

General Description

Programming Model

Operand Data Formats

Instruction Set

Coprocessor Programming _

Exception Processing __

Coprocessor Interface _

Instruction Execution Timing __

Functional Signal Descriptions ..

Bus Operation III
Interfacing Methods _

Electrical Specifications IfI
Ordering Information and Mechanical Data lEI

Glossary ~

Abbreviations and Acronyms _

Index

® MOTOROLA

MC68881/MC68882
FLOATING-POINT COPROCESSOR

USER'S MANUAL

First Edition

PRENTICE HALL, Englewood Cliffs, N.J. 07632

This document contains information on a new product. Specifications and
information herein are subject to change without notice. Motorola reserves
the right to make changes to any products herein to improve functioning or
design. Although the information in this document has been carefully re
viewed and is believed to be reliable, Motorola does not assume any liabiliy
arising out ofthe application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of
other.

Motorola, Inc. general policy does not recommend the use of its components in life support
applications where in a failure or malfunction of the component may directly threaten life or
injury. Per Motorola Terms and Conditions of Sale, the user of Motorola components in life
support applications assumes all risk of such use and indemnifies Motorola against all damages.

©MOTOROLA, INC., 1987

PREFACE

This manual assumes that the MC68881/MC68882 is connected as a coprocessor to the
MC68020/MC68030 microprocessor. If the MC68881/MC68882 is used in a system with
a main processor other than the MC68020/MC68030, it is expected that the main pro
cessor emulates the M68000 Family coprocessor interface as required by the MC688811
MC68882.

This manual is divided into two major parts. The first part, sections 2 through 8, describes
the programmer's model of the MC68881/MC68882 and the floating-point instruction set
that it implements. This part of the manual includes a detailed description of each in
struction and a section on instruction timing that can be used for program optimization
and to predict floating-point arithmetic performance.

The second part of the manual, sections 9 through 13, describes the hardware interface
of the MC68881/MC68882 to the main processor, and is most pertinent to system hard
ware designers. Bus cycle timing diagrams, interface register addressing, etc., are dis
cussed from the viewpoint of the MC68020/MC68030 hardware conventions. A prior
knowledge of the MC68020/MC68030 bus interface, particularly as it pertains to the
M68000 Family coprocessor interface, is quite helpful in understanding the operation of
the MC68881/MC68882 bus interface.

Throughout this manual, M68000 or M68000 Family is used to refer to the family of
devices that support the Motorola 68000 Family architecture. A number that is preceded
by MC, such as MC68020, MC68030, MC68881, or MC68882, refers to a specific part. A
reference to MC68881/MC68882 or FPCP applies to either floating-point coprocessor, and
a reference to MC68020/MC68030 or MPU applies to either main processor.

The sections and appendices of the manual are:
Section 1. General Description
Section 2. Programming Model
Section 3. Operand Data Formats
Section 4. Instruction Set
Section 5. Coprocessor Programming
Section 6. Exception Processing
Section 7. Coprocessor Interface
Section 8. Instruction Execution Timing
Section 9. Functional Signal Descriptions
Section 10. Bus Operation
Section 11. Interfacing Methods
Section 12. Electrical Specifications
Section 13. Ordering Information and Mechanical Data

Appendix A. Glossary
Appendix B. Abbreviations and Acronyms

MC6SSS1/MC6SSS2 USER'S MANUAL MOTOROLA
iii

Paragraph
Number

TABLE OF CONTENTS

Title

Section 1
General Description

Page
Number

1.1 The Coprocessor Concept... 1-2
1-2 Hardware Overview... 1-2
1.2.1 Bus Interface Unit.. 1-6
1.2.2 Coprocessor Interface... 1-8
1.3 Operand Data Formats... 1-9
1.3.1 Integer Data Formats.. 1-9
1.3.2 Floating-Point Data Formats....... 1-9
1.3.3 Packed Decimal String Real Data Format .. 1-10
1.3.4 Data Format Summary ... 1-10
1.4 Instruction Set .. 1-12
1.4.1 Moves................... 1-12
1.4.2 Move Multiple Registers ... 1-12
1.4.3 Monadic Operations ... 1-13
1.4.4 Dyadic Operations... 1-13
1.4.5 Branch, Set, and Trap-On Condition .. 1-13
1.4.6 Miscellaneous Instructions.. 1-14
1.5 Addressing Modes .. 1-14
1.6 MC68882 Programming Considerations ... 1-14

Section 2
Programming Model

2.1 Floating-Point Data Registers... 2-1
2.2 Floating-Point Control Register.. 2-2
2.2.1 FPCR Exception Enable Byte.. 2-2
2.2.2 FPCR Mode Control Byte.. 2-3
2.3 Floating-Point Status Register.. 2-4
2.3.1 FPSR Floating-Point Condition Code Byte....................................... 2-4
2.3.2 FPSR Quotient Byte... 2-5
2.3.3 FPSR Exception Status Byte.... 2-6
2.3.4 FPSR Accrued Exception Byte.. 2-6
2.4 Floating-Point Instruction Address Register... 2-7

Section 3
Operand Data Formats

3.1 Integer Data Formats... 3-1
3.2 Binary Real Data Formats ... ;............... 3-2
3.2.1 Normalized Numbers... 3-4
3.2.2 Denormalized Numbers.. 3-4
3.2.3 Zeros.................... 3-5

MC68881/MC68882 USER'S MANUAL MOTOROLA
v

Paragraph
Number

3.2.4
3.2.5
3.2.6
3.3
3.4
3.5
3.5.1
3.5.2
3.6

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.4.1
4.5.4.2
4.5.5
4.5.5.1
4.5.5.2
4.6
4.7
4.7.1
4.7.1.1
4.7.1.2
4.7.1.3
4.7.1.4
4.7.1.5
4.7.1.6
4.7.1.7

MOTOROLA
vi

TABLE OF CONTENTS (Continued)

Page
Title Number

Infinities.. 3-5
Not-A-Numbers... 3-5
Binary Real Data Summary.. 3-6

Packed Decimal Real Data Format 3-6
Internal Data Format......................... 3-7
Format Conversions... 3-8

Conversion to Extended Precision Data Format................................ 3-8
Conversions to Other Data Formats... 3-8

Data Format Details... 3-8

Section 4
Instruction Set

Instruction Description Conventions............................... 4-1
Instruction Groups .. 4-1

Data Movement Operations. .. 4-2
Dyadic Operations... 4-2
Monadic Operations.................... ... 4-3
Program Control Operations 4-4
System Control Operations.. 4-5

Computational Accuracy.. 4-5
Arithmetic Instructions... 4-6
Transcendental Instructions... 4-7
Decimal Conversions.. 4-7

Conditional Test Definitions.. 4-8
IEEE Non-Aware Tests.. 4-9
IEEE Aware Tests .. 4-10
Miscellaneous Tests ... 4-10

Detailed Instruction Descriptions .. 4-10
Addressing Modes ... 4-10
Instruction Description Format.. 4-11
Operation Tables ... 4-13
NANs .. 4-13

Non-Signaling NANs .. 4-13
Signaling NANs ... 4-13

Operation Post Processing... 4-14
Setting Floating-Point Condition Codes 4-14
Underflow, Round, Overflow .. 4-14

Individual Instruction Descriptions.. 4-15
Instruction Encoding Details .. 4-120

General Type Coprocessor Instruction Format 4-120
Register-to-Register Instructions , 4-121
External Operand-to-Register Instructions 4-122
Move Constant to Floating-Point Data Register Instructions 4-123
Move to External Destination Instructions 4-124
Move System Control Register Instructions 4-125
Move Multiple Floating-Point Data Registers Instructions 4-125
Undefined, Reserved Command Words 4-128

MC68881/MC68882 USER'S MANUAL

Paragraph
Number

4.7.2
4.7.3
4.7.4
4.7.5
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.9

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.1.2.4
5.2
5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.3.5
5.2.3.6
5.2.4

TABLE OF CONTENTS (Continued)

Page
Title Number

FDBcc, FScc, and FTRAPcc Instruction Formats 4-129
Conditional Branch Instruction Format. .. 4-131
Save Instruction Format .. 4-131
Restore Instruction Format .. 4-132

Instruction Format Summary ... 4-132
Coprocessor ID Field .. 4-132
Effective Address Field ... 4-132
Register/Memory Field .. 4-132
Source Specifier Field ... 4-132
Destination Register Field .. 4-133
Conditional Predicate Field .. 4-133

Instruction Format Diagrams ... 4-134

Section 5
Coprocessot Programming

Applications Programming.. 5-1
Concurrency... 5-1

Concurrent Integer and Floating-Point Computations................... 5-1
Concurrent Floating-Point Computations.................... 5-2

Optimization of Code for the MC68882... 5-8
Unrolling Loops... 5-8
Avoiding Register Conflicts................... 5-8
Arranging FMOVE Instructions......... 5-8
Performance Improvement Example.. 5-9

Systems Programming... 5-9
State Frame Sizes.. 5-9
Exception Handler Code..... 5-10
Processing of Special Conditions 5-12

Interrupts ... 5-12
Bus Arbitration.. 5-12
Co ntext Switch i n g . 5-12
Bus Errors .. 5-13
Exception Processing.. 5-13
Simultaneous Floating-Point Exception and Task Switch Interrupt.. 5-13

Detecting Coprocessor Presence... 5-14

Section 6
Exception Processing

6.1 Coprocessor-Detected Exceptions... 6-2
6.1.1 Branch/Set on Unordered (BSUN) ... 6-5
6.1.2 Signaling Not-a-Number ... 6-6
6.1.3 Operand Error .. 6-7
6.1.4 Overflow... 6-9
6.1.5 Underflow ... 6-10
6.1.6 Divide by Zero........ 6-13

MC68881/MC68882 USER'S MANUAL MOTOROLA
vii

Paragraph
Number

6.1.7
6.1.a
6.1.9
6.1.10
6.1.11
6.1.12
6.1.13
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.3
6.4
6.4.1
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.3.4
6.4.3.5
6.4.4
6.4.5

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11

MOTOROLA
viii

TABLE OF CONTENTS (Continued)

Page
Title Number

Inexact Result.................. ... 6-14
Inexact Result on Decimal Input.. 6-17
Multiple Exceptions. 6-18
IEEE Exception and TrC!P Compatibility... 6-18
Illegal Commllnd Words :.. 6-19
Coprocessor-Detected Protocql Violation.. 6-19
Recovery from Exceptions.. ... 6-21

Main Processor Dete<;ted Exceptions... 6-23
Trap on Coprocessor Condition Instruction ,...................... 6-23
Illegal Instructions , .. :.. 6-23
Main-Processor-Detected Protocol Violations................................... 6-23
Trace !:xceptions ' ~... 6-24
Interrupt.. 6-25
Address and Bus Errors.. 6-26
Privilege Violations., :..................................... 6-26
Format Error Exceptions... 6-26

MC68882 Exception Handlers.. 6-27
Context Switching.................. ... 6-27

FSAVE and FRESTORE Instruction Overviews 6-27
State Frames , .. :....................... 6-28

Null State Frame .. ,..................... 6-31
Idle State Frame.. 6-31
Busy State Frame ... ~......... 6-34

FSAVE ProtocoL .. :......... 6-34
Reset Phase.. 6-36
Idle Phase.. 6-36
Initial Phase.. 6-36
Middle Phase.. 6-36
End Phase.. 6-36

FRESTORE Protocol :.. 6-37
Context Switching Summary.. 6-37

Section 7
CoprQce~sor Interface

Chip-Select Decode ,.. 7-1
Coprocessor Interfa,ce Registers... 7-2

'. Response CIR ($00)... 7-3
Control CIR ($02)... 7-3
Save CIR ($04) .. 7-4
Restore CIR ($06) :................................. 7-5
Operation Word CIR ($08) :........................ 7-5
Command CIR ($OA) : .. :................. 7-5
Condition CIR ($OE)........... 7-5
Operand CIR'($10) ... 7-6
Register Select CIR ($14) :... 7-6
Instruction Address CIR ($18)...... ... 7-7
Operand Address CIR ($1 C) :.............................. 7-8

, ,

MC68881/MC68882 USER'S MANUAL

Paragraph
Number

7.3
7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5
7.4.2.6
7.4.2.7
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.1.3
7.5.1.4
7.5.1.5
7.5.2
7.5.3
7.5.3.1
7.5.3.2
7.5.4
7.5.4.1
7.5.4.2
7.5.4.3
7.5.4.4
7.5.4.5
7.5.4.6
7.5.4.7

8.1
8.1.1
8.1.2
8.1.3
8.2
8.3
8.4
8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.1.4

TABLE OF CONTENTS (Continued)

Page
Title Number

Interprocessor Transfers.. 7-8
Coprocessor Instructions.. 7-8

Instruction ProtocoL... 7-9
Response Primitives... 7-9

Null Primitive .. 7-10
Evaluate Effective Address and Transfer Data Primitive 7-12
Transfer Single Main Processor Register Primitive................ 7-13
Transfer Multiple Coprocessor Registers Primitive....................... 7-14
Take Pre-Instruction Exception Primitive 7-15
Take Mid-Instruction Exception Primitive................................... 7-16
Response Primitive Summary ... 7-17

Instruction Dialogs.. 7-19
General Instructions... 7-20

Register-to-Register (OPCLASS 000)... 7-20
External-to-Register (OPCLASS 010)... 7-21
Register-to-External (OPCLASS 011)... 7-22
Move Control Registers (OPCLASS 100 and 101) 7-24
Move Multiple FPn (OPCLASS 110 and 111) 7-24

Conditional Instructions ;... 7-26
Context Switch Instructions... 7-26

FSAVE 7-27
FRESTORE.. 7-28

Exception Processing... 7-28
Take Pre-Instruction Exception.. 7-29
Take Mid-Instruction Exception... 7-30
Mid-Instruction Interrupt.. 7-33
Take BSUN Exception.. 7-33
F-Line Emulator Exception... 7-36
Format Exception, FSAVE Instruction 7-37
Format Exception, FRESTORE Instruction.................................. 7-38

Section 8
Instruction Execution Timing

Factors Affecting Execution Times.. 8-1
Instruction Start-Up Phase... 8-2
Calculation Phase.. 8-3
Round/Store Result Phase... 8-3

Concurrent Instruction Execution........................... 8-4
Interrupt Latency Times.. 8-5
Coprocessor Interface Overhead... 8-6
Execution Timing Tables.. 8-8

Timing Tables for Typical Execution .. 8-10
Effective Address Calculations .. 8-10
Arithmetic Operations... 8-11
MC68882 Concurrent Operations... 8-14
Move Control Register and FMOVEM Operations 8-15

MC68881/MC68882 USER'S MANUAL MOTOROLA
ix

Paragraph
Number

8.5.1.5
8.5.1.6
8.5.2
8.5.2.1
8.5.2.2
8.5.2.3
8.5.2.4
8.5.2.5
8.5.2.6
8.5.2.7
8.5.2.8
8.5.2.9
8.5.2.10
8.6

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

TABLE OF CONTENTS (Continued)

Page
Title Number

Conditional Instructions... 8-16
FSAVE and FRESTORE Instructions.. 8-17

MC68881 Detail Timing Tables ... 8-17
Instruction Start-Up.. 8-23
Transfer Operand ... 8-24
Input Operand Conversion... 8-25
Arithmetic Calculation... 8-27
Output Operand Conversion... 8-30
Rounding and Exception Handling... 8-31
Conditional Termination.. 8-32
Multiple Register Transfer .. 8-34
State FramE)' Transfer.. 8-34
Exception Processing.. 8-35

Main Processor Instruction Overlap Timing.. 8-36

Section 9
Functional Signal Descriptions

Address Bus (AO through A4) .. 9-1
Data Bus (DO through D31) ... 9-2
Size (SiZE)... 9-2
Address Strobe (AS).. 9-2
Chip Select (CS).. 9-3
ReadIWrite (RIW) .. ,................................. 9-3
Data Strobe (DS) 9-3
Data Transfer and Size Acknowledge (DSACKO, DSACK1) 9-3
Reset (RESET) 9-4
Clock (ClK).. 9-4
Sense Device (SENSE) ... 9-4
Power (VCC and GND) ... 9-4
No Connect (NC)... 9-6
Signal Summary... 9-6

Section 10
Bus Operation

10.1 Basic Transfer Mechanism Overview ... 10-1
10.1.1 32-Bit Port Size............... .. 10-2
10.1.2 16-Bit Port Size ... 10-3
10.1.3 8-Bit Port Size... 10-4
10.2 Reset Operation.. 10-5
10.3 Chip Select Timing.. 10-6
10.4 Bus Cycle Functional Descriptions .. 10-9
10.4.1 Synchronous Read Cycles... 10-9
10.4.2 Asynchronous Read Cycles .. 10-11
10.4.3 Asynchronous Write Cycles ... 10-12

MOTOROLA
x

MC68881/MC68882 USER'S MANUAL

Paragraph
Number

TABLE OF CONTENTS (Concluded)

Title
Page

Number

10.5 Inter-Cycle Timing Restrictions... 10-12
10.6 Coprocessor Interface Protocol Restrictions .. 10-14

11.1
11.1.1
11.1.2
11.1.3
11.2
11.2.1
11.2.2
11.3

12.1
12.2
12.3
12.4
12.5
12.6

Section 11
Interfacing Methods

FPCP and MPU Interfacing .. 11-1
32-Bit Data Bus Coprocessor Connection.. 11-1
16-Bit Data Bus Coprocessor Connection.. 11-2
8-Bit Data Bus Coprocessor Connection .. 11-2

Interfacing the FPCP as a Peripheral. ... 11-2
16-Bit Data Bus Peripheral Processor Connection............................. 11-3
8-Bit Data Bus Peripheral Processor Connection............................... 11-3

Peripheral Processor Operation.. 11-5

Section 12
Electrical Specifications

Maximum Ratings ... 12-1
Thermal Characteristics - PGA Package .. 12-1
Power Considerations.. 12-1
DC Electrical Characteristics 12-2
AC Electrical Characteristics - Clock Input... 12-3
AC Electrical Characteristics - Read and Write Cycles 12-4

Section 13
Ordering Information and Mechanical Data

13.1 Standard MC68881/MC68882 Order Information 13-1
13.2 Pin Assignments ... 13-2
13.3 Package Dimensions.. 13-3

Appendix A
Glossary

Appendix B
Abbreviations and Acronyms

Index

MC68881/MC68882 USER'S MANUAL MOTOROLA
xi

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number

1-1 MC68881/MC68882 Programming Model.. 1-3
1-2 Exception Status/Enable Byte .. 1-4
1-3 Mode Control Byte.. 1-4
1-4 Condition Code Byte. 1-4
1-5 Quotient Byte... 1-4
1-6 Accrued Exception Byte. 1-5
1-7 Typical Coprocessor Configuration 1-5
1-8 MC68881 Simplified Block Diagram .. 1-6
1-9 MC68882 Simplified Block Diagram.............. 1-7
1-10 MC68881/MC68882 Data Format Summary ... 1-11

2-1 MC68881/MC68882 Programming Mode!............................ 2-1
2-2 MC68881/MC68882 FPCR Exception Enable Bye.......... 2-2
2-3 MC68881/MC68882 FPCR Mode Control Byte.. 2-3
2-4 MC68881/MC68882 FPSR Condition Code Byte...................................... 2-4
2-5 MC68881/MC68882 FPSR Quotient Byte... 2-5
2-6 MC68881/MC68882 FPSR Exception Status Byte.. 2-6
2-7 MC68881/MC68882 FPSR Accrued Exception Byte... 2-7

3-1 Signed Integer Data Formats... 3-1
3-2 Binary Real Data Formats... 3-2
3-3 Format of Normalized Numbers... 3-4
3-4 Format of Denormalized Numbers................. 3-4
3-5 Format of Zero................... 3-5
3-6 Format of Infinity.. 3-5
3-7 Format of Not-A-Numbers 3-5
3-8 Binary Real Data Type Summary.. 3-6
3-9 Packed Decimal Real Data Format........... 3-7
3-10 Intermediate Result Format... 3-7
3-11 Packed Decimal Real Data Format Detail............................ 3-12

4-1 Instruction Description Format... 4-12
4-2 Operation Table Example (FADD Instruction) .. 4-13

5-1 MC68881 Concurrency - FMUL Instruction .. 5-2
5-2 MC68881 Concurrency - FMUL Followed by FMUL and FMOVE................. 5-6
5-3 MC68882 Concurrency - FMUL Followed by FMUL and FMOVE............... 5-7
5-4 Rolled Version of Linpack Loop.. 5-9
5-5 Optimized Linpack Loop 5-10
5-6 Minimum Exception Handler... 5-11
5-7 Idle State Frame Access Example... 5-11
5-8 Simultaneous Task Switch Interrupt and Floating-Point Exception 5-14
5-9 Coprocessor Identification Code... 5-15

MC68881/MC68882 USER'S MANUAL MOTOROLA
xiii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

6-1 EXC and ENABLE Byte Bit Assignments... 6-4
6-2 Intermediate Result Format... 6-15
6-3 Rounding Algorithm 6-16
6-4 MC68881 State Frame Formats.. 6-29
6-5 MC68882 State Frame Formats.. 6-30
6-6 BIU Flag Format... 6-32
6-7 Full Context Save/Restore Instruction Sequences 6-38

7-1 MPU Address Bus Encoding for Coprocessor Accesses........................... 7-1
7-2 FPCP Coprocessor Interface Register Map.. 7-2
7-3 Control CIR Register.................. .. 7-3
7-4 Operand CIR Data Alignment.................... 7-7
7-5 Coprocessor Instruction General Format.. 7-8
7-6 FPCP Instruction Operation Word... 7-8
7-7 MC68000 Coprocessor Response Primitive General Format...................... 7-9
7-8 Null Primitive Format... 7-10
7-9 Evaluate Effective Address and Transfer Data Primitive Format................. 7-12
7-10 Transfer Single Main Processor Register Primitive Format 7-13
7-11 Transfer Multiple Coprocessor Registers Primitive Format 7-14
7-12 Transfer Multiple Floating-Point Data Register to Stack Example 7-15
7-13 Take Pre-Instruction Exception Primitive Format.. 7-16
7-14 Pre-Instruction Exception Stack Frame... 7-16
7-15 Take Mid-Instruction Exception Primitive Format 7-17
7-16 Mid-Instruction Stack Frame.. 7-17
7-17 MC68881 Register-to-Register Instruction Dialog 7-21
7-18 MC68881/MC68882 External-to-Register Instruction Dialog 7-21
7-19 MC68882 External-to-Register Instruction Dialog.................................... 7-22
7-20 MC68881/MC68882 Register-to-External Instruction Dialog....................... 7-23
7-21 MC68882 Register-to-External Instruction Dialog (S,D, and X Formats) 7-24
7-22 Move Control Register Instruction Dialog... 7-25
7-23 Move Multiple Floating-Point Data Registers Instruction Dialog................. 7-25
7-24 Conditional Instruction Dialog.. 7-26
7-25 FSAVE Instruction Dialog.. 7-27
7-26 FRESTORE Instruction Dialog.. 7-28
7-27 Take Pre-Instruction Exception Dialog - MC68881 7-29
7-28 Take Pre-Instruction Exception Dialog - MC68882................................. 7-31
7-29 Take Pre-Instruction Exception Dialog - MC68882

with No FSAVE Instruction in the Handler... 7-31
7-30 Take Pre-Instruction Exception Dialog - MC68882

with No BSET Instruction in the Exception Handler.............................. 7-32
7-31 Take Mid-Instruction Exception Dialog - MC68881 7-32
7-32 Take Mid-Instruction Exception Dialog - MC68882

General Concurrent Case ; 7-34
7-33 Take Mid-Instruction Exception Dialog - MC68882

FMOVE Concurrent Case.. 7-34
7-34 Take Mid-Instruction Exception Dialog - MC68882

MOTOROLA
xiv

with No FSAVE Instruction in the Handler... 7-35

MC68881/MC68882 USER'S MANUAL

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number

7-35 Take Mid-Instruction Exception DiCllog - MC68882
with No BSET Instruction in the Handler... 7-35

7-36 Mid-Instruction Interrupt Dialog ... 7-36
7-37 Take BSUN Exception Dialog.... 7-36
7-38 Take F-Line Emulator Exception Dialog............................ 7-37
7-39 FSAVE Format Exception Dialog... 7-37
7-40 FRESTORE Format Exception Dialog... 7-38

8-1 Non-Concurrent Instruction Execution, Interrupts Allowed....................... 8-5
8-2 Best-Case Coprocessor Interface Overhead Timing................................. 8-7
8-3 Worst-Case FPCP Interface Overhead Timing.................................. 8-8
8-4 Instruction Overlap Examples - FMOVE.X FPm,FPn............................... 8-20
8-5 Instruction Overlap Example - FMOVES.S (An),FPn............................... 8-21

9-1 MC68881/MC68882 Input/Output Signals.. 9-1
9-2 Sense Device Circuit Example... 9-5

10-1 FPCP Data Bus Bit Assignments 10-2
10-2 Data Bus Activity vs Port Size and Operand Alignment 10-2
10-3 FPCP Reset Logic Example .. 10-6
10-4 Example of Early Chip Select Circuits 10-7
10-5 Example of Late Chip Select Circuit.. 10-8
10-6 Synchronous Read Cycle Timing Diagram .. 10-10
10-7 Asynchronous Read Cycle Timing Diagram .. 10-12
10-8 Asynchronous Write Cycle Timing Diagram .. 10-13

11-1 32-Bit Data Bus Coprocessor Connection .. 11-1
11-2 16-Bit Data Bus Coprocessor Connection .. 11-2
11-3 8-Bit Data Bus Coprocessor Connection... 11-3
11-4 16-Bit Data Bus Peripheral Processor Connection................................... 11-4
11-5 8-Bit Data Bus Peripheral Processor Connection 11-4

12-1 Test Loads... 12-2
12-2 Clock Input Timing Diagram.. 12-3
12-3 Asynchronous Read Cycle Timing Diagram .. Foldout

1
12-4 Asynchronous Write Cycle Timing Diagram .. Foldout

2
12-5 Synchronous Read Cycle Timing Diagram .. Foldout

MC68881/MC68882 USER'S MANUAL

3

MOTOROLA
xv

Table
Number

LIST OF TABLES

Title
Page

Number

1-1 Exponent and Mantissa Sizes.. 1-10

2-1 Condition Code versus Result Data Type.. 2-4

3-1 Single Precision Binary Real Format.. 3-9
3-2 Double Precision Binary Real Format .. 3-10
3-3 Extended Precision Binary Real Format.. 3-11
3-4 Decimal String Type Definitions ... 3-12

4-1 Data Movement Operations... 4-2
4-2 Dyadic Operation Format.. 4-2
4-3 Dyadic Operations... 4-3
4-4 Monadic Operation Format... 4-3
4-5 Monadic Operations.. 4-3
4-6 Dual Monadic Operation Format.. 4-4
4-7 Program Control Operations.................................... 4-4
4-8 Conditional Test Mnemonics... 4-4
4-9 System Control Operations... 4-5
4-10 Effective Addressing Mode Categories... 4-11
4-11 General Type Instruction Command Word Fields 4-121
4-12 Register Field Encoding .. 4-122
4-13 Extension Field Encoding for Arithmetic Operations 4-123
4-14 Source Format Field Encoding ... 4-124
4-15 Destihation Format Field Encoding ' 4-125
4-16 Extension Field Encoding .. 4-126
4-17 Encoding for Move FPcr Operations .. 4-127
4-18 Encodings for Move Multiple FPn Operations .. 4-128
4-19 Encodings for the FDBcc, FScc, and FTRAPcc Instuctions 4-129
4-20 Conditional Predicate Evaluation Responses ... 4-130
4-21 Effective Address Field Encoding Summary .. 4-133
4-22 Conditional Predicate Field Encoding Summary 4-134

5-1 Minimum-Concurrency Instructions .. 5-3
5-2 Monadic Instructions... 5-5
5-3 Dyadic Operations... 5-5
5-4 Partial-Concurrency Instructions... 5-5
5-5 Fully-Concurrent Ihstructions... 5-5
5-6 Conditional Instructions.. 5-6
5-7 FMOVE Instruction Execution Times.. 5-9
5-8 State Frame Sizes... 5-10

6-1 MC68881/MC68882 Exception Vector Assignments................................. 6-4
6-2 Possible Operand Errors.. 6-7

MC68881/MC68882 USER'S MANUAL MOTOROLA
xvii

LIST OF TABLES (Continued)

Table Page
Number Title Number

6-3 Possible Divide-by-Zero Exceptions.............................. 6-13
6-4 BIU Flag Bit Definitions.. 6-33
6-5 MC68881/MC68882 Responses to Save Command.................................. 6-34
6-6 MC68881/MC68882 Format Word Definitions... 6-35

7-1 MPU CPU Space Type Field Encoding ... 7-2
7-2 Coprocessor Interface Register Characteristics....................................... 7-3
7-3 Null Primitive Encodings .. 7-11
7-4 Coprocessor Valid Effective Address Codes.. 7-12
7-5 Evaluate Effective Address and Transfer Data Primitive Encoding.............. 7-13
7-6 FPCP Vector Numbers..... 7-15
7-7 MC68881/MC68882 Primitive Responses .. 7-18

8-1 Effective Address Calculations................ 8-11
8-2 MC68881 Overall Execution Times........................ 8-12
8-3 MC68882 Overall Execution Times .. 8-13
8-4 Bus Cycle Activity - Arithmetic Operations............. 8-14
8-5 Timing Calculation Example .. 8-15
8-6 Move Control Register and MOVEM Execution Times 8-16
8-7 Conditional Instruction Execution Times 8-16
8-8 FSAVE and FRESTORE Instruction Execution Times.. 8-17
8-9 Instruction Start-Up Times.. 8-23
8-10 Null Primitive Time Values .. 8-24
8-11 Operand Transfer Time - External Operand... 8-24
8-12 Operand Transfer Time - Immediate Operand..................................... 8-24
8-13 Input Operand Conversion 8-25
8-14 Arithmetic Calculation Times - Dyadic Operations 8-27
8-15 Arithmetic Calculation Times - Monadic Operations.. 8-30
8-16 Output Operand Conversion.. 8-31
8-17 Output Operand Conversion - Binary Real Formats............................... 8-31
8-18 Rounding Operation Time Values 8-32
8-19 Exception Handling Time Values .. 8-33
8-20 Conditional Termination Times Values.. 8-33
8-21 Multiple Register Transfer Time Values.. 8-34
8-22 State Frame Transfer Time Values.. 8-34
8-23 Instruction Termination Processing Time Values.................................... 8-35
8-24 Exception Processing Time Values.............................. 8-35
8-25 Overlap Allowed Times - Arithmetic Operations................................... 8-37

9-1 Coprocessor Interface Register Selection...................... 9-2
9-2 System Data Bus Size Configuration... 9-2
9-3 DSACK Assertions... 9-3
9-4 VCC and GND Pin Assignments ,................................. 9-5
9-5 Signal Summary........... 9-6

MOTOROLA
xviii

MC68881/MC68882 USER'S MANUAL

SECTION 1
GENERAL DESCRIPTION

The MC68881 and MC68882 floating-point coprocessors (FPCP) both fully implement the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI-IEEE Std 754-1985) for use with the Motorola
M68000 Family of microprocessors. The coprocessors are both implemented in VLSI technology
to give systems designers the highest possible functionality in a physically small device. The
MC68882 provides an increased level of performance in a coprocessor that is fully compatible
and physically interchangeable with the MC68881.

Intended primarily for use as coprocessors to the MC68020/MC68030 32-bit microprocessor unit
(MPU), the MC68881 and MC68882 provide a logical extension to the main processing unit integer
data processing capabilities. These coprocessors provide a very high performance floating-point
arithmetic unit and a set of floating-point data registers utilized in a manner that is analogous to
the use of the integer data registers. The MC68881/MC68882 instruction set, a natural extension
of all earlier members of the M68000 Family, supports all of the addressing modes of the host
MPU. Due to the flexible bus interface of the M68000 Family, the MC68881 or MC68882 can be
used with any of the MPU devices of the family and may also be used as a peripheral to other
processors.

The major features of the MC68881 and MC68882 are:

• Eight general purpose floating-point data registers, each supporting a full 80-bit extended
precision real data format (a 64-bit mantissa plus a sign bit, and a 15-bit signed exponent).

• A 67-bit arithmetic unit to allow very fast calculations, with intermediate precision greater
than the extended precision format.

• A 67-bit barrel shifter for high-speed shifting operations (for normalizing, etc.).

• Forty-six instructions, including 35 arithmetic operations.

• Full conformance to the ANSI-IEEE 754-1985 standard, including all requirements and sug
gestions.

• Support of functions not defined by the IEEE standard, including a full set of trigonometric
and transcendental functions.

• Seven data formats: byte, word, and long word integers; single, double, and extended pre-
cision real numbers; and packed binary coded decimal string real numbers.

• Twenty-two constants available in the on-chip ROM, including 'IT, e, and powers of 10.

• Virtual memory/machine operations.

• Efficient mechanisms for exception processing, context switches, and interrupt handling.
• Fully concurrent instruction execution with the main processor.

• Use with any host processor, on an 8-, 16-, or 32-bit data bus.

In addition to these features, the MC68882 provides:

• Concurrent execution of multiple floating-point instructions.

',/ • Special purpose hardware for high-speed conversion of binary real memory operands to/
from the internal extended format.

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-1

II

-- • Simultaneous access to the floating-point registers by the MC68882's conversion and arith
metic processing units.

• Reduced coprocessor interface overhead to increase throughput.

1.1 THE COPROCESSOR CONCEPT

The FPCP functions as a coprocessor in systems where the MC68020 or MC68030 is the main
processor via the M68000 coprocessor interface. It functions as a peripheral processor in systems
where the main processor is the MC68000, MC68008, or MC68010.

The FPCP utilizes the M68000 Family coprocessor interface to provide a logical extension of the
MPU registers and instruction set in a manner that is transparent to the programmer. The pro
grammer perceives the MPU and FPCP execution model as if both devices were implemented on
one chip.

A fundamental goal of the M68000 Family coprocessor interface is to provide the programmer
with an execution model based upon sequential instruction execution by the MPU and the FPCP.
For optimum performance, however, the coprocessor interface allows floating-point instructions
to execute concurrently with MPU integer instructions. Concurrent instruction execution is further
extended by the MC68882, which can execute multiple floating-point instructions simultaneously.
However, the coprocessor interface and the FPCP are designed to maintain a strictly sequential
instruction execution model from the programmer's viewpoint.

The FPCP is a non-DMA type coprocessor that uses a subset of the general purpose coprocessor
interface supported by the MPU. Features of the interface implemented in the FPCP are as follows:

• The main processor and the FPCP communicate via standard M68000 bus cycles.
• Communication between the main processor and the FPCP is not dependent upon the ar-

chitecture of the individual devices (e.g., instruction pipes or caches, addressing modes).
• The main processor and the FPCP can operate at different clock speeds.
• The FPCP instructions support all addressing modes provided by the main processor.
• All effective addresses calculations and data transfers performed by the main processor at

the request of the coprocessor.
• Overlapped (concurrent) instruction execution enhances throughput while maintaining the

programmer's model of sequential instruction execution.
• Coprocessor detection of an exception that requires a trap to be taken is serviced by the main

processor at the request of the FPCP.
• Support of virtual memory/virtual machine systems is provided via the FSAVE and FRESTORE

instructions.
• Up to eight coprocessors can reside in a system simultaneously.
• Multiple coprocessors of the same type are allowed.
• Systems can use software emulation of the FPCP without reassembling or relinking user

software.

1.2 HARDWARE OVERVIEW

The MC68881 and MC68882 are high performance floating-point devices designed to interface
with the MC68020 or MC68030 as coprocessors. These coprocessors fully support the MPU virtual
machine architecture and are implemented in HCMOS, Motorola's low power, small geometry

MOTOROLA
1-2

MC68881/MC68882 USER'S MANUAL

process. This process allows CMOS and HMOS (high density NMOS) gates to be combined on II
the same device. CMOS structures are used where speed and low power are required, and HMOS
structures are used where minimum silicon area is desired. As a result, HCMOS technology
provides the combined advantages of high performance and low power consumption without
enlarging the die size.

In systems using the MC68000, MC68008, or MC68010 as the main processor, the MC68881 or
MC68882 functions as a peripheral processor. The configuration of the FPCP as a peripheral
processor or coprocessor can be completely transparent to user software (i.e., the same object
code can be executed in either configuration).

The architecture of the FPCP appears to the user as a logical extension of the M68000 Family
architecture. Because of the coupling of the coprocessor interface, the MPU programmer can view
the FPCP registers as though the registers were resident in the MPU. Thus, a MPU and FPCP
device pair appears to be one processor that supports seven floating-point and integer data types
with eight integer data registers, eight address registers, and eight floating-point data registers.

The FPCP programming model is shown in Figures 1-1 through 1-6 and consists of the following:
• Eight 80-bit floating-point data registers (FPO-FP7). These registers are analogous to the

integer data registers (DO-D7) and are completely general purpose (i.e., any instruction may
use any register).

• A 32-bit control register that contains enable bits for each class of exception trap, and mode
bits to set the user-selectable rounding and precision modes.

• A 32-bit status register that contains floating-point condition codes, quotient bits, and ex
ception status information.

• A 32-bit instruction address register that contains the main processor memory address (vir
tual) of the last floating-point instruction that was executed. This address is used in exception
handling to locate the instruction that caused the exception.

79 63

FPO

FPI

FP2

FP3 FLOATlNG·POINT

FP4 OATA REGISTERS

FP5

FP6

FP7

31 23 15

,"---,,~"---L~=-"" FPCR } CONTROL REGISTER

'--='--'-__ -'-,.;:..;;..;;.;;..:....-'-=;:;;:;;..c.----' FPSR } STATUS REGISTER

I FPIAR } INSTRUCTION AOORESS
'--_________ ----'. REGISTER

Figure 1-1. MC68881/MC68882 Programming Model

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-3

• 15 14 13 12 11 10

I BSUN I SNAN I OPERR t OVFl I UNFl I OZ I INEX2 1 INEX1 J

31

I

MOTOROLA
'-4

30 29

23 22, 21

I
I INEXACT DECIMAL INPUT

INEXACT OPERATION

DIVIDE BY ZERO

UNOERFlOW

OVERFLOW

OPERAND ERROR

SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 1-2. Exception Status/Enable Byte

4

28

Figure 1-3. Mode Control Byte

27 26 25 24

I N I I I I NAN J
I

I

ROUNDING MODE:
00 TO NEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

ROUNOING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 (UNDEFINED. RESERVEO)

NOT A NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

Figure 1-4. Condltion Code Byte

20 19 18 17 16

QUOTIENT

L-_____________ SEVEN LEAST SIGNIFICANT

BITS OF QUOTIENT

L-_________________________ SIGN OF QUOTIENT

Figure 1-5. Quotient Byte

MC68881/MC68882 USER'S MANUAL

lOP I OVFL I UNFL 1 DZ 1 INEX I I
I IL-___________ INEXACT

L-______________ DIVIDE BY ZERO

'------------------- UNOERFlOW
L-____________________ OVERflOW

L-______________________ INVALIO OPERATION

Figure 1-6. Accrued Exception Byte

The connection between the MPU and the FPCP is a simple extension of the M68000 bus interface.
The FPCP is connected as a coprocessor to the MPU, and a chip select signal (decoded from the
MPU function codes and address bus) selects the FPCP. Figure 1-7 illustrates the coprocessor/
MPU configuration.

As shown in Figure 1-8, the MC68881 is internally divided into two processing elements; the bus
interface unit (BIU) and the arithmetic processing unit (APU). The BIU communicates with the
MPU, and the APU executes all MC68881 instructions. Though the BIU monitors the state of the
APU closely, it operates independently of the APU. The APU operates on the command word and
operands that the BIU passes to it. In return, the APU reports its internal status to the BIU.

The BIU contains the coprocessor interface registers (CIRs). In addition to these registers, the CIR
register select and DSACK timing control logic is contained in the BIU. Finally, the status flags
used to monitor the status of communications with the main processor are contained in the BIU.

The eight 80-bit floating-point data registers (FPO-FP7) and the 32-bit control, status, and instruction
address registers (FPCR, FPSR, and FPIAR) are located in the APU. In addition to these registers,
the APU contains a high-speed 67-bit arithmetic unit used for both mantissa and exponent cal
culations, a barrel shifter that can shift from 1 bit to 67 bits in one machine cycle,and ROM constants
(for use by the internal algorithms or user programs).

AODRESS
DECOOE

MC68020/MC68030 1------'
PROCESSOR

MC68881/MC68882
FLOATING· POINT
COPROCESSOR

INPUT 10UTPUT
DEVICES

Figure 1-7. Typical Coprocessor Configuration

MC68881/MC68882 USER'S MANUAL

MEMORY

TO
GLOBAL
BUS

MOTOROLA
1-5

II

•
in «

'" 6 c
~

~ I I!
~ c «

l~

VCC

GND

COPROCESSOR
INTERFACE REGISTER
SELECT AND OSACK

CONTROL

REGISTER SELECT CIR

OPERANO CIR

DIU APU

CLOCK GENERATOR

nROM

~ ~
~ iii ~ '"

~i t;:
«0> 1Jl c'" I-Z

~ z«
~~

"' <il
Z

~
~

FPCR. FPSR AND FPIAR

Figure 1-8. MC68881 Simplified Block Diagram

The control section of the APU contains the clock generator, a two-level microcoded sequencer,
the microcode ROM, and self-test circuitry. The built-in self-test capabilities of the FPCP enhance
reliability and ease manufacturing requirements; however, these diagnostic functions are not
accessible outside of the special test environment supported by VLSI test equipment.

In addition to the BIU and APU as described for the MC68881 (refer to Figure 1-9), the MC68882
has a conversion unit (CU) that performs data format conversions to the internal extended format.
The CU relieves the APU of a significant work load and allows the MC68882 to execute FMOVE
instructions concurrently with arithmetic or transcendental operations.

1.2.1 Bus Interface Unit

All communications between the MPU and the FPCP are performed with standard M68000 Family
bus transfers. The FPCP is designed to operate on 8-, 16-, or 32-bit data buses.

The FPCP contains a number of coprocessor interface registers (CIRsl. which are addressed by
the main processor in the same manner as memory. The M68000 Family coprocessor interface
is implemented as a protocol of bus cycles in which the main processor reads and writes to these
registers. The MPU implements this general purpose coprocessor interface protocol in hardware
and microcode.

When the MPU detects a FPCP general type instruction, the MPU writes the command word of
the instruction to the memory-mapped command CIR, and reads the response CIR. In this response,

MOTOROLA
1-6

MC68881/MC68882 USER'S MANUAL

'" M <f
c 0

~
~

'"
;;! ~ <"i c «

Ii
I~
I~
I~
I~

VCC

GND

COPROCESSOR
INTERFACE REGISTER
SElECT AND DSACK

CDNTRDL

BIU

FPCR. FPSR. AND FPIAR

Figure 1-9. MC68882 Simplified Block Diagram

APU

CLOCK GENERATOR

"ROM

the BIU encodes requests for any additional service required of the. MPU on behalf of the FPCP.
For example, the response may request that the MPU fetch an operand from the evaluated effective
address and t~ansfer the operand to the operand CIR. Once the MPU fulfills the coprocessor
request(s), the MPU is free to fetch and execute subsequent instructions.

A key concern in a coprocessor interface that allows concurrent instruction execution is synchro
nization during main processor and coprocessor communication. If a subsequent instruction is
written to the command CIR before the APU has completed execution of the previous instruction
(in the case of the MC68881) or before the CU has passed its results to the APU (in the case of
the MC68882), the response instructs the MPU to wait. Thus, the choice of concurrent or non
concurrent instruction execution is determined on an instruction-by-instruction basis by the co
processor.

The only difference between a coprocessor bus transfer and any other bus transfer by the MPU
is that the function code issued by the MPU specifies the CPU address space during the cycle
(the function codes are generated by the M68000 Family processors to identify one of eight
separate address spaces). Thus, the memory-mapped coprocessor interface registers do not infr
inge upon instruction or data address spaces. The MPU places a coprocessor ID field from the
coprocessor instruction words onto three of the upper address lines during coprocessor accesses.
This ID, along with the CPU address space function code, is decoded to select one of eight possible
coprocessors in the system.

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-7

II

.. Since the coprocessor interface protocol consists solely of bus transfers, the protocol is easily

.. emulated by software when the FPCP is used as a peripheral with any processor capable of
memory-mapped 110 over an M68000-style bus. When used as a peripheral processor with the 8-
bit MC68008 or either the 16-bit MC68000 or MC68010, all FPCP instructions are trapped by the
main processor to an exception handler at execution time. Trapping the instructions enables the
software emulation of the coprocessor interface protocol to be totally transparent to the user.
The FPCP can provide a performance option for MC68000-based designs by changing the main
processor to an MC68020 or MC68030. The software migrates without change to the next gen
eration equipment using the MPU.

Since the bus is asynchronous, the FPCP need not run at the same clock speed as the main
processor. Total system performance can therefore be customized. For a given CPU performance
requirement, the floating-point performance can be selected to meet particular price/performance
specifications, running the FPCP at slower (or faster) clock speeds than the CPU clock.

1.2.2 Coprocessor Interface

The M68000 Family coprocessor interface is an integral part of the FPCP and MPU designs. The
interface partitions MPU and coprocessor operations so that the MPU does not have to completely
decode coprocessor instructions, and the FPCP does not have to duplicate main processor func
tions (such as effective address evaluation).

This partitioning provides an orthogonal extension of the instruction set by permitting FPCP
instructions to utilize all MPU addressing modes and to generate execution time exception traps.
Thus, from the programmer's view, the MPU and coprocessor appear to be integrated onto a
single chip. While the execution of the great majority of FPCP instructions can be overlapped with
the execution of MPU instructions, concurrency is completely transparent to the programmer.
The MPU single-step and program flow (trace) modes are fully supported by the FPCP and the
M68000 Family coprocessor interface.

While the M68000 Family coprocessor interface permits coprocessors to be bus masters, the FPCP
never functions as one. The FPCP requests that the MPU fetch all operands and store all results.
In this manner, the MPU 32-bit data bus provides high speed transfer of floating-point operands
and results while reducing the pin count of the FPCP.

Since the coprocessor interface consists solely of bus cycles (to and from the CPU space) and the
FPCP never functions as a bus master, the coprocessor can be placed on either the logical or
physical side of the system memory management unit in an MC68020 system. Since the memory
management unit of the MC68030 is on-chip, the FPCP is always on the physical side of the
memory management unit in an MC68030 system.

The virtual machine architecture of the MPU is supported by the coprocessor interface and the
FPCP with the FSAVE and FRESTORE instructions. If the MPU detects a page fault and/or a task
timeout, the MPU can force the FPCP to stop whatever operation is in progress at any time and
save the FPCP internal state in memory. During the execution of a floating-point instruction, the
FPCP can stop at predetermined points as well as at the completion of the instruction.

The size of the saved internal state of the FPCP is dependent upon the state of the APU at the
time that the FSAVE is executed. If the MPU is in the reset state when the FSAVE instruction is
initiated, only one word of state is transferred to memory. The stored word may be examined by
the operating system to determine that the coprocessor programmer's model is empty. If the

MOTOROLA
1-8

MC68881/MC68882 USER'S MANUAL

APU is in the idle state when the FSAVE instruction is decoded, only a few words of internal state
are transferred to memory. If the APU is in the middle of executing an instruction, it may be
necessary to save the entire internal state of the machine. Instructions that can complete execution
in less time than it would take to save the larger state in mid-instruction are automatically allowed
to complete execution and then save the idle state. Thus, the size of the saved internal state is
kept to a minimum. The ability to utilize several internal state sizes greatly reduces the average
context switching time.

The FRESTORE instruction permits reloading an internal state saved earlier and continues any
previously suspended operation. Restoring the reset internal state re-establishes default register
values, a function identical to the FPCP hardware reset.

1.3 OPERAND DATA FORMATS

The FPCP supports the following data formats:
Byte Integer (B)
Word Integer (W)
Long Word Integer (L)
Single Precision Real (S)
Double Precision Real (D)
Extended Precision Real (X)
Packed Decimal String Real (P)

The capital letters within the parentheses denote suffixes added to mnemonics of the assembly
language instructions to specify the data format to be used.

1.3.1 Integer Data Formats

The three integer data formats (byte, word, and long word) are the standard twos complement
data formats defined in the M68000 Family architecture. Whenever an integer is used in a floating
point operation, the integer is automatically converted by the FPCP to an extended precision
floating-point number before being used. For example, to add an integer constant of five to the
number in floating-point data register 3 (FP3), the following instruction can be used:

FADD.W #5,FP3

(The Motorola assembler syntax uses "#" to denote immediate addressing.)

The ability to effectively use integers in floating-point operations saves user memory since an
integer representation of a number, if representable, is usually smaller than the equivalent floating
point representation.

1.3.2 Floating-Point Data Formats

The floating-point data formats, single precision (32-bits) and double precision (64-bits), are im
plemented in the FPCP as defined by the IEEE standard. These data formats are the main floating
point formats and should be used for most calculations involving real numbers. Table 1-1 lists
the exponent and mantissa sizes for single, double, and extended precision. The exponent is
biased, and the mantissa is in sign and magnitude form. Since single and double precision require
normalized numbers, the most-significant bit of the mantissa is implied as a one and is not
included, thus giving one extra bit of precision.

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-9

II

•
The extended precision data format is also in
conformance with the IEEE standard, but the
standard does not specify this format to the bit
level as it does for single and double precision.
The memory format for the FPCP consists of
96 bits (three long words). Only 80 bits are
actually used; the other 16 bits are for future
expandability and for long-word alignment of

Table 1-1. Exponent and Mantissa Sizes

Data Exponent Mantissa
Format Bits Bits

Single 8 23(+1)

Double 11 52(+1)

Extended 15 64

floating-point data structures in memory. Extended format has a 15-bit exponent, a 64-bit mantissa,
and a 1-bit mantissa sign.

Extended precision numbers are intended for use as temporary variables, intermediate values,
or where extra precision is needed. For example, a compiler might select extended precision
arithmetic for evaluation of the right side of an equation with mixed sized data and then convert
the answer to the data type on the left side of the equation. It is anticipated that extended precision
numbers will not be stored in large arrays due to the amount of memory required by each value.

1.3.3 Packed Decimal String Real Data Format

The packed decimal data format allows packed BCD strings to be transferred to and from the
FPCP. The strings consist of a 3-digit base 10 exponent and a 17-digit base 10 mantissa. Both the
exponent and mantissa have separate sign bits. All digits are packed BCD, and the entire string
fits in 96 bits (three long words). As is the case with all data formats, when packed BCD strings
are supplied to the FPCP, the strings are automatically converted to extended precision real values.
This conversion allows packed BCD numbers to be used as inputs to any operation. For example:

FADD.P #-6.023E+24,FP5

BCD numbers can be supplied by the FPCP in a format readily used for printing by a program
generated by a high-level language compiler. For example:

FMOVE.P FP3,BUFFER{#-5}

This instruction converts the contents of floating-point data register 3 (FP3) into a packed BCD
string with five significant digits to the right of the decimal point (FORTRAN F format).

1.3.4 Data Format Summary

All data formats described in the preceding sections are supported orthogonally by all arithmetic
and transcendental operations and by all appropriate MPU addressing modes. For example, all
of the following are valid instructions:

FADD.B #O,FPO
FADD.w D2,FP3
FADD.L BIGINT,FP7
FADD.S #3.14159,FP5
FADD.D (SP) + ,FP6
FADD.X [(TEMP PTR.A7)I.FP3
FADD.P #1.23E25,FPO

Most on-chip calculations are performed in the extended precision format, and the eight floating
point data registers always contain extended precision values. All operands are converted to
extended precision by the FPCP before a specific operation is performed, and all results are in
extended precision. This ensures maximum accuracy without sacrificing performance.

MOTOROLA
1-10

MC68881/MC68882 USER'S MANUAL

Refer to Figure 1-10 for a summary of the memory formats for the seven data formats supported
by the FPCP.

94

62 51

EXPONENT I~'T I

80 63

15·BIT
EXPONENT

91

IMPLICIT BINARY POINT

SIGN Of MANTISSA

80 67

IMPLICIT DECIMAL POINT

2 BITS. USED ONLY fOR ±INfINITY OR NAN(S). ZERO OTHERWISE

SIGN Of EXPONENT

SIGN Of MANTISSA

·Unless a binary-to-decimal conversion overflow occurs

30 22

8·BIT
EXPONENT

23·BIT
fRACTION

SIGN Of fRACTION

52·BIT
fRACTION

64·BIT
MANTISSA

17·OIG1T
MANTISSA

Figure 1-10. MC68881/MC68882 Data Format Summary

MC68881/MC68882 USER'S MANUAL

SINGLE REAL

DOUBLE REAL

EXTENDED REAL

PACKED D~CIMAl REAL

MOTOROLA
1-11

II

__ 1.4 INSTRUCTION SET

The FPCP instruction set is organized into six major classes:
1. Moves between the FPCP and memory or the MPU (to or from)
2. Move multiple registers (to or from)
3. Monadic operations
4. Dyadic operations
5. Branch, set, or trap conditionally
6. Miscellaneous

1.4.1 Moves

On all moves from memory (or from an MPU data register) to the FPCP, data is converted from
the source data format to the internal extended precision format. On all moves from the FPCP to
memory (or to an MPU data register), data is converted from the internal extended precision
format to the destination data format.

Note that data movement instructions perform arithmetic operations, since the result is always
rounded to. the precision selected in the FPCR mode control byte. The result is rounded using the
selected rounding mode and is checked for overflow and underflow.

The syntax for the FMOVE instruction is:

FMOVE.<fmt> <ea>,FPn Move to FPCP
FMOVE.<fmt> FPm,<ea> Move from FPCP
FMOVE.X FPm,FPn Move within FPCP

where:
<ea> is an MPU effective address operand
.<fmt> is the data format size
FPm and FPn are floating-point data registers.

1.4.2 Move Multiple Registers

The floating-point move multiple instruction on the FPCP resembles its integer counterpart on
the M68000 Family processors. Any set of the floating-point registers FPO through FP7 can be
moved to or from memory with one instruction. These registers are always moved as 96-bit
extended data with no conversion (hence no possibility of conversion errors). Some examples of
the move multiple instruction are as follows:

FMOVEM <ea>,FPO-FP3/FP7
FMOVEM FP2/FP4/FP6,<ea>

The move multiple instruction is useful during context switches and interrupts to save or restore
the state of a program. It is also useful at the start and end of a procedure to save and restore
the calling routine's register set. In order to reduce proce9ure call overhead, the list of registers
to be saved or restored can be stored in a data register thus enabling run-time optimization by
allowing a called routine to save as few registers as possible. Note that no rounding or overflowl
underflow checking is performed by these operations.

MOTOROLA
1-12

MC68881/MC68882 USER'S MANUAL

1.4.3 Monadic Operations

A monadic operation has one operand. This operand may be in a floating-point data register, in
memory, or in an MPU data register. The result is always stored in a floating-point data register.
For example, the syntax for square root is any of the following:

FSORT.<fmt> <ea>,FPn
FSORT.X FPm,FPn
FSORT.X FPn

The monadic operations available with the FPCP are as follows:

FABS Absolute Value FLOG2 Log Base 2
FACOS Arc Cosine FLOGN Log Base e
FASIN Arc Sine FLOGNP1 Log Base e of (x+ 1)
FATAN Arc Tangent FNEG Negate
FATANH Hyperbolic Arc Tangent FSIN Sine
FCOS Cosine FSINCOS Simultaneous Sine and Cosine
FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine
FETOX e to the x Power FSORT Square Root
FETOXM1 e to the x Power - 1 FTAN Tangent
FGETEXP Get Exponent FTANH Hyperbolic Tangent
FGETMAN Get Mantissa FTENTOX 10 to the x Power
FINT Integer Part FTST Test
FINTRZ Integer Part (Truncated) FTWOTOX 2 to the x Power
FLOG 1 0 Log Base 10

1.4.4 Dyadic Operations

Dyadic operations have two operands each. The first operand is in a floating-point data register,
memory, or an MPU data register. The second operand is the contents of a floating-point data
register. The destination is the same floating-point data register used for the second operand.
For example, the syntax for floating-point add is either of the following:

FADD.<fmt> <ea>,FPn
FADDX FPm,FPn

The dyadic operations available with the FPCP are as follows:

FADD Add FREM
FCMP Compare FSCALE
FDIV Divide FSGLDIV
FMOD Modulo Remainder FSGLMUL
FMUL Multiply FSUB

IEEE Remainder
Scale Exponent
Single Precision Divide
Single Precision Multiply
Subtract

Assuming that operands are single precision, the FSGLMUL and FSGLDIV instructions round
results as such while maintaining the range of extended precision. In special applications where
multiply and divide performance are more important than loss of precision, the FSGLMUL and
FSGLDIV instructions can be used.

1.4.5 Branch, Set, and Trap-On Condition

The floating-point branch, set, and trap on condition instructions implemented by the FPCP are
similar to the equivalent integer instructions of the M68000 Family processors, except more

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-13

II

•
conditions exist due to the special values in IEEE floating-point arithmetic. When a conditional
instruction is executed, the FPCP performs the necessary condition checking and reports the result,

, true or false, to the MPU; the M'pu then takes the appropriate action. Since the FPCP and MPU
are closely coupled, the floating-point branch operations are quickly executed. '

The FPCP conditional operations are:

FBcc Branch
FDBcc Decrement and Branch
FScc Set According to Condition
FTRAPcc Trap-on Condition (with an Optional Parameter)

where:
cc is one of the 32 floating-point conditional te!?t specifiers listed in 3.3 PACKED DECIMAL REAL

DATA FORMAT.

1.4.6 Miscellaneous Instr~ctions

Miscellaneous instructions include moves to and from the status, control, and instruction address
registers. Also included are the virtual memory/machine FSAVE and FRESTORE instructions that
save and restore the internal state of the FPCP.

FMOVE <ea>,FPcr Move to Contrlll Register(s)
FMOVE FPcr,<ea> Move from Control Register(s)
FSAVE <ea> Virtual Machine State Save
FRESTORE <ea> Virtual Machine State Restore

1.5 ADDRESSING MODES

The FPCP does not perform address calculations. Thus, when the FPCP instructs the MPU to
transfer im operand via the coprocessor interface, the MPU performs the addressing mode cal
culations requested in the instruction. In this Case, the instruction is encoded specifically for the
MPU, and the instruction execution by the FPCP is dependent only on the value of the command
word written to the FPCP by the main processor.

This interface is quite flexible and allows any addressing mode to be used with floating-point
instructions. For the M68000 Family, these adqressing modes include immediate, postincrement,
predecrement, data or address register direct, and the indexed/indirect addressing modes of the
MPU. Some addressing modes are restricted for some instructions in keeping with the M68000
Family architectural definitions (e.g., program counter relative addressing is not allowed for a
destination operand).

The orthogonal instruction set of the FPCP, alon~ with the flexible branches and addressing modes
ofthe MPU, allows a programmer or a compiler writer to think of the FPCP as though it were
part of the MPU. There are no special restrictions imposed by the <;oprocessor interface, and
floating-point arithmetic is coded exactly like integer arithmetic.

1.6 MC68882 PROGRAMMING CONSIDERATIONS

To exploit the enhanced performance of the MC68882 requires the programmer to be aware of
the manner in which the coprocessor overlaps execution'ofinstructions. Upgrading a system to

MOTOROLA
1-14

MC68881/MC68882 USER'S MANUAL

use the MC68882 requires minor system software changes but no user software changes. To II
optimize applications code for the MC68882 may require reordering of floating-point instructions.
SECTION 5 COPROCESSOR PROGRAMMING describes the concurrency capabilities of the MC68882,
the required system software changes, and the optimization of existing software for the enhanced
floating-point coprocessor.

MC68881/1V1C68882 US~~'S MANUAL MOTOROLA
1-15

SECTION 2
PROGRAMMING MODEL

This section describes the registers of the MC68881/MC68882 (FPCP) programming model. The
notation used to refer to the registers conforms to the Motorola assembler syntax. The program
ming model for the MC68882 is identical to that for the MC68881.

Figure 2-1 is a pictorial representation of the registers in the FPCP programming model. The
following paragraphs describe each group of registers.

2.1 FLOATING-POINT DATA REGISTERS

The eight 80-bit floating-point data registers (FPO-FP7) are analogous to the integer data registers
(DO-D7) of all M68000 Family processors. Floating-point data registers always contain extended
precision numbers. The data format used is identical to the extended precision data format de
scribed in Table 3-3, except that the reserved (unused) 16 bits are deleted from the table. All
external operands, regardless of the data format, are converted to extended precision values
before being used in any calculation or stored in a floating-point data register.

A reset function or a restore operation of the null state sets FPO-FP7 to positive non-signaling
not-a-numbers (NANs). described in 3.2.5 Not-A-Numbers.

79 63

FPO

FPl

FP2

FP3 flOATING-POINT

FP4
OATA REGISTERS

FP5

FP6

FP7

31 23 15

L...::=:.....J....:.=c.=.::...J FPCR } CONTROL REGISTER

L.....:=--'-__ ~.:..;;.;;.;:.:.....L.:::;;=..:;.:::.:.J FPSR } STATUS REGISTER

I FPIAR } INSTRUCTION AODRESS
'--_________ --". REGISTER

Figure 2-1. MC68881/MC68882 Programming Model

MC68881/MC68882 USER'S MANUAL MOTOROLA
2-1

•

2.2 FLOATING-POINT CONTROL Rt(2l~ I tH

The 32-bit floating-point control register (FPCR) contains an exception enable byte that enables/

•
disables traps for each class of floating-point exceptions and a mode byte that sets the user
selectable modes.

The control register can be read or written to by the user. Bits 16 through 31 are reserved for
future definition by Motorola. These bits are always read as zero and are ignored during write
operations (but should be zero for future compatibility). This register is cleared by the reset function
or a restore operation of the null state. When cleared, this register provides the IEEE standard
defaults.

2.2.1 FPCR Exception Enable Byte

One of the bits of the exception enable byte (ENABLE)' shown in Figure 2-2, corresponds to each
floating-point exception class. The user can separately enable traps for each class of floating
point exceptions.

If a bit in the status register exception byte is set by the FPCP and the corresponding bit in the
control register ENABLE byte is also set, an exception is signaled. The address of the exception
handler is derived from the vector address corresponding to the exception. When a user writes
to the control register ENABLE byte that enables a class of floating-point exceptions, a previously
generated floating-point exception does not cause a trap to be taken regardless of the value in
the status register exception byte.

The eight floating-point exception classes shown in Figure 2-2 are described in greater detail in
SECTION 6 EXCEPTION PROCESSING. Note that the bits in the FPSR exception byte and the FPCR
enable byte occupy the same positions within each byte.

In a few cases, dual and triple exceptions can be generated by a single instruction execution.
When multiple exceptions occur with traps enabled for more than one exception class, the highest
priority exception is reported; the lower priority exceptions are never reported or taken. The
exception handler routine must check for multiple exceptions. The bits of the ENABLE byte are
organized in decreasing priority, left to right, i.e., BSUN is the highest priority, and INEX1 is the
lowest priority. The only multiple exception possibilities are:

SNAN and INEX1 OVFL and INEX2 and/or INEX1
OPERR and INEX2 UNFL and INEX2 and/or INEX1
OPERR and INEX1 INEX2 AND INEX1

15 14 13 12 11 10

I BSUN I SNAN I OPERR I OVfL I UNfL I DZ I INEX2 I INEX 1 I

I
I INEXACT DECIMAL INPUT

INEXACT OPERATION

DlVIOE BY ZERO

UNOERfLOW

OVERflOW

OPERAND ERROR

SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 2-2. MC68881/MC68882 FPCR Exception Enable Byte

MOTOROLA
2-2

MC68881/MC68882 USER'S MANUAL

2.2.2 FPCR Mode Control Byte

The mode control byte (MODE), shown in Figure 2-3, controls the user-selectable rounding modes
and rounding precisions. A zero in this byte selects the IEEE defaults.

The rounding mode specifies how inexact results are rounded. "Round to the nearest" specifies
that the nearest number to the infinitely precise result should be selected as the rounded value.
In case of a tie, the even result is selected. "Round towards zero" truncates the result. "Round
towards plus infinity" always rounds numbers towards plus infinity. Round toward minus infinity
always rounds numbers towards minus infinity. See 6.1.7 Inexact Result for a detailed description
of the rounding algorithm used.

The rounding precision selects where rounding of the mantissa occurs. For extended precision,
the result is rounded to a 64-bit boundary. A single precision result is rounded to a 24-bit boundary,
and a double precision result is rounded to a 53-bit boundary.

The single and double rounding precisions are provided for emulation of machines that only
support those precisions. When the FPCP performs any operation, the calculation is carried out
using extended precision inputs and the intermediate result is calculated as if to produce infinite
precision. After the calculation is complete, this intermediate result is rounded to the selected
precision and stored in the destination.

If the destination is a floating-point data register, the stored value is in the extended precision
format rounded to the precision specified by the PREC bits. Thus, all mantissa bits beyond the
selected precision are zero after the rounding operation. Also, if the single or double precision
mode is selected, the exponent value is in the correct range for the single or double precision
format (although it is stored in extended precision format). An important exception to this rule
is for the FSGLDIV and FSGLMUL instructions. Regardless of the precision specified by the PREC
bits, these instructions round the result mantissa to single precision and generate an extended
precision exponent which may be out of range for a single precision number.

If the destination is a memory location, the PREC bits are ignored. In this case, a number in the
extended precision format is taken from the source floating-point data register, rounded to the
destination format precision, and written to memory.

The execution speed of all instructions is degraded significantly when single and double precision
rounding modes are used. Because these modes are intended to be used for emulation, this

4

'------------------ ROUNOING MOOE:
00 TO NEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

'----------------------- ROUNDING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 IUNDEFINED, RESERVEDI

Figure 2-3. MC68881/MC68882 FPCR Mode Control Byte

MC68881/MC68882 USER'S MANUAL MOTOROLA
2-3

reduction is not detrimental. When operating in these modes, the FPCP produces the same result
as any other machine that conforms to the IEEE standard without supporting extended precision
calculations. However, the result obtained by performing a series of operations with single or
double precision rounding may not be the same as the result of performing the same operations

• in extended precision and storing the final result in the single or double precision format.

2.3 FLOATING-POINT STATUS REGISTER

The floating-point status register (FPSR) contains a floating-point condition code byte, a floating
point exception status byte, quotient bits, and a floating-point accrued exception byte. All bits in
the FPSR can be read or written by the user. Execution of most floating-point instructions modifies
this register.

The reset function or a restore operation of the null state clears the FPSR.

2.3.1 FPSR Floating-Point Condition Code Byte

The floating-point condition code byte (FPCC), shown in Figure 2-4, contains four condition code
bits that are set at the end of all arithmetic instructions involving the floating-point data registers.
The FMOVE FPm,<ea>, move multiple floating-point data register, and move system control
register instructions do not affect the FPCC.

31 30 29 28 27 26 25 24

I I N I Z I I 1 NAN I
I l NOT A NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

Figure 2-4. MC68881/MC68882 FPSR Condition Code Byte

The operation result data type determines how the four condition code bits are set. Table 2-1 lists
the condition code bit settings for each result data type. Because of the mutually exclusive nature
of the data types described by the condition code bits, the FPCP generates only eight of the 16
possible combinations. Loading the FPCC byte with one of the other condition code bit combi
nations and executing a conditional instruction may produce an unexpected branch condition.

MOTOROLA
2-4

Table 2-1. Condition Code versus Result Data Type

N Z I NAN Result Data Type

0 0 0 0 + Normalized or Denormalized

1 0 0 0 - Normalized or Denormalized

0 1 0 0 +0

1 1 0 0 -0

0 0 1 0 + Infinity

1 0 1 0 - Infinity

0 0 0 1 + NAN

1 0 0 1 - NAN

MC68881/MC68882 USER'S MANUAL

The IEEE standard defines the following four conditions and only requires the generation of the
condition codes as a result of a floating-point compare operation. In addition to this requirement.
the FPCP can test these conditions at the end of any operation affecting the condition codes.

EO Equal To 2
GT Greater Than
L T Less Than
UN Unordered

An unordered condition occurs when one or both of the operands in a floating-point compare
operation is a NAN. For purposes of the floating-point conditional branch, set byte on condition,
decrement and branch on condition, and trap on condition instructions, the FPCP logically com
bines the four condition codes to form the IEEE conditions according to the following equations:

EO=Z
GT = '--N'--v"'N"'A-'N'-v-=;Z
LT= NANANvZ
UN=NAN

where:
"A" = Logical AND
"v" = Logical OR

Note that the setting of the FPCP condition codes is independent of the operation executed; the
condition codes only indicate the data type of the result generated. Unlike other M68000 condition
codes, the IEEE defined conditions can always be derived from the data type of the result. The
setting of the M68000 integer condition codes is dependent upon the operation executed as well
as the resu It.

To aid programmers of floating-point subroutine libraries, the FPCP implements the four previ
ously described floating-point condition code bits in hardware instead of the four IEEE defined
conditions. The IEEE conditions are derived by an instruction when needed. For example, the
programmer of a complex arithmetic multiply subroutine usually prefers to handle "special" data
types such as zeros, infinities, or NANs, separately from "normal" data types. The FPCP condition
codes allow users to efficiently detect and handle these "special" values.

2.3.2 FPSR Quotient Byte

The quotient byte (see Figure 2-5) is set at the completion ofthe modulo (FMOD) or IEEE remainder
(FREM) instructions. This byte contains the seven least-significant bits of the quotient (unsigned)
and the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other functions. For
example, seven bits are more than enough to determine the quadrant of a circle in which an
operand resides. The quotient bits remain set until they are cleared by the user, or until another
FMOD or FREM instruction is executed.

23 22 21 20 19 18 17 16

QUOTIENT

SEVEN LEAST SIGNIFICANT
L-____________ BITS OF QUOTIENT

L-______________________ SIGN OF QUOTIENT

Figure 2-5. MC68881/MC68882 FPSR Quotient Byte

MC68881/MC68882 USER'S MANUAL MOTOROLA
2-5

2.3.3 FPSR Exception Status Byte

The exception status byte (EXC), shown in Figure 2-6, contains a bit for each floating-point ex"

2 ception that may have occurred during the most recent arithmetic instruction or move operation.
This byte is cleared by the FPCP at the start of most operations; operations that cannot generate
any floating-point exceptions (the FMOVEM and FMOVE control register instructions) do not clear
this byte. This byte can be used by an exception handler to determine which floating-point ex
ception(s) caused a trap.

15 14 13 12 11 10

I BSUN I SNAN I OPERR I OVFl I UNFl I OZ I INEX2 I INEX1 I

I
I INEXACT DECIMAL INPUT

INEXACT OPERATION

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNAlliNG NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 2·6. MC68881/MC68882 FPSR Exception Status Byte

If a bit is set by the FPCP in the EXC byte and the corresponding bit in the ENABLE byte is also
set, an exception is signaled to the main processor. When a floating-point exception is detected
by the FPCP, the corresponding bit in the EXC byte is set, even if the trap for that exception class
is disabled. (A USer write operation to the status register, whj<;h sets a bit in the EXC byte, does
not cause a trap to be taken regardless of the value in the ENABLE byte.)

Note that the bits in the status EXC byte and control ENABLE byte are in the same bit positions
within each byte. The eight floating-point exception classes are described in greater detail in
SECTION 6 EXCEPTION PROCESSING.

2.3.4 FPSR Accrued Exception Byte

The accrued exception byte (AEXC), shown in Figure 2-7, contains the five exception bits required
by the IEEE standard for trap disabled operation. These exceptions are logical combinations of
the bits in the EXC byte. The AEXC byte contains the history of all floating-point exceptions that
have occurred since the !Jser last clearecj the AEXC byte. In normal operations, only the user
clears this byte (by writing to the status register). The AEXC byte is cleared by the FPCP only by
a reset or a restore operation of the null state.

;

Many users elect to disable traps for all or part of the floating-point exception classes. The AEXC
byte is provided to make it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most oper(ltions (all but the FMOVEM and FMOVE control register instructions), the
bits in the EXC byte are logically combined to form an AEXC value that is logically ORed into the
existing AEXC byte. This operation creates "sticky" floating-point exception bits in the AEXC byte
that the user need poll only once (at the end 9f a series of floating-point operations, for example).

The setting or clearing of bits in the AEXC byte does not cause the FPCP to take an exception,
nor does it prevent taking an exception. The relationship between the bits in the I=XC byte and

MOTOROLA
2-6

MC68881/MC68882 USER'S MANUAL

I lOP I OVFl I UNFl I OZ I IN EX I I
I I INEXACT

DlVIOE BY ZERO

UNDERflOW

OVERFLOW

INVAUO OPERATION

Figure 2-7. MC68881/MC68882 FPSR Accrued Exception Byte

the bits in the AEXC byte is shown by the following equations. These equations apply to setting
the AEXC bits at the end of each operation that affects the AEXC byte:

AEXC(lOP) = AEXC(lOP)vEXC(BSUNvSNANvOPERR)
AEXC(OVFL) = AEXC(OVFL)vEXC(OVFL)
AEXC(U NFL) = AEXC(U N FL)vEXC(U N FLAI N EX2)
AEXC(DZ) =AEXC(DZ)vEXC(DZ)
AEXC(I N EX) = AEXC(I NEX)vEXC(I NEX 1 vi N EX2vOVFL)

where:
"v" = Logical OR
"Au = Logical AND

2.4 FLOATING-POINT INSTRUCTION ADDRESS REGISTER

A majority of the FPCP instructions operate concurrently with the MC68020/MC68030 (MPU). That
is, the MPU can be executing instructions while the FPCP is simultaneously executing a floating
point instruction. Additionally, the MC68882 can execute two floating-point instructions concur
rently. As a result of this non-sequential instruction execution, the program counter value stacked
by the MPU, in response to an enabled floating-point exception trap may not point to the offending
instruction.

For the subset of the FPCP instructidns that generate floating-point exception traps, the 32-bit
floating-point instruction address (FPIAR) register is loaded with the logical address of an instruc
tion before the instruction is executed (unless all arithmetic exceptions are disabled). This address
can then be used by a floating-point exception handler to locate a floating-point instruction that
has caused an exception. Since the FPCP FMOVE to/from the FPCR, FPSR, or FPIAR and FMOVEM
instructions cannot generate floating-point exceptions, these instructions do not modify the FPIAR.
These instructions can be used to read the FPIAR in the trap handler without changing the previous
value.

This register is cleared by the reset operation or a restore operation of the null state.

IVIC68881/MC68882 USER'S MANUAL MOTOROLA
2-7

SECTION 3
OPERAND DATA FORMATS

The following paragraphs describe the MC68881/MC68882 (FPCP) operand data formats. Seven
data formats are supported: three signed binary integer formats, three binary floating-point for
mats, and one packed binary coded decimal (BCD) floating-point format. All data formats are
supported uniformly by all arithmetic and transcendental instructions. These formats are as fol
lows:

Byte Integer (B)
Word Integer (W)
Long Word Integer (L)
Single Precision Real (5)

Double Precision Real (D)
Extended Precision Real (X)
Packed Decimal Real (P)

The capital letter in parentheses is the suffix added to an instruction in the assembly language
syntax to specify the data format of operands external to the FPCP. All data formats are organized
in memory consistently with the M68000 Family data organization, i.e., the most-significant byte
is located at the lowest address (nearest $00000000), with each successively less significant byte
located at the next address (N + 1, N + 2, etc.). The least-significant byte is located at the highest
address (nearest $FFFFFFFF).

Within the floating-point data formats, there are five types of numbers that can be represented:
normalized numbers, denormalized numbers, zeros, infinities, and not-a-numbers (NANs). These
data types are represented with special encodings corresponding to each data format.

3.1 INTEGER DATA FORMATS

The three signed (twos complement) integer data formats supported by the FPCP (byte, word,
and long word) are identical to those supported by the M68000 Family architecture (see Figure
3-1).

B BYTE INTEGER

15

16 BITS WORO INTEGER

31

32 BITS LONG INTEGER

Figure 3-1. Signed Integer Data Formats

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-1

Since all FPCP internal operations are performed in full extended precision format, signed integer
operands are converted to extended precision values before the specified operation is performed.
Thus, mixed mode arithmetic is implicitly supported.

3.2 BINARY REAL DATA FORMATS

3 Floating-point numbers can be encoded in any of three binary real data formats: single precision
(32 bits). double precision (64 bits). and double extended precision (96 bits, 80 of which are used).
All three of these formats fully comply with the IEEE Standard for Binary Floating-Point Arithmetic.

NOTE
The single extended precision data format defined in the IEEE standard is redundant in
a device that supports the double extended precision format. Thus, all references in this
manual to extended precision imply double extended precision as defined by the IEEE
standard.

Since all FPCP internal operations are performed in extended precision, single and double pre
cision operands are converted to extended precision values before the specified operation is
performed. Thus, mixed mode arithmetic is implicitly supported. The memory formats for the
real data formats are shown in Figure 3-2.

94

15·BIT
EXPONENT

80

SIGN OF MANTISSA

62 51

EXPONENT IEIT I

63

IMPLICIT BINARY POINT

30 22

8·BIT
EXPONENT

23·BIT
FRACTION

SIGN OF FRACTION

52-BIT
FRACTION

64-BIT
MANTISSA

Figure 3-2. Binary Real Data Formats

SINGLE REAL

OOUBLE REAL

EXTENOEO REAL

The exponent in all three binary formats is an unsigned binary integer with an implied bias added
to it. The bias values for single, double, and extended precision are 127, 1023, and 16383, re
spectively. When the bias is subtracted from the value of the exponent, the result represents a
signed twos complement power of two that yields the magnitude of a normalized floating-point
number when multiplied by the mantissa. Since biased exponents are used, a program can execute
an integer compare instruction (CMP) to compare floating-point numbers in memory (regardless
of the absolute magnitude of the exponents).

Data formats for single and double precision numbers differ slightly from the data formats for
extended precision numbers in the representation of the mantissa. A normalized mantissa, for

MOTOROLA
3-2

MC68881/MC68882 USER'S MANUAL

all three precisions, is always in the range [1.0 ... 2.0). The extended precision data format ex
plicitly represents the entire mantissa, includlng the explicit integer part bit. However, for single
and double precision data formats, only the fractional portion of the mantissa is explicitly rep
resented and the integer part, always one, is implied.

The IEEE standard has created the term "significand" to bridge this difference and to avoid the
historical implications of the term mantissa. The IEEE standard defines a significand as the com
ponent of a binary floating-point number that consists of an explicit or implicit leading bit to the
left of the implied binary point. This manual uses the terms mantissa and significand, defined as
follows, interchangeably.

Single Precision Mantissa = Single Precision Significand
= 1.<23-Bit Fraction Field>

Double Precision Mantissa = Double Precision Significand
= 1.<52-Bit Fraction Field>

Extended Precision Mantissa = Extended Precision Significand
= 1.Fraction
= <64-Bit Mantissa Field>

NOTE

Throughout this manual, ranges are specified using traditional set notation with the
format "bound ... bound" specifying the boundaries of the range. The type of brackets
enclosing the range defines whether the endpoint is inclusive or exclusive. A square
bracket indicates inclusive, and a parenthesis indicates exclusive. For example, the range
specification "[1.0 ... 2.0]" defines the range of numbers greater than or equal to 1.0 and
less than or equal to 2.0. The range specification "(0.0 ... + inf]" defines the range of
numbers greater than 0.0 and less than or equal to positive infinity.

Each of the three floating-point data formats can represent five unique floating-point data types:
Normalized Numbers
Denormalized Numbers
Zeros
Infinities
Not-A-Numbers (NANs)

The normalized data type never uses the maximum or minimum exponent value for a given
format (except for the extended precision format, see following note). These exponent values in
each precision are reserved for representing the special data types: zeros, infinities, denormalized
numbers, and NANs. Details of each type of number for each format are shown in 3.6 DATA
FORMAT DETAILS.

NOTE

There is a subtle difference between the definition of an extended precision number with
an exponent equal to zero and a single or double precision number with an exponent
equal to zero. If the exponent of a single or double precision number is zero, the number
is defined to be denormalized, and the implied integer bit is also a zero. However, an
extended precision number with an exponent of zero may have an explicit integer bit
equal to one, which results in a normalized number (even though the exponent is equal
to the minimum value).

For simplicity, the following discussion treats all three real formats in the same manner, where
an exponent value of zero identifies a denormalized number. However, it should be noted that
the extended precision format may deviate from this rule.

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-3

II

•

3.2.1 Normalized Numbers

Normalized numbers encompass all representable real values between the overflow and under
flow thresholds, i.e., those numbers whose exponents lie between the maximum and minimum
values. Normalized numbers may be positive or negative. For normalized numbers, the implied
integer part bit in single and double precision is a one (1). In extended precision, the integer bit
is explicitly a one (1). See Figure 3-3 .

MIN < EXPONENT < MAX MANTISSA = ANY BIT PAmRN

SIGN OF MANTISSA. 0 OR 1

Figure 3-3. Format of Normalized Numbers

3.2.2 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold (underflow is detected
for a given data format and operation when the result exponent is less than or equal to the
minimum exponent value). Denormalized numbers may be positive or negative. For denormalized
numbers, the implied integer part bit in single and double precision is a zero (0). In extended
precision, the integer bit is explicitly a zero (0). See Figure 3-4.

EXPONENT = 0 MANTISSA = ANY NON· ZERO BIT PAmRN

SIGN OF MANTISSA. 0 OR 1

Figure 3-4. Format of Denormalized Numbers

Traditionally, floating-point number systems perform a "flush-to-zero" when underflow is de
tected. This leaves a large gap in the number line between the smallest magnitude normalized
number and zero. The IEEE standard implements gradual underflows: the result mantissa is shifted
right (denormalized) while the result exponent is incremented until the result exponent reaches
the minimum value. If all mantissa bits of the result are shifted off to the right during this de
normalization, the result becomes zero. In many instances, gradual underflow limits the potential
underflow damage to no more than a round-off error. (This underflow and denormalization de
scription ignores the effects of rounding and the user selectable rounding modes.) Thus, the large
gap in the number line created by "flush-to-zero" floating-point number systems is filled with
representable (denormalized) numbers in the IEEE "gradual underflow" floating-point number
system.

NOTE

Since the extended precision data format has an explicit integer part bit, a number can
be formatted with a non-zero exponent (less than the maximum value) and a zero integer
bit, which is not defined by the IEEE standard. Such a number is called an unnormalized
number. The MC68881 never generates an un normalized number as the result of any
operation. Unnormalized inputs are always converted to normalized or denormalized
numbers or zero before being used. Thus, as required by the IEEE standard, the FPCP
does not distinguish between redundant encodings of extended precision values.

MOTOROLA
3-4

MC68881/MC68882 USER'S MANUAL

3.2.3 Zeros

Zeros are signed (positive or negative) and represent the real values + 0.0 and - 0.0. See Figure
3-5.

MANTISSA = 0

SIGN OF MANTISSA, 0 OR 1

Figure 3-5. Format of Zero

3.2.4 Infinities

Infinities are signed (positive or negative) and represent real values that exceed the overflow
threshold. Overflow is detected for a given data format and operation when the result exponent
is greater than or equal to the maximum exponent value. (This overflow description ignores the
effects of rounding and the user selectable rounding modes.) See Figure 3-6. For extended pre
cision infinities, the most-significant bit of the mantissa (the integer bit) can be either one or zero.

1t:"'~O~'"' I MANTISSA = 0"

SIGN OF MANTISSA, 0 OR 1

"For the extended precision format, the most significant bit of the mantissa (the integer bit) is a don't care.

Figure 3-6. Format of Infinity

3.2.5 Not-A-Numbers

When created by the FPCP, not-a-numbers (NANs), represent the results of operations that have
no mathematical interpretation, such as infinity divided by infinity. All operations involving a NAN
operand as an input return a NAN result. When created by the user, NANs can protect against
un-initialized variables and arrays, or represent user-defined special number types. See Figure 3-
7. For extended precision NANs, the most significant bit of the mantissa (the integer bit) can be
either one or zero.

EXPONENT = MAXIMUM MANTISSA = ANY NON-ZERO BIT PAmRN

SIGN OF MANTISSA, 0 OR 1

Figure 3-7. Format of No.-A-Numbers

Two different types of NANs are implemented by the FPCP. The value of the most-significant bit
(MSB) of the fraction identifies the type. The identifying bit is the MSB of the mantissa for single
and double precision and the MSB of the mantissa minus one for extended precision. NANs with
a leading fraction bit equal to one are non-signaling NANs; NANs with a leading fraction bit equal
to zero are signaling NANs (SNANs). A SNAN can be used as an escape mechanism for a user
defined non-IEEE data type. The FPCP never creates a SNAN as a result of an operation.

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-5

II

The IEEE specification defines the manner in which a NAN is processed when used as an input
to an operation. Particularly, if a SNAN is used as an input and the SNAN trap is not enabled, a
non-signaling NAN must be returned as the result. The FPCP accomplishes this by using the
source SNAN, setting the most-significant bit of the fraction, and storing the resultant non-sig
naling NAN in the destination. Due to the IEEE formats for NANs, the result of setting the most
significant fraction bit of a SNAN is always a non-signaling NAN.

~ When NANs are created by the FPCP, the NANs always contain the same bit pattern in the
~ mantissa; for any precision, all bits of the mantissa are ones. When a NAN is created by the user,

any non-zero bit pattern can be stored in the mantissa.

3;2.6 Binary Real Data Summary

Figure 3-8 presents a summary, for quick reference, of the five floating-point data types for the
single, double and extended precision formats.

3.3 PACKED DECIMAL REAL DATA FORMAT

ihe packed decimal floating-point data format consists of a twenty-four digit packed decimal
string as shown in Figure 3-9. A decimal floating-point source operand is converted to an extended
precision value before the specified operation is performed. Thus, mixed mode arithmetic is
implicitly supported.

MOTOROLA
3-6

MIN < EXPONENT < MAX SIGNIFICANO = ANY BIT PATTERN

SIGN OF SIGNIFICAND, 0 OR 1

EXPONENT = 0 SIGNIFICAND = ANY NON-ZERO BIT PATTERN

SIGN OF SIGNIFICAND, 0 OR 1

SIGNIFICAND = 0

SIGNIFICAND = 0"

EXPONENT = MAXIMUM SIGNIFICAND = ANY NON-ZERO BIT PATTERN

SIGN OF SIGNIFICAND, 0 OR 1

"For the extended precision format, the most significant bit of the significand (the integer bit) is a don't care.

Figure 3-8. Binary Real Data Type Summary

MC68881/MC68882 USER'S MANUAL

91 80 67

IMPLICIT DECIMAL POINT

2 BITS. USED ONLY FOR ±INFINITY OR NAN(SI. ZERO OTHERWISE

SIGN OF EXPONENT

'---- SIGN OF MANTISSA

*Unless a binary-to-decimal conversion overflow occurs

17-01GIT
MANTISSA

Figure 3-9. Packed Decimal Real Data Format

PACKED DECIMAL RE

The packed decimal representation for the special data types of zero, infinity, and NAN is described
in 3.6 DATA FORMAT DETAILS, which also defines all possible data patterns in the packed decimal
data format.

3.4 INTERNAL DATA FORMAT

All FPCP internal operations are performed in extended precision. All external operands, regardless
of data format, are converted to extended precision values before the specified operation is
performed.

The format used in the eight floating-point data registers is identical to the extended precision
data format described previously and in 3.6 DATA FORMAT DETAILS (with the deletion of the 16
unused bits). The extended precision data format has a 15-bit biased integer exponent and a 64-
bit mantissa.

The format of an intermediate result is shown in Figure 3-10. The intermediate result exponent
for some dyadic operations (multiply and divide) can easily overflow or underflow the 15-bit
exponent. In order to simplify overflow and underflow detection, intermediate results in the FPCP
maintain a 17-bit twos complement integer exponent. When an overflow or underflow interme
diate result is detected, the intermediate 17-bit exponent is always converted into a 15-bit biased
exponent before it is stored in a floating-point data register. Additionally, the mantissa is main
tained internally as 67 bits for rounding purposes, but is always rounded to 64 bits (or less,
depending on the selected rounding precision) before it is stored in a floating-point data register.

17-BIT
EXPONENT

II
II

INTEGER BIT

OVERFLOW BIT

63-BIT
FRACTION

LEAST SIGNIFICANT BIT OF FRACTION

GUARD BIT

ROUND BIT -----'

STICKY BIT ----'

Figure 3-10. Intermediate Result Format

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-7

E

•
3.5 FORMAT CONVERSIONS

Two cases of conversion between two data formats are:
• Converting an operand in any memory data format to the extended precision data format

and storing it in a floating-point data register, or using it as the source operand for an
arithmetic operation .

• Converting the extended precision value in a floating-point data register to any data format
and storing it in a memory destination.

3.5.1 Conversion to Extended Precision Data Format

Since the internal data format used by the FPCP is always extended precision, all external op
erands, regardless of data format, are converted to extended precision values before the specified
operation is performed. If the external operand, regardless of data format, is a denormalized
number, the number is normalized before the specified operation is performed. Conversion and
normalization apply not only to loading a floating-point data register but also to external operands
involved in arithmetic operations.

Since floating-point data registers always contain extended precIsion data format values, an
external extended precision denormalized number moved into a floating-point data register is
stored as an extended precision denormalized number. In this case, the number is first normalized
and then denormalized before it is stored in the designated floating-point data register. This
method simplifies the handling of all other data formats and types.

If an external operand is an extended precision unnormalized number, the number is normalized
before it is used in an arithmetic operation. If the external operand is an extended precision
unnormalized zero (i.e., with a mantissa of all zeros), the Ilumber is converted to an extended
precision normalized zero before the specified operation is performed. This normalization and
conversion applies not only to external unnormalized operands involved in arithmetic operations,
but also applies to loading a floating-point data register, Note that the regular use of unnormalized
inputs defeats the purpose of the IEEE standard, and may produce gross inaccuracy in the results.

3.5.2 Conversions to Other Data Formats

Conversion from the extended precision data format to any of the other six data formats occurs
when the contents of an FPCP floating-point data register are stored to memory or an MPU data
register. Since no operation performed by the FPCP can create an unnormalized result, the result
of moving a floating-point data register to an extended precision external destination can never
be an unnormalized number.

3.6 DATA FORMAT DETAILS

This section provides the format specification details for the single (S). double (D), extended (X)
precision binary real, and packed decimal (P) real string data formats. Refer to Tables 3-1 through
3-4 and Figure 3-11.

MOTOROLA
3-8

MC68881/MC68882 USER'S MANUAL

Table 3-1. Single Precision Binary Real Format

Memory Format:

Field Size (in Bitsl:
s = Sign
e = Biased Exponent
I = Fraction
Total

Interpretation 01 Sign:
Positive Mantissa, s =

Negative Mantissa, s =

Normalized Numbers:
Bias 01 e
Range 01 e
Range 01 I
Mantissa = Signilicand =

Relation to Representation 01 Real Numbers

Denormalized Numbers:
e = Format Minimum =
Bias 01 e
Range 01 I

Mantissa = Signilicand =

Relation to Representation 01 Real Numbers

Signed Zeros:
e = Format Minimum
I = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =

I = Mantissa = Significand =

NANs (Not-A-Numberl:
s =
e = Format Maximum =

f =
Representation of f

xxxx ... xxxx
f When Created by the FPCP

Ranges (Approximatel:
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

MC68881/MC68882 USER'S MANUAL

31 30 23 22

BIASED I
EXPONENT

1
8
23
32

a
1

+ 127 ($7FI
a < e < 255 ($FFI
Zero or Non-Zero
1.1
(-liS x 2e-127 x 1.1

0($001
+ 126 ($7EI
Non-Zero
0.1
(- lis x 2 - 126 x 0.1

0($001
O.f = 0.0

255 ($FFI
O.f = 0.0

Don't Care
255 ($FFI
Non-Zero

FRACTION

.1xxxx ... xxxx, Non-Signaling

.Oxxxx ... xxxx, Signaling
Non-Zero Bit Pattern
.11111 ... 1111

3.4 x 1038
1.2 x 10s-38
1.4 x 10- 45

MOTOROLA
3-9

E

•

Table 3-2. Double Precision Binary Real Format

Memory Format:

Field Size (in Bits):
s ~ Sign
e ~ Biased Exponent
f ~ Fraction
Total

Interpretation of Sign:
Positive Mantissa, s ~
Negative Mantissa, s ~

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa ~ Significand ~
Relation to Representation of Real Numbers

Denormalized Numbers: e ~ Format Minimum ~
Bias of e

Range of f
Mantissa ~ Significand ~
Relation to Representation of Real Numbers

Signed Zeros:
e ~ Format Minimum ~
f ~ Mantissa ~ Significand ~

Signed Infinities:
e ~ Format Maximum ~

f ~ Mantissa ~ Significand ~

NANs (Not-A-Number):
s ~
e ~ Format Maximum ~
f ~
Representation of f

xxxx ... xxxx
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

MOTOROLA
3-10

63

1
11
52
64

o

62 52 51

BIASED
EXPONENT

+1023
o < e < 2047 ($7FF)
Zero or Non-Zero
1.f

FRACTION

(-l)S x 2e-l023 x 1.f

0($000)

+ 1022 ($3FE)
Non-Zero
O.f
(-l)S x 2 - 1022 x O.f

0($00)
O.f ~ 0.0

2047 ($7FFI
O.f ~ 0.0

Don't Care
2047 ($7FF)
Non-Zero
.1 xxxx ... xxxx, Non-Signaling
.Oxxxx ... xxxx, Signaling
Non-Zero Bit Pattern
.11111 ... 1111

18 x 10307

2.2 x 10- 308
4.9 x 10- 324

MC68881/MC68882 USER'S MANUAL

Table 3-3. Extended Precision Binary Real Format

Memory Format:

Field Size (in Bits):
s = Sign
e = Biased Exponent
u = Zero, Reserved
j = Integer Part
f = Fraction

Total

Interpretation of Unused Bits:
Input
Output

Interpretation of Sign:
Positive Mantissa, s =

Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
j =
Range of f
j.f = Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum
Bias of e
j=
Range of f
j.f = Mantissa = Significand =
Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
j.f = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =
j=
j.f = Mantissa = Significand

NANs (Not-A-Number):
s =

j =
e = Format Maximum =

f =

Representation of f

xxx .. . xxxx
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

MC68881/MC68882 USER'S MANUAL

95 94

15
16
1
63
96

Don't Care
All Zeros

a
1

+ 16383 ($3FFF)

80 79

a < = e < 32767 ($7FFF)
1
Zero or Non-Zero
1.f
(- 1)S x 2e - 16383 x j.f

0($0000)
+ 16383 ($3FFF)
a
Non-Zero
O.f

(- 1)S x 2- 16383 x O.f

0($0000)
0.0

32767 ($7FFF)
Don't Care
j.OOO ... 0000

Don't Care
Don't Care
32767 ($7FFF)
Non-Zero
j. lxxx ... xxxx, Non-Signaling
j.Oxxx ... xxxx, Signaling
Non-Zero Bit Pattern
1.11111 ... 1111

6 x 104931

8 x 10-4933
9 x 104952

64 62

INTEGER PART
FRACTION

MOTOROLA
3-11

II

•
Table 3-4. Decimal String Type Definitions

Word 5 Word 4 Words 3·0
Operand

15 14 13 12 " ... 0 15 ... 0
Type

SM SE y y 3·Digit Exponent 1·Digit Integer 16-Digit Fraction

±INFINITY 0/1 1 1 1 $FFF $xxx $00 ... 00

±NAN 0/1 1 1 1 $FFF $xxxx Non-Zero, see Note 1

±SNAN 0/1 1 1 1 $FFF $xxxx Non-Zero, see Note 1

±ZERO a 0/1 x x $000-$999 $xxxO $00 ... 00

-ZERO 1 011 x x $000-$999 $xxxO $00 ... 00

+ In-Range 0 0/1 x x $000-$999 $xxxO-$xxx9 $00 ... 01-$99 ... $99

-In-Range 1 0/1 x x $000-$999 $xxxO-$xxx9 $00 ... 01-$99 ... $99

NOTES:
1. A decimal string with the SE and y bits set, an exponent of $FFF, and a non-zero 16-digit decimal fraction is a NAN. When this

string is used by the FPCP, the fraction part of the NAN is moved bit-for-bit into the extended precision mantissa of a floating
point register. The exponent of the register is set to signify a NAN, but no decimal-to-binary conversion or any other conversion
is performed. Therefore, the most-significant bit of the most-significant digit in the decimal fraction (most-significant bit of
MANT15) is a don't care (as in extended NANs) and the most significant bit minus one of MANT15 is the signaling NAN (SNAN)
bit. If the NAN bit is a zero, then it is a SNAN.

2. If a non-decimal digit [$A ... $F] appears in the exponent of a zero, the number is converted to a true zero. The FPCP does not
detect non-decimal digits [$A ... $F] in the exponent, integer, or fraction digits of an in-range decimal string. These non-decimal
digits are converted to binary in the same manner as decimal digits; however, the result is probably useless, although it is
repeatable.

3. Since in-range numbers cannot overflow or underflow when converted to extended precision, normalized extended precision
numbers are always produced by conversion from the decimal data format.

MOTOROLA
3-12

SIGN OF MANTISSA o = POSITIVE. 1 = NEGATIVE IMPLICIT OECIMAL POINT -
SIGN OF EXPONENT } I USEO ONLY FOR ±INFINITY OR NAN(S) OON'T CARES

I
I

I

I I YY EXP2 EXPI EXPO IEXP3) XXXX XXXX MANTl6

MANTI 5 MANTl4 MANTI 3 MANTI 2 MANT11 MANTI 0 MANTS MANTS

MANT7 MANT6 MANT5 MANT4 MANT3 MANT2 MANTI MANTO

MANTn Is the nth digit of the mantissa.
EXPn Is the nth digit of the exponent. EXP3 is only generated during a move out operation if the source

operand exponent exceeds the magnitude of a three digit exponent; otherwise, it is a don't care.
Only EXPO-EXP2 are used for input.

XXXX Are don't care bits, which are zero when written and ignored when read.

Figure 3-11. Packed Decimal Real Data Format Detail

MC68881/MC68882 USER'S MANUAL

SECTION 4
INSTRUCTION SET

This section describes the MC68881/MC68882 (FPCP) instruction set in detail, using the Motorola
assembly language syntax and notation. As an introduction, a summary of the instruction set is
presented, followed by a detailed description of each instruction. Also included at the end of this 4
section is a listing of the binary patterns of all of the instructions and an opcode map summary
for use by assembler and compiler writers.

4.1 INSTRUCTION DESCRIPTION CONVENTIONS

The instruction set is discussed in this section using this functional grouping and the following
notation:

B, W, L

S

D

X

P

FPm, FPn

FPcr

<ea>

k

ccc

<list>

<label>

The same size codes as all M68000 Family processors; specifies a signed integer
data type (twos complement) of byte (8 bits), word (16 bits), or long word (32
bits)

Single precision real data format (32 bits)

Double precision real data format (64 bits)

Extended precision real data format (96 bits, 16 bits unused)

Packed BCD real data format (96 bits, 12 bytes)

One of the eight floating-point data registers

One of the three floating-point system control registers (FPCR, FPSR, or FPIAR)

Any valid MC68020/MC68030 (MPU) addressing mode

A twos complement signed integer (-64 to + 17) that specifies the format of a
number to be stored in the packed decimal format

An index into the FPCP constant ROM

A list of floating-point data registers or control registers

A relative label used by an assembler to calculate a displacement

4.2 INSTRUCTION GROUPS

The following paragraphs briefly describe each instruction group along with tables showing the
Motorola syntax for each instruction. The FPCP instructions can be sej;larated into the following
groups:

Data Movement

Dyadic Operations

Monadic Operations

Program Control

System Control

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-1

4.2 .. 1 Data Movement Operations

This group of instructions includes those that load or store the user visible configuration of the
FPCP and that move operands into, between, or out of the floating-point data registers. Data
format conversion functions are also implicitly supported since all external data formats are
converted to extended precision for internal storage, and vice versa. Operations to move the
system control registers into and out of the FPCP are also provided. The move constant ROM
(FMOVECR) instruction allows floating-point data registers to be loaded quickly with commonly
used constants such as 'IT, e, 0.0, 1.0, etc. Table 4-1 summarizes the data movement instructions
that are available and the operand data formats supported.

Tabie 4-1. Data Movement Operations

Instruction Operand Syntax Operand Format Operation

FMOVE FPm,FPn X source. destination
(ea),FPn B,W,L,S,D,X,P
FPm,(ea) B,W,L,S,D,X
FPm,(ea){#kj P
FPm,(ea){Dnj P
(ea),FPct L
FPcr,(ea) L

FMOVECR #ccc,FPn X ROM constant. FPn

FMOVEM (ea),(list)' L,X listed registers. destination
(ea),Dn X
(list)',(ea) L,X source. listed registers
Dn,(ea) X

NOTE: The register list may include any combination of the eight floating-point data registers, or it
may contain any combination of the three control registers FPCR, FPSR, and FPIAR. If the
register list mask resides in a main processor data register, only floating-point data registers
may be specified.

4.2.2 Dyadic Operations

The dyadic floating-point instructions provide several arithmetic functions that require two input
operands such as add, subtract, multiply, and divide. For these operations, the first operand may
be located in memory, in an integer data register, .or in a floating-point data register, and the
second operand is always contained in a floating-point data register. ihe results of the operation
are stored in the register specified as the second operand. With two exceptions, all operations
support any data. format and are performed to extended precision. The exceptions are the single
precision mUltiply and divide instructions (FSGLMUL and FSGLDIV). These instructions support
any precision inputs, but return results accurate only to single precision. These instructions provide
very high speed operations by sacrificing accuracy. The general format of the dyadic instructions
is given in Table 4-2; the available operations are listed in Table 4-3,

MOTOROLA
4-2

Table 4·2. Dyadic Operation Format

Instructiori Operand Syntax Operand Format Operation

F(dop) (ea).FPIl B,W,L,S,D,X,P FPn (function) source. FPn
FPm,FPn X

where:
<dop> is anyone of the dyadic operation specifiers.

MC68881/MC68882 USER'S MANUAL

Table 4-3. Dyadic Operations

Instruction Function

FADD add

FCMP compare

FDIV divide

FMOD modulo remainder

FMUL multiply

FREM IEEE remainder

FSCALE scale exponent

FSGLDIV single precision divide

FSGLMUL single precision multiply

FSUB subtract

4.2.3 Monadic Operations

The monadic floating-point instructions provide several arithmetic functions that require only one
input operand. Unlike the integer counterparts to these functions (e.g., NEG <ea>), a source and
a destination may be specified. The operation is performed on the source operand and the result
is stored in the destination, which is always a floating-point data register. When the source is not
a floating-point data register, all data formats are supported; the data format is always extended
precision for register-to-register operations. The general format of these instructions is shown in
Table 4-4, and the available operations are listed in Table 4-5. The form of the simultaneous sine
and cosine instruction is given in Table 4-6.

Table 4-4. Monadic Operation Format

Instruction Operand Svntal! Operand Format Operation

F(mop) (ea),FPn B,W,L,S,D,X,P source. function. FPn
FPm,FPn X
FPn X FPn • function. Fpn

where:
<mop> is anyone of the monadic operations specifiers.

Table 4-5. Monadic Operations

Instruction Function Instruction Function
FABS absolute value FLOGN In(x)
FACOS arc cosine FLOGNPl In(x+ 1)
FASIN arc sine FLOG10 lo910(X)
FATAN arc tangent FLOG2 lo92(x)
FATANH hyperbolic arc tangent FNEG negate
FCOS cosine FSIN sine
FCOSH hyperbolic cosine FSINH hyperbolic sine
FETOX eX FSQRT square root
FETOXMl eX-l FTAN tangent
FGETEXP extract exponent FTANH hyperbolic tangent
FGETMAN extract mantissa FTENTOX lOx
FINT extract integer part FTWOTOX 2x

FINTRZ extract integer part, rounded-to-zero

"

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-3

•

Table 4-6. Dual Monadic Operation Format

Instruction Operand Syntax Operand Format Operation

FSINCOS (ea),FPc: FPs B,W,L,S,D,X,P SIN(source) • FPs;
FPm,FPc: FPs X COS(source) • FPc

4.2.4 Program Control Operations

The program control instructions provide a means of affecting program flow based on conditions
present in the floating-point status register after any operation that sets the condition codes. In

~ addition to allowing direct control of program flow with the branch conditionally (FBcc) and the
~ decrement and branch conditionally (FDBcc) instructions, the set conditionally (FScc) instruction

allows the user to set a Boolean variable based on the floating-point condition codes as an
intermediate result in the evaluation of a complex Boolean equation, Also included is a test
operand instruction (FTST) that sets the floating-point condition codes for use by the other program
and system control instructions, and a no operation instruction (FNOP) that may be used to force
synchronization of the FPCP with the main processor. Table 4-7 summarizes the program control
instructions that are available.

Table 4-7. Program Control Operations

Instruction Operand Syntax Operand Format Operation

FBcc (label) W,L if condition true,
then PC+d. PC

FDBcc Dn,(label) W if condition true, then no operation;
else Dn ~ 1 • Dn;

if Dn~ ~ 1
then PC+d. PC

FNOP none none no operation

FScc (ea) B if condition true,
then 1'5. destination
else 0'5 • destination

FTST (ea) B,W,L,S,D,X,P set FPSR condition codes
FPn X

The FPCP supports 32 conditional tests that are separated into two groups - 16 that cause an
exception if an unordered condition is present when the conditional test is attempted, and 16 that
do not cause a exception if an unordered condition is present, (An unordered condition occurs
when an input to an arithmetic operation is a NAN.) Table 4-8 lists the 32 condition code mne
monics along with the conditional test function. Refer to 4.4 CONDITIONAL TEST DEFINITIONS
for a detailed description of the conditional equation used by each test.

Table 4"8. Conditional Test Mnemonics

Exception On Unordered

GE greater than Or equal

GL greater than or less than

GLE greater than or less

GT greater than

LE less than or equal

LT less than

NGE not (greater than or equal)

MOTOROLA
4-4

No Exception on Unordered

OGE ordered greater than or equal

OGL ordered greater than or less than

OR ordered

OGT ordered greater than

OLE ordered less than or equal

OLT ordered less than

UGE unordered or greater than equal

MC68881/MC68882 USER'S MANUAL

Table 4-8. Conditional Test Mnemonics (Continued)

Exception on Unordered No Exception on Unordered

NGL not (greater than or less than) UEa unordered or equal

NGLE not (greater than or less than or equal) UN unordered

NGT not greater than UGT unordered or greater than

NLE not (less than or equal) ULE unordered or less than or equal

NLT not less than ULT unordered or less than

SEa signaling equal EO equal

SNE signaling not equal NE not equal

SF signaling always false F always false

ST signaling always true T always true

4.2.5 System Control Operations

The system control instructions communicate with the operating system via a conditional trap
instruction (FTRAPcc), and save or restore (FSAVE or FRESTORE) the non-user visible portion of
the FPCP during context switches in a virtual memory or other type of multitasking system. The
conditional trap instruction uses the same conditional tests as the program control instructions
and allows an optional 16- or 32-bit immediate operand to be included as part of the instruction
for passing parameters to the operating system. Table 4-9 summarizes the system control in
structions.

Table 4-9. System Control Operations

Instruction Operand Syntax Operand Size Operation

FRESTORE (ea) none state frame. internal registers

FSAVE (ea) none internal registers. state frame

FTRAPcc none none if condition true,
#xxx W,L, then take exception

4.3 COMPUTATIONAL ACCURACY

Whenever an attempt is made to represent a real number in a binary format of finite precision,
there is a possibility that the number cannot be represented exactly; this is commonly referred
to as round-off error. Furthermore, when two inexact numbers are used in a calculation, the error
present in each number is reflected and possibly aggravated, in the result.

One of the major reasons that the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754-1985) was developed is to define the error bounds for calculation of binary floating-point
values so that all machines conforming to the standard produce the same results for an operation.
The operation must meet the following conditions:

1. same input values,
2. same rounding mode, and
3. same precision.

The IEEE standard specifies not only the format of data items, but also defines:
1. the maximum allowable error that may be introduced during a calculation, and
2. the manner in which rounding of the result is performed.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-5

II

However, the IEEE specification defines only the operation of some of the instructions supported
by the FPCP; those not specified by the IEEE standard are described in detail in the following
paragraphs. The following paragraphs discuss the accuracy of the calculations performed by the
FPCP, grouping them as follows:

1. the IEEE specified operations and non-transcendental functions,
2. the transcendental functions, and
3. the IEEE specified conversions between binary and decimal real formats.

4.3.1 Arithmetic Instructions

• The IEEE Specification for Binary Floating-Point Arithmetic specifies that the following operations
must be supported for each data format: add, subtract, multiply, divide, remainder, square root,
integer part, and compare. Conversions between the various data formats are also required. In
addition to these arithmetic functions, the FPCP also supports the non-transcendental operations
of: absolute value, get exponent, get mantissa, negate, modulo remainder, scale exponent, and
test. Since the IEEE specification defines the error bounds to which all calculations are performed,
the result obtained by any conforming machine can be predicted exactly for a particular precision
and rounding mode. The error bound defined by the IEEE specification is one-half unit in the last
place of the destination data format in the round-to-nearest mode, and one unit in the last place
in the other rounding modes.

The FPCP performs all calculations using a 67-bit mantissa for the intermediate results. The three
bits beyond the precision of the extended format allow the FPCP to perform all calculations as if
to infinite precision, and then round the result to the desired precision before storing it in the
destination. By performing calculations in this manner, the final result is always correct for the
specified destination data format before rounding is performed (unless an overflow or underflow
error occurs). The specified rounding operation then produces a number that is as close as possible
to the infinitely precise intermediate value and is still representable in the selected precision. An
example of how the 67-bit mantissa allows the FPCP to meet the error bound of the IEEE speci
fication is as follows:

Mantissa g s

Intermediate Result: x.x xOO o 0 (Tie Case)
Round-to-Nearest Result: x.x xOO

In this case, the least-significant bit (I) of the rounded result is not incremented, even though the
guard bit (g) is set in the intermediate result. The IEEE standard specifies that tie cases should
be handled in this manner. Assuming that the destination data format is extended, if the difference
between the infinitely precise intermediate result and the round-to-nearest result is calculated,
the relative difference is 2 - 64 (the value of the guard bit). This error is equal to one-half of the
value of the least significant bit, and is the worst-case error that can be introduced when using
the round-to-nearest mode. Thus, the term one-half unit in the last place correctly identifies the
error bound for this operation. This error specification is the relative error present in the result;
the absolute error bound is equal to 2exponent x 2 - 64. An example of the error bound for the
other rounding modes is as follows:

Mantissa g r s

Intermediate Result: x.x xOO
Round-to-Zero Result: x.x xOO

In this case, the difference between the infinitely precise result and the rounded result is
2 - 64 + 2 - 65 + 2 - 66, which is slightly less than 2 - 63 (the value of the least-significant bit). Thus,

MOTOROLA
4-6

MC68881/MC68882 USER'S MANUAL

the error bound for this operation is not more than one unit in the last place. For all of the
arithmetic operations, these error bounds are met by the FPCP, thus providing accurate and
repeatable results.

4.3.2 Transcendental Instructions

The IEEE specification does not define the error bound to which transcendental (except square
root) functions are to be performed. In this context, the transcendental functions are all of those
operations not mentioned in the previous paragraphs (i.e., the trigonometric, hyperbolic, loga
rithmic, and exponential instructions). Due to the highly recursive nature of the algorithms used .,
to calculate these functions, the round-off error in the input operands to a function, combined ..
with the limited precision of the FPCP ALU, do not allow the calculation of a result with the same
error limit as the arithmetic functions. However, these operations are quite accurate given the
constraint of using an ALU with a finite precision of 67 bits. In general, the worst-case accuracy
of any transcendental function is one unit in the last place of double precision (which is equal to
4096 units in the last place of extended precision). The typical error bound for these instructions
is approximately 64 units in the last place of extended precision. The following example illustrates
the significance of this error bound:

Mantissa

Correct Result: x.x xOOOOOOOO
FPCP Calculated Result: x.x x01000000

In this case, the relative difference between the correct result and the result calculated by the
FPCP is 2 - 57 (assuming an extended precision result). which is 26 times the value of the least
significant bit. This difference corresponds to an error of 64 units in the last place.

Note that the transcendental functions perform limited checking for special case input values such
as boundary conditions. For example, the exponential functions check for a zero input value, but
do not check for exact integer values. Thus, raising a number to an exact integer value may not
produce an exact result (e.g., the instruction FTENTOX #1,FPO does not produce an extended
precision value of exactly 10.0), and the INEX2 bit in the FPSR may be set even if an exact result
is produced.

4.3.3 Decimal Conversions

The IEEE standard does not specify the format of the decimal real representation used by any
conforming machine, but it does define the error bounds for conversions between decimal and
the single and double precision binary formats. Thus, such conversions always produce consist
ently rounded results, and those results are predictable and repeatable on any conforming system.
However, it is not always possible to perform an exact conversion between these data formats,
due to the limited precision of the numbers and the different radices of the values. The error
bound for these conversions is 0.97 unit in the last digit of the destination precision for the round
to-nearest mode; and 1.47 units in the last digit of the destination precision for the other rounding
modes. When an input conversion cannot produce an exact result, the FPCP sets the INEX1 bit
in the FPSR exception byte. This indication allows for special handling of these conversion errors
that is separate from the handling of other types of inaccurate results. When an output conversion
cannot produce an exact result, the INEX2 bit is set.

The packed decimal data format supported by the FPCP allows the representation of double
precision binary numbers in a decimal form, in accordance with the IEEE specification. When a

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-7

packed decimal number is converted to extended precision, the result is always in range although
the conversion may be inexact. The result is within range because the magnitudes of the exponent
and mantissa of a packed decimal number are less than the largest values representable in the
extended precision format. Refer to 6.1.8 Inexact Result on Decimal Input for a description of the
handling of inaccurate decimal to binary conversions.

When an extended precision number is converted to packed decimal, the result may be a number
that cannot be represented exactly, or a number that is too large to be represented with a three
digit exponent. When this type of conversion is performed, the k factor specified is used to locate
the decimal rounding boundary. If the magnitude of the rounded decimal result exponent exceeds

.. 999, the FPCP signals an operand error and calculates a fourth exponent digit, which is included

... in the destination operand (see Figure 3-11 for the position of the fourth digit). Refer to 6.1.7
Inexact Result for a description of the handling of inaccurate binary to decimal conversions.

Note that the error bounds specified by the IEEE standard apply only to conversions of values in
the range of the double precision format. The error bound for conversions by the FPCP of extended
precision values which cannot be represented in double precision is significantly larger. Software
must be provided to convert such extended precision values to decimal. The conversion must
generate decimal results with an error bound analogous to those specified in the IEEE standard
for double precision values. That software envelope must utilize a super extended precision to
achieve such error bounds.

Note that the binary to/from decimal conversions performed by the FPCP utilize the on-chip ROM
values of powers of 10 for speed and accuracy, thus allowing exact conversions in many cases
(particularly for values that are exact powers of ten).

4.4 CONDITIONAL TEST DEFINITIONS

The FPCP provides a very simple mechanism for performing conditional tests of the result of any
arithmetic floating-point operation. First, the condition code bits in the FPSR are set or cleared at
the end of any arithmetic operation or move operation to a single floating-point data register.
The condition code bits are always set consistently based on the result of the operation. Second,
the FPCP provides 32 conditional tests that are supported in hardware by the M68000 Family
coprocessor interface. This mechanism allows conditional instructions that test floating-point
conditions to be coded in exactly the same way as the integer conditional instructions. The
evaluation of the conditional test by the FPCP is performed automatically. The combination of
the consistent setting of the condition code bits and the simple programming of conditional
instructions gives the MC68020/MC68030 and FPCP combination a very flexible, high performance
method of altering program flow based on floating-point results.

One important programming consideration is that the inclusion of the NAN data type in the IEEE
floating-point number system requires each conditional test to include the NAN condition code
bit in its Boolean equation. Because a comparison of a NAN with anything is unordered (i.e., it
is impossible to determine if a NAN is bigger or smaller than an in-range number), the compare
instruction sets the NAN condition code bit when an unordered compare is attempted. All arith
metic instructions also set the NAN bit if the result of an .operation is a NAN. The conditional
instructions interpret the NAN condition code bit equal to 1 as the unordered condition.

The inclusion of the unordered condition in floating-point branches destroys the familiar tricho
tomy relationship (greater than, equal, less than) that exists for integers. For example, the opposite
of floating-point branch greater than (FBGT) is not floating-point branchless than or equal (FBLE).
Rather, the opposite condition is floating-point branch not greater than (FBNGT). If the result of

MOTOROLA
4-8

MC68881/MC68882 USER'S MANUAL

the previous instruction was unordered, FBNGT is true; whereas, both FBGT and FBLE would be
false since unordered fails both of these tests (and sets BSUN). Compiler programmers should
be particularly careful of the lack of trichotomy in the floating-point branches since it is common
for compilers to invert the sense of conditions.

In the following paragraphs, the conditional tests are described in three main categories:

1. IEEE non-aware tests,

2. IEEE aware tests, and

3. Miscellaneous.

The set of IEEE non-aware tests is best used: .-

1. when porting a program from a system that does not support the IEEE standard to a con
forming system, or

2. when generating high-level language code that does not support IEEE floating-point concepts
(i.e., the unordered condition).

When using the set of IEEE non-aware tests, the user receives a BSUN exception whenever a
branch is attempted and the NAN condition code bit is set, unless the branch is an FBEQ or an
FBNE. If the BSUN trap is enabled in the FPCR register, the exception causes a trap. Therefore,
the IEEE non-aware program is interrupted if something unexpected occurs.

The IEEE aware branch set should be used in programs that contain ordered and unordered
conditions by compilers and programmers who are knowledgeable of the IEEE standard. Since
the ordered or unordered attribute is explicitly included in the conditional test, the BSUN bit is
not set in the status register EXC byte when the unordered condition occurs.

4.4.1 IEEE Non-Aware Tests

All of the conditional tests in the following table, except EQ and NE, set the BSUN bit in the status
register exception byte if the NAN condition code bit is set when a conditional instruction is
executed.

Mnemonic Definition

EO Equal

NE Not Equal

GT Greater Than

NGT Not Greater Than

GE Greater Than or Equal

NGE Not (Greater Than or Equal)

LT Less Than

NLT Not Less Than

LE Less Than or Equal

NLE Not (Less Than or Equal)

GL Greater or Less Than

NGL Not (Greater or Less Than)

GLE Greater, Less or Equal

NGLE Not (Greater, Less or Equal)

where:
"v" = Logical OR
"A" = Logical AND

MC68881/MC68882 USER'S MANUAL

Equation

Z

Z

NANvZvN

NANvZvN

Zv(NANvN)

NANv(NAZ)

NA(NANvZ)

NANv(ZvN)

Zv(NANAN)

NANv(NvZ)

NANvZ

NANvZ

NAN

NAN

Predicate

000001

001110

010010

011101

010011

011100

010100

011011

010101

011010

010110

011001

010111

011000

MOTOROLA
4-9

III

4.4.2 IF~E Aware Tests

The followi[lg conditional tests do not set the BSUN bit in the status register exception byte under
any circumstances.

Mnllmonic Definition

EO Equal

NE Not Equal

OGT Ordered Greater Than

ULE Unordered or Less or Equal

OGE Ordered Greater Than or Equal

ULT Unordered or Less Than

OLT Ordered Less Than

UGE Unordered or Greater or Equal

OLE Or~ered Less Than or Equal

UGT Unordered or Greater Than

OGL Ordered Greater or Less Than

UEO Unordered or Equal

OR Ordered

UN Unordered

where:
"v" = Logical OR
"A" = Logical AND

4.4.3 Miscellaneous Tests

Equation Predicate

Z 000001

Z 001110

NANvZvN 000010

NANvZvN 001101

Zv(NANvN) 000011

NANv(NAZ) 001100

NA(NANvZ) 000100

NANvZvN 001011

Zv(NANAN) 000101

NANv(NvZ) 001010

NANvZ 000110

NANvZ 001001

NAN 000111

NAN 001000

The following tests are not generally used but are implemented for completeness of the set. If
the NAN condition code bit is set, T and F do not set the BSUN bit, but SF, ST, SEQ, and SNE do
set the BSUN bit. .

Mnemonic D!!finition Equation Predicate

F False False 000000

T True True 001111

SF Signalling False False 010000

ST Signalling True True 011111

SEO Signalling Equal Z 010001

SNE Signalling Not Equal Z 011110

4.5 DETAILED INSTRUCTION DESCRIPTIONS

Subsequent paragraphs contain detailed information about each instruction in the FPCP instruction
set. Instructions are arranged in alphabetical order by assembler mnemonic. The following par
agraphs provide background information to aid in reading the detailed instruction information
presented.

4.5.1 Addressing Modes

Due to the nature of the MC68020/MC68030 and FPCP coprocessor interface, the FPCP supports
all MC68020/MC68030 addressing modes. The MC68020/MC68030 effective adoress modes are

MOTOROLA
4-10

MC68881/MC68882 USER'S MANUAL

categorized by the manner in which the modes are used. The following classifications are used
in the instruction details.

Data If an effective address is used to refer to data operands, it is considered a data
addressing mode.

Memory If an effective address is used to refer to memory operands, it is considered a
memory addressing mode.

Alterable If an effective address is used to refer to alterable (writable) operands, it is
considered an alterable addressing mode.

Control If an effective address is used to refer to memory operands that do not have
an associated size, it is considered a control addressing mode.

Table 4-10 shows the various addressing categories of each effective address mode. These cat
egories may be combined so that additional, more restrictive, classifications may be defined. For
example, the instruction descriptions use such classifications as memory alterable or data alter
able. The former refers to those addressing modes which are both memory and alterable addresses
(i.e., the intersection of the two sets of modes), and the latter refers to addressing modes which
are both data and alterable.

4.5.2 Instruction Description Format

The details of each instruction are provided in 4.6 Individual Instruction Descriptions. Figure 4-1
illustrates what information is given in these instructions descriptions.

Table 4-10. Effective Addressing Mode Categories

Address Modes Mode Register Data Memory Control Alterable

Data Register Direct 000 reg. no. X - - X

Aodress Register Direct 001 reg. no. - - - X

Address Register Indirect 010 reg. no. X X X X
Address Register Indirect

with Postincrement all reg. no. X X - X
Address Register Indirect

with Predecrement 100 reg. no. X X - X
Address Register Indirect

with Displacement 101 reg. no. X X X X

Address Register Indirect with
Index (a-Bit Displacement) 110 reg. no. X X X X

AdOress Register Indirect with
Index (Base Displacement) 110 reg. no. X X X X

Memory Indirect Postindexed 110 reg. no. X X X X
Memory Indirect Preindexed 110 reg. no. X X X X

Absolute Short 111 000 X X X X
Absolute Long 111 001 X X X X

Program Counter Indirect
with Displacement 111 010 X X X -

Program Counter Indirect with
Index (8-Bit) Displacement 111 011 X X X -

Program Counter Indirect with
Index (Base Displacement) 111 011 X X X -

PC Memory Indirect
Postindexed 111 011 X X X -

PC Memory Indirect
Pre indexed 111 011 X X X ~

Immediate 111 lOa X X - -

MC68881/MC68882 USER'S MANUAL

Assembler Syntax

Dn

An

(An)

(An)+

-(An)

(d16.An)

(da.An,Xn)

(bd.An,Xn)
((bd,An),Xn,od)
([bd,An,Xn).od)

(xxx).w
(xxx).L

(d16,PC)

(da,PC,Xn)

(bd,PC,Xn)

([bd,PC).Xn,od)

((bd,PC,Xn),od)

#(data)

MOTOROLA
4-11

III

Instruction Name--------------J_ FABS

Operation Description (see 4.6 Individual In- I ~~Operation:
struction Descriptions for notation definitions) 1---

Absolute Value of Sou

Syntax for this Instruction

Text Description of Instruction Operation

Assembler
Syntax:

Attributes:

FABS.<fmt>
FABS.X
FABS.X

<ea
FPrr
FPn

Format = (Byte, Word,

_-+-~ Description: Converts the source 01
absolute value of that number in

Result of Operation for Input Operand(s). (This ...--"""Operation Table:
table defines the data type of the result that is : --- ~=----------,--In Source
returned for each combination of input oper- Destination +
an ds.) i---=--::..::..:::c~R-'-e-su-lt----=="'+-A-b-SO

-----'-----

NOTE: If the source operand is a

Status Register Effects ------------t-.... Status Register:

Instruction Format (This specifies the bit pat
tern and fields of the operation and command
words, and any other words that are always
part of the instruction. The effective address
extensions are not explicitly illustrated. The ex
tension words (if any) follow immediately after
the illustrated portions of the instructions. Re
fer to the user's manual of the MC68020 or
MC68030 for the format of any required exten
sion words.)

Condition Codes:

Quotient Byte:

Exception Byte:

Affected
DITIONI

Not affel

BSUN
SNAN
OPERR
OVFL
UNFL

DZ
INEX2
INEX1

:........... Accrued Exception Byte: Affected
1 ""-. bility.

~ Instruction Format:

15 14 13 12 11 10

COPROCESSO

ID Meanings and Allowed Values (for the various 1----11--""~
fields required by the instruction format.) 0 RIM 0 SOURCE I

L-_L-_~ _ _L ___ --'-SP_EC_IF_IE_R _ __L

MOTOROLA
4-12

Figure 4-1. Instruction Description Format

MC68881/MC68882 USER'S MANUAL

4.5.3 Operation Tables

An operation table is included for most instructions. This table lists the result data types for the
instruction based on types of input operand(s). For example, Figure 4-2 illustrates the table for
the FADD instruction.

~e In Range Zero Infinity
Destination + - + - + -

In Range + Add Add +inf - inf
-

Zero + Add
+0.0 0.0'

+inf -inf
- 0.0' -0.0

Infinity + +inf +inf +inf NAN2
- -inf -inf NAN2 -inf

NOTES:
1. Returns + 0.0 in rounding modes RN, RZ, and RP; returns - 0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Figure 4-2. Operation Table Example (FADD Instruction)

In this table, the type of the source operand is shown along the top, and the type of the destination
operand is shown along the side. In-range numbers are normalized, denormalized, or unnor
malized real numbers, integers, or packed decimal numbers that are converted to normalized or
denormalized extended precision numbers upon entering the FPCP.

From this table, it can be seen that if both the source and destination operand are positive zero,
the result is also a positive zero. For another example, if the source operand is a positive zero
and the destination operand is an in-range number, then the ADD algorithm is executed to obtain
the result. If a label such as ADD appears in the table, it indicates that the FPCP performs the
indicated operation and returns the correct result.

A third example of using the tables is when a source operand is plus infinity, and the destination
operand is minus infinity. Since the result of such an operation is undefined, a not-a-number
(NAN) is returned as the result, and the OPERR bit is set in the FPSR exception byte.

4.5.4 NANs

In addition to the data types covered in the operation tables for each instruction, NANs can also
be used as inputs to an arithmetic operation. The operation tables do not contain a row and
column for NANs because NANs are handled the same way in all operations.

4.5.4.1 NON-SIGNALING NANS. If either, but not both, operand of an operation is a NAN, and it
is a non-signaling NAN, then that NAN is returned as the result. If both operands are non-signaling
NANs, then the destination operand non-signaling NAN is returned as the result.

4.5.4.2 SIGNALING NANS. If either operand to an operation is a signaling NAN (SNAN), then the
SNAN bit is set in the FPSR EXC byte. If the SNAN trap enable bit is set in the FPCR ENABLE
byte, then the trap is taken and the destination is not modified. If the SNAN trap enable bit is not

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-13

III

set, then the SNAN is converted to a non-signaling NAN (by setting the SNAN bit in the operand
to a one), and the operation continues as described in the preceding section for non-signaling
NANs.

4.5.5 Operation Post Processing

Most floating-point operations end with an identical post processing step. While reading the
summary for each instruction, it should be assumed that an instruction performs post processing
unless the summary specifically states that the instruction does not do so. The following para
graphs describe post processing in detail.

• 4.5.5.1 SETTING FLOATING-POINT CONDITION CODES. Unlike the integer arithmetic condition
codes found in the MC68020/MC68030, which are set uniquely for each instruction, the floating
point condition codes are either not changed by an instruction or are always set in the same way
by any instruction. Therefore, it is not necessary to include details of condition code settings for
each FPCP instruction in the detailed instruction descriptions. The following paragraphs describe
how condition codes are set for all instructions that modify any condition codes.

Refer to 2.3.1 FPSR Floating-Point Condition Code Byte for a description of the FPSR condition
code byte. The four condition code bits are:

N Sign of Mantissa
Z Zero

I
NAN

Infinity
Not-A-Number

These condition code bits differ slightly from integer condition codes. The floating-point condition
codes are not dependent on the type of operation being performed, but rather, can be set at the
end of the operation by examining the result. (The M68000 integer condition codes bits Nand Z
have this characteristic, but the V and C bits are set differently for different instructions.) At the
end of any floating-point operation, the result is inspected, and the condition code bits are set or
cleared accordingly. For example, if the result of an operation is a positive normalized number,
then all of the condition code bits are set to zero. If the result is a minus infinity, then the Nand
I bits are set, and the Z and NAN bits are cleared.

Refer to 2.3.1 FPSR Floating-Point Condition Code Byte for a description of the use of these bits
to generate the four conditions required by the IEEE floating-point standard. Refer to 4.4 CON
DITIONAL TEST DEFINITIONS for a description ofthe use ofthe four condition code bits to generate
the 32 floating-point conditional tests.

4.5.5.2 UNDERFLOW, ROUND, OVERFLOW. During calculation of an arithmetic result, the ALU
of the FPCP has more precision and range than the 80-bit extended precision format. However,
the final result of these operations is an extended precision floating-point value. In some cases,
an internal result becomes either smaller or larger than can be represented in extended precision.
Also, the operation may have generated a larger exponent or more bits of precision than can be
represented in the chosen rounding precision. For these reasons, every arithmetic instruction
ends by rounding the result and checking for overflow and underflow.

At the completion of an arithmetic operation, the internal result is checked to see if it is too small
to be represented as a normalized number in the selected precision. If so, the underflow (UNFL)
bit is set in the FPSR EXC byte. It is also denormalized unless denormalization provides a zero
value. Denormalizing a number causes a loss of accuracy, but a zero is not returned unless
absolutely necessary. If a number is grossly underflowed, the FPCP returns a correctly signed
zero or the correctly signed smallest denormalized number, depending on the rounding mode in
effect. For more details on underflow, refer to 6.1.5 Underflow.

MOTOROLA
4-14

MC68881/MC68882 USER'S MANUAL

If no underflow occurs, the internal result is rounded according to the user-selected rounding
precision and rounding mode. Refer to Figure 6-3 for a detailed description of rounding. After
rounding, the inexact bit (lNEX2) is set appropriately. Lastly, the magnitude ofthe result is checked
to see if it is too large to be represented in the current rounding precision. If so, the overflow
(OVFL) bit is set and a correctly signed infinity or correctly signed largest normalized number is
returned, depending on the rounding mode in effect. For details on overflow refer to 6.1.4 Ov
erflow.

Two important exceptions to the above description are: the execution of the FSGLDIV instruction
and of the FSGLMUL instruction. For these two instructions, the rounding precision programmed
in the mode control byte is ignored (although the selected rounding mode is used). The input II
operands to these instructions are assumed to be single precision values, but no checking is ~
performed to verify the inputs (each mantissa is truncated to 23 bits, and the exponent is accepted
as an extended precision value).

These two instructions first check the intermediate result for underflow as previously described,
but use the underflow threshold of extended precision regardless of the selected rounding pre
cision. If no underflow occurs, the mantissa is rounded to the single precision boundary and is
denormalized if necessary. Finally, the exponent is checked for overflow, again using the overflow
threshold of extended precision. Thus, the final result generated has the range of an extended
precision number with a mantissa accurate to only 23 bits. If an underflow or overflow occurs,
the correctly signed number returned (largest normalized number, infinity, zero, or smallest de
normalized number) is an extended precision number with an extended precision mantissa value.

4.6 INDIVIDUAL INSTRUCTION DESCRIPTIONS

The following notation is used in the detailed instruction definitions that follow:

(operand) Contents of the referenced location or register.

<fmt> Operand data format: Byte, word, long, single, double, extended, or packed (denoted
in the assembler syntax as an extension to the instruction mnemonic of .B, .W, .L,
.S, .D, .X, or .P, respectively).

<ea>
<label>

<list>

• FPcr

FPn
FPm

FPc:FPs

+inf
- inf

NAN

d
k

ccc

Any valid MC68020/MC68030 addressing mode.
A relative label used by an assembler to calculate a displacement.
A list of the floating-point data registers or control registers.

The left operand is moved to the location specified by the right operand .

One of the three floating-point system control registers (FPCR, FPSR, or FPIAR).

One of eight floating-point data registers (always specifies the destination register).
One of eight floating-point data registers (always specifies the source register).

Two of eight floating-point data registers. This notation is used only with the FSIN
COS instruction and specifies the register pair where the cosine and sine values are
stored.

Positive infinity

Negative infinity
Not-A-Number

Displacement

An integer (- 64 to + 17) that specifies the format of a number to be stored in the
packed BCD format.
An index into the FPCP constant ROM.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-15

FABS Absolute Value FABS

Operation: Absolute Value of Source. FPn

Assembler
Syntax:

FABS.<fmt>
FABS.X
FABS.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and stores the
absolute value of that number in the destination floating-point data register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Absolute Value Absolute Value Absolute Value

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES.

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL

DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs
Cleared
Cleared
If the source is an extended precision denormalized
number, refer to 6.1.5 Underflow; cleared otherwise.
Cleared
Cleared
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility.

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-16

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I 1 I o I o I REGISTER 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FABS Absolute Value FABS

Instruction Fields:
Coprocessor 10 Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to 10 = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxx).W

An - - (xxx).L

(An) 010 reg. number:An #<'data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn)'od)

([bd,An)'Xn,od) 110 reg. number:An ([bd,PC),Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 0 Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-17

FACOS Arc Cosine FACOS

Operation: Arc Cosine of Source. FPn

Assembler
Syntax:

FACOS.<fmt>
FACOS.X
FACOS.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Wore:!, Long, Single, Double, Extended, Packed)

• Description: Convertl'! the source operallP to extended precision (if necessary) and calculates
the arc cosine of that number. Stores the result in the destination floating-point data register.
This function is not defined for source operands outside of the range [-1 ... + 1]; if the
source is not in the correct range, a NAN is returned as the result and the OPERR bit is set
in the FPSR. If the source is in the correct range, the result is in the range of [0 ... 'IT].

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

Result Arc Cosine +,,/2 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 I\IANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATII'IG·POINT CON
DITION CODES.

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source is infinity, > + 1 or < -1; cleared
otherwise.
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inel(act Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility.

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-18

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I I 1 I o I REGISTER 0 0 1 1 0

MC68881/MC68882 USER'S MANUAL

FACOS Arc Cosine FACOS

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn).od) 110 reg. number:An ([bd,PC,Xn).od)

([bd,An).Xn,od) 110 reg. number:An ([bd,PC),Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-19

II

FADD

Operation:

Assembler
Syntax:

Attributes:

Source + FPn • FPn

FADD.<fmt>
FADD.x

<ea>,FPn
FPm,FPn

Add

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FADD

... Description: Converts the source operand to extended precision (if necessary) and adds that

... number to the number contained in the destination floating-point data register. Stores the
result in the destination floating-point data register.

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

In Range + Add Add +inf -in!

Zero + Add
+0.0 0.01

+inf -inf
- 0.01 -0.0

Infinity + +inf +inf +inf NAN2
- -inf - inf NAN2 -inf

NOTES:
1. Returns +0.0 in rounding modes RN. RZ, and RP; returns -0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES.

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source and the destination are opposite
signed infinities; cleared otherwise.
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility.

MOTOROLA
4-20

MC68881/MC68882 USER'S MANUAL

FADD Add FADD

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE AODRESS
1 1 1 1 I ID I o I 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I 0 o 1 1 I 0 RIM 0 SPECIFIER REGISTER 0 1 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If R/M=1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).W

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,XnJ,od) 110 reg. number:An ([bd,PC,XnJ,od)

([bd,Anl,Xn,od) 110 reg. number:An ([bd,PCl,Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 x Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-21

II

FASIN Arc Sine FASIN

Operation: Arc Sine of the Source. FPn

Assembler
Syntax:

FASIN.<fmt>
FASIN.X
FASIN.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the arc sine of the number. Stores the result in the destination floating-point data register.
This function is not defined for source operands outside of the range [-1 ... + 1); if the
source is not in the correct range, a NAN is returned as the result and the OPERR bit is set
in the FPSR. If the source is in the correct range, the result is in the range of [- 'IT/2 ... + 'IT/
2).

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Arc Sine +0.0 -0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATlNG-POINT CON
DITION CODES.

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source is infinity, > + 1 or < -1; cleared
otherwise
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:
15 14

1 1

0 RIM

MOTOROLA
4-22

13

1

0

12 11 10

1 COPROCESSOR
1

ID
SOURCE

I SPECIFIER

I 0 I 0
EFFECTIVE AOORESS

0 MODE REGISTER

DESTINATION
I 0 I 1 I o I REGISTER 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FASIN Arc Sine FASIN

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number: Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(da.An,Xn) 110 reg. number:An (da,PC,Xn)

(bd.An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xnlood) 110 reg. number:An ([bd,PC,Xnlood)

([bd,AnloXn,od) 110 reg. number:An ([bd,PCIoXn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-23

FATAN Arc Tangent FATAN

Operation:

Assembler
Syntax:

Arc Tangent of Source. FPn

FATAN.<fmt>
FATAN.X
FATAN.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the arc tangent of that number. Stores the result in the destination floating-point data register.
The result is in the range of [-7[/2 ... + 7[/2J.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Arc Tangent +0.0 -0.0 +,,/2 -,,/2

NOTE: If the source operand is a NAN. refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES.

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Cleared
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I o I 0
EFFECTIVE ADDRESS

1 1 1 1
10

0 MODE REGISTER

SOURCE

I
DESTINATION

I o I o I I 0 RIM 0 SPECIFIER REGISTER 0 0 1 1 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.

MOTOROLA
4-24

MC68881/MC68882 USER'S MANUAL

FATAN Arc Tangent FATAN

Effective Address Field - Determines the addressing mode for external operands.
If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #/data' .

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. numoer:An (bd,PC,Xn)

IIbd,An,Xnl,od) 110 reg. number:An IIbd,PC,Xnl,od)

(lbd,Anl,Xn,od) 110 reg. number:An IIbd,PCl,Xn,od)

*Only if <fmt:--- is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-25

FATANH Hyperbolic Arc Tangent FATANH

Operation:

Assembler
Syntax:

Hyperbolic Arc Tangent of Source. FPn

FATANH.<fmt> <ea>,FPn
FATANH.X FPm,FPn
FATANH.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic arc tangent of that value. Stores the result in the destination floating-point
data register. This function is not defined for source operands outside of the range (-1 ... + 1);
and the result is equal to - infinity or + infinity if the source is equal to + 1 or -1, respectively.
If the source is outside of the range [-1 ... + 1], a NAN is returned as the result and the
OPERR bit is set in the FPSR.

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

Result
Hyperbolic

+0.0 -0.0 NAN'
Arc Tangent

NOTE:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ

INEX2
INEX1

Cleared
Refer to 4.5.4 NANs,
Set if the source is > + 1 or < -1; cleared otherwise
Cleared
Refer to 6.1.5 Underflow.
Set if the source is equal to + 1 or -1; cleared oth-
erwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-26

MC68881/MC68882 USER'S MANUAL

FATANH Hyperbolic Arc Tangent FATANH

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I 0 I
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I 1 I 0 I 0 RIM 0 SPECIFIER REGISTER 0 0 1 1

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

On' 000 reg. number:On (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(dI6An) 101 reg. number:An (d'6,PC)

(daAn,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. nllmber:An (bd,PC,Xn)

([bdAn,Xn).od) 110 reg. number:An ([bd,PC,Xn).od)

([bdAnl.Xn,od) 110 reg. number:An ([bd,PC).Xn,od)

'Only if <fmt> is Byte, Word, Long or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
all P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = a and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-27

II

FBee Branch Conditionally FBee

Operation: If condition tru~, then PC + d • PC

Assembler
Syntax:

FBcc.<size> <label>

Attributes: Size= (Word, Long)

~ Description: If the specified floating-point condition is met, program execution continues at
... the location (PC) + displacement. The displacement is a twos complement integer that counts

the relative distance in bytes. The value of the PC used to calculate the destination address
is the address of the branch instruction plus two. If the displacement size is word, then a 16-
bit displacement is stored in the word immediately following the instruction operation word.
If the displacement size is long word, then a 32-bit displacement is stored in the two words
immediately following the instruction operation word.

The conditional specifier cc selects anyone of the 32 floating-point conditional tests as
described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Not affected

Not affected

BSUN

SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Set if the NAN condition code is set and the condition
selected is an IEEE non-aware test
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected

Accrued Exception Byte: The lOP bit is set if the BSUN bit is set in the exception byte. No
other bit is affected.

Instruction Format:

15 14

1 I 1

MOTOROLA
4-28

13

I 1 I

12 11 10

1 I COPROCESSOR ID I 0 I 1 I SIZE I CONDITIONAL PREDICATE

16-81T DISPLACEMENT, OR MOST SIGNIFICANT WORD OF 32-81T DISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-81T DISPLACEMENT (IF NEEDEDI

MC68881/MC68882 USER'S MANUAL

FBee Branch Conditionally FBee

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Size Field - Specifies the size of the signed displacement:

If Format=O, then the displacement is 16-bits and is sign extended before use.
If Format= 1, then the displacement is 32-bits.

Conditional Predicate Field - Specifies one of 32 conditional tests as defined in 4.4 CON- II
DITIONAL TEST DEFINITIONS. •

NOTE: When a BSUN exception occurs, the main processor takes a pre-instruction exception.
If the exception handler returns without modifying the image of the PC on the stack
frame (to point to the instruction following the FBcc), then it must clear the cause of the
exception (by clearing the NAN bit or disabling the BSUN trap) or the exception occurs
again immediately upon return to the routine that caused the exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-29

FCMP

Operation:

Assembler
Syntax:

Attributes:

FPn - Source

FCMP.<fmt>
FCMP.X

Compare

<ea>,FPn
FPm,FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FCMP

.. Description: Converts the source operand to extended precision (if necessary) and subtracts

... the operand from the destination floating-point data register. The result of the subtraction is
not retained, but it is used to set the floating-point condition codes as described in 4.5.5.1
SETTING FLOATING-POINT CONDITION CODES.

Operation
Table: The entries in this operation table differ from those of the tables describing most

of the FPCP instructions. For each combination of input operand types, the condition code
bits that may be set are indicated. If the name of a condition code bit is given and is not
enclosed in brackets, then it is always set. If the name of a condition code bit is enclosed in
brackets, then that bit is either set or cleared, as appropriate. If the name of a condition code
bit is not given, then that bit is always cleared by the operation. The infinity bit is always
cleared by the FCMP instruction, since it is not used by any of the conditional predicate
equations. Note that the NAN bit is not shown, since NANs are always handled in the same
manner (as described in 4.5.4 NANs).

~ce In Range Zero Infinity
Destination + - + - + -

In Range + {NZ} none none none N none
- N {NZ} N N N none

Zero + N none Z Z N none
- N none NZ NZ N none

Infinity + none none none none Z none
- N N N N N NZ

NOTE: If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in the operation table above

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4,5.4 NANs.
Cleared
Cleared
Cleared
Cleared
Cleared
If <fmt> is Packed, refer to 6,1.8 Inexact Result on
Decimal Input; cleared otherwise

Accrued Exception Byte: Affected as described in 6.1,10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-30

MC68881/MC68882 USER'S MANUAL

FCMP Compare FCMP

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I ID I o I 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I 1 I o I o I 0 RIM 0 SPECIFIER REGISTER 0 1 1 0

Instruction Fields:
Coprocessor 10 Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to 10 = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxxl.w

An - - (xxxl.L

(Ani 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(Ani 100 reg. number:An

(d16,Anl 101 reg. number:An (d16,PCI

(dS,An,Xnl 110 reg. number:An (ds,PC,Xnl

(bd,An,Xn) 110 reg. number:An (bd,PC,Xnl

([bd,An,Xn],odl 110 reg. number:An ([bd,PC,Xn],odl

([bd,An],Xn,odl 110 reg. number:An ([bd,PC],Xn,odl

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 0 Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field -Specifies the destination floating-point data register, FPn.

MC688811MC68882 USER'S MANUAL MOTOROLA
4-31

III

FCOS Cosine FCOS

Operation: Cosine of Source. FPn

Assembler
Syntax:

FCOS.<fmt>
FCOS.X
FCOS.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
the cosine of that number. Stores the result in the destination floating-point data register.
This function is not defined for source operands of (±) infinity. If the source operand is not
in the range of [- 2'IT ... + 2'ITj, then the argument is reduced to within that range before the
cosine is calculated. However, large arguments may lose accuracy during reduction, and very
large arguments (greater than approximately 102°) lose all accuracy. The result is in the range
of [-1 ... + 1].

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

Result Cosine +1.0 NAN'

NOTE:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is (+ or -)infinity; cleared
otherwise
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility.

MOTOROLA
4-32

MC68881/MC68882 USER'S MANUAL

FCOS Cosine FCOS

Instruction Format:

15 14 13 12 11 10

1 COPROCESSOR

I o I
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 MODE REGISTER

SOURCE

I
DESTINATION

I 1 I I o I 0 RIM 0 SPECIFIER REGISTER 0 0 1 1 1

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should contain zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number: Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

(lbd,An,Xnl.od) 110 reg. number:An (lbd,PC,Xn],od)

([bd,Anl.Xn,od) 110 reg. number:An ([bd,PCl.Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Mode

111

111

111

111

111

111

111

111

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value,

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-33

III

FCOSH

Operation:

Assembler
Syntax:

Hyperbolic Cosine

Hyperbolic Cosine of Source. FPn

FCOSH.<fmt>
FCOSH.X
FCOSH.X

<ea>,FPn
FPm,FPn
FPn

FCOSH

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic cosine of that number. Stores the result in the destination floating-point data
register.

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

Result Hyperbolic Cosine +1.0 +inf

NotE: If the source operand is a NAN. refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-34

13

1

0

12 11 10

I
CbPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I I o I o I REGISTER 0 0 1 1 1

MC68881/MC68882 USER'S MANUAL

FCOSH Hyperbolic Cosine FCOSH

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be a" leroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,XnJ,od) 110 reg. number:An ([bd,PC,XnJ,od)

([bd,AnJ,Xn,od) 110 reg. number:An ([bd,PC].Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-35

II

FDBcc Test Condition, Decrement,and Branch FDBcc

Operation:

.. Assembler
'- Syntax:

Attributes:

If condition true then no operation
else Dn - 1 • Dn

if Dn -=1= -1
then PC+d. PC

else execute next instruction

FDBcc Dn,<label>

Unsized

Description: This instruction is a looping primitive of three parameters: a floating-point con-
dition, a counter (an MPU data register) and a 16-bit displacement. The FPCP first tests the
condition to determine if the termination condition for the loop has been met, and if so, the
main processor proceeds to execute the next instruction in the instruction stream. If the
termination condition is not true, the low order 16-bits of the counter register are decremented
by one. If the result is -1, the count is exhausted, and execution continues with the next
instruction. If the result is not equal to -1, execution continues at the location specified by
the current value of the PC plus the sign-extended 16-bit displacement. The value of the PC
used in the branch address calculation is the address of the displacement word.

The conditional specifier cc selects anyone of the 32 floating-point conditional tests as
described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Not affected

Not affected

BSUN

SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Set if the NAN condition code is set and the condition
selected is an IEEE non-aware test
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected

Accrued Exception Byte: The lOP bit is set if the BSUN bit is set in the exception byte. No
other bit is affected.

Instruction Format:

15 14

1 1

0 0

MOTOROLA
4-36

13

1

0

12 11

1

0 0

10

COPROCESSOR
I I I

COUNT
10

0 0 1 0 0 1 REGISTER

I 0 I 0 0 0 0 CONDITIONAL PREDICATE

16-81T DISPLACEMENT

MC68881/MC68882 USER'S MANUAL

FDBcc Test Condition, Decrement,and Branch FDBcc

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Count Register Field - Specifies main processor data register that is used as the counter.
Conditional Predicate Field - Specifies one of the 32 floating-point conditional tests as

described in 4.4 CONDITIONAL TEST DEFINITIONS.
Displacement Field - Specifies the branch distance (from the address of the instruction plus II

2) to the destination in bytes. •

NOTES:
1. The terminating condition is like that defined by the UNTIL loop constructs of high-level

languages. For example: FDBOL T can be stated as "decrement and branch until ordered less
than". .

2. There are two basic ways of entering a loop: at the beginning, or by branching to the trailing
FDBcc instruction. If a loop structure terminated with FDBcc is entered at the beginning, the
control counter must be one less than the number of loop executions desired. This count is
useful for indexed addressing modes and dynamically specified bit operations. However,
when entering a loop by branching directly to the trailing FDBcc instruction, the count should
equal the loop execution count. In this case, if the counter is zero when the loop is entered,
the FDBcc instruction does not branch, causing a complete bypass of the main loop.

3. When a BSUN exception occurs, a pre-instruction exception is taken by the main processor.
If the exception handler returns without modifying the image of the PC on the stack frame
(to point to the instruction following the FDBcc), then it must clear the cause of the exception
(by clearing the NAN bit or disabling the BSUN trap) or the exception occurs again imme
diately upon return to the routine that caused the exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-37

FDIV

Operation:

Assembler
Syntax:

Attributes:

FPn (-T) Source. FPn

FDIV.<fmt>
FDIV.x

<ea>,FPn
FPm,FPn

Divide

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FDIV

III Description: Converts the source operand to extended precision (if necessary) and divides that
number into the number in the destination floating-point data register. Stores the result in
the destination floating-point data register.

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

In Range + Divide +inf' -inf' +0.0 -0.0
- -inf' +inf' -0.0 +0.0

Zero + +0.0 +0.0 NAN2 +0.0 -0.0
- -0.0 +0.0 -0.0 +0.0

Infinity + +inf -inf +inf -inf NAN2
- -inf +inf -inf +inf

NOTES:
1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ

INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set for O(-T)O or infinity(-T)infinity; cleared otherwise
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Set ifthe source is zero and the destination is in range;
cleared otherwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-38

MC68881/MC68882 USER'S MANUAL

FDIV Divide FDIV

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I 10 I o I 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I o I o I 0 RIM 0 SPECIFIER REGISTER 0 1 0 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(dB,An,Xn) 110 reg. number:An (dB,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn].od)

([bd,An],Xn,od) 110 reg. number:An ([bd,PC].Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
o - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-39

II

FETOX FETOX

Operation:

Assembler
Syntax:

e(Source) • FPn

FETOX. <fmt>
FETOX.X
FETOX.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
e to the power of that number. Stores the result in the destination floating-point data register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result eX + 1.0 +inf +0.0

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I o I
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 MODE REGISTER

SOURCE

I
DESTINATION

I 1 I 0 o I o I 0 RIM 0 SPECIFIER REGISTER 0 0 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.

MOTOROLA
4-40

MC68881/MC68882 USER'S MANUAL

FETOX FETOX

Effective Address Field - Determines the addressing mode for external operands.
If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(de,An,Xn) 110 reg. number:An (de,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xnj,od) 110 reg. number:An ([bd,PC,Xn),od)

([bd,AnJ.Xn,od) 110 reg. number:An ([bd,PCJ.Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-41

III

FETOXM1 FETOXM1

Operation:

Assembler
Syntax:

e(Source) - 1 • FPn

FETOXM1.<fmt> <ea>,FPn
FETOXM 1.X FPm,FPn
FETOXM 1.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
e to the power of that number. Then, subtracts one from that value, and stores the result in
the destination floating-point data register.

Operation Table:

~e In Range Zero Infinitv
Destination + - + - + -

Result eX - 1 +0.0 -0.0 +inf -1.0

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEXl

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Refer to 6.1.!;» Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accru~d Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR 1 0 1 0

EFFECTIVE ADDRESS
1 1 1 1

ID 0 MODE REGISTER

SOURCE

I
DESTINATION I 0 I 1 o I 0 I 0 RIM 0 SPECIFIER REGISTER 0 0 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.

MOTOROLA
4-42

MC68881/MC68882 USER'S MANUAL

FETOXM1 FETOXM1

Effective Address Field - Determines the addressing mode for external operands.
If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16.PC)

(ds,An.Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An.Xn) 110 reg. number:An (bd.PC.Xn)

([bd.An.Xn].od) 110 reg. number:An ([bd,PC,Xn].od)

([bd.An].Xn.od) 110 reg. number:An ([bd,PC].Xn,od)

'Only if <fmt> is Byte, Word. Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-43

II

FGETEXP Get Exponent FGETEXP
Operation: Exponent of Source. FPn

Assembler
Syntax:

FGETEXP.<fmt> <ea>,FPn
FGETEXP.X FPm,FPn
FGETEXP.X FPn

Attributes: Format= (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and extracts
the binary exponent. I=lemoves the exponent bias, converts the exponent to an extended
precision floating-point number, and stores the result in the destination floating-point data
register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Exponent +0.0 -0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set ifthe source is (+ or -)infinity; cleared otherwise
Cleared
Cleared
Cleared
Cleared
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-44

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I 1 I 1 I 1 I REGISTER 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FGETEXP Get Exponent FGETEXP
Instruction Fields:

Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc
tion. Motorola assemblers default to ID= 1 for the FPCP.

Effective Address Field - Determines the addressing mode for external operands.
If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

On' 000 reg. number:On (xxx).W

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn].od)

([bd,An].Xn,od) 110 reg. number:An ([bd,PC].Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm ..
If RIM = 1, specifies the sou rce data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-45

II

FGETMAN Get Mantissa FGETMAN

Operation: Mantissa of Source. FPn

Assembler
Syntax:

FGETMAN.<fmt> <ea>,FPn
FGETMAN.X FPm,FPn
FGETMAN.x FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and extracts
the mantissa. Converts the mantissa to an extended precision value and stores the result in
the destination floating-point data register. The result is in the range [1.0 ... 2.0) with the
sign of the source mantissa, zero, or is a NAN.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Mantissa +0.0 -0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source is (+ or -)infinity; cleared otherwise
Cleared
Cleared
Cleared
Cleared
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-46

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIV ADDRESS

0 0 MODE REGISTER

DESTINATION

I 1 I I 1 I REGISTER 0 0 1 1 1

MC68881/MC68882 USER'S MANUAL

FGETMAN Get Mantissa FGETMAN

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn Ixxx).w

An - - Ixxx).L

IAn) 010 reg. number:An #<data>

IAn)+ 011 reg. number:An

-IAn) 100 reg. number:An

Id16,An) 101 reg. number:An Id16,PC)

Ids,An,Xn) 110 reg. number:An Ids,PC,Xn)

Ibd,An,Xn) 110 reg. nurnber:An Ibd,PC,Xn)

IIbd,An,Xn)'od) 110 reg. number:An IIbd,PC,Xn),od)

IIbd,An),Xn,od) 110 reg. number:An l[bd,PC)'Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-47

--

FINT Integer Part FINT

Operation: Integer Part of Source. FPn

Assembler
Syntax:

FINT.<fmt>
FINT.X
FINT.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and extracts
the integer part and converts it to an extended precision floating-point number. Stores the
result in the destination floating-point data register. The integer part is extracted by rounding
the extended precision number to an integer using the current rounding mode selected in
the FPCR mode control byte. Thus, the integer part returned is the number that is to the left
of the radix point when the exponent is zero, after rounding. For example, the integer part
of 137.57 is 137.0 for the round-to-zero and round-to-minus infinity modes, and 138.0 for the
round-to-nearest and round-to-plus infinity modes. Note that the result of this operation is
a floating-point number.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Integer +0.0 -0.0 +inf -inf

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-48

MC68881/MC68882 USER'S MANUAL

FINT Integer Part FINT

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I 0 I 0
EFFECTIVE ADDRESS

1 1 1 1
ID 0 MODE REGISTER

SOURCE

I
DESTINATION

I 0 I 0 o I 0 I 0 RIM 0 SPECIFIER REGISTER 0 0 1

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxxl.w

An - - (xxxl.L

(Ani 010 reg. number:An #<data>

(Anl+ all reg. number:An

-(Ani 100 reg. number:An

(d16,Anl 101 reg. number:An (d16,PCI

(ds,An,Xnl 110 reg. number:An (ds,PC,Xnl

(bd,An,Xnl 110 reg. number:An (bd,PC,Xnl

([bd,An,Xn],odl 110 reg. number:An ([bd,PC,Xnj,odl

([bd,An],Xn,odl 110 reg. number:An ([bd,PC],Xn,odl

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the sou rce data format:

000 L Long Word Integer
001 S Single Precision Real
010 x Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = a and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-49

III

FINTRZ

Operation:

Assembler
Syntax:

Integer Part, Round-to-Zero

Integer Part of Source. FPn

FI NTRZ. <frnt>
FINTRZ.X
FINTRZ.X

<ea>,FPn
FPm,FPn
FPn

FINTRZ

Attributes: FQrmat=(Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and extract~
the integer part and converts it to an extended precision floating-point number. Stores the
result in the destination floating-point data register. The integer part is extracted by rounding
the extended precision number to an integer using the round-to-zero mode, regardless of
the rounding mode selected in the FPCR mode control byte (making it useful for FORTRAN
assignments). Thus, the integer part returned is the number that is to the left of the radix
point when the exponent is zero. For example, the integer part of 137.57 is 137.0; the integer
part of 0.1245 x 102 is 12.0. Note that tha result of this operation is a floating-point numbE;lr.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result
I~teger. Forced

+0.0 -0.0 +inf -inf
Round-To-Zero

NOTE: If the source operand is a NAN. refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
!:Ieared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued EXGeption Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-50

MC68881/MC68882 USER'S MANUAL

FINTRZ Integer Part, Round-to-Zero FINTRZ

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I 0 I 0
EFFECTIVE ADDRESS

1 1 1 1
10

0 MODE REGISTER

SOURCE

I
DESTINATION

I o I 0 o I 1 I 0 RIM 0 SPECIFIER REGISTER 0 0 1

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxxl.W

An - - (xxxl.L

(Ani 010 reg. number:An #<data>

(Anl+ all reg. number:An

-(Ani 100 reg. number:An

(d16.Anl 101 reg. number:An (d16,PCI

(ds.An,Xnl 110 reg. number:An (ds,PC,Xnl

(bd.An,Xnl 110 reg. number:An (bd,PC,Xnl

([bd,An,Xn],odl 110 reg. number:An ([bd,PC,Xn],odl

([bd.An],Xn,odl 110 reg. number:An ([bd,PC],Xn,odl

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-51

II

FLOG10 LQ910 FLOG10

Operation:

Assembler
Syntax:

L0910 of Source. FPn

FLOG 1 O. <fmt>
FLOG10.X
FLOG10.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Convert the source operand to extended precision (if necessary) and calculates
the logarithm of that number using base 10 arithmetic. Stores the result in the destination
floating-point data register. This function is not defined for input values less than zero.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result L0910 NAN' -inf2 +inf NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is <0; cleared otherwise
Cleared
Cleared
Set if the source is (+ or -); cleared otherwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-52

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I 0
EFFECTIVE AODRESS

0 MODE REGISTER

DESTINATION

I 1 I 1 I o I REGISTER 0 0 0 1

MC68881/MC68882 USER'S MANUAL

FLOG10 Lo910 FLOG10

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PCI

(da,An,Xn) 110 reg. number:An (da,PC,Xnl

(bd,An,Xn) 110 reg. number:An (bd,PC,Xnl

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],odl

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,odl

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-53

II

FLOG2 FLOG2

Operation:

Assembler
Syntax:

L092 of Source. FPn

FLOG2.<fmt>
FLOG2.X
FLOG2.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the logarithm of that number using base 2 arithmetic. Stores the result in the destination
floating-point data register. This function is not defined for input values less than zero.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result L092 NAN' -inf2 +inf NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source is < 0; cleared otherwise
Cleared
Cleared
Set if the source is (+ or -)0; cleared otherwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accr.ued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-54

13

1

0

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

I 0 I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I 1 I 0 1 I I REGISTER 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FLOG2 FLOG2

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).W

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An [bd,PC,Xn)

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn]'od)

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-55

II

FLOGN FLOGN

Operation:

Assembler
Syntax:

Loge of Source. FPn

FLOGN.<fmt>
FLOGN.X
FLOGN.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the natural logarithm of that number. Stores the result in the destination floating-point data
register. This function is not defined for input values less than zero.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result In(x) NAN' -inf2 +inf NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as descri bed in 4.5.5.1 SETTING FLOATING·POINT CON·
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is < 0; cleared otherwise
Cleared
Cleared
Set if the source is (+ or -)0; cleared otherwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-56

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I 0 I 0
EFFECTIVE AOORESS

0 MODE REGISTER

DESTINATION

I 1 I I o I REGISTER 0 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FLOGN FLOGN

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

On' 000 reg. number:On (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xnl.od) 110 reg. number:An ([bd,PC,Xnl.od)

([bd.AnI.Xn,od) 110 reg. number:An ([bd,PCI.Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

011

all

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC688811MC68882 USER'S MANUAL MOTOROLA
4-57

FLOGNP1 Loge (x+ 1) FLOGNP1

Operation:

Assembler
Syntax:

Loge of (Source + 1). FPn

FLOGNP1.<fmt> <ea>,FPn
FLOGNP1.X FPm,FPn
FLOGNP1.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary), adds 1 to that
value, and calculates the natural logarithm of that intermediate result. Stores the result in
the destination floating-point data register. This function is not defined for input values less
than -1.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result In(x+1) In(x+1)' +0.0 -0.0 +inf NAN2

NOTES:
1. If the source is -1, sets the DZ bit in the FPSR exception byte and returns a NAN. If the source

is < -1, sets the OPERR bit in the FPSR exception byte and returns a NAN.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is < -1; cleared otherwise
Cleared .
Refer to 6.1.5 Underflow.
Set if the source operand is -1; cleared otherwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-58

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I 0 I
EFFECTIVE ADDRESS

0 0 MODE R~GISTER

DESTINATION

I o I I I REGISTER 0 0 0 1 1 0

MC68881/MC68882 USER'S MANUAL

FLOGNP1 Loge (x+ 1) FLOGNP1

Instruction Fields:
Coprocessor 10 Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to 10 = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxxl.w

An - - (xxxl.L

(Ani 010 reg. number:An #<data>

(Anl+ 011 reg. number:An

-(Ani 100 reg. number:An

(d16,Anl 101 reg. number:An (d16.PCI

(ds,An.Xnl 110 reg. number:An (dS.PC.Xnl

(bd.An.Xnl 110 reg. number:An (bd.PC.Xnl

([bd,An.Xn].odl 110 reg. number:An ([bd.PC.Xn].odl

([bd,An].Xn.odl 110 reg. number:An ({bd.PC].Xn.odl

'Only if <fmt> is Byte. Word. Long. or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If R/M=O, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 0 Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-59

II

FMOD Modulo Remainder FMOD
Operation:

Assembler
Syntax:

Attributes:

Modulo remainder of (FPn (-+-) Source) • FPn

FMOD.<fmt>
FMOD.X

<ea>,FPn
FPm,FPn

Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates

•
the modulo remainder of the number in the destination floating-point data register, using
the source operand as the modulus. Stores the result in the destination floating-point data
register, and stores the sign and seven least significant bits of the quotient in the FPSR
quotient byte (the quotient is the result of FPn (-+-) Source). The modulo remainder function
is defined as:

FPn (Source x N)
where:

N = INT(FPn (I) Source) in the round-to-zero mode

The FMOD function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FREM instruction,
which uses the round-to-nearest mode and thus returns the remainder that is required by
the IEEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

In Range + Modulo Remainder NAN' FPn2
-

f-

Zero + +0.0
NAN'

+0.0
- -0.0 -0.0

Infinity +
NAN' NAN' NAN'

-

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Returns the value of FPn before the operation. However, the result is processed by the normal

instruction termination procedure to round it as required. Thus, an overflow andior inexact
result may occur if the rounding precision has been changed t<j p smaller size since the FPn
value was loaded.

3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

MOTOROLA
4-60

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Loaded with the sign and least significant seven bits of the quotient
(FPn (-+-) Source), The sign of the quotient is the exclusive OR of
the sign bits of the source and destination operands,

BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is zero, or the destination is infinity;

OVFL
UNFL

cleared otherwise
Cleared
Refer to 6.1,5 Underflow,

MC68881/MC68882 USER'S MANUAL

FMOD Modulo Remainder FMOD

Cleared
Refer to 6.1.7 Inexact Result.

DZ
INEX2
INEXl If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati

bility
Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I 10 I o I 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I o I o I 0 RIM 0 SPECIFIER REGISTER 0 1 0 1

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn Ixxx).w

An - - Ixxx).L

IAn) 010 reg. number:An #<data>

IAn)+ all reg. number:An

-IAn) 100 reg. number:An

Id16,An) 101 reg. number:An Id16,PC)

Ids,An,Xn) 110 reg. number:An Ids,PC,Xn)

Ibd,An,Xn) 110 reg. number:An Ibd,PC,Xn)

Ilbd,An,Xnl.od) 110 reg. number:An Ilbd,PC,Xnl.od)

Ilbd,AnI.Xn,od) 110 reg. number:An Ilbd,PCI.Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-61

III

FMOVE Move Floating-Point Data Register

Operation:

Assembler
Syntax:

• Attributes:

Source. Destination

FMOVE.<fmt>
FMOVE.<fmt>
FMOVE.P
FMOVE.P

<ea>,FPn
FPm,<ea>
FPm,<ea>{Dn}
FPm,<ea>{#k}

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FMOVE

Description: Moves the contents of the source operand to the destination operand. Although
the primary function of this instruction is data movement, it is also considered an arithmetic
instruction since conversions from the source operand format to the destination operand
format are performed implicitly during the move operation. Also, the source operand is
rounded according to the selected rounding precision and mode.

Unlike the M68000 Family integer data movement instruction, the floating-point move in
struction does not support a memory-to-memory format (for such transfers, it is much faster
to utilize the M68000 Family integer MOVE instruction to transfer the floating-point data than
to use the FMOVE instruction). The FMOVE instruction only supports memory-to-register,
register-to-register, and register-to-memory operations (in this context, memory may refer
to an MPU data register if the data format is byte, word, long or single). The memory-to
register and register-to-register operations use a command word encoding distinctly different
from that used by the register-to-memory operation, and these two operation classes are
described separately below.

Memory-to-Register or Register-to-Register Operation:
Converts the source operand to an extended precision floating-point number (if necessary)
and stores it in the destination floating-point data register. Depending on the source data
format and the rounding precision, some operations may produce an inexact result. In the
following table, combinations that can prod~ce an inexact result are marked with a dot (0),
but all other combinations produce an exact result.

Rounding Precision:

Status Register:

Condition Codes:

Quotient Byte:

MOTOROLA
4-62

Source Format:
Single
Double
Extended

B WL S D X P

• ••• • •
•

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

MC68881/MC68882 USER'S MANUAL

FMOVE

Exception Byte:

Move Floating-Point Data Register FMOVE

BSUN
SNAN
OPERR
OVFL
UNFL

DZ
INEX2

INEXl

Cleared
Refer to 4.5.4 NANs.
Cleared
Cleared
Refer to 6.1.5 Underflow if the source is an extended
precision denormalized number; cleared otherwise.
Cleared
Refer to 6.1.7 Inexact Result if <fmt> is L, D or X; II
cleared otherwise.
Refer to 6.1.8 Inexact Result on Decimal Input if <fmt>
is P; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I o I
EFFECTIVE ADDRESS

1 1 1 1
ID 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I o I 0 I 0 RIM 0 SPECIFIER REGISTER 0 0 0 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn' 000 reg. number: Dn (xxx).w 111

An - - (xxx).L 111

(An) 010 reg. number:An #<data> 111

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn) 111

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111

([bd,An,Xnl.ad) 110 reg. number:An ([bd,PC,Xnl.ad) 111

([bd,Anl.Xn,ad) 110 reg. number:An ([bd,PCl.Xn,ad) 111

'Only if <fmt> is Byte, Word, Long, or Single.

MC68881/MC68882 USER'S MANUAL

Register

000

001

100

010

all

all

all

all

MOTOROLA
4-63

•

FMOVE Move Floating-Point Data Register

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

FMOVE

Destination Register Field - Specifies the destination floating-point data register, FPn.

Register-to-Memory Operation:
Rounds the source operand to the size of the specified destination format and stores it at the
destination effective address. If the format of the destination is packed decimal, a third
operand is required to specify the format of the resultant string. This operand, called the k
factor, is a 7-bit signed integer (twos complement) and may be specified as an immediate
value or in a main processor data register. If a data register contains the k-factor, only the
least significant 7 bits are used, and the rest of the register is ignored.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:
<fmt> is B, W, or L

MOTOROLA
4-64

Not affected

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is infinity, or if the desti
nation size is exceeded after conversion and round
ing; cleared otherwise
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
Cleared

MC68881/MC68882 USER'S MANUAL

FMOVE Move Floating-Point Data Register FMOVE
<fmt> is S, D, or X

<fmt> is P

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
Cleared

Cleared
Refer to 4.5.4 NANs.
Set if the k-factor > + 17, or the magnitude of the
decimal exponent exceeds 3 digits; cleared otherwise
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
Cleared

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I o I I
EFFECTIVE

1

ADDRESS
1 1 1 1

ID
0 0 MODE REGISTER

0 1 1
DESTINATION

[
SOURCE K·FACTOR

FORMAT REGISTER (IF REQUIRED)

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-65

II

..

FMOVE Move Floating-Point Data Register FMOVE
Effective Address Field - Encoded with the M68000 addressing mode for the destination

operand as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn' 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #<data> - -
(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -
(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn).od) - -
([bd,An).Xn,od) 110 reg. number:An ([bd,PC).Xh,od) - -

'Only if <fmt> is Byte, Word, Long, or Single.

Destination Format Field - Specifies the data format of the destination operand:
000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P{#k} Packed Decimal Real with static k-factor
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer
111 P{Dn} Packed Decimal Real with dynamic k-factor

Soutce Register Field - Specifies the source floating-point data register, FPm.
k-factor Field - Only used if the destination format is Packed Decimal, to specify the format

tif the decimal string. For any other destination format, this field should be set to all zeroes.
For a static k-factor, this field is encoded with a twos complement integer where the value
defines the format as follows:
- 64 to 0 - Indicates the number of significant digit to the right of the decimal point

(Fortran "F" format).
+ 1 to + 17 -Indicates the number of significant digits in the mantissa (Fortran "E" format).
+ 18 to +63 - Sets the OPERR bit in the FPSR exception byte, treated as + 17.

MOTORoLA
4-66

MC688811MC68882 USER'S MANUAL

FMOVE Move Floating-Point Data Register

The format of this field for a dynamic k-factor is:

rrrOOOO

where:

FMOVE

"rrr" is the number of the main processor data register that contains the k-factor value.

The following table gives several examples of how the k-factor value affects the format of
the decimal string that is produced by the FPCP. The format of the string that is generated III
is independent of the source of the k-factor (static or dynamic).

k-Factor Source Operand Value

-5 + 12345.678765
-3 + 12345.678765
-1 + 12345.678765

0 + 12345.678765
+1 + 12345.678765
+3 + 12345.678765
+5 + 12345.678765

MC68!381/MC68882 USER'S MANUAL

Destination String

+ 1.234567877 E + 4
+ 1.2345679 E + 4
+ 1.23457 E +4
+1.2346 E+4
+1. E+4
+1.23 E+4
+1.2346 E+4

MOTOROLA
4-67

FMOVE Move System Control Register FMOVE

Operation:

Assembler
Syntax:

Attributes:

Source. Destination

FMOVE.L
FMOVE.L

Size=(Long)

<ea>,FPcr
FPcr,<ea>

• Description: Moves the contents of a floating-point system control register into or out of the
FPCP (the control registers are the FPCR, FPSR and FPIAR). The external operand may be in
memory or a main processor register. A 32-bit transfer is always performed, even though
the system control register may not have 32 implemented bits. Unimplemented bits of a
control register are read as zeros and are ignored during writes (but must be zero for com
patability with future devices).

This instruction does not cause pending exceptions (other than protocol violations) to be
reported to the main processor. Furthermore, a write to the FPCR exception enable byte or
the FPSR exception status byte cannot generate a new exception, regardless of the value
written.

Status Register: Changed only if the destination is the FPSR; in which case all bits are modified
to reflect the value of the source operand.

Instruction Format:
15 14 13 12 11 10

I
COPROCESSOR EFFECTIVE ADDRESS

1 1 1 1 ID
0 0 0 MODE REGISTER

REGISTER
10 I o I 0 o I o I 1 0 dr SELECT 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for the operation:

Memory-to-Register -

Addressing Mode Mode Register

On 000 reg. number:On

An' 001 reg. number:An

(An) 010 reg. number:An

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An

(ds,An,Xn) 110 reg. number:An

(bd,An,Xn) 110 reg. number:An

([bd,An,XnJ.od) 110 reg. number:An

([bd,AnJ.Xn,od) 110 reg. number:An

'Only if the source register is the FPIAR.

MOTOROLA
4-68

Addressing Mode Mode Register

Ixxx).w 111 000

Ixxx).L 111 001

#<data> 111 100

(d16,PC) 111 010

Ids,PC,Xn) 111 011

Ibd,PC,Xn) 111 011

([bd,PC,XnJ.od) 111 011

([bd,PCJ.Xn,od) 111 011

MC68881/MC68882 USER'S MANUAL

FMOVE Move System Control Register

Register-to-Memory -

Addressing Mode Mode Register Addressing Mode Mode

Dn 000 reg. number: Dn (xxx).w 111

An' 001 reg. number:An (xxx).L 111

(An) 010 reg. number:An #<data> -
(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) -
(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xnj,od) -
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) -

'Only if the destination register is the FPIAR.

dr Field - Specifies the direction of the data transfer.
0- Move an external operand to the specified system control register.
1 - Move the specified system control register to an external location.

Register Select Field - Specifies the system control register to be moved:
100 FPCR Floating-point Control Register
010 FPSR Floating-point Status Register
001 FPIAR Floating-point Instruction Address Register

MC68881/MC68882 USER'S MANUAL

FMOVE

Register

000

001

-

-

-

-
-
-

MOTOROLA
4-69

II

FMOVECR Move Constant ROM FMOVECR

Operation: ROM Constant. FPn

Assembler
Syntax: FMOVECR.X #ccc,FPn

Attributes: Format = (Extended)

.. Description: Fetches an extended precision constant from the FPCP on-chip ROM, rounds it

... to the precision specified in the FPCR mode control byte, and stores it in the destination
floating-point data register. The constant is specified by a predefined offset into the constant
ROM. The values of the constants contained in the ROM are shown in the offset table at the
end of this description.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Cleared
Cleared
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
Cleared

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 1

MOTOROLA
4-70

13

1

0

12

1

1

11 10

COPROCESSOR
1 0 1 0 0101010101010 10

1 I 1 I DESTINATION ROM
REGISTER OFFSET

MC68881/MC68882 USER'S MANUAL

FMOVECR Move Constant ROM FMOVECR

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Destination Register Field - Specifies the destination floating-point data register, FPn.
ROM Offset Field - Specifies the offset into the FPCP on-chip constant ROM where the

desired constant is located. The offsets for the available constants are:

Offset Constant

$00 'IT

$08 L0910(2)
$OC e
$OD L092(e)
$OE L091O(e)
$OF 0.0
$30 In(2)
$31 1 n(10)
$32 100

$33 101

$34 102

$35 104

$36 108

$37 1016

$38 1032

$39 1064

$3A 10128

$38 10256

$3C 10512

$3D 101024

$3E 102048

$3F 104096

The on-chip ROM contains other constants useful only to the on-chip microcode routines.
The values contained at offsets other than those defined above are reserved for the use of
Motorola, and may be different on various mask sets of the FPCP.

MC6BBB1/MC6BBB2 USER'S MANUAL MOTOROLA
4-71

II

III

FMOVEM Move Multiple Data Registers FMOVEM

Operation:

Assembler
Syntax:

Attributes:

Register List. Destination
Source. Register List

FMOVEM.X
FMOVEM.X
FMOVEM.x
FMOVEM.X

<list>

<Iist>,<ea>
Dn,<ea>
<ea>,<list>
<ea>,Dn

A list of any combination of the eight floating-point data reg
isters, with individual register names separated by a slash (I);
and/or contiguous blocks of registers specified by the first and
last register names separated by a dash (-).

Format = (Extended)

Description: Moves one or more extended precision numbers to or from a list of floating-point
data registers. No conversion or rounding is performed during this operation, and the FPSR
is not affected by the instruction. This instruction does not cause pending exceptions (other
than protocol violations) to be reported to the main processor.

Any combination ofthe eight floating-point data registers can be transferred, with the selected
registers specified by a user-supplied mask. This mask is an 8-bit number, where each bit
corresponds to one register; if a bit is set in the mask, that register is moved. The register
select mask may be specified as a static value contained in the instruction, or a dynamic
value in the least significant 8-bits of a main processor data register (the remaining bits of
the register are ignored).

FMOVEM allows three types of addressing modes: the control modes, the predecrement
mode, or the postincrement mode. If the effective address is one of the control addressing
modes, the registers are transferred between the FPCP and memory starting at the specified
address and up through higher addresses. The order of the transfer is from FPO through FP7.

If the effective address is the predecrement mode, only a register to memory operation is
allowed. The registers are stored starting at the address contained in the address register
and down through lower addresses. Before each register is stored, the address register is
decremented by 12 (the size of an extended precision number in memory) and the floating
point data register is then stored at the resultant address. When the operation is complete,
the address register points to the image of the last floating-point data register stored. Each
register is stored in the format described in SECTION 3 OPERAND DATA FORMATS, with the
most significant byte of the register image stored at the lowest address, and the least sig
nificant byte at the highest address. The order of the transfer is from FP7 through FPO.

If the effective address is the postincrement mode, only a memory to register operation is
allowed. The registers are loaded starting at the specified address and up through higher
addresses. After each register is stored, the address register is incremented by 12 (the size
of an extended precision number in memory). When the operation is complete, the address
register points to the byte immediately following the image of the last floating-point data
register loaded. The order of the transfer is the same as for the control addressing modes:
FPO through FP7.

MOTOROLA
4-72

MC68881/MC68882 USER'S MANUAL

FMOVEM Move Multiple Data Registers FMOVEM
Status Register: Not Affected. Note that the FMOVEM instruction provides the only mechanism

for moving a floating-point data item between the FPCP and memory without performing
any data conversions or affecting the condition code and exception status bits.

Instruction Format:

15 14 13 12 11 10

1 I
COPROCESSOR

I o I
EFFECTIVE

1

ADDRESS
1 1 1 10

0 0 MODE REGISTER

1 1 dr MODE I o I 0 0 REGISTER LIST

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for the operation:

Memory-to-Register -

Addressing Mode Mode Register Addressing Mode Mode

Dn - - (xxx).w 111

An - - (xxxl.L 111

(An) 010 reg. number:An #<data> -

(An)+ 011 reg. number:An

-(An) - -
(d16,An) 101 reg. number:An (d16,PCI 111

(ds,An,Xn) 110 reg. number:An (dS,PC,Xnl 111

(bd,An,Xn) 110 reg. number:An (bd,PC,Xnl 111

([bd,An,Xnl.od) 110 reg. number:An ([bd,PC,Xnl.od) 111

([bd,AnI.Xn,od) 110 reg. number:An ([bd,PCI.Xn,odl 111

Register-to-Memory -

Addressing Mode Mode Register Addressing Mode Mode

Dn - - (xxx).w 111

An - - (xxxl.L 111

(An) 010 reg. number:An #<data> -
(An)+ - -
-(An) ioo reg. number:An

(d16,Anl 101 reg. number:An (d16,PCI -

(ds,An,Xnl 110 reg. number:An (ds,PC,Xn) -
(bd,An,Xnl 110 reg. number:An (bd,PC,Xnl -

([bd,An,Xnl.odl 110 reg. number:An ([bd,PC,Xnl.odl -
([bd,An),Xn,odl 110 reg. number:An ([bd,PCI.Xn,odl -

MC68881/MC68882 USER'S MANUAL

Register

000

001

-

010

011

011

011

011

Register

000

001

-

-

-

-

-
-

MOTOROLA
4-73

II

•

FMOVEM Move Multiple Data Registers FMOVEM

dr Field - Specifies the direction of the transfer.
0- Move the listed registers from memory to the FPCP.
1 - Move the listed registers from the FPCPto memory.

Mode Field - Specifies the type of the register I.ist and addressing mode.
00 - Static register list, predecrement addressing mode.
01 - Dynamic register list, predecrement addressing mode.
10 - Static register list, postincrement or.controladdressing mode .
11 - Dynamic register list, postincrement or control addressing mode.

Register List Field: .
Static list - contains the register select mask; if a.register is to be moved, the corresponding

bit in the mask is set as shown below, otherwise it is clear.
Dynamic list - contains the main processor data register number, rrr, as shown below:

Static, - (An)
Static, (An) + or Control
Dynamic

Register List Format
FP7 FP6 FP5 FP4

- FPO FP1 FP2 FP3
o

FP3 FP2 FP1 FPO
FP4 FP5 FP6 FP7
o 0 o 0

The format of the dynamic list mask is the same as for the static list and is contained in the
least significant 8 bits of the specifi.ed main processor data register.

Programming Note: This instruction provides a very useful feature, dynamic register list speci
fication, that can significantly enhance system performance. If the calling conventions used
for procedure calls utilize the dynamic register list feature, the number of floating-point data
registers saved and restored can be reduced. A minimum of 6 bus cycies is required to load
or save a floating-point data register {more if the memory address is not long word aligned).
Thus, a minimum of 36 clock cycles (2x 6 bus cycies x 3 ciocks per bus cycie) is eliminated
from the procedure call and return overhead for each register not saved and restored un
necessarily.

In order to utilize the dynamic register specification feature of the FMOVEM instruction, both
the calling and the called procedures must be written to communicate information about
register usage. When one procedure calls another, a register mask must be passed to the
called procedure to indicate which registers must not be altered upon return to the calling
procedure. The called procedure then saves only those registers that are modified and are
alreaqy in use. There are several techniques th.at can be used to utilize this mechanism, and
an example follows.

In this example, a convention is defined by which each called procedure is passed a word
mask in 07 that identifies all floating-point registers in uSe by the calling procedure. Bits 15
though 8 identify the registers in the order FPOthrough FP7, and bits 7 through 0 identify
the registers in the order FP7 through FPO(ihe two masks are required due to the different
transfer order used by the predecrement .and postincrement addressing modes). The code
used by the calling procedure consists of !limply moving the mask (which is generated at
compile time) for the floating-point data registers currently in use into 07:

Calling procedure ...
MOVE.W #ACTIVE,D7 Load the list of FP registers that are in use
B9R PROC-2

MOTOROLA
4-74

MC68881/MC68882 USER~S MANUAL

FMOVEM Move Multiple Data Registers FMOVEM

The entry code for all other procedures computes two masks. The first mask identifies the
registers in use by the calling procedure that are used by the called procedure (and therefore
saved and restored by the called procedure). The second mask identifies the registers in use
by the calling procedure that are used by the called procedure (and therefore not saved on
entry). The appropriate registers are then stored along with the two masks:

Called procedure ...
MOVE.W D7,D6 Copy the list of active registers ..
AND.W #WILL-USE,D7 Generate the list of doubly-used registers ..
FMOVEM D7,-(A7} Save those registers
MOVE.W D7,-(A7) Save the register list
EOR.W D7,D6 Generate the list of not saved active registers
MOVE.w D6,P(A7) Save it for later use

Ifthe second procedure calls a third procedure, a register mask is passed to the third procedure
that indicates which registers must not be altered by the third procedure. This mask identifies
any registers in the list from the first procedure that were not saved by the second procedure,
plus any registers used by the second procedure that must not be altered by the third pro
cedure. An example of the calculation of this mask is:

Nested calling sequence ...
MOVE.W UNSAVED Load the list of active registers not saved at entry

OR.w
BSR

(A7),D7
#ACTIVE,D7 Combine with those active at this time
PROC-3

Upon return from a procedure, the restoration of the necessary registers follows the same
convention, and the register mask generated during the save operation on entry is used to
restore the required floating-point data registers:

Return to caller ...
ADDQ.L #2,A7
MOVE.B (A7)+,D7
FMOVEM (A7) + ,D7

RTS Return to the
calling routine

MC68881/MC68882 USER'S MANUAL

Discard the list of registers not saved
Get the saved register list (pop word, use byte)
Restore the registers

MOTOROLA
4-75

..

FMOVEM Move Multiple Control Registers FMOVEM

Operation:

Assembler
Syntax:

Attributes:

Register List. Destination
Source. Register List

FMOVEM.L
FMOVEM.L

<list>

Size = (Long)

<Iist>,<ea>
<ea>,<list>

A list of any combination of the tliree floating
point system control registers (FPCR, FPSR and
FPIAR) with individual register names sepa
rated by a slash (I).

Description: Moves one or more 32-bit values into or out of the specified system control
registers. Any combination of the three system control registers may be specified. The reg
isters are always moved in the same order, regardless of the addressing mode used; with
the FPCR moved first. followed by the FPSR, and the FPIAR moved last (if a register is not
selected for the transfer, the relative order of the transfer of the other registers is the same).
The first register is transferred between the FPCP and the specified address, with successive
registers located up through higher addresses.

When more than one register is moved, the memory or memory alterable addressing modes
are allowed as shown in the addressing mode tables. Ifthe addressing mode is predecrement.
the address register is first decremented by the total size of the register images to be moved
(i.e., 4 times the number of registers) and then the registers are transferred starting at the
resultant address. For the postincrement addressing mode, the selected registers are trans
ferred to or from the specified address, and then the address register is incremented by the
total size of the register images transferred. If a single system control register is selected,
the data register direct addressing mode may be used; or, if the only register selected is the
FPIAR, then the address register direct addressing mode is allowed. Note that if a single
register is selected, the opcode generated is the same as for the FMOVE single system control
register instruction.

Status Register:ls changed only if the destination list includes the FPSR; in which case all bits
are modified to reflect the value of the source register image.

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR EFFECTIVE ADDRESS

1 1 1 1
10

0 0 0 MODE REGISTER

REGISTER

I I o I 101 1 1 dr LIST 0 0 0 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.

MOTOROLA
4-76

MC68881/MC68882 USER'S MANUAL

FMOVEM Move Multiple Control Registers FMOVEM

Effective Address Field - Determines the addressing mode for the operation:

Memory-to-Register -

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxx).w

An** 001 reg. number:An (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd.An,XnJ,od) 110 reg. number:An ([bd,PC,XnJ.od)

([bd.AnJ.Xn,od) 110 reg. number:An ([bd,PC].Xn,od)

'Only if a single FPcr is selected.
"Only if the FPIAR is the single register selected.

Register-to-Memory -

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxx).w

An** 001 reg. number:An (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd.An,XnJ.od) 110 reg. number:An ([bd,PC,Xn].od)

([bd.AnJ.Xn,od) 110 reg. number:An ([bd,PC].Xn,od)

'Only if a single FPcr is selected.
"Only if the FPIAR is the single register selected.

dr Field - Specifies the direction of the transfer.
0- Move the listed registers from memory to the FPCP.
1 - Move the listed registers from the FPCP to memory.

Mode Register

111 000

111 001

111 100

111 010

111 011

111 011

111 011

111 011

Mode Register

111 000

111 001

- -

- -

- -
- -

- -
- -

Register List Field: - Contains the register select mask; if a register is to be moved, the
corresponding bit in the list is set, otherwise it is clear.

Bit Number 12 11 10
Register - FPCR FPSR FPIAR

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-77

•

FMUL Multiply FMUL

Operation:

Assembler
Syntax:

Attributes:

Source x FPn • FPn

FMUL.<fmt>
FMUL.X

<ea>,FPn
FPm,FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and mUltiplies
that number by the number in the destination floating-point data register. Stores the result
in the destination floating-point data register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

In Range + Multiply
+0.0 -0.0 +inf -inf

- -0.0 +0.0 -inf +inf

Zero + +0.0 -0.0 +0.0 -0.0
NAN' - -0.0 +0.0 -0.0 +0.0

Infinity + +inf -inf
NAN'

+inf -inf
- -inf +inf -inf +inf

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set for 0 x infinity; cleared otherwise
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-78

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I EFFECTIVE ADDRESS
0 0 MODE REGISTER

DESTINATION I 0 I 0 o I I REGISTER 0 1 1 1

MC68881/MC68882 USER'S MANUAL

FMUL Multiply FMUL

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn Ixxx).w

An - - Ixxx).L

IAn) 010 reg. number:An #<data>

IAn)+ all reg. number:An

-IAn) 100 reg. number:An

Id16,An) 101 reg. number:An Id16,PC)

(ds,An,Xn) 110 reg. number:An Ids,PC,Xn)

Ibd,An,Xn) 110 reg. number:An Ibd,PC,Xn)

l[bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn).od)

([bd,AnJ.Xn,od) 110 reg. number:An ([bd,PC),Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-79

II

FNEG Negate FNEG
Operation:

Assembler
Syntax:

-(Source)' FPn

FNEG.<fmt>
FNEG.X

<ea>,FPn
FPm,FPn
FPn FNEG.X

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and inverts the
sign of the mantissa. Stores the result in the destination floating-point data register.

Operation Table:

~ce In Range Zero Infinity
Destination + - + - + -

Result Negate -0.0 +0.0 -inf +inf

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL

DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Cleared
If source is an extended precision denormalized num
ber, refer to 6.1.5 Underflow; cleared otherwise.
Cleared
Cleared
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-80

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I 0 I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I 1 I o I 1 I REGISTER 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FNEG Negate FNEG

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xnl.od) 110 reg. number:An ([bd,PC,Xnl.od)

([bd,Anl.Xn,od) 110 reg. number:An ([bd,PCl.Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = a and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-81

II

FNOP

Operation:

Assempler
Syntax:

Attribu~es:

No Operation FNOP

None

FNOP

Unsized

•
Description: This instruction does not perform any explicit operation. However, it is useful to

force synchronization of the FPCP with a main processor, or to force processing of pending
exceptions. The synchronization function is inherent in the way that the FPCP uses the M68000
Family coprocessor interface. For most FPCP instructions, the main processor is allowed to
continue with the execution of the next instruction once the FPCP has any operands needed
for an operation, thus supporting concurrent execution of floating-point and integer instruc
tions. However, if the main processor attempts to initiate the execution of a n~w floating
point instruction in the MC68881 before the previous one is completed, the main processor
is forced to wait until that instruction execution is finished before proceeding with the new
instruction. FNOP is treated in the same way as other instructions and thus cannot be executed
until the previous floating-point instruction is completed, and the main processor is syn
chronized with the MC68881.

The MC68882 may not wait to begin execution of another floating-point instruction until it
has completed execution of the current instruction. However, the FNOP instruction synchro
nizes the coprocessor and MPU by causing the MPU to wait until the current instruction (or
both instructions) have completed.

The FNOP instruction also forces the processing of exceptions pending from the execution
of previous instructions. This is also inherent in the way that the FPCP utilizes the M68000
Family coprocessor interface. Once the FPCP has received the input operand for an arithmetic
instruction, it always releases the main processor to execute the next instruction (regardless
of whether or not concurrent execution is prevented for the instruction due to tracing) without
reporting the exception during the execution of that instruction. Then, when the mC;lin pro
cessor attempts to initiate the execution 9f the next FPCP instruction, a pre-instruction ex
ception may be reported to initiate exception processing for an exception that occurred during
a previous instruction. By using the FNOP instruction, the user can force any pending ex
ceptions to be processed without performing any other operations.

Status Register: Not Affected

Instruction Format:

15 14

1 1

0 0

MOTOROLA
4-82

13

1

0

12 11 10

1
CQPROCESSOR

ID

0 0 I 0 I

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

MC68881/MC68882 USER'S MANUAL

FNOP No Operation FNOP
Instruction Fields:

Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc
tion. Motorola assemblers default to ID = 1 for the FPCP.

NOTE

FNOP uses the same opcode as the FBcc.W <label> instruction, with cc= F (non
trapping false) and <label> = * + 2 (which results in a displacement of 0).

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-83

II

FREM

Operation:

Assembler
Syntax:

Attributes:

IEEE Remainder FREM
IEEE Remainder of (FPn (-i-) Source) • FPn

FREM.<fmt> <ea>,FPn
FREM.X FPm,FPn

Format= (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operqnd to extended precision (if necessary) and calculates

•
the modulo remainder of the number in the destination floating-point data register, using
the source operand as the modulus. Stores the result in the destination floating-point data
register, and stores the sign and seven least significant bits of the quotient in the FPSR
quotient byte (the quotient is the result of FPn (-i-) Source). The IEEE remainder function is
defined as:

FPn - (Source x N)
where:

N = INT(FPn (-i-) Source) in the round-to-nearest mode

The FREM function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FMOD instruction,
which uses the round-to-zero mode and thus returns a remainder that is different from the
remainder required by the IEEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

In Range +
IEEE Remainder NAN' FPn2

-

Zero
+ +0.0

NAN'
+0.0

- -0.0 -0.0

Infinity +
NAN' NAN' NAN' -

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Returns the value of FPn before the operation. However, the result is processed by the normal

instruction termination procedure to round it as required. Thus, an underflow and/or inexact
result may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded.

3. If either operand is a NAN, refer to 4.5.4 NANs for more inform~tion.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

MOTOROLA
4-84

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Loaded with the sign and least significant seven bits of the quotient
(FPn (-i-) Source). The sign of the quotient is the exclusive OR of
the sign bits of the source and destination operands.

BSUN
SNAN
OPERR

OVFL

Cleared
Refer to 4.5.4 NANs.
Set if the source is zero, or the destination is infinity;
cleared otherwise
Cleared

MC68881/MC68882 US!:R'S MANUAL

FREM IEEE Remainder

Refer to 6.1.5 Underflow.
Cleared
Cleared

FREM

UNFL
DZ
INEX2
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati

bility

Instruction Format:
15 14 13 12 11 10

I
COPROCESSOR

I o I
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 MODE REGISTER

SOURCE

I
DESTINATION

I 0 I 0 1 I 0 I 0 RIM 0 SPECIFIER REGISTER 0 1 1

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xnl.od) 110 reg. number:An ([bd,PC,Xn],od)

([bd,AnI.Xn,od) 110 reg. number:An ([bd,PCI.Xn,od)

*Only il <Imt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
o - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L 'Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-85

III

FRESTORE Restore Internal State
(Privileged Instruction)

FRESTORE

Operation:

Assembler
Syntax:

__ Attributes:

If in supervisor state
then FPCP State Frame. Internal State
else TRAP

FRESTORE <ea>

Unsized, privileged.

Description: Aborts the execution of any operation in progress, and loads a new internal state
from the state frame located at the effective address. The first word at the specified address
is the format word of the state frame, which specifies the size of the frame and the revision
number of the FPCP that created it. The MPU writes the first word to the FPCP Restore CIR
to initiate the restore operation, and then reads the response CIR to verify that the FPCP
recognizes the format word as valid. If the format word is invalid for the FPCP (either because
the size of the frame is not recognized, or the revision number does not match the revision
of the processor), the MPU is instructed to take a format exception. The MPU then writes an
abort to the control CIR, and the FPCP enters the IDLE state. If the format word is valid, the
appropriate state frame is loaded, starting at the specified location and proceeding through
higher addresses.

The FRESTORE instruction does not normally affect the programmer's model registers of the
FPCP (except for the NULL state size, as described below), but is used only to restore the
user invisible portion of the machine. The FRESTORE instruction is used with the FMOVEM
instruction to perform a full context restoration of the FPCP, including the floating-point data
registers and system control registers. In order to accomplish a complete restoration, the
FMOVEM instructions are first executed to load the programmer's model, followed by the
FRESTORE instruction to load the internal state and continue any previously suspended
operation. Refer to 6.4 CONTEXT SWITCHING for more information.

The current implementation of the FPCP supports three state frames. Refer to 6.4.2 State
Frames for the exact format of these state frames.

NULL:

IDLE:

MOTOROLA
4-86

This state frame is four bytes long, with a format word of $0000. An FRESTORE
operation with this size state frame is equivalent to a hardware reset of the FPCP.
The programmer's model is set to the reset state, with non-signaling NANs in the
floating- point data registers and zeroes in the FPCR, FPSR and FPIAR. (Thus, it
is unnecessary to load the programmer's model before this operation.)

This state frame is 28 ($1 C) bytes long in the MC68881, and 60 ($3C) bytes long
in the MC68882. An FRESTORE operation with this size state frame causes the
FPCP to be restored to the idle state, waiting for the initiation of the next instruc
tion. Exceptions that were pending before the execution of the previous FSAVE
instruction are pending following the execution of the FRESTORE instruction. The
programmer's model is not affected by loading this type of state frame.

MC68881/MC68882 USER'S MANUAL

FRESTORE Restore Internal State
(Privileged Instruction)

FRESTORE

BUSY: This state frame is 184 ($B8) bytes long in the MC68881 and 216 ($D8) bytes long
in the MC68882. An FRESTORE operation with this size state frame causes the
FPCP to be restored to the busy state, executing the instruction that was sus
pended by a previous FSAVE operation. The programmer's model is not affected
by loading this type of state frame (although the completion of the suspended
instruction after the restore is executed may modify the programmer's model).

Status Register: Cleared if the state size is NULL, otherwise not affected

Instruction Format:

15 14 13 12

Instruction Fields:

11 10

COPROCESSOR

ID
EFFECTIV ADDRESS

MODE REGISTER

Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc
tion. Motorola assemblers default to ID= 1 for the FPCP.

Effective Address Field - Determines the addressing mode for the state frame. Only postin
crement or control addressing modes are allowed as shown:

Addressing Mode Mode

Dn -

An -

(An) 010

(An)+ 011

-(An) -
(d16.An) 101

(da,An,Xn) 110

(bd,An,Xn) 110

([bd,An,Xnl.od) 110

([bd,AnI.Xn,od) 110

MC68881/MC68882 USER'S MANUAL

Register Addressing Mode

- (xxx).w

- (xxx).L

reg. number:An #<data>

reg. number:An

-

reg. number:An (d16,PC)

reg. number:An (da,PC,Xn)

reg. number:An (bd,PC,Xn)

reg. number:An ([bd,PC,Xnl.od)

reg. number:An ([bd,PCI.Xn,od)

Mode

111

111

-

111

111

111

111

111

Register

000

001

-

010

011

011

011

011

MOTOROLA
4-87

II

FSAVE

Operation:

Assembler
Syntax:

If in supervisor state

Save Internal State
(Privileged Instruction)

then FPCP Internal State. State Frame
else TRAP

FSAVE <ea>

FSAVE

D Attributes: Unsized, privileged.

Description: Suspends the execution of any operation in progress, and saves the internal state
in a state frame located at the effective address. After the save operation, the FPCP is in the
idle state, waiting for the execution of the next instruction. The first word written to the state
frame is the format word, which specifies the size of the frame and the revision number of
the FPCP. The MPU initiates the FSAVE instruction by reading the FPCP save CIR, which is
encoded with a format word that indicates the appropriate action to be taken by the main
processor. The current implementation of the FPCP always returns one of five responses in
the save CIR:

Value Definition
$0018 Save NULL state frame
$0118 Not ready, come again
$0218 Illegal, take format exception
$XX18 Save IDLE state frame
$XXB4 Save BUSY state frame

where:
XX is the FPCP version number.

The Not Ready format word indicates that the FPCP is not prepared to perform a state save
and that the MPU should process interrupts, if necessary, and then re-read the save CIR. The
FPCP uses this format word to cause the main processor to wait while an internal operation
is completed, if possible, in order to allow an IDLE frame to be saved rather than a BUSY
frame. The Illegal format word is used to abort an FSAVE instruction that is attempted while
the FPCP is executing a previous FSAVE instruction. All other format words cause the MPU
to save the indicated state frame at the specified address. For state frame details see 6.4.2
State Frames. These state frames are defined as follows:

NULL:

IDLE:

MOTOROLA
4-88

This state frame is four bytes long. An FSAVE instruction that generates this size
state frame indicates that the FPCP state has not been modified since the last
hardware reset or FRESTORE instruction with a NULL state frame. This indicates
that the programmer's model is in the reset state, with non-signaling NANs in
the floating-point data registers and zeroes in the FPCR, FPSR, and FPIAR. (Thus,
it is not necessary to save the programmer's modeL)

This state frame is 28 ($1C) bytes long in the MC68881, and 60 ($3C) bytes long
in the MC68882. An FSAVE instruction that generates this size state frame indicates
that the FPCP was in an idle condition, waiting for the initiation of the next in
struction. Any exceptions that were pending are saved in the frame and are then
cleared internally. Thus, the pending exceptions are not reported until after a
subsequent FRESTORE instruction loads the state frame. In addition to being used
for context switching, this frame may be used by exception handler routines,
since it contains the value of the operand that caused the last floating-point
exception.

MC68881/MC68882 USER'S MANUAL

FSAVE Save Internal State
(Privileged Instruction)

FSAVE

BUSY: This state frame is 184 ($B8) bytes long in the MC68881, and 216 ($D8) bytes long
in the MC68882. An FSAVE instruction that generates this size state frame indicates
that the FPCP was at a point within an instruction where it was necessary to save
the entire internal state of the processor. This frame size is only used when
absolutely necessary because of the large size of the frame and the amount of
time required to transfer it. The action of the FPCP when this state frame is saved III
is the same as for the IDLE state frame. •

The FSAVE does not save the programmer's model registers of the FPCP, but is used to save
only the user invisible portion of the machine. The FSAVE instruction may be used with the
FMOVEM instruction to perform a full context save of the FPCP including the floating-point
data registers and system control registers. In order to accomplish a complete context save,
an FSAVE instruction is first executed to suspend the current operation and save the internal
state, followed by the appropriate FMOVEM instructions to store the programmer's model.
Refer to 6.4 CONTEXT SWITCHING for more information.

Status Register: Not affected

Instruction Format:

15 14 13

Instruction Fields:

12 11 10

COPROCESSOR

10

EFFECTIVE ADDRESS
MODE REGISTER

Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc
tion. Motorola assemblers default to ID = 1 for the FPCP.

Effective Address Field - Determines the addressing mode for the state frame. Only prede
crement or control alterable addressing modes are allowed as shown:

Addressing Mode Mode Register

On - -

An - -

(Ani 010 reg. number:An

(Anl+ - -
-(Ani 100 reg. number:An

(d16,Anl 101 reg. number:An

(ds,An,Xnl 110 reg. number:An

(bd,An,Xnl 110 reg. number:An

([bd,An.Xnj,odl 110 reg. number:An

([bd,An].Xn,odl 110 reg. number:An

MC68881/MC68882 USER'S MANUAL

Addressing Mode

(xxxl.w

(xxxl.L

#<data>

(d16,PCI

(ds,PC,Xnl

(bd,PC,Xnl

([bd,PC,Xn].odl

([bd,PC].Xn,odl

Mode

111

111

-

-
-

-

-

-

Register

000

001

-

-

-

-

-
-

MOTOROLA
4-89

FSCALE Scale Exponent FSCALE

Operation:

Assembler
Syntax:

Attributes:

FPn x INT(2S0UrCe) • FPn

FSCALE.<fmt>
FSCALE.X

<ea>,FPn
FPm,FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

.. Description: Converts the source operand to an integer (if necessary) and adds that integer to

... the destination exponent. Stores the result in the destination floating-point data register. This
function has the effect of mUltiplying the destination by 2Source, but is much faster than a
multiply operation when the source is an integer value.

The FPCP assumes that the scale factor is an integer value before the operation is executed.
If not, the value is chopped (i.e., rounded using the round-to-zero mode) to an integer before
it is added to the exponent. When the absolute value of the source operand is (~) 214, an
overflow or underflow always results.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

In Range + Scale Exponent FPn' NAN2
-

Zero + +0.0 +0.0 NAN2
- -0.0 -0.0

Infinity + +inf +inf NAN2
- -inf -inf

NOTES:
1. Returns the value FPn before the operation. However, the result if processed by the normal

inst'ruction termination procedure to round it as required. Thus, an underflow and/or inexact
resuli may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded.

2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

MOTOROLA
4-90

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is (+ or -)infinity; cleared
otherwise
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Cleared
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

MC688811MC68882 USER'S MANUAL

FSCALE Scale Exponent FSCALE

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I ID I a I a 0 MODE REGISTER

SOURCE

I
DESTINATION

I a I a 1 I 1 I a RIM a SPECIFIER REGISTER a 1 a

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determihes the addressing mode for external operands.

If RIM = 0, this field is unused, arid should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).W

An - - (xxx).L

(An) 010 reg. number:An #<data>

IAn)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(da,An,Xn) 110 reg. number:An (da,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xnj,od) 110 reg. number:An ([bd,PC,Xn].od)

([bd,An].Xn,od) 110 reg. number:An ([bd,PC),Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-91

FScc Set According to Condition FScc

Operation:

Assembler
Syntax:

• Attributes:

If (condition true)
then 1 s • Destination
else as • Destination

FScc.<size> <ea>

Size = (Byte)

Description: If the specified floating-point condition is true, sets the byte integer operand at
the destination to TRUE (all ones), otherwise sets the byte to FALSE (all zeroes). The con
ditional specifier cc may select anyone of the 32 floating-point conditional tests as described
in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Not affected

Not affected

BSUN

SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Set if the NAN condition code is set and the condition
selected is an IEEE non-aware test
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected

Accrued Exception Byte: The lOP bit is set if the BSUN bit is set in the exception byte. No
other bit is affected.

Instruction Format:

15 14

1 1

0 0

MOTOROLA
4-92

13

1

0

12 11

1

0 0

10

COPROCESSOR EFFECTIV\ADDRESS
ID

0 0 1 MODE REGISTER

I 0 I 0 0 0 0 CONDITIONAL PREDICATE

MC68881/MC68882 USER'S MANUAL

FScc Set According to Condition FScc

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Specifies the addressing mode for the byte integer operand:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx)W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #<data> - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -
(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn]'od) - -
([bd,An]'Xn,od) 110 reg. number:An ([bd,PC]'Xn,od) - -

Conditional Predicate Field - Specifies one of 32 conditional tests as defined in 4.4 CON
DITIONAL TEST DEFINITIONS.

NOTE

When a BSUN exception occurs, a pre-instruction exception is taken by the main
processor. If the exception handler returns without modifying the image of the PC
on the stack frame (to point to the instruction following the FScc). then it must clear
the cause of the exception (by clearing the NAN bit or disabling the BSUN trap) or
the exception occurs again immediately upon return to the routine that caused the
exception.

MC688811MC68882 USER'S MANUAL MOTOROLA
4-93

FSGLDIV Single Precision Divide FSGLDIV

Operation:

Assembler
Syntax:

Attributes:

FPn (-;-) Source. FPn

FSGLDIV.<fmt> <ea>,FPn
FSGLDIV.X FPm,FPn

Format=(Byte, Word, Long, Single, Double, Extended, Packed)

~ Description: Converts the source operand to extended precision (if necessary) and divides that
... number into the number in the destination floating-point data register. Stores the result in

the destination floating-point data register, rounded to single precision (regardless of the
current rounding precision). This function is undefined for O(-;-)0 and infinity(-;-)infinity.

Both the source and destination operands are assumed to be representable in the single
precision format. If either operand requires more than 24 bits of mantissa to be accurately
represented, the accuracy of the result is not guaranteed. Furthermore, the result exponent
may exceed the range of single precision, regardless of the rounding precision selected .in
the FPCR mode control byte. Refer to 4.5.5.2 UNDERFLOW, ROUND, OVERFLOW for more
information.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

In Range + Divide +inf' -inf' +0.0 -0.0
- (Single Precisionl -inf' +inf' -0.0 +0.0

Zero + +0.0 -0.0 NAN2 +0.0 -0.0
- -0.0 +0.0 -0.0 +0.0

Infinity + +inf -inf +inf -inf NAN2
- -inf +inf -inf +inf

NOTES:
1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

MOTOROLA
4-94

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ

INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set for O(-;-)0 or infinity(-;-)infinity
Refer to 6.1.4 Overflow.
Refer to 6.1.5 lJnderflow.
Set ifthe source is zero and the destination is in range;
cleared otherwise
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

MC68881/MC68882 USER'S MANUAL

FSGLDIV Single Precision Divide FSGLDIV

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

I
COPROCESSOR

I o I
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I 0 1 I 0 I 0 RIM 0 SPECIFIER REGISTER 0 1 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number: Dn (xxx),W

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd.An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd.An,XnJ.od) 110 reg. number:An ([bd,PC,XnJ.od)

([bd.Anl,Xn,od) 110 reg. number:An ([bd,PCJ.Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the sou rce data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-95

II

FSGLMUL Single Precision Multiply FSGLMUL

Operation:

Assembler
Syntax:

Source x FPn • FPn

FSG LM U L. <fmt>
FSGLMUL.X
<ea>,FPn
FPm,FPn

_Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and mUltiplies
that number by the number in the destination floating-point data register. Stores the result
in the destination floating-point data register, rounded to single precision (regardless of the
current rounding precision).

Both the source and destination operands are assumed to be representable in the single
precision format. If either operand requires more than 24 bits of mantissa to be accurately
represented, the accuracy of the result is not guaranteed. Furthermore, the result exponent
may exceed the range of single precision, regardless of the rounding precision selected in
the FPCR mode control byte. Refer to 4.5.5.2 UNDERFLOW, ROUND, OVERFLOW for more
information.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

In Range + Multiply +0.0 -0.0 +inf inf
- (Single Precision -0.0 +0.0 -inf +inf

Zero + +0.0 -0.0 +0.0 -0.0
NAN' - -0.0 +0.0 -0.0 +0.0

Infinity + +inf -inf
NAN'

+ inf -inf
- -inf +inf -inf +inf

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

MOTOROLA
4-96

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if one operand is zero and the other is infinity;
cleared otherwise
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

MC68881/MC68882 USER'S MANUAL

FSGLMUL Single Precision Multiply FSGLMUL

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I ID I 0 I 0 0 MDDE REGISTER

SOURCE

I
DESTINATION

I o I I I 0 RIM 0 SPECIFIER REGISTER 0 1 0 1 1 1

Instruction Fields:
Coprocessor 10 Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to 10 = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xni,od) 110 reg. number:An ([bd,PC,Xni,ad)

([bd,Ani,Xn,od) 110 reg. number:An ([bd,PC),Xn,ad)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 0 Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC688811MC68882 USER'S MANUAL MOTOROLA
4-97

II

FSIN Sine FSIN

Operation: Sine of Source. FPn

Assembler
Syntax:

FSIN.<fmt>
FSIN.X
FSIN.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

__ Description: Converts the source operand to extended precision (if necessary) and calculates
the sine of that number. Stores the result in the destination floating-point data register. This
function is not defined for source operands of (±)infinity. If the source operand is not in the
range of [- 2'lT ... + 2'lT], the argument is reduced to within that range before the sine is
calculated. However, large arguments may lose accuracy during reduction, and very large
arguments (greater than approximately 1020) lose all accuracy. The result is in the range of
[-1 ... + 1].

Operation Table:

~ In Range Zero Iilfinity
Destination + - + - + -

Result Sine +0.0 -0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETIING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set ifthe source is (+ or -)infinity; cleared otherwise.
Cleared
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-98

MC68881/MC68882 USER'S MANUAL

FSIN Sine FSIN

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I 10 I o I 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I o I I I 0 RIM 0 SPECIFIER REGISTER 0 0 1 1 1 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxxlW

An - - (xxxl.L

IAnl 010 reg. number:An #<data>

(Anl+ 011 reg. number:An

-(Ani 100 reg. number:An

(d16.Anl 101 reg. number:An (d16,PCI

(ds.An,Xnl 110 reg. number;An (da,PC,Xnl

(bd,An,Xnl 110 reg. number:An (bd,PC,Xnl

([bd.An,Xn],odl 110 reg. number:An ([bd,PC,Xn),odl

([bd.An],Xn,od) 110 reg. number:An ([bd,PC],Xn,odl

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-99

II

FSINCOS Simultaneous Sine and Cosine FSINCOS

Operation:

Assembler
Syntax:

Sine of Source. FPs
Cosine of Source. FPc

FSINCOS.<fmt> <ea>,FPc:FPs
FSINCOS.X FPm,FPc:FPs

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• . Description: Converts the source operand to extended precision (if necessary) and calculates
both the sine and the cosine of that number. Calculates both functions simultaneously; thus,
this instruction is significantly faster than performing separate FSIN and FCOS instructions.
Loads the sine result into the destination floating-point data register FPs and the cosine result
into the destination floating-point data register FPc. Sets the condition code bits according
to the sine result. If FPs and FPc are specified to be the same register, the cosine result is
first loaded into the register and then is overwritten with the sine result. This function is not
defined for source operands of (+ or -)infinity.

If the source operand is not in the range of (- 27f ... + 27fJ. the argument is reduced to within
that range before the sine and cosine are calculated. However, large arguments may lose
accuracy during reduction, and very large arguments (greater than approximately 1020) lose
all accuracy. The results are in the range of [-1 ... + 1].

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

FPs Sine +0.0 -0.0 NAN'

FPc Cosine +0.0 +0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2.lf the source operand is a NAN. refer to 4.5.4 NANs for more information.

Status Register:
Condition Codes:

Quotient Byte:
Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES (for the sine result)
Not affected
BSUN
SNAN
OPERR
OVFL
UNFL

DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set ifthe source is (+ or -)infinity; cleared otherwise
Cleared
Set if a sine underflow occurs, in which case the cos
ine result is 1. Cosine cannot underflow. Refer to 6.1.5
Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-100

MC68881/MC68882 USER'S MANUAL

FSINCOS Simultaneous Sine and Cosine FSINCOS

Instruction Format:
15 14 13 12 11 10

I
COPROCESSOR

I I
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I I
DESTINATION

0 RIM 0 SPECIFIER REGISTER, FPs 0 1 1 0 REGISTER, FPc

Instruction Fields: •
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc-

tion. Motorola assemblers default to ID= 1 for the FPCP,
Effective Address Field - Determines the addressing mode for external operands,

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd.An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn).od)

([bd.An).Xn,od) 110 reg. number:An ([bd,PC).Xn,od)

'Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

all

all

all

Destination Register, FPc Field - Specifies the destination floating-point data register, FPc.
The cosine result is stored in this register.

Destination Register, FPs Field - Specifies the destination floating-point data register, FPs.
The sine result is stored in this register. If FPc and FPs specify the same floating-point data
register, the sine result is stored in the register, and the cosine result is discarded.

If RIM = 0 and the source register field is equal to either of the destination register fields, the
input operand is taken from the specified floating-point data register, and the appropriate
result is written into the same register.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-101

FSINH Hyperbolic Sine FSINH

Operation:

Assembler
Syntax:

Hyperbolic Sine of Source. FPn

FSINH.<fmt>
FSINH.X
FSINH.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic sine of that number. Stores the result in the destination floating-point data
register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Hyperbolic Sine +0.0 -0.0 +inf -inf

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-102

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

1 0 I
EFFECTIVE ADDRESS

0 0 . MODE REGISTER

DESTINATION

I o I o I 1 I REGISTER 0 0 0 0

MC68881/MC68882 USER'S MANUAL

FSINH Hyperbolic Sine FSINH

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxxl.w

An - - (xxxl.L

(Ani 010 reg. m:mber:An #<data>

(Anl+ 011 reg. number:An

-(Ani 100 reg. number:An

(d16,Anl 101 reg. number:An (d16,PCI

(dS,An,Xnl 110 reg. number:An (d8,PC,Xnl

(bd,An,Xnl 110 reg. number:An (bd,PC,Xnl

([bd,An,Xn]'odl 110 reg. number:An ([bd,PC,Xn]'odl

([bd,An]'Xn,odl 110 reg. number:An ([bd,PC],Xn,odl

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M =0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-103

II

FSQRT Square Root FSQRT

Operation: Square Root of Source. FPn

Assembler
Syntax:

FSQRT.<fmt>
FSQRT.X
FSQRT.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
the square root of that number. Stores the result in the destination floating-point data register.
This function is not defined for negative operands.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result jx NAN' +0.0 -0.0 +inf NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is not zero and is negative;
cleared otherwise
Cleared
Cleared
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-104

13

1

0

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

I o I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I o I I o I REGISTER 0 0 0 1 0

MC68881/MC68882 USER'S MANUAL

FSQRT Square Root FSQRT

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxxl.w

An - - Ixxx).L

IAn) 010 reg. number:An #<data>

IAn)+ 011 reg. number:An

-IAn) 100 reg. number:An

Id16,An) 101 reg. number:An (d16,PCI

(ds,An,Xn) 110 reg. number:An (ds,PC,Xnl

Ibd,An,Xn) 110 reg. number:An (bd,PC,Xnl

Ilbd,An,Xn],od) 110 reg. number:An (lbd,PC,Xn]'od)

Ilbd,An],Xn,od) 110 reg. number:An IIbd,PC]'Xn,od)

*Only il <Imt> is Byte, Word, Long or Single.

RIM Field - Specifies the source operand address mode,
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 x Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = a and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-105

III

FSUB

Operatior:

Assembler
Syntax:

Attributes:

Subtract

FPn -Source. FPn

FSUB.<fmt>
FSUB.X

<ea>,FPn
FPm,Fpn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FSUB

.... Description: Converts the source operand to extended precision (if necessary) and subtracts

... that number from the number in the destination floating-point data register. Stores the result
in the destination floating-point data register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

In Range + Subtract Subtract -inf +inf -

Zero + Subtract
+0.01 -0.0

-inf +inf - -0.0 +0.01

Infinity + +inf +inf NAN2 -inf
- -inf -inf -inf NAN2

NOTES:
1. Returns +0.0 in rounding modes RN. RZ, and RP; returns -0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if both the source and destination are like-signed
infinities; cleared otherwise
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

MOTOROLA
4-106

MC68881/MC68882 USER'S MANUAL

FSUB Subtract FSUB

Instruction Format:

15 14 13 12 11 10

COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 I ID I o I 0 0 MODE REGISTER

SOURCE

I
DESTINATION

I 0 I o I o I 0 RIM 0 SPECIFIER REGISTER 0 1 1 0

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).w

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn)'od) 110 reg. number:An ([bd,PC,Xn)'od)

([bd,An)'Xn,od) 110 reg. number:An ([bd,PC),Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-107

III

FTAN Tangent FTAN

Operation: Tangent of Source. FPn

Assembler
Syntax:

FTAN.<fmt>
FTAN.X
FTAN.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extehded, Packed)

D Description: Converts the source operand to extended precision (if necessary) and calculates
the tangent of that number. Stores the result in the destination floating-point data register.
This function is not defined for source operands of (±)infinity. If the source operand is not
in the range of [-'IT/2 ... + 'IT/2j, the argument is reduced to within that range before the
tangent is calculated. However, large arguments may lose accuracy during reduction, and
very large arguments (greater than approximately 1020) lose all accuracy.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Tangent +0.0 -0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source is (±)infinity; cleared otherwise
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-108

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION
I 0 I I I REGISTER 0 0 1 1 1 1

MC68881/MC68882 USER'S MANUAL

FTAN Tangent FTAN

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If R/M=O, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx)W

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC)

(daAn,Xn) 110 reg. number:An (da,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bdAn,Xn),od) 110 reg. number:An ((bd,PC,Xn).od)

((bdAn),Xn,od) 110 reg. number:An ((bd,PC).Xn,od)

'Only il <Imt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
a - The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC688811MC68882 USER'S MANUAL MOTOROLA
4-109

--

FTANH Hyperbolic Tangent FTANH

Operation:

Assembler
Syntax:

Hyperbolic Tangent of Source. FPn

FTANH.<fmt>
FTANH.X
FTANH.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic tangent of that number. Stores the result in the destination floating-point data
register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result Hyperbolic Tangent +0.0 -0.0 + 1.0 -1.0

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Cleared
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-110

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I o I o I 0 I REGISTER 0 0 1 1

MC68881/MC68882 USER'S MANUAL

FTANH Hyperbolic Tangent FTANH

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number:Dn (xxx).W

An - - (xxx).L

(An) 010 reg. number:An #<data>

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)

(da,An,Xn) 110 reg. number:An (da,PC,Xn)

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn),od)

([bd,An].Xn,od) 110 reg. number:An ([bd,PC].Xn,od)

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the sou rce data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-111

II

FTENTOX 10x FTENTOX

Operation:

Assembler
Syntax:

1QSource • FPn

FTENTOX.<fmt> <ea>,FPn
FTENTOX.X FPm,FPn
FTENTOX.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
10 to the power ofthat number. Stores the result in the destination floating-point data register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result 10x +1.0 +inf +0.0

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-112

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I I o I I REGISTER 0 0 1 0 1 0

MC68881/MC68882 USER'S MANUAL

FTENTOX 10x FTENTOX

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn (xxxlW --
An - - (xxxl.L

t----~------

(Ani 010 reg. number:An #<data>

(Anl+ 011 reg. number:An

-(Ani 100 reg. number:An

(d16,Anl 101 reg. number:An (d16,PCI

(ds,An,Xnl 110 reg. number:An (ds,PC,Xnl

(bd,An,Xnl 110 reg. number:An (bd,PC,Xnl

(lbd,An,Xnl.odl 110 reg. number:An IIbd,PC,Xn).odl

(lbd,An).Xn,odl 110 reg. number:An (lbd,PC).Xn,odl

'Only il <Imt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Mode

111
I---

111
(-----

111

111

111

111

111

111

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPrri.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Register

000

001
1--------

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-113

II

FTRAP(:c Trap Conditionally FTRAPcc

Operation:
If condition true, then TRAP

Assembler
Syntax:

FTRAPcc
FTRAPcc.W
FTRAPcc.L

#<data>
#<data>

__ Attribute=-: Size = (Word, Long)

Description: Ifthe selected condition is true, the main processor initiates exception processing.
A vector number is generated to refer~nce the TRAPcc exception vector. The stacked program
counter points to the next instruction. If the selected cpndition is not true, no operation is
performed, and execution continues with the next instruction in sequence. The immediate
data operand is placed in the word(s) follbwing the conditional predicate word and is available
for user definition for use within the trap handler.

The conditional specifier cc selects one ofthe 32 conditional tests defined in 4.4 CONDITIONAL
TEST DEFINITIONS.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Not affected

Not affected

BSUN

SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Set if the NAN condition code is set and the condition
selected is an IEEE non-aware test
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected
Not Affected

Accrued Exception Byte: The lOP bit is set if the BSUN bit is set in the exception byte. No
. other bit is affected.

Instruction Format:

15 14

1 I 1

0 I 0

MOTOROLA
4-114

13

I 1

I 0
I
I

12 11 10

1 I COPROCESSOR ID I 0 I 0 I 1 I 1 I 1 I 1 I MODE

0 I 0 I 0 I 0 I 0 I 0 I 0 I CONDITIONAL PREOICATE

16-BIT OPERAND OR MOST SIGNIFICANT WORD OF 32-BIT O~ERAND IIF NEEDEDI

LEAST SIGNIFICANT WORD OR 32-BIT OPERAND IIF NEEDEDI

MC68881/MC68882 USER'S MANUAL

FTRAPcc Trap Conditionally FTRAPcc

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Mode Field - Specifies the form of the instruction.

010 - The instruction is followed by a word operand.
011 - The instruction is followed by a long word operand.
100 - The instruction has no operand.

Conditional Predicate Field - Specifies one of 32 conditional tests as described in 4.4 CON- II
DITIONAL TEST DEFINITIONS.

Operand Field - Contains an optional word or long word operand that is user defined.

NOTE

When a BSUN exception occurs, a pre-instruction exception is taken by the main
processor. If the exception handler returns without modifying the image of the PC
on the stack frame (to point to the instruction following the FTRAPcc), it must clear
the cause of the exception (by clearing the NAN bit or disabling the BSUN trap) or
the exception occurs again immediately upon return to the routine that caused the
exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-115

FTST

Operation:

Assembler
Syntax:

Attributes:

Test Operand

Condition Codes for Operllnd • FPCC

FTST.<fmt>
FTST.X

<ea>
FPfTl

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FTST

III Description: Converts the source operand to extended precision (if necessary) and sets the
condition code bits according to the data type of the result.

Operation Table: The contents of this table differ from the other operation tables. A letter in an
entry of this table indicates that the cj~signated condition code bit is always set by the FTST
operation. All unspecified condition code bits are cleared during the operation.

~ce In Range Zero Infinity
Destination + - + - + -

Result none N Z NZ I NI

NOTES:
1. If the source operand is a NAN, set the NAN condition code bit.
2. If the source operand is a SNAN, set the SNAN bit in the FPSR exception byte.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NAN~.
Cleared
Cleared
Cleared
Cleared
Cleared
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-116

13

1

0

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

I o I EFFECTIVE ADQRESS
0 0 MODE REGISTER

DESTINATION

I 1 I o I 1 I REGISTER 0 1 1 0

MC68881/MC68882 USER'S MANUAL

FTST Test Operand FTST

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID = 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn* 000 reg. number: Dn (xxxlW

An - - (xxxl.L

(Ani 010 reg. number:An #<data>

(Anl+ all reg. number:An

-(Ani 100 reg. number:An

(d16.Anl 101 reg. number:An (d16,PCI

(da.An,Xnl 110 reg. number:An (da,PC,Xnl

(bd.An,Xnl 110 reg. number:An (bd,PC,Xnl

([bd,An,Xn),odl 110 reg. number:An ([bd,PC,Xn],odl

([bd.An],Xn,odl 110 reg. number:An ([bd,PC],Xn,odl

*Only if <fmt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

all

all

all

all

Destination Register Field - Since the FPCP uses a common command word format for all
of the arithmetic instructions (including FTST), this field is treated in the same manner for
FTST as for the other arithmetic instructions, even though the destination register is not
modified. This field should be set to zero in order to maintain compatibility with future
devices, although the FPCP does not signal an illegal instruction trap if it is not zero.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-117

FTWOTOX FTWOTOX

Operation:

Assembler
Syntax:

2Source. FPn

FTWOTOX.<fmt> <ea>,FPn
FTWOTOX.X FPm,FPn
FTWOTOX.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

• Description: Converts the source operand to extended precision (if necessary) and calculates
2 to the power of that number. Stores the result in the destination floating-point data register.

Operation Table:

~e In Range Zero Infinity
Destination + - + - + -

Result 2x +1.0 +inf +0.0

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Cleared
Refer to 6.1.4 Overflow.
Refer to 6.1.5 Underflow.
Cleared
Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati
bility

Instruction Format:

15 14

1 1

0 RIM

MOTOROLA
4-118

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

4

I 0 I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I 1 I o I o I REGISTER 0 0 0 1

MC68881/MC68882 USER'S MANUAL

FTWOTOX FTWOTOX

Instruction Fields:
Coprocessor ID Field - Specifies which coprocessor in the system is to execute this instruc

tion. Motorola assemblers default to ID= 1 for the FPCP.
Effective Address Field - Determines the addressing mode for external operands.

If RIM = 0, this field is unused, and should be all zeroes.
If RIM = 1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode

Dn' 000 reg. number:Dn Ixxx).W

An - - Ixxx).L

IAn) 010 reg. number:An #<data>

IAn)+ all reg. number:An

-IAn) 100 reg. number:An

Id16,An) 101 reg. number:An Id16,PC)

Ids,An.Xn) 110 reg. number:An Ids,PC,Xn)

Ibd,An,Xn) 110 reg. number:An Ibd,PC,Xn)

I[bd,An,Xnl.od) 110 reg. number:An I[bd,PC,Xnl.od)

I[bd,Anl.Xn,od) 110 reg. number:An Ilbd,PCl.Xn,od)

'Only il <Imt> is Byte, Word, Long, or Single.

RIM Field - Specifies the source operand address mode.
0- The operation is register to register.
1 - The operation is <ea> to register.

Source Specifier Field - Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If RIM = 1, specifies the source data format:

000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Mode

111

111

111

111

111

111

111

111

Register

000

001

100

010

011

011

011

011

Destination Register Field - Specifies the destination floating-point data register, FPn. If RI
M = 0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-119

III

III

4.7 INSTRUCTION ENCODING DETAILS

The following paragraphs provide the details of the object code formats for the general, branch,
set on condition, save, and restore type coprocessor instructions.

All FPCP instructions are from two to eight words in length as shown below (the longest case is
for an immediate operand of six words - the X or P format).

15 14 13 12 11 10

OPERATION WORD

MC68881 COMMAND WORD. OR CONDITIONAL PREDICATE

EFFECTIVE ADDRESS EXTENSION WORDS. DISPLACEMENT. OR IMMEDIATE OPERAND (IF ANY. 1-6 WORDS)

All FPCP instructions begin with an operation word, formatted as follows:

15 14 13 12 11 10 8 7 6

COPROCESSOR ID I 0 I 0 I 0 I TYPE TYPE DEPENDENT

Coprocessor ID - Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID = 1 for the FPCP.

Type - Specifies the type of coprocessor instruction:
000 - General Instructions (Arithmetics, FMOVE, FMOVEM)
001 - FDBcc, FScc, FTRAPcc
010 - FBccW
011 - FBcc.L
100 - FSAVE
101 - FRESTORE
110 - (Undefined, Reserved)
111 - (Undefined, Reserved)

Type Dependent - Normally specifies the effective address or conditional predicate, but
usage depends on the type field.

4.7.1 General Type Coprocessor Instruction Format

The general type coprocessor instruction format (shown below) is used for all FPCP arithmetic,
move, move multiple, move constant, and transcendental instructions.

15 14 13 12 11 10

OPERATION WORD

COPROCESSOR EFFECTIVE ADDRESS

10 MODE REGISTER

COMMAND WORD

OPCLASS RX RY I EXTENSION

The interpretation of the command word fields, OPCLASS, RX, RY, and EXTENSION field varies
with the instruction type and is summarized in Table 4-11.

MOTOROLA
4-120

MC68881/MC68882 USER'S MANUAL

Table 4-11. General Type Instruction Command Word Fields

Opclass RX RY Instruction Class

000 Source, Destination, FPm to FPn. The extension field specifies the operation (move,
FPm FPn add, etc.)

001 - - Undefined, reserved.

010 000-110 Destination, Memory to Fpn. The extension field specifies the operation (move,
Source Data FPn adq, etc.).

Format

010 111 Destination, Move constant to FPn. The extension field contains the offset of
FPn the ROM constant.

011 Destination Source, Move FPm to an external destination. If the destination format is
Data Format FPm packed decimal, the extension field specifies the k-factor (#k qr

Dn); otherwise it should be zero.

100 FPcr 000 Move single or multiple to the system control registers. The exten-
Select sion field should be zero.

101 FPcr 000 Move single or multiple system control registers to memory. The
Select extension field should be zero.

110 Register list OOm Move mutliple to the floating-point data registers. The least signifi-
and addressing cant bit of the RY field and the extension field contains the register

mode select. list, or the number of the main processor data register that con-
tains the list.

111 Register list OOm Move multiple from the floating-point data registers. The least sig-
and addressing nificant bit of the RY field and the extension field contains the reg-

mode select. ister list, or the number of the main processor data register that
cQntains the list.

The FPCP general type instructions are classified into groups based upon instruction function and
argument location (external or internal to the FPCP) as follows:

1. Floating-Point Register to Register

2. External Operand to Floating-Point Data Register

3. Move Constant to Floating-Point Data Register

4. Move Floating-Point Data Register to External Destination

5. Move System Control Register

6. Move Multiple Floating-Point Data Registers

Subdivision of the instruction set on this basis simplifies the specification of the MPU services
required by each FPCP instruction. The FPCP requests services from the MPU via the coprocessor
interface primitives described in 7,5 INSTRUCTION DIALOGS.

If the command word indicates that an operand external to the FPCP is to be fetched or stored,
the effective address field of the operation word is an MPU effective address descriptor. When
the FPCP requests an external data access, the MPU evaluates the source/destination effective
address based upon this effective address descriptor and transfers operand(s) to/from the FPCP.

If all operands are contained in FPCP floating-point data registers, the effective address field
should be all zeros. If the effective address field is not all zeros, instruction execution proceeds
normally; no F-line emulator exception trap is taken. However, to ensure compatibility with future
devices, assembler and compiler programmers should fill this field with zeros when it is not used.

4.7.1.1 REGISTER-TO-REGISTER INSTRUCTIONS. This class of instructions includes floating-point
data register to floating-point data register moves and the monadic and dyadic arithmetic and

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-121

III

•

transcendental instructions. For dyadic arithmetic instructions, the destination operand is replaced
by the result.

FPm <op> FPn • FPn

For monadic arithmetic instructions, the operand is the source FPm and the result is placed into
the destination FPn. The source FPm and destination FPn can be the same floating-point data
register.

FPm <op> • FPn

The encoding format for this class of instructions is:

15 14 13 12 11 10

1 1 1 1 I COPROCESSOR ID I o I 0 o I
SOURCE

[
OESTINATION

0 0 0 REGISTER REGISTER

0 I 0 I 0 I
EXTENSION

Table 4-12 shows the encoding of the source and destination register field.

Table 4·12. Register Field
Encoding

000- FPO
001 - FPl
010- FP2
Oil - FP3

100- FP4
101 - FP5
110- FP6
III - FP7

o I 0 I 0

The extension field indicates the operation to be performed. Table 4-13 lists the extension field
encodings and functions. Also shown are the services requested of the MPU by the FPCP.

4.7.1.2 EXTERNAL OPERAND-TO·REGISTER INSTRUCtiONS. This class of instructions includes
external operand to floating-point data register move and arithmetic instructions. External op
erands are located either in memory or an MPU data register (for B, W, L, or S data types). Data
format conversion from one of the seven memory data formats to the extended data format is
implicit in these instructions. For dyadic arithmetic instructions, the value in FPn is replaced by
the result.

External Operand <op> FPn • FPn

For monadic arithmetic instructions, the external operand is the source, and the result is placed
in the destination FPn.

External Operand <op> • FPn

The encoding format for this class of instructions is:

15 14 13 12 11 10

[
COPROCESSOR

[o[o [
EFFECTIVE

1
ADDRESS

1 1 1 1
10

0 MODE REGISTER

SOURCE

I
DESTINATION

0 1 0 FORMAT REGISTER EXTENSION

The destination register is encoded as shown in Table 4-12.

The source format field specifies the data format of the external operand. From the external
operand are derived the length (in bytes) of the operand and the allowed effective addressing

MOTOROLA
4-122

MC68881/MC68882 USER'S MANUAL

Table 4-13. Extension Field Encoding for Arithmetic Operations

Extension Field
Instruction Type MPU

Services
Extension Field

Instruction Type MPU
Services

$00 FMOVE to FPn Note 1 $18 FABS Note 1

$01 FINT Note 1 $19 FCOSH Note 1

$02 FSINH Note 1 $lA FNEG Note 1

$03 FINTRZ Note 1 $lC FACOS Note 1

$04 FSQRT Note 1 $10 FCOS Note 1

$06 FLOGNPl Note 1 $lE FGETEXP Note 1

$08 FETOXMl Note 1 $lF FGETMAN Note 1

$09 FTANH Note 1 $20 FDIV Note 1

$OA FATAN Note 1 $21 FMOD Note 1

SOC FASIN Note 1 $22 FADD Note 1

SOD FATANH Note 1 $23 FMUL Note 1

$OE FSIN Note 1 $24 FSGLDIV Note 1

$OF FTAN Note 1 $25 FREM Note 1

$10 FETOX Note 1 $26 FSCALE Note 1

$11 FTWOTOX Note 1 $27 FSGLMUL Note 1

$12 FTENTOX Note 1 $28 FSUB Note 1

$14 FLOGN Note 1 $30·$37 FSINCOS Note 1

$15 FLOG10 Note 1 $38 FCMP Note 1

$16 FLOG2 Note 1 $3A FTST Note 1

$40·$7F (Undefined, Note 2
Reserved)

NOTES:
1. Two primitives can be issued for these operations. If the operation is register·to-register, the first primitive issued is null. If any

exceptions, other than BSUN, are enabled, PC is set to 1 to request that the MPU pass the current program counter. If the
operation is external operand-to-register, the first primitive is evaluate effective address and transfer data (with CA = 1, and PC = 1
if any exceptions other then BSUN are enabled). The second primitive is null (CA=O) to terminate the instruction dialog.

2. The FPCP issues the take pre-instruction exception primitive with a vector number of 11 to instruct the MPU to take an F-line
emulator trap.

3. Some extension field encodings are unspecified, are redundant with valid instructions implemented by the FPCP, and do not
cause an F-line exception if executed. However, these encodings are reserved for future definition by Motorola, and thus should
not be generated by assemblers or compilers. The redundant encodings are: $05, $07, SOB, $13, $17, $1 B, $29-$2F, $39, and $3B
$3F.

modes. The FPCP decodes the source format field as listed in Table 4-14. The extension field
indicates the operation to be performed. Table 4-13 lists the extension field encodings and func
tions. Also listed are services requested of the MPU by the FPCP.

4.7.1.3 MOVE CONSTANT TO FLOATING-POINt DATA REGISTER INSTRUCTIONS. The FPCP
constant ROM contains frequently used constants such as 0.0 and 1T. These instructions load a
correctly rounded constant into a floating-point data register without an external data access.

The encoding format for this class of instructions is:

15 14 13 12 11 10

1 1 1 1 COPROCESSOR ID I o I 0

1 I I
DESTINATION

0 1 0 1 1 REGISTER

MC68881/MC68882 USER'S MANUAL

4

o I o I 0 I o I
EXTENSION

o I 0 I 0

MOTOROLA
4-123

II

III

Table 4-14. Source Format Field Encoding

Source Format External Operand Length Allowed
Encoding Data Format in lIytes <ea>

000 Long Word Integer 4 Data

001 Single Precision Real 4 Data

010 Extended Precision Real 12 Memory

011 Packed Decimal Real 12 Memory

100 Word Integer 2 Data

101 Double Precision Real 8 Memory

110 Byte Integer 1 Data

The destination register field is encoded as shown in Table 4-12.

The extension field is used as an offset into the FPCP constant ROM. The FMOVECR instruction
definition in 4.6 INDIVIDUAL INSTRUCTION DESCRIPTIONS provides the valid extension field
values for the FMOVECR instruction. The only service required by the FPCP from the MPU is the
passing of the MPU PC to FPIAR if exceptions (other than BSUN) are enabled. This service is
requested with the null (CA= 1, PC= 1) primitive.

4.7.1.4 MOVE TO EXTERNAL DESTINATION INSTRUCTIONS. External destinations are either
memory or an MPU data register. Data format conversion from the extended data format to one
of the seven memory data formats is implicit for these instructions. The encoding format for this
class of instructions is:

15 14 13 12 11 10

I
COPROCESSOR

I I o 1 EFFECTIVElADDRESS
1 1 1 1 ID 0 0 MODE REGISTER

DESTINATION

I
SOURCE

EXTENSION 0 1 1 FORMAT REGISTER

The source register field is encoded as shown in Table 4-12.

The destination format field indicates the data format of the external destination. The MPU per
forms all transfers to an external destination at the request of the FPCP. When the FPCP makes
a request for a transfer to an external destination, the length (in bytes) of the operand, and the
allowed effective addressing modes are specified in the primitive.

The FPCP decodes the destination format field to determine the length of the operand to be stored
and the allowed effective addressing modes as listed in Table 4-15.

The extension field affects instruction execution only when the destination data format is packed
decimal. A destination format encoding of 011 specifies a packed decimal string destination with
the formatting parameter, k, in the extension field (encoded as a twos complement value).

A destination format encoding of 111 indicates a packed decimal string destination with the
formatting parameter, k, in an MPU data register. The extension field contains the number of the
MPU data register that contains the k-factor. The MPU data register number is encoded in bits 4
though 6 of the extension field; bits 0 through 3 should be zero. The seven least signifi<;ant bits
of the MPU data register contain a twos complement k-factor. The 25 most significant bits of the
MPU data register are ignored. Table 4-16 lists the destination format field encodings, relateo

MOTOROLA
4-124

MC68881/MC68882 USER'S MANUAL

Table 4-15. Destination Format Field Encoding

Destination Format External Operand Length Allowed
Encoding Data Format in Bytes <ea>

000 Long Word Integer 4 Data Alterable

001 Single Precision Real 4 Data Alterable

010 Extended Precision Real 12 Memory Alterable

all Packed Decimal Real with Static k-factor 12 Memory Alterable

100 Word Integer 2 Data Alterable

101 Double Precision Real 8 Memory Alterable

110 Byte Integer 1 Data Alterable

111 Packed Decimal Real 12 Memory Alterable with Dynamic
k-factor

extension field encodings, instruction operation, and the services requested of the MPU by the
FPCP.

4.7.1.5 MOVE SYSTEM CONTROL REGISTER INSTRUCTIONS. This class of instructions includes
the move single system control register instruction and the move multiple system control registers
instruction. For the move single system control register instruction, external 32-bit operands may
be immediate, in memory or an MPU register. For the move multiple system control register
instructions, external operands may only be immediate or in memory (immediate addressing is
only allowed if dr = 0). The encoding format for this class of instructions is:

15 14 13 12 11 10

I
COPROCESSOR EFFECTIVE ADDRESS

1 1 1 1 ID 0 0 0 MODE REGISTER

REGISTER j 1.0 I o I o I 1 0 dr LIST 0 0 0 0 0 0 0

The dr bit set to 1 indicates a read of the FPCP; cleared to zero indicates a write to the FPCP. The
register select field specifies the system control register or registers to be moved during the
operation. Table 4-17 lists the dr and register list field encodings, instruction operation, operand
size, allowed effective addressing modes, and services required of the MPU by the FPCP for this
instruction type.

Bits 0 to 9 of the command word should be zero, although no F-line trap is taken if they are not.
Assemblers and compilers should set these bits to zeros to ensure compatibility with future
devices.

4.7.1.6 MOVE MULTIPLE FLOATING-POINT DATA REGISTERS INSTRUCTIONS. This class of in
structions provides move multiple floating-point data register operations analogous to the M68000
move multiple address and data registers instructions. Unlike the integer counterpart, the floating
point register list can be specified either statically in the instruction or dynamically in an MPU
data register.

The addressing modes for the move multiple from memory to floating-point data registers in
struction are restricted to the control and address register indirect with postincrement effective
addressing modes.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-125

II

•

Table 4-16. Extension Field Encoding

Destination Extension External Operand MPU
Format Encoding Encoding Data Format Services

000 0000000 Long Word Integer Notes 1 and 2

001 0000000 Single Precision Real Notes 1 and 2

010 0000000 Extended Precision Real Notes 1 and 2

all kkkkkkk Packed Decimal Real with a Static k-factor Note 1

100 0000000 Word Integer Notes 1 and 2

101 0000000 Double Precision Real Notes 1 and 2

110 0000000 Byte Integer Notes 1 and 2

111 mOOOO Packed Decimal with a Dynamic k-factor Note 3

NOTES:
1. Four service requests can be issued for this instruction type:

a. Null (CA= I, PC= x) can be first used to request the transfer of the PC to the FPIAR if exceptions are enabled.
b. Null (CA= I, IA= 1) is used to force the MPU to wait while the conversion takes place.
c. Evaluate effective address and transfer data (CA = 1) is issued to request the transfer of the converted operand.
d. Null (CA=O) is used to terminate the dialog if no exception occurred. If an exception occurred, the take mid-instruction

exception primitive is used to terminate the dialog.
2. The extension field should be all zeros, but no F-line emulator trap is taken if it is not. Assemblers and

compilers should fill the extension field with zeros to ensure compatibility with future devices.
3. Bits 0 through 3 of the extension field should be zero, but no F-line emulator trap is taken if they are not.

Assemblers and compilers should set these bits to zero to ensure compatibility with future devices. Four
service requests are issued for this instruction:

a. Transfer single main processor register (CA = I, PC = x) is first used to request the transfer of the PC to the FPIAR (if
exceptions are enabled) and to transfer the MPU data register containing the k factor.

b. Null (CA = I, IA = 1) is used to force the MPU to wait while the conversion takes place.
c. Evaluate effective address and transfer data (CA = 1) is issued to request the transfer of the converted operand.
d. Null (CA=O) is used to terminate the dialog if no exceptions occurred. If an exception occurred, the take mid-instruction

exception primitive is used to terminate the dialog.

The addressing modes for the move multiple from floating-point data registers to memory in
struction are restricted to the control alterable and address register indirect with predecrement
effective addressing modes.

NOTE

The effective addressing mode restrictions for this instruction are enforced by the MPU
when the transfer multiple coprocessor registers response primitive is received (not by
the FPCP when it receives the command word). If the encoding of the effective address
field in the operation word is inconsistent with the encoding of the dr and mode fields
in the command word, unexpected results occur. In some cases, the instruction is ex
ecuted, but the order of the register transfer is the reverse of the appropriate order for
the addressing mode. However, system integrity is preserved for all cases.

The encoding format for this class of instructions is:

15 14

1 1

1 1

MOTOROLA
4-126

13 12

1 1

dr

11 10

I
COPROCESSOR

ID 0 0

MODE I 0 0 0

0 I
EFFECTIVE

1
ADDRESS

MODE REGISTER

REGISTER LIST

MC68881/MC68882 USER'S MANUAL

Table 4-17. Encoding for Move FPcr Operations

Register Instruction Transfer Size Allowed MC68020/MC68030
List Operation (in Bytes) <ea> Services

Move Memory to Registers (dr = 0)

000 (Undefined. Reserved) - - Notes 1 and 2

001 Move to FPIAR 4 Any Note 1

010 Move to FPSR 4 Data Note 1

011 Move to FPSR and FPIAR 8 Memory Note 1

100 Move to FPCR 4 Data Note 1

101 Move to FPCR and FPIAR 8 Memory Note 1

110 Move to FPCR and FPSR 8 Memory Note 1

111 Move to FPCR, FPSR, and FPIAR 12 Memory Note 1

Move Registers to Memory (dr = 1)

000 (Undefined, Reserved) - - Notes 1 and 2

001 Move from FPIAR 4 Alterable Note 1

010 Move from FPSR 4 Data Alterable 1

011 Move from FPSR and FPIAR 8 Memory Alterable 1

100 Move from FPCR 4 Data Alterable 1

101 Move from FPCR and FPIAR 8 Memory Alterable 1

110 Move from FPCR and FPSR 8 Memory Alterable 1

111 Move from FPCR, FPSR, and FPIAR 12 Memory Alterable 1

NOTES:
1. This operation requires two primitives to be issued to the MPU. The first primitive is evaluate effective address and

transfer data (CA = 1), indicating the appropriate transfer size and allowed effective addressing mode. The second
primitive is null (CA=O) to terminate the instruction dialog.

2. For the current implementation of the FPCP, this encoding is redundant with the 001 encoding of the register select
field (i.e., it selects the FPIAR as the only register to be moved); however, this encoding is reserved for future use by
Motorola.

The dr bit set to one indicates a read of the FPCP; dr cleared to zero indicates a write to the FPCP.
The mode field specifies the order of the register transfer and the location of the register list. The
definitions of the mode field bits are (bits shown as X may be either 0 or 1):

OX Transfer FP7 through FPO.
lX Transfer FPO through FP7.
XO Register List is Static.
Xl Register List is Dynamic.

The order of the register transfer that is selected affects the interpretation of the register list,
because the list is always scanned starting with the most significant bit. Thus, for the OX encoding
of the mode field, the most significant bit of the register list corresponds to FP7, and the least
significant bit corresponds to FPO. For the 1 X encoding, this relationship is reversed.

The type of the register list also affects the interpretation of the register list field. If a static list is
selected, then the register list field of the command word contains the register list. If a dynamic
register list is selected, then the register list field of the command word contains the number of
the MPU data register that contains the register list. The format of the register list field in the
command word for the various mode field encodings is shown in the following table. If a bit in
the register list is set, then the corresponding register is moved, otherwise the list is scanned for
the next bit that is set. For the dynamic register list format, rrr specifies the MPU data register

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-127

II

that contains the register list (X means either 0 or 1). The format of a dynamic register list is the
same as the format of the appropriate static list, and it is contained in the least significant eight
bits of the MPU data register.

Mode Field
Encoding Register List Field Format

00 FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
10 FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
X1 0 r r rOO 0 0

III Table 4-18 lists the dr and mode field encodings, instruction operation, allowed effective address
ing modes, and services required of the MPU by the FPCP for this instruction type.

Table 4-18. Encodings for Move Multiple FPn Operations

Mode Instruction Allowed MPU
Field Operation <ea> Modes Services

Move Memory to Registers (dr=O)

00 (Invalid operation) - Note 1

01 (Invalid operation) - Note 1

10 Move to registers, static register list (An) + or Control Note 2

11 Move to registers, dynamic register list (An)+ or Control Note 3

Move Registers to Memory (dr = 1)

00 Move from registers, static register list -(An) Note 2

01 Move from registers, dyamic register list -(An) Note 3

10 Move from registers, static register list Control Alterable Note 2

11 Move from registers, dynamic register list Control Alterable Note 3

NOTES:
1. These encodings cause the FPCP to perform an operation that is inconsistent with the M68000 Family move multiple operations.

For these cases, the selected registers are transferred in the order that is appropriate for the pre-decrement addressing mode
(I.e., FP7 though FPO) using a static or dynamic register list, respectively. However, the MPU does not allow the pre-decrement
addressing mode for a move from memory to multiple coprocessor registers operation. Thus, assemblers and compilers should
not generate these encodings, or unexpected results may occur.

2. This instruction requires two primitives; the first is the transfer mUltiple coprocessor registers (CA = 1) primitive to request that
the MPU evaluate the effective address, read the register select CIR, and transfer the number of registers indicated by the mask
(with an operand size of 12 bytes for each register). The second primitive is null (CA=O), which is used to terminate the dialog.

3. This instruction requires three primitives; the first is the transfer single main processor register (CA = 1) primitive to request the
transfer of the MPU data register that contains the dynamic register lis!. The second is the transfer multiple coprocessor registers
(CA = 1) primitive to request that the MPU evaluate the effective address, read the register select CIR, and transfer the number
of registers indicated by the mask (with an operand size of 12 bytes for each register). The third primitive is null (CA=O) to
terminate the dialog.

4.7.1.7 UNDEFINED, RESERVED COMMAND WORDS. The command word encoding shown below
is undefined and reserved for future Motorola use. All undefined, reserved command word en
codings generate an F-line emulator exception.

15 14

MOTOROLA
4-128

13 12 11 10

MC68881/MC68882 USER'S MANUAL

4.7.2 FDBcc, FScc, and FTRAPcc Instruction Formats

For these instruction types, the MPU writes a conditional predicate to the FPCP condition CIR for
evaluation. The FPCP determines whether the conditional predicate is true or false based on the
floating-point condition codes as described in 4.4 CONDITIONAL TEST DEFINITIONS. The true or
false result is returned to the main processor with the null primitive.

These instructions all use the operation word type field encoding an\:! command word format
shown below. The instruction specific field of the operation word determines the instruction
variation and is defined in Table 4-19 for each instruction type.

15 14 13 12 11 10

INSTRUCTION SPECIFIC

CONDITIONAL PREDICATE

The conditional predicate field specifies the conditional test to be performed. Table 4-20 lists the
conditional predicate encodings and the FPCP responses. For details of the calculation of the
response, refer to 4.4 CONDITIONAL TEST DEFINITIONS. Bits 6 through 15 of the command word

Table 4-19. Encodings for the FDBcc, FScc, and FTRAPcc Instructions

Instruction Instruction Selected MPU
Specific Field Operation <ea> Services

000 XXX FScc <ea> Dn Note 1

001 XXX FDBcc Dn,<label> - Note 2

010 XXX FScc <ea> (An) Note 1

011 XXX FScc <ea> (An)+ Note 1

100 XXX FScc <ea> -(An) Note 1

101 XXX FScc <ea> clI6(An) Note 1

110 XXX FScc <ea> indexed/indirect Note 1

111 000 (Undefined, reserved) - Note 3

111 001 (Undefined, reserved) - Note 3

111 010 FTRAPcc.W #<data> - Note 4

111 011 FTRAPcc.L #<data> - Note 4

111 100 FTRAPcc with no parameter - Note 4

111 101 (Undefined, reserved) - Note 3

111 110 (Undefined, reserved) - Note 3

111 111 (Undefined, reserved) - Note 3

NOTES:
1. The MPU evaluates the <ea> and writes the conditional predicate to the FPCP for evaluation. The null

(CA~O) primitive is used to return the true/false evaluation, and the appropriate value is then written
to the <ea> by the MPU. The value of xxx specifies the MPU data or address register (Dn or An) used
in the <ea> evaluation.

2. The MPU writes the conditional predicate to the FPCP for evaluation. The null (CA ~ 0) primitive is used
to return the true/false evaluation. If the condition is true, the MPU proceeds to the next instruction.
Otherwise, the counter register Dn.W (specified by the value of XXX) is decremented, and the new
value is compared with ··1. If it is equal to -1, the MPU proceeds to the next instruction; otherwise,
the 16-bit displacement is sign extended and added to the PC.

3. The MPU takes an F-line emulation trap.
4. The MPU writes the conditional predicate to the FPCP for evaluation. The Null (CA~ 0) primitive is used

to return the true/false evaluation. If the condition is true, then the cpTRAPcc exception is taken. Oth
erwise, the MPU proceeds to the next instruction, discarding the optional immediate operand if nec
essary.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-129

II

III

are shown to be filled with zeros; however, no F-line trap is taken if they are not. To ensure
compatibility with future devices, assemblers and compilers should fill this field with zeros.

Table 4-20. Conditional Predicate Evaluation Responses

Conditional MC68881/MC68882
Predicate Mnemonic Definition Response

000000 F False Note 1

000001 EO Equal Note 1

000010 OGT Ordered Greater Than Note 1

000011 OGE Ordered Greater Than or Equal Note 1

000100 OLT Ordered Less Than Note 1

000101 OLE Ordered Less Than or Equal Note;

000110 OGL Ordered Greater Than or Less Than Note 1

000111 OR Ordered Note 1

001000 UN Unordered Note 1

001001 UEO Unordered or Equal Note 1

001010 UGT Unordered or Greater Than Note 1

001011 UGE Unordered or Greater Than or Equal Note 1

001100 ULT Unordered or Less Than Note 1

001101 ULE Unordered or Less Than or Equal Note 1

001110 NE Not Equal Note 1

001111 T True Note 1

010000 SF Signaling False Note 2

010001 SEO Signaling Equal Note 2

010010 GT Greater Than Note 2

010011 GE Greater Than or Equal Note 2

010100 LT Less Than Note 2

010101 LE Less Than or Equal Note 2

010110 GL Greater Than or Less Than Note 2

010111 GLE Greater Than or Less Than or Equal Note 2

011000 NGLE Not (Greater Than or Less Than or Equal) Note 2

011001 NGL Not (Greater Than or Less Than) Note 2

011010 NLE Not (Less Than or Equal) Note 2

011011 NLT Not (Less Than) Note 2

011100 NGE Not (Greater Than or Equal) Note 2

011101 NGT Not (Greater Than) Note 2

011110 SNE Signaling Not Equal Note 2

011111 ST Signaling True Note 2

lXXXXX - (Undefined, Reserved) Note 3

NOTES:
1. Indicate the condition true or false result by using the null (CA = 0) prirnitive.
2. If the NAN condition code bit is set, then set the BSUN bit in the FPSR. If the BSUN trap is enabled, then return the take pre

instruction exception primitive with the BSUN vector number; otherwise, indicate the condition truelfalse result by using the
null (CA=O) primitive.

3. Not used, redundant encodings with OXXXXX. No F-line trap is taken if these bit patterns are used. To ensure compatibility with
future devices, assemblers and compilers should use the OXXXXX encodings.

MOTOROLA
4-130

MC68881/MC68882 USER'S MANUAL

The displacement. extension, or operand words follow immediately after the conditional predicate
word. For the FDBcc instruction, the displacement is a 16-bit twos complement integer that in
dicates the relative distance in bytes from the displacement word (i.e., the PC value used in the
branch destination calculation is the address of the displacement word). For the FScc instruction,
the effective address extension words are formatted as required by the main processor. For the
FTRAPcc instruction, a one or two word user-defined operand can be included with the instruction.
Note that from the perspective of the FPCP, these instructions are identical to the branch type
coprocessor instructions. The various operations are handled by the MPU in a manner that is
transparent to the FPCP.

4.7.3 Conditional Branch Instruction Format

For this instruction type, the MPU writes a conditional predicate to the FPCP condition CIR for
evaluation. The FPCP determines whether the conditional predicate is true or false based on the
floating-point condition codes as described in 4.4 CONDITIONAL TEST DEFINITIONS. The true or
false result is returned to the main processor with the null primitive. The formats for this instruction
type are shown below.

15 14 13 12 11 10

COPROCESSOR ID 0 1 CONDITIONAL PREDICATE

16-BIT DISPLACEMENT

15 14 13 12 11 10

COPROCESSOR ID CONDITIONAL PREDICATE

32-BIT DISPLACEMENT

The conditional predicate field specifies the conditional test to be performed. Table 4-20 lists the
conditional predicate encodings and the FPCP responses. For dE)tails of the response calculation,
refer to 4.4 CONDITIONAL TEST DEFINITIONS.

The displacement is a twos complement integer that indicates the relative distance in bytes from
the displacement word(s) (i.e., the PC value used in the branch destination calculation is the
address of the displacement word(s)). A 16-bit displacement is sign extended before it is used in
the branch destination calculation.

NOTE

From the perspective of the FPCP, the two forms of this instruction are identical. The
size of the displacement is determined by the MPU and is transparent to the FPCP. Also,
the FNOP instruction syntax that is recognized by Motorola assemblers generates an
FBcc.W instruction with cc= F (false) and a displacement value of zero.

4.7.4 Save Instruction Format

The FSAVE instruction indicates that the FPCP must immediately suspend any current operation
and save the internal state in memory. Effective addressing modes are restricted to control al
terable and address register indirect with predecrement modes. The encoding format for this
instruction is:

15 14 13 12 11 10

COPROCESSOR

ID

MC68881/MC68882 USER'S MANUAL

EFFECTIVE ADDRESS
MODE REGISTER

MOTOROLA
4-131

•

•

4.7.5 Restore Instruction Format

The FPCP restore instruction indicates that regardless of the current state of operation, a new
internal state is to be loaded immediately. Effective addressing modes are restricted to control
and address register indirect with postincrement modes. The encoding format for this instruction
is:

15 14 13 12 11 10

COPROCESSOR

ID

4.8 INSTRUCTION FORMAT SUMMARY

EFFECTIVE ADDRESS
MODE REGISTER

The following paragraphs present a summary of the binary encodings for the FPCP instruction
set. The unique encoding for each instruction is shown explicitly, with the encoded fields common
to all of the instructions listed in a single table at the beginning of this section.

4.8.1 Coprocessor 10 Field

This field of each instruction specifies which one of eight (seven, for the MC68030) possible
coprocessors in a system is to perform the operation. There are no restrictions placed on the
value of the 10 field by the main processor in the system; however, certain conventions should
be followed. Motorola assemblers default to coprocessor 10= 1 for the FPCP, although directives
are available to change this default. Furthermore, due to the hardware implementation of the
MC68851 Paged Memory Management Unit, that device must be assigned to coprocessor 10 = 0
if used in a system. Thus, the FPCP should not be assigned to coprocessor 10 = 0 if it is anticipated
that an MC68851 may be used in the system, or in an MC68030 system.

4.8.2 Effettive Address Field

This field speCifies the M68000 Family addressing mode that is to be used to locate operands
external to the FPCP (if required by the instruction). For some operations, restrictions are placed
on which of the available addressing modes are allowed. These restrictions are enforced by
hardware in the MPU and FPCP, and Motorola assemblers do not generate operation words with
disallowed effective addressing mode field encodings. The encodings for this fields are shown
in Table 4-21.

4.8.3 Register/Memory Field

This field is common to all of the arithmetic instructions and the FMOVE to FPn instruction. A
zero in this field indicates that the operation is register-to-register, and a one in this field indi
cates that the source operand is external to the FPCP.

4.8.4 Source Specifier Field

This field is common to all of the arithmetic instructions and the FMOVE floating-point data
register instruction. The definition of this field is affected by the value of the RIM field:

If RIM =0, it specifies the source floating-point data register, FPm.

MOTOROLA
4-132

MC68881/MC68882 USER'S MANUAL

Table 4-21. Effective Address Field Encoding Summary

Address Modes Mode Register Data Memory Control Alterable Assembler
Syntax

Data Register Direct 000 reg. no. X - - X Dn

Address Register Direct 001 reg. no. - - - X An

Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect with Postincrement 011 reg. no. X X - X (An)+
Address Register Indirect with Predecrement 100 reg. no. X X - X -(An)
Address Register Indirect with Displacement 101 reg. no. X X X X (d1s,An)

Address Register Indirect with Index 110 reg. no. X X X X (ds,An,Xn)
(S-Bit Displacement)

Address Register Indirect with Index 110 reg. no. X X X X (bd,An,Xn)
(Base Displacement)

Memory Indirect Post-Indexed 110 reg. no. X X X X ([bd,An),Xn,od)
Memory Indirect Pre-Indexed 110 reg. no. X X X X ([bd,An,Xn),od)

Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L

Program Counter Indirect with Displacement 111 010 X X X - (d1S,PC)
Program Counter Indirect with Index 111 011 X X X - (ds,PC,Xn)

(S-Bit Displacement)
Program Counter Indirect with Index 111 011 X X X - (bd,PC,Xn)

(Base Displacement)
PC Memory Indirect Post-Indexed 111 011 X X X - ([bd,PC),Xn,od)
PC Memory Indirect Pre-Indexed 111 011 X X X - ([bd,PC,Xn),od)

Immediate 111 100 X X - - #<data>

If RIM = 1, it specifies the source operand data format:
000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

4_8.5 Destination Register Field

This field is common to all of the arithmetic instructions and the FMOVE to FPn instruction.
This field specifies the floating-point data register that is to be used as the destination. The
result of an operation is always stored in this register, and one of the source operands is
fetched from this register for dyadic instructions.

4.8.6 Conditional Predicate Field

This field is common to all of the conditional instructions and specifies the FPCP conditional
test that is to be evaluated for the main processor. Table 4-22 shows the conditional predicate
binary encodings for the 32 conditional tests supported by the FPCP.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-133

Table 4-22. Conditional Predicate Field Encoding Summary

Conditional
Predicate Mnemonic Definition

000000 F False

000001 EQ Equal

000010 OGT Ordered Greater Than

000011 OGE Ordered Greater Than or Equal

000100 OLT Ordered Less Than

000101 OLE Ordered Less Than or Equal

000110 OGL Ordered Greater Than or Less Than

000111 OR Ordered

001000 UN Unordered

001001 UEQ Unordered or Equal

001010 UGT Unordered or Greater Than

001011 UGE Unordered or Greater Than or Equal

001100 ULT Unordered or Less Than

001101 ULE Unordered or Less Than or Equal

001110 NE Not Equal

001111 T True

010000 SF Signaling False

010001 SEQ Signaling Equal

010010 GT Greater Than

010011 GE Greater Than or Equal

010100 LT Less Than

010101 LE Less Than or Equal

010110 GL Greater Than or Less Than

010111 GLE Greater Than or Less Than or Equal

011000 NGLE Not (Greater Than or Less Than or Equal)

011001 NGL Not (Greater Than or Less Than)

011010 NLE Not (Less Than or Equal)

011011 NLT Not (Less Than)

011100 NGE Not (Greater Than or Equal)

011101 NGT Not (Greater Than)

011110 SNE Signaling Not Equal

011111 ST Signaling True

4.9 INSTRUCTION FORMAT DIAGRAMS

The instruction formats are summarized in this section.

FMOVE to FPn
15 14 13 12 11 10

I
COPROCESSOR

I o I EFFECTIVE ADDRESS
1 1 1 1

ID
0 0 MODE REGISTER

SOURCE

I
DESTINATION I 0 I 0 o I 0 I 0 RIM 0 SPECIFIER REGISTER 0 0 0

MOTOROLA
4-134

MC68881/MC68882 USER'S MANUAL

FINT

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE J 0 RIM 0 SPECIFIER

FSINH

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FINTRZ

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FSQRT

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FLOGNP1

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1 ID
SOURCE

I 0 RIM 0 SPECIFIER

FETOXMl

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1 ID
SOURCE

I 0 RIM 0 SPECIFIER

MC68881/MC68882 USER'S MANUAL

I o I 0 0

DESTINATION J REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

I o I 0 0

OESTINATION

I REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

1 o 1 0 0

DESTINATION

I REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

EFFECTIVE ADDRESS
MODE REGISTER

o I 0 o I 0 I 1

EFFECTIVE ADDRESS
MODE REGISTER

o I 0 o I 1 I 0

EFFECTIVE ADDRESS
MODE REGISTER

o I 0 o I 1 I 1

EFFECTIVE ADDRESS
MODE REGISTER

o I 0 1 I 0 I 0

EFFECTIVE ADDRESS
MODE REGISTER

o I 0 1 I 1 I 0

EFFECTIVE ADDRESS
MODE REGISTER

o I 1 o I 0 I 0

MOTOROLA
4-135

--

•

FTANH

15 14

1 1

0 RIM

FATAN

15 14

1 1

0 RIM

FASIN

15 14

1 1

0 RIM

FATANH

15 14

1 1

0 RIM

FSIN

15 14

1 1

0 RIM

FTAN

15 14

1 1

0 RIM

MOTOROLA
4-136

13

1

0

13

1

0

13

1

0

13

1

0

13

1

0

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1 ID
SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I COPROCESSOR
1

ID
SOURCE

I SPECIFIER

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I o I o I 0 I REGISTER 0 0 1 1

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I o I o I 1 I REGISTER 0 0 1 0

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I o I 1 I 0 I REGISTER 0 0 1 0

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I o I I o I REGISTER 0 0 1 1 1

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION J 0 1 1 I I REGISTER 0 0 1 1 0

1 o I EFFECTIVE ADDRESS
0 0 MODE REGISTER

DESTINATION

I o I 1 I 1 I REGISTER 0 0 1 1

MC68881/MC68882 USER'S MANUAL

FETOX

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FTWOTOX

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FTENTOX

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FLOGN

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FLOG10

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FLOG2

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

MC688811MC68882 USER'S MANUAL

I 0 I 0 0

OESTINATION

I REGISTER 0 0

I 0 I 0 0

DESTINATION 1 REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

I o I 0 0

DESTINATION

I REGISTER 0 0

EFFECTIVE ADDRESS
MODE REGISTER

1 I 0 o I o I 0

EFFECTIVE AODRESS
MODE REGISTER

1 I 0 o I o J 1

EFFECTIVE ADDRESS
MODE REGISTER

1 I 0 o I 1 I 0

EFFECTIVE ADDRESS
MODE REGISTER

1 I 0 1 I o I 0

EFFECTIVE ADDRESS
MODE REGISTER

1 I 0 1 I o I 1

EFFECTIVE ADDRESS
MODE REGISTER

1 I 0 1 I 1 I 0

MOTOROLA
4-137

•

III

FABS

15 14

1 1

0 RIM

FCOSH

15 14

1 1

0 RIM

FNEG
15 14

1 1

0 RIM

FACOS

15 14

1 1

0 RIM

FCOS

15 14

1 1

0 RIM

FGETEXP
15 14

1 1

0 RIM

MOTOROLA
4-138

13

1

0

13

1

0

13

1

0

13

1

0

13

1

0

13

1

0

12 11 10

I COPROCESSOR
1 ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1 10
SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

12 11 10

1 I
COPROCESSOR

10
SOURCE I SPECIFIER

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

1 0 l EFFECTIVE ADDRESS
0 0 MODE REGISTER

DESTINATION

I I o I o I REGISTER 0 0 1 1 0

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I I o I o I REGISTER 0 0 1 1 1

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I REGISTER 0 0 1 I 1 o I 1 I 0

I 0 I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I 1 I 1 I o I REGISTER 0 0 1 0

I o I 0
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION

I 1 J 1 1 p I REGISTER 0 0 1 1

I o I
EFFECTIV~ ADDRESS

0 0 MODE REGISTER

DESTINATION

I I 1 I 1 I REGISTER 0 0 1 1 0

MC68881/MC68882 USER'S MANUAL

FGETMAN

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FDIV

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
10

SOURCE

I 0 RIM 0 SPECIFIER

FMOD

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FADD

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

FMUL

15 14 13 12 11 10

1
COPRDCESSOR

1 1 1 1
ID

SOURCE 1 0 RIM 0 SPECIFIER

FSGLDIV

15 14 13 12 11 10

I
COPROCESSOR

1 1 1 1
ID

SOURCE

I 0 RIM 0 SPECIFIER

MC68881/MC68882 USER'S MANUAL

I o I 0 0

DESTINATlDN
REGISTER 0 0

I o I 0 0

DESTINATION
REGISTER 0 1

I o I 0 0

DESTINATION
REGISTER 0 1

I o I 0 0

DESTINATION
REGISTER 0 1

I o I 0 0

DESTINATION
REGISTER 0 1

I o I 0 0

DESTINATION
REGISTER 0 1

EFFECTIVE ADDRESS
MODE REGISTER

I 1 I 1 1 I 1 I 1

EFFECTIVE ADDRESS
MODE REGISTER

I 0 I 0 o I o I 0

EFFECTIVE ADDRESS
MODE REGISTER

I 0 I 0 o I o I 1

EFFECTIVE ADDRESS
MODE REGISTER

I 0 I 0 o I 1 I 0

EFFECTIVE ADDRESS
MODE REGISTER

I 0 I 0 o I 1 I 1

EFFECTIVE ADDRESS
MODE REGISTER

I 0 I 0 1 I o I 0

MOTOROLA
4-139

II

FREM

15 14

1 1

0 RIM

FSCALE

15 14

1 1

0 RIM

FSGLMUL

15 14

1 1

0 RIM

FSUB

15 14

1 1

0 RIM

FSINCOS

15 14

1 1

0 RIM

FCMP

15 14

1 1

0 RIM

MOTOROLA
4-140

13

1

0

13

1

0

13

1

0

13

1

0

13

1

0

13

1

0

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
Ib

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
10

SOURCE

I SPECIFIER

12 11 10

I
COPROCESSOR

1
ID

SOURCE

I SPECIFIER

I 0 I d
EFFECTIVE ADDRESS

0 MODE REGISTER

DESTINATION 1 01 1 o I REGISTER 0 1 0 1 1

I o I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION

I o I I I REGISTER 0 1 0 1 1 0

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

DESTINATION
I 0 I I I REGISTER 0 1 0 1 1 1

I o I
EFFECTIVE AODRESS

0 0 MODE REGISTER

DESTINATION
I 0 I o I o I REGISTER 0 1 1 0

I I
EFFECTIVE ADDRESS

0 0 0 MODE REGISTER

DESTINATION 1 l DESTINATION
REGISTER, FPs 0 1 1 0 REGISTER, FPc

I 0 I
EFFECTIVE ADDRESS

0 0 MODE REGISTER

OESTINATION

I I o I o I REGISTER 0 1 1 1 0

MC688811MC68882 USER'S MANUAL

FTST

15 14 13 12 11 10

1
COPROCESSOR

1 0 1
EFFECTIVE ADDRESS

1 1 1 1
ID

0 0 MODE REGISTER

SOURCE

1
DESTINATION

1 1 o 1 1 1 0 RIM 0 SPECIFIER REGISTER 0 1 1 1 0

FMOVECR

15 14 13 12 11 10

1 1 1 1 COPROCESSOR ID 101 0 01 0 1010101010

1 1 1 1
DESTINATION ROM

0 1 0 1 REGISTER OFFSET

ROM Offset Field - Specifies the offset in the FPCP Constant ROM where the desired constant
is located.

FMOVE from FPn

15 14 13 12 11 10

1
COPROCESSOR

1 o 1 1
EFFECTIVE

1

ADDRESS
1 1 1 1

10
0 0 MODE REGISTER

DESTINATION

1
SOURCE K-FACTOR

0 1 1 FORMAT REGISTER OF REQUIRED)

Destination Format Field - Specifies the data format of the destination operand as follows:
000 - Long Word Integer
001 - Single Precision Real
010 - Extended Precision Real
011 - Packed Decimal Real, static k-factor
100 - Word Integer
101 - Double Precision Real
110 - Byte Integer
111 - Packed Decimal Real, dynamic k-factor

k-factor Field - Specifies the format of the packed decimal string to be generated (if the desti
nation format field indicates packed decimal), or the number of the main processor data reg
ister that contains the format specification. The interpretation of the k-factor is:

- 64 to 0 - Number of significant digits to the right of the decimal point.
+ 1 to + 17 - Number of significant digits in the mantissa.
+ 18 to + 63 - Sets the OPERR bit, treated as + 17.

The format of this field for a dynamic k-factor is:
rrrOOOO

Where rrr is the number of the main processor data register that contains the k-factor.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-141

II

FMOVE FPcr

15 14 13 12 11 10 7

I
COPROCESSOR EFFECTIV~ ADDRESS

1 1 1 1
ID

0 0 0 MODE REGISTER

REGISTER I 0 I o I o 1 0 1 0 1 0 dr SELECT 0 0 0 0 0

dr Field - Specifies the direction of the transfer:
0- Move memory to system control register
1 - Move system control register to memory

•
Register Select Field - Specifies the system control register to be moved:

001 - FPIAR
010 - FPSR
100 - FPCR

FMOVEM FPcr

15 14 13 12 11 10

COPROCESSOR EFFECTIVE AODRESS
1 1 1 1 I 10

0 0 0 MODE REGISTER

REGISTER

I 1 1 dr LIST 0 0

dr Field - Specifies the direction of the transfer:
0- Move memory to system control registers
1 - Move system control registers to memory

0 0 0 I o I

Register List Field - Specifies the system control registers to be moved:
000 - (Undefined, reserved) 100 - FPCR
001 - FPIAR 101 - FPCR, then FPIAR
010 - FPSR 110 - FPCR, then FPSR

0 o I

011 - FPSR, then FPIAR 111 - FPCR, then FPSR, then FPIAR

FMOVEM FPn

15 14 13 12 11 10

COPROCESSOR

o I

1 1 1 1 I ID 0 o I o I EFFECTlVEI ADDRESS
MODE REGISTER

1 1 dr MODE I o I 0 0

dr Field· Specifies the direction of the transfer
0- Move the listed registers from memory to the FPCP
1 - Move the listed registers from the to memory

REGISTER LIST

Mode Field - Specifies the type of the register list and addressing mode
00 - Static register list, predecrement addressing mode
01 - Dynamic register list, predecrement addressing mode
10 - Static register list, postincrement or control addressing mode
11 - Dynamic register list, postincrement or control addressing mode

Register List Field:

0

Static list - contains the select mask; if a register is to be moved, the corresponding bit in
the list is set, otherwise it is clear.

MOTOROLA
4·142

MC68881/MC68882 USER'S MANUAL

Dynamic list - contains the main processor data register number, rrr, as shown below:

Static, - (An)
Static, (An) + or Control
Dynamic

FP7 FP6
FPO FP1
o

Register List Format

FP5 FP4 FP3 FP2
FP2 FP3 FP4 FP5

o 0

FP1
FP6
o

FPO
FP7
o

The format of the dynamic list mask is the same as for the static list and is contained in the
least significant 8 bits of the specified MPU data register.

FScc

15 14 13 12 11 10

COPROCESSOR EFFECTlVEI ADDRESS
1 1 1 1

ID
0 0 1 MODE REGISTER

0 0 0 0 0 I 0 I 0 0 0 0 CONDITIONAL PREDICATE

FDBcc

15 14 13 12 11 10

COUNT REGISTER

Count Register Field - Specifies the main processor data register to be decremented

FTRAPcc

15 14 13 12 11 10

1 I 1 I 1 I 1 I COPROCESSOR 10 I 0 I 0 I 1 I 1 I 1 I 1 I MODE

o I o I 0 I 0 I 0 I o I o I o I 0 I 0 I CONDITIONAL PREDICATE

16-81T OPERAND OR MOST SIGNIFICANT WORD OF 32-81T OPERAND !IF NEEDEDI

LEAST SIGNIFICANT WORD OF 32-81T OPERAND !IF NEEDEDI

Mode Field - Specifies the form of the instruction:
010 - The instruction is followed by a 16-bit operand.
011 - The instruction is followed by a 32-bit operand.
100 - The instruction has no operand following it.

FNOP

15 14 13 12 11 10

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-143

II

FBcc

15 14 13 12 11 10

1 I 1 I 1 I 1 I COPROCESSOR 10 I 0 I 1 I SIZE I CONDITIONAL PREDICATE

16-BIT DISPLACEMENT, OR MOST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED)

Size Field - Specifies the size of the twos complement
displacement:

Size=O - Displacement is 16-bits (and is sign extended before it is used),
Size = 1 - Displacement is 32-bits.

FSAVE

15 14

FRESTORE

15 14

MOTOROLA
4-144

13 12

13 12

11 10

CDPROCESSOR EFFECTIVE ADDRESS

10 MODE REGISTER

11 10

CDPRDCESSOR EFFECTIVE ADDRESS
ID MODE REGISTER

MC68881/MC68882 USER'S MANUAL

SECTION 5
COPROCESSOR PROGRAMMING

This section describes the guidelines for programming Motorola's floating-point coprocessors.
The first portion of the section presents the guidelines for applications programming. It describes
the concurrency with main processor instruction execution applicable to both coprocessors, and
the coprocessor instruction concurrency provided by the MC68882 coprocessor. It also discusses
the optimization of code for the MC68882 coprocessor.

The second portion of the section discusses systems programming considerations. It describes II
the state frame sizes, and lists the instructions required in the exception handlers for MC688811
MC68882 (FPCP) exceptions. The systems programming portion also describes the handling of
exceptions by the MC68020/MC68030 (MPU) and FPCP combination, and code that detects and
identifies the coprocessor.

This section primarily describes programming of the MC68882 coprocessor, since programs that
run successfully in the MC68882 also run successfully in the MC68881. It is advisable to program
for the MC68882 even if the MC68881 is currently being used, so that no program changes are
required for upgrading to the MC68882.

5.1 APPLICATIONS PROGRAMMING

All applications programs that run successfully on the MC68881 can be used on the MC68882
without alteration, but optimization of code for the MC68882 provides significant reduction in
execution time. This section clescribes the concurrency available with the MC68881, the greater
concurrency provided by the MC68882, and optimization techniques for MC68882 programs.

5.1.1 Concurrency

The M68000 coprocessor interface, the MC68020 and MC68030 microprocessors, and the MC68881
and MC68882 coprocessors are designed to provide the conventional sequential instruction ex
ecution models while instructions may actually be executed concurrently. Applications programs
can be written with no provisions for concu rrency; the system apparently executes the instructions
in sequence. This apparent sequential execution is automatic, and the programmer need not be
concerned about it.

5.1.1.1 CONCURRENT INTEGER AND FLOATING-POINT COMPUTATIONS. The M68000 copro
cessor interface is designed to provide full support for the sequential instruction execution model.
Although the M68000 coprocessor interface allows concurrency between coprocessor and main
processor operations, the coprocessor must implement this concurrency while maintaining a
programming model based on sequential instruction execution.

After the main processor initiates a floating-point instruction (by writing to the command CIR), it
reads the response CIR. When the CA bit (bit [15] of the response CIR) is set, it indicates that the
main processor should perform the specified service and then read the response CIR again. The

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-1

FPCP sets the CA bit to define portions of the floating-point instruction that cannot operate
concurrently with main processor instructiqn execution. When the coprocessor can operate con
currently with main processor instructions, it clears the CA bit in the response primitive. Clearing
the CA allows the main processor to proceed to the next instruction aft~r it has read the response
CIR and performed the specified service. This releases the main processor for concurrent oper
ation. In the arithmetic floating-point instructions, the FPCP releases the main processor after the
transfer phase is completed. Refer to 8.2 CONCURRENT INSTRUCTION EXECUTION for further
details of main processor/coprocessor concurrent instruction execution.

Within the boundaries of a floating-point instruction that does not allow concurrency with main
processor instructions (response primitives return CA= 1), the FPCP can allow the main processor
to service pending interrupts. Bit (8) of the null primitive is the interrupts allowed (lA) bit, used
by the FPCP to allow the main processor to check for pending interrupts and to service them

•
before reading the response CIR again. This minimizes the worst case interrupt latency. Refer to
8.3 INTERRUPT LATENCY TIMES for details.

As shown in Figure 5-1, once the MPU has initiated a floating-point instruction in the MC68881
and transferred the required operands to the coprocessor, the main processor is free to perform
other instructions. Meanwhile, the coprocessor converts the operand to internal format, calculates
the result, and rounds the res!.! It as required. The concurrency shown in Figure 5-1 for an MC68881
applies also to an MC68882.

MC68020/MC68030 CONCURRENCY WITH MC68020/MC68030 INSTRUCTION

MC68881

FMUL I START I TRANSFER I CONVERT I CALCULATE I ROUND I
Figure 5-1. MC68881 Concurrency - FMUL Instruction

5.1.1.2 CONCURRENT FLOATING-POINT COMPUTATIONS. An FPCP arithmetic instruction with
a floating~point data register destination releases the main processor when the coprocessor com
pletes its transfer phase. If the next instruction is another floating-point instruction and if the main
processor writes to the command CIR to initiate the next instru.:;tion while the APU is still busy
with the previous instruction, the MC68881 returns a null (CA= 1,IA= 1) primitive in its response
CIR. The MC68881 issues the null primitive because the APU can execute only one instruction at
a time. Since the bus interface unit (BIU) cannot operate on any other instruction without the
APU, no concurrency is possible. The MC68881 cannot begil"! to execute the second instruction,
including the prefetch of necessary operands. The encoding of the response CIR remains unaltered
until the instruction in the APU is completed. If the instruction terminates with an exception, a
pre-instruction exception is taken.

With the MC68882, if the main processor initiates a second arithmetic instruction while a preceding
instruction is executing in the APU as described in the preceding paragraph, the BIU transfers
the instruction to the conversion unit (CU). Depending on the instruction, the operand syntax,
and the operand data format, the CU completes execution of the instruction in one of the following
ways:

• The instructions that have operand data formats B, W, L, and P are listed in Table 5-1. When
the CU receives an instruction with the operand data format of B, W, or L, it requests the BIU
to transfer the necessary operand. Then, the CU waits for the APU to become idle so that it
can hand off the instruction to the APU. If the instruction has an operand with data format

MOTOROLA
5-2

MC68881/MC688S2 USER'S MANUAL

Table 5-1. Minimum-Concurrency Instructions

Operand Operand
Instruction Syntax Format

FMOVE <ea>,FPn B,W,L,P
FPm,<ea> B,W,L
FPm,<ea>{#k) P
FPm,<ea>{Dn) P
<ea>,FPcr L
FPcr,<ea> L

FMOVECR #ccc,FPn X

FMOVEM <ea>,<list> L,X
<ea>,Dn X
<li51>,<ea> L,X
Dn,<ea> X

FTST FPm B,W,L,P

F<mop> <ea>,FPn B,W,L,P

F<dop> <ea>,FPn B,W,L,P

FSINCOS <ea>,FPc:FP5 B,W,L,P

P, the CU does not request the prefetch of the operand. In this case, it waits until the APU is
idle to hand off the instruction to the APU .

• If the instruction is an FMOVE.X FPm,FPn instruction, the CU does the following:
a, Releases the main processor.
b. Prefetches the source operand from FPm, unless the instruction currently operating in

the APU uses FPm as a destination. In that case, the CU waits until the APU is idle before
prefetching.
If the selected rounding precision is single or double, waits until the APU is idle and hands
off the instruction to the APU.
If the operand data type is NAN, denormalized, or unnormalized, waits until the APU is
idle and hands off the instruction to the APU.
If the instruction currently in the APU uses FPn, waits until the APU is idle before pro
ceeding.
Writes the source operand into the destination floating-point data register without in
volving the APU .

• If the instruction is an FMOVE <ea>, FPn with an operand format of S, D, or X, the CU
does the following:

Prefetches the source operand from memory by using the evaluate <ea> and transfer
data primitive with CA = O. This releases the main processor immediately after the source
operand is written to the operand CIR. ,
Converts the memory source operand to internal extended format. If the selected rounding
precision is single or double, waits until the APU is idle and hands off the instruction to
the APU.
Creates a tag that represents the data type of the converted source operand (normalized,
denormalized, zero, infinity, or NAN).
If the operand data type is NAN, unnormalized, or denbrmalized, waits until the APU is
idle and hands off the instruction to the APU.
If the instruction currently in the APU uses FPn, waits until the APU is idle before pro
ceeding.
Writes the converted source operand into FPn without involving the APU.

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-3

• If the instruction is an FMOVE FPm,<ea> with a data format of S or D, the CU does the
following:

Prefetches the source operand from FPm, unless the instruction currently operating in
the APU uses FPm as a destination. In that case, the CU waits until the APU is idle before
prefetching.
If the data type of the source operand is unnormalized, denormalized, or NAN, waits until
the APU is idle and hands off the instruction to the APU.
Converts the source operand to the destination data format.
If the conversion results in an overflow or underflow, or if the INEX2 trap is enabled,
waits until the APU is idle and hands off the instruction to the APU.
Creates a tag that represents the data type of the converted source operand (normalized,
denormalized, zero, infinity, or NAN).
Transfers the converted operand to the memory destination (without involving the APU)
by using the evaluate <ea> and transfer data primitive with CA = O. This releases the
main processor immediately after the operand is read from the operand CIR.

• If the instruction is an FMOVE.X FPm,<ea>, the CU does the following:
Prefetches the source operand from FPm, unless the instruction currently operating in
the APU uses FPm as a destination. In that case, the CU waits until the APU is idle before
prefetching.
If the data type of the source operand is unnormalized, denormalized, or NAN, waits until
the APU is idle and hands off the instruction to the APU.
Transfers the converted operand to the memory destination (without involving the APU)
by using the evaluate <ea> and transfer data primitive with CA = O. This releases the
main processor immediately after the operand is read from the operand CIR.

• If the instruction is listed in Table 5-4 and if the source (FPm) and destination (FPn or
FPc:FPs) are all floating-point data registers, the CU does the following:

Releases the main processor.
Prefetches the source operand from FPm if possible.
Waits until the APU is idle and hands off the instruction to the APU.

• If the instruction is listed in Table 5-4 and if the source is external to the MC68882, the CU
does the following:

Prefetches the source operand from memory by using the evaluate <ea> and transfer
data primitive with CA = O. This releases the main processor immediately after the source
operand is written to the operand CIR.
If the source operand format is single or douple precision, converts the source operand
to the extended precision internal format.
Creates a tag that represents the data type of the converted source operand (normalized,
unnormalized, denormalized, zero, infinity, or NAN).
Waits until the APU is idle and hands off the instruction to the APU.

Table 5-1 lists the minimum-concurrency instructions. The monadic operations, designated <mop>
in Tables 5-1 and 5-4, are listed in Table 5-2. The dyadic operations, designated <dop> in Tables
5-1 and 5-4, are listed in Table 5-3. Table 5-4 lists the partially-concurrent instructions, and Table
5-5 lists the fully-concurrent instructions. .

The instructions that have external operands and are listed in Tables 5-4 and 5-5 prefetch the
source operand (if no register conflict exists) and release the main processor after the operand
is transferred. When a third instruction is received in the command CIR while the APU is busy
and the CU is either busy or waiting to hand off its instruction to the APU, the third instruction
must wait. The BIU encodes a null (CA= 1 ,IA = 1) primitive in the response CIR until the CU becomes

MOTOROLA
5-4

MC68881/MC68882 USER'S MANUAL

Table 5-2. Monadic Instructions Table 5-3. Dyadic Operations

Instruction Function Instruction Function

FABS

FACOS

FASIN

FATAN

FATANH

FCOS

FCOSH

FETOX

FETOXM1

FGETEXP

FGETMAN

FINT

FINTRZ

FLOGN

FLOGNP1

FLOG10

FLOG2

FNEG

FSIN

FSINH

FSQRT

FTAN

FTANH

FTENTOX

FTWOTOX

absolute value FADD add

arc cosine FCMP compare

arc sine FDIV divide

arc tangent FMOD modulo remainder

hyperbolic arc tangent FMUL multiply

cosine FREM IEEE remainder

hyperbolic cosine FSCALE scale exponent

eX FSGLDIV single precision divide

eX-1 FSGLMUL single precision multiply

extract exponent FSUB subtract

extract mantissa

extract integer part

extract integer part, rounded-to-zero

In(x)

In(x+1)

10g1Q(x) Table 5-4. Partial-Concurrency Instructions
1092(X)

negate
Operand Operand

Instruction Syntax Format
sine

FTST <ea> S,D,X
hyperbolic sine FPm X

square root F<mop> <ea>,FPn S,D,X

tangent
FPm,FPn

hperbolic tangent
F<dop> <ea>,FPn S,D,X

FPm,FPn
10x

FSINCOS <ea>,FPc:FPs S,D,X
2x FF.'m,FPc: FPs X

Table 5-5. Fully-Concurrent Instructions

Operand Operand Degraded to Degraded to
Instruction Syntax Format No Concurrency Partial Concurrency

FMOVE FPm,FPn X a

FMOVE <ea>,FPn S,D

FMOVE <ea>,FPn X

FMOVE FPm,<ea> S,D a

FMOVE FPm,<ea> X a

a. Register Conflict of FPm with preceding instruction's des-
tination floating-point data register.

b. NAN, Unnormalized or Denormalized Data Types
c. Rounding Precision in FPCR set to Single or Double.
d. INEX2 bit in FPCR EXC byte is enabled.
e. An Overflow or Underflow occurs.
f. Register conflict of FPn with preceding instruction's desti·

nation floating-point data register.

b,c,f

b,c,f

b,c,f

b,d,e

b

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-5

II

idle or hands off its instruction to the APU. Note that this situation is analogous to the situation
in the MC68881 when a second instruction is received in the command CIR while the APU is still
busy with a previous instruction. The difference is thatthe MC68881 waits until the APU is available,
while the MC68882 waits until the CU is available.

The conditional instructions listed in Table 5-6 do not allow concurrency. These instructions are
not executed unless both the CU and the APU are idle and all exception flags are cleared. An
extreme case occurs if the MPU writes to the condition CIR of the MC68882 while both the CU
and APU are busy, the appropriate exceptions are enabled, and the instructions in the CU and
APU each report an exception. The MC68882 reports these exceptions, one at a time, until both
exception handlers have been executed. As a consequence, the conditional instruction is re-started
twice to ensure that the reported condition codes contain information reflecting the result of all
previous instructions and related exception handlers. Therefore, a sequential execution model

5 can be guaranteed. It is possible that a BSUN exception is reported by the conditional instruction,
but the BSUN exception would be reported long after the instructions and related exceptions have
been executed and completed.

Table 5-6. Conditional Instructions

Operand Operand
Instruction Syntax Size or Format

FBcc <label> W,L

FDBcc Dn,<label> W

FNOP none none

FScc <ea> B

FTRAPcc none none
#xxx W,L

Consider the case of two consecutive FMUL instructions followed by an FMOVE instruction, as
shown in Figure 5-2. The following assumptions apply:

1. Both FMUL instructions have external operands (opclass 010),
2. The FMOVE instruction has a memory destination (opclass 011), and
3. No exceptions are enabled.

MC68020/MC68030
IDLE {INTERRUPTS,

BUS ARBITRATION ALLDWEDI
IDLE {INTERRUPTS,

BUS ARBITRATION ALLOWED)

MC68881

FMUL I START I TRANSFER I CONVERT I CALCULATE I ROUND I
FMUL

FMDVE

Figure 5-2. MC68881 Concurrency - FMUL Followed by FMUL and FMOVE

The main processor initiates the second FMUL instruction, and the MC68881 returns the null
(CA= 1) primitive as long as the APU is involved in the calculate phase ofthe first FMUL instruction,
When the APU becomes available, the BIU returns the evaluate effective address and transfer
operands (CA = 0) primitive and begins the transfer phase of the second FMUL instruction. At this
point, since the CA bit is clear, the main processor begins the execution of another instruction

MOTOROLA
5-6

MC68881/MC68882 USER'S MANUAL

while the MC68881 converts the operand to internal format and begins the calculate phase of the
second FMUL instruction. Since the next MPU instruction is an FMOVE instruction, the MPU
initiates the FMOVE instruction, but the MC68881 returns the null (CA = 1) primitive until the second
FMUL instruction completes. Then, the coprocessor completes the FMOVE by converting the
operand and transferring it to the main processor.

In this example, the MPU continues to examine the response CIR of the MC68881 while it completes
each of the two FMUL instructions. Should an interrupt occur during these times, the main
processor services the interrupt but does not initiate any other instruction.

The MC68882 can execute floating-point instructions concurrently by performing conversions
between external binary real data formats (S, D, and X) and the internal extended format in the
conversion unit (CU) while the arithmetic processing unit (APU) is calculating the result of a
preceding instruction. Additional concurrency is provided by making the floating-point data reg-~
isters accessible to both the CU and APU simultaneously. ...

Figure 5-3 shows the same three floating-point instructions executing in an MC68882. As soon
as the operand of the first FMUL instruction has been transferred to the coprocessor, the main
processor begins executing the next instruction, another FMUL instruction with an external source
operand. Provided the operand is a binary real operand and no register conflict occurs, the
coprocessor can transfer and convert the operand while it continues to calculate the product of
the first FMUL instruction. As soon as the operand transfer completes, the main processor begins
executing the FMOVE instruction. Since the CU contains the converted operand for the second
FMUL instruction at this time, it is not available to convert the source operand of the FMOVE
instruction. However, when the APU completes the rounding phase for the first FMUL instruction,
it accepts the operand from the CU and begins calculations for the second FMUL instruction. The
CU now converts the source operand of the FMOVE instruction to the destination format. The
bus interface unit (BIU) transfers the converted operand to the external destination, completing
the second FMUL instruction.

MC68020/MC68030
IDLE (INTERRUPTS,

BUS ARBITRATION ALLOWEDI

MC68882

FMUL

FMUL I ROUND I
FMOVE

Figure 5-3. MC68882 Concurrency - FMUL Followed by FMUL and FMOVE

The effect of the concurrency provided by the MC68882 is to execute three instructions during a
time period equal to the execution time of the first instruction plus the computation time of the
second instruction. Execution of the third instruction is completely overlapped by the second
instruction.

In this example, execution of the second FMUL instruction is partially concurrent with execution
of the first FMUL instruction, and execution of the FMOVE instruction is fully concurrent with

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-7

•

execution of the second FMUL instruction. Some MC68882 instructions do not execute concur
rently. Others execute partially concurrently, and some execute with full concurrency. However,
little concurrency is possible when the operand is in integer or packed decimal format.

5.1.2 Optimization of Code for the MC68882

A program that runs successfully on the MC68881 runs on the MC68882 with improved perform
ance. However, the code can be optimized to exploit the features of the MC68882 for the maximum
performance improvement. Optimization requires the following steps:

1. Unroll any rolled loops to obtain at least a 2x unrolled version,
2. Eliminate register conflicts by rearranging FMOVE instructions, and
3. Rearrange FMOVE instructions so that the fastest FMOVE instructions follow the fastest

arithmetic instructions, and the slowest FMOVE instructions follow the slowest arithmetic
instructions.

5.1.2.1 UNROLLING LOOPS. A rolled loop consists of the instructions to perform the operations
of the loop once using a single index value during each iteration. The performance of the MC68882
is improved by unrolling the loop, so that an iteration performs those operations more than once,
using two or more index values. The recommended 2x unrolled version performs the operations
twice.

The rolled version of a loop allows little optimization; a register conflict is inevitable. The 2x
unrolled version can use different floating-point data registers for each repetition of the instruc
tions. The FMOVE instructions can be placed in the optimum locations.

5.1.2.2 AVOIDING REGISTER CONFLICTS. The following rules define conflicts between floating
point data registers.

• A register conflict occurs when the destination register of an instruction is the source register
of the following instruction, and that instruction is a fully-concurrent instruction listed in Table
5-5. For example:

FADD.D (ea),FPO
FMOVE.D FPO,(ea) FPO conflicts

• A register conflict occurs when the destination register of an instruction is the destination
register of the following instruction, and that instruction is a fully-concurrent instruction listed
in Table 5-5. For example:

FADD.D (ea),FPO
FMOVE.D (ea),FPO FPO conflicts

• No other combination of source and destination registers of two consecutive instructions
cause a register conflict.

The second case (where an FMOVE instruction uses the same destination register as the preceding
instruction) is an unlikely case, since the result ofthe first instruction is lost. However, the MC68882
provides the same result as the MC68881 even for this case.

5.1.2.3 ARRANGING FMOVE INSTRUCTIONS. The FMOVE instruction is fully concurrent when
the operands are in binary real data format, no register conflicts exist, and the notes of Table 5-
5 do not apply. However, the execution time of the FMOVE instruction is hidden completely only

MOTOROLA
5-8

MC68881/MC68882 USER'S MANUAL

when the overlap time of the preceding instruction exceeds the execution time of the FMOVE
instruction. Thus, the fastest FMOVE instructions should follow the fastest arithmetic instructions,
FADD, for example. Also, the slowest FMOVE instructions should follow the slowest arithmetic
instructions, such as FMUL. Refer to the tables of execution times in SECTION 8 INSTRUCTION
EXECUTION TIMING for arithmetic instruction execution times. Table 5-7 lists execution times for
some FMOVE instructions.

Table 5-7. FMOVE Instruction Execution Times

Execution
Operand Type Time (Clocks)

FMOVE.X FPx,FPy 21

FMOVE.D <ea>,FPy 39

FMOVE.D FPy,<ea> 55

5.1.2.4 PERFORMANCE IMPROVEMENT EXAMPLE. The DAXPY subroutine inner loop of the Un
pack benchmark (Linpack Loop) is an appropriate example for illustrating optimization for the
MC68882. Figure 5-4 shows the source code for the rolled version of the Unpack loop.

LOOPTOP

VECTOR TIMES A CONsTANT PLUS A VECTOR
X!i) = Y!ii*C + X(iI

MOVE.L #count,DO
FMOVE.D <ea-C>,FPO

FMOVE.X FPO,FPl
FMUL.D <ea-Y(ii>,FPl
FADD.D <ea.-X(ii,FPl
FMOVE.D FP1,<ea.-X!ii
DBRA DO,LOOPTOP

Figure 5-4. Rolled Version of Unpack Loop

Optimization of this code for the MC68882 consists of unrolling the loop, and rearranging the
FMOVE instructions. Notice that FP1 contains the result of the computations using index i, and
that FP2 contains the result of the computations using index i + 1. Also notice that the two FMOVE
instructions that move registers to registers are executed following FADD instructions, and that
the FMOVE instructions that move registers to effective addresses are executed following FMUL
instructions. Figure 5-5 shows the source code for the optimized Unpack loop.

5.2 SYSTEMS PROGRAMMING

The guidelines for systems programming relate to exception processing. The sizes of the state
frames stored by exception hf':lndlers are discussed first. Next, the section discusses the FSAVE,
BSET, and FRESTORE instructions required in exception handlers. Then, the handling of specific
exceptions is discussed. Code that detects the presence of a floating-point coprocessor and iden
tifies the coprocessor is also discussed.

5.2.1 State Frame Sizes

The sizes of the state frames stored by the FSAVE instruction differ for the MC68882 and MC68881,
as shown in Table 5-8.

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-9

•

VECTOR TIMES A CONSTANT PLUS A VECTOR
Xli) = Y(i)*C + Xli)

MOVE.L #cDunt,DO
FMOVE.D <ea_C>,FPO
FMOVE.X
FPO,FPl
FMUL.D <ea_Y(i»,FPl
BRA LOOPSTRT

LOOPTOP FMOVE.X FPO,FPl
FMUL.D <ea_Y(i»,FPl
FMOVE.D FP2, <ea-.X(i + 1»

LOOPSTRT FADD.D <ea-.X(i),FPl

FMOVE.x FPO,FP2
FMUL.D <ea_ yo + 1» ,FP2
FMOVE.D FP1,<ea-.X(i»

FADD.D <ea-.X(i + 1» ,FP2

DBRA DO,LOOPTOP

FMOVE.D FP2,<ea-.X(i+ 1»

Figure 5-5. Optimized Unpack Loop

Table 5-8. State Frame Sizes

Device Null Frame Idle Frame Busy Frame

MC68881 4 Bytes 28 Bytes 184 Bytes

MC68882 4 Bytes 60 Bytes 216 Bytes

The size of the null state frame is 4 bytes for both coprocessors. The size of the other state frames
is 32 bytes larger for the MC68882 than for the MC68881. The MC68882 uses the additional bytes
to store the state of the conversion unit.

5.2.2 Exception Handler Code

The code for floating-point exception handlers for the MC68882 must include the following in
structions:

1. An FSAVE instruction at the beginning of the handler (ahead of the first coprocessor instruc
tion)

2. A BSET or similar instruction following the FSAVE instruction to set the EXC-PEND flag (bit
27) of the BIU flag in the idle state frame

3. An FRESTORE instruction immediately preceding the RTE instruction

Handlers for the following exceptions require these instructions even if the handlers contain no
floating-point instructions:

Branch or Set on Unordered Condition
Inexact Result
Floating-Point Divide by Zero
Underflow
Operand Error
Overflow
Signalling NAN

MOTOROLA
5-10

MC68881/MC68882 USER'S MANUAL

Handlers for interrupts, F-line emulation, FTRAPcc instructions, and other exceptiohs must not
set the EXC_PEND bit in the BIU flag long word, but any exception handler that contains one or
more floating-point instructions must begin with an FSAVE instruction and have an FRESTORE
instruction preceding the RTE instruction. No requirements are imposed on the floating-point
protocol violation exception because it is considered to be a catastrophic exception from which
no recovery is possible.

When a floating-point exception handler that does not begin with an FSAVE instruction executes
in a system that uses an MC68882 coprocessor, one of two things happens. Either the next
MC68882 instruction takes the same exception, producing an infinite loop, or it takes a protocol
violation exception.

When a floating-point exception handler that begins with ah FSAVE instruction but does not set
the EXC_PEND bit executes in a system that uses an MC68882 coprocessor, the next MC68882 ~
instruction takes the same exception, also producing an infinite loop. ..

When a floating-point exception handler that begins with an FSAVE instruction but does not end
with an FRESTORE instruction is executed in a system that uses an MC68882 coprocessor, a
partially-executed instruction following the exceptional instruction may never be completed. Fig
ure 5-6 shows the required instructions in a minimum exception handler for an MC68882.

HANDLER FSAVE -(SP) SAVE INTERNAL STATE
MOVE.B (SP).DO FIRST BYTE OF STATE FRAME
BEQ NULL BRANCH IF NuLL FRAME
CLR.L DO CLEAR DATA REGISTER
MOVE.B 1(SP).DO LOAD STATE FRAME SIZE
BSET #3,(SP,DO) SET BIT 27 OF BIU

NULL FRESTORE (SP)+ RESTORE STATE
RTE RETURN

Figure 5-6. Minimum Exception Handler

An exception handler can access the idle state frame to obtain information about the exception.
The offsets of the exceptional operand, the operand register, and the BIU flags are different in
the MC68881 and the MC68882. In the MC68882, these offsets are greater than those in the
MC68881 by $20. For example, the offset for the exceptional operand is $08 in the MC68881 and
$28 in the MC68882. However, the negative offsets (from the bottom of the state frame) are the
same for both coprocessors. Figure 5-7 shows a code fragment that can be used to access the
exceptional operand and the operand register image in an exception handler for either copro
cessor.

XOPER
OPEREG

EQU
EQU

-16
-4

FOR EXCEPTIONAL OPERAND
FOR OPERAND REGISTER

MOVE.B 1(SP),DO LOAD FRAME LENGTH INTO DO

MOVE.L XOPER(SP,DO),(ea) ACCESSES THE FIRST LONGWORD OF THE EXCEPTIONAL OPERAND
MOVE.L OPEREG(SP,DO),(ea) ACCESSES THE OPERAND REGISTER IMAGE

Figure 5-7. Idle State Frame Access Example

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-11

5.2.3 Processing of Special Conditions

The designs ofthe MPU, the M68000 coprocessor interface, and the FPCP provide the performance
benefits of concurrent operation while maintaining a conventional sequential instruction execution
model. Processing of special conditions is also performed as if instructions were executed !?e
quentially. Refer to the coprocessor interface section of the appropriate microprocessor user's
manual for additional information.

5.2.3.1 INTERRUPTS. The main processor can process interrupts at any instruction boundary and
during the execution of a general or conditional category coprocessor instruction under either of
two conditions. When the main processor receives a null (CA= 1, IA= 1) primitive, the MPU services
any pending interrupts prior to reading the response CIR. The MPU also services pending interrupts

• when the trace exception is enabled and the MPU receives a null (CA=O, IA= 1, PF=O) primitive.

The MPU uses the ten-word mid-instruction stack frame shown in Figure 7-16 when it services
interrupts during the execution of a general or conditional category coprocessor instruction. Using
this stack frame allows the MPU to perform all necessary processing and return to read the
response CIR. Thus, the MPU services the interrupt while the FPCP continues to execute the
coprocessor instruction.

During execution of an FSAVE instruction, when the MPU reads the not ready formClt word, it
also services interrupts. After servicing any pending interrupts, the MPU returns and reinitiates
the FSAVE instruction.

5.2.3.2 BUS ARBITRATION. During execution of a floating-point instruction, the MPU can relin
quish control of the bus through bus arbitration. If the FPCP has released the MPU and is com
pleting execution of the instruction, relinquishing the bus has no effect on the coprocessor. If the
MPU is involved in a dialog with the coprocessor, relil")quishing the bus delays the execution of
the instruction in the FPCP. However, since the coprocessor communicates with the MPU by
placing a response primitive in the response CIR for the MPU to read, no adverse effect occurs.
The only effect of the bus arbitration is a longer delay while the coprocessor awaits the services
of the MPU.

5.2.3.3 CONTEXT SWITCHING. In a multi-tasking environment, the context of the FPCP may be
changed asynchronously with respect to coprocessor operations. The coprocessor may be inter
rupted at any point during the execution of an instruction. The FSAVE and FRESTORE instructions
are used to save and restore the context of the coprocessor during context switches.

An FSAVE instruction stops execution of the instruction in the coprocessor at the earliest inter
ruptable point, and stores the state of the coprocessor. The coprocessor is now available to the
program executing in the new context. When the interrupted program resumes, an FRESTORE
instruction loads the saved state of the coprocessor, restoring the coprocessor to its previous
state. The coprocessor continues from the point at which it was interrupted.

The state frames defined for the null, idle, and busy states of the coprocessor contain all the
information the coprocessor requires to resume operation. Inclusion of the coprocessor version
number in the format word and the checking of that version number during execution of the
FRESTORE instruction prevent restoration of an incompatible context (e.g., an MC68881 context
in an MC68882).

MOTOROLA
5-12

MC68881/MC68882 USER'S MANUAL

5.2.3.4 BUS ERRORS. A bus error can occur during initiation of a coprocessor instruction or while
the MPU is accessing memory or CPU address space during execution of a coprocessor instruction.
A bus error during initiation of an instruction is used as an indication that the coprocessor is not
present, and the MPU takes an F-line emulator exception. A bus error during a memory access
indicates that some fault (e.g., parity error or page fault) prevents the memory system from
providing the requested operand. The coprocessor interface, being asynchronous, does not require
the MPU to service the bus error exception at once. No time restrictions on the main processor's
response to a bus error exception exist. After the exception handler has corrected the cause of
the bus error, the MPU returns to the point in the coprocessor instruction dialog at which the
fault occurred.

5.2.3.5 EXCEPTION PROCESSING. During the execution of a coprocessor instruction, the copro-
cessor releases the main processor after the main processor has completed all the services the
coprocessor requires to execute the instruction. Any exception processing the main processor .:I
performs after being released and before initiation of another coprocessor instruction has no ..
effect on the coprocessor.

Either the main processor or the coprocessor can detect an exception during execution of a
floating-point instruction. The handlers for these exceptions are bracketed with FSAVE and FRES
TORE instructions as previously described to ensure that coprocessor state information about
concurrently executing instructions is properly restored after execution of the exception handler
completes.

5.2.3.6 SIMULTANEOUS FLOATING-POINT EXCEPTION AND TASK SWITCH INTERRUPT. Since
an interrupt signal can occur at any time, a task switch interrupt can occur simultaneously with
a floating-point exception detected by the coprocessor. The FPCP and the coprocessor interface
with the MPU are designed to preserve the sequential instruction execution model in this case.
Figure 5-8 shows an FMUL instruction executing in an MC68882, followed by an FADD instruction.
A task switch interrupt occurs as the main processor responds to the exception. The sequence of
events is as follows:

1. The MC68882 is executing the two instructions concurrently.
2. The FMUL instruction is executing in the APU, the CU has performed the conversion of the

source operand, and the CU is waiting to hand off the FADD instruction when the APU
becomes idle. The MC68882 is returning null (CA = 0, IA = 0) primitives to synchronize the
main processor. The main processor is reading the primitives, responding to any pending
interrupts.

3. The FMUL instruction detects an exception, which is reported by the FADD instruction with
a take mid-instruction exception primitive.

4. The main processor recognizes a pending interrupt as it reads the take mid-instruction ex
ception primitive. Because of the internal timing, however, the MPU processes the floating
point exception first.

5. The processing of the exception completes, and the main processor begins processing the
interrupt before executing the first instruction in the floating-point exception handler.

6. The main processor executes the interrupt handler. Because the interrupt handler does not
contain a BSET instruction that sets bit 27 of the BIU flag word, the state restored by the
FRESTORE instruction in the handler indicates that the floating-point exception has not been
serviced. The FADD instruction is not allowed to continue.

7. The floating-point exception handler is executed. This handler includes a BSET instruction
that sets bit 27 of the BIU flags word. When the FRESTORE instruction restores the state
frame, the FADD instruction continues.

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-13

•

FMUl.S< e.>. FPO I START I TRANSFER I CONVERT CALCULATION ENDS WITH AN EXCEPTION

FADD.l < e.>. FPO START I TRANSFER: SYNCHRONIZE rl CONVERT I CALCULATE I STORE I

I
MID-INSTRUCTION J INTERRUPT

I EXCEPTION PROCESSING I PROCESSING

EXCEPTION INTERRUPT
HANDLER HANDLER

FSAVE FSAVE

• •
• •
• •

BSET BIT 27 OF BIU FLAG FRESTORE
FRESTORE RTE
RTE

Figure 5-8. Simultaneous Task Switch Interrupt and Floating-Point Exception

In this example, if the interrupt handler allowed the FADD instruction to continue, the FADD
instruction would have overwritten the contents of FPO, and the results would have been incorrect.
The MC68882 exception model handles this worst-case situation correctly.

5.2.4 Detecting Coprocessor Presence

A program or an exception handler may need to know if a floating-point coprocessor is available,
or which type coprocessor is present. The code fragment in Figure 5-9, which executes at the
supervisor privilege level, detects and identifies the coprocessor.

The FNOP instruction takes an F-line emulation exception when no floating-point coprocessor is
available. The F-line emulation exception handler must setthe no coprocessor flag and increment
the stacked PC value by four. The BNE instruction branches around this code when no coprocessor
is present. The instructions immediately following the BEQ instruction are executed for an MC68882
coprocessor; those at label ONE are executed for an MC68881.

MOTOROLA
5-14

MC68881/MC68882 USER'S MANUAL

ONE

START

CLR.B
FNOP
MOVE.B
BNE
FSAVE
CLR.L
MOVE.B
CMPI
BEQ

BRA

FLAG

FLAG,DO
NOCOP
-(SPI
DO
1(SPI,DO
#$18,DO
ONE

START

CLEAR NO PROCESSOR FLAG
DETECT COPROCESSOR (SEE NOTEI
LOAD FLAG
NO COPROCESSOR BRANCH
SAVE INTERNAL STATE
ZERO INDEX
OBTAIN STATE FRAME SIZE
MC68881?
YES
CODE FOR MC68882

END OF MC68882 CODE
CODE FOR MC68881

START OF CODE COMMON TO BOTH COPROCESSORS

NOTE: When no coprocessor is present, an exception handler executes at this point. See text.

Figure 5-9. Coprocessor Identification Code

MC68881/MC68882 USER'S MANUAL MOTOROLA
5-15

•

SECTION 6
EXCEPTION PROCESSING

This section describes how the MC68881/MC68882 (FPCP) and the main processor handle excep
tional conditions during the processing of floating-point instructions. These exceptional conditions
may be detected internally by the FPCP, internally by the main processor, or externally by the
main processor.

The MC68020/MC68030 (MPU) processes exceptions by treating any coprocessor in an M68000
system as an extension to the main processor; the fact that a coprocessor is separate from the
main processor is transparent to the programmer. Thus, the exception processing for all copro
cessors in a system is coordinated by the main processor in a manner that is consistent across
all exception types, whether detected during the execution of an instruction native to the main -=
processor or during a coprocessor instruction. ...

The processing of an exception detected during the execution of an FPCP instruction involves the
following basic steps:

1. Detect the exception

2. Determine the exception vector number and report the exception to the main processor (if
detected by the FPCP)

3. Change processing states if needed (user to supervisor)

4. Save the old context of the main processor (performed automatically by the MPU)

5. Load a new context from the address contained in the exception vector table

6. Execute the exception handler

7. Return to the previous context

The first two steps involve slightly different operations for exceptions detected by the main
processor and those detected by the FPCP, but the manner in which these operations are per
formed is consistent with non-coprocessor related exceptions. The major difference in the proc
essing of exceptions detected by the FPCP and the main processor is the point at which exception
processing starts. For all main-processor-detected exceptions and some coprocessor-detected
exceptions, processing for the exception begins during the execution of the coprocessor instruc
tion by the main processor. However, for many ofthe coprocessor-detected exceptions, processing
for the exception does not begin until after the main processor completes execution of the of
fending instruction and attempts execution of a new floating-point instruction. The manner of
handling this type exception supports a sequential instruction programming model.

The action of the processor during step 7 depends upon the type of exception that was previously
taken. When the exception handler completes execution, a return from exception (RTE) instruction
is executed, and the previously interrupted program resumes execution at one of the following
points:

1. The beginning of the instruction that was pre-empted by an exception detected by or reported
to the MPU (pre-instruction exception)

2. The point where the exception occurred during the execution of an instruction (mid-instruc
tion exception)

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-1

3. The beginning ofthe instruction immediately following the instruction that caused or detected
the exception (post-instruction exception). Note that neither the MC68881 nor the MC68882
reports the post-instruction exception.

The following paragraphs describe the causes of various coprocessor-related exceptions and how
they are handled by the FPCP and the main processor. Throughout this discussion, the main
processor is assumed to be an MC68020 or MC68030, although any other processor can be
programmed to emulate the M68000 Family coprocessor interface that is implemented on the
MPU.

6.1 COPROCESSOR-DETECTED EXCEPTIONS

Coprocessor-detected exceptions fall into two categories: those related to communications with
the main processor (F-line traps and protocol violations) and those related to the execution of
floating-point instructions (computational errors such as divide by zero, or instructions designed
to cause a trap such as the FTRAPcc instruction). The protocol for handling each of these exception

•
'. types is described in detail in this section.

• The main processor coordinates all exception processing. Therefore, when the FPCP detects an
exception, it cannot always force exception processing immediately but must wait until the main
processor is ready to start exception processing. The main processor is always prepared to process
an exception whenever it reads the response coprocessor interface register (CIR). For the MC68881
and, in most cases, for the MC68882, if a coprocessor-detected exception occurs during the
calculation phase df an instruction, it is held pending within the FPCP until the next write to the
command or condition coprocessor interface register (CIR). Then, instead of returning the first
primitive of the dialog for the new instruction, the FPCP returns the take pre-instruction exception
primitive to start exception processing for the offending instruction. (For the MC68881, the of
fending instruction is always the previous floating-point instruction, since no multiple floating
point concurrency is allowed; for the MC68882, the offending instruction may not necessarily be
the previous instruction.)

The FPCP may also report an exception after writing an operand to memory. In this case, a take
mid-instruction exception primitive is issued after the operand is stored in memory (if a conversion
error occurred). The mid-instruction exception allows the exception handler to more easily de
termine the address of the exceptional operand, since the MC68020 includes the results of the
effective address calculation for the destination operand in the mid-instruction stack frame (the
long word at offset +$10).

It is possible for the MC68882 to report a mid-instruction exception as a result of an exception
created by a previous instruction. This occurs when the instruction in the APU reports an exception
while a second instruction in the conversion unit (CU) is waiting to be handed off to the arithmetic
processing unit (APU). Consider the case of two FMUL instructions:

FMUL.X FPO,FPi (which results in an exception)
FMUL.B <ea>,FP2

At the time the second FMUL instruction is initiated, the first FMUL instruction is still executing
in the APU. The CU instructs the bus interface unit (BIU) to fetch the program counter, and prefetch
the byte operand. Since the CU cannot convert the byte operand, it instructs the BIU to encode
a null (CA = 1, IA = 1) in the response CIR, and waits to hand off the instruction to the APU. When
the first FMUL instruction finally finishes in the APU and reports an exception, the second FMUL
instruction is in the middle of the instruction, hence a take mid-instruction exception is taken.
Note that in this case, the destination operand is a floating-point register, and therefore the

MOTOROLA
6-2

MC68881/MC68882 USER'S MANUAL

eff~ctive address calculation for the destination operand in the mid-instruction stack frame of the
MPU is undefined.

The third point at which the FPCP can indicate an exception to the main processor is in response
to a protocol violation. If an unexpected access to a coprocessor interface register causes a protocol
violation, the FPCP immediately encodes the response CIR to the take mid-instruction exception
primitive with the protocol violation vector number. This allows the protocol violation handler to
determine the cause of the violation (either an illegal primitive from the FPCP or an illegal access
by the MPU) and perform necessary action. Since an FPCP protocol violation is a catastrophic
error, and the FPCP cannot return an illegal primitive, the only appropriate action is to abort the
task that detected the protocol violation.

The basic protocol followed in response to a coprocessor-detected exception is:

1. The FPCP encodes the appropriate take exception primitive (pre- or mid-instruction). along
with the vector number, in the response CIR.

2. The MPU reads the response CIR (usually in an attempt to initiate the next instruction) and
receives the take exception request.

3. The MPU acknowledges the request by writing an exception acknowledge to the control CIR .•
The appropriate stack frame is then stored in memory, and control is transferred to the
exception handler routine.

4. The response to the exception acknowledge differs for the type of exception and for the
FPCP, as follows:
a. Protocol violation:

MC68881 - Aborts all internal operations that may be active and enters the idle state.
MC68882 - Same as MC68881.

b. BSUN and F-line (detected by the coprocessor):
MC68881 - Clears the exception and enters the idle state.
MC68882 - Same as MC68881.

c. Arithmetic (Operr, Overflow, Underflow, Divide by zero, Inexact result):
MC68881 - Clears the exception and enters the idle state.
MC68882 - Refer to 5.2.2 Exception Handler Code.

The following paragraphs discuss the exception vector assignments used by the FPCP, and each
of the exception types that can be detected by the FPCP.

The M68000 Family of processors uses a data structure called the exception vector table as a
localized dispatching point for all exceptional conditions that may occur in a system. The exception
vector table is a 1024-byte structure made up of 256 long word entries. Each entry in the table is
a pointer to the routine that services a specific exceptional occurrence. When an exception occurs,
the processor supplies an index that selects the vector entry for the exception. The index, called
the vector number, is an 8-bit value that is multiplied by four to calculate an offset into the vector
table. Of the 256 possible vector numbers, 64 are reserved by Motorola for definition by M68000
Family devices; the remaining 192 are for definition by system designers.

Of the 64 reserved vectors, the MPU defines all but 25. The FPCP utilizes three of the same vector
entries defined by the MPU and defines seven additional vectors to support floating-point excep
tions. The vectors defined by the FPCP are shown in Table 6-1. The vector number is the value
(shown in decimal) that is encoded in the appropriate take exception response primitive (except
for the FTRAPcc vector number, which is generated internally by the MPU). The vector offset is
the location of the corresponding entry in the vector table. The MPU adds the vector offset to the
value contained in the vector base register to calculate the absolute address of the vector. Refer

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-3

•

to the appropriate main processor user's manual for further information on the exception proc
essing operations performed by the MPU and for the full definition of the exception vector table.

Table 6-1. MC68881/MC68882 Exception
Vector Assignments

Vector Number Vector Offset
(Decimal) (Hexadecimal) Assignment

7 $01C FTRAPcc Instruction

11 $02C F·Line Emulator

13 $034 Coprocessor Protocol Violation

48 $OCO Branch or Set on Unordered Condition

49 $OC4 Inexact Result

50 $OC8 Floating-Point Divide by Zero

51 $OCC Underflow

52 $000 Operand Error

53 $OD4 Overflow

54 $OD8 Signaling NAN

The following paragraphs describe the causes for each exception, what information is available
to the trap handler, and what results occur if traps are enabled or disabled. FPCP instruction
exceptions arise from the detection of abnormal conditions during coprocessor instruction exe
cution. All coprocessor-detected instruction exceptions are enabled or disabled via the FPCR
ENABLE byte.

Any of eight exception conditions can be detected during the execution of a floating-point in
struction. The location of the exception bits in the EXC and ENABLE bytes (contained in the FPSR
and FPCR registers, respectively) is shown in Figure 6-1. If more than one enabled exception
occurs during the same Instruction, then the highest priority instruction trap is taken (BSUN is
the highest; INEX2/1NEX1 is the lowest). When multiple exceptions occur, the FPCP traps to the
highest priority exception that is enabled, and the lower priority exception does not cause a
second trap. It is the programmer's responsibility to determine if any of the exception bits that
have lower priority than the exception taken are set.

15 14 13 12 11 10

I BSUN I SNAN I OPERR I OVFl I UNFL 1 DZ .IINEX2 1 INEXI I

I
I INEXACT DECIMAL INPUT

INEXACT OPERATION

DIVIDE BY ZERO

UNDERFlOW

OVERFlOW

OPERAND ERROR

SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 6-1. EXC and ENABLE Byte Bit Assignments

MOTOROLA
6-4

MC68881/MC68882 USER'S MANUAL

FPCP instruction exceptions that arise from the move floating-point data register to external
destination instructions are reported to the MPU as mid-instruction exceptions. All other MC68881-
detected instruction exceptions are reported as pre-instruction exceptions, and all other MC68882-
detected instruction exceptions are reported as either pre-instruction or mid-instuction exceptions.
The FPCP move multiple and move system control register instructions cannot generate copro
cessor detected instruction exceptions. The FSAVE instruction can generate a coprocessor-de
tected exception only when it interrupts an FSAVE or FRESTORE operation in progress. The
FRESTORE instruction can generate coprocessor-detected instruction exceptions only when the
state frame format written to the coprocessor is not recognized.

In the following exception descriptions, the term "intermediate result" is used frequently. During
the execution of a floating-point operation, the FPCP arithmetic processing unit (APU) contains a
67-bit mantissa (for rounding purposes) and a 17-bit exponent (to ensure that overflow or un
derflow can never occur during the main algorithm). At the end of the operation, this intermediate
result must be stored in a floating-point data register, in an MPU data register, or in memory.
This intermediate result is checked for underflow, rounded, and checked for overflow to obtain
the final result.

6.1.1 Branch/Set on Unordered (BSUN)

The BSUN exception is the result of performing a conditional test associated with the FBcc, FDBcc,
and FTRAPcc instructions when an unordered condition is. present. (An unordered condition occurs
when an input to an arithmetic operation is a NAN.) The BSUN exception can only occur during
FPCP conditional instructions with the following IEEE non-aware branch condition predicates:

GT Greater Than GL Greater Than or Less Than
NGT Not Greater Than NGL Not Greater Than or Less Than
GE Greater Than or Equal GLE Greater Than or Less Than or Equal
NGE Not Greater Than or Equal NGLE Not Greater Than or Equal Less Than or Equal
L T Less Than SF Signaling False
NL T Not Less Than ST Signaling True
LE Less Than or Equal SEQ Signaling Equal
NLE Not Less Than or Equal SNE Signaling Not Equal

If the APU is busy (MC68881) or if the CU (MC68882) is busy, a null (CA = 1, IA= 1) primitive is
returned, and the MPU continues to reexamine the response CIR. If an exception is pending, a
take pre-instruction exception primitive is returned. After the appropriate exception handler is
executed, the conditional instruction is restarted. When either the APU is idle (MC68881) or the
APU and CU are idle (MC68882) and no exceptions are pending, FPCP checks for a BSUN exception,
evaluates the conditional predicate, and reports the result to the MPU.

The MPU can write to the condition CIR of the MC68882 when both the CU and APU are busy. If
exceptions are enabled and if each of the instructions reports an exception, the MC68882 reports
the exceptions and executes the handlers, one at a time. The MC68882 restarts the conditional
instruction after returning from each exception handler; that is, the MC68882 restarts the instruc
tion twice. It is important to note that the coprocessor completes all previous instructions and
the MPU completes any executing exception handler before the conditional instruction checks for
a BSUN exception, evaluates the conditional predicate, and reports the result to the MPU.

The FPCP detects a BSUN exception if the conditional predicate is one of the IEEE non-aware
branches, and the NAN condition code bit is set. When the FPCP detects this exception, it sets
the BSUN bit in the FPSR exception status byte.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-5

II

Trap Disabled Results:
The FPCP evaluates the condition and reports the result to the MPU in the response CIR.

Trap Enabled Results:
The FPCP reports a pre-instruction exception to the MPU with the BSUN vector number
instead of a true or false indication.

The BSUN exception is unique in that the trap is taken before the conditional predicate is evaluated.
Furthermore, the i'nstruction that caused the BSUN exception is re-executed following return from
the BSUN trap handler. Therefore, it is the responsibility of the trap handler to prevent the
conditional instruction from taking the BSUN trap again. Four ways are available to prevent taking
the trap again.

The first way involves incrementing the stored program counter in the stack to bypass the con
ditional instruction. This technique applies to situations where a fall-through is desired. Be aware
that accurate calculation of the program counter increment requires detailed knowledge of the
size of the conditional instruction being bypassed .

• The second method is to clear the NAN bit of the FPSR condition code byte. However, this alone
cannot deterministically control the result indication (true or false) which would be returned when
the conditional instruction re-executes.

The third method is to disable the BSUN trap. Like the second method, this method cannot control
the result indication (true or false) which would be returned when the conditional instruction re
executes.

The fourth method involves examining the condition predicate and setting the condition code in
the FPSR accordingly. This technique gives the most control since it is possible to pre-determine
the direction of program flow. Bit 7 of the F-line operation word indicates where the conditional
predicate is located. If bit 7 is set. the conditional predicate is the lower six bits of the F-line
operation word. Otherwise, the conditional predicate is the lower six bits of the instruction word,
which immediately follows the F-line operation word. Using the conditional predicate and the
table in 4.4.1 IEEE Non-Aware Tests, the condition codes can be set to return a known result
indication when the conditional instruction is re-executed.

6.1.2 Signaling Not-a-Number

An SNAN is used as an escape mechanism for a user defined, non-IEEE data type. The FPCP
never creates an SNAN as a result of an operation; a NAN created by an operand error exception
is always a non-signaling NAN.

When an SNAN is an operand involved in an arithmetic instruction, the SNAN bit is set in the
FPSR exception byte. Since the FMOVEM, FMOVE FPcr, and FSAVE instructions do not modify
the status bits, they cannot generate exceptions. Therefore, these instructions are useful for
manipulating SNANs.

Trap Disabled Results: If the destination data format is S, D, X, or P, then the SNAN bit in the
NAN is set to one and the resulting non-signaling NAN is transferred to the destination. No bits
other than the SNAN bit of the NAN are modified, although the input NAN is truncated if necessary.
If the destination data format is B, W, or L, then the 8, 16, or 32 most significant bits of the SNAN
significand, with the SNAN bit set, are written to the destination.

MOTOROLA
6-6

MC68881/MC68882 USER'S MANUAL

Trap Enabled Results: For memory or MPU data register destinations, the result is written in the
same manner as if the trap were disabled, and then a mid-instruction exception is signaled. If
desired, the trap handler can overwrite the result.

For floating-point data register destinations, instruction execution is terminated, and the floating
point data registers are not modified. In this case, the SNAN trap handler should supply the result.

Note that the trap handler should use only the FMOVEM instruction to read or write the floating
point data registers, since FMOVEM cannot generate further exceptions. Also, only an FMOVEM
instruction can write a SNAN into a floating-point data register.

6.1.3 Operand Error

The operand error category encompasses problems arising in a variety of operations, and includes
those errors not frequent or important enough to merit a specific exception condition. Basically,
an operand error occurs when an operation has no mathematical interpretation for the given
operands. The possible operand errors are listed in Table 6-2. When an operand error occurs, the
OPERR bit is set in the FPSR exception status byte.

Table 6-2. Possible Operand Errors

Instruction Condition Causing Operand Error

FACOS Source is ±infinity, >+1, or <-1

FADD (+ infinity)+ (- infinity) or (- infinity) + (+ infinity)

FASIN Source is ±infinity, >+1, or <-1

FATANH Source is > + 1, or < -1, Source = ±infinity

FCOS Source is ± infinity

FDIV 0/0 or infinity/infinity
-

FGETEXP Source is ± infinity

FGETMAN Source is ± infinity

FLOG10 Source is <0, Source= - infinity

FLOG2 Source is <0, Source= - infinity

FLOGN Source is <0, Source= - infinity

FLOGNP1 Source is < -1, Source= - infinity

FMOD Floating-Point Data Register is ± infinity or Source is 0, Other Operand is Not a NAN

FMOVE to Integer Overflow/Underflow, Source is Non-Signaling NAN, or Source is ± infinity
B,W, or L

FMOVE to P Result Exponent >999 (Decimal) or k-Factor > + 17

FMUL One Operand is 0, Other Operand is ± infinity

FREM Floating-Point Data Register is ± infinity or Source is 0, Other Operand is Not a NAN

FSCALE Source is ± infinity, Other Operand is Not a NAN

FSGLDIV 0/0 or infinity/infinity

FSGLMUL One operand is 0, Other Operand is infinity

FSIN Source is ± infinity

FSINCOS Source is ± infinity

FSQRT Source <0, Source = - infinity

FSUB Source and floating-point data register are + infinity or source and FPn are - infinity

FTAN Source is ± infinity

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-7

II

Trap Disabled Results: For a memory or MPU data register destination, several possible results
can be supplied, depending on the destination size and error type. (An operand error is never
generated when the destination is an MPU data register or memory and the destination format
is S, D, or X.)

If the operand error is caused by an integer overflow or if the floating-point data register to be
stored contains infinity, the result is the largest positive or negative integer that can fit in the
specified destination format size. If the destination is B, W, or L and the floating-point number to
be stored is a NAN, then the 8, 16, or 32 most significant bits of the NAN significand are stored
as the result.

For packed decimal results, if the k factor is greater than + 17, the result returned is a packed
decimal string that assumes a k factor equal to + 17. For packed decimal results where the absolute
value of the exponent is greater than 999, the decimal string is returned with the three least
significant exponent digits in EXP2, EXP1, and EXPO. The fourth digit, EXP3, is supplied in the
most significant four bits of the third byte in the string. Refer to 3.6 DATA FORMAT DETAILS for
the packed decimal string format .

• If the destination is a floating-point data register, an extended precision non-signaling NAN (with
all ones mantissa) is stored in the destination floating-point data register.

Trap Enabled Results: For memory or MPU data register destinations, the destination operand is
written as if the trap were disabled, and then a take exception primitive is returned to the MPU.
This can only occur for the FMOVE FPm,<ea> instruction, and the exception is reported as a mid
instruction exception. If desired, the trap handler can overwrite the result generated by the FPCP.

If the destination is a floating-point data register, the register is not modified by the FPCP. In this
case, the trap handler should generate the appropriate result.

To enable the trap handler to return a result for memory or MPU data register destinations, the
MPU and the FPCP supply:

1. The address of the instruction where the error occurred (in the FPIAR). By examining the
instruction, the trap handler may determine the operation being performed, the value of the
second operand (for dyadic instructions), and the destination location.

2. The address ofthe destination in the mid-instruction stack frame (at offset +$10). This allows
the trap handler to overwrite the NAN, if necessary, without recalculating the effective ad
dress.

To enable the trap handler to return a result for floating-point data register destinations, the MPU
and the FPCP supply:

1. The address of the instruction where the error occurred (in the FPIAR). By examining the
instruction, the trap handler may determine the operation being performed, the value of the
second operand (for dyadic instructions), and the destination location.

2. The exceptional operand in the FPCP idle state frame. For additional FSAVE state frame
information, refer to 6.4.2 State Frames. When an SNAN trap occurs, the exceptional operand
is the source input argument converted to extended precision.

Note that the trap handler should use only the FMOVEM instruction to read or write the floating
point data registers since FMOVEM cannot generate further exceptions or change the condition
codes.

MOTOROLA
6-8

MC68881/MC68882 USER'S MANUAL

6.1.4 Overflow

An overflow occurs when the intermediate result of an arithmetic operation is too large to be
represented in a floating-point data register using the selected rounding precision. A store to
memory operation overflows when the value in the source floating-point data register is too large
to be represented in the destination format.

Overflow is detected for arithmetic operations where the destination is a floating-point data
register when the intermediate result exponent is greater than or equal to the maximum exponent
value of the selected rounding precision. (Refer to 2.2.2 FPCR Mode Control Byte.) Overflow is
detected for store to memory operations when the intermediate result exponent is greater than
or equal to the maximum exponent value of the destination data format. Overflow can only occur
when the destination is in the S, D, or X format. Overflows when converting to the B, W, or L
integer and packed decimal formats are included as operand errors. Refer to 3.6 DATA FORMAT
DETAILS for the maximum exponent value for each format. At the end of any operation that could
potentially overflow, the intermediate result is checked for underflow, rounded, and checked for
overflow before it is stored to the destination. If overflow occurs, the OVFL bit is set in the FPSR
exception byte.

NOTE

An overflow can occur when the destination is a floating-point data register and the
selected rounding precision is single or double even if the intermediate result is small
enough to be represented as an extended precision number. The intermediate result is
rounded to the selected precision (both the mantissa and the exponent), and then the
rounded result is stored in extended precision format. If the magnitude of the inter
mediate result exceeds the range of the selected rounding precision format, an overflow
occurs. The FSGLMUL and FSGLDIV instructions are the exceptions in that, although
the mantissa of the intermediate result is rounded to single precision, the exponent
remains an extended format exponent. Therefore, those instructions can never report
an overflow as long as the intermediate result is small enough to be represented in
extended precision format.

Trap Disabled Results: The current rounding mode determines the value to be stored at the
destination, as follows:

Rounding
Mode Result

RN Infinity, with the sign of the intermediate result
RZ Largest magnitude number, with the sign of the intermediate result
RM For positive overflow, largest positive number

For negative overflow, - infinity
RP For positive overflow, + infinity

For negative overflow, largest negative number

Trap Enabled Results: The result stored in the destination is the same as the result stored when
the trap is disabled, and a take exception primitive is returned to the MPU. If the destination is
memory or an MPU data register, the operand is stored, and then a take mid-instruction exception
primitive is issued. If the destination is a floating-point data register, a take exception primitive
is returned when the MPU reads the response CIR of the FPCP. Since the MC68881 does not allow
multiple floating-point concurrency, a take pre-instruction exception is reported when the MPU
attempts the next floating-point instruction. The MC68882 can report an exception as a mid
instruction exception on a subsequent floating-point instruction.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-9

II

•

The !lddress of the instruction that causes the overflow is available to the trap handler in the
FPIAR. By examining the instruction, the trap handler can determine the arithmetic operation type
and destination location. The trap handler can execute an FSAVE instruction to obtain additional
information. When an FSAVE is executed, the exceptional operand is stored in the state frame.
Refer to 6.4.2 State Frames for details of the F$AVE instruction state frames. When an overflow
occurs, the exceptional operand is defined differently for various destination types:

1. Memory or MPU data register destination - the value in the exceptional operand is the
intermediate result mantissa rounded to the destination precision, with a 15-bit exponent
biased as a normal extended precision number. In the case of a memory destination, the
evaluated effective address of the operand is available in the MPU mid-instruction stack
frame (at offset +$10). This allows the trap handler to overwrite the default result, if nec
essary, without recalculating the effective address.

2. Floating-point data register destination - the value in the exceptional operand is the inter
mediate result rounded to extended precision, with an exponent bias of $3FFF-$6000 rather
than $3FFF. The additional bias of -$6000 is used to "wrap" the 17-bit intermediate value
into a value that can be represented in15 bits. To recover the 17-bit twos complement
exponent of the intermediate result, the 15-bit exponent of the exceptional operand should
be sign extended to at least 17 bits (i.e., if it is manipulated in an MPU data register, it is
sign extended to a long word value), and then the bias of $3FFF-$6000 should be subtracted
from that number. Note that for most operations, the intermediate exponent value does not
exceed 32,767 and thus can be contained in a 16-bit integer. However, a completely general
exception handler should calculate a 17-bit exponent value.

In addition to normal overflow, the exponential instructions implemented by the FPCP (eX,
lOX, 2X, SINH, COSH, and FSCALE) may generate results that overflow the 17-bit exponent
used for intermediate results. For example, the eX function can easily overflow the 17-bit
intermediate exponent if the source value is a large number (x "'" + 18192). When such an
overflow occurs (called a catastrophic overflow), the exceptional operand exponent value is
set to $0000. This value is easily distinguished from the exceptional operand exponent values
produced by normal overflow processing. The smallest exceptional operand exponent value
that can be produced by a normal overflow is $1 FFF ($04000 + $3FFF-$6000, truncated to 15
bits), while the largest exceptional operand exponent value is $7FFF ($OAOOO + $3FFF-$6000,
truncated to 15 bits). The catastrophic overflow exceptional operand exponent value of $0000
is produced any time the unbiased exponent of the calculated intermediate result is a value
greater than $OAOOO.

Note that the trap handler should use only the FMOVEM instructions to read or write the floating
point data registers since FMOVEM cannot generate further exceptions or change the condition
codes.

6.1.5 Underflow

An underflow occurs when the intermediate result of an atithmetic operation is too small to be
represented as a normalized number in a floating-point data re~ister using the selected rounding
precision. A store to memory operation underflows when the 'value in the source floating-point
data register is too small to be represented in the, destination format as a normalized number.
Underflow is detected for arithmetic operations where the destination is a floating-point data
register when the intermediate result exponent is less than or equal to the minimum exponent
value of the selected rounding precision (refer to 2.2.2 FPCR Mode Control Byte).

MOTOROLA
6-10

MC68881/MC68882 USER'S MANUAL

Underflow is detected for store to memory operations when the intermediate result exponent is
less than or equal* to the minimum exponent value of the destination data format.

Underflow can only occur when the destination format is S, D, or X. When the destination format
is packed decimal, underflows are included as operand errors. When the destination format is B,
W, or L, the conversion underflows to zero without causing either an underflow or an operand
error. See 3.6 DATA FORMAT DETAILS for the minimum exponent value for each format.

At the end of any operation that could potentially underflow, the intermediate result is checked
for underflow, rounded, and checked for overflow before it is stored at the destination. If an
underflow occurs, the UNFL bit is set in the FPSR exception status byte.

NOTE

An underflow can occur when the destination is a floating-point data register and the
selected rounding precision is single or double even if the intermediate result is large
enough to be represented as an extenqed precision number. The intermediate result is
rounded to the selected precision (both the mantissa and the exponent), and then the
rounded result is stored in extended precision format. If the magnitude of the inter
mediate result is too small to be represented in the selected rounding precision format,
an underflow occurs. The FSGLMUL and FSGLDIV are exceptions in that, although the
mantissa of the intermediate result is rounded to single precision, the exponent remains
an extended precision format exponent. Therefore, these instructions can never report
an underflow as long as the intermediate result is large enough to be represented in the
extended precision format.

Trap Disabled Results: The result that is stored in the destination is either a denormalized number
or zero. The intermediate result is always normalized because the FPCP ALU and temporary
registers use a 17-bit exponent. Denormalization is accomplished by shifting the mantissa of the
intermediate res~lt to the right while incrementing the exponent until it is equal to the denor
malized exponent value for the destination format. The denormalized intermediate result is rounded
to the selected rounqing precision or destination format.

If, in the process of denormalizing the intermediate result, all of the significant bits are shifted
off to the right, the selected rounding mode determines the value to be stored at the destination,
as follows:

Rounding
Mode Result

RN Zero, with the sign of the intermediate result
RZ Zero, with the sign of the intermediate result
RM For positive underflow, + zero

For negative underflow, smallest denormalized negative number
RP For positive underflow, smallest denormalized positive number

For negative underflow, - zero

'Underflow is NOT detected for intermediate result exponents that are equal to the extended precision minimum exponent, since the
explicit integer part bit of extended precision permits representation of normalized numbers with a minimum extended precision
exponent.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-11

II

•

Trap Enabled Results: The result stored in the destination is the same as the result stored when
traps are disabled, and a take exception primitive is returned to the MPU. If the destination is
memory or an MPU data register, the operand is stored, and then a take mid-instruction exception
primitive is issued. If the destination is a floating-point data register, a take exception primitive
is returned when the MPU reads the response CIR of the FPCP. Since the MC68881 does not allow
multiple floating-point concurrency, the exception is always reported as a pre-instruction exception
when the next floating-point instruction is attempted. The MC68882, however, may report an
exception as a mid-instruction exception on a subsequent floating-point instruction.

The address of the instruction that caused the underflow is available to the trap handler in the
FPIAR. By examining the instruction, the trap handler can determine the arithmetic operation type
and destination location. The trap handler can execute an FSAVE instruction to obtain additional
information. When an FSAVE instruction is executed, the exceptional operand is stored in the
state frame. Refer to 6.4.2 State Frames for details of FSAVE state frames. The exceptional operand
is defined differently for various destination types:

1. Memory or MPU data register destination - the value in the exceptional operand is the
intermediate result mantissa rounded to the destination precision, with a 15-bit exponent
biased as a normal extended precision number. In the case of a memory destination, the
evaluated effective address of the operand is available in the MPU mid-instruction stack
frame (at offset + $1 0). This allows the trap handler to overwrite the default result, if nec
essary, without recalculating the effective address.

2. Floating-point data register destination - the value in the exceptional operand is the inter
mediate result mantissa rounded to extended precision, with an exponent bias of$3FFF+$6000
rather than $3FFF. The additional bias of +$6000 is used to "wrap" the 17-bit intermediate
value into a value that can be represented in 15 bits. To recover the 17-bit twos complement
exponent of the intermediate result, the 15-bit exponent of the exceptional operand is sign
extended to at least 17 bits (i.e., if it is manipulated in an MPU data register, it is sign extended
to a long word value), and then the bias of $3FFF + $6000 is subtracted from that number.
Note that for most operations, the intermediate exponent value is not less than - 32768, and
thus can be contained in a 16-bit integer. However, a completely general exception handler
should calculate a 17-bit exponent value.

In addition to normal underflow, the exponential instructions implemented by the FPCP (eX,
10X, 2 x, SINH, COSH, and FSCALE) may generate results that underflow the 17-bit exponent
used for intermediate results. For example, the eX function can easily underflow the 17-bit
intermediate exponent if the source value is a large number (x ~ -8192). When such an
underflow occurs (called a catastrophic underflow), the exceptional operand exponent value
is set to $0000. This is the smallest exception operand exponent value that can be produced
by a normal underflow ($16001 + $3FFF + $6000, truncated to 15 bits!. while the largest un
derflow exponent value is $5FFF ($1 COOO + $3FFF + $6000, truncated to 15 bits). The cata
strophic underflow exceptional operand exponent value of $0000 is produced any time the
unbiased 17-bit exponent of a calculated intermediate result has a value less than or equal
to $16001.

Note that the trap handler should use only the FMOVEM instructions to read or write to the
floating-point data registers since FMOVEM cannot generate further exceptions or change the
condition codes.

NOTE

The IEEE standard defines two causes of an underflow:
1. When a result is very small, the absolute value of the number is less than the

minimum number that can be represented by a normalized number in a specific
format

MOTOROLA
6-12

MC68881/MC68882 USER'S MANUAL

2. When loss of accuracy occurs while attempting to calculate a very small number
(a loss of accuracy also causes an inexact exception)

The IEEE standard specifies that if the underflow trap is disabled, an underflow should only be
signaled when both of these cases are satisfied (i.e., the result is too small to represent with a
given format, and there is a loss of accuracy during the calculation of the final result). If the trap
is enabled, the underflow should be signaled any time a tiny result is produced, regardless of
whether accuracy is lost in calculating it.

The FPCP UNFL bit in the AEXC byte of the FPSR implements the IEEE trap disabled definition,
since it is only set when a very small number is generated and accuracy has been lost when
calculating that number. The UNFL bit in the EXC byte implements the IEEE trap enabled definition,
since it is set anytime a tiny number is generated. Thus, if the FPCP underflow trap is enabled, a
trap occurs when very small size alone is detected (as the IEEE standard specifies) to support the
emulation of machines that underflow to zero, rather than using the IEEE gradual underflow
method (i.e., denormalized numbers). If the underflow trap is disabled, the UNFL bit in the AEXC
byte may be examined at the end of a calculation to determine if any result produced during the
operation required representation as a denormalized number, and accuracy was lost when de- II
normalizing and rounding that result.

6.1.6 Divide by Zero

This exception occurs when a zero divisor occurs in a division, or when a transcendental function
is asymptotic with infinity as the asymptote. Table 6-3 lists the instructions that can generate the
divide-by-zero exception. When a divide-by-zero is detected, the DZ bit is set in the FPSR exception
status byte.

Table 6-3. Possible Divide-by-Zero Exceptions

Instruction Input Operand Value

FATANH Source Operand = ± 1

FDIV Source Operand = 0 and FPn is Not a NAN, Infinity, or Zero

FLOG10 Source Operand =0

FLOG2 ~ource Operand = 0

FLOGN Source Operand = 0

FLOGNP1 Source Operand = - 1

FSGLDIV Source Operand = 0 and FPn is Not a NAN, Infinity, or Zero

Trap Disabled Results: Store the following results in the destination floating-point data register:

• For the FDIV and FSGLDIV instructions, return an infinity with the sign set to the exclusive
OR of the signs of the input operands.

• For the FLOGx instructions, return minus infinity.
• For the FATANH instruction, return a + infinity if the source operand is -1; or a - infinity if

the source operand is + 1.

Trap Enabled Results: The destination floating-point data register is not modified, and a take
exception primitive is returned when the MPU reads the response CIR of the FPCP. Since the
MC68881 does not allow multiple floating-point concurrency, the exception is always reported as
a pre-instruction exception when the next floating-point instruction is attempted. The MC68882,

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-13

however, may report an exception as a mid-instruction exception on a subsequent floating-point
instruction. The trap handler must generate a result to store in the destination.

To assist the trap handler in this function, the FPCP supplies:
1. The address ofthe instruction where the divide-by-zero occurred (in the FPIAR). Byexamining

this instruction, the trap handler can determine the operation being performed, the value of
the source operand (for dyadic instructions), and the destination floating-point register num
ber.

2. The FSAVE instruction that places the exceptional operand in a state frame. For additional
FSAVE state frame information, refer to 6.4.2 State Frames. The exceptional operand is the
source input argument converted to extended precision.

Note that the trap handler should use only the FMOVEM instruction to read or write the floating
point data registers, since FMOVEM cannot generate further exceptions or change the condition
codes .

• 6.1.7 Inexact Result

The FPCP provides two inexact bits (lNEX1 and INEX2) to help distinguish between inexact results
generated by decimal input (lNEX1) and other inexact results (lNEX2). Two inexact bits are useful
in instructions in which both types of inexacts can occur, such as:

FDIV.P #7E -1 ,FP3

In this case, the packed decimal to extended precision conversion ofthe immediate source operand
causes an inexact error to occur which is signaled as INEX1. Furthermore, the subsequent divide
might also produce an inexact result and cause INEX2 to be set. Therefore, the FPCP provides
two inexact bits in the FPSR exception status byte to distinguish these two cases.

Note that only one inexact exception vector number is generated by the FPCP. If either of the two
inexact exceptions is enabled, the MPU fetches the inexact exception vector, and the exception
handler routine is initiated. Refer to 6.1.8 Inexact Result on Decimal Input for a discussion of
INEX1.

In a general sense, INEX2 is the condition that exists when any operation, except the input of a
packed decimal number, creates a floating-point intermediate result whose infinitely precise man
tissa has too many significant bits to be represented exactly in the selected rounding precision
(refer to 2.2.2 FPCR Mode Control Byte) or in the destination data format. If this condition occurs,
the INEX2 bit is set in the FPSR exception status byte, and the infinitely precise result is rounded
as described in the next paragraph.

The FPCP supports the four rounding modes specified by the IEEE standard. These modes are
round to nearest (RN), round toward zero (RZ), round toward plus infinity (RP), and round toward
minus infinity (RM). The rounding definitions are:

Rounding
Mode Result

RN The representable value nearest to the infinitely precise intermediate value is
the result. If the two nearest representable values are equally near (a tie), then
the one with the least significant bit equal to zero (even) is the result. This is
sometimes referred to as "round nearest, even".

MOTOROLA MC68881/MC68882 USER'S MANUAL
6-14

Rounding
Mode Result

RZ The result is the value closest to, and no greater in magnitude than, the infinitely
precise intermediate result. This is sometimes referred to as the "chop mode"
since the effect is to clear the bits to the right of the rounding point.

RM The result is the value closest to and no greater than the infinitely precise
intermediate result (possibly minus infinity).

RP The result is the value closest to and no less than the infinitely precise inter
mediate result (possibly plus infinity).

The RM and RP rounding modes are often referred to as "directed rounding modes" and are
useful in interval arithmetic. Rounding is accomplished using the intermediate result format shown
in Figure 6-2.

17-BIT
EXPONENT

II
II

INTEGER BIT

OVERFLOW BIT

63-BIT
FRACTION

lEAST SIGNIFICANT BIT OF FRACTION

GUARO BIT

ROUNO BIT ------'

STICKY BIT ------'

Figure 6-2. Intermediate Result Format

Depending on the selected rounding precision or destination data format in effect, the location
of the least significant bit of the fraction and the locations of the guard, round, and sticky bits in
the 67-bit intermediate result mantissa varies.

The guard and round bits are always calculated exactly. The sticky bit is used to create the illusion
of an infinitely wide intermediate result mantissa. As shown by the arrow in Figure 6-2, the sticky
bit is the logical OR of all the bits in the infinitely precise result to the right of the round bit. During
the calculation stage of an arithmetic operation, any non-zero bits generated that are to the right
of the round bit set the the sticky bit (which is used in rounding) to one. Because of the sticky
bit, the rounded intermediate result for all required IEEE arithmetic operations in the round-to
nearest mode is in error by no more than one half unit in the last place. For transcendental
instructions, the result may not be this accurate (refer to 4.3 COMPUTATIONAL ACCURACY).

NOTE

When the FPCP is programmed to operate in the single or double precision rounding
mode, a method referred to as "range control" is used to assure correct emulation of a
machine that only supports single or double precision arithmetic. When the FPCP per
forms any calculation, the intermediate result is in the format shown in Figure 6-2, and
a rounded result stored into a floating-point data register is always in the extended
precision format. However, if the single or double precision rounding mode is in effect,
the final result generated by the FPCP is within the range of the format (except for the
FSGLDIV and FSGLMUL instructions, as described in 4.5.5.2 UNDERFLOW, ROUND,
OVERFLOW).

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-15

II

•

Range control is accomplished by not only rounding the intermediate result mantissa
to the specified precision, but also checking the 17-bit intermediate exponent to ensure
that it is within the representable range of the selected rounding precision format. If the
intermediate exponent exceeds the range of the selected precision, the exponent value
appropriate for an underflow or overflow is stored as the result in the 15-bit extended
precision format exponent. For example, if the rounding precision and mode is single/
RM and the result of an arithmetic operation overflows the magnitude of the single
precision format, the largest normalized single precision value is stored as an extended
precision number in the destination floating-point data register (i.e., an unbiased 15-bit
exponent of $OOFF and a mantissa of $FFFFFFOOOOOOOOOO). If an infinity is the appropriate
result for an underflow or overflow, the infinity value for the destination data type is
stored as the result (i.e., an exponent with the maximum value and a mantissa of zero).

Figure 6-3 shows the algorithm that is used to round an intermediate result to the selected rounding
precision or destination data format. If the destination is a floating-point register, the rounding
boundary is determined by the selected rounding precision in the FPSR. If the destination is
external memory or an MPU data register, the rounding boundary is determined by the destination
data format. If the rounded result of an operation is not exact, then the INEX2 bit is set in the
FPSR exception status byte.

BEGIN

END

IF GUARD, ROUNO AND STICKY = 0
THEN IRESULT IS EXACTI

OON'T SET INEX2
OON'T CHANGE THE INTERMEOIATE RESULT

ELSE IRESULT IS INEXACTI
. SET INEX2 IN THE FPSR EXC BYTE

SELECT THE ROUNDING MODE
RM: IF INTERMEDIATE RESULT IS NEGATIVE

THEN ADD 1 TO LSB
RN: IF GUARD=l AND ROUND AND STICK=O ITIE CASEI

THEN IF LSB = 1 ADD 1 TO LSB
ELSE IF GUARD = 1 AOD 1 TO LSB
ENDIF

RP: IF INTERMEDIATE RESULT IS POSITIVE
THEN ADD 1 TO LSB

RZ: IFALL THROUGH; GUARD, ROUND AND STICKY ARE CHOPPEDI
END SELECT
IF OVERFLOW = 1

THEN

END IF

SHIFT MANTISSA RIGHT BY ONE BIT
ADD 1 TO THE EXPONENT

SET GUARD, ROUND AND STICK TO 0
END IF

Figure 6-3. Rounding Algorithm

Trap Disabled Results: The rounded result is delivered to the destination.

Trap Enabled Results: The rounded result is delivered to the destination, and an exception is
reported to the MPU. If the destination is memory or an MPU data register, a take mid-instruction
exception primitive is returned immediately after the operand is stored. If the destination is a
floating-point data register, a take exception primitive is returned when the MPU reads the re
sponse CIR of the FPCP. Since the MC68881 does not allow multiple floating-point concurrency,

MOTOROLA
6-16

MC68881/MC68882 USER'S MANUAL

the exception is always reported as a pre-instruction exception when the next floating-point
instruction is attempted. The MC68882, however, may report an exception as a mid-instruction
exception on a subsequent floating-point instruction.

The address of the instruction that generated the inexact result is available to the trap handler in
the FPIAR. The trap handler can determine the location of the operand(s) by examining the
instruction. In the case of a memory destination, the evaluated effective address of the operand
is available in the MPU mid-instruction stack frame (at offset +$10). When an FSAVE is executed
by an inexact trap handler, the value of the exceptional operand in the state frame is not defined
(refer to 6.4.2 State Frame). An inexact exception differs from the other exceptions in this respect.
If an inexact condition is the only exception that occurred during the execution of an instruction,
the value of the exceptional operand is invalid. If multiple exceptions occur during an instruction,
the exceptional operand value is related to a higher priority exception.

Note that the trap handler should use only the FMOVEM instruction to read or write the floating
point data registers, since FMOVEM cannot generate further exceptions or change the condition
codes.

NOTE

The IEEE standard specifies that inexactness should be signaled on overflow as well as
for rounding. The FPCP implements this via the INEX bit in the FPSR AEXC byte. However,
the standard also indicates that the inexact trap should be taken if an overflow occurs
with the overflow trap disabled and the inexact trap enabled. Therefore, the FPCP takes
the inexact trap if this combination of conditions occurs, even though the INEX1 or INEX2
bits may not be set in the FPSR EXC byte. In this case, INEX is set in the AEXC byte and
OVFL is set in both the EXC and AEXC bytes.

6.1.8 Inexact Result on Decimal Input

In a general sense, inexact result 1 (lNEX1) is the condition that .exists when a packed decimal
operand cannot be converted exactly to extended precision in the current rounding mode. If this
condition occurs, the INEX1 bit is set in the FPSR exception status byte, and the result of the
decimal-to-binary conversion is rounded to extended precision (regardless of FPSR mode byte
rounding precision) as shown in Figure 6-3. The FPCP provides two inexact bits (lNEX1 and INEX2)
to help distinguish between inexact results generated by decimal input conversions (lNEX1) and
other inexact results (lNEX2).

Trap Disabled Results: If the instruction is an FMOVE to a floating-point data register, the rounded
result is stored in the floating-point data register. If the instruction is not an FMOVE, the rounded
result is used in the calculation.

Trap Enabled Results: The result is generated in the same manner as if traps were disabled,
except that a take exception primitive is returned when the MPU reads the response CIR of the
FPCP. Since the MC68881 does not allow multiple floating-point concurrency, the exception is
always reported as a pre-instruction exception when the next floating-point instruction is at
tempted. The MC68882, however, may report an exception as a mid-instruction exception on a
subsequent floating-point instruction.

The address of the instruction that caused the inexact decimal conversion is available to the trap
handler in the FPIAR. The trap handler can determine the location of the decimal string by ex
amining the instruction, although the effective address of the string must be recalculated (if

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-17

II

possible) by the trap handler. When an FSAVE is executed by an inexact trap handler, the value
of the exceptional operand in the state frame is not defined (refer to 6.4.2 State Frame). An inexact
exception differs from the other exceptions in this respect. If the inexact conversion is the only
exception that occurs during the execution of an instruction, the value of the exceptional operand
is invalid. If multiple exceptions occur during an instruction, the exceptional operand value is
related to a higher priority exception.

Note that the trap handler should use only the FMOVEM instruction to read or write the floating
point data registers, since FMOVEM cannot generate further exceptions or change the condition
codes.

6.1.9 Multiple Exceptions

Dual and triple instruction exceptions may be generated by a single instruction in a few cases.
When multiple exceptions occur with traps enabled for more than one exception class, only the
highest priority exception trap is taken; the other enabled exceptions do not cause a trap. The

• higher priority trap handler must check for multiple exceptions. The priority of the traps is as
follows:

BSUN Highest Priority
SNAN
OPERR
OVFL
UNFL
DZ
INEX2/INEX1 Lowest Priority

The multiple instruction exceptions that can occur are:
SNAN and INEX1
OPERR and INEX2
OPERR and INEX1
OVFL and INEX2 and/or INEX1
UNFL and INEX2 and/or INEX1
INEX2 and INEX1

6.1.10 IEEE Exception and Trap Compatibility

The IEEE standard defines only five exceptions. The FPCP FPSR AEXC byte contains bits repre
senting these five exceptions, which are defined to function exactly as the standard specifies the
exceptions. However, it may be more useful to differentiate the IEEE required exceptions into the
eight exceptions represented in the FPSR EXC byte. Since the FPCP uses the bits in the FPSR EXC
byte and the FPCR ENABLE byte to determine when to trap, there are seven possible instruction
traps defined (lNEX1 and INEX2 share one exception vector) insteadqf the five defined by the
standard. ",

If it is necessary to write an application program that only supports the five IEEE specified traps,
the BSUN, SNAN, and OPERR exception vectors should be set to point to the same handler
routine. This allows the FPCP to support the invalid operation exception defined in the IEEE
standard, which is represented by the invalid operation (lOP) bit in the AEXG qyte.

MOTOROLA
6-18

MC68881/MC6888? USER'S MANUAL

To satisfy other requirements in the IEEE standard, the FPCP does the following:
1. A one is ORed into the AEXC byte lOP bit if the BSUN, SNAN, or OPERR bit is set in the EXC

byte.

2. A one is ORed into the AEXC byte UNFL bit only if both the UNFL and the INEX2 bits of the
EXC byte are set. However, per the IEEE standard, the underflow trap is based only on the
UNFL bit in the EXC byte,.

3. A one is ORed into the AEXC byte INEX bit if the INEX1, INEX2 or OVFL bit is set in the EXC
byte.

4. The IEEE standard requires that an inexact trap be taken if it is enabled, an overflow occurs,
and the overflow trap is disabled. Thus, if the OVFL bit is set in the EXC byte, the OVFL bit
is not set in the ENABLE byte, and the INEX2 bit is set in the ENABLE byte, then the inexact
trap is taken.

The equations for items 1, 2, and 3 are:

AEXC(IOP) = AEXC(IOP)vEXC(BSUNvSNANvOPERR)
AEXC(UNFL) = AEXC(UNFL)vEXC(UNFLAINEX2)

AEXC(INEX) = AEXC(INEX)vEXC(INEX1vINEX2vOVFL)

The equation for item 4 (inexact trap taken) is:

Inexact Trap =

[[EXC(OVFL)vEXC(INEX2)]AENABLE(INEX2)]v[EXC(INEX1)AENABLE(INEX1)]
where:

"v" = logical OR
"A" = logical AND

6.1.11 Illegal Command Words

Illegal coprocessor commands are coprocessor command word bit patterns that are not imple
mented by the FPCP. The FPCP reports illegal coprocessor commands as pre-instruction excep
tions, using the F-line emulator vector number. The specific illegal command word bit patterns
are defined in 4.7 INSTRUCTION ENCODING DETAilS.

FPCP instructions consist of an operation word, a coprocessor command word (if any), and
extension words (if any). The MPU detects an illegal operation word and the FPCP detects an
illegal command word.

For the case where a coprocessor-detected instruction trap is pending when the MPU writes an
illegal coprocessor command to the FPCP command CIR, the coprocessor first reports the pending
instruction exception as a pre-instruction exception. Following exception processing of the in
struction exception, the MPU resumes execution of the main program at the beginning of the
illegal coprocessor command, by writing to the command CIR again. The illegal instruction ex
ception is then repbrted by the FPCP.

6.1.12 Coprocessor-Detected Protocol Violation

All interprocessor communications in the coprocessor interface occur as standard M68000 bus
cycles. A failure in this communication results in the FPCP reporting a mid-instruction exception
with the coprocessor protocol violation vector number. When a protocol violation has been de
tected by the FPCP, the response CIR is encoded to the take mid-instruction primitive and the
next read of the response CIR by the main processor terminates the dialog.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-19

•

The MC68881 signals a protocol violation when unexpected accesses of the command, condition,
register select, or operand CIRs occur. Coprocessor detected protocol violations occur when:

1. The MC68881 is expecting a write to the command or condition CIR, and instead an access
of the register select or operand CIR occurs.

2. The MC68881 is expecting a read of the register select or operand CIR, and instead a write
to the command, condition, or operand CIR occurs.

3. The MC68881 is expecting a write to the operand CIR, and instead either a write to the
command or to the condition CIR or a read of the register select or of the operand CIR occurs

The MC68882 signals a protocol violation when unexpected accesses of the command, condition,
register select, operand, or instruction address CIRs occur. For the MC68882, coprocessor-detected
protocol violations occur when: '

1. The MC68882 is expecting a write to the command or condition CIR, but a read or write
operation to the register select CIR or to the operand CIR or a write operation to the instruction
address CIR occurs instead.

2. The MC68882 is expecting a read of the register select CIR or of the operand CIR, but a write
operation to the command CIR, the condition CIR, the operand CIR, the instruction address
CIA, or the register select CIR occurs instead.

3. The MC68882 is expecting a write operation to the operand CIR, but a write operation to the
command CIR or to the condition CIR or a read of the register select CIR, the operand CIR,
or instruction address CIR occurs instead.

4. The MC68882 is expecting a write operation to the instruction address CIR, but a write
operation to the command CIR, the condition CIR, the operand CIR, or the register select CIR
or a read of the operand CIR or the register select CIR occurs instead.

For these violations, the FPCP maps the 16-bit register select CIR onto the upper word of the 32-
bit operand register. Thus, inconsistent data is read from the operand CIR, and write cycles cannot
store the correct value. Of course, this is of no consequence since the protocol violation invalidates
any operation being attempted by the FPCP or the main processor.

During normal operation, the FPCP synchronizes interprocessor communication by delaying the
assertion of DSACKx, if necessary. However, upon detection of a protocol violation, the MC68881
always terminates the access by immediately asserting DSACKx.

Note that in certain cases resulting from serious system programming errors, an unrecoverable
protocol violation may occur when using the MC68882. This particular case ofthe protocol violation
occurs during the coprocessor interface dialog for the FMOVE and FMOVEM instructions if a read
of the operand CIR occurs before the evaluate <ea> and transfer data (DR= 1) or the transfer
multiple coprocessor registers (DR = 1) primitive is issued. In this case, the protocol violation is
not reported via the take mid-instruction primitive as is the normal case. Instead, the MC68882
ignores the access completely, and it is the responsibility of the system watchdog timer to abort
the access to the operand CIR by asserting the bus error signal to the main processor. The MC68020
and MC68030 cannot cause this protocol violation to occur except through misuse of the MOVES
instruction.

A protocol violation cannot occur as a result of an access to the reserved register locations, a
read of a write-only register, or a write to a read-only register (a read of a reserved or write-only
register always returns a value of all ones). One exception to this rule is that a write access to
the register select CIR causes a protocol violation. Reads of the save or response CIR are always
valid as are writes to the restore or control CIR.

MOTOROLA
6-20

MC68881/MC68882 USER'S MANUAL

While the MC68881 can request that the MPU write the instruction address CIR (by setting the
PC bit in a primitive response), accesses of this register are neither expected or unexpected. Thus,
when the MC68881 is utilized as a peripheral processor where no concurrent instruction execution
occurs, requests to transfer the PC may be ignored without incurring a protocol violation. When
the instruction address CIR is written by the main processor, the MC68881 updates the FPIAR
with the written value without regard to "correct" protocol.

Since the MC68882 provides concurrent execution of multiple floating-point instructions, it re
quires program counter values to be transferred when requested to guarantee a valid FPIAR for
a concurrently-executed instruction which reports an exception. Whenever the MC68882 requests
the PC value, it reports a protocol violation if the main processor does not transfer the PC value
by writing the instruction address CIR.

A protocol violation is the highest priority coprocessor-detected exception. It is also considered
to be a fatal exception, since the MPU acknowledgment of the protocol violation exception clears
any pending FPCP instruction exceptions and aborts any instruction in progress.

NOTE

To distinguish between a protocol violation detected by the MPU or the FPCP, an ex
ception handler can read the response CIR and evaluate the returned primitive. If the
protocol violation is detected by the FPCP due to an unexpected access, the operation
being executed previously is aborted, and the FPCP assumes the idle state when the
exception acknowledge is received. Therefore, the primitive read from the response CIR
is null (CA= 0). If the protocol violation is detected by the MPU due to an illegal primitive,
the FPCP response CIR contains that primitive when the exception handler reads it. (Since
the FPCP cannot internally generate an illegal primitive, an MPU detected protocol vi
olation indicates a hardware failure.)

To read the response CIR in a hardware independent manner, the trap handler should use the
move alternate address space (MOVES) instruction. For example, the following instruction se
quence reads the response CIR of the coprocessor with CPID = 1 into an MPU data register:

MOVE.B #7,DO Prepare the SFC register
MOVEC DO,SFC for a CPU space cycle ...
MOVES.W $00022000,DO Execute a "coprocessor" cycle.

6.1.13 Recovery from Exceptions

When a coprocessor-detected exception occurs, enough information is made available to the trap
handler to perform the necessary corrective action and then resume execution of the program
that caused the exception. Of course, in some instances, it may not be valid to resume execution
of the program; recovery is not possible for protocol violations. The information available to an
exception handler is described in the previous sections, and the following paragraphs describe
the methods used to resume execution of a program after an exception is appropriately handled.

In all cases, the stack frame generated by the MPU in response to a coprocessor-detected exception
contains a program counter value that points to the instruction to be executed upon return from
the exception handler. In the case of pre-instruction exceptions, the instruction to be executed
upon return is the FPCP instruction that was attempted, but preempted by a pending exception.
For mid-instruction exceptions (other than interrupts), two pointers are saved: the address of the
FPCP instruction that caused the exception and the address of the instruction immediately fol
lowing that FPCP instruction. Furthermore, the FPIAR contains a pointer to the FPCP instruction

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-21

II

•

that caused the exception in both cases. Thus, an exception handler can always locate the in
struction that caused an exception, and identify the next instruction to be executed upon return
from the handler.

When the MPU executes a return from exception (RTE) instruction, it reads the stack frame from
the top of the active system stack and restores that context. In the case where the stack frame
was generated by an FPCP pre-instruction exception, the context that is restored is the MPU
context of the preempted FPCP instruction. The FPCP instruction begins execution in the normal
manner, with the MPU writing the coprocessor command word to the FPCP.

In the case where the RTE stack frame is generated by a coprocessor-detected mid-instruction
exception, the context restore operation is slightly different. In this case, the MPU must complete
execution of the instruction that was suspended by the exception. When the RTE instruction
completes execution, the MPU first reads the response CIR of the FPCP to determine the next
appropriate action.

NOTE

Since the MC68881 always finishes execution of the instruction that causes this type of
exception before reporting it, the response that is returned is null (CA= 0, PF = 1), which
releases the main processor to continue with the execution of the next instruction. Note
that after a take mid-instruction exception primitive is returned, the main processor is
not required by the MC68881 to perform a read from the response CIR before initiating
the next floating-point instruction, but the MPU always performs this action when proc
essing a mid-instruction stack frame.

An MC68881 arithmetic exception handler (i.e., a handler for any exception other than the BSUN
exception) routine is not required to perform any action to clear the cause of an exception. In
fact, an MC68881 arithmetic exception handler may consist of a single RTE instruction (which
produces the same logical effect as disabling an exception). This is because the main processor
acknowledges the exception by writing to the control CIR when the coprocessor signals an ex
ception to the MPU, and the exception acknowledge clears any pending exceptions in the MC68881.
Thus, the MC68881 arithmetic exception handler is not required to clear any status bits or read
any MC68881 registers in order to prevent the reocurrence of an exception when an RTE instruction
is executed. However, an RTE instruction alone does not prevent the reoccurrence of an MC68882
exception. The MC68882 does not clear the pending floating-point exception in response to the
exception acknowledge. An MC68882 arithmetic exception handler must meet certain require
ments in order to clear the cause of the exception. Refer to 5.2.2 Exception Handler Code for the
MC68882 exception handler requirements. In the case of the BSUN exception handler, some action
must be taken (as described in 6.1.1 Branch/Set on Unordered (BSUN) by the exception handler
to avoid an infinitely executing loop.

For the MC68881, if an exception handler includes any FPCP instruction other than an FMOVEM,
an FSAVE should be the first FPCP instruction to be executed. This assures that an exception
handler cannot generate any exceptions related to, or modify the context of, the program that
caused the exception. For the MC68882, a" exception handlers must begin with an FSAVE in
struction, even when they do not contain any floating-point instructions. The FPIAR value must
be saved before any instruction other than an FMOVEM is executed, so that the address of the
instruction that caused the exception is not lost. When the exception handler completes the error
recovery and is prepared to return to the suspended program, an FRESTORE is executed as the
last FPCP instruction; this restores the previous context of the program that caused the exception.
Refer to 5.2.2 Exception Handler Code for other requirements of the MC68882 exception handler.

MOTOROLA
6-22

MC68881/MC68882 USER'S MANUAL

6.2 MAIN PROCESSOR DETECTED EXCEPTIONS

The following paragraphs describe exceptions that are detected by the MPU during FPCP instruc
tion execution. Refer to the main processor user's manual for additional information on these
exceptions, and the pre- and mid-instruction exception main processor stack frames.

6.2.1 Trap on Coprocessor Condition Instruction

The FPCP trap on condition instruction is initiated when the MPU writes a conditional predicate
to the FPCP for evaluation and reads a true/false result in the FPCP response primitive. If the FPCP
indicates that the condition is true, the MPU takes a post-instruction exception using the TRAPV/
TRAPcc vector number.

The stack frame generated by the MPU in response to this exception contains two pointer values:

1. A pointer to the FTRAPcc instruction that caused the exception

2. A pointer to the instruction that follows the FTRAPcc (the pointer to which the processor
returns if an RTE instruction is executed)

6.2.2 Illegal Instructions

The FPCP instructions consist of an operation word, a coprocessor command word (if any), and
extension words (if any). The MPU detects illegal operation words, and the FPCP detects illegal
command words. When the MPU detects an illegal operation word for a coprocessor instruction,
it takes a pre-instruction exception using the F-line emulator vector number. Refer to 4.7 IN
STRUCTION ENCODING DETAILS for specific bit patterns that are illegal coprocessor operation
words.

In addition to detecting an illegal operation word, the MPU can detect an illegal instruction even
though the operation word is valid. This occurs when the addressing mode of the instruction is
not valid. When the FPCP returns a primitive response to the MPU that requests a data transfer
to or from the effective address, the FPCP either implicitly or explicitly indicates the valid ad
dressing modes for an instruction. Thus, the MPU can determine that properly formed FPCP
operation words and primitive responses are invalid if they specify operations that are illegal,
such as writing to a non-alterable effective address.

When the MPU detects an invalid instruction in this manner, it terminates the FPCP execution of
the instruction by writing an abort to the control CIR. (The MC68882 only aborts the instruction
with the invalid effective address without disturbing concurrently-executed instructions. The MPU
then takes a pre-instruction exception using the F-line emulator vector number. Termination of
the FPCP instruction execution in this manner does not alter any visible processor or coprocessor
registers or status (such as pending coprocessor exceptions). Use of the F-line emulator trap
allows the operating system to emulate any extensions to the FPCP that are not supported by a
specific processor.

6.2.3 Main-Processor-Detected Protocol Violations

If the MPU reads an FPCP response primitive that it interprets as an illegal primitive, it does not
terminate the FPCP execution of the instruction by writing to the coprocessor interface control
register. Instead, the MPU takes a mid-instruction exception using the coprocessor protocol vi
olation vector number.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-23

•

Since the FPCP never issues an illegal response primitive, this feature of the MPU serves to detect
a failure of interprocessor communications. If a protocol violation is taken on an FPCP instruction,
whether detected by the FPCP or the MPU, a system failure may be assumed. Refer to 6.1.12
Coprocessor-Detected Protocol Violation for an example of how an exception handler can de
termine the cause of a protocol violation.

6.2.4 Trace Exceptions

To aid in program development, the MPU includes a facility to allow instruction-by-instruction
tracing. In the single-step trace mode, after each instruction is executed, the MPU takes a post
instruction exception using the trace vector number. This allows a debugging program in the
trace exception handler to monitor the execution of a program under test. Refer to the main
processor user's manual for a complete description of the trace mode.

Many FPCP instructions can operate concurrently with MPU instructions, and defer the reporting
of coprocessor detected instruction exceptions until the next FPCP instruction is dispatched by

•
the MPU. This provides a sequential instruction execution model even though concurrent instruc-

• tion execution may occur. To guarantee that pending exceptions are always reported at the same
point in an instruction sequence, regardless of whether tracing is enabled, the FPCP always
releases the MPU at the end of an instruction that allows concurrency before reporting the ex
ception. This sequence is important, because the MPU (when in the trace mode) waits for an
instruction to complete before proceeding.

To provide consistent reporting of exceptions, the FPCP always returns the null (CA = 0, PF = 1)
primitive when it completes execution of an instruction that allows concurrency, and then reports
a pending exception only after a write to the command or condition CIR.

The synchronization of the two devices in the trace mode is accomplished through the PF bit in
the null primitive (see 7.1 CHIP-SELECT DECODE). When the trace mode is enabled, the MPU
repeatedly reads the response CIR to determine when the FPCP completes instruction execution.
If the null (CA = 0, IA= 1, PF = 0) primitive is read, then the MPU checks for pending interrupts,
and if none are pending, reads the response CIR again. This process continues until the MPU
receives a null (CA= 0, PF = 1) primitive from the FPCP, atwhich time it performs the trace exception
processing.

In order for a trace exception to be transparent to normal program execution, the trace handler
routine must take certain precautions to prevent disturbing the context of the FPCP. When the
main processor detects an exception, it automatically saves the most volatile portion of the current
context and processes the exception immediately; thus, the trace handler routine is not required
to perform any MPU context save in order for the system to operate properly. The FPCP does not
operate in this manner, since it cannot initiate exception processing until the MPU attempts to
execute a new floating-point instruction. Also, the context information that must be saved for the
FPCP is more extensive than that of the main processor; thus, the software must perform the
save only when necessary. The important consideration for a trace exception handler is that it
must perform a more extensive context save for the FPCP than for the MPU (since part of the
MPU context save is automatic). Also, it should not execute any FPCP instruction that may cause
a pending exception to be reported, or a new exception to occur.

Because of these constraints, the first and last FPCP instructions of a trace exception handler
should be the FSAVE and FRESTORE instructions, respectively. By executing the FSAVE instruction
before any other floating-point instruction, the FPCP saves any pending exceptions in a state

MOTOROLA
6-24

MC68881/MC68882 USER'S MANUAL

frame and then clears them internally; thus, an exception generated by the main program cannot
be reported while the trace exception handler is executing. After the FSAVE instruction is executed,
the FMOVEM instruction can be used to save the user-visible portion of the FPCP context. Then
the trace handler is free to utilize the coprocessor as desired, without affecting the main program
context. When the trace handler is ready to return to the main program, the FMOVEM instruction
is used to restore the user-visible context, followed by an FRESTORE instruction to reinstate the
exact context of the FPCP prior to the trace exception processing. Note that since the MPU is
forced to wait until the completion of an FPCP instruction before processing a pending trace
exception, the execution of the FSAVE instruction by the trace handler always results in an idle
state frame being saved. The user-visible registers contain the results of the last floating-point
instruction. This would not be the case if the trace exception handler were allowed to begin
execution before the FPCP instruction is completed. Processors other than the MPU must imple
ment the trace synchronization mechanism in software (by polling the PF bit) in order to assure
these conditions.

6.2.5 Interrupt

When the FPCP is busy executing an instruction, it may issue a null (CA= 1, IA= 1) primitive II
response, which requests the MPU to continue polling the response register. (This only occurs if
the FPCP requires additional services from the MPU for the current instruction.) This response
also indicates to the MPU that it may sample interrupts between reads of the response CIR. If
there is no interrupt pending, the MPU reads the response CIR again. If there is an interrupt
pending, the MPU takes an interrupt exception using the mid-instruction stack frame. Upon exiting
from the interrupt handler, the MPU re-polls the FPCP response CIR to continue the suspended
instruction dialog.

In the trace mode, an interrupt can temporarily break the synchronization of the MPU and the
FPCP. This can occur when the MPU receives a null (CA = 0, IA= 1, PF = 0) primitive. In this case,
the MPU checks for interrupts before reading the response CIR again; if an interrupt is pending,
the interrupt exception is processed immediately. In response to the interrupt, the MPU saves a
10-word mid-instruction stack frame with the trace pending status saved as part of the previous
context information. When the interrupt handler completes execution and performs an RTE in
struction, the MPU returns to the trace pending mode and reads the response CIR to determine
if the previous coprocessor instruction is completed. In this manner, the exception processing for
the interrupt is completely transparent to the handling of the trace exception by the MPU and
FPCP pair.

If an interrupt handler for a system using an MC68881 requires the use of the MC68881, or if a
task switch requires that the context be saved, an FSAVE instruction should be the first floating
point instruction executed by the routine. To restore the original context, an FRESTORE must be
executed by the routine before the RTE instruction. If an interrupt handler does not interact with
the MC68881, no context save operations are required.

For a system using an MC68882, each interrupt handler must be enclosed within an FSAVEI
FRESTORE instruction pair, even if the handler does not execute an MC68882 instruction.

Many FPCP instructions require a fairly long time to execute, and the MPU may be forced to wait
until the FPCP execution is complete before proceeding to the next instruction (either because
the instruction does not allow concurrency or the main processor is in the trace mode). Normally,
the MPU can only process pending interrupts when it reaches an instruction boundary, but this
might adversely affect interrupt latency if it is not allowed to process interrupts while waiting on

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-25

the FPCP. To reduce interrupt latency as much as possible, the FPCP always sets the interrupts
allowed (lA) bit in the null (CA= 1) and null (CA = 0, PF = 0) primitives; thus allowing interrupts to
be processed while the MPU is waiting for the coprocessor to complete an operation. In fact,
most FPCP instructions, regardless of their overall execution time, provide for very small interrupt
latency times. The worst case interrupt latency instruction for the FPCP is the FRESTORE with a
busy state frame (see 8.3 INTERRUPT LATENCY TIMES for more information).

6.2.6 Address and Bus Errors

Bus cycle faults may occur while processing FPCP instructions during the MPU accesses of the
coprocessor interface registers, or during memory cycles run by the MPU to access instructions
or data. If the MPU receives a fault while running the bus cycle which initiates an FPCP instruction
(i.e., the initial write to the command or condition CIR), it assumes that no FPCP is present in the
system, and takes a "re-instruction exception using the F-line emulator vector number. Thus, an
MPU system may utilize software emulation of the FPCP or provide hardware floating point, and
the actual configuration is transparent to the application program. If any other access to the FPCP

• is faulted, it is assumed that the coprocessor has failed, and the MPU takes a bus error exception.

If the MPU has a memory fault while executing an FPCP instruction, it takes an address error or
bus error exception. After the fault handler corrects the fault condition, it may return and com
munication with the FPCP continues as if the fault had not occurred.

6.2.7 Privilege Violations

The MPU operates at one of two privilege levels: the user level or the supervisor level. The
privilege level determines which operations are legal, and the S bit in the MPU status register
determines the privilege level. Most programs execute at the user level where accesses are
controlled, and effects on other parts of the system are limited. The operating system executes
at the supervisor level, has access to all resources, and may execute all instructions; hence, it
performs the overhead tasks for the user level programs.

The FPCP FSAVE and FRESTORE instructions are privileged instructions; all others are non
privileged. An attempt to execute the FSAVE or FRESTORE instructions while at the user privilege
level results in the MPU taking a pre-instruction exception using the privilege violation vector
humber.

6.2.8 Format Error Exceptions

When the FRESTORE instruction is executed, the FPCP checks the validity of the format word
written to the restore CIR by the MPU. Refer to 6.4.2 State Frames for information on the format
word. The FPCP returns an invalid format word ($02XX) in the restore CIR when the format word
from MPU is not valid. The MPU then takes a pre-instruction exception using the format error
vector number. Refer to 7.5.4.7 FORMAT EXCEPTION, FRESTORE INSTRUCTION for further in
formation on the FRESTORE format error exception.

When an FSAVE instruction is initiated while the FPCP is executing a previous FSAVE or FRESTORE
instruction, the FPCP returns an invalid format word ($02XX) in the save CIR. The MPU then takes
a pre-instruction exception using the format error vector number. Refer to 7.5.4.6 FORMAT EX
CEPTION, FSAVE INSTRUCTION for further information on the FSAVE format error exception.

MOTOROLA
6-26

MC68881/MC68882 USER'S MANUAL

6.3 MC68882 EXCEPTION HANDLERS

MC68882 exception handlers can be derived by modifying existing MC68881 handlers. The re
quired modifications are discussed in 5.2.2 Exception Handler Code. Note that if the guidelines
in the referenced text are met, the resulting MC68882 handlers can be used with no adverse effects
for systems that use the MC68881. Since the MC68882 is pin-compatible and user-software
compatible with the MC68881, the exception handlers can be written to meet the system software
requirements of both the MC68881 and the MC68882. When this is done, systems that only use
the MC68881 at present can replace the MC68881 with the MC68882 using the same socket, without
changing either applications or systems software.

6.4 CONTEXT SWITCHING

In most types of multitasking systems, it is often necessary to take control from one program and
give control to another program. This requires the operating system to extract (from the FPCP)
data corresponding to one program context and load the context corresponding to the next
program to be executed. The information that must be exchanged is divided into two categories: ~

1. Programmer's model consists of data accessible by the programmer using non-privileged .a
instructions. This data is saved and restored using the FMOVEM instructions.

2. Internal state consists of various internal flags and registers that are vital in restoring the
FPCP to the proper state. The application program need not be concerned with the internal
state. These internal flags and registers are accessed by the privileged FSAVE and FRESTORE
instructions.

The following paragraphs describe how this context information is manipulated.

6.4.1 FSAVE and FRESTORE Instruction Overviews

The basic mechanism for performing a context switch on the FPCP is provided by the FSAVE and
FRESTORE instructions. These instructions are a logical extension to the instruction continuation
mechanism that is used by the MC68010, MC68020, and MC68030 processors to support virtual
memory. The FSAVE instruction is treated much like a microcode level interrupt to the FPCP,
instructing it to suspend any operation that is being executed (at the earliest possible boundary)
and make a complete copy of the internal state of the machine into memory. This is similar to
the effect of the assertion of bus error to the main processor. To restore the internal state saved
by the FSAVE instruction, the FRESTORE instruction is used, which is similar to the RTE instruction
on the main processor.

The internal state information that is stored in memory by the FSAVE instruction contains the
image of the flags and registers not visible to the user, including the address in the microprogram
counter, temporary register values, and pending exception information. After the execution of an
FSAVE, the FPCP enters the idle state, and any pending exceptions are cleared. To perform a
complete context save, FMOVEM instructions must be used to save the user-visible portion of
the machine; and then a new context may be loaded. When it is necessary to reload the context
that was previously saved, these steps are reversed: first, the FMOVEM instructions load the user
visible cOhtext, followed by an FRESTORE instruction, which loads the non-user-visitJle context.
After the execution of the FRESTORE, the FPCP returns to the exact context that existed just before
the FSAVE instruction was executed, and execution continues from that point.

Depending on the state of the FPCP when an FSAVE instruction is executed, the format of the
internal state information written to memory may be in one of three forms: idle, null, or busy.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-27

Also, the FPCP may force the MPU to wait for a short time while the internal state is prepared
for the save operation. During execution of an FRESTORE instruction, the FPCP interprets the
state information read from memory (and written to the restore CIR) to determine the appropriate
response action. The FRESTORE is destructive in that the FPCP immediately stops any operation
that it may be performing and begins to load the next context; thus there is no need for a
mechanism in the FRESTORE instruction to allow the FPCP to make any service requests to the
MPU. The protocol of the FSAVE and FRESTORE instructions is described in detail in a subsequent
paragraph.

6.4.2 State Frames

The three state frame formats that are generated by the MC68881 are shown in Figure 6-4. In all
three state frames, the first long word of the frame has the same format. The least significant
word of this long word is reserved for future definition by Motorola; it is included to allow long
word alignment of a state frame in memory. The most significant word of the first long word

6 (called the format word) contains the version number of the coprocessor that generated the state
frame (in the most significant byte) and the size of the internal state stored in the frame (in the
least significant byte). For the null state frame, the size value is undefined. Although the version
number and frame size values are defined by the MC68881, the M68000 Family coprocessor
interface defines the null format word which is the one format word value that must be recognized
by any coprocessor as described in a subsequent paragraph.

Two of the state frame formats for the MC68882, shown in Figure 6-5, differ from the corresponding
state frames for the MC68881 in two respects. First, the idle and busy state frames each contain
32 additional bytes, which store the CU internal state. Second, the saved CU internal state is saved
at the top of the frame, immediately following the format word. This results in offsets to the APU
information that are greater than those for corresponding data in the MC68881 state frames by
$20. The null state frame consists only of the format word in both coprocessors.

When an FSAVE instruction is executed, the format word is the first data item transferred to the
MPU, and the main processor uses the size value to perform the correct address calculations.
During an FRESTORE instruction, the format word is written to the FPCP to initiate the restore
operation. When this occurs, the FPCP checks the version number and frame size values for validity
and signals a format exception if they are not valid for this particular device. The version number
is an 8-bit value that identifies the microcode version of the FPCP, and the format of this number
is defined internally by the FPCP. Future devices will use a unique combination of the version
number and frame size values in order to guarantee that various revisions of the device cannot
incorrectly utilize an internal state frame that is not valid for that revision.

In addition to being used by the FPCP to validate a state frame before it is used in a restore
operation, the format word can be used by a user program to identify the format of a state frame
and the saved state of the FPCP. In the following descriptions of the three state frames, the data
format within a frame is guaranteed only for those version number and frame size values given
in the accompanying tables. Routines that utilize state frame information must examine the format
word to correctly identify any data formats that are subject to change by Motorola.

NOTE

The state size value in the format word indicates the size (in bytes) of the FPCP internal
state information. This size value does not include the format word or the reserved word.

MOTOROLA
6-28

MC68881/MC68882 USER'S MANUAL

$00

$04

$08

SOC

$10

$14

$18

$DO

$04

$08

SOC

SAC

$BO

$B4

l

31

31

31

'7

NULL STATE FRAME

23 15

$00 IUNDEFINED) IRESERVED)

IDLE STATE FRAME

23 15

VERSION NUMBER I $18 I IRESERVED)

COMMAND/CONOITION REGISTER I IRESERVED)

EXCEPTIONAL OPERAND
112 BYTES)

OPERAND REGISTER

BIU FLAGS

BUSY STATE FRAME

23 15

VERSION NUMBER I $B4 I IRESERVED)

INTERNAL REGISTERS
1180 BYTES)

Figure 6-4. MC68881 State Frame Formats

MC68881/MC68882 USER'S MANUAL

7

MOTOROLA
6-29

•

MOTOROLA
6-30

$00

$04

$08

$24

$28

$2C

$30

$34

$38

$00

$04

$08

SOC

$CC

$00

$04

31

31

,

31

7

NULL STATE FRAME

23 15

$00 IUNDEFINED) IRESERVED)

IDLE STATE FRAME

23 15

VERSION NUMBER I $38 I IRESERVED)

COMMAND/CONDITION REGISTER I IRESERVED)

INTERNAL REGISTERS 7
132 BYTES)

EXCEPTIONAL OPERAND
112 BYTES)

OPERAND REGISTER

BIU FLAGS

BUSY STATE FRAME

23 15 o
VERSION NUMBER I $04 I IRESERVED)

INTERNAL REGISTERS '7
1212 BYTES) L

Figure 6-5. MC68882 State Frame Formats

MC68881/MC68882 USER'S MANUAL .

6.4.2.1 NULL STATE FRAME. As shown in Figures 6-4 and 6-5, no internal state information is
saved in the null state frame. Only the coprocessor version number (0) is indicated. Version number
o is a wild card number, allowing this state frame type to be restored to a coprocessor of any
version. The size value of a null state frame is not assumed to be valid during a save operation
and is ignored by the FPCP during a restore operation. A restore of the null state performs the
reset function with all floating-point data registers loaded with non-signaling NANs and with the
FPCR and FPSR set to zero. A save of the null state results when no FPCP instructions have been
executed since the last null state restore or hardware reset. Note that a save of a null state indicates
that the FPCP programmer's model is empty, and thus does not need to be saved with a FMOVEM
instruction.

6.4.2.2 IDLE STATE FRAME. As shown in Figure 6-4, 24 bytes of internal state are saved in the
idle state frame for the MC68881. For the MC6882, the idle state frame consists of 56 bytes (see
Figure 6-5). The format word indicates the coprocessor version number and state size (24 or 56
bytes in addition to the format word). An idle state frame is produced if an FSAVE occurs when
a floating-point instruction is not being executed, or when the current instruction is in the end
phase (refer to 6.4.3.5 END PHASE for a definition of the end phase). •

In addition to being used for context switching, the idle state frame contains information that is
useful to most floating-point exception handlers. First, it contains the exceptional operand value,
which can be evaluated by an exception handler to determine the cause of an exception. Second,
it contains the BIU flag word that indicates the status of the FPCP at the time of an FSAVE
instruction. For example, this information can be used by the trace exception handler in a debug
monitor to display the pending exception status along with the register state of the machine.

As shown in Figure 6-4, the idle state frame for the MC68881 contains four data items: the
command/condition register image, the exceptional operand, the operand register image, and the
BIU flags. A reserved word is also included in order to align the state frame to a long-word
boundary; it is written as $FFFF and ignored during restore operations. The command/condition
word and operand register may contain temporary information, as indicated by the BIU flags.

The idle state frame for the MC68882 contains 32 words of CU internal register and state infor
mation between the command condition register and the exceptional operand. It is otherwise
identical to the idle state frame for the MC68881.

The format of the BIU flag word is shown in Figure 6-6. Only the 16 most significant bits in the
BIU flag word are defined; the undefined bits are written as ones during save operations and
ignored during restore operations.

The definitions of the 16 flag bits are:

Bits 16-19

Bits 20-23

These bits contain internal state information about the CU and should not be
modified.

These bits are set when valid data is contained in the operand register image
of the state frame. There is one flag bit for each byte in the 32-bit operand
register image; if a bit is one, there is valid data in the corresponding byte. If
a bit is zero, the data in the corresponding byte is assumed to be invalid. These
bits can be used to qualify the image of the operand register and should not
be modified.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-31

•
Bits 24-25

Bit 26

Bit 27

Bit 28

MOTOROLA
6-32

31 26

,........,------,---r--....,--- INTERNAL STATE INFORMATION
IMC68882 ONLY}

23 20 15

OPERAND REGISTER BITS 24-31 VALID

OPERAND REGISTER BITS 16-23 VALID

OPERAND REGISTER BITS 8-15 VALID

OPERAND REGISTER BITS 0-7 VALID

OPERAND TO MEMORY MOVE PENDING

FLOATING-POINT EXCEPTION PENDING

ACCESS OF OPERAND REGISTER EXPECTED

PENDING INSTRUCTION OR ACCESS TYPE

INSTRUCTION PENDING

PROTOCOL VIOLATION PENDING

I UNDEFINED. RESERVED 11 WHEN READ}

Figure 6-6. BIU Flag Format

These bits contain internal state information about the CU and should not be
modified.

This bit indicates that the FPCP has completed any necessary operand con
versions and is ready to write an operand to memory. If this bit is a zero, an
operand transfer to memory is pending. This bit should not be modified.

This bit indicates that a floating-point exception is pending, which is reported
when the MPU attempts to initiate the next floating-point instruction (after an
FRESTORE of this state frame). If this bit is zero, an exception is pending, and
the logical AND of the FPSR EXC and FPCR ENABLE bytes indicates the type
of the pending exception. This bit may be read by an exception handler (par
ticularly a trace routine) to determine the exception status of the FPCP. As
described in a subsequent paragraph, a user program can modify this bit and
the FPSR EXC and FPCR ENABLE byte images to create a software generated
pending exception.

NOTE

This bit must be set by the exception handler immediately before an FRESTORE
and RTE instruction. When this bit is not set in the exception handler, the
MC68882 re-executes the handler.

This bit indicates that the FPCP is expecting the next coprocessor interface
register access to be to the operand CIR. This bit is used by the BIU as part of
the protocol violation checking hardware and should not be modified. If this
bit is a zero, an access of the operand CIR is pending, and the state of bit 29
determines whether the expected access is a read or write cycle. Bits 28-30
combine to define the pending operation as listed in Table 6-4.

MC68881/MC68882 USER'S MANUAL'

Bit 29

Bit 30

Bit 31

Table 6-4. BIU Flag Bit Definitions

30 29 28 Definition

0 0 0 (Undefined, Reserved)

0 0 1 Conditional Instruction Pending

0 1 0 (Undefined, Reserved)

0 1 1 General Instruction Pending

1 0 0 Write of Operand CIR Pending

1 0 1 (Undefined, Reserved)

1 1 0 Read of Operand CIR Pending

1 1 1 No Pending Instruction or Operand CIR
Access

This bit defines the type of pending operand access that is expected or the type
of pending operation that is saved in the command/condition register image.
This bit should not be modified. Bits 28-30 combine to define the pending
operation as listed in Table 6-4.

This bit indicates that the FPCP has received a new command word or condi
tional predicate from the MPU, but has not been able to begin execution of
that operation. If this bit is zero, the command word or conditional predicate
that was received is contained in the command/condition register images of
the state frame. This bit should not be modified. Bits 28-30 combine to define
the pending operation as listed in Table 6-4.

This bit indicates that a protocol violation has been detected by the FPCP, and
the MPU has not responded with an exception acknowledge or abort operation.
If this bit is a one, a protocol violation is pending. This bit should not be
modified.

NOTE
The formats of the idle state frame and the BIU flags shown are for the initial
production versions of the FPCP; this format is identified by the format word
values ($1F18 and $3F18 for the MC68881, and $1F38 for the MC68882). Mo
torola reserves the right to utilize different state frame formats and format word
values to support future revisions to the FPCP.

The only bit in the BIU flag word that can be modified by software is bit 27, the exception pending
bit. If this bit is zero, an exception is pending and may be cleared by changing it to a one.
Alternatively, the type of the pending exception can be changed by modifying the FPSR EXC byte
and/or the FPCR ENABLE byte before executing an FRESTORE. Finally, if the pending exception
bit is one (indicating that no exception is pending), it can be changed to make an exception
pending; the type of exception pending is defined by the FPSR EXC and FPCR ENABLE bytes. In
all of these cases, the change in the exception status takes effect when the state frame is utilized
by an FRESTORE instruction.

The exception pending bit (referred to as EXC PEND) in the BIU flag word is the image of the
exception pending signal internal to the FPCP. Normally, EXC PEND is negated by the FPCP
execution unit when an instruction (other than an FMOVEM, FMOVE control register, FSAVE,
FRESTORE) begins execution, and is asserted if an exception occurs during the instruction. The
bus interface unit uses EXC PEND to determine the primitive response that is encoded in the

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-33

response CIR after a write to the command or condition CIRs, or after the completion of the
transfer of a floating-point operand to memory. If EXC PEND is true when an attempt is made to
initiate an FPCP instruction (other than an FMOVEM, FMOVE control register, FSAVE, or FRES
TORE), the response CIR is encoded to the take pre-instruction exception primitive (or the take
mid-instruction primitive when the instruction in the CU is reporting an exception caused by the
instruction in the APU); otherwise, the dialog for the instruction is started. If EXC PEND is true
at the end of the move of a floating-point operand to memory, the response CIR is encoded to
the take mid-instruction exception primitive; otherwise it is encoded to the null (CA=O, PF=1)
primitive. The vector number that is encoded in the take exception primitive is determined by the
state of the FPSR EXC and FPCR ENABLE bytes and corresponds to the highest priority exception
that is enabled. The MPU responds to the take exception primitive by writing an exception ac
knowledge to the control CIR. When the MC68881 detects the exception acknowledge, it clears
EXC PEND. However, the MC68882 does not clear the EXC PEND bit. It is the responsibility of the
el"<ception handler to clear EXC PEND, using the instructions listed in 5.2.2 Exception Handler
Code.

With this understanding of how EXC PEND (and its image in the BIU flag word) affects the operation

•
of the FPCP, a programmer can make exceptions pending in the FPCP under software control.

• Or, conversely, a pending exception type may be changed or cleared if necessary.

6.4.2.3 BUSY STATE FRAME. As shown in Figure 6-4, 180 bytes of internal state are saved in the
MC68881 busy state frame. The format word indicates the coprocessor version number and state
size (180 bytes). The busy state is produced if an FSAVE occurs when a floating-point instruction
is in the initial or middle phase. Due to the volatile nature of the FPCP internal state during
calculation, this state frame does not contain any information useful to applications programs,
and the frame should not be modified in any way.

The MC68882 busy state frame contains 212 bytes, including 32 bytes of CU internal state infor
mation (refer to Figure 6-5). The format word contains the coprocessor version number and the
state size. Otherwise the MC68882 busy state frame is identical to the busy state frame of the
MC68881.

6.4.3 FSAVE Protocol

Table 6-5 lists five possible phases of the execution of a floating-point instruction that can apply
at the time an FSAVE instruction is executed. For each phase, the table shows the response time
and the state frame type.

Table 6-S. MC68881/MC68882 Responses
to Save Command

Phase Name Response Time State Frame type

Reset Immediate Null

Idle Immediate Idle

Initial Immediate Busy

Middle Periodic Busy

End Delayed Idle

When the MPU decodes an FSAVE instruction, it attempts to initiate a save operation in the FPCP
by reading from the save CIR. If the FPCP is ready to perform the save, it responds with a valid
state frame format word. The format word informs the MPU that the coprocessor is ready to

MOTOROLA
6-34

MC68881/MC68882 USER'S MANUAL

transfer the state frame and also what size frame is to be saved. If the FPCP is not ready to begin
the transfer of the state frame, it returns the come-again format word, forcing the MPU to wait.
When the MPU receives the come-again format word, it checks for pending interrupts and proc
esses them if necessary. Otherwise, it repeatedly reads the save CIR until a format word other
than come again is returned. When the FPCP receives a valid format word, it reads the number
of bytes indicated by the format word, four bytes at a time, from the operand CIR and writes them
to memory.

The FPCP always returns one of five format words in the save CIR. Table 6-6 shows the five format
word values and their meanings. In this table, the version number of the idle and busy format
words corresponds to the version number of the initial production versions of the MC68881; future
revisions ofthe device will utilize different version numbers to identify unique state frame formats.
If the format of the idle or busy state frame of a future version of the FPCP differs from that of
versions $1 F and $3F for the MC68881 or $1 F for the MC68882, Motorola will provide the new
format information when the new version is available.

Table 6-6. MC68881/MC68882 Format
Word Definitions

Format Word Definition and Frame Size

$OOxx' Null State

$01xx' Come Again

$02xx' Illegal. Format Error

$vv18" Idle State (MC68881)

$vvB4'* Busy State (MC68881)

$vv38*' Idle State (MC68882)

$vvD4" Busy State (MC68882)

'The frame size byte for these format words is undefined for
the M68000 Family coprocessor interface. The value encoded
by each version is consistent; however. different versions are
not guaranteed to use the same values.

"Each different version encodes a unique version number in
"vv" while using the same frame size value.

The come-again format word is returned by the FPCP to force the MPU to wait, as previously
described. When the FPCP is ready to complete a save operation, it returns one of the other valid
format words (nUll, idle, or busy) to the main processor and then transfers the appropriate state
frame. The only time that the FPCP uses the illegal format word is when a read of the save CIR
occurs while the FPCP is performing a state save or state restore. Normally, this only occurs when
the execution of an FSAVE or FRESTORE instruction is suspended (e.g., due to a page fault during
the save or restore operation) and an attempt is made to exec\Jte a new FSAVE instruction. If this
happens, the illegal format word is returned to cause a format exception to be taken by the main
processor. When the MPU receives the illegal format word, it writes an abort to the control CIR
and initiates exception processing. In this case, the format error handler routine examines the
instruction that was being executed when the format error occurred and can determine whether
the second FSAVE instruction failed due to "nesting" of save or restore operations. Such an error
is considered to be a catastrophic system error since the FPCP context is lost and cannot be
recovered.

When the MPU receives an idle or busy format word, the bytes in the frame (four bytes at a time)
are transferred from the operand CIR to memory. First, the format word is written to memory at
the evaluated effective address. For the predecrement addressing mode, the value of the specified

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-35

•

address register is saved in a temporary register, the size of the state frame is subtracted from
the address register, and the format word is pushed to that address. (Thus, the required stack
space is allocated before the save operation is started.) The state frame is then filled, from higher
addresses to lower addresses, using the temporary register as a pointer. For the control alterable
addressing modes, the format word is written to the specified address; then the address of the
last word of the frame is calculated (in a temporary register) and the frame is filled from higher
addresses to lower addresses. After the last byte of the state frame is written to memory, the
FPCP is in the idle state with no pending exceptions, and the MPU executes the next instruction
(it does not read the save or response CIR after the save operation).

The following paragraphs describe the response of the FPCP to an FSAVE instruction for the
various phases of instruction execution.

6.4.3.1 RESET PHASE. In this phase, no FPCP instructions have been executed since the last
hardware reset or FRESTORE of a null state frame. When the FPCP is in this state and an FSAVE
is executed, a null format word is returned immediately .

6.4.3.2 IDLE PHASE. In this phase, the FPCP is not executing an instruction, but at least one
instruction has been executed since the last hardware reset or FRESTORE of a null state frame.
When the MC68881 is in this state and an FSAVE is executed, an idle format word is returned
immediately, and an idle state frame is stored.

6.4.3.3 INITIAL PHASE. In this phase, the FPCP is acquiring instruction and operand words from
the MPU. In a virtual memory system, a memory fault can occur during this phase due to an
attempt to access an operand that is not resident in main memory. In this case, the MPU traps
to a fault handler to initiate a transfer from secondary storage, typically involving one or more
disk accesses. After initiating the transfer, the operating system usually SWitches the main pro
cessor and coprocessor(s) to another program, thus necessitating a save of the coprocessor state
and restoration of the state of the coprocessor relative to the next program. To facilitate saving
and restoring the coprocessor, the FPCP responds immediately to a save command during the
initial phase by storing a busy state frame.

6.4.3.4 MIDDLE PHASE. The middle phase occurs only in FPCP instructions that take significant
processing time (i.e., remainder, transcendental functions, and BCD conversions). During this
phase, the internal microcode sequence ofthe FPCP provides for periodic checkpoints to determine
if the MPU has issued a save command. If the MPU initiates a save command to the FPCP between
check points, the FPCP sets an internal flag to denote the receipt of the command and returns a
come-again format word to the MPU. The MPU repeatedly reads the save CIR until it receives a
valid format word. The FPCP continues internal processing up to the next checkpoint, at which
time processing stops, and the next read of the save CIR acquires the appropriate format word
to start the save operation. At this point, the save command proceeds to completion, and the
FPCP supplies a busy state frame.

6.4.3.5 END PHASE. This phase begins when the FPCP is almost finished with a long instruction.
The length of the end phase is approximately equal to the amount of time required to perform a
save of a busy state frame. When the FPCP reaches the end phase, it takes less time to complete
execution of the instruction and save an idle frame than to immediately save a busy state. During

MOTOROLA
6-36

MC68881/MC68882 USER'S MANUAL

this phase, the FPCP uses the come-again format word to force the MPU to wait for the completion
of the instruction, and then saves an idle state frame.

Note that most of the FPCP instructions proceed directly from the initial phase to the end phase,
and thus, most state frames generated by the FPCP are idle frames.

6.4.4 FRESTORE Protocol

When the MPU decodes an FRESTORE instruction, it evaluates the effective address to locate the
format word for the state frame, and writes that format word to the restore CIR of the FPCP. In
response to this write cycle, the FPCP aborts any operation that may be in progress and prepares
to load a new internal state. The format word that is written to the restore CIR is checked for
validity (it must be a null, idle, or busy format word with a version number that matches that of
the specified device) before the restore operation begins. After the MPU writes the format word
to the FPCP, it then reads the restore CIR to verify that the format word is valid. If the format
word is valid, the FPCP returns the same format word that was written; if the format word is not
valid, an illegal format word ($02xx) is returned. If the format word is successfully verified, the
MPU begins to transfer the state frame, four bytes at a time, from memory to the FPCP operand
CIR.

When transferring the state frame from memory to the FPCP, the MPU first transfers the format
word and, after it is verified, transfers the remainder of the state frame. The order of transfer is
the same for both the postincrement and the control addressing modes. The long word at the
lowest address is transferred first, followed by the long words at successively higher addresses.
For the postincrement addressing mode, the specified address register is not updated by the MPU
until the entire frame has been successfully transferred. Thus, a fault during an FRESTORE in
struction generates a stack frame that does not overwrite any part of the FPCP state frame.

After the entire state frame has been transferred to the FPCP, the MPU continues with the execution
of the next instruction (it does not read the response CIR). If an exception related to the FPCP
caused the suspension of the task earlier, an RTE instruction is eventually executed to return to
the original context. Depending on the exception type, the RTE may re-establish the MCU/copro
cessor protocol of the suspended operation or begin the execution of a new FPCP instruction.

6.4.5 Context Switching Summary

To perform a complete context save or restore operation, three FPCP instructions are required.
First, the FSAVE and FRESTORE instructions are used to transfer the non-user-visible portion of
the machine state between the FPCP and memory. Second, the FMOVEM instruction may be used
to transfer the user-visible portion of the machine, including the floating-point data and control
registers.

An important aspect of the FMOVEM instruction is that it cannot cause an exception or report a
pending exception; thus the context of the FPCP, including pending exceptions, can be saved and
restored in a manner that is completely transparent to a user program. Note that if an FSAVE
instruction stores a null state frame, the floating-point data and control registers are reset to their
default states, and the FMOVEM instructions are not needed. Figure 6-7 illustrates the manner in
which a full context switch might be performed.

MC68881/MC68882 USER'S MANUAL MOTOROLA
6-37

II

•

NULLSV ...

FSAVE
TST.B
BEQ
FMOVEM
FMOVEM
MOVE.L

TST.B
BEQ
ADDQ.L
FMOVEM
FMOVEM

NULLRST FRESTORE

INSTRUCTION SEQUENCE TO STORE THE PREVIOUS CONTEXT

-(An)
(An)
NULLSV
FPO-FP7, - (An)
FPCR/FPSR/FPIAR, - (An)
#-I,-(An)

SAVE MC68881 STATE FRAME
CHECK FOR A NULL FRAME
SKIP PROGRAMMER'S MODEL; SAVE IF NULL
ELSE, SAVE DATA REGISTERS
AND SAVE CONTROL REGISTERS
PLACE NOT-NULL FLAG ON STACK

INSTRUCTION SEQUENCE TO LOAD THE NEXT CONTEXT

(An)
NULLRST
#4,An
(An) + ,FPCR/FPSR/FPIAR
(Ani + ,FPO-FP7
(An)+

CHECK ~OR NULL FRAME OR NOT-NULL FLAG
SKIP PROGRAMMER'S MOOEL; RESTORE IF NULL
ELSE, THROW AWAY THE NOT-NULL FLAG
RESTORE THE CONTROL REGISTERS
RESTORE THE DATA REGIST~RS
RESTORE THE FPCP STATE FRAME

Figure 6·7. Full Context Save/Restore Instruction Sequences

MOTOROLA
6-38

MC68881/MC68882 USER'S MANUAL

SECTION 7
COPROCESSOR INTERFACE

This section describes the coprocessor interface with respect to the communication protocol
utilized by the MC68881/MC68882 (FPCP) and MC68020/MC68030 (MPU). This communication
protocol includes electrical and command level mechanisms that allow a coprocessor to act as
an extension to the main processor.

The connection between the MPU and the FPCP is an extension of the M68000 bus interface, with
the FPCP connected as an auxiliary device to the MPU. The FPCP is selected by a chip select (CS)
signal that is decoded from the MPU function code and address bus lines.

The FPCP contains a set of coprocessor interface registers (CIRs) by which the main processor
and coprocessor communicate. These registers are not related to the programming model im
plemented by the FPCP. Rather, they are used as communication ports that have specific functions
associated with each register. When the FPCP is used as a coprocessor to the MPU, the program- II
mer is never required to explicitly access these interface registers, since the coprocessor interface
is implemented in the hardware and microcode of the MPU. A main processor other than an MPU
explicitly accesses the FPCP CIRs using a software routine that simulates the behavior of the MPU
with respect to the coprocessor interface.

For more information on the electrical interconnection between the main processor and the FPCP,
refer to SECTION 11 INTERFACING METHODS.

7.1 CHIP-SELECT DECODE

The MPU does not require any special bus signals, beyond the normal M68000 Family bus control
signals, for connection to the FPCP. The former MC68000 interrupt acknowledge address space
(function code 111) is extended in the MPU to become the CPU address space. A portion of this
space, identified by the MPU address bus, is dedicated to coprocessor devices. Figure 7-1 illustrates
the information presented on the MPU address bus for coprocessor accesses in the CPU address
space.

31 20 19 16 15 13 12 5 4

0000000000 00000000

Figure 7-1. MPU Address Bus Encoding for Coprocessor Accesses

During CPU space cycles, address bits A16-A19 indicate the CPU space function that the main
processor is performing. The MPU utilizes four of the possible 16 encodings of A16-A19 as listed
in Table 7-1.

The coprocessor identification (Cp-ID). A 13-A 15, is taken from the coprocessor instruction oper
ation word (refer to 7.4 COPROCESSOR INSTRUCTIONS). The coprocessor interface register (CIR

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-1

•

Table 7-1. MPU CPU Space Type Field Encoding

CPU Space Type
Field (A16-A19) CPU Space Transaction

0000 Breakpoint Acknowledge

0001 Access Level Control

0010 Coprocessor Communications

1111 Interrupt Acknowledge

select) field, AO-A4, is decoded by the FPCP to select the appropriate CIR. For a map of the FPCP
coprocessor interface registers in the CPU address space, refer to Figure 7-2. Since address bits
A20-A31 are not present on all implementations of M68000 processors, these bits are not essential
for decoding CPU space transactions and therefore are don't care bits.

The FPCP chip select decode, therefore, uses the MPU function codes (FCO-FC2), the CPU space
type field (A16-A19), and the Cp-ID field (A13-A15). The FPCP decodes the address bits AO-A4 to
determine the function (as defined by the selected CIR) of any coprocessor access.

31 16 15

$00 RESPONSE

$02 CONTROL

$04 SAVE

$06 RESTORE

SOB OPERATION WORD

$OA COMMAND

SOC (RESERVED)

$OE CONDITION

$10 OPERAND

$14 REGISTER SELECT (RESERVED)

$1B INSTRUCTION ADDRESS

$1C OPERAND ADDRESS

Figure 7-2. FPCP Coprocessor Interface Register Map

7.2 COPROCESSOR INTERFACE REGISTERS

Table 7-2 identifies the FPCP coprocessor interface register (CIR) locations in the CPU space that
are used for communications between the MPU and the FPCP. Figure 7-2 illustrates the memory
map of the CIRs on a 32-bit bus. When CS is asserted, the FPCP decodes the CIR select field of
the address bus (AO-A4) to select the appropriate coprocessor interface register.

When the FPCP is used on a 32-bit bus, the coprocessor interface registers appear at the logical
addresses shown in Figure 7-2 and Table 7-2. The M68000 dynamic bus sizing protocol is used
to place all word registers on the upper word of the data bus (D16-D31). This is accomplished by
asserting DSACK1 and leaving DSACKO negated when any word register (other than the register
select CIR) is accessed, regardless of the value of A 1.

MOTOROLA
.7-2

MC68881/MC68882 USER'S MANUAL

Table 7-2. Coprocessor Interface Register Characteristics

Register A4·AO Offset Width Type

Response OOOOx $00 16 Read

Control 0001x $02 16 Write

Save 0010x $04 16 Read

Restore 0011x $06 16 R/W

Operation Word* 0100x $08 16 R/W

Command 0101x $OA 16 Write

(Reserved) 0110x $OC 16 -
Condition 0111x $OE 16 Write

Operand 100xx $10 32 R/W

Register Select 1010x $14 16 Read

(Reserved) 1011x $16 16 -
Instruction Address 110xx $18 32 Write

Operand Address* 111xx $1C 32 R/W

*These CIRs are optionally implemented by a coprocessor only if they are needed; since they are not used by
the MC68881, they are not implemented. Writes to these locations are ignored, and reads always return all
ones.

The following paragraphs describe the characteristics of each of the coprocessor interface registers
as implemented by the FPCP. In each description, the read/write attribute of each register is
included. If a register is read only, write accesses to that location are ignored; while read accesses
of a write-only register always return all ones. In all cases, the FPCP asserts DSACKx in response
to the assertion of CS in order to terminate the bus cycle.

7.2.1 Response CIR ($00)

This 16-bit read-only register is used to communicate service requests from the FPCP to the main
processor. A read of the response CIR is always legal, regardless of the state of an instruction
dialog. The formats of the response primitives that are returned through this register are detailed
in 7.4.2 Response Primitives.

The execution of an instruction by the FPCP does not start until the main processor reads the
response CIR for the first time after a write to the command CIR. Furthermore, a read of a primitive
from the response CIR usually causes the FPCP to proceed to the next state in an instruction
dialog. For example, if an evaluate effective address and transfer data primitive is encoded in the
response CIR and the main processor reads that primitive, it is assumed that the primitive was
successfully transferred (and saved for later use, if necessary) and that the requested service is
performed. In this case, the FPCP then changes the encoding of the response CIR to the null
primitive and waits for an access of the operand CIR to transfer the operand.

7.2.2 Control CIR ($02)

This 16-bit write-only register is utilized by a main processor to issue an exception acknowledge
or instruction abort to the FPCP. Figure 7-3 illustrates the format of this register. Only two of the
16 bits are defined: the exception acknowledge (XA) and abort (AB) bits.

15 14 13 12 11 10

UNDEFINED, RESERVED

Figure 7-3. Control CIR Register

MC68881/MC68882 USER'S MANUAL

XA AB

MOTOROLA
7-3

II

The implementation of the MC68881 does not utilize these two bits; instead, it interprets a write
to this CIR address as an abort command, regardless of the data pattern written. Thus, an exception
acknowledge (in response to a take exception primitive) or abort (in response to an illegal format
word or an invalid primitive request) issued during any MC68881 instruction protocol, or an explicit
write (e.g., with the MOVES instruction) to the control CIR always has the same effect on the
MC68881. Also, write cycles to this register are never illegal since the MC68881 always responds
in the same manner.

The response of the MC68881 to a write of the control CIR is:
1. To immediately terminate processing for any instruction that may be in progress. If an

arithmetic instruction is in progress when an abort is issued, the content of the destination
floating-point data register is undefined. No other user visible registers are disturbed.

2. To clear any pending exceptions.
3. To reset the bus interface unit to the idle condition. Thus, the MC68881 is ready to begin a

new instruction protocol following the write cycle.

Unlike the MC68881, the MC68882 distinguishes a write to the AB bit from a write to the XA bit.
A write to the AB bit is interpreted as an abort of the last instruction received. However, an abort
is only recognized during a certain window, which begins when the main processor writes an
instruction to the command CIR and extends to the last C!R read or write required for that in-

•
struction. If the write to the AB bit of the control CIR occurs during this abort window, an abort

. function is initiated. Otherwise, a write to the AB bit is undefined and produces an undefined
result. The response of the MC68882 to a write to the AB bit is:

1. To immediately terminate the instruction to which the abort window applies. Any concurrent
instruction in progress within the MC68882 is allowed to complete.

2. To reset the bus interface unit to the idle condition, leaving the MC68882 ready to begin a
new instruction protocol following the write cycle.

The write to the XA bit signals the MC68882 that the main processor is responding to an MC68882-
detected exception. This write operation is necessary to clear any pending exceptions. However,
the write operation alone does not guar"lntee that the exception is cleared. For the floating-point
exception traps, it is the responsibility of the exception handler to clear the exception. If the
handler does not clear the exception, the MC68882 continues reporting the same exception every
time the main processor reads the response CIR. Refer to 5.2.2 Exception Handler Code for
additional exception handler requirements.

7.2.3 Save CIR ($04)

This 16-bit read-only register is used by the main processor to issue a context save command to
the FPCP, and by the FPCP to return the format word of the FPCP state frame to the main processor.
A read of this register causes any operation that may be executing (except a state save or restore)
to be suspended, and a state save operation is initiated.

Following the re&d of a not ready, come again format word from the save CIR, the next expected
access is a read of the save CIR. After the read of an idle or busy format word, the next expected
access is to the operand CIR (to transfer the state frame). After the read of a null format word,
the FPCP is in the reset state, and the next expected access is to the command or condition CIA.

The only time that a read of this register is illegal is when the FPCP is executing a state frame
transfer for an FSAVE or FRESTORE instruction; a read of the save CIR is legal at any other time.

MOTOROLA
7-4

MC68881/MC68882 USER'S MANUAL

If the main processor reads the save CIR at an illegal time, the invalid format word is returned.
In response to the invalid format word, the main processor can write an abort to the FPCP to
return it to the idle state.

7.2.4 Restore CIR ($06)

This 16-bit read/write register is used by the main processor to issue a context restore command
to the FPCP and to validate the format word of a state frame. A write of this register causes the
FPCP to immediately stop any operation that may be executing and prepare to load a new internal
state context from a memory resident state frame.

After the main processor writes a format word to the restore CIR, it must read the restore CIR to
receive the result of the format word verification. If the written format word is valid, that format
word is read back from the restore CIR to indicate the successful verification. If the format word
is invalid, the invalid format, take exception value is placed in the restore CIR to indicate the
verification failure. After a successful verification is signaled, the next expected access is to the
operand CIR (to transfer the state frame). After a verification failure is signaled, the main processor
should write an abort to the control CIR in order to return the FPCP to the idle state. (The MPU
does this automatically.)

7.2.5 Operation Word CIR ($08)

This 16-bit write-only register is not used by the FPCP. The only time that this CIR location is used
by the M68000 Family coprocessor interface is when a coprocessor issues the transfer operation
word primitive, in which case the main processor writes the F-line word of the instruction to the
operation word CIR. Since the FPCP never issues the transfer operation word primitive, the op
eration word CIR location should never be written by the main processor. If a write to this location
occurs, it is ignored; it does not cause a protocol violation.

7.2.6 Command CIR ($OA)

This 16-bit write-only register is used by the main processor to initiate the dialog for a general
type coprocessor instruction. When the FPCP detects a write to this CIR location, the data value
is latched from the data bus. If the MC68881 is executing a previous instruction in the APU or if
the CU of the MC68882 is still busy when the command CIR is written, tt'le latched command word
is saved for later use, and the response CIR is encoded with the null (CA= 1, IA = 1) primitive. If
the FPCP is in the idle or reset state when a write to the command CIR occurs, it encodes the first
primitive for the selected instruction dialog in the response CIR in order to begin the execution
of the new instruction.

A write to this CIR location is legal at any time except when the FPCP is in the initial phase of a
general instruction or before the read of the conditional evaluation for a previous conditional
instruction. If a write to the command CIR occurs when it is not expected, a protocol violation
occurs, and the command word that is written is not saved by the FPCP.

7.2.7 Condition CIR ($OE)

This 16-bit write-only register is used by the main processor to initiate the dialog for a conditional
type coprocessor instruction. When the FPCP detects a write to this CIR location, the data value

MC68881/MC68882 USER'S MANUAL MOTOROLA
7·5

II

•
1.,'

is latched from the data bus. If the FPCP is executing a previous instruction when the condition
CIR is written, the latched conditional predicate is saved for later use, and the response CIR is
encoded with the null (CA=1, IA=1) primitive. If the FPCP is in the idle or reset state when a
write to the condition CIR occurs, it evaluates the selected condition and returns the null (CA=O,
TF=x) primitive (where the TF bit indicates whether the conditional evaluation is true (1) or false
(0)).

A write to this CIR location is legal at any time except When the FPCP is in the initial phase of a
general instruction, or before the read of the conditional evaluation for a previous conditional
instruction. If a write to the condition CIR occurs when it is not expected, a protocol violation
occurs, and the conditional predicate that is written is not saved by the FPCP.

7.2.8 Operand elR ($10)

This 32-bft read/write register is used by the main processor to, transfer data to and from the
FPCP. The FPCP transfers data through this CIR location in the following cases:

1. Following an evaluate effective address and transfer data primitive

2.

3.

4.

5.

Following the read of the register select CIR after a transfer multiple coprocessor registers
primitive

Following a transfer single main processor register primitive

Following a read of an idle or busy format word from the save CIR

Following a write of an idle or busy format word to the restore CIR

These five cases are the only times when an access to the operand CIR is legal. At any other time,
an access to this CIR location causes a protocol violation.

The FPCP expects all operands that are to be transferred through this CIR location to be aligned
with the most significant byte of the register. Any operand larger than four bytes is transferred
through this register using a sequence of long word transfers. If the operand is not a multiple of
four bytes in size, the portion remaining after the initial long word transfers is aligned with the
most significant byte of the operand CIR. Figure 7-4 illustrates the operand CIR data alignment
expected by the FPCP when transferring data through the operand CIR.

7.2.9 Register Select elR ($14)

This 16-bit read-only register is read by the main processor to transfer the register mask from the
FPCP during a move multiple floating-point data registers operation. The only time that an access
to this register is legal is immediately following the issue of a transfer multiple coprocessor
registers primitive to the main processor; at any other time, an access of this CIR location causes
a protocol violation.

Although a 16-bit register, the FPCP only utilizes the most significant eight bits; the least significant
eight bits are always read as zeros. The most significant eight bits contain the register mask for
the multiple register transfer, with each bit set if the corresponding floating-point register is to
be transferred. The main processor should not interpret the order of the bits in the register mask,
but rather count the number of ones in the mask to determine the number of registers to transfer.
Each FPCP floating-point data register is 12 bytes long, and thus requires three long word transfers.

MOTOROLA
7-6

MC68881/MC68882 USER'S MANUAL

TRANSFER
ORDER 31 24 23 16 15 8 7

BYTE OPERAND NO TRANSFER

WORD OPERAND NO TRANSFER

THREE BYTE OPERAND NO TRANSFER

LONG WORD OR SINGLE PRECISIDN OPERAND

MSB
OOUBLE PRECISION OPERAND

LSB

MSB

EXTENDED PRECISION OR PACKED DECIMAL OPERAND

LSB

Figure 7-4. Operand CIR Data Alignment

7.2.10 Instruction Address CIR ($18)

This 32-bit write only register is used by the main processor to transfer the address of the FPCP
instruction being executed when the PC bit of any primitive is set. The FPCP only sets the PC bit
in the first primitive returned during the dialog for an instruction that can cause an exception, or
a take pre-instruction exception primitive for a BSUN exception. When the coprocessor is an
MC68881, the main processor may optionally transfer the program counter value to the instruction
address CIR at that time or ignore the request. (This choice is left to the discretion of the system
designer in order to support exception handlers in the most efficient manner.) When the copro
cessor is an MC68882, the main processor must transfer the program counter value. The MC68882
issues a protocol violation when the main processor fails to transfer the program counter value.
The MPU always transfers the PC when needed.

For the MC68881, accesses to the instruction address CIR are neither expected nor unexpected
at any point in an instruction dialog; thus, an access to this CIR location never causes a protocol
violation. A write to the instructiun address CIR updates the FPIAR register in the MC68881
programming model; a read always returns all ones.

Internally, the MC68882 has three instruction address registers. One register is associated with
each of the stages of the MC68882 pipeline (BIU, CU, and APU). The instruction address register
associated with the arithmetic processing unit (APU) is the floating-point instruction address
register (FPIAR). Since only the APU can report an exception, the FPIAR always points to the
instruction that causes the exception whenever an exception occurs. When the instruction address
CIR is written (whenever the program counter value is passed), the program counter value is also
written to the instruction address register associated with the bus interface unit (BIU) stage of
the pipeline. The MC68882 interprets this program counter value as the address of the instruction
currently in the BIU. The instruction and its address are moved up the pipeline until the instruction
reaches the APU stage of the pipeline. If that instruction causes an exception, its address is in
the FPIAR (since the FPIAR is the instruction address register for the APU). This implementation
is necessary to ensure that an exception handler can point to the correct instruction, the one that
causes the exception. However, this implementation requires that the instruction address CIR be
written whenever the MC68882 requests it. The MC68882 issues a protocol violation whenever
the main processor fails to supply the requested program counter value. A read of the instruction
address CIR always returns all ones.

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-7

•

•

7.2.11 Operand Address CIR ($1C)

This 32-bit read/write register is used by the main processor to transfer an operand address in
response to the evaluate and transfer effective address or take address and transfer data primitives.
Since the FPCP does not utilize either of these primitives, this CIR is not required for operation
and is not implemented. An access to this CIR location does not cause a protocol violation; read
cycles always return all ones, and the data is ignored during write accesses.

7.3 INTERPROCESSOR TRANSFERS

All interprocessor transfers are initiated by the MPU. During the processing of an FPCP instruction,
the MPU transfers instruction information and data to the FPCP using standard M68000 write bus
cycles. The MPU also receives data, requests for service, and status information from the FPCP
using standard M68000 read bus cycles. A detailed description of the electrical characteristics of
the FPCP bus interface is contained in SECTION 10 BUS OPERATION and SECTION 12 ELECTRICAL
SPECIFICATIONS.

7.4 COPROCESSOR INSTRUCTIONS

FPCP instructions are from one to eight words in length. The first word of the instruction is called
the operation word, and the second word of the instruction is called the coprocessor command
word. Additional words specify the operands and are either extensions to the effective addressing
mode specified in the operation word or immediate operands that are part of the instruction. The
general format of an FPCP instruction is illustrated in Figure 7-5.

15

OPERATION WORO

COPROCESSOR COMMAND WORO (IF ANY)

EFFECTIVE AODRESS EXTENSION WORDS (1 TO 6, IF ANY)

Figure 7-5. Coprocessor Instruction General Format

All coprocessor operations are based on the F-line operation codes (i.e., operation words with
bits [15: 12] = $F) which instruct the MPU to call upon a coprocessor for execution ofthe instruction.
Figure 7-6 illustrates the format of this word.

15 14 13 12 11 10 9 8

1 I Cp-ID TYPE TYPE DEPENDENT

Figure 7-6. FPCP Instruction Operation Word

The Cp-ID field indicates which coprocessor is to be selected. Cp-IDs of 000-101 are reserved by
Motorola, and Cp-IDs 110 and 111 are reserved for user definition. The Motorola MPU and FPCP
assembler supplies 001 as the Cp-ID for FPCP instructions by default. The type field indicates to
the MPU which type of coprocessor operation is selected: general, branch, conditional, save, or
restore. The type and type dependent fields and the coprocessor command word for all FPCP
instructions are described in 4.7 INSTRUCTION ENCODING DETAILS.

MOTOROLA
7-8

MC68881/MC68882 USER'S MANUAL

7.4.1 Instruction Protocol

All FPCP instructions have a typical protocol which the MPU and FPCP use. This communication
protocol is as follows:

1. When the MPU detects an F-line operation word, communication is initiated by writing
information (a command, condition selector, or restore format word) to the appropriate FPCP
coprocessor interface register location. (The FPCP save instruction is initiated by a read
operation.)

2. The MPU then reads the coprocessor response to the previous write operation. The response
may indicate any of the following:
a. The FPCP is busy. MPU checks for interrupts, processes them if any are pending, and

then queries the coprocessor again. This allows synchronizing the main processor and
coprocessor.

b. An exception condition exists, and the FPCP instructs the MPU to take an exception using
a specific exception vector. The MPU acknowledges the exception and initiates exception
processing.

c. There is an FPCP service request (for example, to evaluate the effective address and
transfer data between the effective address and the FPCP). The FPCP may also request
that the MPU query the coprocessor after the service is performed.

d. The MPU is not needed for further processing of the coprocessor instruction. Commu
nication is terminated, and the MPU is free to begin execution of the next instruction. If •
the MPU is in the trace mode, the MPU does not take the trace exception until the FPCP
completes the processing of the coprocessor instruction.

Each FPCP instruction type has specific requirements based upon this simplified protocol. The
main processor requests required for each FPCP instruction are described in 4.7 INSTRUCTION
ENCODING DETAILS. All FPCP main processor service requests (response primitives) are de
scribed in the following paragraphs. In addition, the dialog used by the MPU and the FPCP during
the execution of each instruction is detailed in 7.5 INSTRUCTION DIALOGS.

7.4.2 Response Primitives

Data read from the FCPP coprocessor interface response register is referred to as a primitive.
Although the M68000 Family coprocessor interface defines 18 response primitives, the FPCP only
uses six of those primitives. For additional information on the complete set of response primitives
and how they are serviced; refer to the appropriate processor user's manual. The following
paragraphs summarize all FPCP response primitives and how they are used.

The M68000 coprocessor response primitives are encoded in a 16-bit word that is transferred to
the main processor through the response CIR. Figure 7-7 illustrates the general format of a
response primitive.

15 14 13 12 11 10 9 4

I CA I PC I DR I FUNCTION PARAMETER

Figure 7-7. M68000 Coprocessor Response Primitive General Format

The encoding of bits [12-0] of a coprocessor response primitive is dependent on the individual
primitive being implemented. Bits [15-131. however, are used to specify particular attributes of
the response primitive that can be utilized in most of the primitives defined for the M68000
coprocessor interface.

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-9

Bit [15] in the primitive format, denoted by CA, is used to specify the come-again operation of
the main processor. Whenever the main processor receives a response primitive from the FPCP
with the CA bit set to one, it should perform the service indicated by the primitive and then return
to read the response CIR again.

Bit [14] in the primitive format, denoted by PC, is used to specify the pass-program-counter
operation. If the main processor reads a primitive from the FPCP that has the PC bit set, the main
processor should immediately pass the current value of the program counter to the instruction
address CIR as the first operation when servicing the primitive request. The value of the program
counter passed from the main processor is usually the address of the operation word of the
coprocessor instruction executing when the primitive is received. (This is always the case if the
main processor is the MPU.) The FPCP always sets the PC bit in the first primitive of a general
type instruction that might cause an exception (i.e., all of the arithmetic and move single floating
point data register instructions when exceptions are enabled), or the take pre-instruction exception
primitive for a BSUN trap during a conditional instruction. By updating the FPIAR in this manner,
the FPCP can release the main processor for concurrent execution after all operands are fetched,
and exception handlers can later locate an instruction that causes an exception. It should be noted
that the PC bit is set in only one primitive response during any instruction dialog, and that the
MC68881 does not issue a protocol violation if the main processor ignores the request to transfer
the PC. The MC68882 issues a protocol violation if the main processor fails to transfer the PC in
response to a request .

• Bit [13] in the primitive format, denoted by DR, is the direction bit; it controls the direction of
operand transfers between the main processor and the FPCP. If DR is zero, the direction of the
transfer is from the main processor to the FPCP (a main processor write). If DR is one, the direction
of the transfer is from the FPCP to the main processor (a main processor read). If the operation
indicated by a given response primitive does not involve an explicit operand transfer, the value
of this bit is dependent on the particular primitive encoding.

NOTE

All primitives issued by the MC68881, with the exception of the null primitive, have the
CA bit equal to one, causing the MPU to check the response CIR after any service is
performed. This allows the MC68881 to assure correct internal operation and to report
exceptions immediately after a service is performed. However, the MC68882 may oc
casionally issue an evaluate <ea> and transfer data primitive with CA equal to zero.
This is done in cases where internal operations are not adversely affected by the omission
of the read of the response CIR after the operand transfer.

The following paragraphs describe the. response primitive encodings used by the FPCP and the
expected main processor response to each one in detail.

7.4.2.1 NULL PRIMITIVE. This primitive is used by the FPCP to synchronize operation with the
main processor and to allow concurrent execution by the main processor. The format of the null
primitive is shown in Figure 7-8. In addition to the variable bits CA and PC previously discussed,
the null primitive uses three other variable bits to identify the required action to be taken by the
main processor. Bit [81, denoted by IA, is used to specify that the main processor may process

MOTOROLA
7-10

15 14 13 12 11 10 9 6 5

Figure 7-8. Null Primitive Format

MC68881/MC68882 USER'S MANUAL

pending interrupts if necessary. Bit [1], denoted by PF, is used to indicate the status of the FPCP
during concurrent instruction execution. If the PF bit is zero, the FPCP is executing an instruction;
otherwise it is idle. Bit [0], denoted by TF, is used to communicate the true or false result of a
conditional evaluation. If TF equals one, the condition is true; otherwise it is false.

As indicated by the format of this primitive, there are 32 possible null primitive encodings of
which the FPCP uses only seven. Table 7-3 lists the FPCP null primitive encodings and the cir
cumstances in which they are used.

Table 7-3. Null Primitive Encodings

CA pc IA PF TF Usage

a a a a x Returned by the FPCP in response to the write of a conditional predicate to the condition
CIR. The TF bit indicates the result of the conditional evaluation; TF = 1 if the condition is
true; TF = a if the condition is false.

a a a 1 0 Returned when the FPCP is in the idle state. The PF bit indicates that no instruction is being
executed; thus, there is no expected response to this primitive.

a a 1 a a Returned when the FPCP enters the middle or end phase of an instruction to allow con·
current execution by the main processor.The CA bit indicates that no further service is
required of the main procesor, but the PF bit indicates that the FPCP has not completed
execution of the instruction. The IA bit indicates that if the main processor is in the trace
mode, it may process interrupts while waiting for the FPCP to complete execution of the
instruction. Since this primitive does not request any specific service, there is no expected
response from the main processor.

a 1 1 a a The same as the preceding response, except that the main processor is requested to pass
the current program counter before proceeding with the next instruction. This response is
returned only as the first response of a dialog.

1 a 1 a a Returned when the FPCP is executing an instruction and requires further service from the
main processor before the next instruction can be executed. This response is also used
when a new FPCP instruction is initiated while a previous one is still being executed. The
expected response is for the main processor to re-read the response CIR (after servicing
pending interruptsl.

1 1 1 a a The same as the preceding response, except that the·main processor is requested to pass
the current program counter before processing any pending interrupts and re-reading the
response CIR. This response is returned only as the first response of a dialog.

The meanings of the CA and PC bits are as previously described. If IA equals one, the main
processor can process pending interrupts as part of the service for the null primitive; otherwise,
interrupts should be ignored. The IA bit is set to a one by the FPCP for most null responses thus
allowing the main processor to process pending interrupts anytime that it is "waiting" on the
FPCP.

The PF bit indicates the processing state of the FPCP during concurrent instruction execution. In
normal operation, the PF bit is of no concern to the main processor. However, if the main processor
is in the trace mode, it should wait until the FPCP has completed execution of an instruction
before taking the trace exception. By monitoring the PF bit in the null response primitive, the
main processor can synchronize with the FPCP in this case. If PF equals zero, the FPCP is executing
an instruction; otherwise, it is idle.

The TF bit applies only to the conditional instructions. When the main processor writes a con
ditional predicate to the condition CIR, the FPCP uses the null primitive to return the true or false
result of the conditional evaluation. If TF equals one, the condition is true; otherwise, it is false.
For all reads of the response CIR for other instruction types, TF is a don't care bit.

MC688811MC68882 USER'S MANUAL MOTOROLA
7-11

•

7.4.2.2 EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA PRIMITIVE. This primitive is used
by the FPCP to request the transfer qf a data ite'm between the floating-point data and control
registers and an external location (either memory or a main processor register). The format of
this primitive is shown in Figure 7-9. The main processor services this request by evaluating the
effective address indicated by the F-line word of the instruction and transferring the number of
bytes indicated by the length field of the primitive to or from the operand CIR.

15 14 13 12 11 10 9 8 5 4

I CA I PC I DR I 1 0 I VALID <e.> I LENGTH

Figure 7-9. Evaluate Effec;tive Address and Transfer Data Primitive Format

Note that the FPCP returns this primitive only once during an instruction dialog. When this primitive
is read from the response CIR, it is discarded by the FPCP, and the response encoding is changed
to the null primitive. By doing this, the FPCP avoids spurious service request primitives in systems
where the MPU is not the main processor.

The meanings of the CA and PC bits are as previously described. The DR bit indicates the direction
of data transfer between the effective address location and the operand CIR of the coprocessor.
If DR equals zero, the operand is transferred from the effective address location to the coprocessor .

• If DR equals one, the operand is transferred from the coprocessor to the effective address location.

The effective address that is to be evaluated is specified in the F-line operation word, and any
required extension words are fetched by the main processor as needed. If the predecrement or
postincrement addressing mode is used, the address register is decremented or incremented
before or after the transfer by the size of the operand, as indicated in the length field.

The valid EA field specifies various class~s of addressing modes with the encodings shown in
Table 7-4. If the effective address in the operation word is not of the specified class, the main
processor should write an abort to the control CIR and take an F-line emulator trap. The addressing
categories in Table 7-4 are as defined for all M68000 Family processors.

Table 7-4. Coprocessor Valid Effective Address Codes

000 Control Alterable

001 Data Alterable

010 Memory Alterable

011 Alterable

100 Control

101 Data

110 Memory

111 Any Effective Address

The number of bytes transferred to or from an effective address location is indicated in the length
field. If the effective address is a main processor register (register direct), then only lengths of
one, two, or four bytes are used. If the effective addressing mode is immediate, the length is
always one or even, and the transfer is effective address to coprocessor. If the effective address
is a memory location, any length is legal (including odd). If the effective address mode is prede
crement or postincrement, with A7 as the specified register and a length of one, the transfer

MOTOROLA
7-12

MC68881/MC68882 USER'S MANUAL

causes the stack pointer to be decremented or incremented by two in order to keep the stack
aligned on a word boundary.

Table 7-5 lists the encodings of the evaluate effective address and transfer data primitive that are
used by the FPCP and the cases for which they are used.

Table 7-5. Evaluate Effective Address and Transfer Data Primitive Encoding

Usage CA PC DR
Valid

Length
<ea>

F<op:..-<ea:..-.FPn (OPCLASS 010)
Issued as the first primitive of an instruction dialog to request the transfer of an 1 * 0 101 1
operand from memory or a main processor data register to the FPCP. The length 1 * 0 101 2
field indicates the size of the operand: byte, word, long or single, double, extended, ** * 0 101 4
or packed BCD. .. . 0 110 8

** * 0 110 12

FMOVE FPm,<ea> (OPCLASS 011)
Issued after the conversion from the internal extended precision format to the 1 0 1 001 1
destination format is completed to request the transfer of an operand from the 1 0 1 001 2
FPCP to memory or a main processor data register. The length field indicates the ** 0 1 001 4
size of the operand: byte, word, long or single, double, extended, or packed BCD. ** 0 1 010 8

** 0 1 010 12

FMOVE <ea>,FPcr and FMOVEM <ea>.FPcr_list (OPCLASS 100)
Issued as the first primitive of an instruction dialog to request the transfer of one 1 0 0 111 4
or more control registers from memory or a main processor register to the FPCP. 1 0 0 101 4
The length field indicates the total size of all control registers to be moved, 4 bytes 1 0 0 110 8
per register. 1 0 0 110 12

FMOVE FPcr,<ea> and FMOVEM FPcr_list,<ea> (OPCLASS 101)
Issued as the first primitive of an instruction dialog to request the transfer of one 1 0 1 011 4
or more control registers from the FPCP to memory or a main processor register. 1 0 1 001 4
The length field indicates the total size of all control registers to be moved, 4 bytes 1 0 1 010 8
per register. 1 0 1 010 12

*PC= 1 if any arithmetic exceptions are enabled; otherwise PC=O.
**CA = 0 for some MC68882 instructions with S,D,X instruction operand formats; otherwise, CA = 1.

7.4.2.3 TRANSFER SINGLE MAIN PROCESSOR REGISTER PRIMITIVE. This primitive is used by
the FPCP to request the transfer of one main processor register. The format of this primitive is
shown in Figure 7-10. The main processor services this request by writing a long word to the
operand CIR.

15 14 13 12 11 10

o I 0 I D/A I REGISTER

Figure 7-10. Transfer Single Main Processor Register Primitive Format

This primitive is only utilized for the move multiple floating-point data register instruction when
the register list is specified as dynamic. Therefore, when this primitive is issued by the FPCP (to
fetch the register list), CA is always set; DR, PC, and D/A are always clear (D/A identifies the
selected register as a data or address register; zero indicates it is a data register). The least
significant three bits identify the main processor data register that contains the register list.

Note that the FPCP returns this primitive only once during ah instruction dialog. When this primitive
is read from the response CIA, it is discarded by the FPCP, and the response encoding is changed
to the null primitive until the request has been serviced. By doing this, the FPCP avoids spurious
service requests in systems where the MPU is not the main processor.

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-13

7.4.2.4 TRANSFER MULTIPLE COPROCESSOR REGISTERS PRIMITIVE. This primitive is used by
the FPCP to request the transfer of a list of floating-ppint data registers to or from memory. The
format of this primitive is shown in Figure 7-11. The main processor services this request by
performing an implied effective address evaluation, reading a register list from the register select
CIR, and transferring the selected registers (where each register is the size indicated by the length
field of the primitive) between the operand CIR anp memory. The MPU uses long-word transfers
whenever possible while servicing this primitive.

15 14 13 12 11 10 9 5 4

I CA I PC I OR I 0 0 0 0 1 I LENGTH

Figure 7-11. Transfer Multiple Coprpcessor Registers Primitive Format

Note that the FPCP returns this primitive only once during an instruction dialog. When this primitive
is read from the response CIR, it is discarded by the FPCP, and the response encoding is changed
to the null primitive until the request has been serviced. By doing this, the FPCP avoids spurious
service requests in systems where the MPU is not the main processor.

The meanings of the CA and PC bits are as previously described. For this primitive, CA is always

•
set, and PC is always clear (since the FMOVEM instruction cannot cause an exception). The DR
bit indicates the direction of the transfer between the effective address location and the operand
CIR. If DR equals zero, the listed registers are transferred from the effective address location to
the FPCP. If DR equals one, the listed reQisters are transferred from the FPCP to the effective
address location.

The length field indicates the size, in bytes, of each register to be transferred; for the FPCP, the
length is always 12 bytes. The registflr list that is read from the register select CIR is used by the
main processor to determine the number of registers to be transferred (but not the order of the
transfer). For each bit that is set in the 16-bit register list, one operand of the size indicated by
the length field in transferred. Thus, the total number of bytes transferred in response to this
primitive is the product of the length anq the number of ones in the register list. Since the FPCP
has only eight floating-point data registers; the register list always has zeros in the least significant
byte.

The effective address that is evaluated by the main processor is specified in the F-line operation
word, and any required extension words are fetched by the main processor, as needed. If the
predecrement or postincrement addressing mode is used, the address register is decremented
or incremented (before or after the transfer) by the size of the operand as indicated by the length
field. The effective addressing modes that are valid for this primitive are determined by the DR
bit, and the mode is validated by the main processor. If DR equals zero, the control and postin
crement addressing modes are allowed. If DR equals one, the control alterable and predecrement
addressing modes are allowed. If the effective address field of the operation word is not valid for
the selected multiple register transfer, the main processor writes an abort to the control CIR
(before reading the register select CIR) and takes an F-line trap.

For the control and postincrement addressing modes, the registers are transferred using ascending
addresses. For the postincrement addressing mode, the address register is incremented by the
length value after each register is transferred. Thus, the final value of the address register is the
initial value plus the total number of bytes transferred during the primitive execution.

For the predecrement addressing mode, the operands are written to memory with descending
addresses, but the bytes within each operand are written to m!il[llory with ascending addresses.

MOTOROLA
7-14

MC68881/MC68882 USER'S MANUAL

For example, Figure 7-12 illustrates the transfer of two floating-point data registers to a stack,
using the - (An) addressing mode. The designated stack pointer is decremented by 12 bytes
before the transfer of each register. Then the bytes within each register are written to memory
with ascending addresses. Thus, the address register is decremented by the total number of bytes
transferred by the end of the primitive execution.

An - 24
FINAL An

An - 12

INITIAL An

31 - MSB. WRIDEN FIRST

- MSB. WRITTEN FIRST

-

FP1. WRITTEN LAST

LSB. WRITTEN LAST

FPO. WRITTEN FIRST

LSB. WRITTEN LAST

TOP OF STACK BEFORE REGISTER TRANSFER
7

Figure 7-12. Transfer Multiple Floating-Point Data Register to Stack Example

7.4.2.5 TAKE PRE-INSTRUCTION EXCEPTION PRIMITIVE. Take exception primitives are used by ~
the FPCP to instruct the main processor to abort the current operation and initiate exception ..
processing. The main processor services these requests by writing an exception acknowledge to
the control CIR (which clears the pending exception in the FPCP)' by creating the appropriate
stack frame on the currently active supervisor stack, and by beginning execution of an exception
handler. The exception handler is located by using the vector number that is supplied as part of
the take exception primitive. Table 7-6 lists the vector numbers used by the FPCP.

Table 7-6. FPCP Vector Numbers

Vector Number Vector Assignment
Decimal Hexadecimal Offset (Hexidecimal)

11 $OB $02C F-Line Emulator

13 $OD $034 Coprocessor Protocol Violation

48 $30 $OCO Branch or Set on Unordered Condition

49 $31 $OC4 Inexact Result

50 $32 $OC8 Floating-Point Divide by Zero

51 $33 $OCC Underflow

52 $34 $ODO Operand Error

53 $35 $OD4 Overflow

54 $36 $OD8 Signaling NAN

Note that the MC68881 returns one of these primitives only once during the instruction dialog.
When an exception acknowledge is written to the control CIR, the take exception primitive is
discarded by the MC68881, and the response encoding is changed to the null primitive. By doing
this, the MC68881 assures that the take exception request is received by the main processor, but
avoids spurious service request primitives in systems where the MPU is not the main processor.

The MC68882, however, does not discard the primitive unless a read of the save CIR is detected.
This is to ensure that the FSAVE instruction is executed and the state of the conversion unit (CU)

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-15

is saved. The state of the CU must be saved because a second instruction, in the CU, may be
partially executed.

While the M68000 coprocessor interface defines three take-exception primitives, the FPCP utilizes
only two of them. The other take exception primitive is described in the next section.

The take pre-instruction exception primitive is used by the FPCP when an arithmetic (OPCLASS
000, 010, and 011) or conditional instruction is initiated and an exception is pending from a
previously executed, concurrent instruction. This primitive is also returned if an illegal command
word is written to the command CIR or if a protocol violation occurs. Finally, this primitive is
issued when a conditional instruction is executed that utilizes one of the IEEE non-aware condi
tional predicates, and the NAN bit in the FPSR condition code byte is set. The format of this
primitive is shown in Figure 7-13.

15 14 13 12 11 10 9 5 4 3

o I VECTOR NUMBER

Figure 7-13. Take Pre-Instruction Exception Primitive Format

7 The CA bit is always zero for this primitive, since there is an implied protocol preemption in this
service request. The PC bit is zero if the exception is preempting the execution of a new FPCP
instruction. The PC bit is one if the exception is due to an illegal command word, or if it is reported
during the execution of a conditional instruction in lieu of the true/false result of the conditional
evaluation. The vector number identifies the type of the exception and is used by the main
processor to locate the exception handler routine.

In response to this primitive, the MPU creates a four word stack frame on top of the currently
active supervisor stack. The format of this stack frame is shown in Figure 7-14. The value of the
program counter in the stack frame is the address of the F-line operation word of the FPCP
instruction that was preempted by the exception (i.e., the arithmetic or conditional instruction
attempted in the case of an exception pending from a previous instruction or an F-line exception,
or the conditional instruction in the case of a BSUN exception). Thus, if no modifications are made
to the stack frame within the exception handler, an RTE instruction causes the MPU to return and
re-initiate the instruction that was being attempted when the primitive was received. Refer to the
appropriate user's manual for further details on exception handling by the MPU.

SP_

+$02

+$06

15

STATUS REGISTER

PROGRAM COUNTER

0 0 0 o I VECTOR OFFSET

Figure 7-14. Pre-Instruction Exception Stack Frame

7.4.2.6 TAKE MID-INSTRUCTION EXCEPTION PRIMITIVE. This primitive is used by the FPCP when
an exception occurs during the execution of an FMOVE FPm,<ea> instruction. In the MC68882,
an exception caused by a previous instruction is reported by the current instruction using this
primitive. See 7.4.2.5 TAKE PRE-INSTRUCTION EXCEPTION PRIMITIVE for information common
to both take exception primitives. The format of this primitive is shown in Figu're 7-15.

MOTOROLA
7-16

MC68881/MC68882 USER'S MANUAL

15 14 13 12 11 10 9 4

VECTOR NUMBER

Figure 7-15. Take Mid-Instruction Exception Primitive Format

The CA bit is always zero for this primitive, because there is an implied protocol preemption in
this service request. The PC bit is always zero, since a null primitive earlier in the dialog for the
move-out instruction is used to request the program counter transfer. The vector number identifies
the type of the exception, and is used by the main processor to locate the exception handler
routine.

In response to this primitive, the MPU creates a ten-word stack frame on top of the currently
active supervisor stack. The format of this stack frame is shown in Figure 7-16. If the exception
is due to an FMOVE FPn,<ea> instruction, the ScanPC value is the address of the instruction
immediately following the FMOVE instruction. The value of the program counter in the stack frame
is the address of the F-line operation word of the FPCP instruction that caused the exception. The
operation word image contains the F-line word of the FMOVE instruction. The effective address
value is the memory address of the destination operand. Note that the take mid-instruction ex
ception primitive is used in this case solely for the purpose of placing the evaluated effective
address in the stack frame, to avoid requiring an exception handler to recalculate it.

SP_

+$02

+$06

+$08

+$OC

+$OE

+$10

15

1

STATUS REGISTER

SCAN PC

0 0 1 I VECTOR OFFSET

PROGRAM COUNTER

INTERNAL REGISTER

OPERATION WORD

EFFECTIVE ADDRESS

Figure 7-16. Mid-Instruction Stack Frame

If the exception is caused by a previous instruction, the ScanPC value is the address of the
instruction immediately following the instruction that reported the exception. The value of the PC
in the stack frame is the address of the F-line operation word of the instruction that reported the
exception. The operation word image contains the F-line word of the instruction that reported the
exception. The effective address only contains the valid effective address when an evaluate <ea>
primitive was issued before the exception was reported.

If no modifications are made to the stack frame within the exception handler, an RTE instruction
causes the MPU to return to read the response CIR. Thus, the main processor continues the
execution of the instruction upon return.

7.4.2.7 RESPONSE PRIMITIVE SUMMARY. Table 7-7 lists in numeric order a summary of all
primitive responses utilized by the FPCP.

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-17

II

•

Primitive
Value

$0800
$0801
$0802
$0900

$1504
$1608
$160C

$1COB
$1C31
$1C32
$1C33
$1C34
$1C35
$1C36

$1DOD
$1D31
$1D32
$1D33
$1D34
$1D35
$1036

$3104
$3208
$320C

$4900

$5504
$5608
$560C

$5C30

$810C

$8900

$8COO
$8C01
$8C02
$8C03
$8C04
$8C05
$8C06
$8C07

$9501
$9502
$9504
$9608
$960C
$9704

$A10C

$B101
$B102
$B104
$B208
$B20C
$B304

$C900

MOTOROLA
7-18

Table 7-7. MC68881/MC68882 Primitive Responses

Primitive Type Comments

Null CA=O, PC=O, IA=O, PF=O, TF=O
CA=O, PC=O, IA=O, PF=O, TF=O
CA=O, PC=O, IA=O, PF= 1, TF=O
CA=O, PC=O,IA=1, PF=O, TF=O

Evaluate <ea> and Transfer Data Single
CA=O, PC=O, DR=O (External to MC68882) Double

Extended

Take Pre-Instruction Exception F-Line Emulator
PC=O Inexact Result

Floating-Point Divide by Zero
Underflow
Operand Error
Overflow
Signalling NAN

Take Mid-Instruction Exception Coprocessor Protocol Violation
PC=O Inexact Result

Floating-Point Divide by Zero
Underflow
Oeprand Error
Overflow
Signalling NAN

Evaluate <ea> and Transfer Data Single
CA=O, PC=1, DR=1 (MC68882 to External) Double

Extended

Null CA=O, PC=l,IA=1, PF=O, TF=O

Evaluate <ea> and Transfer Data Single
CA=O, PC=l, DR=O (External to MC68882) Double

Extended

Take Pre-Instruction Exception Branch or Set On Unordered
PC=O

Transfer Multiple Coprocessor Registers
CA= 1, PC=O, DR=O (Memory to FPCP)

Null CA=1, PC=O,IA=l, PF=O, TF=O

Transfer Single'Main Processor Register DO
CA=1, PC=O, DR=O (Main Processor to FPCP) D1

D2
D3
D4
D5
D6
D7

Evaluate <ea> and Transfer Data Byte
CA=1, PC=O, DR=O (External to FPCP) Word

Long, Single, FPCR, or FPSR
Double or Two FPcr's (Memory Only)
Extended, Packed, or Three FPcr's (Memory Only)
FPIAR

Transfer Multiple Coprocessor Registers
CA= 1, PC = 0, DR = 1 (FPCP to Memory)

Evaluate <ea> and Transfer Data Byte
CA= 1, PC=O, DR= 1 (FPCP to External) Word

Long, Single, FPCR, or FPSR
Double or Two FPcr's (Memory Only)
Extended, Packed or Three FPcr's (Memory Only)
FPIAR

Null CA=1, PC=1,IA=1, PF=O, TF=O

MC68881/MC68882 USER'S MANUAL

Table 7-7. MC688811MC68882 Primitive Responses (Continued)

Primitive
Value Primitive Type Comments

$CCOO Transfer Single Main Processor Register DO
$CC01 CA = 1, PC = 1, DR = 0 (Main Processor to FPCP) D1
$CC02 D2
$CC03 D3
$CC04 D4
$CC05 D5
$CC06 D6
$CC07 D7

$D501 Evaluate <ea> and Transfer Data Byte
$D502 CA = 1, PC = 1, DR = 0 (External to FPCP) Word
$D504 Long or Single
$D608 Double (Memory Only)
$D60C Extended or Packed (Memory Only)

7.5 INSTRUCTION DIALOGS

The following paragraphs describe in detail the coprocessor communications dialogs that are
executed by the FPCP and MPU during each floating-point instruction. In this discussion, a dialog
refers to the sequence of command and data transfers to the FPCP, and the service request m
primitives that are returned to control that sequence. Although the following discussion assumes _
that the main processor is an MC68020 or MC68030, information is also presented that may be
used by designers of systems that utilize a different main processor.

The diagrams presented in the following paragraphs represent the activity of the MPU and the
FPCP during the execution of a floating-point inl>truction. In these diagrams, boxes are used to
identify periods of time during which a device is actively participating in the execution of an
instruction; the absence of a box during a period indicates that a device is waiting on the other
ohe to complete an operation, or that concurrent execution of unrelated instructions may take
place.

Each box in the following diagrams is labeled to indicate the activity depicted by that box. The
labels above the boxes identify the actions taken by the main processor, and the labels below
the boxes identify the encoding of the response CIR at any time during a dialog. When a response
CIR encoding is indicated, that encoding is received by the main processor any time that the
response CIR is read until the next primitive encoding is indicated.

In all of the succeeding paragraphs, the following assumptions are made:

1. Before the start of an instruction dialog, except for the FSAVE and FRESTORE instructions,
the FPCP is in the idle state.

2. The MPU and the FPCP communicate via" 32-bit data bus.

3. The memory width is 32 bits, and all memory operands are long-word aligned.

Also, for periods during which the MPU is required to wait for the FPCP (i.e., during move to
memory operation, or if the MPU is in the trace mode), only one of the response CIR reads is
explicitly indicated. In actuql operation, numerous reads of the response CIR may occur in these
cases. Similarly, if the FPCP is not idle before the initiation of a new instruction, mUltiple reads
of the null (CA = 1, IA = 1; $8900) primitive may occur after the command or condition CIR write
and before the read of the first primitive shown in a diagram.

MC688811MC68882 USER'S MANUAL MOTOROLA
7-19

7.5.1 General Instructions

This group of instructions includes all of the arithmetic instructions, the move system control
register instructions, the move instructions, and the move multiple floating-point register instruc
tions. The factor common to these instructions is the format of the F-line operation word, which
uses the cpGEN format of the M68000 Family coprocessor instruction set. Thus, the initial phase
of the communications dialog for these instructions is identical, with the MPU writing the com
mand word to the FPCP and then relying on the FPCP to control the remainder of the dialog
through the use of the coprocessor interface response primitive set. The following paragraphs
discuss the five different protocols that are used by the FPCP for this group of instructions.

For each of the general instruction dialogs, with the exception of the register-to-register dialog,
there is an important consideration for systems that use the FPCP with a main processor other
than an MPU. This consideration is that the come-again request in any evaluate effective address
and transfer data primitive or transfer multiple coprocessor registers primitive should not be
ignored. The FPCP sets the CA bit in these primitives to assure correct operation regardless of
the frequency relationship between the FPCP clock and thei main processor clock. By requiring
the main processor to perform a final read ofthe response CIR (which is a cycle that is synchronous
with the FPCP ClK signal) after the last operand CIR access and before continuing with the next
instruction, the FPCP assures that the operand transfer is completed internally before the main

•
processor can initiate the next instruction by writing the command or condition CIRs. This se
quence assures that spurious protocol violations (detected by the FPCP) do not occur in systems
where the main processor clock frequency is much faster than the MC68881 clock frequency.

During the instruction dialogs for external to register (opclass 010 and register to external (opclass
011)) instructions, the MC68882 in some cases issues the evaluate effective address and transfer
data primitive with CA = 0 instead of CA = 1. In these cases, the main processor need not read the
response CIR after the coprocessor has transferred the operands for that instruction. This provides
more potential instruction overlap with the next coprocessor instruction. Normally, a second
coprocessor instruction causes the main processor to write to the command or condition CIR and
then to read from the response CIR. If the read from the response CIR of the second instruction
occurs earlier than three clocks after the completion of the last operand transfer of the previous
instruction, spurious protocol violations may occur. In a worst case situation, the main processor
uses these three clocks in writing to the command CIR. However, if the main processor has a
higher clock frequency than the MC68882, it is possible that the write to the command CIR can
take less than three MC68882 clocks. the design of the MC68882 allows the MPU clock frequency
to be as much as 1.5 times the MC68882 clock frequency. For main processors other than the
MC68020 or MC68030, the system designer must ensure that the main processor does not read
the response CIR during the initiation of an instruction less than three MC68882 clocks after the
last operand transfer of the previous instruction.

7.5.1.1 REGISTER-TO-REGISTER (OPCLASS 000). This dialog is utilized for all of the arithmetic
and move instructions that use floating-point data registers for both the source and destination
operands and for the FMOVECR instruction. Since the FPCP contains both operands when such
an instruction is initiated, no external data references are required before the calculation can be
performed. Thus, after the MPU has written the command word to the FPCP, it is released to
execute the next instructioh. If any arithmetic exceptions are enabled, the FPCP requests the
transfer of the program counter. This request can be ignored by a main processor using an
MC68881, but the MC68882 issues a protocol violation if the main processor ignores this request.
The program counter write cycle does not affect instruction execution time (since it occurs con
currently with the FPCP instruction execution).

MOTOROLA
7-20

MC688811MC68882 USER'S MANUAL

The FPCP dialog for this instruction type is shown in Figure 7-17. Also shown in this figure is the
key for all of the dialog figures presented in subsequent paragraphs.

MC68020/MC68030

MC68881/MC68882

Q
Z

'" ::! z
::;;

~ 8
~ Q

;= ~

I I
~~
~;I;
,..:",

" 0
So
x~

" 0

~'"
d

" ~
::j

~

lI!

II
'i:44

! CAlC~lATE
" s~ it
~
S;

'" ~
~
~
~

~

ROUNO

~~ it ..
'ir
S;

'" ~
<ir
"" ~
~

:5
'"

KEY, Indicates an optional operation. The MC6S8S1
allows the "Pass PC" operation to be performed at
the discretion of the main processor without causing
a protocol violation (the MC68020/MC68030 always
passes the PC when it is requested). However. the
MC68882 requires the "Pass PC" operation to be
performed when requested. Some operand transfer
bus transactions are optional, based on the size and
location of source or destination operands external to
the MC68881/MC68882.

Indicates an operation that is performed only for
certain cases of the instruction or operation being
executed. These operations are identified explicitly in
the diagrams as to the conditions under which they
are executed.

Figure 7-17. MC68881 Register-to-Register Instruction Dialog

7.5.1.2 EXTERNAL-TO-REGISTER (OPCLASS 010). This dialog is utilized for all of the arithmetic
and move instructions that reference memory or a main processor register for the source operand.
Since the FPCP does not contain both operands when such an instruction is initiated, external
data references are required before the calculation can be performed. The FPCP requests the fetch
of the required external operand with the first primitive of the dialog. The second primitive of the
dialog is then used to release the main processor to execute the next instruction (once the operand
transfer is completed). Note that the read of the first primitive causes the response CIR encoding
to be changed to the null primitive, thus avoiding spurious request primitives in non-MPU based
systems. The MC68881 dialog for this instruction type, which also applies to the MC68882 with
operand data formats other than single, double, or extended, is shown in Figure 7-18.

~ 0

G z

;E '" ~ ~ '" z V z

~ ~
0 ~

~
'" 1il 0 ~ '" § 0

~
z c

Q ~ ~ g ~

MC68020/MC68030

I I I~~~=p!==tj=~~=~=+=~]=!=
MC68881/MC68882 1 I I r ___ .J L- __ .J L.. ___

~~ ~~ s~ ~~ " it ... ~~ it ~~

~
<[. -' Ii ~ Ii " s; o~

s; S
0; z . ~ ~ ~

<[-

~5 ~
~ -'

v~ " ~
~ ~« ~ ~
~

~c ~

5 :3 :5 ~ ." ~ '"
Figure 7-18. MC68881/MC68882 External-to-Register Instruction Dialog

MC68881/MC68882 USER'S MANUAL

",,,,

~I
err
s;

'" ~
~
~
~

:5
'"

MOTOROLA
7-21

•

When the operand data format is single, double, or extended, the MC68882 issues the evaluate
<ea> and transfer data primitive with CA= 0 instead of CA = 1. Figure 7-19 shows the dialog for
the MC68882 external-to-register instructions with single, douple, or extended data format op
erands.

MC68020/MC68030
'---+-

MC68881/MC68882

ONLY IF A DYNAMIC k·FACTOR IS USED

Figure 7-19. MC68882 External-to-Register Instruction Dialog

If any arithmetic exceptions are enabled, the FPCP requests the transfer of the program counter
with the first primitive. However, the main processor using an MC68881 can ignore this request;
the MC68882 issues a protocol violation if the main processor ignores the request.

The operation boxes that are marked "R" and "W" indicate an operand read or write cycle,
respectively, by the MPU. Those operand transfer boxes that are shaded are optionaiiy executed,
depending on the size and location ofthe source operand. For example, none ofthe shaded boxes
are executed for source operands that reside in the MPU registers. Also, note that the FMOVECR
instruction, while it is an opclass 010 instruction, uses the register-to-register protocol described
in 7.5.1.1 REGISTER TO REGISTER (OPCLASS 000).

7.5.1.3 REGISTER-TO-EXTERNAL (OPCLASS 011). This dialog is utilized only for the move from
floating-point data register instruction. The MC68881 dialog for this instruction type, which also
applies to the MC68882 except when the data format is single, double, or extended, is shown in
Figure 7-20. The first primitive returned depends on the destination data format, since additional
format information is required to generate a packed decimal destination operand when a dynamic
k-factor is specified. If the destination data type is packed decimal and a dynamic k-factor is used,
the first response is the transfer single main processor register primitive (to transfer the contents
of the register containing the k-factor). For all other destination data formats, the first request is
the null (CA = 1) primitive, since a conversion from the internal data format to the desired desti
nation format must be performed before any further action is required of the main processor. For
the dynamic k-factor case, the conversion starts after the main processor register trilnsfer is
completed. The conversion starts immediately after the first read of the response CIR for all other
destination operand formats. The main processor is allowed to service pending interrupts while
it is waiting for the conversion to complete.

If any arithmetic exceptions are enabled, the first primitive requests the transfer of the program
counter. However, this request can be ignored when the main processor uses an MC68881; the

MOTOROLA
7-22

MC68881/MC68882 USER'S MANUAL

MC68020/MC68030

I I 1~~==P==~=Ej=~=F~~1~~~r~-1 MC68882 CONVERT I CALCULATE I ___ .J L __ ..J L __ ROUND

~~ *~ S~ SI ~ " " zo It ... It
'iT '" . "

~" 1= ~ ::;

~~
::; ::;

'" '" ~
~ /\.!!r: ~ ~
c;r ~ '-' 'rr" <iT"

'" V~
~ ~ ~ ~C3 ~ ~ ~

~ :3 ~ ~ ~

Figure 7-20. MC68881/MC68882 Register-to-Externallnstruction Dialog

MC68882 issues a protocol violation when the main processor ignores this request. The program
counter write cycle may not affect instruction execution time (since it can occur concurrently with ~
the operand conversion if the destination format is not packed decimal with a dynamic k-factor). ..
Only the first primitive requests the transfer of the program counter; thus, if the transfer single
main processor register primitive is issued first, the PC bit is not set in any subsequent null
primitive. If the first primitive is the null primitive and the program counter transfer is required,
the PC bit is set.

The pass program counter operation is requested in one of two of the primitive encodings (shown
in Figure 7-20 with the notation "PC = x"). For the packed decimal with a dynamic k-factor case,
the dark shaded operations are always performed with the PC bit set if necessary. The MPU
services the transfer single main processor primitive with the PC bit set by first transferring the
program counter and then transferring the requested register. For all other destination data for
mats, the dark shaded operations are not performed, and the box labeled "Convert" is "folded
under" the first box labeled "Read Response". For these cases, the null primitive may request
the transfer of the PC, and that transfer occurs concurrently with the operand conversion by the
FPCP.

When the operand conversion is completed, the next read ofthe response CIR returns the evaluate
effective address and transfer data primitive. The main processor then reads the conversion result
from the operand CIR and writes it to the appropriate destination location. Note that the read of
the evaluate effective address and transfer data primitive causes the response CIR encoding to
be changed to the null primitive, thus avoiding spurious request primitives in non-MC68020 or
non-MC68030 based systems.

The operation boxes that are marked "R" or "W" indicate an operand read or write cycle, re
spectively, by the MPU. Those operand transfer boxes that are lightly shaded are optionally
executed, depending on the size and location of the source operand. For example, none of the
shaded boxes are executed for destination operands that reside in the MPU registers.

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-23

•

The MC68882 dialog differs from the dialog shown in Figure 7-20 when the operand data format
is single, double, or extended, except for the following conditions:

• The data in the floating-point register is data type NAN, unnormalized, or denormalized.
• A rounding overflow or underflow has occurred, and the operand data format is single or

double.
• The INEX2 bit of the FPSR exception enable byte is set, and the operand data format is single

or double.

When any of these conditions occurs, the dialog shown in Figure 7-20 applies. Otherwise, when
the operand data format is single, double, or extended, the MC68882 issues the evaluate <ea>
and transfer data primitive with CA= 0 instead of CA= 1. Figure 7-21 shows the MC68882 dialog.

MC68020/MC68030

MC68882

'i;"~ ~
'rr~

::!;
cO

~
~
~

~

~~
"-~
,"",0:

" 0
So ,,0
II ~
~.,.

Ii
@.
g
z

0: -

i~
~&
co"-
:fd
/\~ = u
{j~
~~
:3
a\

Figure 7-21. MC68882 Register-to-External Instruction Dialog (S, D, and X Formats)

7.5.1.4 MOVE CONTROL REGISTERS (OPCLASS 100 and 101). This dialog is utilized for the move
single or multiple floating-point system control registers instructions. The dialog for this instruc
tion type is shown in Figure 7-22. The first primitive of the dialog requests that the main processor
evaluate the effective address and transfer the appropriate number of bytes to or from the operand
CIR. The read of the first primitive causes the response CIR encoding to be changed to the null
primitive, thus avoiding spurious request primitives in non-MC68020 or non-MC68030 based
systems. When the transfer data primitive service is complete, the main processor is released to
begin execution of the next instruction. Note that since this instruction type cannot cause an
exception, the PC bit is not set in any primitive; thus, these instructions can be used to read or
write the control registers without overwriting the FPIAR contents.

The operation boxes that are marked "R" or "W" indicate an operand read or write cycle, re
spectively, by the MPU. Those operand transfer boxes that are shaded are optionally executed,
depending on the size and location of the source operand. For example, none of the shaded boxes
are executed for source operands that reside in the MPU registers.

7.5.1.5 MOVE MULTIPLE FPn (OPCLASS 110 and 111). This dialog is utilized forthe move multiple
floating-point data registers instruction. The dialog for this instruction type is shown in Figure 7-
23. The first primitive of the dialog depends on the type of register list specified by the instruction.

MOTOROLA
7-24

MC68881/MC68882 USER'S MANUAL

MC68020/MC68030

MC68881/MC68882

Figure 7-22. Move Control Register Instruction Dialog

MC68020/MC68030

MC68881/MC68882

f~
r-R----rN-W.---R '--l'Aj--'-R --'-l'Aj----'W ! ~

LJ LJ LJ~
(OR=O)

~----,-----~IZ
REPEAT FOR EACH REGISTER

SELECTED BY THE REGISTER MASK

ONLY IF A DYNAMIC REGISTER LIST IS USED

<2-
::::l
'" z

Figure 7-23. Move Multiple Floating-Point Data Registers Instruction Dialog

If the static register list form of the instruction is used, the first service request issued is the
transfer multiple coprocessor registers primitive. For the dynamic register list form, the first
primitive requests the transfer of the main processor data register that contains the register mask,
and then the transfer multiple coprocessor registers primitive is issued. In response to the transfer
multiple coprocessor registers primitive, the main processor reads the register list from the register
select CIR and transfers one register for each bit that is set in the list. (Note that the register list
can be equal to zero; in which case, no register transfer occurs.)

The read of the transfer single main processor register and transfer multiple coprocessor registers
primitives causes the response CIR encoding to be changed to the null primitive, thus avoiding
spurious request primitives in non-MC68020 or on-MC68030 based systems. If the transfer single
main processor register primitive is issued, the transfer multiple coprocessor register primitive

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-25

register primitive is issued, the transfer multiple coprocessor register primitive is not issued until
the first service request is completed. When the transfer multiple coprocessor register primitive
service is complete, the main processor is released to begin execution of the next instruction.
Note that since this instruction type cannot cause an exception, the PC bit is not set in any primitive;
thus, these instructions can be used to read the floating-point data registers without overwriting
the FPIAR contents.

The operation boxes that are marked "R" and "W" indicate an operand read or write cycle,
respectively, by the MPU.

7.5.2 Conditional Instructions

This group of instructions includes the FBcc, FDBcc, FNOP, FScc, and FTRAPcc instructions. These
instructions have two factors in common. First, the execution of each instruction is inherent in
the M68000 Family coprocessor instruction set definition, and the dialog used for all of them is
the same. Second, in each of these instructions, the coprocessor completes all previous floating
point instructions before it begins to evaluate the result of the received conditional predicate. This
guarantees a sequential execution model. The dialog begins when the main processor writes the
conditional predicate to the FPCP and then reads the response CIR. If the APU and the CU (in the
case of an MC68882) are not idle, a null primitive (CA=1, IA=1, PC=O, TF=O) is returned, and

7 the main processor reads the response CIR again later. This process of rereading the response
CIR continues until the coprocessor is idle. Note that it is possible for a pre-instruction exception
to be reported at any time during this process. If no exception is reported, and when the copro
cessor is finally idle, the coprocessor evaluates the condition and responds with a null primitive
,(CA, = 0, TF = x, where x is the true or false result). The main processor then proceeds with the
appropriate conditional action. The dialog (assuming that the coprocessor is idle when the con
ditional predicate is written) is shown in Figure 7-24.

z
c
t;

~ :::> a: z I;; ~ !!: '" w Ii! z Q
Q C

§ ~ ~ Q

MC68020/MC68030

I I I MC68881/MC68882

~~ fe
~~

~ =a:
" Q

~ :tg .,- =oo
~ " c :$'"

~ = " ~ ~
.... = ~ " ~

::;j
:::> z

Figure 7-24. Conditional Instruction Dialog

7.5.3 Context Switch Instructions

This group of instructions includes the FSAVE and FRESTORE instructions. The factor common
to these instructions is that the execution of each one is inherent in the M68000 Family coprocessor

MOTOROLA
7-26

MC68881/MC68882 USER'S MANUAL

instruction set definition, and the coprocessor does not control the dialog in the flexible manner
available with the general and conditional instruction types. The dialog consists of the save or
restore command, followed by the transfer of the appropriate state frame. The only control that
the FPCP has over this dialog is for the FSAVE instruction; in which case, it may request that the
main processor delay the save operation until the FPCP is ready to perform it. These dialogs are
discussed in the following paragraphs.

7.5.3.1 FSAVE. This dialog is utilized for the context save instruction. The dialog for this instruction
is shown in Figure 7-25. There are no primitive responses during this dialog; instead, the FPCP
controls the frame transfer to a limited extent through the use of the format word encoding.

MC68020/MC68030

MC68881/MC68882

ONLY IF THE MC68881/MC68882 IS NOT READY TO START THE SAVE OPERATION

6 TO 53 LONG·WORO TRANSFERS

Figure 7-25. FSAVE Instruction Dialog

The main processor initiates this dialog by reading from the save CIR. During this read cycle, the
FPCP returns a format word that indicates the current state of the machine. For most cases of
this dialog with the MC68881, the first read of the save CIR returns the idle format word, and the
main processor then proceeds to transfer six long words from the operand CIR to memory. In
this dialog with the MC68882, the idle format word is followed by 1410ng words. Optionally, the
first primitive may be a null format word, in which case no state frame is transferred. Alternatively,
the first primitive may be a busy format word, in which case 45 (53 for the MC68882) long words
are transferred. Finally, the save CIR read may return the not-ready, come-again format word. In
this case, the main processor may process pending interrupts and restart the instruction, or re
read the save CIR until a different format word is received. The invalid format word may also be
returned, as discussed in 7.5.4.6 FORMAT EXCEPTION, FSAVE INSTRUCTION.

After the MPU receives a valid format word, it then evaluates the effective address and writes the
format word to that address. The appropriate state frame is then transferred to the effective
address, and the main processor is free to proceed with the execution of the next instruction.
Note that by using this sequence, the MPU can take a pre-instruction exception in response to a
pending interrupt (if a not-ready, come-again format word is received) and then return to restart
the instruction rather than taking a mid-instruction exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-27

Ii

•

Note that after the state save operation is complete, the FPCP is in the idle state with no pending
exceptions.

7.5.3.2 FRESTORE. This dialog is utilized for the context restore instruction. The dialog for this
instruction is shown in Figure 7-26. There are no primitive responses during this dialog; instead,
the FPCP controls the frame transfer to a limited extent through the use of the format word
encoding.

MC68020/MC68030

MC88881/MC68882

z
c
!3
::>

~
w
C

§
C

>c ~~
~ ~ 11.... _______ .,-_______ -'1 ~ ~
~ ~~
c ~ ~ LLI t::::l

~ ~ f ~ 6 TO 53 LONG-WORD TRANSFERS ~ ~
g u.. Ii LlJ ~

z ~ ~~
~ ~

Figure 7-26. FRESTORE Instruction Dialog

The main processor initiates this dialog by evaluating the effective address, fetching a format
word from that address, and writing the format word to the restore CIR. The main processor then
reads the reStore CIR to verify that the format word is valid. During this read cycle, the FPCP
returns a format word that indicates if the format word that was written is valid for the current
revision of the device. If the format word is valid, the same value that was written is read back
from the restore CIR, and the main processor proceeds to transfer the state frame appropriate
for the format word. The state frame size is 0, 6, or 45 long words for the current implementation
of the MC68881. For the MC68882, the corresponding state frame sizes are 0, 14, and 53 long
words. The invalid format word may also be returned as discussed in 7.5.4.7 i=ORMAT EXCEPTION,
FRESTORE INSTRUCTION.

Note that after the state restore operation is complete, the FPCP is in the state of the instruction
that was previously suspended with an FSAVE instructioh.

7.5.4 Exception Processing

This group of dialogs is actually a set of special cases of the dialogs described previously; they
are grouped here for quick reference, and to simplify the preceding discussions. For each of the
exception processing dialogs, only the differences from the normal instruction dialogs shown
previously are discussed here. Also, it should be noted that these dialogs do not include all
exception processing sequences that involve the FPCP; they only include those exceptions that

MOTOROLA
7-28

MC68881/MC68882 USER'S MANUAL

are directly related to the coprocessor interface operation. For example, main processor detected
F-line exceptions are not included since no coprocessor interface dialog occurs as part of the
exception processing for this type of an exception.

The dialog for the coprocessor protocol violation exception is also omitted from the following
diagrams. This is because these exceptions are not expected to occur during the normal operation
of a fully debugged system, and the dialog is not readily predictable (either before or after the
protocol violation occurs). By definition, the cause of the exception for main processor detected
protocol violations is a hardware failure (since the FPCP cannot return an illegal response pri
mitive).

For FPCP detected protocol violations, the cause is most likely a software failure that causes a
new instruction to be initiated before the previous instruction dialog is completed. In this case,
the new instruction dialog is aborted immediately, but the previous instruction dialog may not
terminate for some time. (The previous dialog may be completed incorrectly, since the protocol
violation is never reported to the previous instruction.)

7.5.4.1 TAKE PRE-INSTRUCTION EXCEPTION. This dialog is utilized by the MC68881 when an
arithmetic (OPCLASS 000, 010, or 011) or conditional instruction is initiated and an arithmetic
exception is pending from a previous instruction, or when the main processor writes an undefined,
reserved command word to the command CIR. In either case, this dialog consists of two write.
cycles and one read cycle, as shown in Figure 7-27. First, the main processor attempts to initiate
a new instruction by writing to the command CIR; it then reads the response CIR to determine
the next required action. The MC68881 returns the take pre-instruction exception in this case,
indicating the appropriate vector number. The main processor services this primitive by writing
an exception acknowledge to the control CIR and initiating exception processing.

2 2

§ 0

!i: :>
'" ~ ~ 2

~ ~
~ w ~ '" 0 '" ~ :z ill '" ~

MC68020/MC68030

I I I I MC68881/MC68882

~~ 25

~~ ~ o " F,-,
'-'<>-

<;f
:>-

~ "'2
"'0 ::!;
~~

::!;
<OS <OS

~ ~~ ~
c;r w

~ ~

i1 is i1
~ ~

:5
'"

:5
'"

Figure 7-27. Take Pre-Instruction Exception Dialog - MC68881

Note that the write of the exception acknowledge causes the response CIR encoding to be changed
to the null primitive, thus assuring that the take exception primitive is received by the main
processor while avoiding spurious request primitives in non-MPU based systems.

The MC68882 uses a similar dialog for pre-instruction exceptions. However, when the main pro
cessor writes an exception acknowledge to the control CIR, the MC68882 does not enter the idle

MC688811MC68882 USER'S MANUAL MOTOROLA
7-29

state. Instead, the MC68882 retains the take pre-instruction exception primitive in its response
register. Any floating-point instruction other than an FSAVE (or an FRESTORE of the null state)
reports the same exception again. An FSAVE (or an FRESTORE of the null state) restores the
MC68882 to an idle state, allowing subsequent floating-point instructions to execute. Figure 7-28
shows the dialog which includes the minimum instructions recommended for an exception han
dier. (Refer to 5.2.2 Exception Handler Code.)

Figure 7-29 shows the dialog that usually Occurs when the handler for a pre-instruction exception
does not begin with an FSAVE instruction. A protocol violation could occur; in which case, the
dialog would not apply. Otherwise, as the dialog shows, at the completion of the exception handler
routine, the main processor attempts to execute the same instruction again, and that instruction
takes the same exception. If the exception handler included a floating-point instruction but no
preceding FSAVE instruction, the floating-point instruction would take the original exception again,
nesting the repetitions of the exception handler.

Figure 7-30 shows the dialog that applies when an exception handler does not set the exception
pending bit, even though it begins with an FSAVE instruction and closes with an FRESTORE. A
protocol violation cannot occur in this case, but because the exception pending bit is not set, the
instruction again takes the exception when it is re-initiated after returning from the exception
handler.

• 7.5.4.2 TAKE MID-INSTRUCTION EXCEPTION. The MC68881 uses this dialog only if an exception
occurs during the execution of the FMOVE FPm,<ea> instruction. In this case, the protocol for
the normal execution of the instruction is followed, and then the mid-instruction exception is
reported with the last primitive (in lieu of the null primitive normally used to terminate the dialog).
The main processor services this primitive by writing an exception processing acknowledge to
the control CIR and initiating exception processing.

The diaiog for this operation is shown in Figure 7-31. (For simplicity, this diagram assumes that
the destination data format is not packed decimal with a dynamic k-factor.) Note that a write of
the exception acknowledge causes the response CIR encoding to be changed to the null primitive,
thus assuring that the take-exception primitive is received by the main processor while avoiding
a spurious request primitive in non-MC68020 or non-MC68030 based systems.

The MC68882 uses the mid-instruction exception if an exception occurs in the FMOVE FPm,<ea>
instruction, as the MC68881 does. However, since the MC68882 allows concurrent execution of
floating-point instructions, an instruction that has begun execution can report an exception caused
by a previous instruction. When the previous instruction makes an exception pending, the ex
ception is reported on the next read operation of the response CIR. Therefore, all reads of the
response CIR must be ready to take an exception. If the read of the response CIR occurs in the
middle of an instruction, a take mid-instruction exception is taken. The dialog shown in Figure 7-
32 is a generic case that applies to all instructions and to every read of the response CIR after the
instruction has issued its first response. The first response is the response issued by the conversion
unit (CU) or the arithmetic processing unit (APU) to the bus interface unit (BIU), not the null
primitive (CA = 1, IA = 1) at the beginning of an instruction when (in an MC68881) the APU is busy
or (in the MC68882) the CU is busy.

The MC68882 dialog is similar, except that the exception handler must begin with an FSAVE
instruction. The significant difference is that the write exception acknowledge operation does not
cause the MC68882 to return a null primitive. The FSAVE instruction of the exception handler
changes the primitive to a null primitive.

MOTOROLA
7-30

MC68881/MC68882 USER'S MANUAL

•

Lf:-L
'v'l OH 010 VII

."
cii'
c
iil
.....
N

::E ~
;::;:-1
~III

2;
0-v
." ...
enCP »<; m:::r
-c :::s n
~ g,
c :::s
!l~
o n
:::s CD
-,'C
:::s !:!:
"0
~:::s
CDC
::r::: -,
1IIe!,
:::s 0
Q,CQ

ifl
s:
(')
en

I

NULL (CA=O, PC=O, IA=O, PF=7)
$0802

TAKE PRE,INSTRUCTION
EXCEPTION (PC=OI

TAKE PRE-INSTRUCTION
EXCEPTION (PC=O)

TAKE PRE-INSTRUCTION
EXCEPTION (PC=O)

TAKE PRE-INSTRUCTlON
EXCEPTION (PC=OI

TAKE PRE-INSTRUCTION
EXCEPTION (PC=O)

1;;

~

i ~ I
DECODE INSTRUCTION ."

ce'
WRITE COMMAND C ...

CD

READ RESPONSE
N

WRITE EXCEPTION 90
ACKNOWLEDGE -I
~ III

~ " ~~ CD
,.,'" -V
~~ ...
2 ~ cP eng :;-

z !!l ----------,
1 ...
1 C

~ 1 n .. 1 is' ~~ 1
~~ 1 :::s
",c 1

m ~~ I
1 >C

§j I n
1 CD
I '9. -----------1

is' WRITE COMMAND :::s
C

READ RESPONSE iii'
is" WRITE EXCEPTlDN

CQ ACKNDWLEDGE

I ~~ s: ~! (')
~~ en

CO z~

CO "'~
CO 0

N
z

----------,
1

~
1
1
1

;g~ 1
o~ I z,.,

1 "'Si I ~I"'I"I 1
§j 1

1
1 _________ .J

l'v'nN'v'W S,~3Sn l:8889:>W/L8889:>W

~
~

'" '" I !
NULL (CA=O, PC=O, IA=O, PF=7)

OECOOE INSTRUCTION $0802

WRITE COMMA NO

TAKE PRE-INSTRUCTION
REAO RESPONSE EXCEPTION (PC=OI

WRITE EXCEPTION
ACKNDWLEDGE

!:ll TAKE PRE-INSTRUCTION
EXCEPTION (PC=O) ~CS

~~
~~ z ~
"'~

(5
2 ----------,

TAKE PRE-INSTRUCTION
EXCEPTION (PC=O)

~
NULL (CA=O, PC=O, IA=O, PF=7)

$0802

SET BIT 27 Of
THE 81U fLAG

,~

I~
I~

I~I"'I"I
IO~
12g
IS;:;::l
12
1>2
!!;

NULL (CA=O, PC=O, IA=O, PF=7)
RTE INSTRUCTIDN

$0802

I " ~~

I ~ " ~Z
:j~
0"
z~

~~~~ 
.......... 8!< 
~~~"" 
l>:::!_

5~~~
:::IJ :::cm
q;:~?i:E
~~g~
~~~~ 
~~~~ 
m:::c,....,n
Xc 0

~gE~
OZ -<
z g;

l'VnN'VVII S,1:I3Sn Z8889:>VII/L8889:>VII

."
cC'
e ...
CD
......
W ...
-4
III
~
CD

s:
2:
:::s
en e
!l
O·
:::s
m
)(
n
CD

"C .. o·
:::s
C
iii'
0

CC

I
s:
0
0)
00
00
00 ...

NULL (CA~O, PC~O, IA~O, PF~I)
$0802

"FIRST RESPONSE" OF
INSTRUCTION DIALOG (CAol)

TAKE MID-INSTRUCTION
EXCEPTiON (PCoO)

TAKE MID-INSTRUCTION
EXCEPTION (PC~O)

TAKE MID-INSTRUCTION
EXCEPTION (PC~O)

NULL (CA~O, PC~O, IA~O, PF~I)
$0802

if
ANY RESPONSE PRIMmVE EXCEPT NULL

AND TAKE EXCEPTiON PRIMITIVES (CAol)

'" I

" ~
ill

I
~

~
§

DECODE INSTRUCTiON

WRITE COMMAND

READ RESPONSE

DO REQUESTED OPERATION

READ RESPONSE

WRITE EXCEPTION
ACKNOWLEDGE

!li
~~ n;:
mm
"'x <an
Z m
~g

z ----------,
I
I
I
I
I

SET BIT 27 OF
THE BIU FLAG

ATE INSTRUCTiON

" ~~
~!
0" zO

;:

-----------1
READ RESPONSE

~
~

~
~
il

~
g~
zn
$~ z
0

§i

."
cC'
e ...

=e CD
;:+~
:rW

0
Z·
o -4

III
CI:I~
C/)CD
m." -4 ...
;-1
en :::s
"en e ...
!le _. !l
0-· :::s 0 _.:::S
:::Sm ..)(
:rn
CD CD

m'2.)(_.
nO
CD :::s
-g.5!
0111
:::So
J:CC
III I :::s
5!:s:
~O

0)
00
00
00
N

NULL (CA~O, PC~O, IA~O, PF~I)
$0802

TAKE PRE-INSTRUCTiON
EXCEPTION (PCoO)

TAKE PRE-INSTRUCTION
EXCEPTION (PC~O)

TAKE PRE-INSTRUCTION
EXCEPTION (PC~O)

NULL (CA~O, PC~O, IA~O, PF=I)
$0802

TAKE PRE-INSTRUCTION
EXCEPTION (PC~O)

TAKE PRE-INSTRUCTiON
EXCEPTiON (PCoO)

ill

I
;: ii:

I !

~
ill

ZE-L
'Vl0HOlOlI\I

DECODE INSTRUCTION

WRITE COMMAND

READ RESPONSE

WRITE EXCEPTION
ACKNOWLEDGE

~
,,~
,,0
0"
~~
~~ ",,,

~ ----------,

ATE INSTRUCTiON

~~
~'"
~~

;:

WRITE COMMANO

REAO RESPONSE

~m L
OX
zt'l ",,,,
",--< iSm
§i

In the MC68882, an instruction that is executing in the arithmetic processing unit (APU' concur
rently with another instruction in the conversion unit (CU) may cause an exception. The instruction
in the CU reports the exception as a mid-instruction exception when it completes. Figure 7-32
shows the dialog for this case using a general instruction dialog. When the previous instruction
causes an exception, the read response CIR operation for the current instruction reads a take mid
instruction primitive, and the main processor performs exception processing. As in the non
concurrent case, the write exception acknowledge operation does not cause the MC68882 to return
a null primitive. The FSAVE instruction of the exception handler changes the primitive to a null
primitive. Figure 7-33 shows the same case but with a specific instruction (FMOVE FPm,<ea»
in the CU.

When the exception handler does not contain an FSAVE instruction, the take mid-instruction
exception primitive is not replaced by a null primitive, and the next floating-point instruction takes
the exception again. Figure 7-34 shows the dialog for a mid-instruction exception that uses an
incomplete handler.

Figure 7-35 shows the concurrent case using an exception handler that does not include the BSET
instruction. Following the return from the exception handler, the main processor reads the take
mid-instruction exception primitive from the response CIR and performs exception processing
again for the same exception.

7.5.4.3 MID-INSTRUCTION INTERRUPT. This dialog is utilized by the FPCP only if an interrupt is
pending during the calculation phase of the FMOVE FPm,<ea> instruction. In this case, the
protocol for the normal execution of the instruction is followed except that the main processor
performs exception processing for the interrupt, executes the interrupt handler, and returns to
the point where the dialog was suspended in the middle of the execution of the instruction by
the FPCP. From the perspective of the FPCP, the dialog appears to follow the normal sequence,
with a long delay between successive reads of the response CIR by the main processor.

The dialog for this operation is shown in Figure 7-36. (For simplicity, this diagram assumes that
the destination data format is not packed decimal with a dynamic k-factor.) Note that it is possible
(even probable) that the conversion of the output operand is completed before the main processor
rE;Jturns from the interrupt. Thus, the response CIR is prepared to return the evaluate effective
address and transfer data primitive as soon as the main processor returns. Since the read of this
primitive causes the FPCP to discard it and change the response CIR encoding to the null primitive,
the interrupt handler (or any other routine) must not casually read the response CIR to determine
the status of the FPCP, or the suspended protocol is disrupted. Rather, the only valid method for
checking the status of the FPCP is to execute the FSAVE instruction and examine the state frame
that is generated; followed by an FRESTORE instruction to reinstate the previous context of the
FPCP.

7.5.4.4 TAKE BSUN EXCEPTION. This dialog is utilized by the FPCP when a conditional instruction
is initiated by writing one of the IEEE non-aware conditional predicates to the condition CIR with
the SNAN enable bit and the NAN condition code bit set. The dialog is shown in Figure 7-37.

When the main processor reads the response CIR to receive the true/false result of the conditional
evaluation, the FPCP returns the take pre-instruction exception primitive instead of the null pri
mitive. In order to update the FPIAR, the PC bit of this primitive is also set. The main processor
services this primitive by transferring the program counter, writing an exception acknowledge to
the control CIR, and then initiating exception processing. Although the MC68020 or MC68030
always performs the program counter transfer when it is requested, other main processors may

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-33

II

1'ifnN'if1lll S,t:l3Sn Z8889:>IIII/L8889:>1111

::!!
CQ
C ..
CD
.....
W
(oj

';j
~
CD

3:
is: .
:i
:!l-..
C
!l
0'
:::I
m
)(
n
CD

~
0'
:::I

C
iii'
0'

CQ

I
3:
(")
0)
CO
CO
CO
N
"TI
3:
0
< m
(")
0
:::I
n
C
CD
:::I ..
(")
11/
III
CD

NULL (CA=D, PC=D, IA=D, PF=I)
$0802

TRANSFER SINGLE MAIN PROCESSOR
REGISTER (CA=1. PC=x, OR=O)

NULL (CA=I, PC=O, IA=I, PF=O)
$89IXJ

TAKE MID·INSTRUCTION
EXCEPTION (PC=O)

TAKE MID·INSTRUCTION
EXCEPTION (PC=O)

NULL (CA=O, PC=O, IA=O, PF=I)
,~,

NULL (CA=I, PC=D, IA=I, PF=D)
$8900

EVALUATE <ea> ANO TRANSFER
DATA (CA=I, PC=O, DR=I)

NULL (CA=O, PC=D, IA=D, PF=1)
$0802

~
~

~ ~ 1!£
ii!l i!l

DECDDE INSTRUCTION

WRITE COMMANO

REAO RESPONSE

WRITE EXCEPTlDN
ACKNDWLEDGE -----------,

I
I
I
I
1 c:l I ~ I

SET BIT 27 OF
THE BIU FLAG

i
'" RTE INSTRUCTIDN
'"
~
=I

" ~2
~~
='~

'" " z~

-----------'
READ RESPONSE

EVALUATE <ea>

TRANSFER OPERANO

"TI
cQ'
c ..
CD
.....
W
~
-I
11/
~
CD

NULL (CA=O, PC=D, IA=D, PF=1)
3: $0802

~
:i
~ NULL (CA=I, PC=I, IA=I, PF=O) ..

$C9DO C
II NULL (CA=I, PC=O, IA=I, PF=O)
0' $8900
:::I

m
><
2 EVALUATE <ea> AND TRAN~~'K

-g, DATA (CA=I, PC=O, DR=1)

NULL (CA=D, PC=O, IA=I, PF=D) 0
:::I $0900 ~ C

§~ iii'
z'" 0' ",<=

~~ CQ

gj I
3:
(")
0)
CO
CO
CO
N
G)
CD
:::I
CD

TAKE MID· INSTRUCTION ..
11/

EXCEPTION (PC=O) -
(")
0
:::I
n
C NULL (CA=D, PC=O, IA=D, PF=I) .. $0802 ..
CD
:::I ..
(")
11/
III
CD

s:

I '" i
"

I
s:
'" m
co

'" ~

vE-L
'11101::1010l1li

DECDDE INSTRUCTlDN

WRITE CDMMAND

READ RESPDNSE

m READ RESPONSE

WRITE EXCEPTION
ACKNOWLEDGE

I I PERFORM EXCEPTION
PRDCESSING

•

II

9£-L
VlOClOlOlt\I

"T1 <C.
c
;;;

:e -..J
~: W
:rU1
Z~ o I»
to~
C/)CD
mS -I _.
-0.
::::I .:...
CA ::::I
r+CA
~ r+
C ~ n c
g.&.
::::I 0 _. ::::I
::::1 m
r+)(
:rn
CD CD
m~)(_.
n 0
CD ::::I

~C o' iii'
::::Ie
:::r::tel
~ I
~s
~(")

0)
00
00

~

NULL (CAoO, PCoO, IAoO, PFo1)
$0802

"FIRST RESPONSE" OF
INSTRUCTION DIALOG {CAol{

TAKE MID-INSTRUCTION
EXCEPTION {PCoO{

TAKE MID-INSTRUCT/ON
EXCEPTION (PCoO)

TAKE MID-INSTRUCTION
EXCEPTION (PCoO)

NULL (CAoO, PCoO, IAoO, PFo1)
$0802

TAKE MID-INSTRUCTION
EXCEPTION (PCoO)

TAKE MID-INSTRUCTION
EXCEPTION {PCoO{

I
i ;

~

~
~
o
~

DECODE INSTRUCTION

WRITE COMMAND

READ RESPONSE

00 REDUESTED OPERATION

READ RESPONSE

WRITE EXCEPTION
ACKNOWLEDGE

"' ~~
~~
~~
~x

2hi
G1~

RTE INSTRUCTION

~~
~!
o ~
20 s:

--,
I
I
I
I
I
I

I
I
I
I

__________ .-.1

READ RESPONSE

x

g~
2n
~c r

~
c
~

CD
-..J
W

:e ~
;:,: -I
:rl»
z@"
Os
"T1 _.
C/)o. ».:...
<::::I
m~
5'2
~ a.
~ 0
C ::::I

&.m o)(
::::I n -.,g
::::I r+ r+ _.

::r o
CD ::::I

:::r:: c I» _.
::::I ~
0. 0 -tel
~ I

s
(")

g:
00
00
N

l'vnNVIfII S,M3Sn Z8889::>1fII/~8889::>1fII

NULL (CAoO, PCoO, IAoO PFo1)
$0802

"FIRST RESPONSE" OF
INSTRUCTION DIALOG {CAol{

TAKE MID-INSTRUCTION
EXCEPTION {PCoD{

TAKE MID-INSTRUCTION
EXCEPTION (PCoO)

TAKE MID,INSTRUCTloN
EXCEPTION {PCoo{

I
i ;

DECODE INSTRUCTION

WRITE COMMAND

READ RESPONSE

00 REQUESTED OPERATION

READ RESPONSE

WRITE EXCEPTION
ACKNOWLEDGE
~

~~
~~
~~
"'~

~

RTE INSTRUCTION

~

x~
n C
~~
~2
=l~
o ~
20

s:

READ RESPONSE

"l
I
I
I
I
I
I

x

~~
~~
~
!jj

•

MC68020/MC68030

MC68881/MC68882

~i ~~ <S~
0: - <S~

~~
~ii

i~ ",0:

""~ zc
c;r ..: 0: r,= ;J!o r.:

" c
>- " ~ So ~ ~~ ~

<of x~ <of <of

~ " 00 ~ "'..: ~ 1;:'" 1\ "
~~

II
"ii~ :~ c;r

~ ~ ~
Vt!

~ w'" :::j :::f
:0;0

:5 ::> :5 ::> :iE ~ .., z ~
..,

(A SIMILAR SE~UENCE IS FOLLOWED DURING THE INITIAL PHASE OF AN FSAVE INSTRUCTION.
AS INDICATED IN THE FSAVE PROTOCOL DIAGRAM)

Figure 7-36. Mid-Instruction Interrupt Dialog

MC68020/MC68030

MC68881/MC68882

ji'!il ~~ y~
~~

u ""
a::~

1f
::>- 1r o:z

~ I;;c ~
<of 3ffu <of

~ ~~ ~
c;r !:i! ~
~ i!! ~
:5 .., ~

Figure 7-37. Take BSUN Exception Dialog

program counter transfer when it is requested, other main processors may choose to ignore this
request from an MC68881 without incurring a protocol violation. The MC68882 returns a protocol
violation whenever the main processor ignores a request for transfer of the program counter.

Note that the write of the exception acknowledge causes the response CIR encoding to be changed
to the null primitive, thus assuring that the take exception primitive is received by the main
processor while avoiding spurious request primitives in non-MC68020 or non-MC68030 based
systems.

7.5.4.5 F-LiNE EMULATOR EXCEPTION. This dialog is utilized by the FPCP when a general in
struction is initiated, and the value written to the command CIR is not a legal FPCP command
word encoding. In this case, the dialog consists of two write cycles and one read cycle, as shown

MOTOROLA
7-36

MC68881/MC68882 USER'S MANUAL

in Figure 7-38. First, the main processor attempts to initiate a new instruction by writing to the
command CIR; it then reads lhe response CIR to determine the appropriate action to be taken. In
this case, the first read of the response CIR returns a take exception primitive with the F-line
emulator vector number. The main processor services this primitive by writing an exception
acknowledge to the control CIR and initiating exception processing.

z z '" ti '" z

~ ii1 '" ~~ t;; ~ ~'" x",
~ ~~

~z

'" i ::;;;;;
~ :!l' '" '" '" ~'" "'~ § '" I t::::~ ~'"

'" i:1 ~~ ~f

MC68D2D/MC68D3D

I I 1=::8 MC68881/MC68882

~i ~~ ~i F", ~
'" 0..

<;T
:::>-

~ "'2
"'0 S ~ri: s

<S <S

~ ~~ ~
c;r ~ ~
~

;;;
~

~ ~

~ :5
""

Figure 7-38. Take F-Line Emulator Exception Dialog

Note that the write of the exception acknowledge causes the response CIR encoding to be changed
to the null primitive while avoiding spurious request primitives in non-MC68020 or non-MC68030
based systems.

7.5.4.6 FORMAT EXCEPTION, FSAVE INSTRUCTION. This dialog is utilized by the FPCP when an
FSAVE or FRESTORE instruction dialog is interrupted by an attempt to initiate a new FSAVE
instruction (by reading from the save CIR). In this case, the FPCP returns the invalid format word
to signal the illegal nesting of the FSAVE instruction. The main processor services this format
word by writing an abort to the control CIR and initiating exception processing. The dialog for
this operation is shown in Figure 7-39.

:5 z
ti

0

:::>
'" ~ t; <3 1;'i

'" ~ I c

~ '" i:1 ~

MC68D20/MC68D3D

I I I MC68881/MC68882

~~~ c -'" '" ~! ",;;;S? 0 

~LL~ 3: 

~~~ !:;: ~ 

~
s

~~o <S
LuLLJ~ ~ ~g:e '" :::l
ii:~[2

""
<ff

~~e: '" ~ ~cct::
",0 ~

"' :5 ;=; "" '"
Figure 7-39. FSAVE Format Exception Dialog

MC68881/MC68882 USER'S MANUAL MOTOROLA
7-37

II

Since the MPU writes an abort to the FPCP in response to the illegal format word, the FSAVE or
FRESTORE that was interrupted by the nested FSAVE is destructively aborted with no indication
to the suspended instruction of this occurrehce. Thus, a suspended save operation continues to
read the "frame" from the operand CIR if it is resumed, even though the data in the operand CIR
is not valid. Likewise, a suspended restore operation writes the remainder of the frame to the
operand CIR if it is resumed, even though the data written is ignored and the restore operation
is not performed. Due to the destructive behavior of a nested FSAVE instruction, programmers
must be certain that the FPCP is not executing an FSAVE or FRESTORE instruction prior to an
attempt to execute a new FSAVE instruction. If there is a possibility that a nested FSAVE might
occur, the MPU MOVES instruction might be used to read the save CIR before the FSAVE is
executed. If the value returned from the save CIR is the illegal format word, then the new FSAVE
should be postponed. Reading the save CIR in this manner is not destructive.

7.5.4.7 FORMAT EXCEPTION, FRESTORE INSTRUCTION. This dialog is utilized by the FPCP when
an FRESTORE instruction is initiated by writing an invalid format word value to the restore CIR.
(In this context, the term invalid format value refers to any value that is not a null, idle, or busy
format word value recognized by the FPCP.) In this case, the FPCP returns the explicit invalid
format word ($02xx) to signal the unrecognized format word value. The main processor services
this format word by writing an abort to the control CIR and initiating exception processing. The

•
dialog for this operation is shown in Figure 7-40. Note that this is a destructive exception since
any instruction that was executing is aborted when the FRESTORE instruction is initiated. However,
this should not be detrimental since a successful restore operation also aborts any previously
executing instruction.

MOTOROLA
7-38

z 15 '" '" G u ~ =>

~ '" ~ '" ;0; ~ ~
'" '" :il ~ u
w ~ '"

MC68020/MC68030

I I I I MC68881/MC68882

:..'" Ii! ;:,~
~~ :iE oi

"''' !!;'" !;;: ~ <>:..

~~ :;; :;;
'" c; ::;:;;;,; ~

~ ",'"
~ ... '" !!;. c;r
;0; ~

~

:5
'"

Figure 7-40. FRESTORE Format Exception Dialog

MC68881/MC68882 USER'S MANUAL

SECTION 8
INSTRUCTION EXECUTION TIMING

This section gives the instruction execution times for the MC68881/MC68882 (FPCP) in terms of
external clock cycles. This section provides the user with some reasonably accurate execution
timing guidelines, but not exact timings for every possible circumstance. This approach is used
since the exact execution time for an instruction is highly dependent on such things as external
data formats, input operand values, operand type combinations, and timing relationships with
respect to the main processor. The timing numbers presented in the following tables allow the
assembly language programmer or compiler writer to predict worst case timings needed to
evaluate the performance of the FPCP or to optimize code for concurrent execution. Also, the
effect that various data formats and operand values have on execution times can be observed to
allow optimizing data structures for the highest performance for a given application. Finally, the
timings for exception processing, context switching, and interrupt processing are included so that
designers of multitasking or real-time systems can predict such things as task switch overhead
and maximum interrupt latency due to floating-point operations.

When binary real data formats are used and no register conflicts occur, the MC68882 performs
the operand transfer and data conversion for most general type instructions concurrently with II
calculations for preceding instructions. This section includes timing information that shows the :
amount of instruction overlap this concurrency provides.

8.1 FACTORS AFFECTING EXECUTION TIMES

When investigating instruction execution timing for the FPCP, it is assumed that the following
information is required in order to make informed engineering trade-offs:

• Best case instruction execution timings, for determining whether or not an FPCP-based system
can meet certain data processing performance criteria.

• Worst case instruction execution timings and how they affect execution concurrency, to allow
programs and compilers to be optimized to take maximum advantage of overlap under any
timing circumstances.

• Guidelines to indicate how various programming practices can be utilized to improve upon
the worst case execution times, and thus allow performance to approach, as closely as
possible, the best case execution times for a given task.

• The effects that an FPCP might have on system related timings such as context switch over
head time in multitasking systems, or interrupt latency time in a real-time system.

First of all, when defining the performance of any machine that can operate in an asynchronous
manner, or where data dependencies affect execution times, a set of assumptions must be made
in order to provide a measurable environment. In this manual, instruction execution times are
shown in clock cycles to remove clock frequency dependencies, and the following assumptions
apply to define the context of the times shown.

• The main processor is an MC68020, acting as the host to the FPCP, and the two devices use
the same clock input.

• When the main processor initiates a command to the FPCP, any previous floating-point
instruction has been completed and the FPCP is in the idle state.

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-1

• All operands in memory, as well as the system stack, are long word aligned.
• A 32-bit data bus is used for communications between the MC68020 and both the FPCP and

the system memory.
• All memory accesses occur with no wait states (i.e., three clock cycle reads and writes).
• All coprocessor accesses, except those to the response and save CIRs, occur with no wait

states. Accesses to the response and save CIRs require two wait cycles (five clock reads).

Note that the clock signal relationship between the MC68020/MC68030 (MPU) and the FPCP as
sumed for these discussions is not a system requirement, but merely a simplification that allows
easy measurement of instruction times. However, the ratio of MPU clock frequency to FPCP clock
frequency can be any reasonable value. In general, the clock frequency of the FPCP affects absolute
instruction timing more than that of the MPU, since floating-point operations are usually com
putation intensive. However, the clock frequency relationship of the MPU and FPCP can affect the
execution time of an instruction due to the time needed to transfer operands of various sizes and
due to actual activity of the two devices. The magnitude of the dependency of execution times
on the clock frequency of the MPU varies with instruction types, since some instructions spend
a relatively small amount of their overall execution time in communication with the main pro
cessor; whereas, other instructions spend almost all of their execution time in communication
with the main processor.

With this set of assumptions as a starting point, several factors must be defined that contribute
to the overall execution time for a given instruction. Some of these factors are common to all
instructions, while others are only applicable to certain instructions or data types. Particularly,

•
the execution times for the conditional and system control instructions are not widely variable,

: but the execution time for an arithmetic or data movement instruction is heavily affected by data
values and exception checking. In order to better understand how these factors are combined to
calculate the execution time for an arithmetic or move-to-floating-point register instruction, it is
helpful to divide coprocessor instruction execution into the following steps:

,. Receive the command word from the host processor, decode it, and return the first service
request primitive.

2. Receive the main processor program counter, if required.
3. Receive an external operand, if required.
4. Convert the operand to the internal extended format.
5. Perform the algorithm specified by the command word on the operand(s).
6. Round the result to the correct precision, check the result of the computation for conditions

such as overflow, then store the result into a floating-point data register.

The first three of these steps require approximately the same amount of time for any instruction,
but the last three steps can require widely varying amounts of time even when comparing the
execution time for a given instruction with different data inputs. For purposes of this discussion,
the first three steps are referred to as the instruction start-up phase, the fourth step as the
conversion phase, the fifth step as the calculation phase, and the sixth step as the round/store
phase. The following sections discuss the factors that affect the execution time of an arithmetic
instruction during each of these phases.

8.1.1 Instruction Start-Up Phase

The factor that affects execution time most heavily during this phase of an instruction is the
location and format of an external operand. The three possible locations for an input operand
are:

MOTOROLA
8-2

MC68881/MC68882 USER'S MANUAL

1. In a floating-point data register,

2. In a main processor data register, and
3. In external memory.

If an operand resides in a floating-point data register before an instruction starts, no data move
ment operation is required to prepare it for the calculation phase, and thus, the start-up phase is
very short. If an operand resides in a main processor data register, the FPCP uses the evaluate
effective address and transfer data response primitive to request it from the MPU. In this case,
the MPU does not generate any operand memory cycles, and the operand is transferred to the
FPCP with a single bus cycle. The FPCP then converts the signed integer or single precision
floating-point number to extended precision and proceeds to the calculate phase.

For the third operand location case, execution time can vary widely due to two separate mech
anisms, the addressing mode and alignment of the operand in memory, and the data format and
value of the operand. The addressing mode used to locate an operand affects execution time in
a straightforward manner due to the fixed nature of effective address calculations by the MPU.
For example, if the addressing mode used is address register indirect, (An), then no instruction
prefetch or external bus cycle is required to calculate the address ofthe operand. If the addressing
mode used is memory indirect with post-indexing, ([d,AnJ.Xn.sz*scl,d). then up to five instruction
prefetch words and one long word indirect address fetch may be required to calculate the final
address of the operand. Then, once the operand is located, up to three long word fetches may
be required to transfer the operand to the FPCP. The execution times for these operations are
quite predictable (i.e., there are no data dependencies involved). although they are affected by
instruction stream alignment, MPU cache hits, memory access times, memory width, and operand
alignment. As mentioned earlier, certain assumptions are made with regard to these factors (for
the purposes of this discussion) so that the tables in this section may be simplified. In order to
include the effects of these factors, refer to the MC68020 user's manual or the MC68030 user's
manual for more information regarding bus operation.

The second mechanism that can affect execution times for operands in memory is the data format.
For the integer and binary floating-point formats, the execution times for conversions required
to prepare the operand for the calculation are relatively free from data dependencies. However,
for the packed decimal floating-point format, execution times can vary significantly due to the
value of the input operand.

8.1.2 Calculation Phase

This is the most volatile portion of an instruction with respect to execution times. The main factor
that affects the calculation time is the operation to be performed (e.g., a sine operation requires
far more time than an add operation), but for a given operation, the execution time is data
dependent. For the monadic operations, the data dependency is limited to the type and value of
the input operand; for the dyadic operations, the combination of the types and values of the two
operands can also affect execution time (in this context, data type refers to the FPCP extended
precision representation of one ofthe five IEEE data types: normalized, denormalized, zero, infinity,
and not-a-number). Because execution times vary due to data values and type combinations,
Tables 8-14 and 8-15 indicate the execution time for each arithmetic operation with typical ar
guments, along with timing values for special case operand types such as zero, infinity, etc.

8.1.3 Round/Store Result Phase

The execution time for this phase of an instruction is dependent on the mode of operation that
is programmed into the floating-point control register, as well as the value of the result. For

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-3

II

example, if the rounding precision is programmed to be extended, execution is faster than if it
is single. Also, if the result of a calculation overflows or underflows the destination precision,
then more time is required to handle that exception. In the following subsections, the overall
execution times for the arithmetic operations assume the best case round/store phase time. Table
8-16 lists the values used to calculate execution times for various rounding precisions and ex
ception handling operations.

8.2 CONCURRENT INSTRUCTION EXECUTION

An important factor that should be considered when optimizing MPU and FPCP programs is the
amount of concurrent execution time that an instruction allows. It is also an important consid
eration in calculating overall execution time.

Concurrency between MPU and the FPCP applies when the main processor executes MPU in
structions while the coprocessor completes execution of a floating-point instruction. The MC68882
can execute two floating-point instructions concurrently, providing additional concurrency not
available in the MC68881.

Overlap time between instructions determines the degree of concurrency that is possible. Overlap
time is derived from the combination of the tail of an instruction with the head of the next
instruction, where tail and head are portions of the total execution time of an instruction. The tail
is the portion of the total execution time during which another instruction can be executed. The
head is the portion of the total execution time that can be performed while another instruction r.. is completing. The overlap time of two consecutive instructions is either the tail of the first

~ instruction or the head of the second, whichever is less.

The tail of a floating-point instruction is the time during which the MPU can execute a subsequent
instruction. It consists of the time during which the coprocessor releases the MPU to allow a
subsequent instruction to begin. During this period, the coprocessor is still performing the cal
cuiations necessary to compiete the current instruction.

In the case of the MC68881, overlap occurs only when the subsequent instruction is an MPU
instruction. Table 8-25 is used to calculate the portion of the MC68881 instruction that can overlap
with an MPU instruction. If the subsequent instruction is a floating-point instruction, the MPU is
requested to wait to execute it until the coprocessor finishes the current instruction. That is, the
head portion of the execution time for a floating-point instruction executing in an MC68881 is
zero.

The MC68882, however, can obtain the operand of a subsequent floating-point instruction and
convert the operand to internal format during the tail of the previous instruction. This portion of
the instruction is defined as the head of the MC68882 instruction. It is the portion of the instruction
that begins when the instruction is initiated by the MPU, and ends when the present coprocessor
instruction can no longer operate under the tail of a previous instruction. The actual values of
head and tail that apply to the MC68882 floating-point instructions are shown in Table 8-3. The
tails of MC68882 floating-point instructions can execute concurrently with MPU instructions as
well as with other MC68882 instructions. The head times for the MC68882 instructions indicate
the degree of concurrency that is allowed.

Each floating-point instruction of the MC68882 is either fully concurrent, partially concurrent, or
non-concurrent. Instructions for which the head time equals the total execution time are fully
concurrent. Those for which head and tail values are shown are partially concurrent. The instruc
tions that have zero head values are non-concurrent.

MOTOROLA
8-4

MC68881/MC68882 USER'S MANUAL

\

Concurrent execution of floating-point instructions in the MC68882 can significantly improve
coprocessor performance. Refer to 5.1.2 Optimization of Code for the MC68882 for more infor
mation on the effects of concurrency on the performance of programs.

8.3 INTERRUPT LATENCY TIMES

In real-time systems, a very important factor pertaining to overall system performance is the
response time required for a processor to handle an interrupt. In the M68000 Family of processors,
interrupts are allowed to be asserted to the processor asynchronously, and they are handled on
the next instruction boundary. While the average interrupt latency for the MPU is quite short, the
maximum latency is often of critical importance since real-time interrupts cannot require servicing
in less than the maximum interrupt latency. The maximum interrupt latency for the MPU is
approximately 250 clock cycles (for the MOVEM.L ([d32,An],Xn,d32),DO-D7AO-A7 instruction where
the last data fetch is aborted with a bus error; refer to the MC68020 user's manual or the MC68030
user's manual for more detailed information), but some FPCP instructions may take two or three
times that long to execute with typical operand types, combinations and values.

It may be unacceptable in a real-time system to have a worst-case interrupt latency time as large
as 600 or more clock cycles (the length of some long floating-point instructions). Therefore, the
FPCP allows interrupts to be processed in th/:l middle of the execution of a floating-point instruction,
whenever possible, to reduce the latency time. The FPCP does this in four ways:

1. By returning the null (CA=O, IA=1, PF=O) primitive when it enters the calculate phase of
an instruction that allows concurrency. If the MPU is not in the trace mode, it is then free to 8
fetch the next instruction and process any pending interrupts at the instruction boundary. If
the MPU is in the trace mode, it waits for the FPCP to complete execution and return the
null (CA=O, PF= 1) primitive before continuing with the next instruction, but it services
pending interrupts while it is waiting.

2. By returning the null (CA = 1, IA = 1) primitive when the main processor attempts to initiate
a floating-point instruction while the FPCP is unable to begin another operation, thus allowing
the MPU to service interrupts while waiting for the coprocessor to start execution of the new
instruction.

3. By returning the null (CA = 1, IA = 1) primitive during internal conversions for non-concurrent
instruction execution (eg., FMOVE.<fmt> FPn,<ea> in the MC68881 or FMOVE.W FPn,<ea>
in the MC68882) before returning service request primitives to complete the operation.

4. By returning the not ready, come again format code during internal operations required by
the FSAVE instruction. The FPCP returns this format code in some cases (as described in 6.4
CONTEXT SWITCHING) to enable it to store a smaller state frame, and the MPU can process
interrupts while waiting for the save operation to begin.

For the first two cases, the MPU is allowed to process interrupts during the tail period defined in
8.2 CONCURRENT INSTRUCTION EXECUTION. For the third case, the period during which the
MPU can process interrupts is illustrated in Figure 8-1. The timing for the fourth case is similar
to the third case, except that the periods labeled "Convert", "Round", and "Transfer" for the FPCP
are not used for those purposes but instead for saving of the internal state .

...----------,-----------------------------------r-------,
MC68020 MC68030 I INITIATE INSTRUCTION WAIl; INTERRUPTS ALLOWED STORE 1

MC688881 'MC68882 L ___ J.L-__ ST_A_RT_.U_P _----L ______ co_Nv_E_RT _____ '-----I_Ro_u_No_----L_TR_AN_s_FE_R.....J1

Figure 8-1. Non-Concurrent Instruction Execution, Interrupts Allowed

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-5

Basically, the maximum interrupt latency time for any FPCP instruction is equal to the worst CqSe
execution time minus the interrupts allowed time, where both of these values are calculated using
the tables in this section. For concurrent instructions, the execution time and allowed concurrency
times are shown, and the interrupt latency is the difference between these two values. For non
concurrent instructions, the amount of time during which interrupts are allowed is shown in the
tables as the number of allowed overlap clock cycles, and the interrupt latency is approximately
equal to the total execution time minus the allowed overlap time. However, as shown in Figure
8-1, there may be two separate time periods during which the MPU is not allowed to process
interrupts. For some instructions, such as the FMOVE.P FPn,<ea> instruction, these two periods
are approximately equal and make up a small fraction of the overall execution time for the
operation. On the other hilnd, for the FRESTORE and FSAVE instructions, the time required to
transfer a busy state frame is roughly equal to the overall execution time. In fact, the worst case
interrupt latency due to an FPCP instruction is for the FRESTORE instruction with a busy state
frame.

8.4 COPROCESSOR INTERFACE OVERHEAD

For all of the instruction timings shown in the following tables, all coprocessor interface bus cycle
timing and associated processing are included in the overall execution times. However, it is
assumed that when the main processor begins execution of a floating-point instruction, the FPCP
has completed execution of any previous instruction and is ready to begin a new instruction.
(Note that the criteria for determining the readiness of the MC68881 is different from that of the
MC68882. The MC68881 is ready to begin an instruction if the previous instruction is completed .

•
The MC68882, however, is ready to begin an instruction if the instruction has completed executing

: in the CU and the CU has handed off the instruction to the APU.) Thus, the MPU is never required
, to wait while the FPCP completes an instruction. Also, it is assumed that when the MPU is waiting

for the FPCP during a non-concurrent instruction, the main processor reads the response register
at exactly the moment when the FPCP is prepared to return a service request primitive to complete
or continue the instruction. If these conditions are not met, the actual instruction execution time
can be shorter or ionger than the vaiues shown in the tabies, due to synchronization of the two
devices.

First, it must be noted that the FPCP does not begin execution of an instruction until the start of
the read cycle from the response CIR in which the first primitive ofthe instruction dialog is returned
to the main processor. If the MPU attempts to initiate a floating-point instruction before the
previous one has completed and the coprocessor is ready, the FPCP queues the command word
or conditional predicate and then instructs the MPU to wait (by encoding the null (CA = 1, IA = 1)
primitive in the response CIR) until the previous instruction is completed and the FPCP is ready
to begin the next instruction. When the previous instruction has completed execution, the FPC!?
does not begin execution of the queued instruction until the next read of the resppnse CIR. The
sequence of events for this situation is:

1. The FPCP allows concurrent instruction execution by returning the null (CA = 0, IA = 1, PF = 0)
primitive to the MPU.

2. The MPU encounters the next FPCP instruction and attempts to initiate execution by writing
to the command or condition CIR. The MPU then starts a read from the response CIR to
determine what further action should be taken.

3. The FPCP queues the instruction initiation request and changes the encoding of the response
CIR to null (CA= 1, IA= 1), causing the MPU to wait.

4. The MPU continues to read the response CIR repeatedly until a new primitive is encoded or
an interrupt becomes pending (if an interrupt occurs, the MPU resumes polling of the re
sponse CIR after the interrupt handler executes an RTE instruction).

MOTOROLA
8-6

MC68881/MC68882 USER'S MANUAL

5. The MC68881 APU becomes idle (by completing the previous instruction) and waits for the
next read of the response CIR. In the MC68882, the CU handS off the instruction to the APU
after the APU completes the previous instruction and waits for the next read of the response
CIR.

6. The MPU reads the response CIR, which either results in the return of a take exception
primitive (due to an exception during the previous instruction) or causes the FPCP to begin
execution of the new instruction by returning the first primitive required for that operation.

The timing relationship of the main processor and the FPCP during this sequence can affect the
overall execution time of the new instruction, due to synchronization between the two devices.
Specifically, if the MPU begins a read of the response CIR exactly one clock cycle before the FPCP
completes the execution of the previous instruction in the APU, the FPCP immediately begins
execution of the new instruction by returning the first primitive of the new instruction dialog
during that read cycle. This case is shown in Figure 8-2, which illustrates the best case timing for
coprocessor interface overhead: two clock cycles.

SO SI S2 S3 S4 S5 so SI S2 53 S4 S5 so 81 S2 Sw Sw Sw Sw S3 S4 S5

MC68020/MC68030)(START NEW INSTRUCTION - cpGEN

BUS ACTIVITY (PRE FETCH X WRITE COMMANO XI... ___ RE_AO_R_ES_P_ON_SE __,>-
MC68881/MC68882 COMPLETE PREVIOUS INSTRUCTION) (START NEW INSTR. ..

~--------~v~----------~~
BEST CASE OVERLAP - 9 CLOCKS 2 CLOCK OVERHEAO

Figure 8-2. Best-Case Coprocessor Interface Overhead Timing

Figure 8-2 also illustrates the typical coprocessor interface overhead timing, which occurs when
the MPU initiates a new instruction and the FPCP is in the idle state. For this case, there is no
overlap with a previous instruction at the beginning of the instruction dialog, and the coprocessor
interface overhead for the new instruction is eleven clock cycles. Also, note that this example
asSumes that the instruction prefetch requested by the cpGEN start-up operation was not satisfied
by the previous prefetch bus cycle, and it does not hit in the MPU on-chip instruction cache. Refer
to 8.5.2 MC68881 Detail Timing Tables for further discussion of the effects of instruction prefetch
ing by the MPU.

If the read cycle to the response CIR occurs before the FPCP has completed execution of the
previous instruction, the MPU processes the null (CA=1, IA=1) primitive that is returned (by
checking for pending interrupts and re-reading the response CIR if there are none). This operation
requires 10 MPU clock cycles, and thus there is a 10 clock cycle worst case synchronization period
that is part of the effective execution time for the new instruction. (The worst case occurs if the
response CIR read cycle starts two clock cycles before the previous instruction in the APU is
completed.) The worst case timing is shown in Figure 8-3. The exact amount of synchronization
time required is dependent on the system environment, such as the clock signal relationship
between the MPU and the FPCP, and the context of an instruction sequence. In all ofthe following
tables, the typical case of no overlapped execution is assumed; thus, a coprocessor interface
overhead value of eleven clock cycles is included in the timing numbers. Ii an attempt is made
to optimize an instruction sequence for overlapped execution, the coprocessor interface overhead

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-7

II

•

SO SI S2 S3 S4 S5 SO SI S2 S3 S4 S5 SO SI S2 Sw Sw Sw Sw S3 S4 S5 SO SI S2 Sw Sw Sw Sw S3 S4 S5

~g~~~~~/:X_S1;.;;A.;;;.RT~N.:.;,EW;.;;IN;;:;ST;.;;RU:.;;;CTI.;;;ON:;..--=::.CPG::;EN::...-_________________ -'X'-;;,:NU.:;.LL.:.;;ICA.;..~,;;,.1.I:;;.A-..;,:II ____ _

BUS ---~:=~~~)C~~~~<=::~~~~::=r-------~:::=!~~~::~ ACTIVITY PREFETCH READ RESPONSE READ RESPONSE

MC68881/-=::::::::::::~~~~~~~>-----------------~~ MC68882 _ COMPLETE PREVIOUS INSTRUCTION ~.

~----------~r------______ ~A~ ______________ -,,-______________ ~

WORST CASE OVERLAP - 10 CLOCKS 11 CLOCK OVERHEAD

Figure 8-3. Worst-Case FPCP Interface Overhead Timing

may be reduced by as much as nine clock cycles. However, incorrect "optimization" may result
in an eleven clock cycle overhead, which is no worse than the no overlap case previously described.

A similar overhead effect occurs for non-concurrent instructions that allow interrupt processing
by returning the not ready format code (FSAVE instruction), or the null (CA= 1, IA= 1) primitive
in the middle of instruction execution (i.e., the FSAVE and FMOVE FPn,<ea> instructions). In
these cases, the FPCP completes as much of the instruction as possible while allowing interrupts,
and then prepares to encode a valid format code or service request primitive in the save or
response CIR during the next read by the MPU. The timing relCltipnship between the start of the
read cycle and the completion of internal operations by the FFiPP is identical to the timing pre
viously described for the instruction start up phase. Thus, the same 10 clock cycle overhead factor
might be added to the execution time for these instructions .

In the following tables, the assumptions stated earlier apply (i.e., the main processor is an MPU
running on the same clock as the FPCP), and the coprocessor interface overhead for all operations
other than instruction initiation is included based on those assumptions. If an instruction is ex
ecuted under conditions other than those described, the execution time may be increased in
increments of 10 clock cycles if necessary.

8.5 EXECUTION TIMING TABLES

In the following subsections, timing tables are presented that allow the calculation of best case,
typical and worst case execution times for any FPCP instruction. These tables are based on the
assumptions previously stated and include the total execution time for each instruction. In other
words, the numbers that are calculated using these tables indicate the time from the beginning
of execution of the coprocessor instruction by the MPU (i.e., when the instruction has been
prefetched and loaded into the instruction decode register) to completion of the instruction by
the FPCP and/or MPU (i.e., when a read of the response CIR indicates a null (CA = 0, PF = 1), when
conditional processing is completed, or when the last operand transfer to or from the FPCP has
been completed).

Bus cycle activity is also indicated by the tables and includes 1311 bus cycles generated by a particular
operation. Note that instruction prefetch and operand write cycles requested by the execution of
a given instruction may not actually be executed during the execution of the instruction, but are
queued by the MPU bus interface unit for completion as soon as the bus is available. (Refer to
the MC68020 or MC68030 user's manual for more information on bus cycle overlap.) When a
floating-point operation is completed, a prefetch request has been generated by the MPU to replace
each word of the instruction stream used by the instruction or to refill the instruction pipe in the
case of a conditional branch, a trap instruction, or an exception.

MOTOROLA
8-8

MC68881/MC68882 USER'S MANUAL

The timing information shown in the following tables for some operations includes three numbers
that depend on the context of the instruction (i.e., the alignment of the instruction stream, whether
the MPU instruction cache is enabled, and whether the cache contains the instruction.)

1. The best case value, where prefetches hit in the MPU on-chip cache and the instruction
benefits from the maximum overlap, in the MPU pipeline, with other instructions. Due to
the highly volatile nature of the instruction pipeline, this case is not easy to achieve inten
tionally but occurs occasionally.

2. The cache-only-case, where prefetches hit in the MPU on-chip cache, but the instruction
does not overlap with preceding or following instructions.

3. The worst case, where prefetches do not hit in the MPU on-chip cache or the cache is disabled,
and there is no instruction overlap. It is further assumed that the instruction is aligned so
that a prefetch is executed before the MPU writes to the FPCP command CIR.

The execution time entries in most of the following tables contain seven numbers. The left-most
number is the total execution time for the operation in clock cycles, followed by the number of
clock cycles of the total execution time that is allowed to overlap with execution of other operations
by the main processor. Then, in parenthesis, the bus cycle activity is included, which indicates
the number of instruction prefetch, operand read, operand write, coprocessor read, and copro
cessor write bus cycles that are generated by the execution of the instruction. An example of the
format of an entry from the timing tables is:

xx/xx (xx/xx/xx/xx/xx)

6~~:,:;~~~os~~:~uent MPU i_n_st_r_u_ct_io_n_s _________ '_---IIII
Number of prefetch bus cycles .
Number of operand read bus cycles _____________ ---'
Number of operand write bus cycles - _____________ ---'
Number of coprocessor read bus cycles ______________ --1

Number of coprocessor write bus cycles _______________ ---l

The total number of clocks required for the bus activity in each entry can be derived by multiplying
the total number of bus cycles by three. (This does not account for the fact that reads from the
response and save CIRs require five clocks rather than three, but the two clock-cycle discrepancy
is usually negligible compared with the overall execution time for an instruction.) For some
instructions, the number of coprocessor read cycles indicated by the tables may not reflect the
actual number of read cycles that are executed during the dialog for the instruction. This is because
only the first occurrence of a series of null (CA= 1, IA= 1) or null (CA=O, PF=O, IA= 1) primitives
is included in the tables. For example, the FPCP forces the main processor to wait during the
conversion phase of the FMOVE FPn,<ea> instruction by using the null response primitive. The
MPU may perform numerous response CIR read cycles during the time that it waits for the FPCP,
but only the first of this series of read cycles is included in the timing table entry. Although this
simplification may fail to indicate the true number of coprocessor read cycles executed by the
MPU, it allows the tables to accurately indicate the minimum number of different response pri
mitive and operand reads that must be executed by a main processor, regardless of its type or
clock and bus speed.

The timing tables in the following sections are divided into two major groups. First, several tables
are presented that allow quick determination of the typical execution time for all instructions.
These tables are comprehensive but assume typical operand inputs and operating conditions for
simplicity. No more than two tables are used to determine the typical execution time for a given
instruction. One table is used to determine the basic execution time for the selected instruction,

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-9

•

and a second table (one of five listing the instruction groups) is used to determine the additional
time required for the calculation of the effective address by the MPU, for those instructions that
require an effective address calculation.

The second group of tables is used to calculate a more precise execution timing value for a specific
instruction, addressing mode, and operand type combination than is available in the first group
of tables. This group of tables is also useful for the calculation of execution times where the main
processor is not an MPU, since the timing for each phase of instruction execution is included in
a separate table. This allows timings that are only dependent on the FPCP to be calculated and
added to the timing characteristics of the main processor.

8.5.1 Timing Tables for Typical Execution

This set oftables allows a quick determination ofthe typical execution time for any FPCP instruction
when the MPU is used as the main processor. The first table presented is for effective address
calculations performed by the MPU. Entries from this table are added to the entries in the other
tables in this subsection, if necessary, to obtain the overall execution time for an operation. The
assumptions that apply to the following tables are:

• The main processor is an MC68020 and operates on the same clock as the FPCP. Instruction
prefetches do not hit in the MC68020 cache (or it is disabled), and the instruction is aligned
so that a prefetch occurs before the command CIR is written by the MC68020.

NOTE
The timing numbers are derived assuming that the main processor is an MC68020 .
The MC68030 has a more optimized coprocessor interface and can benefit from the
data cache hits. These improvements of the coprocessor interface are not used in
determining typical operation. Actual operation when using the MC68030 always
yields better values than the calculations derived from these tables.

• A 32-bit memory interface is used, and memory accesses occur with zero wait states. All
memory operands, as well as the stack pointers, are long-word aligned.

• Accesses to the FPCP require 3 clock cycles, with the exception of read accesses to the
response and save CIRs, which require 5 clock cycles.

• No instruction overlap is utilized so the coprocessor interface overhead is 11 clocks. This can
be reduced to 2 clock cycles if optimized code sequences are used or may be 11 clock cycles
if overlap is attempted and a synchronization delay is required.

• Typical operand conversion and calculation times are used (i.e., input operands are assumed
to be normalized numbers in the legal range for a given function).

• No exception is enabled, no exception occurs, and the default rounding mode and precision
of round-to-nearest, extended precision is used.

8.5.1.1 EFFECTIVE ADDRESS CALCULATIONS. For any instruction that requires an operand ex
ternal to the FPCP, an evaluate effective address and transfer data response primitive is issued
by the FPCP during the dialog for that instruction. The amount of time that is required for the
MPU to calculate the effective address while processing this primitive for each addressing mode,
excluding the transfer of the data to the FPCP, is shown in Table 8-1. The times shown in this
table include all bus cycles required to perform the address calculation (such as instruction pre
fetches and memory indirect fetches).

For the FMOVEM instruction, Table 8-1 is also used to determine the time required for the MPU
to perform an address calculation (implied by the transfer multiple coprocessor registers primi
tive). Forthe FScc, FRESTORE, and FSAVE instructions, the request to evaluate an effective address

MOTOROLA
8-10

MC68881/MC68882 USER'S MANUAL

Table 8-1. Effective Address Calculations

Addressing Modes Best Case Cache Case

Dn or An 010 (010101010) 010 (010101010)

(An) 010 (010/01010) 2/0 (010/0/0/0)

(An)+ 3/0 (010/0/0/0) 6/0 (010101010)

-(An) 3/0 (010/01010) 6/0 (010/0/0/0)

(d16.An) or (d16.PC) 010 (0101010/0) 2/0 (0101010/0)

(xxx).w 0/0 (0/0/010/0) 210 (010/01010)

(xxx).L 110 (010101010) 410 (010101010)

#<data> 010 (010/0/010) 010 (0101010/0)

(ds.An.Xn) or (ds.PC.Xn) 110 (010101010) 410 (01010/0/0)

(d16.An.Xn) or (d16.PC.Xn) 3/0 (010101010) 610 (010101010)

(B) 310 (010101010) 6/0 (010101010)

(d16.B) 5/0 (010101010) SID (010101010)

(d32.B) 11/0 (010101010) 14/0 (010101010)

([B).I) SID (0/1/0/0/0) 1110 (0/1/01010)

([Bl.I.d16) SID (0/1/0/0/0) 11/0 (0/1/01010)

([B).I.d32) 1010 (0/1/01010) 13/0 (0/1/01010)

([d16.B).1) 1010 (0/1/01010) 13/0 (011101010)

([d16.Bl.l.d16) 10/0 (0/1/01010) 13/0 (0/1/0/010)

([d16.B).I.d32) 12/0 (0/1/01010) 15/0 (011/01010)

([d32.Bl.1) 16/0 (011101010) 19/0 (0/1101010)

([d32.B).I.d16) 16/0 (0/1/010/0) 19/0 (0/1/01010)

([d32.B).I.d32) lS/0 (0/1/01010) 2110 (0/1101010)

B~Base address; O. An. PC. Xn. An+Xn. PC+Xn. Form does not affect timing.
I ~ Index; 0 or Xn.

Worst Case

010 (0101010/0)

2/0 (0101010/0)

6/0 (010/0/010)

6/0 (010/0/0/0)

3/0 (110/01010)

3/0 (110/0/0/0)

5/0 (110101010)

010 (010/0/010)

5/0 (110101010)

710 (110101010)

710 (110101010)

9/0 (110/01010)

1610 (2/0101010)

12/0 (1/1/01010)

12/0 (1/1101010)

15/0 (2/1/01010)

14/0 (1/1101010)

15/0 (2/1101010)

1710 (2/1101010)

21/0 (2/1/01010)

21/0 (2/1/01010)

24/0 (311101010)

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn does not affect timing.

is implied by the F-line instruction word; therefore, no response primitive is issued by the FPCP
to request the evaluation. The following table is used for these three instructions to adjust the
basic instruction execution time to reflect the addressing mode that is used.

Note that Table 8-1 applies only to the MPU effective address calculation time for coprocessor
instructions. The execution times included in this table are not the same as the calculate effective
address times given in the MPU user's manuals for normal instruction execution.

8.5.1.2 ARITHMETIC OPERATIONS. Three tables provide the typical instruction execution time
for each arithmetic instruction. This group of instructions includes the majority of the FPCP op
erations such as FADD, FSUB, etc. In addition to the instructions that perform arithmetic calcu
lations as part of their function, the FCMP, FMOVE, and FTST instructions are also included since
an implicit conversion is performed by those operations. For memory operands, the timing for
the appropriate effective addressing mode must be added to the numbers in these tables to
determine the overall instruction execution times. In order to simplify these tables, the overall
execution times for the MC68881 are listed in Table 8-2, the overall execution times for the
MC68882 are listed in Table 8-3, and the bus cycle activity numbers are listed in Table 8-4. In
addition to the total execution times for the MC68882, Table 8-3 lists the head and tail values
required for calculating concurrency.

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-11

•

Table 8-2. Me68881 Overall Execution Times

Instruction FPn to FPm
Memory Source or Destination Operand Format

Integer Single Double Extended Packed

FABS 35 62 54 60 58 872

FACOS 625 652 644 650 648 1462

FADD 51 80 72 78 76 888

FASIN 581 608 600 606 604 1418

FATAN 403 430 422 428 426 1240

FATANH 693 720 712 718 716 1530

FCMP 33 62 54 60 58 870

FCOS 391 418 410 416 414 1228

FCOSH 607 634 626 632 630 1444

FDIV 103 132 124 130 128 940

FETOX 497 524 516 522 520 1334

FETOXM1 545 572 564 570 568 1382

FGETEXP 45 72 64 70 68 882

FGETMAN 31 58 50 56 54 868

FINT 55 82 74 80 78 892

FINTRZ 55 82 74 80 78 892

FLOGN 525 552 544 550 548 1362

FLOGNP1 571 598 590 596 594 1408

FLOG10 581 608 600 606 604 1418

FLOG2 581 608 600 606 604 1418

FMOD 70 99 91 97 95 907

FMOVE to FPn 33 60 52 58 56 870

FMOVE to memory - 100 80 86 72 2002

FMOVECR 29 - - - - -
FMUL 71 100 92 98 96 908

FNEG 35 62 54 60 58 872

FREM 100 129 121 127 125 937

FSCALE 41 70 62 68 66 878

FSGLDIV 69 98 90 96 94 906

FSGLMUL 59 88 80 86 84 896

FSIN 391 418 410 416 414 1228

FSINCOS 451 478 470 476 474 1288

FSINH 687 714 706 712 710 1524

FSQRT 107 134 126 132 130 944

FSUB 51 80 72 78 76 888

FTAN 473 500 492 498 496 1310

FTANH 661 688 680 686 684 1498

FTENTOX 567 594 586 592 590 1404

FTST 33 60 52 58 56 870

FTWOTOX 567 594 586 592 590 1404

'Add the appropriate effective address calculation time.
"If the source or destination is an MPU data register, subtract 5 or 2 clock cycles, respectively.

"'Assumes a static k-factor is used if the destination data format is packed decimal. Add 14 clock cycles if a dynamic k-factor is
used.

""The source operand is from the constant ROM rather than a floating-point data register.

MOTOROLA
8-12

MC68881/MC68882 USER'S MANUAL

Table 8-3. MC68882 Overall Execution Times

Memory Source or Destination Operand Format'"

Monadic FPn to FPm Integer**** Single···· Double Extended Packed

H T Total H T Total H T Total H T Total H T Total H T Total

FABS 17 17 38 21 28 68 30 20 51 36 20 57 42 20 63 13 811 893

FACOS 17 607 628 21 618 658 30 610 641 36 610 647 42 610 653 13 1401 1483

FADD 17 35 56 21 54 94 30 38 69 36 38 75 42 38 81 13 827 909

FASIN 17 563 584 21 574 614 30 566 597 36 566 603 42 566 609 13 1357 1439

FATAN 17 385 406 21 396 436 30 388 419 36 388 425 42 388 431 13 11791261

FATANH 17 675 696 21 686 726 30 678 709 36 678 715 42 678 721 13 1469 1551

FCMP 17 17 38 21 36 76 30 20 51 36 20 57 42 20 63 13 809 891

FCOS 17 373 394 21 384 424 30 376 407 36 376 413 42 376 419 13 1167 1249

FCOSH 17 589 610 21 600 640 30 592 623 36 592 629 42 592 635 13 1383 1465

FDIV 17 87 108 21 106 146 30 90 121 36 90 127 42 90 133 13 879 961

FETOX 17 479 500 21 490 530 30 482 513 36 482 519 42 482 525 13 1273 1355

FETOXMl 17 527 548 21 538 578 30 530 561 36 530 567 42 530 573 13 1321 1403

FGETEXP 17 27 48 21 38 78 30 30 61 36 30 67 42 30 73 13 821 903

FGETMAN 17 13 34 21 24 64 30 16 47 36 16 53 42 16 59 13 807 889

FINT 17 37 58 21 48 88 30 40 71 36 40 77 42 40 83 13 831 913

FINTRZ 17 37 58 21 48 88 30 40 71 36 40 77 42 40 83 13 831 913

FLOGN 17 507 528 21 518 558 30 510 541 36 510 547 42 510 553 13 1301 1383

FLOGNPl 17 553 574 21 564 604 30 556 587 36 556 593 42 556 599 13 1347 1429

FLOG10 17 563 584 21 574 614 30 566 597 36 566 603 42 566 609 13 1357 1439

FLOG2 17 563 584 21 574 614 30 566 597 36 566 603 42 566 609 13 1357 1439

FMOD 17 54 75 21 73 113 30 57 88 36 57 94 42 57 100 13 846 928

FMOVE to FPn 21
,

21 21 8 48 34
,

34 40
,

40 46
,

46 13 809 891

FMOVE to FPn" 10 0 21 21 8 48 28 6 34 34 6 40 40 6 46 13 809 891

FMOVE to memory"'" - - - 0 0 110 38 . 38 44
, 44 50

,
50 0 02006

FMOVE to memory" - - - 0 0 110 0 0 38 0 0 44 0 0 50 0 02006

FMOVECR·····' 10 0 32 - - - - - - - - - - - - - - -

FMUL 17 55 76 21 74 114 30 58 89 36 58 95 42 58 101 13 847 929

FNEG 17 17 38 21 28 68 30 20 51 36 20 57 42 20 63 13 811 893

FREM 17 84 105 21 103 143 30 87 118 36 87 124 42 87 130 13 876 958

FSCALE 17 25 46 21 44 84 30 28 59 36 28 65 42 28 71 13 817 899

FSGLDIV 17 53 74 21 72 112 30 56 87 36 56 93 42 56 99 13 845 927

FSGLMUL 17 43 64 21 62 102 30 46 77 36 46 83 42 46 89 13 835 917

FSIN 17 373 394 21 384 424 30 376 407 36 376 413 42 376 419 13 1167 1249

FSINCOS 17 433 454 21 444 484 30 436 467 36 436 473 42 436 479 13 1227 1309

FSINH 17 669 690 21 680 720 30 672 703 36 672 709 42 672 715 13 14631545

FSQRT 17 89 110 21 100 140 30 92 123 36 92 129 42 92 135 13 883 965

FSUB 17 35 56 21 54 94 30 38 69 36 38 75 42 38 81 13 827 909

FTAN 17 455 476 21 466 506 30 458 489 36 458 495 42 458 501 13 1249 1331

FTANH 17 643 664 21 654 694 30 646 677 36 646 683 42 646 689 13 1437 1519

FTENTOX 17 549 570 21 560 600 30 552 583 36 552 589 42 552 595 13 1343 1425

FTST 17 15 36 21 26 66 30 18 49 36 18 55 42 18 61 13 809 891

FTWOTOX 17 549 570 21 560 600 30 552 583 36 552 589 42 552 595 13 1343 1425

'These instruction do not have a tail time. The next instruction's head can be added to determine the effective head time.
"When register conflict occurs, concurrency is decreased.

"'Add the effective address time to obtain overall execution time. Add the effective address time to obtain effective head time.
(This does not apply to the FMOVE to memory instruction.)

""If the source or destination is an MPU data register, subtract 5 or 2 cycles, respectively.
'····Assumes a static k-factor is used if the destination data format is packed decimal. Add 14 clock cycles if a dynamic k-factor is

used.
······The source operand is from the constant ROM rather than a floating-point data register.

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-13

E

Table 8-4. Bus Cycle Activity - Arithmetic Operations

Operation Type FPm Source
Memory Source or Destination Operand Format*

lriteger*' Single" Double Extended Packed

FPn Destination (1/0/0/111) (1/1/0/2/2) (1/1/0/2/2) (1/2/0/2/3) (1/3/0/2/4) (1/3/0/2/4)

Move to Memory**' - (110/1/411) (110111411) (1/0/2/5/1) (1/0/3/6/1) (1/0/3/6/1)

*Add the appropriate effective address calculation bus cycle activity.
*'If the source or destination is an MC68020 data register. subtract (0/1/0/0/0) or (0/0/1/0/0), respectively.

"'Includes the read of one null (CA~ 1, IA~ 1) primitive when the conversion starts, the evaluate effective address and transfer data
primitive when the conversion is complete, and a null (CA~O) primitive after the transfer is complete. The MPU reads additional
null (CA~ 1, IA~ 1) primitives while waiting for the transfer to start. For an MC68881, if no interrupts occur, the number of additional
response CIR read cycles is 5 for integer, 3 for single or double, 1 for extended and -194 for packed. For an MC68882, the number
of additional response read cycles is 5 for integer and -194 for packed.

8.5.1.3 MC68882 CONCURRENT OPERATIONS. The MC68882 overall instruction timing table,
Table 8-3, contains the Hand T numbers, which are helpful in estimating the instruction execution
overlap resulting from concurrent execution of floating-point instructions .

• H - Head. The effective address calculation should be added to. the head to obtain the true
head time. (This does not apply for FMOVE to memory if a register conflict occurs.)

• T - Tail. The period during which the MC68882 can begin another floating-point instruction.

The total execution time for a set of instructions is the sum of the overall execution times of the
individual instructions in the set minus the total overlap time. This formula applies to both the

~ MC68881 and the MC68882; for the MC68881, the overlap between floating-point instructions is
.-zero.

Table 8-5 lists an example of the use of the timing tables to calculate the execution time for a
sequence of instructions. The table compl!lres the execution times, in clock cycles, of the individual
instructions and the total execution time for the sequence using the MC68881 with the corre
sponding times using the MC68882. The first column lists the instructions in the set. The second
column lists the time required to obtain the operand at the effective address. These numbers are
taken from Table 8-1. This time applies to both coprocessors; it is added to the execution time
for the instruction. The third column lists the total execution times for each instruction when
executing in the MC68881.

The four columns to the right list values that apply to the MC68882. From left to right, the columns
contain the following values:

1. The overall execution time for each instruction when executing in the MC68882, and the H
and T numbers for each of the instructions. The T values for the fully-concurrent FMOVE
instructions are shown as T = *.

2. The adjusted head time, which is the sum of the effective address calculation time and the
head time. For the FMOVE to memory instructions (opclass 011), the effective address cal
culation is not added to the head time. The tail time is not altered.

3. The effective head and effective tail time for each instruction. Where T is shown as T = *, the
effective head time is the sum of the FMOVE H time plus the H time of the subsequent
instruction. The tail time is not altered.

4. The actual overlap time, which is the lesser of the effective tail and the effective head of the
column to the left.

At the bottom of the table, the totals show the overall times. For the MC68881, this time is the
sum of the total execution time plus the effective address time. For the MC68882, it is the sum

MOTOROLA
8-14

MC68881/MC68882 USER'S MANUAL

Table 8-5. Timing Calculation Example

MC68882

Instruction <ea> MC68881
Time Times Times Adjusted

Effective Head Actual
Effective Tail Overlap

FMUL.D <ea>,FP1 6 98 95
H=36 36+6=42
T=58 58 58 58

FMOVE.D FP2,<ea> 6 86 44
H=44 44+6=50 50+42=92
T= • .

FADD.D <ea>,FP1 6 78 75
H=36 36+6=42
T=38 38 38 38

FMOVE.X FPO,FP2 0 33 21
H=21 21 21+42=63

T= * *

FMUL.D <ea>,FP2 6 98 95
H=36 36+6=42
T=58 58 59 58

FMOVE.D FP1,<ea> 6 86 44
H=44 44+6=50 51+42=93
T= * *

FADD.D <ea>,FP2 6 78 75
H=36 36+6=42
T=38 38 38

FMOVE.X FPO,FP1 0 33 21
H=21 21 21 21
T= * *

Total 36 557 470 175

overall 881 time: 557 + 36= 593
overall 882 time: 470+36-175= 331
ratio: 593/331 = 1.80

of the total execution time plus the effective address time, less the actual overlap time. the
conclusion is that for the instruction sequence shown here, the MC68881 requires 1.80 times
longer to execute compared to the MC68882.

8.5.1.4 MOVE CONTROL REGISTER AND FMOVEM OPERATIONS. Table 8-6 shows the execution
times for the FMOVE FPcr and FMOVEM instructions. The timing for the appropriate effective
addressing mode must be added to the numbers in this table t6 determine the overall instruction
execution times.

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-15

II

Table 8-6. Move Control Register and MOVEM Execution Times

Operation" Best Case Cache Case Worst Case

FMOVE FPcr,Rn 29/6 (0/0/0/3/1) 31/6 (0/0/0/3/1) 34/9 (1/0/0/3/1)
FPcr,<ea> 31/6 (0/0/1/3/1) 33/6 (0/0/1/3/1) 36/9 (1/0/1/3/1)
Rn,FPcr 26/6 (0/0/0/2/2) 28/6 (0/0/0/212) 3119 (1/01012/2)
<ea>,FPcr 31/6 (0/1/0/2/2) 33/6 (0/1/01212) 36/9 (1/11012/2)
#<data>,FPcr 30/6 (0/0/0/2/2) 30/6 (0/0/0/212) 3119 (2/01012/2)

FMOVEM FPcr_list,<ea> 25 + 6n/6 (0/0/n/2 + n/1) 27+6n/6 (0/0/n/2 + n/1) 30+6n/9 (1 10/n/2 + n/1)
<ea>,FPcr_list 25+6n/6 (0/n/0/2/1 + n) 27+6n/6 (0/n/0/2/1 + n) 30+6n/9 (1/n/0/2/1 + n)
#<data), 24+6n/6 (0/010/2/1 + n) 25+6n/6 (0/010/2/1 + n) 29+6n/9 (1 + n/0/0/2/1 + n)
FPcr_list

FMOVEM FPdr_list,<ea> 35+25n/6 (0/0/3n/3 + 3n/1) 37 + 25n/6 (0/0/3n/3 + 3n/1) 40+25n/9 (1 10/3n/3 + 3n/1)
<ea>,FPdr_list 33+31n/6 (0/3n/0/3/1 + 3n) 35+31n/6 (0/3n/0/3/1 +3n) 38+31n/9 (1/3n/0/3/1 +3n)
Dn,<ea> 49+ 25n/6 (0/0/3n/4 + 3n/2) 51 + 25n/6 (0/0/3n/4+3n/2) 54+ 25n/9 (1/0/3n/4+3n/2)
<ea>,Dn 47+31n/6 (0/3n/0/4/2 + 3n) 49+31n/6 (0/3n/0/4/2+3n) 52+31n/9 (1/3n/0/4/2+3n)

*Add the appropriate effective address calculation time. n is the number of registers transferred. Add two clocks if the coprocessor
is an MC68882.

NOTE: FPcr or FPdr indicates anyone ofthe floating-point control or data registers, respectively. FPcr_list or FPdr_list indicates a list
of any combination of the floating-point control or data registers, respectively.

8.5.1.5 CONDITIONAL INSTRUCTIONS. Table 8-7 lists the execution times for the FPCP conditional
instructions. Each entry in this table, except those for the FScc instruction, is complete and does
not require the addition of values from any other table. For the FScc instruction, the only additional
factor that must be included is the calculate effective address time for the operand to be modified .

•
Since the conditional instructions are intrinsic to the M68000 Family coprocessor interface (i.e.,

• they are not defined by the FPCP through the use of response primitives)' the MPU performs
most of the processing associated with these instructions. The only part of the instruction that
the FPCP performs is the evaluation of the concjitional predicate written to the condition CIR.
Thus, the execution times shown in Table 8-7 are heavily dependent on the environment in which
the main processor executes.

Table 8-7. Conditional Instruction Execution Times

Operation Comments Best Case

FBcc.W Branch Taken 18/6 (0/0/0/1/1)
Branch Not Taken 16/6 (0/0/0/1/1)

FBcc.L Branch Taken 18/6 (010/0/1/1)
Branch Not Taken 16/6 (0/0/0/1/1)

FDBcc True, Not Taken 18/6 (0/0/0/1/1)
False, Not Taken 22/6 (0/0/0/1/1)
False, Taken 18/6 (0/0/0/1/1)

FNOP No Operation 16/6 (0/0/0/1/1)

FScc Dn 16/6 (0/0/0/1/1)
(An) + or - (An)* 18/6 (0/0/1/1/1)
Memory** 16/6 (0/0/1/1/1)

FTRAPcc Trap Taken 36/6 (011/4/1/1)
Trap Not Taken 16/6 (0/0/0/1/1)

FTRAPcc.w Trap Taken 38/6 (0/1/4/1/1)
Trap Not Taken 18/6 (0/0/0/1/1)

FTRAPcc.L Trap Taken 40/6 (011/4/1/1)
Trap Not Taken 20/6 (010/0/1/1)

*For condition true; subtract one clock for condition false.
**Add the appropriate effective address calculation time.

MOTOROLA
8-16

Cache Case Worst Case

20/6 (010/0/1/1) 23/6 (210/0/1/1)
18/6 (0/0/0/1/1) 19/6 (1/0/0/1/1)

20/6 (0/0/0/1/1) 23/6 (2/0/0/1/1)
18/6 (010/0/1/1) 21/6 (2/0/0/1/1)

20/6 (010/0/1/1) 24/9 (2/0/0/1/1)
24/6 (010/0/1/1) 32/9 (410/0/1/1)
20/6 (0/0/0/1/1) 26/9 (3/0/0/1/1)

18/6 (010/0/1/1) 19/6 (1/0/0/1/1)

18/6 (010/0/1/1) 21/9 (2/0/0/1/1)
22/6 (010/1/1/1) 25/9 (2/0/1/1/1)
20/6 (010/1/1/1) 23/9 (2/0/1/1/1)

39/6 (011/4/1/1) 47/9 (311/4/1/1)
18/6 (010/0/1/1) 22/9 (210/0/1/1)

41/6 (0/114/1/1) 45/9 (3/1/4/1/1)
20/6 (010/0/1/1) 23/9 (2/0/0/1/1)

43/6 (011/4/1/1) 52/9 (411/4/1/1)
22/6 (0/0/0/1/1) 2719 (3/0/0/1/1)

MC68881/MC68882 USER'S MANUAL

The overlap allowed times listed for these instructions indicate the time at the beginning of the
instruction that can overlap with the execution of the previous instruction by the FPCP. No overlap
is allowed at the end of the instruction since the FPCP is always idle while the MPU is completing
the operation.

8.5.1.6 FSAVE AND FRESTORE INSTRUCTIONS. The time required for a context save or restore
operation is shown in Table 8-8. The appropriate calculate effective address times must be added
to the values in this table to obtain the total execution time for these operations. For the FSAVE
instruction, the FPCP may use the not ready format code to force the MPU to wait while internal
operations are completed in order to reduce the size of the saved state frame or reach a point
where a save operation can be performed. The idle time occurs if the FPCP is in the idle phase
when the save CIR is written (refer to 6.4.3 FSAVE Protocol and 6.4.4 FRESTORE Protocol for
definitions of instruction phases). The busy time occurs if the FPCP is in the initial phase or at a
save boundary in the middle phase when the save CIR is written. Times for the MC68882, which
stores eight additional long words in the idle and busy state frames, are shown in separate table
entries.

Table 8·8. FSAVE and FRESTORE Instruction Execution Times

Coprocessor Operation State Frame Best Case Cache Case Worst Case

MC68881 FRESTORE Null 19/4* (0/1/0/1/1) 21/4* (0/1/0/1/1) 22/4* (1/1/0/1/1)
Idle 55/4* (0/7/0/1/7) 57/4* (01710/1/7) 58/4* (1/7/0/1/7)
Busy 28914* (01461011/46) 291/4* (0146/0/1/46) 292/4* (1146/0/1/46)

MC68881 FSAVE Null 14/1 (0/0/11110) 16/1 (0/0/1/1/0) 18/1 (1/0/1/1/0)
Idle 50/1 (010/71710) 52/1 (010/7/7/0) 54/1 (1/0/7/7/0)
Busy 28411 (010/46146/0) 28611 (010/46/46/0) 28811 (110/46/46/0)

MC68882 FRESTORE Null 19/4* (0/1/0/1/1) 2114* (0/1/0/1/1) 22/4* (1/1/0/1/1)
Idle 10314* (0115/011115) 105/4* (0115/0/1/15) 106/4* (1115/0/1/15)
Busy 337/4* (0154/0/1/54) 339/4* (0154/0/1/54) 340/4* (1154/0/1/54)

MC68882 FSAVE Null 14/1 (010/11110) 16/1 (010/1/1/0) 18/1 (1/0/1/1/0)
Idle 98/1 (010/15115/0) 100/1 (010/15/15/0) 102/1 (110/15/15/0)
Busy 33211 (010/54/54/0) 33411 (010/54/54/0) 33611 (110/54/54/0)

*Add the appropriate effective address calculation time. Note that the overlap time available for the FRESTORE instruction is of little
use, since this operation destroys the previous context of the FPCP.

**The second overlap allowed number represents the period during which the FPCP is preparing to perform the save operation and
the MPU can process interrupts.

8.5.2 MC68881 Detail Timing Tables

This set of tables provides the information needed to calculate a more precise execution time for
an instruction executing in the MC68881, based on the input operand format and type, than can
be obtained with the typical timing tables shown previously. Also, these tables contain the in
formation necessary to determine instruction execution timing for a system that does not utilize
the MPU as the main processor. The assumptions stated previously are used for these tables,
with further restrictions described separately for each table. Note that the timing numbers in the
typical timing tables are derived, in most cases, by using the following set of tables.

In order to better understand the relationship of each table in this group, the following diagrams
are included. These diagrams break each basic instruction type into separate execution compo
nents. For each component, the appropriate tables that are used to calculate the execution time
are identified. These diagrams can also be used to clarify the distribution of responsibility for

MC68881fMC68882 USER'S MANUAL MOTOROLA
8-17

•

instruction execution between the MPU and the MC68881 and to more clearly illustrate the periods
of time during which overlapped execution may occur. In these diagrams, the numbers inside
each box indicate the table that is used to determine the timing for that phase of the instruction;
the identification key for these tables follows the diagrams.

MOTOROLA
8-18

Memory-to-Register, Register-to-Register Operations

I I EVALUATE I TRANSFER I I I
ROUND

MC68020/MC68030 i SII
1
' UP I <ea> II "';''' 'I CO"'4ERT ! CALCULATE !

MC68881 L-TG:]--+---+.----.I-----1I----tI----1

Move Register-to-Memory

I EVALUATE TRANSFER
I START·UP CONVERT <ea> OPERAND

MC68020/MC68030 ! 1-~--+------1

MC68881

Conditional Operations
I I EVALUATE I

""""""".." i "~'~"' i """''' i
MC68881 8*

PROCEED

8*'

'The timing for the evaluation of the conditional predicate is shown separately in 8.5.2.7 CONDI·
TIONAL TERMINATION.

"The action taken by the MC68020/MC68030 after the conditional predicate is evaluated by the - xCCw
on the instrllction (FPcc, FDBee, FSee. or FTRAPccl.

Move Control or Multiple Registers

I I EVALUATE REGISTER TRANSFER

MC68020/MC68030 1-1 """T~--+--"---t---':'----lr---"':""-..--J "2] , .. , ,,~cr '''''''' ..
MC68881

Context Save Operation

I I EVALUATE I TRANSFER

MC68020/MC68030 ! _S_TA_R_1T_.U_P--,-i __ <e_a_> _-+I'_PR_E_PA_R_E_* +-__ FR_1:_M_E-,....~
MC68881 10 10

'During this period. the MC68881 may force the MC68020/MC68030 to wait while an internal operation
is completed. or reaches a point where a save operation can be performed.

MC68881/MC68882 USER'S MANUAL'

Context Restore Operation
I

I I EVALUATE I TRANSFER I :

""">0"",", I s,,~,~p I ';" I F:.AME 1 :[::::::]
MeS8881 _ 10 _____________ J

'When the context restore operation is completed. the MC688S1 continues with any operation that
was suspended by a previous context save. The MC68020/MC68030 does not re-establish commu
nications with the MC68881 during the FRESTORE instruction. but the execution of a subsequent RTE
instruction restores the MC68020/MC68030 context to the state ofthe previously suspended operation
if necessary.

Table Identification:
1 Instruction Start-Up
2 Effective Address Calculations
3 Operand Transfers
4 Input Operand Conversions
5 - Arithmetic Calculations
6 Rounding and Exception Handling
7 Output Operand Conversions
8 Conditional Instructions
9 Multiple Register Transfers

10 State Frame Transfers
11 Exception Processing

As an example of the use of the information in the following paragraphs, consider the FADD.P II .-(AO) + ,FPO instruction. First, the instruction start-up table is used to determine the time required
by the MPU to initiate the instruction (by writing the command word and reading the first response
primitive). In this case, the first response is evaluate effective address and transfer data (with the
PC bit set if any exceptions are enabled). The operand transfer table is then used to determine
the time required to transfer the packed decimal string from memory to the MC68881, and this
table requires the addition of the effective address calculation time. Thus, the calculate effective
address table is used to determine the time required by the MPU to calculate the effective address,
(AO) +, and those numbers are added to the start-up and transfer timing numbers. Note that these
first three values are almost entirely dependent on the MPU and do not apply ifthe main processor
is not an MC68020 or MC68030.

To complete the timing calculation, a fourth table is used to determine the decimal-to-binary
conversion time, based on the input operand data type and value. Finally, the fifth and sixth tables
used determine the time required for the addition and rounding operations. The second set of
three operations are totally independent of the main processor, and timing numbers derived for
them can be utilized by non-MPU based system designers.

As a further aid to understanding the interaction ofthe MPU with the MC68881 during the execution
of an instruction, four diagrams are presented in Figures 8-4 and 8-5. The bus cycle activity and
overlapped execution that is allowed during the communications dialog is shown in the diagrams,
in addition to illustrations of the effect of instruction alignment, enabled exceptions, and device
synchronization. These diagrams represent the clock-cycle-by-clock-cycle activity of the two de
vices for four cases of the FMOVE instruction. The first three diagrams describe the FMOVE.X
FPm,FPn instruction for worst case and cache case operation, and the fourth diagram describes
the FMOVE.X (An),FPn instruction.

The three diagrams in Figure 8-4 show three cases of the FMOVE.X FPm,FPn instruction. The first
and second cases show worst case operation (where the instruction prefetches required to replace

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-19

WORST CASE, EVEN-WORD ALIGNED: (SEE NOTE 11 (SEE NOTE 21

~
CLOCK 1 +-41-1~1 -+I~II-+-I -+1 ~II-+--+I-II-+-I -+I-II-+-I -+1 ~I-+-I -+I-II-+-I +I-II-+-I +I-II-+-I -+I-II-+-I +--I

MC68020/MC68030 ... 1 __ ..;,CP_GE_N..;,(F_M_OV_E_.X_FP_m_, F_pn..;,I __ --"M ... · il.i-... ! ____ ..&.-_NU_LL...;(_CA_=_OI_'\"",·:\..;.<; ... <'-'·· · .. ·._·SUW;, umT ·· ._IN_. STR ... _lIt __ tJll_N$ ____

•

BUS CYCLES]~[~=~c~P R~E~AD~:J)~------------------------------------

MC68881 CONVERT I CALC I ROUND

'-f-__ OVERLAP TIME __ --lh~II-I_--EFFECTIVE EXECUTION TIME __ --1.11-1-____ OVERLAP TIME ____ -.j
r 9 CLOCKS - 12 CLOCKS • .. 12 CLOCKS

I+-______________ OVERALL EXECUTION TlME _____________ ---I~
33 CLOCKS

WORST CASE, ODD-WORD ALIGNED: (SEE NOTE 11 (SEE NOTE 21

~
CLOCK 1 1 I 1 I I I I I 1

MC68020/MC68030 cpGEN (FMOVE.X FPm, FPnl _ I NULL (CA=OI __

BUS CYCLES ~:~~E:~=~C!P~RE~A~D =)------... ~---- -- --- -- - - - -- -------

MC68881 CONVERT , CALC I ROUND

OVERLAP TIME-t~f--__ EFFECTIVE EXECUTION TlME __ --I •• !ro .. I--___ OVERLAP TIME ___ -.j
6 CLOCKS 13 CLOCKS 11 CLOCKS

i4-____________ 0VERALL EXECUTION TIME ____________,
30 CLOCKS

CACHE CASE: (SEE NOTE 11 (SEE NOTE 21

~
CLOCK I 1 I I I I 1 1 I 1 I I I 1 I 1 I I I 1 1 I I I I 1 1 1 1 1 1

MC68020/MC68030

BUS CYCLES]~[:~=~C!P~RE~A~D =)--------- - -- --- -- - --- - --- - - - ------

MC68881 _ CONVERT I CALC I ROUND

MOTOROLA
8-20

OVERLAP TIME! EFFECTIVE EXECUTION TIME __ --I .. *~ .. I-----OVERLAP TIME ____ -.j
6 CLOCKS -tI.~""C----- 12 CLOCKS - 12 CLOCKS

I+-____________ OVERALL EXECUTION TIME ____________ -.!
30 CLOCKS

NOTES:

1. These six clocks do not add to the overall execution time for the instruction, only the effective execution
time for the MC68020.

2. This operation does not add to the overall execution time for the instruction, only the effective execution
time for the MC68020.

Figure 8-4. Instruction Overlap Examples - FMOVE.X FPm,FPn

MC68881/MC68882 USER'S MANUAiL

s: o

i
~ o
~

~
c
(I)
m

.:JJ en
~
:2
C »
r

s:
o
cl
:JJ

cpO
~~

WORST CASE. EVEN· WORD ALIGNED: ISEE NOTE 21 ISEE NOTE 11 ,------A---,.
A \

CLOCK I
~g~~~~W I cpGEN IFMOVE.S IAnl. FPnl IWAJTf I PC=1 I EVALUATE <ea> AND TRANSFER DATA CA=1 (WAIT} I NULL ICA=OI I SUBSEQUfNT INSTRUCTIONS

BUS
CYCLES cp READ Gp READ) -------------------------

M C6BBB 1 I'BEYlOUS INSTRUCTIOIIJ [TRANSFER CONVERT I CALC I ROUND

t OVERLAP TIME .11. EFFECTIVE EXECUTION TIME ~ II.. OVERLAP TIME :1
9 CLOCKS 35 CLOCKS 12 CLOCKS

~-----------------------------OVERAL~:~~~~~~NTIME-------______________________ ..;

NOTES:

,. These eleven clocks do not add to the overall execution time for the instruction, only the effective execution time for the MC6802Q.

2. This operation does not add to the overall execution time for the instruction, only the effective execution time for the MC68020.

Figure 8-5. Instruction Overlap Example - FMOVE.S (An),FPn

II

the FMOVE instruction do not hit in the MPU on-chip cache) for the two possible alignments of
the instruction. If the first word of the instruction is at an even word address, the prefetch request
generated by the cpGEN start-up operation (to replace the F-line operation word) causes an
external bus cycle to be executed. This prefetch acquires two words, one of which fills the cpGEN
request, and one that is held in a temporary register. The time required to execute this prefetch
cycle adds directly to the overall execution time for the instruction, as well as the front-erid overlap
allowed time. When the null (CA= 0) primitive is processed by the MPU, a second prefetch request
is generated (to replace the command word which is filled with the word from the temporary
register). Thus, the null operation prefetch request does not generate an external bus cycle.

When the MPU polls the response CIR, the MC68881 begins execution of the instruction in the
fourth clock cycle of the read cycle. As the MC68881 proceeds with the conversion operation, the
MPU then completes the cpGEN start-up operation and processes the null (CA= 0) primitive. The
10 clock cycles required to perform these operations overlap with the execution of the instruction
by the MC68881 and, thus, are not included in the overall execution time calculation (although
they are included in the effective execution time calculation). The same consideration applies to
the second and third diagrams in Figure 8-4.

As shown in the second diagram of Figure 8-4, if the first word of the instruction is at an odd
word address, the prefetch requested by the cpGEN start-up is filled from the temporary register
(which was loaded by a prefetch requested during the previous MPU instruction) and an external
bus cycle is not required. When the null (CA=O) primitive is processed, a second prefetch request
is generated which must be filled by the execution of an external bus cycle. Thus, the start-up
operation for this case is a minimum of three clock cycles shorter than the first case (although

•
the overlap allowed time is also shorter) while the time required to process the null primitive is

: at least one clock cycle longer. Since the null processing overlaps with the execution ofthe operand
conversion by the MC68881, the overall execution time for the instruction is shorter, although the
overlap allowed time at the end of the instruction is reduced.

For the third case, both of the instruction prefetch requests generated during the instruction
execution are satisfied by either the tenlporary register or the on chip instruction cache. Thus,
the overall execution time achieves the absolute best case while allowing the maximum possible
overlap between the two devices.

The diagram in Figure 8-5 illustrates the execution of the FMOVE.S (An),FPn instruction where
the instruction is even-word aligned, the MPU cache is disabled, and at least one of the arithmetic
exceptions is enabled. Under these conditions, the cpGEN start-up operation is identical to the
first diagram in Figure 8-4, except that the primitive returned by the MC68881 is evaluate effective
address and transfer data with the PC and CA bits set. Thus, the first operation performed by the
MPU while processing this primitive is to pass the program counter, which adds two clock cycles
to both the effective and overall execution times. (Note that the third clock cycle of the coprocessor
write cycle overlaps with the effective address calculation.) The MPU then evaluates the effective
address, (An), which requires two clock cycles, and transfers the 32-bit single precision operand
from memory. The come-again operation is then performed, which requires 10 clock cycles,
followed by a four clock period during which the null (CA = 0) primitive is processed.

The Mt68881 does not start the input conversion operation until the single precision operand is
internally passed to the execution unit.The MC68881 bus interface unit requires three clocks Hom
the end of the operand write cycle to tranSfer the operand to the execution unit; thus, the con
version does not begin until 3 clock cycles after the end of the write cycle. This three clock cycle
transfer operation and part of the conversion operation occur simultaneously with the completion
of the CA = 1 and null processing by the MPU. Thus, 15 clock cycles of the MPU effective execution
time do not contribute to the overall execution time for the instruction.

MOTOROLA
8-22

MC68881/MC68882 USER'S MANUAL

The previous four examples are intended to clarify the meaning of the detailed execution timing
tables that follow. The only difference between the FMOVE instruction examples presented and
any of the monadic or dyadic instructions is that the convert and calculate times are different.
(The round time is also different if an exception occurs.) Also, the effective address calculation
and operand transfer times are different. Notice that the timing prior to the start of the conversion
operation is almost entirely dependent on the execution characteristics of the main processor,
while the timing for the rest of the instruction is dependent solely on the FPCP. This distinction
is useful when the execution timing for a main processor other than the MC68020 or MC68030
is to be determined.

NOTE

The term "not normalized" is used frequently in the following tables. This term is used
where conditions allow the input of a denormalized or unnormalized number, and the
term "denormalized" is used where only a denormalized input is possible. Refer to 3.2.2
Denormalized Numbers for a description of the denormalized and unnormalized data
types.

8.5.2.1 INSTRUCTION START-UP. When the MPU encounters an FPCP instruction, it decodes the
type of the coprocessor instruction and then initiates communications with the FPCP using the
appropriate coprocessor interface bus cycle. Table 8-9 lists the execution timing of the MPU for
the start-up phase of each of the coprocessor instruction types. For the general instruction type,
the start-up time includes the command CIR write and response CIR read cycles that initiate the
instruction dialog between the MPU and the FPCP. For the conditional instruction types, the start
up time includes the condition CIR write and response CIR read cycles.

Table 8-9. Instruction Start-Up Times

Instruction Type Best Case Cache Case Worst Case

General* 12/6 (01010/1/1) 14/6 (01010/1/1) 17/9 (1/010/1/1)

FBcc 12/6 (01010/1/1) 14/6 (01010/1/1) 14/6 (01010/1/1)

FDBcc, FScc and FTRAPcc 12/6 (01010/1/1) 14/6 (01010/1/1) 17/9 (1/010/1/1)

FSAVE** 13/1 (010/1/1/0) 15/1 (010/1/1/0) 15/1 (0/011/1/0)

FRESTORE** 16/4** (0/1/0/1/1) 18/4** (0/1/01111) 18/4** (0/1/0/1/1)

*These execution time numbers represent the overall execution time for this operation with respect
to the MPU, and therefore, are used to calculate the effective execution time of the instruction.
However, six clock cycles always overlap with the execution of a register-to-register instruction
(OPCLASS 000) by the FPCP, and therefore, should not be included in the calculation to generate
the overall execution time.

**Add the appropriate effective address calculation time. Note that the overlap time available for
the FRESTORE instruction is of little use, since this operation destroys the previous context of
the FPCP.

For the FSAVE instruction, the start-up time includes the read of the save CIR and the write of
the format word to memory. For the FRESTORE instruction, the start-up time includes the read
of the format word from memory, the write of the restore CIR, and the read of the restore CIR to
validate the format word. The effective address calculation time is not included for the FSAVE
and FRESTORE instructions; the appropriate values must be obtained from the calculate effective
address table and added to the start-up values for these instructions.

If an enabled pre-instruction exception is pending when the MPU attempts to initiate an FPCP
instruction, the instruction start-up operation is performed for the general or conditional instruc
tion types, and then the MPU proceeds to perform exception processing (at the request of the

MC68881/MC68882. USER'S MANUAL MOTOROLA
8-23

E

•

FPCP). In this case, the start-up timing numbers are added to the values from the exception
processing tables to determine the time required to begin execution of the exception handler.

The MPU terminates all instructions except FSAVE and FRESTORE by processing a null (CA= 0)
primitive (unless a mid-instruction exception occurs). Therefore, the timing values in Table 8-10
should be included in the calculation of the effective execution time for the MPU, where appro
priate.

Table 8-10. Null Primitive Time Values

Primitive Type Best Case Cache Case Worst Case

Null (CA=O) with no tracing 44' (00000) 44' (00000) 55* (1 0000)

'Overlap is allowed for register-to·register and external-to-register instructions only (OPCLASS 000
and 010).

8.5.2.2 TRANSFER OPERAND. Tables 8-11 and 8-12 show the timing for the transfer of an operand
to or from the FPCP by the MPU. Table 8-11 shows the values for external source or destination
operands that reside in an MPU register or in memory, and Table 8-12 shows the values for
immediate source operands. For input transfers, the timing numbers shown include the time
required by the MPU to process the evaluate effective address and transfer data (with CA = 1)
primitive, and for the FPCP to perform the internal transfer of the operand to the execution unit.
For the MPU, the last clock cycle of the transfer operation and the processing for CA = 1 always
overlaps with the input operand transfer and conversion operations by the FPCP, and therefore,
is not added to the overall execution time for the instruction (although these operations are
included in the calculation of the effective execution time for the MPU).

Table 8-11. Operand Transfer Time - External Operand

Transfer Type Operand Format

Byte Word long, Single Double Ext., Packed

From MC68020 Dn 14'0 (010'0 1 1) 140 (0'00 1 1) 140 (000 11) - -

From Memory' 19'0 (0'1/0 1.1) 190(01 /011) 190 (0 10 1 1) 25'0 (0201 2) 310 (0 '03 1 0)

To MC68020 Dn 17/0 (01010'3'0) 1710 (0'0'0.3/0) 170 (00030) - -

To Memory" 19/0 (0 '0'1.'3 /0) 19'0 (010 1:3'0) 19'0 (00 1 30) 25'0 (0'024'0) 31'0 (0'03'5'0)

'Add the appropriate effective address calculation time. Eleven clocks of the MPU processing overlap with execution by the MC68881,
which requires five or three clock cycles after the last coprocessor write cycle to complete the internal transfer for double or any
other format, respectively. Thus, reduce the numbers above by six clocks for double or eight clocks for any other format for
calculation of the overall execution time.

"Add the appropriate effective address calculation time. In the event the destination is packed decimal and a dynamic k-factor is
used, add 14/0 (01010/1/1).

MOTOROLA
8-24

Table 8-12. Operand Transfer Time - Immediate Operand

Immediate Operand Format Best Case Cache Case Worst Case

Byte, Word 14/0 (01010/1/1) 14/0 (01010/1/1) 17/0 (1/010/1/1)

Long, Single 18/0 (01010/1/1) 18/0 (01010/1/1) 19/0 (1/010/1/1)

Double 22/0 (01010/1/2) 22/0 (010101112) 24/0 (2/010/1/2)

Extended, Packed 26/0 (01010/1/3) 2610 (0101011/3) 3010 (3/010/1/3)

MC68881/MC68882 USER'S MANUAL

For output operand transfers, the timing numbers include the processing for the evaluate effective
address and transfer data primitive (with CA = 1). Since no overlap occurs during an output transfer,
the values in the table are used directly in the overall execution time calculation. Note that the
bus cycle activity numbers include the read of the evaluate effective address and transfer data
primitive at the end of the conversion (even though the execution time for the conversion is not
included). The read time is included because null (CA = 1, IA = 1) primitives are read during the
instruction start-up operation and while waiting for the conversion to complete, and the evaluate
effective address and transfer data primitive is read during the processing of one of those pri
mitives.

In order to calculate the effective execution time for the MPU for either input or output transfers,
the processing time for the null (CA = 0) primitive that terminates the dialog must be included.
For output conversions that cause an enabled exception, the take mid-instruction exception pri
mitive is returned after the operand transfer is complete. In this case, the appropriate exception
processing execution time values must be included in lieu of the null (CA=O) processing time in
the calculation of the overall execution time.

8.5.2.3 INPUT OPERAND CONVERSION. All FPCP instructions that require an input operand ex
ecute an implied conversion to the 80-bit extended precision format that is used internally. The
amount of time required to perform this conversion depends on the format, value, and type of
the input operand. Table 8-11 shows the amount of time required to convert an input operand to
the internal data format, starting from the end of the internal operand transfer after the last write
cycle to the operand CIR.

For dyadic operations, one portion of Table 8-13 for conversions from each combination of source g.
data format and type versus destination data type is included. For monadic operations, one portion
includes the conversion timing for any data format and type. Only one number is listed in each
entry, since the total number of clock cycles required is equal to the number of overlap allowed
clock cycles, and no bus cycles are generated during this stage of an instruction (since the FPCP
does not require any further services of the MPU after this stage of an instruction starts).

Table 8-13. Input Operand Conversion

Dyadic Input Conversions - Source Operand is Byte, Word, or long:

Source Normalized Not
Zero Infinity

Destination + - Normalized

Normalized 24 26 - 22 -

Unnormalized 36 38 - 34 -

Zero 30 32 - 28 -

Infinity 28 30 - 26 -
NAN 30 32 - 28 -

Dyadic Input Conversions - Source Operand is Single Precision:

Source
Normalized

Not
Zero Infinity

Destination Normalized

Normalized 18 36 22 24

Unnormalized 30 48 34 36

Zero 24 42 28 30

Infinity 22 40 26 28

NAN 24 42 28 30

MC68881/MC68882 USER'S MANUAL

NAN

-

-

-
-
-

NAN

26

38

32

30

32

MOTOROLA
8-25

•

Table 8-13. Input Operand Conversion (Continued)

Dyadic Input Conversions - Source Operand is Double Precision:

~e Normalized
Not

Zero Infinity
Destination Normalized

Normalized 16 34 20 22

Unnormalized 28 46 32 34

Zero 22 40 26 28

Infinity 20 38 24 26

NAN 22 40 26 28

Dyadic Input Conversions - Source Operand is Extended Precision:

~ce Normalized
Not

Zero Infinity
Destination Normalized

Normalized 10 26 12 12

Unnormalized 22 38 24 24

Zero 16 32 18 18

Infinity 14 30 16 16

NAN 16 32 18 18

NAN

24

36

30

28

30

NAN

14

26

20

18

20

Monadic or Dyadic Input Conversions - Source Operand is Packed Decimal:

~e Normalized
Not

Zero Infinity NAN
Destination Normalized

Normalized -822 -822 22 22 24

Unnormalized -848 -848 34 34 36

Zero -842 -842 28 28 30

infinity -840 -840 26 26 28

NAN -842 -842 28 28 30

-Indicates a typical conversion time. The minimum maximum conversion time is 954 clock cycles.

Monadic or Dyadic Input Conversions - Source Operand is FPm:

~ce Normalized
Not

Zero
Destination Normalized

Normalized 14 30 16

Unnormalized 26 42 28

Zero 20 36 22

Infinity 18 34 20

NAN 20 36 22

Monadic Input Conversions - Source Operand is in Memory:

MOTOROLA
8-26

~e Format

Byte, Word, Long

Single

Double

Extended

Normalized
+ -

22 24

16

14

8

Not
Zero

Normalized

- 20

30 20

28 18

20 10

Infinity NAN

16 18

28 30

22 24

20 22

22 24

Infinity NAN

- -

24 24

22 22

12 12

MC688811MC68882 USER'S MANUAL

8.5.2.4 ARITHMETIC CALCULATION. Tables 8-14 and 8-15 show the time required by the MC68881
to perform any of its general purpose arithmetic operations. One portion of Table 8-14 shows the
execution time values for each dyadic instruction with respect to the combination of input operand
data types. Table 8-15 shows the execution time values for all of the monadic operations. Each
entry in these tables includes the time from the end of the input operand conversion to completion
of the calculation. Only one number is shown for each entry, since no bus cycles are generated
during this stage of an instruction. Also, the total number of clock cycles required for the calculation
is equal to the number of overlap allowed clock cycles, since the FPCP does not require any further
services of the MPU after this stage of an instruction starts.

Some entries in these tables refer to a footnote that contains more detailed timing information
for an operation (e.g., the table for addition contains an entry that references the ADD footnote,
which contains three numbers, based on the the input operands). Furthermore, in some cases,
an entry refers to another table that contains the execution time required to handle certain input
operands. For example, if an entry contains NAN1, refer to the entry of the same name in 8.5.2.10
EXCEPTION PROCESSING.

If an entry in these tables is appended with a plus sign (+), the appropriate timing numbers from
the rounding and exception handling table (in 8.5.2.10 EXCEPTION PROCESSING) must be used
to calculate the overall execution time for an instruction.

Otherwise, the numbers from these tables include the time to handle exceptional operand cases
and produce the final result.

Table 8-14. Arithmetic Calculation Times - Dyadic Operations

FADD Calculation Time:

~e Normalized Zero Infinity NAN
Destination + - + - + ~ +

Normalized
+

ADD 2+ 6 NAN2 -

Zero
+ 6 26
- 2+ 26 6

6 NAN2

Infinity
+ 6 20
- 6 6

20 6
NAN2

NAN
+

NAN1 NAN2 NAN2 NAN3 -

FCMP Calculation Time:

~ce Normalized Zero Infinity NAN
Destination + - + - + - +

+ CMP 6 8 6 Normalized 6 NAN4 - 6 CMP 6 8
+ 8 6 8 6 Zero 6 NAN4 - 6 8 6 8

Infinity
+

6 6 6 NAN4 -

NAN
+

NAN1 NAN2 NAN2 NAN3 -

MC68881/MC68882 USER'S MANUAL

-

-

MOTOROLA
8-27

II

Table 8-14. Arithmetic Calculation Times - Dyadic Operations (Continued)

FDIV Calculation Time:

~e Destination

Normalized
+
-

Zero
+
-

Infinity
+
-

NAN
+
-

FMOD Calculation Time:

~ce
Destination

Normalized
+
-

Zero
+
-

Infinity
+
-

NAN
+
-

FMUL Calculation Time:

~e Destination

Normalized
+
-

Zero
+
-

Infinity
+
-

NAN
+
-

FREM Calculation Time:

~ce
Destination

MOTOROLA
8-28

Normalized

Zero

Infinity

NAN

+
-

+
-

+
-

+
-

Normalized
+ - +

DIV

6 8

6 8 6

NAN1

Normalized
+ - +

MOD

6+

lOP

NAN1

Normalized
+ - +

MUL

6 8 6

6 8

NAN1

Normalized
+ - +

REM

6+

lOP

NAN1

Zero Infinity NAN
- + - + -

6 8
20

8 6
NAN2

20 6 8 NAN2

8 20 NAN2

NAN2 NAN2 NAN3

Zero Infinity NAN
- + - + -

20 6+ NAN2

20 6+ NAN2

20 20 NAN2

NAN2 NAN2 NAN3

Zero Infinity NAN
- + - + -

6 6
8 8

NAN2

8 20 NAN2

20 6 8 NAN2

NAN2 NAN2 NAN3

Zero Infinity NAN
- + - + -

20 6+ NAN2

20 6+ NAN2

20 20 NAN2

NAN2 NAN2 NAN3

MC68881/MC68882 USER'S MANUAL

Table 8-14. Arithmetic Calculation Times - Dyadic Operations (Concluded)

FSCALE Calculation Time:

~e Normalized
Destination + - +

Normalized
+

SCALE -

Zero
+

6 -

Infinity
+

6 -

NAN
+

NAN1 -

FSGLDIV Calculation Time:

~ce Normalized
Destination + - +

Normalized
+
- SGLDIV

Zero
+

6 8 -

Infinity
+

6 8 6 -

NAN
+

NAN1 -

FSGLMUL Calculation Time:

~ce Normalized
Destination + - +

Normalized
+
- SGLMUL

Zero
+

6 8 6 -

Infinity
+

6 8 -

NAN
+

NAN1 -

FSUB Calculation Time:

~e Normalized
Destination + - +

Normalized
+

SUB -

Zero
+ 26
- 4+

8

Infinity
+

6 -

NAN
+

NAN1 -

MC68881/MC68882 USER'S MANUAL

Zero Infinity
- +

6+ 20

6 20

6 20

NAN2 NAN2

Zero Infinity
- +

6
20

8

20 6

8 20

NAN2 NAN2

Zero Infinity
- +

6 6
8 8

8 20

20 6

NAN2 NAN2

Zero Infinity
- +

2+ 8

8
26

8

20
6 8

NAN2 NAN2

- +

- +

8
6

8

- +

8

- +

8
20

NAN

NAN2

NAN2

NAN2

NAN3

NAN

NAN2

NAN2

NAN2

NAN3

NAN

NAN2

NAN2

NAN2

NAN3

NAN

NAN2

NAN2

NAN2

NAN3

-

-

-

-

MOTOROLA
8-29

•

•

Table 8-15. Arithmetic Calculation Times....- Monadic Operations

Source Normalized Zero Infinity NAN
Operation + - + - + - + -

FABS 4+ 4+ 8 NAN2

FACOS 594+ 12' 20 NAN2
202

FASIN 550+ 6 20 NAN2

FATAN 372+ 6 12' 14' NAN2
202 222

FATANH 662+ 6 20 NAN2

FCOS 360+3 B 20 NAN2

FCOSH 576+ 8 B NAN2

FETOX 466+ B 6 NAN2

FETOXM1 514+ 6 6 8 NAN2

FGETEXP exponent=0:16 6 20 NAN2
exponent>0:20
exponent<0:22

FGETMAN 6 6 20 NAN2

FINT, FINTRZ fraction = 0:8 6 60 NAN2
fraction '*' 0:30
result=0:28

FLOGN 494+ lOP 22 6 20 NAN2

FLOGNP1 540+ 4 6 6 20 NAN2

FLOG10 550+ lOP 22 6 20 NAN2

FLOG2 550+ lOP 22 6 20 NAN2

FMOVE to FPn 2+ 6 6 NAN2

FMOVECR 18' - - -
262

t-Nt:G 4+ 4+ 8 NAN2

FSIN 360+ 3 6 20 NAN2

FSINCOS 420+ 3 20 26 NAN6

FSINH 656+ 6 6 NAN2

FSQRT 76+ lOP 6 6 20 NAN2

FrAN 442+3 6 20 NAN2

FTANH 630+ 6 8 NAN2

FTENTOX 536+ 8 6 NAN2

FTST 8 8 8 NAN5

FTWOTOX 536+ 8 6 NAN2

NOTES:
1. If the extended precision rounding mode is used.
2. If the single or double precision rounding mode is used.
3.This assumes that the source operand is in the range (- 9 ... + 9). If the source operand is outside

of that range, the apPropriate REM calculation time required to perform the argument reduction
must be added to this value.

4. If the source operand is less than or equal to -1, use the lOP time.

8.5.2.5 OUTPUT OPERAND CONVERSION. The FMOVE.<fmt> FPIl,<ea> instruction performs
an implicit conversion from the 80-bit extended precision format used internally by the FPCP to
an external data format. Table 8-16 lists the conversion times for most output operations. Since
the execution timing for conversions from the internal extended precision format to either single

MOTOROLA
8-30

IVIC68881/MC68882 USER'S MANUAL

or double precision is highly data dependent, the timing for these operations (for in-range, non
zero input values) is listed in a second table, Table 8-17.

Table 8-16. Output Operand Conversion

Dest.
Normalized Not Format Source + - Normalized

Zero Infinity NAN
Type

Integer, No Overflow 50 52 60 62 18 - 24

Integer, Overflow 52 56 62 66 18 24 26 24

Single (see below) (see below) 16 18 NAN7

Double (see below) (see below) 16 18 NAN7

Extended 18 (see note 1) 16 16 NAN7

Packed (see note 2) (see note 2) 24 24 NAN2

NOTES:
1. 26 clocks if the source operand is an unnormalized number. 56 clocks if the source operand is a

denormalized number.
2. 1942 clocks is the typical time required for the conversion, if no overflow occurs. The maximum

time is 3674 clocks.

Table 8-17. Output Operand Conversion - Binary Real Formats

Source Type
Normalized Not Normalized

Conversion Result

No Underflow, Overflow or Round Overflow 38 48

No Underflow or Overflow; Round Overflow 42 52

Overflow; RN or RZ Mode; No Round Overflow 44 54

Overflow; RN or RZ Mode; Round Overflow 48 58

Overflow; RM or RP Mode; No Round Overflow 46 56

Overflow; RM or RP Mode; Round Overflow 50 60

Underflow; No Round Overflow 66 76

Underflow; Round Overflow 70 80

The amount of time required to perform this conversion depends on the value and type of the
input operand and the format of the desired output. The values given in the following tables, in
FPCP clock cycles, include the time from the fourth clock cycle of the first response CIR read
(which returns a null (CA = 1, IA = 1) primitive) to completion of the conversion (when a read of
the response CIR returns an evaluate effective address and transfer operand primitive). Only one
number is shown for each entry, since no bus cycles are generated during this stage of an
instruction. Also, the total number of clock cycles required for operand conversion is equal to the
number of overlap allowed clock cycles (during which time interrupts may be handled; normal
program execution is not allowed). since the FPCP does not require any services of the MPU
during this stage of an instruction.

8.5.2.6 ROUNDING AND EXCEPTION HANDLING. Tables 8-18 and 8-19 contain the execution
times for rounding and for various exception handling operations. For the typical execution time
tables shown previously, it is assumed that the I\I1C68881 uses the default operating mode of

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-31

II

round to extended precision, and no overflow or underflow exceptions occur. If this is not the
case, the round/store phase of most arithmetic instructions takes longer to execute. The entries
in the typical execution time tables include the processing time for no underflow, overflow, or
round overflow as indicated in Table 8-18.

Table 8-18. Rounding Operation Time Values

Rounding Result Clock Cycles
Precision

Extended No Underflow, Overflow, or Round Overflow 6
No Underflow or Overflow; Round Overflow 6
Underflow 34
Overflow; RN or RZ Mode; No Round Overflow 14
Overflow; RM or RP Mode; No Round Overflow 16
Round Overflow (Not Caused By Rounding); RN or RZ Mode 16
Round Overflow (Not Caused By Rounding); RM or RP Mode 18
Round Overflow (Caused By Rounding); RN or RZ Mode 20
Round Overflow (Caused By Rounding); RM or RP Mode 22

Single or Resu It is Zero 6
Double No Underflow, Overflow, or Round Overflow 24

No Underflow or Overflow; Round Overflow 28
Underflow; No Round Overflow 56
Underflow; Round Overflow 60
Overflow; RN or RZ Mode; No Round Overflow 30
Overflow; RM or RP Mode; No Round Overflow 32
Overflow; RN or RZ Mode; Round Overflow 34
Overflow; RM or RP Mode; Round Overflow 36

__ Table 8-18 indicates the number of clock cycles that should be added in the calculation of the
execution time for an arithmetic instruction (both the total and the overlap allowed numbers) to
acoount for the various rounding precision and exception handling combinations. The entries in
the table include the time from the end of the calculation phase to completion of the FPCP
instruction execution (i.e., when the PF bit in the null (CA=O) primitive is clear if the response
CIR is read).

When an FMOVE instruction that moves data between FP registers is executed in the MC68882
and the FPCR mode control byte specifies single or double precision rounding, no instruction
execution concurrency is allowed. Similarly, an FMOVE instruction that moves data to a single
or double precision memory location executes without overlap in the MC68882.

Table 8-19 includes the entries referenced previously in the arithmetic calculation and output
operand conversion tables for exceptional operand inputs. The values in this table are used for
the calculation or conversiOri timing in lieu of a value from the appropriate table. For example, if
an output operand conversion table entry references NAN7, then the timing number from the
NAN7 entry in Table 8-19 is used as the conversion time value.

8.5.2.7 CONDITIONAL TERMINATION. The effective execution time for the conditional and context
switch instructions is not heavily dependent on the FPCP, since the execution of these operations
is performed, for the most part, by the MPU. In order to calculate the effective execution time for
these instructions, Table 8-20 shows the termination timing for the MPU. The termination proc
essing starts four MPU clock cycles after the end of the response CIR read and ends when the
MPU begins execution of the next instruction. Note that the allowed overlap time in this table is
always zero, since the FPCP is in the idle state when these instructions reach the termination
phase. However, if multiple coprocessors are used in a system, the execution of other coprocessors
may overlap with the execution of these instructions.

MOTOROLA
8-32

MC68881/MC68882 USER'S MANUAL

Table 8-19. Exception Handling Time Values

Exception
Conditions Clock Cycles

Identifier

lOP Source Operand is Not Denormalized 20
Source Operand is Denormalized 32

NAN1 Destination is a QNAN, Source is not Denormalized 28
Destination is a QNAN, Source is Denormalized 52
Destination is an SNAN, Source is not Denormalized 30
Destination is an SNAN, Source is Denormalized 54

NAN2 The NAN is a QNAN 28
The NAN is an SNAN 30

NAN3 Both NANs are QNANs 28
Source is a QNAN, Destination is an SNAN 30
Source is an SNAN, Destination is a QNAN 32
Both NANs are SNANs 30

NAN4 The NAN is a QNAN 30
The NAN is an SNAN 32

NAN5 The NAN is a QNAN 8
The NAN is an SNAN 10

NAN6 The NAN is a QNAN 38
The NAN is an SNAN 40

NAN7 The NAN is a QNAN 22
The NAN is an SNAN 24

Table 8-20. Conditional Termination Times Values

Instruction Type Best Case Cache Case

FBcc.W Branch Taken 6/0 (010101010 I 6/0 (010101010 I
Branch Not Taken 410 (010101010 I 4/0 (010101010 I

FBcc.L Branch Taken 6/0 (010101010 I 6/0 (010101010 I
Branch Not Taken 410 (010101010 I 4/0 (010101010 I

FDBcc True, Not Taken 6/0 (010101010 I 6/0 (010101010 I
False, Not Taken 1010 (0/0/0/0/01 1010 (0/0/0/0/01
False, Taken 610 (010101010 I 6/0 (010101010 I

FScc Dn 410 (010101010 I 4/0 (010101010 I
(Anl+or-(Anl* 6/0 (010/1/0101 810 (010/1/010 I
Memory** 4/0 (010/1/0101 610 (010/1/01011

FTRAPcc Trap Taken 24/0 (0/1/4/0101 25/0 (0/1/4/0101
Trap Not Taken 410 (010101010 I 4/0 (010101010 I

FTRAPcc.w Trap Taken 26/0 (0/1/4/0101 2710 (0/1/410101
Trap Not Taken 610 (010101010 I 6/0 (010101010 I

FTRAPcc.L Trap Taken 28/0 (0/1/4/0101 29/0 (0/1/4/0101
Trap Not Taken 810 (010101010 I 8/0 (010101010 I

*For condition true; subtract one clock for condition false.
**Add the appropriate effective address calculation time.

Worst Case

9/0 (2/0/0/0/01
5/0 (1/0101010 I

9/0 (2/0/0/0/01
710 (2/0/0/0/01

710 (1/0101010 I
15/0 (3/01010101
9/0 (2/0/0/0/01

4/0 (1/0101010 I
8/0 (1/0/1/0/01
610 (1/0/1/0101

3010 (2/1/410101
5/0 (1/0101010 I

28/0 (2/1/410101
6/0 (1/0101010 I

35/0 (3/1/4/0101
1010 (2/0/0/0/01

In order to determine the execution time for a conditional operation performed by a processor
other than an MPU, it is necessary to know the timing for the conditional evaluation by the FPCP.
This value is shown in Table 8-20 (in FPCP clock cycles) and indicates the best case time from
the start of the condition CIR write to the end of the response CIR read (which are the only two
coprocessor accesses required).

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-33

•

8.5.2.8 MULTIPLE REGISTER TRANSFER. Table 8-21 lists the number of clock cycles and bus
cycles required for the MPU to perform a multiple register transfer to or from the FPCP. These
transfers occur during the FMOVEM instruction for either the floating-point control register or
floating-point data register form of the instruction. The timing values shown in the table include
the processing time for either the evaluate effective address and transfer data or transfer multiple
coprocessor registers primitive (for the control or data register form, respectively) with CA = 1.
Assuming that the main processor is an MC68020 or MC68030, the time required to process the
null (CA=O) primitive after the transfer is complete must be included.

Table 8-21. Multiple Register Transfer Time Values

Transfer Type Timing

Move Single To an MC68020 Register 17/0 (0/0/0/2/0)
Control Register To Memory" 19/0 (0/0/1/2/0)

From an MC68020 Register 14/0 (010/0/1/1)
From Memory 19/0 (0/1/0/1/1)
#(data) 19/0 (1/0/0/1/1)'

Move Multiple To Memory 13+6n/0 (0/0/n/1 +n/O)
Control Registers From Memory 13+6n/0 (0/n/0/1/n)

#(data) 12 + 6n/0 (n/0/0/1/n)"

Move Multiple To Memory 23 + 25n/0 (0/0/3n/2 + 3n/0)
Data Registers From Memory 21 + 23n/0 (0/3n/0/2/3n)

n - is the number of registers transferred.
'If the immediate operand resides in the MPU cache, the number of clock cycles is reduced by 3n
and the number of instruction prefetch bus cycles is zero .

For the transfer of multiple control registers, the register select list is included in the instruction,
and all of the selected registers are transferred as a single operand (from the perspective of the
main processor). For the transfer of multiple data registers, the MPU must read the register select
mask before starting the register transfer. The amount of time required by the MPU to read and
process the register mask is included in the Table 8-21 entries. If a dynamic register list is used,
the time required by ine iviPU io process ine iransfer singie main processor register primiiive
must be included and is shown at the top of the table.

8.5.2.9 STATE FRAME TRANSFER. Table 8-22 lists the number of clock cycles and bus cycles
required for the MPU to transfer an internal state frame to or from the MC68881. These transfers
occur during the FSAVE and FRESTORE instructions. The timing values shown in the table include
the time from the end of the instruction start-up operation to the end of the last operand write
cycle, assuming that the main processor is an MC68020 or MC68030.

Table 8-22. State Frame Transfer Time Values

Operation Frame Type Timing

State Save Idle 36/0 (0/0/6/610)
Busy 27010 (010/45145/0)

State Resto re Idle 36/0 (0/6/010/6)
Busy 27010 (01451010/45)

Before the transfer of a state frame to the FPCP during an FRESTORE instruction, the MPU must
read the format word from memory, write it to the restore CIR, and verify that it is valid by reading
the restore CIR. Likewise, during an FSAVE instruction, the MPU must read the format word from
the save CIR and store it in memory. The instruction start-up timing table entries include these
operations for MC68020/MC68030 based systems.

MOTOROLA
8-34

MC68881/MC68882 USER'S MANUAL

During an FSAVE operation, the FPCP may require the main processor to wait until the current
instruction is completed or a save boundary is reached before starting the state frame transfer.
The maximum time that the main processor can be forced to wait is shown at the top of Table
8-22, and should be included in the calculation of the worst case FSAVE execution time.

In order to calculate overall execution time for the MPU during an FSAVE or FRESTORE instruction,
the instruction termination processing time must be included. Table 8-23 lists the timing values
for this processing, which is from the end of the last operand write cycle to the beginning of the
execution of the next instruction by the MPU.

Table 8-23. Instruction Termination Processing Time Values

Instruction Type Best Case Cache Case Worst Case

FSAVE 110 (0101010/0) 110 (0/0/0/0/0) 3/0 1/0/0/0/0)

FRESTORE 3/0 (010/0/0/0) 3/0 (010/0/0/0) 4/0 (1 10/0/0/0)

8.5.2.10 EXCEPTION PROCESSING. Table 8-24 indicates the time required for exception proc
essing related to the execution of FPCP instructions. The values in the table for the second and
third entries indicate the time from the start of processing the take exception primitive until the
MPU resumes normal instruction execution in the appropriate exception handler.

Table 8-24. Exception Processing Time Values

Operation Best Case Cache Case Worst Case

Pass Program Counter 2/2* (010/0/0/1) 313' (010/0/0/1) 313* (010/0/0/1)

Take Pre-Instruction Exception 22/0 (0/1141010) 22/0 (011/4/0/0) 2410 (2/11410/0)

Take Mid-Instruction Exception 32/0 (0/1/7/0/0) 32/0 (0/11710/0) 38/0 (2/1/7/0/0)

Process Pre-Instruction Interrupt (I-stack) 26/26 (0/2/4/0/0) 26/26 (0/2/4/0/0) 33/33 (2/2/4/0/0)

Process Pre-Instruction Interrupt (M-stack) 41/41 (0/2/8/0/0) 41/41 (0/2/8/0/0) 48/48 (2/2/8/0/0)

Process Mid-Instruction Interrupt (I-stack) 35/35 (0/2/6/0/0) 36/36 (0/2/6/0/0) 42/42 (2/2/6/0/0)

Process Mid-Instruction Interrupt (M-stack) 46/46 (0/2/9/0/0) 47/47 (0/2/9/0/0) 53/53 (2/2/9/0/0)

Process FSAVE Interrupt (I-stack) 26/26 (0/2/4/0/0) 26/26 (0/2/4/0/0) 33/33 (2/2/4/0/0)

Process FSAVE Interrupt (M-stack) 41/41 (0/2/8/0/0) 41/41 (0/2/8/0/0) 48/48 (2/2/8/0/0)

Format Error, FRESTORE Instruction 23/0 (0/1/4/0/0) 24/0 (0/1/4/0/0) 29/0 (2/1/4/0/0)

RTE, Pre-Instruction Frame 20/20 (0/4/0/0/0) 21/21 (0/4/0/0/0) 24/24 (2/4/0/0/0)

RTE, Mid-Instruction Frame 31/24 (016/01110) 32125 (0/61011/0) 33/26 (1/6/0/1/0)

RTE, Throwaway Frame 15115 (0/4/01010) 16/16 (0/4/01010) 19/19 (0/4/01010)

'Overlap is allowed only for floating-point register-to-register and register-to-external operations.

To determine the overall exception latency for a pre-instruction exception, the instruction start
up time (for the arithmetic or conditional instruction that is pre-empted by the exception) is added
to the exception processing time from Table 8-24, The exception processing time for a take mid
instruction exception primitive is added to the overall execution time for the FMOVE to memory
instruction that caused the exception, For conditional instructions that cause a BSUN exception,
the pass program counter time shown in the table is also added to the instruction start-up and
exception processing time to calculate the overall exception latency for the instruction.

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-35

•

For the take interrupt operations, the values in Table 8-24 include the time from the end of the
processing of a response primitive that allows interrupts to the resumption of normal MPU in
struction execution in the interrupt handler. (The possible responses are the null (CA= 1, IA= 1)
and null (CA=O, IA= 1, PF= 0) primitives, or the not ready format code.) If an interrupt is processed
during an FMOVE to memory instruction or when the main processor is in the trace mode and
receives a null (CA = 0, IA = 1, PF = 0) primitive, a mid-instruction stack frame is used. A pre
instruction stack frame is used for interrupts processed during an FSAVE instruction. The M-stack
and I-stack designation indicates whether the M bit of the MPU status register was set or clear,
respectively, before the interrupt occurred.

The processing time for an FRESTORE format error includes the time from the end of the FRES
TORE start-up operation to when the MPU resumes normal instruction execution in the format
error exception handler. Since the characteristics of an FSAVE format error exception are not
predictable (and since such an occurrence is catastrophic), execution timing required to handle
the error is not included in the table.

The entries in the table for the return from exception (RTE) instruction include the time from the
beginning of the execution of the RTE by the MPU to the resumption of the previously aborted
operation. If the RTE instruction processes a pre-instruction frame, the time in the table includes
the time required to restore the processor context and prepare to execute the instruction at the
address in the stack frame program counter image. For the mid-instruction frame, the time in the
table includes the time required to restore the processor context and read the response CIR to
continue the previously suspended operation. The "RTE, throwaway frame" entries include the
time required to read and process the throwaway stack frame (normally from the top of the

~ interrupt stack) and then perform RTE processing for the stack frame on top of the resulting active
.. stack (normally either the master or user stack). Thus, if the MPU must return from an interrupt

that occurred while the M bit in the MPU status register was set, a throwaway frame is first
processed from the interrupt stack, followed by the processing of the appropriate frame from the
master stack (which returns the processor to the context saved by the interrupt processing). For
such a case, the "RTE, throwaway frame" times are added to the RTE execution times for the
second stack frame to derive the oVerall execution times for the operation.

In addition to the occurrence of an exception, whether exceptions are enabled or not, can also
affect instruction execution time. This is because the FPCP requests the transfer of the program
counter at the start of any arithmetic instruction if any exception (other than the BSUN exception)
is enabled. If the source operand resides in a floating-point data register, the transfer of the PC
does not affect overall execution timing, since it takes place concurrently with the execution of
the operation by the FPCP. However, for source operands external to the FPCP, the MPU first
passes the PC, and then passes the operand; thus, execution time is affected for this case.

8.6 MAIN PROCESSOR INSTRUCTION OVERLAP TIMING

The MPU overlap allowed table for the MC68881 applies to overlap between MPU and floating
point instructions. Table 8-25 lists the overlap time allowed by the MC68881. The MPU overlap
time allowed by the MC68882 is shown in the T columns of Table 8-3.

MOTOROLA
8-36

MC68881/MC68882 USER'S MANUAL

Table 8-25. Overlap Allowed Times - Arithmetic Operations

Operation FPm Memory Source or Destination Operand Format
Type Source Integer Single Double Extended Packed

FPn Destination' -3 -22 -22 -28 -34 -34

Move to Dn or - 41 29 29 9 113
Memory**

'Subtract these numbers from the overall execution time value in the previous table to determine
the allowed overlap time for a particular instruction.

**These numbers represent the amount of time in the middle of the instruction during which the
MPU can process interrupts .

.. Indicates a typical time for the binary-to-decimal conversion.

MC68881/MC68882 USER'S MANUAL MOTOROLA
8-37

II

SECTION 9
FUNCTIONAL SIGNAL DESCRIPTIONS

This section contains a brief description ofthe input and output signals for the MC68881/MC68882
(FPCP) floating-point coprocessor. The signals are functionally organized into groups as shown
in Figure 9-1.

NOTE

The terms assertion and negation are used extensively to avoid confusion when de
scribing "active-low" and "active-high" signals. The term assert or assertion is used to
indicate that a signal is active or true, regardless of whether that level is represented by
a high or low voltage. The term negate or negation is used to indicate that a signal is
inactive or false.

VCC ... 7 V GNO AO-A4
13 I'\. ... v

V' ...
00-031

MC68881/MC68882 r'-r v

FlOATING-POINT AS
COPROCESSOR

R/W

CLK TIS

SIZE CS'

RESET OSACKO

SENSE OSACKI

Figure 9-1. MC688811MC68882 Input/Output Signals

9.1 ADDRESS BUS (AO through A4)

These active-high address line inputs are used by the main processbr to select the coprocessor
interface register locations located in the CPU address space. These lines control the register
selection as listed in Table 9-1.

When the FPCP operates with an 8-bit data bus, the AD pin is used as an address signal for byte
accesses of the coprocessor interface registers. When the FPCP operates with a 16- or 32-bit
system data bus, both the AD and SIZE pins are strapped high and/or low as listed in Table 9-2.

MC68881/MC68882 USER'S MANUAL MOTOROLA
9-1

•

Table 9-1. Coprocessor Interface Register Selection

A4·AO Offset Width Type Register

OOOOx $00 16 Read Response

0001x $02 16 Write Control

0010x $04 16 Read Save

0011x $06 16 ReadlWrite Restore

0100x $08 16 - (Reserved)

0101x $OA 16 Write Command

0110x $OC 16 - (Reserved)

0111x $OE 16 Write Condition

100xx $10 32 ReadlWrite Operand

1010x $14 16 Read Reg ister Select

1011x $16 16 - (Reserved)

110xx $18 32 Write Instruction Address

111xx* $1C 32 Read/Write Operand Address

'Not used by the MC68881 or MC68882

Table 9-2. System Data Bus Size Configuration

AO Size Data Bus

- Low 8-Bit

Low High 16-Bit

High High 32-Bit

9.2 DATA BUS (DO through 031)

This 32-bit, bidirectional, three-state bus $erves as the general purpose data path between the
MC68020/MC68030 (MPU) and the FPCP. Regardless of whether the FPCP is operating as a co
processor or a peripheral processor, all interprocessor transfers of instruction information, op
erand data, status information, and requests for service occur as standard M68000 bus cycles.

The FPCP can operate with an 8-, 16-, or 32-bit system data bus. To operate with the required
system data bus size, both the AO and SIZE pins must be connected specifically for that applicable
bus size. (Refer to 9.1 ADDRESS BUS (AO THROUGH A4) and 9.3 SIZE (SIZE) for further details.)

9.3 SIZE (SIZE)

This active-low input signal is used in conjunction with the AO pin to configure the FPCP for
operation over an 8-, 16-, or 32-bit system data bus. When the FPCP is configured to operate over
a 16- or 32-bit system data bus, the SIZE and AO pins must be strapped as listed in Table 9-2.

9.4 ADDRESS STROBE (AS)

This active-low input signal indicates that there is a valid address on the address bus, and both
the chip select (CS) and read/write (R/W) signal lines are valid.

MOTOROLA
9-2

MC68881/MC68882 USER'S MANUAL

9.5 CHIP SELECT ICS)

This active-low input signal enables the main processor access to the FPCP coprocessor interface
registers. When operating the FPCP as a peripheral processor, the chip select decode is system
dependent (i.e., like the chip select on any peripheral). The CS signal must be valid (either asserted
or negated) when AS is asserted. Refer to 10.3 Chip Select Timing for further discussion of timing
restrictions for this signal.

9.6 READIWRITE (R/W)

This input signal indicates the direction of a bus transaction (read/write) by the main processor.
A logic high (1) indicates a read from the FPCP, and a logic low (0) indicates a write to the FPCP.
The R/W signal must be valid when AS is asserted.

9.7 DATA STROBE (DS)

This active-low input signal indicates that there is valid data on the data bus during a write bus
cycle.

9.8 DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKO, DSACK1)

These active-low, three-state output signals indicate the completion of a bus cycle to the main
processor. The FPCP asserts both the DSACKO and DSACK1 signals when the MPU asserts CS.

If the bus cycle is a main processor read, the FPCP asserts DSACKO and DSACK1 signals to indicate •
that the information on the data bus is valid. (Both DSACK signals can be asserted in advance of
the valid data being placed on the bus.) If the bus cycle is a main processor write to the FPCP,
DSACKO and DSACK1 are used to acknowledge acceptance of the data by the FPCP.

The FPCP also uses DSACKO and DSACK1 signals to dynamically indicate to the MPU the port
size (system data bus width) on a cycle-by-cycle basis. Depending upon which of the two DSACK
pins is asserted for a bus cycle, the MPU assumes data has been transferred to/from an 8-, 16-,
or 32-bit wide data port. Table 9-3 lists the DSACK assertions that are used by the FPCP for the
various bus cycles over the various system data bus configurations. Refer to 10.1 BASIC TRANSFER
MECHANISM OVERVIEW for details of data bus utilization by the FPCP.

Table 9-3. DSACK Assertions

Data Bus A4 DSACKl DSACKO Comments

32·Bit 1 L L Valid Oata on 031 ·00

32-Bit 0 L H Valid Oata on 031-016

16-Bit x L H Valid Oata on 031-016 or 015-00

8-Bit x H L Valid Oata on 031-024, 023-016, 015-
08, or 07-00

All x H H Insert Wait States in Current Bus Cycle

Table 9-3 indicates that all accesses using a 32-bit bus with A4 equal to zero are to 16-bit registers.
The FPCP implements all 16-bit coprocessor interface registers on data lines D16-D31 (to eliminate

MC68881/MC68882 USER'S MANUAL MOTOROLA
9-3

the need for on-chip multiplexors); however, the MPU expects 16-bit registers that are located in
a 32-bit port at odd word addresses (A 1 = 1) to be implemented on data lines DO-D15. For accesses
to these registers when configured for 32-bit bus operation, the MC68881/M68882 generates
DSACK signals as listed in Table 9-3 to indicate to the MPU that the valid data is on D16-D31
instead of on DO-D15.

External holding resistors are required to maintain both DSACKO and DSACK1 high between bus
cycles. In order to reduce the signal rise time, the DSACKO and DSACK1 lines are actively pulled
up (negated) by the FPCP following the rising edge of AS or DS, and both DSACK lines are then
three-stated (placed in the high-impedance state) to avoid interference with the next bus cycle.

9.9 RESET (RESET)

This active-low input signal causes the FPCP to initialize the floating-point data registers to non
signaling not-a-numbers (NANs) and clears the floating-point control, status, and instruction ad
dress registers.

When performing a power-up reset, external circuitry should keep the RESET line asserted for a
minimum of four clock cycles after VCC is within tolerance. This assures correct initialization of
the FPCP when power is applied. For compatibility with all M68000 Family devices, 100 millise
conds should be used as the minimum.

When performing a reset of the FPCP after VCC has been within tolerance for more than the initial
power-up time, the RESET line must have an asserted pulse width greater than two clock cycles.
For compatibility with all M68000 Family devices, 10 clock cycles should be used as the minimum .

• 9.10 CLOCK (ClK)

'The FPCP clock input is a TTL-compatible signal that is internally buffered for development of the
internal clock signals. The clock input must be a constant frequency square wave with no stretching
or shaping techniques required. The clock should not be gated off at any time and must conform
to minimum and maximum period and pulse width times.

9.11 SENSE DEVICE (SENSE)

This output pin may be used optionally as an additional GND pin or as an indicator to external
hardware that the FPCP is present in the system. This signal is internally connected to the GND
of the die, but it is not necessary to connect it to the external ground for correct device operation.

Figure 9-2 shows an example of a circuit to sense the presence of an FPCP in a socket prepared
for it. The circuit asserts BERR when the MPU selects the coprocessor and no coprocessor is
plugged in.

9.12 POWER (VCC and GND)

These pins provide the supply voltage and system reference level for the internal circuitry of the
FPCP. Care should be taken to reduce the noise level on these pins with appropriate capacitive
decoupling.

MOTOROLA
9-4

MC68881/MC68882 USER'S MANUAL

+5 V

10 k

SENSE ------------~~--~

CS ------I
[)-_______ SYSTEM

~~ __ -I __ ~ BERR

Figure 9-2. Sense Device Circuit Example

The FPCP is fabricated in Motorola's advanced HCMOS process and is capable of operating at
clock speeds of 25 MHz. Although the use of CMOS for a device containing such a large number
of transistors allows significantly reduced power consumption in comparison to an equivalent
NMOS device, the high clock speed makes the characteristics of the power supplied to the part
quite important. The power supply must be as free from noise as possible, and it must be able
to supply large amounts of instantaneous current when the FPCP performs certain operations. In
order to meet these requirements, more detailed attention should be given to the power supply
connection to the FPCP than is required for older NMOS devices that operate at slower clock rates.

In order to provide a solid power supply interface, four VCC pins, eight primary GND pins, and
two secondary GND pins are provided. This allows two VCC and GND pins to supply the power
for the data bus, while the remaining VCC and GND pins are used by the internal logic and DSACK
drivers. The two secondary GND pins are not intended to provide the main power supply interface,
but merely to augment it as required. (One of these pins is the SENSE pin which may be used
as an optional GND connection.)

Three VCC and four GND pin positions are reserved for future use by Motorola and should be
connected appropriately in order to maintain pin compatability with all future versions of the
FPCP. Table 9-4 lists the VCC and GND pin assignments.

Table 9-4. VCC and GND Pin Assignmel1ts

Devices Supplied VCc GND

031-016 H8 J8

015-000 B8 B7

Internal Logic, OSACK1, OSACKO E2, E9 A2, B2,B3,B4*,C3, El0,K3

Separate - Cl

Extra Al, Bl, J2 Al0, 02, F2, H9

*B4 is the SENSE pin and may be used optionally as a ground pin or to detect the presence of
the FPCP in the system.

In order to reduce the amount of noise in the power supplied to the FPCP, common capacitive
decoupling techniques should be observed. While there is no recommended layout for this ca
pacitive decoupling, it is suggested that a combination of low, middle, and high frequency filter
capacitors be placed as close to the chip as possible. (For example, a set of 10 f.lF, 0.1 f.lF, and
330 pF capacitors in parallel provides filtering for nearly the entire frequency spectrum present
in a digital system.) In a system that utilizes the MC68020 as the main processor, these capacitive
decoupling practices should also be observed for the main processor. In particular, the 10 f.lF
"tank" capacitor should be reasonably close to both devices (since the two devices are typically
placed next to each other on a board) to provide for the high instantaneous current requirements
of both the MPU and the FPCP.

MC68881/MC68882 USER'S MANUAL MOTOROLA
9-5

•

In addition to the capacitive decoupling of the power supply, care should be taken to ensure a
low resistance connection between the FPCP VCC and GND pins and the system power supply
traces. In particular, the connections to pins B7 and J8 (the GND pins for the data bus pins) must
have very low resistance. This is necessary because a read of the FPCP can cause the data bus
drivers to sink very large amounts of current to ground in order to pull the data bus signals low
(if the data pattern that is read contains mostly zeroes). If low resistance connections are not
provided on pins B7 and J8, the ground potential internal to the package may rise, the fall time
of the data signals may be increased, and the low output voltage noise margin may be reduced.

9.13 NO CONNECT (NC)

One pin of the FPCP package is designated as a no connect (NC). This pin position is reserved
for future use by Motorola and should neither be used for signal routing nor connected to VCC
or GND.

9.14 SIGNAL SUMMARY

Table 9-5 provides a summary of all the FPCP signals described in this section.

Signal Name

Address Bus

Data Bus

Size

Address Strobe

Chip Select

ReadlWrite

Data Strobe

Data Transfer and Size Acknowledge

Reset

Clock

Sense Device

Power Input

Ground

MOTOROLA
9-6

Table 9-5. Signal Summary

Mnemonic Input/Output Active State Three State

AO·A4 Input High -
DO·D31 Input/Output High Yes

SIZE Input low -

AS Input low -
CS Input LeV'" -

RIW Input High/low -
DS Input low -

DSACKO, DSACK1 Output low Yes

RESET Input low -

ClK Input - -
SENSE Input/Output low No

VCC Input - -

GND Input - -

MC68881/MC68882 USER'S MANUAL

SECTION 10
BUS OPERATION

This section describes the functional characteristics of the MC68881/MC68882 (FPCP) bus interface
and the mechanisms used to execute data transfers between the FPCP and the main processor.
This discussion includes descriptions of the functional characteristics of individual bus cycles as
well as descriptions of the operand transfer protocols that require mUltiple bus cycles.

Although the FPCP is designed primarily for use as a coprocessor to the MC68020/MC68030 (MPU),
there are no characteristics of the bus operation that preclude the use of the FPCP as a peripheral
device with any other processor. This is because the M68000 Family coprocessor interface utilizes
standard bus cycles to transfer instructions and data between the main processor and coproces
sors in a system, with no special signals required for these transfers. Because of this general
purpose transfer mechanism, the type of the main processor and the nature of the system bus
interface are transparent to the FPCP.

10.1 BASIC TRANSFER MECHANISM OVERVIEW

In order to execute a floating-point instruction, the FPCP and the main processor communicate
using a series of bus cycles, instructions, and data according to a predefined protocol as described
in 7.5 INSTRUCTION DIALOGS. Most ofthese bus cycles transfer an entire item in a single transfer,
although large items such as extended precision floating-point numbers require multiple bus
cycles to transfer the entire operand. Also, if an FPCP port size of 8 or 16 bits is selected, multiple
bus cycles can be required to transfer items that can be transferred with a single cycle over a 32-
bit port.

The communications mechanism utilized by the FPCP and the main processor uses a set of mail- II!
box registers, called the coprocessor interface registers (CIRs). to move data, instructions, and
control information between the devices. The characteristics of the CIRs and the manner in which
they are used by the FPCP and a main processor are described in SECTION 7 COPROCESSOR
INTERFACE. The discussions in the following sections are not specific to any particular CIR or
instruction protocol, except where noted.

When a single bus cycle is able to accommodate an entire item, the transfer mechanism is
obviously quite simple and the only requirement that must be met is that the bit alignment of
the FPCP and main processor match. Figure 10-1 shows the bit assignment and significance of
the 32-bit data bus of the FPCP, which must be matched to the main processor (for the MPU, this
matching is accomplished by connecting 031 of the FPCP to 031 of the MC68020, 030 to 030,
etc.).

When multiple bus cycles are required to transfer an item, the additional requirements of correct
transfer order and port alignment must also be met. Figure 10-2 shows the data alignment of the
FPCP for each port size. In this figure, if a section of the data bus is shaded for a particular encoding
of SIZE, A4, A1 and AO, that section of the data bus is active during the transfer (i.e., valid data
is expected during a write cycle, and the bus is driven during a read cycle). Otherwise, it is idle
during the transfer. Note that the port size is not determined by the SIZE pin alone, but by the
combination of the SIZE pin and AO. The following paragraphs describe the transfer order for
each port size.

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-1

II

MOST SIGNIFICANT BIT OF BYTE

I

! ~ !
31 24 23

MOST SIGNIFICANT
BYTE

+
16

MIDDLE MOST
SIGNIFICANT BYTE

!
15

MIDDLE LEAST
SIGNIFICANT BYTE

LEAST SIGNIFICANT BIT OF BYTE

LEAST SIGNIFICANT
BYTE

Figure 10·1. FPCP Data Bus Bit Assignments

SIZE A4 A1 AD PORT SIZE DSACK1/DSACKO ACTIVE DATA BUS SECTIONS

H D x 1 H
32 BITS

H 1 x 1

H 0 x 0 H

H 1 0 0 16 BITS H

H 1 1 0 H

0 x 0 H

0 x 1 H

1 0 0 8 BITS H

1 0 1 H

1 1 0 H

1 1 1 H

Figure 10·2. Data Bus Activity vs Port Size and Operand Alignment

10.1.1 32·Bit Port Size

When SIZE and AO are both high, the FPCP port size is defined to be 32 bits. In most cases, this
configuration is statically selected by connecting the SIZE and AO pins directly to VCC; although
dynamic port size selection is possible if the proper timing constraints are followed for the SIZE
and AO pins. Although this configuration selects a 32·bit port siz!,!, the FPCP utilizes the dynamic
bus sizing capabilities of the I\i1pu to reduce the amount of multiplexing logic on the chip. The
value of A4 during a bus cycle determines which bytes of the 32-bit port are used to drive or
receive data. Since all of the coprocessor interface registers in the lower half of the CIR address
range (A4=0, offsets $00 through $OF) are 16-bit registers, dynamic bus sizing is utilized to place
all of those CIRs on data bus pins 016 through 032, and the OSACK encoding returned indicates
a 16-bit port size. All of the CIRs in the upper half of the elR address range (A4 = 1, offsets $10
through $1 F) are either 32-bit registers or 16-bit registers paired with undefined register locations.
Therefore, the OSACK encoding used to terminate accesses in this range indicates a 32-bit port
(during a read of the register select CIR, data bits 15-0 are undefined, reserved, and are driven
high). In both of these cases, A4 determines the OSACK encoding that is returned, and A 1 selects
the appropriate word location. AO is always one, to select a 32-bit FPCP port size, and thus
individual bytes cannot be accessed in this configuration. Furthermore, the FPCP always expects
a full 16 or 32 bits of data to be transferred during a bus cycle when SIZE is high; AO is one, and

MOTOROLA
10-2

I\IIC68881/MC68882 USER'S MANUAL

A4 is zero or one, (with the exception of immediate byte or word operands, as discussed in the
next paragraph).

When the FPCP is used in a 32-bit configuration, most CIR accesses transfer an entire instruction
or data item in a single bus cycle. The one exception to this is for accesses to the operand CIR,
which is used to transfer large items such as floating point numbers and state frames. When an
item is larger than four bytes, multiple accesses of the operand CIR are required to complete the
transfer. In this case, the correct transfer order must be observed, in addition to the bit and byte
alignment previously discussed. In all cases, each part of an item is transferred with the most
significant bit aligned with bit 31 of the operand CIR (j.e.; they are transferred across D31-D24,
D31-D16, or D31-DO for bytes, words, or long-words, respectively). With the exception of byte and
word immediate operands, the FPCP never requests the transfer of an item that is not a multiple
of four bytes in length. An immediate byte or word operand is transferred in a single bus cycle
and is left-aligned with the operand CIR. All other operands are transferred through the operand
CIR in 32-bit units until the entire item is transferred.

When multiple bus cycles are required to transfer an item, the first operand CIR access transfers
the most significant long word of the item; each successive access transfers the next least sig
nificant long word. For example, when an extended precision number is moved, the first operand
CIR access is used to transfer bits 95-64 of the operand, the second access transfers bits 63-32,
and the third access transfers bits 31-0 to complete the operand transfer. Note that the manner
in which the operand is read from or written to memory is transparent to the FPCP, which allows
the operand to be stored in memory in the native format of the main processor.

The amount of data transferred with each access to the operand CIR is dependent on the state
of an instruction dialog and is determined by the FPCP, not the main processor. For example, if
the FPCP issues an evaluate effective address and transfer data primitive with a length of 12 bytes,
three accesses of the operand CIR are expected (with each access transferring four bytes). Thus,
for a 32-bit port, the main processor is not allowed to transfer the operand with a series of word
or byte transfers, but must use long word transfers to move the operand.

10.1.2 16-Bit Port Size

When SIZE is high and AO is low, the FPCP port size is defined to be 16 bits. In most cases, this
configuration is statically selected by connecting the SIZE and AO pins directly to VCC and GND,
respectively, although dynamic port size selection is possible if the proper timing constraints are
followed for the SIZE and AO pins. Although AO = 0 in this case, this value is not specifically used
to select even byte addresses; rather, it is used to configure the data port to be 16 bits wide.
When the FPCP is configured in this manner, all CIR accesses are assumed to transfer a full 16
bits to the word address selected by A 1 (except for the case of an immediate byte operand, as
discussed in a following paragraph). The DSACK encoding returned always indicates that the port
is 16 bits wide; individual bytes cannot be accessed in this configuration.

In order to eliminate the need for on-chip multiplexing, the FPCP drives data on or receives data
from only 16 bits of the data bus, depending on the encoding of A1 and A4 (thus allowing D31
and D15 of the FPCP to be tied together, D30 to be tied to D14, D29 to D13, etc., as described in
SECTION 11 INTERFACING METHODS. For all accesses with A4 equal to zero, or with A4 equal
to one and Al equal to zero, data is transferred across D31-D16. Data is transferred across D15-
DO when A4 and A 1 are both equal to one.

When the FPCP is used in the 16-bit configuration, most CIR accesses transfer an entire instruction
or data item in a single bus cycle. The one exception to this is for accesses to the operand CIR,

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-3

which is used to transfer large items such as floating point numbers and state frames. When an
item is larger than two bytes, multiple accesses of the operand CIR are required to complete the
transfer. In this case, the correct transfer order must be observed, in addition to the bit and byte
alignment previously discussed. In all cases, each part of an item is transferred with the most
significant bit aligned with bit 31 or bit 15 of the operand CIR, depending on the value of A4 and
A 1 as described in the previous paragraph. With the exception of byte and word immediate
operands, the FPCP never requests the transfer of an item that is not a multiple of four bytes in
length. Immediate byte operands are transferred in a single bus cycle and are left-aligned with
the operand CIR (i.e., they are transferred across D31-D24). All other operands are transferred
through the operand CIR in 16-bit units until the entire item is transferred.

When multiple bus cycles are required to transfer an item, the first operand CIR access transfers
the most significant word of the item; each successive access transfers the next least significant
word. For example, when an extended precision number is moved, the first operand CIR access
is used to transfer bits 95-80 of the operand, the second access transfers bits 79-64, and the third
through sixth accesses transfer bits 63-48, 47-32, 31-16 and 15-0, respectively, to complete the
operand transfer. Note that the manner in which the operand is read from or written to memory
is transparent to the FPCP, which allows the operand to be stored in memory in the native format
of the main processor.

The amount of data transferred with each access to the operand CIR is dependent on the state
of an instruction dialog and is determined by the FPCP, not the main processor. For example, if
the FPCP issues an evaluate effective address and transfer data primitive with a length of 12 bytes,
six accesses of the operand CIR are expected (with each access transferring two bytes). Thus, for
a 16-bit port, the main processor is not allowed to transfer the operand with a series of long word
or byte transfers, but must use word transfers to move the operand.

10.1.3 8·Bit Port Size

~ When the SIZE signal is low, the FPCP port size is defined to be eight bits. In most cases, this
..:. configuration is statically selected by connecting the SIZE pin directly to GND, although dynamic

port size selection is possible if the proper timing constraints are followed for the SIZE and AO
pins. In this case, the value of AO is used to select the correct byte address, rather than to configure
the data port size. When the FPCP is configured in this manner, all CIR accesses transfer one byte
to the address selected by A4-AO, and the DSACK encoding returned always indicates that the
port is 8 bits wide. In order to eliminate the need for on-chip multiplexing, the FPCP drives data
on or receives data from only 8 bits of the data bus, depending on the encoding of AO, A1 and
A4 (thus allowing D31, D23, D15 and D7 of the FPCP to be tied together; D30 to be tied to D22,
D14 and D6; D29 to D21, D13 and D5, etc., as described in SECTION 11 INTERFACING METHODS.
Figure 10-2 shows which bytes of the data bus are driven or received for each encoding of the
AO, A1, and A4 lines.

When the FPCP is used in the 8-bit configuration, most transfers require multiple CIR transfers to
move an entire instruction or data item. The one exception to this is for accesses to the operand
CIR to transfer a byte immediate operand. When an item is larger than one byte, multiple accesses
of the appropriate CIR are required to complete the transfer. In this case, the correct transfer order
must be observed, in addition to the bit and byte alignment previously discussed. In all cases,
each part of an item is transferred with the most significant bit aligned with bit 31, 23, 15, or 7
of the FPCP, depending on the value of AO, A 1, and A4 as described in the previous paragraph.
With the exception of byte and word immediate operands, the FPCP never requests the transfer
of an item that is not a multiple of four bytes in length. Immediate byte operands are transferred

MOTOROLA
10-4

MC68881/MC68882 USER'S MANUAL

in a single bus cycle and are left-aligned with the operand CIR (i.e., they are transferred across
D31-D24). All other operands are transferred through the appropriate CIR in 8-bit units until the
entire item is transferred.

When multiple bus cycles are required to transfer an item, the first operand CIR access transfers
the most significant word of the item; each successive access transfers the next least significant
word. For example, when an extended precision number is moved, the first operand CIR access
is used to transfer bits 95-88 of the operand, the second access transfers bits 87-80, and the third
through twelfth accesses transfer bits 79-72, 71-64, 63-56, 55-48, 47-40, 39-32, 31-24, 23-16, 15-8
and 7-0, respectively, to complete the operand transfer. Note that the manner in which the operand
is read from or written to memory is transparent to the FPCP, which allows the operand to be
stored in memory in the native format of the main processor.

The amount of data transferred with each access to the operand CIR is dependent on the state
of an instruction dialog and is determined by the FPCP, not the main processor. For example, if
the FPCP issues an evaluate effective address and transfer data primitive with a length of 12 bytes,
twelve accesses of the operand CIR are expected (with each access transferring one byte). Thus,
for an 8-bit port, the main processor is not allowed to transfer the operand with a series of word
or long-word transfers, but must use byte transfers to move the operand.

10.2 RESET OPERATION

Before the FPCP can be used for any operation after power has been applied to the system, it
must be initialized using a hardware reset function. This is done when power is initially applied
to the system by asserting RESET for at least four clock cycles (with reference to the FPCP ClK
signal) after VCC has reached the nominal operating level. After power has been stable and the
FPCP has executed a power-up reset operation, a subsequent reset operation may be initiated by
asserting RESET for at least two cycles of the FPCP ClK signal. Note that in order to maintain
compatibility with all M68000 Family devices, the power-on reset pulse for a system should be a ~
minimum of 100 ms, while a 10 clock minimum (with respect to the clock signal of the slowest
M68000 Family device in the system) should be used for reset operations after power is stable.

When a hardware reset operation is performed, the FPCP immediately aborts any operation that
may have been in progress and returns to the idle state. All of the floating-point data registers
are loaded with non-signaling NANs, and the FPCR and FPSR are cleared to all zeroes (thus
clearing any old status information and selecting the IEEE standard default operating modes). An
identical operation may be performed under software control by an FRESTORE of a null state
frame (although a hardware reset must be executed at power-up in order to initialize the FPCP).

One consideration that should be given to the RESET signal of the FPCP is the treatment of a
RESET instruction by an M68000 Family processor. When the RESET instruction is executed by
an M68000 Family processor, the internal state of the processor is not affected, but the external
system should respond to the reset operation. Since the FPCP is considered to be part of the
internal state of the main processor, prudent system design suggests that the FPCP should not
respond to the assertion of the RESET signal by the main processor. This can be accomplished
in many ways, depending on the requirements of the system. A simple circuit to support this
operation is shown in Figure 10-3.

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-5

+5 V

SN74ALS05

POWER·ON -----..---1
RESET

1>-___ __ SYSTEM
RESET

L--__________ MC68881/MC68882

RESET

Figure 10-3. FPCP Reset Logic Example

10.3 CHIP SELECT TIMING

Most of the bus cycle timing requirements of the FPCP are straightforward, with all signal timing
following the normal M68000 Family conventions. The only signal timing that is specific to the
FPCP bus interface is the relationship of the assertion of chip select (CS) to the assertion of the
address strobe (AS) and data strobe (DS). Unlike most M68000 Family peripherals that require
the assertion of CS to follow the assertion of AS or DS, the FPCP allows the CS assertion to
precede the assertion of the AS and DS. (Most peripherals do not utilize the strobe signals, since
the chip select equation includes the address and/or data strobes.)

In order to detect the start or end of an access, the FPCP monitors the AS, DS, CS, and RIW
signals. A cycle start is detected when AS, CS, and DS or RIW (for a write cycle) are asserted,
and a cycle end is detected when the first strobe (AS or DS) is negated. The order in which these
signals are sequenced is not critical to correct operation, and in the case of CS the occurrence of
a negated or asserted edge is not needed to detect a new access. For example, it is not required
that CS be negated between successive accesses to the FPCP, since the negation and assertion

.... of the AS and DS signals causes the FPCP to detect the end of one access and the start of the

..:. next.

The FPCP conditions the DSACK generation logic internally with AS and CS. To ensure that
DSACKx assertion is not delayed longer than necessary, CS should be asserted before AS is
asserted (since CS is system dependent but AS is MPU dependent). This design is called "early
chip select". On the other hand, when CS is asserted after AS has been asserted, then design is
called "late chip select". A late chip select design may add wait states to the FPCP accesses.

A timing restriction on CS is that it must be either negated or asserted during transitions of the
AS and DS signals. Thus, CS must either be asserted before AS or DS is asserted at the start of
a bus cycle, or it must remain negated until after the strobe signals are stable (although it may
be asserted between the assertion of AS and DS during a write cycle). This prevents the processor
from entering an indeterminate state.

To satisfy this timing restriction with an early chip select, neither AS or DS can be used to generate
CS. Figure 10-4 shows some circuits that correctly generate an early chip select signal for MPU
based systems. Note that in these circuits only the following terms are included in the CS equation:

• FC2-FCO = 7 - CPU Space

• A19-A16=2 - Coprocessor Communications

• A15-A13= 1 - Cp-ID One (Motorola Assembler Default)

MOTOROLA
10-6

MC68881/MC68882 USER'S MANUAL

74x13B

AI3 AD 00
AlB Al 01

AI7 A2 02

03

04

05

OB

FCl

FCO --,~~

FCO-FC2 -$7

CPU Space (A 16-A 191 -$2
Cp-ID (A13-A151 -$1 (defaultl

BKPT FCO

FCl

A13

A14
CS ICp-IOxlOl A15
CS ICp-IOxx II AlB

AI7

lACK AlB

74x521

AD BO
Al Bl

A2 B2

A3 B3

A4 B4

A5 B5

A6 B6

CS (Cp-IO 0011

Up to two coprocessors in the system, with
additional decode for BKPT and lACK cycles.

Up to seven coprocessors in the system.

A19 ----I"t;-_

FC2

FCl

FCO

AI7

A13

A 18 t-------I

A16

A15 ---..~~

74AS30

CS ICp-IO 0011 FCO

FCl

AlB

AI7

AlB

A19

74x52l

AD BO

Al Bl

A2 B2

A3 B3

A4 B4

A5 B5

A6 BB

CS ICp-IO xxxi

Up to seven coprocessors in the system. Only one coprocessor in the system.

Decode Delay Times"

Programmable Array Logic (PALl = 10 - 25 ns max.
74xOO/74x13B combined propagation delay = 9.5 - 12.8 ns max.
74x521 compare delay = 5.5 - 11 ns max.
74AS02/74AS30combinedpropagationdeiay = 9 ns max.

"The 'x' represents various combinations of logic families including F, AS, or fast CMOS.

Figure 10-4. Example of Early Chip Select Circuits

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-7

II

For systems that use the MC68020 or the MC68030 with an MC68881 or MC68882, the maximum
time for an early chip select is:

tAVCS = tAVSA - tCVASL
where:

tAVCS = Address/function code valid to CS asserted (maximum).
tAVSA = MC68020/MC68030 address/function code valid to AS asserted (AC electrical specifi-

cation #11 minimul!:!.h _
tcv- = MC68881/MC68882 CS asserted to AS asserted (AC electrical specification #8 mini-
ASL mum).

For a 25 MHz MPU and a 25 MHz FPCP:
tAVCS =7 ns - (-2 ns)=9 ns maximum.

The 74AS02 and 74AS30 implementation shown in Figure 10-4 meets this maximum requirement.

A late chip select design can use slower (and, therefore, less expensive) logic. To implement this
design, the CS generation logic should be conditioned by AS to ensure that the CS transition does
not coincide with the AS transition. Another consideration in using slower logic is that if a non
FPCP access follows an FPCP access, the CS for the FPCP must not remain asserted inadvertently
during the non-FPCP access. However, AS should be included in the decode logic as shown in
Figure 10-5(A), along with the timing that the logic provides. When AS is used in an AND gate
with the decode logic output as shown Figure 10-5(8), CS is asserted after the start of the non
FPCP access, as the timing diagram shows. This implementation in Figure 10-5(8) is incorrect.

CLK CLK

A19·A13
FPCP ACCESS X NON·FPCP ACCESS

A19·A13
FPCP ACCESS X NON·FPCP ACCESS

FCO·FC2 FCO·FC2

/1 \ ~,. AS AS

~
,

x ns l- I-
CS l- CS' I

" .,,'""" """ ~ CS ~ OF NON·FPCP ACCESS
(CORRECTI

"""mOO",". ~
NON·FPCP ACCESS

(INCORRECTI

A19·A13

FCO·FC2
OECODE

(X ns DELAYI
cs A19·A13

DECODE
(X ns DELAYI CS

AS FCO·FC2

AS --------------~

al CORRECT Implementation of a "late chip select" bl INCORRECT Implementation of a "late chip select"

Figure 10-5. Example of Late Chip Select Circuit

MOTOROLA
10-8

MC68881/MC68882 USER'S MANUAL

10.4 BUS CYCLE FUNCTIONAL DESCRIPTIONS

The FPCP executes three types of bus cycles, according to the direction of the transfer and the
CIR that is selected by the main processor. The three bus cycle types are: synchronous read cycles,
asynchronous read cycles, and asynchronous write cycles. In this context, the terms synchronous
and asynchronous convey slightly different meanings than when they are used to describe the
bus transfer characteristics of a microprocessor (e.g., where the MC68030 microprocessor and an
external device perform either synchronous or asynchronous cycles, depending on the relationship
between the clocks used in the MPU and the external device). Here, the terms synchronous and
asynchronous are used with respect to the FPCP clock. The following paragraphs describe the
functional characteristics of each bus cycle type (for an AC parametric description of the FPCP
bus interface, refer to SECTION 12 ELECTRICAL SPECIFICATIONS.

In the following discussions, the main processor is assumed to be an MC68020 or MC68030, with
the FPCP and the MPU both driven by the same clock signal. Thus, the terminology and conven
tions used are identical to the bus description for the MPU. This clock frequency relationship is
not required, but the following discussions are simplified by assuming that both devices use the
same clock signal. Where appropriate, references are made to variations in bus cycle operations
if the main processor is not an MC68020 or MC68030.

10.4.1 Synchronous Read Cycles

When the main processor performs a read access to either the response or save CIR, the FPCP
responds by executing a synchronous read bus cycle. In this context, the term synchronous
signifies that the bus cycle timing is directly related to the FPCP clock signal, but the FPCP clock
is not required to be synchronous with the main processor clock during the transfer. By syn
chronizing the bus cycle to the FPCP clock, the appropriate response primitive or format word is
always returned based on the current status of the FPCP. Also, since these bus cycles are used
to transmit service requests to the main processor, the synchronous bus cycle timing allows the
main processor and FPCP to be synchronized at critical points in an instruction dialog, without
requiring synchronous clock signals for the two devices.

The functional timing for the synchronous read cycle is shown in Figure 10-6. The FPCP detects
the start of a synchronous read cycle when chip select and address strobe are asserted, read/
write is high, and the address pins are encoded to $00 (to select the response CIR) or $04 (to
select the save CIR). When either of these conditions is met, the FPCP begins to sample the
address strobe, data strobe, and chip select lines on each rising edge of the ClK signal. When all
three of these signals are sampled as asserted, the FPCP latches certain internal state flags and
uses those flags to determine the appropriate response primitive or format word to be placed on
the data bus. One and one-half clock cycles later, the FPCP begins to drive the data value onto
the bus and assert the appropriate data transfer and size acknowledge encoding. The data value
remains on the data pins and DSACKx remains asserted until the first of the two signals, AS or
DS, is negated; then the bus cycle is terminated by placing the data bus in the high impedance
state and negating DSACKx.

As shown in Figure 10-6, this type of bus cycle requires five clock cycles (two wait cycles) when
the MPU and the FPCP share the same clock. Under certain conditions, these bus cycles may
require as many as six or seven clock cycles. Two separate mechanisms determine whether
additional clock cycles are required for this type of a bus cycle:

1. The relationship between the assertion of AS, DS, or CS and the rising edge of the FPCP
clock signal

2. The relationship between the assertion of DSACKx by the FPCP and the falling edge of the
MPU clock signal

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-9

so

CLK

A4-A1

R/W ----'

031-00

Sl S2

MC68881/MC68882
RECOGNIZES CYCLE START

Sw Sw Sw Sw

MC68881 IMC68882 DSACK AND
DATA DRIVERS TRIGGERED

S3 S4 S5

MC68020/MC68030 LATCHES
OATA VALUE

MC68020/MC68030
RECOGNIZES DSACK ASSERTION

Figure 10-6. Synchronolls Read Cycle Timing Diagram

As previously described, DSACKx is triggered to assert one and one-half Clock cyCles after AS,
DS, and CS are sampled as asserted; thus, the best case timing occurs when all three of these
signais are asserted as eariy in the bus cycle as possible. Since the MPU tiiggeis the asssrtion

ill of AS and DS with the falling edge of the ClK signal (which is assumed to be the same for both
devices) and the FPCP samples those signals, along with CS, on the rising edge of the ClK signal,
the best case cycle timing occurs oniy if AS, DS, and CS are all asserted to provide the required
setup time to the next rising edge of the clock. thus, the maximum assertion and propagation
delays for these signals must be less than the Clock pulse width low in order to guarantee the
best case bus cyCle timing. Although the maximum specifications for the assertion, by the MPU,
of AS or DS from the falling edge of the Clock do not guarantee the. best case timing for operation
at 16.67 MHz under worst case system environments, the best case timing normally occurs under
typical system conditions. In order to assure the possibility that the best case timing occurs,
system designers should utilize the CS generation methods d~scribed in 10.3 CHIP SELECT TIMING
to prevent propagation delays of the CS logic from lengthening the bus cyCle by one Clock_

In the same manner as just described (where the FPCP misses the assertion of AS, DS, or CS),
one Clock cyCle may be added to the bus cyCle timing if the MPU misses the assertion of DSACKx
by the FPCP. The assertion of DSACKx by the FPCP is triggered by the falling edge of the clock,
and the propagation delay for this assertion can be quite long (slightly longer than one 16.67 MHz
Clock cyCle under worst case system conditions). Since the MPU samples DSACKx on the falling
edge of the clock, the assertion of DSACKx triggered by a given falling clock edge may not be
completed ahead of the setup time to the next falling clock edge. There is very little that a system
designer can do to assure that the DSACKx assertion is recognized on the first falling clock edge
after it is triggered, since the propagation delay is dependent on individual device characteristics
as well as system conditions such as temperature and power supply levels.

MOTOROLA
10-10

MC68881/MC68882 USER'S MANUAL

Due to the nature of the two mechanisms just described, it is possible that for an individual system
the bus cycle timing for synchronous read cycles may be different under varying system condi
tions. For example, when a system is first turned on (and thus the devices are at room temperature)
it is quite likely that synchronous read cycles require five clock cycles as shown in Figure 10-6.
As the temperature increases to the normal operating range, the synchronous read cycle timing
may change to six clock cycles. If the temperature rise affects both of the synchronization mech
anisms enough (particularly if the CS generation logic causes the assertion of CS to follow the
assertion of AS and/or DS), the timing for these operations may increase to seven clock cycles
or even vary on a cycle-by-cycle basis between six and seven clock cycles. Some other factors
that may affect the timing for synchronous reads cycles are the power supply levels for the FPCP
and MPU, the individual device characteristics (due to manufacturing variances), and the capacitive
loading of the control signals.

It should be noted that the timing variances for synchronous read cycles do not affect the overall
performance of a system significantly. Specifically, one or two additional clock cycles per syn
chronous read cycle results in a small percentage change in the overall execution time for an
instruction (since most instructions typically require over 50 clock cycles to execute). The only
environment where these timing variances may be of concern is when a programmer is attempting
to optimize an instruction sequence for maximum overlap. In this case, these factors should be
added to the instruction execution timing variability mechanisms discussed in SECTION 8 IN
STRUCTION EXECUTION TIMING.

10.4.2 Asynchronous Read Cycles

When the main processor performs any access to the FPCP with R/W high other than a read of
the response or save CIA, the FPCP responds by executing an asynchronous read cycle. In this
context, the term asynchronous signifies that the bus cycle timing is not related to the FPCP or
MPU clock signals in any way. The FPCP supports this type of operation by implementing all of
the CIRs, except the response and save CIRs, as dual ported structures. Thus, the main processor .n
can access these CIRs at the maximum speed regardless of the clock frequency of the FPCP, while Mil
the FPCP internally accesses these CIRs in a synchronous manner.

The functional timing for the asynchronous read cycle is shown in Figure 10-7. The FPCP detects
the start of an asynchronous read cycle when chip select, address strobe, and data strobe are
asserted; read/write is high; and the address pins are not encoded to $00 or $04 (which selects
the response or save CIR, respectively). When this condition is met, the FPCP responds by placing
the data from the selected CIR on the data bus and asserting the appropriate data transfer and
size acknowledge encoding. The data value remains on the data pins and DSACKx remains as
serted until the first of the two signals, AS or DS, is negated at which time the bus cycle is
terminated by placing the data bus in the high impedance state and negating DSACKx.

As shown in Figure 10-7, this type of bus cycle requires three clock cycles (no wait cycles) when
the MPU and the FPCP share the same clock. Due to the asynchronous timing of the data transfer
and size acknowledge assertion by the FPCP, this bus cycle timing does not depend on the clock
frequency of the FPCP (there are some exceptions to this rule, as discussed in 10.5 INTER-CYCLE
TIMING RESTRICTIONS). For example, if the MC68881 clock frequency is 12.5 MHz and the MPU
clock frequency is 16.67 MHZ, this bus cycle requires three MPU clock cycles since the assertion
of DSACKx is recognized by the MPU on the falling edge of S2. This assumes that the chip select
logic causes the assertion of AS and DS so that the AS/DS assertion delay is not lengthened by
the chip select logic propagation time.

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-11

50 51 52 53 54 55

CLK

A4-Al X x:=
R/W 7 L

AS J \ I
ilS J \ I
cs \ r-

05ACKx \ I
031-00 (>-

Figure 10-7. Asynchronous Read Cycle Timing Diagram

10.4.3 Asynchronous Write Cycles

When the main processor performs any access to the FPCP with R/W low, the FPCP responds by
executing an asynchronous write cycle. The definition of asynchronous in the first paragraph of
the preceding section applies also to asynchronous write cycles.

III The functional timing for the asynchronous write cycle is shown in Figure 10-8. The FPCP detects
the start of an asynchronous write cycle when chip select and address strobe are asserted and
read/write is low. When this condition is met and an asserted pulse occurs on DS, the FPCP
responds by asserting the appropriate data transfer and size acknowledge encoding and latching
the value of the data bus into the selected CIR. The DSACKx encoding remains asserted until AS
is negated; then the bus cycle is terminated by negating DSACKx_

As shown in Figure 10-8, this type of bus cycle requires three clock cycles (no wait cycles) when
the MPU and the FPCP share the same clock. Due to the asynchronous timing of the data transfer
and size acknowledge assertion by the FPCP, this bus cycle timing does not depend on the clock
frequency of the FPCP (there are some exceptions to this rule, as discussed in 10.5 INTER-CYCLE
TIMING RESTRICTIONS). For example, if the MC68881 clock frequency is 12.5 MHz and the MPU
clock frequency is 16.67 MHz, this bus cycle requires three MPU clock cycles since the assertion
of DSACKx is recognized by the MPU on the falling edge of S2. This assumes that the chip select
logic causes the assertion of CS to precede the assertion of AS and DS so that the AS/DS assertion
to DSACKx assertion delay is not lengthened by the chip select logic propagation time.

10.5 INTER-CYCLE TIMING RESTRICTIONS

The bus interface of the MC68881 is designed to operate satisfactorily at any reasonable clock
frequency relationship between the MC68881 and the main processor. In most cases, differences

MOTOROLA
10-12

MC68881/MC68882 USER'S MANUAL

SO SI S2 S3 S4 S5

CLK

A4·Al X)C

Riw ~ /
AS .J \ /
OS .J \ /
CS \ ~

OSACKx \ I
031·00 < >-

Figure 10-8. Asynchronous Write Cycle Timing Diagram

in the clock frequency of the two devices does not affect the operation of the bus; and particularly,
it does not affect the timing of individual bus cycles. However, there are some cases where the
timing of a bus cycle is modified if the MC68881 is overrun by the main processor.

During coprocessor interface dialogs, certain bus cycles trigger actio.ns by the FPCP on the negated
edge of data strobe. Operations internal to the FPCP that are initiated in this manner are completed -.
within four clock cycles after the negation of DS, but the main processor may initiate a subsequent _
asynchronous bus cycle before those internal operations are completed. In these cases, the MC68881
delays the subsequent asynchronous access by not responding to the bus cycle (and thus not
asserting DSACKx) until the internal operations are completed. Synchronous accesses (i.e., ac
cesses to the response or save CIR) execute in the normal manner regardless of preceding ac
cesses. The following is a list of the bus cycles that initiate internal operations on the negated
edge of DS, where a subsequent asynchronous bus cycle might overrun the FPCP and necessitate
a delay in the assertion of DSACKx:

1. A write cycle to the least significant byte of the control CIR

2. A write cycle to the least significant byte of the restore CIR

3. The last write cycle to the least significant byte of the operand CIR during a restore operation
with a busy state frame

4. The first read from the least significant byte of the operand CIR during a save operation with
an idle or busy state frame

In all of these cases, the term least significant byte indicates a transfer of any size that includes
the least significant byte of the referenced CIR and does not indicate that only byte transfers cause
conditions that require delays in subsequent bus cycles.

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-13

II

In addition to the cases just described, the possibility exists that the main processor may overrun
the FPCP if the main processor clock frequency is greater than that of the FPCP. There are two
cases where this might occur:

1. The main processor reads the operand or register select CIR before the FPCP has data ready
for transfer to the main processor. -

2. The main processor writes to the operand CIR before the data from the previous write cycle
has been stored internally.

In both of these cases, the FPCP does not respond to the initiation of an asynchronous bus cycle
until the internal data transfers are completed (synchronous bus cycles are not delayed).

10.6 COPROCESSOR INTERFACE PROTOCOL RESTRICTIONS

As just described, the FPCP delays asynchronous bus cycles, if necessary, until internal operations
are completed. However, even though the response to these bus cycles is delayed, the FPCP bus
interface unit control logic does detect the beginning of each access regardless of the state of the
execution unit. Thus, it is possible that an access to a CIR may be detected before the bus interface
unit has completed previous operations and updated status flags to reflect the state of an instruc
tion dialog. This can result in spurious protocol violations if the coprocessor interface protocol is
not strictly observed.

The most important protocol that must be observed is that the come again request included by
the FPCP in every evaluate effective address and transfer data primitive must not be ignored by
the main processor. For example, if the come again request is ignored and the main processor
clock is much faster than the FPCP clock, the following situation might occur:

1. The main processor receives the evaluate effective address and transfer data request pri
mitive, processes it, and begins to transfer the operand.

2. The last operand part is written to the operand CIR.

3. The main processor ignores the come again request and begins execution of the next in
struction immediately.

4. The next instruction is an FPCP instruction that the main processor initiates by writing the
command word to the command CIR.

5. Since the internal operand transfer is not complete, the BIU flags still indicate that the next
expected access is to the operand CIR; thus the access to the command CIR is deemed illegal,
and a protocol violation occurs.

In this case, if the main processor follows the protocol and services the come again request by
reading the response CIR immediately after the last operand CIR access, a null (CA=1, IA=1)
primitive may be returned by the MC68881. Since the response CIR read cycle timing is synchron
ous with the MC68881 clock signal, this read cycle allows the main processor to be synchronized
to the MC68881 internal operations. Thus, the next read of the response CIR normally occurs after
internal operations are completed. At that time, the response encoding is changed to null (CA=O)
to allow the main processor to proceed, and the subsequent access to the command CIR is a
legal access.

In addition to the previously mentioned restrictions, the MC68882 may return an evaluate <ea>
and transfer data primitive with CA = 0, which does not require the main processor to read the
response register before proceeding to the next instruction. After the last write to the operand

MOTOROLA
10-14

MC68881/MC68882 USER'S MANUAL

CIR, if the next instruction is another MC68882 instruction, the write to the command CIR can
occur immediately without adverse effects. However, if the read of the response CIR (which
normally follows the write of the command CIR) occurs sooner than three MC68882 clocks after
the completion ofthe previous operand CIR write operation, a protocol violation occurs. Therefore,
if the main processor is an MC68020 or MC68030, its clock frequency cannot be more than 1.5
times the frequency of the MC68882 clock. Otherwise, the read response CIR operation might
occur too soon and cause a protocol violation. A main processor other than an MC68020 or
MC68030 must also observe this timing requirement to avoid a protocol violation.

MC68881/MC68882 USER'S MANUAL MOTOROLA
10-15

SECTION 11
INTERFACING METHODS

This section contains information about the interface logic required to connect the MC688811
MC68882 (FPCP) to an MC68020/MC68030 (MPU) as a coprocessor, or to an MC68000, MC68008,
or MC68010 as a peripheral processor.

11.1 FPCP AND MPU INTERFACING

The following paragraphs describe the connecting of the FPCP to an MPU for coprocessor op
eration using an 8-, 16-, or 32-bit data bus.

11.1.1 32-Bit Data Bus Coprocessor Connection

Figure 11-1 illustrates the coprocessor interface connection of an FPCP to an MPU using a 32-bit
data bus. The FPCP is configured to operate over a 32-bit data bus when both the AD and SIZE
pins are connected to VCC.

MC68020/MC68030

FCO-FC2

A20-A31

A16-A19

A13-A15

A5-A12

A1-A4

AO

AS
liS

R/W

024-031

016-023

08-015

00-07

OSACKO

OSACK1

t
MAIN PROCESSOR

CLOCK

-

-

-

CHIP
SElECT
OECOOE

VCC -

VCC -

MC68881/MC6BB82

-
CS .

SIZE

A1-A4

AO

AS

liS
R/W

024-031

016-023

08-015

00-07

OSACKO

OSACK1

t
COPROCESSOR

CLOCK

Figure 11-1. 32-Bit Data Bus Coprocessor Connection

MC688811MC68882 USER'S MANUAL MOTOROLA
11-1

III

11.1.2 16-Bit Data Bus Coprocessor Connection

Figure 11-2 illustrates the coprocessor interface connection of an FPCP to an MPU using a 16-bit
data bus. The FPCP is configured to operate over a 16-bit data bus when the SIZE pin is connected
to VCC, and the AO pin is connected to GNO. The sixteen least significant data pins (00-015) must
be connected to the sixteen most significant data pins (016-031) when the FPCP is configured to
operate over a 16-bit data bus (i.e., connect OOto 016, 01 to 017, ... and 015to 031). The OSACKx
pins of the two devices are directly connected, 'although it is not necessary to connect the OSACKO
pin since the FPCP never asserts it in this configuration.

MC68020/MC68030 MC68881/MC68882

FCO·FC2

A20·A31 - CHIP
SElECT cs

A16·A19 OECOOE

A13·A15

A5·A12 - VCC- SIZE

Al·A4 Al·A4

AO - GNO _ AO

AS AS
os os

R/W R/W

024·031
T

024·031

016·023

1 I
016·023

08·015 - 08·015

00·07 - 00·07

OSACKO r---.. - ... - ..•.. -, ... ~, .• ,-... ,~ ... "-.,, .. --.. ""'-.... ,- OSACKO

OSACK1 '-----,---.....Ir
f

MAIN PROCESSOR
CLOCK

OSACKI

COPROCESSOR
CLOCK

Figure 11-2. 16-Bit Data Bus Coprocessor Connection

11.1.3 8-Bit Data Bus Coprocessor Connection

Figure 11-3 illustrates the connection of an FPCP to an MPU as a coprocessor over an 8-bit data
bus. The FPCP is configured to operate over an 8-bit data bus when the SIZE pin is connected to
GNO. The twenty four least significant data pins (00-023) must be connected to the eight most
significant data pins (024-031) when the FPCP is configured to operate over an 8-bit data bus
(i.e., connect 00 to 08, 016 and 024; 01 to 09, 017, and 025; ... and 07 to 015, 023, and 031).
The OSACKx pins of the two devices are directly connected, although it is not necessary to connect
the OSACK1 pin since the FPCP never asserts it in this configuration.

11.2 INTERFACING THE FPCP AS A PERIPHERAL

The following paragraphs describe the connecting of the FPCP to an MC68000, MC68008, or
MC68010 processor for operation as a peripheral using an 8- or 16-bit data bus.

MOTOROLA
"-2

MC68881/MC68882 USER'S MANUAL

MC68D2D/MC68D3D MC68881/MC68882

FCD-FC2

A2D-A31 - CHIP
SELECT CS

A16-A19 DECOOE

A13-A15

A5-A12 - GNO _ SIZE

Al-A4 Al-A4

AO AD

AS AS
OS OS

R/W R/W

024-031 024-031

016-023 - 016-023

08-015 - 08-015

00-07 - 00-07

OSACKO 14------------------i OSACKO

t
MAIN PROCESSOR

CLOCK

t
COPROCESSOR

CLOCK

Figure 11-3. 8-Bit Data Bus Coprocessor Connection

11.2.1 16-Bit Data Bus Peripheral Processor Connection

Figure 11-4 illustrates the connection of an FPCP to an MC68000 or MC68010 as a peripheral
processor over a 16-pit qata bus. The FPCP is configured to operate over a 16-bit data bus when
the SIZE pin is connected to VCe. and the AO pin is connected to GNO. The sixteen least significant
data pins (00-015) must be connected to the sixteen most significant data pins (016-031) when
the FPCP is configured to operate over a 16-bit data bus (i.e., connect 00 to 016, 01 to 017, ... and III
015 to 031). The OSACK1 pin of the FPCP is connected to the OTACK pin of the main processor,
and the OSACKO pin is not used.

When connected as a peripheral processor, the FPCP chip select (CS) decode is system dependent.
If the MC68000 is used as the main processor, the FPCP CS must be decoded in the supervisor
or user data spaces. However, if the MC68010 is used for the main processor, the MOVES instruc
tion can be used to emulate any CPU space access that the MPU generates for coprocessor
communications. Thus, the CS decode logic for such systems may be the same as in an MC68020
or MC68030 system; that is, the FPCP does not use any part of the data address spaces.

11.2.2 8-Bit Data Bus Peripheral Processor Connection

Figure 11-5 illustrates the connection of an FPCP to an MC68008 as a peripheral processor over
an 8-bit data bus. The FPCP is configured to operate over an 8-bit data bus (i.e., connect 00 to
08,016, and 024; 01 to 09, 017, i'lnd 025; ... and 07 to 015, 023, and 031). The OSACKO pin
of the FPCP is connected to the OTACK pin of the MC68008, and the OSACK1 pin is not used.

MC68881/MC68882 USER'S MANUAL MOTOROLA
11-3

III

MOTOROLA
11-4

MC68000 OR MC68010

FCO-FC2

A20-A23 OR A31

A16-A19

A13-A15

A5-A12

A1 .. A4

AS
UOS

LOS

R/W

08-015

00-07

DTACK

t
MAIN PROCESSOR

CLOCK

1---... ----.... -......
CHIP

1-- _ - SELfCT
DECODE

1---_ __ ... -
... __ ... __ -- (SYSTEM

........... __ 10> DEPENDENT)

J ~

1 I
1

VCC-

GNO_

-

MC68881/MC68882

CS

SIZE

A1-A4

AO

AS

OS

R/W

024-031

016-023

08-015

00-07

OSACKO

OSACK1

t
COPROCESSOR

CLOCK

Figure 11-4. 16-Bit Data Bus Peripheral Processor Connection

MC68008

FCO-FC2

A16-A19

A13-A15

A5 .. A12

A1-A4

AO

AS
OS

Riw

00-07

DTACK

t
MAIN PROCESSOR

CLOCK

CHIP
SHECT

................... _ .. _ - DECODE -_ _._ _ .. -
(SYSTEM

r--·_·_··-lI> DEPENDENT)
GNO_

-

MC68881/MC68882

cs

SIZE

A1 .. A4

AO

AS
OS
R/W

024-031

016-023

08-015

00-07

OSACKO

OSACK1

t
COPROCESSOR

CLOCK

Figure 11-5. 8-Bit Data Bus Peripheral Processor Connection

MC68881/MC68882 USER'S MANUAL

When connected as a peripheral processor, the FPCP chip select (CS) decode is system dependent,
and the CS must be decoded in the supervisor or user data spaces.

11.3 PERIPHERAL PROCESSOR OPERATION

The FPCP can be used as a peripheral processor on systems where the main processor does not
have a coprocessor interface by using instruction sequences that emulate the protocol of the
coprocessor interface. When an FPCP instruction is encountered by an MC68000, MC68008, or
MC68010, the instruction causes an F-line emulator trap to be taken. The trap handler then em
ulates the coprocessor interface protocol. Refer to SECTION 7 COPROCESSOR INTERFACE for
details of the communications protocol.

The FPCP requests services from the main processor via coprocessor interface response register
primitives. SECTION 7 COPROCESSOR INTERFACE describes the main processor service requests
required for the execution of each FPCP instruction type. Also included in SECTION 7 COPRO
CESSOR INTERFACE is a summary of all FPCP response primitives.

MC68881/MC68882 USER'S MANUAL MOTOROLA
11-5

DI

SECTION 12
ELECTRICAL SPECIFICATIONS

This section contains electrical specifications and associated timing information for the MC688811
MC68882 (FPCP).

12.1 MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage VCC -0.3 to + 7.0 V

Input Voltage Vin -0.5 to + 7.0 V

Operating Temperature TA o to 70 "C

Storage Temperature Tstll -55 to + 150 "C

12.2 THERMAL CHARACTERISTICS - PGA PACKAGE

Characteristic Symbol Value Rating

Thermal Resistance - Ceramic "CfW
Junction to Ambient 8JA 30'
Junction to Case 8JC 15'

'Estimated

12.3 POWER CONSIDERATIONS

This device contains circuitry to protect the
inputs against damage due to high static volt
ages or electric fields; however. it is advised
that normal precautions be taken to avoid
application of any voltage higher than max
imum-rated voltages to this high-impedance
circuit. Reliability of operation is enhanced if
unused inputs are tied to an appropriate logic
voltage level (e.g .• either GND or VCe).

The average chip-junction temperature, T J, in °c can be obtained from:
. T J = T A + (PD· SJA) (1)

where:
T A = Ambient Temperature, °c
SJA = Package Thermal Resistance, Junction-to-Ambient, °CIW
PD = PINT+ PliO
PINT = ICC x VCC, Watts - Chip Internal Power ..:I
PliO = Power Dissipation on Input and Output Pins - User Determined

For most applications PIIO<PINT and can be neglected.
The following is an approximate relationship between PD and TJ (if PliO is neglected):

PD= K--o- (TJ + 273°C) (2)
Solving equations (1) and (2) for K gives:

K= PD· (TA +273°C)+SJA. PD2 (3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by
measuring PD (at equilibrium) for a known T A- Using this value of K, the values of PD and T J can
be obtained by solving equations (1) and (2) iteratively for any value of T A.

The total thermal resistance of a package (SJA) can be separated into two components, SJC
and SCA, representing the barrier to heat flow from the semiconductor junction to the package
(case) surface (SJC) and from the case to the outside ambient (SCA). These terms are related by
the equation:

SJA = SJC + SCA

MC68881/MC68882 USER'S MANUAL

(4)

MOTOROLA
12-1

SJC is device related and cannot be influenced by the user. However, SCA is user dependent
and can be minimized by such thermal management techniques as heat sinks, ambient air cooling,
and thermal convention. Thus, good thermal management on the part of the user can significantly
reduce SCA so that SJA approximately equals SJC. Substitution of SJC for SJA in equation (1) will
result in a lower semiconductor junction temperature.

Values for thermal resistance presented in this document, unless estimated, were derived using
the procedure described in Motorola -Reliability Report 7843, "Thermal Resistance Measurement
Method for MC68XX Microcomponent Devices," and are provided for design purposes only.
Thermal measurements are complex and dependent on procedure and setup. User derived values
for thermal resistance may differ.

12.4 DC ELECTRICAL CHARACTERISTICS
(VCC=5.0 Vdc±5%; GNO=O Vdc, TA=O°C to 70°C) (See Figure 12-1)

Characteristic

Input High Voltage

Input low Voltage

Input leakage Current @ 5.25 V ClK, RESET,.BiW~Q:M,
CS, OS, AS, SIZE

Hi-Z (Off State) Input Current @ 2.4 V/0.4 V OSACKO, OSACK1, 00-031

Output High Voltage (lOH = -400 ILA) OSACKO, OSACK1, 00-031

Output low Voltage (lOl = 5.3 rnA) OSACKO, OSACK1, 00-031

Power Oissipation

Capacitance* (Vin=O, TA = 25°C, 1=1 MHz)

*Capacitance is periodically sampled rather than 100% tested.

TEST
POINT

+5 V

Symbol

VIH

Vil

lin

ITSI

VOH

VOL

Po

Cin

MMD7DOO

CL = 130 pF IINCLUOES ALL PARASmCS)
R = 740 OHMS FOR OSACKO. DSACKI. 00-031
RL = 6.0 kOHMS FOR DSACKO. DSACKI. 00-031

Figure 12-1. Test Loads

OR EQUIVALENT

Min Max Unit

2.0 VCC V

GNO -0.5 0.8 V

- 10 !LA

- 20 !LA

2.4 - V

- 0.5 V

- 0.75 W

- 20 pF

MOTOROLA
12-2

MC68881/MC68882 USER'S MANUAL

12.5 AC ELECTRICAL CHARACTERISTICS - CLOCK INPUT
(VCC~5.0 Vdc±5%; GND~O Vdc, TA=O"C to 70°C) (see Figure 12-2)

'RC12 'RC16 'RC20 'RC25
Num

1

2,3

4,5

Characteristic
Min Max Min Max Min Max Min

Frequency of Operation 8 12.5 8 16.67 12.5 20 12.5

Cycle Time 80 125 60 125 50 80 40

Clock Pulse Width 32 87 24 95 20 54 15

Rise and Fall Times - 5 - 5 - 5 -

CLOCK

NOTE:

1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high
voltage of 2.0volts, unless otherwise noted. The voltage swing through this range should
start outside, and pass through, the range such that the rise or fall will be linear between
0.8 volts and 2.0 volts.

Figure 12-2. Clock Input Timing Diagram

MC688811MC68882 USER'S MANUAL

Max
Unit

25 MHz

80 ns

59 ns

4 ns

MOTOROLA
12-3

12.6 AC ELECTRICAL CHARACTERISTICS - READ AND WRITE CYCLES
(VCC=5.0 Vdc±5%; GND=O Vdc, TA=O°C to 70°C) (sse Figures 12-3 through 12-5)

'RC12 'RC16 'RC20
Num Char~cteristic

Min Max Min Max Min Max

6 Address Valid to AS Asserted (see Note 5) 20 - 15 - 10 -
6A Addrllss Valid to DS Asserted (Read) 20 - 15 - 10 -

(see Note 5)
6B Address Valid to DS Asserted (Write) 65 - 50 - 50 -

(see Note 5) .

7 AS Negated to Addr~ss Invalid (see Note 6) 15 - 10 - 10 -

7A DS Negated to Address Invalid (see Note 6) 15 - 10 - 10 -

8 CS Asserte(l to AS Asserted (Early Chip 0 - 0 - -1 -
Select) or AS Asserteq \0 CS Asserted
(Late Chip Select)
(see Notes 8 and 12)

8A CS Asserted ~ D~ Asserted ~arly Chip 0 - 0 - -1 -
Select) or DS Ass@rted to CS Asserted
(Late Chip Selecti (Read)
(see Notes 9 and 12)

8B CS Asserted to DS Asserted (Write) 45 - 35 - 30 -

9 AS Negated to CS Negated 10 - 10 - 10 -
9A DS Negated to CS Negated 10 - 10 - 1P -
10 RIW High to AS Asserted (Read) 20 - 15 - 10 -

lOA RIW High to DS Asserted (Read) 20 - 15 - 10 -
lOB R/W Low to DS Asserted (Write) 45 - 35 - 30 -
11 AS Negated to Pj':N Low (Read) or AS 15 - 10 - 10 -

Negated to RIW High (Write)

l1A DS Negated to RfW Low (l3ead) or DS 15 - 10 - 10 -
Negated to RMi High (Write) .

i2 DS Width Asserted iWritej 50 - 40 - 38 -
13 DS Width Negated 50 - 40 - 38 -

13A DS Negated to AS Assertecl (sEle Note 4) 40 - 30 - 30 -
14 CS, DS Asserted to Data-Out Valid (Read) - 110 - 80 - 60

(see Note 2)

15 DS Negated to Data-Out Invalid (Read) 0 - 0 - 0 -

16 DS Negated to Data-Out High Impedance - 70 - 50 - 40
(Read)

17 Data-In Valid to DS Asserted (Write) 20 - 15 - 10 -
18 DS Negated to Data-In Invalid (Write) 20 - 15 - 10 -

19 START True to DSACKO and DSACKl - 70 - 50 - 35
Asserted (see Notes 2 and 10)

19A DSACKO Asserted to DSACK1 Asserted -20 20 -15 15 -10 10
(Skew) (see Note 7)

20 DSACKO or DSACl<l Asser!ed to Data-Out - 60 - 50 - 43
Valid

21 START False to DSACKO and DSACKl - 70 - 50 - 40
Negated (see Note 10)

22 START False to DSACKO and DSACKl High - 90 - 70 - 55
Impedance (see Note 10)

'RC25

Min Max
Unit

5 - ns

5 - ns

35 - ns

5 - ns

5 - ns

-2 - ns

-2 - ns

25 - ns

5 - ns

5 - ns

5 - ns

5 - ns

25 - ns

5 - ns

5 - ns

30 - II:)

30 - n~

25 - ns

- 45 ns

0 - ns

- 35 ns

5 - ns

5 - ns

- 30 ns

-10 10 ns

- 32 ns

- 40 ns

- 55 ns

- Continued -

MOTOROLA
12-4

MC;68~81/MC68882 USER'S MANUAL

12.6 AC ELECTRICAL CHARACTERISTICS - REAl> AND WRITE CYCLES (Continued)

'RC12 'RC16 'RC20 'RC25
Num Characteristic

Min Max Min Max Min Max Min Max
Unit

23 START True to Clock High (Synchronous 0 - 0 - 0 - 0 - ns
Read) (see Notes 3 and 10)

24 Clock Low to Data-Out Valid (Synchronous - 140 - 105 - 80 - 60 ns
Read) (see Note 3)

25 START True to Data-Out Valid - 140+ - 105+ - 80+ - 60+ ns
(Synchronous Read) 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 Clks
(see Notes 3, 10, and 11)

26 Clock Low to DSACKO and DSACKl - 100 - 75 - 55 - 45 ns
Asserted (Synchronous Read)
(see Note 3)

27 START True to DSACKO and DSACKl - 100+ - 75+ - 55+ - 45+ ns
Asserted (Synchronous Read) 1.5 2.5 1.5 2.5 1.9 2.5 1.5 2.5 Clks
(see Notes 3, 10, and 11)

-
NOTES:

1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 20 volts, unless otherwise
noted. The voltage swing through this range should start outside, and pass through, the range such that the rise or fall will be
linear between 0.8 volts and 2.0 volts.

2. These specifications only apply if the FPCP has completed all internal operations initiated by the termination of the previous
bus cycle when DS was negated. Refer to 10.5 INTER-CYCLE TIMING RESTRICTIONS for exceptions to this case.

3. Synchronous read cycl~s occur only when the save or response CIR locations are read.
4. This specification only applies.to systems in which back-to-back accesses (read-wriie or write-write) of the operand CIR can

occur. When ihe FPCP is used as a coprocessor to the MPU, this can occur when the addressing mode is immediate.
5. If the SIZE pin is not strapped to eiiher VeC or GND, it must have the same setup times as do addresses.
6. If the SIZE pin is not strapped to either VCC or GND, it must have the same hold times as do addresses.
7. This number is reduced to 5 nanoseconds if DSACKO and DSACKl have equal loads.
8. CS must be either asserted or negated when AS is asserted.
9. CS must be either asseried or negated when DS is asserted (read).

10. START is not an external signal; rather, it is the logical condition that indicates the start of an access. The logical equation for
this condition is: START~CS+AS+(R/W·DS}.

11. Value depends on actual clock input waveform used, not clock input specifications.
12. For a late chip select, the minimum specification is always zero.

Timing diagrams (Figures 12-3, 12-4,
and 12-5) are located on foldout pages
at the end of this document.

MC68881/MC68882 USER'S MANUAL MOTOROLA
12-5

a

SECTION 13
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the pin assignments and package dimensions of the MC68881/MC68882
(FPCP). In addition, detailed information is provided to be used as a guide when ordering.

13.1 STANDARD MC68881/MC68882 ORDERING INFORMATION

Package Type Frequency (MHz) Temperature

Pin Grid Array 12.5 O°C to 70°C
RC Suffix - 40°C to + 85°C

- 55°C to + 125°C

16.67 O°C to 70°C
- 40°C to + 85°C

- 55°C to + 125°C

20 O°C to 70°C
- 40°C to + 85°C

- 55°C to + 125°C

25 O°C to 70°C

Pin Grid Array 16.67 O°C to 70°C
RC Suffix 20 O°C to 70°C

25 O°C to 70°C

*Available 1st quarter 1988.

MC68881/MC68882 USER'S MANUAL

Order Number

MC68881RC12
MC68881LRC12
MC68881 ERC12

MC68881RC16
MC68881LRC16
MC68881 ERC16

MC68881 RC20
MC68881 LRC20
MC68881 ERC20

MC68881 RC25

MC68882RC16
MC68882RC20
MC68882RC25*

MOTOROLA
13-1

a

lEI

13.2 PIN ASSIGNMENTS

68-PIN GRID ARRAY

K 0 0 0 0 0 0 0 0 0 0
Al Rm GNO' OSACKI 030 029 027 026 024 022

0 0 000 0 0 0 0 0
A3 VCC" CS OSACKO 031 028 025 GNO 023 021

0 0 0 0 0 0
"AS A2 AD Vce GNO" 019

H

0 0 0 0
OS A4 020 018

G

0 0 0 0
SIZE GNO" 017 016

0 0 0 0
NC Vee VCC GNO

o 0 0 0 0
RESET GNO" 012 015

0 0 0 0 0 0
GNO ClK GNO 09 013 014

B 0 0 0 0 0 0 0 0 0 0
vee' GNO' GNO' SENSE 02 05 GNO VCC DID 011

A 0 0 0 0 0 0 0 0 0 0
VCc" GNO' DO 01 03 04 06 07 08 GNO"

10

Pin Group Vee GND

031-016 H8 J8

015-000 B8 B7

Internal Logic, E2, E9 A2, B2, B3, B4***,
OSACK1, OSACKO C3, El0, K3

Separate - Cl

Extra AI, Bl, J2 AID, 02, F2, H9

*New assignment for the A93N mask.
"Reserved for future Motorola use.

"'SENSE pin, may be used as an additional GNO pin.

MOTOROLA
13-2

MC68881/MC68882 USER'S MANUAL

13.3 PACKAGE DIMENSIONS

RC SUFFIX
PIN GRID ARRAY

CASE 765A·03

A

,

i'--14 -, ~j JJ t
PIN AI

MC68881/MC68882 USER'S MANUAL

G ®® ®®
F ee ee
E e® ®®
o ®® ®e
c e®e ®®e
B e®®e®ee®®e
A e®ee®e®®e®

1 2 34 5 6 7 B 910

NOTES:
1. OIMENSIONS A AND B ARE DATUMS AND T IS

DATUM SURfACE.
2. POSITIONAL TOLERANCE fOR LEADS 168 PLACESI

1 tl,p0.1J100SI 81 T IA®IB®I
3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.SM. 1982.
4. CONTROLLING OIMENSION: INCH

MlLlJMmRS
DIM MIN MAX
A 26.67 27.17
B 26.67 27.17
C 1.91 2.68
D 0.43 0.60
G 2.54 BSC
K 4.32 4.82

INCHES
MIN MAX
1.050 1.070
1.050 1.070
0.075 0.105
0.017 0.024

0.100 BSC
0.170 0.190

MOTOROLA
13·3

ALGORITHM

APPENDIX A
GLOSSARY

A procedure for solving a mathematical problem in a finite number of steps that frequently
involves repetition of an operation.

BCD (Binary-Coded-Decimal) Number
The representation of cardinal numbers 0 through 9 by 10 binary codes of any length. The
minimum length is four and there are over 29x 109 possible four-bit BCD codes. However,
codes in which the four bits contain the hexadecimal representation of 0 through 9 are the
more commonly used codes, for obvious reasons.

BIASED EXPONENT
The sum of the exponent and a constant (bias) chosen to make the biased exponents range
non-negative.

BINARY FLOATING-POINT NUMBER
A bit string characterized by three components: a sign, a signed exponent, and a significand.
(See single, double, and extended precision.) The numerical value of the bit string is the
signed product of the significand and two raised to the power of the exponent.

DENORMALIZED NUMBER
A floating-point number having all zeros in the exponent and a non-zero value in the fraction/
mantissa.

DOUBLE PRECISION
A 64-bit binary floating-point operand format composed of three fields: a one-bit sign field,
an 11-bit biased exponent field, and an 52-bit fraction (significand) field.

DYADIC OPERATION
An operation on two operands.

E FIELD
See exponent (E field).

EXPONENT
A symbol written above and to the right of a mathematical expression to indicate the operation
of rising to a power.

EXPONENT (E FIELD) ~
The component of a binary floating-point number that normally signifies the integer power ~
to which two is raised in determining the value of the represented number. Occasionally, the
exponent is called the signed or unbiased exponent.

EXTENDED PRECISION
A 96-bit binary floating-point operand format composed of four fields: a one-bit sign field,
an 15-bit biased exponent field, a 16-bit undefined field, and a 64-bit mantissa (significand)
field.

MC68881/MC68882 USER'S MANUAL MOTOROLA
A-1

F FIELD
See fraction (F field).

FIXED-POINT
Pertaining to a numeration system in which the position of the radix point is fixed with respect
to one end of the numerals, according to some convention. The integer data types used by
the FPCP are fixed-point numbers.

FLOATING-POINT
Pertaining to a system in which the location of the radix point does not remain fixed with
respect to one end of the numerical expressions, but is regularly recalculated. The location
of the point is usually given by expressing a power of the base (or radix). The single, double,
and extended precision data types used by the FPCP are floating-point numbers.

FRACTION (F FIELD)
The field of the significand that lies to the right of its implied binary point.

INTEGER
Any of the natural numbers, the negatives of these numbers, or zero.

MANTISSA
Mantissa and significand are interchangeable throughout this manual. See significand.

MODULO
A mathematical operation that yields the remainder of division. Thus, 39 modulo 6=3.

MONADIC OPERATION
An operation on one operand, for example, negation.

NAN (Not-A-Number)
A symbolic entity encoded in floating-point format. There are two types of NANs; signaling
and quiet. Signaling NANs signal.the valid operation exception whenever appearing as op
erands. Quiet NANs propagate through almost every arithmetic operation without signaling
exceptions.

NORMALIZE
To convert a floating-point humber to one whose significand consists of an integer bit of 1.

OPERAND
That which is, or is to be operated upon. An operand is usually identified by an address field
of an instruction.

,. ORTHOGONAL
Statistically independent.

S BIT
See sign bit (S field).

S FIELD
See sign bit (S field).

MOTOROLA
A-2

MC68881/MC68882 USER'S MANUAL

SIGN BIT (S FIELD)
Denotes the sign of the operand: zero for positive and one for negative. Floating-point num
bers are in sign-magnitude form, which means that only the S bit is complemented to change
the sign of the represented number.

SIGNIFICAND
The component of a binary floating-point number that consists of an explicit or implicit leading
bit to the left of the implied binary point and a fraction field to the right of the implied binary
point. Significand and mantissa are interchangeable throughout this manual. See fraction (F
field).

SINGLE PRECISION
A 32-bit binary floating-point operand format composed of three fields: a one-bit sign field,
an 8-bit biased exponent field, and a 23-bit fraction (significand) field.

TRANSCENDENTAL
Being, involving, or representing a function (sine x, log x) that cannot be expressed by a
finite number of algebraic operations.

UNNORMALIZED NUMBER
An extended precision external operand that contains an explicit integer part bit (j) of zero
and an exponent that is neither the maximum nor the minimum for the format.

MC68881/MC68882 USER'S MANUAL MOTOROLA
A-3

A
Abs
AEXC
AlU
APU
AS

B
BCD
BIU
BSUN

cc
ClK
CMP
cp
CPU
CPRED
CS
CU

d
D
D
DIV
DMA
DS
DSACK
DZ

e
ea
EQ
EXC
EXP
ENAB

Address
Absolute

APPENDIX B
ABBREVIATIONS AND ACRONYMS

Accrued exception
Arithmetic logic unit
Arithmetic processing unit
Address strobe

Byte integer
Binary coded decimal
Bus interface unit
Branch/set on unordered

Condition code
Clock
Compare
Coprocessor
Central processor unit
Conditional predicate
Chip select
Conversion unit

Displacement
Data
Double precision binary real floating-point
Divide
Direct memory access
Data strobe
Data and size acknowledge
Divide by zero

Exponent
Effective address
Equal
Exception
Exponent
Enable

MC68881/MC68882 USER'S MANUAL MOTOROLA
B-1

f
F
F
FB
FBEO
FBGT
FBLE
FBNEQ
FBNGT
FDB
FDBEO
FDBGT
FDBLE
FDBNEO
FDBNGT
FP
FPCC
FPCP

FS
FSEO
FSGT
FSLE
FSNEO
FSNGT
FT
FTEO
FTGT
FTLE
FTNEQ
FTNGT
FTP

GE
GLE
GND
GT

I/O
I
IADDR
ID
Imm
INEX
INEX1

... INEX2

.;.IOP

MOTOROLA
8-2

Fraction
False
Floating-point
Floating-point branch
Floating-point branch equal
Floating-point branch greater than
Floating-point branch less than or equal
Floating-point branch not equal
Floating-point branch not greater than
Floating-point decrement and branch
Floating-point decrement and branch equal
Floating-point decrement and branch greater than
Floating-point decrement and branch less than or equal
Floating-point decrement and branch not equal
Floating-point decrement and branch not greater than
Floati ng-poi nt
Floating-point condition code
MC68881/MC68882 coprocessor

Floating-point set
Floating-point set equal
Floating-point set on greater than
Floating-point set on less than or equal
Floating-point set not equal
Floating-point set on not greater than
Floating-point trap on
Floating-point trap equal
Floating-point trap greater than
Floating-point trap less than or equal
Floating-point trap not equal
Floating-point trap not greater than
Floating-point trap on parameter

Greater than or equal
Greater or less or equal
Ground
Greater than

Input/output
Infinity
Instruction address
Identification
Immediate
Inexact
Inexact arithmetic
Inexact conversion
Invalid operation

Integer part

MC68881/MC68882 USER'S MANUAL

L Long word integer
LE Less than or equal
LSB Least significant bit/byte
LT Less than

MANT Mantissa
MOD Modulo
MPU Main processing unit
MPU MC68020/MC68030 processor
MSB Most significant bit/byte
MUL MUltiply

n Number
N Negative
NAN Not-a-number
NEQ Not equal
NGE Not greater than or equal
NGL Not greater or less than
NGLE Not greater or less or equal
NGT Not greater than
NLE Not less than or equal
NLT Not less than

OGE Ordered greater than or equal
OGL Ordered greater or less than
OGT Ordered greater than
OLE Ordered less than or equal
OLT Ordered less than
OPERR Operand error
OR Ordered
OVFL Overflow

P Packed binary coded decimal real string
PC Program counter

QUOT Quotient

RIW Read/write
REM Remainder
RM Round toward minus infinity
RN Round to nearest
RP Round toward plus infinity
RZ Round toward zero

MC68881/MC68882 USER'S MANUAL MOTOROLA
B-3

lID

•

s
S
SE
SEQ
SF
SGL
SM
SNAN
SNEQ
SOC
ST
SUB

T
T
TIL

UEQ
UGE
UGT
ULE
ULT
UN
UNFL

W

x
X

Z

$

+inf

-inf

MOTOROLA
8-4

Sign
Single precision binary real floating-point
Sign of exponent
Signaling equal
Signaling false
Single
Sign of mantissa
Signaling NAN
Signaling not equal
Set on condition
Signaling true
Subtract

Trap
True
Transistor-transistor logic

Unordered or equal
Unordered or greater or equal
Unordered or greater
Unordered or less or equal
Unordered or less than
Unordered
Underflow

Word integer

Don't care, irrolevant
Extended precision binary real floating-point

Zero

Hexadecimal

Positive infinity

Negative infinity

MC68881/MC68882 USER'S MANUAL

-A-

AC Electrical Characteristics
Clock Input, 12-3
Read and Write Cycles, 12-4

Accrued Exception Byte, 1-5, 2-6, 2-7
Accuracy,

Arithmetic Instruction, 4-6
Computational, 4-5
Decimal Conversion, 4-7
Transcendental Instruction, 4-7

Address Bus, 7-2, 9-1,10-1 through 10-4, 10-6, 11-2,
11-3

Encoding, Coprocessor, 7-1
Address Error Exception, 6-26
Address Strobe Signal, 9-2, 10-6, 10-8 through 10-12
Addressing Modes, 1-14,4-11
AEXC Byte, 2-6, 2-7, 6-18
Algorithm, Rounding, 6-16
Arithmetic

Calculation Times, 8-27
Instruction Accuracy, 4-6
Operation

Bus Cycle Activity, 8-14
Timing, 8-11
Timing, MC68881, 8-12
Timing, MC68882, 8-13

Arranging FMOVE Instructions, MC68882, 5-8
AS Signal, 9-2,10-6,10-8 through 10-12
Assignments,

Data Bus Bit, 10-2
Exception Vector, 6-4
Pin, 13-2

Assumptions,
Execution Timing, 8-1
Typical Execution Timing, 8-10

Asynchronous
Read Cycle Timing, 10-12
Read Cycles, 10-9, 10-11
Write Cycle Timing, 10-13
Write Cycles, 10-9, 10-12

AO-A4 Signals, 7-2, 9-1,10-1 through 10-4, 11-2, 11-3
A13-A15 Signals, 10-6
A16-A19 Signals, 10-6

-B-
Benchmark, Unpack, 5-9, 5-10
Binary Real Formats, 3-2
Bit,

CA. 7-10
DR,7-10
EXCPEND, 5-11,6-33

MC68881/MC68882 USER'S MANUAL

INDEX

Bit (Continued)
IA, 7-10
PC, 7-10
PF,7-10
TF,7-10

BIU, 1-6
Flags, 5-11, 6-32, 6-33

Block Diagram,
MC68881,l-6
MC68882,l-7

Branch/Set on Unordered Exception, 6-5
BSUN Exception, 6-5

Dialog, 7-33, 7-36
Bus,

Address, 7-2, 9-1,10-1 through 10-4, 10-6, 11-2, 11-3
Arbitration Processing, 5-12
Cycle Activity, Arithmetic Operation, 8-14
Data, 7-2, 9-2,10-1 through 10-5,11-2, 11-3
Error

Exception, 6-26
Processing, 5-13

Interface Unit, 1-6
Transfer Overview, 10-1

Busy State Frame, 6-34
Format,

MC68881, 6-29
MC68882, 6-30

Byte, .
Accrued Exception, 1-5,2-6,2-7
AEXC, 2-6, 2-7, 6-18
Condition Code, 1-4, 2-4
ENABLE, 6-4, 6-18, 6-32, 6-33
EXC, 2-6, 6-4, 6-18, 6-32, 6-33
Exception

Enable, 1-4,2-2,6-4
Status, 1-4, 2-6, 6-4

Mode Control, 1-2,2-3
Quotient, 1-4, 2-5

-c-
CA Bit, 7-10
Calculation Phase Timing, 8-3
Characteristics,

AC Electrical
Clock Input, 12-3
Read and Write Cycles, 12-4

DC Electrical, 12-2
Thermal, 12-1

Chip Select
Decode, 7-1, 7-2, 11-3
Signal, 7-3, 9-3,10-6,10-8,10-10,10-11 a
Timing, 10-6

MOTOROLA
INDEX-l

CIR, 1-5, 7-2, 7-3, 9-2, 10-1
Command, 5-1; 5-2, 5-4, 6-19, 6-20, 6-24, 6-34, 7-3

through 7-5, 7-16, 7-19, 7-29, 7-37, 8-6, 8-23,10-14,
10-15

Condition, 6-20, 6-24, 6-34, 7-4 through 7-6, 7-19, 7-33,
8-6, 8-16, 8-23, 8-33

Control, 6-20, 6-22, 6-23, 6-34, 7-3 through 7-5, 7-12, 7-
15,7-29,7-33,7-37, 10-13

Instruction Address, 6-20, 6-21, 7-7
Operand, 5-4, 6-20, 6-32, 6-35, 7-3 through 7-7, 7-12, 7-

14,7-27,7-38, 10-3, 10-4, 10-5, 10-13 through 10-
15

Operand Address, 7-8
Operation Word, 7-5
Register Select, 6-20, 7-6, 7-14, 7-25,10-2,10-14
Response, 5-1, 5-2, 5-4, 5-7, 5-12, 6-3, 6-5, 6-9, 6-12, 6-

13, 6-16, 6-19 through 6-21, 6-22, 6-25, 6-34, 6-36,
6-37,7-3 through 7-6, 7-9, 7-19, 7-30, 8-6 through
8-9,8-22,8-23,8-32,8-33,8-36,10-9,10-11,10-13
through 10-15

Restore, 6-20, 6-37, 7-5, 7-6, 7-28, 8-34,10-13
Save, 6-20, 6-34 through 6-36,7-4 through 7-6, 7-15, 7-

27,7-37,8-17,8-34,10-9,10-11,10-13
ClK Signal, 9-4,10-5,10-9,10-10
Clock Signal, 9-4,10-5,10-9,10-10
Code,

Exception Handler, 5-10
Optimization, MC68882, 5-8

Codes, Effective Address, Valid, 7-12
Command CIR, 5-1, 5-2, 5-4, 6-19, 6-20, 6-24, 6-34, 7-3

through 7-5, 7-16, 7-19, 7-29, 7-37, 8-6, 8-23,10-14,
10-15

Command Word,
General Type Instruction, 4-121
Undefined, 4-128

Compatibility, IEEE
Exception, 6-18
Trap, 6-18

Computational Accuracy, 4-5
Concept, Coprocessor, 1-2
Concurrency,

Instruction, 5-1
MC68881 FMUl and FMOVE Instruction, 5-6
MC68881 FMUl Instruction, 5-2
MC68882 FMUl and FMOVE Instruction, 5-7

Concurrent
Floating-Point Computations, 5-1, 5-2
Instruction Execution, 8-4
Integer Computations, 5-1
Operations, MC68882, 8-14

Condition CIR, 6-20, 6-24, 6-34,7-4 through 7-6, 7-19, 7-
33, 8-6, 8-16, 8-23, 8-33

Condition Code
Byte, 1-4,2-4
Processing, 4-14

Conditional Branch Instruction Format, 4-131
Conditional

Instruction, 1-13, 5-6
Dialog, 7-26
Encoding, 4-129
Execution nmes, 8-16
Format, 4-129

MOTOROLA
INDEX-2

Conditional (Continued)
Predicate Field, 4-133

Encoding, 4-134
Predicates, 4-130
Termination Times, 8-32, 8-33
Test

Definitions, 4-8
Mnemonics, 4-4

Configuration, Typicai Coprocessor, 1-5
Connections, Power Supply, 9-4
Considerations,

Power, 12-1
Programming, 1-14

Constant-to-Register Instructions, 4-123
Format, 4-123

Context
Restore Instruction Sequence, 6-38
Save Instruction Sequence, 6-38
Switch

Instruction Dialogs, 7-26
Processing, 5-12, 5-13

Switching, 6-27
Summary, 6-37

Control CIR, 6-20, 6-22, 6-23, 6-34,7-3 through 7-5, 7-12,
7-15,7-29,7-33,7-37,10-13

Conventions, Instruction Description, 4-1
Coprocessor

Address Bus Encoding, 7-1
Applications Programming, 5-1
Concept, 1-2
Condition Trap Instruction Exception, 6-23
Connection,

16-bit Bus, 11-2
32-bit Bus, 11-1
8-bit Bus, 11-2, 11-3

Detection, 5-14
ID Field, 4-132
Identification, 5-14

Example, 5-15
Instruction, 7-8

Format, 4-120
Interface, 1-2, 1-8,7-1

Overhead, 8-6
Overhead Timing, 8-7, 8-8
Protocol Restrictions, 10-14
Register, 1-5,7-2,7-3,9-2, 10-1

Response Primitive, 7-9
Systems Programming, 5-9

Coprocessor-Detected
Exceptions, 6-2
Protocol Violation Exception, 6-19

Cp-ID,7-8
CPU Space Types, 7-2
CS Signal, 7-3, 9-3,10-6,10-8,10-10,10-11

-D-
D Format, 3-10
Data Bus, 7-2, 9-2, 10-1, 10-3 through 10-5, 11-2, 11-3

Bit Assignments, 10-2
Operand Alignment, 10-2
Size, 9-2

MC68881/MC68882 USER'S MANUAL

Data Formats, 1-9, 3-1
Data Movement Instructions, 4-2
Data Strobe Signal, 9-3,10-6,10-9 through 10-13
Data Transfer and Size Acknowledge Signals, 1-5,6-20,

7-2,7-3,9-3,10-2 through 10-4, 10-6, 10-9 through
10-11,10-13,11-2,11-3

Data Types, 3-3, 3-12
Summary, 3-6

DC Electrical Characteristics, 12-2
Decimal Conversion Accuracy, 4-7
Decode, Chip Select, 7-1, 7-2, 11-3
Decoupling, VCC, 9-5
Definitions,

Conditional Test, 4-8
Format Word, 6-35

Denormalized Numbers, 3-4
Description, General, 1-1
Descriptions, Instruction, 4-16 through 4-119
Destination Format Field Encoding, 4-125
Destination Register Field, 4-133
Detection, Coprocessor, 5-14
Diagrams, Timing, Foldout
Dialog,

Conditional Instruction, 7-26
External-to-Register Instruction, 7-21

MC68882, 7-22
F-Line Emulator Exception, 7-36, 7-37
Format Exception,

FRESTORE Instruction, 7-38
FSAVE Instruction, 7-37

FSAVE Instruction, 7-27
Mid-Instruction Interrupt, 7-33, 7-36
Move Control Registers Instruction, 7-24, 7-25
Move Multiple FPn Registers Instruction, 7-24, 7-25
OPCLASS 000 Instruction, 7-20, 7-21
OPCLASS 010 Instruction, 7-21

MC68882, 7-22
OPCLASS 011 Instruction, 7-22, 7-23

MC68882, 7-24
OPCLASS 100 In'struction, 7-24, 7-25
OPCLASS 101 Instruction, 7-24, 7-25
OPCLASS 110 Instruction, 7-24, 7-25
OPCLASS 111 Instruction; 7-24, 7-25
Register-to-External Instruction, 7-22, 7-23

MC68882, 7-24
Register-to-Register Instruction, 7-20, 7-21
RESTORE Instruction, 7-28
Take BSUN Exception, 7-33, 7-36
Take Mid-Instruction Exception, 7-30

MC68881,7-32
MC68882, 7-34, 7-35

Take Pre-Instruction Exception, 7-29
MC68882, 7-31, 7-32

Dialogs,
Context Switch Instruction, 7-26
Exception Processing, 7-28
General Type Instruction, 7-20
Instruction, 7-19

Dimensions, Package, 13-3
Divide-by-Zero Exception, 6-13
Double Precision Format, 3-10
DR Bit, 7-10

MC68881/MC68882 USER'S MANUAL

DS Signal, 9-3, 10-6, 10-9 through 10-13
DSACKO Signal, 1-5,6-20,7-2,7-3,9-3, 10-2 through 10-

4,10-6,10-9 through 10-11, 10-13, 11-2, 11-3
DSACKl Signal, 1-5,6-20,7-2,7-3,9-3,10-2 through 10-

4,10-6,10-9 through 10-11, 10-13, 11-2, 11-3
Dual Monadic Operation Instruction Format, 4-4
Dyadic Operation

Calculation Times, 8-27 through 8-29
Instruction, 1-13,4-2,4-3,5-5

Format, 4-2
DZ Exception, 6-13
DO-D31 Signals, 7-2, 9-2, 10-1, 10-3 through 10-5, 11-2,

11-3

-E-
Early Chip Select Logic Example, 10-7
Effective Add ress

Calculation Timing, 8-10, 8-11
Field, 4-132

Encoding, 4-133
Electrical Characteristics,

AC
Clock Input, 12-3
Read and Write Cycles, 12-4

DC, 12-2
Electrical Specifications, 12-1
ENABLE Byte, 6-4, 6-18, 6-32, 6-33
Encoding,

Conditional Instruction, 4-129
Conditional Predicate Field, 4-134
Destination Format Field, 4-125
Effective Address Field, 4-133
Extension Field, 4-123, 4-126
Move FPcr, 4-127
Move Multiple FPn, 4-128
Register Field, 4-122
Source Format Field, 4-124

Encodings,
Evaluate Effective Address and Transfer Data Primitive,

7-13
Null Primitive, 7-11

End Phase, 6-36
Errors, Operand, 6-7
Evaluate Effective Address and Transfer Data Primitive,

7-12
Encodings, 7-13
Format, 7-12

Example,
Coprocessor Identification, 5-15
Early Chip Select Logic, 10-7
Idle State Frame Access, 5-11
Late Chip Select Logic, 10-8
MC68881 Instruction Overlap, 8-20, 8-21
MC68882 Performance Improvement, 5-9
Minimum Exception Handler, 5-11
Reset Logic, 10-6
Sense Device Circuit, 9-5
Timing Calculation, 8-15 II
Transfer Multiple Coprocessor Registers, 7-15

MOTOROLA
INDEX-3

EXC Byte, 2-6, 6-4, 6-18, 6-32, 6-33
EXC-PEND Bit, 5-11, 6-33
Exception,

Address Error, 6-26
Branch/Set on Unordered, 6-5
BSUN,6-5
Bus Error, 6-26
Coprocessor Condition Trap Instruction, 6-23
Coprocessor-Detected Protocol Violation, 6-19
Divide-by-Zero, 6-13
DZ,6-13
Format Error, 6-26
Illegal Command Word, 6-19
Illegal Instruction, 6-23
Inexact

Decimal Result, 6-17
Result, 6-14

INEX1,6-17
INEX2,6-14
Interrupt, 6-25
MPU-Detected Protocol Violation, 6-23
Operand Error, 6-7
OPERR,6-7
Overflow, 6-9
OVFL,6-9
Privilege Violation, 6-26
Signaling Not-A-Number, 6-6
SNAN,6-6
Trace, 6-24
Underflow, 6-10
UNFL,6-10

Exception
Enable Byte, 1-4,2-2,6-4
Handler Code, 5-10
Handlers, MC68882, 6-27
Handling Times, 8-33
Processing, 5-13, 6-1

Dialogs, 7-28
Times, 8-35

Recovery, 6-21
Status Byte, 1-4, 2-6, 6-4
Vector

Assignments, 6-4
Numbers, 7-15

Exceptions,
Coprocessor-Detected, 6-2
MPU-Detected, 6-23
Multiple, 6-18

Execution Times,
Conditional Instructions, 8-16
FMOVE FPcr and FMOVEM Instructions, 8-16
FSAVE and FRESTORE Instructions, 8-17
MC68882 FMOVE Instructions, 5-9

Execution Timing
Assumptions, 8-1
Factors, 8-1
Tables, 8-8

Exponent Sizes, 1-10
Extended Precision Format, 3-11

Conversion, 3-8
Extension Field Encoding, 4-123, 4-126

MOTOROLA
INDEX-4

External-to-Register Instructions, 4-122
Dialog, 7-21

MC68882, 7-22
Format, 4-122

-F-
Factors, Execution Timing, 8-1
FCO-FC2 Signals, 10-6
Field,

Conditional Predicate, 4-133
Coprocessor ID, 4-132
Destination Register, 4-133
Effective Add ress, 4-132
Register/Memory, 1-132
Source Specifier, 4-132

Flags, BIU, 5-11, 6-32, 6-33
F-Line Emulator Exception Dialog, 7-36, 7-37
Floating-Point

Computations, Concurrent, 5-1, 5-2
Control Register, 2-2, 2-3, 6-4, 6-18,10-5
Data Register, 2-1
Formats, 1-9,3-2
Instruction Address Register, 2-7, 6-21, 7-7, 7-24, 7-26,

7-33
Status Register, 2-4 through 2-6,6-4,6-18,10-5

FMOVE FPcr and FMOVEM Instructions Execution Times,
8-16

Format,
Busy State Frame,

MC68881, 6-29
MC68882, 6-30

Conditional Branch Instruction, 4-131
Conditional Instruction. 4-129
Constant-to-Register Instruction, 4-123
Coprocessor Instruction, 4-120
D,3-10
Double Precision, 3-10
Dual Monadic Operation Instruction Format, 4-4
Dyadic Operation Instruction, 4-2
Evaluate Effective Address and Transfer Data Primitive,

7-12
Extended Precision, 3-11
External-to-Register Instruction, 4-122
FRESTORE Instruction, 4-132
FSAVE Instruction, 4-131
General Type Instruction, 4-14
Idle State Frame,

MC68881, 6-29
MC68882, 6-30

Instruction Description, 4-12
Intermediate Result. 6-15
Internal, 3-7
Monadic Operation Instruction, 4-3
Move Control Registers Instruction, 4-125
Move Multiple FPn Registers Instruction, 4-126
Null Primitive, 7-10
Null State Frame, 6-29, 6-30
P,3-12
Packed Decimal Real, 1-10,3-6,3-7,3-12

MC68881/MC68882 USER'S MANUAL

Format (Continued)
Register-to-External Instruction, 4-124
Register-to-Register Instruction, 4-122
Response Primitive, 7-9
S,3-9
Single Precision, 3-9
Take Mid-Instruction Exception Primitive, 7-17
Take Pre-Instruction Exception Primitive, 7-16
Transfer Multiple Coprocessor Registers Primitive, 7-

14
Transfer Single Main Processor Register Primitive, 7-

13
X,3-11

Format Conversion,
Extended Precision, 3-8
Other, 3-8

Format Error Exception, 6-26
Format Exception Dialog,

FRESTORE Instruction, 7-38
FSAVE Instruction, 7-37

Format Summary, 1-10, 1-11
Format Word Definitions, 6-35
Formats,

Binary Real, 3-2
Data, 1-9,3-1
Floating-Point, 1-9,3-2
Integer, 1-9, 3-1
State Frame, 6-28

FPCC, 2-4
FPCR, 2-2, 2-3, 6-4, 6-18, 10-5
FPIAR Register, 2-7, 6-21, 7-7, 7-24, 7-26, 7-33
FPSR, 2-4 through 2-6, 6-4, 6-18,10-5
FRESTORE Instruction

Dialog, 7-28
Format, 4-132

Exception Dialog, 7-38
Overview, 6-27
Protocol, 6-37

FSAVE and FRESTORE Instructions Execution Times, 8-
17

FSAVE Instruction
Dialog, 7-27
Format, 4-131

Exception Dialog, 7-37
Overview, 6-27
Protocol, 6-34

FSGLDIV Instruction, 4-15
FSGLMUL Instruction, 4-15
Fully-Concurrent Instructions, 5-5
Function Code Signals, 10-6

-G-
General Description, 1-1
General Type Instruction

Dialogs, 7-20
Command Word, 4-121
Format, 4-14

GND Pin Assignments, 9-5

MC68881/MC68882 USER'S MANUAL

-H-
Hardware Overview, 1-2

-1-

IA Bit, 7-10
Identification, Coprocessor, 5-14
Idle Phase, 6-36
Idle State Frame, 6-31

Access Example, 5-11
Format,

MC68881, 6-29
MC68882, 6-30

IEEE
Aware Tests, 4-10
Exception Compatibility, 6-18
Non-Aware Tests, 4-9
Trap Compatibility, 6-18

Illegal
Command Word Exception, 6-19
Instruction Exception, 6-23

Inexact
Decimal Result Exception, 6-17
Result Exception, 6-14

INEXl Exception, 6-17
INEX2 Exception, 6-14
Infinities, 3-5
Information, Ordering, 13-1
Initial Phase, 6-36
Input Operand Conversion Times, 8-25, 8-26
Instruction

Concurrency, 5-1
Conditional, 1-13, 5-6
Coprocessor,7-8 .
Description

Conventions, 4-1
Format, 4-12
Notations, 4-15

Descriptions, 4-16 through 4-119
Dialogs, 7-19
Dyadic Operation, 1-13,4-2,4-3,5-5
Execution,

Concurrent, 8-4
Timing Chart, 8-5

Format Summary, 4-134 through 4-144
FSGLDIV, 4-15
FSGLMUL,4-15
Miscellaneous, 1-14
Monadic Operation, 1-13,4-3,5-5
Move, 1-12
Operation Word, 7-8
Overlap

Example, MC68881, 8-20, 8-21
Times, MC68881, 8-36

Protocol, 7-9
Sequence,

Context Restore, 6-38
Context Save, 6-38

Set, 1-12

MOTOROLA
INDEX-5

II

Instruction (Continued)
Start-Up Times, 8-23
Termination Times, 8-35

Instruction Address CIR, 6-20, 6-21, 7-7
Instructions,

Constant-to-Register, 4-123
Data Movement, 4-2
External-to-Register, 4-122
Fully-Concurrent, 5-5
Minimum Concurrency, 5-3
Move Control Registers, 4-125
Move Multiple FPn Registers, 1-12,4-125
Partially-Concurrent, 5-5
Program Control, 4-4
Register-to-Register, 4-121
System Control, 4-5

Integer
Computations, Concurrent, 5-1
Formats, 1-9,3-1

Inter-Cycle Timing Restrictions, 10-12
Interface, Coprocessor, 1-2, 1-8,7-1
Intermediate Result Format, 6-15
Internal Format, 3-7
Interprocessor Transfers, 7-8
Interrupt

Exception, 6-25
Latency, 8-5
Processing, 5-12
Task Switch, 5-13, 5-14

Late Chip Seiect
Logic Example, 10-8
Timing, 10-8

-L-

Latency, Interrupt, 8-5
Linpack Benchmark, 5-9, 5-10
Load, Test, 12-2
Loops, MC68882 Instruction, 5-8

-M-
Mantissa Sizes, 1-10
Maximum Ratings, 12-1
MC68881

Arithmetic Operation Timing, 8-12
Block Diagram, 1-6
Busy State Frame Format, 6-29
Detail Timing Tables, 8-17
FMUL and FMOVE Instruction Concurrency, 5-6
FMUL Instruction Concurrency, 5-2
Idle State Frame Format, 6-29
Instruction Overlap

Example, 8-20, 8-21
Times, 8-37

Take Mid-Instruction Exception Dialog, 7-32

MOTOROLA
INDEX-6

MC68882
Arithmetic Operation Timing, 8-13
Block Diagram, 1-7
Busy State Frame Format, 6-30
Code Optimization, 5-8
Concurrent Operations, 8-14
Exception Handlers, 6-27
External-to-Register Instruction Dialog, 7-22
FMOVE Instruction

Arranging, 5-8
Execution Times, 5-9

FMUL and FMOVE Instruction Concurrency, 5-7
Idle State Frame Format, 6-30
Instruction Loops, 5-8
OPCLASS 010 Instruction Dialog, 7-22
OPCLASS 011 Instruction Dialog, 7-24
Performance Improvement Example, 5-9
Programming Considerations, 1-14
Register Conflicts, 5-8
Register-to-External Instruction Dialog, 7-24
Take Mid-Instruction Exception Dialog, 7-34, 7-35
Take Pre-Instruction Exception Dialog, 7-31, 7-32

Mid-Instruction
Exception

Dialog, MC68881, 7-32
Dialog, MC68882, 7-34, 7-35
Primitive, 7-16
Primitive Format, 7-17
Stack Frame, 7-17

Interrupt Dialog, 7-33, 7-36
Middle Phase, 6-36
Minimum

Concurrency Instructions, 5-3
Exception Handler Example, 5-11

Miscellaneous
instruction, i-i4
Tests, 4-10

Mnemonics, Conditional Test, 4-4
Mode Control Byte, 1-4, 2-3
Model, Programming, 1-3,2-1
Modes,

Addressing, 1-14, 4-11
Rounding, 6-14

Monadic Operation
Calculation Times, 8-30
Instruction, 1-13, 4-3, 5-5

Format, 4-3
Move Control Registers Instructions, 4-125

Dialog, 7-24, 7-25
Format, 4-125

Move FPcr Encoding, 4-127
Move Instruction, 1-12
Move Multiple FPn Registers Instructions, 1-12,4-125

Dialog, 7-24, 7-25
Encoding, 4-128
Format, 4-126

MPU-Detected
Exceptions, 6-23
Protocol Violation Exception, 6-23

Multiple
Exceptions, 6-18
Register Transfer Times, 8-34

MC68881/MC68882 USER'S MANUAL

NAN, 3-5,4-13,10-5
NC Pin, 9-6

-N-

No Connect Pin, 9-6
Normalized Numbers, 3-4
Not-A-Numbers, 3-5, 4-13,10-5

Signaling, 3-5, 4-13
Notations, Instruction Description, 4-15
Null Primitive, 7-10

Encodings, 7-11
Format, 7-10
Times, 8-24

Null State Frame, 6-31
Format, 6-29, 6-30

Numbers,
Denormalized, 3-4
Normalized, 3-4

-0-

OPCLASS 000 Instruction Dialog, 7-20, 7-21
OPCLASS 010 Instruction Dialog, 7-21

MC68882, 7-22
OPCLASS 011 Instruction Dialog, 7-22, 7-23

MC68882, 7-24
OPCLASS 100 Instruction Dialog, 7-24, 7-25
OPCLASS 101 Instruction Dialog, 7-24, 7-25
OPCLASS 110 Instruction Dialog, 7-24, 7-25
OPCLASS 111 Instruction Dialog, 7-24, 7-25
Operand Address CIR, 7-8
Operand Alignment, Data Bus, 10-2
Operand CIR, 5-4, 6-20, 6-32, 6-35, 7-3, 7-4 through 7-7,

7-12,7-14,7-27,7-38,10-3 through 10-5, 10-13, 10-
14,10-15

Operand Errors, 6-7
Exception, 6-7

Operand Transfer Times, 8-24
Operation,

Peripheral Processor, 11-5
Reset, 10-5
Tables, 4-13
Word, Instruction, 7-8

Operation Word CIR, 7-5
OPERR Exception, 6-7
Ordering Information, 13-1
Other Format Conversion, 3-8
Output Operation Conversion Times, 8-30, 8-31
Overflow

Exception, 6-9
Processing, 4-14

Overhead, Coprocessor Interface, 8-6
Overview,

Bus Transfer, 10-1
FRESTORE Instruction, 6-27
FSAVE Instruction, 6-27
Hardware, 1-2

OVFL Exception, 6-9

MC68881/MC68882 USER'S MANUAL

-p-

P Format, 3-12
Package Dimensions, 13-3
Packed Decimal Real Format, 1-10,3-6,3-7,3-12
Partially-Concurrent Instructions, 5-5
PC Bit, 7-10
Peripheral Connection,

16-bit Bus, 11-3, 11-4
8-bit Bus, 11-3, 11-4

Peripheral Processor Operation, 11-5
PF Bit, 7-10
Phase,

End,6-36
Idle, 6-36
Initial, 6-36
Middle, 6-36
Reset, 6-36

Pin
Assignments, 13-2

GND,9-5
VCC, 9-5

NC,9-6
No Connect, 9-6

Port Size,
16-Bit, 10-3
32-Bit, 10-2
8-Bit, 10-4

Power Considerations, 12-1
Power Supply Connections, 9-4
Pre-Instruction Exception

Dialog, 7-29
MC68882, 7-31, 7-32

Primitive, 7-15
Format, 7-16

Stack Frame, 7-16
Predicates, Conditional, 4-130
Primitive,

Coprocessor Response, 7-9
Evaluate Effective Address and Transfer Data, 7-12
Null,7-10
Take Mid-Instruction Exception, 7-16
Take Pre-Instruction Exception, 7-15
Transfer Multiple Coprocessor Registers, 7-14
Transfer Single Main Processor Register, 7-13

Privilege Violation Exception, 6-26
Processing,

Bus
Arbitration, 5-12
Error, 5-13

Condition Code, 4-14
Context Switch, 5-12, 5-13
Exception, 5-13, 6-1
Interrupt, 5-12
Overflow, 4-14
Round,4-14
Underflow, 4-14

Program Control Instructions, 4-4

MOTOROLA
INDEX-7

II

Programming,
Coprocessor

Applications, 5-1
Systems, 5-9

Considerations, 1-14
Model, 1-3,2-1

Protocol,
FRESTORE Instruction, 6-37
FSAVE Instruction, 6-34
Instruction, 7-9
Restrictions, Coprocessor Interface, 10-14
Violation Exception,

Coprocessor-Detected, 6-19
MPU-Detected, 6-23

-0-

Quotient Byte, 1-4, 2-5

-R-
RIW Signal, 9-3,10-6,10-12
Ratings, Maximum, 12-1
Read Cycles,

Asynchronous, 10-9, 10-11
Synchronous, 10-9

ReadIWrite Signal, 9-3, 10-6, 10-12
Recovery, Exception, 6-21
Register,

Conflicts, MC68882, 5-8
Copiocessoi Interlace, 1-5, 7-2, 7-3, 9-2, 10-1
Floating-Point '

Control, 2-2, 2-3, 6-4, 6-18, 10-5
Data, 2-1

Field Encoding, 4-122
Instruction Address, 2-7, 6-21, 7-7, 7-24, 7-26, 7-33
Status, 2-4 through 2-6, 6-4, 6-18, 10-5

FPIAR, 2-7, 6-21, 7-7, 7-24, 7-26, 7-33
Register Select CIR, 6-20, 7-6, 7-14, 7-25,10-2,10-14
Register-to-External Instructions, 4-124

Dialog, 7-22, 7-23
MC68882, 7-24

Format, 4-124
Register-to-Register Instructions, 4-121

Dialog, 7-20, 7-21
Format, 4-122

Register/Memory Field, 4-132
Reset

logic Example, 10-6
Operation, 10-5
Phase, 6-36

RESET Signal, 9-4, 10-5
Response CIR, 5-1, 5-2, 5-4, 5-7, 5-12, 6-3, 6-5, 6-9, 6-12,

6-13,6-16,6-19 through 6-21, 6-22, 6-25, 6-34, 6-
36,6-37,7-3 through 7-6,7-9,7-19,7-30,8-6 through
8-9,8-22,8-23,8-32,8-33,8-36,10-9,10-11,10-14,
10-15

MOTOROLA
INDEX-8

Response Primitive,
Coprocessor, 7-9
Format, 7-9
Summary, 7-17

Responses, Save Command, 6-34
Restore CIR, 6-20, 6-37, 7-5, 7-6, 7-28, 8-34,10-13
Restrictions,

Coprocessor Interface Protocol, 10-14
Inter-Cycle Timing, 10-12

Round Processing, 4-14
Round/Store Result Phase Timing, 8/3
Rounding

Algorithm, 6-16
Modes, 6-14
Operation Times, 8-32

-5-

S Format, 3-9
Save CIR, 6-20, 6-34 through 6-36, 7-4 through 7-6, 7-15,

7-27,7-37,8-17,8-34,10-9,10-11,10-13
Save Command Responses, 6-34
ScanPC, 7-17
Sense Device

Circuit Example, 9-5
Signal,9-4

SENSE Signal, 9-4
Set, Instruction, 1-12
Signal,

Address Strobe, 9-2,10-6,10-8 through 10-12
AS, 9-2,10-6,10-8 through 10-12
Chip Select, 7-3, 9-3, 10-6, 10-8, 10-10,10-11
ClK, 9-4, 10-5, 10-9, 10-10
Clcck, 9 4,10-5,10-9,10-10
CS, 7-3, 9-3,10-6,10-8,10-10,10-11
Data Strobe, 9-3, 10-6, 10-9 through 10-13
DS,9-3, 10-6, 10-9 through 10-13
DSACKO, 1-5,6-20,7-2,7-3,9-3,10-2 through 10-4, 10-

6,10-9 through 10-11, 10-13, 11-2, 11-3
DSACK1, 1-5,6-20,7-2,7-3,9-3, 10-2,through 10-4, 10-

6,10-9 through 10-11, 10-13, 11-2, 11-3
RiW,9-3, 10-6, 10-12
ReadIWrite, 9-3, 10-6, 10-12
RESET, 9-4, 10-5
Sense Device, 9-4
SENSE,9-4
SIZE, 9-2, 10-1, 10-2, 10-3, 10-4, 11-2, 11-3
Summary, 9-6

Signaling Not-A-Numbers, 3-5, 4-13
Exception, 6-6

Signals,
AO-A4, 7-2, 9-1,10-1 through 10-4, 11-2, 11-3
A13-A15,10-6
A16-A19,10-6
Data Transfer and Size Acknowledge, 1-5,6-20,7-2,7-

3,9-3,10-2 through 10-4, 10-6, 10-9 through 10-11,
10-13,11-2,11-3

DO-D31, 7-2, 9-2,10-1,10-3 through 10-5, 11-2, 11-3
FCO-FC2, 10-6
Function Code, 10-6

MC68881/MC68882 USER'S MANUAL

Significand, 3-3
Single Precision Format, 3-9
Size, Data Bus, 9-2
SIZE Signal, 9-2,10-1 through 10-4,11-2,11-3
Sizes,

Exponent, 1-10
Mantissa, 1-10
State Frame, 5-9

SNAN, 3-5, 4-13
Exception, 6-6

Source Format Field Encoding, 4-124
Source Specifier Field, 4-132
Specifications, Electrical, 12-1
Stack Frame,

Mid-Instruction Exception, 7-17
Pre-Instruction Exception, 7-16

Start-Up
Phase Timing, 8-2
Times, Instruction, 8-23

State Frame,
Busy, 6-34
Formats, 6-28
Idle, 6-31
Null,6-31
Sizes, 5-9
Transfer Times, 8-34

Summary,
Context Switching, 6-37
Data Types, 3-6
Format, 1-10, 1-11
Instruction Format, 4-134 through 4-144
Response Primitive, 7-17
Signal,9-6

Switching, Context, 6-27
Synchronous Read Cycles, 10-9

Timing, 10-10
System Control Instructions, 4-5

-T-
Tables,

Execution Timing, 8-8
MC68881 Detail Timing, 8-17
Operation, 4-13

Take BSUN Exception Dialog, 7-33, 7-36
Take F-Line Emulator Exception Dialog, 7-36, 7-37
Take Mid-Instruction Exception

Dialog, 7·30
MC68881, 7-32
MC68882, 7-34, 7-35

Primitive, 7-16
Format, 7-17

Take Pre-Instruction Exception
Dialog, 7-29

MC68882, 7-31, 7-32
Primitive, 7-15
Format, 7-16

Task Switch Interrupt, 5-13, 5-14
Test Load, 12-2

MC68881/MC68882 USER'S MANUAL

Tests,
IEEE Aware, 4-10
IEEE Non-Aware, 4-9
Miscellaneous, 4-10

TF Bit, 7-10
Thermal Characteristics, 12-1
Times,

Arithmetic Calculation, 8-27
Conditional Termination, 8-32, 8-33
Dyadic Operation Calculation, 8-27 through 8-29
Exception

Handling, 8-33
Processing, 8-35

Input Operand Conversion, 8-25, 8-26
Instruction

Overlap, MC68881, 8-37
Start-Up, 8-23
Termination, 8-35

Monadic Operation Calculation, 8-30
Multiple Register Transfer, 8-34
Null Primitive, 8-24
Operand Transfer, 8-24
Output Operation Conversion, 8-30, 8-31
Rounding Operation, 8-32
State Frame Transfer, 8-34

Timing,
Arithmetic Operation, 8-11

MC68881, 8-12
MC68882, 8-13

Asynchronous
Read Cycle, 10-12
Write Cycle, 10-13

Calculation
Example, 8-15
Phase, 8-3

Chart, Instruction Execution, 8-5
Chip Select, 10-6
Coprocessor Interface Overhead, 8-7, 8-8
Diagrams, Foldout
Effective Address Calculation; 8-10, 8-11
Late Chip Select, 10-8
Restrictions, Inter-Cycle, 10-12
Round/Store Result Phase, 8/3
Start-Up Phase, 8-2
Synchronous Read Cycle, 10-10

Trace Exception, 6-24
Transcendental Instruction Accuracy, 4-7
Transfer Multiple Coprocessor Registers

Example, 7-15
Primitive, 7-14

Format, 7-14
Transfer Single Main Processor Register Primitive, 7-13

Format, 7-13
Transfers, Interprocessor, 7-8
Types,

CPU Space, 7-2
Data, 3-3, 3-12

Typical
Coprocessor Configuration, 1-5 II
Execution Timing Assumptions, 8-10

MOTOROLA
INDEX-9

-U-
Undefined Command Word, 4-128
Underflow'

Exception, 6-10
Processing, 4-14

UNFL Exception, 6-10
Unit, Bus Interface, 1-6

-v-
Valid Effective Address Codes, 7-12
VCC

Decoupling, 9-5
Pin Assignments, 9-5

Vector Nymbers, Exception, 7-15

-w-
Write Cycles, Asynchronous, 10-9

MOTOROLA
INDEX-10

X Format, 3-11

Zeros, 3-5

16-bit
Bus

-x-

-z-

-NUMERALS-

Coprocessor Connection, 11-2
Peripheral Connection, 11-3, 11-4

Port Size, 10-3
32-bit

Bus Coprocessor Connection, 11-1
Port Size, 10-2

8-bit
Bus

Coprocessor Connection, 11-2, 11-3
Peripheral Connection, 11-3, 11-4

Port Size, 10-4

MC68881/MC68882 USER'S MANUAL

_ General Description

_ Programming Model

.. Operand Data Formats

_ Instruction Set

_ Coprocessor Programming

_ Exception Processing

_ Coprocessor Interface

_ Instruction Execution Timing

_ Functional Signal Descriptions

_ Bus Operation

_ Interfacing Methods

_ Electrical Specifications

lEI Ordering Information and Mechanical Data

~ Glossary

.. Abbreviations and Acronyms

Index

AO·A4

R/W

STARTI

00·031

NOTES:

1. START is actually a logical condition, but is shown as an active low signal for clarity. The logical equation for
this signal is START 0 CS + AS + (R/W-DS).

2. Ti mi ng measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts,
unless otherwise noted. The voltage swing through this range should start outside, and pass through, the
range such that the rise or fall will be linear between 0.8 volts and 2.0 volts.

Figure 12-3. Asynchronous Read Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL MOTOROLA
Foldout-1

AO-A4

R/W

START I

DO-D31

NOTES:

----------------~--,
\
\

-~-r
1. START is actually a logical condition, but is shown as an active low signal for clarity. The logical equation for

this signal is START = ES + AS + (R/WoOS).

2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0volts,
unless otherwise noted. The voltage swing through this range should start outside, and pass through, the
range such that the rise or fall will be linear between 0.8 volts and 2.0 volts.

Figure 12-4. Asynchronous Write Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL MOTOROLA
Foldout-2

so SI S2 Sw Sw Sw Sw S3 S4 S5

CLK

R/W

STARTI

DSACKI

DSACKO

NOTES:

1. START is actually a logical condition, but is shown as an active low signal for clarity. The logical equation for
this signal is START = CS + AS + (R/W,OS).

2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0volts,
unless otherwise noted. The voltage swing through this range should start outside, and pass through, the
range such that the rise or fall will be linear between 0.8 volts and 2.0 volts.

Figure 12-5. Synchronous Read Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL MOTOROLA
Foldout-3

