

MOTOROLA Semiconductor Products Inc.

INTEGRATED CIRCUITS DATA BOOK

SECOND Edition

LINEAR INTEGRATED CIRCUITS DATA BOOK

GENERAL INFORMATION

2

Product Highlights

Selector Guides

3

Previews of Upcoming Linear Integrated Circuits

Interchangeability Guide

6

7

4

Nonencapsulated Device General Information

DATA SHEET SPECIFICATIONS

... in alpha-numerical sequence by device type number, unless otherwise noted. (See Master Index for page numbers.)

Packaging Information

.

LINEAR INTEGRATED CIRCUITS DATA BOOK

Linear Integrated Circuits have achieved a level of maturity which now rivals that of their digital counterparts. In all market categories and for a wide variety of applications functions, linear ICs are serving the needs of equipment manufacturers to reduce cost and improve equipment form, factor and reliability.

They've matured, too, from the standpoint of availability. The number of off-theshelf linear circuits and their varying capabilities makes them highly useful as building blocks for system design. Moreover, the now-prevalent practice of second sourcing assures competitive pricing and quantity delivery.

The Motorola Semiconductor Products Division has been in the forefront of linear IC development since the inception of integrated circuit technology. This Linear Integrated Circuit Data Book, therefore, contains data sheets for one of the largest selections of linear ICs in the industry. Included are devices that were developed by the various Motorola R&D groups, as well as an extensive second-source inventory of the most popular circuits developed elsewhere. In addition, some of the linear ICs available as packaged units are also sold in the form of unencapsulated "chips", encompassing conventional chips (MCC prefix), beam-lead chips (MCBC prefix) and flip-chips (MCCF prefix). The chips described by data sheets included in this book are available as standard, off-the-shelf product. Other Motorola manufactured linear circuits can be obtained as conventional chips (designed for conventional wire bonding) on special order.

For easy reference, the data sheets in this book are in alpha-numeric sequence, without regard as to product category or applications. However, to provide the user with a quick overview of Motorola's complete line of standard linear ICs, the General Information section (Section I) contains a number of selector guides in which the total line has been split up into market and functional divisions. This provides a quick comparison of similar devices, spelling out the most significant differences. Other useful data included in the General Information section consists of cross-reference tables of second-source devices and other product-related information.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of any manufacturer.

Second Edition December, 1972

The following are trademarks of Motorola Inc.: MDTL, MECL, MHTL, MRTL, MTTL

LINEAR INTEGRATED CIRCUITS MASTER INDEX

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 7)
MC1303	Dual Stereo Preamplifier	3-14	7-1
MC1304	FM Multiplex Stereo Demodulator	3-14	7-5
MC1305	FM Multiplex Stereo Demodulator	3-14	7-5
MC1306	1/2-Watt Audio Amplifier	3-14	7-9
MC1307	FM Multiplex Stereo Demodulator	3-14	7-14
MC1310	Stereo Demodulator	3-14	7-18
MC1311	FM Stereo Demodulator	4-4	_
MC1312	Four-Channel SQ ⁺ Decoder	3-14	7-22
MC1313	Four-Channel SQ Decoder	3-14	7-22
MC1314	CBS SQ Logic Circuit	4-4	_
MC1315	CBS SQ Logic Circuit	4-4	_
MC1326	Dual Doubly Balanced Chroma Demodulator with RGB Output Matrix	3-13	7-25
MC1327	Dual Double Balanced Chroma Demodulator with RGB Output Matrix and PAL Switch	3-13	7-31
MC1328	Dual Doubly Balanced Chroma Demodulator	3-13	7-35
MC1330	Low-Level Video Detector	3-13	7-40
MC1339	Dual Low-Noise Stereo Preamplifier	3-14	7-44
MC1344	TV Signal Processor	4-3	
MC1345	TV Signal Processor	3-13	7-49
MC1349	IF Amplifier	3-13	7-55
MC1350	IF Amplifier	3-13, 3-14	7-60
MC1351	TV Sound Circuit	3-13	7-64
MC1352	TV Video IF Amplifier	3-13	7-68
MC1353	TV Video IF Amplifier	3-13	7-68
MC1355	Limiting FM IF Amplifier	3-14	7-74
MC1357	IF Amplifier and Quadrature Detector	3-13, 3-14	7-78
MC1358	TV Sound IF Amplifier	3-13	7-84
MC1359	TV Sound System	4-3	
MC1364	Automatic Frequency Control	3-13	7-89
MC1370	TV Chroma Subcarrier Regenerator	3-13	7-93
MC1371	TV Chroma IF Amplifier	3-13	7-99
MC1375	FM IF Circuit	4-4	_
MC1391	TV Horizontal Processor	4-3	_
MC1398	TV Color Processing Circuit	3-13	7-104
MC1406	Six-Bit Multiplying Digital-to-Analog Converter	3-8	7-126
MC1410	Video Amplifier	3-11	7-138
MC1414	Dual Differential Comparator	3-8	7-110
MC1420	Operational Amplifier	3-1	7-140
MC1430	Operational Amplifier	3-1	7-150
MC1431	Operational Amplifier	3-1	7-150
MC1433	Operational Amplifier	3-1	7-154
MC1435	Dual Operational Amplifier	3-2	7-159
MC1436	Operational Amplifier	3-1	7-164
MC1436C	Operational Amplifier	3-1	7-164
MC1437	Operational Amplifier	3-2	7-168
	·		

†Trademark of Columbia Broadcasting Systems, Inc.

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 7)
MC1438	Power Booster	3-2	7-172
MC1439	Operational Amplifier	3-1	7-178
MC1440	Core-Memory Sense Amplifier	3-4	7-186
MC1441	Sense Amplifier	3-4	7-190
MC1444	AC-Coupled 4-Channel Sense Amplifier	3-4	7-205
MC1445	Wideband Amplifier	3-11	7-213
MC1446	Plated-Wire Sense Amplifier	3-4	7-219
MC1454	1-Watt Power Amplifier	3-12	7-239
MC1456	Operational Amplifier	3-1	7-243
MC1456C	Operational Amplifier	3-1	7-243
MC1458	Operational Amplifier	3-2	7-249
MC1458C	Operational Amplifier	3-2	7-249
MC1460	Positive Voltage Regulator	3-9	7-253
MC1461	Positive Voltage Regulator	3-9	7-253
MC1463	Negative Voltage Regulator	3-10	7-265
MC1466	Voltage and Current Regulator	3-10	7-281
MC1468	Dual ± 15-Volt Tracking Regulator	3-10	7-291
MC1469	Positive Voltage Regulator	3-9	7-297
MC1488	Quad MDTL Line Driver	3-5	7-114
MC1489	Quad MDTL Line Receivers	3-7	7-120
MC1489A	Quad MDTL Line Receivers	3-7	7-120
MC1494	Four-Quadrant Multiplier	3-12	7-362
MC1495	Four-Quadrant Multiplier	3-12	7-376
MC1496	Balanced Modulator-Demodulator	3-12	7-392
MC1504	Quad Current Switch	4-5	, 002
MC1504	Six-Bit Multiplying Digital-to-Analog Converter	3-8	7-126
MC1507	A-to-D Converter Subsystem	4-5	
MC1508	Eight-Bit D-to-A Converter	4-5	_
MC1510	Video Amplifier	3-11	7-138
MC1514	Dual Differential Comparator	3-8	7-142
MC1520	Operational Amplifier	3-1	7-146
MC1530	Operational Amplifier	3-1	7-150
MC1531	Operational Amplifier	3-1	7-150
MC1533	Operational Amplifier	3-1	7-154
MC1535	Dual Operational Amplifier	3-2	7-159
MC1536	Operational Amplifier	3-1	7-164
MC1537	Operational Amplifier	3-2	7-168
MC1538	Power Booster	3-2	7-172
MC1539	Operational Amplifier	3-1	7-178
MC1540	Core-Memory Sense Amplifier	3-4	7-186
MC1540 MC1541	Sense Amplifier	3-4	7-190
MC1541 MC1543	Dual Sense Amplifier	3-4	7-198
MC1544	AC-Coupled 4-Channel Sense Amplifier	3-4	7-205
MC1545	Wideband Amplifier	3-11	7-213
MC1545 MC1546	Plated-Wire Sense Amplifier	3-11	7-213
MC1540 MC1550	RF-IF Amplifier	3-4	7-219
MC1550 MC1552	Video Amplifier	3-11	7-229
	Video Amplifier	3-11	7-235
MC1553	1-Watt Power Amplifier	3-13	
MC1554			7-239
MC1555	Adjustable Timer Operational Amplifier	4-2 3-1	- 7-243
MC1556			

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 7)
MC1558	Operational Amplifier	3-2	7-249
MC1560	Positive Voltage Regulator	3-9	7-253
MC1561	Positive Voltage Regulator	3-9	7-253
MC1563	Negative Voltage Regulator	3-10	7-265
MC1566	Voltage and Current Regulator	3-10	7-281
MC1568	Dual ±15-Volt Tracking Regulator	3-10	7-291
MC1569	Positive Voltage Regulator	3-9	7-297
MC1580	Dual Line Driver Receiver	3-5, 3-7	7-317
MC1581	Dual MECL Line Receiver	3-7	7-325
MC1582	Dual MDTL, MTTL Line Driver	3-5	7-331
MC1583	Dual Saturated Logic Receiver	3-7	7-337
MC1584	Dual MDTL, MTTL Receiver	3-7	7-344
MC1585	Dual MOS Clock Driver	3-6	7-351
MC1590	Wideband Amplifier with AGC	3-11	7-356
MC1594	Four-Quadrant Multiplier	3-12	7-362
MC1595	Four-Quadrant Multiplier	3-12	7-376
MC1596	Balanced Modulator-Demodulator	3-12	7-392
MC1709	Operational Amplifier	3-1	7-402
MC1709C	Operational Amplifier	3-1	7-402
MC1710	Differential Comparator	3-8	7-406
MC1710C	Differential Comparator	3-8	7-410
MC1711	Dual Differential Comparators	3-8	7-412
MC1711C	Dual Differential Comparators	3-8	7-416
MC1712	Wideband DC Amplifier	3-1	7-420
MC1712C	Wideband DC Amplifier	3-1	7-420
MC1723	Positive Voltage Regulator	3-9	7-424
MC1723C	Positive Voltage Regulator	3-9	7-424
MC1733	Differential Video Amplifier	3-11	7-430
MC1733C	Differential Video Amplifier	3-11	7-430
MC1741	Operational Amplifier	3-1	7-436
MC1741C	Operational Amplifier	3-1	7-436
MC1741S	Operational Amplifier	4-2	- 1
MC1747	Dual Operational Amplifier	3-2	7-440
MC1747C	Dual Operational Amplifier	3-2	7-440
MC1748	Operational Amplifier	3-1	7-444
MC1748C	Operational Amplifier	3-1	7-444
MC1776	Programmable Low-Power Operational Amplifier	4-2	-
MC3301	Quad Operational Amplifier	3-2, 3-14	7-446
MC3302	Quad Comparator	3-8, 3-14	7-454
MC3401	Quad Operational Amplifier	3-2	7-456
MC5528	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-3	7-464
MC5529	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-3	7-464
MC5534	Dual Sense Amplifiers with Inverted Outputs	3-3	7-467
MC5535	Dual Sense Amplifiers with Inverted Outputs	3-3	7-467
MC5538	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-3	7-470
MC5539	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-3	7-470
MC7520	Dual Sense Amplifiers	3-3	7-473
MC7521	Dual Sense Amplifiers	3-3	7-473
MC7522	Dual Sense Amplifiers	3-3	7-473
		1	I

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 7)
MC7523	Dual Sense Amplifiers	3-3	7-473
MC7524	Dual Sense Amplifiers	3-3	7-476
MC7525	Dual Sense Amplifiers	3-3	7-476
MC7528	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-3	7-464
MC7529	Dual High-Speed Sense Amplifier with Preamplifier Test Points	3-3	7-464
MC7534	Dual Sense Amplifiers with Inverted Outputs	3-3	7-467
MC7535	Dual Sense Amplifiers with Inverted Outputs	3-3	7-467
MC7538	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-3	7-470
MC7539	Dual High-Speed Sense Amplifier with Preamplifier Test Points and Inverted Outputs	3-3	7-470
MC7805C‡	Positive Voltage Regulator	3-9	-
MC7806C‡	Positive Voltage Regulator	3-9	-
MC7808C‡	Positive Voltage Regulator	3-9	-
MC7812C‡	Positive Voltage Regulator	3-9	-
MC7815C‡	Positive Voltage Regulator	3-9	-
MC7818C‡	Positive Voltage Regulator	3-9	_
MC7824C‡	Positive Voltage Regulator	3-9	_
MC55107	Dual Line Receivers	3-7	7-478
MC55108	Dual Line Receivers	3-7	7-478
MC55109	Dual Line Drivers	3-5	7-483
MC55110	Dual Line Drivers	3-5	7-483
MC55325	Dual Memory Driver	3-6	7-490
MC75107	Dual Line Receivers	3-7	7-478
MC75108	Dual Line Receivers	3-7	7-478
MC75109	Dual Line Drivers	3-5	7-483
MC75110	Dual Line Drivers	3-5	7-483
MC75113	Differential Party-Line Driver	3-5	7-492
MC75325	Dual Memory Driver	3-6	7-490
MC75450	Dual Peripheral Driver	3-6	7-496
MC75451	Dual Peripheral Driver	3-6	7-501
MC75452	Dual Peripheral Driver, Positive NAND	4-6	-
MC75453	Dual Peripheral Driver, Positive OR	4-6	-
MC75454	Dual Peripheral Driver, Positive NOR	4-6	-
MC75491	MOS-to-VLED Segment and Digit Quad Driver	4-6	-
MC75492	MOS-to-VLED Segment and Digit Hex Driver	4-6	-
MCB1709	Operational Amplifier (encapsulated Beam-Lead)	3-1	7-504
MCB1710	Differential Comparator (encapsulated Beam-Lead)	3-8	7-508
MCB1723	Voltage Regulator (encapsulated Beam-Lead)	3-9	7-510
MCB1741	Operational Amplifier (encapsulated Beam-Lead)	3-1	7-512
MCB1748	Operational Amplifier (encapsulated Beam-Lead)	3-1	7-516
MCBC1709	Operational Amplifier (non-encapsulated Beam-Lead)	3-1	7-504
MCBC1710	Differential Comparator (non-encapsulated Beam-Lead)	3-8	7-508
MCBC1723	Voltage Regulator (non-encapsulated Beam-Lead)	3-9	7-510
MCBC1741	Operational Amplifier (non-encapsulated Beam-Lead)	3-1	7-512
MCBC1748	Operational Amplifier (non-encapsulated Beam-Lead)	3-1	7-516
MCC1436	Operational Amplifier (Chip)	3-1	7-518
MCC1439	Operational Amplifier (Chip)	3-1	7-520
MCC1458	Dual Operational Amplifier (Chip)	3-1	7-522
MCC1463	Negative Voltage Regulator (Chip)	3-10	7-524
MCC1469	Positive Voltage Regulator (Chip)	3-9	7-526

‡For complete Data Sheet information please contact your Motorola distributor or salesman.

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 7)
MCC1495	Four-Quadrant Multiplier (Chip)	3-12	7-528
MCC1536	Operational Amplifier (Chip)	3-1	7-518
MCC1539	Operational Amplifier (Chip)	3-1	7-520
MCC1558	Dual Operational Amplifier (Chip)	3-1	7-522
MCC1563	Negative Voltage Regulator (Chip)	3-10	7-524
MCC1569	Positive Voltage Regulator (Chip)	3-9	7-526
MCC1595	Four-Quadrant Multiplier (Chip)	3-12	7-528
MCC1709	Operational Amplifier (Chip)	3-1	7-530
MCC1709C	Operational Amplifier (Chip)	3-1	7-530
MCC1710	Differential Comparator (Chip)	3-8	7-532
MCC1710C	Differential Comparator (Chip)	3-8	7-532
MCC1711	Dual Differential Comparator (Chip)	3-8	7-534
MCC1711C	Dual Differential Comparators (Chip)	3-8	7-534
MCC1723	Positive Voltage Regulator (Chip)	3-9	7-536
MCC1723C	Positive Voltage Regulator (Chip)	3-9	7-536
MCC1741	Operational Amplifier (Chip)	3-1	7-538
MCC1741C	Operational Amplifier (Chip)	3-1	7-538
MCC1748	Operational Amplifier (Chip)	3-1	7-540
MCC1748C	Operational Amplifier (Chip)	3-1	7-540
MCCF1458	Operational Amplifier (Flip-Chip)	3-2	7-542
MCCF1558	Operational Amplifier (Flip-Chip)	3-2	7-542
MCCF1709	Operational Amplifier (Flip-Chip)	3-1	7-544
MCCF1709C	Operational Amplifier (Flip-Chip)	3-1	7-544
MCCF1741	Operational Amplifier (Flip-Chip)	3-1	7-546
MCCF1741C	Operational Amplifier (Flip-Chip)	3-1	7-546
MCH2005	Darlington Power Driver	3-12	· _ ·
MCH2870C	Power Operational Amplifier	3-2	7-548
MCH2870M	Power Operational Amplifier	3-2	7-548
MCH2890	Dual Power Driver	3-12	7-554
MFC4000B	¼-Watt Audio Amplifier	3-14	7-558
MFC4010A	Wideband Amplifier	3-14	7-561
MFC4040	Single Toggle Flip-Flop	3-15	7-565
MFC4050	Audio Driver	3-14	7-567
MFC4060A	Voltage Regulator	3-9	7-570
MFC4062A	Voltage Regulator	3-9	7-570
MFC4063A	Voltage Regulator	3-9	7-570
MFC4064A	Voltage Regulator	3-9	7-570
MFC6010	FM IF Amplifier	3-14	7-572
MFC6020	Dual Toggle Flip-Flop	3-15	7-576
MFC6030A	Voltage Regulator	3-9	7-578
MFC6032A	Voltage Regulator	3-9	7-578
MFC6033A	Voltage Regulator	3- 9	7-578
MFC6034A	Voltage Regulator	3-9	7-578
MFC6040	Electronic Attenuator	3-15	7-582
MFC6050	Dual Toggle Flip-Flop with Reset	3-15	7-585
MFC6060	3-Input AND Gate	3-15	7-587
MFC6070	Audio Power Amplifier	3-14	7-589
MFC6080	R-S Flip-Flop	3-15	7-595
MFC8000	Dual Differential Amplifier	-	7-597
MFC8001	Dual Differential Amplifier	-	7-597
1011 COUDT			

Device Type Number	Circuit Function Description	Selector Guide (Section 3) or Circuit Previews (Section 4) Page No.	Data Sheet Page No. (Section 7)
MFC8010	Audio Power Amplifier	3-14	7-599
MFC8020A	Class B Audio Driver	3-14	7-602
MFC8021A	Class B Audio Driver	3-14	7-602
MFC8022A	Class B Audio Driver	3-14	7-602
MFC8030	Differential Cascode Amplifier	_	7-606
MFC8040	Audio Preamplifier	3-14	7-608
MFC8050	J-K Flip-Flop	3-15	7-611
MFC8070	Zero Voltage Switch	3-12	7-613
MFC9020	Audio Amplifier	3-14	7-617
MHP401	MOS Clock Driver	3-6	7-621
MLM101A	Operational Amplifier	3-1	7-624
MLM104	Negative Voltage Regulator	3-10	7-626
MLM105	Positive Voltage Regulator	3-9	7-628
MLM107	Operational Amplifier	3-1	7-630
MLM108A Series	Operational Amplifiers	4-2	_
MLM109K	Voltage Regulator	3-9	7-632
MLM111 Series	Voltage Comparators	4-6	-
MLM201A	Operational Amplifier	3-1	7-624
MLM204	Negative Voltage Regulator	3-10	7-626
MLM205	Positive Voltage Regulator	3-9	7-628
MLM207	Operational Amplifier	3-1	7-630
MLM209K	Voltage Regulator	3-9	7-632
MLM210	Operational Amplifier	3-1	7-634
MLM301A	Operational Amplifier	3-1	7-624
MLM304	Negative Voltage Regulator	3-10	7-626
MLM305	Positive Voltage Regulator	3-9	7-628
MLM307	Operational Amplifier	3-1	7-630
MLM309K	Voltage Regulator	3-9	7-632
MLM310	Operational Amplifier	3-7	7-634
MLM310 MMH0026	Operational Amplither Dual MOS Clock Driver	3-7 4-6	

UNDERSTANDING MOTOROLA'S DEVICE NUMBERING SYSTEM

A great deal of information is given in the device number on Motorola ICs. This section will present the meanings of the prefixes, numbers and suffixes used to designate Motorola linear ICs. Normally the package style and operating temperature range may be obtained from the device number.

Although there are exceptions to many of the codes listed below, these codes are generally true and can provide the user with pertinent information on the particular device type.

Prefix

MC Packaged Integrated Circuits

- MCC Unencapsulated Integrated Circuit chips
- MFC Low cost Integrated Circuits packaged in Motorola's unique "Functional Circuits" plastic package. (Package suffix not used in this device series.)
- MCBC Beam-lead Integrated Circuit chips
- MCB Packaged Beam-lead Integrated Circuits. (Followed by F suffix when in flat pack.)
- MCCF Flip-Chip Linear Integrated Circuits
- MLM Pin-for-pin equivalent to Linear Integrated Circuits made by National Semiconductor
- MCH Hybrid Integrated Circuit in hermetic package
- MHP Hybrid Integrated Circuit in plastic package

Body Number for Motorola Proprietary Devices

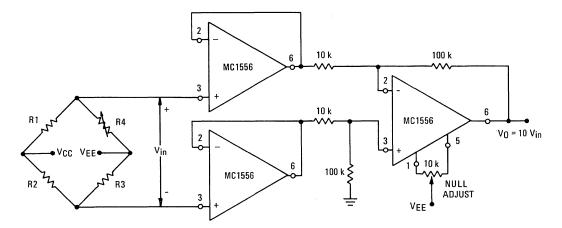
1500-1599 Military temperature grade (-55 to +125°C) Linear ICs

1400-1499 Equivalent to devices above but with Industrial temperature range (0 to $+70^{\circ}$ C) 3400-3399

1300-1399 Linear ICs aimed at the Consumer industry 3300-3399

Package Suffix

- L Ceramic dual in-line case (14 or 16 pin)
- G Metal can package (TO-5 types)
- R Metal power package (TO-66 type)
- K Metal power package (TO-3 type)
- F Flat package
- P Plastic package
- P1, P2 Used when an IC is available in more than one plastic package. i.e. P1 = 8 lead plastic DIP, P2 = 14 pin plastic DIP
- PO ICs packaged in staggered-lead plastic DIP packages (Consumer device types only)
- C Designates limited temperature, or limited performance device. Followed by package designation suffix, i.e. MC1709CL
- A Designates improved or modified IC type, followed by package suffix, i.e. MC1489AL.


... A small cross-section of new and/or unique devices from Motorola's extensive linear IC product lines that merit special attention.

OPERATIONAL AMPLIFIERS

The operational amplifier has always been the most popular and versatile Linear IC type. Op amps have found wide usage in control circuitry, signal processing equipment, active filters for communications systems, Modems, and many other types of equipment. With the addition of a few external components, this basic feedback type amplifier can be transformed into a multitude of functions ranging from summing amplifiers and simple inverters to integrating amplifiers and Sample and Hold circuits.

Motorola offers a broad line of op amp types. Both proprietary and popular industry-standard types are covered. The range of high precision to low cost plastic-packaged multiple op amps is spanned by over 45 device types. Two representative devices are discussed here. An overview of the entire line appears on page 3–1.

HIGH IMPEDANCE BRIDGE AMPLIFIER

Precision Op Amp (MC1556/1456)

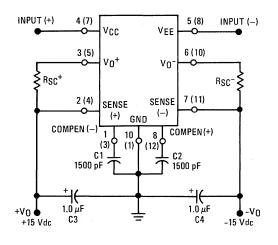
When very high source impedance and high slew rate requirements must be met with an op amp, the MC1556 is a logical choice. This advanced op amp uses super-beta bipolar input transistors to dramatically reduce input bias current (15 mA max). In the past, these low current ratings could be achieved only through the use of field-effect transistors at the input. However, unlike FET input op amps, the super-beta approach does not require that offset voltage drift with temperature be compromised to obtain the low bias currents.

Other features of the MC1556 include a large

power bandwidth of 40 kHz typical, a typical voltage gain of 200,000, low power consumption of 45 mW max, offset-voltage zeroing capability, and output short-circuit and input overvoltage protection. Unity gain slew rate is 2.5 V/ μ s and input offset voltage is 2.0 mV.

Applications include summing, high-impedance bridge, and logarithmic amplifiers. The MC1556 can also be used as a high input-impedance, high-speed voltage follower. In this application, the device shows high tolerance to common-mode voltages at its input, and has a well-balanced large-signal response.

BASIC BANDPASS AND NOTCH FILTER


Lowest Cost Quad Op Amp (MC3301/3401)

At a time when ultra-performance op amps for specialized applications make up the majority of new introductions, a need exists for a low cost, modest performance op amp for industrial and automotive uses. The MC3301/MC3401 provides four such amplifiers in a single plastic package and at cost of less than a dollar in 100-up quantities. The new device is intended for use in industrial control systems and active filters in communication systems. It operates from the power supply voltages commonly available in these systems. Specifically, the device can be used with 4 to 28 Vdc power supplies without the common mode input voltage problems usually encountered when conventional op amps are operated from a single power supply. Output voltage swing is approximately one volt less than the power supply voltage, while channel separation between the individual amplifiers within a package is 65 dB at 1 kHz.

A number of common applications such as logic gates, differentiators, flip-flops, and multivibrators are given on the device data sheets.

VOLTAGE REGULATORS

The sensitivity of semiconductor devices to voltage and temperature changes makes the voltage regulator circuit an important integral part of many critical systems and subsystems. Today's designer has considereable choice in integrated regulators, with a variety of characteristics, capabilities, and prices. The integrated circuit voltage regulator offers ease of design, simplified assembly and improved performances over discrete transistor designs. Motorola offers a series of IC voltage regulators with a variety of specifications, see page 3-10. Highlighted here are two circuits that merit special attention.

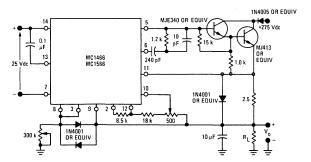
BASIC 50-mA REGULATOR

Op Amp Companion

Most IC operational amplifiers and analog multipliers require symmetrical ± 15 V power supplies. Although a multitude of low-cost IC op amps are now available, the new MC1568 is one of the first low-cost IC voltage regulators specifically designed to supply the required symmetrical voltages. This monolithic dual tracking regulator is preset for ± 15 V (within ± 200 mV) although it may be programmed to outputs of ± 14.5 V through ± 20 V by adding two suitable external resistors. At ± 15 V, the absolute value of output voltages agree within a maximum of 1%.

Thus the designer needs only one IC package, a few passive components (no precision resistors) and a transformer-rectifier assembly capable of providing between ± 17 and ± 30 V to obtain the ± 15 V power source for control circuitry. Without external current boosting transistors, this regulator can provide output currents up to ± 100 mA, sufficient for most op amp applications. The device features remote sensing and externally adjustable current limiting.

Unique "Floating" Regulator


While most IC voltage regulators are limited to output voltages less than 50 V and output currents below a few amperes, the MC1566 uses a unique approach that has virtually no limits in the range of practical applications.

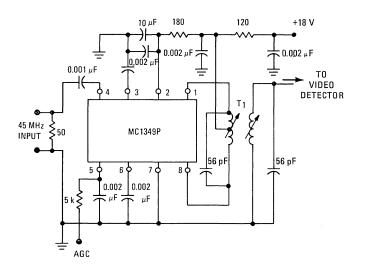
The regulator is designed to control an external power transistor and will operate at any voltage or current level that the power transistor can handle. In addition, performance is on the level of laboratory-type supplies.

Some of the features of the circuit include: voltage and/or current adjustable to zero, automatic crossover (goes from constant voltage to constant current regulation – not just current limiting), remote sensing, remote programming, line voltage regulation of 0.01% + 1 mV, load voltage regulation 0.01% + 1 mV, current regulation 0.1% + 1 mA, and a temperature coefficient that is typically 0.004%°C.

The high voltage capability is due to the "floating" nature of the circuit, with operating voltage for the circuit obtained from a separate, isolated supply (about 25 Vdc). Voltage regulation is accomplished by comparing the power output voltage to a reference voltage generated by passing

an adjustable current through a voltage-setting resistor. Since the entire output voltage is compared to the reference voltage, the MC1566L always operates at maximum loop gain, establishing excellent regulation over the entire voltage range.

Since the series pass transistor is external to the integrated circuit, power dissipation of the IC is constant, preventing degradation of regulation due to heating.


Linear IC Highlights (continued) ENTERTAINMENT CIRCUITS

The high-volume, low-cost, and highly specialized requirements of the electronic components for consumer entertainment equipment matches the capabilities of today's linear ICs. A great variety of the necessary functional blocks for television, stereo phonographs, and radio receivers is now available in low-cost plastic-packaged ICs. The need for improved performance and increased reliability and, at the same time, for a lower selling price, is met by state-of-the-art monolithic circuits.

Motorola's traditional leadership in plastic transistors for the customer electronics industry is being extended with a complete lineup of low-cost ICs for those functions which can best be accomplished with monolithic integrated circuits. Both original innovative designs and popular second-source devices which have been well accepted by the industry are included in this diverse family of products. Some typical examples are highlighted here.

For Television alone, Motorola offers better than 20 different types of ICs to give the designer a wide choice of performance levels and partitioning approaches. To aid in the parade toward fully solid-state sets, Motorola offers ICs for the video IF amplifier and detector, AFT, chroma processor and detector, audio stages, and a combination device which supplies AGC, sync separator and noise-suppression circuitry. Often these ICs permit circuit complexity and performance which would not be technically and economically practical with discrete components.

A selector guide to ICs for use in television sets is provided on page 3-13.

An Improved Video IF Amplifier

Packed into a small 8-lead plastic package, the MC1349 is intended for use as the video IF amplifier in television receivers. To meet the stringent AGC requirements of video amplifiers imposed by the wide range of television signal levels in most locations, the device is designed to provide a' minimum AGC range of 80 dB. Other features of the new IC are typical power gain of 60 dB at 45 MHz and a low noise figure of 8.5 dB measured at 45 MHz and 15 dB of AGC reduction.

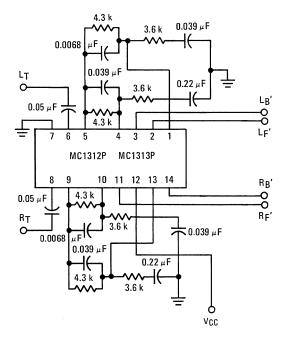
The MC1349 is an improved version of the popular MC1350. The new device offers higher

gain, a lower noise figure and a greater AGC range. Another circuit improvement permits the MC1349 to be used in video amplifiers which use untuned input configurations.

The unique design of the new IC permits the input amplifier stage to serve both as an IF amplifier and as an AGC amplifier for the output section.

To provide the user with needed design information, the device data sheet includes admittance parameter data for common AM/FM radio and television IF frequencies.

For Audio . . .


Linear ICs are rapidly penetrating the audio amplifier stages of television, radio, and stereo phonographs. Both low level and power amplifier applications are realizing greater performance and lower total cost due to the reduced assembly requirements and the ability to use more complex circuitry with these advanced ICs. A wide range of IC types permits the designer a wide lattitude of flexibility to create the exact system performance and costs he requires.

New Audio devices include . . .

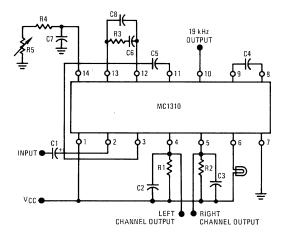
• The new MC1339 replacement for the popular 239 type preamplifier has joined the existing MC1303 stereo preamp.

• Power audio amplifiers are presently limited to about two-watt levels, although higher power units are on the drawing boards.

■ Highlighted below is Motorola's entry into the Quad-Stereo field. This unit is the first in a series of four channels ICs. Upcoming quad-stereo products are previewed on page 4–1.

An IC for the Quad Sound

The quad sound is the newest trend in audio! To meet this trend, Motorola has introduced the MC1312/1313 quadraphonic decoder – the first IC for the CBS developed SQ matrix system.


The device consists of two preamplifiers which are fed with left total, L_T , and right total, R_T , signals. The preamplifiers each feed two all-pass networks which are used to generate two L_T signals in quadrature and two R_T signals in quadrature. The four signals are matrixed to yield left front, left back, right front, and right back signals (L_F^{\prime} , L_R^{\prime} , R_R^{\prime}).

The MC1312 is expected to find wide use in low-cost audio equipment and, with the addition of logic circuitry to enhance quadraphonic separation, it may be used in even the most sophisticated "component type" systems. The MC1313 version is specifically intended for use in automotive audio equipment.

For Radio

Two sections in FM radios have lent themselves well to integration: The IF amplifier and detector, and the stereo multiplex decoder sections. In both high-quality tuners and in low-priced table radios, the high performance of these ICs and lower assembly costs they make possible, permit more efficient designs.

Specifically highlighted is a new stereo decoder which promises to become the new industry standard decoder circuit. Other devices for use in both AM and FM radio are listed in the selector guide on page 3–14.

No coils needed with this Stereo Decoder

The new MC1310 is the second generation stereo decoder circuit. This decoder provides high performance, low external parts count and reduced alignment requirements. It requires no tuned circuits and only one non-critical adjustment is necessary after assembly. Until now, IC decoders usually required three tuned circuits which had to be adjusted at the factory in each individual stereo tuner. Performance could be degraded if any one of the tuned circuits became detuned due to vibration or component aging. By eliminating the tunable inductors, the new circuit offers a significant savings in component and assembly costs and improved long term performance.

The new device makes use of the advanced phase locked loop principle to lock onto the 19 kHz pilot signal provided by the stereo broadcaster and to create a signal which is in phase with the pilot signal and of exactly double the frequency. This 38 kHz subcarrier is then used to demodulate the stereo information.

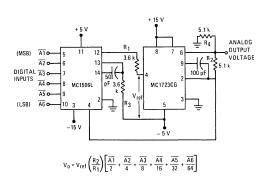
An automatic stereo-mono switching circuit is provided to disable the decoder during monaural broadcasts or weak stereo broadcasts. This switch also controls a lamp driver which employs 6 dB of hysteresis to avoid flickering of the stereo indicator lamp due to variations in signal level.

Performance of the new decoder is as good or better than the usual frequency doubler type of stereo demodulators. Stereo separation is 40 dB at 1 kHz with total harmonic distortion at typically 0.3% for a 560 mV level of composite input.

INTERFACE CIRCUITS

Interface circuits is the name applied to devices that operate with both linear signals and digital logic levels. Most have both linear and digital properties. Examples of interface circuits are D/A and A/D converters, memory sense amplifiers, comparators, and line driver and receivers.

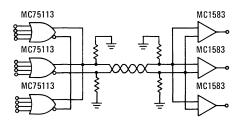
The rapidly expanding fields of data communications and digital instrumentation make wide use of these interface devices. Line drivers, and receiver, for example, are used whenever data must be transmitted over long distances in a computer or piece of peripheral equipment. Also, the industry standard MC1488-89 devices provide the level translation between a Modem and a computer terminal in accordance with the EIA RS-232C specifications. Likewise comparators are used as voltage level detectors in control and instrumentation applications.


Motorola offers a broad line of interface circuits. Two of the newest interface devices are discussed below while the complete lineup is outlined beginning on page 3–3.

New Line Driver for Computer Systems

The MC75113 was primarily designed to be used for transmitting data at high speeds over long distances in systems where numerous drivers and receivers share a common twisted-pair line in a "Party-Line" mode.

The device provides two output currents of equal but opposite polarities. This technique offers several advantages over most IC drivers employing a single polarity output current. With the matched currents used in the MC75113, both wires in the twisted pair transmission line carry equal and opposite currents thereby minimizing cross-talk radiation. Likewise, the matched currents reduce ground loop currents which can generate voltages that reduce the useful common mode range of drivers and receivers in a system.


This new technique produces twice the differential voltage at the opposite end of the transmission line as single-ended drivers of equal

A Low Cost D/A Converter

Most D/A converters are either hybrid or modular units. This often prevents them from selling at a modest price. However, the MC1506, 6-bit converter uses a high-yield monolithic fabrication technique whereby literally hundreds of units are built on a single silicon wafer. This allows the MC1506 to sell for much less than many comparable units.

The MC1506 uses the popular R-2R resistor ladder network whose stringent requirements have

output rating, thus promoting reduced data errors and greater noise immunity.

Specifically, the MC75113 features a TTL compatible four input OR gate and output currents of nominally ± 20 mA.

prevented their manufacture on the same chip with the active devices in the past. In order to use diffused resistors, unique design techniques were adopted to avoid variations in conversion speed due to the parasitic capacitances associated with diffused resistors.

A current mode output was chosen for the IC converter rather than a voltage mode output to allow faster conversion speed. Nevertheless, a voltage output is easily obtained by adding an external operational amplifier. The device may also be used as a digitally-controlled attenuator to produce the product of a digital word and an analog signal which is applied to the reference input. This is possible due to the "multiplying" nature of the converter.

In particular, the MC1506 features TTL and DTL compatible inputs and a relative accuracy of at least 0.78% over a range of -55 to 125° C. Output current drift is held to about $0.002\%^{\circ}$ C and the output current is 2.0 mA maximum. Settling time to within 1/2 of the least significant bit is 200 ns.

Several other products are planned in the A/D, D/A area. An 8-bit D/A converter and a control element for use with a D/A converter to produce an A/D converter are previewed on page 4-5.

OPERATIONAL AMPLIFIERS

Motorola offers a broad line of operational amplifiers to meet a wide range of usages. From low-cost, industry standard types to high precision circuits the span encompasses a large range of performance capabilities. These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of package styles as well as standard and beam-lead chips.

OPERATIONAL AMPLIFIERS

Listed in order of increasing input bias current within temperature group. (See reverse side of sheet for dual and quad operational amplifiers and drivers.) INTERNALLY COMPENSATED

ι _I Β	VIO .	10	Avol	, vo e		VCC, VEE	fc	BWp	SR	Case	T		
	(mV max)			(Vpk min)	(kΩ)	(Vdc)	(MHz typ)	(kHz typ)	(V/µs typ)	Case	Туре		
55 to +12	5°C Temp	erature Ra	inge										
0.015	4.0	2.0	100,000	12	2.0	±15	1.0	40	2.5	601	MC1556		
0.02	5.0	3.0	100,000	22	5.0	±28	1.0	23	2.0	601	MC1536*		
0.075	2.0	10	50,000	10	2.0	±15	1.0	10	0.5	601	MLM107		
0.5	5.0	200	50,000	10	2.0	±15	1.0	10	0.8	601,606,632,665**	MC1741***		
25 to +85	i°C Temper	ature Ran	ige										
0.003	4.0		Unity	10	10	±15	20	300	30	601	MLM210		
0.075	2.0	10	50,000	10	2.0	±15	1.0	10	0.5	601	MLM207		
) to +70°(C Temperat	ure Range											
0.007	7.5	-	Unity	10	10	±15	20	300	30	601	MLM310		
0.03	10	10	70,000	11	2.0	±15	1.0	40	2.5	601	MC1456		
0.04	10	10	70,000	20	5.0	±28	1.0	23	2.0	601	MC1436*		
0.09	12	30	25,000	10	2.0	±15	1.0	40	2.5	601	MC1456C		
0.09	12	25	50,000	20	5.0	±28	1.0	23	2.0	601	MC1436C		
0.25	7.5	50	25,000	10	2.0	±15	1.0	10	0.57	601	MLM307		
0.5	6.0	200	20,000	10	2.0	±15	1.0	10	0.8	601,606,626,632,646	MC1741C*		
IONICOM	DENISATE												
IONCOMPENSATED													
lip	Vio	lin	Aust	V o é	a Ri &	VCC VEE	l fa	I BW	SR I				
l _{IB} (μA max)	VIO (mV max)	lO (nA max)	A _{vol} (V/V min)		⊇ RL8. (kΩ)	VCC, VEE (Vdc)	^f c (MHz typ)		SH (V/μs typ)	Case	Туре		
(µA max)		(nA max)	(V/V min)							Case	Туре		
(µA max)	(mV max)	(nA max)	(V/V min)							Case	Type MLM101A		
(µA max) 55 to +12	(mV max) 5°C Temp	(nA max) erature Ra	(V/V min) Inge	(V _{pk} min)	(kΩ)	(Vdc)	(MHz typ)	(kHz typ)	(V/µs typ)				
(µA max) 55 to +12 0.075	(mV max) 5°C Temp 2.0	(nA max) erature Ra	(V/V min) inge 50,000	(V _{pk} min)	(kΩ) 2.0	(Vdc) ±15	(MHz typ)	(kHz typ) 10	(V/μs typ) 0.5	601	MLM101A		
(µA max) 55 to +12 0.075 0.15	(mV max) 25°C Temp 2.0 10	(nA max) erature Ra 10 25	(V/V min) inge 50,000 2,500	(V _{pk} min) 10 4.5	(kΩ) 2.0 1.0	(Vdc) ±15 ±6.0	(MHz typ) 1.0 2.0	(kHz typ) 10 100	(V/µs typ) 0.5 1.4	601 6028,606	MLM101A MC1531 MC1539*		
(μA max) 55 to +12 0.075 0.15 0.5	(mV max) 25°C Temp 2.0 10 3.0	(nA max) erature Ra 10 25 60	(V/V min) inge 50,000 2,500 50,000	(V _{pk} min) 10 4.5 10	(kΩ) 2.0 1.0 1.0	(Vdc) ±15 ±6.0 ±15	(MHz typ) 1.0 2.0 2.0	(kHz typ) 10 100 50	(V/µs typ) 0.5 1.4 4.2	601 6028,606 601,632	MLM101A MC1531 MC1539*		
(μA max) 55 to +12 0.075 0.15 0.5 0.5	(mV max) 25°C Temp 2.0 10 3.0 5.0	(nA max) erature Ra 10 25 60 200	(V/V min) inge 50,000 2,500 50,000 50,000	(V _{pk} min) 10 4.5 10 10	(kΩ) 2.0 1.0 1.0 2.0	(Vdc) ±15 ±6.0 ±15 ±15	(MHz typ) 1.0 2.0 2.0 1.0	(kHz typ) 10 100 50 10	(V/μs typ) 0.5 1.4 4.2 0.8	601 6028,606 601,632 601,606**	MLM101A MC1531 MC1539* MC1748**		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 0.5	(mV max) 25°C Temp 2.0 10 3.0 5.0 5.0	(nA max) erature Ra 10 25 60 200 200	(V/V min) inge 50,000 2,500 50,000 50,000 25,000	(V _{pk} min) 10 4.5 10 10 10	(kΩ) 2.0 1.0 1.0 2.0 2.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±15	(MHz typ) 1.0 2.0 2.0 1.0 0.5	(kHz typ) 10 100 50 10 4.0	(V/μs typ) 0.5 1.4 4.2 0.8 0.25	601 6028,606 601,632 601,606** 601,606,632,665**	MLM101A MC1531 MC1539* MC1748** MC1709**		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0	(mV max) 25°C Temp 2.0 10 3.0 5.0 5.0 5.0 5.0	(nA max) erature Ra 10 25 60 200 200 150	(V/V min) inge 50,000 2,500 50,000 50,000 25,000 40,000	(V _{pk} min) 10 4.5 10 10 10 11	(kΩ) 2.0 1.0 1.0 2.0 2.0 2.0 2.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±15 ±15 ±15	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8	(kHz typ) 10 100 50 10 4.0 2.0	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632	MLM101A MC1531 MC1539* MC1748** MC1709*** MC1533		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0 2.0	(mV max) 25°C Temp 2.0 10 3.0 5.0 5.0 5.0 5.0 10	(nA max) erature Ra 10 25 60 200 200 150 100	(V/V min) inge 50,000 2,500 50,000 50,000 25,000 40,000 1,000	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5	(kΩ) 2.0 1.0 2.0 2.0 2.0 7.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±15 ±15 ±6.0	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8 10	(kHz typ) 10 100 50 10 4.0 2.0 150	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6024,606	MLM101A MC1531 MC1539 • MC1748 • • MC1709 • • • MC1533 MC1520		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0 2.0 5.0 10	(mV max) 20 10 3.0 5.0 5.0 5.0 10 2.0	(nA max) erature Ra 10 25 60 200 200 150 100 500 2000	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 4,500	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5	(kΩ) 2.0 1.0 2.0 2.0 2.0 7.0 10	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±15 ±6.0 +12,-6.0	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8 10 7.0	(kHz typ) 10 50 10 4.0 2.0 150 10	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0 1.5	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606 601,606,632	MLM101A MC1531 MC1539 * MC1748 * * MC1709 * * * MC1533 MC1520 MC1712		
(μA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0 2.0 5.0 10 25 to +72 0.075	(mV max) 25°C Temp 2.0 10 3.0 5.0 5.0 5.0 10 2.0 5.0 5.0 5.0 5.0 2.0 2.0	(nA max) erature Ra 10 25 60 200 200 150 150 100 500 2000 rature Ran 10	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 4,500 ige 50,000	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5	(kΩ) 2.0 1.0 2.0 2.0 2.0 7.0 10	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±15 ±6.0 +12,-6.0	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8 10 7.0	(kHz typ) 10 50 10 4.0 2.0 150 10	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0 1.5	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606 601,606,632	MLM101A MC1531 MC1539 * MC1748 * * MC1709 * * * MC1533 MC1520 MC1712		
(μA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0 2.0 5.0 10 25 to +72 0.075	(mV max) 25°C Temp 2.0 10 3.0 5.0 5.0 5.0 10 2.0 5.0 5.0 5.0 C Tempe	(nA max) erature Ra 10 25 60 200 200 150 150 100 500 2000 rature Ran 10	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 4,500 ige 50,000	(V _{pk} min) 10 4.5 10 10 10 11 3.5 3.5 4.5	(kū) 2.0 1.0 2.0 2.0 2.0 7.0 10 1.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 +12,-6.0 ±6.0	(MH2 typ) 1.0 2.0 2.0 1.0 0.5 0.8 10 7.0 3.0	(kHz typ) 10 100 50 10 4.0 2.0 150 10 100	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0 1.5 1.7	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606 601,606,632 6028,606	MLM101A MC1531 MC1539* MC1748** MC1709** MC1533 MC1520 MC1520 MC1712 MC1530		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 1.0 2.0 5.0 10 25 to +75 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(mV max) 55°C Temps 2.0 10 3.0 5.0 5.0 5.0 10 2.0 2.0 5.0 6°C Tempser 2.0 C Tempsera 7.5	(nA max) erature Ra 10 25 60 200 200 150 150 500 2000 rature Range 50	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 4,500 999 50,000 50,000	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5 4.5 10 10 10	(kā) 2.0 1.0 1.0 2.0 2.0 2.0 7.0 1.0 2.0 2.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 +12,6.0 ±15 ±15 ±15 ±15	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 1.0	(kHz typ) 10 100 50 10 4.0 2.0 10 10 10 10 10 10 10 10 10 1	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0 1.5 1.7 0.5 0.5	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606 601,606,632 6028,606 601,606,632 6028,606	MLM101A MC1531 MC1539* MC1748* MC1709* MC1533 MC1520 MC1530 MLM201A MLM201A		
(μA max) 55 to +12 0.075 0.15 0.5 0.5 1.0 2.0 10 25 to +75 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(mV max) 55°C Tempy 2.0 10 5.0 5.0 5.0 5.0 2.0 °C Temper 2.0 C Temperat 7.5 15	(nA max) erature Ra 10 25 60 200 200 150 100 500 2000 ature Ran 10 10 50 100 500 2000 2000 2000 2000 20	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 40,000 1,000 2,500 40,000 1,000 2,500 40,000 2,500 40,000 2,500 1,500	(Vpk min) 10 4.5 10 10 10 11 3.5 3.5 4.5 10	(kā) 2.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 ±12,6.0 ±15 ±15 ±6.0 ±15 ±15 ±6.0	(MHz typ) 1.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 1.0 2.0	(kHz typ) 10 50 10 4.0 2.0 150 10 100 10 10 10 10 100	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 1.5 1.7 0.5 1.4	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606 601,606,632 6028,606	MLM101A MC1531 MC1539 MC1748 • MC1709** MC1533 MC1520 MC1712 MC1530 MLM201A		
(μA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0 2.0 5.0 10 25 to +75 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(mV max) 55°C Temps 2.0 10 3.0 5.0 5.0 5.0 10 2.0 2.0 5.0 6°C Tempser 2.0 C Tempsera 7.5	(nA max) erature Ra 10 25 60 200 200 150 150 500 2000 rature Range 50	(V/V min) inge 50,000 2,500 50,000 25,000 25,000 40,000 1,000 2,500 4,500 99e 50,0000 25,0000	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5 4.5 10 10 10	(kā) 2.0 1.0 1.0 2.0 2.0 2.0 7.0 1.0 2.0 2.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 +12,6.0 ±15 ±15 ±15 ±15	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 1.0	(kHz typ) 10 100 50 10 4.0 2.0 10 10 10 10 10 10 10 10 10 1	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0 1.5 1.7 0.5 0.5	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606 601,606,632 6028,606 601,606,632 6028,606	MLM101A MC1531 MC1539 MC1748 MC1709 MC1533 MC1520 MC1530 MLM201A MLM201A		
(μA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 1.0 2.0 2.0 2.0 2.0 2.0 10 25 to +75 0.075 0.075 0.075 0.075 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(mV max) 55°C Tempy 2.0 10 5.0 5.0 5.0 5.0 2.0 °C Temper 2.0 C Temperat 7.5 15	(nA max) erature Ra 10 25 60 200 200 150 100 500 2000 ature Ran 10 10 50 100 500 2000 2000 2000 2000 20	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 40,000 1,000 2,500 40,000 1,000 2,500 40,000 2,500 40,000 2,500 1,500	(Vpk min) 10 4.5 10 10 10 10 10 11 3.5 3.5 4.5 10 10 10 4.0	(kā) 2.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 ±12,6.0 ±15 ±15 ±6.0 ±15 ±15 ±6.0	(MHz typ) 1.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 1.0 2.0	(kHz typ) 10 50 10 4.0 2.0 150 10 100 10 10 10 10 100	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 1.5 1.7 0.5 1.4	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6024,606 601,606,632 6028,606 601 601 601	MLM101A MC1531 MC1539* MC1748** MC1709** MC1533 MC1520 MC1520 MC1712 MC1530 MLM201A MLM201A		
$(\mu A max)$ 55 to +12 0.075 0.15 0.5 0.5 1.0 2.0 5.0 10 25 to +72 0.075 0.075 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	(mV max) 55°C Tempp 2.0 10 5.0 5.0 5.0 10 2.0 5.0 10 2.0 5.0 5.0 10 2.0 5.0 10 2.0 5.0 5.0 10 2.0 5.0 5.0 5.0 10 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	(nA max) erature Ra 10 25 60 200 200 200 100 500 2000 rature Ran 10 ture Rang 50 100 200	(V/V min) inge 50,000 2,500 50,000 50,000 25,000 40,000 2,500 4,500 ge 50,000 2 2 2 2 3	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5 4.5 10 10 4.0 10 10 10 10 10 10 10 10 10 1	(kā) 2.0 1.0 1.0 2.0 2.0 7.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 +12,6.0 ±15 ±15 ±6.0	(MHz typ) 1.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	(kHz typ) 10 10 50 10 4.0 2.0 150 10 100 10 10 10 10 10 10 10	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 1.5 1.7 0.5 1.7 0.5 1.4 0.8	601 6028,606 601,632 601,606-** 6028,606,632,665** 6028,606,632 6028,606 601,606,632 601 601 601,626 6028,606,646 601	MLM101A MC1531 MC1539 MC1748 • MC1709** MC1520 MC1520 MC1712 MC1530 MLM201A MLM301A MLM301A		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 0.5 1.0 2.0 5.0 10 25 to +75° 0.075 0.075 0.075 0.075 0.5 0.075 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(mV max) 55°C Tempe 2.0 10 3.0 5.0 5.0 10 2.0 °C Tempera 2.0 C Tempera 7.5 15 6.0 7.5	(nA max) erature Ra 10 25 60 200 200 200 150 100 2000 rature Range 50 100 200 100 200 100	(V/V min) inge 50,000 2,500 50,000 25,000 40,000 1,000 2,500 4,500 ge 50,000 25,000 4,500 25,000 1,500 20,000	(V _{pk} min) 10 4.5 10 10 10 10 10 11 3.5 3.5 4.5 10 10 10 10 10 10 10 10 10 10	(kā) 2.0 1.0 1.0 2.0 2.0 7.0 10 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	(Vdc) ±16.0 ±15. ±15. ±15. ±15. ±16.0 +12.6.0 ±15. ±15. ±15. ±15. ±15. ±15. ±15. ±15. ±15. ±15. ±15. ±16.0 ±15.	(MHz typ) 1.0 2.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 0.5 1.0 0.5 1.0 0.5 0.8 1.0 0.2 0.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	(kHz typ) 10 50 10 4.0 150 10 100 100 100 100 50	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 5.0 1.5 1.7 0.5 1.4 0.5 1.4 0.5 1.4 4.2 0.5 1.4 0.4 0.5 1.4 0.8 0.25 0.5 1.4 0.8 0.25 0.5 1.4 0.8 0.5 1.4 0.8 0.25 0.5 1.5 1.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	601 6028,606 601,632 601,606** 6028,606,632,665** 6028,606,632 601,606,632 6028,606 601,606,632 601 601 601 601 601 601 601 601 601 601	MLM101A MC1531 MC1748 • MC1748 • MC1709 • MC1533 MC1520 MC1712 MC1530 MLM201A MLM301A MLM301A MC1748C • MC1439 •		
(µA max) 55 to +12 0.075 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(mV max) 55°C Tempe 2.0 10 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 °C Tempera 7.5 15 6.0 7.5 15 6.7 5,75	(nA max) erature Ra 10 25 60 200 200 150 100 500 2000 ature Ran 10 ture Range 50 100 200 300 2000 300 2000 300 300 300 300	(V/V min) inge 50,000 2,500 50,000 50,000 50,000 25,000 40,000 1,000 2,500 40,000 90 50,000 25,000 1,000 2,500 1,500 20,000 15,000	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5 4.5 10 10 10 10 10 10 10 10 10 10	(kā) 2.0 1.0 2.0 2.0 2.0 7.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	(Vdc) ±15 ±6.0 ±15 ±15 ±15 ±6.0 ±15 ±6.0 ±15 ±15 ±6.0 ±15 ±15 ±15 ±15 ±15 ±15 ±15 ±15	(MHz typ) 1.0 2.0 1.0 0.5 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	(kHz typ) 10 50 10 4.0 150 10 10 10 10 10 10 10 10 4.0	(V/µs typ) 0.5 1.4 4.2 0.8 0.25 2.0 1.5 1.7 0.5 1.4 0.5 1.4 0.5 1.4 0.25 0.5 1.4 0.25 0.5 1.4 0.25 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.	601 6028,606 601,632 601,606** 601,606,632,665** 6028,606,632 6028,606,632 6028,606 601,606,632 601 601 601 601,628 6028,606,646 601,632,646 601,632,646	MLM101A MC1531 MC1539* MC1748* MC1709** MC1533 MC1520 MC1712 MC1530 MLM201A MLM201A MLM301A MC1431 MC1748C* MC1749C*		
$\begin{array}{c} (\mu A \ max) \\ 55 \ to \ +12 \\ 0.075 \\ 0.15 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1.0 \\ 2.0 \\ 5.0 \\ 10 \\ 25 \ to \ +75 \\ 0.25 \\ 0.075 \\ 0.25 \\ 0.075 \\ 0.25 \\ 0.3 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{array}$	(mV max) 55°C Tempe 2.0 10 5.0 5.0 5.0 10 2.0 0 °C Tempera 7.5 15 6.0 7.5 7.5 7.5	(nA max) erature Ra 10 25 60 200 200 200 150 150 100 500 2000 rature Range 50 100 200 100 500 500	(V/V min) so so s	(V _{pk} min) 10 4.5 10 10 10 10 11 3.5 3.5 4.5 10 10 10 10 10 10 10 10 10 10	(kā) 2.0 1.0 2.0 2.0 2.0 7.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	(Vdc) ±15 ±60 ±15 ±15 ±15 ±15 ±15 ±16,0 ±16,0 ±16,0 ±15 ±15 ±15 ±15 ±15 ±15	(MHz typ) 1.0 2.0 1.0 0.5 0.8 10 7.0 3.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 3.0 0.5 0.8	(kHz typ) 10 10 50 10 4.0 2.0 150 10 10 10 10 10 10 10 50 4.0 2.0 2.0 2.0 2.0 2.0 10 10 10 10 10 10 10 10 10 1	(V/µs typ) 0.5 1.4 2.0 8 0.25 2.0 1.5 1.7 0.5 1.7 0.5 1.4 0.8 4.2 0.25 2.0 1.5 1.7	601 6028,606 601,632 601,606** 6028,606,632,665** 6028,606,632 6028,606,632 601,606,632 601,606,632 601 601,626 6028,606,646 601,632,646 601,632,646 601,632,646 6028,606,632,646	MLM101A MC1531 MC1748 • MC1748 • MC1709 • MC1520 MC1712 MC1520 MLM201A MLM201A MLM301A MC1431 MC1748C • MC1709C • MC1433		

**Use MCBC prefix for nonencapsulated beam-lead device, use MCB prefix for beam-lead device in flat ceramic package.

tUse MCCF prefix for nonencapsulated flip-chip.

	DEFINITIONS											
SR	Slew Rate @ Unity Gain	Avol	Open-Loop Voltage Gain									
Vio	Input Offset Voltage	Vo	Output Voltage Swing									
^I IB	Input Bias Current	fc	Unity Gain Crossover Frequency									
¹ 10	Input Offset Current	BWP	Power Bandwidth									

OPERATIONAL AMPLIFIERS (Continued)

DUAL OPERATIONAL AMPLIFIFRS

Listed in increasing order of input bias current.

INTERNALLY COMPENSATED

l _{IB} (μΑ max)	V _{IO} (mV max)	^I IO (nA max)	A _{vol} (V/V min)		@ RL (kΩ)	& V _{CC} , V _{EE} (Vdc)	f _c (MHz typ)	BWp (kHz typ)	SR (V/μs typ)	Case	Туре
55 to +12	5°C Tempe	erature Ra	nge		1.11	l, dia		Alta esta			
0.5	5.0	200	50,000	10	2.0	±15	1.1	14	0.8	601,632	MC1558*†
0.5	5.0	200	50,000	10	2.0	±15	1.0	10	0.5	632	MC1747
) to +75°C	: Temperat	ure Range			199	t ya da da	engelen († 1	1911 B	jang da		
0.5	6.0	200	20,000	10	2.0	±15	1.1	14	0.8	601,626,632,646	MC1458 * †
0.5	6.0	200	25,000	10	2.0	±15	1.0	10	0.5	632	MC1747C
0.7	10	300	20,000	9.0	2.0	±15	1.1	14	0.8	601,626,632,646	MC1458C

*Use MCC prefix for nonencapsulated chip. †Use MCCF prefix for nonencapsulated flip-chip.

NONCOMPENSATED

	l _{IB} (μA max)	VIO (mV max)	IIO (nA max)	A _{vol} (V/V min)	VO ((V _{pk} min)	a) R [δ (kΩ)	& V _{CC} , V _{EE} (Vdc)		BWp (kHz typ)	SR (V/μs typ)	Case	Туре
	55 to +12	5°C Tempe	erature Ra	nge				la sasta			ka data dare	
•	0.5 3.0	5.0 3.0	200 300	25,000 4,000	12 2.5	10 10	±15 ±6.0	1.0 1.0	3.0 40	0.25 0.013	632 602B,607,632	MC1537 MC1535
1	0 to +75°C	C Temperat	ure Range									
	1.5 5.0	7.5 5.0	500 500	15,000 3,500	12 2.3	10 10	±15 ±6.0	1.0 1.0	3.0 40	0.25 0.013	632,646 602B,607,632,646	MC1437 MC1435

QUAD OPERATIONAL AMPLIFIERS

Internally Compensated

l _{IB} (μA max)	VIO (mV max)	IIO (nA max)	A _{vol} (V/V min)	VO @ (V _{pk} min)	9 RL 8 (kΩ)	V _{CC} , V _{EE} (Vdc)	f _c (MHz typ)	BWp (kHz typ)	SR (V/µs typ)	Case	Түре
0.3	-	-	1,000	10	5.0	+15	4.0	20	0.6	646	MC3301
for ind	ustrial appl	ications				n older om Standa				17月1日1月1日(17月1日) 1月月1日日日(17月1日) 1月月1日日日(17月1日)	
0.3	-	-	1,000	10	5.0	+15	5.0	20	0.6	646	MC3401

POWER DRIVERS

INTERNALLY COMPENSATED

	IB A max)	VIO (mV max)	liO (nA max)	A _{vol} (V/V min)	VO (V _{pk} min)	@ R_8 (Ω)	V _{CC} , V _{EE} (Vdc)		BWp (kHz typ)	SR (V/μs tγp)	Case	Comments	Туре
-5	5 to +12	25°C Tem	perature l	Range		No.		이는 사람		dia ya k		目的研究的问题。	
. [200	-	-	900	12	300	±15	-	1500	75	614	High current gain (70 dB) op ampl power booster I _O = 300 mA max	MC1538
	0.5	5.0	200	50,000	12	300	±15	1.1	12	0.8	614	MC1741 with high current capability, ±300 mA max	MCH2870M
ō	to +75°(C Tempera	ature Ran	ge							- 1 - 1		방금요하
ſ	300	-	_	850	11	300	±15	-	1500	75	614	High current gain (70 dB) op ampl power booster, I O = 300 mA max	MC1438
	0.5	6.0	200	20,000	11	300	±15	1.1	12	0.8	614	MC1741 with high current capability, ±300 mA max	MCH2870C

LINEAR

INTERFACE CIRCUITS

Interface circuits fit in the gray area between the linear and digital realms. Usually these IC's perform the necessary translation between an analog signal input and the required digital logic levels or vice versa. To aid in selection, the devices have been divided into five main categories: Sense Amplifiers, Drivers, Receivers, Comparators, and D/A Converters.

SENSE AMPLIFIERS

The sense amplifiers listed provided the necessary translation from the outputs of core or plated-wire memories to MTTL (unless otherwise noted) logic levels. Unless noted, all devices are designed to operate from ±5.0 volt power supplies. The output of these sense amplifiers changes logic states when the differential input voltage exceeds a specified threshold level, regardless of input polarity.

CORE MEMORY

		Thresh Volta (mV	ge @	V _{ref}	Propagation Delay		т,	/pe
Fund	ction	min	max	(mV)	(ns max)	Case	-55 to +125°C	0 to +70°C
	⊸ Dual channel with ⊸ independent gating, comple-	11 36	19 44	15 40	55	620	_	MC7520
	mentary outputs, memory data register	8.0 33	22 47	15 40	55	620	_	MC7521
Dual channel with open- collector output, high sink		11 36	19 44	15 40	45	620	-	MC7522
	current capability	8.0 33	22 47	15 40	45	620	-	MC7523
	Dual with independent	11 36	19 44	15 40	40	620	_	MC7524
	strobing	8.0 33	22 47	15 40	40	620	_	MC7525
			19 44	15 40	40	620, 648*	-	MC7528
	Same as MC7524-25 except amplifier test points included	10 35	20 45	15 40	40	620	MC5528	-
		8.0 33	22 47	15 40	40	620, 648*	MC5529	MC7529
		11 36	19 44	15 40	40	620, 648*	-	MC7534
	Same as MC7524-25 except NAND outputs	10 35	20 45	15 40	40	620	MC5534	-
		8.0 33	22 47	15 40	40	620, 648*	MC5535	MC7535
		11 36	19 44	15 40	40	620, 648 *	-	MC7538
	Same as MC7528-29 except NAND outputs	10 35	20 45	15 40	40	620	MC5538	-
		8.0 33	22 47	15 40	40	620, 648 *	MC5539	MC7539

*Case 648 used with commercial-temperature-range devices only.

LINEAR INTERFACE CIRCUITS (Continued)

INTEGRATED CIRCUITS

LINEAR

	Vol	Threshold Voltage @ (mV) Vref				Ту	pe
Function	min	max	(mV)	Delay (ns max)	Case	-55 to +125°C	0 to +75°
dity Cext 0.5µs cycl 20ns typ r ±6.0V pov	sponse time, 14	20	-6.0V	30	602B, 606, 632	MC1540	MC1440
	time, oon-mode inputs, 14 input offset	20	-5.0V	30	607, 632	MC1541	MC144
+5.0V, -5.: threshold to supply		23	540	35	632	MC1543	_

PLATED WIRE MEMORIES

Threshold Propagation Delay (ns — max) Туре Voltage (mV – typ) Function Case -55 to +125°C 0 to +75°C VOLTAGE DC LEVEL SHIFT AC-coupled, decoded input channel selection, wired-OR output capability, 1.0 25 620 MC1544 MC1444 output strobe capability, +5.0V, -6.0V power supply ONE OF FOUR DECODER STROBE 8 ြ DC RANS ATION REGU LAVE 620 MC1546 MC1446 3.0 18 STROBE ģ DC-coupled, decoded input, 0.5 mV input offset, output strobe capability, +5.0V, -6.0V power supply

INTERFACE CIRCUITS (Continued)

DRIVERS

Several types of interface drivers are tabulated in this section: twisted-pair drivers for transmitting data over long lines, RS-232 drivers for interfacing modems and

terminals, peripheral drivers for driving lamps, relays and memories, and MOS clock drivers for providing the required clock pulses to highly-capacitive loads.

TWISTED-PAIR LINE DRIVERS

		IO(on) mA		^t PLH ^{/t} PHL Input to Output		Ту	pe
Function	Compatibility	(min/max)	lO(off) (μA – max)	(ns – typ)	Case	·55 to +125°C	0 to +70°C
Dual Driver/Receiver with MECL Bias Supply	MDTL, MECL, MRTL	6.9/10.4	5.0	13/13	632	MC 1580	-
Dual 3-Input Driver	MDTL, MTTL, MRTL	6.9/10.4	5.0	15/13	632	MC 1582	_
Dual Driver with inhibit inputs for party-line driver applications	MTTL	3.5/7.0 6.5/15	100	9.0/9.0 9.0/9.0	632, 646# 632, 646#	MC55109 MC55110	MC75109 MC75110
Differential Party-Line Driver with push-pull outputs	MDTL	18/26	-	25/15	632	_	MC75113†

#Case 646 used with industrial-temperature-range devices only.

1 0 to +75°C Temperature Range

RS-232 LINE DRIVER

Function	Compatibility	VOL Vdc min	& VOH Vdo min	8 V _{CC} Vdc	VEE Vdc	tPLH/tPHL ns typ	Case	Type 0 to +75°C
Quad Line Driver	MDTL, MTTL	-6.0 -9.0	+6.0	+9.0 +13.2	-9.0 -13.2	150/65*	632	MC1488

• @ 3000 ohms, 15 pF

LINEAR

INTERFACE CIRCUITS (Continued)

	Input	PRR (max) V _{CC} /V _{EE} C = 1000 pF [@] (volts)			witchin 1000 (Temperature		
Function	Compatibility	C = 1000 pF	(volts)	^t PLH	^t TLH	^t PHL	^t THL	(°C)	Case	Туре
Dual MOS Clock Driver with Strobe										
	MDTL,MTTL	2.0 MHz	5.0/-20	55	50	25	22	-55 to +125	632	MC15
High-Speed Hybrid MOS Clock Driver										
	MTTL	4.0 MHz	5.0/-12	13	40	23	35	0 to +70	646	MHP 40
									1	L

PERIPHERAL DRIVERS

		10()	tPLH/tPHL Input to Output		Ty	/pe
Function	Compatibility	IO(on) (mA – max)	(ns – typ)	Case	-55 to +125°C	0 to +70°
Dual Memory Driver wi logic inputs, 24-volt output capability	th MDTL,MTTL	600	25/25 (to source collectors) 20/20 (to sink outputs)	620, 648#	MC55325	MC75325
Dual Peripheral Positive AND Driver, plus two noncommitted NPN output transistors	MDTL,MTTL	300*	21/16	632 646	-	MC75450
Dual Peripheral Positive AND Driver with logic gate outputs internally connected	MDTL,MTTL	300*	17/18	626	_	MC75451

=Case 648 used with industrial-temperature-range devices only.

*Each transistor

INTERFACE CIRCUITS (Continued)

RECEIVERS

Mating with the driver types listed in the previous section are the receivers tabulated in this section:

twisted-pair receivers for computer applications, and RS-232 receivers to interface with similar drivers.

TWISTED-PAIR LINE RECEIVERS

Function		Compatibility	Input Threshold (mV – typ)	Input Common Mode Range (V – min)	tPLH/tPHL Input to Output (ns – typ)	Case	Ty -55 to +125°C	pe 0 to +70°C
Dual Driver/Receiver with MECL Bias Supply	,	MDTL,MECL, MRTL,MTTL	±40	±3.5	13/13	632	MC1580	_
		MECL	±10	±3.5	15/25	632	MC1581	-
Dual Line Receiver	Open Collector Outputs	MDTL, MRTL, MTTL	±2.0	±3.5	24/34	632	MC1583	-
	Active Pullup	MDTL, MTTL	±40	±3.5	32/28	632	MC1584	-
	L			1				
	Active Pullup	MTTL	±25	±3.0	17/17	632, 646#	MC55107	MC75107
Dual Line Receiver with strobe inputs	Open Collector Output	MTTL	±25	±3.0	19/19	632, 646#	MC55108	MC75108

#Case 646 used with industrial-temperature-range devices only.

RS-232 LINE RECEIVERS

Function	Compatibility	Input Turn-On Threshold (Vdc – max)	Input Turn-Off Threshold (Vdc – max)	Input Hysteresis (mV – typ)	t₽LH ^{/t} PHL (ns – typ)	Case	Type 0 to +75°C
Quad Line Receiver	MDTL,MTTL	1.5	1.25	250	25/25	632	MC1489
	MDTL,MTTL	2.25	1.25	1150	25/25	632	MC1489A

LINEAR

INTERFACE CIRCUITS (continued)

COMPARATORS

A comparator provides a logical output in response to the polarity of the differential voltage applied to the inputs of the device. All comparators shown are intended for operation from +12 V and -6.0 V power supplies, and interface to saturated logic levels. Maximum differential input voltage is ±5.0 V and propagation delay time is 40 ns for all device types shown.

Features Dutput impedance = 000 ohms Dual, strobe capabilit Dual with outputs wired OR, strobe capability Dutput impedance = 000 ohms Dual, strobe capabilit Dual with outputs wired OR strobe
200 ohms Dual, strobe capabilit Dual with outputs wired OR, strobe apability Dutput impedance = 200 ohms Dual, strobe capabilit Dual with outputs
200 ohms Dual, strobe capabilit Dual with outputs wired OR, strobe apability Dutput impedance = 200 ohms Dual, strobe capabilit Dual with outputs
Dual with outputs wired OR, strobe apability Dutput impedance = 200 ohms Dual, strobe capabili Dual with outputs
vired OR, strobe apability Dutput impedance = 200 ohms Dual, strobe capabili Dual with outputs
200 ohms Dual, strobe capabili Dual with outputs
200 ohms Dual, strobe capabili Dual with outputs
Dual with outputs
apability
Туре
MC3302
monolithic devic
n

*Use MCC prefix for nonencapsulated chip.

**Use MCBC prefix for nonencapsulated beam-lead device; use MCB prefix for beam-lead device in ceramic flat package.

		DEFINI	TIONS	
Ň	A _{vol} V _{ID} VIO I _{IB}	Open-Loop Voltage Gain Differential Voltage Range Input Offset Voltage Input Bias Current	VOH VOL ^I Os tP	Positive Output Voltage Negative Output Voltage Output Sink Current Propagation Delay Time
D/A CONVER	TER			

D

The low-cost D/A converter described here finds wide usage in communications, control, and instrumentation systems. It provides a current output which is the product of a digital word and an analog reference voltage. Device types specified to greater accuracy and resolution limits will be introduced in the near future.

DIGITAL-TO-ANOLOG		

		E.	10	te	to		ту	pe
Function	Compatibility	(% – max)	(mA max)	(ns – typ)	(ns – max)	Case	-55 to +125°C	0 to +70 ⁰ C
6-Bit Multiplying Digital-to-Analog Converters	MDTL, MTTL	0.78	2.0	200	50	632	MC1506	MC1406

REGULATORS

Motorola offers a broad line of voltage regulators ranging from low-cost "Functional Circuits" to high-precision units. Regulators for positive and negative voltages are available as well as a unique floating regulator, type MC1566L, whose maximum output voltage and current are limited only by the external pass transistor.

POSITIVE VOLTAGE REGULATORS

min max (mAde max) min max (mAde max) min max (mAde max) max (mAde max) max max <thmax< th=""> max max m</thmax<>			10	Vin (Vi	-V0			liB	^{Reg} in %VO/Vin	Regi		D nax)		
4.5 40 20 3.0 30 8.5 50 2.0 0.06 0.05 mV - 0.68 601 MLM105 2.5 37 200 2.7 40 8.5 40 9.0 0.015 0.13 1.8 0.68 602A MC1569* 2.5 37 200 2.7 40 8.5 40 9.0 0.015 0.05 17.5 3.0 614 MC1569* 2.5 37 200 2.7 20 8.5 20 9.0 0.015 0.05 17.5 3.0 614 MC1561 2.0 37 150 3.0 38 9.5 40 3.5 0.030 0.15 - 0.8 602A MC1560 2.0 3.0 3.8 9.5 40 3.5 0.030 0.15 - 0.8 603.03. 614 MC1560 2.0 3.0 3.0 8.5 5.0 2.0 0.06 0.05 mV - 0.68 601 MLM205 2.10 3.0 3.0<									(max)				Case	Туре
2.5 37 200 500 2.7 40 8.5 40 9.0 0.015 0.03 0.05 1.8 0.05 0.68 17.5 3.0 3.0 614 614 MC1569+ 2.5 37 200 500 2.7 40 8.5 40 9.0 0.015 0.05 17.5 3.0 614 MC1569+ 2.5 17 2000 2.7 20 8.5 20 9.0 0.015 0.03 1.8 0.05 3.0 614 MC1560 2.0 37 150 3.0 38 9.5 40 3.5 0.030 0.15 - 0.8 602.0 602.03; MC1723*** 25 to +85°C Temperature Range 9.0 35 - 0.03 0.2 - 0.8 601 MLM205 10 to +75°C Temperature Range 9.0 35 - 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 206A MFC4062A 4.6 </td <td>-55 to</td> <td>+125</td> <td>C Temperatu</td> <td>ire Ra</td> <td>nge</td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-55 to	+125	C Temperatu	ire Ra	nge	L								
2.5 37 500 2.7 40 8.5 40 9.0 0.015 0.05 17.5 3.0 614 MC1569* 2.5 37 200 2.7 40 8.5 40 9.0 0.015 0.03 17.5 3.0 614 MC1561 2.5 17 200 2.7 20 8.5 20 9.0 0.015 0.13 1.8 0.68 602A MC1560 2.0 37 150 3.0 38 9.5 40 3.5 0.030 0.15 - 0.8 603.03 MC1723*** 4.5 40 20 3.0 a.5 50 2.0 0.06 0.05 mV - 0.68 601 ML205 -100 +15° C Temperature Rarree - 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 <td< td=""><td>4.5</td><td>40</td><td>20</td><td>3.0</td><td>30</td><td>8.5</td><td>50</td><td>2.0</td><td>0.06</td><td>0.05 mV</td><td>_</td><td>0.68</td><td>601</td><td>MLM105</td></td<>	4.5	40	20	3.0	30	8.5	50	2.0	0.06	0.05 mV	_	0.68	601	MLM105
2.5 37 500 2.7 40 8.5 40 9.0 0.015 0.05 17.5 3.0 614 MC1561 2.5 17 200 2.7 20 8.5 20 9.0 0.015 0.05 12 3.0 614 MC1560 2.0 37 150 3.0 38 9.5 40 3.5 0.030 0.15 - 0.8 603.03, 632.607** MC1723*** 25 to +85°C Temperature Rarge 2.0 3.0 8.5 50 2.0 0.06 0.05 mV - 0.68 601 MLM205 10 to +75°C Temperature Rarge 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 643A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC4062A 4.6	2.5	37	200 500	2.7	40	8.5	40	9.0	0.015					MC1569*
2.5 17 500 2.7 20 8.5 20 9.0 0.015 0.05 12 3.0 614 MC1560 2.0 37 150 3.0 38 9.5 40 3.5 0.030 0.15 - 0.8 603.03, 632.607** 632.607** 25 t 40 20 3.0 30 8.5 50 2.0 0.06 0.05 mV - 0.68 601 MLM205 CTemperature Range 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 206A MFC4062A 4.6 32 200 3.0 - 9.0 20 - 0.03 0.2 -	2.5	37	200 500	2.7	40	8.5	40	9.0	0.015					MC1561
Addition Addition	2.5	17		2.7	20	8.5	20	9.0	0.015					MC1560
4.5 40 20 3.0 30 8.5 50 2.0 0.06 0.05 mV - 0.68 601 MLM205 10 to +75° C Temperature Range 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 643A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC4062A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC4062A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC4063A 4.6 17 200 3.0 - <	2.0	37	150	3.0	38	9.5	40	3.5	0.030	0.15	-	0.8		MC1723* **
10 to +75°C Temperature Range 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 643A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC6030A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC6032A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 0 to +70°C Temperature Range - 9.0 2	-25 to	+85°0	C Temperatur	e Ran	ge									
4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 206A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 643A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC4060A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC4062A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC4063A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC6034A 0 to +70°C Te						8.5	50	2.0	0.06	0.05 mV	-	0.68	601	MLM205
4.6 32 200 3.0 - 9.0 35 - 0.03 0.2 - 1.0 643A MFC6030A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 206A MFC6030A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 206A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 0 tot+O'C	-10 to	+75°(C Temperatur	e Ran	ge									
4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 206A MFC4062A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 206A MFC4062A 4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC4062A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 206A MFC4063A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 0.to+to* Temper	4.6	32	200	3.0	-	9.0	35	-	0.03	0.2	-	1.0	206A	MFC4060A
4.6 32 200 3.0 - 9.0 35 - 0.06 0.4 - 1.0 643A MFC6032A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 206A MFC6032A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 0 0 - 0.0 0.66 0.4 - 1.0 643A MFC603A 0 tot - 0.20 0.06 0.05 - 1.0 643A MC1405 2.5	4.6	32	200	3.0		9.0	35	-	0.03	0.2	-	1.0	643A	MFC6030A
4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 206A MFC4063A 4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC4063A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC4063A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 206A MFC4063A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 206A MFC4064A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603A 0 t+70°C Temperature Range - 0.06 0.05 <mv< td=""> - 0.68 601 MLM305 2.5 32 200 3.0 35</mv<>	4.6	32	200	3.0	-	9.0	35	-	0.06	0.4	-	1.0	206A	MFC4062A
4.6 17 200 3.0 - 9.0 20 - 0.03 0.2 - 1.0 643A MFC6033A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 206A MFC6033A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 206A MFC603AA 0 to +70°C temperature Range - 9.0 20 - 0.06 0.4 - 1.0 643A MFC603AA 0 to +70°C temperature Range - 9.0 20 - 0.06 0.05 mV - 0.68 601 MLM305 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1461 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1461 2.5 32 200 3.0 <t< td=""><td>4.6</td><td>32</td><td>200</td><td>3.0</td><td></td><td>9.0</td><td>35</td><td>-</td><td>0.06</td><td>0.4</td><td>-</td><td>1.0</td><td>643A</td><td>MFC6032A</td></t<>	4.6	32	200	3.0		9.0	35	-	0.06	0.4	-	1.0	643A	MFC6032A
4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 206A MFC4064A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 206A MFC4064A 4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC4064A 0 to +70°C Temperature Rarge - 0.06 0.4 - 1.0 643A MLM305 2.5 32 200 3.0 35 40 2.0 0.06 0.05 mV - 0.68 601 MLM305 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1461 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1461 2.5 17 500 3.0 35 9.0	4.6	17	200	3.0	~	9.0	20	-	0.03	0.2	-	1.0	206A	MFC4063A
4.6 17 200 3.0 - 9.0 20 - 0.06 0.4 - 1.0 643A MFC6034A 0 to +70° C Temperature Rarge 30 20 3.0 30 8.5 40 2.0 0.06 0.05 mV - 0.68 601 MLM305 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 17.5 3.0 601 MLM305 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 17.5 3.0 614 MC1469* 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 17.5 3.0 614 MC1461 2.5 17 200 500 3.0 20 9.0 20 12 0.030 0.13 0.05 1.8 12 0.68 3.0 602A 3.0 MC1461 2.5 17 500	4.6	17	200	3.0	-	9.0	20	-	0.03	0.2	-	1.0	643A	MFC6033A
0 to +70° C Temperature Range 4.5 30 20 3.0 30 8.5 40 2.0 0.06 0.05 mV - 0.68 601 MLM305 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1469* 2.5 32 200 3.0 35 9.0 35 12 0.030 0.05 17.5 3.0 614 MC1469* 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1461* 2.5 32 200 3.0 35 9.0 35 12 0.030 0.13 1.8 0.68 602A MC1461* 2.5 17 200 3.0 20 9.0 20 12 0.030 0.05 12 3.0 614 MC1460 2.0 37 150 3.0	4.6	17	200	3.0		9.0	20	-	0.06	0.4	-	1.0	206A	MFC4064A
4.5 30 20 3.0 30 8.5 40 2.0 0.06 0.05 mV 0.68 601 MLM305 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 17.5 3.0 601 MLM305 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 17.5 3.0 614 MC1469* 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 17.5 3.0 614 MC1461 2.5 17 200 500 3.0 20 9.0 20 12 0.030 0.13 0.05 1.8 0.68 602A 614 MC1460 2.0 37 150 3.0 38 9.5 40 4.0 0.030 0.20 - 0.8 603-03, MC1723C*						9.0	20	-	0.06	0.4	-	1.0	643A	MFC6034A
2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 1.8 17.5 0.688 3.0 602A 614 MC1469* 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 1.8 17.5 0.688 3.0 602A 614 MC1469* 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 1.8 17.5 0.688 3.0 602A 614 MC1461 2.5 17 200 500 3.0 20 9.0 20 12 0.030 0.13 0.05 12 3.0 614 MC1461 2.0 37 150 3.0 38 9.5 40 4.0 0.030 0.20 - 0.8 603.03 MC1723C*	0 to +	70°C [·]	Temperature	Range	•									
2.5 32 500 3.0 35 9.0 35 12 0.030 0.05 17.5 3.0 614 MC1469* 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.05 17.5 3.0 614 MC1469* 2.5 32 200 500 3.0 35 9.0 35 12 0.030 0.13 0.05 1.8 0.68 602A 3.0 MC1461 2.5 17 200 500 3.0 20 9.0 20 12 0.030 0.05 12 3.0 614 MC1461 2.0 37 150 3.0 38 9.5 40 4.0 0.030 0.20 - 0.8 603-03 MC1723C*	4.5	30	20	3.0	30	8.5	40	2.0	0.06	0.05 mV	-	0.68	601	MLM305
2.5 32 500 3.0 35 9.0 35 12 0.030 0.05 17.5 3.0 614 MC1461 2.5 17 200 3.0 20 9.0 20 12 0.030 0.13 1.8 0.68 602A MC1460 2.0 37 150 3.0 38 9.5 40 4.0 0.030 0.20 - 0.8 603-03, MC1723C*	2.5	32		3.0	35	9.0	35	12	0.030					MC 1469*
2.5 17 500 3.0 20 9.0 20 12 0.030 0.05 12 3.0 614 MC1460 2.0 37 150 3.0 38 9.5 40 4.0 0.030 0.20 - 0.8 603-03, MC1723C*	2.5	32	200 500	3.0	35	9.0	35	12	0.030					MC1461
	2.5	17	200 500	3.0	20	9.0	20	12	0.030					MC1460
	2.0	37	150	3.0	38	9.5	40	4.0	0.030	0.20	-	0.8		MC1723C*

*Also available as nonencapsulated chip. use MCC prefix.

**Also available as nonencapsulated beam-lead device; use MCBC prefix, use MCB prefix for device in ceramic flat package.

FIXED OUTPUT POSITIVE VOLTAGE REGULATORS

(V	O dc)	١o		-VO dc)	(V		Iв	Regin	Reg		D max)		
min	max	(mAdc max)	min	max	min	max	(mAdc max)	(mV max)	(mV max)	T _C ≃ +25°C	T _A = +25°C	Case	Type
-55 to	+150	°C Junction 1	Fempe	rature	Rang	e							
4.7													
-25 to	+125	°C Junction 1	ſempe	rature	Rang	e							
4.7	5.3	1000	2.0	30	7.0	35	10	50	100	20	3.5	11	MLM209K
0 to +	125°C	Junction Te	mpera	ture R	lange								
4.8	5.2	1000	2.0	30	7.0	35	10	50	100	20	3.5	11	MLM309K
4.8	5.2	1500	2.0	30	7.0	35	8.0	100	100	15	2.0	199-04	MC7805C *
5.75	6.25	1500	2.0	29	8.0	35	8.0	120	120	10	2.0	199-04	MC7806C *
7.7	8.3	1500	2.5	27	10.5	35	8.0	160	160	10	2.0	199-04	MC7808C *
11.5	12.5	1500	2.5	23	14.5	35	8.0	240	240	10	2.0	199-04	MC7812C *
14.4	15.6	1500	2.5	20	17.5	35	8.0	300	300	10	2.0	199-04	MC7815C *
17.3	18.7	1000	3.0	17	21	35	8.0	360	360	10	2.0	199-04	MC7818C *
23	35	1000	3.0	16	27	40	8.0	480	480	10	2.0	199-04	MC7824C *

*For complete Data Sheet information please contact your Motorola salesman or distributor.

		DEFINITIONS	
V _O	R Output Voltage Range	IB	Input Bias (Standby) Current
10	Output Current	Regin	Line Regulation Voltage
IVii	- VO Input-Output Voltage Differential	Reg	Load Regulation Voltage
Vin	Input Voltage	TCVO	Temperature Coefficient of Output Voltage
Vre	f Reference Voltage	PD	Power Dissipation

REGULATORS (Continued)

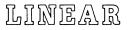
NEGATIVE VOLTAGE REGULATORS

	V _O (Vdd		ю	Vin ⁻ (Vo		Vi (Vd		IIВ	Reg _{in} %VO/Vin	RegL	(W)	D max)		
	min	max	(mAdc max)	min	max	min	max	(mAdc max)	(max)	(%VO max)	T _C = 25°C	T _A = +25°C	Case	Туре
-5	55 to -	+125°	C Temperatu	re Ra	nge	e j ^a see		Gaard - Mill		a se propuer				tari i
	-3.6	37	200 500	-2.7	35	-8.5	-40	11	0.015	0.13 0.05	1.8 9.0	0.68 2.4	602A 614	MC1563*
-(0.015	-40	20	2.0	50	-8.0	-50	5.0	0.1	0.05	1.8	0.68	603-02	MLM104
-2	25 to -	+85°C			1995					t in an Anna	1. States			
-0	0.015	-40	20	2.0	50	-8.0	-50	5.0	0.1	0.05	1.8	0.68	603-02	MLM204
0	to +7	O°C T	l'emperature	Range	1900	de la composición de la compos								. Aleksie
	-3.8	-32	200 500	-3.0	40	-9.0	-35	14	0.030	0.13 0.05	1.8 9.0	0.68 2.4	602A 614	MC1463*
-0	0.035	-30	20	2.0	40	-8.0	-40	5.0	0.1	0.05	1.8	0.68	603-02	MLM304

*Also available as nonencapsulated chip, use MCC prefix.

DUAL VOLTAGE REGULATORS

					مقاد شد أحدث	and the second		 Peter a 					112
	V0 (Va		ю	V _{in} -VO (Vdc)	Vin (Vd		Чв	Reg _{in} %VO/Vin	Reg	Р <u>с</u> (W m	ax)		
	min	max	(mAdc max)	min	min	max	(mAdc max)	(max)	(%V _O max)	T _C = 25°C	T _A = 25°C	Case	Туре
•	55 to +	125°C	Temperature	Range	a. jp	1. 1 1 1.		신민준 물건					
	±14.8	±15.2	100	2.0	±17.2	±30	+4.0,-3.0	0.006	0.07	2.1 2.5 9.0	0.8 1.0 2.4	603-03 632 614	MC1568
ŝ.) to +7	5°C Ten	nperature Ra	inge		14	ante Ma						
	±14.5	±15.5	100	2.0	±17.5	±30	+4.0,-3.0	0.01	0.07	2.1 2.5 9.0	0.8 1.0 2.4	603-03 632 614	MC1468


†Preset Voltage Range; range is adjustable by adding external resistors from ±14.5 to ±20 Vdc.

SPECIAL-PURPOSE REGULATORS

	Vo	Reg _{in}	RegL	Current	PD			
min	max	(max)	'(max)	Regulation	(W max)	Case	Туре	Features
55 to +1	25°C Temp	erature Range						
0	1000*	0.01% +1mV	0.01% +1mV	0.1% +1mA	0.300	632	MC1566	A floating regulator, can be used as a voltage controlled current source.
to +75°	C Tempera	ture Range) and the		영화 감독의 문제 같은 것
0	1000*	0.03% +3mV	0.03% +3mV	0.02% +1mA	0.360	632	MC1466	A floating regulator, can be used as a voltage controlled current source.

*Limited only by the characteristics of the external series pass transistor.

з

HIGH FREQUENCY AMPLIFIERS

Motorola's high-frequency amplifiers simplify the design of receivers and signal processors. Many offer

AGC capability or several gain options to provide extra design flexibility.

						[Gp						pe
Bandwidth (MHz)	V _{OS} (Vp-p)		in ⊉kHz)		sol kHz)	AVS (dB)	@ 60 MHz (dB)	Diff. Input and Output	AGC	V _{CC} , V _{EE} (Vdc)	Case	-55 to +125°C	0 to +75°C
dc to 40	4.5	6.0	20	35	20	90 (fixed)	-	Yes	No	±6.0	601	MC1510	MC1410
dc to 75	2.5	10	50	25	50	18 (fixed)	-	Yes	Yes	±5.0	602A, 607, 632	MC1545	MC1445
22 min	6.0	1.8	1.0 M	100 k	1.0 M	26 (AGC = 0)	25	No	Yes	+6.0	602B, 606	MC1550	-
40 @ A _v = 34 dB 35 @ A _v = 40 dB	4.2	10	100	16	100	30 - 40 (fixed)	-	No	No	+6.0	602B	MC1552	-
35 @ A _v = 46 dB 15 @ A _v = 52 dB	4.2	10	100	16	100	46 - 52 (fixed)	-	No	No	+6.0	602B	MC1553	~
100 @ A _V = 4.0 dB 60 @ A _V = 25 dB	7.0	3.0	1.0 M	100 k	1.0 M	44 (AGC = 0)	45	Yes	Yes	+12	601	MC1590	
40 @ A _v = 52 dB 90 @ A _v = 40 dB 120 @ A _v = 20 dB	4.0	4.0 30 250	1.0 1.0 1.0	20	1.0	52 40 20	-	Yes	No	±6.0	603-02 632	MC1733	MC1733C

HIGH FREQUENCY AMPLIFIERS

LINEAR

SPECIAL-PURPOSE CIRCUITS

The linear-integrated-circuits listed in this section were developed by Motorola for the system design engineer to fill special-purpose requirements as indicated by the subheadings. Temperature ranges and package availability are also tailored to provide versatility.

MULTIPLIERS

	Linearity Error	Input Voltage Range		Тур	pe
Function	(typ)	(Vdc min)	Case	-55 to +125°C	0 to +70°C
A four-quadrant multiplier designed to operate with ±15-volt	±0.3%	±10	620	MC1594	-
supplies; has internal level-shift circuitry and voltage regulator.	±0.5%	±10	620	-	MC1494
Applications include multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/de-	X Input = 0.5% Y Input = 1.0%	±10	632	MC1595*	-
modulator, electronic gain control.	X Input = 1.0% Y Input = 2.0%	±10	632	-	MC1495*

*Also available as a nonencapsulated chip. use MCC prefix.

BALANCED MODULATOR/DEMODULATOR

	Car Suppr dB @ f		Common-Mode Rejection		Тур	ie
Function	(typ)		(dB typ)	Case	·55 to +125°C	0 to +75°C
Balanced modulator/demodulator designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier).	65 50	0.5 10	85	602A, 632	MC1596	MC1496

LOW FREQUENCY CIRCUITS

		Output Power	Voltage Gain – typ	Total Harmonic Distortion		Тур)e
. [Function	(W typ)	(V/V typ)	(% typ)	Case	-55 to +125°C	0 to +70°C
	A power amplifier device capable of single or split supply operation.	1.0	10, 18, 36	0.4	602B	MC1554	MC1454

POWER CONTROL CIRCUITS

Function	Temperature	Case	Туре
Zero voltage switch for use in ac power switching with output capable of triggering triacs.	-10 to +75°C	644A	MFC8070

POWER DRIVERS

Function	BV _{CEO} (Vdc)	lO (Atyp)	hFE (typ)	t _{on} /t _{off} (ns)	Temperature	Case	Туре
Darlington hybrid power driver	30 typ	~	1000	350/450 max	-55 to +125°C	628	MCH2005
Dual power driver for use with hammer, solenoids, relays, lamps, paper tape punches, etc.	120 min	6.0	-	260/1800 typ	0 to +70°C	685	MCH2890

CONSUMER APPLICATION SELECTOR GUIDE

...reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. The tabulation contains data for a large number of components designed principally for entertainment product applications. It is arranged to simplify first-order of linear integrated circuit device lineups to satisfy primary functions for Television, Audio, Radio, Automotive and Organ applications.

TELEVISION CIRCUITS

SOUND

Function	Features	Case	Туре
Sound IF, Detector, Limiter, Audio Preamplifier	80 µV, 3 dB Limiting Sensitivity, 3.5 V(RMS) Output, Sufficient for Single Transistor Output Stage	646,647	
Sound IF Detector	Interchangeable with ULN2111A	646,647	MC1357
Sound IF Detector, DC Volume Control, Preamplifier	Excellent AMR, Interchangeable with CA3065	646,647	MC1358

VIDEO

1st and 2nd Video IF Amplifier	IF Gain @ 45 MHz – 60 dB typ AGC Range – 70 dB min	626	MC1349
	IF Gain @ 45 MHz – 46 dB typ, AGC Range – 60 dB min	626	MC1350
1st and 2nd Video IF, AGC Keyer and Amplifier	IF Gain @ 45 MHz – 53 dB typ, AGC Range – 65 dB min, "Forward AGC" Provided for Tuner	646,647	MC1352
	Same as MC1352, with Opposite AGC for Tuner	646	MC1353
3rd IF and Video Detector	Low-Level Detection, Low Harmonic Generation, Reduced Circuit Cost and Complexity, Reduced Shielding	626	MC1330
AGC Keyer, AGC Amplifier, Noise Gate, Sync Separator	High-Quality Noise Gate, One IF AGC Output and Two Tuner AGC Outputs, Adjustable AGC Delay	646	MC1345
Automatic Fine Tuning	High Gain AFT System, Interchangeable with CA3064	646 686	MC1364

CHROMA

Chroma IF Amplifier and Subcarrier System	Includes Complete Chroma IF, AGC, dc Gain and Tint Controls, Injection Locked Oscillator, Low Peripheral Parts Count	646	MC1398
Chroma Subcarrier System	Interchangeable with CA3070, APC Chroma Reference System	648	MC1370
Chroma IF Amplifier	Interchangeable with CA3071, Automatic and Manual Gain Control	646	MC1371
Chroma Demodulators	Similar to MC1328 but with Luminance and Blanking Inputs, Internal Matrix Providers RGB Outputs	646,647	MC1326
	Industry Standard Demodulator, Low Differential Output dc Drift	603-02 646,647	MC1328
Dual Chroma Demodulator	Dual Doubly Balanced Demodulator with RGB Output Matrix and PAL Switch	646,647	MC1327

S.					
V _{CC} (Vdc – max)	A _{vol} (dB min)	THD (% typ)	z _o (Ohms typ)	Case	Туре
±15 16 33	80 63 80	0.1 0.1 0.1	100 100 100	632 646 644A	MC1303 MC1339 MFC804
V _{CC} (Vdc)	Drive Current (mA)	A _{vol} (dB)	Case		Туре
18	30 min	42 min	206A		MFC4050
35 20 45	150 peak 150 peak 150 peak	89 typ 87 typ 90 typ	644A		MFC8020A MFC8021A MFC8022A
	V _{CC} (Vdc - max) ±15 16 33 V _{CC} (Vdc) 18 35 20	VCC (Vdc - max) Avol (dB min) ±15 80 16 63 33 80 VCC (Vdc) Drive Current (mA) 18 30 min 35 150 peak 20 150 peak	V _{CC} (Vdc - max) A _{vol} (dB min) THD (% typ) ±15 80 0.1 16 63 0.1 33 80 0.1 1 10 10 10 10 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 150 peak 89 typ 20 150 peak 87 typ	V _{CC} (Vdc - max) A _{vol} (dB min) THD (% typ) zo (Ohms typ) ±15 80 0.1 100 16 63 0.1 100 33 80 0.1 100 40 0.1 100 00 33 80 0.1 100 33 80 0.1 20 V _{CC} (Vdc) Drive Current (mA) Avol (dB) Case 18 30 min 42 min 206A 35 150 peak 89 typ 644A 20 150 peak 87 typ 644A	V _{CC} (Vdc - mex) A _{vol} (dB min) THD (% typ) zo (Dhms typ) Case ±15 80 0.1 100 632 16 63 0.1 100 646 33 80 0.1 100 644A V _{CC} (Vdc) Drive Current (mA) A _{vol} (dB) Case Case 18 30 min 42 min 206A 39 typ 644A 20 150 peak 89 typ 644A 644A

POWER AMPLIFIERS

Function	PO (Watts)	V _{CC} (Vdc max)	^e in @ rated PO (mV – max)	P _D (mA – max)	RL (Ohms)	Case	Туре
Audio Power Amplifiers	0.5	12	3.0	4.0	8.0	626	MC1306
	0.25	12	3.0	3.5	16	206A	MFC4000B
	1.0	20	100	5.0	16	643A	MFC6070
	1.0	22	10	10	8.0	644A	MFC8010
	2.0	24	200	12	16	641	MFC9020

RADIO CIRCUITS

IF AMPLIFIERS

Function	Gain @ 10.7 MHz (dB – tүр)	3 dB Limiting @ 10.7 MHz (mV(RMS) typ)	AMR (dB – typ)	Recovered Audio Output ∆f = 75 kHz (mV(RMS)	Power Supply (Volts — max)	Case	Туре
IF Amplifier	58	-	-	-	18	626	MC1350
Limiting FM-IF Amplifier	-	0.175	60	690	18	646,647	MC1355
Limiting IF Ampl/Quadrature Detector	53	0.600	45	480	16	646,647	MC1357
IF Amplifier	42	0.4	-		18	206A	MFC4010A
IF Amplifier, Nonsaturating Limiter	40	60	50	500	20	643A	MFC6010

DECODERS

Function	Channel Separation (dB – typ)	THD (% – typ)	Stereo – Indicator Lamp Driver (mA – max)	Features	Case	Туре
FM Multiplex Stereo Decoders	45 45 40 40	0.5 0.5 0.5 0.3	40 40 40 75	Audio Muting Audio Muting – Coilless Operation	646 646 646/647 646	MC1304 MC1305 MC1307 MC1310
Four-Channel SQ Decoders	45	0.1	-	V _{CC} = 20 Vdc nom	646	MC1312
	45	0.25	-	V _{CC} = 12 Vdc nom	646	MC1313
AUTOMOTIVE CI	RCUITS					

OPERATIONAL AMPLIFIER

Quad Operational Amplifier 4.0 to 28 2.0 0.3 4.0 1.0 646 COMPARATOR VCC Range (Vdc) VIDR (Vdc) IIB (µA-max) Output Leakage Current (mA-max) Sink Current Sink Current Case Quad Comparator 2.0 to 28 ±V _{CC} 0.5 10 6.0 646	Function	V _{CC} Range (Vdc)	A _{vol} (V/mV – typ)	l _{IB} (μA – max)	Unity Gain Bandwidth (MHz – typ)	R _{in} (MegΩtyp)	Case	Туре
V _{CC} Range V _{IDR} Output Leakage IIB Current Function (Vdc) (Vdc) (μA-max) Sink Current Case	Quad Operational Amplifier	4.0 to 28	2.0	0.3	4.0	1.0	646	MC3301
Range VIDR IIB Current Function (Vdc) (Vdc) (μA-max) Sink Current Case	COMPARATOR							
Function (Vdc) (Vdc) (μA·max) (mA·max) Sink Current Case	그 ㅋㅋ 그는 것 같아. 아파를 알았던데	신한 동안에서 다니는 것이었다.	2월 월월 - HH 전 1월 11일 중 (Julius 14)		물리가 있는 것 아파라 영화 영화	法国际局部储止的 音樂區		
	y and the set of the provide of the set	Vcc	in the second		Output Leakage	a dheera an ghe	Contraction (19)	i jego s. I
Quad Comparator 2.0 to 28 +V/cc 0.5 10 6.0 646		Range		IIB		a dhe <u>ka an a</u> he	in the second	
		Range			Current		Case	Туре

CONSUMER APPLICATION SELECTOR GUIDE (Continued)

ORGAN CIRCUITS

FREQUENCY DIVIDERS

Function	V _{CC} Range (Vdc)	^f Tog (MHz — typ)	V _{OH} (Vdc – min)	Case	Туре
Toggle Flip-Flop	4.0 to 16	1.0	15.5	206A	MFC4040
Dual Toggle Flip-Flop	4.0 to 16	1.0	15.5	643A	MFC6020

RHYTHM

Dual Toggle Flip-Flop with Reset	4.0 to 16	1.0	15.5	643A	MFC6050
3-Input AND Gate	4.0 to 16	-	15	643A	MFC6060
R-S Flip-Flop	4.0 to 16	1.0	15.5	643A	MFC6080
J-K Flip-Flop	4.0 to 16	1.0	15.5	644A	MFC8050

ATTENUATOR

Function	V _{CC} Range (Vdc)	ТНD (% — typ)	Av (dB – typ)	Attenuation Range (dB – typ)	Case	Туре
Electronic Attenuator	9.0 to 18	0.6	13	90	643A	MFC6040

Preview of Upcoming Products

The products described in this section are presently under development and are expected to be introduced soon. All specifications are tentative. Additional information on these devices and their availability may be obtained from your Motorola representative.

INDUSTRIAL PRODUCTS

Most of the traditional linear IC types are designed for industrial applications. Several new op amps and a timing circuit are discussed below. These devices further the diversity of Motorola's product line-up.

MLM108A Operational Amplifier

The MLM108A series of high precision operational amplifiers is designed to provide high input impedance, low input bias currents and low offset voltages, thus making it possible to eliminate offset adjustments in most applications. The devices operate on supply voltages from ± 2 V to ± 20 V and have sufficient supply rejection to use unregulated supplies. Feed forward compensation techniques can be applied to provide increased slew rates for maximized performance in high speed sample-and-Hold circuits and precision high-speed summing amplifiers.

FEATURES:

- Offset voltage guaranteed less than 0.5 mV
- Low input offset current 400 pA maximum
- Low input bias currents 3.0 nA maximum
- Guaranteed maximum input offset drift 5 $\mu v / ^{\circ} C$

MC1776 Programmable Low Power Operational Amplifier

The MC1776 offers the user high-input impedance, low-power supply currents, and lowinput noise over a wide range of operating supply voltages. Power consumption, input current, and noise resulting from both input voltage and current can be optimized by the selection of a single resistor or current source that sets the chip quiescent currents for microwatt power consumption.

FEATURES:

- Micropower consumption
- ±1.2 V to ±18 V operation
- Low input bias currents
- High slew rate
- Offset null capability

MC1555 Adjustable Timer

The MC1555 is a highly stable timing circuit designed to provide accurate time delays or oscillations. Both trigger and reset provisions are available for increased flexibility. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor.

FEATURES:

- Timing from microseconds through hours
- Output can source or sink 200 mA
- TTL compatible
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Temperature stability of 0.005% per °C
- Normally on and normally off output

MC1741S Operational Amplifier

The MC1741S is an internally compensated, high-performance monolithic operational amplifier designed to provide a wide power bandwidth. It is similar in other electrical characteristics and pin compatible with the MC1741. Application possibilities include A/D converters, oscillators, active filters or general purpose amplifiers.

- 10 V/µs slew rate
- Pin compatible with MC1741 op amp
- 500 kHz power bandwidth

CONSUMER PRODUCTS

The rapid trend to ICs in television, stereo and FM radio equipment has permitted the development of many new, advanced ICs for these product types. Particularly in television the diversity of available functions is rapidly expanding. A number of device types which will be introduced in the near future are summarized below.

MC1391 TV Horizontal Processor

The MC1391 TV horizontal processor packs the phase detector, oscillator and pre-driver functions into a single, convenient 8-lead plastic package. The new unit provides the entire low-level horizontal signal processing function and may be used with either transistor or vacuum tube output stages. This device is one of the first inroads of ICs into the television deflection circuitry.

FEATURES:

- Internal shunt regulator
- Preset Hold control capability
- ±300 Hz typical pull-in range
- Balanced phase detector
- Variable output duty cycle for driving tube or transistor
- Low thermal frequency drift
- Small static phase error

MC1359 TV Sound System

The MC1359 is a complete sound system for a television receiver. It includes the IF amplifier, detector, electronic volume control, and audio amplifier. The IC provides two watts of audio output. All this is packed into a single plastic package with two heat dissipating tabs.

The dc voltage-controlled volume attenuator saves the necessity of long lengths of shielded cable between the volume control and the audio amplifier circuitry. This advanced system provides 80 dB of audio attenuation range.

FEATURES:

- Excellent AM rejection
- DC volume control with 80 dB typical attenuation range
- Signal to noise ratio = 63 dB typical
- Few external components required

MC1344 TV Signal Processor

The MC1344 TV signal processor provides a collection of common television processing functions. It combines the sync separator, advanced noise inverter, AGC comparator and both positive and negative-going RF AGC delay amplifier into a single package.

This device is an improved version of the MC1345. It features greater thermal noise performance and modified negative RF amplifier AGC response. A number of important features are tabulated below.

- Video internally delayed for total noise inversion
- · Low impedance, noise cancelled sync output
- Refined AGC gate
- Small IF AGC output change during RF AGC internal
- Positive and negative going RF AGC outputs
- Noise threshold may be externally adjusted
- Time constants for sync separator externally chosen
- Stabilized for ±10% supply voltage variations

MC1315 CBS SQ Logic Circuits

The MC1315 provides the basic logic function for enhancing the front to back separation in the CBS SQ four channel decoding system. The new IC is designed to interface with the MC1312 decoder and MC1314 balance control unit. The MC1315 provides variable logic enhancement control and supplies the dc gain control and balance signals to the MC1314.

This unit extends the performance of the basic SQ system to the levels desired for top-of-the-line systems.

FEATURES:

- Provides logic enhancement to extend front to back separation to 12 dB
- Low external parts count
- Provisions for enhancement controls
- Provides dc gain control signals to the MC1314

MC1314 CBS SQ Logic Circuits

The MC1314 is a gain control and balance adjustment unit for use with the CBS SQ system decoders. It consists of four amplifiers, with the gain of each being adjustable by varying a dc voltage. Thus with four variable resistors, the master volume and LF/RF, LB/RB and F/B balance may be controlled.

The unit also has inputs which may be connected to the MC1315 logic enhancement unit to provide increased front to back separation. This feature is highly desirable in high performance four channel stereo systems.

FEATURES:

- DC controlled gain
- Four separate audio preamplifiers
- Compatible with MC1312 decoder and MC1315 logic enhancement unit

MC1311 FM Stereo Demodulator

The MC1311 phase locked loop stereo demodulator is an modified version of the popular MC1310 type. The new circuit provides emitter follower outputs and 6 dB of gain. It retains the low external parts count (no inductors), simplified alignment and high performance of its predecessor.

The new IC also contains a stereo indicator lamp driver which incorporates 6 dB of hysteresis to avoid flickering due to noise.

FEATURES:

- Emitter follower outputs
- Requires no inductors
- Low external part count
- Includes 6 dB typical gain

MC1375 FM IF Circuit

Combining several functions required in solidstate FM receivers, the MC1375 provides the IF amplifier, limiter, FM detector and audio preamplifier in a single 14-lead package. The unit requires a minimum of external components.

The IF amplifier/limiter section provides excellent AM rejection and uses an internal zener diode voltage regulator. The detector is a differential peak design which promotes simplified single-coil alignment. The audio preamplifier supplies a voltage gain of ten.

- Good sensitivity: input limiting voltage (Knee)
 = 250 μV typical
- Excellent AM rejection: 55 dB typical at 10.7 MHz
- Internal zener diode regulation for the IF amplifier section
- Low harmonic distortion
- Differential peak detection: permits simplified single-coil timing
- Audio preamplifier voltage gain: 21 dB typical

LINEAR DIGITAL INTERFACE PRODUCTS

The rapid expansion in computer-control, data communications and digital instrumentations has led to the development of a myriad of new analog-digital interface ICs. A few of the most recent developments in Motorola's efforts in this field will be discussed below.

MC1504 Quad Current Switch

The MC1504 is a monolithic quad current switch designed for an optimum combination of accuracy, switching speed and stability as required in precision D/A converters. Several units may be cascaded with a 16:1 interquad attenuation to make complete converters with up to 12 bit accuracy. The current switch is coupled with an external ladder network to produce the D/A function. A reference transistor is included for use in termperature compensating circuitry.

FEATURES:

- ±0.01% maximum nonlinearity
- 40 ns switching time
- 200 ns settling time
- 1 ppm/°C temperature coefficient

MC1507 A/D Converter Subsystem

The MC1507 is a monolithic subsystem designed for use in A/D converters and instrumentation applications. It consists of a high slew rate, wide-bandwidth op amp and a dual threshold voltage comparator. The comparator features low input currents and separate outputs for both thresholds. A very economical tracking A/D system can be assembled using the MC1507 in conjunction with the MC1508 8-bit D/A converter and a TTL Up/Down counter.

FEATURES:

- Low input offset voltage
- Standard power supply: ±15 V and +5 V
- Differential reference input sets both thresholds
- Op amp has 20 MHz bandwidth in unity gain mode

MC1508 8-Bit D/A Converter

The MC1508 monolithic 8-bit D/A converter is designed for use in applications requiring an output current which is the linear product of an analog input voltage and an 8-bit digital word. It is similar to the MC1506 6-bit D/A converter in basic design except that the new unit has non-inverting logic inputs and a faster reference amplifier for multiplying applications. An additional pin has been provided for extending the output voltage swing in the negative direction to -5 V.

- Fast settling time
- Non-inverting operation
- Low power consumption
- Maximum error of ±0.19%

MLMIII Series Voltage Comparator

The MLMIII voltage comparator is designed to operate over a wide range of supply voltages. The comparator may be operated from ± 15 V supplies as used with op amps or a single ± 5 V supply as used with digital logic systems. Both the inputs and outputs of the MLMIII can be isolated from system ground and the output can drive loads referenced to ground, the positive or the negative supply. Offset balancing and strobe capability are provided and outputs can be Wire-ORed.

FEATURES:

- May operate from single 5 V supply
- Input current: 150 nA maximum
- Offset current: 20 nA maximum
- Differential input voltage range: ±30 V

MC75452-MC75453-MC75454 Dual Peripheral Drivers

The MC75452, 453, 454 series of dual peripheral drivers are designed for use as general purpose interface functions in DTL/TTL systems. The drivers consist of two logic gates whose outputs are internally connected to the bases of two high current, high voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers. The MC75452 is a positive NAND function, the MC75453 is a positive OR function while the MC75454 is a positive NOR function.

FEATURES:

- 300 mA output drive capability
- High output breakdown voltage: BV_{CER} = 30 V minimum
- DTL/TTL compatible inputs

MMH0026 Dual MOS Clock Driver

The MMH0026 is a monolithic, high-speed, two-phase MOS clock driver. The device accepts standard DTL/TTL inputs and converts them to MOS logic levels. It has the ability to drive large capacitive loads. The MMH0026 is intended for applications in which the output pulse width is logically controlled; i.e. the output pulse width is equal to the input pulse width.

FEATURES:

- Fast rise and fall times 20 ns with 1000 pF load
- 20 V output swing
- ±1.5 amps output current drive
- Drives to within 0.4 V of ground for RAM address drive applications

MC75491, MC75492 MOS to VLED Segment & Digit Drivers

The MC75491 and MC75492 are monolithic drivers for use with visable light emitting diode (VLED) displays. They were designed to provide the interface between MOS logic and common cathode VLEDs in serially addressed, multi-digit displays. This time multiplexed system using a segment address and digit scan method of VLED drive minimizes the number of derivers required. The MC75491 devices have a separate connection for the emitter of each output transistor while the MC75492 devices have the emitters internally connected to the V_{DD} terminal.

FEATURES:

MC75491

- 50 mA source or sink current capability
- Low input current for MOS compatibility
- Low stand-by power
- Quad high-gain Darlington circuits

MC75492

- 250 mA sink current capability
- Low input current for MOS capability
- Low stand-by power
- Hex high-gain Darlington Circuits

LINEAR

INTEGRATED CIRCUITS

INTERCHANGEABILITY GUIDE

This interchangeability guide describes equivalent circuits in two ways: (1) the "Direct Replacement" which is both electrically and mechanically a direct replacement; and, (2) the "Functional Equivalent" that is generally superior in electrical characteristics, however may differ in package dimensions or lead configurations. When a functional equivalent circuit is used for a replacement, the specific data sheet should be consulted.

Packaging availability information for each Motorola device is listed in the Linear Application Selector Guides section and also appears on the individual data sheet for the device. Exact outline dimensions are shown in the Packaging Information section of this data book.

MANUFACTURERS REFERENCED

Fairchild Semiconductor National Semiconductor RCA Signetics Texas Instruments

FAIRCHILD INSTRUMENTS TO MOTOROLA

	NRCHILD CE NUMBER	MOTOROLA	MOTOROLA		AIRCHILD CE NUMBER	MOTOROLA	MOTOROLA
DEVICE TYPE	ORDER CODE	DIRECT EQUIVALENT	FUNCTIONAL EQUIVALENT	DEVICE TYPE	ORDER CODE	DIRECT EQUIVALENT	FUNCTIONAL
μΑ702 μΑ703	U3F 7702 312 U3F 7702 313 U5B 7702 312 U5B 7702 393 U6A 7702 312 U6A 7702 393 U6A 7702 393 U5D 7703 312	MC1712F MC1712CF MC1712G MC1712CG MC1712L MC1712L MC1712CL	MFC6010	μA748	U3F 7748 312 U3F 7748 313 U5B 7748 312 U5B 7748 393 U6A 7748 393 U6A 7748 393 U6T 7748 393 U6T 7748 393	MC1748F MC1748CF MC1748G MC1748CG MC1748L MC1748CL MC1748CP2 MC1748CP1	
	U5D 7703 393 U5D 7703 394		MFC6010 MFC6010	μA754	U5E 7754 393 U6A 7754 394		MC1355P MC1355P
μΑ709	U3F 7709 311 U3F 7709 312 U3F 7709 313 U5B 7709 311 U5B 7709 312 U5B 7709 313 U6A 7709 311 U6A 7709 312 U6A 7709 312	MC1709F MC1709F MC1709CF MC1709G MC1709G MC1709CG MC1709L MC1709L MC1709L		μΑ757 μΑ767 μΑ780 μΑ781 μΑ795 μΑ796 μΑ7524	U6A 7757 312 U6A 7757 393 U6A 7780 394 U6A 7795 312 U6A 7795 312 U6A 7795 312 U6A 7795 312 U6A 7796 313 U5E 7796 393 U7B 7524 392	MC1307P MC1370P MC1371P MC1595L MC1595CL MC1596GG MC1596CG MC7524	MC 1350P MC 1350P
μΑ710 μΑ711	U3F 7710 312 U3F 7710 313 U5B 7710 312 U5B 7710 393 U6A 7710 312 U6A 7710 393 U3F 7711 312	MC1710F MC1710CF MC1710G MC1710CG MC1710L MC1710CL MC1711F		μA7525 μA7805 μA7806 μA7808 μA7812 μA7815 μA7818 μA7824	U7B 7525 393 UGH 7805 393 UGH 7806 393 UGH 7808 393 UGH 7812 393 UGH 7815 393 UGH 7818 393 UGH 7824 393	MC7524 MC7805CP MC7806CP MC7808CP MC7812CP MC7815CP MC7818CP MC7818CP	
μA7 1 9	U3F 7711 313 U5F 7711 312 U5F 7711 393 U6A 7711 312 U6A 7711 393 U5F 7719 312	MC1711CF MC1711G MC1711CG MC1711L MC1711L	MC1357	μΑ9614	U4L 9614 51X U4L 9614 59X U7B 9614 59X U7B 9614 59X	110702401	MC1582L MC1582L MC1582L MC1582L MC1582L
μA723	U5F 7719 393 U5R 7723 312 U5R 7723 393	MC1723G MC1723CG	MC1357	μA9615	U4L 9615 51X U4L 9615 59X U7B 9615 51X U7B 9615 59X		MC1584L MC1584L MC1584L MC1584L
μΑ729 μΑ732	U6A 7723 312 U6A 7723 393 U6A 7729 394 U6A 7732 394	MC1723L MC1723CL MC1305P MC1304P		μA9620	U31 9620 51X U31 9620 59X U6A 9620 51X U6A 9620 59X		MC1580L MC1580L MC1580L MC1580L MC1580L
μΑ733	U3F 7733 312 U3F 7733 313 U5F 7733 312 U5F 7733 393 U6A 7733 312 U6A 7733 393	MC1733F MC1733CF MC1733G MC1733CG MC1733L MC1733CL		μA9621	U3I 9621 51X U3I 9621 59X U6A 9621 51X U6A 9621 59X		MC1584L MC1584L MC1584L MC1584L MC1584L
μA739	U6A 7739 312 U6A 7739 393	MC1303P MC1303P		μA9622	U3I 9622 51X U3I 9622 59X U6A 9622 51X		MC1583 MC1583 MC1583
μA741	U3F 7741 312 U3F 7741 313 U5B 7741 312 U5B 7741 393 U6A 7741 393 U6A 7741 393 U6T 7741 393 U9T 7741 393	MC1741F MC1741CF MC1741G MC1741CG MC1741L MC1741CL MC1741CP2 MC1741CP1		CA3064 CA3065 CA3075	U6A 9622 59X CA 3064/5A CA 3065/7F CA 3075/	MC1364G MC1358PQ MC1375P	MC 1583
µA746	U5E 7746 394 U6A 7746 394	MC1328P	MC1328P				
μA747	U5F 7747 312 U5F 7747 393 U6W 7747 312 U6W 7747 393 U7A 7747 393 U7A 7747 393		MC1558G MC1458G MC1558L MC1558CL MC1558L MC1558CL				

NATIONAL TO MOTOROLA

			NATIONAL TYPE		MOTOROLA FUNCTIONAL
NUMBER	REPLACEMENT	EQUIVALENT	NUMBER	REPLACEMENT	EQUIVALENT
LH101F LH101H LH201H		MC1741F MC1741G MC1741G	LM710CN LM711H LM711CH	MC1710CP MC1711G MC1711CG	
LM100H LM101H	MC1748G	MC1723G	LM723D LM723H	MC1723L MC1723G	
LM101AH LM102H LM104H	MLM101AG MLM110G MLM104G		LM723CD LM723CH LM733D	MC1723CL MC1723CG MC1733L	
LM105H LM106H	MLM105G	MC1710G	LM733H LM733CD	MC1733G MC1733CL	
LM107H LM108H LM108AH LM109K	MLM107G MLM109K	MC 1556G MC 1556G	LM733CH LM741D LM741F LM741H	MC1733CD MC1741L MC1741F MC1741G	
LM110H	MLM110G		LM741CD	MC1741CL MC1741CG	
LM112H LM118H LM200H LM201H	MC1748CG	MC1556G MC1539G MC1723CG	LM741CN LM741CN LM741CN-14 LM746N	MC1741CC MC1741CP1 MC1741CP2 MC1328P	
LM201AH LM202H	MLM201AG MLM210G		LM747D LM747CC	MC1747L	
LM204H LM205H LM206G	MLM204G MLM205G	MC1710CG	LM748H LM748CH LM1303N	MC1748G MC1748CG MC1303L	
LM207H LM208H	MLM207G	MC 1456G	LM1304N LM1305N	MC 1304P MC 1305P	
LM209K LM210H LM212H LM218H	MLM209K MLM210G	MC 1456G MC 1439G	LM1310N LM1307N LM1351N	MC1310P MC1307P MC1351P	
LM300H LM301AH LM301AN LM301AN LM302H	MLM301AG MLM301API MLM310G	MC1723CG	LM1414J LM1414N LM1458H LM1458N LM1458N LM1489J	MC1414L MC1414L MC1458G MC1458P1 MC1489L	
LM304H	MLM304G		LM1489AJ LM1496H	MC1489AL MC1496G	
LM305H LM306H LM307H	MLM305G MLM307G	MC1710CG	LM1496N LM1514J LM1558H	MC1496L MC1514L MC1558G	
LM308H LM308AH		MC 1456G MC 1456G	LM1596H LM2111N	MC 1596G MC 1357P	
LM309K LM310H LM312H LM318H	MLM309K MLM310G	MC 1456G MC 1439G	LM3064H LM3064N LM3065N	MC 1364G MC 1364P MC 1358P	
LM350N LM351N LM370H LM370N LM371H	MC75453P	MC75450P MC1590G MC1350P MFC6010	LM3067N LM3070N LM3071N LM3900N LM3901N	MC1370P MC1371P MC3401P MC3302P	MC 1328P
LM376N LM380N		MFC6030A MFC9020	LM5520J		MC7520L MC7521L
LM381N LM382N LM703LN		MC 1339P MC 1339P MF C6010	LM5523J LM5525J LM5528J LM5529J		MC 7523L MC 7525L MC 7528L MC 7529L
LM709H LM709CH LM709CN LM710H LM710CH	MC1709G MC1709CG MC1709CP2 MC1710G MC1710CG		LM5534J LM5535J LM5538J LM5539J		MC 7534L MC 7535L MC 7538L MC 7539L
			LM7520J	MC7520L	

NATIONAL	A (continued)	
	DIRECT REPLACEMENT	FUNCTIONAL
LM7520N LM7521J LM7521N LM7522J LM7522N	MC7520L MC7521L ML7521L ML7522L MC7522L	
LM7523J LM7523N LM7524J LM7524N LM7524N LM7525J	MC7523L MC7523L MC7524L MC7524L MC7525L	
LM7525N LM7528J LM7528N LM7529J	MC7525L MC7528L MC7528L MC7528L MC7529L	
LM7529N LM7534J LM7534N LM7535J LM7535N	MC7529L MC7534L MC7534L MC7535L MC7535L	
LM7538J LM7538N LM7539J LM7539N LM75450AN	MC 7538L MC 7538L MC 7539L MC 7539L	MC75450P
LM75451AN LM75452N LM75453N	MC 75452P MC 75453P	MC75451P

NATIONAL TO MOTOROLA (continued)

RCA TO MOTOROLA

RCA DEVICE NUMBER	MOTOROLA DIRECT EQUIVALENT	MOTOROLA FUNCTIONAL EQUIVALENT	RCA DEVICE NUMBER	MOTOROLA DIRECT EQUIVALENT	MOTOROLA FUNCTIONAL EQUIVALENT					
CA3000 CA3001 CA3002 CA3004 CA3005		MC 1550G MC 1550G MC 1550G MC 1550G MC 1550G	CA3047A CA3048 CA3052 CA3053 CA3055		MC1433L MC3401P MC1339P MC1550G MC1723G					
CA3006 CA3007 CA3008 CA3008A CA3008A CA3010		MC 1550G MC 1550G MC 1709F MC 1709F MC 1709G	CA3056 CA3056A CA3058 CA3059 CA3064	MC1364	MC1741CG MC1741G MFC8070 MFC8070					
CA3010A CA3011 CA3012 CA3013 CA3014		MC1709G MC1590G MC1590G MC1355P MC1357P	CA3065 CA3066 CA3067 CA3070 CA3071	MC1358 MC1370P MC1371P	MC1398P MC1328P					
CA3015 CA3015A CA3016 CA3016A CA3016A CA3020		MC1709G MC1709G MC1709F MC1709F MC1554G	CA3072 CA3075 CA3076 CA3079 CA3085	MC1328P	MC1351P MC1590G MFC8070 MC1723G					
CA3020A CA3021 CA3022 CA3023 CA3028A		MC1554G MC1590G MC1590G MC1590G MC1550G	CA3085A CA3085B CA3090Q CA3741T CA3741CT		MC1723G MC1723G MC1310P MC1741G MC1741CG					
CA3028B CA3029 CA3029A CA3030 CA3030A		MC1550G MC1709CP2 MC1709CP2 MC1709CP2 MC1709CP2 MC1709CP2								
CA3031 CA3032 CA3033 CA3033A CA3033A CA3035	MC1712 MC1712L	MC1533L MC1533L MC1352P								
CA3037 CA3037A CA3038 CA3038A CA3038A CA3040		MC1709L MC1709L MC1709L MC1709L MC1709L MC1510G								
CA3041 CA3042 CA3043 CA3047		MC1351P MC1357P MC1357P MC1433L								

SIGNETICS TO MOTOROLA

SIGNETICS TYPE	MOTOROLA DIRECT	MOTOROLA FUNCTIONAL	SIGNETICS TYPE	MOTOROLA DIRECT	MOTOROLA FUNCTIONAL
NUMBER	REPLACEMENT	EQUIVALENT	NUMBER	REPLACEMENT	EQUIVALENT
NE501A		MC1733CL	N7523B	MC7523P	
NE501K NE510A		MC1733CG MFC8000P	N7524B	MC7524P	
NE510J		MFC8000P	N7525B	MC7525P	
NE515A		MC1420G	SE501K		MC1733G
			SE510A		MFC8000P
NE515G		MC1520F	SE510J		MFC8000P
NE515K		MC 1420G	SE515G		MC1520F
NE516A NE516G		MC1420G MC1520F	SE515K		MC1520G
NE516K		MC1320F MC1420G	SE516A		MC 1520G
			SE516G		MC1520F
NE518A		MLM306G	SE516K		MC1520G
NE518G		MLM306G	SE518A		MLM106G
NE518K		MLM306G	055400		
NE528B		MC1444L	SE518G SE518K		MLM106G MLM106G
NE528E		MC1444L	SE528E		MC1544L
NE531G		MC1439G	SE528R		MC1544L
NE531T		MC1439G	SE531G		MC 1539G
NE531V		MC1439PZ			
NE533G		MC1776CG	SE531T		MC 1539G
NE533V		M0177000	SE533G SE533T		MC1776G MC1776G
NE533V NE533T		MC1776CG MC1776CG	SE5331 SE537G		MC 1556G
NE537G		MC1456G	SE537G		MC 1556G
NE537T		MC1456G			
PA239A	MC1339		SE540L		MFC8020A
			SE550L		MC1723G
NE540L		MFC8020A	S5556T	MC1556G	
NE550A NE550L		MFC6030A MC1723CG	S5558T S5558F	MC 1558G MC 1558L	
N5070B	MC1370	WIC 172300	333301	MOTOSOL	
N5071A	MC1371		S5595F	MC1595L	
			S5596K	MC1596G	
N5072A	MC1328		S5596F	MC1596L	
N5111 N5556T	MC1357 MC1456G		S5709G S5709T	MC1709F MC1709G	
N5556V	WC 1450G	MC1456G	357051	MCT/05G	
N5558V	MC1458P1		S5710T	MC1710G	
			S5711K	MC1711G	
N5558T N5558F	MC1458G MC1458L		S5723T S5733K	MC1723G MC1733G	
N5595A	MC1495L		S5741T	MC1741G	
N5595F	MC1495L				
N5596A	MC1496L				
N5596K	MC1496G				
N5709A	MC1709CP2				
N5709G	MC1709CF				
N5709T N5709∨	MC1709CG MC1709CP1				
N5710A	MC1710CP				
N5710T	MC1710CG				1
N5711A N5711K	MC1711CP MC1711CG				
N5723A	WCT/TICG	MFC6030A			
1000	M0470000				
N5723T N5733K	MC1723CG				
N5733K N5741A	MC1733CG MC1741CP2		1		
N5741T	MC1741CG				
N5741V	MC1741CP1				
N5747A	MC1747CL				
N5747F	MC1747CL				
N5748A		MC1747CG			
N5748T	MC1748CG				
N7520B	MC7520P				
N7521B	MC7521P				
N7522B	MC7522P				

TEXAS INSTRUMENTS TO MOTOROLA

T.I. TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT	T.I. TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
SN5500F			SN55110J	MC55110L	
SN5510F	MC1510F		SN55325J	MC55325L	
SN5510L	MC1510G		SN56514L		MC1596G
SN5511F		MC1510F	SN72301AL	MLM301AG	
SN5511L		MC1510G	SN72301AN	MLM301AP1	
			SN72301AP	MLM301AP1	
SN5524J		MC7524L			
SN5525J		MC7524L	SN72306L	MLM306L	
SN5528J	MC5528L		SN72307L	MLM307G	
SN5529J	MC5529L		SN72558L	MC1458G	
SN 5534J	MC5534L		SN72558P	MC1458P1	
			SN72702F	MC1712CF	[
SN5535J	MC5535L				
SN5538J	MC5538L		SN72702L	MC1712CG	
SN5539J	MC5539L		SN72702N	MC1712CL	
SN7510F	MC1410F		SN72709L	MC1709CG	
SN7510L	MC1410G		SN72709N	MC1709CP2	
SN7511L		MC1410G			l
017500			SN72709P	MC1709CP1	
SN7520J	MC7520L		SN72709S	MC1709CF	
SN7520N	MC7520L		SN72710J	MC1710CL	
SN7521J	MC7521L		SN72710L	MC1710CG	
SN7521N	MC7521L		SN72710N	MC1710CP2	
SN7522J	MC7522L		01/202400		
SN7522N	M075001		SN72710S	MC1710CF	
	MC7522L		SN72711J	MC1711CL	
SN7523J	MC7523L		SN72711L	MC1711CG	
SN7523N SN7524J	MC7523L		SN7271N	MC1711CP2	
SN7524J SN7524N	MC7524L MC7524L		SN72611S	MC1711CF	
310732410	WIC /524L		CN172720N1	1001414	
SN7525J	MC7525L		SN72720N SN72733L	MC1414L	
SN7525N	MC7525L		SN72733L	MC1733CG MC1733CL	
SN7528J	MC7528L		SN72741J	MC1733CL MC1741CL	
SN7528N	MC7528L		SN727415	MC1741CL MC1741CG	
SN7529J	MC7529L		3N/2/41L	Mic1741CG	
0.0002000			SN72741N	MC1741CP2	
SN7529N	MC7529L		SN72741P	MC1741CP1	
SN52101AL	MLM101AG		SN72741Z	MC1741CF	
SN52106L	MLM106G		SN72747J	MC1747CL	
SN52107L	MLM107G		SN72747N	MC1747CL	
SN52558L	MC1558G				
			SN72748L	MC1748CG	
SN52702F	MC1712F		SN72770L		MC1456G
SN52702L	MC1712G		SN72771L		MC1456G
SN52702N	MC1712L		SN75107J	MC75107L	
SN52702Z	MC1712F		SN75107N	MC75107L	
SN52709F	MC1709F				
CNICO7001	MC1700C		SN75108J	MC75108L	
SN52709L	MC1709G		SN75108N	MC75108L	
SN52710J SN52710L	MC1710L MC1710G		SN75109J	MC75109L	1
SN52710L SN52710N	MC1710G MC1710P		SN75109N	MC75109L	
SN52710S	MC1710F		SN75110J	MC75110L	
01102/100			SNI75110N	MOZETTO	
SN52711J	MC1711L		SN75110N SN75150J	MC75110L	MC1488L
SN52711L	MC1711G		SN75150J SN75150N		MC1488L MC1488L
SN52711S	MC1711F		SN75154J		MC1489AL
SN52733L	MC1733G		SN75154J		MC1489AL MC1489AL
SN52741J	MC1741L		0147010414		INC THOSAL
			SN75234J		MC7534L
SN52741L	MC1741G		SN75235J		MC7535L
SN52741Z	MC1741F		SN75238J		MC7538L
SN52747J	MC1747L		SN75239J		MC7539L
SN52748J		MC1748G	SN75325J	MC75325L	
SN52748L	MC1748G				
			SN75450N	MC75450P2	
SN52770L		MC1556G	SN75450AN		MC75450P2
SN52771L		MC1556G	SN75451P	MC75451P	
SN55107J	MC55107L		SN75451AP		MC75451P
SN55108J	MC55108L				
SN55109J	MC55109L				
					ł
					1

٠

TEXAS INSTRUMENTS TO MOTOROLA (continued)

T.I. TYPE NUMBER	MOTOROLA DIRECT REPLACEMENT	MOTOROLA FUNCTIONAL EQUIVALENT
SN75452P SN75453P SN75454P SN76104N SN76105N	MC75452P MC75453P MC75454P MC1304P MC1305P	
SN76107N SN76242N SN76243N SN76246N SN76514L	MC1307P MC1370P MC1371P MC1328P	MC1496G
SN76514N SN76530P SN76564N SN76600P SN76642N	MC 1330P MC 1364P MC 1350P MC 1350P	MC1496L
SN 76650N SN 76651N SN 76653N SN 76665N SN 76675N	MC1352P MC1351P MC1353P MC1358P MC1358P MC1375P	

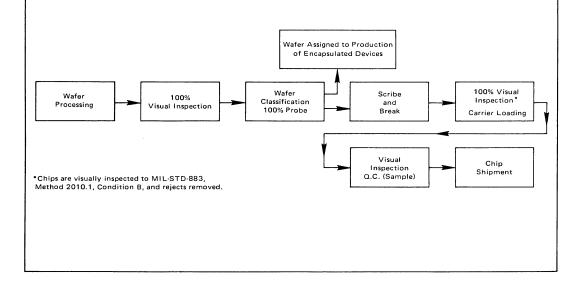
STANDARD FEATURES for LINEAR INTEGRATED CIRCUIT CHIPS (See MCC and MCCF prefix data sheets for device specifications)

All linear integrated circuit chips

- are 100% electrically tested to sufficient parameter limits (min/max) to permit distinct identification as either premium or industrial versions
- employ phosphorsilicate passivation which protects the entire active surface area including metalization interconnects during shipping and handling
- are 100% visually inspected to the criteria of MIL-STD-883, Method 2010.1, Condition B
- incorporate a minimum of 4000 Å gold backing to insure positive adherence bonding.

FEATURES for BEAM-LEAD CHIPS

(See MCBC prefix data sheets for device specifications)


Beam lead linear integrated circuit chips

 are processed to the same criteria as the digital beam-lead integrated circuits to insure the same reliability and performance features.

STANDARD CHIP PROCESSING

The industry-standard linear integrated circuits offered in Motorola's Microcircuit Components line are subjected to the same in-process controls as Motorola's standard encapsulated devices. The chip processing and quality control requirements are designed to insure reliability and performance of the finished product.

The processing and quality control flow chart shows that all wafer processing is completed prior to wafer assignment for subsequent encapsulation or special testing required for unencapsulated devices.

GENERAL INFORMATION -

NON-STANDARD CHIP PROCESSING

The industry standard unencapsulated integrated circuits are selected to meet a wide variety of application requirements. Nevertheless, there may be occasions when a designer can benefit from a non-standard device for a specific circuit requirement. To satisfy these requirements, almost any device from Motorola's extensive line of linear integrated circuits may be obtained on a specially negotiated basis. Although the electrical specifications of these chips are limited by certain test limitations, the customer may negotiate additional tests. Moreover, various chip technologies such as solder-bump and chrome-silver backing are available on a specially negotiated basis.

HANDLING PRECAUTIONS

Metalization interconnect passivation on all chips provides protection in shipping and handling. However, care should be exercised to prevent damaging the bonding pads. A vacuum pickup is useful for this purpose, tweezers are not recommended.

There are four basic requirements for handling devices in the customer's establishment:

- 1. Store devices in a covered or sealed container.
- 2. Store devices in an environment of no more than 30% relative humidity.
- Process devices in a non-inert atomosphere not exceeding 100⁰, or in an inert atmosphere not exceeding 400^oC.
- 4. Processing equipment should conform to the minimum standards of equipment normally employed by semiconductor manufacturers.

Motorola's engineering staff is available for consultation in the event of correlation or processing problems encountered in the use of Motorola semiconductor chips. For assistance of this nature, please contact your nearest Motorola sales representative.

STANDARD CARRIER PACKAGES

The non-spill type shipping carrier consists of a compartmentalized tray and fitted transparent cover. Each chip is placed in its compartment, geometry side up, so that incoming visual inspection may be performed prior to breaking the carrier seal. The shipping carrier is designed to:

- provide maximum device protection
- permit the customer to remove only a portion of the devices the carrier can be resealed
- provide a storage container for the unused devices.

Additional package techniques are under development to facilitate handling, visual inspection and chip storage.

Various packaging and shipping options are available on a negotiated basis. For more information on these options, please contact your Motorola sales representative.

RECOMMENDED INCOMING INSPECTION

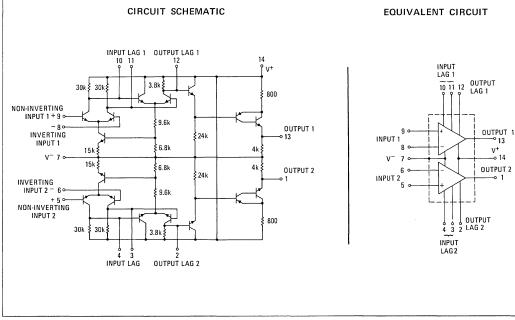
Motorola certifies that the devices have been subjected to the visual criteria of MIL-STD-883, Method 2010.1, Condition B.

Should the lot fail the customer's incoming visual inspection, the entire lot, with the package seals intact, shall be returned to Motorola. Incoming visual inspection should be performed prior to breaking the package seals. In no case will Motorola accept a partial return of devices.

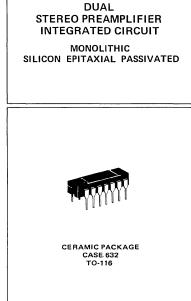
MC1303L

DUAL STEREO PREAMPLIFIER

MONOLITHIC DUAL STEREO PREAMPLIFIER


. . . designed for amplifying low-level stereo audio signals with two preamplifiers built into a single monolithic semiconductor.

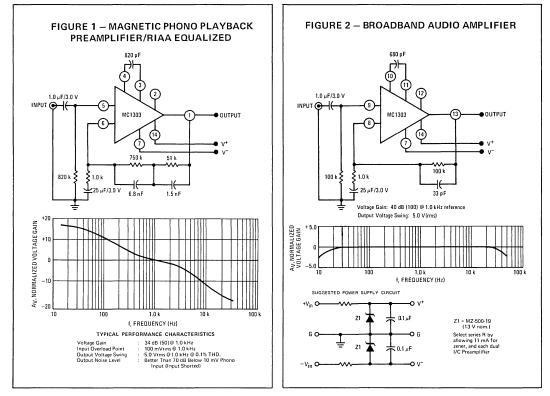
Each Preamplifier Features:


- Large Output Voltage Swing 4.0 V(rms) min
- High Open-Loop Voltage Gain = 6000 min
- Channel Separation = 60 dB min at 10 kHz
- Short-Circuit-Proof Design

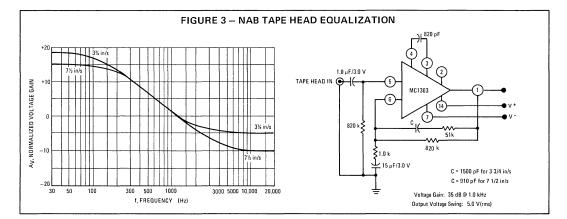
MAXIMUM RATINGS (T_A = + 25°C unless otherwise noted)

Symbol	Value	Unit
v+ v-	+15 -15	V dc V dc
^P D	625 5.0	m₩ m₩/°C
ТА	0 to +75	°C
	V+ V-	$\begin{array}{c} V^{+} & +15 \\ V^{-} & -15 \\ P_{D} & 625 \\ 5.0 \end{array}$

See Packaging Information Section for outline dimensions.



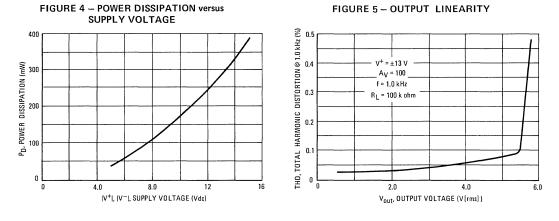
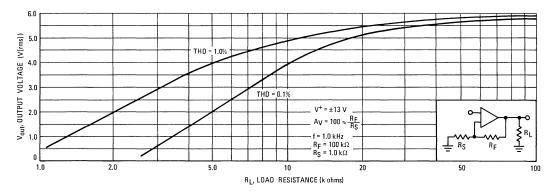
ELECTRICAL CHARACTERISTICS (Each Preamplifier) (V⁺ = +13 Vdc, V⁻ = -13 Vdc, T_A = +25^oC unless otherwise noted)

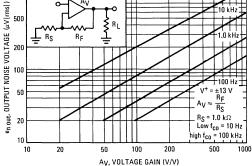

Characteristic Definitions (linear operations)	Characteristic	Symbol	Min	Тур	Max	Unit
$A_{VOL} = \frac{e_{out}}{e_{in}}$	Open Loop Voltage Gain	Avol	6,000	10,000	-	v/v
	Output Voltage Swing (R _L = 10 kΩ)	v _{out}	4.0	5.5	-	V(rms)
	Input Bias Current $I_b = \frac{I_1 + I_2}{2}$	I _b	-	1.0	10	μA
	Input Offset Current $(I_{10} = I_1 - I_2)$	I _{io}	-	0.2	0.4	μA
v_{io}	Input Offset Voltage	v _{io}	. –	1.5	10	mV
÷ ✓ vout v	DC Power Dissipation (Power Supply = ± 13 V, V _{out} = 0)	P _D	-	-	400	mW
ein = + • • • • • • • • • • • • • • • • • •	Channel Separation (f = 10 kHz)	eout 1 eout 2	60	70	-	dB

۰.

~

TYPICAL PREAMPLIFIER APPLICATIONS


FIGURE 6 - INFLUENCE OF OUTPUT LOADING

NOISE CHARACTERISTICS

FIGURE 7A - INFLUENCE OF SOURCE **RESISTANCE & BANDWIDTH** 500 Av en out, OUTPUT NOISE VOLTAGE (µV[rms]) o ±13 V ş $A_V = 100 \approx \frac{R_F}{R_S}$ 400 Rį Ľ₩s RF Low f_{co} = 10 Hz 1 f_{co} = 100 kHz 300 10 kHz 200 1.0 kHz 100 100 Hz 0 100 200 500 1000 2000 5000 10,000 R_S, SOURCE RESISTANCE (OHMS)

FIGURE 7B - INFLUENCE OF VOLTAGE GAIN & BANDWIDTH 1000 c 500 Į RL ⊥ Rs RF 200

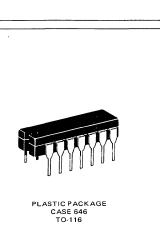
STEREO DEMODULATOR

FM MULTIPLEX STEREO DEMODULATORS

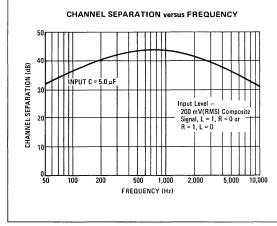
SILICON MONOLITHIC

INTEGRATED CIRCUITS

MC1304P MC1305P


MONOLITHIC FM MULTIPLEX STEREO DEMODULATORS

... derive the left and right audio information from the detected composite signal. The MC1304P eliminates the need for an external stereo-channel separation control. The MC1305P is similar to the MC1304P but permits the use of an external stereo-channel separation.


- Operation Practicable Over Wide Power-Supply Range, 8-14 Vdc
- Built-in Stereo-Indicator Lamp Driver
- Total Audio Muting Capability
- Automatic Switching Stereo-Monaural
- Monaural Squelch Capability

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage (Pins 1, 6, 9,*11, 12) (Pin 7 is grounded)	+22	Vdc
Lamp Driver Current	40	mAdc
Power Dissipation (Package Limitation) Plastic Package	625	mW
Derate above $T_A = 25^{\circ}C$	5.0	mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

*Pin 8 for MC1305P

CHANNEL SEPARATION versus COMPOSITE INPUT LEVEL

250 300

350 400

COMPOSITE INPUT LEVEL (mV[RMS])

450 500

See Packaging Information Section for outline dimensions.

10

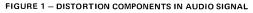
150

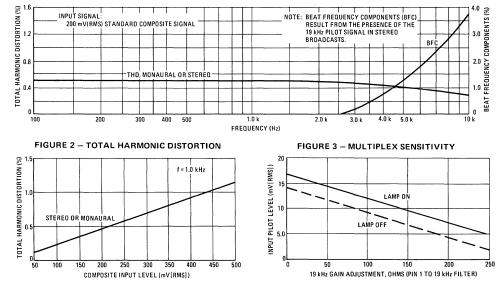
MC1304P, MC1305P (continued)

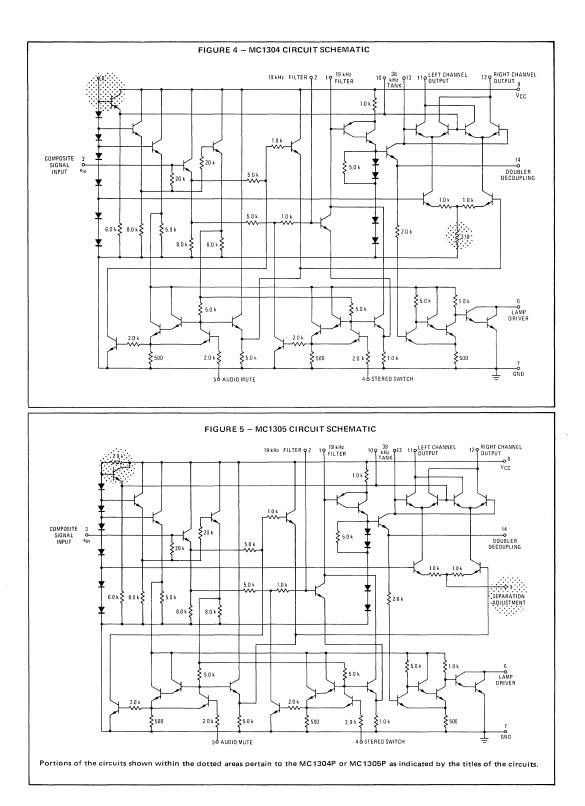
ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, T_A = $+25^{9}$ C unless otherwise noted. Test made with 75 µs deemphasis network (3.9 k Ω , 0.02 µF) unless otherwise noted).

Characteristics	Min	Тур	Max	Unit
Input Impedance (f = 20 Hz)	12	20	_	kΩ
Stereo Channel Separation (See Notes 1 and 2) (f = 100 Hz) (f = 1.0 kHz) (f = 10 kHz)		35 45 30		dB
Channel Balance (Monaural Input = 200 mV[RMS]), (Monaural, Left and Right Outputs)	-	0.5	-	dB
Total Harmonic Distortion (See Notes 1 and 3) (Modulation frequency - 1.0 kHz)	_	0.5	1.0	%
Ultrasonic Frequency Rejection (See Note 4) (19 kHz) (38 kHz)	_	25 20		dB
Inherent SCA Rejection (without filter) @ 60 kHz, 67 kHz and 74 kHz	_	50	-	dB
Lamp Indicator ($R_{\rm A}$ = 120 Ω) Minimum 19 kHz Input Level for lamp on Maximum 19 kHz Input Level for lamp off	- 5.0	16 14	25 -	mV(RMS)
Audio Muting Mute on (Voltage required at pin 5) Mute off (Voltage required at pin 5) Attentuation in Mute Mode (Note 5)	0.6 1.3 -	- - 55	1.0 2.0 -	Vdc Vdc dB
Stereo-Monaural Switching Stereo (Voltage required at pin 4) Monaural (Voltage required at pin 4)	1.3		2.0 1.0	Vdc
Power Dissipation (V _{CC} = 10 V) (Without lamp) (With lamp)		150 180	300 300	mW

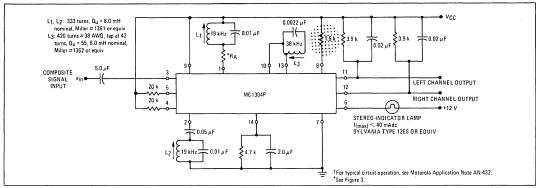
Note 1 — Measurement made with 200 mV(RMS) Standard Multiplex Composite Signal and L = 1, R = 0 or R = 1, L = 0. Standard Multiplex Composite signal is here defined as a signal containing left and/or right audio information with a 10% (19 kHz) pilot signal in accordance with FCC regulations.


Note 2 - Stereo channel separation is adjustable for the MC1305P with a resistor from pin 9 to ground.

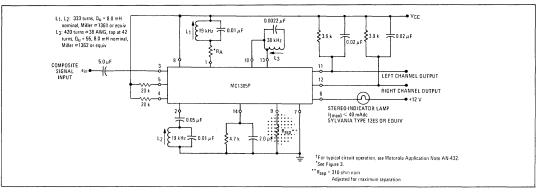

Note 3 - Distortion specification also applies to Monaural Signal.


Note 4 - Referenced to 1.0 kHz output signal with Standard Multiplex Composite Input Signal.

Note 5 - This is referenced to 1.0 kHz output signal with either Standard Multiplex Composite Signal or Monaural Input Signal.


 $\label{eq:symbols} Symbols \ conform \ to \ JEDEC \ Engineering \ Bulletin \ No. \ 1 \ when \ applicable.$

MC1304P, MC1305P (continued)


FIGURE 6 - MC1304P TYPICAL CIRCUIT CONFIGURATION[†]

Typical dc voltages (All voltages measured with respect to ground, Pin 7, $R_A = 0$)

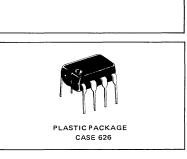
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$V_{CC} = 8.5 Vdc$	8.5	2.0	2.8	1.6	1.6	0.8	0	4.6*	8.5	3.9	6.3	6.3	3.9	1.9
$V_{CC} = 12 Vdc$	12	2.0	2.8	1.9	1.9	0.8	0	4.6**	12	3.9	9.7	9.7	3.9	1.9

*1.5 k Ω in series with pin 8 **2.7 k Ω in series with pin 8

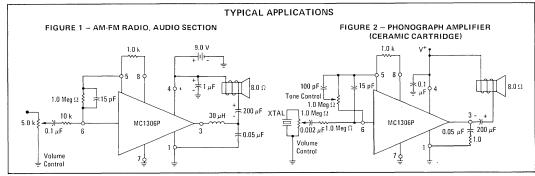
FIGURE 7 - MC1305P TYPICAL CIRCUIT CONFIGURATION[†]

Typical dc voltages (All voltages measured with respect to ground (Pin 7)

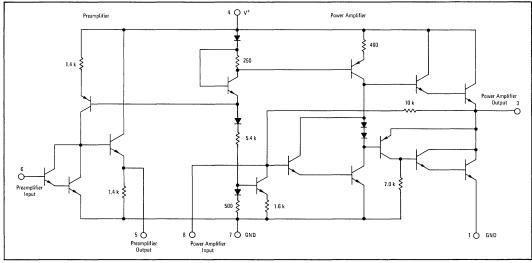
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$V_{CC} = 8.5 Vdc$	8.5	2.0	2.8	1.6	1.6	0.8	0	8.5	0.32	3.9	6.3	6.3	3.9	1.9
V _{CC} = 12 Vdc	12	2.0	2.8	1.9	1.9	0.8	0	12	0.36	3.9	9.7	9.7	3.9	1.9


Portions of the circuits shown within the dotted areas pertain to the MC1304P or MC1305P as indicated by the titles of the circuits.

MC1306P



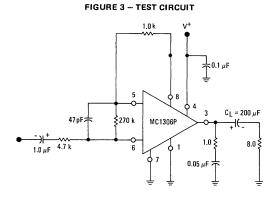
The MC1306P is a monolithic complementary power amplifier and preamplifier designed to deliver 1/2-Watt into a loudspeaker with a 3.0 mV(rms) typical input. Gain and bandwidth are externally adjustable. Typical applications include portable AM-FM radios, tape recorder, phonographs, and intercoms.


- 1/2-Watt Power Output (9.0 Vdc Supply, 8-Ohm Load)
- High Overall Gain 3.0 mV (rms) Sensitivity for 1/2-Watt Output
- Low Zero-Signal Current Drain 4.0 mAdc @ 9.0 V typ
- Low Distortion 0.5% at 250 mW typ

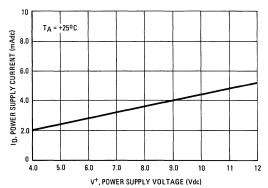
1/2-WATT AUDIO AMPLIFIER

CIRCUIT SCHEMATIC

See Packaging Information Section for outline dimensions.

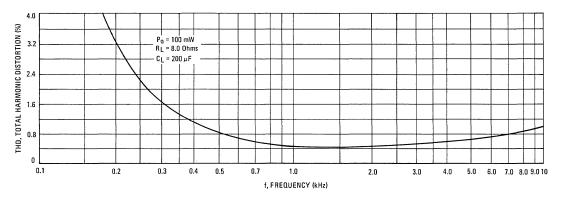

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

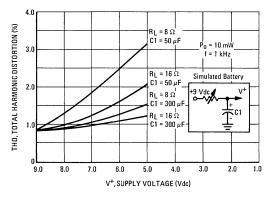
Rating	Symbol	Value	Unit
Power Supply Voltage	V+	12	Vdc
Load Current	۱L	400	mAdc
Power Dissipation (Package Limitation) $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$	Ρ _D 1/θJ _A	625 5.0	mW mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

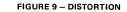

Maximum Ratings as defined in MIL-S-19500, Appendix A.

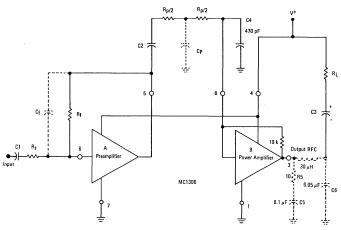

ELECTRICAL CHARACTERISTICS (V^+ = 9.0 V, R_L = 8.0 ohms, f = 1.0 kHz, (using test circuit of Figure 3), T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain	AVOL				V/V
Pre-amplifier RL = 1.0 k ohm			270	-	
Power-amplifier R _L = 16 ohms		-	360	-	
Sensitivity (P ₀ = 500 mW)	S	-	3.0	-	mV (rms)
Output Impedance (Power-amplifier)	Zo	-	0.5	-	Ohm
Signal to Noise Ratio (P _o = 150 mW, f = 300 Hz to 10 kHz)	S/N		55	-	dB
Total Harmonic Distortion (P _o = 250 mW)	THD	-	0.5		%
Quiescent Output Voltage	Vo	-	V ⁺ /2	-	Vdc
Output Power	Po				mW
(THD ≤ 10%)		500	570		
Current Drain (zero signal)	۱ _D	-	4.0	-	mA
Power Dissipation (zero signal)	PD	-	36	-	mW


FIGURE 4 - ZERO SIGNAL BIAS CURRENT




TYPICAL CHARACTERISTICS (V⁺ = 9.0 V, f = 1.0 kHz, T_A = +25^oC unless otherwise noted)



7

FIGURE 10 – TYPICAL CIRCUIT CONNECTION

DESIGN CONSIDERATIONS

The MC1306P provides the designer with a means to control preamplifier gain, power amplifier gain, input impedance, and frequency response. The following relationships will serve as guides.

1. Gain

manner where:

The Preamplifier Stage Voltage Gain is:

$$A_{V_A} \approx \frac{R_f}{R_s}$$

and is limited only by the open-loop gain (270 V/V). For good preamplifier dc stability Rf should be no larger than 1.0-megohm. The Power Amplifier Voltage Gain is controlled in a similar

$$A_{V_B} \approx \frac{10 \text{ k}}{R_p}$$

The 10-k ohm feedback resistor is provided in the integrated circuit.

Recommended values of R_p range from 500-ohms to 3.3-k ohms. The low end is limited primarily by low-level distortion and the upper end is limited due to the voltage drive capabilities of the pre-amplifier. (A resistor can be added in the dc feedback loop, from pin 6 to ground, to increase this drive). The Overall Voltage Gain, then, is:

$$A_{VT} = \frac{R_f 10 k}{R_s R_p}$$

2. Input Impedance

The Preamplifier Input Impedance is:

$$Z_{inA} \approx R_s$$

and the Power Amplifier Input Impedance is:

$$Z_{inB} \approx R_p$$

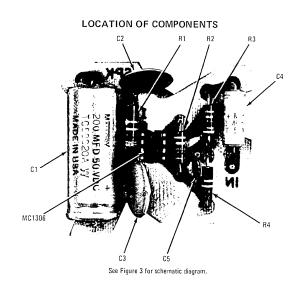
3. Frequency Response

The low frequency response is controlled by the cumulative effect of the series coupling capacitors C1, C2, and C3. High-frequency response can be determined by the feedback capacitor, C_f, and the -3.0 dB point occurs when

X_{Cf} = R_f

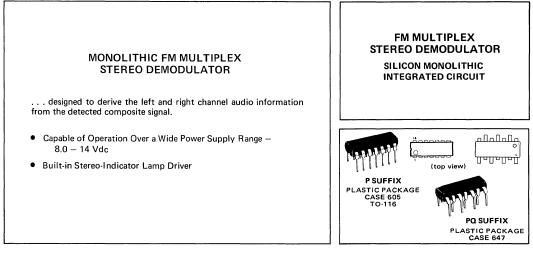
Additional high frequency roll-off and noise reduction can be achieved by placing a capacitor from the center point of R_p to ground as shown in Figure 10.

Capacitor C4 and the RC network shown in dotted lines may be needed to prevent high frequency parasitic oscillations. The RF choke, shown in series with the output, and capacitor C6 are used to prevent the high-frequency components in a large-signal clipped audio output waveform from radiating into the RF or IF sections of a radio (Figure 10).

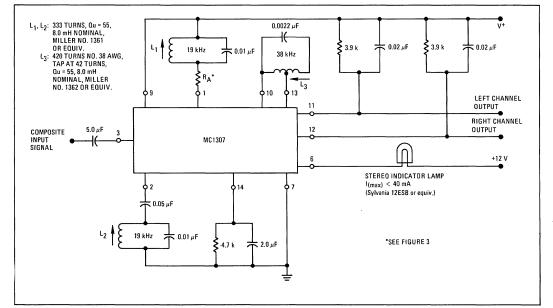

4. Battery Operation

The increase of battery resistance with age has two undesirable effects on circuit performance. One effect is the increasing of amplifier distortion at low signal levels. This is readily corrected by increasing the size of the filter capacitor placed across the battery (as shown in Figure 8; a 300- μ F filter capacitor gives distortions at low-tonal levels that are comparable to the "stiff" supply). The second effect of supply impedance is a lowering of power output capability for steady signals. This condition is not correctable, but is of questionable importance for music and voice signals.

5. Application Examples: (1) The audio section of the AM-FM radio (Figure 1) is adjusted for a preamplifier gain of 100 with an input impedance of 10-k ohms. The power amplifier gain is set at 10, which gives an overall voltage gain of 1000. The bandwidth has been set at 10-kHz. (2) The phono amplifier (Figure 2) is designed for a preamplifier gain of unity and a power amplifier gain of 10. The input impedance is 1.0-megohm. An adjustable treble control is provided within the feedback loop.

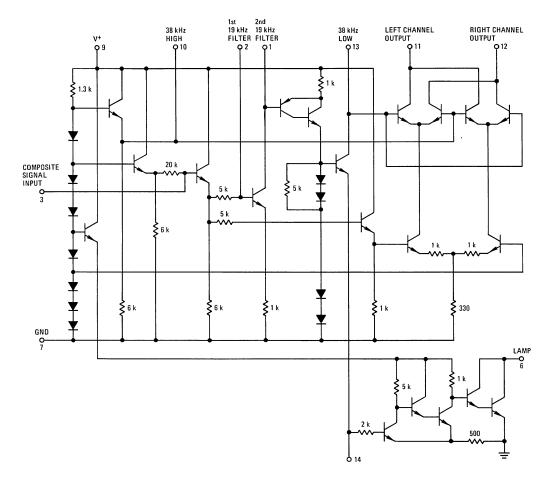

Component	Value				
C1	200 µF				
C2	0.1 μF				
C3	0.05 μF				
C4	1.0 μF				
C5	47 pF				
R1	1 ohm				
R2	1 k ohm				
R3	4.7 k ohms				
R4	270 k ohms				
MC1306	-				
PC Board					

PARTS LIST


7

MC1307

STEREO DEMODULATOR



TYPICAL DC VOLT	AGES	(All me	asured	using a		M with	respect	t to Pin	7 (larr	np on),	R _A =	180 oh	ms, see	e Figure
Pin Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V ⁺ = 8.5 Vdc	8.5	2.7	3.6	-	-	0.8	0	-	8.5	4.4	6.2	6.2	4.4	1.5
V ⁺ = 12 Vdc	12	2.9	3.9	-	-	0.9	0	- 1	12	4.7	9.7	9.7	4.7	1.7

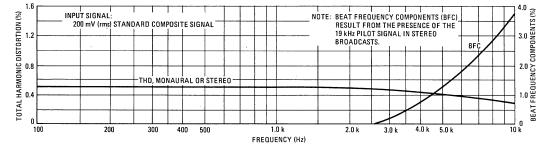
See Packaging Information Section for outline dimensions.

FIGURE 2 - CIRCUIT SCHEMATIC

MAXIMUM RATINGS	; (TA	= +25°C unless otherwise noted)
-----------------	-------	---------------------------------

Rating	Value	Unit
Power Supply Voltage (Pins 1, 6, 9, 11, 12) (Pin 7 is grounded)	+22	Vdc
Lamp Driver Current	40	mAdc
Power Dissipation (Package	625	mW
Limitation) Derate above T _A = +25 ⁰ C	5.0	mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°c
Storage Temperature Range	-65 to +150	°c

Maximum Ratings as defined in MIL-S-19500, Appendix A.


ELECTRICAL CHARACTERISTICS (V⁺ = 12 Vdc, T_A = +25^oC, tests made with a 75 μ s de-emphasis network (3.9 k Ω , 0.02 μ F) unless otherwise noted)

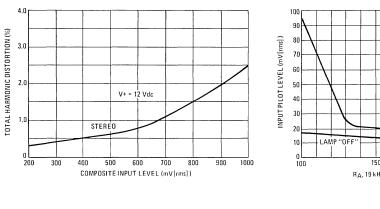
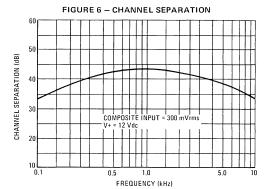
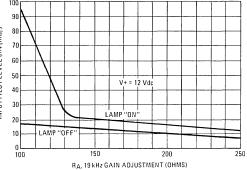
Characteristic	Min	Тур	Max	Unit
Input Impedance (f = 1.0 kHz)	12	20	-	kΩ
Stereo Channel Separation (See Note 1) (f = 100 Hz) (f = 1.0 kHz) (f = 10 kHz)	_ 20 _	35 40 30	- - -	dB
Total Harmonic Distortion (See Notes 1 and 2) (Modulation Frequency = 1.0 kHz)	-	0.5	1.0	%
Channel Balance (Monaural Input = 200 mV [rms]) (Monaural, Left and Right Outputs)	-	0.5	-	dB
Ultrasonic Frequency Rejection (See Note 3) (19 kHz) (38 kHz)		25 20		dB
Inherent SCA Rejection (without filter) (f = 60 kHz, 67 kHz and 74 kHz) (See Note 3)	-	50	-	dB
Lamp Indicator ($R_A = 180 \ \Omega$) (Minimum 19 kHz input level for lamp "on") (Maximum 19 kHz input level for lamp "off")	_ 5.0	16 14	25 	mV (rms)
Power Dissipation (V ⁺ = 12 V) (Without lamp) (With lamp)		140 170	300 300	mW

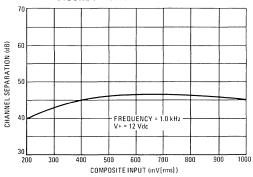
Note 1 - Measurement made with 200 mV(rms) Standard Multiplex Composite Signal where L = 1, R = 0 or R = 1, L = 0. Standard Multiplex Composite Signal is here defined as a signal containing left and/or right audio information with a 10% (19 kHz) pilot signal in accordance with FCC regulations.

Note 2 - Distortion specification also applies to Monaural Signal.

Note 3 - Referenced to 1.0 kHz output signal with Standard Multiplex Composite Input Signal.

FIGURE 3 - DISTORTION COMPONENTS IN AUDIO SIGNAL



FIGURE 4 - TOTAL HARMONIC DISTORTION

MC1310P

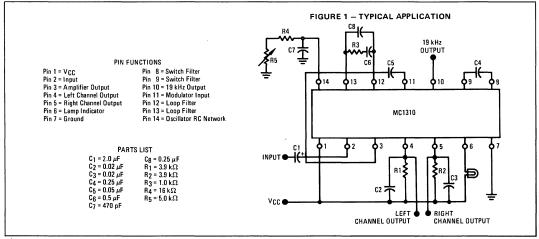
STEREO DEMODULATOR

FM STEREO DEMODULATOR

- ... a monolithic device designed for use in solid-state stereo receivers.
- Requires no Inductors
- Low External Part Count
- Only Oscillator Frequency Adjustment Necessary
- Integral Stereo/Monaural Switch 75 mA Lamp Driving Capability
- Wide Dynamic Range: 560 mV(RMS) maximum Composite
 Input Signal
- Wide Supply Range: 8-16 Vdc
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range
- Low Distortion: Typically 0.3% THD at 560 mV (RMS) Composite Input Signal
- Excellent SCA Rejection

7

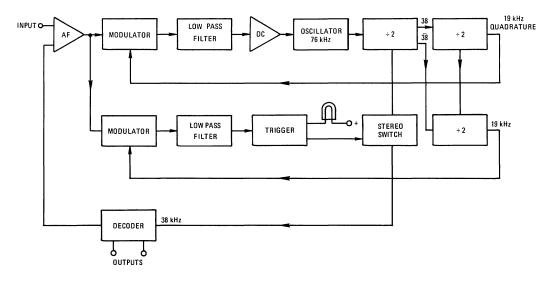
MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)


Rating	Value	Unit
Power Supply Voltage	16	Volts
Lamp Current (nominal rating, 12 V lamp)	75	mA
Power Dissipation (Package limitation)	625	mW
Derate above $T_A = +25^{\circ}C$	5.0	mW/ ^o C
Operating Temperature Range (Ambient)	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C

FM STEREO DEMODULATOR

MONOLITHIC SILICON INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 646 TO-116


See Packaging Information Section for outline dimensions.

Characteristic	Min	Тур	Max	Unit
Maximum Standard Composite Input Signal (0.5% THD)	2.8	-	-	V _{p-p}
Maximum Monaural Input Signal (1.0% THD)	2.8	-	-	V _{p-p}
Input Impedance	-	50	-	kΩ
Stereo Channel Separation (50 Hz – 15 kHz)	30	40	-	dB
Audio Output Voltage (desired channel)		485	-	mV(RMS)
Monaural Channel Balance (pilot tone "off")	-	-	1.5	dB
Total Harmonic Distortion	-	0.3	-	%
Ultrasonic Frequency Rejection 19 kHz 38 kHz		34.4 45		dB
Inherent SC A Rejection (f = 67 kHz; 9.0 kHz beat note measured with 1.0 kHz modulation "off")	-	80	-	dB
Stereo Switch Level (19 kHz input level for lamp "on")	12	16	20	mV(RMS)
Hysteresis	-	6.0	-	dB
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)	-	±3.0	-	%
Operating Supply Voltage (loads reduced to 2.7 k Ω for 8.0-volt operation)	8.0	-	16	Vdc
Current Drain (lamp "off")	-	13	-	mAdc

ELECTRICAL CHARACTERISTICS Unless otherwise noted; $V_{CC}^* = +12 \text{ Vdc}$, $T_A = +25^{9}\text{C}$, 560 mV(RMS) (2.8 Vp-p) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV(RMS) (10% pilot level), using circuit of Figure 1.

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

FIGURE 2 – SYSTEM BLOCK DIAGRAM

MC1310P (continued)

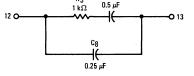

CIRCUIT OPERATION

Figure 2, on the previous page, shows the system block diagram. The upper line, comprising the 38-kHz regeneration loop operates as follows: the internal oscillator running at 76-kHz and feeding through two divider stages returns a 19-kHz signal to the input modulator. There the returned signal is multiplied with the incoming signal so that when a 19-kHz pilot tone is received a dc component is produced. The dc component is extracted by the low pass filter and used to control the frequency of the internal oscillator which consequently becomes phase-locked to the pilot tone. With the oscillator phase-locked to the pilot the 38-kHz output from the first divider is in the correct phase for decoding a stereo signal. The decoder is essentially another modulator in which the incoming signal is multiplied by the regenerated 38-kHz signal. The regenerated 38-kHz signal is fed to the stereo decoder via an internal stereo switch. The stereo switch closes when a sufficiently large 19-kHz pilot tone is received. The pilot tone level is detected and the switch operated by the stereo switch section of the circuit in the following manner:

The 19-kHz signal returned to the 38-kHz regeneration loop modulator is in quadrature with the 19-kHz pilot tone when the loop is locked. With a third divider state appropriately connected, a 19-kHz signal in phase with the pilot tone is generated. This is multiplied with the incoming signal in the stereo switch modulator yielding a dc component proportional to the pilot tone amplitude. This component after filtering is applied to the trigger circuit which activates both the stereo switch and an indicator lamp.

APPLICATIONS INFORMATION (Component numbers refer to Figure 1)

с ₁	Input coupling capacitor; 2.0 μ F is recommended but a lower value is permissible if reduced separation at low frequencies is ac-	R ₄ , R ₅ , C ₇	Oscillator timing network, recommended val- ues: C7 = 470 pF 1%
R ₁ , R ₂ , C ₂ , C ₃	ceptable. Loads and de-emphasis capacitors, maximum permissible load resistors are related to mini- mum supply voltage as follows: Min Supply 8.0 10 12 Volts Max Load 2.7 4.3 6.2 Kilohms (±10% Tolerance)		$\begin{array}{l} R_4 = 16 k\Omega & 1\% \\ R_5 = 5 k\Omega & \text{Preset} \\ \\ \text{These values give } \pm 3\% \text{ typical capture range.} \\ \text{Capture range may be increased by reducing} \\ C_7 \text{ and increasing } R_4, R_5 \text{ proportionally but} \\ \text{at the cost of increased beat-note distortion} \\ \text{(due to oscillator-phase jitter) at high-signal} \end{array}$
C4	Filter capacitor for stereo switch level detec- tor; time constant is $C_4 \times 53$ kilohms $\pm 30\%$, maximum dc voltage appearing across C_4 is 0.25 V (pin 8 positive) at 100 mV(RMS) pilot level. The signal voltage across C_4 is negligible.	Stereo Lamp	levels. Nominal rating up to 75 mA at 12 V; the circuit includes surge limiting which restricts cold-lamp current to approximately 250 mA
C5	Internal coupling capacitor to modulators; 0.05 μ F is recommended. This gives 1.75 ⁰ phase lead at 19 kHz.	19 kHz-Output	A buffered output providing a 3.0 Vp _K posi tive-going square wave at 19 kHz is available at pin 10. A frequency counter may be con nected to this point to measure the oscillator
R ₃ , C ₆ , C ₈	Phase-lock loop filter components; the follow- ing network is recommended:		free-running frequency for alignment.

When less performance is required a simpler network consisting of $R_3 = 100$ ohms and C_6 = 0.25 μ F may be used (omit Cg).

APPLICATIONS INFORMATION (continued)

External Monaural/Stereo Switching

The circuit can be maintained in monaural mode by connecting pin 8 negative or pin 9 positive by 0.3 V. Pin 8 may be grounded directly if desired. The dc impedance at pins 8 and 9 is 28 kilohms $\pm 30\%$. Note that the voltage across C₄ increases to 2.2 V with pin 9 positive when pin 8 is grounded.

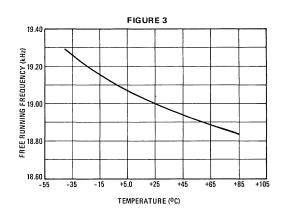
Oscillator Killing

In AM-FM receivers it may be desirable to kill the 76-kHz internal oscillator during AM reception to prevent interference. This may be accomplished by either grounding pin 14 or by connecting it to the positive line via a current limiting resistor (3.3 kilohms is recommended).

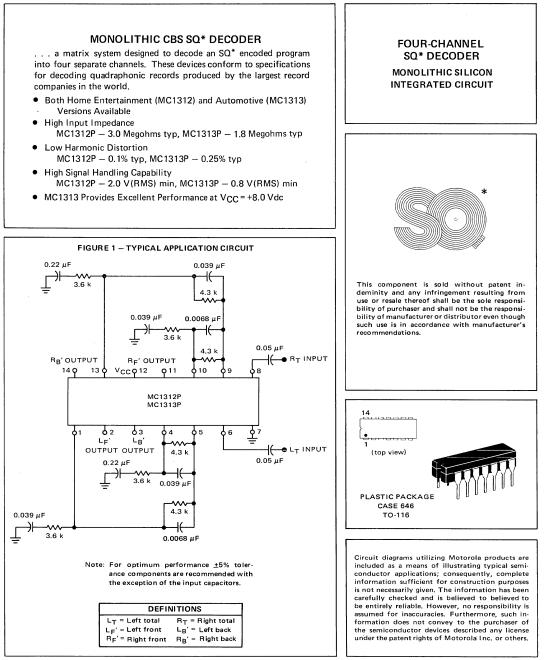
Phase Compensation

Phase-shifts in the circuit cause the regenerated 38-kHz sub-carrier to lead the original 38 kHz by approximately 2°. The coupling capacitor C5 generates an additional lead of 3.5° (for C5 = 0.05 μ F) giving a total lead of 5.5°.

It may be desirable that the regenerated 38 kHz lead or lag the original to compensate for receiver IF characteristics. Further


phase lead can be obtained if required by reducing C_5 , which couples into a 5.0-kilohm load.

The circuit is so designed that phase lag may be generated by adding a capacitor from pin 3 to ground. The source resistance at this point is 500 ohms. A capacitance of 820 pF compensates the 5.5° phase lead: increase above this value causes the regenerated sub-carrier to lag the original.


Note that these phase shifts occur within the phase-lock loop and affect only the regenerated 38-kHz sub-carrier: the circuit causes no significant phase or amplitude variation in the actual stereo signal prior to decoding.

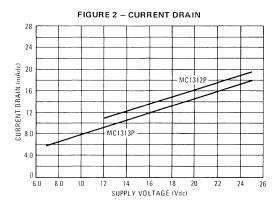
Voltage Control Oscillator Compensation

Figure 3 illustrates uncompensated Oscillator Drift versus temperature. The recommended T_C of the R₄, R₅, C₇ combination is -200 ppm. This will hold the oscillator drift to approximately ±0.5% over a temperature range of -30 to +85°C. Acceptable performance is obtained with up to 2.5% oscillator detuning, which with the compensation given above, allows ±2% for aging of the timing components.

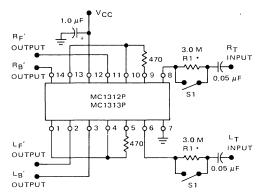
MC1312P MC1313P

*Trademark of Columbia Broadcasting Systems, Inc.

MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

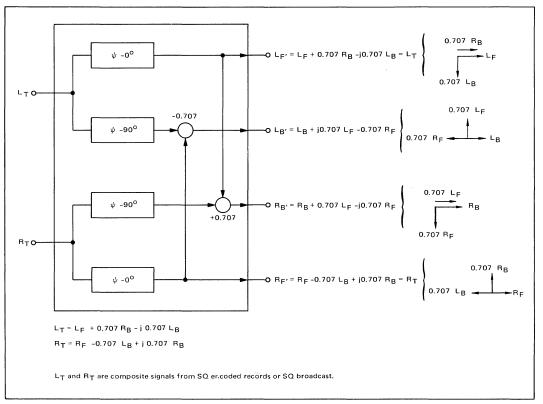

Rating	Value	Unit
Power Supply Voltage	25	Vdc
Power Dissipation (Package Limitation) Derate above T _A = +25 ^o C	625 5.0	mW mW/ ^o C
Operating Temperature Range MC1312P MC1313P	0 to +75 -40 to +85	°C
Storage Temperature Pange	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} for MC1312P = +20 Vdc, V_{in} = 0.5 V(RMS), for MC1313P V_{CC} = +12 Vdc, V_{in} = 0.2 V(RMS), T_A = +25^oC unless otherwise noted.) (See Figure 3.)


Charac	teristic	Min	Тур	Max	Unit
Supply Current Drain	MC1312P MC1313P	11 6.5	16 9.0	21 12.5	mA
Input Impedance	MC1312P MC1313P	1.8 1.0	3.0 1.8		MΩ
Output Impedance		-	5.0	-	kΩ
Channel Balance (L _F /R _F)		-1.0	0	+1.0	dB
Voltage Gain LF/LT or RF/RT		-1.0	0	+1.0	dB
$\begin{array}{l} \mbox{Relative Voltage Gain } L_B'/L_F', R_B'/\\ L_F' \mbox{ measurements made with } L_T \mbox{ i}\\ R_T \mbox{ input.} \end{array}$	LF', LB'/RF', RB'/ RF' nput, RF' measurements made with	-2.0	-3.0	-4.0	dB
Maximum Input Voltage for 1%THD RT or LT	at Output MC1312P MC1313P	2.0 0.8	_	_	V(RMS)
Total Harmonic Distortion RT or LT	MC1312P MC1313P	-	0.1 0.25	-	%
Signal to Noise Ratio (Short-Circuit I with Output Noise Referenced to O Voltage, V _O) (BW = 20 Hz to 20 kH	utput $V_0 = 0.2 V(RMS) MC1313P$	-	80 74	-	dB

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

TYPICAL CHARACTERISTICS


FIGURE 3 – TEST CIRCUIT

*R1 is used for input impedance measurement. S1 is normally closed.

APPLICATIONS INFORMATION

The decoding process is shown schematically in Figure 4. The MC1312P/MC1313P circuits that perform this function consists of two preamplifiers which are fed with left total, L_T, and right total, R_T, signals. The preamplifiers each feed two all-pass networks that are used to generate two L_T signals in quadrature and two R_T signals in quadrature. The four signals are matrixed to yield left-front, left-back, right-front, and right-back signals (L_F', L_B', R_F', R_F').

The all-pass networks are of the Wein bridge form with the resistive arms realized in the integrated circuit and the RC arms formed by external components. The values shown in Figure 1 are for a 100-Hz to 10-kHz bandwidth and a phase ripple of $\pm 8.5^{\circ}$ on a 90° phase difference.

It is generally desirable to enhance center-front to center-back separation. This is accomplished by connecting a resistor between pins 2 and 11 (front outputs) and a resistor between pins 3 and 14 (back outputs). For a 10% front channel blending[†] and a 40% back channel blending[†], 47 kilohms between pins 2 and 11 and 7.5 kilohms between pins 3 and 14 is required.

†8F''	= 0 .9	8 F' +	0.1	LF'
LF″	= 0.9	LF' +	0.1	R _F ′
R _B "	= 0.6	R _B ' +	0.4	LB
LR"	= 0.6	LB' +	0.4	R _B ′

^{*}An all-pass network produces phase shift without amplitude variations.

MC1326

DUAL CHROMA DEMODULATOR

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH R G B MATRIX AND CHROMA DRIVER STAGES

 \ldots . a monolithic device designed for use in solid-state color television receivers.

- Luminance Input Provided
- Good Chroma Sensitivity 0.3 Vp-p Input for 5 Vp-p Output
- Low Differential Output DC Offset Voltage 0.6 V max
- DC Temperature Stability 3 mV/°C typ
- Negligible Change in Output Voltage Swing with Varying 3.58 MHz Reference Input Signal
- High Ripple Rejection Achieved with MOS Filter Capacitors
- High Blue Output Voltage Swing 10 Vp-p typ
- Blanking Input Provided

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

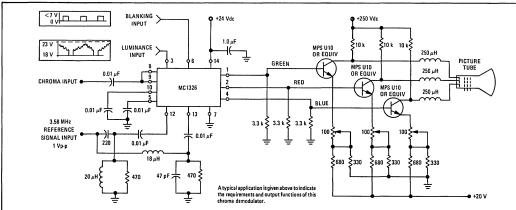
Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	Vp-p
Blanking Input Voltage	7.0	Vp-p
Power Dissipation (Package Limitation) Plastic Packages Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ºC
Operating Temperature Range (Ambient)	0 to +75	°c
Storage Temperature Range	-65 to +150	°c

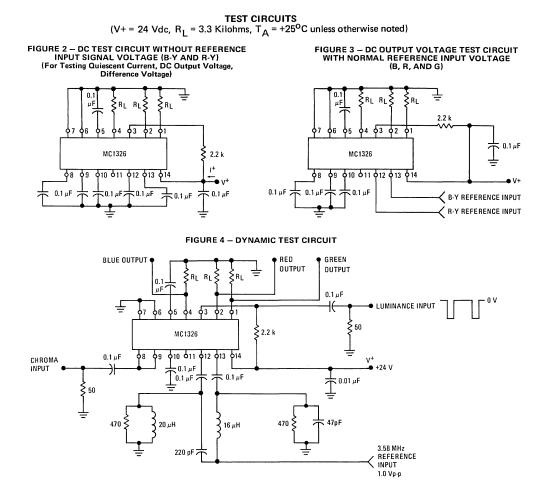
INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 605 TO-116

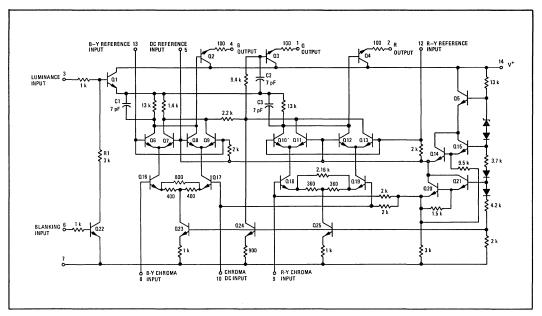
PO SUFFIX PLASTIC PACKAGE CASE 647

Maximum Ratings as defined in MIL-S-19500, Appendix A.




FIGURE 1 - MC1326 TYPICAL APPLICATION

ELECTRICAL CHARACTERISTICS (V⁺ = 24 Vdc, R₁ = 3.3 k ohms, T_A = +25^oC unless otherwise noted)


Characteristic	Pin No.	Min	Тур	Max	Unit
STATIC CHARACTERISTICS					
Quiescent Output Voltage See Figure 2	1, 2, 4	13	14.4	16	Vdc
Quiescent Input Current from Supply (Figure 2) (R $_L = \infty)$		_	6.0	_	mA
(R _L = 3.3 k ohms)	E 10.10	16.5	19	25.5	<u> </u>
Reference Input DC Voltage (Figure 2)	5,12,13	-	6.2	-	Vdc
Chroma Reference Input DC Voltage (Figure 2) Differential Output Voltage (Reference Input Voltage = 1.0 Vp-p) See Note 1 and Figure 3	8,9,10	-	3.4 0.3	0.6	Vdc Vdc
Output Voltage Temperature Coefficient (Reference Input Voltage = 1.0 Vp-p, +25 ⁰ to +65 ⁰ C) See Note 1 and Figure 3	1, 2, 4	_	3.0	. –	mV/ ⁰ C
DYNAMIC CHARACTERISTICS (V ⁺ = 24 Vdc, R _L = 3.3 k ohms, Re	eference Input Volta	ige = 1.0 V p-	p, T _A = +25 ⁰	C unless othe	rwise noted
Blue Output Voltage Swing See Note 2 and Figure 4	4	8.0	10	-	Vp-p
Chroma Input Voltage (B Output = 5.0 Vp-p) See Note 3 and Figure 4	8		0.3	0.7	Vp-p
Luminance Input Resistance	3	100	_		kΩ
Luminance Gain From Pin 3 to Outputs (@ dc) (@ 5.0 MHz)	1, 2, 4	_	0.95 0.5		-
Blanking Input Resistance 1.0 Vdc 0 Vdc	6		1.1 75		kΩ
Detected Output Voltage (Adjust B Output to 5.0 Vp-p, Luminance Voltage = 23 V)	4				Vp-p
See Note 4 G Output R Output	1 2	0.75 3.5	1.0 3.8	1.25 4.2	
Relative Output Phase (B Output = 5.0 Vp-p, Luminance Voltage = 23 V)					Degrees
B to R Output B to G Output $4.0 V_{P-P}$ 256° 106° $5.0 V_{P-P}$	4, 2 4, 1	101 248	106 256	111 264	
1.0Vp-p Demodulator Unbalance Voltage (no Chroma Input	1, 2, 4		250	500	mVp-p
Voltage and normal Reference Signal Input Voltage)	., _, .				
B-Y Phase Shift (B-Y Reference Input to B-Y Output)	4, 13		3	-	Degrees
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output = 5.0 Vp-p)	1, 2, 4	_	0.7	1.5	Vp-р
Reference Input Resistance (Chroma Input = 0)	12, 13	-	2.0	-	kΩ
Reference Input Capacitance (Chroma Input = 0)	12, 13	-	6.0	-	pF
Chroma Input Resistance	8, 9, 10	-	2.0	-	kΩ
Chroma Input Capacitance	8, 9, 10	_	2.0		pF

NOTES:

NOTES:
 With Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage = 1.0 Vp-p, all output voltages will be within specified limits and will not differ from each other by greater than 0.6 Vdc.
 With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 0.6 Vp-p.
 With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5 Vp-p. The Chroma Input Voltage at this point should be equal to or less than 0.7 Vp-p.
 With normal Reference Input Signal Voltage, adjust the Chroma Input Signal until the Blue Output Voltage = 5 Vp-p. At this point, the Red and Green voltages will fall within the specified limits.

7

FIGURE 5 - CIRCUIT SCHEMATIC

CIRCUIT OPERATION

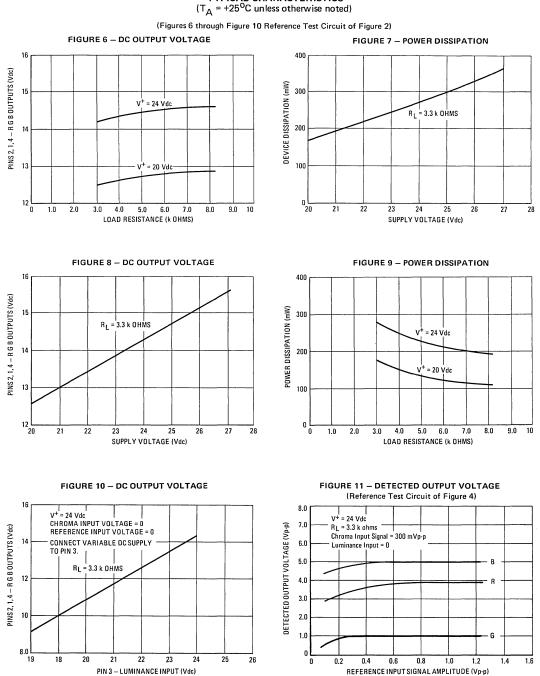
A double sideband suppressed carrier chroma signal flows between the bases of the two differential pairs, 216 and 217, 218 and 219. A reference signal of approximately 1 Vp-p amplitude having the same frequency as the suppressed chroma carrier with an appropriate phase relationship is supplied between the bases of the upper differential pairs Q6 and Q7, Q8 and Q9, Q10 and Q11, Q12 and Q13. The upper pairs are switched between full conduction and zero conduction at the carrier frequency rate. The collectors of the upper pairs are coss-coupled so that "doubly balanced" or "full-wave" synchronous detected chroma signals are obtained. Both positive and negative phases of the detected signal are available at opposite collector pairs.

While the detector section is almost identical to other available units, several excellent additional features are incorporated. Transistor Q1 is used as an emitter follower to which the collector load resistors of the detectors are returned. The collector impedances of the upper pair transistors are high compared with the collector load resistors, and any signal at the emitter of Q1 appears virtually unattenuated at the collectors of the upper pairs, and hence at the three detector output terminals. This feature may be used to mix the correct amount of the luminance portion of the color TV signal with the color difference signals produced by the detectors to give R-G-B outputs directly.

Capacitors C1, C2, and C3 compensate for most of the high frequency roll-off in the luminance signal. This is due to the collector capacitances of the detector transistors and the input capacitances of the emitter followers, Q2, Q3, Q4. Capacitors C1, C2, and C3 provide filtering of carrier harmonics from the detected color difference signals. This increases the available swing before clipping for the color difference signal, and reduces the high frequency components which must pass through the emitter followers (Q2, Q3, Q4) into the video output stages. Since high capacitance (>100 pF) is characteristic of the input impedance of a video output stage, the transistor emitter followers must porate at a

high quiescent current (>5 mA) in order to pass large high frequency components without distortion. The filtering reduces the quiescent current required in the emitter followers and thus reduces dissipation in the integrated circuit.

If it is not required to mix the luminance signal via Q1, this transistor can be used for brightness control. If the base of Q1 is connected to a suitable variable dc voltage, this will vary the dc output levels of the three detected outputs accordingly and thereby vary the picture brightness level.

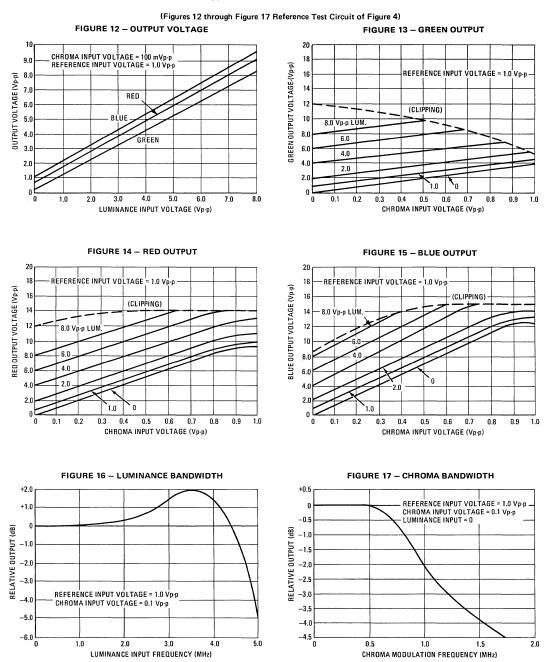

Blanking of the picture during line and frame flyback may be achieved by applying a positive-going blanking signal to the base of Q22. With an extra external resistor in series with the Q1 base of approximately 5 k ohms, when Q22 is turned on by the blanking pulse, the base of Q1 will be pulled negative by the current in R1, thus forcing all three detected outputs to go negative by the same amount. In a conventional solid-state receiver with a single video output stage driving the picture tube cathode, a negativegoing signal at the base of the video output stage will blank the picture tube. When using the blanking input be certain the blanking pulse does not switch off the luminance input stage Q1 completely; this would turn off the collector supply for the demodulators and put the entire chroma demodulator out of lock at each blanking pulse.

Matrix for MC1326

$$\frac{R-Y}{B-Y}$$
 gain = 0.77

-G-Y = 0.11 (B-Y) + 0.28 (R-Y)

For indicated requirements and output functions of the MC1326 chroma demodulator please refer to the typical application shown on the first page of this specification.



TYPICAL CHARACTERISTICS

4

7

7-29

TYPICAL CHARACTERISTICS (continued) ($T_A = +25^{\circ}C$ unless otherwise noted)

7-30

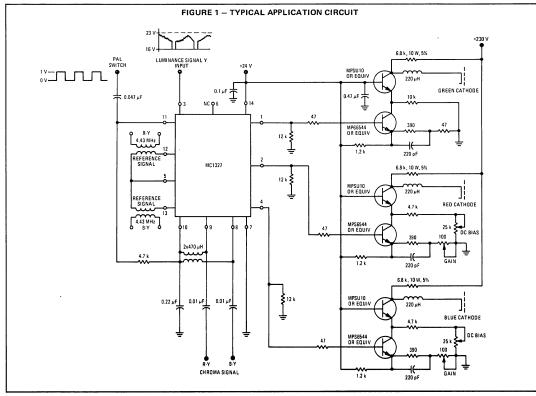
MC1327

CHROMA DEMODULATOR

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH RGB MATRIX, PAL SWITCH, AND CHROMA DRIVER STAGES

... a monolithic device designed for use in solid-state color television receivers

- Good Chroma Sensitivity 0.28 Vp-p Input Typical for 5.0 Vp-p Output
- Low Differential Output DC Offset Voltage 0.6 V Maximum
- Differential DC Temperature Stability 0.7 mV/°C
- High Blue Output Voltage Swing 10 Vp-p Typical
- Blanking Input Provided
- Luminance Bandwidth Greater than 5.0 MHz .


DUAL DOUBLY BALANCED CHROMA DEMODULATOR with **RGB OUTPUT MATRIX** AND PAL SWITCH MONOLITHIC SILICON

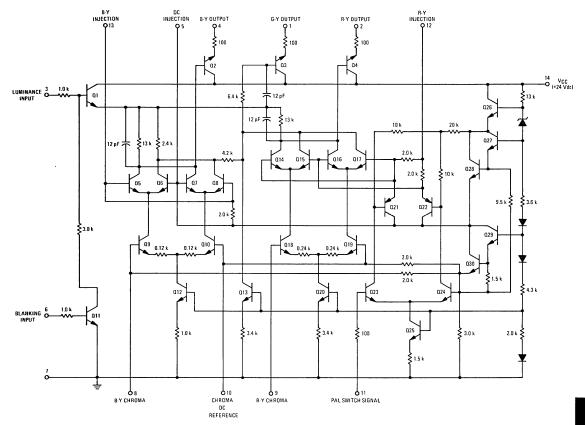
INTEGRATED CIRCUIT

PQ SUFFIX ASTIC PACKAGE CASE 647

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	Vp-p
Blanking Input Voltage	7.0	Vp-p
Power Dissipation (Package Limitation) Plastic Packages Derate above $T_A = +25^{\circ}C$	625 5.0	mW mW/ºC
Operating Temperature Range (Ambient)	-20 to +75	°c
Storage Temperature Range	-65 to +150	°c

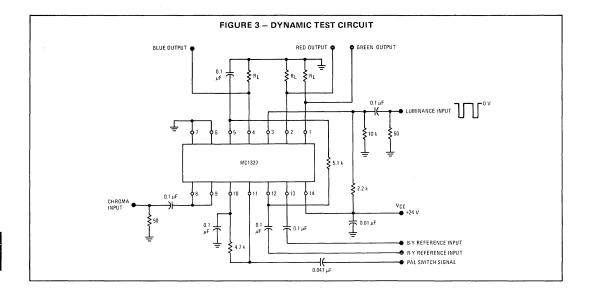
ELECTRICAL CHARACTERISTICS (VCC = 24 Vdc, RL = 3.3 k ohms, TA = +25°C unless otherwise noted)


Characteristic	Pin No.	Min	Тур	Max	Unit
STATIC CHARACTERISTICS					
Quiescent Output Voltage (See Figure 2)	1,2,4	13.2	14.5	15.8	Vdc
Quiescent Input Current from Supply (Figure 2) ($R_L = \infty$)		-	7.5	_	mA
(R _L = 3.3 k ohms)		16	19	26	
Reference Input DC Voltage (Figure 2)	5,12,13	-	6.2		Vdc
Chroma Reference Input DC Voltage (Figure 2)	8,9,10	-	3.4	-	Vdc
Differential Output Voltage (See Note 1 and Figure 2)	1,2,4	-	0.3	0.6	Vdc
Differential Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25°C to +65°C)	1,2,4	-	0.7	-	mV/ºC
Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25 ⁰ C to +65 ⁰ C)	1,2,4	-	+0.5	<u>+</u> 5.0	mV/°C
DYNAMIC CHARACTERISTICS (V _{CC} = 24 Vdc, R _L = 3.3 k ohms, Referen	ce Input Voltage	= 1.0 Vp-p, T	A = +25 ⁰ C ur	nless otherwise	e noted)
Blue Output Voltage Swing (See Note 2 and Figure 3)	4	8.0	10	-	Vp-p
Chroma Input Voltage (B Output = 5.0 Vp-p) (See Note 3 and Figure 3)	8	-	280	550	mVp-p
Luminance Input Resistance	3	100	-	-	kΩ
Luminance Gain From Pin 3 to Outputs (@ dc)	1,2,4	_	0.95	_	-
(@ 5.0 MHz, reference at 100 kHz)		-	-1.8	_	dB
Differential Luminance Gain, RGB Outputs (@ 5.0 MHz)		_	0.3	_	dB
Blanking Input Resistance (1.0 Vdc) (0 Vdc)	6		1.1 75		kΩ
Detected Output Voltage (Adjust B Output to 5.0 Vp-p, Luminance Voltage = 23 V)	4				Vp-p
(See Note 4) G Output R Output	1 2	1.4 2.5	1.8 2.9	2.2 3.3	
PAL Switch Operating Voltage Range (7.8 kHz Square Wave)	11	0.3	-	3.0	Vp-p
R-Y Output dc Offset with PAL Switch Operation		-	-	100	mVdc
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1,2,4	-	200	300	mVp-p
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output = 5.0 Vp-p)	1,2,4	-	0.6	1.0	Vp-p
Reference Input Resistance (Chroma Input = 0)	12,13	-	2.0	-	kΩ
Reference Input Capacitance (Chroma Input = 0)	12,13	-	6.0	-	pF
Chroma Input Resistance	8,9,10	-	2.0	_	kΩ
Chroma Input Capacitance	8,9,10	-	2.0	-	pF

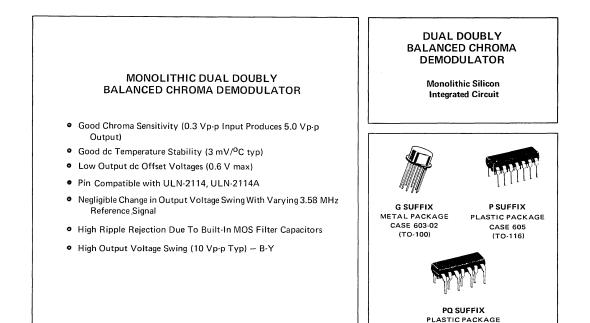
NOTES: 1. Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage = 1.0 Vp-p.

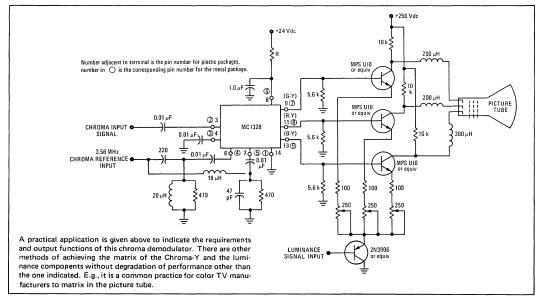
2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 Vp-p.

3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5.0 Vp-p.


4. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5.0 Vp-p. At this point, the Red and Green voltages will fall within the specified limits. *Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

MC1327 CHROMA DEMODULATOR (PAL)


 $\label{eq:test} \begin{array}{c} \textbf{TEST CIRCUITS} \\ (V_{CC} = 24 \; \text{Vdc}, \; \text{R}_{L} = 3.3 \; \text{kilohms}, \; \text{T}_{A} = +25^{\text{o}}\text{C} \; \text{unless otherwise noted}) \end{array}$


MC1328

DUAL CHROMA DEMODULATOR

CASE 647

FIGURE 1 - MC1328 TYPICAL APPLICATION

MC1328 (continued)

MAXIMUM RATINGS (T_A = +25°C unless otherwise specified)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Power Dissipation (Package Limitation) Plastic Packages Derate above $T_A = +25^{\circ}C$ Metal Package Derate above $T_A = +25^{\circ}C$	625 5.0 680 4.5	mW mW/ ^o C mW mW/ ^o C
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

 Maximum Ratings as defined in MIL-S-19500, Appendix A.

 ELECTRICAL CHARACTERISTICS (V⁺ = 24 Vdc, R_L = 3.3 k ohms, Reference Input

 STATIC CHARACTERISTICS
 Voltage = 1.0 Vp·p, T_A = +25^oC unless otherwise noted)

Characteristic	Pin No. Suffix G Pkg	Pin No. Suffix P, PQ Pkgs	Min	Тур	Max	Unit
Quiescent Output Voltage See Figure 2	7,8,9	9,11,13	13	14.3	16	Vdc
Quiescent Input Current (See Figure 2) (R _L = ∞, Chroma and Reference Input Voltages = 0) (R _L = 3.3 k ohms, Chroma and Reference Input Voltages = 0)	6	8	- 16.5	6.0 19	- 25.5	mA
Reference Input DC Voltage	4,5	6,7	-	6.2	-	Vdc
Chroma Input DC Voltage	2,3	3,4	-	3.4	-	Vdc
Differential Output Voltage See Note 1 and Figure 3	7,8,9	9,11,13	-	0.3	0.6	Vdc
Output Temperature Coefficient (No Output Differential Voltage > 0.6 Vdc, +25 ^o C to +65 ^o C) See Note 1 and Figure 3	7,8,9	9,11,13	-	3.0	-	mV/ ^o C

DYNAMIC CHARACTERISTICS (V⁺ = 24 Vdc, R_L = 3.3 k ohms, Referenced Input Voltage = 1.0 Vp-p, T_A = +25^oC unless otherwise noted)

	nererenceu input vonage	1.0 TP P, TA		000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Detected Output Voltage (B-Y) See Note 2	9	13	8.0	9.0	-	Vp-p
Chroma Input Voltage (B-Y Output = 5.0 Vp-p) See Note 3	2	3	-	0.3	0.7	∨р-р
Detected Output Voltage (Adjust B-Y Output to 5.0 Vp-p) See Note 4 G-Y R-Y	7 8	9 11	0.75 3.5	1.0 3.8	1.25 4.2	Vp-р
Relative Output Phase (B-Y Output = 5.0 Vpp) B-Y to G-Y 4.0 Vp-p B-Y to G-Y 256° 5.0 Vp-p 1.0 Vp-p	9-8 9-7	13-11 13-9	101 248	106 256	111 264	Degrees
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	7,8,9	9,11,13	-	250	500	mVp-p
B-Y Phase Shift (B-Y Reference Input to B-Y Output)	5-9	7-13	-	3	-	Degrees
Residual Carrier and Harmonics (with Input Signal Voltage, normal Reference Signal Voltage and B-Y = 5.0 Vp-p)	7,8,9	9,11,13	-	-	1.5	∨р-р
Reference Input Resistance (Chroma Input = 0)	4,5	6,7	-	2.0	-	k ohms
Reference Input Capacitance (Chroma Input = 0)	4,5	6,7	-	6.0	-	pF
Chroma Input Resistance	2,3	3,4	-	2.0	-	k ohms
Chroma Input Capacitance	2,3	3,4	-	2.0	-	pF

NOTES:

NOTES:
 With Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage (1.0 Vp-p), all output voltages will be within specified limits and will not differ from each other by greater than 0.6 Vdc.
 With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 0.6 Vp-p.
 With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the B-Y Output Voltage = 5 Vp-p. The Chroma Input Voltage at this point should be equal to or less than 0.7 Vp-p.
 With normal Reference Input Signal Voltage, adjust the Chroma Input Signal Voltage until the B-Y Output Voltage = 5 Vp-p. The Chroma Input Voltage at this point should be equal to or less than 0.7 Vp-p.
 With normal Reference Input Signal Voltage, adjust the Chroma Input Signal until the B-Y Output Voltage = 5 Vp-p. At this point, the R-Y and G-Y voltages will fall within the specified limits.



FIGURE 2 - TEST CIRCUIT WITH NO REFERENCE INPUT SIGNAL

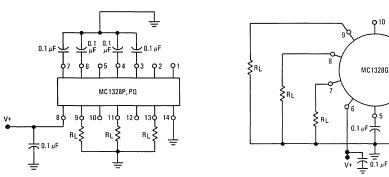
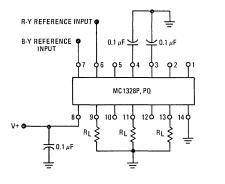
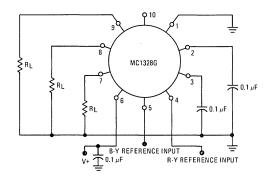
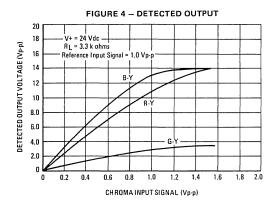
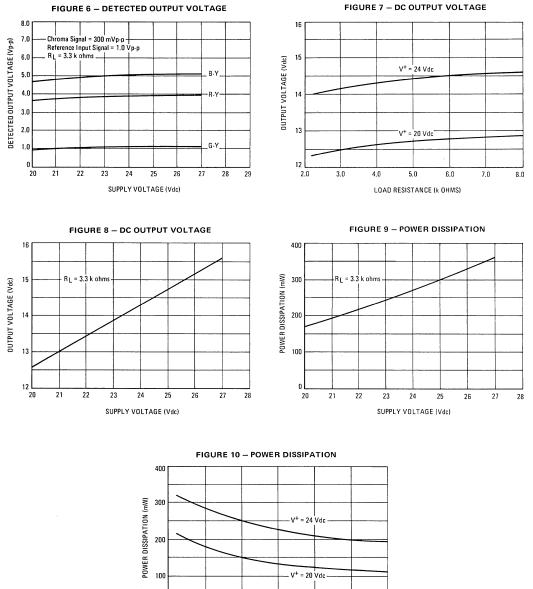




FIGURE 3 – TEST CIRCUIT WITH REFERENCE INPUT SIGNAL (Quiescent Current, DC Output Voltage, Difference Voltage)

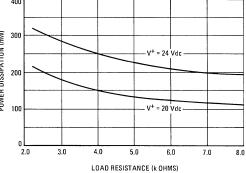
2

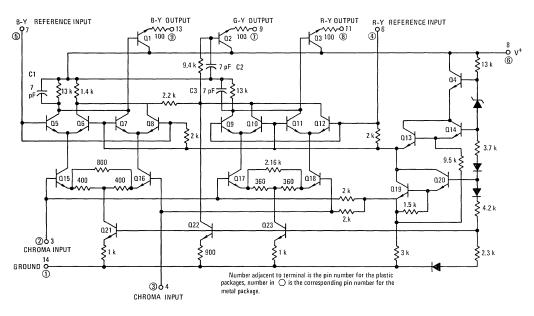

3

0.1 µF


τ0.1 μF

┼0.1 µF


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS (continued)

7

FIGURE 11 - CIRCUIT SCHEMATIC

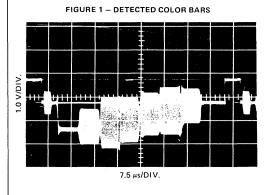
CIRCUIT OPERATION

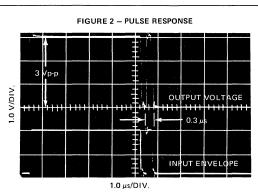
A double sideband suppressed carrier chroma signal flows between the bases of the two differential pairs, 015 and 016, 017 and 018. A reference signal of approximately 1 Vp-p amplitude having the same frequency as the suppressed chroma carrier with an approdifferential pairs 05 and 06, 07 and 08, 09 and 010, 011 and 012. The upper pairs are switched between the bases of the upper differential pairs are switched between full conduction and 2ero conduction at the carrier frequency rate. The collectors of the upper pairs are cross-coupled so that "doubly balanced" or "full-wave" synchronous detected chroma signals are obtained. Both positive and negative phases of the detected signal are available at opposite collector pairs. Capacitors C1, C2 and C3 provide filtering of carrier harmonics from the detected color difference signals. This increases the available swing before clipping for the color difference signal, and reduces the high frequency components which must pass through the emitter followers (Q1, Q2, Q3) into the video output stages. Since high capacitance (>100 pF) is characteristic of the input impedance of a video output stage, the transistor emitter followers must operate at a high quiescent current (>5 mA) in order to pass large high frequency components without distortion. The filtering reduces the quiescent current required in the emitter followers and thus reduces dissipation in the integrated circuit.

MC1330P

MONOLITHIC LOW-LEVEL VIDEO DETECTOR

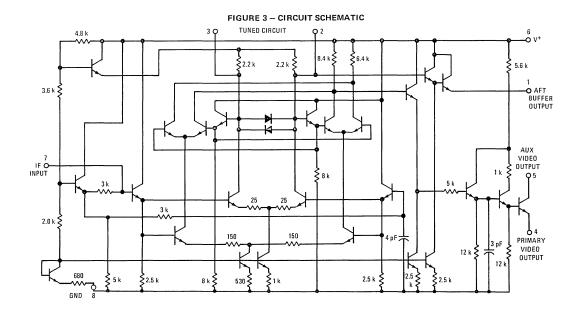
 \ldots an integrated circuit featuring very linear video characteristics, wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and the AFC buffer.

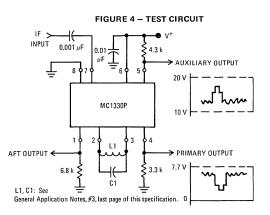

- Conversion Gain 34 dB typ
- Video Frequency Response @ 6.0 MHz < 1.0 dB
- Input of 36 mV Produces 3.0 Vp-p Output
- High Video Output 7.7 Vp-p
- Fully Balanced Detector
- High Rejection of IF Carrier
- Low Radiation of Spurious Frequencies


LOW-LEVEL VIDEO DETECTOR

MONOLITHIC SILICON

Rating	Value	Unit
Power Supply Voltage	+24	Vdc
Supply Current	26	mAdc
Input Voltage	1.0	V(rms)
Power Dissipation (Package Limitation) $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range ·	-65 to +150	°C





Characteristic	Pin	Min	Тур	Max	Unit
Supply Voltage Range	6	12	20	24	Vdc
Supply Current	5,6	-	15	- 1	mA
Zero Signal dc Output Voltage	4	6.8	7.7	8.3	Vdc
Maximum Signal dc Output Voltage	4		0	-	Vdc
Input Signal Voltage for 3.0 Vp-p Video Output (90% Modulation)	7	-	36	-	mV(rms)
Maximum Output Voltage Swing	4	-	7.7	-	Vp-p
Carrier Rejection at Output	4	42	60	-	dB
Carrier Output Voltage (at 3.0 Vp-p output) f _{out} = f _C f _{out} = 2 f _C			1.0 3.0		mV(rms)
3.0 dB Bandwidth of IF Carrier	7	-	80	-	MHz
3.0 dB Bandwidth of Video Output	4	-	12.3	-	MHz
Input Resistance Input Capacitance	7		3.5 3.0	-	kilohms pF
Output Resistance	4	-	180	-	ohms
Internal Resistance { (across tuned circuit)	2,3	-	4.4 1.0	- -	kilohms pF
AFT Buffer Output at Carrier Frequency ①	1		350	-	mVp-p
AFT Buffer dc Level	1	-	6.5	-	Vdc

ELECTRICAL CHARACTERISTICS (V⁺ = 20 Vdc, Q = 30, f_C = 45 MHz, T_A = +25^oC unless otherwise noted.)

1 Measured with 10 times probe.

TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

FIGURE 5 - OUTPUT VOLTAGE

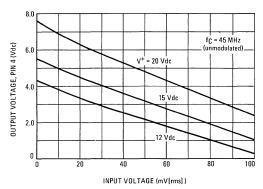


FIGURE 6 - OUTPUT VOLTAGE

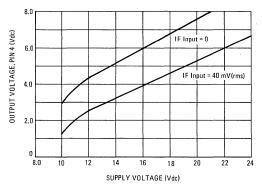
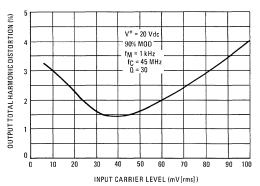
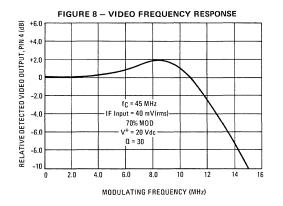
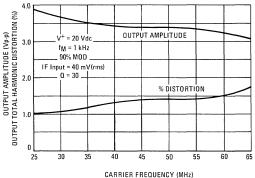
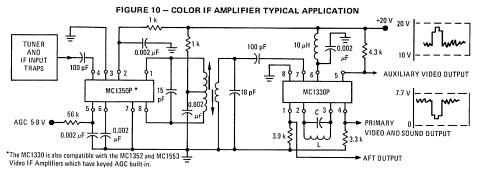





FIGURE 7 - DETECTOR LINEARITY



APPLICATIONS INFORMATION

TV-IF Amplifier Information

A very compact high performance IF amplifier constructed as shown in Figure 11 minimizes the number of overall components and alignment adjustments. It can be readily combined with normal tuners and input tuning-trapping circuitry to provide the performance demanded of high quality receivers. This configuration will provide approximately 8d dB voltage gain and can accomodate the usual low impedance input network or, if desired, can take advantage of an impedance step-up from tuner to MC1350P input ($Z_{in} \approx 7.0$ kill-ohms). The burden of selectivity, formerly found between the third IF and detector, must now be placed at the interstage. The nominal 3 volt peak-to-peak output can be varied from 0 to 7.0 V with excellent linearity and freedom from spurious output products.

FIGURE 11 – TRANSFORMER

Alignment is most easily accomplished with an AM generator, set at a carrier frequency of 45.75 MHz, modulated with a video frequency sweep. This provides the proper realistic conditions necessary to operate the low-level detector (LLD). The detector tank is first adjusted for maximum detected dc (with a CW input), next, the video sweep modulation is applied and the interstage and input circuits aligned, step by step, as in a standard IF amplifier.

Note: A normal IF sweep generator, essentially an FM generator, will not serve properly without modification. The LLD tank attempts to "follow" the sweep input frequency, and results in variations of switching amplitude in the detector. Hence, the apparent overall response becomes modified by the response of the LLD tank, which a real signal doesn't do.

This effect can be prevented by resistively adding a 45.75 MHz CW signal to the output of the sweep generator approximately 3 dB greater than the sweep amplitude.

MC1330P General Information

The MC1330P offers the designer a new approach to an old problem. Now linear detection can be performed at much lower power signal levels than possible with a detector diode.

Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some

specific features and information on systems design with this device are given below:

 The device provides excellent linearity of output versus input, as shown in Figure 6. This graph also shows that video peak-to-peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a given variation of input CW and use the figure as a transfer function.)

 The dc output level does change linearly with supply voltage. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply.
 The choice of Q for the tuned circuit of pins 2 and 3 is not critical. The higher the Q, the better the rejection of 920 kHz products but the more critical the tuning accuracy required. Values of Q from 20 to 50 are recommended. (Note the internal resistance.)
 A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so

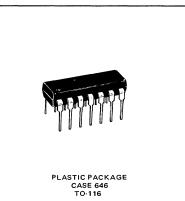
required. This signal has a higher output impedance than pin 4 so it must be handled with greater care. If not used, pin 5 may be connected directly to the supply voltage (pin 6).

5. An AFT output (pin 1) provides 350 mV of clipped carrier output, sufficient voltage to drive an AFT ratio detector, with only one additional stage.

MC1339P

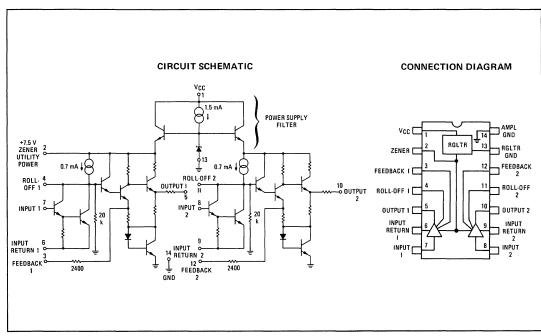
STEREO PREAMPLIFIER

MONOLITHIC DUAL STEREO PREAMPLIFIER


. . . designed for low noise preamplification of stereo audio signals.

- Low Audio Noise
- High Channel Separation
- Single Power Supply

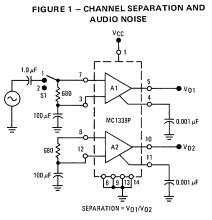
7


- High Input Impedance
- Built-In Power Supply Filter
- Emitter Follower Output

DUAL LOW-NOISE STEREO PREAMPLIFIER MONOLITHIC SILICON EPITAXIAL PASSIVATED INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

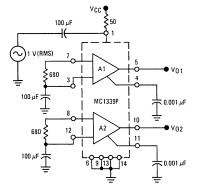
Rating	Value	Unit	
Power Supply Voltage	+16	Vdc	
Power Dissipation (Package Limitation) (Derate above $T_A = +25^{\circ}C$)	625 mW 5.0 mW/ ⁰		
Operating Temperature Range	-40 to +85	°C	
Storage Temperature Range	-65 to +150	°c	



•••

Characteristic	Min	Тур	Max	Unit
Power Supply Current	-	17.5	22	mA
Voltage Gain	63	66	71	dB
Gain Balance	-	0.3	2.0	dB
Channel Separation (f = 1.0 kHz) See Figure 1, S1 in position 1.	45	70	-	dB
Input Resistance	100	250	-	kilohms
Signal Output Voltage No Ioad 3.0-kilohm Ioad		1.5 1.0		V(RMS)
Output Resistance	-	100		ohms
Power Supply Rejection (f = 1.0 kHz) See Figure 2	-	33	-	dB
Total Harmonic Distortion without Feedback (0.5 V(RMS) into a 3.0-kilohm load, 1.0 kHz)	_	1.2	-	%
Input Bias dc Current	-	0.8	-	μΑ
Gain to Feedback Terminals (pins 3 and 12)	-	45		dB
Impedance at Feedback Terminals	-	2400	-	ohms
Equivalent Input Noise Voltage (100 Hz to 10 kHz) See Figure 1, S1 in position 2.	-	0.7	3.0	μV(RMS)

ELECTRICAL CHARACTERISTICS (Each Preamplifier) (V_{CC} = +12 Vdc, T_A = +25°C unless otherwise noted.)


Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

TEST CIRCUITS

FIGURE 2 - POWER SUPPLY REJECTION

7

APPLICATIONS INFORMATION

The circuit diagrams shown in this section are examples of applications for the MC1339P. Included are circuits for a broadband preamplifier with tape playback and record amplifiers, and a phono preamplifier.

Broadband Amplifiers

The MC1339P is useful as a broadband amplifier in applications requiring a low-signal level low-noise amplifier. The circuit in Figure 3 fills these requirements with a voltage gain of 40 dB and an input impedance of 10 kilohms.

FIGURE 3 - BROADBAND AMPLIFIER

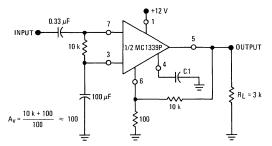
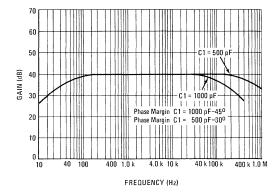



Figure 4 shows the response of the broadband amplifier with two different values of compensation capacitors, C1. Other capacitor values can be used; however, as the phase margin is reduced a greater possibility of oscillation exists.

FIGURE 4 -- BROADBAND AMPLIFIER RESPONSE

Tape Playback Preamplifier

A low-noise, high-gain preamplifier to properly process the low-level output of the magnetic tape-heads is shown in Figure 5 illustrating a tape-head preamplifier using the MC1339P.

To faithfully reproduce recorded music from magnetic tape, special frequency compensation is required to provide the NAB standard tape playback equalization characteristics, see the response curves shown in Figure 6. The circuit shown in Figure 5 is designed to provide an output of 100 millivolts with an input signal of 2.2 millivolts at a frequency of 1.0 kHz. (Reference gain is 33 dB).

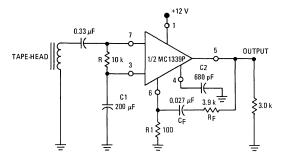
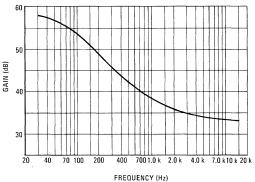


FIGURE 5 - TAPE PLAYBACK PREAMPLIFIER

The lower -3.0 dB corner frequency (f1) is determined by the value for capacitor C1 in accordance with equation 1.

$$C1 = \frac{A_3}{2\pi z 3 f 1}$$
(1)


where z3 is the impedance at pin 3 (2.4 kilohms) and A3 is the amplifier gain at pin 3 (178).

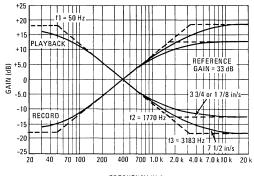
The minimum high-frequency gain (5 dB below reference gain of 33 dB) of the amplifier is determined by the ratio of $\frac{R1 + R_F}{R1}$ while the value of capacitor C_F provides the bass boost corner frequency in accordance with equation 2.

$$C_{\mathsf{F}} = \frac{\mathsf{I}}{2\pi \,\mathsf{R}_{\mathsf{F}} \,\mathsf{f} \,2} \tag{2}$$

Based on measurements made on the amplifier (See Figure 5), the value of C2 is chosen for a phase margin greater than thirty degrees.

The nearest 10% tolerance component values were used in the circuit of Figure 5.

Tape Record Preamplifier


The frequency response of a tape recording preamplifier must be the mirror image of the NAB playback equalization characteristic, so that the composite record and playback response is flat. Figure 7 shows the record characteristic superimposed on the NAB playback response and Figure 8 illustrates the output characteristic of

APPLICATIONS INFORMATION (continued)

INPUT .

a typical laminated core tape head. Figure 9 shows the necessary amplifier response characteristic to make a composite signal of Figures 8 and 9 that will meet the proper NAB recording characteristic of Figure 7.

FREQUENCY (Hz)

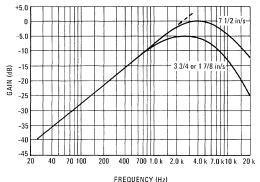
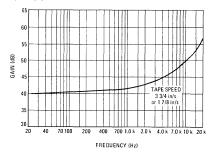
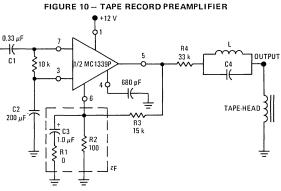




FIGURE 9 - TAPE RECORD AMPLIFIER RESPONSE

The circuit shown in Figure 10 will give the preamplifier response as presented in Figure 9.

The gain is established by the equation 1

$$GAIN = \frac{R3 + z_f}{z_f} \text{ where } z_f = \frac{R2 + (R1 + \frac{1}{2\pi f C3})}{R2 + (R1 + \frac{1}{2\pi f C3})}$$
(3)

The high corner frequency, f2, is determined by equation 4.

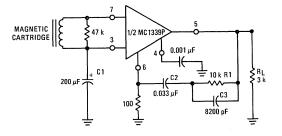
1

$$C3 = \frac{1}{2\pi f^2 R^2}$$
(4)

At high frequencies the feedback impedance z_f is R1 in parallel with R2 and at low frequencies is R2. Again, capacitor C1 is chosen by equation 1 to give the desired low frequency breakpoint, f1. As an example, consider a recording head requiring 30 μ A is used with a microphone with a 10-mV output. The 30- μ A current source is simulated by a 1.0 V (RMS) output driving a 33-kilohm registor, R4, at the reference frequency of 1.0 kHz. The gain requirement is therefore 100 or 40 dB. The low-frequency gain is calculated by letting R2 = 100 ohms and calculating the value of R3 for frequencies below 12.

$$A_{V} = \frac{R2 + R3}{R2} = 125 \qquad R3 = 124 (R2) \approx 12 k\Omega.$$
(5)

A 15-kilohm resistor is used to achieve the gain necessary since the open-loop gain of the amplifier is not infinite.

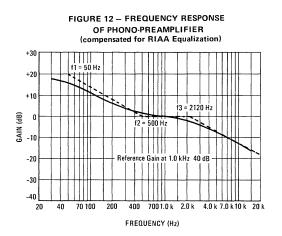

The typical response for a quarter-track (3% in/s) tape-head is 3.0 dB down at 1770 Hz. Therefore, the high-corner frequency (f2) of the record amplifier should be at the same frequency. Using equation 4 the value of C3 is calculated to be 1.0 μ F. Resistor R1 is not needed to roll-off the high-frequency gain at frequencies above 20 kHz since the limited open-loop gain of the MC1339P accomplishes the same thing. The parallel LC circuit at the amplifier output is used to trap the bias oscillator signal and is tuned to that frequency.

Phonographic Preamplifier

Crystal and ceramic phono-cartridges seldom require a preamplifier due to high-output signal levels (100 mV to 1.0 V). However, magnetic cartridges have output levels of from 2.0 to 12 mV and require a preamplifier such as the MC1339P. Special equalization of the preamplifier is necessary to make the response match the RIAA recording characteristic which is used universally. The amplifier shown in Figure 11 does provide the proper response

APPLICATIONS INFORMATION (continued)

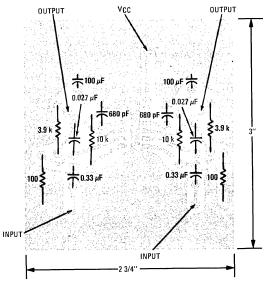
FIGURE 11 - PHONOGRAPH PREAMPLIFIER



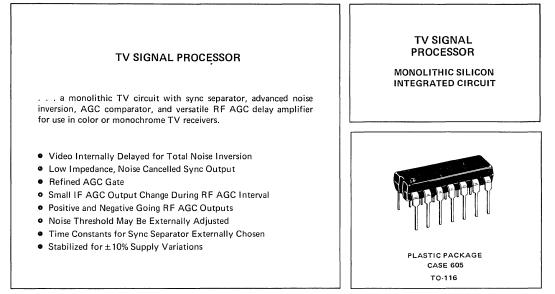
and f3 is calculated from $f3 = \frac{1}{2\pi R1 C3}$

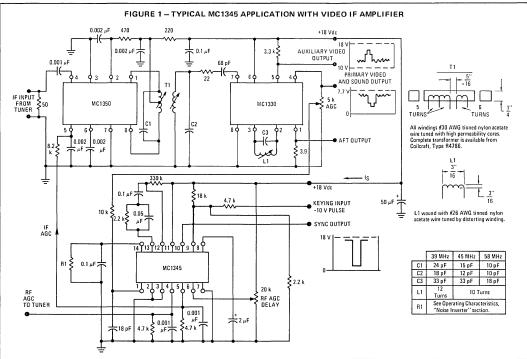
Printed Circuit Board Layout

Most of the circuits in the applications section can be built on this printed circuit board layout. Printed circuit board design is not particularly critical with the MC1339P. However, usual layout practices such as keeping the input and output lines separated and providing maximum ground plane area should be used. The layout shown is for Figure 5 but it can easily be modified without any problem for the other application circuits given.



for RIAA equalization. Figure 12 illustrates the RIAA response of the amplifier in Figure 11. The dashed line shows the ideal response with the corner frequencies indicated. The lower corner frequency (f1) is determined by the input capacitance C1 and the equation


$$f1 = \frac{A_f}{2\pi C l z 3}$$
(6)


where Af is the feedback gain of 45 dB and z3 equals the terminal resistance at pin 3. The corner frequency f2 is determined by

MC1345P

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Value	Unit	
Power Supply Voltage (Pin 11)	+22	Vdc	
Video Input Voltage (Pin 1)	+10	Vdc	
Negative RF AGC Supply Voltage (Pin 3)	-10	Vdc	
Gating Voltage (Pin 9)	15	Vp-p	
Sync Separator Drive Voltage (Pin 12)	7.0	V _{p-p}	
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ^o C	- 625 5.0	mW mW/ ⁰ C	
Operating Temperature Range (Ambient)	0 to +70	°C	
Storage Temperature Range	-55 to +150	°C	

Maximum Ratings as defined in MIL-S-19500, Appendix A.

ELECTRICAL CHARACTERISTICS (V⁺ = +18 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted)

Characteristic		Тур	Max	Unit
Sync Tip dc Level of Input Signal	3.6	3.9	4.2	Vdc
Temperature Coefficient of Sync Tip (Input)	0	-1.3	-2.5	mV/°C
Sync Output Amplitude	-	16	-	Vp-p
Sync Output Impedance	-	-	100	Ohms
Sync Tip to Noise Threshold Separation (Input)	0.45	0.7	0.95	Vdc
IF AGC Voltage Change During RF Interval	-	0.10	0.5	Vdc
Peak AGC Charge Current	-	15	~	mAdc
Peak AGC Discharge Current	-	0.9	~	mAdc
IF AGC Voltage Range (See Figures 2 and 3)	9.0	-	~	Vdc
Positive RF AGC Voltage Range	-	10	~	Vdc
Positive RF AGC Minimum Voltage	0.5	1.5	2.0	Vdc
Negative RF AGC Voltage Range		10	~	Vdc
Negative RF AGC Maximum Voltage	9.5	10.5	11.5	Vdc
Total Supply Current, IS (Circuit of Figure 1)	-	26	-	mAdc

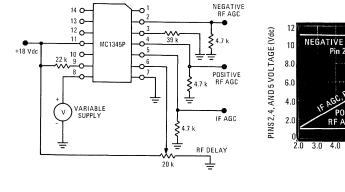
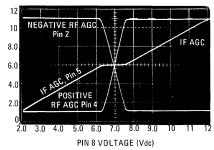
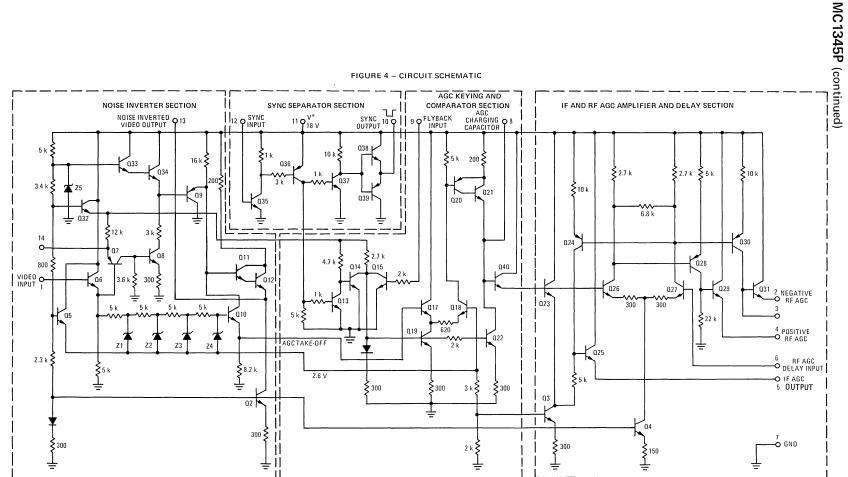




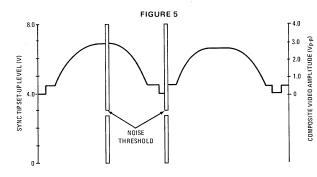
FIGURE 2 – TEST CIRCUIT FOR AGC AMPLIFIER MEASUREMENTS

FIGURE 3 - AGC AMPLIFIER RESPONSE

OPERATING CHARACTERISTICS

NOISE INVERTER

A composite video signal of from 1 to 3 volts peak-to-peak amplitude with negative-going sync, superimposed on a positive dc offset voltage, is required at the input, pin 1. The amplitude of the dc offset voltage will determine the allowable magnitude of the video input, since the sync tip will always be clamped at 3.9 V. See Figure 5.


The noise threshold is set by Q7's emitter voltage determined by Q32 and the bias-chain Zener diode. The resulting dc level (or noise threshold) may be lowered by adding an external resistor, R1 (Figure 1), connected from pin 14 to ground. With this arrangement, the lowered threshold would be given by:

$$V = \frac{R1 V_n}{R1 + 12,000 \Omega}$$

where V_n = noise threshold without R1 connected.

The noise threshold can also be <u>raised</u> to the same degree by connecting R1 from pin 14 to the supply voltage level. However, in this case, care should be exercised to insure that the resulting voltage appearing at pin 14 does not exceed the sync threshold (approximately 3.9 V).

Noise inversion is achieved as follows: first the composite input signal is impedance-buffered by the Q6 emitter-follower. Then,

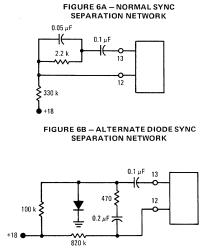
the buffered signal is fed to $\Omega 10$'s base through an RC delay line (Z1 - Z4). Finally the signal appears, inverted and delayed by approximately 300 ns, at the base of $\Omega 11$.

If an interference pulse occurs, with an amplitude enough above the sync tip level to reach the noise threshold, the pulse will drive the emitter of Q6 below its pre-set level. Q7 will conduct, and charge from the external capacitor connected to pin 14 will pass through Q7, turning on both Q8 and Q9. When Q9 is on, Q11's base is grounded, blanking the output of Q10's collector.

The video signal with the interfering noise cancelled, emerges at pin 13. Polarity is inverted, so the sync pulses are positive-going.

Blanking commences before the interference pulse itself emerges from the delay line, and the blanking action persists for a short time interval after the end of the noise pulse, due to energy stored in Ω 's junction.

For very long noise pulses, the rate of discharge of the external capacitor sets the end of the blanking interval. In such a case, blanking could extend over several horizontal line-sweep periods, depending on the capacitor value used. The external capacitor is typically 0.1 μ F, and this value allows continuous cancellation for approximately 4 line-sweep intervals.


Under weak signal conditions, high frequency noise from thermal

or tropospheric sources is common. To prevent this type of interference from spuriously triggering the inverter, some RC filtering is required between the video detector and the video input at pin 1. For this filter, RC values of 10 k Ω and 18 pF are typical.

SYNC SEPARATOR

The noise-inverted video output at pin 13 is passed through an external RC filter network, to the sync separator input at pin 12, cutting off Q35, Q36, and Q37, except during the positive sync tips. Time constants for the filter are a matter of the designer's preference, and are chosen as for discrete-circuit sync separators.

Operation of the sync separator is as follows. Q35 conducts only during the positive-going sync pulse. Q36 amplifies and inverts the sync pulse, driving Q37 into saturation during the sync pulse interval. The output of Q37 drives the complementary pair, Q38/Q39, which yield a low output impedance negative-going sync pulse of greater than 15 V peak-to-peak amplitude. It should be noted that the first sync pulse occurring after noise inversion ends, will be slightly longer in duration than other sync pulses. Typical resistance and capacitance values for the RC sync input network are given in Figure 6A.

An alternate input network is shown in Figure 6B, it uses a diode to separate the sync pulses. In this case the pulses will be clamped to +0.7 V above ground. As a result, Q35 and the transistors following it serve as over-driven amplifiers.

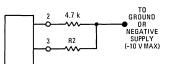
KEYER AND COMPARATOR

The AGC system is internally connected to the video input at Q10's emitter. The sync signal at Q36 is internally connected to the AGC sync keyer which consists of Q13 and Q14. An externally-derived negative-going flyback pulse ($\simeq 12$ V peak-to-peak) is applied to Q15 for flyback keying the AGC. Since the detected video output level is sampled only when the sync pulse and the flyback pulse are coincident, true keyed AGC action occurs.

An AGC comparator is formed by Q17 and Q18. The base of Q18 is connected to a fixed reference of 2.6 V. The base of Q17 is connected to the emitter of Q10, where the video signal has negative-going sync pulses. The emitters of both devices are supplied

from a gated current source, Q19. This current source conducts only when Q14 and Q15 are simultaneously switched off. To do this, a positive sync pulse is required on the base of Q13, coincident with a negative flyback pulse on the base of Q15 (pin 9).

If the video signal at the emitter of Q10 increases in amplitude, the sync pulse becomes more negative. Thus, when Q19 is gated on, Q18 conducts and turns on both Q20 and Q21, which charge the external AGC filter capacitor connected at pin 8. A typical value for this capacitor is 2.0 μ F.


If the video signal decreases, Q18 will not conduct. However, Q22 will conduct and permit a current of 0.9 mA to flow out of the capacitor at pin 8. In effect, this "charge dumping" through Q22 promotes faster AGC action than could be attained with a conventional "charge only" system. Coupling between the charging capacitor and the AGC amplifier is through an emitter follower, Q40.

The MC1345 will operate without flyback pulses if pin 9 is grounded. However, the AGC noise immunity and aircraft flutter rejection will be impaired.

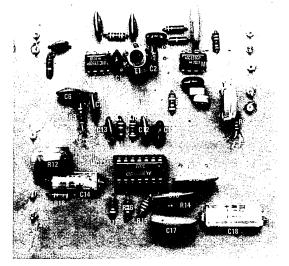
THE AGC AMPLIFIER

AGC for the IF is supplied by the emitter of Q25. The RF AGC is generated in the following way: Given a weak signal condition, Q26 is barely conducting, while Q27 passes the bulk of the current flowing from the current source, Q4. Assume that the base of Q27 is biased "on" by the RF AGC delay control connected to pin 6. The IF AGC will increase if the AGC input voltage from Q40 increases. When this latter voltage increases to a predetermined level (set by the delay control), Q26 turns on. Then, when Q26 turns on, Q27 turns off, which also turns Q24 off. As Q24 turns off, it will cancel any further increases at the base of Q25, which would come from Q23 through the 5.0 k Ω resistor. The result is that the IF AGC level is held constant during the RF AGC excur-

FIGURE 7 - ALTERNATE RF AGC OUTPUT FOR FET OR TUBE TUNER

sion. As Q26 is now conducting, Q28 and Q29 will also be turned on supplying the forward RF AGC voltage to pin 4. Then, when the RF AGC voltage excursion is complete, Q24 will have reached cutoff and will be unable to oppose the voltage rise at the base of Q25, thus allowing the IF AGC voltage to begin increasing.

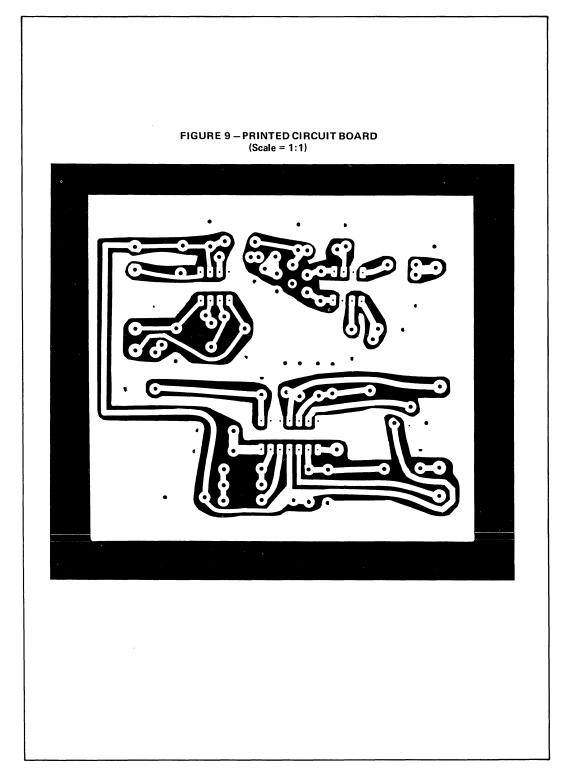
The negative RF AGC action is similar, except that Q30 and Q31 are turned off as Q28 and Q29 are turned on. The RF AGC delay, or turn-off of Q27, can be adjusted by the delay control so that it occurs at any selected point in the IF AGC range (see Figure 3).


The negative AGC swing may be level-shifted by connecting the pin 2 and pin 3 resistors to a negative supply instead of to ground. The value of the pin 3 resistor, R2, for a given voltage swing, can be determined as:

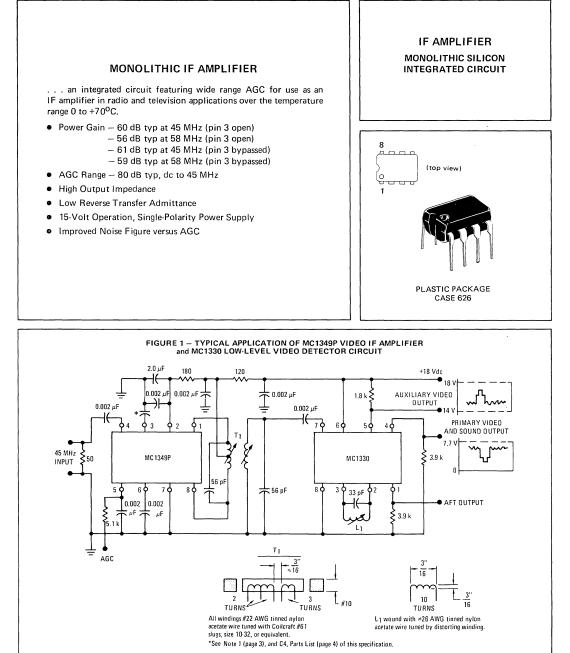
R2 = 4000 ΔV

(See Figure 7 for component connections for negative AGC.) All external component values given are only suggested values; the final choices will depend on the designer's preferences.

FIGURE 8 - PRINTED CIRCUIT BOARD COMPONENT LAYOUT OF IF AND JUNGLE CIRCUIT OF FIGURE 1


C1	See chart of Figure
C2	See chart of Figure
C3	See chart of Figure
C4	0.001 µF
C5	0.002 µF
C6	0.002 µF
C7	0.002 µF
C8	0.002 µF
C9	0.1 μF
C10	68 pF
C11	18 pF
C12	0.001 µF
C13	0.001 µF
C14	2 µF/10 V
C15	0.1 μF
C16	0.05 μF
C17	0.1 μF
C18	50 µF/25 V
L1	See Figure 1
T1	See Figure 1

- See Operating Characteristics discussion, Noise Inverter section R1
- R2 470 ohms
- 8200 ohms R3
- R4 220 ohms
- **R**5 22 ohms
- R6 3300 ohms R7
- 3900 ohms 5 kilohm potentiometer R8
- **R**9 10 kilohms
- R10 4700 ohms
- R11 4700 ohms
- R12 2 kilohm potentiometer B13 50 ohms
- R14 2200 ohms
- R15 330 kilohms
- B16 18 kilohms
- R17 2200 ohms R18 4700 ohms


*See Noise Inverter Section (part can be omitted).

MC1345P (continued)

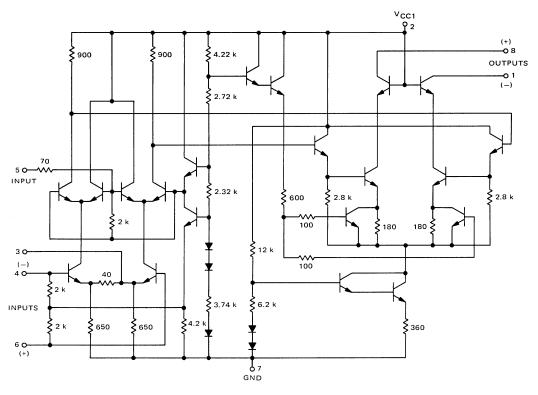
MC1349P

IF AMPLIFIER

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted).

Rating	Value	Unit
Power Supply Voltage (V _{CC1})	+18	Vdc
Output Supply Voltage (V _{CC2})	+18	Vdc
AGC Supply Voltage	$\leq V_{CC1}$ (pin 2)	Vdc
Differential Input Voltage	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC1} = +12 Vdc [pin 2], V_{CC2} = +15 Vdc [pins 1 and 8], T_A = +25°C unless otherwise noted.)


Characteristic	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.5 V) (Figure 3)	70	80	-	dB
Power Gain (Pin 5 grounded via 5.1 k Ω resistor, input pin 4)				dB
f = 45 MHz, BW (3 dB) = 4.5 MHz, Tuned Input, pin 3 open	52	60	- 1	
Untuned Input, pin 3 bypassed	-	61	-	
f = 58 MHz, BQ (3 dB) = 4.5 MHz, Tuned Input, pin 3 open	-	56	- 1	
Untuned Input, pin 3 bypassed	-	59	-	
Maximum Differential Output Voltage Swing	-	6.0	-	Vp-p
Output Stage Current (pins 1 and 8)	-	9.0		mA
Amplifier Current (pin 2)	-	15	20	mAdc
Power Dissipation		315	400	mW
Noise Figure f = 45 MHz, Tuned Input, pin 3 open, Gain Reduction = 15 dB		8.5	-	dB

DESIGN PARAMETERS (V_{CC1} = +12 Vdc, [pin 2], V_{CC2} = +15 Vdc, [pins 1 and 8], T_A = +25^oC unless otherwise noted.)

	Frequency		uency	
Parameter	Symbol	45 MHz	58 MHz	Unit
Single-Ended Input Admittance, input pin 4, AGC min				mmhos
Pin 3 open	g11	0.74	0.95	
Pin 3 open	b11	1.9	2.4	
Pin 3 bypassed	g11	4.1	5.4	
Pin 3 bypassed	b11	6.5	6.9	
Differential Output Admittance, AGC max			1	μmhos
	g22	5.5	8.3	
	b22	270	360	
Reverse Transfer Admittance (magnitude)		1.5	2.0	μmhos
Forward Transfer Admittance				
Magnitude, pin 3 open		520	400	mmhos
Angle (0 dB AGC), pin 3 open		100	130	degrees
Magnitude, pin 3 bypassed		1020	800	mmhos
Angle (0 dB AGC), pin 3 bypassed		120	400	degrees
Single-Ended Input Capacitance, AGC min				pF
Pin 3 open		6.8	6.7]
Pin 3 bypassed		2.3	20	1
Differential Output Capacitance (AGC max)		1.0	1.0	pF

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

7

FIGURE 2 - CIRCUIT SCHEMATIC

GENERAL INFORMATION

The MC1349P is an improved version of the MC1350P. Featuring higher gain, a lower noise figure, and greater AGC range; in addition, an emitter of the input amplifier is available for bypassing. This provides a low input impedance with good gain, useful for untuned input configurations.

Both input and output IF amplifier sections are gain-controlled in the MC1349P, with the input amplifier also serving as an AGC amplifier for the output section. During the initial part of AGC gain reduction, the gain of the input amplifier decreases only a few dB while the output section decreases 15 dB; further AGC acts upon the input section. Although the gain reduction curve was taken with 5.1 kilohms at pin 5, higher series resistance can be used to reduce the voltage and temperature sensitivity of the AGC. Pin 5 currents are shown on the AGC curve, see Figure 10. In use, it is important to bypass pin 2, both for IF frequencies and for low frequencies, (as shown in the test circuits). This is due to the dual function of the input amplifier. If replacing MC-1350P take precaution not to ground pin 3, (not used in the MC1350P). Due to the significantly higher gain of the MC1349P, extra care in layout should be exercised.

NOTE 1: The references to bypasses at pin 3 do not give specific values (C4, see Figures 1 and 4). In all cases, measurements were taken with a bypass at a standard value as near as possible to series resonance. The values are dependent on test frequency and circuit layout. Fully bypassing pin 3 reduces the input signal handling capability before distortion from over 100 mV(RMS) to approximately 25 mV(RMS). C4 = 0.002 μF at f = 45 MHz is a typical value for printed circuit applications.

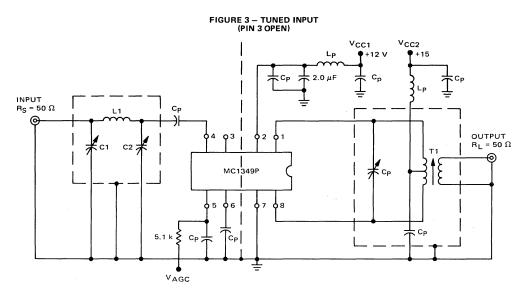
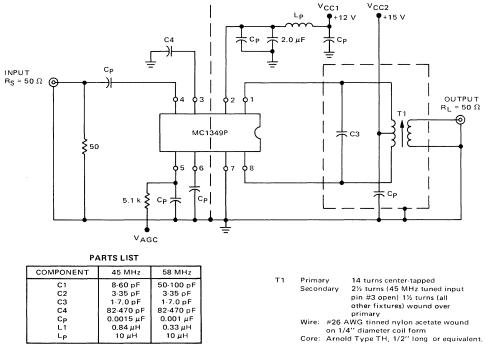
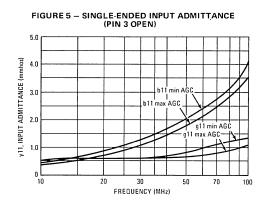
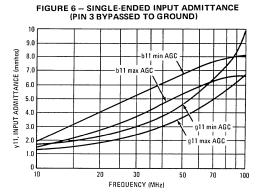
,

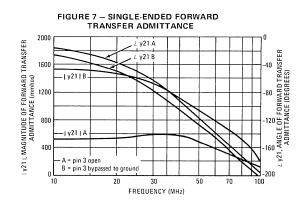
Lρ

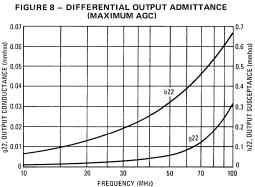
10 µH

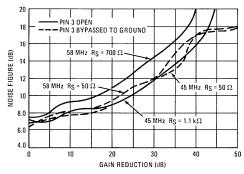
10 µH

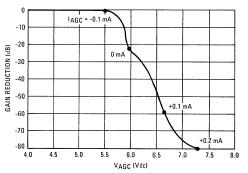
TEST CIRCUITS

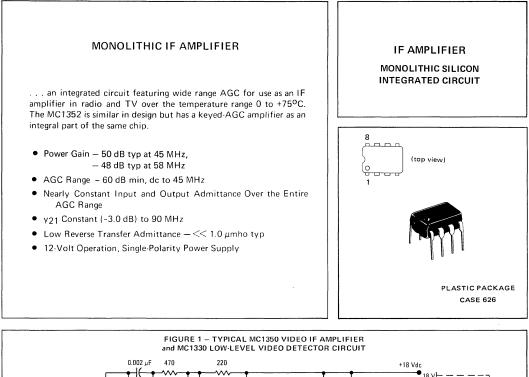





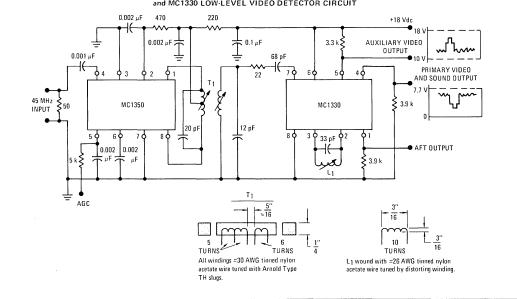

FIGURE 4 – UNTUNED INPUT (PIN 3 BYPASSED TO GROUND)




TYPICAL CHARACTERISTICS





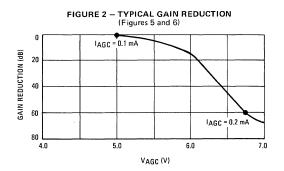


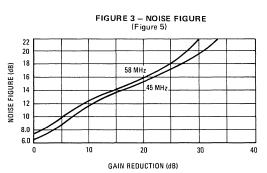
MC1350P

SOUND IF AMPLIFIER

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

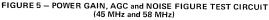

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+18	Vdc
Output Supply Voltage	V ₁ , V ₈	+18	Vdc
AGC Supply Voltage	VAGC	V+	Vdc
Differential Input Voltage	Vin	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above 25 ⁰ C	PD	625 5.0	mW mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C

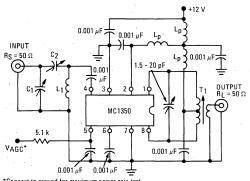

ELECTRICAL CHARACTERISTICS (V⁺ = +12 Vdc; T_A = +25^oC unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.0	V)(Figure 1)		60	68	-	dB
Power Gain (Pin 5 grounded via a 5 f = 58 MHz, BW = 4.5 MHz f = 45 MHz, BW = 4.5 MHz f = 10.7 MHz, BW = 4.5 MHz f = 455 kHz, BW = 20 kHz	.1 kΩ resistor) See Figure 5 See Figure 6	Ap	 46 	48 50 58 62		dB
Maximum Differential Voltage Swin 0 dB AGC -30 dB AGC	ng	Vo	_ _	20 8.0		V _{p-p}
Output Stage Current (Pins 1 and 8)	I ₁ + I ₈	-	5.6		mA
Total Supply Current (Pins 1, 2 and	8)	IS	-	14	17	mAdc
Power Dissipation		PD	-	168	204	mW

DESIGN PARAMETERS, Typical Values (V+ = +12 Vdc, T_A = +25^oC unless otherwise noted)

			Free	quency		
Parameter	Symbol	455 kHz	10.7 MHz	45 MHz	58 MHz	Unit
Single-Ended Input Admittance	911 ^b 11	0.31 0.022	0.36 0.50	0.39 2.30	0.5 2.75	mmho
Input Admittance Variations with AGC (0 to 60 dB)	Δg11 Δb11		-	60 0	-	μmhos
Differential Output Admittance	922 b22	4.0 3.0	4.4 110	30 390	60 510	μmhos
Output Admittance Variations with AGC (0 to 60 dB)	Δg22 Δb22	-	-	4.0 90		μmhos
Reverse Transfer Admittance (Magnitude)	V12	<< 1.0	<<1.0	<< 1.0	<<1.0	μmho
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (-30 dB AGC)	Y21 < Y21 < Y21 < Y21	160 -5.0 -3.0	160 -20 -18	200 -80 -69	180 -105 -90	mmho degree degree
Single-Ended Input Capacitance	Cin	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	Co	1.2	1.2	1.3	1.6	pF





GENERAL OPERATING INFORMATION

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12-volt supply (V⁺) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15-volt supply (V⁺⁺) is used, because the base voltage on the output amplifier varies with AGC bias.

*Connect to ground for maximum power gain test. All power-supply chokes (Lp), are self-resonate at input frequency. Lp $\ge 20 \ k\Omega$ See Figure 10 for frequency response curve.

> L1 @ 45 MHz = 7 1/4 Turns on a 1/4" coil form. @ 56 MHz = 6 Turns on a 1/4" coil form T1 Primary Winding = 18 Turns on a 1/4" coil form, center-tapped Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz = 1 Turn @ 58 MHz Slug = Arnold TH Material 1/2" Long

	45	MHz	58	8 MHz
L1	0.4 µH	0 ≥ 100	0.3 μH	0 ≥ 100
T1	1.3 -3.4 μH	Ω ≥ 100 @ 2 μH	1.2 -3.8 μH	Q ≥ 100 @ 2 μH
C1	50	- 160 pF	8 -	- 60 pF
C2	8	- 60 pF	3 -	- 35 pF

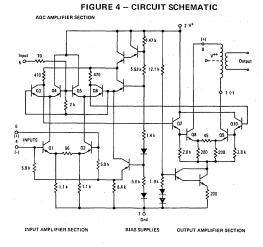
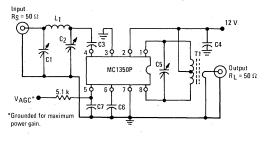
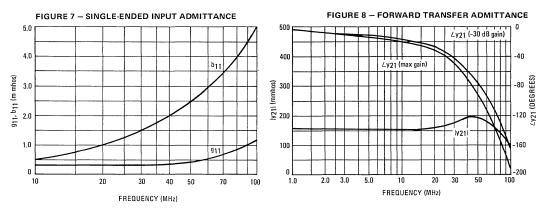



FIGURE 6 – POWER GAIN and AGC TEST CIRCUIT (455 kHz and 10.7 MHz)

Note 1. Primary: 120μ H (center-tapped) Q_{μ} = 140 at 455 kHz

Primary: Secondary turns ratio≈13

Note 2. Primary: 6.0 µH


Primary winding = 24 turns #36 AWG (close-wound on 1/4" dia. form)

Core = Arnold Type TH or equiv. Secondary winding = 1-1/2 turns #36 AWG, 1/4" dia.

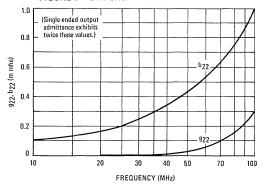
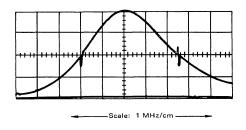
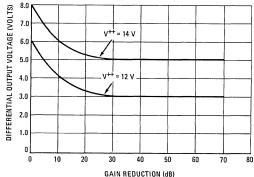
(wound over center-tap)

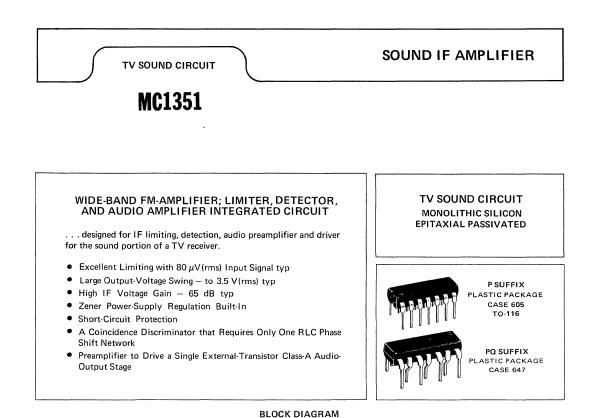
(wound over cer

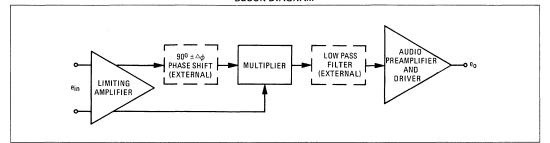
	Fre	quency
Component	455 kHz	10.7 MHz
C1	~	80-450 pF
C2		5.0-80 pF
C3	0.05 μF	0.001 μF
C4	0.05 μF	0.05 μF
C5	0.001 μF	36 pF
C6	0.05 μF	0.05 μF
C7	0.05 μF	0.05 μF
L1	— 4.6 μH	
T1	Note 1	Note 2

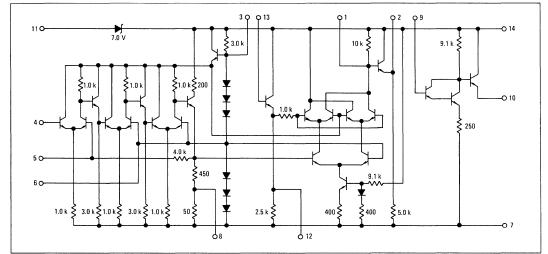
TYPICAL CHARACTERISTICS

(V⁺ = 12 V, T_A = +25^oC)


FIGURE 10 – TEST CIRCUIT RESPONSE CURVE (45 and 58 MHz)



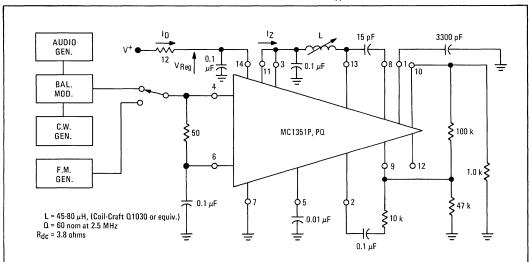


For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

CIRCUIT SCHEMATIC

See Packaging Information Section for outline dimensions.

MAXIMUM RATINGS ($T_A = +25^{\circ}$ unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+16	Vdc
Input Voltage	Vin	0.7	V(rms)
Power Dissipation (Package Limitation) Plastic Packages Derate above +25 ⁰ C	PD 1/θ JA	625 5.0	mW mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum Ratings as defined in MIL-S-19500, Appendix A.

ELECTRICAL CHARACTERISTICS (V^+ = 12 Vdc, T_A = +25°C, f = 4.5 MHz, Deviation = ±25 kHz unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage (-3.0 dB Limiting)	VL	_	80	160	μV(rms)
$ \begin{array}{l} \mbox{AM Rejection (V_{in}=20\mbox{ mV(rms)}, AM=30\%) (See Note 1)} \\ \mbox{AMR}=20 \log \begin{array}{l} V_{OFM} & \left\{f=4.5\mbox{ MHz}, Deviation=\pm25\mbox{ kHz}, Q_L=24 \\ V_{OAM} & f=5.5\mbox{ MHz}, Deviation=\pm50\mbox{ kHz}, Q_L=30 \end{array} \right. \end{array} $	AMR		45 45		dB
Total Harmonic Distortion (QL = 24) (See Note 1) (7.5 kHz Deviation)	THD	-	1.0	-	%
Maximum Undistorted Audio Output Voltage (Pin 10) (See Note 1) (Audio Gain Adjusted Externally) (Q = 24)	V _{o(max)}	_	3.5	-	V(rms)
Recovered Audio (Pin 2) (See Note 1) (f = 4.5 MHz, Deviation = ± 25 kHz, Q _L = 24) (f = 5.5 MHz, Deviation = ± 50 kHz, Q _L = 30)	VA	0.35 -	0.50 0.80	_	V(rms)
Audio Preamplifier Open Loop Gain	AVP	-	25	-	dB
IF Voltage Gain	AVIF	-	65	-	dB
Parallel Input Resistance	R _{in}	-	9.0	-	kΩ
Parallel Input Capacitance	Cin	-	6.0	-	pF
Nominal Zener Voltage (IZ = 5.0 mAdc)	VReg	-	11.6		Vdc
Power Supply Current (I _Z = 5.0 mAdc)	۱D	-	31	-	mAdc
Power Dissipation ($I_Z = 5.0 \text{ mAdc}$)	PD	-	300	375	mW

Note 1: Q_{L} is loaded circuit Q.

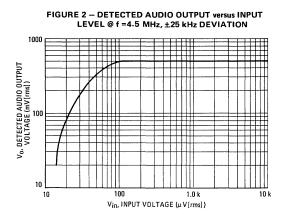


FIGURE 1 – TEST CIRCUIT (V^+ = +12 Vdc, T_A = +25°C)

7

7-65

.

TYPICAL CHARACTERISTICS

FIGURE 3 – DETECTED AUDIO OUTPUT versus INPUT LEVEL @ f = 5.5 MHz, ±50 kHz DEVIATION

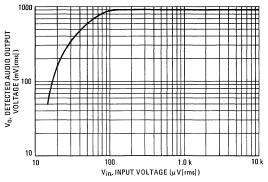


FIGURE 4 – DETECTOR "S" CURVE @ f = 4.5 MHz, BW = 200 kHz, Q = 24

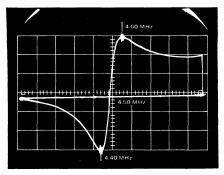


FIGURE 6 - IF VOLTAGE GAIN versus FREQUENCY

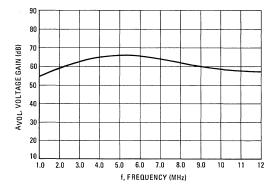
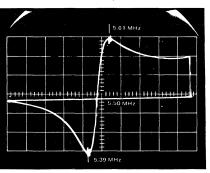
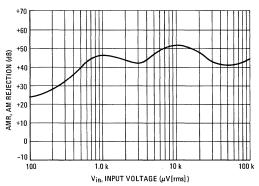
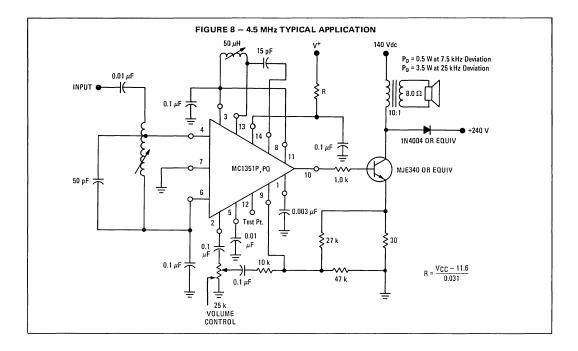
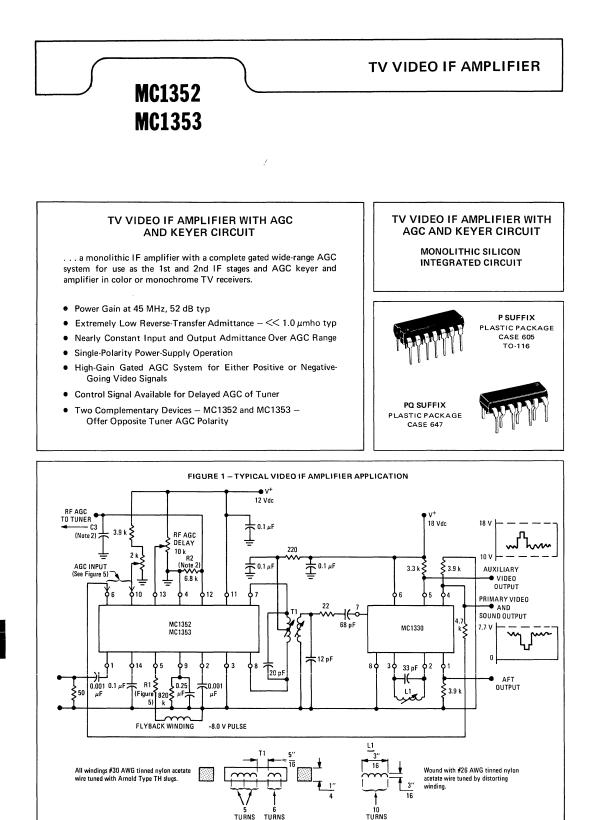


FIGURE 5 – DETECTOR "S" CURVE @ f = 5.5 MHz, BW = 220 kHz, Q = 30


FIGURE 7 - AM REJECTION

MC1351 (continued)

7

See Packaging Information Section for outline dimensions.

TURNS

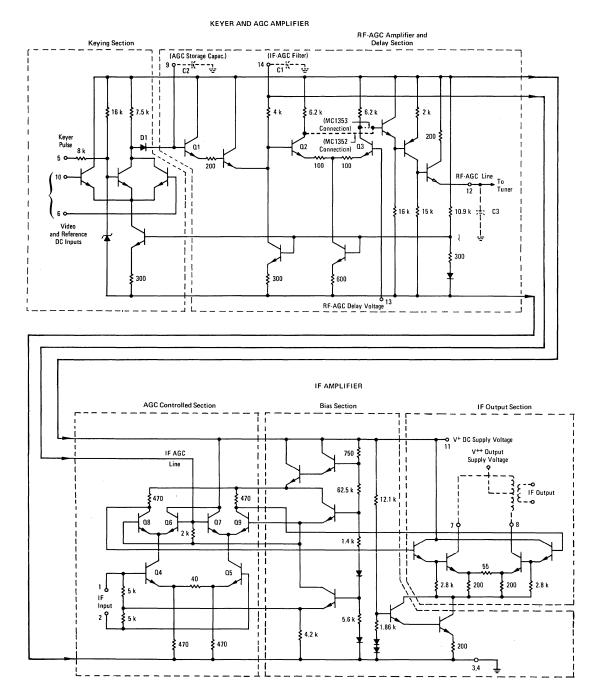
TURNS

MC1352, MC1353(continued)

MAXIMUM RATINGS (Voltages referenced to pin 4, ground; $T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply (Pin 11)	+18	Vdc
Output Supply (Pins 7 and 8)	+18	Vdc
Signal Input Voltage (Pin 1 or 2, other pin ac grounded)	10	V _{p-p}
AGC Input Voltage (Pin 6 or 10, other pin ac grounded)	+6.0	Vdc
Gating Voltage, Pin 5	+10, -20	Vdc
Power Dissipation Derate above $T_A = +25^{\circ}C$	625 5.0	mW mW/ ^o C
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-55 to +150	°C

Maximum Ratings as defined in MIL-S-19500, Appendix A.


ELECTRICAL CHARACTERISTICS (V+ = +12 Vdc, Voltages referenced to pin 4, ground; T_A = +25^oC unless otherwise noted)

Characteristic	Min	Тур	Max	Unit
AGC Range	-	75	-	dB
Power Gain				dB
f = 35 MHz or 45 MHz	-	52	—	
f = 58 MHz	-	50	-	
Maximum Differential Output Voltage Swing				V _{p-p}
0 dB AGC	-	16.8	-	
-30 dB AGC	-	8.4	-	
Voltage Range for RF-AGC at Pin 12				Vdc
Maximum	-	7.0	-	
Minimum	-	0.2		
IF Gain Change Over RF-AGC Range	-	10	-	dB
Output Stage Current (17 + 18)	-	5.7	-	mAdc
Total Supply Current (I7 + I8 + I11)	-	27	31	mAdc
Total Power Dissipation	-	325	370	mW

DESIGN PARAMETERS, TYPICAL VALUES (V+ = 12 Vdc, T_A = +25°C unless otherwise noted)

Parameters	Symbol	f = 35 MHz	f = 45 MHz	f = 58 MHz	Unit
Single-Ended Input Admittance	911 ^b 11	0.55 2.25	0.70 2.80	1.1 3.75	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	^{∆g} 11 ^{∆b} 11	50 0	60 0		μmhos
Differential Output Admittance	922 b22	20 430	40 570	75 780	μmhos
Output Admittance Variations with AGC (0 to 60 dB)	Δg ₂₂ Δb ₂₂	3.0 80	4.0 100		μmhos
Reverse Transfer Admittance	¥12	<<1.0	≪1.0	<<1.0	μmho
Forward Transfer Admittance Magnitude Angle (Q dB AGC) Angle (-30 dB AGC)	v ₁₂ ∠v21 ∠v21	260 -73 -52	240 -100 -72	210 -135 -96	mmhos degrees
Single-Ended Input Capacitance		9.5	10	10.5	pF
Differential Output Capacitance		2.0	2.0	2.5	pF

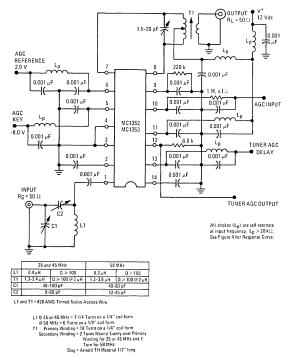

MC1352, MC1353 (continued)

FIGURE 2 - CIRCUIT SCHEMATIC

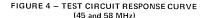
7

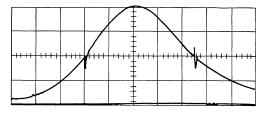
MC1352, MC1353 (continued)

FIGURE 3 - POWER GAIN, AGC AND NOISE TEST CIRCUIT

GENERAL OPERATING INFORMATION

Each device, MC1352 and MC1353, consists of an AGC section and an IF signal amplifier (Figure 2) subdivided into different functions as indicated by the illustration.

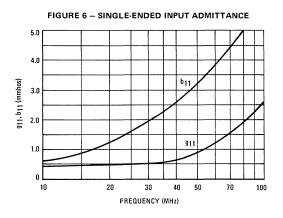

A gating pulse, a reference level, and a composite video signal are required for proper operation of the AGC section. Either positive or negative-going video may be used; necessary connections and signal levels are shown in Figure 1. The essential difference is that the video is fed into Pin 10 and the AGC reference level is applied to Pin 6 for a video signal with positive-going sync while the input connections are reversed for negative-going sync.


The action of the gating section is such that the proper voltage,

NOTES:

- The 12-V supply must have a low ac impedance to prevent lowfrequency instability in the RF-AGC loop. This can be achieved by a 12-V zener diode and a large decoupling capacitor (5 μF).
- Choices of C1, C2 and C3 depend somewhat on the set designers' preference concerning AGC stability versus AGC recovery speed. Typical values are C1 = 0.1 μF, C2 = 0.25 μF, C3 = 10 μF.
- 3. To set a fixed IF-AGC operating point (e.g., for receiver alignment) connect a 22 kΩ resistor from pin 9 to pin 11 to give minimum gain, then bias pin 14 to give the correct operating point using a 200 kΩ variable resistor to ground.
- 4. Although the unit will normally be operating with a very high power gain, the pin configuration has been carefully chosen so that shielding between input and output terminals will not normally be necessary even when a standard socket is used.

 $V_{\rm C}$, is maintained across the external capacitor, C2, for a particular video level and dc reference setting. The voltage $V_{\rm C}$, is the result of the charge delivered through D1 and the charge drained by Q1. The charge delivered occurs during the time of the gating pulse, and its magnitude is determined by the amplitude of the video signal relative to the dc reference level. The voltage $V_{\rm C}$ is delivered via the IF-AGC amplifier and applied to the variable gain stage of the IF signal amplifier and is also applied to the RF-AGC amplifier, where it is compared to the fixed RF-AGC delay voltage reference by the differential amplifier, Q2 and Q3. The following stages amplify the output signal of either Q2 for MC1352, or Q3 for MC1353 and shift the dc levels causing the RF-AGC voltage to vary (positive-going for MC1352) regative-going for MC1353.


Scale: 1 MHz/cm

The input amplifiers (Q4 and Q5) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac). Terminals 1 and 2 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q6 and Q7 causing those transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q8 and Q9. The output amplifiers are fed from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant.

FIGURE 5 - TYPICAL AGC APPLICATION CHART

Video Polarity	Pin 6 Voltage	Pin 10 Voltage	Pin 5 R1 (Ω)
Negative- Going Sync.	5.5 ***	Adj. 1.0–4.0 Vdc Nom 2.0 V	0
Positive- Going Sync.	Adj. 1.0–8.0 Vdc Nom 4.5 V		3.9 k

TYPICAL CHARACTERISTICS (V⁺ = +12 Vdc, T_A = +25^oC unless otherwise noted)

1.0

0.8

0.4

0.2

0

10

922, b22 (mmho) 0.6 (SINGLE ENDED OUTPUT ADMITTANCE EXHIBITS TWICE THESE VALUES)

20

FIGURE 8 - FORWARD TRANSFER ADMITTANCE

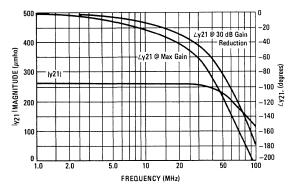


FIGURE 10 - MC1352 AGC CHARACTERISTICS

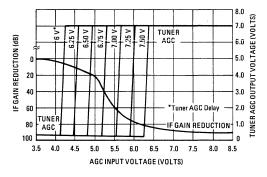


FIGURE 9 - DIFFERENTIAL OUTPUT VOLTAGE

30

FREQUENCY (MHz)

FIGURE 7 - DIFFERENTIAL OUTPUT ADMITTANCE

^b22

g22

70

100

40 50

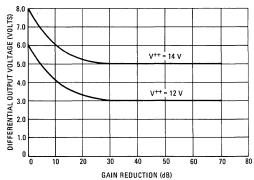
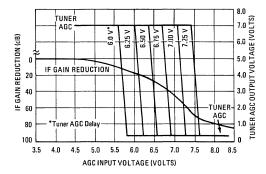
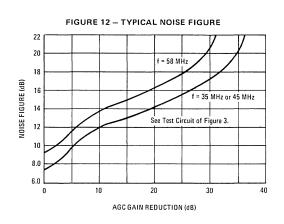
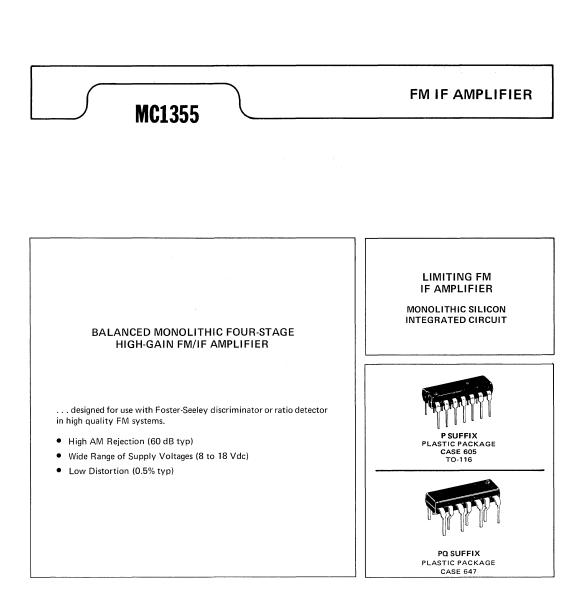
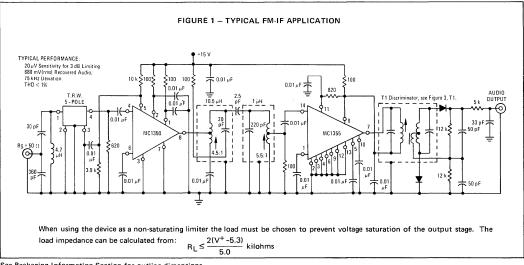



FIGURE 11 - MC1353 AGC CHARACTERISTICS



7-72


. .


MC1352, MC1353(continued)

TYPICAL CHARACTERISTICS (continued) (V⁺ = +12 Vdc, T_A = +25^oC unless otherwise noted)

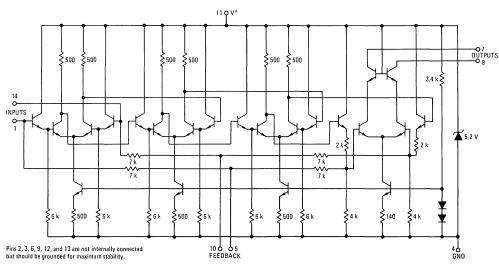
For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

See Packaging Information Section for outline dimensions.

-

MC1355 (continued)

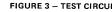
MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)


Rating	Value	Unit
Output Voltage (pins 7 & 8)	40	Vdc
Supply Current to pin 11	20	mA
Input Signal Voltage (single-ended)	5.0 -	Vp-p
Input Signal Voltage (differential)	10	Vp-p
Power Dissipation (package limitation) Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

Maximum Ratings as defined in MIL-S-19500, Appendix A.

ELECTRICAL CHARACTERISTICS (V⁺ = 15 Vdc, f = 10.7 MHz, $T_A = +25^{o}C$, Rs = 820 ohms unless otherwise noted)

Characteristic		Min	Тур	Max	Units
Power Supply Voltage Range		8.0	15	18	Vdc
Total Circuit Current			16	-	mAdc
Total Output Stage Current		-	4.2	-	mA
Device Dissipation		-	125	-	mW
Internal Zener Voltage		-	5.2		Vdc
Input Signal for 3 dB Limiting		-	175	250	μV(rms)
Output Current Swing		3.5	4.2	5.0	mA p-p
AM Rejection (10 mv to 1.0 v (rms) input, FM @ 100%, AM @ 80%, Foster Seel	ey detector)	-	60	-	dB
Maximum AM Signal before Breakup (FM @ 1	00%, AM @ 80%)	-	-	1.4	V(rms)
Admittance Parameters	Y11 Y12 Y21 Y22		120 + j320 j0.6 8 + j5.9 15 + j230		μmhos μmho mhos μmhos



7

TYPICAL CHARACTERISTICS

FIGURE 3 - TEST CIRCUIT C2 D1 R4 20 зċ 4¢ 5Ċ Ъà 7 R5₹ C 1 MC1355 R5₹ C 1 D 1 130 90 14 C 120 110 10 C 80 10.7 MHz RF INPUT Τ1 • RI ć2 C2 C2 > C2 > Ŧ ₹R3 • v+ Ŧ = 15 Vdc R1 820 ohms R2 50 ohms C1 50 pF C2 0.01 μ F T1 10.7 MHz Foster-Seeley Discriminator, D1 Small Signal Germanium Diode (1N542 or equiv) Specifications are given for a Foster-Seeley discriminator. Im-R3 R4 R5 100 ohms proved AM rejection at low signal levels can be obtained with a 5 kilohms 12 kilohms Primary Impedance = 3.9 k, ratio detector. Peak-to-Peak Separation = 600 kHz For optimum circuit stability it is important to ground pins 2, 3, 4, 6, 9, 12, and 13. FIGURE 4 - AM REJECTION TEST BLOCK DIAGRAM HP 340014 230-A HP 10514A TEST CIRCUIT BOOTON POWER AMPL. RMS RF MIXER I. R (10.7 MHz) (Figure 3) METER OR EQUIV OR EQUIV OR EQUIV 51 k MODULATION 1 kHz FΜ €10 k GENERATOR **V DIODE BIAS** FIGURE 5 - LIMITING FIGURE 6 - AM REJECTION 1000 70 V⁺ = 15 Vdc = 15 Vdc (Use Test Circuit of Figure 3) 100% FM (75 kHz) AUDIO OUTPUT VOLTAGE (mV[rms]) 60 800 80% AM 75 kHz Deviation (Use Test Set-Up of Figure 3) AM REJECTION (dB) 50 600 40 400

200

0

0.01

0.1

1.0

3.0 5.0 10

SIGNAL INPUT VOLTAGE (mV[rms])

30

20

10

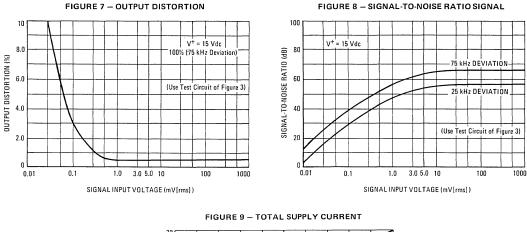
0.01

0.1

3.0 5.0 10

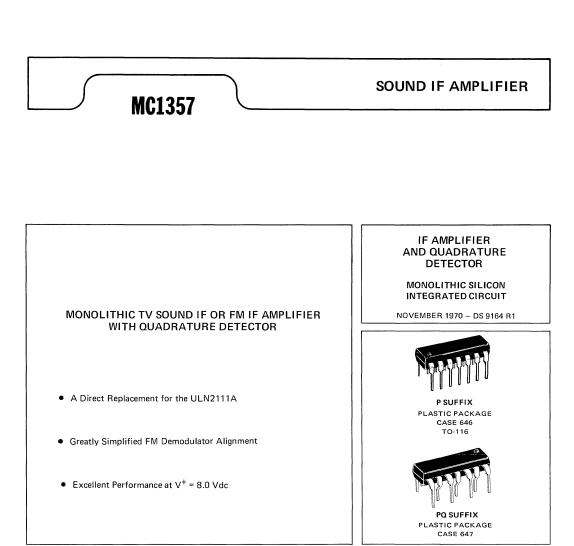
SIGNAL INPUT VOLTAGE (mV [rms])

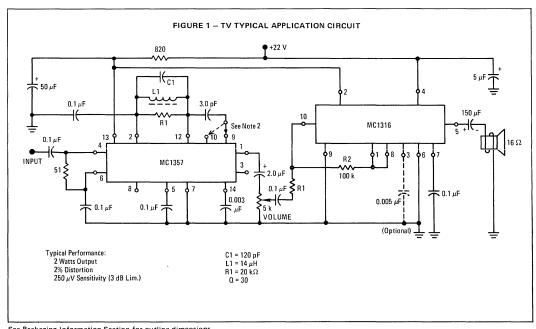
1.0


100

1000

25 kHz Deviation


100


1000

TYPICAL CHARACTERISTICS (continued)

20 18 (Use Test Circuit of Figure 3) 16 SUPPLY CURRENT (mA) 14 12 10 8.0 6.0 4.0 2.0 oL 8.0 10 12 14 16 18 SUPPLY VOLTAGE (VOLTS)

See Packaging Information Section for outline dimensions.

MC1357 (continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	16	Vdc
Input Voltage (Pin 4)	3.5	Vp
Power Dissipation (Package Limitation) Plastic Packages Derate above T _A = +25 ^o C	625 5.0	mW mW/ ⁰ C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

Maximum Ratings as defined in MIL-S-19500, Appendix A.

ELECTRICAL CHARACTERISTICS (V⁺ = 12 Vdc, T_A = +25°C unless otherwise noted)

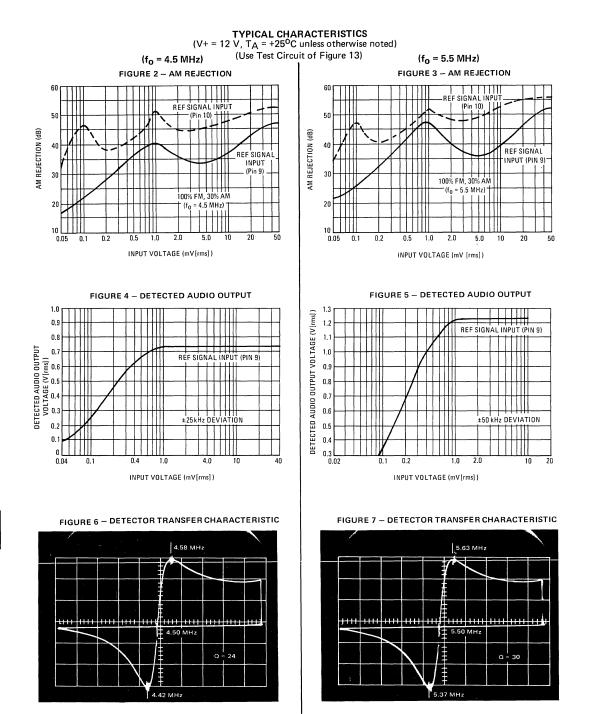
Characteristic	Pin	Min	Тур	Max	Units
Drain Current V ⁺ = 8 V V ⁺ = 12 V	13	10	12 15	19 21	mA
Amplifier Input Reference Voltage	6	-	1.45	-	Vdc
Detector Input Reference Voltage	2		3.65	-	Vdc
Amplifier High Level Output Voltage	10	1.25	1.45	1.65	Vdc
Amplifier Low Level Output Voltage	9	-	0.145	0.2	Vdc
Detector Output Voltage V ⁺ = 8 V V ⁺ = 12 V	1		3.7 5.4	_	Vdc
Amplifier Input Resistance	4	-	5.0	-	kΩ
Amplifier Input Capacitance	4	-	11	_	ρF
Detector Input Resistance	12	-	70	-	kΩ
Detector Input Capacitance	12		2.7		pF
Amplifier Output Resistance	10	-	60	-	ohms
Detector Output Resistance	1	-	200	-	ohms
De-Emphasis Resistance	14	-	8.8		kΩ

DYNAMIC CHARACTERISTICS (FM Modulation Freq. = 1.0 kHz, Source Resistance = 50 ohms, $T_A = +25^{\circ}C$ for all tests.)

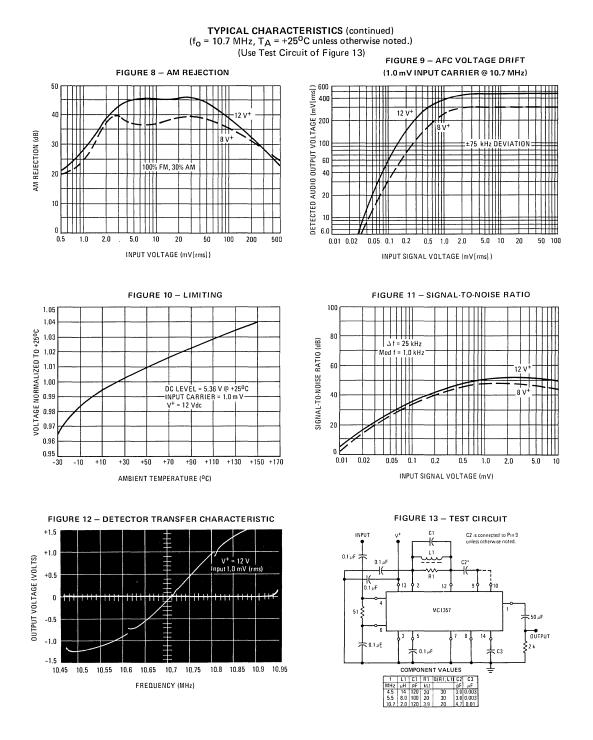
(V⁺ = 12 Vdc, f_0 = 4.5 MHz, Δf = ±25 kHz, Peak Separation = 150 kHz)

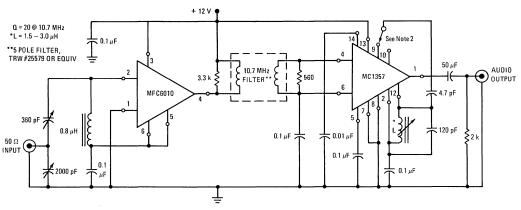
Characteristics	Pin	Min	Тур	Max	Units
Amplifier Voltage Gain ($V_{in} \le 50 \mu V [rms]$)	10		60	-	dB
AM Rejection* (Vin = 10 mV[rms])	1	— ·	36	-	dB
Input Limiting Threshold Voltage	4		250	-	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	-	0.72	-	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1	-	3	-	%
(V ⁺ = 12 Vdc, f_0 = 5.5 MHz, Δf = ±50 kHz, Peak Separation	on = 260 kHz)				
Amplifier Voltage Gain (V _{in} ≤ 50 µV[rms])	10		60	_	dB
AM Rejection* (Vin = 10 mV[rms])	1	-	40	-	dB
Input Limiting Threshold Voltage	4	-	250	-	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	-	1.2	-	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1	-	5	-	%
(V ⁺ = 8.0 Vdc, $f_0 = 10.7$ MHz, $\Delta f = \pm 75$ kHz, Peak Separa	tion = 550 kHz)				
Amplifier Voltage Gain (V _{in} ≤ 50 µV[rms])	10	-	53	-	dB
AM Rejection* (Vin = 10 mV[rms])	1	-	37	-	dB
Input Limiting Threshold Voltage	4		600		μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	-	0.30	-	V (rms)
Output Distortion (V _{in} = 10 mV[rms])	1	1	1.4	-	%
(V ⁺ = 12 Vdc, f_0 = 10.7 MHz, Δf = ± 75 kHz, Peak Separat	tion = 550 kHz)				
Amplifier Voltage Gain (V _{in} ≤ 50 µV[rms])	10	-	53	-	dB
AM Rejection* (V _{in} = 10 mV[rms])	1	-	45	-	dB
Input Limiting Threshold Voltage	4	-	600	-	μV(rms)

Output Distortion (V_{in} = 10 mV[rms]) *100% FM, 30% AM Modulation


Recovered Audio Output Voltage (V_{in} = 10 mV[rms])

0.48


1.4


V(rms)

%

7-80

5

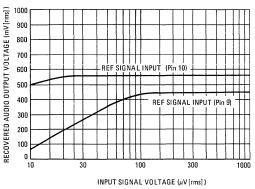
FIGURE 14 - FM RADIO TYPICAL APPLICATION CIRCUIT

FIGURE 15 - OUTPUT DISTORTION

TOTAL HARMONIC DISTORTION (%) REF SIGNAL 4 INPUT REF SIGNAL + INPUT (Pin 10) (Pin 9) 3 2 0 10 30 100 300 1000 INPUT SIGNAL VOLTAGE (µV[rms])

70 REF SIGNAL INPUT (Pin 10) 60 SIGNAL-TO-NOISE RATIO (dB) **REF SIGNAL INPUT (Pin 9)** 50 40 30 20 10 30 100 300 1000

FIGURE 16 - SIGNAL-TO-NOISE RATIO

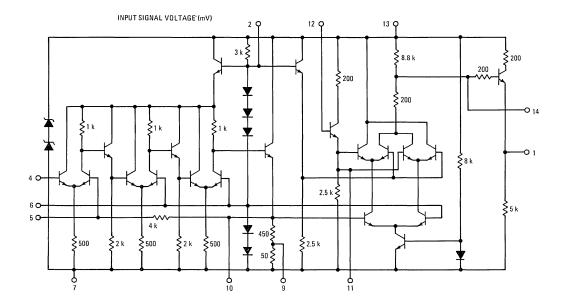

Information shown in Figures 15, 16, and 17 was obtained

Optional input to the quadrature coil may be from either

pin 9 or pin 10 in the applications shown. Pin 9 has commonly been used on this type of part to avoid overload with various tuning techniques. For this reason, pin 9 is used in tests on the preceding pages (except as noted). However, a significant improvement of limiting sensitivity can be obtained using pin 10, see Figure 17, and no overload problems have been incurred

INPUT SIGNAL VOLTAGE (µV[rms])

FIGURE 17 - RECOVERED AUDIO OUTPUT


Note 1:

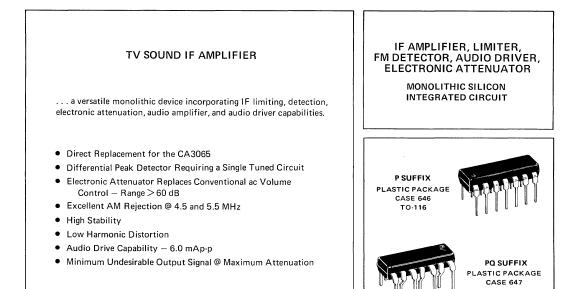
Note 2:

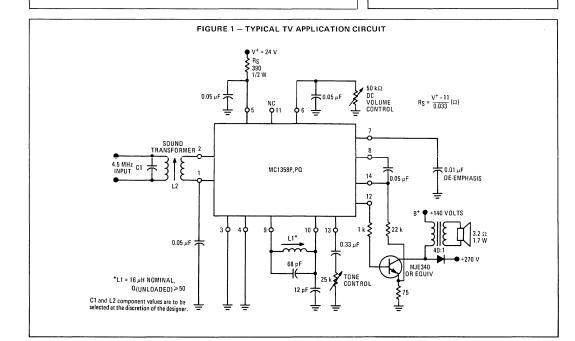
using the circuit of Figure 14.

with this tuned circuit configuration.

MC1357 (continued)

FIGURE 18 - CIRCUIT SCHEMATIC




-

- - -

MC1358

SOUND IF AMPLIFIER

See Packaging Information Section for outline dimensions.

MC1358 (continued)

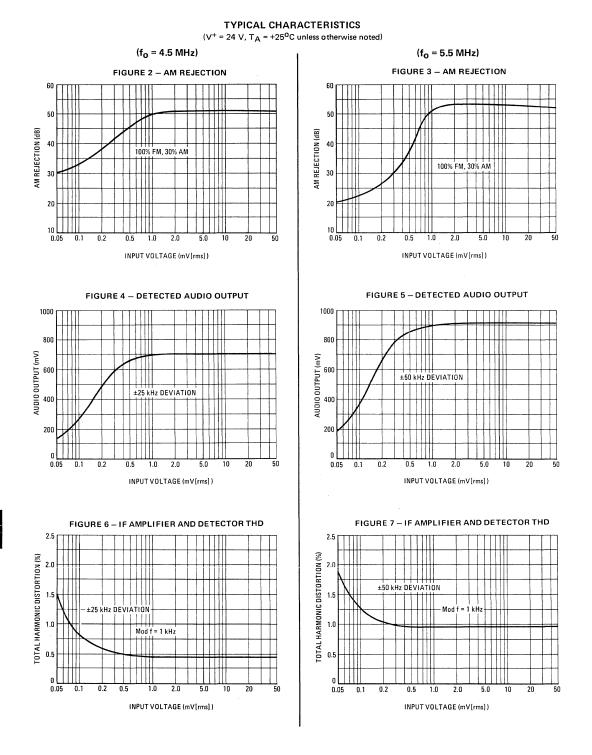
MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

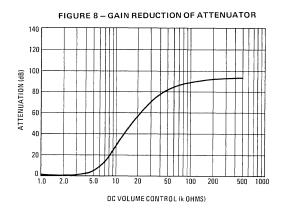
Rating	Value	Unit
Input Signal Voltage (Pins 1 and 2)	±3.0	Vdc
Power Supply Current	50	mA
Power Dissipation (Package Limitation) , Plastic Packages Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ⁰ C
Operating Temperature Range (Ambient)	-20 to +75	°C
Storage Temperature Range	-65 to +150	°C

Maximum Ratings as defined in MIL-S-19500, Appendix A.

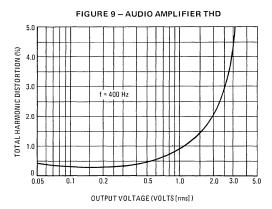
ELECTRICAL CHARACTERISTICS (V⁺ = 24 Vdc, T_A = +25^oC unless otherwise noted)

~

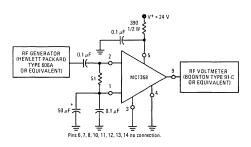

Characteristic	Pin	Min	Тур	Мах	Unit
Regulated Voltage	5	10.3	11	12.2	Vdc
DC Supply Current ($V^+ = 9 Vdc$, $R_S = 0$)	5	10	16	24	mA
Quiescent Output Voltage	12	-	5.1	-	Vdc


DYNAMIC CHARACTERISTICS (V⁺ = 24 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted)

Characteristic	Min	Тур	Max	Unit
IF AMPLIFIER AND DETECTOR $f_0 = 4.5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}$				
AM Rejection* (V _{in} = 10 mV [rms])	40	51	-	dB
Input Limiting Threshold Voltage	-	200	400	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	0.5	0.70	-	V(rms)
Output Distortion ($V_{in} = 10 \text{ mV} [\text{rms}]$) $f_0 = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ kHz}$	-	0.4	2.0	%
AM Rejection* (Vin = 10 mV [rms])	40	53	_	dB
Input Limiting Threshold Voltage	_	200	400	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV [rms])	0.5	0.91	-	V(rms)
Output Distortion (Vin = 10 mV [rms])	_	0.9	-	%
Input Impedance Components (f = 4.5 MHz, measurement between pins 1 and 2) Parallel Input Resistance Parallel Input Capacitance		17 4.0		kΩ pF
Output Impedance Components (f = 4.5 MHz, measurement between pin 9 and GND) Parallel Output Resistance Parallel Output Capacitance		3.25 3.6	-	kΩ pF
Output Resistance, Detector Pin 7 Pin 8		7.5 250		kΩ Ω
ATTENUATOR				
Volume Reduction Range (See Figure 8) (dc Volume Control = ∞)	60	-	-	dB
Maximum Undesirable Signal (See Note 1) (dc Volume Control = ∞)	. –	0.07	1.0	mV
AUDIO AMPLIFIER				
Voltage Gain (V _{in} = 0.1 V(rms), f = 400 Hz)	17.5	20	-	dB
Total Harmonic Distortion ($V_o = 2.0 V(rms), f = 400 Hz$)	-	2.0	-	%
Output Voltage (THD = 5%, f = 400 Hz)	2.0	3.0		V(rms)
Input Resistance (f = 400 Hz)	-	70		kΩ
Output Resistance (f = 400 Hz)	-	270	-	Ω
		1	1	1


*100% FM, 30% AM Modulation.

Note 1. Undesirable signal is measured at pin 8 when volume control is set for minimum output.



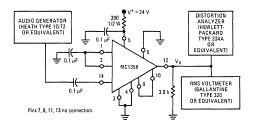

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 - IF FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 13 - AUDIO VOLTAGE GAIN, AUDIO THD TEST CIRCUIT

100 90 80 70 60 50 40 30 20 10

VOLTAGE GAIN (dB)

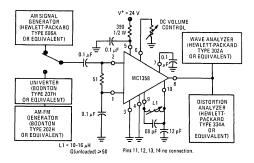
0

0.1

0.2

FIGURE 10 - IF FREQUENCY RESPONSE

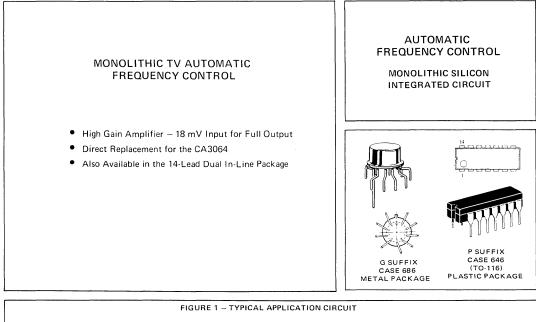
1.0 FREQUENCY (MHz)


2.0

5.0

10

0.5


.

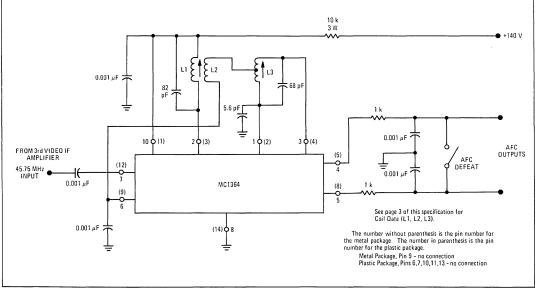


FIGURE 14 - CIRCUIT SCHEMATIC

MC1364

AUTOMATIC FREQUENCY CONTROL

See Packaging Information Section for outline dimensions.

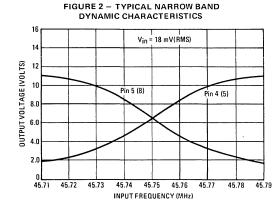
7

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted, see Note 1)

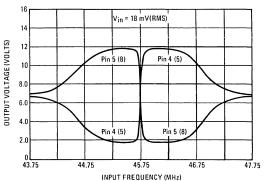
Rating	MC1364G	MC1364P	Unit
Input Signal Voltage (Pin 7 to 8)	+2.0, -10	+2.0, -10	Vdc
Output Collector Voltage (Pins 2 and 8)	20	20	Volts
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	680 5.6	625 5.0	mW mW/ ^o C
Operating Temperature Range	-40 to +85	0 to +75	°C
Storage Temperature Range	-65 to +150	-65 to +125	°C

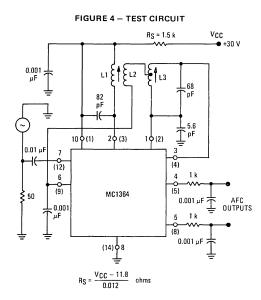
ELECTRICAL CHARACTERISTICS (V_{CC} = +30 Vdc, T_A = +25^oC, see Test Circuit of Figure 4 unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Total Device Dissipation		140	-	mW
Total Supply Current	-	12	-	mA
Current Drain, Total (Reduce V _{CC} so that V10 = 10.5 Vdc)	4.0	6.5	9.5	mA
Zener Regulating Voltage	10.9	11.8	12.8	V
Quiescent Current to Pin 2	1.0	2.0	4.0	mA
Quiescent Voltage at Pin 4 or Pin 5	5.0	6.6	8.0	V
Output Offset Voltage (Pin 4 to Pin 5)	-1.0	0	+1.0	V


DESIGN PARAMETERS, TYPICAL VALUES (V_{CC} = +30 Vdc, R_{S} = 1.5 k, f = 45.75 MHz)

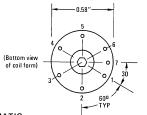
Parameter	Symbol	Тур	Unit
Input Admittance	y ₁₁	0.4 + j1	mmho
Reverse Transfer Admittance	Y ₁₂	0 + j3.4	μmho
Forward Transfer Admittance	y ₂₁	110 + j140	mmhos
Output Admittance (Pin 2)	Y ₂₂	0.02 + j1	mmho

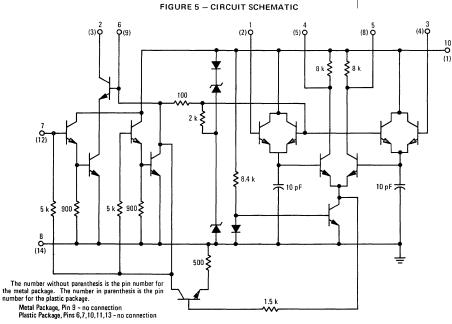

Note 1: Pin numbers used in the above tables are for the metal package, Case 686. For corresponding pin numbers for the plastic package, Case 646, see the Test Circuit, Figure 4.

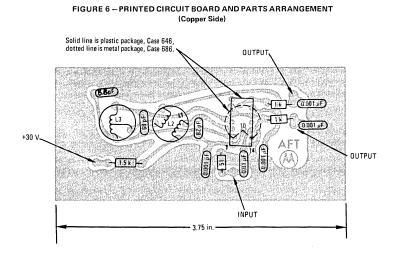

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

TYPICAL CHARACTERISTICS (See Test Circuit of Figure 2)

FIGURE 3 – TYPICAL WIDE BAND DYNAMIC CHARACTERISTICS






The number without parenthesis is the pin number for the metal package. The number in parenthesis is the pin number for the plastic package. Metal Package, Pin 3 - no connectionPlastic Package, Pin 5 - no connection

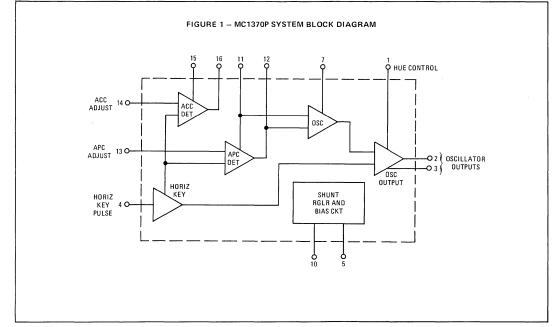
COIL DATA FOR DISCRIMINATOR WINDINGS FOR FIGURES 1 AND 4

- L1 Discriminator Primary: 3-1/6 turns; AWG#20 enamel-covered wire close-wound, at bottom of coil form. Inductance of L1 = 0.165 μ H; Q₀ = 120 at f₀ = 45.75 MHz. Start winding at Terminal #6; finish at Terminal #1. See Notes below.
- L2 Tertiary Windings: 2-1/6 turns; AWG #20 enamel-covered wire – close-wound over bottom end of L1. Start winding at Terminal #3; finish at Terminal #4. See Notes below.
- L3 Discriminator Secondary: 3-1/2 turns; AWG #20 enamelcovered wire, center-tapped, space wound at bottom of coil form.
 - Start winding at Terminal #2; finish at Terminal #5, connect center tap to Terminal #7. See Notes below.
- Notes: 1. Coil Forms; Cylindrical; -0.30" Dia. Max. 2. Tuning Core: 0.250" Dia. x 0.37" Length. Material: Carbinal J or equivalent.
 - 3. Coil Form Base: See drawing below.
 - End of coil nearest terminal board to be designated the winding start end.
 - 5. Mount the coils 3/4" apart, center to center.

7

MC1370P

CHROMA SUBCARRIER SYSTEM


TELEVISION CHROMA SUBCARRIER REGENERATOR

 \ldots a monolithic device designed for solid-state television receivers, provides a gated voltage controlled oscillator, phase-locked loop and dc hue control.

- Sensitive Voltage Controlled 3.58 MHz Crystal Oscillator
- High-Gain Automatic Phase Control (APC) Loop
- Wide-Range dc Control of Regenerated Subcarrier Phase
- Synchronous Automatic Chroma Control (ACC) Detector
- Internal Shunt Regulated Power Supply
- Internal Gating for Color Burst
- Complements MC1371P Color IF Amplifier
- Direct Replacement for the CA3070

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Maximum Supply Voltage (through 470 ohms to pin 10)	30	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +24 Vdc, T_A = +25^oC unless otherwise noted.)

	Characteristic	Min	Тур	Max	Unit
STATIC CHARAC	TERISTICS (See Test Circuit of Figure 2, S1, S2	2 and S3 in position	1 unless otherwi	se noted.)	
Power Supply Currer	nt (S2 in position 2)	-	27	-	mA
Regulator Voltage (p	in 10)	11	11.8	12.9	Vdc
Load Regulation (pir	10) (V _{CC} from +21 V to +27 V)	-	35	-	mVdc
Oscillator Current (p	ins 2 and 3, S2 in position 2)	4.1	6.5	7.5	mA
APC Detector Currer	nt (pin 11 or pin 12)	1.0	1.5	1.8	mA
ACC Detector Curren	nt (pin 15 or pin 16)	1.0	1.5	1.8	mA
APC Detector Leaka	ge Current (pin 11 or 12, S2 in position 3)	-	-	40	μA
ACC Detector Leaka	ge Current (pin 15 or 16, S2 in position 3)	-	-	30	μA
APC Detector Balance	e (voltage between pins 11 and 12)	-375	-40	+375	mVdc
ACC Detector Balance	e (voltage between pins 15 and 16)	-300	-50	+300	mVdc
Oscillator Control Ba position 3, S3 in p	lance (voltage between pins 7 and 8, S2 in osition 2)	-330	-10	+330	mVdc
Oscillator Gate Leak	age (pin 2 and pin 3)	-	-	2.0	μA
Voltage (pin 1) (pin 13) (pin 14) (pin 6)	S2 in position 2 S1 and S2 in position 2 S2 in position 2 S2 in position 2 S2 in position 2		100 7.7 6.5 6.5 2.8	300 8.2 7.0 7.0 -	mVdc Vdc

Oscillator Output Voltage	(pin 2, S1 in position 1) (pin 3, S1 in position 3)	-	1.6 1.6		Vp-p
Oscillator Control Sensitivity	(β)	-	10	_	Hz/mV
Oscillator Pull-in Range	(Above f _O = 3.579545 MHz) (Below f _O = 3.579545 MHz)		+400 -600		Hz
APC Loop Static Phase Error frequency offset)	(with oscillator free-running	-	0.02	· _	Deg/Hz
APC Detector Sensitivity (μ)		-	5.0	-	mV/Deg
ACC Detector Sensitivity (AC burst level change)	C output level change for input	-	1.4	-	mVdc/mVp-p
Oscillator Noise Bandwidth (f	NN)	-	150		Hz
APC Filter Damping Coefficie	nt (K)		0.5		-
Input Impedance (pin 13) (pin 14) (pin 6)			2.1 2.1 2.2		kΩ

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

- -

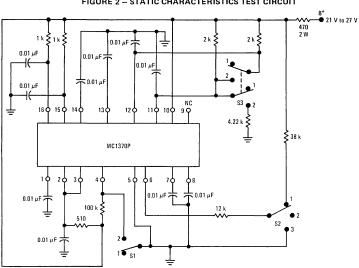
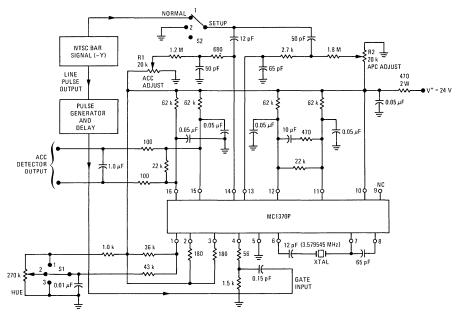
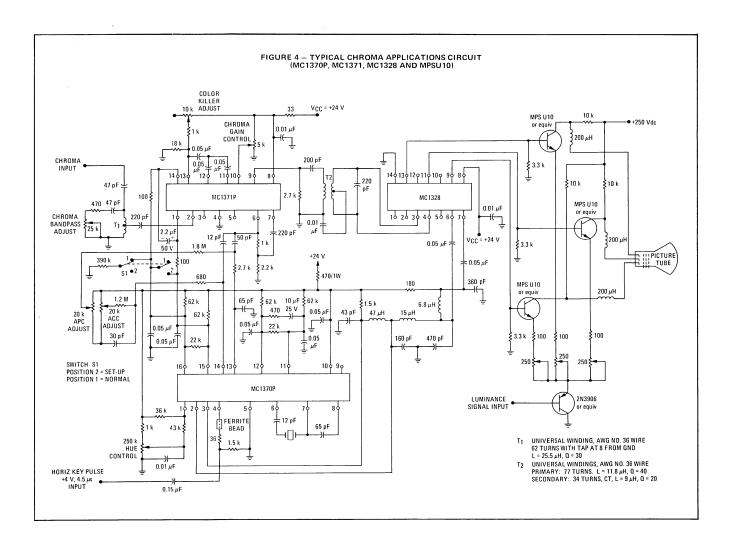
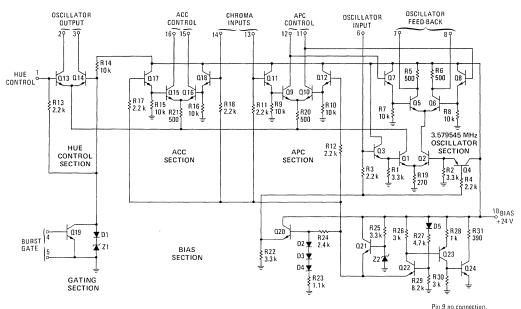



FIGURE 2 – STATIC CHARACTERISTICS TEST CIRCUIT


FIGURE 3 – DYNAMIC CHARACTERISTICS TEST CIRCUIT

NOTE: The Set-up Procedure for Dynamic Characteristics Test Circuit


The signal source is an NTSC color bar generator (minus lumiinance or Y content) applied through an adjustable 3.58 MHz attenuator. The generator horizontal output is used to trigger a pulse generator set to give an output pulse of +4.0 volts, 4.5 μs wide, at a repetition rate of 15.734 kHz. The pulse delay is adjusted

to center the pulse during the burst of the color signal (compare gated portion of output at pin 2 or 3 with burst pulse of signal). With S1 set to position 2 and S2 set to position 2, the oscillator is adjusted to 3.579545 MHz by R2. R1 is adjusted to produce zero offset between pins 15 and 16. When S2 is set to position 1, the oscillator should synchronize to the incoming signal.

MC1370P (continued)

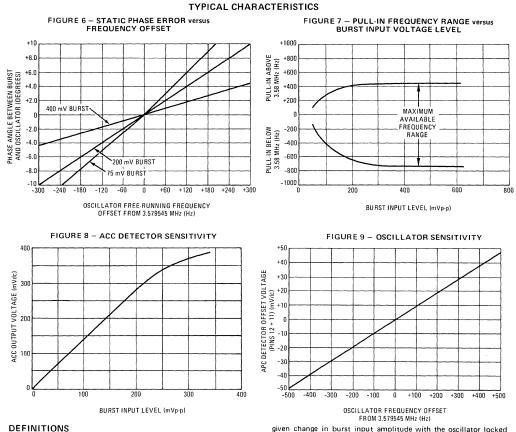
7

FIGURE 5 - CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

The MC1370 monolithic circuit provides the sub-carrier regeneration function necessary for a color television receiver to decode the NTSC color signal. An internal gate extracts the burst voltage and this signal is processed in two-phase detectors, the quadrature detector controls the phase of the local oscillator and the in-phase detector is used to provide a noise immune ACC and color killer control voltage. A shunt regulator sets the bias voltages and ensures stable operation when there are supply voltage variations.

The basic 3.579545 MHz oscillator consists of the differential amplifier (Q1 and Q2) with a feed-back loop through a quartz crystal operating in series resonance from Q2 collector to the noninverting input of the amplifier represented by Q1 base. To control the oscillator frequency the phase shift of the feed-back path is made variable by the addition of Q5 and Q6. A capacitor connected between pins 7 and 8, together with the collector loads, forms a RC phase-shift network. Consequently, the oscillator signal appearing at pin 7 can be moved in phase over a 45° range by the differential bias applied to Q5 and Q6 bases. The crystal between pins 7 and 6 completes the feed-back loop. The automatic phase control to the upper differential pairs of the (Q5, Q6) oscillator is buffered by Q3 and Q4. Output from the oscillator amplifier is buffered by Q3 and Q4. Output from the oscillator and from the collector of Q1 and is essentially a square wave of 9 mA peak-topeak with a frequency range of several hundred Hertz.


The control voltage for Q5 and Q6 is obtained from the phase detector Q9 and Q10. As Q1 is the current source for this pair, the voltages appearing at pins 11 and 12 will correspond to the phase difference between the oscillator current and the burst signal applied to pin 13. The loop characteristics are controlled in part

by a filter connected between pins 11 and 12. This is usually a double-time constant network to yield good pull-in times with a low-noise bandwidth.

To ensure that the quadrature phase detector functions only during the burst portion of the incoming chroma signal, the detector is gated into conduction by a pulse from the line flyback transformer – applied at pin 4. This has the additional advantage that the average current in the phase detector has been reduced by the gate duty factor thus relaxing the input offset stability requirements of the differential pair and enabling them to be used with high dc gain.

For the ACC control voltage and color-killer function a similar phase detector, Q15 and Q16, is used. However, the chroma signal input to pin 14 is phase shifted externally by 90° with respect to pin 13. As a result, Q15 and Q16 is an in-phase detector and the control voltage at pins 15 and 16 will be proportional to the amplitude of the burst. Thus filtering of pins 15 and 16 provides the control voltage for the gain control stage in the chroma IF and an indication of the incoming signal strength for the color-killer circuit.

When the phase detectors are not gated "on" by a positive pulse at pin 4, the bases of Q13 and Q14 are held above the bases of the phase detector inputs. Therefore, between gate pulses, all the current from the oscillator output Q1 passes through Q13 and Q14 to pins 2 and 3. When a phase-shift network is connected between pins 2 and 3, the phase of the oscillator drive to the de-modulators can be controlled by changing the relative conduction of Q13 and Q14 with a bias on pin 1. As a result the oscillator output is controlled in phase providing a dc hue control and is gated "off" during the burst period, negating the need for burst blanking in the chroma IF amplifier.

Oscillator Sensitivity (p)

. the change in oscillator free-running frequency for a change in differential control voltage, measured in Hertz/millivolts.

APC Detector Sensitivity (µ)

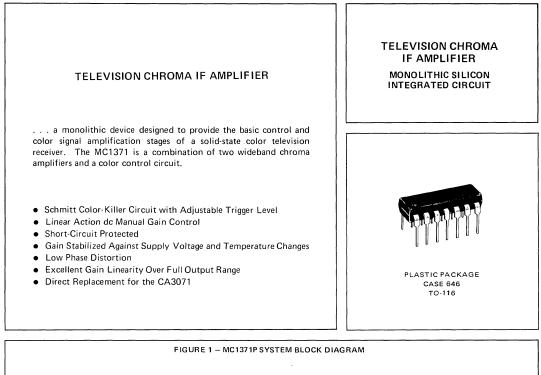
. . the differential voltage change produced at the detector output for a given change in oscillator phase relative to burst phase, measured for a given burst input amplitude in millivolts/degrees. ACC Detector Sensitivity

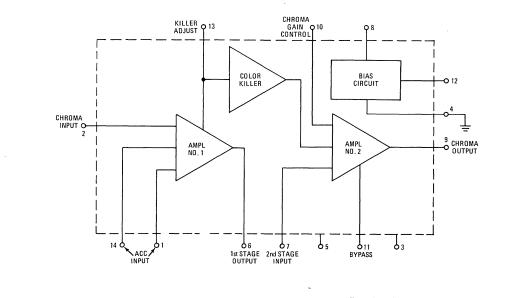
... the differential voltage produced at the detector output for a

given change in burst input amplitude with the oscillator locked in synchronism, measured in millivolts dc/millivolts (p-p).

Noise Bandwidth (f_N)

. actually noise semibandwidth, f_{NN} (= 2 X f_N); a measure of the susceptibility of the burst channel to thermal noise (i.e. dynamic phase error).


Filter Damping Coefficient (K)

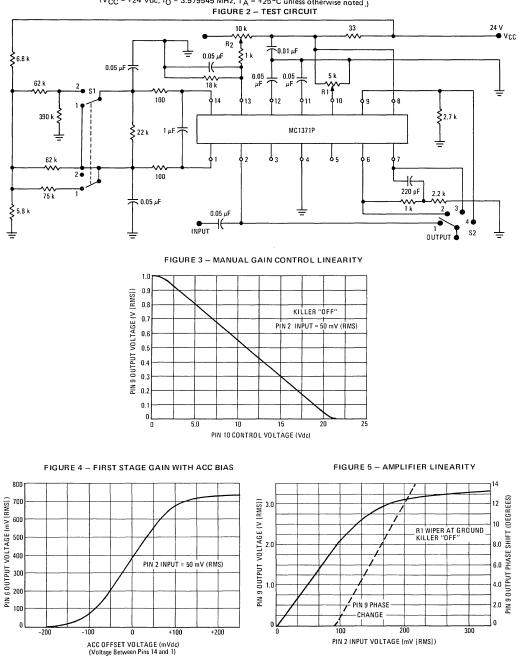

, . . describes the shape of the loop input phase versus output phase response $(\Omega\omega)-K$ = 1 represents critical damping, K>1over damping.

MC1371P

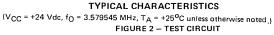
- ---

CHROMA IF AMPLIFIER

See Packaging Information Section for outline dimensions.


MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Amplifier Output Short-Circuit Duration	30	s
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above T _A = +25 ^o C	625 5.0	. m₩ m₩/ºC
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C


ELECTRICAL CHARACTERISTICS (V_{CC} = +24 Vdc, T_A = +25^oC unless otherwise noted. See Test Circuit of Figure 2; switch S1 in position 1, R1 wiper at ground, R2 = 10 kilohms.)

Characteristic	Min	Тур	Max	Unit
Static Characteristics				
Quiescent Power Supply Current	17	28	31	mA
Short-Circuit Current				mA
(pin 6 momentarily grounded)	-	68 48	-	
(pin 9 momentarily grounded)				
First Chroma Stage Input Bias Voltage (pin 2)		1.7		Vdc
First Chroma Stage Output Bias Voltage (pin 6) ACC Balanced (S1 in position 1)	13.7	16.3	20	Vdc
ACC Unbalanced (S1 in position 2)	7.5	10.5	13.5	
Second Chroma Stage Input Bias Voltage (pin 7)	_	1.4	_	Vdc
Second Chroma Stage Output Bias Voltage (pin 9)	16.6	17.6	18.6	Vdc
Quiescent Bias Voltage (pin 12)	13.8	14.8	15.7	Vdc
Dynamic Characteristics (f = 3.579545 MHz, input pin 2 = 35 mV		rise noted.)		
First Chroma Amplifier Stage Gain (ACC Balanced)	14	17	20	dB
Second Chroma Amplifier Stage Gain				
(R1 wiper at ground)	12	15.5	17	dB
Maximum Linear Output (output level at pin 9)	-	2.0	-	V(RMS)
Output Voltage, pin 9 (input pin 2 = 50 mV [RMS])				mV(RMS)
(R1 wiper at V _{CC})		-	12	
(R1 wiper at ground, R2 adjusted for abrupt ac change in		-	12	
pin 9 output voltage)		+	<u>+</u>	
Pin 10 Bias Voltage (R1 set for 10% of pin 9 maximum output)	16.7	20.2	21.6	Vdc
(R1 set for 90% of pin 9 maximum output)	2.5	3.2	4,5	
Second Amplifier Gain Stability				dB
(V _{CC} + 15%)	-	+0.5	+1.5	
(V _{CC} -15%)	-	-0.5	-1.5	
$(T_A = +25^{\circ}C \text{ to } +75^{\circ}C)$	-	+0.5	-	
Input Impedance				
(pin 2)	-	2.0		kΩ
	-	3.5	-	pF
(pin 7)	-	2.2	-	kΩ
	-	3.6	-	pF
Output Impedance				ohms
(pin 6)	-	85	-	
(pin 9)	-	85	-	

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

7

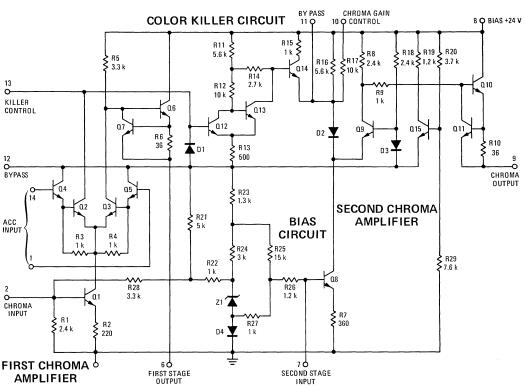
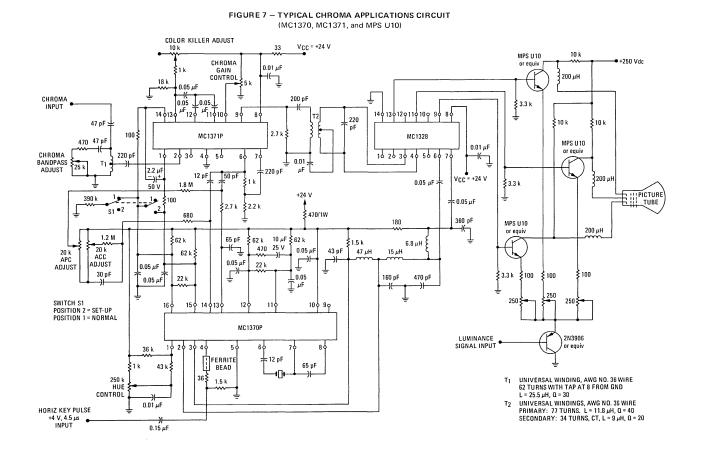


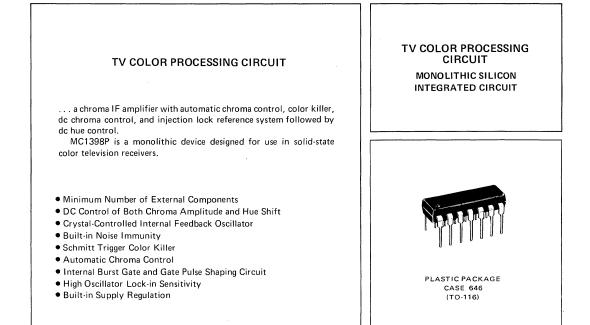
FIGURE 6 - CIRCUIT SCHEMATIC

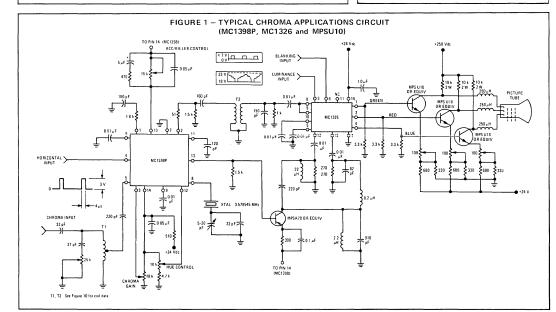

CIRCUIT DESCRIPTION

The MC1371 is a monolithic wide-band amplifier circuit that functions as the basic control and color signal amplification stages of a color television receiver. The first stage contains the gain control function of the ACC loop and the second stage performs the dc manual gain control function. Also included is a Schmitt trigger circuit providing effective color-killer action during mono-chrome transmissions.

Q1 is a current source modulated by the input signal applied at pin 2. The current in Q1 is divided between the differential pair (Q2 and Q3) in a ratio determined by the ACC voltage applied through the buffer stages, Q4 and Q5. Pin 14 is usually offset with respect to pin 1 by a resistor connected to ground so that at low-signal levels most of the signal current is taken by Q3 and passed to the load resistor R5 (the input stage appears as a cascode amplifier to the signal with the intrinsic ac stability of that configuration). The amplified signal is then buffered at pin 6 by the emitter follower stage Q6 which is protected from accidental grounding at the output by the current limiter Q7.

At strong signals when the amplitude of the burst is high, the ACC voltages at pins 1 and 14 divert most of the signal current from Q3. The signal is "dumped" into the collector load of Q2. Q2 is connected externally at pin 13 and bypassed to ground at signal frequencies by a capacitor. However, the dc voltage at the collector of Q2 is dependent on the burst amplitude and therefore on the input signal strength. As the input signal level falls, more current is fed into Q3 by the ACC loop and the output at pin 6 remains constant while Q2 collector voltage increases. At a point predetermined by Q2 collector load (the killer-control setting) the input Q12 of the color-killer circuit is biased "on", shutting down the second chroma amplifier stage.


The second chroma stage is similar in configuration to the first stage. The signal input at pin 7 (which is the output from pin 6) modulates the current source Q8. For a maximum gain voltage setting on pin 10 the signal current passes through Q9 to the output buffer stage Q10. Q10 is protected from short circuit currents by Q11. To reduce the stage gain, current is diverted from Q9 by biasing the diode D2 into conduction. D2 can be regarded as a transistor with 100% dc negative feedback applied between collector and base. Without the feedback path the gain characteristic of the second stage is that of a differential pair, this S shaped curve would make tracking of ganged color level and contrast controls quite difficult. In this limiting form the current through D2 is directly proportional to the voltage difference between the supply and D2 anode and hence to the control voltage at pin 10. When the input to the color-killer is biased "on", Q13 is turned "off" and the voltage at the base of Q14 rises abruptly. D2 then takes all the current from Q8 and the output at pin 9 is suppressed.



Z

MC1398P

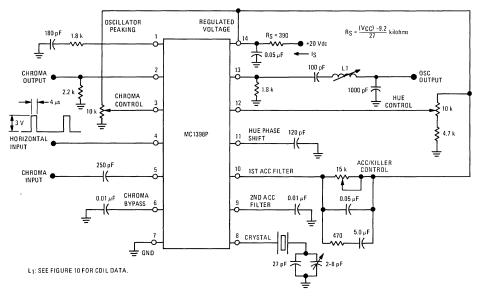
TV COLOR PROCESSING CIRCUIT

See Packaging Information Section for outline dimensions.

MC1398P(continued)

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Value	Unit
Power Supply Current	35	mAdc
Horizontal Pulse Input Current	250	μ Peak
Power Dissipation (package limitation) Derate above T _A = +25 ⁰ C	625 5.0	mW mW/ ^o C
Operating Temperature Range (Ambient)	-20 to +75	°C
Storage Temperature Range	-65 to +150	°C


ELECTRICAL CHARACTERISTICS (V_{CC} = +20 Vdc, R_S = 390 ohms, T_A = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Regulated Voltage (I _S = 35 mA)	9.0	9.6	11.5	Vdc
(I _S = 27 mA)	-	9.2	-	
Maximum Undistorted Chroma Output, See Note 1,E(pin 3) = E(pin 14)	0.8	1.75	-	V(p-p)
Maximum Chroma Gain E (pin 3) = E (pin 14), See Note 1	34	40	-	dB
Automatic Chroma Control Range (ACC) -3.0 dB down from maximum undistorted output ,see Note 1	-	19	-	dB
Chroma Burst Level to Kill, See Note 1	-	1.4	-	mV(p-p)
Manual Chroma Gain Control Range (△ V(pin 3) (V(pin 14) to 0 Vdc)	50	60	-	dB
Chroma Input Resistance	-	2.3		k ohms
Chroma Input Capacitance		13	-	pF
Chroma Output Impedance	-	15	-	ohms
Horizontal Input Pulse	2.2	3.0	4.0	Vp
Oscillator Output	100	-	-	mV(RMS)
Oscillator Output Impedance	-	15		ohms
Hue Control Range (△ V(pin 12) (V(pin 14) to 4.3 Vdc)	100	126	_	degrees
Oscillator Pull-In Range	1200			• Hz
Oscillator Noise Bandwidth (f _N)	-	900		Hz
Static Phase Error with Oscillator Detuning 25 mV(p-p) Burst Amplitude 2.0 mV(p-p) Burst Amplitude		0.20 0.25		degrees/Hz

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

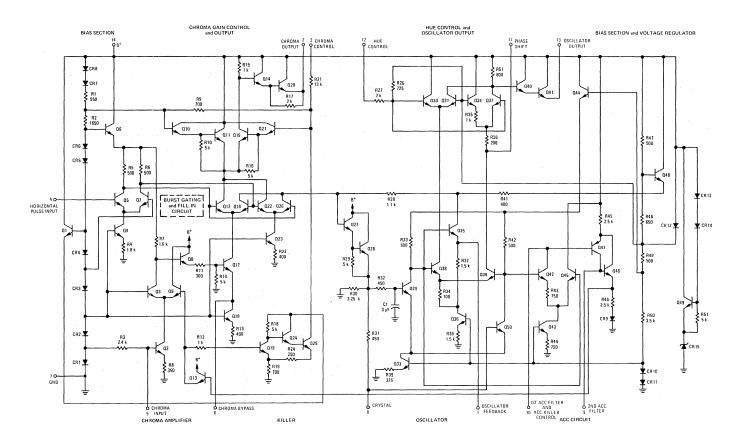
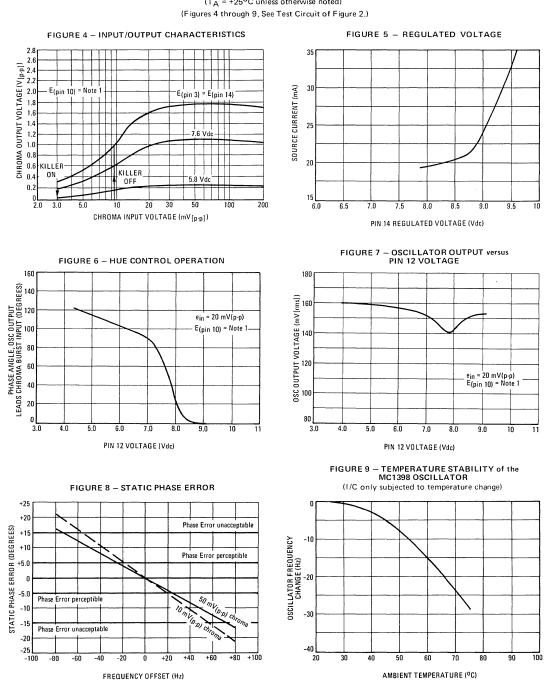
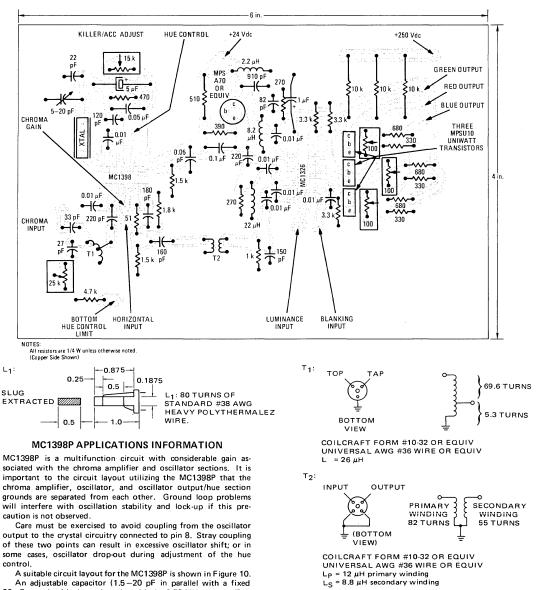

Note 1: With 5.0 mV(p-p) burst input at pin 5 set E(pin 10) to just ''unkill''.

FIGURE 2 - MC1398P TEST CIRCUIT





7

- -

FIGURE 10 - PRINTED CIRCUIT LAYOUT OF MC1398P, MC1326, and MPSU 10 TRANSISTORS

K = 0.4

This coil data is intended as an aid only. It is expected that many designers will want to use other approaches.

22 pF capacitor) is shown in series with the 3.58 MHz crystal. This

capacitor is used to adjust the oscillator exactly on frequency, and ensures excellent oscillator lock-up. However, acceptable

oscillator performance can be obtained with a fixed value of capaci-

tance (this value is dependent on the designers' choice of crystals).

MC1398P CIRCUIT DESCRIPTION

The MC1398P is capable of providing the entire color processing function between the second detector and the demodulator for television color receivers.

A band pass filter from the second detector provides a 50 mV (p-p) signal (for a saturated color bar pattern) at the input to the first chroma amplifier stage ($\Omega_2, \Omega_3, \Omega_8, \Omega_9$). Because of Ω_2 emitter load resistor the input impedance is determined primarily by the bias resistor (R₃) and is about 2.3 kilohms. Since Ω_2 is the current source for the differential pair (Ω_3 and Ω_9), the chroma information will pass to the load resistor (R₇) and then to the second chroma amplifier (Ω_{17}). To avoid overload of Ω_{17} , the maximum gain to Ω_{17} base is only X3 and by varying the bias at the base of Ω_9 it is possible to reduce the stage gain by 23 dB without signal distortion; the signal being "dumped" by Q₉ collector into the supply. Since this automatic chroma control action will vary the dc bias at Ω_{17} base the emitter load of Ω_{17} is the current source Ω_{18} , maintaining the dc operating current. Ω_{18}

During picture scan time, the chroma signal passes through the output level control amplifier (Q10, Q11, Q15, Q21). By changing the bias on Q_{11} and Q_{15} bases the signal can either pass to the output pin 2 or be "dumped" into the supply through Q11. The use of buffer stages Q_{10} and Q_{21} prevent distortion at low-signal levels and the control range is better than 70 dB. The signal output is also buffered by Q14 and Q20, thus providing a low impedance drive of up to 2.0 V (p-p) to the demodulator, with an overall gain between pins 5 and 2 of 40 dB. To enable the chroma signal output to reach the amplifiers from Q_{17} collector, Q_{12} is held in conduction by Q5 which in the absence of any input on pin 4 is not conducting. This high collector voltage also holds Q26 in conduction, clamping the input to the burst channel and preventing chroma information reaching the oscillator. During picture retrace time, a positive-going 4.0 µs pulse from the line sweep transformer will turn Q_5 "on" and Q_7 "off". When Q_5 collector goes low, Q_{12} will become "cut-off" preventing the burst signal at Q_{17} collector from reaching the output pin 2. At the same time, Q26 turns "off" opening the burst channel. The high collector voltage of Q_7 turns on Q_{16} and Q_{22} . Q_{16} passes the burst signal from Ω_{17} collector to the subcarrier regenerator and Ω_{22} "fills-in" for Q12 during the gate period to prevent a dc shift in the pin 2 output voltage.

The gated burst signal is applied to the oscillator through Q_{27} and Q_{28} . Q_{29} , Q_{50} and Q_{35} together with Q_{27} and Q_{28} form an injection locked oscillator circuit. At series resonance of the crystal connected to pin 8 the impedance of pin 8 is very low, thereby reducing the 3.579545 MHz carrier level at the base of Q_{50} . The signal at the base of Q_{29} is not reduced but the output voltages in R_{33} and R_{42} will change. Any signals outside the response band of the crystal will appear equally at Ω_{50} and Ω_{29} bases and be suppressed in the output by the differential amplifier common-mode rejection ratio (about 40 dB). To maintain oscillation, a feedback signal with the correct phase is passed by Ω_{35} back to the input of Ω_{27} . Careful control of the resistor ratios ensures that Ω_{29} and Ω_{50} are operated linearly with about 350 mV (p-p) at R₃₃ and R₄₂, due to self oscillation. A burst signal as low as 2.0 mV (p-p) at the chroma input is sufficient to cause the oscillator to lock to the reference phase and frequency.

As the burst amplitude increases, the level at Q29 and Q50 collectors changes and this shift is used to provide the automatic chroma control function. $\, {\rm Q}_{42} \, {\rm and} \, {\rm Q}_{45} \, {\rm form} \, {\rm a} \, {\rm modified} \, {\rm differential}$ amplifier and with zero offset bias Q45 conducts most of the current from Q_{43} . As an increasing burst level swings Q_{29} and Q_{50} collectors, the current from Q_{43} is shunted into Q_{42} . At a point predetermined by the setting of the automatic chroma control connected to pin 10, the composite lateral PNP of Q47 and Q46 will be biased into conduction. This amplifier has a gain of unity and a filter capacitor (connected to Q_{46} base) prevents any tendency to oscillations. Diode CRg provides thermal compensation to ensure a steady color-killer threshold point. The increasing current through Q_{13} emitter is used to control Q_9 base, attenuating the input signal as the burst amplitude increases. The current from Q_{13} also keeps Q_{19} in saturation. When the input signal becomes too small for satisfactory color rendition, Q13 current falls and Q_{19} comes out of saturation. This means Q_{25} will saturate, clamping Q21 base and "killing" the chroma output stage. R24 in the Schmitt trigger circuit ensures that the colorkiller will have hysteresis to prevent fluttering between "on" and "off" states.

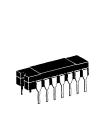
The oscillator output voltages at R₃₃ and R₄₂ are used to drive Q₃₈ and Q₃₉ into limiting so that as the burst amplitude increases the oscillator activity to around 700 mV (p-b), there will be no change in the oscillator output amplitude at pin 13. Q₃₈ and Q₃₉ are used as current sources with a 180° phase difference for the differential pairs Q₃₀ and Q₃₁, Q₃₄ and Q₃₇. A small capacitor attached externally to Q₃₉ collector adjusts the total phase difference to 135°. Since the signal appearing in the load resistor R₅₁ will be the vector sum of Q₃₁ and Q₃₇ signals, varying the base bias of Q₃₀ and Q₃₄ and Q₄₁ buffer the oscillator output providing a low impedance drive at pin 13 for the demodulator.

To minimize crosstalk between the burst and chroma channels, separate bias chains are used. Further, the oscillator bias chain is zener regulated to prevent phase shifts in the reference output with power-supply variations.

MC1414L

DUAL DIFFERENTIAL COMPARATOR

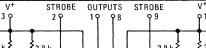
- -

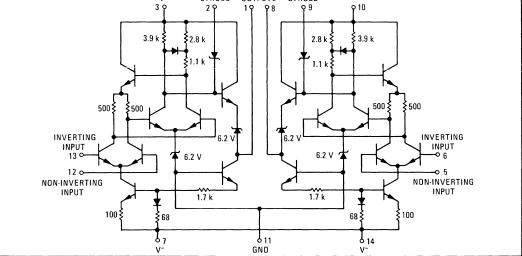

MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR

. . . designed for use in level detection, low-level sensing, and memory applications.

Typical Amplifier Features:

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current 1.6 mA min Each Comparator •
- **Differential Input Characteristics:** • Input Offset Voltage = 1.5 mVOffset Voltage Drift = $5.0 \mu \text{V}/^{\circ}\text{C}$


 - Short Propagation Delay Time 40 ns
- Output Compatible with All Saturating Logic Forms Vout = +3.2 V to -0.5 V typical

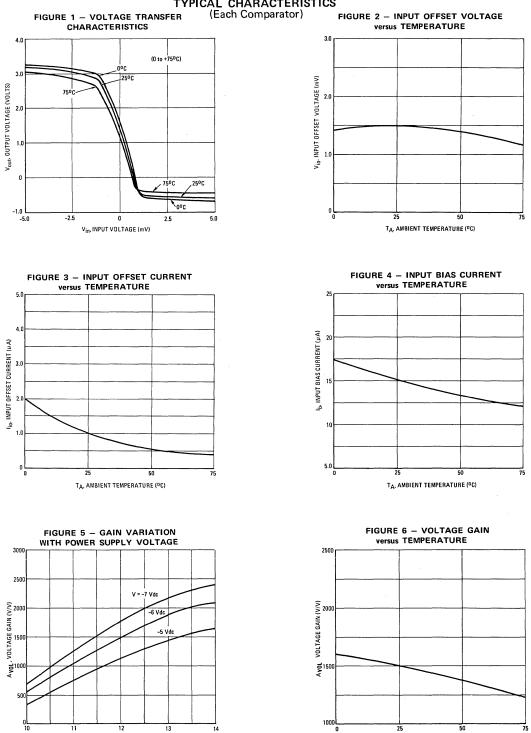

L SUFFIX CERAMIC PACKAGE CASE 632 TO-116

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v+ v-	+14 -7.0	Vdc Vdc
Differential Input Signal	v _{in}	±5.0	Volts
Common Mode Input Swing	CMVin	±7.0	Volts
Peak Load Current	IL	10	mA
Power Dissipation (package limitation) Ceramic Dual In-Line Package Derate above $T_A = 50^{\circ}C$	PD	750 6. 0	mW mW/°C
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

CIRCUIT SCHEMATIC

See Packaging Information Section for outline dimensions.

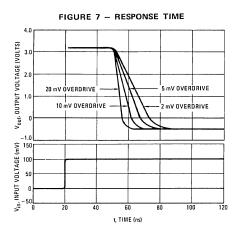

MC1414L (continued)

Characteristic Definitions (linear operation)	Characteristic	Symbol	Min	Тур	Max	Unit
~	Input Offset Voltage	v				mVdc
o-w-	$\dot{V}_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$		-	1.5	5.0	
	$V_{out} = 1.8 \text{ Vdc}, T_A = 0^{\circ}\text{C}$		-	-	6.5	
o-Rs	$V_{out} = 1.0 \text{ Vdc}, T_A = +75^{\circ}\text{C}$		-	-	6.5	
$rac{1}{2}$ $R_{\rm S} \leq 200 \Omega$	Temperature Coefficient of Input Offset Voltage	TC _{Vio}	-	5.0	-	μV/°C
	Input Offset Current $V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$	I _{io}	-	1.0	5.0	μAdc
<u>-',</u> N	$V_{out} = 1.8 \text{ Vdc}, T_A = 0^{\circ}\text{C}$		-	-	7.5	
•	$V_{out} = 1.0 \text{ Vdc}, T_A = +75^{\circ}\text{C}$		-	-	7.5	
	Input Bias Current			·····		
• <u> </u>	$V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$	1 _b	-	15	25	μAdc
	$V_{out} = 1.8 \text{ Vdc}, T_A = 0^{\circ}\text{C}$		-	18	40	
$I_b = \frac{I_1 + I_2}{2}$	$V_{out} = 1.0 \text{ Vdc}, T_A = +75^{\circ}\text{C}$		-	-	40	
$A_{\rm VOL} = \frac{e_{\rm out}}{e_{\rm v}}$	Open Loop			·····		
Avol = ein	Voltage Gain $T_A = 25^{\circ}C$	AVOL	1000	1500	-	V/V
	$T_A = 0$ to +75°C		800	-	_	
e _{in} e _{out} e _{out}	A					
Ŧ Ŭ	Output Resistance	R out	-	200	-	ohms
1.100	Differential Voltage Range	v _{in}	±5.0	-	-	Vdc
	Positive Output Voltage $V_{in} \ge 5.0 \text{ mV}, \ 0 \le I_0 \le 5.0 \text{ mA}$	v _{OH}	2.5	3.2	4.0	Vdc
	Negative Output Voltage V _{in} ≧ -5.0 mV	V _{OL}	-1.0	-0.5	0	Vdc
	Output Sink Current	Is				mAde
ų.	$V_{in}^{\uparrow} \ge -5.0 \text{ mV}, V_{out}^{\downarrow} \ge 0,$ $T_A^{\downarrow} = 0 \text{ to } +75^{\circ}\text{C}$		1.6	0.5	-	
_	A		1.0	2.5		
~~~~~						
	Input Common Mode Range V ⁻ = -7.0 Vdc	CMV	±5.0	-	-	Volts
	Common Mode Rejection Ratio	CM _{rej}				
∲v _i , ¹	$V^- = -7.0 \text{ Vdc}, \text{ R}_{S} \leq 200 \Omega$	rej	70	100	-	dB
<u>÷</u>						
r-@-1∕∕						
	Propagation Delay Time			40		ns
e _{out}	For Positive and Negative	^t pd	-	40	-	115
│ <del>¯</del> ^V ₀ [−] <del>=</del> 1.4 V <del>−−− − </del>	Going Input Pulse					
$V_b = 95 \text{ mV} - V_{io}$ $e_{in}$						
<b>?</b>   1 ₀ +	Total Power Supply Current	L_+	-	12.8	18	mAdc
Vin O	$V_{out} \leq 0 V dc$	ц _р -	-	11	14	
		Ъ				
	Total Power Consumption					
	conce consumption		-	230	300	mW

### **ELECTRICAL CHARACTERISTICS** (V* = +12 Vdc, V⁻ = -6 Vdc, T_A = 25°C unless otherwise noted) (Each Comparator)

- - -

- -

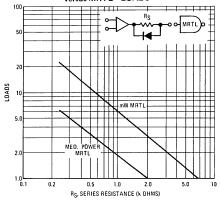


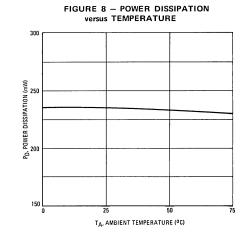

# TYPICAL CHARACTERISTICS

7-112

V⁺, POSITIVE SUPPLY VOLTAGE (Vdc)

T_A, AMBIENT TEMPERATURE (°C)





- -

- -

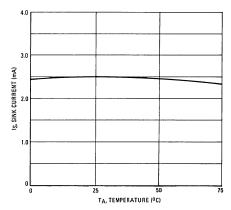
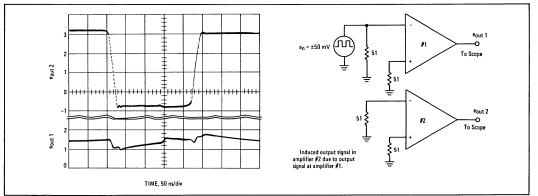
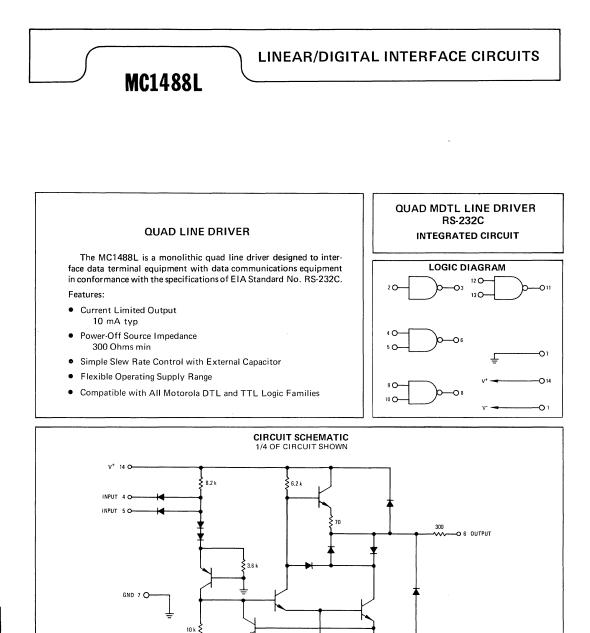
-

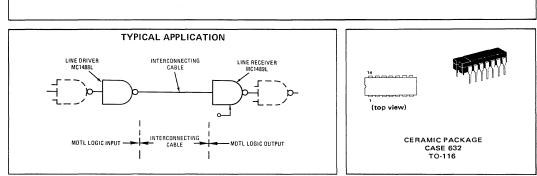
FIGURE 9 – RECOMMENDED SERIES RESISTANCE









FIGURE 11 – CROSSTALK[†]



[†]Worst case condition shown - no load.







**خ** ۲ k

70

See Packaging Information Section for outline dimensions.

V-1 C

# Maximum Rating (T_A = $+25^{\circ}$ C unless otherwise noted)

- -

-

Rating	Symbol	Value	Unit	
Power Supply Voltage	v ⁺ v ⁻	+15 -15	Vdc	
Input Signal Voltage	V _{in}	-15≤V _{in} ≤7.0	Vdc	
Output Signal Voltage	Vo	±15	Vdc	
Power Derating (Package Limitation, Ceramic Dual-In-Line Package) Derate above $T_A = +25^{\circ}C$	Р _D 1/0 ЈА	1000 6.7	mW mW/ ^o C	
Operating Temperature Range	TA	0 to +75	°C	
Storage Temperature Range	T _{stq}	-65 to +175	°C	

ELECTRICAL CHARACTERISTICS (V⁺ = +9.0  $\pm$  1% Vdc, V⁻ = -9.0  $\pm$  1% Vdc, T_A = 0 to +75^oC unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Forward Input Current (Vin = 0 Vdc)	1	١F	-	1.0	1.6	mA
Reverse Input Current (Vin = +5.0 Vdc)	1	I _R	-	-	10	μA
Output Voltage High (V _{in} = 0.8 Vdc, R _L = 3.0 kΩ, V ⁺ = +9.0 Vdc, V ⁻ = -9.0 Vdc)	2	VOH	+6.0	+7.0	-	Vdc
$\{V_{in} = 0.8 \text{ Vdc}, R_L = 3.0 \text{ k}\Omega, V^+ = +13.2 \text{ Vdc}, V^- = -13.2 \text{ Vdc}\}$			+9.0	+10.5	-	
Output Voltage Low (V _{in} = 1.9 Vdc, R _L = 3.0 k $\Omega$ , V ⁺ = +9.0 Vdc, V ⁻ = -9.0 Vdc) $\cdot$	2	VOL	-6.0	-7.0		Vdc
$(V_{in} = 1.9 \text{ Vdc}, R_{L} = 3.0 \text{ k}\Omega, V^+ = +13.2 \text{ Vdc}, V^- = -13.2 \text{ Vdc})$			-9.0	-10.5	-	
Positive Output Short-Circuit Current	3	Isc+	+6.0	+10	+12	mA
Negative Output Short-Circuit Current	3	Isc-	-6.0	-10	-12	mA
Output Resistance (V ⁺ = V ⁻ = 0, $ V_0  = \pm 2.0 V$ )	4	Ro	300	-	-	Ohm
Positive Supply Current ( $R_1 = \infty$ )	5	۱+				mA
(V _{in} = 1.9 Vdc, V ⁺ = +9.0 Vdc)		1 1	-	+15	+20	
(V _{in} = 0.8 Vdc, V ⁺ = +9.0 Vdc)			-	+4.5	+6.0	
(V _{in} = 1.9 Vdc, V ⁺ = +12 Vdc)			-	+19	+25	
(V _{in} = 0.8 Vdc, V ⁺ = +12 Vdc)			_	+5.5	+7.0	
$(V_{in} = 1.9 \text{ Vdc}, V^+ = +15 \text{ Vdc})$			_	-	+34	
$(V_{in} = 0.8 \text{ Vdc}, V^+ = +15 \text{ Vdc})$		[ [	-	· _	+12	
Negative Supply Current ( $R_L = \infty$ )	5	"۱				mA
(V _{in} = 1.9 Vdc, V ⁻ = -9.0 Vdc)			-	-13	-17	
(V _{in} = 0.8 Vdc, V ⁻ = -9.0 Vdc)	1		~	0	0	
(V _{in} = 1.9 Vdc, V ⁻ = -12 Vdc)			-	-18	-23	
$(V_{in} = 0.8 \text{ Vdc}, V^- = -12 \text{ Vdc})$			_	0	0	
(V _{in} = 1.9 Vdc, V ⁻ = -15 Vdc)			_	_	-34	
$(V_{in} = 0.8 \text{ Vdc}, V^- = -15 \text{ Vdc})$			-	-	-2.5	
Power Dissipation		PD				mW
(V ⁺ = 9.0 Vdc, V ⁻ = -9.0 Vdc)			-		333	
$(V^+ = 12 \text{ Vdc}, V^- = -12 \text{ Vdc})$			-	-	576	

SWITCHING CHARACTERISTICS (V+ = +9.0  $\pm$  1% Vdc, V^ = -9.0  $\pm$  1% Vdc, T  $_{A}$  = +25  $^{o}C$ )

Propagation Delay Time	(Z _L = 3.0 k and 15 pF)	6	tpd+	-	150	200	ns
Fall Time	(Z _L = 3.0 k and 15 pF)	6	tf		45	75	ns
Propagation Delay Time	(ZL = 3.0 k and 15 pF)	6	^t pd ⁻	-	65	120	ns
Rise Time	(ZL = 3.0 k and 15 pF)	6	tr	-	55	100	ns

#### CHARACTERISTIC DEFINITIONS

- --

~ ~

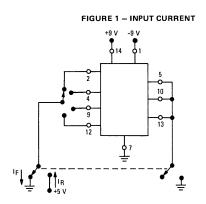



FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

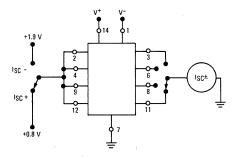
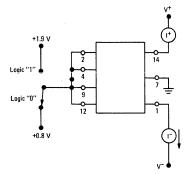




FIGURE 5 - POWER-SUPPLY CURRENTS



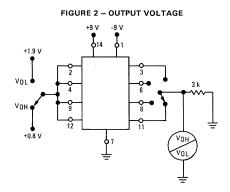
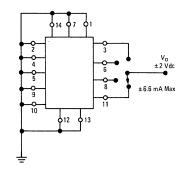
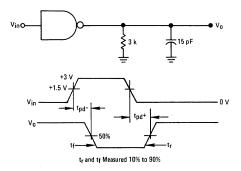
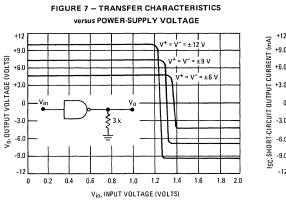






FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)









**TYPICAL CHARACTERISTICS** ( $T_A = +25^{\circ}C$  unless otherwise noted)

FIGURE 8 – SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE

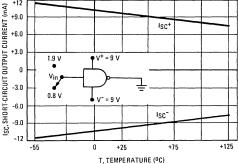



FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE

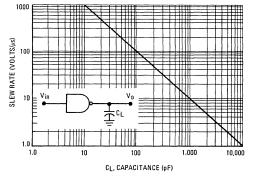



FIGURE 10 – OUTPUT VOLTAGE AND CURRENT-LIMITING CHARACTERISTICS

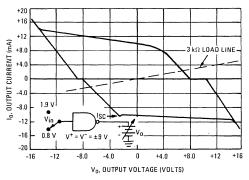
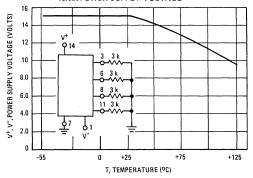
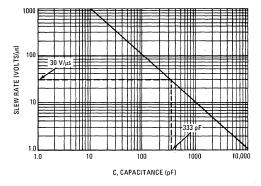




FIGURE 11 – MAXIMUM OPERATING TEMPERATURE versus POWER-SUPPLY VOLTAGE

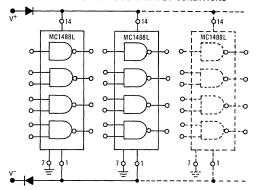



#### APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488L quad driver and its companion circuit, the MC1488L quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS23CC requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15volts in magnitude and are positive for a logic "0" and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488L meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488L is much too


FIGURE 12 – SLEW RATE versus CAPACITANCE FOR I_{SC} = 10 mA



fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship C =  $1_{SC} \times \Delta T / \Delta V$  from which Figure 12 is derived. Accordingly, a 330 pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15 volt, 500 mA source. The MC1488L is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e.,  $V^+ \ge 9.0$  V;  $V \le -9.0$  V). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488L effectively shorting the 300-ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors

FIGURE 13 – POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS



would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488L to withstand momentary shorts to the ±25-volt limits specified in the earlier Standard RS2328.) The addition of the diodes also permits the MC1488L to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

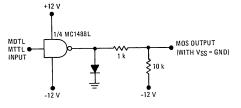
#### Other Applications

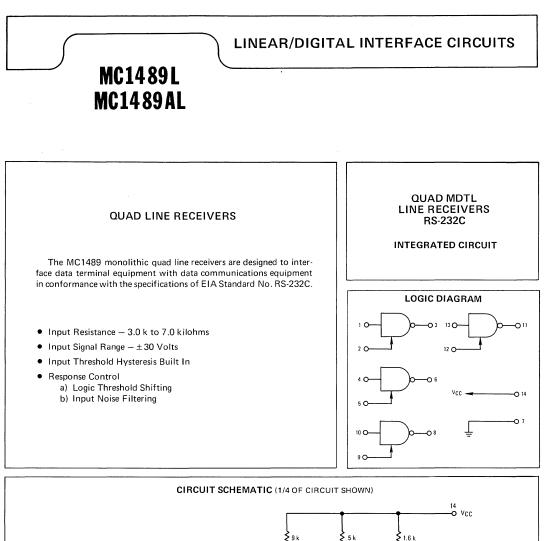
The MC1488L is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:

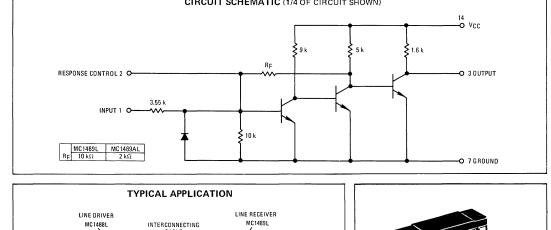
 Output Current Limiting – this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488L used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.

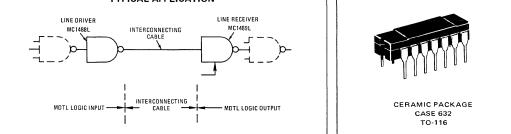
2. Power-Supply Range – as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately –2.5 volts to the minimum specified –15 volts. The MC1488L will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

1





FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR


_ _


MDTL 0 3 MRTL OUTPUT
 -0.7 V to +3.7 V ₹ +3.0 v ± MDTL 4 NAND 0 GATE 0 INPUT 5 6 MDTL OUTPUT -0.7 V to +5.7 V . * Ł MC1488L MDTL O-MHTL INPUT O-10 Ī 8 🖕 +5 V MHTL OUTPUT -0.7 V to 10 V • Ţ MDTL 0-MMOS INPUT 0-13 MOS OUTPUT
 -10 V to 0 V 11 ₩ 1 k { } 10 k Ť ¢٦ **¢**14 +12 V 긑 -12 V

7

# FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS







See Packaging Information Section for outline dimensions.

7

# MC1489L, MC1489AL (continued)

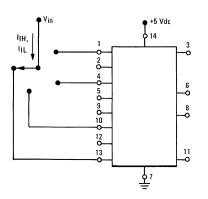
- -----

- -

### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	10	Vdc	
Input Signal Range	Vin	±30	Vdc	
Output Load Current	١L	20	mA	
Power Dissipation (Package Limitation, Ceramic Dual In-Line Package) Derate above $T_A = +25^{\circ}C$	Р _D 1/θ _{JA}	1000 6.7	mW mW/ ⁰ C	
Operating Temperature Range	TA	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +175	°C	

ELECTRICAL CHARACTERISTICS (Response control pin is open.)	$(V_{CC} = +5.0 \text{ Vdc} \pm 1\%)$	$T_A = 0$ to +75 ^o C unless otherwise noted)
------------------------------------------------------------	---------------------------------------	---------------------------------------------------------


Char	acteristics	Figure	Symbol	Min	Тур	Max	Unit
Positive Input Current	(V _{in} = +25 Vdc) (V _{in} = +3.0 Vdc)	1	Чн	3.6 0.43	-	8.3 —	mA
Negative Input Current	(V _{in} = -25 Vdc) (V _{in} = -3.0 Vdc)	1	ηΓ	-3.6 -0.43	-	-8.3 —	mA
Input Turn-On Threshold Voltage $(T_A = +25^{\circ}C, V_{OL} \le 0.45 V)$	MC1489L MC1489A L	2	VIH	1.0 1.75	 1.95	1.5 2.25	Vdc
Input Turn-Off Threshold Voltage (T _A = +25 ^o C, V _{OH} ≥ 2.5 V, I _L =	-0.5 mA) MC1489L MC1489A L	2	VIL	0.75 0.75	_ 0.8	1.25 1.25	Vdc
	V _{in} = 0.75 V, I _L = -0.5 mA) Input Open Circuit, I _L = -0.5 mA)	2	∨он	2.6 2.6	4.0 4.0	5.0 5.0	Vdc
Output Voltage Low (	V _{in} = 3.0 V, I _L = 10 mA)	2	VOL	-	0.2	0.45	Vdc
Output Short-Circuit Current		3	ISC	-	3.0	-	mA
Power Supply Current	(V _{in} = +5.0 Vdc)	4	I ⁺		20	26	mA
Power Dissipation	(V _{in} = +5.0 Vdc)	4	PD	-	100	130	mW

# SWITCHING CHARACTERISTICS (V_{CC} = 5.0 Vdc $\pm$ 1%, T_A = +25 ^{O}C)

Propagation Delay Time	(R _L = 3.9 kΩ)	5	tPLH	-	25	85	ns
Rise Time	(R _L = 3.9 kΩ)	5	tr	-	120	175	ns
Propagation Delay Time	(R _L = 390 Ω)	5	TPHL	-	25	50	ns
Fall Time	(R _L = 390 Ω)	5	t _f	-	10	20	ns

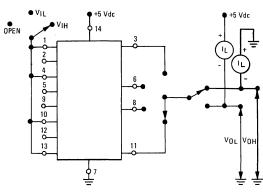

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

FIGURE 1 - INPUT CURRENT



**TEST CIRCUITS** 

FIGURE 2 – OUTPUT VOLTAGE and INPUT THRESHOLD VOLTAGE



_ _

-

FIGURE 3 - OUTPUT SHORT CIRCUIT CURRENT

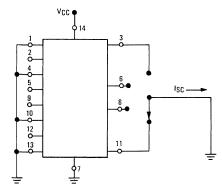
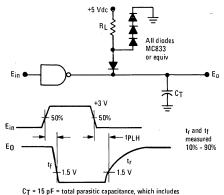




FIGURE 5 - SWITCHING RESPONSE



probe and wiring capacitances

FIGURE 4 - POWER-SUPPLY CURRENT

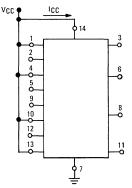
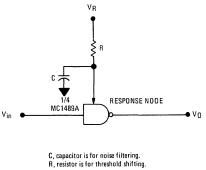
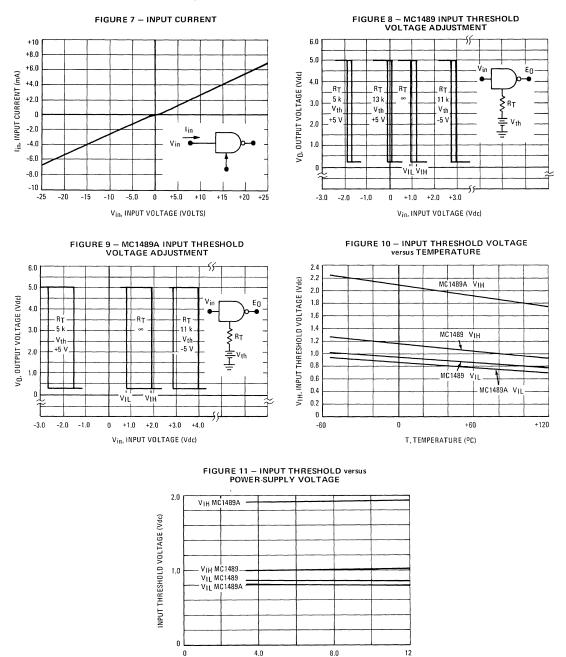





FIGURE 6 - RESPONSE CONTROL NODE



# MC1489L, MC1489AL (continued)



# TYPICAL CHARACTERISTICS $(V_{CC} = 5.0 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted})$

7-123

VCC, POWER SUPPLY VOLTAGE (Vdc)

#### APPLICATIONS INFORMATION

#### **General Information**

The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488L quad driver and its companion circuit, the MC1489L quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed herein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one VBE (Ref. Sect. 2.4).

The receiver shall detect a voltage between -3.0 and -25 volts as a logic "1" and inputs between +3.0 and +25 volts as a logic "0" (Ref. Sect. 2.3). On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or logic "1" (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or logic "1" input.

#### **Device Characteristics**

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise

rejection. The MC1489L input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV. The MC1489AL has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis.

Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power-supply. Figures 6, 8 and 9 illustrate the input threshold voltage shift possible through this technique.

This response node can also be used for the filtering of highfrequency, high-energy noise pulses. Figures 12 and 13 show typical noise-pulse rejection for external capacitors of various sizes.

These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 14)

The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 15 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement.

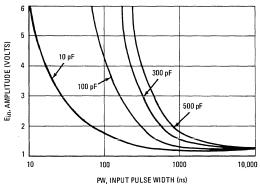



FIGURE 12 – TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

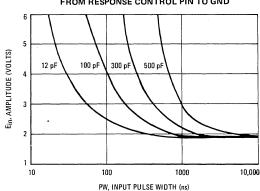



FIGURE 13 – TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

.

# MC1489L, MC1489AL (continued)

. .

-----

#### APPLICATIONS INFORMATION (continued)

FIGURE 14 - TYPICAL TRANSLATOR APPLICATION - MOS TO DTL OR TTL

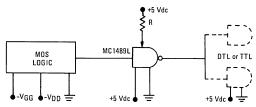
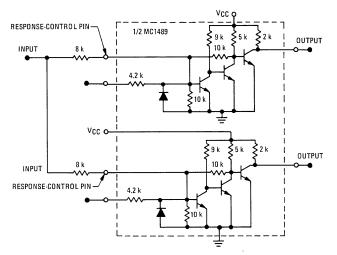
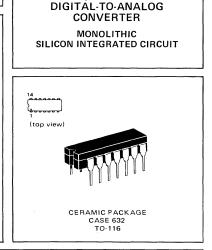




FIGURE 15 - TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET RS-232C

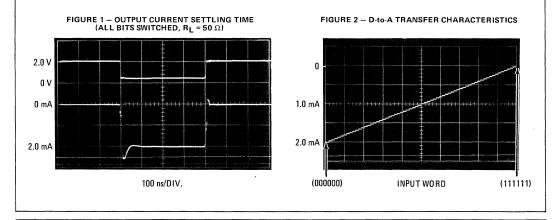


7

# **D-TO-A CONVERTER**


# MC1506L MC1406L

# Specifications and Applications Information


#### MONOLITHIC SIX BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

. . . designed for use where the output current is a linear product of a six-bit digital word and an analog input voltage.

- Digital Inputs are MDTL and MTTL Compatible
- Relative Accuracy ±0.78% Error maximum
- Low Power Dissipation 85 mW typical @ ±5.0 V
- Adjustable Output Current Scaling
- Fast Settling Time 150 ns typical
- Standard Supply Voltage: +5.0 V and -5.0 V to -15 V



SIX BIT, MULTIPLYING



#### TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Digital-to-Analog Meter Readout
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- Digital Varicap Tuning
- Video Systems

- Stepping Motor Drive
- CRT Character Generation
- Digital Addition and Subtraction
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Programmable Power Supplies
- Speech Encoding

See Packaging Information Section for outline dimensions.

(MC1506 - Page 1)

# MC1506L, MC1406L (continued)

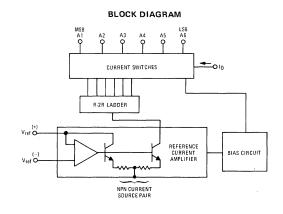
# MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

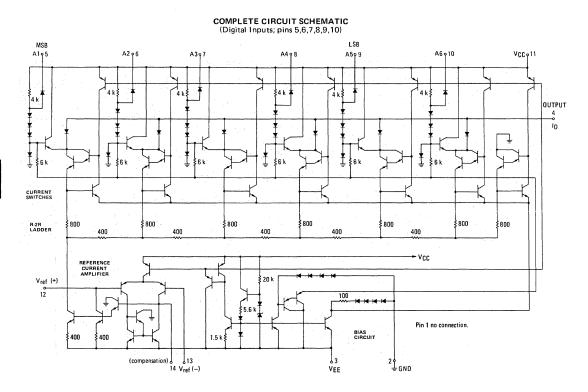
- -

. - - -

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+5.5 -16.5	Vdc
Digital Input Voltage		V5 thru V10	+8.0, V _{EE}	Vidc
Applied Output Voltage		v _o	±5.0	Vdc
Reference Current		112	5.0	mA
Reference Amplifier Inputs		V ₁₂ , V ₁₃	V _{CC} , V _{EE}	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ⁰ C		PD	1000 6.7	mW mW/ ^o C
Operating Temperature Range	MC1506L MC1406L	TA	-55 to +125 0 to +75	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

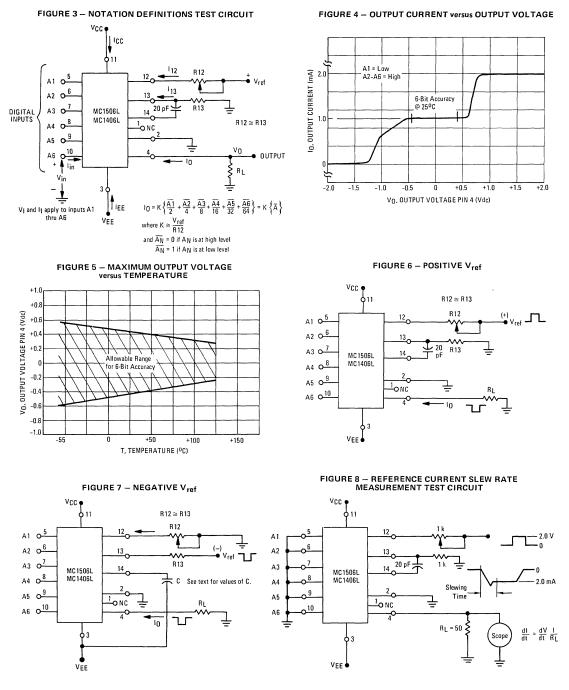
**ELECTRICAL CHARACTERISTICS** ( $V_{CC}$  = +5.0 Vdc,  $V_{EE}$  = -15 Vdc,  $\frac{V_{ref}}{R_{12}}$  = 2.0 mA,  $T_A$  =  $T_{low}^*$  to  $T_{high}^*$  unless otherwise noted. All digital inputs at low logic levels.)


Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale IO)	10	Er	-	-	±0.78	%
Settling Time (within 1/2 LSB [includes $t_d$ ] $T_A = +25^{\circ}C$ )	9	ts	-	150	300	ns
Propagation Delay Time $T_A = +25^{\circ}C$	9	^t РНL, tPLH	_	10	50	ns
Output Full Scale Current Drift		TCIO	-	80	-	PPM/ ^O C
Digital Input Logic Levels High Level, Logic "1" (MC1406L, MC1506L) Low Level, Logic "0" (MC1406L) (MC1506L)	3,14	ViH ViL	2.0 	_	 0.8 0.5	Vdc
Digital Input Current High Level, V _{IH} = 5.0 V Low Level, V _{IL} = 0.8 V	3,13	ін III		0 -0.7	+0.01	mA
Reference Input Bias Current (Pin 13)	3	I ₁₃	-	-0.002	-0.01	mA
Output Current Range VEE = -5.0 V VEE = -6.0 to -15 V	3	IOR	0	2.0 2.0	2.1 4.2	mA
Output Current $V_{ref} = 2.000 \text{ V}, \text{ R}_{12} = 1.000 \text{ k}\Omega$	3	10	1.9	1.97	2.1	mA
Output Current (all bits high)	3	I _O (min)	-	0	10	μА
Output Voltage Compliance ( $E_r \leq \pm 0.78\%$ at $T_A = +25^{\circ}C$ )	3,4,5	vo	_	_	±0.4	Vdc
Reference Current Slew Rate ( $T_A = +25^{\circ}C$ )	8,15	SR I _{ref}	_	2.0	_	mA/µs
Output Current Power Supply Sensitivity	10	PSRR ()	-	0.002	0.010	mA/V
Power Supply Current A1 thru A6; V _{IL} = 0.8 V A1 thru A6; V _{IL} = 2.0 V	3,11,12	ICC IEE	-	+7.2	+11 -11	mA
Power Dissipation (all bits high) V _{EE} = -5.0 Vdc V _{EE} = -15 Vdc		PD	-	85 175	120 240	mW


### MC1506L, MC1406L (continued)

The MC1506L consists of a reference current amplifier, and R-2R ladder, and six high-speed current switches. For many applications, only a reference resistor and a reference supply voltage need be added.

The switches are inverting in operation, therefore a low state at the input turns on the specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.


The R-2R ladder divides the reference amplifier current into binarily-related components which are fed to the switches. Note that there is always a remainder current that is equal to the least significant bit. This current is shunted to ground, and the maximum current is 63/64 of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.

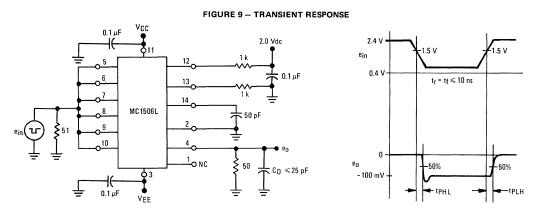




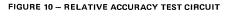
(MC1506 - Page 3)

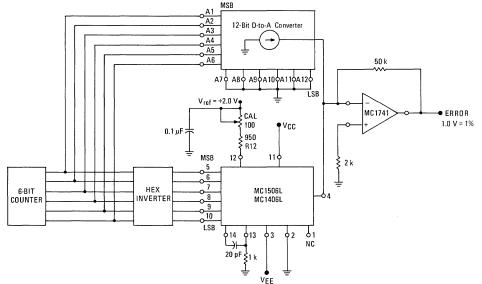
### 7-128

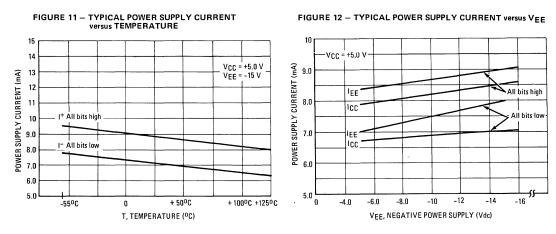



7

### TEST CIRCUITS AND TYPICAL CHARACTERISTICS


- -


(MC1506 - Page 4)

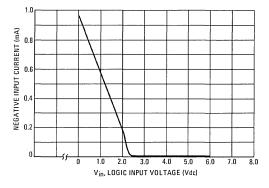

## MC1506L, MC1406L (continued)



### TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)








(MC1506 - Page 5)

### 7-130

#### **TYPICAL CHARACTERISTICS** (continued)

FIGURE 13 - LOGIC INPUT CURRENT versus INPUT VOLTAGE



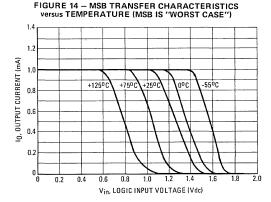
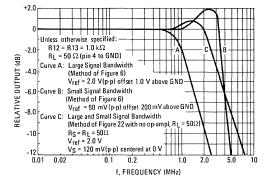




FIGURE 15 - REFERENCE INPUT FREQUENCY RESPONSE



### GENERAL INFORMATION

### **Output Current Range**

The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 volts, due to the increased voltage drop across the 400-ohm resistors in the reference current amplifier.

#### **Output Voltage Compliance**

The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter is near ground and a positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diode voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

For example, at  $+25^{\circ}$ C the allowable voltage compliance on pin 4 to maintain six-bit accuracy is  $\pm 0.4$  volt. With a full scale output current of 2.0 mA, the maximum resistor value that can be connected from pin 4 to ground is 200 ohms.

#### Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1506L is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current.

The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current source pair in the reference amplifier at the lowest possible voltage, matching and optimizing the output impedance of the pair.

The MC1506L/MC1406L is guaranteed accurate to within  $\pm 1/2$  LSB at  $\pm 25^{\circ}$ C at a full scale output current of 1.969 mA. This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA, with the loss of one LSB = 31  $\mu$ A that is the ladder remainder shunted to ground. The input current to pin 12 has a guaranteed current range value of between 1.9 to 2.1 mA, allowing

#### GENERAL INFORMATION (continued)

some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA. This is an optional step since the MC1506L accuracy is essentially the same between 1.5 to 2.5 mA. Then the MC1506L full scale current is trimmed to the same value with R12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 6-bit D-to-A converters may not be used to construct a 12-bit accurate D-to-A converter. 12-bit accuracy implies a total error of  $\pm 1/2$  of one part in 4096, or  $\pm 0.012\%$ , which is more accurate than the  $\pm 0.78\%$  specification provided by the MC1506L.

#### **Multiplying Accuracy**

The MC1506L may be used in the multiplying mode with six-bit accuracy when the reference current is varied over a range of 64:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of 6.0  $\mu$ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 60  $\mu$ A to 4.0 mA, the 6.0  $\mu$ A contributes an error of 0.1 LSB. This is well within six-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

#### Settling Time

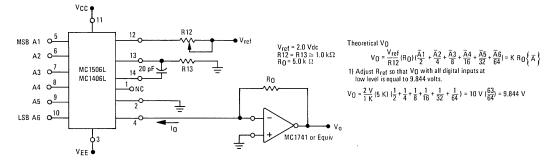
The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within  $\pm 1/2$  LSB, while the turn "off" is typically under 50 ns.

The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 150 ns may be realized.

#### **Reference Amplifier Drive and Compensation**

The reference amplifier provides a voltage at pin 12 for converting the reference voltage to a current, and a turnaround circuit or current mirror for feeding the ladder. The reference amplifier input current, 112, must always flow into pin 12 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6. The reference voltage source supplies the full current 112. Compensation is accomplished by Miller feedback from pin 14 to pin 13. This compensation method yields the best slew rate, typically better than 2.0 mA/ $\mu$ s, and is independent of the value of R12. R13 must be used to establish the proper impedance for compensation at pin 13. For bipolar reference signals, as in the multiplying mode, R13 can be tied to a negative voltage corresponding to the minimum input level. Another method is shown in Figure 22.

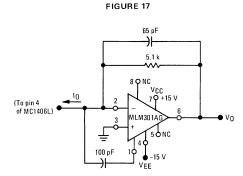

It is possible to eliminate R13 with only a small sacrifice in accuracy and temperature drift. For instance when high-speed operation is not needed, a capacitor is connected from pin 14 to VEE. The capacitor value must be increased when R12 is made larger to maintain a proper phase margin. For R12 values of 1.0, 2.5, and 5.0 kilohms, minimum capacitor values are 50, 125, and 250 pF.

Connections for a negative reference voltage are shown in Figure 7. A high input impedance is the advantage of this method, but Miller feedback cannot be used because it feeds the input signal around the PNP directly into the high impedance node, causing slewing problems and high frequency peaking. Compensation involves a capacitor to VEE on pin 14, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 V above VEE. Bipolar input signals may be handled by connecting R12 to a positive reference voltage equal to the peak positive input level at pin 13.

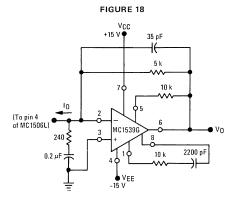
When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, R12 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1  $\mu$ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 12 and ground.

If pin 12 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, thus decreasing the overall bandwidth.

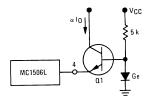
### MC1506L, MC1406L (continued)




### APPLICATIONS INFORMATION FIGURE 16 – OUTPUT CURRENT VOLTAGE CONVERSION


Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.


The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0  $\mu$ s.



An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0  $\mu$ s. See Motorola Application Note AN-459 for more details on this concept.



The positive voltage range may be extended by cascoding the output with a high beta common base transistor, Q1, as shown.

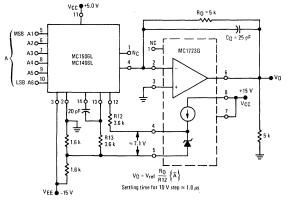


The output voltage range for this circuit is 0 volts to BV_{CBO} of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.

(MC1506 - Page 8)

#### APPLICATIONS INFORMATION (continued)

#### **Combined Output Amplifier and Voltage Reference**

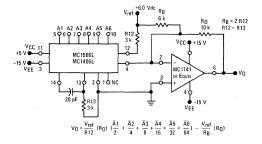

For many of its applications the MC1506L requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive, with the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since  $\pm 15$  V and  $\pm 5.0$  V are normally available in a combination digital-to-analog system, only the  $\pm 5.0$  V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from  $\pm 2.0$  to  $\pm 8.0$  volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing  $R_O$  and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C_O may be decreased to maintain the same  $R_OC_O$  product if maximum speed is desired.

#### Programmable Power Supply

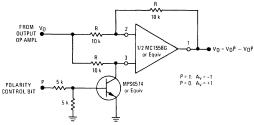
The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1-volt increments,  $\pm 0.05$  volt; or 0 to 31.5 volts in 0.5-volt increments,  $\pm 0.25$  volt.




#### FIGURE 19 – COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

#### Bipolar or Negative Output Voltage

The circuit of Figure 20 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6-bit "1's" complement offset binary. V_{ref} may be used as this auxiliary reference. Note that R_O has been doubled to 10 kilohms because of the anticipated 20 V (p-p) output range.


#### FIGURE 20 – BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT



### Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6-bits magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of  $\pm 1.0$  and  $\pm 1.0$ . Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.





(MC1506 - Page 9)

### APPLICATIONS INFORMATION (continued)

#### Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1506L can be applied as a digital attenuator. See Figure 22. One advantage of this technique is that if  $R_S = 50$  ohms, no compensation capacitor is needed and a wide large signal bandwidth is achieved. The small and large signal bandwidths are now identical and are shown in Figure 15. The best frequency response is obtained by not allowing  $I_{12}$  to reach zero. R_S can be set for a  $\pm 1.0$  mA variation in relation to  $I_{12}$ .  $I_{12}$  can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word that makes ac coupling necessary.

FIGURE 24 – DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

14

102

See text

101

14 -0

(cr

 $\left\{\bar{A}\right\} = \frac{V_{ref2}}{R122} \left\{\bar{B}\right\}$ 

611

MC 1506L MC 1406L

708090

910

5969798999

MC 1506

MC1406

۱¢

 $I_0 = I_{01} - I_{02} = \frac{V_{ref1}}{R_{121}}$ 

 $V_{0} = \frac{V_{ref1}}{R12_{1}} R_{0} \left\{ \left\{ \widetilde{A} \right\} - \left\{ \overline{B} \right\} \right\}$ 

**Digital Subtraction** 

let  $\frac{V_{ref1}}{R12_1} = \frac{V_{ref2}}{R12_2}$ 

R122 1

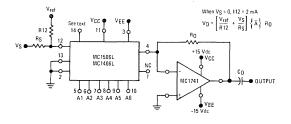
B121 12

R131 13

R132

/ref2

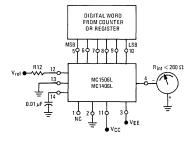
102 = - 18 118 + 10 = 101


IB

٩B

10

Rr

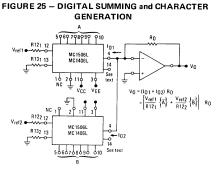

#### FIGURE 22 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT



#### Panel Meter Readout

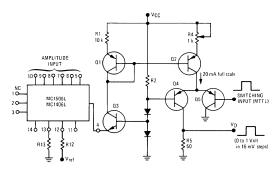
The MC1506L can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R12 or V_{ref}.

FIGURE 23 - PANEL METER READOUT CIRCUIT



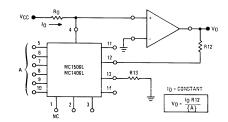

Programmable Amplifier: Connect digital inputs to A = B  $v_0 = \left\{\bar{A}_i^{T} \left| \frac{V_{eff} 2}{R_{12}} - \frac{V_{eff} 2}{R_{12}} \right| \right\}$ This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R12₁ and R12₂ or R13₁ and R13₂. V_O will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R12₁ and R12₂ to a positive reference higher than the most positive input, and drive R13₁ and R13₂. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.


(MC1506 - Page 10)

### MC1506L, MC1406L (continued)



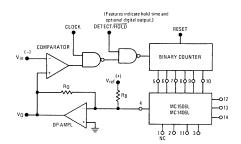

In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12-bit D-to-A converter (see Accuracy Section).

#### FIGURE 27 - PROGRAMMABLE PULSE GENERATOR



Fast rise and fall times require the use of high speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input.

### FIGURE 29 - ANALOG DIVISION BY DIGITAL WORD




This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I_O can be set at  $62 \ \mu$ A so that I₁₂ will have a maximum value of 3.938 mA for a digital bit input configuration of 000001.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

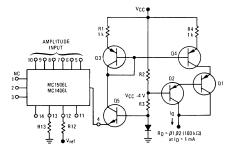
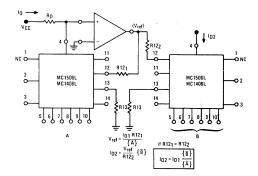

### APPLICATIONS INFORMATION (continued)

FIGURE 26 – PEAK DETECTING SAMPLE and HOLD (Features indefinite hold time and optional digital output.)

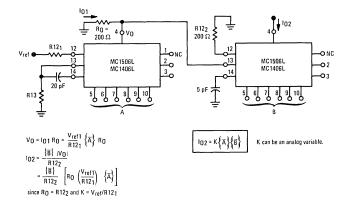



Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output amplifier for unipolar operation.

#### FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE



Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

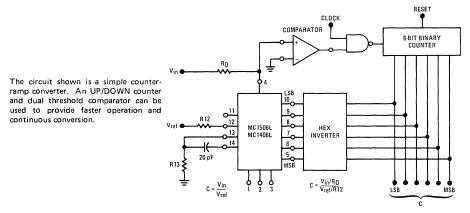

#### FIGURE 30 – ANALOG QUOTIENT OF TWO DIGITAL WORDS



(MC1506 - Page 11)

7-136

### APPLICATIONS INFORMATION (continued)

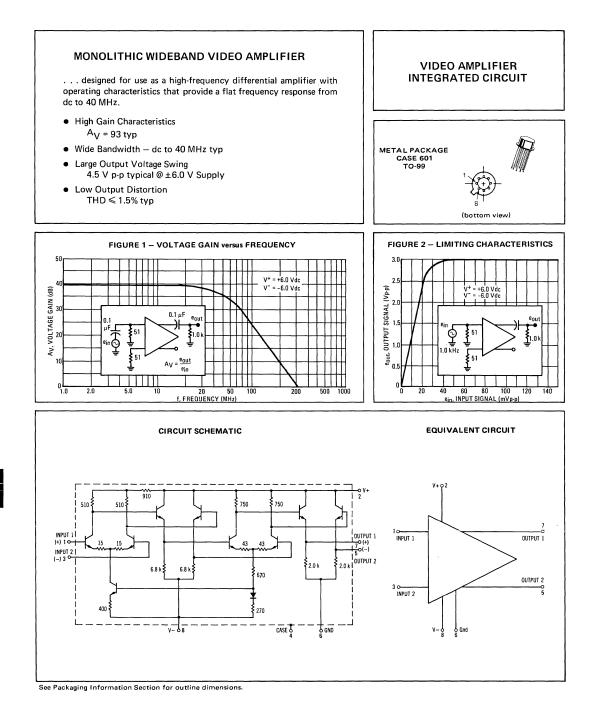



### FIGURE 31 – ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)

#### Two Digit BCD Conversion

MC1506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output îs desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten.






(MC1506 - Page 12)

7-137

### **HIGH-FREQUENCY CIRCUITS**

# MC1510G MC1410G



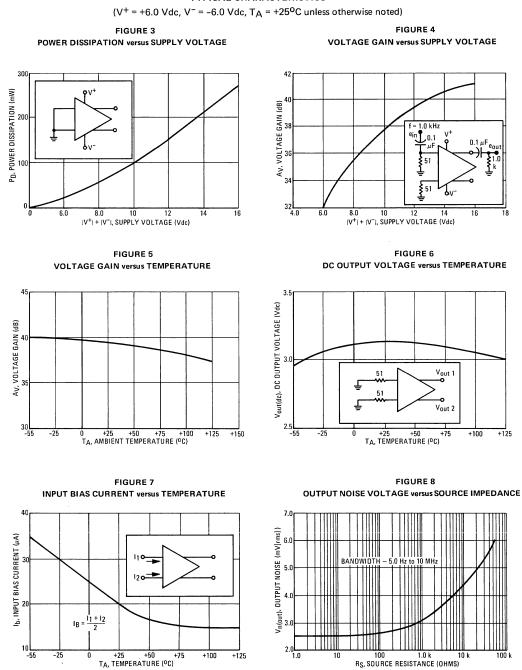
7

÷ •

- -

### MC1510G, MC1410G (continued)

### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	+8.0	Vdc
	v-	-8.0	Vdc
Differential Input Signal	V _{in}	±5.0	Volts
Common Mode Input Swing	CMV _{in}	±6.0	Volts
Load Current	١L	10	mA
Output Short Circuit Duration	t _s	5.0	s
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25 ⁰ C	PD	680 4.6	mW mW/ ⁰ C
Operating Temperature Range MC1410 MC1510	Τ _Α	0 to +75 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

## ELECTRICAL CHARACTERISTICS (V⁺ = +6 Vdc, V⁻ = -6 Vdc, R_L = 5.0 kohms, T_A = +25^oC unless otherwise noted)

		MC1510				MC1410			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Single Ended Voltage Gain	A _{V(se)}	75	93	110	60	90	120	V/V	
Output Impedance (f = 20 kHz)	Z _{out}	_	35	_	_	35	_	Ω	
Input Impedance (f = 20 kHz)	Z _{in}		6.0	_	_	6.0	_	kΩ	
Bandwidth (-3.0 dB)	BW	_	40	-		40	-	MHz	
Output Voltage Swing ( f = 100 kHz)	Vout	_	4.5		_	4.5	_	Vp-p	
Single Ended Output Distortion (e _{in} < 0.2% Distortion)	THD	· -	1.5	5.0	_	2.0		%	
Input Common Mode Voltage Swing	CMV _{in}	-	±1.0	-	-	±1.0	-	V _{peak}	
Common Mode Voltage Gain (e _{in} = 0.3 V rms, f = 100 kHz) Common Mode Rejection Ratio	AVCM CM _{rej}	-30	-45 85	-	-20	-40 85		dB	
Input Bias Current	1 _b		. 00	_		65		μΑ	
$\left(I_{b} = \frac{I_{1} + I_{2}}{2}\right)$ Differential Output = 0		-	20	80	-	50	100	<i>#</i> ^	
Input Offset Current (I _{io} = I ₁ - I ₂ )	I _{io}	·	3.0	20	-	5.0	30	μA	
Output Offset Voltage Differential Mode (V _{in} = 0) Common Mode (Differential Output = 0)	V _{out} (DM)	2.6	0.5 3.1	1.3	-	0.5	2.0	Vdc	
Step Response	V _{out} (CM)	2.0	3.1	3.5	2.0	3.0	4.0		
	t _f tpd tr		9.0 9.0 9.0	12  12	-	10 9.0 10	15  15	ns	
Average Temperature Coefficient of Input Offset Voltage	TCVio			· · ·				μV/ ⁰ C	
$(R_S = 50 \ \Omega, T_A = T_{low}^* \text{ to } T_{high}^{**})$ $(R_S \le 10 \text{ k } \Omega, T_A = T_{low} \text{ to } T_{high})$			±3.0 ±6.0		-	±3.0 ±6.0			
DC Power Dissipation (Power Supply = ±6.0 V)	PD	-	150	220	_	165	220	mW	
Equivalent Average Input Noise Voltage (f = 10Hz to 500 kHz) (R _S = 0)	Vn	_	5.0			5.0	.—	μV	

*T_{low} = 0^oC for MC1410 or -55^oC for MC1510 **T_{high} = +75⁰C for MC1410 or +125⁰C for MC1510

### MC1510G, MC1410G (continued)



TYPICAL CHARACTERISTICS

- -

~ •

7-140

+125

100 1.0 k 1 RS, SOURCE RESISTANCE (OHMS)

10

100 k

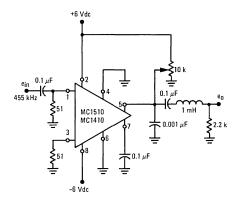
10 k

+100

+75

-25

### MC1510G, MC1410G (continued)


÷ -

- -

### TYPICAL APPLICATIONS

### FIGURE 9 ENVELOPE DETECTOR

FIGURE 10 TWO STAGE VIDEO AMPLIFIER WITH ADJUSTABLE GAIN



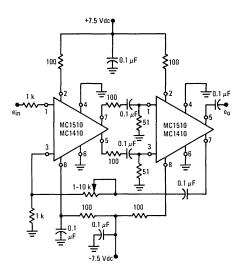
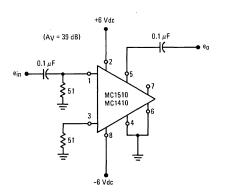




FIGURE 11 SINGLE STAGE WIDEBAND AMPLIFIER

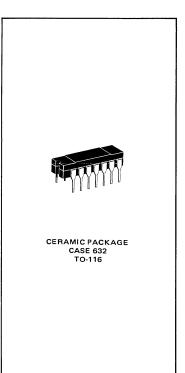


**FIGURE 12** WEIN BRIDGE OSCILLATOR V⁺ = +6 Vdc  $f = 10 \text{ kHz to } 10 \text{ MHz} \cong 1/2 \pi \text{RC}$ С ş e_o R € 0.1 µF ₹ L L 101 С オ MC1510 MC1410 3 0.1 μF [ }3.3 k **E** 80-480 pF 7 V- = -6 Vdc

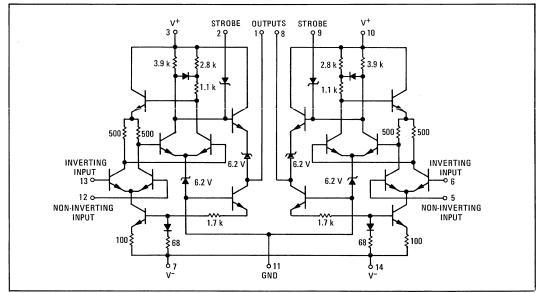
## MC1514L

### DUAL DIFFERENTIAL COMPARATOR

### MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR


 $\ldots$  , designed for use in level detection, low-level sensing, and memory applications.

### **Typical Amplifier Features:**


- Two Separate Outputs
- Strobe Capability
- High Output Sink Current 2.8 mA min Each Comparator
- Differential Input Characteristics: Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 μV/^OC
- Short Propagation Delay Time 40 ns
- Output Compatible with All Saturating Logic Forms
   Vout = +3.2 V to -0.5 V typical

### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

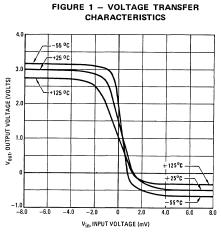
Rating	Symbol	Value	Unit
Power Supply Voltage	v+ v-	+14 -7.0	Vdc Vdc
Differential Input Signal	v _{in}	±5.0	Volts
Common Mode Input Swing	CMVin	±7.0	Volts
Peak Load Current	IL	10	mA
Power Dissipation (package limitation) Ceramic Dual-In-Line Package Derate above $T_A = +25$ °C	PD	1000 6. 7	m₩ mW/°C
Operating Temperature Range	TA	-55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°C



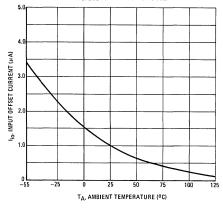
### **CIRCUIT SCHEMATIC**

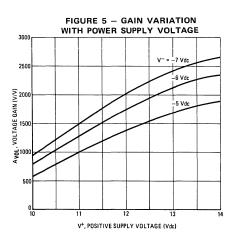


See Packaging Information Section for outline dimensions.


### MC1514L (continued)

#### Characteristic Definitions (linear operation) Characteristic Symbol Min Тур Max Unit Input Offset Voltage $V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ $V_{out} = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ $V_{out} = 1.0^{\circ}\text{Vdc}, T_A = +125^{\circ}\text{C}$ v_{io} mVdc 1.0 2.0 . --3.0 -**o** V.... 3.0 -- $R_{S}\leq 200\,\Omega$ тс_{Vio} Temperature Coefficient of Input Offset Voltage μV/°C 3.0 --Input Offset Current $V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ $V_{out} = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ I_{io} μAdc -1.0 3.0 7.0 -- $V_{out} = 1.0 \text{ Vdc}, T_{A} = +125^{\circ}\text{C}$ _ _ 3.0 ο ۷.... Input Bias Current $V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ $V_{out} = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ $V_{out} = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}$ Ъ μAdc _ 12 20 $|_{i_0} = |_1 - |_2$ --45 $I_b = \frac{I_1 + I_2}{2}$ -20 -Open Loop Voltage Gain $T_A = 25^{\circ}C$ $T_A = -55 \text{ to } +125^{\circ}C$ $A_{VOL} = \frac{e_{out}}{e_{in}}$ v/v ^Avol 1250 1700 _ Rout C Cout 1000 . -R _{out} **Output Resistance** 200 -ohms Differential Voltage Range v_{in} ±5.0 Vdc --Positive Output Voltage $V_{in} \ge 5.0 \text{ mV}, \ 0 \le I_0 \le 5.0 \text{ mA}$ 3.2 Vdc v_{он} 2.5 4.0 Negative Output Voltage -1.0 -0.5 0 Vdc V_{OL} $V_{in} \ge -5.0 \text{ mV}$ Output Sink Current $V_{in} \ge -5.0 \text{ mV}, V_{out} \ge 0,$ $T_A = -55 \text{ to } +125^{\circ}\text{C}$ mAdc I_s -2.8 3.4 Input Common Mode Range CMV ±5.0 -Volts $V^{-} = -7.0 V dc$ см_{rej} Common Mode Rejection Ratio V⁻ = -7.0 Vdc, $R_{S} \leq 200\Omega$ 80 100 dB O e...t Propagation Delay Time 40 ^tpd ns For Positive and Negative Going Input Pulse 1.4 V I t_R-100 mV $V_b = 95 \text{ mV} - V_{io}$ °¦₁₀+ Total Power Supply Current -12.8 $^{I}D^{+}$ 18 mAdc V_{out} ≦ 0 Vdc -11 14 Vin C LD-Total Power Consumption **ן ו**₀--230 300 mW


### **ELECTRICAL CHARACTERISTICS** ( $V^+ = +12$ Vdc, $V^- = -6$ Vdc, $T_A = 25^{\circ}C$ unless otherwise noted) (Each Comparator)


- -

- -



#### FIGURE 3 – INPUT OFFSET CURRENT versus TEMPERATURE





### TYPICAL CHARACTERISTICS (Each Comparator)

FIGURE 2 – INPUT OFFSET VOLTAGE versus TEMPERATURE

- -

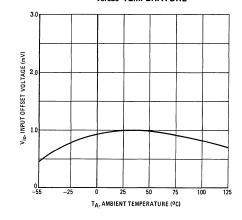
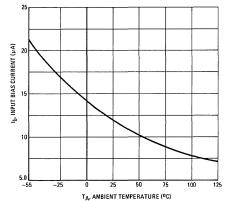
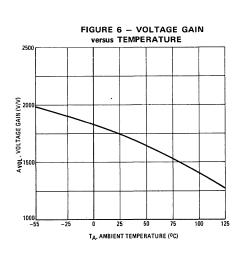
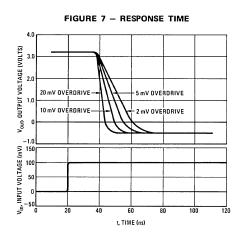






FIGURE 4 - INPUT BIAS CURRENT versus TEMPERATURE





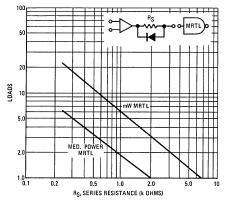
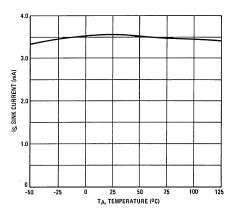
### MC1514L (continued)



-

. .

FIGURE 9 – RECOMMENDED SERIES RESISTANCE versus MRTL LOADS

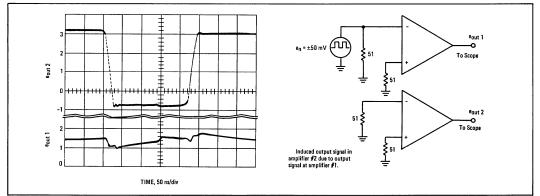
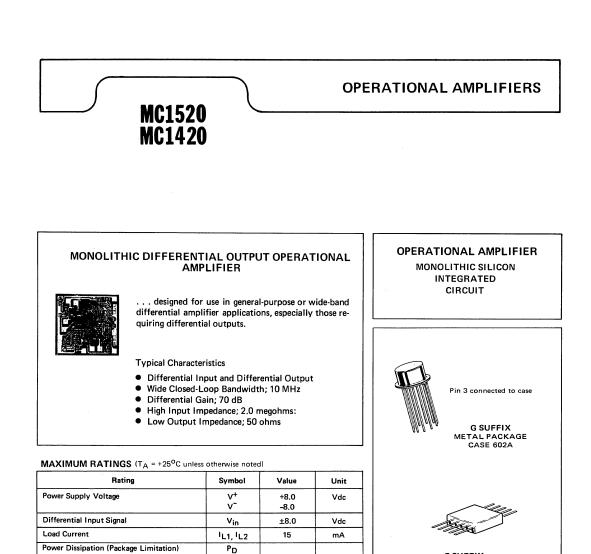
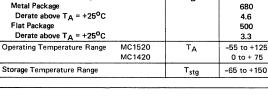


FIGURE 8 – POWER DISSIPATION versus TEMPERATURE

FIGURE 10 - SINK CURRENT versus TEMPERATURE




7

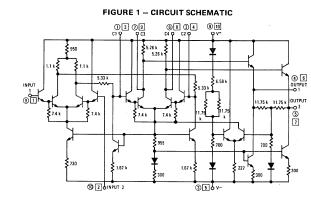
FIGURE 11 - CROSSTALK[†]



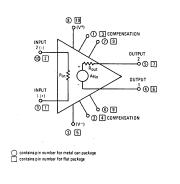

[†]Worst case condition shown - no load.



	4.6	mW/ ^o C
	500	mW
	3.3	mW/ ⁰ C
TA	-55 to +125	°C
	0 to + 75	







### CIRCUIT SCHEMATICS

mW

°C



### FIGURE 2 - EQUIVALENT CIRCUIT



See Packaging Information Section for outline dimensions.

### SINGLE-ENDED ELECTRICAL CHARACTERISTICS

 $(V^+ = +6.0 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted})$ 

÷ -

- -

-

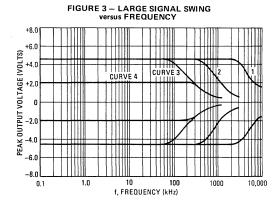
	···	MC1520				L		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain (T _{Iow} ② ≦ T _A ≦T _{high} ②)	AVOL	1000 60	1500 64	_	750 —	1500 64	-	V/V dB
Output Impedance (f = 20 Hz)	Zout	_	50	100	_	50		ohms
Input Impedance (f = 20 Hz)	Z _{in}	0.5	2.0		_	2.0	_	megohms
Output Voltage Swing $(R_{L} = 7.0 k\Omega[Figure 8])$	Vo	±3.5	±4.0	-	±3.0	±4.0	-	V _{peak}
Input Common-Mode Voltage Swing	CMVin	±2.0	±3.0			±3.0		Vpeak
Common-Mode Rejection Ratio	CM _{rej}	75	90		60	90	_	dB
Input Bias Current	<u> і_b</u>							μΑ
$\left(\left[I_{b}=\frac{I_{1}+I_{2}}{2}\right], T_{A}=+25^{o}C\right)$		-	0.8	2.0	-	2.0	40	
Input Offset Current $(I_{10} = I_1 - I_2)$ $(I_{10} = I_1 - I_2, T_A = T_{10W})$ $(I_{10} = I_1 - I_2, T_A = T_{high})$	liol	-	30 	100 200 200		30  -	200  -	nA
Input Offset Voltage $(T_A = +25^{\circ}C)$	V _{io}		5.0	10	_	5.0	15	mV
$ \begin{array}{l} \mbox{Step Response} \\ \mbox{Gain = 1.0, 10% Overshoot} \\ \mbox{R}_1 = 10 \ \mbox{k}\Omega \\ \mbox{R}_2 = 10 \ \mbox{k}\Omega \\ \mbox{R}_3 = 5.0 \ \mbox{k}\Omega \\ \mbox{C}_s = 39 \ \mbox{pF} \end{array} $	^t f ^t pd dV _{out} /dt ①		80 70 5.0			80 70 5.0		ns ns V/µs
$ \begin{cases} Gain = 10, 10\% \text{ Overshoot} \\ R_1 = 10  k\Omega \\ R_2 = 100  k\Omega \\ R_3 = 10  k\Omega \\ C_s = 10  pF \end{cases} $	t _f t _{pd} dV _{out} /dt ①	-	80 70 15	-		80 70 15		ns ns V/µs
$ \begin{cases} Gain = 100, No \ Overshoot \\ R_1 = 1.0 \ k\Omega \\ R_2 = 100 \ k\Omega \\ R_3 = 1.0 \ k\Omega \\ C_s = 1.0 \ pF \end{cases} $	t _f t _{pd} dV _{out} /dt ①		80 70 30			80 70 30		ns ns V/μs
$ \begin{cases} \text{Open Loop, No Overshoot} \\ \text{R}_1 = 50 \ \Omega \\ \text{R}_2 = \infty \\ \text{R}_3 = 50 \ \Omega \\ \text{C}_s = 0 \end{cases} $	t _f ^t pd dV _{out} /dt ①		180 70 35			180 70 35		ns ns V/μs
Bandwidth: (Open Loop[Figure 4]) (Closed Loop[Unity Gain]) (Figure 5)	_		2.0 10	- -		2.0 10	-	MHz
Input Noise Voltage (Open Loop) (5.0 Hz - 5.0 MHz)	V _{n(in)}		11	15	-	11	_	μV(rms)
Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \ \Omega, T_A = T_{Iow} \text{ to } T_{high})$	TCV _{io}		2.0			2.0		μV/ ⁰ C
DC Power Dissipation (V _O = 0)	PD	_	120	240	-	120	240	mW
Power Supply Sensitivity (V [±] Constant)	S±		250	450	-	250		μV/V

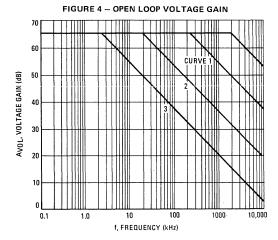
1 dV_{out}/dt = Slew Rate

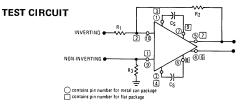
② T_{Iow} = 0^oC for MC1420, -55^oC for MC1520

T_{high} = +75⁰C for MC1420 +125⁰C for MC1520

### MC1520, MC1420 (continued)

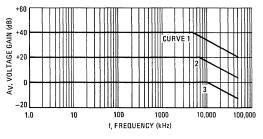

### DIFFERENTIAL ELECTRICAL CHARACTERISTICS


 $(V^+ = +6.0 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted})$ 


		the second	MC1520			MC1420		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Gain (Open Loop)	AVOL	2000 66	3000 70		1500 64	3000 70	-	V/V dB
Input Impedance (f = 20 Hz)	Z _{in}	0.5	2.0		_	2.0		megohms
Output Impedance (f = 20 Hz)	Z _{out}		100	200	_	100	_	ohms
Common-Mode Output Voltage	V ₀ (СМ)	-0.5	0	+0.5		0	_	Vdc
Output Voltage Swing (R _L = 7.0 kΩ)	Vo	±7.0	±8.0		±6.0	±8.0		V _{peak}

### TYPICAL CHARACTERISTICS

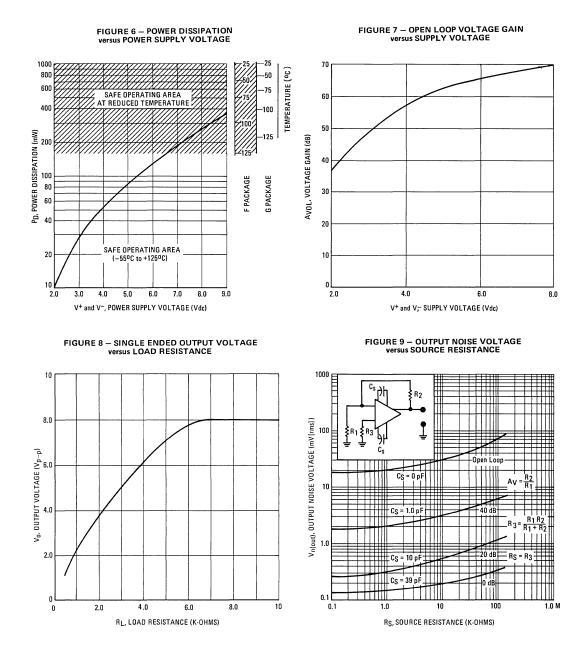
(V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc,  $T_A$  = +25^oC, unless otherwise noted.)








	0.000	URVE MODE	VOLTAGE	т	NOISE			
NO.	NO.	MODE	GAIN	R1 (Ω)	R ₂ (Ω)	R3 (Ω)	CS (pF)	OUTPUT mV (rms)
	1	INVERTING	100	1.0 k	100 k	1.0 k	1.0	2.0
3	2	INVERTING	10	10 k	100 k	10 k	10	0.55
	3	INVERTING	1.0	10 k	10 k	5.0 k	39	0.17
	4	NON-INVERTING	1.0	- 00	10 k	10 k	39	0.17
	1	NON-INVERTING	AVOL	0	8	50	1.0	1.0
4	2	NON-INVERTING	AVOL	0	- 00	50	10	2.0
	3	NON-INVERTING	AVOL	0	~	50	39	5.2
	1	NON-INVERTING	100	100	10 k	100	1.0	2.0
5	2	NON-INVERTING	10	1.0 k	9.1 k	910	10	0.55
	3	NON-INVERTING	1.0	~~	10 k	10 k	39	0.17


FIGURE 5 – CLOSED LOOP VOLTAGE GAIN versus FREQUENCY



### MC1520, MC1420 (continued)

- -

- -



### TYPICAL OUTPUT CHARACTERISTICS (V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc, unless otherwise noted.)

7-149

,

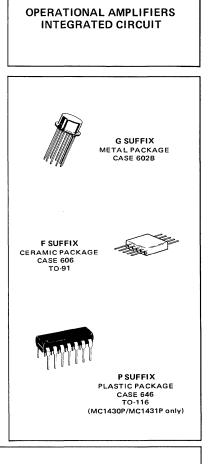
7

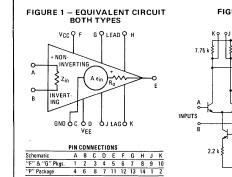
### **OPERATIONAL AMPLIFIERS**

# MC1530, MC1430 MC1531, MC1431

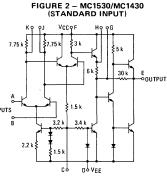
### MONOLITHIC OPERATIONAL AMPLIFIER

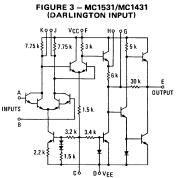
. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. The MC1531 (MC1431) is provided with Darlington


inputs to increase input impedance; otherwise the MC1531 (MC1431) circuit is identical with the MC1530 (MC1430) circuit.


- High Open Loop Voltage Gain -- 4500 min (MC1530) -- 2500 min (MC1531)
- High Input Impedance 10 Kilohms min (MC1530) – 1.0 Megohm min (MC1531)
- Low Output Impedance 50 Ohms max
- High Slew Rate 6.0 V/µs typ @ Avs = 10
- High Open Loop Bandwidth 2.0 MHz typ (MC1530) 0.4 MHz typ (MC1531)

**MAXIMUM RATINGS** ( $T_A = 25^{\circ}C$  unless otherwsie noted)


(Fig


Rating	Symbol	Value	Unit
Power Supply Voltage MC1530, MC1531 MC1430, MC1431	V _{CC} , V _{EE} V _{CC} , V _{EE}	+9.0, -9.0 +8.0, -8.0	Vdc
Differential Input Signal	VID(max)	<u>+</u> 5.0	Volts
Load Current	١Ľ	10	mA
Power Dissipation (Package Limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Dual In-Line Plastic Package MC1430, MC1431 Derate above $+25^{\circ}C$	PD	680 4.6 500 3.3 400 3.3	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1530, MC1531 MC1430, MC1431	TA	-55 to +125 0 to +75	°C
Storage Temperature Range Metal and Ceramic Package Plastic Package MC1430, MC1431	T _{stg}	-65 to +175 -55 to +150	°C





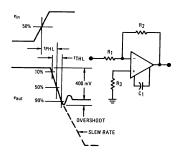
#### CIRCUIT SCHEMATICS





See Packaging Information Section for outline dimensions.

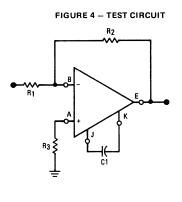
## MC1530, MC1531, MC1430, MC1431 (continued)


-

			<b>`</b>					
			MC1530			MC1430		
Characteristic	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	ПВ	-	3.0	10	-	5.0	15	μAdc
Input Offset Current	10		0.2	2.0	-	0.4	4.0	μAdc
Input Offset Voltage $T_A = +25^{\circ}C$ $T_A = T_{Iow}$ $T_A = T_{high}$	VIO		1.0  -	5.0 6.0 6.0	-	2.0  	10 11 12	mVdc
Single-Ended Input Impedance (Open-Loop, f = 30 Hz)	zis	10	20		5.0	15	-	kΩ
Common-Mode Input Voltage Swing	VICR	<u>+</u> 2.0	± 2.7	-	± 2.0	± 2.5	-	V _{pk}
Equivalent Input Noise Voltage (Open-Loop, R _s = 50 ohms, BW = 5.0 MHz)	e _N		10	_	_	10	_	μV(rms)
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR	70	75	-	65	75		dB
Open-Loop Voltage Gain, T _A = +25 ^o C T _A = T _{1ow} to Thigh	A _{vol}		 5000	 12,500	3000 	5000 —	-	V/V
Bandwidth (Open-Loop, -3.0 dB, no roll-off capacitance)	BW	1.0	2.0	-	1.0	2.0	-	MHz
Output Impedance (f = 100 Hz)	zo	-	25	50	-	25	50	ohms
Output Voltage Swing (R _L = 1.0 k ohms)	٧ ₀	± 4.5	± 5.2	-	± 4.0	± 5.0	-	V _{pk}
Power Supply Sensitivity ( $R_s \leq 10 \text{ k} \Omega$ )	PSRR		100	-	-	100	-	μV/V
Power Supply Current	⁻ ם ^ו , ⁺ ם		9.2	12.5	-	9.2	12.5	mAdc
DC Quiescent Power Dissipation ( $V_0 = 0$ )	PD	-	110	150	-	110	150	mW
	•		-			<b>-</b>		

### **ELECTRICAL CHARACTERISTICS** ( $V_{CC}$ = +6.0 Vdc, $V_{EE}$ = -6.0 Vdc, $T_A$ = +25°C unless otherwise noted)

ELECTRICAL CHARACTERISTICS (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, T_A = +25^oC unless otherwise noted)


			MC1531			MC1431		
Characteristic	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	^I IВ	-	0.025	0.150	-	0.1	0.3	μAdc
Input Offset Current	110		0.003	0.025	-	0.01	0.1	μAdc
Input Offset Voltage $\begin{array}{c} T_A = +25^0 C \\ T_A = T_{low} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ T_A = T_{high} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{array}$	V _{io}	-	3.0  	10  		5.0  	15 18 16.5	mVdc
Single-Ended Input Impedance (Open-Loop, f = 30 Hz)	zis	1000	2000	-	300	600	-	kΩ
Common-Mode Input Voltage Swing	VICR	± 2.0	± 2.4	<u> </u>	± 2.0	± 2.2	-	V _{pk}
Equivalent Input Noise Voltage (Open-Loop, R _s = 50 ohms, BW = 5.0 MHz)	e _N	-	20	_ ·	_	20	-	μV(rms)
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR	65	65	-	60	75		dB
Open-Loop Voltage Gain T _A = +25 ^o C T _A = T _{Iow} to T _{high}	A _{vol}	2500	3500	 7000	1500 	3500 -		V/V
Bandwidth (Open-Loop, -3.0 dB, no roll-off capacitance)	BW	-	0.4	-	-	0.4	-	MHz
Output Impedance (f = 30 Hz)	z _o	-	25	50	-	25	50	ohms
Output Voltage Swing (R _L = 1.0 k ohms)	Vo	± 4.5	± 5.2	-	± 4.0	± 5.0	-	V _{pk}
Power Supply Sensitivity ( $R_S \le 10 \text{ k} \Omega$ )	PSRR		100		-	100	-	μV/V
Power Supply Current	1 [°] , 1 [°]	·	9.2	12.5	-	9.2	12.5	mAdc
DC Quiescent Power Dissipation (V _O = 0)	PD	-	. 110	150	-	110	150	mW



## STEP RESPONSE, TYPICAL CHARACTERISTICS ( $V_{CC}$ = +6.0 Vdc, $V_{EE}$ = -6.0 Vdc, $V_0$ = 400 mVdc, $T_A$ = +25°C)

	Symbol*	MC1530 MC1430		
Step Response				
( Gain = 100, 0% overshoot,	^t THL	0.13	0.36	μs
	TPHL	0.11	0.21	μs
R ₃ = 1.0 k ohm, C ₁ = 750 pF	SR	33	16	V/µs
Gain = 10, 10% overshoot,	тнг	0.34	0.30	μs
R ₁ = 10 k ohms, R ₂ = 100 k ohms,	<b>TPHL</b>	0.25	0.28	μs
R ₃ = 10 k ohms, C ₁ = 6800 pF	SR	6.0	5.5,	V/µs
( Gain = 1.0, 5.0% overshoot,	тнг	0.28	0.37	μs
	^t PHL	0.16	0.17	μs
R ₃ = 5.0 k ohms, C ₁ = 33,000 pF	SR	1.7	1.4	V/µs
(1) T _{Iow} : 0 ^o C for MC1430 -55 ^o C for MC1530 T _{high} : +75 ^o C for MC1430 +125 ^o C for MC1530	T _{low} : 0°C for M -55°C fo T _{high} : +75°C fo +125°C	or MC1531 or MC1431	*Symbols used con JEDEC Engineerir No. 1 where appli	ng Bulletin

### MC1530, MC1531, MC1430, MC1431 (continued)



### TYPICAL OUTPUT CHARACTERISTICS ( $V_{CC}$ = +6.0 Vdc, $V_{EE}$ = -6.0 Vdc, $T_A$ = +25°C)

FIG.	CURVE	VOLTAGE	DEVICE	TEST CONDITIONS					
NO.	NO.	GAIN	NO.	R1 (kΩ)	R2 (kΩ)	R ₃ (Ω)	C1 (pF)		
5	1,2	100	MC1530/MC1430, MC1531/MC1431	1.0	100	1.0 k	750		
	3	10	MC1530/MC1430, MC1531/MC1431	10	100	10 k	6800		
	4	1	MC1530/MC1430, MC1531/MC1431	10	10	5.0 k	33,000		
6	1	100	MC1530/MC1430	1.0	100	1.0 k	750		
	2	10	MC1530/MC1430	10	100	10 k	6800		
	3	10	MC1530/MC1430	1.0	10	1.0 k	6800		
	4	1	MC1530/MC1430	10	10	5.0 k	33,000		
	5	1	MC1530/MC1430	1.0	1.0	500	33,000		
7	1	100	MC1531/MC1431	1.0	100	1.0 k	750		
	2	10	MC1531/MC1431	10	100	10 k	6800		
	3	1	MC1531/MC1431	10	10	5.0 k	33,000		
8	1	AVOL	MC1530/MC1430	0		0	0		
	2	AVOL	MC1530/MC1430	0	*	0	750		
	3	AVOL	MC1530/MC1430	0	~	0	6800		
	4	AVOL	MC1530/MC1430	0		0	33,000		
9	1	AVOL	MC1531/MC1431	0		0	0		
	2	AVOL	MC1531/MC1431	0	••	0	750		
	3	AVOL	MC1531/MC1431	0	**	0	6800		
	4	AVOL	MC1531/MC1431	0	80	0	33,000		

~ ~

- -

FIGURE 5 – LARGE SIGNAL SWING versus FREQUENCY

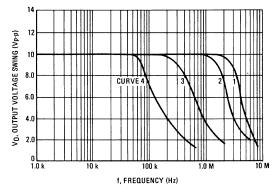
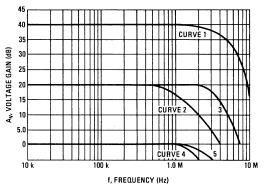
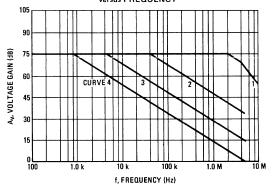
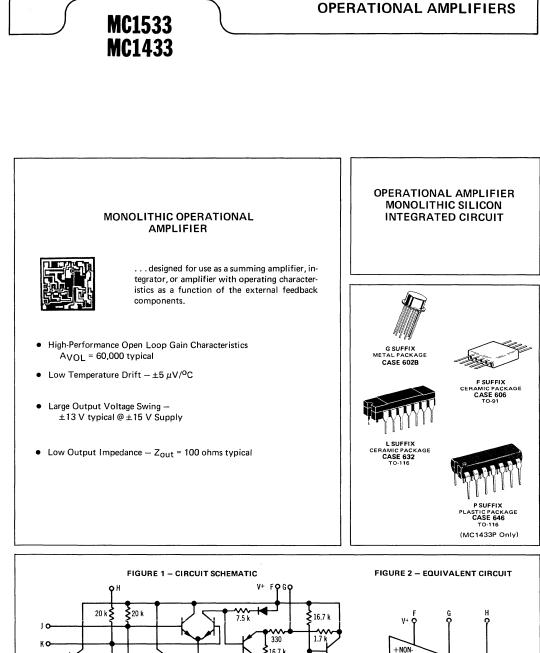
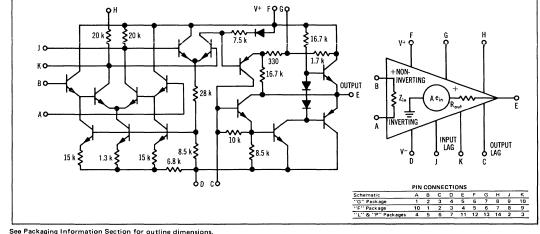



FIGURE 7 - MC1531/MC1431 VOLTAGE GAIN versus FREQUENCY 45 40 ΙП 35 CURVE 1 Av, VOLTAGE GAIN (dB) 30 25 20 15 CURVE 10 5.0 0 c่บ่ห 3 10 k 100 k 1.0 M 10 M f, FREQUENCY (Hz)

FIGURE 6 – MC1530/MC1430 VOLTAGE GAIN versus FREQUENCY





FIGURE 8 – MC1530/MC1430 OPEN LOOP VOLTAGE GAIN versus FREQUENCY



### MC1530, MC1531, MC1430, MC1431 (continued)







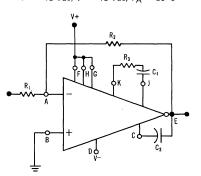
## MC1533, MC1433 (continued)

- -

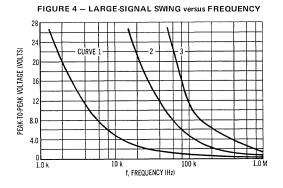
**.** .

### **ELECTRICAL CHARACTERISTICS** (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

	1		MC1533			4		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain $(T_A = +25^{\circ}C)$ $(T_A = T_{low}$ to $T_{high}$ (1)	AVOL	40,000	60,000	_	30,000	60,000	_	-
		35,000	50,000	-	20,000	50,000	· _	
Output Impedance (f = 20 Hz)	Z _{out}	_	100	150	_	100	150	Ω
nput Impedance (f = 20 Hz)	Z _{in}	500	1000		300	600	_	kΩ
Dutput Voltage Swing ( $R_L = 10 \text{ k}\Omega$ ) ( $R_L = 2 \text{ k}\Omega$ )	Vo	±12 ±11	±13 ±12		±12 ±10	±13 ±12	_	V _{peal}
nput Common Mode Voltage Swing	CMVin	+9.0	+10 -9.0		+8.0 -8.0	+9.0 -9.0	-	V _{peal}
Common Mode Rejection Ratio	CM _{rej}	90	100		80	100	_	dB
nput Bias Current $(T_A = +25^{\circ}C)$	Ъ	-	0.5	1.0 3.0		0.5	2.0 4.0	μA
$(T_A = T_{low})$ Input Offset Current $(T_A = +25^{\circ}C)$ $(T_A = T_{low})$ $(T_A = T_{high})$	I _{io}		0.03	0.15 0.5 0.2	-	0.1	0.50 0.75 0.75	μΑ
nput Offset Voltage $(T_A = +25^{\circ}C)$ ( $T_A = +25^{\circ}C$ ) ( $T_A = T_{10W}, T_{high}$ )	v _{io}		1.0	5.0		1.0	7.5	mV
$ \begin{cases} \text{Gain = 100 k}, 100 \text{ c} \text{ c} \text{ c} \text{ c} \text{ s} \text{ c} \text{ r} \text{ c}  c$	t _f t _{pd} dV _{out} /dt ③	_	0.25 0.1 6.2			0.25 0.1 6.2	-	μs μs V/μs
$ \left\{ \begin{array}{l} {\rm Gain} = 10,  {\rm no}  {\rm overshoot}, \\ {\rm R}_1 = 10  {\rm k}\Omega,  {\rm R}_2 = 100  {\rm k}\Omega, \\ {\rm R}_3 = 10  \Omega,  {\rm C}_1 = 0.1  \mu {\rm F} \end{array} \right\} $	t _f t _{pd} dV _{out} /dt ③	-	0.3 0.1 2.9	-		0.3 0.1 2.9		μs μs V/μs
$ \left\{ \begin{array}{l} \text{Gain} = 1,5\% \text{ overshoot}, \\ \text{R}_1 = 10  \text{k}\Omega,  \text{R}_2 = 10  \text{k}\Omega, \\ \text{R}_3 = 10  \Omega,  \text{C}_1 = 1.0  \mu\text{F} \end{array} \right. $	t _f t _{pd} dV _{out} /dt ③	-	0.2 0.1 2.0		- - -	0.2 0.1 2.0		μs μs V/μs
verage Temperature Coefficient of Input Offset Voltage $(T_A = T_{IOW} \text{ to } +25^{\circ}\text{C})$ $(T_A = +25^{\circ}\text{C to } T_{high})$	TC _{Vio}	-	8.0 5.0	· ·		10 8.0		μV/°0
Average Temperature Coefficient of Input Offset Current $(T_A = T_{Iow} \text{ to } T_{high})$ $(T_A = +25^{\circ}C \text{ to } T_{high})$	TC _{lio}		0.1 0.05		_	0.1 0.05		nA /º(
C Power Dissipation (Power Supply = $\pm 15 \text{ V}, \text{ V}_0 = 0$ )	PD	-	125	170	_	125	240	mW
ositive Supply Sensitivity (V  constant)	s+		50	150	_	50	200	μV/\
legative Supply Sensitivity (V ⁺ constant)	S-	_	50	150	_	50	200	μV/\


7

Rating	Symbol	Value	Unit
Power Supply Voltage MC1533,MC1433 MC1533,MC1433	V+ V-	+20,+18 -20,-18	Vdc Vdc
Differential Input Signal	Vin	±10	Volts
Common Mode Input Swing	CMVin	±V ⁺	Volts
Load Current	۱۲	10	mA
Output Short Circuit Duration	ts	1.0	s
Power Dissipation (Package Limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Dual In-Line Ceramic Package Derate above $T_A = +25^{\circ}C$ Dual In-Line Plastic Package Derate above $T_A = +25^{\circ}C$	PD	680 4.6 500 3.3 625 5.0 400 3.3	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C mW
Operating Temperature Range MC1533 MC1433	Τ _Α	-55 to +125 0 to +75	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Package	'T _{stg}	-65 to +150 -65 to +125	°C


MAXIMUM RATINGS ( $T_A = +25^{\circ}C$  unless otherwise noted)

### TYPICAL CHARACTERISTICS

FIGURE 3 – TEST CIRCUIT V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC



E.			Te	st Conditio	ns	
Fig. No.	Curve No.	R ₁ (Ω)	R ₂ (Ω)	R3 (Ω)	C ₁ (μF)	C ₂ (pF)
4	1	10 k	10 k	10	1.0	10
	2	10 k	100 k	10	0.1	10
	3	10 k	1.0 M	100	0.01	10
	3	1.0 k	1.0 M	390	0.002	10
5	1	10 k	10 k	10	1.0	10
	2	10 k	100 k	10	0.1	10
	3	10 k	1.0 M	100	0.01	10
	4	1.0 k	1.0 M	390	0.002	10
6	1	0	∞	10	1.0	10
	2	0	∞	10	0.1	10
	3	0	∞	100	0.01	10
	4	0	∞	390	0.002	10



 $\label{eq:type} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = + \ 25^oC \ unless \ otherwise \ noted) \end{array}$ 

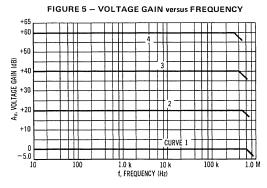
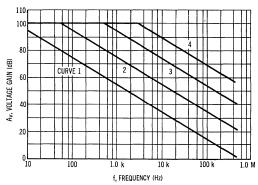
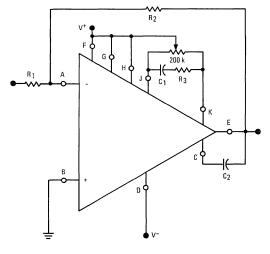
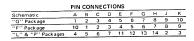
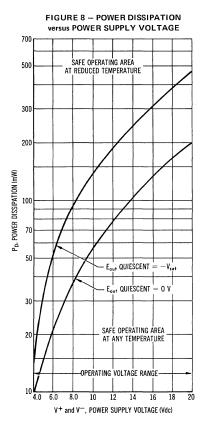
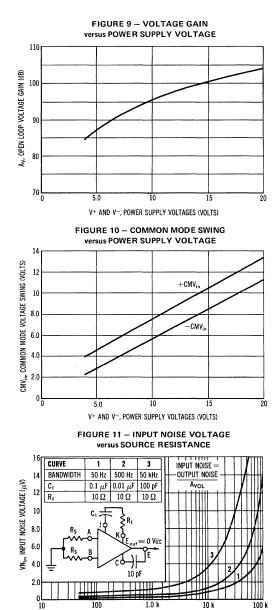



FIGURE 7 – OPEN LOOP VOLTAGE GAIN versus FREQUENCY (HIGH GAIN CONFIGURATION)



FIGURE 6 - OFFSET ADJUST CIRCUIT





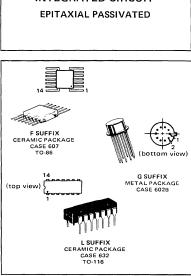


### TYPICAL CHARACTERISTICS (continued)



R_s, SOURCE RESISTANCE (OHMS)

7-158


# **OPERATIONAL AMPLIFIERS** MC1535 MC1435 MONOLITHIC DUAL **OPERATIONAL AMPLIFIERS** MONOLITHIC DUAL OPERATIONAL AMPLIFIERS INTEGRATED CIRCUIT

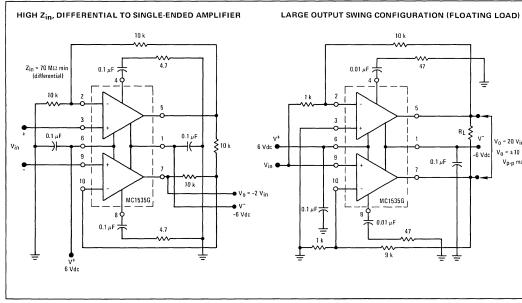


. . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.

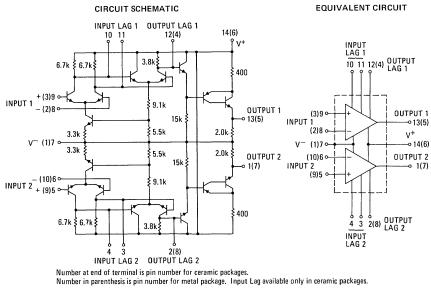
Typical Amplifier Features:

- High Open Loop Gain Characteristics A_{VOL} = 7,000
- Low Temperature Drift  $-\pm 10 \,\mu V/^{\circ}C$ ۰
- Low Input Offset Voltage 1.0mV .
- Low Input Noise Voltage  $-0.5\mu V$




v.

-6 Vdd


V₀ = 20 Vin

 $V_0 = \pm 10$ 

V_p-p max



See Packaging Information Section for outline dimensions.



### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

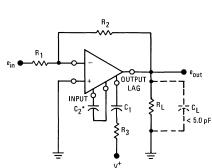
Ratii	ng	Symbol	MC1535	MC1435	Unit
Power Supply Voltage	V ⁺ V ⁻	+10 -10	+9.0 -9.0	Vdc	
Differential Input Signal		Vin	±5.0 ±5.0		Volts
Common-Mode Input Swing	CMVin	+5.0 -4.0	+5.0 -4.0	Volts	
Load Current	١	20	20	mA	
Output Short Circuit Duration	TSC	Cont			
Power Dissipation (Package Limitation Flat Ceramic Package Derate above $T_A = +25^{\circ}C$ Metal Package Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	) MC1535F, MC1435F MC1535G, MC1435G MC1435L	PD	3 6 4 6	00 .3 80 .6 25 .0	mW mW/ ^O C mW mW/ ^O C mW
Operating Temperature Range		Τ _Α	-55 to +125	0 to +75	°C
Storage Temperature Range		T _{stg}	-65 to +150	-65 to +150	°C

## MC1535, MC1435 (continued)

~ -

**--** --

		MC1535 MC1435						r
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current		(VIIII	190	IVIAA		190	IVIAA	Onic
11 + 12 TA = +25°C	ι _Ρ	_	1.2	3.0	_	1.2	5.0	μAdc
$I_b = \frac{I_1 + I_2}{2}, T_A = +25^{\circ}C$ $T_A = T_{low}$ to $T_{high}$ (1)		-		6.0	-		10	<i>µ</i> 100
Input Offset Current	lio							nAdc
$T_{A} = +25^{\circ}C$			50	300		50	500	
$T_A = +25^{\circ}C$ to $T_{high}$		-	-	300		-	1500	
$T_A = T_{low}$ to $+25^{\circ}C$		-	-	900	-	-	1500	
Input Offset Voltage T _A = +25 ^o C	Vio		1.0	3.0	_	1.0	5.0	mVdc
$T_A = T_{low}$ to $T_{high}$		_	-	5.0	_		7.5	
Differential Input Impedance (Open-Loop, f = 20 Hz)							<u> </u>	
Parallel Input Resistance	Rp	10	45	-	10	45	-	kohms
Parallel Input Capacitance	C _p		6.0	-	-	-		pF
Common-Mode Input Impedance (f = 20 Hz)	Z _(in)	-	250	-	-	250	-	Meg ohms
Common-Mode Input Voltage Swing	CMVin	+3.0	+3.9	-	+3.0	+3.9	-	V _{pk}
		-2.0	-2.7	-	-2.0	-2.7		
Equivalent Input Noise Voltage	^e n	-	45	-	-	45	-	nV/(Hz)½
$(A_V = 100, R_s = 10 \text{ kohms}, f = 1.0 \text{ kHz}, BW = 1.0 \text{ Hz})$ Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	-70	-90		-70	-90		dB
Open Loop Voltage Gain		4,000	7,000	10,000		7,000		
$(T_A = T_{low} \text{ to } T_{high})$	AVOL	4,000	7,000	10,000	3,500	7,000	-	V/V
Power Bandwidth	PBW		40	-	-	40	_	kHz
$(A_V = 1, R_L = 2.0 \text{ kohms}, \text{THD} \le 5\%, V_0 = 20 \text{ Vp-p})$	. ВМ					10		
Unity Gain Crossover Frequency (open-loop)		-	1.0		-	1.0	-	MHz
Phase Margin (open-loop, unity gain)		-	75		_	75		degrees
Gain Margin			18	-	-	18	-	dB
Step Response								
( Gain = 100, 30% overshoot,	t _f		0.3			0.3	-	μs
$R1 = 4.7  k\Omega, R2 = 470  k\Omega,$	tpd	-	. 0.1	-	-	0.1	-	μs
R3 = 150 Ω, C1 = 1,000 pF	dVout/dt @	-	0.167	-	-	0.167	-	V/µs
Gain = 10, 10% overshoot, $B_{1} = 47 k_{0}$ , $B_{2} = 470 k_{0}$	tf		1.9		-	1.9	-	μs
R1 = 47 kΩ, R2 = 470 kΩ, R3 = 47 Ω, C1 = 0.01 μF	t _{pd} dV _{out} /dt②		0.3 0.111	_	_	0.3 0.111	_	μs V/μs
Gain = 1, 5% overshoot,		_	27	_	. –	27	_	ν/μ3 μs
$R_{1} = 47 k\Omega, R_{2} = 47 k\Omega,$	t _f t _{pd}	_	0.25	_	_	0.25	_	μs μs
R3 = 4.7 Ω, C1 = 0.1 μF	dV _{out} /dt ②	_	0.013	_	-	0.013	-	V/µs
Output Impedance (f = 20 Hz)	Zout		1.7	-		1.7	-	kohms
Short-Circuit Output Current	ISC		±17		-	±17	-	mAdc
Output Voltage Swing (R1 = 2.0 kohms)	Vo	±2.5	±2.8	_	±2.3	±2.7		Vp
Power Supply Sensitivity	~							μV/V
$V^{-}$ = constant. $B_{e} \le 10$ kohms	S+	<b>-</b> ·	50			50	-	
$V^+$ = constant, $R_s \le 10$ kohms	S-		100		_	100		
Power Supply Current (Total)	¹ D ⁺	-	8.3	12.5	-	8.3	15	mAdc
	1 _D -		8.3	12.5	-	8.3	15	
DC Quiescent Power Dissipation (Total) (Vo = 0)	PD		100	150		100	180	mW


### **ELECTRICAL CHARACTERISTICS** (Each Amplifier) ( $V^+$ = +6.0 Vdc, $V^-$ = -6.0 Vdc, $T_A$ = +25^oC unless otherwise noted)

### MATCHING CHARACTERISTICS

Open Loop Voltage Gain	AVOL1-AVOL2		±1.0			±1.0		dB
Input Bias Current	b1 ^{-l} b2		<u>+</u> 0.15			±0.15	-	μA
Input Offset Current	lio1-lio2	-	±0.02		-	±0.02		μA
Average Temperature Coefficient	TClio1-TClio2	·	±0.1	-	-	±0.1	-	nA/ ⁰ C
Input Offset Voltage	Vio1-Vio2		±0.1	-		±0.1		mV
Average Temperature Coefficient	TCVio1-TCVio2	-	±0.5	-	-	±0.5	-	μV/ ⁰ C
Channel Separation (See Fig. 10) (f = 10 kHz)	eout 1 eout 2		-60	-	-	-60	-	dB

(2)  $dV_{out}/dt = Slew Rate$ 

(1) T_{low}: 0°C for MC1435 -55°C for MC1535 T_{high}: +75°C for MC1435 +125°C for MC1535



### **TYPICAL OUTPUT CHARACTERISTICS** $(V^+ = +6.0 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = +25^{\circ}\text{C}$

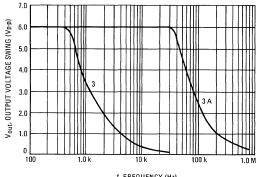

+60

FIGURE 1 - TEST CIRCUIT

				TE	ST CONDITIO	NS		OUTPUT
FIGURE NO.	CURVE NO.	VOLTAGE GAIN	R ₁ (Ω)	R ₂ (Ω)	C ₁ (pF)	R ₃ (Ω)	C ₂ (pF)	NOISE (mV rms)
2	3 3A	{ 1 or 1	47 k 47 k	47 k 47 k	100,000 0	4.7 ∞	0 50,000	0.12 0.46
3	1 2 3	100  or 100   10  or 10   1  or 1	4.7 k 4.7 k 47 k 47 k 47 k 47 k 47 k	470 k 470 k 470 k 470 k 470 k 47 k 47 k	1,000 0 10,000 0 100,000 0	150 ∞ 47 ∞ 4.7 ∞	0 510 0 5,000 0 50,000	1.7 2.1 1.0 2.1 0.12 0.46
4	1 2 3	AVOL  or AVOL   AVOL  or AVOL   AVOL  or AVOL	100 100 100 100 100 100	8 8 8 8 8 8 8 8 8 8	1,000 0 10,000 0 100,000 0	150 ∞ 47 ∞ 4.7 ∞	0 510 0 5,000 0 50,000	8.1 8.1 5.5 5.5 4.4 4.4

*Ceramic packages only.

FIGURE 2 - LARGE SIGNAL SWING versus FREQUENCY



f, FREQUENCY (Hz)

FIGURE 4 - OPEN LOOP VOLTAGE GAIN

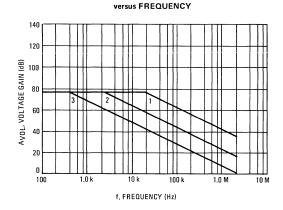



FIGURE 3 – VOLTAGE GAIN versus FREQUENCY

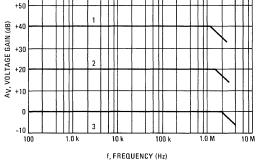
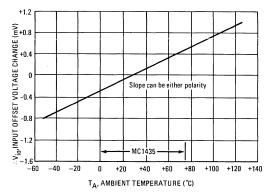
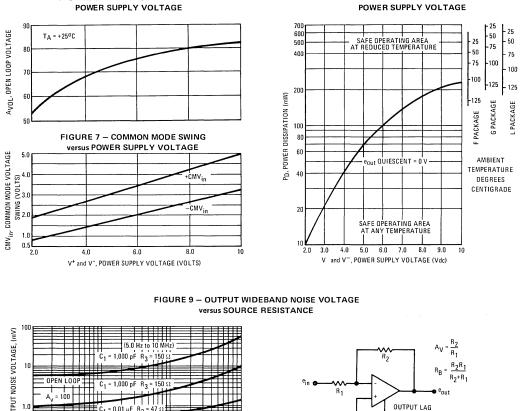
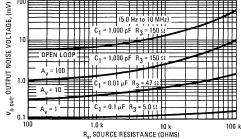
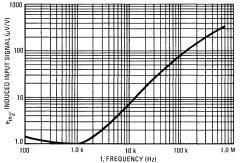
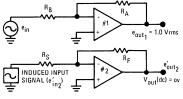



FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE



FIGURE 6 - VOLTAGE GAIN versus











C₁

R₃

R_S = R_B

Ş

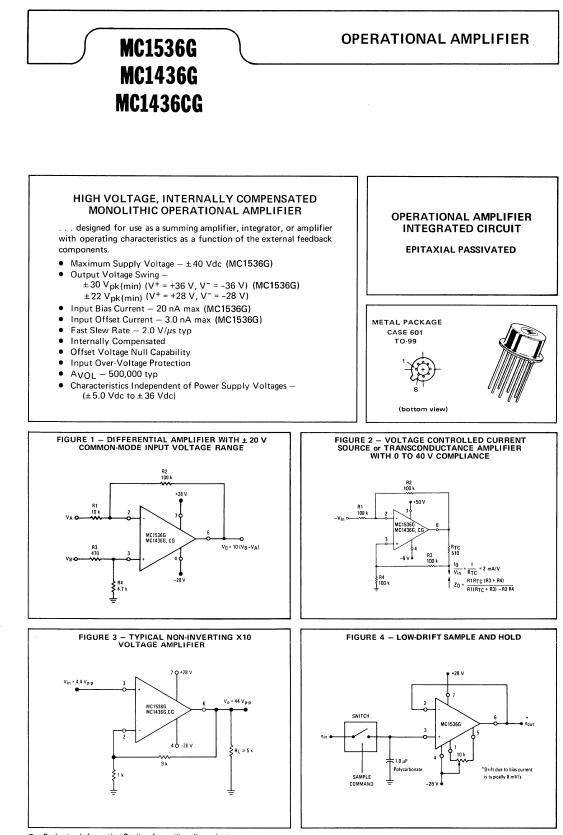

RB

FIGURE 8 - POWER DISSIPATION versus

Induced input signal (  $\mu V$  of induced input signal in amplifier =2 per volt of output signal at amplifier =1)

 $e'_{out2} = e'_{in2} \left(\frac{R_F}{R_S}\right)$ , where  $e'_{out2}$  is the component of

eout2 due only to lack of perfect separation between the two amplifiers.

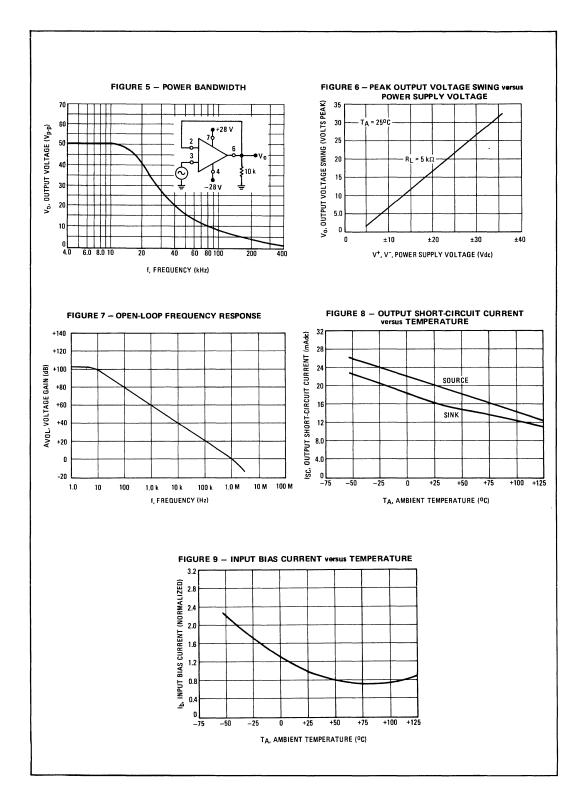


See Packaging Information Section for outline dimensions. See current MCC1536/1436 data sheet for standard linear chip information.

### MC1536G, MC1436G, MC1436CG (continued)

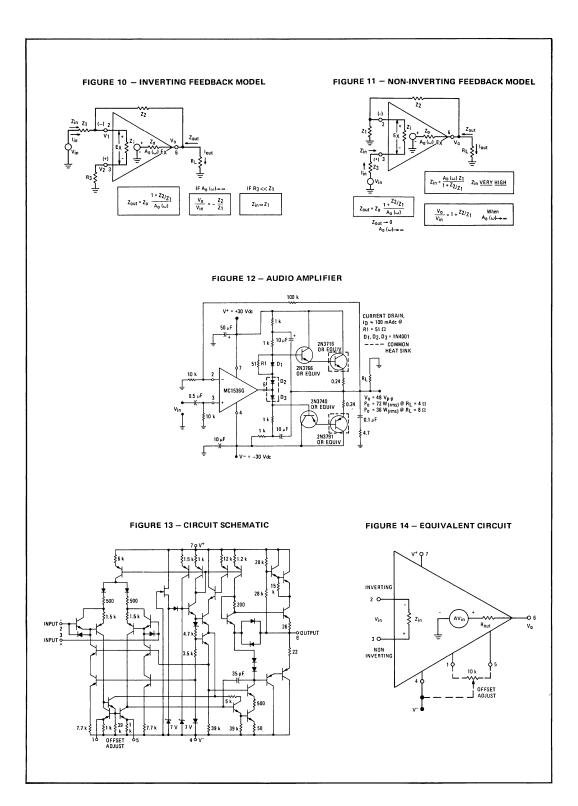
#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	MC1536G	MC1436G	MC1436CG	Unit		
Power Supply Voltage	v*	+40	+34	+30	Vdc		
	v-	-40	-34	-30			
Differential Input Signal	V _{in}	Ī	±(V ⁺ +  V ⁻  -3)		Volts		
Common-Mode Input Swing	CMVin		+V ⁺ , -( V ⁻  -3)		Volts		
Output Short Circuit Duration ( $V^+ =  V^-  = 28 \text{ Vdc}, V_0 = 0$ )	T _{SC}		5.0		S		
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD		680 4.6		mW mW/ ⁰ C		
Operating Temperature Range	TA	-55 to +150	0 to	o +75	°C		
Storage Temperature Range	T _{stg}		-65 to +150		°C		


#### ELECTRICAL CHARACTERISTICS (V⁺ = +28 Vdc, V⁻ = -28 Vdc, T_A = +25^oC unless otherwise noted)

			AC1536G	,		MC1436G		N	AC1436C	G	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	۱ _b	Γ	Ι	· 1							nAdc
$T_A = +25^{\circ}C$		_	8.0	20	-	15	40	-	25	90	
TA ≖ Tlow to Thigh (See Note 1) Input Offset Current	1.1			35		-	55	-			
$T_A = +25^{\circ}C$	liol	· _ ·	1.0	3.0		5.0	10	_	10	25	nAdc
$T_A = +25^{\circ}C$ to $T_{high}$			-	4.5	_		14	-	_		
$T_A = T_{low}$ to +25°C				7.0	-	_	14	-	-	-	
Input Offset Voltage	Vio	1	1	1	1	1			1		mVdc
$T_A = +25^{\circ}C$			2.0	5.0	-	5.0	10	-	5.0	12	
T _A = T _{low} to T _{high}			·	7.0	-		14	-	-	-	
Differential Input Impedance (Open-Loop, f ≤ 5.0 Hz)											
Parallel Input Resistance	Rp	1.00	10	-	-	10	-	-	10	-	Meg ohms
Parallel Input Capacitance	Cp		2.0	-	-	2.0			2.0		pF
Common-Mode Input Impedance (f ≤ 5.0 Hz)	Z(in)	5 - (-)	250	19 <u>1</u> 19	-	250		-	250	-	Meg ohm
Common-Mode Input Voltage Swing	CMVin	±24	±25	-	±22	±25	·	±18	±20		V _{pk}
Equivalent Input Noise Voltage	en										nV/(Hz) ½
(A _V = 100, R _s = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)			50	24	-	50	-	-	50	-	
Common-Mode Rejection Ratio (dc)	CMrej	80	110	·	70	110	-	50	90	-	dB
Large Signal dc Open Loop Voltage Gain	AVOL		1		1			1			V/V
(T _A = +25 ^o C		100,000	500,000	. <u>1</u> .	70,000	500,000		50,000	500,000	-	
$(V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 100 \text{ k ohms}) \begin{cases} T_{A} = +25^{O}\text{C} \\ T_{A} = T_{IOW} \text{ to } T_{high} \end{cases}$		50,000		1 (A)	50,000	1	-	-			
$(V_0 = \pm 10 \text{ V}, \text{ R}_L = 10 \text{ k ohms}, \text{ T}_A = \pm 25^{\circ}\text{C})$			200,000			200,000	<u>_</u>	-	200,000	-	
Power Bandwidth (Voltage Follower)	PBW		12.0	1.000							kHz
(A _V = 1, R _L = 5.0 k ohms, THD≤ 5%, V _o = 40 Vp·p)			23	1. <del>.</del>		23	· _	-	23	-	
Unity Gain Crossover Frequency (open-loop)	fc	<u> </u>	1.0	4 <u>1</u> .3		1.0	· _		1.0		MHz
Phase Margin (open-loop, unity gain)	φ	1944) 1	50	1545		50		-	50	-	degrees
Gain Margin	AGM		18	120	-	18	-	-	18		dB
Slew Rate (Unity Gain)	dV _{out} /dt	-	2.0		-	2.0	-	-	2.0	-	V/µs
Output Impedance (f ≤ 5.0 Hz)	Zout		1.0		-	1.0		-	1.0	-	k ohms
Short-Circuit Output Current	ISC	$\frac{\partial f}{\partial t} = \frac{2\pi}{1+2} g(t, t)$	<u>+</u> 17	승규는	-	±17	-	-	±19	-	mAdc
Output Voltage Swing (RL = 5.0 k ohms)	Vo	112.44	t i ger								Vpk
$V^{+} = +28 \text{ Vdc}, V^{-} = -28 \text{ Vdc}$		±22	±23		±20	±22		±20	±22	-	
V ⁺ = +36 Vdc, V [−] = -36 Vdc		±30	±32			. —	<u></u>	-	-	-	
Power Supply Sensitivity (dc)		12.32		<u>n de p</u>		1					μV/V
$V^{-}$ = constant, $R_{s} \le 10$ k ohms	S+	12433	15	100		35	200		50	-	
V ⁺ = constant, R _s ≤ 10 k ohms	S-	22년(2)	15	100	÷.,	35	200	-	50		
Power Supply Current (See Note 2)	ID+		2.2	4.0 -		2.6	5.0	-	2.6	5.0	mAdc
	ID-	-	2.2	4.0	·	2.6	5.0		2.6	5.0	
DC Quiescent Power Dissipation	PD	1326			1						mW
		1000 C	and states of the								

Note 1: T_{low}: 0^oC for MC1436G,CG -55^oC for MC1536G T_{high}: +75^oC for MC1436G,CG +15 0^oC for MC1436G,CG


Note 2:  $V^+ = |V^-| = 5.0 \text{ Vdc to 36 Vdc for MC1536G}$  $V^+ = |V^-| = 5.0 \text{ Vdc to 30 Vdc for MC1436G}$  $V^+ = |V^-| = 5.0 \text{ Vdc to 28 Vdc for MC1436CG}$ 

7



-

### MC1536G, MC1436G, MC1436CG (continued)

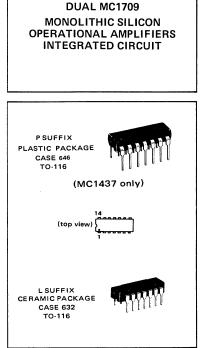


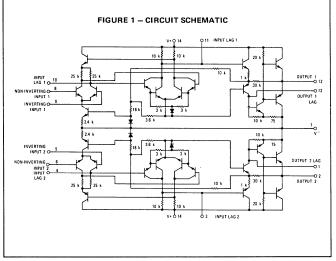
### **OPERATIONAL AMPLIFIERS**

#### HIGHLY MATCHED MONOLITHIC DUAL OPERATIONAL AMPLIFIERS

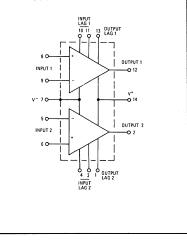
MC1537

**MC1437** 


... designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.


**Typical Amplifier Features:** 

- High-Performance Open Loop Gain Characteristics AVOL = 45,000 typical
- Low Temperature Drift  $-\pm 3 \,\mu V/^{O}C$
- Large Output Voltage Swing -
- $\pm$  14 V typical @  $\pm$  15 V Supply


#### MAXIMUM RATINGS (TA = +25°C)

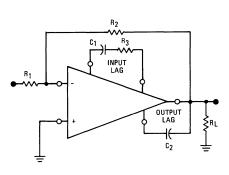
Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+18	Vdc
	v-	-18	Vdc
Differential Input Signal	Vin	±5.0	Volts
Common Mode Input Swing	CMVin	±V ⁺	Volts
Output Short Circuit Duration	ts	5.0	s
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C Plastic Package Derate above T _A = +25 ^o C	PD	750 6.0 625 5.0	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1537 MC1437	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C





#### FIGURE 2 - EQUIVALENT CIRCUIT




See Packaging Information Section for outline dimensions.

**ELECTRICAL CHARACTERISTICS** – Each Amplifier ( $V^+$  = +15 Vdc,  $V^-$  = -15 Vdc,  $T_A$  = 25°C unless otherwise noted)

			MC1537			MC1437		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain $(R_L = 5.0 k\Omega, V_0 = \pm 10 V,$ $T_A = T_{low} (1000) to T_{high} (2000)$	AVOL	25,000	45,000	70,000	15,000	45,000	-	-
Output Impedance (f = 20 Hz)	Zo		30			30	-	Ω
Input Impedance (f = 20 Hz)	Z _{in}	150	400	-	50	150	-	kΩ
Output Voltage Swing ( $R_L = 10 k_\Omega$ ) ( $R_L = 2.0 k_\Omega$ )	Vo	±12 ±10	±14 ±13	-	±12	±14	_	V _{peak}
Input Common-Mode Voltage Swing	CMVin	±8.0	±10		±8.0	±10		V _{peak}
Common-Mode Rejection Ratio	CM _{rej}	70	100		65	100	_	dB
Input Bias Current $ \begin{pmatrix} I_{b} = \frac{I_{1} + I_{2}}{2}, & (T_{A} = +25^{\circ}C) \\ (T_{A} = T_{low}) & (T_{A} = T_{low}) \end{pmatrix} $	lb	-	0.2 0.5	0.5 1.5		0.4	1.5 2.0	μA
	lio		0.05  	0.2 0.5 0.2	-	0.05  	0.5 0.75 0.75	μΑ
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = T_{low} )$ to $T_{high} ))$	V _{io}		1.0 —	5.0 6.0		1.0	7.5 10	mV
$ \begin{cases} \text{Gain = 100, 5\% overshoot,} \\ \text{Gain = 100, 5\% overshoot,} \\ \text{R}_1 = 1 \ \text{k}\Omega, \ \text{R}_2 = 100 \ \text{k}\Omega, \\ \text{R}_3 = 1.5 \ \text{k}\Omega, \ \text{C}_1 = 100 \ \text{pF}, \ \text{C}_2 = 3.0 \ \text{pF} \end{cases} $	^t f ^t pd dV _{out} /dt ③		0.8 0.38 12			0.8 0.38 12		μs μs V/μs
$\left\{ \begin{aligned} & \text{Gain} = 10, 10\% \text{ overshoot}, \\ & \text{R}_1 = 1 \ \text{k}\Omega, \ \text{R}_2 = 10 \ \text{k}\Omega, \\ & \text{R}_3 = 1.5 \ \text{k}\Omega, \ \text{C}_1 = 500 \ \text{pF}, \ \text{C}_2 = 20 \ \text{pF} \end{aligned} \right\}$	t _f t _{pd} dV _{out} /dt ③	-	0.6 0.34 1.7	 		0.6 0.34 1.7		μs μs V/μs
$\begin{cases} \mbox{Gain} = 1, 5\% \mbox{ overshoot}, \\ \mbox{R}_1 = 10 \mbox{ k}\Omega, \mbox{ R}_2 = 10 \mbox{ k}\Omega, \\ \mbox{R}_3 = 1.5 \mbox{ k}\Omega, \mbox{ C}_1 = 5000 \mbox{ pF}, \mbox{ C}_2 = 200 \mbox{ pF} \end{cases}$	t _f t _{pd} dVout/dt (3)	_ _`	2.2 1.3 0.25		_ _ ·	2.2 1.3 0.25	-	μs μs V/μs
Average Temperature Coefficient of Input Offset Voltage $(R_{S} = 50 \ \Omega, T_{A} = T_{Iow} \ (1) \text{ to } T_{high} \ (2))$ $(R_{S} \le 10 \ k\Omega, T_{A} = T_{Iow} \ (1) \text{ to } T_{high} \ (2))$	TC _{Vio}		1.5 3.0	-	-	1.5 3.0	-	μV/ ⁰ C
Average Temperature Coefficient of Input Offset Voltage $(T_A = T_{Iow} \bigoplus to +25^{\circ}C)$ $(T_A = +25^{\circ}C to T_{high} \textcircled{0})$	tc _{lio}	-	0.7			0.7	-	nA/ ^o C
DC Power Dissipation (Total) (Power Supply = ±15 V, V _o = 0)	PD	-	160	225	-	160	225	mW
Positive Supply Sensitivity (V ⁻ constant)	S ⁺	·	10	150		10	200	μV/V
legative Supply Sensitivity (V ⁺ constant)	s-		10	150	-	10	200	. μV/V

#### MATCHING CHARACTERISTICS

Open Loop Voltage Gain	AVOL1-AVOL2	-	±1.0		-	±1.0	-	dB
Input Bias Current	lb1-lb2		±0.15		-	±0.15	-	μA
Input Offset Current	1101-1102		±0.02	-	-	±0.02	-	μA
Average Temperature Coefficient	TC _{lio1}  - TC _{lio2}	·	±0.2	_	·	±0.2		nA/ ^o C
Input Offset Voltage	V _{io1}  - V _{io2}	_	±0.2			±0.2		mV
Average Temperature Coefficient	TCVio1 - TCVio2	· _ ·	±0.5	-	- '	±0.5	-	μV/ ⁰ C
Channel Separation (f = 10 kHz)	$\frac{e_{out 1}}{e_{out 2}}$	-	90	-	_	90	_	dB



#### **TYPICAL OUTPUT CHARACTERISTICS**

FIGURE 3 – TEST CIRCUIT V⁺ = +15 Vdc, V⁻ = 15 Vdc, T_A =  $25^{\circ}$ C

FIGURE	CURVE	VOLTAGE		TES	T CONDITI	ONS		OUTPUT NOISE
NO.	NO.	GAIN	R ₁ (Ω)	R2(Ω)	R3(Ω)	C ₁ (pF)	C ₂ (pF)	(mV[rms])
4	1 2 3 4	1 10 100 1000	10 k 10 k 10 k 1.0 k	10 k 100 k 1.0 M 1.0 M	1.5 k 1.5 k 1.5 k 0	5.0 k 500 100 10	200 20 3.0 3.0	0.10 0.14 0.7 5.2
5	1 2 3 4	1 10 100 1000	10 k 10 k 10 k 1.0 k	10 k 100 k 1.0 M 1.0 M	1.5 k 1.5 k 1.5 k 0	5.0 k 500 100 10	200 20 3.0 3.0	0.10 0.14 0.7 5.2
6	1 2 3 4 5	Avol Avol Avol Avol Avol	0 0 0 0 0	8 8 8 8 8	1.5 k 1.5 k 1.5 k 0 ∞	5.0 k 500 100 10 0	200 20 3.0 3.0 3.0 3.0	5.5 10.5 21.0 39.0

FIGURE 4 – LARGE SIGNAL SWING versus FREQUENCY

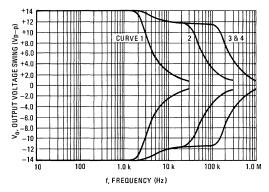



FIGURE 6 – OPEN LOOP VOLTAGE GAIN versus FREQUENCY

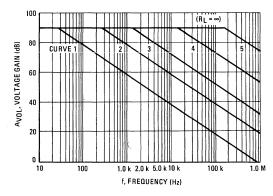



FIGURE 5 - VOLTAGE GAIN versus FREQUENCY

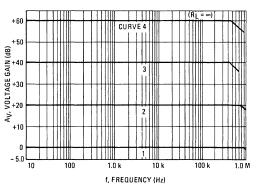
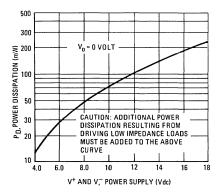
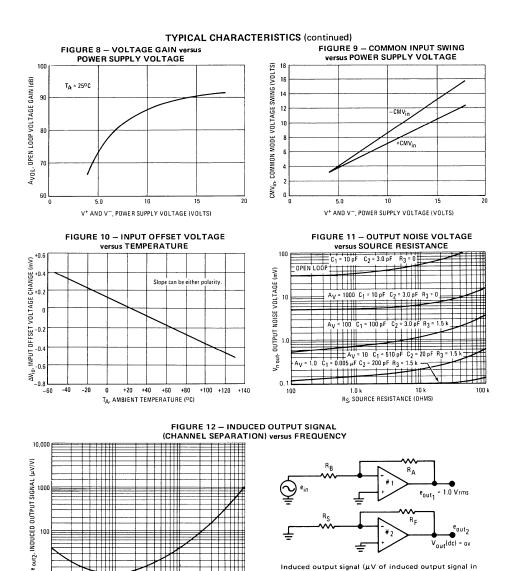





FIGURE 7 – TOTAL POWER DISSIPATION versus POWER SUPPLY VOLTAGE





Induced output signal ( $\mu V$  of induced output signal in amplifier #2 per volt of output signal at amplifier #1).

7

7-171

НШ

100 4

1111


f, FREQUENCY (Hz)

10 1

104

10

# MC1538R MC1438R



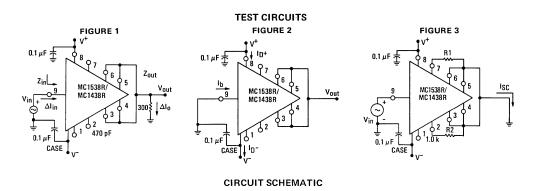
### MC1538R, MC1438R (continued)

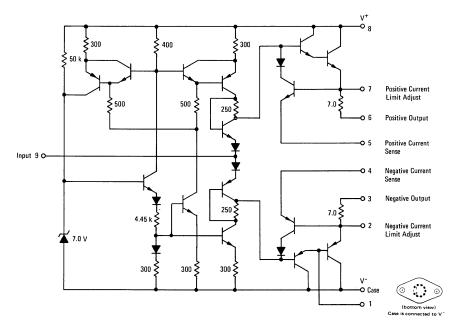
### MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Rating	Symbol	MC1538R	MC1438R	Unit	
Power Supply Voltage	v+ v-	+22 -22	+18 -18	Vdc	
Input-Output Voltage Differential	V _{in} - V _{out}	-14.5, +44	-14, +36	Vdc	
Input Voltage Swing	l∨ _{in} l	V ⁺ or V		Vdc	
Load Current	١L	350		mAdc	
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +25^{\circ}C$ Thermal Resistance, Junction to Case	Ρ _D 1/θ _{JA} θJA Ρ _D 1/θJC θJC	3. 24 41 17 14 7.1	4 .6 .5 0	Watts mW/ ^o C ^o C/W Watts mW/ ^o C ^o C/W	
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to	+150	°C	

#### **OPERATING TEMPERATURE RANGE**

Ambient Temperature	MC1438R	Τ _Α	0 to +75	°C
	MC1538R		-55 to +125	


#### ELECTRICAL CHARACTERISTICS


(R_L = 300 ohms, T_C =  $+25^{\circ}$ C unless otherwise noted.)

					MC1538			/C1438R		
				V ⁺ = +5 V	' to +20 V, V	¯ = -5 V to -20 V	V ⁺ = +1	5 V, V ⁻ = -	15 V	
Characteristic (Linear Operation)	Fig	Note	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Voltage Gain (f = 1.0 kHz)	1	-	Av	0.9	0.95	1.0	0.85	0.95	1.0	v/v
Current Gain (A ₁ = $\Delta I_0 / \Delta I_{in}$ )	1	-	AI	-	3000		-	3000		A/A
Output Impedance (f = 1.0 kHz)	1	-	Zout	-	10		-	10	-	Ohms
Input Impedance (f = 1.0 kHz)	1	-	Zin	-	400	_	-	400	-	k ohm:
Output Voltage Swing	1	3	Vout	±12	±13	-	±11	±12		Vdc
Input Bias Current	2	-	Чь	-	60	200	-	60	300	μAdc
Output Offset Voltage	2	1	Voo	-	25	150		25	200	mVdc
Small Signal Bandwidth (R _L = 300 ohms) (V _{in} = 0 Vdc, v _{in} = 100 mV [rms] )	1	-	BW3 dB		8.0	_	-	8.0	-	MHz
Power Bandwidth (V _{out} = 20 V _{p-p} , THD = 5%)	1	3	PBW	_	1.5		-	1.5	-	MHz
Total Harmonic Distortion (f = 1.0 kHz, V _{out} = 20 V _{p-p} )	1	3	THD	- "	0.5	<b></b>	_	0.5		%
Short-Circuit Output Current (R1 = R2 = ∞) (R1 = R2 = 3.3. ohms) Adjustable Range	3 3 4,5	2	ISC	75 	95 300 5.0 to 300	125 	65  	95 300 5.0 to 300	140 	mAdc
Power Supply Sensitivity (V ⁻ constant) (V ⁺ constant)	2	-	s⁺ s⁻	. –	1.0 1.0		-	1.0 1.0	-	mV/V
Power Supply Current (R _L = ∞, V _{in} = 0)	2	-	1D+ or 1D-	4.5	6.0	10	2.5	6.0	15	mAdc
Power Dissipation ( $R_L = \infty, V_{in} = 0.$ )	2	3	PD	150	180	300	75	180	450	mW

Note 1. Output offset Voltage is the quiescent dc output voltage with the input grounded.

Note 2. Short-Circuit Current, I_{SC}, is adjustable by varying R1, R2, R3 and R4. The positive current limit is set by R1 or R3, and the negative current limit is set by R2 or R4. See Figures 4 and 5 for curves of short-circuit current versus R1, R2, R3 and R4. Note 3. V⁺ = +15 V, V⁻ = -15 V.





TYPICAL CHARACTERISTICS

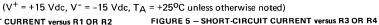
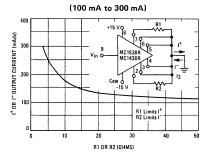
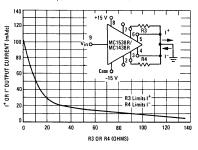
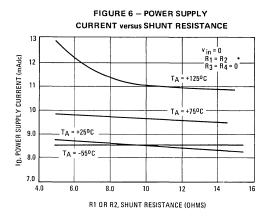






FIGURE 4 - SHORT-CIRCUIT CURRENT versus R1 OR R2



(5.0 mA to 100 mA)





#### **TYPICAL CHARACTERISTICS** (continued)

FIGURE 7 - SMALL SIGNAL GAIN AND PHASE RESPONSE

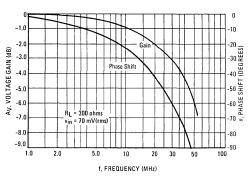



FIGURE 8 – POSITIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT

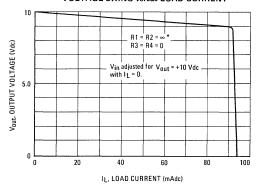
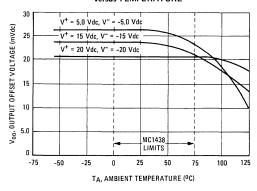




FIGURE 10 -- OUTPUT OFFSET VOLTAGE versus TEMPERATURE



*See figures 4 and 5 for definition of R1, R2,R3, and R4.

FIGURE 9 – NEGATIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT

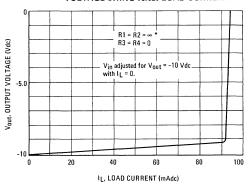
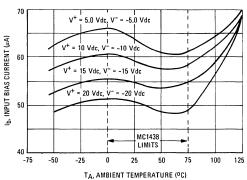
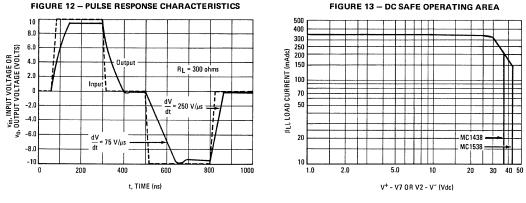





FIGURE 11 - INPUT BIAS CURRENT versus TEMPERATURE





# $\label{eq:type} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (continued) \\ (V^+ = +15 \ Vdc, \ V^- = -15 \ Vdc, \ T_A = +25^{\circ}C \ unless \ otherwise \ noted) \end{array}$

TYPICAL APPLICATIONS

FIGURE 14 – NON-INVERTING AC POWER AMPLIFIER

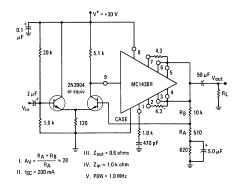



FIGURE 16 - NON-INVERTING VOLTAGE FOLLOWER

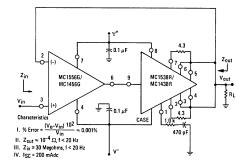



FIGURE 15 - NON-INVERTING POWER AMPLIFIER

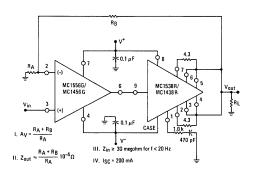
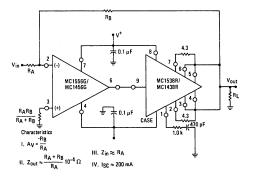
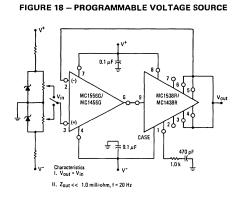





FIGURE 17 - INVERTING POWER AMPLIFIER





#### TYPICAL APPLICATIONS (continued)

FIGURE 19 – CONSTANT CURRENT SOURCE OR TRANSCONDUCTANCE AMPLIFIER

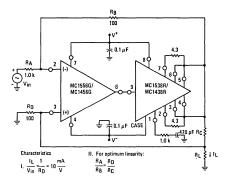



FIGURE 20 - SIGNAL DISTRIBUTION

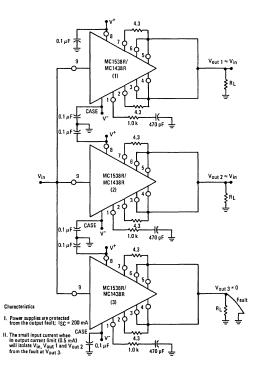



FIGURE 21 – ASTABLE MULTIVIBRATOR

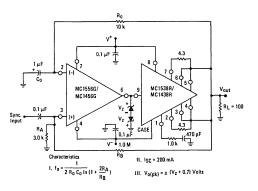
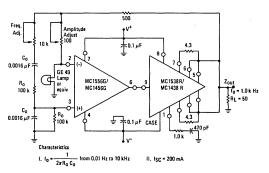
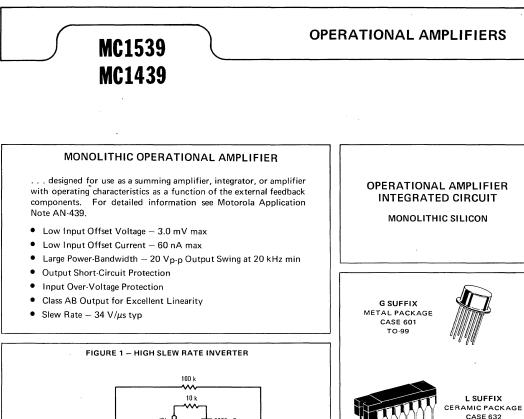
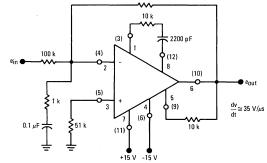
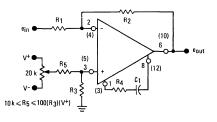






FIGURE 22 - WIEN BRIDGE OSCILLATOR

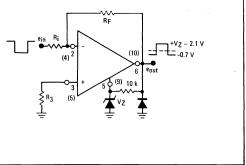







Pin numbers adjacent to terminals apply to 8-pin package, numbers in parenthesis apply to 14-pin packages.

FIGURE 2 - OUTPUT NULLING CIRCUIT




# FIGURE 3 - OUTPUT LIMITING CIRCUIT

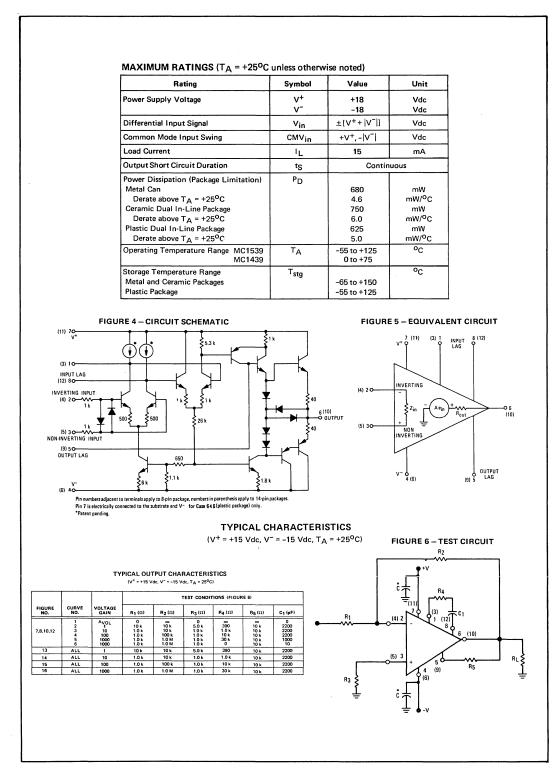
P2 SUFFIX ASTIC PACKAGE

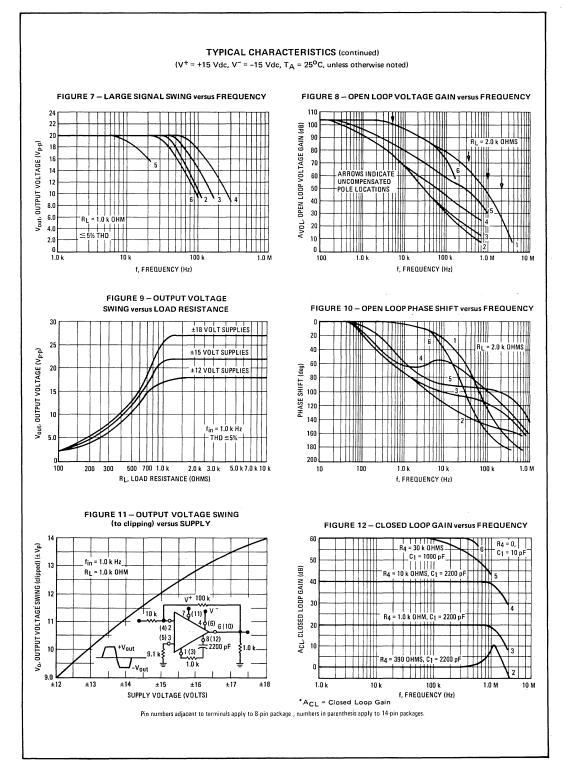
CASE 646

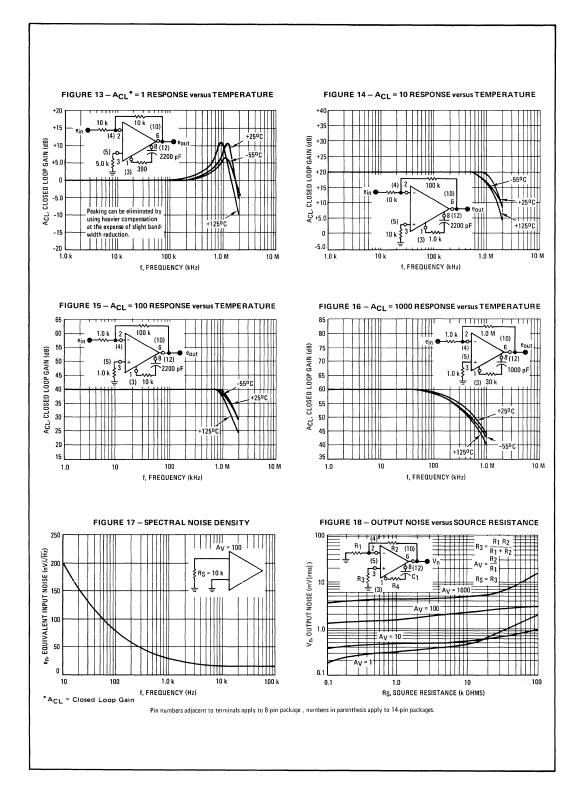
TO-116 (MC1439 only) TO-116

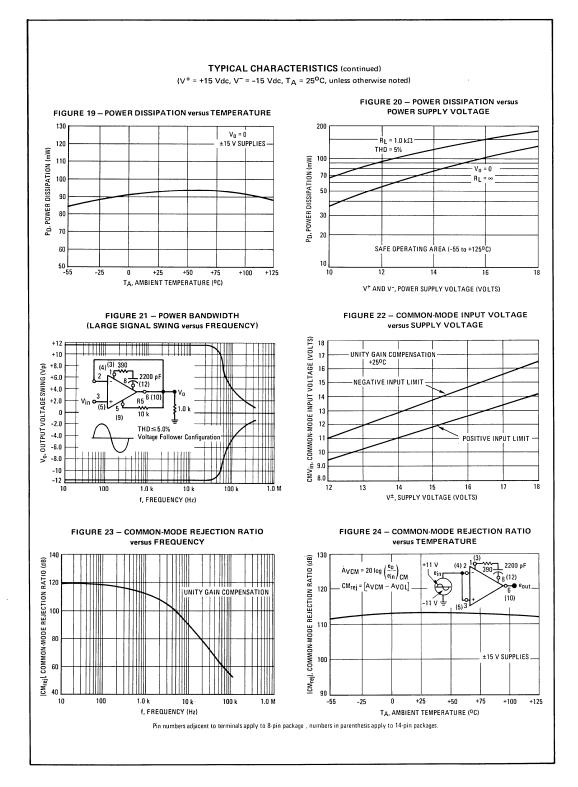


See Packaging Information Section for outline dimensions.

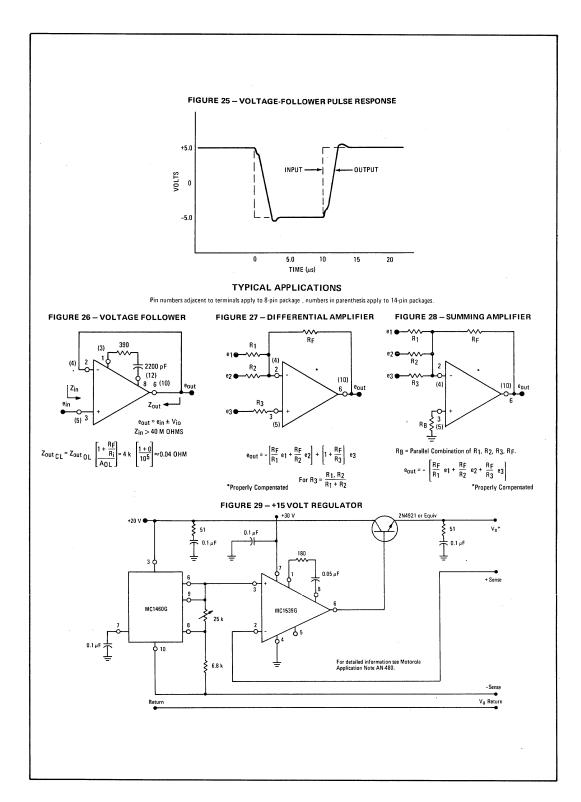

See current MCC1539/1439 data sheet for standard linear chip information.


------


		MC1539				MC1439			
Characteristic	Symbol	Min	Ťур	Max	Min	Тур	Max	Unit	
Input Bias Current	Чb							μΑ	
(T _A = +25 ^o C)		-	0.20	0.50	-	0.20	1.0		
$(T_A = T_{low} )$		~	0.23	0.70	-	0.23	1.5		
Input Offset Current	I _{io}							nA	
$(T_A = T_{IOW})$			-	75		_	150		
$(T_A = +25^{\circ}C)$		-	20	60	-	20	100		
$(T_A = T_{high} (1))$			-	75			150		
Input Offset Voltage (T _A = +25 ^o C)	Vio		1.0	3.0		2.0	7.5	mV	
$(T_A = T_{low}, T_{high})$		_		4.0	_	2.0	-		
Average Temperature Coefficient of Input	ITC: 1							μV/ ⁰ C	
Offset Voltage ( $T_A = T_{low}$ to $T_{high}$ )	TC _{Vio}							μν/-C	
(R _S = 50 Ω)			3.0		-	3.0	-		
(R _S <u>≤</u> 10 kΩ)			5.0		-	5.0	-		
Input Impedance	Zin	150	300	-	100	300	-	kΩ	
(f = 20 Hz)									
Input Common-Mode Voltage Swing	CMVin	±11	±12	-	±11	±12		Vpk	
Equivalent Input Noise Voltage $(R_S = 10 \text{ k}\Omega, \text{Noise Bandwidth} = 1.0 \text{ Hz}, f = 1.0 \text{ kHz})$	e _n		30	-	-	30	-	nV/(Hz) ¹ /	
Common-Mode Rejection Ratio (f = 1.0 kHz)	CM _{rej}	80	110	-	80	110		dB	
Open-Loop Voltage Gain ( $V_0 = \pm 10 V, R_L = 10 V_0 R_L = 10 V_0 R_L = 10 V_0 R_L$	AVOL	50,000	120,000		15,000	100,000			
$10 \text{ k}\Omega, \text{ R}_5 = \infty$ ) (T _A = +25°C to T _{high} ) (T _A = T _b )		25,000	120,000	_	15,000	100,000		-	
$(T_A = T_{low})$ Power Bandwidth (A _v = 1, THD < 5%,		25,000	100,000		13,000	100,000		kHz	
$V_0 = 20 V_{P-P}$	PBW							KIIZ	
(R _L = 2.0 kΩ)				·	10	50			
(R _L = 1.0 kΩ)		20	50	· · · .		-			
Step Response ( Gain = 1000, no overshoot, )			130			130			
$\left\{\begin{array}{l} \text{Gain} = 1000, \text{ no overshoot,} \\ \text{R1} = 1.0 \text{k}\Omega, \text{R2} = 1.0 \text{M}\Omega, \text{R3} = 1.0 \text{k}\Omega, \right\}\right\}$	tf		190	-	-	130	-	ns	
$\left( \begin{array}{c} R4 = 30  k\Omega, R5 = 10  k\Omega, C1 = 1000  pF \end{array} \right)$	tpd dV_/dt②		60			6.0		V/µs	
(Gain = 1000, 15% overshoot, )			80			80			
$R1 = 1.0 k\Omega, R2 = 1.0 M\Omega, R3 = 1.0 k\Omega,$	tf	-	100	-	_	100	-	ns	
$R4 = 0, R5 = 10 k\Omega, C1 = 10 pF$	^t pd		100			100	-	ns V/µs	
	dV _{out} /dt		60		_	60			
$\begin{cases} Gain = 100, no overshoot, \\ R1 = 1.0 k\Omega, R2 = 100 k\Omega, R3 = 1.0 k\Omega, \end{cases}$	t _f				-	100	-	ns	
$R_1 = 1.0  k\Omega, R_2 = 100  k\Omega, R_3 = 1.0  k\Omega, R_4 = 10  k\Omega, R_5 = 10  k\Omega, C_1 = 2200  pF$	^t pd		100 34		_	34	-	ns	
(Gain = 10, 15%  overshoot, 10, 15%  overshoot, 10, 15%  overshoot, 10, 15%  overshoot, 10, 10%  overshoot,	dV _{out} /dt	-		_	-	, <u>,</u>		V/µs	
$\langle R1 = 1.0 k\Omega, R2 = 10 k\Omega, R3 = 1.0 k\Omega, \rangle$	tf		120 80	. –		120 80		ns ns	
$R4 = 1.0 k\Omega, R5 = 10 k\Omega, C1 = 2200 pF$	^t pd dV _{out} /dt		6.25			6.25	_	1	
( Gain = 1, 15% overshoot,	tf		160			160	. –	V/µs ns	
$\left\langle R1 = 10 k\Omega, R2 = 10 k\Omega, R3 = 5.0 k\Omega, \right\rangle$	tpd	· _	80		_	80	_	ns	
$R4 = 390 \Omega, R5 = 10 k\Omega, C1 = 2200 pF$	dV _{out} /dt	_	4.2	_	_	4.2	_	V/µs	
Output Impedance	Zout	·	4.0			4.0		kΩ	
(f = 20 Hz) Output Voltage Swing						4.0			
$(R_L = 2.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz})$	Vout	·	-		±10	±13		Vpk	
(R _L = 1.0 kΩ, f = 1.0 kHz)		±10	±13		-	_	-		
Positive Supply Sensitivity (V ⁻ constant)	S+	-	50	150	-	50	200	μV/V	
Negative Supply Sensitivity (V ⁺ constant)	s-	-	50	150	-	50	200	μV/V	
Power Supply Current							_		
(V ₀ = 0)	-ما - ما	_	3.0 3.0	5.0 5.0	-	3.0 3.0	6.7 6.7	mAdc	

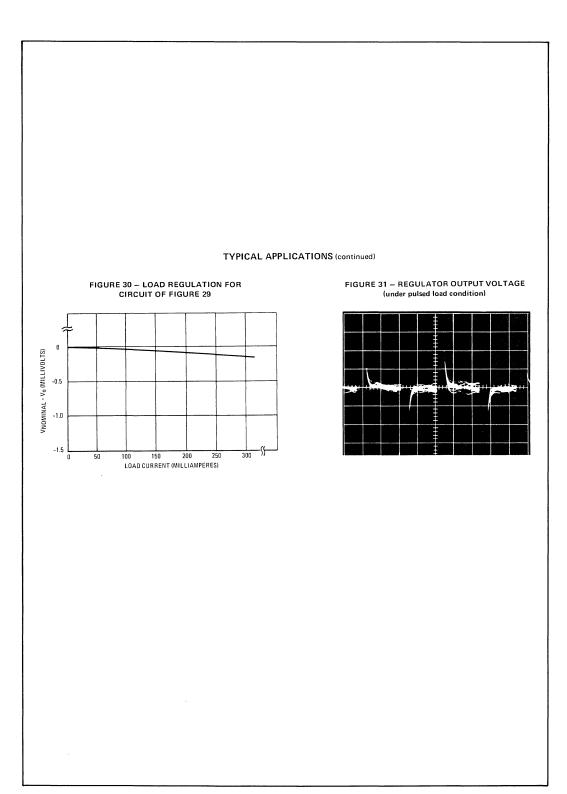

 $(1) T_{10w} = 0^{o}C \text{ for MC1439}$  $- 55^{o}C \text{ for MC1539}$  $Thigh = +75^{o}C \text{ for MC1439}$  $+125^{o}C \text{ for MC1539}$ 

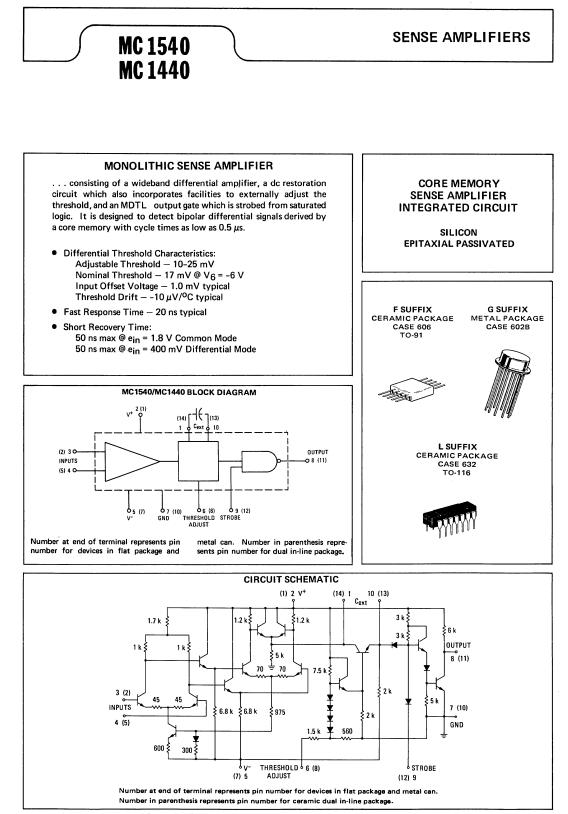
 $O_{dV_{out}/dt} = Slew Rate$ 









7



-

. . . .





See Packaging Information Section for outline dimensions.

### MC1540, MC1440 (continued)

#### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

----

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+10	Vdc
	V-	-10	Vdc
Differential Input Signal	Vin	±5.0	Vdc
Common Mode Input Voltage	CMVin	±5.0	Vdc
Load Current	ار	25	mA .
Power Dissipation (Package Limitation)	PD		
Metal Can	_	680	mW
Derate above $T_A = +25^{\circ}C$		4.6	mW/ ^o C
Flat Package		500	mW
Derate above $T_{\Delta} = +25^{\circ}C$		3.3	mW/ºC
Ceramic Dual In-Line Package		625	mW
Derate above T _A = +25 ^o C		5.0	mW/ ^o C
Operating Temperature Range	TA		
MC144	IOF,G,L	0 to +75	°C
MC154	IOF,G,L	~55 to +125	
Storage Temperature Range	T _{stg}	~65 to +150	°C

**ELECTRICAL CHARACTERISTICS** (V⁺ = +6 Vdc ± 1%, V⁻ = -6 Vdc ± 1%, C_{ext} = 0.01  $\mu$ F, T_A = +25^oC unless otherwise noted) Pin number references are for devices in flat package and metal can. See block diagram for dual in-line package pin numbers.

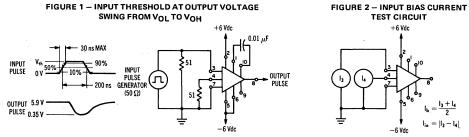
				MC1540			MC1440		
Characteristic	Fig. No.	Symbol	Min	Тур	Max	Min	Түр	Max	Unit
Input Threshold Voltage $(V_6 = -6.0 Vdc, T_A = 25^{\circ}C)$ $(V_6 = -6.0 V, T_A = T_{low}^*)$ $(V_6 = -6.0 V, T_A = T_{high}^*)$	1	Vth	14 12 12	17 17 17	20 24 22	12 10 10	17 17 17	24 30 30	mV
Input Offset Voltage	1	Vio	· ·	1.0	5.0	-	1.0	6.0	mV
Input Bias Current $(V_3 = V_4 = 0, T_A = 25^{\circ}C)$ $(V_3 = V_4 = 0, T_A = T_{low}^{\bullet})$	2	۱ _b		7.5	50 100	-	7.5 	75 100	μA
Input Offset Current	2	lio	1.11	2.0	10	-	2.0	15	μA
Output Voltage High $(V_3 = V_4 = 0)$	3	Voн	5.9			5.8	-	-	Vdc
Output Voltage Low (V3 = V4 = 0, V10 = +6.0 Vdc, I8 = 6.0 mAdc) (V10 = +6.0 Vdc, I8 = 6.0 mAdc, TA = Thigh*)	3	VOL		-	350 400	-	-	400 450	mVdc
Amplifier Voltage Gain (V ₃ = 15 mV peak)	4	Av		85	-	-	85	-	-
Strobe Load Current (Vg = 0)	-	۱s			1.2	-	-	1.5	mAdc
Strobe Reverse Current (Vg = +5.0 Vdc) (Vg = +6.0 Vdc, T _A = T _{high} *)	-	^I R	_	-	2.0 25		-	5.0 30	μAdc
Propagation Delay Input to Amplifier Output {V3 = 25 mV pulse, V9 = +2.0 Vdc)	5	t3+10+		10	15	-	10	20	ns
Input to Gate Output (V3 = 25 mV pulse, V9 = +2.0 Vdc)	5	^t 3+8-		20	30	-	20	50	
Strobe to Gate Output (V ₃ = V ₄ = 0, V ₉ = +2.0 V pulse)	6	^t 9+8-	-	10	15		10	30	
Recovery Time Differential Mode (V ₃ = 400 mV pulse)	7	^t R(dm)		20	50	-	20	90	ns
Common Mode (V ₃ = 1.8 V pulse)	8	^t R(cm)	_	20	50	-	20	60	
Power Dissipation	-	PD		120	180	-	120	250	mW

 $T_{low} = -55^{\circ}C$  for MC1540 or 0°C for MC1440,  $T_{high} = +125^{\circ}C$  for MC1540 or +75°C for MC1440.

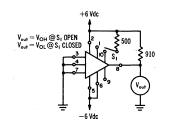
### MC1540, MC1440 (continued)

- Amplifier Voltage Gain the ratio of output voltage at Av pin 1 to the input voltage at pin 3 or 4
- 1_h Input Bias Current - the average input current defined as  $(1_3 + 1_4)/2$
- lio Input Offset Current - the difference between input current values, ||3 - |4|
- 18 Strobe Reverse Current - leakage current when the strobe input is high
- Is Strobe Load Current - amount of current drain from the circuit when the strobe pin is grounded
- PD Power Dissipation – amount of power dissipated in the unit as defined by  $|I_2 \times V^+| + |I_5 \times V^-|$
- tR Recovery Time - The time that is required for the device to recover from the specified differential and common-mode overload inputs prior to strobe as reference to the 10% point

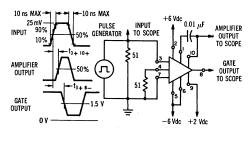
of the trailing edge of an input pulse. The device is considered recovered when the threshold after a differential overload disturbance is within 1.0 mV of the threshold value without the disturbance, or, for common-mode disturbance, when the level at pin 10 is within 100 mV of the quiescent value.


- Propagation Delay The time that is required for the output t_{x±y±} pulse at pin y to achieve 50% of its final value or the 1.5 V level referenced to 50% of the input pulse at pin x. (The + and - denote positive and negative-going pulse transition.)
- Output Voltage High high-level output voltage when the ∨он output gate is turned off
- Output Voltage Low low-level output voltage when the Vol output gate is turned on
- Input Threshold input pulse amplitude that causes the Vth output to begin saturation
- Input Offset Voltage the difference in V_{th} at each input Vio

TEST CIRCUIT +6 Vdc

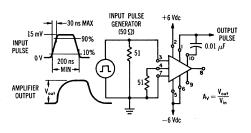

-6 Vdc

 $\frac{l_3 + l_4}{2}$ 

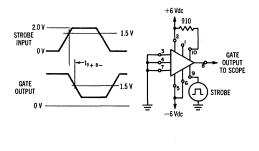

 $\mathbf{I_{io}}=|\mathbf{I_3}-\mathbf{I_4}|$ 



#### FIGURE 3 - OUTPUT VOLTAGE LEVELS

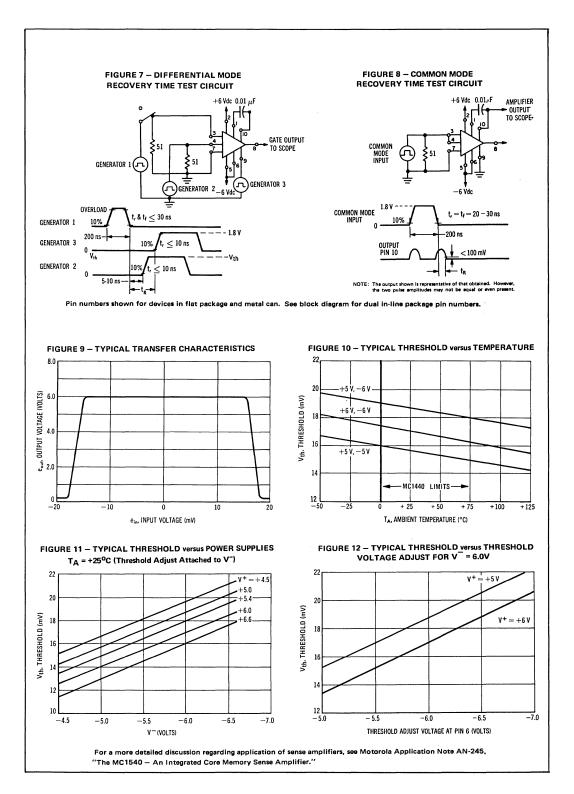



#### FIGURE 5 - PROPAGATION DELAY (STROBE HIGH)




### FIGURE 4 - AMPLIFIER VOLTAGE GAIN

I3 I.




#### FIGURE 6 - PROPAGATION DELAY (STROBE INPUT)

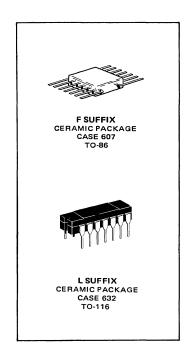




### MC1540, MC1440 (continued)

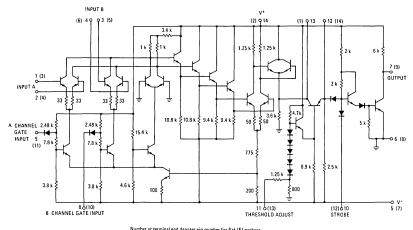


Dual-channel gated sense amplifier with separate wideband differential input amplifiers. Either input can be gated on from saturated logic levels. The sense amplifier features adjustable threshold, saturated logic output levels, and a strobe input that accommodates saturated logic levels. Designed to detect bipolar signals from either of two sense lines. Operates with core memory cycle times less than 0.5  $\mu$ s.


#### **Typical Amplifier Features:**

- Nominal Threshold 17 mV
- Input Offset Voltage 1.0 mV typical

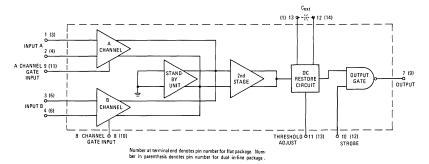
MC1541 MC1441


- Propagation Delay Input to Gate-Output – 20 ns Input to Amplifier-Output – 10 ns Gate Response Time – 15 ns Strobe Response Time – 15 ns
- Common Mode Input Range 1.5 Volts
- Differential Mode Input Range With Gate On – 600 mV With Gate Off – 1.5 Volts
- Power Dissipation 140 mW typical

See Packaging Information Section for outline dimensions.



Rating	Symbol	Value	Unit
Power Supply Voltage	V+ V-	+10 -10	Vdc Vdc
Differential Input Signal	v _{in}	±5	Vdc
Common Mode Input Voltage	CMV	±5	Vdc
Load Current	IL	25	mA
Power Dissipation (Package Limitation) Flat Package Derate above 25°C Ceramic Dual In-Line Package Derate above 25°C	PD	500 3.3 600 4.8	mW mW/°C mW mW/°C
Operating Temperature Range MC1541F, MC1541L MC1441F, MC1441L,	ТА	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


#### MAXIMUM RATINGS



CIRCUIT SCHEMATIC



LOGIC DIAGRAM



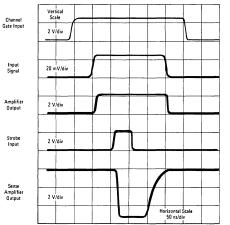



FIGURE 1 - TYPICAL OPERATION

### MC1541, MC1441 (continued)

#### ELECTRICAL CHARACTERISTICS

 $(V^+ = +5.0 \text{ Vdc} \pm 1\%, V^- = 5.0 \text{ Vdc} \pm 1\%, V_{th}(\text{pin 11}) = -5.0 \text{ Vdc} \pm 1\%, C_{ext} = 0.01 \mu\text{F}, T_A = 25^{9}\text{C}$  unless otherwise noted)  $(T_{low} = -55^{9}\text{C} \text{ for MC1541 or } 0^{9}\text{C} \text{ for MC1441}, T_{high} = +125^{9}\text{C} \text{ for MC1541 or } +75^{9}\text{C} \text{ for MC1441}.$  Pin numbers referenced in table denote flat package; to ascertain corresponding pin number for dual in-line package refer to the equivalent circuit.)

Characteristic Fig. No. Symbol Min Тур Max Unit Input Threshold Voltage 8 V_{th} mV  $(T_A = +25^{\circ}C)$ 14 17 20 MC1441 13 21  $(T_{low} \leq T_A \leq T_{high})$ MC1541 12 17 22 Input Offset Voltage 8 v_{io} -1.0 6.0 mV I, Input Bias Current 9  $\mu \mathbf{A}$ 5.0 25  $(V_1 = V_2 = V_3 = V_4 = 0)$ - $(V_1 = V_2 = V_3 = V_4 = 0, T_A = T_{low})$ 50 -Input Offset Current 9 -1.0 2.0  $\mu \mathbf{A}$ I_{io} Output Voltage High v_{он} Vdc  $(V_1 = V_2 = V_3 = V_4 = 0, I_{OH} = 200 \ \mu A)$ 3.0 -_ Output Voltage Low ( $V_1 = V_2 = V_3 = V_4 = 0$ ,  $V_{12} = +5.0$  Vdc,  $I_7 = 10$  mAdc) 10 VOL mVdc -350 - $(V_{12} = +5.0 \text{ Vdc}, I_7 = 10 \text{ mAdc}, T_A = +T_{high})$ _ 400 I_S Strobe Load Current mAdc  $(V_{10} = 0)$ _ _ 1.5 Strobe Reverse Current  $I_{SR}$ μAdc  $(V_{10} = +5.0 \text{ Vdc})$ 2.0 _ - $(V_{10} = +5.0 \text{ Vdc}, T_A = T_{high})$ _ 25 _ Input Gate Voltage Low ( $V_1 = V_3 = 25 \text{ mVdc}, V_2 = V_4 = 0$ ) 11 v_{GL} Vdc _ 0.7 -Input Gate Voltage High ( $V_1 = V_3 = 25 \text{ mVdc}, V_2 = V_4 = 0$ ) 11 v_{GH} Vdc _ 1.6 _ Input Gate Load Current  $I_{G}$ mAdc  $(V_8 \text{ or } V_9 = 0)$ 2.5 _ _ Input Gate Reverse Current ( $V_8$  or  $V_9$  = 5.0 Vdc)  $\mu Adc$ IGR  $(T_{A} = 25^{\circ}C)$ -_ 2.0  $(T_A = T_{high})$ 25 -_ Common Mode Range 13 vсм Vdc Input Gate High ±1.5 _ _ Input Gate Low ±1.5 Differential Mode Range 14 Input Gate High ±600 mV V_{DH} v_{DL} ±1.5 Input Gate Low _ Vdc P_D 140 Power Dissipation -180 mW

#### SWITCHING CHARACTERISTICS

Characteristic	Fig. No.	Symbol	Min	Тур	Max	Unit
Propagation Delay Input to Amplifier Output (V ₁ = 25 mV pulse, V ₁₀ = +2.0 Vdc)	8	^t IA	-	10	15	ns
Input to Output ( $V_1 = 25 \text{ mV pulse}$ , $V_{10} = +2.0 \text{ Vdc}$ )	8	^t ıo	-	20	30	
Strobe to Output ( $V_1 = V_2 = V_3 = V_4 = 0$ , $V_{10} = +2.0$ V pulse)	12	^t so	-	15	20	
Gate Input to Amplifier Input ( $V_1 = 25 \text{ mV pulse}$ , $V_9 = 2.0 \text{ V pulse}$ )	11	^t GI	-	10	15	
Gate Input to Amplifier Output (V ₁ = 25 mVdc, V ₉ = 2.0 V pulse)	11	^t GA	-	30	35	
Recovery Time Differential Mode Input Gate High Input Gate Low V1 or V3 = 400 mV pulse	14	^t DR	-	30 0	-	ns
Common Mode Input Gate High Input Gate Low $V_1$ or $V_3 = 1.5$ V pulse	13	^t cmr	- -	15 15	30 30	

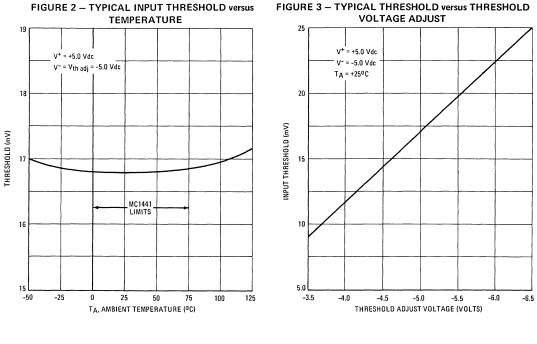
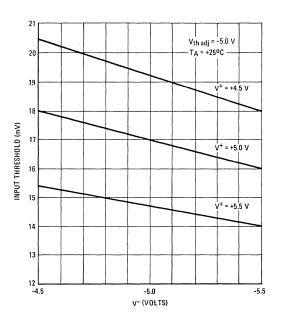




FIGURE 3 - TYPICAL THRESHOLD versus THRESHOLD

FIGURE 4 – TYPICAL INPUT THRESHOLD versus V⁻



**FIGURE 5 – TYPICAL INPUT THRESHOLD** versus INPUT PULSE WIDTH



### MC1541, MC1441 (continued)

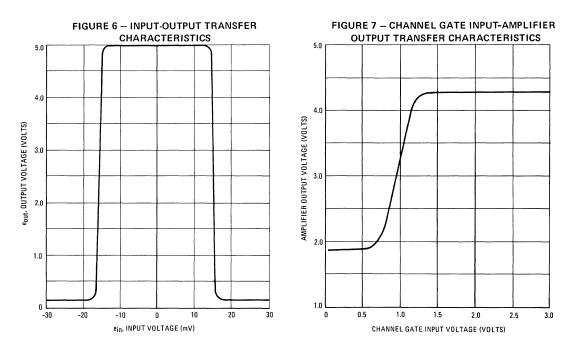
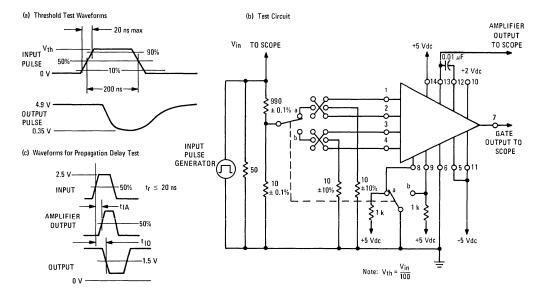
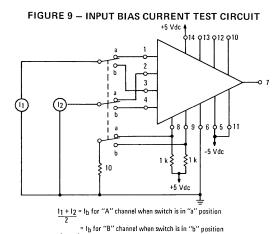
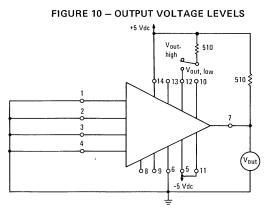
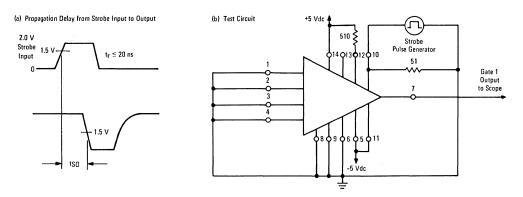





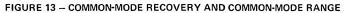

FIGURE 8 – INPUT THRESHOLD FOR OUTPUT VOLTAGE SWING FROM VOH TO VOL PROPAGATION DELAY FROM INPUT TO OUTPUT



Number at terminal end denotes the pin number for flat package only; to ascertain the corresponding pin number for the dual in line packages refer to the circuit schematic on the second page. 11-12 = lio







#### FIGURE 11 – MINIMUM TIME FROM CHANNEL GATE INPUT TO AMPLIFIER INPUT PROPAGATION DELAY FROM CHANNEL GATE INPUT TO AMPLIFIER OUTPUT

(A) Minimum Time from Gate Input to Amplifier Input - tGI (See Definitions) AMPLIFIER OUTPUT TO SCOPE (B) Test Circuit +2.0 V +5 Vdc  $t_{\Gamma} \leq 20 \text{ ns}$ +2.5 Vdc Gate Input 50% 0.01 μF 10% Ð H 200 ns TO SCOPE 0 (C) 12 0 10 (A) 14 13 25 mV  $t_{\Gamma} \leq 20 \text{ ns}$ Amplifier Input 50% 990 2 ± 0.1% 0 7 o tGI 3 4 Amplifier Output 6 5 9 6 11 8 INPUT PULSE GENERATOR GATE (г (C) Propagation Delay from Channel Gate PULSE Input to Amplifier Output GENERATOR b 2.0 V Gate  $t_{f} \leq 20 \text{ ns}$ TO SCOPE -5 Vdc 50% Input 51 \$ ₹ 10 ± 0.1% **₹10±10%** ₹50 10 ± 10% Ş 50 Ş 0 Amplifier Output 50% ^tGA

> (Pin numbers shown on this page denote the pin numbers for the flat package only; to ascertain the corresponding pin numbers for the dual in-line package, refer to the circuit schematic on the second page.)



#### FIGURE 12 - PROPAGATION DELAY FROM STROBE INPUT TO OUTPUT



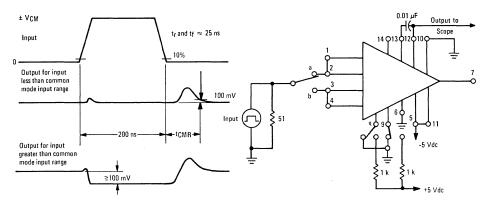
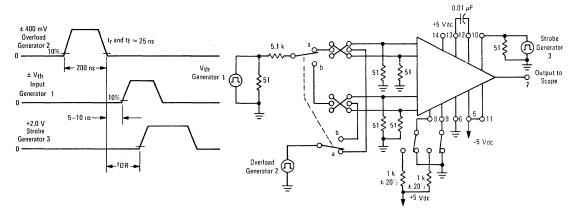




FIGURE 14 - DIFFERENTIAL RECOVERY AND DIFFERENTIAL RANGE



(Pin numbers shown on this page denote the pin numbers for the flat package only; to ascertain the corresponding pin numbers for the dual in-line package, refer to the circuit schematic on the second page.)

### DEFINITIONS

Pin numbers referenced in the definitions below denote the flat package only; to ascertain the corresponding pin number for the dual in-line package refer to the circuit schematic.

- IB Input Bias Current The average input currenτ defined as (I₁ + I₂ + I₃ + I₄)/4.
- IG Channel Gate Load Current The amount of current drain from the circuit when the channel gate input (Pin 8 or 9) is grounded.
- IGR Channel Gate Reverse Current The leakage current when the channel gate input (Pin 8 or 9) is high.
- I_{io} Input Offset Current The difference between amplifier input current values 11 – 12 or 13 – 14.
- IS Strobe Load Current The amount of current drain from the circuit when the strobe pin is grounded.
- ISR Strobe Reverse Current The leakage current when the strobe input is high.
- PD Power Dissipation The amount of power dissipated in the unit.
- tCMR Common Mode Recovery Time The time required for the voltage at pin 12 to be within 100 mV of the dc value (after overshoot or ringing) as referenced to the 10% point of the trailing edge of a common mode overload signal.
- tDR Differential Recovery Time The time required for the device to recover from the specified differential input prior to strobe enable as referenced to the 10% point of the trailing edge of an input pulse. The device is considered recovered when the threshold with the overload signal applied is within 1.0 mV of the threshold with no overload input.
- tGI Minimum Time Between Channel Gate Input and Signal Input – The minimum time between 50% point of channel gate input (Pin 8 or 9) and 50% point of signal input (Pins 1, 2, 3, or 4) that still allows a full width signal at amplifier output.
- tGA Propagation Delay, Channel Gate Input to Am plifier Output The time required for the amplifier output at pin 13 to reach 50% of its final value as referenced to 50% of the input gate pulse at pin 8 or 9 (Amplifier input = 25 mVdc).
- tIA Propagation Delay, Input to Amplifier Output The time required for the amplifier output

pulse at pin 13 to achieve 50% of its final value referenced to 50% of the input pulse at pins 1 and 2 or 3 and 4.

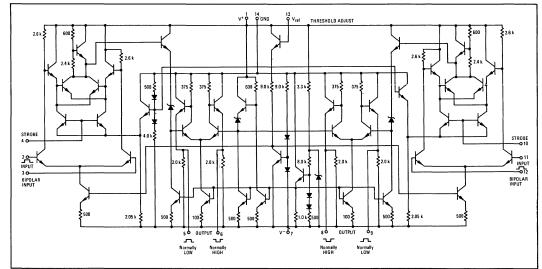
- tIO Propagation Delay, Input to Output The time required for the gate output pulse at pin 7 to reach the 1.5 Volt level as referenced to 50% of the input pulse at pins 1 and 2 or 3 or 4.
- tSO Strobe Propagation Delay to Output The time required for the output pulse at pin 7 to reach the 1.5 Volt level as referenced to the 1.5 Volt level of the strobe input at pin 10.
- VCM Maximum Common Mode Input Range The common mode input voltage which causes the output voltage level of the amplifier to decrease by 100 mV. (This is independent of the channel gate input level.)
- VDH Maximum Differential Input Range, Gate Input High – The differential input which causes the input stage to begin saturation.
- VDL Maximum Differential Input Range, Gate Input Low – The differential input signal which causes the output voltage level of the amplifier to decrease by 100 mV.
- VGH Channel Gate Input Voltage High Gate pulse amplitude that allows the amplifier output pulse to just reach 100% of its final value. (Amplifier input is set at 25 mVdc).
- VGL Channel Gate Input Voltage Low Gate pulse amplitude that allows the amplifier output to just reach a 100 mV level. (Amplifier input is set at 25 mVdc).
- Vio Input Offset Voltage The difference in V_{th} between inputs at pins 1 and 2 or 3 and 4,
- VOH Output Voltage High The high-level output voltage when the output gate is turned off.
- VOL Output Voltage Low The low-level output voltage when the output gate is saturated and the output sink current is 10 mA.
- Vth Input Threshold Input pulse amplitude at pins 1, 2, 3 or 4 that causes the output gate to just reach VOL.

# MC1543L

### DUAL SENSE AMPLIFIER

#### DUAL MECL CORE-MEMORY SENSE AMPLIFIER

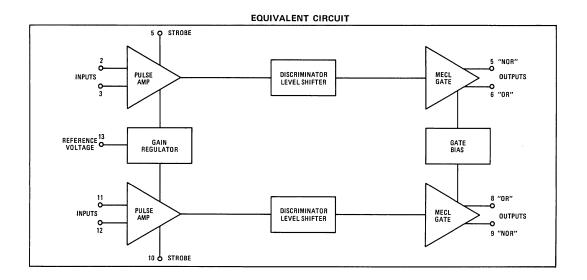
A dual dc coupled sense amplifier. Output levels are compatible with emitter coupled logic levels. MC1543L offers adjustable threshold and excellent threshold stability over a wide range of powersupply voltage variation.


#### **Typical Amplifier Features:**

- Input Threshold Adjustable from 10 to 40 mV (Positive or Negative Signals)
- Both OR and NOR Outputs Available
- Low Power Dissipation
- Threshold Insensitive to + or Supply Variation
- Each Amplifier is Separately Strobed

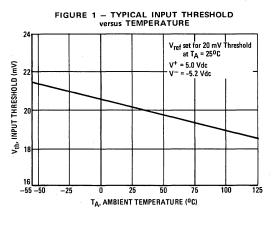
#### MAXIMUM RATINGS (T_A = 25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺ V ⁻	+10 -10	Vdc Vdc
Differential Input Signal	Vin	<u>+</u> 5.0	Vdc
Common Mode Input Voltage	CMVin	<u>+</u> 5.0	Vdc
Load Current	1	25	mA
Power Dissipation (Package Limitation)	PD		
Ceramic Dual-in-Line Package Derate above 25 ⁰ C		100′0 6.7	mW mW/ ^O C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

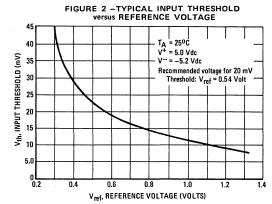

#### CIRCUIT SCHEMATIC

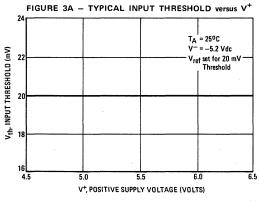


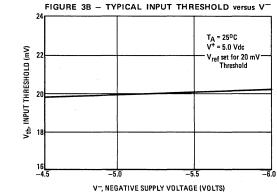
See Packaging Information Section for outline dimensions.




TO-116





ELECTRICAL CHARACTERISTICS (Each Amplifier) ( $V^+ = +5.0 Vdc + 5\%, V^- = -5.2 Vdc + 5\%, V_{ref} = 0.54 V + 1\%, T_{\Delta} = +25^{\circ}C$  unless otherwise noted)


Characteristic		Fig. No.	Symbol	Min	Тур	Max	Unit
Input Threshold Voltage		8	Vth	17	20	23	mV
Power Supply Currents $(V_2 = V_3 = V_{11} = V_{12} = V_{14} = 0)$		6	ICC		9.5	12	mAdo
	6	IEE	-	26.5	33	mAde	
Input Bias Current		7	Чb	_	3.5	10	μAde
Input Offset Current		7	lio	-	0.05	0.5	μAde
Output Voltage High		9	VOH	-0.85	-0.8	-0.67	Vdc
Output Voltage Low		9	VOL	-	-1.7	-1.46	Vdc
Strobe Threshold Level		10	VST	-	-1.30	-	Vdc
Strobe Input Current High		10	ISH	-	25	50	μAdo
Strobe Input Current Low		10	ISL	-	0.01	0.1	μAdo
Input Common Mode Range		14	VCM	3.0	4.0	-	Vdc
Input Threshold Range (by varying V	ef)	8	VthR	-	10-40	-	mV
Power Dissipation		6	PD		185	230	mW
Reference Supply Input Current (Pin	13)	6	I _{ref}	-	10	40	μA
CHING CHARACTERISTICS							
Propagation Delay (Input to Output)		11	tio		28	35	ns
Propagation Delay (Strobe to Output)		12	tso	-	16	20	ns
Strobe Release Time		12	tSR	_	18	30	ns
Recovery Time (Differential Mode) (ein = 400 mVdc)		13	^t DR	_	10	15	ns
Recovery Time (Common Mode) (e _{in} = 4.0 Vdc)		14	tCMR	-	3.0	15	ns
Strobe Width Minimum		12	ts	-	8.0		ns
	25 ⁰ C)		•				
PERATURE TESTS (-55°C to +1)				T ·			
PERATURE TESTS (-55°C to +1)	{(-55 ^o C) (+125 ^o C)	8	V _{th}	18 15	21.5 18.5	25 22	mV
· · · · · · · · · · · · · · · · · · ·		8	V _{th}				mV 



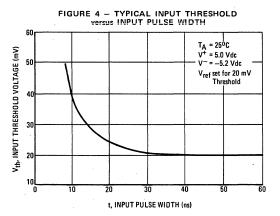
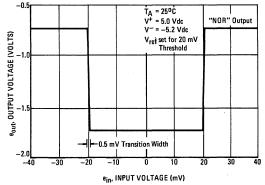
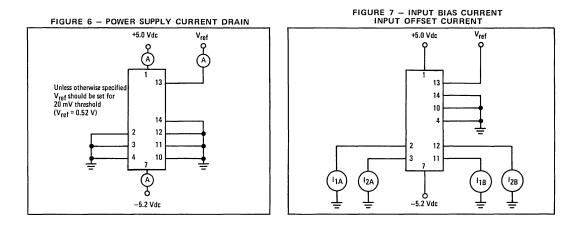
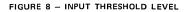
#### TYPICAL CHARACTERISTICS

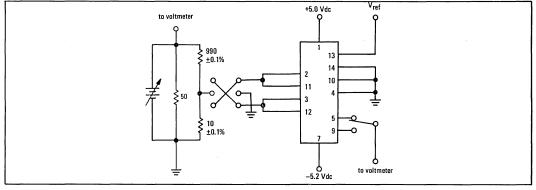


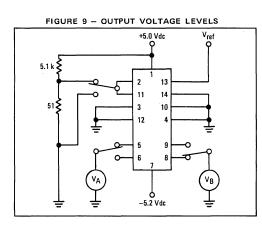


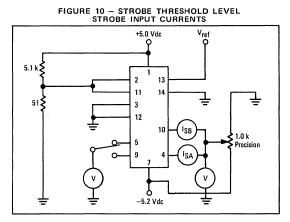


5.0 5.5 6.0 6. V⁺, POSITIVE SUPPLY VOLTAGE (VOLTS)



FIGURE 5 - INPUT-OUTPUT TRANSFER CHARACTERISTICS (one output)





7-200











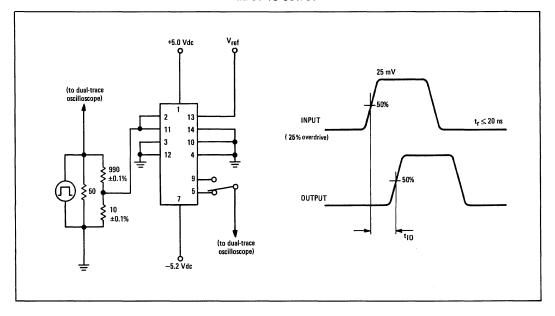
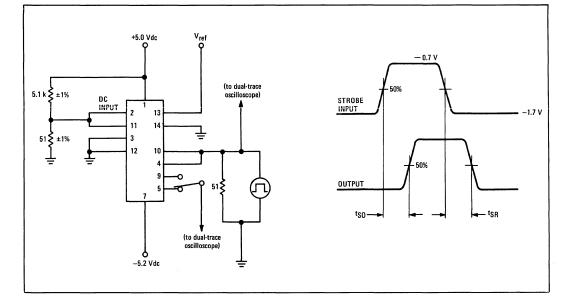




FIGURE 11 - PROPAGATION DELAY - INPUT TO OUTPUT

- - -

FIGURE 12 – PROPAGATION DELAY – STROBE TO OUTPUT and STROBE RELEASE TIME



- - -

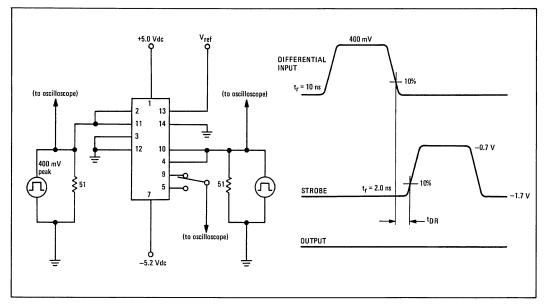
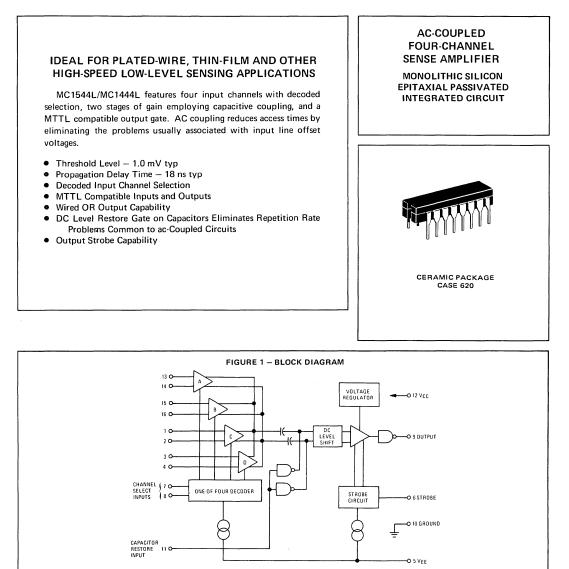





FIGURE 14 – COMMON MODE RECOVERY TIME COMMON MODE INPUT RANGE (See definition section)

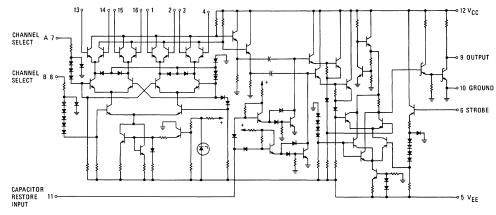



#### DEFINITIONS

- $I_{10} \text{ Input Offset Current} \text{The difference between amplifier input current values } |I_{1A} I_{2A}| \text{ or } |I_{1B} I_{2B}|.$
- ${\rm I}_{\mbox{SH}}$  Strobe High Current The amount of input current when the strobe pin is grounded.
- I_{SL} Strobe Low Current The leakage current when the strobe input is tied to the negative supply.
- PD Power Dissipation The amount of power dissipated in the unit.
- tCMR Common Mode Recovery Time The minimum time by which the strobe input may follow the high level common mode input signal without causing a signal to appear at the amplifier output.
- t_{DR} Differential Mode Recovery Time Differential recovery time, the minimum time by which the strobe input may follow the high level differential input signal without causing a signal to appear at the amplifier output.
- t_{IO} Propagation Delay, Amplifier Input to Amplifier Output The time required for the amplifier output to reach 50% of its final value as referenced to 50% of the level of the pulse input (Amplifier input = 25 mVdc or 25% over set threshold).
- $t_S$  Strobe Width The amount of time the strobe must be high to obtain a given output. Minimum strobe width is that minimum time required to cause the output to complete a full swing  $V_{OL}$  to  $V_{OH}$  or  $V_{OH}$  to  $V_{OL}$ .

- t_{SO} Propagation Delay, Strobe Input to Amplifier Output The time required for the amplifier output pulse to achieve 50% of its final value referenced to 50% of the strobe input pulse at pins 4 or 10.
- t_{SR} Strobe Release Time The time required for the output to change to 50% of its swing after the strobe reaches 50% of its level going low. A dc level of 50 mV is the input signal.
- V_{CM} Maximum Common Mode Input Range The common mode input voltage which causes the output voltage level of the amplifier to change by 100 mV (strobe high).
- V_{OH} Output Voltage High The high-level output voltage at pins 6 and 8 with no input – or at pins 5 and 9 with input above threshold.
- V_{OL} Output Voltage Low The low-level output voltage at pins 5 and 9 with no input – or at pins 6 and 8 with input above threshold.
- $V_{\mbox{ST}}$  Strobe Threshold Level The voltage at which the strobe turns the amplifier to the ON state.
- V_{th} Input Threshold Input pulse amplitude at pins 2, 3, 11, or 12 that causes the output gate to just reach its new value, V_{OL} or V_{OH}.
- $\label{eq:VthR} \begin{array}{l} \mbox{Input Threshold Range} & \mbox{The maximum spread of input} \\ \mbox{threshold level that can be attained by varying the threshold} \\ \mbox{voltage reference, } V_{ref}. \end{array}$

# MC1544L MC1444L




TRUTH TABLE									
PIN	PIN	CHANNEL							
7	8	SELECTED							
HI	HI	A							
LO	HI	B							
HI	LO	C							
LO	LO	D							

-7

RATING	SYMBOL	VALUE	UNIT
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -8.0	Vdc
Common-Mode Input Voltage	V _{CM} + V _{CM} -	+5.0 -6.0	Vdc
Differential-Mode Input Voltage	V _{DM} + V _{DM}	+5.0 6.0	Vdc
Capacitor Restore, Channel Select, and Strobe Input Voltage	V _{CR} , V _{CS} , V _S	+5.5	Vdc
Power Dissipation (Package Limitation) Derate above T _A = +25 ^o C	PD	1.0 6.7	W mW/°C
Operating Temperature Range MC1544L MC1444L	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	Тj	+175	°C

## **MAXIMUM RATINGS** ( $T_A = +25^{\circ}C$ unless otherwise noted)

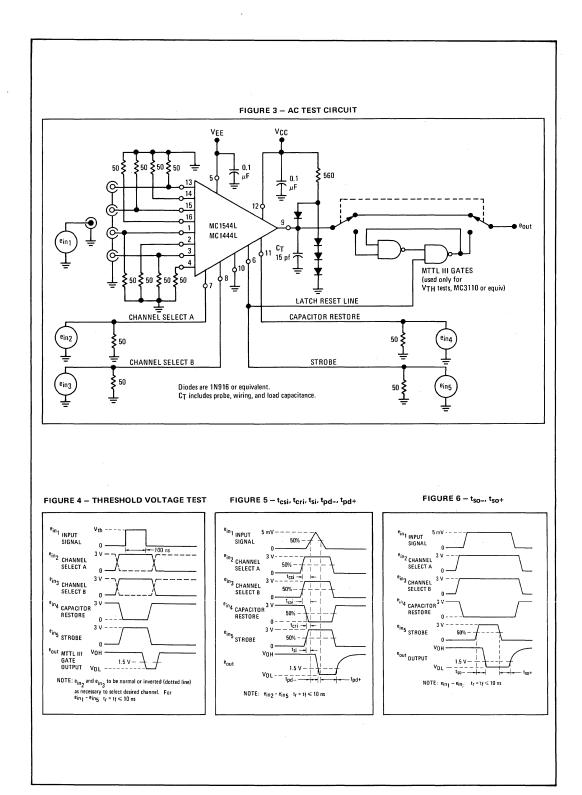


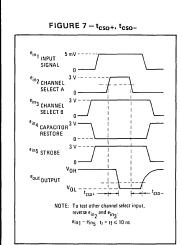
# FIGURE 2 – CIRCUIT SCHEMATIC

-

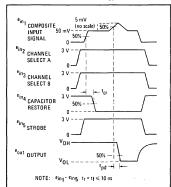
---

CHANNEL A 0-14 0-15 CHANNEL B 0-15	NC 1544	° >o	UTPUT																			
		O STROBE	RE									1	TEST	CURRENT	VOLTA	GE VAI	LUES				-	
	8 O CHANNEL SEL HANNEL SELECT A	ECT B						μA			nA					OLTS						
ELECTRICAL CHARACTE (T _A = +25 ^o C unless otherwise no								¹ CM ⁺	-10	10	1 _{ОН}	-	2.0	V1L2 0	VIH2 3.5	4.75	VCC 5.0	V _{CCH} 5.25	VEEL -5.7	VEE 6.0		1
			Pin	1	r—		<b></b>							LTAGES A						-0.0	-0.5	1
CHARACTERISTIC		Symbol	Under Test	Min	Тур	Max	Unit	4	12	I'OL	1		VIH	VIL2	VIH2	VCCL	Vcc			VEE	VEEH	GNE
Input Threshold Voltage (Note 1)	MC1544L	v _{тн}	13	-	1.0	-	mν	-	-	-	-	-	-	-	-	-	12	· _	-	5	-	10
T _{low} * to T _{high} *	MC1444L		13	-	1.0	-	mν	-	-	-	-	-	-	-	-	-	12	-	-	5	-	10
Input Bias Current (Note 1)		łb	13	-	20	-	μA	-	-	-	-	-	-	13, 14	7,8	-	-	12	-	-	5	10
Input Offset Current		lio	13, 14	-	1.0	-	μA	-	-	-	-	-	-	13, 14	7,8	-	-	12	-	-	5	10
Channel Select Input Current (Note 2)	High Level	CSH	7	-	1.8	3.0	mA	1	-	-	-	-		-	7	-	-	12	-	-	5	10
	Low Level	ICSL	7	-	0.6	1.0	mA	-	-	-	-	-	-	7	-	-	-	12	-	-	5	10
Capacitor Restore Input Current	High Level	ICRH	11	-	0	10	μA	-	-	-	-	-	-	-	11	-	-	12	-	-	5	10
	Low Level	ICRL	11	-	-2.5	-3.5	mA	-	-	-	-	-	-	11	-	-	-	12	-	-	5	10
	v/High Level	۱s	6	-	40	200	μA	-	-	-	-	-	-	-	6	-	-	12	-	-	5	10
Channel Select Input Voltage (Note 3)	High Level	VCSH	7	2.1	1.6	-	v	-	-	-	-	-	7	3, 8 13, 15	-	-	12	-	-	5	-	10
	Low Level	VCSL	7	-	1.2	0.7	v	-	-	-	-	7	-	1, 8 13, 15	-	-	12	-	-	5	-	10
Channel Select Input Voltage (Note 3)	High Level	VCSH	8	2.1	1.5	-	v	-	-	-	-	-	8	1, 3 7, 13	-	-	12	-	-	5	-	10
	Low Level	VCSL	8	-	1.0	0.7	v	-	-	-	-	8	-	1, 7 13, 15	-	-	12	-	-	5	-	10
Capacitor Restore Input Voltage (Note 4)	High Level	VCRH	11	2.0	1.5	-	v	-	-	-	-	-	11	-	6	-	12	-	-	5	-	10
	Low Level	VCRL	11	-	1.5	0.8	v	-	-	-	-	11	-	-	6	-	12	-	-	5	-	10
Strobe Input Voltage (Note 4)	High Level	VSH	6	2.0	1.5	-	v	-	-	-	-	-	6	11	-	-	12	-	-	5	-	10
·	Low Level	VSL	6	-	1.5	0.8	v	-	-	-	-	6	-	11	-	-	12	-	-	5	-	10
Output Voltage	High Level	∨он	9	2.4	3.6	-	v	-	-	-	9	6	-	-	-	12	-	-	5	-	-	10
	Low Level	VOL	9	-	0.4	0.5	v		-	9	-	-	-		-	12	-	-	-	-	-	10
Power Supply Currents	Positive	^I CC	12	15	22	30	mA	-	-	-	-	-	-		7,8,11	-	-	12	-	-	5	10
	Negative	IEE	5	15	20	30	mA	-	-	-	-	-	-	6, 13, 14	7,8,11	-	~	12	-	-	5	10
Common-Mode Range Voltage (N	lote 1)	∨ _{СМ} + ∨ _{СМ} -	13, 14 13, 14	-	4.7 -6.0	-	Vdc Vdc	13, 14 13, 14	-	-	-	-	-		7,8 7,8	-	12 12		-	5 5	-	10 10
Differential-Mode Range Voltage		VDM	13	-	3.7	-	Vdc	13	-	-	-	-	-	14	7,8	-	12	-	-	5	-	10


•MC1544 T_{low} = -55°C, T_{high} = +125°C; MC1444 T_{low} = 0°C, T_{high} = +75°C.


NOTES: 1. Only one input test is shown, other inputs are tested in the same manner and are elected according to the truth table in Figure 1.
 2. Pin B is tested in the same manner.
 3. This trequirement is considered satisfied if the input bias currents of all unselected channels total less than 1.0 μA which guarantees that these channels are ""oft," SWITCHING CHARACTERISTICS (T_A = +25°C unless otherwise noted)

SWITCHING CHARACTERISTICS (T_A = +25°C unless otherwise noted)

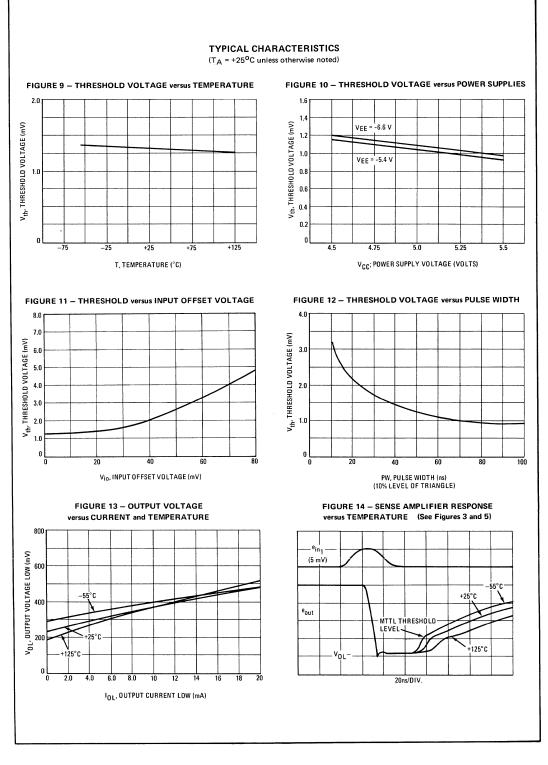

Characteristic	Symbol	Figure	Min	Тур	Max	Unit
Propagation Delay Time	^t pd ⁺	1,5	-	18 40	25 -	ns
Strobe to Input Lead Time	t _{si}	1, 5	-	10	~	ns
Strobe to Output Delay Time	t _{s0} t _{s0} +	1, 6	-	18 30	25 -	ns
Channel Select to Input Lead Time	t _{csi}	1, 5	-	15	-	ns
Channel Select to Output Delay Time	t _{cso} - t _{cso} +	1, 7	-	25 40	-	ns
Capacitor Restore to Input Lead Time	tcri	1, 5	-	10	-	ns
Capacitor Restore Time (50 mV Offset)	tcr	1, 8	-	15	-	ns
Common-Mode Recovery Time $e_{in_1} = +2.0V \\ e_{in_1} = -2.0V$	^t CMR ⁺ ^t CRM ⁻	19	-	50 50	-	ns
Differential-Mode Recovery Time $e_{in_1} = +1.0V \\ e_{in_1} = -1.0V$	^t DMR ⁺ ^t DMR ⁻	20	-	65 65	-	ns

,

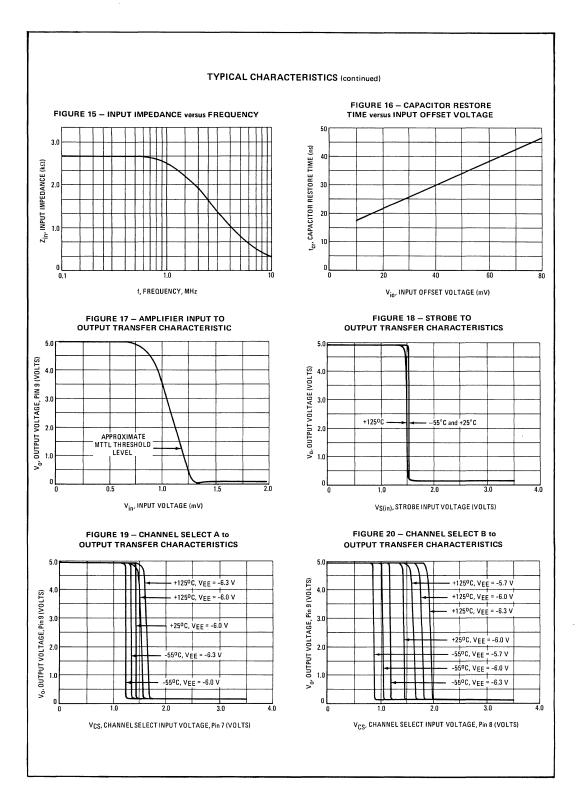


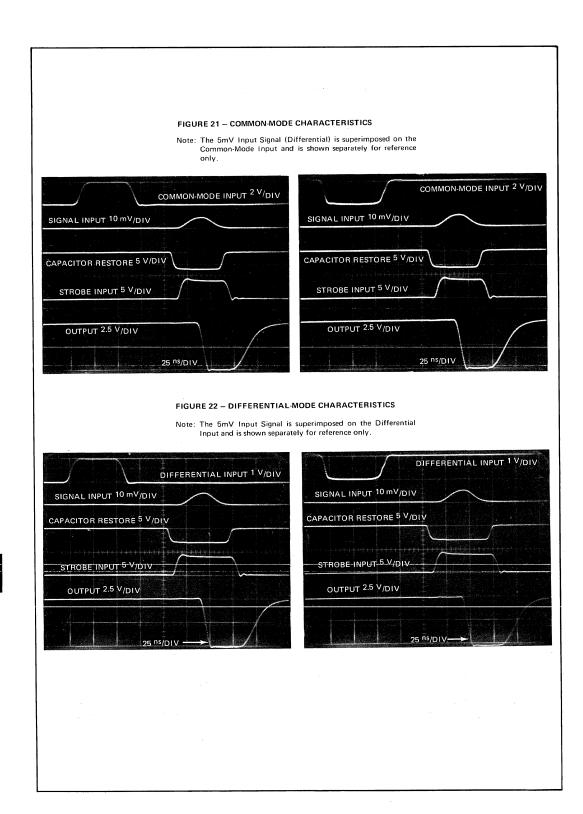


#### FIGURE 8 - t_{cr}

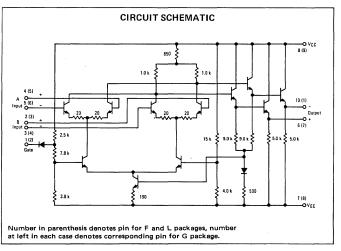


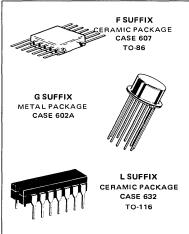

#### DEFINITIONS


- Ib
   Input current to the base of any input transistor when the base of the other transistor of the differential pair is at the same voltage


   Icc
   Positive power supply current
- $I_{CRH}$  The current into the channel select input when the input is at a high-level of 3.5 volts  $I_{CRL}$  The current out of the capacitor restore input when the input is at a low-level of 0 volts
- ICSH The input current to a channel select input when that input is at a high-level of 3.5 volts
- ICSL The current into a channel select input when the input is at a low-level of 0 volts
- EE Negative power supply current
- ${\rm I}_{10}$  The difference between the base currents of any input differential pair of transistors when the base voltages are equal
- IOH Output logic "1" state source current
- Output logic "0" state sink current
- ISH The current into the strobe input when the input is at a high-level of 3.5 volts
- I_{SL} The current into the strobe input when the input is at a low-level of 0 volts
- <code>tCMR±</code> The minimum time between the 50% level of the trailing edge of a + or 2 volt common-mode signal ( $t_r = t_f \leq 15$  ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 21</code>
- t_{cr} The minimum time between the 50% level of the leading edge of a 50 mV input offset signal and the 50% level of the leading edge of the capacitor restore pulse as shown in Figure 8
- $t_{cri}$  The minimum time between the 50% level of the leading edge of the capacitor restore signal and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 5
- $t_{csi}$  . The minimum time between the 50% level of the leading edge of the channel select and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 5
- $t_{\rm CSO+}$  The delay time from the 50% level of the trailing edge of the channel select signal to the 1.5 volt level of the positive edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 7
- $t_{\rm CSO-}$  The delay time from the 50% level of the leading edge of the channel select signal to the 1.5 volt level of the negative edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 7
- $t_{DMR\pm}$  The minimum time between the 50% level of the trailing edge of a + or 1 volt differential-mode signal ( $t_r$  =  $t_f \leq 15$  ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 22
- $t_{pd+} \qquad \mbox{The delay time from the 50\% level of the trailing edge of a 5 mV input signal to the 1.5 volt level of the positive edge of the output as shown in Figure 5$
- tpd The delay time from the 50% level of the leading edge of a 5 mV input signal to the 1.5 volt level of the negative edge of the output as shown in Figure 5
   The minimum time between the 50% level of the leading edge of the strobe and the
- t_{si} The minimum time between the 50% level of the leading edge of the strobe and the 50% level of the leading edge of the input signal as shown in Figure 5
- $t_{so+}$  The delay time from the 50% level of the trailing edge of the strobe to the 1.5 volt level of the positive edge of the output when the input is held at the "1" level as shown in Figure 6
- $t_{so-}$  The delay time from the 50% level of the leading edge of the strobe to the 1.5 volt level of the negative edge of the output when the input is held at the ''1'' level as shown in Figure 6
- VCC Positive power supply voltage
- VCCH Maximum operating positive power supply voltage
- VCCL Minimum operating positive power supply voltage
- $V_{CM}^+$  The maximum common-mode input voltage that will not saturate the amplifier
- V_{CM}- The minimum common-mode input voltage that will not break down the amplifier
- V_{CRH} The minimum high-level voltage at the capacitor restore input required to insure that the capacitors are clamped i.e., the input threshold voltage is greater than 10 mV
- that the capacitors are clamped i.e., the input threshold voltage is greater than 10 mV VCRL The maximum low-level voltage at the capacitor restore input which will allow normal operation during the threshold test
- $V_{CSH}$  . The minimum high-level voltage at a channel select input required to insure that the total of the base currents of all unselected inputs is less than 1.0  $\mu A$
- $V_{CSL}$  The maximum low-level voltage at a channel select input required to insure that the total of the base currents of all unselected inputs is less than 1.0  $\mu A$
- V_{DM} The maximum differential-mode input voltage that will not saturate the amplifier
- VEE Negative power supply voltage
- VEEH Maximum operating negative power supply voltage
- VEEL Minimum operating negative power supply voltage
- VOH Logic "1" state output voltage
- VOL Logic "0" state output voltage
- $V_{\mbox{SH}}$   $% T_{\mbox{SH}}$  The minimum high-level voltage at the strobe input which will allow normal operation during the threshold test
- $V_{\mbox{SL}}$  . The maximum low-level voltage at the strobe input which will result in  $V_{\mbox{OH}}$  at the output regardless of input signals
- $V_{th}$  \$ The minimum input signal (e_{in ,1}) required to drive the MTTL III gates to obtain the e_{0} waveform shown in Figure 4

7





7-210





#### **HIGH-FREQUENCY CIRCUITS** MC1545 **MC1445** GATE CONTROLLED TWO-CHANNEL-INPUT GATE CONTROLLED WIDEBAND AMPLIFIER **TWO-CHANNEL-INPUT** . . . designed for use as a general-purpose gated wideband-amplifier, WIDEBAND AMPLIFIER video switch, sense amplifier, multiplexer, modulator, FSK circuit, limiter, AGC circuit, or pulse amplifier. See Application Notes MONOLITHIC SILICON AN475 and AN491 for design details. EPITAXIAL PASSIVATED Large Bandwidth; 75 MHz typical • Channel-Select Time of 20 ns typical Differential Inputs and Differential Output TYPICAL APPLICATIONS VIDEO SWITCH OR DIFFERENTIAL AMPLIFIER WITH AGC MULTIPLEX OR FSK ANALOG SWITCH VCC 0 VEE VCC VEE VCC 0 VEE 4(5) 4(5) 4(5) SIGNAL INPUT -16 SIGNAL INPUT Channel 1 Input 10(1) 5(6 5(6) 10(1) 10(1) 2(3) 2(3) 2(3) Channel 2 Input 6(7) 6(7) 3(4) 3(4) 3(4) --- +5.0 V --- 0 V (1(2) Channel-Select Input ¹⁽²⁾ Gate or AGC Input AMPLITUDE MODULATOR PULSE-WIDTH MODULATOR BALANCED MODULATOR VCC 0 VEE 5) 8(9) 7(8) VCC o VEE (9) 7(8) VCC 0 VEE 4(5) 4(5) 4(5) RF Input • 5(6) Carrier 5(6) 5(6 Innut 2(3) 2(3) 2(3) eout 51 3(4 3(4) 3(4) T1(2) 1(2) 1(2) Audio Input 5.0 k Bias Adjust Open



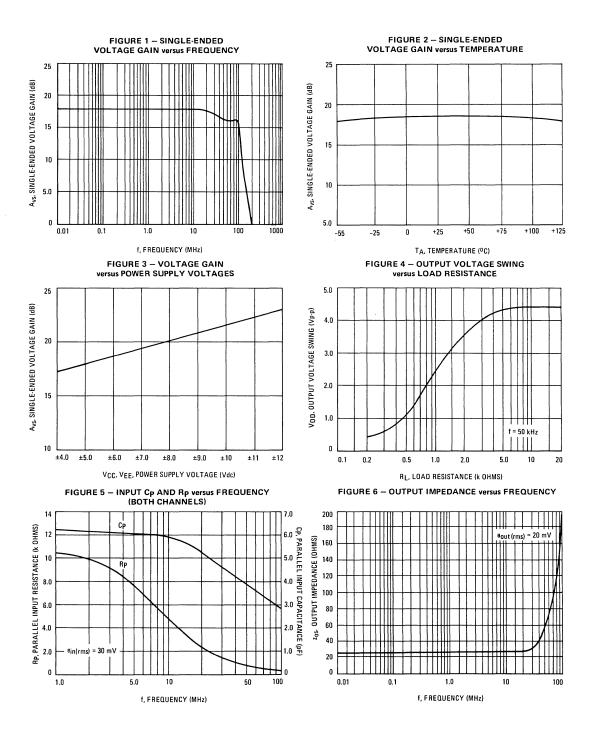


See Packaging Information Section for outline dimensions.

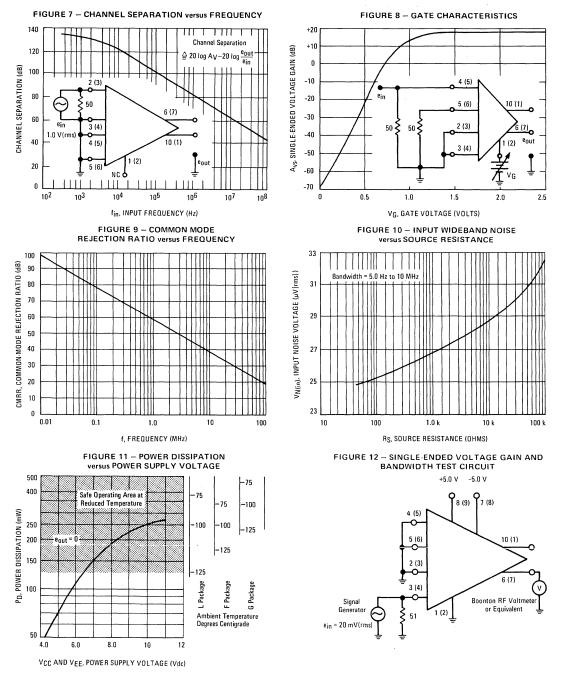
Modulation Adjust 5.0 k

## MC1545, MC1445 (continued)

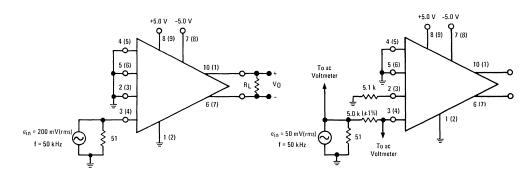
Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+12 -12	Vdc Vdc
Differential Input Signal	VID	±5.0	Volts
Load Current	١L	25	mA
Power Dissipation (Package Limitation) Flat Package Derate above T _A = +25 ⁰ C	PD	500 3.3	mW mW/ ^o C
Ceramic Dual In-Line Package Derate above T _A = +25 ⁰ C		625 5.0	mW mW/ ^o C
Metal Can Derate above T _A = +25 ^o C		680 4.6	mW mW/ ⁰ C
Operating Temperature Range MC144 MC154		0 to +75 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


## MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

### ELECTRICAL CHARACTERISTICS


 $(V_{CC} = +5.0 \text{ Vdc}, V_{EE} = 5.0 \text{ Vdc}, \text{ at } T_A = +25^{\circ}\text{C},$ specifications apply to both input channels unless otherwise noted)

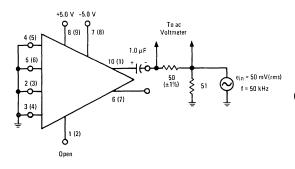
Characteristic		Fig. No.	Symbol*	Min	Тур	Max	Ųnit
Single-Ended Voltage Gain	MC1445 MC1545	1, 12	A _{vs}	16 16	19 18	22 20	dB
Bandwidth	MC1445 MC1545	1, 12	BW	 50	75 75	-	MHz
Input Impedance (f = 50 kHz)	MC1445 MC1545	5, 14	zis	3.0 4.0	10 10	-	k ohms
Output Impedance (f = 50 kHz)		6, 15	z _{os}	-	25		Ohms
Output Voltage Swing (R _L = 1.0 k ohm, f = 50 kHz)		4, 13	VOD	1.5	2.5	-	V _{p-p}
Input Bias Current (1 _{1B} = (1 ₁ + 1 ₂ )/2)	MC1445 MC1545	16	Iв	-	15 15	30 25	μAdc
Input Offset Current		16	10	-	2.0	- ,	μAdc
Input Offset Voltage	MC1445 MC1545	17	vio	_	_ 1.0	7.5 5.0	mVdc
Quiescent Output dc Level		17	Vo	-	0.2	-	Vdc
Output dc Level Change (Gate Voltage Change: +5.0 V to 0 V)		17	^vo	-	15	-	mV
Common-Mode Rejection Ratio (f = 50 kHz)		9, 18	CMRR	-	85	-	dB
Input Common-Mode Voltage Swing		18	VICR	-	±2.5	-	Vp
Gate Characteristics Gate Voltage Low (See Note 1)	MC1445 MC1545	8	V _{GOL}	0.20 0.45	0.40 0.70	-	Vdc
Gate Voltage High (See Note 2)	MC1445 MC1545		V _{GOH}	-	1.3 1.5	3.0 2.2	
Gate Current Low (Gate Voltage = 0 V)	MC1445 MC1545	18	IGOL	-		4.0 2.5	mA
Gate Current High (Gate Voltage = +5.0 V)	MC1445 MC1545	18	^I GOH		-	4.0 2.0	μA
Step Response (e _{in} = 20 mV)	MC1445 MC1545	19	^t ₽LH	-	6.5 6.5	10	ns
	MC1445 MC1545		t₽HL		6.3 6.3	 10	
	MC1445 MC1545		t _r		6.5 6.5	 10	
	MC1445 MC1545		tf	-	7.0 7.0	_ 10	
Wideband Input Noise (5.0 Hz - 10 MHz, R _S = 50 ohms)		10, 20	V _N (in)	_	25		μV(rms)
DC Power Dissipation	MC1445 MC1545	11, 20	PD	-	70 70	150 110	mW


Note 1 V_{GOL} is the gate voltage which results in channel A gain of unity or less and channel B gain of 16 dB or greater. Note 2 V_{GOH} is the gate voltage which results in channel B gain of unity or less and channel A gain of 16 dB or greater. *Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.



7




Number in parenthesis denotes pin for F and L packages, number at left in each case denotes corresponding pin for G package.



## FIGURE 13 – OUTPUT VOLTAGE SWING TEST CIRCUIT

FIGURE 14 - INPUT IMPEDANCE TEST CIRCUIT

## FIGURE 15 - OUTPUT IMPEDANCE TEST CIRCUIT



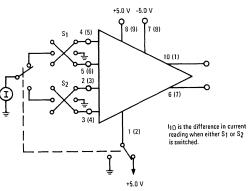
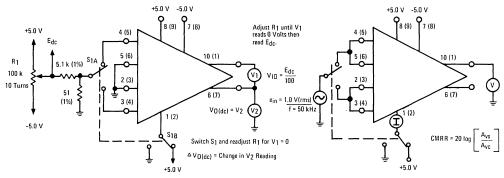




FIGURE 16 – INPUT BIAS CURRENT AND INPUT OFFSET CURRENT TEST CIRCUIT

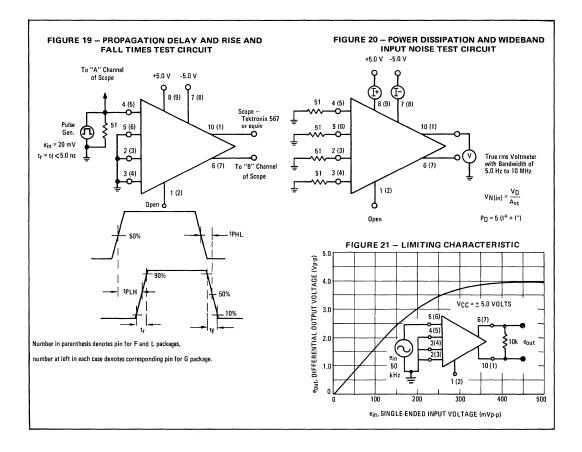

#### FIGURE 17 – INPUT OFFSET VOLTAGE AND QUIESCENT OUTPUT LEVEL TEST CIRCUIT

FIGURE 18 – GATE CURRENT (HIGH AND LOW), COMMON-MODE REJECTION AND COMMON-MODE INPUT RANGE TEST CIRCUIT



Number in parenthesis denotes pin for F and L packages, number at left in each case denotes corresponding pin for G package.

## MC1545, MC1445 (continued)



14

GN0 15

_____09 -6.0 V



See Packaging Information Section for outline dimensions.

××××

MC1546L MC1446L

3.0 k

4.0 k \$ \$4.0

12

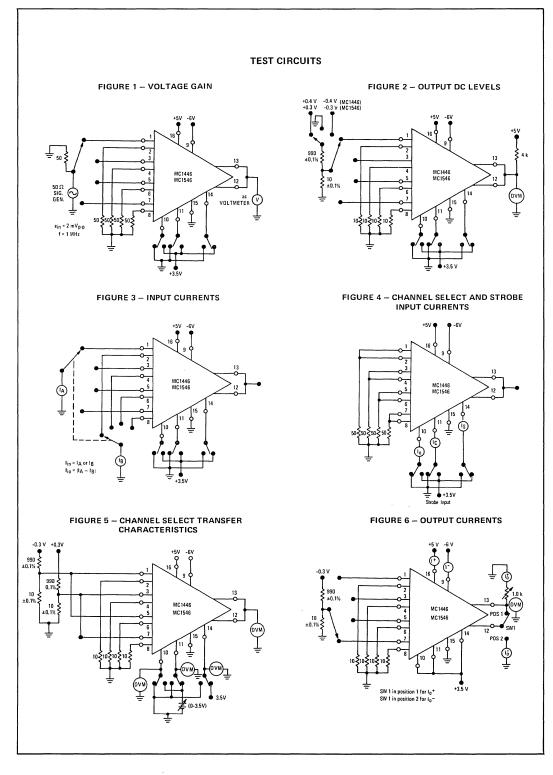
180

## MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

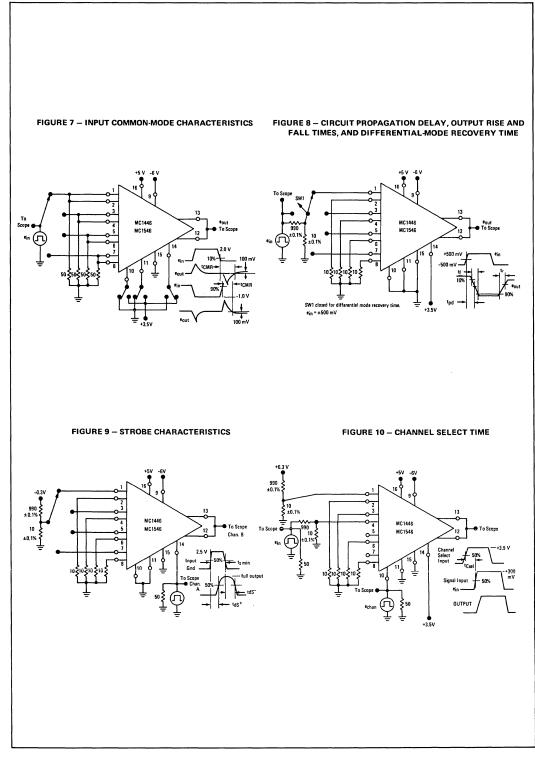
Rating	,	Symbol	Value	Unit
Power Supply Voltage		V+ V-	+10 -10	Vdc
Differential Input Signal		Vin	±5.0	Volts
Common-Mode Input		CMVin	±5.0	Volts
Output Current		lout	25	mA
Power Dissipation (Package Limitation Ceramic Package Derate above T _A = +25 ^o C	)	PD	575 3.85	mW mW/ ^o C
Operating Temperature Range	MC1546L MC1446L	Τ _Α	-55 to +125 0 to +75	°C
Storage Temperature Range	MC1546L MC1446L	T _{stg}	-65 to +175 -55 to +125	°C

~ ~

## ELECTRICAL CHARACTERISTICS


(V⁺ = +5.0 Vdc  $\pm 1\%$ , V⁻ = -6.0 Vdc  $\pm 1\%$ , T_A = +25^oC unless otherwise noted)

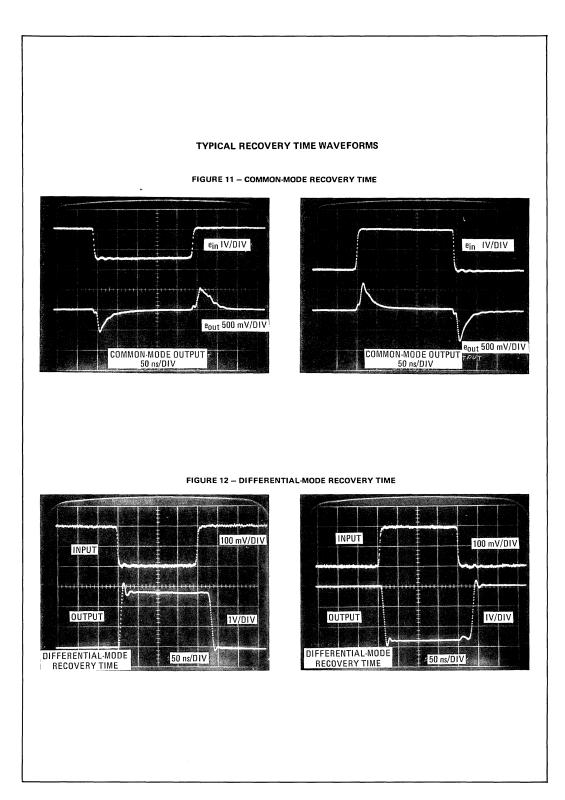
			1999 P	MC1546	- Sec. 19	1 m	MC1446L		
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Voltage Gain	1	Av	a (1916) 1917 - Start Barris, 1917 - Start B 1917 - Start Barris, 1917 - Start Barris, 19	600		-	600	-	-
Output Voltage Level MC1546, MC1446	2	V _o			an an tha an thair an				Vdc
T _A = T _{low} * to T _{high} *			0.8 2,0 -	1.4 _ _	2.0 _ 0.4	0.4 2.0 -	1.4 - -	2.4 	
Input Bias Current	3	Ь		15	40	-	15	60	μA
Input Offset Current	3	lio	gelle <del>n</del> (d.	0.1	2.0	-	0.1	4.0	μA
Channel Select Current High Level Low Level	4	ICH ICL	-	1.7 0.5	2.4 0.9		1.7 0.5	2.6 1.0	mA
Channel Select Voltage High Level Low Level	5	V _{CH} V _{CL}	2.0	-	0.8	2.0 -			Volts
Strobe Voltage High Level Low Level	5	V _{SH} V _{SL}	2.0 _		 0.8	2.0 	· _		Voits
Strobe Input Current	4	IS		30	100	-	30	150	μA
Output Source Current	6	1 ₀₊	5.0	8.0	2 Contractor	4.0	8.0	-	mA
Output Sink Current	6	10-	-3.0	-4.0	Sec 23	-2.5	-4.0	-	mA
Positive Supply Current	6	1+		19	25	-	19	27	mA
Negative Supply Current	6	1-	Station of the second s	-17	-22	_	-17	-24	mA
Input Common-Mode Voltage Range Channel Selected Channels Not Selected	7	CMV(in)	-	+2.7 -1.0 +2.7 -6.0	$\mathbf{I}_{i} = \mathbf{I}_{i} + \mathbf{I}_{i}$		+2.7 1.0 +2.7 -6.0		Volts
Input Differential-Mode Voltage Range Channel Selected Channels Not Selected	7	DMV(in)	Ē	±0.5 ±2.0		_	±0.5 ±2.0	-	Volts

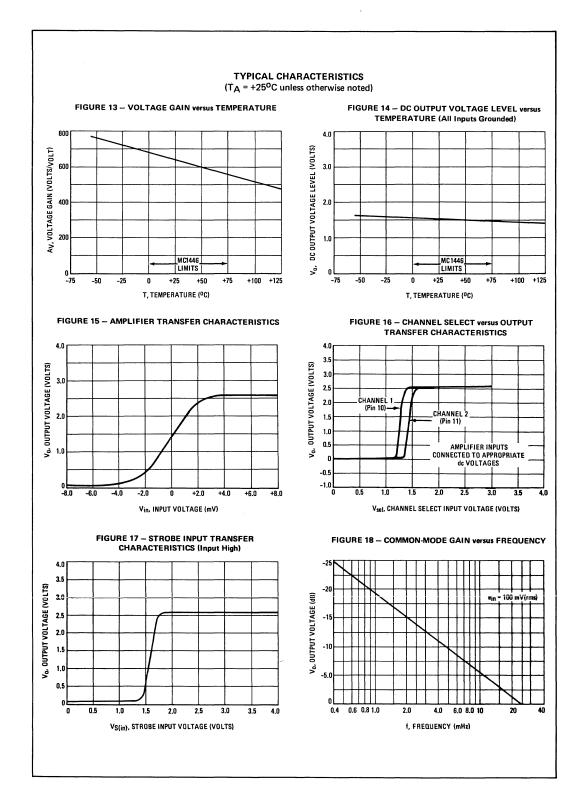

 $^{\circ}T_{low} = -55^{\circ}C$  for MC1546, O^oC for MC1446; T_{high} = +125^oC for MC1546, +75^oC for MC1446

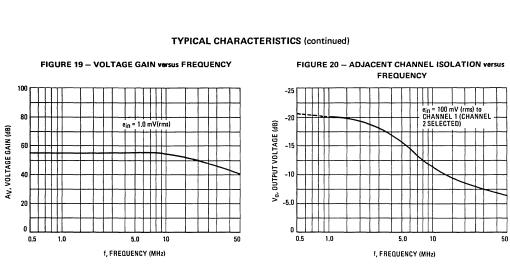
## SWITCHING CHARACTERISTICS

Propagation Delay Time	8	tpd	10	14	18	-	14	-	ns
Output Rise or Fall Time	8	t _r or t _f		30	$\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \left( \frac{1}$		30	-	ns
Strobe Delay Time	9	tdS	-	14	18		14	-	ns
Strobe Width (min)	9	tS(min)		20		-	20	-	ns
Channel Select Time	10	tCsel		14	18	-	14	-	ns
Common-Mode Recovery Time (channel selected)	7	^t CMR		60		-	60	-	ns
Differential-Mode Recovery Time (channel selected)	8	^t DMR		40		-	40	-	ns




7





-

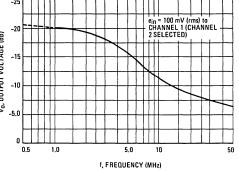
-

- - -








#### CIRCUIT DESCRIPTION OF THE MC1546L/MC1446L

The MC1546L/MC1446L was designed to translate a positive 3.0 mV signal from a plated wire memory to an MTTL "1" level, or a negative 3.0 mV to an MTTL "0" level. This sense amplifier also eliminates the requirement for a bipolar switch in series with the plated wire because the bit selection is done inside the sense amplifier.

- The circuit operation can be described in sections as follows:
- 1. All channels have been designed for low input offsets -0.5 V typical.
- 2. Channel "ORing" is accomplished by using common collector load resistors for four differential amplifier pairs.
- 3. Channel selection is accomplished by current steering through the four differential pairs. The circuit below the four differential pairs forms a matrix tree which can be thought of as a 2-by-4 decode matrix. The bottom transistor is the current source for the first stage of gain.
- 4. DC translation between the first and second stages of gain is done through an emitter-follower stage, two diodes and another emitter follower for each side of the differential amplifier. The currents in these translator legs are combined and run through diodes to the negative supply. These diodes are used to bias both the first and second gain stages. This also gives the appropriate gain versus temperature and dc output level versus temperature characteristics.
- 5. The top of the second stage amplifier is regulated at a voltage equal to five diode drops above ground. It can be seen that if the 700 ohm resistor in the regulator has one diode (or VBE) across it then the 2.8 k ohm resistor will have four diode drops across it. This makes a five diode drop voltage

#### APPLICATIONS INFORMATION

The MC1546/MC1446 devices are designed to convert signals from plated-wire memories as small as positive or negative 3 mV to MTTL logic levels. The output level of the sense amplifier with no input signal present and with the strobe high is typically 1.4 volts (typical input threshold of MTTL logic). Hence, if the strobe goes high during the absence of an input signal from the plated-wire memory, the sense amplifier output will rise to 1.4 volts. This condition could cause false outputs; therefore careful considerations must be given to strobe timing. Figure 21 illustrates a typical timing sequence of the MC1546/MC1446 device as recommended for proper operation.



above ground that is fairly independent of the positive supply.

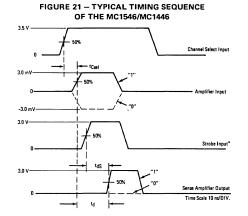
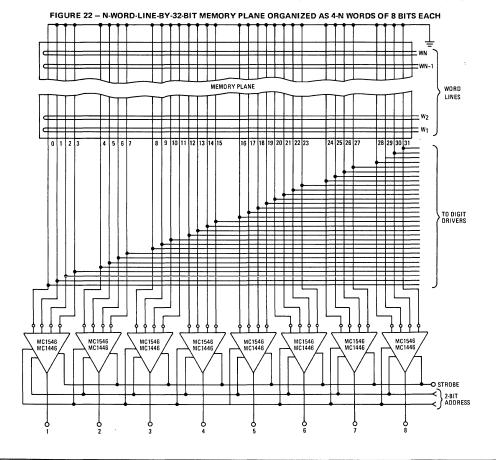
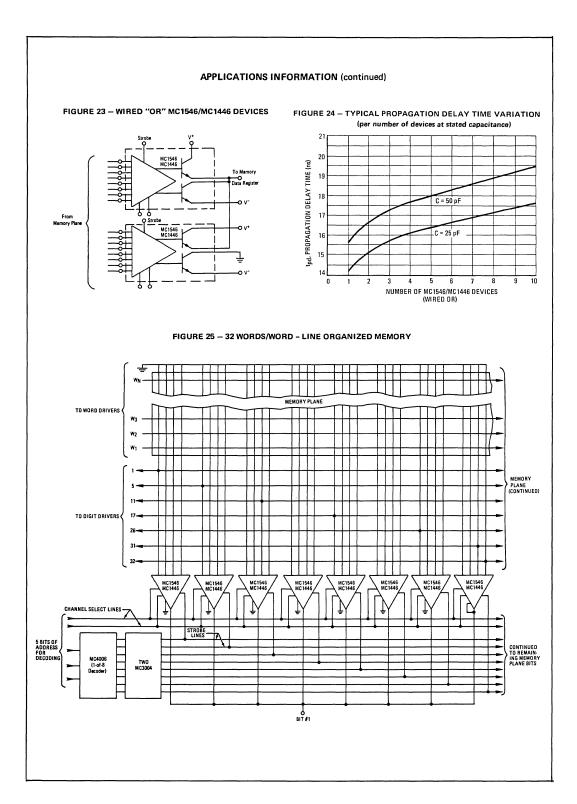

- 6. The current in the second stage of the amplifier is set by the 180-ohm resistor in the emitter of the current source. It can be seen that this resistor has one diode drop (approximately 750 mV) across it. Therefore, an analysis will show that the voltage drop across the 775-ohm load resistor in the second stage will be approximately two diodes when the differential amplifier is balanced. Accounting for the additional diode voltage drop of the emitter-follower output transistor will set the output dc level at two diodes above ground or very near the center of MTTL threshold.
- 7. The strobe circuit works by steering current in the second stage. When the strobe is low, the entire current of the second stage current source is steered through the 775-ohm load resistor. This clamps the output to a low state so that an input signal cannot cause an output. When the strobe is high, the current is steered through the second stage differential amplifier pair and the output will go to a level dictated by the presence of an input signal.
- 8. The output circuit of the sense amplifier may be thought of as a push-pull type. The emitter of the push transistor is brought out to a separate pin from the collector of the pull transistor. This will facilitate "Wire ORing" the outputs of several sense amplifiers. Several emitter outputs can be wired together along with only one collector pulldown transistor. The unused collectors of the pulldown transistor must be grounded. An example of the use of "Wire ORing" is to have four MC1546 devices wired-OR into a 16-channel sense amplifier in which a channel may be selected by selecting channels in parallel at the amplifier inputs and strobing the proper sense amplifier.

Figure 22 shows how these sense amplifiers are used in an N-word-line-by-32-bit basic memory plane organized as 4-N words of 8 bits each. During a read cycle, the read current is pulsed through a selected word-line and thus generates outputs to all of the 32-bit positions in the line. The internal one-of-four decoder selects the desired channels of the eight sense amplifiers for a particular system word. When the strobe goes high, the sense amplifier outputs switch according to the data present at the amplifier inputs. The data readout on the other 24-bit lines is not lost due to the Non-Destructive Read-Out properties of a plated-wire memory. On the next read cycle the decoder of the sense amplifier in combination with the selected word-line determines the 8-bits of data to read.


#### **APPLICATIONS INFORMATION (continued)**

Memory organizations that have more than four words per word-line require that the sense amplifier outputs be wired-OR. To wire-OR the outputs of several sense amplifiers all of the emitters of the output-pullup transistors are tied together. Only one collector of the pulldown transistors is tied to the wired-OR emitters of the pullup transistors. The remaining pulldown transistors must be grounded as noted in Figure 23. Ten or more sense amplifiers may be wired-OR together.without any reduction in usable logic levels since only one sense amplifier per bit is on at any given time. Variations in propagation delay time (tpd), versus the number of wired-OR sense amplifiers and the output capacitance are given in Figure 24.


In Figure 25, eight are required for each bit of a 32-word/wordline memory. For those sense amplifiers that have wired-OR outputs, the strobe is used for decoding by attaching each strobe to a 3-bit-binary-to-1-of-8-bit decoder (MC4006). Thus only one sense amplifier per bit can be strobed at a given time. High fan-out gates are required on the channel select lines since a high current must be supplied to the select lines to drive them to the logic "1" level. The strobe current is low, thereby allowing many strobe lines to be driven with only one gate.



*The strobe pulse width is smaller than the amplifier input pulse width.



----

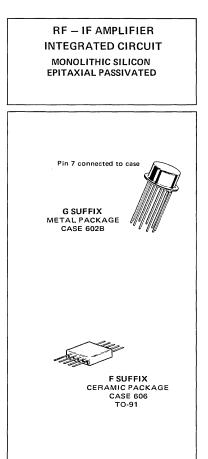


#### DEFINITIONS

- Av the voltage gain from a channel input to amplifier output (input signal is 2 mV peak-to-peak and the strobe is high)
- CMV_{in} maximum input common-mode voltage on any channel that will not cause the amplifier to saturate
- DMV_{in} maximum input differential-mode voltage on any channel signal that will not saturate the amplifier
- I⁺ current from the positive supply with no load (pin 12 shorted to pin 13)
- I current into the negative supply with both channel select pins at +3.5 volts
- Ib input current into the base of any input transistor when the opposite transistor of the differential pair is at the same voltage
- ICH input current at channel select pin when the channel select voltage is at VCH
- ICL input current at channel select pin when the channel select voltage is at VCL
- lio difference between base currents of any input differential pair of transistors
- I₀+ output source current to a load with the output remaining above 2.4 volts, excluding the amplifier's own sink current
- $I_{0}$  the current that the amplifier will sink into pin 12 tCMR time required for the amplifier to recover from the maximum specified common-mode input,
- (recovery output within 10% of its quiescent state)
- tC sel time between the 50% point of the channel gate input and the 50% point of the signal input that still allows a full width signal at the amplifier output

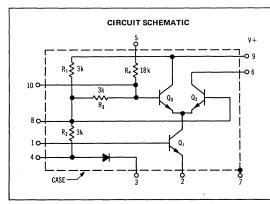
- tDMR time required for the amplifier to recover from maximum specified differential-mode input, (recovery output within 10% of its quiescent state)
- tdS delay time from the 50% point of the strobe input leading or trailing edge to the corresponding 50% point of the output
- tf time rise (and time fall) of the input signal must be less than 10 ns
- tpd the delay time from the 50% point of a 5.0 mV input leading or trailing edge to the corresponding 50% point of the amplifier output
- tr time from 10% to 90% of the rise and fall times respectively of the output signal with a 5.0 mV input signal
- tSmin minimum pulse width at 50% points at strobe input allows a full output (pulse rise times of less than 10 ns, amplifier differential input equal to 3 mV)
- VCH minimum voltage required at the channel select pin to cause a given channel to give 99% of the maximum gain through the amplifier
- VCL maximum voltage allowable at the channel select pin to cause a given channel to give 1% or less of the gain when channel is fully selected
- Vo output dc level with inputs grounded and strobe high
- VoH minimum output high level
- VoL maximum output low level
- VSH the minimum voltage required at the strobe pin to allow 99% of a full output
- V_{SL} the maximum voltage allowable at the strobe pin to allow 1% or less of a full output

# MC1550


## **HIGH-FREQUENCY CIRCUITS**

### INTEGRATED CIRCUIT LINEAR AMPLIFIER




... a versatile, common-emitter, common base cascode circuit for use in communications applications. See Application Notes AN-215, AN-247 and AN-299 for additional information.

- Constant Input Impedance over entire AGC range
- Extremely Low  $y_{12} 4.3 \,\mu$ mhos at 60 MHz
- High Power Gain 30 dB @ 60 MHz (0.5 MHz BW)
- Good Noise Figure 5 dB @ 60 MHz



MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	V+	20	Vdc
AGC Supply Voltage	VAGC	20	Vdc
Differential Input Voltage, Pin 1 to Pin 4 (R _S = 500 ohms)	v _{in}	±5.0	V(rms)
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25 ^o C Flat Package Derate above T _A = +25 ^o C	PD	680 4.6 500 3.3	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range	Τ _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C



See Packaging Information Section for outline dimensions.

#### CIRCUIT DESCRIPTION

The MC1550 is built with monolithic fabrication techniques utilizing diffused resistors and small-geometry transistors. Excellent AGC performance is obtained by shunting the signal through the AGC transistor Q, maintaining the operating point of the input transistor Q, This keeps the input impedance constant over the entire AGC range.

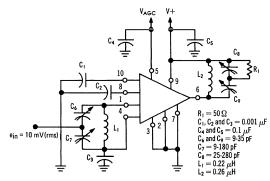
The amplifier is intended to be used in a common-emitter, common-base configuration (Q, and Q₁) with Q, acting as an AGC transistor. The input signal is applied between pins 1 and 4, where pin 4 is ac-coupled to ground. DC source resistance between pins 1 and 4 should be small (less than 100 ohms). Pins 2 and 3 should be connected together and grounded. Pins 8 and 10 should be bypassed to ground. The positive supply voltage is applied at pin 9 and at higher frequencies, pin 9 should also be bypassed to ground. The output is taken between pins 6 and 9. The substrate is connected to pin 7 and should be grounded. AGC voltage is applied to pin 5.

## ELECTRICAL CHARACTERISTICS (V⁺ = +6 Vdc, T_A = +25^oC)

Characteristic	Conditions	Figure	Symbol	Min	Тур	Max	Unit
DC CHARACTERISTICS							
Output Voltage	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	V _o	3.80 5.90	_ _	4.65 6.00	Vdc
Test Voltage	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	V8	2.85 3.25	-	3.40 3.80	Vdc
Supply Drain Current	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	٦	-	-	2.2 2.5	mAdc
AGC Supply Drain Current	V _{AGC} = 0 Vdc V _{AGC} = +6 Vdc	1	IAGC	-		-0.2 0.18	mAdc

#### SMALL-SIGNAL CHARACTERISTICS

Small-Signal Voltage Gain	f = 500 kHz	2	Av	22	-	29	dB
Bandwidth	-3.0 dB	2	BW	22	-		MHz
Transducer Power Gain	f = 60 MHz, BW = 6 MHz	3	Ap	-	25	-	dB
	f = 100 MHz, BW = 6 MHz				21	-	


## TYPICAL CHARACTERISTICS

 $(V^+ = 6.0 \text{ Vdc}, T_A = +25^{\circ}C \text{ unless otherwise noted})$ 

FIGURE 1 – DC CHARACTERISTICS TEST CIRCUIT

 $C_1 = C_2 = 0.1 \ \mu F$   $C_2 = C_2 = 0.1 \ \mu F$   $C_1 = C_2 = 0.1 \ \mu F$   $C_2 = C_2 = 0.1 \ \mu F$  $C_2 = C_2 = 0.1 \ \mu$ 

FIGURE 3 - POWER GAIN TEST CIRCUIT @ 60 MHz



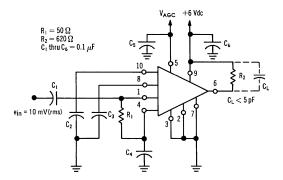
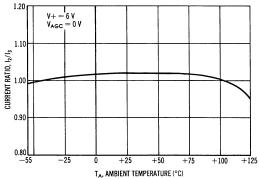




FIGURE 2 - VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT

### FIGURE 4 – DRAIN CURRENT TEMPERATURE CHARACTERISTICS





800

700

600

500

400

300

ō

Rin, INPUT RESISTANCE (OHMS)

R.,

C:.

Rin

Cin

2.0

1.0

FIGURE 5 – INPUT RESISTANCE AND CAPACITANCE versus FREQUENCY

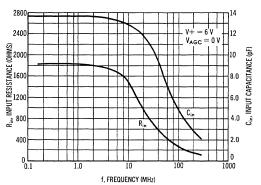
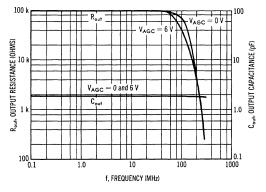




FIGURE 7 – OUTPUT RESISTANCE AND CAPACITANCE versus FREQUENCY



versus FREQUENCY 30  $V_{AGC} = 0$ BW = 6 MHz 25 AP, TRANSDUCER POWER GAIN (dB) 20 15 10 5.0 0<u>L</u> 1.0 2.0 5.0 50 100 200 500 1000 f, FREQUENCY (MHz)

FIGURE 9 - MAXIMUM TRANSDUCER POWER GAIN

FIGURE 8 - OUTPUT RESISTANCE AND

60 MHz

4.0

5.0

FIGURE 6 - INPUT RESISTANCE AND

CAPACITANCE versus AGC VOLTAGE

30 MHz

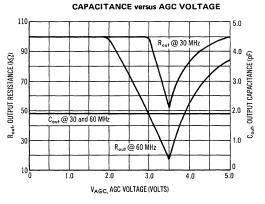
3.0

VAGC, AGC VOLTAGE (VOLTS)

14

12

10


8.0

6.0

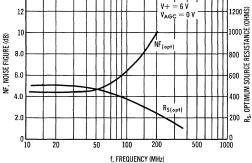
4.0

6.0

Cin, INPUT CAPACITANCE (pF)




30  $f_{o} = 60 \text{ MHz}$ BW = 6 MHz AP, TRANSDUCER POWER GAIN (dB) 25 20 15 10 -55 -40 -20 +20 +40+60 +1250 +80 +100 TA, AMBIENT TEMPERATURE (°C)


FIGURE 10 – TRANSDUCER POWER GAIN versus TEMPERATURE

## TYPICAL CHARACTERISTICS (continued)



#### FIGURE 11 - TRANSDUCER POWER BANDWIDTH versus AGC VOLTAGE





f, FREQUENCY (MHz)

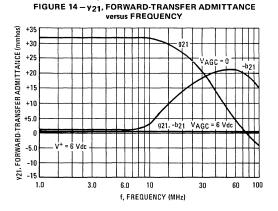



FIGURE 13 - NOISE FIGURE versus SOURCE RESISTANCE

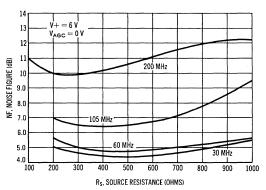
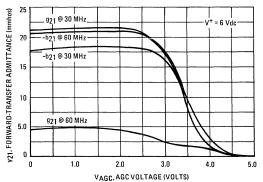
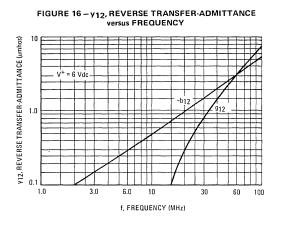





FIGURE 15-y21, FORWARD-TRANSFER ADMITTANCE versus AGC VOLTAGE





## $\label{eq:type} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \\ \texttt{(V^+ = 6.0 Vdc, T_A = +25^{O}C unless otherwise noted)} \end{array}$

#### FIGURE 17 - y11, INPUT-ADMITTANCE versus FREQUENCY

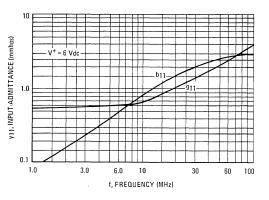
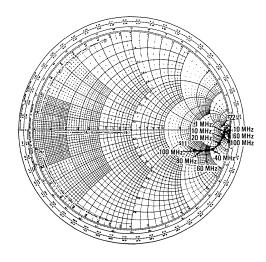
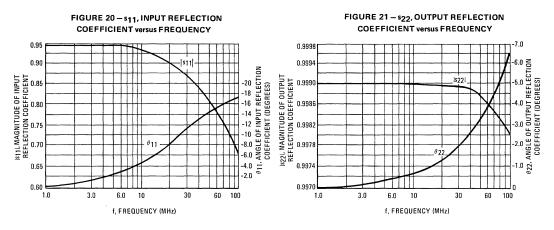



FIGURE 19 - s₁₁ AND s₂₂, INPUT AND OUTPUT REFLECTION COEFFICIENT


The y12 shown in Figure 16 illustrates the extremely low feedback of the MC1550 with no contribution from the external mounting circuitry. However, in many cases the external circuitry may contribute as much or more to the total feedback than does the MC1550.

To perform more accurate design calculations of gain, stability, and input ~ output impedances it is recommended that the designer first determine the total feedback of device plus circuitry.


This can be done in one of two ways:

- (1) Measure the total y12 or s12 of the MC1550 installed in its mounting circuitry, or
- (2) Measure the y12 of the circuitry alone (without the MC1550 installed) and add the circuit y12 to the y12 for the MC1550 given in Figure 16.

1.0 Y22, OUTPUT-ADMITTANCE (mmhos) 6 Vdc b22 0.1 922 1 0.01 1.0 3.0 30 100 6.0 10 60 f, FREQUENCY (MHz)



## FIGURE 18 – y22, OUTPUT-ADMITTANCE versus FREQUENCY



## TYPICAL CHARACTERISTICS (continued)

(V⁺ = 6.0 Vdc,  $T_A = +25^{\circ}C$  unless otherwise noted)

FIGURE 22 - s21, FORWARD TRANSMISSION COEFFICIENT (GAIN)

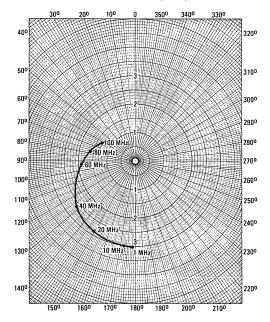
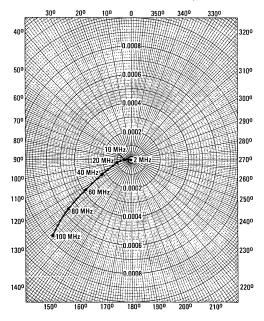
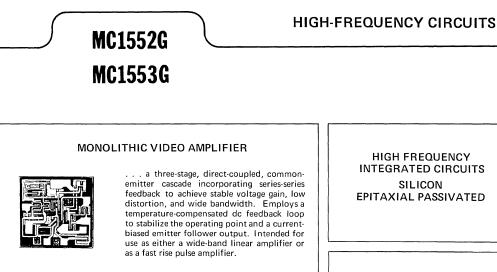
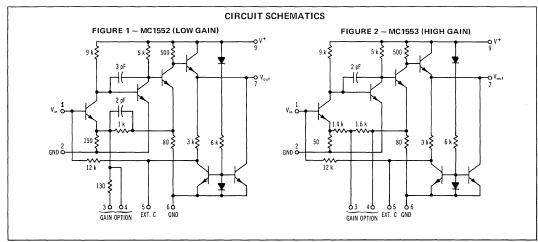





FIGURE 23 - s12, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)






- High Gain  $-34 \text{ dB} \pm 1 \text{ dB}$  (MC1552) 52 dB  $\pm 1 \text{ dB}$  (MC1553)
- Wide Bandwidth 40 MHz (MC1552) 35 MHz (MC1553)
- Low Distortion 0.2% at 200 kHz
- Low Temperature Drift  $-\pm 0.002 \text{ dB/}^{\text{O}}\text{C}$

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	v ⁺	9	Vdc
Input Voltage, Pin 1 to Pin 2 (R _S = 500 ohms)	v _{in}	1.0	V(rms)
Power Dissipation (Package Limitation) Derate above $T_A = +25$ °C	P _D	680 4.6	mW mW/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C





See Packaging Information Section for outline dimensions.

Characteris	tic	Fig. No.	Gain * Option	Symbol	Min	Тур	Max	Unit
Voltage Gain	MC1552	3	50 100	v _{out} /v _{in}	44 87	50 100	56 113	V/V
	MC1553		200 400		175 350	200 400	225 450	
Voltage Gain Variation (T _A = -55°C to +125°C)		3	A11	-	_	±0.2	_	dB
Bandwidth	MC1552	3,6	50 100	BW	21 17	40 35	=	MHz
	MC1553		200 400		17 7.5	35 15	-	
Input Impedance (f = 100 kHz, $R_L = 1 k\Omega$ )		-	All	z _{in}	7	10	_	kΩ
Output Impedance (f = 100 kHz, $R_S = 50 \Omega$ )		-	All	Zout		16	50	Ω
DC Output Voltage		3	All	V _{out} (dc)	2.5	2.9	3.2	Vdc
DC Output Voltage Variation $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$		3	A11	△V _{out} (de)		±0.05	_	Vdc
Output Voltage Swing $(Z_L \ge 1 \ k_{\Omega_f} \ V_{in} = 100 \ mV$	[rms])	3	All	V _{out}	3.6	4.2	_	Vp-p
Power Dissipation		-	All	P _D	-	75	120	mW
Delay Time	MC1552	3, 4	50 100	t _{pd}	_	8 9	=	ns
	MC1553		200 400		Ξ	10 25	-	
Rise Time	MC1552	3,4	50 100	t _r	-	9 12	16 20	ns
	MC1553		200 400		_	11 30	20 45	
Overshoot		3, 4	All	$(V_{os}/V_{p})100$	_	5	-	ą
Noise Figure ( $R_S = 400 \Omega$ , $f_o = 30 MHz$ ,	BW = 3 MHz)	-	All	NF		5	-	dB
Total Harmonic Distortion (V _{out} = 2 Vp-p, f = 200 kH	$[z, R_L = 1 k\Omega)$	-	A11	THD	-	0.2	_	%

## ELECTRICAL CHARACTERISTICS (V+ = +6 Vdc, T_A = +25°C unless otherwise noted)

* To obtain the voltage-gain characteristic desired, use the following pin connections:

Туре	Voltage Gain	Pin Connections
MC1552	50	Pin 3 Open
	100	Ground Pin 3
MC1553	200	Connect Pin 3 to Pin 4
W01000	400	Pins 3 and 4 Open

### FIGURE 3 - TEST CIRCUIT



#### NOTES

1. Ground Pin 6 as close to can as possible to minimize overshoot. Best results by directly grounding can.

 If large input and output coupling capacitors are used, place shield between them to avoid input-output coupling.
 A high-frequency capacitor must always be used to by-

3. A high-frequency capacitor must always be used to bypass the power supply. This capacitor should be as close to the circuit as possible.

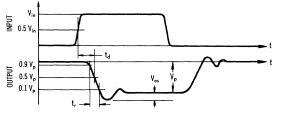

4. Voltage gain can be adjusted to any value between 50 and 3000 by connecting an external resistor from Pin 4 to ground on MC1552, or from Pin 3 to ground on MC1553, as shown in Figure 8. Under these conditions, the following equations must be used to determine  $C_1$  and  $C_2$  rather than the circuits shown in Figure 5.

Fig. 5b C₁ = 
$$\frac{1}{2\pi f_c(1.7 \text{ x 104})}$$
 Farads; C₂ = 8 C₁(V_{out}/V_{in}) Farads

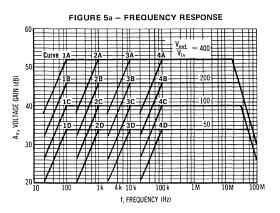

Fig. 5c C₁ = 
$$\frac{V_{out}/V_{in}}{2\pi f_c (1.5 \times 10^4)}$$
 Farads

Fig. 5d C₂ = 
$$\frac{V_{out}/V_{in}}{2\pi f_c(3 \times 10^3)}$$
 Farads

### FIGURE 4 – PULSE RESPONSE DEFINITIONS



## MC1552G, MC1553G (continued)



TYPICAL CHARACTERISTICS  $T_A = +25 C$ 

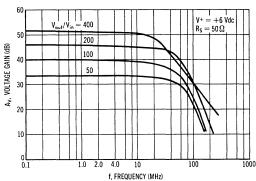



FIGURE 6 - VOLTAGE GAIN versus FREQUENCY

TEST CIRCUITS FOR FREQUENCY RESPONSE FIGURE 5b - CAPACITIVE COUPLED INPUT (Rs<5 kΩ)

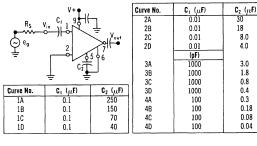



FIGURE 5c – CAPACITIVE COUPLED INPUT (R_s < 500  $\Omega$ )



FIGURE 5d - TRANSFORMER COUPLED INPUT

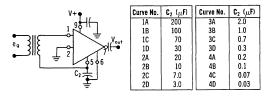



FIGURE 7 - MAXIMUM NEGATIVE SWING SLEW RATE versus LOAD CAPACITANCE

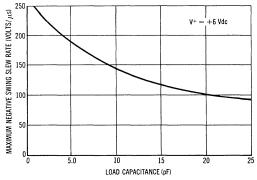
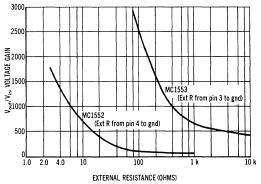
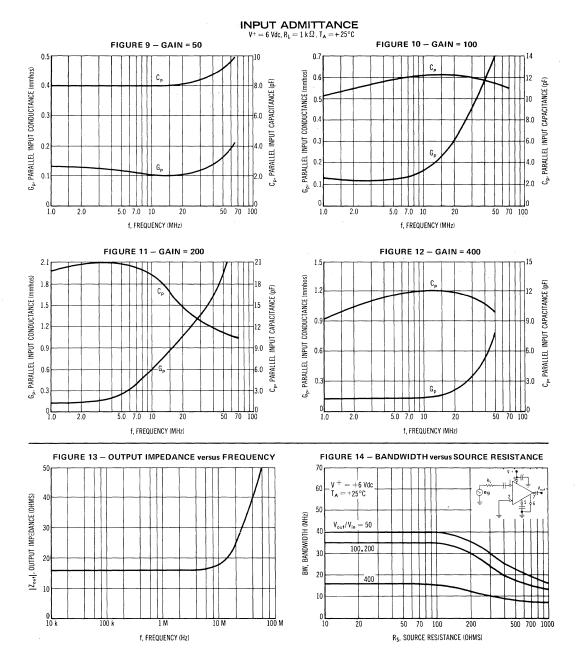
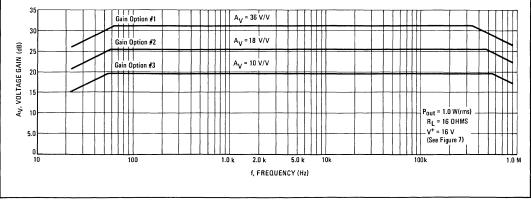
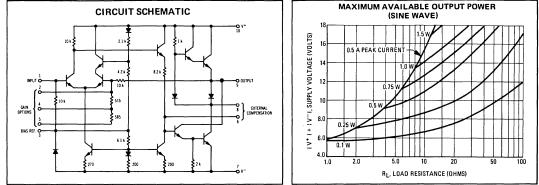





FIGURE 8 - VOLTAGE GAIN ADJUSTMENT BY USE OF EXTERNAL RESISTOR




0.08


0.04



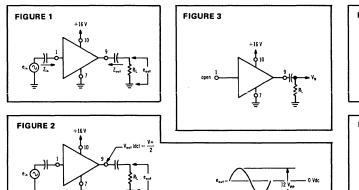
7-238

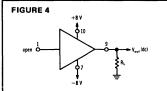
## POWER AMPLIFIER MC1554G MC1454G 1-WATT MONOLITHIC 1-WATT POWER AMPLIFIERS POWER AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED . . designed to amplify signals to 300-kHz with 1-Watt delivered to a direct coupled or capacitively coupled load. Low Total Harmonic Distortion – 0.4% (Typ) @ 1 Watt METAL PACKAGE CASE 602B Low Output Impedance – 0.2 Ohm Excellent Gain - Temperature Stability (bottom view) Pin 7 connected to case VOLTAGE GAIN versus FREQUENCY (RL = 16 OHMS) 35 Gain Option #1 $A_V = 36 V/V$ 30 Gain Option #2 A_V = 18 V/V (dB) 25 TTT $A_{V} = 10 V/V$ Gain Option #3 20

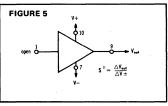




See Packaging Information Section for outline dimensions.


# MC1554G, MC1454G (continued)


# **ELECTRICAL CHARACTERISTICS** ( $T_C = +25^{\circ}C$ unless otherwise noted) Frequency compensation shown in Figures 6 and 7.


Characteristic		RL	Gain		(-5	MC1554 5 to +12		MC1454 (0 to +70 ⁰ C)			
	Figure	(Ohms)	Option*	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Power (for e _{out} <5.0% THD)	1	16	-	Pout	1.0	1.1		-	1.0	-	Watt
Power Dissipation (@Pout = 1.0 W)	1	16	-	PD	2011 <u>- 1</u>	0.9	1.2	-	0.9	-	Watt
Voltage Gain	1	16 16 16	10 18 36	AV	8.0 _ _	10 18 36	12		10 18 36		V/V
Input Impedance	1	-	10	Zin	7.0	10		3.0	10	-	kΩ
Output Impedance	1	-	10	Zout		0.2	-	-	0.4	-	Ω
Power Bandwidth (for e _{out} <5.0% THD)	2	16 16 16	10 18 36			270 250 210			270 250 210		kHz
Total Harmonic Distortion (for e _{in} <0.05% THD, f = 20 Hz to 20 kHz)	2			THD							%
Pout = 1.0 Watt (sinewave)		16	10			0.4	sk <u>r</u> otas	-	0.4	-	
Pout = 0.1 Watt (sinewave)		16	10			0.5		-	0.5	-	
Zero Signal Current Drain	3	~	-	٦D		11	15		11	20	mAdc
Output Noise Voltage	3	16	10	Vn		0.3		-	0.3	-	mV(rms
Output Quiescent Voltage (Split Supply Operation)	4	16	-	V _{out} (dc)	2 	±10_	±30	. <del>-</del>	±10	-	mVdc
Positive Supply Sensitivity (V  constant)	5	~~	-	s+	-18 	-40		-	-40		mV/V
Negative Supply Sensitivity (V ⁺ constant)	5	∞	-	s-		-40		-	-40	-	mV/V

*To obtain the voltage gain characteristic desired, use the following pin connections: Voltage Gain 10

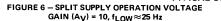
Pin Connection Pins 2 and 4 open, Pin 5 to ac ground Pins 2 and 5 open, Pin 4 to ac ground Pin 2 connected to Pin 5, Pin 4 to ac ground

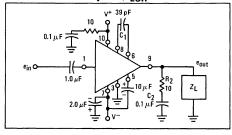






# **Characteristic Definitions**


18 36


(Linear Operation)

# MC1554G, MC1454G (continued)

### MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Rating Total Power Supply Voltage		Symbol	Value	Unit
		V ⁺   +  V [−]	18	Vdc
Peak Load Current		lout	0.5	Ampere
Audio Output Power		Pout	1.8	Watts
Power Dissipation (package limitation) T _A = +25°C Derate above 25°C T _C = +25°C Derate above 25°C		Ρ _D 1/θJ _A Ρ _D 1/θJ _C	600 4.8 1.8 14.4	mW mW/ ⁰ C Watts mW/ ⁰ C
Operating Temperature Range	MC1454 MC1554	т _А	0 to +70 -55 to +125	°C
Storage Temperature Range		T _{stg}	-55 to +150	°C





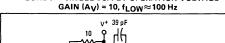
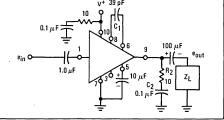
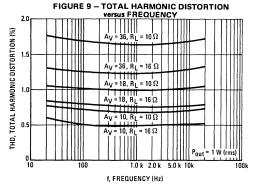
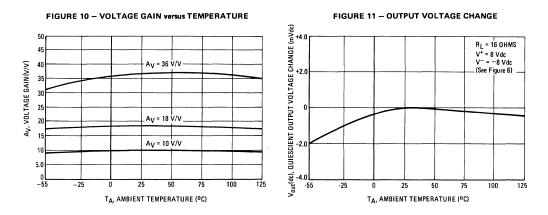




FIGURE 7 - SINGLE SUPPLY OPERATION VOLTAGE



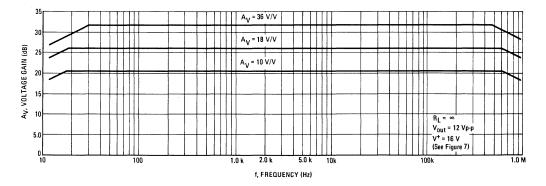

### RECOMMENDED OPERATING CONDITIONS


In order to avoid local VHF instability, the following set of rules must be adhered to:

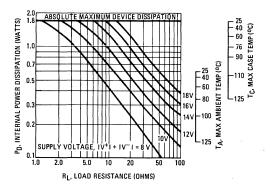

- 1. An R-C stabilizing network (0.1  $\mu$ F in series with 10 ohms) should be placed directly from pin 9 to ground, as shown in Figures 6 and 7, using short leads, to eliminate local VHF instability caused by lead inductance to the local VHF. to the load.
- to the load.
  2. Excessive lead inductance from the V+ supply to pin 10 can cause high frequency instability. To prevent this, the V+ by-pass capacitor should be connected with short leads from the V+ pin to ground. If this capacitor is remotely located a series R-C network (0.1 µ F and 10 ohms) should be used directly from pin 10 to ground as shown in Figures 6 and 7.
- Lead lengths from the external components to pins 7, 9, and 10 of the package should be as short as possible to insure good VHF grounding for these points.

Due to the large bandwidth of the amplifier, coupling must be avoided bebut to the large balance of the ampliner, coupling flux to avoide a volume of the large balance of the large balan applications which require upper band-edge control the input low-pass filter is recommended.

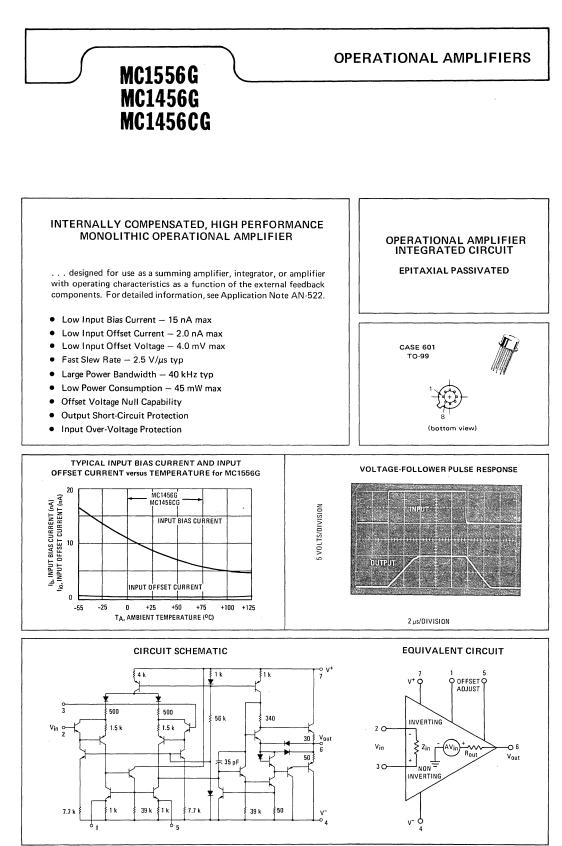



#### TYPICAL CHARACTERISTICS






### **TYPICAL CHARACTERISTICS** (continued)


FIGURE 12 – VOLTAGE GAIN versus FREQUENCY ( $R_L = \infty$ )



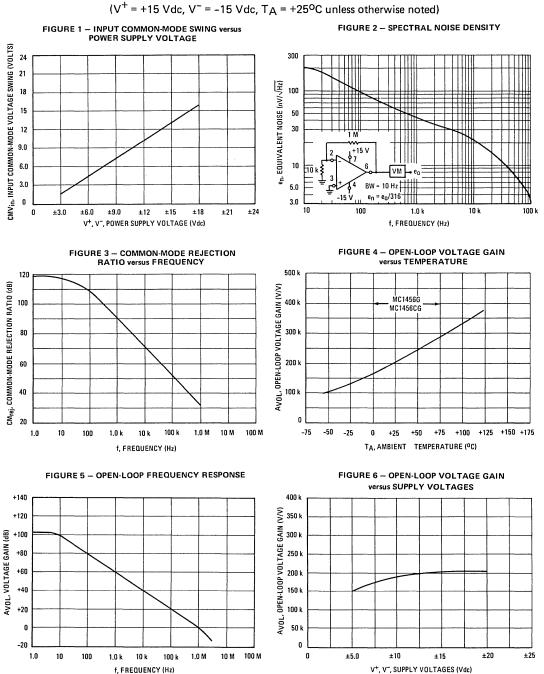




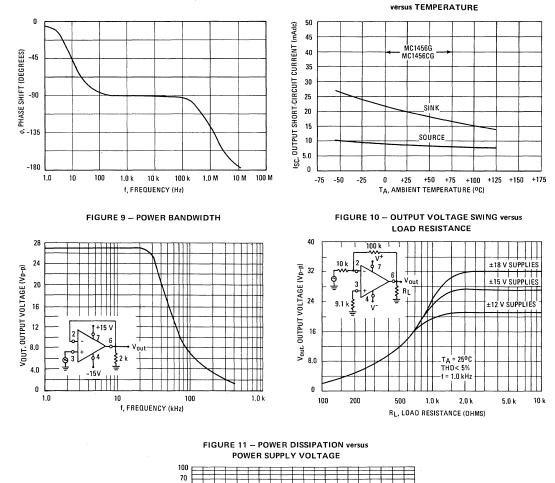
7.



See Packaging Information Section for outline dimensions.


# MC1556G, MC1456G, MC1456CG (continued)

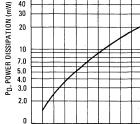
MAXIMUM RATINGS (T _A = +25 ^o C unless otherwise noted)			MC1456G	
Rating	Symbol	MC1556G	MC1456CG	Unit
Power Supply Voltage	v ⁺	+22 -22	+18 -18	Vdc
Differential Input Signal	Vin	±	Völts	
Common-Mode Input Swing	CMVin	±	Volts	
Load Current	ιL	2	20	mA
Output Short Circuit Duration	ts	Con	tinuous	
Power Dissipation (Package Limitation)	PD	-	80	mW mW/ ⁰ C
Derate above T _A = +25 ^o C		4	4.6	
Operating Temperature Range	TA	-55 to +125	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

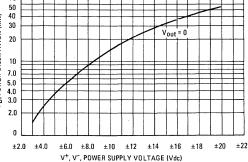

### ELECTRICAL CHARACTERISTICS ( $V^+$ = +15 Vdc, $V^-$ = -15 Vdc, $T_A$ = +25^oC unless otherwise noted)

				AC1556G	1-1-129	N	C1456G			MC1456CG	}	]	
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Input Bias Current		Чb	a tarini					nge.				nAdc	
T _A = +25 ^o C				8.0	15		15	,30	-	15	90		
T _A = T _{low} to T _{high} (See Note 1)			-191 <del>-1</del>		30	-		40	-	-	-		
Input Offset Current		1i0			比較問題		1. 841					nAdc	
T _A = +25 ^o C				1.0	2.0		5.0	10	-	5.0	30		
T _A = +25 ^o C to T _{high}			E C		3.0		-	14	- 1	- 1	-	· ·	
$T_A = T_{low}$ to +25°C			and the second	A AL BILL	5.0	-	e le Horner	14	-	-	-		
Input Offset Voltage		Vio	ER SPACE	Not Store				192				mVdc	
T _A = +25°C				2.0	4.0	-	5.0	10	-	5.0	12		
T _A = T _{low} to Thigh					6.0		al <b>T</b> alà	14	-	-	-		
Differential Input Impedance (Open-Loop, f = 20 Hz)							日間日						
Parallel Input Resistance		Rp		5.0			3.0	÷.	-	3.0	-	Megohms	
Parallel Input Capacitance		Cp	A lower of	6.0	16. 18		6.0	1.77	-	6.0	-	pF	
Common-Mode Input Impedance (f = 20 Hz)		Zin	S diginaria.	250	112		250		-	250	-	Megohms	
Common-Mode Input Voltage Swing	1	CMVin	±12	±13		±11	±12	-	±10.5	±12		Vpk	
Equivalent Input Noise Voltage	2	en			: بر الدر کي		45					nV/(Hz)%	
$(A_V = 100, R_s = 10 \text{ k ohms}, f = 1.0 \text{ kHz}, BW = 1.0 \text{ Hz})$				45			45	2.	-	45	-		
Common-Mode Rejection Ratio (f = 100 Hz)	3	CM _{rej}	80	110		70	110		-	110	-	dB	
Open-Loop Voltage Gain, (Vout = ±10 V, RL = 2.0 k ohms)	4,5,6	AVOL	States and			ins é	14,250	1.12				V/V	
T _A = +25 ^o C			100,000	200,000		70,000	100,000	-	25,000	100,000	-		
T _A = T _{low} to T _{high}			40,000			40,000	-	—	-	-	-		
Power Bandwidth	9	PBW	STI THE STR	40	E States	1 - 1 - 1	40	1. 		40	-	kHz	
(A _V = 1, R _L = 2.0 k ohms, THD≤5%, V _{out} = 20 Vp–p) [*]					Carden Card								
Unity Gain Crossover Frequency (open-loop)	5	fc	15 <b>-</b>	1.0	ALIGHT DA		1.0	123	- 1	1.0	-	MHz	
Phase Margin (open-loop, unity gain)	5,7			70		1. 	70	-	-	70	-	degrees	
Gain Margin	5,7		-	18		-	18	-	-	18	-	dB	
Slew Rate (Unity Gain)		dV _{out} /dt		2.5		12	2.5	<u>.</u>	-	2.5	-	V/µs	
Output Impedance (f = 20 Hz)		Zout	51-5	1.0	2.0	1.40	1.0	2.5	-	1.0	-	kohms	
Short-Circuit Output Current	8	Isc	-	-17, +9.0	Lines .	-	-17, +9.0		-	-17, +9.0	-	mAdc	
Output Voltage Swing (RL = 2.0 k ohms)	10	Vout	±12	±13		±11	±12	e	±10	±12	-	Vpk	
Power Supply Sensitivity	1		Marine Ir					0116	1			μV/V	
V ⁻ = constant, R _s ≤ 10 k ohms		S+		50	100		75	200	-	75	-		
V ⁺ = constant, R _s ≤ 10 k ohms		S-		50	100	-	75	200	-	75			
Power Supply Current	1	ID+		1.0	01.5		1.3	3,0	-	1.3	4.0	mAdc	
	1	ID-		1.0	-1.5		1.3	3.0	-	1.3	4.0		
DC Quiescent Power Dissipation	11	PD	1000-0-1	30	45		40	90	-	40	120	mW	
(V _{out} = 0)		-		TRINIC H					1			1	

Note 1: T_{Iow}: 0⁰ for MC1456G and MC1456CG -55⁹C for MC1556G T_{high}: +75⁹C for MC1456G and MC1456CG +125⁹C for MC1556G




# TYPICAL CHARACTERISTICS

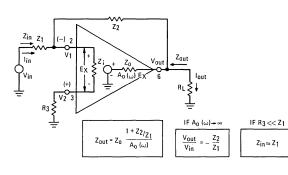


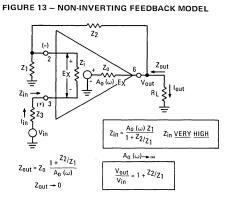

### **TYPICAL CHARACTERISTICS** (continued)

FIGURE 7 - OPEN-LOOP PHASE SHIFT

FIGURE 8 - OUTPUT SHORT-CIRCUIT CURRENT







7-246

# MC1556G, MC1456G, MC1456CG (continued)

### TYPICAL APPLICATIONS Where values are not given for external components they must be selected by the designer to fit the requirements of the system.

FIGURE 12 -- INVERTING FEEDBACK MODEL





#### FIGURE 14 - LOW-DRIFT SAMPLE AND HOLD

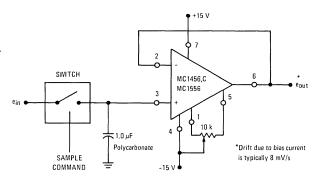
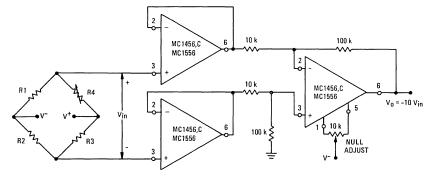
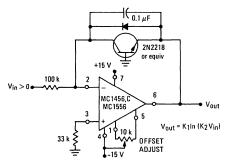





FIGURE 15 – HIGH IMPEDANCE BRIDGE AMPLIFIER



### **TYPICAL APPLICATIONS** (continued)

#### FIGURE 16 - LOGARITHMIC AMPLIFIER



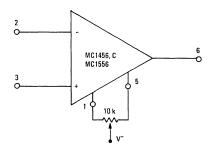
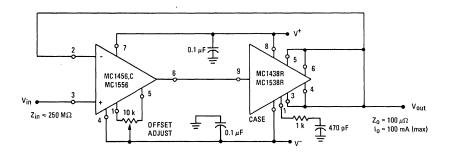
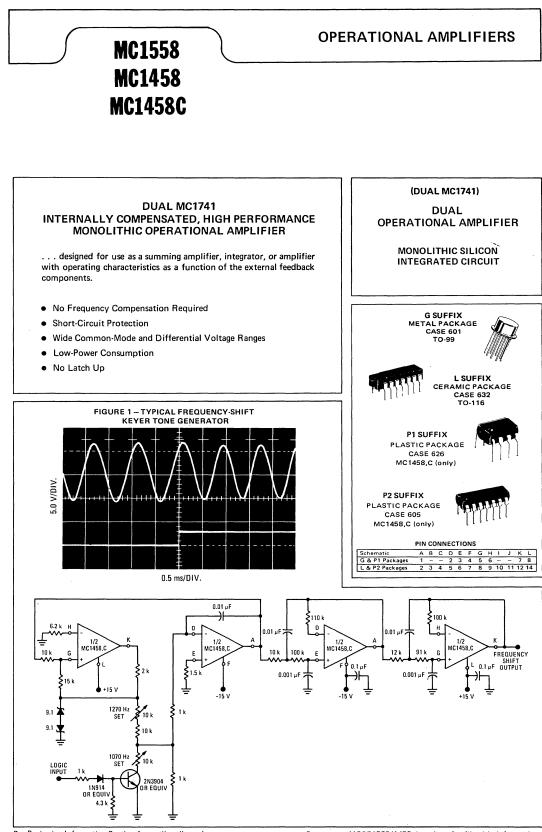





FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT

See Application Note AN-261 for further detail.





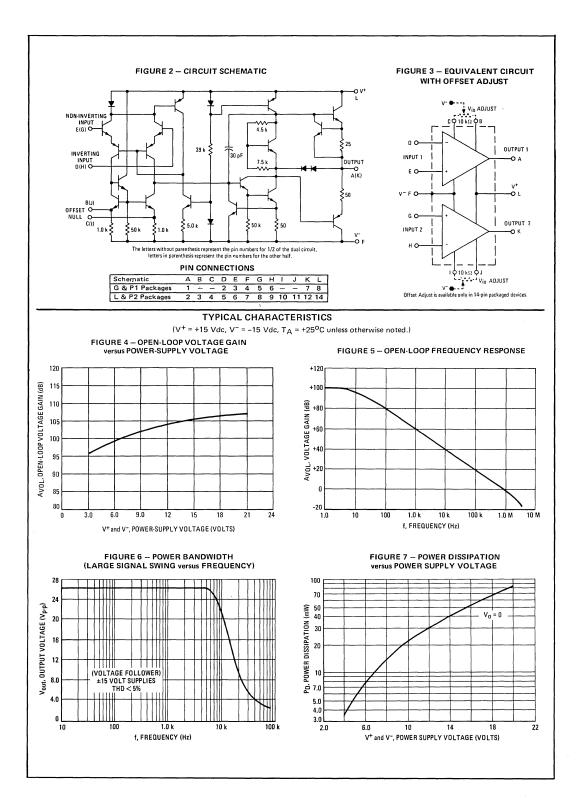


See Packaging Information Section for outline dimensions.

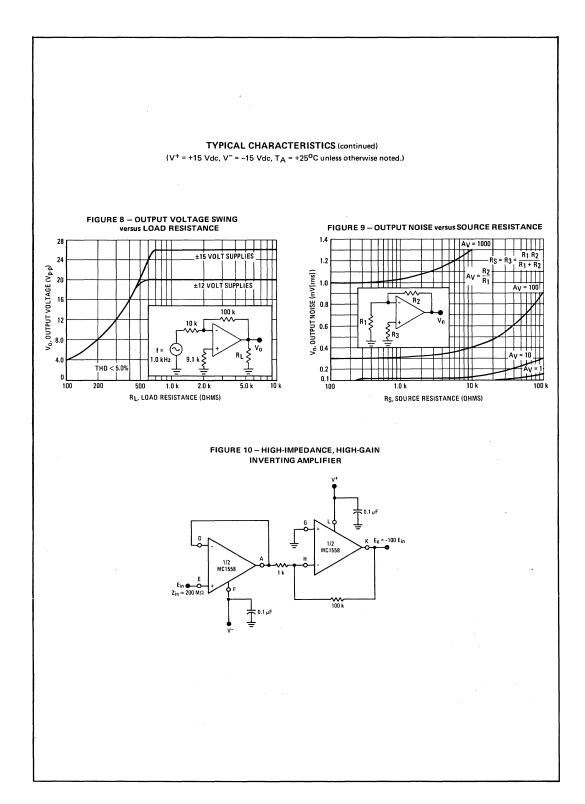
See current MCCF1558/1458 data sheet for flip-chip information.

### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	MC1558	MC1458,C	Unit	
Power Supply Voltage	v+	+22	+18	Vdc	
	V ⁻	-22	-18		
Differential Input Signal	rential Input Signal 1 Vin ±30				
Common-Mode Input Swing (2)	CMVin	±	15	Volts	
Output Short Circuit Duration	ts	Conti			
Power Dissipation (Package Limitation)	PD				
Metal Can		6	80	mW	
Derate above T _A = +25 ^o C		4	.6	mW/ ⁰ C	
Plastic Dual In-Line Packages		6	25	mW	
Derate above T _A = +25 ^o C		5	.0	mW/ ^o C	
Ceramic Dual In-Line Package		7	50	mW/ ⁰ C	
Derate above T _A = +25 ^o C	Derate above $T_A = +25^{\circ}C$ 6.0				
Operating Temperature Range	TA	-55 to +125	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C	


ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

			MC1558	4324		MC1458			MC14580	3	
Characteristics	Symbol	Min	Тур	Max	Min	Түр	Max	Min	Тур	Max	Unit
Input Bias Current	¹ b	Million		al produced		den a a	1.1				μAdc
$T_A = +25^{\circ}C$			0.2	0.5	-	0.2	0.5	-	0.2	0.7	1
$T_A = T_{low}$ to $T_{high}$		P.G.	Der 1	1,5	17-1	1. 7	0.8	-	-	1.0	
Input Offset Current	li _{io}					1111					μAdc
T _A = +25 ^o C			0.03	0.2		0.03	0.2	-	0.03	0.3	
$T_A = T_{low}$ to $T_{high}$		S. A. STATE		0.5		<u></u>	0.3	-	-	0.4	
Input Offset Voltage ( $R_{S} \leq 10 \text{ k} \Omega$ )	V _{io}	in shield a	N. Strict				2.5				mVdc
$T_A = +25^{\circ}C$		成11-11×11	1.0	5.0	177	2.0	6.0		2.0	10	
T _A = T _{low} to T _{high}		100 mm		6,0		-	7.5	-	-	12	
Differential Input Impedance (Open-Loop, f = 20 Hz)						문문을	$\delta^*(g, r)$				[
Parallel Input Resistance	Rp	0.3	1.0		0.3	1.0	-	-	1.0	- 1	Megohn
Parallel Input Capacitance	Cp	100	6.0	1000		6.0	1		6.0	-	pF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)	No Pitt	200	San and	-	200		-	200	1	Megohm
Common-Mode Input Voltage Swing	CMV _{in}	±12	±13		±12	±13	:	±11	±13	·	Vpk
Equivalent Input Noise Voltage	e _n	Sec.2				1.20	14				nV/(Hz)
(A _V = 100, R _s = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)		and the second	45	new 22 fair	-	45	Ξ,	`	45		
Common-Mode Rejection Ratio (f = 100 Hz)	CMrej	70	90	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	70	90	:	60	90	-	dB
Open-Loop Voltage Gain	AVOL	Service State		A MARCELLA	1. 1. 1. Ma						V/V
$ \left. \begin{array}{l} T_A = +25^{\circ}C \\ T_A = T_{low} \text{ to } T_{high} \end{array} \right\}  (V_o = \pm 10 \text{ V, R}_L = 2.0 \text{ k ohms}) $		50,000	200,000			100,000	· 🛄 ·		-	-	
$T_A = T_{low}$ to $T_{high} \int dt $		25,000		-	15,000	2°5', 2		-	·	-	}
$T_A = \pm 25^{\circ}C$ $T_A = \pi + 25^{\circ}C$ $(V_o = \pm 10 V, R_L = 10 k ohms)$		A DE VILLE		and the second	-	المحصر الم		20,000	100,000		
$T_A = T_{low}$ to $T_{high}$		ALC: NO		11-1	- i -			15,000	-	14 <u>-</u>	
Power Bandwidth	PBW		14	5	12.4	14	0.5	-	14	-	kHz
(A _V = 1, R _L = 2.0 k ohms, THD≤5%, V ₀ = 20 V p-p)		and a second		Sala Mall	4.24						
Unity Gain Crossover Frequency (open-loop)	f _c	and the second	1.1		1	36 <b>1.1</b>	1 <u>-</u> 1	-	1,1	-	MHz
Phase Margin (open-loop, unity gain)		Sor make	65	CS.L.		65	11-4 	~	65	-	degrees
Gain Margin		100	11		- 1	11	-	-	11	-	dB
Slew Rate (Unity Gain)	dVout/dt	12 Cast	0.8			0.8		-	0.8	-	V/µs
Output Impedance (f = 20 Hz)	Zout	1	75	S. gards	1. 1. 1. <del>1.</del> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	75	1	-	75	-	ohms
Short-Circuit Output Current	'sc	and the second states	20	100-00		20	:	-	20		mAdo
Output Voltage Swing (RL = 10 k ohms)	Vo	±12	±14		±12	±14		±11	±14		Vpk
$R_L = 2 k \text{ ohms} (T_A = T_{low} \text{ to } t_{high})$	ľ	±10	±13		±10	±13	_	±9.0	±13	-	
Average Temperature Coefficient of Input Offset Voltage	Hov. L	2500 CTTL	1915 - 19 1945 - 195						15	_	1100
( $R_S = 50$ ohms, $T_A = T_{low}$ to $T_{high}$ )	πcv _{io} l		15			15		-	15	-	μV/°C
		Contraction of the	and and and a	Sectore L		1.111.1 1100 - 4					
Power Supply Sensitivity		Shi di wata					-			1	μV/V
V [−] = constant, R _s ≤ 10 k ohms V ⁺ = constant, R _s ≤ 10 k ohms			30	150	5,S.S.S	30	150		30	-	1
		Cardenary Cardenary	30	150		30	150		30		
Power Supply Current	¹ D ⁺	1. S. 1-9 100	2.3	5.0		2.3	5.6	-	2.3	8.0	mAdo
	10		2.3	5.0		2.3	5.6	-	2.3	8.0	1
DC Quiescent Power Dissipation	PD	Contraction of the second		1000		na kati		-			mW
$(V_0 = 0)$	1	100	70	150	1 -	70	170	-	70	240	1


 $\bigcirc$  For supply voltages of less than ±15 V, the maximum differential input voltage is equal to ±(V⁺ + |V⁻|).  $\bigcirc$  For supply voltages of less than ±15 V, the maximum input voltage is equal to the supply voltage (+V⁺, -|V⁻|).

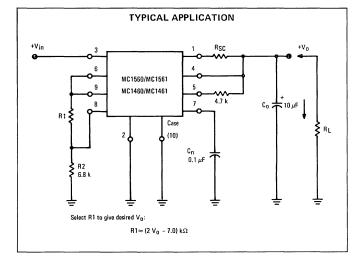
③T_{Iow}: 0°C for MC1458,C -55°C for MC1558 Thigh: +75°C for MC1458,C +125°C for MC1458,C

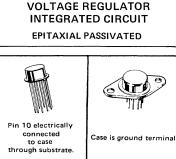
# MC1558, MC1458, MC1458C (continued)



# MC1558, MC1458, MC1458C (continued)

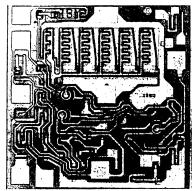


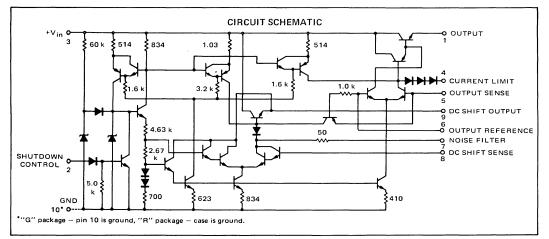

# MC1560, MC1561 ____^P MC1460, MC1461


# POSITIVE VOLTAGE REGULATORS

### MONOLITHIC VOLTAGE REGULATOR

 $\ldots$  designed to deliver continuous load current up to 500 mA without use of an external power transistor.


- Electronic "Shut-Down" Control and Short-Circuit Protection
- Excellent Load Regulation (Low Output Impedance = 20 milliohms typ from dc to 100 kHz)
- High Power Capability: To 17.5 Watts
- Excellent Transient Response and Temperature Stability
- High Ripple Rejection = 0.002 %/V typ
- Single External Transistor Can Boost Load Current to Greater than 10 Amperes
- Input Voltages to 40 Volts (MC1561)






POSITIVE-POWER-SUPPLY

G SUFFIX METAL PACKAGE CASE 602A R SUFFIX METAL PACKAGE CASE 614





Characteristic Definitions (linear operation)	Characteristic		Symbol	Min	Тур	Max	Units
$(R_{SC} = 2.7 \text{ ohms unless otherwise noted})$ CONNECTION FOR V ₀ $\geq$ 3.5 V	Input Voltage (See Note 1) (0 to +75°C) (-55°C to +125°C) (0 to +75°C)	MC1460 MC1560 MC1461	Vin	9.0 8.5 9.0		20 20 35	Vdc
	(-55°C to +125°C)	MC1561		8.5	-	40	}
	MC	C1460, MC1560 C1461 C1561	V _o	2.5 2.5 2.5		17 32 37	Vdc
$\begin{array}{c} R_{1} \\ \downarrow \\ \downarrow \\ V_{ref} \\ \downarrow \\ V_{ref} \\ \downarrow \\ \downarrow \\ Q(10)0 \\ C_{n} \\ \downarrow \\ C_{n} \\ L \\ C_{n} \\ C_{n} \\ L \\ C_{n} \\ C_$	Reference Voltage (V _{in} = 15 V) (Pin 8 to ground)		V _{ref}	3.2	3.5	3.8	Vdc
$\begin{array}{c c} V_{ref} & \hline \\ z = 6.8 \text{ k} \\ \hline \\ \end{array} \qquad \qquad$		C1460, MC1461	V _{in} -V _o	_	2.1	3.0	Vdc
Select R1 to give desired V ₀ : R1 $\approx$ (2 V ₀ - 7) k $\Omega$	Bias Current (V _{in} = 15 V)	C1560, MC1561	1 _B	-	2.1	2.7	mAdc
+Vin lin CONNECTION FOR Vo ≤ 3.5 V	$(I_L = 1.0 \text{ mAdc}, R_2 = 6.8 \text{ k}\Omega,$ $I_B = I_{in} - I_L$ MC	C1460, MC1461 C1560, MC1561		-	5.0 4.0	12 9.0	
$ \begin{array}{c}       9 \\       5 \\       8 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 $	Output Noise (C _n = 0.1 μF, f = 10 Hz to 5.0 MHz)		vn	-	0.150	-	mV (rm
$ \begin{array}{c c} V_{ref} & C_{ASE} \\ R_1 & 2 & O_{(10)} \\ R_1 & C_n & C_o \end{array} $		C1460, MC1461 C1560, MC1561	TCVo	-	±0.002 ±0.002	-	%/ ^o C
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{l} (-55^{\circ} \ \text{to} + 125^{\circ} \ \text{C}) & \text{Mill} \\ \end{array}$ $\begin{array}{l} \text{Operating Load Current Range}^{*} \\ (\text{R}_{\text{SC}} \leq 0.3 \ \text{ohms}) \ \text{R} \ \text{Package} \\ (\text{R}_{\text{SC}} \leq 2.0 \ \text{ohms}) \ \text{G} \ \text{Package} \end{array}$	5 1560, MC 1561	١.	1.0 1.0	- -	500 200	mAdc
$\begin{array}{c} + V_{in} = 17 \text{ Vdc} & 3 & 1 & 2.7 & + V_{0} = 10 \text{ V} \\ \bullet & & & & & & & & \\ \bullet & & & & & & & &$	Input Regulation (% change in output vol per 1-volt change in input voltage) MM Reg _{in} = <mark>v₀ (rms) (100) v_{in} (rms) V₀ V_{in} (rms) (See Note 4)</mark>	ltage C1460, MC1461 C1560, MC1561	Reg _{in}		0.003 0.002	0.030 0.015	%/V _a
$15 V \qquad 3 \qquad 1 \qquad 1.0  1_{L} \rightarrow V_{0} = 10 V$	Load Regulation T _J = Constant (1.0 mA ≤ I _L ≤ 20 mA)	MC1460 MC1560 MC1461 MC1561	Regload		0.5 0.3 0.7 0.4	2.0 1.2 2.4 1.6	mV
$\begin{array}{c c} 13 \text{ k} & \swarrow \\ 6.8 \text{ k} \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \downarrow \\ \vdots \\ \end{array} \begin{array}{c} \downarrow \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \downarrow \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \downarrow \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \downarrow \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \downarrow \\ \vdots \\$	T _C = 25 ⁰ C (See Note 5) (1.0 mA≤ I _L ≤ 50 mA)	R Package G Package		- -'	0.005 0.01	0.05 0.13	%
$\begin{array}{c} + V_{\text{in}} & 3 & 1 & 1.0 & + V_0 & 5.0 \text{ mArms} \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	Output Impedance (See Note 6) (R _{SC} = 1.0 ohms, f = 10 kHz, V _{in} = 14 V (I _L = 25 mAdc for G Package)	Vdc) MC1460 MC1560 MC1461 MC1561	Z _{out}		25 15 35 20	100 60 120 80	milli ohm
$^{+V_{\text{in}}}$ $3$ $1$ $2.7$ $^{+V_{\text{in}}}$ $3$ $1$ $2.7$ $^{+V_{\text{in}}}$ $1$ $3$ $1$ $2.7$ $^{+V_{\text{in}}}$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $1$ $3$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$	Shutdown Current (V _{in} = 20 Vdc) (V _{in} = 35 Vdc)	MC1460 MC1560 MC1461 MC1561			80 20 140 70	300 50 500 150	μAdd

Rating	Symbol	Va	Unit		
Input Voltage	MC1460, MC1560 MC1461 MC1561	V _{in}	2 3 4	Vdc	
			G Package	R Package	
Load Current	ιL	250	600	mA	
Current, Pin 2 Current, Pin 9	lpin 2 Ipin 9	10 5.0	10 5.0	mA	
Power Dissipation and T _A = $25^{\circ}$ C Derate above T _A = $25$ Thermal Resistance, J T _C = $25^{\circ}$ C Derate above T _C = $25$ Thermal Resistance, J	P _D 1/θ JA θ JA PD 1/θ JC θ JC	0.68 5.44 184 1.8 14.4 69.4	3.0 24 41.6 17.5* 140 7.15	Watts mW/ ^o C ^o C/W Watts mW/ ^o C ^o C/W	
Operating and Storage J Range	TJ, Tstg	-65 to	+150	°C	

MANIBALINA DATINGO (To a 12500 unless otherwise moded)

*The MC1460R and MC1560R are limited to 12 watts maximum by the voltage and current maximum ratings.

### OPERATING TEMPERATURE RANGE

Ambient Temperature	ТА		°C
MC1460, MC1461		0 to +75	
MC1560, MC1561		-55 to +125	

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".
- Note 2. This parameter states that the MC1560/1561 and MC1460/1461 will regulate properly with the input-output voltage differential  $(V_{in} V_0)$  as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with  $(V_{in} V_0)$  as low as 2.1 Vdc as shown in the typical column.
- Note 3. "Temperature Coefficient of Output Voltage" is defined as:

MC1560, 
$$TC_{V_0} = \frac{\pm (V_{0 \text{ max}} - V_{0 \text{ min}})(100)}{2 (180^{\circ}C)(V_0 @ 25^{\circ}C)} = \%/^{\circ}C$$

MC1460, 
$$TC_{V_0} = \frac{\pm (V_0 \max - V_0 \min)(100)}{2(75^{\circ}C)(V_0 \otimes 25^{\circ}C)} = \%/^{\circ}C$$

The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

- Note 4. The input signal can be introduced by use of a transformer which will allow the output of an audio oscillator to be coupled in series with the dc input to the regulator. (The large ac input impedance of the regulator will not load the oscillator.) A 24 V, 1.0 ampere filament transformer with the audio oscillator connected to the 110 V primary winding is satisfactory for this test. v_{in}  $\approx$  1.0 V (rms).
- Note 5. Load regulation is specified for small ( $\leq$  +17°C) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation =  $\frac{V_0 | I_L = 1.0 \text{ mA} - V_0 | I_L = 50 \text{ mA}}{V_0 | I_L = 1.0 \text{ mA}} \times 100$ 

Note 6. The resulting low level output signal (v_o) will require the use of a tuned voltmeter to obtain a reading. Special care should be used to insure that the measurement technique does not include connection resistance, wire resistance, and wire lead inductance (i.e., measure close to the case). Note that No. 22 AWG hook-up wire has approximately 4.0 milliohms/in. dc resistance and an inductive reactance of approximately 10 milliohms/in. at 100 kHz. Avoid use of alligator clips or banana plugjack combination.

#### GENERAL OPERATING INFORMATION

There is a general tendency to consider a voltage regulator as simply a dc circuit and to prepare breadboard construction accordingly. The excellent high-frequency performance and fast response capability of this integrated-circuit regulator, however, makes extra breadboarding care worthwhile when compared with the limited performance achieved in other regulators when low-frequency transistors are used in the feedback amplifier. Due to the use of VHF transistors in the integrated circuit, some VHF care (short, welldressed leads) must be exercised in the construction and wiring of circuits ("printed-circuit" boards provide an excellent component interconnection technique). The circuit must be grounded by a low-inductance connection to the case of the "R" package, or to pin 10 of the "G" package.

A series 4.7-k $\Omega$  resistor at Pin 5 (Figure 1) will eliminate any VHF instability problems which may result from lead lengths longer than a few inches at the regulator output. The resistor body should be as close to Pin 5 as physically possible (<1/2 inch) although the length of the lead to the load is not critical. If temperature stability is of major concern, a 4.7-k $\Omega$  resistor should also be placed in series with Pin 6 in order to cancel any drift due to bias current changes.

If long input leads are used, it may be necessary to bypass Pin 3 with a 0.1- $\mu$ F capacitor (to ground).

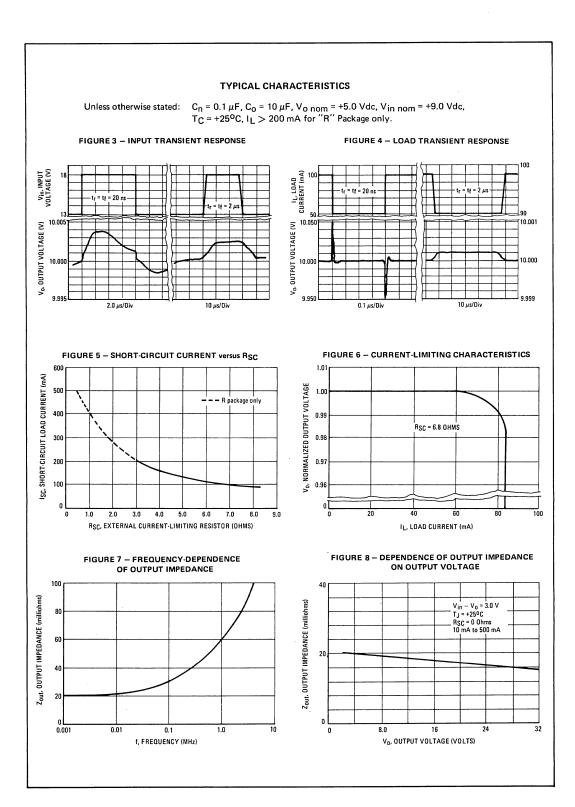
The "Shut-Down Control", Pin 2, can be actuated for all possible output voltages and any values of  $C_0$  and  $C_n$  with no damage to the circuit. The standard logic levels of RTL, DTL, or TTL can be used (see Figure 20). This control can be used to eliminate power consumption by circuit loads which can be put in a "standby" mode, as an ac and dc "squelch" control for communications circuits, and as a dissipation control to protect the regulator under sustained output short-circuiting (see Figures 21 and 25). As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the IC chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures (see Figure 23, a and b). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels.

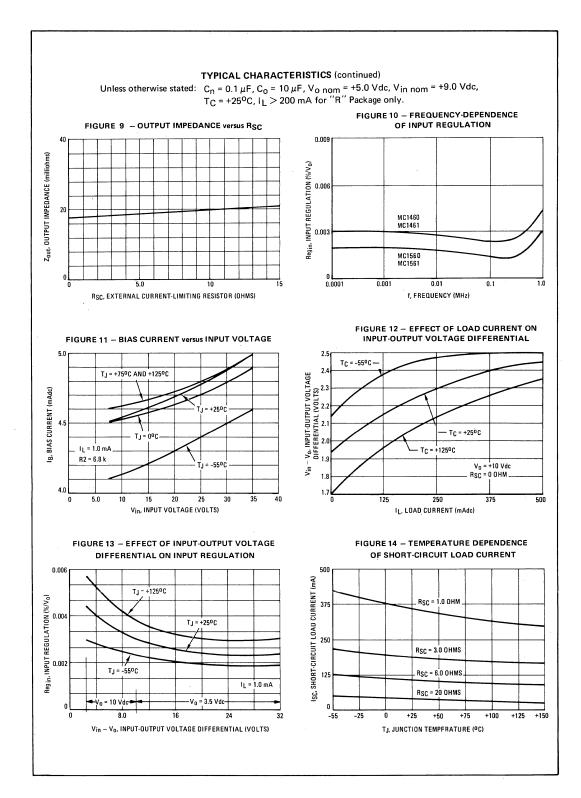
Due to the small value of input current at Pin 8, the external resistors, R1 and R2, can be selected with little regard to their par-

R1 ≈ 7.0 kΩ - R2

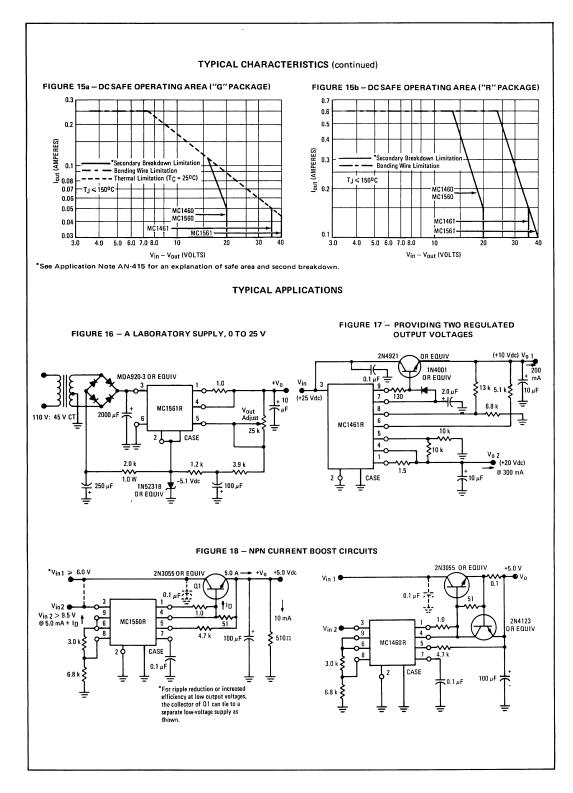
allel resistance. Further, no match to a diffused-resistor temperature coefficient is required; but R1 and R2 should have the same temperature coefficient to keep their ratio independent of temperature.

 $C_n$  values in excess of 0.1  $\mu F$  are rarely needed to reduce noise. In cases where more output noise can be tolerated, a smaller capacitor can be used ( $C_n$  min. $\approx$  0.001  $\mu F$ ).

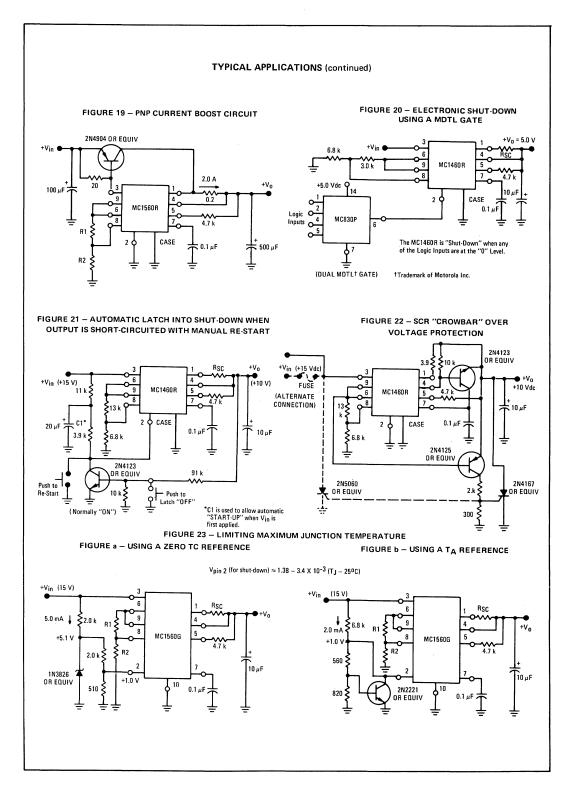

The connection to Pin 5 can be made by a separate lead directly to the load. Thus "remote sensing" can be achieved and undesired impedances (including that of a milliammeter used to measure  $I_L$ ) can be greatly reduced in their effect on  $Z_{OUL}$ . A 10-ohm resistor placed from pin 1 to pin 5 (close to the IC) will eliminate undesirable lead-inductancé effects.

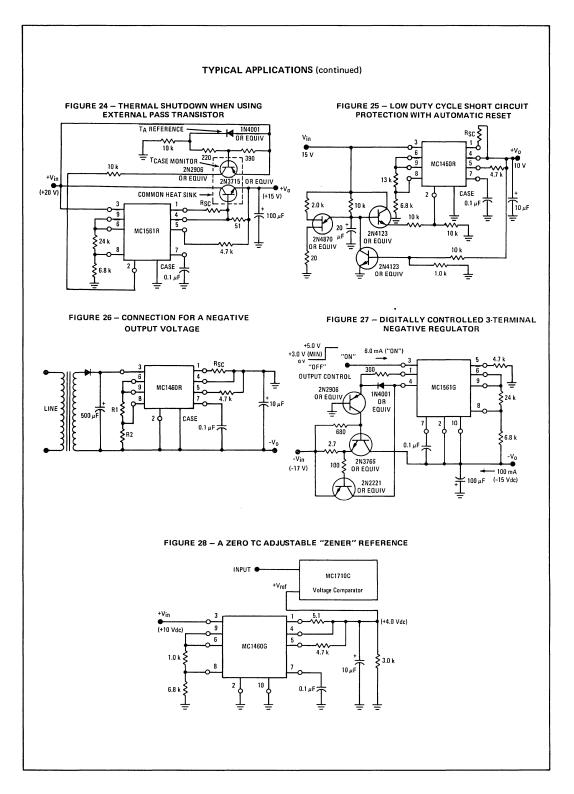

Short-circuit current-limiting is achieved by selecting a value for RSC which will threshold the internal diode string when the desired maximum load current flows (see Figure 5). If the device dissipation and dc safe area limits (Figure 15) are not exceeded, it can be continuously short-circuited at the output without damage.

Vn, OUTPUT VOLTAGE (VOLTS)

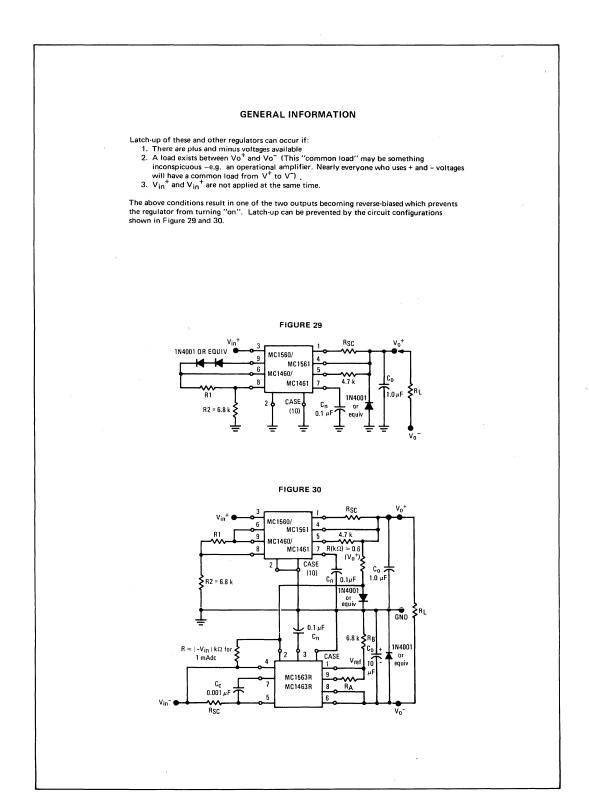

#### FIGURE 1 -- CONNECTION FOR Vo ≥ 3.5 V /in Rsc 60 +Vn $(R1 \approx (2 V_0 - 7) k\Omega)$ $(B2 = 6.8 k\Omega)$ 50 6 4 9 5 R1, RESISTANCE (km) 40 4.7 k 8 7 Co 卡10 µF 30 R1 Case 2 (10) 20 Cn 0.1 µF 10 R2 6.8 k 0 0 5.0 10 15 20 25 30 35 Vo, OUTPUT VOLTAGE (VOLTS) Select R1 to give desired V_0: R1 $\approx$ (2 V_0 - 7.0) k $\Omega$ FIGURE 2 - CONNECTIONS FOR Vo ≤ +3.5 V 2.0 1.0 +Vin Ò kΩ R2) $k\Omega$ R R1, RESISTANCE (kΩ) RESISTANCE (km) '⊔↓ CASE 1.0 6.0 (10) Cn 0.1 µF 10 ..... $0.1 \,\mu$ F R2, $2(V_n)k\Omega$ Select R2 to give desired 0 5.0 $R2 \approx (2 V_0) k\Omega$ n 2.5 3.0 3.5 Select R1:

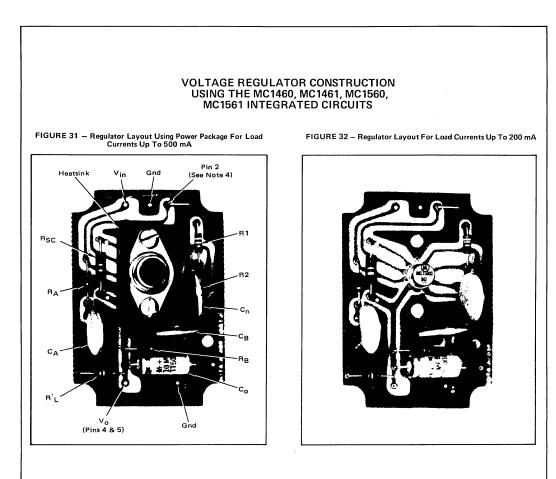
#### TYPICAL CONNECTIONS




7





7



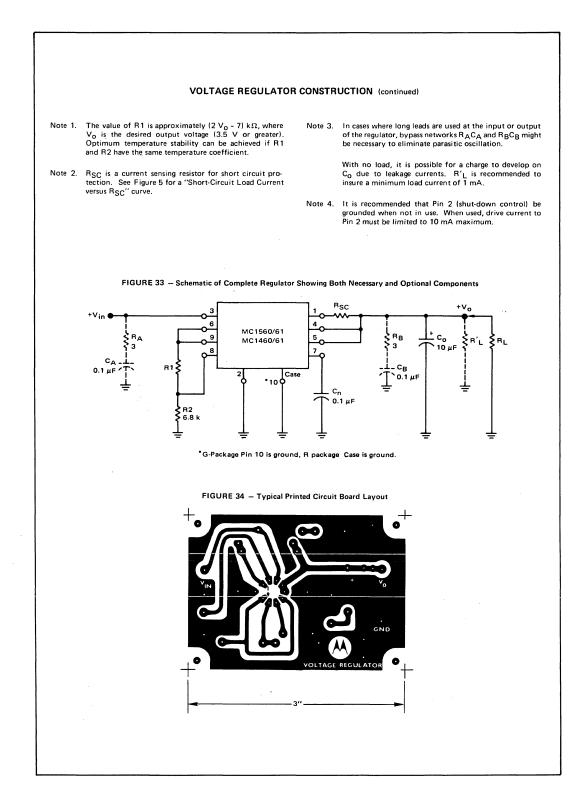


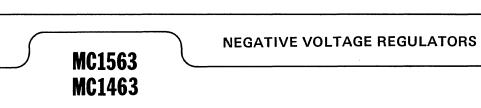
7



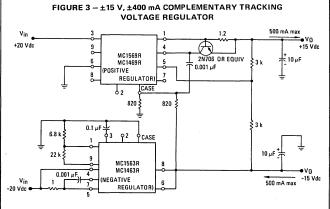


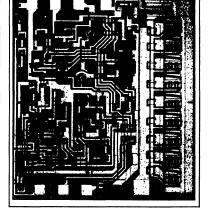
PARTS LIST


Component	Value Description
R1 R2	Select 6.8 kΩ } 1/4 Watt Carbon – See Note 1
R _{SC}	Select 1/2 Watt Carbon – See Note 2
*R _A *R _B	$\left. \begin{array}{c} 3 \Omega \\ 3 \Omega \end{array} \right\} $ 1/4 Watt Carbon
*R′L	Select for current of 1 mA minimum
Co	10 μF Sprague 1500 Series, Dickson D10C Series or Equivalent
C _n	0.1 µF Ceramic Disc –
*CA	0.1 μF Centralab DDA104,
*C _B	0.1 μF ¹ Sprague TG-P10, or Equivalent
*Heatsink	– Thermalloy #6168 – IERC LB 66B1-77U series
*Socket	(Not Shown) Robinson Nugent #0001306 Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1


*Optional Parts, See Note 3 on next page.

There is a general tendency to consider a voltage regulator as simply a dc circuit and to prepare circuit layout accordingly. The excellent high-frequency performance and fast response capability of this integrated-circuit regulator, however, makes extra layout care worthwhile. Since short, well-dressed leads must be used, printed-circuit boards provide an excellent component interconnection technique.


The circuit layout, shown in Figure 31 for the "R" or power package IC, applies also to the lower power "G" package circuit shown in Figure 32. The R package circuits will deliver up to 500 mA into a load and the G package, 200 mA.


The circuit schematic, Figure 33, is for output voltages above 3.5 Vdc and the parts list is as follows:





#### **Specifications and Applications Information** MONOLITHIC NEGATIVE VOLTAGE REGULATOR NEGATIVE-POWER-SUPPLY The MC1563/MC1463 is a "three terminal" negative regulator designed to deliver con--40 Vdc. Output current capability can be increased to greater than 10 Adc through use VOLTAGE REGULATOR INTEGRATED CIRCUIT of one or more external transistors. Specifications and performance of the MC1563/MC1463 Negative Voltage Regulator are nearly identical to the MC1569/MC1469 Positive Voltage Regulator. For systems re-quiring both a positive and negative power supply, these devices are excellent for use as SILICON EPITAXIAL PASSIVATED complementary regulators and offer the advantage of operating with a common input ground. The MC1563R/MC1463R case can be mounted directly to a grounded heat sink which 4 electrically eliminates the need for an insulator. connected Case is at Ground Potential (R package) to case ٠ through substrate Electronic "Shutdown" and Short-Circuit Protection . Low Output Impedance - 20 Milliohms typ High Power Capability - 9.0 Watts . Excellent Temperature Stability - TCVO = ± 0.002%/°C Typ is ground terminal . High Ripple Rejection - 0.002% typ G SUFED B SUFFLY . METAL PACKA CASE 602A METAL PACKAGE CASE 614 AGE • 500 mA Current Capability FIGURE 1 - TYPICAL CIRCUIT CONNECTION FIGURE 2 - TYPICAL NPN CURRENT BOOST CONNECTION $|-3.5| \leq V_0 \leq |-37|$ Vdc, $1 \leq I_L \leq 500$ mA $(V_0 = 5.2 \text{ Vdc}, I_L = 10 \text{ Adc} [max])$ GND GND 0.1 µF Cn 6.8 1 6.8 k RB 3 RR CASE 2 CASE Vref ъŧ 10 A max C_o Co 1N4001 OR EQUIV 100 RL 3.3 k 2 10 μF RŁ R۵ MC1563R MC1463R MC1563R MC1463R 8 8 0.001 µF C ~~~ 0.001 µF Rs 2N3771 Select RA to Give Desired VO: $R_A \approx (2|V_\Omega|-7) k\Omega$ $V_0 \approx -3.5 \left(1 + \frac{R_A}{R_B}\right)$ 0.02 Ω or Equi 5 V $z_0 \approx 5.0$ milliohms V0 = -5.2 Vde Rcc





See Packaging Information Section for outline dimensions. See current MCC1563/1463 data sheet for standard linear chip information.

(MC1563 - Pg. 1) 7-265 7

Rating Symb		ymbol Value		Unit		
Input Voltage MC1463 MC1563		Vin	35 40		Vdc	
			G Package	R Package		
Peak Load Current		I_ pk	250	600	mA	
Current, Pin 2		Ipin 2	10	10	mA	
Power Dissipation and Thermal Characteri $T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = 25^{\circ}C$ Derate above $T_C = 25^{\circ}C$ Thermal Resistance, Junction to Case	istics	Ρ _D 1/φ _J φJA Ρ _D 1/φ _{JC} φ _{JC}	0.68 5.44 184 1.8 14.4 69.4	2.4 16 62 9.0 61 17	Watts mW/ ^o C oC/W Watts mW/ ^o C oC/W	
Operating and Storage Junction Temperat Range	ure	Тј, Т _{stg}	-65 to	o +175	°C	

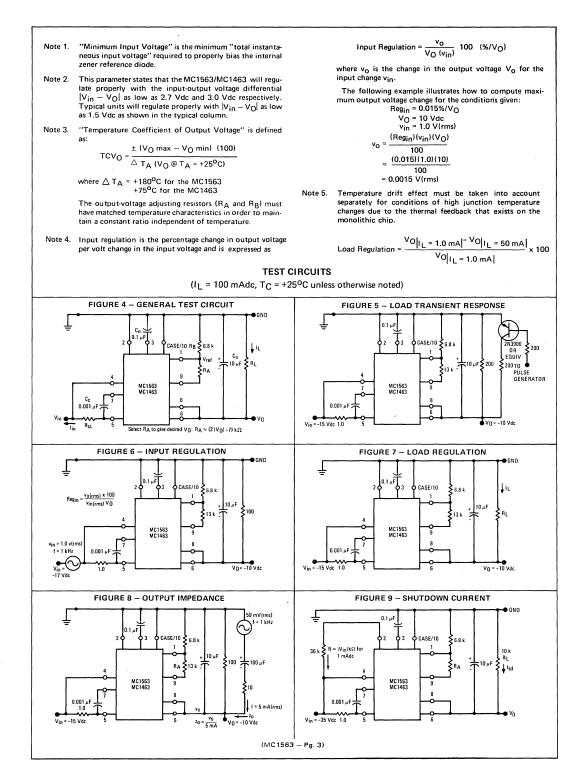
### MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

### **OPERATING TEMPERATURE RANGE**

Ambient Temperature	ТА		°C
MC1463		0 to +75	
MC1563		-55 to +125	

# **ELECTRICAL CHARACTERISTICS** (IL = 100 mAdc, TC = $+25^{\circ}$ C unless otherwise noted.)

,,	T			MC1563			MC1463			
Characteristic	Fig.	Note	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage ( $T_A = T_{low} \oplus to T_{high} \otimes$ )	4	1	Vin	-8.5		-40	-9.0	-	-35	Vdc
Output Voltage Range	4	-	Vo	-3.6	÷.	-37	-3.8	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	4	-	Vref	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc
Minimum Input-Output Voltage Differential (R _{SC} = 0)	4	2	IV _{in} - V _O I		1.5	2.7	-	1.5	3.0	Vdc
Bias Current (Standby Current) (I _L = 1.0 mAdc, I _B = I _{in} - I _L )	4	-	IB.		7.0	11 	-	7.0	14	mAdc
Output Noise (C _n = 0.1 μF, f = 10 Hz to 5.0 MHz)	4	-	^v n		120		-	120	-	μV(rms)
Temperature Coefficient of Output Voltage	4	3	TCVO	ľa <del>t,</del> ∕,,	±0.002		-	±0.002		%/°C
Operating Load Current Range (R _{sc} = 0.3 ohm) R Package (R _{sc} = 2.0 ohms) G Package	4	-	ι	1.0 1.0		500 200	1.0 1.0	_	500 200	mAdc
Input Regulation	6	4	Regin		0.002	0.015		0.003	0.030	%/Vo
Load Regulation (T _J = Constant [1.0 mA ≤I _L ≤ 20 mA]) (T _C = +25 ^O C [1.0 mA ≤I _L ≤50 mA]) R Package G Package	7	5	RegL		0.4 0.005 0.01	1.6 0.05 0.13	-	0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (f = 1.0 kHz)	8	-	z _o		20	80	-	35	120	milliohms
Shutdown Current (V _{in} = -35 Vdc)	9	-	1 _{sd}		7.0	15	-	14	50	μAdc


-

*Symbols conform to JEDEC Bulletin No. 1 where applicable. ( $T_{Iow} = 0^{\circ}C$  for MC1463  $= -55^{\circ}C$  for MC1563 ( $T_{Iow} = +75^{\circ}C$  for MC1563 ( $T_{Iow} = +75^{\circ}C$  for MC1563

(MC1563 - Pg. 2)

7-266

# MC1563, MC1463 (continued)



### GENERAL DESIGN INFORMATION

- 1. Output Voltage, VO
  - a) Output Voltage is set by resistors RA and RB (see Figure 10). Set  $R_B = 6.8$  k ohms and determine  $R_A$  from the graph of Figure 11 or from the equation:

#### $R_A \approx (2 |V_0| - 7) k\Omega$

- b) Output voltage can be varied by making RA adjustable as shown in Figures 10 and 11.
- c) Output voltage, VO, is determined by the ratio of RA and RB therefore optimum temperature performance can be achieved if RA and RB have the same temperature coefficient.
- d)  $V_0 = V_{ref} (1 + R_A)$ ; therefore the tolerance on  $\widehat{\mathsf{R}_{\mathsf{B}}}$

output voltage is determined by the tolerance of Vref and RA and RB.

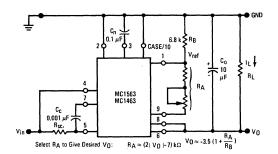
2. Short-Circuit Current,  $I_{sc}$ Short-Circuit Current,  $I_{sc}$  is determined by  $R_{sc}.$   $R_{sc}$  may be chosen with the aid of Figure 12 when using the typical circuit connection of Figure 10. See Figure 29 for current limiting during NPN current boost.

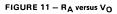
3. Compensation, Cc

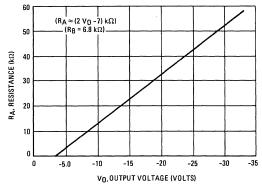
A 0.001 µF capacitor (C_c, see Figure 10), will provide adequate compensation in most applications, with or without current boost. Smaller values of  $C_c$  will reduce stability and larger values of  $C_c$  will degrade pulse response and output impedance versus frequency. The physical location of  $C_c$ should be close to the MC1563/MC1463 with short lead lengths.

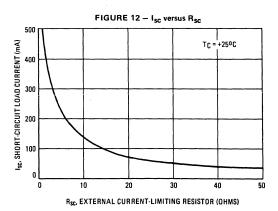
 Noise Filter Capacitor, C_n A 0.1 μF capacitor, C_n, from pin 3 to ground will typically reduce the output noise voltage to 120 μV(rms). The value of Cn can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.

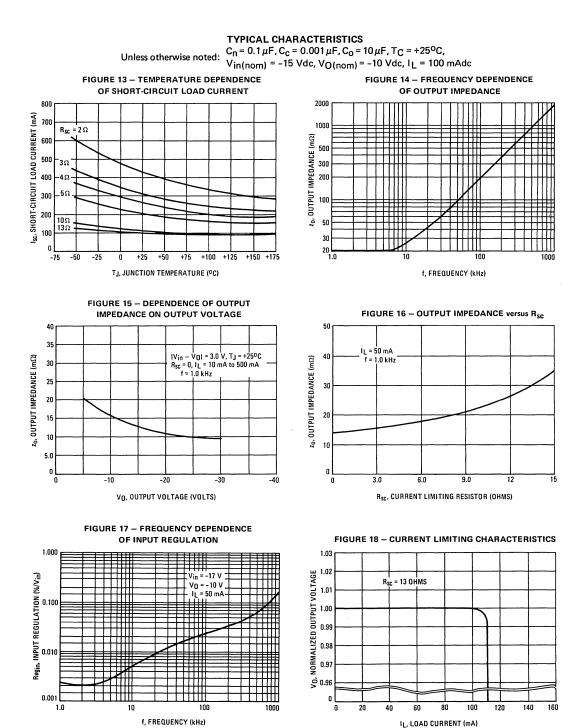
5. Output Capacitor,  $C_0$  The value of  $C_0$  should be at least  $~10\,\mu F$  in order to provide good stability.


6. Shutdown Control


One method of turning "OFF" the regulator is to draw 1 mA from pin 2 (See Figure 9.) This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc 'squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at pin 2 will cause automatic shutdown for high junction temper-atures (see Figure 37). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MECL , MRTL , MDTL or MTTL can also be used to turn the regulator "ON" or "OFF" (see Figures 32 and 33).

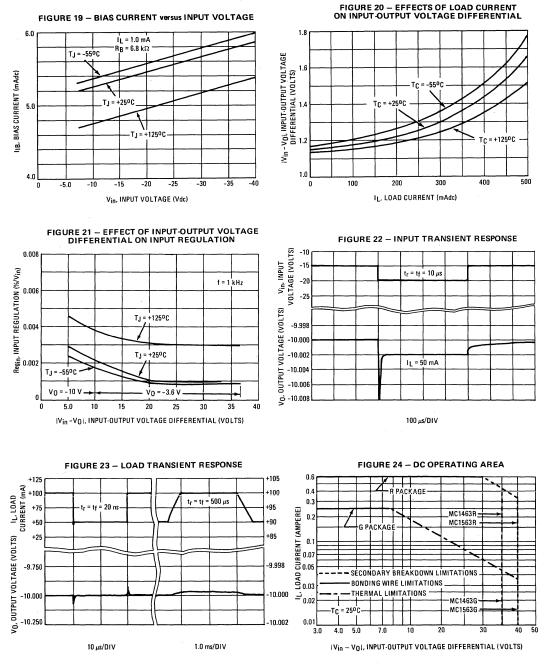

7. Remote Sensing


The connection to pin 8 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure IL) on zo can be greatly reduced (see Figure 35).


FIGURE 10 - TYPICAL CIRCUIT CONNECTION












7

(MC1563 – Pg. 5)



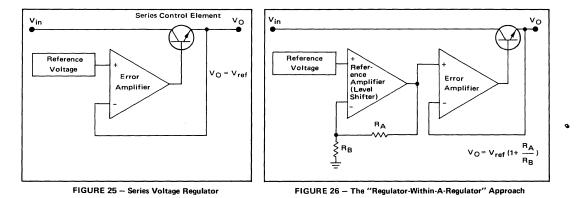
#### TYPICAL CHARACTERISTICS (continued)

(MC1563 - Pg. 6)

### **OPERATION AND APPLICATIONS**

This section describes the operation and design of the MC1563 (MC1463) negative voltage regulator and also provides information on useful applications.

SUBJECT	SEQUENCE	INDEX
---------	----------	-------


Specification Pg. No.			Specification Pg. N	
Theory of Operation	7	Remote Sensing	12	
NPN Current Boosting	9	An Adjustable Zero-Temperature-Coefficient	13	
PNP Current Boosting	10	Voltage Source		
Positive and Negative Power Supplies	11	Thermal Shutdown	13	
Shutdown Techniques	11	Thermal Considerations	13	
Voltage Boosting	12	PC Board Layout and Information	15	

#### THEORY OF OPERATION

The usual series voltage regulator shown in Figure 25, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 26. The gain-determining resistors may be external, enabling a wide range of output voltages. This is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1563) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulatorwithin-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1563 negative voltage regulator.



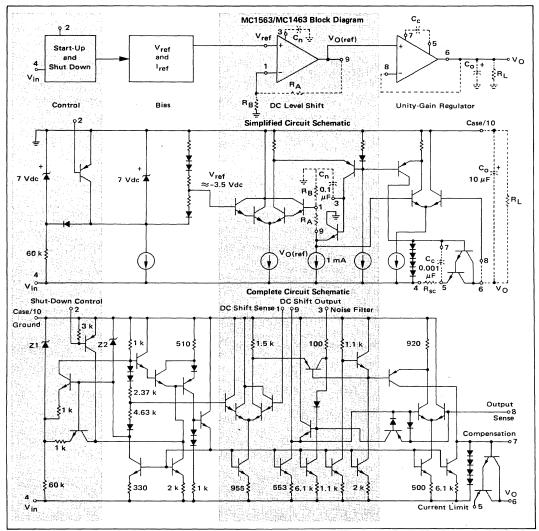



FIGURE 27 (Recommended External Circuitry is Depicted With Dotted Lines.)

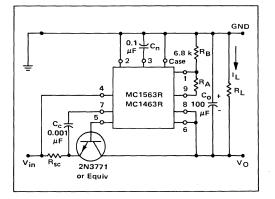
### MC1563 (MC1463) Operation

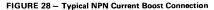
Figure 27 shows the MC1563 (MC1463) Negative Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

### Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k $\Omega$ ) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator. The shutdown control, in effect, consists of a PNP transistor across the reference zener diode. When this transistor is turned "ON", via pin'2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to  $V_{in}/60 \ k\Omega$  or 500  $\mu$ A for a -30 V input.

#### Bias


A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately -3.5 Vdc with a typical temperature coefficient of 0.002%/0C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.


#### DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors ( $R_A$  and  $R_B$ ) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor,  $C_n$ , is introduced externally into the level shift network (via pin 3) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is  $0.1 \, \mu F$  and should have a voltage rating in excess of the desired output voltage. Smaller capacitors ( $0.001 \, \mu F$  minimum) may be used but will cause a slight increase in output noise. Larger values of  $C_n$  will reduce the noise as well as delay the start-up of the regulator.

### **Output Regulator**

The output of the shift amplifier is fed internally to the noninverting input of the output error amplifier. The





inverting input to this amplifier is the Output Sense connection (pin 8) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor,  $R_{sc}$ , is connected in the emitter of this transistor to sample the full load current. This connection enables a four-diode string to limit the drive current to the power transistors in a conventional manner.

## Stability and Compensation

As has been seen, the MC1563 employs two amplifiers, each using negative feedback. This implies the possibility of frequency instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 7) and pin 5. The recommended value of 0.001  $\mu$ F will insure stability and still provide acceptable transient response (see Figure 23). It is also necessary to use an output capacitor, C₀, (typically 10  $\mu$ F) directly from the output (pin 6) to ground. When an external transistor is used to boost the current, C₀ = 100  $\mu$ F is recommended (see Figure 28).

# NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 28, are recommended. The circuit shown in Figure 28 can supply up to approximately 4.0 amperes (subject to safe area limitations). At higher currents the VBE of the pass transistor may itself exceed the threshold of the current limit even for  $R_{SC} = 0$ . Figure 2 illustrates the use of an additional external diode from pin 4 for higher current operation or for pass transistors exhibiting higher VBE's. It will probably be necessary to determine  $R_{SC}$  experimentally for each case where a pass transistor is used because VBE varies from device to device. The circuit of Figure 28 when set up for a -10 V.output

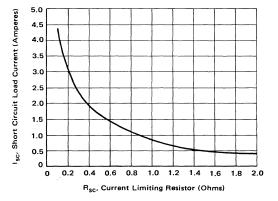
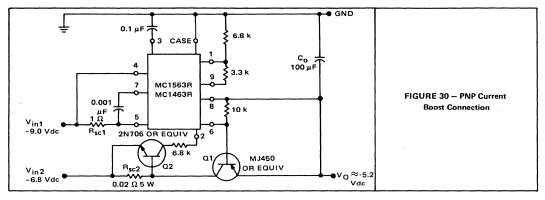




FIGURE 29 - Isc versus Rsc (reference Figure 28)

# MC1563, MC1463 (continued)



 $(R_A = 13 \text{ k}\Omega)$  supply and operating with a -15 V input, with a  $R_{SC}$  of 0.1  $\Omega$ , will yield a change in output voltage of only 26 mV over a load current range of from 1 mA to 3.5 A. This corresponds to a dc output impedance of only 7.5 milliohms or a percentage load regulation of 0.26% for a full 3.5-ampere load current change. Figure 29, indicates how the short circuit current varies with the value of  $R_{SC}$  for this circuit.

### **PNP CURRENT BOOSTING**

A PNP power transistor can also be used to boost the load current capabilities. To improve the efficiency of the PNP boost configuration, particularly for small output voltages, the circuit of Figure 30, is recommended. An auxiliary -9 volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 10-ampere regulator of Figure 30 this represents a savings of 22 watts when compared with operating the regulator from the single -9 V supply. It can supply current to 10 amperes while requiring an input voltage to the collector of the pass transistor of -6.8 volts minimum. The pass transistor is limited to 10 amperes by the added short-circuit current network in its emitter ( $R_{sc2}$ ) and the IC regulator is limited to 500 mA in the conventional manner ( $R_{sc1}$ ). The MJ450 exhibits a minimum hFE of 20 at 10 amperes, thus requiring only 500 mA from the MC1563R. Regulation of this circuit is comparable to that of the NPN boost configuration.

For higher output voltages the additional unregulated power supply is not required. The collector of the PNP boost transistor can tie directly to pin 5 and the internal current limit circuit will provide short-circuit protection using  $R_{sc}$  (see Figure 12). Transistor Q2 and  $R_{sc2}$  will not be required and pin 2 should be returned to ground.

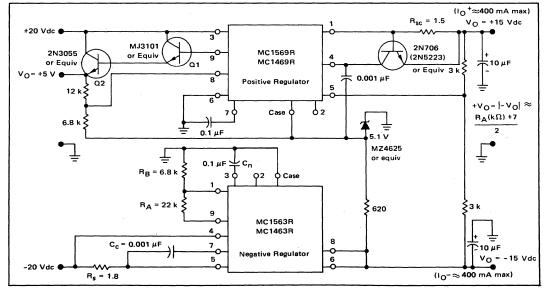
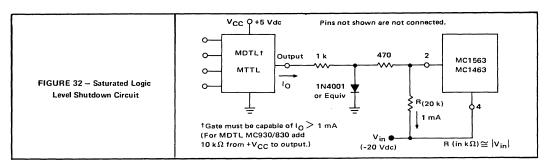




FIGURE 31 - A ±15 Vdc Complementary Tracking Regulator With Auxiliary +5.0 V Supply

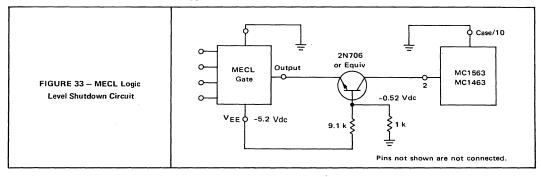
(MC1563 - Pg. 10)



# POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1563 is driven from a floating source it is possible to use it as a positive regulator by grounding the negative output terminal. The MC1563 may also be used with the MC1569 to provide completely independent positive and negative power regulators with comparable performance. When used in this manner a silicon diode such as the 1N4001 must be connected as a clamp on the output with the cathode to ground and the anode to the negative output voltage. This is to prevent the positive voltage in the system from forcing the output to a positive value and preventing the MC1563 from starting up.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 31 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3 k-ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero,  $+|V_O|$  must equal  $-|V_O|$ .


For the configuration shown in Figure 31, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5-volt supply which is boosted to a 2-ampere capability by Q1 and Q2. (The +5-volt supply, as shown,

is not short-circuit protected). The -15-volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt supply varies 20 mV over the zero to +300-mAdc load current range. The +5-volt supply varies less than 5 mV for  $0 \le I_L \le 200$  mA with the other two voltages remaining unchanged. See MC1561 data sheet (DS9104 R3), or MC1569 data sheet (DS9152 R2) for information concerning latch-up when using plus and minus regulations.

### SHUTDOWN TECHNIQUES

Pin 2 of the MC1563 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of a PNP transistor; which, if turned "ON", will deny current to all the biasing current sources. This action causes the output to go to essentially zero volts and the only current drawn by the IC regulator will be the small start current through the 60 k-ohm start resistor (V_{in}/60 k $\Omega$ ). This feature provides additional versatility in the applications of the MC1563. Various sub-systems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as over-heating, over-voltage, shorted output, etc.

As an illustration of the first case, consider a system consisting of both positive-supply logic (MTTL) and negative-supply logic (MECL). The MECL logic may be used in a high-speed arithmetic processor whose services are not continuously required. Substantial power may



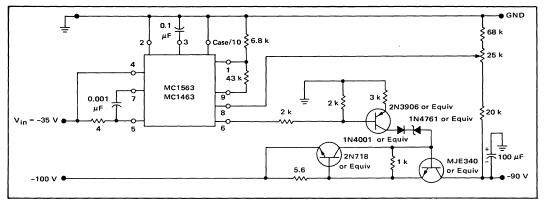



FIGURE 34 - Voltage Boosting Circuit

thus be conserved if the MECL circuitry remains unpowered except when needed. The negative regulator can be shutdown using any of the standard logic swings. For saturated logic control, Figure 32 shows a circuit that allows the normal positive output swing to cause the regulator to shutdown when the logic output is in the low voltage state. The negative output levels of a MECL gate can also be used for shutdown control as shown in Figure 33.

### VOLTAGE BOOSTING

Some applications may require a high output voltage which may exceed the voltage rating of the MC1563. This must be solved by assuring that the IC regulator is operated within its limits. Three points in the regulator need to be considered:

- 1. The input voltage (pin 4),
- 2. the output voltage (pin 6) and,
- 3. the output sense lead (pin 8).

A reduced input voltage can be provided by using a separate supply. The output voltage may be zener-level shifted, and the sense line can tie to a portion of the output voltage through a resistive divider. The voltage boost circuit of Figure 34 uses this approach to provide a -90 volt supply. This circuit will exhibit regulation of 0.001% over a 100 mA load current range.

#### **REMOTE SENSING**

The MC1563 offers a remote sensing capability. This is important when the load is remote from the regulator, as the resistances of the interconnecting lines (VEE and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 35 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.

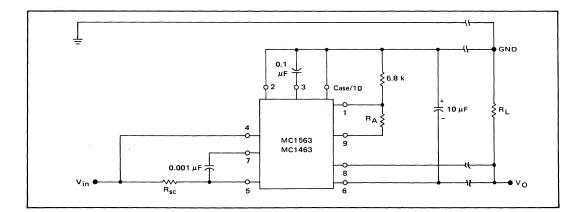



FIGURE 35 - Remote Sensing Circuit

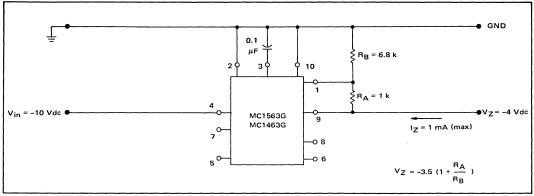



FIGURE 36 - An Adjustable "Zero-TC" Voltage Source

### AN ADJUSTABLE ZERO-TEMPERATURE-COEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE

The MC1563, when used in conjunction with low-TC resistors, makes an excellent reference-voltage generator. If the -3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 1 and 9 can be tied together and no resistors are needed. This will provide a voltage reference having a typical temperature coefficient of  $0.002\%/^{0}$ C. By adding two resistors, R_A and R_B, any voltage between -3.5 Vdc and -37 Vdc can be obtained with the same low TC (see Figure 36).

# THERMAL SHUTDOWN

By setting a fixed voltage at pin 2, the MC1563 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the base-emitter junction of the shutdown transistor (-1.9 x)  $10^{-3}$ V/°C). By setting -0.61 Vdc externally, at pin 2, the regulator will shutdown when the chip temperature reaches approximately 140°C. Figure 37 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

In the case where an external pass transistor is employed; its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 38. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

## THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application,

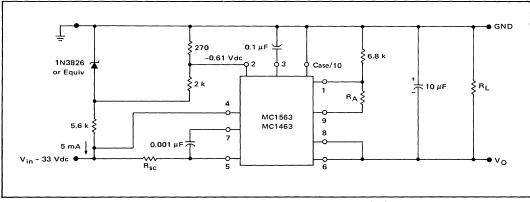



FIGURE 37 – Junction Temperature Limiting Shutdown Circuit

# MC1563, MC1463 (continued)

the designer must use caution not to exceed the specified maximum junction temperature (+175°C). Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A short-circuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current (500 mA). Care should be taken not to exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 24).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature,  $T_A$ , or a change in the power dissipated in the IC regulator. The effects of ambient

*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors. temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as  $\pm 0.002\%^{OC}$ , typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

- 1. junction temperature change due to the change in the power dissipation
- 2. output voltage decrease due to the finite output impedance of the control amplifier
- 3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," GCVO, can be used to describe this effect and is typically  $\pm 0.03\%$ /watt for the MC1563R. For an example of the relative magnitudes of these effects, consider the following conditions:

Given: MC1563R

with 
$$V_{in} = -10 \text{ Vdc}$$

and 
$$I_L = 100 \text{ mA to } 200 \text{ mA}$$
  
( $\Delta I_L = 100 \text{ mA}$ )

assume 
$$T_A = +25^{\circ}C$$

TO-66 Type Case with heatsink

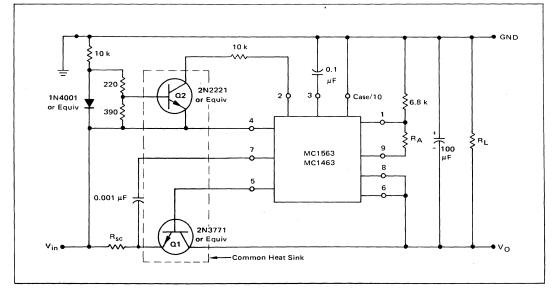



FIGURE 38 - Thermal Shutdown When Using External Pass Transistors

# MC1563, MC1463 (continued)

assume  $\theta_{CS} = 0.2^{\circ}C/W$ and  $\theta_{SA} = 2^{\circ}C/W$ 

It is desired to find the  $\triangle V_O$  which results from this  $\triangle I_L$ . Each of the three previously stated effects on  $V_O$  can now be separately considered.

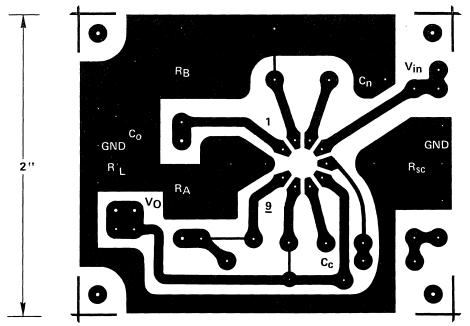
1. 
$$\triangle V_0$$
 due to  $\triangle T_J$ 

2.  $\triangle V_0$  due to  $z_0$ 

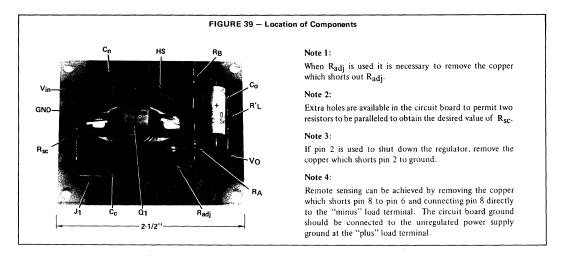
 $| \bigtriangledown V_0 | = (-z_0)(I_L)$ 

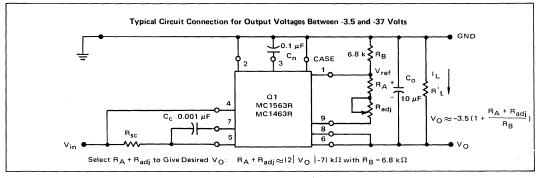
 $|\triangle V_0| = -(2 \ge 10^{-2})(10^{-1}) = -2 \text{ mV}$ 

3. 
$$\triangle V_0$$
 due to gradient coefficient, GCV₀


$$\begin{split} |\Delta V_{O}| &= (GCV_{O})(V_{O})(\Delta P_{D}) \\ |\Delta V_{O}| &= (+3 \text{ x } 10^{-4}/\text{W})(5 \text{ volts})(5 \text{ x } 10^{-1}\text{W}) \\ |\Delta V_{O}| &= +0.8 \text{ mV} \end{split}$$

Therefore the total  $\Delta V_0$  is given by


OR  
$$\frac{|\Delta V_{O} \text{ total}| = \pm 1.0 - 2.0 + 0.8 \text{ mV}}{-2.2 \text{ mV} \leq |V_{O} \text{ total}| \leq -0.2 \text{ mV}}$$


Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

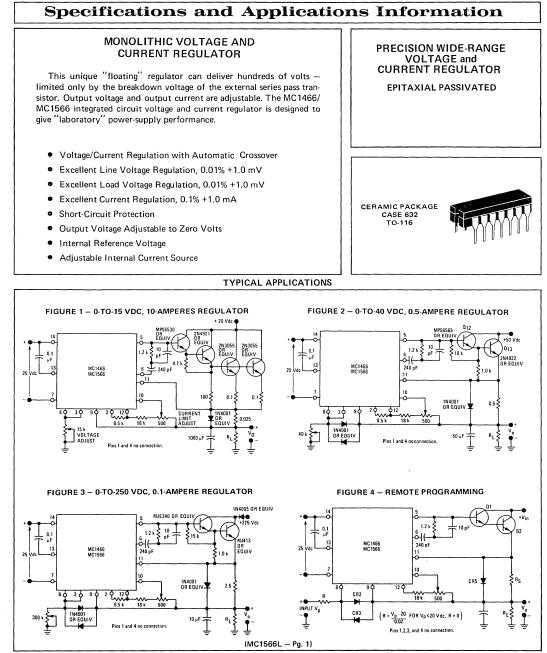
# **Typical Printed Circuit Board Layout**



(MC1563 - Pg. 15)






PARTS LIST

Component	Value	Description
R _A R _B	Select 6.8 k	1/4 or 1/2 watt carbon
R _{adj}	Select	IRC Model X-201, Mallory Model MTC-1 or equivalent
R _{sc}	Select	1/2 watt carbon
R'L	Select	For minimum current of 1 mAdc
С _о	10 µF	Sprague 1500 Series, Dickson D10C series or equivalent
C _n	0.1 µF	Ceramic Disc – Centralab DDA 104, or equivalent
CC	0.001 µF ∮	Sprague TG-P10, or equivalent
J1	,	Jumper
Q1		MC1563R or MC1463R
*HS		Heatsink Thermalloy #6168 B or equivalent
*Socket	(Not Shown)	Robinson Nugent #0001306 or equivalent Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1 or equivalent
PC Board		Circuit DOT, Inc. #PC1113 or equivalent 1155 W. 23rd St. Tempe, Arizona 85281

*Optional

(MC1563 - Pg. 16)

# **MULTI-PURPOSE REGULATORS**



See Packaging Information Section for outline dimensions.

MC1566L MC1466I

Rating		Symbol	Value	Unit
	MC1466 MC1566	Vaux	30 35	Vdc
Power Dissipation (Package Limitation) Derate above T _A = +50 ^o C		Ρ _D 1/ _{θJA}	750 6.0	mW mW/ ^o C
	MC1466 MC1566	TA	0 to +75 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

# MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

# **ELECTRICAL CHARACTERISTICS** (T_A = +25^oC, V_{aux} = +25 Vdc unless otherwise noted)

Characteristic Definition	Characteristic		Symbol	Min	Тур	Max	Units
	Auxiliary Voltage (See Notes 1 & (Voltage from pin 14 to pin 7)	2) MC1466 MC1566	V _{aux}	21 20	1 1	30 35	Vdc
	Auxiliary Current	MC1466 MC1566	l _{aux}		9.0 7.0	12 8.5	mAdc
U 10 pF V 13 MC1665* 6 240 pF 0R EQUIV	Internal Reference Voltage (Voltage from pin 12 to pin 7)	MC1466 MC1566	VIR	17.3 17.5	18.2 18.2	19.7 19	Vdc
	Reference Current (See Note 3)	MC1466 MC1566	I _{ref}	0.8 0.9	1.0 1.0	1.2 1.1	mAdc
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ \end{array} \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\$	Input Current-Pin 8	MC1466 MC1566	18		6.0 3.0	12 6.0	μAdc
	Power Dissipation	MC1466 MC1566	PD	-		360 300	mW
. 202222 44.	Input Offset Voltage, Voltage Co Amplifier (See Note 4)	ntrol MC1466 MC1566	V _{iov}	0 3.0	15 15	40 25	mVdc
	Load Voltage Regulation (See Note 5)	MC1466 MC1566	∆V _{iov}	-	1.0 0.7	3.0 1.0	mV
V _{BUX} O 13 WC1465* 13 WC1465* 1240 pF st 243055 0 R EDUIV 11 0 R EDUIV		MC1466 MC1566	∆V _{ref} /V _{ref}		0.015 0.004	0.03 0.01	%
	Line Voltage Regulation (See Note 6)	MC1466 MC1566	ΔV _{iov}	-	1.0 0.7	3.0 1.0	mV
$\begin{bmatrix} \downarrow &  _{tert} & V_{low} & \\ & R_2 & \\ & g_{5,k+2} _{N_k} & \\ \end{bmatrix}$		MC1466 MC1566	∆V _{ref} /V _{ref}		0.015 0.004	0.03 0.01	%
÷	Temperature Coefficient of Outp (T _A = 0 to +75°C) (T _A = -55 to +25°C) (T _A = +25 to +125°C)	ut Voltage MC1466 MC1566 MC1566	τς _{νο}		0.01 0.006 0.004		%/ ^o C
Very 0 Very 0	Input Offset Voltage, Current Co Amplifier (See Note 4) (Voltage from pin 10 to pin 11)	MC1466	V _{ioi}	0 3.0	15 15	40 25	mVdc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Load Current Regulation (See Note 7)	MC1466 MC1566	∆ <b>ا</b> ر/ار			0.2	%
		MC1466 MC1566	∆I _{ref}	-	-	1.0 1.0	mAdc

Pins 1 and 4 no connection.

(MC1566L - Pg. 2)

NOTE 1:

The instantaneous input voltage, V_{aux}, must not exceed the maximum value of 30 volts for the MC1466 or 35 volts for the MC1566. The instantaneous value of V_{aux} must be greater than 20 volts for the MC1566 or 21 volts for the MC1466 for proper internal regulation. NOTE 2:

The auxiliary supply voltage  $V_{aux}$ , must "float" and be electrically isolated from the unregulated high voltage supply, Vin-

NOTE 3:

Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship:  $I_{ref} (mA) = \frac{8.55}{8 + 1/(Q)}$ 

 $R_1(k\Omega)$ 

NOTE 4

A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero.

NOTE 5:

Load Voltage Regulation is a function of two additive components,  $\Delta V_{iov}$  and  $\Delta V_{ref}$ , where  $\Delta V_{iov}$  is the change in input offset voltage (measured between pins 8 and 9) and  $\Delta V_{ref}$  is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is:

- a. With S1 open (I₄ = 0) measure the value of V_{iov} (1) and Vref (1)
- b. Close S1, adjust R4 so that  $I_4 = 500 \ \mu A$  and note Viov (2) and Vref (2).

Then  $\Delta V_{iov} = V_{iov} (1) - V_{iov} (2)$ 

% Reference Regulation =

$$\frac{[V_{ref (1)} - V_{ref (2)}]}{V_{ref (1)}} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$$

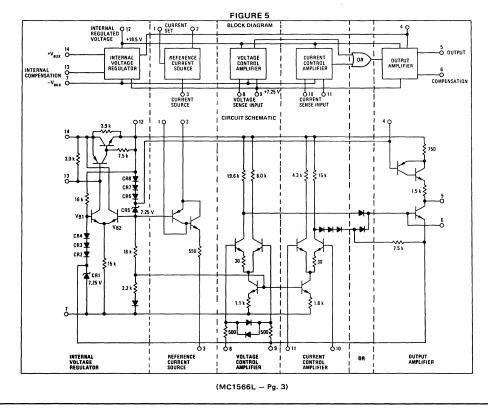
Load Voltage Regulation =  $\Delta V_{ref}$  (100%) +  $\Delta V_{iov}$  · Vref NOTE 6: Line Voltage Regulation is a function of the same two

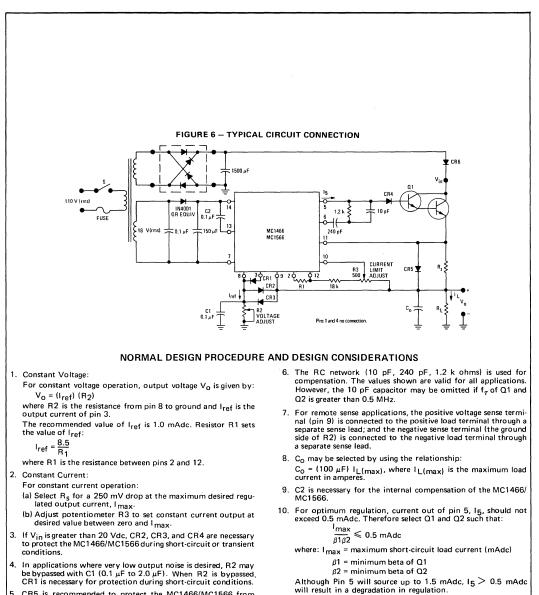
- additive components as Load Voltage Regulation,  $\Delta V_{iov}$  and  $\Delta V_{ref}$  (see note 5). The measurement procedure is: Set the auxiliary voltage,  $V_{aux}$ , to 22 volts for the MC1566 or the MC1466. Read the value of а.
- Viov (1) and Vrof (1).
   Change the V_{aux} to 28 volts for the MC1566 or the MC1466 and note the value of Vi_{ov} (2) and V_{rof}(2). Then compute Line Voltage Regulation:

$$\Delta V_{iov} = \Delta V_{iov}$$
 (1) - V_{iov} (2)  
% Reference Regulation =

 $\frac{[V_{ref (1)} - V_{ref (2)}]}{V_{ref (1)}} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$ 

Line Voltage Regulation =  $\Delta V_{ref}$ 


NOTE 7:


v

- Load Current Regulation is measured by the following procedure:
- a. With S2 open, adjust R3 for an initial load current, IL(1), such that Vo is 8.0 Vdc.
- b. With S2 closed, adjust  $R_T$  for  $V_0 = 1.0$  Vdc and read  $I_L(2)$ . Then Load Current Regulation =

 $[I_L(2) - I_L(1)]$  (100%) + I_{ref} ¹L(1)

where  $I_{ref}$  is 1.0 mAdc, Load Current Regulation is specified in this manner because  $I_{ref}$  passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, Rs.





- CR5 is recommended to protect the MC1466/MC1566 from simultaneous pass transistor failure and output short-circuit.
- 11. CR6 is recommended when  $V_0 > 150$  Vdc and should be rated such that Peak Inverse Voltage  $> V_0$ .

(MC1566L - Pg. 4)

# **OPERATION AND APPLICATIONS**

This section describes the operation and design of the MC1566/MC1466 voltage and current regulator and also provides information on useful applications.

### SUBJECT SEQUENCE

Theory of Operation Applications Transient Failures Voltage/Current-Mode Indicator

# THEORY OF OPERATION

The schematic of Figure 5 can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CR1 and CR5 with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance (VB1 = VB2), the output voltage, (V12 - V7), is at a value that is twice the drop across either of the two diode strings: V12 - V7 = 2 (VCR1 + VCR2 + VCR3 + VCR4). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit.

The voltage controlled current source (Figure 8) is a PNP-NPN composite which, due to the high NPN beta,

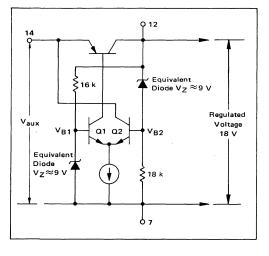
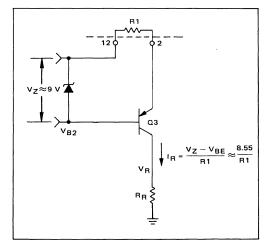




FIGURE 7 – REFERENCE VOLTAGE REGULATOR

yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage (VB2) is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor R1. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between  $V_{B_2}$  and  $V_{12}$ , making the  $\Delta V_{BE}$ 's very small in percentage. Circuit reference voltage is derived from the product of  $I_R$  and  $R_R$ ; if  $I_R$  is set at 1 mA  $(R1 = 8.5 \text{ k}\Omega)$ , then  $R_R$  (in  $k\Omega$ ) =  $V_0$ . Other values of current may be used as long as the following restraints are kept in mind: 1) package dissipation will be increased by about 11 mW/mA and 2) bias current for the voltage control amplifier is  $3 \mu A$ , temperature dependent, and is extracted from the reference current. The reference current should

### FIGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE



be at least two orders of magnitude above the largest expected bias current.

Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high-gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, ROS, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of 1/2 milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without ROS, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as:

$$g_{\rm m} = \frac{1}{2r_{\rm e} + R_{\rm E}} \tag{1}$$

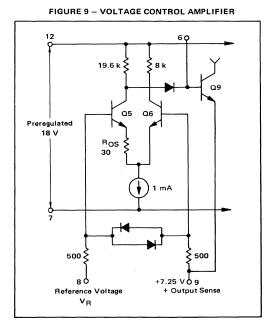
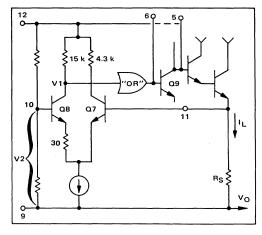
where

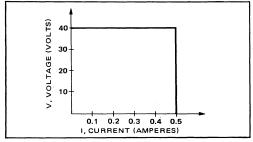
$$r_e \approx \frac{0.026}{I_E}$$
 and

 $R_E$  = added emitter degenerating resistance.

For  $I_E = 0.5 \text{ mA}$ ,

$$g_{\rm m} = \frac{1}{104 + 30} = \frac{1}{134} = 7.5 \text{ mA/volt.}$$
 (2)



FIGURE 10 - CURRENT CONTROL CIRCUIT



This level is further boosted by the output stage such that in the constant voltage mode overall transconductance is about 300 mA/volt.

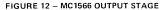
A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin 10 while the output current is sampled across RS by pin 11. When IL RS is 15 mV below the reference value, voltage V1 begins to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of  $V_2/R_S$ . If  $V_2$  is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Since the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" (1% +1 mA, Figure 11). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than VR. Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor.

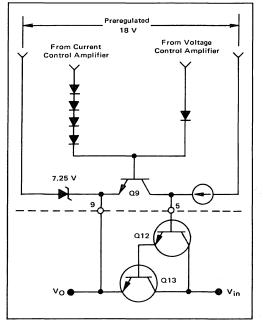
#### FIGURE 11 – VI CURVE FOR 0-TO-40 V, 0.5-AMPERE REGULATOR



(MC1566L - Pg. 6)

Transistor Q9 and five diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an "OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional stage (Q9) must be included to invert the logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 mA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source.


Note that the negative (substrate) side of the MC1566/MC1466 is 7.25 volts lower than the output voltage, and the reference regulator guarantees that the positive side is 11 volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating" above and below V₀. V_{CE} across Q9 is only two or three V_{BE}'s depending on the number of transistors used in the series pass configuration.


Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Q12 and Q13) have minimum beta's of 20, then the overall regulator transconductance will be:

$$g_{mT} = (400) 300 \text{ mA/volt} = 120 \text{ A/volt}.$$
 (3)

For a change in current of 500 mA the output voltage will drop only:

$$\Delta V = \frac{0.5}{120} = 4.2 \text{ mV}.$$
 (4)





The analysis thus far does not consider changes in V_R due to output current changes. If I_L increases by 500 mA the collector current of Q9 decreases by 1.25 mA, causing the collector current of Q5 to increase by  $30 \,\mu$ A. Accordingly, I_R will be decreased by  $\approx 0.30 \,\mu$ A which will drop the output by 0.03%. This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing I_R. Note again, however, that the maximum power rating of the package must be kept in mind. For example if I_R = 4 mA, power dissipation is

$$P_D = 20 V (8 mA) + (11 V x 3 mA) = 193 mW.$$
 (5)

This indicates that the circuit may be safely operated up to  $118^{\circ}$ C using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts,

 $P_D = 35 V (8 mA) + 26 V (3 mA) = 358 mW.$  (6)

which dictates that the maximum operating temperature must be less than  $91^{0}$ C to keep package dissipation within specified limits.

Line voltage regulation is also a function of the voltage change between pins 8 and 9, and the change of  $V_{ref}$ . In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in  $V_{aux}$ . Note that line voltage regulation is not a function of  $V_{in}$ . Note also that the instantaneous value of  $V_{aux}$  must always be between 20 and 35 volts.

Figure 6 shows six external diodes (CR₁ to CR₆) added for protective purposes. CR₁ should be used if the output voltage is less than 20 volts and CR₂, CR₃ are absent. For V₀ higher than 20 volts, CR₁ should be discarded in favor of CR₂ and CR₃. Diode CR₄ prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of such a transistor failure mode seems remote, CR₄ may be deleted. To prevent instantaneous differential and common-mode breakdown of the current sense amplifier, CR₅ must be placed across the current limit resistor R₈.

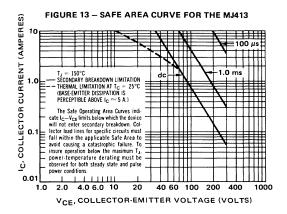
Load transients occasionally produce a damaging reversal of current flow from output to input  $V_0 > 150$  volts (which will destroy the IC). Diode CR₆ prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes CR₁, CR₂, CR₃, and CR₅ may be general purpose silicon units such as 1N4001 or equivalent whereas CR₄ and CR₆ should have a peak inverse voltage rating equal to V_{in} or greater.

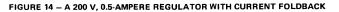
### APPLICATIONS

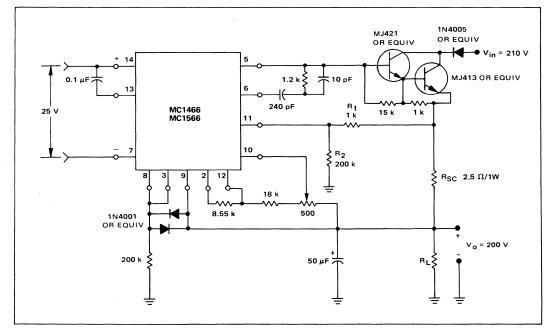
Figure 2 shows a typical 0-to-40 volts, 0.5-ampere regulator with better than 0.01% performance, The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the MC1566/ MC1466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 mA.

Figure 1 is a 0-to-15 volts, 10-ampere regulator with the pass transistor configuration necessary to boost the load current to 10 amperes. Note that  $C_0$  has been increased to 1000  $\mu$ F following the general rule:

$$C_0 = 100 \ \mu F/A \ I_L.$$


The prime advantage of the MC1566/MC1466 is its use as a high voltage regulator, as shown in Figure 3. This 0-to-250 volts 0.1-ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output pass transistors.


The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of 100 mA, with a VCE approximately equal to 260 volts. Thus this point falls on the dc line of the safe area curve, insuring that the transistor will not enter secondary breakdown.


In this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is short-circuit protected. This is due to the fact that load current is diminished as output voltage drops (V_{CE} increases as V₀ drops) as seen in Figure 15. By careful design the load current at a short, I_{SC} can be made low enough such that the combined V_{CE} (V_{in}) and I_{SC} still falls within the dc safe operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compatible with a short-circuit current of 100 mA. Yet current foldback allows us to design for a maximum regulated load current of 500 mA. The pertinent design equations are:

Let R₂ (kΩ) = V_o  

$$\alpha = \frac{0.25}{V_o} \left[ \frac{I_k}{I_{SC}} - 1 \right]$$
R₁ (kΩ) =  $\frac{\alpha}{1 - \alpha}$  V_o  
R_{SC} =  $\frac{0.25}{(1 - \alpha) I_{SC}}$ .







The terms  $I_{SC}$  and  $I_k$  correspond to the short-circuit current and maximum available load current as shown in Figure 15.

FIGURE 15 – TYPICAL FOLDBACK PERFORMANCE

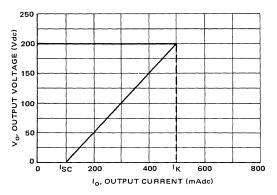


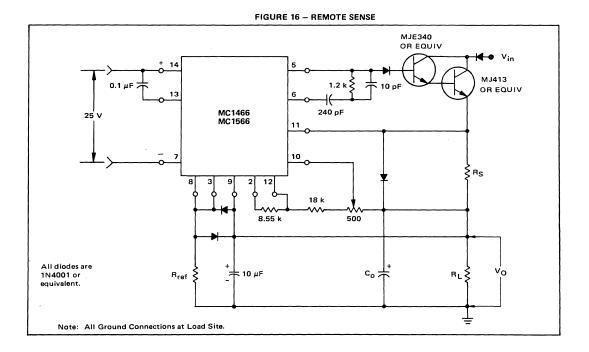

Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type of wiring is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops do not destroy the excellent regulation of the MC1566/ MC1466.

# TRANSIENT FAILURES

In industrial areas where electrical machinery is used the normal ac line often contains bursts of voltage running from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditions this energy is dissipated across the internal zener connected between pins 9 and 7. This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7-volt zener (CR1) between pin 9 and pin 7. To prevent this failure mode, two solutions have been successfully applied. The first method involves the use of an external zener and resistor that shunt more of the transient energy around the IC (Figure 17). The second method is a transient suppression network consisting of capacitors that equalize high frequency components across both the auxiliary and main supply. Figure 18 illustrates the use of five capacitors for the full wave rectified main supply and Figure 19 uses six capacitors when a full wave bridge is used.

### VOLTAGE/CURRENT – MODE INDICATOR

There may be times when it is desirable to know when the MC1566/MC1466 is in the constant current mode or constant voltage mode. A mode indicator can be easily added to provide this feature. Figure 20 shows how a PNP transistor has replaced a protection doide between pins 8 and 9 of Figure 2. When the MC1566/MC1466 goes from constant voltage mode to constant current mode,  $V_0$  will drop below V8 and the PNP transistor will turn on. The 1-mA current supplied by pin 8 will now be shunted to ground through R₁ in parallel with R₂, which provides a control voltage, V_C. This voltage V_C can then control a Schmitt trigger which drives front panel lamps to indicate "constant current" or "constant voltage."



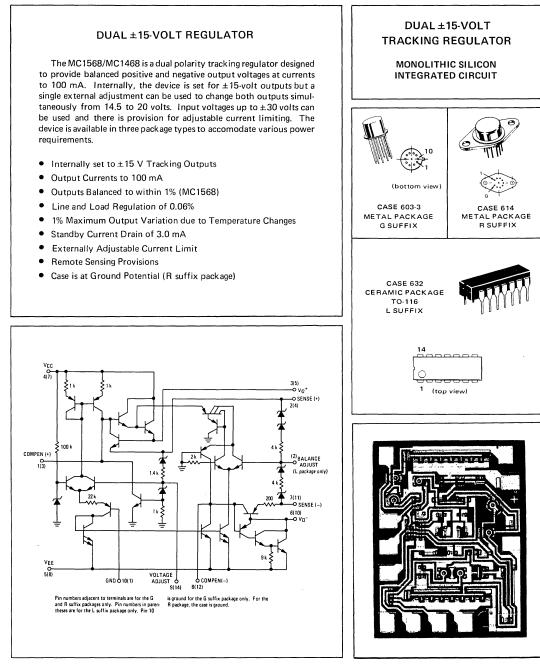




FIGURE 17 - A 0-TO-250 VOLT, 0.1-AMPERE REGULATOR

(MC1566L - Pg. 10)



# DUAL VOLTAGE REGULATORS



See Packaging Information Section for outline dimensions.

7-291

7

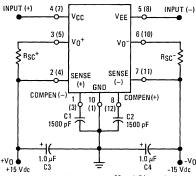
# MAXIMUM RATINGS ( $T_{C} = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value			Unit
Input Voltage	V _{CC} , V _{EE}	30			Vdc
Peak Load Current	Ірк			mA	
Power Dissipation and Thermal Characteristics		G Package	R Package	L Package	
$T_A = +25^{\circ}C$	PD	0.8	2.4	1.0	Watts
Derate above $T_A = +25^{\circ}C$	1/0 _{JA}	5.4	16	6.7	mW/ ⁰ C
Thermal Resistance, Junction to Air	θ _{JA}	185	62	150	°C/W
$T_{C} = +25^{\circ}C$	PD	2.1	9.0	2.5	Watts
Derate above $T_{C} = +25^{\circ}C$	1/0 JC	14	61	20	mW/ ⁰ C
Thermal Resistance, Junction to Case	θJC	70	17	50	°C/W
Storage Junction Temperature Range	TJ,Tstg	-65 to +175			°C
Minimum Short-Circuit Resistance	R _{SC} (min)	4.0			Ohms

### **OPERATING TEMPERATURE RANGE**

Ambient Temperature	тд		°C
MC1468	•	0 to +75	
MC1568		-55 to +125	

# ELECTRICAL CHARACTERISTICS ( $V_{CC} = +20 V$ , $V_{EE} = -20 V$ , C1 = C2 = 1500 pF, $C3 = C4 = 1.0 \mu F$ , $R_{SC}^+ = R_{SC}^- = 4.0 \Omega$ , $I_{L}^+ = I_{L}^- = 0$ , $T_{C}^- = +25^{\circ}C$ unless otherwise noted.) (See Figure 1.)


			MC1568			MC1468			
Characteristic	Symbol*	Min	Тур	Max	Min	Түр	Max	Unit	
Output Voltage	Vo	14.8	15	15.2	14.5	15	15.5	Vdc	
Input Voltage	Vin			30			30	Vdc	
Input-Output Voltage Differential	Vin - VO	2.0	a 200	n an tha an th Tha an tha	2.0		-	Vdc	
Output Voltage Balance	VBal		±50	±150	-	±50	±300	mV	
Line Regulation Voltage (Vin = 18 V to 30 V) (Tiow [®] to Thigh [®] )	Reg _{in}			10 20			10 20	mV	
Load Regulation Voltage (I _L = 0 to 50 mA, T _J = constant) (T _A = T _{Iow} to T _{high} )	Reg			10 30		-	10 30	mV	
Output Voltage Range (See Figures 2 and 12)	VOR	14.5	i de du	20	14.5	-	20	Vdc	
Ripple Rejection (f = 120 Hz)	RR		75			75	-	dB	
Output Voltage Temperature Stability (T _{Iow} to T _{high} )	TS _{VO}		0.3	1.0		0.3	1.0	%	
Short-Circuit Current Limit (R _{SC} = 10 ohms)	Isc		60		-	60		mA	
Output Noise Voltage (BW = 100 Hz - 10 kHz)	VN		100	-		100	_	µV(RMS)	
Positive Standby Current (V _{in} = +30 V)	¹ в ⁺		2.4	4.0		2.4	4.0	mA	
Negative Standby Current (V _{in} = -30 V)	¹ В ⁻		1.0	3.0		1.0	3.0	mA	
Long-Term Stability	_∆V _O /∆t		0.2		·	0.2	-	%/k Hr	

(1)  $T_{low} = 0^{\circ}C$  for MC1468 = -55°C for MC1568 (2)  $T_{high} = +75^{\circ}C$  for MC1468 = +125°C for MC1568

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

## TYPICAL APPLICATIONS

### FIGURE 1 - BASIC 50-mA REGULATOR





C3 and C4 may be increased to improve load transient response and to reduce the output noise voltage. At low temperature operation, it may be necessary to bypass C4 with a 0.1  $\mu$ F ceramic disc capacitor.

### FIGURE 2 – VOLTAGE ADJUST AND BALANCE ADJUST CIRCUIT

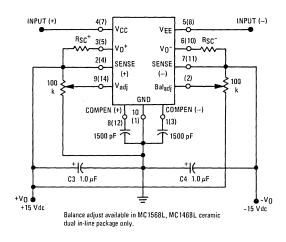
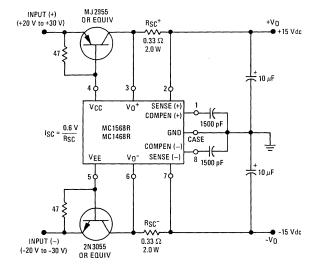
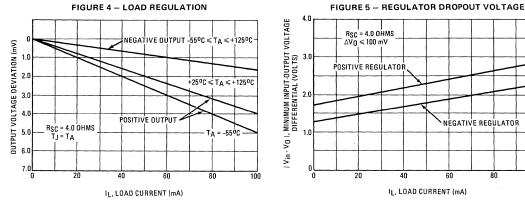





FIGURE 3 – ±1.5-AMPERE REGULATOR (Short-Circuit Protected, with Proper Heatsinking)



/



TYPICAL CHARACTERISTICS (V_{CC} = +20 V, V_{EE} = -20 V, V_O =  $\pm$ 15 V, T_A = +25^oC unless otherwise noted.)

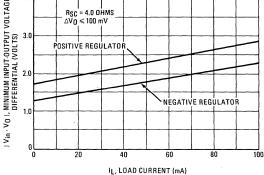
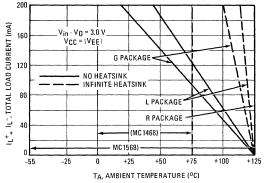
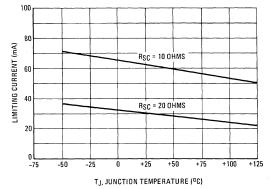



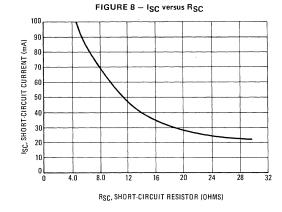

FIGURE 6 - MAXIMUM CURRENT CAPABILITY



200 IL⁺, IL⁻, TOTAL LOAD CURRENT (mA) L PACKAGE 160 G PACKAGE 120 VCC = VEE R PACKAGE 80 NOHEATSINK INFINITE HEATSINK 40

6.0

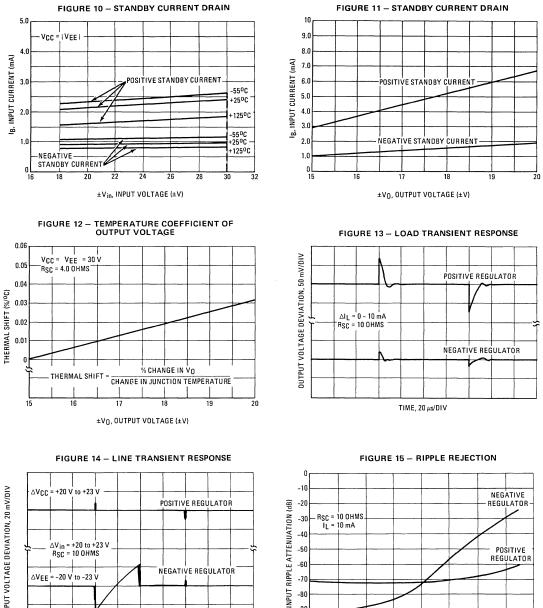

FIGURE 7 - MAXIMUM CURRENT CAPABILITY


8.0 i Vin - VO I , INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V)

12

16

FIGURE 9 - CURRENT-LIMITING CHARACTERISTICS






٥L

2.0

4.0

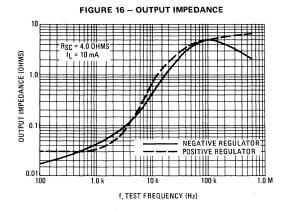


TYPICAL CHARACTERISTICS (continued) (V_{CC} = +20 V, V_{EE} = -20 V, V_O =  $\pm$ 15 V, T_A = +25^oC unless otherwise noted.)

TIME, 50 µs/DIV

-90 -100 100

1.0 k


10 k

f, INPUT FREQUENCY (Hz)

100 k

1.0 M





POSITIVE VOLTAGE REGULATORS

MC1569 MC1469

# **Specifications and Applications Information**

# MONOLITHIC VOLTAGE REGULATOR

The MC1569/MC1469 is a positive voltage regulator designed to deliver continuous load current up to 500 mAdc. Output voltage is adjustable from 2.5 Vdc to 37 Vdc. The MC1569 is specified for use within the military temperature range (-55 to +125°C) and the MC1469 within the 0 to  $+70^{\circ}$ C temperature range.

For systems requiring a positive regulated voltage, the MC1569 can be used with performance nearly identical to the MC1563 negative voltage regulator. Systems requiring both a positive and negative regulated voltage can use the MC1569 and MC1563 as complementary regulators with a common input ground.

- Electronic "Shut-Down" Control
- Excellent Load Regulation (Low Output Impedance 20 milliohms typ)
- High Power Capability: up to 17.5 Watts
- Excellent Temperature Stability: ±0.002 %/°C typ
- High Ripple Rejection: 0.002 %/V typ

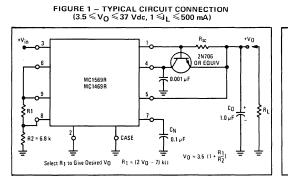
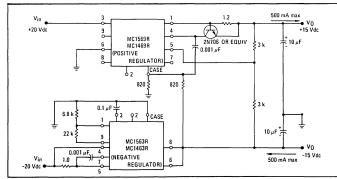




FIGURE 3 - ±15 V, ±400 mA COMPLEMENTARY TRACKING VOLTAGE REGULATOR



The index to the content of this data sheet appears on page 20. See current MCC1569/1469 data sheet for standard linear chip information.

See Packaging Information Section for outline dimensions.

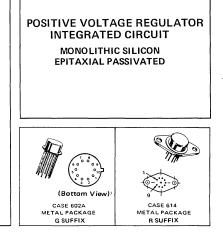
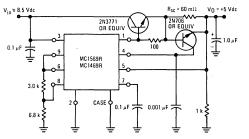
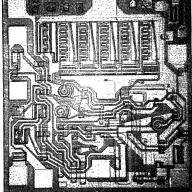





FIGURE 2 -- TYPICAL NPN CURRENT BOOST CONNECTION (V  $_{O}$  = 5.0 Vdc, I  $_{L}$  = 10 Adc [max] )





Rating	Symbol	Va	lue	Unit
Input Voltage MC1469 MC1569	Vin	3	-	Vdc
Peak Load Current	Ірк	G Package 250	R Package 600	mA
Current, Pin 2 Current, Pin 9	I _{pin 2} I _{pin 9}	10 5.0	10 5.0	mA
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +25^{\circ}C$ Thermal Resistance, Junction to Case	P _D 1/θ JA θ JA P _D 1/θ JC θ JC	0.68 5.44 184 1.8 14.4 69.4	3.0 24 41.6 17.5 140 7.15	Watts mW/ ^O C ^O C/W Watts mW/ ^O C ^O C/W
Operating and Storage Junction Temperature	т _J , т _{stg}	-65 to	+150	°C

# MAXIMUM RATINGS (T_C = $+25^{\circ}$ C unless otherwise noted)

# OPERATING TEMPERATURE RANGE

Ambient Temperature	TA		°C
MC1469		0 to +75	
MC1569		-55 to +125	

# ELECTRICAL CHARACTERISTICS

( $T_C = +25^{\circ}C$  unless otherwise noted) (Load Current = 100 mA for "R" Package device, unless otherwise

			Symbol *	MC1569			MC1469			
Characteristic	Fig.	Note		Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage (T _A = T _{low} ① to T _{high} ② )	4	1	V _{in}	8.5		40	9.0		35	Vdc
Output Voltage Range	4,5		Vo	2.5		37	2.5		32	Vdc
Reference Voltage (Pin 8 to Ground)	4		V _{ref}	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential (R _{sc} = 0)	4	2	V _{in} – VO		2.1	2.7	. —	2.1	3.0	Vdc
Bias Current (I _L = 1.0 mAdc, R ₂ = 6.8 k ohms, I _{1B} = I _{in} - I _L )	4		ΪВ		4.0	9.0		5.0	12	mAdc
Output Noise ( $C_N = 0.1 \ \mu\text{F}$ , f = 10 Hz to 5.0 MHz)	4		٧N		0.150	H	-	0.150		mV(rms)
Temperature Coefficient of Output Voltage	4	3	TCVO		±0.002		· ·	±0.002	'	%/ºC
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4		۱	1.0 1.0		500 200	1.0 1.0	-	500 200	mAdc
Input Regulation	6	4	Reg _{in}		0.002	0.015	-	0.003	0.030	%/Vo
Load Regulation (T _J = Constant [1.0 mA $\leq$ I _L $\leq$ 20 mA]) (T _C = +25°C [1.0 mA $\leq$ I _L $\leq$ 50 mA]) R Package G Package	7	5	Reg _{load}		0.4 0.005 0.01	1.6 0.05 0.13		0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (C _c = 0.001 µF, R _{sc} = 1.0 ohm, f = 1.0 kHz, V _{in} = +14 Vdc, V _O = +10 Vdc)	8	6	z _o		20	80	-	35	120	milliohm
Shutdown Current (V _{in} = +35 Vdc)	9		lsd		70	150	· ·	140	500	μAdc

(1)  $T_{10W} = 0^{-}C$  for MC1569 = -55°C for MC1569

= +125^oC for MC1569

when applicable.

# MC1569, MC1469 (continued)

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".
- Note 2. This parameter states that the MC1569/MC1469 will regulate properly with the input-output voltage differential ( $V_{in} V_O$ ) as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with ( $V_{in} V_O$ ) as low as 2.1 Vdc as shown in the typical column. (See Figure 21.)
- Note 3. "Temperature Coefficient of Output Voltage" is defined as:

MC1569, TCV_O = 
$$\frac{\pm (V_O \max - V_O \min) (100)}{(180^{\circ}C) (V_O @ 25^{\circ}C)} = \%^{\circ}C$$

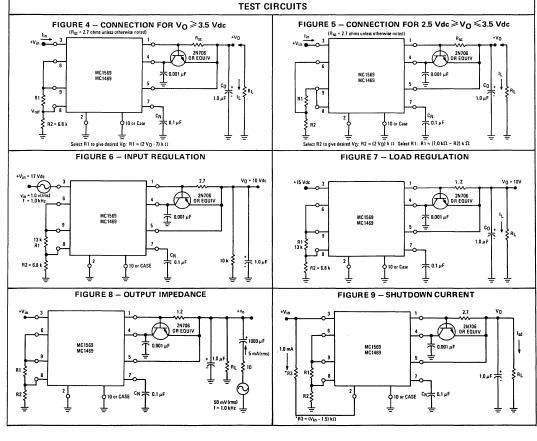
MC1469, TCV_O = 
$$\frac{\pm (V_O \max - V_O \min) (100)}{(75^{\circ}C) (V_O @ 25^{\circ}C)} = \%/^{\circ}C$$

The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output

voltage per volt change in the input voltage and is expressed as

Input Regulation 
$$\approx \frac{v_0}{V_0 (v_{in})}$$
 100 (%/V₀),


where  $v_{O}$  is the change in the output voltage  $V_{O}$  for the input change  $v_{in}.$ 

The following example illustrates how to compute maximum output voltage change for the conditions given:

$$\begin{array}{l} \text{Reg}_{in} = 0.015 \ \%/V_O \\ V_O = 10 \ Vdc \\ v_{in} = 1.0 \ V(rms) \\ v_o = (\frac{\text{Reg}_{in}) \ (v_{in}) \ (V_O) \\ 100 \\ = (0.015) \ (1.0) \ (10) \\ 100 \end{array}$$

Note 5. Load regulation is specified for small (≤+17⁹C) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation = 
$$\frac{|VO|I_L = 1.0 \text{ mA}] - |VO|I_L = 50 \text{ mA}]}{|VO|I_L = 1.0 \text{ mA}} X 100$$



### **GENERAL DESIGN INFORMATION**

- 1. Output Voltage, V_O a) For V_O  $\ge$  3.5 Vdc Output voltage is set by resistors R1 and R2 (see Figure 4). Set R2 = 6.8 k ohms and determine R1 from the graph of Figure 10 or from the equation:  $R1 \approx (2 V_{\Omega} - 7) k\Omega$ 
  - b) For  $2.5 \le V_0 \le 3.5$  Vdc Output voltage is set by resistors R1 and R2 (see Figure 5). Resistors R1 and R2 can be determined from the graph of Figure 11 or from the equations:

# $R2 \approx 2 (V_0) k\Omega$ $R1 \approx (7 k\Omega - R2) k\Omega$

- c) Output voltage, VO, is determined by the ratio of R1 and R2, therefore optimum temperature performance can be achieved if R1 and R2 have the same temperature coefficient.
- d) Output voltage can be varied by making R1 adjustable as shown in Figure 43.
- e) If V_O = 3.5 Vdc (to supply MRTL* for example), tie pins 6, 8 and 9 together. R1 and R2 are not needed in this case.
- 2. Short Circuit Current, Isc
  - Short Circuit Current,  $I_{sc}$ , is determined by  $R_{sc}$ .  $R_{sc}$  may be chosen with the aid of Figure 12 or the expression:

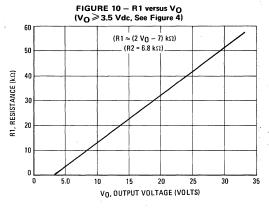
$$R_{sc} \approx \frac{0.6}{I_{sc}}$$
 ohr

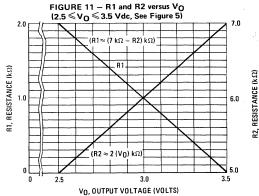
where Isc is measured in amperes. This expression is also valid when current is boosted as shown in Figures 2, 29 and 30

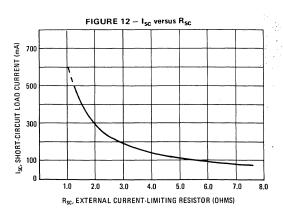
- 3. Compensation, C_C
  - A 0.001  $\mu\text{F}$  capacitor, C_c, from pin 4 to ground will provide adequate compensation in most applications, with or without current boost. Smaller values of Cc will reduce stability and larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of  $C_c$  should be close to the MC1569/MC1469 with short lead lengths.
- 4. Noise Filter Capacitor, CN

A 0.1  $\mu$ F capacitor, C_N, from pin 7 to ground will typically reduce the output noise voltage to 150 µV (rms). The value of C_N can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001  $\mu$ F is recommended.

- 5. Output Capacitor, C_O The value of C_O should be at least 1.0  $\mu$ F in order to provide good stability. The maximum value recommended is a function of current limit resistor Rsc:


$$C_{O} \max \approx \frac{250 \, \mu F}{R_{sc}}$$


where  $\mathsf{R}_{SC}$  is measured in ohms. Values of  $\mathsf{C}_{O}$  greater than this will degrade the pulse response characteristics and increase the settling time.


6. Shut-Down Control

One method of turning "OFF" the regulator is to apply a dc voltage at pin 2. This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output shortcircuiting (see Figures 34, 39 and 40). As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures (see Figure 39). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MRTL , MDTL or MTTL can also be used to turn the regulator "ON" or "OFF". 7. Remote Sensing

The connection to pin 5 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure IL) on zo can be greatly reduced (see Figure 37).







# MC1569, MC1469 (continued)

### TYPICAL CHARACTERISTICS

Unless otherwise noted:  $C_N = 0.1 \ \mu\text{F}$ ,  $C_c = 0.001 \ \mu\text{F}$ ,  $C_O = 1.0 \ \mu\text{F}$ ,  $T_C = +25^{\circ}C$ ,

40

30

20

10

0

0

2.0 4.0

V_{in} nom ≈ +9.0 Vdc, V_O nom = +5.0 Vdc,

 $I_L > 200$  mA for R package only.

20, OUTPUT IMPEDANCE (MILLIOHMS)

FIGURE 13 – DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE

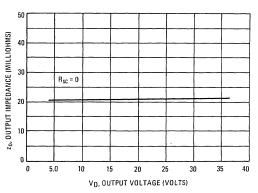



FIGURE 15 – FREQUENCY DEPENDENCE OF INPUT REGULATION,  $C_0 = 10 \, \mu F$ 

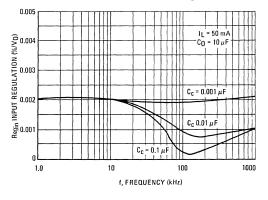



FIGURE 17 - CURRENT-LIMITING CHARACTERISTICS

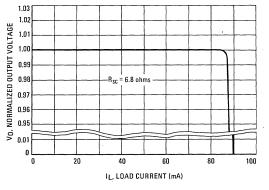



FIGURE 16 – FREQUENCY DEPENDENCE OF INPUT REGULATION,  $C_{O}$  = 2.0  $\mu$ F

8.0 10

R_{SC}, EXTERNAL CURRENT LIMITING RESISTOR (OHMS)

12

14 16

6.0

FIGURE 14 - OUTPUT IMPEDANCE versus Rsc

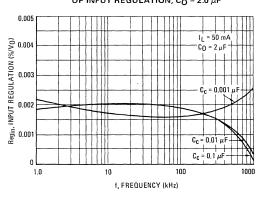
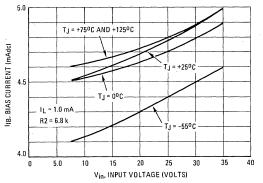
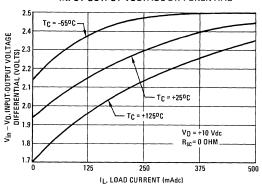




FIGURE 18 - BIAS CURRENT versus INPUT VOLTAGE






Unless otherwise noted:  $C_N = 0.1 \ \mu\text{F}$ ,  $C_c = 0.001 \ \mu\text{F}$ ,  $C_O = 1.0 \ \mu\text{F}$ ,  $T_C = +25^{\circ}\text{C}$ ,

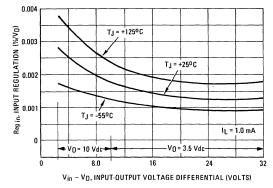
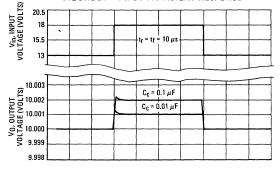
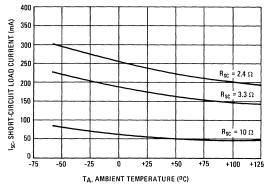
V_{in} nom = +9.0 Vdc, V_O nom = +5.0 Vdc,

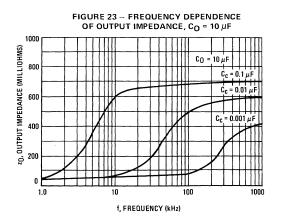
 $I_L$  >200 mA for R package only.

FIGURE 19 – EFFECT OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL

FIGURE 20 – EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION





FIGURE 21 - INPUT TRANSIENT RESPONSE



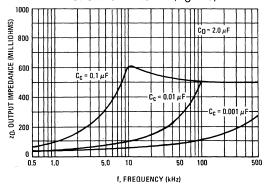

100 µs/DIV

FIGURE 22 – TEMPERATURE DEPENDENCE OF SHORT-CIRCUIT LOAD CURRENT





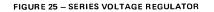


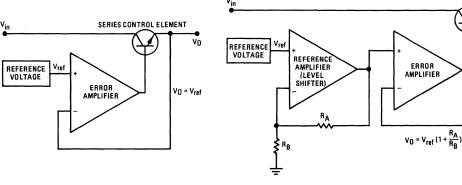


# **OPERATIONS AND APPLICATIONS**

This section describes the operation and design of the MC1569 positive voltage regulator and also provides information on useful applications.

### SUBJECT SEQUENCE


Theory of Operation NPN Current Boosting PNP Current Boosting Switching Regulator Positive and Negative Power Supplies Shutdown Techniques Voltage Boosting Remote Sensing An Adjustable-Zero-Temperature-Coefficient Voltage Source Thermal Shutdown Thermal Considerations Latch-Up


### THEORY OF OPERATION

The usual series voltage regulator shown in Figure 25, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 26. The gain-determining resistors may be external, enabling a wide range of output voltages. This is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1569) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulatorwithin-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1569 positivevoltage regulator.





## FIGURE 26 - THE "REGULATOR-WITHIN-A-REGULATOR" APPROACH

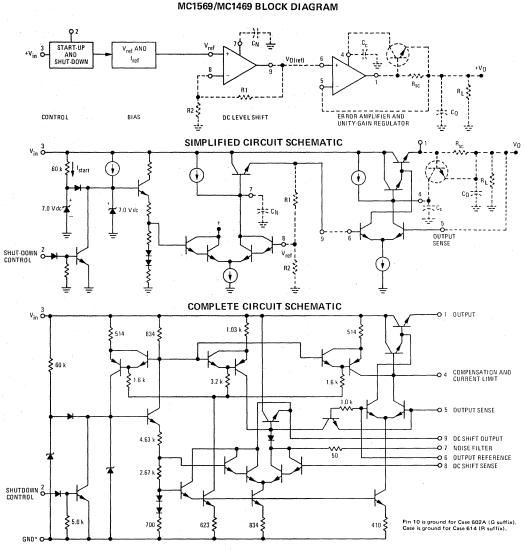



FIGURE 27 (Recommended External Circuitry is Depicted With Dotted Lines.)

# MC1569 Operation

Figure 27 shows the MC1569 Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

### Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k $\Omega$ ) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator. The shutdown control consists of an NPN transistor across the reference zener diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to  $V_{in}/60 \text{ k}\Omega$  or 500  $\mu$ A for a 30 V input.

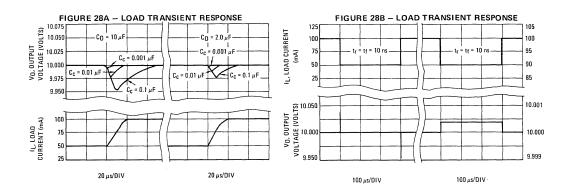
#### Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately 3.5 Vdc with a typical temperature coefficient of 0.002 %/°C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

### DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (R I and R2) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor,  $C_N$ , is introduced externally into the level shift network (via pin 7) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is 0.1  $\mu$ F and should have a voltage rating in excess of the desired output voltage. Smaller capacitors (0.001  $\mu$ F minimum) may be used but will cause a slight increase in output noise. Larger values of C_N will reduce the noise as well as delay the start-up of the regulator.

### **Output Regulator**


The output of the level shift amplifier (pin 9) is fed to the noninverting input (pin 6) of the output error amplifier. The inverting input to this amplifier is the Output Sense connection (pin 5) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor,  $R_{SC}$ , is connected in the emitter of this transistor to sample the full load current. By placing an external low-level NPN transistor across  $R_{SC}$  as shown in Figure 27, output current can be limited to a predetermined value:

$$I_L \max \approx \frac{0.6}{R_{sc}} \text{ or } R_{sc} = \frac{0.6}{I_L \max}$$

where  $I_L$  max is the maximum load current (amperes) and  $R_{sc}$  is the value of the current limiting resistor (ohms).

# Stability and Compensation

As has been seen, the MC1569 employs two amplifiers, each using negative feedback. This implies the possibility of instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 4) and ground. The recommended value of 0.001  $\mu$ F will insure stability and still provide acceptable transient response (see Figure 28, A and B). It is also necessary to use an output capacitor, CO (typically 1.0  $\mu$ F) from the output, VO, to ground. When an external transistor is used to boost the current, CO = 1.0  $\mu$ F is also recommended (see Figure 2).



### TYPICAL NPN CURRENT BOOST CONNECTIONS

FIGURE 29A - 5 VOLT 5-AMPERE REGULATOR

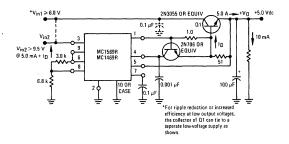
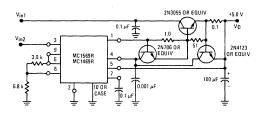
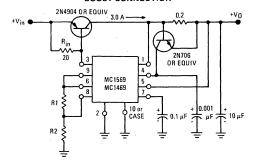





FIGURE 29B - 5-VOLT 5-AMPERE REGULATOR



#### FIGURE 30 – PNP CURRENT BOOST CONNECTION



### NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 29 are recommended. The transistor shown in Figure 29A, the 2N3055 can supply currents to 5.0 amperes (subject, of course, to the safe area limitations). To improve the efficiency of the NPN boost configuration, particularly for small output voltages, the circuit of Figure 29 is recommended. An auxiliary 9.5-volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 5.0 ampere regulator of Figure 29 this represents a savings of 17.5 watts when compared with operating the regulator from the single 9.5 V supply. It can supply current to 5.0 amperes while requiring an input voltage to the collector of the pass transistor is limited to 5.0 amperes by the added short-circuit current network in its emitter ( $R_{sc}$ ), (Figure 29B).

### PNP CURRENT BOOSTING

A typical PNP current boost circuit is shown in Figure 30. Voltages from 2.5 Vdc to 37 Vdc and currents of many amperes can be obtained with this circuit.

Since the PNP transistor must not be turned on by the MC1569 bias current  $(I_{1B})$  the resistor  $R_{in}$  must meet the following condition

$$R_{in} < \frac{V_{BE}}{I_{IB}}$$

where  $V_{BE}$  is the base-to-emitter voltage required to turn on the PNP pass transistor, (typically 0.6 Vdc for silicon and 0.2 Vdc for germanium).

For germanium pass transistors, a silicon diode may be placed in series with the emitter to provide an additional voltage drop. This allows a larger value of  $R_{in}$  than would be possible if the diode were omitted. The diode will, however, be required to carry the maximum load current.

# SELF-OSCILLATING SWITCHING REGULATOR

In all of the current boosting circuits shown thus far it has been assumed that the input-output voltage differential can be minimized to obtain maximum efficiency in both the external pass element as well as the MC1569. This may not be possible in applications where only a single supply voltage is available and high current levels preclude zener diode pre-regulating approaches. In such applications a switching-mode voltage regulator is highly desirable since the pass device is either ON or OFF. The theoretical efficiency of an ideal switching regulator is 100%. Realizable efficiencies of 90% are within the realm of possibility thus obviating the need for large power dissipating components. The output voltage will contain a ripple component; however, this can be made quite small if the switching frequency is made relatively high so filtering techniques are effective. Figure 31 shows a functional diagram for a self-oscillating voltage regulator. The comparator-driver will sense the voltage across the inductor, this voltage being related to the load current, IL, by

$$L \frac{dI_L}{dt} = V$$

For a first approximation this can be assumed to be a linear relationship.

Initially, V_O will be low and Q1 will be ON. The voltage at the non-inverting input will approach  $\beta_1 V_{in}$ , when:

$$\beta_1 \mathbf{V}_{\text{in}} = \frac{\mathbf{V}_{\text{ref}} \mathbf{R}_a}{\mathbf{R}_a + \mathbf{R}_b} + \frac{\mathbf{V}_c \mathbf{R}_b}{\mathbf{R}_a + \mathbf{R}_b}$$

When this output voltage is reached the comparator will switch, turning QI OFF. The diode, CR1, will now become forward biased and will supply a path for the inductor current. This current and the sense voltage will start to decrease until the output voltage reaches

$$\beta_2 V_{in} = \frac{V_{ref}R_a}{R_a + R_b}$$

where the comparator will again switch turning Q1 ON, and the cycle repeats. Thus the output voltage is approximately  $V_{ref}$  plus a ripple component.

The frequency of oscillation can be shown to be

$$f = \frac{V_O (V_{in} - V_O)}{L V_C l(max) - l_O}$$
(1)

where

I (max) = The maximum value of inductor current

IO = The minimum inductor current.

Normally this frequency will be in the range of approximately 2 kHz to 6 kHz. In this range, inductor values can be small and are compatible with the switching times of the pass transistor and diode. The switching time of the comparator is quite fast since positive feedback aids both turn-on and turn-off times. The limiting factors are the diode and pass transistor rise and fall times which should be quite fast or efficiency will suffer.

Figure 32 shows a self oscillating switching regulator which in many respects is similar to the PNP current boost previously discussed. The 6.8 k $\Omega$  resistor in conjunction with R1 sets the reference voltage, V_{ref}. Q1 and CR1 are selected for fast switching times as well as the necessary power dissipation ratings. Since a linear inductor is assumed, the inductor cannot be allowed to saturate at maximum load currents and should be chosen accordingly. If core saturation does occur, peak transistor and diode currents will be large and power dissipation will increase.

FIGURE 31 – BASIC SELF-OSCILLATING SWITCHING REGULATOR

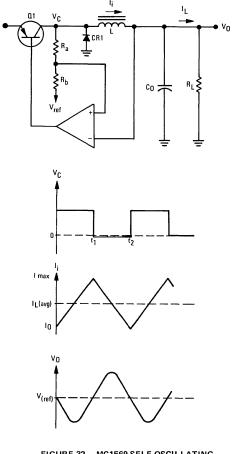
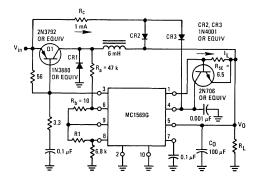




FIGURE 32 -- MC1569 SELF-OSCILLATING SWITCHING REGULATOR



As a design center is required for a practical circuit, assume the following requirements:

V_{in} = +28 Volts

 $V_0 = +10$  Volts

 $\Delta V_0 = 50 \text{ mV}$ 

 $f \cong 5 \text{ kHz}$ 

I(max) = 1.125 A

$$I_0 = 1 A$$

$$\Delta V \approx V_{\rm in} \frac{R_{\rm b}}{R_{\rm a}}.$$
 (2)

Using Equation (1), the inductor value can be found:

$$L = \frac{(28-10)}{2(1.125-1)} \frac{10}{28} \left(\frac{1}{5 \times 10^3}\right)$$
  
\$\approx 7 mH.

For the test circuit, a value of 6 mH was selected. Using for a first approximation

$$C_{O} = \frac{(V_{in} - V_{O})(V_{O})}{8L \text{ f}^{2} \text{ V}_{in} (\Delta V)} \cdot$$
$$= \frac{(28 - 10)10}{8(7 \text{ x} 10^{-3})(5 \text{ x} 10^{3})^{2} (28) (50 \text{ x} 10^{-3})}$$
$$\approx 95 \ \mu\text{F}.$$

As shown, a value of  $100 \,\mu\text{F}$  was selected. Since little current is required at pin 6,  $R_a$  can be large. Assume  $R_a =$ 47 k $\Omega$  and then use Equation (2) to determine  $R_b$ :

$$50 \ge 10^{-3} = \frac{28}{47 \text{ k}\Omega} \text{ R}_{\text{b}}$$
  
 $\text{R}_{\text{b}} = \frac{47}{28} 50 \approx 85\Omega.$ 

Since the internal impedance presented by pin 9 is on the order of  $60\Omega$ , a value of  $R_b = 10\Omega$  is adequate.

Diodes CR2, CR3, and  $R_c$  may be added to prevent saturation of the error amplifier to increase switching

speed. When the output stage of the error amplifier approaches saturation, CR2 becomes forward biased and clamps the error amplifier. Resistor  $R_c$  should be selected to supply a total of 1 mAdc to CR2 and CR3.

To show correlation between the predicted and tested specifications the following data was obtained:

$$V_{in} = +28 (\pm 1\%)$$
 Volts  
 $V_O = +10$  Volts  
 $\Delta V_O = 60$  mV  
 $f = 7$  kHz  
@  $I_I = 1A$ 

which checks quite well with the predicted values.  $R_b$  can be adjusted to minimize the ripple component as well as to trim the operating frequency. Also this frequency will change with varying loads as is normal with this type of circuit. Pin 2 can still be used for shut-down if so desired.  $R_{sc}$  should be set such that the ratio of load current to base drive current is 10:1 in this case  $I_1\approx 100\ mA$  and  $R_{sc}=6.5\Omega.$ 

# POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1569 is driven from a floating source it is possible to use it as a negative regulator by grounding the positive output terminal. The MC1569 may also be used with the MC1563 to provide completely independent positive and negative voltage regulators with comparable performance.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 33 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3-k ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero,  $+V_O$  must equal  $|-V_O|$ .

For the configuration shown in Figure 33, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5-volt supply which is boosted to a 2-ampere capability by Q1 and Q2. (The +5-volt supply, as shown,

is not short-circuit protected.) The -15-volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt supply varies 20 mV over the zero to +300 mAdc load current range. The +5-volt supply varies less than 5 mV for  $0 \le I_L \le 200$  mA with the other two voltages remaining unchanged. See page 19 for additional information.

## SHUTDOWN TECHNIQUES

Pin 2 of the MC1569 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of an NPN transistor; which, if turned "ON", will turn the zener "OFF" and deny current to all the biasing current sources. This action causes the output to go to essentially zero volts and the only current drawn by the IC regulator will be the small start current through the 60-k-ohm start resistor ( $V_{in}/60 \ k\Omega$ ). This feature provides additional versatility in the applications of the MC1569. Various subsystems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as overheating, over-voltage, shorted output, etc.

To activate shutdown, one simply applies a potential greater than two diode drops with a current capability of 1 mA. Note that if a hard supply (i.e., +3 V) is applied directly to pin 2, the shutdown circuitry will be destroyed since there is no inherent current limiting. Maximum rating for the drive current into pin 2 is 10 mA, while 1 mA is adequate for shutdown.

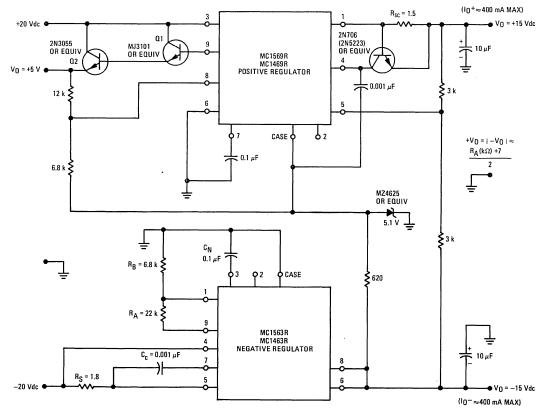



FIGURE 33 – A ±15 Vdc COMPLEMENTARY TRACKING REGULATOR WITH AUXILIARY +5.0 V SUPPLY

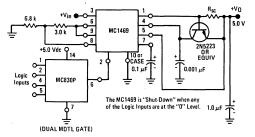



FIGURE 34 - ELECTRONIC SHUT-DOWN USING A MDTL GATE

FIGURE 35 – AUTOMATIC LATCH INTO SHUT-DOWN WHEN OUTPUT IS SHORT-CIRCUITED WITH MANUAL RE-START

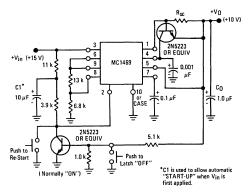



FIGURE 36 - VOLTAGE BOOSTING CIRCUIT

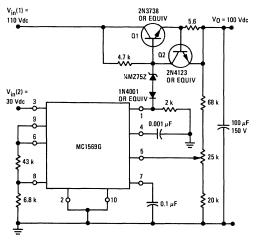



Figure 34 shows how the regulator can be controlled by a logic gate. Here, it is assumed that the regulator operates in its normal mode – as a positive regulator referenced to ground – and that the logic gate is of the saturating type, operating from a positive supply to ground. The high logic level should be greater than about 1.5 V and should source no more than 10 mA into pin 2.

The gate shown is of the MDTL type. MRTL and MTTL can also be used as long as the drive current is within safe limits (this is important when using MTTL, where the output stage uses an active pull-up).

In some cases a regulator can be designed which can handle the power dissipation resulting from normal operation but cannot safely dissipate the power resulting from a sustained short-circuit. The circuit of Figure 35 solves this problem by shutting down the regulator when the output is short-circuited.

#### **VOLTAGE BOOSTING**

The MC1569 has a maximum output voltage capability of 37 volts which covers the bulk of the user requirements. However, it is possible to obtain higher output voltages. One such voltage boosting circuit is shown in Figure 36.

Since high voltage NPN silicon devices are readily available, the only problem is the voltage limitations of the MC1569. This can be overcome by using voltage shift techniques to limit the voltage to 35 volts across the MC1569 while referencing to a higher output voltage.

The zener diode in the base lead of the NPN device is used to shift the output voltage of the MC1569 by approximately 75 volts to the desired high voltage level, in this case 100 volts. Another voltage shift is accomplished by the resistor divider on the output to accommodate the required 25 volt reference to the MC1569. The 2 k $\Omega$  resistor is used to bias the zener diode so the current through the 4.7 k $\Omega$  resistor can be controlled by the MC1569. The 1N4001 diode protects the MC1569 from supplying load current under short circuit conditions and Q2 serves to limit base current to Q1. For  $R_{sc}$  as shown, the short circuit current will be approximately 100 mA.

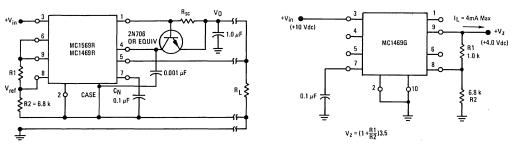
In order to use a single supply voltage,  $V_{in}(2)$  can be derived from  $V_{in}(1)$  with a zener diode, shunt preregulator.

It can be seen that loop gain has been reduced by the resistor divider and hence the closed loop bandwidth will be less. This of course will result in a more stable system, but regulator performance is degraded to some degree.

## **REMOTE SENSING**

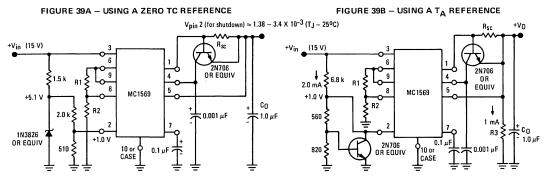
The MC1569 offers a remote sensing capability. This is important when the load is remote from the regulator,

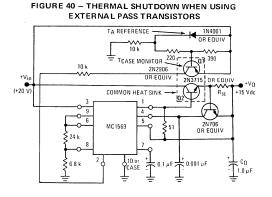
as the resistance of the interconnecting lines (VO and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 37 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.


#### AN ADJUSTABLE ZERO-TEMPERATURE-COEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE.

The MC1569, when used in conjunction with low TC resistors, makes an excellent reference-voltage generator. If the 3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 8 and 9 can be tied together and no resistors are needed. This will provide a voltage reference having a typical temperature coefficient of  $0.002\%/^{\circ}C$ . By adding two resistors, R1 and R2, any voltage between 3.5 Vdc and 37 Vdc can be obtained with the same low TC (see Figure 38).

#### THERMAL SHUTDOWN


By setting a fixed voltage at pin 2, the MC1569 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the baseemitter junction of the shutdown transistor and the diode in series with pin 2 ( $-3.4 \times 10^{-3}$ V/°C). By setting 1.0 Vdc externally at pin 2, the regulator will shutdown when the chip temperature reaches approximately +140°C. Figure 39 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

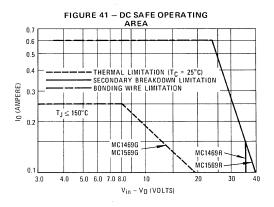

FIGURE 38 - AN ADJUSTABLE "ZERO-TC" VOLTAGE SOURCE



#### FIGURE 37 – REMOTE SENSING CIRCUIT








In the case where an external pass transistor is employed, its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 40. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

#### THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application, the designer must use caution not to exceed the specified maximum junction temperature (+150°C). Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A shortcircuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current. Care should be taken not to

*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.



exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 41).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature,  $T_A$ , or a change in the power dissipated in the IC regulator. The effects of ambient temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as  $\pm 0.002\%/^{\circ}C$ , typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

- 1. junction temperature change due to the change in the power dissipation
- 2. output voltage decrease due to the finite output impedance of the control amplifier
- 3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," GCV_O, can be used to describe this effect and is typically -0.06%/watt for the MC1569. For an example of the relative magnitudes of these effects, consider the following conditions:

Given MC1569

with 
$$V_{in} = 10 \text{ Vdc}$$

$$V_0 = 5 V_{dc}$$

and  $I_{I} = 100 \text{ mA to } 200 \text{ mA}$ 

$$(\Delta I_I = 100 \text{ mA})$$

assume  $T_A = +25^{\circ}C$ 

TO-66 Case with heatsink

assume  $\theta_{\rm CS} = 0.2^{\rm o}{\rm C/W}$ 

and  $\theta_{SA} = 2^{\circ}C/W$ 

 $\theta_{\rm JC} = 7.15^{\rm o}{\rm C/W}$  (from maximum ratings table)

It is desired to find the  $\Delta V_O$  which results from this  $\Delta I_L.$  Each of the three previously stated effects on  $V_O$  can now be separately considered.

1.  $\Delta V_O$  due to  $\Delta T_J$ 

 $\Delta V_{O} = (V_{O})(\Delta P_{D})(TCV_{O})(\theta_{JC} + \theta_{CS} + \theta_{SA})$ OR  $\Delta V_{O} = (5V)(5 V \times 0.1A)(\pm 0.002\%)^{\circ}C)(9.35^{\circ}C/W)$ 

 $\Delta V_{O} \approx \pm 0.5 \text{ mV}$ 

2.  $\Delta V_O$  due to  $z_O$ 

$$|\Delta V_0| = (-z_0)(I_L)$$

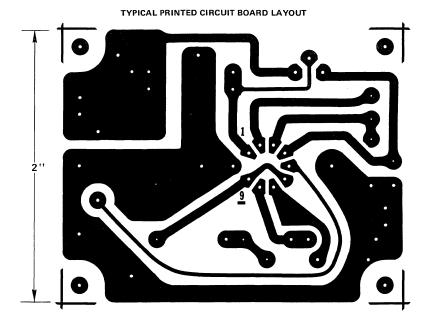
$$|\Delta V_0| = -(2 \ge 10^{-2})(10^{-1}) = -2 \text{ mV}$$

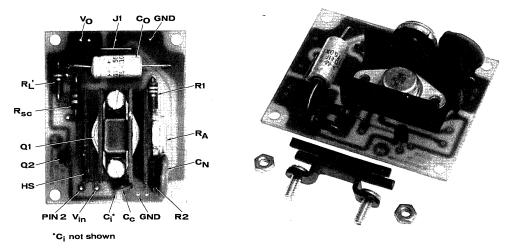
3.  $\Delta V_O$  due to gradient coefficient, GCV_O

 $|\Delta V_{O}| = (GCV_{O})(V_{O})(\Delta P_{D})$ 

 $|\Delta V_0| = (-6 \times 10^{-4}/W)(5 \text{ volts})(5 \times 10^{-1}W)$ 

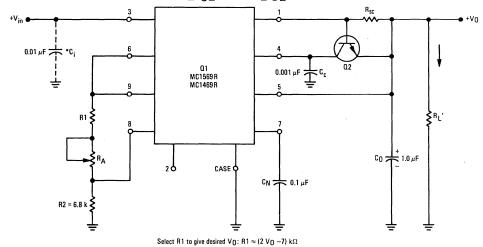
 $|\Delta V_{O}| = -1.6 \text{ mV}$ 


Therefore the total  $\Delta V_O$  is given by


 $|\Delta V_{O} \text{ total}| = \pm 0.5 - 2.0 - 1.6 \text{ mV}$ 

OR

 $-4.1 \text{ mV} \leq |V_{O} \text{ total}| \leq -3.1 \text{ mV}$ 


Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.





## FIGURE 42 - LOCATION OF COMPONENTS

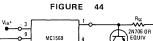
FIGURE 43 – CIRCUIT SCHEMATIC FOR PRINTED CIRCUIT BOARD (Pg. 17) 3.5 V  $\leq$  V_0  $\leq$  37 V, 1 mA  $\leq$  I  $_L$   $\leq$  500 mA

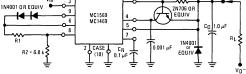


 $^{*}\mathrm{C}_{i}$  – May be required if long input leads are used.

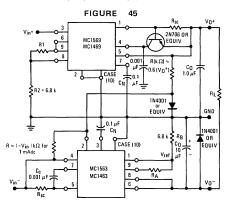
## MC1569, MC1469 (continued)

#### PARTS LIST


Component	Value	Description
R1 R2	Select 6.8 k	1/4 or 1/2 watt carbon
*RA	Select	IRC Model X-201 Mallory Model MTC-1 or equivalent
R _{sc}	Select	1/2 watt carbon
*RL′	Select	For minimum current of 1 mAdc
с _о	1.0 μF	Sprague 1500 Series, Dickson D10C series or equivalent
C _N C _c *C _i	0.1 μF 0.001 μF 0.01 μF	Ceramic Disc — Centralab DDA 104, Sprague TG-P10, or equivalent
Q1 Q2	MC1569R or MC1469R 2N5223, 2N706, or equivalent	
*HS	_	Heatsink Thermalloy #6168B
*Socket	(Not Shown)	Robinson Nugent #0001306 Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1
PC Board	_	Circuit Dot, Inc. #PC1113
*Optional		1155 W. 23rd St., Tempe, Ariz. 85281


### LATCH-UP

Latch-up of these and other regulators can occur if:


- 1. There are plus and minus voltages available
- 2. A load exists between V_O⁺ and V_O⁻ (This "common load" may be something inconspicuous e.g. an operational amplifier. Nearly everyone who uses + and voltages will have a common load from V_{CC} to V_{EE}.)
  V_{in}⁺ and V_{in}⁻ are not applied at the same time.

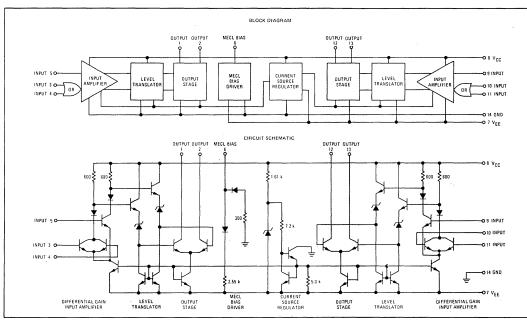
The above conditions result in one of the two outputs becoming reverse-biased which prevents the regulator from turning ON . Latch-up can be prevented by the circuit configurations shown in Figures 44 and 45.





Note: This configuration increases minimum input-output differential voltage by  $\approx 0.7 \text{ V}$ .





# INDEX

	MC1569 Specification Page No.
Circuit Schematic (MC1569)	8
Complementary Tracking Voltage Regulator	1,12
Dual Power Supplies	1,12
Electrical Characteristics	2
General Design Information	4
Latch-Up	19
Maximum Ratings	2
Mechanical Outline Drawings	2
NPN Current Boost	1,10
PNP Current Boost	10
Printed Circuit Board Layout	17
Shutdown Techniques	4,13
Switching Regulator	10
Theory of Operation	7,8,9
Test Circuits	3
Thermal Considerations	16
Thermal Shutdown	15
Typical Characteristics (Curves)	5,6
Typical Circuit Connection	1,4,18
Voltage Boosting	14
Zero TC Voltage Reference Source	15

# LINEAR/DIGITAL INTERFACE CIRCUITS

# MC1580L



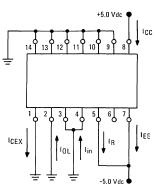


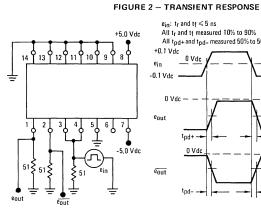
See Packaging Information Section for outline dimensions.

# MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-7.0	
Differential-Mode Input Signal Voltage	Vin	±7.0	Volts
Common-Mode Input Signal Voltage	CMV _{in}	±10	Volts
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = +25 ⁰ C	Ρ _D 1/θJ _A	575 3.85	mW mW/ ^O C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (Each Line Driver/Receiver,  $V_{CC}$  = +5.0 V,  $V_{EE}$  = -5.0 V,  $T_A$  = +25°C unless otherwise noted)


Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Operating Supply Currents	1	^I CC	-	5.0	8.0	mA
		IEE	-	25	30	
Input Leakage Current	1	I R	-	0.01	0.1	μΑ
Input Current $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$	1	lin		0.04 0.02	0.2 0.1	mA
$T_{A} = +125^{\circ}C$			_	0.01	0.1	
Output Leakage Current	1	ICEX	-	0.8	5.0	μΑ
Output Load Current $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	1	IOL	6.5 6.9 6.8	8.1 8.6 8.5	9.8 10.4 10.2	mA
Output Load Current Match $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	6	AOL	- - -	0.25 0.2 0.15	0.5 0.5 0.5	mA
Power Supply Operating Range		Vcc	+4.75	+5.0	+6.00	Vdc
		VEE	-4.75	-5.0	-6.00	
MECL Bias Voltage (VEE = -5.2 Vdc)		V _{BB}	-1.11	1.175	-1.24	Vdc
Input Voltage Transition Width* $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$		VTR	- - -	30 35 40	50 50 50	mV
Switching Times Propagation Delay Time Rise Time Fall Time	2	^t pd+ ^t pd- t _r tf	· · · · · · · · · · · · · · · · · · ·	13 13 11 7.0	18 18  	ns
Parallel Impedance (f = 5.0 MHz) Input Capacitance Input Resistance Output Capacitance Output Resistance		C _p (in) R _p (in) C _p (out) R _p (out)	_ _ _ _	9.0 8.0 10 10		pF k ohms pF k ohms
Common—Mode Voltage Range (—55 to +125 ⁰ C) Input Output	3	CMVR _{in}	+3.5 - 3.5	+4.4 -4.2	-	Volts
σαφαί	4	CMVRout	+9.0 3.0	+10 -3.3	-	
Common—Mode Voltage Gain f = 60 MHz	5	Асму	_	-40	_	dB
Power Dissipation		PD	_	150	180	mW
	1 · · ·	-			1	


*Measurement taken from points of Unity Gain.

Ground unused output pins and their corresponding inputs to assure correct device biasing.

## CHARACTERISTIC DEFINITIONS

FIGURE 1 - TERMINAL CURRENTS





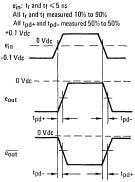
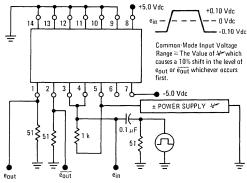
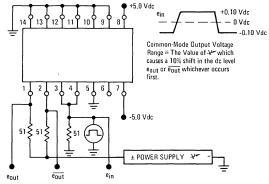
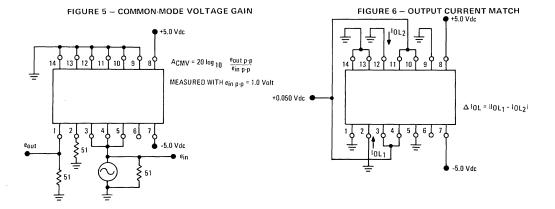
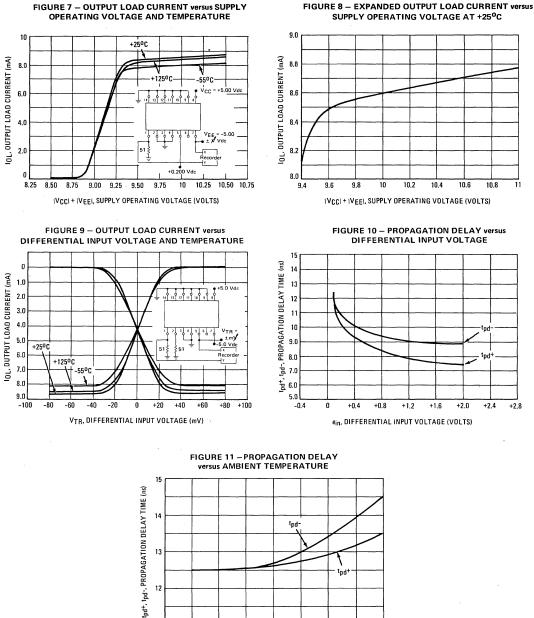
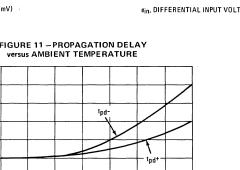



FIGURE 3 - COMMON-MODE INPUT VOLTAGE RANGE



FIGURE 4 - COMMON-MODE OUTPUT VOLTAGE RANGE



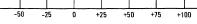




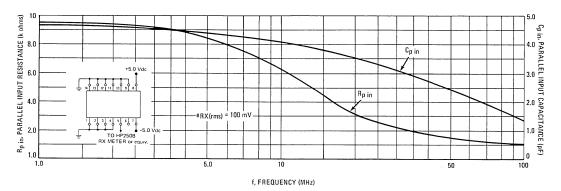
#### TYPICAL CHARACTERISTICS



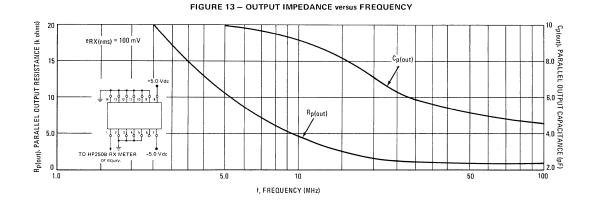
+125



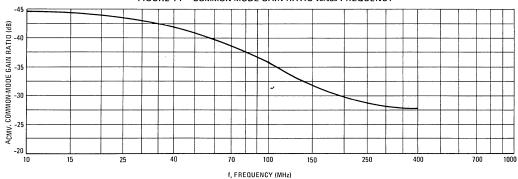

13


12

11


-75




## TYPICAL CHARACTERISTICS (continued)











#### APPLICATIONS INFORMATION

Fo

#### Line Driver/Receiver Family Characteristics

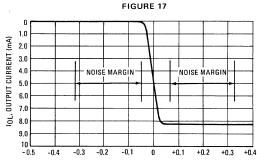
The Motorola line driver/receiver series provides interface circuits for driving digital data transmission lines e.g., coaxial cable or twisted pair. The digital data transmission isvia a balanced differential mode. The line drivers and receivers are designed to provide high common-mode noise rejection, present high impedances to the transmission line and have low propagation times. A feature of the drivers is the capability to operate in a party-line mode whereby a number of drivers can be connected to a single line. This series provides drivers and receivers compatible with MRTL, MDTL, MTTL and MECL. The five circuits of the family are:

MC1580L	Dual Line Driver/Receiver
MC1581L	Dual MECL Receiver
MC1582L	Dual MDTL/MTTL Driver
MC1583L	Dual Receiver (Open Collector)
MC1584L	Dual Receiver (Active Pullup)

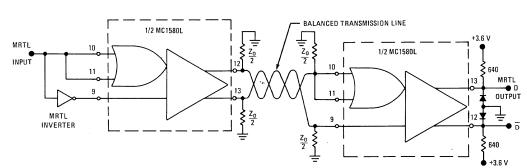
Figure 15 indicates line drivers and receivers recommended for interfacing with each of the various digital logic families. The MC1580L serves as a basic building block and can be used as a driver or receiver with any of the indicated digital logic families by adding the appropriate external components.

FIGURE 15

Digital Logic Family	Driver	Receiver
MECL	MC1580L	MC1581L
MDTL	MC1582L	MC1583L MC1584L
MTTL	MC1582L	MC1583L MC1584L
MRTL	MC1580L MC1582L	MC1583L


These five circuits are extremely useful in numerous applications other than line drivers and receivers. The differential amplifier input of the receiver makes it useful in applications such as voltage comparators, waveform generators and high-input-impedance buffers. The drivers and receivers are useful as logic level translators.

The MC1580L in Figure 16 serves as the line driver and line receiver for a balanced differential transmission line. The driver input and receiver outputs of Figure 16 are compatible with MRTL. The output stage of the driver switches a current source between the two driver outputs in response to the input logic signals. Hence, a voltage differential that is a function of the line termination impedances is created on the twisted pair and at the input of the receiver. The receiver is designed to reject +3.5/-3.5 Volts of commonmode voltage signals which may be present due to ground loop currents and noise coupled from nearby transmission lines.


While common-mode noise is the major concern in a twisted pair transmission line; a good data transmission system must offer some immunity from differential-mode voltages that may be present due to mismatches in termination impedances. The drivers and receivers of the MC1580 Series are designed with this requirement in mind. The exact amount of noise immunity depends on line impedances but the following example shows how differential-mode noise immunity is calculated for a given system. For a line with a characteristic impedance of  $Z_0$ , calculate the minimum differential input voltage from the equation.

$$\pm V_{in} = \frac{I_0(\min) \times Z_0}{4}$$
  
r a 170-ohm line,  $V_{in} = \frac{(6.9) (170)}{4} = 0.29$  Volts.

Since the MC1580L requires 50 mV maximum input differential to maintain the output state, the worst case differential-mode noise immunity is 0.26 V. (See Figure 17).



Vin, DIFFERENTIAL INPUT VOLTAGE (VOLTS)



#### FIGURE 16

#### 7-322

### APPLICATIONS INFORMATION (continued)

Hence the direct coupling of the driver and receiver to the line provides a built-in differential-mode noise immunity. The direct coupling also matches the line at all frequencies (often a problem with ac coupling lines). The recovery problem in ac coupling devices at high-signal repetition rates is also eliminated.

High input and output impedances of the MC1580L minimize impedance discontinuities on the transmission line and allow many drivers and receivers to be connected to the line.

Use of the MC1580L in a bi-directional MECL compatible transmission system is shown in Figure 18. The MC1580L has an internal MECL bias network that allows the circuit to be used as a MECL line driver. The drivers of Figure 18 are connected so that the current sources from both drivers pull current from the same wire of the twisted pair when both drivers are transmitting logic "0" signals. The external current source, I_S, supplies the current required by one driver. The current for the other driver is drawn from the termination impedances, creating a voltage differential across the line. When either driver is core to the supplied by a 600-ohm resistor connected to +5.0 Volts.

If additional drivers are connected to the line, a matching current source is connected for each added driver. The current sources are connected to the line so that when all drivers are transmitting logic "0"s, the difference in current drawn from the terminating resistors of the two wires in the twisted pair is equal to one current source (8.6 mA). The current sources should also be connected so that when any driver transmits a logic "1" then a current difference of the opposite polarity exists. The matching current source should be the companion circuit on the MC1580L driver chip. The difference in amplitude of the current sources on a single chip is specified to allow the system designer to calculate the maximum current source mismatch,  $\Delta I_{OL}$ , and hence the maximum number of drivers that can be connected to a given transmission line.

The MC1580L has many other uses in a digital system. The high input impedance suggests its use as a buffer for delay lines and in waveform generation circuits. Figure 19 shows the MC1580L used as a differential comparator in a double-ended limit detector. When the input signal amplitude is between the two reference voltages, the output signal will be a logic "1"; otherwise a logic "0" output is obtained. The voltage transition region is typically less than 40 mV. External components R1 and CR1 establish an MDTL compatible signal.

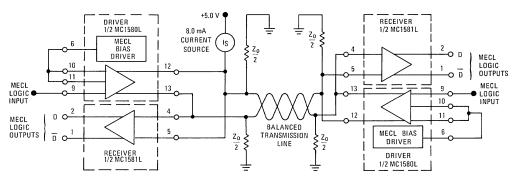
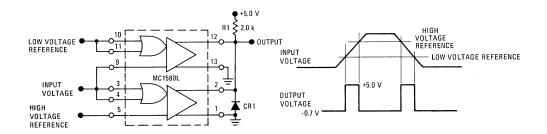
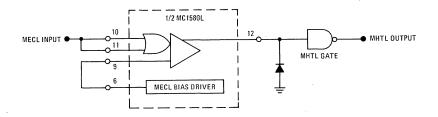



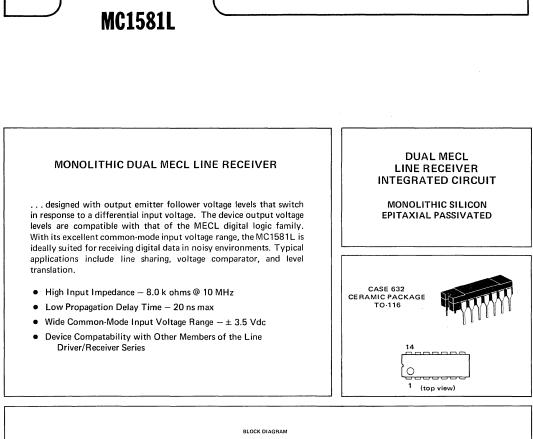

FIGURE 18 - BI-DIRECTIONAL TRANSMISSION



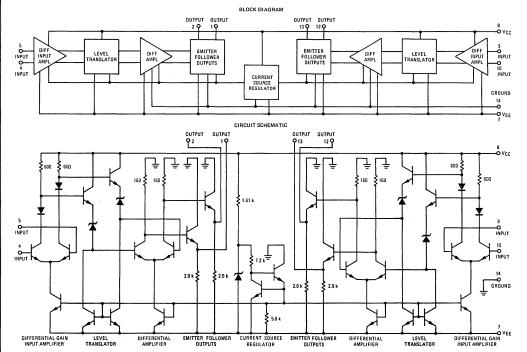


# MC1580L (continued)


#### **APPLICATIONS INFORMATION** (continued)


- ---

#### Voltage Translator


Translation of voltage levels from MECL (best suited for the highspeed portion of a digital system) to MHTL (tailored for the noisy output portion of the system) is often required. The MC1580 performs this function as indicated in Figure 20.

#### FIGURE 20 - MECL TO MHTL VOLTAGE LEVEL TRANSLATOR



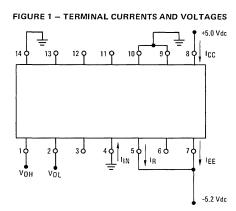


LINEAR/DIGITAL INTERFACE CIRCUITS



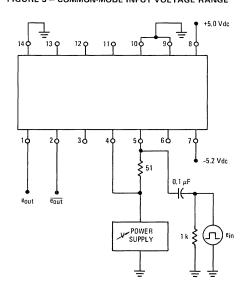
See Packaging Information Section for outline dimensions.

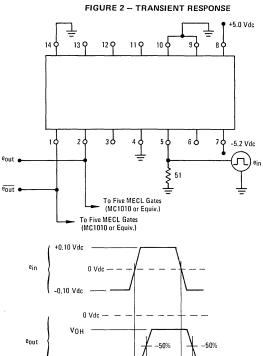
# MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

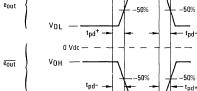

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+7.0	Vdc
	VEE	-7.0	
Differential-Mode Input Signal Voltage	Vin	±7.0	Volts
Common-Mode Input Signal Voltage	CMVin	±10	Volts
Power Dissipation (Package Limitation)	PD		
Ceramic Dual In-Line Package		575	mW
Derate above T _A = +25 ^o C	1/0 _{JA}	3.85	mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

# **ELECTRICAL CHARACTERISTICS** (Each Receiver, $V_{CC}$ = +5.0 Vdc, $V_{EE}$ = -5.2 Vdc, $T_A$ = +25°C unless otherwise noted)

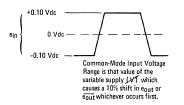
Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Operating Supply Currents	1	Icc	-	5.3	8.0	mA
		IEE	-	22.2	28.1	
Input Leakage Current	1	IR	-		0.1	μA
Input Current	1	l _{in}				mA
T _A = -55 ^o C			-	0.020	0.1	
T _A = +25 ^o C			-	0.014	0.1	
T _A = +125 ^o C			-	0.012	0.1	
Output Voltage High	1	VOH				Volt
T _A = -55 ^o C			-0.825	-0.900	-0.990	
T _A = +25 ^o C			-0.690	-0.780	-0.850	
T _A = +125 ^o C			-0.535	-0.62	-0.700	
Output Voltage Low	1	VOL				Volts
T _A = -55 ⁰ C			-1.580	-1.83	-	
T _A = +25 ^o C			-1.500	-1.70	-	
T _A = +125 ^o C			-1.380	-1.73	-	
Input Voltage Transition Width*		VTR				mV
T _A = -55 ^o C			-	20	50	
T _A = +25 ^o C			-	20	50	
T _A = +125 ⁰ C			-	30	50	
Switching Times	2					
Propagation Delay Time		tpd+	-	15	20	ns
		^t pd-	-	25	30	
Rise Time		tr	-	12	-	
Fall Time		t _f	-	23	-	
Parallel Input Impedance (f = 5.0 MHz)						
Capacitance		Cp (in)	-	4.5	-	pF
Resistance		R _p (in)	-	14	-	k ohms
Common-Mode Input Voltage Range	3	CMVRin	+3.5	+4.4	- 1	Volts
(T _A = -55 to +125 ^o C)			-3.5	-4.2	-	
Power Supply Operating Range		Vcc	+4.75	+5.0	+6.00	Vdc
		VEE	-4.75	-5.2	-6.00	
Total Power Dissipation		PD	-	145	185	mW


^{*}Measurement taken from points of Unity Gain. Ground unused inputs to assure correct device biasing.

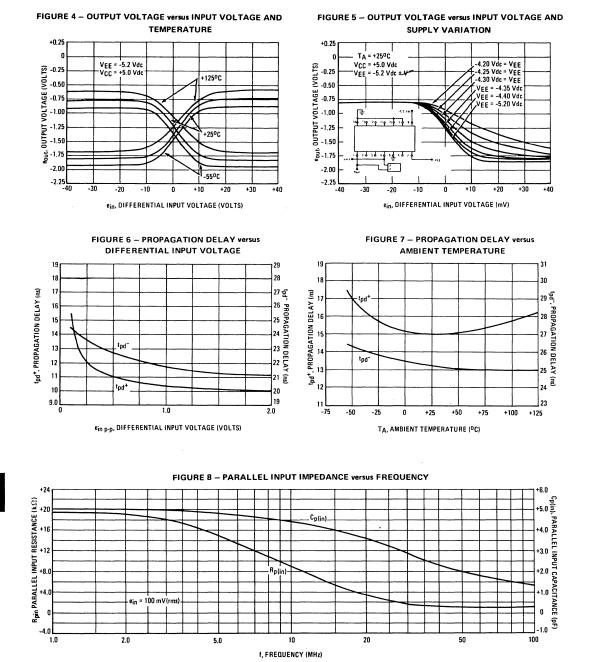

/




- -


# FIGURE 3 -- COMMON-MODE INPUT VOLTAGE RANGE








•



## CHARACTERISTIC DEFINITIONS



#### TYPICAL CHARACTERISTICS

#### APPLICATIONS INFORMATION

F

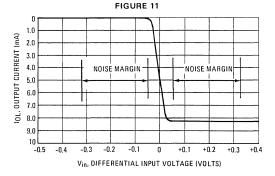
#### Line Driver/Receiver Family Characteristics

The Motorola line driver/receiver series provides interface circuits for driving digital data transmission lines, e.g., coaxial cable or twisted pair. The digital data transmission is via a balanced differential mode. The line drivers and receivers are designed to provide high common-mode noise rejection, present high impedances to the transmission line and have low propagation times. A feature of the drivers is the capability of operating in a party-line mode whereby a number of drivers and receivers compatible with MRTL, MDTL, MTL and MECL. The five circuits of the family are:

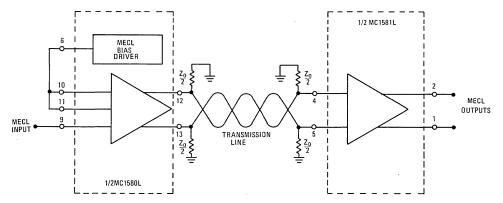
MC1580L	Dual Line Driver/Receiver
MC1581L	Dual MECL Receiver
MC1582L	Dual MDTL/MTTL Driver
MC1583L	Dual Receiver (Open Collector)
MC1583L	Dual Receiver (Open Collector)
MC1584L	Dual Receiver (Active Pullup)

Figure 9 indicates the line drivers and receivers recommended for interfacing with each of the various digital logic families.

FIGURE 9


Digital Logic Family	Driver	Receiver
MECL	MC1580L	MC1581L
MDTL	MC1582L	MC1583L MC1584L
MTTL	MC1582L	MC1583L MC1584L
MRTL	MC1580L MC1582L	MC1583L

These five circuits are extremely useful in numerous applications other than line drivers and receivers. The differential amplifier input of the receiver makes it useful in such applications as voltage comparators, waveform generators and high-input impedance buffers. The drivers and receivers are useful as logic level translators.


The MC1581L in Figure 10 serves as the line receiver in a balanced differential transmission line. The outputs of the MC1581L receiver and the inputs to the MC1580L driver are compatible with MECL. While common-mode noise is the major concern in a twisted pair transmission line, a good data transmission system must offer some immunity from differential-mode voltages that may be present due to mismatches in termination impedances. The drivers and receivers of the MC1580 series are designed with this requirement in mind. The exact amount of noise immunity depends on line impedances but the following example shows how differential-mode noise immunity is calculated for a given system. For a line with a characteristic impedance of  $Z_0$ , calculate the minimum differential input voltage from the equation:

$$\pm V_{in} = \frac{I_0(min) \times Z_0}{4}$$
  
or a 170-ohm line, V_{in}  $\frac{(6.9) (170)}{4} = 0.29$  Volts

Since the MC1581L requires a 50 mV maximum input differential to maintain the output state, the worst case differential-mode noise immunity is 0.26 V, (see Figure 11).



#### FIGURE 10 - MECL COMPATIBLE TRANSMISSION SYSTEM

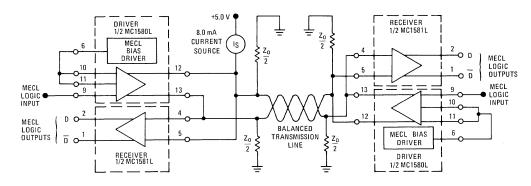


The output stage of the driver switches a current source between the two driver outputs in response to the input logic signals. Hence, a voltage differential that is a function of the line termination impedances is created on the twisted pair and at the input of the receiver. The receiver is designed to reject +3.5 V/-3.5 V of commonmode voltage signals which may be present due to ground loop currents and noise coupled from nearby transmission lines. Hence the direct coupling of the driver and receiver to the line provides a built-in differential-mode noise immunity. The direct coupling also matches the line at all frequencies (often a problem with ac coupled lines). The recovery problem in ac coupling devices at high-signal repetition rates is also eliminated.

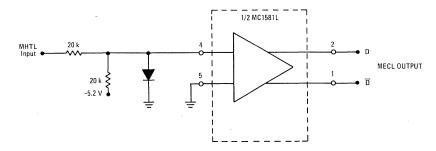
High input impedance of the MC1581L and high output impedance of the MC1580L minimize impedance discontinuities on the

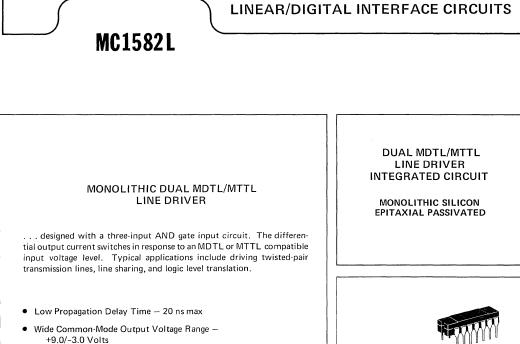
#### APPLICATIONS INFORMATION (continued)

transmission line and allow many drivers and receivers to be connected to the line.  $\hfill \hfill \hfill$ 

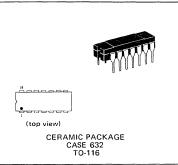

Use of the MC1581L and the MC1580L in a bi-directional MECL compatible transmission system is shown in Figure 12. The MC1580L has an internal MECL bias network that allows the circuit to be used as a MECL line driver. The drivers of Figure 12 are connected so that the current sources from both drivers pull current from the same wire of the twisted pair when both drivers are transmitting logic "0" signals. The external current source, I_S, supplies the current required by one driver. The current for the other driver is drawn from the termination impedances creating a voltage differential across the line. When either driver transmits a logic "1", a voltage difference of the opposite polarity is created across the line. For a system with two drivers the current source (I_S) can be supplied by a 600-ohm resistor connected to +5.0 Volts. If additional drivers are connected for each added driver. The current source

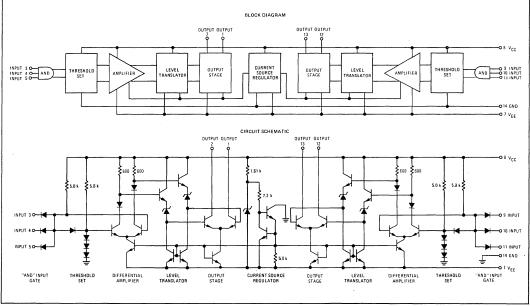
are connected to the line so that when all drivers are transmitting logic "0"s, the difference in current drawn from the terminating resistors of the two wires in the twisted pair is equal to one current source (8.6 mA). The current sources should also be connected so that when any driver transmits a logic "1" a current difference of the opposite polarity exists. The matching current source should be the companion circuit on the MC1580L driver chip. The difference in amplitude of the current sources on a single chip is specified to allow the system designer to calculate the maximum current source mismatch,  $\Delta I_{OL}$ , and hence the maximison line.


#### Voltage Translator


Translation of voltage levels from MHTL (tailored for the noisy input/output system portions) to MECL (best suited for the highspeed logic circuits) is often required. The MC1581L performs this function as shown in Figure 13.

#### FIGURE 12 - BI-DIRECTIONAL TRANSMISSION





#### FIGURE 13 - MHTL-TO-MECL VOLTAGE LEVEL TRANSLATOR





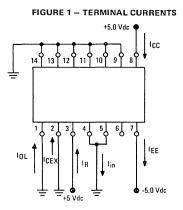
- High Output Impedance 7.0 k Ohms @ 10 MHz
- 3-Input AND Gate
- Device Compatibility with Other Members of the Line
   Driver/Receiver Series





See Packaging Information Section for outline dimensions.

# MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-7.0	
Input Signal Voltage	V _{in}	+30	Volts
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = +25 ⁰ C	Р _D 1/θјд	575 3.85	mW mW/ ^o C
Operating Temperature Range		-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (Each Line Driver, V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = +25^oC unless otherwise noted)

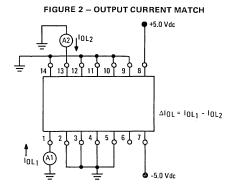
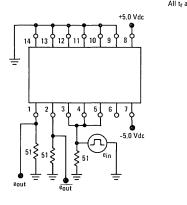
Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Operating Supply Currents	1	ICC IEE	-	8.0 25	10 30	mA
Input Leakage Current	1	IR	-	0.04	0.1	μΑ
Input Current $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	1	lin		0.72 0.70 0.63	1.0 1.0 1.0	mA
Output Leakage Current	1	ICEX	-	0.8	5.0	μΑ
Output Load Current $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	1	^I OL	6.5 6.9 6.8	8.1 8.6 8.5	9.8 10.4 10.2	mA
Output Load Current Match $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	2	∆IOL		0.7 0.8 0.8	· _	mA
Input Voltage Transition Width* $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$		VTR		50 40 50		mV
Switching Times Propagation Delay Time Rise Time Fall Time	3	^t pd ⁺ ^t pd  ^t r tf		15 13 8.0 7.0	20 18 	ns
Threshold Voltage $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$	3	VTH	0.9 1.1 0.9	1.74 1.45 1.16	2.0 1.8 1.5	Volts
Parallel Output Impedance (f = 5.0 MHz) Capacitance Resistance		C _{p(out)} R _{p(out)}		10 18		pF k ohms
Common–Mode Output Voltage Range T _A = -55 to +125 ⁰ C	4	CMVRout	+9.0 -3.0	+10 3.3	-	Volts
Power Supply Operating Range		V _{CC} V _{EE}	+4.75 6.0	+5.0 5.0	+6.0 4.75	Vdc
Input Breakdown Voltage		VIHH	15	30	-	Volts
Power Dissipation		PD	-	140	170	mW

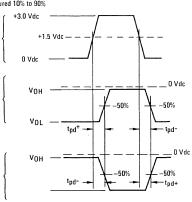
*Measured from points of unity gain with a 50 ohm load.

Ground all unused input pins to assure correct device biasing.

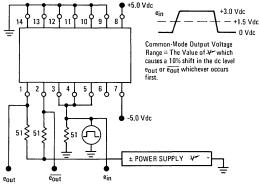


#### CHARACTERISTIC DEFINITIONS



FIGURE 3 – TRANSIENT RESPONSE All t_r and t_f measured 10% to 90%

ein


eout

eout













IOL, OUTPUT LOAD CURRENT (mA)

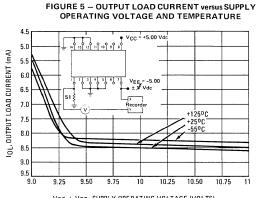
0

1.6

3.2

4.8

6.4


8.0

9.6

11.2

1.0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0



 $v_{\text{CC}}$  +  $v_{\text{EE}}$  , supply operating voltage (volts)



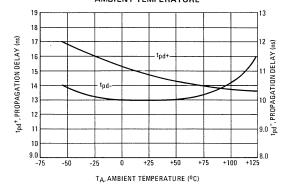
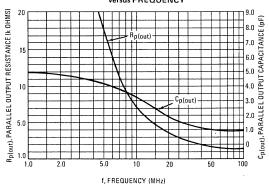



FIGURE 8 – PARALLEL OUTPUT IMPEDANCE versus FREQUENCY

ein, INPUT VOLTAGE (VOLTS)


FIGURE 6 – OUTPUT LOAD CURRENT versus

INPUT VOLTAGE AND TEMPERATURE

+2500

12500

-55⁰C .



.

P P

#### APPLICATIONS INFORMATION

#### Line Driver/Receiver Family Characteristics

The Motorola line driver/receiver series provides interface circuits for driving digital data transmission lines e.g., coaxial cable or twisted pair. The digital data transmission is via a balanced differential mode. The line drivers and receivers are designed to provide high common-mode noise rejection, present high impedances to the transmission line and have low propagation times. A feature of the drivers is the capability to operate in a party-line mode whereby a number of drivers can be connected to a single line. This series provides drivers and receivers compatible with MRTL, MDTL, MTTL and MECL. The five circuits of the family are:

MC1580L	Dual Line Driver/Receiver
MC1581L	Dual MECL Receiver
MC1582L	Dual MDTL/MTTL Driver
MC1583L	Dual Receiver (Open Collector)
MC1584L	Dual Receiver (Active Pullup)

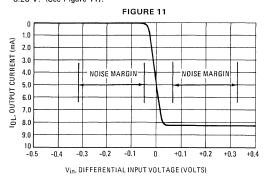
Figure 9 indicates line drivers and receivers recommended for interfacing with each of the various digital logic families.

FIGURE 9

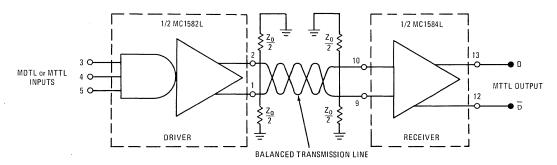
Digital Logic Family	Driver	Receiver
MECL	MC1580L	MC1581L
MDTL	MC1582L	MC1583L MC1584L
MTTL	MC1582L	MC1583L MC1584L
MRTL	MC1580L MC1582L	MC1583L

These five circuits are extremely useful in numerous applications other than line drivers and receivers. The differential amplifier input of the receiver makes it useful in applications such as voltage comparators, waveform generators and high-input-impedance buffers. The drivers and receivers are useful as logic level translators.

The MC1582L in Figure 10 serves as the line driver for a balanced differential transmission line. The driver input and receiver outputs of the MC1584L receiver are compatible with MTTL circuits.


The output stage of the driver switches a current source between the two driver outputs in response to the input logic signals. Hence, a voltage differential that is a function of the line termination impedances is created on the twisted pair and at the input of the receiver. The receiver is designed to reject +3.5/-3.5 Volts of commonmode voltage signals which may be present due to ground loop currents and noise coupled from nearby transmission lines.

While common-mode noise is the major concern in a twisted pair transmission line; a good data transmission system must offer some immunity from differential-mode voltages that may be present due to mismatches in termination impedances. The drivers and receivers of the MC1580 Series are designed with this requirement in mind. The exact amount of noise immunity depends on line impedances but the following example shows how differential-mode noise immunity is calculated for a given system. For a line with a characteristic impedance of  $Z_0$ , calculate the minimum differential input voltage from the equation.


$$\pm V_{in} = \frac{I_0(\min) \times Z_0}{4}$$
  
For a 170-ohm line,  $V_{in} = \frac{(6.9)(170)}{4} = 0.29$  Volts.

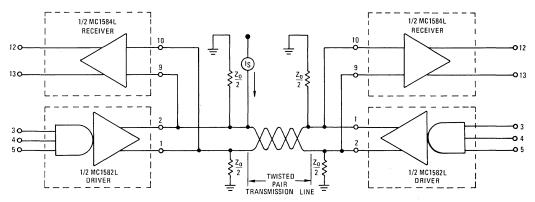
Since the receivers recommended for use with the MC1582L driver require 50 mV maximum input differential to maintain the output state, the worst case differential-mode noise immunity is 0.26 V. (See Figure 11).

Δ








#### APPLICATIONS INFORMATION (continued)

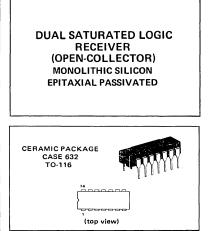
Hence the direct coupling of the driver and receiver to the line provides a built-in differential-mode noise immunity. The direct coupling also matches the line at all frequencies (often a problem with ac coupling lines). The recovery problem in ac coupling devices at high-signal repetition rates is also eliminated.

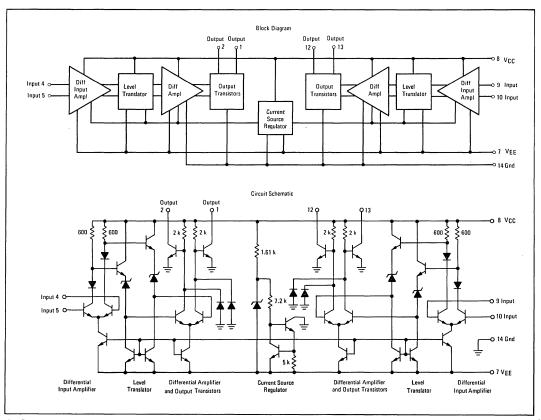
The high output impedance of the MC1582L and the high input impedances of the MC1584L drivers minimize impedance discontinuities on the transmission line and allow many drivers and receivers to be connected to the line.

Use of the MC1584L in a bi-directional MDTL or MTTL compatible transmission system is shown in Figure 12. The MC1582L drivers of Figure 12 are connected so that the current sources from both drivers pull current from the same wire of the twisted pair when both drivers are transmitting logic "O" signals. The external current source, I_S, supplies the current required by one driver. The current for the other driver is drawn from the termination impedances, creating a voltage differential across the line. When either driver transmits a logic "1", a voltage difference of the opposite polarity is created across the line. For a system with two drivers the current source (I_S) can be supplied by a 600-ohm resistor connected to  $\pm 5.0$  volts.

If additional drivers are connected to the line, a matching current source is connected for each added driver. The current sources are connected to the line so that when all drivers are transmitting logic "0"s, the difference in current drawn from the terminating resistors of the two wires in the twisted pair is equal to one current source (8.6 mA). The current sources should also be connected so that when any driver transmits a logic "1" then a current difference of the opposite polarity exists. The matching current source should be the companion circuit on the MC1580L driver chip. The difference in amplitude of the current sources on a single chip is specified to allow the system designer to calculate the maximum number of drivers that can be connected to a given transmission line.




#### FIGURE 12 - BI-DIRECTIONAL TRANSMISSION




## MONOLITHIC DUAL LINE RECEIVER

The MC1583L is a dual open collector output line receiver designed for use in line sharing, differential voltage comparator, and level translator applications. The output transistors switch in response to a differential input voltage. Output logic voltage levels are compatible with MTTL, MDTL, and MRTL logic levels when a suitable external pullup resistor is connected to the device output. Excellent commonmode input voltage range makes this device ideal for receiving digital data in a noisy environment.

- High Input Impedance 12 Kilohms @ 5.0 MHz
- Low Propagation Delay Time 40 ns max
- Excellent Common-Mode Input Voltage Range ± 3.5 V min
- Compatible with Other Members of the Line Driver/Receiver Series – MC1580 thru MC1584

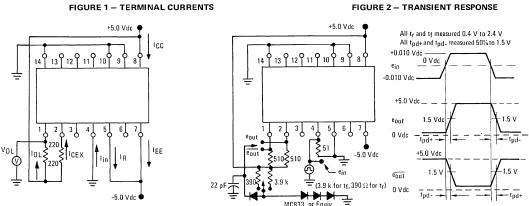




See Packaging Information Section for outline dimensions.

# MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-7.0	
Differential-Mode Input Signal Voltage	V _{in}	±7.0	Vdc
Common-Mode Input Voltage	CMVin	±10	Vdc
Static Output Load Current	IOL	20	mA
Power Dissipation (Package Limitation) Derate above T _A = +25 ^o C	PD	575 3.85	mW mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C


# ELECTRICAL CHARACTERISTICS (Each Receiver)

(V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = +25^oC unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Operating Supply Currents	1	ICC IEE		15 16	18 20	mA
Input Leakage Current	1	IR	_	0.012	0.1	μΑ
Input Current $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	1	lin		0.033 0.025 0.020	0.1 0.1 0.1	mA
Output Leakage Current	1	ICEX	-	0.8	5.0	μA
Output Voltage Low ( $I_{OL}$ = 20 mA) $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$	1	VOL		0.23 0.25 0.28	0.40 0.40 0.40	Volt
Input Voltage Transition Width: $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$		VTR		12 4.0 8.0	50 50 50	mV
Switching Times Propagation Delay Times Rise Time Fall Time	2	^t pd+ ^t pd- ^t r ^t f		24 34 16 5.0	30 40 -	ns
Parallel Input Impedance (f = 5.0 MHz) Parallel Input Capacitance Parallel Input Resistance		C _p R _p	-	4.0 12		pF k ohms
Common-Mode Input Voltage Range T _A = -55 ^o C to +125 ^o C	3	CMVin	+3.5 -3.5	+4.3 -4.2	-	Volts
Power Supply Operating Range		V _{CC} V _{EE}	4.75 -6.0	5.0 -5.0	6.0 -4.75	Vdc
Total Power Dissipation		PD	-	140	175	mW

Ground unused input pins to assure correct device biasing.

 $\ddagger \ensuremath{\mathsf{Measurement}}$  taken from points of Unity Gain with 3.9-kilohm load resistor.



#### TEST CIRCUITS AND TYPICAL CHARACTERISTICS

(V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc,  $T_A$  = +25^oC unless otherwise noted)

FIGURE 1 - TERMINAL CURRENTS

FIGURE 3 - COMMON-MODE INPUT VOLTAGE RANGE





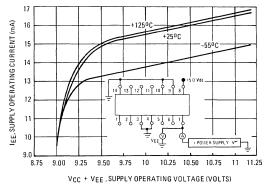
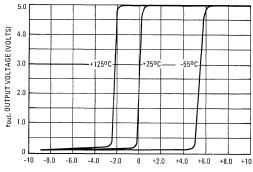
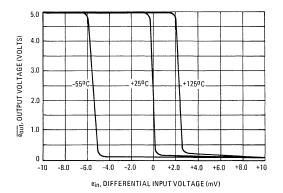
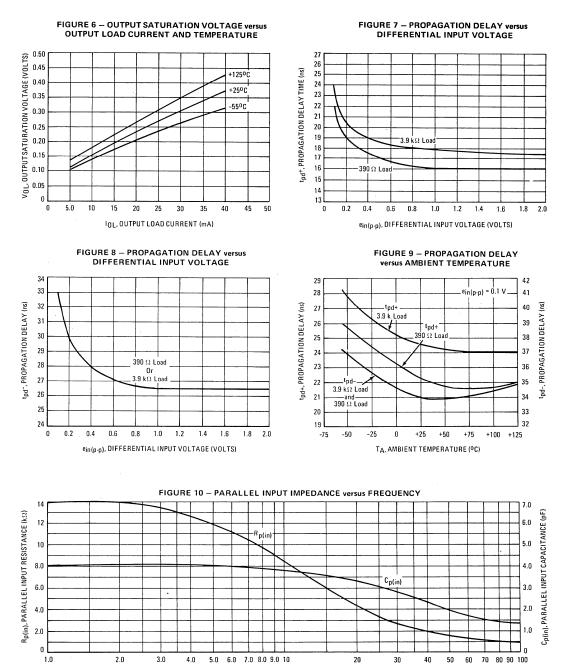






FIGURE 5 - OUTPUT VOLTAGE versus DIFFERENTIAL INPUT VOLTAGE AND TEMPERATURE



ein, DIFFERENTIAL INPUT VOLTAGE (mV)





# TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc,  $T_A$  = +25^oC unless otherwise noted)

f, FREQUENCY (MHz)

#### APPLICATIONS INFORMATION

F

#### Line Driver/Receiver Family Characteristics

The Motorola line driver/receiver series provides interface circuits for driving digital data transmission lines e.g., coaxial cable or twisted pair. The digital data transmission isvia a balanced differential mode. The line drivers and receivers are designed to provide high common-mode noise rejection, present high impedances to the transmission line and have low propagation times. A feature of the drivers is the capability to operate in a party-line mode whereby a number of drivers can be connected to a single line. This series provides drivers and receivers compatible with MRTL, MDTL, MTTL and MECL. The five circuits of the family are:

MC1580L	Dual Line Driver/Receiver
MC1581L	Dual MECL Receiver
MC1582L	Dual MDTL/MTTL Driver
MC1583L	Dual Receiver (Open Collector)
MC1584L	Dual Receiver (Active Pullup)

Figure 11 indicates line drivers and receivers recommended for interfacing with each of the various digital logic families.

These five circuits are extremely useful in numerous applications other than line drivers and receivers. The differential amplifier input of the receiver makes it useful in applications such as voltage

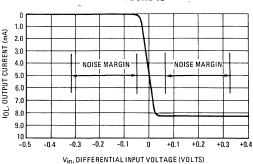
IGL	IRE	11	
-----	-----	----	--

Digital Logic Family	Driver	Receiver
MECL	MC1580L	MC1581L
MDTL	MC1582L	MC1583L MC1584L
MTTL	MC1582L	MC1583L MC1584L
MRTL	MC1580L MC1582L	MC1583L

comparators, waveform generators and high-input-impedance buffers. The drivers and receivers are useful as logic level translators.

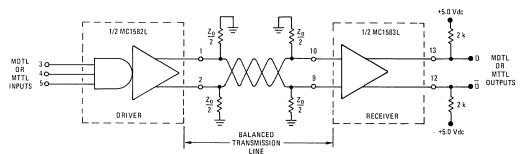
The MC1583L in Figure 12 serves as a line receiver for a balanced differential transmission line. The driver inputs and receiver outputs of Figure 12 are compatible with MTTL and MDTL circuits. The MC1583L has an open collector output circuit which is designed to sink 20 mA. The open collector allows the user to interface with MRTL, MDTL, or MTTL by supplying the appropriate external resistor and power supply connection. A 9-volt BV_{CEO} rating on the open collector transistor allows the MC1583L to interface with MHTL also.

The MC1584L receiver can also be used to interface with MDTL and MTTL. The MC1584L contains an active pullup on the


output device and hence eliminates the need for an external resistor for MTTL and MDTL compatible systems. The MC1584L has a 6-mA output sink current limitation.

The output stage of the MC1582L driver switches a current source between the two driver outputs in response to the input logic signals. Hence, a voltage differential that is a function of the line termination impedances is created on the twisted pair and at the input of the receiver. The receiver MC1583L is designed to reject +3.5/-3.5 Volts of common-mode voltage signals which may be present due to ground loop currents and noise coupled from nearby transmission lines.

While common-mode noise is the major concern in a twisted pair transmission line; a good data transmission system must offer some immunity from differential-mode voltages that may be present due to mismatches in termination impedances. The drivers and receivers of the MC1580 Series are designed with this requirement in mind. The exact amount of noise immunity depends on line impedances but the following example shows how differential-mode noise immunity is calculated for a given system. For a line with a characteristic impedance of Z₀, calculate the minimum differential input voltage from the equation.


$$\pm V_{in} = \frac{I_0(min) \times Z_0}{4}$$
  
For a 170-ohm line,  $V_{in} = \frac{(6.9)(170)}{4} = 0.29$  Volts.

Since the MC1583L requires 50 mV maximum input differential to maintain the output state, the worst case differential-mode noise immunity is 0.26 V. (See Figure 13).

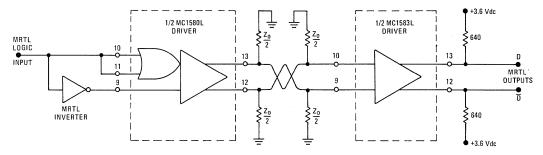


#### FIGURE 13

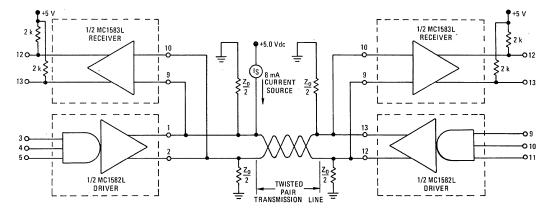




#### **APPLICATIONS INFORMATION** (continued)


Hence the direct coupling of the driver and receiver to the line provides a built-in differential-mode noise immunity. The direct coupling also matches the line at all frequencies (often a problem with ac coupling lines). The recovery problem in ac coupling devices at high-signal repetition rates is also eliminated.

High input impedance of the MC1583L and high output impedances of the MC1582L minimize impedance discontinuities on the transmission line and allow many drivers and receivers to be connected to the line.


Using MC1580L as a driver and MC1583L as the receiver in a MRTL compatible transmission system is shown in Figure 14.

Use of the MC1583L in a bi-directional MDTL or MTTL compatible transmission system is shown in Figure 15. The MC1582L drivers of Figure 15 are connected so that the current sources from both drivers pull current from the same wire of the twisted pair when both drivers are transmitting logic "0" signals. The external current source, IS, supplies the current required by one driver. The current for the other driver is drawn from the termination impedances creating a voltage differential across the line. When either driver transmits a logic "1", a voltage difference of the opposite polarity is created across the line. For a system with two drivers the current source (IS) can be supplied by a 600-ohm resistor connected to +5.0 Volts. If additional drivers are connected to the line, a matching current source must be connected for each added driver. The current sources are connected to the line so that when all drivers are transmitting logic "O"s, the difference in current drawn from the terminating resistors of the two wires in the twisted pair is equal to one current source (8.6 mA). The current sources should also be connected so that when any driver transmits a logic "1" a current difference of the opposite polarity exists. The matching current source should be the companion circuit on the various driver chips. The difference in amplitude of the current sources on a single chip is specified to allow the system designer to calculate the maximum current source mismatch,  $\Delta I_{OL}$ , and hence the maximum number of drivers that can be connected to a given transmission line.

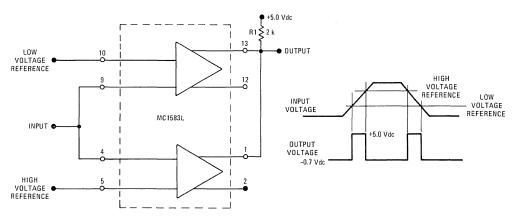




#### FIGURE 15 - BI-DIRECTIONAL TRANSMISSION

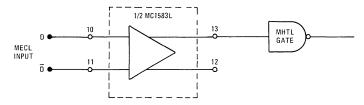


# MC1583L (continued)

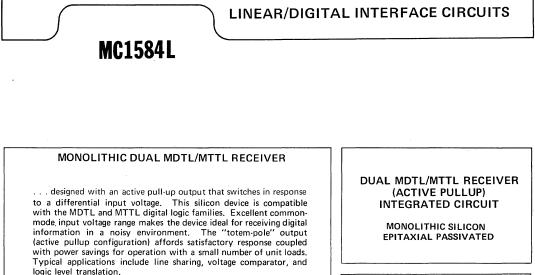

#### APPLICATIONS INFORMATION (continued)

The MC1583L has many other uses in a digital system. The high input impedance suggests its use as a buffer for delay lines and in waveform generation circuits. Figure 16 shows the MC1583L used as a differential comparator in a double-ended limit detector. When the input signal amplitude is between the two reference voltages, the output signal will be a logic "1"; otherwise a logic "0" output is obtained. The voltage transition region is typically 8 to

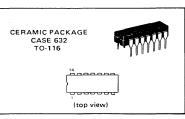
12 mV. External component R1 establishes an MDTL compatible output signal.

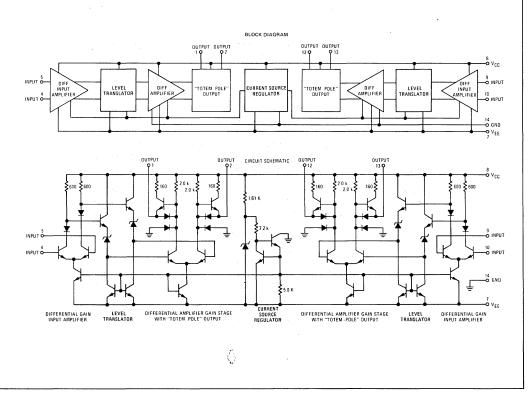

#### VOLTAGE TRANSLATOR

Translation of voltage levels from MECL (best suited for the highspeed portion of a digital system) to MHTL (tailored for the noisy output portion of the system) is often required. The MC1583L performs this function as indicated in Figure 17.




#### FIGURE 16 - DOUBLE-ENDED LIMIT DETECTOR


FIGURE 17 – MECL TO MHTL VOLTAGE LEVEL TRANSLATOR




۰۱ تو



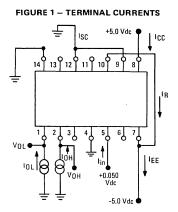
- High Input Impedance 7.0 k ohms @ 10 MHz typ
- Low Propagation Delay Time 37 ns max
- Wide Common-Mode Input Voltage Range ± 3.5 Volts min
- Device Compatibility with other Members of the Line Driver/ Receiver Series





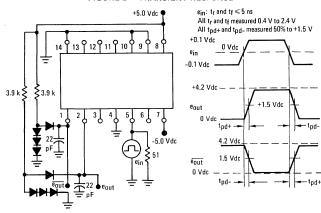
## MC1584L (continued)

## MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

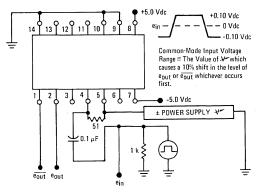

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+7.0	Vdc
	VEE	-7.0	
Differential-Mode Input Signal Voltage	V _{in}	±7.0	Volts
Common-Mode Input Signal Voltage	CMVin	±10	Volts
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_A = +25^{9}C$	Ρ _D 1/θJ _A	575 3.85	mW mW/ ^o C
Operating Temperature Range	ТА	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

## ELECTRICAL CHARACTERISTICS (Each Receiver, $V_{EE}$ = +5.0 V, $V_{CC}$ = -5.0 V, $T_A$ = +25°C unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Operating Supply Currents	1	'cc	_	11.5	15	mA
		IEE	-	25	31	
Input Leakage Current	1	^I R	-	0.009	0.1	μΑ
Input Current $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$ $T_A = +125^{\circ}C$	1	l _{in}	- - -	0.024 0.016 0.011	0.1 0.1 0.1	mA
Output Voltage High (I _{OH} = $-0.7 \text{ mA}$ ) T _A = $-55^{\circ}$ C T _A = $+25^{\circ}$ C T _A = $+125^{\circ}$ C	1	∨он	2.4 2.4 2.4	4.0 4.0 4.0	- - -	Volts
Output Voltage Low ( $I_{OL}$ = 4.0 mA) T _A = -55 ^o C to +125 ^o C	1	VOL	-	100	400	mV
Output Short-Circuit Current	1	ISC	-	30	40	mA
Input Voltage Transition Width* $T_A = -55^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$		VTR	- - -	20 25 30	60 60 60	mV
Switching Times Propagation Delay Time Rise Time Fall Time	2	^t pd+ ^t pd- t _r t _f		32 28 14 12	37 33 - -	ns
Parallel Input Impedance (f = 5.0 MHz) Capacitance Resistance		C _{p(in)} R _{p(in)}		5.0 11		pF k ohms
Common–Mode Input Voltage Range $T_A = -55$ to +125 ⁰ C	3	CMVR _{in}	3.5 3.5	+4.3 -4.2	-	Volts
Power Supply Operating Range		V _{CC} V _{EE}	+4.75 -4.75	+5.0 5.0	+6.0 -6.0	Vdc
Power Dissipation		PD	-	170	200	mW


Ground all unused input pins to assure correct device biasing.

*Measured from points of unity gain.



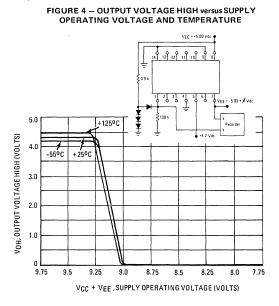


CHARACTERISTIC DEFINITIONS

FIGURE 2 - TRANSIENT RESPONSE



#### FIGURE 3 – COMMON-MODE INPUT VOLTAGE RANGE





TYPICAL CHARACTERISTICS

(V_{EE} = +5.0 Vdc, V_{CC} = -5.0 Vdc,  $T_A$  = +25^oC unless otherwise noted)

FIGURE 5 -- OUTPUT VOLTAGE versus DIFFERENTIAL INPUT VOLTAGE AND TEMPERATURE

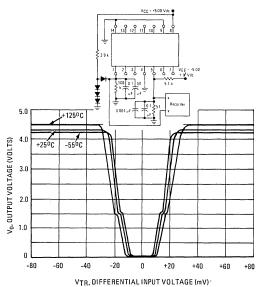



FIGURE 6 – OUTPUT VOLTAGE versus DIFFERENTIAL INPUT VOLTAGE AND VARIOUS LOADS

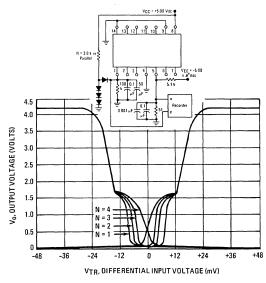
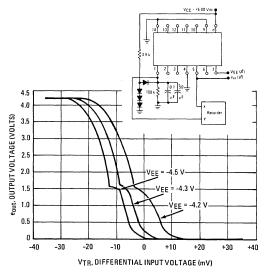
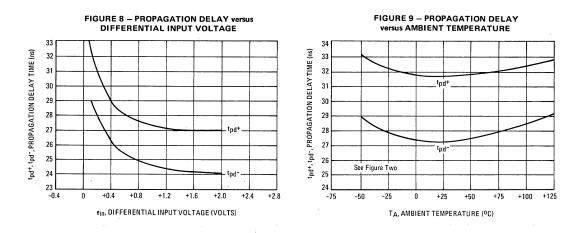
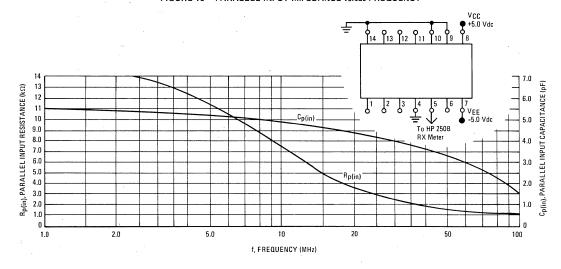





FIGURE 7 – OUTPUT VOLTAGE versus DIFFERENTIAL INPUT VOLTAGE AND VARIATIONS IN NEGATIVE SUPPLY




### 7-347



### **TYPICAL CHARACTERISTICS** (continued)





### APPLICATIONS INFORMATION

#### Line Driver/Receiver Family Characteristics

The Motorola line driver/receiver series provides interface circuits for driving digital data transmission lines, e.g., coaxial cable or twisted pair. The digital data transmission isvia a balanced differential mode. The line drivers and receivers are designed to provide high common-mode noise rejection, present high impedances to the transmission line and have low propagation times. A feature of the drivers is the capability to operate in a party-line mode whereby a number of drivers can be connected to a single line. This series provides drivers and receivers compatible with MRTL, MDTL, MTTL and MECL. The five circuits of the family are:

MC1580L	Dual Line Driver/Receiver
MC1581L	Dual MECL Receiver
MC1582L	Dual MDTL/MTTL Driver
MC1583L	Dual Receiver (Open Collector)
MC1584L	Dual Receiver (Active Pullup)

Figure 11 indicates the line drivers and receivers recommended for interfacing with each of the various digital logic families.

These five circuits are extremely useful in numerous applications other than line drivers and receivers. The differential amplifier input of the receiver makes it useful in applications such as voltage

FIGURE 11

Digital Logic Family	Driver	Receiver
MECL	MC1580L	MC1581L
MDTL	MC1582L	MC1583L MC1584L
MTTL	MC1582L	MC1583L MC1584L
MRTL	MC1580L MC1582L	MC1583L

comparators, waveform generators and high-input-impedance buffers. The drivers and receivers are useful as logic level translators. The MC1584L in Figure 12 serves as the line receiver in a balanced differential transmission line. The outputs of the receiver and the inputs to the driver are compatible with MTTL and MDTL circuits. The MC1584L contains an active pullup circuit in the output stage. The MC1583L receiver can also be used for MTTL or MDTL systems. The open collector outputs of the MC1583L require external pullup resistors but is designed to sink up to 20 mA.

While common-mode noise is the major concern in a twisted pair transmission line; a good data transmission system must offer some immunity from differential-mode voltages that may be present due to mismatches in termination impedances. The drivers and receivers of the MC1580 Series are designed with this requirement in mind. The exact amount of noise immunity depends on line impedances but the following example shows how differential-mode noise immunity is calculated for a given system. For a line with a characteristic impedance of  $Z_0$ , calculate the minimum differential input voltage from the equation.

$$\pm V_{in} = \frac{I_0(\min) \times Z_0}{4}$$
  
For a 170-ohm line,  $V_{in} = \frac{(6.9) (170)}{4} = 0.29$  Volts.

Since the MC1584L requires a 50 mV maximum input differential to maintain the output state, the worst case differential-mode noise immunity is 0.26 V, (See Figure 13).

High input impedance of the MC1584L and high output impedance of the MC1582L minimize impedance discontinuities on the transmission line and allow many drivers and receivers to be connected to the line.

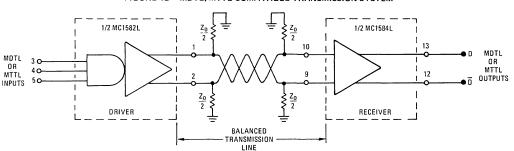



FIGURE 12 - MDTL, MTTL COMPATIBLE TRANSMISSION SYSTEM

### MC1584L (continued)

#### **APPLICATIONS INFORMATION** (continued)

Use of the MC1584L in a bi-directional MDTL or MTTL compatible transmission system is shown in Figure 14. The drivers of Figure 14 are connected so that the current sources from both drivers pull current from the same wire of the twisted pair when both drivers are transmitting logic "O" signals. The external current source, I_S, supplies the current required by one driver. The current for the other driver is drawn from the termination impedances creating a voltage differential across the line. When either driver transmits a logic "1", a voltage difference of the opposite polarity is created across the line. For a system with two drivers the current source (I_S) can be supplied by a 600-ohm resistor connected to +5.0 Volts. If additional drivers are connected to the line, a matching current sources must be connected to the line so that when all drivers. are transmitting logic "0"s, the difference in current drawn from the terminating resistors of the two wires in the twisted pair is equal to one current source (8.6 mA). The current sources should also be connected so that when any driver transmits a logic "1" a current difference of the opposite polarity exists. The matching current source should be the companion circuit on the various driver chips. The difference in amplitude of the two current sources on a single chip is specified to allow the system designer to calculate the maximum current source mismatch,  $\Delta I_{OL}$ , and hence the maximum number of drivers that can be connected to a given transmission line.

The MC1584L has many other uses in a digital system. The high input impedance suggests its use as a buffer for delay lines and in waveform generation circuits.

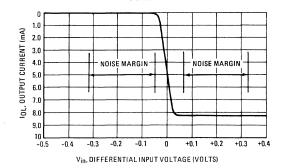
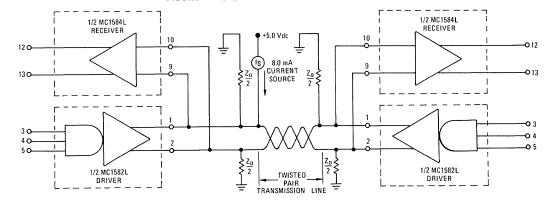
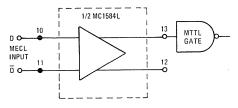
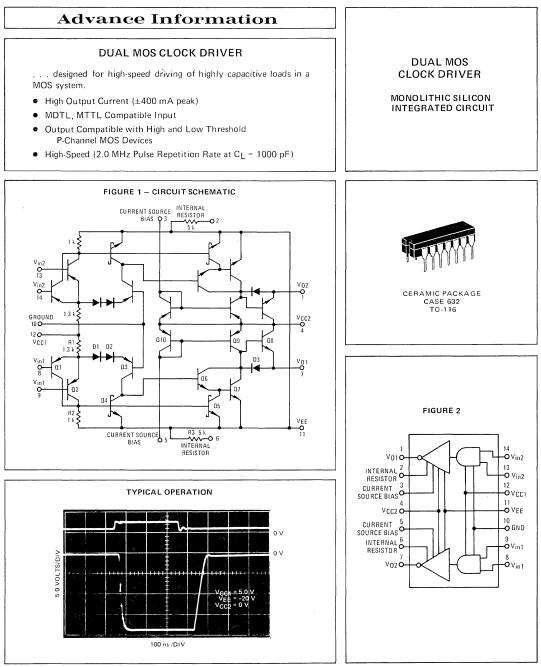




FIGURE 13






#### Voltage Translator


Translation of voltage levels from MECL (often used for the high-speed portion of a digital system) to MTTL (used in other slower portions of the system) is often required. The MC1584L can perform this function as indicated in Figure 15. The complements of the MECL input must be present unless a MECL bias source is available.

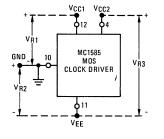
### FIGURE 15 - MECL-TO-MTTL LEVEL TRANSLATOR



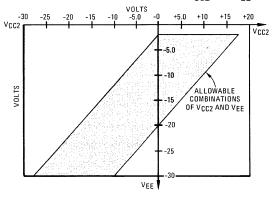
# MC1585L

## DUAL CLOCK DRIVER




See Packaging Information Section for outline dimensions.

### MC1585L (continued)


### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

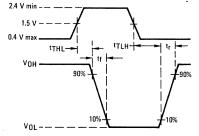
Rating	Symbol	Value	Unit
Voltage Supply Range 1 (See Figure 3)	V _{R1}	10	Vdc
Voltage Supply Range 2 (See Figure 3)	V _{R2}	30	Vdc
Voltage Supply Range 3 (See Figure 3)	V _{R3}	22	Vdc
Input Voltage	V _{in(max)}	10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	τ _A	-55 to +125	°C
Power Dissipation Ceramic Package Derate above T _A = +25 ⁰ C	Ρ _D 1/θ JA	1000 6.7	mW mW/ ^o C

#### FIGURE 3 - SUPPLY VOLTAGE RANGE DEFINITION

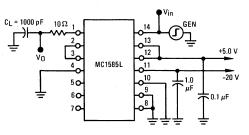


## FIGURE 4 – ALLOWABLE VALUES FOR V_{CC2} AND V_{EE}




### SWITCHING CHARACTERISTICS (CL = 1000 pF)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time before Rise Time	ttlh	-	55	75	ns
Rise Time	tr		50	75	ns
Propagation Delay Time before Fall Time	tTHL	_	25	50	ns
Fall Time	t _f	_	22	50	ns
Pulse Repetition Rate	PRR	0	-	2.0	MHz
Peak Output Current	IO(peak)		400	500	mA


Symbols conform to JEDEC Engineering Bulletim No. 1 when applicable.

The above characteristics were measured with  $V_{CC1} = 5.0$  volts,  $V_{EE} = -20$  volts,  $V_{CC2} = 0$  volts,  $C_L = 1000 \text{ pF}$  (with a 10-ohm series resistor). The minimum values and maximum values apply from  $-55^{\circ}$ C to  $+125^{\circ}$ C. Typical values are for  $T_A = 25^{\circ}$ C. The transition times are measured as shown in Figure 5 and 6.

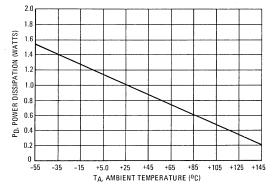




#### FIGURE 6 - AC TEST CIRCUIT



## MC1585L (continued)


### ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERIS	1165							T	EST CU	RRENT AN	D VOLT	AGE VAL	UES		
$(T_A = +25^{\circ}C \text{ unless otherwise noted})$ (Pin 2 is shorted to pin 3 and pin 5 is						Function		ad rents		put tages		Supply V	oltages		
ed to pin 6.)						Symbol	юн	IOL	VIL	VIH	VCC1L	VCC1H	VEE	V _{CC2}	
						Unit	m	A			Vol	ts			
		Pin Under	Te	st Lim	nits	Value	-1.0	+1.0	1.1	1.78	4.5	5.5	-15	+5.0	
Characteristic	Symbol	Test	Min	Тур	Max	Unit	TEST	r curr	ENT/VO	LTAGE AF	PLIED	O PINS LI	STED 8	BELOW	GND
Input Currents: Forward	μL	8	-	-	-1.6	mA			8	9	-	12	11	4	10
Reverse Leakage	ήн	8	-	-	+50	μA	-	-	-	8,9	-	12	11	4	10
Output Voltage: High Output	Voн	7	+3.7	-	-	Volts	7	-	8	9	12	-	11	4	10
Low Output	VOL	7	-	-	-13.4	Volts	-	7	-	8,9	-	12	11	4	10
Supply Current V _{CC1} High Output	ICC1H	12	-	_	10	mA	-	-	8,13	9,14	-	12	11	4	10
V _{CC1} Low Output	ICC1L	12	-		7.0	mA		-	-	8,9,13,14	-	12	11	4	10
VEE High Output	<b>I</b> EEH	11		_	25	mA	-	-	8,13	9,14		12	11	4	10
VEE Low Output	IEEL	11	-	-	64	mA		-		8,9,13,14		12	11	4	10
V _{CC2} High Output	ICC2H	4	-	-	15	mA	-		8,13	9,14	-	12	11	4	10
V _{CC2} Low Output	ICC2L	4	-	-	57	mA				8,9,13,14	-	12	11	4	10

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

#### **TYPICAL CHARACTERISTICS**





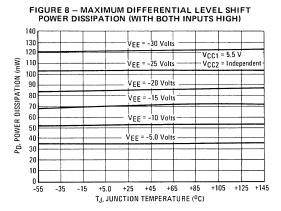
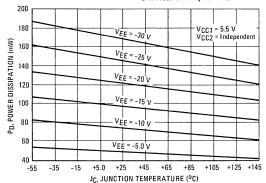
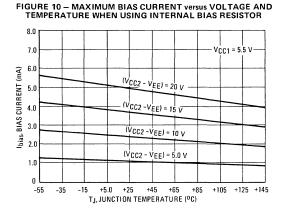





FIGURE 9 – MAXIMUM DIFFERENTIAL LEVEL SHIFT POWER DISSIPATION (At least one input low)





TYPICAL CHARACTERISTICS (cont.)

FIGURE 12 – MAXIMUM BIAS POWER DISSIPATION IN Q9, Q10 (INDEPENDENT OF OUTPUT STATE)

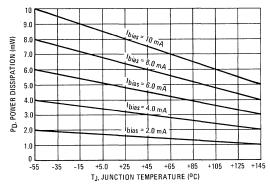



FIGURE 11 – MAXIMUM POWER DISSIPATION OF INTERNAL RESISTOR (R3)

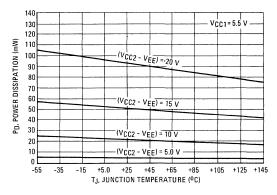
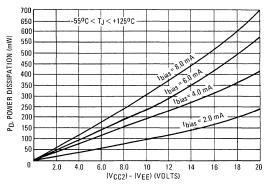




FIGURE 13 – POWER DISSIPATION OF OUTPUT CURRENT OF ACTIVE PULLUP versus BIAS CURRENT versus VOLTAGE



### APPLICATIONS INFORMATION

The total power dissipation in the MOS clock driver is the sum of a dc and an ac component. The total of these components must not exceed the package power dissipation limit at the maximum temperature of operation. The package limitation on power dissipation is shown in Figure 7.

#### **AC** Power Dissipation

The ac component of power dissipation is given in equation 1.

$$P_{ac} = C_{I} \cdot [(V_{CC2}) \cdot (V_{FF})]^{2} (PRR)$$
(1)

where  $\mathbf{C}_{\boldsymbol{L}}$  is the load capacitance and PRR is the pulse repetition rate.

#### **DC** Power Dissipation

For ease of calculation, the dc power dissipation is divided into two parts: 1) differential level shift power 2) output pullup current source power.

#### Differential Level Shift Power

In Figure 1 it may be seen that the differential level shift consists of the input PNP transistors, Q1, Q2, Q3, and bias resistor, R1. The values of maximum level shift power versus junction temperature are given in Figures 8 and 9 for several values of VEE and both input conditions. If the duty cycle is defined as in equation 2, the total level shift power is given in equation 3.

$$Duty Cycle = \frac{Time Both Inputs are High}{Total Time}$$
(2)

Level Shift Power = (Value from Figure 8) • (1-Duty Cycle)+ (3) (Value from Figure 9) • (1-Duty Cycle)

#### **Output Pullup Current Source**

The output pullup current source consists of transistors Q9, Q10 and resistor R3. The power dissipated in the output pullup current

### MC1585L (continued)

#### APPLICATIONS INFORMATION (continued)

source depends upon temperature, supply voltages, bias current drawn from the collector-base short of transistor Q10 and output logic level. Neglecting the emitter-base drop of transistor Q10 the value of bias current is determined from equation 4.

$$I_{IB} = \frac{V_{CC2} - V_{EE}}{R3}$$
(4)

If the internal bias resistor is used the maximum value of bias current versus temperature is as shown in Figure 10. The maximum power dissipated in the internal bias resistor and the maximum power dissipated in Q9 and Q10 (due to bias current) are independent of output logic level and are shown in Figures 11 and 12. The maximum power dissipation due to collector current in Q9 is approximately zero when the output is high but when the output is low the power dissipation is as shown in Figure 13. The total output pullup current-source power dissipation is thus defined by equation 5.

P(max) current source = (Value from Figure 11) + (Value from Figure 12) (5) +(Value from Figure 13)x(Duty Cycle)

#### **Example Calculation**

Suppose it is desired to use the MOS clock driver in an application which requires the following:

A calculation of dc and ac power is necessary to find whether or not package limitations will be exceeded. Since each power dissipation figure either decressares or remains constant with temperature, it is assumed that  $T_J \geq +25^{\circ}C$  and points at  $+25^{\circ}C$  will be used in this calculation. The total differential level-shift power may be found from Figures 8 and 9 and equation 3 to be:

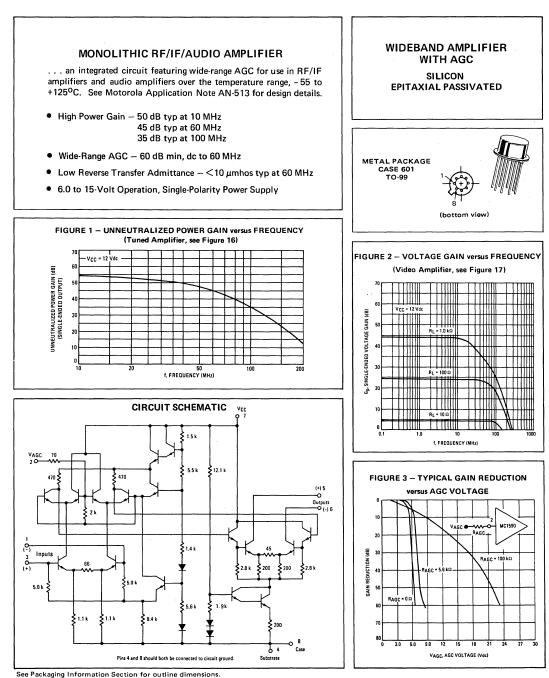
#### Level-Shift Power = 92.5 mW

If the internal bias resistor is used, Figure 10 shows the value of the bias current to be 4.9 mA, and the power dissipation of the internal bias resistor is found from Figure 11 to be 90 mW.

The power dissipation in Q9 and Q10 due to bias current is found from Figure 12 to be 4.0 mW.

The power dissipation in  $\Omega9$  when the output is low is found from Figure 13 to be 490 mW.

The total power dissipated in the output pullup current source can now be found from equation 5 to be:


#### Power (current source) = 143 mW

The total dc dissipation, the sum of differential level-shift dissipation and output pullup current-source dissipation, is 235.5 mW. The ac dissipation may be found from equation 1 to be 200 mW.

The total power dissipation for one clock driver is thus 435.5 mW. If both clock drivers are used in an identical fashion the total package dissipation is 871 mW. Referring to Figure 7 it is seen that safe operation to approximately  $+45^{O}C$  is possible. If external resistors are used for R3 to produce the same bias current as above, a net total savings in power dissipation of 180 mW can be made reducing the total package dissipation to 691 mW

# MC1590G

## **HIGH-FREQUENCY CIRCUITS**



See MCBC1590/MCB1590F for beam-lead device information.

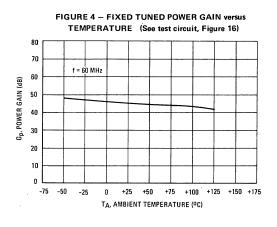
### MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol*	Value	Unit
Power Supply Voltage	Vcc	+18	Vdc
Output Supply	v ₅ , v ₆	+18	Vdc
AGC Supply	VAGC	V _{CC}	Vdc
Differential Input Voltage	Vin	5.0	V <u>.</u> dc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	680 4.6	mW mW/ ^O C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

# ELECTRICAL CHARACTERISTICS ( $V_{CC}$ = +12 Vdc, f = 60 MHz, BW = 1.0 MHz, T_A = +25^oC unless otherwise noted, see Figure 16 for test circuit.)

Characteristic	Symbol*	Min	Тур	Max	Unit
AGC Range, V ₂ = 5.0 Vdc to 7.0 Vdc		60	68	_	dB
Single-Ended Power Gain	Gp	40	45	-	dB
Noise Figure (R _s = 50 ohms)	NF	-	6.0	-	dB
Output Voltage Swing (Pin 5) Differential Output – 0 dB AGC -30 dB AGC	V5	-	14 6.0		V _{p-p}
Single-Ended Output – 0 dB AGC -30 dB AGC			7.0 3.0	-	
Output Stage Current (Pins 5 and 6)	15+16	-	5.6	-	mA
Total Supply Power Current (V ₀ = 0)	^I D	-	14	17	mAdc
Power Dissipation (V _{in} = 0)	PD	-	168	200	mW

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.


ADMITTANCE PARAMETERS ( $V_{CC}$  = +12 Vdc,  $T_A$  = +25°C)

		Т		
Parameter	Symbol	f = 30 MHz	f = 60 MHz	Unit
Single-Ended Input	911	0.4	0.75	mmhos
Admittance	^b 11	1.2	3.4	
Single-Ended Output	922	0.05	0.1	mmho
Admittance	b22	0.50	1.0	
Forward Transfer	^Υ 21	150	150	mmhos
Admittance (Pin 1 to Pin 5)	^θ 21	-45	-105	degrees
Reverse Transfer	912	-0	-0	μmhos
Admittance*	^b 12	-5.0	-10	

*The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance (including test circuit) is 0.025 pF and is a more practical value for design calculations than the internal feedback of the device alone. (See Figure 6)

# SCATTERING PARAMETERS (V_{CC} = +12 Vdc, T_A = +25°C, Z_o = 50 $\Omega$ )

		Ту		
Parameter	Symbol	f = 30 MHz	f = 60 MHz	Unit
Input Reflection Coefficient	S11	0.95	0.93	-
	θ11	-7.3	-16	degrees
Output Reflection	S22	0.99	0.98	-
Coefficient	θ22	-3.0	-5.5	degrees
Forward Transmission	S21	16.8	14.7	-
Coefficient	θ21	128	64.3	degrees
Reverse Transmission	\$ ₁₂	0.00048	0.00092	-
Coefficient	^θ 12	84.9	79.2	degrees



TYPICAL CHARACTERISTICS ( $V_{CC}$  = 12 Vdc, T_A = +25^oC unless otherwise noted)

(See test circuit, Figure 16) 80 24 70 ID, POWER SUPPLY CURRENT (mAdc) f = 60 MHz 60 18 G_p, POWER GAIN (dB) 50 Ap 12 40 30 20 6.0 In 10 0 Π 0 2.0 8.0 10 12 4.0 6.0 14 16 VCC, POWER SUPPLY VOLTAGE (Vdc)

FIGURE 5 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 6 – REVERSE TRANSFER ADMITTANCE versus FREQUENCY (See Parameter Table, page 2 of MC1590 specification)

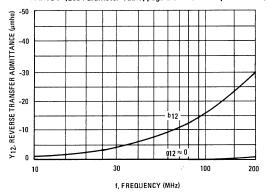
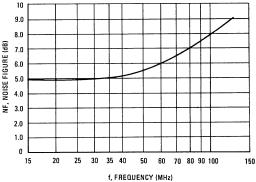
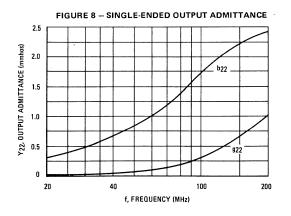
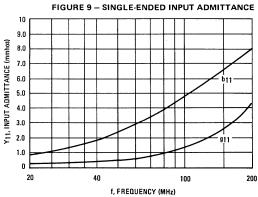






FIGURE 7 -- NOISE FIGURE versus FREQUENCY









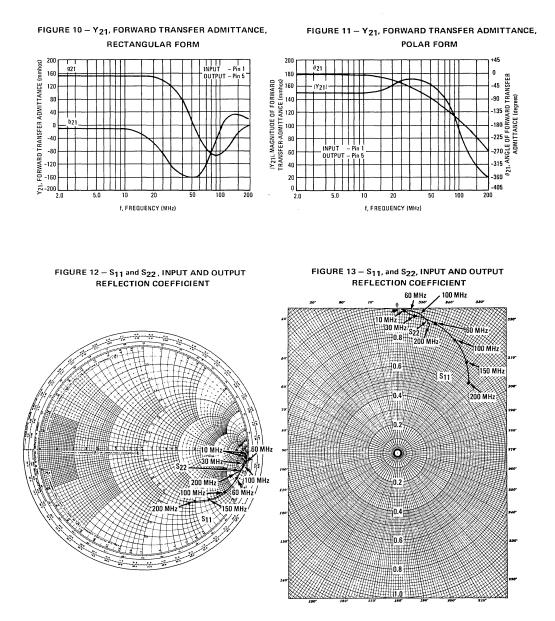





FIGURE 16 - 60-MHz POWER GAIN TEST CIRCUIT

0.001 ΓμΕ ٦

3

ž

ポ ^{C2}

C1

Input

(50Ω)

L1

5.6 k

VAGC

5/8" Long

₩ C3

Shield

MC1590

0.001 µF

1

5

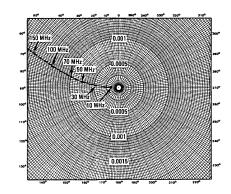
6

C4

L2

10

Output (50 Ω)


• +12 Vdc

C4 = (1-10) pF

C1,C2,C3 = (1-30) pF

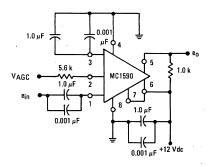
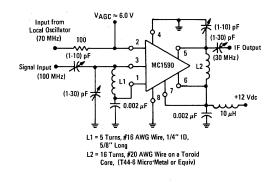
### TYPICAL CHARACTERISTICS (continued)

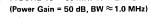
FIGURE 15 – S₁₂, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

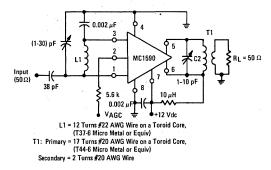


TYPICAL APPLICATIONS

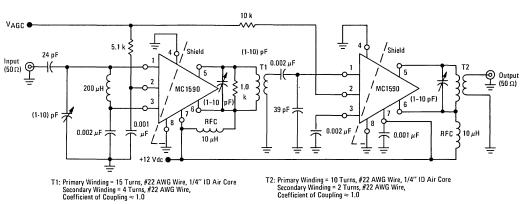
FIGURE 17 - VIDEO AMPLIFIER



FIGURE 19 - 100-MHz MIXER



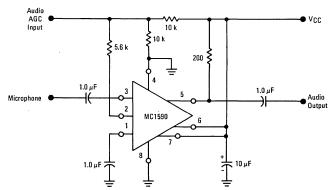


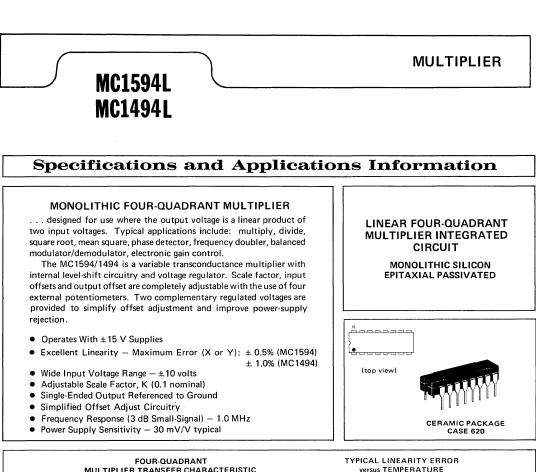


L1 = 7 Turns, #20 AWG Wire, 5/16" Dia.,

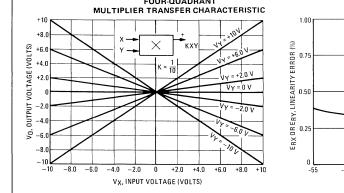
L2 = 6 Turns, #14 AWG Wire, 9/16" Dia.,









#### TYPICAL APPLICATIONS (continued)

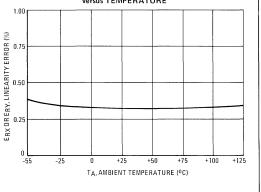

FIGURE 20 - TWO-STAGE 60 MHz IF AMPLIFIER (Power Gain  $\approx$  80 dB, BW  $\approx$  1.5 MHz)

FIGURE 21 - SPEECH COMPRESSOR







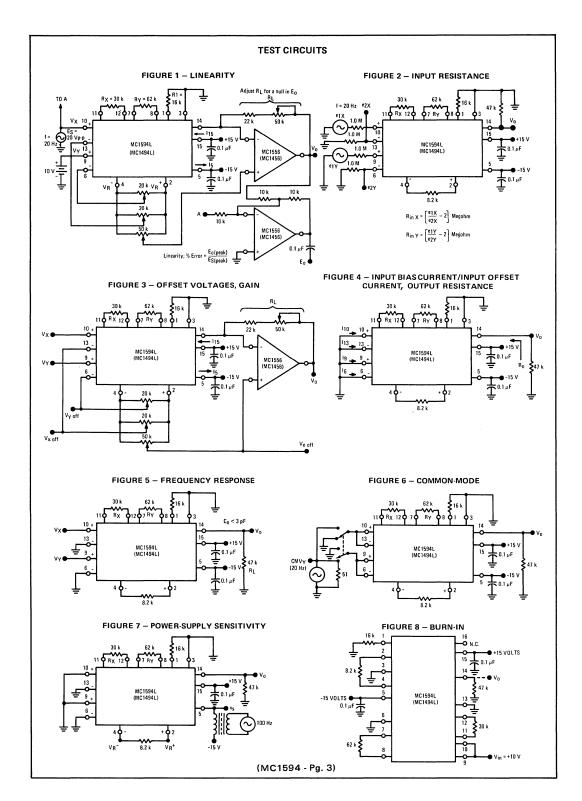


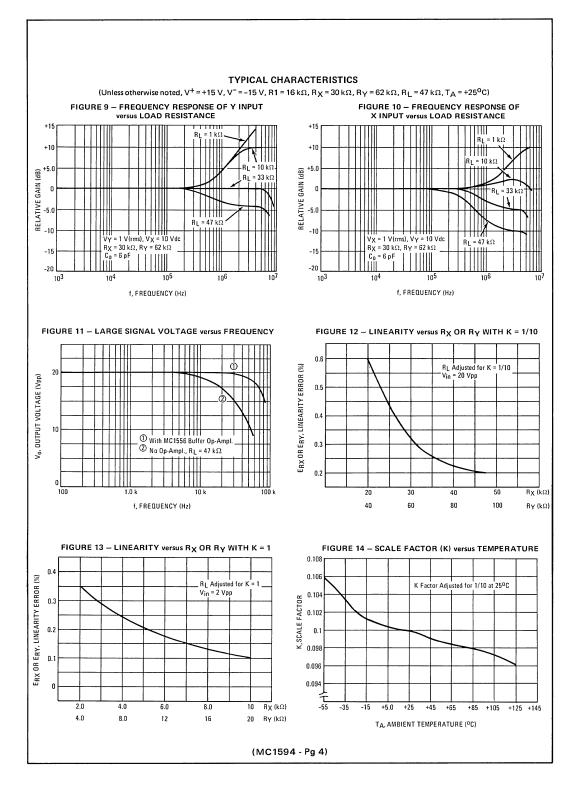
	CONTE	NTS		
Subject Sequence	Specification Page No.	Subject Sequence	Specification Page No.	
Maximum Ratings	2	AC Operation	8	
Electrical Characteristics	2	DC Applications	9	
Test Circuits	3	AC Applications	11	
Characteristic Curves	4	Definitions	13	
Circuit Description	5	General Information Index	14	
Circuit Schematic	5	Package Outline Dimensions	14	
DC Operation	6			

7

See Packaging Information Section for outline dimensions.

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+18	Vdc
	v-	-18	
Differential Input Signal	V9-V6	±  6 + 1 RY < 30	Vdc
	V10-V13	±  6 + I ₁ R _X   < 30	
Common-Mode Input Voltage			Vdc
V _{CMY} = V ₉ = V ₆	VCMY	±11.5	
VCMX = V10 = V13	Vсмх	±11.5	
Power Dissipation (Package Limitation)			
T _A = +25 ^o C	P _D	750	mW
Derate above T _A = +25°C	1/0 _{JA}	5.0	mW/ ⁰ C
Operating Temperature Range	TA		°C
MC1594		-55 to +125	
MC1494		0 to + 75	
Storage Temperature Range	T _{stg}	-65 to +150	°C


 $\label{eq:linear} \begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} (V^{+}=+15 \ V, V^{-}=-15 \ V, T_{A}=+25^{0} \text{C}, \text{R1}=16 \ \text{k}\Omega, \ \text{R}_{X}=30 \ \text{k}\Omega, \ \text{R}_{Y}=62 \ \text{k}\Omega, \ \text{R}_{L}=47 \ \text{k}\Omega, \ \text{unless otherwise noted} \end{array}$ 

		vise noted)	MC1594						
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Linearity Output error in Percent of full scale $-10 V \le V_x \le +10 V (V_y = \pm 10 V)$	1	ERX or ERY							%
$-10 V < V_{y} < +10 V (V_{x} = \pm 10 V)$ $T_{A} = +25^{\circ}C$				± 0.3	± 0.5	_	± 0.5	± 1.0	
$T_A = T_{high}$ (1)			-	-	± 0.8	-	-	± 1.3	
T _A = T _{low} ②			-	-	± 0.8		-	± 1.3	
Input Voltage Range (V _X = V _Y = V _{in} )	2,3,4	Vin	±10			±10		-	V _{pk}
Resistance (X or Y Input)		Rin		300			300		MΩ
Offset Voltage (X Input) (Note 1)		V _{iox}		0.1	1.6	-	0.2	2.5	v
(Y Input) (Note 1)		Viov	_ ·	0.4	1.6	-	0.8	2.5	
Bias Current (X or Y Input)		lb,	-	0.5	1.5	-	1.0	2.5	μA
Offset Current (X or Y Input)		Itio	-	28	150	-	50	400	nA
Output Voltage Swing Capability	3,4	vo	±10			±10	_	_	Vpk
Impedance		°o Ro		850			850	_	×pk kΩ
Offset Voltage (Note 1)		Vool	_	0.8	1.6	_	1.2	2.5	V K32
Offset Current (Note 1)		liool		17	34	_	25	52	μA
Temperature Stability (Drift)		1.001			54			52	<u><u></u></u>
T _A = T _{high} to T _{low}									
Output Offset (X = 0, Y = 0) Voltage		TCV00		1.3	-	-	1.3	-	mV/ ⁰ C
Current		TCIOO		27	~	-	27	-	nA/ ⁰ C
X Input Offset (Y = 0)		TCV _{iox}	·	0.3	1 Augu	-	0.3	-	mV/ ⁰ C
Y Input Offset (X = 0)		TCV _{ioy}	· _	1.5	****	-	1.5	-	
Scale Factor		TCK	-	0.07	-	-	0.07		%/°C
Total dc Accuracy Drift (X = 10, Y = 10)		TCE	-	0.09	-	-	0.09	-	
Dynamic Response	5								
Small Signal (3 dB) X Y		BW3dB(X)	-	0.8	***	-	0.8	-	MHz
Y Power Bandwidth (47 k)		BW3dB(Y)	-	1.0	-	-	1.0	-	
3 ⁰ Relative Phase Shift		PBW	- 77	440		-	440	-	kHz
1% Absolute Error		fφ fθ		240 30	_	-	240 30	_	
Common Mode	6	18					30		
Input Swing (X or Y)		CMV	±10.5	-	-	±10.5	-	-	Vpk
Gain (X or Y)		ACM		-65		-	-65		dB
Power Supply Current	7								
Current		la+		6.0	9.0	-	6.0	12	mAdc
		Id_	-	6.5	9.0	-	6.5	12	
Quiescent Power Dissipation		Pd	-	185	260	-	185	350	mW
Sensitivity		s+ s-		. 13 30	50 100	-	13 30	100 200	mV/V
Regulated Offset Adjust Voltages	7							200	
Positive		V ⁺ R	+3.5	+4.3	+5.0	+3.5	+4.3	+5.0	Vdc
Negative		νī	-3.5	4.3	-5.0	-3.5	-4.3	-5.0	
Temperature Coefficient ( $V_R^+$ or $V_R^-$ )		TCVR	·	0.03		-	0.03	-	mV/ ^o C
Power Supply Sensitivity ( $V_R^+$ or $V_R^-$ )		s _R , s _R	· '	0.6	-		0.6	-	mV/V

Note 1: Offsets can be adjusted to zero with external potentiometers.  $\underbrace{(0)}_{T_{high}} = +125^{o}C \text{ for MC1594} \\ + 75^{o}C \text{ for MC1494} \\ 0^{o}C \text{ for MC1494}$ 

(MC1594 - Pg. 2)







#### 1.2 Regulator (Figure 15)

The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides two convenient regulated supply voltages which can be used in the offset adjust circuitry. The regulated output voltage at pin 2 is approximately +4.3 V. While the regulated voltage at pin 4 is approximately -4.3 V. For optimum temperature stability of these regulated voltages, it is recommended that  $|I_2| = |I_4| = 1.0 \text{ mA}$  (equivalent load of 8.6 k $\Omega$ ). As will be shown later, there will normally be two 20 k-ohm potentiometers and one 50 k-ohm potentiometer connected between pins 2 and 4.

The regulator also establishes a constant current reference that controls all of the constant current sources in the MC1594. Note that all current sources are related to current  $I_1$  which is determined by R1. For best temperature performance, R1should be 16 k $\Omega$  so that  $I_1 \approx 0.5$  mA for all applications.

#### 1.3 Multiplier (Figure 15)

The multiplier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and is discussed in detail in Application Note AN-489, "Analysis and Basic Operation of the MC1595". The result of this analysis is that the differential output current of the multiplier is given by:

$$|_{A} - |_{B} = \Delta I \approx \frac{2 V_{X} V_{Y}}{R_{X} R_{Y} |_{1}}$$

Therefore, the output is proportional to the product of the two input voltages.

#### 1.4 Differential Current Converter (Figure 15)

This portion of the circuitry converts the differential output current  $(I_A-I_B)$  of the multiplier to a single-ended output current  $(I_0)$ :

or

$$I_0 = \frac{2V_X V_Y}{R_X R_Y I_1}$$

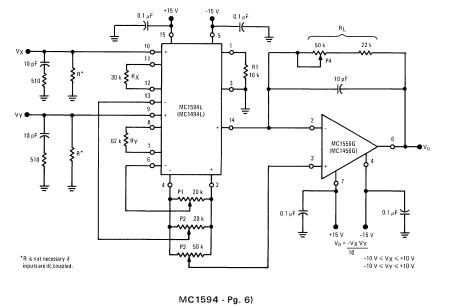
The output current can be easily converted to an output voltage by placing a load resistor  $R_L$  from the output (pin 14) to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by:

$$V_{0} = \frac{2R_{L}V_{X}V_{Y}}{R_{X}R_{Y}I_{1}} = KV_{X}V_{Y}$$

where K (scale factor) =  $\frac{2R_L}{R_X R_Y I_1}$ 

#### 2. DC OPERATION

or


- 2.1 Selection of External Components
  - For low frequency operation the circuit of Figure 16 is recommended. For this circuit,  $R_{\chi}$  = 30 k $\Omega,~R\gamma$  = 62 k $\Omega,~R1$  = 16 k $\Omega$  and hence I $_{1}$   $\approx$ 0.5 mA. Therefore, to set the scale factor, K, equal to 1/10, the value of  $R_{L}$  can be calculated to be:

$$K = \frac{1}{10} = \frac{2R_{L}}{R_{X}R_{Y}I_{1}}$$
$$R_{L} = \frac{R_{X}R_{Y}I_{1}}{(2)(10)} = \frac{(30 \text{ k})(62 \text{ k})(0.5 \text{ mA})}{20}$$

RL = 46.5 k

Thus, a reasonable accuracy in scale factor can be achieved by making RL a fixed 47  $k\Omega$  resistor. However, if it is desired

#### FIGURE 16 - TYPICAL MULTIPLIER CONNECTION



that the scale factor be exact, R_L can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to 1/10. This is merely a convenient factor to use if the V_X and V_Y input voltages are expected to be large, say ±10 V. Obviously with V_X = V_Y = 10 V and a scale factor of unity, the device could not hope to provide a 100 V output, so the scale factor of ten. For many applications it may be desirable to set K = 1/2 or K = 1 or even K = 100. This can be accomplished by adjusting R_X, R_Y and R_I appropriately.

The selection of R_L is arbitrary and can be chosen after resistors R_X and R_Y are found. Note in Figure 16 that R_Y is 62 kΩ while R_X is 30 kΩ. The reason for this is that the "Y" side of the multiplier exhibits a second order non-linearity whereas the "X" side exhibits a simple non-linearity. By making the R_Y resistor approximately twice the value of the R_X resistor, the linearity on both the "X" and "Y" sides are made equal. The selection of the R_X and R_Y resistor values is dependent upon the expected amplitude of V_X and V_Y inputs. To maintain a specified linearity, resistors R_X and R_Y should be selected according to the following equations:

 $\mathsf{R}_X \! \geq \! 3 \; \mathsf{V}_X$  (max) in  $\mathsf{k}\Omega$  when  $\mathsf{V}_X$  is in volts

 $R_{Y} \ge 6 V_{Y}$  (max) in  $k\Omega$  when  $V_{Y}$  is in volts

For example, if the maximum input on the "X" side is  $\pm 1$  volt, resistor  $R_X$  can be selected to be  $3\,k\Omega$ . If the maximum input on the "Y" side is also  $\pm 1$  volt, then resistor  $R_Y$  can be selected to be  $6\,k\Omega$  (6.2  $k\Omega$  nominal value). If a scale factor of K = 10 is desired, the load resistor is found to be 47  $k\Omega$ . In this example, the multiplier provides a gain of 20 dB.

#### 2.2 Operational Amplifier Selection

The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor R_L to provide a low impedance output voltage from the op-ampl. Since the offset current and bias currents of the op-ampl. will cause errors in the output voltage, particularly with temperature, one with very low bias and offset currents is recommended. The MC17416 or MC17411 MC1741C are excellent choices for this application.

Since the MC1594 is capable of operation at much higher frequencies than the op-ampl., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-ampl.

#### 2.3 Stability

The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stray or input capacitance at the multiplier output adds additional phase shift. It may therefore be necessary to add (particularly in the case of internally compensated op-ampls.) a small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with R_L should be adequate to insure stability over production and temperature variations, etc.

An externally compensated op-ampl. might be employed using slightly heavier compensation than that recommended for unity-gain operation.

#### 2.4 Offset Adjustment

The non-inverting input of the op-ampl. provides a convenient point to adjust the output offset voltage. By connecting this point to the wiper arm of a potentiometer (P3), the output

offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure).

The input offset adjustment potentiometers, P1 and P2 will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, 22, 24 and 25).

#### 2.5 Offset and Scale Factor Adjustment Procedure

The adjustment procedure for the circuit of Figure 16 is: A. X Input Offset

- (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "Y" input (pin 9)
- (b) connect "X" input (pin 10) to ground
- (c) adjust X-offset potentiometer, P2 for an ac null at the output
- B. Y Input Offset
  - (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 10)
  - (b) connect "Y" input (pin 9) to ground
  - (c) adjust Y-offset potentiometer, P1 for an ac null at the output
- C. Output Offset
  - (a) connect both "X" and "Y" inputs to ground
    (b) adjust output offset potentiometer, P3, until the output voltage V₀, is zero volts dc
- D. Scale Factor
  - (a) apply +10 Vdc to both the "X" and "Y" inputs
    (b) adjust P4 to achieve -10.00 V at the output
  - (c) apply –10 Vdc to both "X" and "Y" inputs and check for  $V_0$  = –10.00 V
- E. Repeat steps A through D as necessary.

The ability to accurately adjust the MC1594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash.

#### 2.6 Temperature Stability

While the MC1594 provides excellent performance in itself, overall performance depends to a large degree on the quality of the external components. Previous discussion shows the direct dependence on  $R_X, R_Y$ , and  $R_L$  and indirect dependence on R1 (through I₁). Any circuit subjected to temperature variations should be evaluated with these effects in mind.

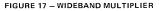
#### 2.7 Bias Currents

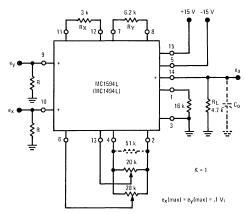
The MC1594 multiplier, like most linear IC's, requires a dc bias current into its input terminals. The device cannot be capacitively coupled at the input without regard for this bias current. If inputs V_X and V_Y are able to supply the small bias current ( $\approx 0.5 \, \mu$ A) resistors, R (Figure 16) can be omitted. If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor R can be any reasonable value up to 100 kΩ. For minimum noise and optimum temperature performance, the value of resistor R should be as low as practical.

#### 2.8 Parasitic Oscillation

When long leads are used on the inputs, oscillation may occur. In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using short leads. The purpose of the network

(MC1594 - Pg. 7)


is to reduce the "Q" of the source-tuned circuits which cause the oscillation.


Inability to adjust the circuit to within the specified accuracy may be an indication of oscillation.

#### 3. AC OPERATION

#### 3.1 General

For ac operation, such as balanced modulation, frequency doubler, AGC, etc., the op-ampl. will usually be omitted as well as the output offset adjust potentiometer. The output offset adjust potentiometer is omitted since the output will normally be ac-coupled and the dc voltage at the output is of no concern providing it is close enough to zero volts that it will not cause clipping in the output waveform. Figure 17





shows a typical ac multiplier circuit with a scale factor K  $\approx$  1. Again, resistor R $_X$  and R $_Y$  are chosen as outlined in the previous section, with R $_L$  chosen to provide the required scale factor.

The offset voltage then existing at the output will be equal to the offset current times the load resistance. The output offset current of the MC1594 is typically 17  $\mu$ A and 35  $\mu$ A maximum. Thus, the maximum output offset would be about 160 mV.

#### 3.2 Bandwidth

The bandwidth of the MC1594 is primarily determined by two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the output terminal. For the circuit shown in Figure 17, assuming a total output capacitance ( $C_0$ ) of 10 pF, the 3 dB bandwidth would be approximately 3.4 MHz. If the load resistor were 47 k/2, the bandwidth would be approximately 340 kHz.

Secondly, a "zero" is present in the frequency response characteristic for both the "X" and "Y" inputs which causes the output signal to rise in amplitude at a 6 dB/octave slope at frequencies beyond the breakpoint of the "zero". The "zero" is caused by the parasitic and substrate capacitance which is related to resistors  $R_X$  and  $R_Y$  and the transistors associated with them. The effect of these transmission

"zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the bypassing of R_X and R_Y at high frequencies. Since the R_Y resistor is approximately twice the value of the R_X resistor, the zero associated with the "Y" input will occur at approximately one octave below the zero associated with the "X" input. For R_X = 30 kΩ and R_Y = 62 kΩ, the zeros occur at 1.5 MHz for the "X" input and 700 kHz for the "Y" input. These two measured breakpoints correspond to a shunt capacitance of about 3.5 pF. Thus, for the circuit of Figure 17, the "X" input zero and "Y" input zero will be at approximately 15 MHz and 7 MHz respectively.

It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found by means of complex convolution in the frequency (Laplace) domain. This means that if the "X" input does not involve a frequency, it is not necessary to consider the "X" side frequency response in the output product. Likewise, for the "Y" side. Thus, for applications such as a wideband linear AGC amplifier which has a dc voltage as one input, the multiplier frequency response has one zero and one pole. For applications which involve an ac voltage on both the "X" and "Y" side, such as a balanced modulator, the product voltage response will have two zeros and one pole, hence, peaking may be present in the output.

From this brief discussion, it is evident that for ac applications; (1) the value of resistors R_X, R_Y and R_L should be kept as small as possible to achieve maximum frequency response, and (2) it is possible to select a load resistor R_L such that the dominant pole (R_L, C₀) cancels the input zero (R_X, 3.5 pF or R_Y, 3.5 pF) to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10. Examination of the frequency characteristics of the "X" and "Y" inputs will demonstrate that for wideband amplifier applications, the best tradeoff with frequency response and gain is achieved by using the "Y" input for the ac signal.

For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recommended. For modulator-demodulator applications, the MC1596 may be used up to 100 MHz. For wideband multiplier applications, the MC1595 (using small collector loads and ac coupling) can be used.

#### 3.3 Slew-Rate

The MC1594 multiplier is not slew-rate limited in the ordinary sense that an op-ampl. is. Since all the signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. However, it should be noted that the quiescent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation:

Slew-Rate 
$$\frac{\Delta V_0}{\Delta T} = \frac{I_0}{C}$$

Thus, if Co is 10 pF, the maximum slew-rate would be:

$$\frac{\Delta V_{0}}{\Delta T} = \frac{0.5 \times 10^{-3}}{10 \times 10^{-12}} = 50 \text{ V/}\mu\text{s}$$

This can be improved if necessary by addition of an emitterfollower or other type of buffer.

3.4 Phase-Vector Error

All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per se. The phase-vector

(MC1594 - Pg. 8)

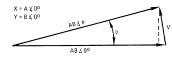
error is best explained by an example. If the "X" input is described in vector notation as

X = A X 00

and the "Y" input is described as

Y = B 🕺 0⁰

then the output product would be expected to be


 $V_0 = AB \measuredangle 0^0$  (see Figure 18)

However, due to a relative phase shift between the ''X'' and ''Y'' channels, the output product will be given by

 $V_0 = AB \measuredangle \phi$ 

Notice that the magnitude is correct but the phase angle of the product is in error. The vector, V, associated with this error is the "phase-vector error". The startling fact about the phase-vector error is that it occurs and accumulates much more rapidly than the amplitude error associated with frequency response. In fact, a relative phase shift of only 0.57° will result in a 1% phase-vector error. For most applications, this error is meaningless. If phase of the output product is not important, then neither is the phase-vector error. If phase is important, such as in the case of double sideband modulation or demodulation, then a 1% phase-vector error will represent a 1% amplitude error at the phase angle of interest.

FIGURE 18 - PHASE-VECTOR ERROR



#### 3.5 Circuit Layout

If wideband operation is desired, careful circuit layout must be observed. Stray capacitance across  $R_X$  and  $R_Y$  should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit).

### 4. DC APPLICATIONS

#### 4.1 Squaring Circuit

If the two inputs are connected together, the resultant function is squaring:

 $V_0 = KV^2$ 

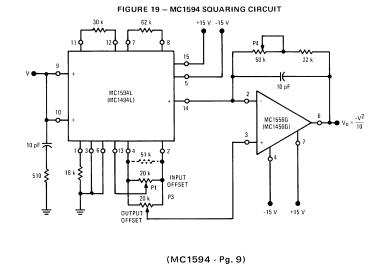
where K is the scale factor (see Figure 19).

However, a more careful look at the multiplier's defining equation will provide some useful information. The output voltage, without initial offset adjustments is given by:

 $V_0 = K(V_x + V_{iox} - V_{x off}) (V_y + V_{ioy} - V_{y off}) + V_{oo}$ 

(See "Definitions" for an explanation of terms). With V_X = V_y = V (squaring) and defining

$$\epsilon_x = V_{iox} - V_{x of}$$


The output voltage equation becomes

 $V_0 = K V_x^2 + K V_x (\epsilon_x + \epsilon_y) + K \epsilon_x \epsilon_y + V_{00}$ 

This shows that all error terms can be eliminated with only three adjustment potentiometers, eliminating one of the input offset adjustments. For instance, if the "X" input offset adjustment is eliminated,  $\epsilon_{\rm X}$  is determined by the internal offset,  $V_{\rm IOX}$ , but  $\epsilon_{\rm Y}$  is adjustable to the extent that the  $(\epsilon_{\rm X}+\epsilon_{\rm Y})$  term can be zeroed. Then the output offset adjustment is used to adjust the  $V_{\rm OO}$  term and thus zero the remaining error terms. An ac procedure for nulling with three adjustments is:

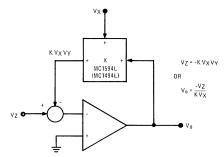
A. AC Procedure:

- 1. Connect oscillator (1 kHz, 15 Vpp) to input
- Monitor output at 2 kHz with tuned voltmeter and adjust P4 for desired gain (Be sure to peak response of voltmeter)
- Tune voltmeter to 1 kHz and adjust P1 for a minimum output voltage
- 4. Ground input and adjust P3 (output offset) for zero volts dc out
- 5. Repeat steps 1 through 4 as necessary.



#### B. DC Procedure:

- 1. Set V_X = V_Y = 0 V and adjust P3 (output offset potentiometer) such that V_o = 0.0 Vdc
- 2. Set  $V_X = V_Y = 1.0$  V and adjust P1 (Y input offset potentiometer) such that the output voltage is -0.100 volts
- 3. Set  $V_X = V_Y = 10$  Vdc and adjust P4 (load resistor) such that the output voltage is -10.00 volts
- 4. Set  $V_X = V_Y = -10$  Vdc and check that  $V_O = -10V$ Repeat steps 1 through 4 as necessary.


#### 4.2 Divide

Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21.

The characteristic "failure" mode of the divide circuit is latch-up. One way it can occur is if  $V_X$  is allowed to go negative or, in some cases, if  $V_X$  approaches zero.

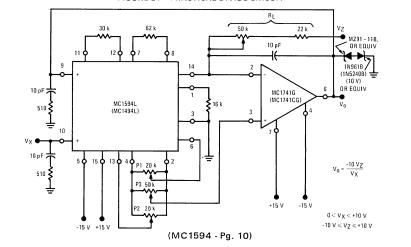
Figure 20 illustrates why this is so. For V_X > 0 the transfer function through the multiplier is non-inverting. Its output is fed to the inverting input of the op-ampl. Thus, operation is in the negative feedback mode and the circuit is do stable. Should V_X change polarity, the transfer function through the multiplier becomes inverting, the amplifier has positive feedback and latch-up results. The problem resulting from

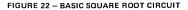
#### FIGURE 20 - BASIC DIVIDE CIRCUIT USING MULTIPLIER

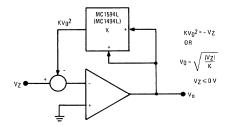


 $V_{\rm X}$  being near zero is a result of the transfer through the multiplier being near zero. The op-ampl. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up.

The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated, phase reversal results, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clamping the output swing of the op-ampl. to approximately  $\pm$  10.7 volts. Five-percent tolerance, 10-volt zeners are used to assure adequate output swing but still limit the output voltage of the Mc1594.


Setting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself. One approach, however, is to break the feedback loop, null out the multiplier circuit, and then close the loop.


A simpler approach, since it does not involve breaking the loop (thus making it more practical on a production basis), is:


- 1. Set  $V_Z = 0$  volts and adjust the output offset potentiometer (P3) until the output voltage ( $V_0$ ) remains at some (not necessarily zero) constant value as  $V_X$  is varied between +1.0 volt and +10 volts.
- 2. Maintain  $V_Z$  at 0 volts, set  $V_X$  at +10 volts and adjust the Y input offset potentiometer (P1) until  $V_0 = 0$  volts.
- 3. With V_X = V_Z, adjust the X input offset potentiometer (P2) until the output voltage remains at some (not necessarily 10 volts) constant value as V_Z = V_X is varied between +1.0 volt and +10 volts.
- 4. Maintain  $V_X = V_Z$  and adjust the scale factor potentiometer (R_L) until the average value of V₀ is -10 volts as  $V_Z = V_X$  is varied between +1.0 volt and +10 volts.
- Repeat steps 1 through 4 as necessary to achieve optimum performance.

Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomi-









nator voltage. As a result, if  $V_X$  is set to 10 volts and 0.5% accuracy is available, then 5% accuracy can be expected when  $V_X$  is only 1 volt.

In accordance with an earlier statement,  $V_X$  may have only one polarity, positive, while  $V_Z$  may be either polarity.

#### 4.3 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 23) protects against accidental latch-up.

This circuit too, may be adjusted in the closed-loop mode:

1. Set V_Z = -0.01 Vdc and adjust P3 (output offset) for V_O = 0.316 Vdc.

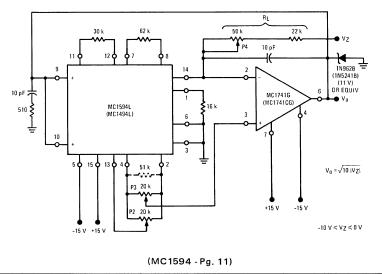
- 2. Set V_Z to -0.9 Vdc and adjust P2 (''X'' adjust) for V₀ = +3 Vdc.
- 3. Set V_Z to -10 Vdc and adjust P4 (gain adjust) for V₀ = +10 Vdc.

Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

Note: Operation near zero volts input may prove very inaccurate, hence, it may not be possible to adjust  $V_0$ to 0 but rather only to within 100 to 400 mV of zero.

#### 5. AC APPLICATIONS

#### 5.1 Wideband Amplifier With Linear AGC


If one input to the MC1594 is a dc voltage and a signal voltage is applied to the other input, the amplitude of the output signal can be controlled in a linear fashion by varying the dc voltage. Hence, the multiplier can function as a dc coupled, wideband amplifier with linear AGC control.

In addition to the advantage of Linear AGC control, the multiplier has three other distinct advantages over most other types of AGC systems. First, the AGC dynamic range is theoretically infinite. This stems from the basic fact that with zero volts dc applied to the AGC, the output will be zero regardless of the input. In practice, the dynamic range is limited by the ability to adjust the input offset adjust potentiometers. By using cermet multi-turn potentiometers, a dynamic range of 80 dB can be obtained. The second advantage of the multiplier is that variation of the AGC voltage has no effect on the signal handling capability of the signal port, nor does it alter the input impedance of the signal port. This feature is particularly important in AGC systems which are phase sensitive. A third advantage of the multiplier is that the output-voltage-swing capability and output impedance are unchanged with variations in AGC voltage.

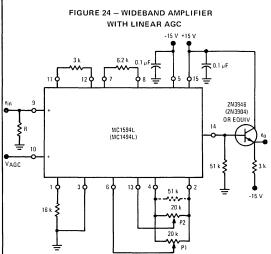
The circuit of Figure 24 demonstrates the linear AGC amplifier. The amplifier can handle 1 V(rms) and exhibits a gain of approximately 20 dB. It is AGC'd through a 60 dB dynamic range with the application of an AGC voltage from 0 Vdc to 1 Vdc. The bandwidth of the amplifier is determined by the load resistor and output stray capacitance. For this reason, an emitter-follower buffer has been added to extend the bandwidth in excess of 1 MHz.

#### 5.2 Balanced Modulator

When two-time variant signals are used as inputs, the result-



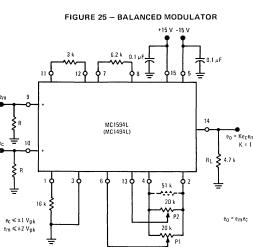
#### FIGURE 23 - SQUARE ROOT CIRCUIT


ing output is suppressed-carrier double-sideband modulation. In terms of sinusoidal inputs, this can be seen in the following equation:

 $V_0 = K(e_1 \cos \omega_m t) (e_2 \cos \omega_c t)$ 

where  $\omega_m$  is the modulation frequency and  $\omega_c$  is the carrier frequency. This equation can be expanded to show the suppressed carrier or balanced modulation:

$$V_0 = \frac{Ke_1e_2}{2} \left[ \cos(\omega_c + \omega_m) t + \cos(\omega_c - \omega_m) t \right]$$


Unlike many modulation schemes, which are non-linear in nature, the modulation which takes place when using the MC1594 is linear. This means that for two sinusoidal inputs, the output will contain only two frequencies, the sum and difference, as seen in the above equation. There will be no spectrum centered about the second harmonic of the carrier, or any multiple of the carrier. For this reason, the filter requirements of a modulation system are reduced to the minimum. Figure 25 shows the MC1594 configuration to perform this function.



Notice that the resistor values for R_X, R_Y, and R_L have been modified. This has been done primarily to increase the bandwidth by lowering the output impedance of the MC1594 and then lowering R_X and R_Y to achieve a gain of 1. The e_c can be as large as 1 volt peak and e_m as high as 2 volts peak. No output offset adjust is employed since we are interested only in the ac output components.

The input R's are used to supply bias current to the multiplier inputs as well as provide matching input impedance. The output frequency range of this configuration is determined by the 4.7 k ohm output impedance and capacitive loading. Assuming a 6 pF load, the small-signal bandwidth is 5.5 MHz.

The circuit of Figure 25 will provide a typical carrier rejection of  $\geq$  70 dB from 10 kHz to 1.5 MHz.



The adjustment procedure for this circuit is quite simple. (1) Place the carrier signal at pin 10. With no signal applied to pin 9, adjust potentiometer P1 such that an ac null is obtained at the outout.

(2) Place a modulation signal at pin 9. With no signal applied to pin 10, adjust potentiometer P2 such that an ac null is obtained at the output.

Again, the ability to make careful adjustment of these offsets will be a function of the type of potentiometers used for P1 and P2. Multiple turn cermet type potentiometers are recommended.

#### 5.3 Frequency Doubler

If for Figure 25 both inputs are identical;

Then the output is given by

$$e_0 = e_m e_c = E^2 \cos^2 \omega t$$

which reduces to

$$e_0 = \frac{E^2}{2} (1 + \cos 2\omega t)$$

This equation states that the output will consist of a dc term equal to one half the peak voltage squared and the second harmonic of the input frequency. Thus, the circuit acts as a frequency doubler. Two facts about this circuit are worthy of note. First, the second harmonic of the input frequency is the only frequency appearing at the output. The fundamental does not appear. Second, if the input is sinusoidal, the output will be sinusoidal and requires <u>no</u> filtering.

The circuit of Figure 25 can be used as a frequency doubler with input frequencies in excess of 2 MHz.

#### 5.4 Amplitude Modulator

The circuit of Figure 25 is also easily used as an amplitude modulator. This is accomplished by simply varying the input offset adjust potentiometer (P1) associated with the modu-

(MC1594 - Pg. 12)

lation input. This procedure places a dc offset on the modulation input of the multiplier such that the carrier still passes thru the multiplier when the modulating signal is zero. The result is amplitude modulation. This is easily seen by examining the basic mathematical expression for amplitude modulation given below. For the case under discussion, with K = 1.

#### $e_0 = (E + E_m \cos \omega_m t) (E_c \cos \omega_c t)$

where E is the dc input offset adjust voltage. This expression can be written as:

 $e_0 = E_0 [1 + M \cos \omega_c t] \cos \omega_c t$ 

where 
$$E_0 = EE_c$$
  
and  $M = \frac{E_m}{E} = modulation index$ 

This is the standard equation for amplitude modulation. From this, it is easy to see that 100% modulation can be achieved by adjusting the input offset adjust voltage to be exactly equal to the peak value of the modulation, Em. This is done by observing the output waveform and adjusting the input offset potentiometer, P1, until the output exhibits the familiar amplitude modulation waveform.

#### 5.5 Phase Detector

or

a

If the circuit of Figure 25 has as its inputs two signals of identical frequency but having a relative phase shift the output will be a dc signal which is directly proportional to the cosine of phase difference as well as the double frequency term.

 $e_c = E_c \cos \omega_c t$ 

$$e_m = E_m \cos(\omega_c t + \phi)$$

$$e_0 = e_c e_m = E_c E_m \cos \omega_c t \cos(\omega_c t + \phi)$$

$$e_0 = \frac{E_c E_m}{2} \left[ \cos\phi + \cos(2\omega_c t + \phi) \right]$$

The addition of a simple low pass filter to the output (which eliminates the second cosine term) and return of R1 to an offset adjustment potentiometer will result in a dc output voltage which is proportional to the cosine of the phase difference. Hence, the circuit functions as a synchronous detector.

#### **DEFINITIONS OF SPECIFICATIONS** 6.

Because of the unique nature of a multiplier, i.e., two inputs and one output, operating specifications are difficult to define and interpret. Indeed the same specification may be defined in several completely different ways depending upon which manufacturer is doing the defining. In order to clear up some of this mystery, the following definitions and examples are presented.

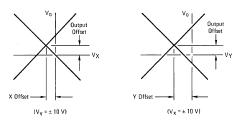
#### 6.1 **Multiplier Transfer Function**

The output of the multiplier may be expressed by this equation:

$$V_{o} = K (V_{x} \pm V_{iox} - V_{xoff}) (V_{y} \pm V_{ioy} - V_{yoff}) \pm V_{oo}$$
(1)

where K = scale factor (see 6.5)

V_x = "x" input voltage


- Vy = "y" input voltage
- Viox = "x" input offset voltage
- Viov = "y" input offset voltage

Vx off = "x" input offset adjust voltage

Vy off = "y" input offset adjust voltage V₀₀ = output offset voltage

The voltage transfer characteristic below indicates "X", "Y" and output offset voltages.

FIGURE 26



#### 6.2 Linearity

Linearity is defined to be the maximum deviation of output voltage from a straight line transfer function. It is expressed as a percentage of full-scale output and is measured for  $V_X$  and  $V_V$  separately either using an "X-Y" plotter (and checking the deviation from a straight line) or by using the method shown in Figure 1. The latter method nulls the output signal with the input signal, resulting in distortion components proportional to the linearity

Example: 0.35% linearity means

$$V_0 = \frac{V_X V_Y}{10} \pm (0.0035) (10 \text{ volts})$$

6.3 Input Offset Voltage

> The input offset voltage is defined from Equation (1). It is measured for  $V_X$  and  $\overline{V_V}$  separately and is defined to be that dc input offset adjust voltage ("x" or "y") that will result in minimum ac output when ac (5 Vpp, 1 kHz) is applied to the other input ("y" or "x" respectively). From Equation(1) we have:

> > $V_{o(ac)} = K (0 \pm V_{iox} - V_{x off}) (sin \omega t)$

adjust  $V_{x \text{ off}}$  so that  $(\pm V_{iox} - V_{x \text{ off}}) = 0$ .

#### **Output Offset Current and Voltage** 6.4

Output offset current (Ioo) is the dc current flowing in the output lead when  $V_x = V_y = 0$  and "X" and "Y" offset voltages are adjusted to zero.

Output offset voltage (Voo) is:

$$V_{00} = I_{00} R_{L}$$

where RL is the load resistance.

Note: Output offset voltage is defined by many manufacturers with all inputs at zero but without adjusting "X" and "Y" offset voltages to zero. Thus it includes input offset terms, an output offset term and a scale factor term.

6.5 Scale Factor

> Scale factor is the K term in Equation (1). It determines the "gain" of the multiplier and is expressed approximately by the following equation.

$$K = \frac{2R_{L}}{R_{X}R_{y}I_{1}} \text{ where } R_{X} \text{ and } R_{y} \gg \frac{kT}{qI_{1}}$$

and I₁ is the current out of pin 1.

(MC1594 - Pg. 13)

#### 6.6 Total DC Accuracy

The total dc accuracy of a multiplier is defined as error in multiplier output with dc (±10 Vdc) applied to both inputs. It is expressed as a percent of full scale. Accuracy is not specified for the MC1594 because error terms can be nulled by the user.

#### 6.7 Temperature Stability (Drift)

Each term defined above will have a finite drift with temperature. The temperature specifications are obtained by readjusting the multiplier offsets and scale factor at each new temperature (see previous definitions and the adjustment procedure) and noting the change.

Assume inputs are grounded and initial offset voltages have been adjusted to zero. Then output voltage drift is given by:

 $(\triangle T)$ ] ± (TCV₀₀) ( $\triangle T$ )

#### 6.8 Total DC Accuracy Drift

This is the temperature drift in output voltage with 10 volts applied to each input. The output is adjusted to 10 volts at  $T_A = +25^{\circ}C$ . Assuming initial offset voltages have been adjusted to zero at  $T_A = +25^{\circ}C$ , then:

 $V_0 = [K \pm K (TCK) (\triangle T)] [10 \pm (TCV_{iox}) (\triangle T)] [10 \pm$  $(TCV_{ioy})$  ( $\triangle T$ ) ] ±  $(TCV_{oo})$  ( $\triangle T$ )

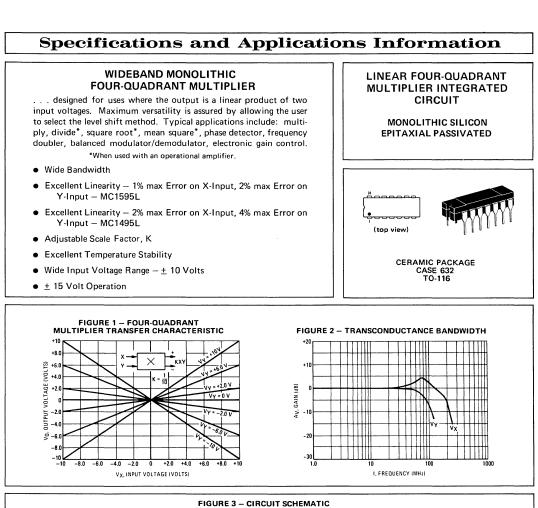
#### 6.9 Power Supply Rejection

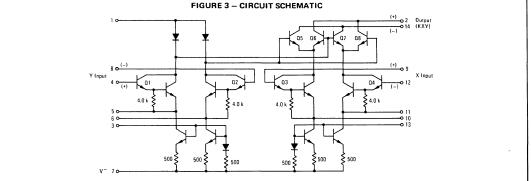
Variation in power supply voltages will cause undesired variation of the output voltage. It is measured by super-imposing a 1-volt, 100-Hz signal on each supply ( $\pm 15$  V) with each input grounded. The resulting change in the output is expressed in mV/V.

#### 6.10 Output Voltage Swing

Output voltage swing capability is the maximum output voltage swing (without clipping) into a resistive load (noteoutput offset is adjusted to zero).

If an op-ampl. is used, the multiplier output becomes a virtual ground - the swing is then determined by the scale factor and the op-ampl. selected.


#### **GENERAL INFORMATION INDEX**


#### CIRCUIT DESCRIPTION 1.

- 1.1 Introduction
- 1.2 Regulator
- 1.3 Multiplier
- 1.4 Differential Current Converter
- 2. DC OPERATION
- 2.1 Selection of External Components
- 2.2 **Operational Amplifier Selection**
- 2.3 Stability
- 2.4 Offset Adjustment
- 2.5 Offset and Scale Factor Adjustment Procedure
- 2.6 Temperature Stability
- 2.7 **Bias Currents**
- 28 Parasitic Oscillation
- 3. AC OPERATION
- 3.1 General
- 3.2 Bandwidth
- 3.3 Slew-Rate
- 3.4 Phase-Vector Error
- 3.5 Circuit Layout
- DC APPLICATIONS 4.
- 4.1 Squaring Circuit
- Divide 4.2 4.3
- Square Root
- 5. AC APPLICATIONS
- 5.1 Wideband Amplifier with Linear AGC
- 5.2 Balanced Modulator
- 5.3 Frequency Modulator
- 5.4 Amplitude Modulator
- 5.5 Phase Detector

#### 6. DEFINITIONS OF SPECIFICATIONS

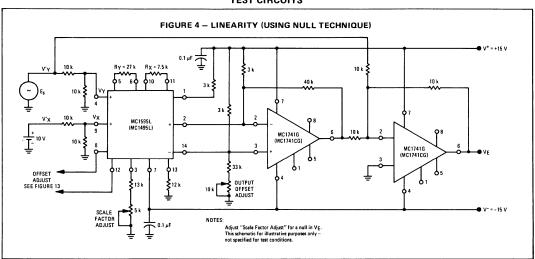
- Multiplier Transfer Function 6.1
- Linearity 6.2 Input Offset Voltage 6.3
- 64 Output Offset Current and Voltage
- 6.5 Scale Factor
- 6.6 Total DC Accuracy
- 6.7
- Temperature Stability (Drift)
- 6.8 Total DC Accuracy Drift
- Power Supply Rejection 6.9
- 6.10 Output Voltage Swing



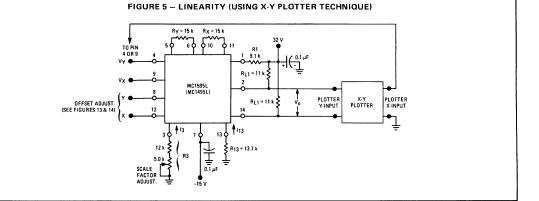


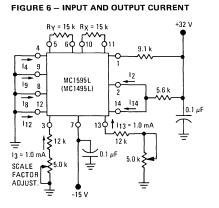
See Packaging Information Section for outline dimensions.

See current MCC1595/1495 data sheet for standard linear chip information.


MC1595L MC1495L

ELECTRICAL CHARACTERISTICS (V⁺ = +32V, V⁻ = -15 V, T_A = +25^oC, I₃ = I₁₃ = 1 mA, R_X = R_Y = 15 k $\Omega$ , R_L = 11 k $\Omega$  unless otherwise noted)


Characteristic	$R_{L} = 11 \text{ k}$	Figure	Symbol	Min	Тур	Max	Unit
Linearity:					····		
Output Error in Percent of Full Scale: T _A = +25 ^o C		5					%
$-10 < V_X < +10 (V_Y = \pm 10 V)$	MC1495 MC1595		ERX	_	<u>+</u> 1.0 <u>+</u> 0.5	<u>+</u> 2.0 <u>+</u> 1.0	
-10 <v<sub>Y&lt;+10 (V_X =±10 V)</v<sub>	MC1495		ERY		<u>+</u> 2.0	± 4.0	
T _A = 0 to +70 ⁰ C	MC1595 MC1495			-	<u>+</u> 1.0	<u>+</u> 2.0	
$-10 < V_X < +10 (V_Y = \pm 10 V)$			ERX	-	<u>+</u> 1.5	-	
-10 <v<sub>Y&lt; +10 (V_X = ±10 V) T_A = -55^oC to +125^oC</v<sub>	MC1595		ERY	-	<u>+</u> 3.0	-	
$-10 < V_X < +10 (V_Y = \pm 10 V)$			ERX		<u>+</u> 0.75		
$-10 < V_{Y} < +10 (V_{X} = \pm 10 V)$			ERY		<u>+</u> 1.50	-	
Squaring Mode Error: Accuracy in Percent of Full Scale After		5	ESQ				%
Offset and Scale Factor Adjustment $T_A = +25^{\circ}C$	MC1495			_	+ 0.75		
	MC1595			-	± 0.5	-	
$T_A = 0 \text{ to } +70^{\circ}\text{C}$	MC1495			-	<u>± 1.0</u>	-	
T _A = -55 ^o C to +125 ^o C Scale Factor (Adjustable)	MC1595				<u>+</u> 0.75		
$(K = \frac{2R_L}{I_3R_XR_Y})$		-	к		0.1	-	-
Input Resistance	MC1495	7	RINX	~	20		MegOhms
(f = 20 Hz)	MC1595 MC1495		Prove		35 20	-	
	MC1595		RINY	-	35		
Differential Output Resistance (f = 20 Hz)		8	Ro	-	300	-	k Ohms
Input Bias Current							
$I_{bx} = \frac{(19 + 112)}{2}$ , $I_{by} = \frac{(14 + 18)}{2}$	MC1495	6	I _{bx}	-	2.0	12	μA
2 2 2	MC1595 MC1495				2.0	8.0	
	MC1595		lpA	_	2.0 2.0	12 8.0	
Input Offset Current							
Ig - I ₁₂	MC1495 MC1595	6	_{iox}	-	0.4 0.2	2.0 1.0	μA
I ₄ - I ₈	MC1495		liov	-	0.4	2.0	
	MC1595		· · · · ·	-	0.2	1.0	
Average Temperature Coefficient of Input Offset Current		6	TC _{lio}				nA/ ^o C
(T _A = 0 to +70 ⁰ C)	MC1495			-	2.0	-	
$(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	MC1595				2.0	-	
Output Offset Current	MC1495	6	1 ₀₀		20	100	μA
. 17 2.	MC1595			-	10	50	
Average Temperature Coefficient of Output Offset Current		6	TC _{loo}				nA/ ^o C
$(T_A = 0 \text{ to } +70^{\circ}\text{C})$	MC1495				20		
$(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	MC1595				20	-	
Frequency Response 3.0 dB Bandwidth, R _L = 11 k $\Omega$		9,10	BW3dB	_	3.0		MHz
3.0 dB Bandwidth, R _L = 50 $\Omega$ (Transcon	ductance Bandwidth)	3,10	TBM3 dB	-	80	_	MHz
$3^{O}$ Relative Phase Shift Between V $\chi$ and	VY		f _φ	-	750	-	kHz
1% Absolute Error Due to Input-Output	Phase Shift		f ₀	-	30	-	kHz
Common Mode Input Swing (Either Input)	MC1495	11	CMV	±10.5	±12	_	Vdc
	MC1595			±11.5	±13	-	
Common Mode Gain (Either Input)	MC1495	11	Асм	-40	-50	_	dB
	MC1595			-50	-60		
Common Mode Quiescent		12	V _{o1}	-	21	-	Vdc
Output Voltage		<u> </u>	V _{o2}	-	21	-	
Differential Output Voltage Swing Capabil	ity	9	V _o	-	±14	-	V _{peak}
Power Supply Sensitivity		12	S ⁺ S ⁻	-	5.0 10		mV/V
Power Supply Current		12	17	-	6.0	7.0	mA
DC Power Dissipation		12	PD	-	135	170	mW


### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Applied Voltage (V2-V1, V14-V1, V1-V9, V1-V12, V1-V4, V1-V8, V12-V7, V9-V7, V8-V7, V4-V7)	۵V	30	Vdc
Differential Input Signal	V ₁₂ –V9 V4–V8	±(6+l ₁₃ RX) ±(6+l ₃ RY)	Vdc Vdc
Maximum Bias Current	3  13	10 10	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C	PD	750 5.0	mW mW/°C
Operating Temperature Range	Τ _Α		°c
MC1495 MC1595		0 to +70 -55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c



### TEST CIRCUITS





### **TEST CIRCUITS** (continued)

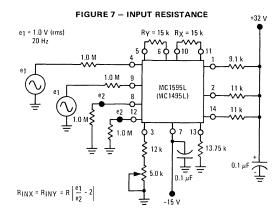



FIGURE 8 - OUTPUT RESISTANCE

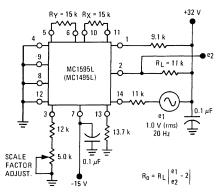
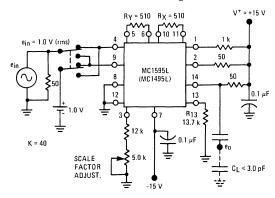
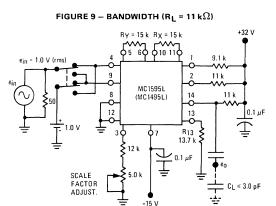
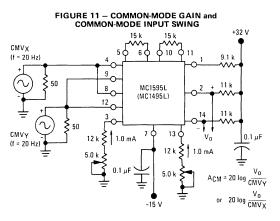
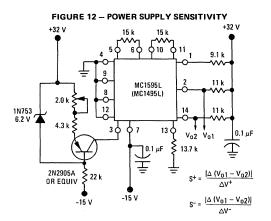






FIGURE 10 – BANDWIDTH (R_ = 50  $\Omega$ )








# MC1595L, MC1495L (continued)

# **TEST CIRCUITS** (continued)



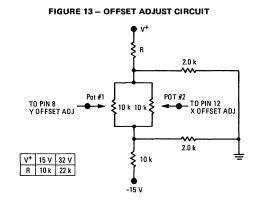
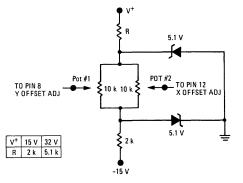
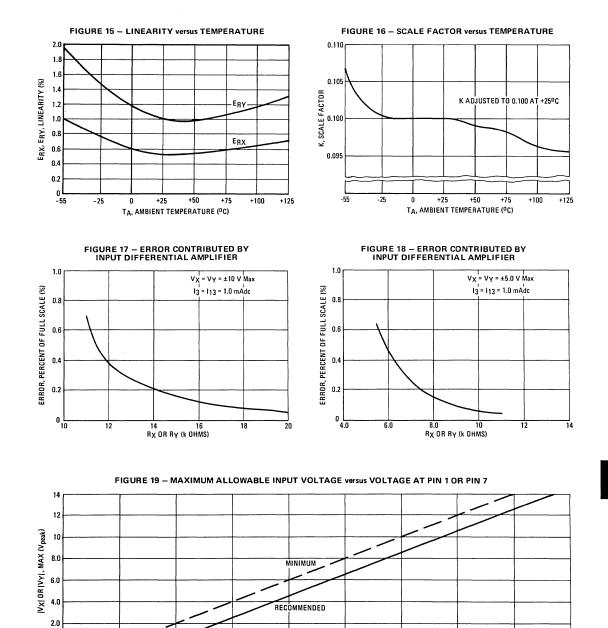




FIGURE 14 - OFFSET ADJUST CIRCUIT (ALTERNATE)




# MC1595L, MC1495L (continued)

٥L

2.0

4.0

6.0



# TYPICAL CHARACTERISTICS

|V1| OR |V7| (VOLTS)

10

12

14

16

18

7

8.0

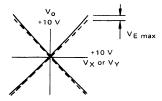
# OPERATION AND APPLICATIONS INFORMATION

#### 1. Theory of Operation

The MC1595 (MC1495) is a monolithic, four-quadrant multiplier which operates on the principle of variable transconductance. The detailed theory of operation is covered in Application Note AN-489, Analysis and Basic Operation of the MC1595. The result of this analysis is that the differential output current of the multiplier is given by

$$I_{A} - I_{B} = \triangle I = \frac{2V_{X}V_{Y}}{R_{X}R_{Y}I_{3}}$$

where I_A and I_B are the currents into pins 14 and 2, respectively, and V_X and V_Y are the X and Y input voltages at the multiplier input terminals.


#### 2. Design Considerations

#### 2.1 General

The MC1595 (MC1495) permits the designer to tailor the multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidth) which may in turn restrict another parameter (e.g. maximum output voltage swing). Each important parameter is discussed in detail in the following paragraphs.

#### 2.1.1 Linearity, Output Error, ERX or ERY

Linearity error is defined as the maximum deviation of output voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below).



For example, if the maximum deviation,  $V_{E(max)},$  is  $\pm 100\ mV$  and the full scale output is 10 volts, then the percentage error is

$$E_{R} = \frac{V_{E(max)}}{V_{o(max)}} \times 100 = \frac{100 \times 10^{-3}}{10} \times 100 = \pm 1.0\%$$

Linearity error may be measured by either of the following methods:

- Using an X Y plotter with the circuit shown in Figure 5, obtain plots for X and Y similar to the one shown above.
- 2. Use the circuit of Figure 4. This method nulls the level shifted output of the multiplier with the original input. The peak output of the null operational amplifier will be equal to the error voltage,  $V \in (max)$ . One source of linearity error can arise from large signal non-

One source of linearity error can arise from large signal nonlinearity in the X and Y-input differential amplifiers. To avoid introducing error from this source, the emitter degeneration resistors  $R_X$  and  $R_Y$  must be chosen large enough so that nonlinear base-emitter voltage variation can be ignored. Figures 17 and 18 show the error expected from this source as a function of the values of  $R_X$  and  $R_Y$  with an operating current of 1.0 mA in each side of the differential amplifiers (i.e.,  $I_3 = I_{13} = 1.0$  mA).

#### 2.1.2 3 dB-Bandwidth and Phase Shift

Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low value load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout.

Phase shift in the multiplier circuit results from two sources: phase shift common to both X and Y channels (due to the load resistor-output capacitance pole mentioned above) and relative phase shift between X and Y channels (due to differences in transadmittance in the X and Y channels). If the input to output phase shift is only 0.6°, the output product of two sine waves will exhibit a vector error of 1%. A 3° relative phase shift between V_X and V_Y results in a vector error of 5%.

2.1.3 Maximum Input Voltage

 $V_{X(max)}, \ V_{Y(max)}$  maximum input voltages must be such that:

$$V_{X(max)} < I_{13} R_Y$$

$$V_{Y(max)} < I_3 R_Y$$
.

Exceeding this value will drive one side of the input amplifier to "cutoff" and cause non-linear operation.

Currents I₃ and I₁₃ are chosen at a convenient value (observing power dissipation limitation) between 0.5 mA and 2.0 mA, approximately 1.0 mA. Then  $R_X$  and  $R_Y$  can be determined by considering the input signal handling requirements.

For 
$$V_X(max) = V_Y(max) = 10$$
 volts;  
 $R_X = R_Y > \frac{10 V}{1.0 \text{ mA}} = 10 \text{ k}\Omega.$ 

The equation 
$$I_A - I_B = \frac{2V_X V_Y}{R_X R_Y I_3}$$

is derived from 
$$I_A \cdot I_B = \frac{2V_X V_Y}{(R_X + \frac{2kT}{ql_{12}})(R_Y + \frac{2kT}{ql_2})I_3}$$

with the assumption  $R_X \ge \frac{2kT}{qI_{13}}$  and  $R_Y \ge \frac{2kT}{qI_3}$ 

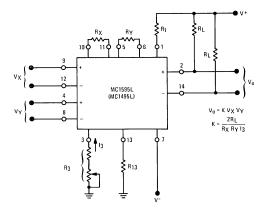
At  $T_A = +25^{\circ}C$  and  $I_{13} = I_3 = 1 \text{ mA}$ ,

$$\frac{2kT}{ql_{13}} = \frac{2kT}{ql_{3}} = 52 \Omega$$
.

Therefore, with  $R_X = R_Y = 10 \ k\Omega$  the above assumption is valid. Reference to Figure 19 will indicate limitations of  $V_X(max)$  or  $V_Y(max)$  due to  $V_1$  and  $V_7$ . Exceeding these limits will cause saturation or "cutoff" of the input transistors. See Step 4 of Section 3 (General Design Procedure) for further details.

#### 2.1.4 Maximum Output Voltage Swing

The maximum output voltage swing is dependent upon the factors mentioned below and upon the particular circuit being considered.


For Figure 20 the maximum output swing is dependent upon V⁺ for positive swing and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quiescent level for transistors Q₅, Q₆, Q₇, and Q₈. This potential

# MC1595L, MC1495L (continued)

# **OPERATION AND APPLICATIONS INFORMATION** (continued)

should be related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials.

### FIGURE 20 - BASIC MULTIPLIER



If an operational amplifier is used for level shift, as shown in Figure 21, the output swing (of the multiplier) is greatly reduced. See Section 3 for further details.

### 3. General Design Procedure

Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the X and Y inputs to limit the maximum multiplier input to  $\pm 5.0$  volts (V_X = V_Y [max]) for a  $\pm 10$ -volt input (V_X' = V_Y '[max]). (See Figure 21). If an overall scale factor of 1/10 is desired, then

$$V_{0} = \frac{V_{X}' V_{Y}'}{10} = \frac{(2V_{X}) (2V_{Y})}{10} = 4/10 V_{X} V_{Y}.$$

Therefore, K = 4/10 for the multiplier (excluding the divider network).

Step 1. The first step is to select current 1₃ and current 1₁₃. There are no restrictions on the selection of either of these currents except the power dissipation of the device. 1₃ and 1₃ will normally be one or two milliamperes. Further, 1₃ does not have to be equal to 1₃, and there is normally no need to make them different. For this example, let

To set currents  $I_3$  and  $I_{13}$  to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3,

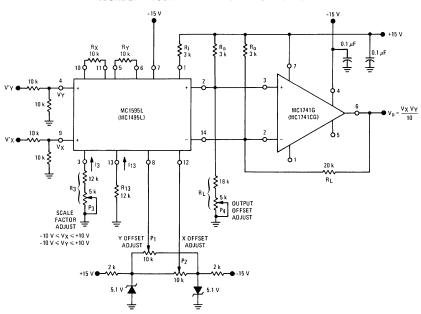



FIGURE 21 - MULTIPLIER WITH OP-AMPL. LEVEL SHIFT

# **OPERATION AND APPLICATIONS INFORMATION** (continued)

it can be seen that the resistor values necessary are given by:

$$R_{13} + 500 \ \Omega = \frac{|V^-| - 0.7 \ V}{I_{13}}$$

$$R_3 + 500 \ \Omega = \frac{|V^-| - 0.7 \ V}{I_3}$$
Let  $V^- = -15 \ V$ 
Then  $R_{13} + 500 = \frac{14.3 \ V}{1 \ mA}$  or  $R_{13} = 13.8 \ k\Omega$ 
Let  $R_{13} = 12 \ k\Omega$ 
Similarly,  $R_3 = 13.8 \ k\Omega$ 
Let  $R_2 = 15 \ k\Omega$ 

However, for applications which require an accurate scale factor, the adjustment of R₃ and consequently, l₃, offers a convenient method of making a final trim of the scale factor. For this reason, as shown in Figure 21, resistor R₃ is shown as a fixed resistor in series with a potentiometer.

For applications not requiring an exact scale factor (balanced modulator, frequency doubler, AGC amplifier, etc.), pins 3 and 13 can be connected together and a single resistor from pin 3 to ground can be used. In this case, the single resistor would have a value of one-half the above calculated value for R 13.

Step 2. The next step is to select  ${\sf R}_X$  and  ${\sf R}_Y.$  To insure that the input transistors will always be active, the following conditions should be met:

$$\frac{v_X}{R_X} < \iota_{13} \qquad \frac{v_Y}{R_Y} < \iota_3$$

A good rule of thumb is to make  $I_3R_Y \geqslant 1.5~V_{Y(max)}$  and  $I_{13}~RX \geqslant 1.5~V_{X(max)}.$ 

The larger the  $I_3R_Y$  and  $I_{13}R_X$  product in relation to  $V_Y$  and  $V_X$  respectively, the more accurate the multiplier will be (see Figures 17 and 18).

Let 
$$R_X = R_Y = 10 k\Omega$$

Then  $I_3R_Y = 10 V$ 

since  $V_X(max)$  =  $V_Y(max)$  = 5.0 volts the value of  $R_X$  =  $R_Y$  = 10  $k\Omega$  is sufficient.

Step 3. Now that  $R_X,\,R_Y$  and  $I_3$  have been chosen,  $R_L$  can be determined:

$$K = \frac{2R_{L}}{R_{X}R_{Y}I_{3}} = \frac{4}{10}$$
  
or 
$$\frac{(2) (R_{L})}{(10 \text{ k}) (10 \text{ k}) (1 \text{ mA})} = \frac{4}{10}$$

Thus  $R_L = 20 k\Omega$ .

Step 4. To determine what power-supply voltage is necessary for this application, attention must be given to the circuit schematic shown in Figure 3. From the circuit schematic it can be seen that in order to maintain transistors  $\mathbf{Q}_1$ ,  $\mathbf{Q}_2$ ,  $\mathbf{Q}_3$  and  $\mathbf{Q}_4$  in an active

region when the maximum input voltages are applied  $(V_X' = V_Y' = 10 V \text{ or } V_X = 5.0 V, V_Y = 5.0 V)$ , their respective collector voltage should be at least a few tenths of a volt higher than the maximum input voltage. It should also be noticed that the collector voltage of transistors Q₃ and Q₄ are at a potential which is two diode-drops below the voltage at pin 1. Thus, the voltage at pin 1 should be about two volts higher than the maximum input voltage. Therefore, to handle +5.0 volts at the inputs, the voltage at pin 1 must be at least +7.0 volts. Let V₁ = 9.0 Vdc.

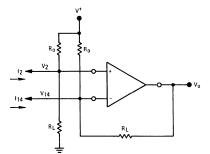
Since the current following into pin 1 is always equal to  $2I_3$ , the voltage at pin 1 can be set by placing a resistor,  $R_1$  from pin 1 to the positive supply:

$$R_{1} = \frac{V^{+} - V_{1}}{2I_{3}}$$
Let  $V^{+} = +15 V$   
Then  $R_{1} = \frac{15 V - 9 V}{(2) (1 \text{ mA})}$ 

$$R_{4} = 3 \text{ k} \Omega$$

Note that the voltage at the base of transistors  $\Omega_5$ ,  $\Omega_6$ ,  $\Omega_7$  and  $\Omega_8$  is one diode-drop below the voltage at pin 1. Thus, in order that these transistors stay active, the voltage at pins 2 and 14 should be approximately halfway between the voltage at pin 1 and the positive-supply voltage. For this example, the voltage at pins 2 and 14 should be approximately 11 volts.

#### Step 5. Level Shifting


For dc applications, such as the multiply, divide and squareroot functions, it is usually desirable to convert the differential output to a single-ended output voltage referenced to ground. The circuit shown in Figure 22 performs this function. It can be shown that the output voltage of this circuit is given by:

$$V_0 = (I_2 - I_{14}) R_L$$

And since  $I_A - I_B = I_2 - I_{14} = \frac{2I_XI_Y}{I_3} = \frac{2V_XV_Y}{I_3R_XR_Y}$ 

Then  $V_0 = \frac{2R_L V \chi' V \gamma'}{4R_X R_X I_3}$  where  $V \chi' V \gamma'$  is the voltage at the input to the voltage dividers.

# FIGURE 22 – LEVEL SHIFT CIRCUIT



# MC1595L, MC1495L (continued)

# **OPERATION AND APPLICATIONS INFORMATION (continued)**

The choice of an operational amplifier for this application should have low bias currents, low offset current, and a high common-mode input voltage range as well as a high common-mode rejection ratio. The MC1556, and MC1741 operational amplifiers meet these requirements.

Referring to Figure 21, the level shift components will be determined. When  $V_X = V_Y = 0$ , the currents  $I_2$  and  $I_{14}$  will be equal to I13. In Step 3,  $R_1$  was found to be 20 k $\Omega$  and in Step 4, V₂ and V₁₄ were found to be approximately 11 volts. From this information, Ro can be found easily from the following equation (neglecting the operational amplifiers bias current):

$$\frac{V_2}{R_L} + I_{13} = \frac{V^+ - V_2}{R_0}$$

And for this example,  $\frac{11 \text{ V}}{20 \text{ k}\Omega} + 1 \text{ mA} = \frac{15 \text{ V} - 11 \text{ V}}{\text{R}_0}$ 

Solving for  $R_0$ ,  $R_0 = 2.6 k\Omega$ 

Thus, select  $R_0 = 3.0 k\Omega$ 

For  $R_0 = 3.0 \text{ k}\Omega$ , the voltage at pins 2 and 14 is calculated to be

 $V_2 = V_{14} = 10.4$  volts.

The linearity of this circuit (Figure 21) is likely to be as good or better than the circuit of Figure 5. Further improvements are possible as shown in Figure 23 where Ry has been increased substantially to improve the Y linearity, and R_X decreased somewhat so as not to materially affect the X linearity, this avoids increasing RL significantly in order to maintain a K of 0.1.

The versatility of the MC1595 (MC1495) allows the user to to optimize its performance for various input and output signal levels.

#### 4. Offset and Scale Factor Adjustment

#### 4.1 Offset Voltages

Within the monolithic multiplier (Figure 3) transistor baseemitter junctions are typically matched within 1 mV and resistors are typically matched within 2%. Even with this careful matching, an output error can occur. This output error is comprised of X-input offset voltage, Y-input offset voltage, and outputoffset voltage. These errors can be adjusted to zero with the techniques shown in Figure 21. Offset terms can be shown analytically by the transfer function:

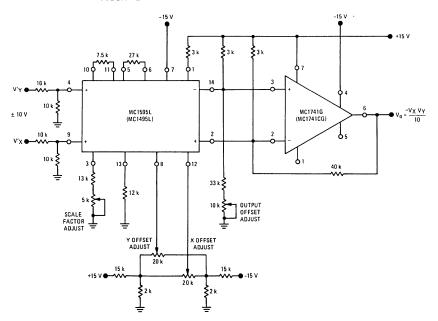
(1)  $V_{0} = K(V_{X} \pm V_{IOX} \pm V_{X \text{ off}}) (V_{Y} \pm V_{IOY} \pm V_{Y \text{ off}}) \pm V_{00}$ 

Where K V_X = scale factor

= X input voltage

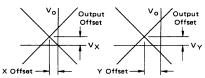
VY = Y input voltage

VIOX = X input offset voltage


VIOY = Y input offset voltage

VX off= X input offset adjust voltage

Vy off = Y input offset adjust voltage


= output offset voltage. Voo

#### FIGURE 23 - MULTIPLIER WITH IMPROVED LINEARITY



# **OPERATION AND APPLICATIONS INFORMATION (continued)**

#### X, Y and Output Offset Voltages



For most dc applications, all three offset adjust potentiometers ( $P_1$ ,  $P_2$ ,  $P_4$ ) will be necessary. One or more offset adjust potentiometers can be eliminated for ac applications (See Figures 28, 29, 30, 31).

If well regulated supply voltages are available, the offset adjust circuit of Figure 13 is recommended. Otherwise, the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes.

#### 4.2 Scale Factor

The scale factor, K, is set by P₃(Figure 21). P₃ varies I₃ which inversely controls the scale factor K. It should be noted that current I₃ is one-half the current through R₁. R₁ sets the bias level for  $\Omega_5$ ,  $\Omega_6$ ,  $\Omega_7$ , and  $\Omega_8$  (See Figure 3). Therefore, to be sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting P₃ over wide voltage ranges (see Section 3, General Design Procedure).

### 4.3 Adjustment Procedures

The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21)

#### 1. X Input Offset

- (a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the ''Y'' input (pin 4)
  - (b) Connect "X" input (pin 9) to ground
- (c) Adjust X offset potentiometer,  $P_2$ , for an ac null at the output
- 2. Y Input Offset
- (a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 9)
  - (b) Connect "Y" input (pin 4) to ground
- (c) Adjust "Y" offset potentiometer, P1, for an ac null at the output
- 3. Output Offset

(a) Connect both "X" and "Y" inputs to ground (b) Adjust output offset potentiometer,  $P_4$ , until the output voltage  $V_0$  is zero volts dc

4. Scale Factor

(a) Apply +10 Vdc to both the "X" and "Y" inputs
(b) Adjust P₃ to achieve + 10.00 V at the output.
5. Repeat steps 1 through 4 as necessary.

The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers  $P_1$  through  $P_4$ . Multi-turn, infinite resolution potentiometers with low-temperature coefficients are recommended.

# 5. DC Applications

5.1 Multiply The circuit shown in Figure 21 may be used to multiply signals from dc to 100 kHz. Input levels to the actual multiplier are 5.0 V (max). With resistive voltage dividers the maximum could be very large – however, for this application twoto-one dividers have been used so that the maximum input level is 10 V. The maximum output level has also been designed for 10 V (max).

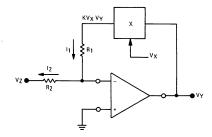
# 5.2 Squaring Circuit

If the two inputs are tied together, the resultant function is squaring; that is  $V_0$  =  $K \, V^2$  where K is the scale factor. Note that all error terms can be eliminated with only three adjustment potentiometers, thus eliminating one of the input offset adjustments. Procedures for nulling with adjustments are given as follows:

- 1. AC Procedure:
  - (a) Connect oscillator (1 kHz, 15 Vpp) to input

(b) Monitor output at 2 kHz with tuned voltmeter and adjust  $\mathsf{P}_3$  for desired gain (be sure to peak response of the voltmeter)

- (c) Tune voltmeter to 1 kHz and adjust  $\ensuremath{\text{P}_1}$  for a minimum output voltage
- (d) Ground input and adjust  $P_4$  (output offset) for zero volts dc output
- (e) Repeat steps a through d as necessary.2. DC Procedure:


(a) Set  $V_X = V_Y = 0$  V and adjust  $P_4$  (output offset potentiometer) such that  $V_0 = 0.0$  Vdc (b) Set  $V_X = V_Y = 1.0$  V and adjust  $P_1$  (Y input

(b) Set  $V_X = V_Y = 1.0$  V and adjust P₁ (Y input offset potentiometer) such that the output voltage is +0.100 volts

(c) Set  $V_X$  =  $V_Y$  = 10 Vdc and adjust  $\mathsf{P}_3$  such that the output voltage is +10.00 volts

(d) Set  $V_X = V_Y = -10$  Vdc. Repeat steps a through d as necessary.

## FIGURE 24 - BASIC DIVIDE CIRCUIT



# 5.3 Divide Circuit

Consider the circuit shown in Figure 24 in which the multiplier is placed in the feedback path of an operational amplifier. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-) input. Assuming that the bias current of the operational amplifier is negligible, then  $I_1 = I_2$  and

$$\frac{KV_XV_Y}{R1} = \frac{-V_Z}{R2}$$
(1)

Solving for V_Y, V_Y = 
$$\frac{-R1}{R2} \frac{V_Z}{V_X}$$
. (2)

-V7

lf R1 = R2

R1 = KR2

If

$$V_{Y} = \frac{L}{KV_{X}}$$
(3)

$$V_{Y} = \frac{-V_{Z}}{V_{X}} \cdot$$
 (4)

# MC1595L, MC1495L (continued)

### **OPERATION AND APPLICATIONS INFORMATION (continued)**

Hence, the output voltage is the ratio of  $V_Z$  to  $V_X$  and provides a divide function. This analysis is, of course, the ideal condition. If the multiplier error is taken into account, the output voltage is found to be

$$V_{Y} = -\left[\frac{R1}{R2\kappa}\right]\frac{V_{Z}}{V_{X}} + \frac{\Delta E}{\kappa v_{X}},$$
 (5)

where  $\triangle E$  is the error voltage at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set, particularly at small values of Vy. For example, assume that R1 = R2, and K = 1/10. For these conditions the output of the divide circuit is given by:

$$V_{Y} = \frac{-10 V_{Z}}{V_{X}} + \frac{10 \Delta E}{V_{X}}$$
 (6)

From equation 6, it is seen that only when  $V_{\rm X}$  = 10 V is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when  $V_{\rm X}$  is small, (0.1 volt) the error voltage of the divide circuit can be expected to be a hundred times the error of the basic multiplier circuit.

In terms of percentage error,

percentage error = 
$$\frac{\text{error}}{\text{actual}} \times 100\%$$

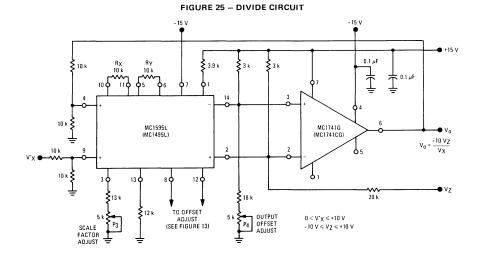
or from equation (5),

$$\mathbf{P.E.}_{D} = \frac{\frac{\triangle E}{KV_{X}}}{\begin{bmatrix} \mathbf{R1} \\ \mathbf{R2} \\ \mathbf{K} \end{bmatrix} \frac{V_{Z}}{V_{X}}} = \begin{bmatrix} \mathbf{R2} \\ \mathbf{R1} \\ \mathbf{K} \end{bmatrix} \frac{\triangle E}{V_{Z}} \cdot$$
(7)

From equation 7, the percentage error is inversely related to voltage V_Z (i.e., for increasing values of V_Z, the percentage error decreases).

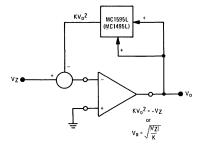
A circuit that performs the divide function is shown in Figure 25.

Two things should be emphasized concerning Figure 25.


- 1. The input voltage  $(V'\chi)$  must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of  $V_{7}$ .
- 2. Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connection shown in Figure 21; necessitated to insure negative feedback around the loop.

A Suggested Adjustment Procedure for the Divide Circuit

- 1. Set  $V_Z = 0$  volts and adjust the output offset potentiometer (P₄) until the output voltage ( $V_O$ ) remains at some (not necessarily zero) constant value as  $V_X'$  is varied between +1.0 volt and +10 volts.
- 2. Keep V_Z at 0 volts, set V_X' at +10 volts and adjust the Y input offset potentiometer (P₁) until V₀ = 0 volts.
- 3. Let  $V_X' = V_Z$  and adjust the X input offset potentiometer (P₂) until the output voltage remains at some (not necessarily - 10 volts) constant value as  $V_Z = V_X'$  is varied between +1.0 and +10 volts.
- 4. Keep  $V_X' = V_Z$  and adjust the scale factor potentiometer (P₃) until the average value of  $V_0$  is – 10 volts as  $V_Z = V_X'$  is varied between +1.0 volt and +10 volts.
- 5. Repeat steps 1 through 4 as necessary to achieve optimum performance.


#### 5.4 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function



# **OPERATION AND APPLICATIONS INFORMATION (continued)**

### FIGURE 26 - BASIC SQUARE ROOT CIRCUIT



as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 27) protects against accidental latch-up.

This circuit also may be adjusted in the closed-loop mode as follows:

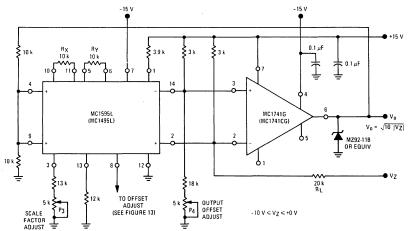
- 1. Set V_Z to -0.01 volts and adjust P₄ (output offset) for V₀ = +0.316 volts, being careful to approach the output from the positive side to preclude the effect of the output diode clamping.
- 2. Set V_Z to -0.9 volts and adjust P₂ (X adjust) for V₀ = +3.0 volts.
- 3. Set V_Z to 10 volts and adjust P₃ (scale factor adjust) for V₀ = +10 volts.
- Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

### 6. AC Applications

The applications that follow demonstrate the versatility of the monolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units have circuits that, although they optimize dc multiplication operation, can hinder ac applications.

6.1 Frequency doubling often is done with a diode where the fundamental plus a series of harmonics are generated. However, extensive filtering is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually is small in magnitude and requires amplification.

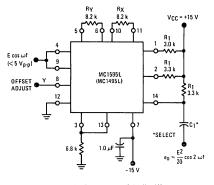
When a multiplier is used to double frequency the second harmonic is obtained directly, except for a dc term, which can be removed with ac coupling.


$$e_0 = KE^2 \cos^2 \omega t$$
$$e_0 = \frac{KE^2}{2} (1 + \cos 2\omega t)$$

A potted multiplier can be used to obtain the double frequency component, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted.

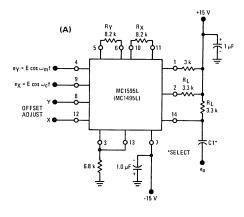
In a typical doubler circuit, conventional  $\pm$  15-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allowed. The circuit generates wave-forms that are double frequency; less than 1% distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kHz; reducing the scale factor by decreasing the load resistors can further expand the bandwidth.

A slightly modified version of the MC1595 (MC1495) – the MC1596 (MC1496) – has been successfully used as a doubler to obtain 400 MHz. (See Figure 28.)

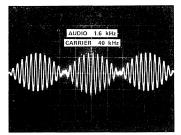

6.2 Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is 1.6 kHz and the carrier is 40 kHz.



### FIGURE 27 - SQUARE ROOT CIRCUIT


## **OPERATION AND APPLICATIONS INFORMATION** (continued)

## FIGURE 28 - FREQUENCY DOUBLER




When two equal cosine waves are applied to X and Y, the result is a wave shape of twice the input frequency. For this example the input was a 10 kHz signal, output was 20 kHz.

#### FIGURE 29 - BALANCED MODULATOR







The defining equation for balanced modulation is

 $K(E_m \cos \omega_m t) (E_c \cos \omega_c t) =$ 

$$\frac{\mathsf{KE}_{c}\mathsf{E}_{m}}{2}\left[\cos\left(\omega_{c}+\omega_{m}\right)\mathsf{t}+\cos\left(\omega_{c}-\omega_{m}\right)\mathsf{t}\right]$$

where  $\omega_{\rm C}$  is the carrier frequency,  $\omega_{\rm m}$  is the modulator frequency and K is the multiplier gain constant.

AC coupling at the output eliminates the need for level translation or an operational amplifier; a higher operating frequency results.

A problem common to communications is to extract the intelligence from single-sideband received signal. The ssb signal is of the form

$$e_{ssb} = A \cos(\omega_c + \omega_m)t$$

and if multiplied by the appropriate carrier waveform,  $\cos \omega_{c} t$ ,

$$e_{ssb}e_{carrier} = \frac{AK}{2} [\cos (2\omega_c + \omega_m)t + \cos (\omega_c)t].$$

If the frequency of the band-limited carrier signal,  $\omega_c$ , is ascertained in advance the designer can insert a low-pass filter and obtain the (AK/2) (cos  $\omega_c t$ ) term with ease. He also can use an operational amplifier for a combination level shift-active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not accessible, so the user must accept the level shift and still add a low-pass filter.

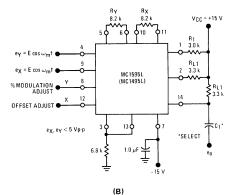
#### 6.3 Amplitude Modulation

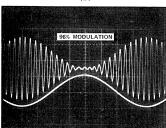
The multiplier performs amplitude modulation, similar to balanced modulation, when a dc term is added to the modulating signal with the Y offset adjust potentiometer. (See Figure 30.)

Here, the identity is

$$E_m(1 + m \cos \omega_m t) E_c \cos \omega_c t = KE_m E_c \cos \omega_c t +$$

$$\frac{\mathsf{KE}_{\mathsf{m}}\mathsf{E}_{\mathsf{c}}\mathsf{m}}{2}\left[\cos(\omega_{\mathsf{c}}+\omega_{\mathsf{m}})\mathsf{t}+\cos(\omega_{\mathsf{c}}-\omega_{\mathsf{m}})\mathsf{t}\right]$$


where m indicates the degree of modulation. Since m is adjustable, via potentiometer P₁, 100% modulation is possible. Without extensive tweaking, 96% modulation may be obtained where  $\omega_c$  and  $\omega_m$  are the same as in the balanced-modulator example.


#### 6.4 Linear Gain Control

To obtain linear gain control, the designer can feed to one of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose a 200 kHz sine wave, 1.0 volt peak-to-peak, is the signal to which a gain control will be added. The dynamic range of the control voltage V_C is 0 to +1.0 volt. These must be ascertained and the proper values of R_X and R_Y can be selected for optimum performance. For the 200-kHz operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency. (See Figure 31.)



### FIGURE 30 - AMPLITUDE MODULATION





The signal is applied to the unit's Y input. Since the total input range is limited to 1.0 volt p-p, a 2.0-volt swing, a current source of 2.0 mA and an  $R_Y$  value of 1.0 kilohm is chosen. This takes best advantage of the dynamic range and insures linear operation in the Y-channel.

Since the X input varies between 0 and +1.0 volt, the current source selected was 1.0 mA and the  $\mathsf{R}_X$  value chosen was 2.0 kilohms. This also insures linear operation over the X input dynamic range.

Choosing RL = 100 assures wide-bandwidth operation. Hence, the scale factor for this configuration is

$$K = \frac{R_{L}}{R_{X}R_{Y}I_{3}}$$
$$= \frac{100}{(2 k)(1 k)(2 \times 10^{+3})} V^{-1}$$
$$= \frac{1}{40} V^{-1} \cdot$$

The 2 in the numerator of the equation is missing in this scalefactor expression because the output is single-ended and ac coupled.

To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been used with frequency compensation to allow a gain of 40 at 200 kHz. The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly.

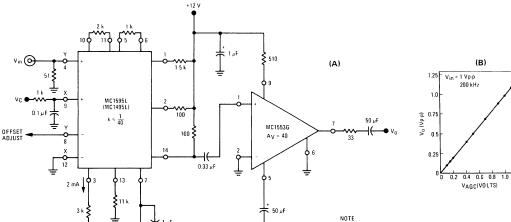
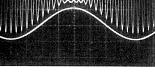




FIGURE 31 - LINEAR GAIN CONTROL

Linear gain control of a 1-volt peak-to-peak signal is performed with a 0-to-1-volt control voltage. If VC is 0.5 volt the output will be 0.5 volt p-p.

12



-12 V

# MC1595L, MC1495L (continued)

### **OPERATIONS AND APPLICATIONS** INFORMATION INDEX

.

# 1. THEORY OF OPERATION

# 2. DESIGN CONSIDERATIONS

# 2.1 General

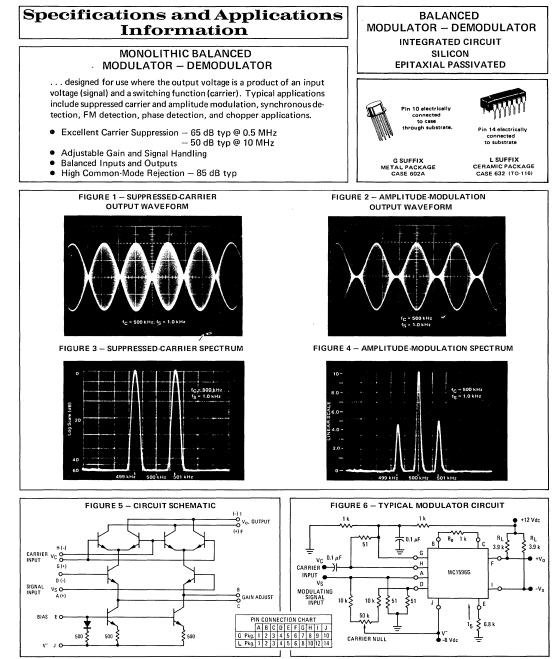
- 2.1.1 Linearity, Output Error, ERX or ERY 2.1.2 3-dB Bandwidth and Phase Shift 2.1.3 Maximum Input Voltage 2.1.4 Maximum Output Voltage Swing

# 3. GENERAL DESIGN PROCEDURES

# 4. OFFSET AND SCALE FACTOR ADJUSTMENT

- 4.1 Offset Voltages
- 4.2 Scale Factor
- 4.3 Adjustment Procedure

# 5. DC APPLICATIONS


- 5.1 Multiply
- 5.2 Squaring Circuit
- 5.3 Divide Circuit
- 5.4 Square Root

# 6. AC APPLICATIONS

- 6.1 Frequency Doubler 6.2 Balanced Modulator
- 6.3 Amplitude Modulation
- 6.4 Linear Gain Control

BALANCED MODULATOR-DEMODULATOR

# MC1596 MC1496



See Packaging Information Section for outline dimensions.

# MC1596, MC1496 (continued) MAXIMUM RATINGS* (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Applied Voltage (V ₆ - V ₇ , V ₈ - V ₁ , V ₉ - V ₇ , V ₉ - V ₈ , V ₇ - V ₄ , V ₇ - V ₁ , V ₈ - V ₄ , V ₆ - V ₈ , V ₂ - V ₅ , V ₃ - V ₅ )	ΔV	30	Vdc
Differential Input Signal	$V_7 - V_8$ $V_4 - V_1$	+5.0 ±(5+1 ₅ R _e )	Vdc
Maximum Bias Current	I5	10	mA
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = +25 ⁰ C Metal Package Derate above T _A = +25 ⁰ C	PD	575 3.85 680 4.6	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range MC1496 MC1596	TA	0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

**ELECTRICAL CHARACTERISTICS**^{*} (V⁺ = +12 Vdc, V⁻ = -8.0 Vdc, I₅ = 1.0 mAdc, R_L = 3.9 k $\Omega$ , R_e = 1.0 k $\Omega$ , T_A = +25^oC unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted.)

				1	MC159	6	1	MC1496			
Characteristic	Fig	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
$\label{eq:carrier Feedthrough} \begin{array}{llllllllllllllllllllllllllllllllllll$	7	1	VCFT		40 140			40 140	-	µV(rms)	
$\label{eq:VC} V_C = 300 \text{ mVp-p square wave:} \\ offset adjusted to zero & f_C = 1.0 \text{ kHz} \\ offset not adjusted & f_C = 1.0 \text{ kHz} \\ \end{array}$				-	0.04 20	0.2 100		0.04 20	0.4 200	mV(rms)	
Carrier Suppression f _S = 10 kHz, 300 mV(rms) f _C = 500 kHz, 60 mV(rms) sine wave f _C = 10 MHz, 60 mV(rms) sine wave	7	2	V _{CS}	50 	65 50		40 	65 50		dB k	
Transadmittance Bandwidth (Magnitude) ( $R_L = 50$ ohms) Carrier Input Port, $V_C = 60$ mV(rms) sine wave $f_S = 1.0$ kHz, 300 mV(rms) sine wave Signal Input Port, $V_S = 300$ mV(rms) sine wave $ V_C  = 0.5$ Vdc	10	8	BW3dB		300 80		-	300 80	-	MHz	
Signal Gain V _S = 100 mV(rms), f = 1.0 kHz;  V _C   = 0.5 Vdc	12	3	Avs	2.5	3.5	-	2.5	3.5	_	V/V	
Single-Ended Input Impedance, Signal Port, f = 5.0 MHz Parallel Input Resistance Parallel Input Capacitance	8	-	r _{ip} c _{ip}	-	200 2.0	-		200 2.0		kΩ pF	
Single-Ended Output Impedance, f ≈ 10 MHz Parallel Output Resistance Parallel Output Capacitance	8	-	r _{op} ^c op	_	40 5.0	.—	-	40 5.0	_	kΩ pF	
Input Bias Current $I_{bS} = \frac{I_1 + I_4}{2}$ ; $I_{bC} = \frac{I_7 + I_8}{2}$	9	_	I _{bS} I _{bC}	-	12 12	25 25		12 12	30 30	μΑ	
Input Offset Current  ioS =  1 -  4;   _{ioC} =  7 -  8	9	_	l _{ioS}    l _{ioC}	-	0.7 0.7	5.0 5.0		0.7 0.7	7.0 7.0	μΑ	
Average Temperature Coefficient of Input Offset Current {T _A = -55 ^o C to +125 ^o C}	9	-	TC _{lio}		2.0	-		2.0	-	nA/ ^o C	
Output Offset Current (1 ₆ - 1 ₉ )	9	-	1 ₀₀		14	50		14	80	μA	
Average Temperature Coefficient of Output Offset Current $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	9	-	TC _{loo}	·	90	- -	-	90	·	nA/ ^o C	
Common-Mode Input Swing, Signal Port, f _S = 1.0 kHz	11	4	CMV	·	5.0	-	-	5.0	-	Vp-p	
Common-Mode Gain, Signal Port, f _S = 1.0 kHz,  V _C   = 0.5 Vdc	11	-	ACM	-	-85		-	-85	-	dB	
Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9)	12	-	Vo	, <del>, , ,</del>	8.0			8.0	-	Vdc	
Differential Output Voltage Swing Capability	12	-	Vout	<u> </u>	8.0		-	8.0	-	Vp-p	
Power Supply Current 16 + 19	9	6	+ I _D		2.0	3.0	-	2.0	4.0	mAdc	
I ₁₀			٦	:	3.0	4.0	-	3.0	5.0		
DC Power Dissipation	9	5	PD	-	33		-	33	-	mW	

* Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

7

# GENERAL OPERATING INFORMATION *

#### Note 1 - Carrier Feedthrough

Carrier feedthrough is defined as the output voltage at carrier frequency with only the carrier applied (signal voltage = 0).

Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer ( $R_1$  of Figure 7).

#### Note 2 - Carrier Suppression

Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.

Carrier suppression is very dependent on carrier input level, as shown in Figure 24. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum carrier level results in unnecessary device and circuit carrier feed-through, which again degenerates the suppression figure. The MC1596 has been characterized with a 60 mV(rms) sinewave carrier input signal. This level provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz, and is generally recommended for balanced modulator applications.

Carrier feedthrough is independent of signal level,  $V_S$ . Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair – or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Note 3 and Figure 22). Note also that an optimum carrier level is recommended in Figure 24 for good carrier suppression and minimum spurious sidebands per aton.

At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.

#### Note 3 - Signal Gain and Maximum Input Level

Signal gain (single-ended) at low frequencies is defined as the voltage gain,

$$A_{VS} = \frac{V_o}{V_S} = \frac{R_L}{R_e + 2r_e}$$
 where  $r_e = \frac{26 \text{ mV}}{I_5 \text{ (mA)}}$ 

A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" (V_C = 0.5 Vdc). This in effect forms a cascode differential amplifier.

Linear operation requires that the signal input be below a critical value determined by  ${\sf R}_{\sf F}$  and the bias current  ${\sf I}_{\sf 5}$ 

$$V_S \leq I_5 R_F$$
 (Volts peak)

Note that in the test circuit of Figure 12,  $V_{\mbox{\scriptsize S}}$  corresponds to a maximum value of 1 volt peak.

#### Note 4 - Common-Mode Swing

The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen (see Note 6).

#### Note 5 - Power Dissipation

Power dissipation, P_D, within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming V₉ = V₆, I₅ = I₆ = I₉ and ignoring

base current,  $P_D$  = 2 I5 (V_6 - V_10) + I5 (V5 - V_10) where subscripts refer to pin numbers.

### Note 6 — Design Equations

The following is a partial list of design equations needed to operate the circuit with other supply voltages and input conditions. See Note 3 for R_e equation.

A. Operating Current

The internal bias currents are set by the conditions at pin 5. Assume:

IB << IC for all transistors

then:

$$\begin{array}{ll} \mathsf{R}_5 = \frac{\mathsf{V}^- - \phi}{\mathsf{I}_5} - 500 \ \Omega & \text{where:} \quad \mathsf{R}_5 \text{ is the resistor between pin} \\ & 5 \text{ and ground} \\ \phi = 0.75 \ \mathsf{V} \text{ at } \mathsf{T}_A = +25^{\mathsf{O}}\mathsf{C} \end{array}$$

The MC1596 has been characterized for the condition  ${\rm I}_5$  = 1.0 mA and is the generally recommended value.

B. Common-Mode Quiescent Output Voltage

$$V_6 = V_9 = V^+ - I_5 R_L$$

#### Note 7 - Biasing

The MC1596 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2 volts collector-base bias on all transistors while not exceeding the voltages given in the absolute maximum rating table;

$$30 \text{ Vdc} \ge [(V_6, V_9) - (V_7, V_8)] \ge 2 \text{ Vdc}$$
$$30 \text{ Vdc} \ge [(V_7, V_8) - (V_1, V_4)] \ge 2.7 \text{ Vdc}$$
$$30 \text{ Vdc} \ge [(V_1, V_4) - (V_5)] \ge 2.7 \text{ Vdc}$$

The foregoing conditions are based on the following approximations:

$$V_6 = V_9$$
,  $V_7 = V_8$ ,  $V_1 = V_4$ 

Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.

#### Note 8 — Transadmittance Bandwidth

Carrier transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by:

$$V_{21C} = \frac{i_0 (each sideband)}{v_s (signal)} | V_0 = 0$$

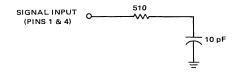
Signal transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by:

$$v_{21S} = \frac{i_{O} (signal)}{v_{S} (signal)} | V_{C} = 0.5 Vdc, V_{O} = 0$$

*Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

# MC1596, MC1496 (continued)

### Note 9 - Coupling and Bypass Capacitors C1 and C2


Capacitors  $C_1$  and  $C_2$  (Figure 7) should be selected for a reactance of less than 5.0 ohms at the carrier frequency.

# Note 10 – Output Signal, Vo

The output signal is taken from pins 6 and 9, either balanced or single-ended. Figure 14 shows the output levels of each of the two output sidebands resulting from variations in both the carrier and modulating signal inputs with a single-ended output connection.

### Note 11 - Signal Port Stability

Under certain values of driving source impedance, oscillation may occur. In this event, an RC suppression network should be connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.



An alternate method for low-frequency applications is to insert a 1 k-ohm resistor in series with the inputs, pins 1 and 4. In this case input current drift may cause serious degradation of carrier suppression.

FIGURE 8 - INPUT-OUTPUT IMPEDANCE

MC1596

MC1498

5

6.8

10

out

+12 Vdc

0.01

μF 50

2 k

### TEST CIRCUITS

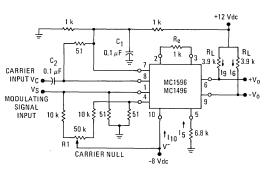



FIGURE 9 - BIAS AND OFFSET CURRENTS

R_e = 1 k

MC1596

MC1496

110

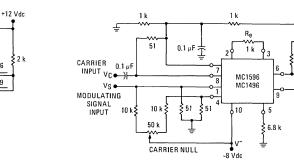
-8 Vdc

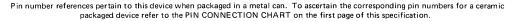
↓¹10

۱6

19

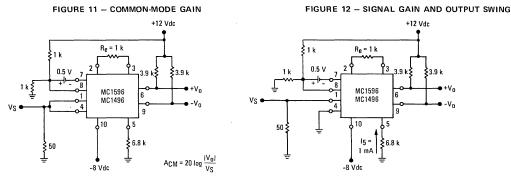
6


5


6.8 k 1

≥́1 к

## FIGURE 7 - CARRIER REJECTION AND SUPPRESSION


FIGURE 10 - TRANSCONDUCTANCE BANDWIDTH



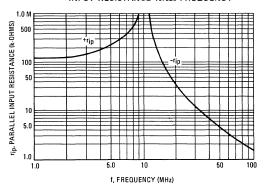


-8 Vdc

8



# **TEST CIRCUITS** (continued)


Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

### TYPICAL CHARACTERISTICS

Typical characteristics were obtained with circuit shown in Figure 7,  $f_c = 500 \text{ kHz}$  (sine wave),  $V_C = 60 \text{ mV}(\text{rms})$ ,  $f_S = 1 \text{ kHz}$ ,  $V_S = 300 \text{ mV}(\text{rms})$ ,  $T_A = +25^{\circ}C$  unless otherwise noted.

FIGURE 13 - SIDEBAND OUTPUT versus CARRIER LEVELS

FIGURE 14 - SIGNAL-PORT PARALLEL-EQUIVALENT INPUT RESISTANCE versus FREQUENCY



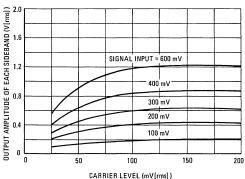



FIGURE 15 - SIGNAL-PORT PARALLEL-EQUIVALENT INPUT CAPACITANCE versus FREQUENCY

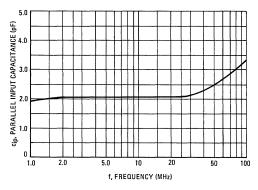
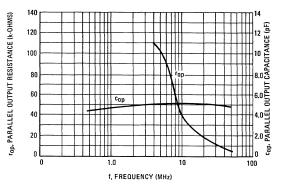




FIGURE 16 - SINGLE-ENDED OUTPUT IMPEDANCE versus FREQUENCY



# MC1596, MC1496 (continued)

# TYPICAL CHARACTERISTICS (continued)

Typical characteristics were obtained with circuit shown in Figure 7, f_C = 500 kHz (sine wave), V_C = 60 mV(rms), f_S = 1 kHz, V_S = 300 mV(rms), T_A =  $+25^{\circ}$ C unless otherwise noted.

FIGURE 17 – SIDEBAND AND SIGNAL PORT TRANSADMITTANCES versus FREQUENCY

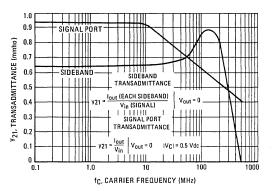



FIGURE 18 – CARRIER SUPPRESSION versus TEMPERATURE



FIGURE 19 - SIGNAL-PORT FREQUENCY RESPONSE

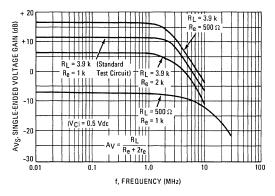







FIGURE 20 - CARRIER SUPPRESSION versus FREQUENCY

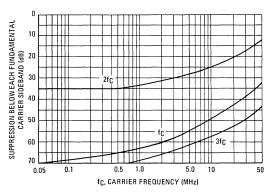
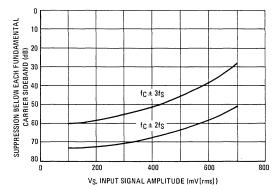
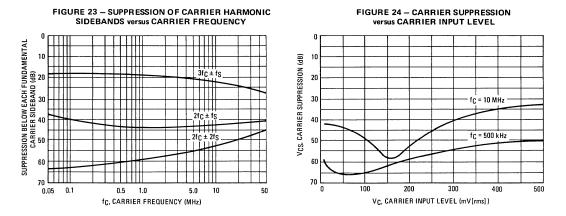





FIGURE 22 – SIDEBAND HARMONIC SUPPRESSION versus INPUT SIGNAL LEVEL





### TYPICAL CHARACTERISTICS (continued)

**OPERATIONS INFORMATION** 

The MC1596/MC1496, a monolithic balanced modulator circuit, is shown in Figure 5.

This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of the two input signals.

Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.

The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output.

The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.

For low-level operation at both input ports, the output signal will contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes.

For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output. The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions.

Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the following expression:

### $V = (I_5) (R_E)$ volts peak.

This expression may be used to compute the minimum value of  $\mathsf{R}_{\mathsf{E}}$  for a given input voltage amplitude.

The gain from the modulating signal input port to the output is the MC1596/MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.

As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1596/ MC1496 for a low-level modulating signal input and the following carrier input conditions:

- Low-level dc
- 2) High-level dc
- Low-level ac
- 4) High-level ac

These gains are summarized in Table 1, along with the frequency components contained in the output signal.

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.

### **OPERATIONS INFORMATION** (continued)

#### FIGURE 25 – TABLE 1 VOLTAGE GAIN AND OUTPUT FREQUENCIES

Carrier Input Signal (V _C )	Approximate Voltage Gain	Output Signal Frequency(s)
Low-level dc	$\frac{R_L V_C}{2(R_E + 2r_e) \left(\frac{KT}{q}\right)}$	fM
High-level dc	$\frac{R_{L}}{R_{E} + 2r_{e}}$	fM
Low-level ac	$\frac{R_L V_C(rms)}{2\sqrt{2}\left(\frac{KT}{q}\right)(R_E + 2r_e)}$	$f_{C} \pm f_{M}$
High-level ac	0.637 R _L R _E + 2r _e	

NOTES:

- Low-level Modulating Signal, V_M, assumed in all cases. V_C is Carrier Input Voltage.
- 2. When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs,  $f_C + f_M$  and  $f_C f_M$ .
- All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two.
- 4.  $R_L = Load$  resistance.
- 5.  $R_E = Emitter$  resistance between pins 2 and 3.
- 6.  $r_e = Transistor dynamic emitter resistance, At +25°C;$

$$r_e \approx \frac{26 \text{ mV}}{15 \text{ (mA)}}$$

 K = Boltzmann's Constant, T = temperature in degrees Kelvin, q = the charge on an electron.

 $\frac{\text{KT}}{\alpha} \approx 26 \text{ mV}$  at room temperature

## APPLICATION INFORMATION

Double sideband suppressed carrier modulation is the basic application of the MC1596/MC1496. The suggested circuit for this application is shown on the front page of this data sheet.

In some applications, it may be necessary to operate the MC1596/MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.

#### AM Modulator

The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.

All that is required to shift from suppressed carrier to AM operation is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal.

However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28.

#### **Product Detector**

The MC1596/MC1496 makes an excellent SSB product detector (see Figure 29).

This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9 MHz.

The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the 0.1  $\mu F$  capacitors on pins 7 and 8 should be increased to 1.0  $\mu F$ . Also, the output filter at pin 9 can be tailored to a specific intermediate frequency and audio amplifier input impedance.

As in all applications of the MC1596/MC1496, the emitter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.

This circuit may also be used as an AM detector by introducing

carrier signal at the carrier input and an AM signal at the SSB input.

The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential amplifier. If the carrier signal is modulated, a 300 mV(rms) input level is recommended.

#### Doubly Balanced Mixer

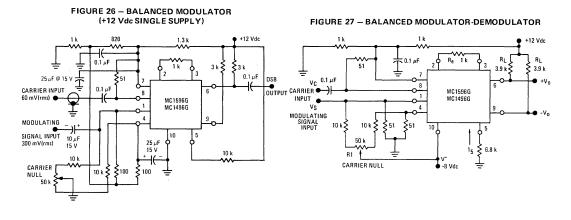
The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks.

The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV(rms).

Figure 30 shows a mixer with a broadband input and a tuned output.

#### Frequency Doubler

The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.


Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively.

#### Phase Detection and FM Detection

The MC1596/MC1496 will function as a phase detector. Highlevel input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals.

An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then provide an output which is a function of the input signal frequency.

Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.



# TYPICAL APPLICATIONS

FIGURE 28 - AM MODULATOR CIRCUIT

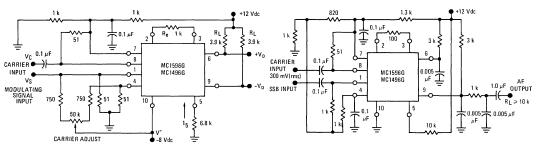



FIGURE 30 – DOUBLY BALANCED MIXER (BROADBAND INPUTS, 9.0 MHz TUNED OUTPUT)

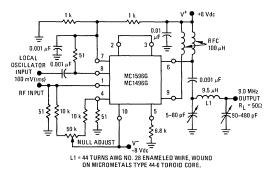
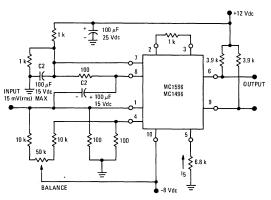
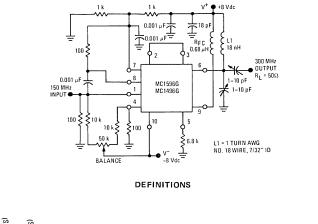
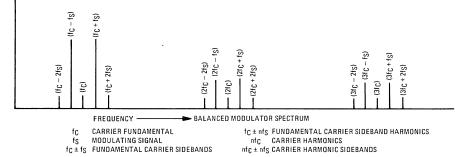






FIGURE 29 – PRODUCT DETECTOR (+12 Vdc SINGLE SUPPLY)




Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for a ceramic packaged device refer to the PIN CONNECTION CHART on the first page of this specification.


4

AMPLITUDE -----

# TYPICAL APPLICATIONS (continued)

FIGURE 32 - 150 to 300 MHz DOUBLER



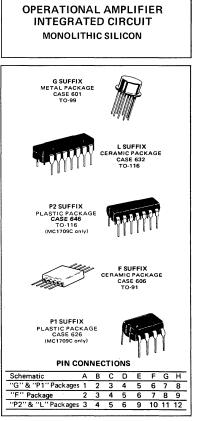


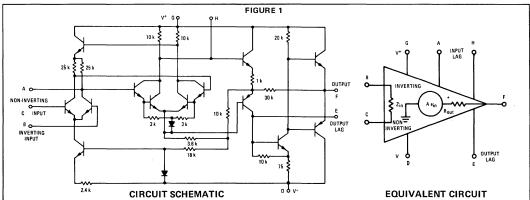
# **OPERATIONAL AMPLIFIERS**

# MONOLITHIC OPERATIONAL AMPLIFIER

MC1709 MC1709C




7


 $\ldots$  . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- High-Performance Open Loop Gain Characteristics
   Avol = 45,000 typical
- Low Temperature Drift  $-\pm 3.0 \,\mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance Zout = 150 ohms typical

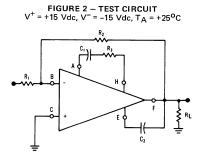
## **MAXIMUM RATINGS** ( $T_A = +25^{\circ}C$ unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V ⁺ V-	+18 -18	Vdc
Differential Input Signal	_	Vin	±5.0	Volts
Common Mode Input Swing		CMVin	±V ⁺	Volts
Load Current		. IL	10	m.A
Output Short Circuit Duration		ts	5.0	s
Power Dissipation (Package Limitation) Metal Can Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$		Ро	680 4.6 500 3.3 625 5.0 750 6.0	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C mW
Operating Temperature Range	MC1709 MC1709C	TA	-55 to +125 0 to +75	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Packages		T _{stg}	-65 to +150 -55 to +125	°C





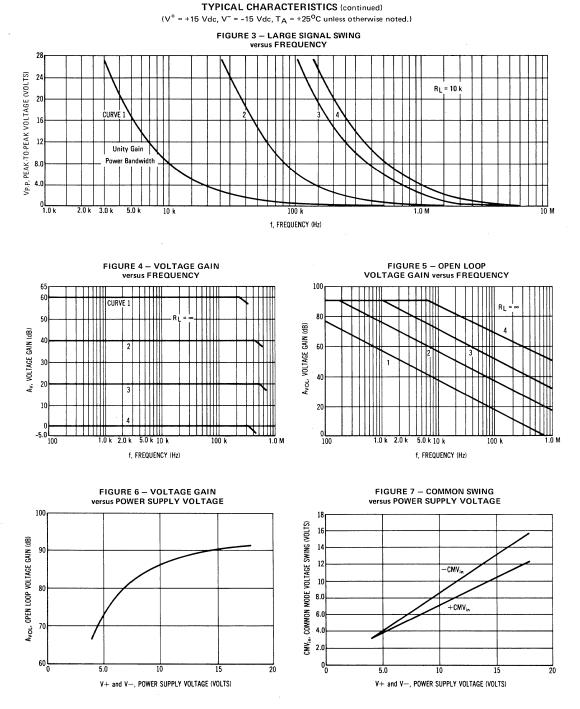
See Packaging Information Section for outline dimensions.


# MC1709, MC1709C (continued)

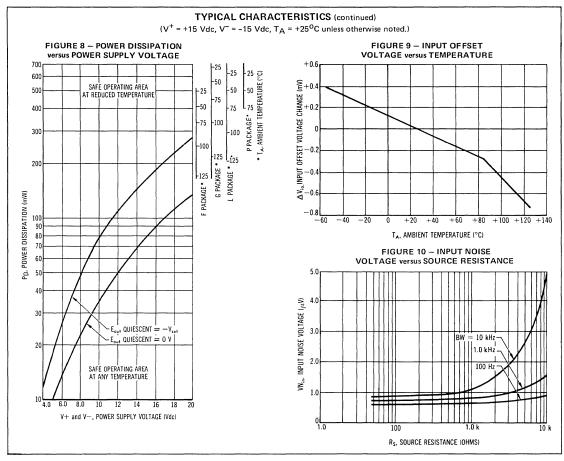
			MC1709			MC1709C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain ( $R_L = 2.0 \text{ k}\Omega$ ) ( $V_0 = \pm 10 \text{ V}, T_A = T_{Iow} \text{ to } T_{high}$ )		25,000	45,000	70,000	15,000	45,000	_	-
Output Impedance (f = 20 Hz)	Zout		150	_	_	150	_	Ω
Input Impedance (f = 20 Hz)	z _{in}	150	400	_	50	250	_	kΩ
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ)	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V _{peak}
Input Common-Mode Voltage Swing	CMV _{in}	±8	±10	-	±8.0	±10	-	Vpeak
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90		65	90	_	dB
Input Bias Current $(T_A = +25^{\circ}C)$ $(T_A = T_{Iow})$	^I b	-	0.2 0.5	0.5 1.5	-	0.3	1.5 2.0	μΑ
Input Offset Current ( $T_A = +25^{\circ}C$ ) ( $T_A = T_{low}$ ) ( $T_A = T_{high}$ )	II _{io} l		0.05  	0.2 0.5 0.2	-	0.1	0.5 0.75 0.75	μΑ
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = T_{low} \text{ to } T_{high})$	V _{io}		1.0	5.0 6.0		2.0	7.5 10	mV
$ \begin{cases} \text{Step Response} \\ \left\{ \begin{array}{l} \text{Gain} = 100, 5.0\% \text{ overshoot}, \\ \text{R}_1 = 1.0  \text{k} \Omega,  \text{R}_2 = 100  \text{k} \Omega, \\ \text{R}_3 = 1.5  \text{k} \Omega,  \text{C}_1 = 100  \text{pF},  \text{C}_2 = \\ 3.0  \text{pF} \end{cases} \end{cases} $	t _f t _{pd} dV _{out} /dt ①	-	0.8 0.38 12			0.8 0.38 12		μs μs V/μs
$\begin{cases} Gain = 10, 10\% \text{ overshoot}, \\ R_1 = 1.0 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \\ R_3 = 1.5 \text{ k}\Omega, C_1 = 500 \text{ pF}, C_2 = 20 \text{ pF} \\ Gain = 1, 5.0\% \text{ overshoot}, \\ R_3 = 1.5 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 10000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 1000 \text{ c}\Omega, \\ R_3 = 1000 \text{ c}\Omega = 10000 \text{ c}\Omega = 100000000000000000000000000000000000$	tf		0.6 0.34 1.7 2.2			0.6 0.34 1.7 2.2		μs μs V/μs μs
	t _{pd} dV _{out} /dt ①		1.3 0.25	<u> </u>	-	1.3 0.25	_	μs V/μs
Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \ \Omega, TA = T_{Iow} \text{ to } T_{high})$ $(R_S \le 10 \ k\Omega, TA = T_{Iow} \text{ to } T_{high})$	TC _{Vio}		3.0 6.0	-	_	3.0 6.0		μV/ ⁰ C
DC Power Dissipation (Power Supply = $\pm 15$ V, V ₀ = 0)	PD		80	165		80	200	mW
Positive Supply Sensitivity (V ⁻ constant)	S ⁺		25	150		25	200	μV/V
Negative Supply Sensitivity (V ⁺ constant)	s-		25	150		25	200	μV/V

# **ELECTRICAL** CHARACTERISTICS ( $V^+$ = +15 Vdc, $V^-$ = -15 Vdc, $T_A$ = +25°C unless otherwise noted)

(1)  $dV_{out}/dt = Slew Rate$ 


# TYPICAL CHARACTERISTICS




Fig.	6 N 1	Test Conditions			ions	
No.	Curve No.	R1 (Ω)           10 k           0 k           0 k           0	<b>R₂</b> (Ω)	<b>R₃(</b> Ω)	C ₁ (pF)	C ₂ (pF)
3	1	10 k	10 k	1.5 k	5.0 k	200
	2	10 k	100 k	1.5 k	500	20
	3	10 k	1.0 M	1.5 k	100	3.0
	4	1.0 k	1.0 M	0	10	3.0
4	1	1.0 k	1.0 M	0	10	3.0
	2	10 k	1.0 M	1.5 k	100	3.0
	3	10 k	100 k	1.5 k	500	20
	4	10 k	10 k	1.5 k	5.0 k	200
5	1	0	8	1.5 k	5.0 k	200
	2	0	80	1.5 k	500	20
	3	0	œ	1.5 k	100	3.0
	4	0	œ	0	10	3.0

# MC1709, MC1709C (continued)

7



# MC1709, MC1709C (continued)



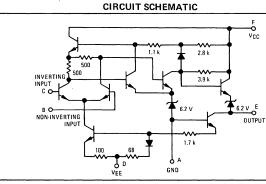
See current MCC1709/1709C data sheet for standard linear chip information. See current MCBC1709/MCB1709F data sheet for Beam-Lead device information. See current MCCF1709, 1709C data sheet for flip-chip information.

# MC1710

# DIFFERENTIAL COMPARATOR

# MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

 $\ldots$  designed for use in level detection, low-level sensing, and memory applications.

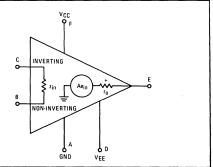

- Differential Input Characteristics Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 μV/^oC
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms V_O = +3.2 V to -0.5 V typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS (TA	= $+25^{\circ}$ C unless otherwise noted)
---------------------	-------------------------------------------

Symbol*	Value	Unit
V _{CC} max	+14	Vdc
VEE max	-7.0	Vdc
VID	±5.0	Volts
VICR	±7.0	Volts
١L	10	mA
PD		
-	680	mW
	4.6	mW/ ⁰ C
	500	mW
	3.3	mW/ ^o C
	625	mW
	5.0	mW/°C
TA	-55 to +125	°C
T _{stg}	-65 to +150	°C
	V _{CC} max V _{EE} max V _{ID} V _{ICR} IL P _D	V _{CC} max         +14           V _{EE} max         -7.0           V _{ID} ±5.0           V _{ICR} ±7.0           IL         10           P _D 680           4.6         500           3.3         625           5.0         -55 to +125

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

7



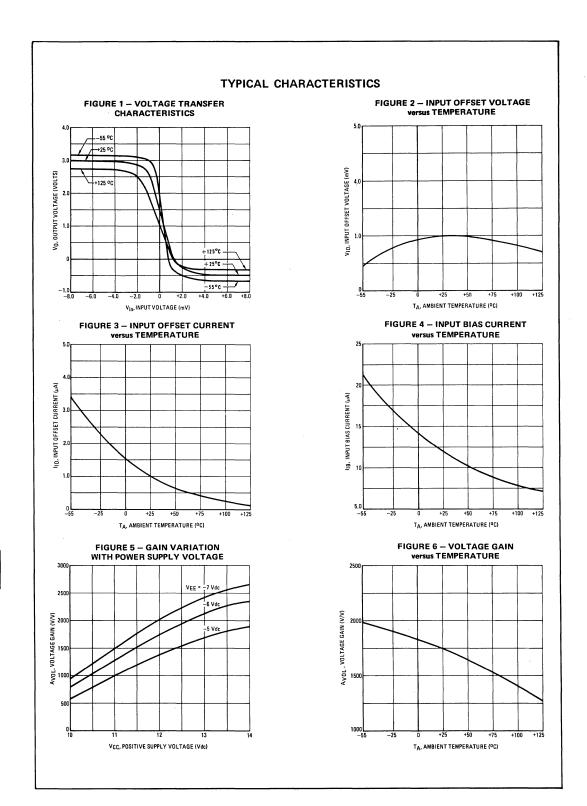

See Packaging Information Section for outline dimensions.

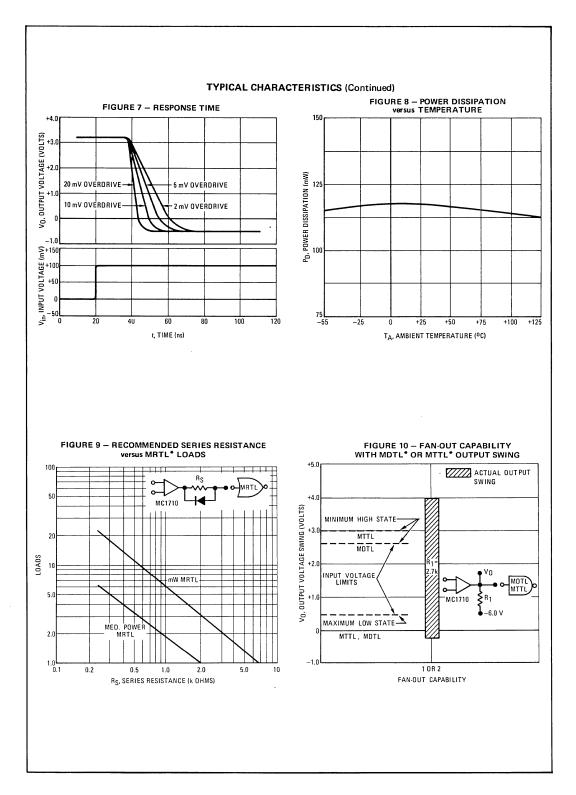
See current MCC1710/1710C data sheet for standard linear chip information. See current MCBC1710/MCB1710F for beam-lead device information

DIFFERENTIAL COMPARATOR INTEGRATED CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED						
			TAL CA	SE	601 19	AGE I to case
F SUFFIX CERAMIC PACKAO CASE 606 TO-91	, GE		J.			iy Y
L SUFFIX CERAMIC PACKAGE CASE 632 TO-116						
PIN CO	NN	IEC	тю	NS		
Schematic	A	в	с	D	E	F
"G" Package	1	2	3	4	7	8
"F" Package	1	2	3	5	6	8
"L" Package	2	3	4	6	9	11

# EQUIVALENT CIRCUIT




7-406


Characteristic Definitions (linear operation)	Characteristic	Symbol*	Min	Тур	Max	Unit
	Input Offset Voltage $V_{O} = 1.4 \text{ Vdc}, T_{A} = +25^{\circ}\text{C}$ $V_{O} = 1.8 \text{ Vdc}, T_{A} = -55^{\circ}\text{C}$ $V_{O} = 1.0 \text{ Vdc}, T_{A} = +125^{\circ}\text{C}$	v _{i0}		1.0 - -	2.0 3.0 3.0	mVdc
C 4 R _S < 200Ω	Temperature Coefficient of Input Offset Voltage	∆V _{IO} /∆T	-	3.0	-	μV/°C
	Input Offset Current V _O = 1.4 Vdc, T _A = +25°C V _O = 1.8 Vdc, T _A = -55°C V _O = 1.0 Vdc, T _A = +125°C	IIO		1.0 	3.0 7.0 3.0	μAdc
$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	$      Input Bias Current             V_O = 1.4 Vdc, T_A = +25 ^{\circ}C             V_O = 1.8 Vdc, T_A = -55 ^{\circ}C             V_O = 1.0 Vdc, T_A = +125 ^{\circ}C $	IΒ		12  -	20 45 20	μAdc
$A_{vol} = \frac{e_{out}}{e_{in}}$	Open Loop Voltage Gain T _A = +25°C T _A = -55 to +125°C	A _{vol}	1250 1000	1700 —	_	v/v
ŢŢ	Output Resistance	r _o	-	200	-	ohms
	Differential Voltage Range	VID	±5.0	-	-	Vdc
- N	Positive Output Voltage V _{1D} $\geq$ 5.0 mV, 0 $\leq$ 1 ₀ $\leq$ 5.0 mA	VOH	2.5	3.2	4.0	Vdc
	Negative Output Voltage V _{ID} ≥ -5.0 mV	VOL	-1.0	-0.5	0	Vdc
	$ \begin{array}{l} \mbox{Output Sink Current} \\ V_{ID} \geqslant -5.0 \mbox{ mV}, V_O \leqslant 0, \\ T_A = +25^\circ C \\ V_{ID} \geqslant -5.0 \mbox{ mV}, V_O \geqslant 0, \\ T_A = -55^\circ C \end{array} $	I _{Os}	2.0 1.0	2.5 2.0	_	mAdc
	Input Common-Mode Voltage Range	VICR	±5.0		_	Volts
	Common-Mode Rejection Ratio V _{EE} = -7.0 Vdc, R _S ≤ 200Ω	CMRR	80	100	-	dB
$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	Propagation Delay Time For Positive and Negative Going Input Pulse	tp	_	40		ns
	Power Supply Current $V_{O} \leqslant 0 V dc$	۱ ^{D+}	-	6.4 5.5	9.0 7.0	mAdc
	Power Consumption		_	115	150	mW

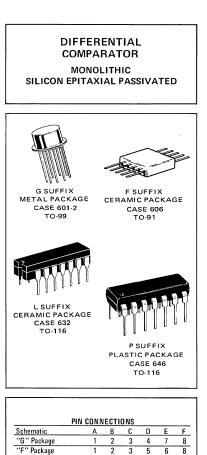
# $\label{eq:constraint} ELECTRICAL CHARACTERISTICS ~ (V_{CC} = +12 ~ Vdc ~ V_{EE} = -6 ~ Vdc. ~ T_A = +25^{\circ}C ~ unless ~ otherwise ~ noted)$

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

7





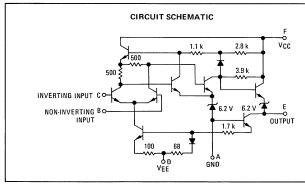

# MC1710C

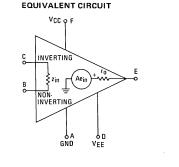
# DIFFERENTIAL COMPARATOR

# MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

 $\ldots$  designed for use in level detection, low-level sensing, and memory applications.

- Differential Input Characteristics Input Offset Voltage = 1.5 mV Offset Voltage Drift = 5.0 µV/^oC
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms V_O = +3.2 V to -0.5 V typical
- Low Output Impedance 200 ohms





# MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+14 - 7.0	Vdc Vdc
Differential-Mode Input Signal Voltage	VID	<u>+</u> 5.0	Volts
Common-Mode Input Swing	VICR	<u>+</u> 7.0	Volts
Peak Load Current	۱۲	10	mA
Power Dissipation (package limitations) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Ceramic and Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$	PD	680 4.6 500 3.3 625 5.0	mW mW/ ^o C mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range*	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

* For fuel temperature range (-  $55^{o}C$  to +125 $^{o}C$ ) and characteristic curves, see MC1710 data sheet.

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.





2 3 4 6 9 11

"L" and "P" Packages

See Packaging Information Section for outline dimensions.

See current MCC1710/1710C data sheet for standard linear chip information.

-

Characteristic Definitions	$C = +12 \text{ Vdc}, \text{ V}_{EE} = -6.0 \text{ Vdc}, \text{ I}_{A} = +29$ Characteristic	Symbol	Min	Тур	Max	Unit
	Input Offset Voltage $V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ $V_O = 1.2 \text{ Vdc}, T_A = +70^{\circ}\text{C}$	VIO	- - -	1.5  -	5.0 6.5 6.5	mVdc
C Δ R _S < 200 Ω	Temperature Coefficient of Input Input Offset Voltage	Δν _{ιο} /Δτ	-	5.0	-	μV/ ⁰ C
	Input Offset Current $V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ $V_O = 1.2 \text{ Vdc}, T_A = +70^{\circ}\text{C}$	110	-	1.0 - -	5.0 7.5 7.5	μAdc
$ \begin{array}{c} \bullet \\ \bullet \\$	Input Bias Current $V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ $V_O = 1.2 \text{ Vdc}, T_A = +70^{\circ}\text{C}$	ι _{IB}	-	15 25 	25 40 40	μAdc
	Voltage Gain $T_A = +25^{\circ}C$ $T_A = 0 \text{ to } +70^{\circ}C$	A _{vol}	1000 800	1500 —	_	V/V
<u> </u>	Output Resistance	ro	-	200	-	ohms
	Differential-Mode Voltage Range	VIDR	<u>+</u> 5.0	-	-	Vdc
	Positive Output Voltage $V_{in} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA}$	∨он	2.5	3.2	4.0	Vdc
	Negative Output Voltage V _{in} ≥-5.0 mV	VOL	-1.0	-0.5	0	Vdc
	$ \begin{array}{c} \text{Output Sink Current} \\ \text{V}_{in} \geqslant 5.0 \text{ mV}, \text{ V}_O \geqslant 0 \\ \text{T}_A = +25^{9}\text{C} \\ \text{T}_A = 0^{9}\text{C} \end{array} $	۱ _s	1.6 0.5	2.5 -	-	mAdc
E Company	Input Common-Mode Range VEE = - 7.0 Vdc	VICR	<u>+</u> 5.0	-	_	Volts
Vin C 2	Common-Mode Rejection Ratio $R_S \leq 200 \ \Omega$	CMRR	70	100		dB
$V_B = 95 \text{ mV-V}_{10}$	Propagation Delay Time For Positive and Negative Going Input Pulse	℔ <b>ℍℾ</b> ∖Րℍ	_	40	-	ns
	Power Supply Current V _O ≤ 0 Vdc	ICC IEE	_	6.4 5.5	9.0 7.0	mAdc
	Power Consumption		-	110	150	mW

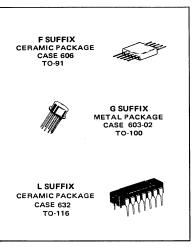
# **ELECTRICAL CHARACTERISTICS** (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = +25^oC unless otherwise noted)

_

# MC1711

# DIFFERENTIAL COMPARATORS

# MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR


 $\ldots$  designed for use in level detection, low-level sensing, and memory applications.

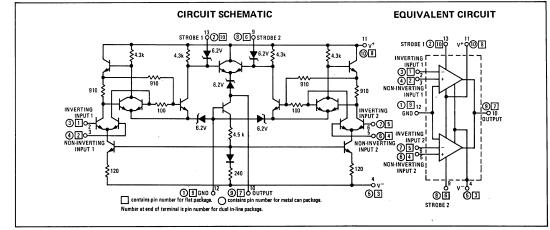
**Typical Characteristics:** 

- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 μV/^OC
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms Vout = +4.5 V to -0.5 V Typical
- Low Output Impedance 200 Ohms

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v+ v-	+14 -7.0	Vdc Vdc
Differential Input Signal	v _{in}	±5.0	Volts
Common Mode Input Swing	CMV	±7.0	Volts
Peak Load Current	IL.	50	mA
Power Dissipation (package limitation) Metal Can Derate above T _A = 25°C	Р _D	680 4.6	m₩ mW/°C
Ceramic Dual In-line Package Derate above T _A = 75°C		670 6.7	m₩ mW/°C
Flat Package Derate above $T_A = 25^{\circ}C$		500 3.3	m₩ m₩/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C



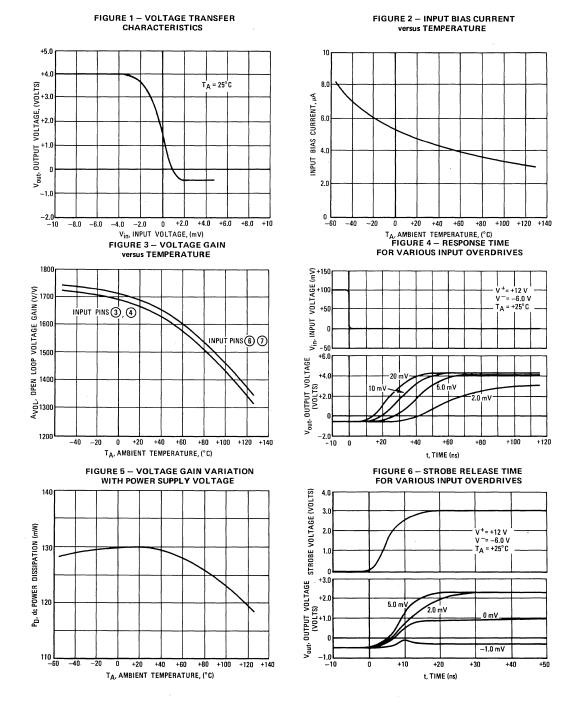

DUAL DIFFERENTIAL

COMPARATOR

INTEGRATED CIRCUIT

MONOLITHIC

SILICON EPITAXIAL PASSIVATED




#### See Packaging Information Section for outline dimensions.

See current MCC1711/1711C data sheet for standard linear chip information.

Characteristic Definitions	Characteristic	Symbol	Min	Тур	Max	Unit
0	Input Offset Voltage $CMV_{in} = 0 Vdc, T_A = +25^{\circ}C$ $T_A = +25^{\circ}C$	v _{io}	-	1.0 1.0	3.5 5.0	mVdc
V ₁₀ V _{out} + V _{out} = 1.4 Vdc @+25°C	$CMV_{in} = 0 Vdc, T_A = -55 to +125°C$ $T_A = -55 to +125°C$		-	-	4.5 6.0	
$V_{out} = 1.8 \text{ Vdc} @ 55^{\circ}\text{C}$ $P_{S} \le 200\Omega$ $V_{out} = 1.0 \text{ Vdc} @ +125^{\circ}\text{C}$	Temperature Coefficient of Input Offset Voltage	TC _{Vio}	-	5.0	-	μV/°C
¹¹	Input Offset Current $V_{out} = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_{out} = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ $V_{out} = 1.0 \text{ Vdc}, T_A = -55^{\circ}\text{C}$	I _{io}	-	0.5	10 20 20	μAde
$\begin{array}{c} \bullet \bullet$	$ \begin{array}{l} V_{out} = 1.0 \ \mathrm{Vdc}, \ \mathrm{T}_{\mathrm{A}} = +125^{\circ} \ \mathrm{C} \\ \\ \hline \mathrm{Input \ Bias \ Current} \\ V_{out} = 1.4 \ \mathrm{Vdc}, \ \mathrm{T}_{\mathrm{A}} = +25^{\circ} \ \mathrm{C} \\ V_{out} = 1.8 \ \mathrm{Vdc}, \ \mathrm{T}_{\mathrm{A}} = -55^{\circ} \ \mathrm{C} \\ V_{out} = 1.0 \ \mathrm{Vdc}, \ \mathrm{T}_{\mathrm{A}} = +125^{\circ} \ \mathrm{C} \end{array} $	I		25 - -	75 150 150	μAde
	Voltage Gain $T_A = +25^{\circ}C$ $T_A = -55 \text{ to } +125^{\circ}C$	A _{VOL}	750 500	1500	-	V/V
+ R _{out}	Output Resistance	Rout	-	200	-	ohms
0	Differential Voltage Range	v _{in}	±5.0	-	-	Vdc
o	Positive Output Voltage $V_{in} \ge 10 \text{ mVdc}, \ 0 \ge I_0 \le 5.0 \text{ mA}$	V _{OH}	2.5	3.2	5.0	Vdc
V _{in}	Negative Output Voltage V _{in} ≧ -10 mVdc	V _{OL}	-1.0	-0.5	0	Vde
0 + I ₀	Strobed Output Level V _{strobe} ≦ 0.3 Vdc	V _{OL(st)}	-1.0	-	0	Vdc
	Output Sink Current $V_{in} \ge -10 \text{ mV}, V_{out} \ge 0$	IS	0.5	0.8	-	mAdc
	Strobe Current V _{strobe} = 100 mVdc	I _{st}	-	1.2	2.5	mAdo
	Input Common Mode Range V ⁻ = -7.0 Vdc	См _{Vin}	±5.0	-	-	Volts
e _{in} - 0 ^v / _b - 100mv e _{out} - 1.4v - 3.0v	Response Time $V_{b} = 5.0 \text{ mV} + V_{io}$	^t R	-	40	-	ns
$= \underbrace{\underbrace{=}_{a}}_{b} \underbrace{\underbrace{+}_{b}}_{b} \underbrace{\underbrace{+}_{a}}_{cout} \underbrace{\underbrace{+}_{cout}}_{cout} \underbrace{\underbrace{+}_{cout}}_{cout}$	Strobe Release Time	^t sr	-	12	-	ns
V _{in} o	Power Supply Current V _{out} ≦ 0 Vdc	^I D ⁺	-	8.6	-	mAdc
		ID-	-	3.9	-	
	Power Consumption		-	130	200	mW

# $\label{eq:linear} \textbf{ELECTRICAL CHARACTERISTICS} \ (each \ comparator) \ V^+ = +12 \ Vdc. \ V^- = -6.0 \ Vdc. \ T_A = 25^\circ C \ unless \ otherwise \ noted)$



# TYPICAL CHARACTERISTICS

7

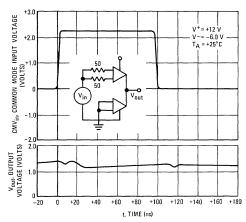



FIGURE 7 - COMMON MODE PULSE RESPONSE



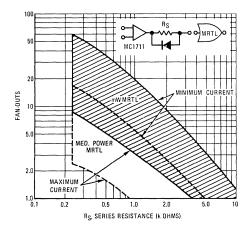



FIGURE 8 – OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING

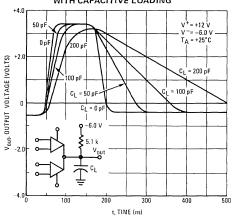
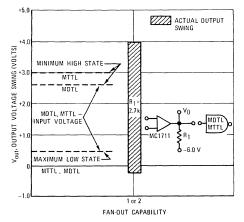
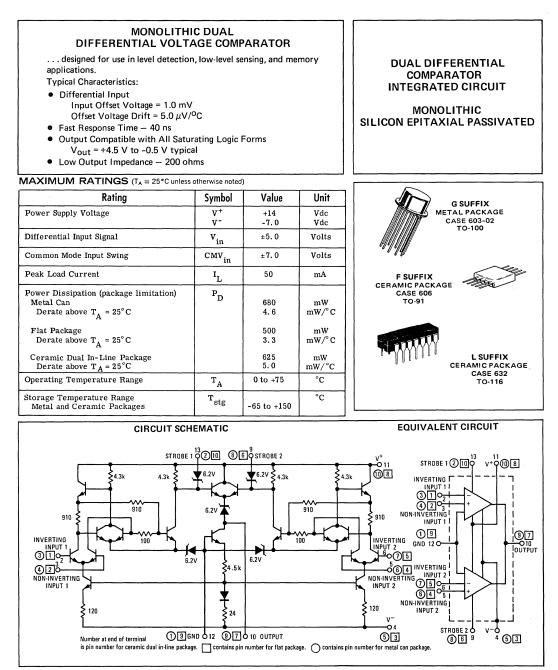
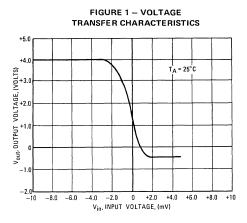





FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING



# MC1711C

## DIFFERENTIAL COMPARATORS




See Packaging Information Section for outline dimensions.

See current MCC1711/1711C data sheet for standard linear chip information.

#### **Characteristic Definitions** Unit Characteristic Symbol Min Тур Max Input Offset Voltage V_{io} mVdc $CMV_{in} = 0 Vdc, T_A = +25^{\circ}C$ . 1.0 5.0 Rs $CMV_{in}^{III} \neq 0 Vdc, T_{A}^{A} = +25^{\circ}C$ 1.0 7.5 -V_{io} $CMV_{in} = 0 Vdc, T_A = 0 to +70°C$ $CMV_{in} \neq 0 Vdc, T_A = 0 to +70°C$ -o v_{out} -6.0 -R_S -_ 10 V_{out} = 1.4 Vdc @ 25°C V_{out} = 1.5 Vdc @ 0°C V_{out} = 1.2 Vdc @ + 70°C 0 ~~~ Temperature Coefficient of Input Offset Voltage тс_{Vio} 5.0 μV/°C -- $R_{S} \le 200\Omega$ Input Offset Current μAdc I_{io} $V_{out} = 1.4 \text{ Vdc}, T_A = +25^{\circ} \text{C}$ _ 0.5 15 $V_{out} = 1.5 \text{ Vdc}, T_A = 0^{\circ} \text{C}$ 25 -- $V_{out} = 1.2 \text{ Vdc}, T_A = +70^{\circ} \text{C}$ --25 o v_{out} Input Bias Current $V_{out} = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ $V_{out} = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}$ μAdc I_b $i_{10} = i_1 - i_2$ 25 100 150 _ - $I_{b} = \frac{I_{1} + I_{2}}{2}$ $V_{out} = 1.2 \text{ Vdc}, T_A = +70^{\circ} \text{C}$ 150 . A_{VOL} = $\frac{e_{out}}{e}$ Voltage Gain v/v Avol $T_A = +25^{\circ}C$ $T_A = -55 \text{ to } +125^{\circ}C$ 700 1500 --O ^eout 500 _ ... Rout R_{out} Output Resistance 200 _ ohms $v_{in}$ Differential Voltage Range ±5.0 Vdc --Positive Output Voltage $V_{in} \ge 10 \text{ mVdc}, \ 0 \le I_0 \le 5.0 \text{ mA}$ v_{он} Vdc 5.0 2.5 3.2 ١, Negative Output Voltage V_{in} ≧ -10 mVdc Vdc VOL -1.0 -0.5 0 V_{in} Strobed Output Level a $V_{strobe} \leq 0.3 Vdc$ V_{OL(st)} -1.0 -0 Vdc Output Sink Current $V_{in} \ge -10 \text{ mV}, V_{out} \ge 0$ mAde $I_{S}$ _ 0.5 0.8 Strobe Current $V_{strobe} = 100 \text{ mVdc}$ I_{st} -1.2 2.5 mAdc см_{Vin} Volts Input Common Mode Range $V^{-} = -7.0 V dc$ ±5.0 --∮ v_{in} 100m e_{in} v_b. ଚ ٥v Response Time $V_b = 5.0 \text{ mV} + V_{io}$ ^tR ns t_Re_{in} 1.4V_ 40 ο eout. 3.0 V ^estrobe t SR Strobe Release Time 12 -ns ^tSR Ŧ 1.4 V e_{out} . o Power Supply Current V_{out} ≦ 0 Vdc mAdc $^{I}D^{+}$ 1_D+ 8.6 _ --3.9 -0 Ъ-. ۱٫-<u>1</u> Power Consumption -130 200 mW

## ELECTRICAL CHARACTERISTICS (each comparator) V⁺ = +12 Vdc. V⁻ = -6.0 Vdc. T_A = 25°C unless otherwise noted)



#### TYPICAL CHARACTERISTICS

FIGURE 2 – INPUT BIAS CURRENT versus TEMPERATURE

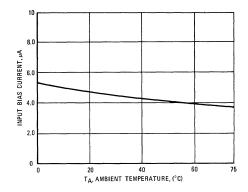
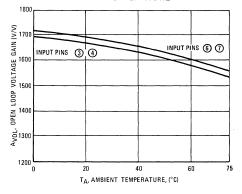
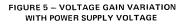





FIGURE 3 – VOLTAGE GAIN versus TEMPERATURE





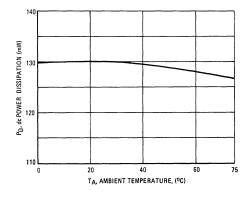



FIGURE 4 – RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

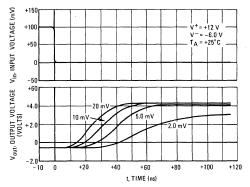
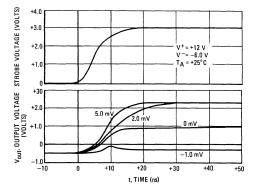
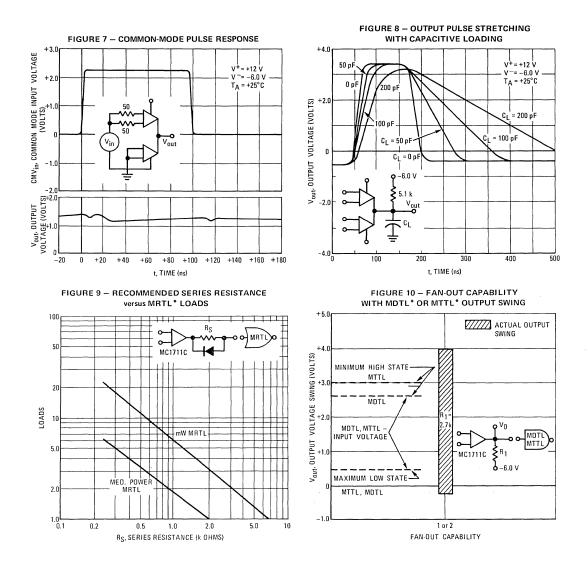





FIGURE 6 – STROBE RELEASE TIME FOR VARIOUS INPUT OVERDRIVES





# MC1712 MC1712C

## **OPERATIONAL AMPLIFIERS**

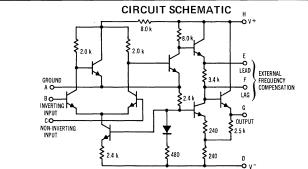
## MONOLITHIC WIDEBAND DC AMPLIFIER

. . . designed for use as an operational amplifier utilizing operating characteristics as a function of the external feedback components.

- Open Loop Gain AVOL = 3600 typical
- Low Temperature Drift  $-\pm 2.5 \,\mu V/^{O}C$
- Output Voltage Swing ±5.3 V typical @ +12 V and -6 V Supplies
- Low Output Impedance Z_{out} = 200 ohms typical

## G SUFFIX METAL PACKAGE CASE 601 TO-99 Lead 4 connected to case Lead 4 connected to case CASE 606 TO-91 LEUFFIX CERAMIC PACKAGE CASE 606 TO-91 LEUFFIX CERAMIC PACKAGE CASE 632 TO-116

WIDEBAND DC AMPLIFIER INTEGRATED CIRCUIT


MONOLITHIC SILICON EPITAXIAL PASSIVATED

PIN CONNECTIONS								
Schematic	А	в	с	D	Е	F	G	н
''G''Package	1	2	з	4	5	6	7	8
"F" Package	2	3	4	5	6	7	8	10
"L" Package	3	4	5	6	9	10	12	13

# EQUIVALENT CIRCUIT

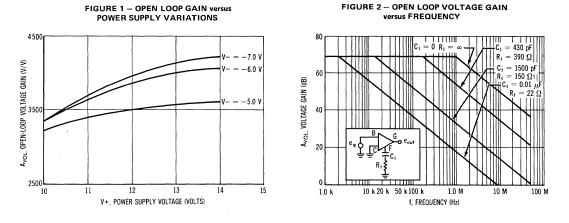
#### **MAXIMUM RATINGS** ( $T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (Total between V ⁺ and V ⁻ terminals)	V ⁺  + V ⁻	21	Vdc
Differential Input Signal	Vin	±5.0	Volts
Common Mode Input Swing	CMVin	+1.5 -6.0	Volts
Peak Load Current	١L	50	mA
Power Dissipation (Package Limitation) Metal Package Derate above $T_A = +25^{\circ}C$ Flat Ceramic Package Derate above $T_A = +25^{\circ}C$ Dual In-Line Ceramic Package Derate above $T_A = +25^{\circ}C$	PD	680 4.6 500 3.3 625 5.0	mW mW/ ^o C mW mW/ ^o C mW
Operating Temperature Range MC1712 MC1712C	Τ _Α	-55 to +125 0 to +75	°C
Storage Temperature Range	Tstq	-65 to +150	°C



See Packaging Information Section for outline dimensions.

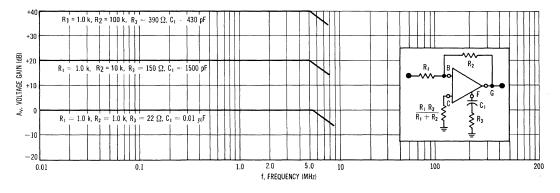
## MC1712, MC1712C (continued)


ELECTRICAL CHARACTERISTICS (T_A = +25^oC unless otherwise noted)

-

Characteristic	Symbol	Min	MC1712 Typ	Max	Min	MC1712	Max	Unit
			1.70			170	max	<del> </del>
Dpen-Loop Voltage Gain $(R_L = 100 \text{ k}\Omega)$	AVOL							V/V
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, V_0 = \pm 2.5 \text{ V})$		600	900	1500	500	800	1500	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, V_0 = \pm 5.0 \text{ V})$ $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, V_0 = \pm 5.0 \text{ Vdc},$		2500	3600	6000	2000	3400	6000	
$T_A = T_{low}$ (0, $T_{high}$ (0)		2000	-	7000	1500	_	7000	
$V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, V_{0} = \pm 2.5 \text{ V},$		2000		,			/000	[
$T_A = T_{low}$ to $T_{high}$ )		500	-	1750	400	-	1750	
Dutput Impedance	Zout		1					ohm
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc, f = 20 Hz)		-	300	700	-	300	800	
(V ⁺ = 12 Vdc, V ⁻ = -6.0 Vdc, f = 20 Hz)	1	-	200	500	-	200	600	
nput Impedance	Zin		]					k ohr
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc, f = 20 Hz)		22	70	-	16	55	-	1
(V ⁺ = 6.0 Vdc V ⁻ = -3.0 Vdc, f = 20 Hz,								
$T_A = T_{low}, T_{high}$		8.0	-	-	10	32	-	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz})$		16	40	-	-	-	-	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz},$		6.0						1
TA = Tlow, Thigh)		6.0	-	-	-	-	-	
Output Voltage Swing	V _o		ŀ					V _{pea}
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, \text{R}_{L} = 100 \text{ k}\Omega)$		±2.5	±2.7	-	±2.5	±2.7	-	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, \text{R}_L = 100 \text{ k}\Omega)$		±5.0	±5.3	-	±5.0	±5.3	-	
$(V^{+} = +6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, \text{R}_{L} = 10 \text{ k}\Omega)$		±1.5	±2.0	-	±1.5	±2.0	-	
$(V^+ = +12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, \text{R}_{L} = 10 \text{ k}\Omega)$	-	±3.5	±4.0	-	±3.5	±4.0	-	<u> </u>
nput Common-Mode Voltage Swing	CMVin							Vpe
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$		+0.5	- 1	- 1	+0.5	-	-	1
(V ⁺ = 12 Vdc, V ⁻ = -6.0 Vdc)		-1.5	-	-	-1.5	-	-	1
(v = 12 VUC, V = -0.0 VOC)		+0.5 -4.0	-	_	+0.5 -4.0	-	-	
Common Made Delection Derife		-7.0			+.0			
Common-Mode Rejection Ratio (V ⁺ = 6.0 Vdc, V ⁻ = −3.0 Vdc, f ≤ 1.0 kHz)	CM rej	80	100		70	95		dB
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$		80	100	-	70	95 95	_	
					ļ			
nput Bias Current	ŀь		[					μΑ
T _A = +25 ^o C (V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc)			1.2	3.5		1.5	5.0	
11 + 12 (V = 12 V/dc V = -6.0 V/dc)			2.0	5.0	_	2.5	7.5	
$b = \frac{1 + 12}{2},  (V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$ $T_A = T_{IOW}$		-	2.0	9.0	_	2.5	1.5	
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$		-	2.5	7.5	_	2.5	8.0	
$(V^+ = 12 Vdc, V^- = -6.0 Vdc)$		-	4.0	10	-	4.0	12	
nput Offset Current (Iio = I1 - I2)	lio		<u> </u>					μΑ
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc)	1.101	-	0.1	0.5	-	0.3	2.0	l "
$\{V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, \}$								
$T_A = T_{low}$ to $T_{high}$		-	·	1.5	-	-	2.5	
(V ⁺ = 12 Vdc, V ⁻ = -6.0 Vdc)			0.2	0.5	-	0.5	2.0	
$(V^+ = 12 Vdc, V^- = -6.0 Vdc,$		1						
TA ~ Tlow to Thigh)		-	-	1.5	-	-	2.5	}
nput Offset Voltage (R _S = 2.0 kΩ)	Vio							m۱
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc)		-	1.3	3.0	-	1.7	6.0	
(V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc,								[
T _A = T _{low} , T _{high} )		· -	-	4.0	-	-	7.5	
$(V^+ = 12 Vdc, V^- = -6.0 Vdc)$		- 1	1.1	2.0	-	1.5	5.0	
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc},$								
TA = Tlow, Thigh)		-	-	3.0	-	-	6.5	
tep Response	Vos							
$V^+ = 12 V dc, V^- = -6.0 V dc$		-	20	40	-	20	40	%
Gain = 100, $V_{in}$ = 1.0 mV,	tf	-	10	30	-	10	30	n
$R_1 = 1.0 k\Omega$ , $R_2 = 100 kΩ$ , $C_2 = 50 pF$ , $R_3 = ∞$ , $C_1 = open$	tpd dV- v/dt	_	10		-	10 12		n: V/
$V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}$	dV _{out} /dt ②		12	50	_	12	50	%
$Gain = 1.0, V_{in} = 10 \text{ mV},$	V _{os} t _f	<u> </u>	25	120		25	120	- 70 n:
$R_1 = 10 k\Omega, R_2 = 10 k\Omega,$			16	-	_	16	-	n
$C_1 = 0.01 \mu\text{F}, R_3 = 20\Omega, C_2 = \text{open}$	tpd dVout/dt②	-	1.5		_	1.5	- 1	VI
Average Temperature Coefficient of	TCVio							μν
Input Offset Voltage ( $R_S = 50\Omega$ )	1.001							^س ا
$(T_A = +25^{\circ}C \text{ to } T_{high})$		-	2.5		-	-	- 1	
$(T_A = T_{IOW} \text{ to } + 25^{\circ}\text{C})$			2.0		-	-	-	
$(T_A = T_{low}, T_{high})$		-		· · ·	-	5.0	-	Í
verage Temperature Coefficient	TClio		· .					nA/
Input Offset Current	1 - 1101						1	1
$(T_A = +25^{\circ}C \text{ to } T_{high})$		-	0.05	-	-	4.0	-	
$(T_A = T_{low} \text{ to } +25^{\circ}C)$			1.5		-	6.0	-	
DC Power Dissipation	PD							mV
$(V_{out} = 0, V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$		_ ·	17	30	-	17	30	
$(V_{out} = 0, V^+ = 12 Vdc, V^- = -6.0 Vdc)$		-	70	120	-	70	120	
Positive Supply Sensitivity	S ⁺							μν,
$(V^- \text{ constant} = -6.0 \text{ Vdc},$	3		60	200	_	60	300	^{μν,}
$V^{+} \approx 12 V dc \text{ to } 6.0 V dc)$		-		200	-	50	000	
Jegative Supply Sensitivity (V ⁺ constant = 12 Vdc,	S-		60	200	_	60	300	μν.
				_ ∠00	-			

 $(1) T_{10w} = 0^{o}C \text{ for MC1712C, } T_{high} = +75^{o}C \text{ for MC1712C} \\ -55^{o}C \text{ for MC1712} +125^{o}C \text{ for MC1712}$ 


②dVout/dt = Slew Rate



## TYPICAL OUTPUT CHARACTERISTICS

(V⁺ = 12 Vdc, V⁻ = -6.0 Vdc, T_A = +25^oC)







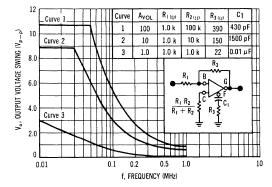
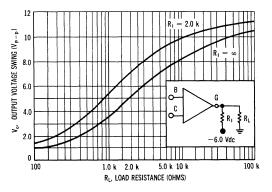
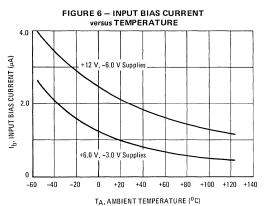





FIGURE 5 – OUTPUT VOLTAGE SWING versus LOAD RESISTANCE



## MC1712, MC1712C (continued)



#### TYPICAL CHARACTERISTICS(continued)

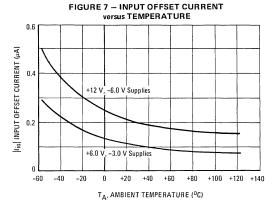



FIGURE 8 – INPUT OFFSET VOLTAGE versus TEMPERATURE

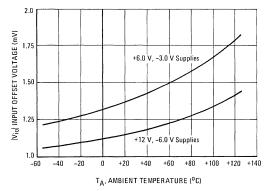
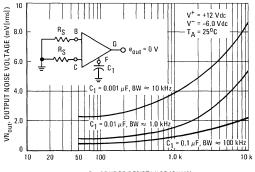




FIGURE 9 – OUTPUT NOISE VOLTAGE versus SOURCE IMPEDANCE



R_S, SOURCE RESISTANCE (OHMS)

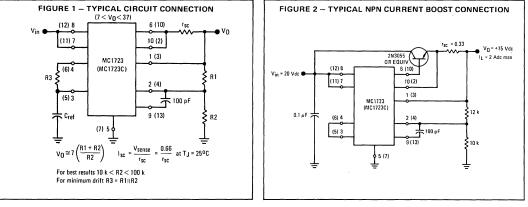
## POSITIVE VOLTAGE REGULATORS

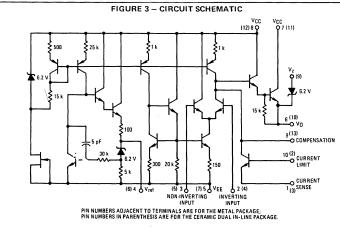
MC1723 MC1723C

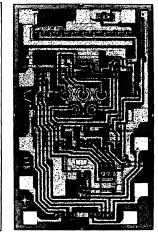
#### MONOLITHIC VOLTAGE REGULATOR

The MC1723 is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723 is specified for operation over the military temperature range ( $-55^{\circ}$ C to  $+125^{\circ}$ C) and the MC1723C over the commercial temperature range (0 to  $+75^{\circ}$ C)


- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line and 0.03% Load Regulation
- Adjustable Short-Circuit Protection


VOLTAGE REGULATOR MONOLITHIC SILICON


EPITAXIAL PASSIVATED


INTEGRATED CIRCUIT

Pin 5 connected to case through substrate. G SUFFIX METAL PACKAGE CASE 603-03







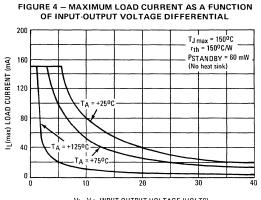


See Packaging Information Section for outline dimensions.

See current MCC1723/1723C data sheet for standard linear chip information. See current MCBC1723/MCB1723F data sheet for beam-lead chip information.

#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

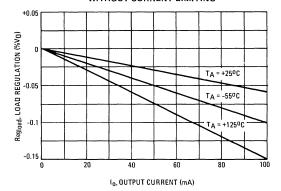
Rating		Symbol	Value	Unit
Pulse Voltage from V _{CC} to V _{EE} (50 ms)	MC1723	V _{in(p)}	50	V _{peak}
Continuous Voltage from V _{CC} to V _{EE}		V _{in}	40	Vdc
Input-Output Voltage Differential		V _{in} VO	40	Vdc
Maximum Output Current		1	150	mAdc
Current from V _{ref}		Iref	15	mAdc
Power Dissipation and Thermal Characteristics Metal Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$		PD 1/θ JA θ JA PD 1/θ JC	0.8 5.4 185 2.1 14	Watt mW/ ^o C ^o C/W Watts mW/ ^o C
Thermal Resistance, Junction to Case Dual In-Line Ceramic Package Derate above T _A = +25 ^o C Thermal Resistance, Junction to Air Operating and Storage Junction Temperature Range Metal Package		θ JC PD 1/θ JA θ JA T J,T stg	70 1.0 6.7 150 -65 to +150	°C/W Watt mW/°C °C/W °C
Dual In-Line Ceramic Package			-65 to +175	


## **OPERATING TEMPERATURE RANGE**

Ambient Temperature	TA		°C
MC1723C		0 to +75	
MC1723		-55 to +125	

**ELECTRICAL CHARACTERISTICS** (Unless otherwise noted:  $T_A = +25^{\circ}C$ ,  $V_{in} = 12$  Vdc,  $V_O = 5$  Vdc,  $I_L = 1$  mAdc,  $r_{sc} = 0$ , C1 = 100 pF,  $C_{ref} = 0$  and divider impedance as seen by the error amplifier  $\leq 10 \text{ k}\Omega$  connected as shown in Figure 1)

			MC1723			MC1723C	;	
Characteristic	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	V _{in}	9.5	_ · ·	40	9.5	-	40	Vdc
Output Voltage Range	Vo	2.0	_	37	2.0	-	37	Vdc
Input-Output Voltage Differential	V _{in} -V _O	3.0	-	38	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.95	7.15	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain (IL = 0, Vin = 30 V)	IВ	. <del>.</del> .	2.3	3.5	-	2.3	4.0	mAdc
$\begin{array}{l} \text{Output Noise Voltage (f = 100 Hz to 10 kHz)} \\ \text{Cref = 0} \\ \text{Cref = 5.0 } \mu\text{F} \\ \text{Average Temperature Coefficient of Output} \\ \text{Voltage (T_{low} } \textcircled{O} < \textbf{T}_A < \textbf{T}_{high} \textcircled{O} ) \end{array}$	V _n TCV _O		20 2.5 0.002			20 2.5 0.003	 0.015	μV(rms) %/ ⁰ C
Line Regulation $(T_{A} = +25^{\circ}C) \begin{cases} 12 \vee \langle v_{in} \langle 15 \vee v_{in} \langle 15 \vee v_{in} \langle 16 \vee v_{in} \rangle \\ 12 \vee \langle v_{in} \langle 16 \vee v_{in} \rangle \\ \langle 12 \vee \langle v_{in} \rangle \\ \langle 12 \vee \langle v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee v_{in} \rangle \\ \langle 12 \vee \langle 15 \vee v_{in} \rangle \\ \langle 12 \vee v_{in} \rangle \\ \langle$	Reg _{in}		0.01 0.02 	0.1 0.2 0.3		0.01 0.1 -	0.1 0.5 0.3	%VO
Load Regulation (1.0 mA $\leq 1_{L} \leq 50$ mA) T _A = +25°C T _{low} $0 < T_{A} < T_{high}$	Regload	-	0.03	0.15 0.6	-	0.03 -	0.2 0.6	%V _O
Ripple Rejection (f = 50 Hz to 10 kHz) C _{ref} = 0 C _{ref} = 5.0 µF	RejR	-	74 86	-	-	74 86	-	dB
Short Circuit Current Limit ( $r_{sc}$ = 10 $\Omega$ , V _O = 0)	I _{sc}		65		-	65	-	mAdc
Long Term Stability	∆V _O /∆t	-	0.1	· _ ,	-	0.1	-	%/1000 Hr


*Symbols conform to JEDEC Bulletin No. 1 where applicable.  $T_{low} = 0^{\circ}C$  for MC1723C  $= -55^{\circ}C$  for MC1723  $= +125^{\circ}C$  for MC1723  $= +125^{\circ}C$  for MC1723



#### **TYPICAL CHARACTERISTICS**

( $V_{in}$  = 12 Vdc,  $V_O$  = 5.0 Vdc,  $I_L$  = 1.0 mAdc,  $r_{sc}$  = 0,  $T_A$  = +25^oC unless otherwise noted)

FIGURE 5 – LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING



Vin-VQ, INPUT-OUTPUT VOLTAGE (VOLTS)



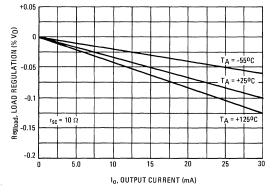
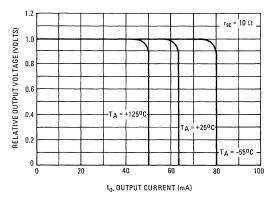
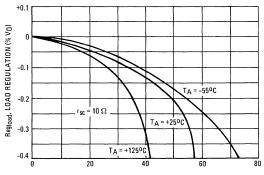
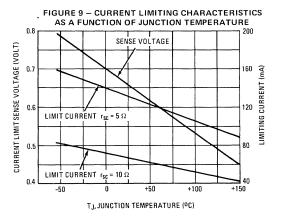
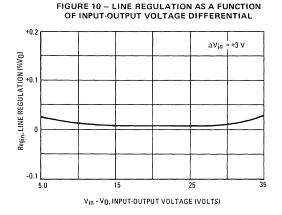



FIGURE 8 - CURRENT LIMITING CHARACTERISTICS



FIGURE 7 – LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING



I₀, OUTPUT CURRENT (mA)







#### TYPICAL CHARACTERISTICS (continued)

FIGURE 11 – LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

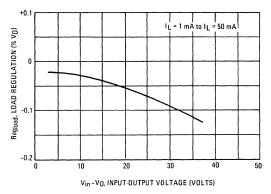



FIGURE 12 – STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE

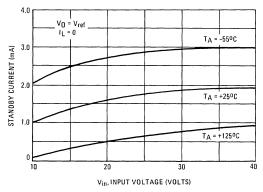



FIGURE 14 - LOAD TRANSIENT RESPONSE

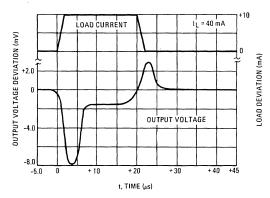



FIGURE 13 - LINE TRANSIENT RESPONSE

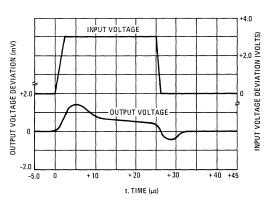
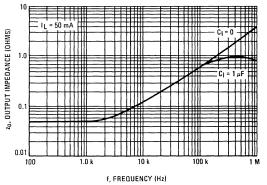
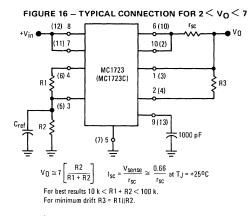





FIGURE 15 – OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY

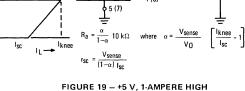




#### TYPICAL APPLICATIONS

Pin numbers adjacent to terminals are for the metal package; pin numbers in parenthesis are for the ceramic dual in-line package.

٧o


(12) 8

(11) 7

(6) 4

(5) 3

+Vin



MC1723

(MC1723C)

FIGURE 17 - MC1723,C FOLDBACK CONNECTION

6 (10)

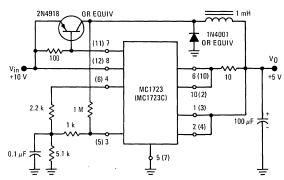
2(4)

9 (13)7

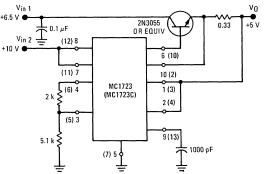
1(3)

10 (2) **\$** ^{ra}

10 k


100 pF

V0


**≯** R1

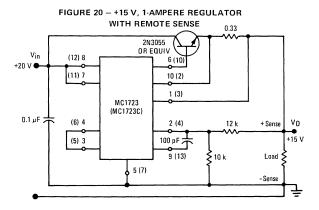
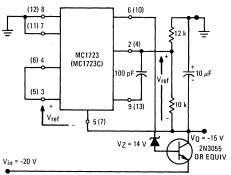
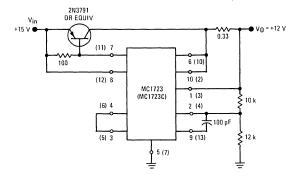

**≲** R2

FIGURE 18 - +5 V, 1-AMPERE SWITCHING REGULATOR



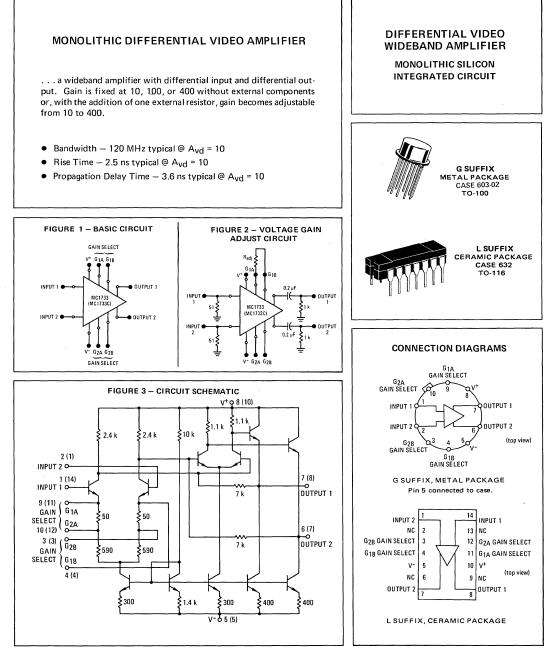

IGURE 19 -- +5 V, 1-AMPERE HIGH EFFICIENCY REGULATOR











## TYPICAL APPLICATIONS (continued)

#### FIGURE 22 – +12 V, 1-AMPERE REGULATOR USING PNP CURRENT BOOST



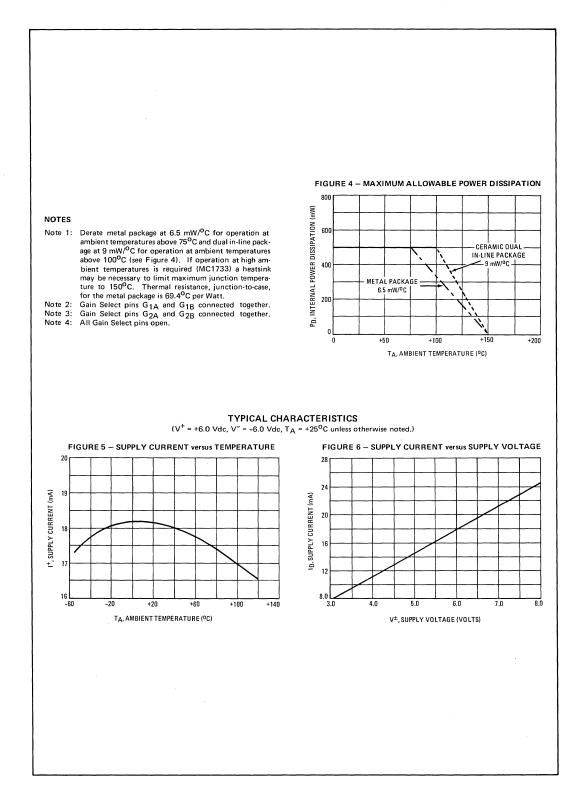
Pin numbers adjacent to terminals are for the metal package; pin numbers in parenthesis are for the ceramic dual in-line package.

## **HIGH-FREQUENCY CIRCUITS**

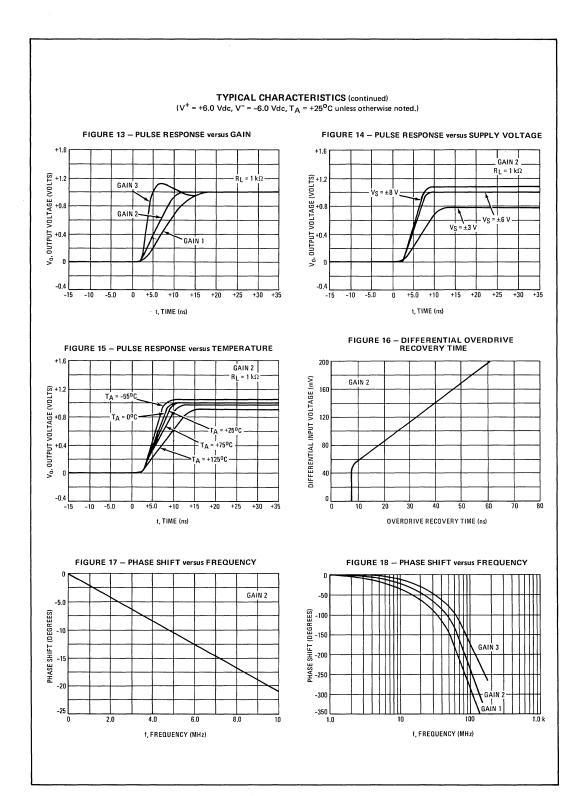


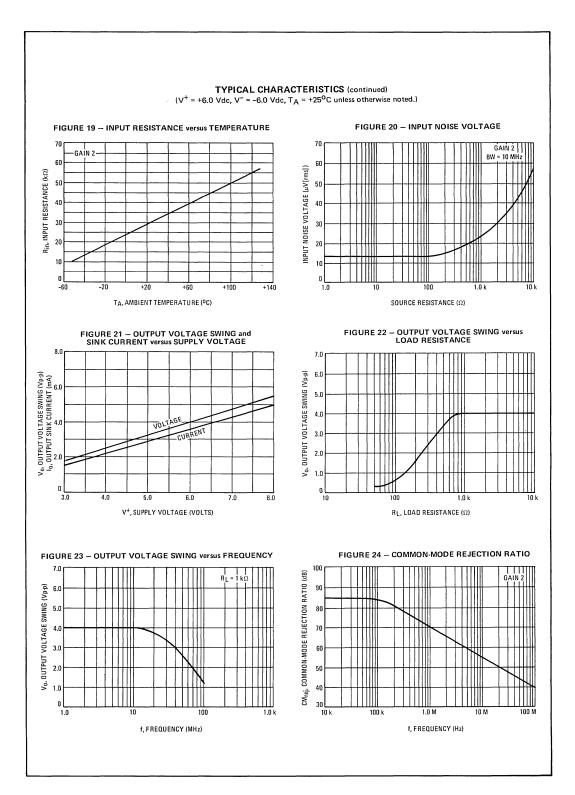
See Packaging Information Section for outline dimensions.

**MC1733** 


MC1733C

## MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺ V ⁻	+8.0 -8.0	Volts
Differential Input Voltage	V _{in}	±5.0	Volts
Common-Mode Input Voltage	CMVin	±6.0	Volts
Output Current	Ι _ο	10	mA
Internal Power Dissipation (Note 1) Metal Can Package Ceramic Dual In-Line Package	PD	500 500	mW
Operating Temperature Range MC1733C MC1733	ТА	0 to +75 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


**ELECTRICAL CHARACTERISTICS** (V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc, at T_A = +25^oC unless otherwise noted)

· · · · · · · · · · · · · · · · · · ·			100						
r			MC1733	1	MC1733C				
Characteristic	Symbol	Min	Тур	Max	Min	Түр	Max	Units	
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3)	A _{vd}	300 90	400 100	500 110	250 80	400 100	600 120		
Gain 3 (Note 4)		9.0	10	11	8.0	10	12		
Bandwidth (R _s = 50 Ω) Gain 1 Gain 2 Gain 3	BW		40 90 120		-	40 90 120		MHz	
Rise Time (R _S = 50 Ω, V _O = 1 Vp-p) Gain 1 Gain 2 Gain 3	tr		10.5 4.5 2.5	- 10 -		10.5 4.5 2.5	 12 	ns	
Propagation Delay (R _s = 50 Ω, V _O = 1 Vp-p) Gain 1 Gain 2 Gain 3	^t pd		7.5 6.0 3.6	- 10 -	-	7.5 6.0 3.6	 10 	ns	
Input Resistance Gain 1 Gain 2 Gain 3	R _{in}	20	4.0 30 250	-	 10 	4.0 30 250		kΩ	
Input Capacitance (Gain 2)	C _{in}		2.0	·	_	2.0	_	pF	
Input Offset Current	llio		0.4	3.0	_	0.4	5.0	μΑ	
Input Bias Current	lb		9,0	20		9.0	30	μΑ	
Input Noise Voltage (R _s = 50 Ω, BW = 1 kHz to 10 MHz)	V _n		: 12-	1997 <u>–</u> 1997 1	-	12	-	μV(rms)	
Input Voltage Range	Vin	±1.0	1	·	±1.0	-	-	v	
Common-Mode Rejection RatioGain 2 $(V_{CM} = \pm 1 \text{ V}, f \le 100 \text{ kHz})$ Gain 2 $(V_{CM} = \pm 1 \text{ V}, f = 5 \text{ MHz})$	CM _{rej}	60	86 60		60 -	86 60	-	dB	
Supply Voltage Rejection Ratio Gain 2 ( $\Delta V_s = \pm 0.5 V$ )	s+, s-	50	70	- - -	50	70	_	dB	
Output Offset Voltage Gain 1 Gain 2 and Gain 3	V _{oo}		0.6 0.35	1,5 1.0	-	0.6 0.35	1.5 1.5	v	
Output Common-Mode Voltage	CMVo	2.4	2.9	3.4	2.4	2.9	3.4	v	
Output Voltage Swing	Vo	3.0	4.0		3.0	4.0	-	Vp-p	
Output Sink Current	1 ₀	2.5	3.6	-	2.5	3.6	-	mA	
Output Resistance	R _{out}	-	20		-	20	-	Ω	
Power Supply Current			18	24	_	18	24	mA	









7

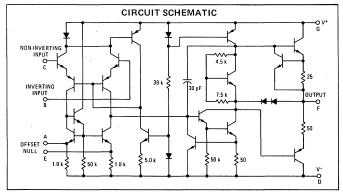
## **OPERATIONAL AMPLIFIERS**

## INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

No Frequency Compensation Required

MC1741 MC1741C


- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

#### MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

Rating	Symbol	Va	lue	Unit
		MC1741C	MC1741	
Power Supply Voltage	V+. V-	+18 -18	+22 -22	Vdc Vdc
Differential Input Signal	Vin	±3	30	Volts
Common Mode Input Swing (Note 1)	CMVin	±1	15	Volts
Output Short Circuit Duration (Note 2)	ts	Conti		
Power Dissipation (Package Limitation) Metal Can Derate above $T_A = +25^{\circ}C$ Flat Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Packages Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	PD	4. 50 3. 6 5 7	30 6 20 3 25 .0 50 50 .0	mW mW/ ^o C mW mW/ ^o C mW/ ^o C mW/ ^o C
Operating Temperature Range	TA	0 to +75	-55 to +125	· °C
Storage Temperature R ange Metal, Flat and Ceramic Packages Plastic Packages	T _{stg}		o <b>+150</b> o +125	°C

Note 1. For supply voltages less than  $\pm$  15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 V.



## OPERATIONAL AMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT

G SUFFIX METAL PACKAGE CASE 601 TO-99



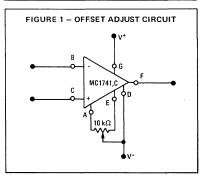


L SUFFIX CERAMIC PACKAGE CASE 632 TO-116

P2 SUFFIX PLASTIC PACKAGE CASE 646 TO-116 (MC1741C only)






F SUFFIX CERAMIC PACKAGE CASE 606 TO-91

P1 SUFFIX PLASTIC PACKAGE CASE 626 (MC1741C only)



PIN CONNECTIONS

Schematic	А	в	С	D	E	F	G
"G" & "P1" Packages	1	2	3	4	5	6	7
"F" Package	2	3	4	5	6	7	8
"P2" & "L" Packages	3	4	5	6	9	10	11



See Packaging Information Section for outline dimensions.

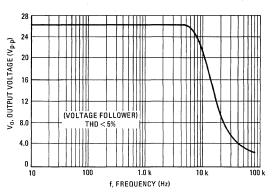
See current MCBC1741/MCB1741F data sheet for beam-lead chip information.

See current MCCF1741,C data sheet for flip-chip information.

## MC1741, MC1741C (continued)

## ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = 15 Vdc, T_A = +25^oC unless otherwise noted)

			MC1741			MC1741C @		+
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Dpen Loop Voltage Gain (R _L = 2.0 kΩ) (V _o = ± 10 V, T _A = +25 ^o C)	AVOL	50,000	200,000	-	20,000	100,000	-	-
$(V_0 = \pm 10 \text{ V}, T_A = T_{Iow} )$ to $T_{high}$		25,000	-	-	15,000	-	-	
Dutput Impedance (f = 20 Hz)	Zo		75	-	-	75	-	Ω
Input Impedance (f = 20 Hz)	Z _{in}	0.3	1.0	_	0.3	1.0	_	Meg Ω
Output Voltage Swing	v							Vpeak
$(R_{L} = 10 \text{ k}\Omega, T_{A} = +25^{\circ}\text{C})$	.0	±12	±14	-	±12	±14	-	peak
$(R_L = 2.0 \text{ k}\Omega, T_A = +25^{\circ}\text{C})$		±10	±13	-	±10	±13	-	
$(R_L = 2.0 \text{ k}\Omega, T_A = T_{\text{low}} (1) \text{ to } T_{\text{high}} (2))$		±10	-	-	±10	-	-	ļ
Input Common-Mode Voltage Swing	CMVin	±12	±13	- 1	±12	±13	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90	-	70	90	-	dB
Input Bias Current				+		+		μΑ
$(T_A = +25^{\circ}C)$	, ^l b		0.2	0.5	·	0.2	0.5	μ.
$(T_A = T_{low}(1))$		_	0.5	1.5	-	-	0.8	
Input Offset Current	I _{io}			<u>.</u>				μA
$(T_A = +25^{\circ}C)$			0.03	0.2	-	0.03	0.2	
$(T_A = T_{low})$ to $T_{high}$		-	-	0.5	-	-	0.3	
Input Offset Voltage (R _S = ≦ 10 kΩ)	V _{io}	1	1	1		1		mV
(T _A = +25°C)	1.01	-	1.0	5.0	_	2.0	6.0	
		1						
$(T_A = T_{low} )$ to $T_{high} $ )		-	-	6.0	-	-	7.5	
Step Response		1						
Gain = 100, R₁ ≈ 1.0 kΩ,	t _f		29 8.5	-	-	29 8.5	-	μs
$R_2 = 100 \text{ k}\Omega, R_3 = 1.0 \text{ k}\Omega$	tpd		1.0	-		1.0	-	μs
	dV _{out} /dt ③	-	1,0	-	_	1.0	-	V/µs
Gain = 10, R ₁ = 1.0 kΩ,	tr		3.0	-	-	3.0	-	μs
$R_2 = 10 k\Omega, R_3 = 1.0 k\Omega$	tpd	- 1	1.0	-		1.0	-	μs
	dV _{out} /dt (3)	1	1.0	- ·	-	1.0	-	V/µs
	tf	1	0.6	-	_	0.6	_	μs
Gain = 1, R ₁ = 10 kΩ,	^t pd		0.38	_	_	0.38	_	μs
$R_2 = 10 k\Omega, R_3 = 5.0 k\Omega$	dV _{out} /dt ③	-	0.8	- ₁ 2	-	0.8	-	V/µs
Average Temperature Coefficient of			<u> </u>					
Input Offset Voltage ( $R_S = 50 \Omega$ , $T_A = T_{Iow}$ (1) to $T_{high}$ (2))	TC _{Vio}							μV/ ^o C
$(R_{S} = 10 \text{ k}\Omega, T_{A} = T_{low} (1 \text{ to } T_{high}(2))$ $(R_{S} = 10 \text{ k}\Omega, T_{A} = T_{low} (1 \text{ to } T_{high}(2))$		-	3.0 6.0		-	3.0 6.0	-	
Average Temperature Coefficient of								
Input Offset Current	ITClio		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					pA/ ⁰ C
$(T_A = T_{low})$ to $T_{high}$		-	50	-	-	50	-	
DC Power Dissipation	PD							mW
(Power Supply = $\pm$ 15 V, V ₀ = 0)		1	50	85	-	50	85	
Positive Supply Sensitivity (V ⁻ constant)	S+	-	30	150		30	150	μV/V .
Vegative Supply Sensitivity (V ⁺ constant)	S-		30	150	_	30	150	μV/V
² ower Bandwidth (A _V = 1, RL = 2.0 kΩ, THD = 5%, V _O = 20 V _{P-P} )	PBW		10		-	10	-	kHz


.

 $(1) T_{10W} = 0^{\circ}C \text{ for MC1741C}$  $= -55^{\circ}C \text{ for MC1741}$ 

2 T_{high} = +75°C for MC1741C = +125°C for MC1741

③ dV_{out}/dt = Slew Rate

Plastic package offered in limited temperature range only.



## 

(V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

FIGURE 2 – POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)

FIGURE 3 - OPEN LOOP FREQUENCY RESPONSE

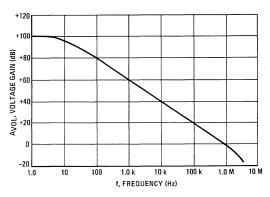



FIGURE 4 - OUTPUT NOISE versus SOURCE RESISTANCE

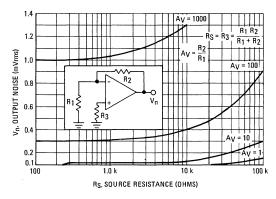



FIGURE 6 - INPUT OFFSET CURRENT versus TEMPERATURE

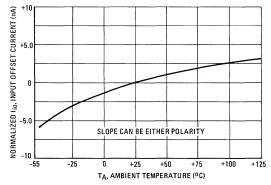



FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE

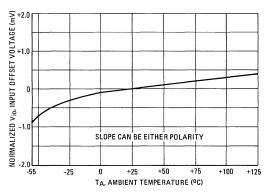
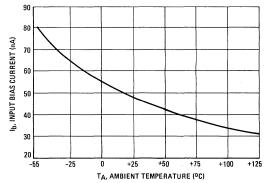




FIGURE 7 - INPUT BIAS CURRENT versus TEMPERATURE





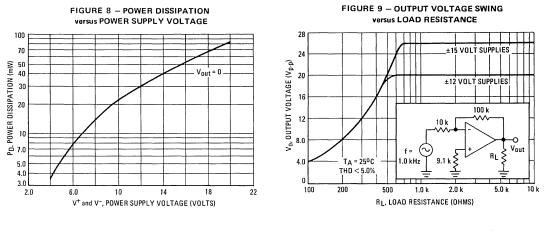
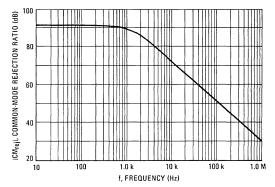
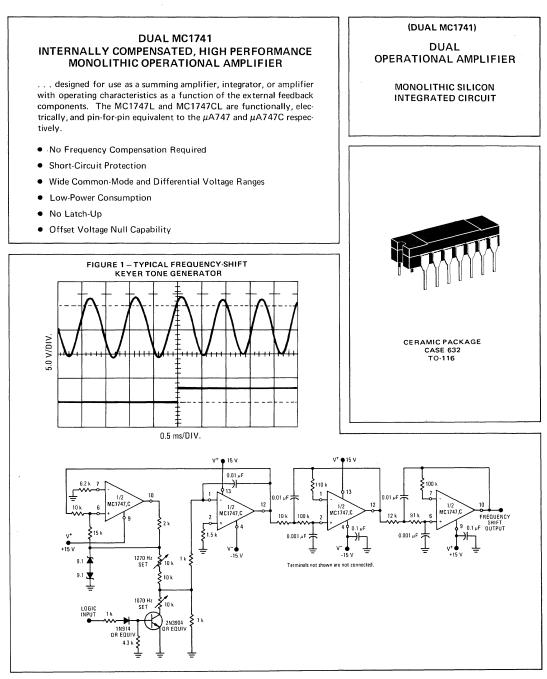





FIGURE 10 – COMMON-MODE REJECTION RATIO versus FREQUENCY



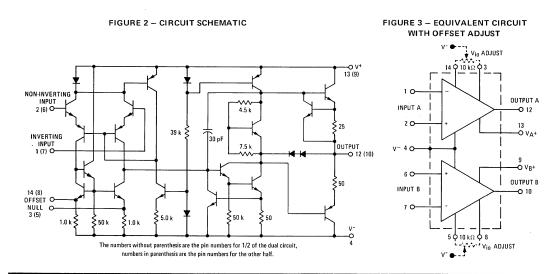
7

## OPERATIONAL AMPLIFIER



See Packaging Information Section for outline dimensions.

MC1747L MC1747CL


## MC1747L, MC1747CL (continued)

## MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	MC1747L	MC1747CL	Unit
Power Supply Voltage	V ⁺	+22	+18	Vdc
	V-	-22	- 18	
Differential Input Signal ①	· v _{in}	<u>+</u> 30		Volts
Common-Mode Input Swing ②	CMVin	<u>+</u> 15		Volts
Output Short Circuit Duration	ts	Continuous		
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = $+60^{\circ}$ C	PD	750 6.0		mW mW/ ^o C
Voltage (Measurement between Offset Null and V ⁻ )		<u>+</u> 0.5		Volts
Operating Temperature Range	TA	-55 to +125	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

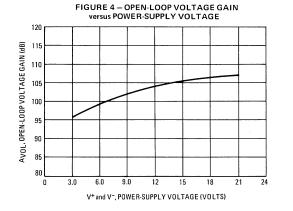
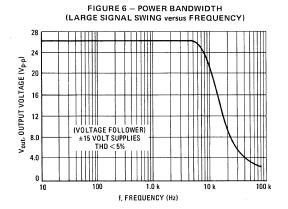
ELECTRICAL CHARACTERISTICS	$(V^+ = +15 \text{ Vdc}, V^- = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C}$ unless otherwise	noted)
----------------------------	---------------------------------------------------------------------------------------------	--------

			MC1747L		1			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Min	Unit
Input Bias Current	Ib.				'			nAdc
T _A = +25 ^o C		~	80	500	-	80	500	
$T_A = T_{high}$ (3)		-	30	500	-	30	800	
$T_A = T_{low}$ (3)	1	-	300	1500	-	30	800	
Input Offset Current	lio							nAdc
$T_A = +25^{\circ}C$		-	20	200		20	200	
$T_A = T_{high}$			7.0	200		7.0	300	
$T_A = T_{low}$		~	85	500	-	7.0	300	
Input Offset Voltage ( $R_S \le 10 k\Omega$ )	Vio							mVdc
$T_A = +25^{\circ}C$	1 101		1.0	5.0	l _	1.0	6.0	
$T_A = T_{low}$ to $T_{high}$		-	1.0	6.0	_	1.0	7.5	1
Offset Voltage Adjustment Range			+ 15	_	_	<u>+</u> 15		mV
			± 15			± 10		
Differential Input Impedance (Open-loop, f = 20 Hz)	_							
Parallel Input Resistance	Rp	0.3	2.0		0.3	2.0		Megohm
Parallel Input Capacitance	Cp	-	1.4			1.4	_	pF
Common-Mode Input Voltage Swing	CMVin							Volts
$T_{low} \leq T_A \leq T_{high}$		± 12	<u>+</u> 13		<u>+</u> 12	<u>+</u> 13	-	
Common-Mode Rejection Ratio ( $R_S = 10 k\Omega$ )	CMrej							dB
$T_{low} \leq T_A \leq T_{high}$	10,	70	90	-	70	90	-	
Open-Loop Voltage Gain	AVOL							Volts
$T_{\Lambda} = +25^{\circ}C$		50,000	200,000	-	25,000	200,000	_	
$ \left. \begin{array}{c} T_A = +25^{\circ}C \\ T_A = T_{low} \text{ to } T_{high} \end{array} \right\} (V_0 = \pm 10 \text{ V}, \text{ R}_L = 2.0 \text{ k}\Omega) $		25,000	_		15,000	-	-	
Transient Response (Unity Gain)			<u> </u>					
$(V_{in} = 20 \text{ mV}, \text{R}_{\text{L}} = 2.0 \text{ k}\Omega, \text{C}_{\text{L}} \leq 100 \text{ pF})$								
Rise Time	tr		0.3		_	0.3	_	μs
Overshoot Percentage	۲r	_	5.0	_	_	5.0	_	%
		-	0.5		-	0.5	_	 V/μs
Slew Rate (Unity Gain)	dV ₀ /dt	· · · · · · · · · · · · · · · · · · ·						
Output Impedance	Zo		75		-	75	-	ohms
Short-Circuit Output Current	ISC	-	25	-	-	25		mAdc
Channel Separation			120		-	120	-	dB
Output Voltage Swing $(T_{low} \leq T_A \leq T_{high})$	Vo		1					Vpk
$R_{\rm I} = 10  \rm k\Omega$		+ 12	± 14		<u>+</u> 12	<u>+</u> 14		PK I
$R_{\rm L} = 2.0  \rm k\Omega$		± 10	+ 13	-	+ 10	+ 13	_	
Power Supply Sensitivity (T _{low} to T _{high} )								μV/V
$V^-$ = Constant, R _S $\leq 10 k\Omega$	s+		30	150	_	30	150	μ ν / ν
$V^+$ = Constant, $R_S \le 10 k\Omega$	s-		30	150		30	150	
					<b> </b>			
Power Supply Current (each amplifier)	1D+,1D-			-		17	2.8	mAdc
$T_A = +25^{\circ}C$			1.7 20	2.8 3.3	_	1.7 2.0	3.3	
$T_A = T_{IOW}$		_	1.5	2.5	_	2.0	3.3	
$T_A = T_{high}$			1.5	2.5		2.0	3.3	
DC Power Dissipation (each amplifier)	PD				1			mW
			50	85	-	50	85	
$T_{A} = +25^{\circ}C$		1	60	100	-	60	100	1
		1 A 1 A 1	45	75	1	60	100	

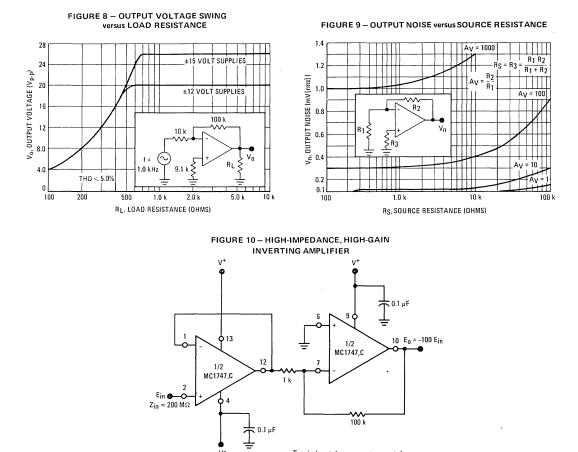


#### TYPICAL CHARACTERISTICS

 $(V^+ = +15 \text{ Vdc}, V^- = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$ 




FIGURE 5 – OPEN-LOOP FREQUENCY RESPONSE



#### FIGURE 7 – POWER DISSIPATION versus POWER SUPPLY VOLTAGE



## MC1747L, MC1747CL (continued)



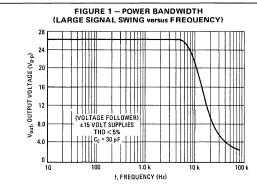
Terminals not shown are not connected.

v-

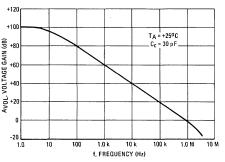
#### TYPICAL CHARACTERISTICS (continued)

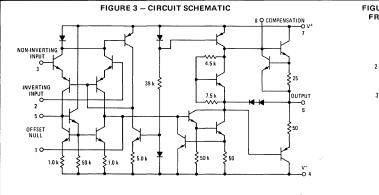
(V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted.)

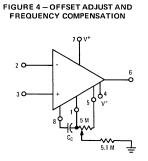
## **OPERATIONAL AMPLIFIERS**


## MC1748G MC1748CG

#### HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER


. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.


- Noncompensated MC1741G
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up






## FIGURE 2 – OPEN LOOP FREQUENCY RESPONSE







See Packaging Information Section for outline dimensions.

See current MCC1748/1748C data sheet for standard linear chip information.

## MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	MC1748G MC1748CG		Unit
Power Supply Voltage	V ⁺	+22 +18		Vdc
	v-	-22	-18	
Differential Input Signal	V _{in}	±	Volts	
Common-Mode Input Swing ①	CMVin	±	Volts	
Output Short Circuit Duration	tS	Conti		
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	6 4	mW mW/ ^o C	
Operating Temperature Range	TA	-55 to +125	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

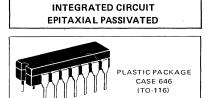
ELECTRICAL CHARACTERISTICS ( $V^+ = +15$  Vdc,  $V^- = -15$  Vdc,  $T_A = +25^{\circ}C$  unless otherwise noted)

		MC1748G			MC1748CG			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	lь							μAdc
T _A = +25 ^o C	1	-	0.08	0.5	-	0.08	0.5	
$T_A = T_{low}$ to $T_{high}$	1	-	0.3	1.5	-	-	0.8	
Input Offset Current	lio							µAdc
T _A = +25 ^o C		-	0.02	0.2	-	0.02	0.2	
$T_A = T_{low}$ to $T_{high}$		-	0.08	0.5	-	-	0.3	
Input Offset Voltage (R _S ≤ 10 k Ω)	Viol							mVdc
$T_A = +25^{\circ}C$		-	1.0	5.0	- 1	1.0	6.0	
$T_A = T_{low}$ to $T_{high}$		-	-	6.0	-		7.5	
Differential Input Impedance (Open-Loop, f = 20 Hz)								
Parallel Input Resistance	Rp	0.3	2.0		0.3	2.0		Megohm
Parallel Input Capacitance	Cp	-	1.4		-	1.4	-	рF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)	-	200	-	-	200		Megohm
Common-Mode Input Voltage Swing	CMVin	±12	±13		±12	±13	-	V _{pk}
Common-Mode Rejection Ratio (f = 100 Hz)	CMrej	70	90	-	70	90	-	dB
Open-Loop Voltage Gain, (Vo = ±10 V, RL = 2.0 k ohms)	AVOL							V/V
T _A = +25 ^o C		50,000	200,000		20,000	200,000	_	
$T_A = T_{low}$ to $T_{high}$		25,000	-	-	15,000	-	-	
Step Response ( $V_{in} = 20 \text{ mV}$ , $C_c = 30 \text{ pF}$ , $R_1 = 2 \text{ k}\Omega$ , $C_1 = 100 \text{ pF}$ )								
Rise Time	tr	-	0.3	-	-	0.3	-	μs
Overshoot Percentage			5.0	-	-	5.0	-	%
Slew Rate	dV _{out} /dt	-	0.8		-	0.8	-	V/µs
Output Impedance (f = 20 Hz)	Zout	-	75	-	-	75		ohms
Short-Circuit Output Current	ISC	-	25	-	-	25	-	mAdd
Output Voltage Swing (RL = 10 k ohms)	Vo	±12	<u>±14</u>	-	±12	±14	-	Vpk
$R_L = 2 k \text{ ohms} (T_A = T_{low} \text{ to } t_{high})$		±10	±13	-	±10	±13	-	
Power Supply Sensitivity								μV/V
$V^{-}$ = constant, $R_{s} \le 10$ k ohms	S+	-	30	150	-	30	150	
$V^+$ = constant, $R_s \le 10$ k ohms	S-	-	30	150	-	30	150	
Power Supply Current	¹ D ⁺	-	1.67	2.83	-	1.67	2.83	mAda
	1 _D -		1.67	2.83	-	1.67	2.83	
DC Quiescent Power Dissipation	PD							mW
$(V_{\Omega} = 0)$		-	50	85	-	50	85	

0 For supply voltages less than ±15 V, the Maximum Input Voltage is equal to the Supply Voltage.

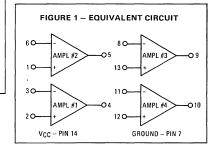
T_{Iow}: 0°C for MC1748CG -55°C for MC1748G
 T_{high}: +75°C for MC1748CG +125°C for MC1748G

7

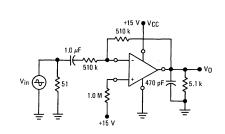

# MC3301P

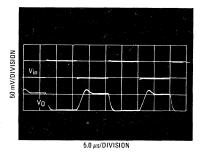
## **OPERATIONAL AMPLIFIER**

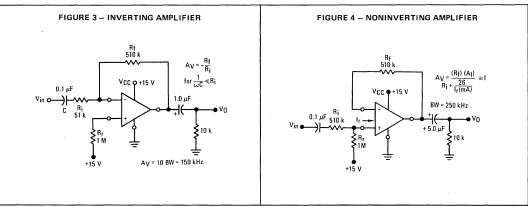
#### MONOLITHIC QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER FOR AUTOMOTIVE APPLICATIONS


These internally compensated operational amplifiers are designed specifically for single positive power supply applications found in automotive and consumer electronics. Each MC3301P contains four independent amplifiers – making it ideal for automotive safety, pollution, and comfort controls. Some typical applications are tachometer, voltage regulator, logic circuits, power control and other similar usages.

- Wide Operating Temperature Range -40 to +85°C
- Single-Supply Operation -- +4.0 to +28 Vdc
- Internally Compensated
- Wide Unity Gain Bandwidth 4.0 MHz typical
- Low Input Bias Current 50 nA typical
- High Open-Loop Gain 2000 V/V typical





MONOLITHIC QUAD


**OPERATIONAL AMPLIFIER** 











See Packaging Information Section for outline dimensions.

#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

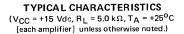
Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC}	+28	Vdc	
Noninverting Input Current	l _r	5.0	mA	
Sink Current	I _{sink}	50	mA	
Source Current	Isource	50	mA	
Power Dissipation (Package Limitation) Derate above T _A = +25 ^o C	PD	625 5.0	mW mW/ ⁰ C	
Operating Temperature Range	TA	-40 to +85	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

#### 

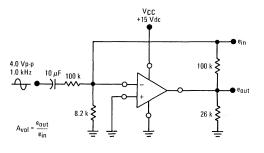
Characteristic	Fig.No.	Note	Symbol	Min	Тур	Max	Unit
Open-Loop Voltage Gain $T_A = +25^{\circ}C$ $-40^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$	5		A _{vol}	1000	2000 1600		V/V
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded	6	1	I _{DO} I _{DG}		6.9 7.8	10 14	mAdc
Input Bias Current, $R_L = \infty$ $T_A = +25^{\circ}C$ $-40^{\circ}C \leq T_A \leq +85^{\circ}C$	7	2	IВ	-	50 100	300 —	nAdc
Current Mirror Gain (I _r = 200 $\mu$ Adc)	7	3	A	0.80	0.98	1.16	A/A
Current Mirror Gain Drift -40°C $\leq T_A \leq +85°$ C				_	<u>+</u> 2.5	_	%
Output Current Source Capability ( $V_{OH} = 0.4 \text{ Vdc}$ ) ( $V_{OH} = 9.0 \text{ Vdc}$ ) Sink Capability ( $V_{OL} = 0.4 \text{ Vdc}$ )	8		l _{source}	3.0  0.5	10 7.0 0.87	_	mAdc
Output Voltage High Voltage Low Voltage (Inverting Input Driven) (Noninverting Input Driven)	6		V _{OH} V _{OL} (inv) V _{OL} (non)	13.5 	14.2 0.03 0.6	 0.1 	Vdc
Input Resistance (Inverting input only)			R _{in}	0.1	1.0	-	Meg Ω
Slew Rate (C _L = 100 pF, R _L = 5.0 k)			SR	-	0.6		V/µs
Unity Gain Bandwidth		4	BW	-	4.0	-	MHz
Phase Margin		4	φm		70		Degrees
Power Supply Rejection (f = 100 Hz)			PSSR	_	55	-	dB
Channel Separation (f = 1.0 kHz)			e _{o1} /e _{o2}	-	65	-	dB

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

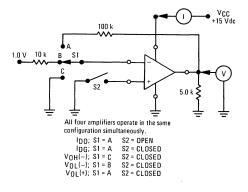
#### NOTES:


- 1. The quiescent current drain will increase approximately 0.3 mA for each inverting or noninverting input that is grounded.
- 2. Input bias current can be defined only for the inverting input. The noninverting input is not a true "differential input" – as with a conventional IC operational amplifier. As such this

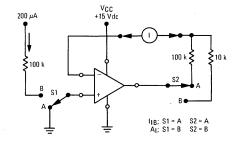
input does not have a requirement for input bias current.


 Current mirror gain is defined as the current demanded at the inverting input divided by the current into the noninverting input.

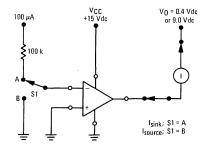
4. Bandwidth and phase margin are defined with respect to the voltage gain from the inverting input to the output.


(MC3301-Page 2)

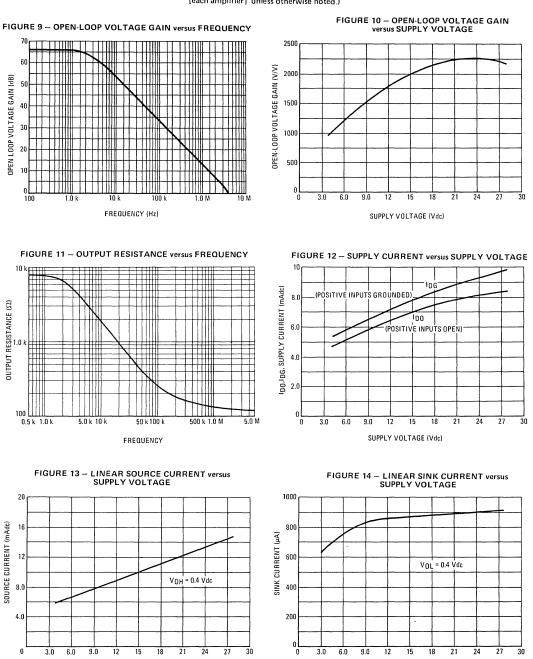








#### FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT




#### FIGURE 7 – INPUT BIAS CURRENT AND CURRENT MIRROR GAIN



#### FIGURE 8 - OUTPUT CURRENT



(MC3301-Page 3)



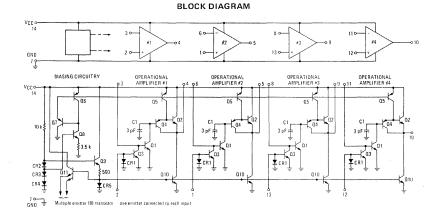
## TYPICAL CHARACTERISTICS

 $(V_{CC} = +15 \text{ Vdc}, \text{R}_{L} = 5.0 \text{ k}\Omega, \text{T}_{A} = +25^{\circ}\text{C}$ [each amplifier] unless otherwise noted.)

(MC3301-Page 4)

SUPPLY VOLTAGE (Vdc)

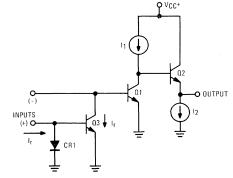
SUPPLY VOLTAGE (Vdc)


#### **OPERATION AND APPLICATIONS**

**FIGURE 15** 

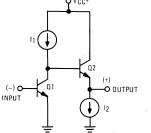
#### Basic Amplifier

The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load  $l_1$  is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q2 is biased class A by the current source  $l_2$ . The magnitude of  $l_2$  (specified  $l_{sink}$ ) is a limiting factor in capacitively coupled


linear operation at the output. The sink current of the device can be forced to exceed the specified level by keeping the output dc voltage above  $\approx 1.0$  volt resulting in an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18 on the following page. No external compensation is required.



A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the non-inverting input,  $I_r$ , flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to  $I_r$ . Since the alpha


current gain of Q3  $\approx$  1, its collector current is approximately equal to  $I_r$  also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

#### FIGURE 17 – OBTAINING A NONINVERTING INPUT



Q6. Transistor Q7 reduces base current loading. The voltage across resistor R2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the VBE drops of transistor Q9 and diode CR5. The current thus set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage. Q11 (Figure 15) provides circuit protection from signals that are negative with respect to ground.

# FIGURE 16 -- A BASIC GAIN STAGE



#### **Biasing Circuitry**

The circuitry common to all four amplifiers is shown in Figure 19, see next page. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers. The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across (R4 and CR3 minus the V_{BE} of Q8. The PNP current sources (Q5, etc.) are set to the magnitude V_{BE}/R1 by transistor

(MC3301-Page 5)

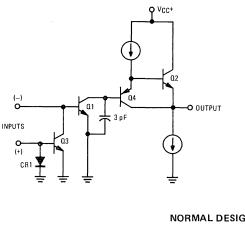
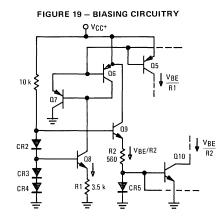
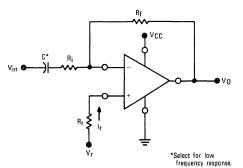




FIGURE 18 - A BASIC OPERATIONAL AMPLIFIER

#### **OPERATION AND APPLICATIONS** (continued)




#### NORMAL DESIGN PROCEDURE

- 1. Output Q-Point Biasing
  - A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures 3 and 4 (see the first page of this specification). The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the 10  $\mu A$  to 200  $\mu A$  range.
  - B. V_{CC} Reference Voltage (see Figures 3 and 4)

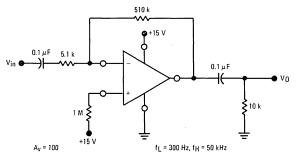
The noninverting input is normally returned to the  $\mathsf{V}_{CC}$ voltage (which should be well filtered) through a resistor,  $\mathsf{R}_r,$  allowing the input current,  $\mathsf{I}_r,$  to be within the range of  $10\,\mu\text{A}$  to  $200\,\mu\text{A}.\,$  Choosing the feedback resistor, R f, to be equal to  $\frac{1}{2}$  R_r will now bias the amplifier output dc level to approximately  $\frac{V_{CC}}{2}$ . This allows the maximum dynamic

range of the output voltage.





- C. Reference Voltage other than  $V_{\mbox{CC}}$  (see Figure 20)
  - The biasing resistor Rr may be returned to a voltage (Vr) other than V_{CC}. By setting  $R_f = R_r$ , (still keeping  $I_r$  between 10  $\mu$ A and 200  $\mu$ A) the output dc level will be equal to Vr. The expression for determining VOdc is:


$$V_{\text{Odc}} = \frac{(A_{\text{I}})(V_{\text{r}})(R_{\text{f}})}{R_{\text{r}}} + \left(1 - \frac{R_{\text{f}}}{R_{\text{r}}}A_{\text{I}}\right)\phi$$

where  $\phi$  is the V_{RF} drop of the input transistors (approximately 0.6 Vdc @ +25°C and assumed equal). Al is the current mirror gain.

- 2. Gain Determination
  - A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of





(MC3301-Page 6)

#### NORMAL DESIGN PROCEDURE (continued)

 $I_{sink}$  becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of  $R_f$  to  $R_i$ , in the same manner as for a conventional operational amplifier:

$$A_v = -\frac{R_f}{R_i}$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 400 kHz with 20 dB of closed loop gain or 40 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF.

B. Noninverting Amplifier

The MC3301P may be used in the noninverting mode (see Figure 4, first page). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of

the input resistor. This resistance is approximately  $\frac{26}{l_r}$  ohms,

where  $\mathbf{1}_{\mathbf{r}}$  is input current in milliamperes. The noninverting ac gain expression is given by:

$$A_{v} = \frac{(R_{f})(A_{I})}{R_{i} + \frac{26}{I_{r}(mA)}}$$

The bandwidth of the noninverting configuration for a given  $R_f$  value is essentially independent of the gain chosen. For  $R_f=510\ k\Omega$  the bandwidth will be in excess of 200 kHz for noninverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

# TYPICAL APPLICATIONS

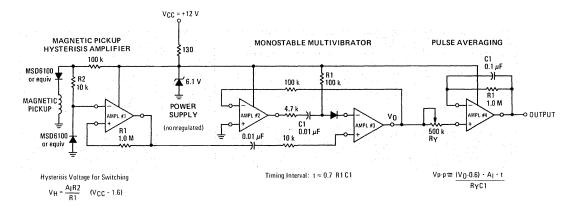
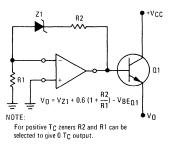
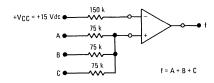
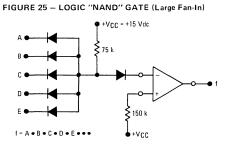





FIGURE 23 – VOLTAGE REGULATOR




#### FIGURE 24 - LOGIC "OR" GATE



(MC3301-Page 7)

7



#### TYPICAL APPLICATIONS (continued)

FIGURE 26 - LOGIC "NOR" GATE

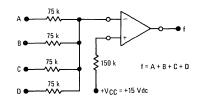



FIGURE 27 - R·S FLIP-FLOP

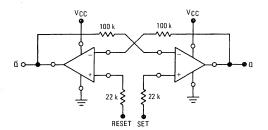



FIGURE 29 - POSITIVE-EDGE DIFFERENTIATOR

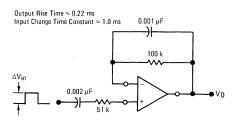
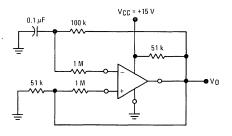
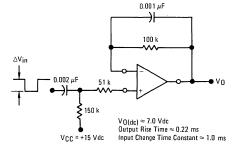





FIGURE 28 – ASTABLE MULTIVIBRATOR



#### FIGURE 30 - NEGATIVE-EDGE DIFFERENTIATOR



7

(MC3301-Page 8)

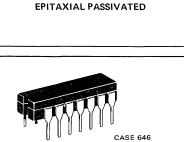
## QUAD COMPARATOR

## MC3302P

## Product Preview

#### MONOLITHIC QUAD SINGLE-SUPPLY COMPARATOR

These comparators are designed specifically for single positivepower-supply Consumer and Industrial electronic applications. Each MC3302P contains four independent comparators – suiting it ideally for usages requiring high density and low-cost.

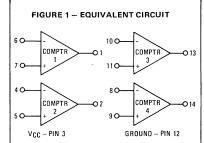

- Wide Operating Temperature Range -40 to +85°C
- Single-Supply Operation +2.0 to +28 Vdc
- Differential Input Voltage = ±V_{CC}
- Compare Voltages at Ground Potential
- MTTL Compatible
- Low Current Drain 600 μA @ V_{CC} = 5.0 Vdc
- Outputs can be Connected to Give the Implied AND Function

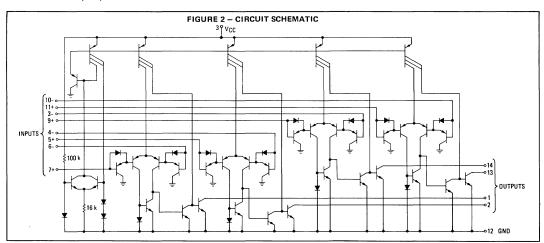
#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Range	Vcc	+2.0 to +28	Vdc
Output Sink Current (See Note 1)	۱ ₀	20	mA
Different Input Voltage	VIDR	$\pm V_{CC}$	Vdc
Common-Mode Input Voltage Range (See Note 2)	VICR	-0.3 to +V _{CC}	Vdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	625 5.0	mW mW/ ^o C
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	т _{stg}	-65 to +150	°C

Note 1. Requires an external resistor, R1, to limit current below maximum rating.

Note 2. If either (+) or (-) inputs of any comparator go more than several tenths of a volt below ground, a parasitic transistor turns "on" causing high input current and possible faulty outputs.





MONOLITHIC QUAD

COMPARATOR

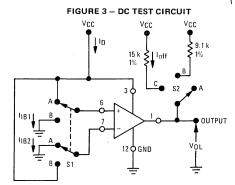
INTEGRATED CIRCUIT

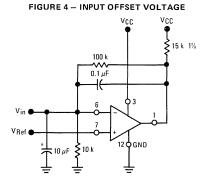
TO-116 PLASTIC PACKAGE



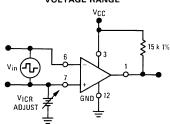


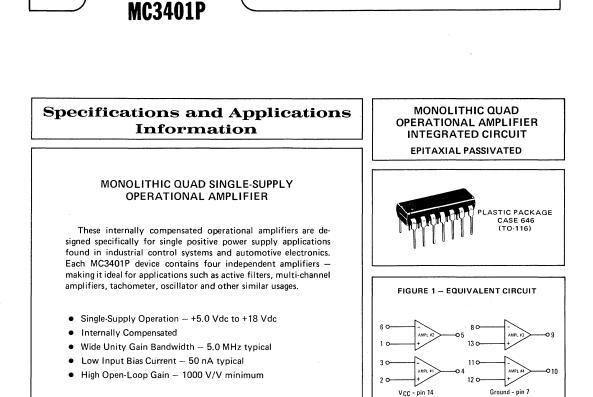
See Packaging Information Section for outline dimensions.


## MC3302P (continued)

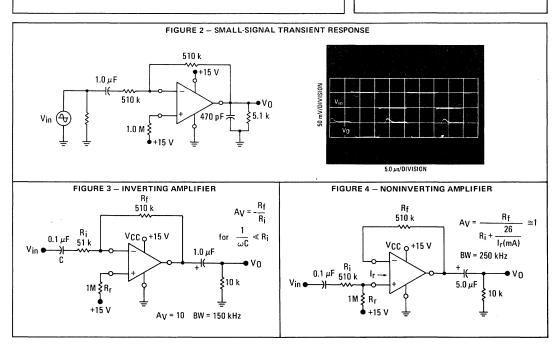

Characteristic	Fig. No.	Symbol	Min	Тур	Max	Unit
Power Supply Current (total for four comparators) $V_{CC} = 5.0 V$ $V_{CC} = 15 V$ $V_{CC} = 28 V$ (S1 = A, S2 = A)	3	D	_ _ _	0.6 0.7 0.8	1.5 1.5 1.5	mAdc
Output Voltage Low (I _O = 1.6 mA) $V_{CC} = 5.0 V$ $V_{CC} = 15 V$ (S1 = B, S2 = B)	3	VOL		150 150	400 400	mVdc
Output Sink Current T _A = -40 ^o C, V _{OL} = 400 mV	-	10	-	6.0		mAdc
Output Leakage Current V _O high, S1 = A, S2 = C	3	loff	_	_	10	μAdc
Input Bias Current (both inputs) (S1 = A,B; S2 = A) Temperature Coefficient	3	I _{IB} TCI _{IB}	-	30 0.16	500 -	nAdc nA/ ^o C
Input Offset Current Temperature Coefficient	3	IIO TCIIO	_	3.0 0.035	100 -	nAdc nA/ ⁰ C
Input Offset Voltage (V _{IO} = [V _{ref} - V _{in} ]) V _{Ref} = 1.2 Vdc Temperature Coefficient	4	V _{IO} TCV _{IO}		3.0 7.0	10 —	mVdc µV/ ^o C
Common-Mode Input Voltage Range V _{in} = 50 mVp·p, V _{CC} = 28 Vdc	5	VICR	26	-	_	Vdc
Common-Mode Rejection Ratio	-	CMRR	-	60		dB
Differential Input Voltage Range (S1 = A,B; S2 = A)	3	VIDR	±V _{CC}	-	-	Vdc
Transconductance	-		-	2.0	-	mhos
Voltage Gain (R _L = 15 kilohms)		A _{vol}	-	30,000	-	V/V
Propagation Delay Time		td	-	2.0	-	μs
Slew Rate	-	t _{SR} - t _{SR} +	_ _	200 50	-	V/µs

### ELECTRICAL CHARACTERISTICS ( $V_{CC}$ = +15 Vdc, $T_A$ = +25°C [each comparator] unless otherwise noted.)


Symbols conform to JEDEC Bulletin No. 1 when applicable.


TEST CIRCUITS (1/4 Circuit Shown)






#### FIGURE 5 – INPUT COMMON-MODE VOLTAGE RANGE





**OPERATIONAL AMPLIFIERS** 



7

#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+18	Vdc
Non-inverting Input Current	lin	5.0	mA
Power Dissipation Derate above $T_A = +25^{\circ}C$	PD	625 5.0	mW mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

#### $\label{eq:linear} \textbf{ELECTRICAL CHARACTERISTICS} ~ [V_{CC} = +15~Vdc,~R_L = 5.0~k\Omega,~T_A = +25^oC~(each amplifier)~unless otherwise noted.]$

Characteristic	Fig. No.	Note	Symbol	Min	Тур	Max	Unit
Open-Loop Voltage Gain $T_A = +25^{\circ}C$ $0^{\circ}C ≤ T_A ≤ +75^{\circ}C$	5,9,10	1	A _{vol}	1000 800	2000	-	V/V
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded	6,12	2	I _{DO} I _{DG}	-	6.9 7.8	10 14	mAdc
Input Bias Current, $R_{L} = \infty$ $T_{A} = +25^{\circ}C$ $0^{\circ}C \leq T_{A} \leq +75^{\circ}C$	5	3	ΙB		50 -	300 500	nAdc
Output Current Source Capability Sink Capability	5 13 14	4	l _{source} I _{sink}	5.0 0.5	10 1.0		mAdc
Output Voltage High Voltage Low Voltage Undistorted Output Swing (0°C $\leq$ T _A $\leq$ +75°C)	7 7 8	5 5 6	V _{OH} V _{OL} V _{O(p-p)}	13.5  10	14.2 0.03 13.5	 0.1 	Vdc V _(p-p)
Input Resistance	5		R _{in}	0.1	1.0	-	MEG Ω
Slew Rate (C _L = 100 pF, R _L = 5.0 k)			SR		0.6		V/µs
Unity Gain Bandwidth			BW	-	5.0		MHz
Phase Margin			¢т		70	-	Degrees
Power Supply Rejection (f = 100 Hz)		7	PSSR		55	_	dB
Channel Separation (f = 1.0 kHz)			eo1/eo2	-	65	-	dB

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

#### NOTES

- 1. Open loop voltage gain is defined as the voltage gain from the inverting input to the output.
- The quiescent current will increase approximately 0.3 mA for each noninverting input which is grounded. Leaving the noninverting input open causes the apparent input bias current to increase slightly (100 nA) at high temperatures.
- Input bias current can be defined only for the inverting input. The noninverting input is not a true "differential input" – as with a conventional IC operational amplifier. As such this input does not have a requirement for input bias current.
- Sink current is specified for linear operation. When the device is used as a gate or a comparator (non-linear operation), the sink capability of the device is approximately 5.0 milliamperes.
- 5. When used as a noninverting amplifier, the minimum output voltage is the  $V_{\mbox{\scriptsize BE}}$  of the inverting input transistor.
- Peak-to-peak restrictions are due to the variations of the quiescent dc output voltage in the standard configuration (Figure 8).
- Power supply rejection is specified at closed loop unity gain, and therefore indicates the supply rejection of both the biasing circuitry and the feedback amplifier.

SIMPLIFIED TEST CIRCUITS

 $(V_{CC} = +15 \text{ Vdc}, \text{ R}_{L} = 5.0 \text{ k}\Omega, \text{ T}_{A} = +25^{\circ}\text{C}$ [each amplifier] unless otherwise noted)

#### FIGURE 5 – OPEN-LOOP GAIN AND INPUT RESISTANCE (INPUT BIAS CURRENT, OUTPUT CURRENT)

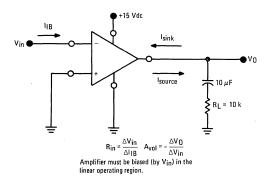
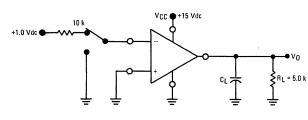
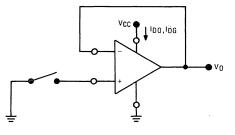
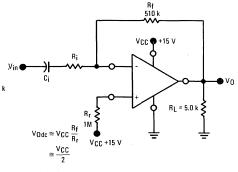
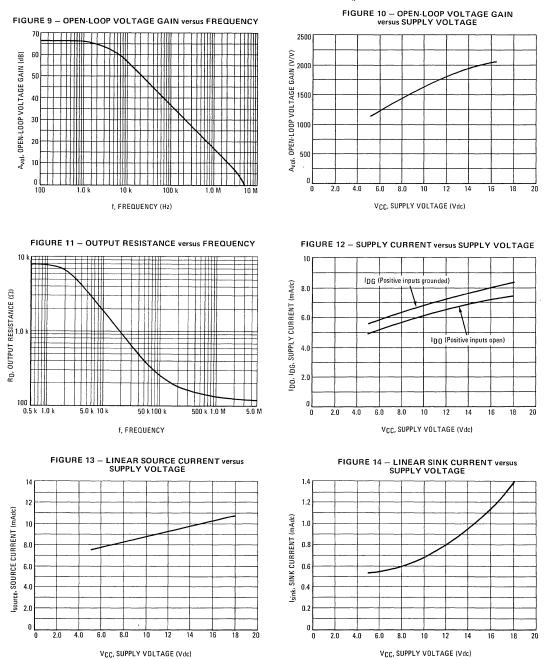





FIGURE 7 – OUTPUT VOLTAGE SWING




VOL measured with "-" input biased up as shown. VOH measured with "-" input grounded.

#### FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT




IDO is total supply current with "+" input open. IDG is total supply current with "+" input grounded.

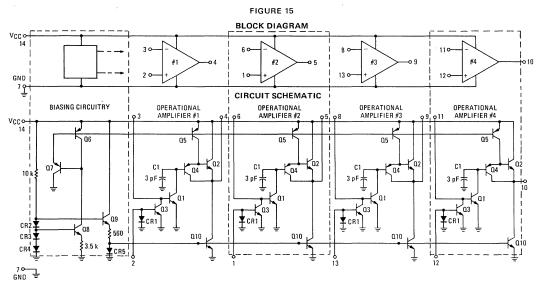
FIGURE 8 -- PEAK-TO-PEAK OUTPUT VOLTAGE



for  $R_f \cong 2R_f$ 

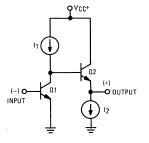


## TYPICAL CHARACTERISTICS


 $(V_{CC} = +15 \text{ Vdc}, R_{L} = 5.0 \text{ k}\Omega, T_{A} = +25^{\circ}\text{C}$ [each amplifier] unless otherwise noted.)

#### **OPERATION AND APPLICATIONS**

#### **Basic Amplifier**


The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load 1₁ is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q2 is biased class A by the current source 1₂. The magnitude of 1₂ (specified I_{sink}) is a limiting factor in capacitively coupled

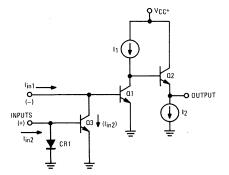
linear operation at the output. The sink current of the device can be forced to exceed the specified level with an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18. No external compensation is required.



A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the non-inverting input,  $l_{in2}$ , flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to  $l_{in2}$ . Since the



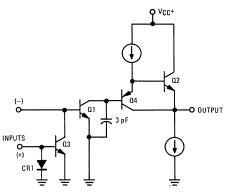


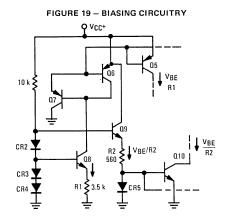

#### **Biasing Circuitry**

The circuitry common to all four amplifiers is shown in Figure 19. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.

The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the VBE of Q8. The PNP current sources (Q5, etc.) are set to the magnitude VBE/R1 by transistor

alpha current gain of  $\Omega 3 \approx 1$ , its collector current  $\approx I_{in2}$  also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.


#### FIGURE 17 - OBTAINING A NONINVERTING INPUT

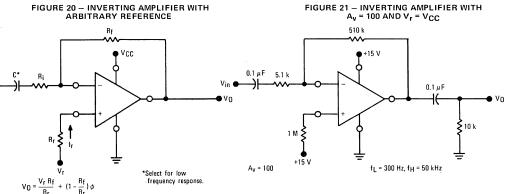



Q6. Transistor Q7 reduces base current loading. The voltage across resistor R2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the V_{BE} drops of transistor Q9 and diode CR5. The current thus set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage.

#### **OPERATION AND APPLICATIONS** (continued)

FIGURE 18 - A BASIC OPERATIONAL AMPLIFIER






#### NORMAL DESIGN PROCEDURE

- 1. Output Q-Point Biasing
  - A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures 3 and 4. The high impedance of the collector of the non-inverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the 5  $\mu A$ to 100 µA range.
  - B. V_{CC} Reference Voltage (see Figures 3 and 4) The noninverting input is normally returned to the V_{CC} voltage (which should be well filtered) through a resistor,  $R_r$ , allowing the input current,  $I_r$ , to be within the range of 5  $\mu$ A to 100  $\mu$ A. Choosing the feedback resistor, R_f, to be equal to 1/2 Rr will now bias the amplifier output dc level to approximately  $\frac{V_{CC}}{C}$ . This allows for maximum dynamic

range of the output voltage.

C. Reference Voltage other than  $\mathsf{V}_{CC}$  (See Figure 20). The biasing resistor  $R_r$  may be returned to a voltage ( $V_r$ )



## FIGURE 20 -- INVERTING AMPLIFIER WITH ARBITRARY REFERENCE

#### other than V_{CC}. By setting $R_f = R_r$ , (still keeping $I_r$ between 5 $\mu$ A and 100 $\mu$ A) the output dc level will be equal to V_r. Neglecting error terms, the expression for determining VOdc is:

$$V_{\text{Odc}} = \frac{(V_r) (R_f)}{R_r} + \left(1 - \frac{R_f}{R_r}\right)\phi$$

where  $\phi$  is the V_{BE} drop of the input transistors (approximately 0.7 Vdc @ +25°C).

The error terms not appearing in the above equation can cause the dc operating point to vary up to 20% from the expected value. Error terms are minimized by setting the input current within the range of 5  $\mu$ A to 100  $\mu$ A.

#### 2. Gain Determination

A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of

#### NORMAL DESIGN PROCEDURE (continued)

 $I_{sink}$  becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of  $R_f$  to  $R_i$ , in the same manner as for a conventional operational amplifier:

 $A_v = -\frac{R_f}{R_i}$ 

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 5.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 500 kHz with 20 dB of closed loop gain or 50 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF.

#### B. Noninverting Amplifier

Although recommended as an inverting amplifier, the MC 3401P may be used in the noninverting mode (see Figure 4). The amplifier gain in this configuration is subject to the same error terms that affect the output Q point biasing so the gain may deviate as much as  $\pm 20\%$  from that expected. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is 26

approximately  $\frac{26}{l_r}$  ohms, where  $l_r$  is input current in milli-

amperes. The noninverting gain expression is given by:

$$A_{v} = \frac{R_{f}}{R_{i} + \frac{26}{I_{r} (mA)}} + 20\%.$$

The bandwidth of the noninverting configuration for a given  $R_f$  value is essentially independent of the gain chosen. For  $R_f$  = 510  $\kappa\Omega$  the bandwidth will be in excess of 200 kHz for noninverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

#### TYPICAL APPLICATIONS

#### FIGURE 22 – AMPLIFIER AND DRIVER FOR A 50-OHM LINE

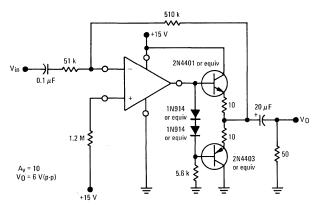
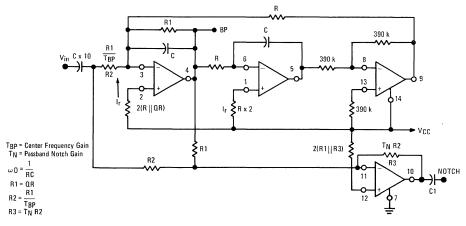
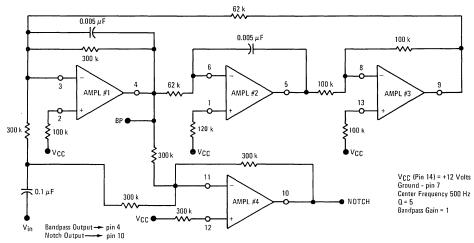
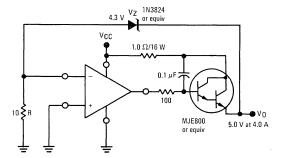
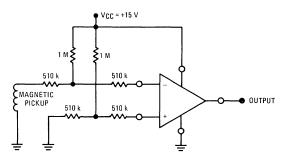



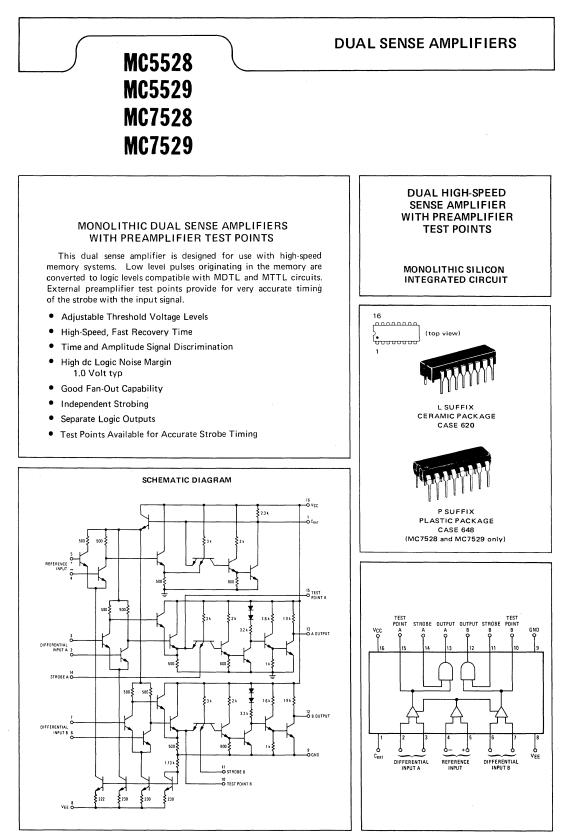

FIGURE 23 – BASIC BANDPASS AND NOTCH FILTER



#### TYPICAL APPLICATIONS (continued)

#### FIGURE 24 - BANDPASS AND NOTCH FILTER



FIGURE 25 - VOLTAGE REGULATOR



$$\label{eq:VO} \begin{split} V_{0} = V_{Z} + 0.6 ~Vdc \\ NOTE 1: ~R is used to bias the zener. \\ NOTE 2: ~If the Zener TC is positive, and equal in magnitude to the negative TC of the input to the operational amplifier (<math display="inline">\approx 2.0~mV/^{0}C$$
), the output is zero-TC. A 7.0-Vol Zener will give approximately zero-TC. \end{split}

FIGURE 26 - ZERO CROSSING DETECTOR





See Packaging Information Section for outline dimensions.

## MC5528, MC5529, MC7528, MC7529 (continued)

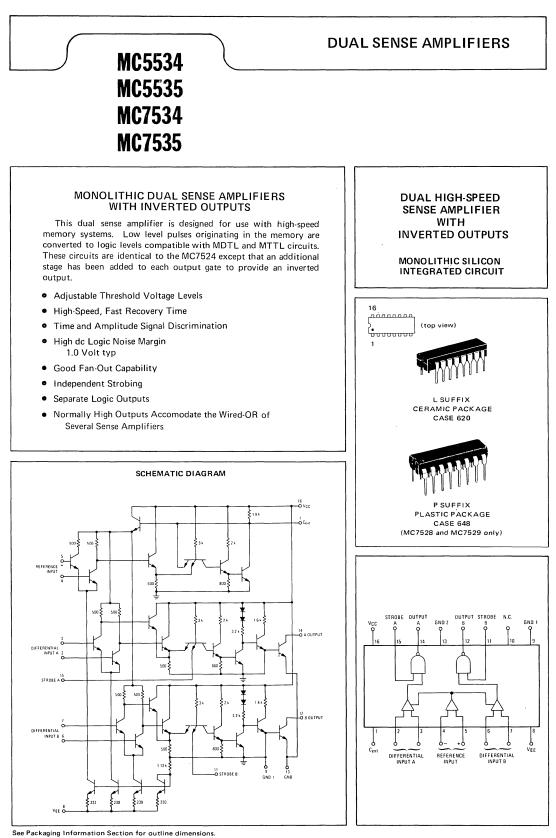
#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-7.0	Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation	Рр	575	mW
Derate above T _A = +25 ^o C		3.85	mW ^o C
Operating Temperature Range	ТА		°C
MC5528, MC5529		-55 to +125	
MC7528, MC7529		0 to +70	
Storage Temperature Range	T _{stq}	-55 to +150	°C

## ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V $\pm$ 5%, V_{EE} = -5.0 V $\pm$ 5%, T_A = T_{Iow}# to T_{high}# unless otherwise noted.)

			M	C5528 (1 MC5529	)#		MC7528 # MC7529	¥	
Characteristic		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Differential Input Threshold Voltage ( $V_{inS}$ = +5.0 V, $V_{ID}$ = ( $V_{ref}$ = 15 mV, $I_L$ = 16 mA, $V_O$ < 0.4 V)	⁼ ±V _{th} ) MC5528,MC7528 MC5529,MC7529	V _{th}	10 8.0	15 		11 8.0	15		mV
(V _{ref} = 40 mV, I _L = 16 mA, V _O < 0.4 V)	MC5528,MC7528 MC5529,MC7529		35 33	40 	-	36 33	40 	-	
$(V_{ref} = 15 \text{ mV}, I_{L} = -400 \mu\text{A}, V_{O} > 2.4 \text{ V})$	MC5528,MC7528 MC5529,MC7529			15	20 22	-	15 	19 22	
$(V_{ref} = 40 \text{ mV}, I_{L} = -400 \mu\text{A}, V_{O} > 2.4 \text{ V})$	MC5528,MC7528 MC5529,MC7529		-	40 	45 47		40 	44 47	
Differential and Reference Input Bias Current ( $V_{1D} = V_{ref} = 0V$ , $V_{inS} = \pm 5.25 V$ , $V_S = \pm 5.25 V$ )		IВ		· 30 . ·	100	-	30	75	μA
Differential Input Offset Current ( $V_{ID} = V_{ref} = 0 V$ , $V_{inS} = +5.25 V$ , $V_S = \pm 5.25 V$ )		IOD	-	0.5	-	-	0.5	-	μA
Input Voltage, Logic "1" $(V_{1D} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = 2.0 \text{ V}, I_{L} = 400 \mu \text{A}$ $V_{S} = \pm 4.75 \text{ V}, V_{O} > 2.4 \text{ V}$	λ,	V _{in"1"}	2.0		-	2.0		1	V
Input Voltage, Logic ''0'' ( $V_{ID} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = 0.8 \text{ V}, I_{L} = 16 \text{ mA}$ $V_{S} = \pm 4.75 \text{ V}, V_{OL} < 0.4 \text{ V}$ )		V _{in"0"}			0.8	-	-	0.8	V
Input Current, Logic "1" (V _{ID} = 0 V, V _{ref} = 20 mV, V _{inS} = 2.4 V, V _S = $\pm$ 5.25 V) (V _{ID} = 0 V, V _{ref} = 20 mV, V _{inS} = $\pm$ 5.25 V, V _S = $\pm$ 5.25 V)	MC5528,MC5529 MC7528,MC7529	lin"1"	-	5.0	40		0.02	 1.0	μA mA
Input Current, Logic "0" ( $V_{ID}$ = 40 mV, $V_{ref}$ = 20 mV, $V_{inS}$ = 0.4 V, $V_S$ = ±5.25	V)	lin"0"	-	-1.0	~1.6	-	-1.0	-1.6	mA
Output Voltage, Logic "1" ( $V_{ID}$ = 40 mV, $V_{ref}$ = 20 mV, $V_{inS}$ = 2.0 V, $ _L$ = -400 $\mu$	A, V _S =±4.75 V)	V0"1"	2.4	3.9	123	2.4	3.9	-	v
Output Voltage, Logic "0" ( $V_{ID}$ = 40 mV, $V_{ref}$ = 20 mV, $V_{inS}$ = 0.8 V, $I_L$ = 16 mA,	V _S = ±4.75 V)	V0''0''		0.25	0.40	-	0.25	0.40	V
Short-Circuit Output Current ( $V_{ID}$ = 40 mV, $V_{ref}$ = 20 mV, $V_{inS}$ = +5.25 V, $V_S$ = ±5.25	25 V)	losc	-2.1	-2.8	-3.5	-2.1	-2.8	-3.5	mA
$V_{CC}$ Supply Current ( $V_{ID} = V_{inS} = 0 V$ , $V_{ref} = 20 mV$ , $V_{S} = \pm 5.25 V$ )		^I CC	-	29	40		29	40	mA
$ \begin{array}{l} V_{EE} \mbox{ Supply Current} \\ (V_{ID} = V_{inS} = 0 \mbox{ V, } V_{ref} = 20 \mbox{ mV, } V_{S} = \pm 5.25 \mbox{ V} \end{array} $		IEE	:	-13	-18	-	-13	-18	mA

#  $T_{low}$  = -55°C for MC5528, MC5529, 0°C for MC7528, MC7529 Thigh = +125°C for MC5528, MC5529, +70°C for MC7528, MC7529


## MC5528, MC5529, MC7528, MC7529 (continued)

## **ELECTRICAL CHARACTERISTICS** (V_{CC} = +5.0 V $\pm$ 5%, V_{EE} = -5.0 V $\pm$ 5%, T_A = +25^oC unless otherwise noted.)

		MC5528 MC5529			MC7528 MC7529			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AC Common-Mode Input Firing Voltage (V _{ref} = 20 mV, V _{inS} = 5.0 V)	VCMF		±2.5		_	±2.5	-	v
Propagation Delay Time, Differential Input to Logic ''1'' Output (V _{ref} = 20 mV)	^t PLHD		20	40	-	20	40	ns
Propagation Delay Time, Differential Input to Logic "0" Output (V _{ref} = 20 mV)	^t PHLD	1 2	28		-	28	-	ns
Propagation Delay Time, Strobe Input to Logic "1" Output (V _{ref} = 20 mV)	tPHLS		10	30	-	10	30	ns
Propagation Delay Time, Strobe Input to Logic "0" Output (V _{ref} = 20 mV)	^t PHLS		20		-	20	-	ns
Overload Recovery Time, Differential Input	tRD	1. <del>.</del>	10	ana <del>ta</del> ka i	-	10	-	ns
Overload Recovery Time, Common-Mode Input	^t RCM	the the first section of the section	5.0			5.0	-	ns
Minimum Cycle Time	t(min)		200			200	-	ns

② Positive current is defined as current into the referenced pin.
 ③ Pin 1 to have ≥100 pF capacitor connected to ground.
 ④ Each test point to have ≤15 pF capacitive load to ground.

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.



## MC5534, MC5535, MC7534, MC7535 (continued)

## MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -7.0	Vdc Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation Derate above T _A = +25 ^o C	PD	575 3.85	mW mW ⁰ C
Operating Temperature Range MC5534, MC5535 MC7534, MC7535	Тд	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	.°C

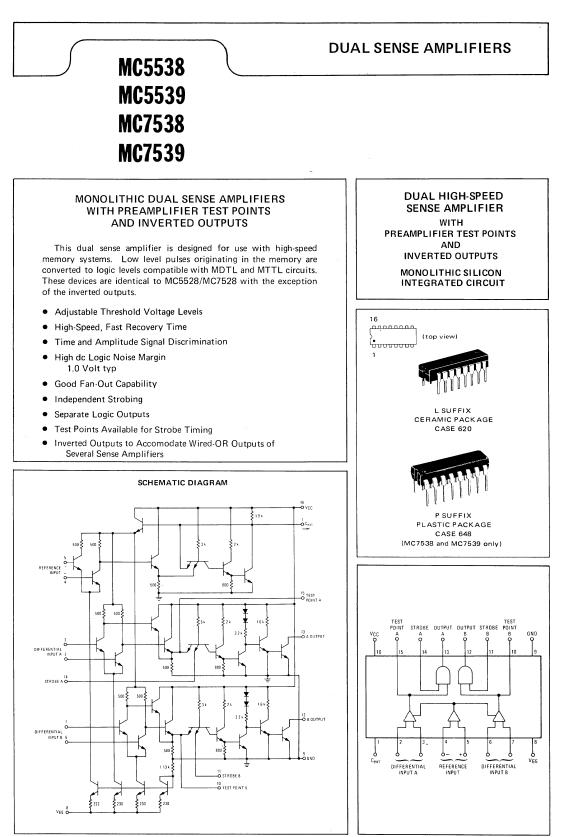
### **ELECTRICAL CHARACTERISTICS** (V_{CC} = +5.0 V $\pm$ 5%, V_{EE} = -5.0 V $\pm$ 5%, T_A = T_{1ow}# to T_{high}# unless otherwise noted.)

		м	C5534 (1 MC5535			MC7534# MC7535		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{l} \mbox{Differential Input Threshold Voltage (V_{inS} = +5.0 V, V_{ID} = \pm V_{th}) \\ (V_{ref} = 15 \mbox{ mV}, V_L = +5.25 V, I_L < 250  \mu A) \\ \mbox{MC5535, MC7535} \end{array} $	V _{th}	10 8.0	15 -	1-1-	11 8.0	15	-	mW
(V _{ref} = 40 mV, V _L = +5.25 V, I _L < 250 μA) MC5534, MC7534 MC5535, MC7535		35 33	40 		36 33	40 	-	
(V _{ref} = 15 mV, I _L = 20 mA, V _O = < 0.4 V) MC5534, MC7534 MC5535, MC7535		aus aus	15	20 22		15 	19 22	
(V _{ref} = 40 mV, I _L = 200 mA, V _O =<0.4 V) MC5534, MC7534 MC5535, MC7535		-	40	45 47		40 	44 47	
Differential Reference Input Bias Current ( $V_{ID} = V_{ref} = 0 V$ , $V_{inS} = \pm 5.25 V$ , $V_S = \pm 5.25 V$ )	Iв	-	30	100	_	30	75	μA
Differential Input Offset Current ( $V_{ID} = V_{ref} = 0 V, V_{inS} = +5.25 V, V_{S} = \pm 5.25 V$ )	lod		0.5		-	0.5	-	μA
Input Voltage, Logic "0" ( $V_{LD} = 40 \text{ mV}, V_{ref} = 20 \text{ mV}, V_{inS} = 0.8 \text{ V}, V_{L} = +5.25 \text{ V},$ $V_{S} = \pm4.75 \text{ V}, I_{L} = <250 \mu\text{A}$ )	Vin''0''	یں ایر یہ کیے ایر ایر ایر ایر		0.8	-	-	0.8	v
Input Voltage, Logic "1" ( $V_{ID}$ = 40 mV, $V_{ref}$ = 20 mV, $V_{inS}$ = 2.0 V, $I_{L}$ = 20 mA, $V_{S}$ = ±4.75 V, $V_{O}$ = <0.4 V)	Vin"1"	2.0			2.0	-	-	v
Input Current, Logic "0" ( $V_{ID}$ = 40 mV, $V_{ref}$ = 20 mV, $V_{inS}$ = 0.4 V, $V_{S}$ = ±5.25 V)	¹ in"0"	_	-1.0	-1.6	-	-1.0	-1.6	mA
Input Current, Logic "1" (VID = 0 V, V _{ref} = 20 mV, V _{inS} = 2.4 V, V _S = ±5.25 V) MC5534, MC5535 MC7534, MC7535	^l in"1"		5.0	40	-	0.02		μA mA
Output Voltage, Logic ''0'' ( $V_{1D}$ = 40 mV, V _{ref} = 20 mV, V _{inS} = 2.0 V, I _L = 20 mA, V _S = ±4.75 V)	V0''0''		0.25	0.40	-	0.25	0.40	v
Output Leakage Current (V _{1D} = 40 mV, V _{ref} = 20 mV, V _{inS} = 0.8 V, V _L = 5.25 V, V _S = ±4.75 V)	IOL		0.01	250	-	0.01	250	μA
	1cc		28	38	-	28	38	mA
$\label{eq:VEE_Supply Current} \begin{array}{l} V_{EE Supply Current} \\ (V_{ID} = V_{inS} = 0 \ V, \ V_{ref} = 20 \ mV, \ V_S = \pm 5.25 \ V) \end{array}$	IEE	100 - 100 i. 100 - <u>1</u> 1 - 100	-13	-18	-	-13	-18	mA

 $\label{eq:constraint} \fbox{ \ \ } \ For \ 0^0 C \leqslant T_A \leqslant 70^0 C \ operation, electrical characteristics for \ MC5534 \ and \ MC5535 \ are guaranteed the same as \ MC7534 \ and \ MC7535 \ respectively. }$ 

#  $T_{1ow}$  = -55°C for MC5534, MC5535, 0°C for MC7534, MC7535 Thigh = +125°C for MC5534, MC5535, +70°C for MC7534, MC7535

.


## MC5534, MC5535, MC7534, MC7535 (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V  $\pm$ 5%, V_{EE} = -5.0 V  $\pm$ 5%, T_A = +25^oC unless otherwise noted.)

		MC5534 MC5535			MC7534 MC7535			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AC Common-Mode Input Firing Voltage (Vref = 20 mV, VinS = 5.0 V)	VCMF	_	±2.5		-	±2.5	-	V
Propagation Delay Time, Differential Input to Logic "1" Output (V _{ref} = 20 mV)	^t PLHD	_	24	_	_	24	_	ns
Propagation Delay Time, Differential Input to Logic "0" Output (V _{ref} = 20 mV)	^t PHLD		20	40	-	20	40	ns
Propagation Delay Time, Strobe Input to Logic "1" Output (V _{ref} = 20 mV)	^t PLHS	_	16		-	16	-	ns
Propagation Delay Time. Strobe Input to Logic "0" Output (V _{ref} = 20 mV)	^t PHLS		10	30	-	10	30	ns
Overload Recovery Time, Differential Input	tRD	-	10	-	-	10	-	ns
Overload Recovery Time, Common-Mode Input	tRCM		5.0	-		5.0	-	ns
Minimum Cycle Time	t(min)	·	200	-		200		ns

② Positive current is defined as current into the referenced pin.
 ③ Pin 1 to have ≥100 pF capacitor connected to ground.

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.



See Packaging Information Section for outline dimensions.

7

## MC5538, MC5539, MC7538, MC7539 (continued)

#### MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Units
Power Supply Voltage	V _{CC}	+7.0	Vdc
	VEE	-7.0	Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation	PD	575	mW
Derate above T _A = +25 ^o C		3.85	mW ^o C
Operating Temperature Range	TA		°C
MC5538, MC5539		-55 to +125	
MC7538, MC7539		0 to +70	
Storage Temperature Range	T _{stg}	-55 to +150	°C

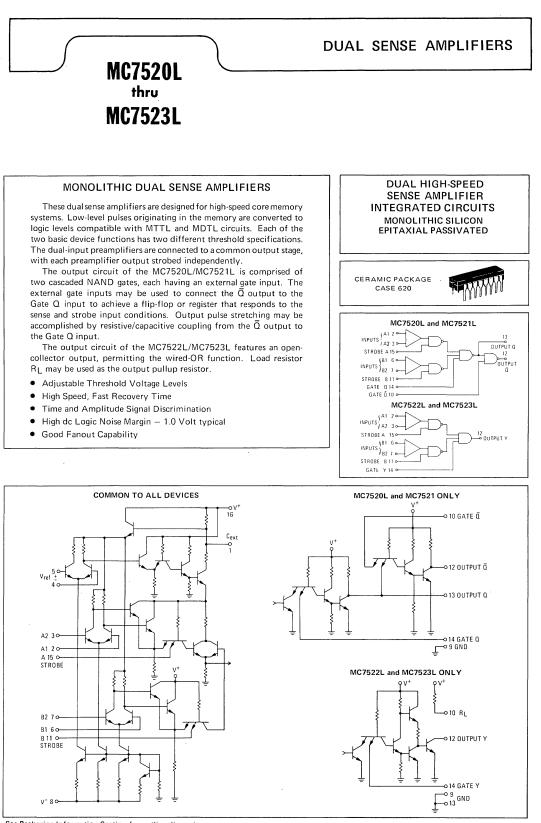
## **ELECTRICAL CHARACTERISTICS** (V_{CC} $\approx$ +5.0 V ±5%, V_{EE} = -5.0 V ±5%, T_A = T_{low}# to T_{high}# unless otherwise noted.)

			м	C5538 () MC5539			MC7538 # MC7539	Y	
Characteristic		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Differential Input Threshold Voltage (VinS = +5.0 V, VIC	$p = \pm V_{th}$	Vth			1				mV
$(V_{ref} = 15 \text{ mV}, V_{L} = +5.25 \text{ V}, I_{L} < 250 \mu \text{A})$	MC5538, MC7538 MC5539, MC7539		10 8.0	15 -	-	11 8.0	15	_	
$(V_{ref} = 40 \text{ mV}, V_{L} = +5.25 \text{ V}, I_{L} < 250 \mu\text{A})$	MC5538, MC7538 MC5539, MC7539		35 33	40	-	36 33	40 	-	
$(V_{ref} = 15 \text{ mV}, I_{L} = 120 \text{ mA}, V_{L} < 0.4 \text{ V})$	MC5538, MC7538 MC5539, MC7539		-	15	20 22	-	15 	19 22	
$\{V_{ref} = 40 \text{ mV}, I_{L} = +20 \text{ mA}, V_{L} < 0.4 \text{ V}\}$	MC5538, MC7538 MC5539, MC7539		=	40	45 47	-	40 	44 47	
Differential and Reference Input Bias Current ( $V_{1D} = V_{ref} = 0 V, V_{inS} = +5.25 V, V_{S} = \pm5.25 V$ )		ΙВ	-	30	100		30	75	μA
Differential Input Offset Current ( $V_{ID} = V_{ref} = 0 V, V_{inS} = +5.25 V, V_{S} = \pm5.25 V$ )		IIOD		0.5	_		0.5	-	μA
Input Voltage, Logic ''1'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = +2.0 V, I _L = 20 m V _S = $\pm 4.75$ V, V _L < 0.4 V)	nA, _	Vin"1"	2.0	-	-	2.0	-	-	V
Input Voltage, Logic ''0'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = +0.8 V, V _L = +5. V _S = $\pm 4.75$ V, I _L $< 250 \mu$ A)	25 V,	Vin"0"	-	· _	0.8	-	_	0.8	v
Input Current, Logic "1" $(V_{ID} = 0 V, V_{ref} = 20 mV, V_{inS} = 2.4 V, V_{S} = \pm 5.25 V$ $(V_{ID} = 0 V, V_{ref} = 20 mV, V_{inS} = +5.25 V,$ $V_{S} = \pm 5.25 V$	<ul> <li>MC5538, MC5539</li> <li>MC7538, MC7539</li> </ul>	^l in"1"	 	5.0	40	-	0.02	_ 1.0	μA mA
Input Current, Logic ''0'' {V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 0.4 V, V _S = ±5.2	5 V)	lin"0"	_	-1.0	-1.6		-1.0	-1.6	mA
Output Voltage, Logic ''0'' (V _{ID} = 40 mV, V _{ref} = 20 mV, V _{inS} = 2.0 V, I _L = 20 m	A, V _S = ±4.75 V)	V00	_:	0.25	0.40	-	0.25	0.40	V
$V_{CC}$ Supply Current ( $V_{ID} = V_{inS} = 0 V, V_{ref} = 20 mV, V_{S} = \pm 5.25 V$ )		'cc	-	28	38	-	28	38	mA
$V_{EE} Supply Current$ $(V_{1D} = V_{inS} = 0 V, V_{S} = \pm 5.25 V)$		IEE		-13	-18	-	-13	-18	mA

 $\bigodot$  For 0°C  $<\!\!^T_A <\!\!^< 70^\circ$ C operation, electrical characteristics for MC5538 and MC5539 are guaranteed the same as MC7538 and MC7539 respectively.

#  $T_{low}$  = -55°C for MC5538, MC5539; 0°C for MC7538, MC7539  $T_{high}$  = +125°C for MC5538, MC5539; +70°C for MC7538, MC7539

## MC5538, MC5539, MC7538, MC7539 (continued)


## ELECTRICAL CHARACTERISTICS ( $v_{CC}$ = +5.0 V $\pm5\%,~v_{EE}$ = -5.0 V $\pm5\%,~\tau_{A}$ = +25 $^{o}C$ unless otherwise noted.)

			MC5538 MC5539			MC7538 MC7539		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AC Common-Mode Input Firing Voltage (V _{ref} = 20 mV, V _{inS} = 5.0 V)	VCMF		±2.5	-	_	±2.5	_	v
Propagation Delay Time, Differential Input to Logic "1" Output $\{V_{ref}=20\ mV\}$	^t PLHD		24			24	-	ns
Propagation Delay Time, Differential Input to Logic ''0'' Output ( $V_{ref} = 20 \text{ mV}$ )	^t PHLD		20	40		20	40	ns
Propagation Delay Time, Strobe Input to Logic "1" Output ( $V_{ref} = 20 \text{ mV}$ )	^t PHLS		16	-	_	16	_	ns
Propagation Delay Time, Strobe Input to Logic ''0'' Output (Vref = 20 mV)	tPHLS	a' .	10	30		10	30	ns .
Overload Recovery Time, Differential Input	tRD		10	1 <u>–</u> 1 1	-	10	-	ns
Overload Recovery Time, Common-Mode Input	tRCM	ار بیند	5.0	. – i († 1	-	5.0		ns
Minimum Cycle Time	t(min)	<u> </u>	200	- ·		200	- '	ns

② Positive current is defined as current into the referenced pin.
 ③ Pin 1 to have ≥100 pF capacitor connected to ground.

④ Each test point to have ≤15 pF capacitive load to ground.

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.



See Packaging Information Section for outline dimensions.

### **ELECTRICAL CHARACTERISTICS** (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = 0 to +70^oC unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Threshold Voltage Vref = 15 mV	MC7520L,MC7522L MC7521L,MC7523L	V _{th}	11 8.0	15 15	19 22	mV
V _{ref} = 40 mV	MC7520L,MC7522L MC7521L,MC7523L		36 33	40 40	44 47	
Common-Mode Input Firing Voltage		VCMF	-	±3.0	-	Volts
Input Bias Current		l _{in}	-	30	75	μA
Input Offset Current		l _{io}		0.5	1	μA
Input Impedance (f = 1.0 kHz)		Z(in) D		2.0		k ohms
Input Voltage Logic "1" Level (Strobe Inputs)	V _{in} "0" = 0.8 V	Vin ''1''	2.0		-	Volts
Input Voltage Logic "0" Level (Strobe Inputs)	V _{in} "1" = 2.0 V	Vin ''0''	-		0.8	Volt
Input Current Logic "0" Level (Strobe Inputs)	V _{in} "0" = 0.4 V	^l in "0"	-		-1.6	mA
Input Current Logic "1" Level (Strobe Inputs)	Vin ''1'' = 2.4 V Vin ''1'' = V ⁺	^l in "1"	-	_	40 1.0	μA mA
Output Voltage Logic "1" Level	V _{in} "1" = 2.0 V	V _{out} ''1''	2.4	3.9	_	Volts
Output Voltage Logic "0" Level	V _{in} "0" = 0.8 V	V _{out} ''0''	-	0.25	0.4	Volt
	Output MC7520L,MC7521L Output MC7520L,MC7521L Output MC7522L,MC7523L	ISC	3.3 2.1 2.1		5.0 3.5 3.5	mA
V ⁺ Supply Current (T _A = $+25^{\circ}$ C)	MC7520L,MC7521L MC7522L,MC7523L	1+		28 27	_	mA
V ⁻ Supply Current (T _A = +25 ^o C)	MC7520L,MC7521L MC7522L,MC7523L	1-	-	-14 -15	-	mA

SWITCHING CHARACTERISTICS (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = +25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Differential-Mode Input Overload Recovery Time	tor dm	-	20	-	ns
Common-Mode Input Overload Recovery Time	^t OR CM	-	20	-	ns
Minimum Cycle Time	^t c (min)	-	200	-	ns

MC7520L, MC7521L					
Propagation Delay Time					ns
(Differential Input to Q Output)	^t pd ''1'' DQ		20	40	
	^t pd ''0'' DQ		30		
(Differential Input to Q Output)	^t pd ''1'' DQ	-	25	-	
	t _{pd} ''0'' DQ	-	35	55	
(Strobe Input to Q Output)	^t pd ''1'' SQ	-	15	30	
	^t pd ''0'' SQ	-	25	-	
(Strobe Input to Q Output)	t _{pd} ''1'' SQ	-	15	-	
	t _{pd} "0" SŌ	-	35	55	
(Gate Q Input to Q Output)	^t pd ''1'' G _Q Q	-	10	20	
	^t pd ''0'' G _Q Q	-	15	-	
(Gate Q Input to Q Output)	t _{pd} ''1'' GQQ	-	15	-	
	t _{pd} ''0'' G _Ω Ω	-	20	30	
(Gate Q Input to Q Output)	t _{pd} ''1'' GāQ	-	15	-	
	t _{pd} ''0'' G _Ω Ω		10	20	
MC7522L, MC7523L					
Propagation Delay Time					ns
(Differential Input to Output)	^t pd ''1'' D		20	-	
	^t pd ''0'' D	-	30	45	
(Strobe Input to Output)	^t pd ''1'' S	-	15	-	
	^t pd ''0'' S	-	25	40	
(Gate Input to Output)	^t pd ''1'' G	-	10	-	

^tpd ''0'' G

15

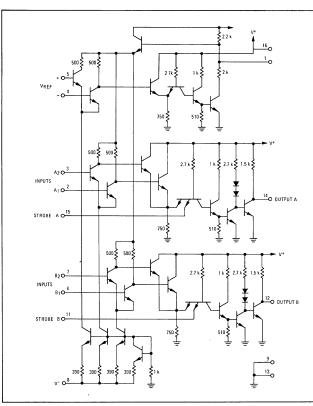
25

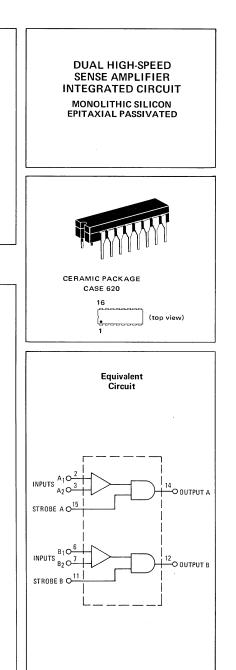
Rating	Symbol	Value	Units
Power Supply Voltage	V+ V-	+7.0 -7.0	Vdc Vdc
Differential Input Signal Voltage	Vin	±5.0	Vdc
Strobe and Gate Input Voltage	Vin S,G	±5.5	Vdc
Power Dissipation Derate above T _A = +25 ^o C	PD	575 3.85	mW mW ^o C
Operating Temperature Range	Τ _Α	0 to +70	°C
Storage Temperature Range	Τ _{stg}	-65 to +150	°C

MAXIMUM RATINGS (T_A =  $+25^{\circ}$ C unless otherwise noted)

## DUAL SENSE AMPLIFIERS

### MONOLITHIC DUAL SENSE AMPLIFIERS


This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MDTL and MTTL circuits.


#### Features:

- Adjustable Threshold Voltage Levels
- High-Speed, Fast Recovery Time
- Time and Amplitude Signal Discrimination

MC7524L MC7525L

- High dc Logic Noise Margin
- 1.0 Volt typ
- Good Fan-Out Capability
- Independent Strobing
- Separate Logic Outputs





See Packaging Information Section for outline dimensions.

Rating	Symbol	Value	Units
Power Supply Voltage	V+	+7.0	Vdc
	V-	-7.0	Vdc
Differential Input Voltages	V _{in} or V _{ref}	±5.0	Vdc
Power Dissipation Derate above T _A = +25 ^o C	PD	575 3.85	mW mW ^o C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

## MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

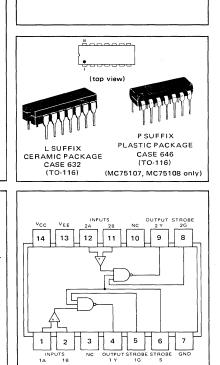
## ELECTRICAL CHARACTERISTICS (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = 0 to $+70^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Threshold Voltage	V _{th}				mV
V _{ref} = 15 mV MC7524L		11	15	19	
MC7525L		8.0	15	22	
V _{ref} = 40 mV MC7524L		36	40	44	
MC7525L		33	40	47	
Common-Mode Input Firing Voltage	VCMF	-	±3.0	_	Volts
Input Bias Current	l _{in}	-	30	75	μΑ
Input Offset Current	l _{io}		0.5	-	μΑ
Input Impedance (f = 1.0 kHz)	Z(in) D	_	2.0	_	k ohms
Input Voltage Logic "1" Level (Strobe Inputs) Vin(0) = 0.8 V	V _{in (1)}	2.0		-	Volts
Input Voltage Logic "0" Level (Strobe Inputs) Vin(1) = 2.0 V	Vin (0)	-	-	0.8	Volt
Input Current Logic "0" Level (Strobe Inputs) Vin(0) = 0.4 V	lin (0)	-	-1.0	-1.6	mA
Input Current Logic "1" Level (Strobe Inputs) Vin(1) = 2.4 V	lin (1)	_	-	40	μA
$V_{in(1)} = V^+$		-	-	1.0	mA
Output Voltage Logic "1" Level Vin(1) = 2.0 V, Vin(0) = 0.8 V	V _{out} (1)	2.4	3.9	-	Volts
Output Voltage Logic "0" Level Vin(0) = 0.8 V	V _{out} (0)	-	0.25	0.4	Volt
Short-Circuit Output Current	I _{sc(out)}	2.1	_	3.5	mA
V ⁺ Supply Current @ T _A = +25 ⁰ C	I+	-	25	-	mA
V ⁻ Supply Current @ T _A = +25 ^o C	1~	-	-15	-	mA

## SWITCHING CHARACTERISTICS (V⁺ = 5.0 V, V⁻ = -5.0 V, T_A = +25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time	^t pd (1) D	-	15	40	ns
(Differential Input to Output)	t _{pd} (0) D		40	- 1	
Propagation Delay Time	t _{pd} (1) S	-	15	30	ns
(Strobe Input to Output)	^t pd (0) S	-	35	-	
Differential-Mode Input Overload Recovery Time	tor dm	-	20	_	ns
Common-Mode Input Overload Recovery Time	tOR CM	-	20	-	ns
Minimum Cycle Time	^t c (min)	-	200	-	ns

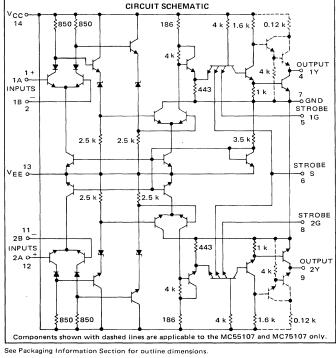
## TWISTED-PAIR LINE RECEIVERS

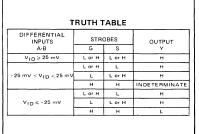

## MC55107 MC55108 MC75107 MC75108

#### MONOLITHIC DUAL LINE RECEIVERS

The MC55107/MC75107 and MC55108/MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC55107/MC75107 circuit features an active pull-up (totem-pole) output. The MC55108/MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC55108/MC75108 receivers). Thus a level of logic is implemented without extra delay. Both receivers feature double-protected input stages to guard against line loading under zero value supply conditions.

The MC55107/MC75107 and MC55108/MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.


- High Common-Mode Rejection Ratio
- High Input-Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of ±3.0 V
- Diode-Protected Input Stage
- Differential Input Common-Mode Voltage of More Than ±15 V Using External Attenuator
- Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- MTTL or MDTL Drive Capability
- High DC Noise Margins




DUAL LINE RECEIVERS

MONOLITHIC SILICON

INTEGRATED CIRCUITS





## MC55107, MC75107, MC55108, MC75108 (continued)

#### MAXIMUM RATINGS (TA = Tlow' to Thigh' unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} V _{EE}	+7.0 -7.0	Vdc
Differential-Mode Input Signal Voltage Range	VID	<u>+6.0</u>	Vdc
Common-Mode Input Voltage Range	VICR	<u>+</u> 5.0	Vdc
Strobe Input Voltage	V _{I(S)}	5.5	Vdc
Power Dissipation (Package Limitation)	PD		
Plastic and Ceramic Dual-In-Line Packages Derate above $T_A = +25^{\circ}C$		575 3.85	mW mW/ ^o C
Operating Temperature Range MC55107, MC55108 MC75107, MC75108	тд	- 55 to +125 0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°C

### RECOMMENDED OPERATING CONDITIONS

		MC55107, MC55108			MC75			
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4.5 -4.5	+5.0 -5.0	+5.5 -5.5	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Vdc
Output Sink Current	^I OS	-	-	- 16		-	- 16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0	-	+5.0	- 5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0		+3.0	-3.0	-	+3.0	Vdc
Input Voltage Range, any differential input to ground	VIR	-5.0		+3.0	-5.0		+3.0	Vdc
Operating Temperature Range	TA	- 55	-	+125	0	-	+70	°C

#### DEFINITIONS OF INPUT LOGIC LEVELS

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (between differential inputs)	VIDH	1	0.025	5.0	Vdc
Low-Level Input Voltage (between differential inputs)	VIDL	1	-5.0†	-0.025	Vdc
High-Level Input Voltage (at strobe inputs)	V _{IH(S)}	3	2.0	5.5	Vdc
Low-Level Input Voltage (at strobe inputs)	V _{IL(S)}	3	0	0.8	Vdc

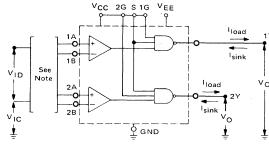
The algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level (VIDL).

ELECTRICAL CHARACTERISTICS (TA Tiow' to Thigh' unless otherwise noted)

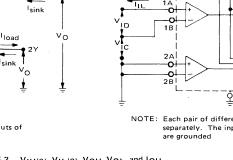
		1	MC55	5107.MC	75107	MC5	5108,MC	75108	
Characteristic	Symbol	Test Fig.	Min	Typ #	Max	Min	Typ #	Max	Unit
High-Level Input Current to 1A or 2A Input (V _{CC} = Max, V _{EE} = Max, V _{ID} = 0.5 V, V _{IC} = $-3.0$ V to $+3.0$ V) $\ddagger$	ін	2		30	75	-	30	75	μΑ
Low-Level Input Current to 1A or 2A Input (V _{CC} = Max, V _{EE} = Max, V _{ID} = -2.0 V, V _{IC} = -3.0 V to +3.0 V) $\ddagger$	μL	2	-	-	- 10	-	una	- 10	μA
High-Level Input Current to 1G or 2G Input {V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = 2.4 V)‡ {V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = V _{CC} Max)‡	ЧН	4			40 1.0	-	-	40 1.0	μA mA
Low-Level Input Current to 1G or 2G Input (V _{CC} = Max, V _{EE} = Max, V _{IL(S)} = 0.4 V)‡	¹ iL	4		`	- 1.6	-	-	- 1.6	mA
High-Level Input Current to S Input (V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = 2.4 V)‡ (V _{CC} = Max, V _{EE} = Max, V _{IH(S)} = V _{CC} Max)‡	ЦН	4	-	-	80 2.0	-	-	80 2.0	μA mA
Low-Level Input Current to S Input (V _{CC} = Max, V _{EE} = Max, V _{IL(S)} = 0.4 V)‡	ΠL	4		-	-3.2	-	-	-3.2	mA
High-Level Output Voltage $(V_{CC} = Min, V_{EE} = Min, I_{Ioad} = -400 \ \mu A, V_{IC} = -3.0 \ V \ to +3.0 \ V)_{\ddagger}$	V _{OH}	3	2.4			-	-	-	V
Low-Level Output Voltage {V _{CC} = Min, V _{EE} = Min, I _{sink} = 16 mA V _{IC} = -3.0 V to +3.0 V)‡	VOL	3		- ·	0.4	·	-	0.4	V
High-Level Leakage Current (V _{CC} = Min, V _{EE} = Min, V _{OH} = V _{CC} Max)‡	I CE X	3	-	-			-	250	μA
Short-Circuit Output Current # # (V _{CC} = Max, V _{EE} = Max)‡	losc	5	- 18		- 70	-	-	_	mA
High Logic Level Supply Current from V _{CC} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C) ‡	ICCH+	6		18.	30	-	18	30	mA
High Logic Level Supply Current from V _{EE} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C)‡	Іссн-	6	0	-8.4	-15	0	8.4	-15	mA

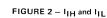
[‡]For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type. #All typical values are at V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25^oC. # #Not more than one output should be shorted at a time. *T_{Iow} = 55^oC for MC55107 and MC55108 = 0 for MC75107 and MC75108 = +70^oC for MC75107 and MC75108

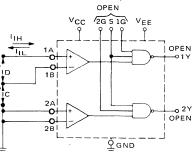
## MC55107, MC75107, MC55108, MC75108 (continued)


#### SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25^oC)

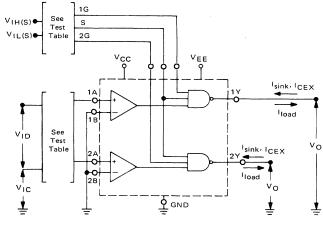
	1		MC55107, MC75107 MC55108, MC75109						
Characteristic	Symbol	Test Fig.	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time, low-to-high level from differential inputs A and B to output ( $R_L = 390 \Omega$ , $C_L = 50 pF$ ) ( $R_L = 390 \Omega$ , $C_L = 15 pF$ )	^t ₽LH(D)	7		17	<b>25</b> -		- 19	_ 25	ns
Propagation Delay Time, high-to-low level from differential inputs A and B to output ( $R_L = 390 \Omega$ , $C_L = 50 pF$ ) ( $R_L = 390 \Omega$ , $C_L = 15 pF$ )	^t PHL(D)	7		17	25		 19	- 25	ns
Propagation Delay Time, low-to-high level, from strobe input to G or S output ( $R_L = 390 \Omega$ , $C_L = 50 pF$ ) ( $R_L = 390 \Omega$ , $C_L = 15 pF$ )	tPLH(S)	7		10	15 	-	- 13	_ 20	ns
Propagation Delay Time, high-to-low level, from strobe input G or S to output ( $R_L = 390 \Omega$ , $C_L = 50 pF$ ) ( $R_L = 390 \Omega$ , $C_L = 15 pF$ )	^t PHL(S)	7		8.0	15	_	- 13	_ 20	ns


Symbols conform to JEDEC Bulletin No. 1 when applicable.


#### TEST CIRCUITS







NOTE: When testing one channel, the inputs of the other channel are grounded.

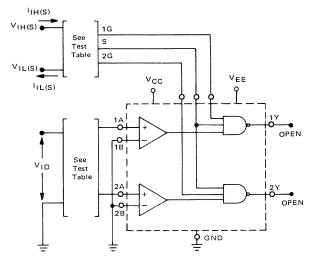






NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair




FIGURE 3 - VIH	S), VIL(S), VOI	H, VOL, and IOH
----------------	-----------------	-----------------

MC55107 MC75107	MC55108 MC75108	VID	STROBE 1G or 2G	STROBE S
TE	ST		APPLY	
V _{OH}	ICEX	+25 mV	VIH(S)	VIH(S)
V _{OH}	ICEX	-25 mV	VIL(S)	VIH(S)
∨он	¹ CEX	-25 mV	VIH(S)	V _{IL(S)}
VOL	VOL	-25 mV	VIH(S)	VIH(S)

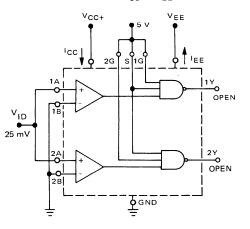
NOTES: 1. V IC = -3.0 V to +3.0 V. 2. When testing one channel, the inputs of the other channel should be grounded.

TEST CIRCUITS (continued)

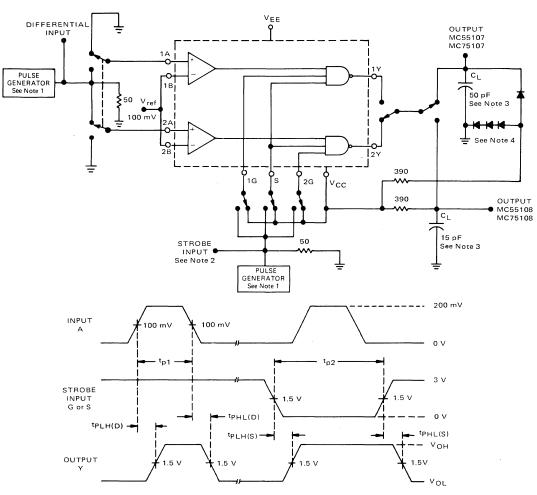
 $\label{eq:FIGURE4} \mathsf{FIGURE4} = {}^{I}\mathsf{IH}(\mathsf{G}), \, {}^{I}\mathsf{IL}(\mathsf{G}), \, {}^{I}\mathsf{IH}(\mathsf{S}), \, \mathsf{and} \, {}^{I}\mathsf{IL}(\mathsf{S})$ 



TEST	INPUT 1A	INPUT 2A	STROBE 1G	STROBE S	STROBE 2G
I _{IH} at Strobe 1G	+25 mV	Gnd	VIH(S)	Gnd	Gnd
IIH at Strobe 2G	Gnd	+25 mV	Gnd	Gnd	VIH(S)
IIH at Strobe S	+25 mV	+25 mV	Gnd	VIH(S)	Gnd
IL at Strobe 1G	-25 mV	Gnd	VIL(S)	4.5 V	Gnd
IL at Strobe 2G	Gnd	-25 mV	Gnd	4.5 V	VIL(S)
I _{IL} at Strobe S	-25 mV	-25 mV	4.5 V	VIL(S)	4.5 V


FIGURE 5 – IOS



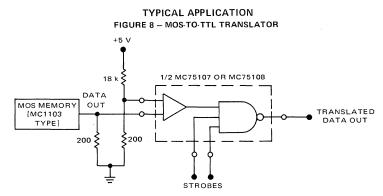

NOTES: 1. Each channel is tested separately.

2. Not more than one output should be tested at one time.

FIGURE 6 - ICC and IEE



## MC55107, MC75107, MC55108, MC75108 (continued)




TEST CIRCUITS (continued) FIGURE 7 – PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics:  $z_0 = 50 \Omega$ ,  $t_r = t_f = 10 \pm 5$  ns,  $t_{p1} = 500$  ns, PRR = 1 MHz  $t_{p2} = 1$  ms, PRR = 500 kHz.

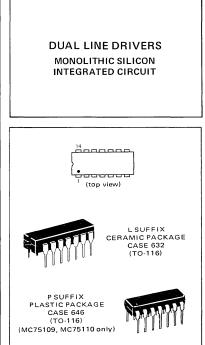
Strobe input pulse is applied to Strobe 1G when Inputs 1A-1B are being tested, to Strobe S when Inputs 1A-1B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.

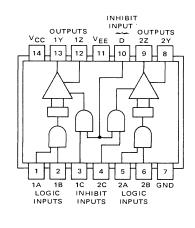
- 3. CL includes probe and jig capacitance.
- 4. All diodes are 1N916 or equivalent.



## **DUAL LINE DRIVERS**

## MC55109 MC55110 MC75109 MC75110


#### MONOLITHIC DUAL LINE DRIVERS


The MC55109/MC75109 and MC55110/75110 dual line drivers feature independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally six milliamperes for the MC55109/MC75109 and twelve milliamperes for the MC55110/MC75110.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode,  $IO_{off}$ , is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.

- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output (6.0 mA or 12 mA typical)
- High Output Impedance
- High Common-Mode Output Voltage Range (-3.0 V to +10 V)
- Inhibitor Available for Driver Selection





	TRUTH TABLE						
INHIBITOR							
LOGIC	INPUTS	INP	UTS	OUTPUTS			
A	В	С	C D		Z		
L or H	L or H	L	L Lor H		т		
L or H	L or H	LorH	L	н	н		
L	LorH	н	н	L	н		
LorH	L	нн		L	н		
н	н	н	н	н	L		

Low output represents the "on" state. High output represents the "off" state.

#### See Packaging Information Section for outline dimensions.

## MC55109, MC75109, MC55110, MC75110 (continued)

### MAXIMUM RATINGS (T_A = T_{low}* to T_{high}* unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltages (See Note 1)	V _{CC} V _{EE}	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages (See Note 1)	V _{in}	5.5	Volts
Common-Mode Output Voltage Range (See Note 1)	VOCR	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ⁰ C	PD	675 3.85	mW mW/ ^o C
Operating Temperature Range MC55109, MC55110 MC75109, MC75110	TA	-55 to +125 0 to +70	°C
Storage Temperature Range Ceramic Dual In-Line Package Plastic Dual In-Line Package	T _{stg}	-65 to +150 -55 to +150	°C

#### RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2)

		MC5	5109/MC55	110	MC	75109/MC7	5110	
Characteristic	Symbol	Min	Nom	Max	Min	Nom	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4.5 -4.5	+5.0 -5.0	+5.5 ~5.5	+4.75 -4.75	+5.0 -5.0	+ 5.25 -5.25	Volts
Common-Mode Output Voltage Range Positive Negative	VOCR	0 0		+10 ~3.0	0 0	_	+10 -3.0	Volts

Note 1. These voltage values are in respect to the ground terminal.

Note 2. When using only one channel of the line drivers, the other channel should be

inhibited and/or its outputs grounded.

#### DEFINITIONS OF INPUT LOGIC LEVELS**

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (at any input)	ViH	1,2	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	1,2	0	0.8	Volts

**The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

## MC55109, MC75109, MC55110, MC75110 (continued)

			MC55109/MC75109 MC55110/MC75110					5110	
Characteristic # #	Symbol	Test Fig.	Min	Typ #	Max	Min	Typ #	Max	Unit
High-Level Input Current to 1A, 1B, 2A or 2B	ЧΗ	1							
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)#			-	-	40	- 1	-	40	μA
(V _{CC} = Max, V _{EE} = Max, V _{IHL} = V _{CC} Max)			~		1.0	-	-	1.0	mA
Low-Level Input Current to 1A, 1B, 2A or 2B	IILL	1	1						mA
$(V_{CC} = Max, V_{EE} = Max, V_{ILL} = 0.4 V)$			-	-	-3.0	-	-	-3.0	
High-Level Input Current into 1C or 2C	тні	2			40			40	μA
$(V_{CC} = Max, V_{EE} = Max, V_{IH_I} = 2.4 V)$ $(V_{CC} = Max, V_{EE} = Max, V_{IH_I} = V_{CC} Max)$			-	_	1.0	_	_	1.0	μA mA
Low-Level Input Current into 1C or 2C (V _{CC} = Max, V _{EE} = Max, V _{LL} = 0.4 V)	ΠLI	2	_	_	-3.0	_	_	-3.0	mA
High-Level Input Current into D	Чн	2							· · · · · · · · · · · · · · · · · · ·
$(V_{CC} = Max, V_{EE} = Max, V_{IH_1} = 2.4 V)$	1.11	-	-	_	80	-		80	μA
$(V_{CC} = Max, V_{EE} = Max, V_{IHI} = V_{CC} Max)$	1	1	1	-	2.0	-	-	2.0	mA
Low-Level Input Current into D	114	2							mA
$(V_{CC} = Max, V_{EE} = Max, V_{ L } = 0.4 V)$			-	-	-6.0	-	-	-6.0	
Output Current ("on" state)	IO(on)	3							mA
(V _{CC} = Max, V _{EE} = Max)	1		-	·	7.0	-	-	15	
(V _{CC} = Min, V _{EE} = Max)			3.5		-	6.5	-	-	
Output Current ("off" state)	O(off)	3							μΑ
(V _{CC} = Min, V _{EE} = Min)			-	<u> </u>	100	-		100	
Supply Current from V _{CC} (with driver enabled)	ICC(on)	4							mA
(VILL = 0.4 V, VIHI = 2.0 V)			-	- 25	30	-	28	35	
Supply Current from V _{EE} (with driver enabled) (V _{IL1} = 0.4 V, V _{IH1} = 2.0 V)	^J EE(on)	4	_	-23	-30	_	-41	-50	mA
Supply Current from V _{CC} (with driver inhibited)	ICC(off)	4							mA
$(V_{ L } = 0.4 \text{ V}, V_{ L } = 0.4 \text{ V})$			-	18	-	-	21	-	
Supply Current from VEE (with driver inhibited)	IEE (off)	4							mA
$(V_{1L_{L}} = 0.4 \text{ V}, V_{1L_{1}} = 0.4 \text{ V})$			-	-10	-	-	-17	-	

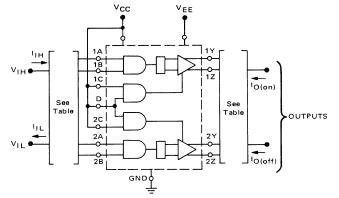
#### ELECTRICAL CHARACTERISTICS (T_A = T_{low}* to T_{high}* unless otherwise noted.)

 $T_{low} = -55^{\circ}C$  for MC55109 and MC55110 Thigh = +125 $^{\circ}C$  for MC55109 and MC55110 = 0 for MC75109 and MC75110 = +70 $^{\circ}C$  for MC75109 and MC75110

#All typical values are at  $V_{CC}$  = +5.0 V,  $V_{EE}$  = -5.0 V.

##For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type.

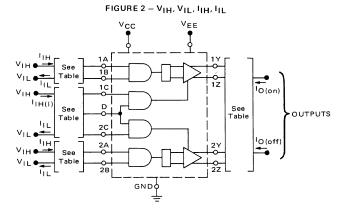
### SWITCHING CHARACTERISTICS ( $V_{CC}$ = +5.0 V, $V_{EE}$ = -5.0 V, $T_A$ = +25°C)


Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input A or B to Output Y or Z (RL = 50 ohms, CL = 40 pF)		5				ns
	TPLHL		- 1	9.0	15	
	TPHLL		-	9.0	15	
Propagation Delay Time from Inhibitor Input C or D to Output Y or Z (R _ = 50 ohms, C _ = 40 pF)		5				ns
	^t PLH _I ^t PHL _I			16 13	25 25	

7-485

Symbols conform to JEDEC Bulletin No. 1 when applicable.

#### TEST CIRCUITS


## FIGURE 1 – $V_{IH}$ , $V_{IL}$ , $I_{IH}$ , and $I_{IL}$

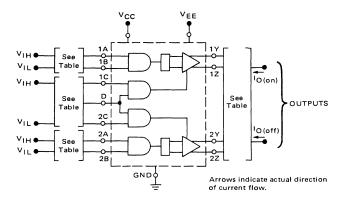


TES	Γ ΤΑ	<b>B</b> II	F
1 6 9			_

TEST AT ANY LOGIC INPUT	LOGIC INPUTS NOT UNDER TEST	ALL INHIBITOR INPUTS	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
VIHL	Open	VIHI	H (See Note 1)	L (See Note 1)
VILL	Vcc	VIHI	L (See Note 1)	H (See Note 1)
Чнг	4.5 V	VIHI	Gind	Gind
հեր	Gnd	V _{IH}	Gnd	Gnd

NOTES: 1. Low output represents the "on" state, high output represents the "off" state. 2. Each input is tested separately.
 3. Arrows indicate actual direction of current flow.

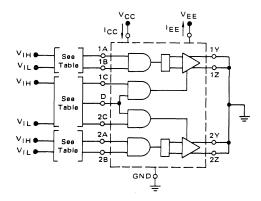



		TEST TABLE		
TEST AT ANY INHIBITOR INPUT	ALL LOGIC INPUTS	INHIBITOR INPUTS NOT UNDER TEST	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
v _{iHi}	VIHL	Open	H(See Note 1)	L(See Note 1)
	VILL	Open	L(See Note 1)	H(See Note 1)
M	VIHL	Vcc	H(See Note 1)	H(See Note 1)
VILI	VILL	Vcc	H(See Note 1)	H(See Note 1)
^I IH _I	Gnd	4.5 V	Gnd	Gnd
LILI	Gnd	Gnd	Gnd	Gind

## MC55109, MC75109, MC55110, MC75110 (continued)

-

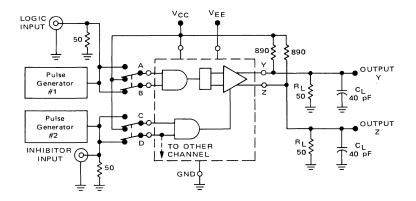
### TEST CIRCUITS (continued)

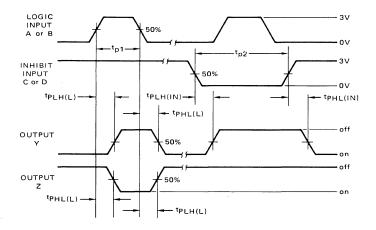

FIGURE 3- IO(on) and IO(off)



TEST TABLE

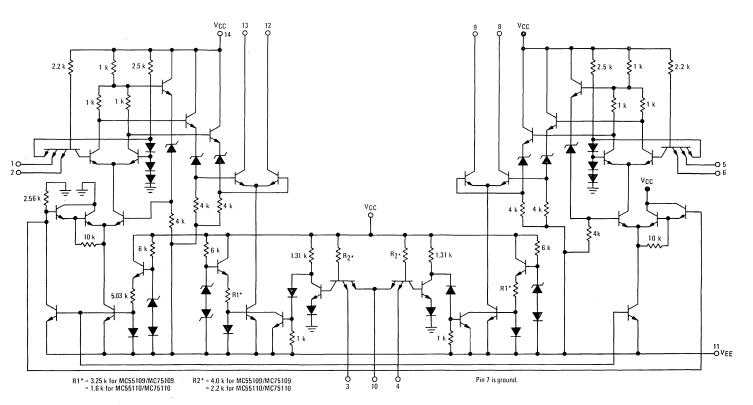
TEST		LOGIC INPUTS		INHIBITOR INPUTS	
01		1A or 2A	1B or 2B	1C or 2C	D
I _O (on)	at output 1Y or 2Y	VIL VIL VIH	VIL VIH VIL	v _{ін}	VIH
lO(on)	at output 1Z or 2Z	VIH	VIH	VIH	VIН
^I O(off)	at output 1Y or 2Y	VIH	VIH	VIH	VIH
^I O(off)	at output 1Z or 2Z		V _{IL} V _{IH} V _{IL}	V _{IH}	viH
I _{O(off)}	at output 1Y, 2Y, 1Z, or 2Z	Either state	Either state	VIL VIL VIH	


FIGURE 4 - ICC and IEE




TEST TABLE						
TEST		ALL LOGIC	ALL INHIBITOR INPUTS			
ICC(on)	Driver enabled	VIL	VIH			
IEE(on)	Driver enabled	VIL	VIH			
ICC(off)	Driver inhibited	VIL	VIL			
IEE (off)	Driver inhibited	VIL	VIL			

#### TEST CIRCUITS (continued)


FIGURE 5 - PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS





NOTES: 1. The pulse generators have the following characteristics:  $z_0 = 50 \ \Omega$ ,  $t_r = t_f = 10 \pm 5 \text{ ns}$ ,  $t_{p1} = 500 \text{ ns}$ , PRR = 1 MHz,  $t_{p2} = 1 \text{ ns}$ , PRR = 500 kHz. 2.  $C_L$  includes probe and jig capacitance. 3. For simplicity, only one channel and the inhibitor connections are shown.

CIRCUIT DIAGRAM



# DUAL MEMORY DRIVER

# MC55325 MC75325

# **Advance Information**

#### DUAL MEMORY DRIVER

The MC55325/75325 is a monolithic integrated circuit memory driver with logic inputs, and is designed for use with magnetic memories.

The device contains two 600-mA source-switch pairs and two 600-mA sink-switch pairs. Source selection is determined by one of two logic inputs, and source turn-on is determined by the source strobe. Likewise, sink selection is determined by one of two logic inputs, and sink turn-on is determined by the sink strobe. With this arrangement selection of one of the four switches provides turn-on with minimum time skew of the output current rise.

- 600-mA Output Capability
- Output Short-Circuit Protection
- Input Clamp Diodes
- Dual Sink and Dual Source Outputs
- MDTL and MTTL Compatibility
- 24-Volt Output Capability

## MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage (Note 1)	VCC1 VCC2	7.0 25	Vdc Vdc
Input Voltage	Vin	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic and Plastic Dual In-Line Pkg. Derate above $T_A = +25^{\circ}C$	PD	1.0 6.6	W mW/ ^o C
Operating Temperature Range MC55325 MC75325	TA	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Note 1. Voltage values are with respect to the network ground terminal.

## SWITCHING CHARACTERISTICS (V_{CC1} = 5.0 V, C_L = 25 pF, T_A = 25^oC)

Characteristic		Symbol	ns	
Characte		Junio	Тур	Max
Propagation Delay Time to Source				
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High-Level Output	^t PLH	25	50
	High-to-Low-Level Output	^t PHL	25	50
Transition Time to Source Outputs				
(V _{CC2} = 20 V, R _L = 1 k ohms)	Low-to-High-Level Output	tTLH	55	-
	High-to-Low-Level Output	^t THL	7.0	-
Propagation Delay Time to Sink O	utputs			
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High-Level Output	^t PLH	20	45
	High-to-Low-Level Output	^t PHL	20	45
Transition Time to Sink Outputs				
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High-Level Output	t _{TLH}	7.0	15
	High-to-Low-Level Output	THL	9.0	20
Storage Time to Sink Outputs		ts	15	30
(V _{CC2} = 15 V, R _L = 24 ohms)		-		

#### DUAL MEMORY DRIVER MONOLITHIC SILICON INTEGRATED CIRCUIT 16 ппарала (top view) (• • • • • • • 1 I SUFFIX CERAMIC PACKAGE PLASTIC PACKAGE CASE 620 CASE 648 (MC75325 only) Node Rint z Vcc1 VCC2 X D в 16 15 14 13 12 11 10 9 [3] 7 | 11-12-4 5 16 8 Source W S1 Gnd S2 Α C Collectors Strobes

TRUTH TABLE										
ADDF	RESS	INPL	JTS	STROBE I	NPUTS	(	OUTPL	JTS		
SOU A	RCE	SII C	VK D	SOURCE S1	SINK S2	SOURCE W X		SII Y	NK Z	
L H X X H	HLXXXH	XXLHXH	XXHLXH	L H H X	H L L X	On Off Off Off Off Off	0ff On 0ff 0ff 0ff 0ff	Off On Off Off	Off Off Off Off Off	

This is advance information on a new introduction and specifications are subject to change without notice.

See Packaging Information Section for outline dimensions.

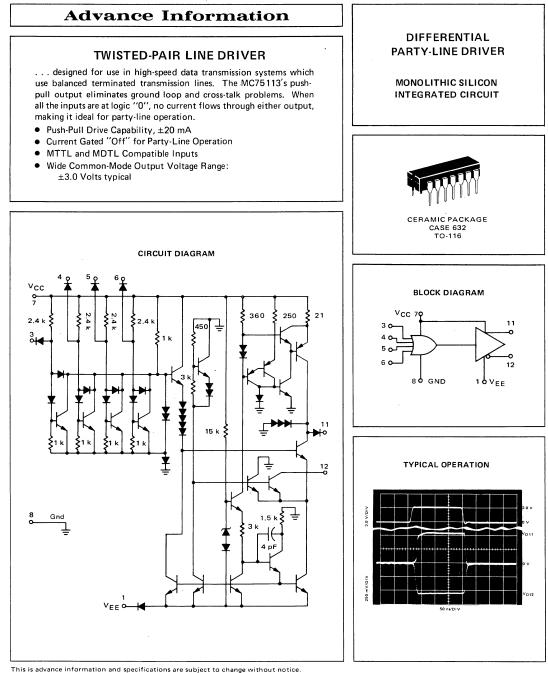
# MC55325, MC75325 (continued)

# **ELECTRICAL CHARACTERISTICS** ( $T_A = T_{low}$ to $T_{high}$ unless otherwise noted.

		r	NC5532	5				
Characteristic	Symbol	Min	Тур*	Max	Min	Typ*	Max	Unit
High-Level Input Voltage	VIH	2.0	-	-	2.0	-	_	v
Low-Level Input Voltage	VIL	-	_	0.8		-	0.8	v
Input Clamp Voltage (V _{CC1} = 4.5 V, V _{CC2} = 24 V, I _I = -10 mA, T _A = 25 ^o C)	V ₁	-	-1.3	-1.7	-	-1.3	-1.7	V
$ \begin{array}{l} \mbox{Off-State Current, Source-Collectors Terminal} \\ (V_{CC1} = 4.5 \ V, \ V_{CC2} = 24 \ V) & T_A = T_{low} \ to \ T_{high} \\ T_A = 25^0 C \end{array} $	loff		 3.0	500 150			200 200	μA
High-Level Sink Output Voltage (V _{CC1} = 4.5 V, V _{CC2} = 24 V, I _O = 0)	VOH	19	23	-	19	23	-	V
Saturation Voltage** Source Outputs (V _{CC1} = 4.5 V, V _{CC2} = 15 V, I _{source} $\approx$ -600 mA, R _L = 24 ohms, Note 2) T _A = T _{low} to T _{high} T _A = 25 ^O C	V _{sat}	_	- 0.43	0.9	-		0.9	V
Sink Outputs (V _{CC1} = 4.5 V, V _{CC2} = 15 V, I _{sink} $\approx$ 600 mA, R _L = 24 ohms, Note 2) T _A = T _{low} to T _{high} T _A = 25 ^o C		-	_ 0.43	0.9	-	0.43	0.9	
Input Current at Maximum Input Voltage (V _{CC1} = 5.5 V, V _{CC2} = 24 V, V ₁ = 5.5 V)	11							mA
Address Inputs Strobe Inputs		_	_	1.0 2.0	-	_	1.0	
High-Level Input Current (V _{CC1} = 5.5 V, V _{CC2} = 24 V, V _I = 2.4 V)	Чн							μA
Address Inputs Strobe Inputs		-	3.0 6.0	40 80		3.0 6.0	40 80	
Low-Level Input Current (V _{CC1} = 5.5 V, V _{CC2} = 24 V, V _I = 0.4 V)	μL							mA
Address Inputs Strobe Inputs			~1.0 -2.0	-1.6 -3.2	_	-1.0 -2.0	-1.6 -3.2	
Supply Current, All Sources and Sinks "Off" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, T _A = 25 ^o C)	^I CC(off)							mA
From V _{CC1} From V _{CC2}		-	14 7.5	22 20	1 1 	14 7.5	22 20	
Supply Current from V _{CC1} , Either Sink "On" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{sink} = 50 mA, T _A = 25 ^o C)	ICC1	-	55	70		55	70	mA
Supply Current from V _{CC2} , Either Source "On" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{source} = -50 mA, T _A = 25 ⁰ C)	ICC2	-	32	50	1	32	50	mA

*All typical values are at  $T_A = 25^{\circ}C$ .

**Not more than one output is to be "on" at any one time.


#  $T_{\rm Iow}$  = –55  $^{\rm O}{\rm C}$  for MC55325, 0  $^{\rm O}{\rm C}$  for MC75325

Thigh = +125°C for MC55325, +70°C for MC75325

NOTE 2. Saturation voltage must be measured using pulse techniques: pulse width = 200  $\mu$ s, duty cycle  $\leq 2\%$ .

# MC75113L

# TWISTED-PAIR LINE DRIVER



See Packaging Information Section for outline dimensions.

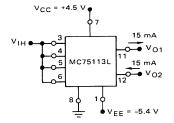
7

# MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Positive Power Supply Voltage (Pin 7)	V _{CC}	+8.0	Volts
Negative Power Supply Voltage (Pin 1)	VEE	-8.0	Volts
Positive Input Voltage (Pins 3,4,5,6)	Vin	+8.0	Volts
Negative Input Voltage (Pins 3,4,5,6)	Vin	-4.0	Volts
Output Voltage (Pins 11,12)	Vo	+8.0/-3.0	Volts
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	T _A	0 to +75	°C
Power Dissipation (Package Limitation)	PD	1000	mW
Derate Above T _A = +25 ⁰ C	1/θJA	6.7	mW/ ^o C

# ELECTRICAL CHARACTERISTICS (T_A = 0 to +75^oC unless otherwise noted.)

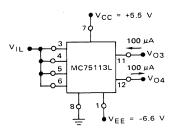
Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Positive Power Supply Current	1	^I CC	-	+46	+61	mA
Negative Power Supply Current	1	IEE	-	-32	-44	mA
Positive Output Current (short circuit)	2	¹ 011	+18	+20	+26	mA
Negative Output Current (short circuit)	2	¹ 012	-18	-20	-26	mA
Differential Output Current	3	۵ ^۱ ۵		±2.0	-	mA
Positive Output "ON" Common-Mode Range	4	V ₀₁	+2.7	-	-	V
Negative Output "ON" Common-Mode Range	4	V _{O2}	-2.7	-	-	V
Positive Output "OFF" Common-Mode Range	5	V _{O3}	+3.0	-	-	V
Negative Output "OFF" Common-Mode Range	5	V04	-2.5	-	-	V
Positive Output "OFF" Common-Mode Range	6	V _{O5}	-2.4	-	-	V
Negative Output "OFF" Common-Mode Range	6	V06	+3.0	-	-	V
Power Off Positive Output Common-Mode Range	7	V07	-2.0	-	-	V
Power Off Negative Output Common-Mode Range	7	V _{O8}	-2.0	-	-	V
Forward Input Current	8	١F		-	-2.6	mA
Reverse Input Current	8	[†] IR	-	-	+50	μA


SWITCHING CHARACTERISTICS (T_A = +25^oC unless otherwise noted, see Figure 9)

Characteristic	Symbol	Min	Тур	Max	Unit
"ON" Propagation Delay (Positive Output)	ton 11	-	25	30	ns
Rise Time (Positive Output)	^t r 11	-	10	15	ns
"OFF" Propagation Delay (Positive Output)	toff 11	-	15	20	ns
Fall Time (Positive Output)	tf 11	-	10	15	ns
"ON" Propagation Delay (Negative Output)	t _{on} 12	-	25	30	ns
Rise Time (Negative Output)	^t r 12		10	15	ns
"OFF" Propagation Delay (Negative Output)	toff 12	-	15	20	ns
Fall Time (Negative Output)	^t f 12	-	10	15	ns

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

#### TEST CIRCUITS


FIGURE 4 – OUTPUT "ON" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE



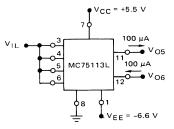
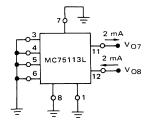
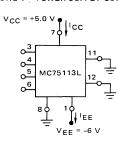
#### TABLE I – INPUT LOGIC VOLTAGE FOR TEST CIRCUITS

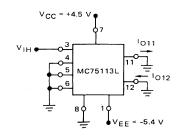
Temperature ( ^O C)	V _{inL} (VOLTS)	V _{inH} (VOLTS)
0 ⁰	1.16	1.85
+25 ⁰	1.08	1.78
+75 ⁰	0.94	1.64

#### FIGURE 5 – OUTPUT "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

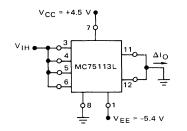


# FIGURE 6 – OUTPUT "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

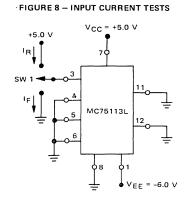




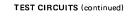


FIGURE 7 – POWER "OFF" POSITIVE and NEGATIVE OUTPUT COMMON-MODE RANGE

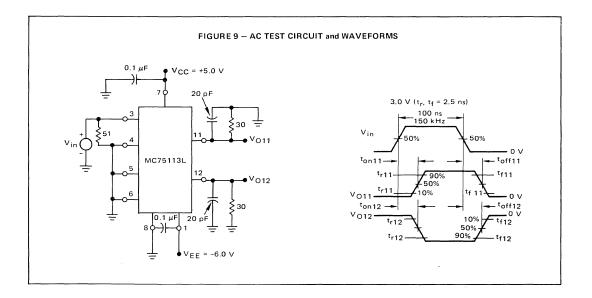



#### FIGURE 1 - POWER SUPPLY CURRENTS




#### FIGURE 2 – POSITIVE and NEGATIVE OUTPUT CURRENTS (Short Circuit)





#### FIGURE 3 – DIFFERENTIAL OUTPUT CURRENT



-







7

# MC75450

# PERIPHERAL DRIVER

#### DUAL PERIPHERAL DUAL PERIPHERAL POSITIVE "AND" DRIVER POSITIVE "AND" DRIVER MONOLITHIC SILICON INTEGRATED CIRCUITS The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory (top view) drivers. MDTL and MTTL Compatibility LSUFFIX 300 mA Output Current Drive Capability PLASTIC PACKAGE CERAMIC PACKAGE (each transistor) CASE 646 CASE 632 (TO-116)Separate Gate and Output Transistor for Maximum Design (TO-116) Flexibility High Output Breakdown Voltage: SUB-STRATE VCER = 30 Volts minimum 28 20 2E Vсс 14 13 12 11 10 9 8 2 1 3 4 5 6 7 MAXIMUM RATINGS ( $T_A = 0$ to $+70^{\circ}$ C unless otherwise noted) G 14 1B 10 1E GND 1 Y Rating Symbol Value Unit Positive Logic: $Y = \overline{AG}$ (gate only) C = AG (gate and transistor) Power Supply Voltage (See Note 1) +7.0 Vdc Vcc Input Voltage (See Note 1) Vin 5.5 Vdc V_{CC}-to-Substrate Voltage 35 Vdc CIRCUIT SCHEMATIC Collector-to-Substrate Voltage 35 Vdc 14 -0 ∨cc Collector-Base Voltage 35 VCB Vdc 130 Collector-Emitter Voltage (See Note 2) VCE 30 Vdc 4 -01B VEB Emitter-Base Voltage 5.0 Vdc 6 -1E Collector Current (continuous) (See Note 3) 300 mΑ 100 Power Dissipation (Package Limitation) PD Plastic and Ceramic Dual In-Line Packages 830 mW 1C 1Y 0 Derate above $T_A = +25^{\circ}C$ mW/⁰C 6.6 8 1 G 0 °C **Operating Temperature Range** 0 to +70 TΑ SUBSTRATE °c Storage Temperature Range Tsta -65 to +150 130 10 -02C 02E 11 -028 NOTES: 1. Voltage values are with respect to network ground terminal. 2AC This value applies when the base-emitter resistance (RBE) is equal to or less 2. 1 k than 500 ohms. ÓGND

3. Both halves of these dual circuits may conduct the rated current simultaneously.

See Packaging Information Section for outline dimensions.

### RECOMMENDED OPERATING CONDITIONS (See Note 4)

-

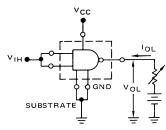
Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	v _{cc}	4.75	5.0	5.25	Vdc

Note 4. The substrate, pin 8, must always be at the most negative device voltage for proper operation.

ELECTRICAL CHARACTERISTICS (1	A = 0 to +70 ^o C unless otherwise noted.)
-------------------------------	------------------------------------------------------

Characteristic	Symbol	Test Fig.	Min	Тур*	Max	Unit
MTTL GATES			····		-	
High-Level Input Voltage	VIH	1	2.0	_		Vdc
Low-Level Input Voltage	VIL	2	-	-	0.8	Vdc
High-Level Output Voltage (V _{CC} = 4.5 V, V _{IL} = 0.8 V, I _{OH} = -400 μA)	V _{OH}	2	2.4	3.3	_	Vdc
Low-Level Output Voltage ( $V_{CC}$ = 4.75 V, $V_{IH}$ = 2.0 V, $I_{OL}$ = 16 mA)	VOL	1	-	0.22	0.4	Vdc
High-Level Input CurrentInput A $(V_{CC} = 5.25 V, V_{in} = 2.4 V)$ Input AInput GInput G $(V_{CC} = 5.25 V, V_{in} = 5.5 V)$ Input A	Чн	3	-	_ _ _	40 80 1.0	μA mA
Input G           Low-Level Input Current           (V _{CC} = 5.25 V, V _{in} = 0.4 V)           Input G	ι. IIL	4	-		2.0 -1.6 -3.2	mA
Short-Circuit Output Current** (V _{CC} = 5.25 V)	IOS	5	-18	-	-55	mA
Supply Current High-Level Output (V _{CC} = 5.25 V, V _{in} = 0) Low-Level Output (V _{CC} = 5.25 V, V _{in} = 5.0 V)		6	-	2.0 6.0	4.0 11	mA
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)	V _{in}	4	-	-	-1.5	V
OUTPUT TRANSISTORS						
Characteristic	Symbol	Min	Тур	N	lax	Unit
Collector-Base Breakdown Voltage (I _C = 100 µA, I _E = 0)	V _{CBO}	35	_		_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 $\mu$ A, R _{BE} = 500 ohms)	VCER	30			-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µA, I _C = 0)	VEBO	5.0	_		_	Vdc
	hfe	25 30 20 25				
Base-Emitter Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _C = 30 mA, I _C = 300 mA)	V _{BE}		0.85 1.05		.0 .2	Vdc
Collector-Emitter Saturation Voltage (See Note 5) ( $I_B = 10 \text{ mA}, I_C = 100 \text{ mA}$ ) ( $I_B = 30 \text{ mA}, I_C = 300 \text{ mA}$ )	V _{CE} (sat)	_	0.25 0.5	1	.4 .7	Vdc

Note 5. These parameters must be measured using pulse techniques;  $t_w = 300 \ \mu$ s, duty cycle  $\leq 2\%$ . *All typical values at V_{CC} = 5.0 V, T_A = +25°C. **Not more than one output should be shorted at a time.


Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
MTTL GATES				_		
Propagation Delay Time ( $C_L$ = 15 pF, $R_L$ = 400 ohms)		7				ns
Low-to-High-Level Output	^t PLH		-	14	-	
High-to-Low-Level Output	TPHL	1	-	6.0	-	
OUTPUT TRANSISTORS #						
Switching Times (I _C = 200 mA, I _{B(1)} = 20 mA, I _{B(2)} = -40 mA, V _{BE(off)} = -1.0 V, C _L = 15 pF, R _L = 50 ohms)		8				ns
Delay Time	td		-	9.0		
Rise Time	tr		-	11	-	
Storage Time	t _s		-	14	-	
Fall Time	tf		-	8.0	-	
GATES AND TRANSISTORS COMBINED #						
Propagation Delay Time ( $I_C = 200 \text{ mA}, C_1 = 15 \text{ pF}, R_1 = 50 \text{ ohms}$ )		9				ns
Low-to-High-Level Output	<b>TPLH</b>		-	21	-	
High-to-Low Level Output	<b>tPHL</b>			16	-	
Transition Time [#] (I _C = 200 mA, C ₁ = 15 pF, R ₁ = 50 ohms)		9				ns
Low-to-High-Level Output	^t TLH			7.0	-	
High-to-Low-Level Output	^t THL			8.0	-	

### SWITCHING CHARACTERISTICS ( $V_{CC} = 5.0 \text{ V}, T_A = +25^{\circ}C$ unless otherwise noted.)

[#]Voltage and current values are nominal; exact values vary slightly with transistors parameters. Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

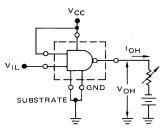

#### DC TEST CIRCUITS FOR MTTL GATES

FIGURE 1 - VIH. VOL



Both inputs are tested simultaneously.

FIGURE 2 - VIL, VOH



Each input is tested separately.

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 3 - IIH

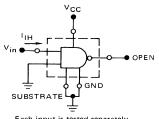
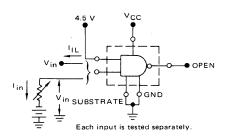
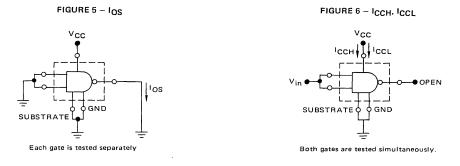





FIGURE 4 - IIL, Vin





DC TEST CIRCUITS FOR MTTL GATES (continued)

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

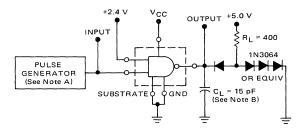
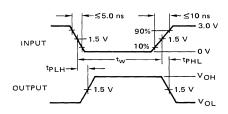
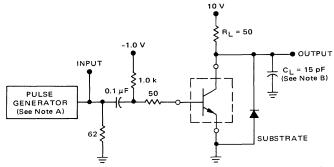
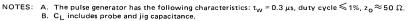




FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE


NOTES: A. The pulse generator has the following characteristics:  $t_w = 0.5 \ \mu s$ , PRR = 1.0 MHz,  $z_o \approx 50 \ \Omega$ . B. C_L includes probe and jig capacitance.


#### VOLTAGE WAVEFORMS



7

### TEST CIRCUITS (continued) FIGURE 8 – SWITCHING TIMES, EACH TRANSISTOR







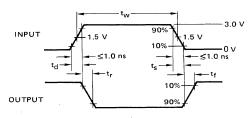
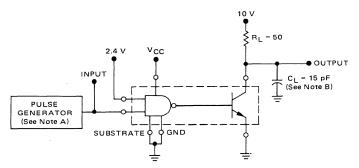
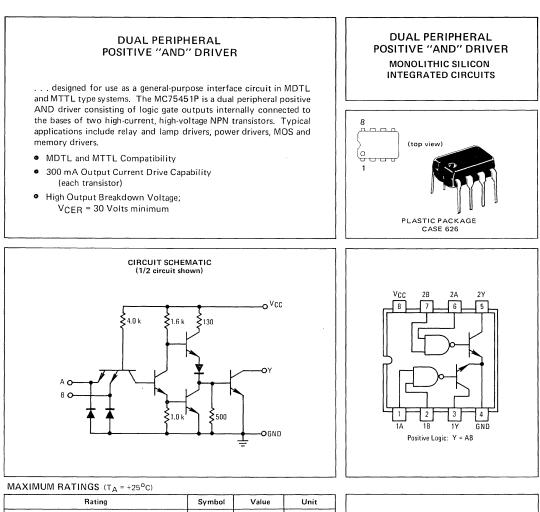




FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR




NOTES: A. The pulse generator has the following characteristics:  $t_w = 0.5 \ \mu s$ , PRR = 1.0 MHz,  $z_o \approx 50 \ \Omega$ . B. C_L includes probe and jig capacitance.

#### VOLTAGE WAVEFORMS



# MC75451P

# PERIPHERAL DRIVER



Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc
Input Voltage (See Notes 1 and 2)	Vin	5.5	Vdc
Output Voltage (See Notes 1 and 3)	Vo	30	Vdc
Output Current (continuous)	10	300	mA
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Operating Temperature Range Storage Temperature Range	PD T _A T _{stg}	830 6.6 0 to +70 -65 to +150	mW mW/ ^o C o _C
NOTE 1. Voltage values are with respect to netwo NOTE 2. Input voltage should be zero or positive NOTE 3. This is the maximum voltage which shou the "off" state.	with respect	to device groun	

TR AB	UTH TABLE	1
	L ("on" state)	
LH	L ("on" state)	
ΗL	L ("on" state)	
нн	H ("off" state)	
l = high	level, L = low lev	vel

#### RECOMMENDED OPERATING CONDITIONS

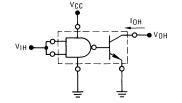
Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	Vdc

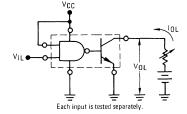
#### **ELECTRICAL CHARACTERISTICS** ( $T_A = 0$ to +70^oC unless otherwise noted)

Characteristic		Symbol	Test Fig.	Min	Typ*	Max	Unit
High-Level Input Voltage		VIH	1	2.0	-	-	Vdc
Low-Level Input Voltage		VIL	2		-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)		Vin	4	-	_	-1.5	Vdc
High-Level Output Current (V _{CC} = 4.75 V, V _{IH} = 2.0 V, V _{OH} = 30 V)		lон	1	-	-	100	μА
Low-Level Output Voltage (V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OL} = 100 mA) (V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OL} = 300 mA)		VOL	2	-	0.25 0.5	0.4 0.7	Vdc
High-Level Input Current ( $V_{CC} = 5.25 V, V_{in} = 2.4 V$ ) ( $V_{CC} = 5.25 V, V_{in} = 5.5 V$ )		ин	3	-	-	40 1.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V)		μL	4		-1.0	-1.6	mA
Supply Current ( $V_{CC} = 5.25 V$ , $V_{in} = 5.0 V$ ) ( $V_{CC} = 5.25 V$ , $V_{in} = 0$ )	High-Level Output Low-Level Output	ICCH ICCL	5		7.0 52	11 65	mA

*Typical values are at V_{CC} = 5.0 V, T_A =  $+25^{\circ}$ C.

SWITCHING CHARACTERISTICS ( $V_{CC}$  = 5.0 V,  $T_A$  = +25°C unless otherwise noted.)

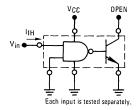

Characteristic	Symbol	Test Fig.	Min	Түр	Max	Unit
Propagation Delay Time		6				ns
$(I_{O} \approx 200 \text{ mA}, \text{C}_{L} = 15 \text{ pF}, \text{R}_{L} = 50 \text{ ohms})$						
Low-to-High-Level Output	^t PLH		-	17	-	
High-to-Low-Level Output	^t PHL		-	18	-	
Transition Time		6				ns
$(I_{O} \approx 200 \text{ mA}, \text{CL} = 15 \text{ pF}, \text{RL} = 50 \text{ ohms})$						ł.
Low-to-High-Level Output	^t TLH			6.0	-	
High-to-Low-Level Output	^t THL		-	11	-	


Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

## $\mathsf{FIGURE}~1-\mathsf{V}_{\mathsf{IH}},\,\mathsf{I}_{\mathsf{OH}}$

### TEST CIRCUITS

FIGURE 2 - VIL, VOL



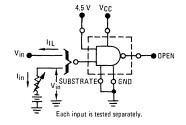
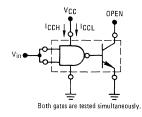
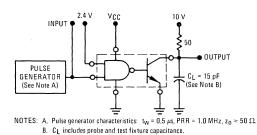



#### TEST CIRCUITS (continued)

FIGURE 3 – IIH

-



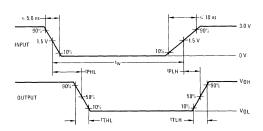


FIGURE 4 - IIL, Vin

FIGURE 5 - ICCH, ICCL



#### FIGURE 6 - SWITCHING TIMES AND WAVEFORMS

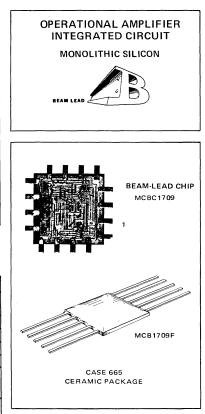


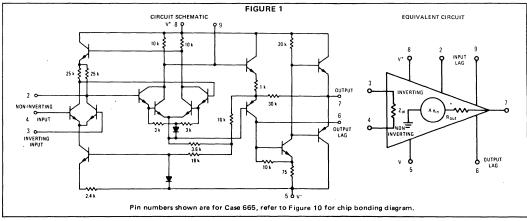




# **OPERATIONAL AMPLIFIERS**

# MCBC1709 MCB1709F


#### MONOLITHIC OPERATIONAL AMPLIFIER


Beam-lead sealed-junction technology and fabrication make the MCBC1709 and MCB1709F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

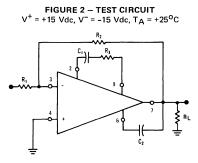
- High-Performance Open Loop Gain Characteristics
   Avol = 45,000 typical
- Low Temperature Drift  $-\pm 3.0 \ \mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance Z_{out} = 150 ohms typical

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺ V-	+18 -18	Vdc
Differential Input Signal	Vin	±5.0	Volts
Common Mode Input Swing	CMV _{in}	±V ⁺	Volts
Load Current	١L	10	mA
Output Short Circuit Duration	ts	5.0	s
Power Dissipation Derate above T _A = +25 ⁰ C	PD	500 3.3	mW mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C





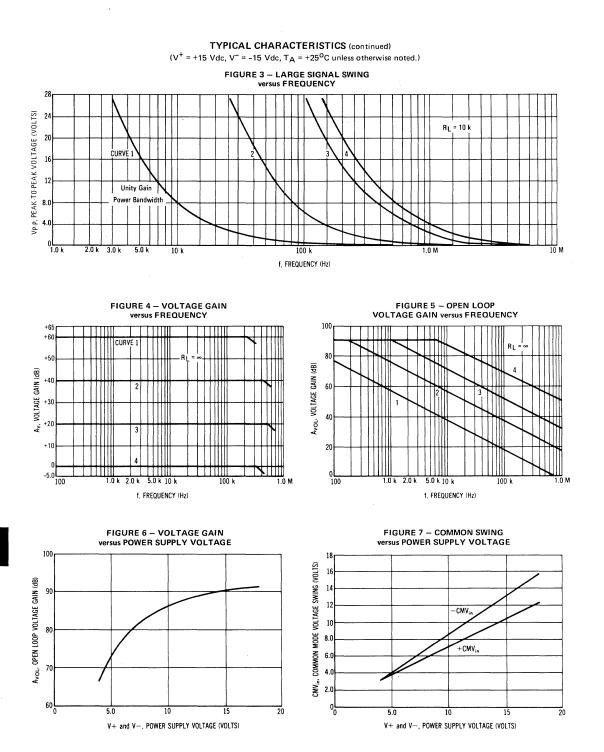

See Packaging Information Section for outline dimensions.

7

# MCBC1709, MCB1709F (continued)

		M	CBC1709 and MCB1	1709F	
Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain ( $V_0 = \pm 10 \text{ V}, \text{ T}_A = -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$ )	AVOL	25,000	45,000	70,000	
Output Impedance (f = 20 Hz)	Z _{out}		150	-	Ω
Input Impedance {f = 20 Hz}	Z _{in}	150	400	-	kΩ
Output Voltage Swing $(R_L = 10 k\Omega)$ $(R_L = 2.0 k\Omega)$	Vo	±12 ±10	±14 ±13	-	V _{peak}
Input Common-Mode Voltage Swing	CMV _{in}	±8.0	±10	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90	-	dB
Input Bias Current ( $T_A = +25^{\circ}C$ ) ( $T_A = -55^{\circ}C$ )	۱ _b		0.2 0.5	0.5 1.5	μΑ
Input Offset Current ( $T_A = +25^{\circ}C$ ) ( $T_A = -55^{\circ}C$ ) ( $T_A = +125^{\circ}C$ )	lı _{io} l		0.05  	0.2 0.5 0.2	μΑ
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	Iv _{io} l		1.0	5.0 6.0	mV
$ \left\{ \begin{array}{l} {\rm Step \ Response} \\ {\rm Gain = 100, \ 5.0\% \ overshoot,} \\ {\rm R}_1 = 1.0 \ k\Omega, \ {\rm R}_2 = 100 \ k\Omega, \\ {\rm R}_3 = 1.5 \ k\Omega, \ {\rm C}_1 = 100 \ {\rm pF}, \ {\rm C}_2 = \end{array} \right\} \\ {\rm 3.0 \ pF} $	t _f tpd dV _{out} /dt ⊕		0.8 0.38 12	  -	μs μs V/μs
$ \left\{ \begin{array}{l} \text{Gain} = 10, \ 10\% \ \text{overshoot}, \\ \text{R}_1 = 1.0 \ \text{k}\Omega, \ \text{R}_2 = 10 \ \text{k}\Omega, \\ \text{R}_3 = 1.5 \ \text{k}\Omega, \text{C}_1 = 500 \ \text{pF}, \text{C}_2 = 20 \ \text{pF} \end{array} \right\} $	^t f dV _{out} /dt ①		0.6 0.34 1.7	- - -	μs μs V/μs
$\left\{ \begin{array}{l} {\rm Gain}=1,5.0\% \ {\rm overshoot}, \\ {\rm R}_1=10 \ {\rm k}\Omega,  {\rm R}_2=10 \ {\rm k}\Omega,  {\rm R}_3= \\ {\rm 1.5 \ k}\Omega, {\rm C}_1=5000 \ {\rm pF}, {\rm C}_2=200 \ {\rm pF} \end{array} \right\}$	t _f t _{pd} dV _{out} /dt ①	·	2.2 1.3 0.25		μs μs V/μs
Average Temperature Coefficient of Input Offset Voltage (R _S = 50 $\Omega$ ,TA = -55 ^o C to +125 ^o C) (R _S $\leq$ 10 k $\Omega$ , T _A = -55 ^o C to +125 ^o C)	TC _{Vio}		3.0 6.0		μV/ ⁰ C
DC Power Dissipation (Power Supply = $\pm 15$ V, V ₀ = 0)	PD	-	80	165	mW
Positive Supply Sensitivity (V ⁻ constant)	S ⁺	_	25	150	μV/V
Negative Supply Sensitivity (V ⁺ constant)	S-	_	25	150	μV/V

1 dV_{out}/dt = Slew Rate




### TYPICAL CHARACTERISTICS

Fig.	C	Test Conditions				
No.	Curve No.	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	C ₁ (pF)	C ₂ (pF)
3	1	10 k	10 k	1.5 k	5.0 k	200
	2	10 k	100 k	1.5 k	500	20
	3	10 k	1.0 M	1.5 k	100	3.0
	4	1.0 k	1.0 M	0	10	3.0
4	1	1.0 k	1.0 M	0	10	3.0
•	2	10 k	1.0 M	1.5 k	100	3.0
	3	10 k	100 k	1.5 k	500	20
	4	10 k	10 k	1.5 k	5.0 k	200
5	1	0	æ	1.5 k	5.0 k	200
	2	0	8	1.5 k	500	20
	3	0	œ	1.5 k	100	3.0
	4	0	æ	0	10	3.0

# MCBC1709, MCB1709F (continued)

7



7-506

# MCBC1709, MCB1709F (continued)

#### TYPICAL CHARACTERISTICS (continued)

 $(V^+ = +15 \text{ Vdc}, V^- = -15 \text{ Vdc}, T_A = +25^{\circ}C \text{ unless otherwise noted.})$ 

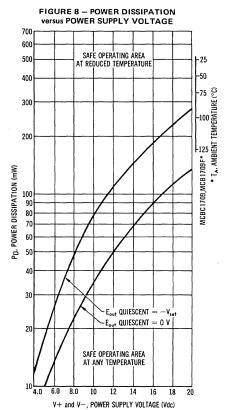
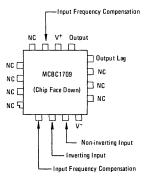
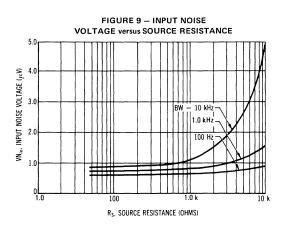
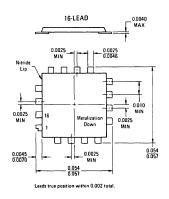






FIGURE 10 - BONDING DIAGRAM



Silicon Thickness = 2.0 mils nominal





PACKAGING AND HANDLING

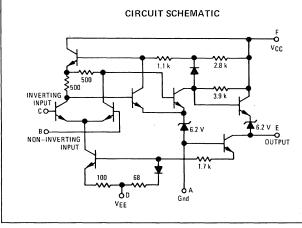
The MCBC1709 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

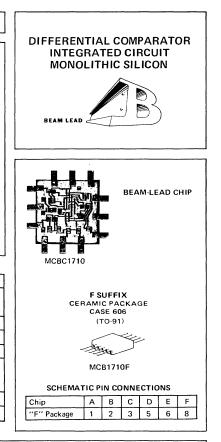
# DIFFERENTIAL COMPARATOR

### **Advance Information**

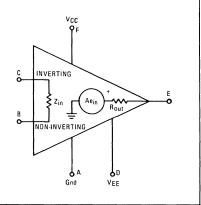
MCBC1710 MCB1710F

#### MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR


Beam-lead sealed-junction technology and fabrication make the MCBC1710 and MCB1710F devices excellent choices for military, aerospace, and commercial applications. These devices are designed for use in level detection, low-level sensing, and memory applications.


- Differential Input Characteristics Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 µV/°C
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms VO = +3.2 V to -0.5 V Typical
- Low Output Impedance 200 ohms

#### MAXIMUM RATINGS ( $T_A = 25^{\circ}C$ unless otherwise noted)


Rating	Symbol*	Value	Unit
Power Supply Voltage	V _{CC}	+14	Vdc
	VEE	7.0	Vdc
Differential Input Signal	VID	±5.0	Volts
Common Mode Input Swing	VICR	±7.0	Volts
Peak Load Current	IL.	10	mA
Power Dissipation (package limitations) Flat Package Derate above T _A = +25°C	PD	500 3.3	mW mW/°C
Operating Temperature Range	Тд	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Symbols conform to JEDEC Engineering 8	Ilasia Na 1		

Symbols conform to JEDEC Engineering Bulletin No. 1 where applicable.

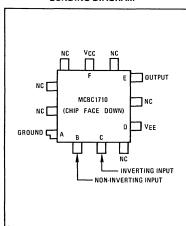




#### EQUIVALENT CIRCUIT



This is advance information on a new introduction and specifications are subject to change without notice.

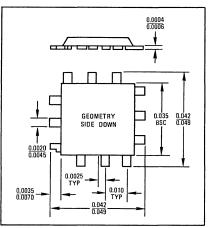

See Packaging Information Section for outline dimensions.

# MCBC1710, MCB1710F (continued)

		MCE	C1710/MCB1	710F	
Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _O = 1.4 Vdc)	VIO	-	1.0	2.0	mVdc
Input Bias Current (V _O = 1.4 Vdc)	ЧВ	-	12	20	μAdc
Output Resistance	ro	-	200	-	Ohms
Positive Output Voltage ( $V_{in} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA}$ )	Voн	2.5	3.2	4.0	Vdc
Negative Output Voltage (V _{in} ≥-5.0 mV)	Vol	-1.0	-0.5	0	Vdc
Output Sink Current (V _{in} ≥-5.0 mV, V _{out} ≥0)	I _s	2.0	2.5	-	mAdc
Common Mode Rejection Ratio ( $V_O$ = -7.0 Vdc, R _S $\leq$ 200 $\Omega$ )	CMRR	-	100	-	dB
Propagation Delay Time For Positive and Negative Going Input Pulse	^t pd	-	40	-	ns
Power Supply Current (V _O ≪0 Vdc)	ID+	_	6.4 5.5	9.0 7.0	mAdc
DC Quiescent Power Dissipation	PD	-	115	150	mW

### ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = 25°C unless otherwise noted)

*Symbols conform to JEDEC Engineering Bulletin No. 1 where applicable. See current MC1710/1710C data sheet for additional information.




#### BONDING DIAGRAM

#### PACKAGING AND HANDLING

The MCBC1710 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the square glass plate on which the chips are placed. A thin layer of

12 - BEAM CHIP

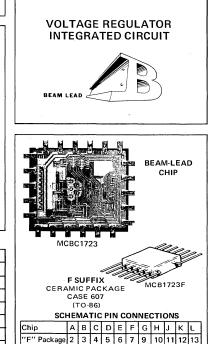


polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

# **VOLTAGE REGULATORS**

# MCBC1723 MCB1723 F

### **Advance Information**


#### MONOLITHIC VOLTAGE REGULATOR

The MCBC1723/MCB1723F is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.


- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line Regulation
- Adjustable Short-Circuit Protection

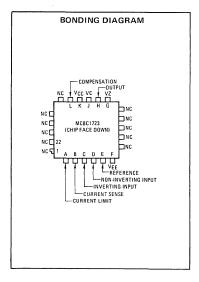
## MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

Symbol *	Value	Unit
V _{in(p)}	50	Vpeak
Vin	40	Vdc
V _{in} -V _O	40	Vdc
1	150	mAdc
l _{ref}	15	mAdc
TA	-55 to +125	°C
Тј	-65 to +150	°C
	Vin(p) Vin Vin-VO IL Iref TA	Vin(p)         50           Vin         40           Vin-V0         40           IL         150           Iref         15           TA         -55 to +125



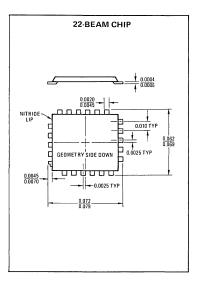
#### *Symbols conform to JEDEC Engineering Bulletin No. 1 where applicable.




This is advance information on a new introduction and specifications are subject to change without notice. See Packaging Information Section for outline dimensions.

# MCBC1723, MCB1723F (continued)

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = +25^{\circ}C$ , $V_{in} = 12$ Vdc, $V_o = 5$ Vdc, $I_L = 1$ mAdc, $r_{sc} = 10^{\circ}C$	0.
C1 = 100 pF, Cref = 0 and divider impedance as seen by the error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in Figure 1)	-,


		MC			
Characteristic	Symbol*	Min	Тур	Max	Unit
Input Voltage Range	V _{in}	9.5	-	40	Vdc
Output Voltage Range	Vo	2.0	_	37	Vdc
Input-Output Voltage Differential	V _{in} -V _O	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.95	7.15	7.35	Vdc
Standby Current Drain (I _L = 0, V _{in} = 30 V)	IВ	-	2.3	3.5	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \ \mu F$	Vn	_	20 2.5	_	μV(rms)
Line Regulation (12 V $\leq$ V _{in} $\leq$ 15 V) (12 V $\leq$ V _{in} $\leq$ 40 V)	Reg _{in}		0.01 0.02	0.1 0.2	%VO
Load Regulation (1.0 mA $\leq$ I $\leq$ 50 mA)	Regload	-	0.03	0.15	%VO
Ripple Rejection (f = 50 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \ \mu F$	Rej _R		74 86		dB
Short Circuit Current Limit ( $r_{sc} = 10 \ \Omega$ , V _O = 0)	۱ _{sc}	_	65	-	mAdc

*Symbols conform to JEDEC Engineering Bulletin No. 1 where applicable.



#### PACKAGING AND HANDLING

The MCBC1723 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of



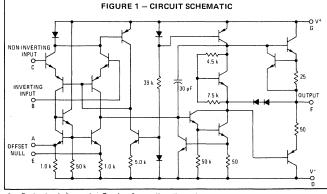
polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

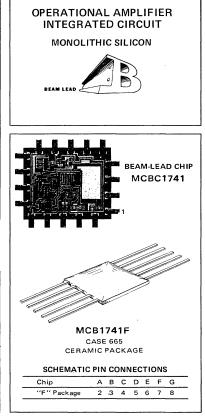
## **OPERATIONAL AMPLIFIERS**

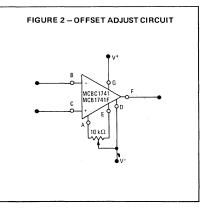
# MCBC1741 MCB1741F

### MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1741 and MCB1741F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.


- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up


## MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)


Rating	Symbol	Value	Unit	
Power Supply Voltage	V ⁺	+22	Vdc	
	V-	-22		
Differential Input Signal	Vin	±30	Volts	
Common Mode Input Swing (Note 1)	CMVin	±15	Volts	
Output Short Circuit Duration (Note 2)	ts	Continuous		
Power Dissipation	PD	500	mW	
Derate above $T_A = +25^{\circ}C$ (Flat Package)		3.3	mW/ ^o C	
Operating Temperature Range	TA	-55 to +125	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°c	

Note 1. For supply voltages less than  $\pm$  15 V, the absolute maximum input voltage is equal to the supply voltage.

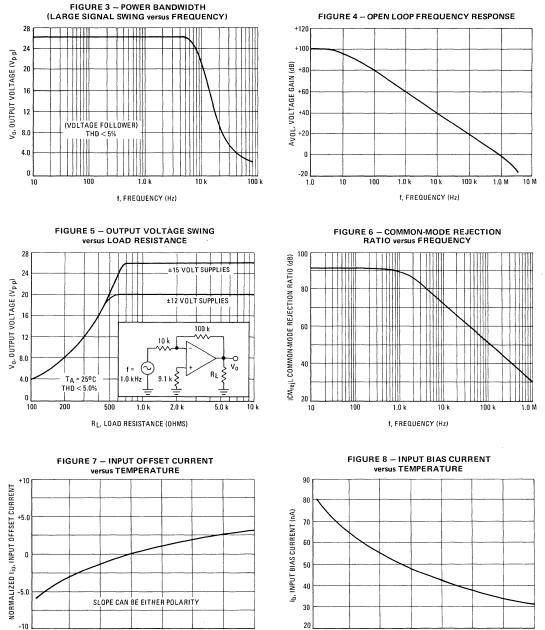
Note 2. Supply voltage equal to or less than 15 V.







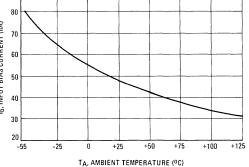
See Packaging Information Section for outline dimensions.

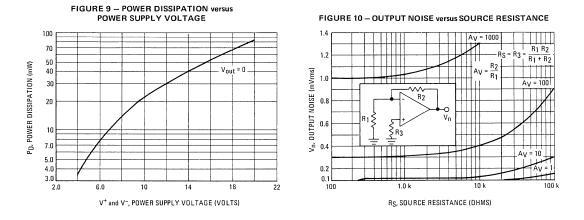

# **ELECTRICAL CHARACTERISTICS** (V⁺ = +15 Vdc, V⁻ = -15 Vdc, $T_A$ = +25^oC unless otherwise noted)

			MCBC1741, MCB1741F				
Characteristic	Symbol	Min	Тур	Max	Unit		
Open Loop Voltage Gain ( $R_L = 2.0 \text{ k}\Omega$ ) ( $V_0 = \pm 10 \text{ V}, T_A = \pm 25^{\circ}\text{C}$ )	AVOL	50,000	200,000	_	-		
$(V_0 = \pm 10 V, T_A = -55 \text{ to } + 125^{\circ}C)$		25,000	-	-			
Output Impedance (f = 20 Hz)	Zo	_	75	_	Ω		
Input Impedance (f = 20 Hz)	Z _{in}	0.3	1.0	_	MegΩ		
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ) (R _L = 2.0 kΩ, T _A = -55 to +125 ⁰ C)	Vo	±12 ±10 ±10	±14 ±13 -		V _{peak}		
Input Common-Mode Voltage Swing	CMVin	±12	±13		V _{peak}		
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90	_	dB		
Input Bias Current ( $T_A = +25^{\circ}C$ ) ( $T_A = -55^{\circ}C$ )	۱ _b	-	0.2 0.5	0.5 1.5	μΑ		
Input Offset Current $(T_A = +25^{\circ}C)$ $(T_A = -55 \text{ to } +125^{\circ}C)$	II _{io} l		0.03	0.2 0.5	μA		
Input Offset Voltage $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	v _{io}		1.0	5.0 6.0	mV		
Step Response Gain = 100, R ₁ = 1.0 kΩ, R ₂ = 100 kΩ, R ₃ = 1.0 kΩ	tf ^t pd dV _{out} /dt ①	- - -	29 8.5 1.0	-	μs μs V/μs		
Gain = 10, R ₁ = 1.0 kΩ, R ₂ = 10 kΩ, R ₃ = 1.0 kΩ	^t f ^t pd dV _{out} /dt ①	-	3.0 1.0 1.0		μs μs V/μs		
Gain = 1, R ₁ = 10 kΩ, R ₂ = 10 kΩ, R ₃ = 5.0 kΩ	t _f ^t pd dV _{out} /dt ①		0.6 0.38 0.8		μs μs V/μs		
Average Temperature Coefficient of Input Offset Voltage ( $R_S = 50 \ \Omega$ , $TA = -55^{\circ}C$ to +125 $^{\circ}C$ ) ( $R_S = 10 \ k\Omega$ , $T_A = -55^{\circ}C$ to +125 $^{\circ}C$ )	TC _{Vio}	_	3.0 6.0		μV/ ⁰ C		
Average Temperature Coefficient of Input Offset Current (T _A = -55 to +125 ⁰ C)	TC _{Vio}	_	50	-	pA/ ^o C		
DC Power Dissipation (Power Supply = $\pm 15 \text{ V}, \text{ V}_0 = 0$ )	PD	_	50	85	mW		
Positive Supply Sensitivity (V  constant)	S ⁺	_	30	150	μV/V		
Negative Supply Sensitivity (V ⁺ constant)	S-		30	150	μV/V		
Power Bandwidth ( $A_v = 1$ , $R_L = 2.0 k\Omega$ , THD = 5%, $V_0 = 20 V_{p-p}$ )	₽BW		10	_	kHz		

7

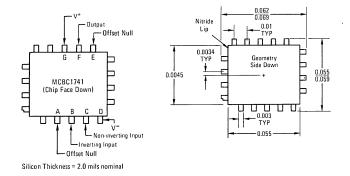
(1)  $dV_{out}/dt = Slew Rate$ 


# MCBC1741, MCB1741F (continued)




TYPICAL CHARACTERISTICS (continued)  $(V^+ = +15 \text{ Vdc}, V^- = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C}$  unless otherwise noted.)

-10 -55 -25 0 +25 +50 +75 +100 +125 TA, AMBIENT TEMPERATURE (°C)


7





 $\label{eq:V} \begin{array}{l} \textbf{TYPICAL CHARACTERISTICS} \ (\text{continued}) \\ (V^+ = +15 \ \text{Vdc}, \ V^- = -15 \ \text{Vdc}, \ T_A = +25^{\text{O}}\text{C} \ \text{unless otherwise noted.}) \end{array}$ 

FIGURE 11 - BONDING DIAGRAM



PACKAGING AND HANDLING

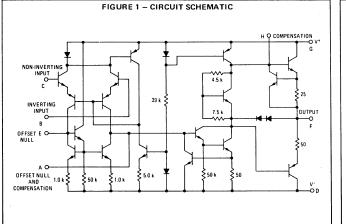
The MCBC1741 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

# OPERATIONAL AMPLIFIERS

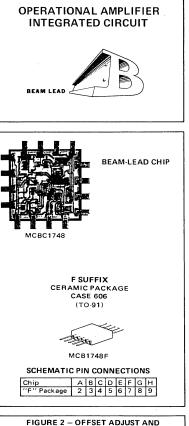
# MCBC1748 MCB1748F

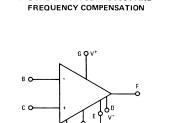
# **Advance Information**

#### HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER


Beam-lead sealed-junction technology and fabrication make the MCBC1748 and MCB1748F devices excellent choices for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

- Noncompensated MCBC1741
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up


MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺ V-	+18 -18	Vdc
Differential Input Signal	Vin	±5.0	Volts
Common Mode Input Swing ①	CMVin	±v ⁺	Volts
Load Current	١L	10	mA
Output Short Circuit Duration	tS	5.0	s
Power Dissipation Derate above T _A = +25 ⁰ C (Flat Package)	PD	500 3.3	mW mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

①For supply voltages less than ±15 V, the Maximum Input Voltage is equal to the Supply Voltage.

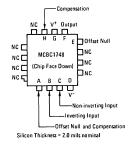








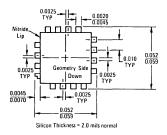
5 1 M




# MCBC1748, MCB1748F (continued)

Characteristics	Symbol	Min	Тур	Max	Unit
Open-Loop Voltage Gain, (Vo = +10 V, RL = 2.0 k ohms)	AVOL	50,000	200,000	-	
Output Impedance ( f = 20 Hz)	Zo	-	75	-	ohms
Common Mode Input Impedance (f = 20 Hz)	Zin	-	200	-	Megohms
Output Voltage Swing ( $R_L = 10 \text{ k ohms}$ ) $R_L = 2 \text{ k ohms} (T_A = -55 \text{ to } +125^{\circ}\text{C})$	Vo	±12 ±10	±14 ±13		Vpk
Common-Mode Input Voltage Swing	CMVin	-	±13	-	Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CMrej	-	90	-	dB
Input Bias Current	Ib	-	0.08	0.5	μAdc
Input Offset Current	lio	-	0.02	0.2	μAdc
Input Offset Voltage (RS≤10 kΩ)	Vio	-	1.0	5.0	mVdc
Step Response ( $V_{in}$ = 20 mV, $C_c$ = 30 pF, $R_L$ = 2 k $\Omega$ , $C_L$ = 100 pF) Rise Time Overshoot Percentage Slew Rate	t _r dV _{out} /dt		0.3 5.0 0.8		μs % V/μs
Short-Circuit Output Current	'sc	-	25	-	mAdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance Parallel Input Capacitance	Rp Cp		2.0 1.4		Megohms pF
Power Supply Sensitivity V [−] = constant, Rg ≤10 k ohms V ⁺ = constant, Rg ≤10 k ohms	S+ S-	-	30 30	150 150	μV/V
Power Supply Current	I _D + I _D -	-	1.67 1.67	2.83 2.83	mAdc
DC Quiescent Power Dissipation (Vo = 0)	PD	-	50	85	mW

### ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)


#### BONDING DIAGRAM



PACKAGING AND HANDLING

The MCBC1748 beam-lead sealed-junction linear integrated circuit is available in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of

#### 16-BEAM CHIP



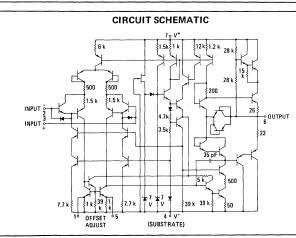
polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

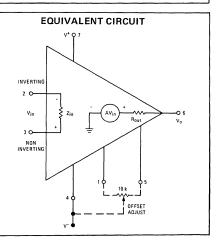
## **OPERATIONAL AMPLIFIERS**

# MCC1536 MCC1436

#### HIGH VOLTAGE, INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER

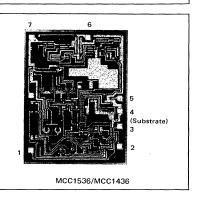
... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.


The MCC1536 and MCC1436 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.


- Maximum Supply Voltage ±40 Vdc
- Output Voltage Swing ± 30 Vpk(min)(V⁺ = +36 V, V⁻ = -36 V)
  - $\pm 22 V_{pk(min)}(V^+ = +28 V, V^- = -28 V)$
- Input Bias Current 20 nA max
- Input Offset Current 3.0 nA max
   Offset Voltage Null Capability
- Fast Slew Rate 2.0 V/μs typ
- Internally Compensated
- Input Over-Voltage Protection
   A_{VOL} 500,000 typ
- Characteristics Independent of Power Supply Voltages -
- $(\pm 5.0 \text{ Vdc to} \pm 36 \text{ Vdc})$

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating		Symbol	MCC1536	MCC1436	Unit
Power Supply Voltage		v+	+40	+34	Vdc
		v-	-40	-34	
Differential Input Signal (1)		Vin	±(V ⁺ +	V- -3)	Volts
Common-Mode Input Swing		CMVin	+V ⁺ , -	( V ⁻  -3)	Volts
Output Short Circuit Duration ( $V^+ =  V^-  = 28 \text{ Vdc}, V_0 = 0$ )		TSC	5	.0	s
Operating Temperature Range	MCC1536 MCC1436	TA	-55 to +125 0 to +75		°C
Junction Temperature Range		τ _{stg}	-65 to	o +150	°C


(1) The absolute voltage applied to either input terminal must not exceed  $+V^+$ , -( $|V^-|$ -3).

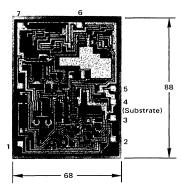




### OPERATIONAL AMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED




# MCC1536, MCC1436 (continued)

ELECTRICAL CHARACTERISTICS (V⁺ = +28 Vdc, V⁻ = -28 Vdc, T_A = +25^oC unless otherwise noted)

			MCC153	6		MCC1436	5	
Characteristics	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Input Bias Current	۱ _b		8.0	20	-	15	40	nAdc
Input Offset Current	lı _{io} l		1.0	3.0	-	5.0	10	nAdc
Input Offset Voltage	v _{io} †	·	2.0	5.0	-	5.0	10	mVdc
Differential Input Impedance (Open-Loop, f ≤ 5.0 Hz) Parallel Input Resistance Parallel Input Capacitancc	R _p Cp	-	10 2.0	-		10 2.0	-	Meg ohm pF
Common-Mode Input Impedance (f ≤ 5.0 Hz)	Z _(in)		250	-	***	250		Meg ohm
Common-Mode Input Voltage Swing	CMV _{in}	-	±25		-	±25	-	V _{pk}
Common-Mode Rejection Ratio (dc)	CM _{rej}		110	-	-	110		dB
Large Signal dc Open Loop Voltage Gain	AVOL							V/V
$(V_0 = \pm 10 \text{ V}, \text{ R}_L = 100 \text{ k ohms})$		100,000	500,000	-	70,000	500,000	-	
$(V_0 = \pm 10 \text{ V}, \text{ R}_L = 10 \text{ k ohms})$			200,000	~~~	-	200,000	-	
Power Bandwidth (Voltage Follower) (A _V = 1, R _L = 5.0 k ohms, THD≤ 5%, V _O = 40 Vp-p)	PBW		23		-	23	_	kHz
Unity Gain Crossover Frequency (open-loop)			1.0		-	1.0	-	MHz
Phase Margin (open-loop, unity gain)			50			50	-	degrees
Gain Margin			18	···	_	18	_	dB
Slew Rate (Unity Gain)	dV _{out} /dt		2.0		-	2.0		
Output Impedance (f ≤ 5.0 Hz)	Zout		1.0			1.0	-	k ohms
Short-Circuit Output Current	ISC	, m	±17	-	_	±17		mAdc
Output Voltage Swing (R _L = 5.0 k ohms) $V^+ = +28 \text{ Vdc}, V^- = -28 \text{ Vdc}$ $V^+ = +36 \text{ Vdc}, V^- = -36 \text{ Vdc}$	Vo	±22 ±30	±23 ±32	· -	±20 -	*±22 –	-	V _{pk}
Power Supply Sensitivity (dc) $V^-$ = constant, R _S ≤ 10 k ohms $V^+$ = constant, R _S ≤ 10 k ohms	S+ S-		15 15	100 100	- -	35 35	200 200	μV/V
Power Supply Current	1 _D + 1 _D -		2.2 2.2	4.0 4.0		2.6 2.6	5.0 5.0	mAdc
DC Quiescent Power Dissipation (Vo = 0)	PD	- <u>-</u>	124	224	_	146	280	mW

See current MC1536/1436 data sheet for additional information.

#### MCC1536/MCC1436 BONDING DIAGRAM



All dimensions are nominal and in mils  $(10^{-3} \text{ inches})$ . Die Dimensions Thickness = 8.0Bonding Pads =  $4.0 \times 4.0$ 

#### PACKAGING AND HANDLING

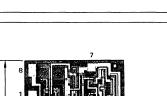
The MCC1536/MCC1436 operational amplifier is now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

## **OPERATIONAL AMPLIFIERS**

# MCC1539 MCC1439

#### MONOLITHIC OPERATIONAL AMPLIFIER CHIP


... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information see Motorola Application Note AN-439.

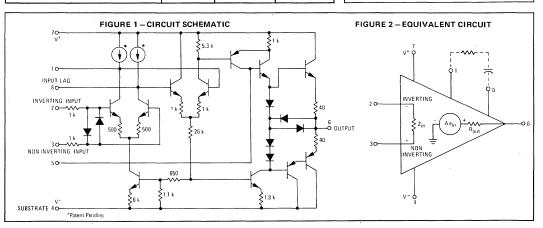
The MCC1539 and MCC1439 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Low Input Offset Voltage 3.0 mV max
- Low Input Offset Current 60 nA max
- Large Power-Bandwidth 20 V_{p-p} Output Swing at 20 kHz min
- Output Short-Circuit Protection
- Input Over-Voltage Protection
- Class AB Output for Excellent Linearity
- Slew Rate 34 V/µs typ

#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+ V ⁻	+18 -18	Vdc Vdc
Differential Input Signal	Vin	$\pm [V^+ +  V^- ]$	Vdc
Common Mode Input Swing	CMVin	+V+,- V-	Vdc
Load Current	١٢	15	mA
Output Short Circuit Duration	tS	Contir	nuous
Operating Temperature Range MCC1539 MCC1439	1	-55 to +125 0 to +75	°C
Junction Temperature Range	Тј	-65 to +150	°C




**OPERATIONAL AMPLIFIER CHIP** 

INTEGRATED CIRCUIT

MONOLITHIC SILICON

All dimensions are nominal and in mils (10⁻³ inches). Die Dimensions Thickness = 8.0 Bonding Pads = 4.0 x 4.0

(Substrate)



# MCC1539, MCC1439 (continued)

			MCC1539			MCC1439		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	I b	-	0.20	0.50	_	0.20	1.0	μA
Input Offset Current	liol		20	60	_	20	100	nA
Input Offset Voltage	Vio		1.0	3.0	-	2.0	7.5	mV
Average Temperature Coefficient of Input Offset Voltage	TCViol							μV/ ⁰ C
$(R_S = 50 \Omega)$			3.0		-	3.0	-	
Input Impedance	Zin		300		-	300		kΩ
Input Common-Mode Voltage Swing	CMVin	-	±12			±12	-	Vpk
Common Mode Rejection Ratio (f = 1.0 kHz)	CM _{rej}	-	110	· <u>·</u>		110	-	dB
Open Loop Voltage Gain (V _o = ± 10 V, R _L = 10 kΩ)	AVOL	50,000	120,000	-	15,000	100,000	-	-
Power Bandwidth ( $A_v = 1$ , THD $\leq$ 5%, ( $V_0 = 20 V_{P-P}$ , $R_L = 1.0 k_\Omega$ )	PBW	·	50	_	-	50	_	kHz
Step Response Gain = 1000, no overshoot,	tf		130	_		130	_	ns
	t _{pd}	_	190	_	· _	190	_	ns
	dV _{out} /dt		6.0	_	_	6.0		V/µs
Gain = 1000, 15% overshoot,	tf		80	_	_	80	-	ns
	tpd		100	_	_	100		ns
	dV _{out} /dt	_	14		_	14		V/µs
Gain = 100, no overshoot,	tf	_	60		_	60		ns
			100		_	100		ns
	^t pd dV _{out} /dt		34	_	_	34	_	V/µs
Gain = 10, 15% overshoot,	tf		120	_	_	120		ns
	t _{pd}	_	80	_		80		ns
	dV _{out} /dt		6.25	·	_	6.25		V/µs
Gain = 1, 15% overshoot,	tf		160	_	_	160	-	ns
	tpd		80	· · ·	-	80		ns
	dV _{out} /dt		4.2	_	_	4.2	-	V/µs
Output Impedance (f = 20 Hz)	Zout	-	4.0	. –	-	4.0	-	kΩ
Output Voltage Swing (R _L = 2.0 kΩ, f = 1.0 kHz)	Vout	-	· · · · ·		±10	±13		V _{pk}
$(R_L = 1.0 k\Omega, f = 1.0 kHz)$		±10	±13	_		_		
Positive Supply Sensitivity (V ⁻ constant)	S ⁺		50	150	-	50	200	μV/V
Negative Supply Sensitivity (V ⁺ constant)	s-		50	150	-	50	200	μV/V
Power Supply Current		1						
(V ₀ = 0)	ID+	·	3.0	5.0	-	3.0	6.7	mAdc
	ID-	-	3.0	5.0	-	3.0	6.7	
DC Quiescent Power Dissipation (V ₀ = 0)	PD		90	150	-	90	200	mW

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1539/1439 data sheet for additional information.

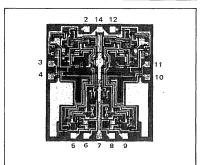
#### PACKAGING AND HANDLING

The MCC1539/MCC1439 operational amplifier is now available as a single monolithic die or encapsulated in the TO-99 and TO-116 hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose. The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

7-521

## **OPERATIONAL AMPLIFIERS**

# MCC1558 MCC1458


#### DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.


The MCC1558 and MCC1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

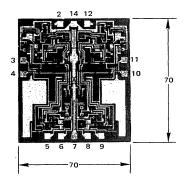
- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON



Rating		Symbol	MCC1558	MCC1458	Unit
Power Supply Voltage	· · · · · · · · · · · · · · · · · · ·	V ⁺	+22	+18	Vdc
		V ⁻	-22	-18	
Differential Input Signal		Vin	±30		Volts
Common-Mode Input Swing		CMVin	<u>±</u> 15		Volts
Output Short Circuit Duration		tS	Conti	nuous	
Operating Temperature Range	MCC1558 MCC1458	TA	-55 to +125 0 to +75		°C
Junction Temperature Range		Тј	-65 to	o +150	°C




# MCC1558, MCC1458 (continued)

			MCC1558			MCC1458		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	۱ _b	_	0.2	0.5	-	0.2	0.5	μAdc
Input Offset Current	I _{io}	_	0.03	0.2	-	0.03	0.2	μAdc
Input Offset Voltage (R _S ≤ 10 k ohms)	V _{io}	-	1.0	5.0	-	2.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance	P	_	1.0			1.0		Megohm
Parallel Input Capacitance	Rp Cp	_	6.0			6.0		pF
Common-Mode Input Impedance (f = 20 Hz)	Z(in)	_	200		_	200		Megohms
Common-Mode Input Voltage Swing	CMV _{in}		±13		_	±13		Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CMrei	_	90			90		dB
Open-Loop Voltage Gain ( $V_0 = \pm 10 V, R_1 = 2.0 k ohms$ )	AVOL	50,000	200,000		20,000	100,000	-	V/V
Power Bandwidth $(A_V = 1, R_L = 2.0 \text{ k ohms, THD} \le 5\%,$ $V_0 = 20 V_{p-p}$	PBW		14		-,	14	-	kHz
Unity Gain Crossover Frequency (open-loop)		-	1.1		-	1.1		MHz
Phase Margin (open-loop, unity gain)		. —	65	-	-	65		degrees
Gain Margin			11	-	-	11		dB
Slew Rate (Unity Gain)	dVout/dt	-	0.8	-	-	0.8	-	V/µs
Output Impedance (f = 20 Hz)	Zout	-	75		-	75	-	ohms
Short-Circuit Output Current	Isc	-	20			20	-	mAdc
Output Voltage Swing (RL = 10 k ohms)	Vo	±12	±14		±12	±14		Vpk
Power Supply Sensitivity $V^- = constant$ , $R_S \le 10 k ohms$ $V^+ = constant$ , $R_S \le 10 k ohms$	s⁺ s⁻		30 30	150 150	_	30 30	150 150	μV/V
Power Supply Current	ט ימי		2.3	5.0	_	2.3	5.6	mAdc
	טי קי		2.3	5.0	_	2.3	5.6	
DC Quiescent Power Dissipation (V ₀ = 0)	PD		70	150	-	70	170	mW

## **ELECTRICAL CHARACTERISTICS** (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1558/MC1458 data sheet for additional information.

#### MCC1558/MCC1458 BONDING DIAGRAM

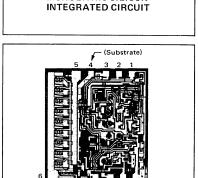


All dimensions are nominal and in mils  $(10^{-3} \text{ inches})$ . Die Dimensions Thickness = 8.0 Bonding Pads =  $4.0 \times 4.0$ 

#### PACKAGING AND HANDLING

The MCC1558/MCC1458 dual operational amplifiers are now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

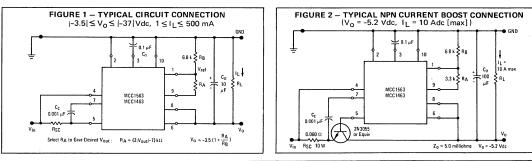
The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

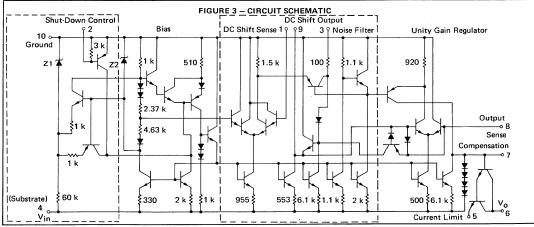

# NEGATIVE VOLTAGE REGULATORS MCC1563 MCC1463

#### MONOLITHIC NEGATIVE VOLTAGE REGULATOR

The MCC1563/MCC1463 is a "three terminal" negative regulator designed to deliver continuous load current up to 500 mAdc and provide a maximum negative input voltage of -40 Vdc. Output current capability can be increased to greater than 10 Adc through use of one or more external transistors.

The MCC1563 and MCC1463 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.


- Electronic "Shutdown" and Short-Circuit Protection
- Low Output Impedance 20 Milliohms typ
- Excellent Temperature Stability TCV_o = ±0.002%/^oC typ
- High Ripple Rejection 0.002% typ
- 500 mA Current Capability




NEGATIVE-POWER-SUPPLY

VOLTAGE REGULATOR

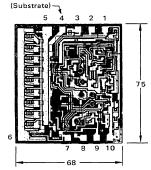
MONOLITHIC SILICON





#### MCC1563, MCC1463 (continued)

#### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)


Rating		Symbol	MCC1563	MCC1463	Unit
nput Voltage		Vin	-40 -35		Vdc
Peak Load Current	int		600		mA
Current, Pin 2		I _{pin} 2	10		mA
Operating Temperature Range	MCC1563 MCC1463	TA	-55 to +125 0 to +75		mA mA °C
Junction Temperature Range		ΤJ	-65 to	+175	°C

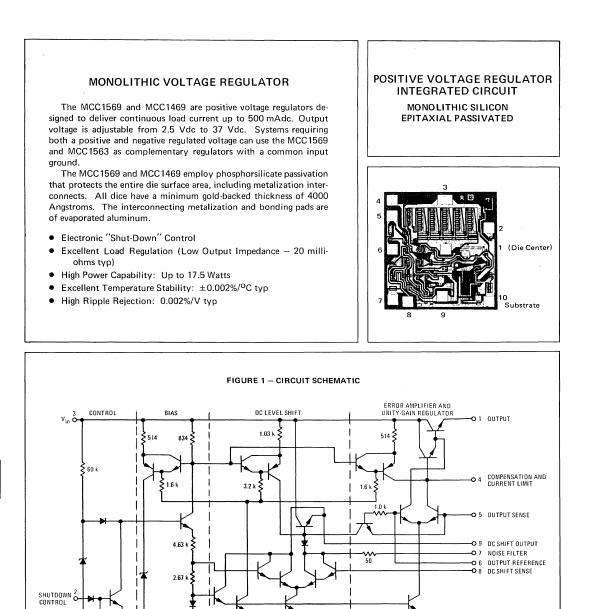
#### ELECTRICAL CHARACTERISTICS (IL = 100 mAdc, $T_A = +25^{\circ}C$ unless otherwise noted)

			MCC1563			MCC1463			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Voltage	Vin		-	-40	-	-	-35	Vdc	
Output Voltage Range	Vo	-3.6	-	-37	-3.8	-	-32	Vdc	
Reference Voltage (Pin 1 to Ground)	V _{ref}	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc	
Minimum Input-Output Voltage Differential (R _{SC} = 0)	v _{in} - v _o	-	1.5	2.7		1.5	3.0	Vdc	
Bias Current (I _L = 1.0 mAdc, I _b = I _{in} - I _L )	۱ _b	-	7.0	11	-	7.0	14	mAdc	
Output Noise (C _n = 0.1 μF, f = 10 Hz to 5.0 MHz)	vn	-	120	-		120	-	μV(rms)	
Temperature Coefficient of Output Voltage	TCVo		±0.002		-	±0.002		%/ ^o C	
Input Regulation	Reg _{in}		0.002			0.003	-	%/V _o	
Load Regulation (T _J = Constant [1.0 mA $\leq I_{L} \leq 20$ mA])	RegL	Turns	0.4	-		0.7	-	mV	
Output Impedance (f = 1.0 kHz)	Zo		20	-	-	35	-	milliohms	
Shutdown Current (V _{in} ≈ -35 Vdc)	l sd	·	7.0	15	-	14	50	μAdc	

See current MC1563/1463 data sheet for additional information

#### MCC1563/MCC1463 BONDING DIAGRAM




All dimensions are nominal and in mils  $(10^{-3} \text{ inches})$ . Die Dimensions Thickness = 8.0 Bonding Pads =  $4.0 \times 4.0$ 

#### PACKAGING AND HANDLING

The MCC1563/MCC1463 voltage regulator is now available as a single monolithic die or encapsulated in the Case 602A and Case 614 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

#### **POSITIVE VOLTAGE REGULATORS**

### MCC1569 MCC1469



7

Ş

10 GND O-SUBSTRATE 834

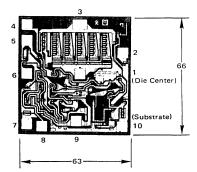
410

623

700

#### MCC1569, MCC1469 (continued)

#### MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)


Rating		Symbol	MCC1569	MCC1469	Unit
Input Voltage		Vin	40	35	Vdc
Peak Load Current		Ipk	600	)	mA
Current, Pin 2		lpin 2	10		mA
Current, Pin 9		^I pin 9	5.0	)	
Operating Temperature Range MCC1569 MCC1469		Тд	-55 to +125 0 to +75		°C
Junction Temperature Range		TJ	-65 to	+150	°C

#### **ELECTRICAL CHARACTERISTICS** ( $T_A = +25^{\circ}C$ unless otherwise noted)

			MCC1569		MCC1469		ł	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage	Vin			40	-	-	35	Vdc
Output Voltage Range	Vo	2.5	-	37	2.5	-	32	Vdc
Reference Voltage (Pin 8 to Ground)	V _{ref}	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential	V _{in} - V _o	-	2.1	2.7		2.1	3.0	Vdc
Bias Current ( $I_L = 1.0 \text{ mAdc}, R_2 = 6.8 \text{ k ohms}, I_b = I_{in} - I_L$ )	۱ _b	·	4.0	.9.0	-	5.0	12	mAdc
Output Noise (C _n = 0.1 μF, f = 10 Hz to 5.0 MHz)	vn		0.150	-	_	0.150	autor.	mV (rms)
Temperature Coefficient of Output Voltage	TCVo	-	±0.002	-	-	±0.002	-	%/ ⁰ C
Input Regulation	Reg _{in}		0.002			0.003		· %/Vin
Output Impedance $(C_c = 0.001 \ \mu\text{F}, R_{SC} = 1.0 \text{ ohm, f} = 1.0 \text{ kHz},$ $V_{in} = +14 \text{ Vdc}, V_0 = +10 \text{ Vdc})$	Z _{out}	-	20		-	35	-	milliohms
Shutdown Current (V _{in} = +35 Vdc)	I _{sd}		70	150		140	500	μAdc

See current MC1569/1469 data sheet for additional information.

#### MCC1569/MCC1469 BONDING DIAGRAM



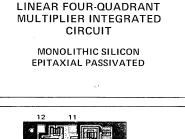
All dimensions are nominal and in mils ( $10^{-3}$  inches). Die Dimensions Thickness = 8.0 Bonding Pads = 4.0 x 4.0

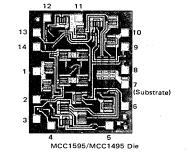
#### PACKAGING AND HANDLING

The MCC1569/MCC1469 voltage regulator is now available as a single monolithic die or encapsulated in the Case 602A and Case 614 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose. The non-script of a compart

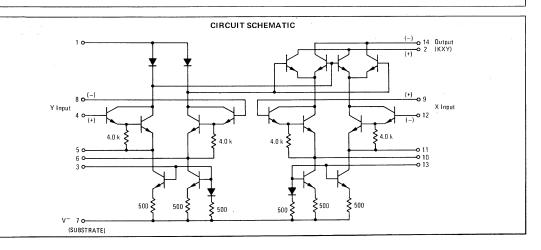
#### **MULTIPLIERS**

### MCC1595 MCC1495


#### MONOLITHIC FOUR-QUADRANT MULTIPLIER


... designed for uses where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MCC1595 and MCC1495 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.


*When used with an operational amplifier.

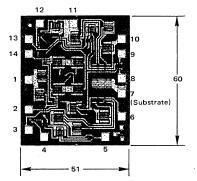
- Excellent Linearity 0.5% typ Error on X-Input, 1% typ Error on Y-Input - MCC1595
- Excellent Linearity 1% typ Error on X-Input, 2% typ Error on Y-Input – MCC1495
- Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range ± 10 Volts





Rating		Symbol	Value	Unit
Applied Voltage (V2-V1, V14-V1, V1-V9, V1 V1-V8, V12-V7, V9-V7, V8	-V ₁₂ , V ₁ -V ₄ , -V ₇ , V ₄ -V ₇ )	۵V	30	Vdc
Differential Input Signal		V ₁₂ -V9 V4-V8	±(6+I ₁₃ R _X ) ±(6+I ₃ R _Y )	Vdc Vdc
Maximum Bias Current		13 113	10 10	mA
Operating Temperature Range	MCC1595 MCC1495	т _А	-55 to +125 0 to +70	°C
Junction Temperature Range		тj	-65 to +150	°C




#### MCC1595, MCC1495 (continued)

ELECTRICAL CHARACTERISTICS (V⁺ = +32 V, V⁻ = -15 V, T_A = 25^oC, 1₃ = 1₁₃ = 1 mA, R_X = R_Y = 15 k_Ω, R₁ = 11 k_Ω unless otherwise noted)

RL = 11 kΩ	unless otherwise	noted)				
Characteristic		Symbol	Min	Тур	Max	Unit
Linearity:						
Output Error in Percent of Full Scale:						%
$-10 < V_X < +10 (V_Y = \pm 10 V)$	MCC1495	ERX	-	1.0	- 1	
	MCC1595		-	0.5		
$-10 < V_{Y} < +10 (V_{X} = \pm 10 V)$	MCC1495 MCC1595	ERY	-	2.0 1.0	-	
Squaring Mode Error:	MCC1335			1.0		-
Accuracy in Percent of Full Scale After		Eso				%
Offset and Scale Factor Adjustment		-su	1			
· · · · · ·	MCC1495		-	0.75	-	
	MCC1595		-	0.5	-	
Scale Factor (Adjustable)						
2RL						
$(K = \frac{2R_L}{I_3R_XR_Y})$		к	-	0.1	-	-
Input Resistance	MCC1495	RINX		20		Megohms
(f = 20  Hz)	MCC1595	MINX	_	35	-	wiegomins
	MCC1495	RINY	-	20	_	
	MCC1595		-	35	-	
Differential Output Resistance (f = 20 Hz)		Ro	-	300	-	k Ohms
Input Bias Current						
$( 9+ _{12})$ $( 4+ _8)$						
$I_{bx} = \frac{(I_9 + I_{12})}{2}, I_{by} = \frac{(I_4 + I_8)}{2}$	MCC1495 MCC1595	bx		2.0 2.0	12	μΑ
		1.		2.0	12	
	MCC1495 MCC1595	lby	-	2.0	8.0	
Input Offset Current			+			+
19-112	MCC1495	liox		0.4	2.0	μA
	MCC1595	1021		0.2	1.0	1
14 - 18	MCC1495	lioy	-	0.4	2.0	
	MCC1595		-	0.2	1.0	
Output Offset Current		llool				μA
$  _{14} -  _{2} $	MCC1495		-	20	100	
	MCC1595		-	10	50	
Frequency Response 3.0 dB Bandwidth		DW-		3.0		MHz
$3^{\circ}$ Relative Phase Shift Between V _X and V _Y		BW3dB	_	750	_	kHz
1% Absolute Error Due to Input-Output Phase Shift		$f_{\phi}$ $f_{\theta}$		30	_	kHz
Common Mode Input Swing		CMV				Vdc
(Either input)	MCC1495	Civity	_	±12	_	Vuc
	MCC1595		-	±13	· _	
Common Mode Quiescent		V _{o 1}	_	21	_	Vdc
Output Voltage		V ₀₂	-	21	-	
Differential Output Voltage Swing Capability		Vout	- 1	±14	-	V _{peak}
Power Supply Sensitivity		s+	-	5.0	-	mV/V
		s-	-	10	_	
Power Supply Current		17	-	6.0	7.0	mA
DC Power Dissipation		PD		135	170	mW

See current MC1595/1495 data sheet for additional information.

#### MCC1595/MCC1495 BONDING DIAGRAM



All dimensions are nominal and in mils  $(10^{-3} \text{ inches})$ . Die Dimensions Thickness = 8.0 Bonding Pads =  $4.0 \times 4.0$ 

#### PACKAGING AND HANDLING

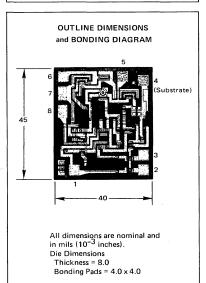
The MCC1595/MCC1495 is the Four-Quadrant Multiplier now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be excercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

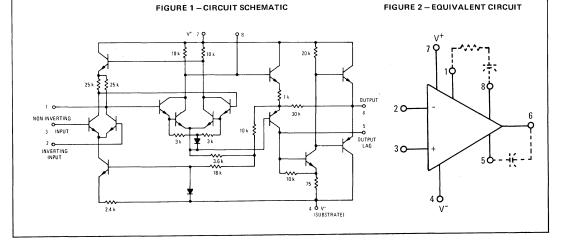
## OPERATIONAL AMPLIFIERS

## MCC1709 MCC1709C

#### MONOLITHIC OPERATIONAL AMPLIFIER

 $\ldots$  designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.


The MCC1709 and MCC1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.


- High-Performance Open Loop Gain Characteristics
   AVOL = 45,000 typical
- Low Temperature Drift  $-\pm 3.0 \,\mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance Zout = 150 ohms typical

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		V ⁺ V-	+18 -18	Vdc
Differential Input Signal		Vin	±5.0	Volts
Common Mode Input Swing		CMVin	±V ⁺	Volts
Load Current		1	10	mA
Output Short Circuit Duration		tS	5.0	s
Operating Temperature Range	MCC1709 MCC1709C	т _А	-55 to +125 0 to +75	°C
Junction Temperature Range	-	Тј	-55 to +150	°C

#### OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON





#### MCC1709, MCC1709C (continued)

			MCC1709					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain ( $V_0 = \pm 10 V$ )	AVOL	25,000	45,000	70,000	15,000	45,000	-	-
Output Impedance (f = 20 Hz)	Zout	_	150	_		150	_	Ω
Input Impedance (f = 20 Hz)	Z _{in}	_	400	1	-	250	_	kΩ
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ)	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13	_	V _{peal}
Input Common-Mode Voltage Swing	CMV _{in}	-	±10	-	1	±10	-	V _{peal}
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	_	90	_	_	90	_	dB
Input Bias Current	۱ _b	-	0.2	0.5	_	0.3	1.5	μA
Input Offset Current	liol		0.05	0.2	-	0.1	0.5	μA
Input Offset Voltage	V _{io}		1.0	5.0	-	2.0	7.5	mV
Step Response								
Gain = 100, 5.0% overshoot	t _f tpd dV _{out} /dt	_ _ _	0.8 0.38 12		-	0.8 0.38 12	 	μs μs V/μs
Gain = 10, 10% overshoot	^t f ^t pd dV _{out} /dt	· — — —	0.6 0.34 1.7			0.6 0.34 1.7	_ _ _	μs μs V/μs
Gain = 1, 5.0% overshoot	t _f tpd dV _{out} /dt	-	2.2 1.3 0.25	-		2.2 1.3 0.25		μs μs V/μs
Power Supply Current	1 _D +	·	2.7	5.5 5.5	-	2.7 2.7	6.7 6.7	mAd
DC Quiescent Power Dissipation (Power Supply = $\pm 15$ V, V ₀ = 0)	PD .		80	165	_	80	200	mW
Positive Supply Sensitivity (V ⁻ constant)	S ⁺	·	25	150	_	25	200	μV/\
Negative Supply Sensitivity (V ⁺ constant)	S⁻	_	25	150	-	25	200	μV/\

#### ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

See current MC1709/1709C data sheet for additional information

#### PACKAGING AND HANDLING

The MCC1709/MCC1709C operational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

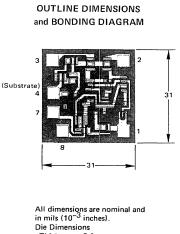
#### **DIFFERENTIAL COMPARATORS**

## **MCC1710 MCC1710C**

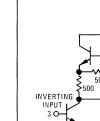
#### MONOLITHIC DIFFERENTIAL VOLTAGE COMPARATOR

... designed for use in level detection, low-level sensing, and memory applications.

The MCC1710 and MCC1710C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

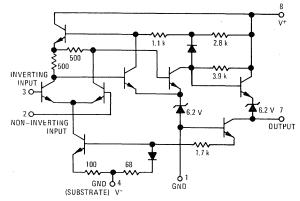

- Differential Input Characteristics -Input Offset Voltage = 1.0 mVOffset Voltage Drift =  $3.0 \mu \text{V}/^{\circ}\text{C}$
- Fast Response Time 40 ns
- Output Compatible With All Saturating Logic Forms  $V_{out} = +3.2$  V to -0.5 V typical
- Low Output Impedance 200 ohms

#### MAXIMUM RATINGS (T_A = 25^oC unless otherwise noted)

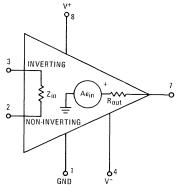

Rating		Symbol	Value	Unit	
Power Supply Voltage		V+ V-	+14 -7.0	Vdc	
Differential Input Signal		Vin	±5.0	Volts	
Common Mode Input Sw	ing	CMVin	±7.0	Volts	
Peak Load Current		۱L	10	mA	
Operating Temperature Range	MCC1710 MCC1710C	TA	-55 to +125 0 to +75	°C	
Junction Temperature Ra	inge	Τj	-65 to +150	°C	



MONOLITHIC SILICON EPITAXIAL PASSIVATED




Thickness = 8.0 Bonding Pads = 4.0 x 4.0




7

#### CIRCUIT SCHEMATIC







#### MCC1710, MCC1710C(continued)

			MCC1710			MCC17100	;		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage (V _o = 1.4 Vdc)	Vio		1.0	2.0	-	1.5	5.0	mVdc	
Input Bias Current (V _o = 1.4 Vdc)	۱ _b	-	12	20	-	15	25	μAdc	
Output Resistance	Rout	-	200	-	-	200	-	Ohms	
Positive Output Voltage ( $V_{in} \ge 5.0 \text{ mV}, 0 \le I_0 \le 5.0 \text{ mA}$ )	VOH	2.5	3.2	4.0	2.5	3.2	4.0	Vdc	
Negative Output Voltage (V _{in} ≧-5.0 mV)	VOL	-1.0	-0.5	0	-1.0	-0.5	0	Vdc	
Output Sink Current $(V_{in} \ge -5.0 \text{ mV}, V_{out} \ge 0)$	۱ _s	2.0	2.5	-	2.0	. 2.5	_	mAdc	
Common Mode Rejection Ratio $(V^{-} = -7.0 \text{ Vdc}, R_{S} \leq 200 \Omega)$	CM _{rej}	-	100	-	-	100	_	dB	
Propagation Delay Time For Positive and Negative Going Input Pulse	tpd	-	40	-	-	40		ns	
Power Supply Current	1D+		6.4	9.0		6.4	9.0	mAdc	
(V _{out} ≦0 Vdc)	I _D −	-	5.5	7.0		5.5	7.0		
DC Quiescent Power Dissipation	PD	-	115	150	-	110	150	mW	

#### ELECTRICAL CHARACTERISTICS (V⁺ = +12 Vdc, V⁻ = -6.0 Vdc, T_A = $25^{\circ}$ C unless otherwise noted)

See current MC1710/1710C data sheet for additional information.

#### PACKAGING AND HANDLING

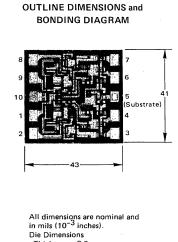
The MCC1710/MCC1710C differential comparator is now available as a single monolithic die or encapsulated in the TO-91, TO-99, and TO-116 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

## DIFFERENTIAL COMPARATORS MCC1711 MCC1711C

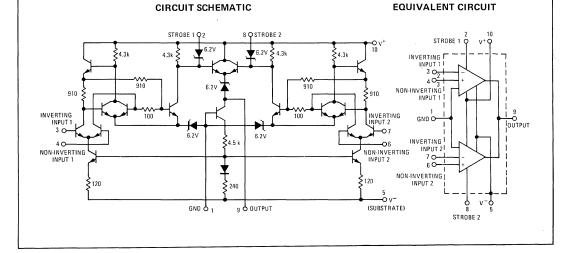
#### MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR

... designed for use in level detection, low-level sensing, and memory applications.

The MCC1711 and MCC1711C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.


- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 µV/°C
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms Vout = +4.5 V to -0.5 V Typical
- Low Output Impedance 200 Ohms

#### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Rating		Symbol	Value	Unit
Power Supply Voltage		V+	+14	Vdc
		V-	-7.0	Vdc
Differential Input Signal		Vin	±5.0	Volts
Common Mode Input Swing		CMVin	±7.0	Volts
Peak Load Current		ιL	50	mA
Operating Temperature Range	MCC1711 MCC1711C	TA	-55 to +125 0 to +75	°C
Junction Temperature Range		Тj	-65 to +150	°C



MONOLITHIC SILICON EPITAXIAL PASSIVATED



Thickness = 8.0Bonding Pads =  $4.0 \times 4.0$ 

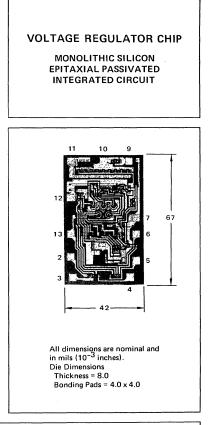


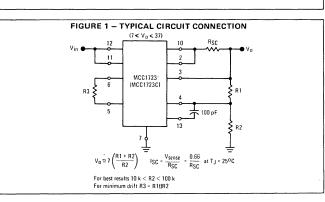
			MCC1711	1		MCC17110	2	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (V _o = 1.4 Vdc)	Vio	-	1.0	3.5		1.0	5.0	mVdc
Input Bias Current (V _o = 1.4 Vdc)	۱ _b	-	25	75	-	25	100	μAdc
Output Resistance	Rout	-	200		-	200	_	Ohms
Positive Output Voltage (V _{in} ≧10 mVdc, 0 ≦ I ₀ ≦5.0 mA)	∨он	2.5	3.2	5.0	2.5	3.2	5.0	Vdc
Negative Output Voltage (V _{in} ≧ -10 mVdc)	VOL	-1.0	-0.5	0	-1.0	-0.5	0	Vdc
Strobed Output Level (V _{strobe} ≦ 0.3 Vdc)	VOL(st)	-1.0	_	0	-1.0		0	Vdc
Output Sink Current (V _{in} ≧−10 mV, V _o ≧0)	IS	0.5	0.8	-	0.5	0.8	-	mAdc
Strobe Current (V _{strobe} = 100 mVdc)	I _{st}		1.2	2.5	-	1.2	2.5	mAdc
Response Time (V _b = 5.0 mV + V _{io} )	t _R	-	40		-	40		ns
Strobe Release Time	tSR	-	12		-	12		ns
Power Supply Current $(V_0 \leq 0 \text{ Vdc})$	1D+ 1D-		8.6 3.9	-		8.6 3.9	-	mAdc
Power Consumption		-	130	200	-	130	200	mW

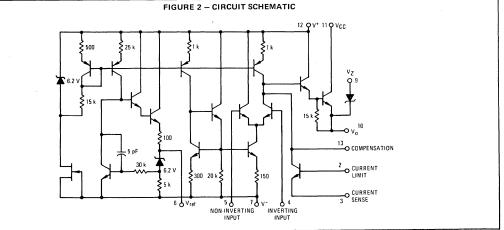
See current MC1711/1711C data sheet for additional information.

#### PACKAGING AND HANDLING

The MCC1711/MCC1711C dual differential comparator is now available as a single monolithic die or encapsulated in the TO-91, TO-100, and TO-116 hermetic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.


## MCC1723 MCC1723C


#### MONOLITHIC VOLTAGE REGULATOR CHIP


The MCC1723/MCC1723C is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors.

The MCC1723 and MCC1723C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line Regulation
- Adjustable Short-Circuit Protection







7

#### MCC1723, MCC1723C (continued)

Rating		Symbol	Value	Unit
Pulse Voltage from V ⁺ to V ⁻ (50 ms)	MCC1723	Vin(p)	50	V _{peak}
Continuous Voltage from V ⁺ to V ⁻		Vin	40	Vdc
Input-Output Voltage Differential		V _{in} -V _o	40	Vdc
Maximum Output Current		١L	150	mAdc
Current from V _{ref}		l ref	15	mAdc
Operating Temperature Range	MCC1723 MCC1723C	Τ _Α	-55 to +125 0 to +75	°C
Junction Temperature Range		Tj	-65 to +150	°C

#### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

**ELECTRICAL CHARACTERISTICS** (Unless otherwise noted:  $T_A = +25^{\circ}C$ ,  $V_{in} = 12$  Vdc,  $V_O = 5$  Vdc,  $I_L = 1$  mAdc,  $R_{SC} = 0$ , C1 = 100 pF,  $C_{ref} = 0$  and divider impedance as seen by the error amplifier  $\le 10 \text{ k}\Omega$  connected as shown in Figure 1)

	-	·····			· · · · · · · · · · · · · · · · · · ·			
			MCC1723			MCC1723C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	9.5	-	40	9.5		40	Vdc
Output Voltage Range	Vo	2.0		37	2.0	-	37	Vdc
Input-Output Voltage Differential	V _{in} -V _o	3.0	-	38	3.0	-	38	Vdc
Reference Voltage	Vref	6.95	7.15	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain (I _L = 0, V _{in} = 30 V)	Isb	-	2.3	3.5	-	2.3	4.0	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \ \mu F$	Vn		20 2.5		-	20 2.5	-	μV(rms)
Line Regulation (12 V < V _{in} < 15 V) (12 V < V _{in} < 40 V)	Reg _{in}		0.01 0.02	0.1 0.2		0.01 0.1	0.1 0.5	% V _o
Load Regulation (1.0 mA<1L<50 mA)	Regload		0.03	0.15		0.03	0.2	%Vo
Ripple Rejection (f = 50 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \mu$ F	Rej _R		74 86			74 86	·	dB
Short Circuit Current Limit ( $R_{SC} = 10 \ \Omega$ , $V_0 = 0$ )	'SC	·	65		-	65	_	mAdc

See current MC1723/1723C data sheet for additional information.

#### PACKAGING AND HANDLING

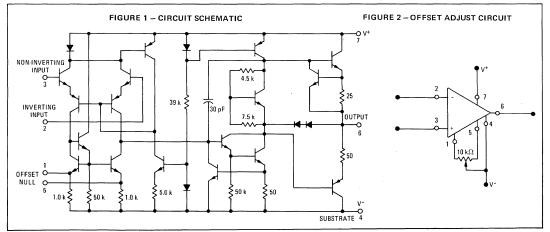
The MCC1723/MCC1723C voltage regulator is now available as a single monolithic die or encapsulated in the Motorola Case 603-03 hermetic package. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

## MCC1741 MCC1741C

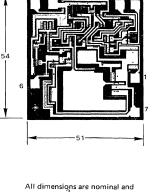
#### INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1741 and MCC1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.


- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)


Rating		Symbol	Va	lue	Unit
			MCC1741C	MCC1741	
Power Supply Voltage		V+ V~	+18 -18	+22 -22	Vdc Vdc
Differential Input Signal		Vin	±30		Volts
Common Mode Input Swing (Note 1)		CMVin	±15		Volts
Output Short Circuit Duration (	Note 2)	tS	Contir		
Operating Temperature Range	MCC1741 MCC1741C	TA	-55 to +125 0 to +75		°C
Junction Temperature Range		Тj	-65 to	+150	°C

Note 1. For supply voltages less than  $\pm$  15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 V.



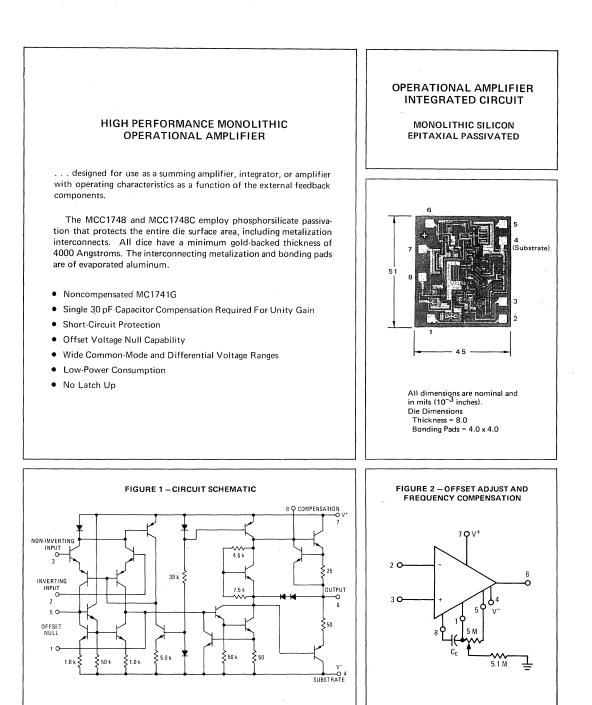
## OPERATIONAL AMPLIFIER CHIP MONOLITHIC SILICON INTEGRATED CIRCUIT OUTLINE DIMENSIONS and BONDING DIAGRAM



All dimensions are nominal and in mils  $(10^{-3} \text{ inches})$ . Die Dimensions Thickness = 8.0 Bonding Pads =  $4.0 \times 4.0$ 

#### MCC1741, MCC1741C (continued)

			MCC1741			MCC1741C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain (R _L = 2.0 k $\Omega$ ) (V ₀ = ± 10 V)	AVOL	50,000	200,000	<u>`</u>	20,000	100,000	-	-
Output Impedance (f = 20 Hz)	Zo	-	75	-	-	75	-	Ω
Input Impedance (f = 20 Hz)	Z _{in}	_	1.0	-	-	1.0	-	Meg
Output Voltage Swing	Vo							V _{pea}
(R _L = 10 kΩ) (R _L = 2.0 kΩ)		±12 ±10	±14 ±13	_	±12 ±10	±14 ±13	-	
Input Common-Mode Voltage Swing	CMVin	-	±13	-	-	±13	-	Vpea
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}		90			90	-	dB
Input Bias Current	ıр	-	0.2	0.5	-	0.2	0.5	μA
Input Offset Current	1 _{io}	-	0.03	0.2	-	0.03	0.2	μΑ
Input Offset Voltage (R _S ≈ ≦ 10 kΩ)	v _{io}	-	1.0	5.0	-	2.0	6.0	mV
Step Response	tf		29	_	_	29	_	μs
Gain = 100	tr tpd	_	8.5		_	8.5	-	μs μs
	dV _{out} /dt 1	-	1.0		-	1.0		V/µs
Gain = 10	tf	_	3.0		-	3.0	-	μs
	tpd	-	1.0	_		1.0	-	μs
	dV _{out} /dt ①	-	1.0	-	-	1.0	-	ب √/µ:
Gain = 1	tf	-	0.6	_ `	-	0.6	-	μs
Gain – T	tpd	- 1	0.38	·	-	0.38	-	μs
	dVout/dt ①	· -	0.8	· · -	-	0.8	-	<b>V</b> /μ
Power Supply Current	10 ⁺	·	1.67	2.83	-	1.67	2.83	mA
	1 _D -		1.67	2.83	-	1.67	2.83	
DC Quiescent Power Dissipation (Power Supply = ± 15 V, V ₀ = 0)	PD	·	50	85	-	50	85	mW
Positive Supply Sensitivity (V ⁻ constant)	S ⁺	-	30	150	_	30	150	μV/\
Negative Supply Sensitivity	S-							μ <b>V</b> /\
(V ⁺ constant)			-30	150	-	30	150	


ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = 15 Vdc, T_A = +25^oC unless otherwise noted)

#### PACKAGING AND HANDLING

The MCC1741/MCC1741C operational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

#### **OPERATIONAL AMPLIFIERS**

## MCC1748 MCC1748C



#### MCC1748, MCC1748C (continued)

#### MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating		Symbol	MCC1748	MCC1748C	Unit
Power Supply Voltage		V ⁺	+22	+18	Vdc
		v ⁻	-22	-18	
Differential Input Signal		V _{in}	±	30	Volts
Common-Mode Input Swing ①		CMVin	ŧ	15	Volts
Output Short Circuit Duration		tS	Conti	nuous	
Operating Temperature Range	MCC1748 MCC1748C	TA	–55 to 0 to		°C
Junction Temperature Range		ΤJ	-65 to	+150	°C

#### ELECTRICAL CHARACTERISTICS ( $V^+$ = +15 Vdc, $V^-$ = -15 Vdc, $T_A$ = +25°C unless otherwise noted)

		r	NCC1748		N	ICC1748C		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Чb	-	0.08	0.5	-	0.08	0.5	μAdc
Input Offset Current	I _{io}		0.02	0.2	-	0.02	0.2	μAdc
Input Offset Voltage ( $R_{S} \le 10 \text{ k} \Omega$ )	v _{io}	-	1.0	5.0	-	1.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz)								
Parallel Input Resistance	Rp	-	2.0			2.0	-	Megohm
Parallel Input Capacitance	C _p		1.4		-	1.4	-	pF
Common Mode Input Impedance (f= 20 Hz)	Z(in)	-	200 .		-	200		Megohms
Common-Mode Input Voltage Swing	CMVin	-	±13			±13	-	V _{pk}
Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	-	90	-	-	90		dB
Open-Loop Voltage Gain, (V ₀ = ±10 V, R _L = 2.0 k ohms)	AVOL	50,000	200,000	-	20,000	200,000	-	V/V
Step Hesponse (V _{in} = 20 mV, C _C = 30 pF, R _L = 2 kΩ, C _L = 100 pF) Rise Time Overshoot Percentage Slew Rate	t _r dV _{out} /dt	-	0.3 5.0 0.8		-	0.3 5.0 0.8	1 1 1	μs % V/μs
Output Impedance (f = 20 Hz)	Zout	·	75			75	_	ohms
Short-Circuit Output Current	^I SC	-	25			25	-	mAdc
Output Voltage Swing (R _L = 10 k ohms) R _L = 2 k ohms (T _A = T _{low} to t _{high} )	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13	-	Vpk
Power Supply Sensitivity $V^-$ = constant, R _s $\leq$ 10 k ohms $V^+$ = constant, R _s $\leq$ 10 k ohms	S+ S-	_	30 30	150 150	-	30 30	150 150	μV/V
Power Supply Current	¹ 0 ⁺ 1 ₀ -		1.67 1.67	2.83 2.83	-	1.67 1.67	2.83 2.83	mAdc
DC Quiescent Power Dissipation (V _o = 0)	PD		50	85		50	85	mW

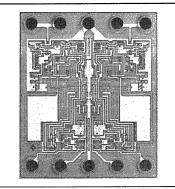
① For supply voltages less than ±15 V, the Maximum Input Voltage is equal to the Supply Voltage. See current MC1748/1748C data sheet for additional information.

#### PACKAGING AND HANDLING

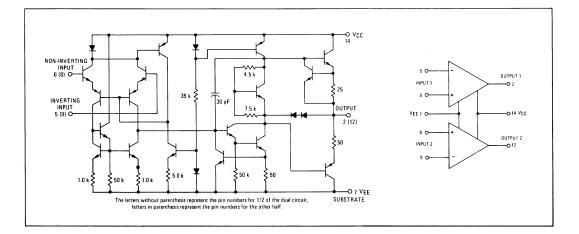
The MCC1748/MCC1748C operational amplifier is now available as a single monolithic die or encapsulated in the TO-99 hermetic package. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

#### OPERATIONAL AMPLIFIERS

## MCCF1558 MCCF1458


... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF1558 and MCCF1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 90-10 solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.


- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

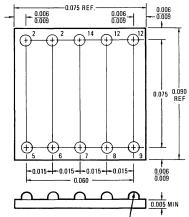
#### DUAL OPERATIONAL AMPLIFIER MONOLITHIC SILICON INTEGRATED CIRCUIT

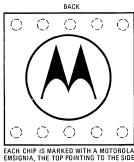
(DUAL MC1741)



Rating	Symbol	MCCF 1558	MCCF1458	Unit
Power Supply Voltage	V _{CC} V _{EE}	+22 -22	+18 -18	Vdc
Differential Input Signal		±30		Volts
Common-Mode Input Swing	V _{IC}	±	15	Volts
Output Short Circuit Duration	ts	Conti	nuous	
Operating Temperature Range MCCF	1558 T _A	-55 to +125		°C
MCCF	1458	0 to	+75	
Junction Temperature Range	. TJ	-65 to	o + 150	°C




#### MCCF1558, MCCF1458 (continued)


#### ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

			MCCF1558	1		MCCF1458		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	I _{IB}	-	0.2	0.5	-	0.2	0.5	μAdc
Input Offset Current	101	: -	0.03	0.2	-	0.03	0.2	μAdc
Input Offset Voltage (R _S ≤ 10 k ohms)	Iviol	-	1.0	5.0	-	2.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance	Rp	_	1.0	_		1.0	_	Megohm
Parallel Input Capacitance	C _p	·	6.0	-	-	6.0		pF
Common-Mode Input Impedance (f = 20 Hz)	zin		200		-	200	-	Megohms
Common-Mode Input Voltage Swing	VIC		±13		-	±13	-	Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR		90	-	-	90		dB
Open-Loop Voltage Gain ( $V_O = \pm 10 V, R_L = 2.0 k ohms$ )	A _{vol}	50,000	200,000	vana	20,000	100,000	-	V/V
Power Bandwidth $(A_V = 1, R_L = 2.0 \text{ k ohms, THD} \le 5\%,$ $v_O = 20 \text{ Vp-p}$	PBW		14 1		-	14		kHz
Unity Gain Crossover Frequency (open-loop)	-		1.1		-	1.1		MHz
Phase Margin (open-loop, unity gain)		-	65	- <u>,</u>	-	65	-	degrees
Gain Margin		-	11	-	-	11	-	dB
Slew Rate (Unity Gain)	dV _O /dt	-	0.8		-	0.8		V/µs
Output Impedance (f = 20 Hz)	z _o	-	75		-	75	-	ohms
Short-Circuit Output Current	۱s		20		-	20	-	mAdc
Output Voltage Swing (R _L = 10 k ohms)	Vo	±12	±14	-	±12	±14		Vpk
Power Supply Sensitivity VEE = constant, $R_s \le 10$ k ohms V _{CC} = constant, $R_s \le 10$ k ohms	s+ s-		30 30	150 150		30 30	150 150	μV/V
Power Supply Current	IDCC IDEE	_	2.3 2.3	5.0 5.0	-	2.3 2.3	5.6 5.6	mAdc
DC Quiescent Power Dissipation (V _O = 0)	PD		70	150	-	70	170	mW

See current MC1558/MC1458 data sheet for additional information.

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.





WHERE PAD 1 IS LOCATED

The popular 1558 type dual operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flipchips, as well as in a variety of plastic and hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

Bump Diameter at Base 0.006 ± 0.001 SOLDER BUMPS, 10 PLACES Bump Height: 0.0040 ± 0.0005 Each bump centerline to be located within 0.001 of its true position with respect to any other bump centerline.

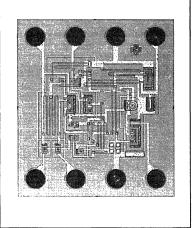
#### **OPERATIONAL AMPLIFIERS**

## MCCF1709 MCCF1709C

#### MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF1709 and MCCF1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 90-10 solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.


- High-Performance Open Loop Gain Characteristics
   A_{VOI} = 45,000 typical
- Low Temperature Drift  $\pm 3.0 \,\mu V/^{O}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance z₀ = 150 ohms typical

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

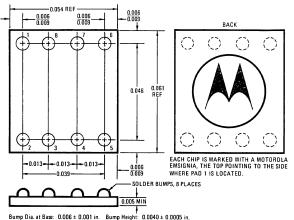
Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+18 -18	Vdc
Differential Input Signal		VID	±5.0	Volts
Common Mode Input Swing		VIC	$\pm V_S$	Volts
Load Current		١٤	10	mA
Output Short Circuit Duration		ts	5.0	s
Operating Temperature Range	MCCF 1709 MCCF 1709C	TA	-55 to +125 0 to +75	°C
Junction Temperature Range		Тј	-55 to +150	°C



MONOLITHIC SILICON



1


FIGURE 1 - CIRCUIT SCHEMATIC FIGURE 2 - EQUIVALENT CIRCUIT 33V 10 k **≶**10 k 20 k 25 k 🗧 € 25 V OUTPUT 1 0 õ 30 k 6 NON-INVERTING 5 3 INPUT 10 k 0 OUTPUT 20 LAG INVERTING 18 🖌 10 1 75 4 VEE 24 k (SUBSTRATE)

#### MCCF1709, MCCF1709C (continued)

			MCCF1709			MCCF1709C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain (V _O = ±10V)	Avol	25,000	45,000	70,000	15,000	45,000	-	-
Output Impedance (f = 20 Hz)	zo	_	150	-	-	150	_	22
Input Impedance (f = 20 Hz)	zin	-	400	-	-	250	-	ksz
Output Voltage Swing (R _L = 10 kΩ) (R _L = 2.0 kΩ)	Vo	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V _{peak}
Input Common-Mode Voltage Swing	VIC	_	±10	-	-	±10	-	V _{peak}
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR	_	90	_		90	-	dB
Input Bias Current	IB.	-	0.2	0.5	-	0.3	1.5	μA
Input Offset Current	110	-	0.05	0.2	-	0.1	0.5	μA
Input Offset Voltage	1101	-	1.0	5.0	-	2.0	7.5	mV
Step Response								
Gain = 100, 5.0% overshoot	t⊤HL t _d dV _O /dt		0.8 0.38 12		- - -	0.8 0.38 12		μs μs V/μs
Gain = 10, 10% overshoot	^t THL ^t d dV _O /dt		0.6 0.34 1.7		-	0.6 0.34 1.7		μs μs V/μs
Gain = 1, 5.0% overshoot	^t THL t _d dV _O /dt	-	2.2 1.3 0.25			2.2 1.3 0.25		μs μs V/μs
Power Supply Current	DCC	-	2.7	5.5	-	2.7	6.7	mAdc
DC Quiescent Power Dissipation	PD PD	-	2.7	5.5		2.7	6.7	
(Power Supply = $\pm 15$ V, V _O = 0)			80	165		80	200	mW
Positive Supply Sensitivity (VEE constant)	s+	-	25	150	_	25	200	μV/V
Negative Supply Sensitivity (V _{CC} constant)	s⁻		25	150	_	25	200	μV/V

#### ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

See current MC1709/1709C data sheet for additional information. Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.



Bump Dia. at Base:  $0.006 \pm 0.001$  in. Bump Height:  $0.0040 \pm 0.0005$  in. Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.

#### PACKAGING AND HANDLING

The popular 1709 type operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flip-chips, as well as in a variety of plastic and hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

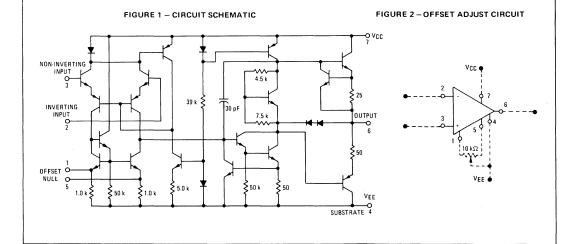
#### **OPERATIONAL AMPLIFIERS**

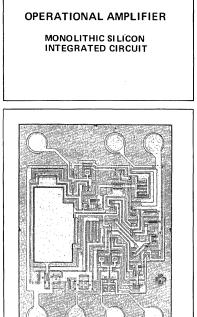
## MCCF1741 MCCF1741C

#### INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC FLIP-CHIP OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF 1741 and MCCF 1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 90-10 solder on a chrome-copper-gold base. The interconnecting metalization is evaporated aluminum.


- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up


#### MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted.)

. Rating	Symbol	Va	lue	Unit
		MCCF1741C	MCCF1741	
Power Supply Voltage	V _{CC} V _{EE}	+18 -18	+22 -22	Vdc
Differential Input Signal	VID	±	Volts	
Common Mode Input Swing (Note 1)	VIC	±1	Volts	
Output Short Circuit Duration (Note 2)	ts	Contir	nuous	
Operating Temperature Range	Тд	0 to +75	-55 to +125	°C
Junction Temperature Range	Tj	-65 to	°C	

Note 1. For supply voltages less than  $\pm$  15 V, the absolute maximum input voltage is equal to the supply voltage.

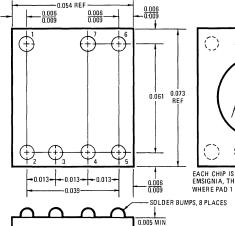
Note 2. Supply voltage equal to or less than 15 V.

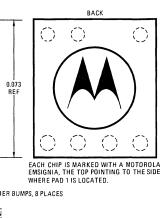






#### MCCF1741, MCCF1741C (continued)


ELECTRICAL CHARACTERISTICS (V _{CC} = +15 Vdc, V _{EE} =	= 15 Vdc, T _A = +25 ^o C unless otherwise noted.)
--------------------------------------------------------------------------	------------------------------------------------------------------------


			MCCF1741					
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain ( $R_L = 2.0 \text{ k}\Omega$ ) ( $V_O = \pm 10 \text{ V}$ )	Avol	50,000	200,000	-	20,000	100,000	-	-
Output Impedance (f = 20 Hz)	z _o		75	-	_	75	_	Ω
Input Impedance (f = 20 Hz)	z _{in}		1.0		_	1.0	_	MegΩ
Output Voltage Swing (RL = 10 kΩ) (RL = 2.0 kΩ)	vo	±12 ±10	±14 ±13	_	±12 ±10	±14 ±13	-	V _{peak}
Input Common-Mode Voltage Swing	VIC		±13	-	-	±13	-	Vpeak
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR	-	90		-	90	-	dB
Input Bias Current	IIB		0.2	0.5	-	0.2	0.5	μΑ
Input Offset Current	luol		0.03	0.2		0.03	0.2	μА
Input Offset Voltage (R _S = ≦ 10 kΩ)	IViol		1.0	5.0		2.0	6.0	mV
Step Response Gain = 100	tHL ta dV _O /dt ()		29 8.5 1.0			29 8.5 1.0		μs μs V/μs
Gain = 10	t⊤H∟ t _d dV _O /dt (1)		3.0 1.0 1.0			3.0 1.0 1.0	-	μs μs V/μs
Gain = 1	tTHL td dVO/dt (1)		0.6 0.38 0.8		-	0.6 0.38 0.8	-	μs μs V/μs
Power Supply Current	IDCC IDEE	· ·	1.67 1.67	2.83 2.83	-	1.67 1.67	2.83 2.83	mA
DC Quiescent Power Dissipation (Power Supply = $\pm$ 15 V, V ₀ = 0)	PD	· · · · · ·	50	85	_	50	85	mW
Positive Supply Sensitivity (VEE constant)	s+	1.154 1.154 1.157	30	150		30	150	μV/V
Negative Supply Sensitivity (V _{CC} constant)	s-		30	150	_	30	150	μ∨/∨

(1)  $dV_0/dt = Slew Rate$  See current MC1741/1741C data sheet for additional information.

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

#### MCCF1741/MCCF1741C BONDING DIAGRAM AND DEVICE DIMENSIONS

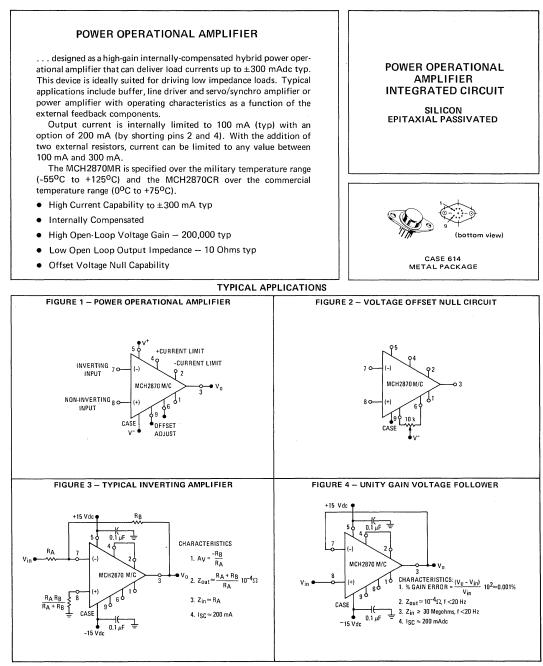




#### PACKAGING AND HANDLING

The popular 1741 type operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flip-chips, as well as in a variety of plastic hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.


The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

Bump Dia. at Base: 0.006 ± 0.001 in. Bump Height: 0.0040 ± 0.0005 in.

Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.

#### **OPERATIONAL AMPLIFIERS**

### MCH2870MR MCH2870CR

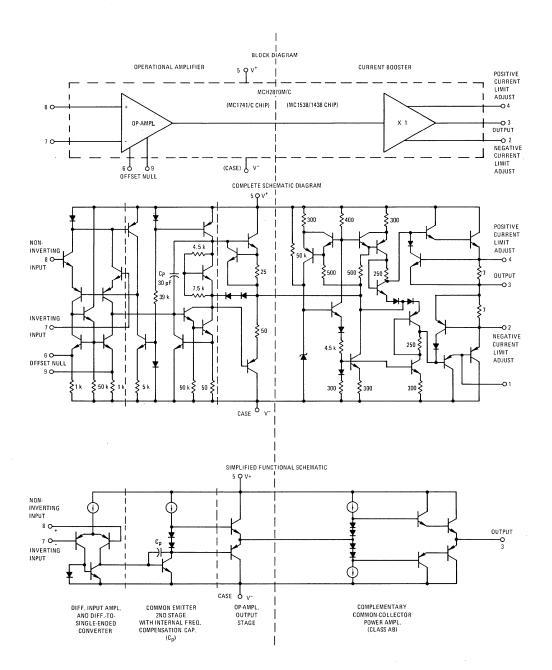


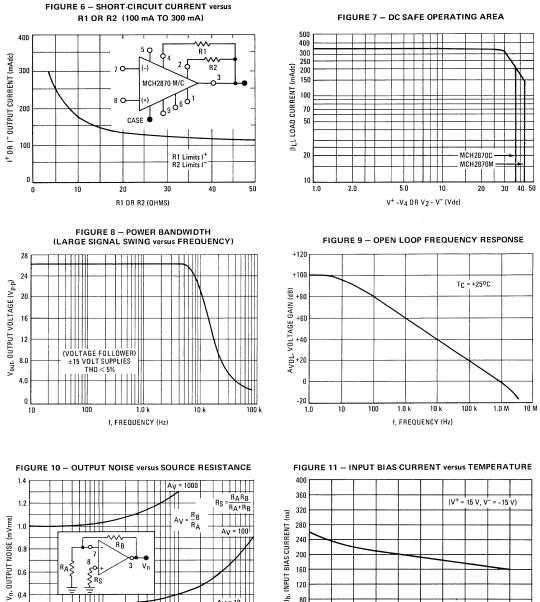
See Packaging Information Section for outline dimensions.

#### MCH2870MR, MCH2870CR (continued)

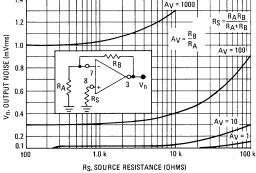
#### MAXIMUM RATINGS (T_C = $+25^{\circ}$ C unless otherwise noted)

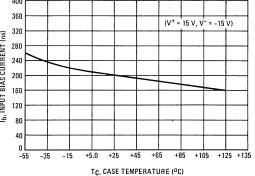
Rating	Symbol	MCH2870MR	MCH2870CR	Unit		
Power Supply Voltage	v ⁺ v ⁻	+22 -22	+18 -18	Vdc		
Differential Input Signal	V _{in}	±	30	Volts		
Common-Mode Input Swing	CMVin	±.	±15			
Output Short Circuit Duration	ts	Conti	nuous			
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	Р _D 1/0 _{ЈА} 0 _{ЈА}	16	2.4 16 62			
$T_C = +25^{o}C$ Derate above $T_C = +25^{o}C$ Thermal Resistance, Junction to Case	Ρ _D 1/θ _{JC} θ _{JC}	6	9.0 60 16.7			
Operating Temperature Range	ТА	-55 to +125	0 to +75	°C		
Operating and Storage Junction Temperature Range	Tj, T _{stg}	-65 to	+175	°C		

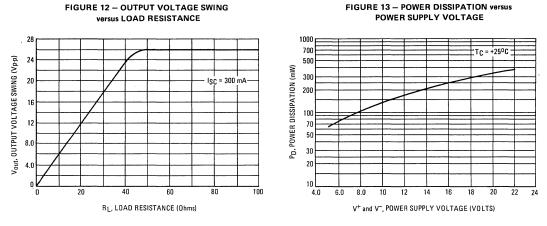

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_C = +25^oC unless otherwise noted)


		м	CH2870M	R	M	CH2870CI		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current $T_C = +25^{\circ}C$ $T_C = T_{low}$ to T _{high} (See Note 1)	Чb	-	0.2	0.5 1.5	-	0.2 —	0.5 0.8	µAdc
Input Offset Current $T_C = +25^{\circ}C$ $T_C = T_{low}$ to Thigh	I _{io}		0.03	0.2 0.5		0.03	0.2 0.3	µAdc
Input Offset Voltage ( $R_S \le 10 \ k\Omega$ ) $T_C = +25^{\circ}C$ $T_C = T_{low}$ to Thigh	V _{io}	-	1.0	5.0 6.0		2.0 —	6.0 7.5	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance Parallel Input Capacitance	R _p Cp	0.3 —	1.0 6.0		0.3 —	1.0 6.0	-	Megohm pF
Common-Mode Input Impedance (f = 20 Hz)	Z _{in}	-	200		-	200	-	Megohms
Common-Mode Input Voltage Swing	CMV _{in}	±12	±13		±12	±13	-	V _{pk}
Equivalent Input Noise Voltage $A_V = 100$ , $R_s = 10$ k ohms, f = 1.0 kHz, BW = 1.0 Hz	e _n	-	45		-	45	_	nV/(Hz) ^½
Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	70	90	¹ .	70	90	-	dB
DC Open-Loop Voltage Gain, (V _{out} = $\pm$ 10 V, R _L =300 ohms) T _C = +25 ^o C T _C = T _{low} to T _{high}	AVOL	50,000 25,000	200,000		20,000 15,000	100,000 —	-	V/V
Power Bandwidth A _V = 1, R _L = 300 ohms, THD $\leq$ 5%, V _{out} = 20 Vp-p	PBW		12	-	-	12	_	kHz
Unity Gain Crossover Frequency (open-loop)			1.1	-	-	1.1	-	MHz
Phase Margin (closed loop, unity gain)		-	65	-	-	65	-	degrees
Gain Margin (closed loop, unity gain)		-	11	-	-	11	-	dB
Slew Rate (Unity Gain)	dV _{out} /dt	. <b></b> '	0.8	-	د <u>.                                    </u>	0.8	-	V/µs
Output Impedance (open loop f = 20 Hz)	Zout		10		-	10	-	ohms
Short-Circuit Output Current (See Figure 6) R1 = R2 = $\infty$ Pins 2 and 4 shorted Adjustable Range	ISC	75  	100 200 100-300	125	65 	100 200 100-300	140  -	mAdc
Output Voltage Swing R _L = 300 ohms R _L = 300 ohm (T _C = T _{Iow} to T _{high} )	V _{out}	±12 ±10	±13 -	-	±11 ±10	±12 -	-	Vpk
Power Supply Sensitivity (dc) $V^- = \text{constant}, R_s \le 10 \text{ k ohms}$ $V^+ = \text{constant}, R_s \le 10 \text{ k ohms}$	S+ S-	-	30 30	150 150	-	30 30	200 200	μV/V
Power Supply Current		-	7.7 7.7	13 13		7.7 7.7	16.5 16.5	mAdc
DC Quiescent Power Dissipation V _{in} = 0	PD	_	225	390	_	225	500	mW

Note 1: T_{Iow}: 0^oC for MCH2870CR -55^oC for MCH2870MR T_{high}: +75^oC for MCH2870CR +125^oC for MCH2870RR


#### MCH2870MR, MCH2870CR (continued)


FIGURE 5 - MCH2870M/C DEVICE CONFIGURATION






TYPICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)







#### **TYPICAL CHARACTERISTICS** (continued)

TYPICAL APPLICATIONS

FIGURE 14 – PROGRAMMABLE VOLTAGE SOURCE

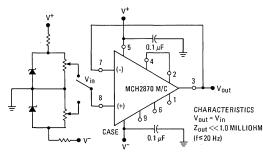



FIGURE 15 – CONSTANT CURRENT SOURCE OR TRANSCONDUCTANCE AMPLIFIER

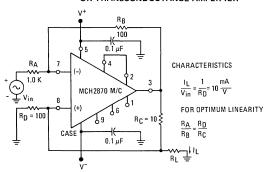



FIGURE 16 - POWER SUPPLY SPLITTER

7

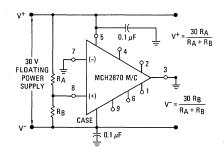
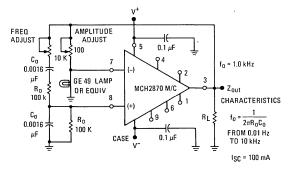




FIGURE 17 - WIEN BRIDGE OSCILLATOR



#### MCH2870MR, MCH2870CR (continued)

#### **TYPICAL APPLICATIONS** (continued)

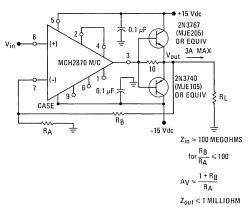
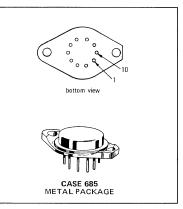



FIGURE 18 - EXTERNAL CURRENT BOOSTING

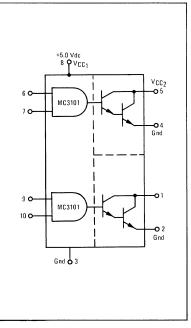
## MCH2890R

#### **DUAL POWER DRIVER**


#### HYBRID DUAL POWER DRIVER

The MCH2890 Dual Power Driver is capable of driving a wide variety of inductive and resistive loads; included are hammer solenoids in high-speed digital printers, relays, lamps, paper-tape punches, and stepper motors in computer-operated plotters.

- High Current to 6.0 Amperes
- High Breakdown Voltage BVCEX = 120 Volts min
- MTTL Compatibility
- Separate Integrated Circuit and Darlington Power Grounds
- Low V_{sat} at 3.0 and 6.0 Amperes
- Low Leakage Current 0.1 μA typ


#### DUAL POWER DRIVER

HYBRID SILICON INTEGRATED CIRCUIT



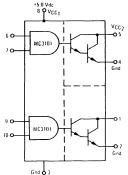
Rating	Symbol	Value	Unit
Collector Current	1C		А
Peak		8.0	
Continuous		1.0	
Collector Emitter Breakdown Voltage	BVCEX	120	Vdc
Minimum at I _C ≤0.5 mA	(pins 1, 5)		
Power Supply Voltage (Integrated Circuit)	V _{CC1}	7.0	Vdc
Power Dissipation and Thermal Characteristics			
T _A = 25°C	PD	3.75	Watts
Derate above $T_A = 25^{\circ}C$	1/ <i>θ</i> JA	25	mW/°C
Thermal Resistance, Junction to Air	$\theta$ JA	40	°C/W
$T_{C} = 25^{\circ}C$	PD	25	Watts
Derate above T _C = 25°C	1/θ JC	167	mW/°C
Thermal Resistance, Junction to Case	θJC	6.0	°C/W
Operating Temperature Range	т _А	0 to +70	°C

T_{stg}

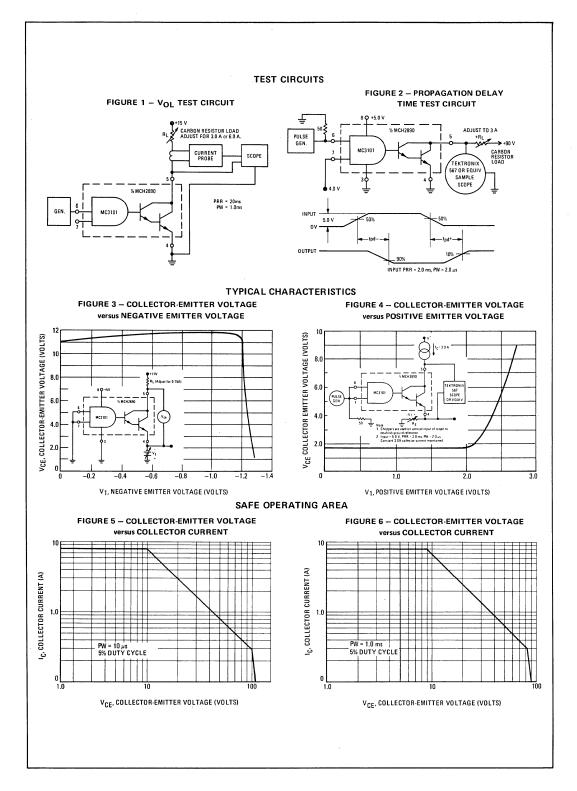


7

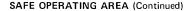
See Packaging Information Section for outline dimensions.

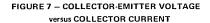

Storage Temperature Range

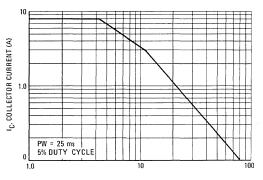
-55 to +175


°C

#### ELECTRICAL CHARACTERISTICS


Test procedures are shown for only one power driver. The other power driver is tested in the same manner.





G															TEST	CURR	ENT/V	OLTA	GE VA	ALUES					
											AMP	ERES		mA						vo	DLTS				1
											IOL1	IOL2	lin	1D	IC(max)	VIН	VIL	٧F	VR	V _{CC1}	V _{CC2}	VCCIL	VCCIH	VRH	
										0°C +25°C +75°C	- 3.0 	- 6.0 -	- 1.0 -		- 0.5 -	2.0 1.8 1.8	- 1.1 -	0.4 0.4 0.4	- 2.4 -	5.0 5.0 5.0	- 90 -	4.5 4.5 4.5	5.5 5.5 5.5	4.0 4.0 4.0	]
		Pin Under	0	°c		+25°C		+7	5°C	<u> </u>					TEST	CURRI	ENT/V	OLTA	GE AP	PLIED T	O PINS I	LISTED B	ELOW:		
Characteristics	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	IOL1	IOL2	lin	ıD	IC(max)	VIH	VIL	٧F	VR	V _{CC1}	V _{CC2}	VCCIL	VCCIH	VRH	GND
Input Forward Current	١F	6	-	-2.0	-		-2.0	-	-2.0	mAdc	-	-		-	-	-	-	6	-	-	-	8	-	7	2,3,4
Input Leakage Current	IR	6	-	50	-		50	-	50	μAdc	-	-	-	-	-	-	-	-	6	-	-	-	8		2,3,4,7
Input Breakdown Voltage	B∨ _{in}	6	-	-	5.5	-		-		Vdc	-	-	6	-	-	-	-	-	-	-	-	-	8	~	2,3,4,7
Input Clamp Voltage	٧D	6	-		-	-	-1.5	-	-	Vdc				6	-	-		-	-	-	-	8	-	~	2,3,4
Output Voltage (See Figure 1)	V _{OL1} V _{OL2} BV _{CEX}	5 5 5			- - 120		1.5 2.5 -			Vdc	5 - -	- 5 -			- - 5	6 - -		- - 6						7 7 7	2,3,4 2,3,4 2,3,4
Output Leakage Current	CEX	5	-	-	-	0.1	~	-	·	μAdc	~	-	-	-	-	-	6	-	-	-	5	-	-	7	2,3,4
Output Power Supply Drain Current	IPDL	8	-	-	-	-	30	-	-	mAdc	-	-	-	-	-	-	-	-	-	8	-	-	-	-	2,3,4,6, 7,9,10
Output Power Supply Drain Current	IPDH	8	-	-	-	-	120	-	-	mAdc	-	-	-	-	-	-	-	-	-	8	-	-	-	6,7,9, 10	2,3,4
Switching Parameters (See Figure 2)													Pulse In	Pulse Out											
Turn-On Delay Time	^t pd−	5,6	-	-	-	0.26	-	-	-	μs	5	-	6	5	-	-	-	-	-	8	5	-	-	7	2,3,4
Turn-Off Delay Time	^t pd ⁺	5,6	-	-	-	1.8	-	-	-	μs	5	-	6	5	-	-	-	-	-	8	5	-	-	7	2,3,4



#### MCH2890R (continued)







VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

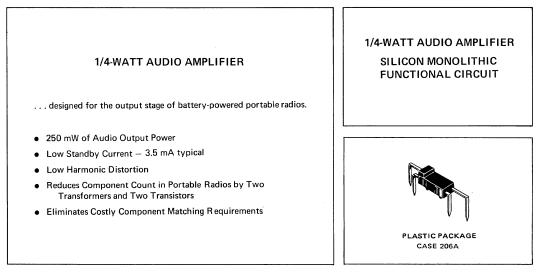
#### APPLICATIONS INFORMATION

The MCH2890 is designed for high-current and high-voltage applications such as hammer-drivers in high-speed printers, relay drivers, lamp drivers, paper tape punches, stepping motors, and other high current inductive and resistive loads.

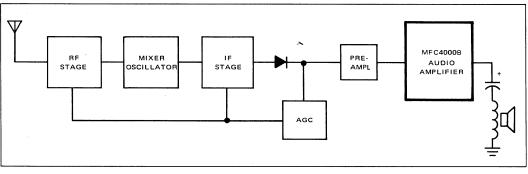
This dual hybrid driver, which consists of a monolithic MTTL "AND" gate and two power Darlington drivers, is capable of supplying up to 6.0 amperes at a maximum duty cycle of 10% with pulse widths up to 25 ms. In addition to the high-current drive capability the MCH2890 offers high collector-to-emitter break-down (BV_{CEX} = 120 Volts min) which is desirable when driving inductive loads at high currents.

A typical high-speed hammer driver application is illustrated in Figure 8. The number of drivers per printer is large, and considerable electrical noise is generated when they are switched simultaneously. The ground line, which terminates all of the Darlington power drivers, may be several feet in length resulting in substantial inductance and series resistance. The effect of this inductance and resistance becomes appreciable at the high-current levels required of hammer drivers. When the Darlington power drivers are switched "off", even a small inductance at the Darlington ground generates a negative voltage spike which tends to turn the Darlington power driver "on" rather than "off". This negative excursion of the emitter can result in oscillations. The oscillation can be stopped by tieing the integrated circuit ground (pin 3) to the Darlington ground (pins 2 and 4) with as short a line as possible. (See Figure 8). This circuit configuration pulls the gate output lower when the negative spike is present on the power ground line which guarantees "turn off" of the Darlington power driver.

To insure that the Darlington power driver does not go into secondary breakdown and latch up, a diode clamp is employed as shown. For high-speed printers, the addition of a zener diode can aid in dissipating the stored inductive power (during "turn off") in the hammer solenoid.


Additional features of the MCH2890 include fast switching and low leakage for minimum standby power.




#### FIGURE 8 - TYPICAL HAMMER DRIVER APPLICATION

## MFC4000B

#### AUDIO AMPLIFIER

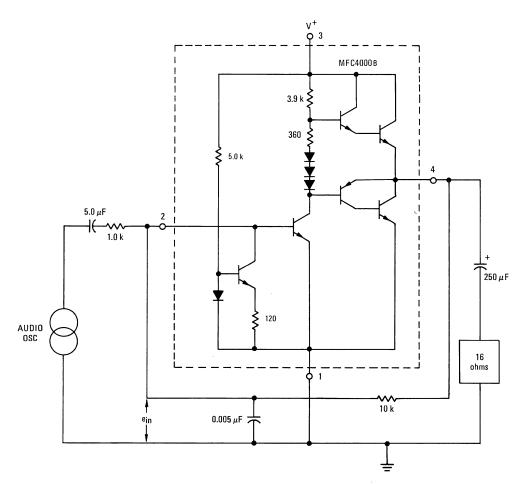


#### TYPICAL APPLICATION



#### MAXIMUM RATINGS (T_A = $25^{\circ}$ C unless otherwise noted)

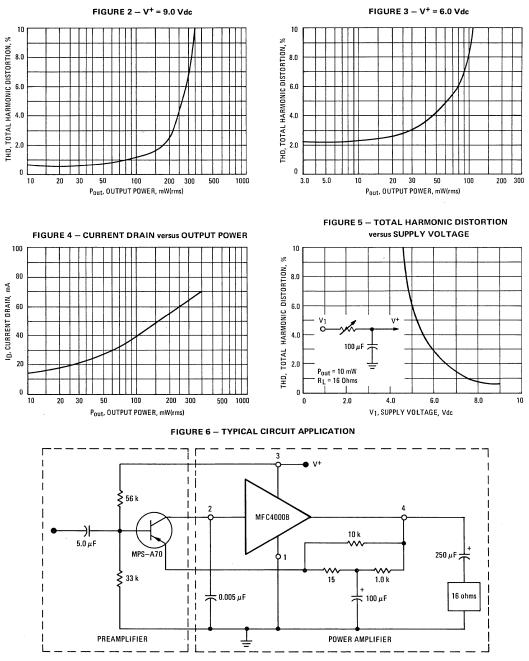
Rating	Symbol	Value	Unit
Power Supply Voltage	V+	12	Vdc
Power Dissipation (Package Limitation) (Soldered on a circuit board and held in free air) Derate above T _A = 25 ^o C	РD	1.0	Watt mW/ ⁰ C
Operating Temperature Range	TA	-10 to +75	°C


See Packaging Information Section for outline dimensions.

#### MFC4000B (continued)

#### **ELECTRICAL CHARACTERISTICS*** (V⁺ = 9.0 Vdc, $R_L$ = 16 Ohms, $T_A$ = 25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Zero Signal Current Drain	۱ _D	-	3.5	6.0	mAdc
Sensitivity P _{out} = 50 mW(rms)	e _{in}	-	-	15	mV(rms)
Output Power Total Harmonic Distortion ≤ 10%	Pout	250	350	-	mW(rms)
Total Harmonic Distortion P _{out} = 50 mW(rms) P _{out} = 50 mW(rms), V ⁺ = 6.0 Vdc	THD		0.7 4.5	-	%


*As measured in test circuit shown in Figure 1.

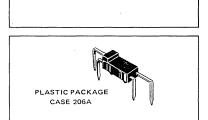


7

FIGURE 1 - TEST CIRCUIT

7



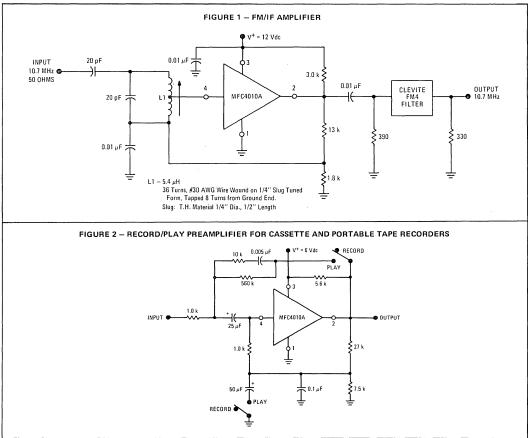

#### TOTAL HARMONIC DISTORTION versus OUTPUT POWER

## MFC4010A

#### HIGH FREQUENCY CIRCUIT



- ... designed for FM/IF and low-level audio applications.
- High Audio Gain 60 dB minimum
- Useful as a Microphone Amplifier and in Tape Recorders and Cassettes
- Excellent Performance as a 10.7 MHz FM/IF Amplifier
- High Transconductance (gm) Ideally Suited to Low Impedance Ceramic Filters




7

WIDE-BAND AMPLIFIER

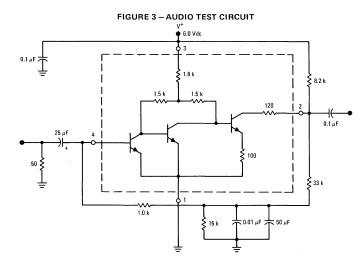
Silicon Monolithic Functional Circuit

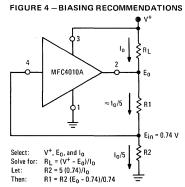
#### TYPICAL APPLICATIONS

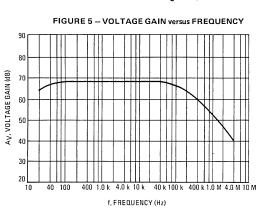


#### MAXIMUM RATINGS (T_A = $25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	18	Vdc
Power Dissipation @ T _A = 25 ^o C (Package Limitation) Derate above 25 ^o C	۴D	0.5 5.0	Watt mW/ ^O C
Operating Temperature Range	TA	-10 to +75	°C

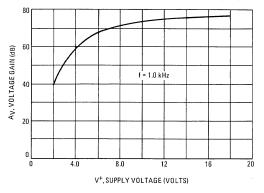

#### **ELECTRICAL CHARACTERISTICS** (V⁺ = 6.0 Vdc, $T_A$ = 25^oC unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
Open Loop Voltage Gain (Figure 3) (f = 1.0 kHz)	Avol	60	68	-	dB
h Parameters (1)	h11	-	1.0	-	k ohms
(f = 1.0 kHz)	h12	-	10 ⁻⁶	-	-
	h21	-	1000	-	-
	h22	-	10 ⁻⁵	-	mhos
Output Noise Voltage (Figure 3) (BW = 20 Hz to 20 kHz, R _S = 1.0 k ohms)	^e n(out)	-	3.0		mV(rms)
Current Drain	iр	-	3.0	-	mA

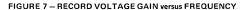

#### **HIGH FREQUENCY CHARACTERISTICS** (V⁺ = 12 Vdc, f = 10.7 MHz, $T_A = 25^{\circ}C$ unless otherwise noted)

Power Gain (Figure 1) (e _{in} = 0.1 mVrms)	_	_	42	_	dB
Noise Figure (Figure 1) (R _S ≈740 Ohms)	NF	-	6.0	_	dB
y Parameters(1) (f = 10.7 MHz, I ₂ = 2.0 mA)	У11 У12 У21 У22	_ _ _ _	1.3 + j1.5 -3.4 + j8.1 -0.33 + j0.68 120 + j0		mmhos μmhos mhos μmhos

(1) Device only, without external passive components.






#### AUDIO PERFORMANCE CHARACTERISTICS (for Test Circuit Figure 3)

FIGURE 6 - VOLTAGE GAIN versus POWER SUPPLY



#### TAPE PREAMPLIFIER PERFORMANCE (for Circuit Figure 2)



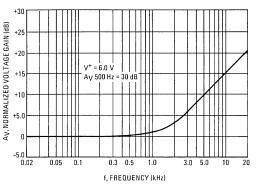
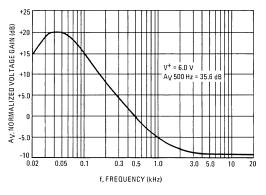
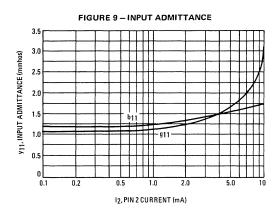
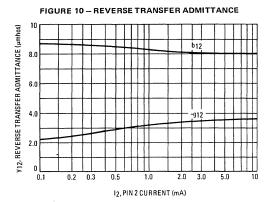





FIGURE 8 – PLAYBACK VOLTAGE GAIN versus FREQUENCY




Note: The record/playback characteristics shown in Figures 8 and 9 were taken with the preamplifier driven by a 50 ohm source. The curves are typical of a desired response for the preamplifier; however, every type of tape recording and playback head is different and this circuit will not necessarily satisfy all requirements. No particular tape head was used as a basis for circuit design. The circuit is only an example showing the equalization network configuration.

The ideal preamplifier will have an input impedance approximately 10 times the highest impedance of the tape head and every preamplifier circuit must be designed using a test tape to verify the response of the design.



#### **10.7 MHz y PARAMETERS**





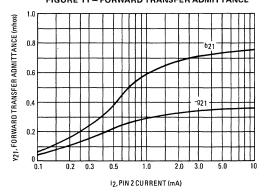
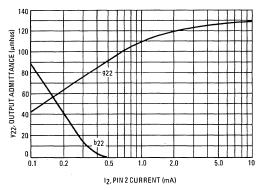
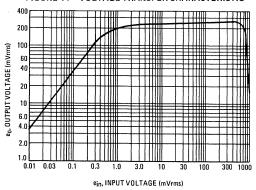




FIGURE 12 - OUTPUT ADMITTANCE



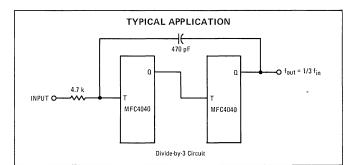

10.7 MHz PERFORMANCE (Circuit of Figure 1)

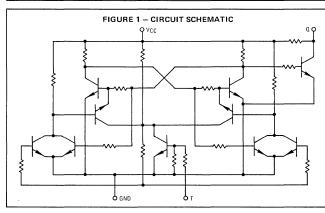
80 70 60 POWER GAIN (dB) ein = 0.1 mVrms 50 40 30 20 10 0 4.0 6.0 8.0 10 12 14 16 18 20 V⁺, SUPPLY VOLTAGE (VOLTS)

FIGURE 13 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 14 - VOLTAGE TRANSFER CHARACTERISTIC




#### SINGLE TOGGLE FLIP-FLOP

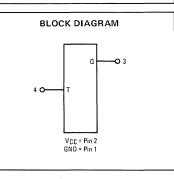

#### SINGLE TOGGLE FLIP-FLOP

- Wide Operating Voltage Range 4.0 to 16 Volts
- Regulated Supply Not Required
- Compatible with TTL and DTL
- Economical 4-Lead Plastic Package

#### MAXIMUM RATINGS

Rating	Symbol	Value	Volts
Power Supply Voltage	Vcc	19	Vdc
Output Sinking Current	l sink	10	mA
Negative Input Voltage	Vin	0.5	Vdc
Power Dissipation @ T _A = 25 ⁰ C Derate above 25 ⁰ C	Ρ _D 1/θ _{JA}	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range	TA	-10 to +75	°C



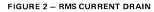


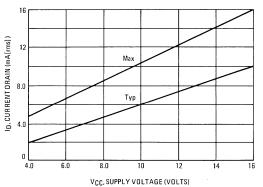

## Single Monolithic Functional Circuit

SINGLE TOGGLE FLIP-FLOP









## $\label{eq:constraint} \begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \; (V_{CC} = 12 \; Vdc, \; V_{in} = 4.0 \; Vp\text{-}p \; \text{Square Pulse, } f = 10 \; \text{kHz}, 50\% \; \text{Duty Cycle, } t_f = 1.0 \; \text{V}/\mu \text{s} \; (\text{Min}), \\ T_{\text{A}} = 25^{\text{o}}\text{C} \; \text{unless otherwise noted}) \end{array}$

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Power Supply Voltage	V _{CC}	4.0	-	16	Vdc
Toggle Frequency	fTog	_	3.0	· _	MHz
Output Voltage (High) (V _{CC} = 4.0 Vdc) (V _{CC} = 16 Vdc)	V _{OH}	3.5 15.5			Vdc
Output Voltage (Low) (V _{CC} = 4.0 Vdc) (V _{CC} = 16 Vdc)	VOL			0.5 1.0	Vdc
Operating Drain Current	۱D		-	32	mAdc
Output Sinking Current (V ₀ ≤1.0 Vdc)	lsink		2.0		mAdc
Rise Time	tr	-	250	-	ns
Storage Time	t _s	-	350	_	ns
Fall Time	tf	-	60	-	ns
Input Resistance	R _{in}	10		—	kΩ
Output Resistance (Output High)	ROH		-	2.8	kΩ

INPUT PULSE REQUIREMENTS

	Characteristic	Symbol	Min	Max	Unit
	Pulse Magnitude	VH	+4.0	-	Volts
LEADING TRAILING EDGE	Zero Level	VL	-	+1.0	Volts
EDGE	Leading Edge		No Requ	irement	
t	Trailing Edge	$\frac{dv}{dt}$	-1.0	_	$\frac{\text{Volts}}{\mu \text{s}}$





Vн

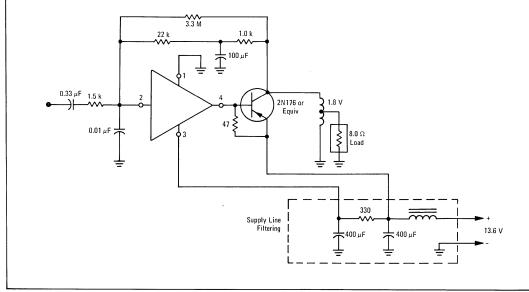
#### **Advance Information**

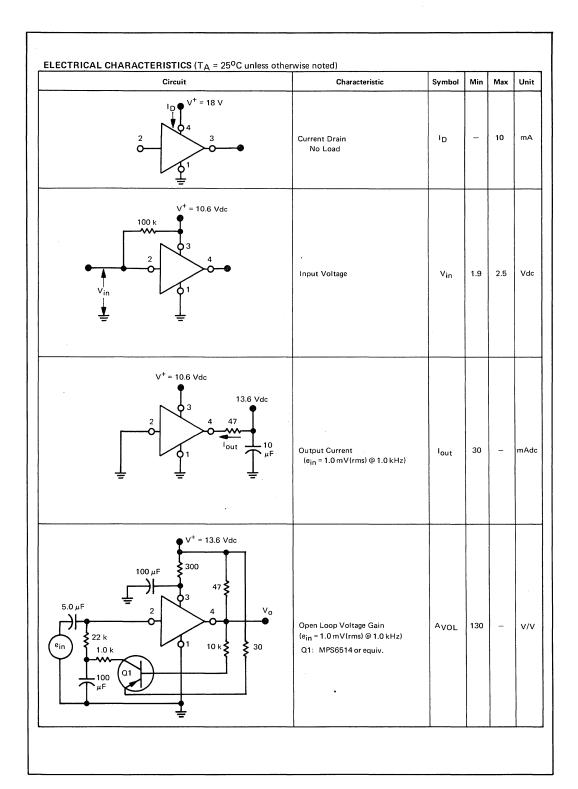
#### **CLASS "A" AUDIO DRIVER**

. . . designed for driving Class "A" PNP power output transistor stage applications.

- Drives to 4 Watts of Output Power
- Ideal for 12 Volt Automotive Equipment
- No Gain Selection of Power Transistors Necessary
- Economical 4-Lead Package

CLASS "A" AUDIO DRIVER


Silicon Monolithic Functional Circuit




#### MAXIMUM RATINGS (T_A = 25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	18	Vdc
Power Dissipation @ T _A = 25 ^o C (Package Dissipation)	PD	1.0	Watt
Derate above 25°C	1/0 _{JA}	10	mW/ ^o C
Operating Temperature Range	ТА	-10 to +75	°C







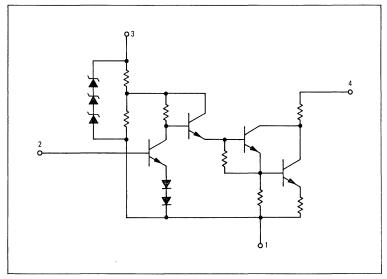
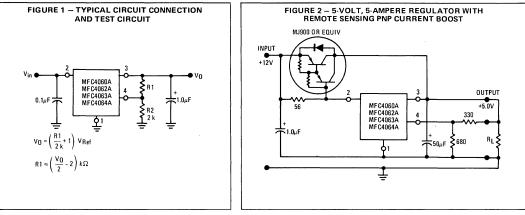


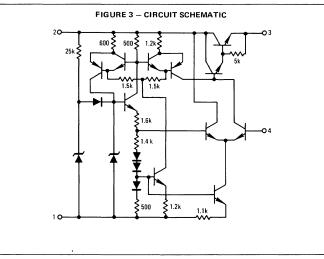

FIGURE 2 - CIRCUIT SCHEMATIC

#### **VOLTAGE REGULATORS**

MFC4060A MFC4062A MFC4063A MFC4064A

#### MONOLITHIC VOLTAGE REGULATORS


This series of voltage regulators is designed to deliver load currents to 200 mAdc. Output current capability can be increased to several amperes through the use of external pass transistors. These devices are industrial quality regulators designed for consumer applications requiring high volume and low cost.


- Excellent Line and Load Regulation
- Economical Four-Lead Package

CASE 206A PLASTIC PACKAGE

**VOLTAGE REGULATORS** 

Silicon Monolithic Functional Circuit



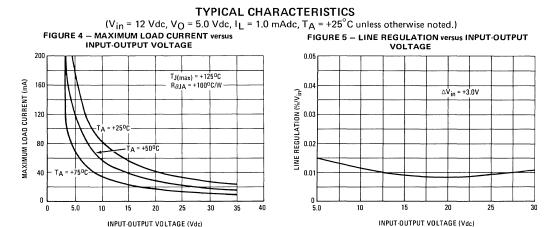


See Packaging Information Section for outline dimensions.

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

	Rating	Symbol	Value	Unit	
Input Voltage	MFC4060A/MFC4062A MFC4063A/MFC4064A	V _{in}	38 22	Vdc Vdc	
Maximum Load Current		۱ <u>۲</u>	200	mAdc	
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$		PD	1.0 10	Watt mW/ ⁰ C	
Operating Temperature Ra	nge (Ambient)	TA	-10 to +75	°C	
Storage Temperature Rang	e	T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted:  $T_A = +25^{\circ}C$ ,  $V_{in} = 12 Vdc$ ,  $V_O = 5.0 Vdc$ ,  $I_L = 10 mAdc$ , See Figure 1.)


		1.1	AFC4060	A		MFC4062	!A	N	AFC4063	A	٨	AFC4064	A	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	9.0		38	9.0		38	9.0		22	9.0	_	22	Vdc
Output Voltage Range	Vo	Vref	an la san an a	35	V _{ref}	1	35	V _{ref}	-	19	V _{ref}	-	19	Vdc
Input-Output Voltage Differential	V _{in} -V _o	3.0			3.0			3.0	-	-	3.0	-	-	Vdc
Reference Voltage	V _{ref}	3.75	4.1	4.35	3.6	4.1	4.6	3.75	4.1	4.35	3.6	4.1	4.6	Vdc
Standby Current Drain (I _L = 0, V _{in} = 20 V)	IВ		3.7	6.0		3.7	7.0	-	3.7	6.0	-	3.7	7.0	mAdc
Average Temperature Co- efficient of Output Voltage (T _A = -10 to +75 ^o C)	тс _{VO}		0.003	0.03		0.003	0.03		0.003	0.03	-	0.003	0.03	%/ºC
Line Regulation ( $V_O = 7.5 V$ ) 12 $V \le V_{in} \le 18$	Reg _{in}								0.01	0.03	_	_	0.06	%/V _{in}
$12 v < v_{in} < 30$			0.01	0.03	-	지수있	0.06			·	-	-	_	
Load Regulation (1.0 mA <il <50="" ma)<="" td=""><td>RegL</td><td></td><td>0.03</td><td>0.2</td><td></td><td></td><td>0.4</td><td>-</td><td>0.03</td><td>0.2</td><td>-</td><td>-</td><td>0.4</td><td>%</td></il>	RegL		0.03	0.2			0.4	-	0.03	0.2	-	-	0.4	%

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.



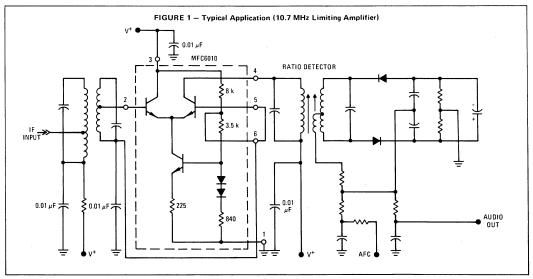






#### **FM IF AMPLIFIER**

#### FM LIMITING IF AMPLIFIER


. a monolithic silicon integrated circuit designed especially for 10.7 MHz IF applications.

Highlights Include:

- High Stable Gain @ 10.7 MHz (40 dB typ)
- Low Feedback Capacitance (|y₁₂| = 0.01 mmho typ)
- Non-Saturating Limiting (With Suitable Load)
- Compatible With CA3053 and µA703 (See Figures 7 and 8)

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

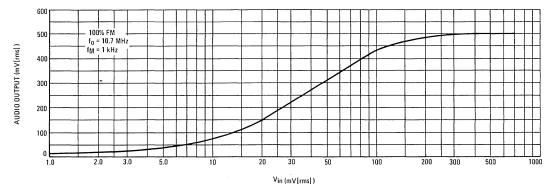
Rating	Symbol	Value	Unit				
Power Supply Voltage	V+	20	Vdc				
Output Collector Voltage	V4	20	Vdc				
Input Voltage*	V ₂ , V ₅	±5.0	Volts				
Power Dissipation @ T _A = 25 ⁰ C	PD	1.0	Watt				
(Package Limitation)							
Derate above 25 ⁰ C	1/θ _{JA}	10	mW/ ^o C				
Operating Temperature Range	TA	-10 to +75	°C				
*Differential Voltage Swing.							



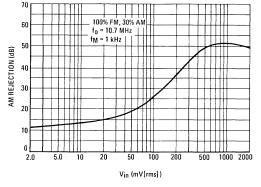
See Packaging Information Section for outline dimensions.



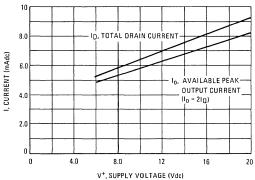
Silicon Monolithic **Functional Circuit** 




#### MFC6010 (continued)


Circuit for ID ID V+ = 12 Vdc	Characteristic	Symbol	Min	Тур	Max	Unit
	Total Current Drain	۱D	-	-	10	mA
	Output Quiescent Current	۱a	1.75	3.2	5.0	mA
Gursuut for Lo. • V* = 12 Vds	Output Saturation Voltage	V(sat)	-	3.5	-	Volts
Circuit for IQ V+ = 12 Vdc	Forward Transadmittance	Y21	25	_	-	mmhos
	Reverse Transadmittance	Y12	-	0.01	-	mmho
	Input Capacitance	Cin	-	6.0	-	pF
Circuit for .y21: V* = 12 Vdc	Input Conductance	Gin		0.4	-	mmho
\$ 240	Output Capacitance	Cout	-	2.5	-	pF
0.01 µF 2 3 ± 0.01 0.01 µF 50	Output Conductance	G _{out}	-	35	-	μmhos
50 0 0 0 0 0 0 0 0 0 0 0 0 0	Noise Figure (R _S = 750 Ω)	NF	-	7.0	-	dB
10.7 MHz	Maximum Stable Gain (Stern Factor = 3)	A _v	-	40		dB
⊈ ^{0.01 µF}	Input Voltage (3.0 dB Limiting)	e _{in}	-	60	_	mV

#### ELECTRICAL CHARACTERISTICS (V⁺ = 12 Volts, f = 10.7 MHz, T_A = +25^oC, unless otherwise noted.)


FIGURE 2 - LIMITING CHARACTERISTICS







#### FIGURE 4 - CURRENT DRAIN AND OUTPUT CURRENT



7

#### TEST CIRCUITS

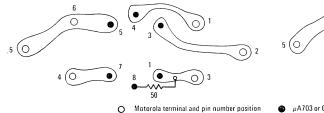
#### FIGURE 5 - POWER-GAIN TEST CIRCUIT

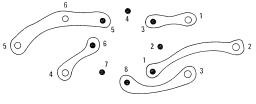


#### MFC6010 (continued)

#### APPLICATIONS INFORMATION

Because of the low reverse transfer admittance of the MFC6010, stability will be dependent mainly upon circuit layout. With careful design, very high gain (in the order of 40 dB) may be achieved at 10.7 MHz. The bias and supply currents may be varied from their normal values (shown in Figure 4) by shunting additional resistance from pin 6 to ground or to the supply line.


Although less gain may be realized when using the MFC6010 as a limiter, it is recommended that it be operated in a non-saturated mode. This mode of operation results in a high output impedance at limiting. Therefore the operation of the demodulator circuit is not subject to variable loading of the limiter output.


In order to avoid driving the amplifier transistor components of the MFC6010 into saturation, the load resistance must be

chosen to ensure that current limiting occurs before the collector voltage drops to a value low enough to forward bias the collectorbase junction. In a transformer coupled circuit, the maximum allowable load can be derived from

$$R_{L} = \frac{2(V^{+} - V_{5})}{I_{0}}$$

where values for  $I_0$  may be determined from Figure 4 (providing the bias currents have not been altered from their normal values). In order to avoid degradation of AM rejection, the input signal should not exceed one volt (rms).





 μA703 or CA3053 terminal and pin number position

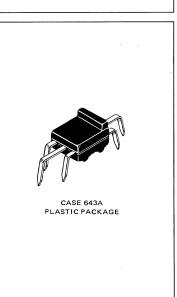
*Foil patterns shown are intended to show pin-for-pin interconnection. Any change in the number of components is dictated by the requirements of the individual design.

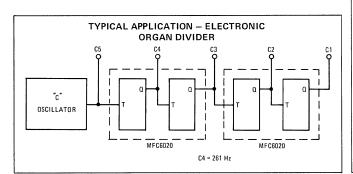
#### DUAL TOGGLE FLIP-FLOP

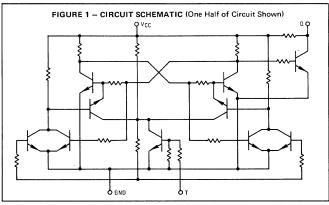
DUAL TOGGLE

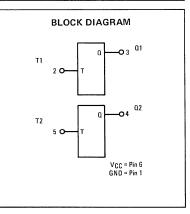
FLIP-FLOP

Silicon Monolithic


**Functional Circuit** 


#### DUAL TOGGLE FLIP-FLOP


- Wide Operating Voltage Range 4.0 to 16 Volts
- Regulated Supply <u>Not</u> Required
- Compatible with TTL and DTL
- Economical 6-Lead Plastic Package


#### MAXIMUM RATINGS

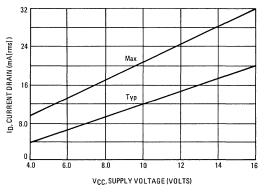
Rating	Symbol	Value	Volts
Power Supply Voltage	Vcc	19	Vdc
Output Sinking Current	lsink	10	mA
Negative Input Voltage	Vin	0.5	Vdc
Power Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	Ρ _D 1/θ _{JA}	1.0 10	Watt mW/ ⁰ C
Operating and Storage Junction Temperature Range	⊤j,T _{stg}	-40 to +125	°C .
Operating Temperature Range	TA	-10 to +75	°C

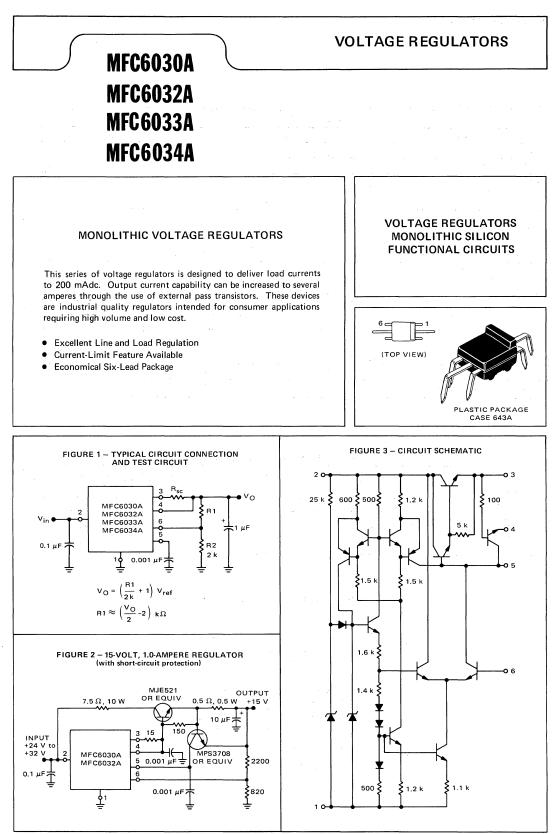









## ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, V_{in} = 4.0 V,Square Pulse, f = 10 kHz, 50% Duty Cycle, t_f = 1.0 V/ $\mu$ s (Min), T_A = 25^oC unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
Operating Power Supply Voltage	Vcc	4.0	-	16	Vdc
Toggle Frequency	fTog		3.0	-	MHz
Output Voltage (High) ( $V_{CC} = 4.0 \text{ Vdc}$ ) ( $V_{CC} = 16 \text{ Vdc}$ )	V _{OH}	3.5 15.5	_	_	Vdc
Output Voltage (Low) ( $V_{CC} = 4.0 \text{ Vdc}$ ) ( $V_{CC} = 16 \text{ Vdc}$ )	VOL			0.5	Vdc
Operating Drain Current	I D	-	· _	32	mAdc
Output Sinking Current ( $V_0 \le 1.0 \text{ Vdc}$ )	lsink	-	2.0	-	mAdc
Rise Time	tr	-	250		ns
Storage Time	ts		350	_	ns
Fall Time	t _f	-	60	_	ns
Cross Talk (V _{in} = 15 V, Square Pulse, V _{CC} = 16 Vdc) T1 to Q2 T2 to Q1	Vo		_	15 15	mV
Input Resistance	R _{in}	10	_	-	kΩ
Output Resistance (Output High)	ВОН	-	-	2.8	kΩ

#### INPUT PULSE REQUIREMENTS

	Characteristic	Symbol	Min	Max	Unit			
	Pulse Magnitude	VH	+4.0		Volts			
LEADING TRAILING EDGE	Zero Level	VL	_	+1.0	Volts			
	Leading Edge	No Requirement						
	Trailing Edge	dv dt	-1.0		$\frac{\text{Volts}}{\mu \text{s}}$			

FIGURE 2 - RMS CURRENT DRAIN versus SUPPLY VOLTAGE





#### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted).

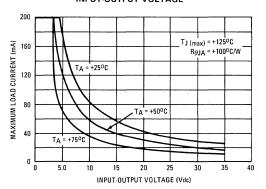
Rating	Symbol	Value	Unit
Input Voltage MFC6030A, MFC6032A MFC6033A, MFC6034A	Vin	38	Vdc
Maximum Load Current	ιL	200	mAdc
Power Dissipation (Package Limitation) Derate above $T_A = +25^{\circ}C$	PD	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range (Ambient)	Тд	-10 to +75	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{in} = +12 \text{ Vdc}, V_{O} = +5.0 \text{ Vdc}, !_{L} = 1.0 \text{ mAdc}, \text{R}_{sc} = 0, \text{T}_{A} = +25^{\circ}\text{C} \text{ unless otherwise noted.})$ (See Figure 1)

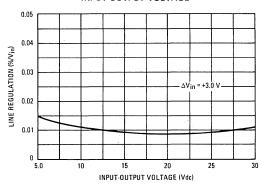
		.,	Jee i igu											
Characteristic		Ň	/FC6030	)A	ħ	AFC6032	2A	N	IFC6033	BA	N	1FC6034	A	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	9.0		38	9.0		38	9.0	-	22	9.0	-	22	Vdc
Output Voltage Range	vo	VRef	: : :	35	VRef		35	V _{Ref}		19	V _{Ref}	-	19	Vdc
Input-Output Voltage Differential	v _{in} -v ₀	3.0			3.0			3.0	-	-	3.0	-		Vdc
Reference Voltage (R1 = 0)	V _{ref}	3.75	4.1	4.35	3.6	4.1	4.6	3.75	4.1	4.35	3.6	4.1	4.6	Vdc
Standby Current Drain (I _L = 0, V _{in} = 20 V)	ΙB		3.7	6.0	· · · · ·	3.7	7.0	_	3.7	6.0	_	3.7	7.0	mAdc
Average Temperature Co- efficient of Output Volt- age ( $T_A = -10 \text{ to}+75^{\circ}\text{C}$ )	0		0.003	0.03		0.003	0.03		0.003	0.03		0.003	0.03	%/ ^o C
Line Reg. $(V_O = 7.5 V)$ (12 V < V _{in} < 18) (12 V < V _{in} < 30)	Reg _{in}		 0.01	0.03		2007 <del>1</del> 1007 <del>1</del>	0.06		0.01	0.03	-	_	0.06	%/V _{in}
Load Regulation (1.0 mA<1L<50 mA)	RegL		0.03	0.2	이는 것 것품 문	alter El <del>F</del> al	0.4		0.03	0.2	_	_	0.4	%/V _O
Short-Circuit Current Limit ( $R_{sc} = 100 \text{ ohms}$ , $V_O = 0$ )	I _{sc}	L.	6.5			6.5		_	6.5	_	_	6.5	_	mAdc

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable. LINE REGULATION

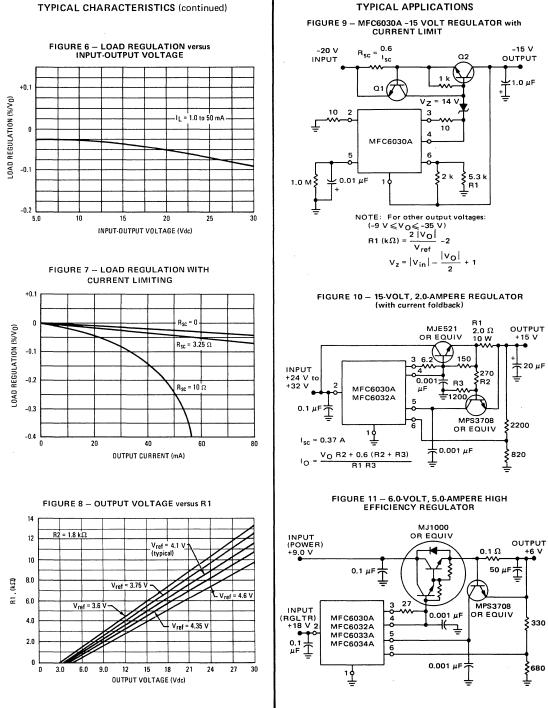
 $\%/V_{in} = \frac{\Delta V_0 \times 100}{\Delta V_{in} \times V_0}$ 


LOAD REGULATION  $\% = \frac{\Delta V_0}{V_0} \times 100$ 

SHORT-CIRCUIT CURRENT SC =  $\frac{V_{BE}}{R_{sc}} \approx \frac{0.65 \text{ (at } T_J = +25^{\circ}\text{C})}{100 \text{ ohms}}$ ISC


#### **TYPICAL CHARACTERISTICS**

(Vin = 12 Vdc, VO = 5.0 Vdc, IL = 1.0 mAdc,  $R_{sc}$  = 0, TA = +25°C unless otherwise noted.)


FIGURE 4 – MAXIMUM LOAD CURRENT versus INPUT-OUTPUT VOLTAGE



#### FIGURE 5 – LINE REGULATION versus INPUT-OUTPUT VOLTAGE



#### MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)



#### MFC6030A, MFC6032A, MFC6033A, MFC6034A (continued)

#### **TYPICAL APPLICATIONS** (continued)

FIGURE 12 – CURRENT BYPASS (Load current range, 400-to-500 mA)

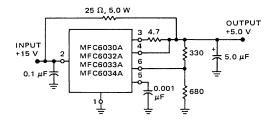



FIGURE 15 – VOLTAGE BOOSTED 40-VOLT, 100 mA REGULATOR (with short-circuit current limiting)

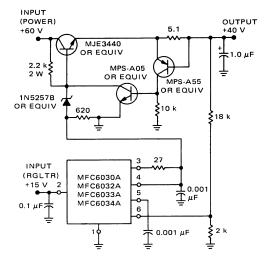
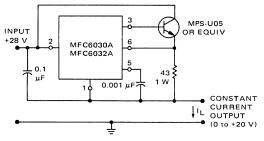
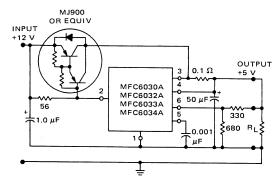
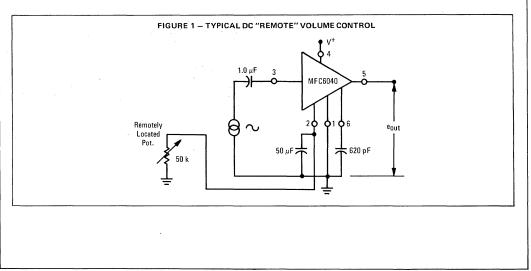
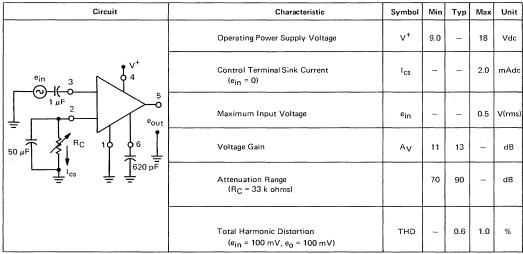




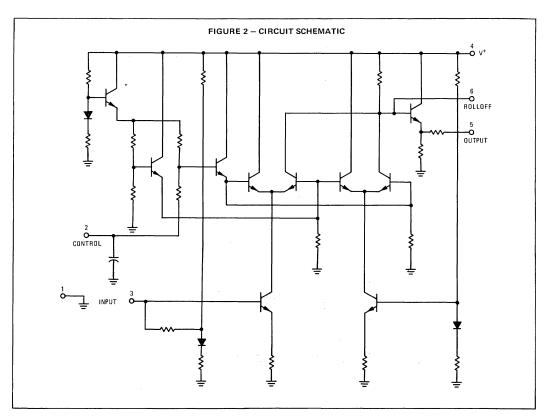

FIGURE 13 - 100 mA CONSTANT CURRENT SOURCE

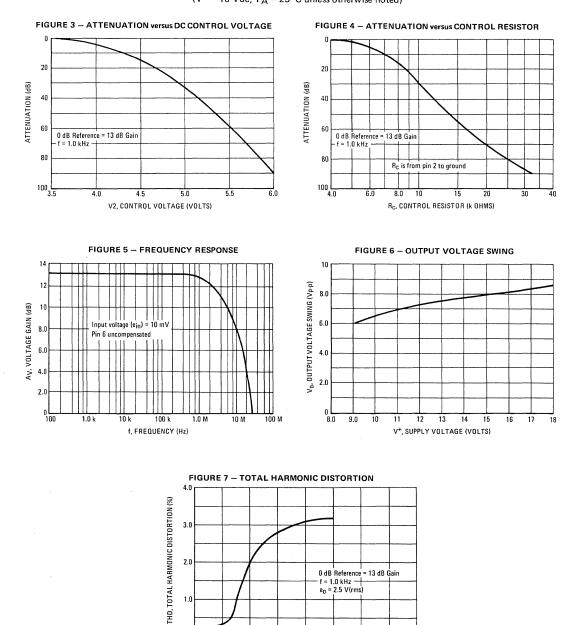



Pin 4 not connected


#### FIGURE 14 – 5.0-VOLT, 5.0-AMPERE REGULATOR with REMOTE SENSING, PNP CURRENT BOOST







Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	21	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Limitation)	PD	1.0	Watt
Derate above $T_A = 25^{\circ}C$	1/0 _{JA}	10	mW/ ^o C
Operating Temperature Range	ТА	-10 to +75	°C





#### ELECTRICAL CHARACTERISTICS ( $e_{in}$ = 100 mV, f = 1.0 kHz, R1 = 0, V⁺ = 16 Vdc, T_A = 25^oC unless otherwise noted)





#### TYPICAL ELECTRICAL CHARACTERISTICS $(V^+ = 16 \text{ Vdc}, T_A = 25^{\circ}\text{C} \text{ unless otherwise noted})$

1.0

٥L

10

20

30

40

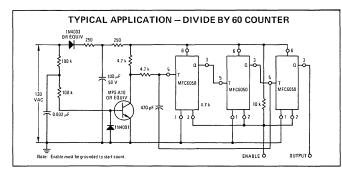
ATTENUATION (dB)

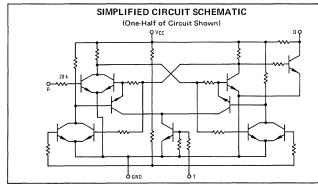
f = 1.0 kHz eo = 2.5 V(rms)

50

60

70 80


#### **DUAL TOGGLE FLIP-FLOP**


#### DUAL TOGGLE FLIP-FLOP WITH RESET

- Wide Operating Voltage Range 4.0 to 16 Volts
- Regulated Supply Not Required •
- Compatible with TTL and DTL •
- ٠ Economical 6-Lead Plastic Package
- Reset (R) Available to Set Output to 0 Regardless of Previous History

#### MAXIMUM RATINGS

Rating	Symbol	Value	Volts
Power Supply Voltage	V _{CC}	19	Vdc
Output Sinking Current	lsink	15	mA
Negative Input Voltage	Vin	0.5	Vdc
Power Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	Ρ _D 1/θ JA	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range	т _А	-10 to +75	°C





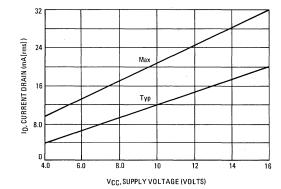
DUAL TOGGLE FLIP-FLOP WITH RESET

> Silicon Monolithic **Functional Circuit**



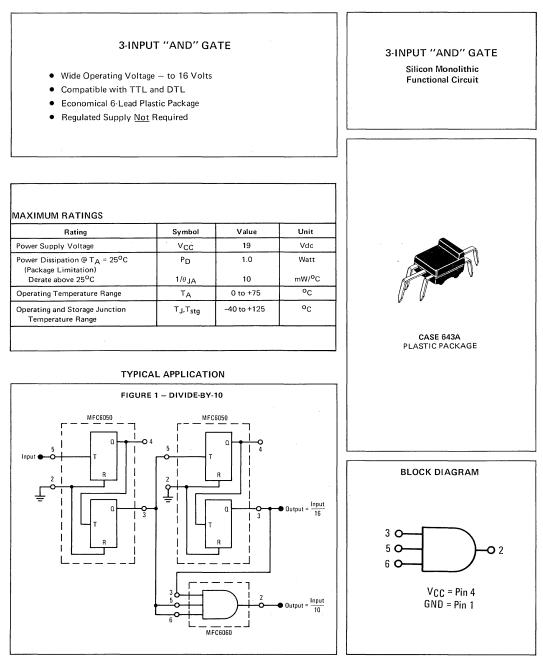
CASE 643A

**BLOCK DIAGRAM** 01 5 TI O R 20 02 -**O** 3 ۵ Т2 VCC = Pin 6 GND = Pin 1 7


## ELECTRICAL CHARACTERISTICS ( $V_{CC}$ = 12 Vdc, $V_{in}$ = 4.0 V,Square Pulse, f = 10 kHz, 50% Duty Cycle, t_f = 1.0 V/µs (Min), T_A = 25^oC unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Power Supply Voltage	Vcc	4.0	-	16	Vdc
Toggle Frequency	f _{Tog}	-	3.0	-	MHz
Output Voltage (High) (V _{CC} = 4.0 Vdc)	Voн	3.5	-		Vdc
(V _{CC} = 16 Vdc)		15.5	-	-	
Output Voltage (Low) (V _{CC} = 4.0 Vdc)	VOL		_	0.5	Vdc
(V _{CC} = 16 Vdc) Operating Drain Current	I D			1.0 32	mAdc
Output Sinking Current (Vo 1.0 Vdc)	Isink	-	8.0	-	mAdc
Rise Time	t _r	-	250	-	ns
Storage Time	ts	_	350		ns
Fall Time	tf	-	60	_	ns
	Vo		- - 1.0	15 15 —	mV Vdc
Input Resistance	Rin	10	_	_`	kΩ
Output Resistance (Output High)	ROH		-	2.8	kΩ

#### INPUT PULSE REQUIREMENTS

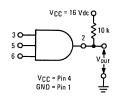

1	Characteristic	Symbol	Min	Max	Unit			
VH	Pulse Magnitude	VH	+4.0		Volts			
LEADING EDGE	Zero Level	VL	-	+1.0	Volts			
	EDGE Leading Edge	No Requirement						
	Trailing Edge	$\frac{dv}{dt}$	-1.0	-	$\frac{Volts}{\mu s}$			

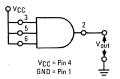
#### FIGURE 2 - RMS CURRENT DRAIN versus SUPPLY VOLTAGE



7

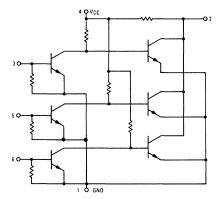
#### 3-INPUT "AND" GATE





#### ELECTRICAL CHARACTERISTICS ( $V_{CC}$ = 16 Vdc, $T_A$ = +25°C unless otherwise noted)

Characteristic	Figure	Symbol	Min	Max	Unit
х.					
Output Voltage – Low	2	VOL			Vdc
Pin 3 = V _{CC} ; Pin 5 = V _{CC} ; Pin 6 = GND			-	0.6	
Pin 5 = GND; Pin 6 = $V_{CC}$ ; Pin 3 = $V_{CC}$			-	0.6	
Pin 3 = GND; Pin 5 = V _{CC} ; Pin 6 = V _{CC}			-	0.6	
Output Voltage — High	3	v _{он}	15	-	Vdc
Drain Current	3	۱ _D	-	10	mAdc

#### FIGURE 2-OUTPUT VOLTAGE (LOW) TEST CIRCUIT


FIGURE 3 – OUTPUT VOLTAGE (HIGH) TEST CIRCUIT





.

#### FIGURE 4 - CIRCUIT SCHEMATIC



• .

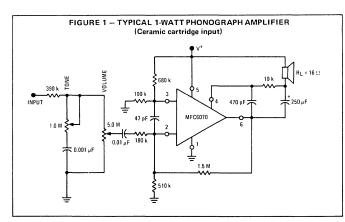
#### AUDIO POWER AMPLIFIER

#### **1-WATT AUDIO POWER AMPLIFIER**

. . . designed primarily for low-cost audio amplifiers in phonograph, TV and radio applications.

- 100 mV Sensitivity for 1-Watt*
- Low Distortion 1% @ 1-Watt typ*
- Short-Circuit Proof Short Term (10 seconds typ)
- No Heatsink Required for 1-Watt Output at T_A = 55^oC^{**}
- Excellent Hum Rejection
- *Circuit Dependent ** Voltage Dependent

#### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V+	20	Vdc
Power Dissipation Derate above T _A = +25 ^o C	Ρ _D 1/θ JA	1.0 8.0	Watt mW/ ⁰ C
Operating Temperature Range	TA	-10 to +55	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	θ JA*	125	°C/W

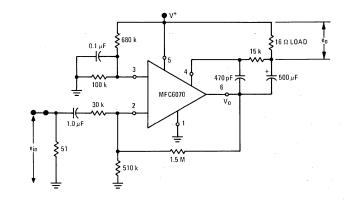
Thermal resistance is measured in still air with fine wires connected to the leads, representing

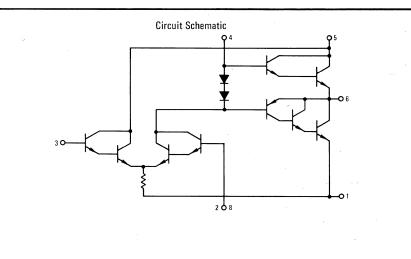
Inermal resistance is measured in still ar with the wires connected to the leads, representing the "worst case" situation. For a larger power requirement, pin 1 must be soldered to at least one sq. in. of copper foil on the printed circuit board. The  $\theta_{JA}$  will be no greater than +90°C/W. Thus, 1.39 Watts could be dissipated at +25°C, which must be linearly derated at 11.1 mW/°C from +25°C to +150°C.

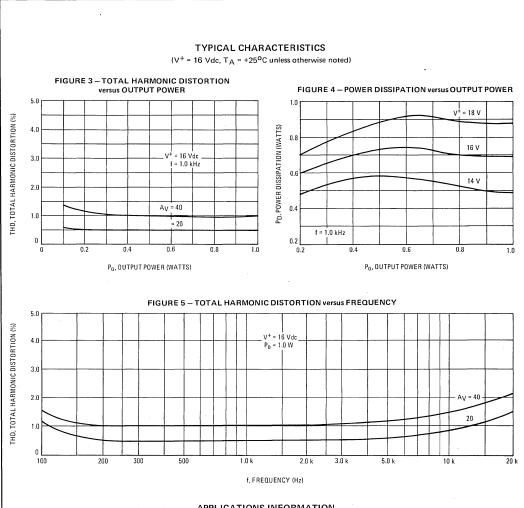


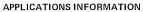
#### 1-WATT AUDIO POWER AMPLIFIER

Silicon Monolithic **Functional Circuit** 





## ELECTRICAL CHARACTERISTICS (V⁺ = 16 Vdc, See Figure 2 for test circuit, T_A = +25°C unless otherwise noted)

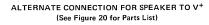

Characteristic	Symbol	Min	Тур	Max	Unit
Quiescent Output Voltage	V _o	-	8.0	-	Vdc
Quiescent Drain Current (ein = 0)	۱D	-	5.0	18	mA
Sensitivity, Input Voltage (e _{in} adjusted for e ₀ = 4.0 V(rms) @ 1.0 kHz, Power Output = 1.0 Watt)	ein		100	150	mV
Total Harmonic Distortion (e ₀ = 4.0 V(rms) @ 1.0 kHz, Power Output = 1.0 Watt) (e _{in} adjusted for e ₀ = 1.26 V(rms) @ 1.0 kHz, Power Output = 100 mW)	THD	-	1.0 1.0	10 3.0	%
Hum and Noise (IHF Standard A201, 1966)	-	-	-40		dB

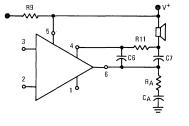


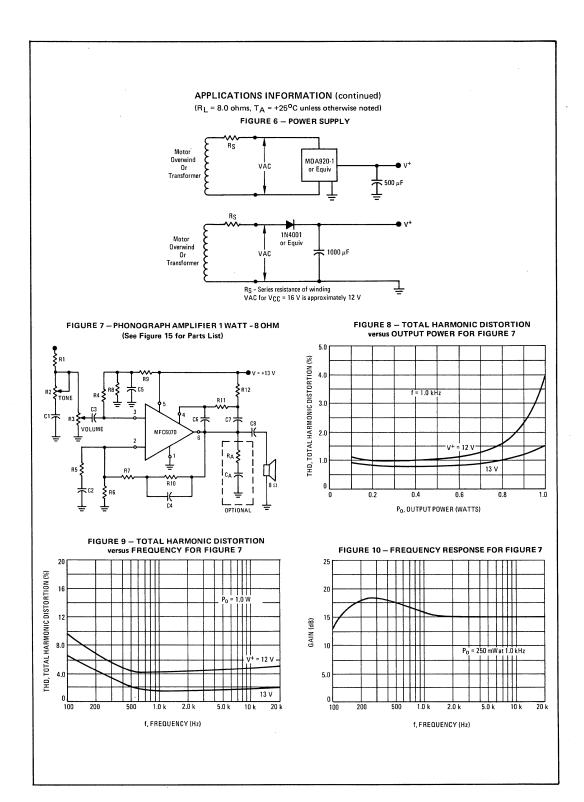




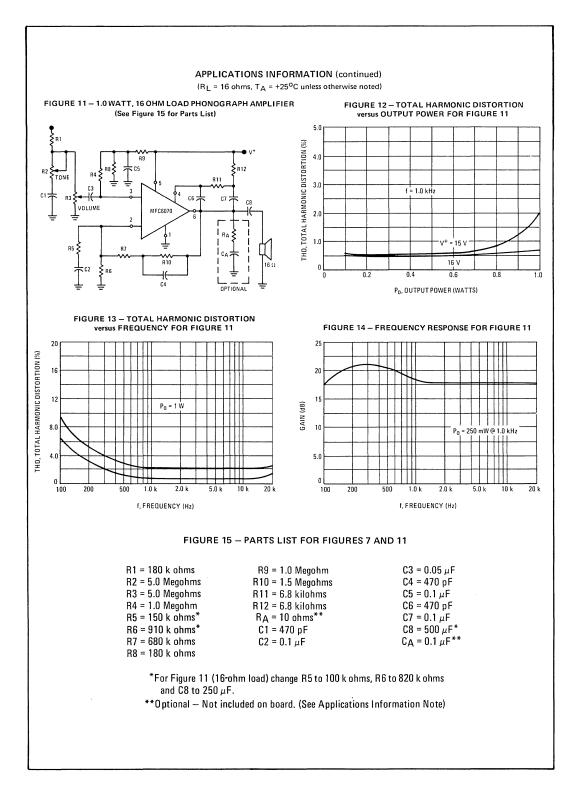


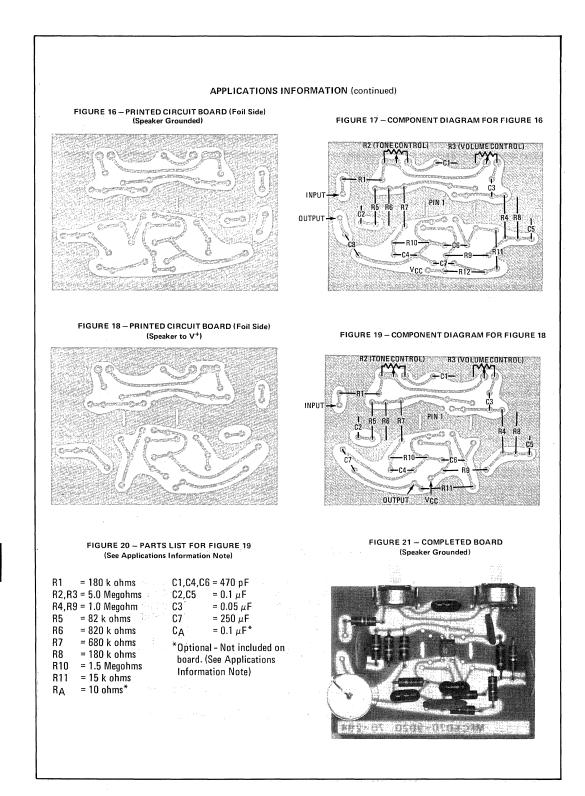




Shown in Figures 7 and 11 are low cost 1 W phono amplifiers with a sensitivity (@ 1 kHz) of approximately 450 mV. The input impedance of both amplifiers is approximately equal to R4 and the gain is determined by (R7 + R10)/R5. To change the gain of the amplifier, change the value of R5 and hold (R7 + R10) between 1 M and 2.2 M. This allows the use of a small and less expensive capacitor for C2.


The bass boost effect shown in the frequency response curves (Figures 10 and 14) is provided by the parallel combination of C4 and R10 and can be eliminated by removing C4 and replacing (R7 + R10) with a 2.2 Megohm resistor. High frequency compensation is provided by C6 and the low frequency roll-off is determined by the impedance network of C2 and R5, C3 and R4, and C8 and the speaker. The series combination of  $\mathsf{R}_\mathsf{A}$  and  $\mathsf{C}_\mathsf{A}$  from pin 6 to ground may be required for stability, depending on printed circuit board layout, speaker reactance, and lead lengths.

Device ac short-circuit capability was tested in both the 8-ohm and 16-ohm amplifiers by shorting pin 6 thru a 500 microfarad capacitor to ground for a period of ten seconds with the amplifier operating at full rated output.


The speaker can be connected to V⁺ (alternate connection shown below) or ground (Figures 7 and 11). Printed circuit board art work (1:1 pattern) is shown for both systems in Figures 16 and 18. A picture of the completed board for the grounded speaker system is shown in Figure 21.








#### MFC6070 (continued)



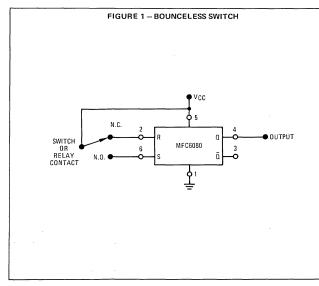


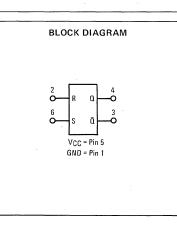
#### **RS FLIP-FLOP**

**RS FLIP-FLOP** 

Silicon Monolithic Functional Circuit

#### **RS FLIP-FLOP**


- ... designed for use in high-level, low-speed logic and timing systems.
- Wide Operating Voltage Range 4.0 to 16 Volts
- High Current Buffered Outputs Allows Direct Drive of Medium Current Lamps and Relays
- Compatible with TTL and DTL
- Regulated Supply Not Required

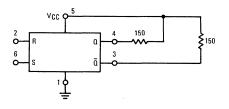

#### MAXIMUM BATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	19	Vdc
Power Dissipation @ T _A = 25 ^o C (Package Limitation)	PD	1.0	Watt
Derate above 25°C	1/0 _{JA}	10	mW/ ^o C
Operating Temperature Range	TA	0 to +75	°C
Operating and Storage Junction Temperature Range	Tj,T _{stg}	-40 to +125	°C

# CASE 643A PLASTIC PACKAGE

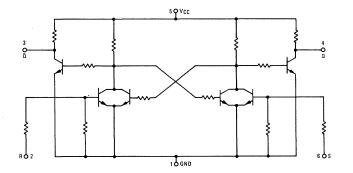
#### TYPICAL APPLICATION

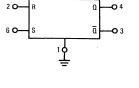





### **ELECTRICAL CHARACTERISTICS** ( $V_{CC}$ = 16 Vdc, $V_{in}$ = 4.0 to 16 Vdc, $T_A$ = 25^oC unless otherwise noted)

Characteristic	Symbol	Figure	Min	Тур	Max	Unit
Output Voltage R Input Pin 2 = V _{in} , Pin 3 = V _{out} , Pin 6 = GND S Input Pin 2 = GND, Pin 4 = V _{out} , Pin 6 = V _{in}	Vout	1	14	-	-	Vdc
R S Input Pin 2 = V _{in} , Pin 4 = V _{out} , Pin 6 = V _{in}						
Saturation Voltage R Input Pin 2 = V _{in} , Pin 4 = V _{sat} , Pin 6 = GND S Input Pin 2 = GND, Pin 3 = V _{sat} , Pin 6 = V _{in} R S Input Pin 2 = V _{in} , Pin 3 = V _{sat} , Pin 6 = V _{in}	V _{sat}	1	_	_	1.0	Vdc
Input Current R Input I _{in} measured at Pin 2 with 4.0 Vdc applied to Pin 2 and Pin 6 grounded S Input I _{in} measured at Pin 6 with 4.0 Vdc applied to Pin 6 and Pin 2 grounded	lin	2	_	170	_	μAdc
Output Sinking Current Current into Pin 3 or Pin 4 with Q or $\overline{Q}$ in low state	l _{sink}	-	_	-	120	mAdc
Drain Current Pin 2 and 6 = GND	۱D	2	-	-	20	mAdc


### FIGURE 2 - VOLTAGE TEST CIRCUIT


### FIGURE 3 - CURRENT TEST CIRCUIT



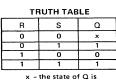

7

FIGURE 4 - CIRCUIT SCHEMATIC





5 **0 ↓** 10

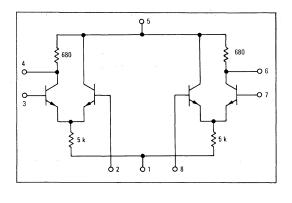


undetermined

# **HIGH-FREQUENCY CIRCUITS** MFC8000 thru **MFC8002** DUAL DIFFERENTIAL AMPLIFIER (Stereo Input Amplifier) MONOLITHIC DUAL STEREO AMPLIFIER SILICON MONOLITHIC CONSUMER CIRCUIT ... designed for the input stage of stereo power amplifiers. • Excellent Channel Separation - 60 dB minimum High Gain – hFE = 75 minimum Satisfies Both Channel Requirements with One Compact Package Selection of Breakdown Voltages to Meet the Particular Applications CASE 644A PLASTIC PACKAGE TYPICAL APPLICATION v+ PRE-DRIVER OUTPUT DRIVER CURRENT DRIVER OUTPUT SOURCE CHANNEL "A" IN FEEDBACK "A" ½ MFC8000 • v[.] ½ MFC8000 FEEDBACK "B" CHANNEL "B" IN CURRENT DRIVER OUTPUT SOURCE PRE-DRIVER OUTPUT DRIVER • v+

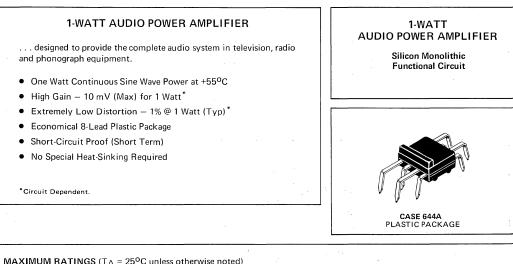
See Packaging Information Section for outline dimensions.

7

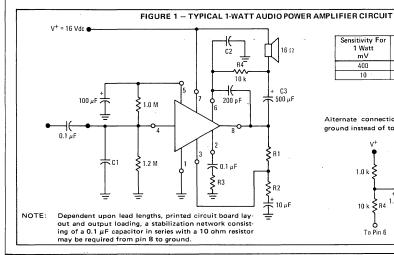

# MAXIMUM RATINGS (T_A = $25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Maximum Supply Voltage – MFC8000 MFC8001 MFC8002	V+	40 50 60	Vdc
Power Dissipation (Package Limitation) (Soldered on a circuit board) Derate above $T_A = 25^{\circ}C$	PD	1.0	Watt mW/ ^o C
Operating Temperature Range	TA	-10 to +75	°C

# ELECTRICAL CHARACTERISTICS (T_A = $25^{\circ}$ C unless otherwise noted)

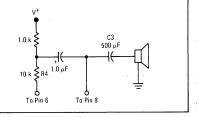

Characteristic		Symbol	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	MF C8000 MF C8001 MF C8002	BVCEO	40 50 60			Vdc
DC Current Gain (V _{CE} = 20 Vdc, I _C = 1.0 mAdc)		hFE	75	100	-	-
Base Differential Voltage (V _{CE} = 20 Vdc, I _C = 1.0 mAdc)		$\frac{ \Delta v_{BE_3} - \Delta v_{BE_2} }{ \Delta v_{BE_8} - \Delta v_{BE_7} }$	unn	-	15	mVdc
Base Differential Current {V _{CE} = 20 Vdc, I _C = 1.0 mAdc)		$\frac{ \Delta I_{B_3} - \Delta I_{B_2} }{ \Delta I_{B_8} - \Delta I_{B_7} }$	-	-	1.0	μAdc
Channel Separation (Pins 2,3,8 grounded, signal at pin 7, e _{out 1} at pin 6, e _{out 2} at pin 4)		^e out 1 ^e out 2	60	-	-	dB

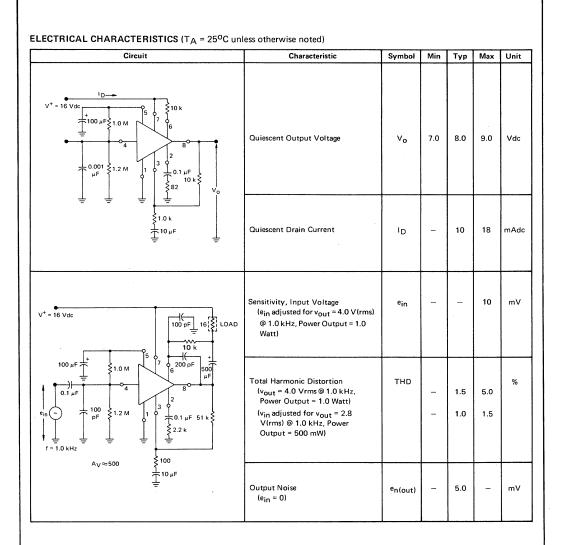
### CIRCUIT SCHEMATIC



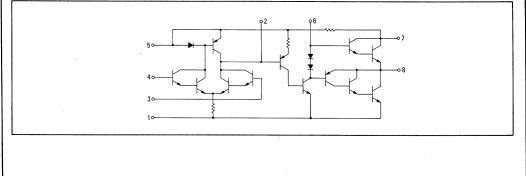

# MFC8010

## AUDIO POWER AMPLIFIER

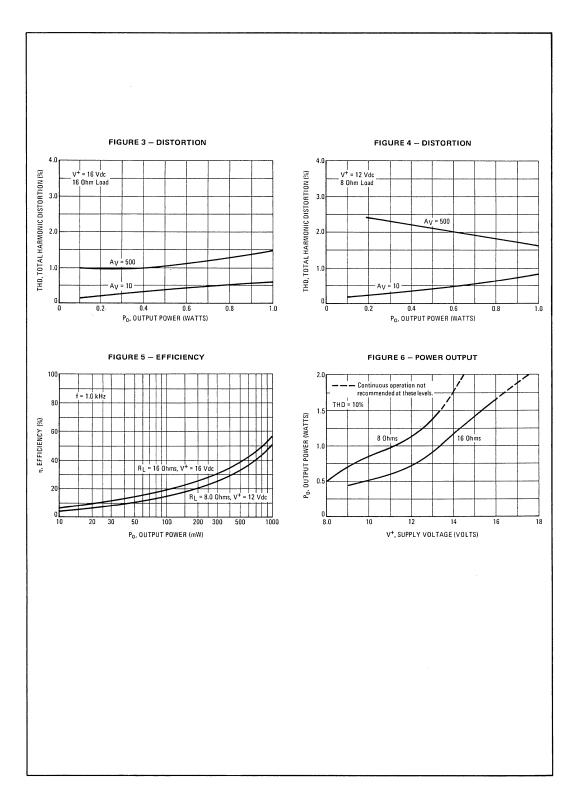




Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	22	Vdc
Power Dissipation @ T _A = 25 ^o C (Package Limitation)	PD	1.2	Watt
Derate above $T_A = 25^{\circ}C$	1/0 JA	10	mW/ ^o C
Operating Temperature Range	TA	-10 to +55	0C




Sensitivity For 1 Watt mV	C1 pF	C2 pF	R1 k ohms	R2 ohms	R3 ohms
400	0	0	10	1.0 k	82
10	100	100	- 51	100	2.2 k

Alternate connection to permit connecting speaker to ground instead of to  $\mathbf{V}^{+}$ :






### FIGURE 2 - CIRCUIT SCHEMATIC



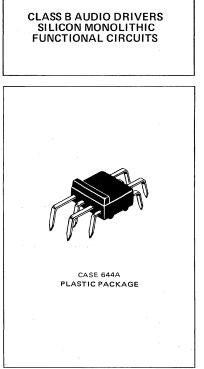
.

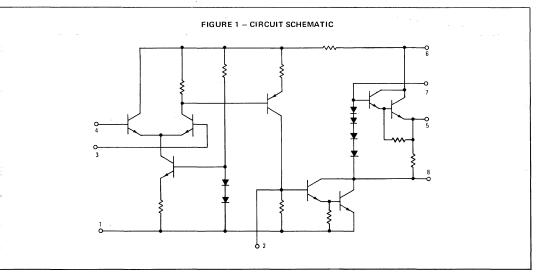


7

# **MFC8020A MFC8021A MFC8022A**

### **CLASS B AUDIO DRIVERS**


. . . designed as preamplifiers and driver circuits for complementary output transistors.

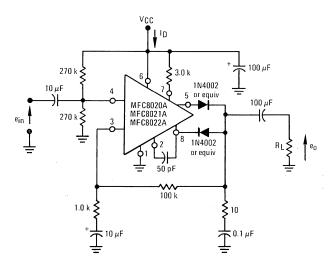

• Driver for Auto Radios - and up to 20-Watt Amplifiers

- High Gain 7.0 mV for 1.0 Watt, RL = 3.2 Ohms
  High Input Impedance 500-Kilohm Capability
- Output Biasing Diodes Included
- No Special hFE Matching of Outputs Required

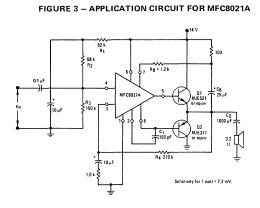
### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

Rating	MFC8020A	MFC8021A	MFC8022A	Unit
Power Supply Voltage	35	20	45	Vdc
Power Dissipation	1.0	1.0	1.0	Watt
Derate above $T_A = +25^{\circ}C$	10	10	10	mW/ ^o C
Peak Output Current (pins 5 & 8)	150	150	150	mA
Operating Temperature Range	-10 to +75	-10 to +75	-10 to +75	°C
Storage Temperature Range	-55 to +125	-55 to +125	-55 to +125	°C
THERMAL CHARACTERISTICS	5			
Characteristic			Value	Unit
Thermal Resistance			100	°C/W
Junction Temperature			125	°C



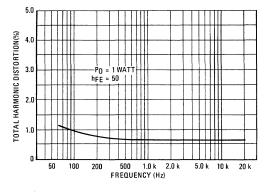



ELECTRICAL	CHARACTERISTICS (TA	= +25 ⁰ C unless otherwise noted)	(See Figure 2)


Characteristic		Min	Тур	Max	Unit
Drain Current (ein = 0)					mA
$V_{CC} = 30 V dc$	MF C8020A	-	10	30	
$V_{CC} = 14 \text{ Vdc}$	MFC8021A	-	7.0	30	
$V_{CC} = 40 \text{ Vdc}$	MFC8022A	-	12	30	
Sensitivity ( $P_{\Omega} = 1.0$ Watt, f = 1.0 kHz)					mV
$e_0 = 8.95 V(RMS), R_1 = 165 \Omega$	MFC8020A	-	89	112	
$e_0 = 3.2 V(RMS), R_1 = 65 \Omega$	MFC8021A	_	32	40	
$e_0 = 12.65 \text{ V(RMS)}, R_L = 165 \Omega$	MFC8022A	-	126	160	
Total Harmonic Distortion (f = 1.0 kHz)					%
$V_{CC}$ = 30 V, $e_0$ = 8.95 V(RMS), $R_L$ = 165 $\Omega$	MFC8020A	-	0.7	5.0	
$V_{CC}$ = 14 V, e ₀ = 3.2 V(RMS), R _L =65 $\Omega$	MFC8021A	-	1.0	5.0	
$V_{CC}$ = 40 V, $e_0$ = 12.65 V(RMS), $R_L$ = 165 $\Omega$	MFC8022A	-	1.5	5.0	
Open-Loop Gain					dB
$V_{CC} = 30 V_{c} R_{1} = 165 \Omega$	MF C8020A	_	89	-	
$V_{CC} = 14 V, R_{L} = 65 \Omega$	MFC8021A	-	87	-	
$V_{CC} = 40 \text{ V}, \text{ R}_{L} = 165 \Omega$	MFC8022A		90	-	
Ripple Rejection f = 60 Hz, A _V = 100, e _{in} = 0, Power Supply Ripple = 1.0 V(RMS)	,	-	27	-	dB
Equivalent Input Noise e _{in} = 0, R _S = 1.0 k Ω, BW = 100 Hz - 10 k	(Hz	-	18	-	μV
Quiescent Output Voltage (ein = 0)					Vdc
$V_{CC} = 30 V$	MF C8020A	-	15	-	
$V_{CC} = 14 V$	MFC8021A	-	7.0	-	
$V_{CC} = 40 V$	MFC8022A		20	-	

Symbols conform to JEDEC Bulletin No. 1 where applicable.

### FIGURE 2 - TEST CIRCUIT




7-603



TYPICAL AUTO RADIO AUDIO APPLICATION and CHARACTERISTICS  $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$ 





#### APPLICATIONS INFORMATION for MFC8021A (AUTO RADIO AUDIO)

The MFC8021A combines all the voltage gain required for an automotive radio audio amplifier into one package reducing the circuit-board area requirement. The circuit shown in Figure 3 has an input sensitivity of approximately 7.2 millivolts for a one-watt output. Sensitivity can be adjusted by changing the value of R4. The circuit performance is a function of the output device hFE, as shown in Figure 4. Figure 4 can be used to determine the amplifier is determined by the capacitor, C1. If C1 is increased to 390 pF the high frequency 3.0 dB point is typically 20 kHz.

An illustration of the copper side of the printed-circuit board layout is shown in Figure 7. The output transistors are mounted on the heatsink which for auto radio audio applications should have a maximum thermal resistance of  $18^{\circ}$ C/W for each device or  $9.0^{\circ}$ C/W when both output transistors are mounted on the same heatsink.

versus OUTPUT POWER 10 f = 1.0 kHz TOTAL HARMONIC DISTORTION (%) 8.0 OUTPUT DEVICE HEE hFE = 80 6.0 hFE = 50 hFE = 25 4.0 2.0 n 1.0 3.0 4.0 5.0 6.0 7.0 8.0 2.0 **OUTPUT POWER (WATTS)** 

FIGURE 4 - TOTAL HARMONIC DISTORTION

FIGURE 6 - FREQUENCY RESPONSE

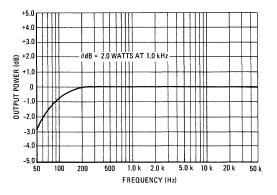
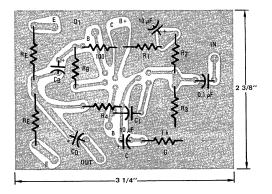
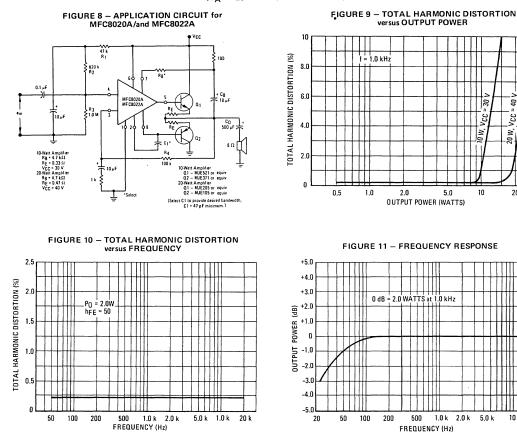





FIGURE 7 – PRINTED CIRCUIT BOARD for AUTOMOTIVE RADIO AUDIO 10-and-20 WATT AMPLIFIERS (COPPER SIDE)



## MFC8020A, MFC8021A, MFC8022A (continued)



### TYPICAL 10-and-20 WATT AMPLIFIER APPLICATION AND CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$ 

APPLICATIONS INFORMATION for MFC8020A and MFC8022A (10-Watt and 20-Watt Amplifiers)

The MFC8020A and MFC8022A are high-voltage parts capable of driving 10-to-20 watt audio amplifiers. The gain of the circuit shown in Figure 8 changes when the value of R4 is varied and the bandwidth is determined by  $C_1$ . Emitter resistors are required at the higher voltages used for 10-to-20 watt audio amplifiers to provide thermal stability. The value of RE is a function of the heatsink thermal resistance and supply voltage. The heatsink requirements for operation at  $+65^{\circ}$ C (with both devices mounted on the same heatsink) is about 14°C/W for the 10-watt amplifier and 8.0°C/W for the 20-watt amplifier. If the maximum ambient operating temperature is reduced then the heatsink can be reduced in size as calculated by

$$\theta_{SA} = \frac{T_{J} - (\theta_{JS})P_{D} - T_{A}}{P_{D}}$$

where

 $\theta_{SA}$  = Heatsink thermal resistance

 $T_J$  = Maximum junction operating temperature

18

٨Ü

Δ

10

5.0 k

10 k 20 k

le

4

22

20 W.

20

 $\theta_{JS}$  = Junction to heatsink thermal resistance (includes all surface interface components for thermal resistance such as the insulating washer)

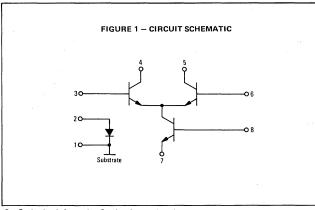
PD = Maximum power dissipation of transistors (This occurs at about 60% of maximum output power) 6.0 W for 10 W, 7.2 W for 12 W

T_A = Maximum ambient temperature

The printed circuit board layout is shown in Figure 7.

7

# MFC8030


# HIGH FREQUENCY CIRCUIT

DIFFERENTIAL/CASCODE AMPLIFIER ...designed for applications requiring differential or cascode amplifiers. ...designed for Biasing ...designed Lead Package

> CASE 644A PLASTIC PACKAGE

## MAXIMUM RATINGS ( $T_A = 25^{\circ}C$ unless otherwise noted)

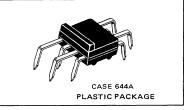
Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	20	Vdc
Differential Input Voltage	Vin	±5.0	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Limitation)	PD	1.0	Watt
Derate above 25 ^o C	1/0 JA	10	mW/ ^o C
Operating Temperature Range	ТА	-10 to +75	°C



#### Circuit Characteristic Unit Symbol Min Тур Max CMRAC dB AC Common-Mode Rejection _ 35 _ 100, 6 0 Vdc V(rms) 0.1 e4.5 = eo $CMR = 20 \log \frac{(e_{in})}{(e_{0})}$ 500 2 • -6.0 Vdc +6.0 Vdc 3.0 k 🖇 dB Differential-Mode Voltage Gain AV(dif) 3.0 1 AV Diff = 20 log $\frac{(e_{01})}{(e_{10})}$ 1.0 (e_{in} = 1.0 kHz, 1.0 mV[rms]) (e_{in} = 10 MHz, 1.0 mV[rms]) (e_{in} = 50 MHz, 1.0 mV[rms]) 32 26 10 4.3 k 느 -6.0 Vdc +6.0 Vdc 3.0 k \$ Cascode-Mode Voltage Gain dB AV(cscd) 3.0 k $A_V$ Cascode = 20 log $\frac{(e_{01})}{(e_{in})}$ 1.0 (e_{in} = 1.0 kHz, 1.0 mV[rms]) (e_{in} = 10 MHz, 1.0 mV[rms]) (e_{in} = 50 MHz, 1.0 mV[rms]) 36 31.5 15 eo1 ابر 100 Ŧ 50 -6.0 Vdc 270 Vo Diff<50 mV 1.0 k 1.0 k +6.0 Vdc Input Offset Voltage v_{io} _ 5.0 10 mV 220 .0 k 巾 3.0 Vdc 500∮ 4.31 -6.0 Vdc 270 hFE1 hFE2 DC Current Gain Match 0.8 -1.1 .... (|01 = |02) 小小 3.0 Vdc 4.3 500 € • -6.0 Vdc

### ELECTRICAL CHARACTERISTICS (T_A = 25^oC unless otherwise noted)

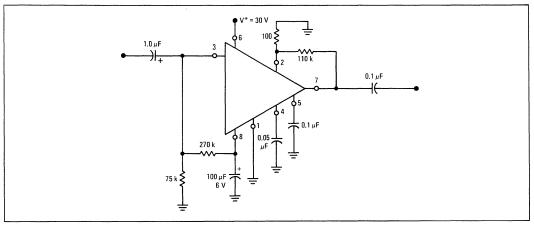
# MFC8040


## AUDIO PREAMPLIFIER

### LOW NOISE AUDIO PREAMPLIFIER

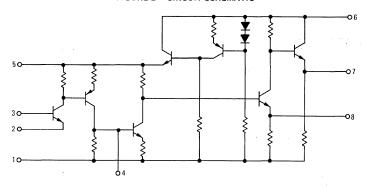
- ... designed for high-gain, low-noise applications.
- Special Monolithic ''State-of-the-Art'' Process to Insure Low Noise 1.0  $\mu V$  (Typ)
- Can be Externally Equalized for NAB, RIAA
- Low Distortion 0.1% (Typ) @ A_V = 100
- Large Dynamic Range 7.0 V (rms) Out
- Low Output Impedance 100 Ohms (Max)

LOW NOISE AUDIO PREAMPLIFIER

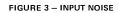

> Silicon Monolithic Functional Circuit

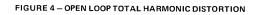


### MAXIMUM RATINGS (T_A = $25^{\circ}$ C unless otherwise noted)

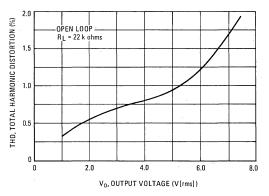

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	33	Vdc
Power Dissipation @ T _A = 25 ⁰ C (Package Limitation)	PD	1.0	Watt
Derate above T _A = 25 ^o C	1/θ _{JA}	10	mW/ ^o C
Operating Temperature Range	TA	-10 to +75	°C

#### FIGURE 1 - TYPICAL WIDEBAND AMPLIFIER CIRCUIT (AV = 60 dB)

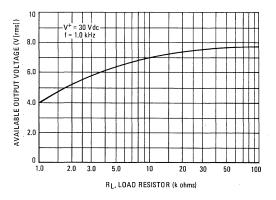




# ELECTRICAL CHARACTERISTICS (T_A = 25^oC unless otherwise noted)

Circuit	Characteristic	Symbol	Min	Тур	Max	Unit
1.0 µF vin = 0 75 k 	Drain Current	ΙD	_	8.0	12	mA
1.0 µF 2 in 3 0 Vdc = 110 k 2 in 1.0 µF	Total Harmonic Distortion (v _o = 1.0 V, f = 1.0 kHz)	тно	-	<0.1	0.25	%
270 k 8 270 k 8 4 0.1 µF 22 k	Input Impedance	Z _{in}	_	75	-	k ohms
	Output Impedance	Z _{out}	-	100	-	ohms
0.1 µF vin vin 75 k 50 µF = - - - - - - - - - - - - -	Open Loop Voltage Gain (v _{in} = 100 μV(rms) @f = 1.0 kHz)	AVOL	80			dB
$1.0 \ \mu^{F}$ $3 \ 0.0 \ \mu^{F}$ $4 \ 0.1 \ \mu^{F}$ $75 \ k$ $50 \ \mu^{F}$ $10 \ \mu^{F}$ $0.001 \ \mu^{F}$ $0.001 \ \mu^{F}$ $0.001 \ \mu^{F}$	Wideband Input Noise (-3.0 dB Bandwidth, 10 Hz to 16 kHz, A $_V$ = 60 dB @ 1.0 kHz, $\left(e_n = \frac{e_0}{A_V}\right)$	e _n	_	1.0	3.0	μV (rms)




### FIGURE 2 - CIRCUIT SCHEMATIC







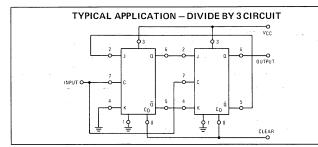


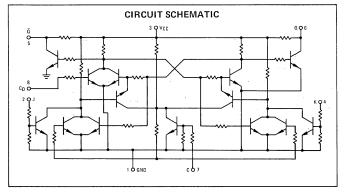





# MFC8050

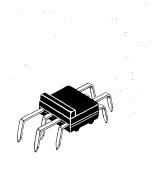
# J-K FLIP FLOP


### J-K FLIP-FLOP

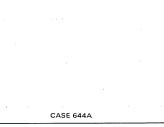

... designed for use in high-level, low-speed logic and timing systems.

- Wide Operating Voltage Range 4.0 to 16 Volts
- Regulated Supply Not Required
- Compatible with TTL and DTL
- J and K Inputs Allow Control of Desired State
- Direct Clear (CD) Allows Reset to Zero at Any Time

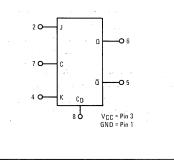
### MAXIMUM RATINGS


Rating	Symbol	Value	Volts
Power Supply Voltage	Vcc	19	Vdc
Output Sinking Current	Isink	10	mA
Negative Input Voltage	Vin	0.5	Vdc
Power Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	Ρ _D 1/θ _{JA}	1.0 10	Watt mW/ ⁰ C
Operating Temperature Range	TA	-10 to +75	°C






J-K FLIP-FLOP


Silicon Monolithic Functional Circuit



CASE 644A



BLOCK DIAGRAM



Characteristic	Symbol	Min	Тур	Max	Unit
Operating Power Supply Voltage	Vcc	4.0	-	16	Vdc
Toggle Frequency	f _{Tog}	-	3.0	-	MHz
Output Voltage (High) (V _{CC} = 4.0 Vdc) (V _{CC} = 16 Vdc)	V _{OH}	3.5 15.5		. –	Vdc
Output Voltage (Low) (V _{CC} = 4.0 Vdc) (V _{CC} = 16 Vdc)	Vol			0.5 1.0	Vdc
Operating Drain Current	۱D	-	-	20	mAdc
Output Sinking Current (V ₀ ≤1.0 Vdc)	l _{sink}	-	5.0	-	mAdc
Rise Time	t _r	-	250	_	ns
Storage Time	ts	-	350	-	ns
Fall Time	tf	-	60	-	ns
Input Resistance	R _{in}	10	_		kΩ
Output Resistance (Output High)	ROH	-	-	2.8	kΩ

# ELECTRICAL CHARACTERISTICS ( $V_{in}$ = 4.0 V, Square Pulse, f = 10 kHz, 50% Duty Cycle, t_f = 1.0 V/µs (Min), T_A = 25°C unless otherwise noted)

### INPUT PULSE REQUIREMENTS

	Characteristic	Symbol	Min	Max	Unit	
	Pulse Magnitude	VH	+4.0	_	Volts	
LEADING TRAILING EDGE	Zero Level	VL	-	+1.0	Volts	
	Leading Edge	No Requirement				
0 t	Trailing Edge	dv dt	-1.0	_	$\frac{\text{Volts}}{\mu \text{s}}$	

### TRUTH TABLE

	^t n	tn+1		Explanation
J	к	۵	ā	
1	1	ān	Qn	No change in output
1	0	1	0	Set to $Q = 1$ state regardless of previous history
0	1	0	1	Set to $\overline{\mathbf{Q}}$ = 1 state regardless of previous history
0	0	ā'n	Qn	Output reverses (toggle action)

 $t_n$  = time period just before and during the negative transition of the clock pulse (Pin 5).

 $t_{n+1}$  = the time subsequent to that transition.  $Q_n$  = state of the Q output in time period  $t_n$ .

## ZERO VOLTAGE SWITCH

# **MFC8070**

### ZERO VOLTAGE SWITCH


. . . designed for use in ac power switching applications with output drive capable of triggering triacs. Other operational features include:

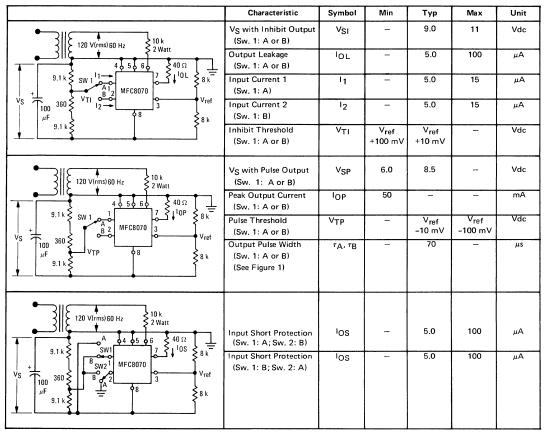
- A built-in voltage regulator that allows direct ac line operation
- A differential input with dual sensor inputs capable of testing the condition of two external sensors and controlling the gate pulse to a triac accordingly. Hysteresis or proportional control to this section may be added if desired.
- Sensor input "open and short" protection. This insures that the triac will never be turned "on" if either of the sensors are shorted or opened.
- A zero crossing detector that synchronizes the triac gate pulses with the zero crossing of the ac line voltage. This eliminates radio frequency interference (rfi) when used with resistive loads.

### **Typical Applications Include:**

- Heater Controls Valve Control
  - ON-OFF Power Controls
- Photo Controls Threshold Detector 
   Relay Driver • Lamp Driver

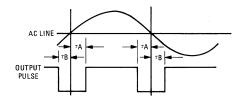
  - Flasher Control



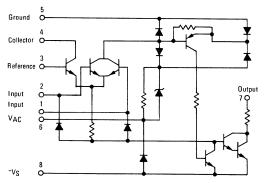

ZERO VOLTAGE SWITCH

Silicon Monolithic **Functional Circuit** 

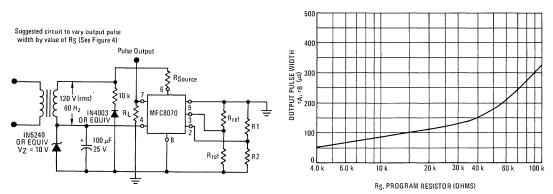
PLASTIC PACKAGE CASE 644A


٦

Symbol	Value	Unit
V ₅₋₈	15	Vdc
V ₄₋₈	15	Vdc
V ₇₋₈	15	Vdc
Р _D 1/ _{0 JA}	1.0 10	Watt mW/ ⁰ C
	-10 to +75	°C
T _{stg}	-55 to + 150	°C
	·*	
	V ₅₋₈ V4-8 V7-8 PD 1/ _{θ JA} T _A	V5.8         15           V4.8         15           V7.8         15           PD         1.0           1/ _{0 JA} 10           T _A -10 to +75




## ELECTRICAL CHARACTERISTICS (T_A = 25^o C unless otherwise noted)


FIGURE 1 - OUTPUT PULSE DEFINITION



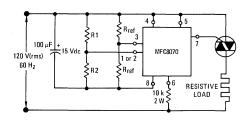
#### FIGURE 2 - CIRCUIT SCHEMATIC

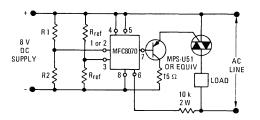


#### FIGURE 3 – CIRCUIT FOR MEASURING OUTPUT PULSE WIDTH versus SOURCE RESISTANCE



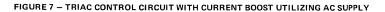
### TYPICAL ZERO VOLTAGE SWITCH APPLICATIONS FOR TRIAC CONTROL

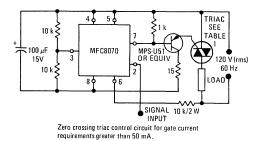




FIGURE 5 - TRIAC CONTROL CIRCUIT

Basic triac trigger circuit utilizing the zero crossing detector and the input comparator to control the gate of the triac.

FIGURE 6 – TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING DC SUPPLY

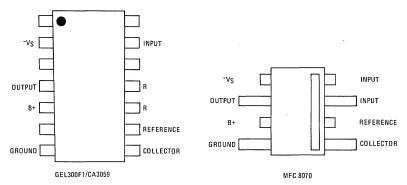

FIGURE 4 - OUTPUT PULSE WIDTH


versus SOURCE RESISTANCE



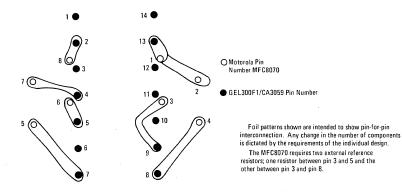
Basic DC trigger application using the input comparator to control a PNP capable of furnishing gate drive of approximately 0.5 Amp.

R1 is an external sensor R2 must be the external sensor for the internal short and open protection to be operative.






Recommended Motorola triacs for use in circuit.


Maximum Continuous (Current (Amp [rms])	Triac Family	Case No.		
10	2N6151/2N6153 (MAC 10)	90 (Plastic)		
10	2N6139/2N6144 (MAC 1, 2, 3)	85, 86, 87L		
30	2N6157/2N6165 (MAC 35, 36)	174, 175		

7



#### PIN COMPARISON OF MFC8070 AND GEL300F1 (PA424)/CA3059

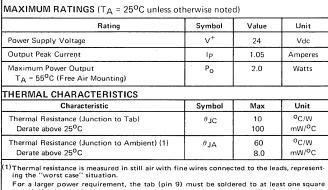
COMPATIBLE PRINTED CIRCUIT FOIL PATTERN FOR MFC8070 FOR MFC8070, GEL300F1 (PA424) AND CA3059



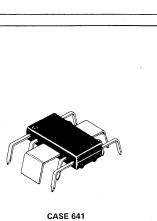
# MFC9020

## AUDIO AMPLIFIER

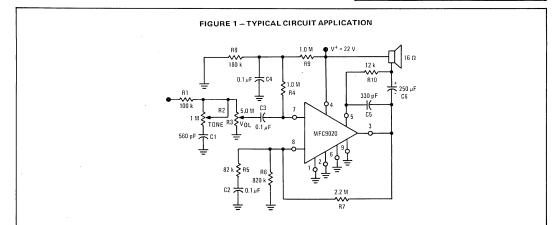
2-WATT

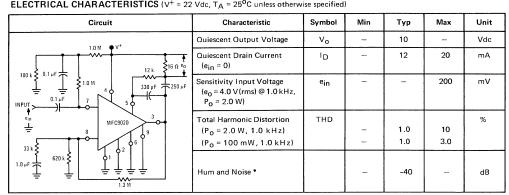

AUDIO AMPLIFIER

Silicon Monolithic Functional Circuit


### 2-WATT AUDIO AMPLIFIER

 $\ldots$  . designed to provide the complete audio system in television, radio and phonograph equipment.


- 2-Watts Continuous Sine Wave Power
- Minimal Heat-Sinking Required for Operation @  $T_A = 55^{\circ}C$
- Short Circuit Proof (Short-Term)
- High Gain 200 mV for 2-Watts Output Power
- High Input Impedance 500 k Ohms




For a larger power requirement, the tab (pin 9) must be soldered to at least one square inch (effective area) of copper foil on the printed circuit board. The  $\theta_{\rm JA}$  will be no greater than +45°C/W. Thus, 2.0 Watts of audio power is allowable under "worst case" conditions at an ambient temperature of +65°C, which must be linearly derated at 22.2 mW/°C from +65°C to +150°C.



PLASTIC PACKAGE

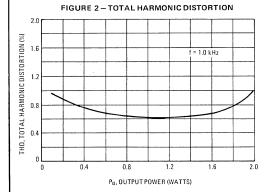
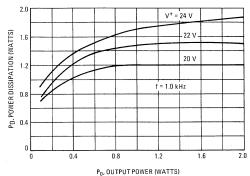
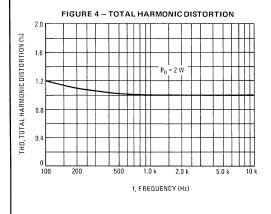
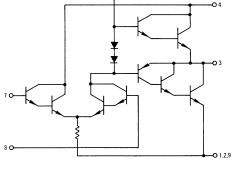


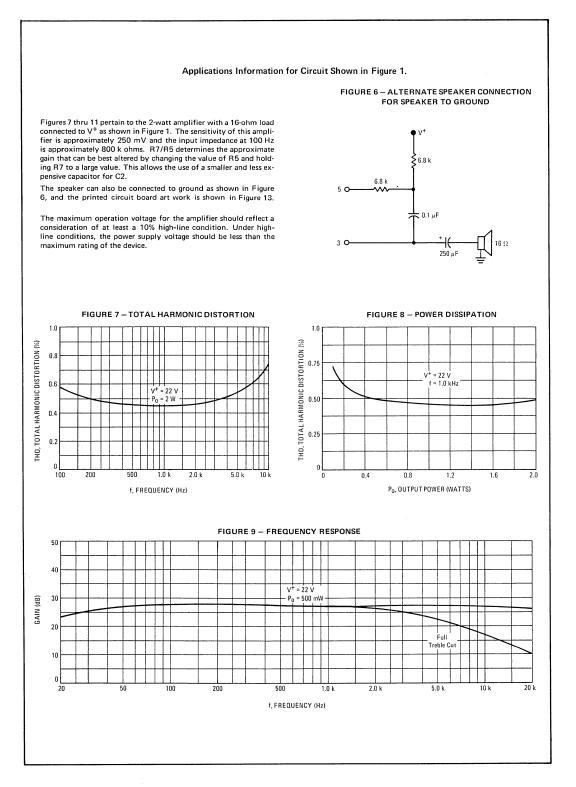


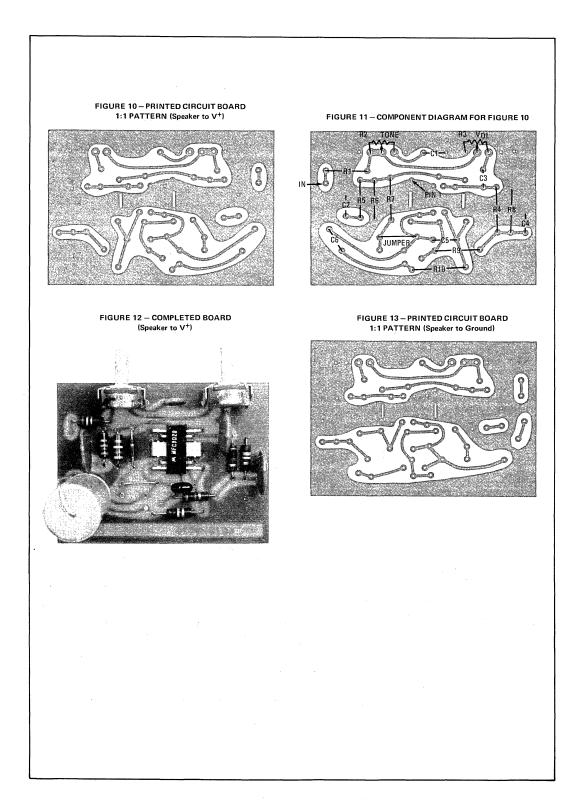
### **ELECTRICAL CHARACTERISTICS** (V⁺ = 22 Vdc, $T_A = 25^{\circ}C$ unless otherwise specified)

*IHF STANDARD IHF-A-201 1966

Performance Curves for Circuit Shown Above.



FIGURE 3 - POWER DISSIPATION







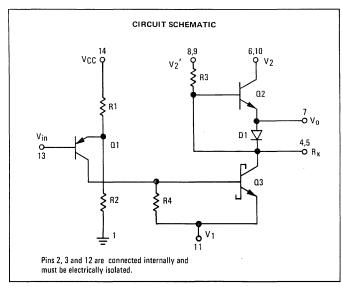






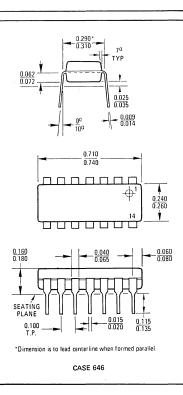

# MHP401

# MOS CLOCK DRIVER


### TTL TO MOS CLOCK DRIVER HYBRID CIRCUIT

- ... designed for medium to high capacitive loads.
- High Operating Voltage V2 V1 = 32 Vdc (Max)
- High Clock Rates 5.0 MHz (Max)
- Fast Switching Times (Typ)

С _L pF	R _S Ohms	tpLH ns	tTLH ns	^t PHL ns	^t THL ns
500	0	10	30	21	28
1000	5.0	13	40	23	35
2000	10	19	67	28	69

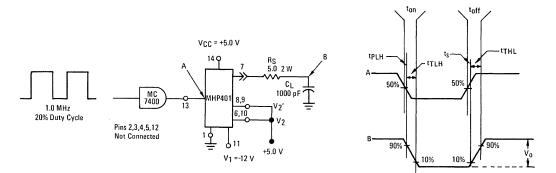

### MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Operating Voltage	V2-V1	32	Vdc
Negative Supply Voltage	V1	-3.0 to -32	Vdc
Total Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	PD	2.0 44	Watts mW/ ⁰ C
Operating Junction Temperature Range	Tj	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Thermal Resistance, Junction to Ambient	θJA	0.022	^o C/mW



# TTL to MOS CLOCK DRIVER HYBRID CIRCUIT






### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

All pins not characterized on this table must be electrically open and isolated from each other for each test, Pin 1 is grounded for all tests.

Characteristic	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTICS (V _{CC} = 5.25 Vdc, V ₁ = -29 Vdc)		•			
Input Forward Current (1) (V _{in} = 0.4 Vdc)	μ	-	-	1.6	mA
Input Leakage Current (1) (V _{in} = 5.5 Vdc)	Чн	-	-	100	μА
Power Supply Drain Current (1) (V _{in} = 0.4 Vdc) (V _{in} = 2.4 Vdc)	ICCL ICCH	-		20 15	mA
DYNAMIC CHARACTERISTICS (Vin supplied by MC7400, V _{CC} R _S = 5.0 Ohms, 2.0 Watts, Figu		12 Vdc, \	/2 = V2' = +5.0 Vo	dc, CL = 10	00 pF,
Output Voltage Swing (2)	VOH-VOL	15	-	-	Vdc
Turn-On Time (2)	ton	-		75	ns
Turn-Off Time (2)	toff	-	-	75	ns
SWITCHING TIMES (Vin supplied by MC7400, 1.0 MHz, 20%)					
Delay Time V1 = -12 Vdc, V2 = V2' = +5.0 Vdc	^t PLH				ns
$(C_L = 500 \text{ pF}, R_S = 0)$ $(C_L = 1000 \text{ pF}, R_S = 5.0 \text{ Ohms})$ $(C_L = 2000 \text{ pF}, R_S = 10 \text{ Ohms})$		- - -	10 13 19		
$V_1 = -29 Vdc, V_2 = V_2' = Gnd$ $(C_L = 500 pF, R_S = 0)$ $(C_L = 1000 pF, R_S = 5.0 Ohms)$ $(C_L = 2000 pF, R_S = 10 Ohms)$			12 16 23		
Rise Time $V_1 = -12 \text{ Vdc}, V_2 = V_2' = +5.0 \text{ Vdc}$ $(C_L = 500 \text{ pF}, R_S = 0)$ $(C_L = 1000 \text{ pF}, R_S = 5.0 \text{ Ohms})$ $(C_L = 2000 \text{ pF}, R_S = 10 \text{ Ohms})$	t _{TLH}		30 40 67		ns
$V_1 = -29 Vdc, V_2 = V_2' = Gnd$ $(C_L = 500 \text{ pF, } R_S = 0)$ $(C_L = 1000 \text{ pF, } R_S = 5.0 \text{ Ohms})$ $(C_L = 2000 \text{ pF, } R_S = 10 \text{ Ohms})$			41 54 89		
Storage Time $V_1 = -12 Vdc, V_2 = V_2' = +5.0 Vdc$ $(C_L = 500 \text{ pF}, \text{ RS} = 0)$ $(C_L = 1000 \text{ pF}, \text{ RS} = 5.0 \text{ Ohms})$ $(C_L = 2000 \text{ pF}, \text{ RS} = 10 \text{ Ohms})$	^t PHL		21 23 28		ns
$V_1 = -29 Vdc, V_2 = V_2' = Gnd$ $(C_L = 500 \text{ pF}, R_S = 0)$ $(C_L = 1000 \text{ pF}, R_S = 5.0 \text{ Ohms})$ $(C_L = 2000 \text{ pF}, R_S = 10 \text{ Ohms})$		_ _ _	22 25 32		
Fall Time $V_1 = -12 \text{ Vdc}, V_2 = V_2' = +5.0 \text{ Vdc}$ $(C_L = 500 \text{ pF}, R_S = 0)$ $(C_L = 1000 \text{ pF}, R_S = 5.0 \text{ Ohms})$ $(C_L = 2000 \text{ pF}, R_S = 10 \text{ Ohms})$	^t THL		28 35 69		ns
$V_1 = -29 Vdc, V_2 = V_2' = Gnd$ $(C_L = 500 pF, R_S = 0)$ $(C_L = 1000 pF, R_S = 5.0 Ohms)$ $(C_L = 2000 pF, R_S = 10 Ohms)$		- - -	46 49 78	 - -	

Pulse Test: Pulse Width < 50 ms.</li>
 MC7400 used in test to be loaded with device under test only.



#### FIGURE 1 - SWITCHING TIME TEST CIRCUIT

### MAXIMUM OPERATING FREQUENCY

The following limits apply with the unit soldered to a printed circuit board and force air cooled at  $T_A = 25^{\circ}C$ .

 $V_2 - V_1 = 17 V dc$ Maximum Frequency @ 500 pF and 20% Duty Cycle 5.0 MHz @ 1000 pF and 20% Duty Cycle 4.0 MHz @ 2000 pF and 20% Duty Cycle 2.0 MHz  $V_2 - V_1 = 29 V dc$ Maximum Frequency @ 500 pF and 20% Duty Cycle 3.0 MHz @ 1000 pF and 20% Duty Cycle 1.5 MHz @ 2000 pF and 20% Duty Cycle 1.0 MHz

#### OPERATING CHARACTERISTICS

For best performance, all leads of the MHP401 should be soldered to a printed circuit board or substrate. This results in better heat sinking.

Pins 2 and 3 may be common with each other, but must be electrically open and isolated from all other pins. Pin 12 must be electrically open and isolated from all other pins.

Three pairs of pins in this package are used in circuit operation:  $V_2'$  (Pins 8 and 9),  $V_2$  (Pins 6 and 10) and  $R_x$  (Pins 4 and 5). Electrical connection to these points may be made at either pin or both. If electrical connection is made to only one pin of a pair, the other pin must be left electrically open and isolated and should be soldered to the substrate for heat sinking.

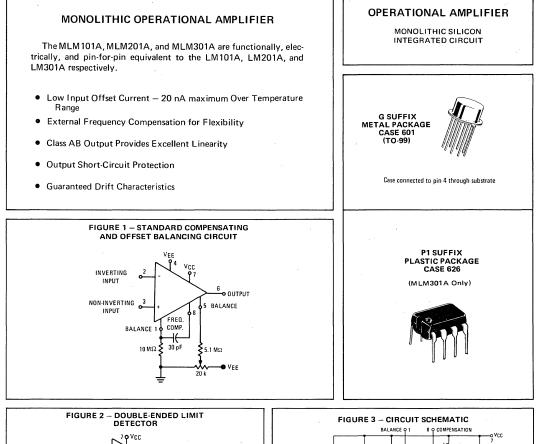
Series resistance ( $R_S$ ) is for absorption of switching power . . . failure to use it for loads over 500 pF may result in package overheating.

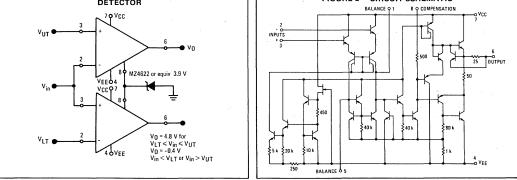
R_S @ 1000 pF = 5.0 ohms, 2.0 watts

Rs @ 2000 pF = 10 ohms, 2.0 watts

DYNAMIC OPERATION

For dynamic operation, V₂' (Pins 8 and 9) is tied to V₂ (Pins 6 and 10) and R_x (Pins 4 and 5) is left electrically open and isolated. If desired, V₂' (Pins 8 and 9) may be left electrically open and isolated and an external 2.0 watt resistor to replace R₃ may be tied from R_x (Pins 4 and 5) to V₂ (Pins 6 and 10).


For V₂ -V₁ < 20 V, the maximum duty cycle is 50%; at V₂ -V₁ = 20 to 30 V, the maximum duty cycle is 20%. By replacing R₃ with a 2.0-watt, 500-ohm resistor, the circuit may be operated in a static mode if the following conditions exist:


#### $V_1 \leq -13$ V and $V_2 - V_1 \leq 30$ V

Or,  $\mathsf{R}_3$  may be replaced with a 2.0-watt resistor less than 500 ohms to speed fall time.

## **OPERATIONAL AMPLIFIERS**

# MLM101A MLM201A MLM301A





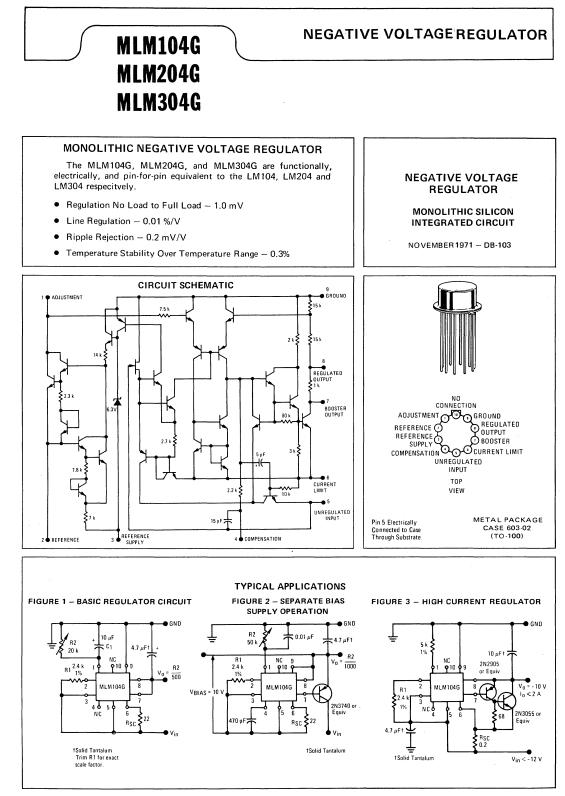
See Packaging Information Section for outline dimensions.

7

### MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

			VALUE		
Rating	Symbol*	MLM101A	MLM201A	MLM301A	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±22	±22	±18	Vdc
Differential Input Voltage	v _{in}		±30		Volts
Common-Mode Input Swing (Note 1)	VICR		Volts		
Output Short Circuit Duration	tS		Continuous	>	
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +75°C	PD	<u>ج</u>	500 6.8		mW mW/°C
Plastic Dual In-Line Package (MLM301A Derate above T _A = +25 ^o C only)				625 5.0	mW mW/ ^o C
Operating Temperature Range	т _А	-55 to +125	-25 to +85	0 to +75	°C
Storage Temperature Range	T _{stg}		-65 to +150		°C

Note 1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.


ELECTRICAL CHARACTERISTICS (T_A =  $+25^{\circ}$ C unless otherwise noted) Unless otherwise specified, these specifications apply for supply voltages from  $\pm 5.0$  V to  $\pm 20$  V for the MLM101A and MLM201A, and from  $\pm 5.0$  V to  $\pm 15$  V for the MLM301A.

		MLM101A MLM201A				MLM301		
Characteristics	Symbol*	Min	Түр	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤50 kΩ)	VIO	-	0.7	2.0	-	2.0	7.5	mV
Input Offset Current	10	-	1.5	10	-	3.0	50	nA
Input Bias Current	I _{IB}		30	75		70	250	nA
Input Resistance	Rin	1.5	4.0		0.5	2.0	-	Megohms
Supply Current $V_S = \pm 20 V$ $V_S = \pm 15 V$	١D		1.8	3.0		 1.8		mA
Large Signal Voltage Gain V _S = $\pm$ 15 V, V _O = $\pm$ 10 V, R _L $\geq$ 2.0 k $\Omega$	Av	50	160	·	25	160	-	V/mV

The following specifications apply over the operating temperature range.

Input Offset Voltage (R _S ≤50 kΩ)	Vio		-	3.0	-	-	10	mV
Input Offset Current	110	-	-	20	-	-	70	nA
Average Temperature Coefficient of Input Offset Voltage $T_A(min) \leqslant T_A \leqslant T_A(max)$	Δ ν _{ιο} /Δτ	·	3.0	15	_	6.0	30	µV/°C
Average Temperature Coefficient of Input Offset Current $+25^{\circ}C \leqslant T_{A} \leqslant T_{A}(max)$ $T_{A}(min) \leqslant T_{A} \leqslant 25^{\circ}C$	Δι _{ιο} /Δτ	-	0.01	0.1 0.2	_	0.01	0.3 0.6	nA/°C
Input Bias Current	Чв		-	100		-	300	nA
Large Signal Voltage Gain VS = $\pm$ 15 V, VO = $\pm$ 10 V, RL $\geq$ 2.0 k $\Omega$	Av	25	-	-	15	_	_	V/mV
Input Voltage Range V _S = $\pm 20$ V V _S = $\pm 15$ V	V _{in}	±15 	: <u> </u>	-	_ ±12	-	-	V
Common-Mode Rejection Ratio $R_S \leqslant 50 \ k\Omega$	CMRR	80	96	-	70	90		dB
Supply Voltage Rejection Ratio $R_S \leqslant 50 \ k\Omega$	PSSR	80	96	-	70	96	_	dB
Output Voltage Swing $V_S = \pm 15 V, R_L = 10 k\Omega$ $R_L = 2.0 k\Omega$	vo	±12 ±10	±14 ±13	-	±12 ±10	+14 ±13		V
Supply Current ( $T_A = T_A(max)$ , $V_S = \pm 20 V$ )	۱D	a 🖷 🖓	1.2	2.5			-	mA

*Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

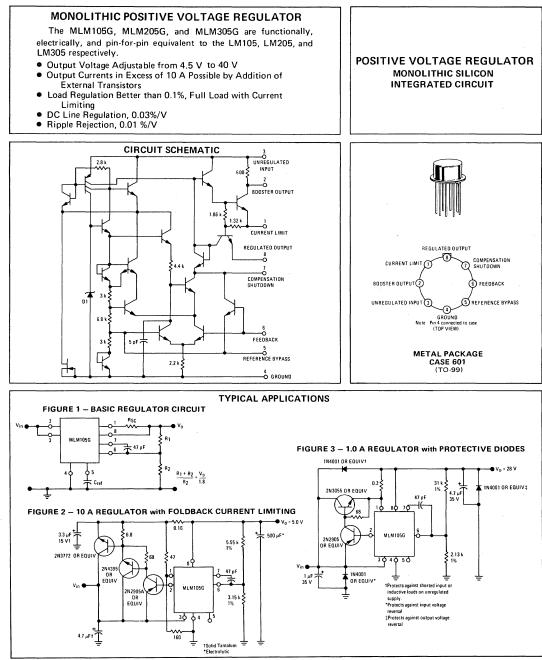


See Packaging Information Section for outline dimensions.

7

### MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted)

Rating	Symbol	MLM104G	MLM204G	MLM304G	Unit
Input Voltage	V _{in}	50	50	40	Vdc
Input-Output Voltage Differential	V _{in} -V _o	50	50	. 40	Vdc
Power Dissipation (See Note 1)	PD	680	680	680	mW
Operating Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°C
Lead Temperature (soldering, t = 10 s)	TS	300	300	300	°C


### ELECTRICAL CHARACTERISTICS (See Note 2)

		MLM104G MLM204G				11-14		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	Vin	-8.0		-50	-8.0		-40	Volts
Output Voltage Range	V _o	-0.015		-40	-0.035	-	-30	Volts
Output-Input Voltage Differential I $_{0}$ = 20 mA I $_{0}$ = 5.0 mA	V _{in} -V _o	2.0 0.5		50 50	2.0 0.5		40 40	Volts
Load Regulation $0 \leq I_0 \leq 20 \text{ mA, R}_{SC} = 15\Omega$	Regload	-	1.0	5.0	-	1.0	5.0	mV
Line Regulation V _o ≤-5.0 V, △ V _{in} = 0.1 V	Reg _{in}		0.056	0.1		0.056	0.1	%
Ripple Rejection (See Figure 1) (C ₁ = 10 μF, f = 120 Hz) Vin < -15 V	Rej _R		0.2	0.5	-	0.2	0.5	mV/V
$-7.0 \text{ V} \ge \text{V}_{in} \ge -15 \text{ V}$		2 <u>-</u> 2	0.5	1.0	-	0.5	1.0	
Output Voltage Scale Factor R ₁ = 2.4 k $\Omega$ (See Figures 1,2 and 3)	SF	1.8	2.0	2.2	1.8	2.0	2.2	V/k Ω
$ \begin{array}{l} Temperature \ Stability \\ V_0 \leqslant -1.0 \ V \\ V_0 \leqslant -1.0 \ V, \ 0^0 C \leqslant T_A \leqslant +70^0 C \end{array} $	TCV ₀ △V ₀ /△T		0.3	1.0	-	_ 0.3		%
Output Noise Voltage (See Figure 1) (10 Hz $\leq f \leq$ 10 kHz) V ₀ $\leq$ -5.0 V, C1 = 0	Vn		0.007		_	0.007	_	%
$C_1 = 10 \mu\text{F}$		-	15	_		15	-	μV
Standby Current Drain (I _L = 5.0 mA) $V_0 = 0$ $V_0 = -40 V$ $V_0 = -30 V$	۱ _B		1.7 3.6 _	2.5 5.0		1.7  3.6	2.5 _ 5.0	mA
Long Term Stability $V_0 \leqslant -1.0 V$	S		0.1	1.0	_	0.1	1.0	%

Note 1. The maximum junction temperature of the MLM104G is +150°C, for the MLM204G - +100°C, and for the MLM304G - +85°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of 150°C/W - junction to ambient, or 45°C/W - junction to case.

Note 2. These specifications apply for junction temperatures of -55°C to +150°C for the MLM104G; -25°C to +100°C for the MLM204G; and 0 to +85°C for the MLM304G. The specifications also apply for input and output voltages within the indicated ranges (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.

# POSITIVE VOLTAGE REGULATOR



See Packaging Information Section for outline dimensions.

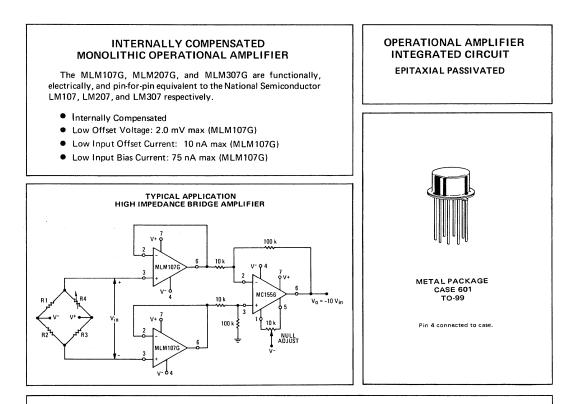
MLM105G MLM205G MLM305G

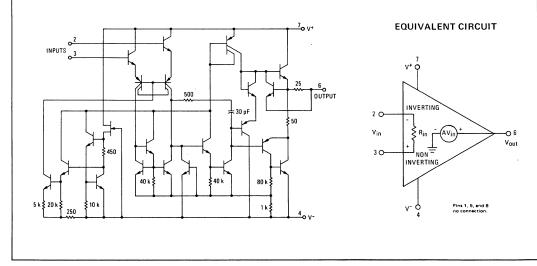
### MAXIMUM RATINGS ( $T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	MLM105G	MLM205G	MLM305G	Unit
Input Voltage	Vin	50	50	40	Vdc
Input-Output Voltage Differential	V _{in} -V _o	40	40	40	Vdc
Power-Dissipation (See Note 1)	PD	680	680	680	mW
Operating Temperature Range	т _А	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{sta}	-65 to +150	-65 to +150	-65 to +150	°C
Lead Temperature (soldering, t = 10 s)	TS	300	300	300	°C

### ELECTRICAL CHARACTERISTICS (See Note 2)

<b>e</b> l		MLM105G MLM205G				Unit		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	V _{in}	8.5		50	8.5	-	40	Volts
Output Voltage Range	Vo	4.5	-	40	4.5	-	30	Volts
Output-Input Voltage Differential	V _{in} -V _o	3.0		30	3.0		30	Volts
Load Regulation (See Figure 1) $(0 \le I_0 \le 12 \text{ mA})$	Regload							%
R _{SC} = 18 Ω, T _A = +25 ^o C		-	0.02	0.05	-	0.02	0.05	
R _{SC} = 10 Ω, T _A = T _{high} * R _{SC} = 18 Ω, T _A - T _{Iow} **		_	0.03 0.03	0.1		0.03 0.03	0.1	
Line Regulation $V_{in} V_0 \leq 5.0 V$ $V_{in} V_0 \geq 5.0 V$	Reg _{in}		0.025 0.015	0.06 0.03	-	0.025 0.015	0.06 0.03	%/V
Ripple Rejection (See Figure 1) $C_{ref} = 10 \ \mu F$ , f = 120 Hz	Δν _ο ν _ο Δν _i		0.003	0.01	1.0	0.003	0.01	%/V
Temperature Stability $T_{Iow}^{**} \leqslant T_A \leqslant T_{high}^{*}$	TCVo	_	0.3	1.0		0.3	1.0	%
Feedback Sense Voltage	V _{ref}	1.63	1.7	1.81	1.63	1.7	1.81	Volts
Output Noise Voltage (See Figure 1) (10 Hz $\leq f \leq 10 \text{ kHz}$ )	Vn			-				%
C _{Ref} = 0 C _{Ref} > 0.1 μF		-	0.005 0.002	 		0.005 0.002	-	
Standby Current Drain V _{in} = 50 V	۱ _B		0.8	2.0	-		-	mA
V _{in} = 40 V	i	_	**** :	-		0.8	2.0	
Long Term Stability	S	-	0.1	1.0	-	0.1	1.0	%
*T _{high} = +125 ⁰ C for MLM105G +85 ⁰ C for MLM205G	'*T _{Iow}							


+85⁰C for MLM205G +70⁰C for MLM305G


- Note 1. The maximum junction temperature of the MLM105G is +150°C, for the MLM205G +100°C, and for the MLM305G +85°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of 150°C/W - junction to ambient, or 45°C/W - junction to case.
- Note 2. These specifications apply for junction temperatures of -55°C to +150°C for the MLM105G, -25°C to +85°C for the MLM205G, and 0 to +70°C for the MLM305G. Specifications also apply for input and output voltages within the indicated ranges and for a divider impedance sensed by the feedback terminal of 2.0 kilohms (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.

^{-25&}lt;sup>0</sup>C for MLM205G 0⁰C for MLM305G

# **OPERATIONAL AMPLIFIERS**

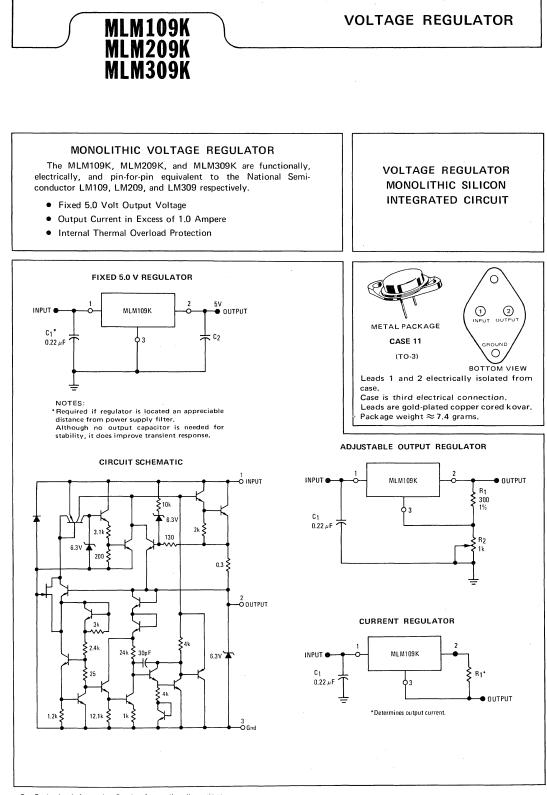






### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	MLM107G	MLM207G	MLM307G	Unit			
Power Supply Voltage	V+ V-	+22 -22	+22 -22	+18 -18	Vdc			
Differential Input Signal	V-	±30	±30	±30	Volts			
Common-Mode Input Swing (Note 1)	CMVin	±15	±15	±15	Volts			
Output Short Circuit Duration	T _{SC}	Indefinite						
Power Dissipation (Package Limitation) (Note 2)	PD	500	500	500	mW			
Operating Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C			
Storage Temperature Range	Τ _{stg}	-65 to +150	-65 to +150	-65 to +150	°C			


		MLM107G			MLM307G			
Characteristics	Symbol	Min	LM2070	Max	Min	Тур	Max	Unit
Input Offset Voltage						. / P		mV
	V _{io}	1.0						
R _S ≤ 10 kΩ, T _A = +25 ⁰ C R _S ≤ 10 kΩ, T _A = T _{Iow} to T _{high}			0.7	2.0	_			
$R_S \le 10 \text{ k}\Omega$ , $T_A = +10\text{ w}$ to $T_{high}$ $R_S \le 50 \text{ k}\Omega$ , $T_A = +25^{\circ}\text{C}$		_		3.0		2.0	7.5	
$R_S \le 50 k\Omega$ , $T_A = T_{low}$ to $T_{high}$				·	-		10	
Input Offset Current	lio	1	· · ·		<u> </u>			nA
$T_{\Delta} = +25^{\circ}C$		1. 2. 2.	1.5	10	-	3.0	50	
$T_A = T_{low}$ to $T_{high}$			-	20	_	-	70	
Input Bias Current		· · · · · · · · · · · · · · · · · · ·			<u> </u>			nA
$T_{A} = +25^{\circ}C$	J J		30	75	-	70	250	
T _A = T _{low} to T _{high}		1.4		100	-	-	300	
Input Resistance	R _{in}	1.5	4.0		0.5	2.0	-	Megohms
Supply Current	1D							mA
$V_{S} = \pm 20 V, T_{A} = +25^{\circ}C$			1.8	3.0	-	Marc	-	
$V_S = \pm 20 V$ , $T_A = T_{high}$			1.2	2.5			-	
$V_{\rm S} = \pm 15 \text{ V}, \text{ T}_{\rm A} = \pm 25^{\circ} \text{C}$						1.8	3.0	
Large Signal Voltage Gain	AV				05	100		V/mV
$V_{S} = \pm 15 V, V_{O} = \pm 10 V, R_{L} > 2.0 k\Omega, T_{A} = +25^{\circ}C$		50 25	160		25 15	160 		
$V_{S} = \pm 15 V, V_{0} = \pm 10 V, R_{L} \ge 2.0 k\Omega, T_{A} = T_{10W}$		25	1997 <del>– 1</del> 997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 – 1997 –		15			
Average Temperature Coefficient of Input Offset Voltage	TCVio		20	15		6.0	30	µV/⁰C
$T_{low} \le T_A \le T_{high}$	170	1	3.0	15		6.0	- 30	nA/ºC
Average Temperature Coefficient of Input Offset Current	TC _{lio}							nA/°C
$+25^{\circ}C \leq T_{A} \leq T_{high}$ $T_{Iow} \leq T_{A} \leq +25^{\circ}C$			0.01	0.1		0.01 0.02	0.3 0.6	
			0.02			0.02	0.0	
Output Voltage Swing ( $T_A = T_{low}$ to $T_{high}$ )	V₀	10		,175916. N <u>i</u> ng	. 12	+14		V V
$V_{S} = \pm 15 V, R_{L} = 10 k \Omega$ $R_{L} = 2.0 k \Omega$		±12 ±10	±14 ±13		±12 ±10	+14 ±13		
Input Voltage Range (TA = Tlow to Thigh)	Vin		10			± 10		v
$V_S = \pm 20 V$	1 Vin	±15		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_	~	
$V_{S} = \pm 15 V$		-			±12	-		
Common-Mode Rejection Ratio (T _A = T _{tow} to T _{high} )	CM _{rej}	1.4	nin en en		1			dB
$R_{S} \le 10 k\Omega$		80	96	1 <u>1</u> 1	-	-	-	
$R_{S} \leq 50 k\Omega$		-			70	90		
Supply Voltage Rejection Ratio ( $T_A = T_{low}$ to $T_{high}$ )	S ⁺ , S ⁻		- Contai-					dB
$R_{S} \leq 10 k\Omega$		80	96		-	-		
$R_{S} \leq 50 k\Omega$		11.2	-	-	70	96	-	

Note 1. For supply voltages less than  $\pm 15$  V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. For operating at elevated temperatures, the device must be derated based on a maximum junction temperature of  $\pm 150^{\circ}$ C for the MLM107G, and  $100^{\circ}$ C for the MLM207G and MLM307G. The TO-99 package is derated based on a thermal resistance of  $\pm 150^{\circ}$ C/W, junction to ambient, or  $\pm 45^{\circ}$ C/W, junction to case.

Note 3. Unless otherwise noted, these specifications apply for:  $$T_{low}$ Thigh}$ 

 $\begin{array}{ccc} & & & {\sf T}_{\sf Iow} & {\sf T}_{\sf high} \\ \pm 5.0 \ {\sf V} \leq {\sf V}_S \leq \pm 20 \ {\sf V}, \ -55^{\circ}{\sf C} \leq {\sf T}_A \leq +125^{\circ}{\sf C}, \ {\sf MLM107G} \\ \pm 5.0 \ {\sf V} \leq {\sf V}_S \leq \pm 20 \ {\sf V}, \ -25^{\circ}{\sf C} \leq {\sf T}_A \leq +85^{\circ}{\sf C}, \ {\sf MLM207G} \\ \pm 5.0 \ {\sf V} \leq {\sf V}_S \leq \pm 15 \ {\sf V}, \ \ {\sf O}^{\circ}{\sf C} \leq {\sf T}_A \leq +70^{\circ}{\sf C}, \ {\sf MLM307G} \end{array}$ 



See Packaging Information Section for outline dimensions.

MAXIMON HATWOO	M.	ΑХ	IML	JM	RAT	INGS
----------------	----	----	-----	----	-----	------

Rating	Symbol	Value	Unit Vdc	
Input Voltage	Vin	35		
Power Dissipation	PD	Internally Limited		
Operating Temperature Range	т _А		oC	
MLM109K		-55 to +150		
MLM209K		-25 to +150		
MLM309K		0 to +125		
Storage Temperature Range	T _{stg}	-65 to +150	٥C	
Lead Temperature (soldering, t = 60 s)	ΤS	300	٥C	

## ELECTRICAL CHARACTERISTICS

		MLM109K/MLM209K ()			MLM309К (2)			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	4.7	5.05	5.3	4.8	5.05	5.2	Vdc
Input Regulation (T _J = +25 ^o C) 7.0V $\leq$ V _{in} $\leq$ 25V	Regin	-	4.0	50	-	4.0	50	mV
Load Regulation (T _J = +25 ^o C) 5.0 mA $\leq$ I _O $\leq$ 1.5 A	Regload		50	100	-	50	100	mV
Output Voltage Range 7.0 V $\leq$ V _{in} $\leq$ 25 V 5.0 mA $\leq$ I ₀ $\leq$ I _{max} , P $\leq$ P _{max}	Vo	4.6	_	5.4	4.75	-	5.25	Vdc
Quiescent Current (7.0 V $\leq$ V _{in} $\leq$ 25 V) Quiescent Current Change (7.0 V $\leq$ V _{in} $\leq$ 25 V) 5.0 mA $\leq$ I ₀ $\leq$ I _{max}	lb ⊿lb		5.2	10 0.5 0.8		5.2  -	10 0.8 0.8	mAdc
Output Noise Voltage (T _A = +25°C) 10 Hz $\leq$ f $\leq$ 100 kHz	Vn		40			40		μV
Long Term Stability	S			10	-		20	mV
Thermal Resistance, Junction to Case ③	θJC		3.0	-	-	3.0	-	°C/W

NOTES:

 $\underbrace{1}_{\text{unless otherwise specified, these specifications apply for -55^{\circ}C \leq T_{j} \leq +150^{\circ}C (-25^{\circ}C \leq T_{j} \leq +150^{\circ}C \text{ for the MLM209K}), V_{\text{in}} = 10 \text{ V} \text{ and } I_{\text{O}} = 0.5 \text{ A}. I_{\text{max}} = 1.0 \text{ A and } P_{\text{max}} = 20 \text{ W}.$ 

2 Unless otherwise specified, these specifications apply for  $0^{\circ}C \leq T_{j} \leq +125^{\circ}C$ ,  $V_{in} = 10$  V and  $I_{out} = 0.5A$ .  $I_{max} = 1.0A$  and  $P_{max} = 20W$ .

Without a heat sink, the thermal resistance is approximately 35°C/W. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the heat sink.

**OPERATIONAL AMPLIFIER** 

#### MONOLITHIC OPERATIONAL AMPLIFIER **VOLTAGE FOLLOWER** The MLM210G and MLM310G are functionally, electrically, and **OPERATIONAL AMPLIFIER** pin-for-pin equivalent to the LM210 and LM310, respectively. **VOLTAGE FOLLOWER** • Input Bias Current: 10 nA maximum over Temperature Range INTEGRATED CIRCUIT • Small-Signal Bandwidth: 20 MHz typical EPITAXIAL PASSIVATED • Slew Rate: 30 Volts/µs typical • Supply Voltage Range: ± 5.0 V to ± 18 V CIRCUIT SCHEMATIC BALANCE **ٻ** 8 10 ό v_{cc} 500 500 10 pF 3 INPUT **O-**3 200 200 OUTPUT ∽ 5 k о 6 150 Case connected to pin 4 through substrate. METAL PACKAGE CASE 601 TO-99 BOOSTER 0 5 **₹**1.5 k **₹**200 3 k -O VEE TYPICAL APPLICATIONS FIGURE 2 – DIFFERENTIAL INPUT INSTRUMENTATION AMPLIFIER FIGURE 1 - OFFSET BALANCING CIRCUIT 29 VCC 1 k 0.1% 82 RA LM2100 100 k 0.1% 0.1% °s c vcc ٥Å 7 9 VCC INPUT Vcc MLM210G MLM310G INPUTS MC1741G • OUTPUT

See Packaging Information Section for outline dimensions.

64 VEE

OUTPUT

MLM210G MLM310G

Rı

29

03

-••• 1 k 0.1%

Pins 1,5 and 8 no connection

 $\frac{R4}{R2} = \frac{R5}{R3}$ 

 $A_V = \frac{R4}{R2}$ 

40 VEE

**R5** 

100 k 0.1%

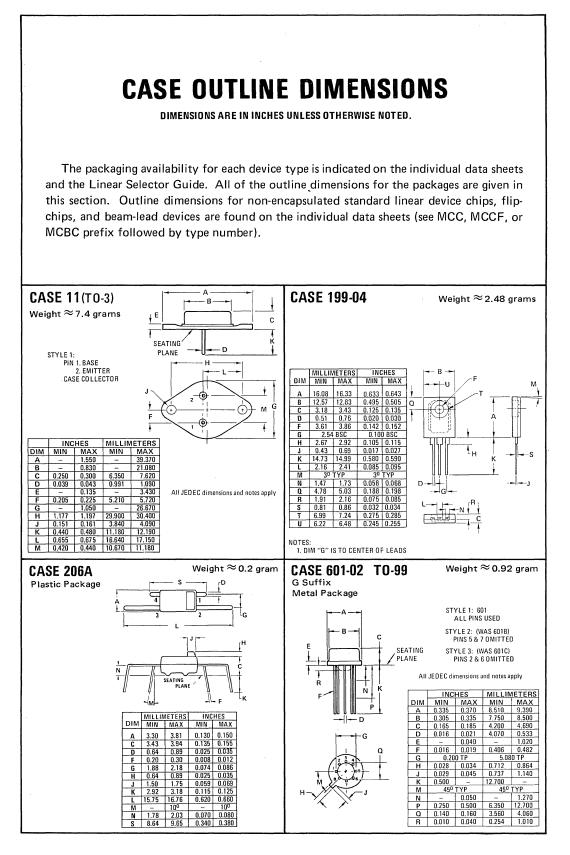
## MAXIMUM RATINGS (T_A = +25^oC unless otherwise noted.)

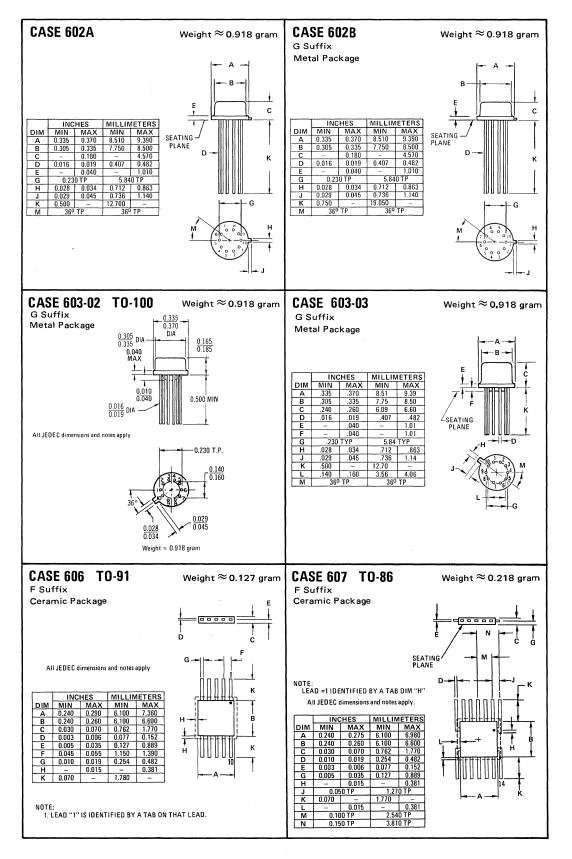
Rating	Symbolt	MLM210G	MLM310G	Unit
Power Supply Voltage	V _{CC} (max) V _{EE} (max)	+18 -18	+18 -18	Vdc
Input Voltage (Note 1)	VIC	± 15	±15	Volts
Output Short Circuit Duration (Note 2)	T _{sc}	Indefinite		
Power Dissipation (Package Limitation) (Note 3)	PD	500	500	mW
Operating Temperature Range	TA	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C
Lead Temperature (soldering, t = 10 s )	т _S	300	300	°C

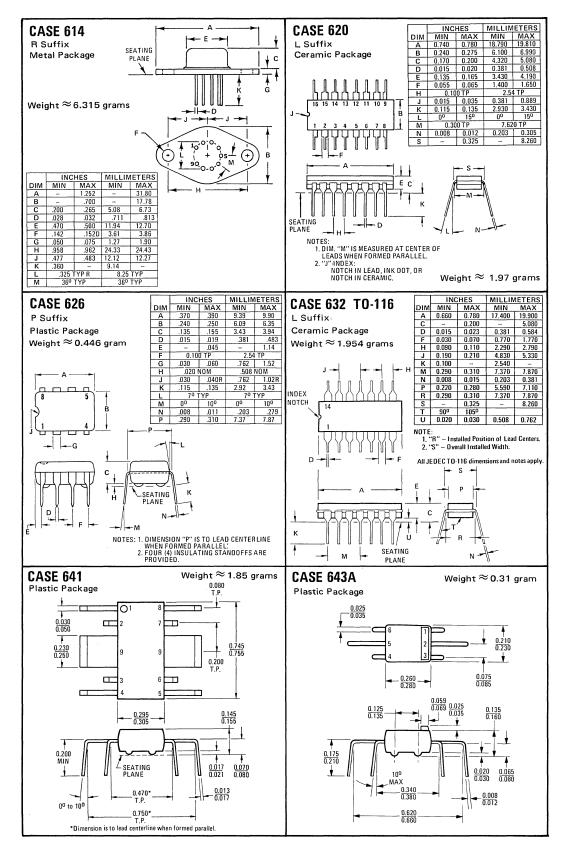
## **ELECTRICAL CHARACTERISTICS** (See Note 4)

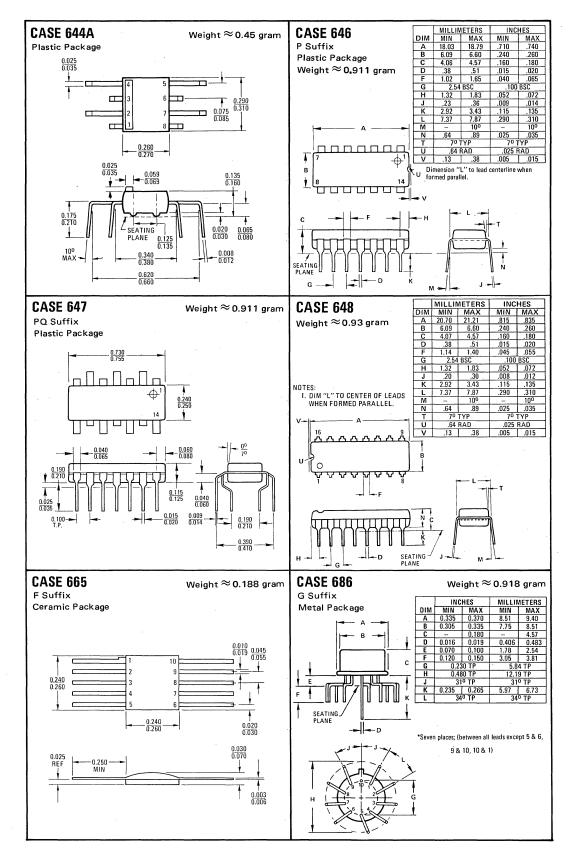
		MLM210G			MLM310G			
Characteristic	Symbolt	Min	Тур	Max	Min	Түр	Max	Unit
Input Offset Voltage $T_A = +25^{\circ}C$ $T_A = T_{10W}^{\circ}$ to Thigh **	VIO	-	1.5	4.0 6.0	_	2.5	7.5 10	mV
Input Bias Current T _A = +25 ^o C T _A = T _{10w} to T _{high}	1 ^{1B}	=	1.0	3.0 10	-	2.0	7.0 10	nA
Input Resistance	ri	1010	1012		1010	1012	-	ohms
Input Capacitance	Ci		1.5			1.5	-	pF
Large-Signal Voltage Gain $(V_S = \pm 15 V, V_O = +10 V)$ $T_A = +25^{o}C, R_L = 8.0 k ohms$ $T_A = T low to Thigh, R_L = 10 k ohms$	AVS	0.999	0.9999		0.999 0.999	0,9999	-	V/V
Output Resistance $T_A = +25^{\circ}C$	ro		0.75	2.5	-	0.75	2.5	ohms
Small-Signal Bandwidth	BW		20		-	20	-	MHz
Slew Rate	SR	1.74.00	30	-	-	30	-	V/µs
Supply Current $T_A = +25^{\circ}C$ $T_A = T_{high}$	٦		3.9 2.0	5.5 4.0	1 1	3.9 —	5.5 —	mA
$\begin{array}{l} \mbox{Offset Voltage Temperature Drift} \\ -55^{O}C \leqslant T_{A} \leqslant +85^{O}C \\ T_{A} = +125^{O}C \\ 0^{O}C \leqslant T_{A} \leqslant +70^{O}C \end{array}$	Δν _{ιο} /Δτ		6.0 12					μV/ ⁰ C
Output Voltage Swing V _S = $\pm$ 15 V, R _L = 10 k ohms	V _O	± 10		ente da 1990 - Carlor 1997 - Carlor	± 10	_	_	Volts
Supply Voltage Rejection Ratio $\pm 5/0 V \le V_S \le \pm 18 V$ *T. = $-25^{9}C$ for MI M210G	PSRR	70	80 **T		70	80	_	dB

 $T_{Iow} = -25^{\circ}C$  for MLM210G = 0°C for MLM310G


†Symbols conform to JEDEC Bulletin No. 1 where applicable.


- Note 1. For supply voltages less than  $\pm$  15 volts, the absolute maximum input voltage is equal to the supply voltage.
- Note 2. A continuous short-circuit duration capability is specified for MLM210G as follows: case temperatures up to  $\pm 125^{\circ}$ C and ambient temperatures up to  $\pm 70^{\circ}$ C; for the MLM310G up to  $+70^{\circ}$ C case temperature and  $+55^{\circ}$ C ambient temperature apply. A resistor (greater than 2.0 kilohms) must be inserted in series with the input when the amplifier is driven from a low impedance source, thus preventing damage when the output is shorted.


**Thigh = +85°C for MLM210G


= +70°C for MLM310G

- Note 3. The maximum junction temperature of the MLM210G is  $\pm 100^{\circ}$ C, and for the MLM310G  $\pm 85^{\circ}$ C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of  $150^{\circ}$ C/W junction to ambient, or  $45^{\circ}$ C junction to case.
- Note 4. All listed specifications apply for  $\pm$  5.0 V  $\leqslant$  V  $_S$   $\leqslant$   $\pm 18$  V and T  $_A$  =  $\pm 25^{O}C$  unless otherwise noted.
- Note 5. Increased output swing under load can be obtained by connecting an external resistor between the booster and  $V_{\mbox{\scriptsize EE}}$  terminals (pins 4 and 5).









# **APPLICATION NOTE ABSTRACTS**

The application notes listed in this section have been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the AN number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

## AN-204A The MC1530, MC1531 Integrated Operational Amplifiers

Two monolithic operational amplifiers feature exceptionally high input impedance and high open loop gain. This note describes the function of each stage in the circuit, methods of frequency compensating and dc biasing. Four applications are discussed: a summing circuit, an integrator, a dc comparator, and transfer function simulation.

#### AN-245A An Integrated Sense Amplifier for Core Memories

or core memories

This application note discusses core memories and related design considerations for a sense amplifier. Performance and environmental specifications for the amplifier design are carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and measured performance is discussed. The amplifier features a small uncertainty region (6 mV max.), adjustable threshold and fast cycle time  $(0.5 \ \mu s)$ .

## AN-247 An Integrated Circuit RF-IF Amplifier

A new, versatile integrated circuit for RF-IF applications is introduced which offers high gain, extremely low internal feedback and wide AGC range. The circuit is a common-emitter, common-base pair (the cascade connection) with an AGC transistor and associated biasing circuitry. The amplifier is built on a very small die and is economically comparable to a single transistor, yet it offers performance advantages unobtainable with a single device. This application note describes the AC and DC operation of the circuit, a discussion of Y-parameters for calculating optimum power and voltage gain, and a variety of applications as an IF single-tuned amplifier, IF stagger-tuned amplifier, oscillator, video-audio amplifier and modulator. A discussion of noise figure is also included.

## AN-248 A High Voltage Monolithic Operational Amplifier

This note introduces a high voltage monolithic operational amplifier featuring high open loop gain,

large common mode input signal, and low drift. The function of each stage in the circuit is analyzed, and methods for frequency compensating the amplifier are discussed. DC biasing parameters are also examined. Four applications using the amplifier are discussed: a source follower, a twin tee filter and oscillator, a voltage regulator, and a high input impedance voltmeter.

## AN261A Transistor Logarithmic Conversion Using An Integrated Operational Amplifier

The design of a log amplifier using a common base transistor configuration as the feedback element of an integrated circuit operational amplifier circuit is discussed in this application note. Five decades of logarithmic conversion are obtained with less than 1% error of output voltage. The MC1556 op amp proves superior in this application due to its very low bias current. A design using the MC1539 op amp is also discussed.

## AN-273A Getting More Value Out of An Integrated Operational Amplifier Data Sheet

The operational amplifier has become a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input offset voltage and current and resultant drift effects in the circuit are also reviewed with respect to closed loop operation.

## AN-299 An IC Wideband Video Amplifier With AGC

This application describes the use of the MC1550 as a wideband video amplifier with AGC. The analysis of a single stage amplifier with 28 dB of gain and 22 MHz bandwidth is given with the results extended to a 78 dB video amplifier with 10 MHz bandwidth.

## AN-400 An Operational Amplifier Tester

A simple and inexpensive tester for Motorola's line of operational amplifiers is described which will measure the open loop voltage gain, the equivalent input offset voltage, the maximum positive and negative output voltage swing, and a view of the transfer function which shows the linearity of the device.

Included is an elementary discussion of the parameters measured and their relationship to closed loop performance.

## AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier

This application note discusses four different applications for the MC1554, along with a circuit description including dc characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

AN-403 Single Power Supply Operation of iC Op Amps A split zener biasing technique that permits use of the MC1530/1531, MC1533, and MC1709 operational amplifiers and their restricted temperature counterparts MC1430/1431, MC1433 and MC1709C from a single power supply voltage is discussed in detail. General circuit considerations as well as specific ac and dc device considerations are outlined to minimize operating and design problems.

#### AN-404 A Wideband Monolithic Video Amplifier

This note describes the basic principles of ac and dc operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.

## AN-405 DC Comparator Operations Utilizing Monolithic IC Amplifiers

The use of the MC1533 operational amplifier and the MC1710 differential comparator are discussed. The capabilities and performance are given along with typical operating curves for both devices.

## AN-407 A General Purpose IC Differential Output Operational Amplifier

This application note discusses four different applications for the MC1520 and a complete descrip-

tion of the device itself. The final sections of the r note discuss such topics as operation from single and split power supplies, frequency compensation, and various feedback schemes.

## AN-411 The MC1535 Monolithic Dual Op Amp

This note discusses two dual operational amplifier applications and an input compensation scheme for fast slew rate for the MC1535. A complete ac and dc circuit analysis is presented in addition to many of the pertinent electrical characteristics and how they might affect the system performance.

## AN-421 Semiconductor Noise Figure Considerations

A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figure, and noise figure-frequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various methods of data sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.

## AN-432B Integrated Circuit

FM Stereo Decoding

Present day monolithic stereo demodulators in addition to decoding the audio information, provide many auxiliary functions. This note describes the basic demodulator and several interesting accessory capabilities available on the MC1304, MC1305, and MC1307.

## AN-439 MC1539 Op Amp and its Applications

This application note discusses the MC1539, a second generation operational amplifier. The general use and operation of the amplifier is discussed with special mention made of improved operation over that of its first generation predecessor-the 709 type amplifier.

In addition to the detailed discussion on the dc and ac operation of the device, considerable emphasis is placed on operational performance. Many applications are offered to demonstrate the device capability, including a high frequency feed-forward scheme, and a source follower application.

## APPLICATION NOTE ABSTRACTS (continued)

## AN-459 A Simple Technique for Extending Op Amp Power Bandwidth

The design of fast response amplifiers is presented without the use of "tricky" compensation procedures or calculations using data sheet information. Circuit analysis for compensation procedure is given.

## AN-460 Using Transient Response to Determine Operational Amplifier Stability

This application note describes a technique for evaluating the stability of any particular feedback amplifier configuration by analyzing its response to a step-function input. A theoretical analysis is given along with an example.

## AN-471 Analog-To-Digital

**Conversion Techniques** 

The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms, from a system point of view, and is intended to assist the reader in determining which conversion technique is best suited for a given application.

## AN-473 The MC1561 – A Monolithic High Power Series Voltage Regulator

A complete series voltage regulator circuit capable of delivering 1/2 ampere of current has been built on a single 63 x 66-mil die using the conventional alldiffused processing technology. Improved performance has been achieved by using an internal low-power voltage regulator to supply the desired dc output voltage reference directly to a second main regulator. This permits the dc and ac characteristics of the regulator to be separately optimized with the result that excellent transient characteristics are realized simultaneously with low drift and excellent regulation.

## AN-474 The MC1541 – A Gated Dual-Channel Sense Amplifier for Core Memories

The MC1541 sense amplifier can provide many magnetic core memory systems with lower system cycle times and a lower package count than previous sense amplifiers. The MC1541 circuit operation, design considerations, interface problems, and typical applications are herein discussed.

## AN-475 Using the MC1545 – A Monolithic, Gated-Video Amplifier

Because of the unique design of the MC1545, this amplifier can be used as a gated video amplifier, sense amplifier, amplitude modulator, frequency shift keyer, balanced modulator, pulse amplifier, and many other applications. This note describes the ac and dc operation of the circuit and presents applications of the device as a video switch, amplitude modulator, balanced modulator, pulse amplifier, and others.

## AN-480 Regulators Using Operational Amplifiers

The theory of op amp voltage regulator design is discussed. The problem areas associated with such designs are also detailed. The MC1560 is used as a OTC voltage reference in the op amp regulator designs that are shown. It is shown that regulation from 0.01% to 0.001% is possible.

## AN-489 Analysis and Basic Operation of the MC1595

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

## AN-491 Gated Video Amplifier Applications The MC1545

This application note reviews the basic operation of the MC1545 and discusses some of the more popular applications for the MC1545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.

## AN-513 A High Gain Integrated Circuit RF-IF Amplifier With Wide Range AGC

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

## AN-522 The MC1556 Operational Amplifier and its Applications

This application note discusses the MC1556, a second generation, internally compensated monolithic operational amplifier. Particular emphasis is placed

on its distinct advantages over the early 709-type amplifier and the more recent 741-type amplifier.

Along with a description of its operation this note presents a discussion on various applications of the MC1556, high-lighting its capabilities, and points out its characteristics so the reader may make effective use of the device.

## AN-531 MC1596 Balanced Modulator

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators for AM, SSB, and suppressed carrier AM; demodulators for the previously mentioned modulation forms; frequency doublers and HF/VHF double balanced mixers.

#### AN-533 Semiconductor for Plated-Wire Memories

An introduction to the operation and electrical characteristics of plated-wire memories is provided in conjunction with the applications of semiconductors that interface with the plated-wire memories.

Devices discussed include drivers, sense amplifiers, and decoders. Memory organization and memoryrelated semiconductor applications are also mentioned.

## AN-543 Integrated Circuit IF Amplifiers For AM/FM and FM Radios

This application note discusses the design and performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.

## AN-545 Television Video IF Amplifier Using Integrated Circuits

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, MC1353 and the MC1330.

#### AN-547 The MC1514 – A High Speed Dual Differential Comparator

This application note discusses a few of the many uses for the MC1514 dual comparator. Many applications such as sense amplifiers, multivibrators, peak level detectors are presented.

## AN-557 Analog-to-Digital Cyclic Converter

The A/D cyclic converter discussed in this note provides medium speed  $(1-5 \ \mu s/bit)$  and medium accuracy (7 or 8 bits) operation. A cyclic converter uses the successive approximation technique in which an unknown analog input voltage is successively compared to a reference voltage to determine each bit of the digital output.

The cyclic converter offers continuous operation, automatic generation of the digital output in Graycode form, and a building block structure. This structure uses a separate but identical circuit for each resolution bit. The cyclic converter finds use primarily in control and process applications.

## AN-559 A Single Ramp

Analog-to-Digital Converter

A simple single ramp A/D converter which incorporates a calibration cycle to insure an accuracy of 12 bits is discussed. The circuit uses standard ICs and requires only one precision part – the reference voltage used in the calibration. This converter is useful in a number of instrumentation and measurement applications.

. .

# **GENERAL INFORMATION**

Master Index

Product Highlights

3

Selector Guides

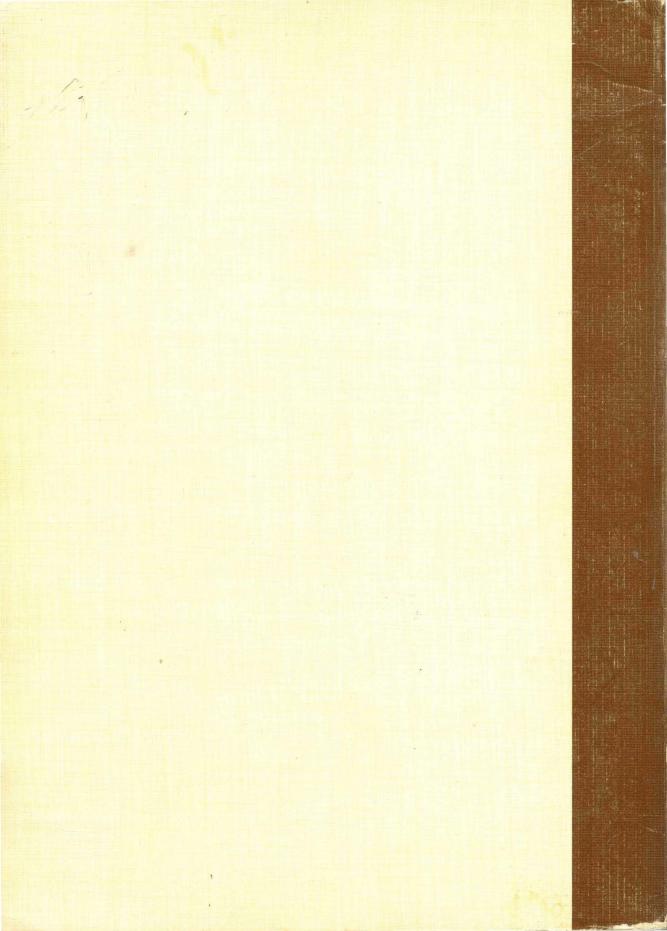
4

Previews of Upcoming Linear Integrated Circuits

5

Interchangeability Guide

6


Nonencapsulated Device General Information

7

## DATA SHEET SPECIFICATIONS

... in alpha-numerical sequence by device type number, unless otherwise noted. (See Master Index for page numbers.)

Packaging Information

