mathrm{V}_{\text {ref }}=0.54 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$
FIGURE 6 - POWER SUPPLY CURRENT DRAIN

FIGURE 8 - INPUT THRESHOLD LEVEL

FIGURE 7 - INPUT BIAS CURRENT INPUT OFFSET CURRENT

FIGURE 9 - OUTPUT VOLTAGE LEVELS

TEST CIRCUITS (continued)

FIGURE 10 - STROBE THRESHOLD LEVEL STROBE INPUT CURRENTS

FIGURE 12 - PROPAGATION DELAY - STROBE TO OUTPUT and STROBE RELEASE TIME

FIGURE 11 - PROPAGATION DELAY INPUT TO OUTPUT

FIGURE 13 - DIFFERENTIAL MODE RECOVERY TIME (See definition section)

TEST CIRCUITS (continued)
FIGURE 14 - COMMON MODE RECOVERY TIME COMMON MODE INPUT RANGE (See definition section)

DEFINITIONS

$I_{1 O}$ Input Offset Current - The difference between amplifier input current values $\left|I_{1 A}-\left.\right|_{2 A}\right|$ or $\left|\left.\right|_{1 B}-\left.\right|_{2 B}\right|$.
ISH Strobe High Current - The amount of input current when the strobe pin is grounded.

ISL Strobe Low Current - The leakage current when the strobe input is tied to the negative supply.
PD Power Dissipation - The amount of power dissipated in the unit.
${ }^{\text {t CMR }}$ Common-Mode Recovery Time - The minimum time by which the strobe input may follow the high level common mode input signal without causing a signal to appear at the amplifier output.
${ }^{\text {t}}$ DR Differential-Mode Recovery Time - Differential recovery time, the minimum time by which the strobe input may follow the high level differential input signal without causing a signal to appear at the amplifier output.
tIo Propagation Delay, Amplifier Input to Amplifier Output The time required for the amplifier output to reach 50% of its final value as referenced to 50% of the level of the pulse input. (Amplifier input $=\mathbf{2 5} \%$ over set threshold or approximately $\mathbf{2 5} \mathbf{m V d c}$.)
ts Strobe Width - The amount of time the strobe must be high to obtain a given output. Minimum strobe width is that minimum time required to cause the output to complete a full swing $V_{O L}$ to $V_{O H}$ or $V_{O H}$ to $V_{O L}$.
tso Propagation Delay, Strobe Input to Amplifier Output - The time required for the amplifier output pulse to achieve 50% of its final value referenced to 50% of the strobe input pulse at pins 4 or 10.
tSR Strobe Release Time - The time required for the output to change to 50% of its swing after the strobe reaches 50% of its level going low. A dc level of 50 mV is the input signal.
$V_{\text {CMR }}$ Maximum Common-Mode Input Range - The common-mode input voltage which causes the output voltage level of the amplifier to change by 100 mV (strobe high).
V_{OH} Output Voltage High - The high-level output voltage at pins 6 and 8 with no input - or at pins 5 and 9 with input above threshold.

VOL Output Voltage Low - The low-level output voltage at pins 5 and 9 with no input - or at pins 6 and 8 with input above threshold.
$V_{\text {ST }}$ Strobe Threshold Level - The voltage at which the strobe turns the amplifier to the ON state.
V_{TH} Input Threshold - Input pulse amplitude at pins 2, 3, 11, or 12 that causes the output gate to just reach its new value, V_{OL} or V_{OH}.
$V_{\text {THR }}$ Input Threshold Range - The maximum spread of input threshold level that can be attained by varying the threshold voltage reference, $V_{\text {ref }}$.

IDEAL FOR PLATED-WIRE, THIN-FILM AND OTHER HIGH-SPEED LOW-LEVEL SENSING APPLICATIONS

MC1544L/MC1444L features four input channels with decoded selection, two stages of gain employing capacitive coupling, and a MTTL compatible output gate. AC coupling reduces access times by eliminating the problems usually associated with input line offset voltages.

- Threshold Level - 1.0 mV typ
- Propagation Delay Time - 18 ns typ
- Decoded Input Channel Selection
- MTTL Compatible Inputs and Outputs
- Wired OR Output Capability
- DC Level Restore Gate on Capacitors Eliminates Repetition Rate Problems Common to ac-Coupled Circuits
- Output Strobe Capability

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
Power Supply Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} +7.0 \\ -8.0 \end{array}$	Vdc
Common-Mode Input Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CM}^{+}} \\ & \mathrm{v}_{\mathrm{CM}^{-}} \end{aligned}$	$\begin{aligned} & +5.0 \\ & -6.0 \end{aligned}$	Vdc
Differential-Mode Input Voltage	$\mathrm{V}_{\mathrm{DM}}{ }^{+}$ $V_{D M}{ }^{-}$	$\begin{aligned} & +5.0 \\ & -6.0 \end{aligned}$	Vdc
Capacitor Restore, Channel Select, and Strobe Input Voltage	$\mathrm{v}_{\mathrm{CR}}, \mathrm{v}_{\mathrm{CS}}, \mathrm{v}_{\mathrm{S}}$	+5.5	Vdc
Power Dissipation (Package Limitation) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 1.0 \\ & 6.7 \end{aligned}$	$\stackrel{\mathrm{W}}{\mathrm{~mW} /{ }^{\circ} \mathrm{C}}$
Operating Temperature Range $\begin{array}{l}\text { MC1544L } \\ \\ \text { MC1444L }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ	+175	${ }^{\circ} \mathrm{C}$

FIGURE 2 - CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)							200	-10	10	-0.4	0.8	2.0	0	3.5	4.75	5.0	5.25	-5.7	-6.0	-6.3	
ChARACTERISTIC	Symbol	$\begin{array}{\|c\|} \hline \text { Pin } \\ \text { Under } \\ \text { Test } \end{array}$	Min	Typ	Max	Unit	TEST CURRENT/VOLTAGES APPLIED TO PINS LISTED BELOW:														GND
							t_{1}	I_{2}	1 OL	${ }^{\text {I OH}}$	v_{12}	$\mathrm{V}_{\mathbf{I H}}$	$\mathrm{V}_{\text {IL2 }}$	$\mathrm{V}_{1 \mathrm{H} 2}$	$v_{\text {CCL }}$	V_{cc}	$\mathrm{V}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{EEL}}$	V_{EE}	$\mathrm{V}_{\text {EEH }}$	
Input Threshoid Voltage (Note 1) MC1544L Tlow * to Thigh* MC1444L	$V_{T H}$	13	0.5	1.0	1.5	mv	-	-	-	-	-	-	-	-	-	12	-	-	5	-	10
		13	0.3	1.0	2.3	mv	-	-	-	-	-	-	-	-	-	12	-	-	5	-	10
Input Bias Current (Note 1)	Ib	13	-	20	-	$\mu \mathrm{A}$	-	--	-	-	-	-	13, 14	7.8	-	-	12	-	-	5	10
Input Offset Current	$\mathrm{I}_{\text {io }}$	13, 14	-	1.0	-	$\mu \mathrm{A}$	-	-	-	-	-	-	13, 14	7.8	-	-	12	-	-	5	10
Channel Select Input Current High Level (Note 2) Low Level	$\begin{aligned} & \mathrm{I} \mathrm{CSH} \\ & \mathrm{I} \mathrm{CSL} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.8 \\ 0.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{mA} \\ \mathrm{~mA} \\ \hline \end{array}$							7	7 -		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \text { - } \\ & \text { _ } \end{aligned}$	5 5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
Capacitor Restore Input Current High Lew Level	$\begin{aligned} & \text { ICRH } \\ & \text { ICRL } \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ -2.5 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 10 \\ -3.5 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$						$\begin{aligned} & - \\ & - \end{aligned}$	11	11			$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
Strobe Input Current Low/High Level	's	6	-	40	200	$\mu \mathrm{A}$	-	-	-	-	-	-	-	6	-	-	12	-	-	5	10
Channel Select Input Voltage (Note 3)	$\begin{aligned} & \mathrm{v}_{\mathrm{CSH}} \\ & \mathrm{v}_{\mathrm{CSL}} \end{aligned}$	7 7	$\left\|\begin{array}{c} - \\ 0.7 \end{array}\right\|$	$\left.\begin{aligned} & 1.6 \\ & 1.2 \end{aligned} \right\rvert\,$	2.1	$\begin{aligned} & v \\ & v \end{aligned}$	-		-	-	7	7 -	$\begin{array}{r} 3,8 \\ 13,15 \\ 1,8 \\ 13,15 \\ \hline 18 \end{array}$	-	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	-	10 10
$\begin{array}{ll}\begin{array}{l}\text { Channel Select Input Voltage } \\ \text { (Note 3) }\end{array} & \text { High Level } \\ \text { Low Level }\end{array}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CSH}} \\ & \mathrm{v}_{\mathrm{CSL}} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\left\|\begin{array}{c} - \\ 0.7 \end{array}\right\|$	1.5	$\left\lvert\, \begin{gathered} 2.1 \\ - \end{gathered}\right.$	$\begin{aligned} & v \\ & v \end{aligned}$			-	-	-	8 -	$\begin{gathered} 1,3 \\ 7,13 \\ 1,7 \\ 13,15 \end{gathered}$	-	-	12	-	-	5	-	10 10
(Note 4)	$\begin{aligned} & \mathrm{v}_{\mathrm{CRH}} \\ & \mathrm{v}_{\mathrm{CRL}} \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{gathered} - \\ 0.8 \end{gathered}$	$\begin{array}{\|l\|} \hline 1.5 \\ 1.5 \\ \hline \end{array}$	2.0 -	\bar{v}					$\begin{gathered} - \\ 11 \end{gathered}$	11	-	6 6		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-	-	5	-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
Strobe Input Voltage (Note 4)	$\begin{aligned} & \mathrm{v}_{\mathrm{SH}} \\ & \mathrm{v}_{\mathrm{SL}} \\ & \hline \end{aligned}$	6	$\begin{gathered} - \\ 0.8 \end{gathered}$	1.5	2.0 -	v				-	-	6	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	-	10 10
Output Voltage High Level Low Level	V_{OH} V_{OL}.	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	2.4	$\begin{array}{\|l\|} \hline 3.6 \\ 0.4 \end{array}$	0.5	$\begin{aligned} & v \\ & v \end{aligned}$			$\begin{aligned} & - \\ & 9 \end{aligned}$	9	6 -				$\begin{aligned} & 12 \\ & 12 \end{aligned}$		-	5 -	-	-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
$\begin{array}{ll}\text { Power Supply Currents } & \text { Positive } \\ & \text { Negative }\end{array}$	$\begin{aligned} & \text { 'CC } \\ & \text { 'EE } \end{aligned}$	$\begin{gathered} 12 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{array}{l\|l\|} 30 \\ 30 \end{array}$	mA mA					-		$\begin{array}{\|l} 6,13,14 \\ 6,13,14 \end{array}$	$\left\|\begin{array}{l} 7,8,11 \\ 7,8,11 \end{array}\right\|$			12 12	-	-	5 5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
Common-Mode Range Voltage (Note 1)	$\begin{aligned} & \mathrm{v}_{\mathrm{CM}^{+}} \\ & \mathrm{v}_{\mathrm{CM}^{-}} \end{aligned}$	$\begin{aligned} & 13,14 \\ & 13,14 \end{aligned}$	-	$\left\lvert\, \begin{gathered} 4.7 \\ -6.0 \end{gathered}\right.$	-	$\begin{aligned} & V d c \\ & V d c \end{aligned}$	$\begin{aligned} & 13,14 \\ & 13,14 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	-	-	-	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	--		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	-	10 10
Differential-Mode Range Voltage	VDM	13	-	3.7	-	Vdc	13	-	-	-	-	-	14	7.8	-	12	-	-	5	-	10

-MC1544 $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C} ;$ MC1444 $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+75^{\circ} \mathrm{C}$.
NOTES: 1. $\begin{aligned} & \text { Only one input test is shown, other inpuls are tested } \\ & \text { in the same manner and are selected according to the }\end{aligned} \quad 4$. $\begin{aligned} & \text { This requirement is evaluated during the ac threshold } \\ & \text { test }(\text { Figures } 1,2): A 10 \mathrm{mV} \text { signal }\left(\mathrm{e}_{\text {in }}\right) \text { is applied }\end{aligned}$ in the same manner and are selected according to the

This requirement is considered satisfied if the input
bias currents of all unselected channels total less $\quad \begin{aligned} & \text { This requirement is evaluated as } \\ & V_{S H} \text { allows normal operation and } V_{S L} \text { causes } V_{O H}\end{aligned}$ than $1.0 \mu \mathrm{~A}$ which guarantees that these channels are at the output.

Characteristic		Symbol	Figure	Min	Typ	Max	Unit
Propagation Delay Time		${ }^{{ }^{\mathrm{t}_{\mathrm{pd}}{ }^{+}}{ }^{+}}$	1.5	-	$\begin{aligned} & 18 \\ & 40 \end{aligned}$	$\stackrel{25}{-}$	ns
Strobe to Input Lead Time		$\mathrm{t}_{\text {si }}$	1.5	-	10	-	ns
Strobe to Output Delay Time		$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{so}}}{ }^{\mathrm{t}_{\mathrm{so}^{+}}} \end{aligned}$	1.6	-	$\begin{aligned} & 18 \\ & 30 \end{aligned}$	25	ns
Channel Select to Input Lead Time		${ }_{\text {csi }}$	1,5	-	15	-	ns
Channel Select to Output Delay Time		$\begin{aligned} & \mathrm{t}_{\mathrm{cso}}- \\ & \mathrm{t}_{\mathrm{CsO}} \end{aligned}$	1,7	-	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	-	ns
Capacitor Restore to Input Lead Time		${ }^{\text {t }} \mathrm{cri}$	1.5	-	10	-	ns
Capacitor Restore Time (50 mV Offset)		t_{cr}	1.8	-	15	-	ns
Common-Mode Recovery Time	$\begin{aligned} & \mathrm{e}_{\mathrm{in}}^{1} \\ & =+2.0 \mathrm{~V} \\ & \mathrm{e}_{\mathrm{in}}^{1} \end{aligned}=-2.0 \mathrm{~V}$	${ }^{t} \mathrm{CMR}^{+}$ ${ }^{\text {t }}{ }^{\text {CRM }}{ }^{-}$	19	-	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	-	ns
Differential-Mode Recovery Time	$\begin{aligned} & \mathrm{e}_{\mathrm{in}_{1}}=+1.0 \mathrm{~V} \\ & \mathrm{e}_{\mathrm{in} 1}=-1.0 \mathrm{~V} \end{aligned}$	${ }^{\text {t }}{ }^{\text {DMR }}{ }^{+}$ ${ }^{\text {tom }}{ }^{\text {DM }}$	20	-	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	-	ns

FIGURE 4 - THRESHOLD VOLTAGE TEST

FIGURE $6-\mathrm{t}_{\text {so- }}, \mathrm{t}_{\text {so }}+$

TYPICAL CHARACTERISTICS
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 9 - THRESHOLD VOLTAGE versus TEMPERATURE

FIGURE 11 - THRESHOLD versus INPUT OFFSET VOLTAGE

FIGURE 13 - OUTPUT VOLTAGE versus CURRENT and TEMPERATURE

IOL, OUTPUT CURRENT LOW (mA)

FIGURE 10 - THRESHOLD VOLTAGE versus POWER SUPPLIES

FIGURE 12 - THRESHOLD VOLTAGE versus PULSE WIDTH

FIGURE 14 - SENSE AMPLIFIER RESPONSE versus TEMPERATURE (See Figures 3 and 5)

FIGURE 21 - COMMON-MODE CHARACTERISTICS

Note: The 5 mV Input Signal (Differential) is superimposed on the Common-Mode Input and is shown separately for reference only

FIGURE 22 - DIFFERENTIAL-MODE CHARACTERISTICS

Note: The 5 mV Input Signal is superimposed on the Differential Input and is shown separately for reference only.

MC1545 MC1445

GATE CONTROLLED TWO-CHANNEL-INPUT

 WIDEBAND AMPLIFIER. . . designed for use as a general-purpose gated wideband-amplifier, video switch, sense amplifier, multiplexer, modulator, FSK circuit, limiter, AGC circuit, or pulse amplifier. See Application Notes AN475 and AN491 for design details.

- Large Bandwidth; 75 MHz typical
- Channel-Select Time of 20 ns typical
- Differential Inputs and Differential Output

GATE CONTROLLED TWO-CHANNEL-INPUT WIDEBAND AMPLIFIER

MONOLITHIC SILICON EPITAXIAL PASSIVATED
DIFFERENTIAL AMPLIFIER WITH AGC

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	V alue	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \\ & \hline \end{aligned}$	Vdc Vdc
Differential Input Signal	$V_{\text {ID }}$	± 5.0	Volts
Load Current	IL	25	mA
Power Dissipation (Package Limitation) Flat Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Ceramic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Metal Can Derate above $T_{A}=+25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 500 \\ 3.3 \\ 625 \\ 5.0 \\ 680 \\ 4.6 \\ \hline \end{gathered}$	
Operating Temperature Range $\begin{array}{l}\text { MC1445 } \\ \\ \text { MC1545 }\end{array}$	T_{A}	$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{Vdc}\right.$, at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$,
specifications apply to both input channels unless otherwise noted)

Characteristic		Fig. No.	Symbol	Min	Typ	Max	Unit
Single-Ended Voltage Gain	MC1445 MC1545	1, 12	$A_{\text {vs }}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$	dB
Bandwidth	$\begin{aligned} & \text { MC1445 } \\ & \text { MC1545 } \\ & \hline \end{aligned}$	1, 12	BW	50	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$	-	MHz
Input Impedance $(f=50 \mathrm{kHz})$	MC1445 MC1545	5, 14	${ }^{\text {is }}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & \hline \end{aligned}$	k ohms
Output Impedance $(f=50 \mathrm{kHz})$		6, 15	$z_{\text {Os }}$	-	25	-	Ohms
Output Voltage Swing $\left(R_{L}=1.0 \mathrm{k} \mathrm{ohm}, f=50 \mathrm{kHz}\right)$		4, 13	$\mathrm{V}_{\text {OD }}$	1.5	2.5	-	$\mathrm{V}_{\mathrm{p} \text {-p }}$
Input Bias Current $\left(i_{1 B}=\left(I_{1}+I_{2}\right) / 2\right)$	$\begin{aligned} & \text { MC1445 } \\ & \text { MC1545 } \end{aligned}$	16	IIB	-	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\mu \mathrm{Adc}$
Input Offset Current		16	$\|110\|$	-	2.0	-	$\mu \mathrm{Adc}$
Input Offset Voltage	$\begin{aligned} & \text { MC1445 } \\ & \text { MC1545 } \\ & \hline \end{aligned}$	17	$\left\|V_{10}\right\|$	-	1.0	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	mVdc
Quiescent Output dc Level		17	V_{0}	-	0.2	-	Vdc
		17	$\left\|\triangle V_{0}\right\|$	-	15	-	mV
Common-Mode Rejection Ratio $(f=50 \mathrm{kHz})$		9,18	CMRR	-	85	-	dB
Input Common-Mode Voltage Swing		18	VICR	-	± 2.5	-	V_{p}
Gate Characteristics Gate Voltage Low (See Note 1) Gate Voltage High (See Note 2)	MC1445 MC1545 MC1445 MC1545	8	$\begin{aligned} & \mathrm{v}_{\mathrm{GOL}} \\ & \mathrm{v}_{\mathrm{GOH}} \end{aligned}$	$\begin{gathered} 0.20 \\ 0.45 \\ - \\ - \end{gathered}$	$\begin{gathered} 0.40 \\ 0.70 \\ 1.3 \\ 1.5 \\ \hline \end{gathered}$	$\begin{gathered} - \\ - \\ 3.0 \\ 2.2 \end{gathered}$	Vdc
Gate Current Low (Gate Voltage $=0 \mathrm{~V}$)	$\begin{aligned} & \text { MC1445 } \\ & \text { MC1545 } \end{aligned}$	18	$\mathrm{I}_{\text {GOL }}$	-	-	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	mA
Gate Current High (Gate Voltage $=+5.0 \mathrm{~V}$)	$\begin{aligned} & \text { MC1445 } \\ & \text { MC1545 } \end{aligned}$	18	${ }^{\prime} \mathrm{GOH}$	-	-	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$
Step Response $\left(\mathrm{e}_{\mathrm{in}}=20 \mathrm{mV}\right)$	MC1445 MC1545 MC1445 MC1545 MC1445 MC1545 MC1445 MC1545	19	tPLH tPHL ${ }^{t} r$ t_{f}	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 6.3 \\ & 6.3 \\ & 6.5 \\ & 6.5 \\ & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} \overline{10} \\ - \\ 10 \\ - \\ 10 \\ \overline{10} \end{gathered}$	ns
$\begin{array}{\|l\|} \hline \text { Wideband Input Noise } \\ \left(5.0 \mathrm{~Hz}-10 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=50 \mathrm{ohms}\right) \\ \hline \end{array}$		10, 20	$\mathrm{V}_{N}($ in)	-	25	-	$\mu \mathrm{V}$ (rms)
DC Power Dissipation	$\begin{aligned} & \text { MC1445 } \\ & \text { MC1545 } \end{aligned}$	11, 20	$P_{\text {D }}$	-	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 150 \\ & 110 \end{aligned}$	mW

Note $1 \mathrm{~V}_{\mathrm{GOL}}$ is the gate voltage which results in channel A gain of unity or less and channel B gain of 16 dB or greater. Note $2 \mathrm{~V}_{\mathrm{GOH}}$ is the gate voltage which results in channel B gain of unity or less and channel A gain of $\mathbf{1 6} \mathrm{dB}$ or greater.

MC1545, MC1445 (continued)

FIGURE 7 - CHANNEL SEPARATION versus FREQUENCY

fin, INPUT FREQUENCY (Hz)
FIGURE 9 - COMMON MODE REJECTION RATIO versus FREQUENCY

FIGURE 11 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

$V_{C C}$ AND $V_{E E}$, POWER SUPPLY VOLTAGE (Vdc)

[^20]

FIGURE 15 - OUTPUT IMPEDANCE TEST CIRCUIT
FIGURE 16 - INPUT BIAS CURRENT AND INPUT OFFSET CURRENT TEST CIRCUIT

FIGURE 17 - INPUT OFFSET VOLTAGE AND QUIESCENT OUTPUT LEVEL TEST CIRCUIT

FIGURE 18 - GATE CURRENT (HIGH AND LOW), COMMON-MODE REJECTION AND COMMON-MODE INPUT RANGE TEST CIRCUIT

Number in parenthesis denotes pin for F and L packages, number at left in each case denotes corresponding pin for G package.

MC1545, MC1445 (continued)

INTEGRATED CIRCUIT LINEAR AMPLIFIER

. . . a versatile, common-emitter, common-base cascode circuit for use in communications applications. See Application Notes AN-215, AN-247 and AN-299 for additional information.

- Constant Input Impedance over entire AGC range
- Extremely Low y $12-4.3 \mu$ mhos at 60 MHz
- High Power Gain - 30 dB @ $60 \mathrm{MHz}(0.5 \mathrm{MHz}$ BW)
- Good Noise Figure $-5 \mathrm{~dB} @ 60 \mathrm{MHz}$

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	$V+$	20	Vdc
AGC Supply Voltage	$V_{\text {AGC }}$	20	Vdc
Differential Input Voltage, Pin 1 to Pin 4 ($\mathrm{R}_{\mathrm{S}}=500 \mathrm{ohms}$)	$V_{\text {in }}$	± 5.0	V(rms)
Power Dissipation (Package Limitation) Metal Can Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Flat Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 680 \\ 4.6 \\ 500 \\ 3.3 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

CIRCUIT DESCRIPTION

The MC1550 is built with monolithic fabrication techniques utilizing diffused resistors and small-geometry transistors. Excellent AGC performance is obtained by shunting the signal through the AGC transistor Q_{3} maintaining the operating point of the input transistor Q_{1}. This keeps the input impedance constant over the entire AGC range.

The amplifier is intended to be used in a common-emitter, common-base configuration (Q_{1} and Q_{2}) with Q_{3} acting as an AGC transistor. The input signal is applied between pins 1 and 4, where pin 4 is ac-coupled to ground. DC source resistance between pins 1 and 4 should be small (less than 100 ohms). Pins 2 and 3 should be connected together and grounded. Pins Pins 2 and 3 should be connected together and grounded. Pins
8 and 10 should be bypassed to ground. The positive supply 8 and 10 should be bypassed to ground. The positive supply
voltage is applied at pin 9 and at higher frequencies, pin 9 voltage is applied at pin 9 and at higher frequencies, pin 9
should also be bypassed to ground. The output is taken between pins 6 and 9. The substrate is connected to pin 7 and should be grounded. AGC voltage is applied to pin 5 .

MC1550 (continued)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=+6 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Characteristic	Conditions	Figure	Symbol	Min	Typ	Max	Unit

DC CHARACTERISTICS

Output Voltage	$\begin{aligned} & V_{\text {AGC }}=0 \mathrm{Vdc} \\ & V_{\text {AGC }}=+6 \mathrm{Vdc} \end{aligned}$	1	V_{0}	$\begin{aligned} & 3.80 \\ & 5.90 \end{aligned}$	-	$\begin{aligned} & 4.65 \\ & 6.00 \end{aligned}$	Vdc
Test Voltage	$\begin{aligned} & V_{\text {AGC }}=0 \mathrm{Vdc} \\ & V_{\text {AGC }}=+6 \mathrm{Vdc} \end{aligned}$	1	V8	$\begin{aligned} & 2.85 \\ & 3.25 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 3.40 \\ & 3.80 \\ & \hline \end{aligned}$	Vdc
Supply Drain Current	$\begin{aligned} & V_{\mathrm{AGC}}=0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{AGC}}=+6 \mathrm{Vdc} \end{aligned}$	1	${ }^{1}$	$-$	-	$\begin{aligned} & 2.2 \\ & 2.5 \end{aligned}$	mAdc
AGC Supply Drain Current	$\begin{aligned} & \mathrm{V}_{\mathrm{AGC}}=0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{AGC}}=+6 \mathrm{Vdc} \end{aligned}$	1	${ }^{\text {I AGC }}$	-	-	$\begin{gathered} -0.2 \\ 0.18 \end{gathered}$	mAdc

SMALL-SIGNAL CHARACTERISTICS

Small-Signal Voltage Gain	$f=500 \mathrm{kHz}$	2	$A V$	22	-	29	$d B$
Bandwidth	-3.0 dB	2	$B W$	22	-	-	MHz
Transducer Power Gain	$\mathrm{f}=60 \mathrm{MHz}, \mathrm{BW}=6 \mathrm{MHz}$	3	AP	-	25	-	dB
	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{BW}=6 \mathrm{MHz}$			-	21	-	

TYPICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
FIGURE 1 - DC CHARACTERISTICS TEST CIRCUIT
FIGURE 2 - VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT

FIGURE 3 - POWER GAIN TEST CIRCUIT @ 60 MHz

FIGURE 4 - DRAIN CURRENT TEMPERATURE CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

FIGURE 5 - INPUT RESISTANCE AND CAPACITANCE versus FREQUENCY

FIGURE 7 - OUTPUT RESISTANCE AND CAPACITANCE versus FREQUENCY

FIGURE 9 - MAXIMUM TRANSDUCER POWER GAIN versus FREQUENCY

FIGURE 6 - INPUT RESISTANCE AND CAPACITANCE versus AGC VOLTAGE

FIGURE 8 - OUTPUT RESISTANCE AND CAPACITANCE versus AGC VOLTAGE

FIGURE 10 - TRANSDUCER POWER GAIN versus TEMPERATURE

MC1550 (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 - TRANSDUCER POWER BANDWIDTH versus AGC VOLTAGE

FIGURE 12 - NOISE FIGURE AND OPTIMUM SOURCE RESISTANCE versus FREQUENCY

FIGURE 14 - y21, FORWARD-TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 13 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE $15-Y_{21}$, FORWARD-TRANSFER ADMITTANCE versus AGC VOLTAGE

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

The y 12 shown in Figure 16 illustrates the extremely low feedback of the MC 1550 with no contribution from the external mounting circuitry. However, in many cases the external circuitry may contribute as much or more to the total feedback than does the MC1550.
To perform more accurate design calculations of gain, stability, and input - output impedances it is recommended that the designer first determine the total feedback of device plus circuitry.
This can be done in one of two ways:
(1) Measure the total y 12 or s 12 of the MC1550 installed in its mounting circuitry, or
(2) Measure the y12 of the circuitry alone (without the MC1550 installed) and add the circuit y 12 to the y 12 for the MC1550 given in Figure 16.

FIGURE 18 -y22, OUTPUT-ADMITTANCE versus FREQUENCY

FIGURE 17 - Y11, INPUT-ADMITTANCE versus FREQUENCY

FIGURE $19-\mathrm{s}_{11}$ AND s22, INPUT AND OUTPUT REFLECTION COEFFICIENT

MC1550 (continued)

TYPICAL CHARACTERISTICS (continued)
($\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 20 - \mathbf{s}_{11}, INPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 22-s21, FORWARD TRANSMISSION COEFFICIENT (GAIN)

FIGURE 21 - \mathbf{S}_{22}, OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 23-s12, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

MC1552G

MC1553G

MONOLITHIC VIDEO AMPLIFIER

. . . a three-stage, direct-coupled, commonemitter cascade incorporating series-series feedback to achieve stable voltage gain, low distortion, and wide bandwidth. Employs a temperature-compensated dc feedback loop to stabilize the operating point and a currentbiased emitter follower output. Intended for use as either a wide-band linear amplifier or as a fast rise pulse amplifier.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)			
Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	V^{+}	9	Vdc
Input Voltage, Pin 1 to Pin 2 $\left(\mathrm{R}_{\mathrm{S}}=500 \text { ohms }\right)$	$\mathrm{V}_{\text {in }}$	1.0	V (rms)
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 680 \\ & 4.6 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

- High Gain - $34 \mathrm{~dB} \pm 1 \mathrm{~dB}$ (MC1552)
$52 \mathrm{~dB} \pm 1 \mathrm{~dB}(\mathrm{MC} 1553)$
- Wide Bandwidth - 40 MHz (MC1552)

35 MHz (MC1553)

- Low Distortion - 0.2\% at 200 kHz
- Low Temperature Drift $- \pm 0.002 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$

CIRCUIT SCHEMATICS

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{v}^{+}=+6 \mathrm{Vdc}, \mathrm{T}_{\lambda}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Fig. No.	Gain Option	Symbol	Min	Typ	Max	Unit
Voltage Gain MC1552	3	$\begin{array}{r} 50 \\ 100 \end{array}$	$\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$	$\begin{aligned} & 44 \\ & 87 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{array}{r} 56 \\ 113 \end{array}$	V/V
MC1553		$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{aligned} & 175 \\ & 350 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 225 \\ & 450 \end{aligned}$	
Voltage Gain Variation $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$	3	All	-	-	± 0.2	-	dB
Bandwidth MC1552	3,6	$\begin{array}{r} 50 \\ 100 \end{array}$	BW	$\begin{aligned} & 21 \\ & 17 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	--	MHz
MC1553		$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{gathered} 17 \\ 7.5 \end{gathered}$	$\begin{aligned} & 35 \\ & 15 \end{aligned}$		
Input Impedance $\left(\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right)$	-	All	$\left\|Z_{\text {in }}\right\|$	7	10	-	$\mathrm{k} \Omega$
Output Impedance $\left(\hat{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega\right)$	-	All	$\left\|\mathrm{Z}_{\text {out }}\right\|$	-	16	50	Ω
DC Output Voltage	3	All	$\mathrm{V}_{\text {out }}$ (dc)	2.5	2.9	3.2	Vdc
DC Output Voltage Variation $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$	3	All	$\triangle V_{\text {out }}(\mathrm{dc})$	-	$=0.05$	-	Vdc
Output Voltage Swing $\left(\mathrm{Z}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{in}}=100 \mathrm{mV}[\mathrm{rms}]\right)$	3	All	$V_{\text {out }}$	3.6	4.2	-	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Power Dissipation	-	All	${ }^{\text {P }}$ D	-	75	120	mW
Delay Time MC1552	3,4	$\begin{array}{r} 50 \\ 100 \end{array}$	${ }^{t}{ }_{\mathrm{pd}}$	-	8 9	-	ns
MC1553		$\begin{array}{r} 200 \\ 400 \\ \hline \end{array}$		二	$\begin{array}{r} 10 \\ 25 \\ \hline \end{array}$	二	
MC1553	3,4	$\begin{array}{r} 50 \\ 100 \\ 200 \\ 400 \\ \hline \end{array}$	${ }^{\text {t }}$	- -	$\begin{array}{r} 9 \\ 12 \\ 11 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & 20 \\ & 20 \\ & 45 \\ & \hline \end{aligned}$	ns
Overshoot	3, 4	All	$\left(\mathrm{V}_{\mathrm{os}} / \mathrm{V}_{\mathrm{p}}\right) 100$	-	5	-	\%
Noise Figure $\left(\mathrm{R}_{\mathrm{S}}=400 \Omega, \mathrm{f}_{\mathrm{o}}=30 \mathrm{MHz}, \mathrm{BW}=3 \mathrm{MHz}\right)$	-	All	NF	-	5	-	dB
Total Harmonic Distortion $\left(\mathrm{V}_{\text {out }}=2 \mathrm{~V}-\mathrm{p}, \mathrm{f}=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right)$	-	All	THD	-	0.2	-	\%

* To obtain the voltage-gain characteristic desired, use the following pin connections:

NOTES

1. Ground Pin 6 as close to can as possible to minimize overshoot. Best results by directly grounding can.
2. If large input and output coupling capacitors are used place shield between them to avoid input-output coupling.
3. A high-frequency capacitor must always be used to bypass the power supply. This capacitor should be as close to the circuit as possible.
4. Voltage gain can be adjusted to any value between 50 and 3000 by connecting an external resistor from Pin 4 to ground on MC1552, or from Pin 3 to ground on MC1553, as shown in

Figure 8. Under these conditions, the following equations must be used to determine C_{1} and C_{2} rather than the circuits shown in Figure 5.

$$
\begin{aligned}
& \text { Fig. 5b } C_{1}=\frac{1}{2 \pi f_{c}\left(1.7 \times 10^{4}\right)} \text { Farads; } C_{2}= \\
& \text { Fig. } 5 c C_{1}=\frac{V_{\text {out }} / V_{\text {in }}}{2 \pi V_{\text {out }} /\left(1.5 \times 10^{4}\right)} \text { Farads } \\
& \text { Fig. } 5 d C_{2}=\frac{V_{\text {out }} / V_{\text {in }}}{2 \pi f_{c}\left(3 \times 10^{3}\right)} \text { Farads }
\end{aligned}
$$

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - PULSE RESPONSE DEFINITIONS

TYPICAL CHARACTERISTICS
 $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

FIGURE 5a - FREQUENCY RESPONSE

TEST CIRCUITS FOR FREQUENCY RESPONSE
FIGURE 5b - CAPACITIVE COUPLED INPUT ($\mathrm{R}_{\mathrm{s}}<5 \mathrm{k} \Omega$)

Curve No.	$C_{1}(\mu \mathrm{~F})$	$\mathrm{C}_{2}(\underline{\mu} \mathrm{~F})$
2 A	0.01	30
2 B	0.01	18
2 C	0.01	8.0
20	0.01	4.0
	(pF)	
3A	1000	3.0
3B	1000	1.8
3 C	1000	0.8
3 D	1000	0.4
4 A	100	0.3
4B	100	0.18
4 C	100	0.08
4 D	100	0.04

FIGURE 5c - CAPACITIVE COUPLED INPUT ($\mathbf{R}_{\mathbf{s}}<500 \Omega$)

Curve No.	$C_{1}(\mu$ F)	Curve No.	$\mathrm{C}_{1}(\mu \mathrm{~F})$
1 A	20	3 A	0.4
1B	10	3B	0.2
1 C	7.0	3 C	0.1
10	3.0	3 D	0.06
2A	3.0	4 A	0.04
2 B	1.0	4 B	0.02
2 C	0.8	4 C	0.01
2D	0.5	4 D	0.007

FIGURE 5d - TRANSFORMER COUPLED INPUT

FIGURE 6 - VOLTAGE GAIN versus FREQUENCY

FIGURE 7 - MAXIMUM NEGATIVE SWING SLEW RATE versus LOAD CAPACITANCE

FIGURE 8 - VOLTAGE GAIN ADJUSTMENT BY USE OF EXTERNAL RESISTOR

INPUT ADMITTANCE
$V^{+}=6 \mathrm{Vdc}, R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

FIGURE 11 - GAIN $=200$

FIGURE 13 - OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 10 - GAIN $=\mathbf{1 0 0}$

FIGURE 14 - BANDWIDTH versus SOURCE RESISTANCE

MONOLITHIC 1-WATT POWER AMPLIFIERS

. . . designed to amplify signals to $300-\mathrm{kHz}$ with 1-Watt delivered to a direct coupled or capacitively coupled load.

- Low Total Harmonic Distortion - 0.4\% (Typ) @ 1 Watt
- Low Output Impedance - 0.2 Ohm
- Excellent Gain - Temperature Stability

1-WATT
POWER AMPLIFIER INTEGRATED CIRCUIT

MONOLITHIC SILICON EPITAXIAL PASSIVATED

METAL PACKAGE CASE 602B

(bottom view)
Pin 7 connected to case

See Packaging Information Section for outline dimensions.

MC1554G, MC1454G (continued)

ELECTRICAL CHARACTERISTICS (TC $=+25^{\circ} \mathrm{C}$ unless otherwise noted)
Frequency compensation shown in Figures 6 and 7.

Characteristic	Figure	$\underset{(O h m s)}{R_{L}}$	Gain Option ${ }^{*}$	Symbol	MC 1554$\left(-65\right.$ to $+123^{\circ} \mathrm{cl}$			$\begin{gathered} \text { MC } 1454 \\ \left(0 \text { to }+70^{\circ} \mathrm{C}\right) \end{gathered}$			Unit
					Min	Tyo	Max	Min	Typ	Max	
Output Power (for $\mathrm{e}_{\text {out }}<5.0 \%$ THD)	1	16	-	$P_{\text {out }}$	110	11.	4	-	1.0	-	Watt
Power Dissipation (@ $\mathrm{P}_{\text {out }}=1.0 \mathrm{~W}$)	1	16	-	$P_{\text {D }}$	- 4	0.9	1.2	-	0.9	-	Watt
Voltage Gain	1	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \\ & 36 \end{aligned}$	AV	8.0	10 18 36	12	$-$	$\begin{aligned} & 10 \\ & 18 \\ & 36 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline- \end{aligned}$	V/V
Input Impedance	1	-	10	$Z_{\text {in }}$	7.0	10	-	3.0	10	-	k Ω
Output Impedance	1	-	10	$\mathrm{Z}_{\text {out }}$	0	0.2		-	0.4	-	Ω
Power Bandwidth (for $\mathrm{e}_{\text {out }}<5.0 \%$ THD)	2	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \\ & 36 \end{aligned}$			270 250 210		- - -	$\begin{aligned} & 270 \\ & 250 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	kHz
```Total Harmonic Distortion (for \(\mathrm{e}_{\text {in }}<0.05 \%\) THD, \(\mathrm{f}=\mathbf{2 0 ~ H z}\) to 20 kHz ) \(P_{\text {out }}=1.0\) Watt (sinewave) \(P_{\text {out }}=0.1\) Watt (sinewave)```	2	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	THD				-	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	-	\%
Zero Signal Current Drain	3	$\infty$	-	1 D	$5$	11	15.	-	11	20	mAdc
Output Noise Voltage	3	16	10	$V_{n}$		0.3		-	0.3	-	mV (rms)
Output Quiescent Voltage (Split Supply Operation)	4	16	-	$V_{\text {out }}(\mathrm{dc})$		$\pm 10$	$\pm 30$	-	$\pm 10$	-	mVdc
Positive Supply Sensitivity   ( $\mathrm{V}^{-}$constant)	5	$\infty$	-	$\mathrm{S}^{+}$		$-40$		-	-40	-	$\mathrm{mV} / \mathrm{V}$
Negative Supply Sensitivity ( ${ }^{+}$constant)	5	$\infty$	-	$\mathrm{S}^{-}$				-	-40	-	$\mathrm{mV} / \mathrm{V}$

*To obtain the voltage gain characteristic desired, use the following pin connections: Voltage Gain
Pin Connection

Characteristic Definitions
(Linear Operation)



FIGURE 5


MAXIMUM RATINGS (TC $=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Total Power Supply Voltage	$\left\|V^{+}\right\|+\left\|V^{-}\right\|$	18	Vdc
Peak Load Current	Iout	0.5 .	Ampere
Audio Output Power	Pout	1.8	Watts
Power Dissipation (package limitation) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / \theta J_{A} \\ P_{D} \\ 1 / \theta J_{C} \end{gathered}$	$\begin{gathered} 600 \\ 4.8 \\ 1.8 \\ 14.4 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~W} \text { atts } \\ \mathrm{mW} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\begin{array}{ll}\text { Operating Temperature Range } & \text { MC1454 } \\ \\ \text { MC1554 }\end{array}$	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

TYPICAL CONNECTIONS

FIGURE 6 - SPLIT SUPPLY OPERATION VOLTAGE GAIN (AV) $=10$, LOW $\approx 25 \mathrm{~Hz}$


FIGURE 7 - SINGLE SUPPLY OPERATION VOLTAGE


RECOMMENDED OPERATING CONDITIONS

In order to avoid local VHF instability, the following set of rules must be adhered to:

1. An R-C stabilizing network ( $0.1 \mu \mathrm{~F}$ in series with 10 ohms) should be placed directly from pin 9 to ground, as shown in Figures 6 and 7, using short leads, to eliminate local VHF instability caused by lead inductance to the load.
2. Excessive lead inductance from the $V+$ supply to pin 10 can cause high frequency instability. To prevent this, the $V+$ by-pass capacitor should be connected with short leads from the $V+$ pin to ground. If this capaci tor is remotely located a series R.C network ( $0.1 \mu \mathrm{~F}$ and 10 ohms) should be used directly from pin 10 to ground as shown in Figures 6 and 7.
3. Lead lengths from the external components to pins 7, 9, and 10 of the package should be as short as possible to insure good VHF grounding for these points.

Due to the large bandwidth of the amplifier, coupling must be avoided be tween the output and input leads. This can be assured by either (a) use of short leads which are well isolated, (b) narrow-banding the overall amplifier by placing a capacitor from pin 1 to ground to form a low-pass filter in com bination with the source impedance, or (c) use of a shielded input cable. In applications which require upper band-edge control the input low-pass filter is recommended.

TYPICAL CHARACTERISTICS


FIGURE 9 - TOTAL HARMONIC DISTORTION


## MC1554, MC1454G (continued)

TYPICAL CHARACTERISTICS (continued)


FIGURE 12 - VOLTAGE GAIN versus FREQUENCY ( $R_{L}=\infty$ )


FIGURE 13 - MAXIMUM DEVICE DISSIPATION (SINE WAVE)


## Specifications and Applications Information

## MONOLITHIC TIMING CIRCUIT

The MC1555/MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.

- Direct Replacement for NE555/SE555 Timers
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL
- Temperature Stability of $0.005 \%$ per ${ }^{\circ} \mathrm{C}$
- Normally "On" or Normally "Off" Output

FIGURE 1 - 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT


FIGURE 2 - BLOCK DIAGRAM


TYPICAL APPLICATIONS

- Time Delay Generation
- Sequential Timing
- Precision Timing - Missing Pulse Detection
- Linear Sweep Generation
- Pulse Generation - Pulse Width Modulation
- Pulse Shaping - Pulse Position Modulation

[^21]MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {CC }}$	+18	Vdc
Discharge Current (Pin 7)	17	200	mA
Power Dissipation (Package   Limitation)   Metal Can   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Plastic Dual In-Line Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{array}{r} 680 \\ 4.6 \\ 625 \\ 5.0 \end{array}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~mW} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{aligned}$
Operating Temperature    Range (Ambient) MC1555    MC1455	$T_{\text {T }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

FIGURE 3 - GENERAL TEST CIRCUIT


ELECTRICAL CHARACTERISTICS ( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ to +15 V unless otherwise noted.)

Characteristics	Symbol	MC1555			MC1455			Unit
		Min	Typ	Max	Min	Typ	Max	
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	-	18	4.5	$\sim$	16	V
Supply Current $\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$ Low State, (Note 1)	${ }^{1} \mathrm{D}$	-	$\begin{aligned} & 3.0 \\ & 10 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 10 \end{aligned}$	$\begin{gathered} 6.0 \\ 15 \end{gathered}$	mA
Timing Error (Note 2)   $R_{A}, R_{B}=1.0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$   Initial Accuracy C $=0.1 \mu \mathrm{~F}$   Drift with Temperature   Drift with Supply Voltage			$\begin{gathered} 0.5 \\ 30 \\ 0.005 \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ 100 \\ 0.02 \\ \hline \end{gathered}$		$x+$ 10 50 0.01		
Threshold Voltage	$V_{\text {th }}$	-	2/3	-	-	2/3	-	$\times \mathrm{V}_{\text {CC }}$
$\begin{gathered} \text { Trigger Voltage } \\ \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & 4.8 \\ & 1.45 \\ & \hline \end{aligned}$	$\begin{gathered} 5.0 \\ 1.67 \\ \hline \end{gathered}$	$\begin{aligned} & 5.2 \\ & 1.9 \\ & \hline \end{aligned}$		5.0 1.67		V
Trigger Current	IT	-	0.5	-	+	$\underline{0.5}$	5	$\mu \mathrm{A}$
Reset Voltage	$\mathrm{V}_{\mathrm{R}}$	0.4	0.7	1.0	0.4	0.7	10	V
Reset Current	$I_{R}$	-	0.1	-	-	0.1	-	mA
Threshold Current (Note 3)	Ith	-	0.1	0.25	T	0.1	0.25	$\mu \mathrm{A}$
Control Voltage Level $\begin{aligned} & \mathrm{V}_{C C}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{CL}}$				$\begin{aligned} & 9.0 \\ & 2.6 \end{aligned}$	$\begin{array}{\|r\|} \hline 10 \\ 3.33 \end{array}$	$\begin{aligned} & 11 \\ & 40 \end{aligned}$	V
	$\mathrm{V}_{\mathrm{OL}}$	-   -   -   -   -   -	$\begin{aligned} & 0.1 \\ & 0.4 \\ & 2.0 \\ & 2.5 \\ & 0.1 \end{aligned}$	$\begin{gathered} 0.15 \\ 0.5 \\ 2.2 \\ - \\ 0.25 \end{gathered}$		0.1   0.4   2.0   2.5   0.25	$\begin{aligned} & 0.25 \\ & 0.75 \\ & 2.5 \\ & - \\ & 0.35 \end{aligned}$	V
$\begin{gathered} \hline \text { Output Voltage High } \\ \left(I_{\text {source }}=200 \mathrm{~mA}\right) \\ \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ \left(I_{\text {source }}=100 \mathrm{~mA}\right) \\ \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \hline \end{gathered}$	VOH	$\begin{aligned} & 13 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 13.3 \\ 3.3 \end{gathered}$	-   -	$\begin{array}{r} 12.75 \\ 2.75 \end{array}$	12.5 12 13.3 3.3		V
Rise Time of Output	${ }^{\text {tol.H }}$	-	100	-	=	$\underline{100}$	$\cdots$	ns
Fall Time of Output	${ }^{\text {tohe }}$	-	100	-	$2+8$	- 100	C-4	ns

## NOTES:

1. Supply current when output is high is typically 1.0 mA less. 3. This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation.
2. Tested at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

The maximum total $R=20$ megohms.

TYPICAL CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 7 - LOW OUTPUT VOLTAGE
@ $\mathbf{V}_{\mathbf{C C}}=5.0 \mathrm{Vdc}$


FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE


FIGURE 5 - SUPPLY CURRENT


FIGURE 8 - LOW OUTPUT VOLTAGE
@ $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{Vdc}$


FIGURE 11 - DELAY TIME versus TEMPERATURE


FIGURE 6 - HIGH OUTPUT VOLTAGE


FIGURE 9 - LOW OUTPUT VOLTAGE @ $\mathrm{V}_{\mathrm{CC}}=\mathbf{1 5} \mathbf{V d c}$


FIGURE 12 - PROPAGATION DELAY versus TRIGGER VOLTAGE


FIGURE 13 - CIRCUIT SCHEMATIC CONTROL VOLTAGE


## GENERAL OPERATION

The MC1555 is a monolithic timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage.

## Monostable Mode

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below $1 / 3 \mathrm{~V}_{\mathrm{CC}}$ the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches $2 / 3 \mathrm{~V}_{\mathrm{CC}}$ the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation $t=1.1 R_{A} C$. Various combinations of $R$ and $C$ and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.

FIGURE 14 - MONOSTABLE CIRCUIT


GENERAL OPERATION (continued)

FIGURE 15 - MONOSTABLE WAVEFORMS

$\mathrm{t}=50 \mu \mathrm{~s} / \mathrm{cm}$
$\left(R_{A}=10 \mathrm{k} \Omega, C=0.01 \mu F, R_{L}=1.0 \mathrm{k} \Omega, V_{C C}=15 \mathrm{~V}\right)$
FIGURE 16 - TIME DELAY


## Astable Mode

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between $1 / 3 V_{C C}$ and $2 / 3 V_{C C}$. See Figure 17.

The external capacitor charges to $2 / 3 \mathrm{~V}_{\mathrm{C}}$ through $\mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}$ and discharges to $1 / 3 V_{C C}$ through $R_{B}$. By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.
The charge time (output high) is given by: $t_{1}=0.695\left(R_{A}+R_{B}\right) C$
The discharge time (output low) by: $t_{2}=0.695\left(R_{B}\right) C$
Thus the total period is given by: $T=t_{1}+t_{2}=0.695\left(R_{A}+2 R_{B}\right) C$
The frequency of oscillation is then: $f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}$
and may be easily found as shown in Figure 19.
The duty cycle is given by: $D C=\frac{R_{B}}{R_{A}+2 R_{B}}$
To obtain the maximum duty cycle $R_{A}$ must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor ( $\mathbf{2 0 0} \mathrm{mA}$ ).

The minimum value of $R_{A}$ is given by:

$$
R_{A} \geqslant \frac{V_{C C}(V d c)}{17(A)} \geqslant \frac{V_{C C}(V d c)}{0.2}
$$

FIGURE 17 - ASTABLE CIRCUIT


FIGURE 18 - ASTABLE WAVEFORMS

$\mathrm{t}=20 \mu \mathrm{~s} / \mathrm{cm}$
$\left(R_{A}=5.1 \mathrm{k} \Omega, C=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right.$;
$\left.\mathrm{R}_{\mathrm{B}}=3.9 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}\right)$

FIGURE 19 - FREE-RUNNING FREQUENCY


## APPLICATIONS INFORMATION

## Linear Voltage Ramp

In the monostable mode, the resistor can be replaced by a constant current source to provide a linear ramp voltage. The capacitor still charges from 0 to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$. The linear ramp time is given by ${ }_{\mathrm{t}}=\frac{2}{3} \frac{\mathrm{~V}_{\mathrm{CC}}}{1}$
where $I=\frac{V_{C C}-V_{B}-V_{B E}}{R_{E}}$. If $V_{B}$ is much larger than $V_{B E}$, then $t$ can be made independent of $V_{C C}$.

FIGURE 20 - LINEAR VOLTAGE SWEEP CIRCUIT

FIGURE 21 - LINEAR VOLTAGE RAMP WAVEFORMS $\left(R_{E}=10 \mathrm{k} \Omega, R 2=100 \mathrm{k} \Omega, R 1=39 \mathrm{k} \Omega, C=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$

$\mathrm{t}=100 \mu \mathrm{~s} / \mathrm{cm}$


## Missing Pulse Detector

The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequency or a missing pulse allows completion of the timing cycle, causing a change in the output level.

FIGURE 22


FIGURE 23 - MISSING PULSE DETECTOR WAVEFORMS $\left(R_{A}=2.0 \mathrm{k} \Omega, R_{L}=1.0 \mathrm{k} \Omega, C=0.1 \mu F, V_{C C}=15 \mathrm{~V}\right)$

$\mathbf{t}=\mathbf{5 0 0} \mu \mathrm{s} / \mathrm{cm}$

APPLICATIONS INFORMATION (continued)

## Pulse Width Modulation

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 5 . In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.

FIGURE 24


FIGURE 25 - PULSE WIDTH MODULATION WAVEFORMS $\left(R_{A}=10 \mathrm{k} \Omega, C=0.02 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$

$\mathrm{t}=0.5 \mathrm{~ms} / \mathrm{cm}$

Test Sequences
Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 ms . The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

Figure 26


## INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information, see Application Note AN-522.

- Low Input Bias Current - 15 nA max
- Low Input Offset Current - 2.0 nA max
- Low Input Offset Voltage -4.0 mV max
- Fast Slew Rate - $2.5 \mathrm{~V} / \mu \mathrm{s}$ typ
- Large Power Bandwidth - 40 kHz typ
- Low Power Consumption - 45 mW max
- Offset Voltage Null Capability
- Output Short-Circuit Protection
- Input Over-Voltage Protection




See Packaging Information Section for outline dimensions.

MC1556G, MC1456G, MC1456CG (continued)

MAXIMUM RATINGS ( $\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)			MC1456G MC1456CG	Unit
Rating	Symbol	MC15666		
Power Supply Voltage	$\begin{aligned} & \mathrm{v}^{+} \\ & \mathrm{v}^{-} \end{aligned}$		$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm \mathrm{V}$		Volts
Common-Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm \mathrm{V}$		Volts
Load Current	IL	2		mA
Output Short Circuit Duresion	ts	Cont	nuous	
Power Dissipation (Package Limitation)   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	4		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125.	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Fig.		Mc1558d			MC1456G			MC1456CG				
		Symbol	Min	Typ	Max.	Min	Typ	Max	Min	Typ	Max	Unit	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high (See Note 1) }} \end{aligned}$		$I_{b}$					$15$	30 40	-	15	$90$	nAdc	
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \text { to } T_{\text {high }} \\ & T_{A}=T_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		$\mid l_{\text {io }}$ \|			$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 5.0 \end{aligned}$		$5.0$ vix -	10   14   14	$1 \begin{aligned} & - \\ & - \\ & -\end{aligned}$	$5.0$	$30$	nAdc	
Input Offset Voltage $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$		$\left\|V_{\text {io }}\right\|$		$2.0$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		5.0	10 14	$\left\lvert\, \begin{aligned} & \text { - } \\ & - \\ & -\end{aligned}\right.$	5.0	$12$	mVdc	
Differential Input Impedance (Open-Loop, $f=\mathbf{2 0 ~ H z}$ )   Parallel Input Resistance   Parallel Input Capacitance		$\begin{aligned} & R_{p} \\ & C_{p} \end{aligned}$		$\begin{array}{\|l\|} \hline 5.0 \\ 6.0 \end{array}$			3.0   6.0	\|r		$\left\lvert\, \begin{aligned} & \text { - } \\ & - \\ & -\end{aligned}\right.$	3.0 6.0	-	Meg ohms pF
Common-Mode Input Impedance ( $\mathbf{f = \mathbf { 2 0 ~ H z } \text { ) }}$		$z_{\text {in }}$		250	-	- -	250		-	250	-	Megohms	
Common-Mode Input Voltage Swing	1	$C M V_{\text {in }}$	$\pm 12$	$\pm 13$	-	$\pm 11$	$\pm 12$	-	$\pm 10.5$	$\pm 12$	-	$V_{p k}$	
Equivalent Input Noise Voltage $\left(A_{V}=100, R_{s}=10 \mathrm{k} \text { ohms, } f=1.0 \mathrm{kHz}, B W=1.0 \mathrm{~Hz}\right)$	2	${ }^{\text {n }}$	$4$	45			[45	-	--	45	-	$\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$	
Common-Mode Rejection Ratio ( $\mathbf{f}=\mathbf{1 0 0 ~ H z}$ )	3	CMrej	80	110	-	70	- 110	$-\square$	-	110	-	dB	
Open-Loop Voltage Gain, ( $\mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms) $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	4,5,6	AVOL	$\begin{array}{\|c} 100,000 \\ 40,000 \end{array}$	200.000 -		$\begin{aligned} & 70,000 \\ & 40,000 \end{aligned}$	$100,000$	-	25,000	100,000 -	-	v/V	
Power Bandwidth $\left(A_{V}=1, R_{L}=2.0 \mathrm{k} \text { ohms, } T H D \leq 5 \%, V_{\text {out }}=20 \mathrm{Vp-p}\right)$	9	PBW		$40$			40			40	-	kHz	
Unity Gain Crossover Frequency (open-loop)	5	$\mathrm{f}_{\mathrm{c}}$		1.0		$\underline{\square}$	1.10	-	-	1.0	-	MHz	
Phase Margin (open-loop, unity gain)	5,7			70	-	4	-70	$\cdots$	-	70	-	degrees	
Gain Margin	5,7		-	18	-	-	-18	- -	- -	18	-	dB	
Slew Rate (Unity Gain)		dV ${ }_{\text {out }} / \mathrm{dt}$	-	2.5	-	$\square$	2.5	-	-	2.5	-	$\mathrm{V} / \mu \mathrm{s}$	
Output Impedance ( $f=\mathbf{2 0 ~ H z}$ )		$\mathrm{Z}_{\text {out }}$	-	1.0	2.0	-	1.0	2.5	-	1.0	-	kohms	
Short-Circuit Output Current	8	ISC	-	-17. +9.0	2	-	-17. 9.9	$\square$	-	$-17,+9.0$	-	mAdc	
Output Voltage Swing ( $\mathrm{L}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms)	10	$\mathrm{V}_{\text {out }}$	$\pm 12$	$\pm 13$	-	$\pm 11$	$\pm 12$	$\square$	$\pm 10$	$\pm 12$	-	$V_{p k}$	
Power Supply Sensitivity $\begin{array}{ll} \mathrm{V}^{-}=\text {constant }, & \mathrm{R}_{\mathbf{s}} \leq 10 \mathrm{k} \text { ohms } \\ \mathrm{V}^{+}=\text {constant, } & \mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \text { ohms } \end{array}$		$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$		50	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	200 200	-	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	-	$\mu \mathrm{V} / \mathrm{V}$	
Power Supply Current		$\begin{aligned} & I^{+} \\ & I^{+} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$-$	1.3   13	3.0 3.0	-	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	mAdc	
DC Quiescent Power Dissipation $\left(V_{\text {out }}=0\right)$	11	$P_{\text {D }}$	$-$	$30$			40	90	-	40	120	mW	

Note 1: $T_{\text {low }}: 0^{\circ}$ for MC1456G and MC1456CG
$-55^{\circ} \mathrm{C}$ for MC1556G
$T_{\text {high: }}+75^{\circ} \mathrm{C}$ for MC1456G and MC1456CG $+125^{\circ} \mathrm{C}$ for MC1556G

MC1556G, MC1456G, MC1456CG (continued)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 1 - INPUT COMMON-MODE SWING versus POWER SUPPLY VOLTAGE


FIGURE 3 - COMMON-MODE REJECTION RATIO versus FREQUENCY


FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE


FIGURE 2 - SPECTRAL NOISE DENSITY


FIGURE 4 - OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE


FIGURE 6 - OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGES


TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - OPEN-LOOP PHASE SHIFT


FIGURE 9 - POWER BANDWIDTH


FIGURE 8 - OUTPUT SHORT-CIRCUIT CURRENT
versus TEMPERATURE


FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 11 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE


TYPICAL APPLICATIONS
Where values are not given for external components they must be selected by the designer to fit the requirements of the system.

FIGURE 12 - INVERTING FEEDBACK MODEL


FIGURE 13 - NON-INVERTING FEEDBACK MODEL


FIGURE 14 - LOW-DRIFT SAMPLE AND HOLD


FIGURE 15 - HIGH IMPEDANCE BRIDGE AMPLIFIER


## MC1556G, MC1456G, MC1456CG (continued)

## TYPICAL APPLICATIONS (continued)

FIGURE 16 - LOGARITHMIC AMPLIFIER


See Application Note AN-261 for further detail.

FIGURE 18 - HIGH INPUT IMPEDANCE, HIGH OUTPUT CURRENT VOLTAGE FOLLOWER


## MC1558 <br> MC1458 MC1458C

## DUAL MC1741

## INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up


See Packaging Information Section for outline dimensions.
See current MCCF 1558/1458 data sheet for flip-chip information

## MC1558, MC1458, MC1458C(continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Mc1558	MC1458, C	Unit
Power Supply Voltage	$\begin{array}{r} \mathrm{v}^{+} \\ \mathrm{v}^{-} \\ \hline \end{array}$	$\begin{array}{r} +22 \\ -22 \\ \hline \end{array}$	$\begin{array}{r} +18 \\ -18 \\ \hline \end{array}$	Vdc
Differential Input Signal (1)	$V_{\text {in }}$	$\pm 30$		Volts
Common-Mode Input Swing (2)	$\mathrm{CMV}_{\text {in }}$	$\pm 15$		Volts
Output Short Circuit Duration	${ }^{\text {t }}$	Continuous		
Power Dissipation (Package Limitation)   Metal Can   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Plastic Dual In-Line Packages   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Ceramic Dual In-Line Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$			
Operating Temperature Range	${ }^{T}$ A	-55 ro +125	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristics	Symbol	MC1558			M MC1458			MC1458C			Unit
		Min	Typ.	Max	Min	Tvp	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }}(3) \end{aligned}$	'b		$0.2$	$\begin{array}{r} 0.5 \\ 1.6 \\ \hline \end{array}$		$0.2$	$\begin{array}{\|} 0.5 \\ 0.8 \\ \hline \end{array}$	-	0.2	$\begin{aligned} & 0.7 \\ & 1.0 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\left\|l_{i o}\right\|$		$0.03$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$		$0.03$	$\begin{array}{r}0.2 \\ 0.3 \\ \hline\end{array}$	-	0.03 -	$\begin{aligned} & 0.3 \\ & 0.4 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{ks} 5\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	IViol		$10$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$		$20$	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	-	2.0	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mVdc
Differential Input Impedance (Open-Loop, $f=20 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance	$\begin{aligned} & R_{p} \\ & C_{p} \end{aligned}$	0.3 -	$\begin{array}{r} 1.0 \\ 6.0 \end{array}$		$0.3$	$\begin{aligned} & 1.0 \\ & 6.0 \end{aligned}$		-	1.0 6.0	-	Megohm pF
Common-Mode Input Impedance ( $\mathrm{f}=20 \mathrm{~Hz}$ )	$\mathrm{z}_{\text {(in) }}$	-	200	-	-	200	-	-	200		Megohms
Common-Mode Input Voltage Swing	$\mathrm{CMV}_{\text {in }}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$	- 2	$\pm 11$	$\pm 13$	-	$\mathrm{V}_{\mathrm{pk}}$
Equivalent Input Noise Voltage $\left(A_{V}=100, R_{S}=10 \mathrm{k} \text { ohms, } f=1.0 \mathrm{kHz}, B W=1.0 \mathrm{~Hz}\right)$	${ }^{\text {n }}$	$1=$	$45$					-	45	-	$n \mathrm{~V} /(\mathrm{Hz})^{1 / 2}$
Common-Mode Rejection Ratio ( $\mathrm{f}=100 \mathrm{~Hz}$ )	$\mathrm{CM}_{\text {rej }}$	70	90	-	70	-90	-	60	90	-	dB
$\left.\begin{array}{rl} \text { Open-Loop Voltage Gain } \\ T_{A} & =+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{array}\right\}\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \text { ohms }\right)$	AVOL	$\left[\left.\begin{array}{l} 50,000 \\ 25,000 \\ - \end{array} \right\rvert\,\right.$	$200,000$		$\left.\begin{array}{\|c} 20,000 \\ 15,000 \\ -2 \end{array} \right\rvert\,$	$100.000$		$\begin{aligned} & 20,000 \\ & 15,000 \end{aligned}$	100,000	-	V/V
Power Bandwidth $\left(A_{V}=1, R_{L}=2.0 \mathrm{k} \text { ohms, } T H D \leq 5 \%, V_{0}=20 \mathrm{~V} p-p\right)$	PBW					$14$		-	14	-	kHz
Unity Gain Crossover Frequency (open-loop)	$\mathrm{f}_{\mathrm{c}}$	$4$	1.1		- $\times+$	411	\%	-	1.1	-	MHz
Phase Margin (open-loop, unity gain)		-	65	-	- -	-65	\%	-	65	-	degrees
Gain Margin			11		\%	- 11	$\cdots$	-	11	-	dB
Slew Rate (Unity Gain)	dV $\mathrm{out} / \mathrm{dt}$		08		woum	-08	- -	-	0.8	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance ( $\mathrm{f}=20 \mathrm{~Hz}$ )	$\mathrm{Z}_{\text {out }}$		75		- -2	73	\#	-	75	-	ohms
Short-Circuit Output Current	${ }^{\text {ISC }}$	-	20	-	-	20	-	-	20	-	mAdc
$\begin{aligned} \text { Output Voltage Swing ( } R_{L} & =10 \mathrm{k} \text { ohms }) \\ R_{L} & =2 \mathrm{k} \text { ohms }\left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to thigh }\right) \end{aligned}$	$\mathrm{V}_{0}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & +13 \end{aligned}$		$\begin{array}{\|c} +12 \\ +100 \end{array}$	$\begin{gathered} \pm 14 \\ \pm 73 \end{gathered}$	$\square \pm$	$\begin{gathered} \pm 11 \\ \pm 9.0 \end{gathered}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	Vpk
Average Temperature Coefficient of Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}}=50$ ohms, $\mathrm{T}_{A}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ )	HCV ${ }_{\text {io }}$		$15$	$=$		$15$		-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Power Supply Sensitivity $\begin{aligned} & \mathrm{V}^{-}=\text {constant }, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \text { ohms } \\ & \mathrm{V}^{+}=\text {constant }, \\ & \mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \text { ohms } \end{aligned}$	$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$		3   30   30	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		  30   30	$\begin{array}{r} \\ \hline \\ 150 \\ 150 \\ \hline\end{array}$	-	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$		$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & 1 \mathrm{D}^{+} \\ & 1 \mathrm{D}^{-} \end{aligned}$		2.3   2.3	5.0 5.0		$\begin{array}{r}23 \\ 23 \\ \hline\end{array}$	56   56.	-		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(V_{0}=0\right)$	$P_{\text {D }}$		70	$150$		70	$170$	-	70	240	mW

(1) For supply voltages of less than $\pm 15 \mathrm{~V}$, the maximum differential input voltage is equal to $\pm\left(\mathrm{V}^{+}+\left|\mathrm{V}^{-}\right|\right)$.
(2) For supply voltages of less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage $\left(+\mathrm{V}^{+},-\mid \mathrm{v}^{-}-1\right)$.

$$
\text { (3) } \begin{aligned}
\mathrm{r}_{\text {low }}: & 0^{\circ} \mathrm{C} \text { for MC1458, } \\
& -55^{\circ} \mathrm{C} \text { for MC } 1558 \\
\mathrm{~T}_{\text {high: }}: & +75^{\circ} \mathrm{C} \text { for MC1458, } \\
& +125^{\circ} \mathrm{C} \text { for MC1558 }
\end{aligned}
$$

FIGURE 2 - CIRCUIT SCHEMATIC
FIGURE 3 - EQUIVALENT CIRCUIT WITH OFFSET ADJUST


TYPICAL CHARACTERISTICS
( $\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)
FIGURE 4 - OPEN-LOOP VOLTAGE GAIN versus POWER-SUPPLY VOLTAGE

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE


FIGURE 6 - POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)



FIGURE 7 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE


## MC1558, MC1458, MC1458C (continued)

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)


FIGURE 9 - OUTPUT NOISE versus SOURCE RESISTANCE


FIGURE 10 - HIGH-IMPEDANCE, HIGH-GAIN INVERTING AMPLIFIER


## MC1560, MC1561

## MONOLITHIC VOLTAGE REGULATOR

. designed to deliver continuous load current up to 500 mA without use of an external power transistor.

- Electronic "Shut-Down" Control and Short-Circuit Protection
- Excellent Load Regulation (Low Output Impedance $=20$ milliohms typ from dc to 100 kHz )
- High Power Capability: To 17.5 Watts
- Excellent Transient Response and Temperature Stability
- High Ripple Rejection $=0.002 \% / V$ typ
- Single External Transistor Can Boost Load Current to Greater than 10 Amperes
- Input Voltages to 40 Volts (MC1561)


See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS $1 T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Load Current $=100 \mathrm{~mA}$ for " $\mathrm{R}^{\prime \prime}$ Package device,
$=10 \mathrm{~mA}$ for " G " Package device, unless otherwise noted)

*Operating Load Current is also limited by dc Safe Operating Area (see Figures 15A and 15B). Care must be taken not to exceed the dc Safe Operating Area at any time.

MAXIMUM RATINGS ( $T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value		Unit
MC1460, MC1560   MC1461   MC1561		$V_{\text {in }}$	20	

*The MC1460R and MC1560R are limited to 12 watts maximum by the voltage and current maximum ratings.
OPERATING TEMPERATURE RANGE

Ambient Temperature	MC1460, MC1461		
MC1560, MC1561		$\quad$	${ }^{\circ} \mathrm{C}$
:---:			

Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".

Note 2. This parameter states that the MC1560/1561 and MC1460/ 1461 will regulate properly with the input-output voltage differential ( $\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{0}$ ) as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with ( $\mathrm{V}_{\mathrm{in}}$ $V_{0}$ ) as low as 2.1 Vdc as shown in the typical column.

Note 3. "Temperature Coefficient of Output Voltage" is defined as:

$$
\begin{aligned}
& \text { MC1560, } T C V_{0}=\frac{ \pm\left(V_{0 \text { max }}-V_{0 \min }\right)(100)}{2\left(180^{\circ} \mathrm{C}\right)\left(V_{0} @ 25^{\circ} \mathrm{C}\right)}=\% /{ }^{\circ} \mathrm{C} \\
& \text { MC1561 } \\
& \text { MC1460, } T C V_{O}=\frac{ \pm\left(V_{0 \max }-V_{0} \min \right)(100)}{2\left(75^{\circ} \mathrm{C}\right)\left(V_{0} @ 25^{\circ} \mathrm{C}\right)}=\% /{ }^{\circ} \mathrm{C} \\
& \text { MC1461 }
\end{aligned}
$$

The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. The input signal can be introduced by use of a transformer which will allow the output of an audio oscillator to be coupled in series with the dc input to the regulator. (The large ac input impedance of the regulator will not load the oscillator.) A $24 \mathrm{~V}, 1.0$ ampere filament transformer with the audio oscillator connected to the 110 V primary winding is satisfactory for this test. $v_{\text {in }} \approx 1.0 \mathrm{~V}$ (rms).
Note 5. Load regulation is specified for small ( $\leq+17^{\circ} \mathrm{C}$ ) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.
Load Regulation $=\frac{V_{O} I_{L}=1.0 \mathrm{~mA}-V_{O} \|_{L}=50 \mathrm{~mA}}{V_{O \|} I_{L}=1.0 \mathrm{~mA}} \times 100$
Note 6. The resulting low level output signal $\left(v_{0}\right)$ will require the use of a tuned voltmeter to obtain a reading. Special care should be used to insure that the measurement technique does not include connection resistance, wire resistance, and wire lead inductance (i.e., measure close to the case). Note that No. 22 AWG hook-up wire has approximately 4.0 milliohms $/ \mathrm{in}$. dc resistance and an inductive reactance of approximately 10 milliohms $/ \mathrm{in}$. at 100 kHz . Avoid use of alligator clips or banana plug-jack combination.

## GENERAL OPERATING INFORMATION

There is a general tendency to consider a voltage regulator as simply a dc circuit and to prepare breadboard construction accordingly. The excellent high-frequency performance and fast response capability of this integrated-circuit regulator, however, makes extra breadboarding care worthwhile when compared with the limited performance achieved in other regulators when low-frequency transistors are used in the feedback amplifier. Due to the use of VHF transistors in the integrated circuit, some VHF care (short, welldressed leads) must be exercised in the construction and wiring of circuits ("printed-circuit" boards provide an excellent component interconnection technique).

The circuit must be grounded by a low-inductance connection to the case of the " $R$ " package, or to pin 10 of the " $G$ " package.

A series $4.7-\mathrm{k} \Omega$ resistor at Pin 5 (Figure 1) will eliminate any VHF instability problems which may result from lead lengths longer than a few inches at the regulator output. The resistor body should be as close to Pin 5 as physically possible ( $<1 / 2$ inch) although the length of the lead to the load is not critical. If temperature stability is of major concern, a $4.7-\mathrm{k} \Omega$ resistor should also be placed in series with Pin 6 in order to cancel any drift due to bias current changes.

If long input leads are used, it may be necessary to bypass Pin 3 with a $0.1-\mu \mathrm{F}$ capacitor (to ground).

The "Shut-Down Control", Pin 2, can be actuated for all possible output voltages and any values of $C_{O}$ and $C_{n}$ with no damage to the circuit. The standard logic levels of RTL, DTL, or TTL can be used (see Figure 20). This control can be used to eliminate power consumption by circuit loads which can be put in a "standby" mode, as an ac and dc "squelch" control for communications circuits, and as a dissipation control to protect the regulator under sustained output short-circuiting (see Figures 21 and 25). As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the IC chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures (see Figure 23, $a$ and $b)$. This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels.

Due to the small value of input current at Pin 8, the external resistors, R1 and R2, can be selected with little regard to their par-
allel resistance. Further, no match to a diffused-resistor temperature coefficient is required; but R1 and R2 should have the same temperature coefficient to keep their ratio independent of temperature.
$\mathrm{C}_{\mathrm{n}}$ values in excess of $0.1 \mu \mathrm{~F}$ are rarely needed to reduce noise. In cases where more output noise can be tolerated, a smaller capacitor can be used ( $C_{n} \min . \approx 0.001 \mu \mathrm{~F}$ ).

The connection to Pin 5 can be made by a separate lead directly to the load. Thus "remote sensing" can be achieved and undesired impedances (including that of a milliammeter used to measure $I_{L}$ ) can be greatly reduced in their effect on $Z_{\text {out }}$. A 10 -ohm resistor placed from pin 1 to pin 5 (close to the IC) will eliminate undesirable lead-inductance effects.

Short-circuit current-limiting is achieved by selecting a value for $R_{\text {SC }}$ which will threshold the internal diode string when the desired maximum load current flows (see Figure 5). If the device dissipation and dc safe area limits (Figure 15) are not exceeded, it can be continuously short-circuited at the output without damage.

## TYPICAL CONNECTIONS

FIGURE 1 - CONNECTION FOR $V_{0} \geq 3.5 \mathrm{~V}$


FIGURE 2 - CONNECTIONS FOR $\mathbf{V}_{0} \leq+3.5 \mathrm{~V}$


TYPICAL CHARACTERISTICS
Unless otherwise stated: $\quad C_{n}=0.1 \mu \mathrm{~F}, \mathrm{C}_{0}=10 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{O} \text { nom }}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\text {in nom }}=+9.0 \mathrm{Vdc}$, $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{I} \mathrm{L}>200 \mathrm{~mA}$ for " $\mathrm{R}^{\prime}$ Package only.

FIGURE 3 - INPUT TRANSIENT RESPONSE


FIGURE 5 - SHORT-CIRCUIT CURRENT versus RSC


FIGURE 7 - FREQUENCY-DEPENDENCE OF OUTPUT IMPEDANCE


FIGURE 4 - LOAD TRANSIENT RESPONSE


FIGURE 6 - CURRENT-LIMITING CHARACTERISTICS


FIGURE 8 - DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE



TYPICAL CHARACTERISTICS (continued)

FIGURE 15a - DC SAFE OPERATING AREA ("G"PACKAGE)


FIGURE 15b - DC SAFE OPERATING AREA ("R" PACKAGE)

*See Application Note AN-415 for an explanation of safe area and second breakdown

TYPICAL APPLICATIONS

FIGURE 16 - A LABORATORY SUPPLY, 0 TO 25 V
FIGURE 17 - PROVIDING TWO REGULATED OUTPUT VOLTAGES


FIGURE 18 - NPN CURRENT BOOST CIRCUITS


## TYPICAL APPLICATIONS (continued)

FIGURE 19 - PNP CURRENT BOOST CIRCUIT


FIGURE 21 - AUTOMATIC LATCH INTO SHUT-DOWN WHEN OUTPUT IS SHORT-CIRCUITED WITH MANUAL RE-START


FIGURE 23 - LIMITING MAXIMUM JUNCTION TEMPERATURE
FIGURE a - USING A ZERO TC REFERENCE
FIGURE b - USING A TA REFERENCE
$V_{\text {pin }} 2\left(\right.$ for shut-down) $\approx 1.38-3.4 \times 10^{-3}\left(T J-25^{\circ} \mathrm{C}\right)$


TYPICAL APPLICATIONS (continued)


FIGURE 26 - CONNECTION FOR A NEGATIVE OUTPUT VOLTAGE

FIGURE 27 - DIGITALLY CONTROLLED 3-TERMINAL NEGATIVE REGULATOR


FIGURE 28 - A ZERO TC ADJUSTABLE "ZENER" REFERENCE


## GENERAL INFORMATION

Latch-up of these and other reguiators can occur if:

1. There are plus and minus voltages available
2. A load exists between $\mathrm{Vo}^{+}$and $\mathrm{Vo}^{-}$(This "common load" may be something inconspicuous -e.g. an operational amplifier. Nearly everyone who uses + and - voltages will have a common load from $\mathrm{V}^{+}$to $\mathrm{V}^{-}$)
3. $\mathrm{V}_{\mathrm{in}}{ }^{+}$and $\mathrm{V}_{\text {in }}{ }^{+}$are not applied at the same time.

The above conditions result in one of the two outputs becoming reverse-biased which prevents the regulator from turning "on". Latch-up can be prevented by the circuit configurations shown in Figure 29 and 30.

FIGURE 29

figure 30


## VOLTAGE REGULATOR CONSTRUCTION USING THE MC1460, MC1461, MC1560, MC1561 INTEGRATED CIRCUITS

FIGURE 31 - Regulator Layout Using Power Package For Load Currents Up To 500 mA


FIGURE 32 - Regulator Layout For Load Currents Up To 200 mA


PARTS LIST


[^22]
## VOLTAGE REGULATOR CONSTRUCTION (continued)

Note 1. The value of R1 is approximately $\left(2 V_{0}-7\right) k \Omega$, where $V_{O}$ is the desired output voltage $(3.5 \mathrm{~V}$ or greater) Optimum temperature stability can be achieved if R1 and R2 have the same temperature coefficient.

Note 2. $R_{S C}$ is a current sensing resistor for short circuit protection. See Figure 5 for a "Short-Circuit Load Current versus R ${ }^{\text {SC" }}$ curve

Note 3. In cases where long leads are used at the input or output of the regulator, bypass networks $R_{A} C_{A}$ and $R_{B} C_{B}$ might be necessary to eliminate parasitic oscillation

With no load, it is possible for a charge to develop on $C_{O}$ due to leakage currents. $R^{\prime} L$ is recommended to insure a minimum load current of 1 mA .

Note 4. It is recommended that Pin 2 (shut-down control) be grounded when not in use. When used, drive current to Pin 2 must be limited to 10 mA maximum

FIGURE 33 - Schematic of Complete Regulator Showing Both Necessary and Optional Components

*G-Package Pin 10 is ground, $R$ package Case is ground.

FIGURE 34 - Typical Printed Circuit Board Layout


## Specifications and Applications Information

MONOLITHIC NEGATIVE VOLTAGE REGULATOR
The MC1563/MC1463 is a "three terminal" negative regulator designed to deliver continuous load current up to 500 mAdc and provide a maximum negative input voltage of -40 Vdc . Output current capability can be increased to greater than 10 Adc through use of one or more external transistors.
Specifications and performance of the MC1563/MC1463 Negative Voltage Regulator are nearly identical to the MC1569/MC1469 Positive Voltage Regulator. For systems requiring both a positive and negative power supply, these devices are excellent for use as complementary regulators and offer the advantage of operating with a common input ground.
The MC1563R/MC1463R case can be mounted directly to a grounded heat sink which eliminates the need for an insulator

- Case is at Ground Potential (R package)
- Electronic "Shutdown" and Short-Circuit Protection
- Low Output Impedance -20 Milliohms typical
- High Power Capability - 9.0 Watts
- Excellent Temperature Stability - $\mathrm{TCV}_{\mathrm{O}}= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$ typical
- High Ripple Rejection - 0.002\% typical
- 500 mA Current Capability

NEGATIVE-POWER-SUPPLY VOLTAGE REGULATOR INTEGRATED CIRCUIT

## SILICON EPITAXIAL PASSIVATED




See Packaging Information Section for outline dimensions.
(MC1563 - Pg. 1 )

MAXIMUM RATINGS ( $T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value		Unit
Input Voltage   MC1463   MC1563	$\mathrm{V}_{\text {in }}$	$\begin{array}{r} -35 \\ -40 \end{array}$		Vdc
	IL pk	G Package	R Package	mA
Peak Load Current		250	600	
Current, Pin 2	'pin 2	10	10	mA
Power Dissipation and Thermal Characteristics $T_{A}=25^{\circ} \mathrm{C}$   Derate above $T_{A}=25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Case	$P_{D}$   1/申JA   фJA   $P_{D}$   1/申JC   $\phi \mathrm{J} C$	$\begin{aligned} & 0.68 \\ & 5.44 \\ & 184 \\ & 1.8 \\ & 14.4 \\ & 69.4 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 16 \\ & 62 \\ & 9.0 \\ & 61 \\ & 17 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}, ~} \mathrm{~T}_{\text {stg }}$	-65 to +175		${ }^{\circ} \mathrm{C}$

OPERATING TEMPERATURE RANGE

Ambient Temperature		$\mathrm{T}_{\text {A }}$		${ }^{\circ} \mathrm{C}$
	MC1463 MC1563		$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	

ELECTRICAL CHARACTERISTICS ( $I_{L}=100 \mathrm{mAdc}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Fig.	Note	Symbol*	Mric1563			MC1463			Unit
				Min	Typ	Max	Min	Typ	Max	
Input Voltage $\left(T_{A}=T_{\text {low }}{ }^{(1)} \text { to } T_{\text {high }}(\text { (2) })\right.$	4	1	$V_{\text {in }}$	$-8.5$		$-40$	-9.0	-	-35	Vdc
Output Voltage Range	4	-	$\mathrm{V}_{\mathrm{O}}$	-3.6	-	-37	$-3.8$	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	4	-	$V_{\text {ref }}$	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc
Minimum Input-Output Voltage Differential $\left(R_{s c}=0\right)$	4	2	$\left\|v_{\text {in }}-v_{0}\right\|$		$1.5$	$2.7$	-	1.5	3.0	Vdc
Bias Current (Standby Current) $\left(I_{L}=1.0 \mathrm{mAdc}, I_{B}=1_{\mathrm{in}}-1_{L}\right)$	4	-	'B		$7.0$	${ }^{11}$	-	7.0	14	mAdc
Output Noise $\left(\mathrm{C}_{\mathrm{n}}=0.1 \mu \mathrm{~F}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 5.0 \mathrm{MHz}\right. \text { ) }$	4	-	$v_{n}$		$120$		-	120	-	$\mu \mathrm{V}$ (rms)
Temperature Coefficient of Output Voltage	4	3	$\mathrm{TCV}_{0}$	.	$\pm 0.002$	-	-	$\pm 0.002$	-	\%/ ${ }^{\circ} \mathrm{C}$
Operating Load Current Range $\left(R_{s c}=0.3 \mathrm{ohm}\right)$ R Package $\left(R_{s C}=2.0\right.$ ohms $)$ G Package	4	-	IL	$\begin{array}{r} 1.0 \\ 1.0 \\ \hline \end{array}$		500 200	$1.0$	-	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	mAdc
Input Regulation	4	4	$\mathrm{Reg}_{\text {in }}$	-	0.002	0.015	-	0.003	0.030	$\% / \mathrm{V}_{\mathrm{O}}$
Load Regulation $\begin{aligned} & \left(T_{J}=\text { Constant }\left[1.0 \mathrm{~mA} \leqslant I_{L} \leqslant 20 \mathrm{~mA}\right]\right) \\ & \left(T_{\mathrm{C}}=+25^{\circ} \mathrm{C}\left[1.0 \mathrm{~mA} \leqslant 1_{\mathrm{L}} \leqslant 50 \mathrm{~mA}\right]\right) R \text { Package } \end{aligned}$ G Package	6	5	Regl		0.4   0.005   0.01	$\begin{array}{r} 1.6 \\ 0.05 \\ 0.13 \end{array}$	-	0.7   0.005   0.01	$\begin{aligned} & 2.4 \\ & 0.05 \\ & 0.13 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \% \end{gathered}$
Output Impedance ( $f=1.0 \mathrm{kHz}$ )	7	-	$z_{0}$	-	20	-	-	35	-	milliohms
Shutdown Current $\left(\mathrm{V}_{\text {in }}=-35 \mathrm{Vdc}\right)$	8	-	Isd	-2	7.0	15	-	14	50	$\mu \mathrm{Adc}$

[^23]Note 1. "Minımum Input Voltage" is the mınımum "total instantaneous input voltage" required to properly bias the internal zener reference diode.

Note 2. This parameter states that the MC1563/MC1463 will regulate properly with the input-output voltage differential $\left|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right|$ as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with $\mid V_{\text {in }}-V_{O}$ as low as 1.5 Vdc as shown in the typical column.
Note 3. "Temperature Coefficient of Output Voltage" is defined as:

$$
T C V_{O}=\frac{+\left(V_{O} \max V_{O} \min \right)(100)}{\Delta T_{A}\left(V_{O} @ T_{A}+25^{\circ} \mathrm{C}\right)}
$$

where $\triangle T_{A}=+180^{\circ} \mathrm{C}$ for the MC1563 $+75^{\circ} \mathrm{C}$ for the MC1463
The output-voltage adjusting resistors ( $R_{A}$ and $R_{B}$ ) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output voltage per volt change in the input voltage and is expressed as

$$
\text { Input Regulation }=\frac{v_{0}}{V_{O}\left(v_{i n}\right)} 100\left(\% / V_{O}\right)
$$

where $v_{0}$ is the change in the output voltage $V_{0}$ for the input change $v_{i n}$.
The following example illustrates how to compute maximum output voltage change for the conditions given:

$$
\begin{aligned}
& R_{\text {Regin }}=0.015 \% / \mathrm{V}_{\mathrm{O}} \\
& \mathrm{~V}_{\mathrm{O}}=10 \mathrm{Vdc} \\
& \mathrm{v}_{\mathrm{in}}=1.0 \mathrm{~V}(\mathrm{rms}) \\
& \mathrm{v}_{\mathrm{O}}= \frac{\left(\mathrm{Reg}_{\mathrm{in}}\right)\left(\mathrm{v}_{\mathrm{in}}\right)\left(\mathrm{V}_{\mathrm{O}}\right)}{100} \\
&= \frac{(0.015)(1.0)(10)}{100} \\
&= 0.0015 \mathrm{~V}(\mathrm{rms})
\end{aligned}
$$

Note 5. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation $=\frac{\left.V_{O}\right|_{\mathrm{L}}=\left.\left.1.0 \mathrm{~mA}\right|^{-} V_{O}\right|_{\mathrm{L}}=50 \mathrm{mAl}}{V_{\left.O\right|_{\mathrm{L}}}=1.0 \mathrm{~mA} \mid} \times 100$

TEST CIRCUITS
( $I_{L}=100 \mathrm{mAdc}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)


FIGURE 8 - SHUTDOWN CURRENT


## GENERAL DESIGN INFORMATION

1. Output Voltage, $V_{O}$
a) Output Voltage is set by resistors $R_{A}$ and $R_{B}$ (see Figure 9). Set $R_{B}=6.8 \mathrm{k}$ ohms and determine $\mathrm{R}_{\mathrm{A}}$ from the graph of Figure 11 or from the equation:

$$
R_{A} \approx\left(2\left|V_{0}\right|-7\right) k \Omega
$$

b) Output voltage can be varied by making $R_{A}$ adjustable as shown in Figures 9 and 10.
c) Output voltage, $\mathrm{V}_{\mathrm{O}}$, is determined by the ratio of $\mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}$ therefore optimum temperature performance can be achieved if $R_{A}$ and $R_{B}$ have the same temperature coefficient.
d) $V_{O}=V_{\text {ref }}\left(1+\frac{R_{A}}{R_{B}}\right)$; therefore the tolerance on
output voltage is determined by the tolerance of $\mathrm{V}_{\text {ref }}$ and $R_{A}$ and $R_{B}$.
2. Short-Circuit Current, Isc

Short-Circuit Current, $I_{\text {sc }}$ is determined by $R_{s c}$. $R_{s c}$ may be chosen with the aid of Figure 11 when using the typical circuit connection of Figure 9. See Figure 27 for current limiting during NPN current boost.
3. Compensation, $\mathrm{C}_{\mathrm{C}}$

A $0.001 \mu \mathrm{~F}$ capacitor ( $\mathrm{C}_{\mathrm{c}}$, see Figure 9 ), will provide adequate compensation in most applications, with or without current boost. Smaller values of $\mathrm{C}_{\mathrm{c}}$ will reduce stability and larger values of $\mathrm{C}_{\mathrm{C}}$ will degrade pulse response and output impedance versus frequency. The physical location of $\mathrm{C}_{\mathrm{c}}$ should be close to the MC1563/MC1463 with short lead lengths.
4. Noise Filter Capacitor, $\mathrm{C}_{\mathrm{n}}$

A $0.1 \mu \mathrm{~F}$ capacitor, $\mathrm{C}_{\mathrm{n}}$, from pin 3 to ground will typically reduce the output noise voltage to $120 \mu \mathrm{~V}(\mathrm{rms})$. The value of $C_{n}$ can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of $0.001 \mu \mathrm{~F}$ is recommended.
5. Output Capacitor, $\mathrm{C}_{\mathrm{o}}$

The value of $\mathrm{C}_{\mathrm{o}}$ should be at least $10 \mu \mathrm{~F}$ in order to provide good stability.
6. Shutdown Control

One method of turning "OFF" the regulator is to draw 1 mA from pin 2 (See Figure 8). This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at pin 2 will cause automatic shutdown for high junction temperatures (see Figure 35). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MECL , MRTL, MDTL or MTTL* can also be used to turn the regulator "ON" or "OFF" (see Figures 30 and 31).
7. Remote Sensing

The connection to pin 8 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure $I_{L}$ ) on $z_{O}$ can be greatly reduced (see Figure 33).

## FIGURE 9 - TYPICAL CIRCUIT CONNECTION



FIGURE 10 - $\mathbf{R}_{\mathrm{A}}$ versus $\mathbf{V}_{\mathbf{O}}$


FIGURE 11 - $I_{\text {sc }}$ versus $\mathbf{R}_{\text {sc }}$

$R_{\text {sc }}$, EXTERNAL CURRENT-LIMITING RESISTOR (OHMS)

> TYPICAL CHARACTERISTICS
> $\mathrm{C}_{\mathrm{n}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{C}}=0.001 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T} \mathrm{C}=+25^{\circ} \mathrm{C}$,
> $V_{\text {in }}($ nom $)=-15 \mathrm{Vdc}, V_{O}($ nom $)=-10 \mathrm{Vdc}, I_{\mathrm{L}}=100 \mathrm{mAdc}$.

FIGURE 12 - TEMPERATURE DEPENDENCE
OF SHORT-CIRCUIT LOAD CURRENT


FIGURE 14 - DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE


FIGURE 13 - FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE


FIGURE 15 - OUTPUT IMPEDANCE versus $R_{s c}$


FIGURE 16 - CURRENT LIMITING CHARACTERISTICS


TYPICAL CHARACTERISTICS (continued)


FIGURE 19 - EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION


IVin $-\mathrm{V}_{0}$ I, INPUT-OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)

FIGURE 21 - LOAD TRANSIENT RESPONSE


FIGURE 18 - EFFECTS OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL


FIGURE 20 - INPUT TRANSIENT RESPONSE

$100 \mu \mathrm{~s} / \mathrm{DIV}$

FIGURE 22 - DC OPERATING AREA


## OPERATION AND APPLICATIONS

This section describes the operation and design of the MC1563 (MC1463) negative voltage regulator and also provides information on useful applications.

SUBJECT SEQUENCE INDEX


## THEORY OF OPERATION

The usual series voltage regulator shown in Figure 23, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 24. The gain-determining resistors may be external, enabling a wide range of output voltages. This
is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1563) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulator-within-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1563 negative voltage regulator.


FIGURE 23 - Series Voltage Regulator


FIGURE 24 - The "Regulator-Within-A-Regulator" Approach

FIGURE 25
(Recommended External Circuitry is Depicted With Dotted Lines.)


## MC1563 (MC1463) Operation

Figure 25 shows the MC1563 (MC1463) Negative Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

## Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated
input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor ( $60 \mathrm{k} \Omega$ ) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator.

## MC1563, MC1463 (continued)

The shutdown control, in effect, consists of a PNP transistor across the reference zener diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to $\mathrm{V}_{\mathrm{in}} / 60 \mathrm{k} \Omega$ or $500 \mu \mathrm{~A}$ for a -30 V input.

## Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately -3.5 Vdc with a typical temperature coefficient of $0.002 \% /{ }^{\circ} \mathrm{C}$. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

## DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors ( $\mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}$ ) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, $\mathrm{C}_{\mathrm{n}}$, is introduced externally into the level shift network (via pin 3) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is $0.1 \mu \mathrm{~F}$ and should have a voltage rating in excess of the desired output voltage. Smaller capacitors ( $0.001 \mu \mathrm{~F}$ minimum) may be used but will cause a slight increase in output noise. Larger values of $\mathrm{C}_{\mathrm{n}}$ will reduce the noise as well as delay the start-up of the regulator.

## Output Regulator

The output of the shift amplifier is fed internally to the noninverting input of the output error amplifier. The


FIGURE 26 - Typical NPN Current Boost Connection
inverting input to this amplifier is the Output Sense connection (pin 8) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, $\mathrm{R}_{\mathrm{sc}}$, is connected in the emitter of this transistor to sample the full load current. This connection enables a four-diode string to limit the drive current to the power transistors in a conventional manner.

## Stability and Compensation

As has been seen, the MC1563 employs two amplifiers, each using negative feedback. This implies the possibility of frequency instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 7) and pin 5 . The recommended value of $0.001 \mu \mathrm{~F}$ will insure stability and still provide acceptable transient response (see Figure 21). It is also necessary to use an output capacitor, $\mathrm{C}_{\mathrm{O}}$, (typically $10 \mu \mathrm{~F}$ ) directly from the output (pin 6 ) to ground. When an external transistor is used to boost the current, $\mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}$ is recommended (see Figure 26).

## NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 26, are recommended. The circuit shown in Figure 26 can supply up to approximately 4.0 amperes (subject to safe area limitations). At higher currents the $\mathrm{V}_{\mathrm{BE}}$ of the pass transistor may itself exceed the threshold of the current limit even for $\mathrm{R}_{\mathrm{Sc}}=0$. Figure 2 illustrates the use of an additional external diode from pin 4 for higher current operation or for pass transistors exhibiting higher $\mathrm{V}_{\mathrm{BE}}$ 's. It will probably be necessary to determine $\mathrm{R}_{\mathrm{SC}}$ experimentally for each case where a pass transistor is used because $V_{B E}$ varies from device to device. The circuit of Figure 26 when set up for $\mathrm{a}-10 \mathrm{~V}$ output


FIGURE 27 - $I_{s c}$ versus R $_{\text {sc }}$ (reference Figure 26)

$\left(\mathrm{R}_{\mathrm{A}}=13 \mathrm{k} \Omega\right)$ supply and operating with a -15 V input, with a $\mathrm{R}_{\mathrm{sc}}$ of $0.1 \Omega$, will yield a change in output voltage of only 26 mV over a load current range of from 1 mA to 3.5 A . This corresponds to a dc output impedance of only 7.5 milliohms or a percentage load regulation of $0.26 \%$ for a full 3.5 -ampere load current change. Figure 27 indicates how the short circuit current varies with the value of $\mathrm{R}_{\mathrm{sc}}$ for this circuit.

## PNP CURRENT BOGSTING

A PNP power transistor can also be used to boost the load current capabilities. To improve the efficiency of the PNP boost configuration, particularly for small output voltages, the circuit of Figure 28, is recommended. An auxiliary -9 volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 10 -ampere regulator of Figure

28 this represents a savings of 22 watts when compared with operating the regulator from the single -9 V supply. It can supply current to 10 amperes while requiring an input voltage to the collector of the pass transistor of -6.8 volts minimum. The pass transistor is limited to 10 amperes by the added short-circuit current network in its emitter ( $\mathrm{R}_{\mathrm{sc} 2}$ ) and the IC regulator is limited to 500 mA in the conventional manner ( $\mathrm{R}_{\mathrm{sc} 1}$ ). The MJ450 exhibits a minimum hFE of 20 at 10 amperes, thus requiring only 500 mA from the MC1563R. Regulation of this circuit is comparable to that of the NPN boost configuration.

For higher output voltages the additional unregulated power supply is not required. The collector of the PNP boost transistor can tie directly to pin 5 and the internal current limit circuit will provide short-circuit protection using $\mathrm{R}_{\mathrm{sc}}$ (see Figure 11). Transistor Q 2 and $\mathrm{R}_{\mathrm{sc} 2}$ will not be required and pin 2 should be returned to ground.


FIGURE 29 - $\mathbf{A} \pm 15$ Vdc Complementary Tracking Regulator With Auxiliary +5.0 V Supply


## POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1563 is driven from a floating source it is possible to use it as a positive regulator by grounding the negative output terminal. The MC1563 may also be used with the MC1569 to provide completely independent positive and negative power regulators with comparable performance. When used in this manner a silicon diode such as the 1 N 4001 must be connected as a clamp on the output with the cathode to ground and the anode to the negative output voltage. This is to prevent the positive voltage in the system from forcing the output to a positive value and preventing the MC1563 from starting up.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 29 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3 k -ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero, $+\left|\mathrm{V}_{\mathrm{O}}\right|$ must equal $-\left|\mathrm{V}_{\mathrm{O}}\right|$.

For the configuration shown in Figure 29, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5 -volt supply which is boosted to a 2 -ampere capability by Q1 and Q2. (The +5 -volt supply, as shown,
is not short-circuit protected.) The -15 -volt supply varies less than 0.1 mV over a zero to -300 mAdc currenî range and the +15 -volt supply tracks this variation. The +15 -volt supply varies 20 mV over the zero to $+300-\mathrm{mAdc}$ load current range. The +5 -volt supply varies less than 5 mV for $0 \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 200 \mathrm{~mA}$ with the other two voltages remaining unchanged. See MC1561 data sheet or MC1569 data sheet for information concerning latch-up when using plus and minus regulations.

## SHUTDOWN TECHNIQUES

Pin 2 of the MC1563 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of a PNP transistor; which, if turned "ON", will deny current to all the biasing current sources. This action causes the output to go to essentially zero volts and the only current drawn by the IC regulator will be the small start current through the 60 k -ohm start resistor $\left(\mathrm{V}_{\mathrm{in}} / 60 \mathrm{k} \Omega\right)$. This feature provides additional versatility in the applications of the MC1563. Various sub-systems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as over-heating, over-voltage, shorted output, etc.

As an illustration of the first case, consider a system consisting of both positive-supply logic (MTTL) and negative-supply logic (MECL). The MECL logic may be used in a high-speed arithmetic processor whose services are not continuously required. Substantial power may



FIGURE 32 - Voltage Boosting Circuit
thus be conserved if the MECL circuitry remains unpowered except when needed. The negative regulator can be shutdown using any of the standard logic swings. For saturated logic control, Figure 30 shows a circuit that allows the normal positive output swing to cause the regulator to shutdown when the logic output is in the low voltage state. The negative output levels of a MECL gate can also be used for shutdown control as shown in Figure 31.

## VOLTAGE BOOSTING

Some applications may require a high output voltage which may exceed the voltage rating of the MC1563. This must be solved by assuring that the IC regulator is operated within its limits. Three points in the regulator need to be considered:

1. The input voltage (pin 4),
2. the output voltage (pin 6 ) and,
3. the output sense lead (pin 8).

A reduced input voltage can be provided by using a separate supply. The output voltage may be zener-level shifted, and the sense line can tie to a portion of the output voltage through a resistive divider. The voltage boost circuit of Figure 32 uses this approach to provide a -90 volt supply. This circuit will exhibit regulation of $0.001 \%$ over a 100 mA load current range.

## REMOTE SENSING

The MC1563 offers a remote sensing capability. This is important when the load is remote from the regulator, as the resistances of the interconnecting lines (VEE and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 33 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.

figure 33 - Remote Sensing Circuit


FIGURE 34 - An Adjustable "Zero-TC" Voltage Source

## AN ADJUSTABLE ZERO-TEMPERATURECOEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE

The MC1563, when used in conjunction with low-TC resistors, makes an excellent reference-voltage generator. If the -3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 1 and 9 can be tied together and no resistors are needed. This will provide a voltage reference having a typical temperature coefficient of $0.002 \% /{ }^{\circ} \mathrm{C}$. By adding two resistors, $\mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}$, any voltage between -3.5 Vdc and -37 Vdc can be obtained with the same low TC (see Figure 34)

## THERMAL SHUTDOWN

By setting a fixed voltage at pin 2, the MC1563 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the base-emitter junction of the shutdown transistor ( -1.9 x
$10^{-3} \mathrm{~V} /{ }^{\circ} \mathrm{C}$ ). By setting -0.61 Vdc externally, at pin 2 , the regulator will shutdown when the chip temperature reaches approximately $140^{\circ} \mathrm{C}$. Figure 35 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

In the case where an external pass transistor is employed; its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 36. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

## THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application,


FIGURE 35 - Junction Temperature Limiting Shutdown Circuit
the designer must use caution not to exceed the specified maximum junction temperature $\left(+175^{\circ} \mathrm{C}\right)$. Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A short-circuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current $(500 \mathrm{~mA})$. Care should be taken not to exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 22).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, $\mathrm{T}_{\mathrm{A}}$, or a change in the power dissipated in the IC regulator. The effects of ambient
*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.
temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$, typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

1. junction temperature change due to the change in the power dissipation
2. output voltage decrease due to the finite output impedance of the control amplifier
3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," $\mathrm{GCV}_{\mathrm{O}}$, can be used to describe this effect and is typically $+0.03 \% /$ watt for the MC1563R. For an example of the relative magnitudes of these effects, consider the following conditions:

Given:	MC1563R
with	$\mathrm{V}_{\text {in }}=-10 \mathrm{Vdc}$
	$\mathrm{V}_{\mathrm{O}}=-5 \mathrm{Vdc}$
and	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$ to 200 mA
	$\left(\Delta \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\right)$



FIGURE 36 - Thermal Shutdown When Using External Pass Transistors

MC1563, MC1463 (continued)

```
assume 㫜CS}=0.2\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
 and }0\textrm{SA}=2\mp@subsup{2}{}{\circ}\textrm{C}/\textrm{W
```

It is desired to find the $\Delta \mathrm{V}_{\mathrm{O}}$ which results from this $\Delta \mathrm{I}_{\mathrm{L}}$. Each of the three previously stated effects on $\mathrm{V}_{\mathrm{O}}$ can now be separately considered.

1. $\triangle \mathrm{V}_{\mathrm{O}}$ due to $\triangle \mathrm{T}_{\mathrm{J}}$

$$
\Delta \mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{O}}\right)\left(\Delta \mathrm{P}_{\mathrm{D}}\right)\left(\mathrm{TCV}_{\mathrm{O}}\right)(\theta \mathrm{JC}+\theta \mathrm{CS}+\theta \mathrm{SA})
$$

OR $\Delta \mathrm{V}_{\mathrm{O}}=(5 \mathrm{~V})(5 \mathrm{Vx} 0.1 \mathrm{~A})\left( \pm 0.002 \% /{ }^{\circ} \mathrm{C}\right)\left(19.2^{\circ} \mathrm{C} / \mathrm{W}\right)$

$$
\Delta \mathrm{V}_{\mathrm{O}} \approx \pm 1.0 \mathrm{~mW}
$$

2. $\triangle \mathrm{V}_{\mathrm{O}}$ due to $\mathrm{z}_{\mathrm{O}}$

$$
\begin{aligned}
& \left|\Delta V_{O}\right|=\left(-z_{O}\right)\left(I_{L}\right) \\
& \left|\Delta V_{O}\right|=-\left(2 \times 10^{-2}\right)\left(10^{-1}\right)=-2 \mathrm{mV}
\end{aligned}
$$

3. $\triangle \mathrm{V}_{\mathrm{O}}$ due to gradient coefficient, $\mathrm{GCV}_{\mathrm{O}}$

$$
\begin{aligned}
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=\left(\mathrm{GCV}_{\mathrm{O}}\right)\left(\mathrm{V}_{\mathrm{O}}\right)\left(\Delta \mathrm{P}_{\mathrm{D}}\right) \\
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=\left(+3 \times 10^{-4} / \mathrm{W}\right)(5 \text { volts })\left(5 \times 10^{-1} \mathrm{~W}\right) \\
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=+0.8 \mathrm{mV}
\end{aligned}
$$

Therefore the total $\Delta V_{O}$ is given by

$$
\begin{aligned}
& \mid \Delta \mathrm{V}_{\mathrm{O}} \text { total } \mid= \pm 1.0-2.0+0.8 \mathrm{mV} \\
& -2.2 \mathrm{mV} \leqslant \mid \mathrm{V}_{\mathrm{O}} \text { total } \mid \leqslant-0.2 \mathrm{mV}
\end{aligned}
$$

Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

Typical Printed Circuit Board Layout


## MC1563, MC1463 (continued)

FIGURE 37 - Location of Components


## Note 1:

When $\mathbf{R}_{\text {adj }}$ is used it is necessary to remove the copper which shorts out $\mathrm{R}_{\mathrm{adj}}$.

## Note 2:

Extra holes are available in the circuit board to permit two resistors to be paralleled to obtain the desired value of $R_{s c}$.

## Note 3:

If pin 2 is used to shut down the regulator, remove the copper which shorts pin 2 to ground.

## Note 4:

Remote sensing can be achieved by removing the copper which shorts pin 8 to pin 6 and connecting pin 8 directly to the "minus" load terminal. The circuit board ground should be connected to the unregulated power supply ground at the "plus" load terminal.

Typical Circuit Connection for Output Voltages Between -3.5 and -37 Volts


Select $R_{A}+R_{\text {adj }}$ to Give Desired $V_{O}: R_{A}+R_{a d j} \approx\left(2\left|v_{O}\right|-7\right) k \Omega$ with $R_{B}=6.8 \mathrm{ks} \Omega$

PARTS LIST

Component	Value	Description
$\begin{aligned} & \mathbf{R}_{A} \\ & \mathbf{R}_{B} \end{aligned}$	$\left.\begin{array}{c} \text { Select } \\ 6.8 \mathrm{k} \end{array}\right\}$	1/4 or $1 / 2$ watt carbon
$\mathrm{R}_{\text {adj }}$	Select	IRC Model X-201, Mallory Model MTC-1 or equivalent
$\mathrm{R}_{\text {sc }}$	Select	1/2 watt carbon
$\mathrm{R}^{\prime} \mathrm{L}$	Select	For minimum current of 1 mAdc
Co	$10 \mu \mathrm{~F}$	Sprague 1500 Series, Dickson D10C series or equivalent
$\mathrm{C}_{\mathrm{n}}$	$0.1 \mu \mathrm{~F}$ \}	Ceramic Disc - Centralab DDA 104, or equivalent
$\mathrm{C}_{\mathrm{C}}$	$0.001 \mu \mathrm{~F}\}$	Sprague TG-P10, or equivalent
$J_{1}$		Jumper
Q1		MC1563R or MC1463R
* HS		Heatsink Thermalloy \#6168 B or equivalent
*Socket	(Not Shown)	Robinson Nugent \#0001306 or equivalent Electronic Molding Corp. \#6341-210-1, 6348-188-1, 6349-188-1 or equivalent
PC Board		Circuit DOT, Inc. \#PC1113 or equivalent 1155 W. 23rd St.   Tempe, Arizona 85281

"Optional

## MC1566L <br> MC1466L

## Specifications and Applications Information

## MONOLITHIC VOLTAGE AND CURRENT REGULATOR

This unique "floating" regulator can deliver hundreds of volts limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466/ MC1566 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance.

- Voltage/Current Regulation with Automatic Crossover
- Excellent Line Voltage Regulation, $0.01 \%+1.0 \mathrm{mV}$
- Excellent Load Voltage Regulation, $0.01 \%+1.0 \mathrm{mV}$
- Excellent Current Regulation, $0.1 \%+1.0 \mathrm{~mA}$
- Short-Circuit Protection
- Output Voltage Adjustable to Zero Volts
- Internal Reference Voltage
- Adjustable Internal Current Source


TYPICAL APPLICATIONS


MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Auxiliary Voltage	MC1466 MC1566	$\mathrm{V}_{\text {aux }}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	Vdc
Power Dissipation (Package Limitation)   Derate above $T_{A}=+50^{\circ} \mathrm{C}$		$\stackrel{P_{D}}{1 / \theta_{\mathrm{JA}}}$	$\begin{array}{r} 750 \\ 6.0 \end{array}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\substack{\mathrm{c} \\ \hline}}$
Operating Temperature Range	MC1466 MC1566	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{aux}}=+25 \mathrm{Vdc}$ unless otherwise noted)


NOTE 1:
The instantaneous input voltage, $V_{\text {aux }}$, must not exceed the maximum value of 30 volts for the MC1466 or 35 volts for the MC1566. The instantaneous value of $\mathrm{V}_{\text {aux }}$ must be greater than 20 volts for the MC 1566 or 21 volts for the MC1466 for proper internal regulation.
NOTE 2:
The auxiliary supply voltage $V_{\text {aux }}$, must "float" and be electrically isolated from the unregulated high voltage supply, $V_{\text {in }}$.
NOTE 3:
Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship:

$$
I_{\text {ref }}(\mathrm{mA})=\frac{8.55}{R_{1}(\mathrm{k} \Omega)}
$$

NOTE 4
A built-in offset voltage ( 15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero
NOTE 5:
Load Voltage Regulation is a function of two additive components, $\Delta V_{\text {iov }}$ and $\Delta V_{\text {reff }}$, where $\Delta V_{\text {iov }}$ is the change in input offset voltage (measured between pins 8 and 9 ) and $\Delta V_{\text {ref }}$ is the change in voltage across $R 2$ (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is:
a. With S1 open ( $1_{4}=0$ ) measure the value of $\mathrm{V}_{\text {iov }}$ (1) and $V_{\text {ref ( }}$ (1)
b. Close S1, adjust R4 so that $\mathrm{I}_{4}=500 \mu \mathrm{~A}$ and note $V_{\text {iov (2) }}$ and $V_{\text {ref (2) }}$.
Then $\Delta \mathrm{V}_{\text {iov }}=\mathrm{V}_{\text {iov (1) }}-\mathrm{V}_{\text {iov (2) }}$
\% Reference Regulation $=$

$$
\frac{\left[V_{\text {ref }}(1)-V_{\text {ref }}(2)\right]}{V_{\text {ref }}(1)}(100 \%)=\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)
$$

## Load Voltage Regulation $=$

$$
\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)+\Delta V_{\text {iov }}
$$

NOTE 6 :
Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, $\Delta \mathrm{V}_{\text {iov }}$ and $\Delta V_{\text {ref }}$ (see note 5). The measurement procedure is:
a. Set the auxiliary voltage, $V_{\text {aux }}$, to 22 volts for the MC1566 or the MC1466. Read the value of $V_{\text {iov (1) }}$ and $V_{\text {ref (1) }}$
b. Change the $V$ aux to 28 volts for the MC1566 or the MC1466 and note the value of $V_{\text {iov (2) }}$ and $V_{\text {ref( }}$ (2). Then compute Line Voltage Regulation:
$\Delta V_{\text {iov }}=\Delta V_{\text {iov (1) }}-V_{\text {iov (2) }}$
$\%$ Reference Regulation =
$\frac{\left[V_{\text {ref }}(1)-V_{\text {ref (2) }}\right)}{V_{\text {ref }}(1)}(100 \%)=\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)$
Line Voltage Regulation $=$

$$
\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)+\Delta V_{\text {iov }} .
$$

NOTE 7
Load Current Regulation is measured by the following procedure:
a. With S2 open, adjust R3 for an initial load current, $\mathrm{I}^{\mathrm{L}(1)}$, such that $\mathrm{V}_{\mathrm{O}}$ is 8.0 Vdc .
b. With S2 closed, adjust $R_{T}$ for $V_{0}=1.0 \mathrm{Vdc}$ and read $\mathrm{L}(2)$. Then Load Current Regulation $=$

$$
\frac{\left[I_{L(2)}-I_{L(1)]}\right.}{I_{L(1)}}(100 \%)+I_{\text {ref }}
$$

where $I_{\text {ref }}$ is 1.0 mAdc , Load Current Regulation is specified in this manner because I ref passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, $\mathrm{R}_{\mathrm{s}}$

FIGURE 5

(MC1566L - Pg. 3)

## MC1566L, MC1466L (continued)



## NORMAL DESIGN PROCEDURE AND DESIGN CONSIDERATIONS

1. Constant Voltage

For constant voltage operation, output voltage $V_{0}$ is given by: $V_{0}=\left(I_{\text {ref }}\right)\left(R_{2}\right)$
where R2 is the resistance from pin 8 to ground and $I_{\text {ref }}$ is the output current of pin 3.
The recommended value of $I_{\text {ref }}$ is 1.0 mAdc. Resistor $R 1$ sets the value of Iref:

$$
I_{\mathrm{ref}}=\frac{8.5}{R_{1}}
$$

where $R 1$ is the resistance between pins 2 and 12 .
2. Constant Current:

For constant current operation
(a) Select $R_{s}$ for a 250 mV drop at the maximum desired regulated output current, I max-
(b) Adjust potentiometer R3 to set constant current output at desired value between zero and I max-
3. If $V_{\text {in }}$ is greater than $20 \mathrm{Vdc}, C R 2, C R 3$, and CR4 are necessary to protect the MC1466/MC1566 during short-circuit or transient conditions.
4. In applications where very low output noise is desired, R2 may be bypassed with C1 $(0.1 \mu \mathrm{~F}$ to $2.0 \mu \mathrm{~F})$. When R 2 is bypassed CR1 is necessary for protection during short-circuit conditions.
5. CR5 is recommended to protect the MC1466/MC1566 from simultaneous pass transistor failure and output short-circuit.
6. The RC network ( $10 \mathrm{pF}, 240 \mathrm{pF}, 1.2 \mathrm{k}$ ohms) is used for compensation. The values shown are valid for all applications. However, the 10 pF capacitor may be omitted if $\mathrm{f}_{\tau}$ of Q1 and Q 2 is greater than 0.5 MHz .
7. For remote sense applications, the positive voltage sense terminal (pin 9) is connected to the positive load terminal through a separate sense lead; and the negative sense terminal (the ground side of R2) is connected to the negative load terminal through a separate sense lead.
8. $C_{O}$ may be selected by using the relationship:
$C_{0}=(100 \mu F) I_{L}($ max $)$, where $I_{L}($ max $)$ is the maximum load current in amperes.
9. C 2 is necessary for the internal compensation of the MC1466/ MC1566.
10. For optimum regulation, current out of pin 5,15 , should not exceed 0.5 mAdc . Therefore select Q1 and Q2 such that:

$$
\frac{I_{\max }}{\beta 1 \beta 2} \leqslant 0.5 \mathrm{mAdc}
$$

where: $I_{\text {max }}=$ maximum short-circuit load current (mAdc)

$$
\beta 1=\text { minimum beta of } \mathrm{Q} 1
$$

$$
\beta 2=\text { minimum beta of } \mathrm{Q} 2
$$

Although Pin 5 will source up to $1.5 \mathrm{mAdc}, \mathrm{I}_{5}>0.5 \mathrm{mAdc}$ will result in a degradation in regulation.
11. CR6 is recommended when $V_{Q}>150 \mathrm{Vdc}$ and should be rated such that Peak Inverse Voltage $>\mathrm{V}_{0}$.

## OPERATION AND APPLICATIONS

This section describes the operation and design of the MC1566/MC1466 voltage and current regulator and also provides information on useful applications.

## SUBJECT SEQUENCE

Theory of Operation<br>Applications<br>Transient Failures<br>Voltage/Current-Mode Indicator

## THEORY OF OPERATION

The schematic of Figure 5 can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CR1 and CR5 with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance $\left(\mathrm{V}_{\mathrm{B} 1}=\mathrm{V}_{\mathrm{B} 2}\right)$, the output voltage, $\left(\mathrm{V}_{12}-\mathrm{V}_{7}\right)$, is at a value that is twice the drop across either of the two diode strings: $\mathrm{V}_{12}-\mathrm{V}_{7}=2\left(\mathrm{~V}_{\mathrm{CR} 1}+\mathrm{V}_{\mathrm{CR} 2}+\mathrm{V}_{\mathrm{CR}}+\right.$ $\mathrm{V}_{\mathrm{CR} 4}$ ). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit.

The voltage controlled current source (Figure 8) is a PNP-NPN composite which, due to the high NPN beta,
yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage $\left(\mathrm{V}_{\mathrm{B}_{2}}\right)$ is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor R1. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between $\mathrm{V}_{\mathrm{B}_{2}}$ and $\mathrm{V}_{12}$, making the $\Delta \mathrm{V}_{\mathrm{BE}}$ 's very small in percentage. Circuit reference voltage is derived from the product of $I_{R}$ and $R_{R}$; if $I_{R}$ is set at 1 mA $(\mathrm{R} 1=8.5 \mathrm{k} \Omega)$, then $\mathrm{R}_{\mathrm{R}}($ in $\mathrm{k} \Omega)=\mathrm{V}_{\mathrm{o}}$. Other values of current may be used as long as the following restraints are kept in mind: 1) package dissipation will be increased by about $11 \mathrm{~mW} / \mathrm{mA}$ and 2) bias current for the voltage control amplifier is $3 \mu \mathrm{~A}$, temperature dependent, and is extracted from the reference current. The reference current should

FIGURE 7 - REFERENCE VOLTAGE REGULATOR


FIGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE

be at least two orders of magnitude above the largest expected bias current.

Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high-gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, $\mathrm{R}_{\mathrm{OS}}$, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of $1 / 2$ milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without ROS, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as:

$$
\begin{equation*}
g_{m}=\frac{1}{2 r_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{e}} \approx \frac{0.026}{\mathrm{I}_{\mathrm{E}}} \text { and } \\
& \mathrm{R}_{\mathrm{E}}=\text { added emitter degenerating resistance. }
\end{aligned}
$$

For $\mathrm{IE}_{\mathrm{E}}=0.5 \mathrm{~mA}$,

$$
\begin{equation*}
\mathrm{g}_{\mathrm{m}}=\frac{1}{104+30}=\frac{1}{134}=7.5 \mathrm{~mA} / \mathrm{volt} \tag{2}
\end{equation*}
$$

FIGURE 9 - VOLTAGE CONTROL AMPLIFIER


FIGURE 10 - CURRENT CONTROL CIRCUIT


This level is further boosted by the output stage such that in the constant voltage mode overall transconductance is about $300 \mathrm{~mA} /$ volt.

A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin 10 while the output current is sampled across $\mathrm{R}_{\mathrm{S}}$ by pin 11 . When $I_{L} R_{S}$ is 15 mV below the reference value, voltage $\mathrm{V}_{1}$ begins. to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of $\mathrm{V}_{2} / \mathrm{R}_{\mathrm{S}}$. If $\mathrm{V}_{2}$ is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Since the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" $(1 \%+1 \mathrm{~mA}$, Figure 11). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than $\mathrm{V}_{\mathrm{R}}$. Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor.

FIGURE 11 - $V_{1}$ CURVE FOR 0-TO-40 V, 0.5-AMPERE REGULATOR


Transistor Q9 and five diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an "OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional stage (Q9) must be included to invert the logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 mA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source.

Note that the negative (substrate) side of the MC1566/ MC1466 is 7.25 volts lower than the output voltage, and the reference regulator guarantees that the positive side is 11 volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating" above and below $\mathrm{V}_{\mathrm{o}}$. $\mathrm{V}_{\mathrm{CE}}$ across Q 9 is only two or three $\mathrm{V}_{\mathrm{BE}}$ 's depending on the number of transistors used in the series pass configuration.

Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Q12 and Q13) have minimum beta's of 20 , then the overall regulator transconductance will be:

$$
\begin{equation*}
\mathrm{gmT}_{\mathrm{T}}=(400) 300 \mathrm{~mA} / \mathrm{volt}=120 \mathrm{~A} / \text { volt } . \tag{3}
\end{equation*}
$$

For a change in current of 500 mA the output voltage will drop only:

$$
\begin{equation*}
\Delta \mathrm{V}=\frac{0.5}{120}=4.2 \mathrm{mV} \tag{4}
\end{equation*}
$$



The analysis thus far does not consider changes in $V_{R}$ due to output current changes. If $I_{L}$ increases by 500 mA the collector current of Q9 decreases by 1.25 mA , causing the collector current of Q5 to increase by $30 \mu \mathrm{~A}$. Accordingly, $\mathrm{I}_{\mathrm{R}}$ will be decreased by $\approx 0.30 \mu \mathrm{~A}$ which will drop the output by $0.03 \%$. This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing IR. Note again, however, that the maximum power rating of the package must be kept in mind. For example if $I_{R}=4 \mathrm{~mA}$, power dissipation is

$$
\begin{equation*}
P_{D}=20 \mathrm{~V}(8 \mathrm{~mA})+(11 \mathrm{~V} \times 3 \mathrm{~mA})=193 \mathrm{~mW} \tag{5}
\end{equation*}
$$

This indicates that the circuit may be safely operated up to $118^{\circ} \mathrm{C}$ using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts,

$$
\begin{equation*}
P_{D}=35 V(8 \mathrm{~mA})+26 \mathrm{~V}(3 \mathrm{~mA})=358 \mathrm{~mW} \tag{6}
\end{equation*}
$$

which dictates that the maximum operating temperature must be less than $91^{\circ} \mathrm{C}$ to keep package dissipation within specified limits.

Line voltage regulation is also a function of the voltage change between pins 8 and 9 , and the change of $\mathrm{V}_{\text {ref. }}$. In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in $\mathrm{V}_{\text {aux }}$. Note that line voltage regulation is not a function of $\mathrm{V}_{\mathrm{in}}$. Note also that the instantaneous value of $\mathrm{V}_{\text {aux }}$ must always be between 20 and 35 volts.

Figure 6 shows six external diodes $\left(\mathrm{CR}_{1}\right.$ to $\left.\mathrm{CR}_{6}\right)$ added for protective purposes. $\mathrm{CR}_{1}$ should be used if the output voltage is less than 20 volts and $\mathrm{CR}_{2}, \mathrm{CR}_{3}$ are absent. For $\mathrm{V}_{\mathrm{O}}$ higher than 20 volts, $\mathrm{CR}_{1}$ should be discarded in favor of $\mathrm{CR}_{2}$ and $\mathrm{CR}_{3}$. Diode $\mathrm{CR}_{4}$ prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of such a transistor failure mode seems remote, CR4 may be deleted. To prevent instantaneous differential and common-mode breakdown of the current sense amplifier, $\mathrm{CR}_{5}$ must be placed across the current limit resistor $\mathbf{R}_{\mathbf{S}}$.

Load transients occasionally produce a damaging reversal of current flow from output to input $\mathrm{V}_{\mathrm{o}}>150$ volts (which will destroy the IC). Diode $\mathrm{CR}_{6}$ prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes $\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{CR}_{3}$, and $\mathrm{CR}_{5}$ may be general purpose silicon units such as 1 N 4001 or equivalent whereas $\mathrm{CR}_{4}$ and $\mathrm{CR}_{6}$ should have a peak inverse voltage rating equal to $\mathrm{V}_{\text {in }}$ or greater.

## APPLICATIONS

Figure 2 shows a typical 0 -to- 40 volts, 0.5 -ampere regulator with better than $0.01 \%$ performance, The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the $\mathrm{MCl566/}$ MC1466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 mA .

Figure 1 is a 0 -to- 15 volts, 10 -ampere regulator with the pass transistor configuration necessary to boost the load current to 10 amperes. Note that $\mathrm{C}_{\mathrm{O}}$ has been increased to $1000 \mu \mathrm{~F}$ following the general rule:

$$
\mathrm{C}_{\mathrm{o}}=100 \mu \mathrm{~F} / \mathrm{A} \mathrm{I}_{\mathrm{L}}
$$

The prime advantage of the MC1566/MC1466 is its use as a high voltage regulator, as shown in Figure 3. This 0 -to- 250 volts 0.1 -ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output pass transistors.

The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of 100 mA , with a V CE approximately equal to 260 volts. Thus this point falls on the dc line of the safe area curve, insuring that the transistor will not enter secondary breakdown.

In this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is short-circuit protected. This is due to the fact that load current is diminished as output voltage drops ( $V_{\text {CE increases }}$ as $\mathrm{V}_{\mathrm{O}}$ drops) as seen in Figure 15. By careful design the load current at a short, ISC can be made low enough such that the combined $\mathrm{V}_{\mathrm{CE}}\left(\mathrm{V}_{\text {in }}\right)$ and ISC still falls within the dc safe operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compa-
tible with a short-circuit current of 100 mA . Yet current foldback allows us to design for a maximum regulated load current of 500 mA . The pertinent design equations are:

$$
\begin{aligned}
& \text { Let } \mathrm{R}_{2}(\mathrm{k} \Omega)=\mathrm{V}_{\mathrm{O}} \\
& \alpha=\frac{0.25}{\mathrm{~V}_{\mathrm{o}}}\left[\frac{\mathrm{I}_{\mathrm{k}}}{\mathrm{I}_{\mathrm{SC}}}-1\right] \\
& \mathrm{R}_{1}(\mathrm{k} \Omega)=\frac{\alpha}{1-\alpha} \mathrm{V}_{\mathrm{O}} \\
& \mathrm{R}_{\mathrm{SC}}=\frac{0.25}{(1-\alpha) \mathrm{ISC}}
\end{aligned}
$$



FIGURE 14 - A 200 V, 0.5-AMPERE REGULATOR WITH CURRENT FOLDBACK


The terms $\mathrm{I}_{\mathrm{S}}$ and $\mathrm{I}_{\mathrm{k}}$ correspond to the short-circuit current and maximum available load current as shown in Figure 15.

## FIGURE 15 - TYPICAL FOLDBACK PERFORMANCE



Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type of wiring is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops do not destroy the excellent regulation of the MC1566/ MC1466.

## TRANSIENT FAILURES

In industrial areas where electrical machinery is used the normal ac line often contains bursts of voltage running
from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditions this energy is dissipated across the internal zener connected between pins 9 and 7 . This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7 -volt zener (CR1) between pin 9 and pin 7. To prevent this failure mode, two solutions have been successfully applied: The first method involves the use of an external zener and resistor that shunt more of the transient energy around the IC (Figure 17). The second method is a transient suppression network consisting of capacitors that equalize high frequency components across both the auxiliary and main supply. Figure 18 illustrates the use of five capacitors for the full wave rectified main supply and Figure 19 uses six capacitors when a full wave bridge is used.

## VOLTAGE/CURRENT - MODE INDICATOR

There may be times when it is desirable to know when the MC1566/MC1466 is in the constant current mode or constant voltage mode. A mode indicator can be easily added to provide this feature. Figure 20 shows how a PNP transistor has replaced a protection doide between pins 8 and 9 of Figure 2. When the MC1566/MC1466 goes from constant voltage mode to constant current mode, $\mathrm{V}_{\mathrm{O}}$ will drop below $\mathrm{V}_{8}$ and the PNP transistor will turn on. The 1 -mA current supplied by pin 8 will now be shunted to ground through $\mathrm{R}_{1}$ in parallel with $\mathrm{R}_{2}$, which provides a control voltage, $\mathrm{V}_{\mathrm{C}}$. This voltage $\mathrm{V}_{\mathrm{C}}$ can then control a Schmitt trigger which drives front panel lamps to indicate "constant current" or "constant voltage."

FIGURE 16 - REMOTE SENSE


MC1566L, MC1466L (continued)

FIGURE 17 - A 0-TO-250 VOLT, 0.1-AMPERE REGULATOR


FIGURE 20 - 0-TO-40 Vdc, 0.5-AMPERE REGULATOR WITH MODE INDICATOR



## DUAL $\pm 15-$ VOLT REGULATOR

The MC 1568/MC1468 is a dual polarity track ing regulator designed to provide balanced positive and negative output voltages at currents to 100 mA . Internally, the device is set for $\pm 15$-volt outputs but an external adjustment can be used to change both outputs simultaneously from 8.0 to 20 volts. Input voltages up to $\pm 30$ volts can be used and there is provision for adjustable current limiting. The device is available in three package types to accomodate various power requirements.

- Internally set to $\pm 15 \mathrm{~V}$ Tracking Outputs
- Output Currents to 100 mA
- Outputs Balanced to within 1\% (MC1568)
- Line and Load Regulation of $0.06 \%$
- $1 \%$ Maximum Output Variation due to Temperature Changes
- Standby Current Drain of 3.0 mA
- Externally Adjustable Current Limit
- Remote Sensing Provisions
- Case is at Ground Potential (R suffix package)


[^24]
## MC1568, MC1468 <br> (continued)

MAXIMUM RATINGS ( $T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value			Unit
Input Voltage	$\mathrm{V}_{\mathrm{CC}} .\left\|\mathrm{V}_{\mathrm{EE}}\right\|$	30			Vdc
Peak Load Current	IPK	100			mA
Power Dissipation and Thermal Characteristics $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $T_{C}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Case	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JA} \\ \theta \mathrm{JA} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JC} \\ \theta \mathrm{JC} \end{gathered}$	G Package   0.8   5.4   185   2.1   14   70	R Package   24   16   62   9.0   61   17	L Package   1.0   6.7   150   2.5   20   50	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\mathbf{s t g}}$	-65 to +175			${ }^{\circ} \mathrm{C}$
Minimum Short-Circuit Resistance	$\mathrm{R}_{\mathrm{SC}}(\mathrm{min})$	4.0			Ohms

## OPERATING TEMPERATURE RANGE

$\left.\begin{array}{|ll|l|l|l|}\hline \text { Ambient Temperature } & \text { MC1468 } \\ \text { MC1568 }\end{array} \quad \mathrm{T}_{\mathrm{A}} \quad \begin{array}{c}0 \text { to }+75 \\ -55 \text { to }+125\end{array}\right]$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1500 \mathrm{pF}, \mathrm{C} 3=\mathrm{C} 4=1.0 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{SC}}{ }^{+}=\mathrm{R}_{\mathrm{SC}}{ }^{-}=4.0 \Omega\right.$,
$I_{L}{ }^{+=} I^{-}=0, T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted.) (See Figure 1.)

Characteristic	Symbol	MC1568			MC1468			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Voltage	$\mathrm{V}_{0}$	$\pm 14.8$	$\pm 15$	$\pm 15.2$	$\pm 14.5$	$\pm 15$	$\pm 15.5$	Vdc
Input Voltage	$V_{\text {in }}$			$\pm 30$	-	-	$\pm 30$	Vdc
Input-Output Voltage Differential	$\left\|v_{\text {in }}-v_{0}\right\|$	2.0		-	2.0	-	-	Vdc
Output Voltage Balance	$\mathrm{V}_{\text {Bal }}$	-	$\pm 50$	$\pm 150$	-	$\pm 50$	$\pm 300$	mV
Line Regulation Voltage $\begin{aligned} & \left(\mathrm{V}_{\text {in }}=18 \mathrm{~V} \text { to } 30 \mathrm{~V}\right) \\ & \left(T_{\text {low }} \mathcal{1}_{\text {to }} \mathrm{T}_{\text {high }}{ }^{2}\right) \end{aligned}$	$\mathrm{Reg}_{\text {in }}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$	-	-	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation Voltage } \\ & \left(I_{L}=0 \text { to } 50 \mathrm{~mA}, T_{J}=\text { constant }\right) \\ & \left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	RegL			$\begin{aligned} & 10 \\ & 30 \end{aligned}$	-	-	$\begin{aligned} & 10 \\ & 30 \end{aligned}$	mV
Output Voltage Range   L Package (See Figure 4.)   R and G Packages (See Figures 2 and 13.)	$\mathrm{V}_{\text {OR }}$	$\begin{array}{r} \text { }+8.0 \\ \pm 14.5 \\ \hline \end{array}$		$\begin{aligned} & \pm 20 \\ & +20 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 8.0 \\ \pm 14.5 \end{gathered}$	-	$\begin{aligned} & \pm 20 \\ & \pm 20 \end{aligned}$	Vdc
Ripple Rejection ( $f=120 \mathrm{~Hz}$ )	RR		75		-	75	-	dB
Output Voltage Temperature Stability (Tlow to Thigh)	$\left\|\mathrm{TS}_{\mathrm{V}_{0}}\right\|$		$0.3$	1.0	-	0.3	1.0	\%
Short-Circuit Current Limit ( $\mathrm{R}_{\mathrm{SC}}=10$ ohms)	ISC		$60$		-	60	-	mA
$\begin{aligned} & \text { Output Noise Voltage } \\ & (\mathrm{BW}=100 \mathrm{~Hz} \cdot 10 \mathrm{kHz}) \end{aligned}$	$\mathrm{V}_{N}$		100		-	100	-	$\mu \mathrm{V}$ (RMS)
Positive Standby Current $\left(\mathrm{V}_{\mathrm{in}}=+30 \mathrm{~V}\right)$	${ }^{1}{ }^{+}$		$2.4$	$40$	-	2.4	4.0	mA
Negative Standby Current $\left(\mathrm{V}_{\mathrm{in}}=-30 \mathrm{~V}\right)$	${ }^{1}{ }^{-}$		1.0	-3.0	-	1.0	3.0	mA
Long-Term Stability	$\Delta V_{0} / \Delta t$	$=-$	$0.2$		-	0.2	-	\%/k Hr

[^25]MC1568, MC1468 (continued)

## TYPICAL APPLICATIONS

FIGURE 2 - VOLTAGE ADJUST AND
BALANCE ADJUST CIRCUIT

FIGURE 1 - BASIC 50-mA REGULATOR


FIGURE $3- \pm 1.5$-AMPERE REGULATOR
(Short-Circuit Protected, with Proper Heatsinking) (Metal-Packaged Devices Only, R Suffix)



Balance adjust available in MC 1568L, MC 1468L ceramic dual in-line package only.

FIGURE 4 - OUTPUT VOLTAGE ADJUSTMENT FOR $8.0 \mathrm{~V} \leqslant\left| \pm \mathrm{V}_{\mathrm{O}}\right| \leqslant 14.5 \mathrm{~V}$
(Ceramic-Packaged Devices Only, L Suffix.)


MC1568, MC1468 (continued)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)


TYPICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+20 \mathrm{~V}, \mathrm{~V}_{E E}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$


FIGURE 13 - TEMPERATURE COEFFICIENT OF OUTPUT VOLTAGE


FIGURE 15 - LINE TRANSIENT RESPONSE


FIGURE 12 - STANDBY CURRENT DRAIN


FIGURE 14 - LOAD TRANSIENT RESPONSE


FIGURE 16 - RIPPLE REJECTION


MC1568, MC1468 (continued)

TYPICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+20 \mathrm{~V}, V_{E E}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 17 - OUTPUT IMPEDANCE


## Specifications and Applications Information

## MONOLITHIC VOLTAGE REGULATOR

The MC1569/MC1469 is a positive voltage regulator designed to deliver continuous load current up to 500 mAdc. Output voltage is adjustable from 2.5 Vdc to 37 Vdc . The MC1569 is specified for use within the military temperature range ( -55 to $+125^{\circ} \mathrm{C}$ ) and the MC1469 within the 0 to $+70^{\circ} \mathrm{C}$ temperature range.

For systems requiring a positive regulated voltage, the MC1569 can be used with performance nearly identical to the MC1563 negative voltage regulator. Systems requiring both a positive and negative regulated voltage can use the MC1569 and MC1563 as complementary regulators with a common input ground.

- Electronic "Shut-Down" Control
- Excellent Load Regulation (Low Output Impedance - 20 milli ohms typ)
- High Power Capability: up to 17.5 Watts
- Excellent Temperature Stability: $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$ typ
- High Ripple Rejection: 0.002 \%/V typ


FIGURE 1 - TYPICAL CIRCUIT CONNECTION
$\left(3.5 \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 37 \mathrm{Vdc}, 1 \mathrm{~J}_{\mathrm{L}} \leqslant 500 \mathrm{~mA}\right)$


FIGURE 2 - TYPICAL NPN CURRENT BOOST CONNECTION $\left(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{Adc}(\mathrm{max}]\right)$


FIGURE $3- \pm 15 \mathrm{~V}, \pm 400 \mathrm{~mA}$ COMPLEMENTARY TRACKING Voltage regulator


The index to the content of this data sheet appears on page 20.
See current MCC1569/1469 data sheet for standard linear chip information.
See Packaging Information Section for outline dimensions.
MC1569-Pg. 1

MAXIMUM RATINGS ( $T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value		Unit
$\begin{array}{lr}\text { Input Voitage } \\ & \text { MC1469 } \\ \\ \text { MC1569 }\end{array}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		Vdc
Peak Load Current	IPK	$\frac{G \text { Package }}{250}$	$\frac{R \text { Package }}{600}$	mA
Current, Pin 2   Current, Pin 9	$\begin{aligned} & \mathrm{I}_{\operatorname{pin} 2} \\ & \mathrm{I}_{\operatorname{pin} 9} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10 \\ 5.0 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 50 \end{array}$	mA
Power Dissipation and Thermal Characteristics $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $T_{C}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Case	$P_{D}$ $1 / \theta \mathrm{JA}$ $\theta$ JA $P_{D}$ $1 / \theta \mathrm{JC}$ $\theta \mathrm{JC}$	1.68   0.68   5.44   184   1.8   14.4   69.4	$\begin{gathered} 30 \\ 24 \\ 41.6 \\ 17.5 \\ 140 \\ 7.15 \end{gathered}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{w}$ Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Junction Temperature	$\mathrm{T}_{\mathrm{J}, ~} \mathrm{~T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$

## OPERATING TEMPERATURE RANGE

Ambient Temperature		$\mathrm{T}_{\text {A }}$		${ }^{\circ} \mathrm{C}$
	MC1469   MC1569		$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	

## ELECTRICAL CHARACTERISTICS

$\left(T_{C}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Load Current $=100 \mathrm{~mA}$ for " $R$ " Package device

$$
=100 \mathrm{~mA} \text { for "R" Package device, unless otherwise noted) }
$$

Characteristic	Fig.	Note	Symbol	M Mc1569			MC1469			Unit
				Min	Typ	Max	Min	Typ	Max	
Input Voltage $\left(T_{A}=T_{\text {low }}{ }^{(1)} \text { to } T_{\text {high }}{ }^{(2)}\right)$	4	1	$V_{\text {in }}$	$8.5$		$40$	9.0		35	Vdc
Output Voltage Range	4,5		$\mathrm{V}_{\mathrm{O}}$	2.5	-	37.	2.5	-	32	Vdc
Reference Voltage (Pin 8 to Ground)	4		$V_{\text {ref }}$	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential $\left(R_{s c}=0\right)$	4	2	$v_{\text {in }}-v_{0}$			$2.7$	-	2.1	3.0	Vdc
Bias Current $\left(I_{L}=1.0 \mathrm{mAdc}, R_{2}=6.8 \mathrm{k} \text { ohms, } I_{I B}=I_{\text {in }}-I_{\mathrm{L}}\right)$	4		I/B		$4.0$	$9.0$	-	5.0	12	mAdc
Output Noise $\left(\mathrm{C}_{\mathrm{N}}=0.1 \mu \mathrm{~F}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 5.0 \mathrm{MHz}\right)$	4		$\mathrm{v}^{\mathrm{N}}$		$0.150$		-	0.150	-	mV (rms)
Temperature Coefficient of Output Voltage	4	3	$\mathrm{TCV}_{\mathrm{O}}$		$\pm 0.002$	-	-	$\pm 0.002$	-	\%/ ${ }^{\circ} \mathrm{C}$
Operating Load Current Range    $\left(R_{s c} \leqslant 0.3\right.$ ohms $)$ R Package   $\left(R_{s c} \leqslant 2.0\right.$ ohms $)$ G Package	4		${ }^{\prime} \mathrm{L}$	$\begin{gathered} 1.0 \\ 1.0 \end{gathered}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	mAdc
Input Regulation	6	4	$\mathrm{Reg}_{\text {in }}$	-	0.002	0.015	-	0.003	0.030	\%/VO
```Load Regulation ( \(T_{J}=\) Constant \(\left[1.0 \mathrm{~mA} \leqslant_{L} \leq 20 \mathrm{~mA}\right.\) ]) \(\left(T_{C}=+25^{\circ} \mathrm{C}\left[1.0 \mathrm{~mA} \leq I_{\mathrm{L}} \leq 50 \mathrm{~mA}\right]\right)\) R Package G Package```	7	5	Regload		0.4   0.005   0.01	1.6   0.05   0.13	-	$\begin{aligned} & 0.7 \\ & 0.005 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.05 \\ & 0.13 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \% \end{gathered}$
$\begin{array}{\|l} \text { Output Impedance } \\ \mathrm{C}_{\mathrm{c}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{sc}}=1.0 \mathrm{ohm}, \mathrm{f}=1.0 \mathrm{kHz}, \\ \left.\mathrm{~V}_{\mathrm{in}}=+14 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=+10 \mathrm{Vdc}\right) \end{array}$	8	6	z_{0}		20	80	-	35	120	milliohms
Shutdown Current $\left(\mathrm{V}_{\mathrm{in}}=+35 \mathrm{Vdc}\right)$	9		$\mathrm{I}_{\text {sd }}$			150	-	140	500	$\mu \mathrm{Adc}$
(1) $\begin{aligned} T_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC1469 } \\ & =-55^{\circ} \mathrm{C} \text { for MC1569 }\end{aligned}$$=-55^{\circ} \mathrm{C} \text { for MC1569 }$$\text { (2) } \begin{aligned} T_{\text {high }} & =+75^{\circ} \mathrm{C} \text { for MC1469 } \\ & =+125^{\circ} \mathrm{C} \text { for MC1569 } \end{aligned}$										

Note 1. "Minimum Input Voltage" is the minimum" total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential"

Note 2. This parameter states that the MC1569/MC1469 will regulate properly with the input-output voltage differential ($\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$) as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with ($\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$) as low as 2.1 Vdc as shown in the typical column. (See Figure 21.)

Note 3. "Temperature Coefficient of Output Voltage" is defined as:

MC1569, TCV ${ }_{O}=\frac{ \pm\left(V_{O} \max -V_{O} \min \right)(100)}{\left(180^{\circ} \mathrm{C}\right)\left(V_{O} @ 25^{\circ} \mathrm{C}\right)}=\% /{ }^{\circ} \mathrm{C}$
MC1469, $\operatorname{TCV}_{\mathrm{O}}=\frac{ \pm\left(V_{\mathrm{O}} \max -V_{\mathrm{O}} \min \right)(100)}{\left(75^{\circ} \mathrm{C}\right)\left(V_{\mathrm{O}} @ 25{ }^{\circ} \mathrm{C}\right)}=\% /{ }^{\circ} \mathrm{C}$
The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature
voltage per volt change in the input voltage and is expressed as

Input Regulation $=\frac{v_{0}}{v_{O}\left(v_{i n}\right)} 100\left(\% / V_{O}\right)$,
where v_{0} is the change in the output voltage V_{O} for the input change $v_{\text {in }}$.

The following example illustrates how to compute maximum output voltage change for the conditions given:

$$
\begin{aligned}
R^{R e g_{i n}} & =0.015 \% / V_{O} \\
V_{O} & =10 \mathrm{Vdc} \\
v_{\text {in }} & =1.0 \mathrm{~V}(\mathrm{rms}) \\
v_{0} & =\frac{\left(R e g_{i n}\right)\left(v_{\text {in }}\right)\left(\mathrm{V}_{Q}\right)}{100} \\
& =\frac{(0.015)(1.0)(10)}{100} \\
& =0.0015 \mathrm{~V}(\mathrm{rms})
\end{aligned}
$$

Note 5. Load regulation is specified for small $\left(\leqslant+17^{\circ} \mathrm{C}\right)$ changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.
Load Regulation $=\frac{\left[\left.\mathrm{V}_{\mathrm{O}}\right|^{\prime} \mathrm{L}=1.0 \mathrm{~mA}\right]-\left[\left.\mathrm{V}_{\mathrm{O}}\right|^{\prime} \mathrm{L}=50 \mathrm{~mA}\right]}{\left.\mathrm{V}_{\mathrm{O}}\right|^{\prime} \mathrm{L}=1.0 \mathrm{~mA}} \times 100$

TEST CIRCUITS

GENERAL DESIGN INFORMATION

1. Output Voltage, V_{O}
a) For $\mathrm{V}_{\mathrm{O}} \geqslant 3.5 \mathrm{Vdc}$ - Output voltage is set by resistors R 1 and R2 (see Figure 4). Set R2 $=6.8 \mathrm{k}$ ohms and determine R1 from the graph of Figure 10 or from the equation:

$$
R 1 \approx\left(2 V_{O}-7\right) k \Omega
$$

b) For $2.5 \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 3.5 \mathrm{Vdc}$ - Output voltage is set by resistors R1 and R2 (see Figure 5). Resistors R1 and R2 can be determined from the graph of Figure 11 or from the equations:

$$
\begin{gathered}
R 2 \approx 2\left(V_{0}\right) k \Omega \\
R 1 \approx(7 \mathrm{k} \Omega-\mathrm{R} 2) \mathrm{k} \Omega
\end{gathered}
$$

c) Output voltage, V_{O}, is determined by the ratio of R 1 and R2, therefore optimum temperature performance can be achieved if R1 and R2 have the same temperature coefficient.
d) Output voltage can be varied by making R1 adjustable as shown in Figure 43.
e) If $\mathrm{V}_{\mathrm{O}}=3.5 \mathrm{Vdc}$ (to supply MRTL* for example), tie pins 6 , 8 and 9 together. R1 and R2 are not needed in this case.
2. Short Circuit Current, Isc

Short Circuit Current, $I_{s c}$, is determined by $R_{s c} . R_{s c}$ may be chosen with the aid of Figure 12 or the expression:

$$
\mathrm{R}_{\mathrm{sc}} \approx \frac{0.6}{\Gamma_{\mathrm{sc}}} \mathrm{ohm}
$$

where $I_{s c}$ is measured in amperes. This expression is also valid when current is boosted as shown in Figures 2, 29 and 30.
3. Compensation, C_{C}

A $0.001 \mu \mathrm{~F}$ capacitor, C_{C}, from pin 4 to ground will provide adequate compensation in most applications, with or without current boost. Smaller values of C_{c} will reduce stability and larger values of C_{c} will degrade pulse response and output impedance versus frequency. The physical location of C_{C} should be close to the MC1569/MC1469 with short lead lengths.
4. Noise Filter Capacitor, C_{N}

A $0.1 \mu \mathrm{~F}$ capacitor, C_{N}, from pin 7 to ground will typically reduce the output noise voltage to $150 \mu \mathrm{~V}(\mathrm{rms})$. The value of C_{N} can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of $0.001 \mu \mathrm{~F}$ is recommended.
5. Output Capacitor, C_{O}

The value of C_{O} should be at least $1.0 \mu \mathrm{~F}$ in order to provide good stability. The maximum value recommended is a function of current limit resistor R_{sc} :

$$
\mathrm{c}_{\mathrm{O}} \max \approx \frac{250 \mu \mathrm{~F}}{\mathrm{R}_{\mathrm{sc}}}
$$

where $R_{s c}$ is measured in ohms. Values of C_{O} greater than this will degrade the pulse response characteristics and increase the settling time.
6. Shut-Down Control

One method of turning "OFF" the regulator is to apply a dc voltage at pin 2. This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output shortcircuiting (see Figures 34, 39 and 40). As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures (see Figure 39). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MRTL, MDTL or MTTL can also be used to turn the regulator "ON" or "OFF".

7. Remote Sensina

The connection to pin 5 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure (L) on z_{0} can be greatly reduced (see Figure 37).

FIGURE 11 - R1 and R2 versus V_{O}

7.0

R2, RESISTANCE ($k \Omega$)

MC1569, MC1469 (continued)

TYPICAL CHARACTERISTICS
Unless otherwise noted: $\quad C_{N}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{c}}=0.001 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$,
$V_{\text {in }}$ nom $=+9.0 \mathrm{Vdc}, V_{O}$ nom $=+5.0 \mathrm{Vdc}$,
$I_{L}>\mathbf{2 0 0} \mathrm{mA}$ for R package only.
FIGURE 13 - DEPENDENCE OF OUTPUT
FIGURE 14 - OUTPUT IMPEDANCE versus $R_{\text {sc }}$

FIGURE 15 - FREQUENCY DEPENDENCE OF INPUT REGULATION, $\mathrm{C}_{\mathrm{O}}=\mathbf{1 0} \mu \mathrm{F}$

FIGURE 17 - CURRENT-LIMITING CHARACTERISTICS

MC1569, MC1469 (continued)

TYPICAL CHARACTERISTICS (continued)
Unless otherwise noted: $\quad C_{N}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{c}}=0.001 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$,
$V_{\text {in }}$ nom $=+9.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}$ nom $=+5.0 \mathrm{Vdc}$,
$\mathrm{I}_{\mathrm{L}}>200 \mathrm{~mA}$ for R package only.

MC1569-Pg. 6

OPERATIONS AND APPLICATIONS

This section describes the operation and design of the MC1569 positive voltage regulator and also provides information on useful applications.

SUBJECT SEQUENCE

Theory of Operation
NPN Current Boosting
PNP Current Boosting
Switching Regulator
Positive and Negative Power Supplies

Shutdown Techniques
Voltage Boosting
Remote Sensing
An Adjustable-Zero-Temperature-
Coefficient Voltage Source

Thermal Shutdown
Thermal Considerations Latch-Up

THEORY OF OPERATION

The usual series voltage regulator shown in Figure 25, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 26. The gain-determining resistors may be external, enabling a wide range of output voltages. This
is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC 1569) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulator-within-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1569 positivevoltage regulator.

FIGURE 25 - SERIES VOLTAGE REGULATOR

FIGURE 26 - THE "REGULATOR-WITHIN-A-REGULATOR" APPROACH

MC1569, MC1469 (continued)

FIGURE 27

MC1569 Operation

Figure 27 shows the MC1569 Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated
input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor ($60 \mathrm{k} \Omega$) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator.

The shutdown control consists of an NPN transistor across the reference zener diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to $\mathrm{V}_{\mathrm{in}} / 60 \mathrm{k} \Omega$ or $500 \mu \mathrm{~A}$ for a 30 V input.

Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately 3.5 Vdc with a typical temperature coefficient of $0.002 \% /{ }^{\circ} \mathrm{C}$. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (R1 and R2) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, C_{N}, is introduced externally into the level shift network (via pin 7) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is $0.1 \mu \mathrm{~F}$ and should have a voltage rating in excess of the desired output voltage. Smaller capacitors ($0.001 \mu \mathrm{~F}$ minimum) may be used but will cause a slight increase in output noise. Larger values of C_{N} will reduce the noise as well as delay the start-up of the regulator.

Output Regulator

The output of the level shift amplifier ($\operatorname{pin} 9$) is fed to the noninverting input (pin 6) of the output error amplifier. The inverting input to this amplifier is the Output Sense connection (pin 5) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, R_{sc}, is connected in the emitter of this transistor to sample the full load current. By placing an external low-level NPN transistor. across $\mathrm{R}_{\text {sc }}$ as shown in Figure 27, output current can be limited to a predetermined value:

$$
\mathrm{I}_{\mathrm{L}} \max \approx \frac{0.6}{\mathrm{R}_{\mathrm{Sc}}} \text { or } \mathrm{R}_{\mathrm{Sc}}=\frac{0.6}{\mathrm{I}_{\mathrm{L}} \max }
$$

where l_{L} max is the maximum load current (amperes) and R_{sc} is the value of the current limiting resistor (ohms).

Stability and Compensation

As has been seen, the MC1569 employs two amplifiers, each using negative feedback. This implies the possibility of instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 4) and ground. The recommended value of $0.001 \mu \mathrm{~F}$ will insure stability and still provide acceptable transient response (see Figure 28, A and B). It is also necessary to use an output capacitor, C_{O} (typically $1.0 \mu \mathrm{~F}$) from the output, V_{O}, to ground. When an external transistor is used to boost the current, $\mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}$ is also recommended (see Figure 2).

TYPICAL NPN CURRENT BOOST CONNECTIONS

FIGURE 29A - 5 VOLT 5-AMPERE REGULATOR

FIGURE 29B - 5-VOLT 5-AMPERE REGULATOR

FIGURE 30 - PNP CURRENT BOOST CONNECTION

NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 29 are recommended. The transistor shown in Figure 29A, the 2N3055 can supply currents to 5.0 amperes (subject, of course, to the safe area limitations). To improve the efficiency of the NPN
boost configuration, particularly for small output voltages, the circuit of Figure 29 is recommended. An auxiliary 9.5 -volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 5.0 ampere regulator of Figure 29 this represents a savings of 17.5 watts when compared with operating the regulator from the single 9.5 V supply. It can supply current to 5.0 amperes while requiring an input voltage to the collector of the pass transistor of 6.0 volts minimum. The pass transistor is limited to 5.0 amperes by the added short-circuit current network in its emitter (R_{sc}), (Figure 29B).

PNP CURRENT BOOSTING

A typical PNP current boost circuit is shown in Figure 30. Voltages from 2.5 Vdc to 37 Vdc and currents of many amperes can be obtained with this circuit.

Since the PNP transistor must not be turned on by the MC1569 bias current (I_{IB}) the resistor $\mathrm{R}_{\text {in }}$ must meet the following condition

$$
\mathrm{R}_{\mathrm{in}}<\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{IB}}}
$$

where V_{BE} is the base-to-emitter voltage required to turn on the PNP pass transistor, (typically 0.6 Vdc for silicon and 0.2 Vdc for germanium).

For germanium pass transistors, a silicon diode may be placed in series with the emitter to provide an additional voltage drop. This allows a larger value of $\mathrm{R}_{\text {in }}$ than would be possible if the diode were omitted. The diode will, however, be required to carry the maximum load current.

SELF-OSCILLATING SWITCHING REGULATOR

In all of the current boosting circuits shown thus far it has been assumed that the input-output voltage differential can be minimized to obtain maximum efficiency in both the external pass element as well as the MC1569. This may not be possible in applications where only a single supply voltage is available and high current levels preclude zener diode pre-regulating approaches. In such applications a switching-mode voltage regulator is highly desirable since the pass device is either ON or OFF. The theoretical efficiency of an ideal switching regulator is 100%. Realizable efficiencies of 90% are within the realm of possibility thus obviating the need for large power dissipating components. The output voltage will contain a ripple component; however, this can be made quite small if the switching frequency is made relatively high so filtering techniques are effective. Figure 31 shows a functional diagram for a self-oscillating voltage regulator. The comparator-driver will sense the voltage across the inductor, this voltage being related to the load current, I_{L}, by

$$
\mathrm{L} \frac{\mathrm{dI}_{\mathrm{L}}}{\mathrm{dt}}=\mathrm{V}
$$

For a first approximation this can be assumed to be a linear relationship.

Initially, V_{O} will be low and Q1 will be ON . The voltage at the non-inverting input will approach $\beta_{1} \mathrm{~V}_{\mathrm{in}}$, when:

$$
\beta_{1} V_{i n}=\frac{V_{r e f} R_{a}}{R_{a}+R_{b}}+\frac{V_{c} R_{b}}{R_{a}+R_{b}}
$$

When this output voltage is reached the comparator will switch, turning Q1 OFF. The diode, CR1, will now become forward biased and will supply a path for the inductor current. This current and the sense voltage will start to decrease until the output voltage reaches

$$
\beta_{2} V_{i n}=\frac{V_{r e f} R_{a}}{R_{a}+R_{b}}
$$

where the comparator will again switch turning Q1 ON, and the cycle repeats. Thus the output voltage is approximately $\mathrm{V}_{\text {ref }}$ plus a ripple component.

The frequency of oscillation can be shown to be

$$
\begin{equation*}
\mathrm{f}=\frac{\mathrm{V}_{\mathrm{O}}\left(\mathrm{~V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right)}{\left.\mathrm{L} \mathrm{~V}_{\mathrm{C}} \mathrm{I}(\max)-\mathrm{I}_{\mathrm{O}}\right)} \tag{1}
\end{equation*}
$$

where
$I(\max)=$ The maximum value of inductor current
$\mathrm{IO}_{\mathrm{O}}=$ The minimum inductor current.

Normally this frequency will be in the range of approximately 2 kHz to 6 kHz . In this range, inductor values can be small and are compatible with the switching times of the pass transistor and diode. The switching time of the comparator is quite fast since positive feedback aids both turn-on and turn-off times. The limiting factors are the diode and pass transistor rise and fall times which should be quite fast or efficiency will suffer.

Figure 32 shows a self oscillating switching regulator which in many respects is similar to the PNP current boost previously discussed. The $6.8 \mathrm{k} \Omega$ resistor in conjunction with R1 sets the reference voltage, $\mathrm{V}_{\text {ref. }}$ Q1 and CR1 are selected for fast switching times as well as the necessary power dissipation ratings. Since a linear inductor is assumed, the inductor cannot be allowed to saturate at maximum load currents and should be chosen accordingly. If core saturation does occur, peak transistor and diode currents will be large and power dissipation will increase.

FIGURE 31 - BASIC SELF-OSCILLATING SWITCHING REGULATOR

FIGURE 32 - MC1569 SELF-OSCILLATING SWITCHING REGULATOR

As a design center is required for a practical circuit, assume the following requirements:

$$
\begin{align*}
V_{\text {in }} & =+28 \text { Volts } \\
V_{O} & =+10 \text { Volts } \\
\Delta V_{O} & =50 \mathrm{mV} \\
\mathrm{f} & \cong 5 \mathrm{kHz} \\
\mathrm{I}(\max) & =1.125 \mathrm{~A} \\
\mathrm{IO} & =1 \mathrm{~A} \\
\Delta V & \approx V_{\text {in }} \frac{R_{b}}{R_{a}} . \tag{2}
\end{align*}
$$

Using Equation (1), the inductor value can be found:

$$
\begin{aligned}
\mathrm{L} & =\frac{(28-10)}{2(1.125-1)} \frac{10}{28}\left(\frac{1}{5 \times 10^{3}}\right) \\
& \approx 7 \mathrm{mH} .
\end{aligned}
$$

For the test circuit, a value of 6 mH was selected. Using for a first approximation

$$
\begin{aligned}
\mathrm{C}_{\mathrm{O}} & =\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{O}\right)\left(\mathrm{V}_{\mathrm{O}}\right)}{8 \mathrm{~L} \mathrm{f}^{2} \mathrm{~V}_{\text {in }}(\Delta \mathrm{V})} \\
& =\frac{(28-10) 10}{8\left(7 \times 10^{-3}\right)\left(5 \times 10^{3}\right)^{2}(28)\left(50 \times 10^{-3}\right)} \\
& \approx 95 \mu \mathrm{~F} .
\end{aligned}
$$

As shown, a value of $100 \mu \mathrm{~F}$ was selected. Since little current is required at pin $6, \mathrm{R}_{\mathrm{a}}$ can be large. Assume $\mathrm{R}_{\mathrm{a}}=$ $47 \mathrm{k} \Omega$ and then use Equation (2) to determine R_{b} :

$$
\begin{gathered}
50 \times 10^{-3}=\frac{28}{47 \mathrm{k} \Omega} \mathrm{R}_{\mathrm{b}} \\
\mathrm{R}_{\mathrm{b}}=\frac{47}{28} 50 \approx 85 \Omega
\end{gathered}
$$

Since the internal impedance presented by pin 9 is on the order of 60Ω, a value of $\mathrm{R}_{\mathrm{b}}=10 \Omega$ is adequate.

Diodes CR2, CR3, and R_{C} may be added to prevent saturation of the error amplifier to increase switching
speed. When the output stage of the error amplifier approaches saturation, CR2 becomes forward biased and clamps the error amplifier. Resistor R_{C} should be selected to supply a total of 1 mAdc to CR2 and CR3.

To show correlation between the predicted and tested specifications the following data was obtained:

$$
\begin{aligned}
\mathrm{V}_{\text {in }} & =+28(\pm 1 \%) \text { Volts } \\
\mathrm{V}_{\mathrm{O}} & =+10 \text { Volts } \\
\Delta \mathrm{V}_{\mathrm{O}} & =60 \mathrm{mV} \\
\mathrm{f} & =7 \mathrm{kHz} \\
@ \mathrm{I}_{\mathrm{L}} & =1 \mathrm{~A}
\end{aligned}
$$

which checks quite well with the predicted values. R_{b} can be adjusted to minimize the ripple component as well as to trim the operating frequency. Also this frequency will change with varying loads as is normal with this type of circuit. Pin 2 can still be used for shut-down if so desired. $\mathbf{R}_{\text {sc }}$ should be set such that the ratio of load current to base drive current is $10: 1$ in this case $\mathrm{I}_{1} \approx 100 \mathrm{~mA}$ and $\mathrm{R}_{\mathrm{Sc}}=6.5 \Omega$.

POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1569 is driven from a floating source it is possible to use it as a negative regulator by grounding the positive output terminal. The MC1569 may also be used with the MC1563 to provide completely independent positive and negative voltage regulators with comparable performance.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 33 illustrate this approach. In this application, the MC 1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3 -k ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero, $+\mathrm{V}_{\mathrm{O}}$ must equal $\left|-\mathrm{V}_{\mathrm{O}}\right|$.

For the configuration shown in Figure 33, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5 -volt supply which is boosted to a 2 -ampere capability by Q1 and Q2. (The +5 -volt supply, as shown,
is not short-circuit protected.) The -15 -volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +15 -volt supply tracks this variation. The +15 -volt supply varies 20 mV over the zero to +300 mAdc load current range. The +5 -volt supply varies less than 5 mV for $0 \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 200 \mathrm{~mA}$ with the other two voltages remaining unchanged. See page 19 for additional information.

SHUTDOWN TECHNIQUES

Pin 2 of the MC1569 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of an NPN transistor; which, if turned "ON", will turn the zener "OFF" and deny current to all the biasing current sources. This action causes the output to go to essentially
zero volts and the only current drawn by the IC regulator will be the small start current through the $60-\mathrm{k}$-ohm start resistor ($\mathrm{V}_{\mathrm{in}} / 60 \mathrm{k} \Omega$). This feature provides additional versatility in the applications of the MC1569. Various subsystems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as overheating, over-voltage, shorted output, etc.

To activate shutdown, one simply applies a potential greater than two diode drops with a current capability of 1 mA . Note that if a hard supply (i.e., +3 V) is applied directly to pin 2 , the shutdown circuitry will be destroyed since there is no inherent current limiting. Maximum rating for the drive current into pin 2 is 10 mA , while 1 mA is adequate for shutdown.

FIGURE $33-A \pm 15$ Vdc COMPLEMENTARY TRACKING REGULATOR WITH AUXILIARY +5.0 V SUPPLY

FIGURE 34 - ELECTRONIC SHUT-DOWN USING A MDTL GATE

FIGURE 35 - AUTOMATIC LATCH INTO SHUT-DOWN WHEN OUTPUT IS SHORT-CIRCUITED WITH MANUAL RE-START

FIGURE 36 - VOLTAGE BOOSTING CIRCUIT

Figure 34 shows how the regulator can be controlled by a logic gate. Here, it is assumed that the regulator operates in its normal mode - as a positive regulator referenced to ground - and that the logic gate is of the saturating type, operating from a positive supply to ground. The high logic level should be greater than about 1.5 V and should source no more than 10 mA into pin 2 .

The gate shown is of the MDTL type. MRTL and MTTL can also be used as long as the drive current is within safe limits (this is important when using MTTL, where the output stage uses an active pull-up).

In some cases a regulator can be designed which can handle the power dissipation resulting from normal operation but cannot safely dissipate the power resulting from a sustained short-circuit. The circuit of Figure 35 solves this problem by shutting down the regulator when the output is short-circuited.

VOLTAGE BOOSTING

The MC1569 has a maximum output voltage capability of 37 volts which covers the bulk of the user requirements. However, it is possible to obtain higher output voltages. One such voltage boosting circuit is shown in Figure 36.

Since high voltage NPN silicon devices are readily available, the only problem is the voltage limitations of the MC1569. This can be overcome by using voltage shift techniques to limit the voltage to 35 volts across the MC1569 while referencing to a higher output voltage.

The zener diode in the base lead of the NPN device is used to shift the output voltage of the MC1569 by approximately 75 volts to the desired high voltage level, in this case 100 volts. Another voltage shift is accomplished by the resistor divider on the output to accommodate the required 25 volt reference to the MC 1569 . The $2 \mathrm{k} \Omega$ resistor is used to bias the zener diode so the current through the $4.7 \mathrm{k} \Omega$ resistor can be controlled by the MC1569. The 1 N 4001 diode protects the MC1569 from supplying load current under short circuit conditions and Q2 serves to limit base current to Q1. For R_{sc} as shown, the short circuit current will be approximately 100 mA .

In order to use a single supply voltage, $\mathrm{V}_{\text {in }}(2)$ can be derived from $\mathrm{V}_{\mathrm{in}}(1)$ with a zener diode, shunt preregulator.

It can be seen that loop gain has been reduced by the resistor divider and hence the closed loop bandwidth will be less. This of course will result in a more stable system, but regulator performance is degraded to some degree.

REMOTE SENSING

The MC1569 offers a remote sensing capability. This is important when the load is remote from the regulator,
as the resistance of the interconnecting lines (V_{O} and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 37 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.

AN ADJUSTABLE ZERO-TEMPERATURECOEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE.

The MC1569, when used in conjunction with low TC resistors, makes an excellent reference-voltage generator. If the 3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 8 and 9 can be tied together and no resistors are needed. This will provide a voltage
reference having a typical temperature coefficient of $0.002 \% /{ }^{\circ} \mathrm{C}$. By adding two resistors, R1 and R2, any voltage between 3.5 Vdc and 37 Vdc can be obtained with the same low TC (see Figure 38).

THERMAL SHUTDOWN

By setting a fixed voltage at pin 2, the MC1569 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the baseemitter junction of the shutdown transistor and the diode in series with pin $2\left(-3.4 \times 10^{-3} \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$. By setting 1.0 Vdc externally at pin 2 , the regulator will shutdown when the chip temperature reaches approximately $+140^{\circ} \mathrm{C}$. Figure 39 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

FIGURE 37 - REMOTE SENSING CIRCUIT

FIGURE 38 - AN ADJUSTABLE "ZERO-TC" VOLTAGE SOURCE

FIGURE 39 - JUNCTION TEMPERATURE LIMITING SHUTDOWN CIRCUIT
FIGURE 39A - USING A ZERO TC REFERENCE FIGURE 39B - USING A TAREFERENCE

FIGURE 40 - THERMAL SHUTDOWN WHEN USING EXTERNAL PASS TRANSISTORS

In the case where an external pass transistor is employed, its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Fig. ure 40. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application. the designer must use caution not to exceed the specified maximum junction temperature $\left(+150^{\circ} \mathrm{C}\right)$. Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A short circuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current. Care should be taken not to
*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.

exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 41).

Thermal characteristics for a voltage regulator are useful in predicting performance since $d c$ load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, T_{A}, or a change in the power dissipated in the IC regulator. The effects of ambient temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$, typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the de load current, three effects must be considered:

1. junction temperature change due to the change in the power dissipation
2. output voltage decrease due to the finite output impedance of the control amplifier
3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," $\mathrm{GCV}_{\mathrm{O}}$, can be used to describe this effect and is typically $-0.06 \% /$ watt for the MC1569. For an example of the relative magnitudes of these effects, consider the following conditions:

Given MC1569

$$
\text { with } V_{i n}=10 \mathrm{Vdc}
$$

$$
\mathrm{V}_{\mathrm{O}}=5 \mathrm{Vdc}
$$

and $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$ to 200 mA

$$
\left(\Delta \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\right)
$$

assume $\quad \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { TO-66 Case with heatsink } \\
& \text { assume } \theta_{\mathrm{CS}} \\
&=0.2^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { and }{ }^{\theta_{\mathrm{SA}}} \\
&=2^{\circ} \mathrm{C} / \mathrm{W} \\
&{ }^{\mathrm{O}} \mathrm{JC} \\
&=7.15^{\circ} \mathrm{C} / \mathrm{W} \text { (from maximum ratings } \\
& \text { table) }
\end{aligned}
$$

It is desired to find the ΔV_{O} which results from this $\Delta \mathrm{I}_{\mathrm{L}}$. Each of the three previously stated effects on V_{O} can now be separately considered.

1. $\Delta \mathrm{V}_{\mathrm{O}}$ due to $\Delta \mathrm{T}_{\mathrm{J}}$

$\Delta \mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{O}}\right)\left(\Delta \mathrm{P}_{\mathrm{D}}\right)\left(\mathrm{TCV}_{\mathrm{O}}\right)\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}\right)$
OR
$\Delta \mathrm{V}_{\mathrm{O}}=(5 \mathrm{~V})(5 \mathrm{~V} \times 0.1 \mathrm{~A})\left(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\right)\left(9.35^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\Delta \mathrm{V}_{\mathrm{O}} \approx \pm 0.5 \mathrm{mV}$
2. $\Delta \mathrm{V}_{\mathrm{O}}$ due to z_{O}

$$
\begin{aligned}
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=\left(-\mathrm{z}_{\mathrm{O}}\right)\left(\mathrm{I}_{\mathrm{L}}\right) \\
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=-\left(2 \times 10^{-2}\right)\left(10^{-1}\right)=-2 \mathrm{mV}
\end{aligned}
$$

3. $\Delta \mathrm{V}_{\mathrm{O}}$ due to gradient coefficient, $\mathrm{GCV}_{\mathrm{O}}$

$$
\begin{aligned}
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=\left(\mathrm{GCV}_{\mathrm{O}}\right)\left(\mathrm{V}_{\mathrm{O}}\right)\left(\Delta \mathrm{P}_{\mathrm{D}}\right) \\
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=\left(-6 \times 10^{-4} / \mathrm{W}\right)(5 \text { volts })\left(5 \times 10^{-1} \mathrm{~W}\right) \\
& \left|\Delta \mathrm{V}_{\mathrm{O}}\right|=-1.6 \mathrm{mV}
\end{aligned}
$$

Therefore the total ΔV_{O} is given by

$$
\mid \Delta \mathrm{V}_{\mathrm{O}} \text { total } \mid= \pm 0.5-2.0-1.6 \mathrm{mV}
$$

OR

$$
-4.1 \mathrm{mV} \leqslant \mid \mathrm{V}_{\mathrm{O}} \text { total } \mid \leqslant-3.1 \mathrm{mV}
$$

Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

FIGURE 42 - LOCATION OF COMPONENTS

FIGURE 43 - CIRCUIT SCHEMATIC FOR PRINTED CIRCUIT BOARD (Pg. 17) $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 37 \mathrm{~V}, 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 500 \mathrm{~mA}$

Select $R 1$ to give desired $V_{0}: R 1 \approx\left(2 V_{0}-7\right) k \Omega$

[^26]PARTS LIST

Component	Value	Description
$\begin{aligned} & \text { R1 } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { Select } \\ & 6.8 \mathrm{k} \end{aligned}$	1/4 or $1 / 2$ watt carbon
${ }^{*} \mathrm{RA}_{\text {A }}$	Select	IRC Model X-201 Mallory Model MTC-1 or equivalent
$\mathrm{R}_{\text {sc }}$	Select	1/2 watt carbon
${ }^{*} \mathrm{R}_{\mathrm{L}}{ }^{\prime}$	Select	For minimum current of 1 mAdc
Co_{0}	$1.0 \mu \mathrm{~F}$	Sprague 1500 Series, Dickson D 10C series or equivalent
$\begin{aligned} & \mathrm{C}_{N} \\ & \mathrm{C}_{\mathrm{C}} \\ & { }^{*} \mathrm{C}_{\mathrm{i}} \end{aligned}$	$\left.\begin{array}{l} 0.1 \mu \mathrm{~F} \\ 0.001 \mu \mathrm{~F} \\ 0.01 \mu \mathrm{~F} \end{array}\right\}$	Ceramic Disc - Centralab DDA 104, Sprague TG-P10, or equivalent
$\begin{aligned} & \mathrm{Q} 1 \\ & \mathrm{Q} 2 \end{aligned}$	MC1569R or MC1469R 2N5223, 2N706, or equivalent	
* HS	-	Heatsink Thermalloy \#6168B
*Socket	(Not Shown)	Robinson Nugent \#0001306 Electronic Molding Corp. \#6341-210-1, 6348-188-1, 6349-188-1
PC Board *Optional	-	Circuit Dot, Inc. \#PC1113 1155 W. 23rd St., Tempe, Ariz. 85281

LATCH-UP

Latch-up of these and other regulators can occur if:

1. There are plus and minus voltages available
2. A load exists between $\mathrm{V}_{\mathrm{O}^{+}}$and $\mathrm{V}_{\mathrm{O}^{-}}$(This "common load" may be something inconspicuous - e.g. an operational amplifier. Nearly everyone who uses + and - voltages will have a common load from $V_{C C}$ to $V_{E E}$.)
3. $\mathrm{V}_{\text {in }}{ }^{+}$and $\mathrm{V}_{\text {in }}{ }^{-}$are not applied at the same time.

The above conditions result in one of the two outputs becoming reverse-biased which prevents the regulator from turning ON. Latch-up can be prevented by the circuit configurations shown in Figures 44 and 45.

INDEX

	MC1569 Specification Page No.
Circuit Schematic (MC1569)	8
Complementary Tracking Voltage Regulator	1,12
Dual Power Supplies	1,12
Electrical Characteristics	2
General Design Information	4
Latch-Up	19
Maximum Ratings	2
Mechanical Outline Drawings	2
NPN Current Boost	1,10
PNP Current Boost	10
Printed Circuit Board Layout	17
Shutdown Techniques	4,13
Switching Regulator	10
Theory of Operation	7,8,9
Test Circuits	3
Thermal Considerations	16
Thermal Shutdown	15
Typical Characteristics (Curves)	5,6
Typical Circuit Connection	1,4,18
Voltage Boosting	14
Zero TC Voltage Reference Source	15

DUAL MOS CLOCK DRIVER

MONOLITHIC SILICON INTEGRATED CIRCUIT

CERAMIC PACKAGE
CASE 632
TO-116

FIGURE 2

MC1585L (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Voltage Supply Range 1 (See Figure 3)	$\mathrm{V}_{\mathrm{R} 1}$	10	Vdc
Voltage Supply Range 2 (See Figure 3)	$\mathrm{V}_{\mathrm{R} 2}$	30	Vdc
Voltage Supply Range 3 (See Figure 3)	$\mathrm{V}_{\mathrm{R} 3}$	22	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}(\max)$	10	Vdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation Ceramic Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	$1 / \theta \mathrm{JA}$	1000

FIGURE 3 - SUPPLY VOLTAGE RANGE DEFINITION

FIGURE 4 - ALLOWABLE VALUES FOR VCC2 AND VEE

SWITCHING CHARACTERISTICS ($C_{L}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Propagation Delay Time, Low to High Level	tPLH	-	75	125	ns
Transition Time, Low to High Level	tTLH	-	75	125	ns
Propagation Delay Time, High to Low Level	tPHL	-	50	75	ns
Transition Time, High to Low Level	tTHL	-	50	75	ns

The above characteristics were measured with $V_{C C 1}=5.0$ volts, $V_{E E}=-20$ volts, $V_{C C 2}=0$ volts, and $C_{L}=1000 \mathrm{pF}$. The switching times are measured as shown in Figure 5.

FIGURE 5 - SWITCHING TIME WAVEFORM

FIGURE 6 - AC TEST CIRCUIT

ELECTRICAL CHARACTERISTICS
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
(Pin 2 is shorted to pin 3 and pin 5 is shorted to pin 6 .)

	Symbol	$\begin{gathered} \text { Pin } \\ \text { Under } \\ \text { Test } \end{gathered}$	Test Limits		
			Min	Typ	Max
Input Currents: Forward	IIL	8	-	-	-1.6
Reverse Leakage	${ }^{\text {IIH }}$	8	-	-	+50
Output Voltage:	V_{OH}	7	+3.7	-	-
	$\mathrm{V}_{\text {OL }}$	7	-	-	-13.4
Supply Current V_{CC} High Output $V_{C C 1}$ Low Output $V_{E E}$ High Output VEE Low Output $V_{\text {CC2 }}$ High Output $V_{\mathrm{CC} 2}$ Low Output	${ }^{\text {CCC1H }}$	12	-	-	+10
	${ }^{\text {ICC1L }}$	12	-	-	+7.0
	'EEH	11	-	-	-25
	'EEL	11	-	-	-64
	${ }^{\text {I CC2 }}$	4	-	-	+15
	${ }^{\text {I CC2L }}$	4	-	-	+57

TYPICAL CHARACTERISTICS
FIGURE 7 - PACKAGE LIMITATION ON POWER DISSIPATION

FIGURE 8 - MAXIMUM DIFFERENTIAL LEVEL SHIFT
POWER DISSIPATION (WITH BOTH INPUTS HIGH)

FIGURE 9 - MAXIMUM DIFFERENTIAL LEVEL SHIFT POWER DISSIPATION (At least one input low)

TYPICAL CHARACTERISTICS (cont.)

FIGURE 10 - MAXIMUM BIAS CURRENT versus VOLTAGE AND TEMPERATURE WHEN USING INTERNAL BIAS RESISTOR

FIGURE 12 - MAXIMUM BIAS POWER DISSIPATION IN Q9, Q10 (INDEPENDENT OF OUTPUT STATE)

FIGURE 11 - MAXIMUM POWER DISSIPATION OF INTERNAL RESISTOR (R3)

FIGURE 13 - POWER DISSIPATION OF OUTPUT CURRENT OF ACTIVE PULLUP versus BIAS CURRENT versus VOLTAGE

APPLICATIONS INFORMATION

The total power dissipation in the MOS clock driver is the sum of a dc and an ac component. The total of these components must not exceed the package power dissipation limit at the maximum temperature of operation. The package limitation on power dissipation is shown in Figure 7.

AC Power Dissipation

The ac component of power dissipation is given in equation 1.

$$
\begin{equation*}
P_{a c}=C_{L} \cdot\left[\left(V_{C C 2}\right) \cdot\left(V_{E E}\right)\right]^{2}(P R R) \tag{1}
\end{equation*}
$$

where C_{L} is the load capacitance and PRR is the pulse repetition rate.

DC Power Dissipation

For ease of calculation, the dc power dissipation is divided into two parts: 1) differential level shift power 2) output pullup current source power.

Differential Level Shift Power

In Figure 1 it may be seen that the differential level shift consists of the input PNP transistors, Q1, Q2, Q3, and bias resistor, R1. The values of maximum level shift power versus junction temperature are given in Figures 8 and 9 for several values of $V_{E E}$ and both input conditions. If the duty cycle is defined as in equation 2 , the total level shift power is given in equation 3.

$$
\begin{equation*}
\text { Duty Cycle }=\frac{\text { Time Both Inputs are High }}{\text { Total Time }} \tag{2}
\end{equation*}
$$

Level Shift Power $=($ Value from Figure 8$) \bullet($ Duty Cycle $)+$ (Value from Figure 9) • (1-Duty Cycle)

Output Pullup Current Source

The output pullup current source consists of transistors Q9, Q10 and resistor R3. The power dissipated in the output pullup current

MC1585L (continued)

APPLICATIONS INFORMATION (continued)

source depends upon temperature, supply voltages, bias current drawn from the collector-base short of transistor Q10 and output logic level. Neglecting the emitter-base drop of transistor Q10 the value of bias current is determined from equation 4.

$$
\begin{equation*}
I_{1 B}=\frac{V_{C C 2}-V_{E E}}{R 3} \tag{4}
\end{equation*}
$$

If the internal bias resistor is used the maximum value of bias current versus temperature is as shown in Figure 10. The maximum power dissipated in the internal bias resistor and the maximum power dissipated in Q 9 and Q 10 (due to bias current) are independent of output logic level and are shown in Figures 11 and 12. The maximum power dissipation due to collector current in Q9 is approximately zero when the output is high but when the output is low the power dissipation is as shown in Figure 13. The total output pullup current-source power dissipation is thus defined by equation 5 .
$P(\max)$ current source $=($ Value from Figure 11$)+(V$ alue from
Figure 12)

+ (Value from Figure 13) \times (Duty Cycle)

Example Calculation

Suppose it is desired to use the MOS clock driver in an application which requires the following:

$$
\begin{aligned}
V_{C C 1} & =+5.0 \text { volts } & & \\
V_{E E} & =-15 \text { volts } & & \text { Load capacitance, } 500 \\
V_{C C 2} & =+5.0 \text { volts } & & \text { pF @ TA }(\max)+70^{\circ} \mathrm{C} \\
P R R & =1.0 \mathrm{MHz} & &
\end{aligned}
$$

Duty Cycle $=10 \%$

A calculation of dc and ac power is necessary to find whether or not package limitations will be exceeded. Since each power dissipation figure either decresases or remains constant with temperature, it is assumed that $\mathrm{T}_{\mathrm{J}} \geqslant+25^{\circ} \mathrm{C}$ and points at $+25^{\circ} \mathrm{C}$ will be used in this calculation. The total differential level-shift power may be found from Figures 8 and 9 and equation 3 to be:

$$
\text { Level-Shift Power }=92.5 \mathrm{~mW}
$$

If the internal bias resistor is used, Figure 10 shows the value of the bias current to be 4.9 mA , and the power dissipation of the internal bias resistor is found from Figure 11 to be 90 mW .

The power dissipation in Q9 and Q10 due to bias current is found from Figure 12 to be 4.0 mW .

The power dissipation in Q9 when the output is low is found from Figure 13 to be 490 mW .

The total power dissipated in the output pullup current source can now be found from equation 5 to be:

$$
\text { Power }(\text { current source) }=143 \mathrm{~mW}
$$

The total de dissipation, the sum of differential level-shift dissipation and output pullup current-source dissipation, is 235.5 mW .

The ac dissipation may be found from equation 1 to be 200 mW .
The total power dissipation for one clock driver is thus 435.5 mW . If both clock drivers are used in an identical fashion the total package dissipation is 871 mW . Referring to Figure 7 it is seen that safe operation to approximately $+45^{\circ} \mathrm{C}$ is possible If external resistors are used for R3 to produce the same bias current as above, a net total savings in power dissipation of 180 mW can be made reducing the total package dissipation to 691 mW and permitting safe operation at $+70^{\circ} \mathrm{C}$.

HIGH-FREQUENCY CIRCUITS

MC1590G

MONOLITHIC RF/IF/AUDIO AMPLIFIER

. . . an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, -55 to $+125^{\circ} \mathrm{C}$. See Motorola Application Note AN-513 for design details.

- High Power Gain - 50 dB typ at 10 MHz 45 dB typ at 60 MHz 35 dB typ at 100 MHz
- Wide-Range AGC - 60 dB min, dc to 60 MHz
- Low Reverse Transfer Admittance - $<10 \mu$ mhos typ at 60 MHz
- 6.0 to 15 -Volt Operation, Single-Polarity Power Supply

FIGURE 3 - TYPICAL GAIN REDUCTION
versus AGC VOLTAGE

See Packaging Information Section for outline dimensions.
See MCBC1590/MCB1590F for beam-lead device information.

MC1590G (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
Output Supply	$\mathrm{V}_{5}, \mathrm{~V}_{6}$	+18	Vdc
AGC Supply	$\mathrm{V}_{\mathrm{AGC}}$	V_{CC}	Vdc
Differential Input Voltage	$\mathrm{V}_{\text {in }}$	5.0	Vdc
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ P_{D}	680	mW	
Operating Temperature Range		4.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{A}	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+12 \mathrm{Vdc}, \mathrm{f}=60 \mathrm{MHz}, \mathrm{BW}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted, see Figure 16 for test circuit.)

Characteristic	Symbol	Min	Typ	Max	Unit
AGC Range, $\mathrm{V}_{2}=5.0 \mathrm{Vdc}$ to 7.0 Vdc		60	68	-	dB
Single-Ended Power Gain	G_{p}	40	45	-	dB
Noise Figure ($\mathrm{R}_{\mathrm{S}}=50 \mathrm{ohms}$)	NF	-	6.0	-	dB
Output Voltage Swing (Pin 5) Differential Output $-\quad 0 \mathrm{~dB} \mathrm{AGC}$ -30 dB AGC Single-Ended Output $-\quad 0 \mathrm{~dB} \mathrm{AGC}$ -30 dB AGC	V_{5}	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 14 \\ & 6.0 \\ & 7.0 \\ & 3.0 \end{aligned}$		V_{p-p}
Output Stage Current (Pins 5 and 6)	$I_{5}+I_{6}$	-	5.6	-	mA
Total Supply Power Current $\left(V_{0}=0\right)$	'D	-	14	17	mAdc
Power Dissipation ($\mathrm{V}_{\mathrm{in}}=0$)	PD	-	168	200	mW

ADMITTANCE PARAMETERS $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Typ		Unit
		$\mathbf{f}=\mathbf{3 0} \mathbf{M H z}$	$\mathrm{f}=60 \mathrm{MHz}$	
Single-Ended Input Admittance	$\begin{aligned} & \mathrm{g} 11 \\ & \mathrm{~b}_{11} \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 1.2 \end{aligned}$	$\begin{gathered} 0.75 \\ 3.4 \end{gathered}$	mmhos
Single-Ended Output Admittance	$\begin{aligned} & \mathrm{g} 22^{b_{22}} \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 1.0 \end{aligned}$	mmho
Forward Transfer Admittance (Pin 1 to Pin 5)	$\begin{gathered} Y_{21} \mid \\ \theta 21 \end{gathered}$	$\begin{aligned} & 150 \\ & -45 \end{aligned}$	$\begin{gathered} 150 \\ -105 \end{gathered}$	mmhos degrees
Reverse Transfer Admittance*	$\begin{aligned} & 912 \\ & b_{12} \end{aligned}$	$\begin{gathered} -0 \\ -5.0 \end{gathered}$	$\begin{gathered} \hline-0 \\ -10 \end{gathered}$	$\mu \mathrm{mhos}$

The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance (including test circuit) is 0.025 pF and is a more practical value for design calculations than the internal feedback of the device alone. (See Figure 6)

SCATTERING PARAMETERS $\left(V_{C C}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}\right.$, $\left.Z_{0}=50 \Omega\right)$

Parameter	Typ			
			$\mathbf{f = 6 0 \mathrm { MHz }}$	Unit
Input Reflection Coefficient		0.95	0.93	-
	θ_{11}	-7.3	-16	degrees
Output Reflection	$\left\|\mathrm{S}_{22}\right\|$	0.99	0.98	-
Coefficient	θ_{22}	-3.0	-5.5	degrees
Forward Transmission	$\left\|\mathrm{S}_{21}\right\|$	16.8	14.7	-
Coefficient	θ_{21}	128	64.3	degrees
Reverse Transmission	S_{12}	0.00048	0.00092	-
Coefficient	θ_{12}	84.9	79.2	degrees

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 4 - FIXED TUNED POWER GAIN versus TEMPERATURE (See test circuit, Figure 16)

FIGURE 6 - REVERSE TRANSFER ADMITTANCE versus FREQUENCY (See Parameter Table, page 2 of MC 1590 specification)

FIGURE 8 - SINGLE-ENDED OUTPUT ADMITTANCE

FIGURE 5 - POWER GAIN versus SUPPLY VOLTAGE (See test circuit, Figure 16)

FIGURE 7 - NOISE FIGURE versus FREQUENCY

FIGURE 9 - SINGLE-ENDED INPUT ADMITTANCE

TYPICAL CHARACTERISTICS (continued)

FIGURE $10-Y_{21}$, FORWARD TRANSFER ADMITTANCE, RECTANGULAR FORM

FIGURE 11 - \mathbf{Y}_{21}, FORWARD TRANSFER ADMITTANCE, POLAR FORM

FIGURE $12-\mathrm{S}_{11}$ and S_{22}. INPUT AND OUTPUT REFLECTION COEFFICIENT

FIGURE 13 - S_{11}, and S_{22}, INPUT AND OUTPUT REFLECTION COEFFICIENT

MC1590G (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 14 - $\mathbf{S}_{\mathbf{2 1}}$, FORWARD TRANSMISSION COEFFICIENT (GAIN)

FIGURE 15 - \mathbf{S}_{12}, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

TYPICAL APPLICATIONS

FIGURE 16 - $60-\mathrm{MHz}$ POWER GAIN TEST CIRCUIT

$\mathrm{L} 1=7$ Turns, \#20 AWG Wire, $5 / 16^{\prime \prime}$ Dia., $\quad \mathrm{C} 1, \mathrm{C}, \mathrm{C} 3=(1-30) \mathrm{pF}$ 5/8" Long
L2 $=6$ Turns, \#14 AWG Wire, $9 / 16^{\prime \prime}$ Dia.,
$3 / 4^{\prime \prime}$ Long

FIGURE $18-30 \cdot \mathrm{MHz}$ AMPLIFIER
$($ Power Gain $=50 \mathrm{~dB}, \mathrm{BW} \approx 1.0 \mathrm{MHz})$

FIGURE 17 - VIDEO AMPLIFIER

$L 1=5$ Turns, "16 AWG Wire, $1 / 4^{\prime \prime} 1 D$,
5/8" Long

L2 $=16$ Turns, \#20 AWG Wire on a Toroid Core, (T44-6 Micro ${ }^{-M e t a l}$ or Equiv)

TYPICAL APPLICATIONS (continued)

FIGURE 20 - TWO-STAGE 60 MHz IF AMPLIFIER (Power Gain $\approx \mathbf{8 0} \mathbf{d B}$, BW $\approx 1.5 \mathrm{MHz}$)

FIGURE 21 - SPEECH COMPRESSOR

Specifications and Applications Information

MONOLITHIC FOUR-QUADRANT MULTIPLIER

. . . designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MC1594/1494 is a variable transconductance multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection.

- Operates With $\pm 15 \mathrm{~V}$ Supplies
- Excellent Linearity - Maximum Error (X or Y): $\pm 0.5 \%$ (MC1594) $\pm 1.0 \%$ (MC1494)
- Wide Input Voltage Range $- \pm 10$ volts
- Adjustable Scale Factor, K (0.1 nominal)
- Single-Ended Output Referenced to Ground
- Simplified Offset Adjust Circuitry
- Frequency Response (3 dB Small-Signal) - 1.0 MHz
- Power Supply Sensitivity - $30 \mathrm{mV} / \mathrm{V}$ typical

LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT
 MONOLITHIC SILICON EPITAXIAL PASSIVATED

CERAMIC PACKAGE CASE 620

$\left.\begin{array}{|lcc|}\hline & \begin{array}{c}\text { CONTENTS } \\ \text { Specification } \\ \text { Page No. }\end{array} & \text { Subject Sequence }\end{array} \begin{array}{c}\text { Specification } \\ \text { Page No. }\end{array}\right]$

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	+18	Vdc
	v^{-}	-18	
Differential Input Signal	$\begin{gathered} v_{9}-v_{6} \\ v_{10}-v_{13} \end{gathered}$	$\begin{aligned} & \pm\left\|6+1_{1} R_{Y}\right\|<30 \\ & \pm\left\|6+1_{1} R_{X}\right\|<30 \end{aligned}$	Vdc
$\begin{gathered} \text { Common-Mode Input Voltage } \\ v_{C M Y}=v_{9}=v_{6} \\ v_{C M X}=v_{10}=v_{13} \\ \hline \end{gathered}$	$V_{\text {CMY }}$ $V_{C M X}$	$\begin{aligned} & \pm 11.5 \\ & \pm 11.5 \end{aligned}$	Vdc
Power Dissipation (Package Limitation) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ 1 / \theta \mathrm{JA} \end{gathered}$	$\begin{aligned} & 750 \\ & 5.0 \\ & \hline \end{aligned}$	$\underset{m W /{ }^{\circ} \mathrm{C}}{\mathrm{~m}^{2}}$
Operating Temperature Range MC1594 MC1494	T_{A}	$\begin{array}{r} -55 \text { to }+125 \\ 0 \text { to }+75 \end{array}$	${ }^{\circ} \mathrm{C}$
Storage Temperature R ange	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}, R 1=16 \mathrm{k} \Omega 2, R \mathrm{R}=30 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{Y}}=62 \mathrm{k} \Omega 2, R_{\mathrm{L}}=47 \mathrm{k} \Omega \Omega\right.$,

Characteristic	Fig.	Symbol	- W MC1594			MC1494			Unit			
			Min	Tre	Max	Min	Typ	Max				
Linearity Output error in Percent of full scale $\begin{gathered} -10 \mathrm{~V}<\mathrm{V}_{x}<+10 \mathrm{~V}\left(\mathrm{~V}_{y}= \pm 10 \mathrm{~V}\right) \\ -10 \mathrm{~V}<\mathrm{V}_{\mathrm{V}}<+10 \mathrm{~V}\left(\mathrm{~V}_{x}= \pm 10 \mathrm{~V}\right) \\ T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {high }}(1) \\ T_{A}=T_{\text {low }}(2) \end{gathered}$	1	$E_{R X}$ or $E_{R Y}$		± 0.3	4 4 ± 0.5 ± 0.8 ± 0.8	- - - -	± 0.5	$\begin{aligned} & \pm 10 \\ & \pm 1.3 \\ & \pm 13 \end{aligned}$	\%			
Input Voltage Range ($\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{in}}$) Resistance (X or Y Input) Offset Voltage (X Input) (Note 1) (Y Input) (Note 1) Bias Current (X or Y Input) Offset Current (X or Y Input)	2,3,4	$V_{\text {in }}$ $\mathrm{R}_{\text {in }}$ $\left\|V_{\text {iox }}\right\|$ $\left\|V_{\text {ioy }}\right\|$ Ib $H_{\text {iol }}$	410 -4 -4 -8 $-\quad=$	4 300 0.1 0.4 0.5 28	4 4 16 16 16 150	± 10	$\begin{gathered} - \\ 300 \\ 0.2 \\ 0.8 \\ 1.0 \\ 50 \\ \hline \end{gathered}$	25 25 2.5 400	$v_{p k}$ $\mathrm{M} \Omega$ V $\mu \mathrm{A}$ nA			
Output Voltage Swing Capability Impedance Offset Voltage (Note 1) Offset Current (Note 1)	3,4	$\begin{gathered} v_{0} \\ R_{0} \\ \left\|V_{o o l}\right\| \\ \left\|\left.\right\|_{0 o l}\right\| \end{gathered}$		4 850 08 17	$=4$ -4 1.6 34	± 10 -	850 1.2 25	2.5 52	$\begin{gathered} V_{p k} \\ \mathrm{k} \Omega \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$			
```Temperature Stability (Drift) \(T_{A}=T_{\text {high }}\) to \(T_{\text {low }}\) Output Offset ( \(X=0, Y=0\) ) Voltage Current \(X\) Input Offset ( \(Y=0\) ) \(Y\) input Offset ( \(X=0\) ) Scale Factor Total dc Accuracy Drift ( \(\mathrm{X}=10, \mathrm{Y}=10\) )```		$\mid T C V_{\text {ool }}$ \|TClool $\mid T_{C V}$ iox $\mid$ $\left\|T C V_{\text {ioy }}\right\|$ \|TCK		TCE			1.   1.3   27   0.3   1.5   0.07   0.09			$\begin{aligned} & 1.3 \\ & 27 \\ & 0.3 \\ & 1.5 \\ & 0.07 \\ & 0.09 \\ & \hline \end{aligned}$	$-$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$   $n A /{ }^{\circ} \mathrm{C}$   $\mathrm{mV} /{ }^{\circ} \mathrm{C}$   $\% /{ }^{\circ} \mathrm{C}$
Dynamic Response Small Signal (3 dB) $\quad \mathrm{X}$ Power Bandwidth ( 47 k ) $3^{\circ}$ Relative Phase Shift 1\% Absolute Error	5	$\begin{gathered} \mathrm{BW}_{3 \mathrm{~dB}}(\mathrm{X}) \\ \mathrm{BW} \mathrm{~S}_{3 \mathrm{~dB}(\mathrm{Y})} \\ \mathrm{P}_{\mathrm{BW}} \\ \mathrm{f} \phi \\ \mathrm{f} \theta \end{gathered}$		08   0.0   440   240   30		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.8 \\ 1.0 \\ 440 \\ 240 \\ 30 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \end{aligned}$			
Common Mode Input Swing ( X or Y ) Gain $\quad(\mathrm{X}$ or Y$)$	6	$\begin{aligned} & \text { CMV } \\ & \text { ACM } \\ & \hline \end{aligned}$	$\begin{array}{r} +10.6 \\ -\quad . \end{array}$	$\begin{array}{\|c\|} \hline- \\ -65 \\ \hline \end{array}$		$\pm 10.5$	$-65$	-	$\begin{gathered} V_{p k} \\ d B \end{gathered}$			
Power Supply   Current   Quiescent Power Dissipation Sensitivity	7	$\begin{aligned} & \mathrm{Id}^{+} \\ & \mathrm{I}_{\mathrm{d}}^{-} \\ & \mathrm{P}_{\mathrm{d}} \\ & \mathrm{~S}^{+} \\ & \mathrm{S}^{-} \\ & \hline \end{aligned}$		60   6.5   185   13   30	9.0   9.0   260   50   100	-	$\begin{aligned} & 6.0 \\ & 6.5 \\ & 185 \\ & 13 \\ & 30 \\ & \hline \end{aligned}$	12   12   350   100   200	mAdc   mW   $\mathrm{mV} / \mathrm{V}$			
Regulated Offset Adjust Voltages Positive   Negative   Temperature Coefficient ( $\mathrm{V}_{\mathrm{R}}^{+}$or $\mathrm{V}_{\mathrm{R}}^{-}$)   Power Supply Sensitivity $\left(\mathrm{V}_{\mathrm{R}}^{+}\right.$or $\left.\mathrm{V}_{\mathrm{R}}^{-}\right)$	7	$\begin{gathered} v_{R}^{+} \\ v_{R}^{-} \\ T C v_{R} \\ S_{R}^{+}, S_{R}^{-} \end{gathered}$	$\left.\begin{array}{r}+3.5 \\ -3: 8 \\ - \\ -\end{array}\right)$	$\left[\begin{array}{c}+4.3 \\ +4.3 \\ -0.03 \\ 0.6\end{array}\right.$		+3.5 -3.5 -	$\begin{array}{r} +4.3 \\ 4.3 \\ 0.03 \\ 0.6 \end{array}$	$\begin{gathered} +5.0 \\ -5.0 \\ - \end{gathered}$	Vdc   $\mathrm{mV} /{ }^{\circ} \mathrm{C}$   $\mathrm{mV} / \mathrm{V}$			

Note 1: $\sigma f f s e t s$ can be adjusted to zero with external potentiometers.
(1) $T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1594 $\quad$ (2) $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1594 $+75^{\circ} \mathrm{C}$ for MC1494 $\quad 0^{\circ} \mathrm{C}$ for MC1494
(MC1594-Pg. 2)



## GENERAL INFORMATION

1. CIRCUIT DESCRIPTION
1.1 Introduction

The MC1594 is a monolithic, four-quadrant multiplier that operates on the principle of variable transconductance. It features a single-ended current output referenced to ground and provides two complementary regulated voltages for use
with the offset adjust circuits to virtually eliminate sensitivity of the offset voltage nulls to changes in supply voltage
As shown in Figure 15, the MC1594 consists of a multiplier proper and associated peripheral circuitry to provide these features.

FIGURE 15

1.2 Regulator (Figure 15)

The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides two convenient regulated supply voltages which can be used in the offset adjust circuitry. The regulated output voltage at pin 2 is approximately +4.3 V while the regulated voltage at pin 4 is approximately -4.3 V . For optimum temperature stability of these regulated voltages, it is recommended that $\left|1_{2}\right|=\left|I_{4}\right|=1.0 \mathrm{~mA}$ (equivalent load of $8.6 \mathrm{k} \Omega$ ). As will be shown later, there will normally be two 20 k -ohm potentiometers and one 50 k -ohm potentiometer connected between pins 2 and 4.
The regulator also establishes a constant current reference that controls all of the constant current sources in the MC1594. Note that all current sources are related to current $I_{1}$ which is determined by R1. For best temperature performance, R 1 should be $16 \mathrm{k} \Omega$ so that $\mathrm{I}_{1} \approx 0.5 \mathrm{~mA}$ for all applications.
1.3 Multiplier (Figure 15)

The multiplier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and is discussed in detail in Application Note AN-489, "Analysis and Basic Operation of the MC1595'. The result of this analysis is that the differential output current of the multiplier is given by:

$$
I_{A}-I_{B}=\Delta I \approx \frac{2 V_{X} V_{Y}}{R_{X} R_{Y} I_{1}}
$$

Therefore, the output is proportional to the product of the two input voltages.
1.4 Differential Current Converter (Figure 15)

This portion of the circuitry converts the differential output current ( ${ }_{A}{ }^{-1} \mathrm{I}_{\mathrm{B}}$ ) of the multiplier to a single-ended output current ( ${ }_{0}$ ):

$$
I_{0}=I_{A}-I_{B}
$$

or

$$
I_{0}=\frac{2 v_{X} v_{Y}}{R_{X} R_{Y} I_{1}}
$$

The output current can be easily converted to an output voltage by placing a load resistor $R_{L}$ from the output (pin 14) to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by:

$$
V_{0}=\frac{2 R_{L} V_{X} V_{Y}}{R_{X} R_{Y} l_{1}}=K V_{X} V_{Y}
$$

where $K$ (scale factor) $=\frac{2 R_{L}}{R_{X} R_{Y} I_{1}}$
2. DC OPERATION
2.1 Selection of External Components

For low frequency operation the circuit of Figure 16 is recommended. For this circuit, $R_{X}=30 \mathrm{k} \Omega, R_{Y}=62 \mathrm{k} \Omega$, $R 1=16 \mathrm{k} \Omega$ and hence $I_{1} \approx 0.5 \mathrm{~mA}$. Therefore, to set the scale factor, $K$, equal to $1 / 10$, the value of $R_{L}$ can be calculated to be:

$$
\begin{aligned}
K & =\frac{1}{10}=\frac{2 R_{L}}{R_{X} R_{Y} l_{1}} \\
\text { or } \quad R_{L} & =\frac{R_{X} R_{Y}{ }^{\prime} 1}{(2)(10)}=\frac{(30 \mathrm{k})(62 \mathrm{k})(0.5 \mathrm{~mA})}{20} \\
R_{L} & =46.5 \mathrm{k}
\end{aligned}
$$

Thus, a reasonable accuracy in scale factor can be achieved by making $R_{L}$ a fixed $47 \mathrm{k} \Omega$ resistor. However, if it is desired

FIGURE 16 - TYPICAL MULTIPLIER CONNECTION

that the scale factor be exact, $R_{L}$ can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to $1 / 10$. This is merely a convenient factor to use if the $V_{X}$ and $V_{Y}$ input voltages are expected to be large, say $\pm 10 \mathrm{~V}$. Obviously with $V_{X}=V_{Y}=10 \mathrm{~V}$ and a scale factor of unity, the device could not hope to provide a 100 V output, so the scale factor is set to $1 / 10$ and provides an output scaled down by a factor of ten. For many applications it may be desirable to set $K=1 / 2$ or $K=1$ or even $K=100$. This can be accomplished by adjusting $R_{X}, R_{Y}$ and $R_{L}$ appropriately.
The selection of $R_{L}$ is arbitrary and can be chosen after resistors $R_{X}$ and $R_{Y}$ are found. Note in Figure 16 that $R_{Y}$ is $62 \mathrm{k} \Omega$ while $R_{X}$ is $30 \mathrm{k} \Omega$. The reason for this is that the " $Y$ " side of the multiplier exhibits a second order nonlinearity whereas the " $X$ " side exhibits a simple non-linearity. By making the $R_{Y}$ resistor approximately twice the value of the $R_{X}$ resistor, the linearity on both the " $X$ " and " $Y$ " sides are made equal. The selection of the $R_{X}$ and $R_{Y}$ resistor values is dependent upon the expected amplitude of $V_{X}$ and $V_{Y}$ inputs. To maintain a specified linearity, resistors $R_{X}$ and $R_{Y}$ should be selected according to the following equations:
$R_{X} \geq 3 V_{X}(\max )$ in $k \Omega$ when $V_{X}$ is in volts
$R_{Y} \geq 6 V_{Y}(\max )$ in $k \Omega$ when $V_{Y}$ is in volts
For example, if the maximum input on the " $X$ " side is $\pm 1$ volt, resistor $R_{X}$ can be selected to be $3 \mathrm{k} \Omega$. If the maximum input on the " $Y$ " side is also $\pm 1$ volt, then resistor RY can be selected to be $6 \mathrm{k} \Omega$ ( $6.2 \mathrm{k} \Omega$ nominal value). If a scale factor of $K=10$ is desired, the load resistor is found to be $47 \mathrm{k} \Omega$. In this example, the multiplier provides a gain of 20 dB .

### 2.2 Operational Amplifier Selection

The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor $R_{L}$ to provide a low impedance output voltage from the op-ampl. Since the offset current and bias currents of the op-ampl. will cause errors in the output voltage, particularly with temperature, one with very low bias and offset currents is recommended. The MC1556/MC1456 or MC1741/ MC1741C are excellent choices for this application.
Since the MC1594 is capable of operation at much higher frequencies than the op-ampl., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-ampl.

### 2.3 Stability

The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stray or input capacitance at the multiplier output adds additional phase shift. It may therefore be necessary to add (particularly in the case of internally compensated op-ampls.) a small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with $R_{\mathrm{L}}$ should be adequate to insure stability over production and temperature variations, etc.
An externally compensated op-ampl. might be employed using slightly heavier compensation than that recommended for unity-gain operation.

### 2.4 Offset Adjustment

The non-inverting input of the op-ampl. provides a convenient point to adjust the output offset voltage. By connecting this point to the wiper arm of a potentiometer ( P 3 ), the output
offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure).
The input offset adjustment potentiometers, P1 and P2 will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, 22, 24 and 25).
2.5 Offset and Scale Factor Adjustment Procedure

The adjustment procedure for the circuit of Figure 16 is:
A. XInput Offset
(a) corinect oscillator ( $1 \mathrm{kHz}, 5 \mathrm{Vpp}$ sinewave) to the " Y " input (pin 9)
(b) connect " $X$ " input (pin 10) to ground
(c) adjust X -offset potentiometer, P2 for an ac null at the output
B. Y Input Offset
(a) connect oscillator ( $1 \mathrm{kHz}, 5 \mathrm{Vpp}$ sinewave) to the " X " input (pin 10)
(b) connect " $Y$ " input (pin 9) to ground
(c) adjust Y -offset potentiometer, P1 for an ac null at the output
C. Output Offset
(a) connect both " $X$ " and " $Y$ " inputs to ground
(b) adjust output offset potentiometer, P3, until the output voltage $V_{O}$, is zero volts dc
D. Scale Factor
(a) apply +10 Vdc to both the " $X$ " and " $Y$ " inputs
(b) adjust P 4 to achieve -10.00 V at the output
(c) apply -10 Vdc to both " $X$ " and " $Y$ " inputs and check for $V_{O}=-10.00 \mathrm{~V}$
E. Repeat steps $A$ through $D$ as necessary.

The ability to accurately adjust the MC1594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash.
2.6 Temperature Stability

While the MC1594 provides excellent performance in itself, overall performance depends to a large degree on the quality of the external components. Previous discussion shows the direct dependence on $R_{X}, R_{Y}$, and $R_{L}$ and indirect dependence on R1 (through 11 ). Any circuit subjected to tempera ture variations should be evaluated with these effects in mind.
2.7 Bias Currents

The MC1594 multiplier, like most linear IC's, requires a dc bias current into its input terminals. The device cannot be capacitively coupled at the input without regard for this bias current. If inputs $V_{X}$ and $V_{Y}$ are able to supply the small bias current ( $\approx 0.5 \mu \mathrm{~A}$ ) resistors, $R$ (Figure 16) can be omitted. If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor $R$ can be any reasonable value up to $100 \mathrm{k} \Omega$. For minimum noise and optimum temperature performance, the value of resistor $R$ should be as low as practical.

### 2.8 Parasitic Oscillation

When long leads are used on the inputs, oscillation may occur In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using short leads. The purpose of the network
is to reduce the " Q " of the source-tuned circuits which cause the oscillation.
Inability to adjust the circuit to with in the specified accuracy may be an indication of oscillation.
3. AC OPERATION
3.1 General

For ac operation, such as balanced modulation, frequency doubier, AGC, etc., the op-ampl. will usually be omitted as well as the output offset adjust potentiometer. The output offset adjust potentiometer is omitted since the output will normally be ac-coupled and the dc voltage at the output is of no concern providing it is close enough to zero volts that it will not cause clipping in the output waveform. Figure 17

FIGURE 17 - WIDEBAND MULTIPLIER

shows a typical ac multiplier circuit with a scale factor $K \approx 1$. Again, resistor $R_{X}$ and $R_{Y}$ are chosen as outlined in the previous section, with $R_{L}$ chosen to provide the required scale factor.
The offset voltage then existing at the output will be equal to the offset current times the load resistance. The output offset current of the MC1594 is typically $17 \mu \mathrm{~A}$ and $35 \mu \mathrm{~A}$ maximum. Thus, the maximum output offset would be about 160 mV .
3.2 Bandwidth

The bandwidth of the MC1594 is primarily determined by two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the output terminal. For the circuit shown in Figure 17, assuming a total output capacitance $\left(\mathrm{C}_{\mathrm{O}}\right)$ of 10 pF , the 3 dB bandwidth would be approximately 3.4 MHz . If the load resistor were $47 \mathrm{k} \Omega$, the bandwidth would be approximately 340 kHz .
Secondly, a "zero" is present in the frequency response characteristic for both the " X " and " $Y$ " inputs which causes the output signal to rise in amplitude at a 6 dB /octave slope at frequencies beyond the breakpoint of the "zero". The "zero" is caused by the parasitic and substrate capacitance which is related to resistors $R_{X}$ and $R_{Y}$ and the transistors associated with them. The effect of these transmission
"zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the bypassing of $R_{X}$ and $R_{Y}$ at high frequencies. Since the $R_{Y}$ resistor is approximately twice the value of the $R_{X}$ resistor, the zero associated with the " $Y$ " input will occur at approximately one octave below the zero associated with the " $X$ " input. For $R X=30 \mathrm{k} \Omega$ and $R_{Y}=62 \mathrm{k} \Omega$, the zeros occur at 1.5 MHz for the " $X$ " input and 700 kHz for the " Y " input. These two measured breakpoints correspond to a shunt capacitance of about 3.5 pF . Thus, for the circuit of Figure 17, the " $X$ " input zero and " Y " input zero will be at approximately 15 MHz and 7 MHz respectively.
It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found by means of complex convolution in the frequency (Laplace) domain. This means that if the " $X$ " input does not involve a frequency, it is not necessary to consider the " $X$ " side frequency response in the output product. Likewise, for the " $Y$ " side. Thus, for applications such as a wideband linear AGC amplifier which has a dc voltage as one input, the multiplier frequency response has one zero and one pole. For applications which involve an ac voltage on both the " $X$ " and " $Y$ " side, such as a balanced modulator, the product voltage response will have two zeros and one pole, hence, peaking may be present in the output.
From this brief discussion, it is evident that for ac applications; (1) the value of resistors $R_{X}, R_{Y}$ and $R_{L}$ should be kept as small as possible to achieve maximum frequency response, and (2) it is possible to select a load resistor $R_{L}$ such that the dominant pole ( $\mathrm{R}_{\mathrm{L}}, \mathrm{C}_{\mathrm{O}}$ ) cancels the input zero ( $\mathrm{R}_{\mathrm{X}}, 3.5 \mathrm{pF}$ or $\mathrm{R}_{\mathrm{Y}}, 3.5 \mathrm{pF}$ ) to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10. Examination of the frequency characteristics of the " $X$ " and " $Y$ " inputs will demonstrate that for wideband amplifier applications, the best tradeoff with frequency response and gain is achieved by using the " $Y$ " input for the ac signal.
For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recommended. For modulator-demodulator applications, the MC1596 may be used up to 100 MHz . For wideband multiplier applications, the MC1595 (using small collector loads and ac coupling) can be used.

### 3.3 Slew-Rate

The MC1594 multiplier is not slew-rate limited in the ordinary sense that an op-ampl. is. Since all the signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. However, it should be noted that the quiescent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation:

$$
\text { Slew-Rate } \frac{\Delta V_{0}}{\Delta T}=\frac{I_{0}}{C}
$$

Thus, if $C_{O}$ is 10 pF , the maximum slew-rate would be:

$$
\frac{\Delta V_{\mathrm{O}}}{\Delta \mathrm{~T}}=\frac{0.5 \times 10^{-3}}{10 \times 10^{-12}}=50 \mathrm{~V} / \mu \mathrm{s}
$$

This can be improved if necessary by addition of an emitterfollower or other type of buffer.

### 3.4 Phase-Vector Error

All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per se. The phase-vector

## MC1594L, MC1494L (continued)

error is best explained by an example. If the " $X$ " input is described in vector notation as

$$
x=A \not \subset 0^{\circ}
$$

and the " $Y$ " input is described as

$$
Y=B \quad \angle 0^{\circ}
$$

then the output product would be expected to be

$$
V_{0}=A B \nless 0^{\circ} \text { (see Figure } 18 \text { ) }
$$

However, due to a relative phase shift between the " $X$ ' and " $Y$ " channels, the output product will be given by

$$
V_{0}=A B \not \subset \varnothing
$$

Notice that the magnitude is correct but the phase angle of the product is in error. The vector, $V$, associated with this error is the "phase-vector error". The startling fact about the phase-vector error is that it occurs and accumulates much more rapidly than the amplitude error associated with frequency response. In fact, a relative phase shift of only $0.57^{\circ}$ will result in a $1 \%$ phase-vector error. For most applications, this error is meaningless. If phase of the output product is not important, then neither is the phase-vector error. If phase is important, such as in the case of double sideband modulation or demodulation, then a $1 \%$ phase-vector error will represent a $1 \%$ amplitude error at the phase angle of interest.

## FIGURE 18 - PHASE-VECTOR ERROR



Circuit Layout
If wideband operation is desired, careful circuit layout must be observed. Stray capacitance across $R_{X}$ and $R_{Y}$ should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit).

## 4. DC APPLICATIONS

If the two inputs are connected together, the resultant function is squaring:

$$
V_{o}=K V^{2}
$$

where $K$ is the scale factor (see Figure 19)
However, a more careful look at the multiplier's defining equation will provide some useful information. The output voltage, without initial offset adjustments is given by:

$$
V_{o}=K\left(V_{x}+V_{\text {iox }}-V_{x \text { off }}\right)\left(V_{y}+V_{i o y}-V_{y \text { off }}\right)+V_{o o}
$$

(See "Definitions" for an explanation of terms).
With $V_{x}=V_{y}=V$ (squaring) and defining

$$
\begin{aligned}
& \epsilon_{x}=V_{i o x}-V_{x \text { off }} \\
& \epsilon_{Y}=V_{i o y}-V_{y \text { off }}
\end{aligned}
$$

The output voltage equation becomes

$$
V_{o}=K V_{x}^{2}+K V_{x}\left(\epsilon_{x}+\epsilon_{y}\right)+K \epsilon_{x} \epsilon_{y}+V_{o o}
$$

This shows that all error terms can be eliminated with only three adjustment potentiometers, eliminating one of the input offset adjustments. For instance, if the " $X$ " input offset adjustment is eliminated, $\epsilon_{\mathrm{X}}$ is determined by the internal offset, $V_{\text {iox }}$, but $\epsilon_{Y}$ is adjustable to the extent that the ( $\epsilon_{\mathrm{X}}+\epsilon_{\mathrm{Y}}$ ) term can be zeroed. Then the output offset adjustment is used to adjust the $V_{00}$ term and thus zero the remaining error terms. An ac procedure for nulling with three adjustments is:
A. AC Procedure:

1. Connect oscillator ( $1 \mathrm{kHz}, 15 \mathrm{Vpp}$ ) to input
2. Monitor output at 2 kHz with tuned voltmeter and adjust P4 for desired gain (Be sure to peak response of voltmeter)
3. Tune voltmeter to 1 kHz and adjust $P 1$ for a minimum output voltage
4. Ground input and adjust P3 (output offset) for zero volts dc out
5. Repeat steps 1 through 4 as necessary.

B. DC Procedure:
6. Set $V_{X}=V_{Y}=0 V$ and adjust $P 3$ (output offset potentiometer) such that $V_{0}=0.0 \mathrm{Vdc}$
7. Set $V_{X}=V_{Y}=1.0 \mathrm{~V}$ and adjust $P 1$ ( $Y$ input offset potentiometer) such that the output voltage is -0.100 volts
8. Set $V_{X}=V_{Y}=10 \mathrm{Vdc}$ and adjust P 4 (load resistor) such that the output voltage is -10.00 volts
9. Set $V_{X}=V_{Y}=-10 \mathrm{Vdc}$ and check that $V_{O}=-10 \mathrm{~V}$ Repeat steps 1 through 4 as necessary.
4.2 Divide

Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21.
The characteristic "failure" mode of the divide circuit is latch-up. One way it can occur is if $V_{X}$ is allowed to go negative or, in some cases, if $V_{X}$ approaches zero.
Figure 20 illustrates why this is so. For $V_{X}>0$ the transfer function through the multiplier is non-inverting. Its output is fed to the inverting input of the op-ampl. Thus, operation is in the negative feedback mode and the circuit is dc stable. Should $V_{x}$ change polarity, the transfer function through the multiplier becomes inverting, the amplifier has positive feedback and latch-up results. The problem resulting from

FIGURE 20 - BASIC DIVIDE CIRCUIT USING MULTIPLIER

$\mathrm{V}_{\mathrm{X}}$ being near zero is a result of the transfer through the multiplier being near zero. The op-ampl. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up.
The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated, phase reversal results, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clambing the output swing of the op-ampl. to approximately $\pm 10.7$ volts. Five-percent tolerance, 10 -volt zeners are used to assure adequate output swing but still limit the output voltage of the op-ampl. from exceeding the common-mode input range of the MC1594.
Setting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself. One approach, however, is to break the feedback loop, null out the multiplier circuit, and then close the loop.
A simpler approach, since it does not involve breaking the loop (thus making it more practical on a production basis), is:

1. Set $V_{Z}=0$ volts and adjust the output offset potentiometer ( P 3 ) until the output voltage ( $\mathrm{V}_{\mathrm{O}}$ ) remains at some (not necessarily zero) constant value as $V_{X}$ is varied between +1.0 volt and +10 volts.
2. Maintain $V_{Z}$ at 0 volts, set $V_{X}$ at +10 volts and adjust the $Y$ input offset potentiometer ( P 1 ) until $\mathrm{V}_{\mathrm{O}}=0$ volts.
3. With $V_{X}=V_{Z}$, adjust the $X$ input offset potentiometer (P2) until the output voltage remains at some (not necessarily -10 volts) constant value as $\mathrm{V}_{\mathrm{Z}}=\mathrm{V}_{\mathrm{X}}$ is varied between +1.0 volt and +10 volts.
4. Maintain $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Z}}$ and adjust the scale factor potentiometer ( $R_{L}$ ) until the average value of $V_{O}$ is -10 volts as $V_{Z}=V_{X}$ is varied between +1.0 volt and +10 volts.
5. Repeat steps 1 through 4 as necessary to achieve optimum performance.
Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomi-

FIGURE 21 - PRACTICAL DIVIDE CIRCUIT

(MC1594-Pg. 10)

FIGURE 22 - BASIC SQUARE ROOT CIRCUIT

nator voltage. As a result, if $V_{X}$ is set to 10 volts and $0.5 \%$ accuracy is available, then $5 \%$ accuracy can be expected when $V_{X}$ is only 1 volt.
In accordance with an earlier statement, $V_{X}$ may have only one polarity, positive, while $V_{Z}$ may be either polarity.
4.3 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 23) protects against accidental latch-up.
This circuit too, may be adjusted in the closed-loop mode

1. Set $V_{Z}=-0.01 \mathrm{Vdc}$ and adjust $P 3$ (output offset) for $\mathrm{V}_{\mathrm{O}}=0.316 \mathrm{Vdc}$.
2. Set $V_{Z}$ to -0.9 Vdc and adjust $P 2$ (' $X$ '' adjust) for $V_{0}=$ +3 Vdc .
3. Set $V_{Z}$ to $-10 V_{d c}$ and adjust $P 4$ (gain adjust) for $V_{O}=$ +10 Vdc .

Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

Note: Operation near zero volts input may prove very inaccurate, hence, it may not be possible to adjust $\mathrm{V}_{0}$ to 0 but rather only to within 100 to 400 mV of zero.

## 5. AC APPLICATIONS

5.1 Wideband Amplifier With Linear AGC

If one input to the MC1594 is a dc voltage and a signal voltage is applied to the other input, the amplitude of the output signal can be controlled in a linear fashion by varying the dc voltage. Hence, the multiplier can function as a dc coupled, wideband amplifier with linear AGC control.
In addition to the advantage of Linear AGC control, the multiplier has three other distinct advantages over most other types of AGC systems. First, the AGC dynamic range is theoretically infinite. This stems from the basic fact that with zero volts dc applied to the AGC, the output will be zero regardless of the input. In practice, the dynamic range is limited by the ability to adjust the input offset adjust potentiometers. By using cermet multi-turn potentiometers, a dynamic range of 80 dB can be obtained. The second advantage of the multiplier is that variation of the AGC voltage has no effect on the signal handling capability of the signal port, nor does it alter the input impedance of the signal port. This feature is particularly important in AGC systems which are phase sensitive. A third advantage of the multiplier is that the output-voltage-swing capability and output impedance are unchanged with variations in AGC voltage.
The circuit of Figure 24 demonstrates the linear AGC amplifier. The amplifier can handle $1 \mathrm{~V}(\mathrm{rms})$ and exhibits a gain of approximately 20 dB . It is $\mathrm{AGC'}^{\prime}$ through a 60 dB dynamic range with the application of an AGC voltage from 0 Vdc to 1 Vdc . The bandwidth of the amplifier is determined by the load resistor and output stray capacitance. For this reason, an emitter-follower buffer has been added to extend the bandwidth in excess of 1 MHz .
5.2 Balanced Modulator

When two-time variant signals are used as inputs, the result-

FIGURE 23 - SQUARE ROOT CIRCUIT

ing output is suppressed-carrier double-sideband modulation. In terms of sinusoidal inputs, this can be seen in the following equation:

$$
V_{o}=K\left(e_{1} \cos \omega_{m} t\right)\left(e_{2} \cos \omega_{c} t\right)
$$

where $\omega_{m}$ is the modulation frequency and $\omega_{c}$ is the carrier frequency. This equation can be expanded to show the suppressed carrier or balanced modulation:

$$
V_{0}=\frac{K e_{1} e_{2}}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
$$

Unlike many modulation schemes, which are non-linear in nature, the modulation which takes place when using the MC1594 is linear. This means that for two sinusoidal inputs, the output will contain only two frequencies, the sum and difference, as seen in the above equation. There will be no spectrum centered about the second harmonic of the carrier, or any multiple of the carrier. For this reason, the filter requirements of a modulation system are reduced to the minimum. Figure 25 shows the MC1594 configuration to perform this function.

FIGURE 24 - WIDEBAND AMPLIFIER WITH LINEAR AGC


Notice that the resistor values for $R_{X}, R_{Y}$, and $R_{L}$ have been modified. This has been done primarily to increase the bandwidth by lowering the output impedance of the MC1594 and then lowering $R_{X}$ and $R_{Y}$ to achieve a gain of 1. The $e_{c}$ can be as large as 1 volt peak and $e_{m}$ as high as 2 volts peak. No output offset adjust is employed since we-are interested only in the ac output components.
The input R's are used to supply bias current to the multiplier inputs as well as provide matching input impedance. The output frequency range of this configuration is determined by the 4.7 k ohm output impedance and capacitive loading. Assuming a 6 pF load, the small-signal bandwidth is 5.5 MHz .
The circuit of Figure 25 will provide a typical carrier rejection of $\geq 70 \mathrm{~dB}$ from 10 kHz to 1.5 MHz .

FIGURE 25 - BALANCED MODULATOR


The adjustment procedure for this circuit is quite simple.
(1) Place the carrier signal at pin 10 . With no signal applied to pin 9, adjust potentiometer P1 such that an ac null is obtained at the output.
(2) Place a modulation signal at pin 9. With no signal applied to pin 10, adjust potentiometer P2 such that an ac null is obtained at the output.
Again, the ability to make careful adjustment of these offsets will be a function of the type of potentiometers used for P1 and P2. Multiple turn cermet type potentiometers are recommended.
5.3 Frequency Doubler

If for Figure 25 both inputs are identical;

$$
e_{m}=e_{c}=E \cos \omega t
$$

Then the output is given by

$$
e_{o}=e_{m} e_{C}=E^{2} \cos ^{2} \omega t
$$

which reduces to

$$
e_{o}=\frac{E^{2}}{2}(1+\cos 2 \omega t)
$$

This equation states that the output will consist of a dc term equal to one half the peak voltage squared and the second harmonic of the input frequency. Thus, the circuit acts as a frequency doubler. Two facts about this circuit are worthy of note. First, the second harmonic of the input frequency is the only frequency appearing at the output. The fundamental does not appear. Second, if the input is sinusoidal, the output will be sinusoidal and requires no filtering.
The circuit of Figure 25 can be used as a frequency doubler with input frequencies in excess of 2 MHz .
5.4 Amplitude Modulator

The circuit of Figure 25 is also easily used as an amplitude modulator. This is accomplished by simply varying the input offset adjust potentiometer (P1) associated with the modu-
lation input. This procedure places a dc offset on the modulation input of the multiplier such that the carrier still passes thru the multiplier when the modulating signal is zero. The result is amplitude modulation. This is easily seen by examining the basic mathematical expression for amplitude modulation given below. For the case under discussion, with $K=1$,

$$
e_{o}=\left(E+E_{m} \cos \omega_{m} t\right)\left(E_{c} \cos \omega_{c} t\right)
$$

where $E$ is the dc input offset adjust voltage. This expression can be written as:

$$
e_{o}=E_{o}\left[1+M \cos \omega_{c} t\right] \cos \omega_{c} t
$$

where

$$
E_{\mathrm{O}}=E E_{\mathrm{C}}
$$

and $\quad M=\frac{E_{m}}{E}=$ modulation index
This is the standard equation for amplitude modulation. From this, it is easy to see that $100 \%$ modulation can be achieved by adjusting the input offset adjust voltage to be exactly equal to the peak value of the modulation, $E_{m}$. This is done by observing the output waveform and adjusting the input offset potentiometer, P1, until the output exhibits the familiar amplitude modulation waveform.

### 5.5 Phase Detector

If the circuit of Figure 25 has as its inputs two signals of identical frequency but having a relative phase shift the output will be a dc signal which is directly proportional to the cosine of phase difference as well as the double frequency term.

$$
\begin{aligned}
e_{C} & =E_{c} \cos \omega_{c} t \\
e_{m} & =E_{m} \cos \left(\omega_{c} t+\phi\right) \\
e_{o}=e_{c} e_{m} & =E_{c} E_{m} \cos \omega_{C} t \cos \left(\omega_{c} t+\phi\right) \\
\text { or } \quad e_{o} & =\frac{E_{c} E_{m}}{2}\left[\cos \phi+\cos \left(2 \omega_{c} t+\phi\right]\right.
\end{aligned}
$$

The addition of a simple low pass filter to the output (which eliminates the second cosine term) and return of $R_{L}$ to an offset adjustment potentiometer will result in a dc output voltage which is proportional to the cosine of the phase difference. Hence, the circuit functions as a synchronous detector.
6. DEFINITIONS OF SPECIFICATIONS

Because of the unique nature of a multiplier, i.e., two inputs and one output, operating specifications are difficult to define and interpret. Indeed the same specification may be defined in several completely different ways depending upon which manufacturer is doing the defining. In order to clear up some of this mystery, the following definitions and examples are presented.
6.1 Multiplier Transfer Function

The output of the multiplier may be expressed by this equation:

$$
V_{o}=K\left(V_{x} \pm V_{\text {iox }}-V_{x o f f}\right)\left(V_{y} \pm V_{\text {ioy }}-V_{y \text { off }}\right) \pm V_{o o}
$$

where $K=$ scale factor (see 6.5)

$$
\begin{aligned}
V_{x} & =\text { " } x \text { " input voltage } \\
V_{y} & =\text { " } y \text { " input voltage } \\
V_{\text {iox }} & =\text { " } x \text { " input offset voltage } \\
V_{\text {ioy }} & =\text { " } y \text { " input offset voltage } \\
V_{x \text { off }} & =\text { " } x \text { " input offset adjust voltage }
\end{aligned}
$$

## $V_{y \text { off }}=$ " $y$ " input offset adjust voltage

 $V_{\mathrm{OO}}=$ output offset voltageThe voltage transfer characteristic below indicates " $X$ ", " $Y$ " and output offset voltages.

FIGURE 26

$\left(V_{y}= \pm 10 \mathrm{~V}\right)$

$\left(\mathrm{V}_{\mathrm{x}}= \pm 10 \mathrm{~V}\right)$
6.2 Linearity

Linearity is defined to be the maximum deviation of output voltage from a straight line transfer function. It is expressed as a percentage of full-scale output and is measured for $V_{X}$ and $V_{y}$ separately either using an " $X-Y$ " plotter (and checking the deviation from a straight line) or by using the method shown in Figure 1. The latter method nulls the output signal with the input signal, resulting in distortion components proportional to the linearity.
Example: 0.35\% linearity means

$$
V_{0}=\frac{V_{x} V_{y}}{10} \pm(0.0035)(10 \text { volts })
$$

### 6.3 Input Offset Voltage

The input offset voltage is defined from Equation (1). It is measured for $V_{x}$ and $V_{y}$ separately and is defined to be that dc input offset adjust voltage (" $x$ " or " $y$ ") that will result in minimum ac output when ac ( $5 \mathrm{Vpp}, 1 \mathrm{kHz}$ ) is applied to the other input (" $y$ " or " $x$ " respectively). From Equation(1) we have:

$$
V_{o(a c)}=K\left(0 \pm V_{\text {iox }}-V_{x \text { off }}\right)(\sin \omega t)
$$

adjust $V_{x \text { off }}$ so that $\left( \pm V_{\text {iox }}-V_{x \text { off }}\right)=0$.
6.4 Output Offset Current and Voltage

Output offset current ( ${ }_{\mathrm{OO}}$ ) is the dc current flowing in the output lead when $V_{x}=V_{y}=0$ and " $X$ " and " $Y$ " offset voltages are adjusted to zero.
Output offset voltage ( $\mathrm{V}_{\mathrm{OO}}$ ) is:

$$
V_{O O}=I_{00} R_{L}
$$

where $R_{L}$ is the load resistance.
Note: Output offset voltage is defined by many manufacturers with all inputs at zero but without adjusting " $X$ " and " $Y$ " offset voltages to zero. Thus it includes input offset terms, an output offset term and a scale factor term.

Scale Factor
Scale factor is the $K$ term in Equation (1). It determines the "gain" of the multiplier and is expressed approximately by the following equation.

$$
K=\frac{2 R_{L}}{R_{x} R_{y} l_{1}} \text { where } R_{x} \text { and } R_{y} \gg \frac{k T}{q I_{1}}
$$

and $I_{1}$ is the current out of pin 1.
6.6 Total DC Accuracy

The total dc accuracy of a multiplier is defined as error in multiplier output with dc ( $\pm 10 \mathrm{Vdc}$ ) applied to both inputs. It is expressed as a percent of full scale. Accuracy is not specified for the MC1594 because error terms can be nulled by the user.
6.7 Tempèrature Stability (Drift)

Each term defined above will have a finite drift with temperature. The temperature specifications are obtained by readjusting the multiplier offsets and scale factor at each new temperature (see previous definitions and the adjustment procedure) and noting the change.
Assume inputs are grounded and initial offset voltages have been adjusted to zero. Then output voltage drift is given by:
$\Delta V_{o}= \pm[K \pm K(T C K)(\Delta T)]\left[\left(T C V_{\text {iox }}\right)(\Delta T)\right]\left[\left(T C V_{\text {ioy }}\right)\right.$ $(\Delta T)] \pm\left(T C V_{00}\right)(\wedge T)$
6.8 Total DC Accuracy Drift

This is the temperature drift in output voltage with 10 volts applied to each input. The output is adjusted to 10 volts at $T_{A}=+25^{\circ} \mathrm{C}$. Assuming initial offset voltages have been adjusted to zero at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, then:
$V_{0}=[K \pm K(T C K)(\Delta T)]\left[10 \pm\left(T C V_{\text {iox }}\right)(\Delta T)\right][10 \pm$ $\left.\left(T C V_{\text {ioy }}\right)(\Delta T)\right] \pm\left(T C V_{\text {oo }}\right)(\Delta T)$
6.9 Power Supply Rejection

Variation in power supply voltages will cause undesired variation of the output voltage. It is measured by superimposing a 1 -volt, $100-\mathrm{Hz}$ signal on each supply ( $\pm 15 \mathrm{~V}$ ) with each input grounded. The resulting change in the output is expressed in $m \mathrm{~V} / \mathrm{V}$.
6.10 Output Voltage Swing

Output voltage swing capability is the maximum output voltage swing (without clipping) into a resistive load (noteoutput offset is adjusted to zerol.
If an op-ampl. is used, the multiplier output becomes a virtual ground - the swing is then determined by the scale factor and the op-ampl. selected.

GENERAL INFORMATION INDEX

1. CIRCUIT DESCRIPTION

Introduction
Regulator
Multiplier
Differential Current Converter
DC OPERATION
Selection of External Components
Operational Amplifier Selection
Stability
Offset Adjustment
Offset and Scale Factor Adjustment Procedure
Temperature Stability
Bias Currents
Parasitic Oscillation
AC OPERATION
General
Bandwidth
Slew-Rate
Phase-Vector Error
Circuit Layout
4. DC APPLICATIONS
4.1 Squaring Circuit
4.2 Divide
4.3 Square Root
5. AC APPLICATIONS
5.1 Wideband Amplifier with Linear AGC
5.2 Balanced Modulator
5.3 Frequency Modulator
5.4 Amplitude Modulator
5.5 Phase Detector
6. DEFINITIONS OF SPECIFICATIONS
6.1 Multiplier Transfer Function
6.2 Linearity
6.3 Input Offset Voltage
6.4 Output Offset Current and Voltage
6.5 Scale Factor
6.6 Total DC Accuracy
6.7 Temperature Stability (Drift)
6.8 Total DC Accuracy Drift
6.9 Power Supply Rejection
6.10 Output Voltage Swing

## Specifications and Applications Information

## WIDEBAND MONOLITHIC FOUR-QUADRANT MULTIPLIER

designed for uses where the output is a linear product of two input voltages. Maximum versatility is assured by allowing the user to select the level shift method. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control. *When used with an operational amplifier.

- Wide Bandwidth
- Excellent Linearity - 1\% max Error on X-Input, 2\% max Error on Y-Input - MC1595L
- Excellent Linearity - 2\% max Error on X-Input, 4\% max Error on Y-Input - MC1495L
- Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range $- \pm 10$ Volts

- $\pm 15$ Volt Operation


[^27]See current MCC1595/1495 data sheet for standard linear chip information.

MC1595L, MC1495L (continued)
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+32 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{3}=1 \mathrm{I}_{13}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{Y}}=15 \mathrm{k} \Omega\right.$, $R_{L}=11 \mathrm{k} \Omega$ unless otherwise noted)


MC1595L, MC1495L (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{aligned} & \text { Applied Voltage } \\ & \left(v_{2}-v_{1}, v_{14}-v_{1}, v_{1}-v_{9}, v_{1}-v_{12}, v_{1}-v_{4}\right. \\ & \left.v_{1}-v_{8}, v_{12}-v_{7}, v_{9}-v_{7}, v_{8}-v_{7}, v_{4}-v_{7}\right) \end{aligned}$	$\Delta \mathrm{V}$	30	Vdc
Differential Input Signal	$\begin{aligned} & V_{12-} V_{9} \\ & V_{4}-V_{8} \end{aligned}$	$\begin{aligned} & \pm(6+13 R x) \\ & \pm(6+13 R y) \\ & \hline \end{aligned}$	Vdc Vdc
Maximum Bias Current	$\begin{array}{r} 13 \\ 113 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 750 \\ & 5.0 \\ & \hline \end{aligned}$	$\underset{m W /{ }^{\circ} \mathrm{C}}{\substack{m W \\ \hline}}$
Operating Temperature Range   MC1495   MC1595	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & \mathrm{O}^{\circ} \mathrm{C} \\ & \mathrm{o}^{\mathrm{C}} \end{aligned}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

TEST CIRCUITS


FIGURE 5 - LINEARITY (USING X-Y PLOTTER TECHNIQUE)


TEST CIRCUITS (continued)

FIGURE 6 - INPUT AND OUTPUT CURRENT


FIGURE 8 - OUTPUT RESISTANCE


FIGURE 10 - BANDWIDTH ( $R_{\mathbf{L}}=50 \Omega$ )



FIGURE 9 - BANDWIDTH ( $R_{L}=11 \mathrm{k} \Omega$ )


FIGURE 11 - COMMON-MODE GAIN and COMMON-MODE INPUT SWING


## TEST CIRCUITS (continued)



FIGURE 14 - OFFSET ADJUST CIRCUIT (ALTERNATE)


MC1595L, MC1495L (continued)

TYPICAL CHARACTERISTICS


FIGURE 19 - MAXIMUM ALLOWABLE INPUT VOLTAGE versus VOLTAGE AT PIN 1 OR PIN 7


## OPERATION AND APPLICATIONS INFORMATION

## 1. Theory of Operation

The MC1595 (MC1495) is a monolithic, four-quadrant multiplier which operates on the principle of variable transconductance. The detailed theory of operation is covered in Application Note AN-489, Analysis and Basic Operation of the MC1595. The result of this analysis is that the differential output current of the multiplier is given by

$$
'_{A}-I_{B}=\Delta I=\frac{2 V_{X} V_{Y}}{R_{X} R_{Y} I_{3}}
$$

where $I_{A}$ and $I_{B}$ are the currents into pins 14 and 2, respectively, and $V_{X}$ and $V_{Y}$ are the $X$ and $Y$ input voltages at the multiplier input terminals.

## 2. Design Considerations

### 2.1 General

The MC1595 (MC1495) permits the designer to tailor the multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidth) which may in turn restrict another parameter (e.g. maximum output voltage swing). Each important parameter is discussed in detail in the following paragraphs.

### 2.1.1 Linearity, Output Error, $E_{R X}$ or $E_{R Y}$

Linearity error is defined as the maximum deviation of output voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below).


For example, if the maximum deviation, $V_{E(\max )}$, is $\pm 100 \mathrm{mV}$ and the full scale output is 10 volts, then the percentage error is

$$
E_{R}=\frac{V_{E(\max )}}{V_{O(\max )}} \times 100=\frac{100 \times 10^{-3}}{10} \times 100= \pm 1.0 \%
$$

Linearity error may be measured by either of the following methods:

1. Using an $X-Y$ plotter with the circuit shown in Figure 5, obtain plots for X and Y similar to the one shown above.
2. Use the circuit of Figure 4. This method nulls the level shifted output of the multiplier with the original input. The peak output of the null operational amplifier will be equal to the error voltage, $\mathrm{V}_{\mathrm{E}(\text { max })}$.
One source of linearity error can arise from large signal nonlinearity in the $X$ and $Y$-input differential amplifiers. To avoid introducing error from this source, the emitter degeneration resistors $R_{X}$ and $R_{Y}$ must be chosen large enough so that nonlinear base-emitter voltage variation can be ignored. Figures 17 and 18 show the error expected from this source as a function of the values of $R_{X}$ and $R_{Y}$ with an operating current of 1.0 mA in each side of the differential amplifiers (i.e., $I_{3}=I_{13}=1.0 \mathrm{~mA}$ ).

### 2.1.2 3 dB -Bandwidth and Phase Shift

Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low value load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout.

Phase shift in the multiplier circuit results from two sources: phase shift common to both $X$ and $Y$ channels (due to the load resistor-output capacitance pole mentioned above) and relative phase shift between $X$ and $Y$ channels (due to differences in transadmittance in the $X$ and $Y$ channels). If the input to output phase shift is only $0.6^{\circ}$, the output product of two sine waves will exhibit a vector error of $1 \%$. A $3^{0}$ relative phase shift between $V_{X}$ and $V_{Y}$ results in a vector error of $5 \%$.

### 2.1.3 Maximum Input Voltage

$\mathrm{V}_{\mathrm{X}}($ max $), \mathrm{V}_{\mathrm{Y}}(\max )$ maximum input voltages must be such that:

$$
\begin{aligned}
& V_{X(\text { max })}<1_{13} R_{Y} \\
& V_{Y(\text { max })}<1_{3} R_{Y} .
\end{aligned}
$$

Exceeding this value will drive one side of the input amplifier to "cutoff" and cause non-linear operation.

Currents $\mathrm{I}_{3}$ and $\mathrm{I}_{13}$ are chosen at a convenient value (observing power dissipation limitation) between 0.5 mA and 2.0 mA , approximately 1.0 mA . Then $R_{X}$ and $R_{Y}$ can be determined by considering the input signal handling requirements.

$$
\text { For } V_{X(\max )}=V_{Y(\max )}=10 \text { volts; }
$$

$$
R_{X}=R_{Y}>\frac{10 \mathrm{~V}}{1.0 \mathrm{~mA}}=10 \mathrm{k} \Omega
$$

The equation $I_{A} \cdot I_{B}=\frac{2 V_{X} V_{Y}}{R_{X} R_{Y} I_{3}}$
is derived from $I_{A} \cdot I_{B}=\frac{2 V_{X} V_{Y}}{\left(R_{X}+\frac{2 k T}{q l^{\prime} 13}\right)\left(R_{Y}+\frac{2 k T}{q I_{3}}\right) I_{3}}$
with the assumption $\mathrm{R}_{X} \gg \frac{2 \mathrm{kT}}{\mathrm{q}_{13}}$ and $\mathrm{R}_{Y} \gg \frac{2 \mathrm{kT}}{\mathrm{q}_{3}}$.
At $T_{A}=+25^{\circ} \mathrm{C}$ and $I_{13}=I_{3}=1 \mathrm{~mA}$,

$$
\frac{2 \mathrm{kT}}{\mathrm{a}_{13} 13}=\frac{2 \mathrm{k} T}{\mathrm{q}^{\prime} 3}=52 \Omega .
$$

Therefore, with $R_{X}=R_{Y}=10 \mathrm{k} \Omega$ the above assumption is valid. Reference to Figure 19 will indicate limitations of $V_{X(\max )}$ or $V_{Y(\max )}$ due to $V_{1}$ and $V_{7}$. Exceeding these limits will cause saturation or "cutoff" of the input transistors. See Step 4 of Section 3 (General Design Procedure) for further details.

### 2.1.4 Maximum Output Voltage Swing

The maximum output voltage swing is dependent upon the factors mentioned below and upon the particular circuit being considered.

For Figure 20 the maximum output swing is dependent upon $\mathrm{V}^{+}$for positive swing and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quiescent level for transistors $\mathrm{Q}_{5}, \mathrm{Q}_{6}, \mathrm{Q}_{7}$, and $\mathrm{O}_{8}$. This potential
should be related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials.

If an operational amplifier is used for level shift, as shown in Figure 21, the output swing (of the multiplier) is greatly reduced. See Section 3 for further details.

## 3. General Design Procedure

Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the $X$ and $Y$ inputs to limit the maximum multiplier input to $\pm 5.0$ volts ( $V_{X}=$ $V_{Y}(\max )$ for a $\pm 10$-volt input $\left(V_{X^{\prime}}=V_{Y^{\prime}}(\max ]\right)$. (See Figure 21). If an overall scale factor of $\mathbf{1 / 1 0}$ is desired, then

$$
V_{0}=\frac{V_{X} \cdot V_{Y^{\prime}}}{10}=\frac{\left(2 V_{X}\right)\left(2 V_{Y}\right)}{10}=4 / 10 V_{X} V_{Y} .
$$

Therefore, $K=4 / 10$ for the multiplier (excluding the divider network).

Step 1. The first step is to select current I 3 and current $I_{13}$. There are no restrictions on the selection of either of these currents except the power dissipation of the device. I 3 and $I_{13}$ will normally be one or two milliamperes. Further, $\mathrm{I}_{3}$ does not have to be equal to 113 , and there is normally no need to make them different. For this example, let

$$
I_{3}=I_{13}=1 \mathrm{~mA} .
$$

To set currents $I_{3}$ and $I_{13}$ to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3,

FIGURE 21 - MULTIPLIER WITH OP-AMPL. LEVEL SHIFT


## OPERATION AND APPLICATIONS INFORMATION (continued)

it can be seen that the resistor values necessary are given by:

$$
\begin{aligned}
& R_{13}+500 \Omega=\frac{\left|V^{-}\right|-0.7 \mathrm{~V}}{113} \\
& R_{3}+500 \Omega=\frac{\left|V^{-}\right|-0.7 \mathrm{~V}}{13} \\
& \text { Let } V^{-}=-15 \mathrm{~V} \\
& \text { Then } R_{13}+500=\frac{14.3 \mathrm{~V}}{1 \mathrm{~mA}} \text { or } R_{13}=13.8 \mathrm{k} \Omega \\
& \text { Let } R_{13}=12 \mathrm{k} \Omega \\
& \text { Similarly, } R_{3}=13.8 \mathrm{k} \Omega \\
& \text { Let } R_{3}=15 \mathrm{k} \Omega
\end{aligned}
$$

However, for applications which require an accurate scale factor the adjustment of $R_{3}$ and consequently, $1_{3}$, offers a convenient method of making a final trim of the scale factor. For this reason as shown in Figure 21, resistor $R_{3}$ is shown as a fixed resistor in series with a potentiometer

For applications not requiring an exact scale factor (balanced modulator, frequency doubler, AGC amplifier, etc.), pins 3 and 13 can be connected together and a single resistor trom pin 3 to ground can be used. In this case, the single resistor would have a value of one-half the above calculated value for $R_{13}$.

Step 2. The next step is to select $R_{X}$ and $R_{Y}$. To insure that the input transistors will always be active, the following conditions should be met:

$$
\frac{V_{X}}{R_{X}}<1_{13} \quad \frac{V_{Y}}{R_{Y}}<1_{3}
$$

A good rule of thumb is to make $I_{3} R_{Y} \geqslant 1.5 \mathrm{~V}_{Y}($ max $)$ and $I_{13} R X \geqslant 1.5 V_{X}$ (max)

The larger the $I_{3} R_{Y}$ and $I_{1} 3^{R} X$ product in relation to $V_{Y}$ and $V_{X}$ respectively, the more accurate the multiplier will be (see Figures 17 and 18)

$$
\begin{aligned}
& \text { Let } R_{X}=R_{Y}=10 \mathrm{k} \Omega \\
& \text { Then } I_{3} R_{Y}=10 \mathrm{~V} \\
& \qquad I_{13} R_{X}=10 \mathrm{~V}
\end{aligned}
$$

since $V_{X(\max )}=V_{Y(\max )}=5.0$ volts the value of $R_{X}=R_{Y}=10 \mathrm{k} \Omega$ is sufficient.

Step 3. Now that $R_{X}, R_{Y}$ and $I_{3}$ have been chosen, $R_{L}$ can be determined

$$
K=\frac{2 R_{L}}{R_{X} R_{Y}{ }^{\prime} 3}=\frac{4}{10}
$$

$$
\text { or } \frac{(2)\left(R_{L}\right)}{(10 k)(10 k)(1 \mathrm{~mA})}=\frac{4}{10}
$$

Thus $R_{L}=20 \mathrm{k} \Omega$.

Step 4. To determine what power-supply voltage is necessary for this application, attention must be given to the circuit schematic shown in Figure 3. From the circuit schematic it can be seen that in order to maintain transistors $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and $\mathrm{Q}_{4}$ in an active
region when the maximum input voltages are applied $\left(V_{X}{ }^{\prime}=\mathrm{V}_{Y^{\prime}}=\right.$ 10 V or $\mathrm{V}_{\mathrm{X}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=5.0 \mathrm{~V}$ ), their respective collector voltage should be at least a few tenths of a volt higher than the maximum input voltage. It should also be noticed that the collector voltage of transistors $\mathrm{Q}_{3}$ and $\mathrm{Q}_{4}$ are at a potential which is two diode-drops below the voltage at pin 1 . Thus, the voltage at pin 1 should be about two volts higher than the maximum input voltage. Therefore, to handle +5.0 volts at the inputs, the voltage at pin 1 must be at least +7.0 volts. Let $V_{1}=9.0 \mathrm{Vdc}$.

Since the current following into pin 1 is always equal to $21_{3}$, the voltage at pin 1 can be set by placing a resistor, $\mathrm{R}_{1}$ from pin 1 to the positive supply:

$$
\begin{aligned}
& R_{1}=\frac{V^{+}-V_{1}}{2 I_{3}} \\
& \text { Let } V^{+}=+15 \mathrm{~V} \\
& \text { Then } R_{1}=\frac{15 \mathrm{~V}-9 \mathrm{~V}}{(2)(1 \mathrm{~mA})} \\
& R_{1}=3 \mathrm{k} \Omega .
\end{aligned}
$$

Note that the voltage at the base of transistors $Q_{5}, Q_{6}, Q_{7}$ and $Q_{8}$ is one diode-drop below the voltage at pin 1 . Thus, in order that these transistors stay active, the voltage at pins 2 and 14 should be approximately halfway between the voltage at pin 1 and the positivesupply voltage. For this example, the voltage at pins 2 and 14 should be approximately 11 volts.

## Step 5. Level Shifting

For dc applications, such as the multiply, divide and squareroot functions, it is usually desirable to convert the differential output to a single-ended output voltage referenced to ground The circuit shown in Figure 22 performs this function. It can be shown that the output voltage of this circuit is given by:

$$
V_{0}=\left(I_{2}-\mid 14\right) R_{L}
$$

And since $I_{A}-I_{B}=I_{2}-1_{14}=\frac{2 I_{X} I_{Y}}{I_{3}}=\frac{2 V_{X} V_{Y}}{1_{3} X_{X} R_{Y}}$
Then $V_{0}=\frac{2 R_{L} V_{X}{ }^{\prime} V_{Y^{\prime}}}{4 R_{X} R_{X} I_{3}}$ where $V_{X} V_{Y}$ is the voltage at the input to the voltage dividers.

FIGURE 22 - LEVEL SHIFT CIRCUIT


## OPERATION AND APPLICATIONS INFORMATION (continued)

The choice of an operational amplifier for this application should have low bias currents, low offset current, and a high common-mode input voltage range as well as a high common-mode rejection ratio. The MC1556, and MC1741 operational amplifiers meet these requirements.

Referring to Figure 21, the level shift components will be determined. When $V_{X}=V_{Y}=0$, the currents $I_{2}$ and $I_{14}$ will be equal to 1 13. In Step 3, $R_{L}$ was found to be $20 \mathrm{k} \Omega$ and in Step 4, $V_{2}$ and $V_{14}$ were found to be approximately 11 volts. From this information, $R_{0}$ can be found easily from the following equation (neglecting the operational amplifiers bias current):

$$
\frac{V_{2}}{R_{L}}+I_{13}=\frac{V^{+}-V_{2}}{R_{0}}
$$

And for this example, $\frac{11 \mathrm{~V}}{20 \mathrm{k} \Omega}+1 \mathrm{~mA}=\frac{15 \mathrm{~V}-11 \mathrm{~V}}{\mathrm{R}_{\mathrm{O}}}$

Solving for $R_{0}, R_{0}=2.6 \mathrm{k} \Omega$
Thus, select $R_{0}=3.0 \mathrm{k} \Omega$
For $R_{0}=3.0 \mathrm{k} \Omega$, the voltage at pins 2 and 14 is calculated to be

$$
V_{2}=V_{14}=10.4 \text { volts. }
$$

The linearity of this circuit (Figure 21) is likely to be as good or better than the circuit of Figure 5. Further improvements are
possible as shown in Figure 23 where $R_{Y}$ has been increased substantially to improve the $Y$ linearity, and $R_{X}$ decreased somewhat so as not to materially affect the $X$ linearity, this avoids increasing $R_{L}$ significantly in order to maintain a $K$ of 0.1

The versatility of the MC1595 (MC1495) allows the user to to optimize its performance for various input and output signal levels.
4. Offset and Scale Factor Adjustment
4.1 Offset Voltages

Within the monolithic multiplier (Figure 3) transistor baseemitter junctions are typically matched within 1 mV and resistors are typically matched within $2 \%$. Even with this careful matching, an output error can occur. This output error is comprised of $X$-input offset voltage, $Y$-input offset voltage, and outputoffset voltage. These errors can be adjusted to zero with the techniques shown in Figure 21. Offset terms can be shown analytically by the transfer function:

$$
\begin{equation*}
V_{0}=K\left(V_{X} \pm V_{\text {IOX }} \pm V_{X \text { off }}\right)\left(V_{Y} \pm V_{\text {IO }} \pm V_{Y \text { off }}\right) \pm V_{00} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\text { Where } K & =\text { scale factor } \\
V_{X} & =X \text { input voltage } \\
V_{Y} & =Y \text { input voltage } \\
V_{I O X} & =X \text { input offset voltage } \\
V_{\text {IOY }} & =Y \text { input offset voltage } \\
V_{X \text { off }} & =X \text { input offset adjust voltage } \\
V_{Y o f f} & =Y \text { input offset adjust voltage } \\
V_{O O} & =\text { output offset voltage. }
\end{aligned}
$$

FIGURE 23 - MULTIPLIER WITH IMPROVED LINEARITY


## OPERATION AND APPLICATIONS INFORMATION (continued)

$\mathrm{X}, \mathrm{Y}$ and Output Offset Voltages


For most dc applications, all three offset adjust potentiometers ( $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{4}$ ) will be necessary. One or more offset adjust potentiometers can be eliminated for ac applications (See Figures 28, 29, 30, 31).

If well regulated supply voltages are available, the offset adjust circuit of Figure 13 is recommended. Otherwise, the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes.

### 4.2 Scale Factor

The scale factor, $K$, is set by $P_{3}\left(F\right.$ igure 21). $P_{3}$ varies $I_{3}$ which inversely controls the scale factor $K$. It should be noted that current $I_{3}$ is one-half the current through $R_{1} . R_{1}$ sets the bias level for $\mathrm{O}_{5}, \mathrm{Q}_{6}, \mathrm{O}_{7}$, and $\mathrm{O}_{8}$ (See Figure 3). Therefore, to be sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting $P_{3}$ over wide voltage ranges (see Section 3, General Design Procedure).

### 4.3 Adjustment Procedures

The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21)

1. X Input Offset
(a) Connect oscillator ( $1 \mathrm{kHz}, 5 \mathrm{Vpp}$ sinewave) to the " $Y$ "' input (pin 4)
(b) Connect " $X$ " input (pin 9) to ground
(c) Adjust X offset potentiometer, $\mathrm{P}_{2}$, for an ac null at the output
2. Y Input Offset
(a) Connect oscillator ( $1 \mathrm{kHz}, 5 \mathrm{Vpp}$ sinewave) to the " $X$ " input (pin 9)
(b) Connect " $Y$ "' input (pin 4) to ground
(c) Adjust " $Y$ " offset potentiometer, $P_{1}$, for an ac null at the output
3. Output Offset
(a) Connect both " $X$ " and " $Y$ " inputs to ground
(b) Adjust output offset potentiometer, $\mathrm{P}_{4}$, until the output voltage $V_{o}$ is zero volts dc
4. Scale Factor
(a) Apply $+1 \sigma V d c$ to both the " $X$ " and " $Y$ " inputs (b) Adjust $P_{3}$ to achieve +10.00 V at the output. 5. Repeat steps 1 through 4 as necessary.

The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers $\mathrm{P}_{1}$ through $\mathrm{P}_{4}$. Multi-turn, infinite resolution potentiometers with low-temperature coefficients are recommended.
5. DC Applications
5.1 Multiply

The circuit shown in Figure 21 may be used to multiply signals from dc to 100 kHz . Input levels to the actual multiplier are 5.0 V (max). With resistive voltage dividers the maximum could be very large - however, for this application two-to-one dividers have been used so that the maximum input level is 10 V . The maximum output level has also been designed for 10 V (max).

### 5.2 Squaring Circuit

If the two inputs are tied together, the resultant function is squaring; that is $V_{0}=K V^{2}$ where $K$ is the scale factor. Note that all error terms can be eliminated with only three adjustment potentiometers, thus eliminating one of the input offset adjustments. Procedures for nulling with adjustments are given as follows:

1. AC.Procedure:
(a) Connect oscillator ( $1 \mathrm{kHz}, 15 \mathrm{Vpp}$ ) to input
(b) Monitor output at 2 kHz with tuned voltmeter and adjust $\mathrm{P}_{3}$ for desired gain (be sure to peak response of the voltmeter)
(c) Tune voltmeter to 1 kHz and adjust $P_{1}$ for a minimum output voltage
(d) Ground input and adjust $\mathrm{P}_{4}$ (output offset) for zero volts dc output
(e) Repeat steps a through d as necessary.
2. DC Procedure:
(a) Set $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=0 \mathrm{~V}$ and adjust $\mathrm{P}_{4}$ (output offset potentiometer) such that $V_{O}=0.0 \mathrm{Vdc}$
(b) Set $V_{X}=V_{Y}=1.0 \mathrm{~V}$ and adjust $P_{1}(Y$ input offset potentiometer) such that the output voltage is +0.100 volts
(c) Set $V_{X}=V_{Y}=10 \mathrm{Vdc}$ and adjust $P_{3}$ such that the output voltage is +10.00 volts
(d) Set $V_{X}=V_{Y}=-10 \mathrm{Vdc}$. Repeat steps a through $d$ as necessary.

FIGURE 24 - BASIC DIVIDE CIRCUIT


### 5.3 Divide Circuit

Consider the circuit shown in Figure 24 in which the multiplier is placed in the feedback path of an operational amplifier. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-) input. Assuming that the bias current of the operational amplifier is negligible, then $I_{1}=$ $I_{2}$ and

Solving for $V_{Y}, \quad V_{Y}=\frac{-R 1}{R 2 K} \frac{V_{Z}}{V_{X}}$.
If $\mathrm{R} 1=\mathrm{R} 2$

$$
\begin{equation*}
V_{Y}=\frac{-V_{Z}}{K V_{X}} \tag{3}
\end{equation*}
$$

If $R 1=K R 2$

$$
\begin{equation*}
v_{Y}=\frac{-v_{Z}}{v_{X}} \tag{4}
\end{equation*}
$$

Hence, the output voltage is the ratio of $V_{Z}$ to $V_{X}$ and provides a divide function. This analysis is, of course, the ideal condition. If the multiplier error is taken into account, the output voltage is found to be

$$
\begin{equation*}
V_{Y}=-\left[\frac{R 1}{R 2 K}\right] \frac{V_{Z}}{V_{X}}+\frac{\Delta E}{K V_{X}} \tag{5}
\end{equation*}
$$

where $\Delta E$ is the error voltage at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set, particularly at small values of $V_{Y}$. For example, assume that R1 = R2, and $K=1 / 10$. For these conditions the output of the divide circuit is given by:

$$
\begin{equation*}
V_{Y}=\frac{-10 V_{Z}}{V_{X}}+\frac{10 \Delta E}{V_{X}} \tag{6}
\end{equation*}
$$

From equation 6 , it is seen that only when $V_{X}=10 \mathrm{~V}$ is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when $V_{X}$ is small, $(0.1$ volt) the error voltage of the divide circuit can be expected to be a hundred times the error of the basic multiplier circuit.

In terms of percentage error,

$$
\text { percentage error }=\frac{\text { error }}{\text { actual }} \times 100 \%
$$

or from equation (5),

$$
\text { P.E.D }=\frac{\frac{\Delta E}{K V_{X}}}{\left[\frac{R 1}{R 2 K}\right] \frac{V_{Z}}{V_{X}}}=\left[\frac{R 2}{R 1}\right] \frac{\Delta E}{V_{Z}}
$$

From equation 7, the percentage error is inversely related to voltage $V_{Z}$ (i.e., for increasing values of $V_{Z}$, the percentage error decreases).

A circuit that performs the divide function is shown in Figure 25.
Two things should be emphasized concerning Figure 25.

1. The input voltage ( $V^{\prime} X$ ) must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of $V_{Z}$.
2. Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connection shown in Figure 21; necessitated to insure negative feedback around the loop.

A Suggested Adjustment Procedure for the Divide Circuit

1. Set $V_{Z}=0$ volts and adjust the output offset potentiometer ( $\mathrm{P}_{4}$ ) until the output voltage $\left(\mathrm{V}_{0}\right)$ remains at some (not necessarily zero) constant value as $V_{X^{\prime}}$ is varied between +1.0 volt and +10 volts.
2. Keep $V_{Z}$ at 0 volts, set $V_{X}$ at +10 volts and adjust the $Y$ input offset potentiometer $\left(\mathrm{P}_{1}\right)$ until $\mathrm{V}_{\mathrm{O}}=0$ volts.
3. Let $V_{X}{ }^{\prime}=V_{Z}$ and adjust the $X$ input offset potentiometer ( $P_{2}$ ) until the output voltage remains at some (not necessarily - 10 volts) constant value as $V_{Z}=V_{X}$ is varied between +1.0 and +10 volts.
4. Keep $V_{X}=V_{Z}$ and adjust the scale factor potentiometer ( $P_{3}$ ) until the average value of $V_{0}$ is -10 volts as $V_{Z}=$ $V_{X}$ is varied between +1.0 volt and +10 volts.
5. Repeat steps 1 through 4 as necessary to achieve optimum performance.
5.4 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function

FIGURE 25 - DIVIDE CIRCUIT


## OPERATION AND APPLICATIONS INFORMATION (continued)

FIGURE 26 - BASIC SQUARE ROOT CIRCUIT

as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 27) protects against accidental latch-up.

This circuit also may be adjusted in the closed-loop mode as follows:

1. Set $V_{Z}$ to -0.01 volts and adjust $P_{4}$ (output offset) for $V_{0}=+0.316$ volts, being careful to approach the output from the positive side to preclude the effect of the output diode clamping.
2. Set $\mathrm{V}_{\mathrm{Z}}$ to -0.9 volts and adjust $\mathrm{P}_{2}\left(\mathrm{X}\right.$ adjust) for $\mathrm{V}_{\mathrm{O}}=$ +3.0 volts.
3. Set $V_{Z}$ to -10 volts and adjust $P_{3}$ (scale factor adjust) for $V_{0}=+10$ volts.
4. Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

## 6. AC Applications

The applications that follow demonstrate the versatility of the monolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units have circuits that, although they optimize dc multiplication operation, can hinder ac applications.
6.1 Frequency doubling often is done with a diode where the fundamental plus a series of harmonics are generated. However, extensive filtering is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually is small in magnitude and requires amplification.

When a multiplier is used to double frequency the second harmonic is obtained directly, except for a dc term, which can be removed with ac coupling.

$$
\begin{aligned}
& e_{0}=K E^{2} \cos ^{2} \omega t \\
& e_{0}=\frac{K E^{2}}{2}(1+\cos 2 \omega t) .
\end{aligned}
$$

A potted multiplier can be used to obtain the double frequency component, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted

In a typical doubler circuit, conventional $\pm 15$-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allowed. The circuit generates wave-forms that are double frequency; less than $1 \%$ distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kHz ; reducing the scale factor by decreasing the load resistors can further expand the bandwidth.

A slightly modified version of the MC1595 (MC1495) the MC1596 (MC1496) - has been successfully used as a doubler to obtain 400 MHz . (See Figure 28.)
6.2 Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is 1.6 kHz and the carrier is 40 kHz .

FIGURE 27 - SQUARE ROOT CIRCUIT


FIGURE 28 - FREQUENCY DOUBLER


When two equal cosine waves are applied to $X$ and $Y$,
the result is a wave shape of twice the input frequency.
For this example the input was a 10 kHz signal, output was 20 kHz .

FIGURE 29 - BALANCED MODULATOR


The defining equation for balanced modulation is

$$
\begin{aligned}
& K\left(E_{m} \cos \omega_{m} t\right)\left(E_{c} \cos \omega_{c} t\right)= \\
& \frac{K E_{c} E_{m}}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
\end{aligned}
$$

where $\omega_{c}$ is the carrier frequency, $\omega_{m}$ is the modulator frequency and $K$ is the multiplier gain constant.

AC coupling at the output eliminates the need for level translation or an operational amplifier; a higher operating frequency results.

A problem common to communications is to extract the intelligence from single-sideband received signal. The ssb signal is of the form

$$
e_{s s b}=A \cos \left(\omega_{c}+\omega_{m}\right) t
$$

and if multiplied by the appropriate carrier waveform, $\cos \omega_{c} t$,

$$
e_{\text {ssb }} e_{\text {carrier }}=\frac{A K}{2}\left[\cos \left(2 \omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}\right) t\right]
$$

If the frequency of the band-limited carrier signal, $\omega_{c}$, is ascertained in advance the designer can insert a low-pass filter and obtain the $(A K / 2)\left(\cos \omega_{c} t\right)$ term with ease. He also can use an operational amplifier for a combination level shift-active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not accessible, so the user must accept the level shifting provided, and still add a low-pass filter.

### 6.3 Amplitude Modulation

The multiplier performs amplitude modulation, similar to balanced modulation, when a dc term is added to the modulating signal with the Y offset adjust potentiometer. (See Figure 30.)

Here, the identity is

$$
\begin{gathered}
E_{m}\left(1+m \cos \omega_{m} t\right) E_{c} \cos \omega_{c} t=K E_{m} E_{c} \cos \omega_{c} t+ \\
\frac{K E_{m} E_{c^{m}}}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
\end{gathered}
$$

where $m$ indicates the degree of modulation. Since $m$ is adjustable, via potentiometer $\mathrm{P}_{1}, 100 \%$ modulation is possible. Without extensive tweaking, $96 \%$ modulation may be obtained where $\omega_{\mathrm{c}}$ and $\omega_{\mathrm{m}}$ are the same as in the balanced-modulator example.

### 6.4 Linear Gain Control

To obtain linear gain control, the designer can feed to one of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose a 200 kHz sine wave, 1.0 volt peak-to-peak, is the signal to which a gain control will be added. The dynamic range of the control voltage $V_{C}$ is 0 to +1.0 volt. These must be ascertained and the proper values of $R_{X}$ and $R_{Y}$ can be selected for optimum performance. For the $200-\mathrm{kHz}$ operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency. (See Figure 31.)

## OPERATION AND APPLICATIONS INFORMATION (continued)

FIGURE 30 - AMPLITUDE MODULATION

(B)


The signal is applied to the unit's $Y$ input. Since the total input range is limited to 1.0 volt p-p, a 2.0 -volt swing, a current source of 2.0 mA and an RY value of 1.0 kilohm is chosen. This takes best advantage of the dynamic range and insures linear operation in the Y -channel.

Since the $X$ input varies between 0 and +1.0 volt, the current source selected was 1.0 mA and the $R_{X}$ value chosen was 2.0 kilohms. This also insures linear operation over the $X$ input dynamic range.

Choosing $R_{L}=100$ assures wide-bandwidth operation. Hence, the scale factor for this configuration is

$$
\begin{aligned}
K & =\frac{R_{L}}{\left.R_{X} R_{Y}\right|_{3}} \\
& =\frac{100}{(2 k)(1 \mathrm{k})\left(2 \times 10^{+3}\right)} \mathrm{V}^{-1} \\
& =\frac{1}{40} \mathrm{~V}^{-1}
\end{aligned}
$$

The 2 in the numerator of the equation is missing in this scalefactor expression because the output is single-ended and ac coupled.

To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been used with frequency compensation to allow a gain of 40 at 200 kHz . The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly.

FIGURE 31 - LINEAR GAIN CONTROL


## OPERATIONS AND APPLICATIONS

 INFORMATION INDEX1. THEORY OF OPERATION
2. DESIGN CONSIDERATIONS
2.1 General
2.1.1 Linearity, Output Error, $E_{R X}$ or $E_{R Y}$
2.1.2 3-dB Bandwidth and Phase Shift
2.1.3 Maximum Input Voltage
2.1.4 Maximum Output Voltage Swing
3. GENERAL DESIGN PROCEDURES
4. OFFSET AND SCALE FACTOR ADJUSTMENT
4.1 Offset Voltages
4.2 Scale Factor
4.3 Adjustment Procedure
5. DC APPLICATIONS
5.1 Multiply
5.2 Squaring Circuit
5.3 Divide Circuit
5.4 Square Root
6. AC APPLICATIONS
6.1 Frequency Doubler
6.2 Balanced Modulator
6.3 Amplitude Modulation
6.4 Linear Gain Control

## Specifications and Applications Information

## MONOLITHIC BALANCED MODULATOR - DEMODULATOR

... designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM detection, phase detection, and chopper applications. See Motorola Application Note AN-531 for additional design information.

- Excellent Carrier Suppression - 65 dB typ @ 0.5 MHz
-50 dB typ @ 10 MHz
- Adjustable Gain and Signal Handling
- Balanced Inputs and Outputs
- High Common-Mode Rejection - 85 dB typ


## BALANCED <br> MODULATOR - DEMODULATOR INTEGRATED CIRCUIT SILICON <br> EPITAXIAL PASSIVATED




FIGURE 3 - SUPPRESSED CARRIER SPECTRUM


F:GURE 2 - AMPLITUDE MODULATION
OUTPUT WAVEFORM


FIGURE 4 - AMPLITUDE MODULATION SPECTRUM



[^28]MC1596, MC1496 (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{aligned} & \text { Applied Voltage } \\ & \quad\left(v_{6}-v_{7}, v_{8}-v_{1}, v_{9}-v_{7}, v_{9}-v_{8}, v_{7}-v_{4}, v_{7}-v_{1}\right. \text {. } \\ & \left.v_{8}-v_{4}, v_{6}-v_{8}, v_{2}-v_{5}, v_{3}-v_{5}\right) \end{aligned}$	$\Delta \mathrm{V}$	30	Vdc
Differential Input Signal	$\begin{aligned} & v_{7}-v_{8} \\ & v_{4}-v_{1} \end{aligned}$	$\begin{gathered} +5.0 \\ \pm\left(5+I_{5} \mathrm{R}_{\mathrm{e}}\right) \end{gathered}$	Vdc
Maximum Bias Current	$l_{5}$	10	mA
Power Dissipation (Package Limitation)   Ceramic Dual In-Line Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Metal Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	$\begin{gathered} 575 \\ 3.85 \\ 680 \\ 4.6 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\begin{array}{ll}\text { Operating Temperature Range } & \\ & \text { MC1496 } \\ & \text { MC1596 }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS* $\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{V}^{-}=-8.0 \mathrm{Vdc}, 1_{5}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{e}}=1.0 \mathrm{k} \Omega\right.$,
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} \& \& \& \& \multicolumn{3}{|l|}{MC1596,} \& \multicolumn{3}{|c|}{MC1496} \& \multirow[b]{2}{*}{Unit} \\
\hline \& Fig \& Note \& Symbol \& Min \& Typ \& Max \& Min \& Typ \& Max \& \\
\hline \begin{tabular}{l}
Carrier Feedthrough \\
\(\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}\) (rms) sine wave and
\[
{ }^{\mathrm{f}} \mathrm{C}=1.0 \mathrm{kHz}
\] \\
offset adjusted to zero
\[
{ }^{\mathrm{f}} \mathrm{C}=10 \mathrm{MHz}
\] \\
\(V_{C}=300 \mathrm{mVp}\)-p square wave: \\
offset adjusted to zero \\
\({ }^{\mathrm{f}} \mathrm{C}=1.0 \mathrm{kHz}\) \\
offset not adjusted \\
\({ }^{f} \mathrm{C}=1.0 \mathrm{kHz}\)
\end{tabular} \& 7 \& 1 \& \(\mathrm{V}_{\text {CFT }}\) \&  \& 40
140
0.04
20 \& \begin{tabular}{|c|}
\hline- \\
0 \\
0.2 \\
100 \\
\hline
\end{tabular} \& - \& \[
\begin{gathered}
40 \\
140 \\
\\
0.04 \\
20
\end{gathered}
\] \& \[
\begin{gathered}
- \\
- \\
0.4 \\
200
\end{gathered}
\] \& \[
\mu V(\mathrm{rms})
\]
\[
\mathrm{mV}(\mathrm{rms})
\] \\
\hline \[
\begin{aligned}
\& \text { Carrier Suppression } \\
\& \begin{aligned}
\mathrm{f}_{\mathrm{S}} \& =10 \mathrm{kHz}, 300 \mathrm{mV}(\mathrm{rms}) \\
\mathrm{f}_{\mathrm{C}} \mathrm{C} \& =500 \mathrm{kHz}, 60 \mathrm{mV}(\mathrm{rms}) \text { sine wave } \\
\mathrm{f}_{\mathrm{C}} \& =10 \mathrm{MHz}, 60 \mathrm{mV}(\mathrm{rms}) \text { sine wave }
\end{aligned}
\end{aligned}
\] \& 7 \& 2 \& \(\mathrm{V}_{\text {CS }}\) \&  \& 6
65
65
50. \&  \& 40
- \& \[
\begin{aligned}
\& 65 \\
\& 50
\end{aligned}
\] \& \[
-
\] \& dB

$k$ <br>

\hline | Transadmittance Bandwidth (Magnitude) ( $R_{L}=50$ ohms) |
| :--- |
| Carrier Input Port, $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}(\mathrm{rms})$ sine wave ${ }^{\mathrm{f}} \mathrm{S}=1.0 \mathrm{kHz}, 300 \mathrm{mV}(\mathrm{rms})$ sine wave |
| Signal Input Port, $\mathrm{V}_{\mathrm{S}}=300 \mathrm{mV}$ (rms) sine wave $\left\|V_{C}\right\|=0.5 \mathrm{Vdc}$ | \& 10 \& 8 \& $\mathrm{BW}_{3 \mathrm{~dB}}$ \&  \&  \&  \& -

- \& $$
\begin{aligned}
& 300 \\
& 80
\end{aligned}
$$ \& -
- 
- \& MHz <br>

\hline $$
\begin{aligned}
& \text { Signal Gain } \\
& V_{S}=100 \mathrm{mV}(\mathrm{rms}), f=1.0 \mathrm{kHz} ;\left|\mathrm{V}_{\mathrm{C}}\right|=0.5 \mathrm{Vdc}
\end{aligned}
$$ \& 12 \& 3 \& AVS \& \[

2.5
\] \&  \&  \& 2.5 \& 3.5 \& - \& V/V <br>

\hline | Single-Ended Input Impedance, Signal Port, f=5.0 MHz |
| :--- |
| Parallel Input Resistance |
| Parallel Input Capacitance | \& 8 \& - \& \[

$$
\begin{aligned}
& r_{i p} \\
& c_{i p}
\end{aligned}
$$

\] \&  \& \[

$$
\begin{array}{r}
200 \\
20
\end{array}
$$

\] \&  \& - \& \[

$$
\begin{aligned}
& 200 \\
& 2.0
\end{aligned}
$$

\] \& - \& \[

$$
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
$$
\] <br>

\hline | Single-Ended Output Impedance, $f=10 \mathrm{MHz}$ |
| :--- |
| Parallel Output Resistance |
| Parallel Output Capacitance | \& 8 \& - \& | $r_{\text {op }}$ |
| :--- |
| cop | \&  \& 40 50 \&  \& - \& \[

$$
\begin{array}{r}
40 \\
5.0
\end{array}
$$

\] \& - \& \[

$$
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
$$
\] <br>

\hline $$
\begin{aligned}
& \text { Input Bias Current } \\
& I_{\mathrm{bS}}=\frac{I_{1}+I_{4}}{2} ; I_{\mathrm{bC}}=\frac{I_{7}+I_{8}}{2}
\end{aligned}
$$ \& 9 \& - \& \[

$$
\begin{aligned}
& \mathrm{I} \mathrm{bS} \\
& I_{\mathrm{bC}}
\end{aligned}
$$

\] \&  \& | 12 |
| ---: |
| 12 |
| 12 | \& | 25 |
| :---: |
| 25 | \& - \& \[

$$
\begin{aligned}
& 12 \\
& 12
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 30 \\
& 30
\end{aligned}
$$
\] \& $\mu \mathrm{A}$ <br>

\hline Input Offset Current

$$
I_{i o S}=I_{1}-I_{4} ; I_{i o C}=I_{7}-I_{8}
$$ \& 9 \& - \& \[

\left|I_{\mathrm{ios}}\right|
\]

$$
\|_{\mathrm{ioCl}}
$$ \&  \& 0.7

07 \& | 50 |
| :---: |
| 50 | \& - \& \[

$$
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
$$
\] \& $\mu \mathrm{A}$ <br>

\hline Average Temperature Coefficient of Input Offset Current

$$
\left(T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
$$ \& 9 \& - \& $\left|T C_{\text {lio }}\right|$ \&  \&  \&  \& - \& 2.0 \& $\cdots$ \& $n \mathrm{~A} /{ }^{\circ} \mathrm{C}$ <br>

\hline Output Offset Current

$$
(16-19)
$$ \& 9 \& - \& $\left|\mathrm{I}_{00}\right|$ \&  \& 14. \& 50 \& - \& 14 \& 80 \& $\mu \mathrm{A}$ <br>

\hline Average Temperature Coefficient of Output Offset Current

$$
\left(T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
$$ \& 9 \& - \& |TClool \&  \&  \&  \& - \& 90 \& - \& $n \mathrm{~A} /{ }^{\circ} \mathrm{C}$ <br>

\hline Common-Mode Input Swing, Signal Port, $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$ \& 11 \& 4 \& CMV \&  \& 5.0) \&  \& - \& 5.0 \& - \& Vp-p <br>

\hline | Common-Mode Gain, Signal Port, $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$, $\left\|\mathrm{V}_{\mathrm{C}}\right\|=0.5 \mathrm{Vdc}$ |
| :--- |
| Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9) | \& | $11$ |
| :--- |
| 12 | \& - \& ACM

\[
v_{0}

\] \&  \& | -85 |
| ---: |
| 8.0 | \&  \& - \& \[

$$
\begin{aligned}
& -85 \\
& 8.0
\end{aligned}
$$

\] \&  \& | dB |
| :--- |
| Vdc | <br>

\hline Differential Output Voltage Swing Capability \& 12 \& - \& $V_{\text {out }}$ \&  \& 8.0. \& - \& - \& 8.0 \& - \& Vp-p <br>
\hline Power Supply Current

$$
\begin{gathered}
I_{6}+I_{9} \\
I_{10}
\end{gathered}
$$ \& 9 \& 6 \& ${ }_{1}^{1}{ }^{+}$ \&  \& \[

$$
\begin{array}{|c|}
\hline 2.0 \\
3.0
\end{array}
$$

\] \& | 3.0 |
| :---: |
| 40 | \& - \& \[

$$
\begin{array}{r}
2.0 \\
3.0
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 4.0 \\
& 5.0
\end{aligned}
$$
\] \& mAdc <br>

\hline DC Power Dissipation \& 9 \& 5 \& $\mathrm{P}_{\mathrm{D}}$ \& $$
\text { + }-1
$$ \& 33 \&  \& - \& 33 \& - \& mW <br>

\hline
\end{tabular}

* Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.


## GENERAL OPERATING INFORMATION*

## Note 1 - Carrier Feedthrough

Carrier feedthrough is defined as the output voltage at carrier frequency with only the carrier applied (signal voltage $=0$ ).

Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer $\mathrm{R}_{1}$ of Figure 7).

## Note 2 - Carrier Suppression

Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.

Carrier suppression is very dependent on carrier input level, as shown in Figure 24. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum carrier level results in unnecessary device and circuit carrier feedthrough, which again degenerates the suppression figure. The MC1596 has been characterized with a 60 mV (rms) sinewave carrier input signal. This level provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz , and is generally recommended for balanced modulator applications.

Carrier feedthrough is independent of signal level, $\mathrm{V}_{\mathrm{S}}$. Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair - or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Note 3 and Figure 22). Note also that an optimum carrier level is recommended in Figure 24 for good carrier suppression and minimum spurious sideband generation.

At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.

## Note 3 - Signal Gain and Maximum Input Level

Signal gain (single-ended) at low frequencies is defined as the voltage gain,

$$
A V_{S}=\frac{V_{o}}{V_{S}}=\frac{R_{L}}{R_{e}+2 r_{e}} \text { where } r_{e}=\frac{26 m V}{15(m A)}
$$

A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" ( $\left.V_{C}=0.5 \mathrm{Vdc}\right)$. This in effect forms a cascode differential amplifier.

Linear operation requires that the signal input be below a critical value determined by $R_{E}$ and the bias current $I_{5}$

$$
V_{S} \leq I_{5} R_{E}(\text { Volts peak })
$$

Note that in the test circuit of Figure 12, $\mathrm{V}_{\mathrm{S}}$ corresponds to a maximum value of 1 volt peak.

## Note 4 - Common-Mode Swing

The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen (see Note 6).

## Note 5 - Power Dissipation

Power dissipation, $P_{D}$, within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming $V_{9}=V_{6}, I_{5}=I_{6}=I_{9}$ and ignoring
base current, $P_{D}=2 I_{5}\left(V_{6}-V_{10}\right)+I_{5}\left(V_{5}-V_{10}\right)$ where subscripts refer to pin numbers.

## Note 6 - Design Equations

The following is a partial list of design equations needed to operate the circuit with other supply voltages and input conditions. See Note 3 for $R_{e}$ equation.
A. Operating Current

The internal bias currents are set by the conditions at pin 5 . Assume:

$$
\begin{aligned}
& I_{5}=I_{6}=I_{9} \\
& I_{B} \ll I_{C} \text { for all transistors }
\end{aligned}
$$

then:

$$
\begin{aligned}
& R_{5}=\frac{V^{-}-\phi}{I_{5}}-500 \Omega \quad \text { where: } R_{5} \text { is the resistor between pin } \\
& 5 \text { and ground } \\
& \phi=0.75 \mathrm{~V} \text { at } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{aligned}
$$

The MC1596 has been characterized for the condition $\mathrm{I}_{5}=1.0$ mA and is the generally recommended value.
B. Common-Mode Quiescent Output Voltage

$$
v_{6}=v_{9}=v^{+}-I_{5} R_{L}
$$

## Note 7 - Biasing

The MC1596 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2 volts collector-base bias on all transistors while not exceeding the voltages given in the absolute maximum rating table;

$$
\begin{aligned}
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{6}, V_{9}\right)-\left(\mathrm{V}_{7}, \mathrm{~V}_{8}\right)\right] \geq 2 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{7}, V_{8}\right)-\left(\mathrm{V}_{1}, V_{4}\right)\right] \geq 2.7 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{1}, V_{4}\right)-\left(\mathrm{V}_{5}\right)\right] \geq 2.7 \mathrm{Vdc}
\end{aligned}
$$

The foregoing conditions are based on the following approximations:

$$
v_{6}=v_{9}, \quad v_{7}=v_{8}, \quad v_{1}=v_{4}
$$

Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.

## Note 8 - Transadmittance Bandwidth

Carrier transadmittance bandwidth is the $3-\mathrm{dB}$ bandwidth of the device forward transadmittance as defined by:

$$
\left.v_{21 c}=\frac{i_{0}(\text { each sideband })}{v_{s}(\text { signal })} \right\rvert\, v_{0}=0
$$

Signal transadmittance bandwidth is the $3-\mathrm{dB}$ bandwidth of the device forward transadmittance as defined by:

$$
\left.\mathrm{v}_{21 \mathrm{~S}}=\frac{\mathrm{i}_{0}(\text { signal })}{v_{\mathrm{s}}(\text { signal })} \right\rvert\, v_{\mathrm{c}}=0.5 \mathrm{Vdc}, \mathrm{v}_{\mathrm{o}}=0
$$

[^29]
## Note 9 - Coupling and Bypass Capacitors $\mathrm{C}_{\mathbf{1}}$ and $\mathrm{C}_{\mathbf{2}}$

Capacitors $C_{1}$ and $C_{2}$ (Figure 7) should be selected for a reactance of less than 5.0 ohms at the carrier frequency.

## Note 10 - Output Signal, $\mathbf{V}_{\mathbf{o}}$

The output signal is taken from pins 6 and 9 , either balanced or single-ended. Figure 14 shows the output levels of each of the two output sidebands resulting from variations in both the carrier and modulating signal inputs with a single-ended output connection.

## Note 11 - Signal Port Stability

Under certain values of driving source impedance, oscillation may occur. In this event, an RC suppression network should be
connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.


An alternate method for low-frequency applications is to insert a 1 k -ohm resistor in series with the inputs, pins 1 and 4 . In this case input current drift may cause serious degradation of carrier suppression.

## TEST CIRCUITS

FIGURE 7 - CARRIER REJECTION AND SUPPRESSION


FIGURE 8 - INPUT-OUTPUT IMPEDANCE


FIGURE 9 - BIAS AND OFFSET CURRENTS
FIGURE 10 - TRANSCONDUCTANCE BANDWIDTH


Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceram ic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

## MC1596, MC1496 (continued)

TEST CIRCUITS (continued)

FIGURE 11 - COMMON-MODE GAIN


FIGURE 12 - SIGNAL GAIN AND OUTPUT SWING


Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

## TYPICAL CHARACTERISTICS

Typical characteristics were obtained with circuit shown in Figure 7, $\mathrm{f} \mathbf{C}=500 \mathrm{kHz}$ (sine wave), $V_{C}=60 \mathrm{mV}(\mathrm{rms}), \mathrm{f}_{\mathrm{S}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=300 \mathrm{mV}(\mathrm{rms}), \mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

FIGURE 13 - SIDEBAND OUTPUT versus CARRIER LEVELS


FIGURE 15 - SIGNAL-PORT PARALLEL-EQUIVALENT INPUT CAPACITANCE versus FREQUENCY


FIGURE 14 - SIGNAL-PORT PARALLEL-EQUIVALENT INPUT RESISTANCE versus FREQUENCY


FIGURE 16 - SINGLE-ENDED OUTPUT IMPEDANCE versus FREQUENCY


TYPICAL CHARACTERISTICS (continued)
Typical characteristics were obtained with circuit shown in Figure $7, \mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$ (sine wave),
$V_{C}=60 \mathrm{mV}(\mathrm{rms}), \mathrm{f}_{S}=1 \mathrm{kHz}, V_{S}=300 \mathrm{mV}(\mathrm{rms}), T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.


FIGURE 19 - SIGNAL-PORT FREQUENCY RESPONSE


FIGURE 21 - CARRIER FEEDTHROUGH versus FREQUENCY


FIGURE 18 - CARRIER SUPPRESSION versus TEMPERATURE


FIGURE 20 - CARRIER SUPPRESSION versus FREQUENCY


FIGURE 22 - SIDEBAND HARMONIC SUPPRESSION versus INPUT SIGNAL LEVEL


## MC1596, MC1496 (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 23 - SUPPRESSION OF CARRIER HARMONIC SIDEBANDS versus CARRIER FREQUENCY


FIGURE 24 - CARRIER SUPPRESSION versus CARRIER INPUT LEVEL


## OPERATIONS INFORMATION

The MC1596/MC1496, a monolithic balanced modulator circuit, is shown in Figure 5.

This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of the two input signals.

Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.

The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output.

The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.

For low-level operation at both input ports, the output signal will contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes.

For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output.

The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions

Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the following expression:

$$
V=\left(1_{5}\right)\left(R_{E}\right) \text { volts peak. }
$$

This expression may be used to compute the minimum value of $R_{E}$ for a given input voltage amplitude.

The gain from the modulating signal input port to the output is the MC 1596/MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.

As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1596/ MC1496 for a low-level modulating signal input and the following carrier input conditions:

1) Low-level dc
2) High-level dc
3) Low-level ac
4) High-level ac

These gains are summarized in Table 1, along with the frequency components contained in the output signal.

## OPERATIONS INFORMATION (continued)

FIGURE 25 - TABLE 1
VOLTAGE GAIN AND OUTPUT FREQUENCIES

Carrier Input   Signal ( $\left.V_{C}\right)$	Approximate   Voltage Gain	Output Signal   Frequency $(s)$
Low-level dc	$\frac{R_{L} V_{C}}{2\left(R_{E}+2 r_{e}\right)\left(\frac{K T}{q}\right)}$	$f_{M}$
High-level dc	$\frac{R_{L}}{R_{E}+2 r_{e}}$	$f_{M}$
Low-level ac	$\frac{R_{L} V_{C}(r m s)}{2 \sqrt{2}\left(\frac{K T}{q}\right)\left(R_{E}+2 r_{e}\right)}$	${ }^{f_{C} \pm f_{M}}$
High-level ac	$\frac{0.637 R_{L}}{R_{E}+2 r_{e}}$	$\left.\begin{array}{c}f_{C} \pm f_{M}, 3 f_{C} \pm f_{M} \\ 5 f_{C} \pm f_{M}\end{array}\right]$.

NOTES:

1. Low-level Modulating Signal, $\mathrm{V}_{\mathrm{M}}$, assumed in all cases. $V_{C}$ is Carrier Input Voltage.
2. When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs, $f_{C}+f_{M}$ and $f_{C}-f_{M}$.
3. All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two.
4. $R_{L}=$ Load resistance.
5. $R_{E}=E$ mitter resistance between pins 2 and 3 .
6. $r_{e}=$ Transistor dynamic emitter resistance, at $+25^{\circ} \mathrm{C}$;

$$
r_{e} \approx \frac{26 \mathrm{mV}}{15(\mathrm{~mA})}
$$

7. $K=$ Boltzmann's Constant, $T=$ temperature in degrees Kelvin, $q=$ the charge on an electron.

$$
\frac{K T}{q} \approx 26 \mathrm{mV} \text { at room temperature. }
$$

## APPLICATION INFORMATION

Double sideband suppressed carrier modulation is the basic application of the MC1596/MC1496. The suggested circuit for this application is shown on the front page of this data sheet.

In some applications, it may be necessary to operate the MC1596/MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.

## AM Modulator

The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.

All that is required to shift from suppressed carrier to AM operation is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal.

However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28.

## Product Detector

The MC1596/MC1496 makes an excellent SSB product detector (see Figure 29).

This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9 MHz .

The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the $0.1 \mu \mathrm{~F}$ capacitors on pins 7 and 8 should be increased to $1.0 \mu \mathrm{~F}$. Also, the output filter at pin 9 can be tailored to a specific intermediate frequency and audio amplifier input impedance.

As in all applications of the MC1596/MC1496, the emitter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.

This circuit may also be used as an AM detector by introducing
carrier signal at the carrier input and an AM signal at the SSB input.

The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential amplifier. If the carrier signal is modulated, a 300 mV (rms) input level is recommended.

## Doubly Balanced Mixer

The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks.

The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV ( rms ).

Figure 30 shows a mixer with a broadband input and a tuned output.

## Frequency Doubler

The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.

Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively.

## Phase Detection and FM Detection

The MC1596/MC1496 will function as a phase detector. Highlevel input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals.

An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then provide an output which is a function of the input signal frequency.

## TYPICAL APPLICATIONS



FIGURE 28 - AM MODULATOR CIRCUIT
FIGURE 29 - PRODUCT DETECTOR (+12 Vdc SINGLE SUPPLY


FIGURE 30 - DOUBLY BALANCED MIXER (BROADBAND INPUTS, 9.0 MHz TUNED OUTPUT)


Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic pack aged device refer to the PIN CONNECTION CHART on the first page of this specification.

## TYPICAL APPLICATIONS (continued)

FIGURE 32 - 150 to $\mathbf{3 0 0} \mathbf{M H z}$ DOUBLER


DEFINITIONS

frequency
fC CARRIER FUNDAMENTAL
is MODULATING SIGNAL
$\mathrm{f}_{\mathrm{C}} \pm \mathrm{f}$ f FUNDAMENTAL CARRIER SIDEBANDS
$f^{f} \pm$ nfs FUNDAMENTAL CARRIER SIDEBAND HARMONICS
nf C CARRIER HARMONICS
nf $\pm \pm$ nfs CARRIER HARMONIC SIDEBANDS


## MONOLITHIC OPERATIONAL AMPLIFIER


. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- High-Performance Open Loop Gain Characteristics AVOL $=45,000$ typical
- Low Temperature Drift $- \pm 3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing $- \pm 14 \mathrm{~V}$ typical $@ \pm 15 \mathrm{~V}$ Supply
- Low Output Impedance $-\mathrm{Z}_{\text {Out }}=150$ ohms typical

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		$\begin{aligned} & \hline \mathrm{v}^{+} \\ & \mathrm{v}^{-} \end{aligned}$	$\begin{aligned} & \hline+18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal		$v_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing		$C M V_{\text {in }}$	$\pm \mathrm{V}^{+}$	Volts
Load Current		1 L	10	m.
Output Short Circuit Duration		ts	5.0	s
Power Dissipation (Package Limitation)   Metal Can   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Flat Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Plastic Dual In-L.ine Packages   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Ceramic Dual In-Line Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	.	$P_{\text {D }}$	$\begin{aligned} & 680 \\ & 4.6 \\ & 500 \\ & 3.3 \\ & 625 \\ & 5.0 \\ & 750 \\ & 6.0 \end{aligned}$	mW   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   mW   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   mW   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   mW   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\begin{aligned} & \text { MC1709 } \\ & \text { MC1709C } \end{aligned}$	$\mathrm{T}_{\text {A }}$	$\begin{array}{\|c} \hline-55 \text { to }+125 \\ 0 \text { to }+75 \\ \hline \end{array}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Packages		$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$





## MC1709, MC1709C (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Mc1709			MC1709C			Unit
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ ) $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $\left.\mathrm{T}_{\text {high }}\right)(2)$	AVOL	25,000	45,000	70,000	15,000	45,000	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	$Z_{\text {out }}$	3-4-	150	4	-	150	-	$\Omega$
Input Impedance $(f=20 \mathrm{~Hz})$	$\mathrm{z}_{\text {in }}$	- 150	400	-	50	250	-	k $\Omega$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \end{aligned}$	$\mathrm{V}_{0}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$V_{\text {peak }}$
Input Common-Mode Voltage Swing	$C M V_{\text {in }}$	$\pm 8$	$\pm 10$		$\pm 8.0$	$\pm 10$	-	$V_{\text {peak }}$
Common-Mode Rejection Ratio $(f=20 \mathrm{~Hz})$	$\mathrm{CM}_{\text {rej }}$	70	$90$		65	90	-	dB
$\begin{gathered} \text { Input Bias Current } \\ \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{A}=\mathrm{T}_{\text {low }}\right) \\ \hline \end{gathered}$	'b		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\frac{0.5}{1.5}$		0.3	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$
$\begin{gathered} \text { Input Offset Current } \\ \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ \left(T_{A}=T_{\text {low }}\right) \\ \left(T_{A}=T_{\text {high }}\right) \end{gathered}$	$\left\|{ }_{1 i}\right\|$		$0.05$   -   -	0.2   0.5   0.2	-	0.1 -	$\begin{gathered} 0.5 \\ 0.75 \\ 0.75 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Voltage } \\ & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	$\left\|\mathrm{V}_{\text {io }}\right\|$		$10$	50   6.0		2.0	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	mV
$\left.\begin{array}{l}\text { Step Response } \\ \left\{\begin{array}{l}\text { Gain }=100,5.0 \% \text { overshoot, } \\ R_{1}=1.0 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, \\ R_{3}=1.5 \mathrm{k} \Omega, C_{1}=100 \mathrm{pF}, \mathrm{C}_{2}=\end{array}\right\} \\ 3.0 \mathrm{pF} \\ \left\{\begin{array}{l}\text { Gain }=10,10 \% \text { overshoot, } \\ R_{1}=1.0 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, \\ R_{3}=1.5 \mathrm{k} \Omega, C_{1}=500 \mathrm{pF}, C_{2}=20 \mathrm{pF}\end{array}\right\} \\ \left\{\begin{array}{l}\text { Gain }=1,5.0 \% \text { overshoot, } \\ R_{1}=10 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3}= \\ 1.5 \mathrm{k} \Omega, C_{1}=5000 \mathrm{pF}, C_{2}=200 \mathrm{pF}\end{array}\right\}\end{array}\right\}$			1 0.8 0.38 12 0.6 0.34 17 2.2 1.3 0.25		- - - - - - -	$\begin{gathered} 0.8 \\ 0.38 \\ 12 \\ \\ 0.6 \\ 0.34 \\ 1.7 \\ 2.2 \\ 1.3 \\ 0.25 \\ \hline \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \\ \mu \mathrm{~s} \\ \mu \mathrm{~S} \\ \mathrm{~V} / \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \\ \mathrm{~V} / \mu \mathrm{S} \end{gathered}$
Average Temperature Coefficient of Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $\left.\mathrm{T}_{\text {high }}\right)$ ( $R_{S} \leq 10 \mathrm{k} \Omega, T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ )	$\left\|\mathrm{TC}_{\text {Vio }}\right\|$		$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$		*-	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
DC Powe'r Dissipation   (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ )	${ }^{\text {P }}$		80	165	-	80	200	mW
Positive Supply Sensitivity ( $\mathrm{V}^{-}$constant)	$\mathrm{S}^{+}$		$25$	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity   ( $\mathrm{V}^{+}$constant)	$\mathrm{S}^{-}$		$25$	$150$	-	25	200	$\mu \mathrm{V} / \mathrm{V}$

(1) $d V_{\text {out }} / d t=$ Slew Rate
(2) $\begin{aligned} \mathrm{T}_{\text {high }}= & +75^{\circ} \mathrm{C} \text { for MC1709C, } \\ & +125^{\circ} \mathrm{C} \text { for MC1709 }\end{aligned} \quad \begin{aligned} \mathrm{T}_{\text {low }}= & 0^{\circ} \mathrm{C} \text { for MC1709C } \\ & -55^{\circ} \mathrm{C} \text { for MC1709 }\end{aligned}$
TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)
FIGURE 3 - LARGE SIGNAL SWING versus FREQUENCY


FIGURE 4 - VOLTAGE GAIN versus FREQUENCY


FIGURE 6 - VOLTAGE GAIN
versus POWER SUPPLY VOLTAGE


FIGURE 5 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY


FIGURE 7 - COMMON SWING versus POWER SUPPLY VOLTAGE


MC1709, MC1709C (continued)


See current MCC1709/1709C data sheet for standard linear chip information.
See current MCBC1709/MCB1709F data sheet for Beam-Lead device information. See current MCCF1709, 1709C data sheet for flip-chip information.

## MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

. . . designed for use in level detection, low-level sensing, and memory applications.

- Differential Input Characteristics Input Offset Voltage $=1.0 \mathrm{mV}$ Offset Voltage Drift $=3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Fast Response Time -40 ns
- Output Compatible With All Saturating Logic Forms -
$\mathrm{V}_{\mathrm{O}}=+3.2 \mathrm{~V}$ to -0.5 V typical
- Low Output Impedance - 200 ohms

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)			
Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & V_{C C} \max \\ & V_{E E} \max \end{aligned}$	$\begin{array}{r} +14 \\ -7.0 \end{array}$	Vdc   Vdc
Differential Input Signal Voltage	$V_{\text {ID }}$	$\pm 5.0$	Volts
Common Mode Input Swing Voltage	$V_{\text {ICR }}$	$\pm 7.0$	Volts
Peak Load Current	${ }_{1}$	10	mA
Power Dissipation (package limitations) Metal Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Flat Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Ceramic Dual In-Line Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 680 \\ & 4.6 \\ & 500 \\ & 3.3 \\ & 625 \\ & 5.0 \\ & \hline \end{aligned}$	
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$



See Packaging Information Section for outline dimensions.
See current MCC1710/1710C data sheet for standard linear chip information.
See current MCBC1710/MCB1710F for beam-lead device information

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+12 \mathrm{Vdc} \mathrm{V}_{E E}=-6 \mathrm{Vdc} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic Definitions (linear operation)	Characteristic	Symbol	Min	Typ	Max	Unit
	Input Offset Voltage $\begin{aligned} & V_{O}=1.4 \mathrm{Vdc}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{O}=1.8 \mathrm{Vdc}, T_{A}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{O}=1.0 \mathrm{Vdc}, T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	$V_{10}$	-	1.0 - -	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$m \mathrm{Vdc}$
	Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$	-	3.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Current $\begin{aligned} & V_{O}=1.4 \mathrm{Vdc}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & V_{O}=1.8 \mathrm{Vdc}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \\ & V_{O}=1.0 \mathrm{Vdc}, T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	110	-	1.0 -	$\begin{aligned} & 3.0 \\ & 7.0 \\ & 3.0 \end{aligned}$	$\mu$ Adc
	Input Bias Current $\begin{aligned} & V_{O}=1.4 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C} \\ & V_{O}=1.8 \mathrm{Vdc}, T_{A}=-55^{\circ} \mathrm{C} \\ & V_{O}=1.0 \mathrm{Vdc}, T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	IIB	-	12	$\begin{aligned} & 20 \\ & 45 \\ & 20 \end{aligned}$	$\mu$ Adc
	Open Loop Voltage Gain $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{aligned} & 1250 \\ & 1000 \end{aligned}$	1700	-	V/V
	Output Resistance	$\mathrm{r}_{0}$	-	200	-	ohms
	Differential Voltage Range	$V_{\text {ID }}$	$\pm 5.0$	-	-	Vdc
	Positive Output Voltage $v_{1 D} \geqslant 5.0 \mathrm{mV}, 0 \leqslant I_{\mathrm{O}} \leqslant 5.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.5	3.2	4.0	Vdc
	Negative Output Voltage $\mathrm{V}_{\mathrm{ID}} \geqslant-5.0 \mathrm{mV}$	$\mathrm{V}_{\mathrm{OL}}$	-1.0	-0.5	0	Vdc
	$\begin{aligned} & \text { Output Sink Current } \\ & V_{I D} \geqslant 5.0 \mathrm{mV}, V_{O} \leqslant 0, \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{I D} \geqslant .5 .0 \mathrm{mV}, V_{O} \geqslant 0, \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	${ }^{1} \mathrm{Os}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		mAdc
	Input Common-Mode Voltage Range	VICR	$\pm 5.0$	-	-	Volts
	Common-Mode Rejection Ratio $V_{E E}=-7.0 \mathrm{Vdc}, R_{S} \leqslant 200 \Omega$	CMRR	80	100	-	dB
	Propagation Delay Time For Positive and Negative Going Input Pulse	${ }^{t} p$	-	40	-	ns
	Power Supply Current $\mathrm{V}_{\mathrm{O}} \leqslant 0 \mathrm{Vdc}$	$\begin{aligned} & 1 D^{+} \\ & \text {ID } \end{aligned}$	-	$\begin{aligned} & 6.4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	mAdc
	Power Consumption		-	115	150	mW

TYPICAL CHARACTERISTICS

FIGURE 1 - VOLTAGE TRANSFER CHARACTERISTICS


FIGURE 3 - INPUT OFFSET CURRENT versus TEMPERATURE


FIGURE 5 - GAIN VARIATION
WITH POWER SUPPLY VOLTAGE


FIGURE 2 - INPUT OFFSET VOLTAGE versus TEMPERATURE


FIGURE 4 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 6 - VOLTAGE GAIN versus TEMPERATURE


TYPICAL CHARACTERISTICS (Continued)


FIGURE 9 - RECOMMENDED SERIES RESISTANCE versus MRTL* LOADS


FIGURE 8 - POWER DISSIPATION versus TEMPERATURE


FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL* OR MTTL* OUTPUT SWING


## MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

. . . designed for use in level detection, low-level sensing, and memory applications

- Differential Input Characteristics Input Offset Voltage $=1.5 \mathrm{mV}$ Offset Voltage Drift $=5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Fast Response Time - 40 ns
- Output Compatible With All Saturating Logic Forms $\mathrm{V}_{\mathrm{O}}=+3.2 \mathrm{~V}$ to -0.5 V typical
- Low Output Impedance - 200 ohms

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} +14 \\ -7.0 \end{array}$	Vdc   Vdc
Differential-Mode Input Signal Voltage	$V_{\text {ID }}$	$\pm 5.0$	Volts
Common-Mode Input Swing	$V_{\text {ICR }}$	$\pm 7.0$	Volts
Peak Load Current	$I_{L}$	10	mA
Power Dissipation (package limitations)   Metal Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Flat Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Ceramic and Plastic Dual In-Line Packages   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{D}$	$\begin{array}{r} 680 \\ 4.6 \\ 500 \\ 3.3 \\ 625 \\ 5.0 \end{array}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~mW} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~mW} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{aligned}$
Operating Temperature Range*	$\mathrm{T}_{\text {A }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

*For fuel temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and characteristic curves,
see MC1710 data sheet.

DIFFERENTIAL COMPARATOR MONOLITHIC SILICON EPITAXIAL PASSIVATED



See Packaging Information Section for outline dimensions.
See current MCC1710/1710C data sheet for standard linear chip information.

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic Definitions	Characteristic	Symbol	Min	Typ	Max	Unit
	Input Offset Voltage $\begin{aligned} & V_{O}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & V_{O}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=1.2 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{10}$	-	1.5 - -	$\begin{aligned} & 5.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	mVdc
	Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Current $\begin{aligned} & V_{O}=1.4 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C} \\ & V_{O}=1.5 \mathrm{Vdc}, T_{A}=0^{\circ} \mathrm{C} \\ & V_{O}=1.2 \mathrm{Vdc}, T_{A}=+70^{\circ} \mathrm{C} \end{aligned}$	110	-	1.0 - -	$\begin{aligned} & 5.0 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\mu \mathrm{Adc}$
	Input Bias Current $\begin{aligned} & V_{O}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=1.2 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	I'B	-	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 40 \end{aligned}$	$\mu \mathrm{Adc}$
	Voltage Gain $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=0 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{gathered} 1000 \\ 800 \end{gathered}$	$1500$	-	V/V
	Output Resistance	$\mathrm{r}_{0}$	-	200	-	ohms
	Differential-Mode Voltage Range	$V_{\text {IDR }}$	$\pm 5.0$	-	-	Vdc
	Positive Output Voltage $\mathrm{v}_{\mathrm{in}} \geqslant 5.0 \mathrm{mV}, 0 \leqslant 10 \leqslant 5.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.5	3.2	4.0	Vdc
	Negative Output Voltage $v_{i n} \geqslant-5.0 \mathrm{mV}$	V OL	-1.0	-0.5	0	$\mathrm{V} d \mathrm{c}$
	Output Sink Current $\begin{aligned} \mathrm{V}_{\text {in }} \geqslant 5.0 \mathrm{mV}, & \mathrm{~V}_{\mathrm{O}} \end{aligned} \begin{aligned} & \geqslant 0 \\ \mathrm{~T}_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{A} & =0^{\circ} \mathrm{C} \end{aligned}$	$I_{s}$	$\begin{aligned} & 1.6 \\ & 0.5 \end{aligned}$	2.5	-	mAdc
	Input Common-Mode Range $V_{E E}=-7.0 \mathrm{Vdc}$	VICR	$\pm 5.0$	-	-	Volts
	Common-Mode Rejection Ratio $R_{S} \leqslant 200 \Omega$	CMRR	70	100	-	dB
	Propagation Delay Time For Positive and Negative Going Input Pulse	tPHL/LH	-	40	-	ns
	Power Supply Current $v_{O} \leqslant 0 \mathrm{Vdc}$	ICC	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	mAdc
	Power Consumption		-	110	150	mW

## MC1711 MC1711C

## DUAL DIFFERENTIAL VOLTAGE COMPARATOR

... designed for use in level detection, low-level sensing, and memory applications.
Typical Characteristics:

- Differential Input

Input Offset Voltage $=1.0 \mathrm{mV}$
Offset Voltage Drift $=5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Fast Response Time - 40 ns
- Output Compatible with All Saturating Logic Forms

$$
\mathrm{V}_{\mathrm{O}}=+4.5 \mathrm{~V} \text { to }-0.5 \mathrm{~V} \text { typical }
$$

- Low Output Impedance - 200 ohms

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+14	Vdc
	$\mathrm{V}_{\mathrm{EE}}$	-7.0	
Differential Input Signal Voltage	$\mathrm{V}_{\text {IDR }}$	$\pm 5.0$	Volts
Common-Mode Input Swing Voltage	$\mathrm{V}_{\text {ICR }}$	$\pm 7.0$	Volts
Peak Load Current	$\mathrm{I}_{\mathrm{L}}$	50	mA
Power Dissipation (package limitation)	$\mathrm{P}_{\mathrm{D}}$		
Metal Package		680	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Flat Ceramic Package		500	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3.3	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Ceramic and Plastic Dual In-Line Packages		625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range $\quad \mathrm{MC} 1711$			
	MC 1711 C	$\mathrm{T}_{\mathrm{A}}$	-55 to +125
		${ }^{\circ} \mathrm{C}$	
Sto +75			


DUAL DIFFERENTIAL
COMPARATOR
MONOLITHIC SILICON
INTEGRATED CIRCUIT



See Packaging Information Section for outline dimensions.

## MC1711, MC1711C (continued)

ELECTRICAL CHARACTERISTICS (each comparator) $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1711			MC1711C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\begin{aligned} & \left(V_{\text {ICR }}=0 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(V_{\text {ICR }} \neq 0 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(V_{\text {ICR }}=0 \mathrm{Vdc}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}{ }^{*}\right) \\ & \left(V_{\text {ICR }} \neq 0 \mathrm{Vdc}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	$\mathrm{V}_{10}$	- - -	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	- - -	$\begin{aligned} & 1.0 \\ & 1.0 \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 5.0 \\ 7.5 \\ 6.0 \\ 10 \\ \hline \end{array}$	mVdc
Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$	-	5.0	-	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}\right) \end{aligned}$	110		$0.5$	10 20 - 20	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.5 \\ - \\ - \\ - \end{gathered}$	$\begin{aligned} & 15 \\ & - \\ & 25 \\ & - \\ & 25 \end{aligned}$	$\mu \mathrm{Adc}$
Input Bias Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{1} \mathrm{~B}$		$25$	75 150 - 150	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$25$	$\begin{gathered} 100 \\ - \\ 150 \\ - \\ 150 \end{gathered}$	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Voltage Gain } \\ & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	$\mathrm{A}_{\text {vol }}$	$\begin{array}{r} 700 \\ 500 \\ \hline \end{array}$	$1500$	-		1500   -	-	V/V
Output Resistance	$\mathrm{R}_{\mathrm{O}}$	-	200	-	-	200	-	ohms
Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	$\pm 50$	-	$\square$	$\pm 5.0$	-	-	Vdc
High Level Output Voltage $\left(V_{I D} \geqslant 10 \mathrm{mVdc}, 0 \leqslant 10 \leqslant 5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.5	$3.2$		2.5	3.2	5.0	Vdc
Low Level Output Voltage ( $V_{\text {ID }} \geqslant-10 \mathrm{mVdc}$ )	VOL	$-10$	$-0.5$	0 $\square$	-1.0	-0.5	0	Vdc
Strobed Output Level ( $\mathrm{V}_{\text {strobe }} \leqslant 0.3 \mathrm{Vdc}$ )	$\mathrm{V}_{\mathrm{OL}(\mathrm{st})}$	-10		0	-1.0	-	0	Vdc
Output Sink Current $\left(\mathrm{v}_{\mathrm{in}} \geqslant-10 \mathrm{mV}, \mathrm{v}_{\mathrm{O}} \geqslant 0\right)$	1 Os	0.5	0.8	-	0.5	0.8	-	mAdc
Strobe Current $\left(\mathrm{V}_{\text {strobe }}=100 \mathrm{mVdc}\right)$	$\mathrm{I}_{\text {st }}$	-	1.2		-	1.2	2.5	mAdc
Input Common-Mode Range $\left(\mathrm{V}_{\mathrm{EE}}=-7.0 \mathrm{Vdc}\right)$	VICR	$\pm 5.0$	-	$\mathrm{B}^{2} \mathrm{Z}$	$\pm 5.0$	-	-	Volts
Response Time $\left(V_{b}=5.0 \mathrm{mV}+V_{10}\right)$	$\mathrm{t}_{\mathrm{R}}$			$\square$	-	40	-	ns
Strobe Release Time	${ }_{\text {t }} \mathrm{SR}$	-	- 12	4	-	12	-	ns
Power Supply Current ( $\mathrm{V}_{\mathrm{O}} \leqslant 0 \mathrm{Vdc}$ )	$\begin{aligned} & \mathrm{I} \mathrm{CC} \\ & \mathrm{I}_{\mathrm{EE}} \\ & \hline \end{aligned}$	$\square$	$\begin{aligned} & 8.6 \\ & 3.9 \\ & \hline \end{aligned}$	-	-	$\begin{array}{r} \hline 8.6 \\ 3.9 \\ \hline \end{array}$	-	mAdc
Power Consumption		$\square$	130	200	-	130	200	mW

${ }^{*} T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1711, $0^{\circ} \mathrm{C}$ for MC1711C
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1711, $+75^{\circ} \mathrm{C}$ for MC1711C

## TYPICAL CHARACTERISTICS

FIGURE 1 - VOLTAGE
TRANSFER CHARACTERISTICS


FIGURE 3 - VOLTAGE GAIN
versus TEMPERATURE


FIGURE 5 - VOLTAGE GAIN VARIATION WITH POWER SUPPLY VOLTAGE


FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 4 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES


FIGURE 6 - STROBE RELEASE TIME FOR VARIOUS INPUT OVERDRIVES


FIGURE 7 - COMMON-MODE PULSE RESPONSE


FIGURE 9 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS


FIGURE 8 - OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING


FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING


## MC1712

## MC1712C

MONOLITHIC WIDEBAND DC AMPLIFIER
- O. designed for use as an operational amplifier utilizing operating
characteristics as a function of the external feedback components.
- Open Loop Gain AVOL $=3600$ typical
- Low Temperature Drift $- \pm 2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Output Voltage Swing -
$\pm 5.3 \mathrm{~V}$ typical $@+12 \mathrm{~V}$ and -6 V Supplies
- Low Output Impedance $-\mathrm{Z}_{\mathrm{Out}}=200$ ohms typical

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage   (Total between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$terminals)	$\left\|v^{+}\right\|+\left\|v^{-}\right\|$	21	Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\begin{aligned} & +1.5 \\ & -6.0 \\ & \hline \end{aligned}$	Volts
Peak Load Current	${ }^{\prime}$	50	mA
Power Dissipation (Package Limitation)   Metal Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Flat Ceramic Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Dual In-Line Ceramic Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{D}$	680   4.6   500   3.3   625   5.0	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\mathrm{o}} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC1712   MC1712C	$T_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$




EQUIVALENT CIRCUIT


See Packaging Information Section for outline dimensions.

MC1712, MC1712C (continued)
ELECTRICAL CHARACTERISTICS (T $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		MC1712			MC1712C			
	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
$\begin{aligned} & \text { Open-Loop Voltage Gain }\left(R_{L}=100 \mathrm{k} \Omega\right) \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc} \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}= \pm 5.0 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}=-6.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}= \pm 5.0 \mathrm{Vdc}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}(\mathrm{C}), \mathrm{T}_{\text {high }}(1) \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \end{aligned}$	Avol	$\begin{gathered} 600 \\ 2500 \\ 2000 \\ 500 \end{gathered}$	900 3600	$\begin{array}{r} 1500 \\ 6000 \\ 7000 \\ 1750 \end{array}$	$\begin{gathered} 500 \\ 2000 \\ 1500 \\ \\ 400 \end{gathered}$	800 3400	$\begin{aligned} & 1500 \\ & 6000 \\ & 7000 \\ & 1750 \end{aligned}$	v/v
$\begin{aligned} & \text { Output Impedance } \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{~Hz}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{~Hz}\right) \end{aligned}$	$\mathrm{z}_{\text {out }}$		$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 700 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 800 \\ & 600 \end{aligned}$	ohms
```Input Impedance \(\left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{~Hz}\right)\) \(\left(\mathrm{V}^{+}=6.0 \mathrm{Vdc} \mathrm{V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{~Hz}\right.\), \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low. }} \cdot \mathrm{T}_{\text {high }}\) ) \(\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{~Hz}\right)\) \(\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, f=20 \mathrm{~Hz}\right.\), \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low. }} \mathrm{T}_{\text {high }}\)```	$z_{\text {in }}$	$\begin{gathered} 22 \\ 8.0 \\ 16 \\ 6.0 \end{gathered}$	$70$	- - - -	16   10	55   32		k ohms
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}, R_{\mathrm{L}}=100 \mathrm{k} \Omega\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}, R_{\mathrm{L}}=100 \mathrm{k} \Omega\right) \\ & \left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\ & \left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}, R_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \end{aligned}$	v_{0}	$\begin{aligned} & \pm 2.5 \\ & \pm 5.0 \\ & \pm 1.5 \\ & \pm 3.5 \end{aligned}$	$\begin{aligned} & \pm 2.7 \\ & \pm 5.3 \\ & \pm 2.0 \\ & \pm 4.0 \end{aligned}$	- - -	$\begin{aligned} & \pm 2.5 \\ & \pm 5.0 \\ & \pm 1.5 \\ & \pm 3.5 \end{aligned}$	$\begin{aligned} & \pm 2.7 \\ & \pm 5.3 \\ & \pm 2.0 \\ & \pm 4.0 \end{aligned}$	-	$\mathrm{V}_{\text {peak }}$
Input Common-Mode Voltage Swing $\left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-3.0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}\right)$	$\mathrm{CMV}_{\text {in }}$	$\begin{array}{r} +0.5 \\ -1.5 \\ +05 \\ -4.0 \end{array}$	-	-	$\begin{aligned} & +0.5 \\ & -1.5 \\ & +0.5 \\ & -4.0 \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\mathrm{v}_{\text {peak }}$
$\begin{aligned} & \text { Common-Mode Rejection Ratio } \\ & \left.\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}, \mathrm{f} \leq 1.0 \mathrm{kHz}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{f} \leq 1.0 \mathrm{kHz}\right) \end{aligned}$	$\mathrm{CM}_{\text {rej }}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	70 70	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	-	dB
Input Bias Current $\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{b}}=\frac{I_{1}+\mathrm{I}_{2}}{2} \quad\left(\mathrm{~V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}\right) \\ \mathrm{V}^{+}=6=\mathrm{T}_{\text {iow }} \\ \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}\right) \\ \left.\mathrm{V}^{-}=-6.0 \mathrm{Vdc}\right) \end{gathered}$	'b		$\begin{aligned} & 12 \\ & 20 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 50 \\ & 7.5 \\ & 10 \end{aligned}$	- - - -	$\begin{aligned} & 1.5 \\ & 2.5 \\ & \\ & 2.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \\ & 8.0 \\ & 12 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Current }\left(I_{\text {io }}=I_{1}-I_{2}\right) \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \\ & \hline \end{aligned}$	$\mid{ }^{\text {io }}$ \|		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 15 \\ & 0.5 \\ & 1.5 \end{aligned}$	- - - -	$\begin{gathered} 0.3 \\ - \\ 0.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 2.0 \\ & 2.5 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset } \mathrm{Voltage}\left(\mathrm{R}_{\mathrm{S}}=2.0 \mathrm{ks} 2\right) \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V} \mathrm{~V}^{-}=-3.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{~V}^{-}=-3.0 \mathrm{Vdc},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}, T_{\text {high }}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{~V}^{-}=-6.0 \mathrm{Vdc},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \cdot \mathrm{T}_{\text {high }}\right) \end{aligned}$	$\left\|v_{i o}\right\|$		1.3 11	$\begin{array}{r} 3.0 \\ 4.0 \\ 2.0 \\ 3.0 \end{array}$		$\begin{gathered} 1.7 \\ - \\ 1.5 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 7.5 \\ & 5.0 \\ & 6.5 \end{aligned}$	mV
	$v_{\text {os }}$ t_{f} $t_{\text {pd }}$ $d v_{\text {out }} / d t(2)$ $v_{\text {os }}$ t_{f} $t_{\text {pd }}$ $d V_{\text {out }} / d t_{1}(2)$		20 10 10 12 10 25 16 15	$\begin{aligned} & 40 \\ & 30 \\ & - \\ & 50 \\ & 120 \end{aligned}$	- - - - - -	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & 12 \\ & 10 \\ & 25 \\ & 16 \\ & 1.5 \end{aligned}$	40 30 - 50 120 -	$\begin{gathered} \% \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{v} / \mu \mathrm{s} \\ \% \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{v} / \mu \mathrm{s} \end{gathered}$
$\begin{aligned} & \text { Average Temperature Coefficient of } \\ & \text { Input Offset Voltage }\left(R_{S}=50 \Omega\right) \\ & \left(T_{A}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }}\right) \\ & \left(\mathrm{T}_{A}=T_{\text {low }} \text { to }+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{A}=T_{\text {low }}, T_{\text {high }}\right) \\ & \hline \end{aligned}$	$\mid \mathrm{T}^{\text {V }}$ iol ${ }^{\text {a }}$		$\begin{aligned} & 2.5 \\ & 20 \end{aligned}$	-	-	$\overline{\overline{5} .}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient Input Offset Current ($T_{A}=+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {high }}$) ($T_{A}=T_{\text {low }}$ to $+25^{\circ} \mathrm{C}$)	$\left\|\mathrm{TC}_{\text {lio }}\right\|$		$\begin{gathered} 005 \\ 15 \end{gathered}$		-	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	-	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
DC Power Dissipation $\left(\mathrm{V}_{\text {out }}=0, \mathrm{~V}^{+}=6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-3.0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\text {out }}=0, \mathrm{~V}^{+}=12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}\right)$	${ }^{\text {P }}$		17	$\begin{array}{r} 30 \\ 120 \\ \hline \end{array}$	-	$\begin{array}{r} 17 \\ 70 \\ \hline \end{array}$	$\begin{gathered} 30 \\ 120 \\ \hline \end{gathered}$	mw
$\begin{aligned} & \text { Positive Supply Sensitivity } \\ & \text { (V-constant }=-6.0 \mathrm{Vdc} \\ & \mathrm{~V}^{+}=12 \mathrm{Vdc} \text { to } 6.0 \mathrm{Vdc} \text {) } \end{aligned}$	S^{+}		- 60	200	-	60	300	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Negative Supply Sensitivity } \\ & \left(\mathrm{V}^{+} \text {constant }=12 \mathrm{Vdc},\right. \\ & \left.\mathrm{V}^{-}=-6.0 \mathrm{Vdc} \text { to }-3.0 \mathrm{Vdc}\right) \end{aligned}$	s-	$-$	60	200	-	60	300	$\mu \mathrm{V} / \mathrm{V}$

[^30](2) dV out/dt $=$ Slew Rate

TYPICAL OUTPUT CHARACTERISTICS

$\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

FIGURE 3 - VOLTAGE GAIN versus FREQUENCY

FIGURE 4 - MAXIMUM OUTPUT SWING versus FREQUENCY

FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

TYPICAL CHARACTERISTICS(continued)

MONOLITHIC VOLTAGE REGULATOR

The MC1723 is a positive or negative voltage regulator designed to deliver load current to 150 mAdc . Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723 is specified for operation over the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and the MC 1723 C over the commercial temperature range (0 to $+75^{\circ} \mathrm{C}$)

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01\% Line and 0.03\% Load Regulation
- Adjustable Short-Circuit Protection

For best results $10 \mathrm{k}<\mathrm{R} 2<100 \mathrm{k}$
For minimum drift R3 $=$ R1 11 R2

See Packaging Information Section for outline dimensions.

FIGURE 3 - TYPICAL NPN CURRENT BOOST CONNECTION

MC1723, MC1723C (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating		Symbol	Value	Unit
Pulse Voltage from $V_{C C}$ to $V_{E E}(50 \mathrm{~ms})$		$V_{\text {in }}(p)$	50	$V_{\text {peak }}$
Continuous Voltage from $\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$		$\mathrm{V}_{\text {in }}$	40	Vdc
Input-Output Voltage Differential		$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	40	V dc
Maximum Output Current		I_{L}	150	mAdc
Current from $\mathrm{V}_{\text {ref }}$		$I_{\text {ref }}$	15	mAdc
Current from V_{z}		I_{z}	25	mA
Power Dissipation and Thermal Characteristics Flat Ceramic Package $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Thermal Resistance, Junction to Air Metal Package $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Thermal Resistance, Junction to Case Dual In-Line Ceramic Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Thermal Resistance, Junction to Air		$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JA} \\ \theta \mathrm{JA} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JAA}^{2} \\ \theta_{J A} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JA} \\ \theta_{\mathrm{JC}} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JAA}^{2} \\ \theta_{\mathrm{JA}} \end{gathered}$	$\begin{array}{r} 500 \\ 3.3 \\ 300 \\ \\ 0.8 \\ 5.4 \\ 184 \\ 2.1 \\ 14 \\ 70 \\ 1.0 \\ 6.7 \\ 150 \end{array}$	$\begin{aligned} & \begin{array}{c} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array} \\ & \mathrm{Watt} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ & \mathrm{o}^{\circ} \mathrm{C} / \mathrm{W} \\ & \mathrm{Watts} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ & \mathrm{o}^{\circ} \mathrm{C} / \mathrm{W} \\ & \mathrm{Watt} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ & { }^{\mathrm{O}} \mathrm{C} / \mathrm{W} \end{aligned}$
Operating and Storage Junction Temperature Range Metal Package Dual In-Line Ceramic and Ceramic Flat Packages		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -65 \text { to }+175 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$\begin{aligned} & \text { MC1723C } \\ & \text { MC1723 } \end{aligned}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}} 12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{SC}}=0$,
$\mathrm{C} 1=100 \mathrm{pF}, \mathrm{C}_{\text {ref }}=0$ and divider impedance as seen by the error amplifier $\leqslant 10 \mathrm{k} \Omega$ connected as shown in F igure 1)

Characteristic	Symbol	MC1723			MC1723C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Voltage Range	$V_{\text {in }}$	9.5	-	40	9.5	-	40	Vdc
Output Voltage Range	V_{O}	2.0	-	37	2.0	-	37	Vdc
Input-Output Voltage Differential	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	3.0	-	38	3.0	-	38	Vdc
Reference Voltage	$\mathrm{V}_{\text {ref }}$	6.95	7.15	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain ($\mathrm{L}_{\mathrm{L}}=0, \mathrm{~V}_{\text {in }}=30 \mathrm{~V}$)	IIB	-	2.3	3.5	-	2.3	4.0	mAdc
```Output Noise Voltage (f = 100 Hz to 10 kHz} Cref =0 Cref = 5.0 \muF```	$\mathrm{V}_{\mathrm{N}}$	$-$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	-		$\begin{aligned} & 20 \\ & 2.5 \\ & \hline \end{aligned}$	-	$\mu \mathrm{V}$ (RMS)
Average Temperature Coefficient of Output Voltage ( $T_{\text {low }}{ }^{(1)}<T_{A}<T_{\text {high }}$ (2),	$\mathrm{TCV}_{\mathrm{O}}$		0.002	0.015	-	0.003	0.015	\%/ ${ }^{\circ} \mathrm{C}$
Line Regulation $\begin{gathered} \left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\left\{\begin{array}{l} 12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V} \\ 12 \mathrm{~V}<\mathrm{V}_{\text {in }}<40 \mathrm{~V} \end{array}\right. \\ \left(\mathrm{T}_{\text {low }}(1)<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}^{2}\right) \\ 12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V} \end{gathered}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.3 \end{aligned}$		$\begin{gathered} 0.01 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & 0.3 \end{aligned}$	\% $\mathrm{V}_{\mathrm{O}}$
$\begin{aligned} & \text { Load Regulation }\left(1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<50 \mathrm{~mA}\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }}{ }^{1}<\mathrm{T}_{A}<\mathrm{T}_{\text {high }} \text { (2) } \\ & \hline \end{aligned}$	Regload	+ $+=$	0.03	0.15 0.6	-		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\% \mathrm{~V}_{\mathrm{O}}$
$\begin{aligned} & \text { Ripple Rejection (f }=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \text { ) } \\ & \mathrm{C}_{\text {ref }}=0 \\ & \mathrm{C}_{\text {ref }}=5.0 \mu \mathrm{~F} \end{aligned}$	$\mathrm{Rej}_{\mathrm{R}}$		$\begin{aligned} & 74 \\ & 86 \end{aligned}$			$\begin{aligned} & 74 \\ & 86 \\ & \hline \end{aligned}$	$-$	dB
Short Circuit Current Limit $\left(\mathrm{R}_{\mathrm{SC}}=10 \Omega\right.$, $\left.\mathrm{V}_{\mathrm{O}}=0\right)$	'sc	$-$	65 ,	-	-	65	-	mAdc
Long Term Stability	$\Delta v_{\mathrm{O}} / \Delta \mathrm{t}$	- - m	0.1	2, -	-	0.1	-	$\% / 1000 \mathrm{Hr}$

low $=0^{\circ} \mathrm{C}$ for MC 1723 C $=-55^{\circ} \mathrm{C}$ for MC1723
(2) $T_{\text {high }}=+75^{\circ} \mathrm{C}$ for MC1723C
$=+125^{\circ} \mathrm{C}$ for MC1723

TYPICAL CHARACTERISTICS
$\left(V_{\text {in }}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$


FIGURE 6 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING



IO, OUTPUT CURRENT (mA)

FIGURE 5 - LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING

10. OUTPUT CURRENT (mA)

FIGURE 7 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING


10, OUTPUT CURRENT (mA)

FIGURE 9 - CURRENT LIMITING CHARACTERISTICS

$T$. JUNCTION TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )

FIGURE 10 - LINE REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

$\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{0}$, INPUT-OUTPUT VOLTAGE (VOLTS)

FIGURE 12 - STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE


FIGURE 14 - LOAD TRANSIENT RESPONSE


FIGURE 11 - LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL


FIGURE 13 - LINE TRANSIENT RESPONSE


FIGURE 15 - OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY


## MC1723, MC1723C (continued)

## TYPICAL APPLICATIONS

Pin numbers adjacent to terminals are for the metal and ceramic flat packages; pin numbers in parenthesis are for the ceramic dual in-line package.

FIGURE 16 - TYPICAL CONNECTION FOR $2<\mathrm{v}_{\mathrm{O}}<7$


For best results $10 k<R 1+R 2<100 k$.
For minimum drift $R 3=R 1 \| R 2$.

FIGURE $18-+5 \mathrm{~V}, 1$-AMPERE SWITCHING REGULATOR

FIGURE 17 - MC1723,C FOLDBACK CONNECTION


FIGURE $19-+5 \mathrm{~V}$, 1-AMPERE HIGH EFFICIENCY REGULATOR


FIGURE $20-+15 \mathrm{~V}, 1$-AMPERE REGULATOR WITH REMOTE SENSE



## TYPICAL APPLICATIONS (continued)

FIGURE 22 - + 12 V, 1-AMPERE REGULATOR USING PNP CURRENT BOOST


Pin numbers adjacent to terminals are for the metal and ceramic flat packages; pin numbers in parenthesis are for the ceramic dual in-line package.

## MC1733

## MONOLITHIC DIFFERENTIAL VIDEO AMPLIFIER

. . . a wideband amplifier with differential input and differential output. Gain is fixed at $10,1.00$, or 400 without external components or, with the addition of one external resistor, gain becomes adjustable from 10 to 400.

- Bandwidth - 120 MHz typical @ $A_{v d}=10$
- Rise Time - 2.5 ns typical @ $A_{\mathrm{vd}}=10$
- Propagation Delay Time - 3.6 ns typical @ $A_{\mathrm{vd}}=10$


See Packaging Information Section for outline dimensions.

DIFFERENTIAL VIDEO WIDEBAND AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT


CONNECTION DIAGRAMS


LSUFFIX, CERAMIC PACKAGE

## MC1733, MC1733C (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{v}^{+} \\ & \mathrm{v}^{-} \end{aligned}$	$\begin{aligned} & +8.0 \\ & -8.0 \end{aligned}$	Volts
Differential Input Voltage	$v_{\text {in }}$	$\pm 5.0$	Volts
Common-Mode Input Voltage	$\mathrm{CMV}_{\text {in }}$	$\pm 6.0$	Volts
Output Current	$\mathrm{I}_{0}$	10	mA
Internal Power Dissipation (Note 1)   Metal Can Package   Ceramic Dual In-Line Package	$P_{\text {D }}$	$\begin{array}{r} 500 \\ 500 \\ \hline \end{array}$	mW
Operating Temperature Range $\begin{array}{l}\text { MC1733C } \\ \text { MC1733 }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}\right.$, at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

		MC1733			MC1733C			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Units
Differential Voltage Gain   Gain 1 (Note 2)   Gain 2 (Note 3)   Gain 3 (Note 4)	Avd	400   90   90	400   100   10	$\begin{gathered} 500 \\ 110 \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ 80 \\ 8.0 \\ \hline \end{gathered}$	$\begin{gathered} 400 \\ 100 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 600 \\ 120 \\ 12 \\ \hline \end{gathered}$	
Bandwidth $\left(R_{\mathrm{S}}=50 \Omega\right)$   Gain 1    Gain 2    Gain 3	BW		40   90   120		-	$\begin{gathered} 40 \\ 90 \\ 120 \\ \hline \end{gathered}$	-	MHz
Rise Time $\left(\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{Vp}-\mathrm{p}\right)$   Gain 1    Gain 2    Gain 3    Propa	$\mathrm{t}_{\mathrm{r}}$		105   4.5   25	$10$	-	$\begin{gathered} 10.5 \\ 4.5 \\ 2.5 \\ \hline \end{gathered}$	12	ns
```Propagation Delay \(\left(\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{Vp-p}\right)\) Gain 1 Gain 2 Gain 3```	${ }^{\text {tpd }}$		7.5   6.0   3.6	$10$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \\ & \hline \end{aligned}$	$10$	ns
Input Resistance Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\text {in }}$	20			$\overline{10}$	$\begin{array}{r} 4.0 \\ 30 \\ 250 \\ \hline \end{array}$	-	k Ω
Input Capacitance (Gain 2)	$\mathrm{c}_{\text {in }}$	5	20	2-0	-	2.0	-	pF
Input Offset Current	$1{ }^{101}$		0.4	- 3.0	-	0.4	5.0	$\mu \mathrm{A}$
Input Bias Current	I_{b}	-	9.0	+20.	-	9.0	30	$\mu \mathrm{A}$
Input Noise Voltage $\left(\mathrm{R}_{\mathrm{s}}=50 \Omega\right.$, $\mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz$)$	V_{n}		12		-	12	-	$\mu \mathrm{V}$ (rms)
Input Voitage Range	$V_{\text {in }}$	± 10	- 4	-	± 1.0	-	-	\checkmark
Common-Mode Rejection Ratio Gain 2 $\left(\mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f} \leq 100 \mathrm{kHz}\right)$ Gain 2 $\left(\mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}\right)$	$\mathrm{CM}_{\text {rej }}$	60	86 60		60	$\begin{aligned} & 86 \\ & 60 \\ & \hline \end{aligned}$	-	dB
Supply Voltage Rejection Ratio Gain 2 $\left(\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}\right)$	$\mathrm{S}^{+}, \mathrm{s}^{-}$	50	70		50	70	-	dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3	V_{oo}		$\begin{aligned} & 0.6 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 1.5 \\ 1.0 \\ \hline \end{array}$	-	$\begin{gathered} 0.6 \\ 0.35 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	V
Output Common-Mode Voltage	CMV_{0}	- 2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing	V_{0}	3,	4.0	- -	3.0	4.0	-	Vp -p
Output Sink Current	I_{0}	2.25	, 3.6	- - -	2.5	3.6	-	mA
Output Resistance	$\mathrm{R}_{\text {out }}$	- -	20	-	-	20	-	$s 2$
Power Supply Current	1 D	2-4, 4	+18	$24 \times$	-	18	24	mA

NOTES

Note 1: Derate metal package at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and dual in-line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $100^{\circ} \mathrm{C}$ (see Figure 4). If operation at high ambient temperatures is required (MC1733) a heatsink may be necessary to limit maximum junction temperature to $150^{\circ} \mathrm{C}$. Thermal resistance, junction-to-case, for the metal package is $69.4^{\circ} \mathrm{C}$ per Watt.
Note 2: Gain Select pins $G_{1 A}$ and $G_{1 B}$ connected together Note 3: Gain Select pins $G_{2 A}$ and $G_{2 B}$ connected together. Note 4: All Gain Select pins open

FIGURE 4 - MAXIMUM ALLOWABLE POWER DISSIPATION

TYPICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 6 - SUPPLY CURRENT versus SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 7 - GAIN verus TEMPERATURE

FIGURE 9 - GAIN versus SUPPLY VOLTAGE

FIGURE 11 - GAIN versus FREQUENCY and SUPPLY VOLTAGE

FIGURE 8 - GAIN versus FREQUENCY

FIGURE 10 - GAIN versus R ADJUST

FIGURE 12 - GAIN versus FREQUENCY and TEMPERATURE

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 13 - PULSE RESPONSE versus GAIN

FIGURE 15 - PULSE RESPONSE versus TEMPERATURE

FIGURE 17 - PHASE SHIFT versus FREQUENCY

FIGURE 14 - PULSE RESPONSE versus SUPPLY VOLTAGE

FIGURE 16 - DIFFERENTIAL OVERDRIVE RECOVERY TIME

FIGURE 18 - PHASE SHIFT versus FREQUENCY

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+6.0 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 19 - INPUT RESISTANCE versus TEMPERATURE
FIGURE 20 - INPUT NOISE VOLTAGE

FIGURE 21 - OUTPUT VOLTAGE SWING and SINK CURRENT versus SUPPLY VOLTAGE

FIGURE 23 - OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 22 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

MC1741
 MC1741C

OPERATIONAL AMPLIFIERS

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value		Unit
		MC1741C	MC1741	
Power Supply Voltage	$\begin{aligned} & v^{+} \\ & v^{-} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \\ & \hline \end{aligned}$	Vdc Vdc
Differential Input Signal	$v_{\text {in }}$	± 30		Volts
Common Mode Input Swing (Note 1)	$C M V_{\text {in }}$	± 15		Volts
Output Short Circuit Duration (Note 2)	ts	Continuous		
Power Dissipation (Package Limitation) Metal Can Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Flat Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Plastic Dual In-Line Packages Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Ceramic Dual In-Line Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	68 4. 500 3.3 6 5 7 6	0 0 0 0 0 0	$\stackrel{\mathrm{mW}}{\mathrm{mW} /{ }^{\circ} \mathrm{C}}$ mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$T_{\text {A }}$	0 to +75	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal, Flat and Ceramic Packages Plastic Packages	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to } \\ & -55 \text { to } \end{aligned}$	$\begin{aligned} & +150 \\ & +125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2. Supply voltage equal to or less than 15 V .

OPERATIONAL AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.
See current MCBC1741/MCB1741F data sheet for beam-lead chip information.
See current MCCF1741,C data sheet for flip-chip information.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

		MC1741			MC1741C (4)			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
$\begin{aligned} & \text { Open Loop Voltage Gain }\left(R_{L}=2.0 \mathrm{k} \Omega\right) \\ & \left(\mathrm{V}_{0}= \pm 10 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{0}= \pm 10 \mathrm{~V}, T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high }} \text { (2) }\right) \end{aligned}$	AVOL	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	$200,000$		20,000 15,000	$100,000$	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	z_{0}		75		-	75	-	Ω
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	0.3	1.0		0.3	1.0	-	$\operatorname{Meg} \Omega$
Output Voltage Swing $\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high (2) }}\right) \end{aligned}$	V_{0}	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 14 \\ \pm 13 \\ - \end{gathered}$		$\mathrm{V}_{\text {peak }}$
Input Common-Mode Voltage Swing	$\mathrm{CMV}_{\text {in }}$	± 12	± 13	4	± 12	± 13	-	$V_{\text {peak }}$
Common-Mode Rejection Ratio $(f=20 \mathrm{~Hz})$	$\mathrm{CM}_{\text {rej }}$	70	90		70	90	-	dB
Input Bias Current $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }}(1)\right) \end{aligned}$	${ }^{\prime} \mathrm{b}$		0.2	$\frac{0.5}{15}$	-	0.2	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Current $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high }}(2)\right) \end{aligned}$	$\left\|l_{\text {io }}\right\|$		003	0.2	-	0.03	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}}=\leqq 10 \mathrm{k} \Omega$) $\begin{aligned} & \left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}(1) \text { to } T_{\text {high }} \text { (2) }\right) \end{aligned}$	$\left\|v_{i o}\right\|$		10	5.0 6.0	- -	2.0	6.0 7.5	mV
Step Response $\begin{aligned} \text { Gain } & =100, R_{1}=1.0 \mathrm{k} \Omega \\ R_{2} & =100 \mathrm{k} \Omega, R_{3}=1.0 \mathrm{k} \Omega \end{aligned}$ $\begin{aligned} \text { Gain } & =10, R_{1}=1.0 \mathrm{k} \Omega, \\ R_{2} & =10 \mathrm{k} \Omega, R_{3}=1.0 \mathrm{k} \Omega \end{aligned}$ $\begin{aligned} \text { Gain } & =1, R_{1}=10 \mathrm{k} \Omega \\ R_{2} & =10 \mathrm{k} \Omega, R_{3}=5.0 \mathrm{k} \Omega \end{aligned}$			29 8.5 10 30 100 10 06 0.38 08 0			$\begin{aligned} & 29 \\ & 8.5 \\ & 1.0 \\ & 3.0 \\ & 1.0 \\ & 1.0 \\ & 0.6 \\ & 0.38 \\ & 0.8 \end{aligned}$		$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~s} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~S} / \mu \mathrm{s} \end{gathered}$
Average Temperature Coefficient of Input Offset Voltage $\begin{aligned} & \left(R_{S}=50 \Omega, T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high }} \text { (2) }\right) \\ & \left(R_{S}=10 \mathrm{k} \Omega, T_{A}=T_{\text {low }}(1) \text { to } T_{\text {high }} \text { (2) }\right) \end{aligned}$	${ }^{\text {\| }} \mathrm{C}_{\mathrm{V}_{10} \mid}$				-	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current $\left(T_{A}=T_{\text {low }} \text { (1) to } T_{\text {high (2) }}\right)$	$\left\|T C_{\text {liol }}\right\|$		50		-	50	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
DC Power Dissipation (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$)	${ }^{\text {P }}$	$2-2$	50	85	-	50	85	mW
Positive Supply Sensitivity (V^{-}constant)	S^{+}		30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity (V^{+}constant)	s^{-}		30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Power Bandwidth $\begin{aligned} & \left(A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega,\right. \\ & \left.T H D=5 \%, V_{0}=20 \mathrm{~V}_{p-p}\right) \end{aligned}$	PBW		10		-	10	-	kHz

[^31](3) $d v_{\text {out }} / d t=$ Slew Rate
(4) Plastic package offered in limited

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 2 - POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)

FIGURE 4 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 6 - INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 3 - OPEN LOOP FREQUENCY RESPONSE

FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 7 - INPUT BIAS CURRENT varsus TEMPERATURE

MC1741, MC1741C (continued)

FIGURE 8 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

FIGURE 9 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 10 - COMMON-MODE REJECTION RATIO versus FREQUENCY

MC1741S

HIGH SLEW-RATE INTERNALLY-COMPENSATED OPERATIONAL AMPLIFIER

The MC1741S/MC1741SC is functionally equivalent, pin com patible, and possesses the same ease of use as the popular MC1741 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D-to-A converters due to its fast settling time and high slew rate.

- High Slew Rate - $10 \mathrm{~V} / \mu \mathrm{s}$ Guaranteed Minimum
- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

Pins not shown are not connected.
Settling time to within $1 / 2$ LSB $(\pm 19.5 \mathrm{mV})$ is approximately $4.0 \mu \mathrm{~s}$ from the time that all bits are switched.
*The value of C may be selected to minimize overshoot and ringing ($C \approx 150 \mathrm{pF}$).

OPERATIONAL AMPLIFIER
MONOLITHIC SILICON INTEGRATED CIRCUIT

Theoretical V_{0}
$V_{0}=\frac{V_{\text {ref }}}{R 1}\left(R_{0}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{\text {ref }}, R 1$ or R0 so that V_{0} with all digital inputs at high level is equal to 9.961 volts.
$\mathrm{V}_{0}=\frac{2 \mathrm{~V}}{1 \mathrm{k}}(5 \mathrm{k})\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}$

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value		Unit
		MC1741SC	MC1741S	
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	+18 -18	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	Vdc
Differential Input Signal Voltage	$V_{\text {in }}$	± 30		Volts
Common-Mode Input Voltage Swing (See Note 1)	$V_{\text {ICR }}$	± 15		Volts
Output Short-Circuit Duration (See Note 2)	$\mathrm{t}_{\text {s }}$	Continuous		
Power Dissipation (Package Limitation) Metal Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Plastic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	${ }^{\text {D }}$	$\begin{gathered} 680 \\ 4.6 \\ 625 \\ 5.0 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\mathrm{o}} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	TA	0 to +75	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal Package Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$		${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{Vdc}$, the absolute maximum input voltage is equal to the supply voltage
Note 2. Supply voltage equal to or less than 15 Vdc .

FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE

MC1741S, MC1741SC (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. 1

Characteristic	Symbol	Mc1741s			MC1741SC**			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Power Bandwidth (See Figure 3) } \\ & A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, T H D=5 \%, V_{O}=20 \mathrm{~V}(p-p) \end{aligned}$	PBW	150	200		150	200	-	kHz
Large-Signal Transient Response Slew Rate (Figures 10 and 11) $\begin{aligned} & V(-) \text { to } V(+) \\ & V(+) \text { to } V(-) \end{aligned}$ Settling Time (Figures 10 and 11) (to within 0.1\%)	SR ${ }^{\mathrm{t}} \text { setlg }$	$\begin{aligned} & 10 \\ & 10 \\ & - \end{aligned}$	$\begin{aligned} & 20 \\ & 12 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 20 \\ 12 \\ 3.0 \end{array}$	-	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$
Small-Signal Transient Response (Gain $=1, E_{\text {in }}=20 \mathrm{mV}$, see Figures 7 and 8) Rise Time Fall Time Propagation Delay Time Overshoot	$\begin{gathered} { }^{\mathrm{t} T L H} \\ { }^{\mathrm{t} T H L} \\ \mathrm{t} P \mathrm{LH}, \mathrm{tPHL} \\ \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{O}} \end{gathered}$		2 0 0.25 0.25 0.25 20			$\begin{gathered} 0.25 \\ 0.25 \\ 0.25 \\ 20 \end{gathered}$		$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \% \end{gathered}$
Short-Circuit Output Currents	${ }^{\text {ISO }}{ }^{\text {I }}$	± 10	-	± 35	± 10	-	± 35	mA
$\begin{aligned} & \text { Open-Loop Voltage Gain }\left(R_{L}=2.0 \mathrm{k} \Omega\right) \text { (See Figure 4) } \\ & V_{O}= \pm 10 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, T_{A}=T_{\text {low }}{ }^{*} \text { to } T_{\text {high }}{ }^{*} \end{aligned}$	$\mathrm{A}_{\mathrm{vol}}$	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	$200,000$		$\begin{aligned} & 20,000 \\ & 15,000 \end{aligned}$	100,000	-	-
Output Impedance ($\mathrm{f}=20 \mathrm{~Hz}$)	z_{0}		75	-	-	75	-	Ω
Input Impedance ($f=20 \mathrm{~Hz}$)	$\mathrm{z}_{\text {in }}$	0.3	1.0		0.3	1.0	-	$\mathrm{M} \Omega$
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L}=10 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L}=2.0 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	V_{O}	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \pm 10 \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$V_{p k}$
Input Common-Mode Voltage Swing	VICR	± 12	± 13		± 12	± 13	-	$V_{\text {pk }}$
Common-Mode Rejection Ratio (f $=20 \mathrm{~Hz}$)	CMRR	P 70	90		70	90	-	dB
$\begin{aligned} & \text { Input Bias Current (See Figure 2) } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \end{aligned}$	/'B		0.2 0.5	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	-	0.2	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\mid 1 \mathrm{l}$		0.03	0.2	-	0.03	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S}=\leqslant 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\left\|V_{10}\right\|$		10	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	2.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
```Average Temperature Coefficient of Input Offset Voltage ( \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) ) \(R_{S}=50 \Omega\) \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega\)```	$\left\|\mathrm{TC}_{V_{10}}\right\|$		$\begin{aligned} & 3.0 \\ & 60 \end{aligned}$		-	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
```Average Temperature Coefficient of Input Offset Current ( \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) )```	${ }^{T C_{1}}{ }_{10} \mid$		$50$		-	50	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { DC Power Dissipation (See Figure 9) } \\ & \left(\text { Power Supply }= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0\right. \text {) } \end{aligned}$	${ }^{\text {P }}$		50	85	-	50	85	mW
Positive Voltage Supply Sensitivity (VEE constant)	S^{+}		2.0	150	-	2.0	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Voltage Supply Sensitivity ($V_{\text {CC }}$ constant)	S^{-}		10	150	-	10	150	$\mu \mathrm{V} / \mathrm{V}$

$$
\begin{aligned}
*^{\text {low }} & =0 \text { for MC1741SC } & T_{\text {high }} & =+75^{\circ} \mathrm{C} \text { for MC1741S } \\
& =-55^{\circ} \mathrm{C} \text { for MC1741S } & & +125^{\circ} \mathrm{C} \text { for MC1741S }
\end{aligned}
$$

**Plastic package offered in limited temperature range device only.

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 3 - POWER BANDWIDTH - NONDISTORTED OUTPUT VOLTAGE versus FREQUENCY

FIGURE 5 - NOISE versus FREQUENCY

FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS

FIGURE 4 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 6 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 8 - SMALL-SIGNAL TRANSIENT RESPONSE TEST CIRCUIT

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 9 - POWER DISSIPATION versus POWER SUPPLY VOLTAGES

FIGURE 10 - LARGE-SIGNAL TRANSIENT WAVEFORMS

FIGURE 11 - SLEW RATE AND SETTLING time test circuit

SETTLING TIME

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.

SETTLING TIME MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown, in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1% of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measure ments, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

$$
t_{\text {setlg }}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

can be used to determine the actual amplifier settling time, where
$\mathrm{t}_{\text {setlg }}=$ observed settling time
$x=$ amplifier settling time (to be determined)
$y=$ false summing junction settling time
$z=$ oscilloscope settling time
It should be remembered that to settle within $\pm 0.1 \%$ requires 7RC time constants.

The $\pm 0.1 \%$ factor was chosen for the MC1741S settling time as it is compatible with the $\pm 1 / 2$ LSB accuracy of the MC1508L-8 digital-to-analog converter. This D-to-A converter features $\pm 0.19 \%$ maximum error.

FIGURE 12 - WAVEFORM AT FALSE SUMMING NODE

$1.0 \mu \mathrm{~s} / \mathrm{DIV}$

TYPICAL APPLICATION
FIGURE 14 - 12.5-WATT WIDEBAND POWER AMPLIFIER

MC1747

DUAL MC1741

INTERNALLY COMPENSATED, HIGH PERFORMANCE

 MONOLITHIC OPERATIONAL AMPLIFIER. . . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. The MC1747L and MC1747CL are functionally, electrically, and pin-for-pin equivalent to the $\mu \mathrm{A} 747$ and $\mu \mathrm{A} 747 \mathrm{C}$ respectively.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up
- Offset Voltage Null Capability

(DUAL MC1741)
DUAL
OPERATIONAL AMPLIFIER
MONOLITHIC SILICON
INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.

MC1747, MC1747C (continued)

MAXIMUM RATINGS ${ }^{(T} \mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	MC1747	MC1747C	Unit
Power Supply Voltages	$\mathrm{V}_{\text {CC }}$	+22	+18	Vdc
	$V_{\text {FF }}$	-22	-18	
Differential Input Signal Voltage (1)	$V_{\text {ID }}$	± 30		Volts
Common-Mode Input Swing Voltage (2)	$V_{\text {ICR }}$	± 15		Volts
Output Short-Circuit Duration	tos	Continuous		
Power Dissipation (Package Limitation)	$P_{\text {D }}$	$\begin{aligned} & 750 \\ & 6.0 \\ & \hline \end{aligned}$		
Ceramic Dual In-Line Package				
Derate above $\mathrm{T}_{\mathrm{A}}=+60^{\circ} \mathrm{C}$				$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Voltage (Measurement between Offset Null and $\mathrm{V}_{\text {EE }}$)		± 0.5		Volts
Operating Temperature Range	${ }^{T}$ A	-55 to +125	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristics	Symbol	MC1747			MC1747C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }}(3) \\ & T_{A}=T_{\text {low }}(3) \end{aligned}$	I'B	$-$	$\begin{array}{r} 80 \\ 30 \\ 300 \end{array}$	$\begin{aligned} & 500 \\ & 500 \\ & 1500 \end{aligned}$	-	$\begin{array}{r} 80 \\ 30 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 500 \\ & 800 \\ & 800 \\ & \hline \end{aligned}$	nAdc
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	$\|110\|$	-	$\begin{array}{r} 20 \\ 70 \\ 85 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 500 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	nAdc
$\begin{aligned} & \text { Input Offset Voltage (} \left.\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{ks} 2\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	$\left\|V_{10}\right\|$	$-$	$\begin{array}{r} 10 \\ 10 \end{array}$	5.0 6	-		6.0 7.5	$\dot{m} \mathrm{Vdc}$
Offset Voltage Adjustment Range		-	± 15	-	-	± 15	-	mV
Differential Input Impedance (Open-loop, $\mathrm{f}=20 \mathrm{~Hz}$) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & R_{p} \\ & C_{p} \\ & \hline \end{aligned}$	0.3	$\begin{aligned} & 20 \\ & 14 \end{aligned}$		0.3	$\begin{aligned} & 2.0 \\ & 1.4 \\ & \hline \end{aligned}$		$\begin{gathered} \text { Megohms } \\ \mathrm{pF} \end{gathered}$
Common-Mode Input Voltage Swing $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$V_{\text {ICR }}$	± 12	± 13	$\square \square$	± 12	± 13	-	Volts
Common-Mode Rejection Ratio ($\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega 2$) $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	90	$-$	70	90	-	dB
$\begin{aligned} & \text { Open-Loop Voltage Gain } \\ & \left.\begin{array}{l} T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{array}\right\}\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{ks}\right) \end{aligned}$	$A_{\text {vol }}$	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	200,000	-	$\begin{aligned} & 25,000 \\ & 15,000 \\ & \hline \end{aligned}$	200,000		Volts
Transient Response: (Unity Gain) $\begin{aligned} & \left(V_{i n}=20 \mathrm{mV}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right) \\ & \text { Rise Time } \\ & \text { Overshoot Percentage } \end{aligned}$	${ }^{\text {P PLH }}$	-	$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$	-	- - -	$\begin{aligned} & 0.3 \\ & 5.0 \\ & \hline \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \hline \end{gathered}$
Slew Rate (Unity Gain)	SR	-	0.5	-	-	0.5	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance	z_{0}	-	75	-	-	75	-	ohms
Short-Circuit Output Current	10 S	-	25	-	-	25	-	mAdc
Channel Separation		-	120	-	-	120	-	dB
$\begin{aligned} & \text { Output Voltage Swing (} \left.T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}\right) \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{ks} . \\ & \hline \end{aligned}$	v_{O}	$\begin{aligned} & +12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & +13 \\ & \hline \end{aligned}$		$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$	-	$V_{\text {pk }}$
Power Supply Sensitivity ($T_{\text {low }}$ to $T_{\text {high }}$) $\begin{aligned} & V_{E E}=\text { Constant, } R_{S} \leqslant 10 \mathrm{ks} \\ & V_{C C}=\text { Constant, }, R_{S} \leqslant 10 \mathrm{ks} \end{aligned}$	$\begin{aligned} & \mathrm{S}^{+} \\ & \mathrm{S}^{-} \\ & \hline \end{aligned}$	$-$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ \hline \end{array}$	-		$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current (each amplifier) $\begin{aligned} & T_{A}=+25^{\circ} C \\ & T_{A}=T_{\text {low }} \\ & T_{A}=T_{\text {high }} \end{aligned}$	${ }^{1} \mathrm{D}^{+}, \mathrm{I}^{-}$		$\begin{aligned} & 17 \\ & 20 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 2.8 \\ 3.3 \\ 2.5 \end{array}$	-	$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$	mAdc
DC Power Dissipation (each amplifier) $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \\ & T_{A}=T_{\text {high }} \end{aligned}$	${ }^{\text {P }}$	$=$ $-$ $-$	$\begin{aligned} & 50 \\ & 60 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 100 \\ & 75 \end{aligned}$	-	$\begin{aligned} & 50 \\ & 60 \\ & 60 \end{aligned}$	$\begin{gathered} 85 \\ 100 \\ 100 \end{gathered}$	mW

(1) For supply voltages of less than $\pm 15 \mathrm{~V}$, the maximum differential input voltage is equal to $\pm\left(\mathrm{V}_{\mathrm{CC}}+\left|\mathrm{V}_{\mathrm{EE}}\right|\right)$.
(2) For supply voltages of less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage ($+\mathrm{V}_{\mathrm{CC}},-\left|\mathrm{V}_{\mathrm{EE}}\right|$).
$T_{\text {low }} 0^{\circ} \mathrm{C}$ for MC 1747 CL
$-55^{\circ} \mathrm{C}$ for MC1747L
$T_{\text {high: }}+75^{\circ} \mathrm{C}$ for MC1747CL
$+125^{\circ} \mathrm{C}$ for MC1747L

FIGURE 2 - CIRCUIT SCHEMATIC

FIGURE 3 - EQUIVALENT CIRCUIT WITH OFFSET ADJUST

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 4 - OPEN-LOOP VOLTAGE GAIN
versus POWER-SUPPLY VOLTAGE

FIGURE 6 - POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 7 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$
FIGURE 8 - OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

FIGURE 9 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 10 - HIGH-IMPEDANCE, HIGH-GAIN
INVERTING AMPLIFIER

MC1748G

 MC1748CG
HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Noncompensated MC1741G
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

FIGURE 4 - OFFSET ADJUST AND FREQUENCY COMPENSATION

[^32]See current MCC1748/1748C data sheet for standard linear chip information.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MC1748G	MC1748CG	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{v}^{+} \\ & \mathrm{v}^{-} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{array}{r} +18 \\ -18 \end{array}$	Vdc
Differential Input Signal	$V_{\text {in }}$	± 30		Volts
Common-Mode Input Swing (1)	$\mathrm{CMV}_{\text {in }}$	± 15		Volts
Output Short Circuit Duration	${ }^{\text {t }}$	Continuous		
Power Dissipation (Package Limitation) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 680 \\ & 4.6 \end{aligned}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to + 150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristics	Symbol	MC1748G			MC1748CG			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \text { (2) } \end{aligned}$	Ib	$-$ $-$	$\begin{gathered} 0.08 \\ 0.3 \end{gathered}$	0.5	-	0.08 -	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\mu \mathrm{Adc}$
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\left\|{ }_{\text {io }}\right\|$		$\begin{aligned} & 0.02 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	-	0.02 -	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S} \leq 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\left\|v_{i o}\right\|$			$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	1.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mVdc
Differential Input Impedance (Open-Loop, f=20 Hz) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & R_{p} \\ & C_{p} \end{aligned}$	0.3	2.0 14	- -	0.3	2.0 1.4	-	Megohm pF
Common-Mode Input Impedance ($\mathrm{f}=20 \mathrm{~Hz}$)	$\mathrm{z}_{\text {(in) }}$		200		-	'200		Megohms
Common-Mode Input Voltage Swing	$C M V$ in	± 12	± 13	-	± 12	± 13	-	$V_{p k}$
Common-Mode Rejection Ratio ($\mathrm{f}=100 \mathrm{~Hz}$)	$\mathrm{CM}_{\text {rej }}$	70	90	-	70	90	-	dB
$\begin{aligned} & \text { Open-Loop Voltage Gain, }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \text { ohms }\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	AVOL	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	200,000	-	$\begin{aligned} & 20,000 \\ & 15,000 \end{aligned}$	200,000		V/V
Step Response $\left(\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$ Rise Time Overshoot Percentage Slew Rate	$\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ \mathrm{~d} \mathrm{~V}_{\text {out }} / \mathrm{dt} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 5.0 \\ & 0.8 \end{aligned}$	- ${ }^{-4}$	-	$\begin{aligned} & 0.3 \\ & 5.0 \\ & 0.8 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
Output Impedance ($\mathrm{f}=20 \mathrm{~Hz}$)	$\mathrm{Z}_{\text {out }}$		75	-	-	75	-	ohms
Short-Circuit Output Current	ISC		25	-	-	25	-	mAdc
$\begin{aligned} \text { Output Voltage Swing (} R_{L} & =10 \mathrm{k} \text { ohms }) \\ R_{L} & =2 k \text { ohms }\left(T_{A}=T_{\text {low }} \text { to thigh }\right) \end{aligned}$	V_{0}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \end{array}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		Vpk
Power Supply Sensitivity $\begin{aligned} & \mathrm{V}^{-}=\text {constant }, \mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \text { ohms } \\ & \mathrm{v}^{+}=\text {constant, } \mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \text { ohms } \end{aligned}$	$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	-	30 30		$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & \mathrm{ID}^{+} \\ & \mathrm{I}^{-} \end{aligned}$		$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.67 \\ & 1.67 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.83 \\ 2.83 \\ \hline \end{array}$	mAdc
DC Quiescent Power Dissipation $\left(V_{0}=0\right)$	${ }^{\text {P }}$		50	-85	-	50	85	mW

[^33]
Specifications and Applications Information

MONOLITHIC MICROPOWER
PROGRAMMABLE OPERATIONAL AMPLIFIER
This extremely versatile operational amplifier features low-power
consumption, high input impedance and low input noise levels. In
addition, the quiescent currents within the device may be pro-
grammed by the choice of an external resistor value or current source
applied to the I Ist input. This allows the amplifier's characteristics
to be optimized for input current, power consumption and input
voltage, and current noise despite wide variations in operating power
supply voltages.
- $\pm 1.2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Operation
- Wide Programming Range
- Low Noise
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short-Circuit Protection

PROGRAMMABLE
OPERATIONAL AMPLIFIER
EPITAXIAL PASSIVATED
INTEGRATED CIRCUIT

NANOWATT AMPLIFIER APPLICATION

See Packaging Information Section for outline dimensions.

MC1776G, MC1776CG (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$V_{\text {CC }}, V_{\text {EE }}$	± 18	Vdc
Differential Input Voltage	$V_{\text {ID }}$	± 30	Vdc
Common-Mode Input Voltage $V_{C C}$ and $\left\|V_{E E}\right\|<15 \mathrm{~V}$ V_{CC} and $\left\|\mathrm{V}_{\mathrm{EE}}\right\| \geqslant 15 \mathrm{~V}$	VICM	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{EE}} \\ \pm 15 \end{gathered}$	Vdc
Offset Null to V_{EE} Voltage	$v_{\text {off }}-v_{\text {EE }}$	± 0.5	Vdc
Programming Current	$\mathrm{I}_{\text {set }}$	500	$\mu \mathrm{A}$
Programming Voltage (Voltage from $I_{\text {set }}$ terminal to ground)	$\mathrm{V}_{\text {set }}$	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right) \\ \text { to } \\ \mathrm{V}_{\mathrm{CC}} \\ \hline \end{gathered}$	Vdc
Output Short-Circuit Duration*	$\mathrm{t}_{\text {s }}$	Indefinite	s
$\begin{array}{ll}\text { Operating Temperature Range } & \text { MC1776 } \\ & \text { MC1776C }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Power Dissipation (Package Limitation) } \\ & \text { Derate above } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	$P_{\text {D }}$	$\begin{aligned} & 680 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} / \mathrm{C}^{\mathrm{o}} \end{gathered}$

*May be to ground or either Supply Voltage. Rating applies up to a case temperature of $+125^{\circ} \mathrm{C}$ or ambient temperature of $+75^{\circ} \mathrm{C}$ and $\mathrm{I}_{\text {set }} \leqslant 30 \mu \mathrm{~A}$.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (} \left.R_{S} \leqslant 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }^{*}} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*} \end{aligned}$	$\left\|\mathrm{V}_{10}\right\|$		2.0		-	2.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	$\|110\|$		0.7	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 10 \end{aligned}$	-	0.7 -	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 10 \\ & \hline \end{aligned}$	nA
$\begin{gathered} \text { Input Bias Current } \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{A}=\mathrm{T}_{\text {high }} \\ \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \\ \hline \end{gathered}$	I/B		2.0	7.5 7.5 20	-	2.0	$\begin{aligned} & 10 \\ & 10 \\ & 20 \end{aligned}$	$n A$
Input Resistance	$\mathrm{R}_{\text {in }}$		50	-	-	50	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\text {in }}$		2.0	\%	-	2.0	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{1} \mathrm{OR}$	-	9.0	- -	-	9.0	-	mV
Large Signal Voltage Gain $\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant T_{\text {high }} \end{aligned}$	$A_{\text {vol }}$	50 k 25 k	$200 k$		$\begin{aligned} & 25 k \\ & 25 k \end{aligned}$	$200 \mathrm{k}$	-	V/V
Output Resistance	R_{O}		5.0		-	5.0	-	$\mathrm{k} \Omega$
Output Short-Circuit Current	Iosc		3.0	-	-	3.0	-	mA
Supply Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{A} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	${ }^{\text {I CC, }}$ IEE		13	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	-	13	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	$P_{\text {D }}$		78	$\begin{array}{r} 120 \\ 150 \\ \hline \end{array}$	-	78	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, R_{L} \geqslant 5.0 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{aligned} & \text { tTLH } \\ & \text { OS } \\ & \hline \end{aligned}$		$\begin{array}{r} 3.0 \\ 0 \end{array}$		-	$\begin{gathered} 3.0 \\ 0 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \\ & \hline \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	S_{R}	-	0.03	-	-	0.03	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \qquad R_{L} \geqslant 75 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	± 2.0	± 2.4		± 2.0	± 2.4	-	V
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$V_{\text {ID }}$	± 1.0			± 1.0	-	-	V
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	86		70	86	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	PSRR		25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$

$* T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1776	
$0^{\circ} \mathrm{C}$ for MC 1776 C	$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1776
	$+70^{\circ} \mathrm{C}$ for MC1776C

VOLTAGE OFFSET
NULL CIRCUIT

TRANSIENT-RESPONSE TEST CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~V}_{E E}=-3.0 \mathrm{~V}, \mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }^{*}} \leqslant T_{A} \leqslant T_{\text {high }^{*}} \end{aligned}$	$\left\|\mathrm{V}_{10}\right\|$	-	2.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	2.0 -	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	\|liol		2.0	15 15 40	$-$	2.0 -	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	I/B	$-$	15	$\begin{gathered} 50 \\ 50 \\ 120 \end{gathered}$	$-$	15	$\begin{gathered} 50 \\ 50 \\ 100 \\ \hline \end{gathered}$	nA
Input Resistance	$\mathrm{R}_{\text {in }}$	-	5.0	-	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	2.0	-	-	2.0	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{\text {IOR }}$	-	18	-	-	18	-	mV
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leqslant T_{\mathrm{A}} \leqslant T_{\text {high }} \end{aligned}$	Avol	$50 k$ 25 k	200k	-	$\begin{array}{r} 25 \mathrm{k} \\ 25 \mathrm{k} \\ \hline \end{array}$	200 k		V/V
Output Resistance	R_{O}	-	1.0	-	-	1.0	-	k Ω
Output Short-Circuit Current	Iosc	\square	5.0	-	-	5.0	-	mA
Supply Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {I CC. }}$ IEE		130 -	$\begin{array}{r} 160 \\ 180 \end{array}$	-		$\begin{aligned} & 170 \\ & 180 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {P }}$	$\underline{2}-2$	$\begin{array}{r}780 \\ \hline\end{array}$	$\begin{gathered} 960 \\ 1080 \end{gathered}$	-		$\begin{aligned} & 1020 \\ & 1080 \\ & \hline \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $V_{i n}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{aligned} & \text { tTLH } \\ & \text { OS } \\ & \hline \end{aligned}$		$\begin{aligned} & 0.6 \\ & 5.0 \end{aligned}$		-	$\begin{aligned} & 0.6 \\ & 5.0 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \hline \end{gathered}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	SR	4-3m	0.35		-	0.35	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 5.0 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	41.9	± 2.		± 2.0	± 2.1	-	V
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	V_{10}	± 1.0	-	-	± 1.0	-	-	V
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR		86	-	70	86	-	dB
Supply Voltage Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	PSRR		25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$

* $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1776 $0^{\circ} \mathrm{C}$ for MC 1776 C
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1776 $+70^{\circ} \mathrm{C}$ for MC 1776 C

MC1776G, MC1776CG (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	TVp	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (} \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega \text {) } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }^{*}} \leqslant T_{A} \leqslant T_{\text {high }^{*}} \end{aligned}$	$\left\|\mathrm{V}_{10}\right\|$		2.0	5.0 6.0	-	2.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	$\|110\|$		0.7	3.0 5.0 10	$-$	0.7	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 10 \end{aligned}$	nA
$\begin{aligned} & \text { Input Bias Current } \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {high }} \\ & \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \end{aligned}$	I/B		2.0		-	2.0	$\begin{aligned} & 10 \\ & 10 \\ & 20 \end{aligned}$	nA
Input Resistance	$\mathrm{R}_{\text {in }}$	-	50\%	4	-	50	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\text {in }}$		2.0	-	-	2.0	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{\text {IOR }}$	-	9.0	-	-	9.0	-	mV
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	$A_{\text {vol }}$	200 k 100 k	$400 \mathrm{k}$		$\begin{gathered} 50 \mathrm{k} \\ 50 \mathrm{k} \end{gathered}$	$400 \mathrm{k}$	-	V/V
Output Resistance	R_{O}		5.0	-	-	5.0	-	$\mathrm{k} \Omega$
Output Short-Circuit Current	Iosc		3.0	T	-	3.0	-	mA
Supply Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {ICC. }}$ 'EE		20	25 30	-	20	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	${ }^{P}$ D			$\begin{aligned} & 0.75 \\ & 0.9 \end{aligned}$	-	-	$\begin{array}{r} 0.9 \\ 1.05 \end{array}$	mW
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, R_{L} \geqslant 5.0 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{aligned} & \text { t'LLH } \\ & \text { OS } \\ & \hline \end{aligned}$		$\begin{aligned} & 1.6 \\ & 0 \end{aligned}$		-	$\begin{gathered} 1.6 \\ 0 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \hline \end{gathered}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	SR	5	0.1		-	0.1	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	V_{0}	± 12 ± 10	± 14		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 14	-	V
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$V_{\text {ID }}$	110			± 10	-	-	V
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	90		70	90	-	dB
Supply Voltage Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	PSRR		25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$

*T ${ }_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1776 $0^{\circ} \mathrm{C}$ for MC 1776 C
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1776
$+70^{\circ} \mathrm{C}$ for MC 1776 C

MC1776G, MC1776CG (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (} \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega \text {) } \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }}{ }^{*} \leqslant \mathrm{~T}_{A} \leqslant \mathrm{~T}_{\text {high }^{*}} \end{aligned}$	$\left\|V_{10}\right\|$	-	2.0	5.0 6.0		2.0 -	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	$\|110\|$		20 $-\quad-\quad$	$\begin{aligned} & 15 \\ & 15 \\ & 40 \end{aligned}$	-	2.0	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	IIB	-4 -	15 $-\quad 4$	50 50 120	$-$	15	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	nA
Input Resistance	$\mathrm{R}_{\text {in }}$	-	5.0	$\underline{-}$	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\text {in }}$	- -	20	-	-	2.0	-	pF
Offset Voltage Adjustment Range	$V_{1 O R}$	-	18	-	-	18	-	mV
Large Signal Voltage Gain $\begin{aligned} & R_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \mathrm{~T}_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \\ & \hline \end{aligned}$	Avol	$100 \mathrm{k}$	400 k	-	$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$	400 k		V/V
Output Resistance	R_{O}	\rightarrow	1.0	7	-	1.0	-	$k \Omega$
Output Short-Circuit Current	Iosc	TH	-12	-	-	12	-	mA
Supply Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {I CC, ' }}$ 'EE		160	$\begin{array}{r} 180 \\ 200 \end{array}$	-			$\mu \mathrm{A}$
$\begin{aligned} & \text { Power Dissipation } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	$P_{\text {D }}$	$\frac{\square}{\square+\pi}$	$\frac{\square}{\frac{x+1}{x}+}$	5.4 6.0	-	-	$\begin{aligned} & 5.7 \\ & 6.0 \end{aligned}$	mW
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{gathered} \text { tTLH } \\ \text { OS } \\ \hline \end{gathered}$		$\begin{array}{r} 0.35 \\ 10 \end{array}$		-	$\begin{gathered} 0.35 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \hline \end{gathered}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	SR	\cdots	0.8	-	-	0.8	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 5.0 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	± 10 ± 10	${ }^{ \pm 13}$		$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	± 13	-	V
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	V_{10}	± 10		-	± 10	-	-	V
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	90		70	90	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	PSRR		25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$

[^34]
TYPICAL CHARACTERISTICS

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 1 - SET CURRENT versus SET RESISTOR

$I_{\text {set }}$, SET CURRENT ($\mu \mathrm{A}$)

FIGURE 3 - OPEN-LOOP GAIN versus SET CURRENT

$\mathrm{I}_{\text {set }}$, SET CURRENT ($\mu \mathrm{A}$)

FIGURE 5 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE

FIGURE 2 - POSITIVE STANDBY SUPPLY CURRENT versus SET CURRENT

$I_{\text {set }}$ SET CURRENT ($\mu \mathrm{A}$)

FIGURE 4 - INPUT BIAS CURRENT versus SET CURRENT

$I_{\text {set }}$ SET CURRENT ($\mu \mathrm{A}$)

FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW) versus SET CURRENT

MC1776G, MC1776CG (continued)

TYPICAL CHARACTERISTICS (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 9 - OUTPUT SWING
versus SUPPLY VOLTAGE

FIGURE 11 - INPUT NOISE VOLTAGE versus SET CURRENT

FIGURE 8 - SUPPLY CURRENT versus AMBIENT TEMPERATURE

FIGURE 10 - SLEW RATE
versus SET CURRENT

FIGURE 12 - OPTIMUM SOURCE RESISTANCE FOR MINIMUM NOISE versus SET CURRENT

APPLICATIONS INFORMATION

FIGURE 13 - WEIN BRIDGE OSCILLATOR

FIGURE 14 - MULTIPLE FEEDBACK BANDPASS FILTER

A $\left(f_{0}\right)=$ Gain at center frequency
Q = quality factor
Choose a value for C, then

$$
\begin{aligned}
& R 5=\frac{Q}{\pi f_{0} C} \\
& R 1=\frac{R 5}{2 A\left(f_{0}\right)} \\
& R 2=\frac{R 1, R 5}{4 Q^{2} R 1 \cdot R 5}
\end{aligned}
$$

To obtain less than 10% error from the operational amplifier:
$\frac{0_{0} f_{0}}{G B W} \leqslant 0.1$
where f_{0} and GBW are expressed in Hz . GBW is available from
Figure 6 as a function of Set Current, I set .

FIGURE 15 - MULTIPLE FEEDBACK BANDPASS FILTER $(1.0 \mathrm{kHz})$

FIGURE 16 - GATED AMPLIFIER

FIGURE 17 - HIGH INPUT IMPEDANCE AMPLIFIER

MC3301P

MONOLITHIC QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER FOR AUTOMOTIVE APPLICATIONS

These internally compensated operational amplifiers are designed specifically for single positive power supply applications found in automotive and consumer electronics. Each MC3301P contains four independent amplifiers - making it ideal for automotive safety, pollution, and comfort controls. Some typical applications are tachometer, voltage regulator, logic circuits, power control and other similar usages.

- Wide Operating Temperature Range --40 to $+85^{\circ} \mathrm{C}$
- Single-Supply Operation -+4.0 to +28 Vdc
- Internally Compensated
- Wide Unity Gain Bandwidth -4.0 MHz typical
- Low Input Bias Current - 50 nA typical
- High Open-Loop Gain - 2000 V/V typical

See Packaging Information Section for outline dimensions.

MC3301P (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+28	Vdc
Noninverting Input Current	I_{r}	5.0	mA
Sink Current	$\mathrm{I}_{\text {sink }}$	50	mA
Source Current	$\mathrm{I}_{\text {source }}$	50	mA
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	625	mW
Operating Temperature Range		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS [$\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (each amplifier) unless otherwise noted]

Characteristic	Fig.No.	Note	Symbol	Min	Typ	Max	Unit
Open-Loop Voltage Gain $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	5		Avol	1000	$\begin{aligned} & 2000 \\ & 1600 \end{aligned}$		V/V
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded	6	1	$\begin{aligned} & \text { IDO } \\ & \text { IDG } \end{aligned}$		$\begin{aligned} & 6.9 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	mAdc
$\begin{aligned} & \text { Input Bias Current, } \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	7	2	IIB		$\begin{gathered} 50 \\ 100 \end{gathered}$	300 -	nAdc
Current Mirror Gain ($1_{r}=200 \mu \mathrm{Adc}$)	7	3	A	0.80	0.98	1.16	A/A
Current Mirror Gain Drift $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}$				-	± 2.5	-	\%
$\begin{array}{\|ll} \text { Output Current } \\ \text { Source Capability }\left(\mathrm{V}_{\mathrm{OH}}=0.4 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OH}}=9.0 \mathrm{Vdc}\right) \\ \text { Sink Capability } & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \end{array}$	8		'source Isink	$\begin{gathered} 3.0 \\ - \\ 0.5 \end{gathered}$	$\begin{gathered} 10 \\ 7.0 \\ 0.87 \end{gathered}$	-	mAdc
Output Voltage High Voltage Low Voltage (Inverting Input Driven) (Noninverting Input Driven)	6		V_{OH} $\mathrm{V}_{\mathrm{OL}}(\mathrm{inv})$ $V_{O L(n o n)}$	13.5	$\begin{gathered} 14.2 \\ 0.03 \\ 0.6 \end{gathered}$	$\overline{0.1}$	Vdc
Input Resistance (Inverting input only)			$\mathrm{R}_{\text {in }}$	0.1	1.0	-	Meg Ω
Slew Rate ($C_{L}=100 \mathrm{pF}$, $\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k}$)			SR	-	0.6	-	$\mathrm{V} / \mathrm{\mu s}$
Unity Gain Bandwidth		4	BW	-	4.0	-	MHz
Phase Margin		4	$\phi \mathrm{m}$	-	70	-	Degrees
Power Supply Rejection ($\mathrm{f}=100 \mathrm{~Hz}$)			PSSR	-	55	-	dB
Channel Separation ($\mathrm{f}=1.0 \mathrm{kHz}$)			e_{01} / e_{02}	-	65	-	dB

NOTES:

1. The quiescent current drain will increase approximately 0.3 mA for each inverting or noninverting input that is grounded.
2. Input bias current can be defined only for the inverting input. The noninverting input is not a true "differential input" - as with a conventional IC operational amplifier. As such this
input does not have a requirement for input bias current.
3. Current mirror gain is defined as the current demanded at the inverting input divided by the current into the noninverting input.
4. Bandwidth and phase margin are defined with respect to the voltage gain from the inverting input to the output.

MC3301P (continued)

TYPICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$
[each amplifier] unless otherwise noted.)

FIGURE 5 - OPEN-LOOP VOLTAGE GAIN

FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT

FIGURE 8 - OUTPUT CURRENT

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$
[each amplifier] unless otherwise noted.)

FIGURE 10 - OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 12 - SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 14 - LINEAR SINK CURRENT versus SUPPLY VOLTAGE

(MC3301-Page 4)

MC3301P (continued)

OPERATION AND APPLICATIONS

Basic Amplifier

The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load I_{1} is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. $Q 2$ is biased class A by the current source I_{2}. The magnitude of I_{2} (specified $\mathrm{I}_{\text {sink }}$) is a limiting factor in capacitively coupled
linear operation at the output. The sink current of the device can be forced to exceed the specified level by keeping the output dc voltage above ≈ 1.0 volt resulting in an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18 on the following page. No external compensation is required.

FIGURE 15 BLOCK DIAGRAM

A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the noninverting input, I_{r}, flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to I_{r}. Since the alpha

FIGURE 16 - A BASIC GAIN STAGE

Biasing Circuitry

The circuitry common to all four amplifiers is shown in Figure 19, see next page. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.
The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the V_{BE} of Q 8 . The PNP current sources (Q 5 , etc.) are set to the magnitude $\mathrm{V}_{\mathrm{BE}} / \mathrm{R} 1$ by transistor
current gain of $\mathrm{Q} 3 \approx 1$, its collector current is approximately equal to I_{r} also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

OPERATION AND APPLICATIONS (continued)

FIGURE 18 - A BASIC OPERATIONAL AMPLIFIER

FIGURE 19 - BIASING CIRCUITRY

NORMAL DESIGN PROCEDURE

1. Output Q-Point Biasing
A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures 3 and 4 (see the first page of this specification). The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the $10 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ range.
B. $V_{C C}$ Reference Voltage (see Figures 3 and 4)

The noninverting input is normally returned to the V_{CC} voltage (which should be well filtered) through a resistor, R_{r}, allowing the input current, I_{r}, to be within the range of $10 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$. Choosing the feedback resistor, R_{f}, to be equal to $1 / 2 R_{r}$ will now bias the amplifier output dc level to approximately $\frac{V_{C C}}{2}$. This allows the maximum dynamic range of the output voltage.

FIGURE 20 - INVERTING AMPLIFIER WITH ARBITRARY REFERENCE
C. Reference Voltage other than V_{CC} (see Figure 20)

The biasing resistor R_{r} may be returned to a voltage $\left(V_{r}\right)$ other than $V_{C C}$. By setting $R_{f}=R_{r}$, (still keeping I_{r} between $10 \mu \mathrm{~A}$ and $200 \mu \mathrm{~A}$) the output dc level will be equal to V_{r}. The expression for determining $V_{\text {Odc }}$ is:

$$
V_{\text {Odc }}=\frac{\left(A_{l}\right)\left(V_{r}\right)\left(R_{f}\right)}{R_{r}}+\left(1-\frac{R_{f}}{R_{r}} A_{l}\right) \phi
$$

where ϕ is the $V_{\text {RF }}$ drop of the input transistors (approximately $0.6 \mathrm{Vdc} @+25^{\circ} \mathrm{C}$ and assumed equal). $\mathrm{A}_{\text {I }}$ is the current mirror gain.
2. Gain Determination
A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of

FIGURE 21 - INVERTING AMPLIFIER WITH $A_{v}=100$ AND $V_{r}=V_{C C}$

MC3301P (continued)

NORMAL DESIGN PROCEDURE(continued)

Isink becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of R_{f} to R_{i}, in the same manner as for a conventional operational amplifier:

$$
A_{v}=-\frac{R_{f}}{R_{i}}
$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 400 kHz with 20 dB of closed loop gain or 40 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF
B. Noninverting Amplifier

The MC3301P may be used in the noninverting mode (see Figure 4, first page). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately $\frac{26}{I_{r}}$ ohms, where I_{r} is input current in milliamperes. The noninverting ac gain expression is given by:

$$
A_{v}=\frac{\left(R_{f}\right)\left(A_{l}\right)}{R_{i}+\frac{26}{I_{r}(m A)}}
$$

The bandwidth of the noninverting configuration for a given R_{f} value is essentially independent of the gain chosen. For $R_{f}=510 \mathrm{k} \Omega$ the bandwidth will be in excess of 200 kHz for noninverting gains of 1,10 , or 100 . This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

TYPICAL APPLICATIONS

FIGURE 22 - TACHOMETER CIRCUIT

FIGURE 23 - VOLTAGE REGULATOR

For positive TC zeners R2 and R1 can be selected to give 0 TC output

FIGURE 24 - LOGIC "OR" GATE

TYPICAL APPLICATIONS (continued)

FIGURE 25 - LOGIC "NAND" GATE (Large Fan-In)

FIGURE 26 - LOGIC "NOR" GATE

FIGURE 28 - ASTABLE MULTIVIBRATOR

FIGURE 29 - POSITIVE-EDGE DIFFERENTIATOR

Output Rise Time $\approx 0.22 \mathrm{~ms}$
thput Change Time Constant $\approx 1.0 \mathrm{~ms}$

FIGURE 30 - NEGATIVE-EDGE DIFFERENTIATOR

MONOLITHIC QUAD SINGLE-SUPPLY COMPARATOR

These comparators are designed specifically for single positive power-supply Consumer Automotive and Industrial electronic applications. Each MC3302P contains four independent comparators suiting it ideally for usages requiring high density and low-cost.

- Wide Operating Temperature Range $-\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$
- Single-Supply Operation -+2.0 to +28 Vdc
- Differential Input Voltage $= \pm \mathrm{V}_{\mathrm{CC}}$
- Compare Voltages at Ground Potential
- MTTL Compatible
- Low Current Drain - $700 \mu \mathrm{~A}$ typical @ $\mathrm{V}_{\mathrm{CC}}+5.0$ to +28 Vdc
- Outputs can be Connected to Give the Implied AND Function

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Range	V_{CC}	+2.0 to +28	Vdc
Output Sink Current (See Note 1)	I_{O}	20	mA
Differential Input Voltage	$\mathrm{V}_{\text {IDR }}$	$\pm \mathrm{V}_{\mathrm{CC}}$	Vdc
Common-Mode Input Voltage Range (See Note 2)	$\mathrm{V}_{\text {ICR }}$	-0.3 to $+\mathrm{V}_{\mathrm{CC}}$	Vdc
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	625	mW
Operating Temperature Range		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{A}	-40 to +85	$\mathrm{o}^{\circ} \mathrm{C}$

Note 1. Requires an external resistor, R_{L}, to limit current below maximum rating.
Note 2. If either (+) or (-) inputs of any comparator go more than several tenths of a volt below ground, a parasitic transistor turns "on" causing high input current and possible faulty outputs.

> MONOLITHIC QUAD COMPARATOR INTEGRATED CIRCUIT EPITAXIAL PASSIVATED

[^35]
MC3302P (continued)

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ (each comparator) unless otherwise noted.)

Character istic Definitions (1/4 Circuit Shown)	Characteristic	Symbol	Min	Typ	Max	Unit
	Input Offset Voltage ($\mathrm{V}_{\text {ref }}=1.2 \mathrm{Vdc}$) $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \end{aligned}$	V_{10}	-	3.0	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	mVdc
	Input Offset Current	110	-	3.0	-	nAdc
	Input Bias Current $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \end{aligned}$	I/B	-	30 -	$\begin{gathered} 500 \\ 1000 \end{gathered}$	nAdc
	Voltage Gain $\left(T_{A}=+25^{\circ} \mathrm{C}, R_{L}=15 \mathrm{k} \Omega\right)$	$A_{\text {vol }}$	2,000	30,000	-	v/v
	Transconductance	gm	-	2.0	-	mhos
	Differential Input Voltage Range	VIDR	$\pm \mathrm{V}_{\mathrm{CC}}$	-	-	Vdc
	Output Leakage Current (Output Voltage High)	loff	-	-	1.0	μ Adc
	Negative Output Voltage $\left(\mathrm{I}_{\mathrm{s}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \text { to }+28 \mathrm{Vdc}\right)$	V_{OL}	-	150	400	mVdc
	$\begin{aligned} & \text { Output Sink Current } \\ & \left(V_{C C}=+5.0 \mathrm{Vdc}\right) \\ & \left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OL}}=400 \mathrm{mV}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=-40 \mathrm{to}+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OL}}=\right. \\ & 800 \mathrm{mV}) \end{aligned}$	I_{s}	2.0	6.0 -	-	mAdc
	Input Common-Mode Range $\left(V_{C C}=+28 V d c\right)$	$V_{\text {ICR }}$	0-26	-	-	Volts
	Common-Mode Rejection Ratio	CMRR	-	60	-	dB
	Propagation Delay Time For Positive and Negative-Going Input Pulse	tPHL/LH	-	2.0	-	$\mu \mathrm{s}$
	Slew Rate ($\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$)	$\begin{aligned} & \text { 'SR- } \\ & { }^{\text {t }} \mathrm{SR}^{+} \end{aligned}$	-	$\begin{gathered} 200 \\ 50 \end{gathered}$	-	V/us
	Power Supply Current (Total of four comparators) $\left(I_{\mathrm{s}}=0, \mathrm{~V}_{\mathrm{CC}}=+5.0 \text { to }+28 \mathrm{Vdc}\right)$	' ${ }^{\text {d }}$	-	0.7	1.5	mAdc

MC3302P (continued)

TYPICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ (each comparator) unless otherwise noted.)

FIGURE 3 - INPUT OFFSET VOLTAGE

FIGURE 4 - OFFSET BIAS CURRENT

FIGURE 5 - INPUT BIAS CURRENT

TYPICAL APPLICATIONS
FIGURE 6 - FREE-RUNNING SQUARE-WAVE OSCILLATOR
FIGURE 7 - TIME DELAY GENERATOR

TYPICAL APPLICATIONS (continued)

FIGURE 8 - COMPARATOR WITH HYSTERESIS

FIGURE 9 - THE COMPARATOR AS AN OPERATIONAL AMPLIFIER

Input common-mode voltage range includes ground (0 Vdc) and V_{0} can go to approximately 0 Vdc .

MC3401P

Specifications and Applications Information

MONOLITHIC QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

These internally compensated operational amplifiers are designed specifically for single positive power supply applications found in industrial control systems and automotive electronics. Each MC3401P device contains four independent amplifiers making it ideal for applications such as active filters, multi-channel amplifiers, tachometer, oscillator and other similar usages.

- Single-Supply Operation -+5.0 Vdc to +18 Vdc
- Internally Compensated
- Wide Unity Gain Bandwidth -5.0 MHz typical
- Low Input Bias Current - $\mathbf{5 0}$ nA typical
- High Open-Loop Gain - 1000 V/V minimum

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
Non-inverting Input Current	I_{in}	5.0	mA
Power Dissipation Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	625	mW
Operating Temperature Range		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{A}	0 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS [$\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (each amplifier) unless otherwise noted.]

Characteristic	Fig. No.	Note	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Open-Loop Voltage Gain } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	5,9,10	1	$\mathrm{A}_{\text {vol }}$	$\begin{gathered} 1000 \\ 800 \end{gathered}$	2000	-	V/V
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded	6,12	2	$\begin{aligned} & \text { IDO } \\ & \text { IDG } \end{aligned}$	-	$\begin{aligned} & 6.9 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	mAdc
$\begin{aligned} & \text { Input Bias Current, } \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+75^{\circ} \mathrm{C} \end{aligned}$	5	3	$1 / \mathrm{B}$	-	50	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	nAdc
Output Current Source Capability Sink Capability	$\begin{gathered} 5 \\ 13 \\ 14 \\ \hline \end{gathered}$	4	$I_{\text {source }}$ $I_{\text {sink }}$	$\begin{aligned} & 5.0 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 1.0 \\ \hline \end{array}$	-	mAdc
Output Voltage High Voltage Low Voltage Undistorted Output Swing $\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+75^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 7 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ \mathrm{~V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{O}(\mathrm{p}-\mathrm{p})} \end{gathered}$	$\begin{gathered} 13.5 \\ - \\ 10 \end{gathered}$	$\begin{aligned} & 14.2 \\ & 0.03 \\ & 13.5 \end{aligned}$	$\overline{-}$	Vdc $V_{(p-p)}$
Input Resistance	5		$\mathrm{R}_{\text {in }}$	0.1	1.0	-	MEG Ω
Slew Rate ($C_{L}=100 \mathrm{pF}$, $\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k}$)			SR	-	0.6	-	$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			BW	-	5.0	-	MHz
Phase Margin			ϕ_{m}	-	70	-	Degrees
Power Supply Rejection ($\mathrm{f}=100 \mathrm{~Hz}$)		7	PSSR	-	55	-	dB
Channel Separation ($f=1.0 \mathrm{kHz}$)			$\mathrm{e}_{0} 1 / \mathrm{e}_{\mathrm{O} 2}$	-	65	-	dB

NOTES

1. Open loop voltage gain is defined as the voltage gain from the inverting input to the output.
2. The quiescent current will increase approximately 0.3 mA for each noninverting input which is grounded. Leaving the noninverting input open causes the apparent input bias current to increase slightly (100 nA) at high temperatures.
3. Input bias current can be defined only for the inverting input. The noninverting input is not a true "differential input" - as with a conventional IC operational amplifier. As such this input does not have a requirement for input bias current.
4. Sink current is specified for linear operation. When the device is used as a gate or a comparator (non-linear operation), the sink capability of the device is approximately 5.0 milliamperes.
5. When used as a noninverting amplifier, the minimum output voltage is the $V_{B E}$ of the inverting input transistor.
6. Peak-to-peak restrictions are due to the variations of the quiescent dc output voltage in the standard configuration (Figure 8).
7. Power supply rejection is specified at closed loop unity gain, and therefore indicates the supply rejection of both the biasing circuitry and the feedback amplifier.

MC3401P (continued)

SIMPLIFIED TEST CIRCUITS

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$
[each amplifier] unless otherwise noted)
FIGURE 5 - OPEN-LOOP GAIN AND INPUT RESISTANCE (INPUT BIAS CURRENT, OUTPUT CURRENT)

$$
R_{\text {in }}=\frac{\Delta V_{\text {in }}}{\Delta l_{\mathrm{IB}}} \quad A_{\text {vol }}=-\frac{\Delta V_{0}}{\Delta V_{\text {in }}}
$$

FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT

IDO is total supply current with " + " input open. DG is total supply current with " + " input grounded

Amplifier must be biased (by $\mathrm{V}_{\text {in }}$) in the linear operating region.

FIGURE 7 - OUTPUT VOLTAGE SWING
FIGURE 8 - PEAK-TO-PEAK OUTPUT VOLTAGE

for $R_{r} \cong 2 R_{f}$

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$
[each amplifier] unless otherwise noted.)

FIGURE 10 - OPEN-LOOP VOLTAGE GAIN
versus SUPPLY VOLTAGE

FIGURE 12 - SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 14 - LINEAR SINK CURRENT versus SUPPLY VOLTAGE

VCC, SUPPLY VOLTAGE (Vdc)

OPERATION AND APPLICATIONS

The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load I_{1} is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q 2 is biased class A by the current source I_{2}. The magnitude of I_{2} (specified $I_{\text {sink }}$) is a limiting factor in capacitively coupled
linear operation at the output. The sink current of the device can be forced to exceed the specified level with an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18. No external compensation is required.

FIGURE 15

A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the noninverting input, $l_{\text {in } 2, ~ f l o w s ~ t h r o u g h ~ t h e ~ d i o d e ~ C R 1 . ~ T h e ~ v o l t a g e ~}^{\text {e }}$ drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to $l_{\text {in } 2}$. Since the

FIGURE 16 - A BASIC GAIN STAGE

Biasing Circuitry

The circuitry common to all four amplifiers is shown in Figure 19. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.
The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the $V_{B E}$ of Q8. The PNP current sources (Q 5 , etc.) are set to the magnitude $V_{B E} / R 1$ by transistor
alpha current gain of $\mathrm{Q} 3 \approx 1$, its collector current $\approx l_{\text {in2 }}$ also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

FIGURE 17 - OBTAINING A NONINVERTING INPUT

Q6. Transistor Q7 reduces base current loading. The voltage across resistor R2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the $V_{B E}$ drops of transistor Q9 and diode CR5. The current thus set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage.

MC3401P (continued)

OPERATION AND APPLICATIONS (continued)

FIGURE 18 - A BASIC OPERATIONAL AMPLIFIER

FIGURE 19 - BIASING CIRCUITRY

NORMAL DESIGN PROCEDURE

1. Output Q-Point Biasing
A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures 3 and 4. The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the $5 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ range.
B. $V_{C C}$ Reference Voltage (see Figures 3 and 4)

The noninverting input is normally returned to the $V_{C C}$ voltage (which should be well filtered) through a resistor, R_{r}, allowing the input current, I_{r}, to be within the range of $5 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$. Choosing the feedback resistor, R_{f}, to be equal to $1 / 2 R_{r}$ will now bias the amplifier output dc level to approximately $\frac{V_{C C}}{2}$. This allows for maximum dynamic range of the output voltage.
C. Reference Voltage other than $V_{C C}$ (See Figure 20). The biasing resistor R_{r} may be returned to a voltage (V_{r})
other than $V_{C C}$. By setting $R_{f}=R_{r}$, (still keeping I_{r} between $5 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$) the output dc level will be equal to V_{r}. Neglecting error terms, the expression for determining $\mathrm{V}_{\mathrm{Odc}}$ is:

$$
V_{\text {Odc }}=\frac{\left(V_{r}\right)\left(R_{f}\right)}{R_{r}}+\left(1-\frac{R_{f}}{R_{r}}\right) \phi
$$

where ϕ is the $V_{B E}$ drop of the input transistors (approximately $0.7 \mathrm{Vdc} @+25^{\circ} \mathrm{C}$).
The error terms not appearing in the above equation can cause the dc operating point to vary up to 20% from the expected value. Error terms are minimized by setting the input current within the range of $5 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$.
2. Gain Determination
A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc'bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of

FIGURE 20 - INVERTING AMPLIFIER WITH ARBITRARY REFERENCE

FIGURE 21 - INVERTING AMPLIFIER WITH $A_{V}=100$ AND $V_{r}=V_{C C}$

NORMAL DESIGN PROCEDURE (continued)

Isink becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of R_{f} to R_{i}, in the same manner as for a conventional operational amplifier:

$$
A_{v}=-\frac{R_{f}}{R_{i}}
$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 5.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 500 kHz with 20 dB of closed loop gain or 50 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF .
B. Noninverting Amplifier

Although recommended as an inverting amplifier, the MC 3401P may be used in the noninverting mode (see Figure 4). The amplifier gain in this configuration is subject to the same error terms that affect the output Q point biasing so the gain may deviate as much as $\pm 20 \%$ from that expected. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately $\frac{26}{I_{r}}$ ohms, where I_{r} is input current in milliamperes. The noninverting gain expression is given by:

$$
A_{v}=\frac{R_{f}}{R_{i}+\frac{26}{I_{r}(m A)}} \quad \pm 20 \%
$$

The bandwidth of the noninverting configuration for a given R_{f} value is essentially independent of the gain chosen. For $R_{f}=510 \mathrm{k} \Omega$ the bandwidth will be in excess of 200 kHz for noninverting gains of 1,10 , or 100 . This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

TYPICAL APPLICATIONS
FIGURE 22 - AMPLIFIER AND DRIVER FOR A 50-OHM LINE

FIGURE 23 - BASIC BANDPASS AND NOTCH FILTER

TYPICAL APPLICATIONS (continued)

FIGURE 24 - BANDPASS AND NOTCH FILTER

FIGURE 25 - VOLTAGE REGULATOR

$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{Z}}+0.6 \mathrm{Vdc}$
NOTE 1: R is used to bias the zener.
NOTE 2: If the Zener TC is positive, and equal in magnitude to the negative TC of the input to the operational amplifier ($\approx 2.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$), the output is zero-TC. A 7.0-Volt Zener will give approximately zero-TC.

FIGURE 26 - ZERO CROSSING DETECTOR

Specifications and Applications Information

MONOLITHIC QUAD MTTL COMPATIBLE LINE RECEIVERS

The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance state.

The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function.

The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices.

- Receiver Performance Identical to the Popular MC75107/MC75108 Series
- Four Independent Receivers with Common Strobe Input
- Implied "AND" Capability with Open Collector Outputs
- Useful as a Quad 1103 type Memory Sense Amplifier

MAXIMUM RATINGS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	± 7.0	Vdc
Differential-Mode Input Signal Voltage Range	$\mathrm{V}_{\text {IDR }}$	± 6.0	Vdc
Common-Mode Input Voltage Range	$V_{\text {ICR }}$	± 5.0	Vdc
Strobe Input Voltage	$V_{\text {I (}}$)	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Plastic Dual In-Line Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 1000 \\ 6.6 \\ 1000 \\ 6.6 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (T ${ }_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Power Supply Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +4.75 \\ & -4.75 \end{aligned}$	$\begin{aligned} & +5.0 \\ & -5.0 \end{aligned}$	$\begin{aligned} & +5.25 \\ & -5.25 \\ & \hline \end{aligned}$	Vdc
Output Load Current	${ }^{\text {IOL }}$	-	-	16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	$V_{\text {ICR }}$	-3.0	-	+3.0	Vdc
Input Voltage Range (any input to Ground)	$V_{\text {IR }}$	-5.0	-	+3.0	Vdc̈

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Character istic	Symbol	Fig.	MC3450			MC3452			Unit
			Min	Typ	Max	Min	Typ	Max	
High Level Input Current to Receiver Input	$I_{1 H(1)}$	7	$=$	$\underline{\square}$	75	-	-	75	$\mu \mathrm{A}$
Low Level Input Current to Receiver Input	IIL(I)	8	- $=$	-	-10	-	-	-10	$\mu \mathrm{A}$
High Level Input Current to Strobe Input $\begin{aligned} & \mathrm{V}_{1 \mathrm{H}(\mathrm{~S})}=+2.4 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{H}(\mathrm{~S})}=+5.25 \mathrm{~V} \end{aligned}$	1/H(S)	5			$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	-		$\begin{aligned} & 40 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low Level Input Current to Strobe Input $V_{1 H(S)}=+0.4 \mathrm{~V}$	IIL(S)	5			-1.6	-	-	-1.6	mA
High Level Output Voltage	V_{OH}	3	2.4	-	-	-	-	-	Vdc
High Level Output Leakage Current	ICEX	3	\square	-		-	-	250	$\mu \mathrm{A}$
Low Level Output Voltage	V_{OL}	3	-	-	0.4	-	-	0.4	Vdc
Short-Circuit Output Current	Ios	6	-18		-70	-	-	-	mA
Output Disable Leakage Current	loff	9	-	-	40	-	-	-	$\mu \mathrm{A}$
High Logic Level Supply Current from V_{CC}	${ }^{1} \mathrm{CCH}$	4	-	45	60	-	45	60	mA
High Logic Level Supply Current from VEE	IEEH	4	-	-17.	-30	-	-17	-30	mA

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

Character istic	Symbol	Fig.	- MC3450			MC3452			Unit
			Min	Typ	Max	Min	Typ	Max	
High to Low Logic Level Propagation Delay Time (Differential Inputs)	${ }^{\text {tPHL(D) }}$	10			25	-	-	25	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs)	${ }^{\text {tPLH }}$ (D)	10			25	-	-	25	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	tPOH(S)	11			21	-	-	-	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHO(S)	11			18	-	-	-	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	${ }^{\text {tPOL(S) }}$	11			27	-	-	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tplo(S)	11			29	-	-	-	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	${ }^{\text {tPHL(S) }}$	12				-	-	25	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	tPLH(S)	12		\qquad		-	-	25	ns

FIGURE 2 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)

Dashed components apply to the MC3450 circuit only.
TEST CIRCUITS
FIGURE 3 - $I_{\text {CEX }}, \mathrm{V}_{\mathrm{OH}}$, AND V_{OL}

FIGURE 4 - ICCH AND IEEH

TEST CIRCUITS (continued)

FIGURE 7 - IIH

Channel $A(-)$ shown under test, other channels are tested similarly. Devices are tested with V 1 from +3.0 V to -3.0 V .

FIGURE 8 - IIL

Channel $A(-)$ shown under test, other channels are tested
imilarly. Devices are tested with V 1 from +3.0 V to -3.0 V .

FIGURE 9 - Ioff

Output of Channel A shown under test, other outputs are tested similarly for $\mathrm{V} 1=0.4 \mathrm{~V}$ and +2.4 V .

Output of Channel B shown under test, other channels are tested similarly.
S1 at " A " for MC3452
S1 at "B" for MC3450
$C_{L}=15 \mathrm{pF}$ total for MC3452
$C_{L}=50 \mathrm{pF}$ total for MC3450

TEST CIRCUITS (continued)

FIGURE 11 - STROBE PROPAGATION DELAY TIMES tPLO(S), tPOL(S), tPHO(S) and tPOH(S)

Output of Channel B shown under test, other channels are tested similarly.

	V1	V2	S1	S2	C_{L}
tplo(s)	100 mV	GND	Closed	Closed	15 pF
	100 mV	GND	Closed	Open	50 pF
	GND	100 mV	Closed	Closed	15 pF
${ }^{\text {tPOH(S) }}$	GND	100 mV	Open	Closed	50 pF

C_{L} includes jig and probe capacitance.
$\mathrm{E}_{\text {in }}$ waveform characteristics:
${ }^{\mathrm{t}} \mathrm{TLH}$ and $\mathrm{t}_{\mathrm{THL}} \leqslant 10$ ns measured 10% to 90%.
$P R R=1.0 \mathrm{MHz}$
Duty Cycle $=\mathbf{5 0 \%}$

FIGURE 12 - STROBE PROPAGATION DELAY (PLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

$\mathrm{E}_{\text {in }}$ waveform characteristics:
${ }^{{ }^{1}} \mathrm{TLH}$ and $\mathrm{t}_{\mathrm{THL}} \leqslant \mathbf{1 0}$ ns measured $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$
$P R R=1.0 \mathrm{MHz}$
Duty Cycle $=500 \mathrm{~ns}$

APPLICATIONS INFORMATION

The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to +5.0 volts. In this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed through put for address decoding.

FIGURE 15 - SINGLE-ENDED UNI-BUS* LINE RECEIVER APPLICATION FOR MINICOMPUTERS

The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applications, such as are encountered in minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates $V_{\text {ref, }}$, should be designed so that the $V_{\text {ref }}$ voltage is halfway between $\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{OL}}(\max)$. The maximum input overdrive required to guarantee a given logic state is extremely small, 25 mV maximum. This low-input overdrive enhances differential noise immunity. Also the high-input impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects.

FIGURE 16 - WIRED "OR" DATA SELECTION USING THREE-STATE LOGIC

APPLICATIONS INFORMATION (continued)

FIGURE 17 - PARTY-LINE DATA TRANSMISSION SYSTEM

WITH MULTIPLEX DECODING

For further information on Data Transmission Systems
see Motorola Application Note AN-708, '"Line Driver
and Receiver Considerations'

MONOLITHIC MTTL COMPATIBLE QUAD LINE DRIVER

The MC3453 features four MC75110 type line drivers with a common inhibit input. When the inhibit input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the inhibit is low, all channel outputs are nonconductive (transistors biased to cut-off). This minimizes loading in party-line systems where a large number of drivers share the same line.

- Four Independent Drivers with Common Inhibit Input
- -3.0 Volts Output Common-Mode Voltage Over Entire Operating Range
- Improved Driver Design Exceeds Performance of Popular MC75110

QUAD LINE DRIVER WITH COMMON INHIBIT INPUT

MONOLITHIC SILICON INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.

MC3453 (continued)

MAXIMUM RATINGS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+7.0	Volts
	V_{EE}	-7.0	
Logic and Inhibitor Input Voltages	$\mathrm{V}_{\text {in }}$	5.5	Volts
Common-Mode Output Voltage Range	$\mathrm{V}_{\mathrm{OCR}}$	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}		
Operating Temperature Range		1000	mW
Storage Temperature Range Plastic and Ceramic Dual In-Line Packages	T_{A}	0 to +70	$\mathrm{~mW}^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	$V_{C C}$	+4.75	+5.0	+5.25	Volts
	$V_{\text {EE }}$	-4.75	-5.0	-5.25	
Common-Mode Output Voltage Range	$V_{\text {OCR }}$				Volts
Positive		0	-	+10	
Negative		0	-	-3.0	

Note 1. These voltage values are in respect to the ground terminal.
Note 2. When not using all four channels, unused outputs must be grounded.
DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Min	Max	Unit
High-Level Input Voltage (at any input)	$V_{I H}$	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	$V_{I L}$	0	0.8	Volts

*The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.
ELECTRICAL CHARACTERISTICS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic\#\#	Symbol	Min	Typ\#	Max	Unit
$\begin{aligned} & \text { High-Level Input Current (Logic Inputs) } \\ & \left(V_{C C}=M a x, V_{E E}=M a x, V_{I H_{L}}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{~V}_{1 H_{L}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max}\right) \end{aligned}$	${ }^{1} H_{L}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current (Logic Inputs) $\left(V_{C C}=M a x, V_{E E}=\operatorname{Max}, V_{I L_{L}}=0.4 \mathrm{~V}\right)$	${ }_{\text {I }} L_{L}$	-	-	-1.6	mA
$\begin{aligned} & \text { High-Level Input Current (Inhibit Input) } \\ & \left(V_{C C}=M a x, V_{E E}=M a x, V_{1 H_{1}}=2.4 \mathrm{~V}\right) \\ & \left(V_{C C}=M a x, V_{E E}=M a x, V_{1 H_{1}}=V_{C C} M a x\right) \end{aligned}$	$\mathrm{I}_{1} \mathrm{H}_{1}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 40 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
Low-Level Input Current (Inhibit Input) $\left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I_{I}}=0.4 \mathrm{~V}\right)$	${ }_{\text {I ILI }}$	-	-	-1.6	mA
Output Current ("on" state) $\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}\right)$ $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Min}\right)$	'O(on)	$\overline{-}$	$\begin{aligned} & 11 \\ & 11 \\ & \hline \end{aligned}$	15	mA
Output Current ("off" state) $\left(V_{C C}=M i n, V_{E E}=M i n\right)$	'O(off)	-	5.0	100	$\mu \mathrm{A}$
Supply Current from V_{CC} (with driver enabled) $\left(\mathrm{V}_{1 L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}_{1}}=2.0 \mathrm{~V}\right)$	${ }^{\text {I CCO }}$ (on)	-	35	50	mA
Supply Current from V_{EE} (with driver enabled) $\left(\mathrm{V}_{1 L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}_{1}}=2.0 \mathrm{~V}\right)$	IEE(on)	-	65	90	mA
Supply Current from V_{CC} (with driver inhibited) $\left(V_{I L}=0.4 \mathrm{~V}, V_{I L_{I}}=0.4 \mathrm{~V}\right)$	${ }^{\text {I CCO }}$ (off)	-	35	50	mA
Supply Current from V_{EE} (with driver inhibited) $\left(V_{I L_{L}}=0.4 \mathrm{~V}, V_{I L_{I}}=0.4 \mathrm{~V}\right)$	'EE(off)	-	25	40	mA

[^36]\#\#For conditions shown as Min or Max, use the appropriate value specified under recommended operating
conditions for the applicable device type.
Ground unused inputs and outputs.

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$

Characteristic	Symbol	Min	Typ	Max	Unit
Propagation Delay Time from Logic Input to Output Y or $Z\left(R_{L}=50\right.$ ohms, $\left.C_{L}=40 \mathrm{pF}\right)$	$\begin{aligned} & \mathrm{t}_{\mathrm{t} L H_{\mathrm{L}}} \\ & { }^{\text {tPHL }} \end{aligned}$	-	$\begin{aligned} & \hline 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns
Propagation Delay Time from Inhibit Input to Output Y or $Z\left(R_{L}=50\right.$ ohms, $\left.C_{L}=40 \mathrm{pF}\right)$	${ }^{t}{ }^{\prime} \mathrm{H}_{1}$ ${ }^{\mathrm{P}} \mathrm{PH} \mathrm{~L}_{1}$		16 20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns

FIGURE 2 - LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 3 - INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

TEST CIRCUITS

FIGURE 4 - LOGIC INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 5 - INHIBIT INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 6 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)

MC5528

MC5529
MC7528
MC7529

MONOLITHIC DUAL SENSE AMPLIFIERS

 WITH PREAMPLIFIER TEST POINTSThis dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits. External preamplifier test points provide for very accurate timing of the strobe with the input signal.

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High dc Logic Noise Margin
1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs
- Test Points Available for Accurate Strobe Timing

LSUFFIX
CERAMIC PACKAGE
CASE 620

PSUFFIX
PLASTIC PACKAGE

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +7.0 \\ & -7.0 \end{aligned}$	Vdc Vdc
Differential Input Voltages	$V_{\text {in }}$ or $V_{\text {ref }}$	± 5.0	Vdc
Power Dissipation Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 575 \\ & 3.85 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} W^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC5528, MC5529 MC7528, MC7529	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \pm 5 \%, T_{A}=T_{\text {low }} \#$ to $T_{\text {high }}$ \# unless otherwise noted.)

Characteristic	Symbol	MC5528 MC5529			MC7528 \# MC7529			Unit
		Min	Typ	Max	Min	Typ	Max	
	$V_{\text {th }}$	10 80 35 33 -4 -	15 40 15 40		$\begin{gathered} 11 \\ 8.0 \\ 36 \\ 33 \\ - \\ - \\ - \end{gathered}$	15 40 - 15 - 40 -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & 19 \\ & 22 \\ & 44 \\ & 47 \end{aligned}$	mV
Differential and Reference Input Bias Current $\left(V_{\text {ID }}=V_{\text {ref }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{inS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	1/B		30	100	-	30	75	$\mu \mathrm{A}$
Differential Input Offset Current $\left(V_{\text {ID }}=V_{\text {ref }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{inS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+5.25 \mathrm{~V}\right)$	'IOD		0.5		-	0.5	-	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Voltage, Logic "1" } \\ & \left(\mathrm{V}_{1 \mathrm{D}}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=400 \mu \mathrm{~A},\right. \\ & \left.\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}>2.4 \mathrm{~V}\right) \end{aligned}$	$V_{\text {in }}{ }^{\prime \prime}$ "	20			2.0	-	-	V
$\begin{aligned} & \text { Input Voltage, Logic " } 0^{\prime \prime} \\ & \quad\left(V_{\text {ID }}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=16 \mathrm{~mA},\right. \\ & \left.\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}<0.4 \mathrm{~V}\right) \end{aligned}$	$V_{\text {in '0" }}$			0.8	-	-	0.8	V
$\begin{array}{ll} \begin{array}{l} \text { Input Current, Logic " } 1 \text { " } \\ \left(V_{\text {ID }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \\ \mathrm{MC5528,MCS529} \\ \left(\mathrm{~V}_{\text {ID }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=+5.25 \mathrm{~V},\right. \\ \left.V_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \end{array} & \mathrm{MC} 7528, \mathrm{MC} 7529 \end{array}$	'in"1"		50	40	-	$0 . \overline{02}$	$\overline{1.0}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Input Current, Logic "0" } \\ & \quad\left(V_{\text {ID }}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, V_{\text {inS }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \end{aligned}$	' in' $0^{\prime \prime}$		-10	16	-	-1.0	-1.6	mA
$\begin{aligned} & \text { Output Voltage, Logic " } 1 \text { " } \\ & \quad\left(\mathrm{V}_{\text {ID }}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}{ }^{\prime} 1^{\prime \prime}$	24	3.9		2.4	3.9	-	V
$\begin{aligned} & \text { Output Voltage, Logic "0" } \\ & \quad\left(V_{I D}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, V_{\mathrm{inS}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{0}{ }^{\prime \prime} 0^{\prime \prime}$		0.25	0.40	-	0.25	0.40	V
Short-Circuit Output Current $\left(V_{\text {ID }}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, V_{\mathrm{inS}}=+5.25 \mathrm{~V}, V_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	Iosc	-2.1	-28	35	-2.1	-2.8	-3.5	mA
$V_{C C}$ Supply Current $\left(V_{\text {ID }}=V_{\text {inS }}=0 \mathrm{~V}, V_{\text {ref }}=20 \mathrm{mV}, V_{S}= \pm 5.25 \mathrm{~V}\right)$	${ }^{1} \mathrm{CC}$		29	40	-	29	40	mA
$V_{E E}$ Supply Current $\left(V_{\text {ID }}=V_{\text {inS }}=0 \mathrm{~V}, V_{\text {ref }}=20 \mathrm{mV}, V_{S}= \pm 5.25 \mathrm{~V}\right)$	IEE		-13	-18	-	-13	-18	mA

(1) For $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ operation; electrical characteristics for MC5528 and MC5529 are guaranteed the same as MC7528 and MC7529 respectively.
\# $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC5528, MC5529, $0^{\circ} \mathrm{C}$ for MC7528, MC7529
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for $\mathrm{MC5528}, \mathrm{MC5529} ;+70^{\circ} \mathrm{C}$ for $\mathrm{MC} 7528, \mathrm{MC} 7529$

MC5528, MC5529, MC7528, MC7529 (continued)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MC5528MC5529			$\begin{aligned} & \text { MC7528 } \\ & \text { MC7529 } \end{aligned}$			Unit
		Min	Typ	Max	Min	Typ	Max	
AC Common-Mode Input Firing Voltage $\left(\mathrm{V}_{\mathrm{ref}}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=5.0 \mathrm{~V}\right)$	$V_{\text {CMF }}$	\pm	± 2.5		-	± 2.5	-	V
$\begin{aligned} & \text { Propagation Delay Time, Differential Input to Logic " } 1 \text { " Output } \\ & \left(V_{\text {ref }}=20 \mathrm{mV}\right) \end{aligned}$	tPLHD		20	40	-	20	40	ns
Propagation Delay Time, Differential Input to Logic "0" Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	tPHLD		28		-	28	-	ns
$\begin{aligned} & \text { Propagation Delay Time, Strobe Input to Logic "1" Output } \\ & \left(V_{\text {ref }}=20 \mathrm{mV}\right) \end{aligned}$	tPHLS		(10	30	-	10	30	ns
Propagation Delay Tirne, Strobe Input to Logic "0" Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	tPHLS		20		-	20	-	ns
Overload Recovery Time, Differential Input	${ }^{\text {t R D }}$	-	10	\cdots	-	10	-	ns
Overload Recovery Time, Common-Mode Input	trCM	[-7	5.0	,	-	5.0	-	ns
Minimum Cycle Time	$t(\mathrm{~min})$	-	200	+ +	-	200	-	ns

(2) Positive current is defined as current into the referenced pin.
(3) Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground.
(4) Each test point to have $\leq 15 \mathrm{pF}$ capacitive load to ground.

MONOLITHIC DUAL SENSE AMPLIFIERS WITH INVERTED OUTPUTS

This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits. These circuits are identical to the MC7524 except that an additional stage has been added to each output gate to provide an inverted output.

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High de Logic Noise Margin 1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs
- Normally High Outputs Accomodate the Wired-OR of Several Sense Amplifiers

MC5534, MC5535, MC7534, MC7535 (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +7.0 \\ & -7.0 \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$
Differential Input Voltages	$V_{\text {in }}$ or $V_{\text {ref }}$	± 5.0	Vdc
Power Dissipation Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 575 \\ & 3.85 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW}{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC5534, MC5535 MC7534, MC7535	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $1 \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{E E}=-5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ \# to $T_{\text {high }}$ \# unless othervise noted.)

Characteristic	Symbol	MC5534 (1) MC5535			$\begin{aligned} & \text { MC7534\# } \\ & \text { MC7535 } \end{aligned}$			Unit
		Min	Typ	Max	Min	Typ	Max	
Differential Input Threshold Voltage $\left(V_{\text {inS }}=+5.0 \mathrm{~V}, V_{I D}= \pm V_{\text {th }}\right)$ $\left(V_{\text {ref }}=15 \mathrm{mV}, V_{\mathrm{L}}=+5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}<250 \mu \mathrm{~A}\right)$ MC5534, MC7534 MC5535, MC7535 $\left(\mathrm{V}_{\text {ref }}=40 \mathrm{mV}, V_{\mathrm{L}}=+5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}<250 \mu \mathrm{~A}\right)$ MC5534, MC7534 MC5535, MC7535 $\left(\mathrm{V}_{\text {ref }}=15 \mathrm{mV}, I_{\mathrm{L}}=20 \mathrm{~mA}, V_{\mathrm{O}}=<0.4 \mathrm{~V}\right)$ MC5534, MC7534 MC5535, MC7535 $\left(V_{\text {ref }}=40 \mathrm{mV}, I_{\mathrm{L}}=200 \mathrm{~mA}, V_{\mathrm{O}}=<0.4 \mathrm{~V}\right)$ MC5534, MC7534 MC5535, MC7535	$V_{\text {th }}$	10 8.0 35 33. $-$ - -	15 40 15 40	- r - 2 20 22 45 47	$\begin{array}{r} 11 \\ 80 \\ 36 \\ 33 \end{array}$	15 40 - 15 $-$ 40	$\begin{aligned} & 19 \\ & 22 \\ & 44 \\ & 47 \end{aligned}$	mW
Differential Reference Input Bias Current $\left(V_{I D}=V_{\text {ref }}=0 \mathrm{~V}, V_{\mathrm{inS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	I/B		30	100	-	30	75	$\mu \mathrm{A}$
$\begin{aligned} & \text { Differential Input Offset Current } \\ & \qquad\left(V_{\text {ID }}=V_{\text {ref }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{inS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \end{aligned}$	1100		0.5		-	0.5		$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Voltage, Logic "0" } \\ & \qquad V_{I D}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5.25 \mathrm{~V} \\ & \left.\mathrm{~V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=<250 \mu \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\text {in' }} \mathrm{O}^{\prime \prime}$			0.8	-	-	0.8	V
$\begin{aligned} & \text { Input Voltage, Logic " } 1 \text { " } \\ & \left(\mathrm{V}_{1 D}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA},\right. \\ & \left.\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=<0.4 \mathrm{~V}\right) \end{aligned}$	$V_{\text {in }}{ }^{\prime \prime} 1^{\prime \prime}$	2.0			20	-	-	V
$\begin{aligned} & \text { Input Current, Logic "0" } \\ & \qquad\left(V_{\text {ID }}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \end{aligned}$	I in"0"		-1.0	-16	-	-1.0	-1.6	mA
```Input Current, Logic "1"```  ```MC7534, MC7535```	$\mathrm{I}_{\text {in }}{ }^{\prime \prime}{ }^{\prime \prime}$		$50$	$40$	-	0.02	$10$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Output Voltage, Logic " } 0 \text { " } \\ & \quad\left(V_{I D}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, V_{\mathrm{inS}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}{ }^{\prime \prime} \mathrm{O}^{\prime \prime}$		$0.25$	$0.40$	-	0.25	0.40	V
Output Leakage Current $\left(V_{\text {ID }}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}\right)$	${ }^{\prime} \mathrm{OL}$		$0.01$	$250$	-	0.01	250	$\mu \mathrm{A}$
$V_{C C}$ Supply Current   $\left(V_{\text {ID }}=V_{\text {inS }}=0 \mathrm{~V}, V_{\text {ref }}=20 \mathrm{mV}, V_{S}= \pm 5.25 \mathrm{~V}\right)$	${ }^{1} \mathrm{CC}$		$28$	$38$	-	28	38	mA
$V_{E E}$ Supply Current $\left(v_{\mathrm{ID}}=v_{\mathrm{inS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	'EE		$-13$	$-18$	-	-13	-18	mA

(1) For $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ operation, electrical characteristics for MC5534 and MC5535 are guaranteed the same as MC7534 and MC7535 respectively.
\# Tlow $=-55^{\circ} \mathrm{C}$ for MC5534, MC5535, $0^{\circ} \mathrm{C}$ for MC7534, MC7535
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC5534, MC5535, $+70^{\circ} \mathrm{C}$ for MC7534, MC7535

MC5534, MC5535, MC7534, MC7535 (continued)

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MC5534MC5535			MC7534 MC7535			Unit
		Min	Typ	Max	Min	Typ	Max	
AC Common-Mode Input Firing Voltage $\left(\mathrm{V}_{\mathrm{ref}}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=5.0 \mathrm{~V}\right)$	$V_{\text {CMF }}$		$\pm 2.5$		-	$\pm 2.5$	-	V
Propagation Delay Time, Differential Input to Logic "1" Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	${ }^{\text {tPLHD }}$		$24$		-	24	-	ns
Propagation Delay Time, Differential Input to Logic " 0 " Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	tPHLD		$20$	- 40	-	20	40	ns
Propagation Delay Time, Strobe Input to Logic "1" Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	tPLHS		$16$		-	16	-	ns
Propagation Delay Time. Strobe Input to Logic " 0 " Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	tpHLS		$10$	30	-	10	30	ns
Overload Recovery Time, Differential Input	${ }^{\text {tr }}$	- 4.4	-10	+ -	-	10	-	ns
Overload Recovery Time, Common-Mode Input	${ }^{\text {t }}$ RCM	$5$	5.0	$5,-x$	-	5.0	-	ns
Minimum Cycle Time	$t$ (min)	$4$	$200$	$4$	-	200	-	ns

(2) Positive current is defined as current into the referenced pin.
(3) Pin 1 to have $\geqslant 100 \mathrm{pF}$ capacitor connected to ground.

## MONOLITHIC DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST POINTS AND INVERTED OUTPUTS

This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits. These devices are identical to MC5528/MC7528 with the exception of the inverted outputs.

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High dc Logic Noise Margin
1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs
- Test Points Available for Strobe Timing
- Inverted Outputs to Accomodate Wired-OR Outputs of Several Sense Amplifiers


DUAL HIGH-SPEED SENSE AMPLIFIER

## WITH

PREAMPLIFIER TEST POINTS
AND
INVERTED OUTPUTS
MONOLITHIC SILICON INTEGRATED CIRCUIT



See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & \hline+7.0 \\ & -7.0 \\ & \hline \end{aligned}$	Vdc Vdc
Differential Input Voltages	$V_{\text {in }}$ or $V_{\text {ref }}$	$\pm 5.0$	Vdc
Power Dissipation Derate above $T_{A}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$ D	$\begin{aligned} & 575 \\ & 3.85 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW}{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC5538, MC5539 MC7538, MC7539	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, V_{E E}=-5.0 \mathrm{~V} \pm 5 \%, T_{A}=T_{\text {low }}\right.$ to $T_{\text {high }}$ \# unless otherwise noted.)

Characteristic	Symbol	MC5538(1) MC5539			$\begin{aligned} & \text { MC7538 \# } \\ & \text { MC7539 } \\ & \hline \end{aligned}$			Unit
		Min	Typ	Max	Min	Typ	Max	
Differential Input Threshold $V$ oltage $\left(V_{\text {inS }}=+5.0 \mathrm{~V}, V_{I D}= \pm V_{\text {th }}\right)$    $\left(V_{\text {ref }}=15 \mathrm{mV}, V_{L}=+5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}<250 \mu \mathrm{~A}\right)$ MC5538, MC7538    MC5539, MC7539   $\left(V_{\text {ref }}=40 \mathrm{mV}, V_{\mathrm{L}}=+5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}<250 \mu \mathrm{~A}\right)$ MC5538, MC7538    MC5539, MC7539   $\left(V_{\text {ref }}=15 \mathrm{mV}, I_{\mathrm{L}}=120 \mathrm{~mA}, V_{\mathrm{L}}<0.4 \mathrm{~V}\right)$ MC5538, MC7538    MC5539, MC7539   $\left(V_{\text {ref }}=40 \mathrm{mV}, I_{L}=+20 \mathrm{~mA}, V_{\mathrm{L}}<0.4 \mathrm{~V}\right)$ MC5538, MC7538    MC5539, MC7539	$\mathrm{V}_{\text {th }}$	$\begin{array}{r} 10 \\ 80 \\ 35 \\ 33 \end{array}$   -   -   "   $-$	15   40   $-$   15   40   -	2   -   -   -   20   22   45   47	$\begin{aligned} & 11 \\ & 8.0 \\ & 36 \\ & 33 \\ & - \\ & - \\ & - \end{aligned}$	15   40.   15   -   40   -	19   22   44   47	mV
Differential and Reference Input Bias Current $\left(\mathrm{V}_{\text {ID }}=\mathrm{V}_{\mathrm{ref}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{inS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	IIB		-30	$100$	-	30	75	$\mu \mathrm{A}$
$\begin{aligned} & \text { Differential Input Offset Current } \\ & \quad\left(\mathrm{V}_{\text {ID }}=\mathrm{V}_{\text {ref }}=0 \mathrm{~V}, \mathrm{~V}_{\text {inS }}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \end{aligned}$	1100		$0.5$		-	0.5	-	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Voltage, Logic " } 1 \text { " } \\ & \left(\mathrm{V}_{\text {ID }}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=+2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA},\right. \\ & \left.\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}<0.4 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\text {in }}{ }^{\prime \prime}{ }^{\prime \prime}$	$20$			2.0	-	-	V
$\begin{aligned} & \text { Input Voltage, Logic "0" } \\ & \left(\mathrm{V}_{\text {ID }}=40 \mathrm{mV}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5.25 \mathrm{~V}\right. \text {, } \\ & \left.\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}<250 \mu \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\text {in " }} \mathrm{O}^{\prime \prime}$			08	-	-	0.8	V
$\begin{aligned} & \text { Input Current, Logic "1" } \\ & \left(\mathrm{V}_{\text {ID }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\text {inS }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {ID }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=20 \mathrm{mV}, \mathrm{~V}_{\mathrm{inS}}=+5.25 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right) \end{aligned}$	${ }^{1}$ in"1"		$\begin{array}{r}5.0 \\ \hline, \quad 1\end{array}$	$40$	-	$0 . \overline{-}$	$\overline{1.0}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Input Current, Logic " 0 " $\left(V_{\text {ID }}=40 \mathrm{mV}, V_{\mathrm{ref}}=20 \mathrm{mV}, V_{\mathrm{inS}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	I in" ${ }^{\prime \prime}$	-	-10	$-16$	-	-1.0	-1.6	mA
$\begin{aligned} & \text { Output Voltage, Logic " } 0 \text { " } \\ & \qquad\left(V_{I D}=40 \mathrm{mV}, V_{\text {ref }}=20 \mathrm{mV}, V_{\text {inS }}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}^{\prime \prime} \mathrm{O}^{\prime \prime}$		0.25	$0.40$	-	0.25	0.40	V
$V_{C C}$ Supply Current   $\left(V_{\text {ID }}=V_{\text {inS }}=0 \mathrm{~V}, V_{\text {ref }}=20 \mathrm{mV}, \mathrm{V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	${ }^{1} \mathrm{CC}$	$-$	$28$	$38$	-	28	38	mA
VEE Supply Current $\left(V_{\text {ID }}=V_{\text {inS }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5.25 \mathrm{~V}\right)$	IEE		$-13$	$-18$	-	-13	-18	mA

(1) For $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 70^{\circ} \mathrm{C}$ operation, electrical characteristics for MC5538 and MC5539 are guaranteed the same as MC7538 and MC7539 respectively.
\# $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC5538, MC5539; $0^{\circ} \mathrm{C}$ for MC7538, MC7539 $T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC5538, MC5539; $+70^{\circ} \mathrm{C}$ for MC7538, MC7539

MC5538, MC5539, MC7538, MC7539 (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

Characteristic	Symbol		$\begin{aligned} & \text { Mc5538 } \\ & \text { Mc5539 } \end{aligned}$		$\begin{aligned} & \text { MC7538 } \\ & \text { MC7539 } \end{aligned}$			Unit
		Min	Typ	Max	Min	Typ	Max	
AC Common-Mode Input Firing Voltage $\left(V_{\text {ref }}=20 \mathrm{mV}, \mathrm{V}_{\mathrm{inS}}=5.0 \mathrm{~V}\right)$	$V_{\text {CMF }}$		$+2.5$		-	$\pm 2.5$	-	V
Propagation Delay Time, Differential Input to Logic "1" Output $\left(\mathrm{V}_{\mathrm{ref}}=20 \mathrm{mV}\right)$	tPLHD		$24$		-	24	-	ns
Propagation Delay Time, Differential Input to Logic " 0 " Output $\left(\mathrm{V}_{\mathrm{ref}}=20 \mathrm{mV}\right)$	tPHLD		$20$	$40$	-	20	40	ns
Propagation Delay Time, Strobe Input to Logic " 1 " Output $\left(V_{\text {ref }}=20 \mathrm{mV}\right)$	tPHLS		$\begin{array}{\|c\|} \hline 16 \\ \hline \end{array}$		-	16	-	ns
Propagation Delay Time, Strobe Input to Logic " 0 " Output $\left(V_{\mathrm{ref}}=20 \mathrm{mV}\right)$	tPHLS		$10$	$30$	-	10	30	ns
Overload Recovery Time, Differential Input	$t_{\text {RD }}$	- -2	. 10	- 4	-	10	-	ns
Overload Recovery Time, Common-Mode Input	$\mathrm{t}_{\text {RCM }}$	$5$	50.	- $\mathrm{H}^{2}$	-	5.0	-	ns
Minimum Cycle Time	$t(\mathrm{~min})$		200	- -4	-	200	-	ns

(2) Positive current is defined as current into the referenced pin.
(3) Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground
(4) Each test point to have $\leq 15 \mathrm{pF}$ capacitive load to ground.

## MONOLITHIC DUAL SENSE AMPLIFIERS

These dual sense amplifiers are designed for high-speed core memory systems. Low-level pulses originating in the memory are converted to logic levels compatible with MTTL and MDTL circuits. Each of the two basic device functions has two different threshold specifications. The dual-input preamplifiers are connected to a common output stage, with each preamplifier output strobed independently.

The output circuit of the MC7520L/MC7521L is comprised of two cascaded NAND gates, each having an external gate input. The external gate inputs may be used to connect the $\overline{\mathrm{Q}}$ output to the Gate O input to achieve a flip-flop or register that responds to the sense and strobe input conditions. Output pulse stretching may be accomplished by resistive/capacitive coupling from the $\overline{\mathrm{Q}}$ output to the Gate Q input

The output circuit of the MC7522L/MC7523L features an opencollector output, permitting the wired-OR function. Load resistor $R_{L}$ may be used as the output pullup resistor.

- Adjustable Threshold Voltage Levels
- High Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High dc Logic Noise Margin - 1.0 Volt typical
- Good Fanout Capability

> DUAL HIGH-SPEED
> SENSE AMPLIFIER INTEGRATED CIRCUITS MONOLITHIC SILICON epitaxial passivated


See Packaging Information Section for outline dimensions.

## MC7520L thru MC7523L (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)


SWITCHING CHARACTERISTICS $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Differential-Mode Input Overload Recovery Time	tor DM	-	20	-	ns
Common-Mode Input Overload Recovery Time	tor CM	-	20	-	ns
Minimum Cycle Time	$\mathrm{t}_{\mathrm{c}}(\mathrm{min})$	-	200	-	ns

MC7520L, MC7521L

Propagation Delay Time (Differential Input to Q Output)					ns
	${ }^{\text {t }}$ pd ${ }^{\prime} 1^{\prime \prime}$ D DQ	--	20	40	
	$t_{\text {pd }}$ "0' ${ }^{\prime \prime}$ DQ	-	30	-	
(Differential Input to $\overline{\mathrm{Q}}$ Output)	${ }^{\text {tpd }}$ " 1 " ${ }^{\prime} \mathrm{D} \overline{\mathrm{O}}$	-	25	-	
	$\mathrm{t}_{\mathrm{pd}}$ ' 0 ' ${ }^{\prime} \mathrm{D} \overline{\mathrm{Q}}$	-	35	55	
(Strobe Input to Q Output)	$t_{\text {tpd }}{ }^{\prime \prime}$ " SQ	-	15	30	
	$t_{\text {pd }}$ " 0 " s Q	-	25	-	
(Strobe Input to $\overline{\mathrm{Q}}$ Output)	$\mathrm{t}_{\mathrm{pd}}$ " 1 " $\mathrm{s} \overline{\mathrm{Q}}$	-	15	-	
	$t_{\text {pd }}$ " 0 " s Q	-	35	55	
(Gate Q Input to Q Output)	${ }^{\text {tpd }}$ " 1 " $\mathrm{G}_{\mathrm{Q}} \mathrm{C}$	-	10	20	
	$t^{\text {tod }}$ ' 0 ' $\mathrm{G}_{\mathrm{Q}} \mathrm{Q}$	-	15	-	
(Gate Q Input to $\overline{\text { O Output) }}$	$\mathrm{t}_{\mathrm{pd}}{ }^{\prime} 1^{\prime \prime} \mathrm{G}_{\mathrm{Q}} \overline{\mathrm{Q}}$	-	15	-	
	$\mathrm{t}_{\mathrm{pd}}{ }^{\prime} 0^{\prime \prime} \mathrm{G}_{\mathrm{Q}} \overline{\mathrm{Q}}$	-	20	30	
(Gate $\overline{\mathrm{Q}}$ Input to $\overline{\mathrm{Q}}$ Output)	$\mathrm{t}_{\mathrm{pd}}{ }^{\prime} 1^{\prime \prime} \mathrm{G}_{\mathrm{Q}} \overline{\mathrm{Q}}$	-	15	-	
		-	10	20	
MC7522L, MC7523L					
Propagation Delay Time (Differential Input to Output)	$t_{\text {pd }}{ }^{\prime \prime}{ }^{\prime \prime}$ " D	-	20	-	ns
	$t_{\text {pd }}$ "0" D	-	30	45	
(Strobe Input to Output)	$t_{\text {pd }}{ }^{\prime}{ }^{\prime \prime}$ " S	-	15	-	
	tpd "0" s	-	25	40	
(Gate Input to Output)	$t_{\text {pd }}$ "1" G	-	10	-	
	tpd "0" G	-	15	25	

MC7520L thru MC7523L (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Units
Power Supply Voltage	$\mathrm{V}^{+}$	+7.0	Vdc
	$\mathrm{V}^{-}$	-7.0	Vdc
Differential Input Signal Voltage	$\mathrm{V}_{\text {in }}$	$\pm 5.0$	Vdc
Strobe and Gate Input Voltage	$\mathrm{V}_{\text {in } \mathrm{S}, \mathrm{G}}$	$\pm 5.5$	Vdc
Power Dissipation   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	575	mW
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## MC7524L <br> MC7525L

## MONOLITHIC DUAL SENSE AMPLIFIERS

This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits.

## Features:

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination
- High dc Logic Noise Margin 1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs


DUAL HIGH-SPEED SENSE AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED


See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Units
Power Supply Voltage	$\mathrm{V}^{+}$	+7.0	Vdc
	$\mathrm{V}^{-}$	-7.0	Vdc
Differential Input Voltages	$\mathrm{V}_{\text {in }}$ or $\mathrm{V}_{\text {ref }}$	$\pm 5.0$	Vdc
Power Dissipation   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	575	mW
Operating Temperature Range		$\mathrm{T}_{\mathrm{A}}$	0.85
$\mathrm{~mW}{ }^{\circ} \mathrm{C}$			
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Threshold Voltage    $V_{\text {ref }}=15 \mathrm{mV}$ MC7524L    MC7525L   $V_{\text {ref }}=40 \mathrm{mV}$ MC7524L    MC7525L	$\mathrm{v}_{\text {th }}$	$\begin{array}{r} 11 \\ 8.0 \\ 36 \\ 33 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 19 \\ & 22 \\ & 44 \\ & 47 \end{aligned}$	mV
Common-Mode Input Firing Voltage	$V_{\text {CMF }}$	-	$\pm 3.0$	-	Volts
Input Bias Current	1 in	-	30	75	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{I}_{\text {io }}$	-	0.5	-	$\mu \mathrm{A}$
Input impedance ( $f=1.0 \mathrm{kHz}$ )	$\mathrm{Z}_{\text {(in) }} \mathrm{D}$	-	2.0	-	$k$ ohms
Input Voltage Logic " 1 " Level (Strobe Inputs) $\mathrm{V}_{\text {in }}(0)=0.8 \mathrm{~V}$	$V_{\text {in (1) }}$	2.0	-	-	Volts
Input Voltage Logic ' 0 " Level (Strobe Inputs) $\mathrm{V}_{\text {in }}(1)=2.0 \mathrm{~V}$	$V_{\text {in }}(0)$	-	-	0.8	Volt
Input Current Logic '0"' Level (Strobe Inputs) $\quad \mathrm{V}_{\text {in }}(0)=0.4 \mathrm{~V}$	$1 \mathrm{in}(0)$	-	-1.0	-1.6	mA
Input Current Logic ' 1 " Level (Strobe Inputs) $\begin{array}{ll} & V_{\text {in }}(1)=2.4 \mathrm{~V} \\ V_{\text {in }}(1) & =\mathrm{V}^{+}\end{array}$	1 in (1)			$\begin{aligned} & 40 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
Output Voltage Logic "1" Level $\mathrm{V}_{\text {in }}(1)=2.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}(0)=0.8 \mathrm{~V}$	$\mathrm{V}_{\text {out (1) }}$	2.4	3.9	-	Voits
Output Voltage Logic " 0 " Level $\quad \mathrm{V}_{\text {in }}(0)=0.8 \mathrm{~V}$	$\mathrm{V}_{\text {out (0) }}$	-	0.25	0.4	Volt
Short-Circuit Output Current	1 sc(out)	2.1	-	3.5	mA
$\mathrm{V}^{+}$Supply Current @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$1+$	-	25	-	mA
$V$-Supply Current @ $T_{A}=+25^{\circ} \mathrm{C}$	$\mathrm{I}^{-}$	-	-15	-	mA

SWITCHING CHARACTERISTICS $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Propagation Delay Time (Differential Input to Output)	$\begin{aligned} & t_{\mathrm{tpd}}(1) \mathrm{D} \\ & \mathrm{t}_{\mathrm{pd}}(0) \mathrm{D} \end{aligned}$	-	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	$40$	ns
Propagation Delay Time (Strobe Input to Output)	$t_{p d}$ (1) $S$   $t_{p d}(0) \mathrm{S}$	-	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$30$	ns
Differential-Mode Input Overload Recovery Time	tor DM	-	20	-	ns
Common-Mode Input Overload Recovery Time	tor CM	-	20	-	ns
Minimum Cycle Time	${ }^{t} \mathrm{C}$ (min)	-	200	-	ns

## MC7700CD Series

## Product Preview

## MC7700CP SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

The MC7700CP Series positive voltage regulators are identical to the popular MC7800CP Series devices, except that they are specified for only half the output current. Like the MC7800CP devices, the MC7700CP three-terminal regulators are intended for local, on-card voltage regulation.

Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions Maximum output current, with adequate heatsinking is 750 mA

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199-04
(Pin Compatible with the VERSAWATT ${ }^{\dagger}$ or TO-220)

${ }^{\dagger}$ Trademark of Radio Corporation of America.
See Packaging Information Section for outline dimensions.

MC7700CP Series MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
$\begin{aligned} & \text { Input Voltage }(5.0 \mathrm{~V}-18 \mathrm{~V}) \\ &(20 \mathrm{~V}-24 \mathrm{~V}) \end{aligned}$	$v_{\text {in }}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	Vdc
Power Dissipation and Thermal Characteristics $T_{A}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JA}} \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 20 \\ & 50 \\ & \hline \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{N}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=+110^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Case	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{JC} \\ \theta_{\mathrm{JC}} \end{gathered}$	$\begin{aligned} & \hline 7.5 \\ & 500 \\ & 2.0 \\ & \hline \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	-20 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	TJ	0 to +125	${ }^{\circ} \mathrm{C}$

MC7705CP ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	4.8	5.0	5.2	Vdc
Input Regulation $\begin{aligned} & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=50 \mathrm{~mA}\right) \\ & 7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=250 \mathrm{~mA}\right) \\ & 7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 7.0 \\ & 2.0 \\ & \\ & 35 \\ & 8.0 \end{aligned}$	$\begin{gathered} 50 \\ 25 \\ \\ 100 \\ 50 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 10 \leqslant 375 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 11 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	mV
Output Voltage $\left(7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{l}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}\right)$	$\mathrm{V}_{\mathrm{O}}$	4.75	-	5.25	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.3	8.0	mA
Quiescent Current Change $7.0 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 25 \mathrm{Vdc}$ $5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA}$	$\Delta^{\prime}{ }_{B}$	-		$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	40	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	20	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }^{\text {O }}$ = $20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	70	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( $\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	30	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\text {I SC }}$	-	375	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7706CP ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	5.75	6.0	6.25	Vdc
Input Regulation $\begin{aligned} & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=50 \mathrm{~mA}\right) \\ & 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 13 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\right) \\ & 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 13 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	-	$\begin{aligned} & 9.0 \\ & 3.0 \\ & \\ & 43 \\ & 10 \end{aligned}$	$\begin{gathered} 60 \\ 30 \\ \\ 120 \\ 60 \end{gathered}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant I_{O} \leqslant 375 \mathrm{~mA} \end{aligned}$	Regload		$\begin{aligned} & 13 \\ & 5.0 \end{aligned}$	$\begin{gathered} 120 \\ 60 \end{gathered}$	mV
Output Voltage $8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	5.7	-	6.3	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime}$ B	-	4.3	8.0	mA
Quiescent Current Change $8.0 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 25 \mathrm{Vdc}$ $5.0 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}$	${ }^{\Delta} I_{B}$	-	-	$\begin{aligned} & 1.3 \\ & 0.5 \\ & \hline \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	45	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	24	$\mathrm{mV} / 1.0 \mathrm{k} \mathrm{Hrs}$
Ripple Rejection ( $\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	65	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( ${ }_{\mathrm{O}}=250 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	35	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Isc	-	275	-	mA
Average Temperature Coefficient of Output Voltage ${ }^{1} \mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7708CP ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $T_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	7.7	8.0	8.3	Vdc
$\begin{aligned} & \hline \text { Input Regulation } \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}\right) \\ & 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=250 \mathrm{~mA}\right) \\ & 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	-	$\begin{gathered} 12 \\ 5.0 \\ \\ 50 \\ 22 \end{gathered}$	$\begin{gathered} 80 \\ 40 \\ \\ 160 \\ 80 \end{gathered}$	mV
Load Regulation $\begin{aligned} & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 375 \mathrm{~mA} \end{aligned}$	$\mathrm{Reg}_{\text {load }}$	-	$\begin{aligned} & 26 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \end{aligned}$	mV
Output Voltage $10.5 \mathrm{Vdc} \leqslant V_{\mathrm{in}} \leqslant 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}, P \leqslant 7.5 \mathrm{~W}$	$\mathrm{v}_{\mathrm{O}}$	7.6	-	8.4	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.3	8.0	mA
Quiescent Current Change $\begin{aligned} & 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \end{aligned}$	$\Delta^{\prime}{ }_{B}$	-	-	$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$V_{N}$	-	52	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	32	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	62	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$V_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{\prime} \mathrm{O}=250 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	40	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Isc	-	225	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7712CP ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	11.5	12	12.5	Vdc
Input Regulation $\begin{aligned} & \left(T_{J}=+25^{\circ} \mathrm{C}, I_{O}=50 \mathrm{~mA}\right) \\ & 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\ & 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=250 \mathrm{~mA}\right) \\ & 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\ & 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$-$	$\begin{aligned} & 13 \\ & 6.0 \\ & 55 \\ & 24 \end{aligned}$	$\begin{gathered} 120 \\ 60 \\ \\ 240 \\ 120 \end{gathered}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 1_{0} \leqslant 375 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 46 \\ & 17 \end{aligned}$	$\begin{aligned} & 240 \\ & 120 \\ & \hline \end{aligned}$	mV
Output Voltage $14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}$	$\mathrm{v}_{\mathrm{O}}$	11.4	-	12.6	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	'B	-	4.4	8.0	mA
Quiescent Current Change   $14.5 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 30 \mathrm{Vdc}$   $5.0 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}$	$\left.{ }^{\Delta}\right\|_{B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	75	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	48	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( $\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	61	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$V_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{\text {O }}$ = 250 mA )	$\mathrm{R}_{\mathrm{O}}$	-	75	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Isc	-	175	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}^{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7715CP ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{in}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	14.4	15	15.6	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \qquad\left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}\right) \\ & 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\ & 20 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 26 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\right) \\ & 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\ & 20 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 26 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	-	$\begin{aligned} & 14 \\ & 6.0 \\ & 57 \\ & 27 \end{aligned}$	$\begin{gathered} 150 \\ 75 \\ \\ 300 \\ 150 \end{gathered}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 1_{0} \leqslant 375 \mathrm{~mA} \end{aligned}$	$\mathrm{Reg}_{\mathrm{load}}$	-	$\begin{aligned} & 68 \\ & 25 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	mV
Output Voltage $17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}$	$\mathrm{v}_{\mathrm{O}}$	14.25	-	15.75	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{\mathrm{B}}$	-	4.4	8.0	mA
Quiescent Current Change   $17.5 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 30 \mathrm{Vdc}$   $5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}$	$\Delta^{\prime} \mathrm{B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	90	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	60	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }^{\text {O }}$ = $20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	60	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( $\mathrm{I}^{\prime}=250 \mathrm{~mA}$ )	RO	-	95	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Isc	-	115	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## MC7700CP Series (continued)

MC7718CP ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voitage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	17.3	18	18.7	Vdc
Input Regulation $\begin{aligned} & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{IO}=50 \mathrm{~mA}\right) \\ & 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\ & 24 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\right) \\ & 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\ & 24 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	- - - -	$\begin{aligned} & 25 \\ & 10 \\ & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 180 \\ & 90 \\ & \\ & 360 \\ & 180 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 10 \leqslant 375 \mathrm{~mA} \\ & \hline \end{aligned}$	Regload	-	$\begin{gathered} 110 \\ 55 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \end{aligned}$	mV
Output Voltage   $21 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	17.1	-	18.9	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.5	8.0	mA
Quiescent Current Change   $21 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 33 \mathrm{Vdc}$   $5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}$	$\Delta^{1}{ }_{B}$	-	-	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$V_{N}$	-	110	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	72	mV/1.0k Hrs
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	59	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$v_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{\prime} \mathrm{O}=250 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	110	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Isc	-	100	-	mA
Average Temperature Coefficient of Output Voltage $I_{0}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7720CP ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=29 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	19.2	20	20.8	Vdc
Input Regulation $\begin{aligned} & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=50 \mathrm{~mA}\right) \\ & 23 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc} \\ & 26 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 32 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=250 \mathrm{~mA}\right) \\ & 23 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc} \\ & 26 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 32 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{gathered} 27 \\ 11 \\ \\ 100 \\ 56 \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \\ & \\ & 400 \\ & 200 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 375 \mathrm{~mA} \end{aligned}$	Regload	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 123 \\ & 65 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \\ & \hline \end{aligned}$	mV
Output Voltage $23 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 35 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}$	$\mathrm{v}_{\mathrm{O}}$	19	-	21	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	'B	-	4.5	8.0	mA
Quiescent Current Change   $23 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 35 \mathrm{Vdc}$   $5.0 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}$	$\Delta^{\prime}{ }_{B}$	-	-	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	130	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	80	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }_{\mathrm{O}} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	58	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$V_{i n}-V_{O}$	-	2.0	-	Vdc
Output Resistance ( $1_{0}=\mathbf{2 5 0 ~ m A}$ )	$\mathrm{R}_{\mathrm{O}}$	-	123	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	IsC	-	90	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	TCVO	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7724CP ELECTRICAL CHARACTERISTICS $\left(V_{i n}=33, I^{\circ}=250 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	23	24	25	Vdc
Input Regulation $\begin{aligned} & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}\right) \\ & 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\ & 30 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 36 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=250 \mathrm{~mA}\right) \\ & 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\ & 30 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 36 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 31 \\ 14 \\ 118 \\ 70 \end{gathered}$	$\begin{aligned} & 240 \\ & 120 \\ & 480 \\ & 240 \end{aligned}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} C, 5.0 \mathrm{~mA} \leqslant 1_{O} \leqslant 500 \mathrm{~mA} \\ & 125 \mathrm{~mA} \leqslant 1_{O} \leqslant 375 \mathrm{~mA} \end{aligned}$	Reg ${ }_{\text {load }}$	$-$	$\begin{aligned} & 150 \\ & 85 \end{aligned}$	$\begin{aligned} & 480 \\ & 240 \end{aligned}$	mV
Output Voltage $27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}, \mathrm{P} \leqslant 7.5 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	22.8	-	25.2	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.6	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 500 \mathrm{~mA} \end{aligned}$	$\Delta^{\prime} \mathrm{B}$	-	-	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$V_{N}$	-	170	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta t$	-	-	96	$\mathrm{mV} / 1.0 \mathrm{k} \mathrm{Hrs}$
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	56	-	dB
Input-Output Voltage Differential ${ }^{\mathrm{I}} \mathrm{O}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{\circ} \mathrm{O}=250 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	150	-	$m \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\text {I SC }}$	-	150	-	mA
Average Temperature Coefficient of Output Voltage ${ }^{\prime} \mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## DEFINITIONS

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation -- The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissi pation for which the regulator will operate within specifications.

Quiescent Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

## MC7800C Series

## MC7800C SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

The MC7800C Series of three-terminal positive voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. Available in seven fixed output voltage options from 5.0 to -24 volts, these regulators employ internal current limiting, thermal shutdown, and safe area compensation - making them essentially blow-out proof. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. The last two digits of the part number indicate nominal output voltage.

- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199-04
(Pin Compatible with the VERSAWATT ${ }^{\dagger}$ or TO-220)
Or Hermetic TO-3 Type Metal Power Package (Case 11)


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
$X X=$ these two digits of the type number indicate voitage.

* $=\mathrm{C}_{\text {in }}$ is required if regulator is located an appreciable distance from power supply filter.
** $=\mathrm{C}_{\mathrm{O}}$ is not needed for stability; however, it does improve transient response
tTrademark of Radio Corporation of America.

MC7800C Series MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
$\begin{gathered} \text { Input Voltage }(5.0 \mathrm{~V}-18 \mathrm{~V}) \\ (24 \mathrm{~V}) \end{gathered}$	$V_{\text {in }}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	Vdc
Power Dissipation and Thermal Characteristics   Plastic Package $T_{A}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}} \mathrm{C}=+25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=+95^{\circ} \mathrm{C}$ (See Figure 1)   Thermal Resistance, Junction to Case   Metal Package $T_{A}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=+65^{\circ} \mathrm{C}$ (See Figure 2)   Thermal Resistance, Junction to Case	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta_{\mathrm{JC}} \\ \theta_{\mathrm{JC}} \\ \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta_{\mathrm{JC}} \\ \theta_{\mathrm{JC}} \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ 20 \\ 50 \\ 15 \\ 500 \\ 2.0 \\ \\ 2.5 \\ 28.6 \\ 35 \\ 15 \\ 250 \\ 4.0 \\ \hline \end{gathered}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	TJ	0 to +125	${ }^{\circ} \mathrm{C}$

MC7805C ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{0}$	4.8	5.0	5.2	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & 7.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 12 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=500 \mathrm{~mA}\right) \\ & 7.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 12 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 7.0 \\ & 2.0 \\ & \\ & 35 \\ & 8.0 \end{aligned}$	$\begin{gathered} 50 \\ 25 \\ \\ 100 \\ 50 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 11 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	mV
Output Voltage $\left(7.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}\right)$	$\mathrm{V}_{\mathrm{O}}$	4.75	-	5.25	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.3	8.0	mA
Quiescent Current Change $7.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}$ $5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$	$\Delta I_{B}$	-	-	$\begin{aligned} & 1.3 \\ & 0.5 \\ & \hline \end{aligned}$	$m A$
Output Noise Voltage ( $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	40	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{O} / \Delta t$	-	-	20	mV/1.0kHRS
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	70	-	dB
Input-Output Voltage Differential $\left(I_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance	$\mathrm{R}_{\mathrm{O}}$	-	30	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	ISC	-	750	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## MC7800C series (continued)

MC7806C ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\text {in }}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{0}$	5.75	6.0	6.25	Vdc
Input Regulation $\begin{aligned} & \left(T_{J}=+25^{\circ} \mathrm{C}, I_{0}=100 \mathrm{~mA}\right) \\ & 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 9.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 13 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}^{2}=500 \mathrm{~mA}\right) \\ & 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 9.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 13 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 9.0 \\ & 3.0 \\ & 43 \\ & 10 \end{aligned}$	$\begin{gathered} 60 \\ 30 \\ \\ 120 \\ 60 \\ \hline \end{gathered}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}^{\prime} \mathrm{O} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 750 \mathrm{~mA} \end{aligned}$	$\mathrm{Reg}_{\text {load }}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 13 \\ 5.0 \\ \hline \end{array}$	$\begin{gathered} 120 \\ 60 \\ \hline \end{gathered}$	mV
Output Voltage $\left(8.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}\right)$	$\mathrm{V}_{\mathrm{O}}$	5.7	-	6.3	Vdc
Quiescent Current ( $T_{J}=+25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{\mathrm{B}}$	-	4.3	8.0	mA
$\begin{gathered} \text { Quiescent Current Change } \\ 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A} \\ \hline \end{gathered}$	$\Delta I_{B}$	-		$\begin{array}{r} 1.3 \\ 0.5 \\ \hline \end{array}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	45	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	24	$\mathrm{mV} / 1.0 \mathrm{kHRS}$
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	65	-	dB
Input-Output Voltage Differential $\left(10=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$v_{\text {in }}-\mathrm{v}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( $1 \mathrm{O}=500 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	35	-	ms 2
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	ISC	-	550	-	mA
Average Temperature Coefficient of Output Voltage ${ }^{\circ} \mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7808C ELECTRICAL CHARACTERISTICS $\left(V_{i n}=14 \mathrm{~V}, 1_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $T_{J}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	7.7	8.0	8.3	Vdc
Input Regulation $\begin{aligned} & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & 10.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=500 \mathrm{~mA}\right) \\ & 10.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 12 \\ & 5.0 \\ & 50 \\ & 22 \end{aligned}$	$\begin{array}{r} 80 \\ 40 \\ \\ 160 \\ 80 \end{array}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 10 \leq 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 26 \\ & 9.0 \end{aligned}$	$\begin{gathered} 160 \\ 80 \\ \hline \end{gathered}$	mV
Output Voltage $\left(10.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}\right)$	$\mathrm{V}_{\mathrm{O}}$	7.6	-	8.4	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{B}$	-	4.3	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & 10.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A} \end{aligned}$	$\Delta^{\prime}{ }_{B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	52	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	32	mV/1.0k HRS
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	62	-	dB
Input-Output Voltage Differential $\left(I_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\mathrm{in}} \mathrm{V}^{\text {O }}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{0} \mathrm{O}=500 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	40	--	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $T_{J}=+25^{\circ} \mathrm{C}$ )	ISC	-	450	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}^{\prime} \mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7800C series (continued)

MC7812C ELECTRICAL CHARACTERISTICS $\mathrm{I}_{\text {in }}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	11.5	12	12.5	$V \mathrm{dc}$
Input Regulation $\begin{aligned} & \left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\ & 16 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 22 \mathrm{Vdc} \\ & \left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ & 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\ & 16 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 22 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 13 \\ & 6.0 \\ & \\ & 55 \\ & 24 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & \\ & 240 \\ & 120 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 750 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {load }}$	$-$	$\begin{aligned} & 46 \\ & 17 \end{aligned}$	$\begin{aligned} & 240 \\ & 120 \\ & \hline \end{aligned}$	mV
Output Voltage   (14.5 Vdc $\left.\leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}\right)$	$\mathrm{v}_{\mathrm{O}}$	11.4	-	12.6	Vdc
Quiescent Current ( $\mathrm{T}=+25^{\circ} \mathrm{C}$ )	$I_{B}$	-	4.4	8.0	mA
Quiescent Current Change $14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}$ $5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$	$\Delta^{\prime} \mathrm{B}$	$-$	-	$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	75	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	48	mV/1.0kHRS
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	61	-	dB
Input-Output Voltage Differential $\left(I_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( $10=500 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	75	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{TJ}^{\prime}=+25^{\circ} \mathrm{C}$ )	Isc	-	350	-	mA
Average Temperature Coefficient of Output Voltage $\left(I_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\right)$	TCVO	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7815C ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{0}$	14.4	15	15.6	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & 17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\ & 20 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=500 \mathrm{~mA}\right) \\ & 17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\ & 20 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 14 \\ 6.0 \\ 57 \\ 27 \end{gathered}$	$\begin{gathered} 150 \\ 75 \\ \\ 300 \\ 150 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 750 \mathrm{~mA} \end{aligned}$	$\mathrm{Reg}_{1}$ oad		$\begin{aligned} & 68 \\ & 25 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	mV
Output Voltage $\text { (17.5 } \left.\mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}\right)$	$\mathrm{v}_{0}$	14.25	-	15.75	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{\mathrm{B}}$	-	4.4	8.0	mA
Quiescent Current Change $17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}$ $5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}$	$\Delta^{\prime}{ }_{B}$		-	$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ )	$V_{N}$	-	90	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	60	$\mathrm{mV} / 1.0 \mathrm{kHRS}$
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	60	-	dB
Input-Output Voltage Differential $\left(I_{O}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$V_{\text {in }}-V_{0}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{\text {O }}$ = $=500 \mathrm{~mA}$ )	$\mathrm{R}_{0}$	-	95	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	ISC	-	230	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7818C ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Vo	17.3	18	18.7	Vdc
Input Regulation $\begin{aligned} & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1 \mathrm{O}=100 \mathrm{~mA}\right) \\ & 21 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 33 \mathrm{Vdc} \\ & 24 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 30 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=500 \mathrm{~mA}\right) \\ & 21 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 33 \mathrm{Vdc} \\ & 24 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 30 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \\ & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 180 \\ & 90 \\ & \\ & 360 \\ & 180 \\ & \hline \end{aligned}$	mV
Load Regulation $\begin{aligned} & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 750 \mathrm{~mA} \end{aligned}$	$\mathrm{Reg}_{\text {ioad }}$		$\begin{array}{r} 110 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & 360 \\ & 180 \end{aligned}$	mV
Output Voltage $\left(21 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}\right)$	$\mathrm{V}_{\mathrm{O}}$	17.1	-	18.9	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.5	8.0	mA
$\begin{gathered} \text { Quiescent Current Change } \\ 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc} \\ 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\ \hline \end{gathered}$	$\Delta^{\prime}{ }_{B}$			$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	110	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	72	mV/1.0kHRS
Ripple Rejection ( $\mathrm{O}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	59	-	dB
Input-Output Voltage Differential $\left(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$ )	RO	-	110	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	IsC	-	200	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}^{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7824C ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{in}}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{0}$	23	24	25	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1 \mathrm{O}=100 \mathrm{~mA}\right) \\ & 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\ & 30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1 \mathrm{O}=500 \mathrm{~mA}\right) \\ & 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\ & 30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{gathered} 31 \\ 14 \\ \\ 118 \\ 70 \end{gathered}$	$\begin{aligned} & 240 \\ & 120 \\ & 480 \\ & 240 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA} \\ & \hline \end{aligned}$	Regload		$\begin{aligned} & 150 \\ & 85 \end{aligned}$	$\begin{aligned} & 480 \\ & 240 \end{aligned}$	mV
Output Voltage   ( $27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$ )	$\mathrm{V}_{\mathrm{O}}$	22.8	-	25.2	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.6	8.0	mA
Quiescent Current Change $27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}$ $5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}$	$\Delta^{\prime} \mathrm{B}_{\mathrm{B}}$	$\begin{aligned} & - \\ & - \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	170	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	96	mV/1.0k HRS
Ripple Rejection ( $\mathrm{O}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	56	-	dB
Input-Output Voltage Differential $\left(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$\mathrm{v}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	Vdc
Output Resistance ( ${ }^{0} \mathrm{O}=500 \mathrm{~mA}$ )	$\mathrm{R}_{\mathrm{O}}$	-	150	-	$\mathrm{m} \Omega$
Short-Circuit Current Limit ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	ISC	-	150	-	mA
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	TCV ${ }_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)


FIGURE 3 - INPUT OUTPUT DIFFERENTIAL AS A FUNCTION OF JUNCTION TEMPERATURE


FIGURE 5 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY


FIGURE 2 - MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3 PACKAGE)


FIGURE 4 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE


FIGURE 6 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES


TYPICAL CHARACTERISTICS (continued)

[^37]
## APPLICATIONS INFORMATION

## Design Considerations

The MC7800C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A $0.33 \mu \mathrm{~F}$ or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. If an aluminum electrolytic capacitor is used, its value should be $10 \mu \mathrm{~F}$ or larger. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

FIGURE 10 - CURRENT REGULATOR


The MC7800C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor $R$ determines the current as follows:

$$
1_{0}=\frac{5 V}{R}+1_{0}
$$

$\mathrm{I}_{\mathrm{Q}}=1.5 \mathrm{~mA}$ over line and load changes
For example, a 1 -ampere current source would require $R$ to be a 5 -ohm, $10-\mathrm{W}$ resistor and the output voltage compliance would be the input voltage less 7 volts.

FIGURE 11 - ADJUSTABLE OUTPUT REGULATOR


$$
\begin{aligned}
& v_{O}, 7.0 \mathrm{~V} \text { to } 20 \mathrm{~V} \\
& v_{I N}-v_{\mathrm{O}} \geqslant 2.0 \mathrm{~V}
\end{aligned}
$$

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 12 - CURRENT BOOST REGULATOR

$X X=2$ digits of type number indicating voltage.

The MC7800C series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the $\mathrm{V}_{\mathrm{BE}}$ of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by $V_{B E}$ of the pass transistor.

FIGURE 13 - SHORT-CIRCUIT PROTECTION

$x \times=2$ digits of type number indicating voltage.

The circuit of Figure 12 can be modified to provide supply protec tion against short circuits by adding a short-circuit sense resistor, $\mathrm{R}_{\mathrm{sc}}$, and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the threeterminal regulator. Therefore, a four-ampere plastic power transistor is specified.

## MC7900C SERIES THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS

The MC7900C Series of fixed output negative voltage regulators are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage options as the MC7800C devices. In addition, two extra voltage options commonly employed in MECL systems are also available in the negative MC7900C Series.

Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 1.0 ampere.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199-04
(Pin Compatible with the VERSAWATT ${ }^{\dagger}$ or TO-220)
Or Hermetic TO-3 Type Metal Power Package


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple voltage.
$X X=$ these two digits of the type number indicate voltage.

* $=\mathrm{C}_{\mathrm{in}}$ is required if regulator is located an appreciable distance from power supply filter.
** $=\mathrm{C}_{\mathrm{O}}$ improves stability and transient response.

[^38]
## MC7900C Series (continued)

MC7900C Series MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value	Unit
$\begin{gathered} \text { Input Voltage }(2.0 \mathrm{~V}-18 \mathrm{~V}) \\ (24 \mathrm{~V}) \end{gathered}$	$v_{\text {in }}$	$\begin{array}{r} -35 \\ -40 \\ \hline \end{array}$	Vdc
Power Dissipation and Thermal Characteristics   Plastic Package $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air ${ }^{\mathrm{T}} \mathrm{C}=+25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=+95^{\circ} \mathrm{C}$ (See Figure 1)   Thermal Resistance, Junction to Case   Metal Package $T_{A}=+25^{\circ} \mathrm{C}$   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Air $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $\mathrm{T}_{\mathrm{C}}=+65^{\circ} \mathrm{C}$   Thermal Resistance, Junction to Case	$P_{D}$   $1 / \theta$ JA   $\theta$ JA   $P_{D}$   $1 / \theta \mathrm{JC}$   $\theta$ JC   $P_{D}$   $1 / \theta \mathrm{JA}$   ${ }^{\theta}$ JA   $P_{D}$   $1 / \theta$ JC   $\theta_{\text {JC }}$	2.0 20 50 15 500 2.0 2.5 28.6 35 15 250 4.0	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$   Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	-20 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	TJ	0 to +125	${ }^{\circ} \mathrm{C}$

MC7902C ELECTRICAL CHARACTERISTICS $\left(V_{i n}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\left.\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\mathrm{O}}$	-1.92	-2.00	-2.08	Vdc
Input Regulation $\begin{aligned} & \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-12 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ & -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-12 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 8.0 \\ 4.0 \\ \\ 18 \\ 8.0 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \\ & 40 \\ & 20 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload		$\begin{aligned} & 70 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 120 \\ 60 \\ \hline \end{gathered}$	mV
Output Voltage   $-7.0 \mathrm{Vdc} \geqslant \mathrm{V}_{\mathrm{in}} \geqslant-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-1.90	-	-2.10	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{B}$	-	4.3	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \end{aligned}$	$\Delta I_{B}$	-	$-$	$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	40	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	20	$\mathrm{mV} / 1.0 \mathrm{k} \mathrm{Hrs}$
Ripple Rejection ( $\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	65	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\left\|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right\|$	-	3.5	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}^{\circ}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## MC7900C Series (continued)

MC7905C ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	-4.8	-5.0	-5.2	Vdc
Input Regulation $\begin{aligned} & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=100 \mathrm{~mA}\right) \\ & -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-12 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=500 \mathrm{~mA}\right) \\ & -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-12 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 7.0 \\ & 2.0 \\ & \\ & 35 \\ & 8.0 \end{aligned}$	$\begin{gathered} 50 \\ 25 \\ 100 \\ 50 \end{gathered}$	mV
Load Regulation $\begin{aligned} & \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 11 \\ & 4.0 \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	mV
Output Voltage $-7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-4.75	-	-5.25	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$I_{B}$	-	4.3	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\left.{ }^{\Delta}\right\|_{B}$	-		$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	40	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	20	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	70	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\left\|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7905.2C ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{v}_{\mathrm{O}}$	-5.0	-5.2	-5.4	Vdc
Input Regulation $\begin{aligned} & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=100 \mathrm{~mA}\right) \\ & -7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-12 \mathrm{Vdc} \\ & \left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{0}=500 \mathrm{~mA}\right) \\ & -7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-12 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 8.0 \\ & 2.2 \\ & \\ & 37 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 52 \\ 27 \\ \\ 105 \\ 52 \\ \hline \end{gathered}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 12 \\ & 4.5 \end{aligned}$	$\begin{gathered} 105 \\ 52 \\ \hline \end{gathered}$	mV
Output Voltage $-7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-4.94	-	-5.46	Vdc
Quiescent Current ( $\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{\mathrm{B}}$	-	4.3	8.0	mA
Quiescent Current Change $\begin{aligned} & -7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \end{aligned}$	$\Delta^{\prime}{ }_{B}$	-	-	$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	42	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	20	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( $\mathrm{O}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	68	-	dB
Input-Output Voltage Differential $I_{0}=1.0 \mathrm{~A}, T_{J}=+25^{\circ} \mathrm{C}$	$\left\|V_{i n}-V_{0}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_{0}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7906C ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=-11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	-5.75	-6.0	-6.25	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, I_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -9.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-13 \mathrm{Vdc} \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ & -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -9.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-13 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	-	$\begin{aligned} & 9.0 \\ & 3.0 \\ & \\ & 43 \\ & 10 \end{aligned}$	$\begin{gathered} 60 \\ 30 \\ \\ 120 \\ 60 \end{gathered}$	mV
Load Regulation $\begin{aligned} & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{gathered} 13 \\ 5.0 \end{gathered}$	$\begin{gathered} 120 \\ 60 \end{gathered}$	mV
Output Voltage $\left.-8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}\right)$	$\mathrm{V}_{\mathrm{O}}$	-5.7	-	-6.3	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.3	8.0	mA
$\begin{gathered} \text { Quiescent Current Change } \\ -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\ \hline \end{gathered}$	${ }^{1}{ }_{B}$		-	$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	45	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	24	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( $\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	65	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\left\|V_{i n}-V_{0}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage ${ }^{1} \mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7908C ELECTRICAL CHARACTERISTICS $\left(V_{i n}=-14 \mathrm{~V}, 1_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	Vo	-7.7	-8.0	-8.3	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & -10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -11 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-17 \mathrm{Vdc} \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ & -10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & -11 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-17 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 12 \\ & 5.0 \\ & 50 \\ & 22 \end{aligned}$	$\begin{gathered} 80 \\ 40 \\ \\ 160 \\ 80 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 26 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \end{aligned}$	mV
Output Voltage $-10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-23 \mathrm{Vdc}, \quad 5.0 \mathrm{~mA} \leqslant \mathrm{l}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{v}_{\mathrm{O}}$	-7.6	-	-8.4	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	${ }^{\prime} \mathrm{B}$	-	4.3	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & -10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-25 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ & \hline \end{aligned}$	${ }^{\Delta} I_{B}$	$-$	-	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	52	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	32	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	62	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}$	$\left\|\mathrm{V}_{\text {in }}-\mathrm{v}_{\mathrm{O}}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $1 \mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## MC7900C Series (continued)

MC7912C ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{in}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $T_{J}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	-11.5	-12	-12.5	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\ & -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ & -16 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-22 \mathrm{Vdc} \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I} 0=500 \mathrm{~mA}\right) \\ & -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ & -16 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-22 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 13 \\ 6.0 \\ \\ 55 \\ 24 \end{gathered}$	$\begin{gathered} 120 \\ 60 \\ \\ 240 \\ 120 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 46 \\ & 17 \end{aligned}$	$\begin{aligned} & 240 \\ & 120 \end{aligned}$	mV
Output Voltage $-14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-11.4	-	-12.6	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	'B	-	4.4	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\Delta^{1} \mathrm{~B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	75	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	48	mV/1.0k Hrs
Ripple Rejection ( ${ }^{\circ} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	61	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\left\|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}^{\circ}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{\mathrm{O}}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7915C ELECTRICAL CHARACTERISTICS $\left(V_{i n}=-23 V, I_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	-14.4	-15	-15.6	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \qquad \begin{array}{l} \left(T J=+25^{\circ} \mathrm{C}, \mathrm{I} \mathrm{O}=100 \mathrm{~mA}\right) \\ -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-26 \mathrm{Vdc} \\ \left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-26 \mathrm{Vdc} \end{array} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	-	$\begin{aligned} & 14 \\ & 6.0 \\ & \\ & 57 \\ & 27 \end{aligned}$	$\begin{gathered} 150 \\ 75 \\ \\ 300 \\ 150 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 68 \\ & 25 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	mV
Output Voltage $-17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-14.25	-	-15.75	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	IB	-	4.4	8.0	mA
$\begin{gathered} \text { Quiescent Current Change } \\ -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A} \\ \hline \end{gathered}$	$\left.{ }^{\Delta}\right\|_{B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	90	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	60	mV/1.0 k Hrs
Ripple Rejection ( $\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	60	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}$	$\left\|V_{i n}-V_{0}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV}^{\circ} \mathrm{C}$

MC7918C ELECTRICAL CHARACTERISTICS $\left(V_{i n}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voitage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	-17.3	-18	-18.7	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}=100 \mathrm{~mA}\right) \\ & -21 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-33 \mathrm{Vdc} \\ & -24 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \\ & \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ & -21 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-33 \mathrm{Vdc} \\ & -24 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-30 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	- - - -	$\begin{aligned} & 25 \\ & 10 \\ & 90 \\ & 50 \end{aligned}$	$\begin{gathered} 180 \\ 90 \\ \\ 360 \\ 180 \end{gathered}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	$-$	$\begin{gathered} 110 \\ 55 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \end{aligned}$	mV
Output Voltage $-21 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-17.1	-	-18.9	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	'B	-	4.5	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & -21 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-33 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A} \\ & \hline \end{aligned}$	$\left.{ }^{\Delta}\right\|_{B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	110	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{0} / \Delta t$	-	-	72	$\mathrm{mV} / 1.0 \mathrm{kHrs}$
Ripple Rejection ( ${ }^{\text {O }}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	59	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\left\|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}_{0}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

MC7924C ELECTRICAL CHARACTERISTICS $\left(V_{i n}=-33 \mathrm{~V}, 1_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{O}}$	-23	-24	-25	Vdc
$\begin{aligned} & \text { Input Regulation } \\ & \left(T J=+25^{\circ} \mathrm{C}, \mathrm{I} \mathrm{O}=100 \mathrm{~mA}\right) \\ & -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-38 \mathrm{Vdc} \\ & -30 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-36 \mathrm{Vdc} \\ & \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\ & -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-38 \mathrm{Vdc} \\ & -30 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-36 \mathrm{Vdc} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{gathered} 31 \\ 14 \\ \\ 118 \\ 70 \end{gathered}$	$\begin{aligned} & 240 \\ & 120 \\ & \\ & 480 \\ & 240 \end{aligned}$	mV
$\begin{aligned} & \text { Load Regulation } \\ & \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \end{aligned}$	Regload	$-$	$\begin{aligned} & 150 \\ & 85 \end{aligned}$	$\begin{aligned} & 480 \\ & 240 \end{aligned}$	mV
Output Voltage $-27 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{in}} \geqslant-38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}$	$\mathrm{V}_{\mathrm{O}}$	-22.8	-	-25.2	Vdc
Quiescent Current ( $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ )	'B	-	4.6	8.0	mA
$\begin{aligned} & \text { Quiescent Current Change } \\ & -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{\text {in }} \geqslant-38 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\ & \hline \end{aligned}$	$\left.{ }^{\Delta}\right\|_{B}$	-		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Output Noise Voltage ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$ )	$\mathrm{V}_{\mathrm{N}}$	-	170	-	$\mu \mathrm{V}$
Long-Term Stability	$\Delta V_{\mathrm{O}} / \Delta \mathrm{t}$	-	-	96	$\mathrm{mV} / 1.0 \mathrm{k} \mathrm{Hrs}$
Ripple Rejection ( $10=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}$ )	RR	-	56	-	dB
Input-Output Voltage Differential $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\left\|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right\|$	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}^{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$\mathrm{TCV}^{\text {O }}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## MC7900C Series (continued)

TYPICAL CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 1 - MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (CASE 199.04)


FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE


FIGURE 5 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES


FIGURE 2 - MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3 TYPE PACKAGE)


FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY


FIGURE 6 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE


MC7900C Series (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE


## DEFINITIONS

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

## MC7900C Series (continued)

## APPLICATIONS INFORMATION

## Design Considerations

The MC7900C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A $0.33 \mu \mathrm{~F}$ or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. If an aluminum electrolytic capacitor is used, its value should be $1.0 \mu \mathrm{~F}$ or larger. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 8 - CURRENT REGULATOR


The MC7902, -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor $R$ current and quiescent bias current as follows:

$$
I_{O}=\frac{2 V}{R}+I_{B}
$$

The quiescent current for this regulator is typically 4.3 mA . The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

FIGURE 10 - OPERATIONAL AMPLIFIER SUPPLY ( $\pm 15 \mathrm{~V} @ 1.0 \mathrm{~A}$ )


The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems.

FIGURE 9 - CURRENT BOOST REGULATOR
( $-5.0 \mathrm{~V} @ 4.0 \mathrm{~A}$, with 5.0 A current limiting)

*Mounted on common heat sink, Motorola MS-10 or equivalent.
When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to $0.6 \mathrm{~V} / \mathrm{R}_{\mathrm{SC}}$. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

FIGURE 11 - TYPICAL MECL SYSTEM POWER SUPPLY (-5.2 V @ 4.0 A and $-2.0 \mathrm{~V} @ 2.0 \mathrm{~A}$; for PC Board)


When current-boost power transistors are used, 47-ohm base-toemitter resistors ( $R$ ) must be used to bypass the quiescent current at no load. These resistors, in conjunction with the $\mathrm{V}_{\mathrm{BE}}$ of the NPN transistors, determine when the pass transistors begin conducting. The 1 -ohm and 4 -ohm dropping resistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation.

## MC55107 <br> MC55108 MC75107 MC75108

## MONOLITHIC DUAL LINE RECEIVERS

The MC55107/MC75107 and MC55108/MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC55107/MC75107 circuit features an active pull-up (totem-pole) output. The MC55108/MC75 108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC55108/ MC75 108 receivers). Thus a level of logic is implemented without extra delay. The MC55107/MC75107 and MC55108/MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.

- High Common-Mode Rejection Ratio
- High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of $\pm 3.0 \mathrm{~V}$
- Differential Input Common-Mode Voltage of More Than $\pm 15 \mathrm{~V}$ Using External Attenuator
- Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- MTTL or MDTL Drive Capability
- High DC Noise Margins



## MC55107, MC75107, MC55108, MC75108 (continued)

MAXIMUM RATINGS I $T_{A}=T_{\text {low }}{ }^{*}$ to $T_{\text {high }}$ * unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \\ & \hline \end{aligned}$	$\begin{array}{r} +7.0 \\ -7.0 \\ \hline \end{array}$	Vdc
Differential-Mode Input Signal Voltage Range	$V_{\text {ID }}$	$\pm 6.0$	Vdc
Common-Mode Input Voltage Range	$V_{\text {ICR }}$	$\pm 5.0$	Vdc
Strobe Input Voltage	$V_{\text {l }}(\mathrm{S})$	5.5	Vdc
Power Dissipation (Package Limitation)   Plastic and Ceramic Dual-In-Line Packages Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{D}$	$\begin{aligned} & 625 \\ & 3.85 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range MC55107, MC55108 MC75107, MC75108	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	MC55107. MC55108			MC75107, MC75108			Unit
		Min	Typ	Max	Min	Typ	Max	
Power Supply Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & 14.5 \\ & -4.5 \end{aligned}$	$\begin{array}{r} +50 \\ -50 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline+5.5 \\ -5.5 \\ \hline \end{array}$	$\begin{array}{r} +4.75 \\ -4.75 \\ \hline \end{array}$	$\begin{array}{r} +50 \\ -5.0 \end{array}$	$\begin{array}{r} +5.25 \\ -5.25 \\ \hline \end{array}$	Vdc
Output Sink Current	Ios	4		-16\%		-	-16	mA
Differential-Mode Input Voltage Range	$V_{\text {IDR }}$	-50	4	+50	-5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	$V_{\text {ICR }}$	-30		+30	-3.0	-	+3.0	Vdc
Input Voltage Range, any differential input to ground	$V_{\text {IR }}$	-50		+3.0	-5.0	,	+3.0	Vdc
Operating Temperature Range	${ }^{\text {T }}$ A	-55	$\times 7$	$+125$	0	-	+70	${ }^{\circ} \mathrm{C}$

## DEFINITIONS OF INPUT LOGIC LEVELS

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (between differential inputs)	$\mathrm{V}_{1 \mathrm{DH}}$	1	0.025	5.0	Vdc
Low-Level Input Voltage (between differential inputs)	$\mathrm{V}_{1 \mathrm{DL}}$	1	$-5.0 \dagger$	-0.025	Vdc
High-Level Input Voltage (at strobe inputs)	$\mathrm{V}_{1 \mathrm{H}(\mathrm{S})}$	3	2.0	5.5	Vdc
Low-Level Input Voltage (at strobe inputs)	$\mathrm{V}_{1 \mathrm{~L}(\mathrm{~S})}$	3	0	0.8	Vdc

$\dagger$ The algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level ( $V$ IDL)
ELECTRICAL CHARACTERISTICS ( $T_{A}=T_{\text {Iow }}{ }^{*}$ to $T_{\text {high }}{ }^{*}$ unless otherwise noted)

Characteristic	Symbol	Test Fig.	MC55107, MC75107]			MC55108,MC75108			Unit
			Min	Typ ${ }^{\text {a }}$	Max	Min	Typ \#1	Max	
$\begin{aligned} & \text { High-Level Input Current to } 1 \mathrm{~A} \text { or } 2 \mathrm{~A} \text { Input } \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{ID}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3.0 \mathrm{~V}\right. \\ & \text { to }+3.0 \mathrm{~V}) \ddagger \end{aligned}$	$1 / \mathrm{H}$	2		$\square$		-	30	75	$\mu \mathrm{A}$
$\begin{aligned} & \text { Low- Level Input Current to } 1 \mathrm{~A} \text { or } 2 \mathrm{~A} \text { Input } \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{~V}_{I D}=-2.0 \mathrm{~V}, \mathrm{~V}_{I C}=-3.0 \mathrm{~V}\right. \\ & \text { to }+3.0 \mathrm{~V}) \ddagger \end{aligned}$	IIL	2				-	-	-10	$\mu \mathrm{A}$
$\begin{aligned} & \text { High-Level Input Current to } 1 \mathrm{G} \text { or } 2 \mathrm{G} \text { Input } \\ & \left(V_{\mathrm{CC}}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I H(S)}=2.4 \mathrm{~V}\right) \ddagger \\ & \left(V_{\mathrm{CC}}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I H}(\mathrm{~S})=V_{\mathrm{CC}} \operatorname{Max}\right) \ddagger \end{aligned}$	${ }^{1} \mathrm{H}$	4			$\begin{array}{r} 40 \\ 1.0 \end{array}$	-	$\square$	$40$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current to 1G or 2G Input $\left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I L}(S)=0.4 \mathrm{~V}\right) \ddagger$	IIL	4			-1.6	-	-	-1.6	mA
$\begin{aligned} & \text { High-Level Input Current to S Input } \\ & \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{1 H}(S)=2.4 \mathrm{~V}\right) \ddagger \\ & \left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{E E}=\operatorname{Max}, V_{I H}(S)=V_{C C} \operatorname{Max}\right) \ddagger \end{aligned}$	$1 / \mathrm{H}$	4			$\begin{array}{\|c\|} \hline 80 \\ 2.0 \end{array}$	-	-	$\begin{aligned} & 80 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current to $S$ Input $\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V}\right) \ddagger$	IIL	4				-	-	$-3.2$	mA
$\begin{aligned} & \text { High-Level Output Voltage } \\ & \qquad \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Min}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}, \\ & \left.\mathrm{~V}_{\text {IC }}=-3.0 \mathrm{~V} \text { to }+3.0 \mathrm{~V}\right) \ddagger \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	3	$24$		$4$	-	-	-	V
$\begin{aligned} & \text { Low-Level Output Voltage } \\ & \left(V_{C C}=M i n, V_{E E}=M i n, I_{\text {sink }}=16 \mathrm{~mA}\right. \\ & \left.V_{I C}=-3.0 \mathrm{~V} \text { to }+3.0 \mathrm{~V}\right)_{\ddagger} \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	3			04	-	-	0.4	V
High-Level Leakage Current $\left(\mathrm{V}_{\mathrm{CC}}=\right.$ Min, $\mathrm{V}_{\mathrm{EE}}=$ Min, $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}$ Max $) \ddagger$	'CEX	3				-	-	250	$\mu \mathrm{A}$
Short-Circuit Output Current \#\# $\left(V_{C C}=M a x, V_{E E}=M a x\right) \ddagger$	'osc	5	$-18$		$-70$	-	-	-	mA
High Logic Level Supply Current from $V_{C C}$ $\quad\left(V_{C C}=M a x, V_{E E}=\right.$ Max, $\left.V_{I D}=25 \mathrm{mV}, T_{A}=+25^{\circ} \mathrm{C}\right) \ddagger$	${ }^{1} \mathrm{CCH}^{+}$	6		18	30	-	18	30	mA
High Logic Level Supply Current from $V_{E E}$ $\left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I D}=25 \mathrm{mV}, T_{A}=+25^{\circ} \mathrm{C}\right) \ddagger$	${ }^{1} \mathrm{CCH}^{-}$	6		$-84$		0	8.4	-15	mA

$\ddagger$ For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type.
\#All typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=-5.0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$.
\#\#Not more than one output should be shorted at a time.

- $T_{\text {low }}=55^{\circ} \mathrm{C}$ for MC55107 and MC55108. $\quad T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC55107 and MC55108
$=0$ for MC75107 and MC75108 $\quad=+70^{\circ} \mathrm{C}$ for MC75107 and MC75108


## MC55107, MC75107, MC55108, MC75108 (continued)

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Test Fig.	MC55107 MC75107			MC55108,MC75109			Unit
			Min	Typ	Max	Min	Typ	Max	
Propagation Delay Time, low-to-high level from differential inputs $A$ and $B$ to output $\begin{aligned} & \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\ & \left(R_{L}=390 \Omega, C_{L}=15 \mathrm{pF}\right) \end{aligned}$	tPLH(D)	7	-	17	25	-	$\overline{19}$	$25$	ns
Propagation Delay Time, high-to-low level from differential inputs $A$ and $B$ to output $\begin{aligned} & \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\ & \left(R_{L}=390 \Omega, C_{L}=15 \mathrm{pF}\right) \end{aligned}$	tPHL(D)	7	-	$11$	25 -2	-	$\overline{19}$	$\overline{25}$	ns
Propagation Delay Time, low-to-high level, from strobe input to $G$ or $S$ output $\begin{aligned} & \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\ & \left(R_{L}=390 \Omega, C_{L}=15 \mathrm{pF}\right) \end{aligned}$	tPLH(S)	7	-	10	15	-	$\overline{13}$	$\overline{20}$	ns
Propagation Delay Time, high-to-low level, from strobe input $G$ or $S$ to output $\begin{aligned} & \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\ & \left(\mathrm{R}_{\mathrm{L}}=390 \Omega, C_{L}=15 \mathrm{pF}\right) \end{aligned}$	tPHL(S)	7	-	8.0	15	-	$\overline{13}$	$\overline{20}$	ns

TEST CIRCUITS


FIGURE 3 - $\mathrm{V}_{\mathrm{IH}}(\mathrm{S}), \mathrm{V}_{\text {IL }}(\mathrm{S}), \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$, and $\mathrm{I}_{\mathrm{OH}}$


TEST TABLE

$\begin{aligned} & \text { MC55107 } \\ & \text { MC75107 } \end{aligned}$	MC55108 MC75108	$V_{\text {ID }}$	STROBE 1G or 2G	STROBE S
TEST		APPLY		
$\mathrm{V}_{\mathrm{OH}}$	'CEX	+25 mV	$\mathrm{V}_{1 \mathrm{H}(\mathrm{S})}$	$\mathrm{V}_{1 H}(\mathrm{~S})$
${ }^{\mathrm{OH}}$	ICEX	-25 mV	$V_{\text {IL }}(S)$	$V_{1 H(S)}$
${ }^{\mathrm{V} \mathrm{OH}}$	${ }^{\text {c Cex }}$	-25 mV	$\mathrm{V}_{1 H(S)}$	$V_{\text {IL }}(\mathrm{S})$
$\mathrm{V}_{\text {OL }}$	VOL	-25 mV	$\mathrm{V}_{1 . \mathrm{H}(\mathrm{S})}$	V (H) S )

NOTES: 1. $V_{\text {IC }}=-3.0 \mathrm{~V}$ to +3.0 V .
2. When testing one channel, the inputs of the other channel should be grounded.

TEST CIRCUITS (continued)
FIGURE 4 - $I_{I H(G)}, I_{I L}(G), I_{I H}(S)$, and $I_{I L}(S)$


TEST	INPUT 1A	INPUT 2A	STROBE 1G	STROBE S	STROBE 2G
$1_{1 H}$ at Strobe 1G	+25 mV	Gnd	$V_{\text {IH }}(\mathrm{S})$	Gnd	Gnd
$\mathrm{I}_{1 \mathrm{H}}$ at Strobe 2G	Gnd	+25 mV	Gnd	Gnd	$\mathrm{V}_{1 \mathrm{H}(\mathrm{S})}$
$\mathrm{I}_{1 \mathrm{H}}$ at Strobes	+25 mV	+25 mV	Gnd	$\mathrm{V}_{\text {IH (S) }}$	Gnd
I/L at Strobe 1G	-25 mV	Gnd	$V_{\text {ILI }}(\mathrm{S})$	4.5 V	Gnd
IIL at Strobe 2G	Gnd	-25 mV	Gnd	4.5 V	$V_{\text {IL ( }}$ ( $)$
I/L at Strobe S	-25 mV	$-25 \mathrm{mV}$	4.5 V	$\mathrm{V}_{\text {IL ( }}$ ( $)$	4.5 V



NOTES: 1. Each channel is tested separately
2. Not more than one output should be tested at one time.

MC55107, MC75107, MC55108, MC75108 (continued)
TEST CIRCUITS (continued)
FIGURE 7 - PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS


NOTES: 1. The pulse generators have the following characteristics: $z_{o}=50 \Omega, t_{r}=t_{f}=10 \pm 5 \mathrm{~ns}, t_{p 1}=500 \mathrm{~ns}, P R R=1 \mathrm{MHz}$ $\mathrm{t}_{\mathrm{p} 2}=1 \mathrm{~ms}$, PRR $=500 \mathrm{kHz}$.
2. Strobe input pulse is applied to Strobe 1 G when Inputs $1 \mathrm{~A}-1 \mathrm{~B}$ are being tested, to Strobe S when Inputs $1 \mathrm{~A}-1 \mathrm{~B}$ or 2A-2B are being tested, and to $S$ trobe $2 G$ when inputs $2 A-2 B$ are being tested.
3. $C_{L}$ includes probe and jig capacitance.
4. All diodes are 1 N916 or equivalent.

TYPICAL APPLICATION

FIGURE 8 - MOS-TO-TTL TRANSLATOR



## DUAL MEMORY DRIVER

The MC55325/75325 is a monolithic integrated circuit memory driver with logic inputs, and is designed for use with magnetic memories.

The device contains two $600-\mathrm{mA}$ source-switch pairs and two $600-\mathrm{mA}$ sink-switch pairs. Source selection is determined by one of two logic inputs, and source turn-on is determined by the source strobe. Likewise, sink selection is determined by one of two logic inputs, and sink turn-on is determined by the sink strobe. With this arrangement selection of one of the four switches provides turn-on with minimum time skew of the output current rise.

- 600-mA Output Capability
- Output Short-Circuit Protection
- Input Clamp Diodes
- Dual Sink and Dual Source Outputs
- MDTL and MTTL Compatibility
- 24-Volt Output Capability

MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage (Note 1)	$\mathrm{V}_{\mathrm{CC} 1}$ $v_{\mathrm{CC} 2}$	$\begin{aligned} & 7.0 \\ & 25 \end{aligned}$	Vdc Vdc
Input Voltage	$V_{\text {in }}$	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic and Plastic Dual In-Line Pkg. Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 1.0 \\ & 6.6 \\ & \hline \end{aligned}$	$\stackrel{\mathrm{W}}{\mathrm{~mW} /{ }^{\circ} \mathrm{C}}$
Operating Temperature Range   MC55325   MC75325	$T^{\prime}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1. Voltage values are with respect to the network ground terminal.

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic		Symbol	ns		
		Typ	Max		
Propagation Delay Time to Source Collectors			$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$		
( $\mathrm{C}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24$ ohms)	Low-to-High-Level Output	25		50	
	High-to-Low-Level Output	25		50	
Transition Time to Source Outputs		${ }^{\text {t }}$ tLH   ${ }^{t}$ THL			
( $\mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ ohms)	Low-to-High-Level Output		55	-	
	High-to-Low-Level Output		7.0	-	
Propagation Delay Time to Sink Outputs		tpLH tpHL			
$\left(\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \mathrm{ohms}\right)$	Low-to-High-Level Output		20	45	
	High-to-Low-Level Output		20	45	
Transition Time to Sink Outputs $\left(\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24\right.$ ohms)		${ }^{\text {tTLH}}$ tTHL			
	Low-to-High-Level Output		7.0	15	
	High-to-Low-Level Output		9.0	20	
Storage Time to Sink Outputs ( $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24$ ohms)		$\mathrm{t}_{\text {s }}$	15	30	

[^39]ELECTRICAL CHARACTERISTICS $^{(T} T_{A}=T_{\text {low }}$ \# to $T_{\text {high }}$ \# unless otherwise noted.

Characteristic	Symbol	MC55325			MC75325			Unit
		Min	Typ*	Max	Min	Typ*	Max	
High-Level Input Voltage	$V_{\text {IH }}$	20	-	-	2.0	-	-	V
Low-Level Input Voltage	$V_{\text {IL }}$	-	$\checkmark$	0.8	-	-	0.8	V
Input Clamp Voltage $\left(\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, 1_{1}=-10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$V_{1}$	-	-13	-1.7	-	-1.3	-1.7	V
Off-State Current, Source-Collectors Terminal $\begin{array}{ll} \left(\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}\right) & T_{\mathrm{A}}=T_{\text {low }} \text { to } T_{\text {high }} \\ T_{A}=25^{\circ} \mathrm{C} \end{array}$	'off		$3.0$	$\begin{aligned} & 500 \\ & 150 \end{aligned}$	-	$3.0$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
High-Level Sink Output Voltage $\left(\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0\right)$	$\mathrm{V}_{\mathrm{OH}}$	19	$23$	$1$	19	23	-	V
Saturation Voltage**   Source Outputs $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{I}_{\text {source }} \approx-600 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=24\right. \text { ohms, } \\ & \text { Note 2) } \begin{aligned} & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned} \end{aligned}$   Sink Outputs $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{I}_{\text {sink }} \approx 600 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=24\right. \text { ohms, } \\ & \text { Note 2) } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {sat }}$		0.43 0 0 0.43		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.43 \\ 0.43 \end{gathered}$	$\begin{gathered} 0.9 \\ - \\ 0.9 \end{gathered}$	V
Input Current at Maximum Input Voltage    $\left(\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}\right)$     Address Inputs          Strobe Inputs	11			$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	-	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	mA
High-Level Input Current $\left(\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}\right)$   Address Inputs Strobe Inputs	${ }^{1} \mathrm{H}$		3.0 6.0	40   80	-	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 80 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Low-Level Input Current $\left(\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}\right)$   Address Inputs Strobe Inputs	IIL		$\begin{array}{\|r\|} \hline \\ -10 \\ -2.0 \\ \hline \end{array}$	$\begin{aligned} & -1.6 \\ & -3.2 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -1.0 \\ & -2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.6 \\ -3.2 \\ \hline \end{array}$	mA
Supply Current, All Sources and Sinks "Off" $\left(\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) ~ \begin{array}{ll}  & \\ & \text { From } \mathrm{V}_{\mathrm{CC} 1} \\ & \text { From } \mathrm{V}_{\mathrm{CC} 2} \end{array}$	${ }^{\text {I CCC }}$ (off)		$\frac{14}{75}$	22   20	-	$\begin{aligned} & 14 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$	mA
Supply Current from $\mathrm{V}_{\mathrm{CC}}$, Either Sink "On" $\left(\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{I}_{\text {sink }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC} 1$		$55$	70	-	55	70	mA
Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, Either Source "On"   $\left(\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, I_{\text {source }}=-50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	'CC2			$50$	-	32	50	mA

${ }^{*}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
\# $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC55325, $0^{\circ} \mathrm{C}$ for MC75325
**Not more than one output is to be "on" at any one time.
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC55325, $+70^{\circ} \mathrm{C}$ for MC75325
NOTE 2. Saturation voltage must be measured using pulse techniques: pulse width $=200 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

## MONOLITHIC DUAL LINE DRIVERS

The MC75109 and MC75110 dual line drivers feature independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally six milliamperes for the MC75109 and twelve millamperes for the MC75110.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, IO(off), is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.

- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output ( 6.0 mA or 12 mA typical)
- High Output Impedance
- High Common-Mode Output Voltage Range (-3.0 V to +10 V )
- Inhibitor Available for Driver Selection

DUAL LINE DRIVERS
MONOLITHIC SILICON

## INTEGRATED CIRCUIT



LOGIC INPUTS		INHIBITOR INPUTS		OUTPUTS	
A	B	C	D	$Y$	Z
L or H	L or H	L	Lor H	H	H
L or H	L or H	L or H	L	H	H
L	L or H	H	H	L	H
L or H	L	H	H	L	H
H	H	H	H	H	L

Low output represents the "on" state. High output represents the "off" state.

MC75109, MC75110 (continued)

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltages   (See Note 1)	$V_{C C}$   $V_{E E}$	+7.0	Volts
Logic and Inhibitor Input Voltages   (See Note 1)	$V_{\text {in }}$	5.5	Volts
Common-Mode Output Voltage Range   (See Note 1)	$V_{\text {OCR }}$	-5.0 to +12	Volts
Power Dissipation (Package Limitation)   Plastic and Ceramic Dual In-Line Packages   Derate above TA $=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$		
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	1000	mW
Storage Temperature Range   Ceramic Dual In-Line Package   Plastic Dual In-Line Package	$\mathrm{T}_{\text {stg }}$	0 to +70	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	$V_{\mathrm{CC}}$	+4.75	+5.0	+5.25	
	$V_{\mathrm{EE}}$	-4.75	-5.0	-5.25	Volts
Common-Mode Output Voltage Range	$\mathrm{V}_{\mathrm{OCR}}$				Volts
Positive		0	-	+10	
Negative		0	-	-3.0	

Note 1. These voltage values are in respect to the ground terminal.
Note 2. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (at any input)	$V_{1 H}$	1,2	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	$V_{\text {IL }}$	1,2	0	0.8	Volts

* The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.


## MC75109, MC75110 (continued)

ELECTRICAL CHARACTERISTICS ( $T_{A} \cdot 0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic \#\#	Symbol	Test Fig.	MC75109			MC75110			Unit
			M Min	Typ $=$	Max	Min	Typ =	Max	
High-Level Input Current to $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}$ or 2 B $\begin{aligned} & \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{1 H_{L}}=2.4 V\right)^{\#} \\ & \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{1 H_{L}}=V_{C C} \operatorname{Max}\right) \end{aligned}$	${ }_{1} H_{L}$	1			$\begin{aligned} & 40 \\ & 10 \end{aligned}$	-	-	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current to 1A, 1B, 2A or 2B $\left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I L_{L}}=0.4 \mathrm{~V}\right)$	${ }_{1 / 2}$	1				-	-	-3.0	mA
$\begin{array}{\|l} \hline \text { High-Level Input Current into } 1 \mathrm{C} \text { or } 2 \mathrm{C} \\ \left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{1 H_{1}}=2.4 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{1 H_{1}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max}\right) \\ \hline \end{array}$	${ }^{1} \mathrm{HH}$	2			40   10	-	-	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\begin{array}{\|l\|} \hline \text { Low-Level Input Current into } 1 \mathrm{C} \text { or } 2 \mathrm{C} \\ \quad\left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}\right) \\ \hline \end{array}$	1/L.	2			$-3.0$	-	-	-3.0	mA
$\begin{aligned} & \text { High-Level Input Current into } \mathrm{D} \\ & \left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{E E}=\mathrm{Max}, \mathrm{~V}_{I H_{1}}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{1 H_{1}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max}\right) \\ & \hline \end{aligned}$	${ }_{1 / \mathrm{H} \mid}$	2			$\begin{array}{\|c\|} \hline 80 \mathrm{~K} \\ 2.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 80 \\ & 2.0 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\begin{aligned} & \text { Low-Level Input Current into } \mathrm{D} \\ & \quad\left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IL}_{\mathrm{I}}}=0.4 \mathrm{~V}\right) \\ & \hline \end{aligned}$	${ }^{1} 1 L_{1}$	2	$\square$		$-6.0$	-	-	-6.0	mA
$\begin{array}{r} \text { Output Current ("on" state) } \\ \left(V_{C C}=M a x, V_{E E}=M a x\right) \\ \left(V_{C C}=M i n, V_{E E}=M i n\right) \end{array}$	${ }^{\text {I O }}$ (on)	3	$\begin{array}{r} 35 \\ \hline-35 \\ \hline \end{array}$	6.0	$70$	$6.5$	12		mA
$\begin{array}{\|l} \hline \text { Output Current ("off" state) } \\ \quad\left(V_{C C}=M i n, V_{E E}=M i n\right) \\ \hline \end{array}$	${ }^{1} \mathrm{O}$ (off)	3			$100$	-		100	$\mu \mathrm{A}$
Supply Current from $\mathrm{V}_{\mathrm{CC}}$ (with driver enabled) $\left(V_{I L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}_{1}}=2.0 \mathrm{~V}\right)$	${ }^{\text {I CCO}}$ (on)	4		25	$30$	-	28	35	mA
Supply Current from $\mathrm{V}_{\mathrm{EE}}$ (with driver enabled) $\left(\mathrm{V}_{1 L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}_{1}}=2.0 \mathrm{~V}\right)$	${ }^{\prime} \mathrm{EE}(\mathrm{on)}$	4		$\begin{array}{\|r\|} \hline-23 \\ \hline \end{array}$	$-30$	-	-41	-50	mA
Supply Current from $\mathrm{V}_{\mathrm{CC}}$ (with driver inhibited) $\left(V_{I L_{L}}=0.4 \mathrm{~V}, V_{I L_{I}}=0.4 \mathrm{~V}\right)$	${ }^{1} \mathrm{CC}(\mathrm{off})$	4	$\square$	18		-	21	-	mA
Supply Current from $\mathrm{V}_{\mathrm{EE}}$ (with driver inhibited) $\left(\mathrm{V}_{I L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{I L_{I}}=0.4 \mathrm{~V}\right)$	'EE (off)	4				-	-17	-	mA

\#All typical values are at $V_{C C}=+5.0 \mathrm{~V}, V_{E E}=-5.0 \mathrm{~V}$.
\#\#For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type.

SWITCHING CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Characteristic	Symbol	Test Fig.	Min	Typ	Max	Unit
Propagation Delay Time from Logic Input A or B to Output $Y$ or $Z\left(R_{L}=50\right.$ ohms, $\left.C_{L}=40 \mathrm{pF}\right)$	${ }^{\mathrm{tPLH}} \mathrm{L}$   ${ }^{\text {tPHLL }}$	5	-	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns
Propagation Delay Time from Inhibitor Input C or D to Output $Y$ or $Z\left(R_{L}=50\right.$ ohms, $\left.C_{L}=40 \mathrm{pF}\right)$	$\begin{aligned} & \mathrm{tPLH}_{1} \\ & \mathrm{t}_{1} \mathrm{PH} \end{aligned}$	5	-	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns

## TEST CIRCUITS

FIGURE 1 - $V_{I H}, V_{I L}, I_{I H}$, and IIL


TEST TABLE

TEST AT ANY LOGIC INPUT	LOGIC INPUTS NOT UNDER TEST	ALL INHIBITOR INPUTS	OUTPUT   $1 Y$ or $2 Y$	$\begin{aligned} & \text { OUTPUT } \\ & 17 \text { ar } 77 \end{aligned}$
$\mathrm{V}_{1} \mathrm{H}_{\mathrm{L}}$	Open	$\mathrm{V}_{1 \mathrm{H}_{1}}$	$\begin{gathered} \mathrm{H} \\ \text { (See Note 1) } \end{gathered}$	$\begin{gathered} \text { L } \\ \text { (See Note } 1 \text { ) } \end{gathered}$
$V_{1 L}$	$\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{1 \mathrm{H}_{1}}$	L   (See Note 1)	H   (See Note 1)
${ }^{1} H_{L}$	4.5 V	$\mathrm{V}_{1 \mathrm{H}_{1}}$	Gnd	Gnd
${ }_{1} L_{L}$	Gnd	$\mathrm{V}_{1 \mathrm{H}_{1}}$	Gnd	Gnd

NOTES: 1. Low output represents the "on" state, high output represents the "off" state.
2. Each input is tested separately.
3. Arrows indicate actual direction of current flow

$$
\text { FIGURE } 2-V_{I H}, V_{I L}, I_{I H}, I_{I L}
$$



## TEST CIRCUITS (continued)

FIGURE 3-IO(on) and IO(off)


TEST TABLE

Ground all output pins not under test.		LOGIC INPUTS		INHIBITOR INPUTS	
		1A or 2A	1B or 2B	1C or 2 C	D
${ }^{\prime} \mathrm{O}(\mathrm{on})$	at output$1 \mathrm{Y} \text { or } 2 \mathrm{Y}$	$V_{\text {IL }}$	$V_{\text {IL }}$	$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\text {IH }}$
		$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$		
		$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\mathrm{IL}}$		
'O(on)	$\begin{aligned} & \text { at output } \\ & 1 z \text { or } 2 Z \end{aligned}$	$V_{1 H}$	$\mathrm{V}_{1} \mathrm{H}$	$V_{1 H}$	$V_{1 H}$
'O(off)	at output 1 Y or 2 Y	$V_{\text {IH }}$	$V_{1 H}$	$V_{\text {IH }}$	$V_{1 H}$
'0(off)	at output$1 z \text { or } 2 z$	$V_{\text {IL }}$	$V_{\text {IL }}$	$V_{1 H}$	$V_{1 H}$
		$V_{\text {IL }}$	$\mathrm{V}_{1} \mathrm{H}$		
		$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{1} \mathrm{~L}$		
${ }^{1} \mathrm{O}$ (off)	at output$1 Y, 2 Y, 1 Z, \text { or } 2 Z$	Either state	Either state	$V_{\text {IL }}$	$V_{\text {IL }}$
				$V_{\text {IL }}$	$V_{1 H}$
				$\mathrm{VIH}^{\text {I }}$	$V_{\text {IL }}$

FIGURE 4 - ICC and IEE


TEST TABLE

TEST		ALL LOGIC INPUTS	ALL INHIBITOR   INPUTS
${ }^{1} \mathrm{cc}$ (on)	Driver enabled	$V_{\text {IL }}$	$V_{1 H}$
${ }^{\text {I E E (on) }}$	Driver enabled	$V_{1 L}$	$V_{1 H}$
'CC(off)	Driver inhibited	$V_{\text {IL }}$	$V_{\text {IL }}$
'EE(off)	Driver inhibited	$V_{\text {IL }}$	$V_{\text {IL }}$

TEST CIRCUITS (continued)
FIGURE 5 - PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS

2. $C_{L}$ includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.


## Specifications and Applications Information

## DIFFERENTIAL PARTY-LINE DRIVER

. . . designed for use in high-speed data transmission systems which use balanced terminated transmission lines. The MC75113's pushpull output eliminates ground loop and cross-talk problems. When all the inputs are at logic " 0 ", no current flows through either output, making it ideal for party-line operation.

- Push-Pull Drive Capability, $\pm 20 \mathrm{~mA}$
- MTTL and MDTL Compatible Inputs
- Wide Common-Mode Output Voltage Range: $\pm 3.0$ Volts typical


[^40]
## MC75113L (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Positive Power Supply Voltage (Pin 7)	$\mathrm{V}_{\mathrm{CC}}$	+8.0	Volts
Negative Power Supply Voltage (Pin 1)	$\mathrm{V}_{\mathrm{EE}}$	-8.0	Volts
Positive Input Voltage (Pins 3,4,5,6)	$\mathrm{V}_{\text {in }}$	+8.0	Volts
Negative Input Voltage (Pins $3,4,5,6$ )	$\mathrm{V}_{\text {in }}$	-4.0	Volts
Output Voltage (Pins 11,12)	$\mathrm{V}_{\mathrm{O}}$	$+8.0 /-3.0$	Volts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Power Dissipation $($ Package Limitation)   Derate Above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1000	mW

ELECTRICAL CHARACTERISTICS ( $T_{A}=0$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Positive Power Supply Current	1	ICC	-	+46	+61	mA
Negative Power Supply Current	1	${ }_{\text {IEE }}$	-	-32	-44	mA
Positive Output Current (short circuit)	2	IO11	+18	+20	+26	mA
Negative Output Current (short circuit)	2	1012	-18	-20	-26	mA
Differential Output Current	3	$\triangle^{\prime}{ }^{\prime}$	-	$\pm 2.0$	-	mA
Positive Output "On" Common-Mode Range	4	$\mathrm{V}_{\mathrm{O} 1}$	+2.7	-	-	V
Negative Output "On" Common-Mode Range	4	$\mathrm{V}_{\mathrm{O} 2}$	-2.7	-	-	V
Positive Output "Off' Common-Mode Range	5	$\mathrm{V}_{\mathrm{O} 3}$	+3.0	-	-	V
Negative Output "OFF' Common-Mode Range	5	$\mathrm{V}_{\mathrm{O} 4}$	-2.5	-	-	V
Positive Output "Off' Common-Mode Range	6	$\mathrm{V}_{05}$	-2.4	-	-	V
Negative Output "Off" Common-Mode Range	6	$\mathrm{V}_{06}$	+3.0	-	-	V
Power "Off" Positive Output Common-Mode Range	7	V07	-2.0	-	-	V
Power 'Off' Negative Output Common-Mode Range	7	V08	-2.0	-	-	V
Forward Input Current	8	IIF	-	-	-2.6	mA
Reverse Input Current	8	I/R	-	-	+50	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted, see Figure 9)

Characteristic	Symbol	Min	Typ	Max	Unit
"ON" Propagation Delay (Positive Output)	tpLH 11	-	25	30	ns
Rise Time (Positive Output)	tTLH 11	-	10	15	ns
"OFF" Propagation Delay (Positive Output)	tPHL 11	-	15	20	ns
Fall Time (Positive Output)	tTHL 11	-	10	15	ns
"ON" Propagation Delay (Negative Output)	tPHL 12	-	25	30	ns
Fall Time (Negative Output)	tTHL 12	-	10	15	ns
"OFF"Propagation Delay (Negative Output)	tPLH 12	-	15	20	ns
Rise Time (Negative Output)	tTLH 12	-	10	15	ns

TABLE I - INPUT LOGIC VOLTAGE FOR TEST CIRCUITS

Temperature   $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\mathrm{IL}}$   (Volts)	$\mathrm{V}_{\text {IH }}$   $($ Volts $)$
$\mathrm{o}^{\circ}$	1.16	1.85
$+25^{\circ}$	1.08	1.78
$+75^{\circ}$	0.94	1.64

FIGURE 1 - POWER SUPPLY CURRENTS


FIGURE 2 - POSITIVE and NEGATIVE OUTPUT CURRENTS (Short Circuit)


FIGURE 3 - DIFFERENTIAL OUTPUT CURRENT


FIGURE 4 - OUTPUT "ON" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE


FIGURE 5 - OUTPUT "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE


FIGURE 6 - OUTPUT "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE


FIGURE 7 - POWER "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE


## TEST CIRCUITS (continued)

FIGURE 8 - INPUT CURRENT TESTS


## FIGURE 9 - AC TEST CIRCUIT and WAVEFORMS



## APPLICATIONS INFORMATION

## INTRODUCTION

The MC75113L is a differential line driver with currentmode outputs which are designed for driving balanced terminated transmission lines such as twisted-pair cable in computer systems applications.

An example of a differential data transmission system is shown in Figure 10. Because the lines are balanced in a differential system, externally induced noise will appear equally on both inputs to the line receiver. Since the line receiver responds only to differential signals, this noise is rejected. This immunity to noise makes the differential method of data transmission far superior to single-ended transmission.

FIGURE 10 - DIFFERENTIAL TRANSMISSION SYSTEM


Another advantage of differential line driver systems over single-ended line driver systems is that a noise spike coupled into adjacent lines from the positive-going signal line is cancelled by an equal and opposite noise spike coupled from the negative-going signal line. In single-ended systems, a shield would be required for each transmission line to prevent coupling to adjacent lines in the cable.


One approach to differential data transmission uses the open-collector output circuitry shown in Figure 11. This output circuit could be called a "Pull-Only" output since current flows in only one direction regardless of which collector is conducting. The MC75109/MC75110 is an example of a driver which utilizes this scheme. Figure 12 illustrates that when driving with the MC75109/MC75110, the current flow through the terminating resistors generates a differential voltage on the lines which changes polarity in response to the logic condition applied to the driver's inputs. The MC75109/MC75110 also has a provision to

FIGURE 12 - "PULL-ONLY" SYSTEM SHOWING BOTH LOGIC CONDITIONS


## MC75113L (continued)

## APPLICATIONS INFORMATION (continued)

shut down the current source transistor Q3 (Figure 11) so that isolation from other drivers is possible. This feature permits differential operation in party-line systems.

## OPERATION OF THE MC75113L

The MC75113L, unlike the MC75109/MC75110 uses a unique "Push-Pull" output circuit shown in Figure 13. The figure shows that when Q1 is "on" and Q2 is "off", the current from both outputs is zero; but when Q1 is "off" and Q 2 is "on", the currents from both outputs are nearly equal and opposite. When the output currents are turned "off", D1 and transistor Q2 prevent current flow to or from either output terminal over a wide range of output voltages. Thus with this type of design, numerous drivers
can be connected in parallel to the same pair of lines (party-line mode) and those drivers in the "off" state will not load a driver in the "on" state. The output current in both logic states is shown in Figure 14.

One advantage of this type of system is apparent in Figure 15. Due to the symmetry of the line currents in "Push-Pull" systems ground-loop currents are minimized. These ground-loop currents produce voltages that subtract from the useful common-mode operating range of the drivers and receivers. The MC75113L has a typical mismatch of 2.0 mA between the current source and sink while the MC75110 has a typical "Pull Only" current of 10 mA . Therefore, the typical ground-loop current is only 1.0 mA in the "Push-Pull" system compared to 5.0 mA in the "Pull-Only" system.

FIGURE 13 - SIMPLIFIED OUTPUT STAGE OF MC75113L "PUSH-PULL" DRIVER


If Q1 is "on", Q2 is "off", Diode D1 is "off" and current IS 1 flows through Q1 and IS 2 to $V_{E E}$. However, if Q1 is "off", and Q 2 is "on", the current Is 1 flows through diode D1 to output $A$ and current from output $B$ flows through Q2 to current sink IS 2 .

EQUIVALENT CIRCUIT


FIGURE 14 - "PUSH-PULL" SYSTEM SHOWING BOTH LOGIC CONDITIONS


FIGURE 15 - COMPARISON OF GROUND CURRENTS IN "PUSH-PULL" AND
"PULL-ONLY" DATA TRANSMISSION SYSTEMS
"Pull-Only" Differential Line Driver Typical Mismatch of Output Currents Indicated ( 10 mA )


## DIFFERENTIAL PARTY-LINE OPERATION

Often in large computer systems it is desirable to attach several drivers and receivers at different points along a transmission line. Figure 16 shows an example of such a Party-Line or Data Bus System. Only one driver may be active at a time but all receivers may be active simultaneously. Such sharing or multiplexing of transmission lines results in considerable savings and flexibility in systems interconnections. Isolation of inactive drivers from the active driver is essential in party-line operation. The MC75113L guarantees this isolation even when power supplies of some of the drivers in the system are "off". This important feature makes it unnecessary to simultaneously power-up all system components when the use
of only a few is required. As noted previously, all types of differential driver systems have the advantage of differential noise cancellation not available with single-ended driver systems. However, in multiple driver or party-line systems the MC75113L, with "Push-Pull" outputs, has the additional advantage of eliminating the uncancelled common-mode noise spike which occurs during the "enable" and "inhibit" cycles (required for party-line operation in "Pull-Only" differential line drivers).

## LINE TERMINATION

In any high-speed data transmission system proper termination to prevent reflections is necessary. Transmission line pairs in close proximity to ground such as

## MC75113L (continued)

## APPLICATIONS INFORMATION (continued)

FIGURE 16 - A DIFFERENTIAL PARTY-LINE SYSTEM


FIGURE 17 A - CIRCUIT FOR $z_{d m}$ MEASUREMENT
microstrip, stripline, ribbon cable, and shielded twistedpair, exhibit two distinct characteristics impedances. The common-mode characteristic impedance $\left(z_{\mathrm{cm}}\right)$ is due to the two lines being at the same potential and carrying equal currents in the same direction. The differential-mode characteristic impedance ( $\mathrm{z}_{\mathrm{dm}}$ ) is due to the lines being at equal but opposite potentials and carrying equal currents in opposite directions. Since both common-mode noise and differential-mode data signals will be present on the transmission lines, the lines must be terminated so that both types of signals will be absorbed rather than reflected at the termination points. The differential-mode characteristic impedance of a particular line may be measured from the circuit in Figure 17A. The pulse transformer is used to assure equal and opposite voltage and current excursions on the pair of lines. The value of $z_{d m}$ for each line is equal to the value of the resistor needed to prevent differential-mode reflections from appearing on the lines.

The circuit of Figure 17B may be used to measure the value of common-mode characteristic impedance, $z_{c m}$. The


FIGURE 17B - CIRCUIT FOR $\mathbf{z}_{\mathrm{cm}}$ MEASUREMENT


When $R_{T}=z_{c m}$, no Common-Mode reflections occur.

## MC75113L (continued)

## APPLICATIONS INFORMATION (continued)

value of resistors which prevent common-mode reflections is $z_{\mathrm{cm}}$. When measuring $z_{\mathrm{cm}}$ and $z_{d m}$ for lines which are part of a cable containing many lines, it is important to terminate the remaining lines in approximately the same way as they will eventually be terminated. This is because the number of grounded conductors and terminated conductors in the cable will affect the value of $z_{\mathrm{cm}}$ and $z_{\mathrm{dm}}$ measured.

Since $2 z_{\mathrm{cm}}>\mathrm{z}_{\mathrm{dm}}$, it is always possible to choose a delta bridge of resistors which will correctly terminate both the common-mode and differential-mode signals. The common-mode signal is correctly terminated by a resistor of value $z_{c m}$ to ground from each line. The differentialmode signal is correctly terminated by a resistor whose value may be calculated from Equation 1.

$$
\begin{equation*}
\mathrm{R} 2=\frac{2\left(z_{\mathrm{dm}}\left(z_{\mathrm{cm}}\right)\right.}{2 \mathrm{z}_{\mathrm{cm}}-z_{\mathrm{dm}}} \tag{1}
\end{equation*}
$$

Additional information regarding common-mode and dif-ferential-mode characteristic impedance may be found in References 1 and 2. (In the References $z_{c m}=z_{o e}$, the "even" mode characteristic impedance, the $z_{d m}=2 z_{00}$, the "odd" mode characteristic impedance.)

## USE WITH POPULAR DIFFERENTIAL RECEIVERS

The differential-output signal of the MC75113L is zero when the output is "off". However, popular differential line receivers such as the MC75107, which have thresholds of approximately $\pm 25 \mathrm{mV}$, require a positive differential signal to turn "on" and a negative differential signal to turn "off." Therefore, when using the MC75113L (which has no negative output signal) with this type of line receiver the line must be offset in voltage to provide the required negative differential signal. This is easily accomplished using the termination scheme shown in Figure 18.

The value of $R 6$ is equal to $z_{c m}$. The value of $R 2$ may be calculated from Equation 1. The value of R1 and R3 may be calculated from Equation 2 and 3 using the desired value of offset voltage, $\mathrm{V}_{10}$, and supply voltages, $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$.

$$
\begin{align*}
& R 1=\frac{z_{d m}}{2} \times \frac{V_{C C}}{V_{1 O}}  \tag{2}\\
& R 3=\frac{-z_{d m}}{2} \times \frac{V_{E E}}{V_{1 O}} \tag{3}
\end{align*}
$$

The resistor values R4 and R5 are chosen so that the parallel combinations of R1 and R4 and also R3 with R5 each equal $\mathrm{z}_{\mathrm{cm}}$ :

$$
\begin{align*}
& R 4=\frac{z_{\mathrm{cm}}(\mathrm{R} 1)}{R 1-z_{\mathrm{cm}}}  \tag{4}\\
& R 5=\frac{z_{\mathrm{cm}}(\mathrm{R} 3)}{\mathrm{R} 3-z_{\mathrm{cm}}} \tag{5}
\end{align*}
$$

The choice of offset voltage, $\mathrm{V}_{10}$, depends upon the differential mode characteristic impedance. Since the minimum total differential signal produced by the MC75113L onto a properly terminated transmission path is:

$$
\begin{equation*}
V \text { driver } \min =\frac{18 \mathrm{~mA}}{2} \times\left(z_{\mathrm{dm}}\right) \text { (volts) } \tag{6}
\end{equation*}
$$

The amount of offset voltage for equal noise margin on both sides of the receiver's zero volt threshold should be:

$$
\begin{equation*}
\mathrm{V}_{1 \mathrm{O}}=\frac{\mathrm{V} \text { driver } \mathrm{min}}{2}=4.5 \mathrm{~mA} \times \mathrm{z}_{\mathrm{dm}}(\text { volts }) \tag{7}
\end{equation*}
$$

## MC75113L (continued)

## APPLICATIONS INFORMATION (continued)

## EXAMPLE OF CALCULATION OF TERMINATION RESISTOR VALUES

Suppose the MC75113L is to be used with $V_{C C}=+5.0$ volts and $\mathrm{V}_{\mathrm{EE}}=-6.0$ volts to drive a transmission line with $z_{\mathrm{cm}}=85 \Omega$ and $\mathrm{z}_{\mathrm{dm}}=112 \Omega$. The offset voltage required for equal noise margin on both sides of the receiver's zero-volt threshold is found by Equation 7 to be:

$$
\begin{equation*}
V_{10}=4.5 \mathrm{~mA} \times(112)=0.504 \text { volts } \tag{8}
\end{equation*}
$$

From Figure 17 it may be seen that $R 6=z_{c m}=85 \Omega$. R2 is found from Equation 1:

$$
\begin{equation*}
R 2=\frac{2(112)(85)}{2(85)-112}=328 \Omega \tag{9}
\end{equation*}
$$

R1 and R3 are found from Equations 2 and 3 to be:

$$
\begin{align*}
& R 1=\frac{112}{2} \times \frac{5}{0.504}-556 \Omega  \tag{10}\\
& R 3=\frac{-112}{2} \times \frac{-6.0 \mathrm{~V}}{0.504}=667 \Omega \tag{11}
\end{align*}
$$

R3 and R5 are found from Equation 4 and 5:

$$
\begin{align*}
& \mathrm{R} 4=\frac{85(556)}{556-85}=100 \Omega  \tag{12}\\
& \mathrm{R} 5=\frac{85(667)}{667-85}=97 \Omega \tag{13}
\end{align*}
$$

## REFERENCES

1. Ivor Catt, "Crosstalk (Noise) in Digital Systems", IEEE Transactions on Electronic Computers, Vol. EC-16, No. 6, pp. 743-763, December 1967.
2. S. B. Cohn, "Shielded Coupled-Strip Transmission Lines," IRE Transactions Microwave Theory and Techniques, Vol. MTT-3, pp. 29-38, October 1955.
3. Motorola Application Note AN-708, "Line Driver and Receiver Considerations."

FIGURE 19 - EXAMPLE CALCULATION OF TERMINATION AND RECEIVER BIASING RESISTORS


## MONOLITHIC DUAL LINE RECEIVER

The MC75140P1 is a dual line receiver with common Strobe and Reference inputs. The Reference voltage is externally applied. This voltage may range from 1.5 to 3.5 volts, thus allowing for adjustment of maximum noise immunity in a given system design. The MC75140P1 is intended for use as a single-ended receiver in MTTL systems. Use in a party-line (bus-organized) system is aided by the low input current of the receiver.

- Single +5.0 -Volts Power Supply
- $\pm 100-\mathrm{mV}$ Sensitivity
- Low Input Current
- MTTL Compatible Outputs
- Adjustable Reference Voltage
- Common Output Strobe


TYPICAL APPLICATION
HIGH FAN-OUT FROM A STANDARD MTTL GATE

*Most MC5400/MC7400 devices are capable of maintaining a 2.4 -volt level under loads up to 7.5 mA .

DUAL
LINE RECEIVER

MONOLITHIC SILICON INTEGRATED CIRCUIT



## MC75140P1 (continued)

MAXIMUM RATINGS (TA $=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	7.0	Volts
Reference Voltage	$\mathrm{V}_{\text {ref }}$	5.5	Volts
Line Input Voltage (with respect to Ground)	$\mathrm{V}_{1(\mathrm{~L})}$	-2.0 to +5.5	Volts
Line Input Voltage (with respect to $\left.\mathrm{V}_{\text {ref }}\right)$	$\mathrm{V}_{1(\mathrm{~L})}-\mathrm{V}_{\text {ref }}$	$\pm 5.0$	Volts
Strobe Input Voltage	$\mathrm{V}_{1(\mathrm{~S})}$	5.5	Volts
Power Dissipation (Package Limitation)   Plastic Dual In-Line Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$		
Operating Temperature Range (Ambient)		830	mW
Storage Temperature Range		6.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Nom	Max	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	Volts
Reference Voltage Range	$\mathrm{V}_{\text {ref }} \mathrm{R}$	1.5	-	3.5	Volts
Input Voltage Range (Line or Strobe)	$\mathrm{V}_{\mathrm{IR}}$	0	-	5.5	Volts
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0	-	+70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ref }}=1.5\right.$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ*	Max	Unit
High-Level Line Input Voltage	$\mathrm{V}_{\text {IH(L) }}$	$V_{\text {ref }}+100$	-	-	mV
Low-Level Line Input Voltage	$V_{\text {IL }}(\mathrm{L})$	-	-	$\mathrm{V}_{\text {ref }}-100$	mV
High-Level Strobe Input Voltage	$\mathrm{V}_{1 \mathrm{H} \text { (S) }}$	2.0	-	-	Volts
Low-Level Strobe Input Voltage	$\mathrm{V}_{\text {IL }}(\mathrm{S})$	-	-	0.8	Volt
$\begin{aligned} & \text { High-Level Output Voltage } \\ & V_{I L(L)}=V_{\text {ref }}-100 \mathrm{mV}, V_{\text {IL }}(\mathrm{S})=0.8 \mathrm{~V}, \mathrm{IOH}=-400 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	Volts
$\begin{aligned} & \text { Low-Level Output Voltage } \\ & V_{1 H(L)}=V_{\text {ref }}+100 \mathrm{mV}, V_{I L}(\mathrm{~S})=0.8 \mathrm{~V}, \mathrm{IOL}=16 \mathrm{~mA} \\ & \left.V_{I L}(\mathrm{~L})=V_{\text {ref }}-100 \mathrm{mV}, V_{\text {IH }} \mathrm{S}\right)=2.0 \mathrm{~V}, \mathrm{IOL}=16 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	Volt
Strobe Input Clamp Voltage $I_{1(S)}=-12 \mathrm{~mA}$	$V_{1(S)}$	-	-	-1.5	Volts
Strobe Input Current (at max Input Voltage) $V_{1(S)}=5.5 \mathrm{~V}$	II(S)	-	-	2.0	mA
```High-Level Input Currents Strobe ( \(\left.\mathrm{V}_{\mathrm{I}}(\mathrm{S})=2.4 \mathrm{~V}\right)\) Line \(\left(V_{I(L)}=V_{C C}, V_{\text {ref }}=1.5 \mathrm{~V}\right)\) Reference ( \(\mathrm{V}_{\text {ref }}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}(\mathrm{L})=1.5 \mathrm{~V}\) )```	$\begin{aligned} & I_{1 H(S)} \\ & I_{1 H(L)} \\ & I_{1 H(\text { ref })} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{gathered} 80 \\ 100 \\ 200 \end{gathered}$	$\mu \mathrm{A}$
```Low-Level Input Currents Strobe ( \(\mathrm{V}_{1}(\mathrm{~S})=0.4 \mathrm{~V}\) ) Line ( \(V_{1(L)}=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=1.5 \mathrm{~V}\) ) Reference ( \(\mathrm{V}_{\text {ref }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}(\mathrm{L})=1.5 \mathrm{~V}\) )```	$\begin{aligned} & I_{I L(S)} \\ & I_{1 L(L)} \\ & I_{I L(r e f)} \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & -3.2 \\ & -10 \\ & -20 \end{aligned}$	mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
```Short-Circuit Output Current** VCC}=5.5\textrm{V```	'os	-18	-	-55	mA
Supply Current (output high) $V_{1(S)}=0 \mathrm{~V}, V_{1(L)}=V_{\text {ref }}-100 \mathrm{mV}$	${ }^{1} \mathrm{CCH}$	-	18	30	mA
$\begin{aligned} & \text { Supply Current (output low) } \\ & V_{1(S)}=0 \mathrm{~V}, V_{1(L)}=V_{\text {ref }}+100 \mathrm{mV} \end{aligned}$	${ }^{1} \mathrm{CCL}$	-	20	35	mA

SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \mathrm{~s} 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.) See Figure 1.

Characteristic	Symbol	Min	Typ	Max	Unit
Propagation Delay Time (low-to-high level output from Line input)	tpLH(L)	-	22	35	ns
Propagation Delay Time (high-to-low level oútput from Line input)	tPHL $^{\prime}(\mathrm{L})$	-	22	30	ns
Propagation Delay Time (low-to-high level output from Strobe input)	tPLH(S)	-	12	22	ns
Propagation Delay Time (high-to-low level output from Strobe input)	tPHL(S)	-	8.0	15	ns

[^41]**Only one output should be shorted at a time.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 2 - OUTPUT VOLTAGE versus LINE INPUT VOLTAGE

FIGURE 3 - SCHMITT TRIGGER

FIGURE 4 - TRANSFER CHARACTERISTICS FOR SCHMITT TRIGGER

FIGURE 5 - GATED OSCILLATOR

FIGURE 6 - GATE OSCILLATOR FREQUENCY versus RC TIME CONSTANT

FIGURE 7 - DUAL BUS TRANSCEIVER

DUAL PERIPHERAL POSITIVE "AND" DRIVER

The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- Separate Gate and Output Transistor for Maximum Design Flexibility
- High Output Breakdown Voltage:
$V_{C E R}=30$ Volts minimum

MAXIMUM RATINGS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	V_{CC}	+7.0	Vdc
Input Voltage (See Note 1)	$\mathrm{V}_{\text {in }}$	5.5	Vdc
$\mathrm{V}_{\text {CC- to-Substrate Voltage }}$		35	Vdc
Collector-to-Substrate Voltage		35	Vdc
Collector-Base Voltage	V_{CB}	35	Vdc
Collector-Emitter Voltage (See Note 2)	V_{CE}	30	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current (continuous) (See Note 3)		300	mA
Power Dissipation (Package Limitation)	P_{D}		
Plastic and Ceramic Dual In-Line Packages		830	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal.
2. This value applies when the base-emitter resistance $\left(R_{B E}\right)$ is equal to or less than 500 ohms.
3. Both halves of these dual circuits may conduct the rated current simultaneously.

DUAL PERIPHERAL POSITIVE "AND" DRIVER
 MONOLITHIC SILICON INTEGRATED CIRCUITS

RECOMMENDED OPERATING CONDITIONS (See Note 4)

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$

Note 4. The substrate, pin 8 , must always be at the most negative device voltage for proper operation.
ELECTRICAL CHARACTERISTICS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ*	Max	Unit
MTTL GATES						
High-Level Input Voltage	$\mathrm{V}_{1} \mathrm{H}$	1	2.0	-	-	Vdc
Low-Level Input Voltage	$V_{\text {IL }}$	2	-	-	0.8	Vdc
High-Level Output Voltage $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}\right)$	V_{OH}	2	2.4	3.3	-	Vdc
Low-Level Output Voltage $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\right)$	V_{OL}	1	-	0.22	0.4	Vdc
High-Level Input Current	1/H	3	-	-	$\begin{aligned} & 40 \\ & 80 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ mA
Low-Level Input Current $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\right) \quad \begin{aligned} & \text { Input } \mathrm{A} \\ & \\ & \end{aligned}$	IIL	4	-	-	$\begin{aligned} & -1.6 \\ & -3.2 \end{aligned}$	mA
Short-Circuit Output Current** $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	Ios	5	-18	-	-55	mA
```Supply Current High-Level Output ( \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) ) Low-Level Output ( \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.0 \mathrm{~V}\) )```	$\begin{aligned} & \mathrm{I} \mathrm{CCH} \\ & \mathrm{I} \mathrm{CCL} \end{aligned}$	6	-	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	4.0 11	mA
Input Clamp Voltage ( $\left.\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {in }}=-12 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {in }}$	4	-	-	-1.5	V

OUTPUT TRANSISTORS

Characteristic	Symbol	Min	Typ	Max	Unit
Collector-Base Breakdown Voltage $\left(I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\text {CBO }}$	35	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(I_{C}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=500 \text { ohms }\right)$	$\mathrm{V}_{\text {CER }}$	30	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(I_{E}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\right)$	$V_{\text {EBO }}$	5.0	-	-	Vdc
Static Forward Transfer Ratio (See Note 5) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \end{aligned}$	$h_{\text {FE }}$	$\begin{aligned} & 25 \\ & 30 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	
$\begin{gathered} \text { Base-Emitter Voltage (See Note 5) } \\ \left(I_{B}=10 \mathrm{~mA}, I_{C}=100 \mathrm{~mA}\right) \\ \left(I_{C}=30 \mathrm{~mA}, I_{C}=300 \mathrm{~mA}\right) \end{gathered}$	$V_{B E}$	-	$\begin{aligned} & 0.85 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	Vdc
Collector-Emitter Saturation Voltage (See Note 5) $\begin{aligned} & \left(I_{B}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}\right) \\ & \left(I_{B}=30 \mathrm{~mA}, I_{C}=300 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {CE }}$ (sat)	-	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	Vdc

Note 5. These parameters must be measured using pulse techniques; $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
${ }^{*}$ All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
**Not more than one output should be shorted at a time.

MC75450 (continued)

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ	Max	Unit
MTTL GATES						
Propagation Delay Time ( $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400$ ohms) Low-to-High-Level Output High-to-Low-Level Output	tPLH tpHL	7	-	$\begin{array}{r} 14 \\ 6.0 \\ \hline \end{array}$	-	ns

## OUTPUT TRANSISTORS

Switching Times $\left(I_{C}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=-40 \mathrm{~mA}\right.$		8			
$\left.V_{\mathrm{BE}(\mathrm{off})}=-1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{ohms}\right)$					
Delay Time					
Rise Time	$\mathrm{t}_{\mathrm{d}}$		-	9.0	-
Storage Time	$\mathrm{t}_{\mathrm{r}}$		-	11	-
Fall Time	$\mathrm{t}_{\mathrm{s}}$		-	14	-
$\mathrm{t}_{\mathrm{f}}$		-	8.0	-	

GATES AND TRANSISTORS COMBINED \#

Propagation Delay Time ( $I_{C}=200 \mathrm{~mA}, C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50$ ohms) Low-to-High-Level Output   High-to-Low Level Output	$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	9	--	21 16	-	ns
$\begin{aligned} & \text { Transition Time } \#(I \mathrm{C}=\left.200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right) \\ & \text { Low-to-High-Level Output } \\ & \text { High-to-Low-Level Output } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	9	-	7.0 8.0	-	ns

[^42]
## DC TEST CIRCUITS FOR MTTL GATES


(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)
FIGURE $3-I_{\text {IH }} \quad$ FIGURE $4-I_{\text {IL }}, V_{\text {in }}$



## DC TEST CIRCUITS FOR MTTL GATES (continued)


(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE


NOTES: A. The pulse generator has the following characteristics: $t_{w}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{z}_{\mathrm{O}} \approx 50 \Omega$. $B$. $C_{L}$ includes probe and jig capacitance.

## VOLTAGE WAVEFORMS



## TEST CIRCUITS (continued)

FIGURE 8 - SWITCHING TIMES, EACH TRANSISTOR


NOTES: $A$. The pulse generator has the following characteristics: $t_{w}=0.3 \mu \mathrm{~s}$, duty cycle $\leqslant 1 \%, z_{0} \approx 50 \Omega$ B. $C_{L}$ includes probe and jig capacitance.

VOLTAGE WAVEFORMS
input


FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR


NOTES: A. The pulse generator has the following characteristics: $t_{w}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{z}_{0} \approx 50 \Omega$.
B. $C_{L}$ includes probe and jig capacitance.

VOLTAGE WAVEFORMS


## DUAL PERIPHERAL POSITIVE "AND" DRIVER

. designed for use as a general-purpose interface circuit in MDTL and MTTL type systems. The MC75451P is a dual peripheral positive AND driver consisting of logic gate outputs internally connected to the bases of two high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- High Output Breakdown Voltage; $V_{\text {CER }}=30$ Volts minimum


MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	$\mathrm{V}_{\mathrm{CC}}$	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	$\mathrm{V}_{\mathrm{in}}$	5.5	Vdc
Output Voltage (See Notes 1 and 3)	$\mathrm{V}_{\mathrm{O}}$	30	Vdc
Output Current (continuous)	$\mathrm{I}_{\mathrm{O}}$	300	mA
Power Dissipation (Package Limitation)   Plastic Dual In-Line Package   Derate above $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	830	mW
Operating Temperature Range		6.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$

NOTE 1. Voltage values are with respect to network ground terminal.
NOTE 2. Input voltage should be zero or positive with respect to device ground terminal
NOTE 3. This is the maximum voltage which should be applied to any output when it is in the "off" state

DUAL PERIPHERAL POSITIVE "AND" DRIVER

MONOLITHIC SILICON INTEGRATED CIRCUITS


See Packaging Information Section for outline dimensions.

## MC75451P (continued)

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	$V \mathrm{dc}$

ELECTRICAL CHARACTERISTICS (TA $=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Typ*	Max	Unit
High-Level Input Voltage		$V_{1 H}$	1	2.0	-	-	Vdc
Low-Level Input Voltage		$V_{\text {IL }}$	2	-	-	0.8	V dc
Input Clamp Voltage $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {in }}=-12 \mathrm{~mA}\right)$		$V_{\text {in }}$	4	-	-	-1.5	Vdc
High-Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}\right)$		${ }^{1} \mathrm{OH}$	1	-	-	100	$\mu \mathrm{A}$
Low-Level Output Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{I L}=0.8 \mathrm{~V}, \mathrm{IOL}^{\prime}=100 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{I \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{OL}}$	2	-	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	Vdc
High-Level Input Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\right) \end{aligned}$		${ }_{1 / H}$	3	$-$	$-$	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\right)$		IIL	4	-	-1.0	-1.6	mA
$\begin{aligned} & \text { Supply Current } \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\right) \end{aligned}$	High-Level Output Low-Level Output	$\begin{aligned} & { }^{\mathrm{I}} \mathrm{CCH} \\ & { }^{\mathrm{I} C \mathrm{CL}} \end{aligned}$	5	-	$\begin{aligned} & 7.0 \\ & 52 \end{aligned}$	$\begin{aligned} & 11 \\ & 65 \end{aligned}$	mA

${ }^{*}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ	Max	Unit
Propagation Delay Time $\left(l_{\mathrm{O}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right)$   Low-to-High-Level Output   High-to-Low-Level Output	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	6	-	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	-	ns
Transition Time $\left(I_{O} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{ohms}\right)$   Low-to-High-Level Output   High-to-Low-Level Output	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t} T \mathrm{HL}} \end{aligned}$	6	-	$\begin{gathered} 6.0 \\ 11 \end{gathered}$	-	ns

TEST CIRCUITS
FIGURE 1 - $\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{OH}}$


TEST CIRCUITS (continued)
FIGURE 3-IIH
FIGURE $4-I_{\text {IL }}, V_{\text {in }}$


FIGURE 5 - $\mathbf{I}^{C C H},{ }^{\prime} \mathrm{CCL}$


FIGURE 6 - SWITCHING TIMES AND WAVEFORMS


NOTES: A. Pulse generator characteristics: $\mathrm{t}_{\mathrm{W}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1.0 \mathrm{MHz}, z_{0} \approx 50 \Omega$
B. $C_{L}$ includes probe and test fixture capacitance.


DUAL PERIPHERAL
POSITIVE "NAND" DRIVER
MONOLITHIC SILICON INTEGRATED CIRCUITS


MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	$\mathrm{V}_{\mathrm{CC}}$	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	$\mathrm{V}_{\mathrm{in}}$	5.5	Vdc
Output Voltage (See Notes 1 and 3)	$\mathrm{V}_{\mathrm{O}}$	30	Vdc
Output Current (continuous)	$\mathrm{I}_{\mathrm{O}}$	300	mA
Power Dissipation (Package Limitation)   Plastic Dual In-Line Package   Derate above $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	830	mW
Operating Temperature Range	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$		
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	$\mathrm{o}^{\mathrm{o}} \mathrm{C}$

NOTE 1. Voltage values are with respect to network ground terminal.
NOTE 2. Input voltage should be zero or positive with respect to device ground terminal. NOTE 3. This is the maximum voltage which should be applied to any output when it is in the "off" state.

## DUAL PERIPHERAL POSITIVE "NAND" DRIVER

. . . designed for use as a general-purpose interface circuit in MDTL and MTTL type systems. The MC75452P is a dual peripheral positive NAND driver consisting of logic gate outputs internally connected to the bases of two high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- High Output Breakdown Voltage;
$V_{C E R}=30$ Volts minimum


See Packaging Information Section for outline dimensions.

## MC75452P (continued)

RECOMMENDED OPERATING CONDITIONS

| Characteristic | Symbol | Min | Nom | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $V_{\text {CC }}$ | 4.75 | 5.0 | 5.25 | Vdc |

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Typ*	Max	Unit
High-Level Input Voltage		$\mathrm{V}_{\text {IH }}$	1	2.0	-	-	Vdc
Low-Level Input Voltage		$V_{\text {IL }}$	2	-	-	0.8	Vdc
Input Clamp Voltage $\left(V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\text {in }}=-12 \mathrm{~mA}\right)$		$V_{\text {in }}$	4	-	-	-1.5	Vdc
High-Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}\right)$		${ }^{1} \mathrm{OH}$	2	-	-	100	$\mu \mathrm{A}$
Low-Level Output Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{OL}}$	1	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	Vdc
$\begin{aligned} & \text { High-Level Input Current } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\right) \end{aligned}$		I/H.	3	-	-	$\begin{aligned} & 40 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current $\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\right)$		IIL	4	-	-1.0	-1.6	mA
Supply Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.0 \mathrm{~V}\right) \end{aligned}$	High-Level Output Low-Level Output	$\begin{aligned} & { }^{\mathrm{I}} \mathrm{CCH} \\ & \mathrm{I}^{2} \end{aligned}$	5	-	$\begin{aligned} & 11 \\ & 56 \end{aligned}$	$\begin{aligned} & 14 \\ & 71 \end{aligned}$	mA

${ }^{*}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ	Max	Unit
Propagation Delay Time $\left(I_{O} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right)$   Low-to-High-Level Output   High-to-Low-Level Output	$\begin{aligned} & \text { tPL.H } \\ & \text { tPHL } \end{aligned}$	6	-	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Transition Time $\left(I_{O} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right)$   Low-to-High-Level Output   High-to-Low-Level Output	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	6	-	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	-	ns

## TEST CIRCUITS

FIGURE 1 - $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}$

(Current into a terminal is shown as a positive value. Arrows indicate actual direction of current flow.)

## TEST CIRCUITS (continued)

FIGURE 3 - $I_{1 H}$


FIGURE $4-I_{I L}, v_{\text {in }}$


FIGURE 5-ICCH, ICCL


FIGURE 6 - SWITCHING TIMES AND WAVEFORMS


## DUAL PERIPHERAL POSITIVE "OR" DRIVER

designed for use as a general-purpose interface circuit in MDTL and MTTL type systems. The MC75453P is a dual peripheral positive OR driver consisting of logic gate outputs internally connected to the bases of two high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- High Output Breakdown Voltage;
$V_{C E R}=30$ Volts minimum

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ )

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	$\mathrm{V}_{\mathrm{CC}}$	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	$\mathrm{V}_{\text {in }}$	5.5	Vdc
Output Voltage (See Notes 1 and 3)	$\mathrm{V}_{\mathrm{O}}$	30	Vdc
Output Current (continuous)	$\mathrm{I}_{\mathrm{O}}$	300	mA
Power Dissipation (Package Limitation)   Plastic Dual In-Line Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$		830
Operating Temperature Range		6.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$

NOTE 1. Voltage values are with respect to network ground terminal.
NOTE 2. Input voltage should be zero or positive with respect to device ground terminal.
NOTE 3. This is the maximum voltage which should be applied to any output when it is in the "off" state.

[^43]RECOMMENDED OPERATING CONDITIONS

| Characteristic | Symbol | Min | Nom | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $V_{\text {CC }}$ | 4.75 | 5.0 | 5.25 | Vdc |

ELECTRICAL CHARACTERISTICS ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Typ*	Max	Unit
High-Level Input Voltage		$V_{1 H}$	1	2.0	-	-	Vdc
Low-Level Input Voltage		$V_{\text {IL }}$	2	-	-	0.8	Vdc
Input Clamp Voltage $\left(V_{C C}=4.75 \mathrm{~V}_{1} \mathrm{I}_{\text {in }}=-12 \mathrm{~mA}\right)$		$V_{\text {in }}$	4	-	-	-1.5	Vdc
High-Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}\right)$		${ }^{1} \mathrm{OH}$	1	-	-	100	$\mu \mathrm{A}$
$\begin{aligned} & \text { Low-Level Output Voltage } \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, 1 \mathrm{OL}=100 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, 1 \mathrm{OL}=300 \mathrm{~mA}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{OL}}$	2	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	Vdc
$\begin{aligned} & \text { High-Level Input Current } \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\right) \end{aligned}$		$1 / \mathrm{H}$	3	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\right)$		IIL	4	-	-1.0	-1.6	mA
Supply Current $\begin{aligned} & \left(\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\right) \end{aligned}$	High-Level Output Low-Level Output	$\begin{aligned} & { }^{\mathrm{I}} \mathrm{CCH} \\ & \mathrm{I}^{2} \end{aligned}$	5	-	$\begin{aligned} & 8.0 \\ & 54 \end{aligned}$	$\begin{aligned} & 11 \\ & 68 \end{aligned}$	mA

*Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ	Max	Unit
Propagation Delay Time $\left(I_{O} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right)$   Low-to-High-Level Output   High-to-Low-Level Output	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	6		$\begin{aligned} & 15 \\ & 17 \end{aligned}$	-	ns
$\begin{aligned} & \text { Transition Time } \\ & \text { (IO } \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms) } \\ & \text { Low-to-High-Level Output } \\ & \text { High-to-Low-Level Output } \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	6	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	ns

TEST CIRCUITS
(Current into terminal is shown as a positive value.
FIGURE $1-\mathrm{V}_{\mathrm{IH}}, \mathrm{IOH}$
Arrows indicate direction of current flow.)
FIGURE 2 - $V_{I L}$, $V_{\text {OL }}$


TEST CIRCUITS (continued)


FIGURE 6 - SWITCHING TIMES AND WAVEFORMS


NOTES: A. Pulse generator characteristics: $\mathrm{t}_{\mathrm{w}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{z}_{0} \approx 50 \Omega$
B. $C_{L}$ includes probe and test fixture capacitance.





MAXIMUM RATINGS (TA $\left.{ }^{-}+25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	$\mathrm{V}_{\mathrm{CC}}$	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	$\mathrm{V}_{\text {in }}$	5.5	Vdc
Output Voltage (See Notes 1 and 3)	$\mathrm{V}_{\mathrm{O}}$	30	Vdc
Output Current (continuous)	$\mathrm{I}^{\mathrm{O}}$	300	mA
Power Dissipation (Package Limitation)   Plastic Dual In-Line Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	830	mW
Operating Temperature Range		6.6	$\mathrm{~mW} /{ }^{\mathrm{o}} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$

NOTE 1. Voltage values are with respect to network ground terminal.
NOTE 2. Input voltage should be zero or positive with respect to device ground terminal. NOTE 3. This is the maximum voltage which should be applied to anv output when it is in the "off" state.


[^44]RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.75	5.0	5.25	Vdc

ELECTRICAL CHARACTERISTICS ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic		Symbol	Test Fig.	Min	Typ*	Max	Unit
High-Level Input Voltage		$\mathrm{V}_{\text {IH }}$	1	2.0	-	-	Vdc
Low-Level Input Voltage		$V_{\text {IL }}$	2	-	-	0.8	Vdc
Input Clamp Voltage $\left(V_{C C}=4.75 \mathrm{~V}, I_{\text {in }}=-12 \mathrm{~mA}\right)$		$V_{\text {in }}$	4	-	-	-1.5	Vdc
High-Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}\right)$		${ }^{1} \mathrm{OH}$	2	-	-	100	$\mu \mathrm{A}$
Low-Level Output Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{OL}}$	1	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	Vdc
$\begin{aligned} & \text { High-Level Input Current } \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\right) \end{aligned}$		${ }_{1} \mathrm{H}$	3	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Low-Level Input Current $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\right)$		IIL	4	-	-1.0	-1.6	mA
$\begin{aligned} & \text { Supply Current } \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.0 \mathrm{~V}\right) \end{aligned}$	High-Level Output Low-Level Output	$\begin{aligned} & \mathrm{I} \mathrm{CCH} \\ & \mathrm{I} \mathrm{CCL} \end{aligned}$	5	-	$\begin{aligned} & 13 \\ & 61 \end{aligned}$	$\begin{aligned} & 17 \\ & 79 \end{aligned}$	mA

*Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ	Max	Unit
Propagation Delay Time $\left(I_{\mathrm{O}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right)$   Low-to-High-Level Output   High-to-Low-Level Output	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	6	-	$\begin{aligned} & 25 \\ & 19 \end{aligned}$	-	ns
$\begin{aligned} & \text { Transition Time } \\ & \text { (I } \left._{\mathrm{O}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \text { ohms }\right) \\ & \text { Low-to-High-Level Output } \\ & \text { High-to-Low-Level Output } \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	6	-	5.0 8.0	-	ns

## TEST CIRCUITS

(Current into terminal is shown as a positive value.
Arrows indicate actual direction of current flow)
FIGURE 1 - $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}$



## TEST CIRCUITS (continued)



FIGURE 5 - ICCH, ICCL


FIGURE 6 - SWITCHING TIMES AND WAVEFORMS


## MC75491

## Specifications and Applications Information

## QUAD LED SEGMENT DRIVER - MC75491 <br> HEX LED DIGIT DRIVER - MC75492

The MC75491 and MC75492 are designed to interface MOS logic to common cathode light-emitting diode readouts in serially addressed multi-digit displays. Using a segment address and digit scan LED drive method in a time multiplexing system results in a minimizing of the number of required drivers.

- Low Input Current Requirement for MOS Compatibility
- Low Standby Power Drain
- Source or Sink Current Capability of 50 mA for MC75491
- Sink Current Capability of 250 mA for MC75492
- Four High-Gain Darlington Drivers in a Single Package - MC75491
- Six High-Gain Darlington Drivers in a Single Package - MC75492



See Packaging Information Section for outline dimensions

## MC75491, MC75492 (continued)

MAXIMUM RATINGS ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value		Unit
		MC75491	MC75492	
Bias Supply Voltage (See Note 1)	$V_{\text {SS }}$	10	10	Vdc
Input Voltage (See Note 2)	$V_{\text {in }}$	-5.0 to $\mathrm{V}_{\mathrm{SS}}$	-5.0 to $\mathrm{V}_{\text {SS }}$	Vdc
Collector Voltage (See Note 3)	$\mathrm{V}_{\mathrm{C}}$	10	10	Vdc
Collector-to-Emitter Voltage	$\mathrm{V}_{\text {CE }}$	10	-	Vdc
Collector-to-Input Voltage	$\mathrm{V}_{\mathrm{Cl}}$	10	10	Vdc
Emitter Voltage ( $\mathrm{V}_{\text {in }} \geqslant 5.0 \mathrm{Vdc}$ )	$V_{E}$	10	-	Vdc
Emitter-to-Input Voltage	$V_{E I}$	5.0	-	Vdc
Continuous Collector Current (Each Collector)   (All Collectors)	${ }^{\prime} \mathrm{C}$	$\begin{array}{r} 50 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Power Dissipation (Package Limitation) Ceramic and Plastic Dual In-Line Packages Derate above $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	$P_{D}$	$\begin{aligned} & 830 \\ & 6.6 \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +70		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1. V SS terminal voltage is with respect to any other device terminal.
Note 2. With the exception of the inputs, the GND terminal must always be the most negative device voltage for proper operation. Note 3. Voltage values are with respect to GND terminal unless otherwise noted.

ELECTRICAL CHARACTERISTICS $\left(V_{S S}=10 \mathrm{Vdc}, T_{A}=0\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MC75491			MC75492			Unit
		Min	Typ	Max	Min	Typ	Max	
Low-Level Collector-to-Emitter Voltage $\begin{aligned} \left(\mathrm{V}_{\text {in }}\right. & =8.5 \mathrm{~V} \text { thru } 1.0 \mathrm{k} \Omega, \mathrm{I} \mathrm{OL}=50 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{E}} & =5.0 \mathrm{~V}) \\ \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{A} & =0 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$v_{\text {CEL }}$	$\square$	$0.9$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	-	-	-	Vdc
High-Level Collector Current $\begin{aligned} & V_{C H}=10 \mathrm{~V}, V_{E}=0, I_{\text {in }}=40 \mu \mathrm{~A} \\ & V_{C H}=10 \mathrm{~V}, V_{E}=0, V_{\text {in }}=0.7 \mathrm{~V} \end{aligned}$	${ }^{\prime} \mathrm{CH}$	-	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		-	-	$\mu \mathrm{A}$
Low-Level Output Voltage $\begin{aligned} \left(\mathrm{V}_{\text {in }}\right. & \left.=6.5 \mathrm{~V} \text { thru } 1.0 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{OL}}=250 \mathrm{~mA}\right) \\ \mathrm{T}_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{A} & =0 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	--	-	-	-	0.9	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	Vdc
High-Level Output Current $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}, \mathrm{I}_{\text {in }}=40 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{OH}}=10 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.5 \mathrm{~V} \end{aligned}$	${ }^{1} \mathrm{OH}$	-	-	-		-	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$
Input Current at Maximum Input Voltage $\mathrm{v}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{I}_{\text {in }}$	-	$22$		-	2.2	3.3	mA
Emitter Current - Reverse Bias $\mathrm{I}_{\mathrm{C}}=0, \mathrm{v}_{\mathrm{in}}=0, \mathrm{v}_{\mathrm{E}}=5.0 \mathrm{~V}$	'ER	-	-	100	-	-	-	$\mu \mathrm{A}$
Bias Supply Current ( $\mathrm{V}_{\text {SS }}=10 \mathrm{~V}$ )	'ss	-	-	10	-	-	1.0	mA

SWITCHING CHARACTERISTICS $\left(V_{\text {SS }}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

$\begin{aligned} & \text { Propagation Delay Time, High-to-Low Level } \\ & R_{L}=200 \Omega, V_{1 H}=4.5 \mathrm{~V}, C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{E}}=0 \\ & R_{\mathrm{L}}=39 \Omega, \mathrm{~V}_{1 H}=7.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	${ }^{\text {tPHL }}$	$\cdots$	${ }^{20}$	-	-	$\overline{40}$	-	ns
$\begin{aligned} & \text { Propagation Delay Time, Low-to-High Level } \\ & C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{I H}=4.5 \mathrm{Vdc} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \mathrm{~V}_{1 H}=7.5 \mathrm{Vdc} \end{aligned}$	${ }^{\text {tPLH }}$	-	, 40*	$\xrightarrow{\square}$	-	80	-	ns

[^45]TYPICAL CHARACTERISTICS
( $\mathrm{V}_{\mathrm{SS}}=+10 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)



FIGURE 5 - COLLECTOR-TO-EMITTER VOLTAGE (ON)


MC75492
FIGURE 2 - OUTPUT CURRENT versus INPUT VOLTAGE


FIGURE 4 - OUTPUT CURRENT versus INPUT CURRENT


FIGURE 6 - OUTPUT VOLTAGE LOW versus OUTPUT CURRENT


MC75491, MC75492 (continued)

## TYPICAL CHARACTERISTICS and SWITCHING TIME CIRCUITS



FIGURE 9 - SWITCHING WAVEFORM DEFINITIONS


The pulse generator has the following characteristics: $z_{0}=50 \Omega, P R R=100 \mathrm{kHz}, P W=1.0 \mu \mathrm{~s}$.

FIGURE 8 - MC75491 SWITCHING CIRCUIT


FIGURE 10 - MC75492 SWITCHING CIRCUIT


TYPICAL APPLICATIONS

FIGURE 11 - QUAD-OR-HEX RELAY DRIVER


FIGURE 12 - OUAD-OR-HEX LAMP DRIVER


MC75491, MC75492 (continued)

TYPICAL APPLICATIONS (continued)

FIGURE 13 - MOS-TO-MTTL LEVELTRANSLATOR

FIGURE 15 - QUAD-OR-HEX HIGH-CURRENT PNP TRANSISTOR DRIVER


FIGURE 14 - QUAD HIGH-CURRENT NPN


FIGURE 16 - BASE-EMITTER SELECT TRANSISTOR DRIVER


FIGURE 17 - MOS CALCULATOR CHIP-TO-LED INTERFACE CIRCUIT
FIGURE 17


TYPICAL APPLICATIONS (continued)
FIGURE 18 - STROBED "NOR" DRIVER


FIGURE 19 - DC MOTOR SPEED/DIRECTION CONTROL CIRCUIT


## MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1709 and MCB1709F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- High-Performance Open Loop Gain Characteristics

AVOL $=45,000$ typical

- Low Temperature Drift $- \pm 3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing $- \pm 14 \mathrm{~V}$ typical $@ \pm 15 \mathrm{~V}$ Supply
- Low Output Impedance $-Z_{\text {out }}=150$ ohms typical

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & \hline+18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm \mathrm{V}^{+}$	Volts
Load Current	'L	10	mA
Output Short Circuit Duration	ts	5.0	s
Power Dissipation   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 500 \\ 3.3 \end{gathered}$	$\mathrm{mW}_{\mathrm{mW} /{ }^{\circ} \mathrm{C}}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$



See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

(1) $d V_{\text {out }} / d t=$ Slew Rate

TYPICAL CHARACTERISTICS

## FIGURE 2 - TEST CIRCUIT



Fig.   No.	Curve No.	Test Conditions				
		$\mathbf{R}_{\mathbf{1}}(\Omega)$	$\mathbf{R}_{\mathbf{2}}(\Omega)$	$\mathbf{R}_{\mathbf{3}}(\Omega)$	$\mathbf{C}_{\mathbf{1}}(\mathbf{p F})$	$\mathbf{C}_{\mathbf{2}}(\mathbf{p F})$
3		10 k	10 k	1.5 k	5.0 k	200
	2	10 k	100 k	1.5 k	500	20
	3	10 k	1.0 M	1.5 k	100	3.0
	4	1.0 k	1.0 M	0	10	3.0
4	1	1.0 k	1.0 M	0	10	3.0
	2	10 k	1.0 M	1.5 k	100	3.0
	3	10 k	100 k	1.5 k	500	20
	4	0 k	10 k	1.5 k	5.0 k	200
5	$\mathbf{1}$	0	$\infty$	1.5 k	5.0 k	200
	2	0	1.5 k	500	20	
	3	0	$\infty$	1.5 k	100	3.0
	4	0	$\infty$	0	10	3.0

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)
FIGURE 3 - LARGE SIGNAL SWING
versus FREQUENCY


FIGURE 4 - VOLTAGE GAIN
versus FREQUENCY


FIGURE 6 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE


FIGURE 5 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY


FIGURE 7 - COMMON SWING versus POWER SUPPLY VOLTAGE


TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)


FIGURE 10 - BONDING DIAGRAM


Silicon Thickness $=2.0$ mils nominal

FIGURE 9 - INPUT NOISE
VOLTAGE versus SOURCE RESISTANCE


Rs. SOURCE RESISTANCE (OHMS)


## PACKAGING AND HANDLING

The MCBC1709 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of palymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pick up is useful for this purpose.

## Advance Information

## MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

Beam-lead sealed-junction technology and fabrication make the MCBC1710 and MCB1710F devices excellent choices for military, aerospace, and commercial applications. These devices are designed for use in level detection, low-level sensing, and memory applications.

- Differential Input Characteristics Input Offset Voltage $=1.0 \mathrm{mV}$ Offset Voltage Drift $=3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Fast Response Time - 40 ns
- Output Compatible With All Saturating Logic Forms $\mathrm{V}_{\mathrm{O}}=+3.2 \mathrm{~V}$ to -0.5 V Typical
- Low Output Impedance - 200 ohms

MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+14	Vdc
	$\mathrm{V}_{\mathrm{EE}}$	-7.0	Vdc
Differential Input Signal	$\mathrm{V}_{\text {ID }}$	$\pm 5.0$	Volts
Common Mode Input Swing	$\mathrm{V}_{\text {ICR }}$	$\pm 7.0$	Volts
Peak Load Current	$\mathrm{I}_{\mathrm{L}}$	10	mA
Power Dissipation (package limitations)   Flat Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$		
Operating Temperature Range		500	mW
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ} \mathrm{C}$



This is advance information on a new introduction and specifications are subject to change without notice.
See Packaging Information Section for outline dimensions.

## MCBC1710, MCB1710F (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MCBC1710/MCB1710F			Unit
		Min	Typ	Max	
Input Offset Voltage $\left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}\right)$	$\mathrm{V}_{10}$	-	1.0	2.0	$m V d c$
Input Bias Current $\left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}\right)$	I'B	-	12	20	$\mu \mathrm{Adc}$
Output Resistance	$\mathrm{r}_{0}$	-	200	-	Ohms
Positive Output Voltage $\left(\mathrm{V}_{\mathrm{in}} \geqslant 5.0 \mathrm{mV}, 0 \leqslant \mathrm{I}_{\mathrm{o}} \leqslant 5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.5	3.2	4.0	Vdc
Negative Output Voltage $\left(\mathrm{V}_{\text {in }} \geqslant-5.0 \mathrm{mV}\right)$	$\mathrm{V}_{\mathrm{OL}}$	-1.0	-0.5	0	Vdc
Output Sink Current $\left(v_{\text {in }} \geqslant-5.0 \mathrm{mV}, \mathrm{~V}_{\text {out }} \geqslant 0\right)$	Is	2.0	2.5	-	mAdc
Common Mode Rejection Ratio $\left(\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}} \leqslant 200 \Omega\right)$	CMRR	-	100	-	dB
Propagation Delay Time   For Positive and Negative Going Input Pulse	${ }^{t} \mathrm{pd}$	-	40	-	ns
Power Supply Current $\left(\mathrm{V}_{\mathrm{O}} \leqslant 0 \mathrm{Vdc}\right)$	$\begin{aligned} & \mathrm{I}^{+} \\ & 1 \mathrm{D}^{-} \end{aligned}$	-	$\begin{array}{r} 6.4 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$	mAdc
DC Quiescent Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	-	115	150	mW

See current MC1710/1710C data sheet for additional information.

BONDING DIAGRAM


## PACKAGING AND HANDLING

The MCBC1710 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a $2^{\prime \prime}$ square glass plate on which the chips are placed. A thin layer of

12 - BEAM CHIP
 chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

## Advance Information

## MONOLITHIC BEAM-LEAD VOLTAGE REGULATOR

The MCBC1723/MCB1723F is a positive or negative voltage regulator designed to deliver load current to 150 mAdc . Output current capability can be increased to several amperes through use of one or more external pass transistors. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01\% Line Regulation
- Adjustable Short-Circuit Protection

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Pulse Voltage from $\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}(50 \mathrm{~ms})$	$\mathrm{V}_{\text {in }}(\mathrm{p})$	50	$\mathrm{~V}_{\text {peak }}$
Continuous Voltage from $\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\mathrm{EE}}$	$\mathrm{V}_{\text {in }}$	40	Vdc
Input-Output Voltage Differential	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	40	Vdc
Maximum Output Current	$\mathrm{I}_{\mathrm{L}}$	150	mAdc
Current from $\mathrm{V}_{\text {ref }}$	$\mathrm{I}_{\text {ref }}$	15	mAdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}$	-65 to +150	${ }^{\circ} \mathrm{C}$



This is advance information on a new introduction and specifications are subject to change without notice.

MCBC1723, MCB1723F (continued)

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{mAdc}, \mathrm{r}_{\mathrm{sc}}=0$,
$\mathrm{C1}=100 \mathrm{pF}, \mathrm{C}_{\text {ref }}=\mathbf{0}$ and divider impedance as seen by the error amplifier $\leqslant 10 . \mathrm{k} \Omega$ connected as shown in F igure 1)

Characteristic	Symbol	MCBC1723/MCB1723F			Unit
		Min	Typ	Max	
Input Voltage Range	$V_{\text {in }}$	9.5	-	40	Vdc
Output Voltage Range	$\mathrm{V}_{\mathrm{O}}$	2.0	-	37	Vdc
Input-Output Voltage Differential	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}$	3.0	-	38	Vdc
Reference Voltage	$\mathrm{V}_{\text {ref }}$	6.95	7.15	7.35	Vdc
Standby Current Drain $\left(I_{L}=0, V_{\text {in }}=30 \mathrm{~V}\right)$	IIB	-	2.3	3.5	mAdc
```Output Noise Voltage (f = 100 Hz to 10 kHz) Cref =0 Cref = 5.0 \muF```	$V_{n}$	-	$\begin{aligned} & 20 \\ & 2.5 \\ & \hline \end{aligned}$	-	$\mu \mathrm{V}$ (rms)
$\begin{aligned} & \text { Line Regulation } \\ & \left(12 \mathrm{~V}<\mathrm{v}_{\text {in }}<15 \mathrm{~V}\right) \\ & \left(12 \mathrm{~V}<\mathrm{v}_{\text {in }}<40 \mathrm{~V}\right) \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	\% Va_{0}
Load Regulation ($1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<50 \mathrm{~mA}$)	$\mathrm{Reg}_{\text {load }}$	-	0.03	0.15	\% V_{0}
```Ripple Rejection (f = 50 Hz to 10 kHz}\mathrm{ ) Cref =0 C```	RejR	-	$\begin{aligned} & 74 \\ & 86 \end{aligned}$	$-$	dB
Short Circuit Current Limit $\left(r_{s c}=10 \Omega, v_{O}=0\right)$	Isc	-	65	-	mAdc



PACKAGING AND HANDLING
The MCBC1723 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2 " square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

## MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1741 and MCB1741F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	+22	Vdc
	$\mathrm{V}^{-}$	-22	
Differential Input Signal	$V_{\text {in }}$	$\pm 30$	Volts
Common Mode Input Swing (Note 1)	$C M V$ in	$\pm 15$	Volts
Output Short Circuit Duration (Note 2)	${ }^{\text {t }}$	Continuous	
Power Dissipation   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Flat Package)	$P_{\text {D }}$	$\begin{aligned} & 500 \\ & 3.3 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\mathrm{o}} \mathrm{C} \end{gathered}$
Operating Temperature Range	TA	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal
to the supply voltage.
Note 2. Supply voltage equal to or less than 15 V .


See Packaging Information Section for outline dimensions.

## MCBC1741, MCB1741F (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MCBC1741, MCB1741F			Unit	
		Min	Typ	Max		
Open Loop Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ ) $\begin{aligned} & \left(V_{O}= \pm 10 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{A}=-55 \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$	AVOL	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	$200,000$	$\begin{aligned} & - \\ & - \end{aligned}$	-	
Output Impedance $(f=20 \mathrm{~Hz})$	$\mathrm{Z}_{0}$	-	75	-	$\Omega$	
Input Impedance $(f=20 \mathrm{~Hz})$	$\mathrm{z}_{\text {in }}$	0.3	1.0	-	Meg $\Omega$	
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega, T_{A}=-55 \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{0}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 14 \\ \pm 13 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$V_{\text {peak }}$	
Input Common-Mode Voltage Swing	$C M V_{\text {in }}$	$\pm 12$	$\pm 13$	-	$V_{\text {peak }}$	
Common-Mode Rejection Ratio $(f=20 \mathrm{~Hz})$	$\mathrm{CM}_{\text {rej }}$	70	90	-	dB	
$\begin{aligned} & \text { Input Bias Current } \\ & \qquad \begin{array}{l} \left(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{A}=-55^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	'b	-	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\mu \mathrm{A}$	
Input Offset Current $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-55 \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$	$\\|_{\text {io }} \mid$		$0.03$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\mu \mathrm{A}$	
Input Offset Voltage $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$	$\left\|V_{i o}\right\|$	-	$1.0$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	mV	
$\begin{aligned} & \text { Step Response } \\ & \text { Gain }=100, R_{1}=1.0 \mathrm{ks}, \\ & R_{2}=100 \mathrm{k} \Omega, R_{3}=1.0 \mathrm{k} \Omega \\ & \\ & \text { Gain }=10, R_{1}=1.0 \mathrm{k} \Omega \\ & R_{2}=10 \mathrm{k} \Omega, R_{3}=1.0 \mathrm{k} \Omega \\ & \\ & \text { Gain }=1, R_{1}=10 \mathrm{k} \Omega \\ & R_{2}=10 \mathrm{k} \Omega, R_{3}=5.0 \mathrm{k} \Omega \end{aligned}$	$\mathrm{t}_{\mathrm{f}}$ $\mathrm{t}_{\text {pd }}$ $\mathrm{d} V_{\text {out }} / \mathrm{dt}(1)$ $\mathrm{t}_{\mathrm{f}}$ $\mathrm{t}_{\text {out }}^{t_{\text {pd }}} / \mathrm{dt}(1)$ $\mathrm{t}_{\mathrm{f}}$ $\mathrm{t}_{\text {pd }}$ $d V_{\text {out }} / \mathrm{dt}(1)$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 29 \\ 8.5 \\ 1.0 \\ 3.0 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.38 \\ 0.8 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \\ \mathrm{~V} / \mu \mathrm{S} \end{gathered}$	
Average Temperature Coefficient of Input Offset Voltage $\begin{aligned} & \left(R_{S}=50 \Omega, T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \\ & \left(R_{S}=10 \mathrm{k} \Omega, T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$	$\left\|\mathrm{TC}_{\text {Vio }}\right\|$	-	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Average Temperature Coefficient of Input Offset Current $\left(T_{A}=-55 \text { to }+125^{\circ} \mathrm{C}\right)$	$\mid T C_{\text {Vio }}{ }^{\text {l }}$	-	50	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$	
DC Power Dissipation   (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ )	$P_{\text {D }}$	-	50	85	mW	
Positive Supply Sensitivity ( $\mathrm{V}^{-}$constant)	$\mathrm{S}^{+}$	-	30	150	$\mu \mathrm{V} / \mathrm{V}$	
Negative Supply Sensitivity ( $\mathrm{V}^{+}$constant)	$\mathrm{S}^{-}$	-	30	150	$\mu \mathrm{V} / \mathrm{V}$	
Power Bandwidth $\begin{aligned} & \left(A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega,\right. \\ & \left.T H D=5 \%, V_{0}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) \end{aligned}$	PBW	-	10	-	kHz	

[^46]TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)


FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


RL, LOAD RESISTANCE (OHMS)

FIGURE 7 - INPUT OFFSET CURRENT


FIGURE 4 - OPEN LOOP FREQUENCY RESPONSE


FIGURE 6 - COMMON-MODE REJECTION RATIO versus FREQUENCY

f, FREQUENCY (Hz)

FIGURE 8 - INPUT BIAS CURRENT versus TEMPERATURE


TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 9 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE


FIGURE 10 - OUTPUT NOISE versus SOURCE RESISTANCE


FIGURE 11 - BONDING DIAGRAM


Silicon Thickness $=2.0$ mils nominal

PACKAGING AND HANDLING
The MCBC1741 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a $2^{\prime \prime}$ square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

## Advance Information

## HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1748 and MCB1748F devices excellent choices for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- Noncompensated MCBC1741
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{v}^{+} \\ & \mathrm{v}^{-} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing (1)	$\mathrm{CMV}_{\text {in }}$	$\pm \mathrm{V}^{+}$	Volts
Load Current	${ }^{\prime} \mathrm{L}$	10	mA
Output Short Circuit Duration	ts	5.0	5
Power Dissipatıon   Derate above $T_{A}=+25^{\circ} \mathrm{C}$ (Flat Package)	$P_{\text {D }}$	$\begin{gathered} 500 \\ 3.3 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

(1) For supply voltages less than $\pm 15 \mathrm{~V}$, the Maximum Input Voltage
is equal to the Supply Voltage



F SUFFIX
CERAMIC PACKAGE CASE 606
(TO-91)


SCHEMATIC PIN CONNECTIONS | Chip | A | B | C | D | E | F | G | H |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "F" Package | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |



This is advance information on a new introduction and specifications are subject to change without notice. See Packaging Information Section for outline dimensions.

## MCBC1748 , MCB1748F (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
Open-Loop Voltage Gain, ( $\mathrm{V}_{\mathrm{O}}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms)	A VOL	50,000	200,000	-	-
Output Impedance ( $\mathrm{f}=\mathbf{2 0 ~ H z}$ )	$\mathrm{Z}_{0}$	-	75	-	ohms
Common Mode Input Impedance ( $\mathrm{f}=20 \mathrm{~Hz}$ )	$z_{\text {in }}$	-	200	-	Megohms
Output Voltage Swing ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ ohms) $R_{L}=2 \mathrm{k}$ ohms $\left(T_{A}=-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{0}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	$-$	Vpk
Common-Mode Input Voltage Swing	$\mathrm{CMV}_{\text {in }}$	-	$\pm 13$	-	Vpk
Common-Mode Rejection Ratio ( $\mathrm{f}=\mathbf{1 0 0} \mathbf{H z}$ )	$\mathrm{CM}_{\text {rej }}$	-	90	-	dB
Input Bias Current	$\mathrm{I}_{\mathrm{b}}$	-	0.08	0.5	$\mu \mathrm{Adc}$
Input Offset Current	$\mathrm{l}_{\text {io }}$	-	0.02	0.2	$\mu \mathrm{Adc}$
Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$ )	$\mathrm{V}_{\text {io }}$	-	1.0	5.0	mVdc
Step Response ( $\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}$, $\left.R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}\right)$   Rise Time   Overshoot Percentage   Slew Rate	$\begin{gathered} t_{r} \\ d V_{\text {out }} / d t \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.3 \\ & 5.0 \\ & 0.8 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
Short-Circuit Output Current	ISC	-	25	-	mAdc
Differential Input Impedance (Open-Loop, $\mathrm{f}=20 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance	$\begin{aligned} & \mathrm{Rp} \\ & \mathrm{Cp} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$	$-$	Megohms pF
$\begin{array}{\|l\|} \hline \text { Power Supply Sensitivity } \\ \mathrm{V}^{-}=\text {constant }, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \text { ohms } \\ \mathrm{V}^{+}=\text {constant }, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \text { ohms } \\ \hline \end{array}$	$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$	$-$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & 1 \mathrm{D}^{+} \\ & 1 \mathrm{D}^{-} \end{aligned}$	-	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(V_{0}=0\right)$	$\mathrm{P}_{\mathrm{D}}$	-	50	85	mW

## BONDING DIAGRAM

16-BEAM CHIP


Silicon Thickness $=2.0$ mils nominal
PACKAGING AND HANDLING
The MCBC1748 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of

polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pick up is useful for this purpose.

## HIGH VOLTAGE, INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER CHIP

designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1536 and MCC1436 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Maximum Supply Voltage $- \pm 40 \mathrm{Vdc}$
- Output Voltage Swing -

$$
\begin{aligned}
& \pm 30 \mathrm{~V}_{\mathrm{pk}(\min )}\left(\mathrm{V}^{+}=+36 \mathrm{~V}, \mathrm{~V}^{-}=-36 \mathrm{~V}\right) \\
& \pm 22 \mathrm{~V}_{\mathrm{pk}(\min )}\left(\mathrm{V}^{+}=+28 \mathrm{~V}, \mathrm{~V}^{-}=-28 \mathrm{~V}\right)
\end{aligned}
$$

- Input Bias Current - 20 nA max
- Input Offset Current - 3.0 nA max
- Offset Voltage Null Capability
- Fast Slew Rate - $2.0 \mathrm{~V} / \mu \mathrm{s}$ typ
- Input Over-Voltage Protection
- Internally Compensated
- AVOL - 500,000 typ
- Characteristics Independent of Power Supply Voltages $( \pm 5.0 \mathrm{Vdc}$ to $\pm 36 \mathrm{Vdc})$


## OPERATIONAL AMPLIFIER CHIP MONOLITHIC SILICON INTEGRATED CIRCUIT EPITAXIAL PASSIVATED



MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MCC1536	MCC1436	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	+40	+34	Vdc
	$\mathrm{v}^{-}$	-40	-34	
Differential Input Signal (1)	$v_{\text {in }}$	$\pm\left(v^{+}+\left\|v^{-}\right\|-3\right)$		Volts
Common-Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$+\mathrm{V}^{+},-\left(\left\|V^{-}\right\|-3\right)$		Volts
Output Short Circuit Duration ( $\mathrm{V}^{+}=\left\|\mathrm{V}^{-}\right\|=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=0$ )	${ }^{\text {T }}$ SC	5.0		s
$\begin{array}{ll}\text { Operating Temperature Range } & \text { MCC1536 } \\ & \text { MCC1436 }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \\ \hline \end{gathered}$		${ }^{\circ} \mathrm{C}$
Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	$-65 \text { to }+150$		${ }^{\circ} \mathrm{C}$

(1) The absolute voltage applied to either input terminal must not exceed $+\mathrm{v}^{+},-\left(\left|\mathrm{v}^{-}\right|-3\right)$.


## MCC1536, MCC1436 (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+28 \mathrm{Vdc}, \mathrm{V}^{-}=-28 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	MCC1536			MCC 1436			Unit
		Min.	Try	Max	Min	Typ	Max	
Input Bias Current	'b		$8.0$	$20$	-	15	40	$n$ Adc
Input Offset Current	$\left\|\mathrm{H}_{\text {iol }}\right\|$		$10$	$30$	-	5.0	10	nAdc
Input Offset Voltage	$\left\|\mathrm{V}_{\mathrm{io}}\right\|$		$20$		-	5.0	10	mVdc
Differential Input Impedance (Open-Loop, f $\leq 5.0 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance	$\begin{aligned} & \mathrm{R}_{\mathrm{p}} \\ & \mathrm{C}_{\mathrm{p}} \end{aligned}$		$10$		-	$\begin{array}{r} 10 \\ 2.0 \end{array}$	-	Meg ohms pF
Common-Mode Input Impedance (f $\leq 5.0 \mathrm{~Hz}$ )	$z_{\text {(in) }}$	xy	250		-	250		Meg ohms
Common-Mode Input Voltage Swing	$\mathrm{CMV}_{\text {in }}$	$2$	$\pm 25$		-	$\pm 25$	-	$V_{p k}$
Common-Mode Rejection Ratio (dc)	$\mathrm{CM}_{\text {rej }}$	$-$	110	$\square-4$	-	110	-	dB
Large Signal dc Open Loop Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k} \text { ohms }\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kohms}\right) \end{aligned}$	AVOL	$100,000$	$\begin{aligned} & 500,000 \\ & 200000 \end{aligned}$		$70,000$	$\begin{array}{\|} \hline 500,000 \\ 200,000 \\ \hline \end{array}$	-	V/V
Power Bandwidth (Voltage Follower) $\left(A_{V}=1, R_{L}=5.0 \mathrm{k} \text { ohms, } T H D \leq 5 \%, V_{0}=40 \mathrm{Vp-p}\right)$	$P_{\text {BW }}$		23		-	23	-	kHz
Unity Gain Crossover Frequency (open-loop)			-10		-	1.0	-	MHz
Phase Margin (open-loop, unity gain)		+ $\quad 1$	50	-	-	50	-	degrees
Gain Margin			18		-	18	-	dB
Slew Rate (Unity Gain)	dV $\mathrm{out}^{\text {/ }} \mathrm{dt}$		$\begin{array}{r} 20 \\ \hline \end{array}$		-	2.0	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance ( $f \leqslant 5.0 \mathrm{~Hz}$ )	$\mathrm{Z}_{\text {out }}$		+109	$4$	-	1.0	-	$k$ ohms
Short-Circuit Output Current	Isc	$\square$	+17	$4$	- -	$\pm 17$	-	mAdc
$\begin{aligned} & \text { Output Voltage Swing ( } \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \text { ohms) } \\ & \mathrm{V}^{+}=+28 \mathrm{Vdc}, \mathrm{~V}^{-}=-28 \mathrm{Vdc} \\ & \mathrm{~V}^{+}=+36 \mathrm{Vdc}, \mathrm{~V}^{-}=-36 \mathrm{Vdc} \end{aligned}$	$v_{0}$	$\begin{array}{r} +22 \\ +30 \end{array}$	$\begin{aligned} & \pm 23 \\ & \pm 32 \end{aligned}$		$\pm 20$	$\pm 22$	-	$V_{p k}$
$\begin{aligned} & \text { Power Supply Sensitivity (dc) } \\ & \mathrm{V}^{-}=\text {constant, } \mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \text { ohms } \\ & \mathrm{V}^{+}=\text {constant, } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \text { ohms } \end{aligned}$	$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$		15   15	100 100	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & I^{D^{+}} \\ & I^{-} \end{aligned}$		$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	4.0   40	-	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(V_{0}=0\right)$	${ }^{\text {P }}$		$124$	224	-	146	280	mW

See current MC1536/1436 data sheet for additional information

MCC1536/MCC1436 BONDING DIAGRAM


## PACKAGING AND HANDLING

The MCC1536/MCC1436 operational amplifier is now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

All dimensions are nominal and
in mils ( $10^{-3}$ inches)
Die Dimensions
Thickness $=8.0$
Bonding Pads $=4.0 \times 4.0$

## MCC1539 MCC1439

## MONOLITHIC OPERATIONAL AMPLIFIER CHIP

designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information see Motorola Application Note AN-439.

The MCC1539 and MCC1439 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000
 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Low Input Offset Voltage -3.0 mV max
- Low Input Offset Current - 60 nA max
- Large Power-Bandwidth - $20 \mathrm{Vp-p}$ Output Swing at 20 kHz min
- Output Short-Circuit Protection
- Input Over-Voltage Protection
- Class AB Output for Excellent Linearity
- Slew Rate $-34 \mathrm{~V} / \mu$ s typ

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & v^{+} \\ & v^{-} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc Vdc
Differential Input Signal	$V_{\text {in }}$	$\pm\left[\mathrm{V}^{+}+\left\|\mathrm{V}^{-}\right\|\right]$	Vdc
Common Mode Input Swing	$C M V$ in	$+\mathrm{v}^{+},-\left\|\mathrm{v}^{-}\right\|$	Vdc
Load Current	1 L	15	mA
Output Short Circuit Duration	${ }^{\text {t }}$ S	Continuous	
Operating Temperature Range MCC1539 MCC1439	${ }^{\text {T }}$ A	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	TJ	-65 to +150	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)


## PACKAGING AND HANDLING

The MCC1539/MCC1439 operational amplifier is now available as a single monolithic die or encapsulated in the TO-99 and TO-116 hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

## INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1558 and MCC1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

(DUAL MC1741)
DUAL
OPERATIONAL AMPLIFIER CHIP
INTEGRATED CIRCUIT
MONOLITHIC SILICON



MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MCC1558	MCC1458	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	+22	+18	Vdc
	$\mathrm{V}^{-}$	-22	-18	
Differential Input Signal	$\mathrm{V}_{\text {in }}$	$\pm 30$	Volts	
Common-Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm 15$	Volts	
Output Short Circuit Duration	tS	Continuous		
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125		
		0 to +75	${ }^{\circ} \mathrm{C}$	
Junction Temperature Range	$\mathrm{MCC1558}$			
MCC1458	TJ	-65 to +150	${ }^{\circ} \mathrm{C}$	



MCC1558, MCC1458 (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{Vdc}^{2} \mathrm{~V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MCC 1558			MCC1458			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current	Ib	-	0.2	0.5	-	0.2	0.5	$\mu \mathrm{Adc}$
Input Offset Current	$\left\|\mathrm{l}_{\text {io }}\right\|$	-	0.03	0.2	-	0.03	0.2	$\mu \mathrm{Adc}$
Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ohms)	$\left\|\mathrm{V}_{\text {io }}\right\|$	-	10	50	-	2.0	6.0	mVdc
Differential Input Impedance (Open-Loop, $\mathrm{f}=20 \mathrm{~Hz}$ ) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & \mathbf{R}_{\mathrm{p}} \\ & \mathrm{C}_{\mathrm{p}} \end{aligned}$	-	$\begin{array}{r} 10 \\ 6.0 \end{array}$		-	$\begin{aligned} & 1.0 \\ & 6.0 \\ & \hline \end{aligned}$	-	Megohm pF
Common-Mode Input Impedance ( $f=20 \mathrm{~Hz}$ )	$\mathrm{Z}_{\text {(in) }}$	-	200	-	-	200	-	Megohms
Common-Mode Input Voltage Swing	$\mathrm{CMV}_{\text {in }}$	-	$\pm 13$	-	-	$\pm 13$	-	V pk
Common-Mode Rejection Ratio ( $\mathrm{f}=100 \mathrm{~Hz}$ )	$\mathrm{CM}_{\text {rej }}$	-	90	-r.	-	90	-	dB
Open-Loop Voltage Gain ( $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms)	AVOL	$50,000$	$200,000$		20,000	100,000	-	V/V
Power Bandwidth $\begin{aligned} & \left(A_{V}=1, R_{L}=2.0 \mathrm{k} \text { ohms, } \mathrm{THD} \leq 5 \%,\right. \\ & \left.V_{0}=20 V_{p-p}\right) \end{aligned}$	PBW		$14$	$-$	-	14	-	kHz
Unity Gain Crossover Frequency (open-loop)		-	1.1	- -	-	1.1	-	MHz
Phase Margin (open-loop, unity gain)		-	65	20: -	-	65	-	degrees
Gain Margin		-	11	-	-	11	-	dB
Slew Rate (Unity Gain)	$\mathrm{dV}_{\text {out }} / \mathrm{dt}$	-	0.8	$\underline{4}$	-	0.8	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance ( $\mathrm{f}=\mathbf{2 0 ~ H z}$ )	$\mathrm{Z}_{\text {out }}$	-	$\begin{array}{r}75 \\ \hline\end{array}$	-	-	75	-	ohms
Short-Circuit Output Current	ISC	-	+ 20		-	20	-	mAdc
Output Voltage Swing $\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { ohms }\right)$	$\mathrm{V}_{0}$	$\pm 12$	$\pm 14$	$4$	$\pm 12$	$\pm 14$	-	V pk
$\begin{aligned} & \text { Power Supply Sensitivity } \\ & \mathrm{V}^{-}=\text {constant, } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \text { ohms } \\ & \mathrm{V}^{+}=\text {constant, } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \text { ohms } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S}^{+} \\ & \mathrm{S}^{-} \end{aligned}$		$\begin{array}{\|r} 30 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & 1^{1}{ }^{+} \\ & 1 \mathrm{D}^{-} \end{aligned}$	-	$\begin{array}{r} 23 \\ 2.3 \\ \hline \end{array}$	5.0   5.0	$-$	$\begin{aligned} & 2.3 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.6 \\ & \hline \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(V_{0}=0\right)$	$\mathrm{P}_{\mathrm{D}}$	$-$	$70$	$150$	-	70	170.	mW

See current MC1558/MC1458 data sheet for additional information.

MCC1558/MCC1458 BONDING DIAGRAM


## PACKAGING AND HANDLING

The MCC1558/MCC1458 dual operational amplifiers are now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

All dimensions are nominal and
in mils ( $10^{-3}$ inches).
Die Dimensions
Thickness $=8.0$
Bonding Pads $=4.0 \times 4.0$


## MCC1563 <br> MCC1463

## MONOLITHIC NEGATIVE VOLTAGE REGULATOR CHIP

The MCC1563/MCC1463 is a "three terminal" negative regulator designed to deliver continuous load current up to 500 mAdc and provide a maximum negative input voltage of -40 Vdc . Output current capability can be increased to greater than 10 Adc through use of one or more external transistors.

The MCC1563 and MCC1463 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Electronic "Shutdown" and Short-Circuit Protection
- Low Output Impedance - 20 Milliohms typ
- Excellent Temperature Stability $-\mathrm{TCV}_{\mathrm{O}}= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$ typ
- High Ripple Rejection - 0.002\% typ
- 500 mA Current Capability

NEGATIVE-POWER SUPPLY VOLTAGE REGULATOR CHIP

MONOLITHIC SILICON
INTEGRATED CIRCUIT



MCC1563, MCC1463 (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	MCC1563	MCC1463	Unit
Input Voltage	$\mathrm{V}_{\text {in }}$	-40	-35	Vdc
Peak Load Current	$\mathrm{I}_{\mathrm{L}} \mathrm{pk}$	600	mA	
Current, Pin 2	$\mathrm{I}_{\text {pin } 2}$	10	mA	
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125		
0 to +75				

ELECTRICAL CHARACTERISTICS ( $1 \mathrm{~L}=100 \mathrm{mAdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	MCC 1563			MCC1463			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Voltage	$V_{\text {in }}$	-	-	-40	-	-	-35	Vdc
Output Voltage Range	$\mathrm{V}_{0}$	-3.6	-	-37	-3.8	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	$V_{\text {ref }}$	-3.4	$-3.5$	-3.6	-3.2	$-3.5$	-3.8	Vdc
Minimum Input-Output Voltage Differential ( $\mathrm{R}_{\mathrm{SC}}=0$ )	$\left\|v_{\text {in }}-v_{0}\right\|$	$\cdots$	15	27	-	1.5	3.0	Vdc
Bias Current $\left(I_{L}=1.0 \mathrm{mAdc}, I_{\mathrm{b}}=I_{\text {in }}-I_{\mathrm{L}}\right)$	Ib	-	7.0	11	-	7.0	14	mAdc
$\begin{aligned} & \text { Output Noise } \\ & \left(\mathrm{C}_{\mathrm{n}}=0.1 \mu \mathrm{~F}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 5.0 \mathrm{MHz}\right. \text { ) } \end{aligned}$	$v_{n}$		$120$		-	120	-	$\mu \mathrm{V}$ (rms)
Temperature Coefficient of Output Voltage	$\mathrm{TCV}_{0}$	4	$\pm 0.002$	-	-	$\pm 0.002$	-.	\%/ ${ }^{\circ} \mathrm{C}$
Input Regulation	$\mathrm{Reg}_{\text {in }}$	-	0.002	$\square$	-	0.003	-	$\% / \mathrm{V}_{\mathrm{o}}$
Load Regulation $\left(T_{J}=\text { Constant }\left[1.0 \mathrm{~mA} \leq\left.\right\|_{\mathrm{L}} \leq 20 \mathrm{~mA}\right]\right)$	$\mathrm{Reg}_{\mathrm{L}}$	,	$0.4$	$\square$	-	0.7	-	mV
Output Impedance ( $f=1.0 \mathrm{kHz}$ )	$\mathrm{Z}_{\mathrm{O}}$	$\square$	$\begin{array}{r}20 \\ \hline\end{array}$	4	-	35	-	milliohms
Shutdown Current $\left(\mathrm{V}_{\mathrm{in}}=-35 \mathrm{Vdc}\right)$	${ }^{\text {sd }}$		$20$	15	-	14	50	$\mu \mathrm{Adc}$

See current MC1563/1463 data sheet for additional information

MCC1563/MCC1463 BONDING DIAGRAM
(Substrate)


All dimensions are nominal and
in mils ( $10^{-3}$ inches).
Die Dimensions
Thickness $=8.0$
Bonding Pads $=4.0 \times 4.0$

## PACKAGING AND HANDLING

The MCC1563/MCC1463 voltage regulator is now available as a single monolithic die or encapsulated in the Case 602A and Case 614 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up


## MONOLITHIC VOLTAGE REGULATOR CHIP

The MCC1569 and MCC1469 are positive voltage regulators designed to deliver continuous load current up to 500 mAdc . Output voltage is adjustable from 2.5 Vdc to 37 Vdc . Systems requiring both a positive and negative regulated voltage can use the MCC1569 and MCC1563 as complementary regulators with a common input ground.

The MCC 1569 and MCC1469 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Electronic "Shut-Down" Control
- Excellent Load Regulation (Low Output Impedance - 20 milliohms typ)
- High Power Capability: Up to 17.5 Watts
- Excellent Temperature Stability: $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$ typ
- High Ripple Rejection: 0.002\%/V typ



MCC1569, MCC1469 (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating		Symbol	MCC1569	MCC 1469	Unit
Input Voltage		$V_{\text {in }}$	40	35	Vdc
Peak Load Current		${ }^{\text {p }}$ k	600		mA
Current, Pin 2		$I_{\text {pin } 2}$	10		mA
Current, Pin 9		${ }_{\text {pin } 9}$	5.0		
Operating Temperature Range	MCC1569 MCC1469	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$		${ }^{\circ} \mathrm{C}$
Junction Temperature Range		TJ	-65 to +150		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	MCC1569			MCC1469			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Voltage	$V_{\text {in }}$	-		40	-	-	35	Vdc
Output Voltage Range	$\mathrm{V}_{0}$	2.5	-	37	2.5	-	32	Vdc
Reference Voltage (Pin 8 to Ground)	$V_{\text {ref }}$	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential	$v_{\text {in }}-v_{o}$	-	2.1	2.7	-	2.1	3.0	Vdc
$\begin{aligned} & \text { Bias Current } \\ & \quad\left(I_{L}=1.0 \mathrm{mAdc}, \mathrm{R}_{2}=6.8 \mathrm{kohms}, \mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\text {in }}-\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	$\mathrm{I}_{\mathrm{b}}$	-	4.0	90	-	5.0	12	mAdc
$\begin{aligned} & \text { Output Noise } \\ & \quad\left(\mathrm{C}_{\mathrm{n}}=0.1 \mu \mathrm{~F}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 5.0 \mathrm{MHz}\right) \end{aligned}$	$v_{n}$	$=$		-	-	0.150	-	mV (rms)
Temperature Coefficient of Output Voitage	TCV ${ }_{\text {o }}$	-	$\pm 0.002$	-	-	$\pm 0.002$	-	\%/ ${ }^{\circ} \mathrm{C}$
Input Regulation	$\mathrm{Reg}_{\text {in }}$		0.002	$=$	-	0.003	-	$\% / \mathrm{V}_{\text {in }}$
$\begin{aligned} & \text { Output Impedance } \\ & \qquad\left(\mathrm{C}_{\mathrm{c}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{SC}}=1.0 \mathrm{ohm}, \mathrm{f}=1.0 \mathrm{kHz},\right. \\ & \left.\mathrm{V}_{\mathrm{in}}=+14 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{o}}=+10 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{Z}_{\text {out }}$		$20$	$5$	-	35	-	milliohms
Shutdown Current $\left(\mathrm{V}_{\mathrm{in}}=+35 \mathrm{Vdc}\right)$	${ }^{\text {sd }}$	$4$	$70$	$150$	-	140	500	$\mu \mathrm{Adc}$

See current MC1569/1469 data sheet for additional information.

## MCC1569/MCC1469 BONDING DIAGRAM



## PACKAGING AND HANDLING

The MCC1569/MCC1469 voltage regulator is now available as a single monolithic die or encapsulated in the Case 602A and Case 614 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

All dimensions are nominal and
in mils ( $10^{-3}$ inches).
Die Dimensions
Thickness $=8.0$
Bonding Pads $=4.0 \times 4.0$

## MCC1595 MCC1495

## MONOLITHIC FOUR-QUADRANT MULTIPLIER CHIP

. designed for uses where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide*, square root ${ }^{*}$, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MCC1595 and MCC1495 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.
*When used with an operational amplifier.

- Excellent Linearity - 0.5\% typ Error on X-Input, 1\% typ Error on Y-Input - MCC1595
- Excellent Linearity - 1\% typ Error on X-Input, 2\% typ Error on Y-Input - MCC1495
- Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range $- \pm 10$ Volts


## LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT CHIP

MONOLITHIC SILICON EPITAXIAL PASSIVATED


MAXIMUM RATINGS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Applied Voltage $\begin{aligned} & \left(v_{2}-v_{1}, v_{14}-v_{1}, v_{1}-v_{9}, v_{1}-v_{12}, v_{1}-v_{4},\right. \\ & \left.v_{1}-v_{8}, v_{12}-v_{7}, v_{9}-v_{7}, v_{8}-v_{7}, v_{4}-v_{7}\right) \end{aligned}$	$\Delta V$	30	Vdc
Differential Input Signal	$\begin{aligned} & V_{12-}-V_{9} \\ & V_{4}-V_{8} \end{aligned}$	$\begin{aligned} & \pm\left(6+133_{X}\right) \\ & \pm\left(6+13 R_{Y}\right) \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$
Maximum Bias Current	$\begin{aligned} & 13 \\ & 113 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	mA
$\begin{array}{ll}\text { Operating Temperature Range } & \text { MCC1595 } \\ & \text { MCC1495 }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	TJ	-65 to +150	${ }^{\circ} \mathrm{C}$



## MCC1595, MCC1495 (continued)

ELECTRICAL CHARACTERISTICS $\left(V^{+}=+32 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{3}=113=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{Y}}=15 \mathrm{k} \Omega\right.$,
$R_{L}=11 \mathrm{k} \Omega$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Linearity:   Output Error in Percent of Full Scale: $\begin{aligned} & -10<V_{X}<+10\left(V_{Y}= \pm 10 \mathrm{~V}\right) \\ & -10<V_{Y}<+10\left(V_{X}= \pm 10 \mathrm{~V}\right) \end{aligned}$	MCC1495 MCC1595 MCC1495 MCC1595	$\begin{aligned} & E_{R X} \\ & E_{R Y} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \\ & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$		\%
Squaring Mode Error: Accuracy in Percent of Full Scale After Offset and Scale Factor Adjustment	MCC1495 MCC1595	ESO	-	$\begin{gathered} 0.75 \\ 0.5 \end{gathered}$	-	\%
Scale Factor (Adjustable) $\left(K=\frac{2 R_{L}}{I_{3} R_{X} R_{Y}}\right)$		K	-	0.1	-	-
Input Resistance $(f=20 \mathrm{~Hz})$	MCC1495   MCC1595   MCC1495   MCC1595	$\begin{aligned} & R_{I N X} \\ & R_{I N Y} \end{aligned}$		$\begin{aligned} & 20 \\ & 35 \\ & 20 \\ & 35 \end{aligned}$		Megohms
Differential Output Resistance ( $\mathbf{f}=20 \mathrm{~Hz}$ )		$\mathrm{R}_{0}$	-	300	-	k Ohms
Input Bias Current $I_{b x}=\frac{\left(I_{g}+I_{12}\right)}{2}, I_{b y}=\frac{\left(I_{4}+I_{8}\right)}{2}$	MCC1495   MCC1595   MCC1495   MCC1595	$\begin{aligned} & I_{b x} \\ & I_{b y} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12 \\ 8.0 \\ 12 \\ 8.0 \end{gathered}$	$\mu \mathrm{A}$
Input Offset Current $\begin{aligned} & \|19-112\| \\ & \left\|1_{4}-18\right\| \end{aligned}$	MCC1495   MCC1595   MCC 1495   MCC1595	$\mid$ iox $_{\text {iox }} \mid$   $\left\|H_{i o y}\right\|$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Output Offset Current $\left\|\left.\right\|_{14}-I_{2}\right\|$	MCC1495 MCC1595	\|lool	-	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\mu \mathrm{A}$
Frequency Response   3.0 dB Bandwidth   $3^{\circ}$ Relative Phase Shift Between $V_{X}$ and $V_{Y}$   1\% Absolute Error Due to Input-Output Phase Shift		$\begin{gathered} \mathrm{BW}_{3 \mathrm{~dB}} \\ \mathrm{f}_{\phi} \\ \mathrm{f}_{\theta} \\ \hline \end{gathered}$		$\begin{gathered} 3.0 \\ 750 \\ 30 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Common Mode Input Swing (Either input)	MCC1495 MCC1595	CMV	-	$\begin{aligned} & \pm 12 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	Vdc
Common Mode Quiescent Output Voltage		$\begin{aligned} & v_{01} \\ & v_{02} \end{aligned}$	-	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	Vdc
Differential Output Voltage Swing Capability		$\mathrm{V}_{\text {out }}$	-	$\pm 14$	-	$V_{\text {peak }}$
Power Supply Sensitivity		$\begin{aligned} & \mathrm{S}^{+} \\ & \mathrm{S}^{-} \\ & \hline \end{aligned}$	-	$\begin{array}{r} 5.0 \\ 10 \\ \hline \end{array}$	-	$\mathrm{mV} / \mathrm{V}$
Power Supply Current		17	-	6.0	7.0	mA
DC Power Dissipation		${ }^{\text {P }}$	-	135	170	mW

See current MC1595/1495 data sheet for additional information.

MCC1595/MCC1495 BONDING DIAGRAM


## PACKAGING AND HANDLING

The MCC1595/MCC1495 is the Four-Quadrant Multiplier now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

All dimensions are nominal and
in mils ( $10^{-3}$ inches).
Die Dimensions
Thickness $=8.0$
Bonding Pads $=4.0 \times 4.0$

## MONOLITHIC OPERATIONAL AMPLIFIER CHIP

. . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1709 and MCC1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- High-Performance Open Loop Gain Characteristics AVOL $=45,000$ typical
- Low Temperature Drift $- \pm 3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing $- \pm 14 \mathrm{~V}$ typical $@ \pm 15 \mathrm{~V}$ Supply
- Low Output Impedance $-Z_{\text {out }}=150$ ohms typical

MAXIMUM RATINGS (T $\mathrm{A}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		$\begin{aligned} & V^{+} \\ & V^{-} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal		$V_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing		$\mathrm{CMV}_{\text {in }}$	$\pm \mathrm{V}^{+}$	Volts
Load Current		IL	10	mA
Output Short Circuit Duration		ts	5.0	s
Operating Temperature Range	MCC1709 MCC1709C	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Range		TJ	-55 to +150	${ }^{\circ} \mathrm{C}$

OUTLINE DIMENSIONS
and BONDING DIAGRAM


MCC1709, MCC1709C (continued)

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}^{+}=+15 \mathrm{Vdc}, \mathrm{V}^{-}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	MCC1709			MCC1709C			Unit
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain $\left(V_{0}= \pm 10 \mathrm{~V}\right)$	AVOL	25,000	45,000	$70,000$	15,000	45,000	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	$\mathrm{Z}_{\text {out }}$	-	150	$-$	-	150	-	$\Omega$
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	-	400	N-	-	250	-	$k \Omega$
Output Voltage Swing $\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \\ & \hline \end{aligned}$	$\mathrm{V}_{0}$	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline\end{array}$	$\begin{array}{r}  \pm 14 \\ +13 \\ \hline \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$V_{\text {peak }}$
Input Common-Mode Voltage Swing	$\mathrm{CMV}_{\text {in }}$	-	410	-	-	$\pm 10$	-	$V_{\text {peak }}$
Common-Mode Rejection Ratio $(f=20 \mathrm{~Hz})$	$\mathrm{CM}_{\text {rej }}$	-	90		-	90	-	dB
Input Bias Current	${ }^{\text {b }}$	-	0.2	0.5	-	0.3	1.5	$\mu \mathrm{A}$
Input Offset Current	$\left\|i_{i o}\right\|$	-	0.05	0.2	-	0.1	0.5	$\mu \mathrm{A}$
Input Offset Voltage	$\left\|v_{i o}\right\|$	-	1.0	5.0	-	2.0	7.5	mV
Step Response   Gain $=100,5.0 \%$ overshoot   Gain $=10,10 \%$ overshoot   Gain $=1,5.0 \%$ overshoot	$t_{f}$ ${ }^{t} \mathrm{pd}$ $d V_{\text {out }} / d t$   $t_{f}$ ${ }^{t} \mathrm{pd}$ $d V_{\text {out }} / d t$ $t_{f}$ ${ }^{t_{p d}}$ $d V_{\text {out }} / d t$		$\begin{gathered} 0.8 \\ 0.38 \\ 12 \\ 0.6 \\ 0.34 \\ 1.7 \\ 2.2 \\ 1.3 \\ 0.25 \end{gathered}$		- - - - - - -	$\begin{gathered} 0.8 \\ 0.38 \\ 12 \\ \\ 0.6 \\ 0.34 \\ 1.7 \\ 2.2 \\ 1.3 \\ 0.25 \end{gathered}$	- - - - - - - -	$\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mathrm{V} / \mu \mathrm{s}$
Power Supply Current	$\begin{aligned} & I^{+} \\ & I D^{-} \end{aligned}$		$\begin{array}{r} 27 \\ 2.7 \end{array}$	$5.5$	-	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$		mAdc
DC Quiescent Power Dissipation (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ )	$P_{D}$		$80$	$165$	-	80	200	mW
Positive Supply Sensitivity ( $\mathrm{V}^{-}$constant)	$\mathrm{S}^{+}$	-	$25$	$-150$	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity ( $\mathrm{V}^{+}$constant)	$\mathrm{S}^{-}$	-	$25$	$150$	-	25	200	$\mu \mathrm{V} / \mathrm{V}$

See current MC1709/1709C data sheet for additional information

## PACKAGING AND HANDLING

The MCC1709/MCC1709C operational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratch ing the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose

The non-spill type shipping carrier consists of a compart mentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

## MCC1710 MCC1710C

## MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR CHIP

. designed for use in level detection, low-level sensing, and memory applications.

The MCC1710 and MCC1710C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Differential Input Characteristics

Input Offset Voltage $=1.0 \mathrm{mV}$
Offset Voltage Drift $=3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Fast Response Time - 40 ns
- Output Compatible With All Saturating Logic Forms $\mathrm{V}_{\text {out }}=+3.2 \mathrm{~V}$ to -0.5 V typical
- Low Output Impedance - 200 ohms

MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol $^{c \mid}$	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$   $\mathrm{V}^{-}$	+14   -7.0	Vdc
Differential Input Signal	$\mathrm{V}_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm 7.0$	Volts
Peak Load Current	$\mathrm{I}_{\mathrm{L}}$	10	mA
Operating Temperature   Range	MCC1710   MCC1710C	$\mathrm{T}_{\mathrm{A}}$	-55 to +125   0 to +75
Junction Temperature Range	$\mathrm{TJ}_{\mathrm{J}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

CIRCUIT SCHEMATIC


EQUIVALENT CIRCUIT


ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MCC1710			MCC1710C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}\right)$	$V_{\text {io }}$	-	10	2.0	-	1.5	5.0	mVdc
Input Bias Current $\left(\mathrm{V}_{0}=1.4 \mathrm{Vdc}\right)$	'b	-	12	20	-	15	25	$\mu \mathrm{Adc}$
Output Resistance	$\mathrm{R}_{\text {out }}$	-	200	2-	-	200	-	Ohms
Positive Output Voltage $\left(V_{\text {in }} \geq 5.0 \mathrm{mV}, 0 \leqq \mathrm{l}_{\mathrm{o}} \leqq 5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OH}}$	25	3.2	4.0	2.5	3.2	4.0	Vdc
Negative Output Voltage $\left(V_{i n} \geqq-5.0 \mathrm{mV}\right)$	$\mathrm{V}_{\mathrm{OL}}$	-1.0	-0.5	0	$-1.0$	-0.5	0	Vdc
$\begin{aligned} & \text { Output Sink Current } \\ & \qquad\left(V_{\text {in }} \geqq-5.0 \mathrm{mV}, V_{\text {out }} \geqq 0\right) \end{aligned}$	$\mathrm{I}_{\mathrm{s}}$	2.0	2.5	-	2.0	2.5	-	mAdc
Common Mode Rejection Ratio $\left(\mathrm{V}^{-}=-7.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}} \leqq 200 \Omega\right.$ )	$\mathrm{CM}_{\text {rej }}$	-	100	-	-	100	-	dB
Propagation Delay Time   For Positive and Negative Going Input Pulse	${ }^{t} \mathrm{pd}$	-	40	-	-	40	-	ns
Power Supply Current $\left(\mathrm{V}_{\text {out }} \leqq 0 \mathrm{Vdc}\right)$	$\begin{aligned} & I^{\prime} D^{+} \\ & I^{-} \\ & \hline \end{aligned}$		$\begin{array}{r} 6.4 \\ 5.5 \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 70 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	mAdc
DC Quiescent Power Dissipation	$P_{D}$	-	115	150	-	110	150	mW

See current MC1710/1710C data sheet for additional information.

## PACKAGING AND HANDLING

The MCC1710/MCC1710C differential comparator is now available as a single monolithic die or encapsulated in the TO-91, TO-99, and TO-116 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

## MCC1711 MCC1711C

## MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR CHIP

. . . designed for use in level detection, low-level sensing, and memory applications

The MCC1711 and MCC1711C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum

- Differential Input -

Input Offset Voltage $=1.0 \mathrm{mV}$
Offset Voltage Drift $=5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Fast Response Time - 40 ns
- Output Compatible with All Saturating Logic Forms -
$\mathrm{V}_{\text {out }}=+4.5 \mathrm{~V}$ to -0.5 V Typical
- Low Output Impedance - 200 Ohms

MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$   $\mathrm{V}^{-}$	+14   -7.0	Vdc   Vdc
Differential Input Signal	$\mathrm{V}_{\text {in }}$	$\pm 5.0$	Volts
Common Mode Input Swing	$\mathrm{CMV}_{\text {in }}$	$\pm 7.0$	Volts
Peak Load Current	$\mathrm{I}_{\mathrm{L}}$	50	mA
Operating Temperature Range	MCC1711         MCC1711C	$\mathrm{T}_{\mathrm{A}}$	-55 to +125   0 to +75
${ }^{\circ} \mathrm{C}$			
Junction Temperature Range		$\mathrm{T}_{\mathrm{J}}$	-65 to +150

DUAL DIFFERENTIAL COMPARATOR CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON EPITAXIAL PASSIVATED



## MCC1711, MCC1711C (continued)

ELECTRICAL CHARACTERISTICS (each comparator) $\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{V}^{-}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MCC1711			MCC1711C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(V_{0}=1.4 \mathrm{Vdc}\right)$	$V_{\text {io }}$	-	1.0	3.5	-	1.0	5.0	mVdc
Input Bias Current $\left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}\right)$	$\mathrm{I}_{\mathrm{b}}$	-	25	75	--	25	100	$\mu \mathrm{Adc}$
Output Resistance	$\mathrm{R}_{\text {out }}$	-	200	-	-	200	-	Ohms
Positive Output Voltage $\left(\mathrm{V}_{\text {in }} \geqq 10 \mathrm{mVdc}, 0 \leqq \mathrm{I}_{\mathrm{o}} \leqq 5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.5	3.2	50	2.5	3.2	5.0	Vdc
Negative Output Voltage $\left(V_{i n} \geqq-10 \mathrm{mVdc}\right)$	$\mathrm{V}_{\mathrm{OL}}$	$-10$	-0.5	0	$-1.0$	-0.5	0	Vdc
Strobed Output Level ( $\mathrm{V}_{\text {strobe }} \leqq 0.3 \mathrm{Vdc}$ )	$\mathrm{V}_{\mathrm{OL}(\mathrm{st})}$	-1.0	$\square$	0	$-1.0$	-	0	Vdc
Output Sink Current $\left(\mathrm{V}_{\text {in }} \geqq-10 \mathrm{mV}, \mathrm{~V}_{0} \geqq 0\right)$	's	0.5	$\qquad$		0.5	0.8	-	mAdc
Strobe Current $\left(\mathrm{V}_{\text {strobe }}=100 \mathrm{mVdc}\right)$	$1_{\text {st }}$		$12$	$25$	-	1.2	2.5	mAdc
Response Time $\left(V_{b}=5.0 \mathrm{mV}+V_{i o}\right)$	${ }^{\text {t }} \mathrm{R}$	$\square$	$40$		-	40	-	ns
Strobe Release Time	${ }_{\text {t }} \mathrm{R}$	$\leq-$	$\square^{12}$	+	-	12	-	ns
Power Supply Current $\left(V_{0} \leqq 0 \mathrm{Vdc}\right)$	$\begin{aligned} & 1 D^{+} \\ & 1 D^{-} \\ & \hline \end{aligned}$		8.6 3.9		-	$\begin{aligned} & 8.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	mAdc
Power Consumption			130	200	-	130	200	mW

[^47]
## PACKAGING AND HANDLING

The MCC1711/MCC1711C dual differential comparator is now available as a single monolithic die or encapsulated in the TO-91, TO-100, and TO-116 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.


## MCC1723 <br> MCC1723C

## MONOLITHIC VOLTAGE REGULATOR CHIP

The MCC 1723/MCC1723C is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current cap ability can be increased to several amperes through use of one or more external pass transistors.

The MCC1723 and MCC1723C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01\% Line Regulation
- Adjustable Short-Circuit Protection

FIGURE 1 - TYPICAL CIRCUIT CONNECTION


For best results $10 k<R 2<100 k$ For minimum drift R3 $=$ R1 $1 / \mathrm{R} 2$

VOLTAGE REGULATOR CHIP
MONOLITHIC SILICON EPITAXIAL PASSIVATED INTEGRATED CIRCUIT


All dimensions are nominal and in mils ( $10^{-3}$ inches).
Die Dimensions
Thickness $=8.0$
Bonding Pads $=4.0 \times 4.0$

FIGURE 2 - CIRCUIT SCHEMATIC


MCC1723, MCC1723C (continued)

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Pulse Voltage from $\mathrm{V}^{+}$to $\mathrm{V}^{-}(50 \mathrm{~ms})$	MCC1723	$V_{\text {in }(p)}$	50	$V_{\text {peak }}$
Continuous Voltage from $\mathrm{V}^{+}$to $\mathrm{V}^{-}$		$V_{\text {in }}$	40	Vdc
Input-Output Voltage Differential		$v_{\text {in }}-v_{0}$	40	Vdc
Maximum Output Current		${ }_{1} \mathrm{~L}$	150	mAdc
Current from $V_{\text {ref }}$		${ }^{\text {ref }}$	15	mAdc
Operating Temperature Range	MCC1723   MCC1723C	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Range		TJ	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{Vdc}, 1_{\mathrm{L}}=1 \mathrm{mAdc}, \mathrm{R}_{\mathrm{SC}}=0$,
$\mathrm{C} 1=100 \mathrm{pF}, \mathrm{C}_{\text {ref }}=0$ and divider impedance as seen by the error amplifier $\leq 10 \mathrm{k} \Omega 2$ connected as shown in Figure 1)

Characteristic	Symbol	MCC1723			MCC1723C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Voltage Range	$V_{\text {in }}$	9.5	-	40	9.5	-	40	Vdc
Output Voltage Range	$\mathrm{V}_{0}$	20	-	37	2.0	-	37	$V \mathrm{dc}$
Input-Output Voltage Differential	$v_{\text {in }}-v_{0}$	3.0	-	38	3.0	-	38	Vdc
Reference Voltage	$V_{\text {ref }}$	6.95	715	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain $\left(I_{\mathrm{L}}=0, \mathrm{~V}_{\mathrm{in}}=30 \mathrm{~V}\right)$	$\mathrm{I}_{\text {sb }}$	$-$	2.3	$35$	-	2.3	4.0	mAdc
```Output Noise Voltage (f=100 Hz to 10 kHz) Cref}= Cref = 5.0 \mu\textrm{F}```	$\mathrm{V}_{n}$		$\begin{array}{\|c\|} \hline 20 \\ 2.5 \\ \hline \end{array}$		-	$\begin{aligned} & 20 \\ & 2.5 \\ & \hline \end{aligned}$	-	$\mu \mathrm{V}$ (rms)
Line Regulation $\begin{aligned} & \left(12 V<V_{\text {in }}<15 V\right) \\ & \left(12 V<V_{\text {in }}<40 V\right) \end{aligned}$	$\mathrm{Reg}_{\text {in }}$	$-$	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\left.\left\lvert\, \begin{array}{l} 01 \\ 0.2 \end{array}\right.\right]$	-	$\begin{gathered} 0.01 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	\% V_{o}
Load Regulation ($1.0 \mathrm{~mA}<1_{L}<50 \mathrm{~mA}$)	Regload		0.03	0.15	-	0.03	0.2	$\% \mathrm{~V}_{0}$
$\begin{aligned} & \text { Ripple Rejection }(f=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}) \\ & \mathrm{C}_{\text {ref }}=0 \\ & \mathrm{C}_{\text {ref }}=5.0 \mu \mathrm{~F} \end{aligned}$	RejR		74 86		-	$\begin{aligned} & 74 \\ & 86 \end{aligned}$	-	dB
Short Circuit Current Limit $\left(R_{S C}=10 \Omega, V_{0}=0\right)$	'SC		65	4	-	65	-	mAdc

See current MC1723/1723C data sheet for additional information.

PACKAGING AND HANDLING

The MCC1723/MCC1723C voltage regulator is now available as a single monolithic die or encapsulated in the Motorola Case 603-03 hermetic package. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

MCC1741

MCC1741C

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1741 and MCC1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value		Unit
		MCC1741C	MCC1741	
Power Supply Voltage	$\begin{aligned} & V^{+} \\ & V^{-} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	Vdc Vdc
Differential Input Signal	$V_{\text {in }}$	± 30		Volts
Common Mode Input Swing (Note 1)	$\mathrm{CMV}_{\text {in }}$	+15		Volts
Output Short Circuit Duration (Note 2)	${ }^{\text {t }}$ S	Continuous		
Operating Temperature Range MCC1741 MCC1741C	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \end{gathered}$		${ }^{\circ} \mathrm{C}$
Junction Temperature Range	TJ	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2. Supply voltage equal to or less than 15 V .

MCC1741, MCC1741C (continued)

Characteristic	Symbol	Mcel341			MCC1741C			Unit
		Min	Tvp	Max	Min	Typ	Max	
Open Loop Voltage Gain ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$) $\left(\mathrm{V}_{0}= \pm 10 \mathrm{~V}\right)$	AVOL	50,000	200000		20,000	100,000	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	z_{0}	-rat	+15		-	75	-	Ω
Input Impedance $(f=\mathbf{2 0 H z})$	$z_{\text {in }}$		$\begin{array}{r}\text { a } \\ \hline 10\end{array}$		-	1.0	-	$\operatorname{Meg} \Omega$
Output Voltage Swing $\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \end{aligned}$	v_{0}	$\begin{gathered} \pm 12 \\ \pm 10 \end{gathered}$	± 14 413		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$V_{\text {peak }}$
Input Common-Mode Voltage Swing	$C M V_{\text {in }}$		± 13		-	± 13	-	$V_{\text {peak }}$
Common-Mode Rejection Ratio $(f=20 \mathrm{~Hz})$	$\mathrm{CM}_{\text {rei }}$		\|r. 90		-	90	-	dB
Input Bias Current	Ib		02	0.5	-	0.2	0.5	$\mu \mathrm{A}$
Input Offset Current	$\left\|i l_{\text {io }}\right\|$		0.03	02	-	0.03	0.2	$\mu \mathrm{A}$
Input Offset Voltage (RS $=\leqq 10 \mathrm{k} \Omega$)	$\left\|v_{\text {io }}\right\|$		10	50	-	2.0	6.0	mV
Step Response $\text { Gain }=100$ $\text { Gain }=10$ Gain $=1$	$\begin{gathered} t_{f} \\ \mathbf{t}_{\text {pd }} \\ d v_{\text {out }} / d t_{1}(1) \\ t_{f} \\ t_{\text {pd }} \\ d V_{\text {out }} / \mathrm{dt}(1) \\ t_{f} \\ t_{\text {pd }} \\ d v_{\text {out }} / d t^{(1)} \end{gathered}$		29 8.6 110 30 10 10 0.6 0.38 0.8		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 29 \\ & 8.5 \\ & 1.0 \\ & 3.0 \\ & 1.0 \\ & 1.0 \\ & 0.6 \\ & 0.38 \\ & 0.8 \end{aligned}$		$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
Power Supply Current	$\begin{aligned} & I_{D^{+}} \\ & I_{D} \end{aligned}$		1.674 167$\|$	283 283	$-$	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \end{aligned}$	mA
DC Quiescent Power Dissipation (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$)	$P_{\text {D }}$		\square	\square	-	50	85	mW
Positive Supply Sensitivity (V^{-}constant)	\mathbf{s}^{+}		\square	\square	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity (V^{+}constant)	s^{-}		30	\square	-	30	150	$\mu \mathrm{V} / \mathrm{V}$

PACKAGING AND HANDLING

The MCC1741/MCC1741C operational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compart mentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

HIGH PERFORMANCE MONOLITHIC

 OPERATIONAL AMPLIFIER CHIP. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1748 and MCC1748C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Noncompensated MC1741G
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

OPERATIONAL AMPLIFIER CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON EPITAXIAL PASSIVATED

FIGURE 2 - OFFSET ADJUST AND FREQUENCY COMPENSATION

MCC1748, MCC1748C (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	MCC1748	MCC1748C	Unit
Power Supply Voltage	$\begin{aligned} & v_{C C} \\ & v_{E E} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal Voltage	$\mathrm{V}_{\text {in }}$	± 30		Volts
Common-Mode Input Swing Voltage (1)	$V_{\text {ICR }}$	± 15		Volts
Output Short-Circuit Duration	${ }^{\text {t }}$ S	Continuous		-
$\begin{array}{ll}\text { Operating Temperature Range } & \text { MCC1748 } \\ & \text { MCC1748C }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+75 \\ \hline \end{gathered}$		${ }^{\circ} \mathrm{C}$
Junction Temperature Range	TJ	$-65 \text { to }+150$		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristics	Symbol	MCC1748			MCC1748C			Unit
		Min	Typ	Max	Min	Typ	Max	
Tnput Bias Current	1 IB	-	0.08	05	-	0.08	0.5	$\mu \mathrm{Adc}$
Input Offset Current	$\|110\|$	-	002	0.2	-	0.02	0.2	$\mu \mathrm{Adc}$
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}}<10 \mathrm{k}$ S $)$	$\left\|V_{10}\right\|$	-	10	5.0	-	1.0	6.0	mVdc
Differential Input Impedance (Open-Loop, $f=20 \mathrm{~Hz}$) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & R_{p} \\ & C_{p} \end{aligned}$		20 14		-	$\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$	-	Megohm pF
Common-Mode Input Impedance ($f=20 \mathrm{~Hz}$)	${ }^{2}$ (in)	-	200	-	-	200		Megohms
Common-Mode Input Voltage Swing	$V_{\text {ICR }}$		± 13	-	-	± 13	-	V_{pk}
Common-Mode Rejection Ratio ($f=100 \mathrm{~Hz}$)	CMRR	2	90	\cdots	-	90	-	dB
Open-Loop Voltage Gain ($\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms)	$\mathrm{A}_{\text {vol }}$	50.000	200000		20,000	200,000	-	V/V
Step Response ($\mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$) Rise Time Overshoot Percentage Slew Rate	tpLH $\mathrm{dV}_{\mathrm{O}} / \mathrm{dt}$		$\begin{aligned} & 0.3 \\ & 5.0 \\ & 08 \end{aligned}$		-	$\begin{aligned} & 0.3 \\ & 5.0 \\ & 0.8 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
Output Impedance ($f=20 \mathrm{~Hz}$)	z_{0}	-	75	5	-	75	-	ohms
Short-Circuit Output Current	Iso	-	25	-	-	25	-	mAdc
$\begin{aligned} \text { Output Voltage Swing (} R_{L} & =10 \mathrm{k} \text { ohms }) \\ R_{L} & =2 \mathrm{kohms}\left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	V_{O}	+12 +10	$\begin{array}{r} \pm 14 \\ +13 \end{array}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$V_{p k}$
$\begin{aligned} & \text { Power Supply Sensitivity } \\ & V_{E E}=\text { constant }, R_{s} \leqslant 10 \mathrm{k} \text { ohms } \\ & V_{C C}=\text { constant, } R_{\mathrm{s}} \leqslant 10 \mathrm{k} \text { ohms } \end{aligned}$	$\begin{aligned} & \text { S+ } \\ & \text { S- } \end{aligned}$	4 $-\quad-1$	30 30	150 150	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & I_{D^{+}} \\ & \mathrm{I}^{-} \end{aligned}$	-	167 167	$\begin{array}{\|c} 283 \\ 2.83 \end{array}$	-	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(V_{O}=0\right)$	${ }^{\text {P }}$		-50,	85	-	50	85	mW

(1) For supply voltages less than +15 V , the Maximum Input Vottage is equal to the Supply Voltage.

See current MC1748/1748C data sheet tor additional information.

PACKAGING AND HANDLING

The MCC1748/MCC1748C operational amplifier is now available as a single monolithic die or encapsulated in the TO-99 hermetic package. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

DUAL MC1741

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF 1558 and MCCF 1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are $90-10$ solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIER MONOLITHIC SILICON integrated circuit

MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	MCCF1558	MCCF1458
Power Supply Voltage	$V_{C C}$	+22	

MCCF1558, MCCF 1458 (continued)

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MCCF 1558			MCCF1458			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current	IIB	-	0.2	0.5	-	0.2	0.5	$\mu \mathrm{Adc}$
Input Offset Current	$\left\|1_{10}\right\|$	-	0.03	0.2	-	0.03	0.2	$\mu \mathrm{Adc}$
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ohms)	$\left\|\mathrm{V}_{10}\right\|$		10	50	-	2.0	6.0	$m V d c$
Differential Input Impedance (Open-Loop, $\mathrm{f}=20 \mathrm{~Hz}$) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & \mathrm{R}_{\mathrm{p}} \\ & \mathrm{C}_{\mathrm{p}} \end{aligned}$		$\begin{aligned} & 10 \\ & 60 \end{aligned}$		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 6.0 \end{aligned}$		Megohm pF
Common-Mode Input Impedance ($f=20 \mathrm{~Hz}$)	$z_{\text {in }}$		200		-	200	-	Megohms
Common-Mode Input Voltage Swing	$V_{\text {IC }}$		± 13		-	± 13	-	$V_{\text {pk }}$
Common-Mode Rejection Ratio ($\mathrm{f}=100 \mathrm{~Hz}$)	CMRR	4	$\checkmark 90$	+ x^{2}	-	90	-	dB
Open-Loop Voltage Gain $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \text { ohms }\right)$	$A_{\text {vol }}$	$50,000$	$200,000$		20,000	100,000	-	V/V
Power Bandwidth $\begin{aligned} \left(A_{V}\right. & =1, R_{L}=2.0 \mathrm{k} \text { ohms }, T H D \leq 5 \%, \\ v_{O} & =20 \mathrm{Vp}-\mathrm{p}) \end{aligned}$	P ${ }_{\text {BW }}$		14		-	14	-	kHz
Unity Gain Crossover Frequency (open-loop)			, 11		-	1.1	-	M Hz
Phase Margin (open-loop, unity gain)			65	\times	-	65	-	degrees
Gain Margin		+	- 11	3\%	-	11	-	dB
Slew Rate (Unity Gain)	$d V_{0} / \mathrm{dt}$		08		-	0.8	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance ($\mathrm{f}=20 \mathrm{~Hz}$)	z_{0}		75	+	-	75	-	ohms
Short-Circuit Output Current	Is	x-	+20	5	-	20	-	mAdc
Output Voltage Swing ($R_{L}=10 \mathrm{k}$ ohms)	v_{O}	± 12	± 14		± 12	± 14	-	Vpk
Power Supply Sensitivity $\mathrm{V}_{\mathrm{EE}}=$ constant, $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ohms $\mathrm{V}_{\mathrm{CC}}=$ constant, $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ohms	$\begin{aligned} & \mathrm{S}^{+} \\ & \mathrm{S}^{-} \\ & \hline \end{aligned}$		$\begin{array}{r} 30 \\ 30 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ \hline \end{array}$	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current	$\begin{aligned} & \text { IDCC } \\ & \text { IDEE } \end{aligned}$		$\begin{array}{r} 23 \\ 2.3 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	-	$\begin{aligned} & 2.3 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.6 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left(V_{O}=0\right)$	P_{D}	$\sqrt{x, ~}$	70	150	-	70	170	mW

See current MC1558/MC1458 data sheet for additional information.

The popular 1558 type dual operational ampli fier is now available in three chip forms: 1) con ventional chips, 2) beam-lead chips and 3) flip chips, as well as in a variety of plastic and hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical con nection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP

. designed for use as a summing amplifier, integrator, or amplifier
with operating characteristics as a function of the external feedback components.

The MCCF1709 and MCCF1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are $90-10$ solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.

- High-Performance Open Loop Gain Characteristics

$$
\mathrm{A}_{\mathrm{vol}}=45,000 \text { typical }
$$

OPERATIONAL AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT

- Low Temperature Drift $- \pm 3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing $- \pm 14 \mathrm{~V}$ typical $@ \pm 15 \mathrm{~V}$ Supply
- Low Output Impedance $-\mathrm{z}_{\mathrm{O}}=150$ ohms typical

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} +18 \\ -18 \\ \hline \end{array}$	Vdc
Differential Input Signal		$V_{\text {ID }}$	± 5.0	Volts
Common Mode Input Swing		$V_{\text {IC }}$	$\pm \mathrm{V}_{\text {S }}$	Volts
Load Current		IL	10	mA
Output Short Circuit Duration		ts	5.0	s
Operating Temperature Range	MCCF 1709 MCCF1709C	$\mathrm{T}_{\text {A }}$	$\begin{array}{\|c\|} \hline-55 \text { to }+125 \\ 0 \text { to }+75 \\ \hline \end{array}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Range		TJ	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\operatorname{VCC}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

See current MC1709/1709C data sheet for additional information.

[^48]
MCCF1741
 MCCF1741C

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC FLIP-CHIP OPERATIONAL AMPLIFIER

designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF 1741 and MCCF 1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are $90-10$ solder on a chrome-copper-gold base. The interconnecting metalization is evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (T $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value		Unit
Power Supply Voltage		MCCF1741C	MCCF1741	
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	Vdc
Differential Input Signal	$V_{\text {ID }}$	± 30		Volts
Common Mode Input Swing (Note 1)	$V_{\text {IC }}$	± 15		Volts
Output Short Circuit Duration (Note 2)	${ }^{\text {t }}$ S	Continuous		
Operating Temperature Range	TA	0 to +75	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	TJ	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than +15 V , the absolute maximum input voltage is equal to the supply voltage
Note 2. Supply voltage equal to or less than 15 V .

MCCF1741, MCCF1741C (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MCCF 1741			MCCF1741C			Unit
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$) $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right)$	Avol	$50,000$	$200,000$		20,000	100,000	-	-
Output Impedance $(f=20 \mathrm{~Hz})$	z_{0}	-	75	-	-	75	-	Ω
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	$=$	10	-	-	1.0	-	Meg Ω
Output Voltage Swing $\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \end{aligned}$	V_{O}	$\begin{array}{r} +12 \\ \pm 10 \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$V_{\text {peak }}$
Input Common-Mode Voltage Swing	VIC	- -	4	$-$	-	± 13	-	$V_{\text {peak }}$
Common-Mode Rejection Ratıo $\text { (f = } 20 \mathrm{~Hz} \text {) }$	CMRR		\square		-	90	-	dB
Input Bias Current	I/B		0.2	0.5	-	0.2	0.5	$\mu \mathrm{A}$
Input Offset Current	$\|1,0\|$	+2,	0.03	-02	-	0.03	0.2	$\mu \mathrm{A}$
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}}=\leqq 10 \mathrm{ks}$)	$\left\|V_{10}\right\|$		10	5.0	-	2.0	6.0	mV
Step Response Gain $=100$ Gain $=10$ Gain $=1$	$\begin{gathered} \mathrm{t}_{\mathrm{THL}}^{t_{\mathrm{d}}} \\ \mathrm{dV}_{\mathrm{O}} / \mathrm{dt}(1) \\ \mathrm{t}_{\mathrm{THL}} \\ \mathrm{t}_{\mathrm{d}} \\ \mathrm{~d} \mathrm{~V}_{\mathrm{O}} / \mathrm{dt}(1) \\ \mathrm{t}_{\mathrm{THL}} \\ \mathrm{t}_{\mathrm{d}} \\ \mathrm{~d} \mathrm{~V}_{\mathrm{O}} / \mathrm{dt}(1) \end{gathered}$		29 85 10 10 30 10 10 06 0.38 0.8			$\begin{gathered} 29 \\ 8.5 \\ 1.0 \\ 3.0 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.38 \\ 0.8 \end{gathered}$		μs $\mu \mathrm{s}$ $V / \mu s$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ $\boldsymbol{V} / \mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mathrm{V} / \mu \mathrm{s}$
Power Supply Current	$\begin{aligned} & \text { IDCC } \\ & \text { IDEE } \end{aligned}$		1.67 167	$\begin{array}{\|c\|} 2.83 \\ 2.83 \\ \hline \end{array}$	-	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \end{aligned}$	mA
DC Quiescent Power Dissipation (Power Supply $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$)	$P_{\text {D }}$		50		-	50	85	mW
Positive Supply Sensitivity ($V_{E E}$ constant)	S^{+}		30	\square	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Sensitivity (V_{CC} constant)	S^{-}		30		-	30	150	$\mu \mathrm{V} / \mathrm{V}$

(1) $d V_{O} / d t=$ Slew Rate See current MC1741/1741C data sheet for additional information.

MCCF1741/MCCF1741C BONDING DIAGRAM AND DEVICE DIMENSIONS

PACKAGING AND HANDLING

The popular 1741 type operational amplifier is now available in three chip forms: 11 conventional chips, 2) beam-lead chips and 3) flip-chips, as well as in a variety of plastic hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

TYPICAL APPLICATION

See Packaging Information Section for outline dimensions.

MFC4000B (continued)

ELECTRICAL CHARACTERISTICS* $\left(\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=16 \mathrm{Ohms}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Zero Signal Current Drain	-	3.0	5.0	mAdc
Sensitivity $\mathrm{P}_{\mathrm{O}}=250 \mathrm{~mW}(\mathrm{RMS})$	-	-	240	mV (RMS)
Output Power Total Harmonic Distortion $\leqslant 10 \%$	250	350	-	$m W(R M S)$
$\begin{aligned} & \text { Total Harmonic Distortion } \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}(\mathrm{RMS}) \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}(\mathrm{RMS}), \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc} \end{aligned}$	-	$\begin{aligned} & 0.7 \\ & 4.5 \end{aligned}$	-	\%

*As measured in test circuit shown in Figure 1.

FIGURE 1 - TEST CIRCUIT

MFC4000B (continued)

TOTAL HARMONIC DISTORTION versus OUTPUT POWER

FIGURE 6 - TYPICAL CIRCUIT APPLICATION

WIDE-BAND AMPLIFIER

. . . designed for FM/IF and low-level audio applications.

- High Audio Gain - 60 dB minimum
- Useful as a Microphone Amplifier and in Tape Recorders and Cassettes
- Excellent Performance as a 10.7 MHz FM/IF Amplifier
- High Transconductance (gm_{m}) Ideally Suited to Low Impedance Ceramic Filters

WIDE-BAND AMPLIFIER

Silicon Monolithic Functional Circuit

TYPICAL APPLICATIONS

FIGURE 2 - RECORD/PLAY PREAMPLIFIER FOR CASSETTE AND PORTABLE TAPE RECORDERS

[^49]
MFC4010A (continued)

MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	18	Vdc
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Package Limitation) Derate above $25^{\circ} \mathrm{C}$	P_{D}	0.5	Watt
Operating Temperature Range		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Open Loop Voltage Gain (Figure 3) $(f=1.0 \mathrm{kHz})$	AVOL	60	68	-	dB
$\begin{aligned} & \text { h Parameters (1) } \\ & (f=1.0 \mathrm{kHz}) \end{aligned}$	$\begin{aligned} & h_{11} \\ & h_{12} \\ & h_{21} \\ & h_{22} \end{aligned}$		$\begin{gathered} 1.0 \\ 10^{-6} \\ 1000 \\ 10^{-5} \end{gathered}$		k ohms mhos
Output Noise Voltage (Figure 3) $\text { (BW }=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \text { ohms) }$	e_{n} (out)	-	3.0	-	mV (rms)
Current Drain	${ }^{1}$	-	3.0	-	mA

HIGH FREQUENCY CHARACTERISTICS $\left(\mathrm{V}^{+}=12 \mathrm{Vdc}, \mathrm{f}=10.7 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Power Gain (Figure 1) ($\mathrm{e}_{\text {in }}=0.1 \mathrm{mVrms}$)	-	-	42	-	dB
Noise Figure (Figure 1) ($\mathrm{R}_{\mathrm{S}} \approx 740$ Ohms)	NF	-	6.0	-	dB
$\begin{aligned} & \mathrm{y} \text { Parameters }(1) \\ & \quad\left(\mathrm{f}=10.7 \mathrm{MHz}, \mathrm{I}_{2}=2.0 \mathrm{~mA}\right) \end{aligned}$	$\begin{aligned} & \mathrm{y}_{11} \\ & \mathrm{y}_{12} \\ & \mathrm{y}_{21} \\ & \mathrm{y}_{22} \end{aligned}$	- - - -	$\begin{gathered} \hline 1.3+\mathrm{j} 1.5 \\ -3.4+\mathrm{j} 8.1 \\ -0.33+\mathrm{j} 0.68 \\ 120+\mathrm{j} 0 \end{gathered}$		mmhos μ mhos mhos μ mhos

(1) Device only, without external passive components.

FIGURE 4 - BIASING RECOMMENDATIONS

AUDIO PERFORMANCE CHARACTERISTICS (for Test Circuit Figure 3)

FIGURE 5 - VOLTAGE GAIN versus FREQUENCY

FIGURE 6 - VOLTAGE GAIN versus POWER SUPPLY

*TAPE PREAMPLIFIER PERFORMANCE (for Circuit Figure 2)

FIGURE 7 - RECORD VOLTAGE GAIN versus FREQUENCY

FIGURE 8 - PLAYBACK VOLTAGE GAIN versus FREQUENCY

Note:
The record/playback characteristics shown in Figures 8 and 9 were taken with the preamplifier driven by a 50 ohm source. The curves are typical of a desired response for the preamplifier; however, every type of tape recording and playback head is different and this circuit will not necessarily satisfy all requirements. No particular tape head was used as a basis for circuit design. The circuit is only an example showing the equalization network configuration.

The ideal preamplifier will have an input impedance approximately 10 times the highest impedance of the tape head and every preamplifier circuit must be designed using a test tape to verify the response of the design.

MFC4040

BLOCK DIAGRAM

MFC4040 (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{in}}=4.0 \mathrm{~V}(\mathrm{p}\right.$-p) Square Pulse, $\mathrm{f}=10 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t} \mathrm{PHL}=1.0 \mathrm{~V} / \mu \mathrm{s}$, $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Operating Power Supply Voltage	6.0	-	16	Vdc
Toggle Frequency	-	3.0	-	MHz
$\begin{gathered} \text { Output Voltage }(\mathrm{High}) \\ \left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right) \end{gathered}$	$\begin{gathered} 5.5 \\ 15.5 \end{gathered}$	-	-	Vdc
Output Voltage (Low) $\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right)$	-		$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	Vdc
Operating Drain Current ($\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}$)	-	-	32	mAdc
Output Sinking Current ($\mathrm{V}_{\mathrm{O}} \leqslant 1.0 \mathrm{Vdc}$)	-	2.0	-	mAdc
Rise Time	-	250	-	ns
Storage Time	-	350	-	ns
Fall Time	-	60	-	ns
Input Resistance	10	-	-	$\mathrm{k} \Omega$
Output Resistance (Output High)	-	-	2.8	k Ω

INPUT PULSE REQUIREMENTS

	Characteristic		Min	Max	Unit
	Pulse Magnitude		+4.0	-	Volts
	Zero Level		-	+1.0	Volts
	Leading Edge		No Requirement		
	Trailing Edge	$\frac{d v}{d t}$	-1.0	-	$\frac{\text { Volts }}{\text { ms }}$

Advance Information

CLASS "A" AUDIO DRIVER

designed for driving Class " A " PNP power output transistor stage applications.

- Drives to 4 Watts of Output Power
- Ideal for 12 Volt Automotive Equipment
- No Gain Selection of Power Transistors Necessary
- Economical 4-Lead Package

CLASS "A" AUDIO DRIVER

Silicon Monolithic
Functional Circuit

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)								Value	Unit
Rating	Symbol	18	Vdc						
Power Supply Voltage	V^{+}	1.0	Watt						
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Package Dissipation) Derate above $25^{\circ} \mathrm{C}$	$1 / \theta \mathrm{JA}$	10	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$						
Operating Temperature Range	T_{A}	-10 to +75	${ }^{\circ} \mathrm{C}$						

FIGURE 1 - TYPICAL 4-WATT AMPLIFIER CIRCUIT APPLICATION

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Circuit	Characteristic	Symbol	Min	Max	Unit
	Current Drain No Load	${ }^{1}$	-	10	mA
	Input Voltage	$\mathrm{V}_{\text {in }}$	1.9	2.5	Vdc
	Output Current	${ }^{\text {out }}$	30	-	mAdc
	Open Loop Voltage Gain ($\mathrm{e}_{\mathrm{in}}=1.0 \mathrm{mV}(\mathrm{rms}) @ 1.0 \mathrm{kHz}$) Q1: MPS6514 or equiv.	AVOL	130	-	V/V

figure 2 - CIrcuit schematic

MONOLITHIC VOLTAGE REGULATORS

This series of voltage regulators is designed to deliver load currents to 200 mAdc. Output current capability can be increased to several amperes through the use of external pass transistors. These devices are industrial quality regulators designed for consumer applications requiring high volume and low cost.

- Excellent Line and Load Regulation
- Economical Four-Lead Package

VOLTAGE REGULATORS

Silicon Monolithic
Functional Circuit

FIGURE 1 - TYPICAL CIRCUIT CONNECTION AND TEST CIRCUIT

$v_{0}=\left(\frac{R 1}{2 k}+1\right) v_{\text {Ref }}$
$R_{1}=\left(\frac{V_{0}}{2}-2\right) k \Omega 2$

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	/ Unit
Input Voltage MFC4060A/MFC4062A MFC4063A/MFC4064A	$V_{\text {in }}$	$\begin{aligned} & 38 \\ & 22 \\ & \hline \end{aligned}$	Vdc Vdc
Maximum Load Current	IL	200	mAdc
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Watt } \\ & \mathrm{mW} /{ }^{\circ} \mathrm{C} \end{aligned}$
Operating Temperature Range (Ambient)	$\mathrm{T}_{\text {A }}$	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathbf{s t g}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}$, See Figure 1.)

Characteristic	Symbol	MFC40604.			MFC4062A			MFC4063A			MFC4064A			Unit
		Min	Typ	Max										
Input Voltage Range	$V_{\text {in }}$	9.0	-	38	9.0	-	38	9.0	-	22	9.0	-	22	Vdc
Output Voltage Range	V_{0}	$\mathrm{V}_{\text {reff }}$	-	35	$V_{\text {ref }}$	$=$	35	$V_{\text {reff }}$	-	19	$\mathrm{V}_{\text {ref }}$	-	19	Vdc
Input-Output Voltage Differential	$V_{\text {in }}-V_{0}$	3.0		-	3.0		$=$	3.0			3.0	-	-	Vdc
Reference Voltage	$V_{\text {ref }}$	3.6	4.1	4.6	3.6	4.1	4.6	3.6	41	4.6	3.6	4.1	4.6	Vdc
Standby Current Drain $\left(I_{L}=0, v_{\text {in }}=20 \mathrm{~V}\right)$	I/B	-	3.7	6.0			70		3.7	6.0	-	3.7	7.0	mAdc
$\begin{aligned} & \text { Average Temperature Co- } \\ & \text { efficient of Output } \\ & \text { Voltage (} T_{A}=-10 \text { to } \\ & +75^{\circ} \mathrm{C} \text {) } \end{aligned}$	TCVO		0.003	0.03		0.003	0.03		0.003	0.03	-	0.003	0.03	\%/ ${ }^{\circ} \mathrm{C}$
Line Regulation $\begin{aligned} & \left(\mathrm{v}_{\mathrm{O}}=7.5 \mathrm{~V}\right) \\ & 12 \mathrm{~V}<\mathrm{v}_{\text {in }}<18 \\ & 12 \mathrm{~V}<\mathrm{v}_{\text {in }}<30 \\ & \hline \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		0.01	$\begin{aligned} & n \\ & \bar{n} \\ & 0.03 \\ & \hline \end{aligned}$			0.06		0.01	0.03	-	-	0.06	$\% / V_{\text {in }}$
Load Regulation $(1.0 \mathrm{~mA}$ $\left.<I_{L}<50 \mathrm{~mA}\right)$	$\mathrm{Reg}_{\mathrm{L}}$		0.03	0.2					0.03	02	-	-	0.4	\%
LINE REGULATION LOAD REGULATIO														
$\% / v_{\text {in }}=\frac{\Delta v_{0} \times 100}{\Delta v_{\text {in }} \times v_{0}} \quad \%=\frac{\Delta v_{0}}{v_{O}} \times 1$														

TYPICAL CHARACTERISTICS

$\left(V_{\text {in }}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 4 - MAXIMUM LOAD CURRENT versus INPUT-OUTPUT VOLTAGE

FIGURE 5 - LINE REGULATION versus INPUT-OUTPUT VOLTAGE

... a monolithic silicon integrated circuit designed especially for 10.7 MHz IF applications.

Highlights Include:

- High Stable Gain @ 10.7 MHz (40 dB typ)
- Low Feedback Capacitance (\mid y $12 \mid=0.01$ mmho typ)
- Non-Saturating Limiting (With Suitable Load)
- Compatible With CA3053 and μ A 703 (See Figures 7 and 8)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	20	Vdc
Output Collector Voltage	V_{4}	20	Vdc
Input Voltage*	$\mathrm{V}_{2}, \mathrm{~V}_{5}$	± 5.0	Volts
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Package Limitation) Derate above $25^{\circ} \mathrm{C}$	$\begin{aligned} & P_{D} \\ & 1 / \theta \mathrm{JA} \end{aligned}$	1.0 10	Watt $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-10 to +75	${ }^{\circ} \mathrm{C}$
- Differential Voltage Swing.			

FM IF AMPLIFIER

Silicon Monolithic Functional Circuit

[^50]
MFC6010 (continued)

ELECTRICAL CHARACTERISTICS $\left(V^{+}=12\right.$ Volts, $f=10.7 \mathrm{MHz}, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

	Characteristic	Symbol	Min	Typ	Max	Unit
	Total Current Drain	${ }^{1}$	-	-	10	mA
	Output Quiescent Current	'0	1.75	3.2	5.0	mA
	Output Saturation Voltage	V (sat)	-	3.5	-	Volts
	Forward Transadmittance	\| V 21	25	-	-	mmhos
	Reverse Transadmittance	$\left\|\mathrm{V}_{12}\right\|$	-	0.01	-	mmho
	Input Capacitance	$\mathrm{C}_{\text {in }}$	-	6.0	-	pF
	Input Conductance	$\mathrm{G}_{\text {in }}$	-	0.4	-	mmho
	Output Capacitance	Cout	-	2.5	-	pF
	Output Conductance	Gout	-	35	-	$\mu \mathrm{mhos}$
	Noise Figure ($\mathrm{R}_{\mathrm{S}}=750 \Omega$)	N_{F}	-	7.0	-	dB
	Maximum Stable Gain (Stern Factor $=3$)	A_{v}	-	40	-	dB
	Input Voltage (3.0 dB Limiting)	$\mathrm{e}_{\text {in }}$	-	60	-	mV

FIGURE 2 - LIMITING CHARACTERISTICS

FIGURE 3 - AM REJECTION

FIGURE 4 - CURRENT DRAIN AND OUTPUT CURRENT

MFC6010 (continued)

TEST CIRCUITS

FIGURE 5 - POWER-GAIN TEST CIRCUIT

MFC6010 (continued)

APPLICATIONS INFORMATION

Because of the low reverse transfer admittance of the MFC6010, stability will be dependent mainly upon circuit layout. With careful design, very high gain (in the order of 40 dB) may be achieved at 10.7 MHz . The bias and supply currents may be varied from their normal values (shown in Figure 4) by shunting additional resistance from pin 6 to ground or to the supply line.

Although less gain may be realized when using the MFC6010 as a limiter, it is recommended that it be operated in a non-saturated mode. This mode of operation results in a high output impedance at limiting. Therefore the operation of the demodulator circuit is not subject to variable loading of the limiter output.

In order to avoid driving the amplifier transistor components of the MFC6010 into saturation, the load resistance must be
chosen to ensure that current limiting occurs before the collector voltage drops to a value low enough to forward bias the collectorbase junction. In a transformer coupled circuit, the maximum allowable load can be derived from

$$
R_{L}=\frac{2\left(V^{+}-V_{5}\right)}{I_{0}}
$$

where values for I_{0} may be determined from Figure 4 (providing the bias currents have not been altered from their normal values).

In order to avoid degradation of AM rejection, the input signal should not exceed one volt (rms).

COMPATIBLE FOIL PATTERNS

FIGURE $7-\mu \mathrm{A} 703$ and MFC6010
FIGURE 8 - CA3053* and MFC6010

*Foil patterns shown are intended to show pin-for-pin interconnection. Any change in the number of components is dictated by the requirements of the individual design.

DUAL TOGGLE FLIP-FLOP

- Wide Operating Voltage Range -6.0 to 16 Volts
- Regulated Supply Not Required
- Economical 6-Lead Plastic Package

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Volts
Power Supply Voltage	19	Vdc
Output Sinking Current	10	mA
Negative Input Voltage	0.5	Vdc
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.0	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and Storage Junction Temperature Range	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature	-10 to +75	${ }^{\circ} \mathrm{C}$

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=12 \mathrm{Vdc}, V_{\text {in }}=4.0 \mathrm{~V}\right.$, Square Pulse, $f=10 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{tPHL}=1.0 \mathrm{~V} / \mu \mathrm{s}$, $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Operating Power Supply Voltage	6.0	-	16	Vdc
Toggle Frequency	-	3.0	-	MHz
Output Voltage (High) $\left(\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right)$	$\begin{array}{r} 5.5 \\ 15.5 \end{array}$	-		Vdc
$\begin{gathered} \hline \text { Output Voltage (Low) } \\ \left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right) \\ \hline \end{gathered}$	-		$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	Vdc
Operating Drain Current $\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right)$	-	-	32	mAdc
Output Sinking Current $\left(V_{O} \leqslant 1.0 \mathrm{Vdc}\right)$	-	2.0	-	mAdc
Rise Time	-	250	-	ns
Storage Time	-	350	-	ns
Fall Time	-	60	-	ns
Input Resistance	10	-	-	$\mathrm{k} \Omega$
Output Resistance (Output High)	-	-	2.8	$k \Omega$

INPUT PULSE REQUIREMENTS

$V_{I H}$	Characteristic	Min	Max	Unit
	Pulse Magnitude	+4.0	-	Volts
	Zero Level	-	+1.0	Volts
	Leading Edge	No Requirement		
	Trailing Edge dv/dt	-1.0	-	$\frac{\text { Volts }}{\mathrm{ms}}$

FIGURE 2 - RMS CURRENT DRAIN versus SUPPLY VOLTAGE

MFC6030A

MFC6032A

MFC6033A
MFC6034A

MONOLITHIC VOLTAGE REGULATORS

This series of voltage regulators is designed to deliver load currents to 200 mAdc. Output current capability can be increased to several amperes through the use of external pass transistors. These devices are industrial quality regulators intended for consumer applications requiring high volume and low cost.

- Excellent Line and Load Regulation
- Current-Limit Feature Available
- Economical Six-Lead Package

See Packaging Information Section for outline dimensions.

MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Rating	Symbol	Value	Unit
Input Voltage MFC6030A, MFC6032A MFC6033A, MFC6034A	$\mathrm{V}_{\text {in }}$		
Maximum Load Current		38	
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	I_{L}	22	
Operating Temperature Range (Ambient)	P_{D}	200	mAdc
Storage Temperature Range	T_{A}	1.0	Watt^{10}
$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$			

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{in}}=+12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=+5.0 \mathrm{Vdc}, \mathrm{IL}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{sc}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$ (See Figure 1)

Characteristic	Symbol	MFC6030A			MFC6032A			MFC6033A			MFC6034A			Unit
		Min	Typ	Max										
Input Voltage Range	$V_{\text {in }}$	9.0	-	38	9.0	-	38	9.0	-	22	9.0	-	22	Vdc
Output Voltage Range	V_{O}	V Ref	-	35	$V_{\text {Ref }}$	\square	35	$V_{\text {Ref }}$	-	19	$V_{\text {Ref }}$	-	19	Vdc
Input-Output Voltage Differential	$\mathrm{vin}^{-} \mathrm{V}_{\mathrm{O}}$	3.0			3.0			3.0	-	-	3.0	-	-	Vdc
Reference Voltage $(\mathrm{R} 1=0)$	$\mathrm{V}_{\text {ref }}$		4.1	4.6	3.6		4.6	3.6	4.1	4.6	3.6	4.1	4.6	Vdc
Standby Current Drain $\left(I_{L}=0, v_{\text {in }}=20 \mathrm{~V}\right)$	IIB		3.7	6.0		3.7	70	-	37	6.0	-	3.7	7.0	mAdc
Average Temperature Coefficient of Output Volt age ($T_{A}=-10$ to $+75^{\circ} \mathrm{C}$)	$\mathrm{TCV}_{\mathrm{O}}$			$\begin{array}{r} 0.03 \\ \hline \end{array}$		0.003		$-$	0.003	0.03	-	0.003	0.03	\%/ ${ }^{\circ} \mathrm{C}$
$\begin{gathered} \text { Line Reg. }\left(\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}\right) \\ \left(12 \mathrm{~V}<\mathrm{V}_{\text {in }}<18\right) \\ \left(12 \mathrm{~V}<\mathrm{V}_{\mathrm{in}}<30\right) \\ \hline \end{gathered}$	$\mathrm{Reg}_{\text {in }}$			$\begin{array}{r} - \\ 0.03 \\ \hline \end{array}$			0.06	$\underline{\square}$	0.01	0.03	-	-	$\begin{array}{r}0.06 \\ - \\ \hline\end{array}$	$\% / V_{\text {in }}$
Load Regulation $\left(1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<50 \mathrm{~mA}\right)$	$\mathrm{Reg}_{\mathrm{L}}$		0.03	0.2		$=$	0.4	-	0.03	0.2	-	-	0.4	\%/VO
Short-Circuit Current Limit ($\mathrm{R}_{\mathrm{sc}}=100$ ohms, $\left.V_{O}=0\right)$	1 sc	2	6.5			6.5		-	6.5	$-$	-	6.5	-	mAdc

> LINE REGULATION
> $\% / V_{\text {in }}=\frac{\Delta V_{\mathrm{O}} \times 100}{\Delta \mathrm{~V}_{\text {in }} \times \mathrm{V}_{\mathrm{O}}}$
LOAD REGULATION
$\%=\frac{\Delta V_{\mathrm{O}}}{V_{\mathrm{O}}} \times 100$

SHORT-CIRCUIT CURRENT
$I_{S C}=\frac{V_{B E}}{R_{\text {SC }}} \approx \frac{0.65\left(\text { at } \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)}{100 \mathrm{ohms}}$

TYPICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {in }}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 4 - MAXIMUM LOAD CURRENT versus
INPUT-OUTPUT VOLTAGE

FIGURE 5 - LINE REGULATION versus INPUT-OUTPUT VOLTAGE

MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 6 - LOAD REGULATION versus INPUT-OUTPUT VOLTAGE

FIGURE 7 - LOAD REGULATION WITH CURRENT LIMITING

FIGURE 8 - OUTPUT VOLTAGE versus R1

TYPICAL APPLICATIONS
FIGURE 9 - MFC6030A - 15 VOLT REGULATOR with CURRENT LIMIT

FIGURE 10 - 15-VOLT, 2.0-AMPERE REGULATOR (with current foldback)

FIGURE 11 - 6.0-VOLT, 5.0-AMPERE HIGH EFFICIENCY REGULATOR

MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

TYPICAL APPLICATIONS (continued)

FIGURE 12 - CURRENT BYPASS
(Load current range, 400 -to- 500 mA)

FIGURE 13 - 100 mA CONSTANT CURRENT SOURCE

Pin 4 not connected

FIGURE 15 - VOLTAGE BOOSTED 40-VOLT 100 mA REGULATOR
(with short-circuit current limiting)

FIGURE 14 - 5.0 -VOLT, 5.0-AMPERE REGULATOR with REMOTE SENSING, PNP CURRENT BOOST

ELECTRICAL CHARACTERISTICS $\left(e_{i n}=100 \mathrm{mV}(\mathrm{RMS}), f=1.0 \mathrm{kHz}, \mathrm{R} 1=0, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Circuit	Characteristic	Min	Typ	Max	Unit
	Operating Power Supply Voltage	9.0	-	18	Vdc

MFC6040 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 3 - ATTENUATION versus DC CONTROL VOLTAGE

FIGURE 5 - FREQUENCY RESPONSE

FIGURE 4 - ATTENUATION versus CONTROL RESISTOR

FIGURE 6 - OUTPUT VOLTAGE SWING

FIGURE 7 - TOTAL HARMONIC DISTORTION

DUAL TOGGLE FLIP-FLOP WITH RESET

- Wide Operating Voltage Range -6.0 to 16 Volts
- Regulated Supply Not Required
- Ideal for Remote Control Applications
- Economical 6-Lead Plastic Package
- Reset (R) Available to Set Output to 0 Regardless of Previous

MAXIMUM RATINGS ($_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value	Volts
Power Supply Voltage	19	Vdc
Output Sinking Current	15	mA
Negative Input Voltage	0.5	Vdc
Power Dissipation (Package Limitation)	1.0	Watt Derate above TA $=+25^{\circ} \mathrm{C}$
Operating Temperature Range	10	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$		

[^51]ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{in}}=4.0 \mathrm{~V}\right.$, Square Pulse, $\mathrm{f}=10 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{tpHL}=1.0 \mathrm{~V} / \mu \mathrm{s}(\mathrm{Min})$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Min	Typ	Max	Unit
Operating Power Supply Voltage	6.0	-	16	Vdc
Toggle Frequency	-	3.0	-	MHz
Output Voltage (High) $\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}\right)$ Q1 Q2 $\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right)$ 01 02	$\begin{gathered} 3.7 \\ 5.5 \\ 10 \\ 15.5 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	Vdc
Output Voltage (Low) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}\right) \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	Vdc
Operating Drain Current	-	-	32	mAdc
Output Sinking Current $\left(\mathrm{V}_{\mathrm{O}} \leqslant 1.0 \mathrm{Vdc}\right)$	-	8.0	-	mAdc
Rise Time	-	250	-	ns
Storage Time	-	350	-	ns
Fall Time	-	60	-	ns
Input Resistance	10	-	-	$k \Omega$
Output Resistance (Output High)	-	-	6.0	$k \Omega$

INPUT PULSE REQUIREMENTS

$V_{\text {IH }}$	Characteristic	Symbol	Min	Max	Unit
	Pulse Magnitude	$\mathrm{V}_{1} \mathrm{H}$	+4.0	-	Volts
	Zero Level	$V_{\text {IL }}$	-	+1.0	Volts
	Leading Edge	-	+0.1	-	$\mathrm{V} / \mu \mathrm{s}$
	Trailing Edge	$\frac{\mathrm{dv}}{\mathrm{dt}}$	-1.0	-	$\frac{\text { Volts }}{\mu \mathrm{s}}$

FIGURE 2 - RMS CURRENT DRAIN versus SUPPLY VOLTAGE

1-WATT AUDIO POWER AMPLIFIER

. . designed primarily for low-cost audio amplifiers in phonograph, TV and radio applications.

- 100 mV Sensitivity for 1-Watt *
- Low Distortion - 1\% @ 1-Watt typ*
- Short-Circuit Proof - Short Term (10 seconds typ)
- No Heatsink Required for 1-Watt Output at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}^{* *}$
- Excellent Hum Rejection
* Circuit Dependent
* *Voltage Dependent

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	20	Vdc
Power Dissipation	P_{D}	1.0	Watt
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$1 / \theta_{\mathrm{JA}}$	8.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{A}	-10 to +55	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$\theta_{\text {JA }}{ }^{*}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

*Thermal resistance is measured in still air with fine wires connected to the leads, representing the "worst case" situation.

For a larger power requirement, pin 1 must be soldered to at least one sq. in. of copper foil on the printed circuit board. The $\theta_{\text {JA }}$ will be no greater than $+90^{\circ} \mathrm{C} / \mathrm{W}$. Thus, 1.39 Watts could be dissipated at $+25^{\circ} \mathrm{C}$, which must be linearly derated at $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

CASE 643A PLASTIC PACKAGE

MFC6070 (continued)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=16 \mathrm{Vdc}\right.$, See Figure 2 for test circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Quiescent Output Voltage	V_{0}	-	8.0	-	Vdc
Quiescent Drain Current ($\mathrm{e}_{\text {in }}=0$)	10	-	5.0	18	mA
Sensitivity, Input Voltage ($\mathrm{e}_{\text {in }}$ adjusted for $\mathrm{e}_{\mathrm{o}}=4.0 \mathrm{~V}(\mathrm{rms}) @ 1.0 \mathrm{kHz}$, Power Output $=1.0 \mathrm{Watt}$)	$\mathrm{e}_{\text {in }}$	-	100	150	mV
Total Harmonic Distortion $\begin{aligned} & \left(e_{\mathrm{O}}=4.0 \mathrm{~V}(\mathrm{rms}) @ 1.0 \mathrm{kHz} \text {, Power Output }=1.0 \text { Watt }\right) \\ & \left(\mathrm{e}_{\text {in }} \text { adjusted for } \mathrm{e}_{\mathrm{O}}=1.26 \mathrm{~V}(\mathrm{rms}) @ 1.0 \mathrm{kHz} \text {, Power Output }=100 \mathrm{~mW}\right) \end{aligned}$	THD	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 3.0 \end{aligned}$	\%
Hum and Noise (IHF Standard A201, 1966)	-	-	-40	-	dB

FIGURE 2-1-WATT AUDIO POWER AMPLIFIER TEST CIRCUIT

Circuit Schematic

$\left(\mathrm{V}^{+}=16 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 4 - POWER DISSIPATION versus OUTPUT POWER

FIGURE 5 - TOTAL HARMONIC DISTORTION versus FREQUENCY

APPLICATIONS INFORMATION

Shown in Figures 7 and 11 are low cost 1 W phono amplifiers with a sensitivity (@ 1 kHz) of approximately 450 mV . The input impedance of both amplifiers is approximately equal to R4 and the gain is determined by $(R 7+R 10) / R 5$. To change the gain of the amplifier, change the value of $R 5$ and hold ($R 7+R 10$) between 1 M and 2.2 M . This allows the use of a small and less expensive capacitor for C2.

The bass boost effect shown in the frequency response curves (Figures 10 and 14) is provided by the parallel combination of C4 and R 10 and can be eliminated by removing $\mathrm{C4}$ and replacing ($\mathrm{R} 7+$ R10) with a 2.2 Megohm resistor. High frequency compensation is provided by C6 and the low frequency roll-off is determined by the impedance network of C2 and R5, C3 and R4, and C8 and the speaker. The series combination of R_{A} and C_{A} from pin 6 to ground may be required for stability, depending on printed circuit board layout, speaker reactance, and lead lengths.

Device ac short-circuit capability was tested in both the 8 -ohm and 16 -ohm amplifiers by shorting pin 6 thru a 500 microfarad capacitor to ground for a period of ten seconds with the amplifier operating at full rated output.

The speaker can be connected to V^{+}(alternate connection shown below) or ground (Figures 7 and 11). Printed circuit board art work is shown for both systems in Figures 16 and 18. A picture of the completed board for the grounded speaker system is shown in Figure 21.

ALTERNATE CONNECTION FOR SPEAKER TO V^{+} (See Figure 20 for Parts List)

APPLICATIONS INFORMATION (continued)
($R_{L}=8.0$ ohms, $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
FIGURE 6 - POWER SUPPLY

FIGURE 7 - PHONOGRAPH AMPLIFIER 1 WATT - 8 OHM (See Figure 15 for Parts List)

FIGURE 9 - TOTAL HARMONIC DISTORTION versus FREQUENCY FOR FIGURE 7

FIGURE 8 - TOTAL HARMONIC DISTORTION versus OUTPUT POWER FOR FIGURE 7

FIGURE 10 - FREQUENCY RESPONSE FOR FIGURE 7

APPLICATIONS INFORMATION (continued)
($R_{L}=16$ ohms, $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

FIGURE 11 - 1.0 WATT, 16 OHM LOAD PHONOGRAPH AMPLIFIER
(See Figure 15 for Parts List)

FIGURE 13 - TOTAL HARMONIC DISTORTION versus FREQUENCY FOR FIGURE 11

FIGURE 12 - TOTAL HARMONIC DISTORTION versus OUTPUT POWER FOR FIGURE 11

FIGURE 14 - FREQUENCY RESPONSE FOR FIGURE 11

FIGURE 15 - PARTS LIST FOR FIGURES 7 AND 11

$\mathrm{R} 1=180 \mathrm{k}$ ohms	$\mathrm{R9}=1.0 \mathrm{Megohm}$	C3 $=0.05 \mu \mathrm{~F}$
R2 $=5.0$ Megohms	$\mathrm{R10}=1.5 \mathrm{Megohms}$	$\mathrm{C4}=470 \mathrm{pF}$
R3 $=5.0$ Megohms	$\mathrm{R} 11=6.8 \mathrm{k}$ ohms	$\mathrm{C} 5=0.1 \mu \mathrm{~F}$
R4 $=1.0 \mathrm{Megohm}$	$\mathrm{R} 12=6.8 \mathrm{k}$ ohms	$\mathrm{C6}=470 \mathrm{pF}$
$\mathrm{R5}=150 \mathrm{kohms*}$	$\mathrm{R}_{\mathrm{A}}=10$ ohms**	$\mathrm{C7}=0.1 \mu \mathrm{~F}$
R6 $=910 \mathrm{k}$ ohms*	$\mathrm{C1}=470 \mathrm{pF}$	$\mathrm{C} 8=500 \mu \mathrm{~F}^{*}$
$\mathrm{R} 7=680 \mathrm{k}$ ohms	$\mathrm{C} 2=0.1 \mu \mathrm{~F}$	$\mathrm{C}_{\mathrm{A}}=0.1 \mu \mathrm{~F}$ **
$\mathrm{R} 8=180 \mathrm{k}$ ohms		
*For Figure 11 (16 -ohm load) change R5 to 100 k ohms, R6 to 820 k ohms and C8 to $250 \mu \mathrm{~F}$.		
**Optional - Not included on board. (See Applications Information Note)		

APPLICATIONS INFORMATION (continued)

FIGURE 16 - PRINTED CIRCUIT BOARD (Foil Side)

FIGURE 18 - PRINTED CIRCUIT BOARD (Foil Side)
(Speaker to V^{+})

FIGURE 20 - PARTS LIST FOR FIGURE 19
(See Applications Information Note)

R1	$=180 \mathrm{k}$ ohms	C1, $\mathrm{C4}, \mathrm{C6}=470 \mathrm{pF}$	
R2,R3	$=5.0$ Megohms	C2, C 5	$=0.1 \mu \mathrm{~F}$
R4,R9	$=1.0$ Megohm	C3	$=0.05 \mu \mathrm{~F}$
R5	$=82 \mathrm{k} \mathrm{ohms}$	C7	$=250 \mu \mathrm{~F}$
R6	$=820 \mathrm{k}$ ohms	$\mathrm{C}_{\text {A }}$	$=0.1 \mu \mathrm{~F}$ *
R7	$=680 \mathrm{k}$ ohms	*Optional - Not included on board. (See Applications Information Note)	
R8	$=180 \mathrm{k}$ ohms		
R10	$=1.5$ Megohms $=15 \mathrm{kohms}$		
RA	$=10$ ohms*		

FIGURE 17 - COMPONENT DIAGRAM FOR FIGURE 16

FIGURE 19 - COMPONENT DIAGRAM FOR FIGURE 18

FIGURE 21 - COMPLETED BOARD (Speaker Grounded)

CLASS B AUDIO DRIVERS

designed as preamplifiers and driver circuits for complementary output transistors.

CLASS B AUDIO DRIVERS SILICON MONOLITHIC FUNCTIONAL CIRCUITS

- Driver for Auto Radios - and up to 20-Watt Amplifiers
- High Gain - 7.0 mV for 1.0 Watt, $\mathrm{R}_{\mathrm{L}}=3.2 \mathrm{Ohms}$
- High Input Impedance - 500-Kilohm Capability
- Output Biasing Diodes Included
- No Special hfe Matching of Outputs Required

MAXIMUM RATINGS $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Value			Unit
	MFC8020A	MFC8021A	MFC8022A	
Power Supply Voltage	35	20	45	Vdc
Power Dissipation Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$	$\begin{gathered} \text { Watt } \\ \mathrm{mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Peak Output Current (pins 5 \& 8)	150	150	150	mA
Operating Temperature Range	-10 to +75	-10 to +75	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +125	-55 to +125	-55 to +125	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Value	Unit
Thermal Resistance	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	125	${ }^{\circ} \mathrm{C}$

[^52]ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted) (See Figure 2)

Characteristic		Min	Typ	Max	Unit
$\begin{aligned} & \text { Drain Current }\left(e_{\text {in }}=0\right) \\ & V_{C C}=30 \mathrm{Vdc} \\ & V_{C C}=14 \mathrm{Vdc} \\ & V_{C C}=40 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \text { MF C8020A } \\ & \text { MF C8021A } \\ & \text { MF C8022A } \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 10 \\ & 7.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	mA
$\begin{aligned} & \text { Sensitivity }\left(P_{O}=1.0 W_{a t t}, f=1.0 \mathrm{kHz}\right) \\ & e_{\mathrm{O}}=8.95 \mathrm{~V}(\mathrm{RMS}), R_{\mathrm{L}}=165 \Omega \\ & e_{\mathrm{O}}=3.2 \mathrm{~V}(\mathrm{RMS}), R_{\mathrm{L}}=65 \Omega \\ & e_{\mathrm{O}}=12.65 \mathrm{~V}(\mathrm{RMS}), R_{\mathrm{L}}=165 \Omega \end{aligned}$	$\begin{aligned} & \text { MFC8020A } \\ & \text { MFC8021A } \\ & \text { MFC8022A } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 89 \\ 32 \\ 126 \end{gathered}$	$\begin{gathered} 112 \\ 40 \\ 160 \end{gathered}$	mV
$\begin{aligned} & \text { Total Harmonic Distortion }(\mathrm{f}=1.0 \mathrm{kHz}) \\ & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{e}_{\mathrm{O}}=8.95 \mathrm{~V}(\mathrm{RMS}), \mathrm{R}_{\mathrm{L}}=165 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{e}_{\mathrm{o}}=3.2 \mathrm{~V}(\mathrm{RMS}), \mathrm{R}_{\mathrm{L}}=65 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{e}_{\mathrm{O}}=12.65 \mathrm{~V}(\mathrm{RMS}), \mathrm{R}_{\mathrm{L}}=165 \Omega \end{aligned}$	MFC8020A MFC8021A MF C8022A		$\begin{aligned} & 0.7 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	\%
Open-Loop Gain $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=165 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=65 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=165 \Omega \end{aligned}$	MF C8020A MF C8021A MF C8022A	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 89 \\ & 87 \\ & 90 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	dB
Ripple Rejection $f=60 \mathrm{~Hz}, A_{V}=100, e_{i n}=0$, Power Supply Ripple $=1.0 \mathrm{~V}$ (RMS)		-	27	-	dB
Equivalent Input Noise $\mathrm{e}_{\text {in }}=0, \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \mathrm{BW}=100 \mathrm{~Hz}-10 \mathrm{k}$		-	18	-	$\mu \mathrm{V}$
```Quiescent Output Voltage ( }\mp@subsup{\textrm{e}}{\mathrm{ in }}{}=0\mathrm{ ) VCC}=30\textrm{V VCC}=14\textrm{V VCC}=40\textrm{V```	MF C8020A   MFC8021A   MFC8022A	-	$\begin{aligned} & 15 \\ & 7.0 \\ & 20 \end{aligned}$	-	Vdc

FIGURE 2 - TEST CIRCUIT


## MFC8020A, MFC8021A, MFC8022A (continued)

TYPICAL AUTO RADIO AUDIO APPLICATION and CHARACTERISTICS

## ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 3 - APPLICATION CIRCUIT FOR MFC8021A


FIGURE 5 - TOTAL HARMONIC DISTORTION versus FREQUENCY


## APPLICATIONS INFORMATION for MFC8021A

 (AUTO RADIO AUDIO)The MFC8021A combines all the voltage gain required for an automotive radio audio amplifier into one package reducing the circuit-board area requirement. The circuit shown in Figure 3 has an input sensitivity of approximately 7.2 millivolts for a onewatt output. Sensitivity can be adjusted by changing the value of $\mathrm{R}_{4}$. The circuit performance is a function of the output device hFE, as shown in Figure 4. Figure 4 can be used to determine the minimum hFE of the output transistors. The bandwidth of the amplifier is determined by the capacitor, $\mathrm{C}_{1}$. If $\mathrm{C}_{1}$ is increased to 390 pF the high frequency 3.0 dB point is typically 20 kHz .

An illustration of the copper side of the printed-circuit board layout is shown in Figure 7. The output transistors are mounted on the heatsink which for auto radio audio applications should have a maximum thermal resistance of $18^{\circ} \mathrm{C} / \mathrm{W}$ for each device or $9.0^{\circ} \mathrm{C} / \mathrm{W}$ when both output transistors are mounted on the same heatsink.

FIGURE 4 - TOTAL HARMONIC DISTORTION versus OUTPUT POWER


FIGURE 6 - FREQUENCY RESPONSE


FIGURE 7 - PRINTED CIRCUIT BOARD for AUTOMOTIVE RADIO AUDIO 10-and-20 WATT AMPLIFIERS (COPPER SIDE)


## MFC8020A, MFC8021A, MFC8022A (continued)

## TYPICAL 10-and-20 WATT AMPLIFIER APPLICATION AND CHARACTERISTICS

( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)


APPLICATIONS INFORMATION for MFC8020A and MFC8022A
(10-Watt and 20-Watt Amplifiers)

The MFC8020A and MFC8022A are high-voltage parts capable of driving 10-to-20 watt audio amplifiers. The gain of the circuit shown in Figure 8 changes when the value of $R_{4}$ is varied and the bandwidth is determined by $\mathrm{C}_{1}$. Emitter resistors are required at the higher voltages used for $10-\mathrm{to}-20$ watt audio amplifiers to provide thermal stability. The value of $R_{E}$ is a function of the heatsink thermal resistance and supply voltage. The heatsink requirements for operation at $+65^{\circ} \mathrm{C}$ (with both devices mounted on the same heatsink) is about $14^{\circ} \mathrm{C} / \mathrm{W}$ for the 10 -watt amplifier and $8.0^{\circ} \mathrm{C} / \mathrm{W}$ for the 20 -watt amplifier. If the maximum ambient operating temperature is reduced then the heatsink can be reduced in size as calculated by

$$
\theta_{S A}=\frac{T_{J}-\left(\theta_{J S}\right) P_{D}-T_{A}}{P_{D}}
$$

where
${ }^{\theta}$ SA $=$ Heatsink thermal resistance
$T_{J}=$ Maximum junction operating temperature
$\theta_{\mathrm{JS}}=$ Junction to heatsink thermal resistance (includes all surface interface components for thermal resistance such as the insulating washer)
$P_{D}=$ Maximum power dissipation of transistors (This occurs at about $60 \%$ of maximum output power) 6.0 W for $10 \mathrm{~W}, 7.2 \mathrm{~W}$ for 12 W
$T_{A}=$ Maximum ambient temperature
The printed circuit board layout is shown in Figure 7.

DIFFERENTIAL/CASCODE AMPLIFIER

Silicon Monolithic Functional Circuit


MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	20	$\mathrm{Vdc}^{\prime}$
Differential Input Voltage	$\mathrm{V}_{\text {in }}$	$\pm 5.0$	Vdc
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   (Package Limitation)   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1.0	Watt
Operating Temperature Range	$1 / \theta \mathrm{JA}$	10	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$



See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Circuit	Characteristic	Symbol	Min	Typ	Max	Unit
	AC Common-Mode Rejection $\begin{aligned} & e_{4-5}=e_{0} \\ & C M R=20 \log \frac{\left(e_{i n}\right)}{\left(e_{0}\right)} \end{aligned}$	$\mathrm{CMR}_{\text {AC }}$	-	35	-	dB
	Differential-Mode Voltage Gain $\begin{aligned} A \vee \text { Diff } & =20 \log \frac{\left(e_{o 1}\right)}{\left(e_{\text {in }}\right)} \\ \left(e_{\text {in }}\right. & =1.0 \mathrm{kHz}, 1.0 \mathrm{mV}[\mathrm{rms}]) \\ \left(e_{\text {in }}\right. & =10 \mathrm{MHz}, 1.0 \mathrm{mV}[\mathrm{rms}]) \\ \left(e_{\text {in }}\right. & =50 \mathrm{MHz}, 1.0 \mathrm{mV}[\mathrm{rms}]) \end{aligned}$	AV ${ }^{\text {dif }}$ )	-	$\begin{aligned} & 32 \\ & 26 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	dB
	Cascode-Mode Voltage Gain $\begin{aligned} A_{V} \text { Cascode } & =20 \log \frac{\left(e_{o 1}\right)}{\left(e_{\text {in }}\right)} \\ \left(e_{\text {in }}\right. & =1.0 \mathrm{kHz}, 1.0 \mathrm{mV}[\mathrm{rms}]) \\ \left(e_{\text {in }}\right. & =10 \mathrm{MHz}, 1.0 \mathrm{mV}[\mathrm{rms}]) \\ \left(e_{\text {in }}\right. & =50 \mathrm{MHz}, 1.0 \mathrm{mV}[\mathrm{rms})) \end{aligned}$	$\mathrm{A}^{\mathrm{V}}$ (csed)	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{gathered} 36 \\ 31.5 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	dB
	Input Offset Voltage	$v_{\text {io }}$	-	5.0	10	mV
	DC Current Gain Match $\left(I_{01}=I_{02}\right)$	$\frac{h_{\text {hFE1 }}}{\text { hFE2 }}$	0.8	-	1.1	-

## AUDIO PREAMPLIFIER

## MFC8040

## LOW NOISE AUDIO PREAMPLIFIER

. . . designed for high-gain, low-noise applications.

- Special Monolithic "State-of-the-Art" Process to Insure Low Noise - $1.0 \mu \mathrm{~V}$ (Typ)
- Can be Externally Equalized for NAB, RIAA
- Low Distortion - 0.1\% (Typ) @ AV $=100$
- Large Dynamic Range-7.0 V(rms) Out
- Low Output Impedance - 100 Ohms (Max)

LOW NOISE AUDIO PREAMPLIFIER

Silicon Monolithic
Functional Circuit


MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	33	Vdc
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   (Package Limitation)   Derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1.0	Watt
Operating Temperature Range	$1 / \theta \mathrm{JA}$	10	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

FIGURE 1 - TYPICAL WIDEBAND AMPLIFIER CIRCUIT ( $A_{V}=60 \mathrm{~dB}$ )


See Packaging Information Section for outline dimensions.

## MFC8040 (continued)

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Circuit	Characteristic	Symbol	Min	Typ	Max	Unit
	Drain Current	${ }^{1}$	-	8.0	12	mA
	Total Harmonic Distortion $\left(\mathrm{v}_{\mathrm{o}}=1.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	THD	-	$<0.1$	0.25	\%
	Input Impedance	$z_{\text {in }}$	-	75	-	k ohms
	Output Impedance	$z_{\text {out }}$	-	100	-	ohms
	Open Loop Voltage Ǵain $\left(\mathrm{v}_{\mathrm{in}}=100 \mu \mathrm{~V}(\mathrm{rms}) @ \mathrm{f}=1.0 \mathrm{kHz}\right)$	Avol	80	-	-	dB
	Wideband Input Noise $(-3.0 \mathrm{~dB}$ Bandwidth, 10 Hz to $16 \mathrm{kHz}, \mathrm{A} \mathrm{V}=60 \mathrm{~dB} @ 1.0 \mathrm{kHz}$, $\left(e_{n}=\frac{e_{o}}{A_{V}}\right)$	${ }^{\text {en }}$	-	1.0	3.0	$\underset{(\mathrm{rms})}{\mu \mathrm{V}}$

## MFC8040 (continued)

FIGURE 2 - CIRCUIT SCHEMATIC


FIGURE 3 - INPUT NOISE


FIGURE 4 - OPEN LOOP TOTAL HARMONIC DISTORTION


FIGURE 5 - AVAILABLE OUTPUT VOLTAGE


## ZERO VOLTAGE SWITCH

. . . designed for use in ac power switching applications with output drive capable of triggering triacs. Other operational features include; (1) a built-in voltage regulator that allows direct ac line operation, (2) a differential input with dual sensor inputs capable of testing the condition of two external sensors and controlling the gate pulse to a triac accordingly; (hysteresis or proportional control to this section may be added if desired) (3) sensor input "open and short" protection; this insures that the triac will never be turned "on" if either of the inputs are shorted or opened (4) a zero crossing detector that synchronizes the triac gate pulses with the zero crossing of the ac line voltage. This eliminates radio frequency interference (RFI) when used with resistive loads.

- Heater Controls
- Photo Controls
- Threshold Detector
- Valve Control
- Lamp Driver
- On-Off Power Controls
- Relay Driver
- Flasher Control

ZERO VOLTAGE SWITCH
SILICON MONOLITHIC FUNCTIONAL CIRCUIT


FIGURE 1 - CIRCUIT SCHEMATIC


See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
DC Voltage	$\mathrm{V}_{5-8}$	15	Vdc
DC Voltage	$\mathrm{V}_{4-8}$	15	Vdc
DC Voltage	$\mathrm{V}_{7-8}$	15	Vdc
Peak Supply Current	$\mathrm{I}_{6}$	35	mA
Power Dissipation   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1.0	Watt   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$1^{\circ} \mathrm{JJA}$	10	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-10 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic Definitions	Characteristic	Symbol	Min	Typ	Max	Unit
	$\mathrm{V}_{\mathrm{S}}$ with Inhibit Output (Sw 1: A or B)	$\mathrm{V}_{\mathrm{SIO}}$	-	9.0	11	Vdc
	Output Leakage Current (Sw 1: A or B)	${ }^{\text {IOL }}$	-	5.0	100	$\mu \mathrm{A}$
	Input Current 1 (Sw 1: A)	11	-	5.0	15	$\mu \mathrm{A}$
	Input Current 2   (Sw 1: B)	${ }^{\prime} 2$	-	5.0	15	$\mu \mathrm{A}$
	Inhibit Threshold Voltage (Sw 1: A or B)	$\mathrm{V}_{\mathrm{THI}}$	$\begin{gathered} V_{\text {ref }} \\ +100 \mathrm{mV} \end{gathered}$	$\begin{array}{\|c\|} \hline V_{\text {ref }} \\ +10 \mathrm{mV} \end{array}$	-	Vdc
	$\mathrm{V}_{\mathrm{S}}$ with Pulse Output (Sw 1: A or B)	$\mathrm{v}^{\text {SPO }}$	6.0	8.5	-	Vdc
	Peak Output Current (Sw 1: A or B)	${ }^{\text {I O pk }}$	50	80	-	mA
	Pulse Threshold Voltage (Sw 1: A or B)	$\mathrm{V}_{\text {THP }}$	-	$\begin{array}{\|c\|} \hline V_{\text {ref }} \\ -10 \mathrm{mV} \end{array}$	$\begin{gathered} V_{\text {ref }} \\ -100 \mathrm{mV} \\ \hline \end{gathered}$	Vdc
	Output Pulse Width   (Sw 1: A or B, See Figure 2)	$\begin{aligned} & \tau \mathrm{A}, \tau \mathrm{~B} \\ & \mathrm{~V} \tau \mathrm{~A}, \\ & \mathrm{~V} \tau \mathrm{~B} \end{aligned}$	-	$\begin{array}{r} 70 \\ \pm 4.5 \end{array}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~V} \end{aligned}$
	Output Current With Input Short   (Sw 1: B; Sw 2: A)   (Sw 1: A; Sw 2: B)	IsC	-	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$

## MFC 8070 (continued)

## TEST CIRCUIT AND TYPICAL CHARACTERISTICS

FIGURE 3 - CIRCUIT WITH INCREASED PULSE WIDTH AND TRIAC DRIVER TO CONTROL HIGH-CURRENT SCR's


FIGURE 4 - OUTPUT PULSE WIDTH versus SOURCE RESISTANCE (See Figure 6.)


TYPICAL ZERO VOLTAGE SWITCH APPLICATIONS FOR TRIAC CONTROL

FIGURE 5 - TRIAC CONTROL CIRCUIT

$R 1$ or $R 2$ is an external sensor
Basic triac trigger circuit utiizing the zero crossing detector and the input comparator to control triacs with gate current requirements to 500 mA .

FIGURE 6 - TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING DC SUPPLY


Basic de trigger application using the input comparator to control a PNP capable of furnishing gate drive of approximately 0.5 A
Suggested circuit to vary output pulse width by value of $\mathrm{R}_{S}$ (See Figure 4).

R2 must be the external sensor for the internal short and open protection to be operative.

FIGURE 7 - TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING AC SUPPLY


Zero crossing triac control circuit for gate current requirements to 100 mA .
Recommended Motorola triacs for use in circuit.

Maximum Continuous   Current (A [RMS])	Triac   Family	Case   No.
10	2N6151/2N6153   2N6346A/2N6349A	90 (Plastic)   $221-024$ (Plastic)
10	2N6139/2N6144	86,250
25	$2 N 6157 / 2$ N6165	174,175,
		235
40	2N5441/2N5446	237,238,
		239

PIN COMPARISON OF MFC8070 AND GEL300F1 (PA424/CA3059)


COMPATIBLE PRINTED CIRCUIT FOIL PATTERN FOR MFC8070, GEL300F 1 (PA 424) AND CA3059


- Motorola Pin

Number MF C8070

## MLM101A

## MONOLITHIC OPERATIONAL AMPLIFIER

A general purpose operational amplifier that allows the user to choose the compensation capacitor best suited to his needs. With proper compensation summing amplifier slew rates to $10 \mathrm{~V} / \mu \mathrm{s}$ can be obtained.

- Low Input Offset Current - 20 nA maximum Over Temperature Range
- External Frequency Compensation for Flexibility
- Class AB Output Provides Excellent Linearity
- Output Short-Circuit Protection
- Guaranteed Drift Characteristics
 CASE 601

(bottom view)


See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ${ }^{( } T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)


Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage
ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.) Unless otherwise specified, these specifications apply for supply voltages from $\pm 5.0 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the MLM101A and MLM201A, and from $\pm 5.0 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the MLM301A.

Characteristics	Symbol	$\begin{aligned} & \text { MLM101A } \\ & \text { MLM201A } \end{aligned}$			MLM301A			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$ )	V10	-	07	2.0	-	2.0	7.5	mV
Input Offset Current	$\mid 110$	-	15	10	-	3.0	50	nA
Input Bias Current	$1 / \mathrm{B}$		30	75	-	70	250	nA
Input Resistance	$\mathrm{R}_{\text {in }}$	15	4.0	$\cdots$	0.5	2.0	-	Megohms
$\begin{gathered} \hline \text { Supply Current } \\ V_{S}= \pm 20 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ \hline \end{gathered}$	${ }^{1} \mathrm{D}$		18	$30$	-	$\overline{1.8}$	$3 . \overline{0}$	mA
Large Signal Voltage Gain $\left.V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega\right)$	$A_{v}$	50	160		25	160	-	$\mathrm{V} / \mathrm{mV}$

The following specifications apply over the operating temperature range.

Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$ )	$\left\|\mathrm{V}_{10}\right\|$	\%	+	+30	-	-	10	mV
Input Offset Current	$\|1 \mathrm{O}\|$	.	-	20	-	-	70	nA
Average Temperature Coefficient of Input Offset Voltage $T_{A}($ min $) \leqslant T_{A} \leqslant T_{A}($ max $)$	$\left\|\Delta V_{10} / \Delta T\right\|$		$30$	$15$	-	6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
```Average Temperature Coefficient of Input Offset Current \(+25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant T_{A}(\) max \()\) \(T_{A(\text { min })} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C}\)```	$\|\Delta 1,0 / \Delta T\|$		$\begin{gathered} 0.01 \\ 0.02 \end{gathered}$	$\begin{aligned} & 0,1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$	$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	1 IB		4	100	-	-	300	nA
Large Signal Voltage Gain $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega$	A_{v}	25			15	-	-	V / mV
$\begin{aligned} & \text { Input Voltage Range } \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{v}_{\text {in }}$	± 15			± 12	-	-	V
Common-Mode Rejection Ratio $R_{S} \leqslant 50 \mathrm{k} \Omega$	CMRR	80	96		70	90	-	dB
Supply Voltage Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	PSSR	80	96		70	96	-	dB
$\begin{aligned} & \text { Output Voltage Swing } \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	V_{0}		± 14 ± 13		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} +14 \\ \pm 13 \\ \hline \end{array}$	-	V
Supply Current ($\left.T_{A}=T_{A}(\max), \mathrm{V}_{S}= \pm 20 \mathrm{~V}\right)$	${ }^{1} \mathrm{D}$	+ ${ }^{\text {s }}$	112	2.5	-	-	-	mA

MLM101A, MLM201A, MLM301A (continued)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 4 - MINIMUM INPUT VOLTAGE RANGE

FIGURE 6 - MINIMUM VOLTAGE GAIN

FIGURE 8 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 5 - MINIMUM OUTPUT VOLTAGE SWING

FIGURE 7 - TYPICAL SUPPLY CURRENTS

FIGURE 9 - LARGE-SIGNAL FREQUENCY RESPONSE

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

TYPICAL COMPENSATION CIRCUITS

FIGURE 14 - SINGLE-POLE COMPENSATION
FIGURE 15 - FEEDFORWARD COMPENSATION

PINS NOT SHOWN ARE NOT CONNECTED.

MLM104G MLM204G MLM304G

MONOLITHIC NEGATIVE VOLTAGE REGULATOR

The MLM104G, MLM204G, and MLM304G are functionally, electrically, and pin-for-pin equivalent to the LM104, LM204 and LM304 respecitvely.

- Regulation No Load to Full Load - 1.0 mV
- Line Regulation - 0.01 \%/V
- Ripple Rejection - $0.2 \mathrm{mV} / \mathrm{V}$
- Temperature Stability Over Temperature Range - 0.3\%

[^53]MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MLM104G	MLM204G	MLM304G	Unit
Input Voltage	$V_{\text {in }}$	- 50	50	40	Vdc
Input-Output Voltage Differential	$\mathrm{v}_{\text {in }}-\mathrm{V}_{0}$	50	50	40	Vdc
Power Dissipation (See Note 1)	$P_{\text {D }}$	- 680	680	680	mW
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	- 65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, $\mathrm{t}=\mathbf{1 0} \mathrm{s}$)	$\mathrm{T}_{\text {S }}$	300	300	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (See Note 2)

Characteristic	Symbol	MLM104G MLM204G			MLM304G			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Voltage Range	$V_{\text {in }}$	-8.0	-	-50	-8.0	-	-40	Volts
Output Voltage Range	V_{0}	-0.015		-40	-0.035	-	-30	Volts
Output-Input Voltage Differential $\begin{aligned} & \mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA} \end{aligned}$	$\left\|v_{i n} \mathrm{~V}_{0}\right\|$	$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	2.0 0.5	-	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	Volts
$\begin{aligned} & \text { Load Regulation } \\ & 0 \leqslant \mathrm{I}_{\mathrm{o}} \leqslant 20 \mathrm{~mA}, \mathrm{R}_{\mathrm{SC}}=15 \Omega \\ & \hline \end{aligned}$	Regioad		10	5.0	-	1.0	5.0	mV
Line Regulation $v_{0} \leqslant-5.0 \mathrm{~V}, \Delta v_{\text {in }}=0.1 \mathrm{~V}$	$\mathrm{Reg}_{\text {in }}$	-1	0.056	01	-	0.056	0.1	\%
$\begin{aligned} & \text { Ripple Rejection (See Figure 1) } \\ & \left(\mathrm{C}_{1}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}\right. \text {) } \\ & \mathrm{V}_{\text {in }}<-15 \mathrm{~V} \\ & -7.0 \mathrm{~V} \geqslant \mathrm{~V}_{\text {in }} \geqslant-15 \mathrm{~V} \end{aligned}$	$\mathrm{Rej}_{\mathrm{R}}$		0.2	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	mV / V
Output Voltage Scale Factor $\mathrm{R}_{1}=2.4 \mathrm{k} \Omega$ (See Figures 1,2 and 3)	SF	18	2.0	22	1.8	2.0	2.2	$\mathrm{V} / \mathrm{k} \Omega$
$\begin{aligned} & \text { Temperature Stability } \\ & V_{0} \leqslant-1.0 \mathrm{~V} \\ & V_{0} \leqslant-1.0 \mathrm{~V}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{TCV}_{\mathrm{o}} \\ \Delta \mathrm{~V}_{\mathrm{o}} / \Delta \mathrm{T} \end{gathered}$		0.3	1.0	-	$\stackrel{-}{0.3}$	$\overline{-}$	\%
$\begin{aligned} & \text { Output Noise Voltage (See Figure 1) } \\ & \quad(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}) \\ & \mathrm{V}_{0} \leqslant-5.0 \vee, \mathrm{C}_{1}=0 \\ & \mathrm{C}_{1}=10 \mu \mathrm{~F} \end{aligned}$	v_{n}	-	0.007 15	-	-	$\begin{gathered} 0.007 \\ 15 \\ \hline \end{gathered}$	-	$\begin{gathered} \% \\ \mu \mathrm{~V} \end{gathered}$
$\begin{aligned} & \text { Standby Current Drain (} I_{\mathrm{L}}=5.0 \mathrm{~mA} \text {) } \\ & \mathrm{V}_{\mathrm{O}}=0 \\ & \mathrm{~V}_{\mathrm{O}}=-40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=-30 \mathrm{~V} \end{aligned}$	'B		$\begin{aligned} & 1.7 \\ & 3.6 \end{aligned}$	2.5 5.0	-	$\begin{gathered} 1.7 \\ 3.6 \end{gathered}$	$\begin{gathered} 2.5 \\ - \\ 5.0 \end{gathered}$	mA
Long Term Stability $v_{0} \leqslant-1.0 \mathrm{~V}$	S	-	01	10	-	0.1	1.0	\%

Note 1. The maximum junction temperature of the MLM104G is $+150^{\circ} \mathrm{C}$, for the MLM204G $-+100^{\circ} \mathrm{C}$, and for the MLM304G - $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, the package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ - junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ - junction to case.
Note 2. These specifications apply for junction temperatures of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for the MLM $104 \mathrm{G} ;-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ for the MLM204G; and 0 to $+85^{\circ} \mathrm{C}$ for the MLM304G. The specifications also apply for input and output voltages within the indicated ranges (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.

MONOLITHIC POSITIVE VOLTAGE REGULATOR
The MLM105G, MLM205G, and MLM305G are functionally, electrically, and pin-for-pin equivalent to the LM105, LM205, and LM305 respectively.

- Output Voltage Adjustable from 4.5 V to 40 V
- Output Currents in Excess of 10 A Possible by Addition of External Transistors
- Load Regulation Better than 0.1\%, Full Load with Current Limiting
- DC Line Regulation, 0.03\%/V
- Ripple Rejection, 0.01 \%/V

See Packaging Information Section for outline dimensions.

MLM105G, MLM205G, MLM305G (continued)

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	nLM10sc:	MLM205G	MLM305G	Unit
Input Voltage	$V_{\text {in }}$	50	50	40	Vdc
Input-Output Voltage Differential	$\left\|v_{\text {in }}-v_{0}\right\|$	40	40	40	Vdc
Power-Dissipation (See Note 1)	P_{D}	680	680°	680	mW
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, $\mathrm{t}=10 \mathrm{~s}$)	T_{S}	300	300	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (See Note 2)

Characteristic	Symbol	MLM105G MLM205G			MLM305G			Unit
		Min	W. TyP	Max	Min	Typ	Max	
Input Voltage Range	$V_{\text {in }}$	8.5		50.	8.5	-	40	Volts
Output Voltage Range	V_{0}	4.5	rix	40	4.5	-	30	Volts
Output-Input Voltage Differential	$\left\|V_{i n}-V_{0}\right\|$	3.0		30.	3.0	-	30	Volts
Load Regulation (See Figure 1) $\begin{aligned} & \left(0 \leqslant I_{0} \leqslant 12 \mathrm{~mA}\right) \\ & R_{S C}=18 \mathrm{~s} 2, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{S C}=10 \mathrm{~s} 2, T_{A}=T_{\text {high }}{ }^{*} \\ & R_{S C}=18 \mathrm{~s} 2, T_{A}=T_{\text {low }}{ }^{* *} \end{aligned}$	Regioad		$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.03 \end{aligned}$	 0.05 0.1 0.1	-	$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{gathered} 0.05 \\ 0.1 \\ 0.1 \\ \hline \end{gathered}$	\%
Line Regulation $\begin{aligned} & v_{\text {in }}-v_{0} \leqslant 5.0 \mathrm{~V} \\ & v_{\text {in }}-v_{0}>5.0 \mathrm{~V} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{array}{\|c\|} \hline 0.06 \\ 0.03 \\ \hline \end{array}$	-	$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$	\%/V
Ripple Rejection (See Figure 1) $C_{r e f}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & \Delta v_{o} \\ & v_{0} \Delta v_{i} \end{aligned}$		0.003	0.01	1.0	0.003	0.01	\%/V
Temperature Stability $T_{\text {low }}{ }^{*} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*}$	$T C V_{0}$		0.3	1.0	-	0.3	1.0	\%
Feedback Sense Voltage	$V_{\text {ref }}$	1.63	117	1.81	1.63	1.7	1.81	Volts
Output Noise Voltage (See Figure 1) $\begin{aligned} & (10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}) \\ & C_{\text {Ref }}>0 \\ & \mathrm{C}_{\text {Ref }}>0.1 \mu \mathrm{~F} \end{aligned}$	V_{n}		$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$		-	$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$	-	\%
Standby Current Drain $\begin{aligned} & V_{\text {in }}=50 \mathrm{~V} \\ & v_{\text {in }}=40 \mathrm{~V} \end{aligned}$	${ }^{\prime} B$		0.8	2.0	-	$\overline{0.8}$	2.0	mA
Long Term Stability	S		0.1	1.0	-	0.1	1.0	\%
$\begin{aligned} { }^{*} \mathrm{~T}_{\text {high }}= & +125^{\circ} \mathrm{C} \text { for MLM105G } \\ & +85^{\circ} \mathrm{C} \text { for MLM205G } \\ & +70^{\circ} \mathrm{C} \text { for MLM305G } \end{aligned}$	$\begin{aligned} { }^{*} \mathrm{~T}_{\text {low }}= & -55^{\circ} \mathrm{C} \text { for MLM105G } \\ & -25^{\circ} \mathrm{C} \text { for MLM205G } \\ & 0^{\circ} \mathrm{C} \text { for MLM305G } \end{aligned}$							

Note 1. The maximum junction temperature of the MLM105G is $+150^{\circ} \mathrm{C}$, for the MLM205G $-+100^{\circ} \mathrm{C}$, and for the MLM305G $-+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, the package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ - junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ - junction to case.
Note 2. These specifications apply for junction temperatures of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for the MLM105G, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MLM205G, and 0 to $+70^{\circ} \mathrm{C}$ for the MLM305G. Specifications also apply for input and output voltages within the indicated ranges and for a divider impedance sensed by the feedback terminal of 2.0 kilohms (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.

INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER

A general purpose operational amplifier series well suited for applications requiring lower input currents than are available with the popular MC1741. These improved input characteristics permit greater accuracy in sample and hold circuits and long interval integrators.

- Internally Compensated
- Low Offset Voltage: $2.0 \mathrm{mV} \max (M L M 107 \mathrm{G})$
- Low Input Offset Current: $10 \mathrm{nA} \max$ (MLM107G)
- Low Input Bias Current: 75 nA max (MLM107G)

OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT EPITAXIAL PASSIVATED

[^54]
MLM107G, MLM207G, MLM307G (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	MLM107G	MLM207G	MLM307G	Unit
Power Supply Voltages	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	+22 -22	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{array}{r} +18 \\ -18 \end{array}$	Vdc
Differential Input Signal Voltage	$V_{\text {ID }}$	(± 30 :	± 30	± 30	Volts
Common-Mode Input Swing (Note 1)	VICR	- ± 15	± 15	± 15	Volts
Output Short-Circuit Duration	${ }^{\text {t }} \mathrm{OS}$	Indefinite			
Power Dissipation (Package Limitation) (Note 2)	${ }^{\text {P }}$	500	500	500	mW
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted, see Note 3.1

Characteristics	Symbol	MLM107G MLM207G			MLM307G			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \Omega, T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{ks}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega \Omega, T_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\mid \mathrm{V}$ Iol	-	07	$\begin{aligned} & 20 \\ & 3.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	2.0	$\begin{gathered} - \\ 7.5 \\ 10 \end{gathered}$	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	$\|10\|$		15	$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{aligned} & 50 \\ & 70 \end{aligned}$	nA
$\begin{aligned} & \hline \text { Input Bias Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	I/B		30	$\begin{array}{r} 75 \\ 100 \end{array}$	-	70	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	nA
Input Resistance	$\mathrm{R}_{\text {in }}$	1.5	40	-	0.5	2.0	-	Megohms
Supply Current $\begin{aligned} & V_{S}= \pm 20 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	${ }^{1} \mathrm{D}$		1.8 1.2 -	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	-	1.8	3.0	mA
Large-Signal Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \end{aligned}$	A_{v}	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{array}{r}160 \\ -\quad \\ \hline\end{array}$		$\begin{aligned} & 25 \\ & 15 \end{aligned}$			V / mV
Average Temperature Coefficient of Input Offset Voltage $T_{\text {low }} \leq T_{A} \leq T_{\text {high }}$	$\left.\right\|^{T} \mathrm{C}_{\mathrm{V}_{10}}{ }^{\text {l }}$	4	30	15	-	6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current $\begin{aligned} & +25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq T_{\text {high }} \\ & T_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	${ }^{T} C_{1}{ }_{10} \mid$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	-	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	0.3 0.6	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} \left.\hline \text { Output Voltage Swing (} T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{ks} \\ R_{L}=2.0 \mathrm{k} \Omega \\ \hline \end{aligned}$	V_{O}	$\begin{array}{r} 12 \\ +10 \\ \hline \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} +14 \\ \pm 13 \\ \hline \end{array}$	-	V
$\begin{array}{\|l} \left.\hline \text { Input Voltage Range (} \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \\ \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ \hline \end{array}$	$\mathrm{V}_{\text {in } \mathrm{R}}$	± 15		-	\pm	-	-	V
$\begin{aligned} & \text { Common-Mode Rejection Ratio (} T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \text {) } \\ & R_{S} \leqslant 50 \mathrm{k} \Omega \end{aligned}$	CMRR	80	96	-	70	90	-	dB
$\begin{aligned} & \text { Supply-Voltage Rejection Ratio (} \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ & R_{S} \leqslant 50 \mathrm{k} \Omega \end{aligned}$	VSRR	80	96	2	70	96	-	dB

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage
Note 2. For operating at elevated temperatures, the device must be derated based on a maximum junction temperature of $+150^{\circ} \mathrm{C}$ for the MLM107G, and $100^{\circ} \mathrm{C}$ for the MLM207G and MLM307G. The TO-99 package is derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.

Note 3. Unless otherwise noted, these specifications apply for:

$$
T_{\text {low }}
$$ $T_{\text {high }}$ $\pm 5.0 \vee \leq V_{S} \leq \pm 20 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, \mathrm{MLM} 107 \mathrm{G}$ $\pm 5.0 \vee \leq V_{S} \leq \pm 20 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{MLM} 207 \mathrm{G}$ $\pm 5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}, \quad \mathrm{O}^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{MLM} 307 \mathrm{G}$

MLM107G, MLM207G, MLM307G (continued)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 1 - MINIMUM INPUT VOLTAGE RANGE

FIGURE 3 - MINIMUM VOLTAGE GAIN

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 2 - MINIMUM OUTPUT VOLTAGE SWING

FIGURE 4 - TYPICAL SUPPLY CURRENTS

FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 7 - VOLTAGE FOLLOWER PULSE RESPONSE

MONOLITHIC POSITIVE THREE - TERMINAL FIXED VOLTAGE REGULATOR

A versatile positive fixed +5.0 -volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged.

In most applications only one external component, a capacitor, is required in conjunction with the MLM109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator.

- High Maximum Output Current - Over 1.0 Ampere in TO-3 type Package - Over 200 mA in TO-39 Package
- Minimum External Components Required
- Internal Short-Circuit Protection
- Internal Thermal Overload Protection
- Excellent Line and Load Transient Rejection
- Designed for Use with Popular MDTL and MTTL Logic

CIRCUIT SCHEMATIC

POSITIVE
voltage regulator
MONOLITHIC SILICON INTEGRATED CIRCUIT

K SUFFIX
METALPACKAGE
CASE 11
(TO-3 Type)

G SUFFIX

METAL PACKAGE
CASE 79
(TO-39)

FIXED 5.0 V REGULATOR

* Required if regulator is located an appreciable distance from power supply filter
Although no output capacitor is needed for stability, it does improve transient response.

[^55]
MLM109, MLM209, MLM309 (continued)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	$V_{\text {in }}$	35	Vdc
Power Dissipation	$P_{\text {D }}$	Internally Limited	
Junction Temperature Range $\begin{aligned} & \text { MLM109 } \\ & \text { MLM209 } \\ & \text { MLM309 } \end{aligned}$	TJ	$\begin{array}{r} -55 \text { to }+150 \\ -55 \text { to }+150 \\ 0 \text { to }+125 \end{array}$	OC
Storage Temperature Range	$\mathrm{T}_{\mathbf{s t g}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, $\mathbf{t}=\mathbf{6 0}$ s)	TS	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	MLM109 / MLM209 (1)			MLM309 (2)			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Voltage ($T_{J}=+25^{\circ} \mathrm{C}$)	V_{O}	4.7	5.05	53	4.8	5.05	5.2	Vdc
$\begin{aligned} & \text { Input Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\ & 7.0 \leqslant V_{\text {in }} \leqslant 25 \mathrm{~V} \end{aligned}$	$\mathrm{Reg}_{\text {in }}$		40	50	-	4.0	50	mV
```Load Regulation ( }\mp@subsup{T}{J}{}=+2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ ) Case 11.01 (type TO-3) 5.0 mA \leqslant 1O \leqslant 1.5A Case 79.02 (TO-39) 5.0 mA \leqslant ```	Regioad		$\begin{aligned} & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	-	$\begin{array}{r} 50 \\ 20 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	mV
Output Voltage Range $\begin{aligned} & 7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V} \\ & 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant I_{\text {max }}, P \leqslant P_{\max } \end{aligned}$	$\mathrm{v}_{\mathrm{O}}$	$46$		$54$	4.75	-	5.25	Vdc
$\begin{array}{\|l} \hline \text { Quiescent Current }\left(7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V}\right) \\ \text { Quiescent Current Change }\left(7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V}\right) \\ 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1_{\max } \\ \hline \end{array}$	$\begin{aligned} & I_{B} \\ & I_{B} \end{aligned}$		$52$	10   0.5   0.8	- - -	5.2 -	$\begin{array}{r} 10 \\ 0.5 \\ 0.8 \\ \hline \end{array}$	mAdc
$\begin{aligned} & \hline \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}\right.\left.=+25^{\circ} \mathrm{C}\right) \\ & 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz} \\ & \hline \end{aligned}$	$\mathrm{V}_{N}$				-	40.	-	$\mu \mathrm{V}$
Long Term Stability	S		4	10	-	-	20	mV
Thermal Resistance, Junction to Case (3)   Case 11.01 (type TO-3)   Case 79.02 (TO-39)	өJC		3.0   15		-	$\begin{array}{r} 3.0 \\ 15 \end{array}$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES
(1.) Unless otherwise specified, these specifications apply for $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+150^{\circ}\left(-25^{\circ} \mathrm{C} \leqslant \mathrm{T}, \leqslant+150^{\circ} \mathrm{C}\right.$ for the MLM209). For Case 79.02 (TO.39) $V_{\text {in }}=10 \mathrm{~V}, I_{O}=0.1 \mathrm{~A}, I_{\max }=0.2 \mathrm{~A}$ and $P_{\text {max }}=2.0 \mathrm{~W}$. For Case $11.01($ type $T O-3) V_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}, I_{\max }=1.0 \mathrm{~A}$ and $P_{\max }=20 \mathrm{~W}$.
(2.) Unless otherwise specified, these specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=10 \mathrm{~V}$. For Case $79.02(\mathrm{TO} .39) \mathrm{I}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{max}}=0.2 \mathrm{~A}$ and $P_{\text {max }}=2.0 \mathrm{~W}$. For Case 11.01 (type $\left.T 0.3\right)^{\prime} I_{O}=0.5 \mathrm{~A}, I_{\max }=1.0 \mathrm{~A}$ and $P_{\max }=20 \mathrm{~W}$.
(3.) Without a heat sink, the thermal resistance of the Case 79.02 (TO-39) pack age is about $150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the Case 11.01 (type TO-3) pack age is approximately $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can onlv approach the values specified, depending on the efficiency of the heat sink

## TYPICAL CHARACTERISTICS

( $\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 1 - MAXIMUM AVERAGE POWER DISSIPATION (MLM109K, MLM209K)


FIGURE 2 -- MAXIMUM AVERAGE POWER DISSIPATION (MLM109G, MLM209G)


MLM109, MLM209, MLM309 (continued)

TYPICAL CHARACTERISTICS (continued)
( $\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 3 - MAXIMUM AVERAGE POWER DISSIPATION (MLM309K)


FIGURE 5 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 7 - PEAK OUTPUT CURRENT (G PACKAGE)


FIGURE 4 - MAXIMUM AVERAGE POWER DISSIPATION (MLM309G)


FIGURE 6 - PEAK OUTPUT CURRENT (K PACKAGE)


FIGURE 8 - RIPPLE REJECTION


## MLM109, MLM209, MLM309 (continued)

TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - DROPOUT VOLTAGE


FIGURE 11 - OUTPUT VOLTAGE


FIGURE 13 - QUIESCENT CURRENT


FIGURE 10 - DROPOUT CHARACTERISTIC (K PACKAGE)


FIGURE 12 - OUTPUT NOISE VOLTAGE


FIGURE 14 - QUIESCENT CURRENT


## TYPICAL APPLICATIONS

FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR


FIGURE 17 - 5.0-VOLT, 3.0-AMPERE REGULATOR (with plastic boost transistor)


FIGURE 16 - CURRENT REGULATOR


FIGURE 18 - 5.0 VOLT, 4.0-AMPERE TRANSISTOR (with plastic Darlington boost transistor)


FIGURE 20 - 5.0-VOLT, 10-AMPERE REGULATOR (with Short-Circuit Current Limiting for Safe-Area Protection of pass transistors)


## MLM110G MLM210G MLM310G

## MONOLITHIC OPERATIONAL AMPLIFIER

 VOLTAGE FOLLOWERThe MLM110G, MLM210G, and MLM310G are functionally, electrically, and pin-for-pin equivalent to the LM110, LM210, and LM310 respectively.

OPERATIONAL AMPLIFIER VOLTAGE FOLLOWER

- Input Bias Current: 10 nA maximum over Temperature Range
- Small-Signal Bandwidth: 20 MHz typical INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED

- Slew Rate: 30 Volts/ $\mu$ s typical
- Supply Voltage Range: $\pm 5.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$


METAL PACKAGE CASE 601

TYPICAL APPLICATIONS
FIGURE 1 - OFFSET BALANCING CIRCUIT
FIGURE 2 - DIFFERENTIAL INPUT INSTRUMENTATION AMPLIFIER


## MLM110G, MLM210G, MLM310G (continued)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	MLM110G	MLM210G	MLM310G	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(\max ) \\ & \mathrm{V}_{\mathrm{EE}}(\max ) \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{array}{r} +18 \\ -18 \end{array}$	Vdc
Input Voltage (Note 1)	$V_{1 C}$	$\pm 15$	$\pm 15$	$\pm 15$	Volts
Output Short Circuit Duration (Note 2)	$\mathrm{T}_{\text {sc }}$		Indefinite		
Power Dissipation (Package Limitation) (Note 3)	PD	500	500	500	mW
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, $\mathrm{t}=10 \mathrm{~s}$ )	$\mathrm{T}_{S}$	$300$	$300$	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (See Note 4)

Characteristic	Symbol	MLM1106 MLM210G			MLM310G			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }}{ }^{*} \text { to } T_{\text {high }}{ }^{* *} \end{aligned}$	$\mathrm{V}_{10}$	-	1.5	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	-	2.5	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	mV
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	IIB	$=$	1.0	$\begin{aligned} & 3.0 \\ & 10 \end{aligned}$	-	$20$	$\begin{aligned} & 7.0 \\ & 10 \end{aligned}$	nA
Input Resistance	$r_{i}$	1010	1012	-	$10^{10}$	$10^{12}$	-	ohms
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	1.5	-	-	1.5	-	pF
Large-Signal Voltage Gain $\begin{aligned} & \left.V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+10 \mathrm{~V}\right) \\ & T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8.0 \mathrm{k} \text { ohms } \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high, }} R_{L}=10 \mathrm{k} \text { ohms } \end{aligned}$	Avs	$\begin{aligned} & 0.999 \\ & 0.999 \end{aligned}$	0.9999	-	$\begin{aligned} & 0.999 \\ & 0.999 \end{aligned}$	0.9999	-	V/V
Output Resistance $T_{A}=+25^{\circ} \mathrm{C}$	ro	$=$	0.75	2.5	-	0.75	2.5	ohms
Small-Signal Bandwidth	BW	-	20	-	-	20	-	M Hz
Slew Rate	SR	-	30	-	-	30	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{gathered} \text { Supply Current } \\ T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{A}=\mathrm{T}_{\text {high }} \end{gathered}$	'D	-	3.9	$\begin{array}{r} 5.5 \\ 4.0 \\ \hline \end{array}$	-	$3.9$	5.5	mA
$\begin{aligned} & \text { Offset Voltage Temperature Drift } \\ & -55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \\ & { }^{\top} \mathrm{A}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\Delta V_{10} / \Delta T$		$\begin{aligned} & 6.0 \\ & 12 \end{aligned}$		-	$\overline{10}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Voltage Swing $V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \text { ohms }$	$\mathrm{V}_{\mathrm{O}}$	$\pm 10$	K		$\pm 10$	-	-	Voits
Supply Voltage Rejection Ratio $\pm 5 / 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 18 \mathrm{~V}$	PSRR	70	- 80	-	70	80	-	dB

*Tlow $=-55^{\circ} \mathrm{C}$ for MLM110G

$$
\begin{aligned}
* * \mathrm{~T}_{\text {high }} & =+125^{\circ} \mathrm{C} \text { for MLM110G } \\
& =+85^{\circ} \mathrm{C} \text { for MLM210G }
\end{aligned}
$$

$=-25^{\circ} \mathrm{C}$ for MLM210G
$=0^{\circ} \mathrm{C}$ for MLM310G

$$
=+70^{\circ} \mathrm{C} \text { for MLM310G }
$$

Note 1. For supply voltages less than $\pm 15$ volts, the absolute maximum input voltage is equal to the süpply voltage.
Note 2. A continuous short-circuit duration capability is specified for MLM110G and MLM210G as follows: case temperatures up to $+125^{\circ} \mathrm{C}$ and ambient temperatures up to $+70^{\circ} \mathrm{C}$, for the MLM310G up to $+70^{\circ} \mathrm{C}$ case temperature and $+55^{\circ} \mathrm{C}$ ambient temperature apply. A resistor (greater than 2.0 kilohms) must be inserted in series with the input when the amplifier is driven from a low impedance source, thus preventing damage when the output is shorted.

Note 3. The maximum junction temperature of the MLM110 is $+150^{\circ} \mathrm{C}$, for the MLM210G - $+100^{\circ} \mathrm{C}$, and for the MLM310G $-+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, the package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ - junction to ambient, or $45^{\circ} \mathrm{C}$ junction to case.

Note 4.
All listed specifications apply for $\pm 5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 18 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

Note 5. Increased output swing under load can be obtained by connecting an external resistor between the booster and $V_{E E}$ terminals (pins 4 and 5)

## Product Preview

## HIGHLY FLEXIBLE VOLTAGE COMPARATORS

The ability to operate from a single power supply of 5.0 to 30 volts or $\pm 15$-volt split supplies, as commonly used with operational amplifiers, makes the MLM111/MLM211/MLM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the VCC or the VEE supply. This flexibility makes it possible to drive MDTL, MRTL, MTTL, or MOS logic. The output can also switch voltages to 50 volts at currents to 50 mA . Thus the MLM111/MLM211/MLM311 can be used to drive relays, lamps or solenoids.


HIGH PERFORMANCE VOLTAGE COMPARATORS

MONOLITHIC SILICON
INTEGRATED CIRCUIT

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	V Value		Unit
		MLM111   MLM211	MLM311	
Total Supply Voltage	$V_{C C}+\left\|v_{E E}\right\|$	- 36	36	Vdc
Output to Negative Supply Voltage	$\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\text {EE }}$	- 50	40	Vdc
Ground to Negative Supply Voltage	$\mathrm{V}_{\text {EE }}$	- 30 ~	30	Vdc
Differential Input Voltage	$V_{10}$	+ 530 \%	$\pm 30$	Vdc
Input Voltage (See Note 1)	$V_{\text {in }}$	$\pm+15$	$\pm 15$	Vdc
Power Dissipation (Pkg. Limitation)   Metal Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Flat Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Plastic* and Ceramic Dual In-Line Packages   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	68 4 50 3 62 5		
Operating Temperatures Range     MLM111    MLM211    MLM311	${ }^{T}$ A	$\begin{array}{r} -55 \text { to }+125 \\ -25 \text { to }+85 \end{array}$	$0 \text { to }+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

*MLM311P1 only is available in the plastic dual in-line package.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol		MLM111   MLM211		MLM311			Unit
		Min	TYp	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (See Note } 2 . \text { ) } \\ & R_{S} \leqslant 50 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{S} \leqslant 50 \mathrm{k} \Omega, T_{\text {low }^{*}} \leqslant T_{A} \leqslant T_{\text {high }^{*}} \end{aligned}$	$\left\|V_{10}\right\|$		0.7	$\begin{aligned} & 3.0 \\ & 40 \end{aligned}$	-	2.0	$\begin{array}{r} 7.5 \\ 10 \end{array}$	mV
$\begin{aligned} & \text { Input Offset Current (See Note 2.) } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	$\|10\|$		$40$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$-$	6.0	$50$	nA
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{1} \mathrm{~B}$		$60$	$\begin{array}{r} 100 \\ 150 \end{array}$	-	100	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	nA
Voltage Gain	AV	5	200	¢	-	200	-	V/mV
Response Time (See Note 3.)	tTLH		200		-	200	-	ns
Saturation Voltage $\begin{aligned} & T_{A}=+25^{\circ} C, V_{I D} \leqslant-5.0 \mathrm{mV}, I_{O}=50 \mathrm{~mA} \\ & V_{\text {ID }} \leqslant-10 \mathrm{mV}, I_{O}=50 \mathrm{~mA} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}, V_{C C} \geqslant 4.5 \mathrm{~V}, V_{E E}=0 \\ & V_{\text {ID }} \leqslant-6.0 \mathrm{mV}, I_{\text {sink }} \leqslant 8.0 \mathrm{~mA} \\ & V_{\text {ID }} \leqslant-10 \mathrm{mV}, I_{\text {sink }} \leqslant 8.0 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$		$0.75$   0.23	$15$ $0.4$	- - -	$\begin{gathered} 0.75 \\ - \\ 0.23 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 0.4 \end{aligned}$	V
Strobe "On" Current	's		30,	-	-	3.0	-	mA
Output Leakage Current $\begin{gathered} T_{A}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {ID }} \geqslant 5.0 \mathrm{mV}, \mathrm{~V}_{\mathrm{O}}=35 \mathrm{~V} \\ V_{I D} \geqslant 10 \mathrm{mV}, V_{O}=35 \mathrm{~V} \\ T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}, V_{\text {ID }} \geqslant 5.0 \mathrm{mV}, V_{O}=35 \mathrm{~V} \end{gathered}$	${ }^{\prime} \mathrm{OL}$		$0.2$ $0.1$	$10$ $0.5$	-	0.2	50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$ $\mu \mathrm{A}$
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$V_{\text {IR }}$		$\pm 14$	<	-	$\pm 14$	-	V
Positive Supply Current	ICC	$\cdots$	45.1	16.0	-	+5.1	+7.5	mA
Negative Supply Current	'EE	-	-4.1	-5.0	-	-4.1	$-5.0$	mA

$$
\begin{aligned}
*{ }^{*} \mathrm{~T}_{\text {low }} & =-55^{\circ} \mathrm{C} \text { for MLM111 } & T_{\text {high }} & =+125^{\circ} \mathrm{C} \text { for MLM111 } \\
& =-25^{\circ} \mathrm{C} \text { for MLM211 } & & =+85^{\circ} \mathrm{C} \text { for MLM211 } \\
& =0 \text { for MLM311 } & & =+70^{\circ} \mathrm{C} \text { for MLM311 }
\end{aligned}
$$

Note 1. This rating applies for $\pm 15$-volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less.
Note 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a $1.0-\mathrm{mA}$ load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.
Note 3. The response time specified is for a $100-\mathrm{mV}$ input step with $5.0-\mathrm{mV}$ overdrive.

FIGURE 1 - CIRCUIT SCHEMATIC


TYPICAL CHARACTERISTICS

FIGURE 2 - INPUT BIAS CURRENT and INPUT OFFSET CURRENT versus TEMPERATURE


FIGURE 4 - OUTPUT SATURATION VOLTAGE versus OUTPUT CURRENT


FIGURE 3 - COMMON-MODE LIMITS versus TEMPERATURE


FIGURE 5 - EQUIVALENT OFFSET ERROR versus INPUT RESISTANCE


MLM111, MLM211, MLM311(continued)

## APPLICATIONS INFORMATION

FIGURE 6 - ZERO-CROSSING DETECTOR DRIVING MOS LOGIC


FIGURE 7 - RELAY DRIVER WITH STROBE CAPABILITY


## Specifications and Applications Information

## DUAL MOS CLOCK DRIVER

... designed for high-speed driving of highly capacitive loads in a MOS system.

- Fast Transition Times - 20 ns with 1000 pF Load
- High Output Swing - 20 Volts
- High Output Current Drive $- \pm 1.5$ Amperes
- High Repetition Rate - 5.0 to 10 MHz Depending on Load
- MTTL and MDTL Compatible Inputs
- Low Power Consumption when in MOS "0" State -2.0 mW
- +5.0-Volt Operation for N -Channel MOS Compatibility


[^56]| DUAL MOS |
| :---: |
| CLOCK DRIVER |
| MONOLITHIC |
| SILICON INTEGRATED CIRCUIT |



MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value			Unit
Differential Supply Voltage	$\mathrm{V}_{\text {CC }}{ }^{-V_{E E}}$	+22			Vdc
Input Current	1 in	+100			mA
Input Voltage	$V_{\text {in }}$	$\mathrm{VEE}^{+5.5}$			$\nabla \mathrm{dc}$
Peak Output Current	Topk	$\pm 1.5$			A
					$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Power Dissipation and Thermal Characteristics					
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{D}$	680	1000	830	
Thermal Resistance, Junction to Air		220	150	150	
$\mathrm{T}^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$	$P_{D}$	2.1	3.0	1.8	
Thermal Resistance, Junction to Case-	$\theta_{\text {JC }}$	70	50	70	
Junction Temperature	TJ	+175	+175	+150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$				${ }^{\circ} \mathrm{C}$
MMH0026		-55 to +125	-55 to +125	--	
MMH0026C		0 to +85	0 to +85	0 to +85	
Storage Temperature Range	$T_{\text {stg }}$	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}-\mathrm{V}_{E E}=10 \mathrm{~V}\right.$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for MMH 0026 and 0 to $+85^{\circ} \mathrm{C}$ for MMH0026C for min and max values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for all typical values unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Logic "1" Level Input Voltage } \\ & V_{O}=V_{E E}+1.0 V d c \end{aligned}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{VEE}^{+2.5}$	$\mathrm{V}_{\mathrm{EE}}+1.5$	-	Vdc
Logic " " 1 " Level Input Current $V_{\text {in }}-V_{E E}=2.5 \mathrm{Vdc}, V_{O}=V_{E E}+1.0 \mathrm{Vdc}$	IIH	-	10	15	mA
$\begin{aligned} & \text { Logic " } 0 \text { " Level Input Voltage } \\ & V_{O}=V_{C C}=1.0 \mathrm{Vdc} \end{aligned}$	VIL	-	$V_{E E}+0.6$	$V_{E E}+0.4$	Vdc
$\begin{aligned} & \text { Logic " } 0 \text { " Level Input Current } \\ & V_{\text {in }}-V_{E E}=0 \mathrm{Vdc}, V_{O}=V_{C C}-1.0 \mathrm{Vdc} \end{aligned}$	IIL	-	-0.005	-10	$\mu \mathrm{A}$
$\begin{aligned} & \text { Logic "0" Level Output Voltage } \\ & V_{C C}=+5.0 \mathrm{Vdc}, V_{E E}=-12 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}=-11.6 \mathrm{Vdc} \\ & V_{\text {in }}-V_{E E}=0.4 \mathrm{Vdc} \\ & \hline \end{aligned}$	V OH	$\begin{gathered} 4.0 \\ V_{C C}-1.0 \end{gathered}$	$\begin{gathered} 4.3 \\ v_{C C}-0.7 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	Vdc
```Logic "1" Level Output Voltage \(V_{C C}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}, \mathrm{V}_{\text {in }}=-9.5 \mathrm{Vdc}\) \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{Vdc}\)```	$\mathrm{V}_{\mathrm{OL}}$	-	$\begin{gathered} -11.5 \\ V_{E E}+0.5 \end{gathered}$	$\begin{gathered} -11 \\ \mathrm{v}_{\mathrm{EE}}+1.0 \end{gathered}$	Vdc
"On" Supply Current $V_{C C}-V_{E E}=20 \mathrm{Vdc}, \mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{Vdc}$	${ }^{\prime} \mathrm{CCL}$	-	30	40	mA
$\begin{aligned} & \text { "Off" Supply Current } \\ & V_{C C}-V_{E E}=20 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}-\mathrm{V}_{\text {EE }}=0 \mathrm{~V} \\ & \hline \end{aligned}$	${ }^{1} \mathrm{CCH}$	-	10	100	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS (See Figure 2.) ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}=10 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for MMH0026 and 0 to $+85^{\circ} \mathrm{C}$ for MMH0026C for min and max values; $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ for all typical values unless otherwise noted.)

Propagation Time					
High to Low	${ }^{\text {tPHL }}$	5.0	7.5	12	ns
Low to High	tPLH	5.0	12	15	
Transition Time (High to Low)	${ }^{\text {t }} \mathrm{HL}$				ns
$\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		-	12	-	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		-	15	18	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		-	20	35	
Transition Time (Low to High)	${ }^{\text {t }}$ TLH				ns
$\mathrm{V}_{C C}-\mathrm{V}_{E E}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		-	10	-	
$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}=17 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		-	12	16	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{Vdc}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		-	17	25	

MMH0026, MMH0026C (continued)

TEST CIRCUIT

FIGURE 2 - AC TEST CIRCUIT AND WAVEFORMS

TYPICAL APPLICATIONS

FIGURE 3 - AC-COUPLED MOS CLOCK DRIVER

Pins not shown are not connected.

FIGURE 4 - DC-COUPLED RAM MEMORY ADDRESS OR PRECHARGE DRIVER (POSITIVE-SUPPLY ONLY)

MMH0026, MMH0026C (continued)

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 7 - OPTIMUM INPUT CAPACITANCE versus OUTPUT PULSE WIDTH

FIGURE 9 - PROPAGATION DELAY TIMES
versus TEMPERATURE

FIGURE 6 - SUPPLY CURRENT versus TEMPERATURE

FIGURE 8 - TRANSITION TIMES versus LOAD CAPACITANCE

FIGURE 10 - TRANSITION TIMES versus TEMPERATURE

TYPICAL CHARACTISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 11 - TRANSITION TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)

FIGURE 13 - DC-COUPLED SWITCHING RESPONSE versus $\mathrm{R}_{\text {in }}$ (See Figure 4.)

FIGURE 15 - MAXIMUM DC POWER DISSIPATION versus DUTY CYCLE (SINGLE DRIVER)

FIGURE 12 - PROPAGATION DELAY TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)

FIGURE 14 - DC-COUPLED SWITCHING versus $C_{\text {in }}$ (See Figure 4.)

FIGURE 16 - AC POWER DISSIPATION versus FREQUENCY (SINGLE DRIVER)

APPLICATIONS INFORMATION

OPERATION OF THE MMH0026

The simplified schematic diagram of MMH0026, shown in Figure 17, is useful in explaining the operation of the device. Figure 17 illustrates that as the input voltage level goes high, diode D1 provides an 0.7 -volt "dead zone" thus ensuring that Q 2 is turned "on" and Q4 is turned "off" before Q7 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if Q7 and Q4 were allowed to be "on" simultaneously for an instant of time. Diode D2 prevents "zenering" of Q4 and provides an initial discharge path for the output capacitive load by way of Q2.
As the input voltage level goes low, the stored charge in Q2 is used advantageously to keep Q2 "on" and Q4 "off" until Q7 is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of $\mathrm{C}_{\text {in }}$ goes negative with respect to V_{EE} causing Q 9 to conduct momentarily thus assuring rapid turn "off" of 07 .

FIGURE 17 - SIMPLIFIED SCHEMATIC DIAGRAM (Ref.: Figure 1)

The complete circuit, Figure 1, basically creates Darlington devices of transistors Q7, Q4 and Q2 in the simplified circuit of Figure 17. Note in Figure 1 that when the input goes negative with respect to $V_{E E}$, diodes D7 through D10 turn "on" assuring faster turn "off" of transistors Q1, Q2, Q6 and Q7. Resistor R6 insures that the output will charge to within one $V_{B E}$ voltage drop of the $V_{\text {CC }}$ supply.

SYSTEM CONSIDERATIONS

Overshoot:

In most system applications the output waveform of the MMH0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount of resistance required is given by: $R_{S}=2 \sqrt{L / C_{L}}$ where L is the inductance of the line and C_{L} is the load capacitance. In most cases a series of damping resistor in the range of 10 -to- 50 ohms will be sufficient. The damping resistor also affects the transition times of the outputs. The speed reduction is given by the formula:
$\mathrm{t} \mathrm{THL} \approx \mathrm{t} \mathrm{TLH}^{\prime}=2.2 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{L}}$ (R_{S} is the damping resistor).

Crosstalk:

The MMH0026 is sensitive to crosstalk when the output voltage level is high ($\mathrm{V}_{\mathrm{O}} \approx \mathrm{V}_{\mathrm{C}}$). With the output in the high voltage level state, O 3 and Q 4 are essentially turned "off". Therefore, negative-going crosstalk will pull the output down until Q4 turns "on" sufficiently to pull the output back towards $V_{\text {CC. }}$. This problem can be minimized by placing a "bleeding" resistor from the output to ground. The "bleeding" resistor should be of sufficient size so that Q 4 conducts only a few milliamperes. Thus, when noise is coupled, Q4 is already "on" and the line is quickly clamped by Q4. Also note that in Figure 1 D6 clamps the output one diode-voltage drop above $V_{C C}$ for positive-going crosstalk.

Power Supply Decoupling:

The decoupling of VCC and VEE is essential in most systems. Sufficient capacitive decoupling is required to supply the peak surge currents during switching. At least a $0.1-\mu \mathrm{F}$ to $1.0-\mu \mathrm{F}$ low inductive capacitor should be placed as close to each driver package as the layout will permit.

Input Driving:

For those applications requiring split power supplies (VEE $<\mathrm{GND}$), ac coupling, as illustrated in Figure 3, should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performance is attained when the voltage at

APPLICATIONS INFORMATION (continued)

the input of the MMH0026 discharges to just above the device's threshold voltage (about 1.5 V). Figure 7 shows optimum values for C_{in} versus the desired output pulse width. The value for C_{in} may be roughly predicted by:

$$
\begin{equation*}
C_{i n}=\left(2 \times 10^{-3}\right)\left(P W_{O}\right) \tag{1}
\end{equation*}
$$

For an output pulse width of 500 ns , the optimum value for $C_{i n}$ is:

$$
C_{i n}=\left(2 \times 10^{-3}\right)\left(500 \times 10^{-9}\right)=1000 \mathrm{pF}
$$

If single supply operation is required (VEE $=$ GND), then dc coupling as illustrated in Figure 4 can be employed. For maximum switching performance, a speed-up capacitor should be employed with dc coupling. Figures 13 and 14 show typical switching characteristics for various values of input resistance and capacitance.

POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}(\theta J A) \tag{3}
\end{equation*}
$$

where
$T_{J}=$ junction temperature
$T_{A}=$ ambient temperature
$P_{D}=$ power dissipation
$\theta_{\mathrm{JC}}=$ thermal resistance, junction to case
$\theta_{\mathrm{CA}}=$ thermal resistance, case to ambient
$\theta_{\mathrm{JA}}=$ thermal resistance, junction to ambient.
Power Dissipation for the MMH0026 MOS Clock Driver:
The power dissipation of the device (PD_{D}) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. This power dissipation, when substituted into equation (3), should not yield a junction temperature, T_{J}, greater than $\mathrm{T}_{\mathrm{J}}(\max)$ at the maximum encountered ambient temperature. $T_{j}(\max)$ is specified for three integrated circuit packages in the maximum ratings section of this data sheet.

TABLE 1 - THERMAL CHARACTERISTICS OF "G", "L" AND "P1" PACKAGES

PACKAGE TYPE (Mounted in Socket)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ Still Air		θ JC Still Air	
	MAX	TYP	MAX	TYP
"G" (Metal Package)	220	175	70	40
"L" (Ceramic Package)	150	100	50	27
"P1" (Plastic Package)	150	100	70	40

FIGURE 18 - MAXIMUM POWER DISSIPATION versus AMBIENT TEMPERATURE (As related to package)

With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (2) or (3) and the maximum thermal resistance values given in Table 1 or alternately, by using the curves plotted in Figure 18. If, however, the power dissipation determined by a given system produces a calculated junction temperature in excess of the recommended maximum rating for a given package type, something must be done to reduce the junction temperature.

There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring T_{J} to an acceptable value. Secondly, the θ CA term can be reduced. Lowering the $\theta_{\text {CA }}$ term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

APPLICATIONS INFORMATION (continued)

The following examples illustrate the thermal considerations necessary to increase the power capability of the MMH0026.
Assume that the ceramic package is to be used at a maximum ambient temperature (T_{A}) of $+70^{\circ} \mathrm{C}$. From Table 1: $\theta_{\mathrm{JA}}($ max $)=150^{\circ} \mathrm{C} /$ watt, and from the maximum rating section of the data sheet: $\mathrm{T}_{\mathrm{J}}(\max)=+175^{\circ} \mathrm{C}$. Substituting the above values into equation (3) yields a maximum allowable power dissipation of 0.7 watts. Note that this same value may be read from Figure 18. Also note that this power dissipation value is for the device mounted in a socket.
Next, the maximum power consumed for a given system application must be determined. The power dissipation of the MOS clock driver is conveniently divided into dc and ac components. The dc power dissipation is given by:

$$
\begin{gather*}
P_{\mathrm{dc}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \times\left(\mathrm{I}_{\mathrm{CCL}}\right) \times(\text { Duty Cycle }) \tag{4}\\
\text { where } \mathrm{V}_{\mathrm{CC}}=40 \mathrm{~mA}\left(\frac{\mathrm{~V}_{\mathrm{EE}}}{20 \mathrm{~V}}\right) .
\end{gather*}
$$

Note that Figure 15 is a plot of equation (4) for three values of ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$). For this example, suppose that the MOS clock driver is to be operated with $\mathrm{V}_{\mathrm{CC}}=+16 \mathrm{~V}$ and $V_{E E}=$ GND and with a 50% duty cycle. From equation (4) or Figure 15, the dc power dissipation (per driver) may be found to be 256 mW . If both drivers withln the package are used in an identical way, the total dc power is 512 mW . Since the maximum total allowable power dissipation is 700 mW , the maximum ac power that can be dissipated for this example becomes:

$$
P_{\mathrm{ac}}=0.7-0.512=188 \mathrm{~mW}
$$

The ac power for each driver is given by:

$$
\begin{equation*}
P_{a c}=\left(V_{C C}-V_{E E}\right)^{2} \times f \times C_{L} \tag{5}
\end{equation*}
$$

where $f=$ frequency of operation
$C_{L}=$ load capacitance (including all strays and wiring).

Figure 16 gives the maximum ac power dissipation versus switching frequency for various capacitive loads with $V_{C C}=16 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$. Under the above conditions, and with the aid of Figure 16, the safe operating area beneath Curve A of Figure 19 can be generated.
Since both drivers have a maximum ac power dissipation of 188 mW , the maximum ac power per driver becomes 94 mW . A horizontal line intersecting all the capacitance load lines at the 94 mW level of Figure 16 will yield the maximum frequency of operation for each of the capacitive loads at the specified power level. By
using the previous formulas and constants, a new safe operating area can be generated for any output voltage swing and duty cycle desired.
Note from Figure 19, that with highly capacitive loads, the maximum switching frequency is very low. The switching frequency can be increased by varying the following factors:
(a) decrease T_{A}
(b) decrease the duty cycle
(c) lower package thermal resistance θ JA.

In most cases conditions (a) and (b) are fixed due to system requirements. This leaves only the thermal resistance θ JA that can be varied.
Note from equation (2) that the thermal resistance is comprised of two parts. One is the junction-to-case thermal resistance ($\theta \mathrm{JC}$) and the other is the case-toambient thermal resistance ($\theta \mathrm{CA}$). Since the factor $\theta \mathrm{JC}$ is a function of the die size and type of bonding employed, it cannot be varied. However, the $\theta_{\text {CA }}$ term can be changed as previously discussed, see Page 7.

FIGURE 19 - LOAD CAPACITANCE versus FREQUENCY FOR "L" PACKAGE ONLY
(Both drivers used in identical way)

Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 20. In the previous example, with the ceramic package, no heat sink and in a still air environment, $\theta \mathrm{JA}(\max)$ was $150^{\circ} \mathrm{C} / \mathrm{W}$. For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the θ CA for natural convection from Figure 21 is $44^{\circ} \mathrm{C} / \mathrm{W}$. From Table $1 \theta \mathrm{JC}($ max $)=50^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic

APPLICATIONS INFORMATION (continued)

FIGURE 20 - THERMALLOY* HEAT SINKS

package. Therefore, the new $\theta_{\text {JA }}(\max)$ with the 6012 B heat sink added becomes:

$$
\theta_{\mathrm{JA}}(\max)=50^{\circ} \mathrm{C} / \mathrm{W}+44^{\circ} \mathrm{C} / \mathrm{W}=94^{\circ} \mathrm{C} / \mathrm{W}
$$

Thus the addition of the heat sink has reduced $\theta_{\mathrm{JA}}($ max $)$ from $150^{\circ} \mathrm{C} / \mathrm{W}$ down to $94^{\circ} \mathrm{C} / \mathrm{W}$. With the heat sink, the maximum power dissipation by equation (3) at $T_{A}=$ $+70^{\circ} \mathrm{C}$ is:

$$
P_{D}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{94^{\circ} \mathrm{C} / \mathrm{W}}=1.11 \text { watts. }
$$

This gives approximately a 58% increase in maximum power dissipation. The safe operating area under Curve C of Figure 19 can now be generated as before with the aid of Figure 16 and equation (5).

GURE 21 - CASE TEMPERATURE RISE ABOVE NATURAL CONVECTION

Forced Air Considerations:

As illustrated in Figure 22, forced air can be employed to reduce the $\theta_{J A}$ term. Note, however, that this curve is expressed in terms of typical θ JA rather than maximum θ JA. Maximum $\theta_{\text {JA }}$ can be determined in the following manner:
From Table 1 the following information is known:
(a) $\theta \mathrm{JA}($ typ $)=100^{\circ} \mathrm{C} / \mathrm{W}$
(b) $\left.\quad \mathrm{JJC}^{(t y p}\right)=27^{\circ} \mathrm{C} / \mathrm{W}$

Since:

$$
\begin{equation*}
\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}} \tag{6}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\theta_{\mathrm{CA}}=\theta_{\mathrm{JA}}-\theta_{\mathrm{JC}} \tag{7}
\end{equation*}
$$

Therefore, in still air

$$
\theta \mathrm{CA}(\text { typ })=100^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=73^{\circ} \mathrm{C} / \mathrm{W}
$$

From Curve 1 of Figure 22 at 500 LFPM and equation (7),

$$
\theta_{\mathrm{CA}}(\text { typ })=53^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=26^{\circ} \mathrm{C} / \mathrm{W}
$$

Thus θ_{CA} (typ) has changed from $73^{\circ} \mathrm{C} / \mathrm{W}$ (still air) to $26^{\circ} \mathrm{C} / \mathrm{W}$ (500 LFPM), which is a decrease in typical θ CA by a ratio of $1: 2.8$. Since the typical value of θ CA was reduced by a ratio of $1: 2.8, \theta \mathrm{CA}($ max $)$ of $100^{\circ} \mathrm{C} / \mathrm{W}$ should also decrease by a ratio of 1:2.8.
This yields an $\theta_{C A}(\max)$ at 500 LFPM of $36^{\circ} \mathrm{C} / \mathrm{W}$.
Therefore, from equation (6):

$$
\theta_{\mathrm{JA}}(\max)=50^{\circ} \mathrm{C} / \mathrm{W}+36^{\circ} \mathrm{C} / \mathrm{W}=86^{\circ} \mathrm{C} / \mathrm{W}
$$

Therefore the maximum allowable power dissipation at 500 LFPM and $T_{A}=+70^{\circ} \mathrm{C}$ is from equation (3):

$$
P_{D}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{+86^{\circ} \mathrm{C} / \mathrm{W}}=1.2 \text { watts. }
$$

APPLICATIONS INFORMATION (continued)

FIGURE 22 - TYPICAL THERMAL RESISTANCE (θ JA) OF "L" PACKAGE versus AIR VELOCITY

As with the previous examples, the dc power at 50% duty cycle is subtracted from the maximum allowable device dissipation (P_{D}) to obtain a maximum P_{ac}. The safe operating area under Curve D of Figure 19 can now be generated from Figure 16 and equation (5).

Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of $\theta \mathrm{CA}$ for still air and forced air such as illustrated in Figure 23. For example the 6012 B heat sink has an $\theta \mathrm{CA}=17^{\circ} \mathrm{C} / \mathrm{W}$ at 500 LFPM as noted in Figure 23. From equation (6):

$$
\operatorname{Max} \theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W}+17^{\circ} \mathrm{C} / \mathrm{W}=67^{\circ} \mathrm{C} / \mathrm{W}
$$

From equation (3) at $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$

$$
\mathrm{P}_{\mathrm{D}}=\frac{175^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{67^{\circ} \mathrm{C} / \mathrm{W}} 1.57 \text { watts. }
$$

FIGURE 23 - THERMAL RESISTANCE θ CA versus AIR VELOCITY

As before this yields a safe operating area under Curve E in Figure 19.
Note from Table 1 and Figure 22 that if the 14 -pin ceramic package is mounted directly to the PC board (2 oz . cu. underneath), that typical θ JA is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine a safe operating area for this condition.
Given data from Table 1:

$$
\begin{aligned}
& \text { typical } \theta \mathrm{JA}=100^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { typical } \theta \mathrm{JC}=27^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

From Curve 2 of Figure 22, $\theta \mathrm{JA}(\mathrm{typ})$ is $75^{\circ} \mathrm{C} / \mathrm{W}$ for a PC mount and no air flow. Then the typical θ_{CA} is $75^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=48^{\circ} \mathrm{C} / \mathrm{W}$. From Table 1 the typical value of $\theta \mathrm{CA}$ for socket mount is $100^{\circ} \mathrm{C} / \mathrm{W}-27^{\circ} \mathrm{C} / \mathrm{W}=$ $73^{\circ} \mathrm{C} / \mathrm{W}$. This shows that the PC board mount results in a decrease in typical $\theta_{\text {CA }}$ by a ratio of $1: 1.5$ below the typical value of θ_{CA} in a socket mount. Therefore, the maximum value of socket mount $\theta \mathrm{CA}$ of $100^{\circ} \mathrm{C} / \mathrm{W}$ should also decrease by a ratio of $1: 1.5$ when the device is mounted in a PC board. The maximum θ CA becomes:

$$
\theta_{\mathrm{CA}}=\frac{100^{\circ} \mathrm{C} / \mathrm{W}}{1.5}=66^{\circ} \mathrm{C} / \mathrm{W} \text { for } \mathrm{PC} \text { board mount }
$$

Therefore the maximum $\theta_{\text {JA }}$ for a PC mount is from equation (6).

$$
\theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W}+66^{\circ} \mathrm{C} / \mathrm{W}=116^{\circ} \mathrm{C} / \mathrm{W}
$$

With maximum θ JA known, the maximum power dissipation can be found and the safe operating area determined as before. See Curve B in Figure 19.

CONCLUSION

In most cases, heat sink manufacturer's publish only θ CA socket mount data. Although θ CA data for PC mounting is generally not available, this should present no problem. Note in Figure 22 that an air flow greater than 250 LFPM yields a socket mount θ JA approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of θ CA on the type environment and measurement techniques employed. For example, $\theta_{\text {CA }}$ would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

INTEGRATED CIRCUITS
PACKAGING

CASE OUTLINE DIMENSIONS

The packaging availability for each device type is indicated on the individual data sheets and the Linear Selector Guide. All of the outline dimensions for the packages are given in this section. Outline dimensions for non-encapsulated standard linear device chips, flipchips, and beam-lead devices are found on the individual data sheets (see MCC, MCCF, or MCBC prefix followed by type number).

CASE 11 (TO-3)
K Suffix
Metal Package
Weight ≈ 7.4 grams

CASE 199-04

PSuffix

Plastic Package
Weight ≈ 2.48 grams

1. DIM " G " IS TO CENTER LINE OF LEADS.

CASE 79 (TO-39)
G Suffix
Metal Package
Weight ≈ 0.96 gram

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	8.89	9.40	0.350	0.370		
B	8.00	8.51	0.315	0.335		
C	6.10	6.60	0.240	0.260		
D	0.406	0.533	0.016	0.021		
E	0.229	3.18	0.009	0.125		
F	0.406	0.483	0.016	0.019		
G	4.83	5.33	0.190	0.210		
H	0.711	0.864	0.028	0.034		
J	0.737	1.02	0.029	0.040		
K	12.70	-	0.500	-		
L	6.35	-	0.250	-		
M	45^{0}		NOM	45^{0}		NOM
P	-	1.27	-	0.050		
$\mathbf{0}$	90°		NOM	90°		NOM
R	2.54	-	0.100	-		

CASE 206A
No Suffix
Plastic Package
Weight $\approx \mathbf{0 . 2}$ gram

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	3.30	3.81	0.130	0.150
C	3.43	3.94	0.135	0.155
D	0.64	0.89	0.025	0.035
F	0.20	0.30	0.008	0.012
G	1.88	2.18	0.074	0.086
H	0.64	0.89	0.025	0.035
J	1.50	1.75	0.059	0.069
K	2.92	3.18	0.115	0.125
L	15.75	16.76	0.620	0.660
M	-	10^{0}	-	10^{0}
N	1.78	2.03	0.070	0.080
S	8.64	9.65	0.340	0.380

APPLICATION NOTE ABSTRACTS

Abstract

The application notes listed in this section have been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the AN number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

AN-204A The MC1530, MC1531 Integrated Operational Amplifiers

Two new high performance monolithic operational amplifiers feature exceptionally high input impedance and high open loop gain. This note describes the function of each stage in the circuit, methods of frequency compensating and DC biasing. Four applications are discussed: a summing circuit, an integrator, a DC comparator, and transfer function simulation.

AN-226 Thermal Measurements on Semiconductors

This note describes the techniques used by Motorola to obtain the thermal resistance of transistors, rectifiers, and thyristors.

AN-245A An Integrated Core Memory Sense Amplifier

This application note discusses core memories and related design considerations for a sense amplifier. Performance and environmental specifications for the amplifier design are carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and measured performance is discussed. The amplifier features a small uncertainty region (6 mV max), adjustable voltage gain, and fast cycle time ($0.5 \mu \mathrm{~s}$).

AN-247A An Integrated Circuit RF-IF Amplifier

A new, versatile integrated circuit for RF-IF applications is introduced which offers high gain, extremely low internal feedback and wide AGC range. The circuit is a common-emitter, common-base pair (the cascade connection) with an AGC transistor and associated biasing circuitry. The amplifier is built on a very small die and is economically comparable to a single transistor, yet it offers performance advantages unobtainable with a single device. This application note describes the AC and DC operation of the circuit, a discussion of Y-parameters for calculating optimum power and voltage gain, and a variety of applications as an IF single-tuned amplifier, IF staggertuned amplifier, oscillator, video-audio amplifier and modulator. A discussion of noise figure is also included.

AN-248 The Micicisu3 Monoiitìic Operatiounai Amplifier

This note introduces a high voltage monolithic operational amplifier featuring high open loop gain,
large common mode input signal, and low drift. The function of each stage in the circuit is analyzed, and methods for frequency compensating the amplifier are discussed. DC biasing parameters are also examined. Four applications using the amplifier are discussed: a source follower, a twin tee filter and oscillator, a voltage regulator, and a high input impedance voltmeter.

AN-261A Transistor Logaritmic Conversion Using an Operational Amplifier

The design of a \log amplifier using a common base transistor configuration as the feedback element of an integrated circuit operational amplifier circuit is discussed in this application note. Six decades of logarithmic conversion are obtained with less than 1% error of output voltage. The possible causes of error are discussed followed by two applications: direct multiplication of two numbers, and solution of the equation $Z=X^{n}$.

AN-273A More Value out of Integrated Operational Amplifier Data Sheets

The operational amplifier is rapidly becoming a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also, each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input offset circuits are also reviewed with respect to closed loop operation.

AN-290B Mounting Procedure for, and Thermal Aspects of, Thermopad Plastic Power Devices

Many Motorola power devices are now available in the Plastic Thermopad packages. Three package types are presently available. This application note provides information concerning the handling and mounting of these packages, as well as information on some thermal aspects.

AN-299 An IC Wideband Video Amplifier with AGC
This application describes the use of the MC1550 as a wideband video amplifier with AGC. The analysis of a single stage amplifier with 28 dB of gain and 22 MHz bandwidth is given with the results extended to a 78 dB video amplifier with 10 MHz bandwidth.

AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier

This application note discusses four different applications for the MC1554, along with a circuit description including DC characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

AN-403 Single Power Supply Operation of IC Op Amps

A split zener biasing technique that permits use of the MC1530/1531, MC1533, and MC1709 operational amplifiers and their restricted temperature counterparts MC1430/1431, MC1433 and MC1709C from a single power supply voltage is discussed in detail. General circuit considerations as well as specific $A C$ and DC device considerations are outlined to minimize operating and design problems.

AN-404 A Wideband Monolithic Video Amplifier

This note describes the basic principles of AC and DC operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.

AN-407 A General Purpose IC Differential Output Operational Amplifier

This application note discusses four different applications for the MC1520 and a complete description of the device itself. The final sections of the note discuss such topics as operation from single and split power supplies, frequency compensation, and various feedback schemes.

AN-411 The MC1535 Monolithic Dual Op Amp

This note discusses two dual operational amplifier applications and an input compensation scheme for fast slew rate for the MC1535. A complete AC and DC circuit analysis is presented in addition to many of the pertinent electrical characteristics and how they might affect the system performance.

AN-421 Semiconductor Noise Figure Considerations

A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figure, and noise figurefrequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various methods of data sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.

AN-432B A Monolithic Integrated FM Stereo Decoder System

This application note discusses the circuit approach that has been taken in the realization of the first monolithic integrated stereo multiplex decoder built for consumer usage, as well as some of the details concerning its incorporation in an FM stereo receiver.

AN-439 MC1539 Op Amp and its Applications

This application note discusses the MC1539, a second generation operational amplifier. The general use and operation of the amplifier is discussed with special mention made of improved operation over that of its first generation predecessor-the 709 type amplifier.

In addition to the detailed discussion on the DC and AC operation of the device, considerable emphasis is placed on operational performance. Many applications are offered to demonstrate the device capability, including a high frequency feed-forward scheme, and a source follower application.

AN-453 Zero Point Switching Techniques

This note discusses two unique pulse-type thyristor triggering circuits which meet the exact timing requirements of zero-point switching. They dissipate very little power and can be used with either sensitive or "shorted" gate devices.

AN-459 A Simple Technique for Extending Op Amp Power Bandwidth

The design of fast response amplifiers is presented without the use of "tricky" compensation procedures.

AN-460 Using Transient Response to Determine Operational Amplifier Stability

Analysis and an example are given for a technique that evaluates the stability of any particular feedback amplifier configuration by analyzing its response to a step-function input.

AN-471 Analog-to-Digital Conversion Techniques

The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms from a system point of view and is intended to assist the reader in determining which conversion technique is best suited for a given application.

AN-473 A Monolithic High-Power Series Voltage Regulator

This note discusses MC1560/MC1561 voltage regulator in terms of internal operation, development of these circuits, and how they are advantageously used in supply fabrication.

AN-474 The MC1541-A Gated Dual-Channel Sense Amplifier for Core Memories

The MC1541 sense amplifier can provide many magnetic core memory systems with lower system cycle times and a lower package count than with previous sense amplifiers. Circuit operation, design considerations, interface problems and typical applications are discussed.

AN-475 Using the MC1545-A Monolithic, Gated-Video Amplifier

Because of the unique design of the MC1545, this amplifier can be used as a gated video amplifier, sense amplifier, amplitude modulator, frequency shift keyer, balanced modulator, pulse amplifier, and many other applications. This note describes the AC and DC operation of the circuit and presents applications of the device as a video switch, amplitude modulator, balanced modulator, pulse amplifier, and others.

AN-480 Regulators Using Operational Amplifiers

The theory of op amp voltage regulator design is discussed. The problem areas associated with such designs are also detailed. The MC1560 is used as a OTC voltage reference in the op amp regulator designs that are shown. It is shown that regulation from 0.01% to 0.001% is possible.

AN-489 Analysis and Basic Operation of the MC1595

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

AN-491 Gated Video Amplifier Applications The MC1545

This application note reviews the basic operation of the MC1545 and discusses some of the more popular applications for the MC1545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.

[^57]
AN-499 Shutdown Techniques for the MC1560-61/69 Monolithic Voltage Regulators

This note discusses the many ways one can use the shutdown control for the MC1560 Monolithic Voltage Regulator. These include logic control, short circuit detection, over voltage detection, junction temperature control, and thermal feedback. Also discussed, are current foldback and methods of restarting automatically from the shutdown state. The techniques discussed apply equally to the MC1560, MC1561, and MC1569 positive voltage regulators.

AN-500 Development, Analysis, and Basic Operation of the MC1560-61 Monolithic Voltage Regulators In this note, the anlysis and basic operation of the MC1560 and the MC1561 voltage regulators are discussed. The tests and parameters used on the data sheet are considered, and the problems of specifying a monolithic voltage regulator are identified. The basic circuit configurations are shown with some insight for the typical performance one can expect.

AN-513 A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

AN-522 The MC1556 Operational Amplifier and its Applications

This application note discusses the MC1556, a second generation, internally compensated monolithic operational amplifier. Particular emphasis is placed on its distinct advantages over the early 709-type amplifier and the more recent 741-type amplifier.

Along with a description of its operation this note presents a discussion on various applications of the MC1556, highlighting its capabilities, and points out its characteristics so the reader may make effective use of the device.

AN-531 MC1596 Balanced Modulator

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators for AM, SSB, and suppressed carrier AM; demodulators for the previously mentioned modulation forms; frequency doublers and $\mathrm{HF} / \mathrm{VHF}$ double balanced mixers.

AN-533 Semiconductors for Plated-Wire Memories

An introduction to the operation and electrical characteristics of plated-wire memories is provided in conjunction with the applications of semiconductors that interface with the plated-wire memories.

Devices discussed include drivers, sense amplifiers, and decoders. Memory organization and mem-ory-related semiconductor applications are also mentioned.

AN-543 Integrated Circuit IF Amplifiers for AM/FM and FM Radios

This application note discusses the design and performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.

AN-545 Television Video IF Amplifier Using Integrated Circuits

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, MC1353 and the MC1330.

AN-547 A High-Speed Dual Differential Comparator, The MC1514

This application note discusses a few of the many uses for the MC1514 dual comparator. Many applications such as sense amplifiers, multivibrators, and peak level detectors are presented.

AN-552 The Control Engineer's Guide to IC Applications

This report is a guide to the use of integrated circuits, and as such provides practical solutions to a number of common problems encountered in circuits used for sensing and control which must operate in an industrial environment. The report is divided into two parts-digital ICs and linear ICs.

AN-553 A New Generation of Integrated Avionic Synthesizers

The need to generate signals of a multitude of different frequencies for avionic systems has resulted in complex solutions in the past. With the introduction of certain standard product integrated circuits, frequency synthesis using digital phase locked loop techniques presents a more practical solution Several different types of servo phase locked loop systems are discussed and a practical design example is given. Results of design examples are presented along with possible applications.

AN-557 Analog-to-Digital Cyclic Converter

The A/D cyclic converter discussed in this note provides medium speed ($1-5 \mu \mathrm{~s} / \mathrm{bit}$) and medium accuracy (7 or 8 bits) operation. A Cyclic converter uses the successive approximation technique in which an unknown analog input voltage is successively compared to a reference voltage to determine each bit of the digital output.

AN-559 Simple RAMP A/D Converter

A simple single ramp A/D converter which incorporates a calibration cycle to insure an accuracy of 12 bits is discussed. The circuit uses standard ICs and requires only one precision part-the reference voltage used in the calibration. This converter is useful in a number of instrumentation and measurement applications.

AN-564 An ADF Frequency Synthesizer Utilizing Phase Locked-Loop Integrated Circuits

This application note describes an IC phase locked-loop frequency synthesizer suitable for the local osciallator function in aircraft Automatic Direction Finder (ADF) equipment.

AN-587 Analysis and Design of the $\mathbf{O p}$ Amp Current Source

A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented.

AN-588 A 20 kHz, 1kW Line Operated Inverter

This report describes a 1 kilowatt ultrasonic inverter for use in 208 -volt, line-operated, computer main-frame power supply systems. This particular design has an output capability of 5 Volts at 200 Amperes.

AN-589 Generate Custom Waveforms Digitally

A method of generating custom waveforms using IC counters, a read-only memory, and a new monolithic D/A Converter is described. Performance of a prototype model is noted as well as possible applications.

Abstract

AN-590 Servo Motor Drive Amplifiers The design of transformerless, AC servo amplifiers using power darlington transistors and IC op amps are discussed. Two types of power amplifiers are illustrated, one using single +28 Volt power supply, the second using high voltage transistors in complementary configuration for operating directly off the line.

Four different op amp preamplifiers and 90 phase shifters are also described.

AN-594 A Frequency Synthesizer for Aircraft Automatic Direction Finding Systems

This report describes a phase locked loop frequency synthesizer suitable as the local oscillator in an ADF system. The synthesizer is designed for receivers using a 455 kHz IF system. Motorola application note AN-564 describes a similar system for receivers using a 10.7 MHz IF.

AN-597 Power Control Using the Zero Voltage Switch

This application note discusses the advantages of zero-voltage switching using the Motorola MFC8070. A temperature control circuit is shown which demonstrates the design flexibility of CMOS and opticalcoupler combinations.

AN-599 Mounting Techniques For Metal Packaged Power Semiconductors

For cooler, more reliable operation, proper mounting procedures must be followed if the interface thermal resistance between the semiconductor package and heat sink is to be minimized. Discussed are aspects of preparing the mounting surface, using thermal compounds, and fastening techniques. Typical interface thermal resistance is given for a number of packages.

AN. 702 High Speed Digital-To-Analog and Analog-ToDigital Techniques

A brief overview of some of the more popular techniques for accomplishing D / A and A / D techniques. In particular those techniques which lead themselves to high speed conversion.

AN-703 Designing Digitally-Controlled Power Supplies

This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current. high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in any application.

AN-705 Pulse Width Modulation for Small DC Motor Control

This application note explains the use of modern pulse width modulation techniques as an efficient and economical solution to small DC motor control. Several practical circuit design approaches using discrete, operational amplifier and integrated circuit devices are described and illustrated.

AN-708 Line Driver and Receiver Considerations

This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and applications examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for almost every type of transmission system.

[^0]: *Use MCC prefix for nonencapsulated chip.
 ** Use MCBC prefix for nonencapsulated beam-lead device, use MCB prefix for beam-lead device in flat ceramic package.
 †Use MCCF prefix for nonencapsulated flip-chip.
 $\nmid_{\text {set }}=1.5 \mu \mathrm{~A},\left|\mathrm{~V}_{\mathrm{EE}}\right|=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

[^1]: *Case 648 used with commercial-temperature-range devices only

[^2]: * @ 3000 ohms, 15 pF

[^3]: \#Case 648 used with industrial-temperature-range devices only.
 *Each transistor

[^4]: \dagger Preset Voltage Range; range is adjustable by adding external resistors from ± 8.0 to $\pm 20 \mathrm{Vdc}$.

[^5]: *Limited only by the characteristics of the external series pass transistor

[^6]: *Standard chips and flip-chips are sold only in multiples of 10 or 100 . Add -1 to part number when ordering multiples of 10 ; add $\mathbf{- 2}$ to part number when ordering multiples of 100.
 \#Beam-lead devices are sold only in multiples of 5 .

[^7]: See Packaging Information Section for outline dimensions.

[^8]: *Measured with Low Pass Filter (BW = 15 kHz).

[^9]: See Packaging Information Section for outline dimensions

[^10]: See Packaging Information Section for outline dimensions.

[^11]: T1
 Primary
 Secondary $\quad 2^{1 / 2}$ turns (45 MHz tuned inpu pin \#3 open) 11/2 turns (all other fixtures) wound over primary
 Wire: $\# 26$ AWG tinned nylon acetate wound on $1 / 4^{\prime \prime}$ diameter coil form
 Core: Arnold Type TH, 1/2' long or equivalent.

[^12]: For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

[^13]: * $T_{\text {high }}=+75^{\circ} \mathrm{C}$ for MC1406L $\quad T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1406L $=+125^{\circ} \mathrm{C}$ for MC1506L $=-55^{\circ} \mathrm{C}$ for MC1506L

[^14]: See Packaging Information Section for outline dimensions.

[^15]: (1) $d V_{\text {out }} / d t=$ Slew Rate
 (2) $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1420,
 $\begin{aligned} T_{\text {high }}= & +75^{\circ} \mathrm{C} \text { for MC1420 } \\ & +125^{\circ} \mathrm{C} \text { for MC1520 }\end{aligned}$

[^16]: See Packaging Information Section for outline dimensions.

[^17]: *See figures 4 and 5 for definition of R1, R2,R3, and R4.

[^18]: ${ }^{*}{ }^{A} C L=$ Closed-Loop Gain

[^19]: ${ }^{*} T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1540 or $0^{\circ} \mathrm{C}$ for MC1440, $\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1540 or $+75^{\circ} \mathrm{C}$ for MC1440.

[^20]: Number in parenthesis denotes pin for F and L packages, number at left in each case denotes corresponding pin for G package.

[^21]: See Packaging Information Section for outline dimensions.

[^22]: *Optional Parts, See Note 3 on next page

[^23]: (1) $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1463
 $=-55^{\circ} \mathrm{C}$ for MC1563

 $$
 \text { (2) } \begin{aligned}
 \mathrm{T}_{\text {high }} & =+75^{\circ} \mathrm{C} \text { for MC1463 } \\
 & =+125^{\circ} \mathrm{C} \text { for MC1563 }
 \end{aligned}
 $$

[^24]: See Packaging information Section for outline dimensions

[^25]: (1) $T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC 1468
 (2) $\mathrm{T}_{\text {high }}=+75^{\circ} \mathrm{C}$ for MC1468
 $=-55^{\circ} \mathrm{C}$ for MC1568
 $=+125^{\circ} \mathrm{C}$ for MC1568

[^26]: ${ }^{*} \mathrm{C}_{\mathrm{i}}$ - May be required if long input leads are used.

[^27]: See Packaging Information Section for outline dimensions.

[^28]: See Packaging Information Section for outline dimensions

[^29]: *Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

[^30]: (1) $T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1712C, $T_{\text {high }}=+75^{\circ} \mathrm{C}$ for MC1712C

[^31]: $T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1741C
 (2) $\begin{aligned} T_{\text {high }} & =+75^{\circ} \mathrm{C} \text { for MC1741 } \mathrm{C} \\ & =+125^{\circ} \mathrm{C} \text { for MC1741 }\end{aligned}$ $\begin{aligned} & =-55^{\circ} \mathrm{C} \text { for MC1741 }\end{aligned}$

[^32]: See Packaging Information Section for outline dimensions.

[^33]: (1) For supply voltages less than $\pm 15 \mathrm{~V}$, the Maximum Input Voltage is equal to the Supply Voltage.
 (2) Tlow: $0^{\circ} \mathrm{C}$ for MC1748CG
 $-55^{\circ} \mathrm{C}$ for MC1748G
 $T_{\text {high: }}+75^{\circ} \mathrm{C}$ for MC1748CG
 $+125^{\circ} \mathrm{C}$ for MC1748G

[^34]: * $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1776
 $T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1776
 $0^{\circ} \mathrm{C}$ for MC 1776 C
 $+70^{\circ} \mathrm{C}$ for MC 1776 C

[^35]: See Packaging Information Section for outline dimensions.

[^36]: \#All typical values are at $V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

[^37]: FIGURE 7 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

 FIGURE 9 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE

 FIGURE 8 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

 Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

 Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

 Maximum Power Dissipation - The maximum total device dissi pation for which the regulator will operate within specifications.

 Quiescent Current - That part of the input current that is not delivered to the load.

 Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

 Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

[^38]: †Trademark of Radio Corporation of America.
 See Packaging Information Section for outline dimensions.

[^39]: This is advance information on a new introduction and specifications are subject to change without notice.
 See Packaging information Section for outline dimensions.

[^40]: See Packaging Information Section for outline dimensions.

[^41]: ${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

[^42]: \#Voltage and current values are nominal; exact values vary slightly with transistors parameters.

[^43]: See Packaging Information Section for outline dimensions

[^44]: See Packaging Information Section for outline dimensions.

[^45]: *To collector output.

[^46]: (1) $d V_{\text {out }} / d t=$ Slew Rate

[^47]: See current MC1711/1711C data sheet for additional information

[^48]: Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.

[^49]: See Packaging Information Section for outline dimensions.

[^50]: See Parkaging Information Section for outline dimensions.

[^51]: See Packaging Information Section for outline dimensions

[^52]: See Packaging Information Section for outline dimensions.

[^53]: See Packaging Information Section for outline dimensions.

[^54]: See Packaging Information Section for outline dimensions.

[^55]: See Packaging Information Section for outline dimensions.

[^56]: See Packaging Information Section for outline dimensions.

[^57]: AN-498 Voltage and Current Boost Techniques Using The MC1560-61
 The stability requirements for the current boosted MC1560-61 are discussed. Both internal and external compensation techniques are shown, along with heat-sink design information and typical circuits, including a self-oscillating switching regulator, and a voltage boost circuit.

