## AN494

## An HC11-Controlled Multiband RDS Radio

By Peter Topping
Motorola, Ltd.
East Kilbride, Scotland
This application note describes the software and hardware features of the microcontroller (MCU) of a synthesized multiband radio which includes RDS (radio data system) decoding (FM, band II). It uses an MC68HC(7)11 MCU whose program can be on-chip or contained in an external EPROM (erasable programmable read-only memory). ROM versions are available.

Both LCD (liquid crystal display) and VFD (vacuum fluorescent display) 16-character dot matrix display modules can be used to display RDS and tuning information. Traffic messages, initiated by the reception of EON (enhanced other networks) data (group 14B) or TA = TP = 1 (traffic announcement = traffic program =1) on the current frequency, are handled. The station carrying the TA is tuned for the duration of the message, followed by a return to the original frequency. A tuning knob employing an incremental encoder is supported.

## Introduction

Figure 1 shows a block diagram of the application. The controller hardware and software are described in detail here. The other hardware is not covered to the same depth, because that varies between different implementations, the intention being to describe a controller which could
be added to an existing radio or to one which includes only one or two of the possible bands.

Separate FM and AM PLLs (phase-locked loop) are shown. This is not essential, but it reduces the amount of band switching necessary and simplifies hardware fault finding. The illustrated configuration corresponds to that used by the author for software development and debugging.


Figure 1. Main Block Diagram

The MCU used is the MC68HC(7)11. The MC68HC711K4 (K4) [and similar chips such as the MC68HC711P2 (P2) and MC68HC711PH8 (PH8)] can be used in expanded mode, but this application has been included in the ROM of an E32 and a PH8.

To use the ROMed parts in this application, the first three bytes of EEPROM (electrically erasable programmable ROM) should contain an extended jump to the appropriate start address. The E32 (ZC403311) requires $\$ 7 \mathrm{E}, \$ 90$, and $\$ 00$ at addresses $\$ \mathrm{~B} 600, \$ \mathrm{~B} 601$, and $\$ \mathrm{~B} 602$, while the PH8 (ZC428200 or ZC428202) requires $\$ 7 \mathrm{E}$, $\$ 40$, and $\$ 00$ at
addresses \$0D00, \$0D01, and \$0D02. This can be done using either PCbug11 or the BUFFALO (bit users fast friendly aid to logical operation) monitor (see reference 5). The E32 version uses all the input/output (I/O) and can, therefore, be used only in single-chip mode. The circuit diagram of the HC11E controller is shown in Figure 3 and the circuit diagram of the K4/PH8 in Figure 4. The K4/PH8 version shows the additional hardware (within the dotted line) used to develop and debug the software on a K4 using PCbug11. This implementation uses two of the K4's chip selects to enable external memories allowing debug to be done with the code in RAM and the PCbug11 talker in an EPROM. This arrangement requires a further four I/O (input/output) lines, leaving 30 for use in the application. The description of the application, and the listed software, corresponds to the E32 ROMed version (ZC403311). Later sections list the port allocation and functional differences which apply to the PH8 ROMed versions (ZC428200 and ZC428202).

Forty programs ( 10 on FM, 10 on MW and 20 on SW) can be stored using the HC11E's on-chip EEPROM (the PH8 has 20 additional SW (shortwave) programs). Each contains frequency, an 8-character name [PS (program service) name on a station with RDS] and, on FM only, PI (program identification) code and a TA inhibit bit. For stations with no RDS (for example, all AM stations), the saved name can be manually entered. Programs saved with no name use their frequency instead. The SW banks are selected by an I/O line (two for the PH8). When the MCU is reset, or any of the band or memory select inputs are changed, the last used program in the selected band is tuned. This feature does not require that the MCU is permanently powered up, as this information is also stored in non-volatile EEPROM.

The keyboard uses an MC14028 decoder to minimize the number of I/O lines used. Either LCD or VFD 16-digit dot matrix displays can be used. The VFD display driver supported is the MSC7128, and the LCD driver the HD44780. This driver on its own provides a 16-way multiplexed LCD. In conjunction with an HD44100, it can facilitate an 8-way multiplexed higher contrast display. The input level on a port pin selects the appropriate type of multiplexing to match the display in use. To minimize the I/O activity, only one display is driven, the choice between LCD and VFD again being determined by an I/O line.

MC145170 and MC145157 PLLs are supported, using the same data and clock lines as the VFD driver, along with dedicated chip selects. The MC145157 requires an external prescaler for frequencies above 20 MHz , but the MC145170 has an on-chip $160-\mathrm{MHz}$ capability.

A tuning knob can be included by using an incremental encoder. This can utilize either IRQ or XIRQ. As IRQ is used for the RDS clock, XIRQ is most appropriate for the tuning function. The possibility of using IRQ (see information described later) has been included to facilitate debug with PCbug11, which can employ XIRQ for its communication with the PC. Edges detected on the encoder execute the PS edit and alarm setup functions of the $+/-$ (plus/minus) keys, depending on the direction of rotation. This provides a quick and convenient method of editing the PS name and changing the alarm time. A difference in function between the encoder and the +/-keys applies in normal mode. The program number is not affected by the tuning knob. In this mode, when the $+/-$ keys control the program number, the tuning knob increments or decrements the frequency.

Two I/O lines are used to select the band. These lines are regularly monitored; if they change, the radio is retuned to the last used station in the selected band. Table 1 shows the bands which are available.

- Band 2 is intended for single-conversion (low IF, intermediate frequency) MW or SW radios. The large step size of 9 or 10 kHz is suitable for MW rather than SW, but the small step size of 1 kHz is suitable for either SW or MW.
- Band 3 is for dual-conversion (10.7-MHz first IF) SW designs. The FM IF offset is selected as + or - , according to the level on port A, bit 2 (high: LO high; low: LO low).
- Bands 0 and 1 both are intended for VHF/FM, the difference between them being in the use of the M68HC11's IRQ pin. It is possible to use IRQ interrupts for both RDS and the tuning knob, as the two functions are not required simultaneously. To facilitate this, the band-select inputs affect the function performed when an edge is detected in the IRQ pin. When band 0 is selected, an RDS bit is read, but in any other band the incremental encoder function is performed. This enables automatic selection of function if bit 0
on port $A$ is taken high when movement is detected from the shaft encoder. This facility can be disabled (RDS function only) by holding bit 3 of port A low. This should be done if XIRQ is being used for the tuning knob. As XIRQ is level-sensitive, some additional components are required to interface it with the incremental encoder. Figure 2 shows a simple circuit which can be used for this purpose.

Table 1. Available Bands

| Band | PA1 | PAO | IF Offset | Step | Memory | Use | Prescaler <br> MC145157 <br> Only |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $+/-10,700$ | 50,10 | 10 | VHF | 10 |
| 1 | 0 | 1 | $+/-10,700$ | 50,10 | 10 | VHF | 10 |
| 2 | 1 | 0 | 455 | 9 (or 10), <br> 1 | 10 | MW/SW | - |
| 3 | 1 | 1 | 10,700 | 5 | $20 / 40$ | SW | 5 |



Figure 2. Incremental Encoder Interface Circuit


Figure 3. MC68HC11E32 Circuit


Figure 4. MC68HC11K4 and PH8 Circuit
uo!̣эnponul

## Frequency Synthesis

Synthesis of the local oscillator (LO) in a superheterodyne radio provides many advantages over mechanical tuning. The main benefits are:

- Tuning accuracy
- Stability
- Storing of often-used frequencies.

The accuracy and stability result from the fact that the LO is phaselocked to a crystal oscillator. In conjunction with RDS, frequency synthesis provides the additional facility of allowing the radio to retune itself to a traffic announcement or news bulletin. A synthesizer can be retrofitted to most radios by replacing the tuning capacitor with a varicap diode. The voltage biasing the varicap is supplied by the synthesizer and also can be used to provide RF (radio frequency) tuning. Alternatively, manual preselector or no RF tuning can be employed.

Motorola's MC145157 and MC145170 synthesizers are two of a series offering a variety of options including serial or parallel interfacing and single or dual modulus prescaling. The MC145157 requires a prescaler for frequencies above 20 MHz but the MC145170 can handle input frequencies up to 160 MHz . The MC145157 has been included to retain compatibility with hardware developed for use with the MC68HC05B4 synthesizer described in ANE416 (reference 1).

Figure 5 shows the block diagram of the MC145170. It uses the Motorola bitgrabber system, whereby the number of bits sent determines the register which is written to. There is, therefore, no need for the control bit which is required by the MC145157.


Figure 5. MC145170 Block Diagram

The reference counter divides the $8-\mathrm{MHz}$ crystal oscillator ( 10 MHz for the MC145157) down to the reference frequency (in this case, 1 kHz for the MC145157 and 10 kHz for the MC145170) at which the comparison is made with the (also divided down) local oscillator. The filtered output of the phase comparator supplies the tuning voltage to the local oscillator. The numbers chosen as the divide ratios determine the frequency at which this oscillator stabilizes. The equation that follows shows the relationship between the various frequencies where $P$ is the LO prescaler (MC145157 only). The received frequency can be changed by altering the LO divide ratio. The MCU takes care of the decimal-tobinary conversion, IF offset, and the other arithmetic required.

LO frequency $=\mathrm{RF}+\mathrm{IF}=\mathrm{P} \times[($ Xtal frequency $) /$ (ref. divide ratio) $] \times \mathrm{LO}$ divide ratio
The MC145157 is specified to operate up to 20 MHz , so prescaling is required on FM and SW (10.7-MHz IF). For this SW band, divide-by-5
prescaling is used; for FM, divide-by-10 is used. This increases the minimum step size to 10 kHz of FM , which is ideal for this band, and to 5 kHz on SW, which is suitable for almost all broadcast stations. The MC145170 does not require any prescaling even on the FM band and can use this to advantage by allowing the use of a higher reference frequency, making the low-pass filter design less critical.

An important part of any PLL is the loop filter. The filter in Figure 6 is an active filter using the double-ended phase detector outputs from the MC145170 feeding a CA3460 operational amplifier. This dual op-amp allows the simple double-ended low-pass filter to be followed by a second order Sallen and Key filter. An active filter has the added advantage of increasing the available voltage swing beyond the supply rail of the MC145170/MC145157.


Figure 6. MC145170 Circuit

The combination of active filter and double-ended phase detector outputs makes it simple to select the correct relationship between voltage and frequency. Usually, the fixed side of the varicap diode is grounded, so increased voltage increases the frequency of the oscillator; in some oscillator designs, the fixed side may be taken to the supply rail, and increasing the voltage will decrease the frequency. With the filter design shown here, the choice can be made simply by swapping the phase detector outputs from the PLLs.

## Radio Data System

The radio data system (RDS) adds a digital data capability to the FM VHF transmissions on band II ( 87.5 to 108 MHz ). The specification is defined in CENELEC EN 50067 (formerly EBU Technical Document 3244, see reference 2). An MC68HC05E0 implementation of RDS is described in AN460, (reference 5). It monitors the RDS activity on the MPX signal of a VHF radio but is not able to tune the radio and, therefore, cannot, use AF (alternative frequencies) or EON data. This application can tune the radio and uses EON data to retune the radio when a traffic announcement is taking place on another frequency. An announcement is initiated by a packet 14B and the radio retunes if TAs are enabled. At the end of the TA, the original station is re-tuned. TAs are not active in standby mode (standby line high).

To transmit the data, a subcarrier is added at 57 kHz . This subcarrier is amplitude-modulated with the shaped bi-phase coded data signal. The subcarrier itself is suppressed to avoid data modulated cross-talk in phase-locked-loop stereo decoders and to maintain compatibility with the German ARI system which uses the same subcarrier frequency. Information is sent in groups of four 26 -bit blocks. Each group of 104 bits is one of several types containing different information. It is up to the broadcaster to decide which features are transmitted as long as the specified format is adhered to and PI, PTY, and TP are included. Each group contains a different subset of the RDS features; a list of all currently defined features is shown in Table 2.

The retrieval of data is carried out by demodulation hardware, which generates clock and data signals that can be used by the MCU. Suitable devices which can perform this function include SAA6579, SAA7579T (plus an external filter), TDA7330, LA2231, and RDS hybrids.

Table 2. RDS Features

| Feature | Information |
| :--- | :--- |
| PI | Program identification |
| PTY | Program type |
| PS | Program service name |
| RT | Radiotext |
| CT | Clock time and date |
| AF | Alternative frequencies |
| TA | Traffic announcement |
| TP | Traffic program |
| MS | Music/speech switch |
| DI | Decoder identification |
| PIN | Program item number |
| EON | Enhanced other networks |
| TDC | Transparent data channel |
| INH | In-house data |

This application supports PI, PTY, PS, RT, CT, TP, TA, MS, DI, PIN, and EON. These features facilitate permanent display of the 8-digit station name (PS) and time (CT), and, on request, can display program type (PTY), radiotext data (RT), and the status of the other RDS information (see Table 5).

EON data can be displayed and used to switch to traffic announcements, but the retuning features associated with AF are not supported, as they are appropriate only for a radio intended for use in a vehicle. In a car radio, AF data would be used to tune the radio to the strongest signal carrying the selected service. Pl is a 2-byte number which identifies the
country, coverage area, and service. It can be used by the control MCU but is not normally intended for display. A change in PI code causes the initialization of all RDS data as it indicates that the radio has been retuned. This application facilitates the display of the current PI code.

PTY is a 5-bit number which indicates the current program type. At present, 16 of these types are defined. Examples include "no programme type," "Current affairs," and "Pop music," although the actual syntax which is displayed is determined by the software of the controlling MCU. In this example, PTY can be displayed on request; Table 3 shows the display used for each PTY code.

PS is the 8-character name of the station and is permanently displayed (except in standby mode). In the absence of RDS (for example, AM bands), the name can be entered manually. If none is entered, then the frequency is used as the station name when the program is stored in EEPROM.

Radiotext (RT) constitutes a string of up to 64 characters which give additional information regarding the service or program currently being transmitted. In this application, RT is displayed on request on the 16-digit dot matrix displays, using scrolling. The data often contains extra spaces to center the text on a $2 \times 32$ character display. As these are not appropriate for a 16-character scrolling display, the software reduces all sequences of two or more spaces to a single space.

CT (clock time and date) data is transmitted every minute on the minute and provides a very accurate clock, traceable to national standards. The (modified Julian) date and local time variation are also transmitted. Time is permanently displayed. In standby mode (see information later), the date is displayed instead of the PS name. The MJD number, which is the form in which the date is received, can also be displayed. The MCU converts this number into day-of-week, day-of-month, month and year.

AF would be used by a car radio to retune to the strongest signal carrying the selected service. AF data, along with TDC (transparent data channel) and INH (in-house data), is not used in this application.

TA and TP are flags. TP is set if the transmitter normally carries traffic information and TA is set if a traffic announcement is in progress. The
combination - TA $=1$ and TP $=0$ - is used to indicate that EON data is being used to supply information on other networks, including traffic announcements. A port line (port A, bit 5) is asserted (low) when $T A=T P=1$. This can be used to demute or switch from another source (for instance, cassette when a TA occurs).

Table 3. PTY Types

| PTY | Display |
| :---: | :---: |
| 0 | no program type |
| 1 | News |
| 2 | Current affairs |
| 3 | Information |
| 4 | Sport |
| 5 | Education |
| 6 | Drama |
| 7 | Culture |
| 8 | Science |
| 9 | Varied |
| 10 | Pop music |
| 11 | Rock music |
| 12 | Easy listening |
| 13 | Light classics |
| 14 | Serious classics |
| 15 | Other music |
| 16-31 | no program type |

$\mathrm{M} / \mathrm{S}$ is a single bit indicating either music or speech and is intended to be used to make a tone or volume adjustment to a radio's audio stage. The $M / S$ bit is displayed on request. A port line (port A, bit 6) is asserted (low) when $M / S=1$. This can be used to control external hardware.

Decoder information (DI) constitutes four bits indicating the type of transmission (mono, stereo, binaural, etc.). Currently, it is not in use in the United Kingdom, but it can be displayed as a number between 1 and 15.

Program item number (PIN) is used to identify the program currently being broadcast. The format is a 2-byte number which includes the scheduled time and date (day of month) of the start of the program. PIN can be displayed as four hexadecimal digits or fully decoded to day of month and time.

EON (enhanced other networks) replaces the older ON format. If type 14 groups are used to provide EON data, then type 3 groups (ON) will not be used. Type 14A groups are used to send information about other networks. The PS name and principal frequency of up to 16 other networks can be displayed. Type 14B groups are used to switch to traffic announcements; they include the PI code of the station carrying the announcement. This PI code is searched for in NVM, and the required station is tuned if it is stored in NVM. This method allows the user to select which TAs are allowed (they will not occur if the station is not in NVM or if its TA inhibit bit is set) and avoids attempts to jump to an announcement which is not relevant or not receivable with sufficient signal strength to be useful.

## Keyboard

The keyboard has 23 keys. Table 4 shows the layout and Table 5 contains a summary of key functions against mode.

Table 4. Keyboard Layout

| PE0 | PE1 | PE2 | PE3 |  |
| :---: | :---: | :---: | :---: | :---: |
| Q6 | RDS | Traffic | MW step | TA test |
| Q5 | Time colon | Sleep | - | + |
| Q4 | 7 | 8 | 9 | Alarm |
| Q3 | 4 | 5 | 6 | Store |
| Q2 | 1 | 2 | 3 |  |
| Q1 | 0 | Manual | Clear/Step | On/Off |
|  |  |  |  |  |

The following functions are available.

On/Off


Sleep


## Alarm

ALARM

and Minus (-)


This key is intended as an on/off control for the radio. It sets a port line low for on and high for standby and can be used to control the power supply to the radio. Its status affects the behavior of other keys as described later in this application note.

When pressed, the 1-hour sleep timer starts, leaving the standby line low (radio on) until the sleep time has elapsed. At this time, the line is switched to the standby mode (high). In the normal display mode, the sleep timer running causes the decimal point to appear on the display modules' first character. The sleep timer can be cancelled by pressing ON/OFF. The sleep time can be reduced in increments of five minutes by repressing or holding down the SLEEP key.

The alarm key selects the alarm display mode and toggles the alarm armed status. When the alarm is not armed, the legend ALARM-OFF is displayed. When it is armed, the alarm time is shown and adjustment of the alarm setup can be done by selecting the field ( $5 / 7$ day, hours, or minutes) with the STORE/SET key. The selected field (hours or minutes) flashes and can be adjusted with the +/- keys or the tuning knob. The alarm setup display returns to normal three seconds after the last adjustment. If the radio is in standby mode and the alarm is set, the alarm time is displayed instead of the date. The radio will come fully on (standby line low) at the alarm time. After a 500-ms delay to allow power supplies to stabilize, the program which was tuned when the radio was last used is retuned. When set to the 5-day alarm, the alarm will not occur on Saturdays and Sundays.

Pressing + or -, while in normal mode, increments or decrements the program number. The program number wraps round at 0 and 9 . The mute line is set high before retuning and returned low 100 ms after the new frequency has been sent to the PLL. Changing the tuned program using the +/- keys (or the 0-9 keys) disables PS name clearing if RDS information is absent or contains multiple errors.

In PS-edit mode (see entry that follows), the + and - keys are used to change the character at the cursor position. This function is duplicated on the tuning knob incremental encoder. In the alarm setup mode, the + and - keys are used to change the alarm time as described earlier. The field which is currently selected for adjustment (using the STORE key) flashes. This function is duplicated on the tuning knob also.

In manual mode, these keys increment and decrement the current frequency in steps of 10 kHz or 50 kHz (FM) as selected by the CLEAR/STEP key. The default is 10 kHz . On the SW band, $1-\mathrm{kHz}$ ( 455 kHz IF only) or $5-\mathrm{kHz}$ steps are available; on the MW/LW band, 1or $9-\mathrm{kHz}$ steps are available. In the U.S.A., 10 kHz is appropriate instead of 9 kHz ; this can be selected with a special key (see entry that follows). This function is duplicated on the tuning knob both in this mode and in normal mode. Use of the +/-keys (or the incremental encoder) to adjust the frequency enables PS name clearing if RDS information is absent or contains multiple errors. In normal mode, on the AM bands, use of the tuning knob displays the frequency in the PS name field, facilitating simultaneous display of frequency and time.

Store/Set

## STORE/SET

In normal modes (not manual or alarm), the store key selects the PS-edit mode in which the first character of the displayed PS-name flashes and can be changed by the + and - keys or the tuning knob. Subsequent presses of STORE move to the next character. A space is shown as a hyphen ( - ). This mode returns to the normal display mode 10 seconds after the last key press. This mode can be used to give a name to a station with no RDS PS name (all AM stations or an FM station with no RDS or with RDS or unusable quality). See the entry that follows for the method of saving this name in EEPROM. Entry of a PS name in this way requires that PS name clearing is disabled. This is achieved by changing the program number (by using the $+/-$ or $0-9$ keys). Fine tuning enables PS name clearing (see +/- key description). Direct frequency entry does not affect the PS name clearing status.

In the alarm setup mode, STORE selects what will be changed when the + or - keys or the tuning knob are used (5/7 day, hours, or minutes). Hours or minutes flash when they are selected.

In manual mode, STORE enters a special manual store mode in which the 9-0 keys save, rather than recall, a program. After pressing STORE, the program number flashes to indicate this change of function. Alternatively, a second press of STORE saves the current tuning information into the current program number. The current frequency, PI code (FM), PS name, and TA inhibit flag (FM) are saved in EEPROM. The TA inhibit status can be changed using the TRAFFIC key (see entry that follows). If the PS edit mode has been used, then manual store mode should be used to save the entered PS name.

## Manual

MANUAL

## 0 to 9



Select manual entry of frequency; a second press returns to normal mode if the tuned frequency has not been changed. If it has been changed, the second press retunes to the new frequency and an additional press is required to return to the normal mode. In manual mode, frequency is displayed instead of the time; the + and - keys or the tuning knob enable incrementing and decrementing of the current frequency. Direct entry of frequency can be made using 0-9 keys. In this mode, the STORE key enters the manual store mode in which the program number flashes, allowing storing of the tuned program and PS name into the current, or a different, program number. A second press of STORE saves the current frequency, PS name, PI code, and TA inhibit bit (FM) in EEPROM.

In manual mode, the TRAFFIC (TA) key controls the TA inhibit bit, which can be stored with each program. If the current station has its TP flag high, the least significant digit of the frequency will alternate with a decimal point. Pressing TP toggles the NVM inhibit bit. When inhibited, the decimal point between the MHz and kHz becomes a "-". A subsequent press of STORE saves this bit in NVM along with the frequency, PI code, and PS name.

These keys are used both for direct frequency entry and for recalling the 40 available programs. In all modes, except standby and manual, when a $0-9$ key is pressed, the selected program is tuned. Changing the tuned program using the $0-9$ keys (or the +/-keys) disables PS name clearing if RDS information is absent or contains multiple errors. In manual mode, these keys are used for the direct entry of frequency. After entering the required frequency, pressing MANUAL retunes to the new frequency.

RDS

## Traffic

TRAFFIC

Clear/Step CLEAR/STEP

TA Test

Time Colon

The first press displays scrolling RT data. Subsequent presses display PTY code, PI code, TA and TP, PIN code (two formats), MJD, MS and DI, last TA PI code, the reason for returning from last TA and EON (up to 16 networks with their principal frequency). See Table 5 for the display formats. The RDS key is operational in all modes except standby.

Enable/disable traffic switching. When disabled, this is indicated by a decimal point in the 11th character of the dot matrix displays. Default at power-up is enabled. The TRAFFIC key works in all modes except standby. During manual mode and manual store mode, it toggles the TA inhibit status, which can subsequently be saved in NVM.

Toggles between $10-\mathrm{kHz}$ and $50-\mathrm{kHz}$ steps on the FM band or between 1 and 9 kHz (or 10 kHz ) on the MW band. There is no indication on the dot matrix displays. In manual mode, the displayed frequency is cleared to facilitate the entry of a new frequency. If the clear is followed by use of the + or - keys or the tuning knob, the original frequency is retained, allowing a change of step size only. In PS edit mode, the clear key clears the current PS name.

Pressing TA test simulates the arrival of a group 14B. The PI code of the other network is embedded in the code (C5B1, Radio Clyde in the ROMed version).

This key enables or disables the flashing colon in the time display. This can be used to prevent unnecessary I/O activity thus reducing RFI. Disabling the colon prevents $1-\mathrm{Hz}$ updating, as the display modules are only updated if the data to be displayed has changed.

The mute line is set high before retuning and returned low 100 ms after the new frequency has been sent to the PLL. In manual store mode, the program number flashes and the 0-9 keys save the tuned program into the selected program number in EEPROM.

MW Step


This optional key selects 9 - or $10-\mathrm{kHz}$ steps on MW. Nine kHz is appropriate in Europe and 10 kHz in the United States. The default is 9 kHz , and the key need not be implemented if 10 kHz will never be required.

Table 5. Key Function by Mode

|  | On/Off | Sleep | Alarm | +/- | Store | Manual | TP | RDS | 0-9 | Clear |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standby (OFF) | mode normal (ON) | mode sleep (ON) | mode alarm | - | - | - | - | - | - | - |
| Normal (ON) | mode standby (ON) |  | " | $\begin{aligned} & +/- \\ & \text { prog. } \end{aligned}$ | mode PS-edit | mode manual | toggle traffic enable flag | display <br> RT | tune prog. | toggle step 10/ 50 kHz |
| PS edit | " | " | " | ASCII | next char. | " | " | PTY <br> PI | " | " |
| A off | " | " | mode alarm on | +/- prog. | - | " | " | TA TP <br> PIN hex | " | " |
| on <br> A | " | " | mode alarm off | 5/7 day toggle | mode setup | " | " | PIN dec MJD | " | " |
| M setup | " | " |  | +/hour/min | hour/min toggle | " | " | M/S DI <br> TA ret. | " | " |
| $\begin{aligned} & M \\ & A \\ & N \\ & U \end{aligned}$ | " | " | mode alarm | $\begin{gathered} +/- \\ \text { freq. } \end{gathered}$ | mode store | mode normal | toggle <br> traffic <br> enable <br> NV bit | EON <br> (16) | input freq. | " |
| A store L |  | " |  |  | save prog. | " |  | " | save prog. | clear freq. |

The circuit is in two distinct parts. The circuit for the MC145170 synthesizer is shown in Figure 6. The synthesizer board is the only part of the synthesizer controller which actually needs to be in (or close to) the radio. A local oscillator signal to supply the synthesizer should be taken from a low-impedance point so that the oscillator is not significantly loaded. Pulling of the oscillator frequency is not a problem as the PLL circuitry will compensate, but loading the tuned circuit itself is not recommended unless a high-impedance buffer is included. This prevents affecting the tuning range or the "Q" of the oscillator.

The MC145157 requires a divide-by-10 prescaler for FM and divide-by-5 for band 3. The MC145170 does not require prescaling. The standard LP1186 FM tuner does not have an LO take-off but a signal can be taken, without other modification, from the emitter of the oscillator BF195 (near the center of the PCB).

The Mullard LP1186 is unusual in having its local oscillator low. More recent tuners, for instance, the Larsholt 7254/55, almost always have their local oscillator above the tuned frequency. This selection can be made using port A, bit 2.

A 16-digit LCD (parallel) or VFD (serial) dot-matrix display module can be driven. The two display modules show the same data (within the limitations of their character ROMs). The VFD display driver supported is the MSC7128 and the LCD driver, the HD44780. On its own, this driver can be used to provide a 16 -way multiplexed display, but an 8 -way multiplexed higher contrast display is possible if the module also incorporates an HD44100. In an application which drives an LCD module (for instance, a ROMed PH8) and the module is not connected, a $10-\mathrm{k}$ pulldown resistor should be added to bit 7 of port A. This prevents the software hanging up waiting for the busy line to go low.

Figure 3 and Figure 4 show the circuit diagrams of the controllers.
Figure 3 gives the pin numbers for the 52 -pin PLCC HC11E with the numbers for the 56 -pin SDIP (if different) in brackets. With the E32, the display in use can be selected by the level on port E, bit 7 (high for LCD and low for VFD) and the LCD multiplexing by port A, bit 7 (high for
divide-by-16, low for divide-by-8). The SW bank is selected by the level on port E , bit 6.

Figure 4 shows pin numbers for the 84-pin PLCC K4, with the differences for the PH8 in brackets. Debug on the K4 using PCbug11 (reference 5) requires some additional hardware (within the dotted line) and port D bits 0 and $1(\mathrm{SCI})$, port G bits 1 and 7 (XA14 and R/W), and port H bits 5 and 7 (CSGP1 and CSPROG), leaving 30 input/output (I/O) lines for use in the application. The display selections are not available on the PH8 ROMed versions, but there are four SW banks of 10 program memories; they are selected by port E, bits 6 and 7 .

Since different demodulator devices can be used, the circuitry for the demodulator is not shown. The clock from the demodulator interrupts the microprocessor on each positive edge. At this time, a data bit is available and is read on bit 5 of port $E$.

## Software

An assembled listing of part of the HC11E32 ROMed version (ZC403311) of the application is included. The software is in three modules and was assembled and linked using the Introl re-locatable assembler and linker. The first module is listed. It contains all the main control routines, including the main loop and keyboard scanning, and the function to be performed by each key.

The second module contains the RDS and display functions, while the third module is the 4-function, 9-digit integer BCD arithmetic required for the MJD date calculations.

The second and third modules are described and listed in AN495 (reference 4). EB419/D (reference 5) describes and lists additional debug code contained in the ROMed parts.

The code which is executed only on startup (power-on or reset) begins at the label START on the third page of the first module's listing, while the main loop starts at the label IDLE on the next page. The idle loop is quite long, as many functions and checks have to be carried out.

## These include:

- Pacing the loop using the main timer
- Checking to see if the display needs updating or if a transient display has timed out
- Checking if alarm is armed and, if so, comparing its time with the current time
- Sleep timer operation
- Traffic announcement timing and return
- Keyboard scanning and selected function execution
- Incremental encoder execution
- Checking for changes in the band and memory selection inputs
- Timing band changes
- Updating TA = TP = 1 and $\mathrm{M} / \mathrm{S}$ outputs

The keyboard subroutine (KBD) is executed at 64 Hz from the idle loop and checks to see if a key is pressed. If the same key is pressed on three consecutive tries, its function is performed. The remainder of the first module constitutes the subroutines performed by each key and the arithmetic and serial activity required to tune the synthesizers. The batch files used for linking the modules are shown as comments at the end of the listing, along with the pseudo-vectors required by PCbug11 during debug.

The displays are only updated when there is a change in the displayed data. At 8 Hz , a check is made to see if any characters have changed; if there has been a change, the display update routine is executed. This is done to minimize interference caused by communication with the displays. The colon between the hours and minutes of the time display changes at 1 Hz . This can be disabled (colon permanently displayed) by using the time colon key. The display routine (MOD) is executed in the idle loop if the flag bit 3 of STAT2 is set. It is set every 125 ms by timer B interrupts. If flag bit 4 of STAT2 is set, the display is initialized, indicating no valid RDS data. The dot-matrix modules are then updated, if necessary, with new data. Each time, before anything is written to the LCD module, the subroutine WAIT is used; this checks that the controller
in the module is not busy. The different display formats are selected by checking the various flags and the relevant routine executed. The normal display permanently shows PS name and time. As the locations in RAM used for hours and minutes contain binary numbers, they are converted to BCD before being written to the relevant bytes in DISP. Once all 16 bytes in DISP have been loaded, loops are used to send the data to the display modules. The standby display (alarm not enabled) shows date and time. After a power-up, the display "Mon 0 inv 0:00" indicates that the date and time are invalid. The date and time will be correct once a valid RDS CT group has been received.

The VFD routine sends the same data as is shown on the LCD module to the serial VFD module. The display driver used has a different character set from the standard ASCII set used by the LCD module. The table VTAB is used to convert ASCII data into the required character in the VFD module. The small table INITF is used to send the required initialization bytes to the VFD module. This module does not require a busy check but does require a delay between successive bytes. This is satisfied by the wait loop within the serial output loop VFDL. The LCD and VFD routines are in the second software module (see reference 4).

Table 6. Display Formats

| Display Mode |  | Format |
| :---: | :---: | :---: |
| Standby Off | Alarm off Alarm off, no CT Alarm on | Thu 12 May 21:35 Mon 0 inv 0:00 0659 alarm 21:35 |
| Normal On | With RDS PS name <br> Without RDS <br> Auto name Tuning knob (AM) | 4 BBC 4 FM $21: 40$ <br> $5----------~$ $21: 40$ <br> $6--9410$ $21: 40$ <br> $6--9415$ $21: 40$ |
| Alarm | Alarm off Alarm on/setup | $\begin{gathered} \text { Alarm - OFF } \\ \text { 5-day alarm } 0659 \end{gathered}$ |
| Sleep |  | Sleep 60 minutes |

Table 6. Display Formats (Continued)

| Display Mode | Format |
| :---: | :---: |
| RDS RT <br>  PTY <br>  PI <br>  TA \& TP <br>  PIN (hex) <br>  PIN (decoded) <br>  MJD <br>  MS \& DI <br>  last TA 1. <br>  EON (16) | Kaleidoscope. . . . <br> Culture |
| Manual | 6 Classic 101.70 |

## Traffic Announcements

The radio can respond to EON-initiated traffic announcements if they are enabled by the TRAFFIC (TA) key. This status is indicated by a decimal point at the 11th character on the dot-matrix displays. A switch to a TA on another frequency will only occur if the station has previously been stored in NVM; the EON data which can be displayed using the RDS key is not used for TA switching. The PI code of the last TA (or attempted TA) can be displayed by pressing the RDS key eight times. A further press displays one of the TA return/inhibit messages shown here. TAs which are the result of TA = TP = 1 on the current frequency do not update the last TA PI or TA return/inhibit messages.

When a 14B group is received, the following occurs:

- Check traffic flag; if enabled, proceed; otherwise, set TA rtrn/inhb message to:
TA inhb: flag — Traffic key inhibit flag (d.p. at the 11th character position)
- Search for TA PI code in NVM; if found, proceed; otherwise, set TA rtrn/inhb message to:
TA inhb: EON PI - The PI code given in 14B is not in the NVM.
- Check station TA inhibit flag in NVM; if clear, proceed; otherwise, set TA rtrn/inhb message to:
TA inhb: NVM — User inhibit of station using bit stored in NVM
- Retune to frequency stored in NVM against EON PI code. The PS name display changes to show the PS name of the service carrying the traffic announcement and the time display is replaced by the new frequency. If the service has its TP flag high, then the 10s of kHz digit will flash as in the manual mode display. After one second, check TP flag at the new frequency. If high, then proceed; otherwise, return to original frequency and set TA rtrn/inhb message to:
TA rtrn: TP low - TP station does not have TP bit high.
- Check PI code at new frequency. If correct (same as 14B EON TA PI code), then proceed; otherwise, retune to original frequency and set TA rtrn/inhb message to:
TA rtrn: PI code - PI code of TP station was not as expected.
- After an additional two seconds, start to monitor the TA flag; if high, remain on current frequency, if low, return to original frequency and set TA rtrn/inhb message to:
TA rtrn: TA low - TA flag of TP station low. This is the normal return method.
- If, during a TA, the radio is manually retuned, the TA rtrn/inhb message is set to:
TA rtrn:manual - User-initiated manual return

Table 7. MCU I/O

| K4 and PH8 |  | Function | E32 |  |
| :---: | :---: | :---: | :---: | :---: |
| Port A bits | 0-7 | LCD module data bus | Port C bits | 0-7 |
| Port B bits | 0-7 | High-order addresses (K4) | N/A | - |
| Port C bits | 0-7 | Data bus (K4) | N/A | - |
| Port D bits | $\begin{aligned} & 0-1 \\ & 2-4 \\ & 5 \end{aligned}$ | Debug (PCbug11 or BUFFALO) Keyboard rows (via 14028 encoder) Standby (high:standby, low:on) | Port D bits | $\begin{aligned} & 0-1 \\ & 2-4 \\ & 5 \end{aligned}$ |
| Port E bits | $\begin{aligned} & \hline 0-3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$ | Keyboard columns <br> Shaft direction (XIRQ) <br> RDS data in or shaft direction (IRQ) <br> Short-wave memory select 1 <br> Short-wave memory select 2 (PH8 only) | Port E bits <br> N/A | $\begin{aligned} & \hline 0-3 \\ & 4 \\ & 5 \\ & 6 \\ & - \end{aligned}$ |
| Port F bits | 0-7 | Low-order addresses | N/A | - |
| Port G bits | $\begin{aligned} & 0 \\ & 1 \\ & 2-4 \\ & 5-6 \\ & 7 \end{aligned}$ | Mute <br> XA14 (K4 only) <br> LCD control lines (RS, R/W, and clock) <br> Band select <br> R/W (K4) | Port A bit N/A <br> Port B bits Port A bits N/A | $\begin{aligned} & \hline 4 \\ & \hline 5-7 \\ & 0-1 \end{aligned}$ |
| Port H bits | $\begin{aligned} & \hline 0-1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | Serial clock/data for VFD and PLLs <br> VFD chip enable (PH8: +/- 10.7 MHz) <br> Port E, bit 5 input control <br> MC145170 PLL chip enable <br> CSGP1 (K4 only) <br> MC145157 PLL chip enable <br> CSPROG (K4 only) | Port B bits Port B bit Port A bit Port B bit N/A Port B bit N/A | $\begin{aligned} & \hline 0-1 \\ & 2 \\ & 3 \\ & 4 \\ & -3 \end{aligned}$ |
| N/A |  | FM IF select (+/- 10.7 MHz | Port A bit | 2 |
| N/A |  | TA = TP = 1 | Port A bit | 5 |
| N/A |  | $\mathrm{M} / \mathrm{S}=1$ | Port A bit | 6 |
| N/A |  | LCD multiplex select (8/16) | Port A bit | 7 |
| N/A |  | Display module (LCD/VFD) select | Port E bit | 7 |

An effective method of fault finding a PLL circuit is to initially do the tuning with a potentiometer, leaving the output of the filter disconnected from the VCO. As the radio is tuned through the frequency setup in the synthesizer, the filter output should switch from one extreme to the other. Until this test passes, it is not useful to close the loop, as it is difficult to distinguish the cause of a problem from its effects.

Check operation of the MC34064 LVI circuit. As the supply voltage is lowered, it should pull the reset pin low. This should occur between 4.70 and 4.50 volts. Adjust trimmer on the EXTAL pin of the M68HC711 for accurate timekeeping in the absence of RDS CT information. (Radio should be detuned or tuned to a station known not to provide RDS.) The trimmer on pin 2 of the PLL chip (MC145157 or MC145170) should be adjusted to provide an accurate reference frequency. This adjustment can be made simply to tuning to a strong broadcast of known frequency and adjusting for optimum reception or symmetric adjacent-channel response.

## PH8 ROMed Application

The ROMed PH8s (ZC428200 and ZC428202) differ from the described E32 version of this application as follows:

1. 40 short-wave programs can be stored instead of 20 . These are accessed by the use of a second memory-select line (port E, bit 7).
2. There is no display selection; both LCD and VFD signals are generated. If an LCD module is not connected, a pulldown on port A, bit 7 should be included (see Figure 4).
3. LCD multiplexing is fixed at divide-by-8.
4. Traffic announcement (retune to TA frequency) is not fully implemented in the ZC428200.
5. Time colon FLASH defeat key is not implemented; the display modules are always updated at 8 Hz .
6. $T A=T P=1$ and $M / S$ outputs are not implemented.
7. $10-\mathrm{kHz} \mathrm{MW}$ steps are not available (no $9 / 10$ key).
8. $+/-10.7-\mathrm{MHz}$ IF selection (FM) is carried out on port H , bit 2 which is read after reset but before it is set up as an output. A pullup or pulldown resistor will determine the IF selection (pullup for LO high and pulldown for LO low) without affecting the pin's subsequent function as an output (VFD chip enable).
9. The 500 -ms delay at switch-on between the standby line moving and the PLLs being retuned is not implemented.
10. The sleep d.p. flashes during operation of the sleep timer.

## References

1. A Radio Synthesizer Using the MC68HC05B4, Motorola document order number ANE416/D
2. CENELEC EN 50067, Specifications of the Radio Data System (RDS), formerly EBU technical document 3244
3. An RDS Decoder Using the MC68HC05EO, Motorola document order number AN460/D
4. RDS Decoding for an HC11 Controlled Radio, Motorola document order number AN495/D
5. ROMed HC11E32 and HC11PH8 Including BUFFALO Monitor and PCbug 11 Talker, Motorola document order number EB419/D

## Application Note

## Code Listing




> REGISTER BLOCK OFFSET
> EEPROM CONTROL REGISTER
> No. DIGITS

SECTION.S .RAM1, COMM

| BMJD | RMB | 3 |
| :--- | :--- | :--- |
| Q | RMB | 9 |
| TMQ | RMB | 9 |
| R | RMB | 9 |
| TMP | RMB | 9 |
| R | RMB | 9 |
| MJD | RMB | 9 |
| YR | RMB | 9 |
| MNTH | RMB | 2 |
| DOM | RMB | 2 |
| DOW | RMB | 1 |

BINARY MJD
WORKING NUMBER 1 - RDS
SCRATCH
WORKING NUMBER 2 - RDS
MULT. OVER. OR DIV. REMAINDER
WORKING NUMBER 3 - RDS
MODIFIED JULIAN DAY NUMBER
YEAR
MONTH
DATE
DAY OF WEEK

| * |  | * |
| :---: | :---: | :---: |
| * | RAM allocation, RDS \& radio. | * |
| * |  |  |


| DIST | RMB | 1 | TRANSIENT DISPLAY, TIMEOUT, COUNTER |
| :--- | :--- | :--- | :--- |
| SLEPT | RMB | 1 | SLEEP TIMER MINUTES COUNTER |
| RDSTO | RMB | 1 | RDS TIMEOUT COUNTER |



AN494

## Application Note



|  | INX |  |  |
| :---: | :---: | :---: | :---: |
|  | CPX | \#SCNT+1 | MORE ? |
|  | BNE | CLOOP |  |
|  | BSET | STAT4, \$04 | ENABLE TRAFFIC SWITCHING - DEFAULT |
|  | BSET | STAT, \$01 | STATION MODE |
|  | LDAA | \#\$30 |  |
|  | JSR | CLOCK | INITIALISE LCD |
|  | JSR | WAIT |  |
|  | LDAA | \#\$30 | $/ 8$ DISPLAY |
|  | BRCLR | PORTA, Y, \$80, M8 |  |
|  | LDAA | \#\$38 | /16 DISPLAY |
| M8 | JSR | CLOCK | LATCH IT |
|  | JSR | WAIT |  |
|  | LDAA | \#\$08 | SWITCH DISPLAY OFF |
|  | JSR | CLOCK | LATCH IT |
|  | JSR | WAIT |  |
|  | LDAA | \#\$01 | CLEAR DISPLAY |
|  | JSR | CLOCK | LATCH IT |
|  | JSR | INITD | INITIALISE RDS DATA \& DISPLAY |
|  | JSR | CLREON | AND EON DATA |
| * | Initia | interrupt JMPs |  |
| JRT1 | EQU | \$00EB | E32 BUFFALO RAM JUMP TABLE |
| JIRQ | EQU | \$00EE | " " " " |
| JXIRQ | EQU | \$00F1 | " " " " |
|  | LDAA | \# \$ 7E |  |
|  | STAA | JRTI |  |
|  | STAA | JIRQ |  |
|  | STAA | JXIRQ |  |
|  | LDD | \#TINTB |  |
|  | STD | JRTI+1 | RTI |
|  | LDD | \#SDATA |  |
|  | STD | JIRQ+1 | IRQ |
|  | LDD | \#SHAFTX |  |
|  | STD | JXIRQ+1 | XIRQ |
|  | LDAA | \#\$00 | ENABLE IRQ \& XIRQ |
|  | TAP |  |  |
|  | ****** | ******************* |  |
|  | * |  |  |
|  | * | Idle loop. |  |
|  | * |  |  |
|  | ****** | ******************* |  |
| IDLE | LDY | \# \$1000 |  |
|  | BRSET | STAT, \$08, TBH |  |
|  | BRSET | \$0E, Y, \$80,* |  |
|  | BSET | STAT, \$08 |  |
|  | BRA | NO2D |  |
| TBH | BRCLR | \$0E, Y, \$80,* |  |
|  | BCLR | STAT, \$80 |  |
| NO2D | BRCLR | STAT4, \$01, NOPS | DISPLAY TRANSIENT ? |
|  | LDAA | DIST |  |
|  | BNE | NOPS | YES, TIMED OUT ? |
|  | JSR | CLTR |  |
| NOPS | BRCLR | STAT2, \$08, NDU | DISPLAY UPDATE REQUIRED ? |
|  | JSR | MOD | YES, DO IT |
|  | BCLR | STAT2, \$08 | AND CLEAR FLAG |
| NDU | BRCLR | PORTD, Y, \$20,FULON | STANDBY ? |
| NOTSNZ | BRSET | STAT4, \$10,NNT2 | STANDBY, ALARM ARMED ? |
| NTJ2 | JMP | NT2 |  |
| NNT2 | BRCLR | STAT5, \$80,NWA | YES, WEEKDAY ALARM ONLY ? |
|  | LDAA | DOW | YES |
|  | CMPA | \#4 | SATURDAY OR |
|  | BHI | NT2 J | SUNDAY ? |
| NWA | LDAA | AOUR | NO, COMPARE ALARM HOURS |
|  | CMPA | OUR | WITH TIME |

## Application Note




## Application Note




## Application Note




Application Note



Application Note


|  | ****************************** |  |  |
| :---: | :---: | :---: | :---: |
|  | * |  |  |
|  | * | am number decrement |  |
|  | * |  |  |
|  | ****************************** |  |  |
| CONTD | BSET | PORTA, Y, \$10 | MUTE |
|  | LDAA | LED | PROG. No. DECREMENT |
|  | BRSET | STAT2, \$80,RETUNE | IF SWITCHED TO TA DON' |
| PNM1 | DECA |  | DECREMENT PROGRAM NUMBER |
|  | BPL | SK2P | TOO FAR ? |
|  | LDAA | \# 9 |  |
| SK2P | STAA | LED | SAVE NEW PROGRAM NUMBER |
| RETUNE | PSHA |  |  |
|  | LDAB | \#120 | CHANGE PROGRAM NUMBER IN NVM |
|  | JSR | WRITE1 |  |
|  | PULA |  |  |
|  | BRCLR | STAT4, \$80,RETUNE2 | TA SWITCHED ? |
|  | BCLR | STAT4, \$80 | YES, MANUAL RETURN FROM TA |
|  | LDAA | \# 9 |  |
|  | STAA | REARET |  |
|  | RTS |  |  |
| RETUNE 2 | JSR | DOIT | NEW PROGRAM |
|  | JSR | P5170 |  |
|  | LDX | \# 64 | WAIT 100 ms |
|  | JSR | SKDB |  |
|  | BCLR | PORTA, Y, \$10 | DEMUTE |
|  | BCLR | STAT2, \$02 | KILL ANY PENDING RDS GROUP |
|  | BCLR | STAT3, \$01 | AND INHIBIT FM PS-NAME CLEARING RE-ENABLE RDS DATA CLEARING |
|  | BCLR | STAT, \$10 |  |
|  | RTS |  |  |
| FOK | LDAB | \#10 |  |
|  | MUL |  |  |
|  | ADDB | \# \$ 5 C |  |
|  | STAB | SMEM |  |
|  | ADCA | \#\$26 |  |
|  | STAA | SMEM+1 |  |
|  | JMP | NEW |  |
|  | ******************************** |  |  |
|  | * * |  |  |
|  | * Tune to TA (using EEPROM data)* |  |  |
|  | ******************************** |  |  |
| TASW | CLRB |  |  |
| TPIC | ADDB | \#10 |  |
|  | JSR | READ1 | FIND PI |
|  | INCB |  |  |
|  | CMPA |  | PION | MSB OK ? |
|  | BNE | TNP |  |
|  | DECB |  |  |
|  | JSR | READ1 |  |
|  | CMPA | PION+1 | LSB OK ? |
|  | BNE | TNP |  |
|  | SUBB |  | YES, FOUND IT |
|  | JSR | READ1 |  |
|  | PSHA |  |  |
|  | ANDA | \# \$80 | NVM INHIBIT FLAG SET ? |
|  | BEQ | TASOK |  |
|  | LDAA |  |  |  |
|  | BRA | ABTA |  |
| TASOK | PULA |  |  |
|  | STAA | SMEM+1 |  |
|  | JSR | NEWSUB2 |  |
|  | JMP | NEW |  |
| TNP | CMPB | \#252 | TRY NEXT RECORD |
|  | BLO | TPIC |  |
|  | PSHA |  |  |  |
|  | LDAA | \# 7 |  |
| ABTA | STAA | REARET |  |
|  | PULA |  |  |  |

AN494

## Application Note




AN494

Application Note

|  | ABX BRCLR ABX | PORTE, Y, \$40,SWB2 | NO, SW SECOND BANK ? YES |
| :---: | :---: | :---: | :---: |
| SWB2 |  |  |  |
| * | BRCLR | PORTE, Y, \$80,FMB | SECOND PAIR OF BANKS ? |
| * | ABX |  | YES |
| * | ABX |  |  |
| FMB | PULB |  |  |
|  | PULA |  |  |
|  | ABX |  |  |
|  | RTS |  |  |
|  | ****** | ******************* |  |
|  | * |  |  |
|  | * | RDS displays. |  |
|  | * |  |  |
|  | ****** | ******************* |  |
| RTDSP | BRSET | PORTD, Y, \$20,SRT | STANDBY ? |
|  | BRSET | STAT5,\$02,NOTRT | ALREADY RDS DISPLAY ? |
|  | BRCLR | STAT2,\$04, NORT | ALREADY RT DISPLAY ? |
| NOTRT | BSET | STAT5, \$02 | SET RDS DISPLAY FLAG |
|  | LDAA | RTDIS | YES, MOVE ON |
|  | INCA |  |  |
|  | CMPA | \#26 |  |
|  | BEQ | NORT |  |
|  | STAA | RTDIS |  |
|  | LDAA | \#100 |  |
|  | STAA | DIST |  |
|  | BSET | STAT4, \$01 | RE-START TRANSIENT TIMEOUT |
|  | RTS |  |  |
| NORT | JSR | CLTR |  |
|  | BSET | STAT2, \$04 | SET RT DISPLAY FLAG |
|  | LDAA | \# 9 |  |
|  | STAA | DISP1 |  |
|  | LDAA |  |  |
|  | STAA | DISP2 |  |
|  | RTS |  |  |
|  | ************************************* |  |  |
|  | * |  | * |
|  | * Increment and decrement rour |  |  |
|  |  |  | ** |
|  | ************************************* |  |  |
| UP | BSR | LDXR |  |
| IF | INC | SMEM | NO, INCREMENT LSB |
|  | BNE | TT1 | DID IT WRAP ROUND |
|  |  | SMEM+1 | YES, INCREMENT MSB |
| TT1 | DECB |  |  |
|  | BNE | IF | ALL DONE ? |
|  | BRA | NEWJ |  |
| DOWN | BSR | LDXR |  |
| DF | TST | SMEM | NO, IS LSB ZERO ? |
|  | BNE | TT2 | IF NOT LEAVE MSD |
|  | DEC | SMEM+1 | DECREMENT MSB |
| TT2 | DEC | SMEM | DECREMENT LSB |
|  | DECB |  |  |
|  | BNE | DF | ALL DONE ? |
| NEWJ | JSR | NEW |  |
|  | JSR | P5170 |  |
|  | BCLR | PORTA, Y, \$10 | DEMUTE |
|  | RTS |  |  |
| LDXR | BRCLR | STAT6, 08 , LDXR2 | AM ? |
|  | BSET | STAT2,\$40 | YES, CLEAR PS NAME |
|  | BRA | NFMB |  |
| LDXR2 | BSET | STAT3, \$01 | NO, FM, ENABLE PS NAME CLEARING |
| NFMB | JSR | BAND | GET BAND |
|  | TBA |  |  |
|  | LDAB | \#1 | SINGLE STEP (1,5,10 kHz FOR MW, SW, FM) |
|  | BRCLR | STAT, \$02, SRT | LARGE STEPS SELECTED ? |
|  | CMPA | \#3 | YES, BAND 3 (SW) ? |


|  | BEQ | SRT |  |
| :---: | :---: | :---: | :---: |
|  | LDAB | \#5 | NO, x5 STEP (50 kHz FOR FM) |
|  | CMPA | \#2 | MW ? |
|  | BNE | SRT |  |
|  | LDAB | \# 9 | YES, 9 kHz |
|  | BRCLR | STAT6, \$40,SRT | OR SHOULD IT BE 10 kHz |
|  | INCB |  | YES |
| SRT | RTS |  |  |
|  | ******************************** |  |  |
|  | * |  |  |
|  | * | TA test. |  |
|  | * |  |  |
|  | ******************************* |  |  |
| TEST | BRSET | PORTD, Y, \$20,AOB | STANDBY ? |
|  | LDD | \#\$C5B1 | CLYDE 1 |
|  | STD | PION |  |
|  | BRSET | STAT4, \$04, NABT |  |
|  | LDAA | \#1 | NO, SET RETURN REASON |
|  | STAA | REARET |  |
| AOB | RTS |  |  |
| NABT | BSET | STAT4, \$80 | YES, DO IT |
|  | RTS |  |  |
|  | ******************************** |  |  |
|  | * |  |  |
|  | * | Store key. |  |
|  | * |  |  |
|  | ******************************* |  |  |
| SAVE | BRCLR | STAT4, \$08, NAME | ALARM DISPAY ? |
|  | BRCLR | STAT4, \$10, NTB2 | YES, ALARM ARMED ? |
|  | BRSET | STAT4, \$20,AISM | YES, ALREADY SET-UP MODE ? |
|  | BSET | STAT4, \$60 | NO, ENTER SET-UP MODE, HOURS |
| A5SD | LDAA | \#80 |  |
|  | BRA | SDT |  |
| AISM | BRSET | STAT4, \$40, MSM | YES, SET-UP HOURS ? |
|  | BCLR | STAT4, \$20 | NO, CANCEL SET-UP |
|  | BRA | A5SD |  |
| MSM | BCLR | STAT4, \$40 | YES, MAKE IT MINUTES |
|  | BRA | A5SD |  |
| NAME | BRSET | PORTD, Y, \$20, NTB2 | STANDBY ? <br> NO, FREQUENCY MODE ? <br> YES, STORE MODE ? <br> NO, ENTER STORE MODE |
|  | BRSET | STAT, \$01,NFM |  |
|  | BRSET | STAT5, \$40,ASM |  |
|  | BSET | STAT5,\$40 |  |
|  | RTS |  |  |
| ASM | LDAA | LED |  |
|  | JMP | DOIT | SAVE |
| NFM | LDAA | P SNP | NOT FREQUENCY MODE |
|  | BNE | SKPCLR | SETUP |
|  | JSR | CLTR |  |
| SKPCLR | INC | PSNP | PS-NAME CHANGE MODE |
|  | LDAA | PSNP |  |
|  | CMPA | \# 8 |  |
|  | BLS | NTB3 |  |
|  | CLR | PSNP |  |
| NTB3 | LDAA | \#80 |  |
| SDT | STAA | DIST |  |
|  | BSET | STAT4, \$01 | SET DISPLAY TRANSIENT FLAG |
| NTB2 | RTS |  |  |
|  | ******************************************* |  |  |
|  | * |  |  |
|  | * PROG, the displayed number is added to * <br> * the IF offset, converted to binary and * <br> * |  |  |
|  |  |  |  |  |
|  | * stored in SMEM \& SMEM+1. |  |  |
|  | * NEW takes binary working frequency <br> * in SMEM \& SMEM+1 converts it to BCD and |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |

## Application Note




Application Note



Application Note

|  | BCLR | PORTB, Y, \$10 | LE LOW |
| :---: | :---: | :---: | :---: |
|  | LDAA | SMEM+1 |  |
|  | ANDA | \# \$ 7F |  |
|  | BSR | SQU8I | SEND MSBYTE |
|  | LDAA | SMEM | AND LSBYTE OF |
|  | BSR | SQU8I | NEW FREQUENCY |
|  | BSET | PORTB, Y, \$10 | LATCH IT |
|  | BCLR | PORTB, Y, \$10 | LE LOW |
|  | LDAA | \#\$03 | SEND |
|  | BSR | SQU7I | REFERENCE |
|  | LDAA | \#\$20 | DIVIDE RATIO |
|  | BSR | SQU8I | $800=8 \mathrm{MHz} / 10 \mathrm{kHz}$ |
|  | BSET | PORTB, Y, \$10 | LATCH IT |
|  | ***************************************** |  |  |
|  | * * |  |  |
|  | * Serial output routine to the MC145157. * <br> * * * |  |  |
|  |  |  |  |
| P5157 |  |  |  |
|  | LDAA | SMEM | TRANSFER SMEM AND |
|  | LSLA |  | MEM+1 TO TEMPORARY |
|  | STAA | W4 | LOCATIONS AND MOVE |
|  | LDAA | SMEM+1 | UP ONE BIT TO INCLUDE |
|  | ROLA |  | THE 5157 CONTROL BIT. |
|  | BSR | SQU7 | SEND MSBYTE (7 BITS) |
|  | LDAA | W4 | AND LSBYTE OF |
|  | BSR | SQU8 | NEW FREQUENCY |
|  | BSET | PORTB, Y, \$08 | LATCH |
|  | BCLR | PORTB, Y, \$08 | IT |
|  | LDAA | \# \$ 4E | SEND 15 BIT (14+1) |
|  | BSR | SQU7 | REFERENCE |
|  | LDAA | \# \$21 | DIVIDE RATIO |
|  | BSR | SQU8 |  |
|  | BSET | PORTB, Y, \$08 | LATCH IT |
|  | BCLR | PORTB, Y, \$08 | ALL LOW (5157/70 SWITCHED |
|  | RTS |  |  |
|  | ************************************** |  |  |
|  | * * |  |  |
|  | * Subroutines for the MC145157/170. * |  |  |
|  |  |  |  |
|  | ************************************* |  |  |
| SQU8I | LDAB | \# 8 | SEND 8 BITS |
|  | BRA | S1I |  |
| SQU7I | LSLA |  | MOVE OUT MS BIT |
|  | LDAB | \# 7 | AND SEND OTHER 7 |
| S1I | LSLA |  | MOVE I BIT INTO "C" |
|  | BCC | S2I | ZERO ? |
|  | BSET | PORTB, Y, \$02 | NO |
| S21 | BSET | PORTB, Y, \$01 | CLOCK |
|  | BCLR | PORTB, Y, \$01 | IT |
|  | BCLR | PORTB, Y, \$02 |  |
|  | DECB |  |  |
|  | BNE | S1I | ANY MORE ? |
|  | RTS |  |  |
| SQU8 | LDAB | \# 8 | SEND 8 BITS |
|  | BRA | S1 |  |
| SQU7 | LSLA |  | MOVE OUT MS BIT |
|  | LDAB | \#7 | AND SEND OTHER 7 |
| S1 | LSLA |  | MOVE 1 BIT INTO "C" |
|  | BCC | S2 | ZERO ? |
|  | BSET | PORTB, Y, \$02 | NO |
| S2 | BCLR | PORTB, Y, \$01 | CLOCK |
|  | BSET | PORTB, Y, \$01 | IT |
|  | BCLR | PORTB, Y, \$02 |  |
|  | DECB |  |  |
|  | BNE | S1 | ANY MORE ? |
|  | RTS |  |  |



Application Note

| FDB | START |
| :---: | :---: |
| FDB | TINTB |
| FDB | SDATA |
| FDB | SHAFTX |
| FDB | START |
| END |  |
|  | Section synopsis |
| 174) | . RAM1 |
| 256) | . RAM2 |
| 109) | . RAM3 |
| 2889) | . ROM1 |
| 42) | . VECT2 |

" $\quad$ IC1
RTI
IRQ
XIRQ
SWI
ILLEGAL OP CODE
COP
CLOCK MONITOR
RESET

RESET

| Symbol table |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . RAM1 |  | 1 | 00000000 | CONTD |  | 4 | 000005df | INSLP |  | 4 | 000003 fe | NNTR | 4 | 00000968 | RECALL |  | 4 | 00000702 |
| . RAM2 |  | 2 | 00000000 | CONTI |  | 4 | 00000529 | IOK |  | 4 | 0000053c | NO2D | 4 | 000000c6 | RETUNE |  | 4 | 000005 f0 |
| . RAM3 |  | 3 | 00000000 | COUNT |  | 1 | 0000009 a | IOOK |  | 4 | $0000022 e$ | NOPS | 4 | 000000d1 | RETUNE2 |  | 4 | 00000603 |
| . ROM1 |  | 4 | 00000000 | CPSL |  | 4 | 000003cc | IRQ |  | 4 | 00000006 | NORT | 4 | 000007c0 | RJ |  | 4 | 0000030a |
| . VECT2 |  | 5 | 00000000 | CR |  | 4 | $0000099 a$ | ITMP 1 |  | 1 | 00000069 | NOTCH | 4 | 000002bc | RKEY |  | 4 | 000002 ea |
| A5 SD |  | 4 | 00000847 | CTAB |  | 4 | 00000325 | KBD |  | 4 | 0000026f | NOTFF2 | 4 | 00000723 | RP |  | 1 | 0000007c |
| A 7 |  | 4 | 00000524 | DAT |  | 1 | $0000004 b$ | KCLC |  | 4 | 000002f3 | NOTN | 4 | 000008 e | RPT |  | 4 | 00000309 |
| ABO |  | 4 | 00000aa7 | DBNC |  | 4 | 00000a8e | KEY |  | 1 | 00000096 | NOTRT | 4 | 000007 ac | RQ |  | 1 | 00000076 |
| ABO3 |  | 4 | 00000470 | DBOUNC |  | 4 | 00000a93 | KEY1 |  | 4 | 00000279 | NOTSNZ | 4 | 000000e0 | RR |  | 1 | 00000082 |
| ABOA |  | 4 | 000003a3 | DCON |  | 4 | 00000a58 | KEYP |  | 4 | $000002 \mathrm{f5}$ | NRDSP | 4 | $0000019 b$ | RT |  | 3 | 00000028 |
| ABTA |  | 4 | 0000065 c | DCON2 | E | 4 | 00000a60 | KEYP2 |  | 4 | $000002 \mathrm{f7}$ | NRML | 4 | 000002c0 | RTDIS |  | 1 | 000000a3 |
| AD |  | 4 | 00000a24 | DECS |  | 4 | 0000040d | KHZ |  | 4 | 0000098f | NS1 | 4 | 000003 ea | RTDSP |  | 4 | 0000079 f |
| ADD |  | 4 | 00000a1f | DEL500 |  | 4 | 00000471 | KOUNT |  | 1 | 00000097 | NSRO | 4 | 00000194 | S1 |  | 4 | 00000b26 |
| ADJ |  | 4 | 00000a53 | DF |  | 4 | 000007e0 | L1 |  | 4 | 00000298 | NT1 | 4 | 00000165 | S1I |  | 4 | 00000b08 |
| ADON |  | 4 | 00000393 | DI |  | 1 | 000000a4 | L2 |  | 4 | 000009 bf | NT2 | 4 | 0000017 b | S2 |  | 4 | 00000b2d |
| AGS |  | 4 | 0000044 e | DIG2 |  | 1 | 00000098 | L5 |  | 4 | 000001b8 | NT2J | 4 | 000000e4 | S2I |  | 4 | 00000b0f |
| AISM |  | 4 | $0000084 b$ | DIGIT |  | 4 | 00000426 | L6 |  | 4 | 000001d6 | NTB2 | 4 | 00000889 | SAVE |  | 4 | 00000838 |
| AJ |  | 4 | 00000a4e | DISP |  | 3 | 00000000 | LAST |  | 4 | 0000037d | NTB3 | 4 | 00000882 | SCHAN |  | 1 | 000000a5 |
| ALARM |  | 4 | 00000381 | DISP1 |  | 1 | 00000074 | LDRX |  | 4 | 000007 f9 | NUM1 | 1 | $0000009 b$ | SCNT |  | 1 | 000000 ad |
| ALOF |  | 4 | 0000038 e | DISP2 |  | 1 | 00000075 | LDXR2 |  | 4 | 00000802 | NUM2 | 1 | 0000009d | SDATA | I | 0 | 00000000 |
| ALRON |  | 4 | 000003be | DISPP |  | 3 | 00000010 | LED |  | 1 | 0000009 f | NWA | 4 | $000000 f 1$ | SDT |  | 4 | 00000884 |
| ALSU1 |  | 4 | 000004a5 | DIST |  | 1 | 00000047 | LEV |  | 1 | 00000067 | NWWS | 4 | 00000173 | SEC |  | 1 | 0000006 f |
| ALSU2 |  | 4 | 00000569 | DLOOP |  | 4 | 00000a9b | LOOP |  | 4 | 00000a2e | NXT | 4 | 00000a81 | SEM |  | 4 | 00000257 |
| AMIN |  | 1 | 00000072 | DLP |  | 4 | 00000a98 | LOOP 2 |  | 4 | 00000a72 | OK6 | 4 | 0000020b | SHAFT | E | 4 | $0000024 d$ |
| ANTI |  | 4 | 00000191 | DMD |  | 4 | 00000594 | LOOP 3 |  | 4 | 00000a0d | ONAG | 4 | 00000101 | SHAFTX |  | 4 | 0000025 e |
| AOB |  | 4 | 00000833 | DMI |  | 4 | 000004d2 | LP 6 |  | 4 | 000008 eb | ONE | 4 | $000008 a 6$ | SHIFT |  | 4 | 0000044 a |
| AOUR |  | 1 | 00000073 | DNT |  | 4 | 000002 f4 | LPP |  | 4 | 0000089f | ONOFF | 4 | 000003a4 | SK |  | 4 | 00000946 |
| ARI |  | 4 | 00000220 | DNT2 |  | 4 | 000002ed | M8 |  | 4 | 00000079 | OUR | 1 | 00000071 | SK2P |  | 4 | 000005 ee |
| ASM |  | 4 | 0000086 a | DOIT |  | 4 | 00000663 | MAK20 |  | 4 | 000004 fe | OUTCH | 4 | $000005 d 6$ | SKDB |  | 4 | 00000a96 |
| BAND |  | 4 | 00000926 | DOM |  | 1 | 00000044 | MAK2E |  | 4 | 00000502 | P | 1 | 00000015 | SKIP |  | 4 | 0000093 e |
| BCON |  | 4 | 000009b6 | DOW |  | 1 | 00000046 | MAK30 |  | 4 | 00000506 | P5157 | 4 | 00000 ada | SKP |  | 4 | 0000045 c |
| BCTO |  | 1 | 000000ac | DOWN |  | 4 | 000007 de | MAK41 |  | 4 | 0000050a | P5170 | 4 | $00000 a 28$ | SKPCLR |  | 4 | 00000876 |
| BD3 |  | 4 | 000001 ec | DR1 |  | 4 | 00000466 | MAK61 |  | 4 | 0000050e | PDEC | 4 | 00000555 | SKSM |  | 4 | 00000964 |
| BIT |  | 1 | 00000068 | E6L |  | 4 | 000001 fa | MIN |  | 1 | 00000070 | PDEC2 | 4 | 00000541 | SKTA |  | 4 | 0000067 b |
| BMJD |  | 1 | 00000000 | EON |  | 2 | 00000000 | MJD |  | 1 | 00000030 | PI | 1 | 00000061 | SLEEP |  | 4 | 000003f6 |
| BTO |  | 4 | 00000201 | EXIT |  | 4 | 000002 ab | MJDAT | I | 0 | 00000000 | PIN | 1 | 00000065 | SLEP |  | 4 | 00000400 |
| CARRY |  | 1 | 00000099 | FINST |  | 4 | 000006 fb | MKE20 |  | 4 | 000005c0 | PINC | 4 | 00000491 | SLEPT |  | 1 | 00000048 |
| CBCD | I | 0 | 00000000 | FLN |  | 4 | 00000122 | MKE2E |  | 4 | 000005c4 | PINC2 | 4 | 0000047d | SLPTOK |  | 4 | 00000415 |
| CBH |  | 4 | 00000b45 | FMB |  | 4 | $0000079 b$ | MKE39 |  | 4 | $000005 d 0$ | PINOK1 | 4 | 00000161 | SM |  | 4 | $0000097 d$ |
| CE6 |  | 4 | 000001ec | FOK |  | 4 | 0000061d | MKE5A |  | 4 | 000005c8 | PION | 1 | 00000063 | SMEM |  | 1 | 000000a0 |
| CG6 |  | 4 | 000001c8 | FULON |  | 4 | 0000010f | MKE7A |  | 4 | 000005 cc | PJ | 4 | 0000031d | SODM |  | 4 | 000003 b 2 |
| CHE |  | 4 | 000001 e | GETAD |  | 4 | 00000780 | MNTH |  | 1 | 00000042 | PNM1 | 4 | 000005 e 9 | SOK |  | 4 | 00000148 |
| CLAL |  | 4 | 0000097b | GON2 |  | 4 | 000002c8 | MOD | I | 0 | 00000000 | PROC | 0 | 00000000 | SPCC |  | 4 | 00000984 |
| CLEAR |  | 4 | 0000096f | GOON |  | 4 | 000002e4 | MODE |  | 4 | 00000933 | PROG | 4 | 0000088 a | SQU7 |  | 4 | 00000b23 |
| CLOCK | I | 0 | 00000000 | GOON2 |  | 4 | 000002d0 | MSH |  | 4 | 00000238 | PSC | 4 | 000003c7 | SQU7I |  | 4 | 00000b05 |
| CLOOP |  | 4 | 0000005a | GOON3 |  | 4 | 000002de | MSM |  | 4 | 00000854 | PSN | 3 | 00000020 | SQU8 |  | 4 | 00000b1f |
| CLOP |  | 4 | 000009f5 | GROUP |  | 1 | 00000057 | MZ |  | 4 | 00000577 | PSN0 | 4 | $000004 d 7$ | SQU8I |  | 4 | 00000b01 |
| CLP |  | 4 | 00000992 | H2L |  | 4 | 00000032 | NABT |  | 4 | 00000834 | PSN1 | 4 | 00000599 | SRT |  | 4 | 00000820 |
| CLQ |  | 4 | 00000993 | HIGH |  | 4 | 000003 e 9 | NACS |  | 4 | 000004d3 | PSNOK | 4 | 00000690 | START |  | 4 | 00000009 |
| CLRAS |  | 4 | 00000996 | HTOH |  | 4 | 000004c4 | NACS2 |  | 4 | 00000595 | PSNP | 1 | 0000004 a | STAT |  | 1 | 000000a6 |
| CLREON | I | 0 | 00000000 | HZ |  | 4 | 00000586 | NAME |  | 4 | 00000859 | PSOK | 4 | 000006 c 7 | STAT2 |  | 1 | 000000a7 |
| CLRNVM |  | 4 | 000009f2 | IDLE |  | 4 | 000000 ac | NDU |  | 4 | 000000 db | PTY | 1 | 0000005 f | STAT3 |  | 1 | 00000028 |

AN494

| CLTR | E | 4 | $000009 a 3$ | IDLJ |  | 4 | 0000023 c | NEW E | 4 | 000008a9 | PTYCMP | 1 | 00000060 | STAT4 |  | 1 | 000000a9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLTR2 |  | 4 | 000009a6 | IF |  | 4 | 000007 d 1 | NEWJ | 4 | 000007 ee | Q | 1 | 00000003 | STAT5 |  | 1 | 000000 a |
| CNTB |  | 4 | 00000510 | IFO |  | 4 | $000008 d 3$ | NEWSUB | 4 | 00000707 | R | 1 | 00000027 | STAT6 |  | 1 | 000000 ab |
| CNTS |  | 4 | 000005d2 | IFS |  | 4 | 00000908 | NEWSUB2 | 4 | 00000716 | RCLP | 4 | 0000023 f | STIF |  | 4 | 000008 ca |
| COM2 |  | 4 | 00000a09 | IHR |  | 4 | 000004 b 9 | NFM | 4 | 0000086 f | RDSTO | 1 | 00000049 | STORE |  | 4 | 00000671 |
| COMP |  | 4 | 00000a0b | IHRD |  | 4 | 0000057d | NFMB | 4 | 00000805 | READ1 | 4 | 00000756 | STR |  | 4 | 00000405 |
| CONF |  | 1 | 0000006 c | INITD | I | 0 | 00000000 | NNT2 | 4 | 000000 e7 | REARET | 1 | 00000022 | STRST |  | 4 | 00000000 |
| SUB |  | 4 | 00000a07 | TATP |  | 4 | 0000022 a | TMP GRP | 1 | 0000004 f | TPOF | 4 | 000003 f2 | W4 |  | 1 | 0000008 e |
| SWB2 |  | 4 | 0000079b | TBH |  | 4 | 000000be | TMQ | 1 | 0000000c | TPOK | 4 | 00000155 | W5 |  | 1 | 00000090 |
| SYN |  | 1 | 0000006 a | TEM |  | 4 | 0000025a | TMRB | 4 | 00000003 | TT1 | 4 | 000007d9 | W6 |  | 1 | 00000092 |
| T5S |  | 4 | 000004c7 | TEST |  | 4 | 00000821 | TNP | 4 | 00000655 | TT2 | 4 | 000007 e 8 | W7 |  | 1 | 00000094 |
| T5SD |  | 4 | 00000589 | TFCC | I | 0 | 00000000 | TOG57 | 4 | 00000517 | UDCNT | 4 | 00000399 | WAIT | I | 0 | 00000000 |
| T910 |  | 4 | 00000b3d | TH32 |  | 1 | 0000006 d | TOG57J | 4 | 00000495 | UP | 4 | 000007 cf | WBYTE |  | 4 | 0000076 f |
| TAEH |  | 4 | 000003e6 | TH8 |  | 1 | 0000006 e | TOOH | 4 | 000004 b 4 | W1 | 1 | 00000088 | WRITE1 |  | 4 | 0000075d |
| TASOK |  | 4 | 0000064 c | TINTB | I | 0 | 00000000 | TPEN | 4 | 000003d5 | W2 | 1 | 0000008 a | XEM |  | 4 | 00000268 |
| TASW |  | 4 | 0000062 b | TMP |  | 1 | 0000001 e | TPIC | 4 | 0000062 c | W3 | 1 | 0000008 c | YEM |  | 4 | $0000026 b$ |
| TATP |  | 4 | 0000022a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ( $\mathcal{M}$ ) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

## How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

## Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

