2

G522-0330-00

MPCG604EUM/AD
3/98

PowerPC 604e

RISC Microprocessor User's Manual
with Supplement for PowerPC 604™ Microprocessor

PawerP¢

(W) seoTOROLA

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

The PowerPC 604e microprocessor embodies the intellectual property of IBM and of Motorola. However, neither party assumes any responsibility or
liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party. Neither party is to be
considered an agent or representative of the other party, and neither has granted any right or authority to the other to assume or create any express or
implied obligations on its behalf. Information such as data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the
microprocessor may vary as between IBM and Motorola. Accordingly, customers wishing to learn more information about the products as marketed by a
given party should contact that party.

Both IBM and Motorola reserve the right to modify this manual and/or any of the products as described herein without further notice. Nothing in this
manual, nor in any of the errata sheets, data sheets, and other supporting documentation, shall be interpreted as conveying an express or implied
warranty, representation, or guarantee regarding the suitability of the products for any particular purpose. The parties do not assume any liability or
obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations as to the products described
herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the marketing party and the customer.
In the absence of such an agreement, no liability is assumed by the marketing party for any damages, actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither IBM nor Motorola convey any license under their respective intellectual property rights nor the rights
of others. The products described in this manual are not designed, intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation
where personal injury or death may occur. Should customer purchase or use the products for any such unintended or unauthorized application, customer
shall indemnify and hold IBM and Motorola and their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The PowerPC name, the PowerPC logotype, PowerPC 601, PowerPC 603, PowerPC 603e, PowerPC 604, and PowerPC 604e are trademarks of
International Business Machines Corporation used by Motorola under license from International Business Machines Corporation.

© Motorola Inc. 1998. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1998. All rights reserved.

CONTENTS

Paragraph : Page
NumgerIO Title Numb%r
About This Book
U o [T o ot TR XXIV
OrQANIZALION. ...ttt e et e et e e e e e e e e e e e e e e XXV
YU oo [=1Sy (=To [m == o 1 Vo SR XXVi
General Information xxvi
PowerPC Documentation xxvi
(©70] 0177T o1 1 0] o F TSP PP PP XXViii
Acronyms and ADDIeviatioNsScouuiiiiiiiiii e XXiX
Terminology CONVENTIONScooiiiiiiiiii et XXXii
Chapter 1
Overview
1.1 OVEBIVIBW ...ttt et e e e ettt e s e e e e e e e e e e e eeeeeesasssssn s naaeaeeeaeeaneeeeennnnnnes 1-1
1.2 PowerPC 604e MIiCroproCessor FEAtUIrES.........ccccvvvviieeiiiiiiiiiiiiee e e e e e e e e e, 1-2
1.3 PowerPC Architecture Implementation ... 1-8
1.3.1 FRATUIES ... ettt e e eaans 1-9
1.3.2 PowerPC 604e Processor Programming Model.............cccoeeeiiiiiiiiiiiiiiiinnn, 1-10
1.3.2.1 Implementation-Specific REQISTErS.........ooiiiiiiiiiiiieeee e 1-10
1.3.2.2 Support for Misaligned Little-Endian ACCESSES.........ceeeevvvvviiiviieiiininnnns 1-12
1.3.2.3 INSTFUCTION SEL....iiiiiiiiieeee e e e e e e e e e e e e e 1-13
1.3.3 Cache and Bus Interface Unit Operationccccceeeeeeiiiiiiiiiiiciciiveeeee 1-14
1331 8ISy 0Tt 1) o = T o = 1-14
1.3.3.2 Data CaAChEot a e e e 1-15
1.3.3.3 Additional Changes to the Cache ... 1-15
1.3.4 EXCEPUIONS. ..ot 1-16
1.35 MeMOTrY MaNAgEMENT.......uuiiiiiii it e et e e e e ean e ee 1-21
1.3.6 INSTFUCTION TIMING .o e e e e e 1-21
1.3.7 Y (o [b= LI =2t] o 11 [0 1-24
1.3.8 System Interface OPEerationooovviiiiiiiiiiiiii e 1-27
1.3.9 PerformanCe MONITON 1-28
Chapter 2
Programming Model
2.1 RO STET S ... e e e e e e e e 2-1
211 REGISIEN SeL ... e 2-2
2.1.2 PowerPC 604e-SpecCific REQISTEISuuuiiiiiiiiiiiiieee e 2-8
2121 Instruction Address Breakpoint Register (IABR).......cccoeevviiieiiiiiiiieeiiiiiiens 2-9
Contents iii

CONTENTS

Paragraph , Page
Number Title Number
2.1.2.2 Processor Identification Register (PIR)cooovviiiiiiii i, 2-9
2123 Hardware Implementation-Dependent Register O............ccccccviiiviviiinennen. 2-10
2124 Hardware Implementation-Dependent Register 1 (HID1)cc.cccovveeee 2-12
2.1.25 Performance Monitor REQISIEIS........ccuuiiiiiiiiiiii e 2-12
21251 Monitor Mode Control Register 0 (MMCRO)covvvviiiiiiiiiiiiiiiiiis 2-13
2.1.25.2 Monitor Mode Control Register 1—MMCRL1.............cccovvvvvvvviviiiinnn, 2-14
2.1.25.3 Performance Monitor Counter Registers (PMC1-PMC4) 2-15
21254 Sampled Instruction Address Register (SIA)ovvvviiiiiiiiiiies 2-20
2.1.255 Sampled Data Address Register (SDA).......ccoovvviiiieiiiiiiiiiiiee e, 2-21
2.1.3 RESEE SOUINGS . vvu it e e aaan 2-21
2.2 Operand CONVENTIONS.oiiiiiiiiiit e e e e e r e e e e e e ae s 2-22
221 Floating-Point Execution Models—UISA.............ouviiiiiiiiiie e 2-22
2.2.2 Data Organization in Memory and Data Transfers...........ccocovvvviiiiiiieeieiinnnnn. 2-23
2.2.3 Alignment and MiSaligNed ACCESSES........uuuuiiiiiiiiiiiiiiieeee e 2-23
224 Support for Misaligned Little-Endian ACCESSES..........ccvvvvvvvreiiiiiiieieeaeeenn, 2-23
2.2.5 Floating-Point OPerand............coooioiiiiiiiiii e e e eaaes 2-24
2.2.6 Effect of Operand Placement on Performancecccceeeeeveieiiiieenninnnnnnnns 2-26
2.3 INSIrUCLION SEt SUMMAIYcii i i e e e e e eaes 2-26
231 Classes Of INSIIUCTIONSeueiiiiieee s 2-28
2311 Definition of Boundedly Undefined ... 2-28
23.1.2 Defined INSruction ClasScoooiiiiiiiiiiiiii e 2-28
2.3.1.3 [llegal INStrUCtiON ClaSSiiiiiiiiiii e 2-29
23.14 Reserved INSruCtion Classccovveeee i 2-30
2.3.2 AdAresSSINg MOUESccoooiiiieeii et e e e e e e e e e e e e eeeeeraanne 2-30
2.3.2.1 MeEMOIY AAAIrESSING . .coveviiie e e e e ars 2-30
23.2.2 MEMOIY OPEIANGScoeeiiiiiiiiiii ittt e e e e e e e e e e 2-30
2.3.2.3 Effective Address CalCulationeeeeeeiiiiiiiiieiii e 2-31
2.3.2.4 SYNCAIONIZALIONcoiiiiii e 2-31
23241 Context SYNCAroNIZAtiONoooviiiiiiiiii e 2-31
2.3.24.2 Execution Synchronization................eeuuiiiiiiiiiie e 2-32
2.3.2.4.3 Instruction-Related EXCEPLIONS........cccuviiiiiiiiiiiiie e 2-32
2.3.3 INSLIUCLION SEt OVEIVIEW ...euiiiiiii et e e e e s 2-33
234 POWErPC UISA INSIUCHIONScooiiiiiiiiiiiiiiiieee ettt 2-33
2.34.1 INtEgEr INSIIUCHIONS ... i 2-33
23411 Integer Arithmetic INSIrUCTIONS.........uuviiiiiiiiiiiiiii e 2-33
2.34.1.2 Integer Compare INSrUCLIONSccooeeeeiiiiieeieeeee e e 2-35
2.3.4.1.3 Integer Logical INStrUCHIONSccoviiiiiiii e 2-35
23414 Integer Rotate and Shift INSIrUCHIONSuuviiiiiiiiiiiiiiieieee s 2-36
2.3.4.2 Floating-Point INSIFUCHIONScovveiiiiicie e 2-37
23421 Floating-Point Arithmetic INStructions..............ccoovviiiiiiiiiiiei e, 2-37
23422 Floating-Point Multiply-Add INStrUCtIONSeeviiiiiiiiiiiiiiiiiie 2-38
2.3.4.2.3 Floating-Point Rounding and Conversion Instructionsccc......... 2-38
23424 Floating-Point Compare INStruCtioNS...........cccovvviiieeiieiiie e, 2-39
iv PowerPC 604e RISC Microprocessor User's Manual

CONTENTS

Paragraph . Page
Number Title Number
2.34.25 Floating-Point Status and Control Register Instructions........................ 2-39
2.3.4.2.6 Floating-Point MOVe INSrUCHIONSuvviiiiiiiiiiiieeeeeeee e 2-40
2.3.4.3 Load and Store INStrUCLIONSccoiiiiiiiiiiiiieiiiieee e 2-40
23431 Self-Modifying COUEuuueiiiiieeee e 2-41
2.3.4.3.2 Integer Load and Store Address Generation..........cccoovveeeeeeeeeeevveeeeninnnnns 2-41
2.3.4.3.3 Register Indirect Integer Load INStruCtionscceeeevvvivvveeiiivinnnnnnn. 2-42
23434 Integer Store INStrUCHIONS.......coooii i 2-43
2.3.4.35 Integer Load and Store with Byte Reverse Instructions...........ccccc....... 2-44
2.3.4.3.6 Integer Load and Store Multiple INStructionsS..........cccccoeeeeeeeiiiivveeiinnnn, 2-44
2.3.4.3.7 Integer Load and Store String INStrUCtiONS...........ueeeiiiiiiieeeeeeeieeeeeeiiiies 2-45
2.3.4.3.8 Floating-Point Load and Store Address Generation..............cccuvvvvveeeeee. 2-47
2.3.4.3.9 Floating-Point Store INStrUCtiONS.......ccoeiviiieeieiieeeeec e, 2-48
2344 Branch and Flow Control INStrucCtions..............euuvuieiiiiiiiieeeeeeeeeeeecceeeeiiiies 2-50
23441 Branch Instruction Address Calculation...........ccccoovvieieeieeieeeveeeeeiiiiiennes 2-50
2.3.4.4.2 Branch INSITUCHIONS ...ttt 2-50
23443 Condition Register Logical INStruCtions............cocevviiiiiiiiiiiiiiieeeeeeeeeeee 2-51
23444 TrAP INSTIUCTIONS ...ttt e e 2-51
2.3.45 System Linkage Instruction—UISA.............oooviiiiiiiiiiee e, 2-52
2.3.4.6 Processor Control INStructionS—UISAueiiiiii 2-52
2346.1 Move to/from Condition Register INStructionsS..........ccccceeveeeeeeeiiiiiinnnne 2-52
2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)............... 2-53
2.3.4.7 Memory Synchronization Instructions—UISA ..., 2-53
2.35 POWEIPC VEA INSIIUCLIONSevvviiiiiiieieeeeeeeeeeeeeeeeeeeatiins s s e s e e e e e e eeeeeeeeeannnnnes 2-54
235.1 Processor Control INStruCtioNS—VEA ... 2-55
2.35.2 Memory Synchronization INStructions—VEAiiiiiiiiiiee 2-55
2353 Memory Control INStruCtioNS—VEAuuiiiiiiiiii 2-56
23531 User-Level Cache InStructionsS—VEA ..o 2-57
2354 Optional External Control INStruCtioNS............uuuvvieiiiiiiieee e 2-59
2.3.6 POWErPC OEA INSIIUCHIONS ...uvviiiieei e e eeeeee et e e e e e e e e e e e e eeeeaeennnnnnns 2-59
2.3.6.1 System Linkage INStructionsS—OEA ... 2-59
2.3.6.2 Processor Control INStructionS—OEAuuiiiiiiieeeeeee e 2-59
2.3.6.3 Memory Control INStructionS—OEA ...t 2-61
2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA) 2-61
2.3.6.3.2 Segment Register Manipulation Instructions (OEA).......cccoevvveeeeeeennnnee. 2-61
2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA) 2-62
2.3.7 Recommended Simplified MNEMONICS.............oevvviiiiiiiiiie e 2-63
Chapter 3

Cache and Bus Interface Unit Operation
3.1 Data Cache Organizationoooooo oo 3-4
3.2 Instruction Cache Organizationcccccieieiiiiiiiiie e 3-5
Contents %

CONTENTS

Paragraph , Page
Number Title Number
3.3 MMUS/BUS INterface UNIt..........oooiiiiiiiiiiiiieee et eeeeeeaeees 3-6
3.4 Memory CONErenCy ACHIONSccooiiiiiiiiiii et 3-9
3.4.1 PowerPC 604e-Initiated Load and Store Operations.............ccevvvvvvvvviiiieeeeenn. 3-9
3.4.2 General Comments 0N SNOOPING «..vvuuiiiiiiiiiie e 3-10
3.5 Sequential CONSISIENCYcuiiiiiiiiieeeei e 3-11
3.5.1 Sequential Consistency Within a Single Processorccccevvvvvvviviiiiiieeeenn. 3-11
3.5.2 Weak Consistency between Multiple Processorscccovvevvveiiiiiiicieiiiinneeen, 3-11
3.53 Sequential Consistency Within Multiprocessor SYStemscccceeeeeeeeennnnns 3-12
3.6 Memory and Cache CONEIENCY.........ccoviiiiiiiiiiceee e 3-12
3.6.1 Data Cache Coherency ProtOCOl...........ccuuuiiiiiiiiiiiii e 3-13
3.6.2 Coherency and Secondary Caches............cccciiiiiiiiiiiiiie e 3-15
3.6.3 Page Table Control BitS..........coiiiiiiiiiiiiie e e e e 3-15
3.6.4 MESI State DIagram.........uiiiieiiiiiiie et e e e et e e e e aaa s 3-15
3.6.5 Coherency Paradoxes in Single-Processor SysStemsccccceeeeeeeiiiiiiiiiicneee 3-16
3.6.6 Coherency Paradoxes in Multiple-Processor Systems............cccceevvvvevvvvvnnnnns 3-17
3.7 Cache ConfigUIatioNuoiiiiiiiiii e e e e eees 3-17
3.8 Cache Control INSIIUCLIONScooiiiiiieiiiiiieree e e e e e e e 3-18
3.8.1 Instruction Cache Block Invalidatielfi).............ccccovvririiiiiiiiiiiie e, 3-18
3.8.2 INStruction SYNCHrONIZESYNC)ccviiiiiiii e 3-19
3.8.3 Data Cache Block Touctadpt) and
Data Cache Block Touch for Stomcptst)...........ccuvvvviviiiiiiiiiieeeeeeeeeee, 3-19
3.84 Data Cache Block Set to ZedTlfz).............coveeeiiiiiiiiiiiiieeie e 3-19
3.8.5 Data Cache Block StOMOPST)cooovviiiiiiiiiiiiie e 3-20
3.8.6 Data Cache Block FIUSHODT)coevvvreiiiiiiie e 3-20
3.8.7 Data Cache Block Invalidat@opi)euvvviiiiiiiieiieeeeieeeeeeeeen 3-20
3.9 BasiC Cache OPerationSeeiiiiiiiiiiiiiii e 3-20
3.9.1 CaChe RElOAAS.coi i 3-20
3.9.2 Cache Cast-Out OPEratioNuuuiiiiiiiiiiie e e 3-21
3.9.3 Cache BIock PUSh Operationccccuuuiiiiiiiiiiiiiiiieieeeee e 3-21
3.94 Atomic Memory REfEreNCES.........ccovviiiieeee e 3-21
3.9.5 Snoop Response t0 BUS OPErationScovvuvuiiiieiieiiii et e e e 3-22
3.9.6 Cache Reaction to Specific Bus Operationscoocccuivviviiiiiiiiieiiceeeeeeeeen 3-22
3.9.7 Enveloped High-Priority Cache Block Push Operationccccevvvvvvinnns 3-25
3.9.8 Bus Operations Caused by Cache Control Instructions.............ccccceeeeevvevnnnnn. 3-26
3.9.9 Cache Control INSTIUCLIONScoovieie e 3-26
3.10 CACNE ACHIONS ...ttt e e e e e e e e 3-27
3.11 Access to DireCt-Store SEgMENTS.........uuiii i 3-48
Chapter 4

Exceptions
4.1 PowerPC 604e MiCroproCessor EXCEPLIONS..........uuuuuuimiiiiiiiiiiiieieeeee e e 4-2
4.2 Exception Recognition and PriOMtIESoevvvvviiiiiiiiiiee e 4-5
Vi PowerPC 604e RISC Microprocessor User's Manual

CONTENTS

Paragraph . Page
Number Title Number
4.3 EXCEPLION PrOCESSING .. ittt e et e e e e e e e e e e eeaes 4-6
431 Enabling and Disabling EXCEPLIONScuviiiiiiiiieiieeeee e 4-9
4.3.2 Steps for EXCeption ProCeSSING......ciiiiiiii e e e e e e e e e e e eeeeanaaaanees 4-10
4.3.3 SettiNg MSRIRI] ...ttt e e e e e e e e e e e e e e e e e e aann 4-11
4.3.4 Returning from an Exception Handler.............coiiiiiiiiie 4-11
4.4 ProCess SWILCHINGevveiiiiicee e 4-11
4.5 EXCeption DefiNItIONScooiiiiiiie e 4-12
45.1 System Reset Exception (0X00100)uuuuurrermreriiiiiiiaeeeeeeeee e eesssiienneeeeeees 4-13
45.2 Machine Check Exception (0X00200)ceuurruueiiiiieeieeeeeeeeee e 4-14
4521 Machine Check Exception Enabled (MSR[ME] = 1)......ccoevviiiiviirnnniinnnnnn. 4-15
45.2.2 Checkstop State (MSRIME] = 0) ..coooviiiiiiiiiiiiiiiiieeee e 4-16
45.3 DSI Exception (0X00300)uuuuuiiieeeieeeeeeeeeeeeeeeeistviisss s e e e e e e e e aeeeeeeeeeesanesnnnann 4-16
45.4 ISI Exception (OX00400)........uuuuuuuaaeeeeeeeeeeeeeeeeeietitttiss s s e e e e e e e e e e aeeeeeeasenennnnns 4-16
455 External Interrupt Exception (OX00500)cccoviiiiiiiiiiiiiiiiiiiiiiiieeeee e 4-16
45.6 Alignment Exception (0X00600)uueiiiiiiiieeeeeeeeeeeeeeeeee e e e 4-17
4.5.7 Program Exception (OX00700)........uuuuuummiiiaeeeeeeeeeeeeeeeeeeeiieiies e e e e e e e e e eeeee 4-18
4.5.8 Floating-Point Unavailable Exception (OX00800)cccvvviiieieeiiiiiiiiiiiiiens 4-19
45.9 Decrementer Exception (0X00900)..........cccoiiiiiiiiiiiiiiiiiiieee e e e e e e e e ee e 4-19
4.5.10 System Call Exception (OXO0C00)coiieiieeeeeeieiieeeeeiiiiiiees e e e e e e eeeeeeeees 4-19
4511 Trace Exception (OXO0D00)........uuuuuruerrieieiiiiieeeeeeeeeeeaeass s eeeeeeeeas 4-19
45.12 Floating-Point Assist Exception (OXO0EQQ)uuvuviiiiiiieiieeeeeeeeeeeeeeeeennns 4-20
4.5.13 Performance Monitoring Interrupt (OXO0F00)uuiiiiiiieeeeeeieieieeeeeiiiiiiiines 4-20
4.5.14 Instruction Address Breakpoint Exception (0X01300)ccevvveiirieeeeennnnnnnnns 4-21
45.15 System Management Interrupt (OX01400)uuueeiiieieeeeeeeeeee e 4-21
4.5.16 Power ManagemeNnt e 4-21
Chapter 5

Memory Management
5.1 IMIMU OVEIVIBW ... e eeeeeeeeeeeeeeeettees s s e e e e e e e e e e e e e e eeeeaeeaseas s e e e e eeeeeeeaaeeeeeenensnnnnnns 5-2
5.1.1 MEMOTNY AQAIESSING ..ceeveeeeiiiiiii et e s et e e e e e e e e et e et e e e e e e e e e e eaaeeeeesesrsrnnnnes 5-4
5.1.2 MMU OrganiZatiON........coeeeieeiiieiieieieiiiiii e e e e e e e e e e e e e e e e e eeees 5-4
5.1.3 Address Translation MeChaniSMS.........ccoooeeiiiiiiiiiieire e 5-9
5.1.4 Memory Protection Facilities............c.oovvvrviiiiiiiicciee e 5-11
5.1.5 Page History INfOrmation.............ooeiiiiiiiiiiiiiiii e 5-12
5.1.6 General Flow of MMU Address Translation...............cccceeiiiiiiieeeeeeeecieeeeiiines 5-12
5.1.6.1 Real Addressing Mode and Block Address Translation Selection............ 5-12
5.1.6.2 Page and Direct-Store Interface Address Translation Selection............... 5-14
5.1.6.2.1 Selection of Page Address Translation............ccccovvivniiiieiiiiiiviiiieeee 5-16
5.1.6.2.2 Selection of Direct-Store Interface Address Translation....................... 5-16
5.1.7 MMU EXCEPLIONS SUMIMANYevvruiiiiiiiieeeeeeeeeeeeeeeeeetieeiiiissa s e e e e e e e e e e eeeeeeeennes 5-16
5.1.8 MMU Instructions and Register SUMMArYcccveeeeeiiiiininiiiiiiiiveeeeeee 5-18

Contents Vii

CONTENTS

Paragraph , Page
Number Title Number
5.1.9 TLB Entry INvValidation..............oiiiiiiiiiiii et 5-20
5.2 Real ADAressing MOGE.........coooiiiiiiii e 5-20
5.3 Block AAress TranSIation............oovviiiiiiiiiiiiiiiiee e 5-20
54 Memory Segment MOEloiiiiiiiiii e 5-20
54.1 Page History RECOIAINGcooiiiiiiiiiiii et 5-21
54.1.1 REFEIENCEA Bil....ceiiiiiiiiiieieeee e 5-22
54.1.2 Changed Bit........ooiiiiiiiiie e 5-22
5.4.1.3 Scenarios for Referenced and Changed Bit Recording ..o 5-23
54.2 Page Memory Prote€CtiONuuuuuiiiiiiii e et e e e e e e e e e e e e e eeeananenes 5-24
5.4.3 LI S B B TS T o] (o o 5-24
5431 TLB OrganiZatiONueeeeeeeiieiiieeeeeeeeeee et e e e e e e e e e e e e e e e 5-25
5.4.3.2 TLB INVAIALION ..ttt 5-26
544 Page Address Translation SUMMaAry........cccooveiiiiiiiiiieeecee e 5-28
5.4.5 Page Table Search OPEration...............eeeeiiiiiiiiiiieeie s 5-30
5.4.6 Page Table Updatescooooii i e e 5-34
5.4.7 Segment Register UPatesScoouuuiiiiiiiiiiiie et 5-35
5.5 Direct-Store Interface Address Translationceeviieeieeeeeeeeeeeeee 5-35
55.1 Direct-Store INtErface ACCESSEScccuuuiiiiiiiiiiiiieteet e e e 5-35
5.5.2 Direct-Store Segment ProteCtionuiiiiiiiiiiiiii e 5-36
5.5.3 Instructions Not Supported in Direct-Store Segments............ccoceevcvvvvvrnnnnne. 5-36
554 Instructions with No Effect in Direct-Store Segmentscceeeevvvvveeiinnns 5-36
555 Direct-Store Segment Translation Summary FIOW............ccoviiiiiiiiiiiinnee, 5-37
Chapter 6

Instruction Timing
6.1 Terminology and CONVENTIONS........oiiiiiie e e e e s 6-1
6.2 INSErUCtioN TIMING OVEIVIEW.......uuiiiiiiiiiiiiiiiieieee e e e 6-3
6.2.1 PIPEliNG SITUCIUIES ... e 6-5
6.2.1.1 Description of PIpeling Stages........coouiiiiiiiiiiiiiiiiiiiiiee e 6-7
6.2.1.1.1 FEICH StAgecoeieeeeeee e ——————— 6-8
6.2.1.1.2 DECOAE StAQE .. .ciiiiiii i 6-8
6.2.1.1.3 DISPALCN STAGE ...ttt 6-9
6.2.1.1.4 EXECULE STAQE ..ot 6-9
6.2.1.1.5 COMPIELE StAQE.....ccieieiiii e 6-10
6.2.1.1.6 WIte-BacCK STagE........cooiiiiiiiiiiie e 6-11
6.3 Memory Performance CoNnSIderationsccceveeeeeeeeeeeeriieeeeeieiiirne e e e e eeeeeas 6-11
6.3.1 IMIMU OVEIVIEW...... e e ettt e e e e e e e e e e et e et tb b e e e e e e e e e e e eeees 6-12
6.3.2 CACNE OVEIVIBW.......eiiiitiiiee et e e e e e e e e e e e e e e b e e e e as 6-12
6.3.3 BUS INterface OVEIVIEWcooiiiiiiiiiiiiiie ettt 6-14
6.3.4 MEMOIY OPEIALIONS .. .ciiiiiii et e e e e e e e e et e e e e eaaa e 6-14
6.3.4.1 WIHEE-BACK MOMEvviieiiiiiii e 6-14
6.3.4.2 WIte-Through MOOE.........ovveiiiiie e e e 6-15
viii PowerPC 604e RISC Microprocessor User's Manual

CONTENTS

Paragraph . Page
Number Title Number
6.3.4.3 Cache-INhibited MOAEccooiiiiie e 6-15
6.4 TiMING CONSIAEIALIONS......cciiiiiiieeieee i 6-16
6.4.1 General INStrUCION FIOWuuiiiiiiiiiiiiiieicee e 6-16
6.4.2 Instruction FEtCh TIMINGouuviiiiiiii e 6-17
6.4.2.1 Cache Hit TiIMing EXAMPIEuuuiiiiiiiiiiiiieeeeeeeee e 6-17
6.4.2.2 Cache Miss Timing EXample...........uuueiiiiiiiiiiiiieie e 6-21
6.4.3 (O Tod g [0 N g o1 (= 11 T0] o 1SS 6-23
6.4.4 BranCh PrediClioneiiiie e e e e e e e 6-23
6.4.4.1 Branch Timing EXamMPIEScoovvviiiiiiiiiieeee e 6-24
6.44.1.1 Timing Example—Branch Timing for a BTAC Hit.........ccccoooeeeiiinine. 6-24
6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction......... 6-25
6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction....... 6-27
6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction........ 6-27
6.4.5 SPeCUIAtiVE EXECULION.....cciiiiiiii ittt 6-28
6.4.6 Instruction Dispatch and Completion Considerations............cccceeeeeeeeeeeeneenn... 6-29
6.4.6.1 Rename RegisSter OPeratioNccoouveeeeeeeeiiieeeeeeeiiiiiie e e e e e e e e e e eeeeeeeeeens 6-30
6.4.6.2 Execution Unit CONSIAEratiONSuuuueiiiiiiieeeeeeeeeeeeeeeeieiininnee e e e eeeeeaes 6-32
6.4.7 INStruction SerialiZationoooiiiiii e 6-32
6.4.7.1 Dispatch Serialization MOE.............uuuueiiiiiiiiieeieeee e 6-33
6.4.7.2 Execution Serialization MOUe.........cccoeeeeiiiiiieeeeeires e 6-33
6.4.7.3 Postdispatch Serialization Mode................iiiiiiiiiiiie e 6-33
6.4.7.4 Serialization of String/Multiple INStrUCtioNScccoevviiiiieeiiiieeeeiiiies 6-34
6.4.7.5 Serialization of INPUI/OULPULeueeiiiiiiiiiiieieeeeee e 6-34
6.5 EXecution UNit TIMINGSooiiiiiiiiiiies e s e e e e e e e e e e e eeeeeanenes 6-34
6.5.1 Branch Unit INStruction TIMINGScooeeiiiiiieeieiee e 6-34
6.5.2 Integer Unit INStruction TiMINGScuuueiiiiiiiiiiiiieieeeee e 6-34
6.5.3 Floating-Point Unit InStruction TIMINGS..........covvviiiiiiiiiiiieeeeeeeeeeee e 6-36
6.5.4 Load/Store Unit INStruction TIMINGScoovviiiiiiiiiiiiiiaaeee e e e eeeeeeeeeeieeeinnens 6-38
6.5.5 isync, rfi, andsc INStruction TIMINGS........coovviviiiieeiiirerre e e e e e 6-40
6.6 Instruction Scheduling GUIdElINES............uuiiiiiiii i, 6-41
6.6.1 Instruction DISPatCh RUIES........cooiiiii e 6-41
6.6.2 Additional Programming Tips for the PowerPC 604e Processor 6-42
6.7 INStruction LatencCy SUMMAIYuuuuuiiiiiieieeeeeeeeee e s e e e e e e e e e e e eeeeeananes 6-44
Chapter 7

Signal Descriptions
7.1 SigNal CoNFIQUIATIONeeiiiiiiiiiee e e e e e s 7-2
7.2 S (o[= LI D= od] 11 0] o - UPRURRR 7-3
7.2.1 Address Bus Arbitration Signals..............oooviveiiiiiiiiiiii e 7-4
7.2.1.1 Bus REQUESBR)—OULPULcc.eeeiieiieeieeetie ettt etee et 7-4
7.2.1.2 BUS GrantBG)—INPULcc.eoiiiuiiieeie ettt 7-4
Contents iX

CONTENTS

Paragraph , Page

Number Title Number

7.2.1.3 Address BUS BUSABB)cooiiiiiiee ettt evee e seaae e 7-5
7.2.1.3.1 Address Bus BUSHEBB)—OULPUL..........cccccveiieiiieiiecieciiecreecre e, 7-5
7.2.1.3.2 Address Bus BUSHKEBB)—INPULcoovreiieeeiieeeiie e eevee e 7-5
7.2.2 Address Transfer Start SigNalScoouuiiiiiiiii e 7-6
7.2.2.1 Transfer StarlT)c.ccviiieie e 7-6
7.22.1.1 Transfer StarT8)—OULPUL..........cccveiiiieeeeiie et 7-6
7.22.1.2 Transfer StarTS)—INPULoovieiie e 7-6
7.2.2.2 Extended Address Transfer StIATS)oooovvreriiiiiiieeee 7-7
7.2.2.2.1 Extended Address Transfer SAATS)—Output............cceevevvvevvinnnnnns 7-7
7.2.2.2.2 Extended Address Transfer SEATS)—Inputcoooovvviiiiiiniennnnn, 7-7
7.2.3 Address Transfer SIgNAISuuuuuiiiiiii s 7-7
7.2.3.1 Address BUS (A[J0—=31])ccceeiiiiiiieeeieiiiiiirs e e e e e e e e e e e e e e e ea e 7-8
7.2.3.1.1 Address Bus (A[0-31])—Output (Memory Operations).............cccceuvuen. 7-8
7.2.3.1.2 Address Bus (A[0-31])—Input (Memory Operations)ccccuvvvvnee. 7-8
7.2.3.1.3 Address Bus (A[0—31])—Output (Direct-Store Operations)................... 7-8
7.2.3.1.4 Address Bus (A[0-31])—Input (Direct-Store Operations)c........ 7-9
7.2.3.2 Address Bus Parity (AP[0—=3])cccoouuumiiiiiiieiee et 7-9
7.2.3.2.1 Address Bus Parity (AP[0—3])—OUtPUL..........cccerrrrrriiriiiiiieie e eeeeee 7-9
7.2.3.2.2 Address Bus Parity (AP[0=3])—INputcciiiiiiiiiiiiiieeeeeiiie e, 7-9
7.2.3.3 Address Parity EITOAPE)—OULPUL..........ccecoveieiirieireecie e 7-10
7.2.4 Address Transfer Attribute SIgNalS.........cccooeeeeiiiiiiieeer e 7-10
7.24.1 Transfer Type (TT[0—4]) oo e 7-10
72411 Transfer Type (TT[0—4])—OULPULooviiiiiiiiiiiieee e 7-10
7.2.4.1.2 Transfer Type (TT[0—4])—INPUL........cooeemrriiiiiiiiee e 7-11
7.24.2 Transfer Size (TSIZ[0=2]) ..uuoeiieiieiee e 7-12
72421 Transfer Size (TSIZ[0—2])—OULPUL.........cccuviiiiiiiiiiiieeeee e 7-12
7.2.4.2.2 Transfer Size (TSIZ[0=2])—INPUL.......cccceeeeiiiiiiieccee e, 7-13
7.2.4.3 Transfer BUISTBST) . ..o 7-13
7.243.1 Transfer BUrsTBST)—OULPULuuuiiiiiiiiiiiiiiiieeee e 7-13
7.2.4.3.2 Transfer BUrsTBST)—INPUL.........coovviiiiiiiiiiieee e 7-14
7.2.4.4 Transfer Code (TC[0—2])—OUtPUL..........uiiiiiiiiiiiiie e 7-14
7.2.4.5 Cache INhibit@)—OUPUL.........ceeiiiiiiiieciece e, 7-17
7.2.4.6 Write-ThroughW/T)—OUtPULc.eeeieieecrie ettt 7-17
7.2.4.7 (][] o= 1] =7) TSROSO 7-18
7.24.7.1 GIODAIGBL)—OULPUL.......ovieeiiieieciieie ettt 7-18
7.2.4.7.2 GIODAIBBL)—INPULcovveeiiieeciie ettt ettt e e eaee e 7-18
7.2.4.8 Cache Set Element (CSE[O—1])—Output.........ccoeeieiiiiiiiieeieeeiiiei e, 7-18
7.2.5 Address Transfer Termination SigNalScccociiiiiiiiiiiiieeeee e 7-18
7.25.1 Address AcknowledgBACK)—INPUL............oevvvmiiiiiiiiiee e 7-18
7.25.2 Address RetrARTRY) v 7-19
7.25.2.1 Address RetnARTRY)—OULPUL...........uuiiiiiiiiiiiiieiieeeeeee e 7-19
7.25.2.2 Address RetrARTRY)—INPUL..........ouuviiiiiieiieee e 7-20
7.2.5.3 SHArEATHD)......veectie ettt ettt et te et et aaee e, 7-20
X PowerPC 604e RISC Microprocessor User's Manual

CONTENTS

Paragraph . Page

Number Title Number

7.25.3.1 ShareBHD)—OULPULeeeuieeeeeeeie ettt 7-20
7.25.3.2 SharedSHD)—INPUL.......cceeiiiiieciiecieecie et 7-21
7.2.6 Data Bus Arbitration SignalScccooeeeiiiiiiiiiieece e 7-21
7.2.6.1 Data Bus GranDBG)—INPUL.........c..cooureeiiiieecie et 7-21
7.2.6.2 Data Bus Write ONYDBWO)—INPUL.......cccovviiiiieiiiiiieiiiiiiiiieeeeee 7-22
7.2.6.3 Data BUS BUSYDBB)cccvviiiiiieiiiiec et ettt eaae e 7-22
7.2.6.3.1 Data Bus BUSPDBB)—OULPULc..cecueeeuieeieeeeieeeiee et 7-22
7.2.6.3.2 Data Bus BUSIDBB)—INPUL.........ccoeiuiiiiieiiciiecieecte e 7-23
7.2.7 Data Transfer SigNalS.............ueiiiiiiie e 7-23
7.2.7.1 Data Bus (DH[0—31], DLI0—=31]) ..eeeeeeeeeeieiiniiiiiiriiinieiereeeeeeeeeee e e e e e e s e s aennnes 7-23
7.2.7.1.1 Data Bus (DH[0—31], DL[0—31])—Outputccceeeerrririiiicnnrrrrrreneee 7-24
7.2.7.1.2 Data Bus (DH[0—31], DL[0—=31])—INput.........cccccmrmrmiiiiiiiiiiiiieeieee e, 7-24
7.2.7.2 Data Bus Parity (DP[O—=7])...uuuuuuuiaaaaaeaeeeeeeieeeeeeiiiiiiiiinss e e e e e e e e eeeeeeennneees 7-24
7.2.7.2.1 Data Bus Parity (DP[0O—7])—OUIPULuuuriiiiiiiiiiiiieiieeeeeeee e 7-24
7.2.7.2.2 Data Bus Parity (DP[O—=7])—INpuUt.........ccoeeeiiiiiiiiiie e 7-25
7.2.7.3 Data Parity ErTODPE)—OULPULccveeeeeeeeieecieecie et 7-25
7.2.7.4 Data Bus Disabl®BDIS)—INPULcoooeriiiiiiiiieeeeeceee e 7-26
7.2.8 Data Transfer Termination SigNalS..........ccccooeeeeeiiiiiiiiiiiiie e, 7-26
7.2.8.1 Transfer Acknowledg@ A)—INPUtccooooiiiiiiiieeee e, 7-26
7.2.8.2 Data RetryRTRY)—INPULcoooriiiiiiiie e 7-27
7.2.8.3 Transfer Error Acknowledg@HEA)—INPULccceeveeeeeieieeciee e 7-27
7.2.9 System Interrupt, Checkstop, and Reset Signalscccceeiiiiiiniiiiiiiiiiiiieinns 7-28
7.2.9.1 INterTUPLINT)—INPUL. ..ottt 7-28
7.2.9.2 System Management InterrUMI)—INPuULcocvveeeiieeicreeecieeeeeieenn 7-29
7.2.9.3 Machine Check InterruCP)—INPpuUL.........c..cooueeeieeieeeiece e 7-29
7.29.4 Checkstop INPEKSTP_IN)—INPpUL.....coooriiiiiiieeee e 7-30
7.2.9.5 Checkstop OutpuUEKSTP_OUT)—OUtpUL.........coeviriiiiiiiiiece e, 7-30
7.2.9.6 RESEE SIGNAIS....euiiiiiii e 7-30
7.2.9.6.1 Hard ReESEHRESET)—INPULuuiiiiiiiiiiiiiiiiieceeeee e 7-30
7.2.9.6.2 Soft ReSEBRESET)—INPULvvviiiiiiiiie e 7-31
7.2.10 Processor Configuration SignalsS...........coooviiiiiiiiiiiiii e 7-31
7.2.10.1 Drive Mode (DRVMOD)—INPUL........ccooiiiiiiiiiiiiiieeeeeeee e 7-31
7.2.10.2 Timebase Enable (TBEN)—INPUL.........ccoooiiiiiiiiiiiee e, 7-31
7.2.10.3 ReservatiomRERV)—OULPULcoeiiiiiiiiiiiiiee e 7-32
7.2.10.4 L2 Intervention (L2_INT)—INPUL.......ccoiiiiiiiiiiiiiieeeeeeeeeee e 7-32
7.2.10.5 RUN (RUN)—INPUL .. a e 7-32
7.2.10.6 Halted (HALTED) —OULPUL.........uuiiiiiiiiiiiieiiciieee e 7-33
7.2.11 COP/SCAN INTEITACE.......iiieeeeeeeeiiiee et e e e e e e e e e e e e eeeeeeeaennnes 7-33
7.2.12 (04 (o Tod 1S T [=1 LSRR 7-34
7.2.13 Power ManagemeNnt ..o 7-34
7.2.13.1 State Transition from Normal Mode to Doze Mode..........cccccvvvveiiiieennnnn. 7-35
7.2.13.2 State Transition from Doze Mode to Nap Modecccceevvieeiiiieeenennnnne, 7-35
7.2.13.3 State Transition from Nap Mode to Doze Modecceeeeiiiiiiieeieiieneeeee, 7-35
Contents Xi

CONTENTS

Paragraph , Page
Number Title Number
7.2.13.4 State Transition from Nap Mode to Normal Modecccceveeiieiiinnnnnnn. 7-35
7.2.13.5 State Transition from Doze Mode to Normal Mode............ccccciiiiennennn. 7-36
7.2.13.6 System Clock (SYSCLK)—INPUL...........uuuviiiiiiiiieee e 7-36
7.2.13.7 Test Clock (CLK_OUT)—OULPUL........iiiiiieiiiiceceeeees e 7-36
7.2.14 ANAlog VDD (AVDD)—INPUL ...ttt 7-37
7.2.15 VOLTDETGND Signal (BGA Package Only).........coovvvvviviieiiiiiiiiiieeeeeeeeeee, 7-37
7.2.16 PLL Configuration (PLL_CFG[0-3])—INputccccevrmmiiiiieeiriiiiii e, 7-37
Chapter 8
System Interface Operation

8.1 OVBIVIBW ...ttt ettt e s e e e e e e e e e e e e e e e eeeaeast s e e e e e eeeeeeeeeeeeneennnnes 8-1
8.1.1 Operation of the Instruction and Data Caches..............cceeeeiiiiiiieeeeeeeeeeeeeiiiiens 8-2
8.1.2 Operation of the System INterface ... 8-4
8.1.3 DIrECE-StOIE ACCESSES ... i i e ieieeee ettt e e e e e e e e ettt e e e e e e e aeaeeeaes 8-5
8.2 MemOry ACCESS PrOtOCOL..........uuuiiiiiiiiii et e e e e e e e e e e e e eaeeeeeaannes 8-6
8.2.1 Arbitration SIgNaAlS.........ovuiiiii 8-7
8.2.2 Address Pipelining and Split-Bus Transactions................cccccuvviiiiiiiieieeeeeeeeenn. 8-9
8.3 AdAreSS BUS TENUIE ...ttt e e e e e e e e e e e e 8-10
8.3.1 Address BUs ArDITFAtIONueeeiiiiiiee e 8-10
8.3.2 FNe [0 LTS I = T £ = PP 8-12
8.3.2.1 AdAreSS BUS Parilycccooeiieiiiieeeeeeeiie e e e e e e e 8-13
8.3.2.2 Address Transfer Attribute Signals ..o, 8-13
8.3.2.21 Transfer Type (TT[0—4]) SIgNAISouiiiiiiiiiiiiiie e 8-14
8.3.2.2.2 Transfer Size (TSIZ[0-2]) SIgNalSouvvvvviiiiiiiiieeeeeeeeeeeeeeen 8-14
8.3.2.3 Burst Ordering During Data Transfersccccoeeiiiiviiiiiie e, 8-14
8.3.24 Effect of Alignment in Data Transferscccccvvviiiiiiiiiiiiie 8-15
8.3.24.1 Alignment of External Control INStructionscevvvvviiiiiiiiieeeeeeenn, 8-17
8.3.25 Transfer Code (TC[0-2]) SIgNaAISccuvuiiiiiiiiiiiie e 8-18
8.3.3 Address Transfer Terminationuuvuueiiiiiiiee s 8-19
8.4 Data BUS TENUIEueiiiiieeiiee et e e e e e e e e e e e e nn e e 8-20
8.4.1 Data BUS ArDITratiONeeeeiiiiiieieeee e eeeeeeaaaee 8-21
84.1.1 Effect oARTRY Assertion on Data Transfer and Arbitration................. 8-22
8.4.1.2 USING thOBB SIgNalveeevieeiiee ettt 8-23
8.4.2 Data BUS WIIE ONIY...... i e e e eaaaaas 8-24
8.4.3 [z L= T =1] (] RSP RURRTR 8-24
8.4.4 Data Transfer TermiNatioN...............ue e 8-25
8.4.4.1 Normal Single-Beat Terminationccoeiieiiiiiiiiiiee e 8-26
8.4.4.2 Data Transfer Termination Due t0 @ BUS EITOrccooovviieieeiiiiiiiieiiiiiinns 8-29
8.4.5 Memory Coherency—MESI ProtoColcccooviiiiiiiiiiiiieeeeeee e 8-30
8.5 TIMING EXAMPIES ... e 8-33
8.6 DIreCt-Store OPEratiON..........coeiiiiiiiiiiii et 8-39
8.6.1 DireCt-Store TranSACHONSccocuiiiiiiiiiiiii e e e 8-41
Xii PowerPC 604e RISC Microprocessor User's Manual

CONTENTS

Paragraph . Page
Number Title Number
8.6.1.1 StOre OPEIALIONS ...t e e e e e e aeaaas 8-42
8.6.1.2 (=Tl @ o 1] =11 (o] 0 S TSP PPPPPPPR 8-42
8.6.2 Direct-Store Transaction Protocol DetailS.............ceviiiiiiiiiiiiiiiie, 8-43
8.6.2.1 PACKET Ottt a e e e e e e e e eaaarne 8-44
8.6.2.2 = 03 (= PSPPSR 8-45
8.6.3 FL@ R LT o] |V @ 0 1= = 1[0 SO 8-45
8.6.4 Direct-Store Operation TIMINGottt e e e e e e eeeeeeeeeee 8-47
8.7 Optional BuS COoNfIQUIAtIONScueiiiiiiiiaeeieiiei et e e e e e 8-49
8.7.1 Data Streaming MOEuuuiiiii e 8-49
8.7.1.1 Data Streaming Mode Design Considerations................uuuvveeiiiiiiinneeeeeeennn. 8-51
8.7.1.2 Data Streaming in the Data Streaming MOdeuvvieeiiiiiiiiiieiinnnnnnnns 8-51
8.7.1.3 Data Bus Arbitration in Data Streaming Mode.................ceeevvvivvvvinnnns 8-52
8.7.14 Data Valid Window in the Data Streaming Mode..............ccceovvvveviiiiinnnnns 8-52
8.7.2 NO-DRTRY MOUEuvtiiiiiiiiiiiiiiiieee et e e e e e e e e e e e e e e e e 8-53
8.8 Interrupt, Checkstop, and Reset Signalsooevviviiiiiiiiiii e, 8-54
8.8.1 EXternal INTEITUPLSot e e e e e e e e e e e eeeeeneees 8-54
8.8.2 CRECKSIOPS - 8-54
8.8.3 RESET INPULS. ... et e et e et e e e e e e aee 8-54
8.84 PowerPC 604e Processor Configuration during HRESEToovvviiiennn. 8-54
8.9 Processor State SIgNAISuueiiiiiiiiiiiiiie e 8-55
8.9.1 Support for thievarx/stwex. Instruction Pair.............oooevvviiiiiiiiiieeeeeeeeee, 8-55
8.10 IEEE 1149.1-Compliant INterfacecooooiiieiiiiiiiieeeeece e 8-55
8.10.1 IEEE 1149.1 Interface DeSCHPLONuuuriiiiiiiiiiiiiiiiieee e 8-55
8.11 Using Data BUuS WItE ONIYuueiiiiiii e 8-56
Chapter 9

Performance Monitor
9.1 Performance Monitor INTEITUPL.........uue e 9-2
9.1.1 Special-Purpose Registers Used by Performance Monitor................ccevvvvvvnnns 9-2
9.1.1.1 Performance Monitor Counter Registers (PMC1-PMC4)cccccevvvvvnnnnnn 9-3
9.1.1.2 SIA aNd SDA REQISIEIS ..ottt e e e e e e e e e eeeeeeeeenees 9-9
9.11.21 Sampled Instruction Address Register (SIA) ... 9-9
9.1.1.2.2 Sampled Data Address Register (SDA)........ccoovviiiiiiiiiieei e 9-9
9.1.1.2.3 Updating SIA and SDAueioi e 9-10
9.1.1.3 Monitor Mode Control Register 0 (MMCRO)uuuviiiiiiiiiiiiiiieeeeeeeeees 9-10
9.1.1.3.1 Monitor Mode Control Register 1—MMCR1...............oovvvvviiiviiinnn, 9-12
9.1.2 [NV o1 @ 10 o] 1] o [P PP 9-12
9.1.2.1 V=T o1 ST =1 [T o 1o o [9-13
9.1.2.2 TRIESNOIA EVENTS ...ttt 9-13
9.1.2.2.1 Threshold ConditionSoooviiiiiiii e 9-14
9.1.2.2.2 Lateral L2 Cache INtervention...........ccovvvviiieeeuiiiiiiiiiieee e e e e eeeeeeeeeeeenneens 9-14

Contents Xiii

CONTENTS

Paragraph , Page
Number Title Number
9.1.2.2.3 LAY =1 11 T 1 PSP
9.1.2.3 NONthreshold EVENES.........iiiiieee e

Appendix A

PowerPC Instruction Set Listings

Al Instructions Sorted by MNEMONIC..........coooiiiiiiiiieeeeeee e
A.2 Instructions Sorted by OPCOUE.........ccoviiiiiieieicrr e
A3 Instructions Grouped by Functional Categoriescccccceeiieeeveviiii e,
A4 Instructions Sorted by FOIM.........coo e
A5 INSLrUCtION Set LEJENceeeiiiiiiiccee e e e e e e e e e e e e e e eaeeannees

Appendix B

Invalid Instruction Forms

B.1 Invalid Forms Excluding Reserved Fields..........ccccovvviiiiiiiiii e,
B.2 Invalid Forms with Reserved Fields (Bit 31 EXCIUSIVE)...........cccevvviiiiiviinnnnnnn.
B.3 Invalid Form with Only Bit 31 Set........oooiiiiiiiii e
B.4 Invalid Forms from Invalid BO Field ENcodingSccooevvvviiiiiiviiiiiiiiee e

Appendix C
PowerPC 604 Processor System Design and Programming Considerations

C.l PowerPC 604 Programming MOdel...........ccooiiiiiiiiiiiiiiiiee e
Cl1 REGISTEI SO ..ottt
C.1l2 Operand CONVENTIONSuuuiiiiiiiiiiiiiiee e eaaaeeee s
C.2 Cache and Bus Interface UNit............eeeeiiiiiiiiiiii e
C.3 (o= 011 0] 1SR
C.4 Memory Management UNit...........ooooiiiiiiiiiiiiiee e
C.5 1S3 (0 T 1T T T 211 o PRSP
C.6 Y [0 = 1R
C.7 System INterface OPEratioN...........coouiiiiiiiiiiii e
C.8 Performance MONITOTuuuuiiiiiiiiiiiiiiee e e e e e

Glossary of Terms and Abbreviations

Index

Xiv PowerPC 604e RISC Microprocessor User's Manual

Figure
Number

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

ILLUSTRATIONS

. Page

Title Number
CBIOCK DIagQram ... 3. 1-
. Programming Model—PowerPC 604e Microprocessor Registers..................... 1-11
. Big-Endian and Little-Endian Memory Mappingeeeeeeeeeeeeeeeeennnninnnnnnnns 1-13
. Cache Unit OrganiZationcceoeiiiiiiieeeee e e e e e e 1-14
B T oL T[S BT o [= o O 1-21
. Block Diagram—Internal Data Paths..............cccuuiiiiiiiiiiii e 1-23
. PowerPC 604e Microprocessor Signal GroUPS..........covvveevvviviiiiiiiiieeeeeeeeeeaeeeee 1-25
c SYSIEM INTEITACE ... {...... 1-2
. Programming Model—PowerPC 604e Microprocessor Registers....................... 2-3
. Instruction Address Breakpoint REQISLEruuuueiiiiiiiiiiieeeeeeeeeeeeee e 2-9
. Processor Identification REQISIENueuiiiiiiiei e 2-9
. HID1 Clock Configuration REQISIENuuuuiiiiiiiiiiiiiiiieeeee e 2-12
. Monitor Mode Control Register 1 (MMCRL)........uciiiiiiiieieeiiieceeeeeee e 2-14
. Big-Endian and Little-Endian Memory Mappingccoovvvviimiviiiniiininneeeeeeeeen 2-24
. Cache Unit Organizationoooeiiiiiiiiiiiiii ettt 3-3
. Cache INtegrationooviiiiiiicie e 4....... 3-
. Bus Interface Unit and MMU............coooiiiiiiiiiiii e 3-7
. Memory QUEUE OrganiZatiONuuuuurerrieeeieieeeeeeeeeeee e s s s eeaeaaeeas 3-8
CIMEST STAES ...ttt a e -14...... 3
. MESI Cache Coherency Protocol—State Diagram (WIM = 001)..................... 3-16
. Machine Status Save/Restore RegiSter 0. 4-6
. Machine Status Save/Restore RegiSter L..........ouuuiuiiiiiiiiiiieeeeeeeeeeeeeeeee 4-6
. Machine State RegiSter (MSR)uuuuuiiiiiiiiee e eeeeeeeees 4-7
. MMU Conceptual Block Diagram—a32-Bit Implementations.............ccccccceeeeen.n. 5-6
. PowerPC 604e Microprocessor IMMU Block Diagram.............ccccceeeeiiiiieeeeeeennn. 5-7
. PowerPC 604e Microprocessor DMMU Block Diagramcccceeeiiiiiieeeenenn. 5-8
. Address TranSIation TYPES......uuuuuiiiiiiiiiiiiie e a e 5-10
. General Flow of Address Translation (Real Addressing Mode and Block) 5-13
. General Flow of Page and Direct-Store Interface Address Translation............. 5-15
. Segment Register and DTLB Organizationeeeeeeeieieiieeieeeeennnsssnnenns 5-25
. Page Address Translation FIOW—TLB Hit.........cccccoooiiiiiiiiiiiieeece e 5-29
. Primary Page Table Sarch ... 5-32
. Secondary Page Table Search FIOW ... 5-33
. Direct-Store Segment Translation FIOW................iiiiiiiiiiiiieeiccceee 5-37
. Block Diagram—Internal Data Paths............ccooooiiiiiiiiiiii e 6-4
. GPR Reservation Stations and ReSUlt BUSES.............cccciiiiiiiiiiiiiiii 6-5
. PIpEling DIagram........ciei it a e B.eens 6-
. PowerPC 604e Microprocessor Pipelineg Stagesccoooeviiiiiiiiiiiiiiiiiiiiiiieeeeeee 6-7
. Data Caches and Memory QUEUESccuuiiiiieiieiiieeeeeeeeiite e e e 6-13
. Instruction Timing—Cache Hit.............ooooriiiii e 6-18
. Instruction Timing—Instruction Cache Miss (BTAC Hit)cccceviiiiiiiininnns 6-21

Illustrations

XV

ILLUSTRATIONS

Figure . Page

Number Title Number

Figure 6-8 . Instruction Timing—Branch with BTAC Hitcoooiiiiiiiiiiiii e 6-24
Figure 6-9 . Instruction Timing—Branch with BTAC Miss/Decode Correction 6-26
Figure 6-10 . Instruction Timing—Branch with BTAC Miss/Dispatch Correction................. 6-27
Figure 6-11 . Instruction Timing—Branch with BTAC Miss/Execute Correction.................. 6-28
Figure 6-12 . GPR RENAME REQISTENuiiiiiiiiiiiiiieeee ettt 6-31
Figure 6-13 . SCIU BIOCK DI@Qramcccoviiiiiieiiiiiiiiiisi e e e e e eee e e eeeeeeeaaaaasss s s e e s e e eeeeeaeseeensnnnnns 6-35
Figure 6-14 . MCIU BIOCK DIagramcciiiiiiiiiieicceieiiie ettt e e e e e e e e eeaaa e e e eeenes 6-36
Figure 6-15 . FPU BIOCK DIBQIaM ...ttt e e e e e e e e e e 6-37
Figure 6-16 . LSU BIOCK DI@Qram........cccoiiiiiiieiiiiiiiiiiisa s e e e e eeeeeeeeeeeeesasnassnnssssesaeeaeaeeeeseesssnsnnns 6-39
Figure 6-17 . Store QUEUE SITUCLUIcovuuiiii ittt e e e e e e e e e e e e e e e naa e e 6-40
FIQUre 7-1 . SIGNAI GIOUPSuuuiiiiiiiiiiiieiee ettt e e e e e e e e e e e e e e e e e e e 7:3........
Figure 7-2 . IEEE 1149.1-Compliant Boundary Scan Interfaceccccccceeeeeeeeiviivieeiiiinnnnns 7-33
Figure 7-3 . Power Management STAteSc.uuiiiiiiiiiiie e e e e e eens 7-34
Figure 8-1 . BIOCK DIBQIAMuiiiiiiiiiiiiiiiei et e e e e e e e e e e e e e e e C T 8-
Figure 8-2 . Timing Diagram LEJENuuuiiiiieii et e e e e e e e e e e e e e 8-5
Figure 8-3 . Overlapping Tenures on the Bus for a Single-Beat Transfer...........ccccccooveeevennnnn. 8-6
Figure 8-4 . ADdress BUS ArDITrAtIONoooiiiiiiiiiieiei e 8-10
Figure 8-5 . Address Bus Arbitration Showing Bus Parking...........ccccceeeeviviiviviiiiiiiicieeeeennn 8-11
Figure 8-6 . AdAress BUS TraNSTeIciiiiiiiiii e 8-13
Figure 8-7 . Snooped Address Cycle WRRTRY ..o 8-20
Figure 8-8 . Data BUS ArDItrationuuviiiiiiiiiii i s e e e e e e e e e e e e e e eeananannnes 8-21
Figure 8-9 . Qualified DBG Generation FOIIOWIAIRRTRYccoiiviiiiiiiiiiiiieeeeeiiiieeee 8-23

Figure 8-10 . Normal Single-Beat Read Termination............ccooouiiiiiiiiiiiiiiiiiiiiiiieeecee e 8-26
Figure 8-11 . Normal Single-Beat Write Termination.............ccoeeviivirieeeeeiiiiiicse e e e e e e eeeeee 8-27
Figure 8-12 . Normal BUrst TranSaCHONiiiiiiiiiiiie et e e e e e eaaaaas 8-27
Figure 8-13 . Termination WitDRTRY ..o 8-28

Figure 8-14 . Read Burst wifhA Wait States an®RTRYccccccovveeeieeecieeecieeeieeenes 3-29

Figure 8-15 . MESI Cache Coherency Protocol—State Diagram (WIM = 001)..................... 8-32
Figure 8-16 . Fastest Single-Beat REAUSuiiiiiiiiiiiiii et 8-33
Figure 8-17 . Fastest Single-Beat WIScoovvieiiiiiiiii e e e e e e 8-34
Figure 8-18 . Single-Beat Reads Showing Data-Delay Controls.........cccccooeeevviiiiiiiiiieiiiieneen, 8-35
Figure 8-19 . Single-Beat Writes Showing Data Delay Controlscccccvviiiiiiiiiiieieeeeenn. 8-36
Figure 8-20 . Burst Transfers with Data Delay CONtrolS..............ouuviiiiiiiiiie e 8-37
Figure 8-21 . Use of Transfer Error ACKNOWIEAFER)ccvveeicrerecirieeiieeeieee e, 8-38
Figure 8-22 . DIreCE-StOrE TEINUIES ...ttt e e e e e e e e e e e e e e e e e e e aans 8-41
Figure 8-23 . Direct-Store Operation—Packet Oooevvviiiiiiiiiiiie e 8-44
Figure 8-24 . Direct-Store Operation—Packet 1coouiiiiiiiiiiiiiii e 8-45
Figure 8-25 . 1/O REPIY OPEIALIONvieeiieieiiieeee ettt e e e e e e 8-46
Figure 8-26 . Direct-Store Interface Load Access EXxampleeieiiiiiiiiiiieieeiieeeeeeeiiiiinns 8-48
Figure 8-27 . Direct-Store Interface Store Access Example.......ccccoovviviiiiiiiiiiiiiie e, 8-49
Figure 8-28 . Data Transfer in Fast-L2/Data Streaming Mode.............coevviiiiiiiiiiiiiiis 8-52
Figure 8-29 . Data Bus Write Only TranSaCtiONuuuiiiiiiiiieeeeeeeeeceeeeeeeiiniss s e e e e e e e e eeeees 8-57
Figure 9-1 . Monitor Mode Control Register 1 (MMCRL).......ccoooiiiiiiiiiiieiiiiiie e 9-12
XVi PowerPC 604e RISC Microprocessor User's Manual

Figure
Number

Figure C-1
Figure C-2
Figure C-3

ILLUSTRATIONS

. Page
Title Number
. CaChE OrganiZatioNoii i C-4
. PowerPC 604 Microprocessor Block Diagram Showing Data Paths................... C-5
. PowerPC 604 Microprocessor Block Diagramcccceeeeiiieeiieeeeeeeceeeeeeiiiiiinns C-7

Illustrations

XVii

ILLUSTRATIONS

Figure : Page
Number Title Number

Xviii PowerPC 604e RISC Microprocessor User's Manual

TABLES

Table . Page

Number Title Number

Table i . Acronyms and Abbreviated TEIMISccccciiiiiieeiiiiiei e e e e e e e e e eeeeaaans XXIX
Table ii . Terminology CONVENTIONSuuuuuiiiiiieeee e ettt e e e e e e e e e e eeeeennenn s XXXil
Table iii . Instruction Field CONVENLIONSuuuiiiiiiiiiee e e e e e e e e e eeeeeenees XXXili
Table 1-1 . Exception ClasSifiCatiONSuuuuiiiiiiiiiiiee e e e e e e e e e e e e eeeeenaanens 1-18
Table 1-2 . Overview of Exceptions and ConditioNSueeuuiiiiiiiieieeeeeeeieceeeeeiiii 1-18
Table 2-1 . MSR[PM] Bl ...ttt e aaannns 6...... 2-
Table 2-2 . Instruction Address Breakpoint Register Bit SettingS...........ccceeevvviiiviiiiiiiiicenn, 2-9
Table 2-3 . Hardware Implementation-Dependent Register 0 Bit Settingsccccceeeeeennn. 2-10
Table 2-4 . HIDL Bit SEEHNGSuuuuiiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e e e e s e aaans 2-12
Table 2-5 . MMCRO Bit SEHINGS ..vvuuuiiiiiiiiee e e e e e e 2-13
Table 2-6 . MMCRL Bit SEUINGScoieeeiieeeeieeiee ittt e ettt a e e e e e e e e e e e e eeeeesannees 2-15
Table 2-7 . Selectable EVENIS—PMCLoouiiiiiiiiiiee e e e e e e e e e eeeeenannes 2-15
Table 2-8 . Selectable EVENIS—PMC2ooviiiiiiiiiie ettt 2-17
Table 2-9 . Selectable EVENtS—PMC3 ... i 2-18
Table 2-10 . Selectable EVENtS—PMUCAccooiiiieerere e e e e e e e e e 2-19
Table 2-11 . Settings after Hard Reset (Used at POWEr-On)cceeiiiiiiiiiieeeeeeeeeeeeeeeiiniinns 2-21
Table 2-12 . Floating-Point Operand Data Type Behavioriiiiiiiiiieeiiiis 2-25
Table 2-13 . Floating-Point Result Data Type Behaviorcccccoiviiiiiiiiiiiiiieeieeeeeeeee 2-26
Table 2-14 . Integer ArithmetiC INStIUCIONSuueiiiiiii i 2-33
Table 2-15 . Integer Compare INSITUCTIONSooiiiiiiiiiiiiiiirea e e e e e 2-35
Table 2-16 . Integer Logical INSIIUCHIONSooiiiiiiiiiiiii e 2-35
Table 2-17 . Integer Rotate INSIrUCLIONSiiiiiiie e 2-36
Table 2-18 . Integer Shift INSIFUCHIONSoeviiiiiiiiiiee e e e e e e eeeeeeeeees 2-37
Table 2-19 . Floating-Point ArithmetiC INSIrUCHIONSuuuiiiiiiiiiiiiiiiieee e 2-37
Table 2-20 . Floating-Point Multiply-Add INSrUCLIONSovvvviiiiiiieiee e, 2-38
Table 2-21 . Floating-Point Rounding and Conversion INStructionscccccevvvvvvvviiinnennn. 2-39
Table 2-22 . Floating-Point Compare INSIIUCTIONScoiiiiiiiiiiiiiiiiiiiiere e 2-39
Table 2-23 . Floating-Point Status and Control Register INStructionscccccceeevvvvvveennnnns 2-39
Table 2-24 . Floating-Point MOVE INSIIUCLIONSiiiiiiiee i e eeeeeeeeeees 2-40
Table 2-25 . Integer Load INSIIUCTIONScooiiiiiiiiiiiiiiie e 2-42
Table 2-26 . Integer Store INSIIUCLIONSuuuueiiiiiii e 2-43
Table 2-27 . Integer Load and Store with Byte Reverse INStructionsccccceeeeveeeeeeeeenennee. 2-44
Table 2-28 . Integer Load and Store Multiple INSrUCHONScovvvviiiieriiiiiiiiieee 2-45
Table 2-29 . Integer Load and Store String INSrUCLIONSvuviiiiiiiiiiiieeeeeeeeeeeeee 2-46
Table 2-30 . Floating-Point Load INStIUCIONSuuuiiiiiiiiiee e 2-47
Table 2-31 . Floating-Point StOre INSIrUCTIONSuviiiiiiiiiieeeeeeeee e 2-48
Table 2-32 . Store Floating-Point Single BENAVIONuuviviiiiiiiiiiiieeeeeeeeeeeee 2-48
Table 2-33 . Store Floating-Point Double BENAVIOrcccoooeiiiiiiiiiii e 2-49
Table 2-34 . Branch INStIUCHIONS.........coovviiiiiiiiiiie e e e e e e e e e e e eeeeaanees 1. 2-5
Table 2-35 . Condition Register Logical INStrUCLIONScccoeiiiiiiiiiiiiiiieeee e 2-51
Table 2-36 . Trap INSTIUCHIONS.ooiiiiii e 5l...... 2
Tables XiX

TABLES

Table . Page

Number Title Number

Table 2-37 . System Linkage INStruCtioN—UISA........ccooiiiiiiii e 2-52
Table 2-38 . Move to/from Condition Register INStrUCHIONS.........ccvvviiiiiiiieieiieiie 2-52
Table 2-39 . Move to/from Special-Purpose Register Instructions (UISA).........ccccceeeeieeeeennnn. 2-53
Table 2-40 . Memory Synchronization INStructions—UISA..........ccoooiviiiiiiiierc e, 2-53
Table 2-41 . Move from Time Base INStrUCHIONcooviiiiiiiiiiiie e 2-55
Table 2-42 . Memory Synchronization INStruCtioNS—VEAuuuiiiiiiiiieieeeeeeeeeeeeeeeeiiaeinanns 2-56
Table 2-43 . User-Level Cache INSrUCLIONScoooiiiiiiiiiiiieiiiiir e 2-57
Table 2-44 . External Control INSIrUCLIONScooiiiiiiiiieee e 2-59
Table 2-45 . System Linkage INStruCtioNS—OEAuuuuiiiieiei e e e e 2-59
Table 2-46 . Move to/from Machine State Register INStructions............ccccccceevvieevviicnieeeeeeinnn, 2-59
Table 2-47 . Move to/from Special-Purpose Register Instructions (OEA)...........cccccvvvvviveennen. 2-60
Table 2-48 SPR Encodings for PowerPC 604e-Defined Reg(etéspr)ccevvvvenens 2-60

Table 2-49 . Cache Management Supervisor-Level INStructioncccccceeeiiiiiiiiiiiieeeeeeviinn, 2-61
Table 2-50 . Segment Register Manipulation INStrUCLIONScoovviiiiieeiiiiiiieeeiie e 2-61
Table 2-51 . Translation Lookaside Buffer Management INStruction.............cccceeeeveeeeeeeennnnee. 2-62
Table 3-1 . Memory Coherency Actions on Load Operations.........cccocovvvvviiinieeeevviiineeeeeeninnn, 3-10
Table 3-2 . Memory Coherency Actions on Store OPerationsccceeeeeeieeeeeeeeeeeeeeeeeennns 3-10
Table 3-3 . MESI State DefiNitIONS.uuuiiiiiiiiiiiiiiieeee e e e e e e e e e e e e e 3-13
Table 3-4 . Response to BUS TranNSACHIONScccoiiiiiiiiiieiiieiiis e e et eearae e e e eenans 3-22
Table 3-5 . Bus Operations Initiated by Cache Control InStructions...............ccoooeeciivinnnnee. 3-26
Table 3-6 . CACNE ACHONSeeiiiiiiiiiiie ettt T.... 3-2
Table 4-1 . Exception ClasSifiCatiONScoiiiiiiiiiiiiic e 4-3
Table 4-2 . Exceptions and ConditioNS—OVEIVIEWcooiiiiiiiiiiiiiiiiiiiieieee e e 4-3
Table 4-3 . MSR Bit SENGS ..oooiiieieeieceieeeee e e ettt s e e e e e e e e e e e e e e eeeeeesessnnnnan 4-7
Table 4-4 . IEEE Floating-Point Exception Mode BitSccovvviiiiiiiiiiiiiiie e 4-9
Table 4-5 . MSR Setting DU t0 EXCEPLIONcooiiiiiiiiiiiiiiee et 4-12
Table 4-6 . System Reset Exception—Register Settingsccccevveeiieeiiiiiiiiieeeiceee e 4-13
Table 4-7 . Machine Check ENable BitSuuuuiiiiiii e 4-14
Table 4-8 . Machine Check Exception—Register Settingscoooeeeiiiiiiiiiiiiiiiiieeeeeeeeeeenn 4-15
Table 4-9 . Other MMU Exception ConditioNScoovvviiiiiiiiiiiiiiiee e e 4-16
Table 4-10 . Trace EXCeption—SRRL SEttNQGSuuiiiiiiiiiiiii e 4-20
Table 5-1 . MMU Feature SUMMANYcooiiiiiiiiiiiiiiiiiaiiiiiiiii ettt e e e e e e e e e e e e s e s s aieneeeeaeeeees 5-3
Table 5-2 . Access Protection Options fOr PAgesccooiieiiieiiiiiiiieeeeiieee e ee e 5-11
Table 5-3 . Translation Exception CONAItIONSuuiiiiiiiiiiiiiieeceiiiie e e e e e eeaans 5-17
Table 5-4 . Other MMU Exception Conditions for the PowerPC 604e Processor 5-18
Table 5-5 . PowerPC 604e Microprocessor Instruction Summary—Control MMUs 5-19
Table 5-6 . PowerPC 604e Microprocessor MMU ReQIStersccoovvvvveiiiiiiiieveviiiiiieeeeeeiinnn, 5-19
Table 5-7 . Table Search Operations to Update History Bits—TLB Hit Case....................... 5-21
Table 5-8 . Model for Guaranteed R and C Bit Settingscovvvviviviiiiiiiiiiie e eeeee e, 5-24
Table 6-1 . Execution Latencies and Throughputsccccoiiiiiiiiiiie e, 6-7
Table 6-2 . Instruction EXeCULION TIMING ...ccoiiiiiiiiiiiiiiiiiiiiiiii e e 6-45
Table 7-1 . Transfer Encoding for PowerPC 604e Processor Bus Masterccccceceeeennn. 7-11
Table 7-2 . Data TranSTer SIZEuuuuuieeiiiiiii s 7-13
XX PowerPC 604e RISC Microprocessor User's Manual

TABLES

Table . Page

Number Title Number
Table 7-3 . Transfer Code Signal ENCOAINGccooiiiiiiiiiiiiiiaie e 7-14
Table 7-4 . Data Bus Lane ASSIGNMENTSuuuiiiiiiiiiiiiiieeiee e e e e e e e e e e ee e s 7-24
Table 7-5 . DP[0—7] Signal ASSIGNMENLSuuuuuiiiiiieiiieeeeeeee et e e e e e e e e e e e e e eeeeanannnns 7-25
Table 7-6 . PLL Configuration ENCOINGS......coiiiiiiiiiiiiiiiiieiiiiiiiise s 7-37
Table 8-1 . Bus Arbitration SIgNalSuuuiiiiiiiiiiiiiiiiee e 8-9
Table 8-2 . Transfer Size Signal ENCOAINGS..........covviiiiiiiiiiiiiie e a e 8-14
Table 8-3 . BUISt OrUeIINGccooi ittt e e e e e e e e e e eeeeeeenees 15......8-
Table 8-4 . Aligned Data TranSTerSoooveiiiiiiiiiiiiee e e e e e e e e e e e e eeeeeaeennne 8-15
Table 8-5 . Misaligned Data Transfers (Four-Byte Examples)coooovviiiiiiiiiiieeeeeeeee, 8-16
Table 8-6 . Misaligned Data Transfer—Three-Byte EXamplesccccooeiiiiiiiiiiiiiiiiiiiinnnnnns 8-17
Table 8-7 . Transfer Code ENCOINGcccuuuuiiiiiiiiiiiiiiie e e e 8-18
Table 8-8 . CSE[0—1] SIgNAISuuuuiiiiiiiie i e e e e e e e aaes 8-32
Table 8-9 . Direct-Store BUS OPEratiONSccooiiiiiiiiiiiiiiiiiaae et e e e e e 8-41
Table 8-10 . Address Bits for I/O Reply OPErationsooovioiiiiiiiiiiiiiiiiiieeeeeee e e e e e 8-46
Table 8-11 . Processor Modes Configurable during Assertion of HRESET 8-55
Table 8-12 . IEEE Interface Pin DeSCIPONS........ccoiiiiiiiiiiiiiiiieie e 8-56
Table 9-1 . Performance MONITOIr SPRS.......uuiiiiiii e 9-3
Table 9-2 . Selectable EVENIS—PMUCLuuiiiiiiiiiiiiiiiiee e a e 9-4
Table 9-3 . Selectable EVENIS—PMC2u s 9-5
Table 9-4 . Selectable EVENIS—PMC3 9-6
Table 9-5 . Selectable EVENIS—PMUCAouiiiiiiiiiiiiiiieee e 9-7
Table 9-6 . MMCRO Bit SeUINGS ..o i i e eieeeeeeeeeee it e ettt e e e e e e e e e e e e aeeeeeeeneeees 9-10
Table 9-7 . MMCRL Bit SETHNGS .. .uuuuuttiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e s 9-12
Table A-1 . Complete Instruction List Sorted by MNe€mONICcccoeveeiiieeeiiiiiiiie, A-1
Table A-2 . Complete Instruction List Sorted by Opcodeooviiuiiiiiiiiiiiiieeeeeeeeeeeeeeiiiiies A-9
Table A-3 . Integer ArithmetiC INSITUCHIONS.........cooviiiiiiee e A-17
Table A-4 . Integer Compare INSIIUCLIONSooiiiiiiiiiiiiie e e e e e e A-18
Table A-5 . Integer Logical INSITUCTIONS........uuuuuiiiiiie e e e e e eeeeeeeananes A-18
Table A-6 . Integer Rotate INSIIUCLIONScooviiiiiiiiiiiiiess e e e e e e e eees A-19
Table A-7 . Integer Shift INSITUCLIONSccooiiiiiiiee e e A-19
Table A-8 . Floating-Point Arithmetic INStrUCLIONS...........coovviiiiiiii e, A-19
Table A-9 . Floating-Point Multiply-Add INSTrUCTIONScccuiiiiiiiiiiiieeceeee e A-20
Table A-10 . Floating-Point Rounding and Conversion InStructions...............cccccevvvvvvviceennnn. A-20
Table A-11 . Floating-Point Compare INStIUCLIONScooiiiiiiiiiiiiiiieiee e A-20
Table A-12 . Floating-Point Status and Control Register INStructions............cccccoeeviiiiiiiiinns A-21
Table A-13 . Integer Load INSIIUCLIONS.......ccoiiiiiiiiicie e e e e e A-21
Table A-14 . Integer Store INSITUCLIONSuiiiiiiiiiee e e A-22
Table A-15 . Integer Load and Store with Byte Reverse INStruCtionS..........ccccvveeeeeeiniiiininnnne A-22
Table A-16 . Integer Load and Store Multiple INStruCtionS..........ccccevviieiieeieiiiiiieeeee, A-22
Table A-17 . Integer Load and Store String INStrUCIONS........iiiiiiiiie e A-23
Table A-18 . Memory Synchronization NSIFUCHIONS..........covvvviiiiiiiiiiiie e A-23
Table A-19 . Floating-Point Load INStrUCIONSccoiiiiiiiieiiiceeeeeeeccs e A-23
Table A-20 . Floating-Point Store INStrUCIONS..........cooiviiiiiiiiiiiiiiee e A-23
Tables XXi

TABLES

Table . Page

Number Title Number

Table A-21 . Floating-Point MoVve INSIIUCLIONS.........c.uiiiiiiiiieicc e A-24
Table A-22 . Branch INSTIUCHIONS..........ooiiiiiiiiiiiiee e e e e e e e e e e e e eeeeeeeeennnnnes A-24
Table A-23 . Condition Register Logical INStrUCIONS........coeiiiiiieieeieiiiieeeeiirr e A-24
Table A-24 . System Linkage INStIUCHIONScooviiiiiieiceii e A-25
Table A-25 . Trap INSIUCTIONS........ooieiiee e e e e e as 25..... A-
Table A-26 . Processor Control INSIIUCTIONSuuuiiiiiiiiiiiiiiiieieie e A-25
Table A-27 . Cache Management INStIUCHIONSccouuuiiiiiiiiiiiiie e a e A-25
Table A-28 . Segment Register Manipulation INStrUCLIONSeiiiiiiiieeeeiiiiieeeeee e A-26
Table A-29 . Lookaside Buffer Management INStrUCLIONSceviiiiieeeeieieieeeeeeee e A-26
Table A-30 . External Control INSIIUCLIONScoiiiiiiiiiiiieeeieeeei e A-26
Table A-B1 . I-FOIM .. — A-27.

Table A-32 . B-FOIM e A-217....
Table A-33 . SC-FOMM e A-27.....
TabIe A-34 . D-FOIM ... e e e A-27....
TaDIE A-35 . DS-FOMM ittt ettt A:29.....
TabIE A-36 . X-FOIM ettt A-29...
LIz (S A o] o SRR A-33....
TabIE A-38 . XIFX-FOIM ..ttt e et e e e e e e e e e e e e e e e s s s e annnes 34.... A-
Table A-39 . XFL-FOIMM. ..o e :34.... A
TabIe A-40 . XS-FOIM ... e e e e e e e e e e e e e e e e e e e aanannn e es A:-35.....
Table A-41 . XO-FOIM ..t r e e e e e e e e e e e e e e e e aaans -35.... A
TaDIE A-42 . A-FOIM ettt A-36...
TabIe A-43 . M-FOIM..iiiei e e e e e e e e e e e e e A-37...
TaDIE A-44 . IMD-FO M ..ottt e e e e e e e e e e e e s e e e eeees 37.... A
Table A-45 . MDS-FOIM ... e e e 71....A-3
Table A-46 . PowerPC INStruction Set LEgeNd.........oooiiiiiiiiiiiiiiiiiiie e A-38
Table B-1 . Invalid Forms (Excluding Reserved FieldS)ccccceviiiiiiiiiiiiiiiieeeeee e B-1
Table B-2 . Invalid Forms with Reserved Fields (Bit 31 EXCIUSIVE)cccccoevviiiiiiiiiiiieeeeen, B-3
Table C-1 . Hardware Implementation-Dependent Register O Bit Settingscccccvvvvnnee. C-2
Table C-2 . MMCRO Bit SEHINGSciiiieeeeeiieeeeee e e e et e s e e e e e e e aaaeeeeeenennnes C-9
XXii PowerPC 604e RISC Microprocessor User's Manual

About This Book

The primary objective of this user’s manual is to define the functionality of the PowerPC
604e™ microprocessor for use by software and hardware developers. Itis important to note
that this book is intended as a companion to PogverPC™Microprocessor Family: The
Programming Environmentgeferred to asThe Programming Environments Manual
contact your local sales representative to obtain a copy. Because the PowerPC architecture
is designed to be flexible to support a broad range of proces$bes,Programming
Environments Manuaprovides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

In this document, the term ‘604e’ is used as an abbreviation for ‘PowerPC 604e
microprocessor’. The PowerPC 604e microprocessors are available from IBM as PPC604e
and Motorola as MPC604e.

This document summarizes features of the 604e that are not defined by the architecture.
This document and@ihe Programming Environments Manuhs$tinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

* PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

About This Book XXiii

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a floating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture into topics
that build upon one another, beginning with a description and complete summary of 604e-
specific registers and progressing to more specialized topics such as 604e-specific details
regarding the cache, exception, and memory management models. As such, chapters may
include information from multiple levels of the architecture. (For example, the discussion

of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Procedsdires
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products using the 604e microprocessors. Itis assumed
that the reader understands operating systems, microprocessor system design, the basic
principles of RISC processing, and details of the PowerPC architecture.

XXiv PowerPC 604e RISC Microprocessor User's Manual

Organization
Following is a summary and a brief description of the major sections of this manual:

Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the 604e. This chapter
describes the flexible nature of the PowerPC architecture definition, and provides an
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exception model, and
memory management model.

Chapter 2, “Programming Model,” provides a brief synopsis of the registers
implemented in the 604e, operand conventions, an overview of the PowerPC
addressing modes, and a list of the instructions implemented by the 604e.
Instructions are organized by function.

Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion of the
cache and memory model as implemented on the 604e.

Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the 604e.

Chapter 5, “Memory Management,” describes the 604e’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of the
604e.

Chapter 8, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 604e.

Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604e.

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions
while indicating those instructions that are not implemented by the 604e; it also
includes the instructions that are specific to the 604e. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604e.

Appendix C, “PowerPC 604 Processor System Design and Programming
Considerations,” provides a brief discussion of the differences between the 604 and
604e.

This manual also includes a glossary and an index.

About This Book XXV

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

* The following books are available from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A)),
(415) 392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
ProcessorsSecond Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://'www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platfyrdpple
Computer, Inc.

— Computer Architecture: A Quantitative Approa&econd Edition, by
John L. Hennessy and David A. Patterson

* Inside Macintosh: PowerPC System Softwamdison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

» PowerPC Programming for Intel Programmeby, Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

* User’'s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunctionigProgramming
Environments Manuallhese include the following:

— PowerPC 602¥ RISC Microprocessor User’'s Manual
MPC604UM/AD (Motorola order #) and MPR604UMU-01 (IBM order #)

— MPC750 RISC Microprocessor User’'s Manual
MPC750UM/AD (Motorola order #)

— PowerPC 620™ RISC Microprocessor User’'s Manual
MPC620UM/AD (Motorola order #)

XXVi PowerPC 604e RISC Microprocessor User's Manual

* Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming EnvironmedRéy 1:
MPCFPE/AD (Motorola order #) and G522-0290-00 (IBM order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
MicroprocessorsRev. 1: MPCFPE32B/AD (Motorola order #)

* Implementation Variances Relative to Rev. 1 of The Programming Environments
Manualis available via the world-wide web at
http://www.motorola.com/PowerPC/or at http://www.chips.ibm.com/products/ppc.

» Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals.

» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 603 RISC Microprocessor Hardware Specifications
MPC603EC/D (Motorola order #) and G522-0289-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications
MPCG603EEC/D (Motorola order #) and G522-0268-00 (IBM order #)
— PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Specifications
MPCG603E7VEC/D (Motorola order #) and G522-0267-00 (IBM order #)
— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications
MPC604EC/D (Motorola order #) and MPR604HSU-02 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications
MPCG604E9VEC/D (Motorola order #) and G522-0296-01 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9g-604e Hardware
Specifications
MPCG604E9QEC/D (Motorola order #) and G5522-0319-00 (IBM order #)

— MPC750 RISC Microprocessor Hardware Specifications
MPC750EC/D (Motorola order #)

About This Book XXVi

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and 620 microprocessors
which can be ordered as follows:

— PowerPC 604e RISC Microprocessor Technical Summary
MPCG604E/D (Motorola order #) and SA14-2053-00 (IBM order #)

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors
MPCBUSIF/AD (Motorola order #) and G522-0291-00 (IBM order #) provides a
detailed functional description of the 60x bus interface, as implemented on the 601,
603, and 604 family of PowerPC microprocessors. This document is intended to
help system and chipset developers by providing a centralized reference source to
identify the bus interface presented by the 60x family of PowerPC microprocessors.

PowerPC Microprocessor Family: The Programmer’s Reference Guide
MPCPRG/D (Motorola order #) and MPRPPCPRG-01 (IBM order #) is a concise
reference that includes the register summary, memory control model, exception
vectors, and the PowerPC instruction set.

PowerPC Microprocessor Family: The Programmer’s Pocket Reference :Guide
MPCPRGREF/D (Motorola order #) and SA14-2093-00 (IBM order #)

This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’'s Manual
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’'s Manual
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/SPS/PowerPC/ or at http://www.chips.ibm.com/products/ppc.

Conventions

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for exarbpterx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

XXViii

PowerPC 604e RISC Microprocessor User's Manual

rA, rB

rA|O

rD

frA, frB, frC
frD
REGIFIELD]

0000

Instruction syntax used to identify a source GPR
The contents of a specified GPR or the value 0.
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSRJLE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
zeros.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ATE Automatic test equipment
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BPU Branch processing unit
BUC Bus unit controller
BUID Bus unit ID
CAR Cache address register
CIA Current instruction address
CMOS Complementary metal-oxide semiconductor

About This Book

XXiX

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
COP Common on-chip processor
CR Condition register
CRTRY Cache retry queue
CTR Count register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DMISS Data TLB miss address
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HASH1 Primary hash address
HASH2 Secondary hash address
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICMP Instruction TLB compare
IEEE Institute for Electrical and Electronics Engineers
IMISS Instruction TLB miss address
[0) Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register

XXX PowerPC 604e RISC Microprocessor User's Manual

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSuU Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MQ MQ register
MSB Most-significant byte
mshb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PIR Processor identification register
PLL Phase-locked loop
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RPA Required physical address
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SLB Segment lookaside buffer
SPR Special-purpose register
SR Segment register
SRRO Machine status save/restore register O
SRR1 Machine status save/restore register 1

About This Book

XXXi

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
SRU System register unit
TAP Test access port
TB Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UIMM Unsigned immediate value
UISA User instruction set architecture
uTLB Unified translation lookaside buffer
uuT Unit under test
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Table ii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (1U)

Instruction storage interrupt (ISI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation

Translation

Storage (locations)

Memory

XXXii

PowerPC 604e RISC Microprocessor User's Manual

Table ii. Terminology Conventions (Continued)

The Architecture Specification This Manual
Storage (the act of) Access
Store in Write back

Store through

Write through

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)
BF, BFA crfD, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, fr S (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

ul UuiMM

N/ 0...0 (shaded)

About This Book

XXXiii

XXXV PowerPC 604e RISC Microprocessor User's Manual

Chapter 1
Overview

This chapter provides an overview of the PowerPC 604e™ microprocessor. It includes the
following:

* A summary of 604e features

» Details about the 604e as an implementation of the PowerPC™ architecure. This
includes descriptions of the 604e’s execution model (that is, the programming
model).

» Adescription of the 604e execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview

The 604e is an implementation of the PowerPC family of reduced instruction set computer
(RISC) microprocessors. The 604e implements the PowerPC architecture as it is specified
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single- and
double-precision, respectively). For 64-bit PowerPC implementations, the PowerPC
architecture provides additional 64-bit integer data types, 64-bit addressing, and related
features.

The 604e is a superscalar processor capable of issuing four instructions simultaneously. As
many as seven instructions can finish execution in parallel. The 604e has seven execution
units that can operate in parallel:

* Floating-point unit (FPU)

» Branch processing unit (BPU)

» Condition register unit (CRU)

» Load/store unit (LSU)

» Three integer units (IUs):
— Two single-cycle integer units (SCIUs)
— One multiple-cycle integer unit (MCIU)

This parallel design, combined with the PowerPC architecture’s specification of uniform
instructions that allows for rapid execution times, yields high efficiency and throughput.

Chapter 1. Overview 1-1

The 604e’s rename buffers, reservation stations, dynamic branch prediction, and
completion unitincrease instruction throughput, guarantee in-order completion, and ensure
a precise exception model. (Note that the PowerPC architecture specification refers to all
exceptions as interrupts.)

The 604e has separate memory management units (MMUs) and separate 32-Kbyte on-chip
caches for instructions and data. The 604e implements two 128-entry, two-way set
associative translation lookaside buffers (TLBs), one for instructions and one for data, and
provides support for demand-paged virtual memory address translation and variable-sized
block translation. The TLBs and the cache use least-recently used (LRU) replacement
algorithms.

The 604e has a 64-bit external data bus and a 32-bit address bus. The 604e interface
protocol allows multiple masters to compete for system resources through a central external
arbiter. Additionally, on-chip snooping logic maintains data cache coherency for
multiprocessor applications. The 604e supports single-beat and burst data transfers for
memory accesses and memory-mapped I/O accesses.

The 604e uses an advanced, 2.5-V CMOS process technology and is fully compatible with
TTL devices.

1.2 PowerPC 604e Microprocessor Features

This section describes features of the 604e, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

Figure 1-1 provides a block diagram showing features of the 604e. Note that this is a
conceptual diagram that shows basic features and does not attempt to show how these
features are physically implemented on the chip.

1-2 PowerPC 604e RISC Microprocessor User's Manual

M3IAIBAQ T Jaldeyd

€1

welibeiq 3o0|g "T-T a2.nbi

128 Bit
v INSTRUCTION UNIT
64 Bit . . !
» Fetcher »| Branch Processing Unit I MMU
<«
BTAC CR CTR
I—I Rename- | | CR SRs IBAT
Y Buffers Array
Time-Base Instrugtion J < >) LR ITLB
Counter/Decrementer Queue (8 word) A A
Clock JTAG/COP N
Multiplier Interface E‘ 128 Bit Dispatch Unit
> > BHT
128 Bit
+ 1 ! —
Reservation Reser\;ation ' . | Reservation | - | Reservation |
-Station (2 Entry)1 Station (2 Entry)] GPR File Station (2 Entry) FPR File Station (2 Entry)
+ Rename] Rename +
Buffers (12) Buffers (8)
Multiple- Single- 32 Bit | Load/Store | 64 Bit 64 Bit | Floating-
Cy(;l%lr!l;eger Cycle Integer H - » Unit - > H e~ Point Unit
ni ;
NI Caloution T
2 Bit 32 Bit . FPSCR
A 32 Bit i . - 64 Bit .
oo y Py Y
COMPLETION Tags 1,6;;:?:
UNIT
\\ 64 Bit
16-Entry A
Reorder Buffer D MMU
Store Queue Finish Load Y
Queue i SRs
: 32Bit DBAT L6-Kbyte |< | BUSINTERFACE
- arra »| Tags) D =
DTLB y o g D Cache |« UNIT
Snoop 7y 7\

36-BIT ADDRESS BUS

\

A

72-BIT DATA BUS

\

A

Major features of the 604e are as follows:

» High-performance, superscalar microprocessor

— As many as four instructions can be issued per clock

— As many as seven instructions can be executing per clock (including three integer
instructions)

— Single-clock-cycle execution for most instructions
» Seven independent execution units and two register files
— BPU featuring dynamic branch prediction

— Two-entry reservation station
— Out-of-order execution through two branches
— Shares dispatch bus with CRU

— 64-entry fully-associative branch target address cache (BTAC). In the 604e,
the BTAC can be disabled and invalidated.

512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

— Condition register unit (CRU)
— Two-entry reservation station
— Shares dispatch bus with BPU
— Two single-cycle 1Us (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

— Each SCIU has a two-entry reservation station to minimize stalls

— The MCIU has a single-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

— Thirty-two GPRs for integer operands
— Three-stage floating-point unit (FPU)

— Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

— Supports non-IEEE mode for time-critical operations

— Fully pipelined, single-pass double-precision design

— Hardware support for denormalized numbers

— Two-entry reservation station to minimize stalls

— Thirty-two 64-bit FPRs for single- or double-precision operands
— Load/store unit (LSU)

— Two-entry reservation station to minimize stalls

— Single-cycle, pipelined cache access

— Dedicated adder performs EA calculations

1-4 PowerPC 604e RISC Microprocessor User's Manual

Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data

— Four-entry finish load queue (FLQ) provides load miss buffering

— Six-entry store queue

— Supports both big- and little-endian modes

« Rename buffers

— Twelve GPR rename buffers
— Eight FPR rename buffers
— Eight condition register (CR) rename buffers
» Completion unit
— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution.
— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes executed, dispatched, and fetched
instructions if branch is mispredicted

— Retires as many as four instructions per clock
» Separate on-chip instruction and data caches (Harvard architecture)

— 32-Kbyte, four-way set-associative instruction and data caches
— LRU replacement algorithm
— 32-byte (eight-word) cache block size

— Physically indexed/physical tags. (Note that the PowerPC architecture refers to
physical address space as real address space.)

— Cache write-back or write-through operation programmable on a per page or per
block basis

— Instruction cache can provide four instructions per clock; data cache can provide
two words per clock.

— Caches can be disabled in software.

— Caches can be locked.

— Parity checking performed on both caches

— Data cache coherency (MESI) maintained in hardware

— Secondary data cache support provided

— Instruction cache coherency optionally maintained in hardware

— Data cache line-fill buffer forwarding. In the 604, only the critical double word
of the cache block was made available to the requesting unit at the time it was
burst into the line-fill buffer; subsequent data was unavailable until the cache
block was filled. In the 604e, subsequent data is also made available as it arrives
in the line-fill buffer.

Chapter 1. Overview 1-5

Separate memory management units (MMUSs) for instructions and data

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Both TLBs are 128-entry and two-way set associative

— The page table search is performed in hardware

— Separate IBATs and DBATSs (four each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBS)

— LRU replacement algorithm

— 52-bit virtual address; 32-bit physical address

Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 3:2, 2:1, 5:2, 3:1, 7:2,
and 4:1)

— A 64-bit split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions

— Four burst write queues—three for cache copy-back operations and one for
snoop push operations

— Two single-beat write queues
— Additional signals and signal redefinition for direct-store operations

— Provides a data streaming mode that allows consecutive burst read data transfers
to occur without intervening dead cycles. This mode also disables data retry
operations.

— No-DRTRY mode eliminates thBRTRY signal from the qualified data bus
grant condition. This improves performance on read operations for systems that
do not use th®RTRY signal. NODRTRY mode makes read data available to
the processor one bus clock cycle sooner than if normal mode is used.

Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
Is valid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

Power management

— Nap mode supports full shut down and snooping
— Operating voltage of 2.5 0.2 V for processor core, 3.3 \kferral signals

Performance monitor can be used to help in debugging system designs and
iImproving software efficiency, especially in multiprocessor systems.

In-system testability and debugging features through JTAG boundary-scan
capability

1-6

PowerPC 604e RISC Microprocessor User's Manual

Features of the 604e that are not implemented in the 604 are as follows:

» Additional special-purpose registers

— Hardware implementation-dependent register 1 (HID1) provides four read-only
PLL_CFG bits for indicating the processor/bus clock ratio.

— Three additional registers to support the performance monitor—MMCRL1 is a
second control register that includes bits to support the use of two additional
counter registers, PMC3 and PMC4.

e Instruction execution

— Separate execution units for branch and condition register (CR) instructions. The
604e implements a condition register unit (CRU) that executes condition register
logical instructions that were executed in the 604’'s BPU. The CRU makes it
possible for branch instructions to execute and resolve before preceding CR
logical instructions. The 604e can dispatch one CR logical or branch instruction
per cycle, but it can execute both branch and CR logical instructions at the same
time.

— Branch correction in decode stage. Branch correction in the decode stage can
now predict branches whose target is taken from the count or link registers if no
updates of the count and link register are pending. This saves at least one cycle
on branch correction when the Move to Special-Purpose Regrdtpor{
instruction can be sufficiently separated from the branch that uses the SPR as a
target address.

— Ability to disable the branch target address cache (BTAC)—HIDO[30] has been
defined to allow the BTAC to be disabled. When HIDO[30] is set, the BTAC
contents are invalidated and the BTAC behaves as if it were empty. New entries
cannot be added until the BTAC is enabled.

* Enhancements to cache implementation

— 32-Kbyte, physically addressed, split data and instruction caches. Like the 604,
both caches are four-way set associative; however, each cache has twice as many
sets, logically separated into 128 sets of odd lines and 128 sets of even lines.

— Data cache line-fill buffer forwarding. In the 604, only the critical double word
of a burst operation was made available to the requesting unit at the time it was
burst into the line-fill buffer. Subsequent data was unavailable until the cache
block was filled. In the 604e, subsequent data is also made available as it arrives
in the line-fill buffer.

— Additional cache copy-back buffers. The 604e implements three copy-back write
buffers (increased from one in the 604). Having multiple copy-back buffers
provides the ability for certain instructions to take fuller advantage of the
pipelined system bus to provide more efficient handling of cache copy-back,
block invalidate operations caused by the Data Cache Block Flalsf) (
instruction, and cache block clean operations resulting from the Data Cache
Block Store @cbst) instruction.

Chapter 1. Overview 1-7

— Coherency support for instruction fetching. Instruction fetching coherency is
controlled by HIDO[23]. In the default mode, HIDO[23] is@GBL is not asserted
for instruction accesses, as is the case with the 604. If the bit is set, and
instruction translation is enabled (MSRJ[IR] = 1), tB8L signal is set to reflect
the M bit for this page or block. If instruction translation is disabled
(MSR[IR] = 0), theGBL signal is asserted for instruction fetches.

» System interface operation

— The 604e has the same signal configuration as the 604; however, on the 604e Vdd
and Avdd must be connected to 2.5 Vdc and OVdd must be connected to
3.3 Vdc. The 604e uses split voltage planes, and for replacement compatibility,
604/604e designs should provide both 2.5-V and 3.3-V planes and the ability to
connect those two planes together and disable the 2.5-V plane for operation with
a 604.

— Support for additional processor/bus clock ratios (7:2, 5:2, and 4:1).
Configuration of the processor/bus clock ratios is displayed through a new
604e-specific register, HID1. Note that although this register is not defined by the
PowerPC architecture, it is consistent with implementation-specific registers
implemented on some other processors.

— To support the changes in the clocking configuration, different precharge timings
for theABB, DBB, ARTRY, andSHD signals are implemented internally by the
processor. Selectable precharge timinggdaif RY andSHD can be disabled by
setting HIDO[7]. Precharge timings are provided in the 604e hardware
specifications.

— No-DRTRY mode. In addition to the normal and data streaming modes
implemented on the 604, a WIRTRY mode is implemented on the 604e that
improves performance on read operations for systems that do not use the
DRTRY signal. NoODRTRY mode makes read data available to the processor
one bus clock cycle sooner than in normal médeo-DRTRY mode, the
DRTRY signal is no longer sampled as part of a qualified bus grant.

— The VOLTDETGND output signal is implemented only on BGA packages as an
indicator of the core voltage.

» Full hardware support for little-endian accesses. Little-endian accesses take
alignment exceptions for only the same set of causes as big-endian accesses.
Accesses that cross a word boundary require two accesses with the lower-addressed
word accessed first.

» Additional events that can be tracked by the performance monitor.

1.3 PowerPC Architecture Implementation

The PowerPC architecture shares the benefits of the POWER architecture optimized for
single-chip implementations. The PowerPC architecture design facilitates parallel
instruction execution and is scalable to take advantage of future technological gains.

1-8 PowerPC 604e RISC Microprocessor User's Manual

This section describes the PowerPC architecture in general, and specific details about the
implementation of the 604e as a low-power, 32-bit member of the PowerPC processor
family. Note that the individual section headings indicate the chapters in the user’s manual
to which they correspond.

» Section 1.3.1, “Features,” describes general features of the 604e with respect to the
PowerPC architecture.

» Section 1.3.2, “PowerPC 604e Processor Programming Model,” describes the
aspects of the register and instruction implementation that are specific to the 604e.

» Section 1.3.3, “Cache and Bus Interface Unit Operation,” describes the
604e-specific cache features.

» Section 1.3.4, “Exceptions,” indicates that the 604e exception model is identical to
that of the 604.

e Section 1.3.5, “Memory Management,” indicates that the 604e MMU
implementation is identical to that of the 604.

» Section 1.3.6, “Instruction Timing,” describes specific characteristics of the 604e
instruction timing model.

» Section 1.3.7, “Signal Descriptions,” describes differences in the operation of the
signals implemented on the 604e.

» Section 1.3.8, “System Interface Operation,” describes differences in the 604e bus
protocol.

» Section 1.3.9, “Performance Monitor,” defines additional features and changes in
the 604e implementation of the performance monitor.

1.3.1 Features

The 604e is a high-performance, superscalar implementation of the PowerPC architecture.
Like other PowerPC processors, it adheres to the PowerPC architecture specifications but
also has additional features not defined by the architecture. These features do not affect
software compatibility. The PowerPC architecture allows optimizing compilers to schedule
instructions to maximize performance through efficient use of the PowerPC instruction set
and register model. The multiple, independent execution units in the 604e allow compilers
to maximize parallelism and instruction throughput. Compilers that take advantage of the
flexibility of the PowerPC architecture can additionally optimize instruction processing of
the PowerPC processors.

The following sections summarize the features of the 604e, including both those that are
defined by the architecture and those that are unique to the 604e implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
Is implemented:

Chapter 1. Overview 1-9

» PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

» PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

For more information, refer tdhe Programming Environments Manual

The 604e complies to all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illegal instruction exception on the 604e. PowerPC processors are allowed to have
implementation-specific features that fall outside, but do not conflict with, the PowerPC
architecture specification. Examples of features that are specific to the 604e include the
performance monitor and nap mode.

1.3.2 PowerPC 604e Processor Programming Model
This section provides a brief overview of the PowerPC programming model with respect to
the 604e. It describes the following:

* Implementation-specific registers

* 604e support of misaligned little-endian accesses

* The 604e instruction set

1.3.2.1 Implementation-Specific Registers

The 604e and 604 implement the register set required by the 32-bit portion of the PowerPC
architecture. In addition, the 604e supports all 604-specific registers as well as several
604e-specific registers, as described in this section.

Figure 1-2 shows the registers implemented in the 604e, indicating those that are defined
by the PowerPC architecture and those that are 604e-specific. All registers except the FPRs
are 32 bits wide.

1-10 PowerPC 604e RISC Microprocessor User's Manual

-

UISA

General-Purpose
Registers

GPRO
GPR1

GPR31

Floating-Point
Registers

FPRO
FPR1

FPR31

Condition Register
CR

Floating-Point Status
and Control Register

FPSCR

x

ER

XER SPR 1

Link Register

LR SPR 8

Count Register
CTR SPR9

[

// USER MODEL \\

/

<

EA

Time Base Facility
(For Reading)

TBL TBR 268

TBU

USER MODEL

TBR 269 j

\.

SUPERVISOR MODEL—OEA

Configuration Registers

Hardware Implementation

Dependent Register 0 *

SPR 1008

Hardware Implementation

Dependent Register 1 1

HID1 SPR 1009

Memory Management Registers

Instruction BAT

Registers Segment Registers
DBATOU | SPR 536
IBATOU | SPR528 SEATOL | SPR 537 SRO
IBATOL | SPR 529 SEATI0 | SPR 538 SR1
IBATIU | SPR530 SeATL | sPR 530 H
IBATIL |SPRS31 DBAT2U | SPR 540 SR15
IBAT2U | SPR532 DBAT2L | SPR 541
IBAT2L | SPR533 DBAT3U | SPR 542 SDR1
IBAT3U | SPR 534 o | PR a3 SPR 25
IBAT3L | SPR535
Performance Monitor
Performance Sampled Data/
Monitor Counters 1 Monitor Control 1 Instruction Address 1
PMC1 | SPR953 MMCRO | SPR 952 SDA SPR959
PMC2 | SPR 954 MMCR1 | SPR 956 SIA SPR 955
PMC3 | SPR 957
PMC4 | SPR 958
Exception Handling Registers
SPRGs Save and Restore DSISR
SPRGO | SPR 272 Registers SPR 18
SPRG1 | SPR273 SRRO | SPR26
SPRG2 | SPR 274 SRR [SPR27 ngﬁsﬁgrdress
SPRG3 | SPR275 DAR SPR 19
Miscellaneous Registers
Time Base Facility Instruction Address Processor
(For Writing) Breakpoint Register Identification Register 2
TBL | SPR284 SPR 1010 SPR 1023
TBU SPR 285
Data Address
External Access Breakpoint Register 2 Decrementer
Register SPR 1013 DEC | SPR22
EAR SPR 282

Data BAT Registers

Machine State
Register

MSR

Processor Version
Register

PVR SPR 287

/

1604e-specific—not defined by the PowerPC architecture

2 Optional to the PowerPC Architecture

Figure 1-2. Programming Model—PowerPC 604e Microprocessor Registers

Chapter 1. Overview

1-11

The 604e includes the following registers not defined by the PowerPC architecture that are
either not provided in the 604 or incorporate changes from the 604 implementation:

* Hardware implementation-dependent register 1 (HID1)—This register, which is not
implemented in the 604, is used to display the PLL configuration. This register is
described in Section 2.1.2.4, “Hardware Implementation-Dependent Register 1
(HID1).”

» Performance monitor counter registers (PMC3-PMC4). The counters are used to
record the number of times a certain event has occurred. PMC3 and PMC4 are not
implemented in the 604. PMC1 and PMC2 are implemented in the 604 and are
described in the user's manual. See Section 2.1.2.5.3, “Performance Monitor
Counter Registers (PMC1-PMC4),” for more information.

» Performance monitor mode control register 0 (MMCRO0)—MMCRO has additional
bits not described in the user’s manuBEhe additional bits are described in Section
2.1.2.5.1, “Monitor Mode Control Register 0 (MMCRO).”

» Performance monitor mode control register 1 (MMCR1)—The performance
monitor control registers are used for enabling various performance monitoring
interrupt conditions and establishes the function of the counters. MMCRL1 is not
implemented in the 604. See Section 2.1.2.5.2, “Monitor Mode Control Register
1—MMCR1,” for more information.

» Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functions within the 604 and 604e, such as enabling checkstop
conditions, and locking, enabling, and invalidating the instruction and data caches.
Additional bits defined in the HIDO register disable the BTAC, control whether
coherency is maintained for instruction fetches, and disable the default precharge
values for the share@HD) and address retrARTRY) signals. The 604e defines
additional bits not included in the 604 implementations of the HIDO register. These
bits are described in Section Table 2-3, “. Hardware Implementation-Dependent
Register 0 Bit Settings.”

Refer to Chapter 2, “Programming Model,” for more information.

1.3.2.2 Support for Misaligned Little-Endian Accesses

The 604e provides hardware support for misaligned little-endian accesses. Little-endian
accesses in the 604e take an alignment exception for the same cases that big-endian
accesses take alignment exceptions. Any data access that crosses a word boundary requires
two accesses regardless of whether the data is in big- or little-endian format. When two
accesses are required, the lower addressed word (in the current addressing mode) is
accessed first. Consider the memory mapping in Figure 1-3.

1-12 PowerPC 604e RISC Microprocessor User's Manual

Big-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 00 01 02 03 04 05 06 07
Contents| | | J | K | L | M | N | o) | P |
Address 08 09 0A 0B oC oD OE OF

Little-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 07 06 05 04 03 02 01 00
Contents| | | J | K | L | M | N | o) | P |
Address OF OE 0D 0C 0B 0A 09 08

Figure 1-3. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-endian
address 0x4 containing dafais accessed first followed by one byte at big-endian address
0x3 containing dat®. For a load halfword, the data written back to the GPR would be
D, E. If four bytes are requested starting at little-endian address 0x6, two bytes at
big-endian address 0x0 containing d&taB are accessed first followed by two bytes at

big-endian address OxE containing d&aP. For a load word, the data written back to the
GPR would beD, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefined.

1.3.2.3 Instruction Set

The 604e implements the same set of instructions that are implemented in the 604; that is,
the entire PowerPC instruction set (for 32-bit implementations) and most optional
PowerPC instructions. For information, see Section 2.3.3, “Instruction Set Overview,” in
the user’'s manual he following changes affect information provided in the user’s manual

* The undefined result of an integer divide overflow differs from that of the 604.

» Changes to the behavior of thebst anddcbtst instructions are described in
Table 2-43.

Chapter 1. Overview 1-13

1.3.3 Cache and Bus Interface Unit Operation

The 604e has separate 32-Kbyte data and instruction caches. This is double the size of the
604 caches. The 604e caches are logically organized as a four-way set with 256 sets
compared to the 604’s 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
data is an even 4-Kbyte page that resides in sets 0—127; otherwise, bit 19 is one and the
block of data is an odd 4-Kbyte page that resides in sets 128-255. Because the caches are
four-way set-associative, the cache set element (CSEO-CSEL1) signals remain unchanged
from the 604. Figure 1-4 shows the organization of the caches.

Sets128-255
(odd pages) e’ e
/| —
Sets 0-127 - -
(even pages) .’ — . L
[
|’l/ ! l T T T T T T T B
Block 0| Address Tag 0 || State Words 0-7 ||
I I I I I I I]
Block 1| Address Tag 1 | | State Words 0-7 || -
f f f f f f f B
Block 2| Address Tag 2 || State Words 0—7 ||
; ; ; ; ; ; ;
Block 3| Address Tag 3 | I~ |State Words 0—7 | [~
|«——— 8 Words/Block ————]

Figure 1-4. Cache Unit Organization

1.3.3.1 Instruction Cache

The 604e’s 32-Kbyte, four-way set-associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions.

The 604e provides coherency checking for instruction fetches. Instruction fetching
coherency is controlled by HIDO[23]. In the default mode, HIDO[23] is 0 andGiE

signal is not asserted for instruction accesses on the bus, as is the case with the 604. If the
bit is set and instruction translation is enabled (MSR[IR] = 1), &L signal is set to

reflect the M bit for this page or block. If HIDO[23] is set and instruction translation is
disabled (MSRJ[IR] = 0), th&GBL signal is asserted and coherency is maintained in the
instruction cache.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. In
addition, the instruction cache can be disabled and invalidated by setting the HIDO[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

1-14 PowerPC 604e RISC Microprocessor User's Manual

1.3.3.2 Data Cache

The 604e’s data cache is a 32-Kbyte, four-way set-associative cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the LSU.

The 604e provides additional support for data cache line-fill buffer forwarding. In the 604,
only the critical double word of a burst operation was made available to the requesting unit
at the time it was burst into the line-fill buffer. Subsequent data was unavailable until the
cache block was filled. On the 604e, subsequent data is also made available as it arrives in
the line-fill buffer.

The 604e implements three copy-back write buffers (the 604 has one). The additional
copy-back buffers allow certain instructions to take further advantage of the pipelined
system bus to provide highly efficient handling of cache copy-back operations, block
invalidate operations caused by the Data Cache Block Fhidbf)instruction, and cache
block clean operations resulting from the Data Cache Block Stobst] instruction.

Like the 604, the data cache tags are dual-ported, so snooping does not affect the internal
operation of other transactions on the system interface. If a snoop hit occurs in a modified
block, the LSU is blocked internally for one cycle to allow the eight-word block of data to

be copied to the write-back buffer, if necessary.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled and invalidated by setting the HIDO[17] and
HIDO[21] bits, respectively. The data cache can be locked by setting HIDO[19].

The 604e introduces some changesdbt/dcbtst instruction behavior. Both the 604 and
the 604e treat thdcbt anddcbtst instructions as no-ops if any of the following conditions
IS met:

* The address misses in the TLB and in the BAT.

* The address is directed to a direct-store segment.

* The address is directed to a cache-inhibited page.

» The 604e also treats the instructions as no-ops if the data cache lock bit HIDO[19] is
set.

1.3.3.3 Additional Changes to the Cache
Note that the 604e makes the following additional changes to the cache:

* Snooping protocol change for Read-with-Intent-to-Modify bus operations—It is
now illegal for any snooping device to genera®HD snoop response without an
ARTRY response to a RWITM address tenure. This change is required for the 604
and 604e. This change is also effective for later revisions of the 604.

Chapter 1. Overview 1-15

» Two additional cache copy-back write buffers—The 604e bus interface unit has six
write buffers, four for burst write operations and two for single-beat operations.

— The four burst write buffers can hold a full 32-byte cache block of data for burst
write data bus tenures. Of the four burst write buffers, one is a snoop push buffer
and the other three are cache copy-back buffers.

— The snoop push buffer is dedicated for snoop push write operations.

— The three copy-back buffers are used for cache copy-back operations, block
invalidates due to the Data Cache Block Fludtb{) instruction or block
cleans due to the Data Cache Block Stdabst) instruction.

— Each of the two single-beat write buffers can hold up to 8 bytes of data.

The 604 implements only one copy-back buffer, but is otherwise the same as the 604e
implementation. Refer to Chapter 3, “Cache and Bus Interface Unit Operation,” for more
information.

1.3.4 Exceptions

The following subsections describe the PowerPC exception model and the 604e
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRRO so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception

1-16 PowerPC 604e RISC Microprocessor User's Manual

condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

The PowerPC architecture supports the following types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

» Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604e
implements only the imprecise nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604e.

» Asynchronous—The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604e, and in many PowerPC processors, the hardware
interrupt is generated by the assertion of the InterrINdT) signal, which is not
defined by the architecture. In addition, the 604e implements the system
management interrupt, which performs similarly to the external interrupt, and is
generated by the assertion of the System Management Int&Mptgignal,
and the performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskable by setting MSR[EE].

— Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions that are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)—FEO and
FE1l—that determine how floating-point exceptions are handled. There are four
combinations of bit settings, of which the 604e implements three. These are as follows:

* Ignore exceptions mode (FEO = FE1 =0). In this mode, the instruction dispatch logic
feeds the FPU as fast as possible and the FPU uses an internal pipeline to allow
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.

Chapter 1. Overview 1-17

* Precise interrupt mode (FEO = 1; FE1 = x). This mode includes both the precise
mode and imprecise recoverable mode defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604e takes floating-point exceptions as
defined by the PowerPC architecture.

* Imprecise nonrecoverable mode (FEO = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRR0) may point to an instruction following the instruction that caused
the exception.

The 604e exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions (imprecise nonrecoverable mode)

The 604e’s exceptions, and a general description of conditions that cause them, are listed
in Table 1-2.

Table 1-2. Overview of Exceptions and Conditions

Exception Vector Offset Causing Conditions
Type (hex)
Reserved 00000 —
System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
signal.
Machine check | 00200 A machine check exception is signaled by the assertion of a qualified TEA

indication on the 604e bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

1-18 PowerPC 604e RISC Microprocessor User's Manual

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSl

00300

The cause of a DSI exception can be determined by the bit settings in the

DSISR, listed as follows:

0 Setif aload or store instruction results in a direct-store program exception;
otherwise cleared.

1 Set if the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] =1, set by an eciwx , ecowx , lwarx , or stwcx. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Set if an EA matches the address in the DABR while in one of the three
compare modes.

10Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11Set if eciwx or ecowx is used and EAR[E] is cleared.

ISI

00400

An ISI exception is caused when an instruction fetch cannot be performed for

any of the following reasons:

* The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

« The fetch access is to a direct-store segment.

« The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment

00600

An alignment exception is caused when the processor cannot perform a

memory access for the following reasons:

A floating-point load, store, Imw, stmw, lwarx , stwcx. , eciwx , or ecowx

instruction is not word-aligned.

A dcbz instruction refers to a page that is marked either cache-inhibited or

write-through.

A dcbz instruction has executed when the 604e data cache is locked or
disabled.

An access is not naturally aligned in little-endian mode.

An Imw, stmw, Iswi, Iswx, stswi, or stswx instruction is issued in little-endian

mode.

Chapter 1. Overview

1-19

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

« Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values in
MSR[FEO] and MSR[FEL1].

FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

¢ lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

0OOAO0-00BFF

System call

00CO00

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00DO00

Either MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSRI[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00EOO

Defined by the PowerPC architecture, but not required in the 604e.

Reserved OOE10-00EFF | —

Performance 00F00 The performance monitoring interrupt is a 604e-specific exception and is used

monitoring with the 604e performance monitor, described in Chapter 9, “Performance

interrupt Monitor.”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | —

1-20 PowerPC 604e RISC Microprocessor User's Manual

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits O to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
management input signal is asserted. This exception is provided for use with the nap mode,
interrupt which is described in Section 7.2.13, “Power Management.”
Reserved 01500-02FFF Reserved, implementation-specific exceptions. These are not implemented in

the 604e.

1.3.5 Memory Management
The 604e MMU implementation is the same as is used in the 604.

1.3.6 Instruction Timing

As shown in Figure 1-5, the common pipeline of the 604e has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline

consists of three stages through which all floating-point instructions must pass.

(Four-instruction dispatch per clock
cycle in any combination)

Fetch (IF)

Y
Decode (ID)

\

Dispatch (DS)

Execute Stage

SCIul

SCIu2

MCIU

BPU

CRU

LSU

ﬁé\

Complete (C)

\

Write-Back (W)

Vﬁé

Figure 1-5. Pipeline Diagram

Chapter 1. Overview

1-21

The common pipeline stages are as follows:

Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

Instruction decode (ID)—During the ID stage, all time-critical decoding is
performed on instructions in the dispatch queue (DISQ). The remaining decode
operations are performed during the instruction dispatch stage.

Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

Execute (E)—While the execution stage is viewed as a common stage in the 604e
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early as the
complete stage. If the completion logic detects an instruction containing exception
status or if a branch has been mispredicted, all subsequent instructions are cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

Writeback (W)—The writeback stage is used to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in parallel
with multiply and divide operations.

1-22

PowerPC 604e RISC Microprocessor User's Manual

The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

The 604e instruction timing model has a few changes from the 604, although it is basically
the same design. A conceptual model of the 604e hardware design showing the
relationships between the various units that affect the instruction timing is shown in

Figure 1-6.

branch ; -
correction _ Dispatch Unit
—| FetchUnit «—— (Four-instruction
dispatch)
instruction dispatch buses v
| |
GPR operand buses
| |
éF;R result Ibl'Jses A ‘
A A A A I FPR operalmd buses
CR result bus FPR result A
‘ ! ‘ ! ‘
Y Yy vy vy vy 1Al vy1Y Y vY Y Y
[RS(2)||[RS(2)|[RS)||[RS(2)| | [RS(1)|]| [RS(2)| [RS(2)]
g n & GE) ” &
xreEs a s
Y Y Y Y Y %%% > O Y &§% - E
cru |4 Bpru | [sciu| | [sciu| | [mciul | | Lsu x® | ® || Fpy @ |®
A
Y Y Y Y result status buses Y

! ,,

Completion 32-Kbyte data cache
Unit 4-way, 8 words/block

- Result buses
—— Operand buses

Figure 1-6. Block Diagram—Internal Data Paths

Chapter 1. Overview 1-23

The instruction timing in the 604e incorporates the following changes:

» Addition of a condition register unit (CRU)—The CRU executes all condition
register logical and flow control instructions. Because the CRU shares the dispatch
bus with the BPU, only one condition register or branch instruction can be issued per
clock cycle. In the 604, the CR logical unit operations are handled by the BPU. The
addition of the CRU allows branch instructions to potentially execute/resolve before
a preceding CR logical instruction. Although one CR logical or branch instruction
can be dispatched per clock cycle, both branch and CR logical instructions can
execute simultaneously. Branches are still executed in order with respect to other
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

» Branch correction in decode stage—Branch correction in the decode stage has been
modified to predict branches whose target is taken from the CTR or LR. This
correction occurs if no CTR or LR updates are pending. This correction like all other
decode stage corrections is done only on the first two instructions of the decode
stage. This correction saves at least one cycle on branch correction whetsfe
instruction can be separated from the branch that uses the SPR as a target address.

* Instruction fetch when translation is disabled—If translation is disabled
(MSRJ[IR] = 0), the 604e fetches instructions when they hit in the cache or if the
previous completed instruction fetch was to the same page as this instruction fetch.
Where an instruction access hits in the cache, the 604e continues to fetch any
consecutive accesses to that same page.

1.3.7 Signal Descriptions

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The 604e system interface is shown in Figure 1-7.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and'S (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

1-24 PowerPC 604e RISC Microprocessor User's Manual

- BUS REQUEST 1 1 |<_DATA BUS GRANT]
ADDRESS BUS GRANT . 1 | DATA BUS WRITE ONLY DATA
ARBITRATION =1 =
- ADDRESS BUS BUSY o1 1 |« RATABUS BUSY » | ARBITRATION
ADDRESS [TRANSFER START |1 64 |«—DATA > |
START EXTENDED TRANSFER START DATA PARITY
> > 1 8= > | DATA
1| DATAPARITY ERROR | TRANSFER
< ADDRESS o 32 1 |<_DATA BUS DISABLE
ADDRESS ____ADDRESS PARITY |2 _
TRANSFER ~ ADDRESS PARITY ERROR 1 |« TRANSFER ACKNOWLEDGE
< 1 -
L 1 |« DATA RETRY DATA
- TERMINATION
— TRANSFER TYPE . 1| ¢ TRANSFER ERROR ACK
< TRANSFER CODE 3 1 |« INTERRUPT N
<« TRANSFER SIZE >3 1 |« SYSTEM RESET INTERRUPT
<« TRANSFER BURST 1 1 | MACHINE CHECK SIGNALS
TRANSFER < CACHE INHIBIT 1 1 l<_SYSTEM MANAGEMENT
ATTRIBUTE _
«WRITE THROUGH 1 1| < CHECKSTOP INPUT
GLOBAL -
- 1 CHECKSTOP OUTPUT
1 >
__ CACHE SET MEMBER PROCESSOR
- 2 1 RESERVATION » | STATE
HARD RESET
[ADDRESS ACKNOWLEDGE |, 1|
ADDRESS . ADDRESS RETRY »l1 1| <«SYSTEM CLOCK
TERMINATION | _ SHARED oy 1| cLockout ;] CLOCK
4|<_TEST ACCESS PORT
TEST DATA OUT ‘:| JTAG / COP
1 l«__ENABLE TIMEBASE —
L L2_INT
1le RUN
< MISC
1 HALTED .
4 |« PLL CONFIG
1| ANALOG VDD
1 VOLTDETGND _

Figure 1-7. PowerPC 604e Microprocessor Signal Groups

The 604e system interface differs from that of the 604 in the following respects:

* The 604e has the same signal configuration as the 604; however, on the 604e Vdd
and Avdd must be connected to 2.5 Vdc and OVdd must be connected to 3.3 Vdc.
The 604e uses split voltage planes, and for replacement compatibility, 604/604e
designs should provide both 2.5-V and 3.3-V planes and the ability to connect those
two planes together and disable the 2.5-V plane for operation with a 604.

* Addition of noDRTRY mode. In addition to the normal and data-streaming modes
implemented on the 604, a MIRTRY mode is implemented on the 604e that
improves performance on read operations for systems that do not IHeTtR¥

Chapter 1. Overview 1-25

signal. NODRTRY mode makes read data available to the processor one bus clock
cycle sooner than in normal modie no-DRTRY mode, theDRTRY signal is no
longer sampled as part of a qualified bus grant.

This functionality is described more fully in Chapter 8, “System Interface
Operation.”

» Power management signals—The 604e implements signals that allow the processor
to operate in three different modes—normal, nap, and doze.

— HALTED signal—The HALTED signal is asserted when the processor is halted
internally and no snoop copy-back operations are in progress.

— In nap mode, the HALTED signal is always asserted.

— In doze mode, the HALTED signal is asserted unless a snoop-triggered
copy-back is pending.

— In normal mode, the HALTED signal is not asserted.

— RUN signal—The 604e supports nap mode with a RUN signal similar to the 604.
Asserting the RUN signal is equivalent to the doze mode in the 603.

The operation of power management on the 604e is described in Section 7.2.13,
“Power Management.”

» Internal clocking changes—The 604e internal clocking scheme is more similar to
the 603e than to the 604. The 604e requires a single system clock (SYSCLK) input
that sets the frequency of operation for the bus interface. Internally, the 604e uses a
phase-locked loop (PLL) circuit to generate a master clock for all of the CPU
circuitry (including the bus interface circuitry) which is phase-locked to the
SYSCLK input.

» Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1, 3:2,
2:1,5:2,3:1, 4:1, and 7:2. Each ratio is limited to the frequency ranges specified in
the PLL_CFG encodings shown in Table 7-6. Support for processor/bus clock ratios
5:2,7:2, and 4:1 is not supported in the 604.

* To support the changes in the clocking configuration, different precharge timings
for theABB, DBB, ARTRY, andSHD signals are implemented internally by the
processor. Selectable precharge timingARTRY andSHD can be disabled by
setting HIDO[7]. Precharge timings are provided in the 604e hardware
specifications.

» The 604e’s PLL_CFG settings are compatible with the 603e and the 604, although
the supported frequency ranges may differ. Changing the PLL_CFG setting during
nap mode is not permitted. For specific information, see the hardware specifications.

» The addition of the VOLTDETGND output signal (BGA package only). The
VOLTDETGND signal is an indicator of the core voltage for use with power
supplies capable of providing 2.5-V and 3.3-V outputs.

Refer to Chapter 7, “Signal Descriptions,” for further information.

1-26 PowerPC 604e RISC Microprocessor User's Manual

1.3.8 System Interface Operation

The system interface is specific for each PowerPC processor implementation. However, the
604e system interface differs only slightly from the 604. Some of the differences include
wider data and address buses, support for additional processor-to-bus frequencies, and
support for the optional n®RTRY bus mode. For further information, refer to Chapter 8,
“System Interface Operation.”

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The interface is synchronous—all 604e inputs are
sampled at and all outputs are driven from the rising edge of the bus clock. The 604e
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Support
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.

The 604e system interface is shown in Figure 1-8.

Address Bus <«——» ~<———— Data Bus
Address Arbitration «—— <«— Data Arbitration
Address Transfer Start <——» <«——> Data Transfer
Address Transfer «——» PowerPC I 5 pata Transfer Termination
Transfer Attribute <—— p rc?(?::sor <«——> Processor State
Address Transfer Termination <«———f <«——> System Status
Clocks «—— <«—> Test/Control/Miscellaneous

I =
+3.3V ~

Figure 1-8. System Interface

Four-beat burst-read memory operations that load an eight-word cache block into one of the
on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implements the critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining words in the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.

Chapter 1. Overview 1-27

Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions. The 604e supports bus pipelining and out-of-order split-bus transactions. In
general, the bus-pipelining mechanism allows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604e allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604e provides a separate queue for snoop
push operations so these operations can access the bus ahead of previously queued
operations. The 604e dynamically optimizes run-time ordering of load/store traffic to
improve overall performance.

The 604e implements a data bus write only sigp\(VO) that can be used for reordering
write operations. AssertingBWO causes the first write operation to occur before any read
operations on a given processor. Although this may be used with any write operations, it
can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604e to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction palwdrx/stwcx,) for atomic memory
references and other operations useful in multiprocessor implementations. Refer to
Chapter 8, “System Interface Operation,” for more information.

1.3.9 Performance Monitor

The 604e incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

A performance monitor control register (MMCRO or MMCR1) can be used to specify the
conditions for which a performance monitoring interrupt is taken. For example, one such
condition is associated with one of the counter registers (PMC1-PMC4) incrementing until
the most-significant bit indicates a negative value. Additionally, the sampled instruction
address and sampled data address registers (SIA and SDA) are used to hold addresses for
instruction and data related to the performance monitoring interrupt.

In addition to the performance monitor registers implemented on the 604, the 604e has two

1-28 PowerPC 604e RISC Microprocessor User's Manual

additional counter registers and one additional control register. The control register is
MMCR1 (SPR 956). The counters, PMC3 and PMC4, are SPR 957 and SPR 958,
respectively. MMCRO has also been changed slightly from the original 604 definition.
These registers are described in Section 2.1.2.5, “Performance Monitor Registers.”

When the 604e vectors to the performance monitor interrupt exception handler, it
automatically clears any pending performance monitor interrupts. Note that unlike the 604,
the 604e does not require MMCRO[ENINT] to be cleared (and possibly reset) before
external interrupts can be re-enabled.

Chapter 1. Overview 1-29

1-30 PowerPC 604e RISC Microprocessor User's Manual

Chapter 2
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC
604e. It consists of three major sections, which describe the following:

» Registers implemented in the 604e
» Operand conventions
» The 604e instruction set

2.1 Register Set

This section describes the registers in the 604e and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604e-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604e. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Sefl’hm Programming
Environments Manual

Note that registers are defined at all three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.

Chapter 2. Programming Model 2-1

2.1.1 Register Set

The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Regist&p() and Move from
Special-Purpose Registan{spr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the XER is SPR 1). These registers can be accessed ngspgy the
andmfspr instructions.

Implementation Note—The 604e fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.

2-2 PowerPC 604e RISC Microprocessor User's Manual

-

[

UISA

General-Purpose
Registers

GPRO
GPR1

GPR31

Floating-Point
Registers

FPRO
FPR1

FPR31

Condition Register
CR

Floating-Point Status
and Control Register

FPSCR

x

ER

XER SPR 1

Link Register

LR SPR 8

Count Register
CTR SPR9

// USER MODEL \\

/

USER MODEL
EA

Time Base Facility
(For Reading)

<

TBL TBR 268

TBU

TBR 269 j

\.

SUPERVISOR MODEL—OEA

Configuration Registers

Hardware Implementation

Dependent Register 0 *

SPR 1008

Hardware Implementation

Dependent Register 1 1

HID1 SPR 1009

Machine State
Register

MSR

Processor Version
Register

PVR SPR 287

Memory Management Registers

Instruction BAT

Data BAT Registers

Registers Segment Registers
DBATOU | SPR 536
IBATOU | SPR528 SEATOL | SPR 537 SRO
IBATOL | SPR 529 SEATI0 | SPR 538 SR1
IBATIU | SPR530 SeATL | sPR 530 H
IBATIL |SPRS31 DBAT2U | SPR 540 SR15
IBAT2U | SPR532 DBAT2L | SPR 541
IBAT2L | SPR533 DBAT3U | SPR 542 SDR1
IBAT3U | SPR 534 o | PR a3 SPR 25
IBAT3L | SPR535
Performance Monitor
Performance Sampled Data/
Monitor Counters 1 Monitor Control 1 Instruction Address 1
PMC1 | SPR953 MMCRO | SPR 952 SDA SPR959
PMC2 | SPR 954 MMCR1 | SPR 956 SIA SPR 955
PMC3 | SPR 957
PMC4 | SPR 958
Exception Handling Registers
SPRGs Save and Restore DSISR
SPRGO | SPR 272 Registers SPR 18
SPRG1 | SPR273 SRRO | SPR26
SPRG2 | SPR 274 SRR [SPR27 ngﬁsﬁgrdress
SPRG3 | SPR275 DAR SPR 19
Miscellaneous Registers
Time Base Facility Instruction Address Processor
(For Writing) Breakpoint Register Identification Register
TBL | SPR284 SPR 1010 SPR 1023
TBU SPR 285
Data Address
External Access Breakpoint Register 2 Decrementer
Register SPR 1013 DEC | SPR22
EAR SPR 282

2

/

1604e-specific—not defined by the PowerPC architecture

2 Optional to the PowerPC Architecture

Figure 2-1. Programming Model—PowerPC 604e Microprocessor Registers

Chapter 2. Programming Model

2-3

The PowerPC'’s user-level registers are described as follows:

User-level registerUISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The PowerPC general-purpose register file

consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See “General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” @the Programming Environments Mantiat more
information.

Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC
Register Set,” oThe Programming Environments Manual

Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO—CRY7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Register Seflhef
Programming Environments Manual

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fielusoff) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 604e is the same in
both cases. In the 604e, aricrf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use offiterf instruction, see

Section 6.6, “Instruction Scheduling Guidelines.”

Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,Tlo¢ Programming
Environments Manual

Implementation Note—The PowerPC architecture states that in some
implementations, the Move to FPSCR Fielaf§f) instruction may perform

more slowly when only a portion of the fields are updated as opposed to all of the
fields. In the 604e implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRat&pheandmfspr
instructions). These instructions are commonly used to explicitly access certain

2-4

PowerPC 604e RISC Microprocessor User's Manual

registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— XER register. The XER indicates overflow and carries for integer operations. It
Is set implicitly by many instructions. See “XER Register (XER),” in Chapter 2,
“PowerPC Register Set,” @he Programming Environments Mandiat more
information.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Registembglrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set, Thé
Programming Environments Manual

— Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,dfe Programming Environments Manual

» User-level registerVEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB for
writing values to the TB. For more information, see “PowerPC VEA Register
Set—Time Base,” in Chapter 2, “PowerPC Register Seil’hef Programming
Environments Manual

» Supervisor-level registerdOEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are described as follows:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Regmsteryr),
System Call $c), and Return from Exceptiomf{) instructions. It can be read
by the Move from Machine State Registerf(msr) instruction. See “Machine
State Register (MSR),” in Chapter 2, “PowerPC Register Sethef
Programming Environments Manualr more information.

Implementation Note—Note that the 604e defines MSR[29] as the performance monitor
marked mode bit (PM). This additional bit is described in Table 2-1.

Chapter 2. Programming Model 2-5

Table 2-1. MSR[PM] Bit

Bit

Name

Description

29

PM

Performance monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”

— Processor version register (PVR). This register is a read-only register that

identifies the version (model) and revision level of the PowerPC processor.
For more information, see “Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” dthe Programming Environments Manual

Implementation Note—The processor version number is 9 for the 604e. The
processor revision level starts at 0x0100 and changes for each chip revision.
The revision level is updated on all silicon revisions.

— Memory management registers
— Block-address translation (BAT) registers. The PowerPC OEA includes eight

block-address translation registers (BATS), consisting of four pairs of
instruction BATs (IBATOU—IBAT3U and IBATOL—IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for

a list of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “PowerPC Register Set,The Programming
Environments ManuaBecause BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.

The 604e implements the G bit in the IBAT registers; however, attempting to
execute code from an IBAT area with G = 1 causes an IS| exception. This
complies with the revision of the architecture describeébinerPC
Microprocessor Family: The Programming Environments

SDR1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. For more information, see “SDR1,” in
Chapter 2, “PowerPC Register Set, Tdfe Programming Environments
Manualfor more information.”

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set, Tdfe Programming Environments
Manualfor more information.

2-6

PowerPC 604e RISC Microprocessor User's Manual

— Exception handling registers

Data address register (DAR). After a DSI or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See “Data
Address Register (DAR),” in Chapter 2, “PowerPC Register Sethef
Programming Environments Manu@lr more information.

SPRGO0-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See “SPRGO0-SPRG3,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandiat more information.

DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Seffiof
Programming Environments Manu@lr more information.

Machine status save/restore register 0 (SRRO0). The SRRO register is used to
save machine status on exceptions and to restore machine status when an
Instruction is executed. See “Machine Status Save/Restore Register O
(SRRO0),” in Chapter 2, “PowerPC Register Set,Thé Programming
Environments Manudbr more information.

Machine status save/restore register 1 (SRR1). The SRRL1 register is used to
save machine status on exceptions and to restore machine status when an
instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,Thé Programming
Environments Manudbr more information.

Miscellaneous registers

Time Base (TB). The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
“Time Base Facility (TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandiat more information.

Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandiat more information.

Implementation Note—In the 604e, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

Data address breakpoint register (DABR)—This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered. See “Data Address Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” @he Programming Environments Mandai

more information.

Chapter 2.

Programming Model 2-7

— External access register (EAR). This optional register is used in conjunction
with theeciwx andecowxinstructions. Note that the EAR register and the
eciwx andecowxinstructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processors that implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandatl more information.

» Hardware implementation registers—The PowerPC architecture allows
iImplementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604e are described as follows. Note that in the 604e, these
registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered.

— Hardware implementation-dependent registers (HIDO and HID1)—These
registers are used to control various functions within the 604e, such as enabling
checkstop conditions, and locking, enabling, and invalidating the instruction and
data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 604e. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition is implementation-specific.

— Performance monitor counter registers (PMC1-PMC4). The counters are used to
record the number of times a certain event has occurred.

— Monitor mode control registers (MMCRO and MMCR1)—This is used for
enabling various performance monitoring interrupt conditions and establishes
the function of the counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 PowerPC 604e-Specific Registers

This section describes registers that are defined for the 604e but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is
assigned an SPR number by the architecture but is not defined by it. Note that these are all
supervisor-level registers.

2-8 PowerPC 604e RISC Microprocessor User's Manual

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The 604e also implements an Instruction Address Breakpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be a word. If the word specified
by the IABR is fetched, the instruction breakpoint handler will be invoked. The instruction
which triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

ADDRESS BE|TE

0 29 30 31

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 Word address to be compared
30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
31 Translation enabled. This bit is compared with the MSR][IR] bit. An IABR match is
signaled only if these bits also match.

The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked. For more information about the IABR exception,
see Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with thspr andmfspr instructions using the SPR number,
1010.

2.1.2.2 Processor ldentification Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28-31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, this tag is used for
several direct-store bus operations in the form of a “bus transaction from” tag.

PIR [] Reserved

0000000O00OOOOOOOOOOOOOOOOOOOO PID
0 27 28 31

Figure 2-3. Processor Identification Register

Chapter 2. Programming Model 2-9

The PIR can be accessed with tméspr and mfspr instructions using the SPR number,
1023. Note that although this number is defined by the OEA, the register structure is defined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register O

The hardware implementation dependent register 0 (HIDO) is an SPR that controls the state
of several functions within the 604e.

Table 2-3. Hardware Implementation-Dependent Register O Bit Settings

Bit Description

0 Enable machine check input pin

0 The assertion of the MCP does not cause a machine check exception.

1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of a
Cache Parity Error, detection of an address parity error, or detection of a data parity error.

Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the

processor checkstops or continues processing.

1 Enable cache parity checking

0 The detection of a cache parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error

0 The detection of a address bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

3 Enable machine check on data bus parity error

0 The detection of a data bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

12 Reserved. This bit should always be set to zero.

15 | Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1 Theinstruction cache is enabled

17 | Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1 The data cache is enabled.

2-10 PowerPC 604e RISC Microprocessor User's Manual

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

18 | Instruction cache lock

0 Normal operation

1 Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry.

19 | Data cache lock

0 Normal operation

1 Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 Instruction cache invalidate all

0 The instruction cache is not invalidated.

1 When set, an invalidate operation is issued that marks the state of each block in the instruction cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 | Data cache invalidate all

0 The data cache is not invalidated.

1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the data cache must be enabled for the invalidation to occur.

23 Coherent instruction fetch enable—controls whether instruction fetch bus operations are snooped.

0 In this default state, all instruction fetch address tenures are nonglobal, regardless of the state of the
MSRJIR] or the WIMG bits. Therefore, coherency checking on instruction fetches is disabled, as it is on
the 604.

1 The 604e presents a value on the GBL signal for instruction fetch address tenures that reflects the state
of the M bit if MSR[IR] = 1. If IR = 0 and HIDO[23] is set, the GBL signal is asserted for all instruction
fetch address tenures.

When modifying the instruction cache enable or instruction cache lock bits, software should place an isync

instruction after the mtspr [HIDO] instruction to ensure that the subsequent instructions are fetched with the

proper cache mode.

Note that, like the 604, the 604e never snoops its data cache during its own instruction fetch address tenure,

regardless of the state of GBL. Therefore, assertion of the GBL signal does not guarantee coherency

between the 604e’s own instruction cache and data cache. As in the 604, coherency between the instruction
and data caches must be maintained by software.

Additional information is provided in Section 3.2, “Instruction Cache Organization.”

24 | Serial instruction execution disable

0 The 604e executes one instruction at a time. The 604e does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.

1 Instruction execution is not serialized.

Chapter 2. Programming Model 2-11

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

29 | Branch history table enable

0 The 604e uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch
instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. The BHT is updated while it is disabled, so it can be initialized before

it is enabled.

30 BTAC disable—used to disable use of the 64-entry branch target address cache.

0 The BTAC is enabled and new entries can be added.

1 The BTAC contents are invalidated and the BTAC behaves as if it were empty. New entries cannot be
added until the BTAC is enabled.

Note that the BTAC can be flushed by disabling and re-enabling the BTAC using two successive mtspr

instructions.

When modifying the data cache enable or data cache lock bits, software shouldpjace a
instruction both before and after the move to the HIDO register to ensure that the data cache
is properly updated by instructions both before and after the move to HIDO instruction.

2.1.2.4 Hardware Implementation-Dependent Register 1 (HID1)

HID1 (SPR 1009), shown in Figure 2-4, is a supervisor-level register that allows software
to read the current PLL_CFG value. The PLL_CFG signal values are read from bits
HID1[0-3]. The remaining bits are reserved and are read as zeros. HID1 is a read-only
register.

E] Reserved

0000 0000 0OOOO 0000 OOOO 0OOOO OOOO
0 34 31

Figure 2-4. HID1 Clock Configuration Register

The bit settings in HID1 are described in Table 2-4.
Table 2-4. HID1 Bit Settings

Bits Description
0-3 PLL configuration bits (0-3)
4-31 Reserved (Read as zero)

2.1.2.5 Performance Monitor Registers

The remaining eight registers defined for use with the 604e are used by the performance
monitor. For more information about the performance monitor, see Chapter9,
“Performance Monitor.”

2-12 PowerPC 604e RISC Microprocessor User's Manual

2.1.2.5.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-5.

Table 2-5. MMCRO Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

2 DU Disable counting while in user mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

6 DISCOUNT Disable counting of PMC1-PMC4 when a performance monitor interrupt is
signalled or the occurrence of an enabled time base transition with
((INTONBITTRANS =1) & (ENINT = 1)).

0 Signalling a performance monitoring interrupt does not affect the counting
status of PMC1-PMC4.

1 The signalling of a performance monitoring interrupt prevents the changing
of the PMC1 counter. The PMC2-PMC4 counters does not change if
PMCTRIGGER = 0.

Because, a time base signal could have occurred along with an enabled counter

negative condition, software should always reset INTONBITTRANS to zero, if the

value in INTONBITTRANS was a one.

Chapter 2. Programming Model 2-13

Table 2-5. MMCRO Bit Settings (Continued)

Bit Name Description

7-8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on

0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15 | THRESHOLD Threshold value. All 6 bits are supported by the 604e. The threshold value is
multiplied by 4, allowing threshold values from 0 to 252 in increments of 4. The
intent of the THRESHOLD support is to be able to characterize L1 data cache
misses.

16 PMC1INTCONTROL | Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMCL1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMCINTCONTROL Enable interrupt signalling due to any PMCn (n>1) counter negative.
0 Disable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter
negative.

1 Enable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter negative.

18 PMCTRIGGER PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative or after a performance monitoring interrupt is signalled.

0 Enable PMCn (n>1) counting

1 Disable PMCn (n>1) counting until PMC1 bit 0 is “on” or until a performance
monitor interrupt is signalled.

PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative. This provides a triggering mechanism to allow counting after a

certain condition occurs or after enough time has occurred. It can be used to

support getting the count associated with a specific event.

19-25 | PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-7.

26-31 | PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-8.

2.1.2.5.2 Monitor Mode Control Register 1—MMCR1

The 604e defines an additional monitor mode control register (MMCR1), which functions
as an event selector for the two 604e-specific performance monitor counter registers
(PMC3 and PMC4). MMCR1 is SPR 956. The MMCR1 register is shown in Figure 2-5.

E] Reserved

PMC3SELECT|PMC4SELECT 00000000000O0O0O0O0OOOO0OO0OO0OOOOOO
0 45 910 31

Figure 2-5. Monitor Mode Control Register 1 (MMCR1)

2-14 PowerPC 604e RISC Microprocessor User's Manual

Bit settings for MMCR1 are shown in Table 2-6. The corresponding events are described
in the Section 2.1.2.5.3, “Performance Monitor Counter Registers (PMC1-PMC4).

Table 2-6. MMCR1 Bit Settings

Bits Name Description
0-4 PMC3SELECT PMC3 event selector
5-9 PMCA4SELECT PMC4 event selector
10-31 — Reserved

2.1.2.5.3 Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4 are 32-bit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both MMCRO[PMCINTCONTROL] and
MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMCL1 (SPR 953), PMC2 (SPR 954), PMC3 (SPR 957), and PMC4 (SPR 958) can be read
and written to by using thenfspr andmtspr instructions. Software is expected to use the
mtspr instruction to explicitly set the PMC register to non-negative values. If software sets
a negative value, an erroneous interrupt may occur. For example, if both
MMCRO[PMCINTCONTROL] and MMCRO[ENINT] are set and tmetspr instruction is

used to set a negative value, an interrupt signal condition may be generated prior to the
completion of thentspr and the values of the SIA and SDA may not have any relationship

to the type of instruction being counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MMCRO register
or until a performance monitor interrupt is generated. Table 2-7 lists the selectable events
with their appropriate MMCRO encodings.

Table 2-7. Selectable Events—PMC1

MMCRO0[0-4] Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles Ob1. Count every cycle.

000 0010 Number of instructions completed every cycle

000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

Chapter 2. Programming Model 2-15

Table 2-7. Selectable Events—PMCL1 (Continued)

MMCRO0[0-4] Description

000 0100 Number of instructions dispatched

000 0101 Instruction cache misses

000 0110 Data TLB misses (in order)

000 0111 Branch misprediction correction from execute stage

000 1000 Number of reservations requested. The lwarx instruction is ready for execution in the LSU.

000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache intervention

000 1010 Number of data cache store misses exceeding the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result.

001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruction.

001 0010 FPU produced result.

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1

001 0101 Number of instructions dispatched to the FPU

001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or misses.

001 0111 Number of data cache load misses exceeding the threshold value without lateral L2 intervention

001 1000 Number of data cache store misses exceeding the threshold value without lateral L2 intervention

001 1001 Number of cycles the branch unit is idle

001 1010 Number of cycles MCIUO is idle

001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active loads or
stores may be in the queues.

001 1100 Number of times the L2_INT is asserted (regardless of TA state)

001 1101 Number of unaligned loads

001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load queue has
four entries, a load miss latch may hold a load waiting for data from memory.

001 1111 Number of instruction breakpoint hits

2-16 PowerPC 604e RISC Microprocessor User's Manual

Bits MMCRO0[26—31] are used for selecting events associated with PMC2. These settings
are shown in Table 2-8.

Table 2-8. Selectable Events—PMC2

MMCRO0[26-31] Description

00 0000 Register counter holds current value.

00 0001 Processor cycles Ob1. Count every cycle.

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

00 0011 RTCSELECT bit transition. 0 = 47, 1 =51, 2 =55, 3 = 63 (bits from the time base lower register).
00 0100 Number of instructions dispatched (0 to 4 instructions per cycle)

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (in order)

00 0111 Number of instruction TLB misses

00 1000 Number of branches completed. Indicates the number of branch instructions being completed

every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

00 1001 Number of reservations successfully obtained (stwcx. operation completed successfully)

00 1010 Number of mfspr instructions dispatched (in order)

00 1011 Number of icbi instructions. It may not hit in the cache.

00 1100 Number of pipeline “flushing” instructions (sc, isync, mtspr (XER), mcrxt, floating-point operation

with divide by 0 or invalid operand and MSR[FEO, FE1] = 00, branch with MSR[BE] = 1, load
string indexed with XER = 0, and SO bit getting set)

00 1101 BPU produced result.

00 1110 SCIUO produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

00 1111 MCIU produced result (of a multiply/divide or SPR instruction).

01 0000 Number of instructions dispatched to the branch unit.

01 0001 Number of instructions dispatched to the SCIUO.

01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,

and ichi instructions.

01 0011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

01 0101 Number of cycles during which the MSR[EE] bit is cleared

010110 Number of cycles the MCIU is idle

010111 Number of cycles SCIUL is idle

01 1000 Number of cycles the FPU is idle

011001 Number of cycles the L2_INT signal is active (regardless of TA state)
011010 Number of times four instructions were dispatched

011011 Number of times three instructions were dispatched

Chapter 2. Programming Model 2-17

Table 2-8. Selectable Events—PMC2 (Continued)

MMCRO0[26-31] Description

011100 Number of times two instructions were dispatched

011101 Number of times one instruction was dispatched

011110 Number of unaligned stores

011111 Number of entries in the store queue each cycle (maximum of six)

Bits MMCR1[0-4] are used for selecting events associated with PMC3. These settings are
shown in Table 2-9.

Table 2-9. Selectable Events—PMC3

MMCR1[0-4] Comments

0 0000 Register counter holds current value.

0 0001 Count every cycle.

00010 Indicates the number of instructions being completed every cycle

00011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
0 0100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when a load or

store request is made and a response was expected. For example, when a store is retried, there
are four cycles before the same instruction is presented to the cache again. Cycles in between are
not counted.

00110 Number of cycles the LSU stalls due to a full store queue
00111 Number of cycles the LSU stalls due to operands not available in the reservation station
0 1000 Number of instructions written into the load queue. Misaligned loads are split into two transactions

with the first part always written into the load queue. If both parts are cache hits, data is returned to
the rename registers and the first part is flushed from the load queue. To count the instructions that
enter the load queue to stay, the misaligned load hits must be subtracted. See event 8 in

Table 2-10.
01001 Number of cycles that completion stalls for a store instruction
0 1010 Number of cycles that completion stalls for an unfinished instruction. This event is a superset of

PMC3 event 9 and PMC4 event 10.

01011 Number of system calls

0 1100 Number of cycles the BPU stalled as branch waits for its operand

01101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute stage.
01110 Number of cycles the dispatch stalls waiting for instructions

01111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry. No ROB

entry was available for the first nondispatched instruction.

1 0000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
nondispatched instruction required a floating-point reorder buffer and none was available.

10001 Number of instruction table search operations

2-18 PowerPC 604e RISC Microprocessor User's Manual

Table 2-9. Selectable Events—PMC3 (Continued)

MMCR1[0-4] Comments

10010 Number of data table search operations. Completion could result from a page fault or a PTE match.
10011 Number of cycles the FPU stalled

10100 Number of cycles the SCIU1 stalled

10101 Number of times the BIU forwards noncritical data from the line-fill buffer

10110 Number of data bus transactions completed with pipelining one deep with no additional bus

transactions queued behind it

10111 Number of data bus transactions completed with two data bus transactions queued behind

11000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them in data
streaming mode

11001 Counts non-ARTRYd processor kill transactions caused by a write-hit-on-shared condition

11010 This event counts non-ARTRYd write-with-kill address operations that originate from the three
castout buffers. These include high-priority write-with-kill transactions caused by a snoop hit on
modified data in one of the BIU’s three copy-back buffers. When the cache block on a data cache
miss is modified, it is queued in one of three copy-back buffers. The miss is serviced before the
copy-back buffer is written back to memory as a write-with-kill transaction.

11011 Number of cycles when exactly two castout buffers are occupied

11100 Number of data cache accesses retried due to occupied castout buffers

11101 Number of read transactions from load misses brought into the cache in a shared state
11110 CRU Indicates that a CR logical instruction is being finished.

Bits MMCR1[5-9] are used for selecting events associated with PMC4. These settings are
shown in Table 2-9.

Table 2-10. Selectable Events—PMC4

MMCR1[5-9] Description

0 0000 Register counter holds current value

00001 Count every cycle

00010 Number of instructions being completed

00011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to busy MMU

00110 Number of cycles the LSU stalls due to the load queue full

00111 Number of cycles the LSU stalls due to address collision

0 1000 Number of misaligned loads that are cache hits for both the first and second accesses. Related to
event 8 in PMC3.

01001 Number of instructions written into the store queue

Chapter 2. Programming Model 2-19

Table 2-10. Selectable Events—PMC4 (Continued)

MMCR1[5-9] Description
01010 Number of cycles that completion stalls for a load instruction
01011 Number of hits in the BTAC. Warning —if decode buffers cannot accept new instructions, the

processor refetches the same address multiple times.

01100 Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used

01101 Number of fetch corrections made at decode stage

01110 Number of cycles the dispatch unit stalls due to no unit available. First nondispatched instruction
requires an execution unit that is either full or a previous instruction is being dispatched to that unit.

01111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer. First
nondispatched instruction requires a GPR reorder buffer and none are available.

1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
nondispatched instruction requires a CR rename buffer and none is available.

10001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First nondispatched instruction
could not dispatch due to CTR/LR/mtcrf interlock.

10010 Number of cycles spent doing instruction table search operations

10011 Number of cycles spent doing data table search operations

10100 Number of cycles SCIUO was stalled

10101 Number of cycles MCIU was stalled

10110 Number of bus cycles after an internal bus request without a qualified bus grant

10111 Number of data bus transactions completed with one data bus transaction queued behind

11000 Number of write data transactions that have been reordered before a previous read data

transaction using the DBWO feature

11001 Number of ARTRYd processor address bus transactions

11010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-Kkill, that hit
modified data in the data cache cause a high-priority write (snoop push) of that modified cache
block to memory.This operation has a transaction type of write-with-kill. This event counts the
number of non-ARTRYd processor write-with-kill transactions that were caused by a snoop hit on
modified data in the data cache. It does not count high-priority write-with-kill transactions caused
by snoop hits on modified data in one of the BIU’s three copy-back buffers.

11011 Number of cycles for which exactly one castout buffer is occupied

11100 Number of cycles for which exactly three castout buffers are occupied

11101 Number of read transactions from load misses brought into the cache in an exclusive (E) state
11110 Number of undispatched instructions beyond branch

2.1.2.5.4 Sampled Instruction Address Register (SIA)

The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

2-20 PowerPC 604e RISC Microprocessor User's Manual

The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA

contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using tmefspr instruction and written to by using thatspr
instruction (SPR 955).

2.1.2.5.5 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using thefspr instruction and written to by using thatspr
instruction (SPR 959).

2.1.3 Reset Settings

Table 2-11 shows the state of the registers after a hard reset and before the first instruction
is fetched from address OxFFFO_0100 (the system reset exception vector).

Table 2-11. Settings after Hard Reset (Used at Power-On)

Register Setting Register Setting
BATs Undefined LR Undefined
Caches* Undefined and disabled MSR 0x00000040 (only IP set)
CR Undefined PIR Undefined
CTR Undefined PVR ROM value
DABR Breakpoint is disabled. Reservation Undefined

Address is undefined. address

DAR Undefined Reservation flag | Cleared
DEC Undefined SDR1 Undefined

Chapter 2. Programming Model

2-21

Table 2-11. Settings after Hard Reset (Used at Power-On) (Continued)

Register Setting Register Setting
DSISR Undefined SPRGO-SPGR3 | Undefined
EAR E is cleared; SR Undefined

RID is undefined.
FPR Undefined SRRO Undefined
FPSCR Setto O SRR1 Undefined
GPR Undefined Time base Undefined
HIDO 0x00000000 TLB Undefined
IABR Breakpoint is disabled. XER Undefined
Address is undefined.

* The processor automatically begins operations by issuing an instruction fetch. Because caching is
inhibited at start-up, this generates a single-beat load operation on the bus.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to

ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following

sections.

2-22 PowerPC 604e RISC Microprocessor User's Manual

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

» Underflow during multiplication using a denormalized operand
» Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-12. (Although not permitted as memory operands, quad words are shown because
guad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4 Support for Misaligned Little-Endian Accesses

The 604e provides hardware support for misaligned little-endian accesses. Little-endian
accesses in the 604e take an alignment exception for the same cases that big-endian
accesses take alignment exceptions. Any data access that crosses a word boundary requires
two accesses regardless of whether the data is in big- or little-endian format. When two
accesses are required, the lower addressed word (in the current addressing mode) is
accessed first. Consider the memory mapping in Figure 2-6.

Chapter 2. Programming Model 2-23

Big-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 00 01 02 03 04 05 06 07
Contents| | | J | K | L | M | N | o) | P |
Address 08 09 0A 0B oC oD OE OF

Little-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 07 06 05 04 03 02 01 00
Contents| | | J | K | L | M | N | o) | P |
Address OF OE 0D 0C 0B 0A 09 08

Figure 2-6. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-endian
address 0x4 containing dafais accessed first followed by one byte at big-endian address
0x3 containing dat®. For a load halfword, the data written back to the GPR would be
D, E. If four bytes are requested starting at little-endian address 0x6, two bytes at
big-endian address 0x0 containing d&taB are accessed first followed by two bytes at
big-endian address OXE containing détaP. For a load word, the data written back to the
GPR would beD, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefined.

2.2.5 Floating-Point Operand

The 604e provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985|EEE Standard for Binary Floating Point ArithmetidDetailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” inThe Programming Environments Manual

The 604e supports non-IEEE mode whenever FPSCR[29] is set. In this mode,
denormalized numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE
conforming manner. This is accomplished by delivering results that approximate the values
required by the IEEE standard. Table 2-12 summarizes the conditions and mode behavior
for operands.

2-24 PowerPC 604e RISC Microprocessor User's Manual

Table 2-12. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI'=0)

Non-IEEE Mode
(NI=1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three

Zero all three

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero A and B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroB and C
Double denormalized | Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize Aand C | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNanNH QNaNt]
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNan QNaN
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNant QNaN
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.

Chapter 2. Programming Model

2-25

Table 2-13 summarizes the mode behavior for results.

Table 2-13. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-lIEEE Mode (NI = 1)

Single Denormalized Return single-precision Return zero.
denormalized number with trailing
zeros.

Single Normalized Return the result. Return the result.
Infinity
Zero
Single QNaN Return QNaN. Return QNaN.
SNaN
Single INT Place integer into low word of FPR. | If (Invalid Operation)
then

Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].

Double Denormalized Return double precision Return zero.
denormalized number.

Double Normalized Return the result. Return the result.
Infinity
Zero

Double QNaN Return QNaN. Return QNaN.
SNaN

Double INT Not supported by 604e Not supported by 604e

2.2.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in

memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand
Conventions,” inThe Programming Environments Manual

2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 604e. These
instructions are divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

* Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

2-26 PowerPC 604e RISC Microprocessor User's Manual

» Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,"

Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

» Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

* Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA."

» External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful

in taking full advantage of the 604e’s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of
a memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” inThe Programming Environments Mandal a complete list of simplified

Chapter 2. Programming Model 2-27

mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604e instructions belong to one of the following three classes:

 Defined
* lllegal
 Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the 604e.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Sethen
Programming Environments ManuallThe 604e provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604e provides hardware support for all instructions defined for 32-bit implementations.
The 604e does not support the optidsgtt, fsqrts, andtlbia instructions.

2-28 PowerPC 604e RISC Microprocessor User's Manual

A defined instruction can have invalid forms. The 604e provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists all invalid instruction forms and specifies the operation of the 604e upon
detecting each.

2.3.1.3 lllegal Instruction Class
lllegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

» Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the 604e.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 604e:

2, 30, 58, 62

» Allunused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17,19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

* Aninstruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The 604e invokes the system illegal instruction error handler (a program exception) when
it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely
of binary zeros, the illegal instructions are available for further additions to the PowerPC
architecture.

Chapter 2. Programming Model 2-29

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” Tine Programming
Environments Manuafor additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:
» Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual

* Implementation-specific instructions required to conform to the PowerPC
architecture

» Architecturally-allowed extended opcodes
» Implementation-specific instructions

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,”Téfe Programming Environments
Manual

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” Tdfe Programming
Environments Manudbr more information about big- and little-endian byte ordering.

2-30 PowerPC 604e RISC Microprocessor User's Manual

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions, Tiig Programming
Environments Manual

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a

memory access or branch instruction or when fetching the next sequential instruction. For

a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the

following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O is ignored.

Load and store operations have three categories of effective address generation:

* Register indirect with immediate index mode
* Reqgister indirect with index mode
» Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

* Immediate
» Link register indirect
» Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call 9 and Return from Interruptrfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

* No higher priority exception existsd).

» All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

Chapter 2. Programming Model 2-31

» Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

» The instructions following thecor rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the casgmfandisync, before

the instruction completes. For example, the Move to Machine State Registarsy)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if themtmsr sets the MSR[PR] bit, unless async immediately follows the

mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the 604e—those caused directly by the execution of
an instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 604e provides the following supervisor-level
instructions:dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tibie, andtlbsync. Note that the privilege level of thefspr andmtspr instructions
depends on the SPR encoding.

* An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

» An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

* The execution of ascinstruction invokes the system call exception handler that
permits a program to request the system to perform a service.

» The execution of a trap instruction invokes the program exception trap handler.

» The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

» The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”

2-32 PowerPC 604e RISC Microprocessor User's Manual

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
604e and highlights any special information with respect to how the 604e implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, “Addressing Modes and Instruction Set SummaryTha Programming
Environments ManualThese categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

* CR Update—The dot)(suffix on the mnemonic enables the update of the CR.
» Overflow option—Theo suffix indicates that the overflow bit in the XER is enabled.

Note that on the 604e, the undefined result of an integer divide overflow differs from
that of the 604.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

» Integer arithmetic instructions

* Integer compare instructions

* Integer logical instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER register, and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-14 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-14. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax
Add Immediate addi r D,rA,SIMM
Add Immediate Shifted addis r D,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic r D,rA,SIMM
Chapter 2. Programming Model 2-33

Table 2-14. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Add Immediate Carrying and Record addic. r D,rA,SIMM
Subtract from Immediate Carrying subfic r D,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli r D,rA,SIMM
Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. r| D,yArB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. Theibf instructions subtract the second operarfl) from the

third operand 1(B). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonic$fian
Programming Environments Manufalr examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
604e arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the XER are set to reflect an overflow condition of a 32-bit result. This
may only occur when the overflow enable bit is set (OE = 1).

2-34 PowerPC 604e RISC Microprocessor User's Manual

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of registBr The comparison is signed for tieenpi

and cmp instructions, and unsigned for thempli and cmpl instructions. Table 2-15
summarizes the integer compare instructions.

Table 2-15. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crf D,L,rA,SIMM
Compare cmp crf D,L,rArB
Compare Logical Immediate cmpli crf D,L,rA,UIMM
Compare Logical cmpl crf D,L,rA,rB

ThecrfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruatidéD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” iThe Programming Environments Manual

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-16 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructionsandi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” ithe Programming Environments Mandai
simplified mnemonic examples for integer logical operations.

Table 2-16. Integer Logical Instructions

Name Mnemonic Operand
Syntax
AND Immediate andi. rArS,UIMM
AND Immediate Shifted andis. r A,rS,UuiMM
OR Immediate ori rArS,UuiMM
OR Immediate Shifted oris r ArS,UuiMM
XOR Immediate XOri r ArS,UuiMM
XOR Immediate Shifted Xoris r A,rS,UlMM
AND and (and.) rA,rS,rB
OR or (or.) rA,rS,rB

Chapter 2. Programming Model 2-35

Table 2-16. Integer Logical Instructions (Continued)

Name Mnemonic OSpyenr;r)l(d

XOR xor (xor.) rA,rS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rArS,rB
OR with Complement orc (orc.) rArS,rB
Extend Sign Byte extsb (extsh.) rArS

Extend Sign Half Word extsh (extsh.) rArS

Count Leading Zeros Word cntlzw (cntlzw.) | rArS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,”The
Programming Environments Manuébr a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the

target register.

The integer rotate instructions are summarized in Table 2-17.

Table 2-17. Integer Rotate Instructions

Name Mnemonic Operand Syntax
Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rArS,SH,MB,ME
Rotate Left Word then AND with Mask rflvnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert riwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” inThe Programming Environments Manyale provided to make coding of
such shifts simpler and easier to understand.

2-36 PowerPC 604e RISC Microprocessor User's Manual

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manudlhe integer shift instructions are
summarized in Table 2-18.

Table 2-18. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word srw - (srw.) rA;rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rArS,SH
Shift Right Algebraic Word sraw (sraw.) rArS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions

Floating-point multiply-add instructions
Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control register instructions
Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-19.

Table 2-19. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frAfrB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frAfrC
Floating Multiply Single fmuls (fmuls.) frD,frAfrC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Chapter 2. Programming Model 2-37

Table 2-19. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB
Floating Square Root Single fsqrts (fsqrts.) frD,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsqrte (frsqgrte.) frD,frB

Floating Select

fsel

fr D,frA,frC,frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-20.

Table 2-20. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frAfrC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frAfrC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frAfrC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frAfrC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frAfrC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frAfrC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precisiofisp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

2-38 PowerPC 604e RISC Microprocessor User's Manual

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” imhe Programming Environments Manual

Table 2-21. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are summarized in Table 2-22.

Table 2-22. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fcmpu crf D,frA,frB
Floating Compare Ordered fcmpo crf D,frAfrB

Within the PowerPC architecture, &mpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 604ecrfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-23.

Table 2-23. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crf D,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crf D,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) | crbD

Move to FPSCR Bit 1

mtfsbl (mtfsbl.) | crbD

Chapter 2. Programming Model 2-39

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-24 summarizes the floating-point
move instructions.

Table 2-24. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Integer load instructions

Integer store instructions

Integer load and store with byte reverse instructions
Integer load and store multiple instructions
Floating-point load instructions

Floating-point store instructions

Memory synchronization instructions

Implementation Notes—The following describes how the 604e handles misalignment:

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 604e triggers a DSI exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.

2-40

PowerPC 604e RISC Microprocessor User's Manual

* Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 604e completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604e requires a direct-store protocol “Reply” from the
device. If two translations cross from T = 0 into T = 1 space, a DSI exception is
signaled.

* In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructionb®x, Ibzux, lhzx, lhzux, Ihax, lhaux, lwzx,
lwzux), the integer store indexed instructioatk, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructidimsrk , Iwbrx, sthbrx,
stwbrx), the string instructiondgwi, Iswx, stswi, stswX, and the synchronization
instructions gync Iwarx). In the 604e, executing one of these invalid instruction
forms causes CRO to be set to an undefined value. The floating-point load and store
indexed instructiondfgx, Ifsux, Ifdx, Ifdux, stfsx, stfsux stfdx, stfdux) are also
invalid when the Rc bitis one. In the 604e, executing one of these invalid instruction
forms causes CRO to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory

sync |wait for update

icbi |[remove (invalidate) copy in instruction cache
sync |wait for icbi to be globally performed

isync [remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” ifthe Programming Environments Manu8ecause the 604e

does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally

Chapter 2. Programming Model 2-41

aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(Ox00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded int®. Many integer load instructions have an update
form, in whichr A is updated with the generated effective address. For these formas 0f
andrA rD (otherwise invalid), the EA is placed intA and the memory element (byte,
half word, word, or double word) addressed by the EA is loadedriBtoNote that the
PowerPC architecture defines load with update instructions with operand O or

rA =rD as invalid forms.

Implementation Notes—The following notes describe the 604e implementation of integer
load instructions:

* |n the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructionkx, Ibzux, lhzx, lhzux, Ihax, lhaux, Iwzx, and
lwzux). In the 604e, executing one of these invalid instruction forms causes CRO to
be set to an undefined value.

* For load with update instructioiifzu, Ibzux, Ihzu, lhzux, lhau, Ihaux, lwzu,
lwzux, Ifsu, Ifsux, Ifdu, Ifdux), whenrA = 0 orr A = rD the instruction form is
considered invalid. IFA =0, the 604e sets GPRO to an undefined valueAlf rD,
the 604e setsD to an undefined value.

» The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebrlia,(Ihax) instructions with
greater latency than other types of load instructions. This is not the case for the 604e.

Table 2-25 summarizes the integer load instructions.

Table 2-25. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rArB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux r D,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rArB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux r D,rA,rB
Load Half Word Algebraic Iha rD,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rArB

2-42

PowerPC 604e RISC Microprocessor User's Manual

Table 2-25. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Load Half Word Algebraic with Update Ihau rD,d(rA)
Load Half Word Algebraic with Update Indexed | Ihaux r D,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux r D,rA,rB

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents®fare stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in whiatA is updated with the EA. For these forms, the following
rules apply:

 If rA 0, the déctive address is placed inté.
* IfrS=rA, the contents of registefS are copied to the target memory element, then
the generated EA is placed intaA (rS).

The PowerPC architecture defines store with update instructions vithO as an inalid

form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-26
summarizes the integer store instructions.

Table 2-26. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx r S,rA,rB
Store Byte with Update stbu r S,d(rA)
Store Byte with Update Indexed stbux r S,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rArB
Store Half Word with Update sthu r S,d(rA)
Store Half Word with Update Indexed sthux r S,rArB
Store Word stw rS,d(rA)
Store Word Indexed Stwx r S,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux r SrA,rB

Chapter 2. Programming Model 2-43

Implementation Notes—The following notes describe the 604e implementation of integer
store instructions:

* |In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer store indexed instructiorsl{x, stbux, sthx, sthux, stwx, stwux). In the
604e, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

» For the store with update instructiostbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), whenr A = 0, the instruction form is considered invalid. In
this case, the 604e sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions

Table 2-27 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering, Time Programming
Environments Manual

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructidimsrk , Iwbrx , sthbrx, stwbrx).

In the 604e, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-27. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed lhbrx r D,rA,rB
Load Word Byte-Reverse Indexed Iwbrx r D,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx r S,rArB
Store Word Byte-Reverse Indexed stwhbrx r S,rArB

2.3.4.3.6 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

2-44 PowerPC 604e RISC Microprocessor User's Manual

Implementation Notes—The following describes the 604e implementation of the
load/store multiple instruction:

» The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructiondriw andstmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604e
provides hardware support flonw, stmw, Iswi, Iswx, stswi, andstswxinstructions
to cross a page boundary. However, a DSI exception may occur when the boundary
is crossed (for example, if a protection violation occurs on the new page).

» Executing animw instruction in whichr A is in the range of registers to be loaded
or in which RA = RT =0 is invalid in the architecture. In the 604e, all registers
loaded are set to undefined values. Any exceptions resulting from a memory access
cause the system error handler normally associated with the exception to be invoked.

* The 604e’s implementation of thaw instruction allows one word of data to be
transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. Fostthe instruction, data is
transferred from the GPRs to the cache at a rate of one word (GPR) per clock cycle.

* When arimw or stmw access is to noncacheable memory, data is transferred on the
external bus at a rate of one word per external bus tenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

* Theload multiple and load string instructions can be interrupted after the instruction
has partially completed. HA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of
which might be anywhere in memory; therefore, the system error handler may be
invoked.

The PowerPC architecture defines the load multiple wionav instruction withr A in the
range of registers to be loaded as an invalid form.

Table 2-28. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word | Imw rD,d(rA)
Store Multiple Word | stmw r S,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-29
summarizes the integer load and store string instructions.

Chapter 2. Programming Model 2-45

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” imrhe Programming Environments Manufdr more
information.

Table 2-29. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate Iswi r D,FANB
Load String Word Indexed Iswx r D,rA,rB
Store String Word Immediate | stswi r S,rANB
Store String Word Indexed Stswx r S,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non—-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

Implementation Note—The following describes the 604e implementation of the
load/store string instruction:

» The 604e provides hardware supportlfow, stmw, Iswi, Iswx, stswi, andstswx
instructions to cross a page boundary. However, a DSI exception may occur when
the boundary is crossed (for example, if a protection violation occurs on the new
page).

* Anlswi orlswxinstruction in whichr A or rB is in the range of registers potentially
to be loaded or in whichA = rD = 0 is an invalid instruction form. In the 604e, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

* Theload multiple and load string instructions can be interrupted after the instruction
has partially completed. HA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of
which might be anywhere in memory; therefore, the system error handler may be
invoked.

» The 604e executes load string operations to cacheable memory at two cycles per
word if they are word-aligned. Two additional cycles per instruction are required if
they are not word-aligned. Cache-inhibited load string instructions require one bus
tenure per word if they are aligned. An additional tenure per instruction is required
if a cache-inhibited load string operation is not word aligned.

2-46 PowerPC 604e RISC Microprocessor User's Manual

* The 604e executes store string operations to cacheable memory at a rate of one cycle
per word if they are word-aligned. Cacheable store string operations that are not
word-aligned require five cycles per word. Cache-inhibited store string instructions
require one bus tenure per word if they are word-aligned. Two bus tenures per word
are required if a store string operation is not word aligned.

* Theload multiple and load string instructions can be interrupted after the instruction
has partially completed. HA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new valie of
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operands into the target
FPR.

Implementation Notes—The following notes characterize how the 604e treats exceptions:

* On the 604e, if a floating-point number is not aligned on a word boundary, an
alignment exception occurs.

* The floating-point load and store indexed instructidfsx(Ifsux, Ifdx, Ifdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604e, executing one
of these invalid instruction forms causes CRO to be set to an undefined value.

Note that the PowerPC architecture defines load with update instructionsAwtld as an
invalid form.

Table 2-30. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Single Ifs fr D,d(rA)
Load Floating-Point Single Indexed Ifsx fr D,rA,rB
Load Floating-Point Single with Update Ifsu fr D,d(rA)
Load Floating-Point Single with Update Indexed Ifsux fr D,rA,rB
Load Floating-Point Double Ifd fr D,d(rA)
Load Floating-Point Double Indexed Ifdx fr D,rA,rB
Load Floating-Point Double with Update Ifdu fr D,d(rA)
Load Floating-Point Double with Update Indexed Ifdux fr D,rA,rB

Chapter 2. Programming Model 2-47

2.3.4.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optionatfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
Instructions convert double-precision data to single-precision format before storing the
operands. Table 2-31 summarizes the floating-point store instructions.

Table 2-31. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point Single stfs fr S,d(rA)
Store Floating-Point Single Indexed stfsx fr SrB
Store Floating-Point Single with Update stfsu fr S,d(rA)
Store Floating-Point Single with Update Indexed stfsux fr SrB
Store Floating-Point Double stfd fr S,d(rA)
Store Floating-Point Double Indexed stfdx fr S,rB
Store Floating-Point Double with Update stfdu fr S,d(rA)
Store Floating-Point Double with Update Indexed stfdux fr SrB
Store Floating-Point as Integer Word Indexed stfiwx fr S,rB

Some floating-point store instructions require conversions in the LSU. Table 2-32 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Table 2-32. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized If(exp 896)
then Denormalize and Store
else
Store
Double Denormalized Store Zero
Double Zero Store
Infinity
QNaN
Double SNaN Store

2-48 PowerPC 604e RISC Microprocessor User's Manual

Table 2-33 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 2-33. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero Store
Infinity
QNaN
Double SNaN Store

Architecturally, all floating-point numbers are represented in double-precision format
within the 604e. Execution of a store floating-point singd#fq stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The 604e supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 604e, there is also a case
when execution of a store floating-point dould#d, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.

Chapter 2. Programming Model 2-49

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

» Branch relative

» Branch conditional to relative address
* Branch to absolute address

* Branch conditional to absolute address
» Branch conditional to link register

» Branch conditional to count register

Note that in the 604e, all branch instructiobsl§a, bl, bla, bc, bca, bcl, bela, belr, belrl,

bcctr, bectrl) and condition register logical instructionsré&nd, cror, crxor, crnand,

crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
Instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 604e flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-34 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,’The
Programming Environments Manufair a list of simplified mnemonic examples.

2-50 PowerPC 604e RISC Microprocessor User's Manual

Table 2-34. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr

Branch Conditional to Link Register belr (bclrl) BO,BI

Branch Conditional to Count Register beetr (bectrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-35, and the Move Condition
Register Fieldricrf) instruction are also defined as flow control instructions.

Table 2-35. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crb D,crbA,crbB
Condition Register OR cror crb D,crbA,crbB
Condition Register XOR crxor crb D,crbA,crbB
Condition Register NAND crnand crb D,crbA,crbB
Condition Register NOR crnor crb D,crbA,crbB
Condition Register Equivalent creqv crb D,crb A, crbB
Condition Register AND with Complement crandc crb D,crbA, crbB
Condition Register OR with Complement crorc crb D,crbA, crbB
Move Condition Register Field mcrf crf D,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-36 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-36. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” ithe Programming Environments Mandat
a complete set of simplified mnemonics.

Chapter 2. Programming Model 2-51

2.3.4.5 System Linkage Instruction—UISA

This section describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See also Section2.3.6.1, “System Linkage
Instructions—OEA,” for additional information.

Table 2-37. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sC —

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for tinéb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-38 summarizes the instructions for reading from or writing to the condition register.

Table 2-38. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcrxr crf D
Move from Condition Register mfcr rb

Note that the performance of timetcrf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

* Thosemtcrf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

» Thosemtcrf instructions that update either multiple fields or no fields are dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mtcrf instructions of the same typmtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared whentthe
mtcrf, ormtlr instruction that the bit is executed.

2-52 PowerPC 604e RISC Microprocessor User's Manual

Becausemtcrf instructions that update a single field do not require such synchronization
that othemtcrf instructions do, and because two such single-field instructions can execute
in parallel, it is typically more efficient to use multipigcrf instructions that update only
one field apiece than to use oncrf instruction that updates multiple fields. A rule of
thumb follows:

* Itis alwaysmore efficient to use twmtcrf instructions that update only one field
apiece than to use ondcrf instruction that updates two fields.

— It is almost alwaysnore efficient to use three or faumtcrf instructions that
update only one field apiece than to use orerf instruction that updates three

fields.

— Itis oftenmore efficient to use more than fomtcrf instructions that update only
one field than to use ometcrf instruction that updates four fields.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-39 lists thentspr andmfspr instructions.

Table 2-39. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr r D,SPR

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.

Table 2-40. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax
Load Word and Reserve Indexed lwarx r D,rA,rB
Store Word Conditional Indexed stwcex. r S,rArB
Synchronize sync —

Note: An attempt to perform an atomic memory access (lwarx or stwcx.) to a location in
write-through-required mode causes a DSI exception and DSISR[5] is set.

Chapter 2. Programming Model 2-53

The proper paired use of thearx with stwcx.instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Thlevarx instruction must be paired with astwcx.
instruction with the same effective address used for both instructions of the pair. Note that
the reservation granularity is implementation-dependent. See 2.3.5.2, “Memory
Synchronization Instructions—VEA,” for details about additional memory synchronization
(eieioandisync) instructions.

Implementation Notes—The following notes describe the 604e implementation of
memory synchronization instructions:

* The PowerPC architecture requires that memory operands for Load and Reserve
(lwarx) and Store Conditionas{wcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604e, an alignment
exception occurs.

» The PowerPC architecture indicates that the granularity with which reservations for
lwarx andstwcx. instructions are managed is implementation-dependent. In the
604e reservations, this granularity is a 32-byte cache block.

* Thesyncinstruction causes the 604e to serialize. 3yt instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched untilgiiec instruction completes.

Instructions already in the instruction buffer, due to prefetching, are not refetched
after thesynccompletes. If reflecting is requiredync should be executed to flush
the instruction buffer after tr®ync Thesyncis dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These includeyheand

lwarx instructions. In the 604e, executing one of these invalid instruction forms causes
CRO to be set to an undefined value. Bh&cx.instruction is the only load/store instruction
that has a valid form if Rc is set. If the Rc bit is zero, the result of executing this instruction
in the 604e causes CRO to be set to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2-54 PowerPC 604e RISC Microprocessor User's Manual

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA

defines thenftb instruction (user-level instruction) for reading the contents of the time base

register; see Chapter 3, “Cache and Bus Interface Unit Operation,” for more information.
Table 3-34 shows thaftb instruction.

Table 2-41. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for theftb instruction so it can be coded with the

TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manuialr
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Uppemftbu), which are variants of thenftb
instruction rather than ohfspr. Themftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognizerafib mnemonic with two operands as the basic form,

and armftb mnemonic with one operand as the simplified form.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the 604e:

* The 604e allows user-mode read access to the time base counter through the use of
the Move from Time Basenr(ftb) and the Move from Time Base Upparftbu)
instructions. As a 32-bit PowerPC implementation, the 604e supports separate
access to the TBU and TBL, whereas 64-bit implementations can access the entire
TB register at once.

* The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the timebase enddite (nput signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.

Chapter 2. Programming Model 2-55

Table 2-42 describes the memory synchronization instruction s defined by the VEA.

Table 2-42. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Implementation Notes
Syntax

Enforce In-Order eieio — The eieio instruction is dispatched by the 604e to the LSU.

Execution of I/O The eieio instruction executes after all preceding
cache-inhibited or write-through memory instructions execute;
all following cache-inhibited or write-through instructions
execute after the eieio instruction executes. When the eieio
instruction executes, an EIEIO address-only operation is
broadcast on the external bus to allow ordering to be enforced
in the external memory system.

Instruction isync — The isync instruction causes the 604e to purge its instruction

Synchronize buffers and fetch the double word containing the next
sequential instruction.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to thesync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O€ieig and Instruction Synchronizasgnc) instructions. The
number of cycles required to complete @rioinstruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behindyime instruction).

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

» Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level
cache, segment register manipulation, and translation lookaside buffer management
instructions.

2-56 PowerPC 604e RISC Microprocessor User's Manual

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, “Cache and Bus Interface
Unit Operation,” for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor caches.
The following sections describe how these operations are treated with respect to the 604e’s
cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, syncinstruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-43 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.

Table 2-43. User-Level Cache Instructions

Operand

Name Mnemonic
Syntax

Implementation Notes

Data Cache | dcbt rArB The VEA defines this instruction to allow for potential system
Block Touch performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache.
The 604e treats the dcbt instruction as a no-op if any of the following
conditions is met:

* The address misses in the TLB and in the BAT.

* The address is directed to a direct-store segment.

* The address is directed to a cache-inhibited page.

« The data cache lock bit HIDO[19] is set.
The data brought into the cache as a result of this instruction is validated
in the same way a load instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked
as Shared). The memory reference of a dcbt causes the reference bit to
be set.
A successful debt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data Cache | dcbtst r ArB This instructions behaves like the dcbt instruction.
Block Touch
for Store

Chapter 2. Programming Model 2-57

Table 2-43. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Implementation Notes

Data Cache
Block Set to
Zero

dcbz

rArB

The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it presents an operation onto the 604e bus interface
that instructs all other processors to invalidate copies of the block that
may reside in their cache (this is the kill operation on the bus). After it has
exclusive access, the 604e writes all zeros into the cache block. If the
604e already has exclusive access, it immediately writes all zeros into
the cache block. If the addressed block is within a noncacheable or a
write-through page, or if the cache is locked or disabled, the an alignment
exception occurs.

If the operation is successful, the cache block is marked modified.

Data Cache
Block Store

dcbst

r ArB

The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the clean operation, described in Table 3-4). If the 604e
has modified data associated with the block, the processor pushes the
modified data out of the cache and into the memory queue for future
arbitration onto the 604e bus. In this situation, the cache block is marked
exclusive. Otherwise this instruction is treated as a no-op.

A dcbst instruction followed by a store operation may appear out of order
on the bus so that systems that have L2 caches that check for cache
paradox conditions may detect a cache paradox.

When a 604e executes a dcbst instruction to a cache block in shared
state followed by a store instruction to the same cache block, the dcbst
instruction causes a clean transaction on the bus if the 604e’s L1 cache
block is not in modified data state. The store operation should cause a kill
operation on the bus because it should hit on shared data in the L1
cache. However, the 604e may send out the kill operation before the
clean operation. An L2 controller that performs paradox checking could
be confused by this kill/clean sequence to the same cache block. The Kill
operation (with TCO-TC2 = 000) implies that the 604e is obtaining
exclusive rights and will modify the line. The following clean operation
implies that the 604e does not have the block modified. This may confuse
the L2 controller.

To avoid this, put a sync instruction after the dcbst instruction or don’t
check for this paradox.

Data Cache
Block Flush

dcbf

rArB

The effective address is computed, translated, and checked for protection
violations as defined by the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the flush operation described in Table 3-4). In addition, if
the addressed block is present in the cache, the 604e marks this data as
invalid. On the other hand, if the 604e has modified data associated with
the block, the processor pushes the modified data out of the cache and
into the memory queue for future arbitration onto the 604e bus. In this
situation, the cache block is marked invalid.

Instruction
Cache
Block
Invalidate

icbi

rArB

The effective address is computed, translated, and checked for protection
violations as defined in the PowerPC architecture. If the addressed block
is in the instruction cache, the 604e marks it invalid. This instruction
changes neither the content nor status of the data cache. In addition, the
ICBI operation is broadcast on the 604e bus unconditionally to support
this function throughout multilayer memory hierarchy.

2-58

PowerPC 604e RISC Microprocessor User's Manual

2.3.5.4 Optional External Control Instructions

The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-44.

Table 2-44. External Control Instructions

Name Mnemonic Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rArB

The eciwx and ecowx instructions cause an alignment exception if they are not
word-aligned.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-45cifs¢ruction

is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. rfTh@struction is a
supervisor-level instruction that is useful for returning from an exception handler.

Table 2-45. System Linkage Instructions—OEA

Name

Mnemonic

Operand Syntax

System Call

SC

Return from Interrupt

rfi

2.3.6.2 Processor Control Instructions—OEA
This section describes the processor control instructions that are used to read from and

write to the MSR and the SPRs.

Table 2-46 summarizes the instructions used for reading from and writing to the MSR.

Table 2-46. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD

Chapter 2. Programming Model

2-59

The OEA defines encodings of tlmetspr and mfspr instructions to provide access to
supervisor-level registers. The instructions are listed in Table 2-47.

Table 2-47. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,IS
Move from Special Purpose Register mfspr r D,SPR

Encodings for the 604e-specific SPRs are listed in Table 2-48.
Table 2-48 SPR Encodings for PowerPC 604e-Defined Registers (mfspr)

SPR'
Register Name
Decimal spr[5-9] spr[0—4]

952 11101 11000 MMCRO
956 11101 11100 MMCR1
953 11101 11001 PMC1
954 11101 11010 PMC2
957 11101 11101 PMC3
958 11101 11110 PMC4
955 11101 11011 SIA
959 11101 11111 SDA
1010 11111 10010 IABR
1023 11111 11111 PIR

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in

the instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for thaspr andmfspr instructions in Appendix F,
“Simplified Mnemonics,” inThe Programming Environments Manugbr a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples, Tihe Programming Environments Manual

For information on SPR encodings (both user- and supervisor-level) see Chapter 8,
“Instruction Set,” in The Programming Environments Manualote that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user’s manual for that particular processor.

2-60 PowerPC 604e RISC Microprocessor User's Manual

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

» Cache management instructions (supervisor-level and user-level)
* Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-49 lists the only supervisor-level cache management instruction.

Table 2-49. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes
Data dchi rArB The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 604e broadcasts the essence of the instruction onto the
Invalidate 604e bus (using the kill operation). In addition, if the addressed

block is present in the cache, the 604e marks this data as
invalid regardless of whether the data is clean or modified. Note
that this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-50 provide access to the segment registers for 32-bit
iImplementations. These instructions operate completely independently of the MSR[IR] and
MSRI[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,”Tbie Programming
Environments Manudibr serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-50. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin r S,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin r D,IB

Chapter 2. Programming Model 2-61

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTESs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management,” Bfie Programming Environments Manual
for more information about TLB operation. Table 2-51 summarizes the operation of the
TLB instructions in the 604e.

Table 2-51. Translation Lookaside Buffer Management Instruction

Operand

Name

Mnemonic

Syntax

Implementation Notes

TLB
Invalidate
Entry

tbie

rB

Execution of this instruction causes all entries in the congruence class
corresponding to the specified EA to be invalidated in the processor
executing the instruction and in the other processors attached to the

same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”

The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 604e implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions. Multiple tlbie
instructions can be executed correctly with only one tlbsync
instruction, following the last tlbie , to guarantee all previous tlbie
instructions have been performed globally.

Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie have been completed prior
to executing the tlbie instruction.

When a snooping 604e detects a TLB invalidate entry operation on
the bus, it accepts the operation only if no TLB invalidate entry
operation is being executed by this processor and all processors on
the bus accept the operation (ARTRY is not asserted). Once
accepted, the TLB invalidation is performed unless the processor is
executing a multiple/string instruction, in which case the TLB
invalidation is delayed until it has completed.

Other than the possible TLB miss on the next instruction prefetch, the
tibie does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB tlbsync —
Synchronize

The TLBSYNC operation appears on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions.

See the tlbie description above for information regrading using the
tlbsync instruction with the tlbie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, “Cache
Reaction to Specific Bus Operations.”

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described abadeiethe
instruction can be used to invalidate a particular index of the TLB based on EA[14-19].

2-62 PowerPC 604e RISC Microprocessor User's Manual

With that concept in mind, a sequence oftide instructions followed by a singligbsync
instruction would cause all the 604e TLB structures to be invalidated (for EA[14-19] = O,
1, 2,..., 63). Therefore thébia instruction is not implemented on the 604e. Execution of a
tibia instruction causes an illegal instruction program exception.

Because the presence and exact semantics of the TLB management instructions is
implementation-dependent, system software should incorporate uses of these instructions
into subroutines to minimize compatibility problems.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual

Chapter 2. Programming Model 2-63

2-64 PowerPC 604e RISC Microprocessor User's Manual

Chapter 3
Cache and Bus Interface Unit Operation

This chapter describes the organization of the PowerPC 604e’s on-chip cache system, the
MESI cache coherency protocol, special concerns for cache coherency in single- and
multiple-processor systems, cache control instructions, various cache operations, and the
interaction between the cache and the memory unit.

The 604e has separate 32-Kbyte data and instruction caches. This is double the size of the
604 caches. The 604e caches are logically organized as a four-way set with 256 sets
compared to the 604’s 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
data is an even 4-Kbyte page that resides in sets 0—127; otherwise, bit 19 is one and the
block of data is an odd 4-Kbyte page that resides in sets 128—-255. Because the caches are
four-way set-associative, the cache set element (CSE[0-1]) signals remain unchanged from
the 604. Figure 3-1 shows the organization of the caches. The cache is designed to adhere
to a write-back policy, but the 604e allows control of cacheability, write policy, and memory
coherency at the page and block level, as defined by the PowerPC architecture. The caches
use a least recently used (LRU) replacement policy.

The 604e cache implementation has the following characteristics:

» The 604e has separate 32-Kbyte data and instruction caches. This is double the size
of the 604 caches.

* Instruction and data caches are four-way set associative. The 604e has 256 sets,
twice as much as the 604’s 128 sets.

» Caches implement an LRU replacement algorithm within each set.

» The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

» Boththeinstruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

Chapter 3. Cache and Bus Interface Unit Operation 3-1

* The coherency state bits for each block of the data cache allow encoding for all four
possible MESI states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Shared (S)

— Invalid (1)

» The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

— Invalid (INV)
— Valid (VAL)

» Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation dependent register O (HIDO), a special-purpose register
(SPR) specific to the 604e.

The 604e uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604e presents a double-word-aligned address. Memory
controllers are expected to transfer this double word of data first, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into the
cache. Writes of cache blocks by the 604e (for a copy-back operation) always present the
first address of the block, and transfer data beginning at the start of the block. However, this
does not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 604e instruction and data caches is shown in Figure 3-1.

3-2 PowerPC 604e RISC Microprocessor User's Manual

Sets128-255
(odd pages) o’ e
pl/ I —
Sets 0-127 - -
(even pages) .’ — . ||
[[
|’l/ l T T T T T T T]
Block O Address Tag 0 || State Words 0-7 |
I I I I I I I B
Block 1| Address Tag 1 | | State Words 0-7 | | -
1 1 1 1 1 1 1 -
T T T T T T T
Block 2| Address Tag 2 || State Words 0—-7 ||
I I I I I I I
Block 3| Address Tag 3 | [~ |State Words 0—7 im
1 1 1 1 1 1 1
|«——— 8 Words/Block ————

Figure 3-1. Cache Unit Organization

As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (BIU)
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load/store
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into the
instruction cache or a double word (for example, a double-precision floating-point operand)
to be loaded into the data cache in a single clock. The instruction cache provides a 128-bit
interface to the instruction fetcher, so four instructions can be made available to the
instruction unit in a single clock cycle.

Chapter 3. Cache and Bus Interface Unit Operation 3-3

Instruction Unit Load/Store Unit (LSU)

Instructions (0-127) EA (20-31) Data (0-63)
Y Y
‘ Cache Cache =
- Tags Tags o
Instruction Cache I Data Cache
16-Kbyte PA (0-19) 16-Kbyte
Four-Way Set Associative Y Y Four-Way Set Associative
B Cache Cache .
- Logic Logic o
A A A
Instructions (0—63) PA (0-31) Data (0-63)
Y

. MMU/Bus Interface Unit (BIU)
EA: Effective Address

PA: Physical Address

Figure 3-2. Cache Integration

3.1 Data Cache Organization

As shown in Figure 3-2, the physically-addressed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

The 604e’s data cache is a 32-Kbyte, four-way set-associative cache. It is a physically-
indexed, nonblocking, write-back cache with hardware support for reloading on cache
misses. The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27—A31 of the EA are zero); as a result, cache blocks

are aligned with page boundaries. Within a single cycle, the data cache provides a double-
word access to the LSU.

3-4 PowerPC 604e RISC Microprocessor User's Manual

The 604e implements three copy-back write buffers (the 604 has one). The additional copy-
back buffers allow certain instructions to take further advantage of the pipelined system bus
to provide highly efficient handling of cache copy-back operations, block invalidate
operations caused by the Data Cache Block Fldsbff instruction, and cache block clean
operations resulting from the Data Cache Block Stebs) instruction.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. Like the 604, the data cache tags are dual-
ported, so snooping does not affect the internal operation of other transactions on the
system interface. If a snoop hit occurs in a modified block, the LSU is blocked internally
for one cycle to allow the eight-word block of data to be copied to the write-back buffer, if
necessary. The data cache can be invalidated on a block or invalidate-all granularity. The
data cache can be invalidated all at once or on a per cache block basis. The data cache can
be disabled and invalidated by setting the HIDO[17] and HIDO[21] bits, respectively. It can

be locked by setting HIDO[19].

The 604e provides additional support for data cache line-fill buffer forwarding. In the 604,
only the critical double word of a burst operation was made available to the requesting unit
at the time it was burst into the line-fill buffer. Subsequent data was unavailable until the
cache block was filled. On the 604e, subsequent data is also made available as it arrives in
the line-fill buffer.

3.2 Instruction Cache Organization

The 604e’s 32-Kbyte, four-way set-associative instruction cache is physically indexed. The
organization of the instruction cache, shown in Figure 3-1, is identical to that of the data

cache. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bits A27—-A31 of the effective addresses are zero); as
a result, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The 604e provides coherency checking for instruction fetches.
Instruction fetching coherency is controlled by HIDO[23]. In the default mode, HIDO[23]

is 0 and theGBL signal is not asserted for instruction accesses on the bus, as is the case
with the 604. If the bit is set and instruction translation is enabled (MSR[IR] = 1GBle

signal is set to reflect the M bit for this page or block. If HIDO[23] is set and instruction
translation is disabled (MSR[IR] = 0), th€BL signal is asserted and coherency is
maintained in the instruction cache.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. In
addition, the instruction cache can be disabled and invalidated by setting the HIDO[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

The instruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be

Chapter 3. Cache and Bus Interface Unit Operation 3-5

contained in the instruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUSs/Bus Interface Unit

The bus interface unit (BIU) is compatible with those of the PowerPC 601™ and
PowerPC 603™ microprocessors. It implements both tenured and split-transaction modes
and can handle as many as three outstanding transactions in pipelined mode. If permitted,
the BIU can complete one or more write transactions between the address and data tenures
of a read transaction. The BIU has 32-bit address and 64-bit data buses protected by byte

parity.

The BIU implements the critical-double-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical double word as well as other words in the cache block are forwarded to
the fetcher or to the LSU before they are written to the cache.

The bus can be run at 1x, 2/3x, 1/2x or 1/3x the speed of the processor. The programmable
on-chip phase-locked loop (PLL) generates the necessary processor clocks from the bus
clock.

When a memory access fails to hit in the cache, the 604e accesses system memory through
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUS) provide address translation as specified by the
PowerPC OEA, including block address translation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604e implements separate MMUs, one for instruction accesses and one for data
accesses. Virtual address translation uses two 128-entry, two-way set-associative (64 x 2)
translation lookaside buffers (TLBsS), one for instruction accesses and one for data accesses.
The 604e provides hardware that performs the TLB reload (also known as page table walk)
when a translation is not in a TLB. Memory management is described in Chapter 5,
“Memory Management.”

3-6 PowerPC 604e RISC Microprocessor User's Manual

The BIU handles block fill and write-back requests from either cache, as well as all
noncacheable reads and writes.

Instruction Unit Load/Store Unit

Instruction MMU Data MMU

TLB Reload
[

Data Cache

Instruction Cache

Bus Interface Unit

Bus

Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604e implements four types of memory queues to support the
four types of operations—Iine-fill, write, copy-back, and invalidation operations. For a line-

fill operation, the line-fill address from either the instruction or data cache is kept in the
memory address queue until the address can be sent out in an address tenure. After the
address tenure, the address is transferred to the line-fill address queue, which releases the
address bus for other transactions in split-transaction mode. As each double word for the
line-fill operation is returned, it is transferred to the line-fill buffer, where it is forwarded to

the LSU.

If a subsequent in-order load to the same cache block hits on valid data in the data line-fill
buffer, it is forwarded to the load/store unit from the line-fill buffer. In the 604e, a
subsequent in-order load to the same cache block is required to wait until the line-fill buffer
is completely written into the cache before data is accessed from the cache.

Chapter 3. Cache and Bus Interface Unit Operation 3-7

A A A
0)] 2] 0l © =
8 EE £ g
=] © =] =] =
o e © T| = =
< < < <| T i)
2 2 T E|2 g £
g g e 22 2 0
= a 3 3 0 ©
-~ ! 9
o N
Y Y
\ / Copy-Back Address Copy-Back Data
Qo0 F— — 7| —|— — —|— 7 QO(8word)
Copy-Back Address Copy-Back Data
Q1 T T T T T T T T 7 Q1(8word)
Copy-Back Address| | | | _ _ _|_ _Copy-Back Data
Q2 Q2 (8 word)
Copy-Back Address| | _ | | _ _ _|_ |Copy-Back Data
Q3 Q3 (8 word)
\
Memory Address —
Q0 Y /- \
Memory Address Share-Invalidate I-Line Fill Write Data
Q1 Queue Address Q QO (2 word)
D—-Line Fill || Line Fill Data Write Data
Address Q0 | — QO (8 word) Q1 (2 word)
\i \ \ D-Line Fill [| | Line Fill Data
\ / Address Q1 Q1 (8 word)
4d A A \AA /
Snoop Address
to Data Cache \—J
T Y Y
Snoop Address Address Bus Data In Data Bus
Register Register Register Register
A A
Address Bus Y Data Bus Y
- e - e

Figure 3-4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the data is kept
in the write buffer until both can be sent out in a write transaction. Similarly, for copy-back
operations the address is kept in the copy-back address queue and the data is kept in the
copy-back buffer until both can be sent out in a burst write transaction. For a cache control
instruction or a store to a shared cache block, the address is kept in the cache control address
gueue until an address-only transaction is sent out to broadcast the cache control command.
Because all address queues in the 604e are treated as part of the coherent memory system,
they are checked against the data cache and snoop addresses to ensure data consistency and
to maintain MESI coherency protocol.

3-8 PowerPC 604e RISC Microprocessor User's Manual

To support the increased bandwidth of the nonblocking caches, the BIU can handle as many
as three pipelined transactions before data has to be provided by the memory system. The
three outstanding transactions can be any combination of the following—two noncacheable

or write-through write operations, two data cache reloads, one instruction cache reload, and
three cache block copybacks. In addition, address-only transactions are not counted in the
three outstanding transactions.

Typically, the three copy-back buffers are written to memory in the same order in which
they are filled, having the lowest priority access among all the bus interface unit’s memory
gueues. Write operations from the copy-back buffers can occur out-of-order under the two
following conditions:

* A snoop hit on one or more copy-back buffers causes the copy-back buffers to have
the second highest priority among the BIU’s memory queues, after only the snoop-
push buffer. In this case, the next write from these three copy-back buffers will be
from the buffer that contains the newest data corresponding to the snoop hit. If the
snoop address hit on multiple copy-back buffers (possibly due tichst
instruction), the accesses for all matching buffers except the one with the newest
data are cancelled.

» Similarly, if execution of thalcbstinstruction causes multiple copy-back buffers to
contain the same address, each buffer that contains this address is cancelled unless
it contains the newest data or unless the buffer is the next address transaction to go
to the bus.

Note that the three copy-back buffers in the 604e improve the performance of maitigsle
anddcbstinstructions because the address and data tenures of burst writes can be pipelined.

For details concerning the signals, see Chapter 7, “Signal Descriptions,” and for
information regarding bus protocol, see Chapter 8, “System Interface Operation.”

3.4 Memory Coherency Actions

The following sections describe memory coherency actions in response to various
operations and instructions.

3.4.1 PowerPC 604e-Initiated Load and Store Operations

The following tables provide an overview of the behavior of the 604e with respect to load
and store operations. Table 3-1 does not include noncacheable cases. The first three cases
(load when the cache block is marked 1) also involve selecting a replacement class and
copying back any modified data that may have resided in that replacement class.

Chapter 3. Cache and Bus Interface Unit Operation 3-9

Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

[Read —-ARTRY Load data and mark E

—SHD
Read —ARTRY Load data and mark S

SHD

[Read ARTRY Retry read operation

S None Don't care Read from cache

E None Don't care Read from cache

M None Don't care Read from cache

Table 3-2 does not address the noncacheable or write-through cases and does not
completely describe the exact mechanisms for the operations described. The first two cases
also involve selecting a replacement class and copying back any modified data that may
have resided in that replacement class. The state dBie signal is unimportant in this

table.

Table 3-2. Memory Coherency Actions on Store Operations

Cache State

Bus Operation

Snoop Response

Action

| RWITM —ARTRY Load data, modify it, mark M
I RWITM ARTRY Retry the RWITM

S Kill —ARTRY Modify cache, mark M*

S Kill ARTRY Retry the Kill

E None Don’t care Modify cache, mark M

M None Don't care Modify cache

*When the 604e issues a kill operation (that does not receive an ARTRY snoop response)
the associated 604e’s cache block state changes from shared to modified. But if an lwarx
instruction is followed by an stwcx. instruction to a different address, the 604e may
broadcast a kill operation without marking the cache block in the on-chip cache modified.

In designing an L2 cache controller for the 604e, it should not be assumed that a kill
operation issued by the 604e results in the 604e gaining modified ownership.

The 604e does not broadcast the kill operation without marking the cache block as

modified.

3.4.2 General Comments on Snooping

When a 604e is not the bus master, it monitors all bus traffic and performs cache and
memory queue snooping as appropriate. The snooping is triggered by the receipt of a
qualified snoop request, as indicated by the simultaneous assertion of the transféBstart (
and the globalGBL) bus signals. The only exception to this qualified snoop request is for
four address-only transactions; the 604e also snoops its own TLB invalidate, TLBSYNC,
SYNC, and ICBI transactions regardless of the gloB&IL() bit setting.

3-10 PowerPC 604e RISC Microprocessor User's Manual

The 604e drives two snoop status signARTRY andSHD, in response to qualified snoop
requests. These signals provide information about the state of the addressed block with
respect to 604e for the current bus operation. These signals are described in more detail in
this document. The following additional comments apply:

* Any bus transaction that does not have@d. signal asserted can be ignored by
all bus snoopers. All such transactions, except the self-snooping transactions, are
ignored by the 604e.

» Several bus transactions (write with flush, read, and read with intent to modify) are
defined twice, once with the TTO reset and once with it set (for atomic operations).
These operations behave in exactly the same manner with respect to bus snooping.

» The receiving processor may ass€RTRY in response to any bus transaction as a
result of internal conflicts that prevent the appropriate snooping.

» The receiving processor may clear its reservation due to snoop address hit with
several bus transactions (write-with-flush, read- with-intent-to-modify, write-with-
kill, and kill). The reservation is clear even if the 6@®TRYs the particular bus
transaction.

3.5 Sequential Consistency

The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.5.1 Sequential Consistency Within a Single Processor

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order specified by the program with respect
to exceptions and data dependencies. Note that all potential precise exceptions are resolved
before memory accesses that miss in the cache are forwarded onto the memory queue for
arbitration onto the bus. In addition, although subsequent memory accesses can address the
cache, full coherency checking between the cache and the memory queue is provided to
avoid dependency conflicts.

3.5.2 Weak Consistency between Multiple Processors

The PowerPC architecture requires only weak consistency among processors—that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. The ability to order memory accesses
weakly provides opportunities for more efficient use of the system bus. Unless a
dependency exists, the 604e allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the SYNC instruction.

Chapter 3. Cache and Bus Interface Unit Operation 3-11

3.5.3 Sequential Consistency Within Multiprocessor Systems

The PowerPC architecture defines a load operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 604e, cacheable load operations and cacheable, non—write-through store operations
are performed with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If a cache miss occurs, these operations may drop a memory
request into the processor’'s memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 604e bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use olvtiaex/stwcx. instructions), the

results of these instructions are sensitive to the race conditions associated with the order in
which the processors are granted bus access.

If the 604e uses an L2 cache, the system designer must ensure the memory system responds
to the SYNC and EIEIO bus operations in such a way that the required ordering of memory
operations is preserved.

3.6 Memory and Cache Coherency

The 604e can support a fully coherent 4-Gbyfézxmemory address space. Bus snooping

Is used to drive a four-state (MESI) cache coherency protocol which ensures the coherency
of all processor and direct-memory access (DMA) transactions to and from global memory
with respect to each processor’s cache. It is important that all bus participants employ
similar snooping and coherency control mechanisms. The coherency of memory is
maintained at a granularity of 32-byte cache blocks (this size is also called the coherency
or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

» Write-through (W attribute)

» Caching-inhibited (I attribute)

* Memory coherency (M attribute)

* Guarded (G attribute)

3-12 PowerPC 604e RISC Microprocessor User's Manual

These attributes are programmed by the operating system for each page and block. The W
and | attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory

location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.6.1 Data Cache Coherency Protocol

Each 32-byte cache block in the 604e data cache is in one of four states. Addresses

presented to the cache are indexed into the cache directory and are compared against the
cache directory tags. If no tags match, the result is a cache miss. If a tag match occurs, a

cache hit has occurred and the directory indicates the state of the block through three state

bits kept with the tag.

The four possible states for a block in the cache are the invalid state (1), the shared state (S),
the exclusive state (E), and the modified state (M). The four MESI states are defined in
Table 3-3 and illustrated in Figure 3-5

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) | The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.

Exclusive (E) | The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (1) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

The primary objective of a coherent memory system is to provide the same image of
memory to all processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
a cache block not in the cache and externally broadcasting the intention to write into a block
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)

Chapter 3. Cache and Bus Interface Unit Operation 3-13

and a retry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the chip, or another processor had a queuing problem that
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with

the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain

memory coherency.

Modified in Cache A Shared in Cache A
Cache A Cache B Cache A Cache B
M—»{ Valid Data —| A alt| S—>| ValidData | S—»{ Valid Data
System Memory System Memory
Data invalid\ i
— | not congruent — Valid Data
Exclusive in Cache A Invalid in Cache A
Cache A Cache B Cache A Cache B
. Data invalid\ : ;
E — Valid Data —>{not congruent | — Invalid Date X— Don't Care
System Memory System Memory
— Valid Data — Don't Care

Figure 3-5. MESI States

3-14 PowerPC 604e RISC Microprocessor User's Manual

3.6.2 Coherency and Secondary Caches

The 604e supports the use of a larger secondary cache that can be implemented in different
configurations. The use of an L2 cache can serve to further improve performance by further
reducing the number of bus accesses. The L2 cache must operate with respect to the
memory system in a manner that is consistent with the intent of the PowerPC architecture.

L2 caches must forward all relevant system bus traffic onto the 604e so it can take the
appropriate actions to maintain memory coherency as defined by the PowerPC architecture.

3.6.3 Page Table Control Bits

The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include the following:

» Write-back/write-through (using the W bit)
» Cacheable/noncacheable (using the | bit)
* Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded storage and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processors in the system) or when the
address translations of aliased real addresses specify different values for any of the WIM
bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides a few simple examples to convey the
meaning of a paradox.

3.6.4 MESI State Diagram

The 604e provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 604e enforces the MESI protocol, as shown
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.

Chapter 3. Cache and Bus Interface Unit Operation 3-15

INVALID

(On a miss, the old
line is firstinvalidated
and copied back

BUS TRANSACTIONS
RH = Read Hit (D: Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®: Invalidate Transaction
WH = Write Hit
WM = Write Miss @= Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or (D: Cache Block Fill
Read-with-Intent-to-Modify

Figure 3-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM bit
settings.

3.6.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

» Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache-
inhibited page that hits in the cache presents a paradox to the processor. The 604e
ignores the data in the cache and the state of the cache block is unchanged.

» Store operation to a page with WIM = 0b10X and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store
operation to a write-through page that hits a modified cache block in the cache

3-16 PowerPC 604e RISC Microprocessor User's Manual

presents a coherency paradox to the processor. The 604e writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.6.6 Coherency Paradoxes in Multiple-Processor Systems

It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors

accepting a cache block into their caches and marking the data as exclusive. In turn, this
can lead to a state where the same cache block is modified in multiple processor caches.

Additional information on what bus operations are generated for the various instructions
and state conditions can be found in Chapter 8, “System Interface Operation.”

3.7 Cache Configuration

There are several bits in the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

» Bit 1—Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If this bit is cleared, cache parity errors are
ignored. Note that the machine check exception is further affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing.

» Bit 7—Disable snoop response high state restore. If this bit is set, the processor
cannot drive th&HD andARTRY signals to the high (negated) state, and the system
must restore the signals to the high state. See Chapter 7, “Signal Descriptions,” for
more information.

» Bit 16—Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
as if they were marked cache-inhibited (WIM = X1X). All potential cache accesses
from the bus are ignored.

» Bit 17—Data cache enable. If this bit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed as if they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

» Bit 18—Instruction cache lock. Setting this bit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and tlobi instruction continue to work as normal.

Chapter 3. Cache and Bus Interface Unit Operation 3-17

» Bit 19—Data cache lock. Setting this bit locks the data cache, in which case all
cache misses are treated as cache-inhibited. Cache hits occur as normal, and cache
snoops and other operations continue to work as normal. This is the only way to
deallocate an entry. If the data cache is locked whed¢he instruction is executed,
it takes an alignment exception, provided the target address had been translated
correctly.

» Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the
instruction cache as invalid without copying back any data to memory. Itis assumed
that no data in the instruction cache is modified. Access to the cache is blocked
during this time. Bit 20 is reset when the invalidation operation begins (usually the
cycle immediately following the write to the register beginning an invalidate
operation).

» Bit 21—Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the data cache as
invalid without copying back any modified lines to memory. Access to the cache is
blocked during this time. Bit 21 is reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation is in progress.

» Bit 30—BTAC disable. Used to disable use of the 64-entry branch target address
cache. When this bit is cleared, the BTAC is enabled and new entries can be added.
When this bit is set, the BTAC contents are invalidated and the BTAC behaves as if
it were empty. New entries cannot be added until the BTAC is enabled. The BTAC
can be flushed by disabling and re-enabling the BTAC using two succestspe
Instructions.

The HIDO register can be accessed withrthgpr andmfspr instructions.

3.8 Cache Control Instructions

The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 604e is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a kill, clean, or
flush operation) onto the 604e bus interface so that all processors in a multiprocessor
system can take the appropriate actions. The 604e contains snooping logic to monitor the
bus for these commands and control logic to keep the cache and the memory queue
coherent. Additional details on the specific bus operations can be found in Chapter 7,
“Signal Descriptions.”

3.8.1 Instruction Cache Block Invalidate (icbi)
The effective address is computed, translated, and checked for protection violations as

3-18 PowerPC 604e RISC Microprocessor User's Manual

defined in the PowerPC architecture. If the addressed block is in the instruction cache, the
604e marks this instruction cache block as invalid. This instruction changes neither the

content nor status of the data cache. The ICBI operation is broadcast on the 604e bus
unconditionally to support this function throughout a system’s memory hierarchy.

3.8.2 Instruction Synchronize (isync)

Theisync instruction causes the 604e to purge its instruction buffers and fetch the next
sequential instruction.

3.8.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Toucld¢bt) and Data Cache Block Touch for Storécbtst)
instructions provide potential system performance enhancements through the use of
software-initiated prefetch hints. The 604e treats these instructions identically.
Implementations are not required to take any action based off the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache.

The 604e treats these instructions as a no-ops if any of the following conditions is met:
» The address misses in the TLB and in the BAT.
* The address is directed to a direct-store segment.
» The address is directed to a cache-inhibited page.
» The data cache lock bit HIDO[19] is set.

Regarding MESI cache coherency, the data brought into the cache as a result of this
instruction is validated in the same way a load instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked as Shared). The
memory reference ofd@cbt causes the reference bit to be set.

Note also that the successfidbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

3.8.4 Data Cache Block Set to Zero (dcbz)

As defined in the VEA, when thdcbz instruction is executed the effective address is
computed, translated, and checked for protection violations. If the 604e does not already
have exclusive access to this cache block, it presents a kill operation onto the 604e bus—a
kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 604e writes all
zeros into the cache block. In the event that the 604e already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.

Chapter 3. Cache and Bus Interface Unit Operation 3-19

3.8.5 Data Cache Block Store (dcbst)

As defined in the VEA, when a Data Cache Block Stalebit) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604e
does not have modified data in this block, the 604e broadcasts a clean operation onto the
bus. If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
604e bus. In this situation, the cache block is marked as exclusive. Otherwise this
instruction is treated as a no-op.

3.8.6 Data Cache Block Flush (dcbf)

As defined in the VEA, when a Data Cache Block Fludgthf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604e
does not have modified data in this cache block, it broadcasts a flush operation onto the
604e bus. If the addressed cache block is in the cache, the 604e marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 604e bus and the cache block is marked as
invalid.

3.8.7 Data Cache Block Invalidate (dcbi)

As defined in the OEA, when a Data Cache Block Invaliddt#y) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604e broadcasts a kill operation onto the 604e bus. If the addressed cache block is in
the cache, the 604e marks this data as invalid regardless of whether the data is modified.
Because this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permission is required for the DCBI (kill)
operation.

3.9 Basic Cache Operations

This section describes operations that can occur to the cache, and how these operations are
implemented in the 604e.

3.9.1 Cache Reloads

A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.

3-20 PowerPC 604e RISC Microprocessor User's Manual

3.9.2 Cache Cast-Out Operation

The 604e uses an LRU replacement algorithm to determine which of the four possible
cache locations should be used for a cache update. Updating a cache block causes any
modified data associated with the least-recently used element to be written back, or cast out,
to system memory.

3.9.3 Cache Block Push Operation

When a cache block in the 604e is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 604e supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 3.9.7, “Enveloped High-Priority Cache Block
Push Operation.”

3.9.4 Atomic Memory References

The Iwarx/stwcx. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, “Programming Model.”

In a multiprocessor system, a processor can executievanx instruction and another
processor can broadcast a flush bus operation to the target addredsvafihénvalidating

the cache block without canceling the reservation. Therefore, the first processor may
broadcast a reservation set (TT = 0x01, address only) tenure without having a valid copy of
the reservation address in its data cache.

After a data cache hit for ahwvarx instruction, the only condition that can cancel the
correspondinglwarx reservation set transaction is another snoop, which clears the
reservation before the transaction wins arbitration to the address bus.

If the processor detects that a snoop flush operation to the reservation address has
invalidated the cache for the reservation address between the time at whlalatkehit

the cache and the time tihearx reservation set broadcast won arbitration to the address
bus, the processor always retries thvarx at the cache even though it still performs the
reservation set address tenure. In this case, the rétraa® instruction misses in the cache

and causes a read-atomic transaction on the bus. Externally this would be seen as the
following:

snoop: flush (address A)
processortwarx reservation set operation (address A)
processor: read atomic (address A)
To avoid this paradox, paradox checking mechanisms should alldwaar reservation

set operation to be broadcast when the processor can have a valid reservation but does not
have a valid copy of thievarx target in its data cache.

Chapter 3. Cache and Bus Interface Unit Operation 3-21

3.9.5 Snoop Response to Bus Operations

When the 604e is not the bus master, it monitors bus traffic and performs cache and
memory-gqueue snooping as appropriate. The snooping operation is triggered by the receipt
of a qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of th&S andGBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs and
the snoop state machine determines a push-out operation is required.

The 604e maintains a write queue of bus operations in progress and/or pending arbitration.
This write queue is also snooped in response to qualified snoop requests. Note that block-
length (four beat) write operations are always snooped in the write queue; however, single-

beat writes are not snooped. Coherency for single-beat writes is maintained through the use
of cache operations that are broadcast with the write on the system interface or the

lwarx/stwcex. instructions.

The 604e drives two snoop status sign@&®(RY and SHD) in response to a qualified
snoop request that hits. These signals provide information about the state of the addressed
block for the current bus operation. For more information about these signals, see
Chapter 7, “Signal Descriptions.”

3.9.6 Cache Reaction to Specific Bus Operations

There are several bus transaction types defined for the 604e bus. The 604e must snoop these
transactions and perform the appropriate action to maintain memory coherency; see
Table 3-4. For example, because single-beat write operations are not snooped when they are
gueued in the memory unit, additional operations such as flush or kill operations, must be
broadcast when the write is passed to the system interface to ensure coherency.

A processor may asse&kRTRY for any bus transaction due to internal conflicts that prevent
the appropriate snooping. In generalARRTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of the
processor.

The transactions in Table 3-4 correspond to the transfer type signals TTO-TT4, which are
described in Section 7.2.4.1, “Transfer Type (TT[0-4]).”

Table 3-4. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only blocks marked as modified (M). Assuming the
GBL signal is asserted, modified blocks are pushed out to memory, changing the state
to E.

3-22 PowerPC 604e RISC Microprocessor User's Manual

Table 3-4. Response to Bus Transactions (Continued)

Transaction

Response

Flush block

The flush operation is an address-only bus transaction initiated by executing a dcbf
instruction. Assuming the GBL signal is asserted, the flush block operation results in the
following:

« |f the addressed block is in the S or E state, the state of the addressed block is
changed to I.

« If the addressed block is in the M state, the snooping device asserts ARTRY and SHD,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations are issued by a processor after
executing stores or stwcx. , respectively to memory in a variety of different states,
particularly noncacheable and write-through. 60x processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. If they appear on the
bus and the GBL bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block

Kill block is an address-only transaction issued by a processor after executing a dcbi
instruction, a dcbz instruction to a location marked | or S, or a write operation to a block
marked S. If a kill-block transaction appears on the bus, and the GBL bit is asserted, the
addressed block is forced to the | state if it is in the cache.

A kill block hit on a cache block marked modified causes a cache block push operation,
and then the block is invalidated.

Note that if a kill operation hits on a write queue entry, it does not cause that entry to be
purged. Instead the kill operation is ARTRYd and the entry is pushed to memory.

Write-with-kill

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the | state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

A global write-with-kill operation on the bus can cause a loss of memory coherency and
make it appear that a program has not executed serially. Note that the 604e never
issues a global write-with-kill operation.

If data is stored at a memory location and a subsequent store to that address writes
different data into the L1 cache, it is possible for the 604e to ARTRY a snooped write-
with-kill operation to an address in the same cache block and simultaneously invalidate
the L1 cache line for address A. If the 604e attempts to load data from address A, it will
miss in the L1 cache and the 604e will arbitrate for the bus. If the 604e wins arbitration
over the ARTRYd write-with-kill operation, the load operation retrieves the original data
before the data for the write-with-kill is written to memory. Since the older data is
returned instead of the newer data, it appears that the program is not executed
sequentially.

A similar scenario occurs when data is in the 604e’s copy-back buffer, and other data is
in the L1 cache. In this scenario, the write-with-kill is ARTRYd, the data in the copy-back
buffer is pushed to memory and the data in the cache is killed. The subsequent load
retrieves from memory the data that had been in the copy-back buffer. The probability of
encountering either of these scenarios is increased by performing a dcbst to the
address before storing the newer data.

To avoid this scenario, do not write software that attempts to read from a location that
may still be in the L1 cache, and is the target address for a write-with-kill access (for
example a DMA operation). This may be done by flushing the block from the cache
before the DMA operation is initiated, or by using a software lock to indicate when the
DMA operation is complete and the location is safe for reading.

Alternatively, use write-with-flush instead of write-with-Kkill.

Chapter 3. Cache and Bus Interface Unit Operation 3-23

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response
Read Read is used by most single-beat or burst reads on the bus. A read on the bus with the
Read-atomic GBL bit asserted causes the following snoop responses:

« If the addressed block is in the cache in the | state, the processor takes no action.

« If the addressed block is in the cache in the S state, the processor asserts the SHD
snoop status signal.

« If the addressed block is in the cache in the E state, the processor asserts the SHD
snoop status signal and changes the state of that cache block to S.

« If the addressed block is in the cache in the M state, the processor asserts both the
ARTRY and SHD snoop status signals and changes the state of that block in the
cache from M to S and pushes out the modified data.

Read-atomic operations appear on the bus in response to lwarx instruction and receive
the same snooping treatment as a read operation.

Read-with-intent-to-
modify (RWITM)
RWITM atomic

The RWITM transaction is issued to acquire exclusive use of a memory location for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. When GBL is asserted, RWITM transactions on the bus cause the
processors to take the following snoop actions:

* If the addressed block is not in the cache, it takes no action.

« If the addressed block is in the cache in the S or E state, the processor changes the
state of that block in the cache to I.

« If the addressed block is present in the cache in the M state, then the 60x asserts both
the ARTRY and the SHARED snoop status signals, pushes the dirty block out of the
cache and changes the state of that block in the cache from M to I.

RWITM atomic appears on the bus in response to the stwcx. instruction and receives

the same snooping treatment as RWITM.

It is now illegal for any snooping device to generate a SHD snoop response without an

ARTRY response to an RWITM address tenure.

If the processor sees this illegal snoop response to its RWITM address tenure, it will not

respond correctly to snoops to that address until that data is fully loaded into the data

cache from the line-fill buffer.

For a snoop-read/RWNITC to that address that hits on the line-fill buffer, the processor
asserts SHD instead of ARTRY. In this case, the processor updates the data cache to
be modified and the reading device has a copy marked S (shared). Store operations to
the cache block could be lost at this point.

For all invalidating snoop operations to that address, the processor asserts no response
instead of asserting ARTRY. In this case, the processor updates the data cache to be
modified while another device could also have a modified copy. The processor’s stores
to this cache block or another processor’s stores to this cache block could be lost.

TLBSYNC

This TLB synchronize operation is an address-only transaction placed onto the bus by a
604e when it executes a tlbsync instruction.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asserts
the ARTRY snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate

A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12—19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invalidate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604e also asserts the ARTRY snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tibie instruction, see Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).”

3-24

PowerPC 604e RISC Microprocessor User's Manual

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

I/O reply The 1/O reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO An EIEIO operation is put onto the bus as a result of executing an eieio instruction. The
eieio instruction enforces ordered execution of accesses to noncacheable memory. The
604s internally enforce ordering of such accesses with respect to the eieio instruction in
that noncacheable accesses due to instructions that occur before the eieio instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the eieio instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable
requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC The sync instruction generates an address-only transaction, which the 604e places
onto the bus.

When a 604e detects a SYNC operation on the bus, it asserts the ARTRY snoop status
if any other snooped cache operations are pending in the device.

Read-with-no-intent-to- An RWNITC operation is issued by a bus-attached device as TTO-TT4 = 0b01011. The
cache (RWNITC) 604e snoops this operation and if it gets a cache hit on a block marked M, it writes the
block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory.
This data may be in the processor’s cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive access.

XFERDATA XFERDATA read and write operations are bus transactions that result from execution of
the eciwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource ID (RID) field, using the
concatenation of the bits TBST || TSIZ[0-2]. These transactions are unique in the sense
that the address that is transferred does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bits will use the address that is transferred in a subsequent data transfer, the exact
nature of this data transfer is not defined by 604e bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

ICBI An ICBI transaction is issued by a processor that executes an icbi instruction. All copies
of the addressed block in bus-attached instruction caches are invalidated. In this
transaction, a 604e could assert ARTRY in response to its own transaction.

3.9.7 Enveloped High-Priority Cache Block Push Operation

If the 604e has a read operation outstanding on the bus and another pipelined bus operation
hits against a modified block, the 604e provides a high-priority push operation. This
transaction can be enveloped within the address and data tenures of a read operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 604e internally detects the scenario where one or more load

Chapter 3. Cache and Bus Interface Unit Operation 3-25

requests are outstanding and the processor has pipelined a write operation on top of the
load. Normally, when the data bus is granted to the 604e, the resulting data bus tenure is
used for the load operation.

The enveloped high-priority cache block push feature defines a bus signal, the data bus
write only qualifier DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the first store operation instead.
If no store operation is pending, the first read operation is performed. If no write operation
is pending, the 604e can perform a read operation. This signal is described in detail in
Section 8.11, “Using Data Bus Write Only.” Note that the enveloped copy-back operation
is an internally pipelined bus operation.

3.9.8 Bus Operations Caused by Cache Control Instructions

Table 3-5 provides an overview of the bus operations initiated by cache control instructions.
Note that Table 3-5 assumes that the WIM bits are set to 001, that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

3.9.9 Cache Control Instructions

Table 3-5 lists bus operations performed by the 604e when they execute cache control
instructions.

Table 3-5. Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment
sync Don't care No change SYNC First clears memory queue
eieio Don't care No change EIEIO No clear meaning
icbi Don't care | ICBI —
dchi Don'’t care | Kill —
(invalidate)
dcbf E, S I | Flush —
(flush)) o .
M | Write-with-Kkill Marked as write-through
dcbst E, S I No change Clean —
(store) . . .
M E Write-with-Kkill Marked as write-through
dcbz I M Kill May also replace
(zero) .
S M Kill —
M, E M None Write over modified data
dcbt, dcbtst | E,S Read State change on reload
M, E, S No Change None —
tibsync Don't care No change TLBSYNC —
3-26 PowerPC 604e RISC Microprocessor User's Manual

Table 3-5 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, “Cache Actions.”

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction
Set,” inThe Programming Environments Manubdscribe the cache control instructions in
detail. Several of the cache control instructions broadcast onto the 604e interface so that all
processors in a multiprocessor system can take appropriate actions. The 604e contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 604e, see Chapter 8, “System Interface Operation.”

3.10 Cache Actions

Table 3-6 lists the actions that occur for various operations depending on different WIM bit
settings. It also provides information about general cache conditions and does not take into
account all possible interactions and conditions. In particular, Table 3-6 does not address
many of the conditions that might be encountered in an in-line L2 cache implementation.

Table 3-6. Cache Actions

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 Rsvin Response Action

000 | Load Read 000 01010 | (n/a) (None) Load the block of data into
cache
forward data from load
mark cache block E

000 | Load Read 000 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

000 | Load Read 000 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
000 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S

001 | Load Read 001 01010 | (n/a) (None) Load the block of data into

cache

mark cache block E
load from cache

001 | Load Read 001 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

001 | Load Read 001 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
001 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S

Chapter 3. Cache and Bus Interface Unit Operation 3-27

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 ESI | Load Single- 01M 01010 | (n/a) (None) or Load from main memory
010 beat read 11M SHD
110
111
011 ESI | Load Single- 01M 01010 | (n/a) ARTRY or Release the bus
010 beat read 11M ARTRY&SHD | retry the operation
110
111
011 M Load Single- 01M 01010 | (n/a) (None) or Paradox—cache should be |
010 beat read 11M SHD load from main memory
110
111
011 M Load Single- 01M 01010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 | Load Read 100 01010 | (n/a) (None) Load the block of data into
cache
load from cache
mark the cache block E
100 | Load Read 100 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S
100 | Load Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
101 | Load Read 101 01010 | (n/a) (None) Load the block of data into
cache
load from cache
mark cache E
101 | Load Read 101 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S
101 | Load Read 101 01010 | (n/a) ARTRY or | Release the bus
ARTRY&SHD | retry the operation
101 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
000 | Iwarx Read 000 11010 | Setby | (None) Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block E
3-28 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
000 | Iwarx Read 000 11010 | Sethy | SH Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block S
000 | Iwarx Read 000 11010 | (n/a) ARTRY or | Release the bus
atomic ARTRY&SHD | retry the operation
000 ME Iwarx Iwarx 000 00001 | Setby | (None) or Set reservation
S reservation thisop | SHD load from cache
set*
000 ME Iwarx Iwarx 000 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set*
001 | lwarx Read 001 11010 | Setby | (None) Load the block of data into
atomic this op cache
mark cache block E
set reservation
load from cache
001 | Iwarx Read 001 11010 | Sethy | SHD Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block S
001 | lwarx Read 001 11010 | (n/a) ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 ME Iwarx Iwarx 001 00001 | Setby | (None) or Set reservation
S reservation thisop | SHD load from cache
set*
001 ME lwarx lwarx 001 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set*
011 | lwarx Single- 01M 11010 | Sethy | (None) or Set reservation
010 beat read thisop | SHD load from main memory
atomic
011 | Iwarx Single- 01M 11010 | (n/a) ARTRY or | Release the bus
010 beat read ARTRY&SHD | retry the operation
atomic
011 ES Iwarx Single- 01M 11010 | Sethby | (None) or Set the reservation
010 beat read thisop | SHD load from main memory
atomic
011 ES Iwarx Single- 01M 11010 | (n/a) ARTRY or Release the bus
010 beat read ARTRY&SHD | retry the operation
atomic

Chapter 3. Cache and Bus Interface Unit Operation

3-29

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 M Iwarx Single- 01M 11010 | Setby | (None) or Paradox—cache should be |
010 beat read thisop | SHD set the reservation
atomic load from main memory
011 M Iwarx Single- 01M 11010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read ARTRY&SHD | release the bus
atomic retry the operation
100 | Iwarx (n/a) (n/a) | (n/a) (n/a) (n/a) A lwarx to a page marked
101 write-through causes a data
access exception; therefore
no bus transaction results.
101 (nfa) | Iwarx (n/a) (nfa) | (n/a) (n/a) (n/a) A lwarx to a page marked
write-through causes a data
access exception; therefore
no bus transaction results.
000 | Store RWITM 000 01110 | (n/a) (None) or Load the block of data into
SHD cache
store to cache
mark cache M
000 | Store RWITM 000 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S Store Kill 000 01100 | (n/a) (None) or Wait for the kill to be
SHD successfully presented
store to cache
mark cache block M
000 S Store Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 E Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
000 M Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
001 | Store RWITM 001 01110 | (n/a) (None) or Load the block of data into
SHD cache
mark cache block E
store to cache
mark cache block M
001 | Store RWITM 001 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S Store Kill 001 01100 | (n/a) (None) or Wait for kill to be
SHD successfully presented
mark cache block E
store to cache
mark cache block M
001 S Store Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
3-30 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 E Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
001 M Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
011 | Store Write with 01M 00010 | (n/a) (None) or Store to main memory
010 flush 11M SHD
110
111
011 | Store Write with 01M 00010 | (n/a) ARTRY or Release the bus
010 flush 11M ARTRY&SHD | retry the operation
110
111
011 ES Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 ES Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
011 M Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 M Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 | Store Write with 100 00010 | (n/a) (None) or Store to main memory
flush SHD

100 ME Store Write with 100 00010 | (n/a) ARTRY or | Release the bus

Sl flush ARTRY&SHD | retry the operation
100 M E Store Write with 100 00010 | (n/a) (None) or Store to cache

S flush SHD store to main memory
101 | Store Write with 101 00010 | (n/a) (None) or Write to main memory

flush SHD (note: no reload on a store
miss)

101 ME Store Write with 101 00010 | (n/a) ARTRY or Release the bus

S| flush ARTRY&SHD | retry the operation
101 ME Store Write with 101 00010 | (n/a) (None) or Store to cache

S flush SHD store to main memory
000 Sl stwcx. (None) (nfa) | (n/a) None (n/a) Update condition register

Chapter 3. Cache and Bus Interface Unit Operation

3-31

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
000 | stwcx. RWITM 000 11110 | Yes (None) or Load the block of data into
atomic (and SHD cache
reset) release the reservation
update the condition
register
store to cache
mark cache M
000 | stwcx. RWITM 000 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
000 S stwcx. Kill 000 01100 | Yes (None) or Wait for the kill to be
(and SHD successfully presented
reset) release reservation
update condition register
store to cache
mark cache block M
000 S stwex. Kill 000 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME stwcx. (None) (n/a) | (n/a) None (n/a) Update condition register
000 stwcx. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
000 ME stwcx. (None) (n/a) | (n/a) Yes (n/a) (n/a)
(and
reset)
000 M stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
001 Sl stwcx. (None) (n/a) | (n/a) None (n/a) Update condition register
001 | stwcx. RWITM 001 11110 | Yes (None) or Load the block of data into
atomic (and SHD cache
reset) release the reservation
update the condition
register
store to cache
mark cache M
001 | stwex RWITM 001 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 S stwcx. Kill 001 01100 | Yes (None) or Release reservation
(and SHD update condition register
reset) mark cache block E
store to cache
mark cache block M
001 S stwcx. Kill 001 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
3-32 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 stwcx. (None) (nfa) | (n/a) None (n/a) Update condition register
001 M E stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
001 ME stwcx. (None) (nfa) | (n/a) Yes (n/a) (n/a)
001 stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
011 | stwcx. (None) (n/a) | (n/a) None (n/a) Update condition register
010
011 | stwcx. Write with 01M 10010 | Yes (None) or Release reservation
010 flush (and SHD update condition register
atomic reset) store to main memory
011 | Stwcx. Write with 01M 10010 | Yes ARTRY or Release the bus
010 flush ARTRY&SHD | retry the operation
atomic
011 ME stwex. (None) (nfa) | (n/a) None (n/a) Paradox—cache should be |
010 S update condition register
011 ME stwcx. Write with 01M 10010 | Yes (None) or Paradox—cache should be |
010 S flush (and SHD check/release reservation
atomic reset) update condition register
store to main memory
011 ME stwcx. Write with 01M 10010 | Yes ARTRY or Paradox—cache should be |
010 S flush ARTRY&SHD | release the bus
atomic retry the operation
011 M stwcx. (n/a) (n/a) | (n/a) None (n/a) (n/a)
010
100 (n/a) stwcx. (n/a) (n/a) | (n/a) (n/a) (n/a) A stwcx. to a page marked
101 write-though causes a data
11X access exception; therefore,
no bus transaction results.
100 (n/a) stwcx. (n/a) (n/a) | (n/a) Yes (n/a) An stwcx. to a page
101 marked write-though
11X causes a data access
exception; therefore, no bus
transaction results.
000 | dchbt Read 000 01010 | (n/a) (None) Load the block of data into

cache
mark the cache E

Chapter 3. Cache and Bus Interface Unit Operation

3-33

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
000 | dcbt Read 000 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
000 | dchbt Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME dchbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
S
001 | dchbt Read 001 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
001 | dchbt Read 001 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
001 | dcbt Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
011 | dcbt (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dchbt (None) (nfa) | (n/a) None (n/a) No-op
010
110
111
011 M dcbt (n/a) (n/a) | (n/a) None (n/a) (n/a)
010
110
111
100 | dcbt Read 100 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
100 | dcbt Read 100 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
100 | dchbt Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME dchbt (None) (n/a) (n/a) (n/a) (n/a) No-op
S
3-34 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
101 | dcbt Read 101 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
101 | dchbt Read 101 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
101 | dchbt Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 ME dchbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
000 | dcbtst Read 000 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
000 | dcbtst Read 000 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
000 | dcbtst Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 ME dcbtst (None) 000 (n/a) (n/a) (n/a) No-op
001 | dcbtst Read 001 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
001 | dcbtst Read 001 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
001 | dcbtst Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
011 | dcbtst (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dcbtst (None) (n/a) | (n/a) None (n/a) No-op
010
110
111

Chapter 3. Cache and Bus Interface Unit Operation

3-35

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 M dcbtst (n/a) (nfa) | (n/a) None (n/a) (n/a)
010
110
111
100 | dcbtst Read 100 01010 | (n/a) (None) Load the block of data into
cache
mark cache E
100 | dcbtst Read 100 01010 | (n/a) SHD Load the block of data into
cache
mark cache as block S
100 | dcbtst Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
101 | dcbtst Read 101 01010 | (n/a) (None) Load the block of data into
cache
mark cache block E
101 | dcbtst Read 101 01010 | (n/a) SHD Load the block of data into
cache
mark cache block S
101 | dcbtst Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 S dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
E
101 M dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 | dcbz Kill 000 01100 | (n/a) (None) or Establish the block in data
SHD cache without fetching the
block from main memory
clear all bytes
mark cache block M
000 S| dcbhz Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbhz Kill 000 01100 | (n/a) (None) or Clear all bytes in the block
SHD mark cache block M
000 E dcbz (None) 000 (n/a) (n/a) (n/a) Clear all bytes in the block
mark cache block M
000 M dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block
001 | dcbhz Kill 001 01100 | (n/a) (None) or Establish the block in data
SHD cache without fetching the
block from main memory
clear all bytes
mark cache block M
3-36 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 | dcbhz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbz Kill 001 01100 | (n/a) (None) or Mark cache block E
SHD set all bytes of the block to
zero
mark the cache block M
001 S dcbz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
001 E dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the Cache block
mark cache block M
001 M dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block
010 ME dcbz (n/a) (n/a) | (n/a) (n/a) (n/a) A dcbz to a page marked
011 Sl cache inhibited or write-
110 through causes an
111 alignment exception;
100 therefore this transaction
101 does not occur on the bus
000 ESI | dcbst Clean 000 00000 | (n/a) (None) or No-op
SHD
000 ESI | dcbst Clean 000 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbst Write with 100 00110 | (n/a) (None) or Write the block to main
kill SHD memory
mark cache block E
000 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
001 ESI | dcbst Clean 001 00000 | (n/a) (None) or No-op
SHD
001 ESI| | dcbst Clean 001 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
kill SHD block to main memory
mark cache block E
001 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 E S| | dcbst Clean W1M | 00000 | (n/a) (None) or No-op
010 SHD
110
111

Chapter 3. Cache and Bus Interface Unit Operation

3-37

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 | dcbst Clean W1M | 00000 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
010 kill SHD block to main memory
110 Mark cache block E
111
011 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 ESI | dcbst Clean 100 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ESI | dcbst Clean 100 00000 | (n/a) (None) or No-op
SHD
100 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory
mark cache block E
100 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 ESI | dcbst Clean 101 00000 | (n/a) (None) or No-op
SHD
101 ESI | dcbst Clean 101 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory
mark cache block E
101 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 | dcbf Flush 000 00100 | (n/a) (None) or No-op
SHD
000 | dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ES dcbf Flush 000 00100 | (n/a) (None) or Mark cache block |
SHD
000 ES dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbf Write with 100 00110 | (n/a) (None) or Write the block of data back
kill SHD to main memory

mark the cache block |

000 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation

3-38 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 | dcbf Flush 001 00100 | (n/a) (None) or No-op
SHD
001 ES dcbf Flush 001 00100 | (n/a) (None) or Mark cache block |
SHD
001 ESI | dcbf Flush 001 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbf Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
kill SHD block to main memory
mark cache block |
001 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 | dcbf Flush W1M | 00100 | (n/a) (None) or No-op
010 SHD
110
111
011 | dcbf Flush W1M | 00100 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) (None) or Mark cache block |
010 SHD
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) ARTRY or Retry the operation
010 ARTRY&SHD
110
111
011 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
010 kill SHD mark cache block |
110
111
011 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 | dcbf Flush 100 00100 | (n/a) (None) or No-op
SHD
100 ES dcbf Flush 100 00100 | (n/a) (None) or Mark cache block |
SHD
100 ESI | dcbf Flush 100 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 M dcbf Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory

mark cache block |

Chapter 3. Cache and Bus Interface Unit Operation

3-39

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
100 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 | dcbf Flush 101 00100 | (n/a) (None) or No-op
SHD
101 ES dcbf Flush 101 00100 | (n/a) (None) or Mark cache block |
SHD
101 ESI | dcbf Flush 101 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
kill SHD mark cache block |
101 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 | dchbi Kill 000 01100 | (n/a) (None) or No-op
SHD
000 ME dcbi Kill 000 01100 | (n/a) (None) or Mark the cache block |
S SHD
000 ME dchbi Kill 000 01100 | (n/a) ARTRY or Release the bus
Sl ARTRY&SHD | retry the operation
001 | dcbi Kill 001 01100 | (n/a) (None) or No-op
SHD
001 | dchbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 S dchbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 EM dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 EM dchbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
011 | dchbi Kill W1iM | 01100 | (n/a) (None) or No-op
010 SHD
110
111
011 ME dchi Kill W1M | 01100 | (n/a) (None) or Mark cache block |
010 S SHD
110
111
011 ME dchbi Kill W1iM | 01100 | (n/a) ARTRY or Release the bus
010 Sl ARTRY&SHD | retry the operation
110
111
3-40 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
100 | dchbi Kill 100 01100 | (n/a) (None) or No-op
SHD
100 ME dchi Kill 100 01100 | (n/a) ARTRY or Release the bus
S| ARTRY&SHD | retry the operation
100 ME dchi Kill 100 01100 | (n/a) (None) or Mark cache block |
S SHD
101 | dchi Kill 101 01100 | (n/a) (None) or No-op
SHD
101 ME dchi Kill 101 01100 | (n/a) ARTRY or Release the bus
S| ARTR&SHD retry the operation
101 ME dchi Kill 101 01100 | (n/a) (None) or Mark cache block |
S SHD
000 INV icbi ICBI 000 01101 | (n/a) (None) or No-op
SHD
000 INV icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 VAL icbi ICBI 000 01101 | (n/a) (None) or Mark icache block INV
SHD
000 VAL icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 INV icbi ICBI 001 01101 | (n/a) (None) or No-op
SHD
001 INV icbi ICBI 001 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
001 VAL icbi ICBI 001 01101 | (n/a) (None) or Mark icache block INV
SHD
011 INV icbi ICBI 01M 01101 | (n/a) (None) or No-op
010 11M SHD
110
111
011 INV icbi ICBI 01M 01101 | (n/a) ARTRY or Release the bus
010 VAL 11M ARTRY&SHD | retry the operation
110
111
011 VAL ichi ICBI 01M 01101 | (n/a) (None) or Mark icache block INV
010 11M SHD
110
111
100 INV icbi ICBI 100 01101 | (n/a) (None) or No-op
SHD

Chapter 3. Cache and Bus Interface Unit Operation

3-41

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
100 INV icbi ICBI 100 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
100 VAL icbi ICBI 100 01101 | (n/a) (None) or Mark icache block INV
SHD
101 INV icbi ICBI 101 01101 | (n/a) (None) or No-op
SHD
101 INV icbi ICBI 101 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
101 VAL icbi ICBI 101 01101 | (n/a) (None) or Mark icache block INV
SHD
(n/a) (n/a) sync SYNC xx1 01000 | (n/a) (None) or The sync instruction
SHD completed.
(Note: This table does not
give an accurate
representation of what the
sync instruction does.)
(n/a) (nfa) | sync SYNC xx1 01000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (nfa) | eieio EIEIO xx1 10000 | (n/a) (None) or The eieio instruction has
SHD completed.
(Note: This table does not
give an accurate
representation of what the
eieio instruction does.)
(n/a) (n/a) eieio EIEIO xx1 10000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (n/a) | tlbie TLB xx1 11000 | (n/a) (None) or Hold off any new storage
invalidate SHD instructions.
Wait for the completion of
any outstanding storage
instructions
Invalidate the requested
TLB entry
(Note: This table does not
thoroughly characterize the
tlbie instruction.)
(n/a) (nfa) | tlbie TLB xx1 11000 | (n/a) ARTRY or Release the bus.
invalidate ARTRY&SHD | Retry the operation
tlbsync | TLB sync xx1 01001 | (n/a) (None) or The TLB sync instruction
SHD has completed.
(Note: This table does not
thoroughly characterize the
tlbsync instruction.)
tlbbsync | TLB sync xx1 01001 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
3-42 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
| Snoop-kill xx1 01100 | None (None) No-op
| Snoop-kill xx1 01100 | Yes (None) Release reservation.
(and
reset)
ME Snoop-kill xx1 01100 | None (None) Mark cache block 1.
S
ME Snoop-kill xx1 01100 | Yes (None) Mark cache block 1.
S (and Release reservation.
reset)
| Snoop- xx1 01010 | None (None) No-op
read
| Snoop- xx1 01010 | Yes SH No-op
read
S Snoop- xx1 01010 | (n/a) SHD No-op
read
E Snoop- xx1 01010 | (n/a) SHD Mark cache block S.
read
M Snoop- x01 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
if successful, mark cache
block S
M Snoop- x11 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
If successful, mark cache
block S
| Snoop- xx1 11010 | None (None) No-op
read
atomic
| Snoop- xx1 11010 | Yes SHD No-op
read
atomic
S Snoop- xx1 11010 | (n/a) SHD No-op
read
atomic
E Snoop- xx1 11010 | (n/a) SHD Mark cache block S
read
atomic
M Snoop- xx1 11010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory; if
atomic successful, mark cache
block S.
| Snoop- xx1 01110 | None (None) No-op
RWITM

Chapter 3. Cache and Bus Interface Unit Operation

3-43

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action

| Snoop- xx1 01110 | Yes (None) Release reservation.

RWITM (and
reset)

ES Snoop- xx1 01110 | None (None) Mark cache block 1.
RWITM

ES Snoop- xx1 01110 | Yes (None) Mark cache block 1.
RWITM (and Release reservation.

reset)

M Snoop- xx1 01110 | None ARTRY&SHD | Attempt to write cache block
RWITM back to main memory;

if successful, mark cache
block I.
M Snoop- xx1 01110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
reset) if successful, mark cache
block I,
release reservation

| Snoop- xx1 11110 | None (None) No-op
RWITM
atomic

| Snoop- xx1 11110 | Yes (None) Release reservation.
RWITM (and
atomic reset)

S Snoop- xx1 11110 | None (None) Mark cache block I.

E RWITM
atomic

S Snoop- xx1 11110 | Yes (None) Mark cache block I.

E RWITM (and Release reservation.
atomic reset)

M Snoop- xx1 11110 | None | ARTRY&SHD | Attempt to write cache block
RWITM back to main memory;
atomic if successful, mark cache

block I.

M Snoop- xx1 11110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
atomic reset) if successful, mark cache

block I, release reservation.
| Snoop- xx1 00100 | None (None) No-op
flush

| Snoop- xx1 00100 | Yes (None) No-op
flush

SE Snoop- xx1 00100 | (n/a) (None) Mark cache block I.
flush

3-44 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
M Snoop- xx1 00100 | (n/a) ARTRY&SHD | Attempt to write cache block
flush back to main memory;
if successful:
mark cache block I.
ESI Snoop- xx1 00000 | (n/a) (None) No-op
clean
M Snoop- xx1 00000 | (n/a) ARTRY&SHD | Attempt to write cache block
clean back to main memory; if
successful, mark cache
block E.
| Snoop- xx1 00010 | None (None) No-op
write with
flush
| Snoop- xx1 00010 | Yes (None) Release reservation.
write with (and
flush reset)
S Snoop- xx1 00010 | None (None) Mark cache block 1.
write with
flush
S Snoop- xx1 00010 | Yes (None) Mark cache block 1.
write with (and Release reservation.
flush reset)
E Snoop- xx1 00010 | None (None) Paradox—no one else
write with should be writing if this
flush cache is E.
Mark cache block |
E Snoop- xx1 00010 | Yes (None) Paradox—no one else
write with (and should be writing if this
flush reset) cacheis E.
Mark cache block I.
Release reservation.
M Snoop- xx1 00010 | None | ARTRY&SHD | Paradox—no one else
write with should be writing if this
flush cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache
block |
M Snoop- xx1 00010 | Yes ARTRY&SHD | Paradox—no one else
write with (and should be writing if this
flush reset) cache is M.

Attempt to write cache block
back to main memory;

if successful, mark cache
block I, release reservation

Chapter 3. Cache and Bus Interface Unit Operation

3-45

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
| Snoop- xx1 00110 | None (None) No-op
write with
kill
| Snoop- xx1 00110 | Yes (None) Release reservation.
write with (and
kill reset)
S Snoop- xx1 00110 | None (None) Mark cache block 1.
write with
kill
S Snoop- xx1 00110 | Yes (None) Mark cache block I.
write with (and Release reservation.
kill reset)
E Snoop- xx1 00110 | None (None) Paradox—no one else
write with should be writing if this
kill cache is E.
Mark cache block 1.
E Snoop- xx1 00110 | Yes (None) Paradox—no one else
write with (and should be writing if this
kill reset) cacheis E.
Mark cache block I.
Release reservation.
M Snoop- xx1 00110 | None (None) Paradox—no one else
write with should be writing if this
kill cache is M.
Mark cache block 1.
M Snoop- xx1 00110 | Yes (None) Paradox—no one else
write with (and should be writing if this
kill reset) cache is M.
Mark cache block I.
Release reservation.
| Snoop- xx1 10010 | None (None) No-op
write with
flush
atomic
| Snoop- xx1 10010 | Yes (None) Release reservation.
write with (and
flush reset)
atomic
S Snoop- xx1 10010 | None (None) Mark cache block 1.
write with
flush
atomic
S Snoop- xx1 10010 | Yes (None) Mark cache block 1.
write with (and Release reservation.
flush reset)
atomic
3-46 PowerPC 604e RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action

E Snoop- xx1 10010 | None (None) Paradox—no one else
write with should be writing if this
flush cache is E.
atomic Mark cache block I.

E Snoop- xx1 10010 | Yes (None) Paradox—no one else
write with (and should be writing if this
flush reset) cache is E.
atomic Mark cache block |,

release reservation.

M Snoop- xx1 10010 | None | ARTRY&SHD | Paradox—no one else
write with should be writing if this
flush cache is M.
atomic Attempt to write block back

to main memory;
if successful, mark cache
block |

M Snoop- xx1 10010 | Yes ARTRY&SHD | Paradox—no one else
write with (and should be writing if this
flush reset) cache is M.
atomic Attempt to write block back

to main memory;
if successful: mark cache
block |, release reservation.

(n/a) Snoop- xx1 11000 | (n/a) (None) Respond with (none) when
TLB the TLB has been
invalidate invalidated.

(n/a) Snoop- xx1 11000 | (n/a) (None) but Do not perform the TLB
TLB ARTRY is invalidate—this is to prevent
invalidate activated on a deadlock condition from

the bus from occurring.
another
processor

(n/a) Snoop- xx1 11000 | (n/a) ARTRY Respond with retry until the
TLB TLB has been invalidated.
invalidate

(n/a) Snoop- xx1 01000 | (n/a) (None) If no TLB invalidates are
SYNC pending, no-op.

(n/a) Snoop- xx1 01000 | (n/a) ARTRY If a TLB invalidate is
SYNC pending, respond with retry.

(n/a) Snoop- xx1 01001 | (n/a) (None) If no TLB invalidates are
TLBSYNC pending, no-op.

(n/a) Snoop- xx1 01001 | (n/a) ARTRY If a TLB invalidate is
TLBSYNC pending, respond with retry.

(n/a) Snoop- xx1 10000 | (n/a) (None) No-op
EIEIO

Chapter 3. Cache and Bus Interface Unit Operation

3-47

Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 Rsvn Response Action

(n/a) Snoop- xx1 10000 | (n/a) ARTRY No-op
EIEIO

| Snoop- xx1 01101 | (n/a) (None) No-op
ICBI

VAL Snoop- xx1 01101 | (n/a) (None) Invalidate entry in icache
ICBI

| Snoop- xx1 01011 | None (None) No-op
RWNITC

| Snoop- xx1 01011 | Yes SH No-op
RWNITC

ES Snoop- xx1 01011 | (n/a) SHD No-op
RWNITC

M Snoop- xx1 01011 | (n/a) ARTRY&SHD | Attempt to write cache block
RWNITC back to main memory; if

successful, mark cache
block E.

Note: It is possible for a snoop invalidate operation that invalidates both the cache block and the reservation
to preempt the operation and cause the 604e to generate a “read atomic” operation instead. It is also
possible that between the time that the lwarx instruction hits in the cache and the lwarx reservation set is
broadcast that a flush snoop operation can remove the cache block from the cache without canceling the
reservation. In this case, the lwarx broadcast still occurs even through the cache block is not in the data
cache.

3.11 Access to Direct-Store Segments

The 604e supports both memory-mapped and I/O-mapped access to I/O devices. In
addition to the high-performance bus protocol for memory-mapped I/O accesses, the 604e
provides the ability to map memory areas to the direct-store interface (SR[T] = 1) with the

following two kinds of operations:

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for

Direct-store operations. These operations are considered to address the noncoherent
and noncacheable direct-store; therefore, the 604e does not maintain coherency for

these operations, and the cache is bypassed completely.

Memory-forced direct-store operations. These operations are considered to address
memory space and are therefore subject to the same coherency control as memory
accesses. These operations are global memory references within the 604e and are

considered to be noncacheable.

these operations is determined by the settings of the WIM bits.

3-48

PowerPC 604e RISC Microprocessor User's Manual

Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the

mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if it is desired to allow control to ultimately return to the excepting program.

Chapter 4. Exceptions 4-1

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.
Taken An exception is said to be taken when control of instruction

execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
level (referred to as privileged state in the architecture specification).

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to IEEE-defined floating-point exceptions, conditions that may
cause a program exception to be taken (See Section 4.5.7, “Program Exception (0x00700).)
The occurrence of these IEEE exceptions may in fact not cause an exception to be taken.
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 604e Microprocessor Exceptions

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt and performance monitoring exception are defined by the
PowerPC architecture.

4-2 PowerPC 604e RISC Microprocessor User's Manual

Table 4-1. Exception Classifications

Type

Exception

Asynchronous/nonmaskable

Machine Check
System Reset

Asynchronous/maskable

External interrupt

Decrementer interrupt

System management interrupt (604e-specific)
Performance monitoring exception (604e-
specific)

Synchronous/precise

Instruction-caused exceptions

Synchronous/imprecise

Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptions implemented in the 604e, and conditions that cause them, are listed in
Table 4-2.
Table 4-2. Exceptions and Conditions—Overview
Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
604e a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check | 00200 On the 604e a machine check exception is signaled by the assertion of a

qualified TEA indication on the 604e bus, or the machine check input (MCP)
signal. If the MSR[ME] is cleared, the processor enters the checkstop state
when one of these signals is asserted. Note that MSR[ME] is cleared when an
exception is taken. The machine check exception is also caused by parity errors
on the address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Chapter 4. Exceptions

Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSl

00300

A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, “DSI Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI

00400

An ISI exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.5.4, “ISI Exception (0x00400).”

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment

00600

An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604e. In
these cases, the 604e provides logic to handle these conditions without
requiring the processor to invoke the alignment exception handler.

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

* Floating-point enabled exception—A floating-point enabled exception
condition is generated when either MSR[FEOQ] or MSR[FE1] and
FPSCRI[FEX] are set. The settings of FEO and FE1 are described in
Table 4-4.

FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

< lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[0]=1 and
MSR[PR] = 1.

- Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800

The floating-point unavailable exception is implemented as defined in the
PowerPC architecture.

Decrementer

00900

The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.

4-4

PowerPC 604e RISC Microprocessor User's Manual

Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00AOQ0 Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 604e, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either MSR[SE]
=1 and any instruction (except rfi) successfully completed or MSR[BE] = 1 and
a branch instruction is completed.

Performance 00F00 The performance monitoring interrupt is a 604e-specific exception and is used

monitoring with the 604e performance monitor, described in Section 4.5.13, “Performance

interrupt Monitoring Interrupt (0Ox0O0F00).”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | Reserved for implementation-specific exceptions not implemented on the 604e.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to

address 29) in the IABR matches the next instruction to complete in the completion unit,

breakpoint and the IABR enable bit (bit 30) is set to 1.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI

management input signal is asserted. This exception is provided for use with the hap mode.

interrupt

Reserved 014FF-02FFF | Reserved for implementation-specific exceptions not implemented on the 604e.

4.2 EXxception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—

system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

Chapter 4. Exceptions 4-5

Exception priorities are described in “Exception Priorities,” in Chapter 6, “Exceptions,” in
The Programming Environments Manual

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 6, “Exceptions,Tire Programming Environments Manual

4.3 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRR0 and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRRO or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (holds EA for instruction in interrupted program flow)

Figure 4-1. Machine Status Save/Restore Register 0

SRRO is 32 bits wide in 32-bit implementations.

The save/restore register 1(SRR1) is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfi is executed. SRR1 is shown in Figure 4-2.

Exception-specific information and MSR bit values

Figure 4-2. Machine Status Save/Restore Register 1

4-6 PowerPC 604e RISC Microprocessor User's Manual

Typically, when an exception occurs, bits 2—-4 and 10-12 of SRR1 are loaded with
exception-specific information and bits 5-9, and 16-31 of MSR are placed into the
corresponding bit positions of SRR1.

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

In the 604e and in other 32-bit PowerPC implementations, the MSR is 32 bits wide as
shown in Figure 4-3.

[] Reserved

0000000000000 POW| O | ILE |EE|PR|FP|ME|FEO|SE(BE|FE1| O [IP [IR|CR [O|PM|RI|LE
0 12 13 14 15 16 17 1819 20 2122 23 24 25262728293031

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-3. Full function reserved bits are saved in SRR1 when
an exception occurs; partial function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Bit(s) Name Description
0 — Reserved. Full Function.

1-4 — Reserved. Partial function.

5-9 — Reserved. Full function.

10-12 | — Reserved. Partial function.

13 POW Power management enable

0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 — Reserved—Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable

0 While the bit is cleared the processor delays recognition of external interrupts and
decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

Chapter 4. Exceptions 4-7

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description
18 FP Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.

1 The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

20 FEO IEEE floating-point exception mode 0 (See Table 4-4).
21 SE Single-step trace enable

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of
the next instruction (unless that instruction is an rfi instruction). Successful execution
means that the instruction caused no other exception.

22 BE Branch trace enable

0 The processor executes branch instructions normally.

1 The processor generates a branch type trace exception upon the successful execution of
a branch instruction.

23 FE1 IEEE floating-point exception mode 1 (See Table 4-4).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 P Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception.

0 Exceptions are vectored to the physical address 0x000n_nnnn.

1 Exceptions are vectored to the physical address OxFFFn_nnnn.

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

28 — Reserved, full function.
29 PM Performance monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For

more information about the performance monitor, see Section 4.5.13, “Performance Monitoring

Interrupt (0Ox0O0F00).”

4-8 PowerPC 604e RISC Microprocessor User's Manual

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

30 RI Indicates whether system reset or machine check exception is recoverable.

0 Exception is not recoverable.

1 Exception is recoverable.

The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. The possible settings and default conditions for the 604e are shown in Table 4-4. For
further details, see Chapter 6, “Exceptions, Thé Programming Environments Manual

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable. In the 604e, this bit setting causes the 604e to operate in
floating-point precise mode.
1 1 Floating-point precise mode

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

* |EEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FE1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

* Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] =0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.

Chapter 4. Exceptions 4-9

A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 4-7.

System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1.

The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

Bits 1-4 and 10-15 of SRR1 are loaded with information specific to the exception

type.

Bits 5-9 and 16—-31 of SRR1 are loaded with a copy of the corresponding bits of the

MSR. Note that depending on the implementation, reserved bits may not be copied.

The MSR is set as described in Table 4-3. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSRJIP]. If IP is cleared,
exceptions are vectored to the physical address 0xQ@thn If IP is set, exceptions

are vectored to the physical address OxiFHinn For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See
Section 4.5.2, “Machine Check Exception (0x00200).”

4-10

PowerPC 604e RISC Microprocessor User's Manual

4.3.3 Setting MSRJRI]
The operating system should handle MSR[RI] as follows:

In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSRI[RI].

In each exception handler—Clear MSR[RI], set the SRRO and SRR1 registers
appropriately, and then execute

Not that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interruptrfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of thré instruction ensures the following:

All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

Therfi instruction copies SRR1 bits back into the MSR.

The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The operating system should execute one of the following when processes are switched:

Thesyncinstruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed befosytize

instruction completes, and no subsequent instructions appear to be initiated until the
syncinstruction completes. For an example showing use a$yineinstruction, see
Chapter 2, “PowerPC Register Set, Tdfe Programming Environments Manual.

Chapter 4. Exceptions 4-11

* Theisyncinstruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

» Thestwecx.instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired witlstncx. instruction in the
new process.

The operating system should set the MSRJ[RI] bit as described in Section 4.3.3, “Setting
MSR[RI].”

4.5 Exception Definitions

Table 4-5 shows all the types of exceptions that can occur with the 604e and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception

. MSR Bit
Exception
Type

POW | ILE | EE | PR | FP | ME | FEO | SE | BE | FE1 | IP | IR | DR | RI | LE
System reset 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Machine check 0 — 0 0 0 0 0 0 0 0 — 10 0 0 | ILE
DSI 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
ISI 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
External 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Alignment 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Program 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Floating-point 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
unavailable
Decrementer 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
System call 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Trace exception 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
System 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
management
Performance 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
monitor

0 Bit is cleared.

ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.

4-12 PowerPC 604e RISC Microprocessor User's Manual

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address @x0n(wherennnnn

Is the vector offset); if IP is set, exceptions are vectored to the physical address
OxFFFR_nnnn Table 4-2 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 604e implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to
the processor through the assertion of system-defined signals. In the 604e, the exception is
signaled by the assertion of either ®RESET oHRESET inputs, described more fully in
Chapter 7, “Signal Descriptions.”.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR
10-15 Cleared
16-31 Loaded with equivalent bits of the MSR

Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSRI[RI] bit (SRR1[30]) is cleared.

MSR POW 0 BE 0
ILE --- FE1 O
EE 0 IP —
PR 0 IR 0
FP 0 DR O
ME - RI 0
FEO O LE Set to value of ILE

SE O

The SRESET input provides a “warm” reset capability. This input is used to avoid causing
the 604e to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset 0x00100 from the physical base address indicated by MSR[IP].

AssertingSRESET causes the 604e to perform a system reset excepRHEET is an
edge-sensitive signal that may be asserted and deasserted asynchronously, provided the
minimum pulse width specified in theowerPC 604e RISC Microprocessor Hardware
Specificationss met. This exception modifies the MSR, SRRO, and SRR1, as described in
The Programming Environments Manué&lnlike hard reset, soft reset does not directly
affect the states of output signals. Attempts to8RESET during a hard reset sequence or
while the JTAG logic is non-idle cause unpredictable results. Processing interrupted by a
SRESET can be restarted.

Chapter 4. Exceptions 4-13

A hard reset is initiated by assertiftRESET. Hard reset is used primarily for power-on
reset (POR), but can also be used to restart a running processetREEET signal should

be asserted during power up and must remain asserted for a period that allows the PLL to
achieve lock and the internal logic to be reset. This period is specified PotlherPC 604e

RISC Microprocessor Hardware Specificatiofite 604e internal state after the hard reset
interval is defined in Table 2-11.

If HRESET is asserted for less than this amount of time, the results are not predictable. If
HRESET is asserted during normal operation, all operations cease and the machine state is
lost.

4.5.2 Machine Check Exception (0x00200)

The 604e implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledgeTEA) indication on the 604e bus, or after the machine check interfipR)

signal had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

Machine check conditions can be enabled and disabled using bits in the HIDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description

0 Enable machine check input pin

1 Enable cache parity checking

2 Enable machine check on address bus parity error.
3 Enable machine check on data bus parity error.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, tHEEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception is imprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HIDO are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] = 0

4-14 PowerPC 604e RISC Microprocessor User's Manual

and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.

Table 4-8. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0-9 Cleared

10 Set when an instruction cache parity error is detected, otherwise zero

11 Set when a data cache parity error is detected, otherwise zero

12 Set when Machine Check Pin (MCP) is asserted, otherwise zero

13 Set when TEA pin is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero

16—29 MSR(16-29)

30 Zero for APE, DPE, instruction or data cache parity error, or TEA.
For MCP or other conditions, SRR1[30] is set to value of MSR[30]. If MCP and TEA are
asserted simultaneously, SRR1[30] is zero and the exception is not recoverable.

31 MSR(31)
MSR POW 0 BE 0
ILE --- FE1 O
EE 0 1P —
PR 0 IR 0
FP 0 DR O
ME* O RI 0
FEO O LE Set to value of ILE
SE 0

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typically earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction execution resumes at offset 0x00200
from the physical base address indicated by MSR]IP].

Chapter 4. Exceptions 4-15

4.5.2.2 Checkstop State (MSR[ME] = 0)

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of a Data Cache Block Set to ZdebZ) instruction that introduces

a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The DSI exception is implemented as it is defined in the PowerPC
architecture (OEA). Note that there are some conditions for which the PowerPC
architectures allow implementations to optionally take a DSI exception. Table 4-9 lists
conditions defined by the architecture that optionally may cause a DSI exception.

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR
Iwarx or stwex. with W =1 Reservation instruction to write-through segment or block | DSISR[5] =1
Iwarx , stwcx. , eciwx , or ecowx Reservation instruction or external control instruction DSISR[5] =1
instruction to direct-store segment when SR[T] =1 or STE[T] =1
Load or store that results in a direct- | Direct-store interface protocol signalled with an error DSISR[0] =1
store error condition
eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] =0 DSISR[11] =1
external control facility disabled

4.5.4 |S| Exception (0x00400)

An [SI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). In addition, an instruction fetch from a no-execute segment results in
an IS| exception.

When an ISI exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (NT). TheINT signal is expected to remain asserted until the 604e takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the

4-16 PowerPC 604e RISC Microprocessor User's Manual

interrupt request is not guaranteed. After the 604e begins execution of the external interrupt
handler, the system can safely negatelNie When the signal is detected, the 604e stops
dispatching instructions and waits for all pending instructions to complete. This allows any
instructions in progress that need to take an exception to do so before the external interrupt
Is taken. After all instructions have cleared, the 604e takes the external interrupt exception
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] bit is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” ithe Programming Environments Manual.

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR]IP].

4.5.6 Alignment Exception (0x00600)

The 604e implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions are met:

» Afloating-point load or stordmw, stmw, Iwarx, or stwcx. instruction is not word-
aligned.

» Ifafloating-point number is not word-aligned. The 604e provides hardware support
for misaligned storage accesses for other memory access instructions. If a
misaligned memory access crosses a 4-Kbyte page boundary within a memory
segment, an exception may occur when the boundary is crossed (that is, there is a
protection violation on an attempt to access the new page). In these cases, a DSI
exception occurs and the instruction may complete partially.

* Some types of misaligned memory accesses are slower than aligned accesses.
Accesses that cross a word boundary (and double-precision values not aligned on a
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

» Operations that cross a word boundary (and operations involving double-precision
values not aligned on a double-word boundary) require two accesses, which are
translated separately. If either translation creates a DSI exception condition, that
exception is signaled.

» If the T-bit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604e completes all of
the accesses for the operation, the segment information from the T = 1 space is
presented on the bus for every access of the operation, and the 604e requires a direct-
store access reply from the device. If two translations cross memory locations that
are T=0into T =1, a DSI exception is signaled.

* A dcbzinstruction references a page that is marked either cache-inhibited or write-
through or has executed when the 604e data cache is locked or disabled. Note that
this condition may not cause an alignment exception in other PowerPC processors.

Chapter 4. Exceptions 4-17

* An access is not naturally aligned in little-endian mode.
* An ecowxor eciwxis not word-aligned.
* A lmw, stmw, Iswi, Iswx, stswi, or stswxinstruction is issued in little-endian mode.

4.5.7 Program Exception (0x00700)

The 604e implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 604e invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class.

The 604e fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines thentspr andmfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 604e, the appropriate
CR should be treated as undefined. Likewise, the PowerPC architecture states that the
Floating Compared Unorderedfcinpu) or Floating Compared Orderedfcinpo)
instruction with the record bit set can either cause a program exception or provide a
boundedly undefined result. In the 604e, CR field BF for these cases should be treated as
undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[IP].

Note that the 604e supports one of the two floating-point imprecise modes supported by the
PowerPC architecture. The three modes supported by the 604e are described as follows:

* Ignore exceptions mode (MSR[FEO] = MSR[FE1] = 0)—In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the FPU
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do not
cause any exceptions.

* Precise exceptions mode (MSR[FEOQ] = 1; MSR[FE1] = x)—In this mode, a floating
point instruction that causes a floating-point exception brings the machine to a
precise state. In doing so, the 604e sequencer unit can detect floating-point exception
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the PowerPC
architecture (MSR[FEOQ] = 1; MSR[FE1] = 0) is implemented identically to precise
exceptions mode in the 604e.

* Imprecise nonrecoverable mode (MSR[FEO] = 0; MSR[FE1] = 1)—In this mode,
floating-point exception conditions cause a floating-point exception to be taken,
SRRO may point to some instruction following the instruction that caused the
exception.

4-18 PowerPC 604e RISC Microprocessor User's Manual

Register settings for this exception are described in Chapter 6, “Exceptionghan
Programming Environments Manual.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” ithe Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address indicated by MSR[IP].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the 604e as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 604e, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions, ihe Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSRJIP].

4.5.10 System Call Exception (0x00CO00)

A system call exception occurs when a System Gallifistruction is executed. In the 604e,

the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, “Exception$han
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSRJIP].

4.5.11 Trace Exception (0x00DO0O0)

The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a trace
exception is taken, the values written to SRR1 are implementation-specific; those values for
the 604e are shown in Table 4-10.

Chapter 4. Exceptions 4-19

Table 4-10. Trace Exception—SRR1 Settings

Register Setting
SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared

10 Set for Iswx or stswx , otherwise cleared

11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared

13-15 Cleared

16-31 MSR(16-31).

When a trace exception is taken, instruction execution resumes as offset 0x00D0O0 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0xO0E00)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 604e.

4.5.13 Performance Monitoring Interrupt (0xO0OFQO0)

The PowerPC 604e performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especially in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

» Performance monitor counters 1 and 2 (PMC1 and PMC2)—two 32-bit counters
used to store the number of times a certain event has occurred.

» The monitor mode control register 0 (MMCRO), which establishes the function of
the counters.

» Sampledinstruction address and sampled data address registers (SIA and SDA). The
two address registers contain the addresses of the data and of the instruction that
caused a threshold-related performance monitor interrupt.

The 604e supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCRO register.

As with other PowerPC interrupts, the performance monitoring interrupt follows the

normal PowerPC exception model with a defined exception vector offset (0xO0F00). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in

4-20 PowerPC 604e RISC Microprocessor User's Manual

Section 2.1.2.5, “Performance Monitor Registers.” The performance monitor is described
in Chapter 9, “Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)

The instruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled (IABR[30] is set). The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is invoked. The
vector offset of the instruction address breakpoint exception is 0x01300.

4.5.15 System Management Interrupt (0x01400)

The 604e implements a system management interrupt exception, which is not defined by
the PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different interrupt vector in the exception table (at
offset 0x01400).

Like the external interrupt, a system management interrupt is signaled to the 604e by the
assertion of an input signal. The system management interrupt s§Mal is expected to
remain asserted until the interrupt is taken. If 8MI signal is negated early, recognition

of the interrupt request is not guaranteed. After the 604e begins execution of the system
management interrupt handler, the system can safely nega&thsignal. After theSMI

signal is detected, the 604e stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progres