
M68HC16 Family

CPU 16RM/AD
Rev 1

CENTRAL PROCESSOR UNIT

REFERENCE
MANUAL

@ MOTOROL.A

OVERVIEW II
NOTATION II

SYSTEM RESOURCES II
DATA TYPES AND II ADDRESSING MODES

INSTRUCTION SET II
INSTRUCTION GLOSSARY II

INSTRUCTION PROCESS II
INSTRUCTION TIMING II

EXCEPTION PROCESSING II
DEVELOPMENT SUPPORT II

DIGIT AL SIGNAL PROCESSING II
A COMPARISON OF CPU16 AND II HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA ASSEMBLER SYNTAX II
INDEX

II OVERVIEW

II NOTATION

II SYSTEM RESOURCES

a DATA TYPES AND
ADDRESSING MODES

II INSTRUCTION SET

II INSTRUCTION GLOSSARY

II INSTRUCTION PROCESS\

II INSTRUCTION TIMING

II EXCEPTION PROCESSING

II DEVELOPMENT SUPPORT

III DIGITAL SIGNAL PROCESSING

II A COMPARISON OF CPU16 AND
HC11 CPU ASSEMBLY LANGUAGE

II MOTOROLA ASSEMBLER SYNTAX

II INDEX

©MOTOROLA INC., 1991

CPU16
REFERENCE MANUAL

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications, intended
to support or sustain life, or for any other appiication in which the failure of the Motorola product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against
all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use.
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunityl Affirmative Action Employer.

TABLE OF CONTENTS

Paragraph
Number

Title Page
Number

Section 1
Overview

Overview .. 1-1

Section 2
Notation

2.1 Register Notation .. 2-1
2.2 Condition Code Register Bits ... 2-2
2.3 Condition Code Register Activity ... 2-2
2.4 Condition Code Expressions .. 2-2
2.5 Memory Addressing ... 2-2
2.6 Addressing Modes .. 2-3
2.7 Instruction Format ... 2-3
2.8 Symbols and Operators ... 2-4
2.9 Conventions ... 2-5

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2

Section 3
System Resources

General ... 3-1
Register Model .. 3-1

AccumlJ lators .. 3-3
Index Registers ... ~ 3-3
Stack Pointer .. 3-4
Program Counter ... 3-4
Condition Code Register .. 3-4
Address Extension Register and Address Extension Fields 3-6
Multiply and Accumulate Registers .. 3-6

Memory Management .. : 3-6
Address Extension ... 3-7
Extension Fields ... 3-7

Using Accumulator B to Modify Extension Fields 3-7
Using Stack Pointer Transfer to Modify Extension Fields 3-7

CPU16 REFERENCE MANUAL MOTOROLA

iii

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number

3.3.2.3_
3.3.2.4
3.3.2.5
3.3.3
3.3.3.1
3.3.3.2
3.3.4
3.4
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.2
3.5.3
3.5.4
3.5.5
3.5.5.1
3.5.5.2
3.5.5.3

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

MOTOROLA

Using Index Register Exchange to Modify Extension Fields .. 3-7
Stacking Extension Field Values ... 3-8
Adding Immediate Data to Registers ... 3-8

Program Counter Address Extension .. 3-8
Effect of Jump Instructions on PK : PC .. 3-8
Effect of Branch Instructions on PK : PC 3-9

Effective Addresses and Extension Fields .. 3-9
·Intermodule Bus ... 3-10
External Bus Interface (EBI) ... 3-10

Bus Control Signals ... 3-10
Function Codes .. 3-11
Size Signals ... 3-11
Read/Write Signal. ... , 3-11

Address Bus ... 3-12
Data Bus ... 3-12
Bus Cycle Termination Signals .. 3-12
Data Transfer Mechanism ... 3-13

-Dynamic Bu.s Sizing .. 3-13
Operand Alig nment ... 3-14
Misaligned Operands .. 3-15

Section 4
Data Types and Addressing Modes

Data Types ... 4-1
Memory Organization ... 4-2
Addressing Modes .. 4-4

Immediate Addressing Modes ... 4-5
Extended Addressing Modes4-5
Indexed Addressing Modes .. .4-5
Inherent Addressing Mode ... 4-5
Accumulator Offset Addressing Mode4-6
Relative Addressing Modes ... 4-6
Post-Modified Index Addressing Mode4-6
Use of HC16 Indexed Mode to Replace HC11 Direct Mode4-6

CPU16 REFERENCE MANUAL

iv

TABLE OF CONTENTS (Continued)

Paragraph
Number

Title Page
Number

Section 5
Instruction Set

5.1 General ... 5-1
5.2 Data Movement Instructions ... 5-2
5.2.1 Load Instructions .. 5-2
5.2.2 Move Instructions ... 5-2
5.2.3 Store Instructions ... 5-3
5.2.4 Transfer Instructions .. 5-3
5.2.5 Exchange Instructions ... 5-4
5.3 Mathematic Instructions ... 5-4
5.3.1 Addition and Subtraction Instructions .. 5-4
5.3.2 Binary Coded Decimal Instructions .. 5-7
.5.3.3 Compare and Test Instructions ... 5-8
5.3.4 Multiplication and Division Instructions ... 5-8
5.3.5 Decrement and Increment Instructions .. 5-9
5.3.6 Clear, Complement and Negate Instructions 5-1 0
5.3.7 Boolean Logic Instructions .. 5-1 0
5.4 Bit Test and Manipulation Instructions ... 5-11
5.5 Shift and Rotate Instructions .. 5-12
5.6 Program Control Instructions ... 5-15
5.6.1 Short Branch Instructions .. 5-15
5.6.2 Long Branch Instructions ... 5-17
5.6.3 Bit Condition Branch Instructions ... 5-19
5.6.4 Jump Instruction .. 5-20
5.6.5 Subroutine Instructions .. 5-20
5.6.6 Interrupt Instructions ... 5-22
5.7 Indexing and Address Extension Instructions .. 5-23
5.7.1 Indexing Instructions .. 5-23
5.7.2 Address Extension Instructions .. 5-25
5.8 Stacking Instructions ... 5-25
5.9 Condition Code Instructions .. 5-27
5.10 Digital Signal Processing Instructions ... 5-27
5.11 Stop and Wait Instructions ... 5-29
5.12 Background Mode and Null Operations .. 5-30
5.13 Comparison of CPU16 and MC68HC11 Instruction Sets 5-31

CPU16 REFERENCE MANUAL MOTOROLA

v

TABLE OF CONTENTS (Continued)

Paragraph
Number

Title Page
Number

Section 6
Instruction Glossary

6.1 Instruction Glossary Example .. 6-01
6.2 Instructions .. 6-01
6.3 Condition Code Evaluation .. 6-267
6.4 Instruction Set Summary .. 6-275

7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.3.2.1
7.3,2.2
7.3.2.3
7.3.2.4

8.1
8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.2.2.3
8.2.2.4
8.2.2.5
8.2.2.6
8.2.2.7

MOTOROLA

Section 7
Instruction Process

Instruction Format ... 7-1
Execution Model ... 7-3

Microsequencer ... 7-3
Pipeline .. 7-4
Execution Unit .. 7-4

Execution Process .. 7-4
Detailed Process .. 7-4
Changes in Program Flow ... 7-6

Jumps .. 7-6
Branches .. 7-7
Subroutines ... 7-8-
Interrupts ... 7-9

Section 8
Instruction Timing

Execution Time Components ... 8-1
Program and Operand Access Time ... 8-2

Program Accesses ... 8-2
Operand Accesses .. 8-3

Regular Instructions ~ .. 8-3
Read-Modify-Write Instructions : 8-3
Change-of-Flow Instructions ... 8-3
Stack Manipulation Instructions ... 8-5
Stop and Wait Instructions .. 8-5
Move Instructions ; .. 8-6
Multiply and Accumulate Instructions .. 8-6

CPU16 REFERENCE MANUAL

vi

TABLE OF CONTENTS (Continued)

Paragraph
Number

Title Page
Number

8.3
8.4
8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.2
8.5.2.1
8.5.2.2
8.5.2.3
8.5.3
8.5.3.1
8.5.3.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.7.1
9.7.1.1
9.7.1.2
9.7.1.3
9.7.1.4
9.7.2
9.7.2.1
9.7.2.2
9.7.2.3
9.7.2.4
9.8

Internal Operation Time ... 8-7
Calculating Execution Times for Slower Accesses 8-7
Examples .. 8-7

LDD (Load D) Instruction .. 8-8
LDD IND8, X .. 8-8
LDD IND8, X .. 8-8
LDD IN08, X .. 8-8

NEG (Negate) Instruction ... 8-9
NEG EXT .. 8-9
NEG EXT .. 8-9
NEG EXT .. 8-9

STED (Store Accumulators E and D) Instruction 8-10
STED EXT ... 8-10
STED EXT ... 8-10

Section 9
Exception Processing

Definition of Exception ... 9-1
Exception Vectors ... 9-1
Types of Exceptions , .. 9-2
Exception Stack Frame .. 9-3
Exception Processing Sequence .. 9-3
Multiple Exceptions .. 9-9
Processing of Specific Exceptions .. 9-9

Asynchronous Exceptions .. 9-9
Processor Reset (RESET) .. 9-10
Bus Error (BERR) ... 9-12
Breakpoint Exception (BKPT) .. 9-14
Interrupts .. 9-14

Synchronous Exceptions .. 9-16
Illegal Instructions .. 9-16
Division By Zero ... 9-16
BGND Instruction ... 9-16
SWI Instruction ... 9-17

Return from Interrupt (RTI) .. 9-17

CPU16 REFERENCE MANUAL MOTOROLA

vii

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title

Section 10
Development Support

Page
Number

10.1
10.1.1
10.1.2
10.1.3
10.1.3.1
10.1.3.2
10.1.3.3
10.1.3.4
10.1.3.5
10.1.3.6
10.1.4
10.1.5
10.2
10.3
10.4
10.4.1
10.4.2
10.4.2.1
10.4.2.2
10.4.2.3
10.4.2.4
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.4.7.1
10.4.7.2
10.4.8
10.4.9
10.4.10

Deterministic Opcode Tracking ... 10-1
Instruction Pipeline ... 10-1
IPIPEO/IPIPE1 Multiplexing .. : 10-3
Pipeline State Signals ... 10-4

NULL - No Instruction Pipeline Activity 1 0-4
START - Instruction Start .. ~ .. 1 0-4
ADVANCE - Instruction Pipeline Advance 10-5
FETCH - Instruction Fetch .. 1 0-5
EXCEPTION - Exception Processing in Progress 1 0-5
INVALID - PHASE1/PHASE2 Signal Invalid 10-6

Combining Opcode Tracking with Other Capabilities 10-6
CPU16 Instruction Pipeline Flow ... 10-6

Breakpoints ... 10-6
Opcode Tracking and Breakpoints ... 10-10
Background Debugging Mode .. 10-10

Enabling BDM : ... 10-11
BDM Sources .. 10-13

BKPT Signal .. 10-13
BGND Instruction ... 10-13
Microcontrolier Module Breakpoints 1 0-13
Double Bus Fault ... 10-13

BDM Signals .. 10-14
Entering BDM .. 10-14
Command Execution .. 10-14
Returning from BDM ... 10-16
Serial Interface .. 10-16

CPU Serial Logic ... 10-18
Development System Serial Logic ... 1 0-19

BDM Command Format... .. 10-21
Command Sequence Diagram .. 10-21
BDM Command Set ... 10-23

10.4.10.1
10.4.11

BDM Memory Commands and Bus Errors 1 0-23
Future Commands .. 10-40

MOTOROLA CPU16 REFERENCE MANUAL

viii

TABLE OF CONTENTS (Continued)

Paragraph
Number

Title Page
Number

11 .1
11.2
11.3
11.4
11.5
11.5.1
11.5.2
11.6
11.7
11.7.1
11.7.1.1
11.7.1.2
11.7.1.3
11.7.1.4
11.7.2
11.7.2.1
11.7.2.2
11.7.2.3
11.7.2.4
11.7.3
11.7.3.1
11.7.3.2
11.7.3.3
11.7.3.4
11.7.3.5
11.7.4
11.7.4.1
11.7.4.2
11.7.4.3
11.7.5
11.7.5.1
11.7.5.2
11.7.6
11.7.6.1
11.7.6.2

Section 11
Digital Signal Processing

General .. 11-1
Digital Signal Processing Hardware .. 11-2
Modulo Addressing ... 11-2
MAC Data Types .. 11-3
MAC Accumulator Overflow ... 11-4

Extension Bit Overflow ... 11-4
Sign Bit Overflow .. 11-5

Data Saturation .. 11-5
DSP Instructions .. 11-6

Initialization Instructions .. 11-6
LDHI- Load Registers Hand 1 .. 11-6
TDMSK - Transfer D to XMSK:YMSK 11-6
TEDM - Transfer E and D to AM ... 11-6
TEM - Transfer E to AM .. 11-6

Transfer Instructions ... 11-7
TMER - Transfer AM to E Rounded .. 11-7
TMET - Transfer AM to E Truncated 11-7
TMXED - Transfer AM to IX : E : D .. 11-8
LDED/STED - Long Word Load and Store Instructions 11-8

Multiplication and Accumulation Instructions 11-8
MAC - Multiply and Accumulate ... 11-8
RMAC - Repeating Multiply and Accumulate 11-9
FMULS - Signed Fractional Multiply 11-1 0
ACED - Add E : D to AM ... 11-1 0
ACE - Add E to AM .. 11-1 0

Bit Manipulation Instructions ... 11-11
ASLM - Arithmetic Shift Left AM ... 11-11
ASRM - Arithmetic Shift Right AM .. 11-11
CLRM - Clear AM .. 11-11

Stacking Instructions ; .. 11-12
PSHMAC - Push MAC Registers .. 11 -12
PULMAC - Pull MAC Registers ... 11-12

Branch Instructions ... 11-13
LBEV - Long Branch if EV Set .. 11-13
LBMV - Long Branch if MV Set.. ... 11-13

CPU16 REFERENCE MANUAL MOTOROLA

ix

TABLE OF CONTENTS (Continued)

Paragraph
Number

Title Page
Number

Appendix A
Comparison of CPU16/HC11 CPU

Assembly Language

A.1 Introduction ... A-1
A.2 Register Models : ... A-1
A.3
A.3.1
A.3.2
A.3.2.1
A.3.2.2
A.3.2.3
A.3.3
A. 3.4

CPU16 Instruction Formats and Pipelining Mechanism A-3

A.3.4.1
A.3.4.2
A.3.4.3
A.3.4.4
A.3.4.4.1
A.3.5
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.5
A.4.6
A.4.7
A.4.S
A.4.9
A.4.10
A.4.11
A.4.12
A.4.13
A.4.14
A.4.15
A.4.16

Instruction Format ... A-3
Execution Model ... A-3

Microsequencer ... A-3
Instruction Pipeline .. A-4
Execution Unit ... : A-4

Execution Process .. A-4
Changes in Program Flow .. A-4

Jumps ... A-5
Branches ... A-5
Subroutines .. A-5
Interrupts .. A-6

Interrupt Priority .. A-6
Stack Frame ... A-6

Functionally Equivalent Instructions ... A-7
BHS ... A-7
BlO .. A-7
ClC ... A-7
Cll : .. A-7
ClY .. A-S
DES ... A-S
DEX ... A-S
DEY : ... A-S
INS : .. A-9
INX ... A-9
INY ... A-9
PSHX .. A-9
PSHY ... A-10
PUlX ... A-10
PUlY ... A-10
SEC ... A-11

MOTOROLA CPU16 REFERENCE MANUAL

x

TABLE OF CONTENTS (Concluded)

Paragraph
Number

Title Page

A.4.1?
A.4~ 18
A.4.19
A.5
A.5.1
A.5.2
A.5.3
A. 5.4
A.5.5
A.5.6
A.5.?
A.5.?1
A.5.?2
A.5.8
A.5.8.1
A.5.8.2
A.5.9
A.6
A.6.1
A.6.2
A.6.3
A.6.4
A.6.5
A.?
A.?1
A.8
A.8.1
A.8.2
A.8.3
A.8.4

Number

SEI ... A-11
SEV ... A-11
STOP (LPSTOP) ... A-11

Instructions that Operate Differently ... A-12
BSR ... A-12
JSR .. A-12
PSHA, PSHB ... :.A-12
PULA, PULB .. A-12
RTI. ... A-12
SWI .. A-13
TAP .. A-13

HC11 CPU Implementation ... A-13
CPU16 Implementation .. A-13

TPA .. A-13
HC11 CPU Implementation ... A-13
CPU16 Implementation .. A-14

WAI .. A-14
Instructions With Transparent Changes .. A-14

RTS .. A-14
TSX .. A-14
TSY .. A-14
TXS ... ~ A-14
TYS .. A-14

Unimplemented Instructions .. A-15
TEST ... A-15

Addressing Mode Differences ... A-15
Extended Addressing Mode ... A-15
Indexed Addressing Mode .. A-15
Post-Modified Index Addressing Mode ... A-15
Use of CPU16 Indexed Mode to Replace HC11 CPU

Direct Mode .. A-15

Appendix 8
Motorola Assembler Syntax

Index

CPU16 REFERENCE MANUAL MOTOROLA

xi

MOTOROLA CPU16 REFERENCE MANUAL

xii

Figure
Number

3-1
3-2
3-3

4-1

6-1

7-1

9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6
10-7

LIST OF ILLUSTRATIONS

Title Page
Number

CPU 16 Register Model .. 3-2
Condition Code Register : ... 3-5
Operand Byte Order .. 3-14

Data Types and Memory Organization ... 4-3

Typical Instruction Glossary Entry " 6-2

Instruction Execution Model. ... 7-3

Exception Stack Frame Format .. 9-3
Exception Processing Flow Diagram .. 9-4
RESET Vector ... 9-10

Instruction Execution ModeL .. 1 0-2
IPIPE DEMUX Logic .. 10-4
Instruction Pipeline Flow .. 10-7
In-Circuit Emulator Configuration ... 10-10
Bus State Analyzer Configuration .. 10-10
Sample BDM Enable Circuit... ... 10-12
BDM Enable Waveforms .. 10-12

10-8 BDM Command Flow Diagram ... 10-15
10-9 BDM Serial 1/0 Block Diagram .. 10-16
1 0-1 0 Serial Data Word Format... ... 10-1 7
10-11 Serial Interface Timing Diagram ... 10-18
10-12 BKPT Timing for Single Bus Cycle , 10-20
10-13 BKPT Timing for Forcing BDM. .. 10-20
10-14 BKPT/DSCLK Logic Diagram .. 10-20
10-15 Command Sequence Diagram Example .. 10-22

11-1 MAC Unit Register Mode!. .. 11-2
11-2 MAC Data Types .. 11-3

CPU16 REFERENCE MANUAL MOTOROLA

xiii

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number

Title Page
Number

A-1 HC11 CPU Registers ... A-1
A-2 HC11 CPU Condition Code Register : A-1
A-3 CPU16 Registers ...•.. A-2
A-4 CPU16 Condition Code Register ... A-2
A-5 CPU16 Stack Frame FormaL .. A-6

MOTOROLA CPU16 REFERENCE MANUAL

xiv

LIST OF TABLES

Table
Number

Title Page
Number

3-1 Operations That Cross Bank Boundaries ... 3-9
3-2 Address Space Encoding .. 3-11
3-3 Size Sig nal Encoding ... 3-11
3-4 Effect of DSACK Signals .. 3-13
3-5 Operand Alignment ... 3-15

4-1 Addressing Modes4-4

5-1 Load Summary .. 5-2
5-2 Move Summary ... 5-2
5-3 Store Summary ... 5-3
5-4 Transfer Summary .. 5-3
5-5 Exchange Summary ... 5-4
5-6 Addition Summary .. 5-5
5-7 Subtraction Summary .. 5-5
5-8 Arithmetic Operations ... 5-6
5-9 BCD Summary .. 5-7
5-10 DAA Function Summary .. 5-7
5-11 Compare and Test Summary ... 5-8
5-12 Multiplication and Division Summary ... 5-9
5-13 Decrement and Increment Summary .. 5-9
5-14 Clear, Complement and Negate Summary .. 5-1 0
5-15 Boolean Logic Summary .. 5-11
5-16 Bit Test and Manipulation Summary .. 5-11
5-17 Logic Shift Summary ... 5-12
5-18 Arithmetic Shift Summary ... 5-13
5-19 Rotate Summary .. 5-14
5-20 Short Branch Summary .. 5-16
5-21 Long Branch Instructions ... 5-18
5-22 Bit Condition Branch Summary ... 5-19
5-23 Jump Summary .. 5-20
5-24 Subroutine Summary .. 5-21
5-25 Interrupt Summary ... 5-22

CPU16 REFERENCE MANUAL MOTOROLA

xv

LIST OF TABLES (Concluded)

Table
Number

Title Page
Number

5-26 Indexing Summary .. 5-23
5-27 Address Extension Summary .. 5-25
5-28 Stacking Summary .. 5-26
5-29 Condition Code Summary ... 5-27
5-30 DSP Summary ... 5-27
5-31 Stop and Wait Summary .. 5-29
5-32 Background Mode and Null Operations .. 5-30
5-33 HC16 Implementation of HC11 Instructions ... 5-32

6-1 Standard Assembler Formats ... 6-1
6-2 Condition Code Evaluation .. 6-267
6-3 Instruction Set Summary ... , 6-276

7-1 Basic Instruction Formats .. 7-2
7-2 Page 0 Opcodes .. 7-10
7-3 Page 1 Opcodes .. 7-14
7-4 Page 2 Opcodes .. 7-18
7-5 Page 3 Opcodes .. 7-22

8-1 Access Bus Cycles ... 8-2
8-2 Change-of-Flow Instruction Timing : ... 8-4
8-3 Stack Manipulation Timing ... 8-5
8-4 Stop and Wait Timing ... 8-5
8-5 Move Timing > •• 8-6
8-6 MAC Timing ... 8-6

9-1 Exception Vector Table .. 9-2

10-1 IPIPEO/IPIPE1 Encoding ... 10-3
10-2 BOM Source Summary ... 10-13
10-3 BOM Signals ... 1 0-14
10-4 CPU Generated Message Encoding .. 10-17
10-5 Command Summary ... 10-23

11-1 AM Values and Effect on EV ... 11-4
11-2 Saturation Values .. 11-5

A-1 HC16 Implementation of HC11 Instructions , A-16

MOTOROLA CPU16 REFERENCE MANUAL

xvi

SECTION 1
OVERVIEW

The CPU16 is a high-speed 16-bit device. It gives M68HC11 users a path to
higher performance while maintaining compatibility with existing systems.

CPU16 architecture is a superset of M68HC11 architecture. All M68HC11
resources are available in the HC16. There are two 16-bit general-purpose
accumulators and three 16-bit index registers. The CPU16 supports 8-bit (byte),
16-bit (word), and 32-bit (long-word) load and store operations, as well as 16-
and 32-bit signed fractional operations. Program diagnosis is enhanced by a
background debugging m'ode.

CPU 16 memory space includes a 1 Mbyte data space and a 1 Mbyte program
space. Twenty-bit addressing and transparent bank switching are used to
implement extended memory. In addition, most instructions automatically
handle bank boundaries.,

The CPU16 also has new and enhanced addressing modes. M68HC11 direct
mode addressing has been replaced by a special form of indexed addressing
that uses the new IZ register and a reset vector to provide greater flexibility.

The CPU16 instruction set is optimized for high performance. M68HC11
instructions are either directly implemented in the HC16, or have been replaced
by instructions with an equivalent form. The instruction sets are source code
compatible, although most instructions are executed differently in the HC16.

The CPU16 includes instructions and hardware to implement control-oriented
digital signal processing functions with a minimum of interfacing. A multiply and
accumulate unit provides the capability to multiply signed 16-bit fractional
numbers and store the resultin.g 32-bit fixed point product in a 36-bit
accumulator. Modulo addressing supports finite impulse response filters.

Use of high-level languages is increasing as controller applications become
more complex and control programs become larger. High-level language aids
rapid development of software, with less error, and is readily portable. The
CPU16 instruction set supports high-level languages.

CPU16 REFERENCE MANUAL OVERVIEW MOTOROLA

1-1

II

II

MOTOROLA

1-2

OVERVIEW CPU16 REFERENCE MANUAL

SECTION 2
NOTATION

The following notation, symbols, and conventions are used throughout the manual.

2.1 Register Notation

A - Accumulator A
AM - Accumulator M

B - Accumulator B
CCR - Condition code register

D - Accumulator D
E - Accumulator E

EK - Extended addressing extension field
IR - Multiply and accumulate multiplicand register

HR - Multiply and accumulate multiplier register
IX - Index register X
IY - Index register Y
IZ - Index register Z
K - Address extension register

PC - Program counter
PK - Program counter extension field
SK - Stack pointer extension field
S L - Multiply and accumulate sign latch
SP - Stack pointer
XK - Index register X extension field
YK - Index register Y extension field
ZK - Index register Z extension field

XMSK - Modulo addressing index register X mask
YMSK - Modulo addressing index register X mask

CPU16 REFERENCE MANUAL NOTATION MOTOROLA

2-1

III
2.2 Condition Code Register Bits

S - Stop disable control bit
MV - AM overflow indicator

H - Half carry indicator
EV - AM extended overflow indicator

N - Negative indicator
Z - Zero indicator
V - Twos complement overflow indicator
C - Carry/borrow indicator
IP - Interrupt priority field

SM - Saturation mode control bit
PK - Program counter extension field

2.3 Condition Code Register Activity

Bit not affected
Ll - Bit changes according to specified conditions
o - Bit cleared
1 - Bit set

2.4 Condition Code Expressions

M - Memory location used in operation
R - Result of operation
S - Source data
X - Register used in operation

2.5 Memory Addressing

M - Address of one memory byte
M + 1 - Address of byte at M + $0001

M : M + 1 - Address of one memory word
(...)x - Contents of address pointed to by IX
(...)y - Contents of address pointed to by IV
(...)z - Contents of address pointed to by IZ

MOTOROLA

2-2

NOTATION CPU16 REFERENCE MANUAL

2.6 Addressing Modes

E, X - IX with E offset
E, Y - IY with E offset
E, Z - IZ with E offset
EXT - Extended

EXT20 - 20-bit extended
IMM8 - 8-bit immediate

IMM16 - 16-bit immediate
IN08, X - IX with unsigned 8-bit offset
IN08, Y - IY with unsigned 8-bit offset
IN08, Z - IZ with unsigned 8-bit offset

IN016, X - IX with signed 16-bit offset
IN016, Y - IY with signed 16-bit offset
IN016, Z - IZ with signed 16-bit offset
IN020, X - IX with signed 20-bit offset
IN020, Y - IY with signed 20-bit offset
IN020, Z - IZ with signed 20-bit offset

INH - Inherent
IXP - Post-modified indexed

REL8 - 8-bit relative
REL 16 - 16-bit relative

2.7 Instruction Format

b - 4-bit address extension
ii - 8-bit immediate data sign-extended to 16 bits
jj - High-order byte of 16-bit immediate data

kk - Low-order byte of 16-bit immediate data
h h - High-order byte of 16-bit extended address

II - Low-order'byte of 16-bit extended address
gggg - 16-bit signed offset

ff - 8-bit unsigned offset
mm - 8-bit mask

mmmm - 16-bit mask
rr - 8-bit unsigned relative offset

rrrr - 16-bit signed relative offset
xo - MAC index register X offset
yo - MAC index register Y offset

z - 4-bit zero extension

CPU16 REFERENCE MANUAL NOTATION MOTOROLA

2-3

II

II
2.8 Symbols and Operators

+ - Addition
Subtraction or negation (twos complement)

* - Multiplication
/ - Division

> - Greater
< - Less
- Equal
~ - Equal or greater
~ - Equal or less
"# - Not equal
• - AND

+ - Inclusive OR (OR)
$ - Exclusive OR (EOR)

NOT - Complementation
. - Concatenation

=> - Transferred
~ - Exchanged
± - Sign bit; also used to show tolerance
« - Sign extension

% - Binary value
$ - Hexadecimal value

MOTOROLA

2-4

NOTATION CPU16 REFERENCE MANUAL

2.9 Conventions

Logic level one is the voltage that corresponds to Boolean true (1) state.

Logic level zero is the voltage that corresponds to Boolean false (0) state.

Set refers specifically to establishing logic level one on a bit or bits.

Cleared refers specifically to establishing logic level zero on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal
changes from logic level one to logic level zero when asserted, and an active
high signal changes from logic level zero to logic level one.

Negated means that an asserted signal changes logic state. An active low
signal changes from logic level zero to logic level one when negated, and an
active high signal changes from logic level one to logic level zero.

ADDR is the mnemonic for address bus. DATA is the mnemonic for data bus.

LSB means least significant bit or bits. MSB means most significant bit or bits.
References to low and high bytes are spelled out.

LSW means least significant word or words. MSW means most significant
word or words.

A specific bit or signal within a range is referred to by mnemonic and
number. A35 is bit 35 of accumulator A; ADDR[7:0] form the low byte of the
address bus. A range of bits or signals is referred to by mnemonic and the
numbers that define the range. AM[35:30] are bits 35 to 30 of accumulator M;
DATA[15:8] form the high byte of the data bus.

Parentheses are used to indicate the content of a register or memory location,
rather than the register or memory location itself. (A) is the content of
accumulator A. (M: M + 1) is the content of the word at address M.

CPU16 REFERENCE MANUAL NOTATION MOTOROLA

2-5

II

II

MOTOROLA

2-6

NOTATION CPUi6 REFERENCE MANUAL

SECTION 3
SYSTEM RESOURCES

This section provides information concerning CPU16 register organization, II
memory management, and bus interfacing. The CPU16 is a subcomponent of a
modular microcontroller. Due to diversity of modular microcontrollers, detailed
information concerning interaction with other modules and external devices is
contained in the microcontroller user's manual.

3.1 General

The CPU16 was designed to provide compatibility with the MC68HC11 and to
provide additional capabilities associated with 16- and 32-bit data sizes, 20-bit
addressing, and digital signal processing. CPU16 registers are an integral part
of the CPU and are not addressed as memory locations. The CPU 16 register
model contains all the resources of the MC68HC11, plus additional resources.

The CPU16 treats all peripheral, 110, and memory locations as parts of a
pseudolinear 1 Megabyte address space. There are no special instructions for
110 that are separate from instructions for addressing memory. Address space is
made up of 16 64-kilobyte banks. Specialized bank addressing techniques and
support registers provide transparent access across bank boundaries.

The CPU16 interacts with external devices and with other modules within the
microcontroller via a standardized bus and bus interface. There are bus
protocols for memory and peripheral accesses, as well as for managing an
hierarchy of interrupt priorities.

3.2 Register Model

Figure 3-1 shows the CPU16 regis.ter model. Registers are discussed in detail
in the following paragraphs.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-1

II
120 16115

r~- XK

! YK

[ZK

! SK

PK

MOTOROLA

3-2

:1

I

I

1

A

CCR

EK XK

XMSK

Figure

al7 o I BIT POSITION

B } ACCUMULATORS A AND B

D ACCUMULATOR D (A: B)
~-~~

E I ACCUMULATOR E

IX I INDEX REGISTER X

IY I INDEX REGISTER Y

IZ 1 INDEX REGISTER Z

SP 1 STACK POINTER

PC I PROGRAM COUNTER

PK 1 CONDITION CODE REGISTER!

PC EXTENSION REGISTER

YK ZK 1 ADDRESS EXTENSION REGISTER

SK 1 STACK EXTENSION REGISTER

HR 1 MAC MULTIPLIER REGISTER

IR 1 MAC MULTIPLICAND REGISTER

AM I MAC ACCUMULATOR MSB[35:16]

AM MAC ACCUMULATOR LSB [15:0]

YMSK I MAC XY MASK REGISTER

3·1. CPU16 Register Model

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3.2.1 Accumulators

The CPU16 has two 8-bit accumulators (A and S) and one 16-bit accumulator
(E). In addition, accumulators A and S can be concatenated into a second
16-bit "double" accumulator (D).

Accumulators A, S, and D are general-purpose registers used to hold operands
and results during mathematic and data manipulation operations.

Accumulator E can be used in the same way as Accumulator D, and also II
extends CPU16 capabilities. It allows more data to be held within the CPU16
during operations, simplifies 32-bit arithmetic and digital signal processing, and
provides a practical 16-bit accumulator offset indexed addressing mode.

CPU16 accumulators can perform the same operations as MC68HC11
accumulators of the same names, but the CPU16 instruction set provides
additional 8-bit, 16-bit, and 32-bit accumulator operations. See SECTION 5
INSTRUCTION SET for more information.

3.2.2 Index Registers

The CPU16 has three 16-bit index registers (IX, IY, and IZ). Each index register
has an associated 4-bit extension field (XK, YK, and ZK).

Concatenated registers and extension fields provide 20-bit indexed addressing
and support data structure functions anywhere in the CPU16 address space.

IX and IY can perform the same operations as MC68HC11 registers of the same
names, but the CPU16 instruction set provides additional indexed operations.

IZ can perform the same operations as IX and IY, and also provides an
additional indexed addressing capability that replaces MC68HC11 direct
addressing mode. Initial IZ and ZK extension field values are included in the
RESET exception vector, so that ZK : IZ can be used as a direct page pointer out
of reset. See SECTION 4 DATA TYPES AND ADDRESSING MODES
and SECTION 9 EXCEPTION PROCESSING for more information.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-3

II

3.2.3 Stack Pointer

The CPU16 stack pOinter (SP) is 16 bits wide. An associated 4-bit extension
field (SK) provides 20-bit stack addressi'ng.

Stack implementation in the CPU16 is from high to low memory. The stack
grows downward as it is filled. SK: SP are decremented each time data is
pushed on the stack, and incremented each time data is pulled from the stack.

SK : SP point to the next available stack address, rather than to the address of
the latest stack entry. Although the stack pointer is normally incremented or
decremented by word address, it is possible to push and pull byte-sized data;
however, setting the stack pOinter to an odd value causes misalignment, which
affects performance. See SECTION 4 DATA TYPES AND ADDRESSING
MODES and SECTION 5 INSTRUCTION SET for more information.

3.2.4 Program Counter

The CPU16 program counter (PC) is 16 bits wide.. An associated 4-bit
extension field (PK) provides 20-bit program addressing.

CPU16 instructions are fetched from even word boundaries. Bit 0 of the PC
always has a value of zero, to assure that instruction fetches are made from
word-aligned addresses. See SECTION 7 INSTRUCTION PROCESS for
more information.

3.2.5 Condition Code Register

The 16-bit condition code register can be divided into two functional blocks.
The 8 MSB, which correspond to the CCR in the MC68HC11, contain the low
power stop control bit and processor status flags. The 8 LSB contain the
interrupt priority field, the DSP saturation mode control bit, and the program
counter address extension field.

Management of interrupt priority in the CPU16 differs considerably from that of
the MC68HC11. See SECTION 9 EXCEPTION PROCESSING for
complete information.

Figure 3-2 shows the condition code register. Detailed descriptions of each
status indicator and field in the register follow the figure.

MOTOROLA

3-4

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
s I MV I H I EV N IP SM I PK

Figure 3-2. Condition Code Register

S - STOP Enable
o = Stop clock when LPSTOP instruction is executed
1 = Perform NOP when LPSTOP instruction is executed

MV - Accumulator M Overflow Flag
Set when overflow into AM35 has occurred.

H - Half Carry Flag
Set when a carry from bit 3 in A or B occurs during BCD addition.

EV - Extension Bit Overflow Flag
Set when an overflow into AM31 has occurred.

N - Negative Flag
Set when the MSB of a result register is set.

Z -Zero Flag
Set when all bits of a result register are zero.

v - Overflow Flag
Set when twos complement overflow occurs as the result of an operation.

C - Carry Flag
Set when carry or borrow occurs during arithmetic operation. Also,used
during shift and rotate to facilitate multiple word operations.

IP[2:0] - Interrupt Priority Field
The priority value in this field (0 to 7) is used to mask interrupts.

SM - Saturate Mode Bit
When SM is set, if either EV or MV is set, data read from AM using TMER
or TMET will be given maximum positive or negative value, depending
on the state of the AM sign bit before overflow.

PK[3:0] - Program Counter Address Extension Field
This field is concatenated with the program counter to form a 20-bit
address.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-5

II

II

3.2.6 Address Extension Register and Address Extension Fields

There are six 4-bit address extension fields. EK, XK, YK, and ZK are contained
by the address extension register, PK is part of the CCR, and SK stands alone.

Extension fields are the bank portions of 20-bit concatenated bank : byte
addresses used in the CPU16 pseudolinear memory management scheme.

All extension fields except EK correspond directly to a register. XK, YK, and ZK
extend registers IX, IY, and IZ; PK extends the PC; and SK extends the SP.
EK holds the 4 MSB of the 20-bit address used by extended addressing mode.

The function of extension fields is discussed in 3.3 Memory Management.

3.2.7 Multiply and Accumulate Registers

The multiply and accumulate (MAC) registers are part of a CPU submodule that
performs repetitive signed fractional multiplication and stores the cumulative
result. These operations are part of control-oriented digital signal processing.

There are four MAC registers. Register H contains the 16-bit signed fractional
multiplier. Register I contains the 16-bit signed fractional multiplicand.
Accumulator M is a specialized 36-bit product accumulation register. XMSK
and YMSK contain 8-bit mask values used in modulo addressing.

The CPU16 has a special subset of signal processing instructions that
manipulate the MAC registers and perform signal processing calculation. See
SECTION 5 INSTRUCTION SET and SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

3.3 Memory Management

The CPU16 uses bank switching to provide a 1 Megabyte address space.
There are 16 banks within the address space. Each bank is made up of 64
kilobytes addressed from $0000 to $FFFF. Banks are selected by means of
address extension fields associated with individual CPU16 registers.

In addition, address space can be split into discrete 1 Megabyte program and
data spaces by externally decoding the outputs described in 3.5.1.1 Function
Codes. When this technique is used, instruction fetches and RESET vector
fetches access program space, while exception vector fetches (other than
RESET), data accesses; and stack accesses are made in data space.

MOTOROLA
3-6

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3.3.1 Address Extension

All CPU16 resources that are used to generate addresses are effectively 20 bits
wide. These resources include extended index registers, program counter, and
stack pointer. All addressing modes use 20-bit addresses.

20-bit addresses are formed from a 16-bit byte address generated by an
individual CPU16 register and a 4-bit bank address contained in an associated
extension field. The byte address corresponds to ADDR[15:0] and the bank II
address corresponds to ADDR[19:16].

3.3.2 Extension Fields

The six address extension fields are each used in a different type of access. As
shown in 3.2 Register Model, all but EK are associated with particular
CPU16 registers. There are a number of ways to manipulate extension fields
and the address map.

3.3.2.1 Using Accumulator B to Modify Extension Fields

EK, XK, YK, ZK, and SK can be examined and modified by using the Transfer
Extension Field to B and Transfer B to Extension Field instructions.

Transfer Extension Field to B instructions (TEKB, TXKB, TYKB, TZKB, and
TSKB) copy the designated extension field into the four LSB of Accumulator B,
where it can be modified. Transfer B to Extension Field instructions (TBEK,
TBXK, TBYK, TBZK, and TBSK) replace the designated extension field with the
contents of the four LSB of Accumulator B.

3.3.2.2 Using Stack Pointer Transfer to Modify Extension Fields

XK, YK, ZK, and SK can be modified by using the Transfer Index Register to
Stack Pointer and Transfer Stack Pointer to Index Register instructions.

When the SP is transferred to (TSX, TSY, and TSZ) or from (TXS, TYS, and
TZS) an index register, the corresponding address extension field is also
transferred. Before the extensi0!1 field is transferred, it is incremented or
decremented if bank overflow occurred as a result of the instruction.

3.3.2.3 Using Index Register Exchange to Modify Extension Fields

XK, YK, and ZK can be modified by using the Transfer Index Register to Index
Register instructions.

When index registers are exchanged (TXY, TXZ, TYX, TYZ, TZX, and TZY), the
corresponding address extension field is also exchanged.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-7

II

3.3.2.4 Stacking Extension Field Values

The Push Multiple Registers (PSHM) instruction can be used to store alternate
extension field values on the stack. When bit 5 of the PSHM mask operand is
set, the entire address extension register (EK, XK, YK, and ZK values) is pushed
onto the stack.

The Pull Multiple Registers (PULM) instruction can be used to replace extension
. field values. When bit 1 of the PULM mask operand is set, the entire address

extension register (EK, XK, YK, and ZK) will be replaced with stacked values.

3.3.2.5 Adding Immediate Data to Registers

XK, YK, ZK, and SK are automatically modified when an AIX, AIY, AIZ, or AIS
instruction causes an overflow from the corresponding register. The byte
addresses contained in the registers have a range of $0000 to $FFFF. If the
operation results in a value below $0000 or above $FFFF, the associated
extension field is decremented or incremented by the amount of overflow.

3.3.3 Program Counter Address Extension

The PK field cannot be altered by direct transfer or exchange like other address
extension fields, but a number of instructions and addressing modes affect the
program counter and its associated extension field.

PK is automatically modified when an operation causes an overflow from the
PC. The PC has a range of $0000 to $FFFF. If it is decremented below $0000
or incremented above $FFFF, PK is also incremented or decremented.

3.3.3.1 Effect of Jump Instructions on PK : PC

There are two forms of jump instruction in the CPU 16 instruction set. Both use
special addressing modes that replace PK : PC with a 20-bit effective address,
but do not affect other address extension fields.

JMP causes an unconditional change in program execution. The effective
address is placed in PK : PC and execution continues at the new address.

JSR causes a branch to a subroutine. After the contents of the program counter
and the condition code register are stacked, the effective address is placed in
PK : PC and execution continues at the new address.

See SECTION 5 INSTRUCTION SET for detailed information about jump
instructions.

MOTOROLA

3-8

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3.3.3.2 Effect of Branch Instructions on PK : PC

The CPU16 instruction set includes a number of branch instructions. All add an
offset to the program counter when a branch is taken. The size of offset differs,
but in all cases, PK is automatically modified when addition of the offset causes
PC overflow. The PC has a range of $0000 to $FFFF. If it is decremented
below $0000 or incremented above $FFFF, PK is also decremented or
incremented. Pipelining affects the actual offset from the instruction. See
SECTION 5 INSTRUCTION SET for detailed information about branch
instructions.

3.3.4 Effective Addresses and Extension Fields

It is important to distinguish address extension field values from effective
address values. Effective address calculation is a part of addressing mode
operation. Indexed and accumulator offset addressing modes can generate
effective addresses that cross bank boundaries - ADDR[19:16] are changed to
make an access, but extension field values do not change as a result of the
operation. See SECTION 4 DATA TYPES AND ADDRESSING MODES
for more information. Table 3-1 summarizes the effects of various operations on
address lines and address extension fields.

Table 3-1. Operations That Cross Bank Boundaries

Type of Extension Field
Operation Used

Normal PC Increments PK

Operand Read Using XK, YK, ZK
Indexed Addressing Mode

Operand Write Using XK, YK, ZK
Indexed Addressing Mode

Operand Read Using EK
Extended Addressing Mode

Operand Write Using EK
Extended Addressing Mode

Post-modified Indexed Addressing XK
(XK is modified after use as effective address)

JMP, JSR Instruction None

Branch Instructions PK
(Including BSR and LBSR)

Stack Access SK

AIX, AIY, AIZ, or AIS Instruction XK, YK, ZK, or SK

TSX, TSY, or TSZ Instruction SK

TXS, TYS, or TZS Instruction XK, YK, orZK

TXY or TXZ Instruction XK

TYX or TYZ Instruction YK

TZX or TZY Instruction ZK

CPU16 REFERENCE MANUAL SYSTEM RESOURCES

Extension Field
Affected

PK

None

None

None

None

XK

PK

PK

SK

XK, YK, ZK, or SK

XK, YK, orZK

SK

YK,ZK

XK,ZK

XK, YK

Effect on
ADDR[19:16)

Equals new PK

Used for
Effective Address

Used for
Effective Address

Used for
Effective Address

Used for
Effective Address

Used for
Effective Address

Equals new PK

Equals new PK

Stack at new SK

None

None

None

None

None

None

MOTOROLA

3-9

II

II

3.4 Intermodule Bus

The intermodule bus is a standardized bus developed to facilitate design of
modular microcontrollers. Bus protocols are based on the MC68020 bus. The
1MB contains circuitry to support exception processing, address space
partitioning, multiple interrupt levels, and vectored interrupts.

Modular Microcontroller Family modules communicate with one another via the
1MB. Although the full 1MB supports 24 address and 16 data lines, CPU16 uses
only 16 data lines and 20 address lines - ADDR[23:20] are tied to ADDR19
when processor driven.

3.5 External Bus Interface

The external bus interface (EBI) is contained in the system integration module of
the modular microcontroller. This section provides a general discussion of EBI
capabilities. Refer to the appropriate microcontroller user's manual for detailed
information about the bus interface.

The external bus is essentially an extension of the 1MB. There are 24 address
lines and 16 data lines. ADDR[19:0] are normal address outputs, ADDR[23:20]
follow the output state of ADDR19. It provides dynamic sizing between 8- and
16-bit data accesses. A three-line handshaking interface performs bus
arbitration.

The EBI transfers information between the MCU and external devices. It
supports byte, word, and long-word transfers. Data ports of 8 and 16-bits can
be accessed through the use of asynchronous cycles controlled by the data
transfer (SIZ1 and SIZO) and data size acknowledge pins (DSACK1 and
DSACKO). Multiple bus cycles may be required for an operand transfer to an
8-bit port, due to misalignment or to' port width smaller than the operand size.

Port width is defined as the maximum number of bits accepted or provided
during a bus transfer. External devices must follow the handshake protocol
described below.

3.5.1 Bus Control Signals

Control signals indicate the beginning of the cycle, the address space and size
of the transfer, and the type of cycle. The selected device controls the length of
the cycle. Strobe signals, one for the address bus and another for the data bus,
indicate the validity of an address and provide timing information for data. The
EBI operates asynchronously for all port widths. A bus cycle is initiated by
driving the address, size, function code, and read/write outputs.

MOTOROLA

3-10

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3.5.1.1 Function Codes

Function codes are automatically generated by the CPU16. Since the CPU16
always operates in supervisor mode (FC2 = 1) FC1 and FCO are encoded to
select one of four address spaces. One encoding (%00) is reserved. The
remaining three spaces are called program space, data space and CPU space.
Program and data space are used for instruction and operand accesses. CPU
space is used for control information not normally associated with read or write 3
bus cycles, such as interrupt acknowledge cycles, breakpoint acknowledge
cycles, and low power stop broadcast cycles. Function codes are valid while
address strobe AS is asserted. The following table shows address space
encoding.

Table 3-2. Address Space Encoding

FC2 FCl FCO Address Space

1 0 0 Reserved

1 0 1 Data Space

1 1 0 Program Space

1 1 1 CPU Space

3.5.1.2 Size Signals

SIZO and SIZ1 indicate the number of bytes remaining to be transferred during
an operand cycle. They are valid while the AS is asserted. The following table
shows SIZO and SIZ1 encoding.

3.5.1.3 Read/Write Signal

Table 3-3. Size Signal
Encoding

SIZl SIZO Transfer Size

0 1 Byte

1 0 Word

1 1 3 Byte

0 0 Long Word

R!W determines the direction of the transfer during a bus cycle. This signal
changes state, when required, at the beginning of a bus cycle, and is valid while
AS is asserted. The signal may remain low for two consecutive write cycles.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-11

II

3.5..2 Address Bus

Bus signals ADDR[19:0] define the address of the byte (or the most significant
byte) to be transferred during a bus cycle. The MCU places the address on the
bus at the beginning of a bus cycle. The address is valid while address strobe
(AS) is asserted.

AS is a timing signal that indicates the validity of an address on the address bus
and of many control signals. It is asserted one-half clock after the beginning of
a bus cycle.

3.5..3 Data Bus

Bus signals DATA[15:0] comprise a bidirectional, nonmultiplexed parallel bus
that transfers data to or from the MCU. A read or write operation can transfer 8
or 16 bits of data in one bus cycle. During a read cycle, the data is latched by
the MCU on the last falling edge of the clock for that bus cycle. For a write cycle,
all 16 bits of the data bus are driven, regardless of the port width or operand
size. The EBI places the data on the data bus one-half clock cycle after AS is
asserted in a write cycle.

Data strobe (DS) is a timing signal. For a read cycle, the MCU asserts DS to
signal an external device to place data on the bus. DS is asserted at the same
time as AS during a read cycle. For a write cycle, DS signals an external device
that data on the bus is valid. The EBI asserts DS one full clock cycle after the
assertion of AS during a write cycle.

3.5.4 Bus Cycle Termination Signals

During bus cycles, external devices assert the data transfer and size
acknowledge signals (DSACK1 and/or DSACKO). During a read cycle, the
signals tell the EBI to terminate the bus cycle and to latch data. During a write
cycle, the signals indicate that an external device has successfully stored data
and that the cycle may terminate. These signals also indicate to the EBI the size
of the port for the bus cycle just completed.

The bus error signal (BERR) is also a bus cycle termination indicator and can be
used in the absence of DSACKx to indicate a bus error condition. It can also be
asserted in conjunction with DSACKx to indicate a bus error condition, provided
it meets the appropriate timing requirements. Simultaneous assertion of BERR
and HALT is treated in the same way as assertion of BERR alone.

MOTOROLA

3-12

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

An internal bus monitor can be used to generate the BERR signal for internal
and internal-to-external transfers. An external bus master must provide its own
BERR generation and drive the BERR pin, since the internal BERR monitor has
no information about transfers initiated by an external bus master.

Finally, autovector signal (AVEC) can be used to terminate external IRQ pin
interrupt acknowledge cycles. AVEC indicates to the EBI that it must internally
generate a vector number to locate an interrupt handler routine. If AVEC is
continuously asserted, autovectors will be generated for all external interrupt
requests. AVEC is ignored during all other bus cycles.

3.5.5 Data Transfer Mechanism

EBI architecture supports byte, word, and long-word operands, allowing access
to 8- and 16-bit data ports through the use of asynchronous cycles controlled by
the data transfer and size acknowledge inputs (DSACK1 and DSACKO).

3.5.5.1 Dynamic Bus Sizing

The EBI dynamically interprets the port size of the addressed device during
each bus cycle, allowing operand transfers to or from 8- and 16-bit ports.
During an operand transfer cycle, the slave device signals its port size and
indicates completion of the bus cycle to the EBI through the use of the DSACKx
inputs, as shown in the following table.

Table 3-4. Effect of DSACK Signals

DSACK1 DSACKO Result

1 1 Insert Wait States in Current Bus Cycle

1 0 Complete Cycle - Data Bus Port Size is 8 Bits

0 1 Complete Cycle - Data Bus Port Size is 16 Bits

0 0 Reserved

For example, if the CPU16 is executing an instruction that reads a long-word
operand from a 16-bit port, the EBI latches the 16 bits of valid data and runs
another bus cycle to obtain the other 16 bits. The operation for an 8-bit port is
similar, but requires four read cycles. The addressed device uses the DSACKx
signals to indicate the port width. For instance, a 16-bit device always returns
DSACKx for a 16-bit port (regardless of whether the bus cycle is a byte or word
operation).

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-13

II

II

Dynamic bus sizing requires that the portion of the data bus used for a transfer
to or from a particular port size be fixed. A 16-bit port must reside on data bus
bits [15:0], and an 8-bit port must reside on data bus bits [15:8]. This minimizes
the number of bus cycles needed to transfer data and ensures that the EBI
transfers valid data.

The EBI always attempts to transfer a maximum amount of data during each bus
cycle. For a word operation, it is assumed that the port is 16 bits wide when the
bus cycle begins. Operand bytes are designated as shown in Figure 3-2. OPO
is the most significant byte of a long-word operand, and OP3 is the least
significant byte. The two bytes of a word-length operand are OPO (most
significant) and OP1. The single byte of a byte-length operand is OPO.

Operand

Long Word

Three Byte

Word

Byte

I
31

OPO

Byte Order

2423 1615 87 a

I OP1 OP2 OP3

I OPO OP1 OP2

OPO OP1

OPO

Figure 3-3. Operand Byte Order

3.5.5.2 Operand Alignment

Refer to Table 3-5 for required organization of 8- and 16-bit data ports. A data
multiplexer establishes the necessary connections for different combinations of
address and data sizes. The multiplexer takes the two bytes of the 16-bit bus
and routes them to their required positions. Positioning of bytes is determined
by the size and address outputs. SIZ1 and SIZO indicate the remaining number
of bytes to be transferred during the current bus cycle. The number of bytes
transferred is equal to or less than the size indicated by SIZ1 and SIZO,
depending on port width.

ADDRO also affects data multiplexer operation. During an operand transfer,
ADDR[23:1] indicate the word base address of the portion of the operand to be
accessed, and ADDRO indicates the byte offset from the base. Table 3-5 shows
the number of bytes required on the data bus for read cycles. OPn entries are
portions of the requested operand that are read or written during a bus cycle
and are defined by SIZ1 , SIZO, and ADDRO for that bus cycle.

MOTOROLA

3-14

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

Table 3-5. Operand Alignment

Transfer Case DATA SIZ1 I SIZO I ADoDR I DSACK11 DSACKO
15 8

Byte to Byte 0 1 X 1 0

Byte to Word (Even) 0 1 0 0 X

Byte to Word (Odd) 0 1 1 0 X

Word to Byte (Aligned) 1 0 0 1 0

Word to Byte (Misaligned) 1 0 1 1 0

Word to Word (Aligned) 1 0 0 0 X

Word to Word (Misaligned) 1 0 1 0 X

3 Byte to Byte (Aligned)t 1 1 0 1 0

3 Byte to Byte (Misaligned)t 1 1 1 1 0

3 Byte to Word (Aligned)t 1 1 0 0 X

3 Byte to Word (Misaligned)t 1 1 1 0 X

Long Word to Byte (Aligned) 0 0 0 1 0

Long Word to Byte (Misaligned)' 1 0 1 1 0

Long Word to Word (Aligned) 0 0 0 0 X

Long Word to Word (Misaligned)' 1 0 1 0 X

NOTES:
Operands in parentheses are ignored by the CPU16 during read cycles.
-The CPU16 treats misaligned long-word transfers as two misaligned word transfers.
tThree-byte transfer cases occur only as a result of a long word to byte transfer.

3.5.5.3 Misaligned Operands

OP~

OP~

(OPO)

OPO

OPO

OPO

(OPO)

OPO

OPO

OP~

(OPO)

OPO

OP~

OPO

(OPO)

DATA
7 0

(OPO)

(OPO)

OPO

(OP1)

(OPO)

OP1

OPO

(OP1)

(OPO)

OP1

OPO

(OP1)

(OPO)

OP1

OPO

The value of ADDRO determines alignment. When ADDRO = 0, the address is a
word and byte boundary. When ADDRO = 1, the address is a byte boundary
only. A byte operand is properly aligned at any address; a word or long-word
operand is misaligned at an odd address.

The basic CPU16 operand size is a 16-bit word. The CPU16 fetches instruction
words and operands from word boundaries only. The CPU16 performs
misaligned data word and long-word transfers. This capability is provided in
order to make the CPU16 compatible with the MC68HC11.

At most, a bus cycle can transfer a word of data aligned on a word boundary. If
data words are misaligned, each byte of the misaligned word is treated as a
separate word transfer. If a long-word operand is transferred via a 16-bit port,
the most significant operand word is transferred on the first bus cycle and the
least significant operand word on a following bus cycle.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

3-15

II

II

MOTOROLA

3-16

SYSTEM RESOURCES CPU16 REFERENCE MANUAL

SECTION 4
DATA TYPES AND ADDRESSING MODES

This section contains information about CPU16 data types and addressing
modes. It is intended to familiarize users with basic processor capabilities.

4.1 Data Types

The CPU 16 uses the following types of data:

• Bits
• 4-bit signed integers
• 8-bit (byte) signed and unsigned integers
• 8-bit, 2-digit binary coded decimal numbers
• 16-bit (word) signed and unsigned integers
• 32-bit (long word) signed and unsigned integers
• 16-bit signed fractions
• 32-bit signed fractions
• 36-bit signed fixed-point numbers
• 20-bit effective address consisting of 16-bit byte address and 4-bit

extension

There are 8 bits in a byte, 16 bits in a word. Bit set and clear instructions use
both byte and word operands. Bit test instructions use byte operands.

Negative integers are represented in twos-complement form. Four-bit signed
integers, packed two to a byte, are used only as X and Y offsets in MAC and
RMAC operations. Integers of 32 bits are used only by extended multiply and
divide instructions, and by the associated LDED and STED instructions.

Binary coded decimal numbers are packed, two digits per byte. BCD
operations use byte operands.

16-bit fractions are used in both fractional multiplication and division, and as
multiplicand and multiplier operands in the MAC unit. Bit 15 is the sign bit. An
implied radix point lies between bits 15 and 14. There are 15 bits of magnitude
- the range of values is -1 ($8000) to 1 - 2-15 ($7FFF).

CPU16 REFERENCE MANUAL DATA TYPES

AND ADDRESSING MODES

MOTOROLA

4-1

II

II
4.2

Signed 32-bit fractions are used only by fractional multiplication and division
instructions. Bit 31 is the sign bit. An implied radix point lies between bits 31
and 30. There are 31 bits of magnitude - the range of values is -1
($80000000) to 1 - 2-31 ($7FFFFFFF).

Signed 36-bit fixed-point numbers are used only by the MAC unit. Bit 35 is the
sign bit. Bits [34:31] are sign extension bits. There is an implied radix point
between bits 31 and 30. There are 31 bits of magnitude, but use of the
extension bits allows representation of numbers in the range -16 ($800000000)
to 15.999969482 ($7FFFFFFFF).

Addresses of 20-bits are formed by combining a 16-bit byte address with a 4-bit
address extension. See 4.3 Addressing Modes for more information.

Memory Organization

Both program and data memory are divided into 16 64-kilobyte banks.
Addressing is pseudolinear - a 20-bit extended address can access any byte
location in the appropriate address space.

A word is composed of two consecutive bytes. A word address is normally an
even byte address. Byte 0 of a word has a lower 16-bit address than byte 1.
Long words and 32-bit signed fractions consist of two consecutive words, and
are normally accessed at the address of byte 0 in the word O.

Instruction fetches always access word addresses. Word operands are
normally accessed at even byte addresses, but may be accessed at odd byte
addresses, with a substantial performance penalty.

To be compatible with the MC68HC11, misaligned word transfers and
misaligned stack accesses are allowed. Transferring a misaligned word
requires two successive byte transfer operations.

Figure 4-1 shows shows how each CPU16 data type is organized in memory.
Consecutive even addresses show size and alignment.

MOTOROLA

4-2

DATA TYPES

AND ADDRESSING MODES

CPU16 REFERENCE MANUAL

Memory/Register Data Types

Address Type

$0000
BIT BIT I BIT I BIT I BIT I BIT I BIT I BIT BIT I BIT I BIT I BIT I BIT I BIT I BIT I BIT
15 14 13 12 11 10 9 8 76543210

$0002 BYTEO BYTE1

$0004 ± X OFFSET 1 ± 1 YOFFSET ±I X OFFSET 1 ± 1
$0006 BCD1 1 BCDO BCD1 1
$0008 WORD 0

$OOOA WORD1

$OOOC MSW LONG WORD 0

$OOOE LSW LONG WORD 0

$0010 MSW LONG WORD 1

$0012 LSW LONG WORD 1

$0014 ± <= (Radix Point) 16-BIT SIGNED FRACTION 0

$0016 ± <= (Radix Point) 16-BIT SIGNED FRACTION 1

$0018 ± <= (Radix Point) MSW 32-BIT SIGNED FRACTION 0

$OOlA LSW 32-BIT SIGNED FRACTION 0

$OOlC ± <= (Radix Point) MSW 32-BIT SIGNED FRACTION 1

$OOlE LSW 32-BIT SIGNED FRACTION 1

MAC Data Types

1 35 32 31

1 ± 1 « 1 « I « « 1<= (Radix Point) MSW 32-BIT SIGNED FRACTION

15

LSW 32-BIT SIGNED FRACTION

± 1<= (Radix Point) 16-BIT SIGNED FRACTION

Address Data Type

19 16115

16-Bit Address

Figure 4-1. Data Types and Memory Organization

CPU16 REFERENCE MANUAL DATA TYPES

AND ADDRESSING MODES

YOFFSET

BCDO

I 0

1 0

16

0

MOTOROLA

4-3

II

II

4.3 Addressing Modes

The CPU 16 uses 10 basic types of addressing. There are one or more
addressing modes within each type. Table 4-1 shows the addressing modes.

Table 4-1. Addressing Modes

Mode Mnemonic Description

Accumulator Off.set E,X Index Register X with Accumulator E offset

E,Y Index Register Y with Accumulator E offset

E,Z Index Register Z with Accumulator E offset

Extended EXT Extended

EXT20 20-bit Extended

Immediate IMM8 8-bit Immediate

IMM16 16-bit Immediate

Indexed 8-Bit IND8, ~ Index Register X with unsigned 8-bit offset

IND8, Y Index Register Y with unsigned 8-bit offset

IND8, Z Index Register Z with unsigned 8-bit offset

Indexed 16-Bit IND16,X Index Register X with signed 16-bit offset

IND16, Y Index Register Y with signed 16-bit offset

IND16,Z Index Register Z with signed 16-bit offset

Indexed 20-Bit IND20, X Index Register X with signed 20-bit offset

IND20, Y Index Register Y with signed 20-bit offset

IND20, Z Index Register Z with signed 20-bit offset

Inherent INH Inherent

Post-modified Index IXP Signed 8-bit offset added to Index Register X
after effective address is used

Relative REL8 8-bit relative

REL16 16-bit relative

All modes generate ADDR[15:0]. This address is combined with ADDR[19:16]
from an operand or an extension field to form a 20-bit effective address.

MOTOROLA

4-4

Note

Bank switching is transparent to most instructions. ADDR[19:16] of
the effective address are changed to make an access across a
page boundary. However, extension field values do not change
as a result of effective address computation.

DATA TYPES CPU16 REFERENCE MANUAL

AND ADDRESSING MODES

4.3.1 Immediate Addressing Modes

In the immediate modes, an argument is contained in a byte or word
immediately following the instruction. For IMM8 and IMM16 modes, the effective
address is the address of the argument.

There are three specialized forms of IMM8 addressing.

The AIS, AIX/y/Z, ADDD and ADDE instructions decrease execution time by
sign-extending the 8-bit immediate operand to 16 bits, then adding it to an
appropriate register.

The MAC and RMAC instructions use an 8-bit immediate operand to specify II
two signed 4-bit index register offsets.

The PSHM and PULM instructions use an 8-bit immediate operand to
indicate which registers must be pushed to or pulled from the stack.

4.3.2 Extended Addressing Modes

Regular extended mode instructions contain ADDR[15:0] in the word following
the opcode. The effective address is formed by concatenating the EK field and
the 16-bit byte address. EXT20 mode is used only by JMP and JSR
instructions. JMP and JSR instructions contain a complete 20-bit effective
address - the operand is zero-extended to 24 bits so that the instruction has an
even number of bytes.

4.3.3 Indexed Addressing Modes

In the indexed modes, registers IX, IY, and IZ, together with their associated
extension fields, are used to calculate the effective address.

For 8-bit indexed modes an 8-bit unsigned offset contained in the instruction
is added to the value contained in an index register and its extension field.

For 16-bit modes, a 16-bit signed offset contained in the instruction is added
to the value contained in an index register and its extension field.

For 20-bit modes, a 20-bit signed offset (zero-extended to 24 bits) is added
to the value contained in an index register. These modes are used for JMP
and JSR instructions only.

CPU16 REFERENCE MANUAL DATA TYPES

AND ADDRESSING MODES

MOTOROLA

4-5

4.3.4 Inherent Addressing Mode

Inherent mode instructions use information directly available to the processor to
determine the effective address. Operands (if any) are system resources and
are thus not fetched from memory. .

4.3.5 Accumulator Offset Addressing Mode

Accumulator offset modes form an effective address by sign-extending the
content accumulator E to 20 bits,then adding the result to an index register and
its associated extension field. This mode allows use of an index register and an

II accumulator within a loop without corrupting accumulator D.

A 4.3.6 Relative Addressing Modes

Relative modes are used for branch and long branch instructions. If a branch
condition is satisfied, a byte or word signed twos complement offset is added to
the concatenated PK field and program counter. The new PK : PC value is the
effective address.

4.3.7 Post-Modified Index Addressing Mode

Post-modified index mode is used only by the MOVB and MOVW instructions. A
signed 8-bit offset is added to index register X after the effective address formed
by XK : IX is used. Post-modified mode provides enhanced block-move
capabilities - programmers should carefully consider its effect on pointers.

4.3.8 Use of HC16 Indexed Mo~e to Replace HC11 Direct Mode

In MC68HC11 systems, the direct addressing mode can be used to perform
rapid accesses to RAM or I/O mapped into bank 0 ($0000 to $OOFF), but the
CPU16 uses the first 512 bytes of bank 0 for exception vectors. To provide an
enhanced replacement for direct mode, the ZK field and index register Z have
been assigned reset initialization vectors - by resetting the ZK field to a chosen
page, and using indexed mode addressing, a programmer can access useful
data structures anywhere in the address map.

MOTOROLA

4-6

DATA TYPES

AND ADDRESSING MODES

CPU16 REFERENCE MANUAL

SECTION 5
INSTRUCTION SET

This section contains general information about the instruction set. It is
organized into instruction summaries grouped by function. If an instruction has
a special purpose, such as aiding indexed operations, it appears in the
summary for that function, rather than in a general summary. An instruction that
is used for more than one purpose appears in more than one summary.
SECTION 6 INSTRUCTION GLOSSARY contains detailed information
about individual instructions.

5.1 General

The instruction set is based upon that of the MC68HC11, but the opcode map
has been rearranged to maximize performance with a 16-bit data bus. Most
MC68HC11 instructions are supported by the CPU16, although they may be
executed differently. Much MC68HC11 code will run on the CPU16 following
reassembly. The user must take into account changed instruction times, the
interrupt mask, and the new interrupt stack frame. See 5.13 Comparison of
CPU16 and MC68HC11 Instruction Sets for more information.

The CPU16 has a full range of 16-bit arithmetic and logic instructions, including
signed and unsigned multiplication and division. A number of instructions
support extended addressing and expanded memory space. In addition, there
are special instructions related to digital signal processing.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-1

II

II

5.2 Data Movement Instructions

The CPU16 has a complete set of 8- and 16-bit data movement instructions, as
well as instructions to support 32-bit intermodule bus (1MB) operations.
General-purpose load, store, transfer and move instructions facilitate movement
of data to and from memory and peripherals. Special purpose instructions
enhance indexing, extended addressing, stacking, and digital signal
processi ng.

5.2.1 load Instructions

Load instructions copy memory content into an accumulator or register.
Memory content is not changed by the operation.

There are specialized load instructions for stacking, indexing, extended
addressing, and digital signal processing. Refer to the appropriate summary for
more information.

Table 5-1. load Summary

Mnemonic Function Operation

LDAA Load A (M)=>A

LDAB Load B (M)=>B

LDD Load D (M: M+ 1)=>D

LDE Load E (M: M+ 1)=>E

LDED Load Concatenated E and D (M: M+ 1)=>E
(M + 2 : M + 3) => D

5.2.2 Move Instructions

These instructions move data bytes or words from one location to another in
memory.

Mnemonic

MOTOROLA

5-2

MOVB

MOVW

Table 5-2. Move Summary

Function Operation

Move Byte (M1) => M2

Move Word (M : M + 11) => M : M + 12

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.2.3 Store Instructions

Store instructions copy the content of an accumulator or register to memory.
Register/accumulator content is not changed by the operation.

There are specialized store instructions for indexing, extended addressing, and
CCR manipulation. Refer to the appropriate summary for more information.

Table 5-3. Store Summary

Mnemonic Function Operation

STAA Store A (A)=;M

STAB Store B (B)=;M

STO Store 0 (0) =;M :M+ 1

STE Store E (E) =;M: M + 1

STEO Store Concatenated 0 and E (E)=;M: M+ 1

(0) =; M + 2 : M + 3

5.2.4 Transfer Instructions

These instructions transfer the content of a register or accumulator to another
register or accumulator. Content of the source is not changed by the operation.

There are specialized transfer instructions for stacking, indexing, extended
addressing, CCR manipulation, and digital signal processing. Refer to the
appropriate summary for more information.

Table 5-4. Transfer Summary

Mnemonic Function

TAB Transfer A to B

TBA Transfer B to A

TOE Transfer 0 to E

TED Transfer E to D

CPU16 REFERENCE MANUAL INSTRUCTION SET

Operation

(A) =;B

(B) =;A

(O)=;E

(E)=;D

MOTOROLA

5-3

II

5.2.5 Exchange Instructions

These instructions exchange the contents of pairs of registers or accumulators.
There are specialized exchange instructions for indexing. Refer to the
appropriate summary for more information.

Table 5-5. Exchange Summary

Mnemonic Function Operation

XGAB Exchange A with B (A)~(B)

XGDE Exchange D with E (D)~(E)

Mathematic Instructions

The CPU16 has a full set of 8- and 16-bit mathematic instructions. There are
instructions for signed and unsigned arithmetic, division and multiplication, as
well as a complete set of 8- and 16-bit Boolean operators.

Special arithmetic and logic instructions aid stacking operations, indexing,
extended addressing, BCD calculation, and condition code register
manipulation. There are also dedicated multiply and accumulate unit
instructions. Refer to the appropriate instruction summary for more information.

5.3.1 Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit arithmetic instructions can be performed
between registers or between registers and memory. Instructions that also add
or subtract the value of the CCR carry bit facilitate multiple precision
computation.

MOTOROLA

5-4
INSTRUCTION SET CPU16 REFERENCE MANUAL

Mnemonic

ABA

ADCA

ADCB

ADCD

ADCE

ADDA

ADDB

ADDD

ADDE

ADE

SBA

SBCA

SBCB

SBCD

SBCE

SDE

SUBA

SUBB

SUBD

SUBE

CPU16 REFERENCE MANUAL

Table 5-6. Addition Summary

Function Operation

Add BtoA (A)+ (B) =}A

Add with Carry to A (A) + (M) + C =} A

Add with Carry to B (B) + (M) + C =} B

Add w~h Carry to D (D) + (M : M + 1) + C =} D

Add with Carry to E (E) + (M : M + 1) + C =} E

Add to A (A) + (M)=}A

Add to B (B) + (M) =}B

Add to D (D) + (M : M + 1) =} D

Add to E (E) + (M : M + 1) =} E

AddDtoE (E) + (D) =}E

Table 5-7. Subtraction Summary

Subtract B from A

Subtract with Carry from A

Subtract with Carry from B

Subtract with Carry from D

Subtract with Carry from E

Subtract D from E

Subtract from A

Subtract from B

Subtract from D

Subtract from E

INSTRUCTION SET

(A)-(B)=}A

(A)- (M)-C =}A

(B) - (M) - C =} B

(D) - (M : M + 1) - C =} D

(E) - (M : M + 1) - C =} E

(E)-(D)=}E

(A)-(M)=}A

(B) - (M) =}B

(D) - (M : M + 1) =} D

(E) - (M : M + 1) =} E

MOTOROLA

5-5

II

II

The following table shows the type of arithmetic operation performed by each
addition and subtraction instruction.

Mnemonic

MOTOROLA

5-6

ABA
ADCA
ADCB
ADCD
ADCE
ADDA
ADDB
ADDD
ADDE
ADE
SBA

SBCA
SBCB
SBCD
SBCE
SDE

SUBA
SUBB
SUBD
SUBE

Table 5-8. Arithmetic Operations

S-bit 16-bit X±X X±M X±M±C
0 0

0 0

0 - 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.3.2 Binary Coded Decimal Instructions

To add binary coded decimal operands, use addition instructions that set the
half-carry bit in the CCR, then adjust the result with the DAA instruction.

Table 5-9. BCD Summary

ABA Add Bto A (A) + (B)~A

ADCA Add with Carry to A (A) + (M) + C~A

ADCB Add with Carry to B (B)+ (M)+ C~B

ADDA Add to A (A)+(M)~A

ADDB Add to B (B)+(M)~B

DAA Decimal Adjust A (A)10

SXT Sign Extend B into A If 87= 1
then A=$FF
else A = $00

The following table shows DAA operation for all legal combinations of input
operands. Columns 1 through 4 represent the results of addition operations on
BCD operands. The correction factor in column 5 is added to the accumulator
to restore the result of an operation on two BCD operands to a valid BCD value,
and to set or clear the C bit. All values are hexadecimal.

Table 5-10. DAA Function Summary

1 2 3 4 5

Initial Value of Initial Value of Correction
C Bit Value A[7:4] H Bit Value A[3:0] Factor

0 0-9 0 0-9 00

0 0-8 0 A-F 06

0 0-9 1 0-3 06

0 A-F 0 0-9 60

0 9-F 0 A-F 66

0 A-F 1 0-3 66

1 0-2 0 0-9 60

1 0-2 0 A-F 66

1 0-3 1 0-3 66

CPU16 REFERENCE MANUAL INSTRUCTION SET

6

Corrected
C Bit Value

0

0

0

1

1

1

1

1

1

MOTOROLA

5-7

II

II

5.3.3 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of registers or
between a register and memory. The result is not stored, but condition codes
are set by the operation. These instructions are generally used to establish
conditions for branch instructions.

Table 5-11. Compare and Test Summary

CBA Compare A to B (A)-(B)

CMPA Compare A to Memory (A)-(M)

CMPB Compare B to Memory (B)-(M)

CPD Compare D to Memory (D)-(M: M + 1)

CPE Compare E to Memory (E) - (M : M + 1)

TST Test for Zero or Minus (M)-$OO

TSTA Test A for Zero or Minus (A)-$OO

TSTB Test B for Zero or Minus (B)-$OO

TSTD Test D for Zero or Minus (D)-$OOOO

TSTE Test E for Zero or Minus (E)-$OOOO

TSTW Test for Zero or. Minus Word (M : M + 1) - $0000

5.3.4 Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit multiplication, as
well as for signed 16-bit fractional multiplication. Eight-bit multiplication
operations have a 16-bit product. Sixteen-bit multiplication operations can
have either 16- or 32-bit products.

All division operations have 16-bit divisors, but dividends can be, either 16- or
32-bit numbers. Quotients and remainders of all division operations are 16-bit
numbers. There are instructions for signed and unsigned division, as well as for
fractional division.

Fractional multiplication and division use 16-bit operands. Bit 15 is the sign bit.
There is an implied radix point between bits 15 and 14. The range of values is
-1 ($8000) to 0.999969482 ($7FFF). The MSB of the result is its sign bit, and
there is an implied radix pOint between the sign bit and the rest of the result.

There are special 36-bit signed fractional multiply and accumulate unit
instructions to support digital signal processing operations. Refer to the
appropriate summary for more information.

MOTOROLA

5-8

INSTRUCTION SET CPU16 REFERENCE MANUAL

Table 5-12. Multiplication and Division Summary

EDIV Extended Unsigned Divide (E:D}/(IX)
Quotient ~ IX

Remainder ~ D

EDIVS Extended Signed Divide (E: D)/(IX}
Quotient ~ IX

Remainder ~ D

EMUL Extended Unsigned Multiply (E) * (D) ~ E : D

EMULS Extended Signed Multiply (E) * (D) ~ E : D

FDIV Fractional Divide (D) / (IX) ~ IX

remainder ~ D

FMULS Fractional Signed Multiply (E) * (D) ~ E : D

IDIV Integer Divide (D) / (IX) ~ IX

remainder ~ 0

MUL Multiply (A) * (B}~D

5.3.5 Decrement and Increment Instructions

These instructions are optimized 8- and 16-bit addition and subtraction
operations. They are generally used to implement counters. Because they do
not affect the carry bit in the CCR, they are particularly well suited for loop
counters in multiple-precision computation routines.

Table 5-13. Decrement and Increment Summary

DEC

DECA

DECB

DECW

INC

INCA

INCB

INCW

CPU16 REFERENCE MANUAL

Decrement Memory

Decrement A

Decrement B

Decrement Memory Word

Increment Memory

Increment A

Increment B

Increment Memory Word

INSTRUCTION SET

(M}-$01 ~M

(A}-$01 ~A

(B}-$01 ~B

(M: M+ 1}-$0001 ~M :M+ 1

(M}+$01 ~M

(A}+$01 ~A

(B) + $01 ~ B

(M : M + 1) + $0001 ~ M : M + 1

MOTOROLA

5-9

II

II

5.3.6 Clear, Complement, and Negate Instructions

Each of these instructions performs a specific binary operation on a value in an
accumulator or in memory. Clear operations set the value to 0, complement
operations replace the value with its ones complement, and negate operations
replace the value with its twos complement.

Table 5-14. Clear, Complement, and Negate Summary

CLR Clear Memory $00 => M

CLRA Clear A $00 => A

CLRB ClearB $00 => B

CLAD ClearD $0000 => D

CLRE ClearE $0000 => E

CLAW Clear Memory Word $0000 => M : M + 1

COM Ones Complement Byte $FF-(M) =>M

COMA Ones Complement A $FF - (A) =>A

COMB Ones Complement B $FF - (B) =>B

COMD Ones Complement D $FFFF - (D) => D

COME Ones Complement E $FFFF - (E) => E

COMW Ones Complement Word $FFFF - M : M + 1 => M : M + 1

NEG Twos Complement By1e $00 - (M) => M

NEGA Twos Complement A $00- (A) =>A

NEGB Twos Complement B $OO-(B) => B

NEGD Twos Complement D $0000 - (D) => D

NEGE Twos Complement E $0000 - (E) => E

NEGW Twos Complement Word $0000 - (M : M + 1) => M : M + 1

5.3.7 Boolean Logic Instructions

Each of these instructions performs the Boolean logic operation represented by
the mnemonic. There are 8- and 16-bit versions of each instruction.

There are special forms of logic instructions for stack pointer, program counter,
index register, and address extension field manipulation. Refer to the
appropriate summary for more information.

MOTOROLA

5-10

INSTRUCTION SET CPU16 REFERENCE MANUAL

Table 5-15. Boolean Logic Summary

Mnemonic Function Operation

ANOA ANOA (A)· (M)=}A

ANOB ANOB (B)· (M)=}B

ANOO ANOO (0)·(M:M+1)=}0

ANOE ANOE (E) • (M : M + 1) =} E

EORA Exclusive OR A (A)(j) (M) =}A

EORB Exclusive OR B (B) (j) (M) =}B

EORO Exclusive OR 0 (D) (j) (M : M + 1) =} 0

EORE Exclusive OR E (E) (j) (M : M + 1) =} E

ORAA ORA (A) + (M) =}A

ORAB ORB (B)+(M) =}B

ORO ORO (D) + (M : M + 1) =} 0

ORE ORE (E) + (M : M + 1) =} E

5.4 Bit Test and Manipulation Instructions

These operations use a mask value to test or change the value of individual bits
in an accumulator or in memory. BITA and BITB provide a convenient means of
setting condition codes without altering the value of either operand.

Table 5-16. Bit Test and Manipulation Summary

Mnemonic

BITA

BITB

BClR

BClRW

BSET

BSE1W

CPU16 REFERENCE MANUAL

Function

Bit Test A

Bit Test B

Clear Bit(s)

Clear Bit(s) Word

Set Bit(s)

Set Sitts) Word

INSTRUCTION SET

Operation

(A)·(M)

(B)·(M)

(M) • (Mask) =} M

(M : M + 1) • (Mask) =} M : M + 1

(M) + (Mask) =} M

(M : M + 1) + (Mask) =} M : M + 1

MOTOROLA

5-11

II

II

5.5 Shift and Rotate Instructions

There are shift and rotate commands for all accumulators, for memory bytes,
and for memory words. All shift and rotate operations pass the ·shifted-out bit
through the carry bit in the CCR in order to facilitate multiple-byte and multiple
word operations. There are no separate logical left shift operations. Use
arithmetic shift left (ASL) for logic shift left (LSL) functions - LSL mnemonics
will be assembled as ASL operations.

Special shift commands move multiply and accumulate unit accumulator bits.
See 5.10 Digital Signal Processing Instructions for more information.

MOTOROLA

5-12

LSR

LSRA

LSRB

LSRD

LSRE

LSRW

Table 5-17. Logic Shift Summary

Logic Shift Right ~

0-7\ I I I I I I I ~
b7 bO

Logic Shift Right A ~

0-7\ I I I I I I I ~
b7 bO

Logic Shift Right B ~

0-7\ I I I I I I I ~
b7 bO

Logic Shift Right D ~

O~---~
b15 bO

Logic Shift Right E ~

O-U:C---~
b15 bO

Logic Shift Right Word ,
~

O-U:C---~
b15 bO

INSTRUCTION SET CPU16 REFERENCE MANUAL

Table 5-18. Arithmetic Shift Summary

Mnemonic Function

ASL Arithmetic Shift Left
(LSL)

ASLA Arithmetic Shift Left A
(LSLA)

ASLB Arithmetic Shift Left B
(LSLB)

ASLD Arithmetic Shift Left D
(LSLD)

ASLE Arithmetic Shift Left E
(LSLE)

ASLW Arithmetic Shift Left Word
(LSLW)

ASR Arithmetic Shift Right

ASRA Arithmetic Shift Right A

ASRB Arithmetic, Shift Right B

ASRD Arithmetic Shift Right D

ASRE Arithmetic Shift Right E

ASRW Arithmetic Shift Right Word

CPU16 REFERENCE MANUAL INSTRUCTION SET

Operation

E

!D-l I I I I I I I Iro
b7 bO
E

!D-l 1 I I 1 I I I Iro
b7 bO
E

!D-l 1 1 1 1 1 1 1 Iro
b7 bO

E

@}-[II - - -=rI}-O
b15 bO

E

@}-[II - - -=rI}-O
b15 bO

E
@}-[II - - -=r:JJ- 0

b15 bO
)

421 I I 1 1 I 1 KQ]
b7 bO

)

421 1 1 1 1 1 I KQ]
b7 bO

421
)

I 1 1 1 1 1 KQ]
b7 bO

4trI) - - -:::r::LKQ]
b15 bO

4trI) - - -:::r::LKQ]
b15 bO

4trI) - - -:::r::LKQ]
b15 bO

MOTOROLA

5-13

II

II

ROL

ROLA

ROLB

ROLD

ROLE

ROLW

ROR

RORA

RORB

. RORD

MOTOROLA

5-14

RORE

RORW

Table 5-19. Rotate Summary

Rotate Left

L£iH ~ I I I I I I I
b7 bO

Rotate Left A

L£iH ~ I I I I I I I
b7 bO

Rotate Left B

L£iH ~ I I I I I I I
b7 bO

Rotate Left D 4ciHIE- --IIJJ
b15 bO

Rotate Left E 4ciHIE ---IIJJ
b15 bO

Rotate Left Word 4ciHIE ---IIJJ
b15 bO

Rotate Right y ~ I I I I I I I
b7 bO

Rotate Right A

Y ~ I I I I I I I
b7 bO

Rotate Right B

Y ~ I I I I I I I
b7 bO

Rotate Right D

~---~
b15 bO

Rotate Right E

~---~
b15 bO

Rotate Right Word

~---~
b15 bO

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.6 Program Control Instructions

Program control instructions affect the sequence of instruction execution.

Branch instructions cause sequence to change when specific conditions exist.
The CPU16 has short, long, and bit-condition branches.

Jump instructions cause immediate changes in sequence. The CPU16 has a
true 20-bit address jump instruction.

Subroutine instructions optimize the process of temporarily transferring control
to a segment of code that performs a particular task. The CPU16 can branch or
jump to subroutines.

Interrupt instructions handle immediate transfer of control to a routine that
performs a critical task. Software interrupts are a type of exception. SECTION
9 EXCEPTION PROCESSING covers interrupt exception processing in
detail.

5.6.1 Short Branch Instructions

Short branch instructions operate as follows. When a specified condition is met,
a signed 8-bit offset is added to the value in the program counter. If addition
causes the value in the PC to be greater than $FFFF or less than $0000, the PK
extension field is incremented or decremented. Program execution continues at
the new extended address.

Short branch instructions can be classified by the type of condition that must be
satisfied in order for a branch to be taken. Some instructions belong to more
than one classification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register
is in a specific state as a result of a previous operation.

Unsigned conditional branches are taken when comparison or test of
unsigned quantities results in' a specific combination of condition code
register bits.

Signed branches are taken when comparison or test of signed quantities
results in a specific combination of condition code register bits.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-15

II

II

MOTOROLA

5-16

Mnemonic

BRA

BRN

Mnemonic

BCC'

BCS

BEQ

BMI

BNE

BPL

BVC

BVS

Mnemonic

BCC

BCS

BEQ

BHI

BLS

BNE

Mnemonic

BEQ

BGE

BGT

BLE

BLT

BNE

Table 5-20. Short Branch Summary

Unary Branches

Opcode Equation Condition

BO 1 =1 True

B1 1=0 False

Simple Branches

Opcod$ Equation Condition

B4 c=o Equation

B5 C=1 Equation

B7 Z=1 Equation

BB N=1 Equation

B6 Z=O Equation

BA N=O Equation

B8 v=o Equation

B9 V=1 Equation

Unsigned Branches

Opcode Equation Condition

B4 C=O (X)~(M)

B5 C=1 (X) < (M)

B7 Z=1 (X)=(M)

B2 C+Z=O (X»(M)

B3 C+Z=1 (X)~(M)

B6 Z=O (X)#(M)

Signed Branches

Opcode Equation Condition

B7 Z=1 (X)=(M)

BC N(JlV=O (X)~(M)

BE Z+(N(JlV)=O (X»(M)

BF Z+(N$V)=1 (X)~(M)

BD N(JlV=1 (X)«M)

B6 Z=O (X) # (M)

INSTRUCTION SET CPU16 REFERENCE MANUAL

Note

The numeric range of short branch offset values is $80 (-128) to
$7F (127), but actual displacement from the instruction differs from
the range for two reasons.

First, PC values are automatically aligned to word boundaries.
Only even offsets are valid - an odd offset value is rounded
down. Maximum positive offset is $7E.

Second, instruction pipelining affects the value in the PC at the
time an instruction executes. The value to which the offset is
added is the address of the instruction plus $0006. At maximum
positive offset ($7E), displacement from the branch instruction is
132. At maximum negative offset ($80), displacement is -122.

5.6.2 Long Branch Instructions

Long branch instructions operate as follows. When a specified condition is met,
a signed 16·bit offset is added to the value in the program counter. If addition
causes the value in the PC to be greater than $FFFF or less than $0000, the PK
extension field is incremented or decremented. Program execution continues at
the new extended address. Long branches are used when large displacements
between decision-making steps are necessary.

Long branch instructions can be classified by the type of condition that must be
satisfied in order for a branch to be taken. Some instructions belong to more
than one classification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register
is in a specific state as a result of a previous operation.

Unsigned branches are taken when comparison or test of unsigned
quantities results in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities
results in a specific combination of condition code register bits.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5·17

II

II

MOTOROLA

5-18

Mnemonic

LBRA

LBRN

Mnemonic

LBCC

LBCS

LBEQ

LBEV

LBMI

LBMV

LBNE

LBPL

LBVC

LBVS

Mnemonic

LBCC

LBCS

LBEQ

LBHI

LBLS

LBNE

Mnemonic

LBEQ

LBGE

LBGT

LBLE

LBLT

LBNE

Table 5-21. Long Branch Instructions

Unary Branches

Opcode Equation Condition

3780 1 = 1 True

3781 1=0 False

Simple Branches

Opcode Equation Condition

3784 c=o Equation

3785 C=l Equation

3787 Z=l Equation

3791 EV=l Equation

378B N=l Equation

3790 MV=l Equation

3786 z=o Equation

378A N=O Equation

3788 v=o Equation

3789 V=l Equation

Unsigned Branches

Opcode Equation Condition

3784 C=O (X)~(M)

3785 C=l (X)«M)

3787 Z=l (X)=(M)

3782 C+Z=O (X»(M)

3783 C+Z=l (X)~(M)

3786 Z=O (X)*(M)

Signed Branches

Opcode Equation Condition

3787 Z=l (X) = (M)

378C N(!)V=O (X)~(M)

378E Z+(N(!)V)=O (X»(M)

378F Z+(N(!)V)=l (X)~(M)

3780 N(!)V=l (X) «M)

3786 Z=O (X)*(M)

INSTRUCTION SET CPU16 REFERENCE MANUAL

Note

The numeric range of long branch offset values is $8000
(-32768) to $7FFF (32767), but actual displacement from the
instruction differs from the range for two reasons.

First, PC values are automatically aligned to word boundaries.
Only even offsets are valid - an odd offset value will be rounded
down. Maximum positive offset is $7FFE.

Second, instruction pipelining affects the value in the PC at the
time an instruction executes. The value to which the offset is
added is the address of the instruction plus $0006. At maximum
positive offset ($7FFE), displacement from the instruction is 32772.
At maximum negative offset ($8000), displacement is -32762.

5.6.3 Bit Condition Branch Instructions

Bit condition branches are taken when specific bits in a memory byte are in a
specific state. A mask operand is used to test a memory location pOinted to by a
20-bit indexed or extended effective address. If the bits in memory match the
mask, an 8- or 16-bit signed relative offset is added to the current value of the
program counter. If addition causes the value in the PC to be greater than
$FFFF or less than $0000, the PK extension field is incremented or
decremented. Program execution continues at the new extended address.

Table 5-22. Bit Condition Branch Summary

Mnemonic Addressing Mode

BRCLR INOS, X

IN OS, Y

INOS,Z

IN016, X

IN016, Y

IN016,Z

EXT

BRSET INOS, X

IN OS, Y

INOS,Z

IN016,X

IN016, Y

IN016,Z

EXT

CPU16 REFERENCE MANUAL INSTRUCTION SET

Opcode

CB

OB

EB

OA

1A

2A

3A

SB

9B

AB

OB

1B

2B

3B

Equation

(M) • (Mask) = 0

(M) • (Mask) = 0

MOTOROLA

5-19

II

II

Note

The numeric range of 8-bit offset values is $80 (-128) to $7F
(127), and the numeric range of 16-bit offset values is $8000
(-32768) to $7FFF (32767), but actual displacement from the
branch instruction differs from the range, for two reasons.

First, PC values are automatically aligned to word boundaries.
Only even offsets are valid - an odd offset value is rounded
down. Maximum positive 8-bit offset is $7E; maximum positive
16-bit offset is $7FFE.

Second, instruction pipelining affects the value in the PC at the
time an instruction executes. The value to which the offset is
added is the address of the instruction plus $0006. Maximum
positive ($7E) and negative ($80) 8-bit offsets correspond to
displacements of 132 and -122 from the branch instruction.
Maximum positive ($7FFE) and negative ($8000) 16-bit offsets
correspond to displacements of 32772 and -32762.

5.6.4 Jump Instruction

The CPU16 JMP instruction uses 20-bit addressing, so that control can be
passed to any address in the memory map. It should be noted that BRA and
LBRA execute in fewer cycles than the indexed forms of JMP.

Table 5·23. Jump Summary

Mnemonic Function Operation

JMP Jump 20-bit Address ~ PK : PC

5.6.5 Subroutine Instructions

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a
jump (JSR). A single instruction, RTS returns control to the calling routine.

All three types of calling instructions stack return PC and CCR values prior to
transferring control to a subroutine. Stacking the CCR also saves the PK
extension field. Other resources can be saved by means of the PSHM
instruction, if necessary.

MOTOROLA

5-20

INSTRUCTION SET CPU16 REFERENCE MANUAL

Table 5-24. Subroutine Summary

Mnemonic Function Operation

BSR Branch to Subroutine (PK : PC) - 2 => PK : PC
Push (PC)

(SK : SP) - 2 => SK : SP
Push (CCR)

(SK : SP) - 2 => SK : SP

(PK : PC) + Offset => PK : PC

JSR Jump to Subroutine Push (PC)
(SK : SP) - 2 => SK : SP

Push (CCR)
(SK : SP) - 2 => SK : SP

20-bit Address => PK : PC

LBSR Long Branch to Subroutine Push (PC)
(SK : SP) - 2 => SK : SP

Push (CCR)
(SK : SP) - 2 => SK : SP

(PK : PC) + Offset => PK : PC

RTS Return from Subroutine (SK : SP) + 2 => SK : SP
Pull PK

(SK : SP) + 2 => SK : SP
Pull PC

(PK : PC) - 2 => PK : PC

Note

Instruction pipe lining affects the operation of BSR. When a
subroutine is called, PK : PC contain the address of the calling
instruction plus $0006. LBSR and JSR stack this value, but BSR
must adjust it prior to stacking.

LBSR and JSR are 4-byte instructions. For program execution to
resume at the instruction immediately following them, RTS must
subtract $0002 from the stacked PK : PC value.

BSR is a 2-byte instruction. BSR subtracts $0002 from the stacked
value prior to stacking so that RTS will work correctly.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-21

I

I

5.6.6 Interrupt Instructions

The SWI instruction initiates synchronous exception processing. First, return
PC and CCR values are stacked (stacking the CCR saves the PK extension
field). After return values are stacked, the PK field is cleared, and the PC is
loaded with exception vector 6 (content of address $OOOC).

The RTI instruction is used to terminate all exception handlers, including
interrupt service routines. It causes normal execution to resume with the
instruction following the last instruction that executed prior to interrupt. See
SECTION 9 EXCEPTION PROCESSING for more information.

Table 5-25. Interrupt Summary

Mnemonic Function Operation

MOTOROLA

5-22

RTI Return from Interrupt (SK : SP) + 2 => SK : SP
PuliCCR

(SK : SP) + 2 => SK : SP
Pull PC

(PK : PC) - 6 => PK : PC

SWI Software Interrupt (PK : PC) + 2 => PK : PC
Push (PC)

(SK : SP) - 2 => SK : SP
Push (CCR)

(SK: SP)-2 => SK: SP

$0 => PK
SWI Vector => PC

Note

Instruction pipelining affects the operation of SWI. When an
interrupt occurs, PK : PC contain the address of the interrupted
instruction plus $0006. This value is stacked during asynchronous
exception processing, but synchronous exceptions, such as SWI,
must adjust the stacked value so that RTI can work correctly.

For program execution to resume with the interrupted instruction
following an asynchronous interrupt, RTI must subtract $0006 from
the stacked PK : PC value.

Synchronous interrupts allow an interrupted instruction to finish
execution before exception processing begins. The SWI
instruction must add $0002 prior to stacking in order for execution
to resume correctly.

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.7 Indexing and Address Extension Instructions

The CPU16 has a complete set of instructions that enable a user to take full
advantage of 20-bit pseudolinear addressing. These instructions use
specialized forms of mathematic and data transfer instructions to perform index
register manipulation and extension field manipulation.

5.7.1 Indexing Instructions

Indexing instructions perform 8- and 16-bit operations on the three index
registers and accumulators, other registers, or memory. Index addition and
transfer instructions also affect the associated extension field.

Mnemonic

ABX

ABV

ABZ

ADX

ADV

ADZ

AEX

AEV

AEZ

AIX

AIY

AIZ

Mnemonic

CPX

CPY

CPZ

Mnemonic

LDX

LDY

LDZ

CPU16 REFERENCE MANUAL

Table 5-26. Indexing Summary

Addition Instructions

Function

Add B to IX

Add B to IV

Add Bto IZ

Add Dto IX

Add Dto IV

Add Dto IZ

Add E to IX

Add E to IV

Add E to IZ

Add Immediate Value to IX

Add Immediate Value to IY

Add Immediate Value to IZ

Compare Instructions

Function

Compare IX to Memory

Compare IY to Memory

Compare IZ to Memory

Load Instructions

Function

Load IX

Load IY

Load IZ

INSTRUCTION SET

Operation

(XK : IX) + (000 : B) => XK : IX

(VK : IV) + (000 : B) => VK : IV

(ZK : Z) + (000 : B) => ZK : IZ

(XK : IX) + (« D) => XK : IX

(VK : IV) + (« D) => VK : IV

(ZK: IZ) + (<< D) =>ZK: IZ

(XK : IX) + (« D)=> XK : IX

(VK : IV) + (« E) => VK : IV

(ZK : IZ) + (« E) => ZK : IZ

XK: IX + (<< IMM8/16) => XK: IX

YK: IY + (<< IMM8/16) => YK: IY

ZK : IZ + (« IMM8/16) => ZK : IZ

Operation

(IX) - (M : M + 1)

(IY) - (M : M + 1)

(IZ) - (M : M + 1)

Operation

(M : M + 1) => IX

(M : M + 1) => IY

(M : M + 1) => IZ

MOTOROLA

5-23

II

II

Mnemonic

STX

STY

SlZ

Mnemonic

TSX

TSV

TSZ

TXS

TXV

TXZ

TYS

TYX

TYZ

lZS

TZX

TZY

Mnemonic

MOTOROLA

5-24

XGOX

XGOV

XGOZ

XGEX

XGEV

XGEZ

Table 5-26. Indexing Summary (Continued)

Store Instructions

Function Operation

Store IX (IX)~M:M+1

Store IV (IV)~M:M+1

Store IZ (Il) ~M :M+ 1

Transfer Instructions

Function Operation

Transfer SP to IX (SK : SP) + 2 ~ XK : IX

Transfer SP to IV (SK: SP) + 2 ~ VK: IV

Transfer SP to IZ (SK :SP) +2 ~ZK: IZ

Transfer IX to SP (XK : IX) - 2 ~ SK : SP

Transfer IX to IV (XK : IX) ~ VK : IV

Transfer IX to IZ (XK : IX) ~ ZK : IZ

Transfer IV to SP (VK : IV) - 2 ~ SK : SP

Transfer IV to IX (VK : IV) ~ XK : IX

Transfer IV to IZ (VK: IV) ~ZK: IZ

Transfer IZ to SP (ZK : IZ) - 2 ~ SK : SP

Transfer IZ to IX (ZK : IZ) ~ XK : IX

Transfer IZ to IV (ZK: IZ) ~ZK: IV

Exchange Instructions

Function Operation

Exchange 0 with IX (0) <=) (IX)

Exchange 0 with IV (0) <=) (IV)

Exchange 0 with IZ (0) <=) (IZ)

Exchange E with IX (E) <=) (IX)

Exchange E with IV (E) <=) (IV)

Exchange E with IZ (E) <=) (IZ)

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.7.2 Address Extension Instructions

Address extension instructions transfer extension field contents to or from
accumulator B.. Other types of operations can be performed on the extension
field value while it is in the accumulator.

Table 5-27. Address Extension Summary

Mnemonic Function Operation

TBEK Transfer B to EK (B) =} EK

TBSK Transfer B to SK (B) =}SK

TBXK Transfer B to XK (B) =}XK

TBYK Transfer B to YK (B) =} YK

TBZK Transfer B to ZK (B) =}ZK

TEKB Transfer EK to B $0 =} B[7:4]

(EK) =} 8[3:0]

TSKB Transfer SK to B (SK) =} B[3:0]

$0 =} 8[7:4]

TXK8 Transfer XK to 8 $0 =} 8[7:4]

(XK) =} B[3:0]

TYKB Transfer YK to B $0 =} 8[7:4]

(YK) =} B[3:0]

TZK8 Transfer ZK to B $0 =} 8[7:4]

(ZK) =} B[3:0]

5.8 Slacking Instructions

There are two types of stacking instructions. Stack pointer instructions use
specialized forms of mathematic and data transfer instructions to perform stack
pointer manipulation. Stack operation instructions save information on and
retrieve information from the systel11 stack.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-25

II

II

Mnemonic

AIS

CPS

LOS

STS

TSX

TSY

TSZ

TXS

TYS

lZS

Mnemonic

MOTOROLA

5-26

PSHA

PSHB

PSHM

PULA

PULB

PULM

Table 5-28. Stacking Summary

Stack Pointer Instructions

Function Operation

Add Immediate Data to SP SK: SP + (" IMM16) ~ SK: SP

Compare SP to Memory (SP) - (M : M + 1)

Load SP (M: M+ 1)~SP

Store SP (SP) ~M :M+ 1

Transfer SP to IX (SK : SP) + 2 ~ XK : IX

Transfer SP to IY (SK : SP) + 2 ~ YK : IY

Transfer SP to IZ (SK : SP) + 2 ~ ZK : IZ

Transfer IX to SP (XK : IX) - 2 ~ SK : SP

Transfer IY to SP (YK: IY) -2 ~ SK: SP

Transfer IZ to SP (ZK : IZ) - 2 ~ SK : SP

Stack Operation Instructions

Function Operation

Push A (SK : SP) + 1 ~ SK : SP
Push (A)

(SK : SP) - 2 ~ SK : SP

Push B (SK : SP) + 1 ~ SK : SP
Push (B)

(SK : SP) - 2 ~ SK : SP

Push Multiple Registers For mask bits 0 10 6 :

Mask bits:
O=D 1=E If mask bit sel
2= IX 3= IY Push register
4= IZ 5=K (SK : SP) - 2 ~ SK : SP
6=CCR 7 = (reserved)

Pull A (SK : SP) + 2 ~ SK : SP
Pull (A)

(SK : SP) - 1 ~ SK : SP

Pull B (SK : SP) + 2 ~ SK : SP
Pull (B)

(SK : SP) - 1 ~ SK : SP

Pull Multiple Registers For mask bits 0 to 7:

Mask bits:
0= CCR[15:4] 1=K If mask bil set
2= IZ 3= IY (SK : SP) + 2 ~ SK : SP
4= IX 5=E Pull register
6=D 7 = (reserved)

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.9 Condition Code Instructions

Condition code instructions use specialized forms of mathematic and data
transfer instructions to perform condition code register manipulation. Interrupts
are not acknowledged until after the instruction following ANOP, ORP, TAP, and
TOP has executed. Refer to 5.11 Stop and Wait Instructions for more
information.

Table 5-29. Condition Code Summary

Mnemonic Function Operation

ANDP ANDCCR (CCR) • IMM16 => CCR[15:4]

ORP ORCCR (CCR) + IMM16 => CCR[15:4]

TAP Transfer A to CCR (A[7:0]) => CCR[15:8]

TOP Transfer 0 to CCR (D) => CCR[15:4]

TPA Transfer CCR MSB to A (CCR[15:8]) => A

TPD Transfer CCR to 0 (CCR) =>0

5.10 Digital Signal Processing Instructions

OSP instructions use the CPU16 multiply and accumulate unit to implement
digital filters and other signal processing functions. Other instructions, notably
those that operate on concatenated E and 0 accumulators, are also used. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more information.

Table 5-30. DSP Summary

Mnemonic Function

ACE Add E to AM[31 :15]

ACED Add concatenated E and 0 to AM

ASLM Arithmetic Shift Left AM

ASRM Arithmetic Shift Right AM

CLRM Clear AM

LDHI Initialize HR and IR

- CPU16 REFERENCE MANUAL INSTRUCTION SET

Operation

(AM[31 :15]) + (E) => AM

(E : D) + (AM) => AM

(

~ - - -::::IIfr-O
b35 bO

40I) - - -=r:::r:J-7!IJ
b35 bO

$000000000 => AM[35:0]

(M : M + 1)X => HR

(M : M + 1)y => IR

MOTOROLA

5-27

II

II

MAC

PSHMAC

PULMAC

RMAC

TDMSK

TEDM

TEM

TMER

TMET

TMXED

MOTOROLA

5-28

Table 5-30. DSP Summary (Continued)

Multiply and Accumulate (HR) ;, (IR) => E : D
Signed 16-Bit Fractions

(AM) + (E : D) =>AM

Qualified (IX) => IX

Qualified (IY) => IY

(HR)=> IZ

(M : M + l)x => HR
(M : M + 1)y => IR

Push MAC State MAC Registers => Stack

Pull MAC State Stack => MAC Registers

Repeating ,
Repeat until (E) < 0

Multiply and Accumulate
(AM) + (H) * (I) => AM Signed 16-Bit Fractions
Qualified (IX) => IX;

Qualified (IY) => IY;

(M : M + 1)X => H;
(M:M+1)y=>1

(E)-1 =>E

Transfer D to XMSK : YMSK (D[15:8]) => X MASK

(D17:0]) => Y MASK

Transfer E and D to AM[31 :0] (D) => AM[15:0]
Sign Extend AM

(E) =>AM[31:16]
AM[32:35] = AM31

Transfer E to AM[31 :16] (E) => AM[31 :16]
Sign Extend AM

$00 => AM[15:0]
ClearAMLSB

AM[32:35] = AM31

Transfer AM to E Rounded Rounded (AM) => Temp

If (SM. (EV + MV))

then Saturation => E

else Temp[31 :16] => E

Transfer AM to E Truncated If (SM. (EV + MV))

then Saturation => E

else AM[31:16] => E

Transfer AM to IX : E : D AM[35:32] => IX[3:0]

AM35 => IX[15:4]

AM[31:16] => E

AM[15:0] => D

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.11 Stop and Wait Instructions

There are two instructions that put the CPU16 in an inactive state. Both require
that either an interrupt or a reset exception occurs before normal execution of
instructions resumes. However, each operates differently.

LPSTOP minimizes microcontroller power consumption. The CPU16 initiates a
stop, but it and other controller modules are deactivated by the microcontrolier
system integration module. Reactivation is also handled by the integration
module. The interrupt priority field from the CPU 16 condition code register is
copied into the integration module external bus interface, then the system clock
to the processor is stopped. When a reset or an interrupt of higher priority than
the IP value occurs, the integration module activates the CPU16, and the
appropriate exception processing sequence begins.

WAI idles the CPU 16, but does not affect operation of other microcontroller II
modules. The IP field is not copied to the integration module. System clocks
continue to run. The processor waits until a reset or an interrupt of higher
priority than the IP value occurs, then begins the appropriate exception
processi ng sequence.

Because the system integration module does not restart the CPU16, interrupts
are acknowledged more quickly following WAI than following LPSTOP. See
SECTION 9 EXCEPTION PROCESSING for more information.

To make certain that conditions for termination of LPSTOP and WAI are correct,
interrupts are not recognized until after the instruction following ANDP, ORP,
TAP, and TDP executes. This prevents interrupt exception processing during
the period after the mask changes but before the following instruction executes.

Table 5-31. Stop and Wait Summary

Mnemonic Function Operation

LPSTOP Low Power Stop liS
then STOP
else Nap

WAI Wait lor Interrupt WAIT

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-29

II

5.12 Background Mode and Null Operations

Background debugging mode is a special CPU 16 operating mode that is used
for system development and debugging. Executing BGND when BDM is
enabled puts the CPU16 in this mode. For complete information refer to
SECTION 10 DEVELOPMENT SUPPORT.

Null operations are often used to replace other instructions during software
debugging. Replacing conditional branch instructions with BRN, for instance,
permits testing a decision-making routine without actually taking the branches.

MOTOROLA

5-30

BGND

BRN

LBRN

NOP

Table 5·32. Background Mode and Null Operations

Enter Background Debugging Mode If BDM enabled
enter BDM;

else, illegal instruction

Branch Never If 1 = 0, branch

Long Branch Never If 1 = 0, branch

Null operation -

INSTRUCTION SET CPU16 REFERENCE MANUAL

5.13 Comparison of CPU16 and MC68HC11 Instruction Sets

Most HC11 instructions are a source-code compatible subset of the CPU16
instruction set. However, certain HC11 instructions have been replaced by
functionally equivalent HC16 instructions, and some HC11 instructions operate
differently in the CPU16. APPENDIX A COMPARISON OF CPU16/HC11
CPU ASSEMBLY LANGUAGE gives detailed information.

Table 5-33 shows HC11 instructions that have either been replaced by CPU16
instructions or that operate differently in the CPU16. Replacement instructions
are not identical to HC11 instructions - HC11 code must be altered to establish
proper preconditions.

All CPU16 instruction cycle counts and execution times differ from those of the
HC11. SECTION 6 INSTRUCTION GLOSSARY gives information on
instruction cycles. See SECTION 8 INSTRUCTION TIMING for information _
regarding calculation of instruction cycle times. iii

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-31

II

Table 5-33. HC16 Implementation of HC11 Instructions

HC11 Instruction HC16 Implementation

BHS Replaced by BCC

BLO Replaced by BCS

BSR Generates a different stack frame

CLC Replaced by ANDP

CLI Replaced by ANDP

CLV Replaced by ANDP

DES Replaced by AIS

DEX Replaced by AIX

DEY Replaced by AIY

INS Replaced by AIS

INX Replaced by AIX

INY Replaced by AIY

JMP INDS addressing modes replaced by IND20 and EXT modes

JSR INDS addressing modes replaced by IND20 and EXT modes
Generates a different stack frame

LSL, LSLD Use ASL instructions·

PSHX Replaced by PSHM

PSHY Replaced by PSHM

PULX Replaced byPULM

PULY Replaced by PULM

RTI Reloads PC and CCR only

RTS Uses two-word stack frame

SEC Replaced by ORP

SEI Replaced by ORP

SEV Replaced by ORP

STOP Replaced by LPSTOP

TAP CPU16 CCR bits differ from HC11
CPU16 interrupt priority scheme differs from HC11

TPA CPU16 CCR bits differ from HC11
CPU16 interrupt priority scheme differs from HC11

TSX Adds 2 to SK : SP before transfer to XK : IX

TSY Adds 2 to SK : SP before transfer to YK : IY

TXS Subtracts 2 from XK : IX before transfer to SK : SP

TXY Transfers XK field to YK field

TYS Subtracts 2 from YK : IY before transfer to SK : SP

TYX Transfers YK field to XK field

WA.I Waits indefinitely for interrupt or reset
Generates a different stack frame

'Motorola assemblers will automatically translate LSL mnemonics

MOTOROLA

5-32

INSTRUCTION SET CPU16 REFERENCE MANUAL

SECTION 6
INSTRUCTION GLOSSARY

The instruction glossary presents detailed information concerning each CPU16
instruction in concise form. 6.1 Assembler Syntax shows standard
assembler syntax formats. 6.2 Instructions contains the glossary pages. 6.3
Condition Code Evaluation lists Boolean expressions used to determine
the effect of instructions on condition codes. 6.4 Instruction Set Summary
is a quick reference to the instruction set.

6.1 Assembler Syntax

Addressing mode determines standard assembler syntax. Table 6-1 shows the
standard formats. Bit set and clear instructions, bit condition branch 6
instructions, jump instructions, multiply and accumulate instructions, move
instructions and register stacking instructions have special syntax. Information
on syntax is given on the appropriate glossary page. APPENDIX B
MOTOROLA ASSEMBLER SYNTAX is a detailed syntax reference.

Table 6·1. Standard Assembler Formats

Addressing Mode Format

Accumulator Offset Instruction Mnemonic E,lndex Register Symbol

Extended Instruction Mnemonic Address Extension Operand

Immediate Instruction Mnemonic #Operand

Indexed Instruction Mnemonic Offset Operand,lndex Register Symbol

Inherent Instruction Mnemonic

Relative Instruction Mnemonic Displacement

6.2 Instructions

Each instruction is listed alphabetically by mnemonic. Each listing contains
complete information about instruction format, operation, and the effect an
operation has on the condition code register.

The number of cycles required to execute each instruction is also shown. Times
are based on two-clock bus cycles, a 16-bit data bus, and aligned access -
times include clock periods required for prefetch, operand access, and internal
operation. See SECTION 8 INSTRUCTION TIMING for more information.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-1

II

Mnemonic

Assembler
Syntax

CCR

CCR Bit
Description

Detailed Instruction
format description

(M: M+ 1) =>IZ

Loads the contentoLa
content is not chang

Standard

Condition Code Register:

8: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N:

Z:

V: Cleared.
c: Not affected.

IP: Not affected.
8M: Not affected.
PK: Not affected.

Instruction Format:

Addressin Mode
IN08,X
IN08, Y DE
IN08,Z EE
IMM16 37BE

IN016, X FCE
IN016, Y 170E
IN016, Z 17EE

EXT 17FE

Figure 6·1. Typical Instruction Glossary Entry

MOTOROLA

6-2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ABA Add B to A ABA

Operation: (A) + (B) ~ A

Description: Adds the content of accumulator B to the content of accumulator A,
then places the result in accumulator A. Content of accumulator B
does not change. ABA operation affects the CCR H bit, which
makes it useful for BCD arithmetic (see DAA for more information).

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4

S MV H EV N Z v c IP SM

S: Not affected.

MV: Not affected.

H: Set if there is a carry from bit 3 during addition; else cleared.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (Al = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if there is a carry from A during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3708

INSTRUCTION GLOSSARY

3 o
PK

Cycles

2

MOTOROLA

6-3

ABX
Operation:

Description:

Syntax:

Add B to IX ABX
(XK : IX) + (000 : 8) => XK : IX

Adds the zero-extended content of accumulator 8 to the content of
index register X, then places the result in index register X. Content
of accumulator 8 does not change. If IX overflows as a result of
the operation, the XK is incremented or decremented.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

6
I,---s ,---I MV ,---I H ,---EV ,---I N ,---I Z ,---v ,---c ,----IP --,----I SM -,-------I _P_K ----'

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction F;ormat:

Addressing Mode

MOTOROLA

64

INH

Opcode Operand Cycles

374F 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ABY
Operation:

Description:

Syntax:

Add B to IV ABY
(VK : IV) + (000 : 8) ~ VK : IV

Adds the zero-extended content of accumulator 8 to the content of
index register V, then places the result in index register V. Content
of accumulator 8 does not change. If IV overflows as a result of
the operation, the VK is incremented or decremented.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

375F

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-5

II

II

ABZ

Operation:

Description:

Syntax:

Add B to IZ ABZ

(ZK : IZ) + (000 : B) => ZK : IZ

Adds the zero-extended content of accumulator B to the content of
index register Z, then places the result in index register Z. Content
of accumulator B does not change. If IZ overflows as a result of the
operation, the ZK is incremented or decremented.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-6

Opcode Operand Cycles

376F 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ACE

Operation:

Description:

Syntax:

Condition Code

15 14 13

S MV H

~

S: Not affected.

Add E to AM ACE

(AM[31 :16]) + (E) ~ AM

Adds the content of accumulator E to bits 31 to 16 of accumulator
M, then places the result in accumulator M. Bits 15 to a of
accumulator M are not affected. The value in E is assumed to be a
16-bit signed fraction. See SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 o
EV N Z

I

v C IP SM

~

MV: Set if overflow into AM35 occurs during addition; else not affected.

H: Not affected.

EV: Set if overflow into AM[34:31J occurs during addition; else cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3722

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-7

AceD
Operation:

Description:

Syntax:

Add E : D to AM AceD
(AM) + (E : D) ::::) AM

The concatenated contents of accumulators E and 0 are added to
accumulator M. The value in the concatenated registers is
assumed to be a 32-bit signed fraction. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4 3 o

II LI __ S-L_M_~V~ __ H __ L-~_V-L __ N~ __ Z~ __ V __ ~_C-L ______ IP ______ L-S_M~ ________ P_K __ ----~
S: Not affected.

MV: Set if overflow into AM35 occurs as a result of addition; else cleared.

H: Not affected.

EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

MOTOROLA

6-8

INH

Opcode Operand

3723

INSTRUCTION GLOSSARY

Cycles

4

CPU16 REFERENCE MANUAL

ADCA Add with Carry to A ADCA

Operation: (A) + (M) + C ~ A

Description: Adds the value of the CCR Carry bit to the sum of the content of
accumulator A and a memory byte, then places the result in
accumulator A. Memory content is not affected. ADCA operation
affects the CCR H bit, which makes it useful for BCD arithmetic.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV

I

N

I
Z v C IP SM PK

!J. !J. !J. !J. !J. ~-------,-------~--,---,------------,-----------,---------III
S: Not affected.

MV: Not affected.

H: Set if there is a carry from bit 3 during addition; else cleared.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if there is a carry from A during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8, X

IND8, Y

IND8,Z

IMM8

IND16, X

IND16, Y

IND16,Z

EXT

E,X

E, Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

43 If

53 If

63 If

73 ii

1743 gggg

1753 gggg

1763 gggg

1773 hhll

2743 -
2753 -
2763 -

INSTRUCTION GLOSSARY

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-9

ADC:B Add with Carry to B ADCB

Operation: (B) + (M) + C ~ B

Description: Adds the value of the CCR Carry bit to the sum of the content of
accumulator B and a memory byte, then places the result in
accumulator B. Memory content is not affected. ADCB operation
affects the CCR H bit, which makes it useful for BCD arithmetic.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o

11.:, .. 1 L ~S_..L-M:-v--,_~_,--E_v--,-I_~-!-I_~---,_~_,--~_C--,-___ IP ___ ,--S_M--,-____ P_K ___ ----'

. S: Not affected.

MV: t-!ot affected.

H: Set if there is a carry from bit 3 during addition; else cleared.

EV: Not affected.

N: Set if B7 is set by operation; else cleared.

Z: Set if B = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if there is a carry from B during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB,X

INOB, Y

INOB,Z

IMMB

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

E,Z

Opcode Operand

C3 If

03 ff

E3 ff

F3 ii

17C3 9999
1703 9999
17E3 gggg

17F3 hhll

27C3 -
2703 -
27E3 -

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-10

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ADCD Add with Carry to D ADCD

Operation: (D)+(M :M+1)+C~D

Description: Adds the value of the CCR Carry bit to the sum of the content of
accumulator D and a memory word, then places the result in
accumulator D. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 to 9 8 7 6 5 4 3 2 0

S MV H EV N Z V C IP SM PK

!!. !!. !!. !!.

s: Not affected. II
MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if D15 is set by operation; else cleared.

Z: Set if (D) = $0000 as a resutt of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

c: Set if there is a carry from D during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8, X

IND8, Y

IND8,Z

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

E,X

E, Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

83 If

93 ff

A3 ff

3783 jjkk

37C3 gggg

37D3 gggg

37E3 gggg

37F3 hhll

2783 -

2793 -

27A3 -

INSTRUCTION GLOSSARY

Cycles

6

6

6

4

6

6

6

6

6

6

6

MOTOROLA

6-11

II

ADCE Add with Carry to E ADCE

Operation: (E) + (M : M + 1) + C :::::) E

Description: Adds the value of the CCR Carry bit to the sum of the content of
accumulator E and a memory word, then places the result in
accumulator E. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

I
s

I
MV H EV

I
N

I
Z

I
v C IP

I
SM

I t::. t::. t::. t::.

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

e: Set if there is a carry from E during operation; else cleared.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16'

IND16.X

IND16. Y

IND16.Z

EXT

Opcode I Operand

3733 jjkk

3743 gggg

3753 gggg

3763 gggg

3773 hhll

3 2 0

PK

Cycles

4

6

6

6

6

MOTOROLA

6-12

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ADDA Add to A ADDA

Operation: (A) + (M) ~ A

Descri pti on: Adds a memory byte to the content of accumulator A, then places
the result in accumulator A. Memory content is not affected.
ADDA affects the CCR H bit - it is used for BCD arithmetic.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

S MV H EV N Z V C IP SM

.1. .1. .1. .1. .1.

S: Not affected.

MV: Not affected.

H: Set if operation requires a carry from A3; else cleared.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if there is a carry from A during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08, X

IN08, Y

INOS,Z

IMMS

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

41 ff

51 ff

61 ff

71 ii

1741 gggg

1751 gggg

1761 gggg

1771 hhll

2741 -
2751 -
2761 -

INSTRUCTION GLOSSARY

3 2 0

PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-13

II

II

Add to B ADDB

Operation: (B) + (M) :::) B

Description: Adds a memory byte to the content of accumulator B, then places
. the result in accumulator B. Memory content is not affected.
ADDB affects the CCR H bit - it is used for BCD arithmetic.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4

S MV H EV N z v c IP SM

S: Not affected.

MV: Not affected.

H: Set if operation requires a carry from' 83; else cleared.

EV: Not affected.

N: Set if 87 is set by operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

c: Set if there is a carry from 8 during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB, X

INOB, Y

INOB,Z

IMMB

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

E,Z

Opcode Operand

C1 If

01 If

E1 If

F1 ii

17C1 gggg

1701 gggg

17E1 gggg

17F1 hhll

27C1 -
2701 -
27E1 -

3 2

PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

o

MOTOROLA

6-14

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ADDD Add to D ADDD
Operation: (0) + (M : M + 1) ~ 0

Description: Adds a memory word to the content of accumulator 0, then places
the result in accumulator O. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

S MV H EV N Z v c IP SM

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 is set by operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if there is a carry from 0 during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08, X

IN08. Y

IN08,Z

IMM8

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

E,X

E, Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

81 If

91 If

A1 If

FC ii

3781 jjkk

37C1 gggg

37D1 gggg

37E1 gggg

37F1 hhll

2781 -

2791 -

27A1 -

INSTRUCTION GLOSSARY

3 2 o
PK

Cycles

6

6

6

2

4

6

6

6

6

6

6

6

MOTOROLA

6-15

II

II

ADDE Add to E ADDE

Operation: (E) + (M : M + 1) ~ E

Description: Adds a memory word to the content of accumulator E, then places
the result in accumulator E. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9

S:

MV:

H:
EV:

N:

Not affected.

Not affected.

Not affected.

Not affected.

Set if E15 is set by operation; else cleared.

8 7

c

Z: Set if (E) = $0000 as a result of operation; else cleared.

6 5 4

IP

V:

c:
Set if twos complement overflow occurs as a result of the operation; else cleared.

Set if there is a carry from E during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

IMM8 7C ii

IMM16 3731 jjkk

IND16. X 3741 9999
IND16. Y 3751 9999
IND16. Z 3761 9999

EXT 3771 hhll

3 2 o
PK

Cycles

2

4

6

6

6

6

MOTOROLA

6-16

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ADE Add D to E ADE

Operation: (E) + (0) => E

Description: Adds the content of accumulator 0 to the content of accumulator E,
then places the result in accumulator E. Content of accumulator 0
is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4

I
S

I
MV H EV N Z V C IP SM

~ ~ ~ ~

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if there is a carry from E during operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

2778

INSTRUCTION GLOSSARY

3 0

PK

Cycles

2

MOTOROLA

6-17

II

II

ADX
Operation:

Description:

Syntax:

Add 0 to IX ADX
(XK : IX) + (20 « D) ::::) XK : IX

Sign-extends the content of accumulator 0 to 20 bits, then adds it
to the content of concatenated XK and IX. COhtent of accumulator
o does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

AddressIng Mode

INH

MOTOROLA

6-18

Opcode Operand Cycles

37CD 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ADY
Operation:

Description:

Syntax:

Add D to IV ADY
(YK : IY) + (20 « D) ~ YK : IY

Sign-extends the content of accumulator D to 20 bits, then adds it
to the content of concatenated YK and IY. Content of accumulator
D does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3700

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-19

II

II

ADZ

Operation:

Description:

Syntax:

Add,D to IZ ADZ

(ZK : IZ) + (20 « D) ==> ZK : IZ

Sign-extends the content of accumulator 0 to 20 bits, then adds it
to the content of concatenated ZK and IZ. Content of accumulator
o does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-20

Opcode Operand Cycles

37ED 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

AEX
Operation:

Description:

Syntax:

Add E to IX AEX
(XK : IX) + (20 « E) =? XK : IX

Sign-extends the content of accumulator E to 20 bits, then adds it
to the content of concatenated XK and IX. Content of accumulator
E does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

374D

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-21

II

II

AEY
Operation:

Description:

Syntax:

Add E to IV AEY
(YK : IY) + (20 « E) ::::> YK : IY

Sign-extends the content of accumulator E to 20 bits, then adds it
to the content of concatenated YK and IY. Content of accumulator
E does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-22

Opcode Operand Cycles

375D 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

AEZ

Operation:

Description:

Syntax:

Add E to IZ AEZ

(ZK : IZ) + (20 « E) ~ ZK : IZ

Sign-extends the content of accumulator E to 20 bits, then adds it
to the content of concatenated ZK and IZ. Content of accumulator
E does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

376D

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-23

II

II

AIS

Operation:

Description:

Syntax:

Add Immediate Value to Stack Pointer AIS

(SK : SP) + (20 « IMM)=> SK : SP

Adds a 20-bit value to concatenated SK and SP. The 20-bit value
is formed by sign-extending an 8-bit or 16-bit signed immediate
operand.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

IMM8

IMM16

MOTOROLA

6-24

Opcode Operand Cycles

3F ii 2

373F jikk 4

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

AIX Add Immediate Value to IX AIX

Operation: (XK : IX) + (20 « IMM) ~ XK : IX

Description: Adds a 20-bit value to the concatenated XK and IX. The 20-bit
value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV

I
N

I
Z v C

~

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Z: Set if (IX) = $0000 as a result of operation; else cleared.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM8

IMM16

Opcode

3C

373C

6 5

IP

Operand

ii

jjkk

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 0

PK

Cycles

2

4

MOTOROLA

6-25

II

II

AIY Add Immediate Value to IV AIY

Operation: (VK : IV) + (20 « IMM) ~ VK : IV

Description: Adds a 20-bit value to the concatenated VK and IV. The 20-bit
value is formed by· sign-extending an 8-bit or 16-bit signed
immediate operand.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Z: Set if (IY) = $0000 as a result of operation; else cleared.

V: Not affected.

c: Not affected.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM8

IMM16

Opcode

3D

373D

6 5

IP

Operand

ii

jjkk

MOTOROLA

6-26

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

2

4

CPU16 REFERENCE MANUAL

AIZ Add Immediate Value to IZ AIZ

Operation: (ZK : IZ) + (20 « IMM) ~ ZK : IZ

Description: Adds a 20-bit value to the concatenated ZK and IZ. The 20-bit
value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Z: Set if (IZl = $0000 as a result of operation; else cleared.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM8

IMM16

Opcode

3E

373E

6 5

IP

Operand

ii

jjkk

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

2

4

MOTOROLA

6-27

II

ANDA AND A ANDA
Operation: (A) • (M) =} A

Description: Performs AND between the content of accumulator A and a
memory byte, then places the result in accumulator A. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B

S MV H EV N Z v c
o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB, X

IN08, Y

IND8,Z

IMM8

IND16, X

IND16, Y

IN016,Z

EXT

E,X

E, Y

E,Z

Opcode

46

56

66

76

1746

1756

1766

1776

2746

2756

2766

7 6 5

IP

Operand

ff

If

If

ii

9999

9999

9999
hhll

-
-
-

MOTOROlJ\

6-28

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

ANDB AND B ANDB

Operation: (8) • (M) => 8

Description: Performs AND between the content of accumulator B and a
memory byte, then places the result in accumulator B. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H v c
o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 is set by operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Cleared.

G: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08.X

IN08. Y

IN08.Z

IMM8

IN016. X

IN016. Y

IN016. Z

EXT

E.X

E. Y

E.Z

Opcode

C6

06

E6

F6

17G6

1706

17E6

17F6

27G6

2706

27E6

7 6 5 4 3

IP

Operand

If

If

If

ii

9999

9999

9999
hhll

-
-
-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

2 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-29

I

II

ANDD AND D ANDD

Operation: (D) • (M : M + 1) ~ D

Description: Performs AND between the content of accumulator D and a
memory word, then places the result in accumulator D. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S v C

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if D is set by operation; else cleared.

Z: Set if (D) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

IND8, Y

IND8,Z

IMM16

IND16,X

JND16, Y

IND16, Z

EXT

E,X

E, Y

E,Z

Opcode

86

96

A6

3786

37C6

37D6

37E6

37F6

2786

2796

27A6

6 5

IP

Operand

ff

If

If

jjkk

9999

9999

9999
hhll

-
-
-

MOTOROLA

6-30

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

4

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

ANDE AND E ANDE

Operation: (E) • (M : M + 1) :::::> E

Description: Performs AND between the content of accumulator E and a
memory word, then places the result in accumulator E. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

Opcode

3736

3746

3756

3766

3776

6 5

IP

Operand

jjkk

9999

9999

9999
hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

6

6

6

6

MOTOROLA

6-31

II

ANDP AND Condition Code Register ANDP

Operation: (CCR) • IMM16 ~ CCR

Description: Performs AND between the content of the condition code register
and an unsigned immediate operand, then replaces the content of
the CCR with the result.

To make certain that conditions for termination of LPSTOP and
WAI are correct, interrupts are not recognized until after the
instruction following ANDP executes. This prevents interrupt
exception processing during the period after the mask changes
but before the following instruction executes.

Syntax: Standard

II Condition

15 14

Code Register:

13 12 11 10 9 8

H EV N Z

I
v

I
C

~ ~ ~ ~ ~ ~

S MV

s: Cleared if bit 15 of operand = 0; else unchanged.

MV: Cleared if bit 14 of operand = 0; else unchanged.

H: Cleared if bit 13 of operand = 0; else unchanged.

EV: Cleared if bit 12 of operand = 0; else unchanged.

N: Cleared if bit 11 of operand = 0; else unchanged.

Z: Cleared if bit 10 of operand = 0; else unchanged.

V: Cleared if bit 9 of operand = 0; else unchanged.

C: Cleared if bit 8 of operand = 0; else unchanged.

7 6 5 4 3 2 0

IP SM PK

~ ~

IP: Each bit in field cleared if corresponding bit [7:5] of operand = 0; else unchanged.

SM: Cleared if bit 4 of operand = 0; else unchanged.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode

IMM16 373A

Operand

jjkk

MOTOROLA
6-32

INSTRUCTION GLOSSARY

Cycles

4

CPU16 REFERENCE MANUAL

ASL Arithmetic Shift Left AS L

[g-j I I ~o
b7 bO

Operation:

Description: Shifts all 8 bits of a memory byte one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

S MV H

I
EV

I
N

I
Z v

I
c

I
IP SM PK

t:. t:. t:. t:.

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if M7 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

IND8, Y

IND8,Z

IND16, X

IND16, Y

IND16,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

04 If

14 If

24 If

1704 9999
1714 9999
1724 9999
1734 hhll

INSTRUCTION GLOSSARY

Cycles

8

8

8

8

8

8

8

MOTOROLA

6-33

II

II

ASLA Arithmetic Shift Left A ASLA

Operation:

Description: Shifts all 8 bits of accumulator A one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

5 MV H EV N Z V C IP SM PK

~ ~ ~ ~

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if A7 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-34

Opcode Operand

3704

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

ASLB Arithmetic Shift Left B ASLB

Operation:

Description: Shifts all 8 bits of accumulator B one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

H v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

7 6 5 4 3 2 o
IP SM PK

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if 87 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3714

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-35

II

II

ASLD Arithmetic Shift Left D ASLD

Operation: @}--{IL- - ---=:II}-- 0
b15 bO

Description: Shifts all 16 bits of accumulator D one place to the left. Bit 15 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax:

Condition Code

15

S

s:
MV:

H:

EV:

14 13

MV H

Not affected.

Not affected.

Not affected.

Not affected.

Standard

Register:

12 11 10 9 8

EV

I
N

I
Z v C

~ ~ ~ ~

N: Set if 015 " 1 as a resun of operation; else cleared.

7

Z: Set if (0) = $0000 as a result of operation; else cleared.

6 5 4 3 2

IP SM PK

v:
c:

Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Set if 015 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 27F4 2

0

MOTOROLA

6-36

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ASLE Arithmetic Shift Left E ASLE

Operation: [g-QI - - -=r::JJ-o
b15 bO

Description: Shifts all 16 bits of accumulator E one place to the left. Bit 15 is
transferred to the CCR C bit. Bit a is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4 3 2 0

I
s

I
MV H EV N Z V C IP SM PK

tl tl tl tl

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if E15 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

2774

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-37

II

II

ASLM Arithmetic Shift Left AM ASLM

Operation: ~---IJJ--O
b35 bO

Description: Shifts all 36 bits of accumulator M one place to the left. Bit 35 is
transferred to the CCR C bit. Bit 0 is loaded with a zero. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a
H IP

s: Not affected.

MV: Set if AM[35] has changed state as a result of operation; else unchanged.

H: Not affected.

EV: Cleared if AM[34:31] = 0000 or 1111 as a result of operation; else set.

N: Set if M35 = 1 as a result of operation; else cleared.

Z: Not affected.

V: Not affected.

C: Set if AM35 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

2786

Operand

MOTOROLA

6-38

INSTRUCTION GLOSSARY

PK

Cycles

4

CPU16 REFERENCE MANUAL

ASLW Arithmetic Shift left Word ASLW

Operation: ~- - -=:IIY--o
b15 bO

Description: Shifts all 16 bits of memory word one place to the left. Bit 15 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV N Z v c IP SM PK

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1[15) = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if M: M + 1[15) = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16,X

IND16, Y

IND16,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

2704 9999
2714 9999
2724 9999
2734 hhll

INSTRUCTION GLOSSARY

Cycles

8

8

8

8

MOTOROLA

6-39

II

II

ASR Arithmetic Shift Right ASR

rJ)
4[111 III Hill

b7 bO
Operation:

Description: Shifts all 8 bits of a memory byte one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11

S MV H EV N

s:
MV:

H:
EV:

Not affected.

Not affected.

Not affected.

Not affected.

10

Z

9 8

v c

N:
Z:

Set if M7 set as a result of operation; else cleared.

Set if (M) = $00 as a result of operation; else cleared.

7 6 5 4 3 2

IP SM PK

v:
c:

Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Set if MO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IN08, X 00 " 8

IN08, Y 10 " 8

IN08,Z 20 " 8

IN016, X 1700 9999 8

IN016, Y 1710 9999 8

IN016, Z 1720 9999 8

EXT 1730 hhll 8

o

MOTOROLA

6-40

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ASRA Arithmetic Shift Right A ASRA

IJ)
4[111111 ~

b7 bO
Operation:

Description: Shifts all 8 bits of accumulator A one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00; else cleared.

7 6 5 4 3 2 o
IP SM PK

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if AO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

370D

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-41

II

II

ASRB Arithmetic Shift Right B ASRB

IJ)
4[111111 ~

b7 bO
Operation:

Description: Shifts all 8 bits of accumulator B one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax:

Condition Code

15
S

S:

MV:

H:
EV:

14 13

MV H

Not affected.

Not affected.

Not affected.

Not affected.

Standard

Register:

12 11 10 9 B 7

EV

I
N

I
Z

~ ~

N:
Z:

Set if 87 = 1 as a result of operation; else cleared.

Set if (8) = $00 as a result of operation; else cleared.

6 5 4 3 2

IP SM PK

v:
c:

Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Set if 80 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 3710 2

o

MOTOROLA

6-42

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ASRD Arithmetic Shift Right D ASRD

IJ....-:=)
L7L.LL - - -=r::IJ--7[QJ

b15 bO
Operation:

Description: Shifts all 16 bits of accumulator D one place to the right. Bit 15 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H c IP PK

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 = 1 as a result of operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if 00 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

27FO

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-43

II

II

ASRE Arithmetic Shift Right E ASRE

4CIT---~
b15 bO

Operation:

Description: Shifts aI/ 16 bits of accumulator E one place to the right. Bit15 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

S MV H EV N Z v c IP SM PK

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if EO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode Operand Cycles

2770 2

o

MOTOROLA

6-44

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ASRM Arithmetic Shift Right AM ASRM
~)

L7LLL - - -IIJ--7[Q]
b35 bO

Operation:

Description: Shifts all 36 bits of accumulator M one place to the right. Bit 35 is
held constant. Bit 0 is transferred to the CCR C bit. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV N Z V C IP SM PK I

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

27BA

INSTRUCTION GLOSSARY

Cycles

4

MOTOROLA

6-45

II

ASRW Arithmetic Shift Right Word ASRW

4CrI---~
b15 bO

Operation:

Description: Shifts all 16 bits of a memory word one place to the right. Bit 15 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

S MV H Z v c IP SM PK

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1 [15] = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if M : M + 1[0] = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN016, X

IN016, Y

IN016,Z

EXT

Opcode Operand Cycles

2700 9999 8

2710 9999 8

2720 9999 8

2730 hhll 8

o

MOTOROLA

6-46

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

Bee
Operation:

Description:

Syntax:

Branch If Carry Clear Bee
If C = 0, then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Carry bit has a value of o.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decreme...nted. Used to implement simple or
unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 B4 rr

Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type

Bec B4 C=O Simple, Unsigned

BCS B5 C=1 Simple, Unsigned

BEQ B7 Z=1 Simple, Unsigned, Signed

BGE BC N<:!lV=O Signed

BGT BE Z+(N <:!lV)=O Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+(N <:!lV)=1 Signed

BLS B3 C+Z=1 Unsigned

BLT BD N<:!lV=1 Signed

BMI BB N=1 Simple

BNE B6 Z=O Simple, Unsigned, Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 0 Unary

BVC B8 V=O Simple

BVS B9 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

BCS

BCC

BNE

BLT

BLE

BLS

BGT

BHI

BGE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-47

II

BCLR Clear Bits BCLR

Operation: (M) • (Mask) => M

Description: Performs AND between a memory byte and the complement of a
mask byte. Bits in the mask are set to clear corresponding bits in
memory. Other bits in the memory byte are unchanged. The
location of the mask differs for 8- and 16-bit addressing modes.

Syntax: BelR address operand, [register symbol,] #mask

Condition Code Register:

15 14 13

MV H

6
I s

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affect~d.

12 11 10

EV N Z

9 8

N: Set if M7 = 1 as a result of operation; else cleared.

7

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

IN08, Y

IN08, Z

IN016,X

IN016, Y

IN016,Z

EXT

Opcode Mask

1708 mm

1718 mm

1728 mm

08 mm

18 mm

28 rrm

38 mm

6 5 4 3

IP SM

Operand

" "
" gggg

gggg

gggg

hhll

2 o
PK

Cycles

8

8

8

8

8

8

8

I

MOTOROLA

6-48

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BCLRW Clear Bits in a Word BCLRW

Operation: (M : M + 1) • (Mask) => M : M + 1

Description: Performs AND between a memory word and the complement of a
mask word. Bits in the mask are set to clear corresponding bits in
memory. Other bits in the memory word are unchanged.

Syntax: BCLRW Address Operand, [Index Register Symbol,] #Mask

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

IP

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M15 = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16,X

IND16, Y

IND16,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

2708 9999
2718 9999
2728 9999
2738 hhll

INSTRUCTION GLOSSARY

5 4 3 2

Mask

mmmm

mmmm
mmmm

mmmm

o
PK

Cycles

10

10

10

10

MOTOROLA

6-49

II

II

Bes
Operation:

Description:

Syntax:

Branch If Carry Set Bes
If C = 1, then (PK : PC) + Offset ~ PK : PC

Causes a program branch if the CCR Carry bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple or
unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL8 B5 rr 6,2

Branch Instruction Summary (a-Bit Offset)

Mnemonic

Bec

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BPL

BRA

BRN

BVC

BVS

MOTOROLA

6-50

Opcode

B4

B5

B7

Be

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=l Simple, Unsigned sec
Z=l Simple, Unsigned, Signed BNE

NEaV=O Signed BLT

Z+(N EaV)=O Signed BLE

C+Z=O Unsigned BLS

Z+ (N Ea V)= 1 Signed BGT

C+Z=l Unsigned BHI

N EaV=l Signed BGE

N=l Simple BPL

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

V=O Simple BVS

V=l Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BEQ

Operation:

Description:

Syntax:

Branch If Equal to Zero BEQ

If Z = 1, then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Zero bit has a value of 1. An
8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, or unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 87 rr

Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type

8ec 84 C=O Simple, Unsigned

8CS 85 C=1 Simple, Unsigned

8EQ 87 Z=1 Simple, Unsigned, Signed

8GE 8C NalV=O Signed

BGT BE Z+(N alV)=O Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+ (N alV)= 1 Signed

BLS B3 C+Z=1 Unsigned

BLT BO N alV=1 Signed

BMI BB N=1 Simple

BNE B6 Z=O Simple, Unsigned, Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 0 Unary

BVC B8 V=O Simple

8VS B9 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

8CS

sec
8NE

8LT

BLE

BLS

BGT

BHI

8GE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-51

II

II

BGE

Operation:

Description:

Syntax:

Branch If Greater than or Equal to Zero BGE

If N EB V = 0, then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Negative and Overflow bits
both have a value of 0 or both have a value of 1. An 8-bit signed
relative offset is added to the current value of the program counter.
When the operation causes PC overflow, the PK field is
incremented or decremented. Used to implement signed
conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REl8 BC rr 6,2

Branch Instruction Summary (a-Bit Offset)

Mnemonic

Bce

BCS

BEQ

BGE

BGT

BHI

BlE

BlS

BlT

BMI

BNE

BPl

BRA

BRN

BVC

BVS

MOTOROLA

6-52

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=1 Simple, Unsigned sec

Z=1 Simple, Unsigned, Signed BNE

N EaV=O Signed BlT

Z+(N EaV)=O Signed BlE

C+Z=O Unsigned BlS

Z+(N EaV)=1 Signed BGT

C+Z=1 Unsigned BHI

N EaV=1 Signed BGE

N=1 Simple BPl

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BAN

0 Unary BRA

V=O Simple BVS

V=1 Simple BYC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BGND

Operation:

Description:

Syntax:

Enter Background Debug Mode BGND

If Background Debug Mode is enabled, begin debug;
else, illegal instruction trap

Background Debug Mode is an operating mode in which CPU16
microcode performs debugging functions. To prevent accidental
entry, a specific method of enabling BDM is used. If BDM has
been correctly enabled, executing BGND will cause the CPU16 to
suspend normal operation. If BDM has not been correctly
enabled, an illegal instruction exception is generated. See
SECTION 9 EXCEPTION PROCESSING for more
information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

37A6

INSTRUCTION GLOSSARY

Cycles

N/A

MOTOROLA

6-53

II

BGT

Operation:

Description:

Syntax:

Branch If Greater than Zero BGT

If Z + (N <:9 V) = 0, then (PK : PC) + Offset=> PK : PC

Causes a program branch if the CCR Negative and Overflow bits
both have a value of 0 or both have a value of 1, and the CCR
Zero bit has a value of O. An a-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement signed conditional branches.

Standard

Condition Code Register: Not affected.

II Instruction Format:

Addressing Mode Opcode Operand Cycles

REL8 BE rr 6,2

Branch Instruction Summary (a-Bit Offset)

Mnemonic

BCC

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BPL

BRA

BRN

BVC

BVS

MOTOROLA

6-54

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=l Simple, Unsigned BCC

Z=l Simple, Unsigned, Signed BNE

NEIlV=O Signed BLT

Z+(N Ell V) =0 Signed BLE

C+Z=O Unsigned BLS

Z+(N Ell V) =1 Signed BGT

C+Z=l Unsigned BHI

NEIlV=l Signed BGE

N=l Simple BPL

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

V=O Simple BVS

V=l Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BHI

Operation:

Description:

Syntax:

Branch If Higher BHI

If C + Z = 0, then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Carry and Zero bits both
have a value of O. An 8-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented. Used to
implement unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 B2 rr

Branch Instruction Summary (a-Bit Offset)

Mnemonic Opcode Equation Type

Bec B4 C=O Simple, Unsigned

BCS B5 C=l Simple, Unsigned

BEQ B7 Z=l Simple, Unsigned, Signed

BGE BC N GlV=O Signed

BGT BE Z+(N GlV)=O Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+(N GlV)= 1 Signed

BLS B3 C+Z=l Unsigned

BLT BD NGlV=l Signed

BMI BB N=l Simple

BNE B6 Z=O Simple, Unsigned, Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 0 Unary

BVC B8 V=O Simple

BVS B9 V=l Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

BCS

sec
BNE

BLT

BLE

BLS

BGT

BHI

BGE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-55

II

II

'BITA Bit Test A BITA

Operation: (A) • (M)

Description: Performs AND between the content of accumulator A and
corresponding bits in a memory byte. Condition codes are set, but
neither accumulator content nor memory content is changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9

S MV H v

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 • M7 = 1; else cleared.

Z: Set if (A) • (M) = $00; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

o

Addressing Mode Opcode

IND8, X 49

IND8, Y 59

IND8,Z 69

IMM8 79

lND16, X 1749

IND16, Y 1759

IND16,Z 1769

EXT 1779

E,X 2749

E, Y 2759

E,Z 2769

8 7 6 5

C IP

Operand

"
"
"
ii

9999
gggg

gggg

hhll

-
-
-

MOTOROLA

6-56

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

BITB Bit Test B BITB

Operation: (8) • (M)

Description: Performs AND between the content of accumulator 8 and
corresponding bits in a memory byte. Condition codes are set, but
neither accumulator content nor memory content is changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV H EV N Z v c IP

o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 • M7 = 1; else cleared.

Z: Set if (8) • (M) = $00; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

IN08,X C9 If

IN08, Y 09 If

IN08,Z E9 If

IMM8 F9 ii

IN016, X 17C9 gggg
IN016, Y 1709 gggg

IN016,Z 17E9 gggg

EXT 17F9 hhll

E,X 27C9 -
E, Y 2709 -
E,Z 27E9 -

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-57

II

BLE

Operation:

Description:

Syntax:

Branch If Less than or Equal to Zero BLE

If Z + (N $ V) = 1, then (PK : PC) + Offset ~ PK : PC

Causes a program branch if either the CCR Negative bit or
Overflow bit has a value of 1, or the CCR Zero bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement signed
conditional branches.

Standard

Condition Code Register: Not affected.

II Instruction Format:

Addressing Mode Opcode Operand Cycles

REL8 BF rr 6,2

Branch Instruction Summary (8-Bit Offset)

Mnemonic

BCC

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BPL

BRA

BRN

BVC

BVS

MOTOROLA

6-58

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=1 Simple, Unsigned BCC

Z=1 Simple, Unsigned, Signed BNE

N(!JV=O Signed BLT

Z+(N (!JV)=O Signed BLE

C+Z=O Unsigned BLS

Z+(N (!JV)=1 Signed BGT

C+Z=1 Unsigned BHI

N (!JV=1 Signed BGE

N=1 Simple BPL

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

V=O Simple BVS

V=1 Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BLS

Operation:

Description:

Syntax:

Branch If Lower or Same BLS

If C + Z = 1 , then (PK : PC) + Offset => PK : PC

Causes a program branch if either or both the CCR Carry and Zero
bits have a value of 1. An 8-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 B3 rr

Branch Instruction Summary (a-Bit Offset)

Mnemonic Opcode Equation Type

Bec B4 C=O Simple, Unsigned

BCS B5 C=1 Simple, Unsigned

BEQ B7 Z=1 Simple, Unsigned, Signed

BGE BC NffiV=O Signed

BGT BE Z+(N ffiV)=O Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+(N ffiV)=1 Signed

BLS B3 C+Z=1 Unsigned

BLT BD NffiV=1 Signed

BMI BB N=1 Simple

BNE B6 Z=O Simple, Unsigned, Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 a Unary

BVC B8 V=O Simple

BVS B9 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

BCS

Bec

BNE

BLT

BLE

BLS

BGT

BHI

BGE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-59

II

II

BLT

Operation:

Description:

Syntax:

Branch If Less than Zero BLT

If N El1 V = 1, then (PK : PC) + Offset => PK : PC

Causes a program branch if either of the CCR Negative or
Overflow bits has a value of 1. An a-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or
decremented. Used to implement signed conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL8 BO rr 6,2

Branch Instruction Summary (8-Bit Offset)

Mnemonic

Bec

BCS

BEQ

BGE

BGT

BHI

BlE

BlS

BlT

BMI

BNE

BPl

BRA

BRN

BVC

BVS

MOTOROLA

6-60

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BO

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=l Simple, Unsigned BCC

Z=l Simple, Unsigned, Signed BNE

N mv=o Signed BlT

Z+(N mV)=o Signed BlE

C+Z=O Unsigned BlS

Z+(N mV)=l Signed BGT

C+Z=l Unsigned BHI

N mV=l Signed BGE

N=l Simple BPl

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

V=O Simple BVS

V=l Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

8MI

Operation:

Description:

Syntax:

Branch If Minus 8MI

If N = 1 , then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Negative bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple
conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 BB rr

Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type

Bec B4 C=O Simple, Unsigned

BCS B5 C=1 Simple. Unsigned

BEQ B7 Z=1 Simple, Unsigned, Signed

BGE BC N(llV=O Signed

BGT BE Z+(N(llV)=O Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+(N (llV)=1 Signed

BLS B3 C+Z=1 Unsigned

BLT BD N(llV=1 Signed

BMI BB N=1 Simple

BNE B6 Z=O Simple, Unsigned, Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 0 Unary

BVC B8 V=O Simple

BVS B9 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

BCS

sec
BNE

BLT

BLE

BLS

BGT

BHI

BGE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-61

II

II

BNE
Operation:

Description:

Syntax:

Branch If Not Equal to Zero BNE
If Z = 0, then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Zero bit has a value of O. An
8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

RELB B6 rr 6,2

Branch Instruction Summary (a-Bit Offset)

Mnemonic

Bec

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BPL

BRA

BRN

BVC

BVS

MOTOROLA

6-62

Opcode

B4

B5

B7

Be

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

BB

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=1 Simple, Unsigned BCC

Z=1 Simple, Unsigned, Signed BNE

NEllV=O Signed BLT

Z+(N EllV)=O Signed BLE

C+Z=O Unsigned BLS

Z+(N EllV)=1 Signed BGT

C+Z=1 Unsigned BHI

N EllV=1 Signed BGE

N=1 Simple BPL

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BAN

0 Unary BRA

V=O Simple BVS

V=1 Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BPL

Operation:

Description:

Syntax:

Branch If Plus BPL

If N = 0, then (PK : PC) + Offset => PK : PC

Causes a program branch if the CCR Negative bit has a value of O.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple
conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 BA rr

Branch Instruction Summary (B-Bit Offset)

Mnemonic Opcode Equation Type

Bec B4 C=O Simple, Unsigned

BCS B5 C=1 Simple, Unsigned

BEQ B7 Z=1 Simple. Unsigned, Signed

BGE BC NEIlV=O Signed

BGT BE Z+(N Ell V) =0 Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+(N EIlV)=1 Signed

BLS B3 C+Z=1 Unsigned

BLT BD NEIlV=1 Signed

BMI BB N=1 Simple

BNE B6 Z=O Simple, Unsigned. Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 0 Unary

BVC B8 V=O Simple

BVS B9 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

BCS

BCC

BNE

BLT

BLE

BLS

OOT

BHI

BGE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-63

II

II

BRA
Operation:

Description:

Syntax:

Branch Always BRA
(PK : PC) + Offset => PK : PC

Always branches. An a-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL8 BO rr 6

Branch Instruction Summary (a-Bit Offset)

Mnemonic

Bec

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BPL

BRA

BRN

BVC

BVS

MOTOROLA

6-64

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

c=o Simple, Unsigned BCS

C=1 Simple, Unsigned BCC

Z=1 Simple, Unsigned, Signed :BNE

NGlV=O Signed BLT

Z+ (N GlV)=O Signed BLE

C+Z=O Unsigned BLS

Z + (N GlV) ':' 1 Signed OOT

C+Z=1 Unsigned BHI

N GlV=1 Signed BGE

N=1 Simple BPL

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

V=O Simple BVS

V=1 Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BRCLR
Operation:

Description:

Syntax:

Branch if Bits Clear BRCLR
If (M) • (Mask) :: 0, (PK : PC) + Offset => PK : PC

Causes a program branch when specified bits in memory have
values of O. Performs AND between a memory byte and a mask
byte. The memory byte is pointed to by a 20-bit indexed or
extended effective address.

If a mask bit has a value of 1, the corresponding memory bit must
have a value of O. When the result of the operation is 0, an 8- or
16-bit signed relative offset is added to the current value of the
program ~ounter. When the operation causes PC overflow, the PK
field is incremented or decremented.

BRCLR address operand, [register symbol,] #mask, displacement

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Mask Addr Operand

INOB, X CB, mm ff

IN DB, Y DB mm ff

INOB,Z EB mm ff

IN016, X OA mm 9999
IN016, Y lA mm 9999
IN016,Z 2A mm 9999

EXT 3A mm hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Branch Offset

rr

rr

rr

rrrr

rrrr

rrrr

rrrr

Cycles

10,12

10,12

10,12

10, 14

10,14

10,14

10, 14

MOTOROLA

6-65

II

II

BRN
Operation:

Description:

Syntax:

Branch Never BRN
(PK : PC) + 2 => PK : PC

Never branches. This instruction is effectively a NOP that requires
two cycles to execute. When the operation causes PC overflow,
the. PK field is incremented or decremented.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REl8 B1 rr 2

Branch Instruction Summary (8-Bit Offset)

Mnemonic

Bce

BCS

BEQ

BGE

BGT

BHI

BlE

BlS

BlT

BMI

BNE

BPl

BRA

BRN

BVC

BVS

MOTOROLA

6-66

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BD

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=1 Simple, Unsigned BCC

Z=1 Simple, Unsigned, Signed BNE

NGlV=O Signed BlT

Z+(N GlV)=O Signed BlE

c+z=o Unsigned BlS

Z+(NGlV)=1 Signed OOT

C+Z=1 Unsigned BHI

NGlV=1 Signed BGE

N=1 Simple BPl

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

V=O Simple BVS

V=1 Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BRSET
Operation:

Description:

Syntax:

Branch if Bits Set BRSET
if (M) • (Mask) = 0, (PC) + Offset => PK : PC

Causes a program branch when specified bits in memory have
values of 1. Performs AND between the complement of memory
byte and a mask byte. The memory byte is pointed to by a 20-bit
indexed or extended effective address.

If a mask bit has a value of 1, the corresponding
(uncomplemented) memory bit must have a value of 1. When the
result of the operation is 0, an 8- or 16-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or
decremented.

BRSET address operand, [register symbol,j'mask, displacement II
Condition Code Register: Not affected.

instruction Format:

Addressing Mode Opcode Mask Addr Operand

INOB,X BB mm "
INOB, Y 9B mm " INOB,Z AB mm " IN016, X OB mm 9999

IN016, Y 1B mm gggg

IN016,Z 2B mm 9999
EXT 3B mm hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Branch Offset

rr

rr

rr

rrrr

rrrr

rrrr

rrrr

Cycles

10,12

10,12

10,12

10,14

10,14

10,14

10,14

MOTOROLA

6-67

II

BSET Set Bits in a Byte BSET

Operation: (M) + (MASK) :::) M

Description: Performs OR between a memory byte and a mask byte. Bits in the
mask are set to set corresponding bits in memory. Other bits in the
memory word are unchanged. The location of the mask differs for
8- and 16-bit addressing modes.

Syntax: BSET address operand, [register symbol,] #mask

Condition Code Register:

15 14 13 12 11 10 9 S 7

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDS, Y

INDS, Z

IND16,X

IND16, Y

IND16,Z

EXT

Opcode Mask

1709 mm

1719 mm

1729 mm

09 mm

19 mm

29 mm

39 mm

6 5

IP

MOTOROLA

6-68

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Operand Cycles

II S

II S

If S

9999 S

9999 S

9999 S

hhll S

CPU16 REFERENCE MANUAL

BSETW Set Bits in a Word BSETW

Operation: (M : M + 1) + (Mask) ~ M : M + 1

Description: Performs OR between a memory word and a mask word. Set bits
in the mask to set corresponding bits in memory. Other bits in the
memory word are unchanged.

Syntax: BSETW address operand, [register symbol,] #mask

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

S MV H EV N Z V C IP

!J. !J. 0

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M15 = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16,X

IND16, Y

IND16,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

2709 9999
2719 9999
2729 9999
2739 hhll

INSTRUCTION GLOSSARY

5 4 3

I
SM

I

Mask

mmmm

mmmm

mmmm

mmmm

2 0

PK

Cycles

10

10

10

10

MOTOROLA

6-69

II

II

BSR

Operation:

Description:

Syntax:

Branch to Subroutine

(PK : PC) - $0002 => PK : PC
Push (PC)
(SK : SP) - $0002 => SK : SP
Push (CCR)
(SK : SP) - $0002 => SK : SP
(PK : PC) + Offset => PK : PC

BSR

Saves current program address and status, then branches to a
subroutine. PK: PC are adjusted so that program execution will
resume correctly after return from subroutine.

The program counter is stacked, then the condition code register is
stacked (PK field as well as condition code bits and interrupt
priority mask). An a-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented.

Standard

Condition Code Register: Not affected.

Instruction Format:··

Addressing Mode

RELB

MOTOROLA

6-70

Opcode Operand Cycles

36 rr 10

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

eve
Operation:

Description:

Syntax:

Branch If Overflow Clear eve
If V = 0, then (PK : PC) + Offset ~ PK : PC

Causes a program branch if the CCR Overflow bit has a value of O.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL8 B8 rr

Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type

Bec B4 C=O Simple, Unsigned

BCS B5 C=1 Simple, Unsigned

BEQ B7 Z=1 Simple, Unsigned, Signed

BGE BC NffiV=O Signed

BGT BE Z+(N ffiV)=O Signed

BHI B2 C+Z=O Unsigned

BLE BF Z+(N ffiV)=1 Signed

BLS B3 C+Z=1 Unsigned

BLT BD NffiV=1 Signed

BMI BB N=1 Simple

BNE B6 Z=O Simple, Unsigned, Signed

BPL BA N=O Simple

BRA BO 1 Unary

BRN B1 0 Unary

BVC B8 v=o Simple

BVS B9 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,2

Complement

BCS

Bee

BNE

BLT

BLE

BLS

BGT

BHI

BGE

BPL

BEQ

BMI

BRN

BRA

BVS

BVC

MOTOROLA

6-71

II

II

BVS

Operation:

Description:

Syntax:

Branch If Overflow Set BVS

If V = 1, then (PK : PC) + Offset ~ PK : PC

Causes a program branch if the CCR Overflow bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL8 B9 rr 6,2

Branch Instruction Summary (a-Bit Offset)

Mnemonic

Bec

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BPL

BRA

BRN

BVC

BVS

MOTOROLA

6-72

Opcode

B4

B5

B7

BC

BE

B2

BF

B3

BO

BB

B6

BA

BO

B1

B8

B9

Equation Type Complement

C=O Simple, Unsigned BCS

C=1 Simple, Unsigned BCC

Z=1 Simple, Unsigned, Signed BNE

NGlV=O Signed BLT

Z+(N GlV)=O Signed BLE

c+z=o Unsigned BLS

Z+(N GlV)=1 Signed BGT

C+Z=1 Unsigned BHI

NGlV=1 Signed BGE

N=1 Simple BPL

Z=O Simple, Unsigned, Signed BEQ

N=O Simple BMI

1 Unary BRN

0 Unary BRA

v=o Simple BVS

V=1 Simple BVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

CBA Compare B to A CBA

Operation: (A) - (8)

Description: Subtracts the content of accumulator 8 from the content of
accumulator A and sets appropriate condition code register bits.
The contents of the accumulators are not changed by the
operation, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

Instruction Format:

AddressIng Mode Opcode Operand

INH 3718

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

3 2 o

Cycles

2

MOTOROLA

6-73

II

Clear a Byte in Memory CLR

Operation: $00 => M

Description: Content of a memory byte is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

5 MV H EV N

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

IND8, Y

IND8,Z

IND16, X

IND16, Y

IND16,Z

EXT

MOTOROLA

6-74

o
Z v c IP

o o

Opcode Operand

05 ff

15 ff

25 II

1705 9999
1715 9999
1725 9999
1735 hhll

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

4

4

4

6

6

6

6

CPU16 REFERENCE MANUAL

CLRA Clear A

Operation: $OO~A

Description: Content of accumulator A is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

S MV H EV N Z v C IP SM

o o o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

c: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 3705

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

3

CLRA

2 o
PK

Cycles

2

MOTOROLA

6-75

II

II

Clear B CLRB

Operation: $00 => B

Description: Content of accumulator B is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13

S MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set.
V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

12 11

EV N

o

Instruction Format:

Addressing Mode

MOTOROLA

6-76

INH

10 9 8 7 6 5

Z v C IP

o o

Opcode Operand

3715

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

CLRD Clear D

Operation: $0000 => D

Description: Content of accumulator D is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

S MV H EV N Z v C IP SM

o o o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 27F5

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

3

CLRD

2 o
PK

Cycles

2

MOTOROLA

6-77

II

II

CLRE Clear E CLRE

Operation: $0000 => E

Description: Content of accumulator E is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11

S MV H EV N

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-78

10 9 8 7 6 5

Z v C IP

o o

Opcode Operand

2775

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

CLRM Clear AM CLRM

Operation: $000000000 ~ AM[35:0]

Description: Content of MAC accumulator is cleared to zero. See SECTION
11 DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3

S ~V I H EV N

0

Z V C IP SM

S: Not affected.

MV: Cleared.

H: Not affected.

EV: Cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 27B7

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

2 o
PK

Cycles

2

MOTOROLA

6-79

II

II

CLRW Clear a Word in Memory

Operation: $0000 ~ M : M + 1

Description: Content of a memory word is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13

S MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.
IP: Not affected.

SM: Not affected.

PK: Not affected.

12 11

EV N

o

Instruction Format:

Addressing Mode

IND16, X

IND16, Y

IND16,Z

EXT

10 9

Z v
o

Opcode

2705

2715

2725

2735

8 7 6 5 4 3

C IP

o

Operand

9999

9999

9999
hhll

CLRW

2 o
PK

Cycles

6

6

6

6

MOTOROLA

6-80

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

CMPA Compare A CMPA

Operation: (A) - (M)

Description: Subtracts content of a memory byte from content of accumulator A
and sets condition code register bits. Accumulator and memory
contents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

H c

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R7 = 1 as a result of operation; else cleared.

Z: Set if (A) - (M) = $00; else cleared.

7 6

IP

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

543

Addressing Mode Opcode Operand

IND8,X 48 ff

IND8, Y 58 If

IND8,Z 68 If

IMM8 78 ii

IND16, X 1748 9999
IND16, Y 1758 9999
IND16,Z 1768 9999

EXT 1778 hhll

E,X 2748 -
E, Y 2758 -

E,Z 2768 -

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

2 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-81

II

II

CMPB Compare B CMPB

Operation: (8) - (M)

Description: Subtracts content of a memory byte from content of accumulator 8
and sets condition code register bits. Accumulator and memory
contents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H EV N Z v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R7 = 1 as a result of operation; else cleared.

Z: Set if (8) - (M) = $00; else cleared.

7 6

IP

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

IND8,X

INDB, Y

INDB,Z

IMMB

IND16,X

IND16, Y

IND16,Z

EXT

E,X

E, Y

MOTOROLA

6-82

E,Z

C8 ff

DB If

E8 If

F8 ii

17CB 9999
17D8 9999
17EB 9999
17FB hhll

27CB -
27DB -

27EB -

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

COM

Operation:

Ones Complement Byte

$FF - (M) => M, or
M=>M

COM

Description: Replaces content of a memory byte with its ones complement.
Only SEQ and SNE branches will perform consistently
immediately after COM on unsigned values. All signed branches
are available after COM on twos complement values.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o

L-S __ ~M_V~ __ H __ LI _E_V-LI __ ~~I __ ~~ __ ~ __ L-C __ ~ _____ IP ______ L-S_M~ ________ P_K ______ ~I I11III, .

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 is set; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Cleared.

C: Set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB, X

INOB, V

IN08,Z

IN016, X

IN016, V

IN016,Z

EXT

Opcode

00

10

20

1700

1710

1720

1730

Operand

ff

ff

ff

9999

9999

9999
hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

B

B

B

B

B

8

B

MOTOROLA

6-83

COMA

Operation:

Ones Complement A

$FF - (A) => A, or
M=>A

COMA

Description: Replaces content of accumulator A with its ones complement.
Only SEQ and SNE branches will perform' consistently
immediately after COMA on an unsigned value. All signed
branches are available after COMA on a twos complement value.

Syntax: Standard

Condition Code Register:

15 1413 12 11 10 9 8 7 6 5 4 3 2 o

II!III I~_S __ ~M_V~ __ H~~E_V-L_~_N~ __ ~~ __ ~ __ L-C __ ~ _____ IP ______ L-S_M~ ________ P_K ______ ~
s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.

Z· Set if (A) = $00 as a result of operation; else cleared.

V: Cleared.

C: Set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3700

Operand

MOTOROLA

6-84

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

COMB

Operation:

Ones Complement B

$FF - (B) ~ B, or
B~B

COMB

Description: Replaces content of accumulator B with its ones complement
Only BEQ and BNE branches will perform consistently
immediately after COMB on an unsigned value. All signed
branches are available after COMB on a twos complement value.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

~S __ L-M_V~ __ H~L-E_V-L __ ~~ __ ~~ __ ~ __ L-C __ L-_____ IP ______ L-S_M~ ________ P_K ______ ~I III!II
s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Cleared.

c: Set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3710

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

&-85

II

COMO
Operation:

Ones Complement D

$FFFF - (D) => D, or
D=>D

COMO

Description: Replaces content of accumulator D with its ones complement.
Only BEQ and BNE branches will perform consistently
immediately after COMD on an unsigned value. All signed
branches are available after COMD on a twos complement value.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

I
S MV H EV N Z

I
v
I

c IP

t. t. 0

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 = 1 as a result of operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode, Opcode Operand

INH 27FO

MOTOROLA

6-86
INSTRUCTION GLOSSARY

4 3 2 0

SM PK

Cycles

2

CPU16 REFERENCE MANUAL

COME

Operation:

Ones Complement E

$FFFF - (E) ~ E, or
E~E

COME

Description: Replaces content of accumulator E with its ones complement
Only BEQ and BNE branches will perform consistently
immediately after COME on an unsigned value. All signed
branches are available after COME on a twos complement value.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

I
s

I
MV H

I
EV

I
N

I
Z

I
v

I
C

I
IP

!J. !J. 0

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (El = $0000 as a result of operation; else cleared.

V: Cleared.

c: Set.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 2770

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

I
SM

I

2 o
PK

Cycles

2

MOTOROLA

6-87

CO'MW

Operation:

Ones Complement Word

$FFFF - (M : M + 1) ~ M : M + 1, or

(M: M + 1)~M:M+1

COMW

Description: Replaces content of a memory word with its ones complement.
Only SEQ and SNE branches will perform consistently
immediately after COMW on unsigned values. All signed
branches are available after COMW on twos complement values.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

~ !~S __ L-M_V~ __ H~I __ E_V-LI_~ __ ~I __ :-J __ ~ __ I~C __ LI ______ IP ______ L-S_M-L ________ P_K ______ -J

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M15 is set; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16, X

IND16, Y

IND16.Z

EXT

MOTOROLA

6-88

Opcode Operand

2700 9999
2710 9999
2720 9999
2730 hhll

INSTRUCTION GLOSSARY

Cycles

8

8

8

8

CPU16 REFERENCE MANUAL

CPO Compare D CPO
Operation: (D) - (M : M + 1)

Description: Subtracts content of a memory word from content of accumulator D
and sets condition code register bits. Accumulator and memory
contents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B

S MV H EV N Z v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.

Z: Set if (0) - (M) = $0000; else cleared.

7 6 5

IP

V: Set if operation causes twos complement overflow; else cleared.

G: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB,X

INOB, Y

INOB,Z

IMM16

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E,Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

BB ff

9B ff

AB ff

378B jjkk

37GB 9999
370B 9999
37E8 9999
37FB hhll

278B -
279B -
27A8 -

INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

4

6

6

6

6

6

6

6

MOTOROLA

6-89

II

II

CPE Compare E CPE

Operation: (E) - (M : M + 1)

Description: Subtracts content of a memory word from content of accumulator E
and sets condition code register bits. Accumulator and memory
contents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

I
S

I
MV

I
H

I
EV

I
N

I
Z

I
v

I
c

I L\ L\ L\ L\

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.

Z: Set if (E) - (M) = $0000; else cleared.

7 6

IP

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

IMM16

IND16, X

IND16, Y

IND16, Z

EXT

MOTOROLA

6-90

3738 jjkk

3748 9999
3758 9999
3768 9999
3778 hhll

INSTRUCTION GLOSSARY

4 3 2 0

I
SM

I
PK

Cycles

4

6

6

6

6

CPU16 REFERENCE MANUAL

CPS Compare Stack Pointer CPS

Operation: (SP) - (M : M + 1)

Description: Subtracts content of a memory word from content of the stack
pOinter and sets condition code register bits. SP and memory
contents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S

S MV H EV N Z v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.

Z: Set if (SP) - (M) = $0000; else cleared.

7 6

IP

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

INOS,X 4F If

INOS, Y 5F If

INDS,Z 6F If

IMM16 377F jjkk

IND16,X 174F 9999
IND16, Y 175F 9999
IND16,Z 176F 9999

EXT 177F hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

4

6

6

6

6

MOTOROLA

6-91

II

II

CPX Compare IX CPX

Operation: (IX) - (M : M + 1)

Description: Subtracts content of a memory word from content of index register
X and sets condition code register bits. IX and memory contents
are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B

S MV H EV N Z v C

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.

Z: Set if (IX) - (M) = $0000; else cleared.

7 6 5

IP

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDB.X

IN DB, Y

INDB.Z

IMM16

IND16.X

IND16. Y

IND16. Z

EXT

MOTOROLA

6-92

Opcode Operand

4C If

5C If

6C ff

377C jjkk

174C 9999
175C 9999
176C 9999
177C hhll

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

4

6

6

6

6

CPU16 REFERENCE MANUAL

Cpy Compare IV Cpy

Operation: (IY) - (M : M + 1)

Descri pti on: Subtracts content of a memory word from content of index register
Y and sets condition code register bits. IY and memory contents
are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H EV N Z

I
v

I
c

I ~ ~ ~ ~

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.

Z: Set if (IY) - (M) = $0000; else cleared.

7 6

IP

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

IN08,X 40 ff

IN08, Y 50 ff

INOS,Z 60 ff

IMM16 3770 jjkk

IN016, X 1740 9999
IN016, Y 1750 9999
IN016,Z 1760 9999

EXT 1770 hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 0

PK

Cycles

6

6

6

4

6

6

6

6

MOTOROLA

6-93

II

II

CPZ Compare IZ CPZ

Operation: (IZ) - (M : M + 1)

Description: Subtracts content of a memory word from content of index register
Z and sets condition code register bits. IZ and memory contents
are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6 5 4 3 2 o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.

Z: Set if (IZ) - (M) = $0000; else cleared.

IP

V: Set ~ operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDS, Y

INDS,Z

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

MOTOROLA

6-94

Opcode Operand

4E If

5E If

6E If

377E jjkk

174E 9999
175E 9999
176E 9999
177E hhll

INSTRUCTION GLOSSARY

PK

Cycles

6

6

6

4

6

6

6

6

CPU16 REFERENCE MANUAL

DAA Decimal Adjust A DAA

Operation:

Descri pUon: Adjusts the content of accumulator A and the state of the CCR
Carry bit after binary-coded decimal operations, so that there is a
correct BCD sum and an accurate carry indication. The state of
the CCR Half Carry bit affects operation. The Function Summary
table shows details of operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o

l~sl~MVI~H~EVI~~I~~I~~I~~I __ IP~I~SMI __ p_K ~I~
s: Not affected. _

MV: Not affected.

H: Not allected.

EV: Not allected.

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Undefined.

c: See DAA Function Summary table.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3721

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-95

II

DAA Decimal Adjust A DAA

DAA Function Summary

1 2 3 4 5 6

Initial Value of Initial Value of Correction Corrected
C Bit Value A[7:4] H Bit Value A[3:0] Factor C Bit Value

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

The table shows DAA operation for all legal combinations of input operands. Columns
1 through 4 represent the results of ABA, ADC, or ADD operations on BCD operands.
The correction factor in column 5 is added to the accumulator to restore the result of an
operation on two BCD operands to a valid BCD value, and to set or clear the C bit. All
values are in hexadecimal. .

MOTOROLA

6-96

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

DEC Decrement Byte DEC

Operation: (M) - $01 => M

Description: Subtracts $01 from the content of a memory byte. Only BEQ and
BNE branches will perform consistently immediately after DEC on
unsigned values. All signed branches are available after DEC on
twos complement values. Because DEC does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6 5 4 3 2 o
S MV H EV N Z V C IP SM PK III

L_ __ L_ __ ~ __ _L __ -L_d __ ~_d~ __ d __ L_ __ L_ __________ _L __ _L ______________ ~ •

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Set if (M) = $BO before operation (operation causes twos complement overflow); else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INOS,X

INOB, Y

INOB,Z

IN016, X

IN016, Y

IN016,Z

EXT

CPU16 REFERENCE MANUAL

01 If

11 If

21 If

1701 9999
1711 9999
1721 9999
1731 hhll

INSTRUCTION GLOSSARY

B

B

B

S

S

S

8

MOTOROLA

6-97

II

OECA

Operation:

Descri pti on:

Syntax:

Condition Code

15 14 13

I
s MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Decrement A OECA

(A) - $01 ~ A

Subtracts $01 from the content of accumulator A. Only BEQ and
BNE branches will perform consistently immediately after DECA
on unsigned values. All signed branches are available after
DECA on twos complement values. Because DECA does not
affect the C bit in the Condition Code Register, it can be used to
implement a loop counter in multiple-precision computation.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV N Z V C IP SM PK

l! l! l!

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if (A) = $80 before operation (operation causes twos complement overflow); else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

MOTOROLA

6-98

INH

Opcode Operand Cycles

3701 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

DECB

Operation:

Description:

Syntax:

Decrement B DECB

(8) - $01 ~ B

Subtracts $01 from the content of accumulator B. Only BEQ and
BNE branches will perform consistently immediately after DECB
on unsigned values. All signed branches are available after
DECB on twos complement values. Because DECB does not
affect the C bit in the Condition Code Register, it can be used to
implement a loop counter in multiple-precision computation.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV N Z v

I
c

I /). /). /).

~ __ +-__ +-__ ~ __ ~ __ -+ __ -1 ____ ~ __ +-_____ IP ______ ~S_M-+ ________ P_K ______ ~1 III!II
S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if (8) = $80 before operation (operation causes twos complement overflow); else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 3711

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

2

MOTOROLA

6-99

II

oecw
Operation:

Description:

Syntax:

Decrement Word oecw
(M : M + 1) - $0001 ~ M : M + 1

Subtracts $0001 from the content of a memory word. Only BEQ
and BNE branches will perform consistently immediately after
DECW on unsigned values. All signed branches are available
after DECW on twos complement values. Because DECW does
not affect the C bit in the Condition Code Register, it can be used
to implement a loop counter in multiple-precision computation.

Standard

Condition Code Register:

I
15 14 13 12 11 10 9 8 7 6 5 4 3 2

s MV H EV

I
N

I
Z v C IP SM PK

I'> I'> I'>

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1 [15) = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Set if (M : M + 1) = $8000 before operation (operation causes twos complement overflow); else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND16, X 2701 gggg 8

IND16, Y 2711 gggg 8

IND16,Z 2721 9999 8

EXT 2731 hhll 8

0

MOTOROLA

6-100

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

EDIV

Operation:

Description:

Syntax:

Condition Code

15 14 13

S MV H

S: Not allected.

MV: Not allected.

H: Not allected.

EV: Not allected.

Extended Unsigned Integer Divide

(E : D) I (IX) => IX

Remainder => D

EDIV

Divides a 32-bit unsigned dividend contained in concatenated
accumulators E and D by a 16-bit divisor contained in index
register X. The quotient is placed in IX and the remainder in D.
There is an implied radix point to the right of the quotient (IXO). An
implied radix point is assumed to occupy the same position in both
dividend and divisor.

The states of condition code register bits N, Z, V, and Care
undefined after division by zero, but accumulator contents are not
changed. Division by zero causes an exception. See SECTION
9 EXCEPTION PROCESSING for more information. The
states of the N, Z, and C bits are also undefined after overflow.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV

I
N

I
Z v

I
c

I
IP SM PK

.1 .1 .1 .1

N: Set if IX15 = 1 as a result of operation; else cleared. Undefined after overflow or division by zero.

Z: Set if (IX) = $0000 as a result of operation; else cleared. Undefined after overflow or division by zero.

V: Set if (IX) > $FFFF as a result of operation; else cleared. Undefined after division by zero.

c: Set if 2 • Remainder ~ Divisor; else cleared. Undefined after overflow or division by zero.

IP: Not allected.

SM: Not allected.

PK: Not allected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3728

INSTRUCTION GLOSSARY

Cycles

24

MOTOROLA

6-101

II

II

EDIVS

Operation:

Description:

Syntax:

Condition Code

15 14 13

I
5

I
MV H

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Extended Signed Integer Divide

(E : D) I (IX) => IX

Remainder => D

EDIVS

Divides a 32-bit signed dividend contained in concatenated
accumulators E and D by a 16-bit divisor contained in index
register X. The quotient is placed in IX and the remainder in D.
There is an implied radix point to the right of the quotient (IXO). An
implied radix point is assumed to occupy the same position in both
dividend and divisor.

The states of condition code register bits N, Z, V, and Care
undefined after division by zero, but accumulator contents are not
changed. Division by zero causes an exception. See SECTION
9 EXCEPTION PROCESSING for more information. The
states of the N, Z, and C bits are also undefined after overflow.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 o
EV N Z v

I
c

I ~ ~ ~ ~

IP SM PK

N: Set if IX15 = 1 as a result of operation; else cleared. Undefined after overflow or division by zero.

Z: Set if (IX) = $0000 as a result of operation; else cleared. Undefined after overflow or division by zero.

V: Set if (IX) > $FFFF as a result of operation; else cleared. Undefined after division by zero.

C: Set if 12 * Remainder 1 ~ 1 Divisor I; else cleared. Undefined after overflow or division by zero.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

MOTOROLA

6-102

INH

Opcode Operand Cycles

3729 38

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

EMUL Extended Unsigned Multiply EMUL

Operation: (E) * (D) ~ E : D

Description: Multiplies a 16-bit unsigned multiplicand contained in accumulator
E by a 16-bit unsigned multiplier contained in accumulator D. then
places the product in concatenated accumulators E and D. The
CCR Carry bit can be used to round the high word of the product
- execute EMUL. then ADCE #0.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

L-S __ L-M_V~ __ H~L-E_V-L __ ~~ __ ~~ __ V __ L-~ __ L-_____ IP ______ L-S_M-L ________ P_K ______ ~I III!II
s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E : 0) = $00000000 as a result of operation; else cleared.

V: Not affected.

C: Set if 015 = 1 as a result of operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3725

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

10

MOTOROLA

6-103

II

EMULS Extended Signed Multiply EMULS

Operation: (E) * (D) ~ E : 0

Description: Multiplies a 16-bit signed multiplicand contained in accumulator E
by a 16-bit signed multiplier contained in accumulator 0, then
places the product in concatenated accumulators E and D. The
CCR Carry bit can be used to round the high word of the product
- execute EMULS, then ADCE #0.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

I
S MV H EV N Z v

I
c IP

t. t. t.

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a resu~ of operation; else cleared.

Z: Set if (E : DJ = $00000000 as a result of operation; else cleared.

V: Not affected.

C: Set if D15 = 1 as a result of operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

INH

MOTOROLA

6-104

3726

INSTRUCTION GLOSSARY

4 3 2 0

SM PK

Cycles

8

CPU16 REFERENCE MANUAL

EORA EOR A EORA

Operation: (A) EB (M) => A

Description: Performs EOR between the content of accumulator A and a
memory byte, then places the result in accumulator A. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H EV N Z v C

o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (Al = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8, X

IND8, Y

IND8,Z

IMM8

IND16, X

IND16, Y

IND16,Z

EXT

E,X

E,Y

E,Z

Opcode

44

54

64

74

1744

1754

1764

1774

2744

2754

2764

7 6 5

IP

Operand

If

If

ff

ii

9999

9999

9999
hhll

-
-
-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-105

II

II

EORB EOR B EORB

Operation: (B) EB (M) ~ B

Description: Performs EOR between the content of accumulator B and a
memory byte, then places the result in accumulator B. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

s: Not affected.

MV: Not affected.

H: Not affeCted.

EV: Not affected.

N: Set if 87 is set by operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

I P: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8, X

IND8, Y

IND8,Z

IMM8

IND16, X

IND16, Y

IND16,Z

EXT

E,X

E, Y

E,Z

Opcode

C4

D4

E4

F4

17C4

17D4

17E4

17F4

27C4

27D4

27E4

7 6 5

IP

Operand

ff

ff

ff

ii

9999

9999

9999
hhll

-
-
-

MOTOROLA

6-10.6

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

EORD EOR D EORD

Operation: (D) Ee (M : M + 1) ~ D

Description: Performs EOR between the content of accumulator D and a
memory word, then places the result in accumulator D. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

v C

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 is set by operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08, X

IN08, Y

IN08,Z

IMM16

IN016, X

IN016, Y

IN016, Z

EXT
E,X

E, Y

E,Z

Opcode

84

94

A4

3784

37C4

3704

37E4

37F4

2784

2794

27A4

6 5

IP

Operand

"
"
" jjkk

9999
9999

9999
hhll

-

-

-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

4

6

6

6

6

6

6

6

MOTOROLA

6-107

II

II

EORE EOR E' EORE

Operation: (E) E9 (M : M + 1) ~ E

Description: Performs EOR between the content of accumulator E and a
memory word, then places the result in accumulator E. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H v C

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16

IND16, X
IND16, Y

IND16,Z

EXT

Opcode

3734

3744

3754

3764

3774

6 5

IP

Operand

jjkk

9999

9999

9999
hhll

MOTOROLA

6-108

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

4

6

6

6

6

CPU16 REFERENCE MANUAL

FDIV

Operation:

Description:

Syntax:

Condition Code

15 14 13
S

I
MV H

I

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Fractional Divide

(D) / (IX) => IX
Remainder => D

FDIV

Divides a 16-bit unsigned dividend contained in accumulator D by
a 16-bit unsigned divisor contained in index register X. The
quotient is placed in IX and the remainder is placed in D.

There is an implied radix point to the left of the quotient (IX15). An
implied radix pOint is assumed to occupy the same position in both
dividend and divisor. If the dividend is greater than or equal to the
divisor, or if the divisor is equal to zero, (IX) is set to $FFFF and (D)
is indeterminate. To maintain compatibility with the MC68HC11,
no exception is generated on overflow or division by zero.

Standard

Register:

12 11 10 9 B 7 6 5 4 3 2 0

EV N

I
Z v c

I
IP SM

tl tl tl

PK

Z: Set if (IX) = $0000 as a result of operation; else cleared.

V: Set if (IX):5 (0) before operation; else cleared.

C: Set if (IX) = $0000 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3729

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

22

MOTOROLA

6-109

a

II

FMULS

Operation:

Description:

Syntax:

Condition Code

15 14 13

5 MV H

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Signed Fractional Multiply

(E) * (D) => E : 0[31 :1]
o => E: 0[0]

FMULS

Multiplies a 16-bit signed fractional multiplicand contained in
accumulator E by a 16-bit signed fractional multiplier contained in
accumulator O. The implied radix points are between bits 15 and
14 of the accumulators. The product is left-shifted one place to
align the radix point between bits 31 and 30, then placed in bits 31
to 1 of concatenated accumulators E and o. DO is cleared. The
CCR Carry bit can be used to round the high word of the product
- execute FMULS, then AOCE #0.

When both accumulators contain $8000 (-1), the product is
$80000000 (-1.0) and the CCR V bit is set.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV N Z v
I

c IP SM

t;. t;. t;. t;.

PK

N: Set if E15 = 1 as a result of operation; else cleared .

. Z: Set if (E : D) = $00000000 as a result of operation; else cleared.

V: Set when operation is (-1)2; else cleared.

C: Set if D15 = 1 as a result of operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3727

Operand

MOTOROLA

6-110

INSTRUCTION GLOSSARY

Cycles

8

CPU16 REFERENCE MANUAL

IDIV

Operation:

Description:

Syntax:

Condition Code

15 14 13

S MV H

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Integer Divide

(D) I (IX) ~ IX
Remainder ~ D

IDIV

Divides a 16-bit unsigned dividend contained in accumulator D by
a 16-bit unsigned divisor contained in index register X. The
quotient is placed in IX and the remainder is placed in D.

There is an implied radix point to the right of the quotient (IXO). An
implied radix point is assumed to occupy the same position in both
dividend and divisor. If the divisor is equal to zero, (IX) is set to
$FFFF and (D) is indeterminate. To maintain compatibility with the
MC68HC11, no exception is generated on division by zero.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV N Z V c
I

IP SM

!:. 0 !:.

PK

Z: Set if (IX) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Set if (IX) = $0000 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

372A

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

22

MOTOROLA

6-111

II

INC

Operation:

Description:

Syntax:

Increment Byte INC

(M) + $01 => M

Adds $01 to the content of a memory byte. Only BEQ and BNE
branches will perform consistently immediately after INC on
unsigned values. All signed branches are available after INC on
twos complement values. Because INC does not affect the C bit in
the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Standard

Condition Code Register:

3 2 o II 15 14 13 12 11 10 9 B 7 6 5 4

• 1~=S==:=M=V=~==H=~==E=V=~=~=N=~==~=~==~==I~=c==:1======IP======~=S=M=:========P=K======~
S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.

V: Set if (M) = $7F before operation (operation causes twos complement overflow); else cleared.
C: Not affected.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

IN DB. X

INDB. V

INDB.Z

IND16. X

IND16. V

IND16.Z

EXT

MOTOROLA
6-112

Opcode Operand Cycles

03 ff B

13 ff B

23 II B

1703 9999 B

1713 9999 B

1723 9999 B

1733 hhll 8

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

INCA

Operation:

Description:

Syntax:

Condition Code

15 14 13

S MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Increment A INCA

(A) + $01 ::::) A

Adds $01 to the content of accumulator A. Only BEQ and BNE
branches will perform consistently immediately after INCA on
unsigned values. All signed branches are available after INCA on
twos complement values. Because INCA does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV N Z V C IP SM PK

t. t. t.

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if (A) = $7F before operation (operation causes twos complement overflow); else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 3703 2

III

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-113

II

INCB

Operation:

Description:

Syntax:

Increment B INCB

(B) + $01 => B

Adds $01 to the content of accumulator B. Only BEQ and BNE
branches will perform consistently immediately after INCB on
unsigned values. All signed branches are available after INCB on
twos complement values. Because INCB does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Standard

Condition Code Register:

15

I
s

s:
MV:

H:
EV:

N:

Z:
v:
c:
IP:

SM:

PK:

14 13

MV H

Not affected.

Not affected.

Not affected.

Not affected.

12 11

EV N

10 9 8

Z v c

Set if 87 = 1 as a result of operation; else cleared.

Set if (8) = $00 as a result of operation; else cleared.

7 6 5 4 3 2

IP SM PK

Set if (8) = $7F before operation (operation causes twos complement overflow); else cleared.

Not affected.

Not affected.

Not affected.

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 3713 2

o

MOTOROLA

6-114

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

INCW

Operation:

Description:

Syntax:

Condition Code

15 14 13

s MIl H

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Increment Word INCW

(M : M + 1) + $0001 ~ M : M + 1

Adds $0001 to the content of a memory word. Only BEQ and BNE
branches will perform consistently immediately after INCW on
unsigned values. All signed branches are available after INCW on
twos complement values. Because INCW does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

III EV

I
N

I
Z v

I
c IP SM PK

!J. !J. !J.

N: Set if M : M + 1 [15] = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Set if (M : M + 1) = $7FFF before operation (operation causes twos complement overflow); else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16. X

IND16. Y

IND16.Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

2703 gggg

2713 gggg

2723 gggg

2733 hhll

INSTRUCTION GLOSSARY

Cycles

8

8

8

8

MOTOROLA

6-115

II

JMP

Operation:

Description:

Syntax:

Jump JMP

Effective Address => PK : PC

Causes an unconditional change in program execution. A 20-bit
effective address is placed in the concatenated program counter
extension field and program counter. The next instruction is
fetched from the new address. The effective address can be
generated in two ways:

A. Effective Address = Extension: 16-bit Extended Address

When extended addressing mode is employed, the effective
address is formed by a zero-extended 4-bit right-justified
address extension and a 16-bit byte address that are both
contained in the instruction. The EK field is not changed.

B. Effective Address = $0 : (index register) + 20-bit Offset

When indexed addressing mode is employed, the effective
address is calculated by adding a zero-extended 20-bit signed
offset to the zero-extended content of an index register. The
associated extension field is not changed.

JMP (effective address)
JMP (offset)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

EXT20

IND20, X

IND20, Y

IND20,Z

MOTOROLA
6-116

Opcode Operand Cycles

7A zb hhll 6

48 zg gggg 8

58 zg gggg 8

68 zg gggg 8

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

JSR

Operation:

Description:

Syntax:

Jump to Subroutine

Push (PC)
(SK : SP) - $0002 => SK : SP
Push (CCR)
(SK : SP) - $0002 => SK : SP
Effective Address => PK : PC

JSR

Causes a branch to a subroutine. After the current content of the
program counter and the condition code register are stacked, a
20-bit effective address is placed in the concatenated program
counter extension field and program counter. The next instruction
is fetched from the new address. The effective address can be
generated in two ways:

A. Effective Address = Extension: 16-bit Extended Address

When extended addressing mode is employed, the effective
address is formed by a zero-extended 4-bit right-justified
address extension and a 16-bit extended address that are both
contained in the instruction. The EK field is not changed.

B. Effective Address = $0 : (index register) + 0 : 20-bit Offset

When indexed addressing mode is employed, the effective
address is calculated by adding a zero-extended 20-bit signed
offset to the zero-extended content of an index register. The
associated extension field is not changed.

JSR (effective address)
JSR (offset)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

EXT20

IND20, X

IND20, Y

IND20, Z

CPU16 REFERENCE MANUAL

Opcode Operand

FA zb hh 1\

89 zg gggg

99 zg gggg

A9 zg gggg

INSTRUCTION GLOSSARY

Cycles

10

12

12

12

MOTOROLA

6-117

a

II

LBCC

Operation:

Description:

Syntax:

Long Branch If Carry Clear LBCC

If C = 0, then (PK : PC) + Offset => PK : PC

Causes a long program branch if the CCR Carry bit has a value of
O. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple or unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REU6 3784 rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBtS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-118

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

c=o Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

N(J)V=O Signed LBLT

Z+(N(J)V)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(N(J)V)=1 Signed LBGT

C+Z=1 Unsigned LBHI

N(J)V=1 Signed LBGE

N=1 Simple LBPL

z=o Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBCS

Operation:

Description:

Syntax:

Long Branch If Carry Set LBCS

If C = 1 , then (PK : PC) + Offset => PK : PC

Causes a long program branch if the CCR Carry bit has a value of
1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple or unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL16 3785 rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 3784 C=O Simple, Unsigned

LBCS 3785 C=1 Simple, Unsigned

LBEO 3787 Z=1 Simple, Unsigned, Signed

LBGE 378C NEl3V=O Signed

LBGT 378E Z+(N El3V)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(N El3V)=1 Signed

LBLS 3783 C+Z=1 Unsigned

LBLT 378D NEl3V=1 Signed

LBMI 378B N=1 Simple

LBNE 3786 Z=O Simple, Unsigned, Signed

LBPL 378A N=O Simple

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 3788 V=O Simple

LBVS 3789 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,4

Complement

LBCS

LBCC

LBNE

LBLT

LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEO

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-119

II

II

LBEQ

Operation:

Descri pti on:

Syntax:

Long Branch If Equal to Zero LBEQ

If Z = 1 , then (PK : PC) + Offset ~ PK : PC

Causes a long program branch if the CCR Zero bit has a value of
1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
Simple, sig,ned, or unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 3787 rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-120

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

c=o Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

N GlV=O Signed LBLT

Z+(N GlV)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+ (N Gl V) = 1 Signed LBGT

C+Z=1 Unsigned LBHI

NGlV=l Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBEV

Operation:

Description:

Syntax:

Long Branch If EV Set LBEV

If EV = 1, then (PK : PC) + Offset => PK : PC

Causes a long program branch if the EV bit in the condition code
register has a value of 1. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

REU6

CPU16 REFERENCE MANUAL

Opcode Operand

379~ rrrr

INSTRUCTION GLOSSARY

Cycles

6,4

MOTOROLA

6-121

II

LBGE

Operation:

Description:

Syntax:

Long Branch If Greater than or Equal to Zero LBGE

If N $ V = 0, then (PK : PC) + Offset ~ PK : PC

Causes a long program branch if the CCR Negative and Overflow
bits both have a value of 0 or both have a value of 1. A 16-bit
signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is
incremented or decremented. Used to implement sighed
conditional branches.

Standard

Condition Code Register: Not affected.

II Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 378C rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-122

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

c=o Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

NGlV=O Signed LBLT

Z+(N GlV)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(N GlV)=1 Signed LBGT

C+Z=1 Unsigned LBHI

NGlV=1 Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBGT

Operation:

Description:

Syntax:

Long Branch If Greater than Zero LBGT

If Z +- (N EB V) == 0, then (PK : PC) + Offset ~ PK : PC

Causes a long program branch if the CCR Negative and Overflow
bits both have a value of 0 or both have a value of 1, and the CCR
Zero bit has a value of o. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement signed conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL16 378E rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 3784 C=O Simple, Unsigned

LBCS 3785 C=l Simple, Unsigned

LBEQ 3787 Z=l Simple, Unsigned, Signed

LBGE 378C NEllV=O Signed

LBGT 378E Z+(NEllV)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(N Ell V) =1 Signed

LBLS 3783 C+Z=l Unsigned

LBLT 3780 NEllV=l Signed

LBMI 378B N=l Simple

LBNE 3786 Z=O Simple, Unsigned, Signed

LBPL 378A N=O Simple

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 3788 V=O Simple

LBVS 3789 V=l Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,4

Complement

LBCS

LBCC

LBNE

LBLT

LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEQ

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-123

II

II

LBHI

Operation:

Description:

Syntax:

Long Branch If Higher LBHI

If C + Z = 0, then (PK : PC) + Offset ~ PK : PC

Causes a long program branch ,if the CCR Carry and Zero bits
both have a value of O. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REU6 3782 rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-124

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

C=O Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

NeV=o Signed LBLT

Z+(NeV)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(NeV)=1 Signed LBGT

C+Z=1 Unsigned LBHI

N eV=1 Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBLE

Operation:

Description:

Syntax:

Long Branch If Less than or Equal to Zero LBLE

If Z + (N $ V) = 1, then (PK : PC) + Offset => PK : PC

Causes a long program branch if either the CCR Negative bit or
Overflow bit has a value of 1, or the CCR Zero bit has a value of 1.
A 16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement signed
conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL16 378F rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 3784 c=o Simple, Unsigned

LBCS 3785 C=l Simple, Unsigned

LBEQ 3787 Z=l Simple, Unsigned, Signed

LBGE 378C N GlV=O Signed

LBGT 378E Z+(N GlV)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(N GlV)=l Signed

LBLS 3783 C+Z=l Unsigned

LBLT 378D NGlV=l Signed

LBMI 378B N=l Simple

LBNE 3786 Z=O Simple, Unsigned, Signed

LBPL 378A N=O Simple

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 3788 V=O Simple

LBVS 3789 V=l Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,4

Complement

LBCS

LBCC

LBNE

LBLT

LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEQ

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-125

II

II

LBLS

Operation:

Description:

Syntax:

Long Branch If Lower or Same LBLS

If C + Z = 1 , then (PK : PC) + Offset::::) PK : PC

Causes a long program branch if either or both the CCR Carry and
Zero bits have a value of 1. A 16-bit signed relative offset is added
to the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 3783 rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBGS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-126

Opcode

3784

3785

3787

378G

378E

3782

378F

3783

3780

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

C=o Simple, Unsigned LBGS

C=l Simple, Unsigned LBGG

Z=l Simple, Unsigned, Signed LBNE

NC:9V=O Signed LBLT

Z+(N C:9V)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(N C:9V)=l Signed LBGT

C+Z=l Unsigned LBHI

NC:9V=l Signed LBGE

N=l Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N =0 Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=l Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBLT

Operation:

Description:

Syntax:

Long Branch If Less than Zero LBLT

If N ED V == 1, then (PK : PC) + Offset ==> PK : PC

Causes a long program branch if either the CCR Negative or
Overflow bits has a value of 1. A 16-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or
decremented. Used to implement signed conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REU6 378D rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 3784 c=O Simple, Unsigned

LBCS 3785 C=1 Simple, Unsigned

LBEQ 3787 Z=1 Simple, Unsigned, Signed

LBGE 378C NGlV=O Signed

LBGT 378E Z+(N GlV)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(N GlV)=1 Signed

LBLS 3783 C+Z=1 Unsigned

LBLT 378D N GlV=1 Signed

LBMI 378B N=1 Simple

LBNE 3786 Z=O Simple, Unsigned, Signed

LBPL 378A
,

Simple N=O

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 3788 V=O Simple

LBVS 3789 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,4

Complement

LBCS

LBCC

LBNE

LBLT

LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEQ

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-127

I

II

LBMI

Operation:

Description:

Syntax:

Long Branch If Minus LBMI

If N = 1, then (PK : PC) + Offset ~ PK : PC

Causes a long program branch if the CCR Negative bit has a
value of 1. A 16-bit signed relative offset is added to the current
value of the program counter. When the operation causes PC
overflow, the PK field is incremented or decremented. Used to
implement simple conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 378B rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LOOT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA
6-128

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

3780

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

C=O Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

NGlV=O Signed LBLT

Z+(N GlV)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(NGlV)=1 Signed LBGT

C+Z=1 Unsigned LBHI

NGlV=1 Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBMV

Operation:

Description:

Syntax:

long Branch If MV Set LBMV

If MV = 1, then (PK : PC) + Offset => PK : PC

Causes a long program branch if the MV bit in the condition code
register has a value of 1. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

REL16

CPU16 REFERENCE MANUAL

Opcode Operand

3790 rrrr

INSTRUCTION GLOSSARY

Cycles

6.4

MOTOROLA

6-129

II

II

LBNE

Operation:

Description:

Syntax:

Long Branch If Not Equal to Zero LBNE

If Z = 0, then (PK : PC) + Offset:::) PK : PC

Causes a long program branch if the CCR Zero bit has a value of
O. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 3786 rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-130

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

C=O Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

NEIlV=O Signed LBLT

Z+(N Ell V) =0 Signed LBLE

C+Z=O Unsigned LBLS

Z+(N EIlV)=1 Signed LBGT

C+Z=1 Unsigned LBHI

N EIlV=1 Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBPL

Operation:

Description:

Syntax:

Long Branch If Plus LBPL

If N = 0, then (PK : PC) + Offset => PK : PC

Causes a long program branch if the CCR Negative bit has a
value of O. A 16-bit signed relative offset is added to the current
value of the program counter. When the operation causes PC
overflow, the PK field is incremented or decremented. Used to
implement simple conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL16 37BA rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 37B4 C=O Simple, Unsigned

LBCS 3785 C=l Simple, Unsigned

LBEQ 37B7 Z=l Simple, Unsigned, Signed

LBGE 37BC N GlV=O Signed

LBGT 378E Z+(N GlV)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(N GlV)=l Signed

LBLS 37B3 C+Z=l Unsigned

LBLT 378D N GlV=l Signed

LBMI 37BB N=l Simple

LBNE 3786 Z=O Simple. Unsigned, Signed

LBPL 37BA N=O Simple

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 378B V=O Simple

LBVS 3789 V=l Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,4

Complement

LBCS

LBCC

LBNE

LBLT

·LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEQ

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-131

II

II

LBRA
Operation:

Description:

Syntax:

Long Branch Always LBRA
(PK : PC) + Offset ~ PK : PC

Causes a long program branch. A 16-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or
decremented. '

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 3780 rrrr 6

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA

6-132

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

C=O Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

NGlV=O Signed LBLT

Z+(N GlV)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(N GlV)=1 Signed LBGT

C+Z=1 Unsigned LBHI

NGlV=1 Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LBRN Long Branch Never LBRN
Operation: (PK : PC) + 4 ::::) PK : PC

Description: Never branches. This instruction is effectively a NOP that requires
three cycles to execute. When the operation causes PC overflow;
the PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REL1s 3781 rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 3784 C=O Simple, Unsigned

LBCS 3785 C=1 Simple, Unsigned

LBEQ 3787 Z=1 Simple, Unsigned, Signed

LBGE 378C NE9V=O Signed

LOOT 378E Z+(NE9V)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(NE9V)=1 Signed

LBLS 3783 C+Z=1 Unsigned

LBLT 3780 NE9V=1 Signed

LBMI 378B N=1 Simple

LBNE 3786 Z=O Simple, Unsigned, Signed

LBPL 378A N=O Simple

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 3788 V=O Simple

LBVS 3789 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

S

Complement

LBCS

LBCC

LBNE

LBLT

LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEQ

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-133

II

LBSR

Operation:

Description:

II Syntax:

Condition Code

Long Branch to Subroutine

Push (PC) ,
(SK : SP) - $0002 => SK : SP
Push (CCR)
(SK : SP) - $0002 => SK : SP
(PK : PC) + Offset => PK : PC

LBSR

Saves current address and flags, then branches to a subroutine.
The current value of the program counter is stacked, then the
condition code register is stacked (which preserves the PK field as
well as condition code bits and the interrupt priority mask). A
16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented.

Standard

Register: Not affected.

Instruction Format:

Addressing Mode

REL16

MOTOROLA
6-134

Opcode Operand

27F9 rrrr

INSTRUCTION GLOSSARY

Cycles

10

CPU16 REFERENCE MANUAL

LBVC

Operation:

Description:

Syntax:

Long Branch If Overflow Clear LBVC

If V = 0, then (PK : PC) + Offset ~ PK : PC

Causes a long program branch if the CCR Overflow bit has a value
of O. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

REU6 3788 rrrr

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type

LBCC 3784 C=O Simple. Unsigned

LBCS 3785 C=1 Simple, Unsigned

LBEQ 3787 Z=1 Simple, Unsigned. Signed

LBGE 378C NGlV=O Signed

LBGT 378E Z+(N GlV)=O Signed

LBHI 3782 C+Z=O Unsigned

LBLE 378F Z+(N GlV)=1 Signed

LBLS 3783 C+Z=1 Unsigned

LBLT 378D N GlV=1 Signed

LBMI 378B N=1 Simple

LBNE 3786 Z=O Simple, Unsigned, Signed

LBPL 378A N=O Simple

LBRA 3780 1 Unary

LBRN 3781 0 Unary

LBVC 3788 V=O Simple

LBVS 3789 V=1 Simple

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6,4

Complement

LBCS

LBCC

LBNE

LBLT

LBLE

LBLS

LBGT

LBHI

LBGE

LBPL

LBEQ

LBMI

LBRN

LBRA

LBVS

LBVC

MOTOROLA

6-135

II

II

LBVS

Operation:

Description:

Syntax:

Long Branch If Overflow Set LBVS

If V = 1, then (PK : PC) + Offset ~ PK : PC

Causes a long program branch if the CCR Overflow bit has a value
of 1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

REL16 3789 rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic

LBCC

LBCS

LBEQ

LBGE

LBGT

LBHI

LBLE

LBLS

LBLT

LBMI

LBNE

LBPL

LBRA

LBRN

LBVC

LBVS

MOTOROLA
6-136

Opcode

3784

3785

3787

378C

378E

3782

378F

3783

378D

378B

3786

378A

3780

3781

3788

3789

Equation Type Complement

C=O Simple, Unsigned LBCS

C=1 Simple, Unsigned LBCC

Z=1 Simple, Unsigned, Signed LBNE

NmV=O Signed LBLT

Z+(NmV)=O Signed LBLE

C+Z=O Unsigned LBLS

Z+(N mV)=1 Signed LBGT

C+Z=1 Unsigned LBHI

NmV=1 Signed LBGE

N=1 Simple LBPL

Z=O Simple, Unsigned, Signed LBEQ

N=O Simple LBMI

1 Unary LBRN

0 Unary LBRA

V=O Simple LBVS

V=1 Simple LBVC

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LDAA Load A LDAA

Operation: (M) ~A

Description: Loads the content of a memory byte into accumulator A. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B

EV N Z v c
o

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.

N: Set if A7 - 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.

V: Cleared.
C: Not affected.

IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

INOB.X

INOB. Y

INOB.Z

IMMB

IN016. X

IN016. Y

IND16.Z

EXT
E.X

E.Y

E.Z

Opcode

45

55

65

75

1745

1755

1765

1775

2745

2755

2765

7 6 5

IP

Operand

ff

ff

ff

ii

gggg

gggg

gggg

hhll

-
-
-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 1 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-137

II

II

LDAB Load 8 LDAB

Operation: (M)::::) B

Description: Loads the content of a memory byte into accumulator B. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

I
S

I
MV H EV N Z V C

t. t. 0

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a resu~ of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

IN08, Y

IN08,Z

IMM8

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E,Y

E,Z

Opcode

C5

05

E5

F5

17C5

1705

17E5

17F5

27C5

2705

27E5

7 6 5

IP

Operand

"
"
"
ii

9999
9999
9999
hhll

-
-
-

MOTOROLA

6-138

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

LDD Load D LDD

Operation: (M : M + 1) =:} D

Description: Loads the content of a memory word into accumulator D. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

s WI H EV N Z v C

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 = 1 as a resu~ of operation; else cleared.

Z: Set if (0) = $0000 as a. result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

IN08, Y

IN08,Z

IMM16

IN016,X

IN016, Y

IN016, Z

EXT

E,X

E, Y

E,Z

Opcode

85

95

AS

3785

37C5

3705

37E5

37F5

·2785

2795

27A5

6 5

IP

Operand

If

If

If

jjkk

9999

9999
9999
hhll

-
-
-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

4

6

6

6

6

6

6

6

MOTOROLA

6-139

II

II

LDE Load E LDE

Operation: (M:M + 1) ~ E

Description: Loads the content of a memory word into accumulator E. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v C

o

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set H (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16

IND16. X

IND16. Y

IND16.Z

EXT

Opcode

3735

3745

3755

3765

3775

6 5

IP

Operand

jjkk

9999
9999

9999
hhll

MOTOROLA

6-140

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

4

6

6

6

6

CPU16 REFERENCE MANUAL

LDED

Operation:

Description:

Syntax:

Load Concatenated E and D LDED

(M: M+ 1) ~ E

(M + 2 : M + 3) ~ 0

Loads four successive bytes of memory into concatenated
accumulators E and D. Used to transfer long word operands and
32-bit signed fractions from memory. Can also be used to transfer
32-bit words from 1MB peripherals. Misaligned long transfers are
converted into two misaligned word transfers.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

2771 hhll

INSTRUCTION GLOSSARY

Cycles

8

MOTOROLA

6-141

II

II

LDHI

Operation:

Description:

Syntax:

Load MAC Registers Hand

(M : M + 1)x :::) HR
(M : M + 1)y :::) IR

LDHI

Initializes MAC registers H and I. HR is loaded with a memory
word located at address (XK : IX). IR is loaded with a memory
word located at address (YK : IY). Memory content is not changed
by the operation. See SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

EXT

MOTOROLA

6-142

Opcode Operand Cycles

2760 8

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LOS Load Stack Pointer LOS

Operation: (M : M + 1) ==> SP

Description: Loads the content of a memory word into the stack pointer.
Memory content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7

S MV H EV N Z v

I
c

I t:. t:. 0

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if SP15 = 1 as a result of operation; else cleared.

Z: Set if (SP) = $0000 as.a result of operation; else cleared.

V: Cleared.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDS, Y

INDS,Z

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

Opcode

CF

DF

EF

37BF

17CF

17DF

17EF

17FF

6 5

IP

Operand

If

If

fl

jjkk

9999

9999

9999
hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

4

6

6

6

6

MOTOROLA

6-143

II

II

LOX Load IX. LOX

Operation: (M: M + 1):::::} IX

Description: Loads the content of a memory word into index register X.
Memory content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

s I MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if IX15 = 1 as a result of operation; else cleared.

Z: Set if (IX) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

IN08, Y

IN08,Z

IMM16

IN016, X

IN016, Y

IN016,Z

EXT

Opcode

CC

DC

EC

37BC

17CC

170C

17EC

17FC

6 5

IP

Operand

ff

ff

ff

jjkk

9999

9999

9999
hhll

MOTOROLA

6-144

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

4

6

6

6

6

CPU16 REFERENCE MANUAL

LOY Load IV LOY

Operation: (M: M+ 1) ~ IV

Description: Loads the content of a memory word into index register V.
Memory content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v C

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if IY15 = 1 as a result of operation; else cleared.

Z: Set if (IV) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

IN08, Y

IN08,Z

IMM16

IN016, X

IN016, Y

IN016,Z

EXT

Opcode

CD

DO

EO

37BO

17CO

1700

17EO

17FD

6 5

IP

Operand

If

If

If

jjkk

9999

9999
9999
hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

6

6

6

4

6

6

6

6

MOTOROLA

6-145

II

II

LDZ Load IZ LDZ

Operation: (M : M + 1) => IZ

Description: Loads the content of a memory word into index register Z. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v c
o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if IZ15 = 1 as a result of operation; else cleared.

Z: Set if (IZ) = $0000 as a result of operation; else cleared.

V: Cleared.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

IND8, Y

IND8,Z

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

Opcode

CE

DE

EE

37BE

17CE

17DE

17EE

17FE

6 5

IP

Operand

If

If

"
jjkk

9999

9999

9999
hhll

MOTOROLA

6-146

INSTRUCTION GLOSSARY

4 3 2 o .
SM PK

Cycles

6

6

6

4

6

6

6

6

CPU16 REFERENCE MANUAL

LPSTOP
Operation:

Description:

Syntax:

Low Power Stop

If S, then enter low-power mode
Else NOP

LPSTOP

Operation is controlled by the S bit in the CCA. If S = 0 when
LPSTOP is executed, the IP field from the condition code register
is copied into an external bus interface, and the system clock input
to the CPU is disabled. If S = 1, LPSTOP operates in the same
way as a 4-cycle NOP.

Normal execution of instructions can resume in one of two ways. If
a reset occurs, a reset exception is generated. If an interrupt
request of higher priority than the copied IP value is received, an
interrupt exception is generated. See SECTION 9 EXCEPTION
PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 27F1

Cycle times are for S = 1, S = 0 respectively.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

4,20

MOTOROLA

6-147

II

II

LSR Logic Shift Right LSR

Operation:

Description: Shifts all 8 bits of a memory byte one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6 5 4 3 2

S MV H EV N Z v

I
c

I
IP SM PK

0 !J. !J. !J.

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if MO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDS, Y

INDS,Z

IND16, X

IND16, Y

IND16,Z

EXT

Opcode

OF

1F

2F

170F

171F

172F

173F

Operand Cycles

If S

If S

If S

9999 S

9999 S

9999 S

hhll S

0

MOTOROLA

6-148

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LSRA Logic Shift Right A LSRA

Operation:

Description: Shifts all 8 bits of accumulator A one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV N Z v c IP SM PK

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set if (A) = $00; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if AO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

370F

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-149

II

II

LSRB Logic Shift Right B LSRB

Operation:

Description: Shifts all 8 bits of accumulator B one place to the right. Bit 7 is
cleared. Bit a is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

s MV H IP SM PK

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if 80 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode Operand Cycles

371F 2

o

MOTOROLA

6-150

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

LSRD Logic Shift Right D LSRD

Operation: o-CO:::: - - -IIJ-7I]]
b15 bO

Description: Shifts all 16 bits of accumulator D one place to the right. Bit 15 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV N Z v C IP SM PK

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set if (D) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if DO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

27FF

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-151

II

II

LSRE Logic Shift Right E LSRE

Operation: o-CCI---~
b15 bO

Description: Shifts all 16 bits of accumulator E one place to the right. Bit 15 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

s I MV I H EV N Z

I
v

I
c IP sM PK

0 fl fl fl

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set if (E) - $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if EO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode Operand Cycles

277F 2

0

MOTOROLA
6-152

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAl

LSRW Logic Shift Right Word LSRW

Operation: o-{]I - - -IIJ--{Q]
b15 bO

Descri pti on: Shifts all 16 bits of a memory word one place to the right. Bit 15 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
S MV H EV N Z v c IP SM PK

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if M: M + 1[0] = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16, X

IND16, Y

IND16,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

270F 9999
271F 9999
272F 9999
273F hhll

INSTRUCTION GLOSSARY

Cycles

B

B

B

B

MOTOROLA

6-153

II

II

MAC

Operation:

Description:

MOTOROLA

6-154

Multiply and Accumulate

(HR) * (IR) => E : 0
(AM) + (E : D) => AM
((IX) • X MASK) + ((IX) + xo) • X MASK)=> IX
((IV). V MASK) + ((IV) + yo) • V MASK)=> IV

(HR) => IZ
(M : M + 1)X => HR
(M : M + 1)y => IR

MAC

Multiplies a 16-bit signed fractional multiplicand in MAC Register I
by a 16-bit signed fractional multiplier in MAC Register H. There,
are implied radix points between bits 15 and 14 of the registers.
The product is left-shifted one place to align the radix point
between bits 31 and 30, then placed in bits 31:1 of concatenated
accumulators E and D. DO is cleared. The aligned product is then
added to the content of AM.

As multiply and accumulate operations take place, 4-bit offsets
xo and yo are sign-extended to 16 bits and used with X and V
masks to qualify the X and V index registers.

Writing a non-zero value into a mask register prior to MAC
execution enables modulo addressing. The TDMSK instruction
writes mask values. When a mask contains $0, modulo
addressing is disabled, and the sign-extended offset is added to
the content of the corresponding index register.

After accumulation, the content of HR is transferred to IZ, then a
word at the address pointed to by XK : IX is loaded into HR, and a
word at the address pointed to by VK : IV is loaded into IR. The
fractional product remains in concatenated E and D.

When both registers contain $8000 (-1), a value of $80000000
(1.0 in 36-bit format) is accumulated, (E : D) is $80000000 (-1 in
32-bit format), and the V bit in the condition code register is set.
See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

MAC Multiply and Accumulate

Syntax: MAC xo, yo

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV

I
H

I
EV N Z V C IP

!l !l !l

S: Not affected.

MV: Set if overflow into AM35 occurs as a result of addition; else not affected.

H: Not affected.

EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.

Z: Not affected.

V: Set if operation is (-1)2; else cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM8

Opcode

7B

Offset

xoyo

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

MAC

2 o
PK

Cycles

12

MOTOROLA

6-155

II

II

Move
Operation:

Description:

Syntax:

Move Byte Move

Moves a byte of data from a source address to a destination
address. Data is examined as it is moved, and condition codes
are set. Source data is not changed. A combination of source and
destination addressing modes is used. Extended addressing can
be used to specify source, destination, or both. A special form of
indexed addressing, in which an a-bit signed offset is added to the
content of index register X after the move is complete, can be used
to specify source or destination. If addition causes IX to overflow,
the XK field is incremented or decremented.

MOYS Source Offset Operand, X, Destination Address Operand
MOYS Source Address Operand, Destination Offset Operand, X
MOYS Source Address Operand, Destination Address Operand

Condition Code Register:

15 14 13 12 11 10 9

S MV H EV N z v
o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if MSB of source data = 1; else cleared.

Z: Set if source data = $00; else Cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IXPto EXT

EXT to IXP

EXT to EXT

Opcode

30

32

37FE

8 7 6 5 4 3 2 o
c IP SM PK

Offset Addr Operand Cycles

If hh II 8

ff hh II 8

- hhll hhll 10

MOTOROLA

6-156

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

MOVW

Operation:

Description:

Syntax:

Move Word MOVW

Moves a data word from a source address to a destination
address. Data is examined as it is moved, and condition codes
are set. Source data is not changed. A combination of source and
destination addressing modes is used. Extended addressing can
be used to specify source, destination, or both. A special form of
indexed addressing, in which an a-bit signed offset is added to the
content of index register X after the move is complete, can be used
to specify source or destination only. If addition causes IX to
overflow, the XK field is incremented or decremented.

MOVB Source Offset Operand, X, Destination Address Operand
MOVB Source Address Operand, Destination Offset Operand, X
MOVB Source Address Operand, Destination Address Operand

Condition Code Register:

15 14 13 12 11 10 9

s v
o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if MSB of source data = 1; else cleared.

Z: Set if source data = $0000; else cleared.

V: Cleared.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IXPto EXT

EXT to IXP

EXT to EXT

Opcode

31

33

37FF

8 7 6

c IP

Offset

If

If

-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

5 4 3

SM

Operand

hhll

hhll

hhll hhll

2 o
PK

Cycles

8

8

10

MOTOROLA

6-157

II

MUL

Operation:

Description:

Syntax:

Unsigned Multiply MUL

(A) * (8) => D

Multiplies an 8-bit unsigned multiplicand contained in accumulator
A by an 8-bit unsigned multiplier contained in accumulator 8, then
places the product in accumulator D. Unsigned multiply can be
used to perform multiple-precision operations. The CCR Carry bit
can be used to round the high byte of the product - execute MUL,
then ADCA #0.

Standard

Condition Code Register:

II 15 14 13 12 11 10 9 8 7 6 5 4 3 2 . ~I _s __ ~I_~ __ ~I __ H-+_E_V-+ __ N-4 __ Z-4 __ V-4 __ ~~~ ____ I_P ____ ~_S_M-+ _______ P_K ______ -4

o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Set if 07 = 1 as a result of operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH
Opcode

3724

Operand

MOTOROLA

6-158

INSTRUCTION GLOSSARY

Cycles

10

CPU16 REFERENCE MANUAL

NEG Negate Byte NEG

Operation: $00 - (M) => M

Descri pti on: Replaces the content of a memory byte with its twos complement.
A value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV H EV N Z v c IP

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Set if (M) = $80 after operation (twos complement overflow); else cleared.

C: Cleared if (M) = $00 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08, X

IN08, Y

IN08,Z

IN016, X

IN016, Y

IN016,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

02 If

12 If

22 If

1702 9999
1712 9999
1722 9999
1732 hhll

INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

8

8

8

8

8

8

8

MOTOROLA

6-159

II

II

NEGA Negate A NEGA

Operation: $00 - (A) ~ A

Description: Replaces the content of accumulator A with its twos complement.
A value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV H EV N Z v c IP

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if (A) = $80 after operatipn (twos complement overflow); else cleared.

C: Cleared if (A) = $00 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-160

Opcode Operand

3702

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

NEGB Negate B NEGB

Operation: $00 - (8) => 8

Description: Replaces the content of accumulator 8 with its twos complement.
A value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV H v c IP

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 67 = 1 as a result of operation; else cleared.

Z: Set if (6) = $00 as a resuH of operation; else cleared.

V: Set if (6) = $80 after operation (twos complement overflow); else cleared.

C: Cleared if (6) = $00 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3712

INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

2

MOTOROLA

6-161

NEGD Negate D NEGD

Operation: $0000 - (0) ~ 0

Description: Replaces the content of accumulator 0 with its twos complement.
A value of $8000 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

IP SM

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 = 1 as a result of operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

v: Set if (0) = $8000 after operation (twos complement overflow); else cleared.

c: Cleared if (0) = $0000 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode Operand

27F2

3 2 o
PK

Cycles

2

MOTOROLA

6-162

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

NEGE Negate E NEGE

Operation: $0000 - (E) ~ E

Description: Replaces the content of accumulator E with its twos complement.
A value of $8000 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

s MV H EV N Z v c IP SM

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if (E) = $8000 after operation (twos complement overflow); else cleared.

C: Cleared if (E) = $0000 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

2772

INSTRUCTION GLOSSARY

3 2 o
PK

Cycles

2

MOTOROLA

6-163

II

NEGW Negate Word NEGW

Operation: $0000 - (M : M + 1) ~ M : M + 1

Description: Replaces the content of a memory word with its twos complement.
A value of $8000 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13

S MV H

s:
MV:

H:
EV:

Not affected.

Not affected.

Not affected.

Not affected.

12 11 10

EV N Z

9 8 7 6

v c IP

N:

Z:
Set if M : M + 1[15] = 1 as a result of operation; else cleared.

Set if (M : M + 1) = $0000 as a result of operation; else cleared.

5 4 3

SM

v:
c:

Set if (M : M + 1) = $8000 after operation (twos complement overflow); else cleared.

Cleared if (M : M + 1) = $0000 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

IND16, X 2702 9999
IND16, Y 2712 9999
IND16,Z 2722 9999

EXT 2732 hhll

2 o
PK

Cycles

8

8

8

8

MOTOROLA

6-164

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

NOP

Operation:

Description:

Syntax:

Null Operation NOP

None

Causes program counter to be incremented, but has no other
effect. Often used to temporarily replace other instructions during
debug, so that execution continues with a routine disabled. Can
be used to produce a time delay based on CPU clock frequency,
although this practice makes programs system-specific.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

274C

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-165

II

II

ORAA OR A ORAA

Operation: (A) + (M) ~ A

Description: Performs inclusive OR between the content of accumulator A and
a memory byte, then places the result in accumulator A. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7

S MV H

I
EV

I
N Z

tJ,. tJ,.

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDS, Y

INDS,Z

IMMS

IND16, X

IND16, Y

IND16, Z

EXT

E,X

E,Y

E,Z

Opcode

47

57

67

77

1747

1757

1767

1777

2747

2757

2767

6 5

IP

Operand

If

If

If

ii

gggg

gggg

gggg

hhll

-
-
-

MOTOROLA

6-166

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

ORAB OR B ORAB

Operation: (B) + (M) => B

Description: Performs inclusive OR between the content of accumulator Band
a memory byte, then places the result in accumulator B. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H v c
o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 is set by operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB.X

INOB, Y

INOB,Z

IMMB

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

E,Z

Opcode

C7

07

E7

F7

17C7

1707

17E7

17F7

27C7

2707

27E7

7 6 5 4 3

IP

Operand

ff

ff

ff

ii

9999
9999

9999
hhll

-
-
-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

2 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-167

II

II

ORO OR D ORO

Operation: (D) + (M : M + 1) ~ D

Description: Performs inclusive OR between the content of accumulator D and
a memory word, then places the result in accumulator D. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7

S MV H EV N Z v C

o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 0 is set by operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOS, X

INOS, Y

INOS, Z

IMM16

IN016, X

IN016, Y

IN016, Z

EXT

E,X

E, Y

E,Z

Opcode

S7

97

A7

3787

37C7

3707

37E7

37F7

27S7

2797

27A7

6 5

IP

Operand

If

If

If

jjkk

gggg

gggg

gggg

hhll

-
-
-

MOTOROLA

6-168

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

4

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

ORE OR E ORE

Operation: (E) + (M : M + 1) => E

Description: Performs inclusive OR between the content of accumulator E and
a memory word, then places the result in accumulator E. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v c
o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

v: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

Opcode

3737

3747

3757

3767

3777

6 5

IP

Operand

jjkk

9999

9999

9999
hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

6

6

6

6

MOTOROLA

6-169

II

ORP OR Condition Code Register ORP

Operatipn: (CCR) + IMM16 => CCR

Description: Performs inclusive OR between the content of the condition code
register and a 16-bit unsigned immediate operand, then replaces
the content of the CCR with .the result.

To make certain that conditions for termination of LPSTOP and
WAI are· correct, interrupts are not recognized until after the
instruction following ORP executes. This prevents interrupt
exception processing during the period after the mask changes
but before the following instruction executes.

Syntax: Standard

II Condition Code Register:

15 14 13 12 11 10 9

S MV H EV N

I
z v

~ ~ ~ ~ ~ ~ ~

S: Set if bit 15 of operand = 1; else unchanged.

MV: Set if bit 14 of operand = 1; else unchanged.

H: Set if bit 13 of operand = 1; else unchanged.

EV: Set if bit 12 of operand = 1; else unchanged.

N: Set if bit 11 of operand = 1; else unchanged.

Z: Set if bit 10 of operand = 1; else unchanged.

V: Set if bit 9 of operand = 1; else unchanged.

C: Set if bit 8 of operand = 1; else unchanged.

8 7 6 5 4 3 2 0

C IP SM PK

~ ~ ~

IP: Each bit in field set if corresponding bit [7:5] of operand = 1; else unchanged.

SM: Set if bit 4 of operand = 1; else unchanged.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode

IMM16 3738

Operand

jjkk

MOTOROLA

6-170

INSTRUCTION GLOSSARY

Cycles

4

CPU16 REFERENCE MANUAL

PSHA

Operation:

Description:

Syntax:

Push A

(SK : SP) + $0001 =::} SK : SP
Push (A)
(SK : SP) - $0002 =::} SK : SP

PSHA

Increments (SK : SP) by one, stores the content of accumulator A
at that address, then decrements (SK : SP) by two. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pushing byte data to the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3708

INSTRUCTION GLOSSARY

Cycles

4

MOTOROLA

6-171

II

II

PSHB

Operation:

Description:

Syntax:

Push B

(SK : SP) + $0001 ~ SK : SP
Push (B)
(SK : SP) - $0002 ~ SK : SP

PSHB

Increments (SK : SP) by one, stores the content of accumulator B
at that address, then decrements (SK : SP) by two. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pushing byte data to the stack can misalign the stack pOinter and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-172

Opcode Operand Cycles

3718 4

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

PSHM

Operation:

Description:

Syntax:

Push Multiple Registers

For mask bits 0 to 7
If bit set

Next

push corresponding register
(SK : SP) - $0002 => SK : SP

Mask bits:
0= accumulator D
1 = accumulator E
2 = index register X
3 = index register Y
4 = index register Z
5 = extension register
6 = condition code register
7 = (Reserved)

PSHM

Stores contents of selected registers on the system stack.
Registers are designated by setting bits in a mask byte. The
PULM instruction restores registers from the stack. PUSHM mask
order is the reverse of PULM mask order. If SP overflow occurs as
a result of operation, the SK field is decremented.

Stacking into the highest available memory address causes the
PULM instruction to attempt a prefetch from inaccessible memory.
Pushing to an odd SK : SP can degrade performance. See
SECTION 8 INSTRUCTION TIMING for more information.

PSHM (mask)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Mask

IMM8 34

ON = Number of registers to be pushed.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

4+2N°

MOTOROLA

6-173

II

II

PSHMAC Push MAC Registers PSHMAC
Operation:

Description:

Syntax:

Stack registers in sequence shown, beginning at address pointed
to by stack pointer.

15 14 8 7 3 o
Start (SP) H REGISTER

(SP)-$OOO2 I REGISTER

(SP)-$OOO4 ACCUMULATOR M[15:0]

(SP)-$OOO6 ACCUMULATOR M[31 :16]

(SP)-$OOO8 SLI RESERVED I AM[35:32]

End (SP)-$OOOA IX ADDRESS MASK I IV ADDRESS MASK

Stores Multiply and Accumulate Unit internal state on the system
stack. The SP is decremented after each save operation (stack
grows downward in memory). If SP overflow occurs as a result of
operation, the SK field is decremented. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

MOTOROLA

6-174

INH

Opcode Operand Cycles

2788 14

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

PULA

Operation:

Description:

Syntax:

Pull A

(SK : SP) + $0002 ~ SK : SP
Pull (A)
(SK : SP) - $0001 ~ SK : SP

PULA

Increments (SK : SP) by two, restores the content of accumulator A
from that address, then decrements (SK : SP) by one. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pulling byte data from the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

3709

INSTRUCTION GLOSSARY

Cycles

6

MOTOROLA

6-175

PULB

Operation:

Description:

Syntax: II Condition Code

Pull B

(SK : SP) + $0002 => SK : SP
Pull (8)
(SK : SP) - $0001 => SK : SP

-PULB

Increments (SK : SP) by two, restores the content of accumulator 8
from that address, then decrements (SK : SP) by one. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pulling byte data from the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-176

Opcode Operand

3719

INSTRUCTION GLOSSARY

CyCles

6

CPU16 REFERENCE MANUAL

PULM

Operation:

Description:

Syntax:

Pull Multiple Registers

For mask bits 0 to 7
If bit set

Next

(SK : SP) + $0002 => SK : SP
Pull corresponding register

Mask bits:

o = condition code register
1 = extension register
2 = index register Z
3 = index register Y
4 = index register X
5 = accumulator E
6 = accumulator D
7 = (Reserved)

PULM

Restores contents of registers stacked by a PSHM instruction.
Registers are designated by s~tting bits in a mask byte. PULM
mask order is the reverse of PSHM mask order. If SP overflow
occurs as a result of operation, the SK field is incremented.

PULM prefetches a stacked word on each iteration. If SP points to
the highest available stack address after the last register has been
restored, the prefetch will attempt to read inaccessible memory.
Pulling from an odd SK : SP can degrade performance. See
SECTION 8 INSTRUCTION TIMING for more information.

PULM (mask)

Condition Code Register: Set according to CCR pulled from stack -
Not affected unless CCR is pulled.

Instruction Format:

Addressing Mode

IMM8

ON = Number of registers to be pulled.

CPU16 REFERENCE MANUAL

Opcode Mask

35

INSTRUCTION GLOSSARY

Cycles

4+ 2 (N + 1)*

MOTOROLA

6-177

II

II

PULMAC Pull MAC Registers PULMAC
Operation:

Description:

Syntax:

Restore registers in sequence shown, beginning at address
pointed to by stack pointer.

15 14 8 7 3 o
End (SP) + $OOOC IX ADDRESS MASK I IV ADDRESS MASK

(SP) + $OOOA SLI RESERVED I AM[35:32]

(SP) + $0008 ACCUMULATOR M[31 :16]

(SP) + $0006 ACCUMULATOR M[15:0]

(SP) + $0004 I REGISTER

(SP) +$0002 H REGISTER

Start (SP) (Top of Stack)

Restores Multiply and Accumulate Unit internal state from the
system stack. The SP is incremented after each restoration (stack
shrinks upward in memory). If SP overflow occurs as a result of
operation, the SK field is incremented. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-178

Opcode Operand Cycles

2789 16

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

RMAC

Operation:

Description:

Repeating Multiply and Accumulate

Repeat:
(AM) + ((HR) * (IR)) ::::} AM
((IX) • X MASK) + ((IX) + xo) • X MASK) ::::} IX
((IV) • V MASK) + ((IV) + yo) • V MASK) ::::} IV
(M : M + 1)X ::::} HR
(M : M + 1)y ::::} IR
(E) - $0001 ::::} E

Until (E) < $0000

RMAC

Performs repeated multiplication of 16-bit signed fractional
multiplicands in MAC register I by 16-bit signed fractional
multipliers in MAC register H. Each product is added to the
content of accumulator M. Accumulator 0 is used for temporary
storage during multiplication. A 16-bit signed integer in II
accumulator E determines the number of repetitions. •

There are implied radix points between bits 15 and 14 of HR and
IR. Each product is left-shifted one place to align the radix point
between bits 31 and 30 before addition to AM.

As multiply and accumulate operations take place, 4-bit offsets
xo and yo are sign-extended to 16 bits and used with X and V
masks to qualify the X and V index registers.

Writing a non-zero value into a mask register prior to RMAC
execution enables modulo addressing. The TDMSK instruction
writes mask values. When a mask contains $0, modulo
addressing is disabled, and the sign-extended offset is added to
the content of the corresponding index register.

After accumulation, a word pointed to by XK : IX is loaded into HR,
and a word pointed to by VK : IV is loaded into IR, then the value in
E is decremented and tested. After execution, content of E is
indeterminate.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-179

II

RMAC

Syntax:

Condition Code

15 14 13

S ~V I H

s: Not affected.

Repeating Multiply and Accumulate RMAC

RMAC always iterates at least once, even when executed with a
zero or negative value in E. Since the value in E is decremented,
then tested, loading E with $8000 results in 32,769 iterations.

If HR and IR both contain $8000 (-1), a value of '$80000000
(1.0 in 36-bit format) is accumulated, but no condition code is set.

RMAC execution is suspended during asynchronous exceptions.
Operation resumes when RTI is executed. All registers used by
RMAC must be restored prior to RTI. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

RMAC xo, yo

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV

I
N

I
Z v C IP

I
SM

I II

PK

MV: Set if overflow into AM35 occurs as a result of addition; else not affected.

H: Not affected.

EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

I P: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM8

MOTOROLA

6-180

Opcode Offset

FB xoyo

INSTRUCTION GLOSSARY

Cycles

6 + 12 per iteration

CPU16 REFERENCE MANUAL

ROL

Operation:

Description:

Syntax:

Condition Code

15 14 13
s MV H

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

Rotate Left Byte ROL

~ IIIIII;J
b7 bO

Rotates all 8 bits of a memory byte one place to the left. Bit a is
loaded from the CCR Carry bit. Bit 7 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple bytes.
For example, use the sequence ASL By tea, ROL Byte1 , ROL Byte2
to shift a 24-bit value contained in byte,S a to 2 left one bit.

Standard

Register:

12 11 10 9 S 7 6 5 4 3 2 0
EV N Z V C IP SM PK

Il Il Il Il

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
v: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M7 = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INDS,X OC If S
INDS, Y 1C If S
INDS,Z 2C If S

IND16, X 170C 9999 S
IND16, Y 171C 9999 S
IND16,Z 172C 9999 S

EXT 173C hhll S

III

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-181

II

ROLA Rotate Left A ROLA

~ I I kJ
b7 bO

Operation:

Description: Rotates all 8 bits of accumulator A one place to the left. Bit 0 is·
loaded from the CCR Carry bit. Bit 7 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12

S MV H EV

s:
MV:

H:
EV:

Not affected.

Not affected.

Not affected.

Not affected.

11 10

N z
9 8

v c

N:
Z:

Set if A7 = 1 as a result of operation; else cleared.

Set if (A) = $00 as a result of operation; else cleared.

7 6 5 4 3 2

IP SM PK

v:
c:

Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Set if A7 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 370C 2

o

MOTOROLA

6-182

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ROLB Rotate Left B ROLB

Operation: ~r--Ir--r--r--r--r--Ir-;J
b7 bO

Description: Rotates all 8 bits of accumulator B one place to the left. Bit 0 is
loaded from the CCR Carry bit. Bit 7 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
S MV H EV N Z v

I
c

I t:.. t:.. t:.. t:..

IP SM PK

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if 87 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

371C

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-183

I

I

ROLD Rotate Left D ROLD,

~---IIJJ
b15 bO

Operation:

Description: Rotates all 16 bits of accumulator D one place to the left. Bit 0 is
loaded from the CCRCarry bit. Bit 15 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11

S MY H EV N

s:
MV:

H:

EV:

Not affected.

Not affected.

Not affected.

Not affected.

10

Z

9 8

v c

N: Set if 015 = 1 as a result of operation; else cleared.

7

Z: Set if (0) = $0000 as a result of operation; else cleared.

6 5 4 3 2

IP SM PK

V:

c:
Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Set if 015 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 27FC 2

o

MOTOROLA
6-184

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ROLE Rotate left E ROLE

4iHJI ---IJjJ
b15 bO

Operation:

Description: Rotates all 16 bits of accumulator E one place to the left. Bit 0 is
loaded from the CCR Carry bit. Bit 15 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

S MV H EV

I
N

I
Z v C IP SM PK

d d d d

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if E15 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

277C

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-185

II

ROLW

Operation:

Description:

Syntax:

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Rotate Left Word ROLW

L@HJI - - -TIJJ
b15 bO

Rotates all 16 bits of a memory word one place to the left. Bit a is
loaded from the CCR Carry bit. Bit 15 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple words.
For example, use the sequence ASLW Worda, ROLW Word1,
ROLW Word2 to shift a 48-bit value contained in words a to 2 left
one bit.

Standard

6

IP

5 4

SM

3 2 o
PK

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.

Z: Set if (M : M + t) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if M: M + 1[15] = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16, X

IND16, V

IND16,Z

EXT

MOTOROLA

6-186

Opcode Operand Cycles

270C 9999 8

271C 9999 8

272C 9999 8

273C hhll 8

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ROR

Operation:

Description:

Syntax:

Condition Code

15 14 13

s MV H

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Rotate Right Byte ROR

~I I~
b7 bO

Rotates all 8 bits of a memory byte one place to the right. Bit 7 is
loaded from the eeR e bit. Bit a is transferred to the e bit.

Rotation through the e bit aids shifting and rotating multiple words.
For example, use the sequence LSR Byte2, ROR Byte1, ROR
By tea to shift a 24-bit value contained in bytes a to 2 right one bit.
Replace LSR with ASR to maintain the value of a sign bit.

Standard

Register:

12 11 10 9 B 7 6 5 4 3 2 0

EV N Z V C IP SM PK

Il Il Il Il

N: Set if M7 set as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if MO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INDB,X OE ff B

iNDB, Y 1E If B

INDB,Z 2E ff B

IND16, X 170E 9999 B

IND16, Y 171E 9999 B

IND16,Z 172E 9999 B

EXT 173E hhll B

I

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-187

II

II

RORA Rotate Right A RORA

Operation: ~--'I--'--'--'--'--'I""""'~
b7 bO

Description: Rotates all 8 bits of accumulator A one place to the right. Bit 7 is
loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H EV N Z v c

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 = 1 as a resuh of operation; else cleared.

Z: Set if (A) = $00; else cleared.

7 6 5 4 3 2

IP SM PK

V: Set if (N is set and C is clear) or {N is clear and C is set).as a result of operation; else cleared.

C: Set if AO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode Operand Cycles

370E 2

o

MOTOROLA

6-188

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

RORB Rotate Right B RORB

I~
bO

Operation:

Description: Rotates all 8 bits of accumulator B one place to the right. Bit 7 is
loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
S MV H EV N z v c IP SM PK

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if 80 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

371E

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-189

II

II

RORD Rotate Right D RORD

Operation: 4OI---~
b15 bO

Description: Rotates all 16 bits of accumulator D one place to the right. Bit 15 is
loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11

S MV H EV N

s:
MV:

H:
EV:

Not affected.

Not affected.

Not affected.

Not affected.

10

Z

9 8

v c

N: Set if 015 = 1 as a result of operation; else cleared.

7

Z: Set if (D) = $0000 as a result of operation; else cleared.

6 5 4 3 2

IP 8M PK

v:
c:

Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Set if DO = 1 before operation; else cleared.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 27FE 2

o

MOTOROLA

6-190
INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

RORE Rotate Right E RORE

Operation: 4OI- --~
b15 bO

Description: Rotates all 16 bits of accumulator E one place to the right. Bit 15 is
loaded from the eeR e bit. Bit 0 is transferred to the e bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

S MV H EV

I
N

I
Z v C IP SM PK

A A A A

s: Not affected. II
MV: Not affected. •

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if EO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

INH 277E

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

2

MOTOROLA

6-191

RORW

Operation:

Description:

Syntax:

Rotate Right Word RORW

4CIT ---ICHDJ
b15 bO

Rotates all 16 bits of a memory word one place to the right. Bit 15
is loaded from the CCR C bit. Bit a is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple words.
For example, use the sequence LSRW Word2, RORW Word1,
RORW Worda to shift a 48-bit value contained in words a to 2 right
one bit. Replace LSRW with ASRW to maintain value of a sign bit.

Standard

Condition Code Register:

2 o II 15 14 13 12 11 10 9 8 7 6 5 4 3

:1 =S==:=M=V=:==H==:=E=V=:I==~=:I==~=:==~==:I =~==:I======IP======:I=S=M=:I========P=K=======:
S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1 [15] = 1 as a result of operation; else cleared.

Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.

V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Set if M: M + 1[0] = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND16,X

IND16, V

IND16,Z

EXT

MOTOROLA
6-192

Opcode Operand Cycles

270E 9999 8

271E 9999 8

272E 9999 8

273E hhll 8

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

RTI

Operation:

Return From Interrupt

(SK : SP) + 2 => SK : SP
Pull CCR
(SK : SP) + 2 => SK : SP
Pull PC
(PK : PC) - 6 => PK : PC

RTI

Description: Causes normal program execution to resume after an interrupt, or
any exception other than Reset. The condition code register and
program counter are restored from the system stack. When the
CCR is pulled, the PK field is restored, so that execution resumes
on the proper page after the PC is pulled.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV

I
N Z v

I
c

I d d d d d d d d

s: Set or cleared according to CGR restored from stack.

MV: Set or cleared according to GGR restored from stack.

H: Set or cleared according to GGR restored from stack.

EV: Set or cleared according to GGR restored from stack .

.-N: Set or cleared according to GGR restored from stack.

Z: Set or cleared according to GGR restored from stack.

V: Set or cleared according to GGR restored from stack.

G: Set or cleared according to GGR restored from stack.

IP: Value changes according to GGR restored from stack.

SM: Set or cleared according to GGR restored from stack.

PK: Value changes according to GGR restored from stack.

Instruction Format:

Addressing Mode Opcode

INH 2777

6 5

IP

d

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

d

2 0

PK

d

Cycles

12

MOTOROLA

6-193

II

II

RTS

Operation:

Description:

Syntax:

Condition Code

I

15 14 13

S MV H

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

Return From Subroutine

(SK : SP) + 2 => SK : SP
Pull PK
(SK : SP) + 2 => SK : SP
Pull PC
(PK : PC) - 2 => PK : PC

RTS

Returns control to a routine that executed JSR. The PK field and
program counter are restored from the system stack, so that
execution resumes on the proper page. Use PSHM/PULM to
conseNe other program resources.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV

I
N

I
Z

I
v

I
c IP SM PK

fI>.

PK: Value changes to that of PK restored from stack.

Instruction Format:

Addressing Mode

MOTOROLA

6-194

INH

Opcode Operand Cycles

27F7 12

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

SBA Subtract B from A SBA

Operation: (A) - (B) => A

Description: Subtracts the content of accumulator B from the content of
accumulator A, then places the result in accumulator A. Content of
accumulator B does not change. The CCR C bit represents a
borrow for subtraction.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4

S MV H v c IP

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if I (A) I < I (8) I ; else cleared.

IP: Not affected.

8M: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

370A

INSTRUCTION GLOSSARY

3 o
PK

Cycles

2

MOTOROLA

6-195

II

II

SBCA Subtract with Carry from A SBCA

Operation: (A) - (M) - C => A

Description: Subtracts the content of a memory byte minus the value of the C
bit from the content of accumulator A, then places the result in
accumulator A. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z v
I

c

I
IP SM PK

t. t. t. t.

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if I (A) I < I (M) + C I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

INDB, Y

INDB,Z

IMMB

IND16,X

IND16, Y

IND16,Z

EXT

E,X

E,Y

MOTOROLA

6-196

E,Z

Opcode Operand

42 If

52 If

62 If

72 ii

1742 9999
1752 9999
1762 9999
1772 hhll

2742 -
2752 -
2762 -

INSTRUCTION GLOSSARY

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

SBCB Subtract with Carry from B SBCB

Operation: (B) - (M) - C => B

Description: Subtracts the content of a memory byte minus the value of the C
bit from the content of accumulator B, then places the result in
accumulator B. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 5 4

S MV H EV N Z v c IP SM

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 is set by operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if I (8) I < I (M) + C I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

INOB, Y

IN08,Z

IMMB

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

C2 If

02 If

E2 If

F2 ii

17C2 9999
1702 9999
17E2 9999
17F2 hhll

27C2 -
2702 -
27E2 -

INSTRUCTION GLOSSARY

3 o
PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-197

II

II

SBCD Subtract with Carry from D SBCD

Operation: (D) - (M : M + 1) - C => D

Description: Subtracts the content of a memory word minus the value of the C
bit from the content of accumulator D, then places the result in
accumulator D. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
5 MV H EV N Z v c IP SM PK

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 is set by operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of operation; else cleared.

C: Set if I (0) I < I (M : M + 1) + C I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN08,X

IN08, Y

IN08,Z

IMM16

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

MOTOROLA

6-198

E,Z

Opcode Operand

82 If

92 If

A2 If

3782 jjkk

37C2 9999
3702 9999
37E2 9999
37F2 hhll

2782 -
2792 -
27A2 -

INSTRUCTION GLOSSARY

Cycles

6

6

6

4

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

SBCE Subtract with Carry from E SBCE

Operation: (E) - (M : M + 1) - C => E

Description: Subtracts the content of a memory word minus the value of the C
bit from the content of accumulator E, then places the result in
accumulator E. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

5 MV H EV

I

N

I
Z v C IP SM

'" '" '" '"
5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if I (E) I < I (M : M + 1) + C I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16

INDI6, X

INDI6, Y

INDI6, Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

3732 jjkk

3742 9999
3752 9999
3762 9999
3772 hhll

INSTRUCTION GLOSSARY

3 2 0

PK

Cycles

4

6

6

6

6

MOTOROLA

6-199

II

II

SDE Subtract D from E 'SDE

Operation: (E) - (0) => E

Description: Subtracts the content of accumulator 0 from the content of
accumulator E, then places the result in accumulator E. Content of
accumulator 0 is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4

S MV H EV N Z v c IP SM

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

c: Set if I (E) I < I (0) I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode Operand

2779

3 o
PK

Cycles

2

MOTOROLA

6-200

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

STAA Store A STAA

Operation: (A) => M

Description: Stores content of accumulator A in a memory byte. Content of
accumulator is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S

s MV H EV N z v c
o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 is set as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IN OS. X

INOS, Y

INOS, Z

IN016, X

IN016, Y

IN016, Z

EXT

E,X

E, Y

E,Z

Opcode

4A

5A

6A

174A

175A

176A

177A

274A

275A

276A

7 6 5

IP

Operand

ff

ff

ff

gggg

gggg

gggg

hhll

-
-
-

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

4

4

6

6

6

6

4

4

4

MOTOROLA

6-201

II

II

STAB Store B STAB

Operation: (8) ~M

Description: Stores content of accumulator 8 in a memory byte. Content of
accumulator is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H EV N Z v C

o

S: Not affected.

MV: Not affected.

H! Not affected.

EV: Not affected.

N: Set if M7 is set as a result of operation; else cleared.

Z: Set if (M) = $00 as a resu~ of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

INDB, Y

IND8,Z

IND16, X

IND16, Y

IND16,Z

EXT

E,X

E,Y

E,Z

Opcode

CA

DA

EA

17CA

17DA

17EA

17FA

27CA

27DA

27EA

7 6 5

IP

Operand

"
"
"

gggg

gggg

gggg

hhll

-
-
-

MOTOROLA

6-202

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

4

4

4

6

6

6

6

4

4

4

CPU16 REFERENCE MANUAL

STO Store D STO
Operation: (0) => M : M + 1

Description: Stores content of accumulator 0 in a memory word. Content of
accumulator is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6

S MV H EV N Z v c IP

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1 [15] is set as a result of operation; else cleared.

Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

INOS, X SA If

INOS, Y 9A If

INOS,Z AA If

IN016, X 37CA 9999
IN016, Y 370A 9999
IN016, Z 37EA 9999

EXT 37FA hhll

E,X 27SA -

E, Y 279A -
E,Z 27AA -

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

4

4

6

6

6

6

6

6

6

MOTOROLA

6-203

II

II

STE Store E STE

Operation: (E) => M: M + 1

Description: Stores content of accumulator E in a memory word. Content of
accumulator is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

S MV H EV N Z v c IP

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1[15) is set as a result of operation; else cleared.

Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.

V: Cleared.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

IND16, X
IND16, Y

IND16,Z

EXT

MOTOROLA
6-204

374A 9999
375A 9999
376A 9999
377A hhll

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

6

CPU16 REFERENCE MANUAL

STED

Operation:

Description:

Syntax:

Store Concatenated E and D STED

(E) => (M : M + 1)

(0) => (M + 2 : M + 3)

Stores concatenated accumulators E and 0 into four successive
bytes of memory. Used to transfer long-word and 32-bit fractional
operands to memory. Can also be used to perform coherent long
word transfers to 1MB peripherals. Misaligned long word transfers
are converted into two misaligned word transfers.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

2773 hhll

INSTRUCTION GLOSSARY

Cycles

8

MOTOROLA

6-205

II

II

STS Store Stack Pointer STS

Operation: (SP) ~ M: M + 1

Description: Stores content of stack pointer in a memory word. Content of
pointer is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV H EV N Z v c IP

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M: M + 1(15) is set as a result of operation; else cleared.

Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

IND8, Y

IND8,Z

IND16, X

IND16, Y

IND16,Z

EXT

MOTOROLA

6-206

Opcode Operand

8F If

9F If

AF ff

178F 9999
179F 9999
17AF 9999
17BF hhll

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

4

4

4

6

6

6

6

CPU16 REFERENCE MANUAL

STX Store IX STX

Operation: (IX)::::)M: M+ 1

Description: Stores content of index register X in a memory word. Content of
register is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

s MV H EV N Z v c IP

o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1 [15] is set as a result of operation; else cleared.

Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

IN08,X 8C If

IN08, Y 9C If

IN08, Z AC If

IN016, X 178C 9999
IN016, Y 179C 9999
IN016,Z 17AC 9999

EXT 17BC hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

4

4

6

6

6

6

MOTOROLA

6-207

II

II

STY Store IV STY
Operation: (IY) ~ M: M + 1

Description: Stores content of index register Y in a memory word. Content of
register is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6

S MV H EV N Z v C IP

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.

Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

INOS,X

INOS, Y

INOB,Z

IN016, X

IN016, Y

IN016,Z

EXT

MOTOROLA

6-208

SO If

90 If

AD If

17S0 9999
1790 9999
17AO 9999
17BO hhll

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

4

4

4

6

6

6

6

CPU16 REFERENCE MANUAL

STZ Store IZ STZ

Operation: (IZ) ~ M: M+ 1

Description: Stores content of index register Z in a memory word. Content of
register is unchanged.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6

S MV H EV N Z v C IP

o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1 [15] is set as a result of operation; else cleared.

Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

INOS,X SE If

INOS, Y 9E If

INOS,Z AE ff

IN016, X 17SE 9999
IN016, Y 179E 9999
IN016, Z 17AE 9999

EXT 17BE hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

4

4

6

6

6

6

MOTOROLA

6·209

II

II

SUBA Subtract from A SUBA

Operation: (A) - (M) => A

Description: Subtracts the content of a memory byte from the content of
accumulator A, then places the result in accumulator A. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13

S MV H

s:
MV:

H:
EV:

Not affected.

Not affected.

Not affected.

Not affected.

12 11 10

EV N Z

9

v

N: Set if A7 is set by operation; else cleared.

8

c

Z: Set if (A) = $00 as a result of operation; else cleared.

7 5 4 3 o
IP SM PK

v: Set if twos complement overflow occurs as a result of the operation; else cleared.

c: Set if I (A) I < I (M) I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IND8,X

IND8, Y

IND8,Z

IMM8

IND16,X

IND16, Y

IND16, Z

EXT

E,X

E,Y

MOTOROLA

6-210

E,Z

Opcode Operand

40 " 50 If

60 if
70 ii

1740 9999
1750 9999
1760 9999
1770 hhll

2740 -
2750 -
2760 -

INSTRUCTION GLOSSARY

Cycles

6

6

6

2

6

6

6

6

6

6

6

CPU16 REFERENCE MANUAL

SUBB Subtract from B SUBB

Operation: (B) - (M) => B

Description: Subtracts the content of a memory byte from the content of
accumulator B, then places the result in accumulator B. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 B 7 5 4

S tvW H EV N Z

I
v

I
c IP SM

A A A A

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 is set by operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if I (8) I < I (M) I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INOB,X

INOB, Y

INOB,Z

IMMB

IN016, X

IN016, Y

IN016,Z

EXT

E,X

E, Y

E,Z

CPU16 REFERENCE MANUAL

Opcode Operand

CO If

DO If

EO If

FO ii

17CO 9999
1700 9999
17EO 9999
17FO hhll

27CO -
2700 -
27EO -

INSTRUCTION GLOSSARY

3 0

PK

Cycles

6

6

6

2

6

6

6

6

6

6

6

MOTOROLA

6-211

II

II

SUBD Subtract from D SUBD

Operation: (D) - (M : M + 1) => D

Description: Subtracts the content of a memory word from the content of
accumulator D, then places the result in accumulator D. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 S 7 6 5 4

S MV H EV N Z

I
v C IP SM

~ ~ ~ ~

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if D15 is set by operation; else cleared.

Z: Set if (D) - $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of operation; else cleared.

C: Set if I (D) I < I (M : M + 1) I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDB, Y

INDB,Z

IMM16

IND16, X

IND16, Y

IND16, Z

EXT

E,X

E,Y

E,Z

Opcode Operand

SO If

90 If

AO If

37BO jjkk

37CO 9999
37DO 9999
37EO 9999
37FO hhll

27BO -
2790 -
27AO -

3 2 0

PK

Cycles

6

6

6

4

6

6

6

6

6

6

6

MOTOROLA
6-212

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

SUBE Subtract from E SUBE

Operation: (E) - (M : M + 1) => E

Description: Subtracts the content of a memory word from the content of
accumulator E, then places the result in accumulator E. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

S MV H v c IP SM

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.

C: Set if I (E) I < I (M : M + 1) I ; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

IMM16

IND16, X

IND16, Y

IND16,Z

EXT

CPU16 REFERENCE MANUAL

Opcode Operand

3730 jjkk

3740 9999
3750 9999

3760 9999
3770 hhll

INSTRUCTION GLOSSARY

3 2 o
PK

Cycles

4

6

6

6

6

MOTOROLA

6-213

II

II

SWI

Operation:

Description:

Syntax:

Condition Code

15 14 13

S I ~I H

s: Not Affected.

MV: Not Affected.

H: Not Affected.

EV: Not Affected.

N: Not Affected.

Z: Not Affected.

V: Not Affected.

C: Not Affected.

IP: Not Affected.

SM: Not Affected.

PK: Cleared.

Software Interrupt

(PK : PC) + $0002 => PK : PC
Push (PC)
(SK : SP) - $0002 => SK : SP
Push (CCR)
(SK : SP) - $0002 => SK : SP
$0 => PK
(SWI Vector) => PC

SWI

Causes an internally generated interrupt exception. Current
program counter and condition code register (including the PK
field) are saved on the system stack, then PK is cleared and the
PC is loaded with exception vector 6 (content of address $OOOC).
See SECTION 9 EXCEPTION PROCESSING for more
information.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV N Z V c I IP
SM I PK

0

Instruction Format:

Addressing

MOTOROLA

6-214

INH

Mode Opcode Operand Cycles

3720 16

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAl

SXT

Operation:

Sign Extend B into A

If B7 = 1
then $FF => A
else $00 => A

SXT

Description: Extends an 8-bit twos complement value contained in accumulator
B into a 16-bit twos complement value in accumulator D.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

~S __ ~MV __ J-_H __ ~E_V~ __ ~~ __ :~ __ V __ ~_C~ ______ IP ______ ~S_M~ ________ P_K ______ ~I II
S: Not affected.

MV: Not affected.

H: Not affected;

EV: Not affected.

N: Set ~ A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

27F8

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-215

II

TAB Transfer A to B TAB

Operation: (A) ~B

Description: Replaces the content of accumulator B with the content of
accumulator A. Content of A is not changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

s MV H EV v c
o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 87 = 1 as a resu~ of operation; else cleared.

Z: Set if (8) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3717

7 6 5

IP

Operand

MOTOROLA

6-216
INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

TAP Transfer A to Condition Code Register TAP

Operation: (A) => CCR[15:8]

-Description: Replaces bits 15 to 8 of the condition code register with the
content of accumulator A. Content of A is not changed.

To make certain that conditions for termination of LPSTOP and
WAI are correct, interrupts are not recognized until after the
instruction following TAP executes. This prevents interrupt
exception processing during the period after the mask changes
but before the following instruction executes.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

S MV H EV N z v c IP

s: Set or cleared according to content of A.

MV: Set or cleared according to content of A.

H: Set or cleared according to content of A.

EV: Set or cleared according to content of A.

N: Set or cleared according to content of A.

z: Set or cleared according to content of A.

V: Set or cleared according to content of A.

C: Set or cleared according to content of A.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 37FD

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

4

MOTOROLA

6-217

II

II

TBA Transfer B to A TBA

Operation: (B)~A

Description: R.eplaces the content of accumulator A with the content of
accumulator B. Content of B is not changed~

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8

S MV H EV N Z v c
o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if A7 - 1 as a result of operation; else cleared.

Z: Set if (A) - $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

I P: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3707

7 6 5

IP

Operand

MOTOROLA
6-218

INSTRUCTION GLOSSARY

4 3 2 1 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

TBEK

Operation:

Description:

Syntax:

Transfer B to EK TBEK

(8[3:0]) => EK

Replaces the content of the EK field with the content of bits 0 to 3
of accumulator 8. 8its 4 to 7 are ignored. Content of 8 is not
changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

27FA

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-219

II

II

TBSK

Operation:

Description:

Syntax:

Transfer B to SK TBSK

(8[3:0]) => SK

Replaces the content of the SK field with the content of bits 0 to 3
of accumulator 8. Bits 4- to 7 are ignored. Content of 8 is not
changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-220

Opcode Operand Cycles

379F 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TBXK
Operation:

Description:

Syntax:

Transfer B to XK TBXK
(B[3:0]) => XK

Replaces the content of the XK field with the content of bits 0 to 3
of accumulator B. Bits 4 to 7 are ignored. Content of B is not
changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

379C

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-221

II

II

TBYK
Operation:

Description:

Syntax:

Transfer B to YK TBYK
(8[3:0]) => YK

Replaces the content of the YK field with the content of bits 0 to 3
of accumulator 8. 8its 4 to 7 are ignored. Content of 8 is not
changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

AddressIng Mode

INH

MOTOROLA
6-222

Opcode Operand Cycles

3790 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TBZK

Operation:

Description:

Syntax:

Transfer B to ZK TBZK

(B[3:0]) => ZK

Replaces the content of the ZK field with the content of bits 0 to 3 of
accumulator B. Bits 4 to 7 are ignored. Content of B is not
changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

379E

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-223

II

II

TOE Transfer D to E TOE
Operation: (D) => E

Description: Replaces the content of accumulator E with the content of
accumulator D. Content of D is not changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

s WI H EV N Z v c
o

5: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 • 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

277B

6 5

IP

Operand

MOTOROLA
6-224

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

TDMSK
Operation:

Description:

Syntax:

Transfer D to XMSK:YMSK

(D[15:8]) => XMSK
(D[7:0]) => YMSK

TDMSK

Replaces the content of the MAC X and Y masks with the content
of accumulator D. Content of D is notchanged. Masks are used to
implement modulo buffers. See SECTION 11 DIGITAL
SIGNAL PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

372F

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-225

II

II

TOP Transfer D to Condition Code Register TOP
Operation: (0) => CCR[15:4]

Description: Replaces bits 15 to 4 of the condition code register with the
content of accumulator O. Content of 0 is not changed.

To make certain that conditions for termination of LPSTOP and
WAI are correct, interrupts are not recognized until after the
instruction following TOP executes. This prevents interrupt
exception processing during the period after the mask changes
but before the following instruction executes.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5

I
s ~v I H EV

I
N

I
Z v

I
c IP

A A A A A A A A

S: Set or cleared according to content of D.

MV: Set or cleared according to content of D.

H: Set or cleared according to content of D.

EV: Set or cleared according to content of D.

N: Set or cleared according to content of D.

Z: Set or cleared according to content of D.

V: Set or cleared according to content of D.

C: Set or cleared according to content of D.

IP: Set or cleared according to content of D.

SM: Set or cleared according to content of D.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 372D

MOTOROLA
6-226

INSTRUCTION GLOSSARY

4 3 2 0

SM PK

A

Cycles

4

CPU16 REFERENCE MANUAL

TED Transfer E to D TED

Operation: (E) => D

Description: Replaces the content of accumulator D with the content of
accumulator E. Content of E is not changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

S MV H EV N Z v c
o

S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.

Z: Set ~ (D) = $0000 as a.result of operation; else cleared.

V: Cleared.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

27FB

6 5

IP

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

4 3

SM

2 o
PK

Cycles

2

MOTOROLA

6-227

II

II

TEDM

Operation:

Description:

Syntax:

Condition Code

15 14 13

I
s ~V I H

s: Not affected.

MV: Cleared.

H: Not affected.

EV: Cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Transfer E and D to AM

(E) => AM[31 :16]
(D) => AM[15:0]
AM[32:35] = AM31

TEDM

Replaces bits 31 to 16 of the MAC accumulator with the content of
accumulator E, then replaces bits 15 to 0 of the MAC accumulator
with the content of accumulator D. AM[35:32] reflect the state of
AM31. Content of E and D are not changed.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0
EV N Z v I c I IP ~I PK

0

Instruction Format:

Addressing

MOTOROLA

6-228

INH

Mode Opcode Operand Cycles

2781 4

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TEKB

Operation: (EK) => B[3:0]
$0 => B[7:4]

Transfer EK to B TEKB

Description: Replaces bits 0 to 3 of accumulator B with the content of the EK
field. Bits 4 to 7 of B are cleared. Content of EK is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 27BB

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-229

II

II

TEM

Operation:

Description:

Syntax:

Condition Code

15 14 13

I s I ~I H

s: Not affected.

MV: Cleared.

H: Not affected.

EV: Cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Transfer E to AM

(E) => AM[31 :16]
$00 => AM[15:0]
AM[35:32] = AM31

TEM

Replaces bits 31 to 16 of the MAC accumulator with the content of
accumulator E. AM[15:0] are cleared. AM[35:32] reflect the state
of bit 31. Content of E is not changed.

Standard

Register:

12 11 . 10 9 8 7 6 5 4 3 2 0

EV N Z V C IP I~I PK

0

Instruction Format:

Addressing

INH

MOTOROLA
6-230

Mode Opcode Operand Cycles

2782 4

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TMER

Operation:

Transfer Rounded AM to E

Rounded (AM) :::) Temp
If (SM. (EV + MV))

then Saturation Value:::) E
else Temp:::) E

TMER

Description: The content of the MAC accumulator is rounded and transferred to
temporary storage. If the Saturation Mode bit in the CCR is set
and overflow occurs, a saturation value is transferred to
accumulator E. Otherwise, the rounded value is transferred to
accumulator E. TMER uses convergent rounding. Refer to
SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4

s
I ~V I H EV N Z v

I
c

I
IP SM

t:. t:. t:.

S: Not affected.

MV: Set if overflow into AM35 occurs as a result of rounding; else not affected.

H: Not affected.

EV: Set if overflow into AM[34:31] occurs as a result of rounding; else not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $00 as a resu~ of operation; else cleared.

V: Not affected.

C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

27B4

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

3 2 0

PK

Cycles

6

MOTOROLA

6-231

II

TMET

Operation:

,
Description:

Syntax:

Condition Code

III 15 14 13

~'I ~I ~ I
s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Transfer Truncated AM to E

If (SM. (EV + MV))
then Saturation Value::::) E

else AM[31 :16] ::::) E

TMET

If the Saturation Mode bit in the CCR is set and overflow has
occurred, a saturation value is transferred to accumulator E.
Otherwise, AM[31 :16] are transferred to accumulator E. Refer to
SECTION 11 DIGITAL SIGNAL PROCESSING for more
information on overflow and data saturation.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 o
EV N Z V C IP SM PK

t. t.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $00 as a result of operation; else cleared.

V: Not affected.

c: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA
6-232

Opcoda Operand Cycles

2785 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TMXED
Operation:

Description:

Syntax:

Transfer AM to IX : E : D

AM[35:32] => IX[3:0]
AM35 => IX[15:4]
AM[31 :16] => E
AM[15:0] => 0

TMXED

Transfers content of the MAC accumulator to index register X,
accumulator E, and accumulator D. See SECTION 11 DIGITAL
SIGNAL PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format: II
..----,--------,,.------.-- .

Addressing Mode Opcode Operand Cycles

INH 2783 6

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-233

II

TPA

Operation:

Description:

Syntax:

Transfer Condition Code Register to A TPA

(CCR[15:8]) ~ A

Replaces the content of accumulator A with bits 15 to 8 of the
condition code register. Content of CCR is not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-234

Opcode Operand Cycles

37FC 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TPD Transfer Condition Code Register to 0 TPD
Operation: (CCR) ~ 0

Descri puon: Replaces the content of accumulator 0 with the content of the
condition code register. Content of CCR is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 372C

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-235

II

II

TSKB

Operation:

Description:

Syntax:

Transfer SK to B

(SK) => 8[3:0]
$0 => 8[7:4]

TSKB

Replaces bits 0 to 3 of accumulator 8 with the content of the SK
field. 8its 4 to 7 of 8 are cleared. Content of SK is not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-236

Opcode Operand Cycles

37AF 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TST

Operation:

Description:

Syntax:

Condition Code

Test Byte TST

(M) - $00

Subtracts $00 from the content of a memory byte and sets bits in
the condition code register accordingly. The operation does not
change memory content.

TST has minimal utility with unsigned values. BLO and BLS, for
example, will not function because no unsigned value is less than
zero. BHI will function the same as BNE, which is preferred.

Standard

Register:

15 14 13 12 11 10 9

S
MV I H EV N Z V

A A 0

~ __ r-__ +-__ +-__ +-__ +-__ ~ __ ~_;~1~7 ____ ~_p ___ 5 __ rl_s_~-+1 __ 3 ____ 2_p_K ______ O~I II1II
s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.

Z: Set if (M) = $00 as a result of operation; else cleared.

v: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INDS,X

INDS,Y

INDS,Z

IND16, X

IND16, V

IND16,Z

EXT

Opcode

06

16

26

1706

1716

1726

1736

Operand

If

If

If

9999

9999

9999
hhll

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

6

6

6

6

6

6

6

MOTOROLA

6-237

II

TSTA

Operation:

Description:

Syntax:

Condition Code

15 14 13

I S ~I H I
S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Test A TSTA

(A) - $00

Subtracts $00 from the content of accumulator A and sets bits in
the condition code register accordingly. The operation does not
change accumulator content.

TSTA has minimal utility with unsigned values. BLO and BLS, for
example, will not function because no unsigned value is less than
zero. BHI will function the same as BNE, which ispreferred.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 0

EV I N I z I v C IP SM PK

A A 0 0

N: Set if A7 = 1 as a result of operation; else cleared.

Z: Set if (A) = $00 as a result of operation; else cleared.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction

Addressing

INH

MOTOROLA

6-238

Format:

Mode Opcode Operand

3706

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

TSTB

Operation:

Description:

Syntax:

Condition Code

15 14 13

S I MV I H

I
S: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

Test B TSTB

(B) - $00

Subtracts $00 from the content of accumulator B and sets bits in
the condition code register accordingly. The operation does not
change accumulator content.

TSTB has minimal utility with unsigned values. BLO and BLS, for
example, will not function because no unsigned value is less than
zero. BHI will function the same as BNE, which is preferred.

Standard

Register:

12 11 10 9 8 7 6 5 4 3 2 1 0

EV

I
N

I
Z

I
v

I
c IP

SM I PK

I /J. /J. 0 0

N: Set if 87 ~ 1 as a result of operation; else cleared.

Z: Set if (8) = $00 as a resu~ of operation; else cleared.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

3716

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-239

II

II

TSTD

Operation:

Description:

Syntax:

Test D TSTD

(0) - $0000

Subtracts $0000 from the content of accumulator 0 and sets bits in
the condition code register accordingly. The operation does not
change accumulator content.

TSTO provides minimum information to subsequent instructions
when unsigned values are tested. BLO and BLS, for example,
have no utility because no unsigned value is less than zero. BHI
will function the same as. BNE, which is preferred. All signed
branch instructions are available after test of signed values.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7

s v C

o o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if 015 = 1 as a result of operation; else cleared.

Z: Set if (0) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

27F6

6 5

IP

Operand

MOTOROLA
6-240

INSTRUCTION GLOSSARY

4 3 2 1 o
SM PK

Cycles

2

CPU16 REFERENCE MANUAL

TSTE

Operation:

Description:

Syntax:

Test E TSTE

(E):... $0000

Subtracts $0000 from the content of accumulator E and sets bits in
the condition code register accordingly. The operation does not
change accumulator content.

TSTE provides minimum information to subsequent instructions
when unsigned values are tested. BLO and BLS, for example,
have no utility because no unsigned value is less than zero. BHI
will function the same as BNE, which is preferred. All signed
branch instructions are available after test of signed values.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
v C

o o

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode

INH

Opcode

2776

IP

Operand

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

8M I PK

Cycles

2

MOTOROLA

6-241

II

II

TSTW

Operation:

Description:

Syntax:

Test Word TSTW

(M : M + 1) - $0000

Subtracts $0000 from the content of a memory word and sets bits
in the condition code register accordingly. The operation does not
change memory content.

TSTW provides minimum information to subsequent instructions
when unsigned values are tested. BLO and BLS, for example,
have no utility because no unsigned value is less than zero. BHI
will function the same as BNE, which is preferred. All signed
branch instructions are available after test of Signed values.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

EV N Z v
o ~ I

IP

s: Not affected.

MV: Not affected.

H: Not affected.

EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.

Z: Set if (M: M + 1) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

5

Addressing Mode Opcode Operand

IND16, X

IND16, Y

IND16,Z

EXT

MOTOROLA
6-242

2706 9999
2716 9999
2726 9999
2736 hhll

INSTRUCTION GLOSSARY

4 3 2 o
SM PK

Cycles

6

6

6

6

CPU16 REFERENCE MANUAL

TSX

Operation:

Description:

Syntax:

Transfer SP to IX TSX

(SK : SP) + $0002 ~ XK : IX

Replaces the contents of the XK field and index register X with the
contents of the SK field and the stack pointer plus 2. Contents of
SK and SP are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

274F

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-243

II

II

TSV

Operation:

Description:

Syntax:

Transfer SP to IV TSV

(SK : SP) + $0002 ~ YK : IY

Replaces the contents of the YK field and index register Y with the
contents of the SK field and the stack pOinter plus 2. Contents-of
SK and SP are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-244

Opcode Operand Cycles

275F 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TSZ

Operation:

Description:

Syntax:

Transfer SP to IZ TSZ

(SK : SP) + $0002 => ZK : IZ

Replaces the contents of the ZK field and index register Z with the
contents of the SK field and the stack pointer plus 2. Contents of
SK and SP are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

276F

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-245

II

II

TXKB
Operation:

Description:

Syntax:

(XK) => 8[3:0]
$0 => 8[7:4]

Transfer XK to B TXKB

Replaces bits 0 to 3 of accumulator 8 with the content of the XK
field. 8its 4 to 7 of 8 are cleared. Content of XK is not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-246

Opcode Operand Cycles

37AC 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TXS

Operation:

Description:

Syntax:

Transfer IX to SP TXS

(XK : IX) - $0002 => SK : SP

Replaces the content of the SK field and the stack pointer with the
content of the XK field and index register X minus 2. Content of XK
and IX are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

374E

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-247

II

II

TXV

Operation:

Description:

Syntax:

Transfer IX to IV TXV

(XK : IX) => VK : IV

Replaces the content of the VK field and index register V with the
content of the XK field and index register X. Content of XK and IX
are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA
6-248

Opcode Operand Cycles

275C 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TXZ
Operation:

Description:

Syntax:

Transfer IX to IZ TXZ
(XK: IX) =>ZK: IZ

Replaces the content of the ZK field and index register Z with the
content of the XK field and index register X. Content of XK and IX
are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

276C

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-249

II

II

TYKB
Operation:

Description:

Syntax:

(YK) :::} B[3:0]

$0 :::} B[7:4]

Transfer YK to B TYKB

Replaces bits 0 to 3 of accumulator B with the content of the YK
field. Bits 4 to 7 of B are cleared. Content of YK is not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-250

Opcode Operand Cycles

37AD 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TYS

Operation:

Description:

Syntax:

Transfer IV to SP TYS

(VK : IV) - $0002 ~ SK : SP

Replaces the content of the SK field and the stack pointer with the
content of the VK field and index register V minus 2. Content of VK
and IV are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

375E

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-251

II

II

TYX
Operation:

Description:

Syntax:

Transfer IV to IX TYX
(VK : IV) => XK : IX

Replaces the content of the XK field and index register X with the
content of the VK field and index register V. Content of VK and IV
are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-252

Opcode Operand Cycles

2740 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TYZ
Operation:

Description:

Syntax:

Transfer IV to IZ TYZ
(VK: IV) ~ZK: IZ

Replaces the content of the ZK field and index register Z with the
content of the VK field and index register V. Content of VK and IV
are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

AddressIng Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

2760

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-253

II

II

TZKB

Operation:

Description:

Syntax:

(ZK) => 8[3:0]
$0 => 8[7:4]

Transfer ZK to B TZKB

Replaces bits 0 to 3 of accumulator 8 with the content of the ZK
field. 8its 4 to 7 of 8 are cleared. Content of ZK is not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

iNH

MOTOROLA

6-254

Opcode Operand Cycles

37AE 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TZS

Operation:

Description:

Syntax:

Transfer IZ to SP TZS

(ZK : IZ) - $0002 => SK : SP

Replaces the content of the SK field and the stack pointer with the
content of the ZK field and index register Z minus 2. Content of ZK
and IZ are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

376E

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-255

II

II

TZX
Operation:

Description:

Syntax:

Transfer IZ to IX TZX
(ZK: IZ) ~XK: IX

Replaces the content of the XK field and index register X with the
content of the ZK field and index register Z. Content of ZK and IZ
are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

MOTOROLA

6-256

INH

Opcode Operand Cycles

274E 2

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

TZY
Operation:

Description:

Syntax:

Transfer IZ to IV TZY
(ZK : IZ) => YK : IY

Replaces the content of the YK field and index register Y with the
content of the ZK field and index register Z. Content of ZK and IZ
are not changed.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

CPU16 REFERENCE MANUAL

Opcode Operand

275E

INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA
6-257

II

II

WAI

Operation:

Description:

Syntax:

Wait for Interrupt WAI·

WAIT

Internal CPU clocks are stopped, and normal. execution of
instructions ceases. Instruction execution can resume in one of
two ways. If a reset occurs, a Reset exception is generated. If an
interrupt request of higher priority than the current IP value is
received, an Interrupt exception is generated.

Interrupts are acknowledged faster after WAI than after LPSTOP,
because 1MB clocks continue to run during WAI operation, and the
CPU16 does not copy the IP field to the system integration module
external bus interface. However, LPSTOP minimizes
microcontroller power consumption during inactivity. Refer to
SECTION 9 EXCEPTION PROCESSING for more
information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-258

Opcode Operand Cycles

27F3 8

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

XGAB Exchange A and B

Operation: (A) ¢:> (8)

Description: Exchanges contents of accumulators A and 8.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 371A

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

XGAB

Cycles

2

MOTOROLA

6-259

II

II

XGDE Exchange D and E XGDE

Operation: (0) ¢:> (E)

Description: , Exchanges contents of accumulators 0 and E.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6·260

Opcode Operand

277A

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

XGDX Exchange D and IX XGDX

Operation: (D) <=> (IX)

Description: Exchanges contents of accumulator D and index register X.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 37CC

CPU16 REFERENCE MANUAl INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-261

II

II

XGOY Exchange D and IV XGOY

Operation: (D) ~ (IV)

Description: Exchanges contents of accumulator D and index register IV.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-262

Opcode Operand

37De

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

XGDZ Exchange D and IZ XGDZ

Operation: (D) <=> (IZ)

Description: Exchanges contents of accumulator D and index register IZ.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 37EC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-263

II

II

XGEX Exchange E and IX XGEX

Operation: (E) ¢::> (IX)

Description: Exchanges contents of accumulator E and index register X.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-264

Opcode Operand

374C

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

XGEY Exchange E and IV XGEY

Operation: (E) ~ (IV)

Description: Exchanges contents of accumulator E and index register V.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

INH 375C

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycles

2

MOTOROLA

6-265

II

II

XGEZ Exchange E and IZ XGEZ

Operation: (E) ~ (IZ)

Description: Exchanges contents of accumulator E and index register Z.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

INH

MOTOROLA

6-266

Opcode Operand

376C

INSTRUCTION GLOSSARY

Cycles

2

CPU16 REFERENCE MANUAL

6.3 Condition Code Evaluation

The following table contains Boolean expressions used to evaluate the effect of
an operation on condition code register status flags.

Table 6-2. Condition Code Evaluation

Mnemonic Evaluation

ABA H=A3. B3 + B3. R3 +R3. A3
N=R7
Z=R7.RS Rl .RO
V=A7. B7 .R7+A7. B7. R7
C=A7. B7+ B7. R7+R7 .A7

ACE EV = [(AM35 + ... + AM31). (AM35 + ... + AM31)) + MV
ACED MV - cannot be represented by a Boolean equation

ADCA H=X3. M3+ M3 .R3 + R3 .X3
ADCB N=R7

Z=R7.RS Rl.RO
V=X7.M7 .R7 +X7 .M7 .R7
C=X7. M7+M7 .R7+ R7 .X7

ADCD N=R15
~ADCE - - - -

Z=R15.R14 Rl.RO
V=X15. M15. R15 +X15 .M15 .R15
C=X15. M15 + M15. R15 +X15. R15

ADDA H=X3. M3+ M3 .R3 + R3.X3
ADDB N=R7

Z=R7.RS Rl.RO
V=X7. M7. R7 +X7 .M7 .R7
C=X7. M7+ M7 .R7+ R7 .X7

ADDD N=R15
ADDE Z=R15.R14 Rl.RO

V=X15. M15. R15 +X15. M15 .R15
- -

C=X15. M15 + M15. R15 +X15. R15

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-267

II

II

MOTOROLA

6-268

Table ,6-2. CondItIon Code Evaluation (Continued)

Mnemonic Evaluation

AOE N=R15

AIX
AIY
AIZ

ANOA
ANOB

ANOO
ANOE

ANOP

ASL
ASLA
ASLB

ASLO
ASLE
ASLW

ASLM

ASR
ASRA
ASRB

V= 015. E15. R15 + 015. 015. R15
C= 015. E15 + 015. R15 + E15. R15

Z=R15.R14 •...• R10.R9

N=R7
Z = R7 • R6 •...• R1 • RO

V=O

N=R15
Z=R15.R14 •...• R1.RO
V=O

CCR[15:4] changed by AND with 1S-bit immediate data,
CCR[3:0] not affected.

N=R7
Z=R7 .RS •...• R1 .RO

V=NeC=[N .e]+[N+C]
C = MSB of unshHted byte (accumulator)

N=R15
Z=R15.R14 •...• R1.RO
V=NeC=[N .e] +[N +C]
C = MSB of unshifted word (accumulator)

EV=[(AM35+ ... +AM31). (AM35 + ... +AM31)]+MV

N=R35
C= MSB of unshifted accumulator
MV - cannot be represented by a Boolean equation

N=R7
Z = R7 • R6 •...• R1 • RO

V=NeC=[N .e] +[N +C]
C = LSB of unshifted byte (accumulator)

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

Table 6-2. Condition Code Evaluation (Continued)

Mnemonic

ASRD
ASRE
ASRW

Evaluation

N=R15
Z=R15.R14 R1.RO
V=NGlC=[N .el +[N +Cl
C = lSB of unshifted word (accumulator)

ASRM EV = [(AM35 + ... + AM31) • (AM35 + ... + AM31)] + MV
N=R35

BClR

BCLRW

BITA
BITB

BSET

CBA

CLR
CLRA
CLRB
ClRD
ClRE
CLAW

CLAM

CPU16 REFERENCE MANUAL

C = lSB of unshifted accumulator

N=R7
Z=R7 .RS R1 .RO
V=O

N=R15
Z=R15.R14 R1.Ro
V=O

N=R7
Z=R7.R6 •...• R1-RQ
V=O

N=R7
Z=R7.RS R1.RO
V=O

N=R7
Z=R7.RS •...• R1.RQ
V=A7. B7 .R7+A7. B7 .R7
C=A7. B7+ B7. R7+ R7 .A7

N=O
Z=1
V=O
C=O

EV=O
MV=O

INSTRUCTION GLOSSARY MOTOROLA

6-269

II

II

MOTOROLA

6-270

Table 6-2. Condition Code Evaluation (Continued)

Mnemonic Evaluation

CMPA N=R7
CMPB Z=R7.RS R1.RO

V=X7. M7 .R7 +X7. M7.R7

C=X7. M7+M7. R7+R7 .X7

COM N=R7
COMA - - - -
COMB

Z = R7 • R6 •...• R1 • RO

V=O
C=1

COMD N=R15
COME Z=R15.R14 •...• "R1.RO
COMN

v=o

C=1

CPD N=R15
CPE Z=R15.R14 •...• R1.RO
CPS
CPX V=X15. M15. R15 +X15. M15. R15
CPY C=X15 .M15+ M15. R15+ R15 .X15
CPZ

DAA N=R7
- - - -

Z = R7 • R6 •...• R1 • RO

v=u
C = Determined by adjustment

DEC N=R7
DECA - - - -
DECB Z = R7 • RS •...• R1 • RO

V = R7 • R6 •...• R1 • RO

DECW N=R15
Z=R15.R14 •...• R1.RO
V=R15.R14 •...• R1.RO

EDIV N=R15
EDIVS Z=R15.R14 •...• R1.RO

V=1 WR>$FFFF

C = 1 if 12 * Remainder 1 ~ 1 Divisor 1

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

Table 6·2. Condition Code Evaluation (Continued)

Mnemonic

EORA
EORB

EORD
EORE

FDIV

FMULS

IDIV

INC
INCA
INCB

INCW

LDAA
LDAB

CPU16 REFERENCE MANUAL

Evaluation

N=R7
Z=R7.RS •...• R1.RO
V=O

N=R15
Z=R15.R14 • R1-RO
V=O

Z=R15.R14 •...• R1.RO
V = 1, if (IX) ~ (D)
C= IX15 .IX14 •...• 00 .IXO

N=R31 (E15)
Z=R31 • R30 R1 • RO

V=(D15.(D14.D13 •...• D1.00)).
(E15. (E14. E13 •...• "E1. EO))
C=R15(D15)

Z=R15.R14 •...• R1.RO
V=O
C= IX15 .IX14 •...• 00 .IXO

N=R7
Z=R7.RS •...• R1.RO
V = R7 • RS •...• R1 • RO

N=R15

N=R7
Z=R7.RS •... -R1 .RO

v=o

INSTRUCTION GLOSSARY MOTOROLA

6-271

II

II

MOTOROLA

6-272

Table 6-2. Condition Code Evaluation (Continued)

Mnemonic Evaluation

LDO N=R15
LOE Z=R15.R14 R1.RO
LOS
LOX V=O
LOY
LDZ

LSR N=O
LSRA Z=R7.RS R1.RO
LSRB

V= [N.C]+[N .C]
C = MSB of unshifted byte (accumulator)

LSRO N=O
LSRE Z=R15.R14 R1.RO
LSRW

V= [N .Cl + [N .Cl
C = MSB of unshifted word (accumulator)

MAC EV = [(AM35 + ... + AM31). (AM35 + ... + AM31)] + MV
V = (H15. (H14 HO)) • (115 • (114 10))
MV - cannot be represented by a Boolean equation

MOVB N = MSB of source data
Z=S7. SS S1 • SO

MOVW N = MSB of source data
Z=S15.S14 S1.S0

MUL C=R7(07)

OAM N=R7
ORAB Z = R7 • RS R1 • RO

V=O

ORO N=R15
ORE Z=R15.R14 R1'.RO

v=o

ORP CCR[15:4] changed by OR wnh 1S-bit immediate data,
CCR[3:0] not affected.

PULM Entire CCR changed if a stacked CCR is pulled.

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

Table 6-2. Condition Code Evaluation (Continued)

Mnemonic

RMAG

ROL
ROLA
ROLB

ROLD
ROLE
ROLW

ROR
RORA
RORB

RORD
RORE
RORW

RTI

SBA

SBGA
SBGB

CPU16 REFERENCE MANUAL

Evaluation

EV=[(AM35 + ... +AM31). (AM35 + ... +AM31))+ MV
V= (H15. (H14 HO)). (115. (114 10))
MV - cannot be represented by a Boolean equation

N=R7
Z=R7.RS R1.RO

V=NEllG=[N .el +[N +Gl
G = MSB of unshifted byte (accumulator)

N=R15
Z=R15.R14 R1.RO

V = N Ell G = [N • el + [N + Gl
G = MSB of unshifted word (accumulator)

N=R7
Z = R7 • RS R1 • RO

V=N EllG=[N .el +[N +Gl
G = MSB of unshifted byte (acccumulator)

N=R15
Z=R1S.R14 •...• R1.RO
V=N EllG=[N .el +[N +C]
G = MSB of unshifted word (accumulator)

Entire GGR changed when stacked GGR is pulled.

N=R7
Z=R7.RS R1.RO
V=A7. B7. R7 +A7. B7 .R7

G = A7 • B7 + B7 • R7 + R7 • A7

N=R7
Z = R7 • RS R1 • RO

V=X7. M7 .R7 +X7. M7.R7
G=X7 .M7+M7. R7+R7 .X7

INSTRUCTION GLOSSARY MOTOROLA

6-273

II

II

MOTOROLA

6-274

Table 6·2. Condition Code Evaluation (Continued)

Mnemonic

SBCD
SBCE

SDE

STAA
STAB

SID
STE
STS
STX
STY
SlZ
SUBA
SUBB

SUBD
SUBE

SXT

Evaluation

N=R15
Z=R15.R14 •...• R1.RO
V=X15. M15. R15 +X15. M15. R15
C=X15. M15 +X15. R15+M15 .R15

N=R15
Z=R15.R14 •...• R1.RO
V= E15. D15. R15 + E15. D15. R15
C= E15. D15 + E15. R15 + D15. R15

N=R7
Z=R7 .RS •...• R1 .RO
v=o
N=R15
Z=R15.R14 •...• R1.RO

v=o

N=R7
Z=R7.RS •...• R1.RO
V=X7. M7 .R7+X7. M7.R7
C=X7 .M7+M7. R7+R7.X71

N=R15
Z=R15.R14 •...• R1.RO
V=X15. M15. R15 +X15. M15 .R15
C=X15. M15 +X15. R15+ M15. R15

N=R15
Z=R15.R14 •...• R1.RO

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

Table 6-2. Condition Code Evaluation (Concluded)

Mnemonic Evaluation

TAB N=R7
TBA - - - -

Z=R7.R6 Rl.RO

V=O

TAP CCR[15:8] replaced by content of Accumulator A.
CCR[7:0] not affected.

TOE N=R15
TED Z=R15.R14 •...• Rl.RO

V=O

TOP CCR[15:4] replaced by content of Accumulator D.
CCR[3:0] not affected.

TEDM EV=O
TEM MV=O

TMER EV = [(AM35 + ... + AM31). (AM35 + ... + AM31)] + MV
MV not representable with Boolean equation

TMET N=R15 -- --
Z=R15.R14 •...• Rl.RO

TST N=R7
TSTA -- --
TSTB

Z = R7 • R6 •...• Rl • FlO

V=O
C=O

TSTO N=R15
TSTE Z= R15. R14 •...• Rl • RO TSlW

V=O

C=O

6.4 Instruction Set Summary

The following table is a summary of the CPU16 instruction set. Because it is
only affected by a few instructions, the LSB of the condition code register is not
shown in the table - instructions that affect the interrupt mask and PK field are
noted.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-275

II

Table 6-3. Instruction Set Summary

Mnemonic Operation

ABA Add B toA
ABX AddBtoX
ABY AddBtoY
A8Z AddBtoZ
ACE AddEloAM31:15

ACED Add concatenated E and D to AM
ADCA Add with Carry to A

ADCB Add with Carry to B

ADCD Add with Carry to D

ADCE Add with Carry to E

ADDA Add toA

ADDB Add to B

ADDD Add to D

MOTOROLA
6-276

Description Addressing Instruction

Mode Opcode Operand

A + B .. A INH 370B
XK:IX + 000:8 =>XK:IX INH 374F
YK:Iy)+ 000:8 =;>YK:IY INH 375F -
ZK:IZ + 000:8 =>ZK:IZ INH 376F

AM31:15 + E .. AM INH 3722
E:D+AM=>AM INH 3723 -
(A) + (M) +C .. A IND8,X 43 ff

IND8,Y 53 ff
IND8,Z 63 ff
IMM8 73 ji

INDI6,X 1743 gggg
INDI6,Y 1753 gggg
INDI6,Z 1763 gggg

EXT 1773 hh II
E,X 2743 -
E,Y 2753 -
E Z 2763 -

(B) + (M) + C .. B IND8,X C3 ff
IND8,Y D3 ff
IND8,Z E3 ff
IMM8 F3 ii
E,X 27C3 -
E,Y 27D3 -
E,Z 27E3 -

INDI6,X 17C3 gggg
INDI6,Y 17D3 gggg
INDI6,Z 17E3 gggg

EXT 17F3 hh II
(D) +(M: M+ 1) +C=>D IND8,X 83 ff

IND8,Y 93 ff
IND8,Z A3 ff

E,X 2783 -
E,Y 2793 -
E,Z 27A3 -

IMM16 37B3 jj kk
INDI6,X 37C3 9999
INDI6,Y 37D3 9999
INDI6,Z 37E3 9999

EXT 37F3 hh II
(E) +(M :M+ 1) +C =>E IMM16 3733 jj kk

INDI6,X 3743 gggg
INDI6,Y 3753 9999
INDI6,Z 3763 gh~g~ EXT 3773

(A) +(M) =>A IND8,X 41 ff
IND8,Y 51 ff
IND8,Z 61 ff
IMM8 71 ii
E,X 2741 -
E,Y 2751 -
E,Z 2761 -

INDI6,X 1741 gggg
INDI6,Y 1751 gggg
INDI6,Z 1761 gggg

EXT 1771 hh II
(B) +(M) =>B IND8,X Cl ii

IND8,Y Dl ff
IND8,Z El ff
IMM8 Fl ff
E,X 27Cl -
E,Y 27Dl -
E,Z 27El -

INDI6,X 17Cl 9999
INDI6,Y 17Dl gggg
INDI6,Z 17El gggg

EXT 17Fl hh II
(D) +(M:M+ 1) =>D IND8,X 81 jj: IND8,Y 91

IND8,Z AI ff
IMM8 FC ff
E,X 2781 -
E,Y 2791 -
E,Z 27Al -

IMM16 37Bl ii
INDI6,X 37Cl gggg
INDI6,Y 37Dl 9999
INDI6,Z 37El gggg

EXT 37Fl hh II

INSTRUCTION GLOSSARY

Condition Codes

Cycles sjMvl H lEV NLzLvic
2 A A A A A
2
2 - - - - - - - -
2
2 A A
4 - A - A - - - -
6 A A A A A
6
6
2
6
6
6
6
6
6
6
6 A A A A A
6
6
2
6
6
6
6
6
6
6
6 - - -- A A A A
6
6
6
6
6
4
6
6
6
6
4 - - -- ·A A A A
6
6
6
6
6 A A A A A
6
6
2
6
6
6
6
6
6
6
6 A A A A A
6
6
2
6
6
6
6
6
6
6
6 - - -- A A A A
6
6
2
6
6
6
4
6
6
6
6

CPU16 REFERENCE MANUAL

Table 6-3. Instruction Set Summary (Continued)

Mnemonic Operation Description Addressing Inatructlon

Mode Ope ode Operand

ADDE Add to E (E) +(M: M + 1) =>E IMM8 7C ii
IMM16 3731 jj kk

IND16,X 3741 gggg
IND16,Y 3751 gggg
IND16,Z 3761 gggg

EXT 3771 hh II
ADE AddDtoE E + o =>E INH 2778
ADX Add DtoX XK:I + .0 =>XK: IX INH 37CD -
ADY AddDtoY K:I + .0 =>YK:IY INH 3700
ADZ AddDtoZ ZK:I + .0 =>ZK: IZ INH 37ED
AEX Add E toX XK:IX + «E =>XK: IX INH 3740
AEY AddEtoY YK:IV + .E =>YK:IY INH 3750
AEZ AddEtoZ ZK:IZ + .E =>ZK:1Z INH 3760 -
AIS Add Immediate Data to SP SK :SP+-IMM=>SK:SP IMM8 3F ii

IMM16 373F jj kk
AIX Add Immediate Value to X XK: IX + «IMM =>XK: IX IMM8 3C ii

IMM16 373C .. kk
AIY Add Immediate Value to Y YK : IV + .IMM => YK : IY IMM8 3D ii

IMM16 3730 jjkk
AIZ Add Immediate Value to Z ZK: IZ + .IMM=>ZK: IZ IMM8 3E ii

IMM16 373E jjkk
ANDA ANDA (A) '(M) =>A IND8,X 46 If

IND8,Y 56 If
IND8,Z 66 If
IMM8 76 ii

IND16,X 1746 gggg
IND16,Y 1756 gggg
IND16,Z 1766 gggg

EXT 1776 hh \I
E,X 2746 -
E,Y 2756 -
E Z 2766 -

ANDB ANDB (B)' (M) =>B IND8,X C6 If
IND8,Y 06 If
IND8,Z E6 If
IMM8 F6 ii

IND16,X 17C6 gggg
IND16,Y 1706 gggg
IND16,Z 17E6 gggg

EXT 17F6 hhll
E,X 27C6 -
E,Y 2706 -
E, Z 27E6 -

ANDD AND 0 (D) '(M: M+ 1) =>0 IND8,X 86 If
IND8, Y 96 If
IND8,Z A6 If

E,X 2786 -
E,Y 2796 -
E, Z 27A6 -

IMM16 37B6 jjkk
IND16,X 37C6 gggg
IND16,Y 3706 gggg
IND16, Z 37E6 gggg

EXT 37F6 hh II
ANDE ANDE (E) '(M: M+ 1)=>E IMM16 3736 jjkk

IND16,X 3746 gggg.
IND16,Y 3756 gggg
IND16,Z 3766 gggg

EXT 3776 hh II
ANDp1 ANDCCR CCR • IMM16=> CCR IMM16 373A .. kk

ASL Arithmetic Shift Left ,
IND8,X 04 If

@]H I IIII I I 1+-0 IND8,Y 14 If
b7 "" IND8,Z 24 If

IND16,X 1704 gggg
IND16,Y 1714 gggg
IND16,Z 1724 gggg

EXT 1734 hh II
ASLA Arithmetic Shift Left A ,

INH 3704
@]H I II II I I 1+-0

b7 "" ASLB Arithmetic Shift Left B ,
INH 3714

@]H I ! I II I I K-O
b7 "" ASLD Arithmetic Shift Left 0 , INH 27F4

l£l<-[]J: - - -:r:::o-o .15 '" ASLE Arithmetic Shift Left E , INH 2774
l£l<-[]J: - - -:r:::o-o

015 '"

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Cycle.
2
4
6
6
6
6
2
2
2
2
2
2
2
2
4
2
4
2
4
2
4
6
6
6
2
6
6
6
6
6
6
6
6
6
6
2
6
6
6
6
6
6
6
6
6
6
6
6
6
4
6
6
6
6
4
6
6
6
6
4
8
8
8
8
8
8
8
2

2

2

2

Condition Cod.s

S IMVI H lEV N I z I V I c

- --

to. to. to.

to. to. to. to.

to. to. to. to.
- -

to.

to.

to.

to. to. 0

to. to. 0

to. to. 0

to. to. 0

to. to. to. to.
to. to. to.

to. to. to.

to. to. to.

to. to. to.

to. to. to.

MOTOROLA

6-277

to.
to.

to.

to.

to.

to.

II

II

Table 6-3. Instruction Set Summary (Continued)

Mnemonic Operation

ASlM Arithmetic Shin left AM

ASlW Arithmetic Shin len Word

ASR Arithmetic Shin Right

ASRA Arithmetic Shin Right A

ASRB Arithmetic Shin Right B

ASRD Arithmetic Shift Right D

ASRE Arithmetic Shift Right E

ASRM Arithmetic Shin Right AM

ASRW Arithmetic Shin Right Word

BCC Branch if Cairy_ Clear
BClR Clear Bit(s)

BClRW Clear Bit(s) Word

BCS ~carrvset
BEQ if EQual
BGE Bran eater Than or

EQual to Zero
BGND Enter Background Debug Mode

BGT Branch if Greater Than Zero
BHI Branch if Hiaher
BITA Bit Test A

BITB BitTestB

BLE Branch if Less Than or
EQual to Zero

BLS Branch if Lower or Same
BLT Branch if Less Than Zero

MOTOROLA
6-278

Description Addressing

Mode Ope ode , INH 27B6
~---:o;?-0 , IND16,X 2704
I£]E-{II - - -IIfro IND16,Y 2714

'15 " IND16,Z 2724
EXT 2734

47111!i11~ IND8,X OD
IND8,Y 10

b7 bO IND8,Z 2D
IND16,X 170D
IND16,Y 171D
IND16,Z 172D

EXT 173D

4? IIiIiII H@]
INH 370D

b7 "
4?! IiIiII H@]

INH 3710

b7 "
QITm~ INH 27FD

'15 "
QITm~

b15 bO

INH 277D

QITm~ INH 27BA

b35 "
QIT---~ IND16,X 270D

IND16,Y 2710
b15 bO

IND16,Z 272D
EXT 273D

IIC 0, branch REl8 B4
(M) • (Mask) => M IND16,X 08

IND16,Y 18
IND16,Z 28

EXT 38
IND8,X 1708
IND8,Y 1718
IND8,Z 1728

(M: M + 1)· (MaSk) => IND16,X 2708
M:M+1

IND16,Y 2718

IND16,Z 2728

EXT 2738

IIC= 1 branch RELB B5
IIZ-1, branch REL8 B7

If N Ell V - 0, branch REL8 BC

If BDM enabled INH 37A6
enterBDM;

else, illegal instruction
IIZ+ NEIlV o branch REL8 BE

IIC+Z_O branch REL8 B2
(A)·(M) IND8,X 49

INDB,Y 59
INDB,Z 69
IMMB 79

IND16,X 1749
IND16,Y 1759
IND16,Z 1769

EXT 1779
E,X 2749
E,Y 2759
E,Z 2769

(B)·(M) INDB,X C9
INOB,Y 09
INOB,Z E9
IMMB F9

IN016,X 17C9
IN016,Y 1709
IN016,Z 17E9

EXT 17F9
E,X 27C9
E,Y 2709
E Z 27E9

If Z + (N Ell V) _1, branch REL8 BF

IIC+Z-1 branch RELB B3
IfNEIlV 1,branch RELB BO

INSTRUCTION GLOSSARY

Instruction Condition Codes

Operand Cycle. S IMVI H lEV N I z I V I c
4 a a a a

gggg 8 a a a a
gggg 8
gggg 8
hh II 8

If 8 a '" a a
If 8
If 8

gggg 8
gggg 8
gggg 8
hh II 8

2 '" a a a

2 a a a a

- 2 - - -- '" a a a

2 a a a a

2 '" '" a

gggg 8 - -- - a a a a
gggg 8
gggg 8
hh II 8

rr 6,2
mm gggg 8 '" a 0
mm gggg 8
mm gggg 8
mm hhll 8

mm If 8
mm If 8
mm If 8

mmmm 10 '" a 0
gggg

mmmm 10
gggg

mmmm 10
gggg

mmmm 10
hh II

rr 62
rr 62
rr 6,2

rr 62 - -
rr 62
If 6 - - -- '" a 0 -
If 6
If 6
ii 2

gggg 6
gggg 6
gggg 6
hh II 6
- 6
- 6
-' 6
If 6 - - a a 0
If 6
If 6
ii 2

gggg 6
gggg 6
gggg 6
hh II 6
- 6
- 6
- 6
rr 6,2 - -
rr 62 - - -
rr 6,2

CPU16 REFERENCE MANUAL

Table 6-3. Instruction Set Summary (Continued)

Mnemonic Operation Description Addres.ing Instruction

Mode Ope ode Operand

BMI Branch if Minus IfN 1 branch RELS BB rr
BNE Branch if Not Equal If Z = 0, branch RELS B6 rr
BPL Branch if Plus lIN o branch RELS BA rr
BRA Branch Alwavs If 1 _1 branch RELS BO rr

BRCLR Branch if Bit(s) Clear If (M) • (Mask) = 0, INDS,X CB mm ffrr
branch INDS,Y DB mm tfrr

INDS,Z EB mm ffrr
IND16,X OA mm gggg

rrrr
IND16,Y lA mm gggg

rrrr
IND16,Z 2A mm gggg

rrrr
EXT 3A mm hhll

rrrr
BRN Branch Never If 1 0, branch RELS Bl rr

BRSET Branch if Bit(s) Set If (M)· (Mask) _ 0, INDB,X BB mm ttrr
branch INDB,Y 9B mm ffrr

INDB,Z AB mm ffrr
IND16,X OB mm gggg

rrrr
IND16,Y lB mm 9999

rrrr
IND16,Z 2B mm gggg

rrrr
EXT 3B mm hhll

rrrr
BSET Set Bit(s) (M) • (Mask) = M IND16,X 09 mm gggg

IND16,Y 19 mm gggg
IND16,Z 29 mm gggg

EXT 39 mm hhll
INDB,X 1709 mm ff
INDB,Y 1719 mm ff
IN DB Z 1729 mm If

BSETW Set Bit(s) in Word (M:M + 1)· (Mask) IND16,X 2709 mmmm
=>M:M+l gggg

IND16,Y 2719 mmmm
9999

IND16,Z 2729 mmmm

EXT 2739
gggg

mmmm
hh II

BSR Branch to Subroutine (PK: PC)-2=> PK: PC RELS 36 rr
Push (PC)

(SK: SP)-2 =>SK: SP
Push (CCR)

~~~b~~ Orfs~ !K~~~ 
BVC Branch if Overflow Clear If V = 0 branch RELS sa rr 
BVS Branch if Overflow Set If V I, branch RELS B9 rr 
CSA Compare A to B A B INH 371B 
CLR Clear Memory $00 =>M INDS, X 05 If 

INDS,Y 15 If 
INDS,Z 25 If 

IND16,X 1705 gggg 
IND16,Y 1715 gggg. 
IND16,Z 1725 gggg 

EXT 1735 hh II 
CLRA Clear A $OO=A INH 3705 
CLRB ClearB $OO=B INH 3715 
CLRD ClearD $0000 = D INH 27F5 -
CLRE ClearE $0000 =>E INH 2775 
CLRM Clear AM $000000000 => AM 32:0 INH 27B7 
CLRW Clear Memory Word $OOOO=>M:M+l IND16,X 2705 gggg 

IND16,Y 2715 gggg 
IND16,Z 2725 gggg 

EXT 2735 hh II 
CMPA Compare A to Memory (A) (M) INDB,X 4S If 

IND8,Y 58 If 
INDS,Z 6S If 
IMM8 7S ii 

IND16,X 1748 gggg 
IND16,Y 1758 gggg 
IND16,Z 176S gggg 

EXT 177S hh II 
E,X 2748 -
E,Y 275S -
E Z 276S -

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY 

Cycles 
62 
62 
62 

6 
12,10 
12,10 
12,10 
14,10 

14,10 

14,10 

14,10 

2 
12,10 
12,10 
12,10 
14,10 

14,10 

14,10 

14,10 

8 
B 
8 
8 
B 
B 
8 
10 

10 

10 

10 

10 

6,2 
6,2 
62 

4 
4 
4 
6 
6 
6 
6 
2 
2 
2 
2 
2 
6 
6 
6 
6 
6 
6 
6 
2 
6 
6 
6 
6 
6 
6 
6 

Condition Codes 

S IMVI H lEV N I z I V I C 

- -

-

to to 0 

to to 0 

-

- - -- - - -
to to to 

- - -- 0 1 0 

0 1 0 
0 1 0 

- - - - 0 1 0 
- - - - 0 1 0 

0 0 
0 1 0 

to to to 

MOTOROLA 

6-279 

-
to 
0 

0 
0 
0 
0 

0 

to 

II I 



I 

Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation 

CMPB Compare B to Memory 

COM Ones Complement 

COMA Ones Complement A 
COMB Ones Complement B 
COMD Ones Complement D 
COME Ones Complement E 
COMW Ones Complement Word 

CPD Compare D to Memory 

CPE Compare E to Memory 

CPS Compare SP to Memory 

CPX Compare IX to Memory 

CPY Compare IY to Memory 

CPZ Compare IZ to Memory 

DM Decimal Ad·ust A 
DEC Decrement Memory 

MOTOROLA 
6-280 

Description Addre •• ing Instruction 

Mode Opeode Operand 

(B)-(M) INDB,X CB If 
INDB,Y D8 If 
IND8,Z ES If 
IMM8 F8 ii 

IND16,X 17CB gggg 
IND16,Y 17DB gggg 
IND16,Z 17EB gggg 

EXT 17F8 hh II 
E,X 27CB -
E,Y 27D8 -
E Z 27E8 -

$FF- (M) =>M INDS, X 00 ff 
INDS,Y 10 ff 
INDS,Z 20 If 

IND16,X 1700 gggg 
IND16,Y 1710 gggg 
IND16,Z 1720 gggg 

EXT 1730 hh II 
$FF- A =>A INH 3700 -
$FF- B =>B INH 3710 

$FFFF- D =>D INH 27FO 
$FFFF E =>E INH 2770 

$FFFF-M:M+l => IND16,X 2700 gggg 
M:M+l IND16,Y 2710 gggg 

IND16,Z 2720 gggg 
EXT 2730 hh II 

(D)-(M:M +1) IND8,X 88 ff 
INDB,Y 98 If 
INDB,Z A8 If 

E,X 2788 -
E,Y 2798 -
E,Z 27A8 -

IMM16 37B8 jjkk 
IND16,X 37C8 gggg 
IND16,Y 37D8 gggg 
IND16,Z 37E8 gggg 

EXT 37F8 hh II 
(E)-(M:M +1) IMM16 3738 hh II 

IND16,X 3748 gggg 
IND16,Y 3758 gggg 
IND16,Z 3768 gggg 

EXT 3778 .. kk 
(SP) (M:M+l) IND8,X 4F If 

IND8,Y 5F If 
IND8,Z 6F ff 

IND16,X 174F gggg 
IND16,Y 175F gggg 
IND16,Z 176F gggg 

EXT 177F hh II 
IMM16 377F il kk 

(IX)-(M:M+l) IND8,X 4C ff 
INDB,Y 5C ff· 
IND8,Z 6C ff 

IND16,X 174C gggg 
IND16,Y 175C gggg 
IND16,Z 176C gggg 

EXT 177C hhll 
IMM16 377C il kk 

(IY)-(M:M + 1) INDB,X 4D ff 
IND8,Y 5D ff 
IND8,Z 6D If 

IND16,X 174D gggg 
IND16,Y 175D gggg 
IND16,Z 176D gggg 

EXT 177D hh II 
IMM16 377D jj kk 

(IZ) (M:M+l) IND8,X 4E If 
IND8,Y 5E If 
IND8,Z 6E If 

IND16,X 174E gggg 
IND16,Y 175E 9999 
IND16,Z 176E 9999 

EXT 177E hhll 
IMM16 377E _jjkk 

Aho INH 3721 1 
(M)-$OI =>M INDB,X 01 If 

INDB,Y 11 If 
INDB,Z 21 ff 

IND16,X 1701 9999 
IND16,Y 1711 gggg 
IND16,Z 1721 gggg 

EXT 1731 hh II 

INSTRUCTION GLOSSARY 

Condition Codes 

Cycl •• S IMVI H lEV N I z I V Ie 
6 - - t. t. t. t. 
6 
6 
2 
6 
6 
6 
6 
6 
6 
6 
S t. t. 0 1 
8 
S 
8 
8 
8 
8 
2 - - -- t. t. 0 1 
2 t. t. 0 1 
2 t. t. 0 1 
2 t. t. 0 1 
8 t. t. 0 1 
8 
8 
8 
6 t. t. t. t. 
6 
6 
6 
6 
6 
4 
6 
6 
6 
6 
6 t. t. t. t. 
6 
6 
6 
6 
6 t. t. t. t. 
6 
6 
6 
6 
6 
6 
4 
6 t. t. t. t. 
6 
6 
6 
6 
6 
6 
4 
6 t. t. t. t. 
6 
6 
6 
6 
6 
6 
4 
6 t. t. t. t. 
6 
6 
6 
6 
6 
6 
4 
2 t. t. t. t. 
8 t. t. t. 
B 
B 
B 
B 
B 
B 

CPU16 REFERENCE MANUAL 



Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation Description Addre •• lng Instruction 

Mode Ope ode Operand 

DECA Decrement A A -$01 =>A INH 3701 -
DECB Decrement B B $01 =>B INH 3711 
DECW Decrement Memory Word (M:M+1) $0001 IND16,X 2701 gggg 

=>M:M+1 IND16,Y 2711 gggg 
IND16,Z 2721 gggg 

EXT 2731 hh II 
EDIV Extended Unsigned Divide (E:D)/(IX) INH 3728 -

Ouotient => IX 
Remainder => 0 

EDIVS Extended Signed Divide (E:D)/(IX) INH 3729 
Ouotient => IX 

Remainder => ACCD 
EMUL Extended Unsianed Multiply E'D=>E:D INH 3725 
EMULS Extended Sianed Multiply E'D=>E:D INH 3726 
EORA Exclusive OR A (A) al(M) =>A IND8,X 44 If 

IND8,Y 54 If 
IND8,Z 64 If 
IMM8 74 ii 

IND16,X 1744 9999 
IND16,Y 1754 gggg 
IND16,Z 1764 gggg 

EXT 1774 hhll 
E,X 2744 -
E,Y 2754 -
E Z 2764 -

EORS ExcJusilll! OR B (B)al(M)=>B INDB,X C4 If 
IND8,Y 04 If 
IND8,Z E4 If 
IMM8 F4 ii 

IND16,X 17C4 gggg 
IND16,Y 1704 9999 
IND16,Z 17E4 gggg 

EXT 17F4 hh II 
E,X 27C4 -
E,Y 2704 -
E,Z 27E4 -

EORD Exclusive OR 0 (D)al(M :M+ 1) =>0 IND8,X 84 If 
IND8,Y 94 If 
IND8,Z M If 

E,X 2784 -
E,Y 2794 -
E,Z 27M -

IMM16 37B4 hh II 
IND16,X 37C4 gggg 
IND16,Y 3704 gggg 
IND16,Z 37E4 ~g: EXT 37F4 

EORE Exclusive OR E (E)al(M:M+l)=>E IMM16 3734 hh II 
IND16,X 3744 gggg 
IND16,Y 3754 gggg 
IND16,Z 3764 

lJll~~ EXT 3774 
FDIV Fractional Divide (D) / (IX) => IX INH 372B 

Remainder => 0 
FMULS Fractional Signed Multiply (E)' (OJ;: ~r~pr31 :1] INH 3727 

IDIV Integer Divide (D) / (IX) => IX; INH 372A 
Remainder => 0 

INC Increment Memory (M) +$01 =>M INDS, X 03 If 
INDS,Y 13 If 
INDS,Z 23 If 

IND16,X 1703 gggg 
IND16,Y 1713 gggg 
IND16,Z 1723 gggg 

EXT 1733 hh II 
INCA IncrementA A+$OI=>A INH 3703 
INCB IncrementB B +$01 =>B INH 3713 
INCW Increment Memory Word (M:M+ 1) +$0001 IND16,X 2703 9999 

=>M:M+1 IND16,Y 2713 gggg 
IND16,Z 2723 gggg 

EXT 2733 hh II 
JMP Jump (es) => PK : PC IND20,X 4B zg 9999 

IND20, Y 5B zg 9999 
IND20,Z 68 zg 9999 
EXT20 7A zb hli II 

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY 

Cyclee 
2 
2 
8 
8 
8 
8 

24 

38 

10 
8 
6 
6 
6 
2 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
2 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
4 
6 
6 
6 
6 
4 
6 
6 
6 
6 

22 

8 

22 

2 
2 
2 
2 
2 
2 
2 
2 
2 
8 
B 
B 
B 
8 
8 
8 
6 

Condition Cod •• 

S IMV I H lEV N I z I V Ie 
- - lJ. lJ. lJ. -

lJ. lJ. lJ. 
lJ. lJ. lJ. 

- - -- lJ. lJ. lJ. lJ. 

lJ. lJ. lJ. lJ. 

lJ. lJ. lJ. 
lJ. lJ. lJ. 

- - -- lJ. lJ. 0 -

lJ. lJ. 0 

lJ. lJ. 0 

lJ. lJ. 0 

lJ. lJ. lJ. 

lJ. lJ. lJ. lJ. 

lJ. 0 lJ. 

lJ. lJ. lJ. 

lJ. lJ. lJ. 
lJ. lJ. lJ. 

- - -- lJ. lJ. lJ. -

MOTOROLA 

6-281 

II 



II 

Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation 

JSR Jump to Subroutine 

LBCC Long Branch if Carry Clear 
LBCS Long Branch if Carry Set 
LBEQ Long Branch if Equal 
LBEV Long Branch if EV set 
LBGE Long Branch if Greater Than or 

Egual to Zero 
LBGT Long Branch if Greater Than 

Zero 
LBHI Long Branch if Higher 
LBLE lon~ less Than or 

E to Zero 
lBLS Long Lower or Same 
LBLT Long Less Than Zero 
LBMI Long Branch if Min us 
LBMV Long Branch if MV set 
LBNE Lon Branch if Not Equal 
LBPL Long Branch if Plus 
LBRA Lona Branch Alwavs 
LBRN Lon Branch Never 
LBSR Long Branch to Subroutine 

lBVC Long Branch if Overflow Clear 
lBVS Long Branch if Overflow Set 
lDAA Load A 

LDAB load B 

LDD load D 

LDE Load E 

lDED Load Concatenated E and D 

LDHI Initialize H and I 

MOTOROLA 

6-282 

Description Addressing 

Mode Ope ode 

Push (PC) IND20,X 89 
(SI<: SP) - 2 => SK : SP IND20,Y 99 

Push (CCR) IND20, Z A9 

(SK {eS~),:; ~K:~: SP EXT FA 

IfC o branch REl16 3784 
If C = 1 branch REl16 3785 
If Z = 1, branch REl16 3787 

It EV _ 1 branch REl16 3791 
ItN Ell V -0, branch REl16 378C 

If Z+ (N Ell V) _ 0, branch REl16 378E 

ItC+Z_O branch REl16 3782 
If Z+ (NEIlV) = 1, branch REl16 378F 

IfC+Z=1 branch REL16 3783 
If N Ell V _1 branch REl16 378D 

IfN 1, branch REl16 378B 
It MV - 1 branch REl16 3790 
If Z _ 0 branch REL16 3786 
IfN o branch REl16 378A 
If 1 = 1 branch REL16 3780 
If 1 = 0 branch REL16 3781 

Push (PC) REl16 27F9 
(SK: SP) -2 =>SK: SP 

Push (CCR) 
(SK: SP)-2 =>SK: SP 
(PK : PC) + Offset => 

PK:PC 
ltV = 0, branch REl16 3788 
ltV = 1, branch REl16 3789 

(M) =>A IND8,X 45 
IND8,Y 55 
IND8,Z 65 
IMM8 75 

IND16,X 1745 
IND16,Y 1755 
IND16,Z 1765 

EXT 1775 
E,X 2745 
E,Y 2755 
EZ 2765 

(M) =>B IND8,X C5 
IND8,Y D5 
IND8,Z E5 
IMM8 F5 

IND16,X 17C5 
IND16,Y 17D5 
IND16,Z 17E5 

EXT 17F5 
E,X 27C5 
E,Y 27D5 
EZ 27E5 

(M:M+1)=>D IND8,X 85 
IND8,Y 95 
IND8,Z A5-

E,X 2785 
E,Y 2795 
E,Z 27A5 

IMM16 37B5 
IND16,X 37C5 
IND16,Y 37D5 
IND16,Z 37E5 

EXT 37F5 
(M: M + 1) =>E IMM16 3735 

IND16,X 3745 
IND16,Y 3755 
IND16,Z 3765 

EXT 3775 
(M: M + 1) =>E EXT 2771 

1M +2: M+31 =>D 
(M: M+ 1)X =>HR INH 27BO 
(M: M+ 1)y => IR 

INSTRUCTION GLOSSARY 

Instruction Condition Codes 

Operand Cycles S IMVI H lEV NIZIVIC 
z9 gggg 12 
zg gggg 12 
zg gggg 12 
zbhh II 10 

rrff 6,4 
rrrf 6,4 - - - - - - - -
rrff 64 - - - - - - -- -
rrff 6,4 
rrff 6,4 

rrff 6,4 

rrff 64 
rrff 6,4 - - - - - - - -
rrff 64 - - - - - - - -
rrff 6,4 - - - - - - - -
rrff 6,4 
rrff 64 
rrff 6 4 
rrff 64 
rrff 6 
rrff 6 
rrff 10 - -- -

rrff 64 
rrff 6,4 
ff 6 " " 0 
ff 6 
ff 6 
ii 2 

gggg 6 
9999 6 
gggg 6 
hhll 6 
- 6 
- 6 
- 6 
If 6 - - -- " " 0 -
ff 6 
ff 6 
ii 2 

9999 6 
9999 6 
9999 6 
hh II 6 
- 6 
- 6 
- 6 
ff 6 " " 0 
ff 6 
ff 6 
- 6 
- 6 
- 6 
~ kk 4 
9999 6 
9999 6 
9999 6 
hh II 6 
~ kk 4 " " 0 

9999 6 
gggg 6 
9999 6 
hh II 6 
hh II 8 

8 -

CPU16 REFERENCE MANUAL 



Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation Description Addre •• ing Instruction 

Mode Opcode Operand 
LOS load SP (M: M+ 1) =>SP INoa, X CF If 

INOB, V OF If 
INOB,Z EF If 

IN016,X 17CF gggg 
IN016,V 170F gggg 
IN016,Z 17EF gggg 

EXT 17FF hh II 
IMM16 37BF " kk 

lOX load IX (M: M+ 1)=>IX INOa,X CC If 
INoa, V DC If 
INOB,Z EC If 

IN016,X 17CC gggg 
IN016,V 170C 9999 
IN016,Z 17EC 9999 

EXT 17FC hh II 
IMM16 37BC ii kk 

LOY load IV (M:M+1)=>1Y INOa,X CD If 
INOa,V DO If 
INOa,Z ED If 

IN016,X 17CO gggg 
IN016,V 1700 9999 
IN016,Z 17EO gggg 

EXT 17FO hh II 
IMM16 37BO II kk 

LDZ load IZ (M: M+ 1) =>IZ INoa, X CE If 
INoa, V DE If 
INOa,Z EE If 

IN016,X 17CE gggg 
IN016,V 170E gggg 
IN016,Z 17EE gggg 

EXT 17FE hh II 
IMM16 37BE II kk 

lPSTOP low Power Stop the~ts~op INH 27F1 

else NOP 
lSR logical Shift Right • INOa,X OF If 

0-41 I I I I 3 I I H@] INoa, V 1F If 
b1 '" INoa,Z 2F If 

IN016,X 170F gggg 
IN016,V 171F gggg 
IN016,Z 172F gggg 

EXT 173F hh II 
lSRA logical Shift Right A • INH 370F 

041 ! I I I 1 I I H@] 
b1 '" lSRB logical Shift Right B • INH 371F 

041 1I1I111 H© 
b1 '" lSRO logical Shift Right 0 , 

.-co: ---:::o::J4[QJ 
INH 27FF 

'" bO 

lSRE logical Shift Right E • INH 277F .-co: ---:::o::J4[QJ 
'15 bO 

lSRW logical Shift Right Word • IN016,X 270F gggg .-co: ---:::o::J4[QJ IN016,V 271F gggg ", bO IN016,Z 272F gggg 
EXT 273F hh II 

MAC Multiply and Accumulate (HR)' (IR) =>E: 0 IMMa 7B xoyo 
Signed 16-Bit Fractions (AM) +(E: D) =>AM 

Qualified (IX) => IX 
Qualified (IV) => IV 

(HR) => IZ 
(M:M+1)X=>HR 
(M : M + {)" => IR 

MOVB Move Byte (M1) => M2 IXP to EXT 30 If hh II 
EXT to IXP 32 hh II If· 
EXT to EXT 37FE hh II hhll 

MOVW Move Word (M: M +11) =>M: M+ 12 IXPto EXT 31 If hhll 
EXT to IXP 33 hh II If 
EXT to EXT 37FF hh II hh II 

MUl Multiply A • B =>0 INH 3724 -
NEG Negate Memory $OO-(M) => M INoa, X 02 If 

INOa,V 12 If 
INoa,Z 22 If 

IN016,X 1702 ggg,g 
IN016,V 1712 gggg 
IN016,Z 1722 gggg 

EXT 1732 hh II 
NEGA Negate A $00 A =>A INH 3702 
NEGB Neaate B $00 B =>B INH 3712 

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY 

Cycle. 
6 
6 
6 
6 
6 
6 
6 
4 
6 
6 
6 
6 
6 
6 
6 
4 
6 
6 
6 
6 
6 
6 
6 
4 
6 
6 
6 
6 
6 
6 
6 
4 

4,20 

a 
a 
a 
a 
a 
a 
a 
2 

2 

2 

2 

a 
a 
a 
a 

12 

a 
a 
10 
a 
a 

10 
10 
a 
a 
a 
a 
a 
a 
a 
2 
2 

Condition Code. 

S IMVI H lEV N I z I V Ie 
- - -- <1 <1 0 -

<1 <1 0 

<1 <1 0 

<1 <1 0 

0 <1 <1 A 

0 <1 <1 A 

0 A A A 

0 A <1 A 

0 A <1 A 

0 <1 A A 

A A <1 

A <1 0 

- - -- <1 A 0 -

- - - - - - - A 
- - - - <1 <1 A A 

<1 <1 <1 <1 
<1 <1 <1 <1 

MOTOROLA 

6-283 

II 



II 

Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation 

NEGD Neoate D 
NEGE Negate E 
NEGW Negate Memory Word 

NOP Null Operation 
ORAA ORA 

ORAB ORB 

ORO ORD 

ORE ORE 

ORP OR Condition Code Register 
PSHA ' Push A 

PSHB Push B 

PSHM Push Multiple Registers 

PSHMAC 
PULA 

PULB 

MOTOROLA 
6-284 

Mask bits: 
O~D 
1=E 
2=IX 
3=1Y 
4=IZ 
5=K 

6=CCR 
7 = -(reserved) 

Push MAC State 
Pull A 

PuliB 

Description Addres.lng 

Mode Ope ode 
$0000 D =>D INH 27F2 
$0000- E =>E INH 2772 

$0000 (M:M+1) IND16.X 2702 
=>M:M+1 IND16.Y 2712 

IND16.Z 2722 
EXT 2732 

- INH 274C 
(A) +(M) =>A IND8.X 47 

IND8.Y 57 
IND8.Z 67 
IMM8 77 

IND16.X 1747 
IND16.Y 1757 
IND16.Z 1767 

EXT 1777 
E.X 2747 
E.Y 2757 
EZ 2767 

(B) +(M) =>B INDB.X C7 
IND8.Y D7 
IND8.Z E7 
IMM8 F7 

IND16.X 17C7 ' 
IND16.Y 17D7 
IND16.Z 17E7 

EXT 17F7 
E.X 27C7 

, E.Y 27D7 
E Z 27E7 

(D) +(M: M+ 1) =>D IND8.X 87 
IND8.Y 97 
IND8.Z A7 

E.X 2787 
E.Y 2797 
E,Z 27A7 

IMM16 37B7 
IND16.X 37C7 
IND16.Y 37D7 
IND16.Z 37E7 

EXT 37F7 
(E) +(M: M+ 1) =>E IMM16 3737 

IND16,X 3747 
IND16.Y 3757 
IND16.Z 3767 

EXT 3777 
CCR + IMM16 => CCR IMM16 373B 
(SK: SP) + 1 =>SK :SP INH 3708 

Push (A) 
(SK: SPl-2=>SK :SP 
(SK :SP) + 1 =>SK:SP INH 3718 

Push (B) 
(SK: SPl-2=>SK :SP 

For mask bits 0 to 7: IMM8 34 

If mask bit set 
Push register 

(SK: SP)-2 =>SK: SP 

MAC Registers => Stack INH 27B8 
(SK: SP) +2=>SK:SP INH 3709 

Pull (A) 
(SK: SPl-1 =>SK :SP 
(SK: SP) +2=>SK: SP INH 3719 

Pull (B) 
(SK: SPl-1 =>SK: SP 

INSTRUCTION GLOSSARY 

Instruction Condition Codes 

Operand Cycles S [MV[ H lev N I z I v I c 
2 "" "" "" "" - 2 - - --

"" "" "" "" gggg 8 
"" "" "" "" 9999 8 

9999 8 
hh II 8 
- 2 - - -- - - - -
If 6 

"" "" 
0 

If 6 
If 6 
ii 2 

9999 6 
9999 6 
9999 6 
hhll 6 
- 6 
- 6 
- 6 
If 6 

"" "" 
0 

If 6 
If 6 
ii 2 

gggg 6 
gggg 6 
9999 6 
hh II 6 
- 6 
- 6 
- 6 
If 6 

"" "" 
0 

If 6 
If 6 
- 6 
- 6 
- 6 

hh II 4 
9999 6 
9999 6 
9999 6 

"1<1< 6 
hh II 4 - - -- "" "" 0 -

9999 6 
9999 6 
gggg 6 
ii kk 6 
ii kk 4 

"" "" "" "" "" "" "" "" 4 

4 

ii 4+2N 

N= 
number of 
iterations 

- 14 - - - - - - - -
- 6 - - - - - - - -

6 

CPU16 REFERENCE MANUAL 



Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation Description Addre.slng Instruction 

Mode Ope ode Operand Cycles 

PULM Pull Multiple Register. For mask bits 0 to 7: IMMS 35 ii 2+2(N+1) 

Mask bits: If mask bit set N= 
0= CCR[15:41 (SK:SP)+2=>SK:SP number of 

1=K Pull register iterations 
2=1Z 
3=1Y 
4=IX 
5=E 
6=D 

7 _ (reserved) 
PULMAC Pull MAC State Stack => MAC Registers INH 27B9 16 
RMAC Repeating Repeat until (E) < 0 IMMS FB xoyo 6+ 

Multiply and Accumulate (AM) + (H). (I) =>AM 12per 
Signed 16-Bit Fractions Qualified (IX) => IX; iteration 

Qualified (IY) .. IY; 
(M: M+ 1)X .. H; 
(M: M + 1)y .. I 

(E)-1 .. E 
ROL Rotale Left 

L@O"fIII! III i<J INDS, X OC If S 
INDS,Y 1C If B 

b7 '" INDB,Z 2C If S 
IND16,X 170C gggg 8 
IND16,Y 171C gggg S 
IND16,Z 172C gggg S 

EXT 173C hh II S 
ROLA Rotate LeltA 

L@O"fIl IIII I i<J INH 370C 2 

b7 '" ROLB Rotate LeftB 
L@O"f I I I I I II i<J INH 371C 2 

b7 '" ROLD Rotate LeltD L@<O{]J:- --IDJ 
b15 bO 

INH 27FC 2 

ROLE Rotate LeitE L@<O{]J:- - -IDJ INH 277C 2 

'" '" ROLW Rotate Left Word L@<O{]J:- - -IDJ IND16,X 270C gggg S 
IND16,Y 271C gggg S .15 '" IND16,Z 272C gggg B 

EXT 273C hh II S 
ROR Rotate Right 

L;jl I H©J INDS, X OE If S 
I II! I INDS,Y 1E If S 

b7 '" INDS,Z 2E If S 
IND16,X 170E gggg S 
IND16,Y 171E 9999 S 
IND16,Z 172E gggg S 

EXT 173E hh II S 
RORA Rotate Right A 

L;j II I IIH©J INH 370E 2 

b7 
II 

'" RORB Rotate Right B 
L;j II I II H©J INH 371E 2 

I! 
b7 '" RORD Rotate Right D t:;(]I - - -Iri@J INH 27FE 2 

.15 '" RORE Rotate Right E t:;(]I - - -Iri@J 
b15 bO 

INH 277E 2 

RORW Rotate Right Word t:;(]I - --Iri@J IND16,X 270E gggg S 
IND16,Y 271E gggg S 

'15 '" IND16,Z 272E gggg S 
EXT 273E hh II S 

RTI Return from Interrupt (SK:SP)+2=>SK:SP INH 2777 12 
PuliCCR 

(SK: SP) +2 .. SK :SP 
Pull PC 

iPK: PCl-6 .. PK: PC 
RTSo Return from Subroutine (SK: SP) +2 .. SK: SP INH 27F7 12 

Pull PK 
(SK :SP) +2 .. SK: SP 

Pull PC 
iPK: PG)-2 .. PK: PC 

SBA Subtract B from A A B .. A INH 370A 2 

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY 

Condition Codes 

S IMVI H lev N I z I v Ie 
'" '" '" 

'" 

'" '" '" 

'" '" '" '" 

'" 

'" '" '" 

'" '" '" 
'" '" '" 
'" '" '" 
'" '" '" 
'" '" '" 

'" '" '" 

'" "'. '" 
'" '" l!. 

'" '" '" 
'" '" '" 
'" '" '" 

'" '" '" '" 

'" '" '" 

MOTOROLA 

6-285 

'" 

'" 

'" 
'" 
'" 
'" 
'" 

'" 

'" 
l!. 

'" 
'" 
l!. 

'" 

'" 

II 



II 

Table 6-3. Instruction Set Summary (Continued) 

Mnemonic Operation 

SBCA Subtract with Carry from A 

SBCB Subtract with Carry from B 

SBCD Subtract with Carry from D 

SBCE Subtract with Carry from E 

SDE Subtract D from E 
STM Store A 

STAB Store B 

STD StoreD 

STE StoreE 

STED Store Concatenated D and E 

STS Store SP 

MOTOROLA 

6-286 

Deecription Addre •• ln; Instruction 

Mode Ope ode Operand 

(A) (M) C=oA IND8,X 42 If 
IND8,Y 52 If 
INDB,Z 62 If 
'IMMB 72 ii 

INDI6,X 1742 gggg 
INDI6,Y 1752 gggg 
INDI6,Z 1762 gggg 

EXT 1772 hhll 
E,X 2742 -
E,Y 2752 -
E,Z 2762 -

(B}-(M}-C =oB INDB,X C2 If 
INDB,Y D2 If 
IND8,Z E2 If 
IMM8 F2 ii 

INDI6,X 17C2 gggg 
INDI6,Y 17D2 gggg 
INDI6,Z 17E2 gggg 

EXT 17F2 hh II 
E,X 27C2 -
E,Y 27D2 -
E,Z 27E2 -

(D}-(M :M+ I) -C =oD IND8,X 82 If 
INDB,Y 92 If 
IND8,Z A2 If 

E,X 2782 -
E,Y 2792 -
E,Z 27A2 -

IMM16 37B2 hhll 
INDI6,X 37C2 gggg 
INDI6,Y 37D2 gggg 
INDI6,Z 37E2 gggg 

EXT 37F2 " kk 
(E}-(M :M+ 1}-C =oE IMM16 3732 hh II 

INDI6,X 3742 gggg 
INDI6,Y 3752 gggg 
INDI6,Z 3762 glig~~ EXT 3772 

E - D =oE INH 2779 
(A) =oM INDB,X 4A If 

IND8,Y 5A If 
INDB,Z 6A If 

INDI6,X 174A gggg 
INDI6,Y 175A gggg 
INDI6,Z 176A gggg 

EXT 177A hhll 
E,X 274A -
E,Y 275A -
E,Z 276A -

(B}=oM INDB,X CA If 
INDB,Y DA If 
INDB,Z EA If 

INDI6,X 17CA gggg 
INDI6,Y 17DA gggg 
INDI6,Z 17EA gggg 

EXT 17FA hh II 
E,X 27CA -
E,Y 27DA -
E Z 27EA -

(D) =oM :M+ 1 INDB,X SA If 
INDB,Y 9A If 
INDB,Z M If 

E,X 278A -
E,Y 279A -
E,Z 27M -

INDI6,X 37CA gggg 
IND16,Y 37DA gggg 
INDI6,Z 37EA 

~~~ EXT 37FA 
(E}=oM:M+l INDI6,X 3742 gggg

INDI6,Y 3752 gggg
INDI6,Z 3762

~F~~ EXT 3772
(E) =oM :M+ 1

tDi=oM+2:M+3
EXT 2773 hhll

(SP) =oM :M+ 1 INDB,X BF If
IND8,Y 9F If
IND8,Z AF If

INDI6,X 178F gggg
INDI6,Y 179F gggg
INDI6,Z 17AF gggg

EXT 17BF hh II

INSTRUCTION GLOSSARY

Condition Codes

Cycles S IMVI H lev N I z I v I c
6 '" '" '" '" 6
6
2
6
6
6
6
6
6
6
6 '" '" '" '" 6
6
2
6
6
6
6
6
6
6
6 '" '" '" '" 6
6
6
6
6
4
6
6
6
6
4 - - -- '" '" '" '" 6
6
6
6
2 - - '" '" '" '" 4 '" '" 0
4
4
6

,6
6
6
4
4
4
4 '" '" 0
4
4
6
6
6
6
4
4
4
4 - - - '" '" 0 -
4
4
6
6
6
4
4
4
4
6 '" '" 0
6
6
6
8

4 '" '" 0
4
4
6
6
6
6

CPU16 REFERENCE MANUAL

Table 6-3. Instruction Set Summary (Continued)

Mnemonic Operation Description Addres.ing Instruction

Mode Opcode Operand Cycles

STX Store IX (IX)",M:M+1 IND8, X 8C If 4
IND8,Y 9C If 4
IND8,Z AC If 4

IND16,X 178C 9999 6
IND16,Y 179C gggg 6
IND16,Z 17AC gggg 6

EXT 17BC hh 11 6
STY Store IV (IY) =>M: M+ 1 IND8,X 8D If 4

IND8,Y 9D If 4
IND8,Z AD If 4

IND16,X 178D 9999 6
IND16,Y 179D 9999 6
IND16,Z 17AD gggg 6

EXT 17BD hhl1 6
STZ StoreZ (Ill ",M:M + 1 IND8,X 8E If 4

IND8, Y 9E If 4
IND8,Z AE If 4

IND16,X 178E gggg 6
IND16,Y 179E gggg 6
IND16,Z 17AE gggg 6

EXT 17BE hh 11 6
SUBA Subtract from A (A)-(M)",A IND8,X 40 If 6

IND8,Y 50 If 6
IND8,Z 60 If 6
IMM8 70 ii 2

IND16,X 1740 gggg 6
IND16,Y 1750 gggg 6
IND16,Z 1760 gggg 6

EXT 1770 hh 11 6
E,X 2740 - 6
E,Y 2750 - 6
EZ 2760 - 6

SUBB Subtract from B (B)- (M) =>B IND8,X CO If 6
IND8,Y 00 If 6
IND8,Z EO If 6
IMM8 FO ii 2

IND16,X 17CO gggg 6
IND16,Y 1700 gggg 6
IND16,Z 17E0 gggg 6

EXT 17FO hh 11 6
E,X 27CO - 6
E,Y 2700 - 6
E Z 27EO - 6

SUBD Subtract from D (D)-(M:M+1)=>D IND8,X 80 If 6
IND8,Y 90 If 6
IND8,Z AO If 6

E,X 2780 - 6
E,Y 2790 - 6
E,Z 27AO - 6

IMM16 37BO hh 11 4
IND16,X 37CO gggg 6
IND16,Y 3700 gggg 6
IND16,Z 37EO

~f~~
6

EXT 37FO 6
SUBE Subtract from E (E) (M:M+1)=>E IMM16 3730 hh 11 4

IND16,X 3740 gggg 6
IND16,Y 3750 gggg 6
IND16,Z 3i'60

~f:
6

EXT 3770 6
SWI Software Interrupt (PK: PC) +2=>PK: PC INH 3720 - 16

Push (PC)
(SK: SP)-2=>SK :SP

Push (CCR)
(SK: SP)-2=>SK :SP

$0 =>PK
SWI Vector", PC

SXT Sign Extend B into A IfB7_1 INH 27F8 2
thenA~$FF
elseA~$OO

TAB Transfer A to B A ",B INH 3717 2
TAP Transfer A to CCR A 7:0 ",CCR 15:8 INH 37FD 4
TBA Transfer B to A B ",A INH 3707 - 2

TBEK Transfer B to EK B ",EK INH 27FA - 2
TBSK Transfer B to SK B ",SK INH 379F 2
TBXK Transfer B to XK B ",XK INH 379C 2
TBYK Transfer B to YK B ",YK INH 379D 2
TBZK Transfer B to ZK B ",ZK INH 379E 2
TDE Transfer D to E D =>E INH 277B 2

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

Condition Codes

S IMVI H lEV N I z I V I c

'" '" 0

'" '" 0

'" '" 0

'" '" '" '"

'" '" '" '"

- - -- '" '" '" '"

'" '" '" '"

- - -- - - --

'" '" '" - - -
- - -

'" '"

'" '" 0

'" '" '" '" - '" '" 0
- - - -

-
'" '" 0

MOTOROLA

6-287

'" -
-

-

II

II

Table 6·3. Instruction Set Summary (Concluded)

Mnemonic Operation Description Addres.ing

Mode Opcode

TDMSK Transfer D to XMSK: YMSK (~ii~l):;-~~KK INH 372F

TOP1 Transfer D to CCR D ~CCR 15:4 INH 372D
TED Transfer E to D E ~D INH 27FB

TEDM Transfer E and D to AM[31:0) (D) =>AM[15:0) INH 27Bl
Sign Extend AM (E) ~AM[31:16)

AMI32:351:'" AM31
TEKB Transfer EK to B $0~B[7:4)

(EKI ~ SI3:01
INH 27BB

TEM Transfer E to AM[31 :16) (E) =>AM[31:16) INH 27B2
Sign Extend AM A~g22~~[15J'J1 ClearAMLSB

TMER Transfer AM to I: Rounded Rounded (AM) => Temp INH 27B4
If (SM. (EV + MV))
then Saturation => E

else Templ31 :161 ~ E
TMET Transfer AM to E Truncated If (SM. (EV + MV)) INH 2785

~I~~ ~~~~~\~1 :: ~
TMXED Transfer AM to IX: E: D AM[35:32] ~ IX[3:0)

AM35~IX[15:4)
INH 27B3

AM[31 :16) => E
AMI15:of~D

TPA Transfer CCR MSB to A CCR15:81l~A INH 37FC
TPD Transfer CCR to D CCR =>D INH 372C
TSKB Transfer SK to B (~~)=>~B~~~~~) INH 37AF

TST Test for Zero or Mi nus (M) -$00 IND8,X 06
IND8,Y 16
INDB,Z 26

IND16,X 1706
IND16,Y 1716
IND16,Z 1726

EXT 1736
TSTA Test A for Zero or Minus A $00 INH 3706
TSTB Test B for Zero or Minus B $00 INH 3716
TSTD Test D for Zero or Minus D - $0000 INH 27F6
TSTE Test E for Zero or Minus E $0000 INH 2776
TSTW Test for Zero or Minus Word (M:M+1)-$0000 IND16,X 2706

IND16,Y 2716
IND16,Z 2726

EXT 2736
TSX Transfer S P to X SK:SP +2~XK:IX INH 274F
TSY Transfer SP to Y SK:SP +2=>YK:1Y INH 275F
TSZ Transfer SP to Z SK :SP +2~ZK: IZ INH 276F

TXKB Transfer XK to B (~~),:B~[~~b) INH 37AC

TXS Transfer X to S P XK :IX 2 ~SK: SP INH 374E
TXY Transfer X to Y XK: IXI ~YK: IY INH 275C
TXZ Transfer X to Z XK:IX ~ZK:IZ INH 276C

TYKB Transfer YK to B (~),:B~[~~I INH 37AD

TYS Transfer Y to S P K:IY 2 ~SK :SP INH 375E
TYX Transfer Y to X YK:I =>XK: IX INH 274D
TYl Transfer Y to l YK: IV] =>ZK: Il INH 276D
TlKB Transfer lK to B (~~l,:B~~~~b) INH 37AE

TlS Transfer l to SP lK:1 2=>SK:SP INH 376E
TZX Transfer Z to X lK:ll =>XK:IX INH 274E
TZY Transfer Z to Y ZK:ll =>ZK:IY INH 275E
WAI Wait for Interrupt WAIT INH 27F3

XGAB Exchange A with B A", B INH 371A
XGDE Exchange D with E D",E INH 277A
XGOX Exchanoe D with X D", IX INH 37CC
XGDY Exchange D with Y D", IY INH 37DC
XGOZ Exchange D with Z D", IZ INH 37EC
XGEX Exchanoe E with X E '" IX INH 374C
XGEY Exchange E with Y E '" IY INH 375C
XGEZ Exchange E with Z E '" IZ INH 376C

NOTES.
1. CCR[15:4) change according to results of operation - PK field is not affected.
2. CCR[15:0) change according to copy of CCR pulled from stack.
3. PK field changes according to state pUlled from stack - the rest of the CCR is not affected.

MOTOROLA

6-288

INSTRUCTION GLOSSARY

Instruction Condition Codes

Operand Cycles S IMVI H lEV Nlzlvlc
- 2 -

4 A A A A A A A A
2 A A 0

- 4 - 0 - 0 - - - -

2

4 0 0

6 A A A A

2 A A

6

2
- 2 - - -- - - - -

2

ff 6 - - -- A A 0 0
ff 6
If 6

gggg 6
9999 6
gggg 6
hhll 6

2 6 6 0 0
2 6 6 0 0
2 ,A 6 0 0
2 A 6 0 0

9999 6 - - 6 6 0 0
gggg 6
gggg 6
hh II 6

2
2 - - -- - - --
2
2

2
2

- 2 - - -- - - --
2

2
2

- 2 - - -- - - - -
2 - -
2
2

- 2 - - -- - - --
8
2
2 - - -- - -
2 - - -
2
2
2 - - - - - - - -
2
2 - - - - - - - -

CPU16 REFERENCE MANUAL

SECTION 7
INSTRUCTION PROCESS

This section explains how the CPU16 fetches and executes instructioris. Topics
include instruction format, pipelining, and changes in program flow. Other forms
of the instruction process are covered in SECTION 9 EXCEPTION
PROCESSING and SECTION 11 DIGITAL SIGNAL PROCESSING.
See SECTION 5 INSTRUCTION SET and SECTION 6 INSTRUCTION
GLOSSARY for detaiJed information concerning instructions.

7.1 Instruction Format

CPU16 instructions consist of an a-bit opcode, which may be preceded by an
a-bit prebyte and/or followed by one or more operands.

Opcodes are mapped in four 256-instruction pages. Page 0 opcodes stand
alone, but page 1, 2, and 3 opcodes are pointed to by a prebyte code on page
o. The prebytes are $17 (page 1), $27 (page 2), and $37 (page 3).

Operands can be 4 bits, a bits, or 16 bits in length. However, because the
CPU16 fetches 16-bit instruction words from even byte boundaries, each
instruction must contain an even number of bytes.

Operands are organized as bytes, words, or a combination pf bytes and words.
4-bit operands are either zero-extended to a bits, or packed two to a byte. The
largest instructions are six bytes in length. Size, order, and function of
operands are evaluated when an instruction is decoded.

A page 0 opcode and an 8-bit operand can be fetched simultaneously.
Instructions that use a-bit indexed, immediate, and relative addressing modes
have this form - code written with these instructions is very compact.

Table 7-1 shows basic CPU16 instruction formats. Tables 7-2 through 7-5 (at
the end of the section) show instructions in opcode order by page.

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS MOTOROLA

7-1

II

II

15 14

15 14

15 14

15 14

15 14

!

15 14

MOTOROLA
7-2

13

13

13

13

13

13

Table 7-1. Basic Instruction Formats

8·Blt Opeode with 8·Bit Operand
12 11 10 9 8 7 6 5 4 3 2 0

Opcode Operand

8·Bit Opeode with 4·Bit Index Extensions
12 11 10 9 8 7 6 5 4 3 2 0

Opcode X Extension Y Extension

8·Bit Opeode, Argument(s)
12 11 10 9 8 7 6 5 4 3 2 0

Opcode Operand

Operand(s)

Operand(s)

8·Bit Opeode with 8-Bit Prebyte, No Argument
12 11 10 9 8 7 6 5 4 3 2 0

Prebyte Opcode

8·Bit Ope ode with 8-Bit Prebyte, Argument(s)

12 11 10 9 8 7 6 5 4 3 2 0

Prebyte Opcode

Operand(s)

Operand(s)

8-Bit Opeode with 20-Bit Argument
12 11 10 9 8 7 6 5 4 3 2 0

Opcode $0 Extension

Operand

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

7.2 Execution Model

This description builds up a conceptual model of the mechanism the CPU 16
uses to fetch and execute instructions. The functional divisions in the model do
not necessarily correspond to distinct architectural subunits of the
microprocessor. SECTION 10 DEVELOPMENT SUPPORT expands the
model to include the concept of deterministic opcode tracking.

As shown in Figure 7-1, there are three functional blocks involved in fetching,
decoding, and executing instructions. These are the microsequencer, the
instruction pipeline, and the execution unit. These elements function
concurrently - at any given time, all three may be active.

IPIPEO
IPIPE1

~

A DAT
BU S -'" A

,

MICROSEQUENCER

INSTRUCTION PIPELINE

~ B ~ C

~

EXECUTION UNIT

Figure 7-1. Instruction Execution Model

7.2.1 Microsequencer

~
~

The microsequencer controls the order in which instructions are fetched,
advanced through the pipeline, and executed. It increments the program
counter and generates multiplexed external tracking signals IPIPEO and IPIPE1
from internal signals that control execution sequence.

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS MOTOROLA

7.!3

II

II

7.2.2 Instruction Pipeline

The pipeline is a three stage FIFO that holds instructions while they are
decoded and executed. Depending upon instruction size, as many as three
instructions can be in the pipeline at one time (single-word instructions, one
held in stage C, one being executed in stage B, and one latched in stage A).

7.2.3 Execution Unit

7.3

The execution unit evaluates opcodes, interfaces with the microsequencer to
advance instructions through the pipeline, and performs instruction operations.

Execution Process

Fetched opcodes are latched into stage A, then advanced to stage B. Opcodes
are evaluated in stage B. The execution unit can access operands in either
stage A or stage B (stage B accesses are limited to 8-bit operands). When
execution is complete, opcodes are moved from stage B to stage C, where they
remain until the next instruction is complete.

A prefetch mechanism in the microsequencer reads instruction words from
memory and increments the program counter. When instruction execution
begins, the program counter pOints to an address six bytes after the address of
the first word of the instruction being executed.

The number of machine cycles necessary to complete an execution sequence
varies according to the complexity of the instruction. SECTION 8
INSTRUCTION TIMING gives detailed information concerning execution
time calculation.

7.3.1 Detailed Process

The following description divides execution processing into discrete steps in
order to describe it fully. Events in the steps are often concurrent. Refer to
SECTION 10 DEVELOPMENT SUPPORT for information concerning
signals used to track the sequence of execution. Relative PC values are given
to aid following instructions through the pipeline.

A. PK : PC points to the first word address (FWA) of the instruction to be
executed (PK : PC = FWA + $0000).

B. The microsequencer initiates a read from the memory address pointed to by
PK : PC, Signals pipeline stage A to latch the word (FWA + $0000) read'from
memory, then increments PK : PC (PK : PC = FWA + $0002).

MOTOROLA

74
INSTRUCTION PROCESS . CPU16 REFERENCE MANUAL

C. The latched word contains either an 8-bit prebyte and an 8-bit opcode or an
8-bit opcode and an 8-bit operand. The microsequencer advances
(FWA + $0000) to stage B, prefetches (FWA + $0002) from the data bus, and
increments PK : PC (PK : PC = FWA + $0004).

D. Stage A now contains (FWA + $0002) and stage B contains (FWA + $0000).
The execution unit determines what operations must be performed and the
character of the operands needed to perform them. The microsequencer
initiates a prefetch from FWA + $0004 and increments PK : PC (PK : PC =

FWA + $0006). Subsequent execution depends upon instruction format.

1. 8-bit opcode with 8-bit operand - The execution unit reads the
operand and signals that execution has begun. The instruction
executes, the content of stage B advances to stage C, the content of
stage A advances to stage B, and (FWA + $0004) is latched into stage
A.

2. 16-bit opcode with no argument - The execution unit signals that
execution has begun. The instruction executes, the content of stage B
advances to stage C, the content of stage A advances to stage B, and
(FWA + $0004) is latched into stage A.

3. 8-bit opcode with 20-bit argument - The execution unit reads the
operand byte from stage B and the operand word from stage A, then
signals that execution has begun. The instruction executes, the
content of stage B advances to stage C, and (FWA + $0004) is latched
into stage A.

4. 8-bit opcode with argument - The execution unit determines the
number of operands needed, reads an operand byte from stage B
and an operand word from stage A, then signals that execution has
begun. The instruction executes, the content of stage B advances to
stage C, and (FWA + $0004) is latched into stage A - this word can
be either the third word of the current instruction or the first word of a
new instruction.

5. 16-bit opcode with argument - The execution unit determines the
number of operand words needed, reads the first operand word from
stage A, then signals that execution has begun. The instruction
executes, the content of stage B advances to stage C, and (FWA +
$0004) is latched into stage A - this word can be either the third
word of the current instruction or the first word of a new instruction.

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS MOTOROLA

7-5

II

II

E. At this point PK : PC = $0006, and the process repeats, but entry points differ
for instructions of different lengths:

1. One-word instructions - Stage B contains a new opcode for the
execution unit to evaluate, and process repeats from D.

2. Two-word instructions -,- Stage A contains a new opcode, and
process repeats from C.

3. Three-word instructions - Stages A and B contain operands from the
instruction just completed, and process repeats from B.

Note

Due to the action of the prefetch mechanism, it is necessary to
leave a two-word buffer at the end of program space. The last
word of an instruction must be located at End of Memory - $0004.

The microsequencer always prefetches two words past the first
word address of an instruotion while that instruction is executing.

If an instruction is placed in either of the two highest available
word addresses, these fetches may attempt access to addresses
that do not exist - these attempts can cause bus errors.

7.3.2 Changes in Program Flow

When program flow changes, instructions are fetched from a new address.
Before execution can begin at the new address, instructions and operands from
the. previous instruction stream must be removed from the pipeline. If a change
in flow is temporary, a return address must be stored, so that execution of the
original instruction stream can resume after the change in flow.

At the time an instruction that causes a change in program flow executes,
PK : PC point to FWA + $0006. During execution of an instruction that causes a
change of flow, PK : PC is loaded with the FWA of the new instruction stream.
However, stages A and B still contain words from the old instruction stream.
Process steps A through C must be performed prior to execution from the new
instruction stream.

7.3.2.1 Jumps

Jump instructions cause an immediate, unconditional change in program flow.
The CPU16 jump instruction uses 20-bit extended and indexed addressing
modes. It consists of an 8-bit opcode with a 20-bit argument.

MOTOROLA

7-6
INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

7.3.2.2 Branches

Branch instructions cause a change in program flow when a specific
precondition is met. The CPU16 supports 8-bit relative displacement (short),
and 16-bit relative displacement (long) branch instructions, as well as
specialized bit condition branches that use indexed addressing modes.

Short branch instructions consist of an 8-bit opcode and an 8-bit operand
contained in one word. Long branch instructions consist of an 8-bit prebyte and
an 8-bit opcode in one word, followed by an operand word. Bit condition
branches consist of an 8-bit opcode and an 8-bit operand in one word, followed
by one or two operand words.

At the time a branch instruction is executed, PK : PC point to an address equal
to the address of the instruction plus $0006. The range of displacement for
each type of branch is relative to this value, not to the address of the instruction.
In addition, because prefetches are automatically aligned to word boundaries,
only even offsets are valid - an odd offset value is rounded down.

The numeric range of short branch and 8-bit indexed offset values is $80 (-128)
to $7F (127). Due to word-alignment, maximum positive offset is $7E.
At maximum positive offset, displacement from the branch instruction is 132.
At maximum negative offset ($80), displacement is -122.

The numeric range of long branch and 16-bit indexed offset values is $8000
(-32768) to $7FFF (32767). Due to word-alignment, maximum positive offset is
$7FFE. At maximum positive offset, displacement from the instruction is 32772.
At maximum negative offset ($8000), displacement is -32762.

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS MOTOROLA

7-7

II

II

7.3.2.3 Subroutines

Subroutine instructions optimize the procel?s of temporarily executing
instructions from another instruction stream, usually to perfom a particular task.
The CPU16 can branch or jump to subroutines. A single instruction returns to
the original instruction stream.

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a
jump (JSR). The RTS instruction returns control to the calling routine. BSR
consists of an 8-bit opcode with an 8-bit operand. LBSR consists of an 8-bit
prebyte and an 8-bit opcode in one word, followed by an operand word. JSR
consists of an 8-bit opcode with a 20-bit argument. RTS consists of an 8-bit
prebyte and an 8-bit opcode in one word.

When a subroutine instruction is executed, PK : PC contain the address of the
calling instruction plus $0006. All thre~ calling instructions stack return PK : PC
values prior to processing instructions from the new instruction stream. In order
for RTS to work with all three calling instructions, however, the value stacked by
BSR must be adjusted.

LBSR and JSR are two-word instructions. I'n order for program execution to
resume with the instruction immediately following them, RTS must subtract
$0002 from the stacked PK : PC value. BSR is a one-word instruction -
it subtracts $0002 from PK : PC prior to stacking so that execution will resume
correctly after RTS.

MOTOROLA
7-8

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

7.3.2.4 Interrupts

An interrupt routine usually perfoms a critical task, then returns control to the
interrupted instruction stream. Interrupts are a type of exception, and are thus
subject to special rules regarding execution process. SECTION 9
EXCEPTION PROCESSING covers interrupt exception processing in detail.
This discussion is limited to the effects of SWI (software interrupt) and RTI
(return from interrupt) instructions.

Both SWI and RTI consist of an 8-bit prebyte and an 8-bit opcode in one word.
SWI initiates synchronous exception processing. RTI causes execution to
resume with the instruction following the last instruction that completed
execution prior to interrupt.

Asynchronous interrupts are serviced at instruction boundaries.
PK : PC + $0006 for the following instruction is stacked, and exception
processing begins. In order to resume execution with the correct instruction, RTI
subtracts $0006 from the stacked value.

Interrupt exception processing is included in the SWI instruction definition. The
PK : PC value at the time of execution is the first word address of SWI plus
$0006. If this value were stacked, RTI would cause SWI to execute again. In II
order to resume execution with the instruction following SWI, $0002 is added to
the PK : PC value prior to stacking.

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS MOTOROLA

7-9

II

Opcode

MOTOROLA

7-10

00

01

02

03

04

05

06

07

OB

09

OA

OB

OC

00

OE

OF

10

11'

12

13

14

15

16

17

1B

19

1A

1B

1C

10

1E

1F

Table 7-2. Page 0 Opcodes

Mnemonic Mode Opcode Mnemonic Mode

COM INOB,X 20 COM INOB,Z

DEC INOB,X 21 DEC INOB,Z

NEG INOB, X 22 NEG INOB,Z

INC INOB,X 23 INC INOB,Z

ASl INOB,X 24 ASl INOB,Z

CLR INOB,X 25 ClR INOB,Z

lST INOB,X 26 TST INOB,Z

- - 27 PREBYTE PAGE 2

BClR IN016,X 2B BClR IN016,Z

BSET IN016,X 29 BSET IN016,Z

BRCLR IN016,X 2A BRCLR IN016,Z

BRSET IN016, X 2B BRSET IN016,Z

ROl INOB,X 2C ROl INOB,Z

ASR INOB,X 20 ASR INOB,Z

ROR INOB,X 2E ROR INOB,Z

lSR INOB,X 2F lSR INOB,Z

COM INOB, Y 30 MOVB IXPto EXT

DEC INOB, Y 31 MOVW IXPto EXT

NEG INOB, Y 32 MOVB EXT to IXP

INC INOB, Y 33 MOVW EXTto IXP

ASl INOB, Y 34 PSHM INH

CLR INOB, Y 35 PUlM INH

lST INOB, Y 36 BSR RElB

PREBYTE PAGE 1 37 PREBYTE PAGE 3

BClR IN016, Y 3B BClR EXT

BSET IN016, Y 39 BSET EXT

BRClR IN016, Y 3A BRClR EXT

BRSET IN016, Y 3B BRSET EXT

ROl INOB, Y 3C AIX IMMB

ASR INOB, Y 3D AIY IMMB

ROR INOB, Y 3E AIZ IMMB

lSR INOB, Y 3F AIS IMMB

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-2. Page a Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic

40 SUBA IND8,X 60 SUBA

41 ADDA IN08, X 61 AODA

42 SBCA IN08, X 62 SBCA

43 ADCA IN08,X 63 AOCA

44 EORA IN08,X 64 EORA

45 LDAA IN08,X 65 LOAA

46 ANOA IN08, X 66 ANOA

47 ORAA IN08,X 67 ORAA

48 CMPA IN08, X 68 CMPA

49 BITA IN08, X 69 BITA

4A STAA IN08,X 6A STAA

4B JMP IN020, X 6B JMP

4C CPX IN08,X 6C CPX

40 CPY IN08,X 60 CPY

4E CPZ IN08,X 6E CPZ

4F CPS IN08,X 6F CPS

50 SUBA IN08,y 70 SUBA

51 AOOA IN08, Y 71 AODA

52 SBCA IN08,Y 72 SBCA

53 AOCA IN08, Y 73 ADCA

54 EORA IN08, y 74 EORA

55 LOAA IN08, Y 75 LOAA

56 ANOA IN08, Y 76 ANDA

57 ORAA IN08, Y 77 ORAA

58 CMPA IN08, Y 78 CMPA

59 BITA IN08, Y 79 BITA

5A STAA IN08, Y 7A JMP

5B JMP IN020, Y 7B MAC

5C CPX IN08, Y 7C AOOE

50 CPY IN08, Y 70 -
5E CPZ IN08, Y 7E -
5F CPS IN08, Y 7F -

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

IND8,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IN020, Z

IN08,Z

IN08,Z

IN08,Z

IN08,Z

IMM8

IMM8

IMM8

IMM8

IMM8

IMM8

IMM8

IMM8

IMM8

IMM8

EXT

IMM8

IMM8

-.

-
-

MOTOROLA

7-11

II

II

Opcode

MOTOROLA

7-12

BO

B1

B2

B3

B4

B5

B6

B7

BB

B9

BA

BB

BC

BO

BE

BF

90

91

92

93

94

95

96

97

9B

99

9A

9B

9C

90

9E

9F

Table 7-2. Page 0 Opcodes (Continued)

Mnemonic Mode Opcode Mnemonic Mode

SUBO INDB,X AO SUBD INOB,Z

ADDO INDB, X A1 ADOO INDB,Z

SBCD INDB, X A2 SBCD INDB,Z

APCD INDB,X A3 ADCD INDB,Z

EORD INOB,X A4 EORD INDB,Z

LOD INDB,X A5 LOO INDB,Z

ANDD INDB, X A6 ANDD INDB,Z

ORD INDB,X A7 ORD INDB,Z

CPD INDB,X AB CPO INOB,Z

JSR IN020, X A9 JSR IN020,Z

SID INDB,X AA SID INOB,Z

BRSET INDB,X AB BRSET INDB,Z

SlX INOB,X AC SlX INOB,Z

STY INDB,X AD STY INOB,Z

Sl2 INOB,X AE Sl2 INOB,Z

STS INOB,X AF STS INOB,Z

SUBO INDB, Y BO BRA RELB

AOOD INDB, Y B1 BRN RELB

SBCD INOB, Y B2 BHI RELB

AOCD INOB, Y B3 BLS RELB

.EORO INOB,Y B4 sec RELB

LOO INOB,Y B5 BCS REL8

ANOO INOB, Y B6 BNE RELB

ORO INOB, Y B7 BEQ RELB

CPO INOB, Y BB BVC RELB

JSR IN020, Y B9 BVS RELB

SID INDB, Y BA BPL RELB

BRSET INDB, Y BB BMI RELB

SlX INDB,Y BC BGE RELB

STY INDB,Y BD BLT RELB

Sl2 INDB,Y BE BGT RELB

STS INDB, Y BF BLE RELB

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-2. Page 0 Opcodes (Concluded)

Opcode Mnemonic Mode Opcode Mnemonic

CO SUBB INOB,X EO SUBB

C1 AOOB INOB, X E1 AOOB

C2 SBCB INOB, X E2 SBCB

C3 AOCB INOB, X E3 AOCB

C4 EORB INOB, X E4 EORB

C5 LOAB INOB, X E5 LDAB

C6 ANOB INOB, X E6 ANOB

C7 ORAB INOB, X E7 ORAB

C8 CMPB INOB, X EB CMPB

C9 BITB INOB, X E9 BITB

CA STAB INOB,X EA STAB

CB BRCLR INOB,X EB BRCLR

cc LOX INOB,X EC LOX

CD LOY INOB,X EO LOY

CE LOZ INOB,X EE LOZ

CF LOS INOB,X EF LOS

DO SUBB INOB, Y FO SUBB

01 AOOB INOB, Y F1 AOOB

02 SBCB INOB, Y F2 SBCB

03 AOCB INOB, Y F3 AOCB

D4 EORB INOB, Y F4 EORB

05 LOAB INOB, Y F5 LOAB

OS ANOB INOB, Y F6 ANOB

07 ORAB INOB, Y F7 ORAB

DB CMPB INOS, Y FS CMPB

09 BITB INOB, Y F9 BITB

OA STAB INOB, Y FA JSR

OB BRCLR INOS, Y FB RMAC

DC LOX INOB, Y FC AOOO

DO LOY INOB, Y FD -
OE LDZ INOB, Y FE -
OF LOS INOB, Y FF -

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

INOB,Z

IMMB

IMMB

IMMB

IMMB

IMMB

IMMB

IMMB

IMMB

IMMS

IMMB

EXT

IMMB

IMMB

-
-
-

MOTOROLA

7-13

II

II

Opcode

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

170A

170B

170C

1700

170E

170F

1710

1711

1712

1713

1714

1715

1716

1717

1718

MOTOROLA

7-14

1719

171A

171B

171C

1710

171E

171F

Table 7-3. Page 1 Opcodes

Mnemonic Mode Opcode Mnemonic Mode

COM IND16,X 1720 COM IND16, Z

DEC IND16,X 1721 DEC IND16, Z

NEG It-!D16,X 1722 NEG IND16, Z

INC IND16,X 1723 INC IND16, Z

ASL IND16,X 1724 ASL IND16, Z

CLR IND16,X 1725 CLR IND16, Z

TST IND16, X 1726 TST IND16,Z

- - 1727 - -
BCLR IND8,X 1728 BCLR IND8,Z

BSET IND8,X 1729 BSET IND8,Z

- - 172A - -

- - 172B - -
ROL IND16, X 172C ROL IND16, Z

ASR IND16,X 1720 ASR IND16, Z

ROR IND16,X 172E ROR IND16,Z

LSR IND16, X 172F LSR IND16, Z

COM IND16, Y 1730 COM EXT

DEC IND16, Y 1731 DEC EXT

NEG IND16, Y 1732 NEG EXT

INC IND16, Y 1733 INC EXT

ASL IND16, Y 1734 ASL EXT

CLR IND16, Y 1735 CLR EXT

TST IND16, Y 1736 TST EXT

- - 1737 - -
BCLR IND8, Y 1738 - -
BSET IND8, Y 1739 - -
- - 173A - -
- - 173B - -

ROL IND16, Y 173C ROL EXT

ASR IND16, Y 1730 ASR EXT

ROR IND16, Y 173E ROR EXT

LSR IND16, Y 173F LSR EXT

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-3. Page 1 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic

1740 SUBA IND16,X 1760 SUBA

1741 ADDA IND16,X 1761 ADDA

1742 SBCA IND16,X 1762 SBCA

1743 ADCA IND16,X 1763 ADCA

1744 EORA IND16,X 1764 EORA

1745 LDAA IND16,X 1765 LDAA

1746 ANDA IND16,X 1766 ANDA

1747 ORAA IND16,X 1767 ORAA

1748 CMPA IND16, X 1768 CMPA

1749 BITA IND16, X 1769 BITA

174A STAA IND16,X 176A STAA

174B - - 176B -
174C CPX IND16, X 176C CPX

174D CPY IND16,X 176D CPY

174E CPZ IND16,X 176E CPZ

174F CPS IND16, X 176F CPS

1750 SUBA IND16, Y 1770 SUBA

1751 ADDA IND16,Y 1771 ADDA

1752 SBCA IND16, Y 1772 SBCA

1753 ADCA IND16, Y 1773 ADCA

1754 EORA IND16, Y 1774 EORA

1755 LDAA IND16,Y 1775 LDAA

1756 ANDA IND16, Y 1776 ANDA

1757 ORAA IND16, Y 1777 ORAA

1758 CMPA IND16, Y 1778 CMPA

1759 BITA IND16,Y 1779 BITA

175A STAA IND16, Y 177A STAA

175B - - 177B -

175C CPX IND16,Y 177C CPX

175D CPY IND16, Y 177D CPY

175E CPZ IND16, Y 177E CPZ

175F CPS IND16, Y 177F CPS

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

IND16,Z

IND16, Z

IND16, Z

IND16,Z

IND16, Z

IND16, Z

IND16, Z

IND16, Z

IND16, Z

IND16, Z

IND16, Z

-
IND16, Z

IND16,Z

IND16, Z

IND16, Z

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

-

EXT

EXT

EXT

EXT

MOTOROLA

7-15

II

II

Opcode

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

178A

178B

178C

1780

178E

178F

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

MOTOROLA
7-16

179A

179B

179C

179D

179E

179F

Table 7-3. Page 1 Opcodes (Continued)

Mnemonic Mode Opcode Mnemonic Mode

- - 17AO - -
- - 17A1 - -
- - 17A2 - -
- - 17A3 - -
- - 17A4 - -
- - 17A5 - -
- - 17A6 - -
- - 17A7 - -
- - 17A8 - -
- - 17A9 - -
- - 17AA - -
- - 17AB - -

SlX IN016, X 17AC SlX IN016, Z

SlY IND16,X 17AO SlY IN016, Z

SlZ IND16,X 17AE SlZ IN016, Z

STS IND16,X 17AF STS IN016, Z

- - 17BO - -
- - 17B1 - -
- - 17B2 - -
- - 17B3 - -
- - 17B4 - -
- - 17B5 - -
- - 17B6 - -
- - 17B7 - -
- - 17B8 - -
- - 17B9 - -
- - 17BA - -
- - 17BB - -

SlX IND16, Y 17BC SlX EXT

SlY IND16, Y 17BO SlY EXT

SlZ IND16, Y 17BE SlZ EXT

STS IND16, Y 17BF STS EXT

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-3. Page 1 Opcodes (Concluded)

Opcode Mnemonic Mode Opcode Mnemonic

17CO SUBB IND16,X 17EO SUBB

17C1 ADDB IND16, X 17E1 ADDB

17C2 SBCB IND16,X 17E2 SBCB

17C3 ADCB IND16,X 17E3 ADCB

17C4 EORB IND16,X 17E4 EORB

17C5 LDAB IND16,X 17E5 LDAB

17C6 ANDB IND16,X 17E6 ANDB

17C7 ORAB IND16, X 17E7 ORAB

17C8 CMPB IND16,X 17E8 CMPB

17C9 BITB IND16,X 17E9 BITB

17CA STAB IND16,X 17EA STAB

17CB - - 17EB -
17CC LOX IND16, X 17EC LOX

17CD LOY IND16,X 17ED LDY

17CE LOZ IND16,X 17EE LDZ

17CF LDS IND16,X 17EF LDS

17DO SUBB IND16, Y 17FO SUBB

17D1 ADDB IND16, Y 17F1 ADDB

17D2 SBCB IND16, Y 17F2 SBCB

17D3 ADCB IND16, Y 17F3 ADCB

17D4 EORB IND16, Y 17F4 EORB

17D5 LDAB IND16, Y 17F5 LDAB

17D6 ANDB IND16, Y 17F6 ANDB

17D7 ORAB IND16, Y 17F7 ORAB

17D8 CMPB IND16, Y 17F8 CMPB

17D9 BITB IND16, Y 17F9 BITB

17DA STAB IND16, Y 17FA STAB

17DB - - 17FB -
17DC LDX IND16, Y 17FC LDX

17DD LOY IND16, Y 17FD LDY

17DE LOZ IND16, Y 17FE LOZ

17DF LOS IND16, Y 17FF LDS

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

IND16, Z

IND16, Z

IND16, Z

IND16,Z

IND16, Z

IND16, Z

IND16,Z

IND16,Z

IND16, Z

IND16, Z

IND16, Z

-
IND16,Z

IND16, Z

IND16, Z

IND16, Z

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

EXT

-
EXT

EXT

EXT

EXT

MOTOROLA

7-17

II

II

Opcode

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

270A

270B

270C

270D

270E

270F

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

271A

2718

271C

2710

271E

271F

MOTOROLA

7-18

Table 7-4. Page 2 Opcodes

Mnemonic Mode Opcode Mnemonic Mode
CQt.NoN IND16, X 2720 COMN IND16,Z

DECW IND16, X 2721 DECW IND16,Z

NEGW IND16, X 2722 NEGW IND16,Z

INCW IND16, X 2723 INCW IND16,Z

ASLW IND16, X 2724 ASLW IND16,Z

CLAW IND16, X 2725 CLAW IND16, Z

TSlW IND16,X 2726 TSlW IND16, Z

- - 2727 - -
BCLRW IND16, X 2728 BCLRW IND16,Z

BSElW IND16,X 2729 BSETW IND16, Z

- - 272A - -
- - 272B - -

ROLW IND16, X 272C ROLW IND16, Z

ASRW IND16,X 272D ASRW IND16, Z

RORW IND16,X 272E RORW IND16, Z

LSRW IND16, X 272F LSRW IND16,Z

CQt.NoN IND16, Y 2730 COM#. EXT

DECW IND16,Y 2731 DECW EXT

NEGW IND16, Y 2732 NEGW EXT

INCW IND16, Y 2733 INCW EXT

ASLW IND16,Y 2734 ASLW EXT

CLRW IND16, Y 2735 CLRW EXT

TSlW IND16, Y 2736 TS1W EXT

- - 2737 - -
BCLRW IND16, Y 2738 BCLRW EXT

BSElW IND16, Y 2739 BSElW EXT

- - 273A - -
- - 2738 - -

ROLW IND16, Y 273C ROLW EXT

ASRW IND16, Y 273D ASRW EXT

RORW IND16, Y 273E RORW EXT

LSRW IND16, Y 273F LSRW EXT

INSTRUCTION PROCESS CPUi6 REFERENCE MANUAL

Table 7-4. Page 2 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic

2740 SUBA E,X 2760 SUBA
2741 ADDA E,X 2761 ADDA
2742 SBCA E,X 2762 SBCA
2743 ADCA E,X 2763 ADCA
2744 EORA E,X 2764 EORA
2745 LDAA E,X 2765 LDAA
2746 ANDA E,X 2766 ANDA
2747 ORAA E,X 2767 ORAA
2748 CMPA E,X 2768 CMPA
2749 BITA E,X 2769 BITA
274A STAA E,X 276A STAA
274B - - 276B -
274C NOP INH 276C TXZ

274D TYX INH 276D TYZ

274E TZX INH 276E -
274F TSX INH 276F TSZ
2750 SUBA E, Y 2770 COME
2751 ADDA E,Y 2771 LDED
2752 SBCA E, Y 2772 NEGE
2753 ADCA E,Y 2773 STED
2754 EORA E,Y 2774 ASLE
2755 LDAA E, Y 2775 CLRE
2756 ANDA E, Y 2776 TSTE
2757 ORAA E, Y 2777 RTI
2758 CMPA E, Y 2778 ADE
2759 BITA E, Y 2779 SDE
275A STAA E, Y 277A XGDE
275B - - 277B TOE
275C TXY INH 277C ROLE
275D - - 277D ASRE
275E 1ZY INH 277E RORE
275F TSY INH 277F LSRE

CPU16 REFERENCE MANUAL INSTRUCT'ON· PROCESS

Mode

E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
-

INH
INH
-

INH
INH
EXT
INH
EXT
INH
INH
INH
INH
INH
INH
INH
INH
INH
INH
INH
INH

MOTOROLA
7-19

II

II

opeode
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
278A
2788
278C
2780
278E
278F
2790
2791
2792
2793
2794
2795
2796
2797
2798

MOTOROLA
7-20

2799
279A
2798
279C
2790
279E
279F

Table 7-4. Page 2 Opcodes (Continued)

Mnemonic Mode Opcode Mnemonic Mode
SU8D E,X 27AO SU8D E,Z
ADDD E,X 27A1 ADDD E,Z
S8CD E,X 27A2 S8CD E,Z
ADCD E,X 27A3 ADCD E,Z
EORD E,X 27A4 EORD E,Z

LDD E,X 27A5 LDD E,Z
ANDD E,X 27A6 ANDD E,Z
ORO E,X 27A7 ORO E,Z
CPO E,X 27A8 CPO E,Z
- - 27A9 - -

SID E,X 27AA SID E,Z
- - 27A8 - -
- - 27AC - -
- - 27AO - -
- - 27AE - -
- - 27AF - -

SU80 E, Y 2780 LOHI Ext
AOOD E,Y 2781 TEOM INH
SBCO E, Y 2782 TEM INH
ADCD E, Y 2783 TMXED INH
EORO E, Y 2784 TMER INH

LDD E, Y 2785 TMET INH
ANOO E,Y 2786 ASLM INH
ORO E, Y 2787 CLRM INH
CPO E, Y 2788 PSHMAC INH
- - 2789 PULMAC INH

SID E,Y 278A ASRM INH
- - 2788 TEK8 INH
- - 278C - -
- - 2780 - -
- - 278E - -
- - 278F - -

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-4. Page 2 Opcodes (Concluded)

Opcode Mnemonic Mode Opcode Mnemonic

27CO SUBB E,X 27EO SUBB
27C1 ADDB E,X 27E1 ADDB
27C2 SBCB E,X 27E2 SBCB
27C3 ADCB E,X 27E3 ADCB
27C4 EORB E,X 27E4 EORB
27C5 LDAB E,X 27E5 LDAB
27C6 ANDB E,X 27E6 ANDB
27C7 ORAB E,X 27E7 ORAB
27C8 CMPB E,X 27E8 CMPB
27C9 BITB E,X 27E9 BITB
27CA STAB E,X 27EA STAB
27CB - - 27EB -
27CC - - 27EC -

27CD - - 27ED -
27CE - - 27EE -

27CF - - 27EF -
27DO SUBB E, Y 27FO COMD
27D1 ADDB E,Y 27F1 LPSTOP
27D2 SBCB E, Y 27F2 NEGD
27D3 ADCB E, Y 27F3 WAI
27D4 EORB E,Y 27F4 ASLD
27D5 LDAB E, Y 27F5 CLRD
27D6 ANDB E, Y 27F6 TSTD
27D7 ORAB E, Y 27F7 RTS
27D8 CMPB E, Y 27F8 SXT
27D9 BITB E,Y 27F9 LBSR
27DA STAB E,Y 27FA TBEK
27DB - - 27FB TED
27DC - - 27FC ROLD
27DD - - 27FD ASRD
27DE - - 27FE RORD
27DF - - 27FF LSRD

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
E,Z
-
-
-
-
-
INH
INH
INH
INH
INH
INH
INH
INH
INH

REL16
INH
INH
INH
INH
INH
INH

MOTOROLA
7-21

II

II

Opcode

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

370A

370B

370C

370D

370E

370F

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

371A

371B

371C

3710

371E

371F

MOTOROLA

7-22

Table 7-5. Page 3 Opcodes

Mnemonic Mode Opcode Mnemonic Mode

COMA INH 3720 SWI INH

DECA INH 3721 DM INH

NEGA INH 3722 ACE INH

INCA INH 3723 ACED INH

ASLA INH 3724 MUL INH

ClRA INH 3725 EMUl INH

TSTA INH 3726 EMULS INH

TBA INH 3727 FMUlS INH

PSHA INH 3728 ED IV INH

PULA INH 3729 EDIVS INH

SBA INH 372A IDIV INH

ABA INH 372B FDIV INH

ROLA INH 372C TPD INH

ASRA INH 3720 TOP INH

RORA INH 372E - -
lSRA INH 372F TDMSK INH

COMB INH 3730 SUBE IMM16

DECB INH 3731 AODE IMM16

NEGB INH 3732 SBCE IMM16

INCB INH 3733 AOCE IMM16

ASLB INH 3734 EORE IMM16

CLRB INH 3735 LOE IMM16

TSTB INH 3736 ANDE IMM16

TAB INH 3737 ORE IMM16

PSHB INH 3738 CPE IMM16

PUlB INH 3739 - -
XGAB INH 373A ANDP IMM16

CBA INH 373B ORP IMM16

ROLB INH 373C AIX IMM16

ASRB INH 3730 AIY IMM16

RORB INH 373E AIZ IMM16

LSRB INH 373F AIS IMM16

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-5. Page 3 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic

3740 SUBE IND16,X 3760 SUBE
3741 ADDE IND16, X 3761 ADDE
3742 SBCE IND16,X 3762 SBCE
3743 ADCE IND16,X 3763 ADCE
3744 EORE IND16, X 3764 EORE
3745 LDE IND16,X 3765 LDE
3746 ANDE IND16,X 3766 ANDE
3747 ORE IND16,X 3767 ORE
3748 CPE IND16. X 3768 CPE
3749 - - 3769 -
374B - - 376A STE
374A STE IND16.X 376B -
374C XGEX INH 376C XGEZ
374D AEX INH 376D AEZ
374E TXS INH 376E lZS

374F ABX INH 376F ABZ
3750 SUBE IND16. Y 3770 SUBE
3751 ADDE IND16. Y 3771 ADDE
3752 SBCE IND16. Y 3772 SBCE
3753 ADCE IND16. Y 3773 ADCE
3754 EORE IND16. Y 3774 EORE
3755 LDE IND16. Y 3775 LDE
3756 ANDE IND16. Y 3776 ANDE
3757 ORE IND16. Y 3777 ORE
3758 CPE IND16. Y 3778 CPE
3759 - - 3779 -
375A STE IND16. Y 377A STE
375B - - 377B -
375C XGEY INH 377C CPX
375D AEY INH 377D CPY
375E TYS INH 377E CPZ
375F ABY INH 377F CPS

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

IND16,Z
IND16,Z
IND16, Z
IND16, Z
IND16, Z
IND16,Z
IND16, Z
IND16. Z
IND16.Z

-
IND16.Z

-
INH
INH
INH
INH
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
-

EXT
-

IMM16
IMM16
IMM16
IMM16

MOTOROLA
7-23

II

II

Opcode

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

378A

378B

378C

378D

378E

378F

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

379A

379B

379C

379D

379E

379F

MOTOROLA

7-24

Table 7-5. Page 3 Ope odes (Continued)

Mnemonic Mode Opcode Mnemonic Mode

LBRA REU6 37AO - -
LBRN REU6 37A1 - -
LBHI REU6 37A2 - -
LBLS REU6 37A3 - -
LBCC REU6 37A4 - -
LBCS REU6 37A5 - -

LBNE REU6 37A6 BGND INH

LBEQ REU6 37A7 - -
LBVC REU6 37A8 - -
LBVS REU6 37A9 - -
LBPL REU6 37AA - -
LBMI REU6 37AB - -
LBGE REU6 37AC TXKB INH

LBLT REU6 37AD TYKB INH

LBGT REU6 37AE TZKB INH

LBLE REU6 37AF TSKB INH

LBMV REU6 37BO SUBD IMM16

LBEV REU6 37B1 ADDD IMM16

- - 37B2 SBCD IMM16

- - 37B3 ADCD IMM16

- - 37B4 EORD IMM16

- - 37B5 LOD IMM16

- - 37B6 ANDD IMM16

- - 37B7 ORD IMM16

- - 37B8 CPD IMM16

- - 37B9 - -
- - 37BA - -
- - 37BA - -

TBX!< INH 37BC LOX IMM16

TBYK INH 37BD LDY IMM16

TBZK INH 37BE LDZ IMM16

TBSK INH 37BF LDS IMM16

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

Table 7-5. Page 3 Opcodes (Concluded)

Opcode Mnemonic Mode Opcode Mnemonic

37CO SUBD IND16, X 37EO SUBD
37C1 ADDD IND16,X 37E1 ADDD
37C2 SBCD IND16,X 37E2 SBCD
37C3 ADCD IND16,X 37E3 ADCD
37C4 EORD IND16, X 37E4 EORD
37C5 LDD IND16, X 37E5 LDD
37C6 ANOO IND16, X 37E6 ANOO
37C7 ORO IND16, X 37E7 ORO
37C8 CPO IN016,X 37E8 CPO
37C9 - - 37E9 -
37CA SlO IN016,X 37EA SlO
37CB - - 37EB -
37CC XGOX INH 37EC XGOZ
37CO AOX INH 37ED ADZ
37CE - - 37EE -

37CF - - 37EF -
3700 SUBD IN016, Y 37FO SUBO
37D1 ADOO IND16, Y 37F1 ADDD
3702 SBCD IND16, Y 37F2 SBCO
3703 ADCD IN016, Y 37F3 ADCO
37D4 EORO IN016, Y 37F4 EORO
3705 LDO IN016, Y 37F5 LOO
3706 ANOD IND16, Y 37F6 ANDD
3707 ORO IN016, Y 37F7 ORO
3708 CPO IN016, Y 37F8 CPO
3709 - - 37F9 -
370A SlO IN016, Y 37FA SlO
370B - - 37FB -

37DC XGDY INH 37FC TPA
370D ADY INH 37FO TAP
370E - - 37FE MOVB
370F - - 37FF MOVW

CPU16 REFERENCE MANUAL INSTRUCTION PROCESS

Mode

IND16,Z
IND16, Z
IND16, Z
IND16, Z
IND16,Z
IND16, Z
IN016,Z
IN016, Z
IND16, Z

-
IND16, Z

-
INH
INH
-

-
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
-

EXT
-
INH
INH

EXTtoEXT
EXTtoEXT·

MOTOROLA

7-25

II

II

MOTOROLA

7-26

INSTRUCTION PROCESS CPU16 REFERENCE MANUAL

SECTION 8
INSTRUCTION TIMING

This section gives detailed information concerning calculating the amount of
time required to execute instructions. A pre-calculated execution time for each
CPU16 instruction is shown in SECTION 6 INSTRUCTION GLOSSARY.
Glossary cycle times are based on two-clock-period bus cycles, a 16-bit data
bus, and aligned access - they include clock periods required for prefetch,
operand access, and internal operation.

8.1 Execution Time Components

CPU16 instruction execution time has three components:

Bus cycles required to prefetch the next instruction.
Bus cycles required for operand accesses.
Time required for internal operations.

A bus cycle requires a minimum of two system clock periods. If the access time
of a memory device is greater than two clock periods, bus cycles will be longer. II .-However, all bus cycles must be an integer number of clock periods. CPU16
internal operations are always an integer multiple of two clock periods.

Dynamic bus sizing affects bus cycle time. The CPU16 is a component of a
modularmicrocontroller. Modules in the system communicate via a
standardized intermodule bus and access external devices via an external bus
interface. The microcontroller system integration module manages all accesses
in order to make more efficient use of common resources. See SECTION 3
SYSTEM RESOURCES for more information.

The CPU16 does not execute more than one instruction at a time. The total time
required to execute a particular instruction stream can be calculated by
summing the individual execution times of each instruction in the stream.

CPU16 REFERENCE MANUAL INSTRUCTION TIMING MOTOROLA

8-1

II

Total execution time is calculated using the expression

(ClT) = (Clp) + (ClO) + (Cll)

Where:

(Cl T) = Total clock periods per instruction
(Cll) = Clock periods used for internal operation
(Clp) = Clock periods used for program access
(Clo) = Clock periods used for operand access

8.2 Program and Operand Access Time

The number of bus cycles required by a prefetch or an operand access
generally depends upon three factors:

Data bus width (8- or 16-bit).
Access size (byte, word, or long-word).
Access alignment (aligned or misaligned with even byte boundaries).

Prefetches are always word-sized, and are always aligned with even byte
boundaries. Operand accesses vary in size and alignment. Table 8-1 shows
the number of bus cycles required by accesses of various sizes and alignments.

Table 8-1. Access Bus Cycles

Access 8-blt 16·blt Data Bus 16-blt Data Bus
Size Data Bus Aligned Misaligned

byte 1 1 -
word 2 1 2

long·word 4 2 4

8.2.1 Program Accesses

For all instructions except those that cause a change in program flow, there is
one prefetch access per instruction word. These accesses keep the instruction
pipeline full. Once the number of prefetches is determined, the number of bus
cycles can be found in Table 8-1.

Instructions that cause changes in program flow also have various forms of
operand access. See 8.2.2.3 Change of Flow Instructions for complete
information on prefetch access and operand access.

MOTOROLA
8-2

INSTRUCTION TIMING CPU16 REFERENCE MANUAL

8.2.2 Operand Accesses

The number of operand accesses per instruction is not fixed. Most instructions
follow a regular pattern, but there are several variant types. Immediate
operands are considered to be part of the instruction - immediate operand
access time is considered to be a prefetch access.

8.2.2.1 Regular Instructions

Regular instructions require one operand access per operand. Determine the
number of byte and/or word operands, then use Table 8-1 to determine the
number of cycles.

8.2.2.2 Read-Modify-Write Instructions

Read-Modify-Write instructions, which include the byte and word forms of ASl,
ASR, BClR, BSET, COM, DEC, lSR, NEG, ROl, and ROR, require two
accesses per memory operand. The first access is needed to read the operand,
and the second access is needed to write it back after modification. Determine
the number and size of operands, multiply by two (the mask used in bit clear
and set instructions is considered to be an immediate operand), then use Table
8-1 to determine the number of cycles.

8.2.2.3 Change-of-Flow Instructions

Operand access for change of flow instructions varies according to type. Unary
branches, conditional branches, and jumps have no operand access. Bit- 8
condition branches must make one memory access in order to perform
masking. Subroutine and interrupt instructions must make stack accesses.

In addition, when an instruction that can cause a change in flow executes, no
prefetch is made until after the precondition for change of flow is evaluated.

There are two evaluation cases:

If the instruction causes an unconditional change, or meets a specific
precondition for change, the program counter is loaded with the first address
of a new instruction stream, and the pipeline is filled with new instructions.

If the instruction does not meet a specific precondition (preconditions of
unary branches are always true or always false), prefetch is made and
execution of the old instruction stream resumes.

CPU16 REFERENCE MANUAL INSTRUCTION TIMING MOTOROLA

8-3

II

Table 8-2 shows the number of program and operand access cycles for each
instruction that causes a change in program flow.

Table 8-2. Change-of-Flow Instruction Timing

Instruction Operand Program Comment
Access Access

BRA 0 3 Unary branch (1 = 1)

BAN 0 3 Unary branch (1 = 0)

Short Branches 0 311 Conditional branches

LBRA 0 3 Unary branch (1 = 1)

LBRN 0 2 Unary branch (1 = 0)

Long Branches 0 3/2 Conditional branches

BRCLR 1 4/3 Bit-condition branch,
INOB addressing mode

BRCLR 1 5/3 Bit-condition branch,
EXT, IN016 addressing modes

BRSET 1 4/3 Bit-condition branch,
INOB addressing mode

BRSET 1 5/3 Bit-condition branch,
EXT, IN016 addressing modes

JMP 0 3 Unconditional

JSR 2 3 Operand accesses include stack access

BSR 2 3 Operand accesses include stack access

LBSR 2 3 Operand accesses include stack access

RTS 2 3 Operand accesses include stack access

SWI 3 3 Operand accesses include stack access
and vector fetch

RTI 2 3 Operand accesses include stack access

In program access values for conditional branches, the first value is for branch taken, the second value is
for branch not taken.

MOTOROLA

8-4

INSTRUCTION TIMING CPU16 REFERENCE MANUAL

8.2.2.4 Stack Manipulation Instructions

Aligned stack manipulation instructions comply with normal program access
constraints, but have extra operand access cycles for stacking operations. Treat
misaligned stacking operations as byte transfers on a misaligned 16-bit bus.

Table 8-3 shows program and operand access cycles for each instruction.

Table 8-3. Stack Manipulation Timing

Instruction Operand Program Comment
Access Access

PSHAlPSHB 1 1 Byte operation

PUlA/PULB 1 1 Byte operation

PSHM N 1 N = Number of registers pushed

PULM N+l 1 N = Number of registers pulled"

PSHMAC/PULMAC 6 1 Stacks/retrieves all MAC registers

"The last operand read from the stack is ignored

8.2.2.5 Stop and Wait Instructions

Stop and wait instructions have normal program access cycles, but differ from
regular instructions in number of operand accesses. If LPSTOP is executed at a II
time when the CCR S bit is equal to zero, it must make one operand access to :
store the CCR IP field. WAI performs one prefetch access to establish a PC
value that insures proper stacking and return from interrupt.

Table 8-4 shows program and operand access cycles for each instruction.

Instruction

LPSTOP

WAI

CPU16 REFERENCE MANUAL

Table 8-4. Stop and Wait Timing

Operand Program Comment
Access Access

1 1 Operand access only when eCR S Bit = 0

0 1

INSTRUCTION TIMING

-

MOTOROLA

8-5

II

8.2.2.6 Move Instructions

Move instructions have normal program access cycles, but differ from regular
instructions in number of operand accesses. Each move requires two operand
accesses, one to read the data from the source address and one to write it to the
destination address.

Table 8-5 shows program and operand access cycles for each instruction.

Table 8-5. Move Timing

Instruction Operand Program Comment
Access Access

MOVBIMOVW 2 2 IXP to EXT, EXT to IXP addressing modes

MOVB/MOVW 2 3 EXT to EXT addressing mode

8.2.2.7 Multiply and Accumulate Instructions

MAC instructions have normal program access cycles, but differ from regular
instructions in number of operand accesses. During multiply and accumulate
operation, two words pointed to by index registers X and Yare accessed and
transferred to the H and I registers. MAC makes only these two operand
accesses, but RMAC repeats the operation a specified number of times.

Table 8-6 shows program and operand access cycles for each instruction.

Instruction

MOTOROLA

8-6

MAC

RMAC

Table 8-6. MAC Timing

Operand Program Comment
Access Access

2 1 -
2N 1 N = Number of iterations

INSTRUCTION TIMING CPU16 REFERENCE MANUAL

8.3 Internal Operation Time

To determine the number of clock periods associated with internal operation,
first determine program and operand access time using the appropriate table,
then use instruction cycle time (ClT) from the instruction glossary to evaluate
the following expression:

Cli = (ClT) - (Clp + Clo)

Assume that:

A. All program and operand accesses are aligned on a 16-bit data bus.
B. Each bus cycle takes two clock periods.

This figure is constant regardless of the speed of memory used. Internal
operations, prefetches, and operand fetches are wholly concurrent for many
instructions - the calculated Cli will be zero.

8.4 Calculating Execution Times for Slower Accesses

Because Cli is constant for all bus speeds, ClT will only change when Clp and
Clo change. Clock periods are calculated using the following expression:

Clx = (Clock periods per cycle) (Number of cycles)

Where:

Clx is either Clp or ClO

To determine the number of clock periods required to execute an instruction
when bus cycles longer than two clock periods are necessary, determine the
number of cycles needed, calculate Clp and Clo values, then add to Cll.

8.5 Examples

The examples below illustrate the effect of bus width, alignment, and access
speed on three instructions. Separate entries for operand and program access
show the effect of accesses from differing types of memory.

The first example for each instruction assumes two-clock-period per cycle,
16-bit aligned access, so that Cli can be determined and used in the
subsequent examples. Calculated values are underlined.

CPU16 REFERENCE MANUAL I'NSTRUCTION TIMING MOTOROLA
8-7

II

II

B.5.1 LOO (Load 0) Instruction

The general form of this instruction is: LDD (operand). Examples show effects
of various access parameters on a single-word instruction.

B.5.1.1 LOO INOB, X
r---

16-blt operand data bus, 2 clocks per bus cycle, aligned ClT
r--

16-blt program data bus, 2 clocks per bus cycle 6

I Operand Number of Bus Number of Clocks per Clo
Accesses Width Bus Cycles Bus Cycle

1 16 1. 2 g,

I
Program Number of Bus Number of Clocks per Clp

Accesses Width Bus Cycles Bus Cycle

1 16 1. 2 2-
Cli

7
'---

B.5.1.2 LOO INOB, X
r---

S-bit operand data bus, 3 clocks per bus cycle, aligned ClT
r-----

16-blt program data bus, 2 clocks per bus cycle 1.Q

I Operand Number of Bus Number of Clocks per Clo
Accesses Width Bus Cycles Bus Cycle

1 8 2- 3 §.

I Program Number of Bus Number of Clocks per Clp
Accesses Width Bus Cycles Bus Cycle

1 16 1. 2 g,

Cli
-

2
-

B.5.1.3 LOO INOB, X

16-blt operand data bus, 2 clocks per bus cycle, misaligned
r---

ClT
r--

S-blt program data bus, 3 clocks per bus cycle 1..2.

I
Operand Number of Bus Number of Clocks per Clo

Accesses Width Bus Cycles Bus Cycle

1 16 g, 2 !

I Program Number of Bus Number of Clocks per Clp
Accesses Width Bus Cycles Bus Cycle

1 8 g, 3 §.

Cli
----'-

~

MOTOROLA

8-8
INSTRUCTION TIMING CPU16 REFERENCE MANUAL

8.5.2 NEG (Negate) Instruction

The general form of this instruction is: NEG (operand). Examples show effects
of various access parameters on a two-word instruction. Note that operand
alignment affects only the 8-bit operand data bus.

8.5.2.1 NEG EXT

16·bit operand data bus, 2 clocks per bus cycle

16·blt program data bus, 2 clocks per bus cycle

I
Operand Number of Bus Number of

Accesses Width Bus Cycles

2 16 2-

I
Program Number of Bus Number of

Accesses Width Bus Cycles

2 16 .2-

8.5.2.2 NEG EXT

B·bit operand data bus, 3 clocks per bus cycle, aligned

B·blt program data bus, 3 clocks per bus cycle

I
Operand Number of Bus Number of

Accesses Width Bus Cycl~s

2 8 .2.

I
Program Number of Bus Number of

Accesses Width Bus Cycles

2 8 g,.

8.5.2.3 NEG EXT

16·bit operand data bus, 3 clocks per bus cycle

16·bit program data bus, 3 clocks per bus cycle

I Operand Number of Bus Number of
Accesses Width Bus Cycles

2 16 .2.

I Program Number of Bus Number of
Accesses Width Bus Cycles

2 16 .2.

CPU16 REFERENCE MANUAL INSTRUCTION TIMING

.----- .

ClT
-

8

Clocks per Clo
Bus Cycle

2 g,.

Clocks per Clp
Bus Cycle

2 g,.

Cli
r--

Q.
'---

.-----
ClT
r--
II

Clocks per Clo
Bus Cycle

3 §.

Clocks per Clp
Bus Cycle

3 U
Cli

-
0

-

-
ClT

-
II

Clocks per ClO
Bus Cycle

3 §.

Clocks per Clp
Bus Cycle

3 §.

Cli
-

0 -

MOTOROLA

8-9

II

II

8.5.3 STED (Store Accumulators E and D) Instruction

The general form of this instruction is: STED (operand). Examples show effects
of various access parameters on an instruction that writes to memory twice
during execution.

8.5.3.1 STED EXT
-

16·bit operand data bus, 2 clocks per bus cycle, aligned ClT
-----'---

16·bit program data bus, 2 clocks per bus cycle 8

I
Operand Number of Bus Number of Clocks per ClO

Accesses ,Width Bus Cycles Bus Cycle

1 16 2- 2 1.

I
Program Number of Bus Number of Clocks per Clp

Accesses Width Bus Cycles Bus Cycle

2 16 2- 2 ~

Cli
r--
~

8.5.3.2 STED EXT
r--

B·bit operand data bus, 2 clocks per bus cycle, misaligned ClT
I---

16·bit program data bus, 3 clocks per bus cycle II

I
Operand Number of Bus Number of Clocks per ClO

Accesses Width Bus Cycles Bus Cycle

1 8 ~ 2 l!.

I
Program Number of Bus Number of Clocks per Clp

Accesses Width Bus Cycles Bus Cycle

2 16 2- 3 §.

Cli
I---

0
'-----

MOTOROLA

8-10

INSTRUCTION TIMING CPU16 REFERENCE MANUAL

SECTION 9
EXCEPTION PROCESSING

This section discusses exception handling, exception processing sequence,
and specific features of individual exceptions.

9.1 Definition of Exception

An exception is an event that pre-empts normal instruction process. Exception
processing makes the transition from normal instruction execution to execution
of a routine that deals with an exception.

Each exception has an assigned vector that pOints to an associated handler
routine. Exception processing includes all operations required to transfer
control to a handler routine, but does not include execution of the handler
routine itself. Keep the distinction between exception processing and execution
of an exception handler in mind while reading this section.

9.2 Exception Vectors

An exception vector is the address of a routine that handles an exception.
Exception vectors are contained in a data structure called the instruction vector
table, which is located in the first 512 bytes of Bank O.

All vectors except the reset vector consist of one word and reside in data space. II
The reset vector consists of four words that reside in program space. There are
52 predefined or reserved vectors, and 200 user defined vectors.

Each vector is assigned an 8-bitnumber. Vector numbers for some exceptions
are generated by external devices; others are supplied by the processor. There
is a direct mapping of vector number to vector table address. The processor left
shifts the vector number one place (multiplies by two) to convert it to an address.

Table 9-1 shows exception vector table organization. Vector numbers and
addresses are given in hexadecimal notation.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-1

Table 9-1. Exception Vector Table

Vector Vector Address Type of
Number Address Space Exception

0 0000 P RESET - Initial ZK, SK, and PK

0002 P RESET - Initial PC

0004 P RESET - Initial SP

0006 P RESET -lnitiallZ (Direct Page)

4 0008 D BKPT (Breakpoint)

5 OOOA D BERR (Bus Error)

6 OOOC D SWI (Software Interrupt)

7 OOOE D Illegal Instruction

8 0010 D Division by Zero

9-E 0012-001C D Unassigned, Reserved

F 001E D Uninitialized Interrupt

10 0020 D Unassigned, Reserved

11 0022 D Level 1 Interrupt Autovector

12 0024 D Level 2 Interrupt Autovector

13 0026 D Level 3 Interrupt Autovector

14 0028 D Level 4 Interrupt Autovector

15 002A D Level 5 Interrupt Autovector

16 002C D Level 6 Interrupt Autovector

17 002E D Level 7 Interrupt Autovector

18 0030 D Spurious Interrupt

19-37 0032-006E D Unassigned, Reserved

38-FF 0070-01FE D User-defined Interrupts

Types of Exceptions

Exceptions can be either internally or externally generated. External
exceptions, which are defined as asynchronous, include interrupts, bus errors
(BERR), breakpoints (BKPT), and resets (RESET). Internal exceptions, which
are defined as synchronous, include the software interrupt (SWI) instruction, the
background (BGND) instruction, illegal instruction exceptions, and the divide
by-zero exception.

MOTOROLA

9-2
EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

9.4 Exception Stack Frame

During exception processing, a subset of the current processor state is saved
on the current stack. Specifically, the contents of the program counter and
condition code register at the time exception processing begins are stacked at
the location pointed to by SK : SP. Unless specifically altered during exception
processing, the stacked PK : PC value is the address of the next instruction in
the current instruction stream, plus $0006. Figure 9-1 shows the exception
stack frame.

low Address

High Address

<= SP After Exception Stacking
~------------~

Condition Code Register

Program Counter
~------------~

<= SP Before Exception Stacking

Figure 9-1. Exception Stack Frame Format

9.5 Exception Processing Sequence

This is a general description of exception processing. Figure 9-2 shows
detailed processing flow and relative priority of each type of exception.

Exception processing is performed in four distinct phases.

A. Priority of all pending exceptions is evaluated, and the highest priority
exception is processed first.

B. Processor state is stacked, then the CCR PK extension field is cleared. II
C. An exception vector number is acquired and converted to a vector

address.
D. The content of the vector address is loaded into the PC, and the

processor jumps to the exception handler routine.

There are variations within each phase for differing types of exceptions.
However, all vectors but RESET are 16-bit addresses, and the PK field is
cleared - either exception handlers must be located within Bank 0, or vectors
must point to a jump table. See 9.7 Processing of Specific Exceptions for
more information.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-3

II

MOTOROLA
9-4

FETCH RESET
VECTORS

INSURE
INSTRUCTION

PIPE FULL

Figure 9-2. (Sheet 1 of 5)
Exception Processing Flow Diagram

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

STACK PROCESSOR
STATE

CLEAR PK
FETCH BERR

VECTOR

INSURE
INSTRUCTION

PIPE FULL

STOP
INSTRUCTION
EXECUTION

ASSERT HALT

ENTER
BACKGROUND

MODE

RUN BKPT
ACKNOWLEDGE

CYCLE
STACK PROCESSOR

STATE
CLEAR PK

FETCH BKPT VECTOR

Figure 9-2. (Sheet 2 of 5)
Exception Processing Flow Diagram

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING

NO

MOTOROLA

9-5

II

MOTOROLA

9-6

Figure 9-2. (Sheet 3 of 5)
Exception Processing Flow Diagram

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

STACK PROCESSOR
STATE

CLEAR PK
FETCH SWI VECTOR

YES

YES

YES

NO

STACK PROCESSOR
STATE

CLEAR PK
FETCH ILLEGAL VECTOR

Figure 9-2. (Sheet 4 of. 5)
Exception Processing Flow Diagram

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-7

II

II

MOTOROLA

9-B

Figure 9-2. (Sheet 5 of 5)
Exception Processing Flow Diagram

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

9.6 Multiple Exceptions

Each exception has a priority based upon its relative importance to system
operation. Asynchronous exceptions have higher priorities than synchronous
exceptions. Exception processing for multiple exceptions is done by priority,
from highest to lowest. Priority governs the order in which exception processing
occurs, not the order in which exception handlers are executed.

When simultaneous exceptions occur, handler routines for lower priority
exceptions are generally executed before handler routines for higher priority
exceptions.

Unless BERR, BKPT, or RESET occur during exception processing, the first
instruction of all exception handler routines is guaranteed to execute before
another exception is processed. Since interrupt exceptions have higher priority
than synchronous exceptions, this means that the first instruction in an interrupt
handler will be executed before other interrupts are sensed.

Note

If interrupt latency is a concern, it is best to lead interrupt service
routines with a NOP instruction, rather than with an instruction that
requires considerable cycle time to execute, such as PSHM.

RESET, BERR, and BKPT exceptions that occur during exception processing of
a previous exception will be processed before the first instruction of that
exception's handler routine. The converse is not true - if an interrupt occurs
during BERR exception processing, for example, the first instruction of the BERR
handler will be executed before interrupts are sensed. This permits the
exception handler to mask interrupts during execution.

9.7 Processing of Specific Exceptions

The following detailed discussion· of exceptions is organized by type and
priority. Proximate causes of each exception are discussed, as are variations
from the standard processing sequence described above.

9.7.1 Asynchronous Exceptions

Asynchronous exceptions occur without reference to CPU16 or 1MB clocks, but
exception processing is synchronized. For all asynchronous exceptions
besides RESET, exception processing begins at the first instruction boundary
following detection of an exception.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-9

II

II

Because of pipelining, the stacked return PK : PC value for all asynchronous
exceptions, other than RESET, is equal to the address of the next instruction in
the current instruction stream plus $0006. The RTI instruction, which must
terminate all exception handler routines, subtracts $0006 from the stacked
value in order to resume execution of the interrupted instruction stream.

9.7.1.1 Processor Reset (RESET)

RESET is the highest-priority exception. It provides for system initialization and
for recovery from catastrophic failure. The RESET vector contains information
necessary for basic CPU16 initialization. Figure 9-3 shows the RESET vector.

Address 15 12 11 8 7 4 3 0

$0000 Reserved I InitialZK I Initial SK I Initial PK

$0002 Initial PC

$0004 Initial SP

$0006 InitiallZ (Direct Page Pointer)

Figure 9-3. RESET Vector

RESET is caused by assertion of the 1MB MSTRST signal. Conditions for
assertion of MSTRST may vary among members of the modular microcontroller
family. Refer to the appropriate microcontroller user's manual for details.

Unlike all other exceptions, RESET occurs at the end of a bus cycle, and not at
an instruction boundary. Any processing in progress at the time RESET occurs
will be aborted, and cannot be recovered.

The following events take place when MSTRST is asserted.

A. Instruction execution is aborted.

B. The condition code register is initialized.

1. The IP field is set to $7, disabling all interrupts below priority 7.
2. The S bit is set, disabling LPSTOP mode.
3. The SM bit is cleared, disabling MAC saturation mode.

C. The K register is cleared.

MOTOROLA
9-10

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

It is important to be aware that all CCR bits that are not initialized are not
affected by reset. However, out of power-on reset, these bits will be
indeterminate.

The following events take place when MSTRST is negated after assertion.

A. The CPU16 samples the BKPT input.

B. The CPU16 fetches RESET vectors in the following order:

1. Initial ZK, SK, and PK extension field values.
2. Initial PC.

\ 3. Initial SP.
4. InitiallZ value.

C. The CPU16 begins fetching instructions pOinted to by the initial PK : PC.

The CPU16 samples the BKPT inputs to determine whether to enable
background debugging mode.

If either BKPT input is at logic level zero when sampled, an internal BOM flag
is set, and the CPU16 enters BOM whenever either BKPT input is
subsequently asserted.

If both BKPT inputs are at logic level one when sampled, normal BKPT
exception processing begins whenever either BKPT input is subsequently
asserted.

When BOM is enabled, the CPU16 will enter debugging mode whenever the
conditions for breakpoint are met. See 9.7.1.3 Breakpoint Exception III
(BKPT) for more information. •

ZK : IZ are initialized for use as a direct bank pointer. Using the pointer, any
location in memory can be accessed out of reset by means of indexed
addressing. This capability maintains compatibility with MC68HC11 routines
that use direct addressing mode.

Only essential RESET tasks are performed during exception processing. Other
initialization tasks must be accomplished by the exception handler routine.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-11

II

9.7.1.2 Bus Error (BERR)

BERR is caused by assertion of the 1MB BERR signal. BERR can be asserted by
any of three sources:

1. External logic, via the BERRpin.
2. Another microcontroller module.
3. Microcontroller system watchdog functions.

Refer to the appropriate microcontroller user's manual formore information.

BERR assertions do not force immediate exception processing. The signal is
synchronized with normal bus cycles and is latched into the CPU16 at the end
of the bus cycle in which it was asserted. Since bus cycles can overlap
instruction boundaries, bus error exception processing may not occur at the end
of the .instruction in which the bus cycle begins. Timing of BERR
detection/acknowledge is dependent upon several factors:

Which bus cycle of an instruction is terminated by assertion of BERR.

The number of bus cycles in the instruction during which BERR is asserted.

The number of bus cycles in the instruction following the instruction in which
BERR is asserted.

Whether BERR is asserted during a program space access or a data space
access.

Because of these factors, it is impossible to predict precisely how long after
occurrence of a bus error the bus error exception will be processed.

Caution

The external bus interface in the system integration module does
not latch data when an external bus cycle is terminated by a bus
error. When this occurs during an instruction prefetch, the 1MB
precharge state (bus pulled high, or $FF) is latched into the
CPU16 instruction register, with indeterminate results. Refer to
SECTION 3 SYSTEM RESOURCES for more information
concerning the 1MB and bus interfacing.

Bus error exception support in the CPU16 is provided to allow for dynamic
memory sizing after reset. To implement this feature, use a small routine similar
to the example below. The example assumes that memory starts at address
$00000, and is contiguous through the highest memory address - it must be
modified for other memory maps.

MOTOROLA

9-12

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

Example - Dynamic Memory Sizing

clrb set xk = 0
tbxk
ldx #$0000

loop ldd 0, x
xk:ix initialized to address $00000
access memory location

nop
aix
bra

*

#2
loop

nop in case a bus error is pending
increment pointer to next word address.

* When xk:ik is incremented past the highest available memory
* address, a BERR exception occurs; after exception processing,
* the CPU16 executes the exception handler at location berr_ex.

*
* berr ex - BERR Exception Handler for Dynamic Memory Sizing

*
* This routine computes the address of the last word of memory,
* then stores the bank number at a location called "bank" and the
* word address within the bank at a location called "address".
* It assumes that ek is properly initialized.

*
berr_ex aix

txkb
#-2 compute LWA of memory

stab bank store bank number
stx address store address

Exception processing for bus error exceptions follows the standard exception
processing sequence. However, two special cases of bus error, called double
bus faults, can abort exception processing.

BERR assertion is not detected until an instruction is complete. The BERR latch
is cleared by the first instruction of the BERR exception handler. Double bus
fault occurs in two ways:

1. When bus error exception processing begins and a second BERR is 9
detected before the first instruction of the BERR exception handler is
executed.

2. When one or more bus errors occur before the first instruction after a
RESET exception is executed.

Multiple bus errors within a single instruction which can generate multiple bus
cycles, such as read-modify-write instructions (refer to SECTION 8
INSTRUCTION TIMING for more information), will cause a single bus error
exception after the instruction has executed.

Immediately after assertion of a second BERR, the CPU16 ceases instruction
processing and asserts the 1MB HALT signal. The. CPU16 will remain in this
state until a RESET occurs.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-13

II

9.7.1.3 Breakpoint Exception (BKPT)

BKPT is caused by internal assertion of the 1MB BKPT signal or by external
assertion of the microcontroller BKPT pin. BKPT assertions do not force
immediate exception processing. They are synchronized with normal bus
cycles and latched into the CPU16 at the end of the bus cycle in which they are
asserted.

When a BKPT assertion is synchronized with an instruction prefetch, processing
of the BKPT exception occurs at the end of that instruction. The prefetched
instruction is "tagged" with the breakpoint when it enters the instruction pipeline,
and the breakpoint exception occurs after the instruction executes. When a
BKPT assertion is synchronized with an operand fetch, exception processing
occurs at the end of the instruction during which BKPT is latched.

When background debugging mode has been enabled, the CPU16 will enter
BDM whenever either BKPT input is asserted. Refer to SECTION 10
DEVELOPMENT SUPPORT for complete information on background
debugging mode. When background debugging mode is not enabled, a
breakpoint acknowledge bus cycle is run, and subsequent exception
processing follows the normal sequence.

Breakpoint acknowledge is a type of CPU space cycle. Cycles of this type are
managed by the external bus interface (EBI) in the microcontroller system
integration module. See SECTION 3 SYSTEM RESOURCES for more
information.

9.7.1.4 Interrupts

There are eight levels of interrupt priority (0-7), seven automatic interrupt
vectors, and 200 assignable interrupt vectors. All interrupts with priorities less
than 7 can be masked by writing to the CCR interrupt priority field.

Interrupt requests do not force immediate exCeption processing, but are left
pending until the current instruction is complete. Pending interrupts are
processed at instruction boundaries or when exception processing for higher
priority exceptions is complete. All interrupt requests must be held asserted
until they are acknowledged by the CPU.

Interrupt recognition and subsequent processing are based on the state of
interrupt request signals IRQ7 - IRQ1 and the IP mask value.

IRQ6 - IRQ1 are active-low level-sensitive inputs. IRQ7 is an active-low
transition-sensitive input. A transition-sensitive input requires both an edge and
a voltage level for validity. Interrupt requests are synchronized and debounced
by input circuitry on consecutive rising edges of the processor clock. To be

MOTOROLA
9-14

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

valid, an interrupt request must be asserted for at least two consecutive clock
periods. Each input corresponds to an interrupt priority. IRQ1 has the lowest
priority, and IRQ7 has the highest priority.

The IP field consists of three bits (CCR[7:5]). Binary values %000 to %111
provide eight priority masks. Masks prevent an interrupt request of a priority
less than or equal to the mask value (except for IRQ7) from being recognized
and processed. When IP contains %000, no interrupt is masked.

IRQ6 -IRQ1 are maskable. IRQ7 is non-maskable. The IRQ7 input is transition
sensitive in order to prevent redundant servicing and stack overflow. An NMI is
generated each time IRQ7 is asserted, and each time the priority mask changes
from %111 to a lower number while IRQ7 is asserted.

The IP field is automatically set to the priority of the pending interrupt as a part of
interrupt exception processing. The TOP, ANOP, and ORP instructions can be
used to change the IP mask value. IP can also be changed by pushing a
modified CCR onto the stack, then using the PULM instruction. IP is also
modified by the action of the return from interrupt (RT!) instruction.

Interrupt exception processing sequence is as follows:

A. Priority of all pending exceptions is evaluated, and the highest priority
exception is processed first.

B. Processor state is stacked, then the CCR PK extension field is cleared.

C. Mask value of the pending interrupt is written to the IP field.

O. An interrupt acknowledge cycle (lACK) is run.

1. If the interrupting device supplies a vector number, the CPU16
acquires it.

2. If the interrupting device asserts the autovector (AVEC) signal in
response to lACK, the CPU16 generates an autovector number
corresponding to the interrupt priority.

3. If a BERR signal occurs during lACK, the CPU16 generates the
spurious interrupt vector number.

E. The vector number is converted to a vector address.

F. The content of the vector address is loaded into the PC, and the
processor jumps to the exception handler routine.

SECTION 3 SYSTEM RESOURCES contains more information about bus
control signals and interfacing.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-15

II

II

9.7.2 Synchronous Exceptions

Synchronous exception processing is part of an instruction definition.
Exception processing for synchronous exceptions will always be completed,
and the first instruction of the handler routine will always be executed, before
interrupts are detected.

Because of pipelining, the value of PK : PC at the time a synchronous exception
executes is equal to the address of the instruction that causes the exception
plus $0006. Since RTI always subtracts $0006 upon return, the stacked
PK : PC must be adjusted by the instruction that caused the exception so that
execution will resume with the following instruction - $0002 is added to the
PK : PC value before it is stacked.

9.7.2.1 Illegal Instructions

An illegal instruction exception can occur at two times:

1. When the execution unit identifies an opcode for which there is no
instruction definition.

2. When an attempt is made to execute the BGNO instruction with
background debugging mode disabled.

In both cases, exception processing follows the normal sequence, except that
the PK : PC value is adjusted before it is stacked.

9.7.2.2 Division By Zero

This exception is a part of the instruction definition for division instructions EOIV
and EOIVS. If the divisor is zero when either is executing, the exception is
taken. In both cases, exception processing follows the normal sequence,
except that the PK : PC value is adjusted before it is stacked.

9.7.2.3 BGND Instruction

Execution of the BGNO instruction differs depending upon whether background
debugging mode has been enabled. See 9.7.1.3 Breakpoint Exception
(BKPT) for information concerning enabling BOM.

A. If BOM has been enabled, BOM is entered. See SECTION 10
DEVELOPMENT SUPPORT for more information concerning BOM.

B. If BOM is not enabled, an illegal instruction exception occurs. In this
case, exception processing follows the normal sequence, except that the
PK : PC value is adjusted before it is stacked.

MOTOROLA
9-16

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

9.7.2.4 SWI Instruction

The software interrupt instruction initiates synchronous exception processing.
Exception processing for SWI follows the normal sequence, except that the
PK : PC value is adjusted before it is stacked.

9.8 Return from Interrupt (RTI)

RTI must be the last instruction in all exception handlers except for the RESET
handler. RTI pulls the exception stack frame and restores processor state.
Normal program flow resumes at the address of the instruction that follows the
last instruction executed before exception processing began. RTI is not used in
the RESET handler because RESET initializes the stack pointer and does not
create a stack frame.

CPU16 REFERENCE MANUAL EXCEPTION PROCESSING MOTOROLA

9-17

II

II

MOTOROLA

9-18

EXCEPTION PROCESSING CPU16 REFERENCE MANUAL

SECTION 10
DEVELOPMENT SUPPORT

The CPU16 incorporates powerful tools for tracking program execution and for
system debugging. These tools are deterministic opcode tracking, breakpoint
exceptions, and the background debugging mode. Judicious use of CPU16
capabilities permits in-circuit emulation and system debugging using a bus
state analyzer, a simple serial interface, and a terminal.

10.1 Deterministic Opcode Tracking

The CPU16 has two multiplexed outputs, IPIPEO and IPIPE1, that enable
external hardware to monitor the instruction pipeline during normal program
execution. The signals IPIPEO and IPIPE1 can be demultiplexed into six
pipeline state signals that .allow a state analyzer to synchronize with instruction
stream activity.

10.1.1 Instruction Pipeline

There are three functional blocks involved in fetching, decoding, and executing
instructions. These are the microsequencer, the instruction pipeline, and the
execution unit. These elements function concurrently. Figure 10·1 shows the
functional blocks.

The microsequencer controls the order in which instructions are fetched,
advanced through the pipeline, and executed. It increments the program
counter and generates IPIPEO and IPIPE1 from internal signals.

The execution unit evaluates opcodes, interfaces with the microsequencer to
advance instructions through the pipeline, and performs instruction operations.

The effects of microsequencer and execution unit actions are always reflected
in pipeline status - consequently, monitoring the pipeline provides an accurate
picture of CPU16 operation for debugging purposes.

The pipeline is a three stage FIFO. Fetched opcodes are latched into stage A,
then advanced to stage B, where opcodes are evaluated. The execution unit
accesses operands from either stage A or stage B (stage B accesses are limited
to 8-bit operands). After execution, opcodes are moved from stage B to stage C,
where they remain until the next instruction is complete.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-1

II

MOTOROLA
10-2

IPIPEO
IPIPE1

BKPT

DATA
BUS

~
~

MICROSEQUENCER
J'

INSTRUCTION PIPELINE

BKPT BKPT

A ~ B ~ C

,If

EXECUTION UNIT J~.

Figure 10-1. Instruction Execution Model

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

10.1.2 IPIPEO/IPIPE1 Multiplexing

Six types of information are required to track pipeline activity. To generate the
six state signals, eight pipeline states are encoded and multiplexed into IPIPEO
and IPIPE1. The multiplexed signals have two phases. State signals are active
low. Table 10-1 shows the encoding and multiplexing scheme.

Table 10-1. IPIPEO/IPIPE1 Encoding

Phase IPIPE1 State IPIPEO State State Signal Name

1 0 0 START & FETCH
0 1 FETCH
1 0 START
1 1 NULL

2 0 0 INVALID
0 1 ADVANCE
1 0 EXCEPTION
1 1 NULL

IPIPEO and IPIPE1 are timed so that a logic analyzer can capture all six pipeline
state signals and address, data, or control bus state in any single bus cycle.

State signals can be latched asynchronously on the falling and rising edges of
either address strobe (AS) or data strobe (DS). They can also be latched
synchronously using the microcontroller CLKOUT signal. SECTION 3
SYSTEM RESOURCES contains more information about bus control
signals. Refer to the appropriate microcontroller user's manual for specific
timing information.

Figure 10-2 shows minimum logic required to demultiplex IPIPEO and IPIPE1.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-3

II

IPIPEO
(PHASE 2)

D Q IPIPEO
(PHASE 1)

IPIPEO ----+---1

f
IPIPE1

(PHASE 2)

D Q
IPIPE1

(PHASE 1) IPIPE1 ----+-+-1

f

AS
DS

l ANALVZER
STROBE

Figure 10-2. IPIPE DEMUX Logic

10.1.3 Pipeline State Signals

The six state signals show instruction execution sequence. The order in which
a development system evaluates the signals is critical. In particular, the
development system must first evaluate START, then ADVANCE, and then
FETCH for each instruction word. When combined START & FETCH signals
are asserted, START applies to the current content of pipeline stage B, while
FETCH applies to current data bus content. Relationships between state
signals are discussed in the following descriptions.

10.1.3.1 NULL - No Instruction Pipeline Activity

NULL assertion indicates that there is no instruction pipeline activity associated
with the current bus cycle.

10.1.3.2 START - Instruction Start

START assertion indicates that an instruction in stage B has begun to execute.
START affects subsequent operation of ADVANCE and FETCH. The
development system must flag the instruction word in stage B as started when
START is asserted.

MOTOROLA

10-4

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

10.1.3.3 ADVANCE - Instruction Pipeline Advance

ADVANCE assertion indicates that words in the instruction pipeline are being
copied from one stage to another.

If START has been asserted for the word in stage B, the content of stage B is
copied into stage C. Regardless of START assertion, content of stage A is
copied into stage B.

When a word is copied from stage B to stage C, instruction execution is
complete, and a new opcode must be copied into stage B.

When the content of stage A is copied into stage B, prior content of stage B is
overwritten. ADVANCE assertion without an associated START assertion
indicates that the pipeline is being filled, either before normal execution of
instructions begins or after a change of program flow.

If the development system has flagged the instruction word in stage B as
started, that flag must be cleared when ADVANCE is asserted.

10.1.3.4 FETCH - Instruction Fetch

FETCH assertion shows that the current content of the data bus is being latched
into stage A. FETCH occurs only during instruction fetch bus cycles.

10.1.3.5 EXCEPTION - Exception Processing in Progress

EXCEPTION assertion indicates that all subsequent bus cycles until the next
START assertion are part of an exception processing sequence.

EXCEPTION is not asserted during exceptions initiated by the SWI instruction
nor during division by zero exceptions. The timing of EXCEPTION assertion for
other exceptions differs according to the type of exception.

Exceptions are recognized at instruction boundaries. Time elapses between
detection of the exception and the start of exception processing. A prefetch bus
cycle for the next instruction is initiated during this period.

Because interrupts are recognized quickly, EXCEPTION is asserted during the
prefetch bus cycle. The bus cycle is completed, and the prefetched word is
overwritten when the pipeline is filled with interrupt handler instructions.

For exceptions other than interrupt, the prefetch bus cycle is completed before
EXCEPTION is asserted. Assertion coincides with the first stacking operation.
The prefetched word is overwritten when the pipeline is refilled with exception
handler instructions.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-5

II

10.1.3.6 INVALID - PHASE1/PHASE2 Signal Invalid

INVALID is always asserted during phase 2. INVALID assertion indicates that
all non-null signals derived from PHASE1 must be ignored.

10.1.4 Combining Opcode Tracking with Other Capabilities

Pipeline state signals are useful during normal instruction execution and
execution of exception handlers. Refer to SECTION 9 EXCEPTION
PROCESSING for a detailed discussion of exceptions and exception
handlers. The signals provide a complete model of the pipeline up to the point
a breakpoint is acknowledged.

Breakpoints are acknowledged after an instruction has executed, when it is in
pipeline stage C. A breakpoint can initiate either exception processing or
background debugging mode. See 10.2 Breakpoints and 10.3 Opcode
Tracking and Breakpoints for more information. IPIPEO/IPIPE1 are not
usable when the CPU16 is in background debugging mode. Complete
information is contained in 10.4 Background Debugging Mode.

10.1.5 CPU16 Instruction Pipeline State Signal Flow

Figure 10-3 is the flow diagram required to properly interpret instruction pipeline
state signals.

10.2 Breakpoints

Breakpoints are set by internal assertion of the 1MB BKPT signal or by external
assertion of the microcontroller BKPT pin. The CPU16 supports breakpoints on
any memory access. Acknowledged breakpoints can initiate either exception
processing or background debugging mode. After BDM has been enabled, the
CPU16 will enter BDM when either BKPT input is asserted.

If BKPT assertion is synchronized with an instruction prefetch, the instruction
is "tagged" with the breakpoint when it enters the pipeline, and the
breakpoint occurs after the instruction executes.

If BKPT assertion is synchronized with an operand fetch, breakpoint
processing occurs at the end of the instruction during which BKPT is latched.

Breakpoints on instructions that are flushed from the pipeline before execution
are not acknowledged, but operand breakpoints are always acknowledged.
There is no breakpoint acknowledge bus cycle when BDM is entered. See
SECTION 9 EXCEPTION PROCESSING for complete information about
breakpoint exceptions.

MOTOROLA

10·6

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

CPU16 REFERENCE MANUAL

FLAG WORD
IN STAGE B

Figure 10-3. (Sheet 1 of 3)
Instruction Pipeline Flow

DEVELOPMENT SUPPORT MOTOROLA

10-7

II

MOTOROLA
10-8

COPYSTAGEB
INTO STAGE C:
CLEAR FLAG

Figure 10-3. (Sheet 2 of 3)
Instruction Pipeline Flow

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

CPU16 REFERENCE MANUAL

Figure 10-3. (Sheet 3 of 3)
Instruction Pipeline Flow

DEVELOPMENT SUPPORT MOTOROLA

10-9

II

10.3 Opcode Tracking and Breakpoints

Breakpoints are acknowledged after a tagged instruction has executed, when it
is copied from pipeline stage B to stage C. At the time START is asserted for an
instruction, stage C contains the opcode of the previous instruction.

When an instruction is tagged, IPIPEO/IPIPE1 show START and the appropriate
number of ADVANCE and FETCH assertions for instruction execution before
the breakpoint is acknowledged. If background debugging mode is enabled,
these signals model the pipeline before BDM is entered.

10.4 Background Debugging Mode (BDM)

Microprocessor debugging programs are generally implemented in external
software.· CPU16 BDM provides a debugger implemented in CPU microcode.

BDM incorporates a full set of debug options - registers can be viewed and
altered, memory can be read or written, and test features can be invoked.

BDM also simplifies in-circuit emulation. In a common setup (Figure 10-4),
emulator hardware replaces the target system processor. Communication
between target system and emulator takes place via a complex interface.

IN-CIRCUIT
EMULATOR

TARGET L, SYSTEM A ... 1 TARGET L "I PROCESSOR I

Figure 10-4. In-Circuit Emulator Configuration

CPU16 emulation requires a bus state analyzer only. The processor remains in
the target system (see Figure 10-5) and the interface is less complex.

MOTOROLA

10-10

TARGET
SYSTEM

BUS STATE L, TARGET ...
PROCESSOR .. ANALYZER

Figure 10-5. Bus State Analyzer Configuration

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

The analyzer monitors processor operation and the on-chip debugger controls
the operating environment. Emulation is much "closer" to target hardware, and
interfacing problems such as limited clock speed, AC and DC parametric
mismatch, and restricted cable length are minimized.

BOM is an alternate CPU16 operating mode. During BOM, normal instruction
execution is suspended, and special microcode performs debugging functions
under external control.

BOM can be initiated by external assertion of the BKPT input, by internal
assertion of the 1MB BKPT Signal, or by the BGNO instruction. While in BOM,
the CPU16 ceases to fetch instructions via the parallel bus and communicates
with the development system via a dedicated serial interface.

10.4.1 Enabling BOM

The CPU16 samples the BKPT inputs during reset to determine whether to
enable BOM. If either BKPT input is at logic level zero when sampled, an
internal BOM enabled flag is set.

BOM operation is enabled when BKPT is asserted at the rising edge
of the RESET signal. BOM remains enabled until the next system reset. If BKPT
is at logic level one on the trailing edge of RESET, BOM is disabled. BKPT is
relatched on each rising transition of RESET. BKPT is synchronized internally,
and must be asserted for at least two clock cycles prior to negation of RESET.

BOM enable logic must be designed with special care. If BKPT hold time
extends into the first bus cycle following reset, the bus cycle could inadvertently
be tagged with a breakpoint. Figure 10-6 shows a sample BOM enable circuit.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-11

II

BKPT

MCU

EXTERNAL
RESET
LOGIC

RESET

Figure 10-6. Sample 80M Enable Circuit

The microcontroller itself asserts RESET for 512 clock periods after it is
released by external reset logic, and latches the state of BKPT on the rising
edge of RESET at the end of this period. If enable circuitry only monitors the
external reset, BKPT will not be enabled. Figure 10-7 shows BOM enable
timing. Refer to the appropriate modular microcontroller user's manual for
specific timing information.

RESET L

t ~;~·~~~~·~~~I~~~
RESET DRIVEN BY EXTERNAL LOGIC

2 CLOCK
PERIODS

... ;:;~:~~: ... --=:f
RESET DRIVEN BY MICROCONTROLLER

BKPTL ~ ~

MOTOROLA

10-12

BDM ENABLE LATCHED t

Figure 10-7. 80M Enable Waveforms

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

10.4.2 BDM Sources

When BOM is enabled, external breakpoint hardware, internal 1MB module
breakpoints, and the BGNO instruction can cause the CPU16 to enter BOM. If
BOM is not enabled when a breakpoint occurs, a breakpoint exception is
processed. Table 10-2 summarizes the processing of each source for both
enabled and disabled cases.

Table 10-2. BDM Source Summary

Source 8DM Enabled 8DM Disabled

BKPT Background Breakpoint Exception

BGND Instruction Background Illegal Instruction

Double Bus Fault Background Assert HALT

10.4.2.1 BKPT Signal

If enabled, BOM is initiated when assertion of BKPT is acknowledged. BKPT
can be asserted on the 1MB by another module in the microcontroller, or by
taking the microcontroller BKPT pin low. There is no breakpoint acknowledge
bus cycle when BOM is entered. See the appropriate microcontroller user's
manual for more information concerning assertion of BKPT.

10.4.2.2 BGND Instruction

If BOM has been enabled, executing BGNO will cause the CPU16 to suspend
normal operation and enter BOM. If BOM has not been correctly enabled, an
illegal instrUl;~tion exception is generated. Illegal instruction exceptions are
discussed in SECTION 9 EXCEPTION PROCESSING.

10.4.2.3 Microcontroller Module Breakpoints IIII!I
If BOM has been enabled, the CPU16 will enter BOM when other IIIIiI
microcontroller modules assert the BKPT signal. Consult the appropriate
microcontroller user's manual for a description of these capabilities.

10.4.2.4 Double Bus Fault

If BOM has been enabled, the CPU16 will enter BOM when a double bus fault is
detected. If BOM has not been enabled, the HALT signal is asserted and
processing stops.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-13

II

10.4.3 BOM Signals

When BOM is entered, the BKPT and IPIPE signals change function and
become BOM serial communication signals. The following table summarizes
the changes.

Table 10-3. BOM Signals

State Signal Name Type Description

No Background Mode BKPT Input Signals breakpoint to CPU1S
IPIPEO Output Shows instruction pipeline state ,
IPIPE1 Output Shows instruction pipeline state

Background Mode OSCLCK Input BOM serial clock
OSO Output BOM serial output
OSI Input BOM serial input

10.4.4 Entering BOM
When the processor detects a breakpoint or decodes a BGNO instruction, it
suspends instruction execution and asserts the FREEZE output. Once FREEZE
has been asserted, the CPU enables the serial communication hardware and
awaits a command.

Assertion of FREEZE causes opcode tracking signals IPIPEO and IPIPE1 to
change definition and become serial communication signals OSO and OSI.
FREEZE is asserted at the next instruction boundary after BKPT is asserted.
IPIPEO and IPIPE1 change function before an EXCEPTION signal can be
generated. The development system must use FREEZE assertion as an
indication that BOM has been entered. When BOM is exited, FREEZE is
negated prior to initiation of normal bus cycles - IPIPEO and IPIPE1 will be
valid when normal instruction prefetch begins.

10.4.5 Command Execution

Figure 10-8 summarizes BOM command execution. Commands consist of one
16-bit operation word and can include one or more 16-bit extension words.
Each incoming word is read as it is assembled by the serial interface. The
microcode routine corresponding to a command is executed as soon as the
command is complete. Result operands are loaded into the output shift register
to be shifted out as the next command is read. This process is repeated for
each command until the CPU returns to normal operating mode.

MOTOROLA

10-14

DEVELOPMENT SUPPORT CPU1S REFERENCE MANUAL

CPU ACTIVITY DEVELOPMENT SYSTEM ACTIVITY

ENTERBDM

• ASSERT FREEZE SIGNAL
• WI>JT FOR COMMAND SEND INITIAL COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT OUT 17 BITS
• DISABLE SHIFT CLOCK

EXECUTE COMMAND

• LOAD: NOT READY/ RESPONSE
• PERFORM COMMAND
• STORE RESULTS

READ RESULTS/NEW COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT INIOUT 17 BITS
• DISABLE SHIFT CLOCK
• READ RESULT REGISTER

IF RESULTS = YES
"NOT READY"

NO

CONTINUE

Figure 10-8. 8DM Command Flow Diagram

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-15

II

10.4.6 Returning from BDM

80M is terminated when a resume execution (GO) command is received. GO
refills the instruction pipeline from address (PK : PC - $0006). FREEZE is
negated prior to the first prefetch. Upon negation of FREEZE, the serial
subsystem is disabled, and the OSO/OSI signals revert to IPIPEO/IPIPE1
functionality.

10.4.7 BDM Serial Interface

The serial interface uses a synchronous protocol similar to that of the Motorola
Serial Peripheral Interface (SPI). Figure 10-9 is a development system serial
logic diagram.

CPU

INSTRUCTION
REGISTER BUS

SERIAL IN
PARALLEL OUT

PARALLEL IN
SERIAL OUT

16

STATUS~l-----+-------'

EXECUm~·~-'--____ -.J

MIC~o"~E~uREO~~~,~------
STATUS

DEVELOPMENT SYSTEM

DATA

PARALLEL IN
SERIAL OUT

DATA

SERIAL
CLOCK

Figure 1 0-9. BDM Serial 1/0 Block Diagram

MOTOROLA

10-16

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

The development system serves as the master of the serial link, and is
responsible for the generation of serial interface clock signal DSCLK.

Serial clock frequency range is from DC to one-half the CPU16 clock frequency.
If DSCLK is derived from the CPU16 system clock, development system serial
logic can be synchronized with the target processor.

The serial interface operates in full-duplex mode. Data transfers occur on the
falling edge of DSCLK and are stable by the following rising edge of DSCLK.
Data is transmitted MSB first, and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide - 16 data bits and a status/control bit.

16 15 o
I SIC I DATA FIELD

11
STAlUS CONTROL BIT

Figure 10-10. Serial Data Word Format

Bit 16 indicates status of CPU-generated messages as shown in Table 10-4.

Bit 16

0

0

1

1

Table 10-4. CPU Generated
Message Encoding

Data Message Type

xxxx Valid Data Transfer

FFFF Command Complete; Status OK

0000 Not Ready with Response; Come Again

FFFF Illegal Command

Command and data transfers initiated by the development system must clear bit
16. All commands that return a result return 16 bits of data plus one status bit.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-17

II

10.4.7.1 CPU Serial Logic

CPU16 serial logic, shown in the left-hand portion of Figure 10-9, consists of
transmit and receive shift registers and of control logic that includes
synchronization, serial clock generation circuitry, and a received bit counter.

Both DSCLK and DSI are synchronized to internal clocks. Data is sampled
during the high phase of CLKOUT. At the falling edge of CLKOUT, the sampled
value is made available to internal logic. If there is no synchronization between
CPU16 and development system hardware, the minimum hold time on DSI with
respect to DSCLK is one full period of CLKOUT.

Serial transfer is based on the DSCLK signal (see Figure 10-11). At the riSing
edge of the internal synchronized DSCLK, synchronized data is transferred to
the input shift register, and the received bit counter is decremented. One-half
clock period later, the output shift register is updated, bringing the next output bit
to the DSO signal. DSO changes relative to the rising edge of DSCLK and
does not necessarily remain stable until the falling edge of DSCLK.

MOTOROLA

10-18

CLKOUT

FREEZE ~

DSCLK
-----'

DSI

SAMPLE
WINDOW ~

INTERNAL
SYNCHRONIZED

DSCLK ---------'

INTERNAL
SYNCHRONIZED

DSI

DSO

CLKOUT

---------~

1-__ -----11

Figure 10-11. Serial Interface Timing Diagram

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

One full clock period after the rising edge of DSCLK, the updated counter value
is checked. If the counter has reached zero, the receive data latch is updated
from the input shift register. At the same time, the output shift register is
reloaded with a "not ready/come again" response. When the receive data latch
is loaded, the CPU is released to act on the new data. Response data
overwrites "not ready" when the CPU has completed the current operation.

Data written into the output shift register appears immediately on the DSO
signal. In general, this action changes the state of the signal from logic level
one ("not ready") to logic level zero (valid data). However, this level change
only occurs if the transfer is completed. Error conditions cause the "not ready"
status bit to be overwritten.

The DSO state change can be used to signal interface hardware that the next
serial transfer may begin. A timeout of sufficient length to trap error conditions
that do not change the state of DSO must be incorporated into the deSign.
Hardware interlocks in the CPU prevent result data from corrupting serial
transfers in progress.

10.4.7.2 Development System Serial Logic

The development system must initiate BDM and supply the BDM serial clock.
Serial logic must be designed so that these functions do not affect one another.

Breakpoint requests are made by asserting BKPT in either of two ways. The
preferred method is to assert BKPT during the bus cycle for which an exception
is desired. The second method is to assert BKPT until the CPU16 responds by
asserting FREEZE. This method is useful for forcing a transition into BDM when
the bus is not being monitored. Both methods require logic that precludes
spurious serial clocks.

Figure 10-12 shows timing for BKPT assertion during a single bus cycle. Figure I
10-13 Shows BKPT/FREEZE timing. In both cases, the serial clock output is left
high after the final shift of each transfer. This prevents tagging the prefetch
initiated when BDM terminates.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-19

FORCE_BGND --------------------------

~-------------------------------------
BKPT

FREEZE _____ L

Figure 10-12. BKPT Timing for Single Bus Cycle

FORCE_BGND --.J LLII.uIl..uIIu.I II..L.1 ___________________ _

BKPT

FREEZE _____

Figure 10-13. BKPT Timing for Forcing BDM

Figure 10-14 shows a sall)ple circuit that accommodates either method of BKPT
assertion. FORCE_BGND can either be pulsed or remain asserted until
FREEZE is asserted. Once FORCE_BGND is asserted. the set-reset latch holds
BKPT low until the first SHIFT_ClK is applied.

MOTOROLA

10-20

BKPT_TAG ----I ~o---~

SHIFT_CLK -.------_~

RESET

FORCE_BGND ---@"'_--'!?J

BKPT!tlSCLK

Figure .10-14. BKPT/DSCLK Logic Diagram

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

L

Since it is not latched, BKPT_TAG must be synchronized with CPU16 bus
cycles. If negation of BKPT_TAG extends past FREEZE assertion, the CPU16
will clock on it as though it were the first DSCLK pulse.

DSCLK is the gated serial clock. Normally high, it pulses low for each bit
transferred. At the end of the seventeenth clock period, it remains high until the
start of the next transmission. Clock frequency is implementation dependent
and may range from dc to the maximum specified frequency.

10.4.8 8DM Command Format

The following standard bit format is utilized by all BDM commands.

15 o
OPERATION WORD

EXTENSION WORD(S)

Operation Word

All commands have a unique 16-bit operation word. No command requires an
extension word to specify the operation to be performed.

Extension Words

Some commands require extension words for addresses or immediate data.
Addresses require two extension words to accomodate 20 bits. Immediate data
can be either one or two words in length - byte and word data each require a
single extension word, long-word data requires two words. Both operands and
addresses are transferred most significant word first.

10.4.9 Command Sequence Diagram

A command sequence diagram illustrates the serial bus traffic for each
command. Each bubble in the diagram represents a single 17-bit transfer
across the bus. The top half of each bubble shows data sent from the
development system to the CPU16. The bottom half shows data returned by the
CPU16 in response to commands. Transmissions overlap to minimize latency.

Figure 10-15 shows an example command sequence diagram. A description of
the information in the diagram follows.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-21

I

I

COMMANDS
TRANSMITIED TO

THECPU16

RESPONSES FROM
THE CPU16

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

Figure 10-15. Command Sequence Diagram Example

The cycle in which the command is issued contains the command word
(RPMEM). During the same cycle, the CPU16 responds with either the low
order results of the previous command or with a command complete status if no
results were required.

During the second cycle, the development system supplies the 4 high-order bits
of a memory address. The CPU16 returns a NOT READY response unless the
received command was decoded as unimplemented, in which case the
response is the ILLEGAL command encoding. When an ILLEGAL response
occurs, the development system must retransmit the command.

In the third cycle, the development system supplies the 16 low-order bits of the
memory address. The CPU16 always returns a NOT READY response in this
cycle. At the completion of the third cycle, the CPU16 initiates a memory read
operation. Any serial transfers that begin while the memory access is in
progress return the NOT READY response.

Results are returned in the serial transfer cycle following completion of the
memory access. If the serial clock is slow, there may be additional NOT READY
responses from the CPU16. The data transmitted to the CPU during the final
transfer is the next command word.

MOTOROLA
10-22

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

10.4.10 BOM Command Set

The BDM command set is summarized in Table 10-4. Subsequent pages
contain a BDM command glossary. Glossary entries are in the same order as
the table. Each entry contains detailed information concerning commands and
results, and includes a command sequence diagram.

Table 10-5. Command Summary

Command Mnemonic Description

Read Registers RREGM Read contents of registers specified by
from Mask command word register mask

Write Registers WREGM Write to registers specified by
from Mask command word register mask

Read MAC Registers RDMAC Read contents of entire
multiply and accumulate register set

Write MAC Registers WRMAC Write to entire multiply and accumulate register set

Read PC and SP RPCSP Read contents of program counter and stack pointer

Write PC and SP WPCSP Write to program counter and stack pointer

Read Data Memory RDMEM Read data from specified 20-bit address
in data space

Write Data Memory WDMEM Write data to specified 20-bit address
in data space

Read Program Memory RPMEM Read data from specified 20-bit address
in program space

Write Program Memory WPMEM Write data to specified 20-bit address
in program space

Execute from current GO Instruction pipeline flushed and refilled;
PK:PC instructions executed from current PC - $0006

Null Operation NOP Null command - performs no operation

10.4.10.1 BOM Memory Commands and Bus Errors

If a bus error occurs while a BDM command that accesses memory (RDMEM,
WDMEM, RPMEM, or WPM EM) is executing, it is ignored by the CPU16. Data
returned by a read access during which a bus error occurs is indeterminate.

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-23

II!

RREGM

Description:

Operand:

Result:

Read Registers From Mask RREGM

Registers specified by a register mask operand are read and
returned via the serial link.

A 7-bit mask operand is right-justified in an operand word.
Regist~rs are specified as follows:

Bit 0: Condition Code Register [15:4]
Bit 1: Address Extension (K) Register
Bit 2: Index Register Z
Bit 3: Index Register Y
Bit 4: Index Register X
Bit 5: Accumulator E
Bit 6: Accumulator D

Registers are received in order from bit 0 to bit 6.

A 16-bit word for each register specified. Register content is
returned MSB first. Command complete status ($FFFF) is
returned after the last register has been returned.

Command Format:

15 14

0 0

MOTOROLA
10-24

13

I 0

12 11

I 1 I 0 I
NOT USED

10 9 8 7 6 5 4 3 2 0

1 1 I 1 I 1

I
0 I 0 0 I 0 0 I 0 I 0

I MASK

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

RREGM Read Registers From Mask RREGM

Command Sequence Diagram:

r RREGM '\ r NOT USED ,
\. * JI ' ILLEGAL J

r MASK '\
~'NOT READY../

J NEXTCMD,
,NOTREADYj

BITO SET f NOT USED '\
\ CCR[15:4L/ J

BIT1 SET r NOT USED '\ , K J J
BIT2SET J NOT USED '\

\. IZ J I
BIT3 SET J NOT USED '\

\. IV J J
lllRSH ..£ NOTUSED~

\ IX J J
BIT5SET r NOT USED '\

\ E J J
BIT6 SET _ r NOT USED '\

\. 0 J I
J NEXTCMD ,
\. COMPLETEJ

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-25

WREGM

Description:

Operand:

Result:

Write Registers From Mask WREGM

Registers specified by a register mask operand are written with
data received via the serial link.

A 7-bit mask operand is right-justified in an operand word.
Registers are specified as follows:

Bit 0: Condition Code Register [15:4]
Bit 1: Address Extension (K) Register
Bit 2: Index Register Z
Bit 3: Index Register Y
Bit 4: Index Register X
Bit 5: Accumulator E
Bit 6: Accumulator 0

Registers are written in order from bit 0 to bit 6.

A 16-bit word for each register specified. Register content is
returned MSB first. Command complete status ($FFFF) is returned
after the last register has been written.

Command Format:

15 14

0 I 0

MOTOROLA
10-26

13

I 0

12 11

I 1 I 0 I
NOT USED

10 9 8 7 6 5 4 3 2 0

1 1 1 I 1

I
0 I 0 I 0 I 0 0 I 0 I 1

MASK

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

WREGM Write Registers From Mask WREGM

Command Sequence Diagram:

CPU16 REFERENCE MANUAL

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

DEVELOPMENT SUPPOijT MOTOROLA

10-27

II

RDMAC
Description:

Operand:

Result:

Read MAC Register Set RDMAC
The entire multiply and accumulate register set is read and
returned via the serial link.

None

A 16-bit word for each register. Register content is returned MSB
first in the following order:

H Register
I Register
AM[15:0]
AM[31 :16]
SL and AM[35:32]
XM:YM

DSP sign latch bit SL is returned in bit 15 of a result word,
AM[35:32] are returned in bits [3:0] of the same word, and bits
[14:4] are undefined.

Command complete status ($FFFF) is returned after the last
register value has been returned.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 0 I 0 I .1 I 0 I 1 I 1 I 1 I 1 o I 0 I 0 I 1

MOTOROLA

10-28

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

RDMAC Read MAC Register Set

Command Sequence Diagram:

CPU16 REFERENCE MANUAL

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

DEVELOPMENT SUPPORT

RDMAC

MOTOROLA

10-29

I

I

WRMAC

Description:

Operand:

Result:

Write MAC Register Set WRMAC

The entire multiply and accumulate register set is written with data
received via the serial link.

A 16-bit word for each register is received (MSB first) via the serial
link. Words are read and written in the following order:

XM:YM
SL and AM[35:32]
AM[31 :16]
AM[15:0]
I Register
H Register

DSP sign latch bit SL must be bit 15 of an operand. AM[35:32]
must be bits [3:0] of the same word. and bits [14:4] can be
undefined.

Command complete status ($FFFF) is returned after the last
register is written.

Command Format:

15 14

Lo I 0

MOTOROLA
10-30

13

I 0

12 11

I 1 I 0 I
10 9 8 7 6 5 4 3 2 0

1 1 I 1 I 1 I 0 I 0 I 0 I 1 0 I 1

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

WRMAC Write MAC Register Set

Command Sequence Diagram:

CPU16 REFERENCE MANUAL

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

DEVELOPMENT SUPPORT

WRMAC

MOTOROLA

10-31

II

II

RPCSP
Description:

Operand:

Result:

Read PC and SP RPCSP
Program counter and stack pointer are read, then transmitted via
the serial link.

None

Four words are returned MSB first in the following order:

PK extension field and PC
SK extension field and SP

PK and SK are contained in bits [3:0] of the respective result
words. Bits [15:4] of the words are undefined.

Command complete status ($FFFF) is returned after the last
register is returned.

Command Format:

15 14 13 12 11 10 9

0 I 0 I 0 I 1 0 I 1 I 1 I
Command Sequence Diagram:

8 7 6 5 4

1 1 I 0 I 0 I 0

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

3 2 0

I 0 I 0 I 1 I 0 I

MOTOROLA
10-32

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

WPCSP

Description:

Operand:

Result:

Write PC and SP WPCSP

Program counter and stack pointer are written with data received
via the serial link.

Registers are received and written in the following order:

PK extension field and PC
SK extension field and SP

PK and SK are contained in bits [3:0] of the respective operand
words. Bits [15:4] of the words are undefined.

Command complete status ($FFFF) is returned after the last
register is written.

Command Format:

15 14 13 12 11 10 9 8 765432 0

o I 0 I 0 I 1 o I 1 1 I 1

Command Sequence Diagram:

CPU16 REFERENCE MANUAL

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

DEVELOPMENT SUPPORT MOTOROLA

10-33

II!

RDMEM
Description:

Operand:

Result:

Read Data Space Memory RDMEM
A byte, word, or long word is read from an address in data space
and transmitted via the serial link.

Two extension words specify 20-bit memory address and operand
size. Bits [3:0] of the first word are the bank address. Bits [15:14]
are encoded to specify operand size. Bits [13:4] are reserved for
future use. The second word is the operand address.

Operand Size Encoding

Bits Operand
[15:14] Size

00 Byte

01 Word

lX Long Word

8, 16, and 32-bit data. 8 and 16-bit data are transmitted as 16-bit
data words, MSB first. For 8-bit data, the upper byte of each word
contains $FF. 32-bit data is transmitted as two 16-bit data words in
MSW, LSW order beginning with the MSB of each word.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o I 0 I 0 I 1 I 0 I 1 11111101010101110101

Command Sequence Diagram:

BYTE

-' M~~~~Y I I NOT USED" I (RDMEM '\ I EXTWD1 '\ I EXTWD2 '\ WORD
\. * j I \ NOT READy) \NOTREAD'lj , LOCATION I \ NOT READY..I

r NOT USED , r NEXT CMD _'\ r NEXTCMD ,
\ ILLEGAL J \.NOTREAD'lj \. RESULT ./

LONG , READ I NOT USED , I WORD MSW
., LOCATION I . \NOT READY..I

J NOT USED '\
\.. RESULT..I I

I , READ I r NOT USED , I
LSW L LOCATION I \NOT READY./

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS INEXTCMD"

\. RESULT ..I

MOTOROLA
10-34

DEVELOPMENT SUPPORT CPU16 REFERl=NCE MANUAL

WDMEM Write Data Space Memory WDMEM
Description: A byte, word, or long word is received via the serial link and written

to an address in data space.

Operand:

Result:

Command

15 14

0 I 0 I
Command

(WDMEM '\
\ * ~ I

Two extension words specify 20-bit memory address and operand
size. Third and fourth (long word operands only) words contain
data to be written. Bits [3:0] of the first word are the bank address.
Bits [15:14] are encoded to specify operand size. Bits [13:4] are
reserved for future use. The second word is the operand address.
When byte data is written, the upper byte of the third extension
word is not used - these bits are reserved for future use.

Operand Size Encoding

Bits Operand
[15:141 Size

00 Byte

01 Word

1X Long Word

Command complete status ($FFFF) is returned after memory is
written.

Format:

13 12 11 10 9 8 7 6 5 4 3 2 0

0 I 1 I 0 I 1 1 I 1 I 1 I 0 I 0 I 0 I 0 I 1 I 0 I 1

Sequence Diagram:

BYTE J WRITE 1 r NOT USED , I I EXTWD1 , I EXTWD2 , WORD I DATA ,
\. NOT READY'; \. NOT READY'; \. NOT READY';

MEMORY \. NOT READY../ I LOCATION I
r NOT USED , r NEXTCMD' I NEXTCMD,
\. ILLEGAL ../ \.NOT READY'; . \. COMPLETE .;

WcNG J WRITE 1 r NOT USED , I ORD I MSWDATA,
\.NOT READY../ I MSW \.NOT READY../ LOCATION I

I r NOT USED , I I WRITE 1 r LSW DATA , LSW
\.NOTREADV .1 LOCATION I \.NOT READY..!

*RESULTS OF PREVIOUS COMMAND I NEXTCMD ,
OR COMMAND COMPLETE STATUS

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT

\. COMPLETE../

MOTOROLA

10-35

II

II

RPM EM

Description:

Operand: .

Result:

Read Program Space Memory RPMEM

A 16-bit memory word is read from an address in program space
and transmitted via the serial link.

Two extension words specify the 20-bit memory address. Bits [3:0]
of the first word are the bank address (bits [15:4] are undefined).
The second word is the word address. A word address must be
even - misaligned program space reads are not allowed -
address LSB is cleared before the read.

16-bit data word, transmitted MSB first.

Command Format:

15 14

0 I 0

Command

MOTOROLA
10-3.6

I
13 12 11

0 I 1 0

Sequence

10 9 8 7 6

I 1 1 I 1 I 1 0

Diagram:

I
5 4 3 2

0 0 I 0 I 1

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

0

0

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

WPMEM Write Program Space Memory WPMEM
Description: A 16-bit memory word is received via the serial link and written to

an address in program space.

Operand:

Result:

Command

15 14

0 I 0

Command

Two extension words specify the 20-bit memory address, and a
third word contains the data to be written. Bits [3:0] of the first word
are the bank address (bits [15:4] are undefined). The second word
is the word address. A word address must be even - misaligned
program space writes are not allowed - address LSB is cleared
before the read.

Command complete status ($FFFF) is returned after memory is
written.

Format:

13 12 11 10 9 B

0 I 1 0 I 1 1 I 1 I
Sequence Diagram:

7 6 5 4

1 I 0 I 0 I 0 I

* RESULTS OF PREVIOUS OOMMAND
OR COMMAND COMPLETE STATUS

3 2 0

0 I 1 I 1 I 1

CPU16 REFERENCE MANUAL DEVELOPMENT SUPPORT MOTOROLA

10-37

II

GO
Description:

Operand:

Result:

, Execute Instructions From Current PK : PC GO
Background debugging mode is exited, the pipeline is flushed and.
refilled, then the CPU16 resumes normal execution of instructions
at PK : PC - $0006. PK and PC retain the values they had when
BDM began unless altered by a WPCSP command.

None

None

Command Format:

15 14 13 12 11 10 9

o I 1 I 1

Command Sequence Diagram:

8 765432 0

1 I 0 I 0 I 0 I 1 I 0 I 0 I 0

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

MOTOROLA
10-38

DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

NOP Null Operation NOP

Description: A command is transmitted, but no operation is performed.

Operand: None

Result: Command complete status ($FFFF) is returned.

Command Format:

15 14 13 12 11

0 I 0 I 0 I 1 I 0

Command Sequence

CPU16 REFERENCE MANUAL

10 9

I 1 1 I
Diagram:

8 7 6 5 4

1 I 1 I 0 I 0 I 0

* RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

DEVELOPMENT SUPPORT

I
3 2

1 0 I
0

0 I 1 I

MOTOROLA
10-39

a

II

10.4.11 Future Commands

Unassigned command opcodes are reserved by Motorola for future expansion.
All unused formats within any revision level will perform a NOP and return the
ILLEGAL command response.

MOTOROLA

10-40
DEVELOPMENT SUPPORT CPU16 REFERENCE MANUAL

SECTION 11
DIGITAL SIGNAL PROCESSING

This section contains detailed information about CPU16 digital signal
processing (DSP) capabilities. A comprehensive presentation of signal
processing theory is beyond the scope of this manual - discussion is limited to
CPU16 hardware and instructions that support control-oriented DSP.

11.1 General

The CPU16 performs low frequency digital signal processing algorithms in real
time. The most common DSP operation in embedded control applications is
filtering, but the CPU16 can perform several other useful DSP functions. These
include autocorrelation (detecting a periodic signal in the presence of noise),
cross-correlation (determining the presence of a defined periodic signal), and
closed-loop control routines (selective filtration in a feedback path).

Although derivation of DSP algorithms is often a complex mathematic task, the
algorithms themselves typically consist of a series of multiply and accumulate
(MAC) operations. The CPU16 contains a dedicated set of registers that are
used to perform MAC operations. These are collectively called the MAC unit.

DSP operations generally require a large number of MAC iterations. The
CPU 16 instruction set includes instructions that perform MAC setup and
repetitive MAC operations. Other instructions, such as 32-bit load and store
instructions, can also be used in DSP routines.

Many DSP algorithms require extensive data address manipulation. To
increase throughput, the CPU16 performs effective address calculations and
data prefetches during MAC operations. In addition, the MAC unit provides
modulo addressing to efficiently implement circular DSP buffers.

CPU16 REFERENCE MANUAL DIGITAL SIGNAL

PROCESSING

MOTOROLA

11-1

II

III

11.2 Digital Signal Processing Hardware

120

11.3

The MAC unit consists of a 16-bit multiplicand register (IR), a 16-bit multiplier
register (HR), a 36-bit accumulator (AM), and two 8-bit address mask registers
(XMSK and YMSK). Figure 11-1 is a programmer's model of the MAC unit.

16115 al7 o I BIT POSITION

HR I MAC MULTIPLIER REGISTER

IR I MAC MULTIPLICAND REGISTER

AM I MAC ACCUMULATOR MSB [35:16]

AM MAC ACCUMULATOR LSB [15:0]

XMSK VMSK I MAC XV MASK REGISTER

Figure 11-1. MAC Unit Register Model

Modulo Addressing

The MAC unit uses a simplified form of modulo addressing to implement finite
impulse response filters and circular buffers during execution of MAC and
RMAC instructions. It is accomplished by means of address masks.

During execution of MAC and RMAC, an offset is added to the content of IX and
IY to compute the effective address of data accesses. XMSK and YMSK are
used to determine which bits change when an offset is added.

Each address mask consists of 8 bits. Each bit in the mask corresponds to a bit
in the low byte of an index register. When a mask bit is set, the corresponding
index register bit is changed by addition of the offset. This permits modulo
addressing on any power of two boundary from 21 to 28. The possible buffer
sizes are 2, 4, 8, 16, 32, 64, 128, and 256 bytes.

To enable a buffer, set the mask bits corresponding to a particular power of two.
All set bits must be right-justified within the mask. For example, a mask value of
$00011111 (25) enables a 32-byte buffer, while a mask value of $00001111
(24) enables a 16-byte buffer. If all set bits in the mask are not right-justified,
results of the masking operation are undefined. Clear the masks to disable
modulo addressing.

Modulo addressing cannot cross bank boundaries. Buffers must be within the
bank specified by the current index register extension field (XK or YK).

MOTOROLA

11-2

DIGITAL SIGNAL

PROCESSING

CPU16 REFERENCE MANUAL

11.4 MAC Data Types

35

±

Multiplicand and multiplier operands are 16-bit fractions. Bit 15 is the sign bit.
An implied radix point lies between bits 15 and 14. There are 15 bits of
magnitude. The range of values is -1 ($8000) to 1 - 2 -15 ($7FFF).

The product of a MAC multiplication is a 32-bit signed fraction. Bit 31 is the sign
bit. An implied radix point lies between bits 31 and 30. There are 31 bits of
magnitude, but bit 0 is always cleared. The range of values is -1 ($80000000)
to 1 - 2 -30 ($7FFFFFFE).

The MAC accumulator uses 36-bit signed mixed numbers. The accumulator
contains 36 bits. Bit 35 is the sign bit. Bits [34:31] are extension bits. Bits [30:0]
are a 31-bit fixed-point fraction. There is an implied radix point between bits 31
and 30. There are 31 bits of magnitude, but use of the sign and extension bits
allows representation of numbers in the range -16 ($800000000) to
15.999969482 ($7FFFFFFFF).

Figure 11-2 shows fractional data types and weighting of bits. Notice that
signed fractions and signed mixed numbers can be interpreted as different
arithmetic values when the same bits in the numbers are set.

15 0

1 z-1 1 2-21 2-3J 2-41 2-61 2-61 Z-7J z-81 z-912-1°[2-11 1Z-12 1 2-13 12-1412-15

± 1<== (Radix Point) 16·BIT SIGNED FRACTION

31 16

Z-1 1 2-21 2-31 2-41 2-61 2-61 2-7 1 r 1 z-912-10 12-1112-1212-1312-1412-15

± <== (Radix Point) MSW 32·BIT SIGNED FRACTION 1

15 0
2-1612-171z-18 12-1912-20 12- 21 12-2212-2312-2412-2512-2612-2712-2812-2912-3012-31

LSW 32·BIT SIGNED FRACTION 1 I 0

32 31 16

« «<== (Radix Point) MSW 32-BIT SIGNED FRACTION

15 0
2-1612-1712-1812-1912-20 12- 21 12-2212-2312-2412-2512-2612-2712-2812-2912--3012--31

LSW 32-BIT SIGNED FRACTION

Figure 11-2. MAC Data Types

CPU16 REFERENCE MANUAL DIGITAL SIGNAL

PROCESSING

MOTOROLA

11-3

II

II

11.5 MAC Accumulator Overflow

It is possible to accumulate to the point of overflow during successive and
iterative multiply and accumulate operations. Overflow becomes important
when the 36-bit number in AM is transferred to accumulator E by a TMER or
TMET instruction. The 16-bit fraction in E does not have as great a range of
values as the 36-bit number in AM. Two types of overflow dete~ion are used.

11.5.1 Extension Bit Overflow

Extension bit overflow occurs when successive accumulation causes overflow
into AM[34:31). Although an overflow has occurred, sign and magnitude are still
represented in 36 bits. Accumulator content cannot be directly converted into a
16-bit fraction, but it is possible to recover from extension bit overflow during
subsequent multiply and accumulate operations.

A check for overflow into AM[34:31] is performed at the end of MAC, TMER,
ACED, ASLM, and ACE instructions, and after each iteration of the RMAC
instruction. When overflow has occurred, the EV bit in the CPU16 condition
code register is set. Table 11-1 shows the range of AM values and the effects of
extension bit overflow. Bit values are binary.

Table 11-1. AM Values and Effect on EV

AM Magnitude AM35 AM[34:31) EV

t s AM s 15.999969482 0 0001 -1111 1

OsAM <1 0 0000 0

-1 sAM <0 1 1111 0

-16sAM <-1 1 0000-1110 1

EV is set when extension bit overflow occurs, but wi" be cleared when a
subsequent accumulation produces a value within the acceptable range.

MOTOROLA

11-4

Note

The RMAC instruction can be interrupted and restarted. Interrupt
service routines which include branches based on EV status must
be carefully designed.

DIGITAL SIGNAL

PROCESSING

CPU16 REFERENCE MANUAL

11.5.2 Sign Bit Overflow

Sign bit overflow occurs when successive accumulation causes AM35 to be
overwritten. The sign of the number in AM is lost. It is no longer accurately
represented in 36 bits and accurate conversion to a 16-bit value is impossible.

A check for overflow into AM35 is performed at the end of MAC, TMER, ACED,
ASLM, and ACE instructions, and after each iteration of the RMAC instruction.
When overflow has occurred, the MV bit in the CPU16 condition code register is
set. Since sign bit overflow can only occur after bits [34:31] have been
overwritten, the EV bit must also be set.

The value of AM35 is latched when MV is set. The latched bit, called the sign
latch (SL), shows the sign of AM immediately after overflow, and is therefore the
complement of the value in AM35 at the time of overflow. SL is stacked by the
PSHM instruction.

Even when a subsequent accumulation produces a value within the acceptable
range, and EV is cleared, MV remains set until cleared by an ANDP, CLRM,
TAP, TDP, TEM, or TEDM instruction. The SL value remains latched until the
the first sign bit overflow after MV has been cleared.

11.6 Data Saturation

The CPU16 can simulate the effect of saturation in analog systems. Saturation
mode is enabled by setting the SM bit in the condition code register. If
saturation mode is enabled, a saturation value will be written to accumulator E
when either of the TMER or TMET instructions is executed while EV or MV is set.
Saturation mode operation does not affect the content of AM.

$7FFF is the positive saturation value; $8000 is the negative saturation value.
When extension overflow occurs, AM35 determines saturation value. When
sign bit overflow occurs, SL determines saturation value. Table 11-2
summarizes bit values and saturation values.

AM35

0

1

-
-

CPU16 REFERENCE MANUAL

Table 11-2. Saturation Values

EV

1

1

1

1

MV

0

0

1

1

DIGITAL SIGNAL

PROCESSING

SL Saturation

- $7FFF

- $8000

1 $7FFF

0 $8000

Value

MOTOROLA

11-5

II

II

11.7 DSP Instructions

Following are detailed descriptions of each OSP instruction. Instructions are
grouped by function.

11.7.1 Initialization Instructions

The following instructions are used to set up multiply and accumulate
operations.

11.7.1.1 LDHI - Load Registers H and I

LOHI must be used to initialize the multiplier and multiplicand registers before
execution of MAC and RMAC instructions. HR is loaded with a memory word
located at address (XK : IX). IR is loaded with a memory word located at
address (YK: IY). LOHI operation does not affect the CCR.

11.7.1.2 TDMSK - Transfer 0 to XMSK:YMSK

TOMSK must be used to initialize the X and Y address masks prior to execution
of MAC and RMAC instructions. The contents of the masks are replaced by the
content of accumulator O. 0[15:8] are transferred to XMSK, and 0[7:0] are
transferred to YMSK. The masks are used in modulo addressing. TOMSK
operation does not affect the CCA.

11.7.1.3 TEDM - Transfer E and 0 to AM

TEOM places 32 bits of data in accumulator M. The content of accumulator E is
transferred to AM[31 :16], and the content of accumulator 0 is transferred to
AM[15:0]. AM[35:32] reflect the state of AM31 after transfer is complete. TEOM
also clears the CCR EV and MV bits.

11.7.1.4 TEM - Transfer E to AM

TEM initializes the upper 16 bits of accumulator M and clears the lower 16 bits.
The content of accumulator E is transferred to AM[31 :16]. AM[15:0] are cleared.
AM[35:32] reflect the state of bit 31 after transfer is complete. TEM also clears
the CCR EV and MV bits.

MOTOROLA

11-6
DIGITAL SIGNAL

PROCESSING
CPU16 REFERENCE MANUAL

11.7.2 Transfer Instructions

The following instructions are used to transfer MAC data to general-purpose
accumulators.

11.7.2.1 TMER - Transfer AM to E Rounded

The TMER instruction rounds a signed 32-bit fraction in accumulator M to 16
bits, then places the signed 16-bit fraction in accumulator E. The value
represented by bits [15:0] of the fraction are rounded into the value represented
by bits [31 :16].

Bits [15:0] can have any value in the range $0000 to $FFFF. A value greater
than $8000 must be rounded up, and a value less than $8000 must be rounded
down. However, rounding values equal to $8000 in a single direction will
introduce a bias. The CPU16 uses convergent rounding to avoid bias.

In convergent rounding, bit 16 determines whether a value of $8000 in bits
[15:0] will be rounded up or down. When bit 16 = 1, a value of $8000 is
rounded up; when bit 16 = 0, a value of $8000 is rounded down.

The EV, MV, Nand Z bits in the CCR are set according to the results of the
rounding operation. When saturation mode has been enabled, and either EV or
MV is set, the appropriate saturation value will be placed in accumulator E.

If TMER is executed when saturation mode has not been enabled, and either
EV or MV is set, the value in accumulator E will be meaningless.

11.7.2.2 TMET - Transfer AM to E Truncated

The TMER instruction truncates a signed 32-bit fraction in accumulator M to 16
bits, then places the signed 16-bit fraction in accumulator E. AM[31 :16] are
transferred to accumulator E.

The Nand Z bits in the CCR are set according to the results of the transfer
operation. When AM31 is set, N is set. When saturation mode has been
enabled, and either EV or MV is set, the appropriate saturation value will be II
placed in accumulator E.

If TMER is executed when saturation mode has not been enabled, and either
EV or MV is set, the value in accumulator E will be meaningless.

CPU16 REFERENCE MANUAL DIGITAL SIGNAL

PROCESSING
MOTOROLA

11-7

III

11.7.2.3 TMXED - Transfer AM to IX : E : 0

TMXED provides a way to normalize AM when saturation mode is disabled and
recovery from an extension bit overflow is necessary. AM[35:32] are transferred
to IX[3:0]. IX[15:4] are sign-'extended according to the content of AM35.
AM[31 :16] are. transferred to accumulator E. AM[15:0] are transferred to
accumulator D.

After TMXED is executed, transfer the content of IX to a RAM location, load data
into E : D, then shift and round appropriately.

11.7.2.4 LDED/STED - Long Word Load and Store Instructions

While LDED and STED are not specifically intended for DSP, they operate on
the concatenated E and D accumulators, and are useful for handling DSP
values. See listings in SECTION 6 INSTRUCTION GLOSSARY.

11.7.3 Multiplication and Accumulation Instructions

These instructions are the heart of CPU16 digital signal processing capability.
The MAC and RMAC instructions provide flexible control-oriented processing
with modulo addressing, while the FMULS, ACE, and ACED instructions
provide the ability to prescale and add constants.

11.7.3.1 MAC - Multiply and Accumulate

MAC multiplies a 16-bit Signed fractional multiplicand contained in IR by a 16-bit
signed fractional multiplier contained in HR. The product is left-shifted once to
align the radix point between bits 31 and 30, then placed in E : D[31 :1]. DO is
cleared. The aligned product is then added to the content of AM.

As the multiply and accumulate operation takes place, 4-bit X and V offsets
(xo, yo) specified by an instruction operand are sign-extended to 16 bits and
used with XMSK and VMSK values to qualify the corresponding index registers.
The following expressions are used to qualify the index registers:

IX = ((IX) • X MASK) + ((IX) +xo) • X MASK)
IV = ((IV) • V MASK) + ((IV) + yo) • V MASK)

Writing a non-zero value into a mask register prior to MAC execution enables
modulo addressing. The TDMSK instruction writes mask values. When a mask
contains $0, the sign-extended offset is added to the content of the
corresponding index register.

MOTOROLA

11-8

DIGITAL SIGNAL

PROCESSING

CPU16 REFERENCE MANUAL

After accumulation, HR content is transferred to IZ, then a word at the address
pointed to by IX is loaded into HR, and a word at the address pointed to by IV is
loaded into IR. The fractional product remains in E : D.

When both registers contain $8000 (-1), a value of $80000000 (1.0 in 36-bit
format) is accumulated, (E : D) is $80000000 (-1.0 in 32-bit format), and the
CCR V bit is set.

11.7.3.2 RMAC - Repeating Multiply and Accumulate

RMAC performs repeated multiplication of 16-bit signed fractional multiplicands
contained in IR by 16-bit signed fractional multipliers contained in HR.
Accumulator D is used for temporary storage during multiplication. Each
product is added to the content of the accumulator M. A 16-bit integer contained
by accumulator E determines the number of repetitions.

There are implied radix pOints between bits 15 and 14 of HR and IR. Each
product is left-shifted one place to align the radix pOint between bits 31 and 30
before addition to AM.

As multiply and accumulate operations take place, 4-bit offsets (xo, yo) specified
by an instruction operand are sign-extended to 16 bits and used with XMSK
and VMSK to qualify the corresponding index registers. The following
expressions are used to qualify the index registers:

IX = ((IX) • X MASK) + ((IX) + xo) • X MASK)
IV = ((IV) • V MASK) + ((IV) + yo) • V MASK)

Writing a non-zero value into a mask register prior to RMAC execution enables
modulo addressing. The TDMSK instruction writes mask values. When a mask
contains $0, the sign-extended offset is added to the content of the
corresponding index register.

After accumulation, a word pointed to by XK : IX is loaded into HR, and a word
pointed to by VK : IV is loaded into IR, then the value in E is decremented and
tested. If these values are to be used in successive RMAC operations, the
registers must be re-initialized with the LDHI instruction. RMAC always iterates
at least once, even when executed with a zero or negative value in E. Since the
value in E is decremented, then tested, loading E with $8000 results in 32,770
iterations.

If HR and IR both contain $8000 (-1), a value of $80000000 (1.0 in 36-bit
format) is accumulated, but no condition code is set.

CPU16 REFERENCE MANUAL DIGITAL SIGNAL

PROCESSING

MOTOROLA

11-9

III

II

RMAC execution is suspended during bus error, breakpoint, and interrupt
exceptions. Operation resumes when RTI is executed at the end of the
exception handler. In order for execution to resume correctly, all registers used
by RMAC must be stacked or left unchanged by the exception handler. The
PSHMAC and PULMAC instructions stack MAC unit resources. See
SECTION 9 EXCEPTION PROCESSING for more information.

11.7.3.3 FMULS - Signed Fractional Multiply

FMULS left-shifts the product of a 16-bit signed fractional multiplication once
before placing it in concatenated accumulators E and D.

A 16-bit signed fractional multiplicand contained by accumulator E is multiplied
by a 16-bit signed fractional multiplier contained by accumulator D. There are
implied radix points between bits 15 and 14 of the accumulators. The product is
left-shifted one place to align the radix point between bits 31 and 30, then
placed in E : 0[31 :1]. DO is cleared.

When both accumulators contain $8000 (-1), the product is $80000000 (-1.0)
and the CCR V bit is set.

11.7.3.4 ACED - Add E : D to AM

ACED is used with either of the FMULS or MAC instructions. It allows direct
addition of 32-bit signed fractions to accumulator M. The concatenated contents
of accumulators E and 0 are added to the content of accumulator M.

The value in the concatenated accumulators is assumed to be a 32-bit signed
fraction with an implied radix point aligned between bits 31 and 30.

EVand MV in the CCR are set according to the result of ACED operation.

11.7.3.5 ACE - Add E to AM

ACE is used with either of the FMULS or MAC instructions. It allows direct
addition of 16-bit signed fractions to accumulator M. The content of accumulator
E is added to AM[31 :16]. Bits 15 to 0 of accumulator M are not affected.

The value in E is assumed to be a 16-bit signed fraction with an implied radix
point between bits 15 and 14.

EV and MV in the CCR are set according to the result of ACE operation.

MOTOROLA

11-10
DIGITAL SIGNAL

PROCESSING
CPU16 REFERENCE MANUAL

11.7.4 Bit Manipulation Instructions

There are three instructions that operate directly on the bits in accumulator M.
ASLM and ASRM perform 36-bit arithmetic shifts and CLRM clears the
accumulator.

11.7.4.1 ASLM - Arithmetic Shift Left AM

~- - -=r::I}-o
b35 bO

Shifts all 36 bits of accumulator M one place to the left. Bit 35 is transferred to
the CCR C bit. Bit 0 is loaded with a zero.

EV, MV, and N in the CCR are set according to the result of ASLM operation.

11.7.4.2 ASRM - Arithmetic Shift Right AM

~)

L7LL.L---~
b35 bO

Shifts all 36 bits of accumulator M one place to the right. Bit 0 is transferred to
the CCR C bit. Bit 35 is held constant.

EV, MV, and N in the CCR are set according to the result of ASRM operation.

11.7.4.3 CLRM - Ciear AM

CLRM provides a simple way to initialize accumulator M when a starting value
of $000000000 is needed. AM[35:0] are cleared to zero. EV and MV in the
CCR are also cleared.

CPU16 REFERENCE MANUAL DIGITAL SIGNAL

PROCESSING
MOTOROLA

11-11

I

II

11.7.5 Stacking Instructions

The PSHMAC and PULMAC instructions stack and restore all MAC resources.

11.7.5.1 PSHMAC - Push MAC Registers

PSHMAC stacks MAC registers in the sequence shown, beginning at the
address pOinted to by the stack pOinter.

(SP)

(SP)-$0002

(SP)-$0004

(SP)-$0006

(SP)-$0008

(SP)-$OOOA

15

sLI

8 7 o
HREGISTER

I REGISTER

ACCUMULATOR M[15:0]

ACCUMULATOR M[31 :16]

RESERVED I AM[35:32]

IX ADDRESS MASK I IV ADDRESS MASK

The entire MAC unit internal state is saved on the system stack. Registers are
stacked from high to low address. The stack pointer is automatically
decremented after each save operation (the stack grows downward in memory).
If SP overflow occurs as a result of operation, the SK field is decremented.

11.7.5.2 PULMAC - Pull MAC Registers

PULMAC restores MAC registers in the sequence shown, beginning at the
address pointed to by the stack pointer~

(SP) + $OOOA

(SP) + $0008

(SP) + $0006

(SP) + $0004

(SP) +$0002

(SP)

15

SLI

8 7 o
IX ADDRESS MASK I IV ADDRESS MASK

RESERVED I AM[35:32]

ACCUMULATOR M[31:16]

ACCUMULATOR M[15:0]

I REGISTER

H REGISTER

The entire MAC unit internal state is restored from the system stack. Registers
are restored in order from low to high address. The SP is incremented after
each restoration (stack shrinks upward in memory). If SP overflow occurs as a
result of operation, the SK field is incremented.

MOTOROLA
11-12

DIGITAL SIGNAL

PROCESSING
CPU16 REFERENCE MANUAL

11.7.6 Branch Instructions

LBEV and LBMV are conditional long branch instructions associated with the
EV and MV bits in the CCR.

11.7.6.1 LBEV - Long Branch if EV Set

LBEV causes a long program branch if the EV bit in the condition code register
has a value of 1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the PK field is
incremented or decremented.

Because the EV flag can be set and cleared more than once during the
execution of RMAC instructions, exception handler routines that contain an
LBEV instruction must b~ carefully designed.

11.7.6.2 LBMV - Long Branch if MV Set

LBMV causes a long program branch if the MV bit in the condition code register
has a value of 1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the PK field is
incremented or decremented.

The MV bit is latched when sign bit overflow occurs, and must be cleared by an
ANDP, CLRM, TAP, TDP, TEM, orTEDM instruction.

CPU16 REFERENCE MANUAL DIGITAL SIGNAL

PROCESSING
MOTOROLA

11-13

III

II

MOTOROLA
11-14

DIGITAL SIGNAL
PROCESSING

CPU16 REFERENCE MANUAL

APPENDIX A
COMPARISON OF CPU16/HC11 CPU

ASSEMBLY LANGUAGE

II

A.1 Introduction

A.2

120

This appendix compares the assembly language of the M68HC11
microcontroller and the M68HC16 microcontroller. It provides information
concerning functionally equivalent instructions and discusses cases that need
special attention. It is intended to supplement the CPU16 Reference Manual -
refer to appropriate sections of the manual for detailed information on system
resources, addressing modes, instruction set, and processing flow.

The appendix is divided into eight sections. The first section shows HC11 CPU
and CPU16 register models. The second discusses CPU16 instruction formats
and pipelining. The third lists HC11 CPU instructions that have an equivalent
CPU16 instruction. The fourth lists HC11 CPU instructions that operate
differently on the CPU16. The fifth lists HC11 CPU assembler directives that
operate differently on the CPU 16, but for which the difference is transparent to
the programmer. The sixth lists directives that have a new syntax. The seventh
section discusses changes to addressing modes. The last section is an
assembly language comparison in tabular format.

The CPU16 is designed for maximum compatibility with the HC11 CPU, and
only moderate effort is required to port an application from an M68HC11
microcontroller to an M68HC16 microcontroller. Certain HC11 instructions have
been modified to support the improved addressing and exception handling
capabilities of the CPU16. Other HC11 CPU instructions, particularly those
related to manipulation of the condition code register, have been replaced.

Register Models

16115 al7 o I BIT POSITION

A ~ B I ACCUMULATORS A AND B
ACCUMULATOR D (A:B)

IX I INDEX REGISTER X

IY I INDEX REGISTER Y

SP I STACK POINTER

PC I PROGRAM COUNTER

CCR I CONDITION CODE REGISTER

Figure A-1. HC11 CPU Registers

7 6 5 4 3 2 0

S X H I I N I z v I C

Figure A-2. HC11 CPU Condition Code Register

CPU16 REFERENCE MANUAL APPENDIX A MOTOROLA

A-1 CPU16/HC11 CPU ASSEMBLY LANGUAGE

II

II

20 16 I

,

[::::~~: ::: I

[:::::::Y~::::::::::I
ZK

SK

[: :::P~ :

15 14

S , MV ,

MOTOROLA

A-2

I
,

,

15

13

H

8 , 7 0 , BIT POSITION

A

~
B I ACCUMULATORS A AND B

ACCUMULATOR D (A:B)

E , ACCUMULATOR E

IX 'INDEX REGISTER X

IY 'INDEX REGISTER Y .

IZ 'INDEX REGISTER Z

SP , STACK POINTER

PC , PROGRAM COUNTER

CCR PK , CONDITION CODE REGISTER!

PC EXTENSION REGISTER

EK XK YK ZK , ADDRESS EXTENSION REGISTER

SK , STACK EXTENSION REGISTER

HR , MAC MULTIPLIER REGISTER

IR , MAC MULTIPLICAND REGISTER

AM I MAC ACCUMULATOR MSB [35:16]

AM MAC ACCUMULATOR LSB [15:0]

XMSK YMSK , MAC XV MASK REGISTER

Figure A-3. CPU16 Registers

12 11 10 9 8 7 6 5 4 3 2 0
, EV , N Z V C IP , SM , PK

Figure A-4. CPU16 Condition Code Register

APPENDIX A CPU16 REFERENCE MANUAL
CPU1~HC11 CPU ASSEMBLY LANGUAGE

A.3 CPU16 Instruction Formats and Pipelining Mechanism

A.3.1 Instruction Format

CPU16 instructions consist of an 8-bit opcode, which may be preceded by an
a-bit prebyte and/or followed by one or more operands.

Opcodes are mapped in four 256-instruction pages. Page 0 opcodes stand
alone, but Page 1, 2, and 3 opcodes are pointed to by a prebyte code on Page
O. The prebytes are $17 (Page 1), $27 (Page 2), and $37 (Page 3).

Operands can be 4 bits, a bits or 16 bits in length. However, because the
CPU16 fetches instructions from even byte boundaries, each instruction must
contain an even number of bytes.

Operands are organized as bytes, words, or a combination of bytes and words.
Four-bit operands are either zero-extended to a bits, or packed two to a byte.
The largest instructions are 6 bytes in length. Size, order, and function of
operands are evaluated when an instruction is decoded.

A Page 0 opcode and an 8-bit operand can be fetched simultaneously.
Instructions that use a-bit indexed, immediate, and relative addressing modes
have this form - code written with these instructions is very compact.

A.3.2 Execution Model

This description is a simplified model of the mechanism the CPU16 uses to
fetch and execute instructions. Functional divisions in the model do not
necessarily correspond to distinct architectural subunits of the microprocessor.

There are three functional blocks involved in fetching, decoding, and executing
instructions. These are the microsequencer, the instruction pipeline, and the
execution unit. These elements function concurrently - at any given time, all
three may be active.

A.3.2.1 Microsequencer

The microsequencer controls the order in which instructions are fetched,
advanced through the pipeline, and executed. It increments the program
counter and generates multiplexed external tracking signals IPIPEO and IPIPE1 II
from internal signals that control execution sequence.

CPU16 REFERENCE MANUAL APPENDIX A
CPU1~HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA

A-3

II

A.3.2.2 Instruction Pipeline

The pipeline is a three stage FIFO that holds instructions while they are
decoded and executed. As many as three instructions can be in the pipeline at .
one time (single-word instructions, one held in stage C, one being executed in
stage B, and one latched in stage A).

A.3.2.3 Execution Unit

The execution unit evaluates opcodes, interfaces with the microsequencer to
advance instructions through the pipeline, and performs instruction operations.

A.3.3 Execution Process

Fetched opcodes are latched into stage A, then advanced to stage B. Opcodes
are evaluated in stage B. The execution unit can access operands in either
stage A or stage B (stage B accesses are limited to a-bit operands). When
execution is complete, opcodes are moved from stage B to stage C, where they
remain until the next instruction is complete.

A prefetch mechanism in the microsequencer reads instruction words from
memory and increments the program counter. When instruction execution
begins, the program counter pOints to an address six bytes after the address of
the first word of the instruction being executed.

The number of machine cycles necessary to complete an execution sequence
varies according to the complexity of the instruction.

A.3.4 Changes in Program Flow

When program flow changes, instructions are fetched from a new address.
Before execution can begin at the new address, instructions and operands from
the previous instruction stream must be removed from the pipeline. If a change
in flow is temporary, a return address must be stored, so that execution of the
original instruction stream can resume after the change in flow.

At the time an instruction that causes a change in program flow executes,
PK : PC point to the address of the first word of the instruction + $0006. During
execution of the instruction, PK : PC is loaded with the address of the first word
of the new instruction stream. However, stages A and B still contain words from
the old instruction stream. The CPU16 prefetches to advance the new
instruction to stage C, and fills the pipeline from the new instruction stream.

MOTOROLA

A4

APPENDIX A CPU16 REFERENCE MANUAL
CPU1~HC11 CPU ASSEMBLY LANGUAGE

A.3.4.1 Jumps

The CPU16 jump instruction uses 20-bit extended and indexed addressing
modes. It consists of an 8-bit opcode with a 20-bit argument. No return PK : PC
is stacked for a jump.

A.3.4.2 Branches

The CPU16 supports 8-bit relative displacement (short), and 16-bit relative
displacement (long) branch instructions, as well as specialized bit condition
branches that use indexed addressing modes. CPU16 short branches are
generally equivalent to HC11 CPU branches, although opcodes are not
identical. HC11 BHI and BLO are replaced by CPU16 BCC and BCS.

Short branch instructions consist of an 8-bit opcode and an 8-bit operand
contained in one word. Long branch instructions consist of an 8-bit prebyte and
an 8-bit opcode in one word, followed by an operand word. Bit condition
branches consist of an 8-bit opcode and an 8-bit operand in one word, followed
by one or two operand words.

When a branch instruction executes, PK : PC point to an address equal to the
address of the first word of the instruction plus $0006. The range of
displacement for each type of branch is relative to this value. In addition,
because prefetches are automatically aligned to word boundaries, only even
offsets are valid - an odd offset value is rounded down.

A.3.4.3 Subroutines

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a
jump (JSR). The RTS instruction returns control to the calling routine. BSR
consists of an 8-bit opcode with an 8-bit operand. LBSR consists of an 8-bit
pre byte and an 8-bit opcode in one word, followed by an operand word. JSR
consists of an 8-bit opcode with a 20-bit argument. RTS consists of an 8-bit
prebyte and an 8-bit opcode in one word.

When a subroutine instruction is executed, PK : PC contain the address of the
calling instruction plus $0006. All three calling instructions stack return
PK : PC values prior to processing instructions from the new instruction stream.
In order for RTS to work with all three calling instructions, however, the value
stacked by BSR must be adjusted.

LBSR and JSR are two-word instructions. In order for program execution to
resume with the instruction immediately following them, RTS must subtract
$0002 from the stacked PK : PC value. BSR is a one-word instruction - it
subtracts $0002 from PK : PC prior to stacking so that execution will resume
correctly.

CPU16 REFERENCE MANUAL APPENDIX A

CPU16/HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA

A-5

II

A.3.4.4 Interrupts

Interrupts are a type of exception, and are thus subject to special rules
regarding execution process. This comparison is limited to the effects of SWI
(software interrupt) and RTI (return from interrupt) instructions.

Both SWI and RTI consist of an a-bit prebyte and an a-bit opcode in one word.
SWI initiates synchronous exception processing. RTI causes execution to
resume with the instruction following the last instruction that completed
execution prior to interrupt.

Asynchronous interrupts are serviced at instruction boundaries. PK: PC +
$0006 for the following instruction is stacked, and exception processing begins.
In order to resume execution with the correct instruction, RTI subtracts $0006
from the stacked value.

Interrupt exception processing is included in the SWI instruction definition. The
PK : PC value at the time of execution is the first word address of SWI plus
$0006. If this value were stacked, RTI would cause SWI to execute again. In
order to resume execution with the instruction following SWI, $0002 is added to
the PK : PC value prior to stacking.

A.3.4.4.1 Interrupt Priority

There are eight levels of interrupt priority. All interrupts with priorities less than
seven can be masked by writing to the CCR interrupt priority (IP) field.

The IP field consists of three bits (CCR[7:5]). Binary values %000 to %111
provide eight priority masks. Masks prevent an interrupt request of a priority
less than or equal to the mask value (except for NMI) from being recognized
and processed. When IP contains %000, no interrupt is masked.

A.3.S Stack Frame

When a change of flow occurs, the contents of the program counter and
condition code register are stacked at the location pOinted to by SK : SP. Figure
A-5 shows the stack frame. Unless it is altered during exception processing, the
stacked PK : PC value is the address of the next instruction in the current
instruction stream, plus $0006. RTS restores only stacked PK : PC - 2, while
RTI restores PK : PC - 6 and the CCR.

MOTOROLA

M3

Low Address

High Address

<= SP After Stacking
r----;------j

Condition Code Register

Program Counter <= SP Before Stacking L-______ --'

Figure A-S. CPU16 Stack Frame Format

APPENDIX A CPU16 REFERENCE MANUAL

CPU16/HC11 CPU ASSEMBL V LANGUAGE

A.4 Functionally Equivalent Instructions

A.4.1 BHS

The CPU16 uses only the BCC mnemonic. BHS is used in the HC11 CPU
instruction set to differentiate a branch based on a comparison of unsigned
numbers from a branch based on operations that clear the Carry bit.

A.4.2 BLO

The CPU16 uses only the BCS mnemonic. BLO is used in the HC11 CPU
instruction set to differentiate a branch based on a comparison of unsigned
numbers from a branch based on operations that set the Carry bit.

A.4.3 CLC

The CLC instruction has been replaced by ANDP. ANDP performs AND
between the content of the condition code register and an unsigned immediate
operand, then replaces the content of the CCR with the result. The PK
extension field (CCR[O:3]) is not affected.

The following code can be used to clear the C bit in the CCR:

ANDP #$FEFF

The ANDP instruction can clear the entire CCR, except for the PK extension
field, at once.

A.4.4 CLI

The CLI instruction has been replaced by ANDP. ANDP performs AND
between the content of the condition code register and an unsigned immediate
operand, then replaces the content of the CCR with the result. The PK
extension field (CCR[O:3]) is not affected.

The following code can be used to clear the IP field in the CCR:

ANDP #$FF1F

The ANDP instruction can clear the entire CCR, except for the PK extension
field, at once.

CPU16 REFERENCE MANUAL APPENDIX A
CPU1~HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA

A7

II

A.4.5 CLV

The CLV instruction has been replaced by ANDP. ANDP performs AND
between the content of the condition code register and an unsigned immediate
operand, then replaces the content of the CCR with the result. The PK
extension field (CCR[O:3]) is not affected.

The following code can be used to clear the V bit in the CCR:

ANDP #$FDFF

The ANDP instruction can clear the entire CCR, except for the PK extension
field, at once.

A.4.6 DES

The DES instruction has been replaced by AIS. AIS adds a 20-bit value to
concatenated SK and SP. The 20-bit value is formed by sign-extending an 8-bit
or 16-bit signed immediate operand.

The following code can be used to perform a DES:

AIS-1

CPU16 stacking operations normally use 16-bit words and even word
addresses, while HC11 CPU stacking operations normally use bytes and byte
addresses. If the CPU16 stack pointer is misaligned as a result of a byte
operation, performance can be degraded.

A.4.7 DEX

The DEX instruction has been replaced by AIX. AIX adds a 20-bit value to
concatenated XK and IX. The 20-bit value is formed by sign-extending an 8-bit
or 16-bit signed immediate operand.

The following code can be used to perform a DEX:

AIX-1

A.4.8 DEY

The DEV instruction has been replaced by AIV. AIV adds a 20-bit value to
concatenated VK and IV. The 20-bit value is formed by sign-extending an 8-bit
or 16-bit signed immediate operand.

The following code can be used to perform a DEV:

AIV-1

MOTOROLA

AS
APPENDIX A CPU16 REFERENCE MANUAL

CPU16/HC11 CPU ASSEMBLY LANGUAGE

A.4.9 INS

The INS instruction has been replaced by AIS. AIS adds a 20-bit value to
concatenated SK and SP. The 20-bit value is formed by sign-extending an 8-bit
or 16-bit signed immediate operand.

The following code can be used to perform an INS:

AIS-1

CPU 16 stacking operations normally use 16-bit words and even word
addresses, while HC11 CPU stacking operations normally use bytes and byte
addresses. If the CPU16 stack pOinter is misaligned as a result of a byte
operation, performance can be degraded.

A.4.10 INX

The INX instruction has been replaced by AIX. AIX adds a 20-bit value to
concatenated XK and IX. The 20-bit value is formed by sign-extending an 8-bit
or 16-bit signed immediate operand.

The following code can be used to perform an INX:

AIX1

A.4.11 INY

The INY instruction has been replaced by AIY. AIY adds a 20-bit value to
concatenated YK and IY. The 20-bit value is formed by sign-extending an 8-bit
or 16-bit signed immediate operand.

The following code can be used to perform an INY:

AIY 1

A.4.12 PSHX

The PSHX instruction has been replaced by PSHM. PSHM stores the contents
of selected registers on the system stack. Registers are designated by setting
bits in a mask byte.

The following code can be used to stack index register X:

PSHM X

The CPU16 can stack up to seven registers with a single PSHM instruction.

CPU16 REFERENCE MANUAL APPENDIX A

CPU1~HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA

M

I

I

A.4.13 PSHY

The PSHY instruction has been replaced by PSHM. PSHM stores the contents
of selected registers on the system stack. Registers are designated by setting
bits in a mask byte.

The following code can be used to stack index register V:

PSHMY

The CPU16 can stack up to seven registers with a single PSHM instruction.

A.4.14 PULX

The PULX instruction has been replaced by PULM. PULM restores the contents
of selected registers from the system stack. Registers are designated by setting
bits in a mask byte.

The following code can be used to restore index register X:

PULMX

The CPU16 can restore up to seven registers with a single PULM instruction.
As a part of normal execution, PULM reads an extra location in memory. The
extra data is discarded. A PULM from the highest available location in memory
will cause an attempt to read an unimplemented location, with unpredictable
results.

A.4.15 PULY

The PUL V instruction has been replaced by PULM. PULM restores the contents
of selected registers from the system stack. Registers are designated by setting
bits in a mask byte.

The following code can be used to restore index register V:

PULMY

The CPU16 can restore up to seven registers with a single PULM instruction.
As a part of normal execution, PULM reads an extra location in memory. The
extra data is discarded. A PULM from the highest available location in memory
will cause an attempt to read an unimplemented location, with unpredictable
results.

MOTOROLA
A-10 '

APPENDIX A CPU16 REFERENCE MANUAL

CPU16/HC11 CPU ASSEMBLY LANGUAGE

A.4.16 SEC

The SEC instruction has been replaced by ORP. ORP performs inclusive OR
between the content of the condition code register and an unsigned immediate
operand, then replaces the content of the CCR with the result. The PK
extension field (CCR[3:0]) is not affected.

The following code can be used to set the CCR C bit:

ORP #$0100

The ORP instruction can set all CCR bits, except the PK extension field, at once.

A.4.17 SEI

The SEI instruction has been replaced by ORP. ORP performs inclusive OR
between the content of the condition code register and an unsigned immediate
operand, then replaces the content of the CCR with the result. The PK
extension field (CCR[3:0]) is not affected.

The following code can be used to set all the bits in the CCR IP field:

ORP #$OOEO

The ORP instruction can set all CCR bits, except the PK extension field, at once.

A.4.18 SEV

The SEV instruction has been replaced by ORP. ORP performs inclusive OR
between the content of the condition code register and an unsigned immediate
operand, then replaces the content of the CCR with the result. The PK
extension field (CCR[3:0]) is not affected.

The following code can be used to set the CCR V bit:

ORP #$0200

The ORP instruction can set all CCR bits, except the PK extension field, at once.

A.4.19 STOP (LPSTOP)

LPSTOP is used to minimize microcontroller power consumption. The CPU16 , A
has seven levels of interrupt priority. If an interrupt request of higher priority
than the priority value stored when the microcontroller enters low-power stop
mode is received, the microcontroller is activated, an'd the CPU16 processes an
interrupt exception.

CPU16 REFERENCE MANUAL APPENDIX A
CPU1~HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA

A-11

II

A.S Instructions that Operate Differently

A.S.1 BSR

The CPU16 stack frame differs from the HC11 CPU stack frame. The CPU16
stacks the current PC and CCR, but restores only the return PK : PC. The
programmer must designate (PSHM) which other registers are stacked during a
subroutine. Because SK : SP point to the next available word address, stacked
CPU16 parameters are at a different offset from the stack pOinter than stacked
HC11 CPU parameters. In order for RTS to work with all three calling
instructions, the PK : PC value stacked by BSR is decremented by two before
being pushed on to the stack. Stacked PC value is the return address + $0002.

A.S.2 JSR

The CPU16 stack frame differs from the HC11 CPU stack frame. The CPU16
stacks the current PC and CCR, but restores only the return PK : PC. The
programmer must designate (PSHM) which other registers are stacked during a
subroutine. Because SK : SP point to the next available word address, stacked
CPU16 parameters are at a different offset from the stack pOinter than stacked
HC11 CPU parameters.

A.S.3 PSHA, PSHB

These instructions operate in the same way as the HC11 instructions with the
same mnemonics. However, because the CPU16 normally pushes words from
an even boundary, pushing byte data to the stack can misalign the stack pointer
and degrade performance.

A.S.4 PULA, PULB

These instructions operate in the same way as the HC11 instructions with the
same mnemonics. However, because the CPU16 normally pulls words from the
stack, pulling byte data can misalign the stack pointer and degrade
performance.

A.S.S RTI

The CPU16 stack frame differs from the HC11 CPU stack frame. The CPU16
stacks only the current PC and CCR before exception processing begins. In
order to resume execution after interrupt with the correct instruction, RTI
subtracts $0006 from the stacked PK : PC.

MOTOROLA
A-12

APPENDIX A CPU16 REFERENCE MANUAL
CPU16/HC11 CPU ASSEMBLY LANGUAGE

A.S.6 SWI

The CPU16 stack frame differs from the HC11 CPU stack frame. The PK : PC
value at the time of execution is the first word address of SWI plus $0006. If this
value were stacked, RTI would cause SWI to execute again. In order to resume
execution with the instruction following SWI, $0002 is added to the PK : PC
value prior to stacking. The programmer must designate (PSHM) which other
registers are stacked during an interrupt.

A.S.7 TAP

The CPU16 CCR and the HC11 CPU CCR are different. The CPU16 interrupt
priority scheme differs from that of the HC11 CPU. The CPU16 interrupt priority
field cannot be changed by the TAP instruction.

A.S.7.1 HC11 CPU Implementation:

7 6 5 4 3 2 0

A7 A6 A5 A4 I A3 A2 A1 AO

j). j). j). j). j). j). j). j).

7 6 5 4 3 2 1 0

S X H I N Z V C

A.S.7.2 CPU16 Implementation:

7 6 5 4 3 2 0

A7 I A6 I A5 A41 A3 I A2 I A1 AO

j). j). j). j). j). j). j). j).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

8 I MV I H EV I N Z v I c IP I 8M I PK

A.S.S TPA

The CPU16 CCR and the HC11 CPU CCR are different. TPA cannot be used to
read CPU16 interrupt priority status. Use TPD to read the CPU16 CCR interrupt
priority field.

A.S.S.1 HC11 CPU Implementation:

7 6 5 4 3 2 1 0

S X H I I I N I z I v c
.u. .u. .u. .u. .u. .u. .u. .u.
7 6 5 4 3 2 0

A7 A6 A5 A41 A3 I A2 I A1 AO

CPU16 REFERENCE MANUAL APPENDIX A MOTOROLA

CPU16/HC11 CPU ASSEMBLY LANGUAGE A-13

I

A.5.S.2 CPU16 Implementation:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I S I MV I H EV I N I z I v c I IP I SM I PK

.u. .u. .u. .u. .u. .u. .u. .u.
7 6 5 4 3 2 0

A7 I A6 A5 A4 I A3 I A2 I A1 AD

A.5.9 WAI

The CPU16 does not stack registers during WAI. The CPU16 acknowledges
interrupts faster out of WAI than LPSTOP. However, LPSTOP minimizes
microcontroller power consumption.

A.6 Instructions With Transparent Changes

A.6.1 RTS

The CPU16 stack frame differs from the HC11 CPU stack frame. PK: PC is
restored during an RTS. The PK field in the CCR is restored, then the PC value
read from the stack is decremented by two before being loaded into the PC.
The PC value is decremented because LBSR and JSR are two-word
instructions. In order for program execution to resume with the instruction
immediately following them, RTS must subtract $0002 from the stacked PK : PC
value. Because BSR is a one-word instruction, it subtracts $0002 from PK : PC
prior to stacking so that execution will resume correctly after RTS.

A.6.2 TSX

The CPU16 adds 2 to SK : SP before the transfer to XK : IX. The HC11 CPU
adds 1.

A.6.3 TSV

The CPU 16 adds 2 to SK : SP before the transfer to VK : IV. The HC11 CPU
adds 1.

A.6.4 TXS

The CPU 16 subtracts 2 from XK : IX before the transfer to SK : SP. The HC11
CPU subtracts 1.

A.6.5 TVS

The CPU16 subtracts 2 from VK : IV before the transfer to SK : SF'. The HC11
CPU subtracts 1.

MOTOROLA
A-14

APPENDIX A CPU16 REFERENCE MANUAL
CPU1~HC11 CPU ASSEMBLY LANGUAGE

A.7 Unimplemented Instructions

A.7.1 TEST

Causes the program counter to be continuously incremented.

A.8 Addressing Mode Differences

A.8.1 Extended Addressing Mode

In HC11 CPU extended addressing mode, the effective address of the
instruction appears explicitly in the two bytes following the opcode. In CPU16
extended addressing mode, the effective address is formed by concatenating
the EK field and the 16-bit byte address. A 20-bit extended mode (EXT20) is
used only by the JMP and JSR instructions. These instructions contain a 20-bit
effective address that is zero-extended to 24 bits to give the instruction an even
number of bytes.

A.8.2 Indexed Addressing Mode

HC11 CPU indexed addressing mode forms the effective address by adding the
fixed, 8-bit, unsigned offset to the index register. In CPU16 indexed addressing
mode, a fixed 16-bit offset can be used. Note however, that the 16-bit offset is
signed and can give a negative offset from the index register. An 8-bit unsigned
mode is still available on the CPU16. A 20-bit indexed mode is used for JMP
and JSR instructions. In 20-bit modes, a 20-bit signed offset is added to the
value contained in an index register.

A.8.3 Post-Modified Index Addressing Mode

Post-modified index mode is used with the CPU16 MOVS and MOVW
instructions. A Signed 8-bit offset is added to index register X after the effective
address formed by XK : IX is used.

A.8.4 Use of CPU16 Indexed Mode to Replace HC11 CPU Direct Mode

In MC68HC11 systems, direct addressing mode can be used to perform rapid
accesses to RAM or I/O mapped into bank 0 ($0000 to $OOFF), but the CPU16
uses the first 512 bytes of bank 0 for exception vectors. To provide an II
enhanced replacement for direct mode, the ZK field and index register Z have
been assigned reset initialization vectors. After ZK : IZ have been initialized, '
indexed addressing provides rapid access to useful data structures.

CPU16 REFERENCE MANUAL APPENDIX A

CPU1~HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA

A-15

II

Table A-1. HC16 Implementation of HC11 Instructions

HC11 Instruction HC16 Implementation

BHS Replaced by BCC

BLO Replaced by BCS

BSR Generates a different stack frame

CLC Replaced by ANDP

CLI Replaced by ANDP

CLV Replaced by ANDP

DES Replaced by AIS

DEX Replaced by AIX

DEV Replaced by AIV

INS Replaced by AIS

INX Replaced by AIX

INV Replaced by AIV

JMP INDS addressing modes replaced by IND20 and EXT modes

JSR INDS addressing modes replaced by IND20 and EXT modes
Generates a different stack frame

LSL, LSLD Use ASL instructions·

PSHX Replaced by PSHM

PSHV Replaced by PSHM

PULX Replaced by PULM

PULV Replaced by PULM

RTI Reloads PC and CCR only

RTS Uses two-word stack frame

SEC Replaced by ORP

SEI Replaced by ORP

SEV Replaced by ORP

STOP Replaced by LPSTOP

TAP CPU16 CCR bits differ from HC11
CPU16 interrupt priority scheme differs from HC11

TPA CPU16 CCR bits differ from HC11
CPU16 interrupt priority scheme differs from HC11

TSX Adds 2 to SK : SP before transfer to XK : IX

TSV Adds 2 to SK : SP before transfer to VK : IV

TXS Subtracts 2 from XK : IX before transfer to SK : SP

TXV Transfers XK field to VK field

TYS Subtracts 2 from VK : IV before transfer to SK : SP

TYX Transfers VK field to XK field

WAI Waits indefinitely for interrupt or reset
Generates a different stack frame

·Motorola assemblers will automatically translate LSL mnemonics

MOTOROLA

A-i6
APPENDIX A CPUi6 REFERENCE MANUAL

CPU1~HC11 CPU ASSEMBLY LANGUAGE

APPENDIX B
MOTOROLA ASSEMBLER SYNTAX

Name Mode Syntax Name Mode

ABA INH aba ADCE IMM16

ABX INH abx IND16,X

ABY INH aby IND16, V

ABZ INH abz IND16,Z

ACE INH ace EXT

ACED INH aced ADDA INDB, X

ADCA INDB,X adca If,x INDB, V

INDB, V adca ff,Y INDB,Z

INDB,Z adca ff,z IMMB

IMMB adca#ii IND16,X

IND16, X adca gggg,x IND16, V

IND16, V adca gggg,y IND16, Z

IND16, Z adca gggg,z EXT

EXT adca hhll E,X

E,X adca e,x E, V

E, V adca e,Y E,Z

E,Z adca e,z ADDB INDB,X

ADCB INDB, X adcb If,x INDB, Y

INDB,Y adcb ff,y INDB,Z

INDB,Z adcb ff,z IMMB

IMMB adcb#ii IND16,X

IND16, X adcb gggg,x IND16, V

IND16, V adcb gggg,y IND16, Z

IND16,Z adcb gggg,z EXT

EXT adcb hhll E,X

E,X adcb e,x E, Y

E,Y adcb e,y E,Z

E,Z adcb e,z ADDD INDB,X

ADCD INDB, X adcd ff,x INDB, V

INDB, V adcd ff,y INDB,Z

INDB,Z adcd ff,z IMMB

IMM16 adcd #llkk IMM16

IND16, X adcd gggg,x IND16,X

IND16, V adcd gggg,y IND16, Y

IND16,Z adcd gggg,z IND16,Z

EXT adcd hhll EXT

E,X adcd e,x E,X

E, V adcd e,y E, Y

E,Z adcd e,z E,Z

CPU16 REFERENCE MANUAl APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

Syntax

adce #llkk

adce gggg,x

adce gggg,y

adce gggg,z

adce hhll

adda ff,x

adda ff,y

adda If,z

adda #ii

adda gggg,x

adda gggg,y

adda gggg,z

adda hhll

addae,x

adda e,y

adda e,z

addb ff,x

ad db ff,y

addb ff,z

addb#ii

addb gggg,x

addbgggg,y

addb gggg,z

addbhhll

addbe,x

addb e,y

addb e,z

addd ff,x

addd ff,y

addd ff,z

addd#ii

addd #jjkk

addd gggg,x

addd gggg,y

addd gggg,z

addd hhll

addd e,x

addd e,y

addd e,z

MOTOROLA

B-1

II

Name Mode

ADDE IMMS

IMM16

IND16,X

IND16, Y

IND16,Z

EXT

ADE INH

ADX INH

ADY INH

ADZ INH

AEX INH

AEY INH

AEZ INH

AIS IMMS

IMM16

AIX IMMS

IMM16

AIY IMMS

IMM16

AIZ IMMS

IMM16

ANDA INDS, X

INDS, Y

INDS,Z

IMMS

IND16, X

IND16, Y

IND16, Z

EXT

E,X

E,Y

E,Z

MOTOROLA
8-2

Syntax Name Mode Syntax

adde #ii ANDB INDS, X andb If,x

adde #jjkk INDS, Y andb If,y

adde gggg,x INDS,Z andb ff,z

adde gggg,y IMMS andb#ii

adde gggg,z IND16,X andb gggg,x

adde hhll IND16, Y andb gggg,y

ada IND16,Z andb gggg,z

adx EXT andb hhll

ady E,X andb e,x

adz E, Y andb a,y

aax E,Z andb a,z

aay ANDD INDS, X andd If,x

aaz INDS, Y andd If,y

ais #ii INDS,Z andd ff,z

ais #jjkk IMM16 andd #jjkk

aix#ii IND16, X andd gggg,x

aix #jjkk IND16, Y andd gggg,y

aiy#ii IND16,Z andd gggg,z

aiy #jjkk EXT andd hhll

aiz#ii E,X andd a,x

aiy #jjkk E, Y andd a,y

and a If,x E,Z andd e,z

anda If,y ANDE IMM16 anda #jjkk

and a If,z IND16, X ande gggg,x

anda#ii IND16, Y ande gggg,y

and a gggg,x IND16, Z anda gggg,z

and a gggg,y EXT anda hhll

and a gggg,z ANDP IMM16 andp #jjkk

and a hhll ASL INDS, X asl If,x

anda e,x INDS, Y asl ff,y

and a e,y INDS,Z asl If,z

anda e,z IND16, X asl gggg,x

IND16, Y asl gggg,y

IND16, Z asl gggg,z

EXT asl hhll

ASLA INH asia

ASLB INH aslb

ASLD INH asld

ASLE INH asia

ASLM INH aslm

APPENDIX B
MOTOROLA ASSEMBLER SYNTAX

CPU16 REFERENCE MANUAL

Name Mode Syntax Name Mode

ASLW IND16,X aslw gggg,x BITA INDS, X

IND16,Y aslw gggg,y INDS, Y

IND16,Z aslw gggg,z INDS,Z

EXT aslw hhll IMMS

ASR IND8, X asr ff,x IND16,X

IND8, Y asr ff,y IND16, Y

INDS,Z asr ff,z IND16,Z

IND16,X asr gggg,x EXT

IND16, Y asr gggg,y E,X

IND16,Z asr gggg,z E, Y

EXT asr hhll E,Z

ASRA INH asra BITB INDS, X

ASRB INH asrb INDS, Y

ASRD INH asrd IND8,Z

ASRE INH asre IMMS

ASRM INH asrm IND16,X

ASRW IND16,X asrw gggg,x IND16, Y

IND16, Y asrw gggg,y IND16,Z

IND16,Z asrw gggg,z EXT

EXT asrw hhll E,X

Bce RELS bee rr E, Y

BCLR IND8, X belr ff,x,#mm E,Z

IND8, Y belr ff,y,#mm BLE RELS

IND8,Z belr ff,z,#mm BLO RELS

IND16,X belr gggg,x,#mm BLS RELS

IND16, Y belr gggg,y,#mm BLT RELS

IND16,Z belr gggg,z,#mm BMI REL8

EXT belr hhll,#mm BNE RELS

BCLRW IND16,X bclrw gggg,x,#mmmm BPL RELS

IND16, Y bclrw gggg,y,#mmmm BRA RELS

IND16,Z bclrw gggg,z,#mmmm BRCLR INDS,X

EXT bclrw hhll,#mmmm INDS, Y

BCS REL8 bcs rr INDS,Z

BEQ RELS bsq rr IND16,X

BGE RELS bge rr IND16, Y

BGND INH bgnd IND16,Z

BGT RELS bgt rr EXT

BHI RELS bhi rr BRN RELS

CPU16 REFERENCE MANUAL APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

Syntax

bita fl,x

bita ff,y

bita ff,z

bita#ii

bit a gggg,x

bita gggg,y

bita gggg,z

bita hhll

bita s,x

bita e,y

bita e,z

bitb ff,x

bitb ff,y

bitb If,z

bitb#ii

bitb gggg,x

bitb gggg,y

bitb gggg,z

bitb hhll

bitb e,x

bitb a,y

bitb e,z

bls rr

blo rr

bls rr

bltrr

bmirr

bns rr

bpi rr

brarr

brelr ff,x,#mm,rr

brelr ff,y,#mm,rr

brelr ff,z,#mm,rr

brelr gggg,x,#mm,rrrr

brelr gggg,y,#mm,rrrr

brelr gggg,z,#mm,rrrr

brelr hhll,#mm,rrrr

brn rr

MOTOROLA

B-3

II

Name Mode

BRSET INDB,X

INDB, Y

INDB,Z

IND16,X

IND16, Y

IND16, Z

EXT

BSET INDB,X

INDB,Y

INDB,Z

IND16, X

IND16, Y

IND16, Z

EXT

BSE1W IND16, X

IND16, Y

IND16, Z

EXT

BSR RELB

BVC RELB

BVS RELB

CBA INH

CLA INDB,X

INDB,Y

INDB,Z

IND16,X

IND16, Y

IND16, Z

EXT

CLRA INH

CLRB INH

CLAD INH

CLRE INH

CLAM INH

CLAW IND16, X

IND16, Y

IND16, Z

EXT

MOTOROLA

B4

Syntax Name Mode Syntax

brset ff,x,#mm,rr CMPA INDB, X cmpa ff,x

brset ff,y,#mm,rr INDB, Y cmpa ff,y

brset ff,z,#mm,rr INDB,Z cmpa ff,z

brset gggg,x,#mm,rrrr IMMB cmpa#ii

brset gggg,y,#mm,rrrr IND16,X cmpagggg,x

brset gggg,z,#mm,rrrr IND16, Y cmpa gggg,y

brset hhll,#mm,rrrr IND16, Z cmpa gggg,z

bset ff,x,#mm EXT cmpa hhll

bset ff,y,#mm E,X cmpa e,x

bset ff,z,#mm E, Y cmpa e,y

bset gggg,x,#mm E,Z cmpa e,z

bset gggg,y,#mm CMPB INDB, X cmpb ff,x

bset gggg,z,#mm INDB, Y cmpb ff,y

bset hhll,#mm INDB,Z cmpb ff,z

bsetw gggg,x,#mmmm IMMB cmpb#ii

bsetw gggg,y,#mmmm IND16,X cmpb gggg,x

bsetw gggg,z,#mmmm IND16, Y cmpb gggg,y

bsetw hhll,#mmmm IND16,Z cmpb gggg,z

bsr rr EXT cmpb hhll

bvc rr E,X cmpb e,x

bvs rr E, Y cmpb e,y

cba E,Z cmpb e,z

clr ff,x COM INDB,X com ff,x

elr ff,y INDB, Y com ff,y

clr ff,z INDB,Z com ff,z

clr gggg,x IND16, X com gggg,x

elr gggg,y IND16, Y com gggg,y

clr gggg,z IND16, Z com gggg,z

clr hhll EXT com hhll

clra COMA INH coma

elrb COMB INH comb

clrd COMD INH comd

clre COME INH come

clrm COMW IND16,X comwgggg,x

elrw gggg,x IND16, Y comw gggg,y

elrw gggg,y IND16,Z comw.gggg,z

clrw gggg,z EXT comw hhll

elrw hhll

APPENDIX B CPU16 REFERENCE MANUAL
MOTOROLA ASSEMBLER SYNTAX

Name Mode Syntax Name Mode

CPD INDB,X cpd ff,x CPZ INDB,X

INDB, Y cpd ff,Y INDB, Y

INDB,Z cpd ff,z INDB,Z

IMM16 cpd #jjkk IMM16

IND16, X cpd gggg,x IND16,X

IND16, Y cpd gggg,y IND16, Y

IND16,Z cpd gggg,z IND16,Z

EXT cpd hhll EXT

E,X cpd e,x DM INH

E, Y cpd e,Y DEC INDB, X

E,Z cpd e,z INDB, Y

CPE IMM16 cpe #jjkk IND8,Z

IND16, X cpe gggg,x IND16, X

IND16, Y cpe gggg,y IND16, Y

IND16,Z cpe gggg,z IND16,Z

EXT cpa hhll EXT

CPS INDB, X cps ff,x DECA INH

IN DB, Y cps ff,y DECB INH

INDB,Z cps ff,z DECW IND16,X

IMM16 cps #jjkk IND16, Y

IND16,X cps gggg,x IND16,Z

IND16, Y cps gggg,y EXT

IND16,Z cps gggg,z EDIV INH

EXT cps hhll EDIVS INH

CPX INDB, X cpx ff,x EMUL INH

INDB, Y cpx ff,y EMULS INH

INDB,Z cpx ff,z EORA INDB,X

IMM16 cpx #jjkk INDB, Y

IND16,X cpx gggg,x INDB,Z

IND16, Y cpx gggg,y IMMB

IND16, Z cpx gggg,z IND16,X

EXT cpx hhll IND16, Y

CPY INDB, X cpy ff,x IND16, Z

INDB, Y cpy ff,y EXT

INDB,Z cpy ff,z E,X

IMM16 cpy #jjkk E, Y

IND16,X cpy gggg,x E,Z

IND16, Y cpy gggg,y ,<"

IND16, Z cpy gggg,z

EXT cpy hhll

CPU16 REFERENCE MANUAL APPENDIX B
MOTOROLA ASSEMBLER SYNTAX

Syntax

cpz ff,x

cpz ff,y

cpz ff,z

cpz #jjkk

cpz gggg,x

cpz gggg,y

cpz gggg,z

cpz hhll

daa

dec ff,x

dec ff,y

dec ff,z

dec gggg,x

dec gggg,y

dec gggg,z

dec hhll

deca

decb

decwgggg,x

decwgggg,y

decwgggg,z

decw hhll

ediv

edivs

emul

emuls

eora ff,X

eora ff,y

eora ff,Z

eora#ii

eora gggg,x

eora gggg,y

eora gggg,z

eora hhll

eora e,x

eora e,y

eora e,z

MOTOROLA

B-5

II

II

Name Mode

EORB IND8,X

IND8,Y

IND8,Z

IMM8

IND16, X

IND16, Y

IND16, Z

EXT

E,X

E, Y

E,Z

EORD IND8, X

IND8, Y

IND8,Z

IMM16

IND16,X

IND16, Y

IND16, Z

EXT

E,X

E, Y

E,Z

EORE IMM16

IND16, X

IND16, Y

IND16, Z

EXT

FDIV INH

FMULS INH

IDIV INH

INC IND8,X

IND8, Y

IND8,Z

IND16, X

IND16, Y

IND16, Z

EXT

INCA INH

INCB INH

MOTOROLA

B-6

Syntax Name Mode Syntax

eorb ff,x INCW IND16,X incw gggg,x

eorb If,y IND16,Y incw gggg,y

eorb If,z IND16, Z incw gggg,z

eorb #ii EXT incw hhll

eorb gggg,x JMP EXT20 jmpzb hhll

eorb gggg,y IND20,X jmp zg gggg,x

eorb gggg,z IND20, Y jmp zg gggg,y

eorb hhll IND20,Z jmp zg gggg,z

eorb e,x JSR EXT20 jsr zb hhll

eorb e,y IND20, X jsr zg gggg,x

eorb e,z IND20, Y jsr zg gggg,y

eord ff,x IND20, Z jsr zg gggg,z

eord If,y LBCC REL8 Ibcc rrrr

eord If,z LBCS REL8 Ibcs rrrr

eord #jjkk LBEQ REL8 Ibeq rrrr

eord gggg,x LBEV REL8 Ibev rrrr

eord gggg,y LBGE REL8 Ibge rrrr

eord gggg,z LBGT REL8 Ibgt rrrr

eord hhll LBHI REL8 Ibhi rrrr

eord e,x LBLE REL8 Ible rrrr

eord e,y LBLS REL8 Ibis rrrr

eord e,z LBLT REL8 Iblt rrrr

eore #llkk LBMI REL8 Ibmi rrrr

eore gggg,x LBMV REL8 Ibmvrrrr

eore gggg,y LBNE REL8 Ibne rrrr

eore gggg,z LBPL REL8 Ibpl rrrr

eore hhll LBRA REL8 Ibra rrrr

fdiv LBM REL8 Ibrn rrrr

fmuls LBSR REL8 Ibsr rrrr

idiv LBVC REL8 Ibvc rrrr

inc If,x LBVS REL8 Ibvs rrrr

inc If,y

inc ff,z

inc gggg,x

inc gggg,y

inc gggg,z

inc hhll

inca

incb

APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

CPU16 REFERENCE MANUAL

Name Mode Syntax Name Mode

LDAA IND8,X Idaa If,x LDS IND8, X

IND8, Y Idaa If,y IND8, Y

IND8,Z Idaa ff,z IND8,Z

IMM8 Idaa#ii IMM16

IND16,X Idaa gggg,x IND16,X

IND16, Y Idaa gggg,y IND16, Y

IND16, Z Idaa gggg,z IND16,Z

EXT Idaa hhll EXT

E,X Idaa e,x LDX IND8, X

E, Y Idaa e,y IND8, Y

E,Z Idaa e,z IND8,Z

LDAB IND8, X Idab If,x IMM16

IND8, Y Idab If,y IND16, X

IND8,Z Idab If,z IND16, Y

IMM8 Idab#ii IND16,Z

IND16,X Idab gggg,x EXT

IND16, Y Idab gggg,y LDY IND8, X

IND16, Z Idab gggg,z IND8, Y

EXT Idab hhll IND8,Z

E,X Idab e,x IMM16

E,Y Idab e,y IND16,X

E,Z Idab e,z IND16, Y

LDD IND8, X Idd If,x IND16,Z

IND8, Y Idd If,y EXT

IND8,Z Idd If,z LDZ IND8, X

IMM16 Idd #jjkk IND8, Y

IND16, X Idd gggg,x IND8,Z

IND16, Y Idd gggg,y IMM16

IND16,Z Idd gggg,z IND1q,X

EXT Idd hhll IND16, Y

E,X Idd e,x IND16,Z

E, Y Idd e,y EXT

E,Z Idd e,z LPSTOP INH

LDE IMM16 Ide #jjkk LSL IND8,X

IND16,X Ide gggg,x IND8, Y

IND16, Y Ide gggg,y IND8,Z

IND16,Z Ide gggg,z IND16,X

EXT Ide hhll IND16, Y

LDED EXT Idad hhll IND16,Z

LDHI EXT Idhi hhll EXT

LSLA INH

LSLB INH

CPU16 REFERENCE MANUAL APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

Syntax

Ids If,x

Ids If,y

Ids If,z

Ids #jjkk

Ids gggg,x

Ids gggg,y

Ids gggg,z

Ids hhll

Idx If,x

Id~ If,y

Idx If,z

Idx #jjkk

Idx gggg,x

Idx gggg,y

Idx gggg,z

Idx hhll

Idy If,x

Idy If,y

Idy If,z

Idy #jjkk

Idy gggg,x

Idy gggg,y

Idy gggg,z

Idy hhll

Idz If,x

Idz If,y

Idz If,z

Idz #jjkk

Idz gggg,x

Idz gggg,y

Idz gggg,z

Idz hhll

Ipstop

lsi If,x

lsi If,y

lsi If,z

lsi gggg,x

lsi gggg,y

lsi gggg,z

lsi hhll

Isla

Islb

MOTOROLA

B-7

II

II

Name Mode

LSLD INH

LSLE INH

LSLM INH

LSLW IN01S,X

IN01S, Y

IN01S,Z

EXT

LSR INOS, X

INOS, Y

INOS,Z

IN01S,X

IN01S, Y

IN01S, Z

EXT

LSRA INH

LSRB INH

LSRO INH

LSRE INH

LSRW IN01S,X

IN01S, Y

IN01S, Z

EXT

MAC IMMS

MOVB IXPto EXT

EXTto IXP

EXT to EXT

MOVW IXPto EXT

EXT to IXP

EXT to EXT

MUL INH

NEG INOS, X

IN OS, Y

INOS,Z

IN01S,X

IN01S, Y

IN01S, Z

EXT

NEGA INH

NEGB INH

NEGO INH

NEGE INH

MOTOROLA

8-8

Syntax Name Mode Syntax

Isld NEGW IN01S,X negw gggg,x

Isle IN01S, Y negw gggg,y

Islm IN01S, Z negw gggg,z

Islw gggg,x EXT negw hhll

Islwgggg,y NOP INH nop

Islwgggg,z ORAA INOS, X oraa If,X

Islwhhll INOS, Y oraa If,y

Isr ff,x INOS,Z oraa If,Z

Isr If,y IMMS oraa #ii

Isr If ,Z IN01S, X oraa gggg,x

Isr gggg,x IN01S, Y oraa gggg,y

Isr gggg,y IN01S,Z oraa gggg,z

Isr gggg,z EXT oraa hhll

Isr hhll E,X oraa e,x

Isra E,Y oraa e,y

Isrb E,Z oraa e,z

Isrd ORAB INOS, X orab If,x

Isre INOS,Y orab If,y

Isrw gggg,y INOS,Z orab If,z

Isrw gggg,y IMMS orab#ii

Isrw gggg,z IN01S, X orab gggg,x

Isrwhhll IN01S, Y orab gggg,y

mac xO,yo IND1S, Z orab gggg,z

movb If,x,hhll EXT orab hhll

movb hhll,lf,x E,X orab e,x

movb hhll,hhll E,Y orab e,y

movw If,x,hhll E,Z orab e,z

movw hhll,lf,x ORO INOS, X ord If,x

movw hhll,hhll INOS, Y ord If,y

mul INOS,Z ord If,z

neg If,x IMMtS ord #jjkk

neg If,y IN01S, X ord gggg,x

neg If,z IN01S, Y ord gggg,y

neg gggg,x IN016,Z ord gggg,z

neg gggg,y EXT ord hhll

neg gggg,z E,X ord e,x

neg hhll E, Y ord e,y

neg a E,Z ord e,z

negb

negd

nege

APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

CPU16 REFERENCE MANUAL

Name Mode Syntax Name Mode

ORE IMM16 are #jjkk RORW IND16,X

IND16, X are gggg,x IND16, Y

IND16, Y are gggg,y IND16, Z

IND16,Z are gggg,z EXT

EXT are hhll RTI INH

ORP IMM16 orp #jjkk RTS INH

PSHA INH psha SBA INH

PSHB INH pshb SBCA INDS, X

PSHM IMMS pshm d,e,x,Y,z,k,ccr INDS, Y

PSHMAC INH pshmac INDS,Z

PULA INH pula IMMS

PULB INH pulb IND16,X

PULM IMMS pulm d,e,x,y,z,k,ccr IND16, Y

PULMAC INH pulmac IND16, Z

RMAC IMMS rmac xO,yo EXT

ROL INDS, X ral If,x E,X

INDS, Y ral If,y E,Y

INDS,Z ral If,z E,Z

IND16,X ral gggg,x SBCB INDS, X

IND16, Y ral gggg,y INDS, Y

IND16,Z ral gggg,z INDS,Z

EXT ral hhll IMMS

ROLA INH rala IND16,X

ROLB INH ralb IND16, Y

ROLD INH raid IND16,Z

ROLE INH rale EXT

ROLW IND16,X ralw gggg,x E,X

IND16, Y ralw gggg,y E,Y

IND16, Z ralwgggg,z E,Z

EXT ralwhhll SBCD INDS, X

ROR INDS, X rar ff,x INDS, Y

INDS,Y rar If,y INDS,Z

INDS,Z rar If,z IMM16

IND16, X rar gggg,x IND16,X

IND16, Y rar gggg,y IND16, Y

IND16, Z rar gggg,z IND16, Z

EXT rar hhll EXT

RORA INH rara E,X

RORB INH rarb E,Y

RORD INH rard E,Z

RORE INH rare

CPU16 REFERENCE MANUAL APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

Syntax

rarwgggg,x

rorwgggg,y

rarwgggg.z

rarw hhll

rti

rls

sba

sbca ff,x

sbca ff,y

sbca ff,z

sbca #ii

sbca gggg,x

sbca gggg,y

sbca gggg,z

sbca hhll

sbca e,x

sbca e,y

sbca e,z

sbcb If,x

sbcb fl,y

sbcb ff,z

sbcb #ii

sbcb gggg,x

sbcb gggg,y

sbcb gggg,z

sbcb hhll

sbcb e,x

sbcb e,y

sbcb e,z

sbcd If,x

sbcd ff,y

sbcd ff,z

sbcd #jjkk

sbcd gggg,x

sbcd gggg,y

sbcd gggg,z

sbcd hhll

sbcd e,x

sbcd e,y

sbcd e,z

MOTOROLA

B-9

II

II

Name Mode

SBCE IMM16

INDI6, X

INDI6, Y

INDI6,Z

EXT

SDE INH

STAA IND8, X

IND8, Y

IND8,Z

INDI6,X

INDI6, Y

INDI6, Z

EXT

E,X

E, Y

E,Z

STAB IND8, X

IND8, Y

IND8,Z

INDI6,X

INDI6, Y

INDI6,Z

EXT

E,X

E,Y

E,Z

STD IND8, X

IND8, Y

IND8,Z

INDI6,X

INDI6, Y

INDI6,Z

EXT

E,X

E,Y

E,Z

STE INDI6, X

INDI6, Y

INDI6,Z

EXT

STED EXT

MOTOROLA

8-10

Syntax Name Mode Syntax

sbce #jjkk STS· IND8,X sts ff,x

sbce gggg,x IND8, Y . sts ff,y

sbce gggg,y IND8,Z sts ff,z

sbce gggg,z INDI6,X sts gggg,x

sbce hhll INDI6, Y sts gggg,y

sde INDI6,Z sts gggg,z

staa If,x EXT sts hhll

staa ff,Y STX IND8, X stx ff,x

staa ff,z IND8, Y stx ff,y

staa gggg,x IND8,Z stx ff,z

staa gggg,y INDI6,X stx gggg,x

staa gggg,z INDI6, Y stx gggg,y

staa hhll INDI6, Z stx gggg,z

staa e,x EXT sIX hhll

staa e,Y STY IND8, X sty ff,x

staa e,z IND8, Y sty ff,y

stab ff,x IND8,Z sty ff,z

stab If,y INDI6,X sty gggg,x

stab If,z INDI6, Y sty gggg,y

stab gggg,x INDI6,Z sty gggg,z

stab gggg,y EXT sty hhll

stab gggg,z Sl2 IND8, X stz (f,x

stab hhll IND8, Y stz ff,y

stab e,x IND8,Z stz ff,z

stab e,Y INDI6, X stz gggg,x

stab e,z INDI6, Y stz gggg,y

std ff,x INDI6,Z stz gggg,z

std ff,y EXT stz hhll

std If,z SUBA IND8, X suba ff,x

std gggg,x IND8, Y suba If,y

std gggg,y IND8,Z suba ff,z

std gggg,z IMM8 suba #ii

std hhll INDI6,X suba gggg,x

std e,x INDI6, Y suba gggg,y

std e,y INDI6,Z suba gggg,z

std e,z EXT suba hhll

ste gggg,x E,X suba e,x

ste gggg,y E, V suba e,y

ste gggg,z E,Z suba e,z

ste hhll

sted hhll

APPENDIX B CPU16 REFERENCE MANUAL

MOTOROLA ASSEMBLER SYNTAX

Name Mode Syntax Name Mode

SUBB INDB,X subb If,x TEKB INH

INDB, Y subb II,y TEM INH

INDB,Z subb ff,z TMER INH

IMMB subb #ii TMET INH

IND16, X subb gggg,x TMXED INH

IND16, Y subb gggg,y TPA INH

IND16,Z subb gggg,z TPD INH

EXT subb hhll TSKB INH

E,X subb e,x TST INDB,X

E,Y subb e,y INDB, Y

E,Z subb e,z INDB,Z

SUBD INDB, X subd If,x IND16,X

INDB, Y subd If,y IND16, Y

INDB,Z subd If,z IND16,Z

IMM16 subd #jjkk EXT

IND16,X subd gggg,x TSTA INH

IND16, Y subd gggg,y TSTB INH

IND16,Z subd gggg,z TSTO INH

EXT subd hhll TSTE INH

E,X subd e,x TSlW IND16,X

E,Y subd e,y IND16, Y

E,Z subd e,z IND16,Z

SUBE IMM16 sube #jjkk EXT

IND16,X sube gggg,x TSX INH

IND16, Y sube gggg,y TSY INH

IND16, Z sube gggg,z TSZ INH

EXT sube hhll TXKB INH

SWI INH swi TXS INH

SXT INH sxt TXY INH

TAB INH tab TXZ INH

TAP INH tap TYKB INH

TBA INH tba TYS INH

TBEK INH tbek TVX INH

TBSK INH tbsk TYZ INH

TBXK INH tbxk 1ZKB INH

TBYK INH tbyk 1ZS INH

TBZK INH tbzk TZX INH

TOE INH tde 1ZY INH

TOMSK INH tdmsk WAI INH

TOP INH tdp XGAB INH

TED INH ted XGDE INH

TEDM INH tedm XGDX INH

CPU16 REFERENCE MANUAL APPENDIX B

MOTOROLA ASSEMBLER SYNTAX

Syntax

tekb

tem

tmer

tmet

tmxed

tpa

tpd

tskb

tst ff,x

tst If,y

tst If,z

tst gggg,x

tst gggg,y

tst gggg,z

tst hhll

tsta

tstb

tstd

tste

tstw If,x

tstw ff,y

tstw If,z

tstw hhll

tsx

tsy

tsz

txkb

txs

txy

txz

tykb

tys

tyx

tyz

tzkb

tzs

tzx

tzy

wai

xgab

xgde

xgdx

MOTOROLA

8-11

II

II

Name

XGDY INH

XGDZ INH

XGEX INH

XGEY INH

XGEZ INH

MOTOROLA

8-12

Mode Syntax

xgdy

xgdz
xgex
xgey

xgez

APPENDIX B
MOTOROLA ASSEMBLER SYNTAX

CPU16 REFERENCE MANUAL

A range of bits, 2-5
A specific bit, 2-5

-A-

ABA - Add B to A, 5-5, 5-6, 5-7, 6-3
ABX - Add B to IX, 5-23, 6-4
ABY - Add B to IY, 5-23, 6-5
ABZ - Add B to IZ, 5-23, 6-6
Access alignment, 8-2
Access size, 8-2
Accumulator offset addressing mode, 4-6
Accumulators, 3-3
ACED-Add E: DtoAM,5-27, 6-8,11-10
ACE-Add EtoAM, 5-27, 6-7,11-10
ADCA - Add with Carry to A, 5-5, 5-6, 5-7, 6-9
ADCB - Add with Carry to B, 5-5, 5-6, 5-7, 6-10
ADCD - Add with Carry to D, 5-5, 5-6, 6-11
ADCE -Add with Carry to E, 5-5, 5-6, 6-12
ADDA - Add to A, 5-5, 5-6, 5-7, 6-13
ADDB -Add to B, 5-5, 5-6, 5-7,6-14
ADDD - Add to D, 5-5, 5-6, 6-15
ADDE - Add to E, 5-5, 5-6, 6-16
Addition instructions, 5-4
ADDR,2-5
Address extension instructions; 5-25
Address extension register, 3-6
Address extension, 3-7
Address mask, 11-2
Address strobe, 3-12
Addresses, 20-bit

4-bit bank address, 3-7
16-bit byte address, 3-7

Addressing
Address bus, 3-12
Address space encoding, 3-11
Address strobe, 3-12
Effective address calculation, 3-9
Effective addresses and extension fields, 3-9

Addressing modes, 2-3, 4-4
Accumulator offset, 4-6
Extended, 4-5
Immediate, 4-5
Indexed, 4-5
Inherent, 4-6

CPUIS REFERENCE MANUAL

INDEX

Post-modified index, 4-6
Relative, 4-6

ADE - Add D to E, 5-5, 5-6, 6-17
ADX - Add D to IX, 5-23, 6-18
ADY -Add D to IY, 5-23, 6-19
ADZ - Add D to IZ, 5-23, 6-20
AEX - Add E to IX, 5-23, 6-21
AEY - Add E to IY, 5-23, 6-22
AEZ - Add E to IZ, 5-23, 6-23
AIS - Add Immediate Value to SP, 5-26, 6-24
AIX - Add Immediate Value to IX, 5-23, 6-25
AIY - Add Immediate Value to IY, 5-23, 6-26
AIZ - Add Immediate Value to IZ, 5-23, 6-27
ANDA-AND A, 5-11, 6-28
ANDB-AND B, 5-11, 6-29
ANDD - AND D, 5-11, 6-30
ANDE-AND E, 5-11, 6-31
ANDP - AND Condition Code Register, 5-27, 6-32
ASLA - Arithmetic Shift Left A, 5-13, 6-34
ASLB - Arithmetic Shift Left B, 5-13, 6-35
ASLD - Arithmetic Sh~t Left D, 5-13, 6-36
ASLE - Arithmetic Shift Left E, 5-13, 6-37
ASLM - Arithmetic Shift Left AM, 5-27, 6-38, 11-11
ASLW - Arithmetic Shift Left Word, 5-13, 6-39
ASL - Arithmetic Shift Left, 5-13,6-33
ASRA - Arithmetic Shift Right A, 5-13, 6-41
ASRB - Arithmetic Shift Right B, 5-13, 6-42
ASRD - Arithmetic Shift Right D, 5-13, 6-43
ASRE - Arithmetic Shift Right E, 5-13,6-44
ASRM - Arithmetic Shift Right AM, 5-27, 6-45
ASRW -Arithmetic Shift Right Word, 5-13,6-46
ASR - Arithmetic Shift Right, 5-13, 6-40

INDEX

Asserted, 2-5
Assig nable interrupt vectors, 9-14
Asynchronous exceptions, 9-9
Asynchronous interrupts, 7-9
Automatic interrupt vectors, 9-14
Autovector signal, 3-13

MOTOROLA

1-1

II

-8-

Background Debugging Mode (BDM)
Command execution, 10-12
Command format, 10-19
Command set, 10-21
Enable logic, 10-10
Returning from, 10-14
Serial Interface, 10-14
Signals, 10-12
Sources, 10-11

Background mode instruction, 5-30
BCC - Branch If Carry Clear, 5-16, 6-47
BCLRW - Clear Bits in a Word, 5-11,6-49
BCLR - Clear Bits, 5-11, 6-48
BCS - Branch If Carry Set, 5-16, 6-50
BDM commands

GO - Execute Instructions From PK : PC, 10-36
NOP - Null Operation, 10-37
RDMAC - Read MAC Register Set, 10-26
RDMEM - Read Data Space Memory, 10-32
RPCSP - Read PC and SP, 10-30
RPMEM - Read Program Space Memory, 10-34
RREGM - Read Registers From Mask, 10-22
WDMEM - Write Data Space Memory, 10-33
WPCSP - Write PC and SP, 10-31
WPMEM - Wr~e Program Space Memory, 10-35
WREGM - Write Registers From Mask, 10-24
WRMAC - Write MAC Register Set, 10-28

BDM command execution, 10-12
BDM command format

Command extension word, 10-12, 10-19
Command operation word, 10-19

BDM enable logic, 10-10
BDM serial interface, 10-14
BDM serial interface signals

DSCLK, 10-12, 10-15
DSI,10-12
DSO, 10-12

BDM serial logic
CPU serial logic, 10-16
Development system serial logic, 10-17

BDM Sources, 10-11
BDM signals

BKPT, 9-13, 10-9, 10-11
FREEZE, 10-10

BEQ - Branch If Equal to Zero, 5-16,6-51
BGE - Branch If ~ Zero, 5-16, 6-52

BGND - Enter BDM, 5-30, 6-53, 9-16,10-11
BGT - Branch If> Zero, 5-16, 6-54

BHI- Branch If Higher, 5-16, 6-55
Binary Coded Decimal instructions, 5-7
Bit condition branch instructions, 5-19
Bit condition branches, 7-7

MOTOROLA

1-2

Bit Test and Manipulation instructions, 5-11
BITA - Bit Test A, 5-11,6-56
BITB - BitTest B, 5-11,6-57
Bits, 4-1
BLE - Branch,;; Zero, 5-16, 6-58
BLS - Branch If Lower or Same, 5-16, 6-59
BL T - Branch If < Zero, 5-16, 6-60

BMI- Branch If Minus, 5-16, 6-61
BNE - Branch If oF to Zero, 5-16, 6-62

Boolean logic instructions, 5-10
BPL - Branch If Plus, 5-16, 6-63
Branches, 5-15

Bit conditional, 7-7
Execution time, 8-4
Long, 5-17, 7-7
Numeric range of offset values, 5-19, 5-20, 7-7
Range of displacement, 7-7
Short, 5-15, 7-7
Signed, 5-15, 5-17
Signed 8-bit offset, 5-15
Signed 16-bit offset, 5-17
Signed relative offset, 5-19
Simple, 5-15, 5-17
Unary, 5-15, 5-17
Unsigned conditional, 5-15
Unsigned,5-17

BRA- Branch Always, 5-16, 6-64, 8-4
BRCLR- Branch if Bits Clear, 5-19, 6-65, 8-4
Breakpoint exception (BKPT), 9-14.10-9
Breakpoint requests, 10-17
Breakpoint signal BKPT, 9-14, 10-9, 10-11
BRN - Branch Never, 5-16, 5-30, 6-66, 8-4
BRSET - Branch if Bits Set, 5-19, 6-67, 8-4
BSETW - Set Bits in a Word, 5-11,6-69
BSET - Set Bits in a Byte, 5-11, 6-68
BSR - Branch to Subroutine, 5-21, 6-70, 8-4
Bus control signals, 3-10

Address strobe AS, 3-12
Data strobe DS, 3-12
Function codes FC2-FCO, 3-12
Size signals SIZO/SIZ1, 3-11
Read/write signal R/W, 3-11

Bus cycle termination signals, 3-12
Autovector signal AVEC, 3-13
Bus error signal BERR, 3-12
Data size acknowledge signals

DSACKO, DSACK1, 3-12

INDEX

Halt signal HALT, 3-12
Bus cycles required for operand accesses, 8-1
Bus cycles required to prefetch next instruction, 8-1
Bus error (BERR) exception, 9-12
Bus error signal, 3-12
BVC - Branch If Overflow Clear, 5-16, 6-71
BVS ~ Branch If Overflow Set, 5-16, 6-72

CPU16 REFERENCE MANUAL

-c-
C - Carry Flag, 3-5
Calculating instruction execution times, 8-7
Calling instructions, 7-8
CBA - Compare B to A, 5-8, 6-73
Change of flow instructions and execution time, 8-3
Changes in program flow, 7-6

Branches, 7-7
Interrupts, 7-9
Jumps, 7-6
Subroutines, 7-8

Circular buffers, 11-2
Clear instructions, 5-10
Cleared, 2-5
CLRA - Clear A, 5-10, 6-75
CLRB - Clear B, 5-10, 6-76
CLRD - Clear D, 5-10, 6-77
CLRE - Clear E, 5-10, 6-78
CLRM - Clear AM, 5-27, 6-79, 11-11
CLRW - Clear a Word in Memory, 5-10, 6-80
CLR - Clear a Byte in Memory, 5-10, 6-74
CMPA - Compare A, 5-8, 6-81
CMPB - Compare B, 5-8, 6-82
COMA - Ones Complement A, 5-10, 6-84
COMB - Ones Complement B, 5-10, 6-85
COMD-Ones Complement D, 5-10, 6-86
COME - Ones Complement E, 5-10, 6-87
Command sequence diagram, 10-19
Compare instructions, 5-8
Complement instructions, 5-10
COMW - Ones Complement Word, 5-10, 6-88
COM - Ones Complement Byte, 5-10, 6-83
Condition code evaluation, 6-267
Condition code expressions, 2-2, 6-266
Condition code instructions, 5-27
Condition code register bits, 2-2, 3-4

C - Carry Flag, 3-5
EV - Extension Bit Overflow Flag, 3-5
H - Half Carry Flag, 3-5
IP[2:0)-lnterrupt Priority Field, 3-5, 9-15
MV - AM overflow flag, 3-5
N - Negative Flag, 3-5
PK[3:0)- PC Address Extension Field, 3-5
S - STOP Enable, 3-5
SM - Saturate Mode Bit, 3-5
V - Overflow Flag, 3-5
Z - Zero Flag, 3-5

Condition code register, 3-4
Conventions, 2-5
Convergent rounding, 11-7
CPD - Compare D, 5-8, 6-89
CPE - Compare E, 5-8, 6-90
CPS - Compare SP, 5-26, 6-91
CPU serial logic, 10-16

CPU16 REFERENCE MANUAL INDEX

CPX - Compare IX, 5-23, 6-92
CPV - Compare IV, 5-23, 6-93
CPZ - Compare IZ, 5-23, 6-94

-0-

DM - Decimal Adjust A, 5-7, 6-95
Data bus width and execution time, 8-2
Data bus, 3-12
Data memory, 4-2
Data movement instructions, 5-2
Data saturation, 11-5
Data strobe, 3-12
Data size acknowledge signals, 3-12

DSACKO, 3-12
DSACK1,3-12

Data transfer mechanism, 3-13
Data types, 4-1

4-bit signed integers, 4-1
8-bit signed and unsigned integers, 4-1
8-bit, 2-digit binary coded decimal numbers, 4-1
16-bit signed and unsigned integers, 4-1
16-bit signed fractions, 4-1
20-bit addresses, 3-7
32-bit signed and unsigned integers, 4-1
32-bit signed fractions, 4-1
36-bit signed fixed-point numbers, 4-1

DATA,2-5
DECA - Decrement A, 5-9, 6-98
DECB - Decrement B, 5-9, 6-99
Decrement instructions, 5-9
DECW - Decrement Word, 5-9, 6-100
DEC - Decrement Byte, 5-9, 6-97
Definition of exception, 9-1
Deterministic opcode tracking, 10-1
Deterministic opcode tracking signals, 10-1

Demux to pipeline state signals, 10-1
Demux logic, 10-3
IPIPEO, 10-1, 10-3, 10-12
IPIPE1,10-1,10-3,10-12
Multiplexing, 10-3

Development system serial logic, 10-17
Digital signal processing (DSP), 11-1

Address mask, 11-2
Circular buffers, 11-2
Convergent rounding, 11-7
Data saturation, 11-5
Extension bit overflow, 11-4
Finite impulse response filters, i 1-2
MAC accumulator overflow, 11-4
MAC accumulator, 11-2
MAC data types, 11-3
MAC multiplicand register, 11-2
MAC multiplier register, 11-2

MOTOROLA

1-3
II

a

MAC unit, 11-2
MAC XV mask register, 11-2
Modulo addressing, 11-2
Saturation value, 11-5
Sign bit overflow, 11-5
Sign latch, 11-5
XMSK, 11-8, 11-9
VMSK, 11-8, 11-9

Digital signal processing instructions, 5-27
Division by zero exception, 9-15
Division instructions, 5-8
Division operations, 5-8
DSCLK, 10-12, 10-15
DSI, 10-12
DSO, 10-12
Dynamic bus sizing, 3-13,8-1

-E-
EDIVS - Extended Signed Integer Divide, 5-9, 6-102
ED IV - Extended Unsigned Integer Divide, 5-9, 6-10
Effective address calculation, 3-9
Effective addresses and extension fields, 3-9'
EMULS - Extended Signed Multiply, 5-9, 6-104
EMUL - Extended Unsigned Multiply, 5-9, 6-103
Enabling BDM, 10-10 '
Entering BDM, 10-12
EORA - EOR A, 5-11, 6-105
EORB- EOR B, 5-11, 6-106
EORD -EOR D, 5-11, 6-107
EORE - EOR E, 5-11, 6-108
EV - Extension Bit Overflow Flag, 3-5
Exceptions, 7-9, 9-1

Asynchronous, 9-9
Bus error (BERR), 9-12
Breakpoint (BKPT), 9-14,10-9
Definitipn, 9-1
Division by zero, 9-16
External, 9-2
Illegal instruction, 9-16
Internal, 9-2
Interrupt, 7-9, 9-14
Multiple, 9-9
Processing sequence, 9-3
Processing, 9-1
Simultaneous, 9-9
Stack frame, 9-3
Synchronous, 9-16
Types, 9-2
Vectors, 9-1

Exchange instructions, 5-4
Execution model, 7-3
Execution of instructions

Execution model, 7-3

MOTOROLA

1-4

Execution process, 7-4
Execution unit, 7-3, 7-4, 10-1
Instruction fetches, 4-2
Instruction format, 2-3, 7-1
Instruction pipeline flow, 10-5
Instruction pipeline, 7-3, 7-4, 10-1
Microsequencer, 7-3, 10-1
Opcodes, 7-1
Operands, 7-1
Page 0 opcode, 7-1
Prefetch mechanism, 7-4

Execution time components, 8-1
Extended addressing modes, 4-5
Extension bit overflow, 11-4
Extension fields, 3-7
Extension words, 10-12, 1 0-19
External Bus Interface (EBI), 3-10

Bus control signals, 3-10
Bus cycle termination signals, 3-12
Data transfer mechanism, 3-13
Data size acknowledge signals, 3-12
Dynamic bus sizing, 3-13, 8-1

External exceptions, 9-2

-F-
FDIV - Fractional Divide, 5-9, 6-109
Finite impulse response filters, 11-2
FMULS -Signed Fractional Multiply, 5-9, 6-110, 11-10
Fractional multiplication and division, 5-8
FREEZE signal, 10-12
Function codes (FC2-FCO), 3-11

-H
H - Half Carry Flag, 3-5
Handler routine, 9-1
HC11 Direct mode, 4-6

-1-

IDIV - Integer Divide, 5-9, 6-111
Illegal instruction exception, 9-15
Immediate addressing modes, 4-5
Implied radix point, 5-8

INDEX

INCA -Increment A, 5-9, 6-113
INCB -Increment B, 5-9, 6-114
Increment instructions, 5-9
INCW -Increment Word, 5-9, 6-115
INC -Increment Byte, 5-9, 6-112
Index registers, 3-3
Indexed addressing modes, 4-5
Indexing instructions, 5-23
Inherent addressing mode, 4-6

CPU16 REFERENCE MANUAL

Instruction fetches, 4-2
Instruction format, 2-3, 7-1

8-Bit Opcode, 4-Bit Index Extensions, 7-2
8-Bit Opcode, 8-Bit Operand, 7-2
8-Bit Opcode, 8-Bit Prebyte, Argument(s), 7-2
8-Bit Opcode, 8-Bit Prebyte, No Argument, 7-2
8-Bit Opcode, 20-Bit Argument, 7-2

Instruction pipeline, 7-3, 7-4, 10-1
Flow, 10-5
Stages, 10-1
States, 10-3

Instruction pipeline state signals, 10-1, 10-5
ADVANCE,10-5
EXCEPTION, 10-5
FETCH,10-5
INVALlD,10-5
NULL,10-4
START,10-4

Instruction set, 5-1
Instruction timing, 8-1

Access alignment, 8-2
Access size, 8-2
Bus cycles for operand accesses, 8-1
Bus cycles for prefetch, 8-1
Calculating execution times, 8-7
Components, 8-1
Data bus width, 8-2
Dynamic bus sizing, 8-1
Effect of branches, 8-4
Effect of software interrupts, 8-4
Effect of stack manipulation instructions, 8-5
Effect of Stop and Wait instructions, 8-5
Internal operation time, 8-7
Operand access time, 8-2
Prefetch access time, 8-2
Program access time, 8-2
Total execution time, 8-2

Instruction types, 5-1
Addition, 5-4
Address extension, 5-25
Background mode, 5-30
Binary Coded Decimal, 5-7
Bit Condition Branch, 5-19
Bit test and manipulation, 5-11
Boolean logic, 5-10
Clear, 5-10
Compare, 5-8
Complement, 5-10
Condition code, 5-27
Data movement, 5-2
Decrement, 5-9
Division, 5-8
Digital signal processing, 5-27
Exchange, 5-4

CPU16 REFERENCE MANUAL INDEX

Increment, 5-9
Indexing, 5-23
Interrupt, 5-15,5-22
Jump, 5-15, 5-20
Load,5-2
Long branch, 5-17, 7-7
Mathematic, 5-4
Move, 5-2, 8-6
Multiplication, 5-8
Negate, 5-10
Null,5-30
Program control, 5-15
Rotate, 5-12
Shift, 5-12
Short branch, 5-15, 7-7
Stacking, 5-25
Stop, 5-29, 8-5
Store, 5-3
Subroutine, 5-15, 5-20
Subtraction, 5-4
Test, 5-8
Transfer, 5-3
Wait, 5-29, 8-5

Intermodule bus (1MB), 3-10
Internal exceptions, 9-2
Internal operation time, 8-7
Interrupts, 7-9, 9-15

Assignable vectors, 9-14
Asynchronous, 7-9
Automatic vectors, 9-14
Autovector signal, 3-13
Exception processing, 7-9, 9-16
Instructions, 5-15, 5-22
Interrupt Priority Field, 3-5, 9-15
Latency, 9-9
Non-maskable (NMI), 9-15
Priority, 9-15
Priority mask, 5-1, 9-15
Recognition, 9-15
Requests, 9-14
Return from, 9-17
Software, 8-4, 9-17
Stack frame, 5-1
Synchronous exceptions, 9-16

Interrupt request signals (IRQ7-IRQ1), 9-14
In-circuit emulation, 10-9
IP[2:0j-lnterrupt Priority Field, 3-5, 9-14
IP mask, 9-15
IPIPEO and IPIPE1 demux logic, 10-3
IPIPEO, 10-1, 10-3, 10-12
IPIPEO/IPIPE1 multiplexing, 10-3
IPIPE1, 10-1, 10-3, 10-12

MOTOROLA

1-5

II

- JKL

JMP -Jump, 5-20, 6-116, 8-4
JSR - Jump to Subroutine, 5-21, 6-117, 8-4
Jump instructions, 5-15, 5-20
K register (address extension register), 3-4
LBCC - Long Branch II Carry Clear, 5-18, 6-118
LBCS - Long Branch II Carry Set, 5-18, 6-119
LBEQ-Long Branch If = Zero, 5-18, 6-120
LBEV-Long Branch IIEV Set, 5-18, 6-121,11-12
LBGE - Long Branch II ~Zero, 5-18, 6-122
LBGT - Long Branch II > Zero, 5-18, 6-123
LBHI- Long Branch II Higher, 5-18, 6-124
LBLE - Long Branch II s Zero, 5-18, 6-125

LBLS - Long Branch II Lower or Same, 5-18, 6-126
LBL T - Long Branch II < Zero, 5-18, 6-127
LBM 1- Long Branch If Minus, 5-18, 6-128
LBMV - Long Branch If MV Set, 5-18, 6-129, 11-12
LBNE - Long Branch II .. Zero, 5-18, 6-130
LBPL - Long Branch II Plus, 5-18, 6-131
LBRA - Long Branch Always, 5-18, 6-132, 8-4
LBRN - Long Branch Never, 5-18, 5-30, 6-133, 8-4
LBSR - Long Branch to Subroutine, 5-21, 6-134, 8-4
LBVC - Long B~anch If Overflow Clear, 5-18, 6-135
LBVS - Long Branch II Overflow Set, 5-18, 6-136
LDAA - Load A, 5-2, 6-137
LDAB - Load B, 5-2, 6-138
LDD - Load D, 5-2, 6-139, 8-8
LDED-Load E: D,5-2, 6-141,11-8
LDE - Load E, 5-2, 6-140
LDHI- Load MAC H and 1,5-27,6-142,11-6
LDS - Load Stack Pointer, 5-26, 6-143
LDX - Load IX, 5-23,6-144
LDY - Load IY, 5-23,6-145
LDZ - Load IZ, 5-23, 6-146
Load instructions, 5-2
Logic level one, 2-5
Logic level zero, 2-5
Logic shift left, 5-13
Long branch instructions, 5-17, 7-7
Long branches and execution time, 8-4
Long word, 4-2
Loop counters, 5-9
LPSTOP - Low Power Stop, 5-29, 6-147, 8-5
LSB,2-5
LSRA - Logic Shift Right A, 5-12, 6-149
LSRB - Logic Shift Right B, 5-12, 6-150
LSRD - Logic Shift Right D, 5-12, 6-151
LSRE - Logic Shift Right E, 5-12, 6-152
LSRW - Logic Shift Right Word, 5-12, 6-153
LSR - Logic Shift Right, 5-12, 6-148
LSW, 2-5

MOTOROLA

1-6

-M
MAC accumulator overflow, 11-4
MAC accumulator, 11-2
MAC data types, 11-3 .
MAC multiplicand register, 11-2
MAC multiplier register, 11-2
MAC unit, 11-2
MAC XY mask rEfgister, 11-2
MAC - Multiply and Accumulate, 5-28, 6-154, 11-8
Mapping 01 vector number to vector table, 9-1
Mask operand, 5-19
Mathematic instructions, 5-4
MC68HCll instructions, 5-31
Memory addressing, 2-2
Memory management, 3-6

Address extension, 3-7
Address extension fields, 3-6, 3-7
Address extension register, 3-6

Memory organization, 4-2
Data bus, 3-12
Data memory, 4-2
Operand alignment, 3-14
Program memory, 4-2

Microcontroller module breakpoints, 10-11
Microsequencer, 7-3,10-1
Misaligned operands, 3-15
Misaligned word, 4-2
Modulo addressing, 11-2
MOVB - Move Byte, 5-2, 6-156, 8-6
Move instructions, 5-2, 8-6
MOVW - Move Word, 5-2, 6-157, 8-6
MSB,2-5
MSW,2-5
Multiple exceptions, 9-9
Multiplication instructions, 5-8
Multiply and accumulate (MAC),II-1

INDEX

Accumulator overflow, 11-4
Accumulator, 11-2
Data types, 11-3
Instruction execution time, 8-6
Multiplicand register, 11-2
Multiplier register, 11-2
Registers, 3-6
Unit, 11-2
XV mask register, 11-2

MUL- Unsigned Multiply, 5-9, 6-158
MV - Accumulator M overflow flag, 3-5

CPU16 REFERENCE MANUAL

-N-
N - Negative Flag, 3-5
Negate instructions, 5-10
Negated, 2-5
Negative integers, 4-1
NEGA - Negate A, 5-10,6-160
NEGB - Negate B, 5-10, 6-161
NEGD- Negate 0, 5-10, 6-162
NEGE- Negate E, 5-10, 6-163
NEGW - Negate Word, 5-10,6-164
NEG - Negate Byte, 5-10, 6-159, 8-9
Notation, 2-1

A range of bits, 2-5
A specific bit, 2-5
ADDR,2-5
Addressing modes, 2-3, 4-4
Asserted, 2-5
Cleared, 2-5
Condition Code Expressions, 2-2
Condition Code Register Activity, 2-2
Condition Code Register Bits, 2-2
Conventions, 2-5
DATA,2-5
Instruction format, 2-3
Logic level one, 2-5
Logic level zero, 2-5
LSB,2-5
LSW,2-5
Memory addressing, 2-2
MSB, 2-5
MSW,2-5
Negated, 2-5
Parentheses, 2-5
Register notation, 2-1
Set, 2-5
Symbols and operators, 2-4

Non-maskable interrupt (NMI), 9-15
NOP - Null Operation, 5-30, 6-165
Null instructions, 5-30
Numeric range of bit-related branch offset, 5-20
Numeric range of long branch offset, 5-19, 7-7
Numeric range of short branch offset, 5-17, 7-7

Opcode map, 5-1, 7-9
Opcodes, 7-1, 7-9

-0-

Operand access time, 8-2
Operand accesses, 8-2, 8-3
Operand alignment, 3-14
Operands, 7-1
Operation word,10-19
ORAA-OR A, 5-11,6-166
ORAB-OR B, 5-11,6-167

CPU16 REFERENCE MANUAL

ORO-OR 0, 5-11, 6-168
ORE -OR E, 5-11, 6-169
ORP - OR Condition Code Register, 5-27, 6-170

Page 0 opcode, 7-1
Parentheses, 2-5

-p-

Pipeline state signals, 10-1, 10-4
Pipeline states, 10-3
Post-modified index addressing mode, 4-6
Prefetch mechanism, 7-4

INDEX

Prefetches, 8-2
Processor Reset (RESET), 9-10
Program access time, 8-2
Program control instructions, 5-15
Program counter address extension, 3-8
Program counter, 3-4
Program memory, 4-2
PSHA- Push A, 5-26, 6-171,8-5
PSHB - Push B, 5-26, 6-172, 8-5
PSHMAC- Push MAC Registers, 5-28, 6-174,11-11
PSHM - Push Multiple Registers, 5-26, 6-173, 8-5
PULA- Pull A, 5-26, 6-175, 8-5
PULB - Pull B, 5-26, 6-176, 8-5
PULMAC - Pull MAC Registers, 5-28, 6-178,11-12
PULM - Pull Multiple Registers, 5-26, 6-177, 8-5

-R-
RNJ signal, 3-11
Range of displacement, 7-7
Register model, 3-1
Register notation, 2-1
Relative addressing modes, 4-6
Return from Interrupt, 9-17
Returning from BDM, 10-14
RMAC - Repeating MAC, 5-28, 6-179, 8-6, 11-9
ROLA - Rotate Left A, 5-14, 6-182
ROLB - Rotate Left B, 5-14, 6-183
ROLD - Rotate Left 0, 5-14, 6-184
ROLE - Rotate Left E, 5-14, 6-185
ROLW-Rotate LeftWard, 5-14, 6-186
ROL- Rotate Left Byte, 5-14, 6-181
RORA - Rotate Right A, 5-14, 6-188
RORB - Rotate Right B, 5-14, 6-189
RORD - Rotate Right 0, 5-14, 6-190
RORE- Rotate Right E, 5-14, 6-191
RORW-Rotate RightWard, 5-14, 6-192
ROR-Rotate Right Byte, 5-14, 6-187
Rotate instructions, 5-12
RTI- Return From Interrupt, 5-22,6-193,8-4,9-17
RTS - Return From Subroutine, 5-21, 6-194, 8-4

MOTOROLA

1-7
II

II

S - STOP Enable, 3-5
Saturation value, 11-5

-5-

SBA - Subtract B from A, 5-5, 5-6, 6-195
SBCA - Subtract with Carry from A, 5-5, 5-6, 6-196
SBCB - Subtract with Carly from B, 5-5, 5-6, 6-197
SBCD - Subtract with Carry from 0, 5-5, 5-6, 6-198
SBCE - Subtract with Carry from E, 5-5, 5-6, 6-199
SDE - Subtract 0 from E, 5-5, 5-6, 6-200
Serial interface clock signal, 10-15
Set, 2-5
Shift instructions, 5-12
Short branch instructions, 5-15, 7-7
Short branches and execution time, 8-4
Sign bit overflow, 11-5
Sign latch, 11-5
Signed 8-bit offset, 5-15
Signed 16-bit offset, 5-17
Signed branches, 5-15,5-17
Signed relative offset, 5-19
Simple branches, 5-15,5-17
Simultaneous exceptions, 9-9
Size signals (SIZO, SIZ1), 3-11
SM - Saturate Mode Bit, 3-5
Software interrupts, 8-4, 9-17
STAA - Store A, 5-3, 6-201
STAB - Store B, 5-3, 6-202
Stack manipulation and execution time, 8-5
Stack pointer, 3-4
Stacking instructions, 5-25
STD - Store 0, 5-3, 6-203
STED - Store E : 0, 5-3, 6-205, 8-10, 11-8
STE - Store E, 5-3, 6-204
Stop instruction, 5-29, 8-5
Store instructions, 5-3
STS - Store Stack Pointer, 5-26, 6-206
STX - Store IX, 5-24, 6-207
STY - Store IV, 5-24, 6-208
STZ - Store IZ, 5-24, 6-209
SUBA - Subtract -from A, 5-5, 5-6, 6-210
SUBB - Subtract from B, 5-5,5-6,6-211
SUBD - Subtract from 0, 5-5, 5-6, 6-212
SUBE - Subtract from E, 5-5, 5-6, 6-213
Subroutine instructions, 5-15, 5-20
Subroutines, 5-20, 7-8
Subtraction instructions, 5-4
SWI- Software Interrupt, 5-22, 6-214, 8-4, 9-17
SXT - Sign Extend B into A, 5-7, 6-215
Symbols and operators, 2-4
Synchronous exceptions, 7-9, 9-16
System resources, 3-1

Accumulators, 3-3
,Address extension register, 3-3
Condition code register, 3-4

Index registers, 3-3
MAC unit registers, 3-4
Program counter, 3-4
Stack pointer, 3-4

-T-
TAB - Transfer A to B, 5-3, 6-216
TAP - Transfer A to CCR, 5-27, 6-217
TBA - Transfer B to A, 5-3, 6-218
TBEK - Transfer B to EK, 5-25, 6-219
TBSK - Transfer B to SK, 5-25, 6-220
TBXK - Transfer B to XK, 5-25, 6-221
TBVK - Transfer B to VK, 5-25, 6-222
TBZK - Transfer B to ZK, 5-25, 6-223
TOE - Transfer D to E, 5-3, 6-224
TDMSK - Transfer 0 to XJY MSK, 5-28, 6-225, 11-6
TOP - Transfer D to CCR, 5-27, 6-226
TEDM - Transfer E and D to AM, 5-28, 6-228, 11-6
TED - Transfer E to 0, 5-3, 6-227
TEKB - Transfer EK to B, 5-25, 6-229
TEM - Transfer E to AM, 5-28, 6-230, 11-6
Test instructions, 5-8
Time required for internal operations, 8-1
TMER -Transfer Rounded AM to E, 5-28, 6-231, 11-7
TMET - Transfer Trunc AM to E, 5-28, 6-232, 11-7
TMXED - Transfer AM to IX : E : 0, 5-28, 6-233, 11-8
Total execution time, 8-2
TPA - Transfer CCR to A, 5-27, 6-234
TPD - Transfer CCR to D, 5-27, 6-235
Transfer instructions, 5-3
TSKB - Transfer SK to B, 5-25, 6-236
TSTA - Test A, 5-8, 6-238
TSTB - Test B, 5-8, 6-239
TSTD - Test D, 5-8, 6-240
TSTE- Test E, 5-8, 6-241
TSTW - Test Word, 5-8, 6-242
TST'- Test Byte, 5-8, 6-237
TSX - Transfer SP to IX, 5-24, 5-26, 6-243
TSV - Transfer SP to IV, 5-24, 5-26, 6-244
TSZ - Transfer SP to IZ, 5-24, 5-26, 6-245
TXKB - Transfer XK to B, 5-25, 6-246
TXS - Transfer IX to SP, 5-24, 5-26, 6-247
TXV - Transfer IX to IV, 5-24, 6-248
TXZ - Transfer IX to IZ, 5-24, 6-249
TYKB - Transfer VK to B, 5-25, 6-250
Types of exceptions, 9-2
TYS - Transfer IV to SP, 5-24, 5-26, 6-251
TYX - Transfer IV to IX, 5-24, 6-252
TVZ - Transfer IV to IZ, 5-24, 6-253
TZKB - Transfer ZK to B, 5-25, 6-254
TZS - Transfer IZ to SP, 5-24, 5-26, 6-255
TZX - Transfer IZ to IX, 5-24, 6-256
TZV - Transfer IZ to IV, 5-24, 6-257

INDEX CPU16 REFERENCE MANUAL -

- uvw-
Unary branch instructions, 5-15, 5-17
Unsigned branches, 5-17
Unsigned conditional branches, 5-15
V - Overflow Flag, 3-5
Vector numbers, 9-1
Wait instruction, 5-29, 8-5
WAI- Wait for Interrupt, 5-29, 6-258, 8-5
Word, 4-1, 4-2

- XYZ-

XGAB - Exchange A and B, 5-4, 6-259
XGDE - Exchange 0 and E, 5-4, 6-260
XGDX - Exchange 0 and IX, 5-24, 6-261
XGDV - Exchange 0 and IV, 5-24, 6-262
XGDZ - Exchange 0 and IZ, 5-24, 6-263
XGEX - Exchange E and IX, 5-24, 6-264
XGEV - Exchange E and IV, 5-24, 6-265
XGEZ - Exchange E and IZ, 5-24, 6-266
XMSK,11-8,11-9
VMSK, 11-8, 11-9
Z - Zero Flag, 3-5

CPU16 REFERENCE MANUAL INDEX MOTOROLA
1-9

a MOTOROLA

1-10

INDEX CPU16 REFERENCE MANUAL

OVERVIEW II
NOTATION II

SYSTEM RESOURCES II
DATA TYPES AND II ADDRESSING MODES

INSTRUCTION SET II
INSTRUCTION GLOSSARY II

INSTRUCTION PROCESS II
INSTRUCTION TIMING II

EXCEPTION PROCESSING II
DEVELOPMENT SUPPORT a

DIGITAL SIGNAL PROCESSING II
A COMPARISON OF CPU16 AND II HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA ASSEMBLER SYNTAX II
INDEX

II OVERVIEW

II NOTATION

II SYSTEM RESOURCES

II DATA TYPES AND
ADDRESSING MODES

II INSTRUCTION SET

II INSTRUCTION GLOSSARY

II INSTRUCTION PROCESS

II INSTRUCTION TIMING

II EXCEPTION PROCESSING

II DEVELOPMENT SUPPORT

II DIGITAL SIGNAL PROCESSING

II A COMPARISON OF CPU16 AND
HC11 CPU ASSEMBLY LANGUAGE

II MOTOROLA ASSEMBLER SYNTAX

II INDEX
A30026-1 PRINTED IN USA 12191 GTE DIRECTORIES #14143 #25,000 MCU YGACAA

® MOTOROLA

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK145 BP, England.
JAPAN : Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong.

