

®MOTOROLA

MC88410
Secondary Cache Controller

Userls Manual

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation orguarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ''Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's tect)nical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not deSigned, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and ® are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

©MOTOROLA INC., 1992

Paragraph
Number

1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.1.3
1.5.1.4
.1.5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.2
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.6
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.1.3

MOTOROLA

TABLE OF CONTENTS

Title
Page

Number

Section 1
Overview

MC88410 Feature List ... 1-1
MC88410 Benefits in Single Processor Systems 1-2
MC88410 Benefits in Multiprocessor Systems 1-4
Cache Coherency ... 1-6
MC8811 O/MC8841 0 System Overvi~w ... 1-7

MC88110 Microprocessor .. 1 -7
MC88110 Instruction and Data Cache .. .' .. 1-8
MC88110 Memory Update Policy .. 1-8
MC88110 Bus Overview .. 1-9
MCM62110 FSRAM Secondary Cache ; 1-9

MC88410 Secondary Cache Controller ... 1-9
MC88410 Functional Overview .. 1-10
MC88410 Bus Overview .. 1-11
MC88410 Cache Tags ... 1-11
MC88410 Address Decode .. 1-12

Section 2
Secondary Cache Operation

Cache Organization ... ' 2-1
1/4-Mbyte Configurations .. 2-2

1/4 Mbyte with 32-Byte Line Size Configuration 2-3
1/4 Mbyte with 64-Byte Line Size Configuration 2-3

1 Mbyte with 64-Byte Line Size Configuration 2-6
Secondary Cache Line States ... 2-8
Memory Update Policies ... 2-9
Cache Coherency ... ; 2-10

Vertical Coherency .. 2-10
Lateral Coherency ... 2-12

Transaction Overview ... 2-15
Burst ordering and Streaming .. 2-19
Secondary Cache Line Allocation ... 2-26

Processor Read Transactions (Not Locked) 2-28
Single-Beat Read Transaction ... 2-28
Burst Read Transaction ... ; 2-28
Read Transaction Flow .. 2-28

MC88410 USER'S MANUAL III

Paragraph
Number

2.7.2
2.7.2.1
2.7.2.2
2.7.2.3
2.7.3
2.8
2.8.1
2.8.2
2.8.3
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.9.4.1
2.9.4.2

2.9.4.3

2.9.4.4

TABLE OF CONTENTS (Continued)

Title
Page

Number

Processor Write Transactions (Not Locked) 2-31
Single-Beat Write Transaction ... 2-31
Burst Write Transaction .. ~ 2-32
Write Transaction Flow .. 2-32

Locked Transactions ... 2-33
, Cache Flushing and Invalidation ... 2-36

Flush and Invalidate ControL ... 2-36
Flush Page and Flush All Operations .. 2-38
Invalidate All Operation ... 2-40

Bus Snooping Protocol ... 2-41
Transaction without Intent-to-Modify ... 2-42
Transaction with Intent-to-Modify .. 2-44
DMA Invalidate Transaction .. 2-45
Snooping Protocol Examples .. 2-45

Example 1-Snoop Hit without Intent-to-Modify, PTAG Hit. 2-45
Example 2-Snoop Hit without Intent-to-Modify, 64-Byte
Secondary Cache Line ... 2-52
Example 3-Simultaneous Write Misses with Secondary
Cache Hits ... 2-62
Example 4-Simultaneous First Write Hits with Secondary
Cache Hits ... 2-66

Section 3
Signal Description

3.1 Processor Interface Signals .. 3-4
Processor Address Bus (P _A31-P _AO) .. 3-5

3.1.1 Processor Transfer Attribute Signals ... 3e 5
Processor ReadlWrite (P _RlW) ... 3-5
Processor Lock (P _LK) .. 3-5
Processor Cache-Inhibit (P _CI) ~ 3-5
Processor Write-Through (P _ WT) ... 3~6
Processor User Page Attributes (P _ U P A 1-P _ UP A 0) 3-6
Processor Transfer Burst (P _ TBST) .. 3-6
Processor Transfer Size (P _ TSIZ1-P _ TSIZO) 3-6
Processor Transfer Code (P _ TC3-P _ TCO) 3-7
Processor Invalidate (i5JNV) .. 3-7
Processor Global (P _ G B L) .. 3-7
Processor Cache Line (P _CL) ... 3-7

Iv MC88410 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

3.1.2 Processor Transfer Control Signals ... 3-8
Processor Transfer Start (P _ T S) ... 3-8
Processor Transfer Acknowledge (~) 3-8
Processor Pretransfer Acknowledge (P _PT A) 3-8
Processor Transfer Error Acknowledge (P _ TEA) 3-8
Processor Transfer Retry (P _ TRTRY) ... 3-8
Processor Address Retry (P _ARTRY) ... 3-9

3.1.3 Processor Bus Arbitration Signals ... 3-9
Processor Bus Request (P _ B R) .. 3-9
Processor Bus Grant (P _ B G) ... 3-9
Processor Address Bus Busy (P _A B B) .. 3-9

3.2 System Interface Signals .. 3-10
System Address Bus (S_A31-S_AO) ... 3-10

3.2.1 System Transfer Attribute Signals ... 3-10
System Read/Write (S_R/W) ... 3-10
System Lock (S_LK) .. 3-10
System Cache-Inhibit (S_CI) ... 3-10
System User Page Attributes (S _ UP A 1-S _ UP A 0) 3-11
System Transfer Burst (8_ TBST) .. 3-11
System Transfer Size (S _ TSIZ1-S _ TSIZO) 3-11
System Transfer Code (S _ TC3-S _ TCO) 3-11
System Invalidate (8_INV) .. ; 3-12
System Memory Cycle (8_ M C) .. 3-12
System Global (8_G BL) ... 3-12

3.2.2 System Transfer Control Signals ... 3-13
System Transfer Start (8 _ T S) .. 3-13
System Transfer Acknowledge (S _ T A) .. 3-13
System Transfer Error Acknowledge (S_ TEA) 3-13
System Transfer Retry (S _ T R T R Y) ... 3-13
System Address Acknowledge (8 _AA C K) 3-13

3.2.3 System Snoop Control Signals .. 3-14
System Snoop Request (s=sR) .. 3-14
System Address Retry (S_ARTRY) ... 3-14
System Snoop Status (S_SSTAT2-S_S8TATO) 3-14
Shared (SH D) ... 3-14
Transfer Shared (T8HO) .. 3-15
Flush Control (F1-FO) .. 3-15
Flush Busy (FB8Y) .. 3-15

MOTOROLA MC88410 USER'S MANUAL v

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

3.2.4 System Bus Arbitration Signals ... 3-15
System Bus Request (S_BR) .. 3-16
System Bus Grant (S_BG) ... 3-16
System Address Bus Busy (S ABB) .. 3-16
System Data Bus Grant (S 0 B G) ... 3-16
System Data Bus Busy (S _ 0 B B) ... 3-16

3.3 RAM Interface Signals .. 3-17
RAM Address Bus (R_A 16-R_AO) .. 3-17
RAM Write Enable (RW E7-RW EO) ... 3-17
Processor Input Enable (P IE) .. 3-17
Processor Output Enable (P 0 E) .. 3-17
System Input Enable (SIE) ... 3-17
System Output Enable (S 0 E) .. 3-17

3.4 System Configuration Signals ... 3-17
Chip Select (CS) .. 3-18
System Clock (ClK) .. 3-18
Half-Speed System Clock (HClK) ... 3-18
RESET (RST) ... : 3-18
Tag Function Descriptor O/Line Size (FDO/LiNSIZ) 3-18
Tag Function Descriptor 1/Critical Word Mode (FD1/CWM) 3-18
tag Function Descriptor 2 (FD2) ... 3-19
Tag Status Descriptor O/Chip Select Polarity (SDO/CSP) 3-19
Tag Status Descriptor 1/External Arbiter Enable (SD1/ARBEN) ... 3-19
Tag Status Descriptor 2/Cache Size O'(SD2ICSIZO) 3-19
Tag Status Descriptor 3/Cache Size 1 (SD3/CSIZ1) 3-19

3.5 Test Signals .. 3-19
Diagnostic (0 IA G) .. 3-20
Clock Monitor (CKMON) .. , ... 3-20
JTAG Test Reset (TRST) .. 3-20
JTAG Test Mode Select (TMS) .. 3-20
JTAG Test Clock (TCK) ... 3-20
JTAG Test Data Input (TDI) ... 3-20
JTAG Test Data Output (TDO) .. 3-20

Section 4
Processor Bus Interface

4.1 Processor Bus Interface Overview .. 4-1
4.2 MC88410 Signal Interface .. 4-3
4.2.1 MC8841 0/MC8811 0 Signal Relationship ... 4-5

vi MC88410 USER'S MANUAL MOTOROLA

Paragraph
Number

4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.4
4.4.5
4.4.5.1
4.4.5.2
4.5
4.5.1
4.5.2
4.5.3

5.1
5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.6.1
5.4.6.2
5.5
5.5.1
5.5.2
5.5.3

MOTOROLA

TABLE OF CONTENTS (Continued)

Title
Page

Number

Static MC8811 0 Signals .. 4-6
RAM Interface Signals ... 4-8

Processor Bus Arbitration ... 4-8
Processor Bus Arbitration Signals ... 4-9
Processor Bus Arbitration Protocol.. .. 4-10
MC88410 On-Chip Processor Bus Arbitration 4-11
External Processor Bus Arbitration .. 4-13

Data Transfer Mechanism ... 4-15
Data Transfer Mechanism Signal Overview 4-15
Data Transfer Transaction Summary .. 4-16
Processor Single-Beat Transactions ... 4-18

Processor Single-Beat Read Transaction 4-19
Processor Single-Beat Write Transaction 4-21

Primary Cache Invalidate and DMA Invalidate 4-23
Processor Burst Transactions .. 4-25

Processor Burst Read Transaction .. 4-26
Processor Burst Write Transaction .. 4-29

Processor Transaction Termination .. 4-31
Normal Transaction Termination with P _ T A 4-32
Termination for Decoupled Cache Accesses 4-33
Transfer Retry Termination .. 4-34

Section 5
System Bus Interface

System Bus Interface Overview .. 5-1
System Bus Compatibility .. 5-3
Half-speed System Bus Timing ... 5-4
System Bus Arbitration .. 5-5

System Bus Arbitration Signals ~ .. 5-5
System Address Bus Arbitration .. 5-6
System Data Bus Arbitration ... 5-7
System Bus Arbitration Timing Examples .. 5-7
System Bus Parking .. 5-11
System Bus Pipelining Protocol ... 5-13

Multi-Master Single-Level Bus Arbitration 5-13
Multi-Level System Bus Arbitration .. 5-14

Data Transfer Mechanism ... 5-15
Data Transfer Mechanism Signal Overview 5-15
RAM Interface .. 5-16
Data Transfer Transaction Summary .. 5-17

MC88410 USER'S MANUAL vII

Paragraph
Number

5.5.4
5.5.4.1
5.5.4.2
5.5.4.3
5.5.4.4
5.5.4.5
5.5.4.6
5.5.4.7
5.5.5
5.5.5.1
5.5.5.1.1
5.5.5.1.2
5.5.5.2
5.5.5.2.1
5.5.5.2.2
5.5.5.2.3
5.5.5.3
5.5.5.3.1
5.5.5.3.2
5.5.5.3.3
5.5.5.4
5.5.5.5
5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.3
5.6.4
5.7
5.7.1
5.7.2
"5.7.3
5.7.4
5.7.5
5.7.6
5.7.6.1
5.7.6.2
5.7.6.3
5.7.7

vIII

TABLE OF CONTENTS (Continued)

Title
Page

Number

System Single-Beat Transactions ... 5-19
System Single-Beat Read Transactions .. 5-19
System Single-Beat Read Transaction Timing 5-21
System Single-Beat Write Transactions .. 5-23
System Single-Beat Write Transaction Timing 5-24
System Invalidate Transaction ... 5-26
Locked Transactions .. 5-28
Locked Transaction Timing .. 5-29

System Burst Transactions .. 5-32
Burst Read Transaction Types .. 5-33

Secondary Cache Line Fill .. 5-33
Secondary Cache Read-with-Intent-to-Modify 5-33

Burst Read Transaction Timing ... 5-33
Full-Speed Secondary Cache Line Fill .. 5-33
Full-Speed Secondary Cache Line Fill with Wait States 5-36
Half-Speed Secondary Cache Line Fill 5-36

Burst Write Transaction Types ... 5-38
Replacement Copyback Operation ... 5-38
Snoop Copyback Operation .. 5-39
Flush Copyback Operation .. 5-39

Burst Write Transaction Timing ... 5-39
Burst Order and Streaming Timing Examples 5-42

System Bus Transaction Termination ... 5-46
Normal Transaction Termination with S_ TA 5-48
Transfer Retry Termination .. 5-49

Very Early Assertion of S_ TATAY ... 5-50
Early Assertion of S _ TAT A Y ... 5-50
Late Assertion of S _ TAT A Y .. 5-51

Address Retry Transaction Termination .. 5-53
Transfer Error Termination .. 5-54

System Bus Snooping ... ; 5-56
Snoop Control Signal Overview .. 5-57
fSHD Timing ... 5-58
S_SSTAT2-S_SSTATO Timing ... 5-59
Bus Request Blocking ... 5-61
Snoop Miss Timing .. 5-63
Secondary Cache Copyback Timing ... 5-63

Full-Speed Snoop Hit and Copyback (No Split Bus) 5-63
Full-Speed Snoop Hit and Copyback (Split Bus) 5-65
Half-Speed Snoop Hit and Copyback (Split Bus) 5-68

Snoop Hit with Primary Cache Invalidate .. 5-68

MC88410 USER'S MANUAL MOTOROLA

Paragraph
Number

5.7.8
5.7.9
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.9

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7
6.3.2.8
6.3.3

MOTOROLA

TABLE OF CONTENTS (Concluded)

Title
Page

Number

Snoop Hit with Processor Copyback Timing 5-74
System DMA Invalidate ... 5-75

Collisions .. ; 5-78
Tag Access Collision ... 5-78
Split-Bus Snoop Collisions .. 5-78
Snoop Latch Full Collision ... 5-79
Lock Collision .. 5-79

Reset Operation .. 5-81

Section 6
Diagnostics and JTAG

MC88410 Tag Monitoring .. 6-1
MC88410 Diagnostic Mode ... 6-3

Diagnostic Accesses ... 6-3
Entering Diagnostic Mode .. 6-3
Diagnostic Encodings .. 6-4
Effect of Diagnostics on Coherence .. 6-4
Addressing the Tags (.. 6-5
Reading and Writing to the MT AG ... 6-6
Reading and Writing to the PT AG ... 6-6
Reading and Writing to the Secondary Cache 6-6
Bypassing the Secondary Cache .. 6-7
Diagnostic System Invalidate ... 6-7

IEEE 1149.1-1990 Test Access Port .. 6-7
JT AG Overview ... 6-8
Three-Bit Instruction Register .. 6-9

EXT EST (000) .. 6-11
BYPASS (111) ... 6-14
Sample/Preload (100) .. 6-15
CLAMP (011) ... 6-15
HI-Z (001) ... 6-15
EXTEST_PULLUP (010) .. 6-16
MC88410 Restrictions .. , 6-16
Non-IEEE 1149.1-1990 Operation ... 6-16

Boundary-Scan Definition List ... 6-17

Index

MC88410 USER'S MANUAL ix

Figure
Number.

LIST OF ILLUSTRATIONS

Title
Page

Number

1-1 MC88110/MC88410 System Configuration .. 1-3
1-2 System with Two MC88410s ... 1-4
1-3 Dual-Bus System ; .. 1-5
1-4 Multiprocessor Implementation .. 1-6
1-5 MC88410 Functional Block Diagram ... 1-10
1-6 Processor Tag Organization .. 1-11
1-7 Secondary Cache Organization ... 1-12
1-8 Main Tag Organization ... 1-12
1-9 Address Decode: 256-Kbyte Cache with 32-Byte Line Size ; 1-13

2-1 PT AG Organization .. 2-2.
2-2 1/4-Mbyte Hardware Configuration .. 2-3
2-3 1/4-Mbyte Cache and 32-Byte Line .. 2-4
2-4 1/4-Mbyte Cache and 64-Byte Line .. 2-5
2-5 Future 1-Mbyte SRAM Cache .. 2-6
2-6 1/2-Mbyte Cache and 64-Byte Line .. 2-7
2-7 PT AG State Transitions ... 2-11
2-8 Secondary Cache States in Write-Back Mode ... 2-13
2-9 Secondary Cache States in Write-Through Mode 2-14
2-10 Secondary Cache States with Three-State Model 2-14
2-11 Streaming with 32-Byte Secondary Cache Line and Critical-Word-First 2-20
2-12 Streaming with 32-Byte Secondary Cache Line and Zero-Word-First 2-21
2-13 Streaming with 64-Byte Secondary Cache Line and Critical-Word-First 2-23
2-14 Streaming with 64-Byte Secondary Cache Line and Zero-Word-First 2-24
2-15 Secondary Cache Line Allocation Flow .. 2-27
2-16 Processor Read Transaction Flow ~ 2-30
2-17 Processor Write Transaction Flow ... 2-34
2-18 Locked Transaction Flow ... 2-35
2-19 Flush Control Hardware ... 2-37
2-20 Flush Operation Transaction Flow ... 2-39
2-21 Flush Address Decode ... 2-40
2-22 Cache Snoop Operation Transaction Flow ; .. 2-43
2-23 Initial State-Example 1 ... 2-46
2-24 MC88110-B Load, Data Cache Miss ... 2-47
2-25 MC88110-A Load, Data Cache Miss ... 2-48
2-26 MC88110-B Store, Data Cache Hit ... ~ 2-49
2-27 MC88110-A Load, Cache Miss, Line Read Retried 2-50
2-28 MC88110-B Snoop Copyback ... 2-51
2-29 Completion of MC8811 O-A Load, Cache Miss ... 2-52

x MC88410 USER IS MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure
Number

Page .
Title Number

2-30 Initial State-Example 2 ... 2-53
2-31 MC88110-B Load, Data Cache Miss ... 2-54
2-32 MC88110-A Load, Data Cache Miss .. 2-56
2-33 MC88110-B Store, Data Cache Hit .. 2-57
2-34 MC88110-A Load, Data Cache Miss, Line Read Retried 2-59
2-35 MC88110-A Snoop Copyback .. 2-60
2-36 Completion of MC8811 O-A Load, Cache Miss ... 2-61
2-37 Initial State-Example 3 , .. 2-62
2-38 Simultaneous MC88110 Stores, Data Cache Miss, MC88410-A

System Invalidate ... 2-63
2-39 MC88410-B Read-with-Intent-to-Modify, Retried ... 2-64
2-40 MC88410-A Snoop Copyback .. 2-65
2-41 Completion of MC8811 O-A Load, Cache Miss ... 2-66
2-42 Initial State-Example 4 ... 2-67
2-43 Simultaneous MC8811 0 Stores, Data Cache Miss, MC88410-A

System Invalidate ... 2-68
2-44 MC88410-B Processor Invalidate Transaction ... 2-69
2-45 MC88410-B Read-with-Intent-to-Modify, Retried ... 2-70
2-46 MC88410-A Snoop Copyback .. 2-71
2-47 Completion of MC88110-A Load, Cache Miss ... 2-72

3-1 MC88410 Signals ... 3-2

4-1 Processor Bus Interface ... 4-2
4-2 Single-MC88410 Configuration .. 4-4 .
4-3 Dual-MC88410 Configuration ... 4-5
4-4 Bus Parking by External Arbiter ... 4-11
4-5 Bus Mastership Transfer from MC8811 0 to MC8841 0 4-12
4-6 Parked MC88110 and MC88410 Bus Grant ... 4-13
4-7 External Arbitration Timing ... 4-15
4-8 Single-Beat Transaction-Fastest Case ... 4-19
4-9 Single-Beat Read Transaction Flow-Secondary Cache Hit 4-20
4-10 Single-Beat Read Hit Timing .. 4-21
4-11 Single-Beat Write Transaction Flow ... 4-22
4-12 Single-Beat Write Hit Timing .. 4-23
4-13 Primary Cache Invalidate Timing ... 4-25
4-14 Burst Transaction-Fastest Case .. 4-26
4-15 Burst Read Transaction Flow ... 4-27
4-16 Burst Read Hit Timing .. 4-28
4-17 Burst Write Transaction Flow ... 4-30
4-18 Burst Write Hit Timing .. 4-31

MOTOROLA MC88410 USER'S MANUAL xl

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

4-19 Normal Termination with P _ TA .. 4-32
4-20 Decoupled Cache Access Timing .. 4-34
4-21 Retry of a Processor Transaction ... 4-35
4-22 Retry Caused by Replacement Copyback ... 4-35

5-1 Half-Speed System Interface ... 5-5
5-2 Full-Speed System Bus Arbitration Timing Example 5-8
5-3 Half-Speed System Bus Arbitration Timing Example 5-10
5-4 Full-Speed Data Bus Arbitration Timing Example .. 5-11
5-5 Bus Parking: Full-Speed Mode .. 5-12
5-6 Full-Speed Split-Bus (One-Level) Arbitration ... 5-14
5-7 Full-Speed Multi-Level System Bus Arbitration .. 5-15
5-8 Full-Speed Single-Beat Read Transaction Flow .. 5-20
5-9 Full-Speed Single-Beat Cache-Inhibited Read .. 5-22
5-10 Full-Speed Single-Beat Write Transaction Flow .. 5-24
5-11 Full-Speed Single-Beat Write-Through Timing .. 5-26
5-12 Full-Speed System Invalidate Transaction .. 5-28
5-13 Cache-Inhibited Load-Store Locked Transaction ... 5-31
5-14 Locked Transaction Timing-Unparked Case ... 5-32
5-15 Full-Speed Line Fill Transaction Timing ... 5-34
5-16 Full-Speed Burst Read Transaction Timing with Wait Cycles 5-37
5-17 Half-Speed Streaming Line Fill .. 5-38
5-18 Full-Speed Read Miss Causing Replacement Copyback

(Fastest Back-to-Back MC88410 Transaction) .. 5-40
5-19 Full-Speed Burst Write with Wait Cycles ... 5-42
5-20 Streaming-32-Byte Cache Line Size with Zero-Word-First.. 5-43
5-21' Streaming-64-Byte Cache Line Size with Critical-Word-First 5-44
5-22 Streaming-64-Byte Cache Line Size with Zero-Word-First.. 5-45
5-23 Transaction Termination Signal Timing ; .. 5-47
5-24 Full-Speed Normal Transaction Terminations with S_ TA 5-49
5-25 Very. Early and Early Assertion of S_ TATAY ... 5-51
5-26 Late Assertion of S _ TAT A Y with Propagation to Processor 5-52
5-27 S _A A T A Y Qualification with 8_A A C K ... 5-53
5-28 Transfer Error Termination ... 5-55
5-29 Transfer Error Termination During Streaming.; .. 5-56
5-30 T S H D Timing ... 5-59
5-31 Snoop HiVMiss Indication (S_SSTAT2-S_SSTATO) 5-60
5-32 Snoop Status Negation Timing .. 5-61
5-33 S _B A Blocking Protocol ... 5-62
5-34 S_BA Blocking in a Dual MC88410 System .. 5-62
5-35 Full-Speed Snoop Miss Transactions .. 5-64

xII MC88410 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number Title

Page
Number

5-36 Full-Speed Snoop Hit and Copyback (No Split Bus) 5-66
5-37 Full-Speed Snoop Hit and Copyback (Split Bus) ... 5-69
5-38 Half-Speed Snoop Copyback ... 5-70
5-39 Snoop Hit with Processor Invalidation Broadcast (Split Bus) 5-71
5-40 Snoop Hit which Interrupts Processor Transaction 5-73
5-41 Full-Speed Snoop Hit with Processor Copyback (Split Bus) 5-76
5-42 Snoop Collision Detection .. 5-80
5-43 Lock Collision ... 5-81
5-44 Initial Power-On Reset Timing '" ... 5-83
5-45 Normal Reset into Invalidate All ... 5-84

6-1 Diagnostic Access Address Fields ... 6-5
6-2 IEEE 1149.1 Test Logic Block Diagram ... 6-9
6-3 Instruction Register Implementation ... 6-10
6-4 Input Pin Cell (I. Pin) .. 6-12
6-5 Active High Output Control Cell (IO.CTL1) .. 6-12
6-6 Bidirectional Data Cell (IO.Cell) ... 6~13
6-7 Bidirectional Cell Arrangement ... 6-13
6-8 Output Latch Cell (O.Latch) ... 6-14
6-9 Bypass Register ; .. 6-14

MOTOROLA MC88410 USER IS MANUAL xIII

Table
Number

LIST OF TABLES

Title
Page

Number

2-1 Cache Line States .. 2-8
2-2 Memory Update Policy Encoding ... 2-9
2-3 Single-Beat Processor Transaction Types ... 2-16
2-4 Burst Processor Transaction Types ... 2-17
2-5 System Bus Transaction Types ... 2-18
2-6 Invalidate Transaction Types ... 2-19
2-7 Flush Control Signal Encoding ... ~ 2-36

3-1 Transaction Signal Summary 3-3
3-2 RAM Interface, Configuration, and Test Signals .. 3-4
3-3 Processor Transfer Size Signal Encoding ... 3-6
3-4 Processor Transfer Code Signal Encoding .. 3-7
3-5 Processor Cache Line Signal ... 3-8
3-6 System Transfer Size Signal Encoding 3-11
3-7 System Transfer Code Signal Encoding .. 3-12
3-8 Snoop Status Signals 3-14
3-9 Flush Control Signal Encoding ... 3-15
3-10 Cache Size Configuration .. 3-19

4-1 Common MC88410/MC88110 Signals .. 4-6
4-2 Static MC88110 Signals ... 4-7
4-3 Processor Bus Arbitration Signals ... 4-9
4-4 Processor Bus Transfer Attribute Signal Summary 4-16
4-5 Processor Bus Transaction Attribute and Control Signals 4-17
4-6 Transaction Termination Encodings .. 4-32

5-1 MC88110/MC88410 Timing Differences ; .. 5-3
5-2 MC88110/MC88410 System Signal Differences .. 5-4
5-3 System Bus Arbitration Signals .. 5-6
5-4 System Bus Transfer Attribute Signal Summary 5-16
5-5 System Bus Transaction Attribute and Control Signals 5-18
5-6 Transaction Termination Encodings .. 5-46
5-7 Transaction Termination Signal Sampling ... 5-47
5-8 Snoop Control Signal Summary 5-57
5-9 MC8841 0 Actions for Snoop Hits ... 5-58
5-10 Reset Configuration Selection ... 5-82

xlv MC88410 USER'S MANUAL MOTOROLA

LIST OF TABLES (Concluded)

Table
Number Title

Page
Number

6-1 Tag Operations .. 6-2
6-2 Tag Status Descriptors 6-2
6-3 Diagnostic Access Types ... 6-3
6-4 Diagnostic Access Encoding .. ; 6-4
6-5 Test Access Port Signals ... 6-9
6-6 Instruction Register Encodings .. 6-10

MOTOROLA MC88410 USER'S MANUAL xv

SECTION 1
OVERVIEW
The MC88410 is a highly integrated secondary cache controller that reduces both memory
latency and system bus use while extending multiprocessing capabilities to achieve a
higher level of system performance. The MC88410 secondary cache controller together
with the MCM62110 fast static RAM provide a complete secondary cache solution for
both single processor and multiprocessor environments. The MC88410 provides tag,
control, and buffering for l/4-Mbyte, lI2-Mbyte, and I-Mbyte secondary, cache
configurations, all in a single-chip cache controller. When used with the MC88110 RISC
microprocessor and MCM62110 secondary cache RAM array, the MC88410 requires no
external programming, provides bus arbitration for the MC88110, maintains cache
coherency, and eliminates the need for" external logic between the microprocessor, the
secondary cache, and the system bus.

The MC88410 and MCM62110 array are designed to provide low latency memory
accesses. Initial secondary cache accesses incur only one wait state to the processor while
subsequent transfers in a burst incur zero wait states. In addition, data streaming to the
processor reduces the penalty on secondary cache misses.

The MC88410 extends multiprocessing capability by significantly reducing system bus
bandwidth consumption. The increased bus availability, along with the hardware
enforced cache coherency protocol of the MC88410, enables the implementation of dual
bus systems and scalable shared-bus multiprocessing systems. In addition, the MC88410
extends system flexibility by providing a choice of the secondary cache line sizes, order of
burst transfers, and system bus clock frequencies.

1.1 MC88410 FEATURE LIST
The major features of the MC88410 secondary cache controller are as follows:

• Improved system performance

-One wait state on initial access and zero wait state on burst subsequent accesses
-Reduced secondary cache miss penalty by streaming data to the processor
----.Decreased system bus bandwidth used by the processor
~Secondary cache write-back or write-through policy as specified by the processor.

• Integrated secondary cache control functions

-Tag, control, and buffering for up to 1 Mbyte of secondary cache RAM
-No processor/cache glue logic for the MC88110 and MCM62110 array
-Processor bus arbitration for a single MC88110/MC88410 combination.

MOTOROLA MC88410 USER'S MANUAL 1-1

III

• Complete hardware support for multiprocessor applications

-Vertical cache coherency between the MC88410 and the MC88110
-Lateral cache coherency between multiple MC88110s and MC88410 pairs
-Bus pipelining to allow efficient interleaving of system resources.

• System Configuration Flexibility

-Support for 1/4-Mbyte or lI2-Mbyte cache (with 32K x 9 SRAMs),or I-Mbyte cache
(with 128Kx 9 SRAMs)

-Double secondary cache size (two MCM62110 arrays) using one (Figure 1-2) or two
. (Figure 1-3) system buses with a single MC88110 and two MC88410s

-Secondary cache line size of 32 or 64 bytes

-Zero-word-first or critical-word-first burst order

-Full-speed or half-speed system bus

-Both MC88110 bus and MC88410 system bus easily accommodated with single
memory design.

• Access for system level diagnostics

-Write/read/compare testing of tags and cache RAM array
-IEEE 1149.1 JTAG boundary scan.

1.2 MC88410 BENEFITS IN SINGLE PROCESSOR
SYSTEMS

The MC88410 can be used in single MC88110 systems to significantly enhance
performance as well as support diverse system configurations. The MC88410 provides a
high degree of integration through its single-chip tag, control, and buffering for
1/4-Mbyte, 1/2-Mbyte, or I-Mbyte secondary caches. The arbiter of the MC88410 can be
enabled to provide arbitration at the processor interface. No external logic is required
between a single MC88410 and a single MC88110. The basic MC88110/MC88410 system
consists of a single MC88110 processor, the MC88410 secondary cache controller, and the
MCM62110 secondary cache RAM array as shown in Figure 1-1.

The MC88410 and MCM62110 array are optimized to provide low latency memory access
to the MC88110 RISC microprocessor. On the initial access, one wait state is incurred
between a valid address and the first data cycle. Subsequent burst accesses do not incur
any wait states between data transfers. A processor line fill, for example, takes six cycles:
one address cycle, one wait cycle, and four cycles to transfer the data. The large
secondary cache provided with the MC88410 and MCM62110 array improves the cache
hit rate. In addition, streaming data from the system bus to the processor reduces the
secondary cache miss penalty.

1-2 MC88410 USER'S MANUAL MOTOROLA

MC88110 ~

MICROPROCESSOR -
j~ j~

ADDRESS CONTROL DATA

1~ 1~ 1Ir

I PROCESSOR INTERFACE I .---

w
(.) '~

~ ADDRESS
MC8841 0 a: ..

SECONDARY CACHE
w .. MCM62110 CACHE RAM ARRAY I-

CONTROLLER ~ . SECONDARY CACHE
:i:

.
<C CONTROL a:

I SYSTEM INTERFACE I '---

J~ J~ J~

ADDRESS CONTROL DATA

,r " TO SYSTEM
MEMORY

SYSTEM ADDRESS BUS

t
SYSTEM DATA BUS

Figure 1·1. MC88110IMC88410 System Configuration

The MC88410 enhances the MC88110 system flexibility by providing a choice of the
system bus clock frequencies, order of burst transfers, and secondary cache line sizes.
Half-speed mode allows the MC88410, MC88110, and secondary cache to operate at full
speed while the system bus operates at half the processor clock frequency. The MC88410
also supports either zero-word-first or critical-word-first order for burst transactions. The
MC88410 cache tags can be configured for either a 32-byte or 64-byte secondary cache line
length.

The MC88410 reduced system bus bandwidth consumption is important in single
processor systems with other peripherals sharing the bus. A system can also use two
MC88410s and one MC88110 without degrading cache access time. This configuration
doubles the size of the secondary cache (MCM62110 array) as shown in Figure 1-2. The
MC88410 chip select signal can be used to divide the address space in half. In addition,
two MC88410s allow the processor to access two different system buses as shown in
Figure 1-3. For example, one interface can be the local system bus while the other can
interface to a back-plane bus. Configurations using two MC88410s must add an external
arbiter at the processor interface.

MOTOROLA MC88410 USER'S MANUAL 1-3

III

ARBITER MC88110

Figure 1-2. System with Two MC8841 Os

1.3 MC88410 BENEFITS IN MULTIPROCESSOR
SYSTEMS

The benefits of using the MC88410 in single processor implementations also apply to
multiprocessor systems. In addition, the MC88410 improves the MC88110
multiprocessing capability by significantly reducing system bus bandwidth consumption.
The increased available bandwidth, along with the MC88410 hardware enforced cache
coherency protocol, enables the implementation of scalable shared-bus multiprocessing
systems. Processor nodes can be connected to provide a variety of system configurations.
Figure 1-4 illustrates a multiprocessing scheme in which two processors, each with a
different level of MC88410 support, share a system interface. The MC88410 extends the
MC88110 bus protocol for pipelined bus systems while maintaining cache coherency.

1-4 MC88410 USER'S MANUAL MOTOROLA

ARBITER MC88110

II]

Figure 1-3. llJal-Bus System

MOTOROLA MC88410 USER~S MANUAL 1-5

•

Figure 1-4. Multiprocessor Implementation

1.4 CACHE COHERENCY
Cache coherency is an important consideration in multicache, multiprocessor systems. To
attain coherent caches in a system, every processor must have access to the most current
data and be notified when its cached copy of data is no longer valid. The
MC88110/MC88410 node maintains cache coherency by hardware enforced bus snooping.
The MC88110/MC88410 uses a write invalidate with intervention protocol to ensure that
only one cache in the system has a modified copy of a given cache line at all times. The
protocol allows other caches to have local copies which are all consistent. When an
MC88110 writes data to a memory location shared by other caches, the other cache
controllers are notified that their copy of the cache line containing that data is stale and
must be invalidated. The MC88110/MC88410 snoops bus transactions by monitoring
externally initiated bus transactions and comparing all addresses to the internal data
cache tags. A "snoop hit" occurs when the cache tag for a valid entry matches the address
on the bus.

1-6 MC88410 USER'S MANUAL MOTOROLA

The MC88410 supports two levels of hardware based cache coherency: vertical and
lateral. Vertical coherency refers to data coherency between the primary (MC88110) cache
and the secondary (MC88410-controlled) cache. Lateral coherency refers to coherency
between the secondary cache and other caches on the system interface.

To maintain vertical coherency, the MC88410 uses a processor tag (PTAG) to dynamically
monitor the state of the primary cache. The MC88410 improves processor bus bandwidth
by filtering snoop transactions on the system bus so only primary cache "snoop hits." are
passed to the processor.

The main tag (MTAG) maintains the status of the secondary cache. The MC88410 uses the
MTAG to enforce coherency between its secondary cache, other caches, and main
memory. The MTAG and PTAG can be simultaneously accessed by the processor or the
system.

1.5 MC8811 O/MC8841 0 SYSTEM OVERVIEW
The following paragraphs describe the general operation of the basic MC88110/MC88410
system and the function of each component. The MC88110 RISC microprocessor contains
separate on-chip 8-Kbyte instruction and data caches and memory management units
(MMU). The MC88110 supports both single-beat and burst data transactions with a
choice of memory update policies. The secondary cache using the MCM62110 fast static
RAM (FSRAM) provides dual data ports, on-chip parity checking, and output latches, and
supports data streaming. By filtering system bus traffic for the microprocessor and
managing secondary cache accesses and coherency, the MC88410 significantly improves
overall system performance. The MC88410 incorporates three independent interfaces and
integrated cache tags to reduce part count and improve performance while allowing
flexibility in system definition. The MC88410 is designed specifically to support the
MC88110.

1.5.1 MC88110 Microprocessor
The MC88110 is the second implementation of the M88000 family of RISC
microprocessors. The MC88110 is a Symmetric Superscalar ™ design capable of issuing
and retiring two instructions per clock cycle without any special alignment, order, or type
restrictions on the instruction stream. Instructions are issued to multiple execution units,
execute in parallel, and can complete out of order, with the processor automatically
keeping results in the correct program sequence. In a single-chip implementation, the
MC88110 integrates the central processing unit, floating-point unit, graphics processing
unit, virtual memory address translation, instruction cache, and data cache.

Ten independent execution units communicate with a general register file and an
extended register file through multiple, 80-bit, internal buses. Each of the register files
has sufficient bandwidth to supply four operands and receive two results per clock cycle.
Each of the pipelined execution units, including those that execute floating-point and data
movement instructions, can accept a new instruction and retire a previous instruction on

Symmetric Superscalar is a trademark of Motorola, Inc.

MOTOROLA MC88410 USER'S MANUAL 1-7

III

•
every clock cycle. The high data and instruction throughput requires low memory
latency to maintain peak performance. The addition of the MC88410 and secondary cache
RAM array reduces memory latency to provide a high level of data throughput and
system performance.

1.5.1.1 MC88110 Instruction and Data Cache
The MC88110 includes separate on-chip data and instruction caches. Each cache provides
8 Kbytes of 2-way set-associative, physically addressed memory. Cache management
facilities provide both the instruction and data caches with a cache freezing capability.

The instruction unit attempts to fetch two instructions each clock cycle from the
instruction cache. If there is an instruction cache miss, or if the instruction cache is
disabled, the instruction cache requests that the bus interface unit (BIU) run an external
bus transaction to fetch the needed instructions. The data cache and data unit may
request that the BIU run an external bus transaction as a result of a load, store, or
exchange instruction, or for cache coherency reasons.

The instruction cache uses physical address tags, so the instruction cache does not need to
be flushed on a context switch. The MC88110 instruction cache is configured as 128 sets
with two lines per set. Each line contains eight 32-bit words, an address tag, and a valid
bit. Instruction cache coherency must be maintained by software and is supported by a
fast invalidation capability.

The MC88410 contains hardware to ensure coherency between the MC88110 data cache
and the secondary cache. An understanding of the operation of the MC88110 data cache
is useful in understanding the operation of the secondary cache.

The MC88110 data cache is also configured as 128 sets with two lines per set. Each line
contains eight 32-bit words, an address tag, and three status bits used to enforce cache
coherency. When a data cache access begins, the data unit provides the data cache and
MMU with the logical address of the desired information. The data MMU translates the
logical address to the physical address and provides the cache with information about the
type of cache access being performed. The MC88110 data cache provides three software
selectable memory update policies as well as hardware to support cache coherency.

1.5.1.2 MC8811 0 Memory Update Policy
The MC88110 provides hardware support for three memory update policies: write-back,
write-through, and cache-inhibit. The memory update policy used for the secondary
cache is determined by the MC88110 MMUs. Each page or block of memory is specified
to be in one of these modes within the corresponding page or block descriptor in the data
memory management unit. The MC88110 also has a store-through option for the store
instruction that allows individual accesses to be performed in the write-through mode,
even if the corresponding page or block is designated as operating in the write-back
mode.

In the write-back mode, memory is not updated each time a corresponding cache line is
modified. In the write-through mode, write operations update memory every time a
write occurs. When the access is cache-inhibited, data is never copied into the data cache

1-8 MC88410 USER'S MANUAL MOTOROLA

of the MC88110 or the secondary cache. Instead, read and write operations access main
memory directly.

1.5.1.3 MC88110 Bus Overview
The MC88110 bus interface includes the address bus, data bus, and control and
information signals. The address of the instruction or data needed by the processor is
driven on the address bus. Similarly, the requested instruction or data is transferred to
the processor on the data bus. The bus interface control and information signals include
the transfer attribute, arbitration, transfer control, snoop control, processor status, and
interrupt signals.

There are two types of bus transactions that transfer data to the secondary cache or
system bus: single-beat transactions and burst transactions. During single-beat
transactions, a byte, half word, word, or double word is transferred between the
processor and the secondary cache or system bus. During burst transactions, eight words
are transferred in 4 double-word transfers.

The MC88410 supports all of the MC88110 bus transactions. Two transaction types are
not cacheable in. the MC88110 but are cacheable in the secondary cache. These
transactions are the locked transactions and MMU hardware table searches.

1.5.1.4 MCM6211 0 FSRAM Secondary Cache
The MC88410 supports a direct-mapped and physically-addressed secondary cache that
contains both instructions and data. The secondary cache can be implemented with
MCM62110 dual-bus FSRAMs. The MCM62110 array incorporates a 32K x 9-bit static
core with two 9-bit I/O ports (8 data,' 1 parity). Each I/O port has input registers and
output latches. In the simplest configuration, eight MCM62110 arrays are configured in
parallel to form a 64-bit (plus parity) data bus. This single bank design eliminates the
need for traditional bank switching on burst accesses and reduces the number of devices
for typical configurations. The MC88110 data bus and the system data bus connect
directly to the MCM62110 dual-bus cache RAM array.

The MCM62110. array has a streaming feature that allows data to be passed, through the
RAM, between the processor and system ports in either direction. This streaming is
accomplished by latching data in from one port and asynchronously enabling the outputs
on the other port., It is also possible to write to the RAM while streaming data through it.

The MC88410 directly drives and controls the MCM62110 secondary cache RAM array.
No external logic is needed between the MCM62110 array and the processor bus, system
bus, or MC88410.

1.5.2 MC88410 Secondary Cache Controller
The MC88410 controls the secondary cache, enforces cache coherency, and arbitrates
processor bus transactions. The MC88410 is not a programmable device and only reacts
to input signals from either the processor or the system bus interface.

MOTOROLA MC88410 USER'S MANUAL 1-9

1.5.2.1 MC88410 Functional Overview
The MC88410 acts upon signals from the processor and system interfaces and controls the
secondary cache through the RAM interface. Cache line size, order of burst transfers,
system clock speed, and secondary cache size are set by configuration signals at reset.
The basic functional blocks in the MC88410 are shown in Figure 1-5. The MC88410
contains three functional units: tag unit, decode unit, and execution unit. The tag unit
contains the main tag and processor tag and maintains the status of the secondary cache
and primary (MC88110) data cache. The decode unit contains separate decoders for the
processor and system address buses. The decoders evaluate each request from the
processor or system bus and its associated lookup status from the tags and decide what
actions need to occur to satisfy the request. The MC88410 also contains a flush
mechanism to flush or invalidate pages of the secondary cache or the entire secondary
cache. The execution unit drives transactions to the processor and system buses and
controls the secondary cache.

PROCESSOR ADDRESS AND CONTROL

h

,r
t t

TAG UNIT DECODE UNIT EXECUTION UNIT

PROCESSOR I
TAG

I PROCESSOR I
DECODER

I PROCESSOR I
INTERFACE

... ... - ... -- ... - ..

EJ MAIN
TAG

I
SNOOP

I I
SYSTEM

I DECODER INTERFACE

• • ~~

1,
SYSTEM ADDRESS AND CONTROL

Figure 1·5. MC88410 Functional Block Diagram

-
.. ...

RAM
ADDRESS

RAM
CONTROL

A transaction begins when a valid address is latched and looked up in the main tag and
processor tag and then the status is sent to the decode unit. The decode unit uses the tag
status and the attribute signals from the bus to decode the appropriate transaction. The
execution unit arbitrates for the processor and system buses, controls the secondary cache,
and executes the transactions. For example, a cache hit from a snoop request is decoded

1-10 MC88410 USER1S MANUAL MOTOROLA

by the snoop decoder and causes the system interface to arbitrate for the system bus and
execute the appropriate transaction. The efficient arbitration of internal resources allows
the MC88410 to always respond to a system snoop request in two clock cycles.

1.5.2.2 MC88410 Bus Overview
Figure 1-1 shows the MC88410 bus interfaces. The MC88410 processor interface connects
the MC88410 to the processor address bus and control signals. The system interface
connects the MC88410 to the system address bus and control signals. The MC88410 has a
RAM interface that drives the address and control signals directly to the MCM62110
secondary cache RAM array. The MC88410 has a triple-interface architecture to provide
concurrent access to the system bus, processor bus, and RAM cache.

When the microprocessor begins a transaction on the processor bus, the MC88410 decodes
the tag address and transaction attributes, performs the appropriate transaction, and
updates the cache tags. If necessary, the MC88410 arbitrates for control of the processor
or system bus. The MC88410 constantly "snoops" the address of system bus transactions
to ensure data coherency between the primary cache, secondary cache, and main
memory. If a transaction is required to maintain coherency, the MC88410 arbitrates for
the processor and system buses and executes the appropriate transaction. During a data
transaction, the MC88410 drives the address to the secondary cache and controls the data
output of the cache. Snoop transactions that only hit in the secondary cache are handled
by the MC88410 and an invalidation broadcast is not issued to the processor.

1.5.2.3 MC88410 Cache Tags
The processor tag is checked for the contents of the primary (MC88110) data cache. The
processor tag is a copy of the 128-set, two-way set-associative MC88110 data cache
address tag with an inclusion bit instead of the three status bits. The inclusion bit in the
processor tag is set if the primary data cache has a valid copy of the data as shown in
Figure 1-6.

SETol t----. ----+1----11
•

SET 1271--____ TA_G....:...{L_'N_E....:,.O} ___ -+-_--1

TAG {LINE 1}

I: INCLUSION BIT

Figure 1-6. Processor Tag Organization

The main tag provides up to 16K entries of secondary cache tags for secondary cache lines
of either 32 bytes or 64 bytes. Figure 1-7 shows the organization of the secondary cache
for a 32-byte line size. The main tag provides hit or miss status for all processor and
system transactions. The main tag pointer contains the upper 14 to 12 bits of the address,
depending on the cache organization determined at reset. The main tag also includes

MOTOROLA MC88410 USER'S MANUAL 1-11

three status bits used to enforce cache coherency: the shared, modified, and valid bits.
The MC88410 implements an inclusion policy which ensures that all PT AG entries are
also MTAG entries. Figure 1-8 shows the organization of the main tag .

MAIN TAG

MC88410

• •

SECONDARY CACHE LINE

MCM62110 CACHE RAM ARRAY

Figure 1-7. Secondary Cache Organization

SETol~ ________________________ ~· ________________________________ ~
•

I

SET 163831 TAG POINTER (14 BITS)

S: SHARED BIT.
M: MODIFIED BIT.
V: VALID BIT.

Figure 1-8. Main Tag Organization

1.5.2.4 MC88410 Address Decode
The MC88410 interprets an incoming 32-bit address differently depending on cache size
and cache line size. In all cases the address consists of four fields: tag, tag index, word
offset, and byte offset. The tag index points to the main tag entry used for comparison·
with the address. The word offset then selects a double word in the selected cache line.
Finally, the byte offset indexes into each double word (eight bytes) to select a specific
byte.

For example, Figure 1-9 conceptually illustrates the address decoding of a processor or
system bus address 'for a 256-Kbyte cache with a 32-byte line size. For this configuration,
bits 31 to 18 of the address are compared to the value stored in the MTAG to determine
hit or miss status. Bits 17 to 5 of the address are decoded into one of the 8-Kbyte MTAG
entries and are· also passed to the secondary cache for its address decode. Bits 4 and 3
identify the requested double word within the selected secondary cache line. Finally,
address bits 2 to 0 are decoded to select the byte. To select the PTAG entry for
comparison, bits 11 to 5 are always decoded into one of the 128 sets of PTAG entries. An
address is decoded and looked up in both the PTAG and MT AG simultaneously.

1-12 MC88410 USER'S MANUAL MOTOROLA

31 18 17 5 4 32 o
BITI TAG I TAG INDEX I WORD I BYTE

L-I ---...--__JI L-! -----.-.,.....------111 II L--r-_.....J

r-- n r--

D-r-

I

BYTE
DECODE

~~
MTAG u.o

8K ENTRIES
0(.)

~~~ 

"'.7 U U 
\ STATUS 

COMPARATOR CHECK 

L--=> HITIMISS MC88410 

"-
) 

v 

"-
'\ 

~ 

ADDRESS FROM 
PROCESSOR OR 

SYSTEM INTERFACE 

WRITE ENABLES 

dll 
R_~101 } 

10F64K 
DOUBLE WORD 
ADDRESSING 

R_A(2:1S) 

RAM 
ARRAY 

,. 
64 BITS 

Figure 1-9. Address Decode: 2S6-Kbyte Cache with 32-Byte Line Size 

MOTOROLA MC88410 USER'S MANUAL 

• 

~ 

1-13 





SECTION 2 
SECONDARY CACHE OPERATION 
The MC88410 supports a direct mapped and physically addressed secondary cache that ~ 
contains both instructions and data. The secondary cache can be configured to support ~ 
1/4 Mbyte or 1 Mbyte of cache RAM with line sizes of 32 or 64 bytes each. Note that 
support for a 1-Mbyte cache is dependent on migration of the MCM62110 to the 128K x 9 
density. The secondary cache can also be configured to support either zero-word-firstor 
critical-word-first burst ordering on the system bus. The data streaming protocol allows 
data to be forwarded to the primary cache as it is being written to the secondary cache. 

This section describes the cache organization, possible line states, memory update 
policies, processor cache accesses, flush and invalidate operation, cache coh~rency, and 
bus snooping examples for the MC88410. Refer to Section 4 Processor Bus Interface and 
Section 5 System Bus Interface for detailed timing information. 

NOTE 

The MC88410/MCM62110 secondary cache contains both data 
and instruction data types. The term data is used in this 
manual to refer to both data and instructions unless 
specifically noted otherwise. 

2.1" CACHE ORGANIZATION 
The MC88410 may be configured to support a direct mapped cache in one of three 
configurations: l/4-Mbyte cache with 32-byte line size, l/4-Mbyte cache with 64-byte line 
size, and 1-Mbyte cache with 64-byte line size. Note that the line size applies only to the 
system bus interface. The line size for the processor interface is fixed at the line size for 
the MC88110, which is 32 bytes. The cache size and the cache line size are configured at 
reset. For more information about configuring the MC88410, see Section 5 System Bus 
Interface. 

The MC88410 has two sets of cache tags: the main tag (MTAG) and the processor tag 
(PTAG). The MTAG is used to determine whether there is a secondary cache hit, and 
contains the three status bits and the high order bits of the address of each line of the 
secondary cache. The MTAG directly maps up to 16 Kbytes of secondary cache tags for 
secondary cache lines of either 32 or 64 bytes. The MTAG organization varies with the 
organization of the secondary cache, which is configured at reset. 

The PTAG is used to determine whether a cache line is included in the primary 
(MC88110) data cache and it is similar to the 128-set, two-way set-associative MC88110 

MOTOROLA MC88410 USER'S MANUAL 2-1 



• 

data cache address tag with an inclusion bit instead of the three status bits. The inclusion 
bit in the PT AG is set if the primary data cache has a valid copy of the data (see Figure 
2-1). For each entry in the PTAG with the inclusion bit set, there is a corresponding entry 
in the MT AG. The status bits of the corresponding entry in the MT AG match the status 
bits of the line in the primary data cache. 

I 
I 

I 
TAG (Line 0,8 bits) 

TAG (Line 1 ,8 bits) 

+ + 
2-wa6 Associative ompare 

, 

'0 
'1 

I I 
[7-.. '-------' A11-AS 

Set 
Decode 

-

Figure 2·1. PTAG Organization 

The MC88410 interprets an incoming 32-bit address differently depending on cache size 
and cache line size. In all cases the address consists of four fields: the address tag, the tag 
index, the word offset, and the byte offset. The tag index points to the main tag entry 
used for comparison with the address tag. If the upper bits of the address match the 
address tag, then it is a cache hit. The word offset then selects a double word in the 
selected cache line. Finally, the byte offset indexes into each double word (eight bytes) to 
select a specific byte. 

The following paragraphs describe the address decoding, the MT AG organization, and 
cache organization for each of the possible configurations. 

2.1.1 1/4-Mbyte Configurations 
For the 1/4-Mbyte configurations, the external cache of the MC88410 is built from a single 
bank of eight MCM62110 fast static RAM (FSRAM) devices. No external logic is needed 
between the MC88410 and the MCM62110 array. Likewise, no external logic is needed 
between the MCM62110 array and the two data buses (processor and system). The 
arrangement of the MCM62110 array for the 1I4-Mbyte configurations is shown in Figure 
2-2. 

For the 1/ 4-Mbyte cache size, the lower 18 bits of the address are needed to index into the 
cache, and the upper 14 bits are used for the address tag. The division of the address 
space between the tag index and the word offset depends on the line size. The following 
paragraphs describe the address decoding and the MT AG organization for the 32-byte 
and 64-byte line size configurations with the 11 4-Mbyte secondary cache size. 

2-2 MC88410 USER'S MANUAL MOTOROLA 



Processor Data 
Buffer Control 

~ i RAM Address 17-3 
:-
co.5 RWE7-RWEO O::E 
:E ~ System Data 

Buffer Control 

MC88110 

System Data Bus 

Figure 2·2. 1/4-Mbyte Hardware Configuration 

2.1.1.1 1/4 Mbyte with 32-Byte Line Size Configuration 

All chip selects 
connected high 

When the secondary cache is configured to be 1/4-Mbyte in size with a 32-byte line size, 
the address is decoded and the MTAG is configured as shown in Figure 2-3. In this case, 
bits 17-5 of the address are used to select one of 8K MTAG entries. The 14-bit address tag 
of this MTAG entry is then compared to bits 31-18 of the address to determine if there is a 
secondary cache hit. If a secondary cache access is necessary, then bits 17-0 of the address 
are used by the MC88410 to access the appropriate data in the MCM62110 array. 

2.1.1.2 1/4 Mbyte with 64-Byte Line Size Configuration 
When the secondary cache is configured to be 1/4-Mbyte in size with a 64-byte line size, 
the address is decoded and the MTAG is configured as shown in Figure 2-4. In this case, 
bits 17-6 of the address are used to sele.ct one of 4K MTAG entries. The 14-bit address tag 
of this MTAG entry is then compared to bits 31-18 of the address to determine if there is a 
secondary cache hit. If a secondary cache access is necessary, bits 17-0 of the address are 
used by the MC88410 to access the appropriate data in the MCM62110 array. 

MOTOROLA MC88410 USER'S MANUAL 2-3 

• 



• 

2-4 

31 18 17 

I I 

AO:ESSTAGJ 
,J' '"= ~ 

J TAG INDEX 

WORD OFFSET 

BYTE OFFSET 

ADDRESS DECODE 

SETO~I ____________ ~.------________ ~ 
• 

I 

SET 8191 I ADDRESS TAG (14 BITS) 

S: SHARED BIT 
M: MODIFIED BIT 
V: VALID BIT 

MTAG ORGANIZATION 

Figure 2·3. 1/4-Mbyte Cache and 32-Byte Line 

MC88410 USER'S MANUAL MOTOROLA 



MOTOROLA 

31, 18 17 

I I 

AO:ESSTAGJ 
" '"'= .." 

I TAG INDEX 

WORD OFFSET 

BYTE OFFSET 

ADDRESS DECODE 

S~o~1 ____________ ~. ______________ ~ 
• 

I 

SET 40951 ADDRESS TAG (14 BITS) 

S: SHARED BIT 
M: MODIFIED BIT 
V: VALID BIT 

MTAG ORGANIZATION 

Figure 2·4. 1/4-Mbyte Cache and 64-Byte Line 

MC88410 USER'S MANUAL 

• 

2-5 



• 

2.1.2 1 Mbyte with 64-Byte Line Size Configuration 
, A single MC88410 is able to control secondary cache sizes of up to 1 Mbyte; however, this 
is dependent on the future migration of the MCM62110 to the 1-Mbit density. Figure 2-5 
shows the 1-Mbyte configuration using 1-Mbit SRAMs. 

When the secondary cache is configured to be 1 Mbyte in size, the line size must be. 
specified as 64 bytes. The lower 20 bits of the address are needed to index into the cache, 
and the upper 12 bits are used for the address tag. In this case, the address is decoded 
and the MTAG is configured as shown in Figure 2-6. Bits 19-6 of the address are used to 
select one of 16K MTAG entries. The 12-bit address tag of this MTAG entry is then 
compared to bits 31-20 of the address to determine if there is a secondary cachehit. If a 
secondary cache access is necessary, then bits 19-0 of the address are used by the 
MC88410 to access the appropriate data in the 1-Mbit cache array. 

2-6 

Processor Data 
Buffer Control 

RAM Address 19-3 

RWEf-RWE'O 
System Data 
Buffer Control 

, MC88110 

System Data Bus 

Figure 2·5. Future 1-Mbyte SRAM Cache 

MC88410 USER'S MANUAL 

All chip selects 
connected high 

Future implementation 
based on availability 
of 1·Mbit version of 
MCM62110 

MOTOROLA 



MOTOROLA 

31 20 19 

I 1 

AO:ESSTAGJ 
""", ..", 

J TAG INDEX 

WORD OFFSET 

BYTE OFFSET 

ADDRESS DECODE 

SETO .... 1 _____ ---.. ..... _______ ----' 

I 

SET 163831 

S: SHARED BIT 
M: MODIFIED BIT 
V: VALID BIT 

• 

MTAG ORGANIZATION 

Figure 2·6. 1/2-Mbyte Cache and 64-Byte Line 

MC88410 USER'S MANUAL 

• 

2-7 



• 

2.2 SECONDARY CACHE LINE STATES 
When the MC88110 initiates an access, the actions taken by the MC88410 depend on 
whether the access is cacheable. If the access is cacheable, the actions taken by the 
secondary cache depend on the state of the cache line. 

Each cache line can be in one of four states at anyone time (shared, shared-unmodified, 
exclusive-modified, and exclusive-unmodified). These states reflect the status of the line 
with respect to memory and whether the processor node (MC88410/MC88110 or 
MC88110) has exclusive ownership of the cached data. The state of each cache line is 
indicated by the three-state bits in that line: the first bit indicates whether a line is valid or . 
invalid, the second bit indicates whether the line is shared or exclusive to the processor 
node, and the third bit indicates whether the line is modified or unmodified with respect 
to memory. Table 2-1 describes the four possible cache states. 

Table 2-1. Cache Line States 

State Description 

Invalid The information in this line is no longer valid and should not be used. A line is marked 
invalid as a result of four conditions: the entire cache or a specific line in the cache is 
invalidated, the bus snooping logic marks the line as invalid, a bus error occurs during a 
cache line read access, or a cache hit occurs for a cache-inhibited access. 

Shared-unmodified The data in this line is shared among processors (or processor nodes), so other caches 
may have a copy of this line. However, this line is unmodified with respect to memory. 

Exclusive-modified Only one processor node (this processor node) has a copy of the data in this line in its 
cache(s), and the line has been modified with respect to memory. Note that if any word 
in the line is modified, then the entire line is marked as modified. If the line is marked 
exclusive-modified in the MTAG, the secondary cache does not necessarily contain the 
most updated data, it may be contained by the primary cache. Note that cache lines 
containing instructions are never marked exclusive-modified. 

Exclusive-unmodified Only one processor node (this processor node) has a copy of this line in its internal 
cache, and the line is unmodified with respect to memory. 

NOTE 

Throughout this section, the following nomenclature is used: 
when a cache line is referenced as modified, it is exclusive
modified (no shared-modified state exists within the MC88110 
or MC88410 caches). When a cache line is referenced as 
exclusive, it can be assumed that it is not relevant to that 
context whether it is exclusive-modified or exc1usive
unmodified. 

During a data access, the secondary cache line that contains the data being read or written 
may change state. The state of the cache line after the access depends on the previous state 
of the line, the type of access, and whether the access resulted in a hit or a miss in the 
secondary cache. 

2-8 MC88410 USER'S MANUAL MOTOROLA 



2.3 MEMORY UPDATE POLICIES 
Transactions from the MC88110 follow one of the three memory update policies: write
back, write-through, and cache-inhibited. The MC88410 determines the memory update 
policy in effect for each transaction from the P_CI and the P_WT signals of the processor 
interface (see Table 2-2). 

Table 2-2. Memory Update Policy Encoding 

r:cr P:WT Memory Update Policy 

Asserted Don't care Cache-inhibited 

Negated Negated Write-back 

Negated Asserted Write-through 

In the write-back mode, memory is not updated each time a corresponding cache line is 
modified. In the write-through mode, write operations update memory every time a 
write occurs. When the access is cache-inhibited, data is never stored in the primary or 
secondary cache, but read and write operations access main memory directly. Note that 
all three modes of operation have specific advantages and disadvantages; therefore, the 
choice of which mode to use depends on the system environment as well as the 
application. 

The distinction between the write-back and write-through modes affects only single-beat 
write transactions from the processor. Single.;.beat write transactions that follow the write
through policy always update memory as well as the secondary cache on cache hits. If 
there is a cache miss on a write-through access, only memory is updated, and there is no 
secondary cache line fill. In the write-through mode, memory is always updated during 
write operations, and global transactions cause other snooping bus masters to invalidate 
or copy back their cached images of the memory being updated. 

Single-beat write transactions that follow the write-back policy do not necessarily cause a 
system bus transaction to update memory. Instead, memory updates occur only when a 
modified line is to be replaced due to a cache miss or when another bus master attempts 
to access a specific address for which the corresponding cache entry has been modified. A 
single-beat processor write that hits a shared-unmodified line under the write-back policy 
causes the MC88410 to perform a system invalidate transaction, update the secondary 
cache, and mark the line exclusive-modified. Single-beat write hits to exclusive lines do 
not cause a system bus transaction under the write-back policy. Write transactions that 
miss under the write-back policy cause the MC88410 to allocate a secondary cache line 
(see 2.7 Secondary Cache Line Allocation). 

If a memory location is designated as cache-inhibited, information from this location is 
never stored in either the primary or the secondary cache. Cache-inhibited accesses that 
miss in the MC88410 perform the necessary transaction across the system and processor 
interfaces with no effect on the secondary cache contents. Cache-inhibited accesses that 
hit in the secondary cache cause the hit line to be invalidated. If the access hits a modified 

MOTOROLA MC88410 USER'S MANUAL 2-9 

• 



• 

line, the MC88410 copies the appropriate data back to main memory before invalidating 
the secondary cache line. 

2.4 CACHE COHERENCY 
The MC88410 supports two levels of hardware based coherency protocol: vertical and 
lateral. Vertical coherency refers to data coherency between the primary cache and the 
secondary cache. To maintain this type of coherency, the contents of the primary cache 
must be a subset of the secondary cache. Coherency can only be maintained if one and 
only one MC88110 resides on the processor interface, but the MC88110 data cache may 
use either write-back or write-through policies. Lateral coherency refers to coherency 
between the MC88410 cache and other caches on the system interface (i.e. other MC88110s 
or' MC88110/MC88410 nodes). The secondary cache supports both write-back and write
through policies as directed by the P _ WT signal. 

2.4.1 Vertical Coherency 
The MC88410 maintains vertical coherency with the use of the PTAG. The PTAG has the 
same associativity and size as the primary data cache tag and dynamically keeps track of 
which primary data cache lines are valid (see 2.1 Cache Organization). Vertical 
coherency must be taken into consideration for all snoop transactions on the system 
interface and for all secondary cache line invalidate or copyback transactions. For each of 
these transactions, the PT AG hit/miss status and the MT AG status for that line determine 
the actions of the MC88410. 

The MC88410'monitors and filters snoops at the system interface so that only snoop hits 
are passed to the processor. All global addresses snooped on the system interface are 
passed to both the MTAG and PTAG. The PTAG and MTAG lookups occur independent 
of and parallel to each other. If the address hits in the PT AG and the snoop is to an 
exclusive-modified line (as determined by the MTAG status) or if the snoop is marked 
intent-to-modify, the MC88410 knows that the proces'sor has a valid cached copy of the 
addressed data that must be flushed and invalidated. The MC88410 causes this 
invalidation by initiating a primary cache'invalidate transaction. 

In addition to system snoops, the PTAG also enforces vertical coherency for secondary 
cache line invalidation due to a flush or replacement copyback transaction. All addresses 
being copied back from the secondary cache are checked against the PT AG. If there is a 
PTAG hit, then a primary cache invalidate transaction must precede the secondary cache 
copyback to ensure that the most recent copy of the data is written to memory. 

The MC88110 includes a feature that flushes and invalidates pages or all of the primary 
data cache. Flushing and invalidating the primary cache without flushing the secondary 
cache could leave some of the inclusion bits improperly asserted. This may degrade 
performance but coherency is maintained. Invalidating the secondary cache without 
flushing the primary cache can cause data incoherency. 

There are three types of transactions that may cause a PT AG state transition: processor 
accesses, system snoops, and MTAG replacements. For each case, the MC88410 

2-10 MC88410 USER'S MANUAL MOTOROLA 



determines if there is a PTAG hit or miss. Figure 2-7 shows the state transitions for the 
PTAG lines. In this diagram, the terms hit and miss refer only to PTAG hit/miss, and do 
not reflect MTAG status. Also, only data (not instruction) transactions apply. All events 
on the diagram are labeled with both type (processor, snoop, or MTAG invalidate) and 
status (PT AG hit or miss). 

Processor wrhe hh 
or processor cache-inhibited miss 
or snoop NOT "intent-to-modify" 
or snoop miss 

Processor read 
miss wI primary 
cache line 
replacement 

Transhions occur 
after primary 
cache invalidate 
transaction to 
processor 

MOTOROLA 

Snoop hh on 
"intent-ta-modify" 
or snoop hh on 
exclusive-modified 
line or MC8811 0 
snoop copyback 

Processor read 
miss wlprimary 
cache line 
allocation 
or processor 
load allocate 

Transhions include 
update of TAG field to 
reflect new line address 

Processor wrhe miss (no MCSS; 10 allocation) 
or processor cache-inhibited miss 
or processor locked miss 
or any snoop 
or any MTAG replacement 

Included state -Corresponding secondary and primary cache lines are valid. 
Not Included state -Corresponding primary cache line is invalid. Corresponding 

secondary cache line mayor may not be valid. 

Figure 2·7. PTAG State Transitions 

MC88410 USER'S MANUAL 2-11 

• 



• 

2.4.2 Lateral Coherency 
The MC88410 uses the MT AG and system interface snooping to maintain data coherency 
between secondary caches and main memory according to the lateral coherency state 
machine. The MC88410 snoops all global traffic on the system address interface. 
Alternate masters on the system interface use a wait-retry protocol to alert the interface 
master of potential coherency hazards. 

The MC88410 cache state logic is implemented as a four-state design, but also supports a 
three-state model. The three-state model includes all of the states except the exclusive
unmodified state. When operating in the three-state model, all internal cache state 
transitions are visible on the external signals of the MC88410. In the four-state model, the 
transition from the exclusive-unmodified state to the exclusive-modified state for a write 
hit is not visible on the bus. 

The distinction of whether the three- or four-state model is in use is determined by the 
status of the two shared input signals on the system bus interface (SHD and TSHD). Other 
snooping MC88410s on the bus should drive the SHD signal with their snoop hit status 
output (S_SSTATO). Systems with distant snoopers can assert TSHD as late as the first S_TA. 

For more information about the timing for the SHD and TSHD signals, refer to Section 5 
System Bus Interface. Systems implementing a three-state cache model simply keep the 
SHD signal asserted and force all line fills to be marked as shared-unmodified. Note that 
during line fills for write misses in write-back mode, the SHD signal is ignored (i.e., write 
miss line fills are always marked as exclusive-modified). 

State transition diagrams for the data cache in the four-state model are shown in Figures 
2-8 and 2-9 and described in the following paragraphs. Figure 2-8 shows the state 
transition diagram for the cache operating in write-back mode, and Figure 2-9 shows the 
state transition diagram for the cache operating in write-through mode. State transitions 
for the cache in the three-state model are shown in Figure 2-10. All other operations that 
are not explicitly shown in these diagrams do not affect the cache state. 

In the following diagrams, state transitions labeled as "shared" (for example, shared read 
miss) imply that the SHD or TSHD input signals to the MC88410 are asserted at the 
appropriate time during the line fill operation.' Transitions labeled as "exclusive~' imply 
that the SHD and TSHD input signals are negated during the line fill. 

Figure 2-8 shows all state transitions possible for the secondary cache in write-back mode 
for the four-state model. A line can change state due to a cache miss. Replacing a cache 
line with a line from main memory is referred to as replacement. For any initial state, an 
exclusive read miss with replacement changes the line state to exclusive-unmodified, a 
shared read miss with replacement changes the line state to shared-unmodified, and a 
write miss with replacement or a read miss with intent-to-modify changes the line state to 
exclusive-modified. In a multiprocessor system a snoop hit on a read changes the line 
state of the snooping processor node to shared-unmodified (after a copyback of the data, 
if modified). A snoop hit on a write- or read-with-intent-to-modify changes line state of 
the snooping processor to invalid (after a copyback of the data, if modified). When the 
MC88110 performs a processor invalidate transaction to an unmodified line, the line state 

2-12 MC88410 USER'S MANUAL MOTOROLA 



changes to exclusive-modified. If an exclusive-modified line is flushed, the line state 
changes to unmodified. Finally, if there is a locked read hit to a shared-unmodified line, 
the line state changes to exclusive-unmodified (after a system invalidate transaction). 

Write operations in write-through mode leave the cache state unaffected. Figure 2-9 
shows all state transitions possible for the secondary cache when in write-through mode. 
The exclusive-unmodified state cannot be reached in write-through mode. If a cache line 
is already in either of the exclusive states when write-through mode is selected, the line 
does not change state while in write-through mode. This does not. cause coherency 
problems, but if the mode is changed back to write-back, some data may be copied back to 
memory which is already consistent with the line in the data cache. 

MOTOROLA 

C~e-i1hib~ed hft, or snoop hit 
with intenHo-modify 

Write miss or lead miss 
with intent-to-modify 
(w~h replacement) 

Shared lead miss 
(whh replacement) 

Invalidate command 

Write hit or processor invalidate 

Exclusive lead miss 
(w~h replacement) or 

flush command (whh oopyback) 

Snoop hit, read 

Exclusive lead miss ' 
(whh replacement) 

Figure 2-8. Secondary Cache States in Write-Back Mode 

MC88410 USER'S MANUAL 2-13 

IFJ 



Slared read miss 
(with replacement) 

Snoop hit on wrtte or read
with~ntenHoillodify, or 

invalidate command 

Figure 2-9. Secondary Cache States in Write-Through Mode 

Figure 2-10 shows all possible state transitions for the secondary cache in the three-state 
model. The three-state model does not include the exclusive-unmodified state. 

2-14 

SlIIred read niss 
(wtth replacement) 

Invalidate command, cache
inhibited hit, or snoop hit with 

intent·to-modify 

Invalidate command, cache
inhibited hit, or snoop hit with 

intenHo-modify 

Shared read niss 
(with replacement) 
or flush command 

Figure 2-10. Secondary Cache States with Three-State Model 

MC88410 USER'S MANUAL MOTOROLA 



For the three-state model, any read miss line fill that is not intent-to-modify puts the line 
in the shared-unmodified state. Any line fill that is intent-to-modify puts the line in the 
exclusive-modified state. When the MC88110 performs a processor invalidate transaction 
to a shared-unmodified line, the line state changes to exclusive-modified. If a snooping 
system bus master (MC88410 or MC88110) performs a snoop copyback transaction, then 
the cache line of the snooping bus master changes state to either shared-unmodified (for a 
read) or invalid (for a write- or a read-with-intent-to-modify) depending on what caused 

, the snoop copyback. 

There are potential benefits to both the three-state and four-state models. The three-state 
model is useful because all internal state transitions are visible on the system bus. (Note 
that the primary cache in an MC88110/MC88410 system always uses the three-state'model 
because the SHD input to the MC88110 is grounded.) However, the three-state 
implementation can cause lower performance than the four-state implementation. In the 
three-state implementation, the exclusive-unmodified state does not exist; therefore, all 
data is read in as shared-unmodified. A write hit to shared-unmodified data causes the 
snooping bus master to perform an system invalidate transaction on the system bus. If 
the data had been read as exclusive-unmodified (as in the four-state model), then a write 
hit would simply change the state of the data to be exclusive-modified, and no system bus 
traffic would occur. 

2.5 TRANSACTION OVERVIEW 
The transfer of data from the secondary cache or the external memory system to the, 
processor is defined as a processor read transaction. The transfer of data from the 
processor to the secondary cache and/or to the external memory system is defined as a 
processor write transaction. The transfer of data on the system bus is defined as a system 
bus transaction. Invalidate transactions are processor or system bus transactions used to 
maintain cache coherency. System bus invalidate transactions are not used for data 
transfer. Note that system bus transactions result from processor transactions, system bus 
snoop transactions, or secondary cache flushing. The actions of the MC88410 for any 
transaction depend on whether the access is cacheable and the state of the secondary 
cache line. Table 2-3 lists the possible single-beat transactions from the MC88110. 

MOTOROLA MC88410 USER'S MANUAL 2-15 

• 



Table 2-3. Single-Beat Processor Transaction Types 

Transaction Description 

Single-beat read During single-beat read transactions, the MC8811 0 reads a byte, half word, word, or double word 
from the MCM6211 0 array. 

Single-beat write During single-beat write transactions, the MC88110 writes a byte, half word, word, or double word to 
the MCM6211 0 array. 

Locked read A locked transaction uses an indivisible single-beat read/write transaction to exchange the contents 
of a general register in the processor with that of an addressed memory location. Unlike the 
MC88110, locked transactions are cacheable in the secondary cache. 

Locked write A locked transaction uses an indivisible single-beat read/write transaction to exchange the contents 
of a general register with that of an addressed memory location. Unlike the MC8811 0, locked 
transactions are cacheable in the secondary cache. \ 

Table search A table search operation is a series of single-beat transactions performed by the MC8811 0 when a 
logical address misses in its address translation caches. Table search transactions are cacheable in 
the secondary cache. 

Write-through A write-through transaction causes processor store instruction to write through the secondary cache 
and directly to memory. 

Allocate load The allocate load option is a primary data cache control feature that allows the user to allocate a line 
in the data cache without filling the entire primary cache line. 

Table 2-4 lists the possible burst transactions that are performed by the MC88110. 

2-16 MC88410 USER'S MANUAL MOTOROLA 



Table 2-4. Burst Proce~sor Transaction Types 

Transaction Description 

Burst Read Transactions 

Read miss A processor read access that misses in a primary cache causes a processor bus transaction to 

line fill occur in which an entire line of data is read from the MCM6211 0 array and written to a primary 
cache. This operation is called a cache line fill operation. A cache miss occurs when caching is 
enabled and the instruction/data required by the processor is not resident in the appropriate cache. 

Data cache A read-with-intent-to-modify transaction is caused by a write access that misses in the primary data 

read-with intent- cache in write-back mode. A read-with-intent-to-modify transaction operates like a burst read 

to-modify transaction for a primary cache line fill but has the side effect of broadcasting to the MC88410 that 
the cache line being read will be modified. 

Touch load The "touch load" option is a primary cache control feature that allows data to be loaded into the data 
cache under user program control. 

Burst Write Transactions 

Replacement When a data cache miss occurs and the corresponding primary cache set has two valid entries, the 

copyback cache access algorithm selects one of the two lines in the corresponding cache set for replacement. 
The MC88110 checks the state of the line to be replaced, and if the line is modified, the line is 
copied back to the MCM62110 array. This operation is called a replacement copyback. 

Snoop copyback When the MC88110 has a cache hit during a primary caclie invalidate transaction, it determines if 
the cache line is modified. If the line is modified, the line must be copied back to the secondary 
cache before the system bus transaction can complete. This operation is called a sn.oop copyback. 

Flush copyback The MC8811 0 has a primary cache control feature that causes either all modified lines or any 
individual modified line in the primary data cache to be transferred out of the secondary cache, and 
causes the transferred line(s) to be marked as "unmodified". Each line is transferred by a burst write 
transaction called a flush copyback. 

Flush load The "flush load" is a primary cache control feature that allows the user to force a modified cache line 
to be written to the secondary cache. 

Table 2-5 lists the possible system bus transactions which may result from processor, 
snoop, or flush transactions. 

MOTOROLA MC88410 USER'S MANUAL 2-17 

• 



• 

Table 2-5. System Bus Transaction Types 

Transaction Description 

Single-Beat Transactions 

Cache-inhibited Read transactions that are cache-inhibited cause the MC88410 to read a byte, half word, word, or 
read double word from an external device. 

Cache-inhibited Write transactions that are cache-inhibited cause the MC88410 to write a byte, half word, word, or 
write double word to an external device. 

Write-through A write-through transaction causes processor store instruction to write through the secondary cache 
directly to memory. 

Locked store- A locked store-load transaction is always interpreted by the MC88410 to be a cache-inhibited 
load transaction. The store acts as a cache-inhibited write and the load acts as a cache-inhibited read. 

Cache-inhibited A locked load-store transaction is cacheable by the secondary cache unless it is a cache-inhibited 
locked load- transaction. The store acts as a cache-inhibited write and the load acts as a cache-inhibited read. 
store 

Cacheable A locked load-store transaction iscacheable by the secondary cache. In the write-through mode, 
locked load- the transaction propagates to the system bus as a read-with-intent-to modify single-beat transaction 
store in write- if it misses in the secondary cache, or as a single-beat write if it hits in the secondary cache. 
through 

Burst Read Transactions 

Secondary A processor read access that misses in the secondary cache causes a system bus transaction to 

cache line fill occur in which an entire line of data is read from external memory and written to the secondary 
cache and (if necessary) the processor. This operation is called a cache line fill operation. A cache 
miss occurs when caching is enabled and the instruction/data required by the processor is not 
resident in the secondary cache. 

Secondary A read-with-intent-to-modify transaction is caused by a write access that misses in the primary data 

cache read-with- cache and the secondary cache in write-back mode. A read-with-intent-to-modify transaction 

intent-to-modify operates like a burst read transaction for a secondary cache line fill but has the side effect of 
broadcasting to snooping devices that the cache line being read will be modified. 

Burst Write Transactions 

Replacement When a secondary cache miss occurs and the corresponding secondary cache line has a valid 

copyback entry, the line is replaced. The MC88410 checks the state of the line to be replaced, and if the line 
is modified, the line is copied back to external memory. This operation is called a replacement 
copyback. 

Snoop copyback When a snooping MC88410 has a primary or secondary cache hit during a global transaction, the 
snooping MC88410 determines if the cache line is modified. If the line is modified, the line must be 
copied back to memory before the device performing the global access can complete its transaction. 
This operation is called a snoop copyback. 

Flush copyback The MC88410 has a flush feature that causes either all modified lines or a page of modified lines in 
the secondary cache to be transferred out to external memory. Each line is transferred by a burst 
write transaction called a flush copyback. 

Table 2-6 lists the invalidate transactions that are used by the MC88410 and MC88110 to 
maintain vertical and lateral coherency. 

2-18 MC88410 USER'S MANUAL MOTOROLA 



Table 2-6. Invalidate Transaction Types 

Transaction Description 

Processor Processor invalidate transactions are single-beat transactions used by the MC8811 0 to maintain 
invalidate cache coherency. Processor invalidate transactions broadcast to the MC88410 that.a shared line in 

the cache will be modified; thus, the MC88410 must invalidate its cached versions of the memory. 
The MC88410 treats the processor invalidate as a single-beat write and transfers valid data. 

System System invalidate transactions are single-beat transactions used by the MC88410 to maintain cache 
invalidate coherency among multiple MC8841 Os. System invalidate transactions broadcast to snooping 

devices that a shared line in the primary or secondary cache will be modified; thus, snooping 
devices must invalidate their cached versions of the memory. No data transfer is required during the 
system invalidate transaction. 

System DMA The DMA invalidate is a global burst read transaction that is outside the MC88410 system bus 
invalidate protocol. Because the MC88410 is unable to produce a global burst write, it is assumed that an 

external device is overwriting memory. If the DMA invalidate hits in the secondary cache, the cache 
line will be invalidated. 

Primary cache The primary cache invalidate transactions are single-beat transactions used by the MC88410 to 
invalidate maintain vertical cache coherency between the primary and secondary cache. Primary cache 

invalidate transactions broadcast to the MC88110 that a shared line in the primary cache will be 
modified and the MC8811 0 must invalidate its cached versions of the memory. There is no data 
transferred during the primary cache invalidate transaction. 

Primary cache A system DMA invalidate that hits in the PT AG is propagated to the processor as a global burst 
DMA invalidate write. No data is transferred during a processor DMA invalidate. 

2.6 BURST ORDERING AND STREAMING 
The MC88410 provides burst data transfers across both the processor and system 
interfaces. Transfers across the processor interface always start with the double word 
presented by the processor and continue with the subsequent double word(s) in the line. 
If the first double word is not the first double word in the line, the fill wraps around and 
fills the double word(s) at the beginning of the line. The MC88410 increments the address 
internally and sequences the MCM62110 array; the addresses incremented by the 
processor are not used. 

The order of burst addressing on the system interface is programmable at reset. The two 
options are zero-word-first and critical-word-first. With critical-.word-first operation, the 
burst transfer on the system interface starts with the same double word as the burst 
transfer on the processor interface and continues with the subsequent double word(s) in 
the line, wrapping around if necessary. With zero-word-first ordering, the bursts on the 
system interface always start with double word zero. This ordering applies to both 

. secondary cache line fills and secondary cache snoop copyback transactions. Replacement 
copyback transactions always start with word zero. The MC88410 provides all addresses 
(four or eight) for burst operations on the system interface. 

The MC88410 uses data streaming to reduce the penalty seen by the processor on 
secondary cache misses. With data streaming, data is written to the processor bus for the 
primary cache line fill as it is being written into the secondary cache from memory. Data 
streaming is straightforward for configurations with 32-byte secondary cache line size and 

MOTOROLA MC88410 USER'S MANUAL 2-19 



• 

critical-word-first system ordering. In this case, the data from each of the four transfers is 
written to both the secondary and primary caches. Note that the data is valid on the 
processor bus one clock after it is written to or read by the secondary cache. For 
information on the streaming timing see Section 5 System Bus Interface. Upon transfer 
of the last word to the primary cache, the operation is completed. An example of this is 
shown in Figure 2-11. 

01 PRIMARY CACHE 01 02 PRIMARY CACHE 

01 SECONDARY CACHE 01 02 SECONDARY CACHE 

FIRST TRANSACTION SECOND TRANSACTION 

1.-_--'-_0_1--"'_0_2--11...-_03---.11 PRIMARY CACHE 00 01 02 03 PRIMARY CACHE 

1.-_--'-_0_1--"' __ 02--11...-_03---.11 SECONDARY CACHE 00 01 02 03 SECONDARY CACHE 

THIRD TRANSACTION FOURTH TRANSACTION 

Figure 2-11. Streaming with 32-Byte Secondary Cache Line and Critical-Word-First 

Data streaming is more complex when the MC88410 is configured to have 64-byte 
secondary cache line sizes and/or zero-word-first system ordering. For example, when 
the system ordering is changed to zero-word-first, the secondary cache line is filled 
starting at word zero, regardless of which double word contains the critical information. 
As the secondary cache line fill continues, streaming begins when the critical word from' 
the processor is reached. Upon completion of the secondary cache line fill, the MC88410 
wraps around and completes the burst transaction to the processor. 

Bus errors detected on the system bus during streaming must be passed to the processor 
bus. For configurations involving the 64-byte line size, if the critical word is the first word 
of the line, the entire primary cache Hne could be' streamed to the processor before the 
secondary fill has completed. However, if a bus error occurs on the secondary cache line 
fill after the primary cache line fill has completed, then there would be a valid primary 
line that was never loaded in the secondary cache violating the inclusion policy. To 
prevent this situation, the MC88410 does not complete the last transfer of the primary 
cache line fill until the secondary line has completed its line fill. 

Figure 2-12 shows an example of when the critical double word is the second one in the 
line. In the first transfer, the data for the first double word is read into the secondary 
cache lines. For the three subsequent transfers, the data is read into the secondary cache 
line and streamed to the processor bus and the primary cache line. Upon successful 

2-20 MC88410 USER'S MANUAL MOTOROLA 



completion of the secondary cache line fill, the MC88410 must complete the primary cache 
line fill by wrapping around and writing the first double word on the processor bus. 

PRIMARY CACHE 01 I PRIMARY CACHE 

. 00 SECONDARY CACHE 00 01 I SECONDARY CACHE 

FIRST TRANSACTION SECOND TRANSACTION 

I 01 02 PRIMARY CACHE 01 I 02 03 PRIMARY CACHE 

00 01 02 SECONDARY CACHE 00 01 I 02 03 SECONDARY CACHE 

THIRD TRANSACTION FOURTH TRANSACTION 

00 01 I 02 03 PRIMARY CACHE 

00 01 I 02 03 SECONDARY CACHE 

FIFTH TRANSACTION 

Figure 2-12. Streaming with 32-Byte Secondary Cache Line and Zero-Word-First 

MOTOROLA MC88410 USER'S MANUAL 2-21 

lEI 



• 

Another possible configuration is with 64-byte secondary cache lines and critical-word
first operation on the system bus. In this case, the critical double word is the first 
transaction on the system bus, and the data is streamed to the processor bus during the 
transaction. The data continues to be streamed for each of the double words on the first 
half of the secondary cache line. While the second half of th"e secondary cache line is 
being read, the MC88410 inserts wait states on the processor bus. When the secondary 
cache line fill wraps around, the data streaming continues until the end of the line fill. 

Figure 2-13 shows an example of when the critical double-word is the second one in the 
line. In the first transfer, the critical double word is read into the secondary cache line and 
streamed to the processor. The data for the subsequent two transfers is also read into the 
secondary cache and streamed to the processor. For the next four transfers, however, the 
data is read into the secondary cache while the MC88410 inserts wait states to the 
processor. When the secondary cache line fill wraps around to complete, data streaming 
resumes for the last double-word transfer. 

Finally, the MC88410 could be operating with 64-byte secondary cache lines and zero
word-first operation on the system bus. In this case, the first double word is the first 
transaction on the system bus. The secondary cache line fill continues, and streaming 
begins when the critical word from the processor is reached. During the four double
word transfers for the second half of the secondary cache line, streaming is discontinued 
and the MC88410 inserts wait states on the processor bus. Upon completion of the 
secondary cache line fill, the MC88410 wraps around and completes the burst to the 
processor. 

Figure 2-14 shows an example of when the critical double word is the second one in the 
line. In the first transfer for this case, the data for the first double word is read into the 
secondary cache lines. For the three subsequent transfers, the data is· read into the 
secondary cache line and streamed to the processor bus and the primary cache line. 
During the remainder of the secondary cache line fill, the processor bus waits. Upon 
successful completion of the secondary cache line fill, the MC88410 must complete the 
primary cache line fill by wrapping around and writing the first double word on the 
processor bus. 

2-22 MC88410 USER'S MANUAL MOTOROLA 



01 I PRIMARY CACHE 

01 I SECONDARY CACHE 

FIRST TRANSACTION 

01 I 02 I PRIMARY CACHE 

01 02 SECONDARY CACHE 

SECOND TRANSACTION 

II 
01 I 02 I 03 I PRIMARY CACHE 

01 I 02 I 03 I SECONDARY CACHE 

THIRD TRANSACTION 

01 I 02 I 03 I PRIMARY CACHE 

01 I 02 I 03 I 04 I SECONDARY CACHE 

FOURTH TRANSACTION 

01 I 02 I 03 I PRIMARY CACHE 

01 I 02 I 03 I 04 I 05 I SECONDARY CACHE 

FIFTH TRANSACTION 

01 I 02 I 03 PRIMARY CACHE 

01 I 02 I 03 04 I 05 I 06 SECONDARY CACHE 

SIXTH TRANSACTION 

01 I 02 I 03 I PRIMARY CACHE 

01 I 02 I 03 I 04 I 05 I 06 07 I SECONDARY CACHE 

SEVENTH TRANSACTION 

00 01 I 02 I 03 I PRIMARY CACHE 

00 01 I 02 I 03 I 04 I 05 I 06 07 I SECONDARY CACHE 

EIGHTH TRANSACTION 

Figure 2·13. Streaming with 64 Byte Secondary Cache Line and Critical-Word-First 

MOTOROLA MC88410 USER'S MANUAL 2-23 



PRIMARY CACHE 

00 I SECONDARY CACHE 

FIRST TRANSACTION 

01 I PRIMARY CACHE 

• 00 I 01 I SECONDARY CACHE 

SECOND TRANSACTION 

01 I 02 I PRIMARY CACHE 

00 . I 01 I 02 I SECONDARY CACHE 

THIRD TRANSACTION 

I 01 I 02 I 03 I PRIMARY CACHE 

00 I 01 I 02 I 03 I SECONDARY CACHE 

FOURTH TRANSACTION 

01 I 02 I 03 I PRIMARY CACHE 

00 I ~ I ~ I ~ I ~ SECONDARY CACHE 

FIFTH TRANSACTION 

Figure 2-14a. Streaming with 64 Byte Secondary Cache Line and Zero·Word·First 

2-24 MC88410 USER'S MANUAL MOTOROLA 



01 I 02 I 03 I PRIMARY CACHE 

00 I 01 I 02 I 03 I 04 I 05 SECONDARY CACHE 

SIXTH TRANSACTION 

01 I 02 I 03 I PRIMARY CACHE 

00 I 01 I 02 I 03 I 04 I 05 I 06 SECONDARY CACHE lEI 
SEVENTH TR,ANSACTION 

01 I 02 I 03 I PRIMARY CACHE 

00 I m I ~ I ro I 04 I ~ I 00 I ~ SECONDARY CACHE 

EIGHTH TRANSACTION 

00 I 01 I 02 I 03 I PRIMARY CACHE 

00 I 01 I 02 I 03 I 04 I 05 O~ I 07 SECONDARY CACHE 

NINTH TRANSACTION 

Figure 2-14b. Streaming with 64 Byte Secondary Cache Line and Zero-Word-First 

MOTOROLA MC88410 USER'S MANUAL 2-25 



2.7 SECONDARY CACHE LINE ALLOCATION 
When the processor initiates a transaction for a cacheable location that misses in the 
secondary cache, the MC88410 must allocate a line and perform a secondary cache line fill, 
as shown in Figure 2-15. If the line to be replaced is included in the primary data cache 
(PT AG hit), the MC88410 retries the read transaction, acquires the processor bus, and 
initiates a primary cache invalidate transaction to the MC88110. If the primary cache 
contains modified data, the MC88110 asserts P_ARTRY and performs a snoop copyback 
before invalidating its cache line. The snoop copyback causes the MC88410 to update the 
secondary cache line and negate the inclusion bit in the PT AG. If the primary cache does 
not contain modified data, then the MC88410 simply negates the inclusion bit. When the 
MC88110 reinitiates the read transaction, the transaction causes another secondary cache 
miss; however, during the second read the line to be replaced is a PTAG miss. Note that 
configurations using a 64-byte line size require two primary cache invalidate transactions. 

If the secondary cache line that is to be replaced is not in the primary cache and is marked 
unmodified, the MC88410 arbitrates for the system bus and performs a secondary cache 
line fill (using either critical-word-first or zero-word-first order as specified at reset) of 
either ,32 or 64 bytes, streaming to the processor bus as appropriate. If the line to be 
replaced is exclusive-modified, a secondary cache copyback precedes the line fill. If the 
processor transaction is a write- or a read-with-intent-to-modify, the system bus line fill 
transaction is intent-to-modify, and the line is marked exclusive-modified. If the 
processor transaction is a read-without-intent-to-modify, then the line is marked shared
unmodified if the TSHD or SHD signals were asserted at the appropriate time during the 
line fill (see Section 5 System Bus Interface); otherwise, the line is marked exclusive
unmodified. 

2-26 MC88410 USER'S MANUAL MOTOROLA 



MOTOROLA 

Update Secondary 
Cache Line with 

MC88110's 
Copyback 

Read-without
Intent-to-Modify 

Mark Line 
Exclusive-Unmodified 

Mark Line 
Shared-Unmodified 

Figure 2·15. Secondary Cache Line Allocation Flow 

MC88410 USER'S MANUAL 2-27 



,. 

2.7.1 Processor Read Transactions (Not 'Locked) 
The MC88110 requests data either in a single~beat read or a burst read transaction. If the 
read transaction is due to a write miss or an allocate load transaction, then the MC88110 
intends to modify the data as soon as it is received and the transaction is labeled intent-to
modify. The actions taken by the MC88410 due to a processor read transaction depend on 
the size of the transaction, whether it is intent-to-modify, whether there is a secondary 
cache hit, and the state of the line if there is a secondary cache hit. The following 
paragraphs give a brief description of the types of processor read transactions, followed 
by a description of the MC88410 actions caused by each transaction type. 

2.7.1.1 Single-Beat Read Transaction 
Single-beat read transactions include read accesses in write-through mode, table search 
descriptor fetches, allocate loads, and cache-inhibited reads. Note that although the table
search descriptor fetches are always cache-inhibited in the primary cache, they are 
cacheable in the secondary cache. The allocate load is a feature provided by the MC88110 
that allows allocation of a primary cache line with only one beat of data transfer instead of 
the usual four. An allocate load that is not cache-inhibited and misses in the secondary 
cache causes a full secondary cache line to be allocated even though only 64 bits are 
transferred to the processor. A cache-inhibited allocate load does not cause a secondary 
cache line to be allocated, and acts as a cache-inhibited read. The allocate load is the only 
single-beat read (except the locked read, described in 2.7.3 Locked Transactions) which is 
marked intent-to-modify. 

2.7.1.2 Burst Read Transaction 
Burst read transactions include line fills of the primary instruction or data caches. If the 
request hits in the secondary cache, data is provided to the processor using critical-word
first burst ordering of four 64~bit beats. If the request misses, the MC88410 takes actions 
to fill a secondary cache line with the requested data and to update the tags accordingly. 
If the request is a data access, the appropriate line in the PTAG is updated to reflect the 
newly included line. A system bus burst read that results from a read miss in the 
secondary cache is called a secondary cache line fill. 

Burst read transactions from the processor are qualified as intent-to-modify if they are the 
result of a write miss in the primary data cache. On a secondary cache miss, this 
qualification is carried on the system interface for the secondary cache line allocation, 
allowing the new secondary cache line to be marked exclusive-modified. On a secondary 
cache hit, a system invalidate transaction and MT AG update to exclusive-modified 
precedes the processor response if needed. A system bus burst read that results from a 
processor read-with-intent-to-modify transaction is called a secondary cache read-with
intent-to-modify. 

2.7.1.3 Read Transaction Flow 
The processor read transaction flow is shown in Figure 2-16. When the MC88410 
recognizes a read transaction on the processor bus, it determines if the transaction is ' 
cache-inhibited and if there is a secondary cache hit. If it is cache-inhibited, the MC88410 
performs a single-beat read on the system interface and transfers the data to the processor 

2-28 MC88410 USER'S MANUAL MOTOROLA 



interface. If there is a cache hit on a cache-inhibited transaction, the secondary cache line 
is marked invalid (aft'er a copyback if the line was modified) preceding the single-beat 
read on the syst~m interface. 

If the transaction is not cache-inhibited and there is a secondary cache hit, then the actions 
of the MC88410 depend on the state of the cache line and whether the transaction is 
intent-to-modify. If the transaction is intent-to-modify and the line is shared-unmodified, 
the MC88410 must successfully perform a system invalidate transaction and mark the line 
exclusive-modified before completing the processor read transaction. If the transaction is 
intent-to-modify and the line is marked exclusive-unmodified, the MC88410 must mark 
the line exclusive-modified before completing the transaction. If the transaction is intent
to-modify and the line is marked exclusive-modified, or if the transaction is not intent-to
modify, the transaction can be completed immediately. 

If the transaction is not cache-inhibited and there is a secondary cache miss, then the 
MC88410 must perform a secondary cache line fill before completing the processor read 
transaction. If the transaction is single-beat, the critical word is streamed to the processor 
and its transaction completes. Once the secondary cache line fill is complete, if the read 
transaction is a burst, the MC88410 completes the burst (if necessary), updates the tag 
entry in the PTAG, and sets the inclusion bit. 

MOTOROLA MC88410 USER'S MANUAL 2-29 

• 



Hit 

Not Intent-to-Modify 

• Line is Exclusive-Unmodified 

Figure 2·16. Processor Read Transaction Flow 

2-30 MC88410 USER'S MANUAL MOTOROLA 



I 

'I 

2.7.2 Processor Write Transactions (Not Locked) 
The MC88110 writes data either in a single-beat write or a burst write transaction. The 
actions taken by the MC88410 due to a processor write transaction depend on the size of 
the transaction, whether there is a secondary tache hit, and the state of the line if there is a 
secondary cache hit. The following paragraphs give a brief description· of the types of 
processor write transactions, followed by a description of the MC88410 actions caused by 
each transaction type. 

2.7.2.1 Single-Beat Write Transaction 
Single-beat write transactions include primary cache write-through accesses, write-back • 
accesses, and cache-inhibited writes. Write-through accesses that hit the secondary cache 
are written into it and to the system interface. No state change is involved. Write-
through accesses that miss the secondary cache do not allocate a secondary line and are 
written directly to the system interface without affecting the secondary cache contents. 

The single-beat write-back transaction occurs for three different reasons. The first is as a 
result of the MC88110 attempting to write to a shared-unmodified line in the primary 
cache which follows the write-back policy. In this case, the MC88110 performs a 
processor invalidate transaction before writing the data to the primary cache line to alert 
the secondary cache that it intends to modify that line. For subsequent writes to that line, 
the MC88110 does not perform a bus transaction at alL The processor invalidate is 
identical to a single-beat write-back transaction, except that the MC88110 MC signal is 
negated, indicating that it is not necessary to complete the memory transaction, but that 
snooping processors should invalidate their cached lines. Since the Me signal is not 
connected to the MC88410, the MC88410 does not distinguish between the processor 
invalidate and the single-beat write-back transaction. Processor invalidate transactions 
from the processor always hit in the secondary cache. 

The single-beat write-back transaction also occurs when the MC88110 is in the forced 
write-through mode. This feature forces the primary cache to use a write-through policy 
regardless of the memory management unit's (MMU) mapping, so the MC88110 performs 
a single-beat write for all store instructions. Since the MMU's configuration is not affected 
by this, the memory update policy is still available for use at the secondary cache level. 
Therefore, for a write to a page marked as write-back in the MMU, the MC88110 performs 
a single-beat write transaction but specifies that the secondary cache should follow the 
write-back policy by negating the P_CI and P_WT signals. 

If a single-beat write-back transaction misses in the secondary cache, the MC88410 
performs a burst read-with-intent-to-modify transaction, updates the secondary cache 
line, and marks the line exclusive-modified. If the transaction hits and the cache line is 
marked shared-unmodified, the MC88410 performs a system invalidate transaction, 
updates the secondary cache, and marks the line exclusive-modified. If the transaction 
hits and the cache line is marked exclusive-unmodified, then the MC88410 simply updates 
the secondary cache and marks the line exclusive-modified. 

MOTOROLA MC88410 USER'S MANUAL 2-31 



• 

Finally, if the transaction is cache-inhibited (P_CI asserted), the write transaction will not 
be written into the primary or secondary cache and will be written to main memory as a 
single-beat transaction. 

2.7.2.2 Burst Write Transaction 
For processor burst write transactions, the MC88410 updates the secondary cache in 
critical-word-first order. The data being copied back is written into the secondary cache 
only. MC88110 snoop copybacks cause the appropriate inclusion bit in the PTAG to be 
cleared because the MC88110 invalidates its primary cache line after a snoop copyback. 
The inclusion bit remains set for replacement and flush copyback transactions. For the 
replacement copyback, the inclusion bit is left set, but the address in the tag is updated 
when the processor performs its subsequent line fill. For flush copybacks, the inclusion 
bit is left set because if the copyback is a result of a flush command (not flush and 
invalidate) the MC88110 does not invalidate the line after the copyback. 

2.7.2.3 Write Transaction Flow 
The processor write transaction flow is shown in Figure 2-17. When the MC88410 
recognizes a write transaction on the processor bus, it determines if the transaction is 
cache-inhibited. If it is cache-inhibited, the MC88410 performs a single-beat write 
transaction on the system interface. If there is a cache hit on a cache-inhibited transaction, 
the secondary cache line is marked invalid (after a copyback if the line was modified) 
before the single-beat write on the system interface. 

If the transaction is a processor burst transaction, the MC88410 updates the secondary 
cache line. If the transaction is a snoop copyback, the MC88410 assumes that the 
MC88110 has invalidated its cache line and negates the inclusion bit. 

If the transaction is a single-beat transaction with the write-through policy in effect, then 
the actions of the MC88410 depend on whether there is a cache hit. If there is a secondary 
cache hit, the data is written both to the secondary cache line and to main memory. If 
there is a secondary cache miss, the data is simply written to main memory. 

If the transaction is a single-beat transaction with the write-back policy in effect, the 
actions of the MC88410 depend on whether there is a cache hit. If there is a secondary 
cache hit, the actions of the MC88410 depend on the state of the cache line. If the line is 
shared-unmodified, the MC88410 must successfully perform a system invalidate 
transaction before cqmpleting the processor transaction. Once the MC88410 has exclusive 
ownership of the line, the data is written to the secondary cache line and the line is 
marked exclusive-modified. 

If the transaction is a single-beat transaction with the write-back policy in effect and there 
is a secondary cache miss, the MC88410 must perform a secondary cache line fill before 
completing the processor write transaction. Once the secondary cache line fill is complete, 
the line is updated with the data from the processor and the line is marked exclusive
modified. 

2-32 MC88410 USER'S MANUAL MOTOROLA 



2.7.3 Locked Transactions 
The MC88110 supports an exchange memory (xmem) instruction that is a combination of 
a load and store instruction. The xmem instruction normally causes a locked read access 
followed by a locked write access. However, the xmem instruction can also function as a 
locked write access followed by a locked read access. The xmem accesses are cache
inhibited on the primary cache, but may not be treated as cache-inhibited on the 
secondary cache depending on the order of the transactions and the memory update 
policy in effect, as shown in Figure 2-18. 

If the first locked transaction is a write access or a cache-inhibited read, the MC88410 
treats the xmem as a pair of cache-inhibited accesses. If there is a cache hit on the first 
transaction, then the secondary cache line is marked invalid (after a copyback if the line 
was modified) preceding the locked read or locked write on the system interface. The 
second half of the locked pair of transactions is guaranteed to be a cache miss, so the 
transaction is passed from the processor bus to the system bus. 

If the first locked transaction is a cacheable read, the MC88410 treats the xmem as a pair of 
cacheable data requests. If the locked read hits the cache, the MC88410 simply marks the 
line exclusive-modified and provides the data for the processor (preceded by system 
invalidate cycle if needed). If the locked read misses the cache, it allocates a secondary 
line (see 2.7 Secondary Cache Line Allocation). The second half of the locked pair is 
guaranteed to be a cache hit to an exclusive-modified line, so the secondary cache line is 
updated with the data from the processor. If the write-through policy is in effect for the 
locked write, the data is written to memory with a locked single-beat write transaction. 

Between the read and write halves on a cacheable xmem, the MC88410 maintains a lock 
collision buffer that retries any snooped address that attempts to access the same line 
address as the xmem (see Section 5 System Bus Interface for more information). 

MOTOROLA MC88410 USER'S MANUAL 2-33 

• 



Write-Through 

• 

Line is Exclusive 

Figure 2·17. Processor Write Transaction Flow 

2-34 MC88410 USER'S MANUAL 

Perform Single-Beat 
Write on System Bus 

MOTOROLA 



Hit 

Figure 2·18. Locked Transaction Flow 

MOTOROLA MC88410 USER'S MANUAL 2-35 



• 

2.8 CACHE FLUSHING AND INVALIDATION 
The MC88410 supports the ability to flush a single page or the entire cache while 
maintaining both vertical and horizontal cache coherency. It also allows for the 
incoherent invalidation of the cache. Flush page and flush all are coherent operations that 
cause the MC88410 to execute copyback transactions and primary cache invalidate 
transactions as needed. For the invalidate all operation, the MC88410 simply clears all the 
V bits in theMTAG and all the I bits in the PTAG. During a flush operation, the MC88410 
is available for snooping and to process additional MC88110 transactions. However, 
during an invalidate operation, snooping is disabled and MC88110 transactions are 
stalled. 

The flush page, flush all, and invalidate all operations begin at the lowest address in the 
selected granularity regardless of the actual address that was used. For example, flush all 
and invalidate all operations begin at tag location zero and increments up to the 
maximum tag address. A flush page begins at set zero for the selected page address and 
steps up to the maximum tag address for that page. 

The following paragraphs describe the flush control signals, flush operations, and 
invalidate operations. 

2.8.1 Flush and Invalidate Control 
The MC88410 system interface has two flush control input signals: FO and Fl. It also 
includes the FBSY output signal to indicate when a flush or invalidate is in progress. The 
MC88410 initiates the flush and invalidate operations when it detects the appropriate 
encoding of flush control signals for at least one clock cycle. For the flush page operation, 
the MC88410 uses the page specified by the last cache-inhibited write before the flush 
control signals are detected (see 2.8.2 Flush Page and Flush All Operations for more 
information). The encoding for Fl and FO is shown in Table 2-7. 

Table 2-7. Flush Control Signal Encoding 

F1 FO Function 

0 0 No operation 

0 1 Flush page 

1 0 Flush all 

1 1 Invalidate all 

To initiate a flush or invalidate operation, the appropriate flush control signals must be 
asserted for one clock cycle. When the MC88410 recognizes the flush control signal 
encoding, it asserts the FBSY signal one clock later and begins the flush or invalidate 
operation. Once one of the three operations has been initiated, the flush control signals 
are not sampled again by the MC88410 until the current operation completes and the 
signals are restored· to the no operation state. When the flush or invalidate operation has 
completed, the MC88410 negates the FBSY signal. The FBSY signal may be used to clear the 
external control register that drives the flush control signals. 

2-36 MC88410 USER'S MANUAL MOTOROLA 



Figure 2-19 shows the hardware required for one possible method for controlling the flush 
and invalidate mechanism. This illustration shows a control register and an address 
decoder added to the basic MC88110/M:88410 configuration. To initiate a flush or 
invalidate operation, the MC88110 performs a cache-inhibited write to the address of the 
control register. The data for this transaction is then latched into the control register, 
which asserts the appropriate flush control signals. The address of the control register 
must be encoded in address bits 31-20, because the lower 20 bits of the address are 
required to specify a page for the flush page operation. 

hldress Control 
Data 

Figure 2·19. Flush Control Hardware 

MOTOROLA MC88410 USER'S MANUAL 

To Sfstem 
Memory 

2-37 

• 



• 

2.8.2 Flush Page and Flush All Operations 
The flush page and flush all operations are coherent operations that cause the MC88410 to 
execute copybacks and primary cache invalidations as needed. The flow for the flush 
operations is shown in Figure 2-20. When the flush control signals indicate that a flush 
operation should occur, the MC88410 asserts FBSY and starts at the lowest address of the 
cache or of the specific page in the cache. For each MTAG entry, both the MTAG and the 
PTAG are checked. If the MTAG entry indicates that the line is unmodified, no action 
needs to be taken, the address is incremented, and the next MT AG entry can be checked . 

If the MTAG entry indicates that the line is modified, the MC88410 must copy back the 
most recent copy of that line to main m.emory. If there is a hit in the PT AG with the 
inclusion bit set, the MC88410 must perform a primary cache invalidate transaction to 
determine whether the MC88110 has the most recent copy of the line. For more 
information about the primary cache invalidate transaction, see Section 4 Processor Bus 
Interface. If the MC88110 has a version of the line that is modified with respect to the 
secondary cache line, it performs a snoop copyback, the secondary cache is updated, and 
the inclusion bit of the PTAG entry is cleared. Once the MC88410 has ensured that it has 
the most recent copy of the cache line, it perfor?ls a copyback to main memory, clears the 
modified bit in the MTAG entry, and goes on to the next line. 

To initiate a flush operation, the MC88110 can perform a cache-inhibited write to a control 
register on the system bus. The address is decoded as shown in Figure 2-21. Address bits 
31-20 are used for the control register decoder, and address bits 19-0 specify the page to 
be flushed. The data for the cache-inhibited write transaction is latched into the control 
register and sets the flush co~trol pins to the flush page encoding. When the MC88410 
recognizes the flush page encoding on the flush control signals, it asserts FBSY and begins 
the flush. 

Note that for the flush page operation, the lower 20 bits of the 32-bit address is needed to 
specify the page to be flushed. Since the page address issued by the MC88110 occupies 
the lower three bits of the address bus, the misaligned access exception of the MC88110 
must be disabled by setting the MXM bit in the processor status register of the MC88110. 
When a misaligned access is attempted with the MXM bit set, the processor asserts the full 
misaligned address on the address bus, but performs the access to the next lower properly 
aligned boundary. 

When initiating a flush page operation, the system must be careful to ensure that the 
proper page address is latched in the MC88410 when it recognizes the flush page 
encoding. Each time the MC88410 sees a cache-inhibited write on the processor bus, it 
latches the page address into the flush counter. The write is then propagated through the 
MC88410 and onto the system bus. When the write transaction is complete, the MC88110 
is free to initiate another transaction. It is possible for the system to assert S_TA before the 
cache-inhibited write transaction has modified the control register, thus asserting the 
flush control signals. The MC88110 must not initiate another cache-inhibited write 
transaction to the MC88410 before the MC88410 recognizes the flush page encoding on the 
flush control signals and initiates the flush. 

2-38 MC88410 USER'S MANUAL MOTOROLA 



More Lines 

• PTAG Hit Last Line 

~ 
Not Asserted 

Figure 2·20. Flush Operation Transaction Flow 

MOTOROLA MC88410 USER'S MANUAL 2-39 



• 

Otherwise, a new address is latched into the flush counter, and when the MC88410 
recognizes the flush page encoding, it begins the flush operation to the wrong page. Since 

. the page address is ignored for the flush all operation, it is not necessary for the MC88110 
to avoid all cache-inhibited write transactions before the flush all begins. 

19 o 

Con~ ~.gjster ] 
Address 

Page Address __________ -.J 

Figure 2·21. Flush Address Decode 

Once the MC88410 has begun the flush, the MC88110 is free to perform any memory 
transaction it needs, including cache-inhibited write transactions. The MC88410 processes 
the requests of the MC88110 as it would normally. Snooping is also enabled during the 
flush operations. If there is contention in the PTAG or the MTAG during the flush, the 
flush is given the lowest priority. 

The duration of the flush page depends on the number of modified lines in the specified 
page and the level of activity on the processor and system buses. The flush page requires 
two clock cycles for each line on the page, plus the time it takes to copy back any modified 
lines to memory. The minimum number of clocks for a flush page with no copybacks is 
260. In addition, the flush page operation may be delayed if there is any contention in the 
MT AG. The duration of the flush all depends on the number of modified lines in the 

. cache and the level of activity on the processor and system buses. The minimum number 
of clocks for a flush all with no copybacks is 16,388 for a 256K cache with a 32-byte line 
size. The minimum number of clocks for a flush all with no copybacks is 8,192 for a 256K 
cache with a 64-byte line size. 

2.8.3 Invalidate All Operation 
The invalidate all operation is initiated in the same way as the flush all operation. For 
example, the MC88110 performs a cache-inhibited write to a control register on the system 
bus. Address bits 31-20 are used for the control register decoder. The MC88410 ignores 
the page address and invalidates the whole secondary cache. The data for the cache
inhibited write transaction is latched into the control register and sets the flush control 
pins to the invalidate all encoding. When the MC88410 recognizes the invalidate all 
encoding on the flush control signals, it asserts FBSY and begins the invalidation. Since the 
page address is ignored, it is not necessary for the MC88110 to avoid all cache-inhibited 
write transact;ons before the invalidate begins. 

2-40 MC88410 USER'S MANUAL MOTOROLA 



The MC88110' cannot access the MC88410 during the invalidate all operation; therefore, 
the MC88410 delays any processor transaction by not asserting P _TA until the invalidate 
has been completed. Snooping is also disabled during an invalidate all operation. 

In normal operation, the secondary cache must be invalidated at reset. The MC88410 
performs an invalidate all operation at reset only if the flush control signals are both 
asserted when the reset signal is negated and if the signals stay asserted for at least three 
clock cydes after reset is negated. The invalidate all operation lasts 16,388 clock cycles for 
a ~56K cache with 32-byte line size and 8,192 clock cycles for a 256K cache with 64-byte 
line size. For diagnostic purposes, the secondary cache invalidation can be omitted by 
negating these bits during reset. • 

NOTE 

If the secondary cache is invalidated when there is valid data 
in the primary data cache, the PT AG clears the inclusion bit for 
data which is still valid in the primary cache. This could cause 
the MC88410 to incorrectly interpret subsequent snoop 
transactions from the system bus as misses rather than hits, 
and data corruption can occur. This can be avoided by 
invalidating the primary cache before invalidating the 
secondary cache. 

2.9 BUS SNOOPING PROTOCOL 
The MC88410 can automatically maintain coherency between cached and in-memory 
copies of data. To maintain this coherency, the MC88410 uses a write invalidate with 
intervention protocol on the external bus to ensure that, at all times, only one proc~ssor 
node in the system has a modified copy of a given cache line. The protocol allows other 
caches on the bus to have local copies that are all consistent. When an MC88410 writes 
data to a memory location shared by other processors, the other processors are notified 
that their copy of the line containing that data is stale and must be invalidated. 

The MC88410 snoops bus transactions by monitoring externally initiated bus transactions 
and comparing all global addresses to the internal data cache tags. A snoop hit occurs 
when the address tag for a valid MTAG entry matches the address on the bus. A primary 
cache snoop hit occurs when the address tag for a valid PT AG entry matches the address 
on the bus. In this case, the MC88410 must determine whether the MC88110 must be 
notified of the snooped transaction. 

When monitoring external bus transactions, if a global address that matches one of the 
entries in the MTAG is detected (S_GBL signal asserted during the transaction), a snoop hit 
occurs. When a snooping MC88410 hits with a modified entry, the snooping MC88410 
asserts the S_SSTATI signal. The S_SSTATI output may then be directly or indirectly 
coupled to the address retry input of each processor node, forcing the processor node that 
initiated the access to retry the access after the modified data has been written to memory 
by the MC88410 that had the snoop hit. This protocol is referenced as a snoop retry 
exchange throughout the remainder of this section. 

MOTOROLA MC88410 USER'S MANUAL 2-41 



• 

Figure 2-22 shows the transaction flow followed by the MC88410 for a snoop operation. 
The following paragraphs describe the operations depicted in the flow diagram. 

2.9.1 Transaction without Intent-to-Modify 
Read-without-intent-to-modify transactions that affect cache coherency are cache line fill 
transactions that occur due to read misses. When a read-without-intent-to-modify occurs, 
other caches on the bus must copy back any modified versions of the cache line and mark 
their cache line shared-unmodified. If another processor node on the system bus 
recognizes the address as global and has a modified copy of the data in its cache, it signals 
a snoop retry. Upon receipt of the retry signal, the initiating processor node aborts the 
cache line fill transaction and relinquishes the bus. The snooping processor node then 
acquires the bus and updates memory with its copy of the cache line. The initiating 
processor node then arbitrates for mastership of the bus and attempts the aborted cache 
line fill again. 

The MC88410 performs the following actions when snooping an external read transaction. 
These actions :represent the logical flow of operations; since the MC88410 employs a high 
degree of concurrency, some of the operations are performed in parallel. 

When an MC88410 snoops a global read transaction that hits in the secondary cache, it 
determines if the cached data is modified or not. If the line is marked exclusive
unmodified, the MC88410 marks the line as ~hared-unmodified. In this manner, the 
MC88410 recognizes that other processor nodes have read access to the global data. If the 
line is already marked as shared-unmodified, no action is taken. For lines that are 
unmodified in the secondary cache, the primary cache status can be assumed to be 
shared-unmodified, because the SHD input signal to the MC88110 should be grounded. 
Therefore, the MC88110 does not need to be notified of a snoop hit to the primary cache if 
the transaction is not intent-to-modify. 

If the line is internally modified, the MC88410 signals a snoop retry to the processor node 
that initiated the transfer. The initiating processor node should then abort its transaction 
and release the bus. If the snooping MC88410 determines that the line is also in the 
primary cache (PTAG hit), the MC88410 initiates a primary cache invalidate transaction. 
If the MC88110 has the most recent version of the line, the MC88110 copies back its copy 
of the line and the snooping MC88410 updates the secondary cache line and negates the 
inclusion bit in the PTAG. Note that if the secondary cache line size is 64 bytes, the 
MC88410 must check two PT AG entries and may have· to perform two primary cache 
invalidate transactions. 

The snooping MC88410 then arbitrates for mastership of the bus, writes its modified copy 
of the line to memory, and marks the line as shared-unmodified in its cache. The 
initiating process~r node then arbitrates for mastership of the bus and attempts the 
aborted transaction again. The initiating processor node snoops the bus while it is waiting 
to retry the aborted transaction. 

2-42 MC88410 USER'S MANUAL MOTOROLA 



Not Intent·to·Modify 

Intent·to·Modify 

OK 

Figure 2·22. Cache Snoop Operation Transaction Flow 

MOTOROLA MC88410 USER'S MANUAL 

Mark Secondary 
Cache Line Invalid 

2-43 

• 



• 

2.9.2 Transaction with Intent-to-Modify 
Read-with-intent-to-modify transactions that affect cache coherency are locked read/write 
transactions (initiated by the xmem instruction of the MC88110), cache line fill 
transactions (reads) that occur due to write misses, and allocate loads. For a locked read 
operation followed by a write, a snooping MC88410 can hit if the read-with-intent-to
modify transaction is global, copy back its modified data, and invalidate the line in the 
cache (after notifying the MC88110 if necessary). The snooping processor node then 
monitors the write-locked transaction, but never hits since the line was already copied 
back and invalidated. When the locked transactions are a write followed by a read, a 
snooping processor node can hit if the write is global and then cause the write portion of 
the transaction to be retried. 

When a read-with-intent-to-modify access caused by a write miss or an allocate load 
occurs, other caches on the bus must invalidate local copies of that cache line. If another 
processor node on the bus recognizes the address as global and has a modified copy of the 
data in its cache, it signals a snoop retry. Upon receipt of the retry signal, the initiating 
processor node aborts the cache line fill transaction and relinquishes the bus. The 
snooping processor node then acquires the bus and updates memory with its copy of the 
cache line. The initiating processor node then arbitrates for mastership of the bus and 
attempts the aborted cache line fill again. 

The MC88410 performs the following actions when snooping an external write or an 
external read-with-intent-to-modify transaction on the bus. These actions represent the 
logical flow of operations; since the MC88410 employs a high degree of concurrency, 
some of the operations are performed in parallel. 

A snooping processor that has a snoop hit during a global single-beat write or global read
with-intent-to-modify operation must determine whether the cache line is modified and if 
the cache line is included in the primary cache. If the cache line that hit is unmodified and 
is in the secondary cache only, no additional bus transaction occurs, but the cache line is 
marked as invalid. If the cache line is unmodified and is in the primary cache, the 
MC88410 performs a primary cache invalidate before marking the secondary cache line 
invalid. 

If the cache line that hit is modified, the snooping MC88410 signals a snoop retry to the 
processor that initiated the transfer. The initiating processor then aborts its transaction 
and releases the bus. If the snooping MC88410 determines that the line is also in the 
primary cache (PTAG hit), the MC88410 initiates a primary cache invalidate transaction. 
If the MC88110 has the most recent version of the line, the MC88110 then copies back its 
copy of the line and the snooping MC88410 updates the secondary cache line and negates 
the inclusion bit in the PTAG. Note that if the secondary cache line size is 64 bytes, then 
the MC88410 must check two PTAG entries and may have to pedorm two processor 
invalidate cycles. 

The snooping MC88410 then arbitrates for mastership of the bus, writes its modified copy 
of the l~ne to memory, and marks the line as invalid in its cache. The initiating processor 
node then arbitrates for mastership of the bus and attempts the aborted transaction again. 

2-44 MC88410 USER'S MANUAL MOTOROLA 



The initiating processor node snoops the bus while it is waiting to retry the aborted 
transaction. 

2.9.3 DMA Invalidate Transaction 
The MC88II0 and MC88410 never perform a global burst write on the system bus. 
Therefore, if the MC88410 detects a global burst write, it assumes that the transaction 
must have been generated by an external device that is overwriting some portion of 
memory (for example, a DMA controller); thus, there is no reason to copy back the line 
before invalidating. If the MC88410 has a snoop hit during a global burst write, it 
invalidates the cache line without copying the line back regardless of the state of the cache 
line. If the MC88410 determines that the cache line is also in the primary cache, it initiates 
a DMA invalidate cycle on the processor bus before marking the secondary cache line 
invalid. 

2.9.4 Snooping Protocol Examples 
The following examples illustrate how snooping maintains cache coherency in a 
multiprocessor configuration. The examples assume that there are two 
MC88110/MC88410 nodes that share one common external system bus with main 

. memory. Each of the figures show a cache line within MC88II0-A, MC88410-A, 
MC88110-B, and MC88410-B, and the associated line address tags. The state of the cache 
line (invalid (lNV), shared-unmodified (SU), exclusive-unmodified (EU), or exclusive
modified (EM» is also shown as well as the next state of the line as a result of bus 
transactions or snooping. Examples 1 and 3 only show one line in the primary data caches 
for simplicity. Example two shows both primary cache lines. 

Examples 1 and 3 assume that the MC88410 is configured with a 32-byte line size. 
Example 2 shows the MC88410 configured for a 64-byte cache line. Also, the starting 
address is shown as $0000. Address $0008 corresponds to double word I, address $0010 
corresponds to double word 2, etc. Line read operations perform four consecutive 
double-word reads from memory addresses $0000, $0008, $0010, and $0018 to the cache 
line using the efficient burst mode transfer mechanism of the MC88410 with streaming to 
the MC88II0. Line copyback operations write (burst) the four double words from the 
secondary cache line back to memory. 

For these examples, all addresses are assumed to be mapped as global, write-back, 
cache able, and not write-protected. Also, the primary caches are assumed to be operating 
in the three-state model since the SHD input signal of the MC88II0 is grounded. The 
secondary caches are assumed to be operating in the four-state model since the SHD input 
signal is connected to S_SSTATO (for more information about the four-state model, see 2.4.2 
Lateral Coherency). 

2.9.4.1 Example 1-Snoop Hit without Intent-to-Modify, PTAG Hit 
This example illustrates the progression of events for the case of a snoop hit for a 
transaction without intent-to-modify. Figure 2-23 shows the caches in their initial state, 
with the cache lines invalidated in all locations and their contents unknown. This is the 

MOTOROLA MC88410 USER'S MANUAL 2-45 

• 



state of the data cache after reset, assuming that the system software has invalidated all 
the cache lines in both the primary and secondary caches. 

MC88110- A 

PRIMARY 
CACHE-A INV 

I ???? I ? I ? I ? I ? I ? I ? I ? I ? I 

MC88410-A 

SECONDARY 
CACHE-A INV 

I ???? I ? I ? I ? I ? I ? I ? I ? I ? I 

$0000 
$0004 
$0008 

$OOOC 
$0010 

$0014 

$0018 

$001C 

MAIN MEMORY 

MC88110- B 

PRIMARY 
CACHE-8 INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I 

MC88410- B 

SECONDARY 
CACHE-8 INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I 

Figure 2-23. Initial State - Example 1 

Figure 2-24 shows MC88110-B performing a load word operation from location $0000. 
There is a cache miss in both the primary and secondary caches, and MC88410-B reads a 
line from memory to fill the secondary cache line while streaming the data to MC88110-B. 
MC88410-A monitors (snoops) the bus transaction, but does not find a match in the 
MTAG (a miss) since the entire data cache is marked as invalid. MC88410-B updates the 
state of the secondary cache line to exclusive-unmodified, and MC88110-B updates the 
state of the primary cache line to shared-unmodified. 

2-46 MC88410 USER'S MANUAL MOTOROLA 



MC88110- A 

PRIMARY 
CACHE-A INV 

MC88410-A 

SECONDARY 
CACHE-A INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I 

$0000 

$0004 1----1 

$0008 

$OOOC '--_--' 
$0010 

$0014 
$0018 

$001C 

MAIN MEMORY 

MC88110- B 

MC88410-B 

SECONDARY 
CACHE-B 

Figure 2·24. MC88110 - B Load, Data Cache Miss 

Figure 2-25 shows MC88110-A reading a word from address $0008, which misses for the 
selected cache line. A line fill operation is performed as before, with MC88410-A reading 
the line from memory and streaming the data to MC88110-A. MC88410-B snoops the 
global transaction and finds a tag match (a snoop hit). The state of the line changes to 
shared-unmodified in both secondary caches and remains shared-modified in primary 
cache A since both nodes have a copy of the data that is unmodified with respect to 
memory. Note that since the transaction is not intent-to-modify, MC88110-B is not 
informed of the snoop hit. 

MOTOROLA MC88410 USER'S MANUAL 2-47 

• 



MC88110 - A 

MC88410-A 

SECONDARY 
CACHE-A 

$0000 
$0004 
$0008 

$OOOC 
$0010 

$0014 
$0018 

$001C H 

MAIN MEMORY 

MC88110- B 

PRIMARY 
CACHE-B SU 

I $0000 I AI BI ci 01 EI pi GI HI 

MC88410 - B 

SECONDARY 
CACHE - B EU -. SU 

I $0000 I AI BI ci 01 EI pi GI HI 

(Snoop Hit $0008) 

Figure 2-25. MC88110 - A Load, Data Cache Miss· 

Figure 2-26 shows MC88110-B performing a store operation of a word to address $0000. 
A cache hit occurs, and since the address was global, a processor invalidate transaction is 
performed. MC88410-B then performs a system bus invalidate transaction. The 
invalidate transaction notifies MC88410-A that its local copy of the line is no longer valid, 
so MC88410-A marks its cache line as invalid and performs a primary cache invalidate so 
that MC88110-A invalidates its line. When the invalidate transaction completes 
successfully, MC88410-B updates its secondary cache line and marks its line exclusive
modified. MC88110-B then updates the primary cache line with the new data and marks 
the line exclusive-modified. 

Processor node B now has exclusive ownership of the entire line of data that is modified 
with respect to memory. The exclusive status guarantees processor node B that no other 
processor node on the bus can cache a valid copy of the line. All subsequent load and 

2-48 MC88410 USER'S MANUAL MOTOROLA 



store operations performed by MC88110-B that map to this line complete without 
accessing MC88410-B or the system bus. Note that although the copy of the line in 
MC88410-B is valid, the image of the line in the secondary cache is stale. This example 
shows that the exclusive-modified status in the secondary cache does not mean that the 
MC88410 has exclusive ownership of the line, but that the processor node has exclusive 
ownership of the line. This is also why the MC88410 must perform a processor invalidate 
cycle before copying a line that is marked exclusive-modified back to main memory. 

MC88110- A 

PRIMARY 
CACHE - A SU .... INV 

I $0000 I AI sl ci 01 EI FI GI HI 

Primary Cache 
Invalidate Transaction 

MC88410-A 

SECONDARY 
CACHE - A SU .... INV 

(Snoop Hit $0000) 

$0000 
$0004 
$0008 

$OooC 
$0010 

$0014 
$0018 

$001C 
I----f 

MAIN MEMORY 

MC88110 - B 

MC88410-B 

SECONDARY 
CACHE-S SU .... EM 

System Invalidate 
Transaction 

(Memory Image of the Line is Stale) 

Figure 2·26. MC88110 - B Store, Data Cache Hit 

(Secondary Cache 
Image of the 
Line is Stale) 

Figure 2-27 shows MC88110-A attempting a load from location $0008. The transaction 
misses in both the primary and secondary caches because the lines in both cases are 
marked as invalid, which forces MC88410-A to perform a read-without-intent-to-modify 
transaction. MC88110-B snoops the access, recognizes that it has cached modified data 
requested by processor node A, and retries the line read operation by MC88410-A. 

MOTOROLA MC88410 USER'S MANUAL 2-49 



• 

MC88410-B then arbitrates for the processor bus and performs a primary cache invalidate 
transaction. The snoop hardware on MC88110-B then performs a snoop copyback, and 
invalidates the primary cache line (because the primary cache invalidate transaction is 
always intent-to-modify). The MC88410 updates the secondary cache line and is ready to 
perform its snoop copyback to main memory. 

MC88110- A 

PRIMARY LOAD $0008 
CACHE-A INV 

I $0000 I AI BI ci DI EI FI GI HI 

MC88410-A 

SECONDARY 
CACHE-A INV 

I $0000 I AI BI ci 01 EI FI GI HI 

MC88110- B 

PRIMARY 
CACHE - B EM -+ INV 

I $0000 I JIB C DIEI FIGIHI 

I I I I I I I 

Primary Cache 
Invalidate and Copyback 

MC88410- B 

SECONDARY EM 
CACHE - B r--r---T--,-.......--r---r-, 

•• ••••• 
(Snoop Hit $0000) 

~I ______________________________________________ ~BUS~ ________________________________________ ~I 

$0000 A 
$0004 B 
$0008 C 

$OOOC D 
$0010 E 

$0014~ 

$0018 --E
$001C --L . 

. -MAIN MEMORY 

Retry 

(Memory Image of the Cache Line is Stale) 

Figure 2·27. MC88110 - A Load, Cache Miss, Line Read Retried 

Figure 2-28 shows MC88410-B copying back the exclusive-modified line to memory and 
marking the cache line as shared-unmodified (because the snooped transaction was not 
intent-to-modify). Since snoop copybacks are not global, no other processor nodes snoop 
the transaction. 

2-50 MC88410 USER'S MANUAL MOTOROLA 



MC88110-A MC88110- B 

PRIMARY PRIMARY 
CACHE-A INV CACHE-B INV 

I $0000 IAIBlclolEI FIGIHI I $0000 I JI BI ci 01 EI FI GI HI 

MC88410-A MC88410- B 

SECONDARY SECONDARY 
CACHE-A INV CACHE-B EM .... SU 

I $0000 IAIBlclolEI FIGIHI 1$0000 IJIB C OIEIFIGIHI 
(Snoop Hit $0008) IIIIII II 

I 
1~ ________________________ ~BUSr-________________________ ~1 

$0000 ---L-
$0004 B 

""'---

$0008 ~ 
$OOOC 0 
$0010 ~ 
$0014~ 

100-

$0018~ 

$001C H -
. 

""'----
MAIN MEMORY 

Figure 2-28. MC88110 - B Snoop Copyback 

Snoop Copyback 

Figure 2-29 shows MC88410-A regaining control of the bus to complete the read that was 
previously retried by MC88410-B. MC88410-A reads the cache line and updates the 
secondary cache line while streaming the data toMC88110-A. The line is marked as 
shared-unmodified in both the primary and secondary caches. 

MOTOROLA MC88410 USER'S MANUAL 2-51 

• 



• 

MC88110- A MC88110- B 

r 
RETRY 

PRIMARY LOAD $0008 PRIMARY 
CACHE-A INV~SU CACHE-B INV 

1$0000 IJIB C DIEIFIGIHI I $0000 I JI BI ci DI EI FI GI HI 
i i iii i i 
I J I I 1 1 J 

MC88410-A MC88410- B 

SECONDARY INV~SU SECONDARY 
CACHE-ALI JI L ~ J 

CACHE-B SU 

1$0000 IJIB CIDIEIFIGIHI I$OOOOIJIBICIDIEIFIGIHI 
ffffffff 
I I I I I I I (Snoop Hit $0008) 

I 
I III I 

Snoop Copyback 

$0000 J 
$0004 B 

$0008 C 
$OOOC D 
$0010 E 

$0014 F -
$0018 G 
$001C H 

· · • -MAIN MEMORY 

Figure 2·29. Completion of MC8811 0 - A Load, Cache Miss 

2.9.4.2 Example 2-Snoop Hit without Intent.-to-Modify, 64-Byte 
Secondary Cache Line 

This example illustrates the progression of events for a snoop hit from a transaction 
without-intent-to-modify when the secondary cache is configured with a 64-byte line size. 
Figure 2-30 shows the caches in their initial state, with the cache lines invalidated in all 
locations and their contents unknown. This is the state of the data cache after reset, 
assuming that the system software has invalidated all the cache lines in both the primary 
and secondary caches. 

Figure 2-31 shows :M;C88110-B performing a load word operation from location $0000. 
There is a cache miss in both the primary and secondary caches, and MC88410-B reads a 
64-byte line from memory to fill the secondary cache line while streaming the first half of 
the line to MC88110-B. MC88410-A monitors (snoops) the bus transaction, but does not 
find a match in the MTAG (a miss) since the entire data cache is marked as invalid. 

2-52 MC88410 USER'S MANUAL MOTOROLA 



MC88410-B updates the state of the secondary cache line to exclusive-unmodified, and 
MC88110-B updates the state of the primary cache line to shared-unmodified. 

MC88110-A 

PRIMARY 
CACHE-A INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I 
INV 

I ???? I? I? I ? I ? I ? I ? I ? I ? I 

II 
MC88410-A 

SECONDARY 
CACHE-A INV 

MC88110- B 

PRIMARY 
CACHE-8 INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I 
INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I 

MC88410-B 

SECONDARY 
CACHE-8 

I I 

INV 

I ???? I? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I I ???? I? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I ? I 

___ -----'I IL---_~~-----II 1'"----_---., 
I~ ______________________ ~SY~S~TEM~BU~S~----------------------~I 

MOTOROLA 

I 
$0000 A 

$0004 B 
$0008 C 
$OOOC 0 

$0010 E 
$0014 F 

f---
$0018 ~ 
$001C H 

f---
$0020 I 

I---
$0024 J 

I--
$0028 K 
$002C~ 
$0030~ 

I---
$0034 N 

I--
$0038 0 
$003C P 

MAIN MEMORY 

Figure 2·30. Initial State - Example 2 

MC88410 USER'S MANUAL 2-53 

• 



• 

MC88110-A MC88110- B 

PRIMARY PRIMARY READ $0000 
CACHE-A INV CACHE-B INV-+SU 

I???? I? I ? I ? I ? I ? I ? I ? I ? I 1 $0000 IA 1 B 1 C 1 DIE 1 FIG 1 H 1 

INV INV 

I ???? I? I? I ? I ? I? I? I ? I ? I 1 ???? I? I? 1 ? ?I?I?I?I?I 

MC88410-A MC88410-B 

SECONDARY SECONDARY 
CACHE-A INV CACHE-B INV-+EU 

I I 

I ???? I? I ? I ? I ? I? I ? I ? I ? I? I ? I ? I ? I? I ? I ? I ? I I $0000 I A B I C I DIE I FIG I H II I J I K I LIM 1 Nlo 1 pi 

I SYSTEM BUS I 

$0000 A 
I---

$0004 r-L 
$0008 C 
$OOOC D 

$0010 E 
$0014 F 
$0018 ~ 
$001C H 
$0020 ~ 
$0024 ~ 
$0028 K 
$002C L 
$0030 ~ 
$0034 t:J"' -$0038 0 
$003C --p 

I---

· · · '""'----

MAIN MEMORY 

Figure 2·31. MC8811 0 - B Load, Data Cache Miss 

Figure 2-32 shows MC88110-A reading a word from address $0028, which misses for the 
selected cache line. MC88410-A reads the 64-byte line from memory and streams the 
second half of the line to MC88110-A. MC88410-B snoops the global transaction and finds 

2-54 MC88410 USER'S MANUAL MOTOROLA 



a tag match (a snoop hit). The state of the line changes to shared-unmodified in the 
secondary caches and remains shared-unmodified in primary cache A since both nodes 
have a copy of the data that is unmodified with respect to memory. Note that since the 
trarisaction was not intent-to-modify, MC88110-B is not informed of the snoop hit. 

Figure 2-33 shows MC88110-B performing a store operation on a word to address $0000. 
A cache hit occurs, and since the address was global, a processor invalidate transaction is 
performed. MC88410-B then latches the data, marks its line exclusive-modified, and 
performs a system bus invalidate transaction. The invalidate transaction notifies 
MC88410-A that its local copy of the line is no longer valid, so MC88410-A marks its cache 
line as invalid. 

Since MC88410-A has a 64-byte line size, it must check the PTAG twice, once for each half 
of the line. The second half of the cache line results in a PTAG hit, and MC88410-A 
performs a primary cache invalidate transaction so that MC88110-A invalidates its line. 
Note that in this case, the primary cache line gets invalidated even though it is not stale. 
MC88110-B then updates the line with the new data and marks the line exclusive
modified. 

Processor node B now has exclusive ownership of the entire line of data that is modified 
with respect to memory. The exclusive status guarantees processor node B that no other 
processor on the bus can cache a valid copy of the line. All subsequent load and store 
operations performed by MC88110-B that map to this line complete without accessing 
MC88410-B or the system bus. 

MOTOROLA MC88410 USER'S MANUAL 2-55 



MC88110-A MC88110-8 

PRIMARY LOAD $0028 PRIMARY 
CACHE-A INV CACHE-B SU 

I???? \? I ? I ? I ? I ? I ? I ? I ? I 1$0000 IA I BI CID IE IF IG I H I 

INV-+SU INV 

I $002011 I J I K LIM I N I ) I P I I ???? I? I ? I ? I? I? I? I ? I ? I 
t t tt t t 

I I I I • MC88410-A MC88410-B 

SECONDARY I INV-+SU SECONDARY 
CACHE-A CACHE-B EU-+SU 

I I I I I 
I $OOOOIA BlclDIEI FIG H II I J I K I L 1M I N I 0 I p I I $0000 I A I B I C I DIE I FIG I H II I J I K I LIM IN 10 I pi 

(Snoop Hit $0028) 

I SYSTEM BUS I 

$0000 ~ 
$0004 + $0008 
$OOOC ~ 
~ 

$0010 ~ 
$0014 F 

$0018 ~ 
$001C ~ 
$0020 

1M--:---
I 

$0024 ~ 
$0028 
~ 

~ 
$002C L 
$0030 ~ 
$0034 ~ 

f---
$0038 0 
$003C ~ - · · · -

MAIN MEMORY 

Figure 2-32. MC88110 - A Load, Data Cache Miss 

2-56 MC88410 USER'S MANUAL MOTOROLA 



MC88110-A 
PRIMARY 

MC88110- B 
PRIMARY STORE $0000 

CACHE-A 

MC88410-A 
SECONDARY 
CACHE-A 

INV CACHE-B SU"'EM 

SU"'INV 

Primary 
Cache Invalidate 

MC88410- B 
SECONDARY 

SU "'INV CACHE - B 

(Snoop Hit $0000) 

$0000 

$0004 
$0008 
$OOOC 
$0010 
$0014 

$0018 
$001C 

. $0020 

$0024 

$0028 
$002C 
$0030 

$0034 

$0038 
$003C 

MAIN MEMORY 

J 

Processor 
Invalidate Transaction 

SU"'EM 

System Invalidate 
Transaction 

(Memory Image of the Cache Line is Stale) 

Figure 2·33. MC8811o-a Store, Data Cache Hit 

Figure 2-34 shows MC88110-A attempting a load from location $0028. The transaction 
misses in both the primary and secondary caches because the lines in both cases are 
marked as invalid, which forces MC88410-A to perform a read-without-intent-to-modify 

MOTOROLA MCI8410 USER'S MANUAL 2-57 



• 

transaction. MC88110-:-B snoops the access, recognizes that it has cached modified data 
requested by processor node A, and retries the line read operation by MC88410-A. 
MC88410-B then checks the PTAG for both halves of the line, finds a PT AG hit for the first 
half of the line, arbitrates for the processor bus, and performs a primary cache invalidate. 
The snoop hardware on MC88110-B then performs a snoop copyback, and invalidates the 
primary cache line (because the primary cache invalidate transaction is always intent-to
modify). The MC88410 updates the secondary cache line and is ready to perform its 
snoop copyback to main memory. 

Figure 2-35 shows MC88410-B writing back the exclusive-modified 64-byte line to 
memory and marking the cache line as shared-unmodified (because the snooped 
transaction was not intent-to-modify). Since snoop copybacks are not global, no other 
processor nodes snoop the transaction. 

Figure 2-36 shows MC88410-A regaining control of the bus to complete the read that was 
previously retried by MC88410-B. MC88410-A reads the cache line and updates the 
secondary cache line while streaming the second half of the line to MC88110-A. The line 
is marked as shared-unmodified in both the primary and secondary caches. 

2-58 MC88410 USER'S MANUAL MOTOROLA 



MC88110- A 

PRIMARY LOAD $0028 
CACHE· A INV 

MC88410-A 
SECONDARY 
CACHE·A 

???? I ? I ? I ? I ? I ? I ? I ? I ?I 

INV 

$0000 

$0004 
$0008 
$OOOC 

$0010 
$0014 

$0018 
$001C 
$0020 

$0024 

$0028 
$002C 
$0030 

$0034 

$0038 
$003C 

MC88110- B 

PRIMARY 
CACHE-B 

Primary Cache 
Invalidate and 
88110 Snoop Copyback 

MC88410-B 
SECONDARY 
CACHE-B 

11111111 
EM 

I $0000 I JIB I C I DIE I FIG I H II I J I K I LIM I N 10 I pi 
(Snoop Hit $0028) 

Retry 

(Memory Image of the Cache Line is Stale) 

MAIN MEMORY 

Figure 2·34. MC8811 O-A. Load, Data Cache Miss, Line Read Retried 

MOTOROLA MC88410 USER'S MANUAL 

• 

2-59 



• 

2-60 

MC88110-A 

PRIMARY 
CACHE-A INV 

1 ???? I? 1 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1 ?I 

MC88410-A 

SECONOARY 
CACHE-A 

INV 

MC88110- B 

PRIMARY 
CACHE-8 INV 

1 $OOOOIJ 1 81cloiEI FIGIHI 

MC88410-B 

SECONOARY 
CACHE-8 

INV 

Primary Cache 
Invalidate 

EM-+SU 

l$ooooIAIBlcloIEIFIGIHIIIJIKILIMINlolpl I$OOOOIJ BlclOIEIFIGIHlllJIKILIMINlolpl 

I I I I I I I I I I I I I I I 

LI...-______ :::::::::::S~YS~T='EM':":8~US~~ I 

$0000 ~ 
$0004 ~ 
$0008 C 

$0000 --0 
$0010 ~ 
$0014 ~ 
$0018 G 
$001C ~ 
$0020 ---r
$0024 ---:r--$0028 K 

$002C L 
$0030 M 

$0034 N 

$0038 0 
$003C P 

MAIN MEMORY 

Snoop Copyback 

Figure 2·35. MC88110-A Snoop Copyback 

MC88410 USER'S MANUAL MOTOROLA 



MOTOROLA 

MC88110-A 

RETRY 
PRIMARY LOAD $0028 
CACHE-A INV 

I ???? I? I ? I ? I ?! ?! ?! ?! ? I 

MC88110- B 

PRIMARY 
CACHE-S INV 

I $OOOOIJ!s!c!D!E!F!G!HI 

MC88410-B 

SECONDARY 
CACHE-S 

INV 

Processor 
Invalidate Cycle 

SU 

I $0000 I J 1 sl C I DIE I FIG I H II ! J ! K! L 1M I Nlo ! pi 

$0000 

$0004 
$0008 
$OOOC 

$0010 
$0014 

""'----1 
$0018 t-----f 
$001C 
$0020 

$0024 

$0028 
$002C 
$0030 

$0034 

$0038 
$003C 

MAIN MEMORY 

(Snoop Hit $0028) 

Snoop Copyback 

Figure 2-36. Completion of MC8811 o-A Load, Cache Miss 

MC88410 USER'S MANUAL 2-61 



• 

2.9.4.3 Example 3-Simultaneous Write Misses with Secondary Cache 
Hits 

This example illustrates the progression of events for the case of two MC88110s 
simultaneously attempting a write to a line which is in the secondary cache only. Figure 
2-37 shows the caches in their initial state for this example. In both processor nodes, the 
primary cache lines are invalid, but the secondary cache lines are shared-unmodified. 

MC88110-A MC88110- B 

PRIMARY PRIMARY 
CACHE-A INV CACHE-B INV 

I ???? I? I? I ? I? I? 1 ?I ? 1 ?I I ???? I?I?I?I?I?I?I?I?I 

MC88410-A MC88410-B 

SECONDARY SECONDARY 
CACHE-A SU CACHE-B SU 

I $0000 I AI BI ci 01 EI FI GI HI I $0000 I AI BI ci 01 EI FI GI HI 

I SYSTEM BUS I 

$0000 ~ 
$0004 B ----$0008 -2-
$OOOC 0 ----$0010 E 

I----
$0014 F 

I---
$0018 ~ 
$001C H 

I---· · · ~ 
MAIN MEMORY 

Figure 2·37. Initial State - Example 3 

Figure 2-38 shows both MC88110s attempting to perform a write to the same cache Jine. 
Since neither primary cache has the data, both processors initiate a read-with-intent-to
modify cycle. Both MC88410s then have secondary cache hits, but since the cache lines 
are shared-unmodified and the transaction is intent-to-modify, both MC88410s request 
the system bus for a system invalidate transaction. The arbitration circuitry must grant 
the bus to only one of the MC88410s; in this example, the arbiter grants the bus to 
MC88410-A. MC88410-B then has a snoop hit and invalidates its cache line. Once the 

2-62 MC88410 USER'S MANUAL MOTOROLA 



system invalidate transaction is complete, MC88410-A writes the line to MC88110-A, and 
MC88110-A completes its store instruction. At the end of the transaction, the line is 
marked exclusive-modified in both the primary and secondary caches. 

MC88110- A 

PRIMARY L STORE $0008 
CACHE - A ! INV ..... EM 

1$0000 IAIB LlolEIFIGIHI 

I I I I I I I 

MC88410-A 

SECONDARY I su -+ EM 
CACHE-AI I II I I I 
I $0000 I AI BI ci 01 EI FI GI HI 

(Secondary Cache 
Line Image is Stale) 

System Invalidate 
Transaction 

MC88110- B 

PRIMARY, I J 
CACHE-B. 

I ???? I? I? ? 

STORE $0000 
INV 

Read with Intent 
to Modify (Waiting) 

MC88410- B 

SECONOARY 
CACHE - B SU ..... INV 

I $0000 I AI BI ci 01 EI FI GI HI 

(Snoop Hit $0008) 

~1 __________________________ ~BUSr-__________________________ ~1 

:~~~~+ -
$0008 C. 
$OOOC -0 
$0010 ----e
$0014 ~ -
$0018 --L 
$001C H 
~ 

. -MAIN MEMORY 

(Memory Image of the Cache Line is Stale) 

Figure 2·38. Simultaneous MC88110 Stores, Data Cache Miss, 
MC88410-A System . Invalidate 

Since MC88410-B is forced to invalidate its cache line while it is waiting for the arbiter to 
grant it the bus, MC88410-B re-evaluatesthe transaction and the processor transaction 
misses in the secondary cache so it initiates a read-with-intent-to-modify transaction 
instead (shown in Figure 2-39). MC88110-A snoops the access, recognizes that it has 
cached modified data requested by processor node B, and retries the line read operation 
by MC88410-B. MC88410-A then arbitrates for the processor bus and performs a primary 
cache invalidate transaction. The snoop hardware on MC88110-A then performs a snoop 
copyback, and invalidates the primary cache line. MC88410-A updates the secondary 
cache line and is ready to perform its snoop copyback to main memory. 

MOTOROLA MC88410 USER'S MANUAL 2-63 

• 



• 

MC88110- A 

PRIMARY 
CACHE - A EM -+ INV 

I $0000 I A I s LID lEI F 1 GI H 1 

I I I I I I I 

Primary Cache 
Invalidate Transaction 

MC88410-A 

SECONDARY I EM 
CACHE - A I I I I I I I I 
1$0000 IAIB CIDIEIFIGIHI 

(Snoop Hit $0000) 

SYSTEM BUS 

J I 
Retry $0000 A 

$0004 S 

$0008 C 
$OOOC D 
$0010 E 

$0014 F 

$0018 G 
$001C H 

· · · MAIN MEMORY 

MC88110- B 

PRIMARY I J STORE $0000 
CACHE - S , INV 

1 ???? I? I? ? I ? I? 17 I ? r ? 1 

Read with Intent to 
Modify (Waiting) 

MC88410-B 

SECONDARY 
CACHE-S INV 

I$OOOOIAlslcIDIEIFIGIHI 

Read with 
Intent to Modify 

(Memory Image of the Cache Line is Stale) 

Figure 2-39. MC8841D-B Read-with-Intent-to-Modify, Retried· 

I 

Figure 2-40 shows MC88410-A writing the exclusive-modified line back to memory. Note 
that in this case the snoop copyback is due to an intent-to-modify transaction, so the 
secondary cache line is marked invalid. Since snoop copybacks are not global, no other 
processor nodes snoop the transaction. 

2-64 MC88410 USER'S MANUAL MOTOROLA 



MC88110- A 

PRIMARY 
CACHE-A INV 

I $0000 I AI BI LI 01 EI FI GI HI 

Processor 
Invalidate Cycle 

MC88410-A 

SECONDARY 
CACHE - A EM -+ INV 

I $0000 I AI B LI 01 EI FI GI HI 

MC88110- B 

PRIMARY ,I J STORE $0000 
CACHE - B ~ INV 

I???? I?I? ?I?I?I?I?I?I 
Read with Intent to 
Modify (Waiting) 

MC88410-8 

SECONDARY 
CACHE-B INV 

I $0000 I AI Bl ci 01 EI Fl GI HI 

(Snoop Miss $0000) 

~I _________________________ S~Y~~~EMB~U~S __________________________ ~I 

Snoop Copyback $0000 ~ 
$0004 B -$0008 L -
$OOOC 0 -
$0010 E -
$0014~ 

$0018 G -
$001C H -

. -MAIN MEMORY 

Figure 2·40. MC88410-A Snoop Copyback 

Figure 2-41 shows MC88410-B regaining control of the bus to complete the read that was 
previously retried by MC88410-A. MC88410-B reads the cache line and updates the 
secondary cache line while streaming the data to MC88110-B. MC88110-B then updates 
the primary cache line and completes the store. Since the initial transaction from the 
MC88110 was intent-to-modify, both the primary and secondary cache lines are marked 
exclusive-modified. 

MOTOROLA MC88410 USER'S MANUAL 2-65 

• 



MC88110-A MC88110 - B 

PRIMARY PRIMARY 11 J STORE $0000 
CACHE-A INV CACHE-B INV .... EM 

I $0000 I AI BI LI Dl EI FI GI HI I $0000 I JIB L DIEIFIGIHI 

1 1 1 11 1 1 
I I I I I I I 

Read with 
Intent to Modify 

MC88410-A MC88410- B 

SECONDARY SECONDARY I 
CACHE-A INV INV .... EM CACHE-B 

I I I I I I I 
I $0000 IAIBILI DI EI FIGIHI 1$0000 IAIB L DIEIFIGIHI 

t t t t t t t 
I I 1 1 I I I 

(Secondary Cache 
Image of the Line is Stale) 

I 
SYSJii

BUS I 

$0000 A 
$0004 B (Memory Image of the Cache Line is Stale) r-
$0008 C 
$OOOC D 
$0010 E 
$0014 F 

$0018 G 
$OO1C H 

· • • -MAIN MEMORY 

Figure 2·41. Completion of MC88110-A Load, Cache Miss 

2.9.4.4 Example 4-Simultaneous First Write Hits with Secondary Cache 
Hits 

This example illustrates the progression of events for the case of two MC88110s 
simultaneously attempting a write to a line that is in both the primary and the secondary 
caches. Figure 2-42 shows the caches in their initial state for this example. In both' 
processor nodes, the primary and secondary cache lines are shared-unmodified. 

2-66 MC88410 USER'S MANUAL MOTOROLA 



MC88110-A MC88110- B 

PRIMARY PRIMARY 
CACHE-A SU CACHE-B SU 

I $0000 I AI BI ci 01 EI FI GI HI I $0000 IAIBlclOIEIFIGIHI 

MC88410-A MC88410-B 

SECONDARY SECONDARY 
CACHE-A SU CACHE-B SU 

I $0000 I AI BI ci 01 EI FI GI HI I $0000 I AI BI ci 01 el FI GI HI 

I BUS I 

$0000 + $0004 ----$0008 C ---$OOOC 0 
$0010 --r-
$0014 ~ ----$0018 G 
$001C ~ 

!o--· · · "---
MAIN MEMORY 

Figure 2·42. Initial State - Example 4 

Figure 2-43 shows both MC88110s attempting to perform a write to the same cache line. 
Since both primary caches have the data, both processors initiate a processor invalidate 
transaction. Both MC88410s then have secondary cache hits, but since the cache lines are 
shared-unmodified and the transaction is intent-to-modify, both MC88410s request the 
system bus for a system invalidate transaction. The arbitration circuitry must grant the 
bus to only one of the MC88410s; in this example, the arbiter grants the bus to 
MC88410-A. MC88410-B then has a snoop hit and invalidates its cache line. Since the 
cache line is also in the primary cache (PT AG hit), the MC88410 retries the transaction 
from the MC88110 so that the MC88410 can perform a primary cache invalidate 
transaction. Once the system invalidate transaction from MC88410-A is complete, 
MC88410-A updates its secondary cache line, and MC88110-A completes its store 
instruction. At the end of the transaction, the line is marked exclusive-modified in both 
the primary and secondary caches of processor node A. 

MOTOROLA MC88410 USER'S MANUAL 2-67 

• 



• 

MC88110-A 

PRIMARY 1 L STORE $0008 
CACHE-A SU .... EM 

1$0000 IAIB LIOIEIFIGIHI 

Processor 
Invalidate (Waiting) 

MC8841()"A 

SECONDARY 
CACHE A SU .... EM 

I $0000 I AI B LI 01 EI FI GI HI 

System Invalidate 

MC88110- 8 

PRIMARY I J STORE $0000 
CACHE-B! su 
I $0000 IAIB C OIEI FIGIHI 

Processor 
Invalidate (Retried) 

MC88410-8 

SECONDARY 
CACHE - B SU .... INV 

I $0000 I AI BI ci 01 EI FI GI HI 

(Snoop Hit $0008) 

I ~ ________________________ ~S~Y~~.EM~B~U~S ________________________ ~J 

I I 
!~~~~ + 
$0008 C 
$OOOC 0 
$0010 --r-
$0014 --l
$0018~ 

$001C~ 

MAIN MEMORY 

(Memory Image of the Cache Line is Stale) 

Figure 2·43. Simultaneous MC8811 0 Stores, Data Cache Miss, 
MC88410-A System Invalidate 

Figure 2-44 shows MC88410-B performing the primary cache invalidate transaction. Since 
the primary cache line is shared-unmodified, MC88110-B marks the cache line invalid 
without needing to perform a snoop copyback. 

2-68 MC88410 USER'S MANUAL MOTOROLA 



MC88110-A MC88110- B 

PRIMARY PRIMARY 
CACHE-A EM CACHE-B SU -'INV 

I $~ IAIBILIOIEI FIGIHI I $0000 IAIBlclolEIFIGIHI 

Primary Cache 
Invalidate 

MC88410-A MC88410-B 

SECONDARY SECONDARY 
CACHE-A EM CACHE-B INV 

I $0000 IAIBI LlolEI FIGIHI I $0000 IAIBlcl olEI FIGIHI 

I BUS I 

$0000 + $0004 (Memory Image of the Cache Line is Stale) 
I----

$0008 + $OOOC 
$0010 ~ 
~ 

$0014 F 
I----

$0018 ~ 
$001C H 
~ · · · "----

MAIN MEMORY 

Figure 2-44. MC88410-8 Processor Invalidate Transaction 

After the completion of the primary cache invalidate transaction from MC88410-B, 
MC88110-B attempts the store that was retried by MC88410-B. Since the line was 
invalidated due to the snoop hit, there is now a miss in the primary and secondary caches 
and MC88410-B initiates a read-with-intent-to-modify transaction shown in Figure 2-45. 
MC88110-A snoops the access, recognizes that it has cached modified data requested by 
processor node ,B, and retries the line read operation by MC88410-B. MC88410-A then 
arbitrates for the processor bus and performs a primary cache invalidate transaction. The 
snoop hardware on MC88110-A then performs a snoop copyback, and invalidates the 
primary cache line. The MC88410 updates the secondary cache line and is ready to 
perform its snoop copyback to main memory. 

MOTOROLA MC88410 USER'S MANUAL 2-69 

• 



• 
RETRY 

MC88110-A 

PRIMARY 
CACHE-A 

Primary Cache Invalidate 
and Copyback 

MC88410-A 

SECONDARY EM 
CACHE - A ~-+--r-.,........,---r---' 

(Snoop Hit $0000) 

$0000 
$0004 

$0008 
$OOOC 
$0010 

$0014 

$0018 
$001C 

MAIN MEMORY 

MC88110-B 

Read with Intent 
to Modify (Waitir.lg) 

MC88410-B 

SECONDARY 
CACHE-B INV 

Read with Intent 
to Modify (Waiting) 

(Memory Image of the Cache Line is Stale) 

Figure 2-45. MC88410-B Read-with-Intent-to-Modify, Retried 

Figure 2-46 shows MC88410-A writing back the exclusive-modified line to memory. Note 
that in this case the snoop copyback is due to an intent-to-modify transaction, so the 
secondary cache line is marked invalid. Since. snoop copybacks are not global, no other 
processor nodes snoop the transaction. 

2-70 MC88410 USER'S MANUAL MOTOROLA 



MC88110- A 

PRIMARY 
CACHE-A INV 

I $0000 I AI BI LI 01 EI FI GI HI 

MC88410-A 

SECONDARY 
CACHE-A EM~INV 

I $0000 I AI B LI 01 EJ FJG1HJ 

!!!!!!!! 

MC88110- B 

PRIMARY 
CACHE-B INV 

I$OOOOIAIBlcIOIEIFIGIHI 

MC88410-B 

SECONDARY 
CACHE-B INV 

I $0000 I AI BI ci 01 EI FI GI HI 

IL-__________ -=========~~S~YSTEM~B~U~S----------------~----~I 

SNOOP COPYBACK 

MOTOROLA 

$0000 A 
I----

$0004 B 
I----

$0008 L 
I----

$OOOC 0 
$0010~ 
$0014~ 

I----

:~~;~ + 
I---· · · i...---

MAIN MEMORY 

Figure 2-46. MC88410-A Snoop Copyback 

MC88410 USER'S MANUAL 

• 

2-71 



• 

Figure 2-47 shows MC88410-B regaining control of the bus to complete the store that was 
previously retried by MC88410-A. MC88410-B reads the cache line and updates the 
secondary cache line while streaming the data to MC88110-B. MC88110-B then updates 
the primary cache line and completes the store. Since the initial transaction from 
MC88110-B was intent-to-modify, both the primary and secondary cache lines are marked 
exclusive-modified. 

MC88110-A MC88110- B 

RETRY 
PRIMARY PRIMARY 11 J STORE $0000 
CACHE-A INV CACHE-B INV .... EM 

I $0000 I AI BI LI 01 EI FI GI HI 1$0000 IJIB LlolEIFIGIHI 

i i iii r r 
I II II I I I I 

I 
MC88410-A MC88410-B 

SECONDARY SECONDARY INV .... EM 
CACHE-A INV CACHE-B 1 I I I I I I 
I $0000 IAIBI LI 01 EI FIGIHI I $0000 I AI B LID I ElF I G I H I 

f f f f f i i 
I I I I I I I 

(Snoop Miss $0000) 

I SYSTEM BUS 

111 
I 

$0000 A 
$0004 B (Memory Image of the Cache Line is Stale) 

$0008 L 
$OOOC 0 
$0010 E 

$0014 F 

$0018 + $OO1C -
• · · -MAIN MEMORY 

Figure 2·47. Completion of MC8811D-A Load, Cache Miss 

2-72 MC88410 USER'S MANUAL MOTOROLA 



I 

SECTION 3 
SIGNAL DESCRIPTION 
This section describes the MC88410 input and output signals in their functional groups. 
Figure 3-1 shows the functional organization of the MC88410 bus signals. The functional 
groups are the following: 

• Processor interface signals 
• System interface signals 
• RAM interface signals 
• System configuration signals 
• Test signals. 

The MC88410 processor interface signals correspond with the MC88110 input and output 
signals (see Section 11 in the MC88110 Second Generation RISe Microprocessor User's 
Manual) with the omission of the data and data bus arbitration signals and status signals. 
The MC88410 system interface is similar to the MC88110 system interface with the 
addition of a late shared signal and an additional snoop status signal. Both the processor 
and system interface include 32 address I/O signals. Table 3-1 provides the mnemonic, 
type, and state out of reset for the MC88410 processor interface and system interface 
signals. 

The RAM interface includes 17 address I/O signals and control signals for the MCM62110 
secondary cache RAM array. The system configuration signals are set during reset and 
then used for tag monitoring during MC88410 operation. Finally, the test signals are 
included for system diagnostics. Table 3-2 provides the mnemonic, type, and state out of 
reset for the RAM interface, system configuration, and test signals. 

MOTOROLA 

NOTE 

The terms assert and negate are used extensively in this 
manual to avoid confusion between active-high and active-low 
signals. Assert or assertion indicates that a signal is active or 
true, regardless of whether the signal is active high or active 
low. Negate or negation indicates that the signal is inactive or 
false. 

MC88410 USER'S MANUAL 3-1 

• 



<} S A31-0,r-.., ~ P_A31-0 .. 
S_TSIZ1-0 ...... : P_TSIZ1-0 

.... 
<} 

S_TBST .f'::= MC88410 .: P _ TBST ...-'\ .. ......, ....... ~ r 

<' 
s_RiW ,... _ p_RiW .. 

~ S lK ..... ~ P lK 
r 

~ S_CI :: P _CI 
~ S_MC 

..... 
......, ~ P_WT 

<} SiNV ,... : P INV --~~ Q) 
~ P GBl ~ <' ~ 

~ S TC3-0 ..... 't: ~ P_TC3-0 .... 
<...., 

S_UPA 1-0 
~ 

.: P _UPA1-0 <} .E 
5 ..... 

E 

{ c 
0 

U 
~ 

• ~ en 

~ 
t-

en ... P_Cl en 
Q) 

<) S TS e ~ P PTA .. 
S_TA ,.. a.. __ P _ TS ... ... 

S TEA ~ C/) ..... P_TA ... 
1 --S TRTRY;:' P_TEA :: 

S_AACK ~ 3 P_TRTRY 
... .... ..... i _ P _ARTRTY ... 

-4 
~ 
::::I 

~ 
C'> 
0 
3-
2-

c 

{ 
0 

! 
:= -e 
<C 
en 
::::I m 

<} S_BR ~ 
..... 

S BG "- P BR .. 
<' OBB~ __ P BG :. ....., 

S'"lfSG ::: .: P _ABB 
... .. 

<) USB';; ~ r 

.... 

OJ 

} 
c::: en 
» a-
~ a 
0" 
::::I 

e 

{ S 
u 

8 c 
C/) 

DIAG 
<,S_SSTAT2-0 TRST 

....., SHD../""::: TMS 
. TSHD ~ TCK 

S_SR :::: TOI 
"'" TDO 

} -4 
CD 
!!l-
en 

cO" 
::::I 
g, 
Ui 

~ { 0 u 
is 
::::I u:: 

S_ARTRY "-
F1-0 ;::. FDOILINSIZ 

FBSY ::::. FD1/CWM ..... FD2 
SDO/CSP 

en 

l 
3 
C'> 
0 
~ cc 
c::: 

CS SD1/ARBEN ~ 
ClK SD2ICSIZO 0 

::::I 

HClK RAM Interface SD3/CSIZ1 
RST 

en 
cO" 
::::I 
g, 
Ui 

ffil gl ffil~1 ~I~ :ell> 
m" 
bl~ 

'V 'V " , , , ", 
---c> System Bus Interface 

--.... ~ Processor Bus Interface 

Figure 3·1. MC88410 Signals 

3-2 MC88410 USER'S MANUAL MOTOROLA 



Table 3·1. Transaction Signal Summary 

Function Processor Interface Signals System Interface Signals 

Mnemonic Type Reset Mnemonic Type Reset 

Address Bus P_A31-P_AO I/O Three-state S_A31-S_AO I/O Three-state 

Transfer Attribute Signals 

ReadlWrite P_RNJ I/O Three-state S_RNJ I/O Three-state 

Lock P_LK Input Three-state S_LK Output Three-state 

Cache-inhibit P _CI Input Three-state S_CI Output Three-state 

Write-through P_WT Input Three-state Not available on system bus 

User page attributes P _UPA1-0 Input Three-state S_UPA1-0 Output Three-state 

Transfer burst P_TBST I/O Three-state S_TBST I/O Three-state 

Transfer size P_TSIZ1-o Input Three-state S_TSIZ1-o Output Three-state 

Transfer code P_TC3-0 Input Three-state S_TC3-0 Output Three-state • Invalidate P -'NV I/O Three-state S_INV I/O Three-state 

Global P _GBL I/O Three-state S~GBL I/O Three-state 

Cache line P_CL Input Three-state Not available on system bus 

Memory cycle Not available on processor bus S_MC Output Three-state 

Transfer Control Signals 

Transfer start P_TS I/O Three-state S_TS Output Three-state 

Transfer acknowledge P_TA Output Three-state S_TA Input Three-state 

Pretransfer acknowledge P_PTA Output Three-state Not available on system bus 

Transfer error acknowledge P _TEA Output Th ree-state S_TEA Input -
Transfer retry P _TRTRY Output Three-state S_TRTRY Input -
Address acknowledge Not available on processor bus S_AACK Input -
Snoop Control Signals 

Address retry P_ARTRY Input - S_ARTRY Input -
Snoop request Not available on processor bus S_SR Input -
Snoop status Not available on processor bus S_SSTAT2-0 Output Three-state 

Shared Not available on processor bus SHD Input -
Transfer shared Not available on processor bus TSHD Input -
Bus Arbitration Signals 

Bus request P_BR Output Negated S_BR Output Negated 

Bus grant P_BG I/O Negated S_BG Input -
Address bus busy P_ABB I/O Three-state S_ABB I/O Three-state 

Data bus grant Not available on processor bus s:DBG Input -
Data bus busy Not available on processor bus ~ 1/0 Three-state 

MOTOROLA MC88410 USER'S MANUAL 3-3 



Ell 

Table 3-2. RAM Interface, Configuration, and Test Signals 

Function Mnemonic Type Reset 

RAM Interface Signals 

Address bus R_A16-R_AO Output Low 

RAM write enable RWE7-0 Output Negated 

Processor input enable PiE Output Negated 

Processor output enable POE Output Negated 

System input enable SIE Output Negated 

System output enable SOE Output Negated 

Flush Signals 

Flush control F1-FO Input -
Flush busy FBSY Output -
System Configuration Signals 

Chip select CS Input Negated 

System clock ClK Input - .. 
Half-speed system clock HClK Input -
Reset RST Input -
Tag function descriptor Olline size FOO/llNSIZ 110 Asserted 

Tag function descriptor 1/critical word mode F01/CWM 1/0 Asserted 

Tag function descriptor 2 F02 1/0 Asserted 

Tag status descriptor O/chip select polarity SOO/CSP 110 Asserted 

Tag status descriptor 1/external arbiter enable SOllARBEN 1/0 Asserted 

Tag status descriptor 21cache size 0 S02lCSIZO 1/0 Asserted 

Tag status descriptor 3/cache size 1 S03/CSIZ1 1/0 Asserted 

Test Signals 

Diagnostic OIAG Input -
JTAG test reset TRST Input -
JTAG test mode select . TMS Input -
JT AG test clock TCK Input -
JTAG test data input TOI Input -
JT AG test data output TOO Output -

3.1 PROCESSOR INTERFACE SIGNALS 
The processor interface signals can be functionally grouped into the processor address 
bus, processor transfer attribute, processor transfer control, processor address retry 
(snoop control), and processor bus arbitration signals, The processor interface signals are 
identified by the prefix P _' 

3-4 MC88410 USER'S MANUAL MOTOROLA 



Processor Address Bus (P _A31-P _AO) 
The P_A31-P_AO signals comprise the address bus for all processor bus transactions. 
These signals are outputs when the MC88410 has mastership' of the address bus and 
inputs when the MC88II0 has mastership of the processor bus (see 2.4 Cache 
Coherency). These signals are three-stated at all other times. 

3.1.1 Processor Transfer Attribute Signals 
The MC88410 processor transfer attribute signals differ from the MC88I10 by the absence 
of the MC signal. The timing for each of the transfer attribute signals is the same as the 
timing for the address bus signals, except during a locked transaction. Since the MC88410 
parks the MC88II0 (p _BG asserted) between the two transactions of a locked transaction, 
the transfer attribute signals remain asserted during both transactions. 

Processor ReadlWrite (P _RlW) 
The P _R/W signal indicates whether the transaction is a read (p _R/w high) or a write ~ 
(P_R/W low) transaction. The P_R/W signal is an input when the MC88II0 drives an ~ 
address and an output only during a primary cache invalidate transaction (see 2.4 Cache 
Coherency). It is three-stated at all other times. 

Processor Lock (P_LK) 
The MC88II0 drives the P_LK signal to indicate that an access is part of an atomic data
access sequence. The MC88II0 asserts the P_LK signal during locked transactions only. 

During the execution of the locked transaction, the MC88II0 asserts the P_LK signal for 
both the read and write portions of the locked transaction. The P _LK signal is asserted to 
indicate that the bus arbitration circuitry should not allow another bus master to alter the 
data that the locked transaction accesses between the read and write transactions. 

The MC88410 drives the S_LK signal to the system bus in response to the MC88II0 
assertion of the P _LK signal. The state of P _LK determines the status of the S_LK signal. 

Processor Cache-Inhibit (P _ C I) 
The P_CI signal indicates that the data will not be written into the MC88110 data cache. 
For single-beat transactions, xmem transactions, and touch and allocate load transactions, 
the P_CI signal reflects the value of the CI bit in the address translation cache entry of the 
MC88II0. For all other transactions, the P_CI signal is negated. 

The P _CI input signal causes the MC88410 to treat the current transaction as cache
inhibited. If the transaction hits in the secondary cache tags, the secondary cache line is 
flushed and invalidated before the access proceeds. 

MOTOROLA MC88410 USER'S MANUAL 3-5 



Processor Write-Through (P _ W T) 
The P _ WT input signal determines the memory update policy of the secondary cache. See 
Section 2 Secondary Cache Operation for more information. 

Processor User Page Attributes (P _UPA1-P _UPAO) 
The P_UPAI and P_UPAO input signals reflect the user attribute bits in the ATC entry of the 
MC88110. During MC88110 copyback operations, these signals are negated. The signals 
are received from the MC88110 and passed to the system interface for all transactions that 
require system bus interface mastership. 

Processor Transfer Burst (P _ TBST) 
The P _TBST signal indicates whether the transaction is single-beat or burst. It is an input 
when the MC88110 is driving an address and an output during a primary cache invalidate 
transaction. It is three-stated at all other times. When the P _TBST signal is asserted by the 
MC88110, the transaction is an eight-word burst. If it is negated, the transaction is a 
single-beat transaction and the size of the data to be transferred is encoded in the P _TSIZl

P_TSIZO signals. Note that P_TBST is ignored as an input if P_CI is asserted. The MC88410 
asserts the P _TBST signal for a primary cache DMA invalidate transaction and negates it 
for a primary cache invalidate transaction. 

Processor Transfer Size (P _ TSIZ1-P _ TSIZO) 
The P _TSIZI and P _TSIZO signals indicate the size of the requested data transfer as shown 
in Table 3-3. All transfers are aligned to their respective size boundaries. The P_TSIZl

P _TSIZO signals may be used along with P _A2-P _AO to determine which portion of the data 
bus contains valid data for a write transaction or which portion of the bus should contain 
valid data for a read transaction. Note that the P_TSIZI-P_TSIZO signals indicate the size of 
the requested data transfer independent of the value of P _TBST, so it is possible for the 
processor transfer size signals to indicate a byte, half word, or word transfer when the 
P _TBST signal is asserted. Therefore, if the P _TBST signal is asserted, the MC88410 transfers 
double words regardless of the P _TSIZI-P _TSIZO encoding. 

Table 3-3. Processor Transfer Size Signal Encoding 

P _ TSIZ1-P _ TSIZO Transfer Size 

00 Double word (64 bits) 

01 Word (32 bits) 

1 0 Half word (16 bits) 

1 1 Byte (8 bits) 

3-6 MC88410 USER'S MANUAL MOTOROLA 



Processor Transfer Code (P _ TC3-P _ TCO) 
The P _Tc3-P _TCO signals provide supplemental information about the corresponding 
address. The transfer code signals are encoded as shown in Table 3-4. 

Table 3-4. Processor Transfer Code Signal Encoding 

P_TC3-P_TCO Transfer Code 

0000 Reserved 

0001 User data access 

0010 User touch, flush, or allocate access 

0011 Data MMU table search operation 

0100 Replacement copyback 

0101 Supervisor data access 

011 0 Supervisor touch, flush, or allocate access 

01 1 1 Snoop copyback operation 

1000 Reserved 

1001 . User instruction access 

101 0 Reserved 

1 0 1 1 Instruction MMU table search operation 

1 100 Reserved 

1 1 0 1 Supervisor instruction access 

1 1 1 0 Reserved 

1 1 1 1 Reserved 

Processor Invalidate (P _IN V) 
When asserted by the MC88410, the P _INV output signal indicates that the MC88110 
should invalidate the cache line on a snoop hit. If the snoop hit is to a modified primary 
cache line, the line is copied back before being invalidated. This signal is an input when 
the MC88110 is driving an address and an output when the MC88410 performs a primary 
cache invalidate transaction to the MC88110. It is three-stated at all other times. 

Processor Global (P _GBl) 
The processor address bus master asserts the P _ GBL signal to indicate that the transaction 
in progress is marked as "global." The P _GBL signal reflects the value specified for the 
memory reference in the corresponding MC88110 memory management unit. The 
MC88410 asserts the P _GBL signal during a primary cache invalidate transaction, so the 
MC88110 snoops on the address being driven. When the MC88110 is driving the 
processor address bus, the P_GBL signal is an input to the MC88410. 

Processor Cache Line (P _Cl) 
The P_CL input signal indicates which line in the MC88110 cache is involved in the current 
data transfer as shown in Table 3-5. 

MOTOROLA MC88410 USER'S MANUAL 3-7 

E 



• 

Table 3-5. Processor Cache Line Signal 

P_CL Cache Line 

0 Line 0 

1 Line 1 

3.1.2 Processor Transfer Control Signals 
The MC88410 transfer control signals are discussed in the following paragraphs. 

Processor Transfer Start (P _ T S) 
The MC88410 asserts the P _TS output signal to indicate that a transaction has started and 
the driven address is valid. The MC88410 asserts the P_TS signal for one clock and then 
negates it for the duration of the transaction. The P _TS signal is an output when the 
MC88410 is the processor bus master and initiates an invalidate transaction. It is an input 
when the MC88410 is not performing a transaction. The P _TS signal should be connected 
to both the MC88110 TS and SR signals. 

Processor Transfer Acknowledge (P _ T A) 
During a processor read transaction, the MC88410 asserts P_TA on every clock that new 
data is valid. During a write transaction, the MC88410 asserts P_TA on every clock that 
new data from the MC88110 has been latched by the secondary cache or main memory. 

Processor Pretransfer Acknowledge (P _PTA) 
The MC88410 asserts the P_PTA output signal to indicate that the initial (or only) assertion 
of the transaction may follow on the next rising clock edge. During the clock between the 
assertion of the P_TS and P_PTA signals, the data unit of the MC88110 can continue to 
access the data cache (cache hits only) even though a bus transaction is in progress. The 
MC88410 asserts P_PTA in the clock following the assertion of the P_TS by the MC88110. 
For systems that do not require decoupled cache accesses, this signal may be connected to 
ground. 

Processor Transfer· Error Acknowledge (P _TEA) 
The MC88410 asserts the P_TEA output signal to indicate that a bus transaction error has 
occurred. The assertion of P _TEA results in the immediate termination of the transfer in 
progress. The P_TEA signal reflects the status of the S_TEA input signal. The actions of the 
MC88410 after the transfer is terminated are described in 5.6.4 Transfer Error 
Termination. 

Processor Transfer Retry (P _ TRTRY) 
The MC88410 asserts the P _TRTRY output signal to indicate that the current processor 
transaction should be terminated and reinitiated. The assertion of P _TRTRY results in the 
immediate termination of the transaction. The assertion of the signal allows the MC88410 
to regain processor bus mastership during a processor transaction. The actions of the 
MC88410 after the transfer is terminated are described in 5.6.2 Transfer Retry 

3-8 MC88410 USER'S MANUAL MOTOROLA 



I 

Termination. If the P _TRTRY signal is asserted at the same time as the P _TEA signal, the 
P _TEA signal has priority and an error termination occurs. 

Processor Address Retry (P _ARTRY) 
The P _ARTRY signal (used for snoop control) is an input that indicates to the MC88410 that 
it should terminate the transaction and reinitiate the transaction later. The MC88410 
responds to the signal by releasing the processor bus to allow a copyback transaction by 
the processor. The P _ARTRY signal of the MC88410 should be connected to the SSTATI 

signal of the MC88110. 

3.1.3 Processor Bus Arbitration Signals 
The processor bus arbitration signals are discussed in the following paragraphs. 

Processor Bus Request (P _BR) 
The MC88410 asserts the P _BR output signal to request processor bus mastership in 
systems using external arbitration on the processor bus. The MC88410 continues to assert 
the signal until it receives a qualified bus grant. A qualified bus grant is P _BR asserted 
and P _ABB negated. 

The P _BR signal is only asserted by the MC88410 to perform the primary cache DMA 
invalidate and primary cache invalidate transactions. 

Processor Bus Grant (P _B G) 
The P _BG signal is an input and output. The P _BG signal is an input when external 
arbitration is used and an output when MC88410 on-chip arbitration is used. 

The external bus arbiter asserts the P _BG input signal to indicate to the MC88410 that it 
has been granted address bus mastership. The MC88410 assumes address bus mastership 
only if P _BG is asserted and the bus is not already in use (p _ABB negated). The external 
arbiter may "park" the MC884100n the bus by keeping P_BG asserted after the P_BR signal 
has been negated (see 4.3 Processor Bus Arbitration). As an output signal, the MC88410 
on-chip arbiter asserts P _BG to grant the bus to the MC88110, and negates it to take control 
of the bus. 

Processor Address Bus Busy (P _A B B) 
The current address bus master asserts the P _ABB signal to indicate that potential bus 
masters must wait to take mastership of the address bus. Potential address bus masters 
use this input to qualify P_BG. 

The P_ABB signal is an input when the MC88410 arbitrates for the processor bus and uses 
the signal to qualify the bus grant. The MC88410 asserts the P _ABB signal as an output 
when it has mastership of the bus. 

MOTOROLA MC88410 USER'S MANUAL 3-9 

• 



• 

3~2 SYSTEM INTERFACE SIGNALS 
The system interface signals can be functionally grouped into the system address bus, 
system transfer attribute, system transfer control, system snoop control, and system bus 
arbitration signals. The system interface signal~ are identified by the prefix S_o 

System Address Bus (S_A31-S_AO) 
The S_A)l-S_AO signals comprise the address bus for all system bus transactions. These 
'signals are outputs when the MC88410 has mastership of the address bus and inputs 
when the MC88410 has mastership of the system bus (see 2.4 Cache Coherency). These 
signals are three-stated at all other times. 

3.2.1 System Transfer Attribute Signals 
The MC88410 system transfer attribute signals differ from the MC88110 signals by the 
absence of the write-through (WT) and cache line (CLINE) signals. The timing for each of 
the transfer attribute signals is the same as the timing for the address bus signals, except 
during a locked transaction (xmem). If the external arbiter' parks the MC88410 on the 
system bus between the two transactions of an xmem operation, the transfer attribute 
signals remain asserted during both transactions. 

System ReadlWrite (S_RlW) 
The S_R/W signal indicates whether the transaction is a read (S_R/W high) or a write 
(S_R/W low) transaction. The S_R/W signal is an output when the MC88410 is driving an 
address and an input when the MC88410 is snooping (see 2.4 Cache Coherency). It is 
three-stated at all other times. 

System Lock (S_LK) 
The MC88110 drives the P_LK signal to indicate that an access is part of an atomic data
access sequence. The MC88410 asserts the S_LK signal during locked transactions only. 

During the execution of the locked transaction, the MC88410 asserts the S_LK signal for 
both the read and write portions of the locked (xmem) transaction. The S_LK signal is 
asserted to indicate that the system bus arbitration circuitry should not allow another bus 
master to alter the data that the locked transaction accesses between the read and write 
transactions. The state of P_LK determines the status of the S_LK signal. 

System Cache-Inhibit (8_ C I) 
The S_CI signal indicates that the data will not be written into the secondary cache. The 
state of P_CI determines the status of the S_CI signal. 

The P_CI signal causes the MC88410 to treat the current transaction as cache-inhibited. If 
the transaction hits in the secondary cache tags, the secondary cache line is flushed and 
invalidated before the access proceeds. 

3-10 MC88410 USER'S MANUAL MOTOROLA 



System User Page Attributes (S_UPA 1-S_UPAO) 
Thes_uPAl and S_UPAO input signals reflect the user attribute bits in the ATC entry of the 
MC88110. During MC88110 copyback operations, these signals are negated. The signals 
are received from the MC88110 and passed to the system interface for all transactions that 
require system bus interface mastership. 

System Transfer Burst (S_ TBST) 
The S_TBST signal indicates whether the transaction is single-beat or burst. It is an output 
when the MC88410 is driving an address and an input when the MC88410 is snooping an 
address. It is three-stated at all other times. When the S_TBST signal is asserted, the 
transaction is a line burst. If it is negated, the transaction is a single-beat transaction, and 
the size of the data to be transferred is encoded in the S_TSIZl-S_TSIZO signals. 

System Transfer Size (S_TSIZ1-S_TSIZO) 
The S_TSIZI and S_TSIZO signals indicate the size of the requested data transfer as shown .. 
in Table 3-6. All transfers are aligned to their respective size boundaries. The S_TSIZl-
S_TSIZO signals may be used along with S_A2-S_AO to determine which portion of the data 
bus contains valid data for a write transaction or which portion of the bus should contain 
valid data for a read transaction. Note that S_TSIZl-S_TSIZO indicate the size of the 
requested data transfer independent of the value of S_TBST, so it is possible for the system 
transfer size signals to indicate a byte, half word, or word transfer when the S_TBST signal 
is asserted. However, if S_TBST is asserted, the memory system must transfer double 
words regardless of the S_TSIZl-S_TSIZO encoding. 

Table 3-6. System Transfer Size Signal Encoding 

S_ TSIZ1-5_ TSIZO Transfer Size 

00 Double word (64 bits) 

01 Word (32 bits) 

1 0 Half word (16 bits) 

1 1 Byte (8 bits) 

System Transfer Code (S_ TC3-S_ TCO) 
The s_Tc3-s_TCO signals provide supplemental information about the corresponding 
address. The transfer code signals are encoded as shown in Table 3-7. 

MOTOROLA MC88410 USER'S MANUAL 3-11 



• 

Table 3-7. System Transfer Code Signal Encoding 

S_ TC3-S_ Teo Transfer Code 

0000 Reserved 

0001 User data access 

0010 User touch, flush, or allocate access 

0011 Data MMU table search operation 

0100 Replacement copyback operation 

0101 Supervisor data access 

0110 Supervisor touch, flush, or allocate access 

01 1 1 Snoop copyback operation 

1000 Reserved 

1001 User instruction access 

1010 Reserved 

1011 Instruction MMU table search operation 

1100 Reserved 

11 01 Supervisor instruction access 

1 11 0 Reserved 

1 1 1 1 Reserved 

System Invalidate (8_INV) 
When asserted, the S_INV output signal indicates that snooping MC88410s should 
invalidate their secondary cache lines on a snoop hit. If the snoop hit is to a modified line, 
the secondary cache line is copied back before being invalidated. If the snoop hit is to a 
line included in the primary cache, a primary cache invalidate transaction occurs before 
the secondary cache snoop copyback operation. The S_INV signal is an input when the· 
MC88410 is driving an address and an output during MC88410 system transactions. It is 
three-stated at all other times. The S_INV signal is asserted for all write transactions and 
read transactions that are intent-to-modify. It is negated for all other read transactions. 

System Memory Cycle (8_MC) 
When asserted, the S_MC output signal indicates that a data transfer transaction is in 
progress. When S_MC is negated, the current bus transaction is an invalidate cycle and no 
data is transferred. During invalidate cycles, valid data is driven, but the memory system 
is not required to execute the data write. The S_MC signal is an output when the MC88410 
is driving an address and an input when the MC88410 is snooping. It is three-stated at all 
other times. 

System Global (8_ G B L) 
The system address bus master asse,rts the S_GBL Signal to indicate that the transaction in 
progress is marked as "globa1." Normally, S_GBL reflects the value specified for the 
memory reference in the corresponding MC88110 MMU. The MC88410 asserts the S_GBL 

3·12 MC88410 USER'S MANUAL MOTOROLA 



signal during a system invalidate transaction, so other devices will snoop the address 
being driven. When the MC88410 is snooping, S_GBL is an input. 

3.2.2 System Transfer Control Signals 
The MC88410 system transfer control signals differ from the MC88110 signals by the 
absence of the PTA signal. The MC88410 system transfer control signals are discussed in 
the following paragraphs. 

System Transfer Start (8_ TS) 
The MC88410 asserts the S_TS output signal to indicate that a transaction has started on 
the system bus and the driven address is valid. The MC88410 asserts the S_TS signal for 
one clock and then negates it for the duration of the transaction. The S_TS signal is an 
output when the MC88410 initiates a system bus transaction. It is three-stated at all other 
times. 

System Transfer Acknowledge (8_ T A) 
The assertion of S_TA (while S_TRTRY and S_TEA are negated) indicates normal transaction 
tertt1.ination to the MC88410. 

In the full-speed mode, assertion of S_TA indicates that the memory system is ready to 
supply or latch the data in the following clock. For a read transaction, the data is valid on 
the data bus and may be latched by the MC88410 in the following clock. For a write 
transaction, the memory system can accept the data in the following clock. In the half
speed mode, assertion of S_TA indicates to the MC88410 that the current data transfer has 
completed successfully. For a read transaction, the data is valid on the data bus and may 
be latched by the MC88410. For a write transaction, the data has been accepted by the 
memory system. 

System Transfer Error Acknowledge (8_ TEA) 
The memory system asserts the 5 _TEA output signal to indicate that a bus transaction 
error has occurred. The assertion of S_TEA results in the immediate termination of the 
transfer in progress. If the system transaction is the result of a processor transaction, the 
MC88410 asserts P _TEA. The actions of the MC88410 after the transfer is terminated are 
described in 5.6.4 Transfer Error Termination. 

System Transfer Retry (8 _ TRT RY) 
The memory system asserts the S_TRTRY output signal to indicate that the current system 
bus transaction should be terminated and reinitiated. The assertion of S_TRTRY results in 
the immediate termination of the transaction. The actions of the MC88410 after the 
transfer is terminated are described in 5.6.2 Transfer Retry Termination. If S_TRTRY is 
asserted at the same time as the S_TEA signal, S_TEA has priority. 

System Address Acknowledge (8 _AA C K) 
The MC88410 S_AACK signal is used in systems that have the split-bus capability to 
terminate address bus mastership. When the S_AACK input signal is asserted, the 
MC88410 stops driving an address on the address bus and negates the S_ABB signal. 

MOTOROLA MC88410 USER'S MANUAL 3-13 

.. 



• 

3.2.3 System Snoop Control Signals 
The MC88410 system snoop control signals are discussed in the following paragraphs. 

System Snoop Request (S_SR) 
The S_SR input signal indicates to all snooping MC88410s that the current address on the 
system interface should be latched because a snoop lookup may be required. The S_SR 

signal can be connected to the S_TS signal of other bus masters. Since the MC88410 
ignores S_SR when it drives S_TS,S_SR may also be connected to the S_TS signal of the 
same MC88410. Note that S_SR must only be asserted for one clock and therefore should 
not be connected to S_GBL. The S_SR signal must be negated and reasserted between two 
accesses that need to be snooped, or it will be ignored on the second access. The MC88410 
only snoops transactions when both the S_SR and S_GBL signals are asserted. 

System Address Retry (S_ARTRY) 
The S_ARTRY signal is an input that indicates to the current bus master that another bus 
master has requested that it terminate the address bus tenure and reinitiate the 
transaction later. An MC88410 that is the current bus master responds to the signal by 
releasing the system bus to allow a copyback operation. The MC88410 detects a qualified 
S_ARTRY on the clock edge following the assertion of S_TS. The S_ARTRY signal is qualified 
with S_AACK or with the first beat of data. 

System Snoop Status (S_SSTAT2-S_SSTATO) 
The S_SSTAT2-S_SSTATO signals indicate the status of the MC88410 transaction as shown in 
Table 3-8. These output signals are asserted by a snooping bus master when it detects a 
snoop hit or collision. The S_SSTAT2 signal indicates that a copyback operation will occur. 
S_SSTATI is asserted for both snoop hits and collisions, so it can be directly or indirectly 
connected to the S_ARTRY signal of other processors. The S_SSTATO signal is asserted for 
all snoop hits, so it can be directly or indirectly connected to the SHD signal of other bus 
masters. When S_SSTATI and S_SSTATO are asserted but S_SSTAT2 is negated, then each 
signal must have been asserted by a different snooping device. 

Table 3-8. Snoop Status Signals 

mm rom rom Status 

Three-state . Three-state Three-state No collision, no snoop hit 

Three-state Three-state Asserted Snoop hit shared 

Three-state Asserted Three-state Pipeline collision 

Asserted Asserted Asserted Snoop hit modified, will copy back 

Shared (8 H D) 
The assertion of the SHD signal indicates that the cache line currently being read into the 
data cache should be marked as shared-unmodified. If SHD is negated, the cache line is 
marked as exclusive-unmodified. If the S_INV signal is asserted for the transaction, the 

3-14 MC88410 USER'S MANUAL MOTOROLA 



line is marked exclusive-unmodified regardless of the state of the SHD signal. The timing 
of the SHD input is the same as the timing for S_ARTRY. 

Transfer Shared (T S H D) 
The TSHD input signal provides a mechanism for other devices on the system interface to 
specify during the data bus tenure that the current secondary cache line should be 
marked shared-unmodified. The memory system can derive TSHD from the S_SSTATO 

signal. The MC88410 samples TSHD at the same time as data, allowing the memory 
system to collect and pipeline snoop responses from distant snooping devices that have a 
long response time. 

Note that if the MC88410 detects the TSHD signal asserted during the first data beat of a 
secondary cache line allocation, the cache line is placed into a shared-unmodified state 
instead of an exclusive-modified state. 

Flush Control (F1-FO) 
The MC88410 system interface has two flush control input signals, namely the Fl (flush 1) 
and FO (flush 0) signals. The MC88410 initiates the flush and invalidate operations when 
it detects the appropriate encoding of flush control signals for at least one clock cycle. The 
encoding for Fl and FO is shown in Table 3-9. 

Table 3-9. Flush Control Signal Encoding 

F1 FO Function 

0 0 No operation 

0 1 Flush page 

1 0 Flush all 

1 1 Invalidate all 

Flush Busy (FBSY) 
The FBsY signal is an MC88410 system interface output indicating when a flush or 
invalidate operation is in progress. The FBSY signal is asserted at the beginning of a flush 
operation and is negated when the flush operation is complete. 

To initiate a flush or invalidate operation, the appropriate flush control signals must be 
asserted for one clock cycle. When the MC88410 recognizes the flush control signal 
encoding, it asserts the FBSY signal one clock later and begins the flush or invalidate 
operation. The FBSY signal may be used to clear the external control register which drives 
the flush control signals. 

3.2.4 System Bus Arbitration Signals 
The MC88410 system bus arbitration signals are discussed in the following paragraphs. 

MOTOROLA MC88410 USER'S MANUAL 3-15 

• 



• 

System Bus Request (S_BR) 
The MC88410 asserts the S_BR output signal to request system bus mastership and 
continues to assert the signal until it receives a qualified bus grant or determines that it 
does not need the bus. A qualified bus grant is S_BG asserted and S_ABB negated. 

To avoid the overhead of arbitration, it may be desirable to park the MC88410 on the 
system address bus. The MC88410 is parked when S_BG is asserted whether or not the 
MC88410 is requesting bus mastership. If S_BG remains asserted until an internal bus 
request occurs, the MC88410 completes the arbitration sequence without any overhead 
and can begin the transaction without asserting 5 _BR. Thus bus parking provides a 
performance advantage because bus accesses occur without any delay in the arbitration 
protocol. 

System Bus Grant (S_BG) 
The S_BG signal is an input that the external arbiter uses to grant bus ownership to the 
MC88410 in response to a bus request. 

The external bus arbiter asserts the S_BG input signal to indicate to the MC88410 that it has 
been granted address bus mastership. The MC88410 assumes address bus mastership 
only if S_BG is asserted and the bus is not already in use (S_ABB negated) .. The external 
arbiter may "park" the MC88410 on the bus by keeping S_BG asserted after the S_ABB has 
been negated (see 5.4.5 System Bus Parking). 

System Address Bus Busy (S_ABB) 
The current address bus master asserts the S_ABB signal to indicate that potential bus 
masters must wait to take mastership of the address bus. Potential address bus masters 
use this input to qualify S_BG. It is an output when the MC88410 is the address bus 
master and an input at all other times. 

The S_ABB signal may be a shared signal among multiple MC88410s or other bus masters. 
It must be connected to a pull-up resistor so that it remains negated when no devices have 
control of the address bus. 

System Data Bus Grant (S_DBG) 
The S_DBG input signal is used by the external bus arbiter to grant data bus mastership in 
response to a data bus request. The assertion of S_TS serves as the data bus request.. The 
MC88410 only assumes data bus mastership if S_DBG is asserted and the data bus is not 
already busy (S_DBB negated). 

System Data Bus Busy (S_DBB) 
The S_DBB signal is asserted by the current data bus master to indicate that potential data 
bus masters must wait to take mastership of the data bus. Potential data bus masters use 
this input to qualify data bus grant. The S_DBB signal is an input when the MC88410 is 
arbitrating to obtain data bus mastership and an output whe~ the MC88410 is the data 
bus master. It is three-stated at all other times. 

3-16 MC88410 USER'S MANUAL MOTOROLA 



3.3 RAM INTERFACE SIGNALS 
The MC88410 controls the MCM62110 secondary cache through the RAM interface. The 
RAM interface signals are output signals that the MC88410 drives to the MCM62110 
array. The R_A16-R_AO, RWE7-RWEO, SIE, and SOE signals are involved in system bus 
transactions. 

RAM Address Bus (R_A 16-R_AO) 
The R_A16-R_AO output signals provide the MCM62110 array with the address of the 
transaction. For processor transactions, the R_A16-R_AO signals are asserted in the clock 
after the address isdriven on the processor bus (p _A31-P _AO). For system bus burst 
transactions, the MC88410 automatically increments the address to the secondary cache in 
the clock before data is valid. For this reason, S_TA must be asserted one clock before the 
data is valid for all full-speed transactions. 

RAM Write Enable (RWE7-RWEO) 
The RWE7-RWEO signals allow individual bytes of the 64-bit word to be written into the 
secondary cache. The RWE7-RWEO signals are asserted or negated during system or 
processor data bus mastership depending upon the transaction. Data is written into the 
corresponding MCM62110 array when RWE7-RWEO are asserted. 

Processor Input Enable (PIE) 
The PIE signal is asserted by the MC88410 to allow data to be driven from the MC88110 to 
the MCM62110 array for processor write transactions. 

Processor Output Enable (P 0 E) 
The- POE signal is asserted by the MC88410 to allow data to be driven by the MCM62110 
array to the MC88110 data signals for processor read requests. 

System Input Enable (S IE) 
The SIE signal is asserted by the MC88410 to allow data to be driven from the system data 
bus to the MCM62110 array for secondary cache line fills or to the processor from 
memory for cache-inhibited read transactions. 

System Output Enable (S 0 E) 
The SOE signal is asserted by the MC88410 to allow data to be driven by the MCM62110 
array to the system data bus for copy-back operations, write-through operations, and 
cache-inhibited write transactions. 

3.4 SYSTEM CONFIGURATION SIGNALS 
The system configuration and tag monitoring signals are discussed in the following 
paragraphs. 

The MC88410 provides a weak driver for some signals to program them to a default 
configuration. After reset these signals can be used for tag monitoring. Note that the tag 
monitoring signals (FD2-FDO and SD3-SDO) indicate the status of the MC88410 in the 

MOTOROLA MC88410 USER'S MANUAL 3-17 

• 



• 

previous clock cycle (Le. are delayed one clock). For information regarding their use for 
tag monitoring, refer to Section 6 JT AG and Diagnostics. 

Chip Select (CS) 
The cs signal is used to enable the MC88410. The csp signal determines if an MC88410 is 
selected when the cs signal is connected high or when it is connected to ground. 

In single-MC88410 configurations, the cs signal should be grounded and the csp 
configuration signal should not be driven during reset. There is an internal pull up on the 
cSP signal that drives the chip select polarity into the proper state so that the MC88410 is 
always chip selected. 

In dual-MC88410 configurations, the cs input signal is used to dynamically select the 
MC88410. The MC88410 cs signal allows the address space to be divided evenly between 
two MC88410 devices servicing a single MC88110. The cs signals on both the MC88410s 
should be connected to a single processor address bit . 

System Clock (ClK) 
The CLK input signal generates the internal timing signals for the MC88410. The leading 
edge of the clock is used as the MC88410 internal and external timing reference. 

Half-Speed System Clock (HClK) 
The HCLK input signal generates the internal timing signals for the MC88410 in half-speed 
mode. The leading edge of the half-speed clock is used as the MC88410 internal and 
external timing reference. The MC88410 operates in full-speed clock mode when HCLK is 
held high. The CLK and HCLK signals must be in phase with each other and the rising 
edge of HCLK must coincide with a rising edge of CLK within the electrical specification 
timing. 

RESET (RST) 
The RST signal is used to perform an orderly restart of the processor, bringing it to a 
known state and beginning program execution at ac;ldress $0 (the reset vector). When RST 
is asserted, all current operations of the MC88410 are suspended. When RST is negated, 
all the configuration bits are latched to enable the MC88410 operation. 

Tag Function Descriptor O/Line Size (FDO/lINSIZ) 
The FDO/LINSIZ signal is sampled to configure the line size during reset operation. The 
FDO/LINSIZ signal selects a 32-byte line length (default) when asserted and a 64-byte line 
length when negated. After the reset operation, the signal is used to drive the function 
descriptor for tag monitoring. 

Tag Function Descriptor 1/Critical Word Mode (FD1/CWM) 
The FD1/CWM signal is sampled to configure the critical word bursting. The FD1/CWM 
signal selects critical-word-first ordering (default) when asserted and zero-word-first 
ordering when it is negated. After reset operation, the signal is used to drive the function 
descriptor for tag monitoring. 

3-18 MC88410 USER'S MANUAL MOTOROLA 



Tag Function Descriptor 2 (FD2) 
The F02signal is used to drive the function descriptor for tag monitoring. 

Tag Status Descriptor O/Chip Select Polarity (SDO/CSP) 
The soo/csp signal is sampled to configure the chip select polarity. The soo/csp is 
asserted to select the MC88410 when cs is high (default) and negated to select the 
MC88410 when cs is low. After reset operation, the signal is used to drive the status 
descriptor for tag monitoring. 

In single-MC88410 configurations, the cs signal should be grounded and the csp 
configuration signal should not be driven during reset. There is an internal pull up on the 
csp signal that drives the chip select polarity into the proper state so that the MC88410 is 
always chip selected. In dual-MC88410 configurations, the csp signal should be driven to 
opposite states on the two MC88410 devices at reset to provide mutually-exclusive 
MC88410 chip selects based on the chosen address line. 

Tag Status Descriptor 1/External Arbiter Enable (SD1/ARBEN) 
The 501/ ARBEN signal is sampled to configure the arbiter enable. The 501/ ARBEN signal 
selects on-chip arbitration when itis asserted (default) and external arbitration when it is 
negated. After reset operation, the signal is used to drive the status descriptor for tag 
monitoring. 

Tag Status Descriptor 21Cache Size 0 (SD2ICSIZO) 
The S02/C5IZO signal is sampled to configure the cache. size as shown in Table 3-10. After 
reset operation, the signal is used to drive the status descriptor for tag monitoring. 

Tag Status Descriptor 3/Cache Size 1 (SD3/CSIZ1) 
The S03/ C5IZl signal is sampled to configure the cache size as shown in Table 3-10. After 
reset operation, the signal is used to drive the status descriptor for tag monitoring. 

Table 3-10. Cache Size Configuration 

SD2ICSIZ1 SD1/CSIZO Cache Size 

1" 1" 256 Kbyte 

1 0 Reserved 

0 1 1 Mbyte 

0 0 Reserved 

" Default configuration 

3.5 TEST SIGNALS 
The test signals for the MC88410 are discussed in the following paragraphs. For more 
information, refer to Section 6 JT AG and Diagnostics. 

MOTOROLA MC88410 USER'S MANUAL 3-19 

E 



Diagnostic (0 IA G) 
When the DIAG signal is asserted, the MC88410 is placed in diagnostic mode. All 
subsequent processor transactions are interpreted as diagnostic accesses. Snooping is 
disabled for all system bus addresses. The MC88410 recognizes FO and Fl while DIAG is 
asserted but does not begin flush operation until DIAG is negated. If flush or invalidate is 
already in an operation when DIAG is asserted, the MC88410 halts operation, resuming at 
the next set index upon negation of DIAG. The DIAG signal must be held asserted 
throughout a diagnostic sequence as it is not latched by the MC88410. The DIAG signal 
must not be negated until two clocks after the MC88410 negates P _TA to ensure that write 
transactions will complete internally. 

Clock Monitor (CKMON) 
This signal is an output used for factory test. It should be left unconnected. 

JTAG Test Reset (TRST) 
Assertion of the TRST signal causes asynchronous initialization of the internal JT AG test 
access port (TAP) controller. The TRST signal conforms to the IEEE 1149.1 Standard Test 
Access Port and Boundary-Scan Architecture. 

JTAG Test Mode Select (TMS) 
The TMS signal is decoded by the internal JTAG TAP controller to distinguish the primary 
operations of the test support circuitry. This signal conforms to the IEEE 1149.1 Standard 
Test Access Port and Boundary-Scan Architecture. 

JTAG Test Clock (TCK) 
The TCK signal clocks the internal boundary scan test support circuitry. This signal 
conforms to the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. 

JTAG Test Data Input (TOI) 
The state of the TDI signal is clocked into the selected JTAG test instruction or data 
register on the rising edge of TCK. This signal conforms to the IEEE 1149.1 Standard Test 
Access Port and Boundary-Scan Architecture. 

JTAG Test Data Output (TOO) 
The contents of the selected internal register or data test register are shifted out onto this 
signal on the falling edge of TCK. This signal conforms to the IEEE 1149.1 Standard Test 
Access Port and Boundary-Scan Architecture. 

3-20 MC88410 USER'S MANUAL MOTOROLA 



SECTION 4 
PROCESSOR BUS INTERFACE 
This section provides a functional description of the MC88410 processor bus interface, the 
signals that control the processor bus, and the detailed timing of the bus cycles that 
perform data transfer operations between the MC88110 processor and the MC88410 
secondary cache controller. It also includes the descriptions of bus arbitration, transaction 
types, and termination of bus cycles. 

NOTES 

The terms assert and negate are used extensively in this 
manual to avoid confusion between active-high and active-low 
signals. Assert or assertion indicates that a signal is active or 
true, regardless of whether the signal is active high or active 
low .. Negate or negation indicates that the signal is inactive or 
false. 

The MC88410/MCM62110 secondary cache contains both data 
and instruction data types. The term data is used in this 
manual to refer to both data and instructions unless 
specifically noted otherwise. 

In this section, the timing for the signals is only accurate to within a half-clock cycle and is 
intended to demonstrate functional relationships. The input and output signals are 
synchronous in that all setup and hold times are specified in reference to edges of the 
clock signal. The MC88410 outputs are driven from a clock edge, and a maximum delay 
is specified. In addition, minimum hold times are specified in relation to the clock. The 
minimum setup and hold times must be met to guarantee proper device operation. For 
detailed timing information, refer to the MC88410 Electrical Specifications. 

4.1 PROCESSOR BUS INTERFACE OVERVIEW 
The MC88410 processor bus interface connects the MC88410 to the MC88110 processor 
address and control signals. The processor bus interface includes the signals that connect 
the MC88410 and the MC88110 and some of the RAM interface signals that connect the 
MC88410 and MCM62110 secondary cache RAM array as shown in Figure 4-1. The 
system bus interface signals are described in Section 5 System Bus Interface. 

MOTOROLA MC88410 USER'S MANUAL 4-1 

• 



<>- S A31-0,...... _ P A31-0 .. 
S TSIZ1-0 v -: P TSIZ1-0 --~ MC88410 MC88110 :! S_TBST ,... : P TBST .. 

~ .",..... ... --
~ S_ANi ./"., 

_ P ANi 
--.. 

~ S LK"""'" ..: P LK 
.... 

- S_CI .: P _CI 
S MC 

...... 
_ P WT 

~ 
S_INV ,... : P INV .. 

~ S_GBL ~ :: P GBl ----.. 
~ S_TC3-0 \00"" .: P TC3-0 

.... 

~ S UPA 1-0 : P UPA1-0 
~ ....... 

_ P CL 
....... P PTA ---.. 

~ 
S_TS _ P_TS : 

"'I S_TA ,.... ..... P _TA .. 
--.. 

S TEA ;::: P_TEA .. .. 
S_TRTRY ;::: P _ TRTRY --=: 
S_ARTRY ;:., _ P _ARTRTY ... 

S_AACK ~ ...... 

<J 
S_BR P_BR -_ ... 
S BG ,.... _ P BG .. 

--.. 

<>- S ABB-c: .: PABB ... ... 
S_DBG ../'-, ...... ... 

<>- S_DBB-c: 

• ...... S SSTAT2-0 

" SHD 
TSHD :g 

F1-0 -C:= 
FBSY -c:= 
S_SR ,.... RAM Interface _ CS 

... --
ffil~1 ffil~1 ~I~ 

J~ .~ 
:E> CD l$ m .... 

~ ..... 9> 6 ' 0 01 

\/\/ ,r, 
" 
, " 

-MCM62110 
...... 

... -
---c> System Bus Interface 
---I~~ Processor Bus Interface 

Figure 4·1. Processor Bus Interface 

4-2 MC88410 USER'S MANUAL MOTOROLA 



The interface between the MC88410 and the MC88110 consists of the address, transfer 
attribute, control, arbitration, and termination signals. The RAM interface between the 
MC88410 and the MCM62110 array consists of the address, RAM write enable, and data 
I/O control signals. The interface between the MC88110 and the MCM62110 array 
consists of the data bus and byte parity signals. Note that there is no connection between 
the data bus and the MC88410 because there is no cache memory on the MC88410. 

Up to two MC88410 secondary cache controllers can be connected to a single MC88110 
processor. Although two MC88410s and one MC88110 can have the capability of driving 
the processor bus, there can be only one device controlling the bus at anyone time. This 
device is the processor bus master. Bus arbitration is the protocol by which a device 
becomes the bus master. 

In a single-MC88410 configuration (single MC88410 connected to a single MC88110), no 
logic is needed to connect the MC88410 to the MC88110. The MC88410 contains on-chip 
arbitration logic to provide processor bus arbitration for this configuration. In a dual
MC88410 configuration (two MC88410 devices connected to a single processor), external 
logic is required for processor bus arbitration. The MC88410 only requires processor bus 
mastership to perform a primary cache invalidate or a primary cache DMA invalidate 
transaction. These invalidate transactions are performed by the MC88410 to maintain 
cache coherency as described in Section 2 Secondary Cache Operation. 

It is recommended that no more than one MC88110 and two MC88410 devices be 
connected to the processor interface. Additional devices such as boot EPROM, control 
registers, and scratch pad RAM should be placed on the system interface of the MC88410. • 
This preserves the low-latency memory access of the MC88110 to the secondary cache. 

A typical configuration using one MC88410 and one MC88110 is shown in Figure 4-1. 
When the MC88110 initiates a processor bus request, it drives the appropriate signals on 
its address, data, and control signals. The MC88410 decodes the transfer attribute signals 
and determines the actions required to carry out the MC88110 request. The MC88410 
then drives the address and control signals to the MCM62110 array, enabling it to provide 
data to or latch data from the MC88110. 

4.2 MC88410 SIGNAL INTERFACE 
An MC88110/MC88410 node includes a single MC88410 secondary cache controller 
connected to a single MC88110 processor or two MC88410 secondary cache controllers 
connected to a single MC88110 processor as shown in Figures 4-2 and 4-3. Several of 
these nodes can be put together to provide a multiprocessing system. 

MOTOROLA MC88410 USER'S MANUAL 4-3 



MC88110 MC88410 
BR -!" NC NC .. P_BR -
BG - P_BG -ABB - .. P ABB .... .. 
WT .. P_WT ... .... 

ADDRESS & ATTRIBUTES - ..... ADDRESS & ATTRIBUTES 
TS ..-J 

... P_TS 
SR 
TA - P TA -TEA ... P_TEA .... 

TRTRY - P _ TRTRY -
PTA - P PTA -INV ... .. P _INV .... ... 

MC - NC .. 
GBl .. ... P GBl - ... 

SSTAT1 . P_ARTRY .. 
CT .. P_CI ... 

RST - . RST - L- System Reset 
.. 

SHD ...-GND 
PSTAT2-0 ~NC PULLUP ----. CS 
SSTATO ~NC 
ARTRY ~PULLUP 

AACK ~PULLUP 

DBG ~GND 
DBB ~PULLUP 

• Figure 4-2. Single-MC88410 Configuration 

4-4 MC88410 USER'S MANUAL MOTOROLA 



EXTERNAL ARBITER 

<C <C m m 

I~I~ I:II~I I:II~I 
~~ ~~ t I MC88410 "B" I 

MC88110 MC88410 "A" 
BR - P _BR 
BG ~ .. P_BG -ABB - .. P ABB -- -WT .. P WT 

ADDRESS & ATIRIBUTES - .: ADDRESS & ATIRIBUTES 
TS -- -... P_TS .-J 

... 
SR 
TA - P TA -TEA ... P TEA 

TRTRY - P_TRTRY -PTA - P PTA --INV ... .. P _INV - ":' 

MC ... NC .. 
GBL - .. P GBL - -SSTAT1 .. P_ARTRY ~ 

Ci .. P _CI .. 
RST ... .. RST 

L- System Reset 

SHD ~GND 
PSTAT2-0 ~NC ~ CS 
SSTATO ~NC 
ARTRY r----- PULLUP 

AACK r----- PULLUP 
DBG ....-GND 
DBB r----- PULLUP f--

Figure 4·3. Dual·MC88410 Configuration 

The following paragraphs describe the processor bus interface signals that perform 
similar functions on the MC88110 and MC88410, other signals necessary for connecting an 
MC88410 to an MC88110, and the signals used by the MC88410 to control the MCM62110 
array. 

4.2.1 MC8841 O/MC8811 0 Signal Relationship 
Table 4-1 lists the MC88410 signals that connect directly to MC88110 signals. For more 
information about the function of these signals, refer to Section 3 Signal Description. 

MOTOROLA MC88410 USER'S MANUAL 4-5 

• 



• 

Table 4-1. Common MC88410/MC88110 Signals 

MC88410 Signals MC88110 Signals Function 

P_A31-P_AO A31-AO Address bus signals 

P_WT WT Write-through signal 

P _INV INV Invalidate signal 

P _GBl GBl Global signal 

P_CI Ci Cache-inhibit signal 

P_ABB ABB Address bus busy signal 

P_TA TA Transfer acknowledge signal 

P_TEA TEA Transfer error acknowledge signal 

P_TATAY TATAY Transfer retry signal 

P_PTA PTA Pre-transfer acknowledge signal 

AST AST Reset signal 

P_TS TS Transfer start signal 

P_TS SA Transfer start/snoop request 

P _AATAY SSTAT1 Address retry/snoop status 1 

The signals in Table 4-1 are similar in function for the MC88110 and MC88410 devices 
except for the connection of the TS, SR, and SSTATl signals . 

The MC88110 asserts the TS output signal to indicate the start of a new transaction. The 
SR input signal indicates to the MC88110 that there is a valid address on the bus and that 
the MC88110 should snoop the address if the GBL I/O signal is asserted. The P_TS I/O 
signal of the MC88410 must be connected to both the TS and SR signals of the MC88110. 

The MC88110 asserts the SSTATl signal to gain control of the processor bus to perform a 
snoop copyback transaction. If the MC88410 P _ARTRY input signal is asserted, the 
MC88410 relinquishes mastership of the processor bus. The MC88410 P _ARTRY input 
signal is connected to the MC88110 SSTATl output signal to allow the MC88110 to become 
the processor bus master and perform a snoop copyback transaction. 

When the P _TRTRY signal is asserted by the MC88410, the MC88110 relinquishes 
mastership of the processor bus, reinitiating the transaction when necessary. The 
MC88410 asserts the P _TRTRY signal to gain mastership of the processor bus to perform a 
primary cache invalidate transaction or a primary cache DMA invalidate transaction. 

4.2.2 Static MC8811 0 Signals 
Table 4-2 describes the MC88110 signals that should remain at a constant voltage level for 
MC88110/MC88410 systems and are not connected to the MC88410. The following 
paragraphs describe these static signals. 

4-6 MC88410 USER'S MANUAL MOTOROLA 



Table 4-2. Static MC8811 0 Signals 

MC88110 Signals Function Level 

AACK Address acknowledge signal High 

ARTRY· Address retry signal High 

SHD Shared signal Low 

PSTAT2-PSTATO Processor status signals Not connected 

SSTATO Snoop status signal Not connected 

DBG Data bus grant signal Low 

DBB Data bus busy signal High 

MC Memory cycle signal Low 

The MC88110 allows the address and data bu~es to operate independently of each other 
using split-bus arbitration. However, the MC88110 should not use split-bus arbitration 
for single-MC88410 or dual-MC88410 configurations. The MC88110 AACK input signal is 
used to terminate address bus mastership, enabling split-bus arbitration. For 
MC88110/MC88410 systems, the MC88110 AACK signal must be connected to a pull-up 
resistor to disable split-bus arbitration. 

The MC88110 ARTRY input signal indicates to the current address bus master that it 
should terminate the transaction and reinitiate the transaction later. The TRTRY signal 
indicates to the current data bus master that it should terminate the transaction and 
reinitiate the transaction later. Since the address· and data bus should not be split for • 
MC88110/MC88410 systems, the address bus master is also the data bus master and only 
one of these signals is required. Thus, the ARTRY signal on the MC88110 should be 
connected to a pull-up resistor and the P _TRTRY output signal on the MC88410 should be 
connected to the TRTRY input signal of the MC88110, enabling the MC88410 to retry a 
transaction when necessary. 

The MC88110 cache state logic is implemented as a four-state design, and also supports a 
three-state model. When operating in the three-state model, all internal cache state 
transitions are visible on the processor bus to allow the MC88410 to maintain secondary 
cache coherency (see 2.4 Cache Coherency). The distinction of whether the three- or four
state model is in use is determined by the status of the MC88110 SHO input signal. The 
MC88110 SHO signal should be connected to ground so that the MC88410 can track the 
MC88110 internal cache state transitions. 

The PSTAT2-PSTATO signals of the MC88110 provide some visibility of the internal CPU 
status. The MC88410 does not require the information provided by the PSTAT signals and 
so they should be left unconnected. 

The MC88110 SSTATO signal is asserted when a snoop transaction is a snoop hit. Since the 
MC88410 uses the processor tag (PTAG) to monitor the contents of the MC88110 data 
cache, SSTATO is not needed and therefore should be left unconnected. 

The MC88110 OBG signal is used by an external bus arbiter to grant data bus mastership in 
response to a data bus request. The MC88110 assumes data bus mastership if OBG is 

MOTOROLA MC88410 USER'S MANUAL 4-7 



• 

asserted and· the data bus is not already busy (DBB is negated). Since AACK should be 
connected high, disabling split-bus transactions, DBG can be connected to ground to 
always grant the data bus to the MC88110. The DBB signal should be connected to a pull
up resistor to guarantee that the MC88110 always has a qualified data bus grant (DBG 
asserted and DBB negated). 

The.MC88110 MC signal indicates that the transaction is actually transferring data. Since 
the MC88410 does not require this information, the MC signal should be left unconnected. 
Note that the MC88410 interprets all MC88110 transactions as data transfers. 

4.2.3 RAM Interface Signals 
Although the MC88410 does not contain the data bus, it does control data transfer 
through the control of the MCM62110 array. The RAM interface consists of the R_A16-
R_AO, RWE7-RWEO, PIE, POE, SIE, and SOE signals. The R_A16-R_AO, RWE7-RWEO, POE, and 
PIE signals are involved in processor bus transactions and are part of the processor bus 
interface. Refer to Section 5 System Bus Interface for information about the SIE and SOE 
signals that are involved in system bus transactions. . 

The R_A16-R_AO signals provide the secondary cache with the address of the transaction. 
For processor transactions, the R_A16-R_AO signals are driven to the secondary cache in 
the clock after the address is driven on the processor bus (p_A31"';'P_AO). For processor bus 
burst transactions, the MC88410 automatically increments the address to the MCM62110 
array . 

The RWE7-RWEO signals allow individual bytes of the 64-bit word to be written into the 
secondary cache. The RWE7-RWEO signals are asserted or negated during system or 
processor data bus mastership depending upon the transaction. The POE signal drives 
data from the secondary cache to the MC88110 D63-DO signals and has similar timing to 
R_Al6-R_AO. The PIE signal enables the MCM62110 array to latch data from the MC88110 
D63-DO signals and has identical timing to R_Al6-R_AO. 

4.3 PROCESSOR BUS ARBITRATION 
Bus arbitration is the protocol by which a device becomes the bus master. The MC88110 
requires an arbitration protocol in which an external arbiter controls bus arbitration and 
the MC88110 requests mastership of the bus from the arbiter to perform an external 
access. 

The MC88410 includes arbitration circuitry on-chip as well as provisions for external 
arbitration. The MC88410 on-chip arbitration circuitry can be used in a configuration 
with a single MC88410, while external arbitration circuitry is required in a dual-MC88410 
configuration. The arbitration circuitry to be used is determined by the SDI/ ARBEN signal 
at reset. When the SDI/ARBEN signal is asserted at reset, the MC88410 on-chip arbiter is 
enabled. When the SDI/ARBEN signal is negated at reset, the MC88410 on-chip arbiter is 
disabled. For more information about the SDI/ ARBEN signal, refer to 5.9 Reset Operation. 

4-8 MC88410 USER'S MANUAL MOTOROLA 



4.3.1 Processor Bus Arbitration Signals 
The bus arbitration signals of the MC88410 are listed in Table 4-3. The cs and cSP signals 
are used to divide the address space between MC88410 devices in dual-MC88410 
configurations. 

Table 4-3. Processor Bus Arbitration Signals 

Function Signals Type 

Processor bus request P_BR Output 

Processor bus grant P _BG I/O 

Processor address bus busy P_ABB I/O 

Chip select CS Input 

Chip select polarity CSP Input 

The P_BR signal is an output from an MC88410 requesting mastership of the processor bus 
to an external arbiter. 

The P_BG signal is both an input and an output of the MC88410. The P_BG signal is an 
input when external bus arbitration is used (SD1/ ARBEN is negated at reset) and an output 
when the MC88410 on-chip arbitration is used (SD1/ ARBEN is asserted at reset). As an 
input signal, P_BG is asserted by the external arbiter to indicate to the MC88410 that it has 
been granted mastership of the bus. As an output signal (from the MC88410 to the 
MC88110), P_BG is used to grant the bus to the MC88110. • 

The P_ABB signal is an input when the MC88410 arbitrates for the processor bus and is 
used to qualify its P _BG. The MC88410 receives a qualified bus grant when P _BG is 
asserted and P _ABB is negated as inputs. The MC88410 asserts the P _ABB signal as an 
output to take mastership of the bus. The P _ABB signal should be connected to pull-up 
resistors to keep the signal negated when no devices are driving the signal. For all timing 
diagrams the P _ABB signal is shown with the assumption that pull-up resistors are being 
used. 

The cs signal is used to enable the MC88410. The csp signal determines if an MC88410 is 
selected when. the cs signal is connected high or when it is connected to ground. For 
example, if the csp and cs signals are connected high, the MC88410 is selected. 

In single-MC88410 configurations, the cs signal should be grounded and the csp 
configuration signal should not be driven during reset. There is an internal pull up on the 
cSP signal that drives the chip select polarity into the proper state so that the MC88410 is 
always chip selected. 

In dual-MC88410 configurations, the cs signal allows the address space to be divided 
evenly between both MC88410s servicing a single MC88110. If the cs signals on both the 
MC88410 devices are connected to a single processor address bit, the cs signal determines 
which MC88410 is selected. The csp signal should be driven to opposite states on the two 

MOTOROLA MC88410 USER'S MANUAL 4-9 



• 

devices at reset to provide mutually exclusive MC88410 chip selects based on the chosen 
address line. 

4.3.2 Processor Bus Arbitration Protocol 
The MC88110 is parked when its BG input signal is asserted whether or not processor is 
requesting the bus. If the BG signal remains asserted until an internal bus request occurs, 
the MC88110 completes the arbitration sequence without any overhead and can begin the 
transaction without asserting the BR signal. Thus, bus parking provides a performance 
advantage because bus accesses occur without any delay in the arbitration sequence. The 
MC88410 on-chip arbiter leaves the MC88110 parked on the bus until the MC88410 
requires bus mastership. 

Figure 4-4 shows a timing diagram of the MC88410 processor bus arbitration signals 
assuming that the external arbiter uses bus parking. Initially, the MC88410 is the bus 
master and performs a primary cache invalidate transaction. The MC88410 begins the 
transaction in clock 1 by asserting P _TS. In clock 2, the external arbiter parks the MC88110 
on the processor bus by asserting the BG input signal of the MC88110. During clock cycles 
4 and 5, the BG signal continues to be asserted and the MC88110 stays parked on the bus, 
even though it does not use the bus. 

In clock 6, the MC88110 initiates a transaction by driving the address and control 
information and asserting the P _TS and P _ABB signals. The P _ABB signal is asserted to 
indicate that the address bus is in use. When a transaction is complete, the P _ABB signal is 
negated. However, the P _ABB signal remains asserted after the transaction is terminated if 
the MC88110 is immediately initiating another transaction and it is parked at the time that 
the initial transaction is normally terminated. Since DBG should be connected to ground, it 
is asserted and data bus arbitration is not necessary. 

If no other device is requesting mastership of the bus, the MC88110 BG signal remains 
asserted by the external arbiter and the MC88110 remains parked on the bus. Otherwise, 
BG is negated and an alternate master can take control of the processor bus. 

4-10 MC88410 USER'S MANUAL MOTOROLA 



2 3 6 7 8 9 

ClK 

P _A31-o ~ ~,-___ M_C8_84_10--')>----"'---+-----!----('--r-_M_C",!",8:1::,:8_11_0 -~)-r 
~BB~l\~ __ ~1 \~~ __ +-~I~;-j~ 

:~~~: H: : )>----;--+----+---( : : >--{ 
P_T<~ '-iJ 

063-00 

BR 

!------+---+---+------+-----+-~-+--~: 
\lJi-

I
I 

BG \_-+ __ ~----~--+---~--~--_+--~: 
P_BR~~ 

- : 
P_BG i I 
~ MC88410 ---t.~" __ P:~i~9 ___ .~lfoooI"' ___ -- Bus Mastership 

11-'I"'~----- Processor -----.... ~I 

Figure 4-4. Bus Parking by External Arbiter 

4.3.3 MC88410 On-Chip Processor Bus Arbitration 
The MC88410 on-chip arbitration refers to the internal logic designed- into the MC88410 
that provides bus arbitration for the processor bus. When the MC88410 on-chip 
arbitration mode is selected, the on-chip arbiter is activated and it assumes· that a single 
MC88410 and a single MC88110 are the only potential masters on the bus. The MC88410 
on-chip arbiter leaves the MC88110 parked on'the bus until the MC88410 requires bus 
mastership to perform a primary cache invalidate or a primary cache DMA invalidate 
transaction. In this case, the MC88410 on-chip arbiter negates P _BG to grant itself 
mastership of the processor bus. 

To activate the MC88410 on-chip arbiter in the single-MC88410 configuration, the 
SDI/ ARBEN signal of the MC88410 should be asserted at reset. Since the MC88410 on-chip 
arbiter does not use the bus request signals of the MC88410 (P_BR) or MC88110 (BR), they 
should be left unconnected. 

MOTOROLA MC88410 USER'S MANUAL 4-11 

• 



At the start of a transaction using MC88410 on-chip arbitration, the following four 
scenarios can exist on the processor bus: 

Scenario 1 The MC88110 is parked on the processor bus and it begins a 
transaction. 

Scenario 2 

Scenario 3 

The MC88110 is performing a transaction and the MC88410 retries 
the MC88110 to gain mastership of the processor bus and perform a 
primary cache invalidate transaction. 

The MC88410 is performing a primary cache invalidate transaction 
and the MC88110 is parked by the MC88410 on the processor bus. 

Scenario 4 The MC88110 is parked on the processor bus and the MC88410 
initiates a primary cache invalidate transaction. 

Figure 4-5 illustrates scenarios 1 through 3. It shows the transfer of the processor bus 
mastership from the MC88110 to the MC88410. 

Scenario 1 is shown in clock cycles 1 and 2. In clock 1, P _BG (which is connected to the 
MC88110 BG input signal for on-chip arbitration) is asserted by the MC88410 and the 
MC88110 is parked on the bus. Note that the MC88410 on-chip arbiter controls the 
assertion of P _BG. In clock 2, the MC88110 asserts P _TS to indicate the start of a new 
transaction and drives the address and control information on the processor bus. 

2 4 6 7 

elK 
- ! I 

P _A31-o _ ir---i----« MC88110 )>---+--«'----:--_MC_8,.-84_1 O_-r---IH, ~ 
1 

P_ABB_I i 
1 r-~---+--~!-

P_TS I 
- ! 1-

--I i 
P_TA I I 

-I r-~--~----4---~----~i-

Figure 4-5. Bus Mastership Transfer from MC8811 0 to MC88410 

Scenario 2 is shown in clock cycles 3 through 5. The MC88410 retries the MC88110 
transaction in clock 3 to perform a primary cache invalidate transaction and the processor 
immediately gives up the bus. Note that the MC88410 negates P _BG to grant itself the bus. 
At the end of clock 4, neither device owns the bus. In clock 5, the MC88410 asserts P_ABB 

to take mastership of the processor bus, asserts P _TS, and drives the address. In clock 6, 
the MC88410 asserts the P_BG signal to park the MC88110 on the processor bus. However, 
the MC88110 cannot take control of the bus and begin a new transaction until it gets a 
qualified bus grant. A qualified bus grant is defined as P _BG asserted and P _ABB negated. 

4-12 MC88410 USER'S MANUAL MOTOROLA 



Scenario 3 (clocks 6 through 8) shows the transfer of bus mastership from the MC88410 to 
the MC88110. The MC88110 does not receive a qualified bus grant in clock 6 even though 
the P_BG signal is asserted. In clock 7, the MC88110 performs a data cache tag lookup to 
determine if it needs to perform a copyback transaction to enforce cache coherency (see 
2.4 Cache Coherency). In clock 8, the MC88110 receives a qualified bus grant when the 
P_BG signal is asserted by the MC88410 and P_ABB is negated. The MC88110 can begin a 
new transaction in clock 9, if necessary. 

Scenario 4 is shown in Figure 4-6. It describes how the MC88410 obtains the processor 
bus to perform a primary cache invalidate transaction. Before clock 1 the MC88110 was 
parked on the bus. During clock 1 the MC88410 negates P_BG and the MC88110 is no 
longer parked on the bus. In clock 2, the MC88410 asserts P _TS for one clock cycle and 
begins its transaction. Notice in clock 3 that P _BG is asserted again. However, the 
MC88110 cannot take control of the bus and begin a new transaction until it gets a 
qualified bus grant (p _ABB negated). The MC88410 transaction completes in clock 5. At 
this point, the P_BG signal remains asserted to the MC88110 and P_ABB is negated and so 
the MC88110 can begin a transaction in clock 6, if necessary. 

2 3 4 5 

ClK 

P_A31~ ( MC8841 0 )-I~ 
-

\ rr P_ABB 

- U! -
P_TS 

! 

P_TA 

P_BG \ 
P_TRTRY 

- , , -

Figure 4-6. Parked MC88110 and MC88410 Bus Grant 

4.3.4 External Processor Bus Arbitration 
When the external arbiter mode is selected, the MC88410 on-chip arbiter is disabled. 
Therefore, external arbitration logic must be designed to accept the arbitration signals 
from both the MC88410s and the MC88110 on the processor bus. However, it should 
provide bus grant to only one device at a time. In configurations using external 
arbitration, the MC88410 should have higher arbitration priority than the processor to 
allow it to perform a primary cache invalidate. The following paragraphs describe the 
external arbitration interface and timing. 

In dual-MC88410 configurations, the external arbitration logic must be used to control 
processor bus mastership. The SU1/ ARBEN signal is negated at reset to disable MC88410 

MOTOROLA MC88410 USER'S MANUAL 4-13 

• 



• 

arbitration. The bus request and bus grant signals on the three devices (MC88110 and two 
MC88410s) are connected to the external arbitration circuitry as shown in Figure 4-3. The 
P _BR is the bus request signal from the MC88410 to the external arbiter. Similarly, BR is 
the busrequest signal from the MC88110 to the external arbiter. The external arbiter then 
asserts P _BG to grant mastership to one of the two MC88410s or BG to grant mastership to 
the MC88110. 

When the MC88410 needs mastership of the processor bus, it asserts P_BR and continues 
to assert P _BR until it is granted mastership of the bus and the bus becomes available. The 
external arbiter grants mastership of the bus to the potential master by asserting the P _BG 

signal. Because the P _ABB signal is asserted by the current master to indicate address bus 
mastership, the potential master determines that the bus is available when the P _ABB 

signal is negated. A qualified bus grant is defined as P _BG asserted and P _ABB negated (as 
an input). The potential master do~s not assume address bus mastership until it receives 
a qualified bus grant. 

When the MC88410 receives a qualified bus grant, it negates the P_BR output signal and 
asserts the P_ABB signal. At the same time, the MC88410 drives the address for the 
requested access onto the address bus and asserts the P _TS signal to indicate the start of a 
new transaction. 

The timing diagram in Figure 4-7 illustrates external arbitration. In clock 1, the MC88410 
requests the processor bus by asserting the P _BR signal. The bus is granted to the 
MC88410 on the rising edge of clock 2 when the external arbiter asserts P _BG. The 
MC88410 receives a qualified bus grant in clock 2 since P _BG is asserted and P _ABB is 
negated. It assumes bus mastership by asserting the P_ABB signal in clock 2. At the sanle 
time, the MC88410 negates the P_BR output signal, asserts the P_TS signal, and drives the 
address for the requested access onto the processor bus. 

When designing the external bus arbitration logic, it is important to note that the 
MC88110 may assert BR but never use the bus (assert P_ABB) after it receives the qualified 
bus grant. For example, this situation would occur if the MC88110 asserts BR to perform a 
replacement copyback transaction but an MC88410 performs a primary cache invalidate 
transaction for that cache line before the MC88110 is granted the bus. In this case, the 
copyback operation would be unnecessary and the MC88110 does not assert P _ABB. 

4-14 MC88410 USER'S MANUAL MOTOROLA 



1 I 2 I 3 I 

Figure 4-7. External Arbitration Timing 

4.4 DATA TRANSFER MECHANISM 
The following paragraphs describe the signals used in the transfer.of data between the 
MC88410 and the MC88110 on the processor bus. The data transfer protocol and 
examples of the relative signal relationships for the different types of transactions are 
described. 

4.4.1 Data Transfer Mechanism Signal Overview 
The signals that implement the data transfer mechanism for the MC88410 are classified as 
data transfer signals, transfer attribute signals, and transfer control signals. The transfer 
attribute signals are summarized in Table 4-4. The P_WT and P_CL processor bus signals 
do not have corresponding system bus signals. . 

MOTOROLA MC88410 USER'S MANUAL 4-15 

• 



• 

Table 4-4. Processor Bus Transfer Attribute Signal Summary 

Signal Name Signal Asserted Negated 

Read/Write p_RiW Read Write 

Lock P_lK Transaction is one of two atomic Transaction is not part of an atomic 
transactions. Enables the MC8811 0 to sequence 
lock the processor bus 

Cache inhibit P_CI The address of the transaction in progress The address of the transaction in progress 
is not cached in the primary or secondary may be cached in the primary and/or 
cache secondary cache 

Write-through P_WT Write-through memory update mode Write-back memory update mode 

User page P_UPA1- Reflect the state of the UPA1-UPAO bits on Reflect the state of the UPA1-UPAO bits on 
attributes P _UPAO the processor interface the processor interface 

Transfer burst P_TBST Burst transaction Single-beat transaction 

Transfer size* P_TSIZ1- See Table 3-3 See Table 3-3 
P_TSIZO 

Transfer code P_TC3- See Table 3-4 See Table 3-4 
P_TCO 

Invalidate P _INV This signal is broadcast to the MC8811 0 to No need to have snooping MC8811 Os 
invalidate the data cache line invalidate the data cache line 

Cache line P_Cl Indicates data cache line 1 Indicates data cache line 0 

Global P _GBl Data being transferred is global data Data being transferred is local data 

* The (astensk) Indicates that the signal should be Ignored for burst cycles. 

4.4.2 Data Transfer Transaction Summary 
The processor bus interface initiates transactions in response to processor bus transactions 
and system bus snooping transactions. Data is transferred on the processor bus in either 
single-beat transactions or burst transactions. Transactions with P _TBST negated are 
single-beat processor bus transactions and transactions with P _TBST asserted are processor 
bus burst transactions. Single-beat processor transactions can result in burst system bus 
transactions (S:TBST asserted). 

Table 4-5 summarizes the state of transfer attribute and control signals for single-beat and 
burst processor bus transactions. 

4-16 MC88410 USER'S MANUAL MOTOROLA 



Table 4-5. Processor Bus Transaction Attribute and Control Signals 

Transaction PJW{ P:Tm P:CT P_WT P-'NV DR" P:GBL P_TSIZ1~ P_TC3- P_CL 
0 

Single-Beat 

Single-beat read R N MMU MMU N N MMU b,h,w,d 110, Invalid 
UlS 

Locked read R N MMU MMU A A MMU b,w D,U/S Invalid 

Table search R N N A N N N w 110, Invalid 
TSO 

Allocate load R N MMU MMU A N MMU h TFA Valid 

Single-beat write W N MMU MMU A N MMU b,h,w,d D,UlS Invalid 

Locked write W N MMU MMU A A MMU b,w D,UlS Invalid 

Write-through W N MMU A A N MMU b,h,w,d D,UlS Invalid 

Processor W N N N A N A b,h,w,d D,UlS Valid 
invalidate 

Primary cache W N x x A N A x x x 
invalidatet 

Burst 

Read miss R A N N N N MMU d 110, Valid 

line fill U/S 

Data cache R A N N A N MMU d D,U/S Valid 

read-with intent- • to-modify 

Touch load R A MMU MMU N N MMU b TFA Valid 

Replacement W A N N A N N d D,S Valid 

copyback 

Snoop copyback W A N N A N N d sce Valid 

Flush copyback W A N N A N N d D,S Valid 

Flush load W A N N A N N w TFA Valid 

Processor DMA W A x x x x A x x x 
invalidatet 

b= Byte 1= Instruction access 
h= Half word 0= Data access 
W= Word S= Supervisor access 
d= Double word U= User access 
R= Read TFA= Touch, flush, or allocate access 
W= Write TSO= Table search operation 
A= Asserted SCB= Snoop copyback operation 
N= Negated MMU= Determined by MC88110 MMU 
x= Don't care t= Transaction initiated by MC88410 

MOTOROLA MC88410 USER'S MANUAL 4-17 



• 

This section assumes that processor transactions hit in the secondary cache and are not 
propagated to the system interface. For information regarding'system bus transactions, 
refer to Section 5 System Bus Interface. For information regarding processor bus 
transactions and the effect of cache coherency considerations on data transfer, refer to 
Section 2 Secondary Cache Operation. 

In Table 4-5, note that the P _UPAI-P_UPAO signals are not shown since they are always 
determined by the MC88110 memory management unit (MMU). 

Note that since the Me signal of the MC88110 is not connected to the MC88410, all 
processor transactions (including invalidates) cause data to be transferred to the 
secondary cache. In the c~se of a primary cache invalidate transaction, the data is marked 
invalid in the main tag (MTAG) even though data is written to the secondary cache. The 
P_INV signal is asserted by the MC88110 to indicate that the MC88410 should perform a 
system invalidate broadcast, if necessary, to maintain cache coherency. 

The P_INV signal is asserted by the MC88410 to indicate to the MC88110 that it should 
invalidate its corresponding primary data cache line. The P_INV signal is asserted for all 
write transactions, locked read transactions, and allocate load transactions. . 

4.4.3 Processor Single-Beat Transactions 
Accesses that occur directly on the external bus independently of the data cache 
(regardless of a cache hit) cause single-beat transactions to occur. Transactions in Table 
4-5 with P _'f.BST negated are single-beat transactions. All single-beat transactions have 
similar timing characteristics; the differences between the transactions are determined by 
the transfer attribute signals that are asserted/negated. 

Figure 4-8 shows the relative timing of the data transfer signals during a single-beat 
transaction in the case of a secondary cache hit. Before a single-beat transaction begins, 
the MC88110 arbitrates for bus mastership, if it is not parked, and becomes the processor 
bus master. 

4-18 MC88410 USER'S MANUAL MOTOROLA 



_ DON'TCARE 

Figure 4-8. Single-Beat Transact~on - Fastest Case 

In Figure 4-8, the processor drives the address signals with the physical address of the 
access off the rising edge of clock 1 and at the same time asserts the appropriate attribute 
and control signals for the type of single-beat transaction being performed. The MC88410 
latches the address and control information on the rising edge of clock 2. During clock 2, 
the MC88410 decodes the access information, determines whether there is a hit or a miss 
in the secondary cache, and drives the appropriate RAM address and control signals to 
the MCM62110 array. The MC88410 keeps the P_TA signal negated for at least one clock 
cycle in order to allow sufficient time to process the transaction. 

To indicate the status of the transaction to the processor, the MC88410 either asserts or 
negates P_TA. In the case of a cache hit, P_TA is asserted (clock 3 in Figure 4-8) two clocks 
after the address is driven on the processor address bus. If there is a cache miss, P _TA is 
negated until the clock following system bus data transfer termination. 

While P_TA is negated, the processor waits and continuously drives the address (and data 
for write transactions) on the processor bus until P_TA is asserted. During the clock cycle 
after the assertion of P _TA, the address lines are three-stated and P _ABB is negated by the 
MC88110. 

4.4.3.1 Processor Single-Beat Read Transaction 
Single-beat read transactions include cache-inhibited accesses and MMU descriptor 
fetches that occur during table search operations. The P _INV signal is asserted only for 
locked (xmem) reads and allocate load transactions (which are intent-to-modify). During 
a single-beat read transaction, the MC88110 reads a byte, half word, word, or double 
word from the memory system. 

MOTOROLA MC88410 USER'S MANUAL 4-19 

III 



To perform a single-beat read transaction, the MC88110 first arbitrates for mastership of 
the processor bus if it is not the current bus master. The MC88110 then drives the address 
onto the address bus, asserts or negates the appropriate transfer attribute signals, and 
asserts P_TS as shown in Figure 4-9. 

1) Set Rfii to Read 1) Decode Address and 
2) Drive Address on A31-0 Transfer Attributes 
3) AssertP _ABB 2) Tag Look up 
4) Drive Size on TSIZ1-0 3) AssertP _PTA 
5) NegateTBST 4) Negate PTE 
6) Drive Transfer Attribute Signals 5) Negate P _ T A 
7) Assert P _ TS 6) Drive Address on R_A16-0 

7) Assert POE 
8) Assert RWE7-Q 

Figure 4-9. Single Beat Read Transaction Flow - Secondary Cache Hit 

Once the MC88410 latches the address and drives it to the MCM62110 array, the 
MCM62110 array supplies the requested data on the appropriate 063-00 signals within 
the required setup and hold times while the MC88410 asserts P_TA. If the transaction had 
missed in the secondary cache, the MC88410 inserts wait states by negating P _TA until the 
data is available. For timing diagrams of transactions that miss in the secondary cache, 
refer to Section 5 System Bus Interface. 

Figure 4-10 shows the relative timing for single-beat read transactions that hit in the 
secondary cache. The processor drives the address signals with the physical address of 
the access off the rising edge of clock 2 and at the same time asserts the appropriate 
attribute and control signals for the single-beat read transaction. The MC88410 latches the 
address and control information on the rising edge of clock 3 and asserts P _PTA (not 

4-20 MC88410 USER'S MANUAL MOTOROLA 



shown). The MC88410 always asserts P _PTA one clock after the processor asserts P _TS. In 
order to perform a cache tag lookup and to drive the RAM address and control signals to 
the MCM62110 array, the MC88410 inserts a wait state for one clock by negating P_TA. If 
a cache hit occurs, the data is transferred to the processor in clock cycle 4 and P _T A is 
asserted to indicate the end of the transaction. During a cache miss, P _TA is negated until 
the data is available from the system bus. 

4 5 

elK 
, , 

- I 1-

P _A31-Q _ :,[-: --+---« H' 
'---:------:-_~ i-

: \ r-l::,_-
P_ABB=I, ! 1 

P_Riii_" .... ~ --;......J' i ~-
I !-

-P_T-S - i Ui, !~ 
= ! ! 

I ! ( H,i:,-_ R_A16·0 - i . . . 

~-~--+-~ r-i::':',-_ 
POE _ i \\...+-_--+...J! i 
~-~---+--~--~-~ 

PIE - i :-
~-~--+--~~ : 

P_TA = i:: Wait : 
! !-

063-00 _: .... --+-----;..--........ -~ ~ 

Figure 4-10. Single-Beat Read Hit Timing 

4.4.3.2 Processor Single-Beat Write Transaction 
Single-beat write transactions consist of cache-inhibited write transactions, write-through 
transactions, primary cache invalidate, and processor invalidate transactions. In the 
write-through mode, write transactions update external memory every time the primary 
cache line is modified. Write transactions that hit the secondary cache are written into it 
and to the system interface. A primary cache invalidate transaction occurs when there is a 
system bus write- or read-with-intent-to-modify which affects a line in the primary cache 
that is marked unmodified in the MC88110. Processor invalidate transactions occur when 
the MC88110 first writes to a primary cache line. Processor invalidate transactions always 
hit the secondary cache and leave the MC88410's line in a modified state (a system 
invalidate precedes the state change if necessary). 

During a single-beat write transaction, the MC88110 transfers a byte, half word,word, or 
double word to the MC88410. To perform a single-beat write transaction, the MC88110 
first becomes the processor bus master if it is not already the bus master. The MC88110 

MOTOROLA MC88410 USER'S MANUAL 4-21 



• 

then asserts P_TS, drives the address, and asserts or negates the appropriate attribute and 
control signals. All write transactions cause P _INV to be asserted .. 

Once the MC88410 drives the address to the MCM62110 array, the MCM62110 latches the 
data from the appropriate D63-DO signals in the following clock. In the event of a 
secondary cache miss, the MC88410 inserts wait states by negating P _TA until the data is 
latched on the system bus. The MC88110 continues to drive the address and data on the 
processor bus until P_TA is asserted (or the transaction is otherwise terminated). Figure 
4-11 shows the transaction flow for a single-beat write transaction. 

1) Set PJW to WrRe 
2) Drive Address on A31-AO 
3) AssertP _ABB 
4) Drive Size on TSIZ1-TSIZO 
5) NegateP _ TBST 
6) Drive Transfer Attribute Signals 
7) Assert P _ TS Decode Address and Do a Cache 

Looku~ 
AssertP _PTA 

. 3) Drive RAM Address on R_A 16-0 
. 4) AssertPIE and RWE7-0 

.. 5) NegateP _ TA 

Figure 4-11. Single-Beat Write Transaction Flow 

Figure 4-12 shows the relative timing for single-beat write transactions. The processor 
drives the address signals with the physical address of the access off the rising edge of 
clock 2 and at the same time asserts the appropriate attribute and control signals for the 
single-beat write transaction. The MC88410 latches the address and control information 
on the rising edge of clock 3 and asserts P_PTA (not shown). The MC88410 always asserts 
P _PTA one clock after the processor asserts P _TS. In order to perform a cache tag lookup 
and to drive the RAM address and control signals to the MCM62110 array, the MC88410 

4-22 MC88410 USER'S MANUAL MOTOROLA 



inserts a wait state for one clock by negating P_TA. When a secondary cache hit occurs, as 
shown in Figure 4-12, the data is written into the MCM62110 array in clock cycle 4, when 
P_TA is asserted by the MC88410 to terminate the transaction. In the case of a secondary 
cache miss, the memory update policy determines if data is written into the secondary 
cache (see Section 2 Secondary Cache Operation). 

2 3 4 

• DON'TCARE 

Figure 4-12. Single - Beat Write Hit Timing 

4.4.4 Primary Cache Invalidate and DMA Invalidate 
The MC88410 coherency hardware provides address snooping on the system interface. If 
the data to be modified is contained in the primary (MC88110) data cache, the MC88410 
performs a primary cache invalidate transaction in order for the MC88110 to invalidate its 
cache line. The primary cache invalidate transaction is used to maintain vertical cache 
coherency (see Section 2 Secondary Cache Operation). To perform a primary cache 
invalidate transaction, the MC88410 obtains mastership of the processor bus through 
normal arbitration (the MC88410 should have higher arbitration priority than the 
processor). 

Once the MC88410 becomes the processor bus master, it drives the address of the data to 
be invalidated and asserts both the P _GBL and P _INV signals. The primary cache 
invalidate transaction consists of an address transaction only (no data is transferred). It 
does not require normal transaction termination. This is different from the invalidate 
transactions of either the MC88110 or the MC88410 system interface, which both rely on 

MOTOROLA MC88410 USER'S MANUAL 4-23 

• 



• 

the assertion of the TA signal to confirm that their invalidate transactions have completed 
successfully. 

If the address hits on a modified primary cache line, the MC88110 asserts SSTATl (snoop 
hit to a modified line, connected to P _ARTRY), takes control of the bus, and performs a 
copyback transaction. If the snoop hits on an unmodified line, the MC88110 does not 
retry the primary cache invalidate transaction. The MC88410 takes the absence of an 
address retry (after a two-clock snoop delay) to indicate that the primary cache line was 
invalidated by the snoop. 

The MC88410 can also issue a primary cache DMA invalidate transaction due to a direct 
memory access snoop on the system interface (see 5.7.9 System DMA Invalidate). This 
occurs when a DMA controller transfers data to main memory and overwrites data that is 
cached in the primary cache. The MC88410 performs a primary cache invalidate 
transaction but asserts the P_TBST signal instead of negating it. This causes the MC88110 
to invalidate the primary cache tag entry without copying the data back, even if it was 
modified. 

Figure 4-13 shows the timing of a primary cache invalidate transaction that hits on an 
unmodified primary cache line. The MC88110 completes a transaction in clock 2. During 
clock 3, the MC88410 takes mastership of the bus and begins the primary cache invalidate 
transaction. The P _TS signal is asserted for one clock cycle to begin the transaction. The 
address and control signals are driven on the processor bus and the P _INV and P _GBL 

signals are asserted. During clock 4, the MC88110 performs a cache tag lookup to see if 
the address hits on an unmodified or modified line. In this example, the cache hit is to an 
unmodified line so no copyback operation is needed. Since P _ARTRY is not asserted, the 
transaction is terminated in clock 6. If the primary cache invalidate transaction had hit a 
modified primary cache line, the P _ARTRY signal would have been asserted by the 
MC88110 and a copyback transaction would !'tave occurred before it invalidated its cache 
line. 

4··24 MC88410 USER'S MANUAL . MOTOROLA 



4 5 6 

elK 

-1 ) i,', ( H:-
P _A31-o = I-i --r--J '---,...----r-----,-- i -
P~BB i m n: 
-~-BL-i 1\ ;-1-

UJ 
P _TA !----+-'/ I 

06_;1, ) I 
P_BG i / i \ _____ ~ 

'- MC88110'''·~I''''''I--
I~Bus Master 

MC88410 Bus Master ~I 

Figure 4-13. Primary Cache Invalidate Timing 

4.4.5 Processor Burst Transactions 
Transactions in Table 4-5 with P _TBST asserted are burst transactions. Burst transactions 
perform the transfer of four double words between the processor and the secondary cache 
and/or the system bus. 

Data transfers on the processor interface always start with the double··word address 
presented by the processor. For read miss line fills, this is the "critical word" address. As 
a result of critical-word-first ordering, the read miss line fill (or copyback) transaction 
always begins with the evenly~aligned double word containing the missed word (that is, 
critical-word-first), followed by the subsequent double word(s) in the cache line, if any. 
If the double word containing the missed data does not correspond to the first double 
word in the cache line, the fill operation wraps around and then fills the double word(s) 
at the beginning of the line. Data is always transferred on the processor bus in critical
word-first order for burst transactions. 

To begin a transaction, the processor drives the address of the critical word on the 
processor bus and asserts P _TBST to indicate a burst transaction. When the MC88410 
detects that the transaction is a burst, it internally increments the address of the remaining 
double words to MCM62110 array. The incremented addresses provided by the processor 
bus are not used. 

When the double-word data is guaranteed to meet the appropriate setup and hold times, 
the MC88410 asserts P _TA to terminate the beat. At this time, either the address is 
incremented to be the address for the next beat of the burst or if all four beats have 
completed successfully, the burst transaction is terminated. 

MOTOROLA MC88410 USER'S MANUAL 4-25 

• 



• 

If the data cannot be supplied in the clock cycle after the address is sampled, P_TA is 
negated until the data is available. While P _TA is negated, the processor waits and 
continuously drives the address on the processor address bus until P_TA is asserted. 

If the transaction terminates with an error, the actions of the processor depend on when 
the error is detected and the type of transaction being performed. 

Figure 4-14 shows the relative timing of the data transfer signals during a burst 
transaction that hits in the secondary cache. Before a burst transaction begins, the 
processor arbitrates for the processor bus and becomes the bus master. The processor 
then drives the address signals with the physical address of the access in clock 1 and at 
the same time asserts the appropriate attribute and control signals for the type of burst 
transaction being performed. 

In clock 2 the MC88410 continues to negate P_TA, determines whether the transaction hit 
in the secondary cache, and drives the address to MCM62110 array. In the case of a cache 
hit, the MCM62110 array latches or drives the data for the first beat of the burst during 
clock 3. The next three beats of the burst occur during subsequent clock cycles. To 
indicate the status of each of the four beats of the burst transaction to the processor, the 
MC88410 either asserts or negates the P_TA signal. 

2 3 4 6 7 

elK 

P_AS1-O: r-<~-----------.........,J)-\-
- "'-\ /-1:':-_ ~ABB_i ~~ ____ ~ ____ ~ __ ~ ____ ~ __ ~~. 
- "'-\ /-':,'::: ---~TB~_: ~~: ____ ~ ____ ~ __ ~ ____ ~ __ ~~. 

us:'-'w) 
063-00 

.Figure 4·14. Burst Transaction· Fastest Case 

4.4.5.1 Processor Burst Read Transaction 
Figure 4-15 shows the transaction flow for a burst read transaction. During a burst read 
transaction, the MC88110 transfers four double words from a secondary cache line to the 
MC88110. 

4-26 MC88410 USER'S MANUAL MOTOROLA 



To perform a burst read transaction, the·MC88110 first arbitrates for mastership of the 
processor bus if it is not parked. The MC88110 then drives the address onto the bus, 
asserts or negates the appropriate transfer attribute signals, and asserts P _TS to signal the 
start of a new transaction. The MC88110 also asserts P_TBST to signal a burst transaction. 

1) Set FWl to Read 
2) Drive Address on P _A31·P _AO 
3) AssertP ABB 
4) AssertP _ TBST 
5) Drive T..ransmr Attribute Signals 
6) AssertP _ TS 

1) Decode Address and Tag Lookup 
2) AssertP _PTA 
3) Drive RAM Address on R_A 16-0 
4) AssertPOE 

Acknowledge Valid Data Transfer 

AssertP _ TA 

Increment Address Bits R_A 1-0 

Figure 4·15. Burst Read Transaction Flow 

The MC88410 decodes the address and transfer attribute signals and performs a cache tag 
lookup to determine if there is a secondary cache hit or miss. Then the MC88410 drives 
the address and control signals to the MCM62110 array and asserts P_PTA signal. The 
MC88410 always asserts P_PTA one clock after the processor asserts P_TS. 

Once the MC88410 drives the address to the MCM62110 array, the MCM62110 drives the 
requested data on the appropriate 063-00 signals in the following clock if the transaction 
hits in the secondary cache. In the event of a secondary cache miss, the MC88410 inserts 
wait states by negating P _TA until the data is available. For timing diagrams of 
transactions that miss in the secondary cache, refer to Section 5 System Bus Interface. 

The timing for a processor burst read transaction that hits in the secondary cache is shown 
in Figure 4-16. In clock 1, the processor begins the transaction by driving the address on 
the processor bus, asserting P _ABB, and asserting P _TS to signal a new transaction. The 
MC88110 negates P_R/W for the read transaction and asserts P_TBST signal to indicate a 
burst transaction. In clock 2, the MC88410 drives the appropriate address and control 
information to the MCM62110 array. The POE signal is asserted to enable data transfer 
from MCM62110 array to the processor. To perform a cache tag lookup and to drive the 

MOTOROLA MC88410 USER'S MANUAL 4-27 

• 



II 

RAM address and control signals to the MCM62110 array, the MC88410 inserts a wait 
state in clock 2 by continuing to negate P _TA. 

Since the transaction hits in the secondary cache, the MCM62110 array drives the first 
aligned double word on the data signals (p DATA)in clock 3 and the MC88410 asserts P_TA. 
At the same time, the MC88410 increments the RAM address to the next double word and 
asserts RWE7-RWEO. During each of the following three clock cycles, data for the specified 
address is placed on the data bus and the address is incremented to reflect the address of 
the appropriate double word. The address, data, and control signals are three-stated in 
clock 7, and P _TA is negated to signal the end of the transaction. 

4-28 

elK 

P.:..ABB I 
-I 

p_RiW-~ 
-I 

I 

P_TS ! 
-I 

P DATA - II-: --+---+--< 
-I 

6 7 

, 

.\ 

- i-' --+----+""' 
P..,;TA I Wait I 

- I 1-

~TB~~"'._~ __ ~ __ +--_-+ __ ~_~~~-
- 1= 

POE I 1 

-!i-__ +--_-+ __ ~-~--~--+__-~i= 
PIE I I 

- I 1-
- I I 

R_A16·2 1--1 --+--« H ~ 
-L_+-~"""""I-~"""""'" -~-.""'I -j---:---r--J 1-

R_A1.0- i ~ H-
RWE7·Q i 

-I 

I I I 
I I I 

Figure 4-16. Burst Read Hit Timing 

MC88410 USER'S MANUAL 

! 
1-

MOTOROLA 



4.4.5.2 Processor Burst Write Transaction 
During a burst write transaction, the MC88110 transfers four double words from a data 
cache line to memory. 

To perform a burst write transaction, the MC88110 first arbitrates for mastership of the 
processor bus if the MC88110 is not parked. The MC88110 then drives the address onto 
the bus, drives the data on the appropriate 063-00 signals, asserts or negates the 
appropriate transfer attribute signals, and asserts P _TS to signal the start of a new 
transaction. The MC88110 also asserts P_TBST to signal a burst transaction. The P_INV 

signal is asserted for all write transactions. 

The MC88410 decodes the address and transfer attribute signals and performs a cache tag 
lookup to determine if there is a secondary cache hit. Then the MC88410 drives the 
address and control signals to the MCM62110 array and asserts P _PTA (not shown). The 
MC88410 always asserts P_PTA one clock after the processor asserts P_TS. The MCM62110 
array latches the address and the data from the processor bus. 

Once the MC88410 drives the address to the MCM62110 array, the MCM62110 latches the 
data from the appropriate 063-00 signals in the following clock. In the event of a 
secondary cache miss, the MC88410 inserts wait states by negating P _TA until the data is 
latched on the system bus. For timing diagrams of transactions that miss in the secondary 
cache, refer to Section 5 System Bus Interface. The MC88110 continues to drive the 
address and data on the processor bus until P_TA is asserted (or the transaction is 
terminated). Figure 4-17 shows the transaction flow for a burst write transaction. 

MOTOROLA MC88410 USER'S MANUAL 4-29 

• 



• 

1) Set Rfii to Write 
2) Drive Address on A31·AO 
3) Assert P ABB 
3) AssertP _ TBST 

1) Decode Address and Tag Lookup 
2) Assert P PT A_ 

5) Drive T.ran.sre.r Attribute Signals 
6) AssertP _ TS 

3) Drive R WE 7 -0, RAM Address on 
R_A16,:L 
AssertPIE 

Present Data 

Figure 4·17. Burst Write Transaction Flow 

The timing for a processor burst write transaction that hits in the secondary cache is 
shown in Figure 4-18. In clock I, the processor begins the transaction by driving the 
address on the processor bus, asserting P _ABB, and asserting P _TS to signal a new 
transaction. The MC88110 asserts P _R/w for the write transaction and asserts P _TBST 

signal to indicate a burst transaction. The MC88110 also drives the data on the 
appropriate data signals (p DATA) in clock 1. In clock 2, the MC88410 drives the 
appropriate address and control information to the MCM62110 array. The PIE signal is 
asserted to enable data transfer from the processor to the MCM62110 array. To perform a 
cache tag lookup and to drive the RAM address and control signals to the MCM62110 
array, the MC88410 inserts a wait state in clock 2 by continuing to negate P_TA. 

Because the transaction hits in the secondary cache, the processor transfers the first 
aligned double word on the data bus in clock cycle 3 and the MC88410 acknowledges this 
by asserting P _TA. At the same time, the MC88410 increments the RAM address to the 
next double word. During each of the following three clock cycles, data for the specified 
address is transferred on the appropriate 063-':DO signals and the address is incremented 
to reflect the address of the appropriate double word. The address, data, and control 
signals are three-stated in clock 7, and P _TA is negated. 

4-30 MC88410 USER'S MANUAL MOTOROLA 



I· 

I 

111213141516171 

Pfl::; ~ 
--k I ! I I I I n l

-
P_ABB I \ 1 I ' I i j 

-, . I I I I I I ,-
, 'I 1 I I , , 1---h 'I I I I , 

P _RIW , I' i 'I 1 , I 'I - , " I . I I I· -
I 1 I I I I 
I I I I I I I --lUI I I I I I 1-

P TS ' I 1 , 1 ' I 

PD:TA~h: I ~ ~~ 
I I I 1 1 I 

P_TA - i I I I I ' 
_ , Wait 1_ 

~T~;i"~~----~--~----~--~----~~~ 
POE I 

- ·1 
I---~ 

1-
PIE_I, ' 

1= 
R_A16-2 ~ 1-1 ---+~(~--r-----,....-----:-----,....-----:-_H-

-I COO" 1 , , H','_-R_A1-0: I----+-
-I 

I I I 

RWE7-Q i 
_I 

I I I 

Figure 4-18. Burst Write Hit Timing 

1-

4.5 PROCESSOR TRANSACTION TERMINATION 
The following paragraphs describe the methods used for terminating transactions on the 
processor bus. Transactions may be terminated normally, indicating that the transfer 
completed successfully, or terminated with an error or a retry indication. 

The state of the P_TA, P_TEA, and P_TRTRY signals determine the termination for each 
transaction on the processor bus. Table 4-6 depicts the encodings of P _PTA, P _TA, P _TEA, 

and P_TRTRY and the corresponding types of transaction termination. The P_PTA signal 
indicates that P _TA may be asserted in the following clock to terminate the transaction and 
is used for decoupled access of the primary data cache. If the MC88410 P _TEA signal is 
connected to the TEA signal of the MC88110, a transfer error termination is only signaled 
by devices on the system bus and is propagated on the processor bus to the processor. 
For information about transfer error termination, refer to Section 5 System Bus Interface. 

MOTOROLA MC88410 USER'S MANUAL 4-31 

• 



• 

Table 4-6. Transaction Termination Encodings 

DTA 
A 

x 

x 
A = Asserted 
N = Negated 
x = Don't care 

P_TA P_TEA 

A N 

x A 

x N 

P_TRTRY Termination 

N Normal 

x Error 

A Transfer retry 

4.5.1 Normal Transa'ction Termination with P _ T A 
The assertion of P_TA by the MC88410, while P_TRTRY and P_TEA are negated, indicates a 
normal termination to the processor. For a read transaction, the data is valid on the data 
bus and may be latched by the processor. For a write transaction, the data has been 
written to the memory system. 

For single-beat transactions, the MC88110 completes the transaction after P _TA is asserted. 
To end the transaction, the MC88110 releases mastership of the processor bus by negating 
P _ABB unless it is parked and a new transaction is ready to begin. For burst transactions, 
each beat of the burst must be terminated by P_TA before the transaction is completed. 
Figure 4-19 shows a single-beat transaction that is completed with a normal transaction 
termination . 

I 1 I 2 I 3 I 4 I 

elK ~ ~ 
P fl1-O : ~. . . >-1: 
Transfer - :--{ \ ___ f 

Attributes - i Ii -

PflB~i\ i : : n~ 
P_TS _ _ 

R_A16.0~ 1 i (: : H~ 
P DATA - i -

-=:~::: i:= 
P _TA : : Wait : : : 

_ , 1 I ._ 

Figure 4-19. N~rmal Termination with P _TA 

In Figure 4-19, the MC88110 starts a new transaction by asserting P_TS and P_ABB in clock 
1. During clock 1, the MC88410 decodes the address and transfer attribute signals and 
performs a cache tag lookup to determine if there is a secondary cache hit. Assuming a 

4-32 MC88410 USER'S MANUAL MOTOROLA 



I 

cache hit, the MC88410 drives the RAM address and control information in clock 2. To 
perform a cache tag lookup and to drive the RAM address and control signals to the 
MCM62110 array, the MC88410 inserts a wait state in clock 2 by continuing to negate 
P_TA. On the rising edge of clock 4, the MC88110 detects that P_TA is asserted while the 
P_TEA and P_TRTRY signals are both negated, so it completes the transaction. For a burst 
transaction, each of the four double words must be terminated by asserting P_TA. 

,I 4.5.2 Termination for Decoupled Cache Accesses 
The MC88110 can process instructions that access the primary data cache while executing 
external bus transactions using a feature called cache decoupling. 

When the processor is operating with decoupled cache and bus accesses, the MC88110 
PTA signal must be used to explicitly indicate when on-chip data cache accesses must be 
suspended in order to grant the bus access to the data cache. The MC88410 uses the 
P_PTA signal to inform MC88110 that the initial assertion of TA may follow on the next 
rising edge. If decoupled cache accesses are not desired, the PTA signal can be connected 
to ground and P _PTA can be left unconnected. 

The window of time between the assertion of P_TS by the processor and P_PTA by the 
MC88410, allows load and store hits to the data cache to occur without interrupting bus 
activity. Once P _PTA is asserted, P _TA may follow in the next clock, so on-chip data 
accesses are prevented from accessing the primary data cache. The MC88110 begins 
sampling P_PTA simultaneously with the assertion of P_TS. The MC88410 always asserts 
P_PTA one clock cycle after the assertion of P_TS regardless of secondary cache hit status. • 
Once P_PTA is recognized as asserted by the processor, it is ignored for the remainder of ~ 
the transaction. For more information about the use of decoupled cache/bus accesses, see 
Section 6 Instruction and Data Caches in the MC88110 Second Generation RISC 
Microprocessor User's Manual. 

Figure 4-20 shows a timing diagram for a single-beat transaction that uses P _PT A. The 
transaction begins in clock 1 with P _PTA negated. The MC88110 drives the address and 
transfer attribute signals on the processor bus. At the same time, P_TS is asserted for one 
clock cycle. During clock 1, the MC88410 performs a cache lookup to determine whether 
there is a secondary cache hit or a cache miss. In clock 2, the MC88410 drives the RAM 
address and control signals to the MCM62110 array and asserts P_PTA. During clock 3, 
the data is transferred and P_TA is asserted to indicate the end of the transaction. 

MOTOROLA MC88410 USER'S MANUAL 4-33 



I 1 I 2 I 3 I 4 I 

ClK ~ ~ 

P_A31-o ~ H' , ')-:~ 
Transfer - l-v u -

Attributes - !-" 0 -

UBB~~ i • • n~ 
P _TS _ _ 

R_16-0 : : (: : H ~ 
P DATA ~ ~ 

P_TA ~ ~ 

P-"T<~· . 

CO~~~ _ 1;;.Ai~ >tm ~ 
• DON'TCARE 

Figure 4-20 Oecoupled Cache Access Timing 

• 4.5.3 Transfer Retry Termination 
Transfer retry terminations are usually initiated on the system interface of the MC88410. 
The assertion of P _TRTRY indicates that the processor should terminate its transaction and 
allow the MC88410 to gain bus mastership. For example, Figure 4-21 shows a case where 
the MC88110 initiates a transaction at the same time that the MC88410 initiates a primary 
cache invalidate transaction. The MC88410 negates P _BG in clock 1 and asserts P _TRTRY 

during clock 2 in order to retry the processor and grant itself the bus (using on-chip 
arbitration). The MC88410 begins its primary cache invalidate transaction in clock 4 and 
completes it in clock 7. The processor can reinitiate its transaction in clock 8. Note that if 
the processor bus is not occupied when the MC88410 initiates a primary cache invalidate 
transaction, it will not assert P _TRTRY. 

4-34 MC88410 USER'S MANUAL MOTOROLA 



2 3 4 

ClK 

P _A31-O ~ H MC88110) <,,-__ MC_8_84_10_..,......JH ~ 
- f\ r-'i::,' \ P _ABB _ i \I...--i----:~/ : ,-. ~ __ ~ __ ~ 

P TS : 

- =i 
P_TA _ i 

P_BG ~ ~/ \'------~~ 
P_TRTRY - :r-T\.J...' i i / 

' , , - , , 

Figure 4-21. Retry of a Processor Transaction 

A processor read transaction that misses in the secondary cache can cause the MC88410 to 
perform a secondary cache line fill transaction on the system bus. If a secondary cache 
line is filled due to a miss, the MC88410 may need to replace modified data. If the line to 
be replaced is included in the primary data cache, a primary cache invalidate transaction 
precedes all transactions to ensure that the processor has copied back its data before the 
MC88410 initiates a replacement copyback operation. If the MC88410 is involved in a 
processor bus transaction, the MC88410 asserts P _TRTRY to become the processor bus • 
master as shown in Figure 4-22. • 

1 I 2 I 3 4 I 5 I 6 I 7 I 8 9 I 10 I 1 I 12 

ClK 

P_ABB ~ ! 
P_TS i 

-I 
D6~DO-~! --+---:--:-+--~---+-~--~-+--~---+-~---~ 

-!-! --+---+---+""\ 
P_TRTRY i 

-I 
!---+---~--+--~---+--~--~--+---:~--+---~-~ 

P_TA _I 
_-I 

P_BG ! 
J---+---+----I-' 
I 

14 I 

I 
I 
I 
I 
I
I 
I 

R_A16·0 ~ ~: --+--< ______ --1>--+---+----+---+--+---+---+---< .... ___ -' 

Figure 4-22. Retry Caused By Replacement Copyback 

MOTOROLA MC88410 USER'S MANUAL 4-35 



• 

In clock 1, the processor begins a new transaction. In this example, the MC88410 
determines that it needs to replace a secondary cache line that is included in the primary 
cache. The MC88110 performs a transaction in clocks 1 through 4. In clock 4, the 
MC88410 negates the P_BG signal to the MC88110 (assuming on-chip arbitration) and 
asserts P _TRTRY. The processor immediately relinquishes the bus by negating P _ABB and 
terminating the transaction. 

In clock 6, the MC88410assumes mastership of the bus and begins its primary cache 
invalidate. The MC88410 drives the address of the line to be replaced on the processor 
bus and asserts P_TS for one clock cycle. If the broadcast address hits on a modified line, 
the MC88110 asserts P _ARTRY to regain bus mastership and perform a snoop copyback 
operation. If the snoop hits on an unmodified primary cache line, the P _ARTRY signal is 
not asserted. The MC88410 takes the absence of an address retry (after a two-clock snoop 
delay) to indicate that the primary cache line was invalidated by the snoop. 

In Figure 4-22, the MC88410 has not detected P _ARTRY asserted by clock 9 indicating that 
the primary cache line was invalidated. In clock 10, the MC88410 completes the primary 
cache invalidate transaction and relinquishes the processor bus. 

In clock 11, the MC88110 regains mastership of the bus and begins a new transaction. 
Note that this example assumes a single-MC88410 configuration since P_BG is asserted by 
the MC88410 in clock 7, one clock cycle after it asserts P _TS. Therefore, the bus arbitration 
handshake is not evident in clocks 10 and 11. 

4-36 MC88410 USER'S MANUAL MOTOROLA 



SECTION 5 
SYSTEM BUS INTERFACE 
This section provides a functional description of the MC88410 system bus, the signals that 
control the system bus, and the system bus cycles for data transfer operations. It also 
includes the descriptions of system bus timing, system bus arbitration, transaction types, 
split-bus transactions, double-word ordering, data streaming, termination, snoop timing, 
and collisions. 

NOTE 

The terms assert and negate are used extensively in this 
manual to avoid confusion between active-high and active-low 
signals. Assert or asse.rtion indicates that a signal is active or 
true, regardless of whether the signal is active high or active 
low. Negate or negation indicates that the signal is inactive or 
false. 

The MC88410/MCM62110 secondary cache contains both data 
and instruction data types. The term data is used in this· 
manual to refer to both data and instructions unless 
specifically noted otherwise. 

The timing for the external signals shown in this section is only accurate to within a half
clock cycle and is included for reference only. The input and output signals of the 
MC88410 are synchronous in that all setup and hold times are specified in reference to the • 
clock signal. The MC88410 outputs are driven from a clock edge and a maximum delay is 
specified. In addition, minimum hold times are specified in relation to the clock. The 
minimum setup and hold times must be met to guarantee proper device operation. The 
timing for some signals on the MC88410 system bus interface has been shifted compared 
to the processor bus interface such that they are sampled on the rising edge of the clock 
instead of the falling edge. Therefore a system board design that is compatible with the 
MC88410 and the MC88110 must maintain valid data across both edges. For detailed 
timing information, refer to the MC8841 0 Electrical Specifications. 

5.1 SYSTEM BUS INTERFACE OVERVIEW 
The system bus interface is similar in operation to the processor bus interface. However, 
extensions to the processor bus protocol include the choice of full-speed or half-speed 
system bus clock frequency, the choice of double-word ordering of burst transactions, and 
extensions to the bus snooping protocol. 

MOTOROLA MC88410 USER'S MANUAL 5-1 



• 

The MC88410 system bus interface includes many features that maximize the rate of data 
transfers between the processor and other devices in the system. All data transfers are 
synchronous and occur in either single-beat transactions or burst transactions. Burst 
transactions are either critical-word-first or zero-word-first. The data streaming feature 
provides the data to the processor as it is received from the ~us while simultaneously 
bypassing or writing to the secondary cache. 

Although one or more of the devices on the MC88410 system bus can have the capability 
of driving the system address and data buses, there can be only one device controlling 
each bus at anyone time. This device is the address or data bus master. Bus arbitration is 
the protocol by which a device becomes a bus master. The MC88410 defines an 
arbitration protocol in which an external arbiter controls system b~s arbitration and the 
MC88410 requests mastership of the system bus from the arbiter in order to perform an 
external access. 

The MC88410 system bus has separate address and data buses whose mastership can be 
split from each other to enable split-bus transactions. Although the MC88410 does not 
include the data bus, it does control the system data bus arbitration. Through its control 
of the MCM62110 fast static RAMs the MC88410 also controls data output on the system 
data bus. Split-bus transactions allow different devices to control the address bus and 
data bus at the same time. This potentially increases system performance by allowing 
multiple bus transactions to be in progress simultaneously by multiple bus masters. Bus 
pipelining occurs when the address phase of a transaction can overlap the data phase of 
other transactions. The complexity of the pipeline levels is dependent on external 
circuitry. 

The MC88410 must arbitrate for mastership of both the address and data bus separately. 
If the MC88410 is the only possible bus master on both buses, both buses can be 
continuously granted to the MC88410 by external logic and no arbitration is required. To 
avoid the overhead of arbitration, it may be desirable to "park" the MC88410 on the 
system address bus. The MC88410 is parked when bus grant is asserted and the MC88410 
is not performing a bus transaction. For systems with multiple system bus masters but no 
split-bus transactions, the data bus can be continuously granted to the MC88410 by 
external logic, requiring only address bus arbitration. 

System bus transactions may be terminated normally or terminated with an error or retry 
indication. The address retry terminates the transaction of the current address bus 
master. The transfer retry terminates the transaction of the current data bus master. 
Transfer errors and transfer retry indications are propagated to the processor interface 
when processor transactions are involved. 

The MC88410 uses a bus snooping protocol to monitor bus transactions performed by 
other system bus masters and to intervene in the access, when required, in order to 
maintain cache coherency. The MC88410 services system bus snoop transactions from the 
secondary cache without interaction with the processor unless the snoop operation hits in 
the primary data cache. 

5-2 MC88410 USER'S MANUAL MOTOROLA 



5.2 SYSTEM BUS COMPATIBILITY 
A memory system designed to be compatible with both the MC88110 system bus and the 
MC88410 system bus must take into account the signal timing differences. Table 5-1 
summarizes the hardware timing differences between the MC88410 and MC88110 system 
bus for both the full-speed and half-speed mode. These differences are explained in detail 
in the remainder of this section. 

Table 5-1. MC88110/MC88410 Timing Differences 

Signal MC88110 MC88410 Full·Speed MC88410 Half·Speed 

TA (input) T A asserted with data S _ T A asserted one ClK before S _ T A asserted with data 
data 

TRTRY Sampled one ClK after 0 B G is Sampled with S_DBG Sampled one HClK after S_DBG 
(input) asserted is asserted 

Data (input) 9 ns setup, -3 ns hold 2.5 ns setup, 2 ns hold (to 2.5 ns setup, 2 ns hold (to 
MCM62110 array) MCM62110 array) 

Data (output) 4 ns minimum, 15 ns Zero (0) ns minimum, 8 ns Zero (0) ns minimum, 8 ns 
maximum propagation delay maximum propagation delay maximim propagation delay 

BR (output) B R asserted one ClK after S _ B R asserted one ClK after S_BR asserted with S_SSTAT1 
SSTAT1 on snoop hits S_SSTAT1 on snoop hits on snoop hits 

System signal differences between the MC88110 and MC88410 are shown in Table 5-2. 
The TSHD and S_SSTAT2 signals are MC88410 additions to the system bus protocol. The 
absence of the WT signal on the MC88410 system bus prevents signaling the write-through 
memory policy to a third level of cache memory. 

MOTOROLA MC88410 USER'S MANUAL 5-3 

• 



Table 5-2. MC8811 O/MC8841 0 System Signal Differences 

Signal MC88110 MC88410 

WT Indicates write-through memory update policy Signal not available. Cannot signal write-
through to next level of cache 

PSTAT2-PSTATO* Provide visibility of the CPU status Signals not available 

TSHD Signal not available. Shared status of data is Allows data to be marked as shared during 
transmitted during address bus tenure using the data bus tenure 
SHD signal 

S_SSTAT2 Signal not available Indicates this secondary cache will perform a 
snoop copyback transaction 

F1-FO Signals not available. Flushing/invalidation of Asserted to flush or invalidate secondary cache 
cache performed through control registers 

FeSY Signal not available Indicates MC88410 is performing a flush 
operation 

CS Signal not available Dynamically selects the MC88410 

FD2 Signal not available Used for tag monitoring 

FD1/CWM" Signal not available Tag monitoring/word order for burst 
transactions 

FDO/LINSIZ' Signal not available Tag monitoring/secondary cache line size 

S03/CSIZ1* Signal not available Tag monitoring/secondary cache size 

S02lCSIZO" Signal not available Tag monitoring/secondary cache size 

S01/ARBEN" Signal not available Tag monitoring/select internal arbitration 

SOO/CSP" Signal not available Tag monitoring/chip select polarity 

HCLK Signal not available Half-speed clock input 
Note: Signals marked with * (astensk) are used to configure the MC8811 0 or MC8841 0 d~nng reset. After reset these 
signals can be used during debug and for statistical analysis of the processor or secondary cache. 

• 5.3 HALF-SPEED SYSTEM BUS TIMING 
The MC88410 provides a half-speed mode for systems sensitive to component cost, board 
routing, and design issues related to the high clock rate of the MC88410 and MC88110 
processor cluster. Half-speed mode allows the system interface to operate· at half the 
clock speed of the processor bus while retaining the full-speed operation of the MC88410 
processor interface. 

The MC88410 requires botn the CLK and the HCLK signals to operate in the half-speed 
mode. The MC88410 operates in half-speed mode when a half-speed clock is driven to 
HCLK. The MC88410 uses the HCLK signal as a qualifier for inputs and outputs on the 
system interface. The CLK and HCLK signals must be in phase with each other and the 
rising edge of HCLK must coincide with a rising edge of CLK within the electrical 
specification timing. Figure 5-1 shows a block diagram of a simple MC88110/MC88410 
system implementing a half-speed system interface. 

5-4 MC88410 USER'S MANUAL MOTOROLA 



~ MC88110 

, 
50 MHz ... 

Clock MC88410 
MCM62110 

Generator 25 MHz --.... Array 

I Data Bus 

Address Bus 
" " 1 " 

Memory 1/0 DMA 
Controller Controller Controller 

Figure 5-1. Half-Speed System Interface 

All input and output timing specifications for the full-speed mode are applied to the half
speed mode as well. Setup and hold times are still referenced to CLK but the inputs are 
only sampled on the rising edge of HCLK. The full-speed mode differs from the half-speed 
mode in the relative timing of the S_TA signal. In the half-speed mode the S_TA signal 
must be asserted with the data (the same timing as the P _TA signal). In the full-speed 
mode, the memory system must assert S_TA one clock before the data is latched in order 
to allow the MC88410 time to increment the address to the secondary cache for burst 
transactions. The snooping protocol is the same for both modes except that S_BR is 
asserted with S_SSTATI for the half-speed mode instead of a clock later for the full-speed 
mode. The system bus timing diagrams reference the full-speed clock and half-speed 
clock when relevant. The term "system bus clock cycle" refers to CLK in the full-speed 
mode and HCLK in the half-speed mode. • 

5.4 SYSTEM BUS ARBITRATION 
Arbitration for bus mastership in a multi-master system is performed by external 
ar.bitration logic and the system bus arbitration signals of the MC88410. Unlike the 
processor bus interface, which only provides for address bus arbitration, the system bus 
interface provides for independent address and data bus arbitration. 

5.4.1 System Bus Arbitration Signals 
Table 5-3 lists the system bus arbitration signals for the MC88410. Note that S_ABB and 
S_DBB are 110 signals. These signals are outputs while the MC88410 has mastership of 
each of the buses and inputs at all other times. 

MOTOROLA MC88410 USER'S MANUAL 5-5 



• 

Table 5-3. System Bus Arbitration Signals 

Signal Function Type 

S_BR System bus request Output 

S_BG System bus grant Input 

S_ABB System address bus busy liD 

S_DBG System data bus grant Input 

S_DBB System data bus busy I/O 

5.4.2 System Address Bus Arbitration 
When the MC88410 needs to perform an external bus access and is not parked (S_BG is 
negated), it asserts S_BR, and continues to assert S_BR until it has been granted mastership 
of the address bus and the bus is available or until the bus is no longer needed. The 
external arbiter grants mastership of the bus to the potential master by asserting the S_BG 

signal. Because the S_ABB signal is asserted by the current master to indicate address bus 
mastership, the potential master determines that the bus is available when the S_ABB 

signal is negated. A qualified system bus grant is defined as S_BG asserted and S_ABB 

negated (as an input). The potential master does not assume system address bus 
mastership until it receives a qualified system bus grant. 

When a parked MC88410 (S_BG continuously asserted) needs to perform a system bus 
access, it qualifies its bus grant with S_ABB. If S_ABB is negated, then the MC88410 has a 
qualified bus grant and it can assume address bus mastership. 

When the MC88410 receives a qualified bus grant, it assumes system address bus 
mastership by asserting the S_ABB signal and negates the S_BR output signal (unless the 
transaction is the first half of a locked operation). At the same time, the MC88410 drives 
the address for the requested access onto the system address bus and asserts the S_TS 

signal to indicate the start of a new transaction . 

In the clock cycle that S_TS is asserted, the MC88410 begins sampling S_DBG and S_TA. If 
the arbitration and external memory is fast enough to respond with S_TA asserted, data 
could be sampled on the following clock. 

When designing external bus arbitration logic, it is important to note that the MC88410 
may assert S_BR but not use the bus after it receives the qualified bus grant. One example 
of this is in a system that uses snooping. If bus master A asserts S_BR in order to perform 
a replacement copyback transaction, it is possible for another device to invalidate that line 
before bus master A is granted the bus. Then, once bus master A is granted the bus, it no 
longer needs to perform the copyback transaction, and it does not assert S_ABB for this 
case. 

When operating the MC88410 in the half-speed mode, external arbitration logic should 
also take into account the fact that the MC88410 asserts S_BR at the rising edge of the HCLK 

signal and samples S_BG on the next rising edge of HCLK. The MC88410 qualifies its 
outputs with HCLK in the half-speed mode. 

5-6 MC88410 USER'S MANUAL MOTOROLA 



5.4.3 System Data Bus Arbitration 
Although the MC88410 does not contain the data signals, the MC88410 is responsible for 
data bus arbitration and, through its control of the MCM62110s, the data bus. In addition 
to signaling the start of a new transaction, the assertion of the S_TS output signal implies a 
system data bus request. The arbitration for the data bus is very similar to the arbitration 
for the address bus. The S_TS signal serves the same function for the data bus as the S_BR 

signal does for the address bus; however, S_TS is asserted for only one clock cycle. As 
with the address bus, the MC88410 only assumes system data bus mastership when it has 
been granted the data bus and the data bus is available. 

The external arbiter grants data bus mastership by asserting the S_DBG signal. The 
potential data bus master determines that the bus is available when the S_DBB signal is 
negated. A qualified system data bus grant is defined as S_DBG asserted and S_DBB 

negated (as an input). 

When the MC88410 receives a qualified system data bus grant, the MC88410 asserts S_DBB 

and data transfers may begin on the next rising clock edge. A design alternative for 
systems without a split address and data bus is to ground the S_DBG signals for all bus 
masters, as the data bus can be controlled by S_DBB alone. 

Note that the data bus arbitration handshake must occur for all transactions. Therefore, 
even for the system invalidate transaction, in which no data is transferred, the S_DBG 

signal must be asserted to the MC88410 for the transaction to terminate properly. 

5.4.4 System Bus Arbitration Timing Examples 
Figures 5-2 and 5-3 show the relative timing of the bus arbitration signals for some simple 
cases of full- and half-speed system bus arbitration. Note that there are separate signals 
shown for S_ABB and S_DBB as inputs and as outputs (even though there is only one S_ABB . 

and one S_DBB signal on the MC88410). This clarifies when these signals are monitored as 
inputs, when they are driven as outputs, and when they are ignored. In systems with 
multiple MC88410s, the multiple S_ABB signals can be connected together, as can the • 
multiple S_DBB signals. The combined S_ABB and S_DBB signals should be connected to 
pull-up resistors to keep the signal negated when no devices are driving the signals. For 
all timing diagrams that follow Figure 5-3, the combined S_ABB and S_DBB signals are 
shown with the assumption that pull-up resistors are being used. 

MOTOROLA MC88410 USER'S MANUAL . 5-7 



• 

3 4 5 7 9 10 I 11 

elK 

S_A31-o _ .... : --~---';"---«'-___ _ 

- !-, ----..;--~ 

S_ABB In = ! 

S_ABBOU!_i .... -~--"":-""'\\_"';""_---:'-I/T' \_!_ 
TRANSFER - i ' 
A~~§:l ( , ) q,~ 

STS
: i,r--h 

- - i '--+' i ' ....... -!----;---+---+---+--~'-:-

US"::I'& ~lI'l" \ 1/4, _$I ~ -t(.~' 

:n-~."-~~"'-Vi 9 I 

DBBOU!_ ~: =~~=~~---""""\\ :,': ~""""":"':':.':""'::'.'."".""."" .. ,., ... : .... , •.... ,.,.,."." .. " .... : ..... ,: .... ,i .•.... ':'.: .. , •. ::.,.,' •. , •. ,: •. : .• :,: •. " •...•...••... , .. ,' .. : •.. , •... : ...•. , .. , ..• ,.: ... ,., ..•.•.• :, •.... : .• ,., ..• , ... :., ...• :', .... : .• ".: •..• " .• " .•. , .• : .•. ,.".,.,.1 .• ,,.", •.. ' .•.. , •..• , ... ,'.' ..•...• " •. : .• , .• ,::.: .•. "., ..•...• , .• ,'.' .• ,,':. S_TA ~ \ii~I.·;;j·.;;;·;; ii·· j·' ,~:.' •• ' I1.;·;,i.· •. ·• •. ·•· .• ,;1;.·.,' •.. i.;i,i.1,i,1.;.·;,;,i.:' 

S_BR J\ _____ ----.../ 
S_BG i \ 

'--~--~-~--~----:.--~--~-~--~-~ 

IIIEJ DON'T CARE 

.Figure 5-2. Full-Speed System Bus Arbitration Timing Example 

Figure 5-2 shows an example of a single-beat (read or write) split bus transaction. In clock 
1 of Figure 5-2, the MC88410 asserts S_BR and monitors S_BG and S_ABB. Note that all 
MC88410 output signals except those used for arbitration are three-stated during clocks 1 
and 2 because the MC88410 is not the current bus master. However, it is likely that these 
signals are driven by other bus masters in the system during that time. Since it receives a 
qualified bus grant on the rising edge of clock 3, the MC88410 asserts S_ABB and S_TS, 

negates S_BR, and drives the appropriate values onto the address bus and transfer 
attribute signals. On the rising edge of clock 5, the MC88410 receives a qualified data bus 
grant and S_TA. During clock 5 the MC88410 asserts S_DBB and the data is driven onto the 
data bus. 

The MC88410 must arbitrate for the data bus for each transaction. This protocol enforces 
at least one clock cycle for data bus turnaround. 

In Figure 5-2, many of the input signals are ignored a majority of the time. The S_DBG 

signal is monitored only between when S_TS is asserted and when the MC88410 assumes 
mastership of the data bus, which in· this case is two clock cycles for each. memory 

5-8 MC88410 USER'S MANUAL MOTOROLA 



transaction. The S_TA signal is monitored when the MC88410 asserts S_TS and during 
data bus mastership. 

In the full-speed mode, the relative position of S_TA is shifted so that S:TA must be 
asserted one clock cycle before the system data is latched (a clock earlier than the 
processor bus signal P_TA), in this case, coincident with S_DBG. The function of the S_TA 

signal is described in detail in 5.6 System Bus Transaction Termination. In the half
speed mode, S_TA must be asserted coincident with the data (the same timing as P _TA). 

Note that in Figure 5-2, when the MC88410 is no longer using the address and data buses, 
it negates S_ABB and S_DBB before three-stating the signals. As mentioned previously, 
these signals should be connected to pull-up resistors. The MC88410 negates the signal 
before three-stating it so that the signals meet the setup time for the next clock edge. 

For the fastest case of back-to-back MC88110 transactions (and allowing for cache tag 
lookup), clock 11 is the earliest that the MC88410 requests the system bus again. In this 
example, the MC88410 remains parked on the system bus. For the fastest back-to-back 
MC88410 transaction (a replacement copyback followed by a line fill), the MC88410 
asserts S_TS (or S_BR if it is not parked) in the clock following termination of the previous 
transaction. 

Figure 5-3 shows the same example of system bus arbitration timing using half-speed 
mode. Note that the MC88410 asserts S_BR on the rising edge of HCLKand samples S_BG 

on the next rising edge of HCLK. In the half-speed mode S_TA is sampled with the data. 
Half-speed mode arbitration timing is otherwise identical to the full-speed mode timing 
in the previous example. 

In HCLK clock cycle 1 of Figure 5-3, the MC88410 asserts S_BR and monitors S_BG and 
S_ABB. Note that all MC88410 output signals except those used for arbitration are three
stated during HCLK clock cycles 1 and 2 because the MC88410 is not the current bus 
master. However, it is likely that these signals are driven by other bus masters in the 
system during that time. Since it receives a qualified bus grant on the rising edge of HCLK 
clock 3, the MC88410 asserts S_ABB and S_TS, negates S_BR, and drives the appropriate 
values onto the address bus and transfer attribute signals. On the rising edge of clock 5, 
the MC88410 receives a qualified data bus grant. During clock 5 the MC88410 asserts 
S_DBB and the data is driven onto the data bus. The memory system asserts S_TA with the 
data and it is detected by the MC88410 on the rising edge of clock 6. 

MOTOROLA MC88410 USER'S MANUAL 5-9 

E 



• 

2 7 10 I 11 

• DON'T CARE 

Figure 5-3. Half-Speed System Bus Arbitration Timing Example 

Figure 5-4 shows an example of bus arbitration in full-speed mode in which the data bus 
is not immediately available for the MC88410/MCM62110. In clock 1 the MC88410 
asserts S_BR and monitors S_BG and S_ABB. Since it receives a qualified bus grant on the 
rising edge of clock 3, the MC88410 asserts S_ABB and S_TS, negates S_BR, and drives the 
appropriate values onto the address bus and transfer attribute signals. In clock 4 S_DBG is 
negated rather than asserted. Therefore, the MC88410 does not assume data bus 
mastership (S_DBG asserted and S_DBB negated as an input). On the rising edge of clock 6, 
the MC88410 receives a qualified data bus grant and S_TA. During clock 6 the MC88410 
asserts S_DBB, the data is driven onto the data bus, and the transaction completes. 

5-10 MC88410 USER'S MANUAL MOTOROLA 



3 4 6 7 

ClK 

S_A31-Q :-: ----:.------« .... ____ -_--....--J)>----O--..... 

S-_A-BB In ':: ...... ~ ......... <Jrt 
:---+--~\,~-___O_-......;.._-4_n_:~ 

I~~~~~~ -I---~-_+__«'___:_, __ ~-__:_--~)-~'----~'-
SIGNAlS- - . 

S3S :--~---""-"J ,'----i--_____ 

S_BR ~ i\~------/ i -
- : \ i,::, J r----'-~~.....;.....-.--------.; 

S_BG j '--lJ 

I BUS I BUS I TRANSFEF1_ WAITS _I TRANSFEF1 RELEASE 1 
REQUEST GRANT START r- ~ ACKNOW·I ADDRESS~ 

lEDGE DATA BUS 

• DON'TCARE 

Figure 5-4. Full-Speed Data Bus Arbitration Timing Example 

5.4.5 System Bus Parking 
To avoid the overhead of arbitration, it may be desirable to "park" the device on the 
system address bus. The MC88410 is parked when S_BG remains asserted regardless of 
whether the MC88410 is requesting bus mastership. If S_BG is asserted when the system 
bus is requested internally, the MC88410 completes the arbitration sequence without any 
overhead and can begin the transaction without asserting S_BR. Thus, bus parking 
provides a performance advantage in that bus accesses begin without any delay for the 
arbitration protocol. 

Figure 5-5 shows an example of the MC88410/MC88110 arbitration protocol using bus 
parking. Initially, an alternate master is master of the system bus and performs a data 
transaction. At the end of this transaction, the arbitration logic parks the MC88410 on the 
address bus by asserting the MC88410 S_BG input. Clock cycles 4 and 5 show no device 
using the bus, but the MC88410 is parked on the address bus. 

MOTOROLA MC88410 USER'S MANUAL 5-11 

• 



S_BG \'---+_---! __ +-_-+-_~-~--..:__-.....:..._-___: 
AMBR;~ 
AMBG J / 

'----- ALTERNATE 
I~ MASTER 

IJZlJ DON'T CARE 

~ PAR~~NG ~~MASTM~SHIP-"""~I"'I--- PA~~~NG ----t .. ~1 
"I'" MC8841 0 -I 

Figure 5-5. Bus Parking: Full-Speed Mode 

In clock 6, the MC88410 initiates a transaction by driving the address and control 
information and asserting S_TS and S_ABB. The S_ABB signal is asserted to indicate that the 
address bus is in use (slow masters may assert S_ABB without driving a valid address). 
Both S_ABB and S_DBB always negate after the transaction is complete. The MC88410 
always negates S_ABB for one clock between back-to-back transactions. 

At the end of the transaction shown in Figure 5-5, S_BG for the MC88410 remains asserted, 
so the MC88410 remains parked on the address bus. 

The external arbiter should use caution when negating S_BG to a parked MC88410, 
because the parked MC88410 could assert S_ABB and start a transfer in the same clock 
cycle that S_BG is negated. The examples in this section assume that the S_ABB signal of 
multiple masters are connected together. 

5-12 MC88410 USER'S MANUAL MOTOROLA 



5.4.6 System Bus Pipelining Protocol 
The MC88410 has the capability to split the address and data buses so that they operate 
independently from one another. For example, in a multiprocessor configuration, the 
system address bus master is the MC88410 driving the address and the data bus master is 
the MC88410 that drove the address of the current data transfer. The separate control for 
this arbitration is controlled by the S_AACK signal. The assertion of S_AACK by a memory 
system indicates that the current address has been latched and that the address bus 
master can relinquish mastership of the address bus. The minimum address cycle time 
for any given transaction is two clocks on the system address bus. 

The address bus master begins sampling the S_AACK input signal during the clock after 
S_TS is asserted. When the master detects that S_AACK is asserted, it releases the address 
bus by three-stating it and negating S_ABB so that another master can acquire the bus. The 
S_AACK signal is ignored during any clock that results in the termination of the transaction 
(for example, S_TEA, S_ARTRY, S_TRTRY, or the last S_TA). 

5.4.6.1 Multi-Master Single-Level Bus Arbitration 
Figure 5-6 shows the relative timing for a split-bus transaction. The MC88410 drives an 
address onto the address bus and then detects the assertion of S_AACK. It then releases the 
address bus by three-stating it and negating S_ABB, but continues to transfer data on the 
data bus. The data transfer proceeds and terminates as in other normal transactions. 

As shown in Figure 5-6, MC88410-A begins a transaction and drives an address on the 
address bus. MC88410-A begins the data transfer on the data bus and detects S_AACK 

asserted on the rising edge of clock 3. Therefore, MC88410-A releases the address bus, 
which allows MC88410-B to begin to drive a new address onto the address bus before 
MC88410-A has completed the data transfer. A responding device can latch the new 
address from MC88410-B and begin the data access before the transaction of MC88410-A 
has completed. The ability to decouple the address and data bus increases the efficiency 
of the system by allowing the new address to overlap a previous transaction. 

MOTOROLA MC88410 USER'S MANUAL 5-13 

• 



• 

4 5 7 9 10 I 11 12 I 

ClK 

S-"31-O : ~ MC"'," - A ) < MC ... ," - B )>-------«'-__ M_CB_B4_10--_A_-')>----'---'--

~~~. ~~.-.-r~\:~:~=.=I=I=~=.~.=I=I-I=I-I=I-I~I~-='_l_,~:~=J=I~_~=!=~='~ 
ATIRIBUTE :--{) i () (-...,..--...,..---,---.J)>----+--~

SIGNALS - :' I':' . ~ .

us~~~ 8

063-00 = i __ ~_--:--.

LsD_BTA~:,i,., •• ,' •.•. ,.".:.""., •.• ,.,',', ... ,',', ..•• ,.;",1,.,., •• , ••• ,l"',·,','.',.i,', •• ,'.'",',' •• , •• ,.,' •••• ,' ••• ".,.".,, •••• ';,.,.,'"., •• '.1.", ••• , •• ~, •• , •• ,.,., •• ,.,.,.'" \~-~-~""'~""'-••• '."""'."'.'."'.'"" ••••• <."'.' ••• ,-."'.,., •• " •••• ,,.,.,,',., •••• ,',.,, •• , •• ,.,~~.,l., •••. ,' .• " •. ,.,', •. , .• ,',', •. ,.,~ .•. ,., .. ,',,'.,', !:: ~-~-~t-~-~~.~: ~ Li.'\. Ai I.:
ITI3l DON'T CARE

Figure 5-6. Full-Speed Split Bus (One-Level) Arbitration

Note that in this case, S_AACK is not asserted to MC88410-B before MC88410-A has
completed its data transfer, characterizing this transaction as a one-level split-bus
transaction. One advantage in implementing a one-level split bus is that the S_DBG signals
to all bus masters can be connected to ground, which simplifies the data bus arbitration
circuitry. After MC88410-A completes its data transfer in clock cycle 6, S_DBB is negated
and sampled by MC88410-B. The memory system asserts S_AACK in clock 6 and the
address bus is released by MC88410-B. MC88410-A then initiates another transaction on
the address bus in clock 8.

5.4.6.2 Multi-Level System Bus Arbitration
A bus master can complete its address bus tenure before the data bus transaction of the
previous bus master terminates, allowing multiple addresses to be outstanding on the
bus. However, for each MC88410, only one outstanding transaction exists at any time.
For example, it is possible to have four outstanding transactions at one time for a system
with four MC88410s, which corresponds to a three-level split-bus system.

Multi-level split-bus systems require that the memory system generate the correct S_DBG

(and data) to the correct bus master. Figure 5-7 illustrates the relative timing fora multi
level split-bus transaction example. Note that in this case, MC88410-B gains address bus
mastership and relinquishes it before the data is returned for the transaction of
MC88410-A.

5-14 MC88410 USER'S MANUAL MOTOROLA

ClK

S_ABB

TRANSFER
ATIRIBUTE

SIGNAlS-

DATA

I2ElI DON'T CARE

Figure 5-7. Full-Speed Multi-Level System Bus Arbitration

5.5 DATA TRANSFER MECHANISM
The following paragraphs describe the signals used in the transfer of data between the
MC88410 and external devices on the system bus. The data transfer protocol and
examples of the relative signal relationships for the different types of transactions are also
described.

5.5.1 Data Transfer Mechanism Signal Overview
The signals that implement the data transfer mechanism for the MC88410 are classified as
data transfer signals, transfer attribute signals, and transfer control signals. The transfer
attribute signals are summarized in Table 5-4.

MOTOROLA MC8841 0 USER'S MANUAL 5-15

•

III

Table 5-4. System Bus Transfer Attribute Signal Summary

Function Signal Asserted Negated

Read/Write S_RiW Read Write

Lock S_LK Transaction is one of two atomic Transaction is not part of an atomic
transactions. Reflects the state of the sequence. Reflects the state of the P _LK
P _LK signal. signal.

Cache inhibit S_CI The transaction in progress is not cached The transaction in progress may be
in the primary cache and secondary cache. cached in the primary and secondary

cache.

User page S_UPA1- Reflect the state of the P_ U P A 1-P _ UP A 0 Reflect the state of the P _ U PA 1-P _ U PAO
attributes S_UPAO signals. signals.

Transfer burst S_TBST Burst transaction Single-beat transaction

Transfer size* S_TSIZ1- See Table 3-6. See Table 3-6.
S_TSIZO

Transfer code S_TC3- See Table 3-7. See Table 3-7.
S_TCO

Invalidate S_INV This signal is broadcast to snooping Invalidation not required
MC88410s to invalidate the cache line

Memory cycle S_MC Data is transferred from MC88410 to an No data transfer to occur
external device.

Global S_GBL Data being transferred is global data Data being transferred is local data

Note: The * (asterisk) Indicates that Signal should be Ignored for burst cycles.

5.5.2 RAM Interface
Although the MC88410 does not contain the data bus, through its control of the
MCM62110 secondary cache RAM array it does control data transfer. The RAM interface
consists of the R_A16-R_AO, RWE7-RWEO, PIE, POE, SIE, and SOE signals. The R_A16-R_AO,
RWE7-RWEO, . SIE, and SOE signals are involved in system bus transactions. For more
information regarding the RAM interface signals, refer to 3.3 RAM Interface Signals.

The R_Al6-R_Ao signals provide the secondary cache with the address of the transaction.
For processor transactions, R_Al6-R_AO are asserted in the clock after the address (p_A31-
P _AO) is driven on the processor bus. For system bus burst transactions, the MC88410
automatically increments the address to R_A16-R_AO in the clock before data is valid. For
this reason, S_TA must be asserteq. one clock before the data is valid for all full-speed
transactions. .

The RWE7-RWEO signals allow individual bytes of the 64-bit word to be written into the
MCM62110 array. The RWE7-RWEO signals are asserted or negated during system or
processor data bus mastership depending upon the transaction. The SOE signal causes
data from the MCM62110 array to be driven onto the system data bus and has identical
timing to RWE7-RWEO. The SIE signal enables the MCM62110 array to latch data from the.

5-16 MC88410 USER'S MANUAL MOTOROLA

system bus, is asserted in the same system bus clock cycle as S_BR, and remains asserted
until the transaction terminates.

5.5.3 Data Transfer Transaction Summary
The system bus interface initiates transactions in response to system bus snooping and
processor bus transactions. Data is transferred on the system bus in either single-beat
transactions or burst transactions.

Transactions with S_TBST negated are single-beat system bu.s transactions. Single-beat
processor transactions (p _TBST negated) can result in burst system bus transactions.
Transactions with S_TBST asserted are system bus burst transactions.

Table 5-5 summarizes the state of transfer attribute and control signals for system bus
transactions. The actions of the MC88410 for any processor or system bus transaction
depend on whether the access is cacheable and the state of the secondary cache line. The
state of the secondary cache line is determined by coherency considerations. For
information regarding processor transactions and the effect of cache coherency
considerations on data transfer, refer to Section 2 Secondary Cache Operation.

All single-beat transactions except for system invalidate are the result of a single-beat
processor transaction. System bus burst transactions result from both single-beat and
burst processor transactions, as well as bus snooping. All write transactions must assert
S_INV.

MOTOROLA MC88410 USER'S MANUAL 5-17

•

Table 5-5. System Bus Transaction Attribute and Control Signals

Transaction s_RfII um UT S_INV "S_DC S_LK s:GBC S_TSIZ1- S_TC3-
S_TSIZO S_TCO

Single-Beat

Cache- inhibited read R N A A A N MMU b,h,w,d I/D,U/S

Locked read: R N A N A A MMU b,w D,UlS

Cache- inhibited
load-store

Locked read: R N A N A A MMU b,w D,U/S
store-load

Cache- inhibited write W N A A A N MMU b,h,w,d D,UlS

Write-through W N N A A N MMU b,h,w,d D,U/S

Locked write: W N A A A A MMU b,w D,U/S
Cache- inhibited
load-store

Locked write: W N N A A A MMU b,w D,UlS
Cached load-store in
write-through mode

Locked write: W N A A A A MMU b,w D,U/S
store-load

System invalidate W N N A N N A b,h,w,d D,U/S

Burst

Secondary cache R A N N A N MMU d IID,UlS

line till

Secondary cache R A N A A N MMU d D,UlS

read-with-intent-to-

modify

• Replacement W A N A A N N d RCB

copyback

Snoop copyback W A N A A N N d SCB

Flush copyback W A N A A N N d D,S

System DMA W A x x N x A x x
invalidate

b= Byte 1= Instruction access
h= Halt word 0= Data access
w= Word S= Supervisor access
d= Double word U= User access
R= Read W= Write
A= Asserted SCB= Snoop copyback transaction
N= Negated RCB= Replacement copyback transaction
x= Don't care MMU= Determined by MC88110 MMU

5-18 MC88410 USER'S MANUAL MOTOROLA

5.5.4 System Single-Beat Transactions
Single-beat transactions are read or write transactions that occur with disabled caches,
cache-inhibited accesses, invalidation transactions, locked (xmem) transactions, and write
transactions that occur in write-through mode. The only single-beat transaction initiated
by the MC88410 is a system bus invalidate transaction. All other single-beat system bus
transactions occur in response to processor bus single-beat data transactions.
Transactions that are single-beat processor transactions can result in burst system bus
transactions.

All single-beat transactions have similar timing characteristics; the differences between
the transactions are determined by the transfer attribute signals of Table 5-5 that are
asserted/negated. Note that all transaction types except for "invalidate" cause the S_MC

signal to be asserted. The S_MC signal is asserted when data must be transferred between
the MC88410/MCM62110 and an external device. If the processor transaction is cache
inhibited (p _CI asserted), P _TBST is ignored by the MC88410 and a single-beat transaction
occurs on the system bus. The S_INV signal is asserted to notify snooping MC88410s to
invalidate their corresponding cache line if necessary and is asserted for all system bus
write transactions. The state of the P_CI, S_CI, and P_WT signals are determined by the
MC88110 memory management units (MMU).

5.5.4.1 System Single-Beat Read Transactions
During single-beat read transactions on the system bus, the MC88410/MCM62110 reads a
byte, half word, word, or double word from an external device. Single-beat read
transactions on the system bus are caused by the following cache-inhibited processor
transactions: single-beat read, touch load, and a locked read. An allocate load transaction
that is cache-inhibited appears as a single-beat cache-inhibited read transaction.

To perform a single-beat read transaction, the processor asserts P _ TS, negates P _TBST,

drives the address onto the processor address bus and asserts or negates the appropriate
transfer attribute signals as described in Figure 5-8. The MC88410 decodes the address
and looks it up in the cache tags. Assuming a secondary cache miss, the MC88410 enables
the MCM62110 array to latch data by asserting the appropriate cache control signals,
arbitrates for the system address bus, drives the address onto the system address bus, and
asserts or negates the transfer attribute signals appropriately. Finally, the MC88410
asserts S_TS to indicate that the system address is valid.

At the beginning of each transaction, S_TS is asserted for one clock. The external arbiter
should interpret the assertion of S_TS as a data bus request. In the full-speed mode the
memory system must assert S_TA one clock cycle before the data. If the memory system
cannot supply the data within the appropriate. setup and hold times, it should insert wait
states by negating S_TA until the data is available.

MOTOROLA MC88410 USER'S MANUAL 5-19

•

•

5-20

1) Set R.W to Read
2) Drive Address on A31-O
3l Drive Size on TSIZ1-O
4 Negate TeST
5) AssertCT
6) Drive Transfer Attribute Signals
7) AssertDS

1) Decode Address and
Transfer Attributes

2)TagL~
3) AssertDTA
4) Negate PIE" and S1E"
5) Negate rr:::TA
6) Drive Address on R_A 16-0
7) Assert l'OE"
8) Assert RWEf-o
9) Assert S1E"
10) Drive Address on S_A31-0
11) Negate S_RW$_ Ts sT, s:=cT
12) Drive Transfer Attribute Signals
13) Asserts=TS

Acquire Data
Assert rr:::TA

Figure 5-8. Full-Speed Single Beat Read Transaction Flow

MC88410 USER'S MANUAL MOTOROLA

Once the MC88410 becomes the data bus master, the memory system should supply the
requested data on the appropriate D63-DO signals within the required setup and hold
times with respect to the rising edge of the clock. Once S_TA is asserted, the MC88410
completes the transaction and asserts P_TA, terminating the processor transaction.

5.5.4.2 System Single-Beat Read Transaction Timing
Figure 5-9 shows the relative timing of the data transfer signals during a single-beat read
transaction. In this example the transaction is a cache-inhibited, single-beat read
transaction from the processor (P_CI and S_CI asserted, RWE7-RWEO negated). Arbitration
signals, assuming a synchronous external arbiter, and the RAM interface signals are
shown for reference.

As shown in Figure 5-9, the MC88110 drives the address signals with the physical address
of the access off the rising edge of clock 1 and at the same time asserts the appropriate
attribute and control signals for the type of single-beat transaction being performed (see
Table 5-5). In this example P,;CI is asserted for a cache-inhibited read. Since the
transaction is cache-inhibited, RWE7-RWEO remain negated throughout the transaction.
The MC88410 samples the processor address on,the next rising clock edge (clock 2).

The MC88110 also asserts the P_TS signal off the rising edge of clock 1 for one clock. The
MC88410 interprets P_TS as indicating that a transfer has begun and that the driven
address is now valid. Since the processor is always granted the data bus, P _TS is not
interpreted as a data bus request. Both processor address and data bus arbitration is
controlled by P _ABB alone.

The MC88410 asserts P_PTA in the clock following the assertion of P_TS. At the same time
it also asserts POE and drives the address to the secondary cache RAM (R_A16-R_AO).

In clock3 the MC88410 has completed its tag lookup of the address. In the next clock the
MC88410 asserts S_BR to request the system bus. Note that it takes two clock cycles from
the recognition of P_TS for the MC88410 to Jook up the cache tags and execute the system
bus request. At the same time the MC88410 asserts SIE to allow data to be streamed
through the MCM62110 array to the processor.

When the MC88410 asserts S_BR in clock 4 it monitors S_BG and S_ABB. In this example the
external arbiter asserts S_BG in clock 5. Since the MC88410 recognizes a qualified bus
grant on the rising edge of clock 6, the MC88410 asserts S_ABB and S_TS, negates S_BR, and
drives the appropriate values onto the system address bus and transfer attribute signals.
The assertion of S_TS also acts as a data bus request.

MOTOROLA MC88410 USER'S MANUAL 5-21

•

•

5-22

2131415161

CLK_ i

P _A31-o ~ !--<\-..,.--....,.....-...,.....--,---.,....-.......,...----,----r"----,.--r---JH ~
P _ABB ~ :-\\--+---I---l-----+-----+---+--+-----+----+---+-....Jr1 ~
P_RJW- i-I ~~

- :--, \ 1:::-=
PJNV = j '--'

P_CI_ !' 0-
P _ TS ~ i~, ft:: .. ··~::.::.:~::···:.·:~·:::}ti~~~· •. ~.·.~· .• ~·.· .••.... ~ ···············~··········~~)···~~~~~~············~··i ·~~··~~·:··::~~~:····~·~~~:·.·~:·:···· ... f.·:.:....: .. ·::: ::: ;.............. ••.••.•..••..•.....•••••...••.........•...••.•.• ·.·•· ••••• ·•· •••••••.••••••.•••• ·1

: \ i M-
P_TA Wait-~--""'--~--~-~----!---+--~i~~\~ i-

PDATA -----!-\ ~ t~. JiW-lWllE~F\llWlHl!:ljPfiil fmv'lll_0~'i!K . ~ ~

, !1~
-:--~-~--~-~-~~--~-------~--~----~-~

RWE 7-0 = :

R_A 16-0 = :i--....;....-«)

S_A31-o = j __ --!--_--+-____ ~----+----+-~ < : -----.--_--.---.J)
, \ i /,---+-----i

~ABB=: '--'+!---~--~---+i~

:~::)1*j0 t 1..1 i 0q;if~~i('----:-_~_i~=Ii_/ .. =i= ••..••...•• =i.'_:_ _ ... ~~= ... _ _ J:
SD~A ~; --~~-~--~--~--~---~-~-~~~, ~---~'-

-':=~==+==+=~=~=d=~~ [.. 1

S_TA i)(· . ····························.I·..~.' W~it ''---:--'IfJ i ·.""i.l • • ••• •• i }"!"'} \? ·• ••• ·.:.· n~I!

S_BR _ : Tag LOOkU~'-~ __ +-'/
- ,~ = = * = = ~ = = = ~ = ... ,2,.......;~\ /~>. ~ = = .•.......... = .••..••.•.. = .•.•......•.. = .•..•.••..•• = •........... = ~ = ••.....•.•... =•... ~ ••...••..... =•...•. =•...•... =•....... ~ = ..•.......•.. = ~ ...•.•.•.•...• ,

S_BG it ···.i.:..) ,---+,,,,,,,tJ ... /i ... f",,,:i .;,;;;;;·····)} ... ?· ... ········.·"':'"}) •· {t~f\~i .• {n).....~? I :.~}~· ••• · •••• ·~ ii;i;i;i,lII.~...!

Clock Cycle 3 4 5 7 8 9 10 11

• DON'TCARE

Figure 5-9. Full-Speed Single-Beat Cache-Inhibited Read

MC88410 USER'S MANUAL MOTOROLA

In clock 7 the external arbiter asserts S_DBG, which is qualified by S_DBB negated, allowing
the MC88410 to assume data bus mastership. To indicate the status of the transaction to
the MC88410, the memory system then either asserts or negates the S_TA signal. When
the data is guaranteed to meet the appropriate setup and hold times with respect to the
rising edge of the clock, the memory system should assert S_TA to terminate the
transaction. In the full-speed mode, S_TA must be asserted one clock before the data
(clock 8 in Figure 5-9). In the half-speed mode, S_TA is asserted concurrent with the data.
If the data cannot be supplied in time during the clock cycle after the address is sampled,
S_TA must be explicitly negated until the appropriate setup and hold times are met. In
this example the memory system cannot provide the data until one clock after S_TA is
asserted in clock 8, incurring a one clock wait. The MC88410 continuously drives the
address on the system address bus until S_TA is asserted. The memory system can insert
as many wait cycles as necessary until the appropriate data setup and hold times are met.

In clock 8 the MC88410 asserts S_DBB to indicate data bus mastership. In clock 9 the data
is valid and is latched from the system data bus. In the next clock the MC88410 releases
the data bus by negating S_DBB, stops driving the address onto the system bus, and
negates the RAM interface signals. With the assertion of P _TA in clock 10, the processor
completes its transaction.

If the transaction terminates with an error or retry, the memory system should assert the
S_TEA signal for a bus error, the S_TRTRY signal for a transfer retry, or the S_ARTRY signal
for an address retry. For more information about S_TA and other termination signals,
refer to 5.6 System Bus Transaction Termination.

5.5.4.3 System Single-Beat Write Transactions
During single-beat write transactions, the MC88110 transfers a byte, half word, word, or
double word to an external device. Single-beat write transactions on the system bus
result from MC88410 system invalidate transactions, write-through transactions, or cache
inhibited write transactions.

Figure 5-10 describes the flow of a processor single-beat write transaction that propagates
to the system bus. The processor initiates a single-beat write transaction after becoming
the processor address bus master. The processor then drives the address onto the
processor address bus and asserts or negates the appropriate attribute and control signals
(see Table 5-5). All write transactions from the MC88110 and MC88410 cause the
invalidate (P_INV and S_INV, respectively) signals.to be asserted so that snooping devices
can invalidate their cached versions of the data. The MC88410 enables the secondary
cache for input from the processor (if it is not cache-inhibited) and arbitrates for the
system bus. The system bus transaction concludes with the assertion of S_TA by the
memory system.

MOTOROLA MC88410 USER'S MANUAL 5-23

•

1) Set Rfii to Write 1) Decode Address
2) Drive Address on A31·0 2) Input Transfer Attribute Signals
3) Drive Size on TSIZ1·0
4) NegateTBST
5) Drive Transfer Attribute Signals

3) AssertP _PTA
4) Negate PIE, SiE, PO E, SOE
5) Drive Address on R_A 16·0

6) Assert Transfer Start f _ TS)
7) Drive Data on Data Bus

6) Negate PTA
7) Assert PIE
8) Drive Address on S_A31-O
9) NegateS_ TBST
10) Assert s_RW
11) Drive Transfer Attribute Signals
12) Assert Transfer Start (S_ TS)

* Asserted after Data Latch in Half·Speed Mode

Figure 5-10. Full-Speed Single-Beat Write Transaction Flow

5.5.4.4 System Single-Beat Write Transaction Timing
Figure 5-11 shows the relative timing of the data transfer signals during a single-beat
write transaction. In this example the transaction is a single-beat write-through
transaction from the processor that hits in the secondary cache. If this had been a write
through write that missed in the secondary cache, data would be written to the system
bus interface but not into the secondary cache (RWE7-RWEO negated). Arbitration signals
assuming a synchronous external arbiter and the RAM interface signals are shown for
reference.

As shown in Figure 5-11, the MC88110 drives the address signals with the address of the
access during the rising edge of dock 1 and at the same time asserts the appropriate
attribute and control signals for the type of single-beat transaction being performed (see
Table 5-5). In this example the P _INV and P _ WT signals are asserted for a write-through
transaction. The MC88410 samples the address on the next rising clock edge (clock 2).

5-24 MC88410 USER'S MANUAL MOTOROLA

The MC88110 also asserts the P _TS signal off the rising edge of clock 1 for one clock cycle.
The MC88410 interprets P_TS as indicating that a transfer has begun and that the driven
address is now valid. Since the processor is always granted the data bus, P,_TS is not
interpreted as a data bus request. Both processor address and data bus hand-off is
controlled by P _ABB alone.

The MC88410 generates P _PTA in the clock following the assertion of P _TS. At the same
time it also asserts PIE and drives the address to the secondary cache RAM (R_Al6-R_AO).

While PIE is asserted, the MC88110 continues to write data into the secondary cache and
drive the address until P_TA is asserted by the MC88410.

In clock 3 the MC88410 has completed its tag lookup of the address. In the next clock the
MC88410 asserts S_BR to request the system bus. Note that it takes two clock cycles from
the recognition of P _TS for the MC88410 to look up the cache tags and perform the system
bus request.

When the MC88410 asserts S_BR in clock 4, it monitors S_BG and S_ABB. In this example
the external arbiter asserts S_BG in clock 5. Since the MC88410 recognizes a qualified bus
grant on the rising edge of clock 6, the MC88410 asserts S_ABB and S_TS, negates S_BR, and
drives the appropriate values onto the system address bus and transfer attribute signals.
The assertion of S_TS also acts as a system data bus request.

In clock 7 the external arbiter asserts S_DBG, which is qualified by S_DBB negated. The
MC88410 continues to drive data onto the system data bus until S_TA is asserted. One
clock cycle before the memory system can latch the data (in the full speed mode), it
should assert S_TA to terminate the transaction. In the fastest case for the full-speed
mode, S_TA is asserted in the clock that the address is sampled and one clock before the
data.

In this example, S_TA is asserted in the clock following S_TS (clock 7 in Figure 5-11). In the
half-speed mode, S_TA causes data to be latched in the same clock. If the data cannot be
latched in time during the clock after the address is sampled, S_TA must be explicitly ~
negated until the appropriate setup and hold times are met. While S_TA is negated, the ~
MC88410 continuously drives the address and data on the system bus until S_TA is
asserted (or S_AACK is asserted to terminate address bus mastership). The memory
system can insert as many wait cycles as necessary until it can latch the data.

The MC88410 asserts RWE7-RWEO in clock 7 to enable the writing of data into each byte of
secondary cache. The SOE signal is asserted in clock 8, when it becomes the data bus
master, to enable the data to be driven to the system data bus.

In clock 8 the MC88410 asserts S_DBB and data is driven on the system data bus. In the
next clock the MC88410 releases the data bus by negating S_DBB, stops driving the address
onto the system bus, and negates the RAM interface signals. The MC88410 asserts P _TA in
clock 8, so the processor stops driving data and completes its transaction.

MOTOROLA MC88410 USER'S MANUAL 5-25

•

ClK
,

P_A31-o~ H
-!

P_ABB ,
-1

PJiN~h
-! --

PJNV

=1'
I

P_WT _h ,
I ! -

P_TS !--

P_PTA = i
, , , , ,-, ,-

P_TA
i ,
I ,

=1 1-
PDATA <

1-
, , -, 1-- I

PiE !
1--!

-'
SOE 1 1

-! 1-
RWE7-0

,
! I

-I 1-

R_A1S-0
-1

<) I-
I I

-I
1=

S_A31-o
-I

<
1 ,
1--I

S_ABB _I

-~'----~------~----~----~-----+~

S:~;~-4.,~..,~
S_DBB

SDATA

UA_~ .,
S BR !

S~BG ~ 1.·.::::.:t:;Hf
I

,,~~~~
Clock Cycle

• DON'T
CARE

2 3 4 S 7 8 9 10

Figure 5-11. Full-Speed Single-Beat Write-Through Timing

5.5.4.5 System Invalidate Transaction

I

Invalidate transactions are single-beat transactions used by the MC88410 to maintain
cache coherency among multiple caches. Invalidate transactions broadcast to snooping

5-26 MC8841 0 USER'S MANUAL MOTOROLA

bus masters that a cache line will be modified; thus, snooping bus masters should
invalidate their cached versions of the line. See Section 2 Secondary Cache Operation for
more information about snooping and cache coherency.

An invalidate transaction is an address-only transaction; although valid data is driven on
the data bus, no data is transferred. Invalidate transactions use the protocol defined for
single-beat write transactions. The only difference between an invalidate transaction and
a normal single-beat write transaction is that for an invalidate transaction, S_MC is
negated since no data must be transferred. For both i~validate and normal single-beat
write transactions, the S_R/W signal is asserted, signaling a write, and S_INV is asserted to
notify snooping processors to invalidate their cached versions of the line.

Even though no data is 'transferred during an invalidate transaction, the MC88410 must
still request and be granted the data bus. Unless a transaction is terminated with an
address retry indication (see 5.6.3 Address Retry Transaction Termination), the
transaction cannot be completed until the external arbiter asserts S_DBG and the memory
system asserts S_TA. The S_TEA and S_TRTRY signals are not recognized until the MC88410
has received a qualified data bus grant.

Figur~ 5-12 shows the timing diagram for a system bus invalidate transaction assuming
that the MC88410 has been granted the address bus.

MOTOROLA MC88410 USER'S MANUAL 5-27

•

•

I 1 I 2 I 3 I 4 I

ClK ~ ~

S_A31-o~H: : 'H~
-! \ ! ! /11-- i\ I I I .1

S ABB iii i 1
- - I ,I ! I· 1-

- ! ! ! ! 1-
- I I t I I

S_RIW nil 1 r-i
-I ! ! ! 1-

,- 'I I I ,-
SMC LJ 1 1 1 W
- I I I I I

-=1 1 1 1 1=
SJNV h iii r-i

- 1 . I I I· ,-

TRANSFER - I 1 1 1 1-
ATIRIBUTE _ H H_

SIGNALS, I , i 1 --: : : : -
S TS 1 1 1 1 1
- _ I I ! ! !_

I I I I - -----..... ,'"""U/' , ! S TA 1 . 1 1 1
- - ! : i !-

!----+'"""\ 1 ' i
S_DBG I LU i i

SDATA~! \ i~" I~
S DBB r--r-T\lJl, 1 1 1 1

- I I I I I
- ! !! 1-

Ii1i2J DON'T CARE

Figure 5-12. Full-Speed System Invalidate Transaction

5.5.4.6 Locked Transactions
The xmem instruction is a multiprocessor synchronization instruction that uses a single
beat read transaction and a single-beat write transaction to exchange the contents of a

. processor general register with the contents of a memory location. The xmem instruction
is normally used to implement semaphores or resource locks in multiprocessor or
multitasking systems.

The MC88110 xmem instruction is effectively a locked combination of a processor load
and store instruction. The MC88110 implements the xmem instruction in one of two
ways. In load-store ordering (the MC88110 default case), the xmem instruction causes a
single-beat read followed by a single-beat write transaction. In store-load ordering the
xmem instruction causes the MC88410 to perform a single-beat write followed by a
single-beat read transaction.

The MC88410 response to locked transactions is dependent upon the order. For store
load ordering, the MC88410 treats the locked transaction as a pair of cache-inhibited
accesses that results in a single-beat write and read on the system bus. For load-store
ordering, the MC88410 treats the locked transaction asa pair of cacheable data requests
depending on the P _CI signal. Load-store locked transactions that are not cache-inhibited

5-28 MC88410 USER'S MANUAL MOTOROLA

and miss in the secondary cache causes a system bus read-with-intent-to-modify
transaction. For the cache-inhibited load-store locked transaction, both the locked store
and the locked load result in single-beat system bus transactions. The MC88410 system
bus interface allows both transactions to be forced into a single bus tenure as follows.

During the execution of the locked transaction, the S_LK signal is asserted for both the
read and write portions of the transaction. The lock signal is asserted to indicate that the
bus arbitration circuitry should not allow another bus master to alter the data being
accessed by the xmem instruction between the read and the write. The external arbiter
can ensure this by not granting mastership of the bus to other potential bus masters
between the read and write portions of the locked transaction.

The S_BR signal operates slightly differently for locked transactions than for all other
transactions in that S_BR remains asserted while S_TS is asserted for the first transaction in
the locked transaction. In all other cases, including the second transaction in locked
transaction, the S_BR signal is negated when S_TS is asserted. The external arbiter can use
this feature to easily lock the bus between the two transactions by not negating S_BG (once
it is asserted) until the MC88410 negates S_BR, thus parking the MC88410. Another
advantage in keeping S_BG asserted throughout the two transactions is that the transfer
attribute signals remain valid.

If S_BG is negated, or if S_AACK is asserted during a locked tenure, the address bus tenure
ends, and the locked pair of accesses continue execution as two independent accesses
until completion. In this case the address bus mastership is released (S_LK is negated
between the two accesses) and the system bus mastership may be granted to another bus
master between the two accesses. The MC88410 will negate S_BR if S_AACK is asserted. If
address bus is retried (S_ARTRY asserted) during the first transaction of the locked
transaction, then the locked transation is reinitiated from the begining.

Between the load and store transactions of a cacheable locked transaction, the MC88410
maintains a lock collision buffer that retries any snooped address that attempts to access
the same cache line address as the locked transaction. For more information about lock
collisions, see 5.8.4 Lock Collision.

5.5.4.7 Locked Transaction Timing
Figure 5-13 shows the timing for a full-speed, cache-inhibited, load-store xmem
transaction where the arbiter parks the MC88410 so that the bus is locked between
transactions. The system bus arbitration signals and RAM interface signals are shown for
reference.

In clock 1, the processor initiates the single-beat read when it asserts P _TS and drives the
address, transfer attribute signals, and the P _LK signal which identifies it as an xmem
transaction. In clock 2, the MC88410 responds by asserting P_PTA (not shown), driving
the address to the MCM62110 array (R_A16-R_AO), and asserting the POE signal. During
clock 3 the MC88410 compares the address to the internal cache tags.

Initially, the MC88410 is not parked on the system bus and in clock 4, the MC88410
requests the system bus and enables the RAM input from the system bus by asserting the

MOTOROLA MC88410 USER'S MANUAL 5-29

E

•

SIE signal. In clock 5, the MC88410 drives the address and transfer attribute signals onto
the system bus and asserts S_TS and S_ABB.

In this full-speed example, the external arbiter grants the data bus in clock 6 and the
external memory system asserts S_TA. In clock 7, the MCM62110 array latches the data
and the MC88410 completes. the transaction on the system bus. Notice that the arbiter has
parked the MC88410 in this example by continuing to assert S_BG. The MC88410
responds by continuing to assert it S_BR, S_ABB, S_LK, and other transfer attribute signals.

In clock 8, the MC88410 asserts P_TA and the processor latches the data, completing its'
read transaction. The processor continues to assert its transfer attribute signals and
P_ABB.

In clock 12, the processor again asserts P _TS to initiate the single-beat write half of the
xmem. The MC88410 responds by asserting the PIE signal inthe next clock and again
drives the address to the secondary cache. On the rising edge of clock 16, the MC88410
recognizes its bus grant and negates S_BR. In clock 16, the MC88410 asserts S_TS and
drives the address onto the system bus. The MC88410 receives a data bus grant in clock
17, asserts the SOE signal and recognizes S_TA. In clock 18, the MC88410 drives the data
onto the system bus and asserts P_TA. Finally, in clock 19 the processor recognizes P_TA

and the transaction completes.

Figure 5-14 shows the system bus timing for a full-speed load-store xmem transaction
where the MC88410 in not parked between transactions. In this case the system bus may
be granted to another bus master between transactions. For system bus timing of a lock
collision between xmem transactions when the MC88410 is not parked, see Figure 5-43 .

5-30 MC88410 USER'S MANUAL MOTOROLA

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I

ClK

P_A31-O ~ k __ ~ _____,...,)-Io--+-----~'--________ .,...,
P_ABB ~\
. _-u~~=t====~~=z====~:::::~\-:~~t--:-:--:--:-:--:--:
P-'~!W~! !, \

P_lK_h
TRANSFER - ~';±:::t=±::::::t::::::j:::::j::t:==::t::::::t=:t::::!:==:±:==:±=:::±:=±::~
ATTRIBUTE ~

SIGNAlS- i '--, --......... ~-..,..-------:--~-_..,.....---r-~--:---:---:-~:--'
--:\ : I : \JJ:
P_T5:! Y

P DATA _ i:-....r.:-...;....--:.-~ ----~O)-lo--+---+i -(, H:
~~i \JJ-L-L-~======z=z=~;~~i ;-

!:,',\ i in!: PrE_ i . i i. :

POE~~~~~~~ __ ~~/
~_: [\ _+_-+--+--~~/-----~~---~~-~---~~i~
SOE_~t ----~~---~-~--~~~~---+--+--+-~--~~~:~!:

R~16-{):H, i,) :, (: :, H,~
RWE7-o -_ i ',: .
S DATA _ ;---........ --Io-"""'-....;...---i'--+-<O~--+----!--~-+---+--+---t-i --+:-~Q-1-
S~TS_! ' ill i \.JJ

5_DBG - [:""':>-I)~,::::,,,·~(,'''!'!''ii~i)~;H-{'~i:~H'~'~b'~ •. ',.A A., I,'·'·· .. ·'·'·'·""·',·······'·"·'·"'·'··'·"'· ' .. , ... '."." '.,',{, ... ·"'·."·'·,'.··.,·.'".' ... ,,'·· .. ,'.·· .. :··I ••• • ••• ·.··.·.·.'.·.'.: •.•.•••.••••• ·,.I' ••••••••• ' ••• ·• •• ,' ~ All ~
-,~~~.......:...;,\ t, I;, ;\ 1 r:-
S_DBB _ ! '---l-I ' '-f-I :

S_A31-o: i ; (i,)-..:..! --~-i--~~-:---i--~::-« i, H ~
-:I---~-+----+-~!,' \ r!:,-:

S_ABB: i I,: I,' - , i ,~':"--+---";'-\ '
SJW'-!--!--~-+--'~l, ""-!---~~--~-!-~--"'!--~,i: \ '1:
~lK;i~' ~----~~i~\~---+---........ ---------------........ -----~~'i:
5_CI_ i 1 \;::t::4=~-r---i-r-i-~i--ri-i-r-i--'rt

SJNV; : , u., ..• , i I \"""-O----.....;...------------~i \ rt
. S_TA :' , ... ; ' , .. ' ' :.,' :' .. : ,' .. : .. '., , : : .. ' ' ,.' ', :, :., ' '.' '.' ' ',' ' ', .. ·.i .••. ' ••. '.,',' .••• :.·.:.:,:.: ••. • ••.•.•.•••.••• ,.:: ... ,'.' ..• : ..••. : •...••..••. : .. ':.: .•...•....• ' ..• :.: •...••....•••••. : ..•..••.. , •..• ' ..••..• ::., ...••..••.. , •..• : ..••. , •... : •. \., ...•. ',. Fdi?\"::"(i!":':'i'::'i:: :,':"':')':::::':,.:,"::':":'::'::"::::":':::'::::":',I:,·:'·' :::"::'::' '::::·::,,··::,·::::::,·::::',::·:':::':::::·:, i:· :,.,,: '::"::':'::':::':"""":":"1::':::<\ ., .. :: ••• ' ..• ' •• : •.. : ••. ' .••. ' •• ' ..• ',: ..••• : ...• :::, .• :.:: ...••..• : .. ,' .. '••..• ' .••. :: .••. : •.••.•.••. :: ... :' .••. : •.••. : •. J':'_-. .. i! ett:.: •• tt.:: •• tir.; •••• t ... t .. ; ;:..·Nrw:: ••• , r~.':: ,',.,., " .. , ,.,"'.', .. ,./:;. rittWM:I{) ~

S_BR - i l-LT~!I~ \ / 1
-: : OOl«Jp : '--I--+---+-+---+--i---+---+-+--+-+--.....f--J '.

S_BG;": i \ ! / \ , ,
Clock Cycle : 1 : 2 : 3 ! 4 5 i 6 : 7 8 1 9 10: 11 i 12 i 13 i 14 i 15 1 16: 17 : 18: 19 :

•
• DON'T CARE

.Figure 5-13. Cache-Inhibited Load-Store Locked Transaction

MOTOROLA MC88410 USER'S MANUAL 5-31

•

l' I 2 I 4 5 7 I 8 9 10 I 11 12 I

CLK

~~~~--~--~~)~-+--~--~--~-~~~~--~--~>-1~ 
\,---+----+---+-,/ \~+----I---~ri: 
I \'--+---+--+----+---~\ '-i-

S_LK :---I-'"'\'-___+---+---~-'I,...-+---+--+----+---......... \'-___+--_+__-__t_-'r__1 ~ 
r~~~~~~ -:--------4.() (H,', -_ 

SIGNALS - : ,-. -,-__ ,--_.....,.....J. .. 

US - i ~,-~---+I--+---+--+----!---+-.UJ :: 
SD~A ~--~--~----+-~~~~--+---+--+---+--+----!-~~~ 

L) u;----<-
S_TA !.ii:fi\ J:iY· ..../~ AI! 

- - '........ ' ..... ' - - ..•.. x ...• := 
S_DBG iit Th. 4It, ;Ali>: 

:~: : ~'-""';""-/;-.{)-... .... .;...iT-0f---:..---;....---i------"-------.....;....--"""'-'I,..---------~~: 
Clock Cycle 2 4 7 8 10 11 12 13 

_ DON'TCARE 

Figure 5-14. Locked Transaction Timing - Unparked Case 

5.5.5 System Burst Transactions 
Burst transactions are read or write transactions that occur as a result of single-beat 
transactions that miss in the secondary cache, burst processor transactions that miss in the 
secondary cache, and copyback transactions. Transactions in Table 5-5 with S_TBST 

asserted are system bus burst transactions. Note that if a processor transaction is cache
inhibited (p _CI is asserted) P _TBST is ignored and a single-beat transaction occurs on the 
system bus. All burst transactions assert S_MC and have similar timing characteristics. 
The differences between the. transactions are determined by the transfer attribute signals 
shown in Table 5-5. 

Burst transactions on the system bus interface differ from those on the processor bus 
interface by allowing a choice of critical-word-first or zero-word-first burst ordering. 
Also, the system interface transfers either 32 bytes or 64 bytes depending on the cache line 
size configuration. For information regarding the effect of cache line 'size and burst 
ordering on processor transactions, refer to Section 2 Secondary Cache Operation. 

5-32 MC88410 USER'S MANUAL MOTOROLA 



:! 

The following paragraphs describe burst transaction types and transaction timing 
assuming a 32-byte secondary cache line size and critical-word-first burst ordering. 
Transaction timing for other cache line sizes and burst ordering are described in 5.5.5.5 
Burst Order and Streaming Timing Examples. 

5.5.5.1 Burst Read Transaction Types 
During a burst read transaction, the MC88410 fills a secondary cache line by reading four 
(32-byte line size) or eight (64-byte line size) double words from memory depending on 
cache line size. 

5.5.5.1.1 Secondary Cache Line Fill 
A system bus burst read operation that results from a miss in the secondary cache is 
referred to as a secondary cache line fill. Secondary cache line fill transactions result from 
a read miss in the primary instruction or data cache and a read miss in the secondary 
cache. Processor single-beat read transactions which can result in a secondary cache line 
fill are the table search, allocate load, and load-store xmem transactions. Secondary cache 
line fills that result from a primary instruction or data cache read miss stream data to the 
processor while writing data to the secondary cache. The MC88410 does not assert S_INV 

during secondary cache line fills. 

5.5.5.1.2 Secondary Cache Read-with-Intent-to-Modify 
Processor burst read operations resulting from a write miss to the primary data cache are 
intent-to-modify. If this read misses in the secondary cache, the system bus burst read is 
intent-to-modify and S_INV is asserted to alert snooping devices to invalidate their copy of 
the data. Secondary cache read-with-intent-to-modify transactions are caused by touch 
load and data cache read-with-intent-to-modify processor transactions that miss in the 
secondary cache. 

5.5.5.2 Burst Read Transaction Timing 
The following paragraphs describe three examples of burst read timing: a full-speed 
secondary cache line fill, a full-speed secondary cache line fill with wait states, and a half- • 
speed secondary cache line fill. 

5.5.5.2.1 Full-Speed Secondary Cache Line Fill 
Figure 5-15 shows the relative tim~ng of the data transfer signals during a full-speed 
secondary cache line fill transaction. In this example the data is read into the secondary 
cache and streamed to the processor. 

MOTOROLA MC88410 USER'S MANUAL 5-33 



I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 

ClK 

P_A31-o ~ !-{'-___ .....----:'_~-,...__.....,...-~__...,..--------" xJ ~ 
P_ABB>' i r~ 
P_RiN-~ ! Li-
_.: I~ 

P_GBl_h : ri = 

P_TBST_ h : r-:,: 
P_TS~V 

P DATA ':----' -+----+---t---+--+--+----+--~~ -
'\: : : :r:,-P_TA_ i: , ' , , , , , i : : : : : 

R_A16-2 ~ !--+-<'-~~ ____ ~_~.....,... _______ .....,...~ 
R_A1-o ~ :--+-<, 

: : ~-.....-~-~--,...--.....,...-~ 

SDATA_: ' 

~~----~----~ 
S_TS_: 

S_DBG 

S_DBB 

S_A31-o :-.-...-+--+-....,....~~ 
~-~ 

-
S_GBl f--...;...-+---+---+----+""'\....;... __ f--+--+---+--t--+---i--i 

• 
S BR : - -, 
- 1--""';"'--+---;---",,", 
S_BG 

Clock Cycle 1 3 7 8 9 13 14 

• DON'TCARE 

Figure 5-15. Full-Speed Line Fill Transaction Timing 

5-34 MC88410 USER'S MANUAL MOTOROLA 



Before the burst transaction begins, the MC88110 becomes the processor bus master. In 
clock 1 the processor asserts P _TS, P_ABB, P _TBST, and the appropriate attribute and 

. control signals and drives the full 32-bit address onto the processor bus. The MC88410 
samples.the address on the next rising clock edge (clock 2). Two clocks later (clock 4) the 
MC88410 has determined that the read misses in the secondary cache and it requests the 
system bus. In this example the external arbiter asserts S_BG in the next clock. 

The MC88410 recognizes a qualified bus grant on the rising edge of clock 6. The MC88410 
asserts S_ABB, S_TS, and the appropriate transfer attribute signals, negates S_BR, and 
drives the full 32-bit address of the requested data onto the system address bus. 
Assuming the assertion of S_AACK on the rising edge of clock 8, the system address bus 
tenure terminates and the address and control signals are three-stated by the MC88410 in 
clock 8. The assertion of S_TS also acts as a data bus request. In clock 8 the external 
arbiter asserts S_DBG, which is qualified by S_DBB negated, and the MC88410 becomes the 
data bus master. 

To indicate the status of each of the four beats of the transaction to the MC88410, the 
memory system then either asserts or negates the S_TA signal. When the data is 
guaranteed to meet the appropriate setup and hold times with respect to the rising edge 
of the clock, the memory system should assert S_TA to terminate the beat. A clock later, 
the address is incremented by MC88410 to the address of the next beat of the burst 
transaction, or, if all four beats have successfully completed, the burst transaction is 
terminated. 

In the full-speed mode, S_TA must be asserted one clock before the data (clock 8 in Figure 
5-15) to allow the external RAM address to be pre-incremented to prevent wait states 
between the data bursts. In the half-speed mode, S_TA is asserted concurrent with the 
data. In both cases S_TA is asserted for the same number of clocks. If the data cannot be 
supplied in time during the clock cycle after the address is sampled, S_TA must be 
explicitly negated until the appropriate setup and hold times are met. 

The fastest case burst transaction occurs when no wait cycles are inserted by the memory • 
system. In this example (as shown in Figure 5-15), S_TA is asserted in clock 8 and the 
memory system places the first aligned double word on the data bus during clock 9 and it 
is latched by the secondary cache. During each of the following three clock cycles, the 
address is incremented by the MC88410 to reflect the address of the appropriate double 
word. The memory system continues to supply the secondary cache with the appropriate 
double words on the data bus. To signal the end of the transaction on the system bus 
after four data beats have been transferred, S_TA is negated in clock 12. 

On the processor bus, the MC88410 asserts P_TA in clock 10 and the first data beat is 
latched by the processor. Note that P_TA is asserted concurrent with the data and the 
processor receives the data one clock after it is latched by the secondary cache. For the 
next three clocks the MC88410 increments the address and asserts P_TA. The processor 
transaction completes in clock 14. 

MOTOROLA MC88410 USER'S MANUAL 5-35 



• 

5.5.5.2.2 Full-Speed Secondary Cache Line Fill with Wait States 
An example of a full-speed read miss burst transaction with wait cycles is shown in 
Figure 5-16. During clock 6, the MC88410 drives the full 32-bit address of the requested 
data onto the system address bus. Address bus tenure is termin~ted by the assertion of 
S_AACK in clock 7. The external arbiter grants the MC88410 the data bus in clock 8. In this 
case, the memory system cannot provide the data until clock 13 so it negates S_TA until 
clock 12. Note that the MC88410 keeps P _TA negated, thus making the processor wait, 
until after it receives S_TA asserted. In clock 12 the memory system asserts S_TA and 
provides one beat of data on the system data bus which is latched by the secondary cache 
in clock 13. 

During clock 13 the MC88410 increments the RAM address based on S_TA being asserted 
in clock 12. Also during clock 13 the memory system negates S_TA to"insert a wait state. 
On the rising edge of clock 14 the MC88410 recognizes S_TA negated. 

Also in clock 14 the MC88410 asserts P _TA and the first beat of data is latched by the 
processor on the rising edge of clock 15. The MC88410 negates P_TA "in clock 15 to wait 
the processor. During clock 14 the memory system asserts S_TA to indicate that the 
second beat of data will be valid in clock 15. 

In clock 15 the MC88410 increments the address based on S_TA being asserted in clock 14. 
In clock 16 the memory system continues to assert S_TA and drives the third beat of data 
to the secondary cache. During clock 16 the MC88410 asserts P_TA and the second data 
beat is driven to the processor. The MC88410 increments the RAM address during clock 
16 and the memory system drives the last beat of data to the secondary cache in clock 17. 
The system bus transaction is terminated in clock 18. 

During clock 18 the MC88410 asserts P_TA and the fourth data beat is driven to processor, 
completing its read transaction. 

5.5.5.2.3 Half-Speed Secondary Cache Line Fill 
Figure 5-17 shows a secondary cache line fill with the MC88410 in the half-speed mode . 
The MC88410 asserts S_BR in system bus clock 3 (HCLK in this case) and samples S_BG on 
the rising edge of system bus clock 4. When the MC88410 receives a qualified bus grant 
in system bus clock cycle 3, S_TS is asserted for one system bus clock. The arbitration 
protocol is the same for the half-speed mode as for the full-speed mode. Transfer 
attribute signals are asserted for the duration of system address bus mastership. 

The system bus data transaction begins in system bus clock 7 and the processor 
transaction begins during processor bus cycle 15. Note that the memory system must 
assert S_TA in the same system bus clock as the data is sampled. The MC88410 negates 
P_TA between each data transfer to match the system bus data transfer. If the processor 
transaction had hit in the secondary cache, data would have been provided without wait 
states. 

5-36 MC88410 USER'S MANUAL MOTOROLA 



5 I 6 I 7 8 I 9 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 

ClK 

P_A31-Q ~ i-{'--......... -r---~--r-~_-..,.---:--~---:--_ ......... -r---.......... _-_---.-Jr-:, ;_ 
~ABB~i'\,~ __ 4-__ ~-+ __ ~ __ ~~ __ ~ __ ~~ __ ~ __ ~ __ ~~--~--~~--__ --

P_RNiY : U 

P_TBST=i"' : 0 = 

P_GBl_h i rl-
P_TS~V 

PDATA;i--~:--~--~-+--~--~~--~--+-~--~:::,-' ~--~: ~; 
P TA i , : :, \ l t;;.\,tt: : : Ii, _ 

- _ : I : \.....lJ .wa,11 , . 

R_A16-2~i~ , , , , , 4-i, ~ 
: I t 

R_A1-Q ~ i--+-<r-"-------------'--""'--""""------i.-"'O"-~X ~l ~ 

S DATA~: i i 

, '\JJ: 
5_TS_ i",~~ __ ~ __ ~-+ __ -;i __ _+: ---h 

S_DBG - j- ! : \j} I::, . : 

-~D-BB-~i ----~----~--~~--~' --i~\~~~--~----~----~~--~ir_r_l; 

s~. :~i-_-_-+'-_-_-... +_-_-_~~~~~~~~-(\r-('-:~-----~I.J!)--+!---+----;----:I---+I---+,----l----i----Ii---+--4
i---1 : 

S_TA ~ i::"::::::'i (':/:\::::::::::",:::,;';::7 i Wait i \fi\ i / 

S_BR i i \, i / ' i I 
S~G;~! --~-+--~--~:'-lIr--~-+--~--~~--~--~~----I----i-~---+--~~,_ 

Clock cyCle! 1 2 3; 4 : 5 : 6 7 8 9 10 11 12 13 14 15 16 17 18: 19 

_ DON'TCARE 

Figure 5-16. Full-Speed Burst Read Transaction Timing with Wait Cycles 

MOTOROLA MC88410 USER'S MANUAL 5-37 

• 



• 

Processor Bus 
ClockCycl~1 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 

HCLK 

elK 

P _A31-0 ~ k~-~--:--~_-:----:---:----:--~--:----:,,--r--~-~ ........ ---r'-""""--:---:--~---'...1 
~ABB~i\~~~_~~_~ __ ~_~~_~ __ ~_~~_~~~_~~_~~ 
P_TS·\lt 

-: : 
P DATA.~; -; ....... --....... -...:-......:..-.;.....---:-....... -...:-......:..-.;..-~~ ....... """'"---< 

: ' 

10 11 

.Figure 5-17. Half-Speed Streaming Line Fill 

5.5.5.3 Burst Write Transaction Types 
During a burst write transaction, the MC88410 transfers four or eight double words from 
a secondary cache line to·main memory. 

There are three types of burst write transactions: replacement copyback, snoop copyback, 
and flush copyback. A copyback transaction is the process of writing a modified cache 
line out to memory so that memory is updated. The timing and transfer attributes are the 
same for copyback transactions. The particular type of copyback transaction. can be 
determined by decoding thes_TC3-S_TCO signals. Note that the timing for the s_Tc3-
S_TCO signals coincides with the timing for the system bus address signals. 

5.5.5.3.1 Replacement Copyback Operation 
When a read miss in the secondary cache requires a secondary cache line fill to occur, the 
line to be filled may contain modified data. In this case the MC88410 writes the modified 
data to the system bus in a four or eight double-word burst before filling the cache line. 
This copyback transaction is referred to as a replacement copyback. Replacement 
copyback transactions always start with zero-word-first ordering. 

5-38 MC88410 USER'S MANUAL MOTOROLA 



5.5.5.3.2 Snoop Copyback Operation 
The MC88410 uses a bus snooping protocol to maintain cache coherency in systems where 
more than one bus master is allowed to access shared memory. When a snooping 
MC88410 has a secondary cache hit during a global write or global read-with-intent-to
modify transaction, the snooping MC88410 determines if the data is modified in the 
secondary or primary cache. If the line is modified, the line must be copied back to main 
memory before the device performing the global access can complete its transaction. This 
copyback transaction is referred to as a snoop copyback. The snoop copyback transaction 
can start with critical-word-first or zero-word-first ordering. Snoop copyback transaction 
timing is described in detail in 5.7.6 Secondary Cache Copyback Timing. 

5.5.5.3.3 Flush Copyback Operation 
The MC88410 contains a flush mechanism that causes a copyback of all of the modified 
secondary cache lines in the cache or a specified page of the cache. The burst write 
transaction by which each cache line is transferred to memory is called a flush copyback 
transaction. Flush copyback transactions use zero-word-first ordering. Secondary cache 
flushing is desc~bed in detail in Section 2 Secondary Cache Operation. 

5.5.5.4 Burst Write Transaction Timing 
Figure 5-18 shows the relative timing of a full-speed burst write transaction caused by a 
copyback transaction. In this example, a read miss in the primary (MC88110) data cache 
causes a burst read transaction on the processor bus to fill the primary cache line. The 
read transaction misses in the secondary cache; however, the line to be filled in the 
secondary cache contains valid modified data. A replacement copyback transaction 
precedes the allocation of the secondary cache line. If the line to be replaced had been 
included in the primary data cache, a primary cache invalidate transaction would have 
preceded the copyback transaction to allow the processor to flush its data. This example 
represents the fastest case back-to-back MC88410 system bus transaction. 

Before the burst transaction begins, the MC88110 becomes the processor bus master. In 
clock 1 the processor asserts P _TS, P _ABB, and the appropriate attribute and control signals ~ 
and drives the full 32-bit address onto the processor bus. The MC88410 samples the ~ 
address on the next rising clock edge (clock 2). During clock cycles 2 and 3, the MC88410 
determines that the replacement copyback transaction is required and drives the address 
to the MCM62110 array. In clock 4, the MC88410 requests the system bus, which is 
granted by the external arbiter in clock 5. 

MOTOROLA MC88410 USER'S MANUAL 5·39 



• 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 1 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 

elK 

P _A31-O ~ K,-~~_~--:--o:----:-~--:--~-~--:--o:----:-~-~~--:----:--:---:-~...J 
~ABB~l\~ __ -+_~~ ___ ~~_+-~_~~~ __ ~ ____ +--+_~~~ __ ~~. 
--~~+-~-~~---~~-+--+---~~--~~-+--+---~~--~~ 

P_RIW _: 

P_TS:jU 
P_TA-i i \ i n~ 

PDAT<i, ! j j j ~: 
S_A31-O: i:~~---l---l-~! r(,"-"=.:"=.:: '600~~~(""": ----l...---"-<: ~-{ 

- - ..... , --o----"---o-~~: \ iii i i j,..-o..--..;.-----'i \ iii i i FTi 
S_AB_B -l, ~-t---l:--I-: -+: -'\-': i . I I I . I: i-

S_RIW _ i 1 \ ! : 1~~---+_""j..J1 i :: i '-H ~ 
--~, ~~~~~,\ i/~~~~~~~~~:\ il 
S_TS i \......1-1 '. UJ 

SJA:~: ~--~~--+--+i-~i\~~---~--' ! t\~ ________ ~ 
S DATA ~~--!--+--!-~--!---+--< 

S--"'" _ ~$ _;W:t~&!h. Ilill!!'" i 1:%'ii0 -'k'_{%ilk1t1t~: 
S_DBB _ i \ 1 \1...-"-.....;....---0._ ..... 1 . / \ \ '\ ! rr-r 
SBR-i~ i i/ i\ i 1/ - _ : i : i \.....L.---L '-+-+ 
S_BG ~~.! ! j \ ! e""'}+, =~"""=~=t-.=~·)=.=I+!~Iyr-. "'"""'! \ ! /""":+, = ...... ~' .. ='·'·~·:'i\='<{=:t+I:=it=I(~: •• :.· •• :.=ti~it=·i=.:::' •.•• ,~." •• ::· ••. =.: •• ":',.~I! 

Clock Cycle -: 1 : 2: : 4 : 5 : 6 : 7 9 : 10 : 11 12: 13 : 14 : 15: 16 : 17 : 18 : 19 : 20 : 21 : 22:-

" I2EI DON'T CARE 

Figure 5-18. Full-Speed Read Miss Causing Replacement Copyback 
(Fastest Back-to-Back MC88410 Transaction) 

During clock 6, the MC88410 initiates the burst write transaction by asserting the S_TS and 
S_ABB signals, driving the address on the system bus, and negating S_R/W. If the 
MC88410 had been parked on the system bus, S_TS would have been asserted in clock 4. 
To indicate the status of each of the four beats of the transaction to the MC88410, the 
memory system then either asserts or negates the S_TA signal. When the data can be 
latched by the slave device, it should assert S_TA to terminate the beat. In the next clock, 
the address is incremented by MC88410 to the next beat of the burst transaction, or, if all 
data beats have successfully completed, the burst transaction is terminated. If S_TA is not 
asserted, the MC88410 continues to drive data until the transaction is terminated. 

In the full-speed mode, S_TA must be asserted one clock before the data is latched (clock 7 
in Figure 5-18) to allow the external RAM address to be pre-incremented to prevent wait 
states between the data bursts. In the half-speed mode, S_TA is asserted concurrent with 
the data. In both cases S_TA is asserted for the same number of clocks. If the data cannot 
be supplied in time during the clock cycle after the address is sampled, S_TA must be 

5-40 MC88410 USER'S MANUAL MOTOROLA 



:1 

explicitly negated until the appropriate setup and hold times are met. In this example, the 
memory system responds by asserting S_TA in clock 7. The MC88410 drives the data 
during clock 8 and asserts S_DBB. The MC88410 increments the address .and drives the 
data in each subsequent clock until the replacement copyback transaction is complete. 

In the clock cycle after the last data beat of the burst write transaction (clock 13), the 
MC88410 asserts S_BR to request the system bus again for the burst read transaction to fill 
the cache line. If the MC88410 had been parked on the system bus, S_TS would have been 
asserted in clock 13. In this example, the MC88410 recognizes a qualified bus grant 
during the rising edge of clock 15 and asserts S_TS to initiate the transaction. At the same 
time it drives the address of the data to be read, asserts S_ABB and negates S_R/W. 

The memory system asserts S_TA in clock 16 and places the first double word on the data 
bus during clock 17, which is latched by the secondary cache. During each of the 
following three clock cycles, the address is incremented by the MC88410 to reflect the 
address of the appropriate double word. The memory system continues to supply the 
secondary cache with the appropriate double words on the data bus. After four data 
beats have been transferred, S_TA is negated in clock 20. The system bus address, data, 
and control signals are three-stated by the MC88410 in clock 21. 

On the processor bus, the MC88410 asserts P_TA in clock 18 and the first data beat is 
latched by the processor. Note that P_TA is asserted concurrent with the data and the 
processor receives the data one clock after it is latched by the secondary cache. For the 
next three clocks the MC88410 increments the address and asserts P_TA. The processor 
transaction completes in clock 22. 

Figure 5-19 shows the relative ~iming of a burst write transaction with wait states inserted 
during the last data beat. This transaction is identical to Figure 5-18 except that it assumes 
that S_AACK is asserted in clock 7 and the memory system negates S_TA in clock 10 for two 
clocks to insert wait states. The MC88410 continues to drive the last beat of data until it 
receives the last S_TA during clock 13. The MC88410 ends the copyback transaction in the 
following clock. The burst read transaction follows in the same manner as Figure 5-18. 

MOTOROLA MC88410 USER'S MANUAL 5-41 

E 



• 

P_A3::~ ~ 
--:""\: ::::::::::.:::-
P_ABB : \ : :::::::::: ::: 

-: ,.. .... I_~ ___ -..:.._-I--......I._-+-_i----:..._oi----I-_..;....---I_~_.;..---i 

PJiN i ! 

p-Ts~D 
- - :---+-1 -"'----+--+---+--+--+--......,..-+! --+---+--+--+----I---+-~I:::: :-
P_TA: i ' 

P DATA _ :-"""'l_-'!----t---t---!'--:--t---!--~~-""1____l-"""'l_-_r____!_____i 

S_A3Hl ~ i--!-----~---!"'"-«-. ___ ))-""!'-~-~--+------i--!---~ 
- . ::, \~~:,', , S_ABB -i _ . 

;....-..:----"--.--:...----:-""""" \ '::' ,r-..:----;.....---:..----:-""'--....:.---.:...---:.----: 
s_PiN : ! , . 

S_TS_ i 

S_TA_ : 

'W 
~ \ , Wat 

, ,......;.--i----"-

'W 
S_AACK ;""!,",",:<,:,,,~,?,.,,",", .. ~""""""" '.'.+."' ... ' ..... " . .'."' ..... ·ii)~ii ..... ,~)~·7~i \_ ..... ! .... 1 .... >"""'·;.' .... ' ...................... ~~ ......... ~~' ....... '. ··' ...... '··'>";;,;;;;o"~:<':,='ii ..... /: .... ?),=\, _ 

--, 

S_BG= !: 

Clock Cycle 

S DATA -'!--+---+--+----+---+----+! --+': ~OCXX~--~~.J>+--1 ~ 
- ,-""",--""':"'--1--..1..-"";---",,\ i I i ' , 

S_DBG _ : LJ.J 
~--.:..-----:-----:-----:--' ~' : tn' , -

'::' \ " , S_DBB i .... ....;.-_____ -.;... _____ --:.. _________ :...1.: : 

SJl"-: i \, / ' \J 
!'" :'-lI,..-+--+--~--+-~,'-~~----+-! --+!-+!~!' 

3 4: 5 6 7 8: 9 10: 11 12: 13 : 14 : 15 : 16 : 2 

• DON'TCARE 

.Figure 5-19. Full-Speed Burst Write with Wait Cycles 

5.5.5.5 Burst Order and Streaming Timing Examples 
The MC88410 increments the address to provide all addresses (four or eight) during burst 
transactions. The order of burst addressing on the system interface is programmable at 
reset between zero-word-first and critical-word-first. This ordering applies to both 
secondary cache line fills and secondary cache snoop copyback transactions. 
Replacement copyback and flush copyback transactions always start with word zero. 

The MC88410 uses data streaming to reduce the penalty seen by the processor on 
secondary cache misses. Streaming means that as data is being written into the secondary 
cache from memory, it is also passed onto the processor bus to satisfy the original request. 
This concept is straightforward in the previous timing diagrams dealing with 
configurations using a 32-byte secondary cache line size and critical-word-first burst 

5-42 MC88410 USER'S MANUAL MOTOROLA 



ordering. In this case, the four data beats from memory pass through the secondary cache 
to the processor bus. Upon transfer of the last word to the processor bus, the operation is 
completed. The transfer is more complex when dealing with 64-byte secondary cache line 
sizes and/or zero-word-first burst ordering on the system bus. 

Figure 5-20 shows a read miss with a 32-byte secondary cache line size and zero-word
first ordering. Data beat 2 is the processor's requested double word. The data transfer is 
initiated in the same way as in Figure 5-15. However, in clocks 9 and 10, P_TA remains 
negated while data beats 0 and 1 are written to the secondary cache. 

I 4 

ClK 

P _A31-o ~ i--(,-_","""!,,,,"---::--~~_---:---:_---:---:_---:---:_---:---: __ ~)-< 
P_ABB~~ n ~ 
P_RiN- U ~ ~ 

p_TsT0 
P_TA 

S_A31-o :....; ---:-....:-.......:.-...:.-~-('-...--........-I)-..:----:..-...:.....---:..-...:.....---:..-...:.....---:..-

S_ABB i \,-~~/ 
;...' __ ~~ __ -:....-~ __ ~I I:' S_FW!_ i . 
:-.:..--"------...:....-.-~\ i:', I 

S_ TS i '--J.J 

~~-~i ~---~~~---~~:\'-~~ ___ ~~/ 
S_MCK : ~lf'~" 'k'X'%tXsl#lJ;'!ff!Jt'fi/ii!if : \ /;"";i'~ii"""'i/<'~i ~~~~~~~~}~it'-

SDATA i ~~--...:....~--...:.--'-
-S_D-BG J\.& ! P<?)':··:L 

i \.--!--__ ~i / 

Clock Cycle : 1 2 3 4: 5 : 6 7 8 10 : 11 12: 13 : 14 : 15 : 16 

IillEJ DON'T CARE 

Figure 5-20. Streaming - 32 Byte Cache Line Size with Zero-Word.;First 

In clocks 11 and 12, P_TA is asserted and data beats 2 and 3 are streamed to the processor. 
During clock 13, P_TA is negated to insert a wait state to the processor to allow the 

MOTOROLA MC88410 USER'S MANUAL 5-43 

E 



• 

MC88410 to wrap around to the address of beat O.During clocks 14 and 15, data beats 0 
and 1 are written to the processor from the secondary cache. With the transfer of data 
beat 1 the transaction completes. 

Figure 5-21 shows a secondary cache read miss with a 64-byte cache line size and critical
word-first ordering. Again, the requested double word from the processor is data beat 2. 
This transaction is similar to Figure 5-21 except that eight data beats are written to the 
secondary cache. In clocks 9 and 10, data beats 2 and 3 are streamed to the processor and 
in clocks 15 and 16 data beats 0 and 1 are streamed to the processor. 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 

eLK; ; 
P_A31-O _ i _ 

PABB-i, 1 iii iii iii' iii i i r;-
- -! .: : iii I Iii 1 iii i i· :-

PRN/:..J; , ' " ii"'" ';'-1-:_rs}Jj ! ! i i 

:' i if ,in: 
P DATA :-----:...--+--+---+! -..:---..:..-..:......¢Q ¢!ri; 

S_A31-O ~-+--.;.....;..-+-+--+! -4( : ) i :! : 
!\ i i/'+-~~i:,--~~~--~~~~ 
: I I 

S_PiN ~i --+----:..--+----+-""":-": : \'-~------t--...,...----1----1--!--+--+-_+_~: _ -' i\JJ~~~+-~~~~~~~-: 

_s-Ts~l 1'" '-'--",N~"4'" fJ!fl!~.4::':, ' ,----, S_TA_ it) ." "it ! ,-. -:-_~ ____ -+---Io_.....:.-_:..-~=~":~":i':;i;;;pi;':':"':':~::::::":~:"::(?::! : 

S DATA-:"'~ -+---:"--!o,-~----"--~ i _ 

UBG : ',0 'nj;~'fi!f ;-i"~~"""""40*j;~ i A;~·V ~~~~~~' •• =I~j=::I~:~I, 
I :::\ i,~, ':-S_DBB _ !, I !! ! 

:"'--i--~~I I---------+-.......... -----~-+--+----+-I! i i -
S_BR ! i \ / 

I l-.-;.-"':'" 

S_BG t.,}....':"· ':':}ITh /r:);:~)(~\::''::~':i''''~'''' ~~. ""±""'ii~<:':":~':':::"~'\;'::~:::::~'::'~iJ~i;;,+':,}{~\f~'i:""~""""~=~~= 

Clock Cycle 3 4: 5 7 8 10 : 11 12: 13 14: 15 : 16 : 17 

L:Zl DON'T CARE 

.Figure 5-21. Streaming - 64 Byte Cache Line Size with Critical-Word-First 

Figure 5-22 shows a full-speed read miss with a 64-byte secondary cache line size with 
zero.;.word-first burst order. Data beat 2 is the requested double word from the processor 
and it is streamed from system bus in clock 11. In the next clock, data beat 3 follows. 
After data beat 7 is written to the secondary cache (clock 16), data beats 0 and 1 are 

5-44 MC88410 USER'S.MANUAL MOTOROLA 



written from the secondary cache to the processor and the transaction completes in clock 
19. 

I 1 I 2 I 3 I' 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 

ClK 

p _A3H) ~ :--{I...'-~ ___ --:----:-~:--~---:--~---:--:--"""':""""---:--~:---r:--~~...IH ~ 
:""\ : ::,', 1'::,,:'--~ABB-i \~~i ______ ~~ __ ~ __ ~ ____ ~~ ______ ~ ____ ~ __ +-~ __ ~--~~I : 
: I :-

p pjN- ~I i '--1 
- -: : : 

I I !:, l:,_ P_TS~i\JJ 
i \'--i-----"-'! / : \ : n ~ 

P DATA --:"'---i-~---+---+--+--~--~--i----i----~~--t--~--+---Wl: 
S_A31-o :----!---+----!---+---+-C(I...~~..J))-~--+---+---+!---+-i --.;....----+--r-+-------+---I-~ 

i\~ __ ~i /~+-~~-~~-~~~-~~~~i~ 
S_RNJ :-___ 4----Io_...:----I:...I',..--.,:---+-1 \~--:"'--~----l-------"""'-;'--"":""--~--i---";"'----:~~:-

!:\J; 
S TA :))tii.f)'j/ : \ '!. 1,.,'.; .••..• · •. ,1 .... ··, .. ·.'·'.: .... ·· ... ' ... ' .. ·.' ............ ' ..... ' .. ' ........ ' ............................................. ' ..................... _ 
~ ~ \ •••.•.. '.'.,., .••. ' •• ' .•• ',.,".'.' •.. , ...••••.••.•••.................................. " ... """"' .. ".,."'."'."'., ... ,.,., .... ':".'., : '-T-;:;;;;::;+::;;;:;;::::;;;~;;;;:;::;:;;:::::£ :::::::i ==~ 
S_AACK: i0k'ili<lJ0","""ih'ii2/iiWil1f1¥1 ; \~A F= ..... ~i=+""'·,.. ~'·· ...• ··•· .• ••··•· ••. +=.·.·..i~i~.i~··, .. ···, •• ·· •.. =?I:¥=!i il~·f··~.~fIIf 
S DATA !:--=-+----!---. --!--f---+--( 

-: .................................... ;: ············i'··············], I~········ .. ~.~ ......... !' ........ ~ ... ~ .• " .. ".'., •...•.• ',." ..• , •• ".'.',.,', ...• ".,', .... ,.[.,., ..•.• ,',.' .•.. ' ... ,.' .• ".' •.. ~ .. , •.. ,.", .. ,., .. ",',., •.•. ,',.' •• ' ..••.• , .• , .. , •.• , ..• , .•••. '.' •• ,.,., .•. ,'.,' .• ".~'" ... , •.•... , •••• ', .. ,' .• ',., •.. , •••• ,.,.,.,., ... "',.', .•• , ..... , •..• ,, .•• , .. , ..•..• ', .•••• ', ..• , •. ".:.' •. ,',., •... ',.,'" .. ',.~'" .... ,', ••. , ...• ' •... , •.• , ...•. ' .....• , .• " .• , ..••..• ' ..• ,., •.• ' •••. ,., ..•. ,'.,', •..• ~ .•..•. ',',', •.. ' .• ,., .•.• , •..•.. ', .••..•. ' .•. • •.• , •. · .•.•..•. ,.~ .•. ' .. i, •. ,.'.,.'.,",.,." .• '.' .•. , .•.• ".'" •• , •. ', .•.• ,., .•. '~ •..• '.,.',." •.•.•.... ' •. ,'., ....•. ,",,' •.•. ,' •... , •• , ... '.,.' .• ,.'.,1-
S_DBG _ ,: •• ,.,)i",.. •••• ·,....A :: L".. ii:,':·, I I , , - - , :.:.::--:.::;.:.::::::::-:":::::::::::::.::::-:::::::::::::::::::::::::::::::::::~:::::~::::! -

S_DBB -\ 1 \---..;..._.:-.....o----:._~---:-~-~\ / 
'~--------....... i:, \ i,' / S_BR _: 1.... +-~. 

S_BG_:'·',·,···.,".·.·.·.·,· .• ,·' .• ·.·,·'··,,·.,··.·' ..... ' .....•..•... , .... , ......•••..• ' ...•..•... ' ..•..•.. ,.,.'.,., •• , •... ',.' ..• ', .•.•• ,'::"."'" ...•..••. , .••. ',, ..••....• , ..••.••..• ' ... " .• ,., ....• ' ...•.• , ...•... ,', .. " .•••• ' ..••.. , •. , ••• ' •.• ,.'.,' •.••.•..•.••••••. ,., ... ' ••. ,., ••• ' ••••• ', .. '.,.'.,', .•...• ',.',.: ••.. ,., •. ,. ,ii' I .. ",.~,.,., ..• ·., ,., •.• ,.".= ..... \ ......... ~ ..... ,...i,., •• ".=,.,.,., ,.{~ •.. ,., •.. " .•.. ,.~.,.,.,>}.,,'.~".,.,.,.,.,.,."~.,., .... ,., ... ,.,=,} .• , •• ,.'/'+-••• ,,'.,." •.• "'~ ••••• , •• ' ~ ...... = ................... ' .... '.'.~.".'.'.', .... "="".' .. ".' ... ~, .••.•.. ".' .••.•. ,.".".".! .. ' .•.•.•.•. ,.,.' ..•... ' .....•.•...•....... , •.•. ,' ... ,., .•.• ,.~ •. ' ... , .•..•.....•• ,.' .. ' .. ' ..• ,' .... '.' ... , .• , •... ,'.'"""""'".,', ..•... ",.,.,., .. '.', ..•... , •• , ...•... ',' ....• ,' .. ,',....,.,......j, .. '.',., .....••..• ' .•......• ,' ..•.... ',.' •... ', ..••...• , ...• " •.....• ,.,,'.·,··.,.·, •.••. ".1,·.,--

2 i 3 4; 25 i ll6~:[·:i:;·i::~:1~ 13 i 14: 15 i 16 i 17 i 18: 19 i-Clock Cycle 

0illJ DON'T CARE 

Figure 5-22. Streaming - 64 Byte Cache Line Size with Zero-Word-First 

System errors detected during streaming must be passed on to the processor. In 
configurations using a 64-byte secondary cache line size it would be possible to stream an 
entire primary cache line to the processor before the secondary cache has completed its 
allocation. To allow the MC88410 to signal the processor for errors detected during the 
secondary cache line fill, the processor will not receive its last P _TA until the secondary 
cache line fill has completed. For more information, see 5.6.4 Transfer Error Termination. 

MOTOROLA MC88410 USER'S MANUAL 5-45 

• 



• 

5.6 SYSTEM BUS TRANSACTION TERMINATION 
The following paragraphs describe the different methods for terminating transactions on 
the MC88410 bus. Transactions may be terminated normally, indicating that the transfer 
was completed successfully or terminated with an error or a retry indication. Two types 
of retry terminations are possible: transfer retry and address retry. The address retry 
terminates the transaction of the current address bus master. The transfer retry 
terminates the transaction of the current data bus master. 

The state of several input signals to the MC88410 determines the termination for each 
transaction on the MC88410 bus. These signals are S_DBB, s=:TA, S_TEA, S_TRTRY, and 
S_ARTRY. Table 5;.,6 depicts the encodings of S_DBB, S_TA, S_TEA, S_TRTRY, S_ARTRY, and the 
corresponding types of transaction termination. The assertion of S_DBB indicates that the 
MC88410 is the current data bus master. The address retry assumes it is qualified by S_TA 

or S..;..DBB and S_TRTRY. 

Table 5-6. Transaction Termination Encodings 

s:tm" 
A 

A 

A 

A 

A = Asserted 
N = Negated 
x = Don't Care 

S_TA S_TEA 
A N 

x A 

x N 

A N 

S_TRTRY S_ARTRY Termination 

N N Normal 

x x Error 

A x Transfer retry 

A A Address retry 

Some system bus transaction termination signals are sampled earlier by the MC88410 
than the MC88110. Unlike the MC88110, the MC88410 recognizes S_TA and S_TRTRY in the 
clock that S_DBG is asserted (with S_DBB negated), which is one clock before the MC88410 
takes data bus mastership by asserting S_DBB. Table 5-7 summarizes when the signals are 
recognized. A qualified data bus grant is defined as S_DBG asserted and S_DBB negated. 

5-46 MC88410 USER'S MANUAL MOTOROLA 



Table 5-7. Transaction Termination Signal Sampling 

Signal Timing 

S_DBG Sampled in the same clock as 5_ TS and after 

S_TA Sampled during a qualified data bus grant, which may be in same clock as 
5_ TS and while S_DBB is asserted 

S_TRTRY Sampled during a qualified data bus grant and while S_DBB is asserted, but 
not during the clock that 5 _ T S is asserted 

S_TEA Sampled while S_DBB is asserted 

S_ARTRY Sampled during and one clock after S_AACK asserted, or during 1st data beat 
if S_AACK has not been asserted. 

Figure 5~23 shows two examples to illustrate termination timing. Clock cycle 1 shows the 
fastest case of data bus arbitration with a qualified data bus grant and S_TA asserted. 
Note that S_TA is sampled during clock 1 but S_TRTRY is not. In clock 2 the MC88410 
transfers the data beat and' detects an address retry even though S_AACK has not been 
asserted. The MC88410 relinquishes the address bus during clock 3. 

2 3 

elK 

m DON'TCARE 

Figure 5-23. Transaction Termination Signal Timing 

MOTOROLA MC88410 USER'S MANUAL 5-47 



• 

In clock N, the MC88410 asserts S_TS to initiate a transaction and request the data bus. 
However, another bus master controls the data bus and S_DBG is negated by the external 
arbiter. On the rising edge of clock N+2 the MC88410 detects S_DBG asserted and samples 
S_AACK but does not have a qualified data bus grant since S_DBB is being asserted by 
another bus master. During clock N+2 S_DBB is negated, giving the MC88410 a qualified 
data bus grant on the rising edge of clock N+3, which causes it to sample S_TRTRY. At the 
same time the assertion of S_AACK is detected and therefore so is the assertion of S_ARTRY. 
The MC88410 relinquishes the address bus during clock N+3. 

The following paragraphs describe normal termination, transfer retry termination, and 
termination with address retry or error indication and explain their relative timing. 

5.6.1 Normal Transaction Termination with S_ TA 
The assertion of S_TA while S_TRTRY and s::TEA are negated signals a normal terminatio"n 
to the MC88410. The assertion of either S_TRTRYOr S_TEA overrides S_TA and signals 
either a transfer retry or an error. In the full-speed mode, normal termination indicates 
that the memory system is ready to supply or latch the data in the following clock. For a 
read transaction, the data is valid on the data bus and may be latched by the MC88410 in 
the following clock. For a write transaction, the memory system will be able to accept the 
data on the following clock. In the half-speed mode, normal termination indicates to the 
MC88410 that the current data transfer has completed successfully. For a read 
transaction, the data is valid on the data bus and may be latched by the MC88410. For a 
write transaction, the data has been accepted by the memory system. 

The S_TA signal is monitored only when the MC88410 has taken mastership of the data 
bus. The MC88410 can take mastership of the bus during the clock that S_TS is asserted if 
the memory system and arbiter can respond early enough. The memory system either 
asserts or negates the S_TA signal to indicate the status of the transaction to the MC88410. 
When the data is guaranteed to meet the appropriate setup and hold times with respect to 
the rising edge of the clock, the memory system should assert S_TA to terminate the 
transaction. In the full-speed mode, S_TA must be asserted one clock before the data is 
supplied or latched to allow the MC88410 to increment the address to the secondary cache 
for burst transactions. If the data cannot be supplied or latched in time during the clock 
cycle after the address is sampled, S_TA must be explicitly negated until the appropriate 
setup and hold times are met. 

In the half-speed mode S_TA should be asserted concurrent with the data. If the data 
cannot be supplied or latched during the clock cycle, S_TA must be explicitly negated until 
the appropriate setup and hold times are met. 

For single-beat transactions, the MC88410 ends the transaction after S_TA is asserted. To 
end the transaction, the MC88410 releases the data bus and negates S_DBB. If it is also the 
current address bus master, it releases mastership of the address bus and negates S_ABB . 
For burst transactions, each beat of the burst must be terminated by S_TA before the 
transaction is completed. Figure 5-24 shows both single-beat and burst transactions that 
are completed by normal transaction termination. This example assumes that MC88410 
remains parked on the bus between transactions (S_BG remains asserted). 

5-48 MC88410 USER'S MANUAL MOTOROLA 



I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 

[2Jl DON'T CARE 

Figure 5-24. Full-Speed Normal Transaction Terminations with S_ TA 

In the first clock cycle in Figure 5-24, the MC88410 starts a new transaction by asserting 
S_TS and S_ABB and driving the address. The assertion of S_TS is interpreted as a data bus 
request. In dock 2, the MC88410 is granted the data bus, and becomes the data bus 
master by asserting SJ)'BB in the next clock. In clock 2 the MC88410 also detects that S_TA 

is asserted, while S_TRTRY is neg,ated, so it completes the transaction and relinquishes data 
bus mastership. Note that S_TRTRY is sampled throughout the data bus tenure (qualified 
data bus grant through the last data beat transferred) while S_TEA is sampled only while 
the data bus is busy (S_DBB asserted). In this exarnple, S_AACK is not used, so S_ARTRY is 
sampled during the first data beat. 

Assuming that S_BG remains asserted, the MC88410 can maintain mastership of the 
address bus and begin a burst transaction without re-arbitration in clock 9. It becomes the 
data bus master in clock 10 and detects that S_TA is asserted. This signals the end of the 
first double-word transfer of the burst. After three more clocks of S T A asserted 
successfully (each signaling the end of another double-word transfer), the t~ansaction is· 
complete. Wait states may be added when the MC88410 is the data bus master by not 
asserting S_TA. There is no limit to the number of wait states that may be inserted for any 
beat of a transaction. 

, 5.6.2 Transfer Retry Termination 
The assertion of S_TRTRY and the negation of S_TEA during the data bus tenure of an 
MC88410 transaction causes a transfer retry termination of the transaction. If the 
MC88410 is the current address bus master, but not the data bus master, it does not 

MOTOROLA MC88410 USER'S MANUAL 5-49 

• 



• 

recognize an assertion of S_TRTRY. Also, the assertion of S_TEA has a higher priority than 
S_TRTRY, so the processor detects an error termination if both signals are asserted during a 
transaction. 

The response of the MC88410 to S_TRTRY depends on when in the data bus tenure S_TRTRY 

is asserted. The response is divided into three possibilities: very early S_TRTRY, early 
S_TRTRY, and late S_TRTRY. Very early and early retries are received on or before the first 
data beat and late retries occur after the first data beat. Note that in the full-speed mode 
the response is coincident with the data, not S_TA. 

5.6.2.1 Very Early Assertion of S_ TRTRY 
If S_TRTRY is asserted at the same time as s:JjBG, the transaction does not transfer the data. 
When the MC88410 receives a qualified S_TRTRY (S_DBB negated) with S_DBG, it retries the 
entire transaction including the arbitration, ,address, and data phase without asserting 
S_DBB. This operation is different from the MC88110 protocol which only recognizes 
TRTRY on the clock following S_DBG. Conceptually it is the same as if the MC88410 were 
never granted the bus. The MC88410 will re-intitiate all transactions (including 
copybacks) if they are terminated with a very early retry. The processor is not made 
aware of very early retries. Clock cycles 1 to 4 of Figure 5-25 illustrate very early assertion 
of S_TRTRY. 

5.6.2.2 Early Assertion of S _ T RT RY 
If S_TRTRY is asserted before or during the first data beat (but after S_BG asserted), the 
MC88410 releases the system address and data bus and re-arbitrates for the transaction by 
asserting S_BR in the following clock. Unlike very early assertion of S_TRTRY, S_DBB is 
asserted with a qualified data bus grant. The processor is not made aware of early retries. 
Clock cycles N to N+4 in Figure 5-25 illustrate the early assertion of S_TRTRY • 

5-50 MC88410 USER'S MANUAL MOTOROLA 



II 

3 4 N I N+1 I N+2 I N+3 I N+4 

ClK 

S_A31-o 

S_ABB 

TRANSFER- ::;:". 

ATIRIBUTE 
SIGNAlS-

S_TS 
I-

I 

S_OBG 

I 

063-00 
I 

I __ -+------1: -
S_OBB 

S_TA 

S_TRTRY 

S_TEA 
I _, 

- ! S_BR 

Very Early Assertion Early Assertion 

Illilli'J OON'TCARE 

Figure 5-25. Very Early and Early Assertion of S_ TRTRV 

5.6.2.3 Late Assertion of S _ T RT RY 
Assertion of S_TRTRY after the first data beat is referred to as a late retry. A late retry 
causes the MC88410 to abort the transaction. If the processor is involved in the data 
transfer, then it is retried with the assertion of P_TRTRY. The processor receives an early 
retry if P _TRTRY is asserted before the first P _TA is asserted or while the first P _TA is 
asserted. The processor must reinitiate the transaction. For a transfer retry that occurs on 
the second, third, or fourth beat of a burst to the processor, the processor immediately 
ends the transaction. If the transaction was a processor burst read, the burst is not 
reinitiated later. Note that the MC88410 can receive a late S_TRTRY while the processor 
receives an early P _TRTRY, if S_TRTRY is asserted after the first beat of data to the MC88410 
but before it is latched by the processor. 

Figure 5-26 shows an example of a zero-word-first burst read in the full-speed mode that 
is streamed to the processor. The critical word is data beat 2. In this example, the 
MC88410 detects a late S_TRTRY after the first data beat is latched from the system data 
bus by the secondary cache. The MC88410 asserts P _TRTRY to retry the processor. Since 

MOTOROLA MC88410 USER'S MANUAL 5-51 

• 



• 

the critical word is not latched by the secondary cache, the first P_TA is not asserted to the 
processor. The MC88110 interprets this as an early retry and initiates the transaction 
again in clock 14. 

ClK 

P DATA_ i 

S_A31-O !----1--+--+-+--+-c'-...,.....--...._~ 

S_ABB_ i 
~~-~~-~-h 

S DATA 1---+--+---+--+--+-+---+-< 

Clock Cycle 4 5 

Ell DON'TCARE 

I 

1= 

Figure 5-26. Late Assertion of S _ T R TRY with Propagation to Processor 

If a snoop copyback transaction is terminated by a late retry, the MC88410 does not 
reinitiate the copyback. The secondary cache line remains in a modified state and the 
MC88410 continues snooping. The cache line must be snooped again to reinitiate the 
copyback transaction. A late S_TRTRY during a secondary cache line fill causes the main 
tag of the secondary cache line to be invalidated. If the MC88410 receives a late S_TRTRY 

during a flush operation (flush page or flush all), the MC88410 increments to the next tag 
entry and the tag entry involved in the retry remains in the cache. Note that the retry is 
not signaled back to the processor. 

5-52 MC88410 USER'S MANUAL MOTOROLA 



5.6.3 Address Retry Transaction Termination 
The S_ARTRY signal is an input that indicates to the initiating bus master that another bus 
master has requested that it terminate the transaction, relinquish mastership of the 
address bus, and retry the transaction at a later time. The S_SSTATI signal is asserted by 
another bus master to indicate that it has a modified copy of the data to the current 
address and the transaction must be retried. The timing for the S_SSTATI and S_ARTRY 

signals allow the S_SSTATI output to be directly or indirectly connected to the S_ARTRY 

input of other MC88410s. 

When the S_AACK signal is asserted by the memory system to indicate that the current 
address has been latched, the bus master relinquishes mastership of the address bus. In 
this way, an alternate bus master can initiate a transaction while the data from the 
previous transaction is still being transferred. In systems using this protocol, S_AACK is 
also used to qualify S_ARTRY. The S_ARTRY signal may be asserted before S_AACK is 
asserted (but it must remain asserted until S_AACK is asserted), when S_AACK is first 
asserted, or during the first clock cycle after S_AACK is asserted. 

Note that if S_TRTRY is asserted during address bus tenure, the transaction will be 
reinitiated begining with address bus arbitration. 

If S_AACK is negated throughout the transaction but the MC88410 is the address and data 
bus master (S_ABB and SJ5BB asserted), S_ARTRY is sampled during the first data beat of a 
transaction. In this case, S_ARTRY is ignored after S_ABB is negated. Note that S_ARTRY is 
sampled with data, which is not necessarily during the first S_TA (in the full-speed mode). 

Figure 5-27 shows the qualification window for S_ARTRY using S_AACK. Note that the 
figure shows S_ARTRY asserted one clock cycle after S_TS. This would not be possible if 
the snooping bus master were an MC88410 because it takes two clock cycles for the 
MC88410 to determine whether there was a snoop hit; however, the MC88410 may be 
connected to a device that can assert S_ARTRY in one clock. 

MOTOROLA 

2 

IlEilll DON'TCARE 

N N+1 N+2 

I.. ~I 
S_ARTRY 

QUALIFICATION 

Figure 5-27. S_ARTRY Qualification with S_AACK 

MC88410 USER'S MANUAL 5-53 

• 



• 

When the initiating bus master detects the qualified assertion of S_ARTRY, it terminates the 
transaction, releases mastership of the address bus, and reinitiates the transaction.· If a 
qualified S_ARTRY occurs before or coincident with a qualified data bus grant, the 
initiating MC88410 does not assert S_DBB. When an MC88410 that is requesting the bus 
detects that S_ARTRY is asserted and that S_ABB was asserted on the previous clock cycle, it 
removes its bus request and ignores any bus grant. The MC88410 then blocks its bus 
requests by not asserting S_BR until ~,-ARTRY is negated. For a detailed description of bus 
blocking, see 5.7.4 Bus Request Blocking. 

5.6.4 Transfer -Error Termination 
The assertion of S_TEA while the MC88410 is the data bus master results in an immediate 
error termination. If the processor is waiting for the completion of a transaction, P_TEA is 
asserted to terminate its transaction. The assertion of S_TEA overrides the assertion of 
either S_TA or S_TRTRY and results in an error termination. The MC88410 relinquishes 
mastership of the data bus, and, if it is also the address bus master, it relinquishes 
mastership of the address bus. If there is a different address bus master, the address bus 
master ignores the assertion of S_TEA. The MC88410 begins monitoring S_TEA when it 
takes mastership of the data bus by asserting S_DBB. 

If the transfer is a snoop copyback and S_TEA is asserted, the snoop hit will be forgotten 
and the secondary cache line is left valid. If the transaction is a secondary cache line fill 
and the secondary cache line has been partially loaded before the S_TEA is received, the 
secondary cache line is marked invalid. If S_TEA is asserted during a replacement 
copyback caused by a processor transaction, P _TEA will be asserted to the processor. If the 
MC88410 receives an error during a flush operation (flush page or flush all), the MC88410 
increments to the next tag entry and the tag entry involved in the error remains in the 
cache. Note that the error is not signaled back to the processor. 

Figure 5-28 shows the timing of a transfer error termination for either a single-beat 
transaction, or the first beat of a burst transaction. The transaction begins in clock I, with 
the MC88410 becoming the data bus master in clock 2. On the rising edge of clock 3, 
S_TEA is asserted. The MC88410 ends the transaction and releases mastership of both the 
data bus and the address bus. If the processor is involved in the data transfer, the 
MC88410 also asserts P_TEA. 

5-54 MC88410 USER'S MANUAL MOTOROLA 



S_ TEA _ j)"A ! /;\···.·.1 ~ . 

TRANSFER ERROR TRANSFER 
SIGNALED TERMINATED 

I§illJ DON'T CARE 

Figure 5-28. Transfer Error Termination 

If data is being streamed to the processor and S_TEA is asserted, P _TEA must be asserted to 
the processor. In a cache configuration with a 64-byte line size the entire primary data 
cache line could be streamed to the processor before the secondary line fill has completed. 
Since the primary cache cannot have a valid primary cache line which is not allocated in 
the secondary cache (to maintain vertical cache coherency), the processor does not receive 
its last P _TA until the secondary cache line has completed its allocation. This allows the 
MC88410 to assert P _TEA on the last data beat if necessary. 

Figure 5-29 shows the timing for a transfer error termination that occurs during the last 
beat of a secondary cache line fill that is being streamed to the processor. In this example, 
the critical word is word 0 (zero). Note that all four beats could have been sent to the 
processor, but that would not have allowed the MC88410 to assert P_TEA to the processor 
in beat 7 of the system bus data transfer. Instead, P_TA is negated during clock 15 and 
although data is driven during the following beats, it is not valid. 

MOTOROLA MC88410 USER'S MANUAL 5-55 

• 



• 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 

ClK 

P_A31-O -!-{\-_____ -:--""""':"""-__ - __ - ______ -_--.-__ -_---' 

P _ABB ~ J\'-_I_--+--+---:..-+--""""f_~I___!____+-_+___+-_I___I_-"'I'--__I_-'f-""""f_ __ ~ 
P_TS~i\.lJ 
P_TA~. \ i /r-+--+--+--+--+--.r--:' -

P_TEA_: i \Jj-: ~ 
P DATA ~ i--+----r--+-----;..------:---t--""""f--l-c:pG:x ~ kt~l'rv"'o'"~*'W$#!r. ~ H : 

-: i::< )~~~'~~'--~~~+-~~'~ S_A31-O __ I,! .." I ' 

, 1::--. S_ABB _ !: . 1 \ 1 / 

! -- ~~~-+--~~:\ 1 I~~--~~~--~~~~--~~~~ 

S_TS ~ j,_-+-_+--~-~ ........ i _'-J..J~: _~ 
UA:L""", " i \,-~ ____ ~~ __________ ~i 1 ....... , 

S_AACK r-l}=i>""'i'· •• · ... ~~~~ ..... >"'""i:"""'(:.,' : \--:-' """hi=-·.· •. ~'"'+-""~""-="~~~~~~~='f"'="~"" """,'" .'"""",,!iii 
URTRY }t:?;i'" 'i';:rP;P wll :~ : 

S_ TEA 1:/}./ 

s DATA ~ ::_....:-_.:.-. ______ ~-~ 
S_DBG. J : \Jj 

S_SD_BBRB ~i i-,-\\-!'\.ji .•. -..•...•.•.....•. ~ ........• :, •. -~:.-...... --+-----i,-' ... :-•. ()~( -~i \'~ ___ ~~_~ ____ ----; ____ --:.,..Ji / 

, , ~!J. if/i!"\!i 

S_BG~ ii/i', ! \I.-..i-: ~A) ~~~~~.i~i·}~>i/ ~):~ ••.•••• ·:· ••. ••· •• ~i,./ ~"~/:i!-
Clock Cycle: 1 2: 3 i 4 : 5 : 6 8 : 9 10: 11 12: 13 : 14 15 16 17 18 19: 

IEQ] DON'T CARE 

Figure 5-29. Transfer Error Termination During Streaming 

The MC88410 receives S_TEA asserted with the last beat of data in clock 16. Note that in 
the full-speed mode the last S_TA is already asserted in clock 15. In clock 18, the MC88410 
drives data beat 3 to the processor and asserts P _TEA. 

5.7 SYSTEM BUS SNOOPING 
The MC88410 uses a bus snooping protocol to monitor bus transactions performed by 
other system bus masters and to intervene in the access, when required, in order to 
maintain cache coherency. The MC88410 services system bus snoop transactions from the 
secondary cache without interaction with the processor unless there is a snoop hit in the 
primary data cache. The MC88410 contains a snoop latch that allows the MC88410 to save 

5-56 MC88410 USER'S MANUAL MOTOROLA 



a snoop lookup that could not be serviced immediately due to internal resource 
contention without resnooping the saved address. The snoop latch ensures coherency in 
split-bus systems when the address bus transaction has terminated but the data 
transaction has not completed. 

The differences between the MC88410 snoop protocol and that of the MC88110 are the 
addition of the TSHD signal which enables shared information to arrive with the data and 
the addition of the S_SSTAT2 signal which indicates that a copyback transaction will occur. 
In the full-speed mode, S_BR is asserted in the clock afterthe assertion of S_SSTATl. In the 
half-speed mode, S_BR is asserted in the same clock as S_SSTATl. 

The following paragraphs describe the operation of the bus when snooping is enabled. 
For more information about coherency issues related to the MC88410 and MC88110, refer 
to Section 2 Secondary Cache Operation. 

Throughout this discussion of data cache coherency, the terms "initiating MC88410" and 
"snooping MC88410" are used. The initiating MC88410 is the MC88410 that is the bus 
master at the beginning of a bus transaction. The snooping MC88410 is the MC88410 that 
snoops this transaction. 

5.7.1 Snoop Control Signal Overview 
Table 5-8 lists the snoop control signals of the MC88410. The S_SR signal is an input to all 
snooping MC88410s indicating that the current address should be latched because a 
snoop lookup may be required. The S_SR signal may simply be connected to the S_TS 

signal of the initiating MC88410. The S_SR signal must be negated and reasserted between 
two accesses that need to be snooped or it is ignored on the second access. The S_GBL 

signal is an output when the MC88410 is initiating a transaction, and an input when it is 
snooping. The MC88410 only snoops transactions when both the S_SR and S_GBL signals 
are asserted. 

Table 5-8. Snoop Control Signal Summary 

Signal Function Type 

S_SR System snoop request Input 

S_ARTRY System address retry Input 

S_SSTAT2- System snoop status Output 
S_SSTATO 

SHD Shared Input 

TSHD Transfer shared Input 

The MC88410 needs to sample S_SR, S_GBL, S_R/W, S_TBST, and S_INV to snoop an access. 
The MC88410 does not require S_ABB asserted, but if it is not asserted S_SSTAT2-S_SSTATO 

will assert for only one clock. 

MOTOROLA MC88410 USER'S MANUAL 5-57 

• 



• 

When the S_SR and S_GBL signals are both asserted, the MC88410 determines whether it 
has a cache hit in the primary and secondary cache (PTAG and MTAG, see Section 2 
Secondary Cache Operation) or a collision (see 5.8.2 Split-Bus Snoop Collisions). If 
there is a collision, the snooping MC88410 asserts S_SSTATI but does not assert S_SSTATO. 

If the MC88410 performs a copyback transaction it asserts S_SSTAT2. If there is a cache hit, 
the snooping MC88410 takes the action described in Table 5-9. 

Table 5·9. MC88410 Actions for Snoop Hits 

01f S.::GBC 
N 

A 

A 

A 

A 

A 
A = Asserted 
N = Negated 

x 

N 

A 

A 

A 

A 

x = Don't Care 

s_RiW S_INV 

x x 

x x 

R N 

R A 

W A 

W A 

5.7.2 TSHD Timing 

S_TBST Action on Snoop Hit 

x No action 

x No action 

x Assert S_SSTATO; if line was modified, assert S_SSTAT1, 
assert S _ SST A T 2, perform copyback, and mark line shared 
unmodified 

x Assert S_SSTATO and invalidate cache line; if line was 
modified, assert S_SST AT1 , assert S_SSTAT2, perform 
copyback, and invalidate cache line 

N Assert S_SSTATO; if line was modified, assert S_SSTAT1, 
assert S_SSTAT2, perform copyback, and invalidate cache 
line 

A Assert S_SSTATO and invalidate cache line 

The TSHD signal is an addition to the MC88110 bus protocol. The TSHD input signal lets 
other devices on the system interface specify that the current secondary cache line should 
be marked shared unmodified. The memory system typically derives TSHD from the 
S_SSTATO signal. The MC88410 samples TSHD during data bus mastership, which allows 
the memory system to collect and pipeline snoop responses from distant snoopers that 
have a long response time. 

The TSHD signal is sampled while S_DBB is asserted. The TSHD signal is ignored if the data 
tenure is for a transaction which is il)tent-to-modify. If the MC88410 detects the TSHD 

signal asserted during the first S_TA of a secondary cache line allocation, the cache line is 
placed into a shared unmodified state instead of an exclusive modified state. Systems 
without distant snoopers should leave TSHD negated and allow the state transition to be 
handled by the SHD signal. 

Figure 5-30 shows an example of TsHD timing. In clock 1 MC88410-A initiates a global 
~ystem bus transaction that is snooped by MC88410-B, which is slow to respond. 
MC88410-B has a snoop hit and asserts S_SSTATO. The memory system asserts S_AACK in 
clock 2, which terminates the address bus tenure of MC88410-A. However, the system 
could not assert S_SSTATO to MC88410-A by theorising edge of clock 3. The TSHD signal 

5-58 MC88410 USER'S MANUAL MOTOROLA 



allows the fact that MC88410-B has asserted S_SSTATO to be communicated to MC88410-A 
during its data bus tenure. Later, in clock N, MC88410 receives a qualified data bus grant. 
In clock N+1 MC88410-A asserts S_DBB and samples TSHD. Since TSHD is asserted, the 
secondary cache line is placed in the shared state. 

2 3 4 N I N+1 N+2 N+3 N+4 N+5 

ClK 

S_A31-o ~ H ) ~··iii.:I..... _ 

S_ABB; ~OA i II :J, ..........•.... 
S_AACK_l ! 4 ' 

S_SSTATO (SHD) _ j,0til~il~JI~fj lI2i~i 'Ir-j::":-"~-~'"''"'7~' __ N&'~''''W'o/''''''''' 
........... :: ~:::,i ...•.• : •..•. :: ......... :.: ....•.• ::'::":'::::'}:):::::::::::i::::::{: •• ::::tJ).i ••• ) •• ::t} .•••.•• :.?::\: = 
•. ..... : ....•...••.... : •• : ... ! .... : ... ! .••........ :.:: .. ···:··.·:L 

- , r-

SDATA_: ~ 

s_08B;1 '1--~\ i 410A n':~ 
S_TA l:··:·!·· •••• •· ••• :·· .:.: ••. : •.••• : ••••••. : .•• :.: ...•. : •...... :.: .•. :: ....... ·····:·:··.····.H, I 

S_TRTRY _>::! .•.•. /E •.••••••• @:.: •• ::t: :::.; •• ·· .. :.· .... · .... ·.·· .. ··· ..... I~,' ,,:,ir 'II:': ~ •• : ••• : ••...•• :::.:.1. 1:.::::::::.:.:::................... ~ 

S_DBG _1.lj.II"IIIII~--'v--fLV i-

TSHD - i".:.:.:: .•. ; •• : .•. : .• : .• : .•.• ~ .• : .••. :.: •. : .• :.: .••.•. : .••.. : •••. : •. : .•••.•.•.••. : .••••.•... : .• : .•..•••• : .••.•.•. ~ •••.• : .•. : .••••.• : .•. : •. : .• :.: .••.•.•. : •.•.•.••.•. : .• : .• : ..... : .•..•. :.: •. : .••.•.•. ~ •.•. : ...•.•.••. :.; .• : .• : .....••.•. :.:.: .• : .•. : .• ; .•.•.•• :: .••...•. f ... ·.: .•. • .• ·.: .••••. :.· •.••.•. : .•• : ................. .' .••••. : ••.•. : .. : .. ~ •.•. : •• : .••••..••.•.•••.•.••.•••.••• : .•.•.. : •• : .•.•.•.•.•• : .•••• : .••.•.•.•. ;.: .•.••. i .•. :.· ...... : .•.... i .. ~ .. • .••.• · .•. ~ .•... ; .•.•..•. : ..•.•.•. : .. : ...••.••.....•..•. :.: .. : .• : .• : .............. : .... : .. ~.: ,!: .••. I •. ; .•. ~ ... ·.:.:· .• : .•. I •. ·. if I,: \ 410 '.' L .......... :.:.:. : ..... :.rr· •••• :.:.r.:.r;.·::t.}.{? .:I ••• :·.·:: •• r.:·.;:::}:::r:: 2i1 . I)l:~: :=::::J::::t:=::::!t:::;:;jf::?::::;rt:rtt;:=:!:t;}:!:;::;:::~:::;:::::;;itr;tt:;::tr:::::::t;ttt::t:: _ 

E DON'TCARE 

figure 5-30. TSHD Timing 

5.7.3 S_SSTAT2-S_SSTATO Timing 
The MC88410 asserts the S_SSTAT2-S_SSTATO signals, if necessary, two system bus clock 
cycles after the assertion of the S_SR and S_GBL inputs. If a snoop copyback transaction 
mustbe performed, the MC88410 asserts bus request one clock cycle after the assertion of 
S_SSTATl and S_SSTAT2 in the full-speed mode. In the half-speed mode, S_BR is asserted 
with S_SSTATl and S_SSTAT2. The S_SSTAT2-S_SSTATO signals remain valid until S_ABB is 
negated. Note that if the initiating MC88410 is parked, S_ABB is still negated for one clock 
between transactions. 

Figure 5-31 shows the timing for the S_SSTAT2-S_SSTATO signals. The initiating MC88410 
starts a global memory access in clock 1, as indicated by S_SR and S_GBL asserted. The 
snooping MC88410 latches the address and asserts the appropriate snoop status signals 
two clocks later (if necessary) in clock 3. If the snooping MC88410 detects a snoop hit to a 

MOTOROLA MC88410 USER'S MANUAL 5-59 

• 



• 

modified primary or secondary cache line, then the snooping MC88410 asserts its bus 
request one clock after S_SSTAT2-S_SSTATO. The second transaction in Figure 5-31 shows 
an example when S_ABB stays asserted for several clock cycles after the snoop status 
signals are asserted. . 

The S_SSTAT2, S_SSTATl, and S_SSTATO outputs of the MC88410 and another MC88410 can 
each be connected without contention. These signals must be connected to pull-up 
resistors to keep them negated when no processor is driving them. Each time one of the 
snoop status signals is asserted, the MC88410 negates it before three-stating it. The snoop 
status signals must be negated in a unique way to avoid contention problems during the 
transition. 

2 3 4 

ClK 

& DON'TCARE 

7 8 

'--S ABB~ 
I-;SSERTEOI 

9 10 I 

Figure 5-31. Snoop Hit/Miss Indication (S_SSTAT2 - S_SSTATO) 

Figure 5-32 shows two MC88410s driving the S_S~TATO signals at the same time (labeled 
S_SSTATO-A and SSTATO-B in the diagram). The two S_SSTATO signals are connected 
together and connected to Vdd through a pull-up resistor. The combined signal is called 
S_SSTATO. In clock 1, a third MC88410 starts a glopal transaction. Note that both 
S_SSTATO-A and S_SSTATO-B are three-stated because neither MC88410is driving the signal, 
but S_SSTATO is negated because of the pull-up resistor. Two clocks later, both MC88410-
A and MC88410-B have a cache hit and assert S_SSTATO-A and S_SSTATO-B, respectively. 
When S_ABB is negated, the MC88410s must negate S_SSTATO to prepare for the next snoop 
cycle. However, if both MC88410s transition from driving the signals low to driving them 
high, there is the possibility for contention during the transition. Therefore, S_SSTATO-A 

and S_SSTATO-B are each three-stated, then negated, and then three-stated again. 

5-60 MC88410 USER'S MANUAL MOTOROLA 



2 3 4 

elK 

ADDRESS _ i (,---:-_Gl_O_BA_l~AD_D_RE_SS~-I»)---'-----: 

S~BB=~~ --~\~~ __ ~ __ ~~/ 

S_SSTATO A = ::--....;-----"--...;.-, ...... ------....:1('1: 
S_SSTATO B -l ,'---+--...."v-/~i ~ 

,! !r-1-
S_SSTATO 1 ~ ! 

Figure 5-32. Snoop Status Negation Timing 

5.7.4 Bus Request Blocking 
The MC88410 implements a blocking protocol that allows a snooping device an 
opportunity to acquire mastership of the address bus. When an MC88410 that is 
requesting the bus detects that S_ARTRY is asserted and that S_ABB was asserted on the 
previous clock cycle, it removes its bus request and ignores any bus grant. The MC88410 
then blocks its bus requests by not asserting S_BR until one clock after S_ABB is negated or 
until S_ARTRY is negated. Note that the MC88410 does not block S_BR due to S_ARTRY if 
S_ABB was negated on the previous clock cycle. 

Figure 5-33 shows the MC88410 bus request blocking protocol. In clock I, S_ABB and 
S_ARTRY are both asserted. In clock 2, the MC88410 does not block its bus request, 
because S_ABB was negated on the previous clock cycle. In clock 3, however, S_ARTRY is 
asserted and S_ABB was asserted on the previous clock, so the MC88410 negates S_BR (if it 
was asserted). The MC88410 continues to block its bus request until it recognizes in clock 
N that S_ARTRY is negated. 

Figure 5-34 shows an example of the S_BR blocking protocol assuming a system with two 
MC88410s and with S_SSTATI connected to S_ARTRY. In clock one, MC88410-A has a 
transaction .in progress that causes a snoop hit in MC88410-B. MC88410-B asserts 
S_SSTATI (which is connected to S_ARTRY) in clock 1 and S_BR in clock 2. Also in clock 2, 
MC88410-A recognizes that S_ARTRY is asserted and negates S_BR. Note, however, that 
S_ARTRY is not qualified (S_AACK negated) in clock 2, so MC88410-A maintains control of 
the address bus. In clock 3, MC88410-A recognizes a qualified S_ARTRY and negates 
S_ABB. In the same clock, the arbiter recognizes that MC88410-B is the only device 
requesting the bus (all other devices are blocking their bus requests) and asserts bus grant 
to MC88410-B. In clock 4, MC88410-B receives a qualified bus grant, so it asserts S_ABB 

and negates S_BR. 

The negation of S_ABB in clock 3 causes MC88410-B to negate S_SSTATI in clock 4. Because 
of S_SSTATI negation timing and potential propagation delays, S_ARTRY may not be 
negated in time to be recognized in the clock following S_SSTATI negation. Therefore, 

MOTOROLA MC88410 USER'S MANUAL 5·61 

., 



• 

S_ARTRY must be ignored for bus request blocking purposes in any clock cycle following 
S_ABB negated. 

N N+1 N+2 

ClK 

~ABB~"'~~ __ ~~ __ ~ ____ +-__ ~ ____ ~ __ ~~ __ ~ __ ~: 
-h / ':'::-_ S_ARTRY _ !. \~~ ____ ~ __ ~ ____ +-__ -+-I. 

S_BR ~ I ••••• ··, ••.•• ·,.·· •.••. ·, ... ·· ••• · •••• · .•.• · ••• · •• ·•· ••••••...•.••••.••..•. , , •••.•••.•••.••.••••.•...•.••.• , .•....•.....•.•.•.. ,.' ....• ·.·...' .• ·.··.·.·1 ~ 

1--
II:TIJ DON'T CARE 

Figure 5-33. S_BR Blocking Protocol 

2 3 4 5 

ClK 

S_ABB - ;-.! _...,.MC_88;...41_0_A---;_~: 
S_AACK A _ : \ 1: ................ , .. , ........... ' ... , .......... ' ........ , ........................................................... '_ 

S_SSTAT1 B ~ i\ 
URTAYA;i"\ 

S_BR A !:--_~/ 

4'j:, 
Mi ... ' 

y~ 
~BRB_: \~~ __ ~/ 
-S_BG B - :~l............. /,.' '·i .••.•••. ' .••.••.•. ,... ! .... ,.,., ...• ~ •..•..•..•.. · .. · .• , .•.•. ·~.' •• ' .. ~i.=i.~\=/: -8 & . .;.:: ..... :::.;::>;:::::::;::::.:.:::::; .. ::::::.:J_ 

[iliJ DON'T CARE 

Figure 5-34. S_BR Blocking In a Dual MC88410 System 

Note that the memory system can control the length of time that the bus requests are 
blocked by controlling when S_ARTRY is negated. Assuming that the S_ARTRY signal is 
controlled by the S_SSTATI signal of the snooping MC88410, the memory system can 
control when S_ARTRY is negated via the S_AACK signal. This is because the 
S_SSTATl/S_ARTRY signal remains asserted as long as S_ABB is asserted, and the initiating 
MC88410 keeps S_ABB asserted until the S_AACK signal is asserted (or the transaction is 
terminated). 

5-62 MC88410 USER'S MANUAL MOTOROLA 



5.7.5 Snoop Miss Timing 
When the MC88410 is snooping, it takes two clock cycles from the assertion of S_SR to 
assert the snoop status signals; therefore, if the MC88410 is initiating a transaction that 
another MC88410 will be snooping, there must be a minimum of one wait state inserted 
into the transaction to allow for the snooping MC88410 to assert the snoop status signals. 
This can be done .by delaying S_TA or S_DBG by at least one clock. Otherwise, data may be 
transferred to the secondary cache before the snoop status is known. 

Figure 5-35 illustrates snoop transactions from the perspective of the initiating MC88410. 
Note that the first transaction begins while the initiating MC88410 is parked on the 
address bus. In clock cycle 1, the first transaction begins, but S_GBL is negated so this 
transaction is not snooped. The first transaction is terminated with the S_TA in clock 2 
and a new one begins in clock 10. 

In the second transaction, S_GBL is asserted, so snooping occurs and a wait state must be 
inserted to allow the snooping bus masters to assert S_SSTAT2-S_SSTATO. Since this 
transaction is a snoop miss, S_SSTAT2-S_SSTATO are negated in clock cycle 12. In the 
second transaction the address bus is split from the data bus, and address bus tenure ends 
with the assertion of S_AACK in clock 11. Also during clock 11, the S_ARTRY signal is 
negated, so the second transaction is terminated normally with the S_TA on the rising 
edge of clock 16. 

5.7.6 Secondary Cache Copyback Timing 
If a snoop transaction hits in the MTAG of the MC88410 and the secondary cache line is 
modified, a snoop copyback transaction occurs. The following paragraphs describe the 
timing for various snoop copyback scenarios. 

5.7.6.1 Full-Speed Snoop Hit and Copyback (No Split Bus) 
Figure 5-36 shows an example of a snoop hit in full-speed mode without a split bus. 
MC88410-A begins the transaction with a global single-beat read which hits in the main E 
tag of MC88410-B. In response to the snoop hit, MC88410-B asserts S_SSTATO (which is 
connected to the SHD signal) to indicate that the data is shared. Later, MC88410-B 
attempts a burst read transaction for different cache line and hits in MC88410-A. 
MC88410-A retries the transaction and asserts S_SSTAT2-S_SSTATO to indicate that a 
copyback transaction will occur and copies back the modified secondary cache line. 
Following the copyback transaction, MC88410-B initiates and completes its burst read 
transaction. 

MOTOROLA MC88410 USER'S MANUAL 5-63 



• 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 

ClK 

S_A31-D - ;-< »--:--~~-----.--"--~-« )~---------:....-~--
S_GBl - :-' : \'---I...--i--~--:-~----,---\,--,-_.;..J! Ir--'--~--:----:---:----i 

, ,-

S_ABB _ ~\'------i---!--~--!---I-----1--I--~....;...-...:----.;.------~j rt-i _ 
TRANSFER - : : ' , ' 
ATTRIBUTE i-< . »--i-----I--~-~-...,j",-« )>-~---+--!--~ ........ ~' 

SIGNALS - : ., . , 

S_TS-V ; \jj 
- -le6J ,V·' .................... :1:.:.:: .. :;:.:".:;:_' ;::..-:.::.:::::: ... :.-:. I .. 1 .. : .... \ I t.: . .. ':<}?::}?:{t:::::\:::::.\t::::?\:/:\\}:////u 
S_AACK_ ~ ! \_/;, .. :. ,........i......,i:_ ..•.• ·,· .· • .....,.i ....... )·_·)' __ ~, ~,A~, IJ"'""":' •• ·• ~~ ...... ' '.' ••.•••• ~' ••. '.'.' .... _>"'.~.>\~./<.'.'/~,»),:.'.):.: 

~D~;~~--~~--~~--~~:\jj~~~--~--~~--~-: 

S DATA -_1 : : A >---l---I--~----...:----+-~-'!-{ , _ 

: : : ~-

S-_D-BB -! : W ! \\,...+--+----!-+--+'i I j ! -

S_SST:~T: ~ ~clAk :~mi.m ~ "ii% , W;, \ Q'-....;----I--~i-_-/:....,~,;:i .... I-:-I:i: : 

Sj.RTRY c i~~_Kc_cc C-.~~7ff i _ ~==:l: 
Clock Cycle -: 1 3 4 5 6 7 8 9 10 i 11 : 12 : 13 14: 15 : 16 : 17 

local Access Single Beat Global Access Burst 

IL5] DON'T CARE 

Figure 5-35. Full-Speed Snoop Miss Transactions 

During clock 1, MC88410-A recognizes a qualified bus grant and asserts S_TS, the transfer 
attribute signals, and S_ABB. The assertion of S_TS (which is connected to S_SR of other 
masters) and S_GBL causes other bus masters to snoop the transaction. On the rising edge 
of clock 2, the MC88410 recognizes a qualified data bus grant and asserts S_DBB. In this 
transaction, S_DBG is asserted during the clock of S_TS. In clock 1 the memory system 
negates S_TA for one clock to allow enough time for snooping devices to respond. The 
memory system asserts S_TA in clock 2, and MC88410-A drives the beat of valid data in 
the next clock. In clock 3, MC88410-B asserts S_SSTATO to indicate the data is shared. 

In clock 6, MC88410-B requests the system bus for a global burst read for a different line, 
and initiates the transaction in clock 8. In this transaction, S_DBG is asserted during the 
clock S_TS is asserted. The S_TA signal is negated in clock 8 to insert a wait state to allow 
snooping devices to respond and then asserted in clock 9 to terminate the transaction, 
illustrating the minimum bus tenure for snooping. MC88410-A recognizes a snoop hit to 
a modified line and asserts S_SSTAT2, S_SSTATl, and S~SSTATO in clock 10. The S_ARTRY 

input signal is 'connected to the S_SSTATI output signal, and is also asserted in clock 10. 
MC88410-A asserts S_BR in clock 11 to request the bus for its copyback transaction. Since 
this example does not use a split bus, S_AACK remains negated and the assertion of 
S_ARTRY is not recognized by MC88410-B until the rising edge of clock 11. During clock 
11, it relinquishes its mastership of the address bus. 

5-64 MC88410 USER'S MANUAL MOTOROLA 



MC88410-A recognizes its qualified bus grant during the rising edge of clock 13 and 
asserts S_TS and its transfer attribute signals. Note that S_GBL is negated for the copyback 
transaction and a wait state is not inserted before asserting S_TA. However, in this 
example, the external arbiter does not assert S_DBG until clock 14, causing MC88410-A to 
wait. MC88410-A copies back its secondary cache line during clocks 16 through 19 and 
terminates its transaction. 

During clock 13, MC88410-B reasserts its bus request to retry its burst read and it receives 
a qualified bus grant on the rising edge of clock 21. MC88410-B initiates its data 
transaction in clock 22 and completes it in clock 27. 

5.7.6.2 Full-Speed Snoop Hit and Copyback (Split Bus) 
Figure 5-37 shows an example similar to Figure 5-36 but with a split-bus protocol. In this 
example, MC88410-A attempts a burst read transaction that hits in the main cache tag of 
MC88410-B. The memory system asserts the S,-AACK signal to terminate the transaction 
on the address bus. This allows the address and data bus to be fully decoupled. 

MC88410-B initiates the transaction by asserting S_TS in clock 3 and receives a qualified 
data bus grant. The S_TA signal is negated by the memory system in clock 3 to insert a 
wait state for snooping. The memory system asserts S_AACK in clock 4 to terminate 
address bus tenure. During clock ~,. MC88410-A three-states the address and control 
signals. At the same time, MC88410-B retries the transaction by asserting S_SST AT1 

(S_ARTRY), which is sampled in the clock after S_AACK is asserted. MC88410-B negates 
S_SSTAT1 in clock 6 since S_ABB is no longer asserted. 

MOTOROLA MC88410 USER'S MANUAL 5-65 

• 



I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 

• Snoop Hit, Shared·not Modified Snoop Hit 

EEl] DON'T CARE 

figure 5-36a. Full-Speed Snoop Hit and Copyback (No Split Bus) 

5-66 MC88410 USER'S MANUAL MOTOROLA 



I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 

ClK 

\'--!-----!----!----!'-~i li-
s GBl i,: \'--!----t~ , , 

- ~--I--_I____;.-_;...-.j_Ii 'i-
~~~~~~~ - ) I ( , >-!:,~_ 

SIGNALS -:---------'
S_T~ :"'--+---+-+---ji---!---+,\'-f/

S_RIW :---I---I----I---'-'! ,r--t----t~\'-~!--I---+----;.--'--+-'i 0-
~DBG -_:: I~~~--~~--~~-w-ait~!\ !, I

'oJ i 410 Ai \..,.;:J

SDATA ~:
!

\ --'--~-;..;r0; S_DBB ~ \'--:~--:---:._..;..,/

S_AACK _: i \\i1 j ~i-
- -:~y~' -I-~v;.~ ~ ~. ~=~~ .. ~ ... ~ ~ ~:. "'~""~'" .~ .. ~. ~""~""~"""J""" --:"'T'\f~"""'~""""~""'~" ~::::::""'.:::::::~/.::.::~:.::.::b:::.::::~:>::/~.::.::.:::d
S_ARTRY _ tV \i' ··········i..ir.>?iJ ,/<'/!

S_BR A ~!
--I---+--~--,--~~-~-~--:"-~~~-I--

S_BG A ~ :,;

i,' / S_BR B _ :_ _.;--....... ~...;----:._~.
:W! ~~~~~~~

S_BG B _ j

Clock Cycle 15 16 17: 18 19 : 20 : 21 : 22 23 24 25 26 27

Snoop Copyback Burst Read

!§ill] DON'T CARE

.Eigure 5-36b. Full-Speed Snoop Hit and Copyback (No Split Bus)

MOTOROLA MC88410 USER'S MANUAL

•

5-67

•

MC88410-B requests the bus in clock 6 and detects a qualified bus grant on the rising edge
of clock 9. MC88410-B then asserts S_TS and takes control of the address bus. The
assertion of S_AACK in clock 10 terminates the address bus tenure of MC88410-B. The
negation of S_ABB and the assertion of S_BG by the arbiter in clock 11 gives MC88410-A
mastership of the address bus on the rising edge of clock 12, even though MC88410-B. is
still involved in its data transfer. MC88410-A detects S_AACK asserted on the rising edge
of clock 14 and terminates its address bus mastership as MC88410-B completes its
copyback. MC88410-A initiates its data bus transaction in clock 16 and completes it in
clock 20.

5.7.6.3 Half-Speed Snoop Hit andCopyback (Split Bus)
Figure 5-38 shows a snoop copyback transaction with the half-speed mode. MC88410-A
initiates a transaction in clock 1 which is snooped by MC88410-B. MC88410-B asserts
S_SSTATI in system bus clock 3 to indicate a snoop hit and retry the 'transaction in order to
perform a snoop copyback.

Note that in the half-speed mode, S_BR is asserted in the same clock as S_SSTATl. The
MC88410 recognizes a qualified bus grant on the rising edge of system bus clock 4 and
takes mastership of the address bus. The MC88410 terminates address bus tenure in
system bus clock 6 as a result of the assertion of S_AACK. MC88410-B is granted the data
bus in system bus clock 6 and begins its snoop copyback transaction in system bus clock 7
and completes it in clock 11.

5.7.7 Snoop Hit with Primary Cache Invalidate
If a system bus transaction causes a snoop hit in the processor tag (PT AG), the data is
included in the primary cache. The MC88410 must issue a primary cache invalidate
transaction to maintain coherency. For more information about primary cache invalidate
transactions, refer to'Section 4 Processor Bus Interface.

The MC88410 may detect a snoop hit while it is arbitrating for the system bus interface to
complete a processor transaction. If the snoop hit requires copyback or a processor
invalidate transaction, the processor transaction is interrupted with a retry indication.
The interrupted processor transaction is restarted when the copyback transaction is
completed. However, a snoop copyback or processor invalidate transaction cannot
interrupt system bus snoop activity already in progress and will be retried.

5·68 MC88410 USER'S MANUAL MOTOROLA

CLK

S_A31-O ~ i----~-('-_ _._I)--O.--!----+--+- '-----..,...J

S_ABB ~ i
--:

S_RIW :1 ~ ---If---+-'

S_GBL: :

S_MC_::, i \'-~--Ir-I
SJNV ~ ; '-I-i -;"..J:----+--+---+! """'\ I

s'::; ~:+t,~",.J~ §;0t£!WW,' i~0~~ i /;~it~~
'-

~~~--~~--+-~--~--

: 
L ... 

S_ARTRY ~ i \j} 
~~-~---~ '~--~--~~--~~--+-~--~--I--~--~-r--+--+~i:::,-: 

S_SSTAT1 _ i i, ~, BI 
S DATA -""": -':"'--4--':"'-~-':"'--+--+---r-<!---( 

_: __ i ~--+-----:.....\ ::' / \,--~~:42..0~,,:_~il':\:,', : r+-+ 
S_DBB _ i '--+----+-,. _ I : \ 410 A : I: : 

S_TA ii:>i1W7it'>:i!\ I! \\-,;_...:...-~---:i-,/~)~}~//~<i~)~ii{~/j 

S_TEA ~ iiii/' i 'it/'..,:, .7 i 'iI ~ 
S_TRTRY ~ ii\ 7: i ~·ii{V : ~.~ 
- -1 ... .' ....... \ : /...... . ... : : .... : ......... >.-\ 1 i-:···::··:;:····:(·::·:·::::··:·::·:·····: .:; '::;':;";:':::}';:':'".;::.:";'::.::::.:;.:::::.-:::;:;";:;";.-::;:;:::::?:;<;:I 

S_DBG A _ i\»- i Ci . ·/A : uH . HH:'·:.l 

S_DBG B _ ~i(""-·····'·;~·······~····· ·~~~~~~·;;;,;··;·","i:·.;;,;.;;;(>;;;;;i/~i"","i¥,\~i",,"i~\~ .. -+-i /:"""~ .•.. """'.: •• ' •... 'F .. ~~~~~~~~~~~~~,+ ...... i.""".}"""'t\ .... //~,i.l 

S_BR A ~ \ I i \'-"':"--+--+----i-I 
~BGA~~~-~~----~~-~-h\~~~1 

S_BR B _ i i \'-~--lil---+-,i I~---t--~~-+-~-+---:---:-~--+--i--""': 
S_BG B -:-i _-------L...-I---------:--...:....j '-+I,..-I--t---t-~-_:_--i--~~---:--~~~~ 

Clock Cycle! 1 3 4 : 8 : 9 10 11 12 13 14 15 16 17: 18 19 20 21 • 
ELill DON'T CARE 

Figure 5-37. Full-Speed Snoop Hit and Copyback (Split Bus} 

MOTOROLA MC88410 USER'S MANUAL 5-69 



System Bus 
Clock Cycle _ I 

HCLK 

eLK 

I 6 I 7 I 8 I 9 I 10 I 11 I 

r-LIL!lSLlLILJ~ 

S_A31-o~ H""""--......-4_10 .... A _,..,>--!-----!"-\ ___ -41-0 B......---.-'>--!--""'!--~-"!__~~~~---:--_I__~-_!__~,. 

~ABB~~~~i-~~~~ 
S_T<\....UJ 

S_D8G: i 

SDATA: i 
S_TA_ ::-~---:---!----l---!--~-!--~---t--~~-~\'_~~_~ ....... i 4_10_B;....i ~~....:.........;..i r--H-

. :'! i: 

!.EII DON'T CARE 

Figure 5-38. Half-Speed Snoop Copy back 

Figure 5-39 shows an example of a snoop hit causing a primary cache invalidate 
transaction. MC88410-A initiates a global burst read-with-intent-to-modify, which hits in 
MC88410-C and causes a primary cache invalidate transaction to MC88110-C. During the 
invalidate transaction on the processor bus, MC88410-C is able to snoop a global burst 
read on the system bus by MC88410-B that misses in MC88410-C. In this example the 
processor does not have an outstanding request to MC88410-C. 

• Assuming typical bus arbitration, MC88410-A asserts S_TS in dock 2 to initiate a global 
burst read which is intent-to-modify. In this example, SJiBG is negated in clock 2 in order 
to insert a wait state for snooping. The assertion of S_AACK by the memory system in 
clock 3 terminates the address bus tenure of MC88410-A. In the following clock, 
MC88410-C asserts S_SSTATO, indicating that the data is shared. Between clocks 2 and 4, 
MC88410-C completed its tag lookup and determined that the shared data was not 
modified but was included in the primary cache (PT AG hit). Therefore, in clockS, the 
MC88410-C requests the processor bus from the external arbiter in order to perform a 
primary cache invalidate transaction. 

5-70 MC88410 USER'S MANUAL MOTOROLA 



I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 

ClK 

P _A31-O ~:----+----'---+--+----+-~('--__ ---J))o---"--"""""----""""--'----: 

P_ABB :....-.-~ .......... ;";';"""O" .......... ;....;...;....~ ......... ...,.....;.J.\--;..._~....;.!-'"l ...... ~ ........... ~.......,;..~""""-~ 
P_RIW ::---~~-~---!"-~ , I 

'--"'-----'-' 

P _GBl - i '-___ '-': ,,---+------"--+------: 

PJNV-!'---~~-~~-~ : ,,...---------~'-
i \ j I 

P_TS_ j \......;J 

P DATA_ i~--------.;.-....;...-~--------.;.-....;...-~-.;..-~~-~-: 

i:,'::,--P-TA_i 

P _SR _ I-i ---+--i-----+--.... i \, ! jr-..:---:..------;..-..:-------.:-.---:--: 

, , : \ i I 
P _BG _ ! ! '-...l..J 

S_"'-<>: H 410. i ~~------------...;.....---;-...;...---~ 
S_ABB~h :rT\: :/ 
S_TS-r--t\Jj i ! \Jj 
S_SR:~! iY. 
S-GBl_i~~1 

SINV-! : 1 1 : 1 1 
- -:~IT"L.L.-...LI 

s_RiN~ H-rtt+-t1\'-~~-..:.---4--~'"""-.......... -.:---: 
S_DBG; i i Wait i '41 '-+1, 
SDATA: i : : : 

-S_D-BB:! :\ : ! G :! n; 
S_TA:! i\ !fT\ 1 !1Tl-

S_AACK _ 1:"'!"'{= •. · ·.·.··~·.··· ••.••• ··= ..•. ··· •• · .•• ~·.A ! AI}<~}t.:C· •. · .•• · •.. ~A 11 -:A;;i!::··.········:;:::·· ~~~:;;;:;::;;:·· ... ;::··········:;········· •.• :::;:;t·.;; ..• · ..•.•.•• ;: •. = •••.•• ~ •• = ..•• ~ •..••••. : ••• _ • 
S_ARTRY _ .... 1i .... ·····""'· .. · ....... ~ ................ === ........ ~====~~_· · ...... ·· .. :· .... ··· .. ·· ... ···) ......... · .... ii .... I)"'"'.i ... i ..... } .... Hi ......... ·.·: .... I~ •• : _ 

SHD iii \..~ i tt<··········· 
S_SSTAT 0_ ~',', ......•....•.... : .... :.::; ... : .. : •.......... : .... : .•....• : ... ;:: •.•..•. : .. ::: ~::: •• :.:: •••.•.. :: •.. ±:: ........... : ........... :.:.~ ... ':.: .. 4;:::10~:C:! ...... :: ... :.:· ..•....•••........ : •..•. :.~ ...•.•.•.•. : ....•.•. :: ..•... <: .... : ..... ~ ...... =J::=====~.: .... : ..... : ..... : ..... : ........ : ....... : ........ : ....... :I: ...... : ........ = ......... . :~ :} L "'ii:\:; 

S_SSTAT 1- i'-""i .... : ==~~====== ........ ==~=~===~== .... """.·.·:.·:·""'IIi 
S_SSTAT 2 ~; ... : ....... :...\.;.) -

=======================~ 
Clock Cycle 3 4 7 8 9 10 11 12 13 14 15 

lIE] DON'T CARE 

Figure 5-39. Snoop Hit with Processor Invalidation Broadcast (Split Bus) 

MOTOROLA MCBS410 USER'S MANUAL 5-71 



In clock 5, MC88410-B asserts S_TS to initiate a global burst read which is also intent-to
modify. Also in clock 5, the memory system asserts S_TA to MC88410-A, which had 
received a qualified data bus grant on the rising edge of clock 4. On the rising edge of 
clock 7 the following occurs: the processor bus interface of MC88410-C detects a qualified 
processor bus grant from the external arbiter, MC88410-B detects the assertion of S_AACK 

by the memory system, and the first beat of data is transferred to the secondary cache of 
MC88410-A. 

During clock 7, MC88410-C performs the primary cache invalidate transaction by 
asserting P _TS, the transfer attribute signals, and driving the address onto the processor 
bus. At the same time the MC88410-C has completed its tag lookup of the burst read of 
MC88410-B and determined that it has missed in the MTAG and PT AG. The processor 
interface of MC88410-C maintains address bus tenure for two clocks to allow MC88110-C 
time to respond to the snoop hit. Note that even though the system interface has 
responded to the original snoop by not asserting S_SSTATl (indicating that a processor 
copyback was not necessary), the processor interface still waits until clock 10 before 
relinquishing the processor bus in order to detect a processor copyback. On the system 
bus, MC88410-B relinquishes the address bus during clock 7. 

During clock 10, MC88410-C completes its primary cache invalidate transaction, 
relinquishing the processor bus, and MC88410-A completes its burst read and 
relinquishes the system bus. MC88410-B detects a qualified data bus grant on the rising 
edge of clock 11 and performs its burst read during clocks 12 to 15. 

Figure 5-40 shows an example of a full-speed primary cache invalidate transaction that 
interrupts a processor transaction. In clock 1 MC88110-B initiates a replacement copyback 
transaction. Also during clock I, MC88410-A requests the system bus and initiates a 
global single-beat write transaction. The memory system negates S_TA in clock 2 to insert 
a wait state to allow MC88410-B to snoop the transaction. An additional wait is inserted 
by the external arbiter negating S_DBG until clock 3. The assertion of S_AACK (not shown) 
in clock 3 terminates MC88410-A address bus mastership. MC88410-B asserts S_SSTATO in 

• clock 4 as a result of the snoop hit on the read of MC88410-A. 

Since the snoop hit in the PTAG, MC88410-B must perform a primary cache invalidate 
transaction so that MC88110-B will invalidate the cache line. The processor is transferring 
the third beat of the replacement copyback to the secondary cache when MC88410-B 
asserts P _TRTRY to retry the transaction. MC88410-B becomes processor bus master by 
negating P _BG and begins the primary cache invalidate transaction in dock 7. Since the 
MC88110-B data cache line is not modified, a copyback transaction is not needed and the 
processor reinitiates the replacement copyback in clock 11. 

While the processor interface completes the primary cache invalidate transaction, the 
system bus interface services a snoop from a burst transaction by MC88410-C. 
MC88410-C initiates the burst transaction in clock 6 which misses in the secondary cache 
of MC88410-B. As a result, S_SSTATO remains negated in clock 8 (when it would have 
been asserted for a snoop hit). MC88410-C performs its burst transaction on the data bus 
in clocks 10 through 13. 

5-72 MC88410 USER'S MANUAL MOTOROLA 



co 
o 

~ 
00 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 

CLK 

P_A31-G~!--<,-_: _~_11:--0B ___ ----,: >+-<,-.-: _41:,"""OB~:....J>-t-<,-.-: _~--.-1_10_B ____ ,....J)-< 
P_AB~J\ iri\ i ,0' i i I!Jjf 
p-RtW·r' i rh : 'i' : ri-
p _GBL' :--' i,', '---h : r+',: : \ : . 

., l L 1= 

P DATA :---:"'-"""'-< 
.~ : I \J.j'::, i, \ i / 

P_TS.: 0 '--+-' 
P_TA : 'wa','t\ !,' / \ i /-1-. , . . Wait '--+-____ -_+_-~:. : _ 

P_ATRTY :_-"",,~,1 ! \"""') ..... ' ........... =---~7 : \\,;..c ~~~;..;...;,.;,.,~~~~....,;.;;;,;;........, 
, P _TRTRY_ ! j U,........--+. !::_ ......... _,...-____ -!----"_~_o.__ ____ ..;..._-: 

P_BG: i n 
-~-~~--~I. ,~. ~-----~-------_!_~-~-~~-..;...--

S_A31-G ~ :----+-( , 410 A' »-""'!-------: -c(,..-'-' 4-10"""C'---)I---'-----+---+----.;.--c( '410 A' )>--+----1--: 

S_ABB~hLLl/ : \: i / \ i I 
~GB<~, j, i :fr~-~-+-~--+~~+'! __ ~:,~~-~~ 
s_RiW ~ H : , ) : (,......-...... »)-~~--!----!-----:.~( »)--+---+---
--~!, '\;" \::,',' 
S_ TS ! 1 '-.lJ '--i..J \....i.J 

~: ' \ il :\ il :\ if 
S_DBG - i ' '-.....+-I '---+-' '--.J.J 

, :"" \ 410 A I \ ,410 C i, / : \410:A ,i -
S_DBB - t ., '--+i-"""------~ : c.:.J :-

S_SSTATO~::--+----:...--i:-.~r-t-------:--~---'------+--+--,;,..,.-~j ~ ~ 

S_TA_ t,: ' \J.j: \ iii, \ iii 
'---!-----!--+--oi-I . i ! i ~ 

S DATA": A )--i--;"'-~ >----~-~ 

Clock Cycle 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 

Il2Jl DON'T CARE 

Figure 5-40. Snoop Hit which Interrupts Processor Transaction 

In clock 11 MC88110-B reinitiates its replacement copyback transaction to the secondary 
cache. During the retried replacement copyback transaction of MC88110-B, MC88410-B 
responds to a snoop request from MC88410-A that hits in the secondary cache by 
asserting S_SSTATO in clock 15. Since the line is not modified, no further action by 
MC88410-B is required. This example demonstrates the ability of the MC88410 to 
respond to system bus snoop requests without interrupting the processor transaction 
unless it is necessary to maintain cache coherency. 

MOTOROLA MC88410 USER'S MANUAL 5-73 

• 



5.7.8 Snoop. Hit with Processor Copyback Timing 
Figure 5-41 shows an example of a system bus snoop hit with a primary cache invalidate 
transaction that causes a processor copyback transaction. In this case, the processor 
copies back the data to the secondary cache, and the MC88410 copies back the secondary 
cache line to main memory. In this example, the secondary cache is configured with a 
zero-word-first ordering and a 64-byte secondary cache line. This requires two primary 
cache invalidate transactions if both halves (32-bytes) of the secondary cache line are 
included in the primary data cache (PTAG hit). In this example, both lines are cached in 
the primary data cache but only one has been modified, requiring copyback of that 
primary data cache line. Note that the processor bus transactions are critical-word-first 
but the secondary cache copyback is zero-word-first. 

In this example, MC88410-A requests the system bus and has received a qualified system 
bus grant to perform a global cache-inhibited, sJngle-beat read transaction (not shown). 
In clock 1 MC88410-A initiates the single-beat read on the system bus. The external 
arbiter negates S_DBG in clock 1 to insert a wait state for snooping. During clock 2, S_TA is 
negated by the memory system, inserting another wait state (note that it could have been 
asserted during clock 2), and MC88410-A detects S_AACK asserted, ending address bus 
tenure (for a split bus). This arbitration sequence is repeated for subsequent attempts by 
MC88410-A to complete its transaction. 

MC88410-Bdetects a snoop hit in both the MTAG and the PTAG and asserts S_SSTATO, 

S_SSTATl, and S_SSTAT2 to indicate a snoop hit with a copyback. Assuming that S_SSTATI 

of MC88410-B is connected to the S_ARTRY input of other bus masters, MC88410-A detects 
the retry on the rising edge of clock 4. Since S_ABB was asserted on the rising edge of 
clock 3 and S_ARTRY is asserted on the rising edge of clock 4, the bus request of 
MC88410-A is blocked during clock 4. In clock 5, MC88410-A asserts S_BR and receives a 
qualified bus grant in clock 6. 

MC88410-A continues to reinitiate its single-beat read transaction and MC88410-B 
continues to retry the transaction until MC88410-B has completed its secondary cache 
copyback. Note that in Figure 5-41, S_BG is shown asserted in the same clock as S_BR in 
subsequent transaction retries by MC88410-A for convienence. If S_BG is asserted in the 
clock following S_BR (as in the first transaction) for subsequent retries, MC88410-B would 
detect its qualified bus grant on the rising edge of clock 30. An intelligent arbiter could 
use the assertion of the S_SSTAT2 (which indicates that a copyback will occur) to not grant 
S_BG to MC88410-A until the system bus snoop copyback of MC88410-B completes. This 
could improve system bu,s bandwidth if there are additional system bus masters. 

As a result of the PTAG hit,MC88410-B initiates a primary cache invalidate transaction to 
MC88110-B. On the processor bus, MC88410-B negates P_BG, and since S_ABB is negated, 
takes mastership of the processor bus in clock 7. If MC88110-B had been involved in a 
transaction, MC88410-B would have asserted P _TRTRY to terminate the processor 
transaction and take mastership of the processor bus (for more information about P _TRTRY 

and primary cache invalidate transaction, refer to Section 4 Processor Bus Interface); The 
primary cache invalidate transaction is driven for two clocks in order to be snooped by 
MC88110-B. 

5-74 MC88410 USER'S MANUAL MOTOROLA 



The snoop hits a modified line in the processor data cache and so in clock 9, MC88110-B 
asserts SSTATl (which is connected to the P_ARTRY input signal of MC88410-B) to indicate 
the snoop hit. MC88110-B begins its snoop copyback transaction in clock 11 by asserting 
P _TS. MC88410-B negates P _TA in clock 12 to allow time to drive the address of the cache 
line to the secondary cache. The data is written into the first half of the secondary cache 
line in critical-word-first order and the processor copyback terminates in clock 17. 

In clock 19, MC88410-B negates P_BG to take mastership of the processor bus for the 
second primary cache invalidate. MC88110-B invalidates its primary cache line and since 
its data is unmodified, no copyback occurs. 

While MC88410-B services MC88110-B on the processor bus, it also retries MC88410-A's 
repeated attempts ·to perform the single-beat read on the system bus. In clock 25 
MC88410-B requests the system bus for the snoop copyback of the secondary cache line. 
A wait state is not needed because a copyback transaction always negates S_GBL. The 
address bus tenure of MC88410-B terminates with the assertion of S_AACK on the rising 
edge of clock 29. On the data bus, MC88410-B writes eight beats of data (64-byte line size) 
out of the secondary cache in zero-word-first order (in clocks 29 through 37) and 
completes its copyback transaction. MC88410-A becomes the address bus master in clock 
38. Finally, MC88410-A receives its single-beat of data during clock 39. 

5.7.9 System DI¥IA Invalidate 
The MC88410 has a feature that allows external devices to invalidate the 
MC88410/MCM62110 secondary cache without causing a copyback transaction. If the 
MC88410 has C\ snoop hit during a global burst write, it invalidates the cache line without 
copying the line back (note that S_INV must be asserted). The MC88410 and MC88110 
never perform global burst write transactions. If a global burst write is detected, it must 
have been generated by an external device (for example, a DMA controller) that is 
overwriting some portion of memory, thus there is no reason to copy back the line before 
invalidating. If data is included in the primary data cache, the MC88410 issues a primary 
DMA invalidate transaction to the processor by asserting P _TBST during the primary 
cache invalidate transaction. This causes the MC88110 to invalidate the cached data line 
without copyback. 

MOTOROLA MC88410 USER'S MANUAL 5-75 

• 



CD 
0 

~ 
co 

5-76 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 

ClK 

P_A31~ 

P_ABB i \~---:...~ ~---I--:'-

-
PJW~ 

~~--~~--~~--~: ,~~----~ 

PJNV 

P_GBl 

PDATA 

P_TS 

Wait \ / 
\-, -!----!-----!--'r-' 

S_AACK : _ i fA:.::::.:: ••. · :::::::::.:.:.':':::.:::::.:'::"::::: •. ::,~ ! A·I ·'::I::::I.: .• :,.::::.::·.:.·:·:: .•. :.: .• : ••••. ::·.::.:I::.\ i /; •• ::::.: .• : .•.. ::.: .••... :::.: .•. ::: •. :::: ..••• :.: •..• ::,::~ i h::'.:::.·:·:,·,::':::::::::.:' _ 

S_ARTRY: 1* i \410A/)}::::.:·i:.::.:·.:"j:: :.::.!., l \410A/; :.,:I.:::.(.r i \410~A :.j·.:.[::::::'il i~-
SJlRA:j . i' i i/\JJ \jJ i. \J 
UG<V \I i 0 i \Jj ! \.r 
URB _: :: : j \ : \: 

S_BGB ;: 

Clock Cycle : 1 

410A Read 

• DON'TCARE 

5 6 7 10 : 11 12 13 

Primary Cache Invalidate 

14 15 16 17 18 19 20 21 

Processor Copyback Primary Cache Invalidate 

Figure 5-41a. Full-Speed Snoop Hit with Processor Copyback (Split Bus) 

MC88410 USER'S MANUAL MOTOROLA 



I 22 I 23 I 24 I 25 I 26 I 27 I 28 I 29 I 30 I 31 I 32 I 33 I 34 I 35 I 36 I 37 I 38 I 39 I 

ClK 

P_A3Hl ~ l)>-........ -----+---!---+---I--""""-"--+--------+---+--+--......... ---~-I----I---

P_ABB~ ! 
~~;!~~~~-~~-~~-~~--~~--+-~-~~--~~~ 

~ PJNV_~ 
i ~GBl;~~~~~----~-~-4-~~-~~-~~-~--~~~~ 

PDATA_ i:--I----!------+--+---+--........ ..-..-....... ~----+--+-----01--......... -I.-.... 

P_TS- : 

-~' -I.-......... ---I----I---+--+---+--+---+--........ -+--+--+-~-+--+--~---
P_TA_ i 

~A~R~i~~~-~~-~~-~-+-~-+-+--+-~~-~~-~~ 

P_BG_!-: _!--~_~~~_~~_~~_~ ____ "'!-~_+-~_'!----!-~ 
S_A31-o_ : 

URB_i 

UGB_! 

i\.LiJ 
Clock Cycle-: 22 

! 1 '-+',..+---+--+---I----+--+---+-~!---+----+--+---+--, -

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Secondary Cache Copyback 410 A Single· Beat Read 

• DON'TCARE 

Eigure 5-41 b. Full-Speed Snoop Hit with Processor Copyback (Split Bus) 

MOTOROLA MC88410 USER'S MANUAL 

• 

5-77 



• 

5.8 COLLISIONS 
Collisions occur when the MC88410 cannot respond to a transaction due to internal 
resource conflicts. The following paragraphs describe the response of the MC88410 to 
collisions. 

5.8.1 Tag Access Collision 
The main tag (MTAG) and processor tag (PTAG) are multiplexed between the system bus 
interface and the processor bus interface. All cache tag reads, whether for a processor 
request or a snoop request, take one clock cycle. Transactions that must write to the tag 
upon completion (for example a read miss with secondary cache line allocation) perform 
the write in a single cycle upon completion of the transaction. The cache tags are free in 
the cycle immediately following a tag read or write. 

In the event of simultaneous access at both the processor and system bus interfaces, the 
system bus interface is given priority and the processor's access to the tag is delayed until 
the tags are free in the next clock. As a result of its priority, the MC88410 always 
responds to a system bus snoop in two clock cycles. 

5.8.2 Split-Bus Snoop Collisions 
The MC88410 contains a snoop latch that allows the MC88410 to save a snoop lookup 
that could not be serviced immediately due to internal resource contention without 
resnooping the address. The snoop latch ensures coherency in split-bus systems when the 
address bus transaction has terminated but the data transaction has not completed. In 
this case, the cache tag may need to be written to upon completion of the data transaction. 
If another system bus master attempts a global transaction to a cache line which is waiting 
for a tag update, it will be retried (S_ARTRY asserted). This condition is defined as a snoop 
collision. 

For example, an MC88410-A may initiate a global transaction and receive an S_AACK 

before its data transaction is completed, thus allowing MC88410-B to initiate a transaction. 
MC88410-B may attempt a global transaction which requires MC88410-A to access the 
same cache tag that it will write to (upon completion of the data phase of its transaction). 

Note that transactions that do not have a pending cache tag write (such as a write
through write or a cache-inhibited write miss) do not generate snoop collisions even 
though the address and data bus may be split during the transaction. 

Also note that certain combinations of processor and system bus transaction timings may 
cause the MC88410 to issue a snoop collision based on only the index portion (see 2.1 
Cache Organization) of the address instead of the full address due to a potential collision 
of internal resources. 

Figure 5-42 shows a timing example of a snoop collision. MC88410-A begins a global 
transaction i~ clock cycle 1. The S_AACK signal is asserted at the end of clock 2 to signal 
that the address has been latched. MC88410-A relinquishes mastership of the addresS' bus 
and internally latches the address it had been driving. In clock 5, MC88410-B begins a 

5-78 MC88410 USER'S MANUAL MOTOROLA 



li.:/ 
I 

global transaction for the same address. At the end of clock 6, S_AACK is asserted for 
MC88410-B. When MC88410-A checks the address of the global transaction initiated by 
MC88410-B and detects that it is the same as the address for its transaction still in 
progress, it asserts S_SSTATl (which is connected to S_ARTRY) but does not assert a system 
bus request. MC88410-B then recognizes that it has received a qualified S_ARTRY and 
terminates its transaction. 

During this time, data is being transferred to MC88410-A.Note,that if MC88410-B asserts 
S_TS to retry the transaction before the collision is resolved by the data transfer in 
progress, then another collision occurs. In this example, the external arbiter avoids this 
condition by waiting to assert the bus grant to MC88410-B until the last clock cycle of data 
transfer by MC88410-A. 

5.8.3 Snoop Latch Full Collision 
A snoop latch full collision occurs if the MC88410 detects a snoop hit while the snoop 
latch is still occupied by the address of a previous snoop transaction in progress (such as a 
primary cache invalidate transaction or a secondary cache copyback transaction). A 
snoop latch full collision causes S_ARTRY to be asserted in the same manner as a snoop 
collision. 

5.8.4 Lock Collision 
Between the read and write halves on a cacheable locked transaction (xmem), the 
MC88410 maintains a lock collision buffer which retries any snooped address that 
attempts to access the same line address as the locked transaction. For information about 
locked transactions and coherency see 2.7.3 Locked Transactions. 

Figure 5-43 shows a lock collsion during a full-speed load-store locked transaction. The 
MC88410-A performs a locked transaction load, which hits in the secondary cache, 
followed by a locked store. In this example, the data is exclusive-unmodified so that a 
system invalidate transaction is not required before the read. In clock 4 another bus 
master initiates a transaction to the same cache line as the locked transaction. The 
MC88410 detects a lock collision with the snooped address and retries the transaction by 
asserting S_SSTATl (which is connected to S_ARTRY) in clock 6. 

MOTOROLA MC88410 USER'S MANUAL 5-79 



ClK 

S_A31-o_ 

S_ABB 

TRANSFER -
ATIRIBUTE 

SIGNALS 

S_TS 

S_MCK 

S_ARTRY 

S_SSTAT1 

-
S::ssTIrrO 

410AOBG 

410BOBG 

-
063-00 

S_OBB 

S_TA 

410ABR 

410A BG 

410BBR_ • 410BBG 

Clock Cycle 1 

I-
E OON'TCARE 

J.4o-------Delayed A~ess--6_-7--8--t:~9t .. -t---- Collision Resolvedcl------~ 
j.--collision AcceSll _ . 

Figure 5-42. Snoop Collision Detection 

5-80 MC88410 USER'S MANUAL MOTOROLA 



4 5 7 9 

ClK 

~~~~~~~~~~~~~~~_~_~_o~~~~~~~~~~; 
P-,BB T\ !~
P_R/W- -= i::" I: \,-~ ___ ~ __ ~~-;-~ ,

P_TS _ ~----!'-~---~~-~' G I::
PDATA :-...-----+O~-----~(~~, H~

W~ i LJ Wait \JFl
I' i ()'---+----+-_-+------., , '"\-. __ $0_02_0 __ . ~ :: _

\'------~,I
UI

UI
:LJ

...-- lock ~
Collision

Figure 5-43. Lock Collision

5.9 RESET OPERATION
The reset (R5T) input signal is asserted by an external device to reset the processor. This
initializes all internal logic (except for the cache tags) to a known state. It is
recommended that the R5T signals of the MC88110 and MC88410 be connected together.

Three to four clocks after R5T is asserted, the MC88410 begins sampling the tag
monitoring signals (F02-FOO and 503-500) for configuration information (these signals are
only inputs while R5T is asserted). When R5T is negated, the state of the configuration
signals on the previous clock cycle is saved until the next time R5T is asserted. This timing
allows the configuration information to be removed at the same time as R5T. The
configuration associated with each signal is described in Table 5-10.

MOTOROLA MC88410 USER'S MANUAL 5-81

•

Table 5-10. Reset Configuration Selection

Signal Configuration Configuration Result

Value

FD2 1* Reserved

FD1/CWM 0 Zero-word first on system bus interface

1* Critical-word first on system bus interface

FDO/LINSIZ 0 64-byte secondary cache line size

1* 32-byte secondary cache line size

SD3/CSIZ1 11* 1/4-Mbyte cache size (CSIZ1=1, CSIZO=1)

SD2ICSIZO 10 Reserved (CSIZ1 =1, CSIZO=O)

01 1- Mbyte cache size (CSIZ1 =0, CSIZO=1)

00 Res,erved (CSIZ1 =0, CSIZO=O)

SD1/ARBEN 1* Internal processor interface arbitration

0 External processor interface arbitration

SDO/CSP 1* Chip selected when CS is high

0 Chip selected when CS is low
* Default

When power is applied to the system, external circuitry should assert RST for a minimum
of 200 ms after Vcc is within tolerance (assuming external pull-up resistors are used).
Note that if internal pull-up transistors are used, additional time may be required. Figure
5-44 is a timing diagram of the power-on reset operation, showing the relationships
between V cc, RST, and the bus signals. The eLK signal is required to be stable by the time
V cc reaches the minimum operating specification.

Once RST negates, the MC88410 is internally held in reset for another three clock cycles.
During the reset period, S_BR and S_TS are negated, and all other three-statable signals
are three-stated. Once the internal reset signal negates, the MC88410 grants the processor
bus to the MC88110 (assuming on-chip arbitration) by asserting P_BG in clock n+5. After
this, the first bus transaction from the processor begins in clock n+6. The MC88410 asserts
S_BG in clock n+ 10 to 'gain system bus mastership to perform the transaction.

For MC88410 resets after the initial power-on reset, RST should be asserted for at least 16
clock cycles. Figure 5-45 shows the timing associated with a reset when the MC88410 is
executing bus transactions and is then forced to invalidate the entire cache. Note that
S_ABB is negated before transitioning to a three-stated level. Resetting the MC88410
causes all output signals to three-state.

5-82 MC88410 USER'S MANUAL MOTOROLA

n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

ClK

: : '; : ~~i-+!~~~~~~~~~~

.svcci v:;: k::: 20~ ms i ; ~ I
! !.:/~I~~~~~~~~~

~ I-j --+--+--+---+--+--~

: i i : i

! i" ! 01:: ': I: :::

P ABB :--+---+--+1" -+--+!,', -'\ ,I, \ i-

S_BA_ I::, !,': ,,!: '\ !,: ~ ! ! r -:0'1-
S_BG __ :,i,-_~:~~:~~:i~~:~~:i~~" ! ! Li:
us: 1 !, i," i i ! ~:

System l~~~~~~_ :" i!" ! i : <;;
S_ABB_ i, :, :,! '\-+ ___ -1-.......;_-;---+:, -+--+-........ -;-.......;-"""~ i i\J_

• DON'TCAAE

Figure 5-44. Initial Power-On Reset Timing

•

MOTOROLA MC88410 USER'S MANUAL 5-83

II

5·84

n+ 1 n+2 n+3 n+4 n+5 n+6

ClK
i

Ih: ! 16.ClOC.KS
I I
I I] I
I I I I
1 I J I
I I I I
1 I I I
I I [I
I I I I
I I I

Configuration
Signal~ i---r--..,---:-----:---:--,\t

FO- F1

Transfer
Attribute

Figure 5-45. Normal Reset into Invalidate All

MC88410 USER'S MANUAL MOTOROLA

SECTION 6
DIAGNOSTICS AND JTAG
This section describes MC88410 tag monitoring, the function of the MC88410 in diagnostic
mode, and MC88410 support for the IEEE 1149.1-1990 Standard Test Access Port and
Boundary-Scan Architecture.

NOTE

The terms assert and negate are used extensively in this
manual to avoid confusion between active-high and active-low
signals. Assert or assertion indicates that a signal is active or
true, regardless of whether the signal is active high or active
low. Negate or negation indicates that the signal is inactive or
false.

6.1 MC88410 TAG MONITORING
The MC88410 provides tag monitoring signals (F02-FOO, 503-500) for system debugging
and statistical analysis of secondary cache performance. These signals function as
configuration input signals at reset. After reset they are driven as an output on each tag
access. The tag monitoring signals reflect the status of the cache tags on the clock
previous to when they are sampled (one clock delayed). A logic analyzer can be used to
capture the state of these signals.

The tag monitoring signals are grouped as function descriptors (F02-FOO) and status
descriptors (503-500). The function descriptors indicate the type of operation that is
being performed on a tag line. The status descriptors indicate the contents of the tag line
after that operation (except for flush operations and snoop operations that modify the tag
between the read and write transactions).

Table 6-1 shows the encoding for the function descriptors and their corresponding tag
operations. Four of the tag operations are read operations, three are write operations, and '.
one is an idle state which indicates that no operation is being performed during that cycle.
Transactions that modify the tags between a tag read and a tag write are identified as
read-modify-write (RMW).

Snoop lookup, flush lookup, latched snoop lookup, and processor lookup accesses display
the read status from the tag entry. The snoop and flush lookups could result in an RMW
tag operation; however, only the read status is driven to 503-500. A latched snoop access
indicates that the address comes from the internal snoop latch rather than from the
system interface. A PT AG lookup results from any processor access. Tag write

MOTOROLA MC88410 USER'S MANUAL 6-1

•

operations reflect all write operations that occur to end the transaction after a bus
operation completes. Some operations write only to the MT AG, some only to the PTAG,
and some to both.

Table 6-1. Tag Operations

FD2 FD1 FDO Read Write

0 0 0 Tag in idle state -

0 0 1 Processor tag lookup -
0 1 0 Snoop lookup (possible RMW) -
0 1 1 Latched snoop lookup (possible RMW) -
1 0 0 Flush lookup (possible RMW) -
1 0 1 - PTAG write

1 1 0 - MTAG write

1 1 1 - PTAG/MTAG write
RMW = Read-modlfy-wrlte to tags

Table 6-2 shows the encoding for the status descriptors. Address misses cause the
address to be written to the tag. Address hits do not write the address to the tag but only
update the status bits. When a new line is being allocated, both the address and status
bits are written to the tag.

SD3 SD2

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

H S

0 0
I = Inclusion bit
H = MTAG hit bit

SD1

0

1

0

1

0

1

0

1

M

0

S = MT AG shared bit
M = MTAG modified bit
V = MTAG valid bit

Table 6-2. Tag Status Descriptors

SDO Read Write

I Address miss (unused tag) Go to invalid

I Address miss (exclusive-unmodified) Go to exclusive-unmodified

I Address miss (exclusive-modified) Go to exclusive-modified

I Address miss (Shared-unmodified) Go to shared-unmodified

I Address hit (unused tag) Go to invalid

I Address hit (exclusive-unmodified) Go to exclusive-unmodified

I Address hit (exclusive~modified) Go to exclusive-modified

I Address hit (shared-unmodified) Go to shared-unmodified

V Diagnostic MTAG read -
I Diagnostic PT AG read -

The inclusion bit is stored in the PTAG to indicate whether the MC88110 has a copy of the
cache line. The soo signal indicates the state of the inclusion bit for a read or the new state
of the inclusion bit for a write. For MTAG writes, soo is driven low. In the diagnostic

6-2 MC88410 USER'S MANUAL MOTOROLA

;1
I"

mode, SD3-SDO only reflect the status of read transactions. For diagnostic MTAG reads,
SD3-SDO reflect the state of the shared, modified, and valid bits of the MT AG entry. For
diagnostic PTAG reads, SDO reflects the state of the inclusion bit in the PTAG.

6.2 MC88410 DIAGNOSTIC MODE
The MC88410 provides the ability for diagnostic access to support read/write testing of
the MTAG, PTAG, and MCM62110 array.

6.2.1 Diagnostic Accesses
The MC88410 supports four types of diagnostic accesses, as shown in Table 6-3.

Table 6-3. Diagnostic Access Types

Diagnostic Access Operation

MTAG read/write This access does a read or write of the MTAG and cache array without allocating
a cache line or otherwise accessing the system interface. The MTAG read
operation compares stored data to expected data for all bits on the selected line.

PTAG read/write This access does a read or write of the PT AG and cache array without allocating
a cache line or otherwise accessing the system interface. The PTAG read
operation compares stored data to expected data for all bits on the selected line.

Bypass This access bypasses the secondary cache and accesses the system bus
without modifying the tags. This allows access to diagnostic instructions,
memory-mapped board control registers, or data tables without affecting the
MC88410.

System invalidate This access is the same as a system invalidate transaction that is initiated under
diagnostic mode in order to drive the contents of the MTAG or PTAG onto the
system address Signals.

6.2.2 Entering Diagnostic Mode
When the DIAG signal is asserted, the MC88410 is placed in diagnostic mode. All
subsequent processor transactions are interpreted as diagnostic accesses. Snooping is
disabled for all system bus addresses. The MC88410 recognizes FO and Fl as inputs while
DIAG is asserted but does not begin flush operation until i5iAG is negated. If a flush or
invalidate is in operation when DIAG is asserted, the operation halts, resuming at the next
set index upon negation of DIAG. The assertion of DIAG also changes the way that
addresses are decoded and compared to the tags. If a transaction with a tag update is in
progress when DIAG is asserted, the update is allowed to complete before tag decode is
changed.

The DIAG signal must be held asserted throughout a diagnostic sequence as it is not
latched by the MC88410. The DIAG signal must not be negated until two clocks after the
MC88410 negates P _TA to ensure that write transactions complete internally.

MOTOROLA MC88410 USER'S MANUAL 6-3

6.2.3 Diagnostic Encodings
The MC88410 qualifies incoming addresses with DIAG. If DIAG is asserted the transaction
is treated as diagnostic. All diagnostic transactions are cache-inhibited since the MC88110
always asserts P _CI for diagnostic accesses. To differentiate between diagnostic
read/write and diagnostic bypass accesses, the P _Tc3-P ~TCO signals are used.

User-mode data accesses are interpreted as diagnostic read/write accesses while other
,accesses (except system invalidate) are treated as diagnostic bypass transactions.
Diagnostic bypass transactions bypass the MC8841,O to access external memory without
affecting the MC88410 cache tags. Diagnostic system invalidate transactions are initiated
with an MC88110 user touch load or allocate load instruction.

Table 6-4 shows the P _Tc3-P _TCO encoding related to diagnostic accesses. Note that the
P __ CI, P _LK, and P _ WT signals do not affect the interpretation of diagnostic accesses. The
P _Tc3-P _TCO signals are interpreted by the MC88410 so that code fetches, table searches,
and all supervisor mode requests are interpreted as diagnostic bypasses.

Table 6-4. Diagnostic Access Encoding

DiAG P_TC3 P_TC2 P_TC1 P_TCO MC88410 Transaction

1 x x x x Normal

0 0 0 0 1 Diagnostic read or write

0 0 0 1 0 Diagnostic system invalidate

0 Anything else Diagnostic bypass read or write

x= Don't care

6.2.4 Effect of Diagnostics on Coherence
Access of data in diagnostic mode affects transactions that normally bypass the cache and
bus snooping. Diagnostic bypass read or write transactions differ from normal cache
inhibited transactions in their effect on the MTAG and PTAG. Diagnostic bypass
transactions neither read nor write to the tags, unlike normal cache-inhibited transactions
which check for cache hits and flush the line when necessary. This allows read and write
testing of status bits without interference from transactions accessing instructions on the
system bus.

Snooping is also affected by the diagnostic mode. Like the processor interface, the system
interface qualifies all incoming addresses with DIAG. System addresses are never snooped
if they coincide with the assertion of DIAG. The memory system must ensure that global
system bus transactions do not occur during diagnostics of an MC88110/MC88410 node
or that the MC88410 is kept in diagnostic mode throughout the entire diagnostic
sequence. Before leaving diagnostic mode, any cache lines that have been made valid by
the diagnostic testing of status bits must be explicitly invalidated with diagnostic writes
to avoid unwanted copyback transactions or cache hits.

6-4 MC88410 USER'S MANUAL MOTOROLA

6.2.5 Addressing the Tags
Diagnostic read and write operations decode the processor address as shown in Figure
6-1. These address fields are used anytime DIAG is asserted, regardless of the
programmed configuration of the MC88410. For each access, address bit 3 indicates
whether the PTAG or MTAG is being accessed. For MTAG accesses, bits 17-5 are used to
select which of the 8K tags are being selected. Bit 4 determines whether the high 8K or
low 8K tags are being selected, providing a total of 16K tags. For PTAG accesses, bits 11-5
determine which set is being accessed and bit 4 determines which cache line is being
accessed.

The configuration programmed into the MC88410 at reset does not affect the diagnostic
mode. Assertion of i5iAG places tag mapping into a specific mode that is independent of
the normal tag mappings. This implies that the MC88410 is able to test tag bits that may
never be used in normal operation. Since all data transfer in diagnostic mode is single
beat, cache line size information is not relevant.

MOTOROLA

31 19 18 5 4 3 2 1 0

I I I I I I

AD :ESSTAG 1
,..." ~ A A A A J

J
TAG INDEX

AG SET OR PT
M TAG BANK

PTA GORMTAG

S HAREOBIT

MO OIFIEO BIT

INC LUOEO BIT
OR VALID BIT

Figure 6·1. Diagnostic Access Address Fields

MC88410 USER'S MANUAL 6-5

•

•

6.2.6 Reading and Writing to the MTAG
Diagnostic read and write operations may be used to perform write, read, and compare
testing of all bits in the MTAG. Using the preceding tag addressing, a diagnostic write
operation writes to the MTAG using bits 31-18 of the address on the processor bus for the
address tag and bits 2-O'for the shared, modified, and valid bits respectively. Note that to
avoid misaligned access exceptions when asserting these low order bits, the MC88110
must have the fault disabled during diagnostics.

A subsequent diagnostic read, using the same 32-bit address as the diagnostic write
operation, accesses the specified set and reads the appropriate address bits and status bits.
The MC88410 compares the data read from the tag to the address of the diagnostic read.
If any of the address or status bits read from the MT A G do not match the appropriate bits
from the read address, the MC88410 signals an error (P_TEA asserted) to terminate the
processor diagnostic read. If the address matches, the MC88410 asserts P _TA to terminate
the processor diagnostic read.

6.2.7 Reading and Writing to the PTAG
Diagnostic read and write operations can be used to perform write, read, and compare
testing of all bits in the PTAG. Using tag addressing, a diagnostic write operation writes
to the PTAG using bits 19-12 of the address on the processor bus for the address tag and
bit 0 for the inclusion bit. Note that to avoid misaligned access exceptions when asserting
the low order bits, the MC88110 must have the exception disabled during diagnostics.

A subsequent diagnostic read, using the same 32-bit address as the diagnostic write,
accesses the tag and reads the address and inclusion bit. The MC88410 compares the data
read from the tag to the appropriate address bits of the diagnostic load. If any of the
address or status bits read from the MT AG do not match the appropriate bits from the
read address, the MC88410 signals an error (p _TEA asserted) to terminate the processor
diagnostic read. If the address matches, the MC88410 asserts P _TA to terminate the
processor diagnostic read.

6.2.8 Reading and Writing to the Secondary Cache
Diagnostic read and write operations provide a convenient way to access the MCM62110
cache array. If data is driven onto the processor or system data bus during the diagnostic
access, it will be written into the secondary cache. Data in the array is accessed using the
address bits for the given cache configuration as described in Section 2 Secondary Cache
Operation (for example, bits 11 to 0 are used to access the data locations in 256-Kbyte
cache). Data may be accessed as byte, half-word, word, or double-word sizes. Write,
read, and compare tests of the MCM62110 array can be done by using MC88410
diagnostic read and write operations to drive data to and read from the array and
MC88110 compare instructions to check the results. Since the MC88410 is in diagnostic
mode, MT AG and PT AG writes and compares occur in parallel with the intended data
transaction. They are transparent to the test of the array unless a failure within the
MC88410 causes a mismatch.

6-6 MC88410 USER'S MANUAL MOTOROLA

)1

For example, asserting mAG to performing a diagnostic write while driving data causes
the address to be decoded as a diagnostic access and the data to be driven to the
MCM62110 array. If the same address is then used to perform a diagnostic read, the data
is driven to the MC88110 and the MC88410 compares the contents of the tag to the
address being driven. If they match, the MC88410 asserts P_TA to terminate the
transaction. If the tag and address do not match, P _TEA is asserted. The MC88410
compare instructions can be used to compare the data.

6.2.9 Bypassing the Secondary Cache
Transactions that result in a diagnostic bypass of the secondary cache (see Table 6-4) do
not affect the diagnostics themselves, even though the instructions or data will be passed
through the secondary cache. This is because the tags are neither read nor modified for
diagnostic accesses and data is always transferred to or from the system interface.

6.2.10 Diagnostic System Invalidate
Diagnostic system invalidate transactions allow the contents of the MT AG and PT AG to
be driven onto the system bus address signals A 31-AO. The diagnostic system invalidate
can be initiated by the processor using a touch-load or load-allocate transaction. In
response to the processor transaction, the MC88410 initiates a system invalidate
transaction, but negates S_GBL instead of asserting it. The negation of S_GBL for a system
invalidate transaction identifies it as a diagnostic system invalidate.

A diagnostic system invalidate uses the tag addressing shown in Figure 6-1. If the access
is for the MTAG, system address bits 31-18 are from the MTAG, bits 17-3 are from the
address of the processor transaction, and bits 2-0 are from the V, M, and S bits of the
MTAG. For PTAG accesses, bits 31-20 are from the processor address, bits 19-12 are from
the PTAG, bits 11-1 from the processor, and bit 0 is from the inclusion bit of the PTAG.

6.3 IEEE 1149.1-1990 TEST ACCESS PORT
The MC88410 includes dedicated user-accessible test logic that is fully compatible with
the IEEE 1149.1-1990 Standard Test Access Port and Boundary-scan Architecture. Problems
associated with testing high density circuit boards have led to development of this
standard under the sponsorship of the Test Technology Technical Committee of the IEEE
Computer Society and the Joint Test Action Group aT AG). The MC88410 implementation
supports circuit board test strategies based on this standard.

MOTOROLA MC88410 USER'S MANUAL 6-7

The test logic implemented on the MC88410 includes a test access port (TAP) consisting of
five dedicated signals, a 16-state controller, and two test data registers. A boundary-scan
register links all device signals into a single shift register. The test logic is implemented
using static logic design and is independent of the system logic of the device. Unlike the
MC88110, which contains only input and bidirectional test cells, the MC88410 also
includes output-only test cells. The MC88410 implementation provides capabilities to do
the following:

• Perform boundary-scan operations to test circuit board electrical continuity.

• Bypass the MC88410 for a given circuit board test by effectively reducing the test data
register to a single cell.

• Sample the MC88410 system signals during operation and transparently shift out the
result in the boundary-scan register.

• Statically control the output state (high, low, or high-impedance) of all signals that
can be outputs. The control state is latched or clamped within the MC88410 device
even though the enabled test data register is the single-bit bypass register.

• Quickly force all bidirectional signals into the high-impedance state while enabling
the single-bit bypass register as the test data register.

• Enable a weak pull-up current device .on all signals controlled by the boundary-scan
register while performing boundary-scan operations to provide for a deterministic
test result in the event of a continuity exception.

NOTE

Certain precautions must be observed to ensure that the IEEE
1149.1-1990 test logic does not interfere with nontest
operation. See 6.3.2.8 Non-IEEE 1149.1-1990 Operation for
details.

6.3.1 JTAG Overview
This document includes those aspects of the IEEE 1149.1-1990 implementation that are
specific to the MC88410 and is intended to be used in conjunction with the supporting
IEEE document. The scope of this description includes those items required by the
standard to be defined and, in certain cases, provides additional information specific to
the MC88410 implementation. For internal details and applications of the standard, refer
to IEEE 1149.1-1990 Standard Test Access Port and Boundary-scan Architecture ..

A block diagram of the MC88410 implementation of IEEE 1149.1-1990 test logic is shown
in Figure 6-2. The MC88410 implementation includes a dedicated TAP consisting of the
signals shown in Table 6-5.

6-8 MC88410 USER'S MANUAL . MOTOROLA

TOI--------tt----1

TMS----I
TCK---I

Signal

TCK

M
U
x

Figure 6·2. IEEE 1149.1 Test Logic Block Diagram

Table 6·5. Test Access Port Signals

Function

A test clock input to synchronize the test logic

TOO

TMS A test mode select input (with an internal pull-up resistor) sampled on the rising edge of
TCK to sequence the test controller's state machine

TOI A test data input (with an internal pull-up resistor) sampled on the rising edge of TCK

TOO A three-statable test data output actively driven in the shift-IR and shift-DR controller
states that changes on the falling edge of TCK

TRST An asynchronous reset with an internal pull-up resistor which provides initialization of
the TAP controller and other logic as required by the standard

NOTE

The pull-up resistor will pull TRST out of test reset.

6.3.2 Three-Bit Instruction Register
The MC88410 IEEE 1149.1-1990 implementation includes the three mandatory public
instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST) and three optional public
instructions (CLAMP, HI-Z, and EXTEST_PULLUP). The EXTEST_PULLUP instruction is
very similar to the EXTEST instruction; however, in the EXTEST_PULLUP instruction, the
DC parametric of each signal controlled by the boundary-scan register is affected by the
addition of a weak pull-up device. The MC88410 includes a 3-bit instruction register
without parity as shown in Figure 6-3. The register consists of an instruction shift register

MOTOROLA MC88410 USER'S MANUAL 6-9

IE

•

and a parallel output register. Data is transferred from the instruction shift register to the
parallel output register during the update-IR controller state. The three bits are used to
decode the six unique instructions as shown in Table 6-6.

UPOATE.IR ---it----tt----tl

TEST RESET -41--+---#--+--11

FROMTOI

CAPTURE.IR ---it-----H'-----tl

o 0

LENGTH = 3 BITS; NO PARITY BIT

PARALLEL
OUTPUT
REGISTER

,SHIFT
REGISTER

TO TOO

Figure 6·3. Instruction Register Implementation

The parallel output of the instruction register is preset to all ones in the test-logie-reset
controller state. Note that this preset state is equivalent to the BYPASS instruction.

Table 6-6. Instruction Register Encodings

Code Instruction

B2 B1 BO
1 1 1 BYPASS

1 1 0 Reserved (BYPASS)

1 0 1 Reserved (BYPASS)

1 0 0 SAMPLE/PRELOAD

0 1 1 CLAMP

0 1 0 EXTEST_PULLUP

0 0 1 HI-Z

0 0 0 EXTEST

During the capture-IR controller state, the parallel inputs to the instruction shift register
are loaded with the 3-bit binary value, 001. The parallel outputs, however, remain
unchanged by this action since an update-IR signal is required to modify them.

6-10 MC88410 USER'S MANUAL MOTOROLA

Note that skipping the shift-IR state allows the 001 value to be updated as the current
instruction, therefore entering the HI-Z instruction. This is useful for the board test
applications that are not using the fully integrated boundary-scan test techniques, but
would still like to use the HI-Z instruction for board test isolation purposes.

6.3.2.1 EXTEST (000)
The external test (EXTEST) instruction selects the boundary-scan register, including cells
for all device, clock, and associated control signals. The EXTEST instruction also asserts
internal reset for the MC88410 system logic in order to force a predictable internal state
while performing external boundary-scan operations.

By using the TAP, the boundary-scan register is capable of scanning user-defined values
into the output buffers, capturing values presented to input signals, and controlling the
direction and value of bidirectional signals.

The boundary-scan register has bit cells associated with 30 pure input signals and 29 pure
output signals. The other 214 cells are associated with 107 bidirectional signals. Each
MC88410 bidirectional signal has both a boundary-scan register bit for signal data and a
boundary-scan register bit for direction control. This allows great flexibility and control of
the direction of every bidirectional signal. Due to the implementation of the individual
direction control cell for each signal, some signals that are otherwise output-only can be
programmed as input and have input data sampled into the boundary-scan register. For
an executable boundary-scan description language (BSDL) listing see 6.3.3 Boundary-scan
Definition List.

The BSDL references the four boundary-scan cell types depicted in Figures 6-4, 6-5, 6-6,
and 6-8. Figure 6-7 shows the bidirectional cell arrangement. The input-only cell
(I.CELL) corresponds to BC_4 in the BSDL. The compound input and output cell
(IO.CELL) corresponds to BC_6 in the BSDL. The bidirectional control cell (IO.CTL1)
corresponds to BC_2. The output-only cell (O.LATCH) corresponds to BC_I. Note that
when sampling the bidirectional data cells (IO.CELL), the cell data can be interpreted only
after examining the IO.CTL1 cell to determine signal directionality.

MOTOROLA MC88410 USER'S MANUAL 6-11

•

•

TO SYSTEM LOGIC

1-EXTEST/CLAMPIHI-Z
O-OTHERWISE

TO NEXT CELL
(TOO)

CLOCK FROM LAST SHIFT
DR CELL DR

(TDI)

Figure 6·4. Input Pin Cell (I. Pin)

1-EXTEST/CLAMPIHI-Z
O-OTHERWISE

(TOO)
TO NEXT CELL

OUTPUT CONTROL
FROM SYSTEM
LOGIC

I-t....----------i-----..... TOOUTPUT

6-12

SHIFT FROM LAST
DR CELL

(TOI)

CLOCK
DR

1----i.------4 10

...-----t>C1

R

UPDATE TEST
DR RESET

Figure 6·5. Active High Output Control Cell (IO.CTl1)

MC88410 USER'S MANUAL

ENABLE (1 = DRIVE)

MOTOROLA

1-EXTEST/CLAMP/HI-Z
O-OTHERWISE

SHIFT
DR

(TOO)
TO NEXT CELL

OUTPUT CONTROL
FROM SYSTEM LOGIC

l--t~----+---------+---~ TO OUTPUT

OUTPUT CONTROL
FROM SYSTEM LOGIC

MOTOROLA

FROM
OUTPUT
ENABLE

1-EXTEST/CLAMP/HI·Z (TOI)
O-OTHERWISE FROM LAST

FROM
PIN

CELL

CLOCK
DR

UPDATE
DR

Figure 6·6. Bidirectional Data Cell (IO.Cell)

(T01) FROM LAST CELL

EN

TO NEXT CELL (TOO)

Figure 6·7. Bidirectional Cell Arrangement

MC88410 USER'S MANUAL

DRIVER

6·13

•

•

1-EXTEST/CLAMP/HI-Z SHIFT (TOO)
~THERWISE DR TO NEXT CELL

OUTPUT DATA FROM
SYSTEM LOGIC

............,r--""1'------------t----... TO OUTPUT
DRIVER

(TOI)
FROM LAST

CELL

CLOCK
DR

UPDATE
DR

Figure 6-8. Output Latch Cell (O.Latch)

6.3.2.2 BYPASS (111)
The BYPASS instruction selects the single-bit bypass register as shown in Figure 6-9. This
creates a shift-register path from the TD! signal to the bypass register and finally to the
TDO signal, circumventing the boundary-scan register. This instruction improves test
efficiency when a component other than the MC88410 is tested. In this instruction, the
MC88410 system logic is independent of the test access port.

TO TOO

CLOCK DR CLOCK DR

Figure 6-9. Bypass Register

6-14 MC88410 USER'S MANUAL MOTOROLA

When the bypass register is selected by the current instruction, the shift-register stage is
set to a logic 0 on the rising edge of TCK following entry into the capture-DR controller
state. Therefore, the first bit to be shifted out after selecting the bypass register is always a
logic o.
6.3.2.3 SAMPLE/PRELOAD (100)
The SAMPLE/PRELOAD instruction provides two separate functions. It provides a
snapshot of system data and control signals. The snapshot occurs on the rising edge of
TCK in the capture-DR controller state. The data can be observed by shifting it
transparently through the boundary-scan register. In" a normal system configuration
many signals require external pull-ups to ensure proper system operation. Consequently,
the same is true for the SAMPLE/PRELOAD functionality. The data latched into the
boundary-scan register during capture-DR may not match the drive state of the package
signal if the system-required pull-ups are not present within the test environment.

NOTE

Since there is no internal synchronization between the IEEE
1149.1-1990 clock (TCK) and the system clock (CLK), the user
must provide some form of external synchronization to
achieve meaningful results.

The SAMPLE/PRELOAD instruction also initializes the boundary-scan register output
cells prior to selection of the EXTEST instruction. This ensures that known data appears
on the outputs when entering the EXTEST instruction. During TAP reset, bidirectional
signals preload the output control cell with output disable. In the SAMPLE/PRELOAD
instruction, system logic is independent of the TAP.

6.3.2.4 CLAMP (011)
The CLAMP instruction is not included in the IEEE 1149.1-1990 standard, but it is
provided as an optional public instruction to prevent having to backdrive the output
signals during some methods of circuit board testing. When the CLAMP instruction is
invoked, the package signals respond to the preconditioned values within the update
latches of the boundary-scan register, even though the bypass register is enabled as the
test data register.

In-circuit testing can be made easier by setting up the guarding signal conditions with use
of the SAMPLE/PRELOAD or EXTEST instructions, and then as the MC88110 enters into
the CLAMP instruction, the state and drive of all signals remain static until the instruction ~
is disabled. While the signals continue to supply the guarding inputs to the in-circuit test _
location, the bypass register is enabled and thus should reduce overall test time.

6.3.2.5 HI-Z (001)
The HI-Z instruction is not included in the IEEE 1149.1-1990 standard. It is provided as
an optional public instruction in order to prevent having to backdrive the output signals
during circuit board testing. When the HI-Z instruction is invoked, all bidirectional
drivers are turned off (Le., three-state). However, R_A16-R_AO, RWE7-RWEO, PIE, SIE, and

MOTOROLA MC88410 USER'S MANUAL 6-15

•

SOE are pure output signals and are not three-stated by the HI-Z instruction. The
instruction selects the bypass register.

6.3.2.6 EXTEST _PULLUP (010)
The EXTEST_PULLUP instruction is not included in the IEEE 1149.1-1990 standard, but is
provided as an optional public instruction to aid in exception diagnoses during
boundary-scan testing of a circuit board. This instruction is like EXTEST, except for a
weak pull-up device on all signals. The MC88410 is a CMOS design and therefore could
suffer from a logically indeterminate input value if an input or bidirectional signal
programmed as an input were inadvertently unconnected. The pull-up current will,
given an appropriate charging delay, supply a deterministic logic 1 result on an open
input. Note that heavily loaded nodes may require a charging delay greater than the two
TCK periods needed to transition from the update-DR state to the capture-DR state. Two
solutions are available: transfer into the run-test/ idle state for extra TCK periods of
charging delay or simply change the period of TCK leading up to the capture edge of the
capture-DR state.

6.3.2.7 MC8841 0 Restrictio~s

The control provided by the output enable signals using the boundary-scan register and
the EXTEST or CLAMP instructions requires a compatible circuit board test environment
to avoid configurations that can damage devices. The user must avoid enabling the
MC88410 output drivers into actively driven networks.

The MC88410 includes on-chip circuitry to detect the initial application of power to the
device. The power-on reset (POR) signal is the output of this circuitry and is used to reset
both the system and IEEE 1149.1-1990 logic. POR is applied to the IEEE 1149.1-1990
circuitry to avoid the possibility of bus contention during power-on. The time to
complete the device power-on process depends on the power supply. The IEEE 1149.1-
1990 TAP controller, however, remains in the test-logic-reset state while POR is asserted.
The TAP controller does not respond to user commands until POR is negated ..

6.3.2.8 Non-IEEE 1149.1-1990 Operation

In non-IEEE 1149.1-1990 operation, two constraints must be met. The test clock input
does not include an internal pull-up resistor; therefore, it should not be left unconnected
(this is in order to prevent mid-level inputs). Also, the IEEE 1149.1-1990 test logic must
be kept transparent to the system logic by forcing the TAP controller into the test-Iogic
reset controller state. During power-on,the POR signal forces the TAP controller into this
state. However, to ensure that the controller remains in the test-logic-reset state, several
options are described below.

• If TMS either remains unconnected or is connected to V cc, the TAP controller cannot
leave the test-logic-reset state regardless of the state of the TCK pin.

• TRST can be asserted either by connecting it to ground or by means of a logic network.

6-16

Connecting TRST to the functional reset RST signal and tying TCK either high or low
also meets this requirement.

MC88410 USER'S MANUAL MOTOROLA

• If TRST is asserted by a pulse signal, the controller remains in the test-logic-reset state
in the absence of a rising edge on the TCK pin when TMS is low.

6.3.3 Boundary-Scan Definition List
The Boundary-Scan Description Language (BSDL) is a subset of the VHSIC Hardware
Description Language (IEEE 1076-1987VHDL) and is a description of the testability
features in IEEE 1149.1-1990. This language can be used by test equipment to provide
testability analysis, test generation, and failure diagnosis. Design elements which are
mandated by IEEE 1149.1-1990 are not included in the BSDL because they are described
by the standard.

-- Motorola 88410 BSOl description

entity MC8841 0 is

generic(PHYSICAl_PIN_MAP:string := "PGA_19x19");

port(TRST _B: in bit;
TMS: in bit;
TCK: in bit;
TOI: in bit;
TOO: out bit;

T10UT: out bit;
RESET_B: in bit;
SO: inout biCvector(O to 3);
P _ Cl: in bit;
P _TC: in bicvector(O to 3);
P _WT_B: in bit;
P _CLB: in bit;
P _UPA_B: in bitvector(O to 1);

P _lK_B: in bit;
P_TSIZ: in biCvector(Ot01);
P _TBST_B: inout bit;
P _RW_B: inout bit;
P _A: inout biCvector(O to 31);
P _ABB_B: inout bit;
P _ARTRY _B: in bit;
P JNV_B: inout bit;
P _GBl_B: inout bit;
P _TS_B: inout bit;
CS: in bit;
P _PTA_B: out bit;
P _BG_B: inout bit;
P _BR_B: out bit;

MOTOROLA MC88410 USER'S MANUAL 6-17

•
6-18

POE_B: out bit;
R_A: out bit_vector(O to 16);
PIE_B: out bit;
RWE_B: out biCvector(O to 7);
SIE_B: out bit;
SOE_B: out bit;
P _ TEA_B: out bit;
P _ TRTRY _B: out bit;
P _ TA_B: out bit;
S_ TA_B: in bit;
S_ TRTRY _B: in bit;
S_ TEA_B: in bit;
S_ TS_B: out bit;
S_ARTRY _B: in bit;
HCLK: in bit;
S_A: inout biCvector(O to 31);

TSHD _B: in bit;
SHD_B: in bit;
S_DBB_B: inout bit;
S_BR_B: out bit;
S_BG_B: in bit;

S_DBG_B: in bit;
S_MC_B: out bit;
S-'NV _B: inout bit;
S_ABB_B: inout bit;
S_RW_B: inout bit;
S_ TBST _B: inout bit;
S_LK_B: out bit;
F: in biCvector(O to 1);
FBSY _B: out bit;
S_SSTAT_B: out biCvector(O to 2);
S_AACK_B: in bit;
DIAG_B: in bit;
S_SR_B: in bit;
S_GBL_B: inout bit;

S_TSIZ: out biCvector(O to 1);
S_UPA_B: out biCvector(O to 1);
S_C'-B: out bit;
S_TC: out biCvector(O to 3);
FD: inout biCvector(O to 2);
elk: in bit;

GND_E: linkage bit_vector(1 to 32);
VDD_E: linkage biCvector(1 to 33);

MC88410 USER'S MANUAL MOTOROLA

GNDJ: linkage biCvector(1 to 17);
VDDJ: linkage bit_vector(1 to 19);
GND_C: linkage bit;
VDD_C: linkage bit;

N_C: linkage biCvector(1 to 3);
PLL_DIS: linkage bit;
FL_ TEST: linkage bit);

use STD_1149_1_1990.all;

attribute PIN_MAP of MCSS410 : entity is PHYSICAL_PIN_MAP;

•• 19x19 PGA Pin Map

constant PGA_19x19 : PIN_MAP _STRING :=

TRST _B: L2, II &
TMS: L3, II &
TCK: K1, II &
TDI: K2, II &
TDO: K3, II &
CKMON: J2, II &
RESET _B: J3, II &

II SD: (G1, H3, H2, H1), 11&
II P_CL: G2, II &
II P _TC: (F3, F2, F1, G3), 11&
II P _WT_B: E1, II &
II P _CLB: E2, II &
II P _UPA_B: (E3, D1), II &
II P _LK_B: E4, II &
II P _ TSIZ: (C2, D3), II &
II P _ TBST _B: B 1, II &
II P _RW_B: B2, II &

II P _A: (B15, A15, B14, A14, B13, A13, B12, A12, 11&
II B11, A11, A10, B10, A9, B9, AS, BS, II &

A7, B7, A6, B6, A5, B5, A4, B4, II &
C5, A3, C4, D5, B3, A2, D4, C3), II &
P _ABB_B: C14, II &
P_ARTRY_B: A16, 11&
P JNV_B: B16, II &
P _GBL_B: C15, 11&
P_TS_B:A17,1I&
CS: C16, 11&
P_PTA..;,B:B17,1I&
P _BG_B: A1S, 11&
P_BR_B:B1S,II&

MOTOROLA MC88410 USER'S MANUAL

•
6·19

•
6-20

II POE_B: B19, 11&

"R_A: (H19, H1S, G19, G1S, F19, F1S, E19, E1S, II &
" F1~D1~D1aE1~C19,D1~C1aD1~1I&

C17), H &
PIE_B: J1S, II &
RWE_B: (N19, M1S, M19, L1S, L19, K1S, K19, J19), II &
SIE_B: N1S, " &
SOE_B: P17, II &
P _ TEA_B: P19, II &
P _TRTRY_B: P1S, 11&
P_TA_B:R19,1I&
S_TA_B:R1S,11&
S_ TRTRY _B: S19, II &
S_TEA_B:R17,"&
S_TS_B:S1S,II&
S_ARTRY _B: T19, II &
HCLK: T1S, II &
S_A: (U19, S17, T17, S16, U1S, V19, II &

VS,US,V7,U7,V6,U6,V5,U5,"&
V4, U4, T5, V3, U3, T4,V2, S5, 11&
T3, U2, S4, V1, T2, S3, U1, T1, 11&
S2, S1), "&
TSHD_B: V1S, II &
SHD_B: U17, 11&
S_DBB_B: T16, " &
S_BR_B: V17, II &
S_BG_B: U16, II &
S_DBG_B: T15, II &
S_MC_B: V16, " &
SJNV_B: U15, II &
S_ABB_B: T14, II &
S_RW_B: V15, 11&

"S_TBST_B: U14," &
" S_LK_B: V14, " &
" F: (U13, V13), " &
H FBSY_B: U12, "&
H S_SSTAT_B: (V12, V11, U11), II &
H S_AACK_B: V10, II &
n DIAG_B: U10, II &
n S_SR_B: V9, II &
n S_GBL_B: U9, " &
H S_TSIZ: (R2, R1), " &
n S_UPA_B: (P3, P2), "&
• S_CLB: P1, " &
" S_JC: (N3, N2, N1, M3), " &
"FD: (L1, M1, M2), "&

MC88410 USER'S MANUAL MOTOROLA

CLK: L5, II &
GND_E: (K4, F5, G5, N5, P5, E6, R6, II &

C7, E7, R7, T7, E9, R9, C10, "&
T1~E11,R11,C12,E1~R1~T12,"&
D14,S14,F15,H15,J15,L15,M15,"&
P15, J16, H17, M17), II &

VDD_E: (G4, L4, E5, R5, D7, S7, C8, II &
T8, C9, D9, S9, T9, E10, R10, II &
C11,T11,D12,S1~C1aE1~R1~"&
D1~K1~S1~F1~H1~L1~M1~"&
P16, G17, J17, L17, N17), II &

GNDJ: (F4, H4, M4, P4, D6, S6, D8, II &
S8, D11, S11, D13, S13, E16, G16, II &
K16, N16, R16), II &

VDDJ: (J1, J4, N4, H5, M5, C6, T6, II &
E8, R8, D10, S10, E13, R13, T13, "&
E15, G15, N15, R15, K17), II &

GND_C: J5, II &
VDD_C: K5, II &
N_C: (C1, D2, A19), " &
PLL_DIS: R4, II &

" FL_ TEST: R3 II ;

-- Other Pin Maps here when documented

attribute TAP _SCANJN of TDI:signal is true;
attribute TAP _SCAN_OUT of TDO:signal is true;
attribute TAP _SCAN_MODE of TMS:signal is true;
attribute TAP _SCAN_CLOCK of TCK:signal is (10.0e6, BOTH);
attribute TAP _SCAN_RESET of TRST_B:signal is true;

attribute INSTRUCTION_LENGTH of MC88410:entity is 3;

attribute INSTRUCTION_OPCODE of MC8841 0: entity is

"EXTEST
NHIZ
npULLUP
"CLAMP
"SAMPLE
-BYPASS

(000)," &
(001)," &
(010)," &
(011)," &
(100)," &
(101,111,110)";

attribute INSTRUCTION_CAPTURE of MC8841 O:entity is "001";
attribute INSTRUCTION~DISABLE of MC88410:entity is "HIZ";

MOTOROLA MC88410 USER'S MANUAL 6-21

•

attribute REGISTER_ACCESS of MC88410:entity is
"BOUNDARY (PUllUP)," &
"BYPASS (HIZ, CLAMP) ";

attribute BOUNDARY_CEllS of MC88410:entity is
"BC_1, BC_2, BC_ 4, BC_6";

attribute BOUNDARY_lENGTH of MC88410:entity is 273;

attribute BOUNDARY_REGISTER of MC88410:entity is
--nurn cell port function safe ccell dsval rslt

"0 (BC_1, T10UT, output2, X), " &
"1 (BC_ 4, RESET _B, input, X), " &
"2 (BC_6, SD(3), bidir, X, 3, 0, Z), " &
"3 (BC_2, *, controlr, 0), II &
"4 (BC_6, SD(2), bidir, X, 5,0, Z), "&
"5 (BC_2, *, controlr, 0), " &
116 (BC_6, SD(1), bidir, X, 7, 0, Z), II &
117 (BC_2, *, controlr, 9); " &
"8 (BC_6, SD(O), bidir, X, 9, 0, Z), " &
"9 (BC_2, *, controlr, 0), " &
1110 (BC_ 4, P _Cl, input, X), "&
1111 (BC_ 4, P _ TC(3), input, X), " &
1112 (BC_ 4, P _TC(2) , input, X), II &
1113 (BC_ 4, P _ TC(1), input, X), " &
1114 (BC_ 4, P _TC(O) , input, X), "&
1115 (BC_ 4, P _WT _B, input, X)," &
"16 (BC_ 4, P _CLB, input, X), "&
1117 (BC_4, P _UPA_B(1), input, X)," &
"18 (BC_ 4, P _UPA_B(O), input, X), II &
"19 (BC_ 4, P _lK_B, input, X)," &
1120 (BC_ 4, P _ TSIZ(1), input, X), " &
1121 (BC_ 4, P _ TSIZ(O), input, X), " &
1122 (BC_6, P _TBST_B, bidir,· X, 23,0, Z), "&
1123 (BC_2, *, controlr, 0), " &
1124 (BC_6, P _RW_B, bidir, X, 25, 0, Z), " &
1125 (BC_2, *, controlr, 0), " &
"26 (BC_6, P _A(31), bidir, X, 27, 0, Z), II &
1127 (BC_2, *, controlr, 0), " &
1128 (BC_6, P _A(30), bidir, X, 29, 0, Z), " &
"29 (BC_2, *, controlr, 0), " &
"30 (BC_6, P _A(29),bidir, X, 31,0, Z), II &
"31 (BC_2, *, controlr, 0), " &
"32 (BC_6, P _A(28), bidir, X, 33, 0, Z), " &
"33 (BC_2, *, controlr, 0), " &
1134 (BC_6, P _A(27), bidir, X, 35, 0, Z); " &
1135 (BC_2, *, controlr, 0), " &

6-22 MC88410 USER'S MANUAL MOTOROLA

"3S (BC_S, P _A(2S), bidir, X, 37,0, Z), "&
"37 (BC_2, *, controlr, 0), " &
"38 (BC_S, P _A(25), bidir, X, 39,0, Z), "&
"39 (BC_2, *, controlr, 0), " &
"40 (BC_S, P _A(24), bidir, X, 41,0, Z), "&
"41 (BC_2, *, controlr, 0), " &
"42 (BC_S, P _A(23), bidir, X, 43,0, Z), "&
"43 (BC_2, *, controlr, 0), " &
"44 (BC_S, P _A(22), bidir, X, 45,0, Z)," &
"45 (BC_2, *, controlr, 0), " &
"4S (BC_S, P _A(21), bidir, X, 47,0, Z)," &
"47 (BC_2, *, controlr, 0), " &
"48 (BC_S, P _A(20), bidir, X, 49,0, Z)," &
"49 (BC_2, *, controlr, 0), " &
"50 (BC_S, P _A(19), bidir, X, 51,0, Z)," &
"51 (BC_2, *, controlr, 0), " &
"52 . (BC_S, P _A(18), bidir, X, 53,0, Z), "&
"53 (BC_2, *, controlr, 0), " &
"54 (BC_S, P _A(17), bidir, X, 55,0, Z), "&
"55 (BC_2, *, controlr, 0), " &
"5S (BC_S, P _A(1S), bidir, X, 57,0, Z)," &
"57 (BC_2, *, controlr, 0), " .&
"58 (BC_S, P _A(15), bidir, X, 59,0, Z)," &
"59 (BC_2, *, controlr, 0), " &
"SO (BC_S, P _A(14), bidir, X, S1, 0, Z), "&
"S1 (BC_2, *, controlr, 0), " &
"S2 (BC_S, P _A(13), bidir, X, S3, 0, Z), "&
"S3 (BC_2, *,' controlr, 0), " &
"S4 (BC_S, P _A(12), bidir, X, S5, 0, Z), "&
"S5 (BC_2, *, controlr, 0), " &
"SS (BC_S, P _A(11), bidir, X, S7, 0, Z)," &
"S7 (BC_2, *, controlr, 0), " &
"S8 (BC_S, P _A(10), bidir, X, S9, 0, Z), ". &
"S9 (BC_2, *, controlr, 0), " &
"70 (BC_S, P _A(9) , bidir, X, 71,0, Z), "&
"71 (BC_2, *, controlr, 0), " &
"72 (BC_S, P _A(8) , bidir, X, 73, 0, Z), II &
"73 (BC_2, *, controlr, 0), " &
''74 (BC..;.S, P _A(7) , bidir, X, 75,0, Z), ., & • "75 (BC_2, *, controlr, 0), ., &
"7S (BC_S, P _A(S) , bidir, X, 77,0, Z)," &
"77 (BC_2, *, controlr, 0), ., &
"78 (BC_S, P _A(5) , bidir, X, 79,0, Z), ., &
"79 (BC_2, *, controlr, 0), " &
"80 (BC_S, P _A(4) , bidir, X, 81,0, Z)," &
"81 (BC_2, *, controlr, 0), " &
"82 (BC_S, P _A(3) , bidir, X, 83,0, Z)," &

MOTOROLA MC88410 USER'S MANUAL 6-23

"83 (BC_2, *, controlr, 0), " &
"84 (BC_6, P ~(2), bidir, X, 85,0, Z)," &
"85 (BC_2, *, controlr, 0), " &
"86 (BC_6, P _A(1), bidir, X, 87,0, Z)," &
"87 (BC_2, *, controlr, 0), " &
"88 (BC_6, P _A(O), bidir, X, 89,0, Z), "&
"89 (BC_2, *, controlr, 0), " &
"90 (BC_6, P _ABB_B, bidir, X, 91,0, Z), "&
"91 (BC_2, *, controlr, 0), " &
"92 (BC_ 4, P _ARTRY _B, input, X)," &
"93 (BC_6, P -'NV_B, bidir, X, 94,0,Z),"&
"94 (BC_2, *, controlr, 0), " &
"95 (BC_6, P _GBl_B, bidir, X, 96,0, Z), "&
"96 (BC_2, *, controlr, 0), " &
"97 (BC_6, P _TS_B, bidir, X, 98,0, Z), "&
"98 (BC_2, *, controlr, 0), " &
"99 (BC_4, CS, input, X),"&
"100 (BC_6, P _PTA_B, bidir, X, 101,0, Z)," &
"101 (BC_2, *, controlr, 0), " &
"102 (BC_6, P _BG_B, bidir, X, 103,0, Z), " &
"103 (BC_2, *, controlr, 0), " &
"104 (BC_6, P _B R_B , bidir, X, 105,0, Z), "&
"105 (BC_2, *, controlr, 0), " &
"106 (BC_6, POE_B, bidir, X, 107,0, Z), "&
"107 (BC_2, *, controlr, 0), " &
"108 (BC_1, R~(16), output2, X), "&
"109 (BC_1, R_A(15),output2, X)," &
"110 (BC_1, R~(14), output2, X)," &
"111 (BC_1, R_A(13),output2, X)," &
"112 (BC_1, R_A(12),output2, X), "&
"113 (BC_1, R~(11),output2, X), "&
"114 (BC_1, R_A(1 0), output2, X)," &
"115 (BC_1, R_A(9), output2, X)," &
"116 (BC_1, R_A(8), output2, X)," &
"117 (BC_1, R_A(7), output2, X)," &
"118 (BC_1, R_A(6), output2, X), &
"119 (BC_1, R_A(5), output2, X), &
"120 (BC_1, R_A(4), output2, X), & • "121 (BC_1, R~(3), output2, X), &
"122 (BC_1, R_A(2), output2, X), &
"123 (BC_1, R_A(1), output2, X), &
"124 (BC_1, R_A(O), output2, X), &
"125 (BC_1, PIE_B, output2, X), &
"126 (BC_1, RWE_B(7),output2, X)," &
"127 (BC_1, RWE_B(6), output2, X)," &
"128 (BC_1, RWE_B(5),output2, X)," &
"129 (BC_1, RWE_B(4),output2, X), "&

6-24 MC88410 USER'S MANUAL MOTOROLA

"130 (BC_1, RWE_B(3), output2, X), II &
"131 (BC_1, RWE_B(2), output2, X), II &
"132 (BC_1, RWE_B(1),output2, X), II &
"133 (BC_1, RWE_B(O), output2, X), II &
"134 (BC_1, SIE_B, output2, X), II &
"135 (BC_1, SOE_B, output2, X), II &
"136 (BC_6, P _TEA_B, bidir, X, 137,0, Z), II &
"137 (BC_2, *, controlr, 0), II &
"138 (BC_6, P _ TRTRY _B, bidir, X, 139, 0, Z), II &
"139 (BC_2, *, controlr, 0), II &
"140 (BC_6, P _ TA_B, bidir, X, 141,0, Z), II &
"141 (BC_2, *, controlr, 0), II &
"142 (BC_ 4, S_ TA_B, input, X), II &
"143 (BC_ 4, S_ TRTRY _B, input, X), II &
"144 (BC_ 4, S_ TEA_B, input, X), II &
"145 (BC~6, S_TS_B, bidir, X, 146,0, Z), II &
"146 (BC_2, *, controlr, 0), II &
"147 (BC_ 4, S_ARTRY _B, input, X), II &
"148 (BC_ 4, HCLK, input, X), II &
"149 (BC_6, S_A(O), bidir, X, 150, 0, Z), II &
"150 (BC_2, *, controlr, 0), II &
"151 (BC_6, S_A(1), bidir, X, 152,0, Z), II &
"152 (BC_2, *, controlr, 0), II &
11153 (BC_6, S_A(2), bidir, X, 154,0, Z), " &
"154 (BC_2, *, controlr, 0), II &
"155 (BC_6, S_A(3), bidir, X, 156,0, Z), II &
"156 (BC_2, *, controlr, 0), II &
"157 (BC_6, S_A(4), bidir, X, '158,0, Z), II &
"158 (BC_2, *, controlr, 0), II &
"159 (BC_6, S_A(5), bidir, X, 160, 0, Z), II &
"160 (BC_2, *, controlr, 0), II &
"161 (BC_ 4, TSHD_B, input, X), II &
11162 (BC_ 4, S_SHD_B, input, X), " &
"163 (BC_6, S_DBB_B, bidir, X, 164,0, Z), II &
"164 (BC_2, *, controlr, 0), " &
"165 (BC_6, S_BR_B, bidir, X, 166, 0, Z), II &
"166 (BC_2, *, controlr, 0), II &
"167 (BC_ 4, S_BG_B, input, X), II &
"168 (BC_ 4, S_DBG_B, input, X), II &
11169 (BC_6, S_MC_B, bidir, X, 170,0, Z), "& • "170 (BC_2, *, controlr, 0), II &
11171 (BC_6, S-'NV_B, bidir, X, 172,0, Z), II &
"172 (BC_2, *, controlr, 0), II &
11173 (BC_6, S_ABB_B, bidir, X, 174,0, Z), II &
11174 (BC_2, *, controlr, 0), II &
"175 (BC_6, S_RW_B, bidir, X, 176,0, Z), II &
"176 (BC_2, *, controlr, 0), II &

MOTOROLA MC88410 USER'S MANUAL 6-25

"177 (BC_6, S_TBST_B, bidir, X, 178,0, Z), "&
"178 (BC_2, *, controlr, 0), " &
"179 (BC_6, S_LK_B, bidir, X, 180,0, Z), "&
"180 (BC_2, *, controlr, 0), " &
"181 (BC_ 4, F(O), input, X), "&
"182 (BC_4, F(1), input, X), "~
"183 (BC_6, FBSY_B, bidir, X, 184,0, Z), "&
"184 (BC_2, *, controlr, 0), " &
"185 (BC_6, S_SSTAT_B(O), bidir, X, 186,0, Z), "&
"186 (BC_2, *, controlr, 0), " &
"187 (BC_6, S_SSTAT_B(1), bidir, X, 188,0, Z), "&
"188 (BC_2, *, controlr, 0), " &
"189 (BC_6, S_SSTAT_B(2) , bidir, X, 190,0, Z), "&
"190 (BC~, *, controlr, 0), " &
"191 (BC_ 4, S_AACK_B, input, X)," &
"192 (BC_ 4, DlAG_B, input, X), "&
"193 (BC_ 4, S_SR_B, input, X)," &
"194 (BC_6, S_GBL_B, bidir, X, 195,0, Z), "&
"195 (BC_2, *, controlr, 0), " &
"196 (BC_6, S_A(6), bidir, X, 197,0, Z), "&
"197 (BC_2, *, controlr, 0), " &
"198 (BC_6, S_A(7), bidir, X, 199,0, Z)," &
"199 (BC_2, *, controlr, 0), " &
"200 (BC_6, S_A(8), bidir, X, 201,0, Z), "&
"201 (BC_2, *, controlr, 0), " &
"202 (BC_6, S_A(9), bidir, X, 203, 0, Z), " &
"203 (BC_2, *, controlr, 0), " &
"204 (BC_6, S_A(1 0), bidir, X, 205, 0, Z), " &
"205 (BC_2, *, controlr, 0), " &
"206 (BC_6, S~(11), bidir, X, . 207, 0, Z), " &
"207 (BC_2, *, controlr, 0), " &
"208 (BC_6, S_A(12), bidir, X, 209, 0, Z), " &
"209 (BC_2, *, controlr, 0), " &
"210 (BC_6, S~(13), bidir, X, 211, 0, Z), " &
"211 (8C_2, *, controlr, 0), " &
"212 (BC_6, S_A(14), bidir, X, 213,0, Z)," &
"213 (BC_2, *, controlr, 0), " &

• "214 (BC_6, S_A(15), bidir, X, 215,0, Z), "&
"215 (BC_2, *, controlr, 0), " &
"216 (BC_6, S_A(16), bidir, X, 217,0, Z)," &
"217 (BC_2, *, controlr, 0), " &
"218 (BC_6, S~(17), bidir, X, 219,0, Z), "&
"219 (BC_2, *, controlr, 0), " &
"220 (BC_6, S_A(18), bidir, X, 221, 0, Z), " &
"221 (BC_2, *, controlr, 0), " &
"222 (BC_6, S_A(19), bidir, X, 223, 0, Z), " &
"223 (BC_2, *, controlr, 0), " &

6-26 MC88410 USER'S MANUAL MOTOROLA

"224 (BC_6, S_A(20), bidir, X, 225, 0, Z), " &
"225 (BC_2, *, controlr, 0), " &
"226 (BC_6, S_A(21), bidir, X, 227,0, Z), "&
"227 (BC_2, *, controlr, 0), " &
"228 (BC_6, S_A(22), bidir, X, 229, 0, Z), " &
"229 (BC_2, *, controlr, 0), " &
"230 (BC_6, S-A(23), bidir, X, 231, 0, Z), " &
"231 (BC_2, *, controlr, 0), " &
"232 (BC_6, S_A(24), bidir, X, 233, 0, Z), " &
"233 (BC_2, *, controlr, 0), " &
"234 (BC_6, S_A(25), bidir, X, 235, 0, Z), " &
"235 (BC_2, *, controlr, 0), " &
"236 (BC_6, S_A(26), bidir, X, 237, 0, Z), " &
"237 (BC_2, *, controlr, 0), " &
"238 (BC_6, S_A(27), bidir, X, 239, 0, Z), " &
"239 (BC_2, *, controlr, 0), " &
"240 (BC_6, S_A(28), bidir, X, 241,0, Z), "&
"241 (BC_2, *, controlr, 0), II &
"242· (BC_6, S_A(29), bidir, X, 243, 0, Z), " &
"243 (BC_2, *, controlr, 0), " &
"244 (BC_6, S_A(30), bidir, X, 245, 0, Z), " &
"245 (BC_2, *, controlr, 0), " &
"246 (BC_6, S_A(31), bidir, . X, 247, 0, Z), II &
11247 (BC_2, *, controlr, 0), " &
"248 (BC_6, S_TSIZ(O), bidir, X, 249, 0, Z), II &
"249 (BC_2, *, controlr, 0), " &
"250 (BC_6, S_ TSIZ(1), bidir, X, 251,0, Z), "&
"251 (BC_2, *, controlr, 0), " &
"252 (BC_6, S_UPA_B(O), bidir, X, 253, 0, Z), " &
"253 (BC_2; *, controlr, 0), " &
"254 (BC_6, S_UPA_B(1), bidir, X, 255, 0, Z), " &
"255 (BC_2, *, controlr, 0), " &
"256 (BC_6, S_CLB, bidir, X, 257, 0, Z), " &
"257 (BC_2, *, controlr, 0), " &
"258 (BC_6, S_ TC(O), bidir, X, 259, 0, Z), II &
"259 (BC_2, *, controlr, 0), II &
"260 (BC_6, S_ TC(1), bidir, X, 261,0, Z), II &
"261 (BC_2, *, controlr, 0), " & • 11262 (BC_6, S_ TC(2), bidir, X, 263, 0, Z), II &
"263 (BC_2, *, controlr, 0), " &
"264 (BC_6, S_ TC(3), bidir, X, 265, 0, Z), " &
"265 (BC_2, *, controlr, 0), " &
"266 (BC_6, FD(2), bidir, X, 267, 0, Z), " &
"267 (BC_2, *, controlr, 0), " &
"268 (BC_6, FD(1), bidir, X, 269, 0, Z), " &
"269 (BC_2, *, controlr, 0), " &
"270 (BC_6, FD(O), bidir, X, 271,0, Z), "&

MOTOROLA MC88410 USER'S MANUAL 6-27

•

"271
"272

end MC88410;

6-28

(BC_2, *,
(BC_4, ClK,

controlr,
input,

0), II

X)" ;
&

MC88410 USER'S MANUAL MOTOROLA

-A-
AACK 4-7
Address bus arbitration 5-p
Address bus signals 3-5, 3-10
Address decoding

1-Mbyte cache 2-6
1/4-Mbyte cache 2-2
overview 1-12

Address tag 2-2
Allocate load 2-16
Arbitration

processor interface
arbitration signals 3-9, 4-9
bus parking 4-1 0
external arbitration 4-8, 4-13, 4-15
on-chip arbitration 4-8, 4-11

system interface
address bus 5-6
arbitration signals 3-15, 5-5
bus master 5-2
bus parking 5-11
data bus 5-7
external arbiter 5-6, 5-12, 5-19
full-speed arbitration timing 5~ 7
half-speed arbitration timing 5-9
timing example 5-9, 5-10; 5-13

ARTRY 4-7

-8-
Back-to-back transaction timing 5-9, 5-35
Benefits of MC8841 0

in multiprocessor systems 1-4
in uniprocessor systems 1-2

BIU 1-8
Blocking a bus request 5-61
BR 4-11
Burst transactions

processor interface
burst read 2-28, 4-26
burst read hit 4-28
burst write 2-32, 4-29
burst write hit 4-31
timing diagram 4-26
transaction types 2-17

system interface
burst read 2-28, 5-33
burst write 2-32, 5-38, 5-42
timing examples 5-34,5-37,5-39
transaction types 2-18, 5-33, 5-38

Bus interface 1-9, 1-11
Bus mastership 4-12, 5-2

Index

Bus parking 3-9, 3-16, 4-10, 5-11
Bus pipelining 4-7,5-2,5-13

-C
Cache coherency 1-6, 2-10, 2-41
Cache configurations

1 Mbyte with 64-byte line size 2-6
1/4 Mbyte with 32-byte line size 2-3
1/4 Mbyte with 64-byte line size 2-3

Cache tags 1-11,2-1
Cache-inhibited

read transaction 2-18
write transaction 2-18

ClK 3-18, 5-4
Collisions 5-78
Compatibility, MC88410/MC88110 4-17,5-3,5-4
Configuration signals 3-17
Copyback transaction 5-38, 5-63
CS 3-18,4-9
CSP 3-19,4-9

-0-
Data bus arbitration 5-7
Data streaming

32-byte line size, critical-word-first 2-19
32-byte line size, zero-word-first 2-20
64-byte line size, critical-word-first 2-22
64-byte line size, zero-word-first 2-22

Data transfer transaction summary 4-16, 5-17
DBB 4-8
DBG 4-7
DIAG 3-20,6-3
Diagnostic mode 6-3
DMA Invalidate transaction 2-45,4-23,5-75
Dual-MC88410 configuration 4-5

-E
Exclusive-modified 2-8
Exclusive-unmodified 2-8
External arbitration 4-8, 4-13

-F-
F1-FO 2-36, 3-15
FBSY 2-36,3-15
FD2-FDO 3-18, 5-82,6-1
Feature list, MC88410 1-1
First write hits with secondary cache hits 2-66
Flush and Invalidate control 2-36
Flush control register encoding 2-37
Flush copyback 2-17,2-18,5-39

MOTOROLA MC88410 USER IS MANUAL INDEX-1

II

•

Flush load 2-17
Flush operation 2.,.38
Flush page operation 2-38
Four-state model 2-12

-G-
GBl4-6

-H-
Half-speed mode

arbitration timing 5-9
HClK 5-4
interface block diagram 5-5
secondary cache line fill 5-3,6
snoop hit and copyback 5-68
timing difference, S_BR/S_ TA 5-5

HClK 3-18, 5-4

-1-
Instruction and data cache, MC8811 0 1-8
Invalid 2-8
Invalidate all

description 2-40
reset timing 5-82

Invalidate transactions 2:-19, 4-23, 5-26

-L
Lateral coherency 2-12
Line fill 2-26, 5-33
Lock collision 5-79
Locked transaction 2-16, 2-18, 5-28

-M-
MC 4-8
MCM62110 array, overview 1-9
Memory update policies

encoding 2-9
types 1-8

MTAG 1-7,2-1,6-2

-0-
On-chip arbitration 4-8, 4-11

-p-
j5'j'E 3-17, 4-8
Pipelining capability 4-7, 5-2, 5-13
POE 3-17, 4-8
Primary cache DMA invalidate 2-19, 4-3, 4-23
Primary cache invalidate 2-19,4-23,5-68
Processor invalidate 2-13, 2-19
Processor tag (PTAG) 5-68
PSTAT2-PSTATO 4-7
PTA 4-33
PTAG 1-7,2-1,2·10,4-7,6-2
P A31-P AO 3-5,4-6
~ 3.], 4-6, 4-9
P _ARTRY 3-9,4-6
P _BG 3-9,4-9

P _BR 3-9,4-9,4-11
P _CI3-5, 4-6, 4-16
P Cl 3-7,4-16
P - G B l 3-7 4-6 4-16
P -INV 3-7 '4-6 '4-16
P - L K 3-5, 4-16'
P-PTA 3-8 4-6 4-31
P -R/W 3-5 '4-16
Pf7i: 3-8,'4-6, 4-32
P TBST 3-6,4-16
P TC3-P TCO 3-7,4-16
P'i'EA 3-8,4-6,4-31,5-54
P _ TRTRY 3-8,4-6,4-32
P _ TS 3-8,4-6
P TSIZ1-P TSIZO 3-6,4-16
P _U PA 1-P _U PAO 3-6,4-16
P _WT 3-6,4-6,4-16

-Q-
Qualified bus grant

processor bus 4-14
processor data bus 4-8
system address bus 5-6
system data bus 5-7

-R-
RAM interface signals 3-17, 4-8, 5-16
Read miss 2-17
Read transaction flow 2-28
Read-with-intent-to-modify 2-44
Read-without-intent-to-modify 2-42
Replacement copyback 2-12,2-17,2-18,5-38
Reset operation 5-81
RST 3-18,4-6,5-81
RWE7-RWEO 3-17, 4-8, 5-16
R_A16-R_AO 3-17,4-8,5-16

-S
SD1/ARBEN 3-19, 4-8, 5-82
SD3-SDO 5-82, 6-2
Secondary cache line fill 2-18, 2-26, 5-33, 5-36
Secondary cache line states 2-8
Secondary cache read-with-intent-to-modi!y 2-18,

5-33
Shared-unmodified 2-8
SHD 2-12,3-14,4-7,5-57
SiE 3-17,4-8
Signals

AACK 4-7
ARTRY 4-7
BR 4-11
ClK 3-18, 5-4
common signals, MC8841 0/MC8811 0 4-5
configuration signals 3-17
CS 3-18, 4-9
CSP 3-19,4-9
DBB 4-8
DBG 4-7
D lAG 3-20, 6-3
F1-FO 2-36, 3-15

INDEX-2 MC88410 USER'S MANUAL MOTOROLA

FBSY 2-36,3-15
F02-FOO 3-18
GBl4-6
HClK 3-18, 5-4
MC88410 signal interface 4-3
PiE 3-17,4-8
POE 3-17,4-8
processor interface

address bus signals 3-5
arbitration signals 3-9, 4-9
signal interface 3-2, 4-2, 4-3
snoop control signal 3-9
transfer attribute signals 3-5, 4-16
transfer control signals 3-8, 4-17

PSTAT2-PSTATO 4-7
P A31-P AO 3-5
PABB 3-9, 4-9
P _ARTRY 3-9,4-6
P BG 3-9 4-9
P =B R 3-9: 4-9
P _CI3-5, 4-16,4-17
P_Cl 3-7,4-16,4-17
P _GBl 3-7, 4-16, 4-17
P _INV 3-7,4-16,4-17
P _lK 3-5,4-16
P _PTA 3-8,4-31
P RIW 3-5 4-16
PTA 3-8,'4-32
P _ TBST 3-6,4-16,4-17
P _ TC3-P _ TCO 3-7, 4-16, 4-17
PTEA 3-8, 5-54
P _ TRTRY 3-8,4-6,4-32
P _ TS 3-8
P TSIZ1-P TSIZO 3-6,4-16,4-17
P _UPA1-P _UPAO 3-6,4-16,4-17
P _WT 3-6,4-16,4-17
RAM interface signals 3-17,4-8,5-16
RAM interface, configuration, test 3-4
RST 3-18
RWE7-RWEO 3-17,4-8,5-16
R_A16-RAO 3-17,4-8,5-16
S01/ARBEN 3-19, 4-8
S03-S00 3-19, 6-2
SHO 3-14,4-7,5-57
SiE 3-17,4-8,5-16
SOE 3-17,4-8,5-16
SA 4-6
SSTAT1 4-6
static signals, MC8811 04-6
system interface

address bus signals 3-10
arbitration signals 3-15, 5-6
differences, MC8811 0/MC8841 0 5-4
snoop control signals 3-14, 5-57
transfer attribute signals 3-10, 5-16
transfer control signals 3-13, 5-18

S A31-S AO 3-10
S_AACK 3-13,5-13,5-29
SABB 3-16,5-6,5-12
S_ARTRY 3-14,5-57

S_BG 3-16,5-6,5-29
S_B R 3-16,5-6
S_CI 3-10,5-16,5-18
S_OBB 3-16,5-7
S_OBG 3-16,5-7
S_GBl 3-12,5-16,5-18
S_INV 3-12, 5-16,5-18'
S_lK 3-10,5-16,5-18
S_MC 3-12,5-16,5-18
S_RIW 3-10,5-16, 5-18
SSR 3-14, 5-57
S_SSTAT2-~S_"'"S~S"TA-:-::T=-O 3-14, 5-57, 5-59
SfA 3-13,5-9
S_TBST 3-11,5-16,5-18
S_TC3-S_TCO 3-11,5-16,5-18
Sl'EA 3-13,5-54
S_ TRTRY 3-13
S_ TS 3-13,5-7
S TSIZ1-S TSIZO 3-11, 5-16, 5-18
S_UPA1-S_UPAO 3-11, 5-16,5-18
tag monitoring 6-1
TCK 3-20
T013-20
TOO 3-20
test signals 3-19
TMS 3-20
transaction signal summary 3-3
TRST 3-20
TRTRY 4-7
TS 4-6
TSHO 3-15,5-57

Single-beat transactions
processor interface

single-beat read 2-28, 4-19, 4-21
single-beat write 2-31,4-21,4-23
transaction types 2-15

system interface
single-beat read 2-28, 5-19, 5-22
single-beat write 2-31,5-23,5-26
timing examples 5-22, 5-26
transaction types 2-18
write 2-16

Single-MC88410 configuration 4-4
Snoop control signals 3-9, 3-14
Snoop copyback 2-17,2-18,5-39,5-63
Snoop hit without intent-to-modify 2-45,2-52
snoop latch 5-78
Snooping

actions for snoop hits 5-58
collision 5-79
examples 2-45, 2-52, 2-62, 2-66
MC88410 actions 2-44
purpose 5-56
P _ARTRY signal 3-9
snoop control signals 5-57
snoop hit 5-63,5-68,5-74

__ snoop miss timing 5-63
SOE 3-17,4-8
split-bus arbitration 4-7
Split-bus snoop collision 5-78

MOTOROLA MC88410 USER'S MANUAL INDEX-3

•

•

~t-bus transaction 5~2, 5-13
SR 4-6
SSTAT1 4-6
State transition diagrams 2-12
Static MC88110 signals 4-7
System bus clock cycle 5-5
System DMA invalidate 2-19,5-7,5-75
System invalidate transaction 2-19,5-7,5-26,5-27
System overview, MC8811 0/MC8841 0

bus interface 1-9,1-11
instruction and data cache, MC8811 0 1-8
MC88410 address decode 1-12
MC88410 cache tags 1-11
MCM62110 array 1-9
memory update policy, MC88110 1-8

S A31-S AO 3-10
S_AACK 3-13, 5-13, 5-29
S7\BB 3-16, 5-6, 5-12
S_ARTRY 3-14,5-57
S_BG 3-16,5-6,5-29
S_BR 3-16,5-6
S_CI3-10, 5-16, 5-18
S_OBB 3-16,5-7
S_OBG 3-16,5-7,5-14
S_GBL 3-12, 5-16, 5-18
S_INV 3-12,5-16,5-18
S_LK 3-10,5-16,5-18
S_MC 3-12,5-16,5-18
S R/W 3-10
'S'SR 3-14
S SSTAT2 5-57
S_SSTAT2-""S_:""'S;-;:;-S":;:"'TA";T~O 3-14,5-57,5-59
$fA 3-13, 5-9
S_ TBST 3-11,5-16,5-18
S_TC3-S_TCO 3-11,5-16,5-18
STEi\ 3-13, 5-54
S TRTRY 3-13
S=TS 3-13,5-7
S TSIZ1-S TSIZO 3-11 , 5-16, 5-18
S_UPA1-S_UPAO 3-11,5-16,5-18

-T-
Table search 2-16
Tag access collision 5-78
Tag index 2-2
Tag monitoring 6-1
TCK 3-20
T013-20
TOO 3-20
Termination of transactions

processor interface
for decoupled cache accesses 4-33
normal termination 4-32
transfer retry 4-34

system interface
address retry 5-54
methods 5-46
normal termination 5-48
transfer error 5-54
transfer retry 5-49

Test Access Port
3-bit instruction register 6-9
BYPASS 6-14
capabilities 6-8
CLAMP 6-15
EXTEST PULLUP 6-16
HI-Z 6-15
SAMPLE/PRELOAD 6-15
signals 6-8

Test signals 3-17,3-19
Three-state model 2-12
Timing diagrams

assertion of =p-'_ T;-R--T=R"Y with P _ TS 4-35
burst order and streaming 5-43
burst read 4-28, 5-36
burst transaction 4-26, 5-33
bu rst write 4-31 , 5-39
bus mastership transfer 4-12
bus parking 4-11, 5-12
decoupled cache access 4-34
external arbitration 4-15
full-speed system bus arbitration 5-8
half-speed system bus arbitration 5-10
locked transaction 5-31,5-32
mUlti-level split-bus transaction 5-15
normal termination 4-32, 5-48
power-on reset operation 5-83
primary cache invalidate 4-25,5-71
single-beat read 4-21 , 5-22
single-beat transaction 4-19
single-beat write 4-23, 5-26
snoop collision detection 5-78
snoop hit and copyback 5-66,5-67
snoop miss transaction 5-64
snoop status negation timing 5-61
split-bus transaction 5-14
system invalidate transaction 5-28
S_SSTAT2-S_SSTATO timing 5-60
termination of transactions 5-47
transfer error termination 5-55, 5-56
T S H 0 timing 5-59
very early assertion of S _ T R TRY 5-50

Timing difference, MC8811 0/MC8841 0 5-3
TMS 3-20
Touch load 2-17
Transactions

locked transaction 5-28
processor interface

burst read 2-17, 4-26
burst transaction 4-25
burst write 4-29
invalidate transactions 4-23
single-beat read 4-19
single-beat transaction 2-16, 4-18
single-beat write 4-21, 5-23
summary, data transfer 4-17

system interface
burst read 5-33
burst transaction 2-18, 5-32
burst write 5-38

INDEX-4 MC88410 USER'S MANUAL MOTOROLA

'I
invalidate transactions 5-26, 5-28
single-beat read 5-19
single-beat transaction 5-19
single-beat transaction 2-16, 2-18
summary, data transfer 5-18

Transfer attribute signals
processor interface

signal summary 4-16
description 3-5

system interface
signal summary 5-16
description 3-1 0

Transfer control signals 3-8, 3-13, 4-17, 5-18
TRST 3-20
TRTRY 4-7
TS 4-6
TSHD 2-12,3-15,5-57

-v
Vertical coherency 2-10

-w-
Write misses with secondary cache hits 2-62
Write transaction flow 2-32
Write-back mode 2-12
Write-through mode 2-13
Write-through transaction 2-16

-x
xmem instruction 2-33, 5-28

MOTOROLA MC88410 USER'S MANUAL

•
INDEX-5

