AN1410 Application Note

MOTOROLA

Configuring and Applying the MC54/74HC4046A Phase-Locked Loop

A versatile device for 0.1 to 16MHz frequency synchronization

eni onile

i beloci -as

Prepared by Cleon Petty Gary Tharalson Marten Smith Applications Engineering

Configuring and Applying the MC54/74HC4046A Phase-Locked Loop A versatile device for 0.1 to 16MHz frequency synchronization

The MC54/74HC4046A (hereafter designated HC4046A) phase-locked loop contains three phase comparators, a voltage-controlled oscillator (VCO) and an output amplifier. The user of this document should have a copy of the HC4046A data sheet in Motorola Data Book DL129 available for details of device operation and operating specifications. The user should also be aware that the following information is useful

for approximating a design **but**, because of process, layout and other variables, there can be substantial deviation between theory and actual results. Therefore, **it is highly recommended that prototypes be built and checked before committing a design to production**.

Typical applications for the HC4046A usually involve a configuration such as shown in Figure 1.

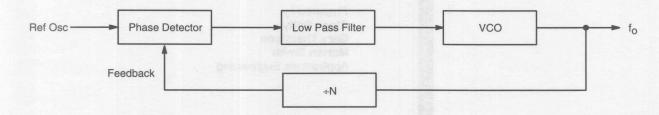


Figure 1. Typical Phase-Locked Loop

VCO/OUTPUT FREQUENCY

The output frequency, F_0 , is calculated as a function of the Ref Osc input and the \div N feedback counter:

$$F_0 = \text{Ref Osc}^* N$$
 (1)

The ability of the loop to emulate the above formula makes it ideal for multiplying an input frequency by any number up to the maximum of the VCO. The HC4046A VCO frequency is controlled by the equation:

VCO freq =
$$f(I * C)$$
 (2)

where I is controlled by the external resistors R_1 and R_2 and C by external capacitor C_{ext} .

Frequency of oscillation is calculated by starting with the familiar equation:

$$I = c \frac{dV}{dt}$$
(3)

and reworking it to obtain a formula that incorporates all the detail to fit the HC4046A. First, the charge time of the device for half-cycle time is obtained as follows:

dt = dV
$$\frac{C}{I}$$
 and $F_0 = \frac{1}{2dt}$
or, $F_0 = \frac{\frac{1}{2CdV}}{I} = \frac{I}{2CdV}$ (4)

where I and dV must be obtained for the HC4046A.

There are two components that comprise the I charge for the HC4046A VCO, I₁ and I₂. I₁ is the current that sets the frequency associated with the VCO input and is a function of R₁, VCO_{in}, and an internal current mirror that is ratioed at $120/5 \approx 24$, resulting in the equation:

$$I_1 = \frac{VCO_{in}}{R_1} \left(\frac{120}{5}\right) \tag{5}$$

I₂ is set by R₂ and adds a constant current to limit the F_0 min of the VCO and is a function of V_{dd}, R₂, and an internal current mirror of ratio 23/5, resulting in the equation:

$$I_2 = \left(\frac{2V_{dd}}{3R_2}\right) \left(\frac{23}{5}\right) \tag{6}$$

The dV of Equation (4) is determined by design to be $\approx 1/3$ V_{dd}. Substituting this and I = I₁ + I₂ into Equation (4) results in:

$$F_{0} = \frac{\frac{VCO_{in}}{R_{1}} \left(\frac{120}{5}\right) + \left(\frac{2V_{dd}}{3R_{2}}\right)\left(\frac{23}{5}\right)}{2C_{ext} \frac{V_{dd}}{3}}$$
$$= \frac{\frac{VCO_{in}}{R_{1}} (24) + \left(\frac{2V_{dd}}{3R_{2}}\right)(4.6)}{2C_{ext} \frac{V_{dd}}{3}}$$
$$= \frac{\frac{3VCO_{in}}{R_{1}} (24) + \frac{2V_{dd}}{R_{2}} (4.6)}{2C_{ext} V_{dd}}$$
(7)

It was found by experiment that when the C_{ext} potential reaches threshold (at V_{dd}/3), the inversion of the charging voltage of C_{ext} is forced below ground due to charge coupling. Therefore, the dV is not just V_{dd}/3 as expected and the charging time must start at a point below ground which affects

t and thus, F_0 . A undershoot voltage must be added to the equation for better accuracy in calculating t and F_0 . This modifies Equation (7) as follows:

$$F_{O} = \frac{\frac{3VCO_{in}}{R_{1}}(24) + \frac{2V_{dd}}{R_{2}}(4.6)}{2C_{ext} (V_{dd} + 3 * undershoot)}$$
$$= \frac{\frac{3VCO_{in(I_{constant\ ratio})}}{R_{1}} + \frac{9.2(V_{dd})}{R_{2}}}{2C_{ext} (V_{dd} + 3 * undershoot)}$$
(8)

Equation (8) now contains all the factors to calculate a F_0 for the HC4046A VCO.

It was determined by experiment that the undershoot of the charging waveform is a function of C_{ext} and an on-chip parasitic diode that clamps it at a maximum of –0.7V. The size of the C_{ext} capacitor limits the voltage and was found to be near zero volts for $C_{stray} \approx 17 pF \le C_{ext} \le 30 pF$; the voltage increases at 6 mV/pF for a $30 pF \le C_{ext} \le 150 pF$ range of C_{ext} . The on-chip diode then takes over and limits the voltage to -0.7V.

It was also found that the I_{constant ratio} is a function of R₁ and increases as R₁ becomes larger. The change is attributed to saturation of the current mirror at lower value resistances, and to voltage divider problems at higher value resistances combined with the resistance of the small FET in the current mirror. Experimental data shows that I_{constant} ratio follows Table 1 somewhat. The ratio goes to 25 somewhere between 9.1K Ω and 51K Ω , and for those limits, 25 should give reasonable results. In addition, these numbers seem to hold for a range of V_{dd} of 3.0V ≤ V_{dd} ≤ 6V.

Table 1. Iconstant ratio versus R1

R ₁ (ΚΩ)	Iconstant ratio	
3.0	13.5	
5.1	17.5	
9.1	21.5	
12	23.0	
15	24.0	
30	26.5	
40	27.0	
51	28.5	
110	29.0	
300	31.0	

The VCO calculation [Equation (8)] becomes a bit more accurate by adjusting the VCO_{in} and I_{constant} ratio. For example, with $R_1 = 300$ K, $R_2 = \infty$, $C_{ext} = 0.1 \mu$ F, VCO_{in} = 1.0V, V_{dd} = 4.5V, and I_{constant} ratio = 31, Equation (8) yields:

$$F_{0} = \frac{\frac{(3)(1)(31)}{300K}}{2(0.1 * 10^{-6})(4.5 + 2.1)}$$
$$= 235 \text{Hz}$$

For comparison, from Chart 14D in the HC4046A data sheet, the F_0 based on measurements is approximately 270 Hz. Thus, the calculated and measured values are not too far apart taking into consideration such variables as process variation, temperature, and breadboard inaccuracies. The C_{stray} of a PCB layout will affect results if the C_{ext} is not \gg C_{stray} . So for $C_{ext} \leq$ 1000pF, adding C_{stray} to the C_{ext} fixed capacitance will result in better accuracy.

The gain of a VCO is calculated by knowing f_{max} at VCO_{in} max and f_{min} at VCO_{in}min and calculating the following equation:

VCO gain =
$$\frac{f_{max} - f_{min}}{VCO_{in} max - VCO_{in} min}$$
(9)

$$= \Delta freq/volt$$

The gain of the VCO is needed to calculate a suitable loop filter for a PLL system.

 F_{O} is determined by VCO_{in} and is clamped as a function of a % of V_{dd}. The clamp voltage generally follows the slope of 4%/V for V_{dd} changes from $3.5V \le V_{dd} \le 6V$, starting at 56% at V_{dd} = 3.5V and going to 66% at V_{dd} = 6V. Knowing this limit point allows picking a VCO_{in} max point a few hundred mV below it and keeps F_{O} in the linear range of operation. It also best to pick a VCO_{in} min point at a level of a few hundred mV above 0V for the same reason given above.

As an example, for a C_{ext} =1100pF, R₁ = 9.1K, R₂ = ∞ , V_{dd} =5.0V, and VCO_{in} min = 0.25V, VCO_{in} max can be determined and a gain calculated as follows. VCO_{in} limit = (4%/V)(1.5V) + 56% = (62%)(V_{dd}) = 3.1V. So, for sake of linearity, choose VCO_{in} = 2.5V. Using Equation (8), VCO_{in} min and VCO_{in} max can be used to calculate F_o min and F_o max as follows:

$$F_{0} \text{ min} = \frac{\frac{(3)(0.25)(21.5)}{9.1K}}{2(100 * 10^{-12})(5 + 2.1)} = 113.4 \text{KHz}$$

$$_{0} \max = \frac{\frac{(3)(2.5)(21.5)}{9.1K}}{2(100 * 10^{-12})(5 + 2.1)} = 1.3 \text{MHz}$$

Then, using Equation (9), the VCO gain is:

F

VCO gain =
$$\frac{1.3 \times 106 - 0.11 \times 106}{2.5 - 0.25} = 528.9 \text{KHz/V}$$

This gain factor will be known as K_{VCO} in the loop filter equations.

 R_2 is used in applications where a minimum output frequency is desired when VCO_{in} is 0V. It is calculated at VCO_{in} = 0V causing Equation (8) to become:

$$F_0 = \frac{9.2 \text{ (V}_{dd})}{2C \text{ (R}_2) \text{ (V}_{dd} + 3^* \text{ undershoot)}}$$

The additional I₂ current is a constant that adds to total charge current for C_{ext} and increases the VCO_{in} versus F_o curve by a theoretical constant amount. In reality, the amount of increase actually decreases at a slight rate as VCO_{in} increases. The decrease is slight and the use of Equation (8) will give adequate accuracy for most applications.

The F_{max} of the HC4046A VCO was determined to be about 16MHz. Beyond 16MHz, the output logic swing tends to reduce and is therefore somewhat useless for driving a CMOS input. The VCO will operate at \approx 28MHz but the output has a VOL \approx 2.0V and a VOH \approx 4.5V at Vdd = 5.0V.

The following table was generated to make calculation of R₁ and C_{ext} a function of F₀ with V_{dd} = 5V, VCO_{in} = 1V, and room temperature. Use of the table allows a rough estimate of (R₁)(C_{ext}) for a given F₀. The final values can be adjusted by use of Equation (8), Table 1 for I_{constant} ratio, rules for undershoot voltage, V_{dd} variations, and VCO_{in} variations. The example below shows a typical calculation.

Table 2. (R1)(Cext) versus Fo

R 1 (Ω)	C _{ext} (pF)	(R ₁)(C _{ext})
3.0K ≤ R ₁ ≤ 9.0K	$\begin{array}{l} 0 \leq C_{ext} \leq 30 \\ 30 \leq C_{ext} \leq 150 \\ 150 \leq C_{ext} \leq \infty \end{array}$	5.40/F ₀ 4.15/F ₀ 3.80/F ₀
9.1K ≤ R ₁ ≤ 50K	$\begin{array}{l} 0 \leq C_{ext} \leq 30 \\ 30 \leq C_{ext} \leq 150 \\ 150 \leq C_{ext} \leq \infty \end{array}$	7.50/F ₀ 5.77/F ₀ 5.28/F ₀
50K ≤ R ₁ ≤ 900K	$\begin{array}{c} 0 \leq C_{ext} \leq 30 \\ 30 \leq C_{ext} \leq 150 \\ 150 \leq C_{ext} \leq \infty \end{array}$	9.00/F ₀ 6.92/F ₀ 6.34/F ₀

Assume a desired value of F_0 of 1MHz. From Table 2, choose an R_1 range of 9.1K $\leq R_1 \leq$ 50K and a C_{ext} range of > 150pF; this condition leads to $(R_1)(C_{ext}) = 5.28/F_0$. Thus,

R₁) (C_{ext}) =
$$\frac{5.28}{1*10^6}$$
 = 5.28 * 10⁻⁶

Now choose a Cext of 200pF. Then, from above result,

$$R_1 = \frac{5.28 \times 10^{-6}}{200 \times 10^{-12}} = 26k$$

This appears reasonable and there are standard values for $C_{ext} = 200pF$ and $R_1 = 27K$. Using these values, Equation (8) can be adjusted according to the desired F_0 min, F_0 max, and F_0 center.

LOW PASS FILTER DESIGN

The design of low pass filters is well known and the intent here is to simply show some typical examples. Reference should be made to the HC4046A Data Sheet and to Motorola Application Note AN535/D — "Phase-Locked Loop Fundamentals" (available through Motorola Literature Distribution).

Some simple types of low pass filters are shown in Figures 2 and 3.

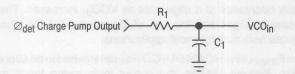


Figure 3. Simple Low Pass Filter B

The equations for calculating loop natural frequency (w_n) and damping factor (d) are as follows:

For Filter A (Figure 2):

$$w_{n} = \sqrt{\frac{K_{\emptyset}K_{VCO}}{NC_{1}R_{1}}}$$
$$d = \frac{0.5w_{n}}{K_{\emptyset}K_{VCO}}$$

where K_{\emptyset} = phase detector gain, K_{VCO} = VCO gain, and N = divide counter.

For Filter B (Figure 3):

$$w_{n} = \sqrt{\frac{K_{\emptyset}K_{VCO}}{NC_{1}(R_{1} + R_{2})}}$$
$$d = 0.5w_{n}(R_{2}C_{1} + \frac{N}{K_{\emptyset}K_{VCO}}) \qquad (10)$$

Figure 4 shows an active filter using an op amp from Application Note AN535/D.

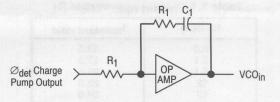


Figure 4. Op Amp Filter

For Figure 4, the equations become:

M

d

$$v_{\rm n} = \sqrt{\frac{K_{\emptyset}K_{\rm VCO}}{NC_1R_1}} \tag{11}$$

$$=\frac{K_{\emptyset}K_{VCOR_{2}}}{2w_{n}NR_{1}}$$
(12)

$$=\frac{w_nC_1R_2}{2}$$
, where Op Amp gain is large

From the above equations, it is possible to design a suitable filter to meet the needs of many PLL applications. The inclusion of R_2 in the equations for Figure 3 and Figure 4 permits the capability to change w_n and d separately while Figure 2 equations do not. Normally, a design is easier if w_n and d can be chosen independently. Both factors affect the

loop acquisition time and stability. A good starting value for d is 0.707 and $F_{ref}/10$ for $w_{\rm R}.$

Manipulation of the equations allows calculation of R_1 , R_2 , and C_1 from the other measured, calculated, or picked parameters. For example,

$$R_{1} + R_{2} = \frac{K_{\emptyset}K_{VCO}}{NC_{1}w_{n}^{2}}$$
(13)

$$R_2 = \frac{2d}{C_1 w_n} - \frac{N}{C_1 (K_{\emptyset} K_{VCO})}$$
(14)

$$C_1 = \frac{K_{\emptyset}K_{VCO}}{Nw_n^2(R_1 + R_2)}, \text{ or alternatively,}$$

$$C_1 = \frac{2d}{R_2 w_n} - \frac{N}{R_2 (K_{\emptyset} K_V CO)}$$

Usually, C_1 , w_n , and d are picked and the remaining parameters calculated.

DESIGN EXAMPLE

The goal is to design a phase-locked loop that has an F_{ref} of 100KHz, an output F_0 of 1MHz center frequency, and the ability to move from 200KHz to 2MHz in 100KHz steps.

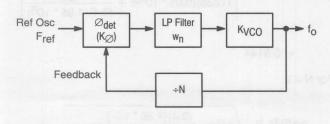


Figure 5. Parametized PLL

To determine N, use equation (1) for F_0 min = 200KHz, and F_0 max = 2MHz resulting in the following:

N min = 200/100 = 2, and

N max = 2000/100 = 20

The results so far indicate the following starting parameters:

- A. A VCO with a 10:1 range is required
- B. $w_n = F_{ref}/10 = 10 KHz$
- C. d = 0.707
- D. $R_2 = \infty$

E.
$$V_{dd} = 5.0V$$

The Fo center frequency ≈

$$\frac{F_{max} + F_{min}}{2} = \frac{2.0 + 0.2}{2} = 1.1 \text{MHz}$$

Recalling that the clamp voltage % at V_{dd} = 5V is about 62, then F_{max} VCO_{in} limit = (0.62)(5) = 3.1V, but as described earlier, this needs to be reduced by a factor to bring it into linearity (\approx 350mV) so the final F_{max} VCO_{in} limit = 2.75V.

For the F_{min} VCO_{in} limit pick 0.25V. This results in a center frequency VCO_{in} of:

Center freq VCO_{in} =
$$\frac{2.75 - 0.25}{2} = 1.25V$$

From Table 2, for picked values of $9.1K \le R_1 \le 50K$ and $30 \le C_{ext} \le 150$, obtain an estimate for $(R_1)(C_{ext})$ of $5.77/F_0$. Thus, at the F₀ center frequency,

$$(R_1)(C_{\text{ext}}) = \frac{5.77}{1.1 \cdot 10^6} = 5.245 \cdot 10^{-6}$$

Now, a reasonable starting point is established for setting the values of the loop filter and the VCO range. Choosing $R_1 = 9.1K$, C_{ext} becomes

$$C_{ext} = \frac{5.245 * 10^{-6}}{9.1K} = 576pF WHOOPS!$$

This value, 576pF, is outside of the original picked range for C_{ext} ; therefore, we need to go back and pick a larger value of R₁, e.g., 42K should be sufficient. Then C_{ext} becomes

$$C_{\text{ext}} = \frac{5.245 * 10^{-6}}{42\text{K}} = 125\text{pF}$$

and now both R1 and Cext are within selected ranges.

Now calculate F_{max} and F_{min} using Equation (8) with $R_1 = 42k\Omega$, $R_2 = \infty$, $V_{dd} = 5.0V$, $I_{constantratio} = 27$ (from Table 1. and $R_1 = 42k\Omega$), $V_{undershoot} = 0.57V$ (calculated from 6pF/mV (125pF–30pF)=0.57V), VCO_{in} min = 0.25V, and VCO_{in} max = 2.75V:

$$F_{0} \min = \frac{\frac{(3)(0.25)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(125 * 10^{-12} f) [5.0V + 3(0.57V)]}$$

$$= \frac{20.25}{70.455 * 10^{-6}} = 287.4$$
KHz

$$F_{0} \max \frac{\frac{(3)(2.75)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(125 * 10^{-12}f) [5.0V + 3(0.57V)]}$$

$$=\frac{222.75}{70.455*10^{-6}}=3.16$$
MHz

 F_{max} is > the required 2.0MHz, but the F_{min} is not low enough for required application. It is necessary to adjust either C_{ext} or R_1 to achieve required specification of 0.2 to 2.0MHz F_0 . Since $R_1 = 42k\Omega$ is a standard resistor value, try adjusting C_{ext} to a higher value, such as 175pF. Because C_{ext} is now > 150pF, the $V_{undershoot}$ must be adjusted to 0.7V, as per earlier explanation:

So,

$$F_{0} \min = \frac{\frac{(3)(0.25)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(175 * 10^{-12} f) [5.0V + 3(0.7V)]}$$
$$= \frac{20.25}{2} = 194.02 \text{KHz}$$

104.37 * 10-6

and

$$F_{0} \max \frac{\frac{(3)(2.75)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(175 * 10^{-12}f) [5.0V + 3(0.7V)]}$$

$$=\frac{222.75}{104.37*10^{-6}}=2.13$$
MHz

These values are adequate for the specified application.

The next item to determine is the VCO gain factor, K_{VCO} , using Equation (9):

$$K_{VCO} = \frac{f_{max} - f_{min}}{VCO_{in} max - VCO_{in} min}$$

$$K_{VCO} = \frac{2.13 \times 10^6 - 0.194 \times 10^6}{2.75V - 0.25V} = 774.4 \text{KHz/V}$$

or in radians

$$= (2\pi) (774.4 * 10^3) = 4.86 * 10^6 \text{Rad/sec/V}$$

The final values used for the desired frequency range are $R_1 = 42k\Omega$, $C_{ext} = 175pF$, $R_2 = \infty$, VCO_{in} max = 2.75V, and VCO_{in} min = 0.25V.

The next step is to determine the loop filter. Choosing a filter like the one in Figure 3, calculate the component as follows:

$$K_{\emptyset} = \frac{V_{dd}}{4\pi} = \frac{5.0}{4\pi} = 0.4V/rad$$
$$w_{D} = \frac{100KHz}{10} = 10KHz * 2\pi = 62.83 * 10^{3}rad/sec$$

d = 0.707 (for starters), and

$$N = 2 \text{ to } 20$$

where

 K_{\emptyset} = phase detector gain

 V_{dd} = output swing

Choose C_1 to be 0.01μ F, N = 10 for approximate mid-range F_0 , and calculate R_1 and R_2 using Equations (13) and (14):

$$R_1 + R_2 = \frac{K_{\emptyset}K_{VCO}}{NC_1w_n^2} = \frac{(0.4)(4.86 * 10^6)}{(10)(0.01 * 10^{-6})(62.83 * 10^3)^2}$$

$$=\frac{1.944*10^6}{394.76}=4924.5\Omega$$

$$R_{2} = \frac{2d}{C_{1}w_{n}} - \frac{N}{C_{1}(K_{\emptyset}K_{V}CO)}$$
$$= \frac{(2)(0.707)}{(0.01 * 10^{-6}) (62830)} - \frac{10}{(0.01 * 10^{-6})(0.4)(4.86 * 10^{6})}$$
$$= 2250.52 - 514.4 = 1736\Omega$$

Then, $R_1 = 4924.5 - 1736 = 3188.5\Omega$.

Since N is changeable, it is a good idea to check min and max on w_n and d. For more information on why, see Motorola Application Note AN535/D or the MC4044 Data Sheet in the MECL Data Book DL122/D. The following examples show sample calculations for N = 2 and 20.

For N = 20, use Equation (10) to calculate w_n and d:

$$n \min = \sqrt{\frac{K_{\emptyset} K_{VCO}}{NC_1(R_1 + R_2)}}$$
$$= \sqrt{\frac{(0.4)(4.86 * 10^6)}{(20)(0.01 * 10^{-6})(3188.5 + 1736)}}$$

$$= 44.43 * 10^{3} rad/sec, or$$

$$=\frac{44.43*10^3 \text{rad/sec}}{2\pi}\approx 7 \text{KHz}$$

and

W

$$d_{min} = (0.5)(w_n) \left[R_2 C_1 + \frac{N}{K_{\emptyset} K_{VCO}} \right]$$

$$= (0.5)(44.43 * 10^3) * \left[(1736)(0.01 * 10^{-6}) + \frac{20}{(0.4)(4.86 * 10^{6})} \right]$$

-

=

For N = 2:

$$w_{\rm n} \max = \sqrt{\frac{(0.4)(4.86 * 10^6)}{(2)(0.01 * 10^{-6})(3188.5 + 1736)}}$$

$$\frac{140.49 * 10^{3} \text{rad/sec}}{2\pi} = 22.36 \text{KHz}$$

and

$$d_{\text{max}} = (0.5)(140.49 * 10^3) * \left[(1736)(0.01 * 10^{-6}) + \frac{2}{(0.4)(4.86 * 10^{6})} \right]$$

This shows the effect of changing n on loop performance and for this application is adequate.

If the components are not what is desired, choosing a different w_{N} and/or d allows them to be modified.

Alternatively, picking different C, R_1 or R_2 and recalculating the other parameters can be done. If the filter does not provide adequate performance, making w_n smaller or d larger may improve stability.