M68040UM/AD
Rev. 1

o
S
z S
QO
=

MC68EC040V

MICROPROCESSORS
USER'S MANUAL

TN
/\N\ \) MOTOROLA

Introduction a

Integer Unit a

Memory Management Unit (Except MC68EC040 & MC68EC04V) a
Instruction and Data Caches a

Signal Description a

IEEE 1149.1 Test Access Port (JTAG) Y]

Bus Operation a

Exception Processing a

Floating-Point Unit (MC68040) a

Instruction Timings ﬂ

MC68040 Electrical and Thermal Characteristics m

Ordering Information and Mechanical Data ﬂ

MC68040V and MC68EC040V «

M68000 Family Summary n
Floating-Point Emulation (M68040FPsP) (]

Index d

IE}) Memory Management Unit (Except MC68EC040 & MC6BEC04V)
n Instruction and Data Caches

B Signal Description

D IEEE 1149.1 Test Access Port [JTAG)

IEB) Floating-Point Unit (MC68040)

m Instruction Timings

D MC68040 Electrical and Thermal Characteristics
D Ordering Information and Mechanical Data

) Mc68040V and MC6BECO40V

D Mé68000 Family Summary

@) Floating-Point Emulation (M68040FPSP)

) index

MOTOROLA

M68040 User’s Manual
Including the
MC68040,
MC68040V,
MC68LC040,
MC68EC040,

and
MC68EC040V

Motorola resefves the right to make changes without further notice 1o any products herein to improve reliability, function or design. A does not any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applicaxions intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a snuatlon where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or horized application, Buyer shall ify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, d: and

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use. even lf such daim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the () are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

©MOTOROLA INC., 1990
Revised 1992, 1993

Automatic
Documentation Updates

AESOP, (Applications Engineering through On-line Productivity), is a state-of-the-art
electronic bulletin board service provided by Motorola High-Performance Division.
AESOP allows you to receive the latest M68000 information automatically, providing
electronic connectivity for applications, development marketing, and documentation
support.

Through AESOP you can order documentation on-line, register for documentation
updates, and submit questions and comments about this or any other M68000 family
document or product. To access AESOP, dial 1-800-843-3451 (or outside the U.S. 512-
891-3650). Use a 14,400 bps or less modem emulating a vt100 and set to N/8/1/F.

Motorola welcomes your suggestions for improving our documentation as well as any
questions concerning our products. When sending us your suggestions or comments
please provide the part number. If referring to documentation also include the
document's revision number (located in upper right-hand corner of the cover), and title.
When referring to items within documentation, please reference your comments or
questions in relation to the page number paragraph number, figure number, table
number, and/or line number.

PREFACE

The complete documentation package for the MC68040, MC68040V, MC68LC040,
MC68EC040, and MC68ECO040V (collectively called M68040) consists of the
M68040UM/AD, M68040 User’'s Manual, and the M68000PM/AD, M68000 Family
Programmer’s Reference Manual. The M68040 User's Manual describes the capabilities,
operation, and programming of the M68040 32-bit third-generation microprocessors. The
M68000 Family Programmer’s Reference Manual contains the complete instruction set for
the M68000 family.

The introduction of this manual includes general information concerning the MC68040 and
summarizes the differences between the M68040 member devices. Additionally, three
appendices provide detailed information on how these M68040 dirivatives operate
differently from the MC68040. For detailed information on one of these M68040
dirivatives, use the following table to determine which appendices to read in conjunction
with the rest of this manual.

Device Number Appendices

MCe8040V Appendix A MC68LC040 and Appendix C MC68040V and MC68EC040V
MCe8LC040 Appendix A MC68LC040

MC68EC040 Appendix B MCE6BEC040

MC68EC040V Appendix B MCEBEC040 and Appendix C MC68040V and MC68EC040V

When reading this manual, remember to disregard information concerning floating-point
in reference to the MC68040V and MC68LC040, and to disregard information concerning
floating-point and memory management in reference to the MC68EC040 and
MC68ECO040V. The organization of this manual is as follows:

Section 1 Introduction

Section 2 Integer Unit

Section 3 Memory Management Unit (Except MC6B8EC040 and MCE8EC040V)
Section 4 Instruction and Data Caches

Section 5 Signal Description

Section 6 IEEE 1149.1 Test Access Port (JTAG)

Section 7 Bus Operation

Section 8 Exception Processing

Section 9 Floating-Point Unit (MC68040)

Section 10 Instruction Timings

Section 11 MC68040 Electrical and Thermal Characteristics
Section 12 Ordering Information and Mechanical Data
Appendix A MC68LC040

Appendix B MC68EC040

AppendixC MC68040V and MC68EC040V

Appendix D M68000 Family Summary

Appendix E Floating-Point Emulation (M68040FPSP)

Index

MOTOROLA M68040 USER'S MANUAL iii

M68040 USER'S MANUAL

MOTOROLA

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction
1.1 " DIffErBNCES ..curerrreeesesrssstseeseessssssssss s ssnsssssssssssnssesssssassssseans S 1-1
1141 MC68040V and MCBBLCOA0ceveumencenisisnrsnseisessssssssssssisssssssseses 1-1
1.1.2 MC6E8ECO040 and MCEBECO40Vccvienerermerineiisnsssesseieessssssenes 1-2
1.2 FEAtUIES ...t e eeerreeereeereeneenaes 1-3
1.3 Extensions to the M68000 Familyc...ccceveverrinvennnes et 1-3
1.4 Functional BIOCKSccccveieeriirerereerircsreeerentessee st esnnsetre s esanesaneaas 1-3
1.5 "Processing Statesc..ccceveviiirennan. N 1-5
1.6 Programming MOdel ... 1-5.
1.7 "Data Format Summary.......cccccecveenne ettt sttt ab s s et s e aaas 1-9
1.8 Addressing Capabilities Summarycccevuveunnennae. e 1-9
1.9 Notational Conventionscovcererrvesesreereesens etreerenreaesee et ae e senas 1-11
1.10 INStruction Set OVEIVIBWc.cciccvrmrerrrcernrrrnisrecnnieesseessessessnssnsssessneas 1-13
Section 2
Integer Unit

2.1 ~ Integer Unit Pipeline vt ae s ettt aeetstea e aaes 2-1
22 Integer Unit Register DesCriptionc.ccvuneiienecscrinnecninnniniessneeee 2-4
2.2.1 " Integer Unit User Programming Model......... eteeererererenese e s ensarnaees 2-4
22.1.1 ~ Data Registers (D7-D0)......cccccevivirmimnrsnenicrninniisnnsnesisnsnenes 2-4
22.1.2 Address Registers (AB=AD).........ccecvrerrrerererererersesssesessssssssassesessasses 2-4
22.1.3 System Stack Pointer (A7)................ erreseeeaestesteente e e ne s ranaenaaneen 2-5
2214 Program COUNLETccccceevcercenrerrerrsnsesaneressesseesessnesesensassesesssesnssns 2-5
2215 Condition Code RegiSter......cccccceeeiernrrnrceerienrieeissecsessesssessesssesanens 2-5
222 Integer Unit Supervisor Programming Modelccuee... ST 25
2221 Interrupt and Master Stack Pointerscceevveveiecccevcveeseeecceneen, 2-6
2222 Status REGISIENcvcveiriiriiricsieriscasieesensesssse s sssisesesesessees 2-7
2223 Vector Base RegiSterccuecieiieriienieecnieenneeeeeseeneescsecseeesensnns 2-7
2224 Alternate Function Code Registers S S 2-7

2225 Cache Control Register...........cueummneunens e s 28

MOTOROLA Me8040 USER'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph '
Number Title
Section 3
Memory Management Unit
(Except MC68EC040 and MC68EC040V)

3.1 Memory Management Programming Model.........ccececcrevnennnenee
3.1.1 ‘ User and Supervisor Root Pointer Registers........ccccoevvevveennen.
3.1.2 " Translation Control Register........ccocvvvrnmnevseninnneniniinecnennne
3.1.3 Transparent Translation Registers ...c...ccviiivinnininniicnienne
3.1.4 MMU Status Registercocovceeereecnnnenen wireessesassanssessersassrsaees
3.2 Logical Address Translation........cceeevvererinnennennensincnennenennee
3.21 " Translation Tables.....ienicrrrrcsne e
3.2.2 [B]=T-To] ¢10] (o] £ OO PPN
3.2.2.1 Table DesCriptors.....cccieineininncntinriceccene
3.2.2.2 ’ Page Descriptorscoccenienurinnensnrinnniinienennnn ererreessaeas :
3.2.2.3 Descriptor Field Definitionsccccevveveeerreensinenecsiininenens
3.2.3 Translation Table Example.........cccceuuee. e
3.2.4 Variations in Translation Table Structurecccceeeviericrnenn.
3.2.4.1 INAIreCt ACHION ...ttt sr e s senne
3.2.4.2 Table Sharing Between Tasksccceoeeeeereerereressesseresesaenens
3.2.4.3 Table Paging.....cccceceeereererenrersarennneesnreseesasesesesssesensensessanesas
3.2.4.4 Dynamically Allocated Tables.........ccocevveuene e
3.2.5 Table Search Accesses................ eeresnenian rerererenreenteessansesanns
3.2.6 Address Translation Protectionccccceveeneee. e neaans
3.2.6.1 Supervisor and User Translation Tables.......c.cccecvnirrnrneen.
3.2.6.2 Supervisor Only et ST,
3.2.6.3 © WIrite Protectcicvieeiieinerceeccecccerrcernceneeeese e
3.3 Address Translation Caches.......cc.ccceeveereeerccnnine. reeerreseereeienesreens
3.4 Transparent Translationccccvceveerireeccrnirinnnrncneessieesnenieeeneens
3.5 Address Translation SUMMArY.......ccccicveiriecvenerieeee e reeeenes
3.6 MMU Effect on RSTI and MDISccceeevemirerrereineeeeeeseseeesesess
3.6.1 Effect of RSTI 0N the MMUScooeverereierrereesienreseseseeseeseeenans
3.6.2 - Effect of MDIS on Address Translation.........ccccoceeecicieneennnnen.
3.7 . MMU INStruCtionscoccceveireiriirinrinrcsen sttt
3.7.1 MOVERC ...ttt cvesttsstse st e s s sses st sssessassnesassnsensasnnan
3.7.2 PFLUSH ...ttt sesssisesnes eerrereans
3.7.3 PTEST tieecereertcctccrrsrrert e ssessaeessnsrnsserssessessnesessnssnsanssasssns
3.7.4 Register Programming Considerations.........c.ccoocvvevcerieiiercnnnn

vi M68040 USER’S MANUAL

MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page’
Number Title Number
Section 4
Instruction and Data Caches ,
4.1 : Cache Operationccvirsnniennissesmnnionneeseas..s 4-2
4.2 Cache Management ..o 4-5
43 CaChing MOAEScveuerecrerrirrinricseesestensresseseesssessasesssssssesssesssesessssses 4-6
4.31 Cachable ACCESSES ...cviivrrrrerictissiirerscsressstsns s sesessntesscssesssssssans 4-6
43.1.1 Write-Through MOEcccvivmnriniiinsnsniiecininiinienieenn. 4-6
4.3.1.2 Copyback MOGE ...ccociiircreerenrisctierercssissses st ssnesssassssesssissaesesssssns 4-6
4.3.2 Cache-Inhibited ACCESSES ..ccurierririnreriererniseesseterisssssesseseesniseensesessnne 4-7
4.3.3 SPECIAl ACCESSES ...verererreererrieerenieeeiesresesseseeessnssssnessesentossessensonsensss 4-7
44 CaChe ProtoCoL.......cceecercercrrerveecrenrensressessersressissscssassessssssssessssessssssessnes 4-7
4.4.1 REAA MiISS...iiirerciiiititinnrcrtiiinc e e aen e 4-8
4.4.2 WIE MISS ceiiiirivereniciscireirerees st ssre s s st s eecessressmsaseass s sae s 4-8
4.4.3 Read Hit......coiveiecieriiiiiennen it e 4-8
44.4 L1 S o 1 PR 4-8
4.5 Cache CONErENCYccvvercevererreernsseeeeersnscesseneaeasad eetrereneesenerarerasaenenes 4-9
4.6 - Memory Accesses for Cache Mamtenance eestesrsreisntesnreeas 4-11
4.6.1 €Cache Filling......ccoviiieiiciinnnssiniinss e sssssssssssnsens 4-11
4.6.2 Cache PUSNES ...t 4-13
4.7 Cache Operation SUMMATY ...t 4-13 -
4.7.1 INStruCtion CacChe.......cociviirniiiciicninccnre it ere e 4-14
4.7.2 Data CaCh....ccicieecrrererieerirerirenrssaeeessnesssesesssaredseneesossasassssesasasesesss 4-15
Section 5
Signal Description

5.1 Address Bus (A31=A0)......ccceererrrveeneen eeteeteenre e nenear e e et st sansareeeeases 5-4
5.2 Data Bus (D31-D0)............... TR 5-5
5.3 Transfer Attribute SIgNnals..........ccveeeriererrrenrseerere et sescsins 5-5
5.3.1 Transfer Type (TT1, TTO) cucciicirreerieiricrienneiesenaneeneessesssisenensssssssess 5-5
5.3.2 Transfer Modifier (TM2=TMO) ...c...icrierrieerernerrere e senseenee 5-6
5.3.3 Transfer Line Number (TLN1, TLNO)....ccccevvrrrreiveerierensensseeesnesnsseenees 5-6
5.3.4 User-Programmable Attributes (UPA1, UPAD).......ccoevrrerreineerennenene 5-7
5.3.5 Read/WIite (RAW) ..ceveecreececerecreneestceeeteeesesesenesssssesessssesessesesenes 5-7
5.3.6 Transfer Size (SIZ1, SIZ0)....ccccccevmrirnrrecrretieceenesistn et 5-7
5.3.7 LOCK (LOCK) ...eeererereereririsventeeessnsseesessessessessansesssessesssssessnesessassans 5-7
5.3.8 LOCK ENA (LOCKE) .c.vvevtiveercennercrrcnesnenerssesssesssieenssnassmsnsssessessessrasons 5-7
5.3.9 Cache Inhibit Out (CIOUT)...cocecerericrmeecreseernsrrescsssessannns everereraenreennas 5-8
5.4 Bus Transfer Control Signalsccccccceverreeriereseencecesncbocsesesnrrnenessessens 5-8
5.4.1 Transfer Sart (TS)....ocveeveiereerererernresessessesesesessssssssssesssssssssssasssens 5-8

MOTOROLA Mé68040 USER’S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph Page

Number Title :Number
5.4.2 Transfer in Progress (TIP)cvcuvreerecsensunssssensssssmnsssssssssssssnssns 5-8
5.4.3 Transfer Acknowledge (TA)......... eereereerteeterteneeseseraaerat et esaeesatenaans 5-8
5.4.4 Transfer Error ACknowledge (TEA)........iceurmvermunsrrsmsesssesssssnssssennens 5-8
5.4.5 Transfer Cache INhibit (TCI)ccveerererermernreresriveesressesesissessssssnsnes 5-9
5.4.6 Transfer Burst INhibit (TBI) «...eceevvrerseenreeioneivensissnmsssessseesssssesesssssanens 5-9
5.5 Snoop Control SIGNAISc.ceeceerieiintiirirrrreercresiieesee s ssseessesesnenanns 5-9
5.5.1 ... Snoop Control (SC1, SCO)ceuvrrrurrsmninemrienisiaensisisnssssssssssssissannens 5-9
5.5.2 ~ Memory Inhibit (Ml).....ccovvinmvniriimnnniiniicsivcnneinenans eerenrenesesenenes 5-9
56 . Arbitration Signals........cciiiinnnnn 5-10
5.6.1 BUS REQUESE (BR)...cvcvverremerieerereesseesesssssssisssssssssssssasssessessssseseses 5-10
562 Bus Grant (BG)cceeveeeereeeererrruneeessseessnennnens rereieniabaeasaetensaranseresarssne 5-10
5.6.3 BUS BUSY (BB) ..vereeererreensrerinnesesenesessnsssssasesesssssisssssesssssessesssessssssssss 5-10
57 . Processor Control Signalsc.ceeeeeerresnreesserseesseesensiens veereeereseeneesnenene 5-10
5.7.1 . Cache Disable (CDIS)ccccvrerrermssriessisisseienenieseennessnessiesssesssnesssnnesss 5-10
5.7.2 RESEE IN (RSTI)...currererereresireseesese s ssessessesssssssessassssessessssenssnsans 5-11
5.7.3 Reset Out (RSTO) .covvveiieiinccmisnnssinsecssnsnsessensssonsessisenens reerennessanessanes 5-11
58 - Interrupt Control SIgNalsc.ccveceecrcnsnersisnnsisrnniensenesivssesioesisesenseassessnns 5-11 .
5.8.1 Interrupt Priority Level (IPL2=IPL0).....cccceiveuerivenivenrernnnnns tveereanesnenns 5-11.
5.8.2 Interrupt Pending Status (IPEND)......cccceevrvenrncnee. e 5-12
5.8.3 AULOVECEOr (AVEC) ..cvereirerriceecntonerseesmnsreeiessnensiinsivesaessasesesssssnens 5-12
5.9 Status And Clock Signals........ccceeeniviininiiiiniinneecresesatsessceeeeenes 5-12
5.9.1 ~ Processor Status (PST3=PSTO0)...ccccccevimruenrerrnrrerreeereeeseiosessersennes 5-12
5.9.2 BUS CIOCK (BOLK) ..veevrreereeerrenrissiesssnerresnsnnesssinsinesnssessesessnssnesnsssssnes 5-14
5.9.3 Processor Clock (PCLK)—Not on MC68040V and MCG8EC040V ... 5-14
5.10 MMU Disable (MDIS)—Not on MCE8ECO40.......c.ccevuerrmrreererneccreerennnens 5-14
5.11 Data Latch Enable (DLE)—Only on MC68040cccceceriverreecrnenens 5-14
5.12 TSt SIGNALS ..o 5-15
5.12.1 Test Clock (TCK) ..cvereeeiiieiecriierrercneessensseeseesinssesseessessesensssssssesssnens 5-15 -
5.12.2 Test Mode Select (TMS) ...couccviicnirniiiieiiecsicniiissseesssesenisnesnns 5-15 .
5.12.3 - TestData In (TDI)......ccccevunee crreninens e aes 5-15
5.12.4 Test Data Out (T Ut (TDO) cooeeeereerencenseesisse st snsanans 5-15
5125 Test Reset (TRST)—Not on MC68040V and MC68EC040V............. 5-15
513 Power Supply Connections............ ceeeerene et a s b enas 5-15
5.14 Signal Summary................. Lereterseneende sttt a et s ae e ses s e aesaenaaan 5-16

Section 6 "
IEEE 1149.1 Test Access Port (JTAG) . ;

6.1 - OVEBIVIBWevieeeserrreressesansnssesssessensessasiosassisssssssssessassssesssssssessnssnssnrasessens 6-2
6.2 Instruction Shift REGISter......cccerverrieinrrcerrineeicinresrracssisninieseeneecessessaens 6-3
6.2.1 EXTEST ooiirrereeneeseeseestisessesessessessencsnssessengabanessssnsssassacssssssaseans 6-3

viii M68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
6.2.2 HIGHZ.......eeeeeeentrrcerensesnssne st ss s assnssasssessssnassssessassnessanss
6.2.3 SAMPLE/PRELOADccoecintrernenrenreseesessesisssssssressessmsasssarass
6.2.4 DRV CTL.T .eeerrccrercntnneseecsessescsnssssssessesesmvssssssossionesssscnsssssass
6.2.5 SHUTDOWNotriririrrescneneseesssssnsstessssseesssissssssssessesaesssans
6.2.6 - PRIVATE ..eceericenneinnesessessessrsnsssnsnssesasassses rreeene vesaesestens
6.2.7 . DRVCOTL.S...cociicrerccnninnecnessesnseessssssessisassenssssesessessssnnes
6.2.8 BYPASS ...t ettt sassesaes reeeererens
6.3 Boundary Scan Registercocevemrcnennininineinenenininnnieeneion.
6.4 L2 (=L (o1 1Te] o 1= ST
6.5 Disabling The IEEE Standard 1149.1A Operationcoccceceeiniee
6.6 Motorola M68040 BSDL Description (Version 2. 2)
6.7 MC68040, MC68LC040, MCE68EC040
JTAG Electrical Characteristics.....ccueeervenenrinsnissenssensseisisscrsennens
Section7
Bus Operation
7.1 Bus Characteristicsccccvvrnriveeinnnmnnninnnnnnincnesmeeenne.
7.2 . Data Transfer Mechanismccceecierinreecnnriesnencsnsnsnsiinnssnnsnsinnes
7.3 Misaligned Operandsc.ccurvnsisnnenrcnsnentssncssseseseessessens
74 Processor Data Transfersccocivrceeesnenecnecsnssnesunesessssscosssisses
7.4.1 Byte, Word, and Long-Word-Read Transfers S
7.4.2 Line Read Transfer.....cuiciinniiinininisneessssissssmeens
7.4.3 Byte, Word, and Long-Word Write Transferscceccevnnecnnens
7.4.4 Line Write Transfers ..o vesennes
745 Read-Modify-Write Transfers (Locked Transfers)ccoccevvruneee
75 Acknowledge Bus CyCles......cuimieninninnicisiessinnnenninnsssessiisnnes
7.5.1 Interrupt Acknowledge Bus CycCles........cccvververrerrercrrceeecennncnees
7.5.1.1 interrupt Acknowledge BUS Cycle (Terminated Normally)
7.5.1.2 Autovector Interrupt Acknowledge bus Cyclecccecvreeenne
7513 Spurious Interrupt Acknowledge Bus Cycle.........cccevereeeunen.
75.2 Breakpoint Interrupt Acknowledge Bus Cyclec.ceevviicerrercnnnene
7.6 Bus Exception Control CYCIes........cceeeerververcernnccnnnereeeeeeneeneee
7.6.1 BUS EITOrS...cociceiiiiiininninnstinsenseessesssecssansssssssasssassssassss s
7.6.2 Retry Operation.........ccciccireeicreeinecnceneseseesseeiorensseesssessesensesasesees
7.6.3 Double Bus Fault.........cccccceeveicrininnicennennans restesene e sate s areanns
7.7 Bus SynChronization.......c.veeeveererneereerenieeneesiensessesesssssnssessesssenerens
7.8 Bus Arbitration And EXamples........ccceeevenrerreersercecesnnenessesensssassenne
7.8.1 Bus Arbitrationcoievereceeninnereneedins s
782 . Bus Arbitration EXamplesccvceeevveeereerererereceecrnensessesnnsseenns
7.8.2.1 Dual M68040 Fairness Arbitrationc.ccevvivvnnircerscsrescncnnnen

7.8.2.2 Dual M68040 Prioritized Arbitrationcccocceeeeeiiiiceccniieenrnnns

MOTOROLA M68040 USER'S MANUAL

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.8.2.3 M68040 Synchronous DMA Arbitrationcceeccvciveninnncenncnnene. 7-55
78.2.4 M68040 Asynchronous DMA Arbitration............cc.iviveiencescnrecennnes 7-57
79 . Bus Snooping Operation........cccocieiciniesnrinceniine et seeesenaees 7-59
7.8.1 . .8Snoop-INhibited CYCIEcovvnriiinriiniiniriiesbiieries 7-60
79.2 Snoop-Enabled Cycle (No Intervention Requnred) cireerreesreereeeeeaeens 7-61
7.9.3 Snoop Read Cycle (Intervention Required)......icceeereverveerercvecsereannnne 7-63
7.9.4 Snoop Write Cycle (Intervention Required).......cccevviveneniensnsensennns 7-63
710 . Reset Operation.......ccccecrenrneness oo enee et saes e senees 7-65
711 Special Modes of Operation..........ceeereneiniinineeniii s 7-68
7111 Output Buffer Impedance Selection reerarieeeireirinesaissnssennsane 7-68
7.11.2 Multiplexed .Bus Modec..cceccciivvnnnennnes e ieereeeiiereeee et erseeesanaans 7-68
7113 Data Latch Enable Mode.........cccovvcemrvrincnnneen. eiteraeiveenesresarsaesseessene 7-69
Section 8
Exception Processing
8.1 Exception Processing OVEIVIEWccccreeereeererenreeereriieesseessessnnesessanens 8-1
8.2 Integer Unit EXCEPLIONSc.ecvereerecrcccsniennnnnens ieeeeeeesseseessessseneesreenaens 8-5
8.2.1 Access Fault EXCeplionccccevvrecinerersnnecraneesecnneeninniennes ereesererenne 8-6
8.2.2 Address Error EXCeptionccccvinneniiiiiiininninnnn it 8-8
8.2.3 INStruction Trap EXCEPLION.....cvceceererierieeseiverrecesressrseeivessensesersensns 8-8
824 . lllegal Instruction and Unimplemented Instructlon Exceptions........... 8-9.
8.2.5 Privilege Violation EXCEPONccovievisiivsivnicnicciinsenrssiinicsniscneneens 8-9
8.2.6 Trace EXCEPLIONcivceirrieieinireeerecnerteeeerssesnesesssirinnesssnsesesssnsenssnssnnns 8-10
8.2.7 Format Error EXCEPHONueevcvicrieiceverercnesrrnrcnresssssnesseesesssnessnessenes 8-11
8.2.8 Breakpoint Instruction EXCeptioncccevivviverivresioneenisniceesseenianes 8-12
829 . . Interrupt EXCEPLION ..uivivrerecennnssieissicreeisnesnnenressnsssessassesresenssnnaneons 8-12
8.2.10 Reset Exceptionccceveriee. eneeeenenes N ST 8-17
8.3 Exception Priorities reteesterernrte et eessasb et ne s e e e e eenbes et e e e nesaaesaenrans 8-19
8.4 Return From EXCeplionscciveeveecreneenrecneennenns emeiavisnsaneinensanassarsrares . 8-20.
8.4.1. Four-Word Stack Frame (Format $0) ...cccevvvrrinreeenrenerreeniesseneerenne 8-21
84.2 Four-Word Throwaway Stack Frame (Format $1) 8-21
84.3 Six-Word Stack Frame (Format $2)cc.cvvrveiveeninnnincnnneiereessennas 8-22
84.4 Floating-Point Post-Instruction Stack Frame (Format $3)................. 8-23
8.4.5 Eight-Word Stack Frame (Format $4)ccoevveeeveriivenrinvensceninnennens 8-23
8.4.6 Access Error Stack Frame (FOrmat $7)..ceeviveereereneeeeieenerncereesnnenes 8-24
8.4.6.1 Effective AdAresS...uvvvievrenierreciecnnesiinenennnenns erreetese e srrenes 8-24
8.4.6.2 Special Status Word (SSW)....cccceerrrerrninieresnesiionnessessessesessensns 8-24
8.4.6.3 Write-Back Status.......cceevvveeeerrenersneeenneniinennen, reererseeesiaeranatersanne 8-26
8.4.6.4 Fault AdAress.......ccoovvvrerceeneennnnnersnesedsenanennens rerereeent e sete e naes 8-26

X _ M68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph . Page

Number Title Number
8.4.6.5 Wirite-Back Address and Write-Back Data.......cccccevveivenvcnniniecnennnne 8-26
8.4.6.6 PUSh Datacovceieriinsicniiniinnnnrcnininecreseenseesnionanasensesaes 8-27
8.4.6.7 Access Error Stack Frame Return From Exceptioncccevveenneee. 8-27

, Section 9
‘ Floating-Point Unit (MC68040 Only) ,

9.1 Floating-Point Unit Pipeline.......c.ccccviinernnecnnniinnnniniiininssininensecssnens 9-1
9.2 Floating-Point User Programming Modelcveevenininnnieinnensnnnnnnns 9-2
9.2.1 Floating-Point Data Registers (FP7=FPO0)ccccvvivenrieiniircnnerennennens 9-2
9.2.2 Floating-Point Control Register (FPCR) ...cceovcereemriecceneneneneeeennee 9-3
9.2.2.1 Exception Enable Byte.........cceoevnmiininceniinninnnicnninsinnsniiinennen 9-3
9222 Mode Control Byte ... 93
9.2.3 Floating-Point Status Register (FPSR)........ccoccvcvrviiniiinninciniininnnn 9-4
9.23.1 . Floating-Point Condition Code Byte........cccevnevrineininnieniecnnncennnes 9-4
9.2.3.2 (@ TTe) (=T o1 =3, (= S SRRV UPTTP 9-5 .
9.2.33 : Exception Status Byte.......ccoceevniieiiceinscnicnninicineiiecineene 9-5
9.2.34 Accrued Exception (AEXC) BYte.ccvervceevcerenernnrinirisiinnenssnnnens 9-5
9.24 Floating-Point Instruction Address Register (FPIAR)cc.cccvcercnnene. 9-6
9.3 Floating-Point Data Formats and Data Types........ccceevirinienirinnnnnen. 9-7
9.4 Computational ACCUraCYcccovriirsininniicninieinecinnnseeasene 9-11
9.4.1 Intermediate Resultcccvvviiiiciinniiiirc e 9-12
9.4.2 Rounding the RESULL......ccceicvieeiecer et 9-13
9.5 Postprocessing Operationcevceeeereererierecsnessresieneesseesessaesnessesensane 9-15
9.5.1 Underflow, Round, OVerflow.......coccuevrminnineinmniniivnninmnnee, 9-16
9.5.2 Conditional Testing.......ccoorvenirniinncinnncn i 9-16
9.6 Floating-Point EXCEPLIONScccceveerreriererrrrerricreeneecsesesensessssssearessesssasanns 9-20
9.6.1 Unimplemented Floating-Point Instructionsccceivveiiiinnniecincnnen 9-20
9.6.2 Unsupported Floating-Point Data TYpescccvvveneenvinninnncinnenees 9-22
9.7 - Floating-Point Arithmetic EXCEPIONScceveeeeeiierccinnriinieriiccseneeiencnnees 9-24
9.7.1 Branch/Set on Unordered (BSUN)ccccecerniniciniiniceninsinenccreseeaes 9-25
9.7.1.1 Maskable Exception Conditions..........cccceveeceeriercrnesensnnes rereesenareens 9-26
9.7.1.2 Nonmaskable Exception Conditionsccvceeveeererveenieencercerivnecnnnne 9-27
9.7.2 Signaling Not-a-Number (SNAN)...c.eecrvereevecreneernreeceneseenresessreessens 9-27
9.7.2.1 Maskable Exception Conditionsccccevvererevcrrercnieniniciincriennennans 9-27
9.7.2.2 Nonmaskable Exception Conditionsccceeeceerveeecsernniiennesnennns 9-27
9.7.3 OPErand EIrOr.......cccviceernnereeeeniiesinreeseesseesssnessensssenssssssssasensssesasses 9-28
9.7.3.1 Maskable Exception Conditionsccccevveveereecnrereeerereriiseeneseeeene 9-29
9.7.3.2 Nonmaskable Exception Conditionsccececvrinniinierinnnnicenicnae 9-30
9.7.4 L0 T = oo 9-31
9.7.4.1 Maskable Exception Conditionsccencersinninnnenisennniinicsssisnnnne 9-31
9.7.4.2 Nonmaskable Exception Conditionscccceereeeimrseessiesccrenrsnssnnnns 9-31

MOTOROLA M68040 USER’S MANUAL

xi

TABLE OF CONTENTS (Continued)

Paragraph .. Page"

Number Title , Number
9.7.5 Underflow Leessessteenssiinssseinasenssatend ieeasssassnesaisinsesaientessrassssasssssases. 9-33
9.7.5.1 Maskable Exception Condmons ... 9-34
9.75.2 . Nonmaskable Exception Conditions ..c....cccceeceeeeiercreniieicrerecsrennnenns 9-34
9.7.6 DIVlde [4] { RO 9-36
9.7.7 Inexact Result............... et et b e sh et s b e 9-36
9.8 Floating-Point State Frames ...t 9-39

Section 10
. Instruction Timings . :
10.1 OVEIVIEWeecrecriiricienrnninsneseesssessensasssnsssessssssissesaenas reresarerastasanssaseneanes 10-3.
10.2 Instruction TimiNg EXamPpIes.......ccccvereiecveniennccenneisceeesiscceessseeseseesenes 10-5
10.3 . CINV and CPUSH Instruction Timing......cccoeeeeeeverreeseesienseecseesrerseessnnens 10-8
10.4 MOVE Instruction Timingceceeevevveniine feevrteessrebareesshasabisrererennreesennenne 10-9
10.5- .. Miscellaneous Integer Unit Instruction Timings.......c.ccceeeerrersvsrnnriernnnen 10-11
10.6 Integer Unit Instruction Timingsccccevevveninenrerieeenens e e 10-13
10.7 Floating-Point Unit Instruction Timingsccceveviniieciininnecenninsscnnnens 10-29
10.7.1 . Miscellaneous Integer Unit Support TiMingsSoccevevirrvcrcnnsnnsennens 10-29:
10.7.2 Integer Unit Support TiMiNgS.....civcvceerceminiiiccnnenenionineiessesssssssen 10-30.
10.7.3 Timings in the Floating-Point Unit e e 10-35
Section 11
- MC68040 Electrical and Thermal Characteristics

11.1 Maximum Ratingscc.ccovvvirninninneneencccesinnnniisnmnenens riressrtssntrennes 11-1
1.2 Thermal Characteristicsccceeereeevreenene. rmebeensaensssesenssessrasnsies rersesenrares 11-1
11.3 DC Electrical SpecifiCationsicccvceirreeerreenrisinsiersivnesseessesssesseessnssnes 11-2
114 Power Dissipationccceeeevieiicionccncsneenes esetertrenrr s enesatssae e e saneennas 11-2
11.5 Clock AC Timing Specuflcatlons .. 11-3
11.6 Output AC Timing Specificationscccccvevceerivveeccererennnns SIS 11-4
11.7 Input AC Timing SpecifiCationscccccvvirriiriniccninrierrerereesiareeneesereeeens 11-5
11.8 MC68040 Thermal Device Characteristicsorverererreeracrcereerrnesrrenns 11-12
11.8.1 MCB8040 Die and Package :........cveetererreeiocsivereaneneseineeseeaeeeenensuns 11-12
11.8.2 MCE8040 Power Considerations.......icurivressenreeneeseesveesceerenssneseseones 11-12
11.9 MC68040 Thermal Management Techniques.........cccceeevivereeercreervnnnnen. 11-14°
11.9.1 Sl AN ceeereeieeeereerirenestestese e sse et s ee e stestesaesansssesesesassesassrassnnas 11-17
1192 FOrced Air....occovininrrrernceesienniineessessnsesresesssessessnssressins eereersrereneennes 11-18
11.9.3 . With Heat SinK.......c..coieireeiirivrciineeriennncreersnssnsesesddesasesessessesseens 11-19

11.9.4 With Heat Sink and FOrced Aircccciiirvrrmmmmiieeeiiiieiisieseionnssnsensnnneees 11-22

xii M68040 USER’S MANUAL MOTOROLA

Paragraph
Number

121
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.25
12.26
1227
12.3

A1
A2
A3
A4 -
A5
A.5.1
AS52:
A6
A6.1
A6.2
A.6.3
A.6.4
AB5"
A6.6
A6.7

B.1
B2
B.3
B.3.1
B.3.2
B.3.3

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number
Sectlon 12 :
_ Ordering Information and Mechanical Data
Ordering Informationcoceveiiinniccriniinnenineninecin b sseenes 12-1
Pin ASSIGNMENLS.....ccceueeerrrrerererneeretsnesessenssasessssaesessnsess Lievsresessnsaeeens 12-1
MCB8040 Pin Grid AITAY ..c.coveicrrereereerenecieniesssesssessesssessessecssessassasssasns 12-2 -
MCB8BLCO40 Pin Grid Arfayccceeieiincsivccsnnssnininscsnsessssinsessesneen 12-3
MCBEBECO40 Pin Grid ArTaY.....ceeveerereveeseereeesessessesessessessseasssssnssrsrsones 12-4
MC868040V and MC68EC040V Pin Grid Array........,;.......; 12-5
MC68LCO040 Quad Flat Pack........ccccvvecniereersnsnssnasnnne reeviersenereenrarenas 12-6
MC68EC040 Quad Flat Pack .i....cocevveeeiieiersiiinrennnnisiivecsnsssanenssesenneas 12-6
MC68040V and MCE8EC040V Quad Flat Pack 12-7
Mechanical Data.........cueeiivennninnnnnennniieiiinin.. eeiveenteerarreneeraeens 12-9 -
Appendix A
MC68LC040
MCEBLCO40 DIfferenCes....ccccvruirererrrerrerseerareseernsiosensersiosens Leveeerereneeneens A-5
Interrupt Priority Level (IPL2-IPLO)iceveueuenee eveeeseeeeeesast s nsanaenenas A-5
JTAG Scan (JS0) et eetesaes et e s e n e e e et s et s s e et sent e b s e nnan e ran A-5
Data Latch And Multiplexed Bus Modescc.cevnne.. eerreeseentrennnrreres A-5
Floating-Point UNit (FPU)ccceeeeereerrrrerrersraeeseesessesessessesssssssssssesssesesees A-5
Unimplemented Floating-Point Instructlons and Exceptlons A-6
- MCBBLCO40 Stack Framescccccvivenveivennniviessenssesnnissssessrssssessenne A-7
-MC68LCO040 Electrical Characteristics.......ceveererierenscrienererccerrecnsnnenes A7
Maximum Ratings......ccoeeeevreresrerseneeivnsiiens et nns A-8
Thermal CharacteristiCs ..cuoveriinicniesiveneniininnnrenesresesseesieiomnessreennes A-8
DC Electrical Specifications......coceevervueeeereeereeieesieenierceesnenens Gereeesneens A-8
Power DisSIPationc.ccivvininiineniiinniainiesisesissisin e seenees A9
- Clock AC Timing SpecifiCationSccceeerersesisonrsasseermsnsrsivessensaens A-9
- Output AC Timing Specifications............ ST ereeseeareseananne A-11
Input AC Timing SpecificationS.......ccvevuevrerirecreenncreieniineinicssnneesseenenns A-12
Appendix B
. L MC68EC040
MCEBEC040 DIfferenCes ...ccovvviicviisiveinereneressesmsscsiisssssssessenseeneeseens B-4
JTAG Scan (JS1-JS0)....... errrererrsnseneereans JEOROTROOROR erreerereenes B-5
Access Control Units................ Seeeeveresterenrere et ea e tereaereaees reverrerenenenes B-5
Access Control Registarscoeiiovicennnenecsivnsennenns rereeseereeeerananes B-5
AdAress COMPATISON ...cevuvreirerreerroresiseriersreeeiessesesseessssnessasesesnssesssseses B-7
Effect of RSTION the ACUcc.cveceererreerereiesieseerensessssssesessesssseses B-8
M68040 USER’S MANUAL xiii

Paragraph
Number

B.4
B.5
B.5.1
B.5.2
B.6
B.7
B.7.1
B.7.2
B.7.3
B.7.4
B.7.5
B.7.6
B.7.7

xiv

TABLE OF CONTENTS (Continued)

Page
Title Number
Special Modes Of Operation.........cccvvinimnnciccnniennnenininnes e B-8
Exception Processing........... Learesessnreresennrrasresestessnssasrnesresnesertassaerensasan B-10
Unimplemented Floating-Point Instructions and Exceptions B-10
MCGE8EC040 Stack Frames.......ccceeeeveercnerrcrieessnsenssresesssncnnas rereernnes B-11
Software Considerations......ccocevrererrnicrnecssectessiesessnssstesasssessaesensseeraes B-12
MCG68ECO040 Electrical Characteristicsc..ccvvvivvenmesniiscernvcsnissenennns B-12.
Maximum RatingS.....cccecverecnrrcrennirrisrsnsessrsssnennrssnrenissnssressessssssassensae B-12
Thermal CharacteriStiCs ...c..evveeeriiverirencrenrersivnnesserissrersreesessesssssnaes B-12
DC Electrical Specificationsccceevrevnees eenreeessreenereinesisaserrnesaranerens B-13.
POWET DiSSIPALION....ccvrerrrrererrsreiresrieressrsssisreesnesssesisseesssessesssassessnens B-13
Clock AC Timing Specificationsc..cccicercienennnns ieseereeee e B-14
Output AC Timing Specifications......ccvcecirveereireenienreenisenisnseeeseeeeens B-15
Input AC Timing Specifications.......ccccevreriercrinrreeriieesreereesriesreseneens B-16
Appendix C
MC68040V and MC68EC040V
Additional Signals........ceecrrrerreersrecreseesseeeseneeess reemisdeasniserasersasssnesensreane C-1
Low Frequency Operation (LFO)........icieeeerrveeesnionressneereersenessenennnns C-2
LOSS Of ClOCK (LOC) ...coeeceeereererreenrenseesresssesssesiersanssnssnssssssnesssnseasasens Cc-2
System Clock Disable (SCD) ... C-2
LOW-POWEr StOP MOTB....cccoiriieciecrenrnineisiueseessnesesseessrssnesensirasasssesenes C-3
Bus Arbitration and Snooping.......cc.eeeeereee reesetreieseneen e s res s eseaenaes C-5
Low Frequency Operation..........cceceeeeceeeeeereeereeineereeseecesssessesssessnens C-5
Changing BCLK FreqUeNCy.........civiceivreicnicescesreesceesseessessesesevanes C-5
LPSTOP Instruction SUMMATYccocoerirccninmniinsivenensionnierecsnenensanes C-6
Clocking During Normal Operation errreneenesrenesirasnaessesanessasens Cc-7
Reset Operation.......cceevvverervvirnnnnns eresesresesneessanes ereneesenenassnraranessarerane C-7
POWEE CYCIING ...eneeierceceeerineeecere et e reaesesseeses e enes e sses e seesnesannans c9
MC68040V and MC6SEC040V JTAG (Prehmlnary) C-10
Instruction Shift Registercccccovvrennne S, s C-11
EXTEST..cciienrereerrerneeeresnnnnns erereesereneesnes ceresrsesseesensrarisnessrnassrere C-12
HIGHZ.......ooeerererccrennisesneseesnesssarssseresnessessassessessssssssesssssesaessnses C-12
SAMPLE/PRELOADcccovieirreerceerereeceessersesesssessssearassssessessassans C-12
CLAMP. ...ttt sstessnesseessesesssessessesssessesssessenesnsessasssssanns C-12
BYPASS ... eeeertrrereseteresetne ettt eses e ssaesseseses e ssneses e sneen C-13
Boundary Scan REQIStErccvervrverrererirnnrecssinessessesesineresiossessesenne C-13
(3 1= (o] {1o] g - e s C-16
Disabling The IEEE Standard 1149.1A Operationcccceuueenee. C-16
MC68040V and MC68EC040V JTAG Electrical Characteristics........ C-17

M68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
c7 MC68040V and MCE8ECO040V Electrical Characteristics.............
C.71 Maximum Ratingsceeeceveiermrrenieniinennieiiienenereesstneeseeseasenes
C.7.2 Thermal CharacteristiCscuuvrrerecrreresrenrrersensessersesnseecsesennne
C.7.3 DC Electrical Specifications........ccccevcuerverrcerreeeccsencensseencennnees
C74 Power DisSipationcceeveeiicrnienessesecnincereseisreessesssnessseessansnes
C.75 Clock AC Timing Specifications.......ccccvervresirceereerensensneersecsesnes
C.7.6 Output AC Timing Specifications.....ccccovvreerrirveecnrrnsnniennicsesuene.
C.7.7 Input AC Timing Specifications........ccceveeerimncvcsiinencninciinne
Appendix D
M68000 Family Summary
‘ Appendix E
Floating-Point Emulation (M68040FPSP)
Index
MOTOROLA M68040 USER'S MANUAL

Page
Number

o - LIST OF‘ILLUSTRATIONS
Figure ’ ' ‘ f : Page

Number o Title o Number
1-1 Block Diagram..........cceeeenenensivennesnssnesivosesisessens evmrereeseseberenaiis ereesseeans 1-4
1-2 Programming MOdel........eceeeveeresrererererecesesnsereeesennes e IR — 1-7
2-1 Integer Unit PIPEING......eii ettt ettt sne s ae e 2-2
2-2 Write-Back Cycle Block Diagramccoveveeevcrvcniinemneceiieneeneiniseneeesnineens 2-3
2-3 Integer Unit User Programming MOdelcccovievivirrcrncciinnereereeenerenecssenenns 2-4
2-4 Integer Unit Supervisor Programming Model........cccceeveviiinnncnnieeninnnennneee 2-6
2-5 StatuS REGISIEN ...ccverreeririereenirie i et reesae st srss st sae et cbe e s ssnesaenn 2-7
3-1 Memory Management Unit..........icevvnnninncie e 3-2
3-2 Memory Management Programming Model.........ccccverneinnvcnnrensiinninnnenns 3-3
3-3 URP and SRP Register FOrmatscccccvveneiniiniinniniiineneniesnnesennene 3-4
34 Translation Control Register Format.......coceiivmvnnniiiniiinncnncninncececinens 3-4
3-5 Transparent Translation Register Formatcocceeerniiecicveniirmneeieeneeenne 3-5
3-6 MMU Status Register FOrMat.......ccovvevrrrrerriniineccerennesstssesesensiecsessnssessenne 3-6
3-7 Translation Table Structure.........coviiercivnseeneeiniiesenneens 3-8
3-8 Logical Address FOrmMatcceeceeceinresernesstrosinnesissessensessasssnssnsssessosnnassonse 3-9
39 Detailed Flowchart of Table Search Operationccvevveveeecveircenecnvenenennee 3-10
3-10 Detailed Flowchart of Descriptor Fetch Operationcceeevevceeceneersenennen. 3-11
3-11 Table Descriptor FOIMAatS....cccivrurivrrieireenreenticrseeresnenssereesssnersseesssseessnsnessens 3-13
3-12 Page Descriptor FOMMALScocuvueeercemmiesisierineetesenenseeseiseee st e snesansnes 3-13
3-13 Example Translation Tablecccccovveevrerimniinncninniirennnrecinsreeseee e 3-17
3-14 Translation Table Using Indirect DesSCriptorsc.coevivirrvnvrnicrrneecnnenees 3-18
3-15 Translation Table Using Shared Tables........cccevvvinccaninniinncinineeicnnenne 3-19
3-16 Translation Table with Nonresident Tables.........ccccvrvecnnrerrenercenrenieerenenne 3-20
3-17 Translation Table Structure for TWO Taskscceeeevveverrerernenerneessereeseneneenens 3-24
3-18 Logical Address Map with Shared Supervisor and User Address Spaces .. 3-24
3-19° Translation Table Using S-Bit and W-Bit To Set Protection...........cecevcnee. 3-25
3-20 ATC Organization........ccccceeeeeeereerecesieieesseeseressnsesseseseesssesssesensensessossannesene 3-26
3-21 ATC Entry and Tag Fields......ccuveiienimninicscinniciciinnecnenesces s 3-27
3-22 Address Translation Flowchartccooveveevnnnnninnnnninneneeneseeenaees 3-32
3-23 MMU Status Interpretation ... 3-35
4-1 Overview of INtemnal CaChES.......c.ccvveeeveeceeeereerere et reae e emrsaaeeene 4-2
4-2 Cache Ling FOMALS. ..o nenes et sns s sssessssenes 4-3
4-3 Caching OPErationcccceereereerrererreeseinieeseenesieessressessssessssessssrsnsssesnessscssees 4-4
4-4 Cache Control REGISIEr.....ccoierniiererccriniiitectine sttt sns 4-5

Xvi M68040 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure

Number Title

4-5 Instruction-Cache Line State Diagramccecevevenerienvenennenae el
4-6 Data-Cache Line State Diagramcceieeeeverreecrenseressensnnnns reereenaeedninens
5-1 Functional Signal GroUpPS.......cccvieiieerrereriereessresseseeeeneeseresceesesessssesssssens
6-1 M68040 Test Logic Block Diagramccceeeeeceeeeiseensenssenssennes rrveereseniens
6-2 Bypass REQISIEr ...c.uiviviiiiniiniecniineniieereetessesenecseesseescseessseesanessanne e s
6-3 Output Latch Cell (O.LatCh) ...ccvivrevveeicriineeiinienieerssiensnessseessenssssessessene
6-4 InpUt Pin Cell (LLPIN) ettt et en e s nennee
6-5 Output Control Cells (I0.CH) ceuvveevereererneesinsiereeennnnns eereeerreeseenteeian
6-6 General Arrangement of Bidirectional Pins........ccccceeciereereerrneersieesivnnenns
6-7 Circuit Disabling IEEE Standard 1149.1Acccocviveeicrnceeennnen,
6-8 Clock Input Timing Diagram................ eteereerenteeiieessensenneerassnesaneseraentasaan .
6-9 ~ TRST Timing DIagramcccccvceereereerrceineeereesreresieessnesesesssesessessasssennes
6-10 Boundary Scan Timing Diagramccecioninenenennimenersessisnesiesnan
6-11 Test Access Port Timing Diagramcccceeevcerveecveesivenne. reereereieeneennnes
7-1 Signal Relationships to CIOCKSccccivreeriecienernreeniniiiiniecerseessensaesennens
7-2 Internal Operand Hepresentation...'..;
7-3 Data MUIPIEXING . cccveereriecinrrennerrinsessssnecrssseesseasesssessaassessaessensnssserssensenses
7-4 Byte Enable Signal Generation and PAL Equatlon
7-5° Example of a Misaligned Long-Word Transfer........c.cccccevenrerrrccrvensnnennen.
7-6 - Example of a Misaligned Word Transfercccvveciveveeveneesveeenveeseenseninne
7-7 Misaligned Long-Word Read Transfer Timing........cccecevvtreerverierrnserrnneens
7-8 Byte, Word, and Long-Word Read Transfer Flowchart.................c.........
7-9 Byte, Word, and Long-Word Read Transfer Timing.......ccecveveeiivniencnnnnnne
7-10 Line Read Transfer FlIowchartccoicuenieicionnninneninsnnnsoreenessessnnnns
7-11 Line Read Transfer Timing.......cceevvevvevecversencnnes bereeee et e e neerenes
7-12° Burst-Inhibited Line Read Transfer Flowchart..........ccccvveeeivevececceeenas
7-13 . Burst-Inhibited Line Read Transfer Timingcccceceeveevervenvrvrseerenessnnees
7-14 ' Byte, Word, and Long-Word Write Transfer FIowchart
7-15. Long-Word Write Transfer Timingcceceereveescresivnnmnneerenivnessesessonesnens
7-16° Line Write Transfer FIOWChamccveveicecevenneiicinceeceecee e canaeneeis
7-17 Line Write Transfer Timing.......ceevnrrrececenrresinsnseseessesssessnssessessseenns
7-18 Locked Transfer for TAS Instruction Timing.......... Vibesssnerssressaesresareansrans
7-19 Interrupt Pending ProCedUIe..........cceeveerveeeereerenensreseeseesensaiensnns fevsrensee
7-20 Assertion Of IPEND.....ccceverreerrceerrecerseenseessessessesssnnesssinnrssnssens eierreenene e
7-21 Interrupt Acknowledge Bus Cycle Flowchart........occcecenineeeicinnisiecenencnnns '
7-22 - Interrupt Acknowledge Bus Cycle Timingcccceeeveeeveeecineeeeeninnen. e
7-23 Autovector Interrupt Acknowledge Bus Cycle Timingcccceeceveercennene.
7-24 - Breakpoint Interrupt Acknowledge Bus Cycle Flowchartcocveveenee.
7-25 Breakpoint Interrupt Acknowledge Bus Cycle Timingcccccoeceereenerenee.

MOTOROLA M68040 USER’S MANUAL

Page
Number

LIST OF ILLUSTRATIONS (Continued)

Figure ‘Page
Number Title Number
7-26 - Word Write Access Terminated with TEA TimMiNg ..c.ccccvvevcverererernrererrssssnnnens 7-39
7-27 Line Read Access Terminated with TEA TiMiNgc.ocoeeererereererererersrerennn 7-40
7-28 Retry Read Transfer TiMiNg......ccoeiinriemineninenniiicsiiieseeeseiens 7-41
7-29 . Retry Operation on Lin@ WLcovieeiiirieerieriee e e 7-42
7-30 M68040 Internal Interpretation State Diagram and

. External Bus Arbiter CirCuit........ccccniinniicninniniininiineenencssnee 7-47
7-31 Lock Violation EXample......cccceeerreecerrieerenseecnenesemernressiserssesssessineesssnsesaens .. 7-49
7-32 Processor Bus Request TIMiNgG......ccuciinirnnnniinnnincineinncme. 7-50
7-33 Arbitration During Relinquish and Retry Timing.....ccccoevevvceniciinicnsinnnncnnicnens 7-51
7-34 Implicit Bus Ownership Arbitration Timingcccecciinininvninnisionneniinenn. 7-52
7-35 - Dual M68040 Fairness Arbitration State Diagramc.ccceeveneee ereeererereens 7-53
7-36 Dual M68040 Prioritized Arbitration State Diagramcccececiveeriinscnnnne. 7-55
7-37 M68040 Synchronous DMA Arbitration..........cecvcevccivsivininnineniiininnninne. 7-56
7-38 Sample Synchronizer CirCUIL.........ovciverreriicssmissnienierinintinimimnee s 7-57
7-39 M68040 Asynchronous DMA Arbitration........cccoceveereeene. oo eerererensanins . 7-58
7-40 Snoop-Inhibited Bus CYCIe.......ceccerrveerreniivrinresreesienicssinsissnieinne eereereeennes 7-61
7-41 Snoop Access with Memory RESPONSE.....ccooiiiiiniineinniicninnsiesseessineenns 7-62
7-42 Snooped Line Read, Memory Inhibited......cccerveeeeierrrerrerneeeeceeeereeeeneeene 7-64
7-43 Snooped Long-Word Write, Memory Inhibited..........ccicovecernierccsivnenciennennne 7-65
7-44 Initial Power-On Reset TiMINGveveverceerrernnsiinsementinessieniesesessstssenisessseess 7-66
7-45- Normal Reset TimiNgcocceenimiecniiininiiiiniicrrenreee s sesnssseeses 7-67
7-46 Multiplexed Address and Data Bus (Line Write)ccieeerininncnieccnenenns 7-69
7-47 DLE Mode Block Diagrami.......cccevineeiseenrcsnsseninssinmosmsiisseaeenssamessee 7-70
7-48 DLE versus Normal Data Read Timing.......ccccevueieee et e s ae e 7-71
8-1 General Exception Processing Flowchartc.iccvevcvivnnnnecsnsnecnninnennneennens 8-3
8-2 General Form of Exception Stack Frame.......cccevceeerrvrvenveennnnnensecvenisnssesenes 8-4
8-3 Interrupt Recognition EXamPIESccveeeerrireerienrresrrssmsnesssestnssnessssnesseessransnes 8-14
8-4 Interrupt Exception Processing Flowchartccovvvivinicinceiennncienccennen, 8-16
8-5 Reset Exception Processing FIOWCham.........ccveveiiveicencveennneeseesennienesnnees 8-18
8-6 Flowchart of RTE Instruction for Throwaway Four-Word Frame 8-22
8-7 Special Status Word FOrmMaLtccceeiveveeeereecrerrererenreenenieeesreeserssssessessenns .. 8-24
8-8 Write-Back Status Format........coooveeiivciienninnninnnnc e 8-26
9-1 - Floating-Point User Programming Modelccocoeeciiiniinninnncncnnccnenes 9-2
9-2 Floating-Point Control RegiSter.........ceveerrerreeeerrrrneeerennencenineessseesseneneenns 9-4
9-3 FPSR Condition Code Byte........ccvcrreereeriireeeeirrenee et eeneneene 9-4
9-4 FPSR Quotient Byte........ccocuiviiniciniiiniiiccinnienineeccsssscsecssennes 9-5
9-5 FPSR Exception Status Byteccoevevvveerensrenecnnens rereerenrertenrarananesraeesnnns 9-5
9-6 FPSR Accrued Exceplion Bytecccivviuriiiniiiniiiiecnicncnnieennnene 9-6
9-7 Intermediate Result FOrmMat.......c.coovevcrieerrmnnninnnnnsctinenennesinecsssssacssesnens 9-12
9-8 Rounding Algorithm Flowchart ... 9-14

xviii M68040 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
9-9 Format of Denormalized Operand in State Frame........cccicivvcenivcenncneceennnen 9-24
9-10 MC68040 Floating-Point State Frames.........ccuevmnmiinccsinniivnnienninenenned . 9-40 .
9-11 Mapping of Command Bits for CMDREGS3B Field........ccccocvnvienerevcenninnsnennns 9-42
10-1 - Simple Instruction Timing EXample.......ccceevieeverrvennicneciienniinnieccsnn ieesrann 10-5
10-2 Instruction Overlap with Multiple Clocks........ccccveeerrennnees eevintreesstssetnaesenens 10-6
10-3 Interlocked Stages.....ccccvrrmiirerinininniescnnniennrnisnsesnsnrscsssosissessssesssssasssses e 107
11-1 Clock Input Timing DIiagramccecceeeeeecrrenrrrereecrarrsrereeesesensonesscessrscnessnnes 11-3.
11-2 . Drive Levels and Test Points for AC Specificationscoccvveercenivrienenicennine 11-6
11-3 Read/Write TIMiNG......ccccenierenimersmnnisnienisessssienssnssensseses rreresresere s 11-7
11-4 Bus Arbitration Timingccccevvcerrrrnrenninnnrnieesvensseesssnesees ereeresnerenenasennaran 11-8
11-5 SNOOP Hit TIMING..cciverieriercercersrenrierieceeressenseseesseesremsessseesssssnsssessssssssnnessesns 11-9
11-6. SNOOP MiISS TimMiING...eeeeerrerrrnerrecreernrresrenrrrsneeesnesesssnesssasesessessssneseeasnas ORI 11-10
11-7 Other Signal TIMINGcccccervnniiiiniienrinniieesesseessissessesssessssssesssssss 11-11
11-8 MC68040 Termination NEtWOTKccccvviveenienmnincnsrennininiscesensesssnenssneessees 11-15
11-9 Typical Configuration for RC Termination Network.........c.ccooeeiercivennnnncnae. 11-15
11-10 Heat Sink with ADNESIVE.....ccoviiiiicirii i e 11-20
11-11 Heat Sink with Attachmentccoooieeiriieeeerecee e 11-21
12-1 . PGA Package DIMENSIONSccvvveercrtentreeiesreesresieseesseesenseeessesaessasssedonenns 12-9
12-2 QFP Package DimeNnSioNScoceoceeerieernernerieeeeeceenire e seeenss e deenenane 12-10
A-1 MC68LC040 Block Diagram........c.ceecerereereeceeenees e s sebees A-2
A-2 MC6E8LCO040 Programming MOdEl........cocveerrcerreseerinnenesseennnnnssenceseniessenssene A-3
A-3 MC68LCO040 Functional Signal GroUPS.......covevererereeverssesresseressessssrseessaesens A-4
A-4 Clock Input Timing Diagramcccceeemrrniecenreesiceesssnneeneseeesessssessssssesssnes A-10
A-5 Read/Write TimMiNg......covimininincicenieieinssscnesssssennisecssessss s ssess sesessses A-13
A-6 Bus Arbitration TiMiNgccccceeveerirnimrerirrnreerrer e eeeese e e s aeeenen A-14
A-7 SNoOP Hit TIMING..ccirieieiecieicertitertee et eaeesse s e s e sae s e bessaessane A-15
A-8 SnoOP MiSS TIMING..ccvirierreenrirresirerierieniersesiestessessessessessessensesssessesssssssessenses A-16
A-9 Other Signal TiMING .cccceeeeeeenerreereenecenrer st eseeet et e s seee e e e s e naes A-17
B-1 MCEBBECO040 BloCk Diagramccceeceeeeeieeeieesieesreeesieeesessessssseessesessennas B-2
B-2 MC68EC040 Programming Modelccccevveeeeviicreirecenieecneesresesssnsnesennns B-3
B-3 MC68ECO040 Functional Signal Groupscceereeeeeeererreecereseenesnneeesaesreseeesenes B-4
B-4 MC68ECO040 Access Control Register Format..........coccveeeeereeveniricrccnenseenne. B-6
B-5 MC68ECO040 Initial Power-On Reset TimMiNg......ccoccvvvreeerensereesvensercessensane B-8
B-6 MC68EC040 Normal Reset TiMiNgccoveveevcerirreeceeriineereseeeeec st eeeeaees B-9
B-7 Clock Input Timing DIiagramcceeieereireeerieesressveesseeessesssessessesessassssns B-14
B-8 Read/Write TiMiNg.....ccceereenrerineenenenieeiereesssssessssessessssssssssesssessssssserssnesssees B-17
B-9 Bus Arbitration Timingcccccceevvrvernceecieiereerresceeeeeeenes ceereeenreniaresnaenarneeeanes B-18

MOTOROLA M68040 USER’S MANUAL Xix

~ LIST OF ILLUSTRATIONS (Continued)

Figure
‘Number Title

B-10 SN0OP Hit TIMING ..coereerrrrrrrcrivnrnnnrerseiseesaessesesressessesnesneseesessenses veeverensaie
B-11 Snoop Miss TiMiNGcccevvrerrerenransarsasivsnnns aeessreearesaeeereneaesaneneresanes
B-12 Other Signal TIMING ...ocevvseeerrerenseressnearsensissssiesenmesieesseressessssssessassissssesses

C-1 - MC68040V and MC6E8EC040V Functional Signal Groups..........cecuiuiea.
C-2 MC68040V and MCEBEC040V Initial Power-On Reset Timing
C-3 MC68040V and MCEBEC040V Normal Reset Timingceereeieererenens
C-4 MC68040V and MCE8BEC040V Test Logic Block Diagram...........c.c......
C-5 Bypass ReQISIEr.....u v icrireeerienererirecierreeseeecsteseeesnteseesstesesesssseessesnes
C-6 . Output Latch Cell (O.LatCh)cociveeeceereereeereeneecneneeneseeereeseseeesreeenses
C-7 INPpUt Pin Cell (I.PIN) ceovureiiieriennenreieencenenasssesssennesseeesnnesseesssnscosessssesnesas
C-8 Output Control Cells (IO.CHl) ...ceuerrererernrrrnerecriversanserseerens revereeseenersdesansie
C-9 General Arrangement of Bidirectional Pinsc..ccceevevceuevnernvnnnvecseenenns e
C-10 Circuit Disabling 1EEE Standard 1149.1A.......cccovvecerievvvnrenrienenneionnns
C-11 Drive Levels and Test Points for AC Specifications.........c.cceeeereciverennnns
C-12 Clock Input Timing Diagram........ccceceererecenseecreseeerersereersessesisseeseessesens
C-13 Read/Write TIMiNg -..ccceveverrreererererenrenecsennesersessenns eteter et sentane
C-14 Bus Arbitration Timing........ccceeevvevvereveereverereecsenene. eresentesrnerneraneaanes
C-15 Snoop Hit TIMING ...covvcrcreeeeeirinierireeereeseesseetesaeesiesessessssesseessesssssssenes
C-16 SNOOP MiSS TIMING ..cccvvverrenrrcrnrrrereerrransensssssseeseseescsesnermersansssssssssseseesenes
C-17 - Other Signal TiMiNgeccevinuiersinceeenrsnreesessieesiesesensionsesessssessssasssssisnes
C-18 Going into LPSTOP with Arbitration.........cccecevereventiveeererieneneesseseseesens
C-19 LPSTOP no Arbitration, CPU is MaStercecvveeerurrerrrereernesrensereressenens
C-20 Exiting LPSTOP with INterruptcccoveeeveeneeescciein e evees e e
C-21 Exiting of LPSTOP with RESET............... eeresetet e ene e saesaeesenesrnes

XX M68040 USER'S MANUAL

MOTOROLA

LIST OF TABLES

Table :
Number Title
1-1 MEB8040 Data FOormats.........ccoeviniinniininiinnicsienineninn,
1-2 Effective Addressing Modes.........cccuvueeniee. eeneesteenee st e s e aeananees
1-3 Notational CoONVENIONScccvrecerrinrrrreriresnesisnineesesiieee e
1-4 Instruction Set SUMMArYcovviiiniinninir s
31 - Updatmg U-Bit and M-Bit for Page Descnptors eeeeere
3-2 SFC and DFC ValUBS....c.cccvreirirrerriricresdsnenneesiesssessiseeseesssensssssnns
4-1 Snbop Control Encoding. ... Cererenen i
4-2 TLNX ENCOQING....utierirerrrieereenrerrnrereennssresseesseesenesssnesseoens Creevesienenes
4-3 Instruction-Cache Line State Transitionsceccevivrnees reessarsenes
4-4° Data-Cache Line State Transitions................ e irtee s e ne e neeas
51 SIGNAIINABK vovrereeeeoessseeeessessessssessssssssssssssssessessesssssssssesssenees
5-2 Transfer-Type ENCOQING ... cccvverrrrrnereeresrenmererserseceessessesessssssennsseres
5-3 Normal and MOVE16 Access Transfer Modifier Encodmg
5-4 Alternate Access Transfer Modifier Encodingcocviveeeeceeeseeennnns
5-5. - Output Driver CONtrol GrOUPSceevveeniiererrnesresereesesseseesessnessennas
5-6. Processor Status EnCoding.....ccccceeeeerereveersensineessiventennenssnneessensaens
5-7 SigNal SUMMANY ...c.uvieveiiiiirsieneccnscsresnnansnessssssess e ssssessssessnasnanns
6-1 ~ |IEEE Standard 1149.1A Instructlons rerrennnneien e arsestennnns
6-2 Boundary Scan Bit Definitions............. Nesronssriastsensesessanstssasaniensansin
7-1 Data Bus Requirements for Read and Write Cycles......cccevevvurune.

7-2 Summary of Access Types versus Bus Signal Encodings
7-3 Memory Alignment Influence-on Noncachable and-

: Write-Through Bus CYCIBScociviiiiiniinisisinnenicceae e
7-4 Interrupt Acknowledge Termination Summary
7-5 . TA and TEA Assertion RESUMSc.ceerevreiveensieeseesensssennsivenas e
7-6 M68040 Bus Arbitration Statesccvevereeeecniensivninieciicnesseneenne.
8-1 Exception Vector ASSIGNMENESccceveermrrrrnreieeessereeseseesenenas
8-2 Tracing CONErOL.......ccceccreicsiriiiinreeeeeeenseescasesesseese e s e ssesnesssesseneas .
8-3 Interrupt Levels and Mask ValUescoveveecineivieniineccnnnennveneennes
8-4 Exception Priority Groupsccicciinmiinneniivicniieeeeens

MOTOROLA M68040 USER'S MANUAL

Page
Number

LIST OF TABLES (Continued)

Table Page
Number Title Number
8-5 Wirite-Back Data AlIgnmentcccvvvienirvnnnnienninineinninneenesresnsaens 8-27
8-6 Access Error Stack Frame Combinationscccnieninnnennininienn, 8-31
9-1 Floating-Point Control Register ENCodingsccoevvviviiivmnnineinieniienicianne 9-3
9-2 MC68040 FPU Data Formats and Data Typescccceeviverrnenniniennsicnnnenncnns 9-7
9-3 Single-Precision Real Format SUMmMarycoocveverieenininiiniieeceeecincinsi 9-8
9-4 Double-Precision Real Format Summary.......cccoeceinvniniininniiniicnieisiensiin. 9-9
9-5 Extended-Precision Real Format Summary.......c.cccecceevervmrerrnrceereceersennense. 9510
9-6 Packed Decimal Real Format Summaryccoeevviiimniniciin e 9-11
9-7 Floating-Point Condition Code Encodingsccevvuerervneeniviriiriceesecnnnns 9-17
9-8 Floating-Point Conditional Tests ...t e, 9-19
9-9 Floating-Point EXCEPtioN VECIOIS ...cccviuvireiericrcnneninicsrssiisiessesesesseesensneen 9-20
9-10 Unimplemented INSrUCIONScooeceiiiieiiiiiinei it 9-21
9-11 - Possible Operand Errors EXCEpLioNScoceeveevvinnirniiisiiniientiiicececieaens 9-29
9-12 . Overflow Rounding Mode Values.........ceevuermrminiiiiinninnicccnicesneenienaene 9-32
9-13 Underflow Rounding Mode ValUESccccererreeneeriininrnsersenonensisesesseessansanes 9-34
9-14 Possible Divide by Zero Exceptions...........cceveuuene estesrre et 9-36
9-15 Divide by Zero Rounding Mode Values........ccovccvciiniinicniicnnnnnnenncnennncnnes 9-37
9-16 State Frame Field Informationcoveereerveenrriemecceeneneenc e e erecenenene 9-44
10-1 Instruction TiMING INAEX....ccvievirrcriirecccierrecrccrr et e 10-1
10-2 Number of MemMOry ACCESSEScvivinmieieriiiiiini e 10-3
10-3° CINV TiMNG.ceuceeiieirericnreniseneseescesessesseeseesssaeseesessessessensansessessisssssesens Ceverees 10-8
10-4 CPUSH Best and Worst Case Timing......ccoeeevemiioeieiniiecieiece 10-8
11-1 Maximum Power Dissipation for Output Buffer Mode Configuration............ 11-13
11-2 Thermal Parameters with No Heat Sink or Airflow........cccccevevrnnrccncrneennsi. 11-17
11-3 Thermal Parameters with Forced Airflow and o

No Heat Sink for the MCB8040.........coovteeverrereerceeeeeneteeeeeeeesseeeeeeeeeenees 11-18
11-4 Thermal Parameters with Forced Airflow and

No Heat Sink for the MC68LCO040 and MCEBECO040.........cccceceriveeernennne. 11-19
11-5 Thermal Parameters with Heat Sink and No Airflow............ccceeeecevcennncen. . 11-21
11-6 Thermal Parameters with Heat Sink and Airflowcccocvvviiiniiciiiiccinniene 11-22
C-1 Additional MC68040V and MCE8EC040V Signalsccceeveeriecricerseenneenennnns C-2
C-2 Bus Encodings During LPSTOP Broadcast Cycle.....ccecvoevreeeeininicriceneeen. .. C-4
C-3 IEEE Standard 1149.1A INStructionsc.ccccnveninnicnneneninennnnnnicniiecssecsnenne C-12
E-1 MC68040 Floating-Point INStructionsco.ceveeerneninncircccee i E-2
E-2 MC68040FPSP Floating-Point Instructions.........cocvevieincininnicncinnnnncnn, E-3
E-3 Support for Data Types and Data FOrmatscceeveereercecinncenscrsccnrecsnennnes E-4
E-4 Exception Conditionsccvceeeiinieniciiniiininiieiisnisenenecsisscsssessessesnee E-4

XXii M&8040 USER’S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The MC68040, MC68040V, MC68LC040, MCE68EC040, and MCE8EC040V (collectively
called M68040) are Motorola’s third generation of M68000-compatible, high-performance,
32-bit microprocessors. All five devices are virtual memory microprocessors employing
multiple concurrent execution units and a highly integrated architecture that provides very
high performance in a monolithic HCMOS device. They integrate an MC68030-compatible
integer unit (IU) and two independent caches. The MC68040, MC68040V, and
MC68LCO040 contain dual, independent, demand-paged memory management units
(MMUs) for instruction and data stream accesses and independent, 4-Kbyte instruction
and data caches. The MC68040 contains an MC68881/MC68882-compatible floating-
point unit (FPU). The use of multiple independent execution pipelines, multiple internal
buses, and a full internal Harvard architecture, including separate physical caches for both
instruction and data accesses, achieves a high degree of instruction execution parallelism
on all three processors. The on-chip bus snoop logic, which directly supports cache
coherency in multimaster applications, enhances cache functionality.

The M68040 family is user object-code compatible with previous M68000 family members
and is specifically optimized to reduce the execution time of compiler-generated code. All
five processors implement Motorola's latest HCMOS technology, providing an ideal
balance between speed, power, and physical device size.

1.1 DIFFERENCES

Because the functionality of individual M68040 family members are similar, this manual is
organized so that the reader will take the following differences into account while reading
the rest of this manual. Unless otherwise noted, all references to M68040, with the
exception of the differences outlined below, will apply to the MC68040, MC68040V,
MC68LC040, MCB8EC040, and MCE8ECQ40V. The following paragraphs describe the
differences of MC68040V, MC68LC040, MC68EC040, and the MC68EC040V from the
MC68040.

1.1.1 MC68040V and MC68LC040

The MC68040V and MC68LC040 are derivatives of the MC68040. They implement the
same IU and MMU as the MC68040, but have no FPU. The MC68LC040 is pin compatible
with the MC68040. The MC68040V is not pin compatible with the MC68040 and contains
some additional features. The following differences exist between the MC68040V,
MC68LC040, and MC68040:

MOTOROLA M68040 USER’S MANUAL 1-1

* The DLE pin name has been changed to JSO on both the MC68040V and
MC68LC040. In addition, the MC68040V contains three new pins, system clock
disable (SCD), low frequency operation (LFO), and loss of clock (LOC).

* The MC68040V and MC68LC040 do not implement the data latch enable (DLE),
multiplexed, or output buffer impedance selection modes of operation. They
implement only the small output buffer mode of operation. All timing and drive
capabilities on both devices are equivalent to those of the MC68040 in small output
buffer impedance mode. The MC68040V has an additional mode of operation, the
low-power stop mode of operation. .

* The MC68040V and MC68LC040 do not contain an FPU, causing ummplemented
floating-point exceptions to occur using a new stack frame format. :

* The MC68040V isa 3 3 volt static microprocessor that operates down to 0 MHz

For specific details on the MC68LC040, refer to Appendix A MC68LC040. For specific
details on the MC68040V, refer to both Appendix A MC68LC040 and Appendix C
MC68040V and MC68EC040V. Disregard all Information concernlng the FPU when
reading the following subsections.

1.1.2 MC68EC040 and MCGBECO40V

The MC68EC040 and MC6B8EC040V are derivatives of the MC68040. They |mplement the
same IU as the MC68040, but have no FPU or MMU, which embedded control
applications generally do not require. The MC68ECO040 is pin compatible with the
MC68040. The following dlfferences exist between the MC68EC040, MCSBECO40V and

the MC68040:
* The DLE and MDIS pin names have been changed to JSO and JS1, respectively.

* PTEST and PFLUSH instructions cause an undetermined number of bus cycles; the
user should not execute these instructions.

* The access control unit (ACU) replaces the MMU. The MC68EC040 and
MCB68EC040V ACU has two data and two instruction registers that are called data
and instruction transparent translation registers in the MC68040.

* The MC68EC040 and MC68EC040V do not implement the DLE, multlplexed or
output buffer impedance selection modes of operation. They only implement the small
output buffer mode of operation. All MC68EC040 and MCE8BEC040V timing and drive
capabilities are equivalent to the MC68040 in small output buffer mode.

* The MC68EC040 and MC68EC040V do not contain an FPU, causing unimplemented
floating-point exceptions to occur using a new stack frame format.

* The MC68040V is a 3.3 vplt static microprocessor that operates down to 0 MHz.

Refer to Appendix B MC68ECO040. for specific details on the MCE8EC040. Refer to
Appendix B MC68EC040 and Appendix C MC68040V and MC68EC040V for specific
details on the MCE8EC040V. Disregard information concerning the FPU and MMU
when reading the following subsections.

1-2 M68040 USER’S MANUAL MOTOROLA

1.2 FEATURES

The main features of the M68040 are as follows:
* 6-Stage Pipeline, MC68030-Compatible IU
* MC68881/MC68882-Compatible FPU
¢ Independent Instruction and Data MMUs

¢ Simultaneously Accessible, 4-Kbyte Physical Instruction Cache and 4-Kbyte Physical
Data Cache

* Low-Latency Bus Accesses for Reduced Cache Miss Penalty

¢ Multimaster/Multiprocessor Support via Bus Snooping ‘

. Concurrent U, FPU, MMU, and Bus Controller Operation Maximizes Throughput

« 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Interface
¢ User Object-Code Compatible with All Earlier M68000 Microprocessors

* 4-Gbyte Direct Addressing Range

» Software Support Including Optlmlzmg C Compiler and UNIX® System V Port

The on-chip FPU and large physical instruction and data caches. yield improved system
performance and increased functionality. The independent instruction and data MMUs and
increased internal parallelism also improve performance.

1.3 EXTENSIONS TO THE M68000 FAMILY

The M68040 is compatible with the ANSI/IEEE Standard 754 for Binary Floating-Point
Arithmetic. The MC68040's FPU has been optimized to execute the most commonly used
subset of the MC68881/MC68882 instruction sets and includes additional instruction
formats for single- and double-precision rounding results. Software emulates floating-point
instructions not directly supported in hardware. Refer to Appendix E M68040 Floating-
Point Emulation (MC68040FPSP) for details on software emulation. The MOVE16 user
instruction is new to the instruction set, supporting efficient 16-byte memory-to-memory
data transfers.

1.4 FUNCTIONAL BLOCKS

Figure 1-1 illustrates a sumpllfled block dnagram of the M068040 Refer to Appendlx A
MC68LC040 for information on the MC68LC040's and MC68040V's functional blocks; and
Appendix B MC68EC040 for information on the MC68EC040's and MC6SEC040V's
functional blocks.

The M68040 IU pipeline has been expanded from the MC68030 to include effective
address calculation (<ea> calculate) and operand fetch (<ea> fetch) stages with
commonly used effective addressing modes. Conditional branches are optimized for the

® UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA M68040 USER’S MANUAL 1-3

more common case of the branch taken, and both execution paths of the branch are
fetched and decoded to minimize refilling of the instruction pipeline. .

INSTRUCTION DATA BUS :
INSTRUCTION INSTRUCTION
ATC :> CACHE
N —l ulls {} INSTRUCTION
INSTRUCTION \ INSTRUCTION ADDRES!
FETCH > MMU/CACHE/SNOOP <','_J
CONVERT CONTROLLER 8
K DECODE) INSTRUCTION MEMORY UNIT s ADDRESS
BUS
, . EA c
CALCULATE o
N
EXECUTE B N
FETCH |- R DATA
0 BUS
EXECUTE | |- L .
WAITE. <:> Rk DATA MEMORY UNIT DATA :
BACK DATA ADDRESS E
WRITE- > mwcaciEsioop C— w ——>
‘ BACK ~ CONTROLLER ' BUS
CONTROL
. FLOATING- 4 INTEGER - JdL 4L g
POINT UNIT SIGNALS
UNIT DATA DATA
ﬁ ATC CACHE
c S : OPERAND DATABUS :

Figure 1-1. Block Diagram

To improve memory management, the M68040 includes separate, independent paged
MMUs for ‘instruction and data accesses. Each MMU stores recently used address
mappings in separate 64-entry address translation caches (ATCs). Each MMU also has
two transparent translation registers that define a one-to-one mapping for address space
segments ranging in size from 16 Mbytes to 4 Gbytes each.

Two memory units independently interface with the IU and FPU. Each unit consists of an
MMU, an ATC, a main cache, and a snoop controller. The MMUs perform memory
management on a demand-page basis. By translating logical-to-physical addresses using
translation tables stored in memory, the' MMUs support virtual memory systems. Each
MMU stores recently used address mappings in an ATC, reducing the average translation
time.

Separate on-chip instruction and data caches operate independently and are accessed in
parallel with address translation. The caches improve the overall performance of the
system by reducing the number of bus transfers required by the processor to fetch
information from memory and by increasing the bus bandwidth available for alternate bus

1-4 M68040 USER’S MANUAL MOTOROLA

masters in the system. Both caches are organized as four-way set associative with 64
sets of four lines. Each line contains four long words for a storage capability of 4 Kbytes
for each cache (8 Kbytes total). Each cache and corresponding MMU is allocated
separate internal address and data buses, allowing simultaneous access to both. The
data cache provides write-through or copyback write modes that can be configured on a
page-by-page basis. The caches are physically mapped, reducing software support for
multitasking operating systems, and support external bus snooping to maintain cache
coherency in multimaster systems.

The bus snoop logic provides cache coherency in multimaster applications. The bus
controller executes bus transfers on the external bus and prioritizes external memory
requests from each cache. The M68040 bus controller supports a high-speed,
nonmultiplexed, synchronous, external bus interface supporting burst accesses for both
reads and writes to provide high data transfer rates to and from the caches. Additional bus
signals support bus snooping and external cache tag maintenance. . ,

The MC68040 contains an on-chip FPU, which is user object-code compatible with the
MC68881/MC68882 floating-point coprocessors. The FPU has pipelined instruction
execution. Floating-point instructions in the FPU execute concurrently with integer
instructions in the IU.

1.5 PROCESSING STATES

The processor is always in one of three states: normal processing, exception processing,
or halted. It is in the normal processing state when executing instructions, fetchmg
instructions and operands, and storing instruction resuilts.

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe caused after an exception. The processor
enters exception processing when an exceptional internal condition arises such as tracing
an instruction, an instruction results in a trap, or executing specific instructions. External
conditions, such as interrupts and access errors, also cause exceptions. Exception
processing ends when the first instruction of the exception handler begins to execute.

The processor halts when it receives an access error or generates an address error while
in the exception processing state. For example, if during exception processing of one
access error another access error occurs, the MC68040 is unable to complete the
transition to normal processing and cannot save the internal state of the machine. The
processor assumes that the system is not operational and halts. Only an external reset
can restart a halted processor. Note that when the processor executes a STOP
instruction, it is in a special type of normal processing state, one without bus cycles. The
processor stops, but it does not halt.

1.6 PROGRAMMING MODEL

The MC68040 programming model is separated into two privilege modes: supervisor and
user. The S-bit in the status register (SR) indicates the privilege mode that the processor

MOTOROLA M68040 USER’S MANUAL 1-5

uses. The IU identifies a logical address by accessing either the supervisor or user
address space, maintaining the differentiation between supervisor and user modes. The
MMUs use the indicated privilege mode to control and translate memory accesses,
protecting supervisor code, data, and resources from user program accesses. Refer to
Appendix B MC68EC040 for details concerning the MC68EC040 address translation.

Programs access registers based on the indicated mode. User programs can only access
registers specific to the user mode; whereas, system software executing in the supervisor
mode can access all registers, using the control registers to perform supervisory functions.
User programs are thus restricted from accessing privileged information, and the
operating system performs management and service tasks for the user programs by
coordinating their activities. This difference allows the supervnsor mode to protect system
resources from uncontrolled accesses. -

Most instructions execute in .either mode, but some instructions that have important
system effects are privileged and can only execute in the supervisor mode. For instance,
user programs cannot execute the STOP or RESET instructions. To prevent a user
program from entering the supervisor mode, except in a controlled manner, instructions
that can alter the S-bit in the SR are privileged. The TRAP instructions provnde controlled
access to operating system services for user programs.

It the S-bit in the SR is set, the processor executes instructions in the supervisor. mode.
Because the processor performs all exception processing in the supervisor mode, all bus
cycles generated during exception processing are supervisor references, and all stack
accesses use the active supervisor stack pointer. If the S-bit of the SR is clear, the
processor executes instructions in the user mode. The bus cycles for an instruction
executed in the user mode are user references. The values on the transfer modifier pins
md:cate either supervisor or user accesses.

The processor utilizes the user mode and the user programmlng model when it is in
normal processing. During exception processing, the processor changes from user to
supervisor mode. Exception processing saves the current value of the SR on the active
supervisor stack and then sets the S-bit, forcing the processor into the supervisor mode.
To return to the user mode, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE, which execute in
the.supervisor mode, modifying the S-bit of the SR. After these instructions execute, the
instruction pipeline is flushed and is refilled from the appropnate address space

The M06804O integrates the functlons of the IU FPU and MMU The registers depicted
in the programming model (see Figure 1-2) provide operand storage and control for these
three units. The registers are partitioned into two levels of privilege modes: user and
supervisor. The user programming model is the same as the user programming model of
the MC68030, which consists of 16, general-purpose, 32-bit registers and two control
registers. The MC68040 user programming model also incorporates the
MC68881/MC68882 programming model consisting of eight, 80-bit, floating-point data
registers, a floating-point control register, a floating- pomt status register, and a floating-
point instruction address register. .

1-6 M68040 USER'S MANUAL MOTOROLA

Only system programmers can use the supervisor programming model to implement -
operating system functions, 1/0 control, and memory management subsystems. This

supervisor/user distinction in the M68000 family architecture allows for the writing of

application software that executes in the user mode and migrates to the MC68040 from

any M68000 family platform without modification. The supervisor programming model

contains the control features that system designers need to modify system software when

porting to a new design. For example, only the supervisor software can read or write to

the transparent translation registers of the MC68040. The existence of the transparent

translation registers does not affect the programming resources of user application

programs. £ - : '

3t 0 79 B ' SN
o - FPo
g; FP1
[DATA 03 FLOAER%POM ;g
D4
—— REGISTERS ___| D5 REGISTERS ;g;
g§ FPs
yol FP7
I —_—JAr o 15 0
- ADDRESS ——— ﬁg FP CONTROL REGISTER 0 [FPCR
~——— REGISTERS ~—{ a4 FP STATUS REGISTER FPSA
— — s FP INSTRUCTION ADDRESS REGISTER | ‘ FPIAR
A6
ATSP USER STACK POINTER
PC PROGRAM COUNTER
] [__lcer CONDITION CODE REGISTER -
USER PROGRAMMING MODEL

o

31
[AT/ISP INTERRUPT STACK POINTER
L AT"MSP MASTER STACK POINTER
| : {CCR)} | SR STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODEL)
VBR VECTOR BASE REGISTER
SFC SOURCE FUNCTION CODE
DFC DESTINATION FUNCTION CODE

CACR - CACHE CONTROL REGISTER
URP USER ROOT POINTER REGISTER
. SRP SUPERVISOR ROQT POINTER REGISTER
I TC TRANSLATION CONTROL REGISTER
D770 DATA TRANSPARENT TRANSLATION REGISTER O
DTT1 . DATATRANSPARENT TRANSLATION REGISTER 1
70 - INSTRUCTION TRANSPARENT TRANSLATICN REGISTER O
m INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
MMUSR MMU STATUS REGISTER

SUPERVISOR PROGRAMMING MODEL

Figure 1-2. Programming Model

MOTOROLA M68040 USER’S MANUAL 1-7

The user programming model includes eight -data registers, seven address registers, and
a stack pointer register. The address registers and stack pointer can be used as base
address registers or software stack pointers, and any of the 16 registers can be used as
index registers. Two control registers are available in the user mode—the program
counter (PC), which usually contains the address of the instruction that the MC68040 is
executing, and the lower byte of the SR, which is accessible as the condition code register
(CCR). The CCR contains the condition codes-that reflect the results of a previous
operation and can be used for conditional instruction execution in a program.

The supervisor programming model includes the upper byte of the SR, which contains
operation control information. The vector base register (VBR) contains the base address
of the exception vector table, which is used in exception processing. The source function
code (SFC) and destination function code (DFC) registers contain 3-bit function codes.
These function codes can be considered extensions to the 32-bit logical address. The
processor automatically generates function codes to select address spaces for data and
program accesses in the user and supervisor modes. Some instructions use the alternate
function code registers to specify the function codes for various operations.

The cache control register (CACR) controls enabling of the on-chip instruction and data
caches of the MC68040. The supervisor root pointer (SRP) and user root pointer (URP)
registers point to the root of the address translation table tree to be used for supervisor
and user mode accesses.

The translation control register (TCR) enables logical-to-physical address translation and
selects either 4- or 8-Kbyte page sizes. There are four transparent translation registers,
two for instruction accesses and two for data accesses. These registers allow portions of
the logical address space to be transparently mapped and accessed without the use of
resident descriptors in an ATC. The MMU status register (MMUSR) contains status
information derived from the execution of a PTEST instruction. The PTEST instruction
searches the translation tables for the logical address, specified by this instruction's
effective address field and the DFC, and returns status information corresponding to the
translation.

The user programming model can also access the entire floating-point programming
model. The eight 80-bit floating-point data registers are analogous to the integer data
registers. A 32-bit floating-point control register (FPCR) contains an exception enable byte
that enables and disables traps for each class of floating-point exceptions and a mode
byte that sets the user-selectable rounding and precision modes. A floating-point status
register (FPSR) contains a condition code byte, quotient byte, exception status byte, and
accrued exception byte. A floating-point exception handler can use the address in the 32-
bit floating-point instruction address register (FPIAR) to locate the floating-point instruction
that has caused an exception. Instructions that do not modify the FPIAR can be used to
read the FPIAR in the exception handler without changing the previous value.

1-8 M68040 USER'S MANUAL MOTOROLA

1.7 DATA FORMAT SUMMARY

The M68040 supports the basic data formats of the M68000 family. Some data formats
apply only to the IU, some only to the FPU, and some to both. In addition, the instruction
set supports operations on other data formats such as memory addresses.

The operand data formats supported by the IU are the standard twos-complement data
formats defined in the M68000 family architecture plus a new data format (16-byte block)
for the MOVE 16 instruction. Registers, memory, or instructions themselves can contain [U
operands. The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation.

Whenever an integer is used in a floating-point operation, the FPU automatically converts
it to an extended-precision floating-point number before using the integer. The FPU
implements single- and double-precision floating-point data formats as defined by the
IEEE 754 standard. The FPU does not directly support packed decimal real format.
However, by trapping as an unimplemented data format instead of as an illegal instruction,
software emulation supports the packed decimal format. Additionally, each data format
has a special 2ncoding that represents one of five data types: normalized numbers,
denormalized numbers, zeros, infinities, and not-a-numbers (NANs). Table 1-1 lists the
data formats for both the 1U and the FPU. Refer to M68000PM/AD, M68000 Family
Programmer’s Reference Manual, for details on data format organization in registers and
memory.

Table 1-1. M68040 Data Formats

Operand Data Format Size Supported In Notes
Bit 1-Bit v} : —
Bit Field 1-32 Bits [1V] Field of Consecutive Bits
Binary-Coded Decimal (BCD) 8 Bits U Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte
Byte Integer 8 Bits U, FPU -
Word Integer 16 Bits U, FPU . —
Long-Word Integer 32 Bits U, FPU —
Quad-Word Integer 64 Bits |V Any Two Data Registers
16-Byte 128 Bits (V] Memory Only, Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Fraction
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Fraction
Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

1.8 ADDRESSING CAPABILITIES SUMMARY

The M68040 supports the basic addressing modes of the M68000 family. The register
indirect addressing modes support postincrement, predecrement, offset, and indexing,
which are particularly useful for handling data structures common to sophisticated

MOTOROLA M68040 USER’S MANUAL 1-9

applications and high-level languages. The program counter indirect mode also has
indexing and offset capabilities. This addressing mode is typically required to support
position-independent software. Besides these addressing modes, the M68040 provides
index sizing and scaling features.

An instruction's addressing mode can specify the value of an operand, a register
containing the operand, or how to derive the effective address of an operand in memory.
Each addressing mode has an assembler syntax. Some instructions imply the addressing
mode for an operand. These instructions include the appropriate fields for operands that
use only one addressing mode. Table 1-2 lists a summary of the effective addressing
modes for the M68040. Refer to M68000PM/AD, M68000 Family Programmer’s

Reference Manual, for details on instruction format and addressing modes.

Table 1-2. Effective Addressing Modes

Addressing Modes Syntax
Register Direct
Data Dn -
Address An
Register Indirect
Address (An)
Address with Postincrement (An)+
Address with Predecrement ~(An)
Address with Displacement (d16,An)
Address Register Indirect with Index
8-Bit Displacement (dg.An,Xn)
Base Displacement (bd,An,Xn)
.| Memory Indirect
Postindexed ({bd,An},Xn,od)
Preindexed ({bd,An,Xn],0d)
Program Counter Indirect
. with Displacement (d46,PC)
Program Counter Indirect with Index
8-Bit Displacement (dg,PC,Xn)
Base Displacement (bd,PC,Xn)
Program Counter Memory Indirect
Postindexed ([bd,PC],Xn,od)
Preindexed ({bd,PC,Xn},0d)
Absolute Data Addressing
Short (o). W
Long (o)L
Immediate #ooxs>

M68040 USER’S MANUAL

MOTOROLA

1.9 NOTATIONAL CONVENTIONS
Table 1-3 lists the notation conventions used throughout this manual unless otherwnse

specified.
Table 1-3. Notational Conventions
Single- And Double-Operand Operations

+ Arithmetic addition or postincrement indicator.
- Arithmetic subtraction or predecrement indicator.
x Arithmetic multiplication.
+ Arithmetic division or conjunction symbol.
- Invert; operand is logically complemented.
A Logical AND
\Y Logical OR
2] Logical exclusive OR
4 Source operand is moved to destination operand.
114 Two operands are exchanged.

<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations
TRAP Equivalent to Format + Offset Word » (SSP); SSP — 2 » SSP; PC » (SSP); SSP ~ 4 » SSP; SR
» (SSP); SSP — 2+ SSP; (Vector)» PC
STOP Enter the stopped state, waiting for interrupts.
<operand>19 The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false
and the optional “else” clause is present, the operations after “else” are performed. If the
condition is false and else is omitted, the instruction performs no operation. Refer to the Bec
instruction description as an example. .

Register Specification

An Any Address Register n (example: A3 is address register 3)
Ax, Ay Source and destination address registers, respectively.
BR Base Register—An, PC, or suppressed.
Dc Data register D7-DO0, used during compare.
Dh, DI Data registers high- or low-order 32 bits of product.
Dn Any Data Register n (example: D5 is data register 5)
Dr,Dq Data register's remainder or quotient of divide.
Du Data register D7-D0, used during update.
Dx, Dy Source and destination data registers; respectively.
MRn Any Memory Register n.
Rn Any Address or Data Register
Rx, Ry Any source and destination registers, respectively.
Xn Index Register—An, Dn, or suppressed.

MOTOROLA

M68040 USER’S MANUAL

Table 1-3. Notational Conventions (Continued)

Data Format And Type
+inf Positive Infinity
<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).
B,W,L Specifies a signed integer data type (twos complement) of byte, word, or long word.
D Double-precision real data format (64 bits).)
k A twos complement signed integer (-64 to +17) specifying a number's format to be stored in
the packed decimal format.
P Packed BCD real data format (96 bits, 12 bytes).
S Single-precision real data format (32 bits).
X Extended-precision real data format (96 bits, 16 bits unused).
-~ inf Negative Infinity

‘Subfields and Qualifiers

#00x> or #<data>

Immediate data following the instruction word(s).

() Identifies an indirect address in a register.
[1 Identifies an indirect address in memory.
bd Base Displacement
cce Index into the MC68881/MC68882 Constant ROM
dn Displacement Value, n Bits Wide (example: d1g is a 16-bit displacement).
LsB Least Significant Bit
LSw Least Significant Word
MSB Most Significant Bit
MsSwW Most Significant Word
od Outer Displacement
SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).
SIZE The index register’s size (W for word, L for long word).
{offset:width} Bit field selection.
Register Names
CCR Condition Code Register (lower byte of status register)
DFC Destination Function Code Register
FPcr Any Floating-Point System Control Register (FPCR, FPSR, or FPIAR)
FPm, FPn Any Floating-Point Data Register specified as the source or destination, respectively.
IC, DC, IC/DC Instruction, Data, or Both Caches
MMUSR MMU Status Register
PC Program Counter
Re Any Non Floating-Point Control Register
SFC Source Function Code Register
SR Status Register

M68040 USER'S MANUAL MOTOROLA

Table 1-3. Notational Conventions (Concluded)

. Register Codes
* General Case.
C .| Carry Bitin CCR
cc Condition Codes from CCR
FC Function Code

Negative Bit in CCR

N

U Undefined, Reserved for Motorola Use.
v Overflow Bit in CCR
X

Y4

Extend Bit in CCR
Zero Bitin CCR
— Not Affected or Applicable.

Stack Pointers

ISP Supervisor/Interrupt Stack Pointer
MSP Supervisor/Master Stack Pointer

SP Active Stack Pointer
SspP Supervisor (Master or Interrupt) Stack Pointer
uspP User Stack Pointer

Miscellaneous
<ea> Effective Address
<label> Assemble Program Label

<list> List of registers, for example D3-DO.

LB Lower Bound

m Bit m of an Operand
m-n Bits m through n of Operand

uB Upper Bound

1.10 INSTRUCTION SET OVERVIEW

The instruction set is tailored to support high-level languages and is optimized for those
instructions most commonly executed. The floating-point instructions for the M68040 are a
commonly. used subset of the MC68881/MC68882 instruction set with new arithmetic
instructions to explicitly select single- or double-precision rounding. The remaining
unimplemented instructions are less frequently used and are efficiently emulated in the
M68040FPSP, maintaining compatibility with the MC68881/MC68882 floating-point
coprocessors. The M68040 instruction set includes MOVE16, a new user instruction that
allows high-speed transfers of 16-byte blocks between external devices such as memory
to memory or coprocessor to memory. Table 1-4 provides an alphabetized listing of the
M68040 instruction set’s opcode, operation, and syntax. Refer to Table 1-3 for notations
used in Table 1-4. The left operand in the syntax is always the source operand, and the
right operand is the destination operand. Refer to M68000OPM/AD, M68000 Family
Programmer’s Reference Manual, for details on instructions used by the M68040.

MOTOROLA M68040 USER’S MANUAL ' 1-13

Table 1-4. Instruction Set Summary

Opcode Operation Syntax
ABCD BCD Source + BCD Destination + X # Destination | ABCD Dy,Dx
ABCD —(Ay),~(Ax)
ADD Source + Destination ¢ Destination ADD <ea>,Dn
ADD Dn,<ea>
ADDA - Source + Destination # Destination - ADDA <ea>,An
ADDI Immediate Data + Destination # Destination ADDI #<data>,<ea>
ADDQ Immediate Data + Destination # Destination | ADDQ #<data>,<ea>
ADDX Source + Destination + X ¢ Dastination ADDX Dy,Dx
ADDX —(Ay),~(Ax)
AND Source A Destination # Destination AND <ea>,Dn
AND Dn,<ea>
ANDI Immediate Data A Destination # Destination ANDI #<data>,<ea>
ANDIto CCR | Source A CCR* CCR ANDI #<data>,CCR
'ANDI to SR If supervisor state ANDI #<data>,SR
then Source A SR ¢ SR
else TRAP
ASL, ASR Destination Shifted by count # Destination Asd Dx,Dy!
ASd #<data>,Dy!
ASd <ea>!
Bee If condition true Bce <label>
) then PC+dp * PC
BCHG ~(bit number of Destination) » Z;) BCHG Dn,<ea>
~(bit number of Destination) * (bit number) of BCHG #<data>,<ea>
Destination :
BCLR ~{bit number of Destination) » Z; BCLR Dn,<ea>
) 0 » bit number of Destination BCLR #<data>,<ea>
BFCHG ~(bit field of Destination) # bit field of Destination = | BFCHG <ea>{offset:width}
BFCLR 0 #* bit field of Destination BFCLR <ea>{offset:width}
BFEXTS bit field of Source # Dn BFEXTS <ea>{offset:width},Dn
BFEXTU bit offset of Source # Dn BFEXTU <ea>{offset:width},Dn
BFFFO bit offset of Source Bit Scan ¢ Dn BFFFO <ea>{offset:width},Dn
BFINS Dn # bit field of Destination BFINS Dn,<ea>{offset:width}
BFSET . [1s* bitfield of Destination. BFSET <ea>{offset:width}
BFTST bit field of Destination BFTST <ea>{offset:width}
‘BKPT Run breakpoint acknowledge cycle; BKPT #<data>
TRAP as illegal instruction :
BRA PC+dph*PC) BRA <label>
BSET ~(bit number of Destination) ¢ Z; BSET Dn,<ea>
1 # bit number of Destination | BSET #<data>,<ea>
BSR SP-498SP; PC# (SP); PC+dph* PC BSR <label>
1-14 M68040 USER’'S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
BTST —(bit number of Destination) » Z; BTST Dn,<ea>
BTST #<data>,<ea>
CAS CAS Destination — Compare Operand # cc; CAS Dc,Du,<ea>
if Z, Update Operand # Destination
else Destination # Compare Operand
CAS2 CAS2 Destination 1 —~ Compare 1 * cc; CAS2 Dc1-Dc2,Du1-Du2,(Rn1)—~(Rn2)
if Z, Destination 2 — Compare * cc;
if Z, Update 1 # Destination'1;
Update 2 ¢ Destination 2
elsa Destination 1 # Compare 1;
Destination 2 # Compare 2
CHK If Dn < 0 or Dn > Source CHK <sa>,Dn
then TRAP .
CHK2 lfRn<LBorlfRn>UB CHK2 <ea>,Rn
then TRAP
CINV If supervisor state CINVL <caches>, (An)
then invalidate selected cache lines CINVP <caches>, (An)
else TRAP CINVA <caches>
CLR- 0 ¢ Destination CLR <ea>
CMP Destination — Source # cc CMP <ea>,Dn
CMPA Destination ~ Source CMPA <ea>,An
CMPI Destination ~ Immediate Data CMPI #<data>,<ea>
CMPM Destination — Source # cc CMPM (Ay)+,(Ax)+
CMP2 Compare Rn <LB orRn> UB CMP2 <ea>,Rn
and Set Condition Codes ‘
CPUSH If supervisor state CPUSHL <caches>, (An)
then if data cache push selected dirty data CPUSHP <caches>, (An)
cache lines; invalidate selected cache lines CPUSHA <caches>
else TRAP
DBce I condition false DBcc Dn,<label>
then (Dn—1# Dn;
liDn=-1
then PC + dj * PC)
DIVS, DIVSL | Destination + Source # Destination DIVS.W <ea>,Dn 32+16#+ 16r:16q
DIVS.L <ea>,Dq .32+32¢32q
DIVS.L <ea>Dr:Dq 64+ 32#32r:32q
DIVSL.L <ea>,Dr:Dq 32+ 32# 32r:32q
DIVU, DIVUL | Destination + Source * Destination DIVU.W <ea>,Dn 32+ 16+ 16r:16q
DIVU.L <ea>,Dq 32+32+32q
DIVUL <ea>DriDq 64+ 32¢32r:32q
DIVUL.L <ea>,Dr:Dq 32+ 32¢32r:32q
EOR Source @ Destination # Destination EOR Dn,<ea> :
EORI Immediate Data @ Destination ¢ Destination EORI #<data>,<ea>
EORIto CCR | Source ® CCR# CCR EORI #<data>,CCR
EORIto SR | If supervisor state EORI #<data>,SR
then Source & SR* SR
else TRAP
MOTOROLA M68040 USER'S MANUAL 1-15

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
EXG Rx ¢ » Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT Destination Sign ~ Extended * Destination EXTWDn extend byte to word
EXTB . EXT.LLDn extend word to long word
EXTB.LDn extend byte to long word
FABS2 Absolute Value of Source * FPn FABS.<fmt> <ea>,FPn .
FABS.X FPm,FPn
FABS.X FPn
FrABS.<fmt> <ea>,FPn3
FrABS.X FPm,FPn3
FrABS.X FPn3
FADD2 Source + FPn* FPn FADD.<fmt> <ea>,FPn
FADD.X FPm,FPn
FrADD.<fmt> <ea>,FPn3
FrADD.X FPm,FPn3
FBcc2 If condition true FBcc.SIZE <label>
then PC+dp* PC
FcMmp2 _ FCMP.<fmt> <eas,FPn
FPn - Source FCMP.X FPm,FPn
FDBcc2 If condition true FDBcc Dn,<label>
then no operation
elseDn—-1#+Dn
if Dn# -1
then PC+dp* PC
else execute next instruction .
FDIV2 FPn + Source » FPn FDIV.<fmt> <ea>,FPn
FDIV.X FPm,FPn
FrDIV.<fmt> <ea>,FPn3
FrDIV.X FPm,FPn3
FMOVE2 Source * Destination FMOVE.<fmt> <ea>,FPn
FMOVE.<fmt> FPM,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}
FIMOVE.<fmt> <ea>,FPn3
FMOVE2 » Dastinat FMOVE.L <ea>,FPcr
Source * Destination FMOVE.L FPor <62
FMOVEM2 Register List # Destination FMOVEM.X <list>,<ea>%
Source * Register List FMOVEM.X Dn,<ea>
FMOVEM.X <ea>,<list>4
FMOVEM.X <ea>,Dn
FMOVEM2 | Register List # Destination FMOVEM.L <list>,<ea>5
Source # Register List FMOVEM.L <ea> <list>5
FMUL2 Source X FPn # FPn FMUL.<fmt> <ea>,FPn
FMUL.X FPm,FPn
FrMUL<imt> <ea>,FPn3
FrMUL.X FPm,FPn3
1-16 M68040 USER’S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
FNEG2 —(Source) FPn FNEG.<fmt> <ea>,FPn
FNEG.X FPm,FPn
FNEG.X FPn
FiNEG.<fmt> <ea>,FPn3
FINEG.X FPméFPn3
FINEG.X FPn
FNOP2 None FNOP
FRESTORE2 | If in supervisor state FRESTORE <ea>
then FPU State Frame # Internal State
else TRAP
FSAVE2 If in supervisor state FSAVE <ea>
then FPU Internal State # State Frame
else TRAP
FScc?2 If condition true FScc.SIZE <ea>

then 1s # Destination
else Os » Destination

FSGLDIV FPn + Source » FPn FSGLDIV.<fmt> <ea>,FPn
FSGLDIV.X FPm,FPn

FSGLMUL Source x FPn® FPn FSGMUL.<fmt> <sa>,FPn
FSGLMUL.X FPm, FPn

FSQRT2 Square Root of Source ® FPn FSQRT.<fmt> <ea>,FPn
FSQRT.X FPm,FPn
FSQRT.X FPn
FrSQRT.<fmt> <ea>,FPn3
FrSQRT FPm,FPn3
FISQRT FPn3

Fsug2 FPn - Source » FPn FSUB.<fmt> <ea>,FPn
FSUB.X FPm,FPn
FrSUB.<imt> <ea>,FPn3
FrSUB.X FPm,FPn3

FTRAPcc2 | If condition true FTRAPcc
then TRAP FTRAPcc.W #t<data>
FTRAPcc.L #<data>

FTST2 Condition Codes for Operand * FPCC FTST.<imt> <ea>
FTST.X FPm

ILLEGAL SSP -2 % SSP; Vector Offset » (SSP); ILLEGAL
SSP -4+ SSP; PC* (SSP); .
SSp-2+SSP; SR* (SSP);

lltegal Instruction Vector Address ® PC

JMP Destination Address » PC JMP <ea>

JSR SP-4+SP; PC» (SP) ‘ JSR <ea>
Destination Address » PC

LEA <ea>? An LEA <ea>,An

LINK SP -4+ SP; An»(SP) LINK An,dp
SP # An, SP+d*SP .

MOTOROLA M68040 USER'S MANUAL 1-17

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
LPSTOPE If supervisor state LPSTOP #<data>
immediate data® SR
SR # broadcast cycle
sTOP
else TRAP
LSL, LSR Destination Shifted by count # Destination LSd Dx,Dy!
LSd #<data>,Dy!
LSd <ea>1
MOVE Source * Destination MOVE <ea>,<ea>
MOVEA Source * Destination MOVEA <ea>,An
MOVE . s ‘ ;
from CCR CCR # Destination MOVE CCR,<ea>
MOVE to CCR | Source ®* CCR MOVE <ea>,CCR-
MOVE from SR | If supervisor state MOVE SR, <ea>
then SR # Destination
) else TRAP .
MOVE to SR | If supervisor state MOVE <ea>,SR
then Source* SR
else TRAP
MOVE USP If supervisor state MOVE USP,An
then USP ¢ An or An® USP MOVE An,USP
else TRAP
MOVE16 Source block ® Destination block MOVE16 (Ax)+, (Ay)+7
MOVE16 (xxx).L, (An)
MOVE16 (An), (ox).L
MOVE16 (An)+, (xxx).L
MOVEC If supervisor state MOVEC Rc,Rn
then Rc * Rn or Rn ® Re MOVEC Rn,Rc
else TRAP
MOVEM Registers * Destination- MOVEM <list>,<ea>4
Source * Registers MOVEM <ea>,<list>4
MOVEP | Source * Destination MOVEP Dx,(dn.Ay)
: MOVEP (dp,,Ay),.Dx
MOVEQ Immediate Data ¢ Destination MOVEQ #<data>,Dn
MOVES If supervisor state MOVES Rn,<ea>
then Rn *» Destination [DFC] or MOVES <ea>,Rn
Source [SFC] * Rn
) else TRAP
MULS Source x Destination # Destination MULS.W <ea>,Dn 16 x 16 ¢ 32
MULS.L <ea>,DI 32x32¢32
MULS.L <ea>,Dh-DI 32 x32¢64
MULU Source x Destination # Destination MULU.W <ea>,Dn 16 x 1632
: MULU.L <ea>,DI 32x32#32
MULU.L <ea>,Dh-DI 32x32+64
NBCD 0 — (Destination1g) = X # Destination NBCD <ea>
NEG 0 — (Destination) # Destination NEG <ea>
NEGX 0 — (Destination) = X # Destination NEGX <ea>
1-18 M68040 USER’S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax ‘
NOP None NOP
NOT ~ Destination # Destination NOT <ea>
OR Source V Destination # Destination OR <ea>,Dn
OR Dn,<ea>
ORI Immediate Data V Destination » Destination ORIl #<data>,<ea>
ORIto CCR | Source VCCR# CCR ORI #<data>,CCR
ORI to SR If supervisor state ORI #<data>,SR
then Source VSR * SR
else TRAP ' o
PACK Source (Unpacked BCD) + adjustment & PACK —(Ax),~(Ay),#(adjustment)
Destination (Packed BCD) PACK Dx,Dy,#(adjustment)
PEA SP — 4 ¢ SP; <ea>* (SP) PEA <ea>
PFLUSH8 | If supervisor state PFLUSH (An)
then invalidate instruction and data ATC entries | PFLUSHN (An)
for destination address PFLUSHA
else TRAP PFLUSHAN
PTESTS If supervisor state PTESTR (An)
then logical address status * MMUSR; ‘PTESTW (An)
entry » ATC
else TRAP .
RESET If supervisor state RESET.
then Assert RSTO Line
else TRAP
ROL, ROR Destination Rotated by count # Destination ROd Rx,Dy?!
ROd #<data>,Dy!
ROXL, ROXR |{ Destination Rotated with X by count » Destination | ROXd Dx,Dy1
ROXd #<data>,Dy
ROXd <ea>!
RTD (SP)*»PC;SP+4+dp*SP | RTD #(dn)
RTE If supervisor state RTE
then (SP) * SR; SP + 2+ SP; (SP)#* PC;
SP + 4 » SP; restore state and deallocate
stack according to (SP)
else TRAP
RTR (SP)*»CCR; SP +2#SP; RTR
(SP)*»PC; SP+4#SP
RTS (SP)*»PC; SP+4#%SP RTS
SBCD Destination10 — Source g — X * Destination SBCD Dx,Dy
SBCD —(Ax),~(Ay)
Sce If condition true Sce <ea>
then 1s ¢ Destination
else Os # Destination
STOP If supervisor state STOP #<data>
then Immediate Data % SR; STOP
else TRAP
suB Destination — Source # Destination SUB <ea>,Dn
SUB Dn,<ea>
MOTOROLA M68040 USER'’S MANUAL 1-19

Table 1-4. Instruction Set Summary (Concluded)

1-20

M68040 USER’'S MANUAL

Opcode Operation Syntax
SUBA Destination — Source * Destination SUBA <ea>,An
SuBI Destination — Immediate Data ¢ Destination SUBI #<data>,<ea>
suBQ Destination - Immediate Data # Destination SUBQ #<data>,<ea>
SuBX Destination — Source — X # Destination SUBX Dx,Dy
SUBX —(Ax),~{Ay)
SWAP Register 31-16 * Register 15-0 SWAP Dn
TAS Destination Tested ¢ Condition Codes; TAS <ea>
1 ¢ bit 7 of Destination
TRAP SSP -2 # SSP; Format + Offset # (SSP); TRAP #<vector>
SSP —'4 » SSP; PC# (SSP); SSP -2+ SSP;
SR # (SSP); Vector Address ® PC
TRAPcc lfcc TRAPcc
then TRAP TRAPcc.W #<data>
TRAPcc.L #<data>
TRAPV 1AY TRAPV
then TRAP
TST Destination Tested * Condition Codes TST <ea>
UNLK An ¢ SP; (SP)* An; SP + 4 ¢ SP UNLK An
UNPK Source (Packed BCD) + adjustment ® Destination | UNPACK —(Ax),—(Ay), #(adjustment)
(Unpacked BCD) UNPACK Dx,Dy,#(adjustment)
NOTES:
1. Where d is direction, left or right.
2. Available only on the MC68040.
3. Where ris rounding precision, single or double precision.
4, List refers to register.
5. List refers to control registers only.
6. Available only on the MC68040V and MCGBECO040V.
7. MOVE16 (ax)+,(ay)+ is functionally the same as MOVE16 (ax),(ay)+ when ax = ay. The address reglster is only
incremented once, and the line is copied over itself rather than to the next line.
8. Not available for the MC68EC040 or MC68ECO040V.

MOTOROLA

SECTION 2
INTEGER UNIT

This section describes the organization of the M68040 integer unit (IU) and presents a
brief description of the associated registers. Refer to Section 3 Memory Management
Unit (Except MC68EC040 and MC68EC040V) for details concerning the memory
management unit (MMU) programming model, and to Section 9 Floating-Point Unit
(MC68040 Only) for details concerning the floating-point unit (FPU) programming model.

2.1 INTEGER UNIT PIPELINE

The IU carries out logical and arithmetic operations using six separate subunits. Each unit
is dedicated to a different stage of the IU pipeline, handling a total of six separate
instructions simultaneously. Pipelining is a technique that overlaps the processing of
different parts of several instructions. Pipelining simulates an assembly line with the IU
containing a number of instructions in different phases of processing. The IU pipeline
consists of six stages:

1. Instruction Fetch—Fetching an instruction from memory.

2. Decode—Converting an instruction into micro-instructions.

3. <ea> Calculate—lf the instruction calls for data from memory, the location of the
data, its memory address is calculated.

4. <ea> Fetch—Data is fetched from memory.
. Execute—The data is manipulated during execution.

6. Write-Back—The result of the computation is written back to on-chip caches or
external memory.

(3]

The pipeline contains special shadow registers that can begin processing future
instructions for conditional branches while the main pipeline is processing current
instructions. The <ea> calculate stage eliminates pipeline blockage for instructions with
postincrement, postdecrement, or immediate add and load to address register for updates
that occur in the <ea> calculate stage. The write-back stage can write data over the
system bus to store a result in external memory or directly to on-chip caches. These write-
backs to memory can be deferred until the most opportune moment because of the
M68040 bus interface. Figure 2-1 illustrates the IU pipeline.

MOTOROLA M68040 USER’S MANUAL 2-1

INSTRUCTION DATA
FROM CACHE ORBUS
CONTROLLER

__Y__

INSTRUCTION
FETCH

SHADOW ——

SHADOW - -
TO FPY ~&— DECODE

Y

<e> CALCULATE

Y

TO CACHEOR
<ea> FETCH > BUs CONTROLLER

© EXECUTE.

Y

TO CACHE OR
WRITEBACK * 1= 515 CONTROLLER

Figure 2-1. Integér Unit Pipeline

An instruction stream is fetched from the instruction memory unit and decoded on an
instruction-by-instruction basis in the decode stage. Multiple instructions are fetched to
keep the pipeline stages full so that the pipeline will not stall.

The decoded instruction is then passed to the <ea> calculate stage to calculate the
effective addresses that the instruction requires. The <ea> calculate stage initiates
additional fetches from the instruction stream to obtain the effective address extension
words and performs the effective address calculation. The initial execution of the
instruction-in the execute stage handles any data registers required for the calculation,
which passes the reglster back to the <ea> calculate stage

The resulting effective address is passed to the <ea> fetch stage, which initiates an
operand fetch from the data memory controller if the effective address is for a source
operand. The fetched operand is returned to the execute stage, which completes
execution of the instruction and writes any result to either a data register, memory, or back
to the-<ea> calculate stage for storage in an address register. For a memory destination,
the <ea> fetch stage passes the address to the execution stage.

The previously described sequence of effective address calculation and fetch can occur
multiple times for an instruction, depending on the source and/or destination addressing
modes. For memory indirect addressing modes, the <ea> calculate stage initiates an
operand fetch from the intermediate indirect memory address, then calculates the final

2-2 M68040 USER’S MANUAL MOTOROLA

effective address. Also, some instructions access multiple memory operands and initiate
fetches for each operand.

The instruction finishes execution in the execute stage. Instructions with write-back
operands to memory generate pending write accesses that are passed to the write-back
stage. The write occurs to the data memory unit if it is not busy. If the following instruction,
which is in the <ea> fetch stage, requires an operand fetch, the write-back stalls in the
write-back stage since it is at a lower priority. The write-back can stall indefinitely until
either the data memory unit is free or another write is pending from the execution stage.

Figure 2-2 illustrates a write cycle, which begins in the IU pipeline. The IU stores the
logical address and data for a write operation in a temporary holding register (WB3). Write
‘operation control passes from the IU to the data memory unit once the data memory unit
is idle. When the data memory unit receives the logical address and data from the IU, it
stores the logical address and data to a second temporary holding register (WB2). The
data memory unit then translates the logical address into a physical address. If the
address translation is successful, the data memory unit either stores an address
translation in the data cache (write hit) or passes it to the bus controller (write-through with
write miss). Once the bus controller is ready to execute the external write operation, it
multiplexes the data to the correct data byte lanes and stores the multiplexed data and
physical address into a third holding register (WB1). WB1 is used in the actual write
operation seen on the address and data buses. Appendix B MC68EC040 contains details
on address translation in the MCE68EC040. ‘)

BUS
INSTRUCTION CONTROLLER
FETCH
INSTRUCTION MEMORY UNIT I e ><%>
DECODE
@ ' , BUS
e i
CALCULATE [[}
8 ' wa1 >
<ea> ' ' DATA
FETCH ig DATAMEM:RYSUNH'A j E 5 s
HYSICAL ADDRESS
1Q | [para F-CTRRAAARHESS i
EXECUTE = e DATA T oaramux
» = || | K==
WRITE- || . i BUS
Backwey) [[CONTROLLER ' CONTROL
we2 _,4 PUSH SIGNALS
INTEGER UNIT : : BUFFER
GERUN
[DATA CACHE -

Figure 2-2. Write-Back Cycle Block Diagram

MOTOROLA Mé8040 USER'S MANUAL 2-3

2.2 INTEGER UNIT REGISTER DESCRIPTION

The following paragraphs describe the [U registers in the user and supervisor
programming models. Refer to Section 3 Memory Management Unit (Except
MC68EC040 and MC68EC040V) for details on the MMU programming model and
Section 9 Floating-Point Unit (MC68040 Only) for details on the FPU programmin
model. . :

2.2.1 Integer Unit User ‘Programming Model

Figure 2-3 illustrates the 1U portion of the user programming model. The model is the
same as for previous M68000 family microprocessors, consisting of the following
registers: ‘ ,
- 16 General-Purpose 32-Bit Registers (D7-D0, A7-A0)

* 32-Bit Program Counter (PC) '

» 8-Bit Condition Code Register (CCR)

2.2.1.1 DATA REGISTERS’(D7-D0).rThese registers are used as data registers for bit
and bit field (1 to 32 bits), byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64
bit) operations. These registers may also be used as index registers.

2.2.1.2 ADDRESS REGISTERS (A6-A0). These registers can be used as software stack
pointers, index registers, or base address registers. The address registers may be used
for word and long-word operations.

31 15 0
-
D1
02
03 | DATA
D4 REGISTERS
D5
D
07 —
31 15 0 -
‘ A0
M
A2 ADDRESS
M [REGISTERS
M ‘
A5
2
3t i 0 USER
| |] (AJSP) :l— STACK
. > POINTER
PROGRAM
| | pe COUNTER
s ____ 1 0 CONDITION
A g —— R
b REGISTER

Figure 2-3. Integer Unit User Programming Model

2-4 M68040 USER’S MANUAL MOTOROLA

2.2.1.3 SYSTEM STACK POINTER (A7). A7 is used as a hardware stack pointer during
stacking for subroutine calls and exception handling. The register designation A7 refers to
three different uses of the register: the user stack pointer (USP) (A7) in the user
programming model and either the interrupt stack pointer (ISP) or master stack pointer
(MSP) (A7' or A7", respectively) in the supervisor programming model. When the S-bit in
the status register (SR) is clear, the USP is the active stack pointer. Explicit references to
the system stack pointer (SSP) refer to the USP while the processor is operating in the
user mode.

A subroutine call saves the program counter (PC) on the active system stack, and the
return restores it from the active system stack. Both the PC and the SR are saved on the
supervisor stack (either ISP or MSP) during the processing of exceptions and interrupts.
Thus, the execution of supervisor level code is independent of user code and condition of
the user stack. Conversely, user programs use the USP independently of supervisor stack
requirements.

2.2.1.4 PROGRAM COUNTER. The PC contains the address of the currently executing
instruction. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate. For some addressing modes, the PC can be used as a pomter for PC-relative
addressing.

2.2.1.5 CONDITION CODE REGISTER. The CCR consists of five bits of the SR least
significant byte. The first four bits represent a condition of the result generated by a
processor operation. The fifth bit, the extend bit (X-bit), is an operand for multiprecision
computations. The carry bit (C-bit) and the X-bit are separate in the M68000 family to
simplify programming techniques that use them.

2.2.2 Integer Unit Supervisor Programming Model

Only system programmers use the supervisor programming model (see Figure 2-4) to
implement sensitive operating system functions, I/0O control, and MMU subsystems. All
accesses that affect the control features of the M68040 are in the supervisor programming
model. Thus, all application software is written to run in the user mode and migrates to the
M68040 from any M68000 platform without modification.

MOTOROLA Me8040 USER'S MANUAL 2-5

0
f T "] A7YSP) T} INTERRUPT STACK POINTER

3 15 0 '
[j] A7*MsP) } MASTERSTACK POINTER
15 7 0 ‘
[T (©cR)]SSR] STATUSREGISTER
31 ' 0
|] VBR] VECTORBASE REGISTER
N o 20
[_______________________ SFC ALTERNATE SOURCE AND DESTINATION
-.__- - DFG FUNCTION CODE REGISTERS
31 0
L] CACR - CACHE CONTROL REGISTER

Figure 2-4. Iﬁteger Unit Supervisor Programming Model

The supervisor programming model consists of the registers available to the user as well
as the following control registers: :

s Two 32-Bit Supervisor Stack Pointers (ISP, MSP)
* 16-Bit Status Register (SR)
o 32-Bit Vector Base Register (VBR)

* Two 32-Bit Alternate Function Code Registers: Source Function Code (SFC) and
Destination Function Code (DFC)

« 32-Bit Cache Control Register (CACR)

The following paragraphs describe the supervisor programming model registers.
Additional information on the ISP, MSP, SR, and VBR registers can be found in Section 8
Exception Processing.

2.2.2.1 INTERRUPT AND MASTER STACK POINTERS. In a multitasking operating
system, it is more efficient to have a supervisor stack pointer associated with each user
task and a separate stack pointer for interrupt-associated tasks. The M68040 provides two
supervisor stack pointers, master and interrupt. Explicit references to the SSP refer to
either the MSP or ISP while the processor is operating in the supervisor mode. All
instructions that use the SSP implicitly reference the active stack pointer. The ISP and
MSP are general-purpose registers and can be used as software stack pointers, index
registers, or base address registers. The ISP and MSP can be used for word and long-
word operations.

The M-bit of the SR selects whether the ISP or MSP is active. SSP references access the
ISP when the M-bit is clear, putting the processor into the interrupt mode. If an exception
being processed is an interrupt and the M-bit is set, the M-bit is cleared, putting the
processor into the interrupt mode. The interrupt mode is the default condition after reset,
and all SSP references access the ISP. The ISP can be used for interrupt control
information and for workspace area as interrupt exception handling requires.

SSP references access the MSP when the M-bit is set. The operating system uses the
MSP for each task pointing to a task-related area of supervisor data space. This

2-6 M68040 USER'S MANUAL MOTOROLA

procedure separates task-related supervisor activity from asynchronous, 1/O-related
supervisor tasks that can only be coincidental to the currently executing task. The MSP
can separately maintain task control information for each currently executing user task,
and the software updates the MSP when a task switch is performed, providing an efficient
means for transferring task-related stack items. The value of the M-bit does not affect
execution of privileged instructions. Instructions that affect the M-bit are MOVE to SR,
ANDI to SR, EORI to SR, ORI to SR, and RTE. The processor automatically saves the M-
bit value and clears it in the SR as part of the exception processing for interrupts.

2.2,2.2 STATUS REGISTER. The SR (see Figure 2-5) stores the processor status. In the
supervisor mode, software can access the full SR, including the CCR available in user
mode (see 2.2.1.5 Condition Code Register) and the interrupt priority mask and
additional control bits available only in the supervisor mode. These bits indicate the
following states for the processor: one of two trace modes (T1, TO), supervisor or user
mode (S), and master or interrupt mode (M).

The term SSP refers to the ISP and MSP. The M and S bits of the SR decide which SSP
to use. When the S-bit is one and the M-bit is zero, the ISP is the active stack pointer;
when the S-bit is one and the M-bit is one, the MSP is the active stack pointer. The ISP is
the default mode after reset and corresponds to the MC68000, MC68008, MC68010, and
CPU32 supervisor mode.

USERBYTE
SYSTEMBYTE (CONDITION CODE REGISTER)
I I 1 ' L
" o1 9 8 7 6 5 4 3 2 1 0
Lifnofsfufofefnjwlofolofxfn]zfv]c]
(I (S
TRACE INTERRUPT CARRY
ENABLE PRIORTTY MASK OVERFLOW
SUPERVISORUSER STATE R0
NEGATIVE
MASTER/NTERRUPT STATE EXTEND

Figure 2-5. Status Register

2.2.2.3 VECTOR BASE REGISTER. The VBR contains the base address of the exception
vector table in memory. The displacement of an exception vector is added to the value in
this register to access the vector table. Refer to Section 8 Exception Processing for
information on exception vectors.

2.2,2.4 ALTERNATE FUNCTION CODE REGISTERS. The alternate function code
registers contain 3-bit function codes. Function codes can be considered extensions of the
32-bit logical address that optionally provides as many as eight 4-Gbyte address spaces.
The processor automatically generates function codes to select address spaces for data
and programs at the user and supervisor modes. Certain instructions use the SFC and
DFC registers to specify the function codes for operations.

MOTOROLA M68040 USER'S MANUAL 2-7

2.2.2.5 CACHE CONTROL REGISTER. The CACR contains two enable bits that allow
the instruction and data caches to be independently enabled or disabled. Setting an
enable bit enables the associated cache without affecting the state of any lines within the
cache: A hardware reset clears the CACR, disabling both caches.

2-8 M68040 USER’S MANUAL MOTOROLA

SECTION 3
MEMORY MANAGEMENT UNIT
(EXCEPT MC68EC040 AND MC68EC040V)

NOTE

This section does not apply to the MC68EC040 and
MC68ECO040V. Refer to Appendix B MC68EC040 for details.
All references to M68040 in this section only, refer to the
MC68040, MC68040V, and MC68LC040.

The M68040 supports a demand-paged virtual memory environment. Demand means that
programs request memory accesses through logical addresses, and paged means that
memory is divided into blocks of equal size, called page frames. Each page frame is
divided into pages of the same size. The operating system assigns pages to page frames
as they are required to meet the needs of the program. ' '

The M68040 memory management includes the following features:

]

o

o

Independent Instruction and Data Memory Management Units (MMUSs)
32-Bit Logical Address Translation to 32-Bit Physical Address

User-Defined 2-Bit Physical Address Extension

Addresses Translated in Parallel with Indexing into Data or Ins‘tru'cti.on Cache

64-Entry Four-Way Set-Associative Address Translation Cache (ATC) for Each MMU
(128 Total Entries)

Global Bit Allowing Flushes of All Nonglobal Entries from ATCs
Selectable 4K or 8K Page Size
Separate Supervisor and User Translation tables

Two Independent Blocks for Each MMU Can Be Defined as Transparent
(Untranslated)

Three-Level Translation Tables with Optional Indirection

Supervisor and Write Protections '

History Bits Automatically Maintained in Descriptors

External Translation Disable Input Signal (MDIS) for Emulator Support
Caching Mode Selected on Page Basis

The MMUs completely overlap address translation time with other processing activities
when the translation is resident in one of the ATCs. ATC accesses operate in parallel with

MOTOROLA M68040 USER'S MANUAL 3-1

indexing into the on-chip instruction and data caches. The MMU MDIS signal dynamically
disables address translation for emulation and diagnostic support.

Figure 3-1 illustrates the MMUs contained in the two memory units, one for instructions
(supporting instruction prefetches) and one for data (supporting all other accesses). Each
unit contains an MMU, main cache, and snoop controller. The corresponding MMUs
contain two transparent translation registers, which identify blocks of memory that can be
accessed without translation. The MMUs also contain control logic and corresponding
address translation caches (ATCs) in which recently used logical-to-physical address
translations are stored. The data memory unit contains a data write and data read buffer,
and the instruction memory unit contains an instruction line read buffer. These buffers
temporarily hold data until an opportune moment arises to write the data to external
memory or read the operand/instruction into the integer unit.

INSTRUCTION DATA BUS

{}
2

INSTRUCTION
CACHE

A INSTRUCTION
ADDRESS
INSTRUCTION
CONVERT FETCH
< DECODE INSTRUCTION MEMORY UNIT B (‘,:>
U | ADDRESS
8 BUS
EA
CALCULATE c
EXECUTE g
i DATA
FETCH [+ ; DATA
- 0
K~ | Execute 0
WRITE- DATA MEMORY UNIT DATA L
BACK WRITE- 1 , | ADDRESS E <: >
BACK > R BUS
CONTROL
FLOATING- SIGNALS
POINT INTEGER
UNTT UNT

[

Figure 3-1. Memory Management Unit

OPERAND DATA BUS

The principal MMU function is to translate logical addresses to physical addresses using
translation tables stored in memory. As the MMU receives a logical address from the
integer unit, it searches its ATC for the corresponding physical address using the upper

3-2 M68040 USER'S MANUAL MOTOROLA

logical address bits. If the translation is resident, the MMU provides the physical address
to the cache controller, which determines if the instruction or data being accessed is
cached. The cache controller uses the lower address bits to index into memory. An
external bus cycle is performed only when explicitly requested by the cache controller.
When the translation is not in the ATC, the MMU searches the translation tables in
memory for the translation information. Microcode and dedicated logic perform the
address calculations and bus cycles required for this search.

3.1 MEMORY MANAGEMENT PROGRAMMING MODEL

The memory management programming model is part of the supervisor programming
model for the M68040. The eight registers that control and provide status information for
address translation in the M68040 are: the user root pointer register (URP), the supervisor
root pointer register (SRP), the translation control register (TCR), four independent
transparent translation registers (ITTO, ITT1, DTTO, and DTT1), and the MMU status
register (MMUSR). Only programs that execute in the supervisor mode can directly
access these registers. Figure 3-2 illustrates the memory management programming
model.

3 0

[JURR T} USERROOT POINTER REGISTER

31 0 ‘

[T] SRP -} SUPERVISOR ROOT POINTER REGISTER

0
|] TcR - TRANSLATION CONTROL REGISTER

at 0o

C | DTTRO - DATATRANSPARENT TRANSLATION REGISTER 0
at 0 ‘
[| OTTR1] DATATRANSPARENT TRANSLATION REGISTER 1

B 4 mro T INSTRUCTION TRANSPARENT TRANSLATION

REGISTERO
31

r : °| TR INSTRUCTION TRANSPARENT TRANSLATION
- REGISTER 1 »

: 0
A . | MMUSR :l- MMU STATUS REGISTER

Figure 3-2. Memory Management Pfogramming Model

3.1.1 User and Supervisor Root Pointer Registers

The SRP and URP registers each contain the physical address of the translation table’s
root, which the MMU uses for supervisor and user accesses, respectively. The URP points
to the translation table for the current user task. When a new task begins execution, the
operating system typically writes a new root pointer to the URP. A new translation table
address implies that the contents of the ATCs may no longer be valid. A PFLUSH
instruction should be executed to flush the ATCs before loading a new root pointer value,
if necessary. Figure 3-3 illustrates the format of the 32-bit URP and SRP registers. Bits 8-

MOTOROLA M68040 USER'S MANUAL 3-3

0 of an address loaded into the URP or the SRP must be zero. Transfers of data to and
from these 32-bit registers are long-word transfers.

31

s 8 0
| USER ROOT POINTER Jolofololo]o]o]o]ol

| SUPERVISOR ROOT POINTER folofofoJofjo]ofo]o]

Figure 3-3. URP and SRP Register Formats

3.1.2 Translation Control Register

The 16-bit TCR contains two control bits to enable paged address translation and to select
page size. The operating system must flush the ATCs before enabling address translation
since the TCR accesses and resét do not flush the ATCs. All unimplemented bits of this
register are read as zeros and must always be written as zeros. The M68040 always uses
word transfers to access this 16-bit register. The fields of the TCRs are defined following
Figure 3-4, which illustrates the TCR.

1B 1% 13 12 11 10 8

IEIP|°I°I°I°F°I°|°I°I°1°I°F’IOJ°I

NOTE: Bits 13-0 are undefined (reserved).

Figure 3-4. Transiation Control Register Format

E—Enable

This bit enables and disables paged address translatlon

0 = Disable

1 = Enable ‘
A reset operation clears this bit. When translation is disabled, logical addresses are
used as physical addresses. The MMU instruction, PFLUSH, can be executed
successfully despite the state of the E-bit. PTEST results are undefined if the MMU is
disabled and no table search occurs. If translation is disabled and an access does not
match a transparent translation register (TTR), the access has the following default
attributes on the TTR: the caching mode is cachable/write-through, write protection is
disabled, and the user attribute signals (UPA1 and UPADOQ) are zero.

P—Page Size
This bit selects the memory page size.
0 = 4 Kbytes
1=8Kbytes
A reset operation does not affect this bit. The bit must be initialized after a reset.

3-4 M68040 USER'S MANUAL MOTOROLA

3.1.3 Transparent Translation Registers

The data transparent translation registers (DTTRO and DTTR1) and instruction
transparent translation registers (ITTRO and ITTR1) are 32-bit registers that define blocks
of logical address space. The TTRs operate independently of the E-bit in the TCR and the
state of the MDIS signal. Data transfers to and from these registers are long-word
transfers. The TTR fields are defined following Figure 3-5, which illustrates TTR format.
Bits 12-10, 7, 4, 3, 1, and 0 always read as zero.

3 24 2 .15 14 13 12 11 10 9 8 7 6 & 4 3 2 1 0
[vocica aooressease | Loaicar ooressmask | E [sreo [o [oo Jurfuo] o] cm [ofo]w]ofoj

Figure 3-5. Transparent Translation Register Format

Logical Address Base

This 8-bit field is compared with address bits A31-A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated.

Logical Address Mask -

Since this 8-bit field contains a mask for the Logical Address Mask field, setting a bit in
this field causes the corresponding bit in the Logical Address Base field to be ignored.
Blocks of memory larger than 16 Mbytes can- be transparently translated by setting
some of the logical address mask bits to ones. The low-order bits of this field can be set
to define contiguous blocks larger than 16 Mbytes.

E—Enable
This bit enables or disables transparent translation of the block defined by this reg|ster

0 = Transparent translation disabled
1 = Transparent translation enabled

S—Supervisbr Mode
This field specifies the way FC2 is used in matching an address:

00 = Match only if FC2 = 0 (user mode access)
01 = Match only if FC2 = 1 (supervisor mode access)
1X = Ignore FC2 when matching

U0, U1—User Page Attributes

The user defines these bits, and the M68040 does not interpret them. U0 and U1 are
echoed to the UPAO and UPAT1 signals, respectively, if an external bus transfer results
from an access. These bits can be programmed by the user to support external
addressing, bus snooping, or other applications.

MOTOROLA M68040 USER'S MANUAL 3-5

CM—Cache Mode
This field selects the cache mode and access senahzahon as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provudes detalled information on caching
modes, and Section 7 Bus Operation provides information on serialization.

W—Write Protect . ,
This bit indicates if the transparent block is write protected. If set, write and read-modify-
write accesses are aborted as if the resident bit in a table descriptor were clear.

0 = Read and write accesses permitted
1 = Write accesses not permitted

3.1.4 MMU Status Reglster

The MMUSR is a 32-bit register that contains the status mformatlon returned by execution
of the PTEST instruction. The PTEST instruction searches the translation tables to
determine status information about the translation of a specified logical address. Transfers
to and from the MMUSR are long-word transfers. The fields of the MMUSR are defined
following Figure 3-6, which |llustrates the MMUSR.

3 ' 1211”101,93.76543210
(PHYSICAL ADDRESS [8lcluifuols] om [mfojw[T]r]

Figure 3-6. MMU Status Register Format

Physical Address

This 20-bit field contains the upper bits of the translated physical address. Merging
these bits with the lower bits of the logical address forms the actual physical address.
Bit 12 is undefined if a PTEST is executed with 8-Kbyte pages selected.

B—Bus Error

The B-bit is set if a transfer error is encountered during the table search for the PTEST
instruction. If the B-bit is set, all other bits are zero.

G—Gilobal
This bit is set if the G-bit is set in the page descriptor.

U1, UO—User Page Attributes _
These bits are set if corresponding bits in the page descriptor are set.

3-6 M68040 USER'S MANUAL MOTOROLA

S—Supervisor Protection

This bit is set if the S-bit in the page descriptor is set. Setting this bit does not indicate
that a violation has occurred.

CM—Cache Mode _
This 2-bit field is copied from the CM bits in the page descriptor.

M—Modified »
This bit is set if the M-bit is set in the page descriptor associated with the address.

W—Write Protect

This bit is set if the W-bit is set in any of the descriptors encountered during the table
search. Setting this bit does not indicate that a violation has occurred.

T—Transparent Translation Register Hit

If the T-bit is set, then the PTEST address matches an instruction or data TTR, the R-bit
is set, and all other bits are zero. .

R—Resident

The R-bit is set if the PTEST address matches an instruction or data TTR or if the table
search completes by obtaining a valid page descriptor. -

3.2 LOGICAL ADDRESS TRANSLATION

The function of the MMUs is to translate logical addresses to physical addresses. The
MMUs perform.translations according to control information in translation tables. The
operating system creates these translation tables and stores them in memory. The
processor then fetches a translation table as needed and stores it in an ATC.

3.2.1 Translation Tables

The M68040 uses the ATCs in the instruction and data memory units with translation
tables stored in memory to perform the translations from logical to physical addresses.
The operating system loads the translation tables. for a.program into memory. No
distinction is made ‘in the translation of instruction accesses versus data accesses
because the instruction and data MMUs access the same translation table for a specific
privilege mode, either user or supervisor. This lack of distinction results in a merged
instruction and data address space. :

Figure 3-7 illustrates the three-level tree structure of a general translation table supported
by the M68040. The root- and pointer-level tables contain the base addresses of the
tables at the next level. The page-level tables contain either the physical address for the
translation or a pointer to the memory location containing the physica!l address. Only a
portion of the translation table for the entire logical address space is required to be
resident in memory at any time—specifically, only the portion of the table that translates

MOTOROLA M68040 USER'S MANUAL 3-7

the logical addresses of the currently executing process. Portions of translation tables can
be dynamically allocated as the process requires additional memory.

l ROOT POINTER } > T

FIRST | ROOT -
LEVEL |~ TABLES

SECOND |_ POINTER
LEVEL TABLES

~ THIRD PAGE
LEVEL | TABLES

Figure 3-7. Translation Table Structure

The current privilege mode determines the use of the URP or SRP for translation of the
access. The root pointer contains the base address of the translation table's root-level
table. The translation table consists of tables of descriptors. The table descriptors of the
root- and pointer-levels can be either resident or invalid. The page descriptors of the page-
level table can be resident, indirect, or invalid. A page descriptor defines the physical
address of a page frame in'memory that corresponds to the logical address of a page. An
indirect descriptor, which contains a pointer to the actual page descriptor, can be used
when two or more logical addresses access a single page descriptor. - ‘

The table search uses logical addresses to access the translation tables. Figure 3-8
illustrates a logical address format, which is segmented into four fields: root index (Rl),
pointer index (PI), page index (PGl), and page ofiset. The first three fields extracted from
the logical address index the base address for each table level. The seven bits of the
logical address Rl field are multiplied by 4 or shifted to the left by two bits. This sum is
concatenated with the upper 23 bits of the appropriate root pointer (URP or SRP) to yield
the physical address of a root-level table descriptor. Each of the 128 root-level table
descriptors corresponds to a 32-Mbyte block of memory and points to the base of a
pomter—level table.

3-8 M68040 USER'S MANUAL MOTOROLA

31 2524 1817 1312 11 0

JBKPAGE. _ M. o.o_. BEPAGE. v e eeeeeeaae
7BITS I 78IS l’ 4K PAGE I] 4K PAGE 'l
| | 1 | | I] L | |
ROOT INDEX FIELD POINTER INDEX FIELD PAGE INDEX FIELD PAGE OFFSET
(R) ()] (PG

Figure 3-8. Logical Address Format

The seven bits of a logical address Pl field are multiplied by 4 (shifted to the left by two
bits) and concatenated with the fetched root-level descriptor’s upper 23 bits to produce the
physical address of the pointer-level table descriptor. Each of the 128 pointer-level table
descriptors corresponds to a 256-Kbyte block of memory.

For 8-Kbyte pages, the five bits of the PGl field are multiplied by 4 (shifted to the left by
two bits) and concatenated with the fetched pointer-level descriptor’s upper 25 bits to
produce the physical address of the 8-Kbyte page descriptor. The upper 19 bits of the
page descriptor are the page frame’s physical address. There are 32 8-Kbyte page
descriptors in a page-level table.

Similarly, for 4-Kbyte pages, the six bits of the PGl field are multiplied by 4 (shifted to the
left by two bits) and concatenated with the fetched pointer-level descriptor’s upper 24 bits
to produce the physical address of the 4-Kbyte page descriptor. The upper 20 bits of the
page descriptor are the page frame's physical address. There are 64 4-Kbyte page
descriptors in a page-level table.

Write-protect status is accumulated from each level's descriptor and combined with the
status from the page descriptor to form the ATC entry status. The M68040 creates the
ATC entry from the page frame address and the associated status bits and retries the
original bus access. Refer to 3.3 Address Translation Caches for details on ATC entries.

If the descriptor from a page table is an indirect descriptor, the page descriptor pointed to
by this descriptor is fetched. Invalid descriptors can be used at any level of the tree except
the root. When a table search for a normal translation encounters an invalid descriptor, the
processor takes an access fault exception. The invalid descriptor can be used to identify
either a page or branch of the tree that has been stored on an external device and is not
resident in memory or a portion of the translation table that has not yet been defined. In
these two cases, the exception routine can either restore the page from disk or add to the
translation table. Figures 3-9 and 3-10 illustrate detailed flowcharts of table search and
descriptor fetch operations.

A table search terminates successfully when a page descriptor is encountered. The
occurrence of an invalid descriptor or a transfer error acknowledge also terminates a table
search, and the M68040 takes an exception on the retry of the cycle because of these
conditions. The exception handler should distinguish between anticipated conditions and
true error conditions. The exception handler can correct an invalid descriptor that indicates
a nonresident page or one that identifies a portion of the translation table yet to be
allocated. An access error due to a system malfunction can require the exception handler
to write an error message and terminate the task.

MOTOROLA M68040 USER'S MANUAL . 3-9

3-10

EXIT TABLE SEARCH

SELECT ROOT POINTER
FC2=0:URP, 1:SRP

(INTIALIZE ACCRUED
STATUS)
WP 0
UPDATE FALSE
TYPE 'POINTER'

. FETCH ROQT
: DESCRIPTOR

(CHECK DESCRIPTOR TYPE)

‘INVALID' ‘RESIDENT
-
FETCH POINTER
DESCRIPTOR

. ;CKDES%R"’TOR TYPE)

'INVALID' ‘RESIDENT'
_—

. . TYPE 'PAGE' '

" FETCH PAGE -
DESCRIPTOR

A - (CHECK DESCRIPTOR TYPE)

/

TYPE 'INDIRECT'

FETCH INDIRECT
DESCRIPTOR

{CHECK DESCRIPTOR TYPE)

| omenwie

" 'CREATE ATC ENTRY
.- WITH R-BIT CLEAR

ENTRY)

‘INVALID' INDIRECT ‘RESIDENT'

/O\'Rssmsm'

," \

N

PFA = PHYSICAL ADDRESS
FIELDOF D'ESCRIPT OR

CREATE ATC ENTRY WITH R-BIT SET
ATCTAG FC2, LA, DF[G]
ATCENTRY PFA, DFU1,U0,S,CMMWP

ABBREVIATIONS:

PFA - PAGE FRAME ADDRESS .

DF{]- DESCRIPTORFIELD

WP - ACCUMULATED WRITE-
PROTECTION STATUS ...
ASSIGNMENT OPERATOR

(exmTasLe seAaRcH)

Figure 3-9. Detailed Flowchart of Table Search Operation

M68040 USER'S MANUAL

FETCH DESCRIPTOR &
UPDATE HISTORY AND STATUS

TYPE = 'PAGE' OR 'POINTER'

FETCH DESCRIPTOR
AT PA=TA + (INDEX*4)

(INDEX = RI, P}, OR PGI)

IF SCHEDULED, EXECUTE
WRITEACCESS(U 1) FOR
PREVIOUS DESCRIPTOR

(SEE NOTE)

OTHERWISE

—

CREATE ATC ENTRY
WITH R-BIT CLEAR

EXIT TABLE SEARCH

INVALID*
|-/ ‘RESIDENT'
!
C RETURN) WP=WPV W
ourOmue
SCHEDULE

WRITE ACCiESS
(SEENOTE)

'POINTER'

NOTE: DUETO ACCESS PIPELINING, A POINTER
DESCRIPTOR WRITE ACCESS TO UPDATE
THE U-BIT OCCURS AFTER THE READ OF
THE NEXT LEVEL DESCRIPTOR.
ABBREVIATIONS:
WP ~ ACCUMULATED WRITE-
PROTECTION STATUS
V ~LOGICAL "OR* OPERATOR
~ ASSIGNMENT OPERATOR

TYPE = 'INDIRECT
1N

. | PA=DESCRIPTOR ADDRESS

FETCH DESCRIPTOR AT

NORMAL TERMINATION
OF ALL BUS TRANSFERS

TYPE= /J)‘ TYPE = 'PAGE'

OR'INDIRECT'
INVALID
OR'INDIRECT'
RESIDENT'
]

WP =WPV W (RETURN)

READ ACCESS WRITE ACCESS
U=0& Us1s

Uxo (WP=10RM=1) P=10RM=1)
\|/ WP.TM.O

cuT|
EI.XOEgKEDE EXECUTE
RMW ACCESS | | WRITE ACCESS
[V | U M 1

OTHERWISE
NORMAL TERMINATION
CREATE ATC ENTRY

| T
C RETURN) (EXITTABLESEARCD

Figure 3-10. Detailed Flowchart of Descriptor Fetch Operation

MOTOROLA

M68040 USER'S MANUAL

3-11

Motorola highly recommends that the translation tables be placed in cache-inhibited
memory space. Motorola also highly recommends table descriptors must not be left in
states that are incoherent to the processor. Future processors may treat these
recommendations as mandatory. The following paragraphs apply only to M68040 systems
that cannot meet these recommendations.

The processor never allocates table descriptors in the data cache when the processor
performs a table search. Only normal accesses to the translation tables cause descriptors
to be allocated in the data cache. If table descriptors are allocated in the data cache and
the cache is disabled, the processor locks up trying to access a cached descriptor during
a table search. Ensuring that the data cache is invalidated before enabling the MMU or
disabling the data cache and ensuring that the pages containing table descriptors are
pushed and invalidated prevents lockup during table searches.

Table and page descriptors must not be left in a state that is incoherent to the processor.
Violation of this restriction can result in an undefined operation. Page descriptors must not
have an encoding of U-bit = 0, M-bit = 1 and PDT field = 01 or 11. This encoding indicates
that the page descriptor is resident, not used, and modified. The processor's table search
algorithm never leaves a descriptor in this state. This state is possible through direct
manipulation by the operating system for this specific instance. A table search for a
MOVE16 write can corrupt the cache line being written if the table descriptors are marked
copyback.

3.2.2 Descriptors

There are two types of descriptors used in the translation tables, table and page. Table-
and page-level descriptors can be further divided into types of descriptors. Root table
descriptors are used in root-level tables and pointer table descriptors are used in pointer-
level tables. Descriptors in the page-level tables contain either a page descriptor for the
translation or an indirect descriptor that points to a memory location containing the page
descriptor. The P-bit in the TCR selects the page size as either 4 or 8 Kbytes.

3.2.2.1 TABLE DESCRIPTORS. Figure 3-11 illustrates the formats of the root and pointer
table descriptors. Two descriptor formats are possible at the pointer-level tables to support
4-Kbyte and 8-Kbyte page sizes.

3-12 M68040 USER'S MANUAL MOTOROLA

3 9 8 7 ' 6 6§ 4 3 2 1 0
| POINTER TABLE ADDRESS Px] x| x]x]x[ulw] vor |
ROOT TABLE DESCRIPTOR (ROOT LEVEL)

3

8 7 6 5 4 3 2 1 0
| PAGE TABLE ADDRESS [x| x| x[x{ulw] vor |
4K POINTER TABLE DESCRIPTOR (POINTER LEVEL) «

at 7 6 5 4 3 2 1 0
| PAGE TABLE ADDRESS [x] x| x{u]w]| vr |

8K POINTER TABLE DESCRIPTOR (POINTER LEVEL)

Figure 3-11. Table Descriptor Formats

3.2.2.2 PAGE DESCRIPTORS. Figure 3-12 illustrates the page descriptors for both
4-Kbyte and 8-Kbyte page sizes. Refer to Section 4 Instruction and Data Caches for
details concerning caching page descriptors.

3t 12 1

0 9 8 7 6 5 4 3 2 1 0
[PHYSICAL ADDRESS Jurfafuifuls] om [mfu]w] por |

4K PAGE DESCIPTOR (PAGE LEVEL)

3t 3 12 11 10 9 8 7 6 5 4 3 2 1 0
! PHYSICAL ADDRESS fur]urf cfui]uofs] o [m[ufw] Por |
& PAGE DESCRIPTOR (PAGE LEVEL) .

31 2 1 0
{ DESCRIPTOR ADDRESS | por |
INDIRECT PAGE DESCRIPTOR (PAGE LEVEL) '

Figure 3-12. Page Descriptor Formats

3.2.2.3 DESCRIPTOR FIELD DEFINITIONS. The field definitions for the table- and page-
level descriptors are listed in alphabetical order:

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:
00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

MOTOROLA M68040 USER'S MANUAL 3-13

Descriptor Address

This 30-bit field, which contains the physical address of a page descriptor, is only used
in indirect descriptors.

G—Global ‘ ‘
‘When this bit is set, it indicates the entry is global. PFLUSH instruction variants that
specify nonglobal entries do not invalidate global entries, even when all other selection
criteria are satisfied. If these PFLUSH variants are not used, then system software can
use this bit. :

M—Modified

This bit identifies a modified page. The M68040 sets the M-bit in the corresponding
page descriptor before a write operation to a page for which the M-bit is clear, except for
write-protect or supervisor violations. The read portion of a read-modify-write access is
considered a write for updating purposes. The M68040 never clears this bit.

PDT—Page Descriptor Type
This field identifies the descriptor as an invalid descriptor, a page descriptor for a
resident page, or an indirect pointer to another page descriptor.
00 = Invalid

This code indicates that the descriptor is invalid. An lnvahd descriptor can
represent a nonresident page or a logical address range that is out of
bounds. All other bits in the descriptor are ignored. When an invalid .
descriptor is encountered, an ATC entry is created for the logical address .
with the resident bit in the MMUSR clear.

01 or 11 = Resident
These codes indicate that the page is resident.
= Indirect
This code indicates that the descnptor is an indirect descriptor. Bits 31 —2
contain the physical address of the page descriptor. This encoding is invalid
for a page descriptor pointed to by an indirect descriptor.

Physical Address

This 20-bit field contains the physical base address of a page in memory. The logical
address supplles the low-order bits of the address required to index into the page.
When the page size is 8-Kbyte, the least significant bit of this field is not used.

S—Supervisor Protected

This bit identifies a page as supervisor only. Only programs operatmg in the supervisor
mode are allowed to access the portion of the logical address space mapped by this
descriptor when the S-bit is set. If the bit is clear, both supervisor and user accesses are
allowed. S ‘ ‘

3-14 M68040 USER'S MANUAL MOTOROLA

Page Table Address

This field contains the physical base address of a table of page descriptors. The low-
. order bits of the address required to index into the.page table are supplued by the logical
address.

U—Used

- The processor automatically sets this bit when a descriptor is accessed in which the
U-bit is clear. In a page descriptor table, this bit.is set to indicate that the page
corresponding to the descriptor has been accessed. In a pointer table, this bit is set to
indicate that the pointer has been accessed by the M68040 as part of a table search.
The U-bit is updated before the M68040 allows a page to be accessed. The processor
never clears this bit.

uo, U1—-User Page Attributes
These bits are user defined and the processor does not interpret them. U0 and U1 are
echoed to the UPAO and UPAT1 signals, respectively, if an external bus transfer results
from the access. Applications for these bits include extended addressnng and snoop
protocol selection.

UDT—Upper Level Descriptor Type ‘

These bits indicate whether the next level table descriptor is resident.

00 or 01 = Invalid
These codes indicate that the table at the next level is not resident or that
the logical address is out of bounds. All other bits in the descriptor are
ignored. When an invalid descriptor is encountered, an ATC entry is created
for the logical address with the resident bit in the MMUSR clear.

10 or 11 = Resident
These codes indicate that the page is resident.

UR—User Reserved
These single bit fields are reserved for use by the user.

W—Write Protected

Setting the W-bit in a table descriptor write protects all pages accessed with that
descriptor. When the W-bit is set, a write access or a read-modify-write access to the
logical address corresponding to this entry causes an access error exception to be
taken.

X—Motorola Reserved
These bit fields are reserved for future use by Motorola.

MOTOROLA M68040 USER'S MANUAL 3-15

3.2.3 Translation Table Example

Figure 3-13 illustrates an access example to the logical address $76543210 while in the
supervisor mode with an 8-Kbyte memory page size. The Rl field of the logical address,
$3B, is mapped into bits 8-2 of the SRP value to select a 32-bit root table descriptor at a
root-level table. The selected root table descriptor points to the base of a pointer-level
table, and the Pl field of the logical address, $15, is mapped into bits 8-2 of this base
address to select a pointer descriptor within the table. This pointer table descriptor points
to the base of a page-level table, and the PGl field of the logical address, $1, is mapped
into bits 6-2 of this base address to selecta page descrlptor within the table.

3.2.4 Variations in Translatlon Table Structure

Several aspects of the MMU translation table structure are software configurable, allowing
the system designer flexibility to optimize the performance of the MMUs for a particular
system. The following paragraphs discuss the variations of the translation table structure.

3.2.4.1 INDIRECT ACTION. The M68040 provides the ability to replace an entry in a page
table with a pointer to an alternate entry. The indirection capability allows multiple tasks to
share a physical page while maintaining only a single set of history information for the
page (i.e., the modified indication is maintained only in the single descriptor). The
indirection capability also allows the page frame to appear at arbitrarily dlfferent addresses
in the logical address spaces of each task.

3-16 M68040 USER'S MANUAL MOTOROLA

LOGICAL ADDRESS

ROOT INDEX POINTER INDEX PAGE INDEX PAGE QFFSET

$76543210= [0 1 1 1 0 t 1Joo 1010 1[0 000 X XXXXXXXXXXXX|
TABLE ENTRY # = $38 $16 $01 .
ADDRESS OFFSET = $EC $54 $04
TABLE 500 TABLE $00 TABLE $00
: TABLE $38 TABLE $15
SUPERVISOR—>»[__ SRP __ |——>~]
MCDE : : :
$38 | 500001800 $15 | 900003000 $01 [FRAME ADDRESS|
TABLE $7F TABLE $1F
ROOTLEVEL POINTER LEVEL PAGE LEVEL

TABLES TABLES TABLES

Figuré 3-13. Exampie Translation Table

Using the indirection capability, single entries or entire tables can.be shared betweyen
multiple tasks. Figure 3-14 illustrates two tasks sharing a page using indirect descriptors.

When the M68040 has completed a normal table search, it examines the PDT field of the
last entry fetched from the page tables. If the PDT field contains an indirect ($2) encoding,
it indicates that the address contained in the highest order 30 bits of the descriptor is a
pointer to the page descriptor that is to be used to map the logical address. The processor
then fetches the page descriptor from this address and uses the physical address field of
the page descriptor as the physical mapping for the logical address.

The page descriptor located at the address given by the indirect descriptor must not have
a PDT field with an indirect encoding (it must be either a resident descriptor or invalid).
Otherwise, the descriptor is treated as invalid, and the M68040 creates an ATC entry with
a signaled error condition (R-bit in MMUSR is clear).

MOTOROLA M68040 USER'S MANUAL 3-17

LOGICAL ADDRESS

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET
$76543210= J0 1 1 1.0 1 1J0 01 01 0.1f0 00 0 1fX XXX XXXXXXXXX]|
TABLE ENTRY #= - %8 $15 s ‘
ADDRESS OFFSET = $EC $54 $04
TABLE $00 TABLE $00 TABLE $00
’ TABLE $38 TABLE$15
AOOT PONTER}— . [s
TASKA —] ' - : I :
$38 | $00001800 $15 800003000 $01 [$80000010
: TABLESTF TABLESIF
ROGT POINTER >
TASKB — : l : :
. >-1FRAME ADDRESS)
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLES TABLES TABLES

Figure 3-14. Translation Table Using Indirect Descriptors

3.2.4.2 TABLE SHARING BETWEEN TASKS. More than one task can share a pointer- or
page-level table by placing a pointer to a shared table in the address translation tables.
The upper (nonshared) tables can contain different write-protected settings, allowing
different tasks to use the memory areas with different write permissions. In Figure 3-15,
two tasks share the memory translated by the table at the pointer table level. Task A
cannot write to the shared area; task B, however, has the W-bit clear in its pointer to the
shared table so that it can read and write the shared area. Also, the shared area appears
at different logical addresses for each task. Figure 3-15 illustrates shared tables in a
translation table structure.

3-18 M68040 USER'S MANUAL MOTOROLA

LOGICAL ADDRESS

ROOT INDEX POINTERINDEX __PAGE INDEX PAGE OFFSET
$76543210= {0 1 1 1 0 1 1fo 0 1010 1foo0 0 1fxxxxXxxxxxXxxXxXx]|
TABLEENTRY #a $38 $15 $o1
ADDRESS OFFSET = $EC $54 $04
TABLE $00 TABLE $00 TABLE $00

Y

ROOT POINTER _ ‘ _ _
TASKA —] : : :

:
) TABLE $38 TABLE $15
ROOT POINTER 0
TASKB — . :
W-BIT CLEAR — FRAME ADDRESS|
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLES TABLES TABLES

* Page frame address shared by task A and B; write protected from task A,

Figure 3-15. Translation Table Using Shared Tables

3.2.4.3 TABLE PAGING. The entire translation table for an active task need not be
resident in main memory. In the same way that only the working set of pages must be
allocated in main memory, only the tables that describe the resident set of pages need be
available. Placing the invalid code ($0 or $1) in the UDT field of the table descriptor that
points to the absent table(s) implements this paging of tables. When a task attempts to
use an address that an absent table would translate, the M68040 is unable to locate a
translation and takes access error exception when the execution unit retries the bus
access that caused the table search to be initiated.

The operating system determines that the invalid code in the descriptor corresponds to
nonresident tables. This determination can be facilitated by using he unused bits in the
descriptor to store status information concerning the invalid encoding. The M68040 does
not interpret or modify an invalid descriptor's fields except for the UDT field. This

MOTOROLA : Me68040 USER'S MANUAL . 3-19

interpretation allows the operating system to store system-defined information in the
remaining bits. Information typically stored includes the reason for the invalid encoding
(tables paged out, region unallocated, etc.) and possibly the disk address for nonresident
tables. Figure 3-16 illustrates an address translation table in which only a smgle page
table (table $15) is resident; all other page tables are not resident.

LOGICAL ADDRESS

‘ ROOT INDEX POINTER INDEX __PAGE INDEX PAGE OFFSET
$765¢3210= |0 1 1 1 01 1Jo 0 1 010 1Jo00 0 X XXXXXXXXXXXX|
TABLEENTRY #= $38 $15 %01
ADDRESS OFFSET = $EC $54 $04
SUPERVISOR
TABLE $00 TABLE $00 _TABLESO0
NONRESIDENT NONRESIDENT NONRESIDENT
(PAGED OR (PAGED OR
UNALLOCATED) UNALLOCATED)
. : TABLE $38 | TABLE $15
[s }——>{uwr-man |- [UDT = INVALID
. . .
UDT = INVALID UDT = INVALID .
$38 | UDT = RESIDENT $15 | UDT = RESIDENT $01|FRAME ADDRESS]
UDT = INVALID UDT = INVALID .
UDT = NVALID - [uor = INvALID
) TABLE $7F : TABLE $1F
NONRESIDENT NONRESIDENT NONRESIDENT
{PAGED OR (PAGED OR (PAGEDOR
UNALLOCATED) UNALLOCATED) UNALLOCATED)
ROOTLEVEL POINTERLEVEL PAGE-LEVEL
TABLES TABLES TABLES

Figure 3-16. Translation Table with Nonresident Tables

3-20 M68040 USER'S MANUAL MOTOROLA

3.2.4.4 DYNAMICALLY ALLOCATED TABLES. Similar to paged tables, a complete
translation table need not exist for an active task. The operating system can dynamically
allocate the translation table based on requests for access to particular areas.

As in demand paging, it is difficult, if not impossible, to predict the areas of memory that a
task uses over any extended period. Instead of attempting to predict the requirements of
the task, the operating system performs no action for a task until a demand is made
requesting access to a previously unused area or an area that is no longer resident in
memory. This technique can be used to efficiently create a translation table for a task.

For example, consider an operating system that is preparing the system to execute a
previously unexecuted task that has no translation table. Rather than guessing what the
memory-usage requirements of the task are, the operating system creates a translation
table for the task that maps one page corresponding to the initial value of the program
counter (PC) for that task and one page corresponding to the initial stack pointer of the
task. All other branches of the translation table for this task remain unallocated until the
task requests access to the areas mapped by these branches. This technique allows the
operating system to construct a minimal translation table for each task, conserving
physical memory utilization and minimizing operating system overhead.

3.2.5 Table Search Accesses

The cache treats table search accesses that are not read-modify-write accesses as
cachable/write-through but do not allocate in the cache for misses. Read-modify-write
table search accesses (required to update some descriptor U-bit and M-bit combinations)
are treated as noncachable and force a matching cache line to be pushed and invalidated.
Table search bus accesses are locked only for the specific portlons of the table search
that requires a read-modify-write access.

During a table search, the U-bit in each encountered descriptor is checked and set if not
already set. Similarly, when the table search is for a write access and the M-bit of the
page descriptor is clear, the processor sets the bit if the table search does not encounter a
set W-bit or a supervisor violation. Repeating the descriptor access as part of a read-
modify-write access updates specific combinations of the U and M bits, allowing the
external arbiter to prevent the update operation from being interrupted.

The M68040 asserts the LOCK signal during certain portions of the table search to ensure
proper maintenance of the U-bit and M-bit. The U-bit and M-bit are updated before the
M68040 allows a page to be accessed or written. As descriptors are fetched, the U-bit and
M-bit are monitored. Write cycles modify these bits when required. For a table descriptor,
a write cycle that sets the U-bit occurs only if the U-bit was clear. Table 3-1 lists the page
descriptor update operations for each combination of U-bit, M-bit, write-protected, and
read or write access type.

MOTOROLA M68040 USER'S MANUAL 3-21

Table 3-1. Updating U-Bit and M-Bit for Page Descriptors

Previous Status Access Page Descriptor New Status
u-Bit | m-Bit | wpeit| Tvpe Update Operation U-Bit | M-Bit
0 0 Locked RMW Access to Set U 1 0
0 1 Locked RMW Access to Set U 1 1
1 (o] X Read |None 1 0
1 1 None 1 1
0 0 Write to Set U and M 1 1

0 1 Locked RMW Access to Set U 1 1

1 0 0 Write to Set M. 1 1.

1 1 Write | None 1 1

0 o Locked RMW Access to Set U 1 o’

0 1 Locked RMW Access to Set U 1 1

1 0 1 None 1 0
1 1 None 1 1

NOTE: WP indicates the accumulated write-protect status.

An alternate address space access is a special case that is immediately used as a
physical address without translation.- Because the M68040 implements a merged
instruction and data space, the integer unit translates MOVES accesses to instruction
address spaces (SFC/DFC = $6 or $2) into data references (SFC/DFC = $5 or $1). The
data memory unit handles these translated accesses as normal data accesses. If the
access fails due to an ATC fault or a physical bus error, the resulting access error stack
frame contains the converted function code in the TM field for the faulted access.
Invalidation of the instruction cache line containing the referenced location to maintain
cache coherency must precede MOVES accesses that write the instruction address

space. The SFC and DFC values and results are listed in Table 3-2.

3-22

Table 3-2. SFC and DFC Values

Results
SFC/DFC Value T ™
000 10 000
001 00 001
010 00 001
011 10 o011
100 10 100
101 00 101
110 00 101
111 10 11

M68040 USER'S MANUAL

MOTOROLA

3.2.6 Address Translation Protection

The M68040 MMUs provide separate translation tables for supervisor and user address
spaces. The translation tables contain both mapping and protection information. Each
table and page descriptor includes a write-protect (W) bit that can be set to provide write
protection at any level. Page descriptors also contain a supervisor-only (S) bit that can
limit access to programs operating at the supervisor privilege level.

The protection mechanisms can be used individually or in any combination to protect:
» Supervisor address space from accesses by user programs.
* User address space from accesses by other user programs.

» Supervisor and user program spaces from write accesses (implicitly supported by
designating all memory pages used for program storage as write protected).

* One or more pages of memory from write accesses.

3.2.6.1 SUPERVISOR AND USER TRANSLATION TABLES. One way of protecting
supervisor and user address spaces from unauthorized accesses is to use separate
supervisor and user translation tables. Separate trees protect supervisor programs and
data from accesses by user programs and user programs and data from access by
supervisor programs. Access is granted to the supervisor programs that can accesses any
area of memory with MOVES. The translation table pointed to by the SRP is selected for
all other supervisor mode accesses. This translation table can be common to all tasks.
Figure 3-17 illustrates separate translation tables for supervisor accesses and for two user
tasks that share the common supervisor space. Each user task has an translation table
with unique mappings for the logical addresses in its user address space.

3.2.6.2 SUPERVISOR ONLY. A second mechanism protects supervisor programs and
data without requiring segmenting of the logical address space into supervisor and user
address spaces. Page descriptors contain S-bits to protect areas of memory from access
by user programs. When a table search for a user access encounters an S-bit set in a
page descriptor, the table search ends, and an ATC descriptor corresponding to the
logical address is created with the S-bit set. A subsequent retry of the user access results
in an access error exception being taken. The S-bit can be used to protect one or more
pages from user program access. Supervisor and user mode accesses can share
descriptors by using indirect descriptors or by sharing tables. The entire user and
supervisor address spaces can be mapped together by loading the same root pointer
address into both the SRP and URP registers.

MOTOROLA M68040 USER'S MANUAL 3-23

FORTASK ‘A’ USER A LEVEL TABLE

| URP FORTASK ‘A’ — —>
- ' v TRANSLATION
. TABLE FOR
. TASK'A'
.—>
—
FORTASK® USER ALEVEL TABLE : »
[URP FOR TASK '8 —— >
v TRANSLATION
. TABLE FOR
. TASK B’
: 5
—>
POINTER
SUPERVISOR A LEVEL TABLE
| COMMON SRP ——- >
- 0 > | TRANSLATION
. TABLE FOR
: ALL SUPERVISOR
|5 | Accesses
—>

Figure 3-17. Translation Table Structure for Two Tasks

3.2.6.3 WRITE PROTECT. The M68040 provides write protection independent of other
protection mechanisms. All table and page descriptors contain W-bits to protect areas of
memory from write accesses of any kind, including supervisor writes. An ATC descriptor
corresponding to the logical address is created with the W-bit set after the table search is
completed when a table search encounters a W-bit set in any table or page descriptor.
The subsequent retry of the write access results in an access error exception being taken.
The W-bit can be used to protect the entire area of memory defined by a branch of the
translation table or protect only one or more pages from write accesses. Figure 3-18 -
illustrates a memory map of the logical address space organized to use supervisor-only
and write-protect bits for protection. Figure 3-19 illustrates an example translation table for
this technique. :

SUPERVISOR AND USER SPACE
THIS AREA IS SUPERVISOR ONLY, READ-ONLY
THIS AREA IS SUPERVISOR ONLY, READ/WRITE
THIS AREA IS SUPERVISOR OR USER, READ-ONLY
THIS AREA IS SUPERVISOR OR USER, READWRITE

Figure 3-18. Logical Address Map with Shared
Supervisor and User Address Spaces

3-24 M68040 USER'S MANUAL ' MOTOROLA

THIS PAGE ﬂ

SUPERVISOR ONLY,
READ ONLY
> WX >[5 1W=X
: . THIS PAGE
: : SUPERVISOR ONLY,
READWRITE
> W=0 >l Sa1W=0
. . THIS PAGE
: : SUPERVISORUSER,
PRIVILEGE
FRULEGE->- SkP > W=t} WeX > S-oW=X
URP oo
URP & SAP POINT - - .
TO SAME A LEVEL : : :
TABLE : . .
Wat
W=0
. . THIS PAGE
: ‘ : : SUPERVISORIUSER,
READMWRITE
W=0 > S=0W=0
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLE TABLE TABLE

NOTE: X = Don'tcare.

Figure 3-19. Translation Table Using S-Bit and W-Bit To Set Protection

MOTOROLA ME8040 USER'S MANUAL 3-25

3.3 ADDRESS TRANSLATION CACHES

The ATCs in the MMUs are four-way set-associative caches that each store 64 logical-to-
physical address translations and associated page information similar in form to the
corresponding page descriptors in memory. The purpose of the ATC is to provide a fast
mechanism for address translation by avoiding the overhead associated with a table
search of the logical-to-physical mapping of recently used logical addresses. Figure 3-20
illustrates the organization of the ATC.

31 16

3
(;: PAGE FRAME

PAGE OFFSET

T [G

PA(11-0)

\ PA(12)
' 'PAGE SIZE MUX
1
1} ot
SELECT SEro
SET4
A o
SET 15
R SR [
l LINE SELECT
; Y
‘ 2 51° HIT 3 .
I , HIT 2 > HT | HT
. - HIT 1 | DETECT
COMPARATOR |—— HITO >
.0 —
Figure 3-20. ATC Organization
3-26 M68040 USER'S MANUAL MOTOROLA

Each ATC entry consists of a physical address, attribute information from a corresponding
page descriptor, and a tag that contains a logical address and status information. Figure
3-21, which illustrates the entry and tag fields, is followed by field definitions listed in
alphabetical order.

[[w] s] o [w]wlnr] PHYSICAL ADDRESS* |
a
{ v] e] rel LOGICAL ADDRESS* B

TAG .
* For 4-Kbyte page sizes this field uses addrass bits 31~12; for 8-Kbyte page sizes, bits 31-13,

Figure 3-21. ATC Entry and Tag Fields

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:
00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable
Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

FC2—Function Code Bit 2 (Supervisor/User)

This bit contains the function code corresponding to the logical address in th_is entry.
FC2 is set for supervisor mode accesses and cleared for user mode accesses.

G—CGlobal

When set, this bit indicates the entry is global. Global entries are not invalidated by the
PFLUSH instruction variants that specify nonglobal entries, even when all other
“selection criteria are satisfied.

Logical Address

This 13-bit field contains the most significant logical address bits for this entry. All 16
_bits of this field are used in the comparison of this entry to an incoming logical address
when the page size is 4 Kbytes. For 8-Kbytes pages, the least significant bit of this field
is ignored.

M—Modified

- The modified bit is set when a valid write access to the logical address corresponding to
the entry occurs. If the M-bit is clear and a write access to this logical address is
attempted, the M68040 suspends the access, initiates a table search to set the M-bit in
the page descriptor, and writes over the old ATC entry with the current page descriptor
information. The MMU then allows the original write access to be performed. This

A

MOTOROLA M68040 USER'S MANUAL 3-27

procedure ensures that the first write operation to a page sets the M-bit in both the ATC
and the page descriptor in the translation tables, even when a previous read operation
to the page had created an entry for that page in the ATC with the M-bit clear.

Physical Address.
The upper bits of the translated physical address are contained in this field.

R—Resident

This bit is set if the table search successfully completes without encountering either a
nonresident page or a transfer error acknowledge during the search.

S—Supervisor Protected

This bit identifies a pointer table or a page as a supervisor-only table or page. Only
programs operating in the supervisor privilege mode are allowed to access the portion
of the logical address space mapped by this descriptor when the S-bit is set. If the bit is
clear, both supervisor and user accesses are allowed.

U0, U1—User Page Attributes

These user-defined bits are not interpreted by the M68040. UO and U1 are echoed to
the UPAQ and UPA1 sugnals respectively, if an external bus transfer results from the
access.

V—Valid
When set, this bit indicates the validity of the entry. This bit is set when the M68040
loads an entry. A flush operation by a PFLUSH or PFLUSHA instruction that selects this
entry clears the bit.

W—Write Protected

This write-protect bit is set when a W-bit is set in any of the descriptors encountered
during the table search for this entry. Setting a W-bit in a table descriptor write protects
all pages accessed with that descriptor. When the W-bit is set, a write access or a read-
modify-write access to the logical address corresponding to this entry causes an access
error exception to be taken immediately.

For each access to a memory unit, the MMU uses the four bits of the logical address
located just above the page offset (LA16-LA13 for 8K pages, LA15-LA12 for 4K pages) to
index into the ATC. The tags are compared with the remaining upper bits of the logical
address and FC2. If one of the tags matches and is valid, then the multiplexer choses the
corresponding entry to produce the physical address and status information. The ATC
outputs the corresponding physical address to the cache controller, which accesses the
data within the cache and/or requests an external bus cycle. Each ATC entry contains a
logical address, a physical address, and status bits.

When the ATC does not contain the translation for a logical address, a miss occurs. The

MMU aborts the current access and searches the translation tables in memory for the
correct translation. If the table search completes without any errors, the MMU stores the

3-28 M68040 USER'S MANUAL MOTOROLA

translation in the ATC and provides the physical address for the access, allowing the
memory unit to retry the original access.

There are some variations in the logical-to-physical mapping because of the two page
sizes. If the page size is 4 Kbytes, then logical address bit 12 is used to access the ATC's
memory, the tag comparators use bit 16, and physical address bit 12 is an ATC output. If
the page size is 8 Kbytes, then logical address bit 16 is used to access the ATC's
memory, and physical address bit 12 is driven by Iogica! address bit 12. It is advisable that
a translation always be disabled before changing size and that the ATCs are flushed
before enabling translation again.

The M68040 is organized such that other operations always completely overlap the
translation time of the ATCs; thus, no performance penalty is associated with ATC
searches. The address translation occurs in parallel with indexing into the on-chip
instruction and data caches.

The MMU replaces an invalid entry when the ATC stores a new address translation. When
all entries in an ATC set are valid, the ATC selects a valid entry to be replaced, using a
pseudo-random replacement algorithm. A 2-bit counter, which is incremented for each
ATC access, points to the entry to replace when an access misses in the ATC. ATC hit
rates are application and page-size dependent, but hit rates ranging from 98% to greater
than 99% can be expected. These high rates are achieved because the ATCs are
relatlvely large (64 entnes) and utilization efficiency is hlgh with 8-Kbyte and 4-Kbyte page
sizes.

3.4 TRANSPARENT TRANSLATION

Four independent TTRs (DTTO and DTT1 in the data MMU, ITTO and ITT1 in the
instruction MMU) define four blocks of logical address space to be translated to physical
address space. These logical address spaces must be at least 16 Mbytes and can overlap
or be separate. Each TTR can be disabled and completely |gnored The following
description assumes that the TTRs are enabled.

When an MMU receives an address to be translated, the privilege mode and the eight
high-order bits of the address are compared to the logical address spaces defined by the
two TTRs for the corresponding MMU. The logical address space for each TTR is defined
by an S-field, logical base address field, and logical address mask field. The S-field allows
matching either user or supervisor accesses or both accesses. When a bit in the logical
address mask field is set, the corresponding bit of the logical base address is ignored in
the address comparison and privilege mode. Setting successively higher order bits in the
address mask increases the size of the physical address space.

The address for the current bus cycle and a TTR address match when the privilege mode
and logical base address bits are equal. Each TTR can specify write protection for the
block. When write protection is enabled for a block, write or read-modify-write accesses to
the block are aborted.

MOTOROLA M68040 USER'S MANUAL 3-29

By appropriately configuring a TTR, flexible transparent mappings can be specified (refer
to 3.1.3 Transparent Translation Registers for field identification). For instance; to
transparently translate the user address space, the S-field is set to $0, and the logical
address mask is set to $FF in both an instruction and data TTR. To transparently translate
supervisor accesses of addresses $00000000-$0FFFFFFF with write protection, the
logical base address field is set to $0x, the logical address mask is set to $0F, the W-bit is
set to one, and the S-field is set to $1. The inclusion of independent TTRs in both the
instruction and data MMUs provides an exception to the merged instruction and data
address space, allowing different translations for.instruction and operand accesses. Also,
since the instruction memory unit is only used for instruction prefetches, different
instruction and data TTRs can cause PC relatlve operand fetches to be translated
differently from instruction prefetches.

If either of the TTRs matched during an aCcess to a memory- unit (either instruction or
data), the access is transparently translated. If both registers match, the TTO status bits
are used for the access. Transparent translation can also be implemented by the
translation tables of the translation tables |f the physncal addresses of pages are set equal
to their: Ioglcal addresses.

3.5 ADDRESS TRANSLATION SUMMARY

The instruction and data MMUs process translations by first companng the Iog|cal address
and privilege mode with the parameters of the TTRs. If there is a match, the MMU uses
the logical address as a physical address for the access. If there is no match, the MMU
compares the logical address and privilege mode with the tag portions of the entries in the
ATC and uses the corresponding physical address for the access when a match occurs.
When neither a TTR nor a valid ATC entry matches, the MMU initiates a table search
operation to obtain the corresponding physical address from the translation table. When a
table search is required, the processor suspends instruction execution activity and, at the
end of a successful table search, stores the address mapping in the appropriate ATC and
retries the access. The MMU creates a valid ATC entry for the logical address, and the
access is retried. If an access hits in the ATC but an access error or invalid page
descriptor was detected during the table search that created the ATC entry, the access is
aborted, and a bus error exception is taken.

If a write or read-modify-write access results in an ATC hit but the page is write protected,
the access is aborted, and an access error exception is taken. If the page is not write
protected and the modified bit of the ATC entry is clear, a table search proceeds to set the
modified bit in both the page descriptor in-memory and in the ATC,; the access is retried.

The ATC provides the address translation for the access if the modified bit of the ATC
entry is set for a write or read-modify-write access to an unprotected page, if the resident
bit is set (indicating the table search for the entry completed successfully), and if none of
the TTRs (instruction or data, as approprlate) match ,

An ATC access error is not reported immediately, if the last 16 bits of a page is either an
A-line, illegal, CHK, or unimplemented instruction and the next page is non-resident.
Instead, the M68040 attempts to prefetch the next instruction on the missing page, then
the ATC access error exception is reported. The stacked PC points to the exceptional

3-30 M68040 USER'S MANUAL MOTOROLA

instruction, and the stacked FA points to the first longword in the missing page. When an
ATC access error occurs while prefetching the next instruction on the non-existant page
after a change of flow instruction, the exception should be cleared by execution of the new
instruction flow. Either avoid this scenario, or have a dummy resident page following the
exceptional instruction.

Figure 3-22 illustrates a general flowchart for address translation. The top branch of the
flowchart applies to transparent translation. The bottom three branches apply to ATC
translation.

3.6 MMU EFFECT ON RSTI AND MDIS »
The following paragraphs describe MMU effects on the RSTI and MDIS pins.

3.6.1 Effect of RSTI on the MMUs

When the M68040 is reset by the assertion of the reset input signal, the E-bits of the TCR
and TTRs are cleared, disabling address translation. This reset causes logical addresses
to be passed through as physical addresses, allowing an operating system to set up the
translation tables and MMU registers as required. After the translation tables and registers
are initialized, the E-bit of the TCR can be set, enabling paged address translation. While
address translation is disabled, the attribute bits for an access that an ATC entry or a TTR
normally supplies are zero, selecting write-through cachable mode, no write protection,
and user page attribute bits cleared. RSTI does not affect the P-bit of the TCR.

A reset of the processor does not invalidate any entries in the ATCs or alter the page size.
A PFLUSH instruction must be executed to flush all existing valid entries from the ATCs
after a reset operation and before translation is enabled. PFLUSH can be executed even if
the E-bit is cleared.

3.6.2 Effect of MDIS on Address Translation

The assertion of MDIS prevents the MMUs from performing ATC searches and the
execution unit from performing table searches. With address translation disabled, logical
addresses are used as physical addresses. MDIS disables the MMUs on the next internal
access boundary when asserted and enables the MMUs on the next boundary after the
signal is negated. The assertion of this signal does not affect the operation of the
transparent translation registers or execution of the PFLUSH or PTEST instructions.

MOTOROLA M68040 USER'S MANUAL 3-31

ENTRY

LOGICAL ADDRESS
OTHERWISE MATCHES WITH
% ™
ATCHIT LOGICAL ADDRESS
ATCMISS OWERW‘SE MATCHES WITH TTRO*
RIW]=1)AND (TTRO‘W]=1)AND
/ g %nrrlswclm B (WRITE OR AW
NAITE O AV OYCLE ACCESS) ACCESS) o uemwie
~ OTHERWISE
ABORT CYCLE
s OTHERWISE
ABORT CYCLE
TAKE ACCESS ERROR
EXCEPTION
TAKE ACCESS ERROR
(M=) AND OTHERWISE EXCEPTION
(WRITE OR RMW CYCLE)
PA LOGICAL ADDRESS PA LOGICAL ADDRESS
UPA TTRI*[U1,U0] UPA TTRO'[UIUO]
CM TTR1*[CM] CM_ TTRO*[CM)
] ABORT CYCLE |
EXIT
TABLE SEARCH
OPERATION
PA ATCENTRY[PA)
UPA ATCENTRY [U1,U0}
CM ATCENTRY [CM]
EXIT
* Refars to either instruction or data transparent translation register.
Figure 3-22. Address Translation Flowchart
3-32 M68040 USER'S MANUAL MOTOROLA

3.7 MMU INSTRUCTIONS

The M68040 instruction set includes three privileged instructions that perform MMU
operations. The following paragraphs briefly describe each of these instructions. For
detailed descriptions of these instructions, refer to M68000PR/AD, M68000 Famlly
Programmer's Reference Manual.

3.7.1 MOVEC

The MOVEC instruction transfers data between an integer data register, or memory
location, and any of the M68040 control and status registers. The operating system uses
the MOVEC instruction to control and monitor MMU operation by manipulating and
reading the eight MMU registers.

3.7.2 PFLUSH

The PFLUSH instruction flushes or invalidates address translation descriptors in the
ATCs. PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The PFLUSH
instruction flushes a user or supervisor entry with a specified logical address. The
PFLUSHAN and PFLUSHN instruction variants qualify entry selection further by flushing
only entries that are nonglobal, indicated by a cleared G-bit in the entry.

3.7.3 PTEST

The PTEST instruction performs a table search operation for a specified function code and
logical address and sets the appropriate bit fields in the MMUSR to indicate conditions
encountered during the search. PTEST automatically flushes the corresponding entry from
the cache before searching the tables and loads the latest information from the translation
tables into the ATC. The exception routines of the operating system can use this
instruction to identify MMU faults.

PTEST is primarily used in access error exception handlers. For example, if a bus error
has occurred, the handler can execute an instruction sequence such as the following
sequence:

MOVE.B (A7,offset1),D0 Copy transfer modifier field from stack frame

MOVEC Do,DFC into DFC register

MOVEA.L (A7,offset2),A0 Copy fault address from stack frame into address register
PTESTW (A0) Test address in A0 with function code in DFC registers

The transfer modifier field copied into the destination function code (DFC) register
indicates whether the faulted access was a supervisor or user mode access and whether
it was an instruction prefetch or data access. The PTEST instruction uses the DFC value
to determine which translation table (supervisor or user) to search and which ATC (data or
instruction) to create the entry in. After executing this code sequence, the handler can
examine the MMUSR for the source of the fault.

The M68040 MMU instructions use opcodes that are different from those for the
corresponding instructions in the MC68030 and MC68851. All MMU opcodes for the

- MOTORCLA M68040 USER'S MANUAL 3-33

MC68030 and MC68851 cause F-line unimplemented instruction exceptions if executed in
either supervisor or user mode by the M68040.

3.74 'F‘tegister Pfogramming ConSiderations

If the entries in the ATCs are no longer valid when a reset operation occurs (as is normally
expected), an explicit flush operation must be specified by the system software. The
assertion of RSTI disables translation by clearing the E-bits of the TCR, DTTRx, and
ITTRX, but it does not flush the ATCs. Reading or writing any of the MMU registers (URP,
SRP, TCR, MMUSR, DTTRO, DTTR1, ITTRO, ITTR1) does not flush the ATCs. Since a
write to these registers can cause some or all the address translations to change, the write
should be followed by a PFLUSH operation to flush the ATCs if necessary.

The status bits in the MMUSR indicate conditions to which the operating system should
respond. In a typical access error exception handler, the flowchart illustrated in Figure
3-23 can be used to determine the cause of an MMU fauit. The PTEST instruction sets
the bits in the MMUSR appropriately, and the program can branch to the appropriate code
segment for the condition.

3-34 M68040 USER'S MANUAL MOTOROLA

PTEST (An)

R=0,

.

B l 1
BRANCH TO *BUS ERROR)
DURING TABLE SEARCH* CODE
BRANCH TO "PAGE FAULT" OR
T O/C)\ "INVALID DESCRIPTOR® CODE
-

((i
S=1AND (USERACCESS

INDICATED IN STACK FRAME)

o
1]
-

OTHERWISE OTHERWISE MATCH TTRO*

BRANCH TO *SUPERVISOR
VOILATION® CODE

\/

o/o\w- : TIRO'W]= 1 AND (WRITE OR
_ M= Y AMW ACCESS INDICATED IN

STACK FRAME)
OTHERWISEH
OTHERWISE

BRANCH TO “WRITE
WRITEORRMWACCESS TTRI*[W]= 1 AND (WRITE OR VIOLATION” CODE

INDICATED IN STACK RMW ACCESS INDICATED IN
FRAME STACK FRAME)

NOT MMU

() BRANCH TO "WRITE
NOT MU VIOLATION® CODE
* Refars to either instruction or data transparent translation register.

Figure 3-23. MMU Status Interpretation

MOTOROLA M68040 USER'S MANUAL 3-35

M68040 USER'S MANUAL

MOTOROLA

SECTION 4
INSTRUCTION AND DATA CACHES

NOTE

Ignore all references to the memory management unit (MMU)

when reading for the MC68EC040 and MCE8EC040V. The

functionality of the MC68040 transparent translation registers -
has been changed in the MC68EC040 and MCE8EC040V to

the access control registers. Refer to Appendix B

MC68EC040 for details.

The M68040 contains two independent, 4-Kbyte, on-chip caches located in the physical
address space. Accessing instruction words and data simultaneously through separate
caches increases instruction throughput. The M68040 caches improve system
performance by providing cached data to the on-chip execution unit with very low latency.
Systems with an alternate bus master receive increased bus availability.

Figure 4-1 illustrates the instruction and data caches contained in the instruction and data
memory units. The appropriate memory unit independently services instruction prefetch
and data requests from the integer unit (IU). The memory units translate the logical
address in parallel with indexing into the cache. If the transiated address matches one of
the cache entries, the access hits in the cache. For a read operation, the memory unit
supplies the data to the U, and for a write operation, the memory unit updates the cache.
If the access does not match one of the cache entries (misses in the cache) or a write
access must be written through to memory, the memory unit sends an external bus
request to the bus controller. The bus controller then reads or writes the required data.

Cache coherency in the M68040 is optimized for multimaster applications in which the
M68040 is the caching master sharing memory with one or more noncaching masters
(such as DMA controllers). The M68040 implements a bus snooper that maintains cache
coherency by monitoring an alternate bus master's access .and performing cache
maintenance operations as requested by the alternate bus master. Matching cache entries
can be invalidated during the alternate bus master's access to memory, or memory can be
inhibited to allow the M68040 to respond to the access as a slave. For an external write
operation, the processor can intervene in the access and update its internal caches (sink
data). For an external read operation, the processor supplies cached data to the alternate
bus muster (source data). This prevents the M68040 caches from accumulating old or
invalid copies of data (stale data). Alternate bus masters are allowed access to locally
modified data within the caches that is no longer consistent with external memory (dirty
data). Allowing memory pages to be specified as write-through instead of copyback also
supports cache coherency. When a processor writes to write-through pages, external

MOTOROLA M68040 USER’S MANUAL 4-1

memory is always updated through an external bus access after updating the cache,
keeping memory and cached data consistent.

INSTRUCTION DATA BUS
INSTRUCTION
ATC
7 ¢ INSTRUCTION
: INSTRUCTION DDR
- | | NSTRUCTION N MMUICACHE/SNOOP C:l_;‘s)
FETCH ~ v CONTROLLER -
CONVERT . >
INSTRUCTION MEMORY UNIT B
< DECODE U | ADDRESS
— 1 S S BUS
o ' c
CALCULATE
EXECUTE g <:>
. EA - T DATA
FETCH . oA
' 0
.) 0
v | (| oo DATAMEMORY UNIT OATA L
BACK N OATA - AcoRess | E —>
WRITEBACK MMU/CACHE/SNOOP BUS
CONTROLLER CoNTROL
FLOATNG- |’ INTEGER Ry '
POINTUNIT } UNIT DATA
: ATC
ﬁ OPERAND DATABUS <5 y

Figure 4-1 . Overview of Internal Caches

4.1 CACHE OPERATION

Both four-way set-associative caches have 64 sets of four 16- byte lines. There are two
formats that define each cache line, an instruction cache line format and a data cache line
format. Each format contains an address tag consisting of the upper 22 bits of the physical
address, status information, and four long words (128 bits) of data. The status information
for the instruction cache line address tag consists of a single valid bit for the entire line.
The status information for the data cache line address tag contains a valid bit and four
additional bits to indicate dirty status for each long word in the line. Note that only the data
cache supports dirty cache lines. Figure 4-2 illustrates the lnstructlon cache Ime format (a)
and the data cache line format (b)

4-2 M68040 USER'S MANUAL MOTOROLA

[vac T v s [w2 | twi | two |

(a) Instruction Cache Line

| 74 Jv] ws |os|] w2 |o2] wi fo1] wwo | ool

TAG — 22-Bit Physical Address Tag
V — Line VALID Bit
LW — Long Word n (32-Bit) Data Entry
Dn — DIRTY Bitfor Long Word n

(b) Data Cache Line
Figure 4-2. Cache Line Formats

The cache stores an entire line, providing validity on a line-by-line basis. Only burst mode
accesses that successfully read four long words can be cached. Memory devices unable
to support bursting can respond to a cache line read or write access by asserting the
transfer burst inhibit (TBI) signal, forcing the processor to complete the access as a
sequence of three long-word accesses. The cache recognizes burst accesses as if the
access were never inhibited, detecting no difference.

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V-
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit
set and D-bits cleared, indicating all four long words in the line contain valid data
consistent with memory. Dirty cache lines have the V-bit and one or more D-bits set,
indicating that the line has valid long-word entries that have not been written to memory
(long words whose D-bit is set). A cache line changes from valid to invalid if the execution
of the CINV or CPUSH instruction explicitly invalidates the cache line; if a snooped write
access hits the cache line and the line is not dirty; or if the SCx signals for a snooped read
access invalidates the line. Both caches should be explicitly cleared after a hardware reset
of the processor since reset does not invalidate the cache lines.

Figure 4-3 illustrates the general flow of a caching operation. The corresponding memory
unit translates the logical address of each access to a physical address allowing the IU to
access the data in the cache. To minimize latency of the requested data, the lower
untranslated bits of the logical address map directly to the physical address bits and are
used to access a set of cache lines in parallel with the translation. Physical address bits
94 are used to index into the cache and select one of the 64 sets of four cache lines. The
four tags from the selected cache set are compared with the translated physical address
bits 31-12 and bits 11 and 10 of the untranslated page offset. If any one of the four tags
matches and the tag status is either valid or dirty, then the cache has a hit. During read
accesses, a half-line (two long words) is accessed at a time, requiring two cache accesses
for reads that are greater than a half-line or two long words. Write accesses within a cache
line require a single cache access. If a misaligned access crosses two pages, then the
partial access to the first page always happens twice, even if the pages are serialized.
Consequently, if the accesses span page boundaries, misaligned accesses to peripherals
are not possible unless the peripheral can tolerate double reads or writes.

MOTOROLA Me8040 USER'S MANUAL : 4-3

LOGICAL ADDRESS
|

31 12 0
s PAGE FRAME PAGE OFFSET
L I Jil I | LINE3
' LINE2
LINE 1
SUPERVISOR LINEO
BIT PHYSICAL
 SET SELECT _
PAS-PA4 i .
LA31-LA2 l | I)
. ') y
SETO TAG | sTATUS [Do | D1 | D2 D3
SETY
PAIT-PAIO : : AR R RN —
‘ |
SETes | TAG | STATUS | Do | D1 | D2 | D3 v
Y
— — ' DATAOR
o : TRANSLATED . o '—* INSTRUCTION
ADDRESS : PHYSICAL ! .
TRANSLATION [~ PA31-PAT2 A P :
vl — ADDRESS | ! MUX
: PA31-PAI0
| (3 LINE SELECT
I HT3
l A LOGICALOR |0 5
HITY
COMPARATOR 0 >
HITO

. Figure 4-3. Caching Operation

Both caches contam circuitry to automatically determine which cache line in a set to use
for a new line. The cache controller locates the first invalid line and uses it; if no invalid
lines exist, then a pseudo-random replacement algorithm is used to select a valid line,
replacing it with the new line. Each cache contains a 2-bit counter, which is incremented
for each access to'the cache. The instruction cache counter is incremented for each half-
line accessed in the instruction cache. The data cache counter is incremented for each
half-line accessed during reads, for each full line accessed during writes in copyback
mode, and for each bus transfer resulting from a write in write-through mode. When a
miss occurs and all four lines in the set are valid, the line pointed to by the current counter
value i is replaced, after which the counter is incremented. .

4-4 M68040 USER'S MANUAL MOTOROLA

4.2 CACHE MANAGEMENT

Using the MOVEC instruction, the caches are individually enabled to access the 32-bit
cache control register (CACR) illustrated in Figure 4-4. The CACR contains two enable
bits that allow the instruction and data caches to be independently enabled or disabled.
Setting one of these bits enables the associated cache without affecting the state of any
lines within the cache. A hardware reset clears the CACR, disabling both caches;
however, reset does not affect the tags, state information, and data within the caches. The
CINV instruction must clear the caches before enabling them. It is not recommended that
page descriptors be cached. Specifically, the M68040 does not support the caching of
page descriptors in copyback mode with the bit pattern U=0,M =1, and R=1in a page
descriptor. The M68040 table search algorithm will never leave this bit pattern for a page
descriptor. :

31 30 16 15 14 i 0

{ o | UNDEFINED [€] UNDEFINED [
DE = Enable Data Cache
IE = Enable Instruction Cache

Figure 4-4. Cache Control Register

System hardware can assert the cache disable (CDIS) signal to dynamically disable both
caches, regardless of the state of the enable bits in the CACR. The caches are disabled
immediately after the current access completes. If CDIS is asserted during the access for
the first half of a misaligned operand spanning two cache lines, the data cache is disabled
for the second half of the operand. Accesses by the execution units bypass the caches
while they are disabled and do not affect their contents (with the exception of CINV and
CPUSH instructions). Disabling the caches with CDIS does not affect snoop operations.
CDIS is intended primarily for use by in-circuit emulators to allow swapping between the
tags and emulator memories.

Even if the instruction cache is disabled, the M68040 can cache instructions because of
an internal cache line register. This happens for instruction loops that are completely
resident within the first six bytes of a half-line. Thus, the cache line holding register can
operate as a small cache. If a loop fits anywhere within the first three words of a half-line,
then it becomes cached.

The CINV and CPUSH instructions support cache management in the supervisor mode.
CINV allows selective invalidation of cache entries. CPUSH performs two operations: 1)
any selected data cache lines containing dirty data are pushed to memory; 2) all selected
cache lines are invalidated. This operation can be used to update a page in memory
before swapping it out with snooping disabled or to push dirty data when changing a page
caching mode to write-through. Because of the size of the caches, pushing pages or an
entire cache incurs a significant time penalty. However, these instructions are
interruptable to avoid large interrupt latencies. The state of the CDIS signal or the cache
enable bits in the CACR does not affect the operation of CINV and CPUSH. Both
instructions allow operation on a single cache line, all cache lines in a specific page, or an

MOTOROLA M68040 USER’S MANUAL 4-5

entire cache, and can select one or both caches for the operation. For line and page
operations, a physical address in an address register specifies the memory address.

43 CACHING MODES

Every IU access to the cache has an associated cachlng mode that determines how the
cache handles the access. An access can be cachable in either the write-through or
copyback modes, or it can be cache inhibited in nonserialized or serialized modes. The
CM field.corresponding to the logical address of the access normally specifies, on a page-
by-page basis, one of these cachmg modes. The default memory access cachmg mode is
nonserialized. When the cache is enabled and memory management is disabled, the
default caching mode is write-through. The transparent translation registers and MMUs
allow the defaults to be overridden. In addition, some instructions and IU operations
perform data accesses that have an-implicit caching mode associated with them. The
following paragraphs discuss the different caching accesses and their related cache
modes.

4.3.1 Cachable Accesses

If a page descriptor's CM field indicates wnte-through or copyback then the access is
cachable. A read access to a write-through or copyback page is read from the cache if
matching data is found. Otherwise, the data is read from memory and used to update the
cache. Since instruction cache accesses are always reads, the selection of write-through
or copyback modes do not affected them. The following paragraphs describe the write-
through and copyback modes in detail. .

4.3.1.1 WRITE-THROUGH MODE. Accesses to pages specrfled as wnte-through are
always written to the external address, although the cycle can be buffered, keeping
memory and cache data consistent. Writes in write-throuigh mode are handled with a no-
write-allocate policy—i.e., writes that miss in a data cache are written to memory but do
not cause the correspondrng line in memory to be loaded into the cache. Write accesses
always write through to memory and update matching cache lines. Specifying write-
through mode for the shared pages maintains cache coherency for shared memory areas
ina multlprocessrng environment. The cache supplies data to instruction or data read
accesses that hit in the appropriate cache; misses cause a new cache line to be loaded
into the cache, replacing a valid cache line if there are no invalid lines.

4.3.1.2 COPYBACK MODE. Copyback pages are typically used for local data structures
or stacks to minimize external bus usage and reduce write access latency. Write accesses
to pages specified as ‘copyback that hit in the data cache update the cache line and set
the corresponding D-bits without an external bus access. The dirty cached data is only
written to memory if 1) the line is replaced due to a miss, 2) a cache inhibited access
matches the line, or 3) the CPUSH instruction explicitly pushes the line. If a write access
misses in the cache, the memory unit reads the needed. cache line from memory and
updates the cache. When a miss causes a dirty cache line to be selected for replacement,
the memory unit places the line in an internal copyback buffer. The replacement line is
read into the cache, and writing the dirty cache line back to memory updates memory.

4-6 M68040 USER'S MANUAL MOTOROLA

4.3.2 Cache-Inhibited Accesses

Address space regions containing targets such as I/O devices and shared data structures
in multiprocessing systems can be designated cache inhibited. If a page descriptor's CM
field indicates nonserialized or serialized, then the access is cache inhibited. The caching
operation is identical for both cache-inhibited modes. If the CM field of a matching address
indicates either nonserialized or serialized modes, the cache controller bypasses the
cache and performs an external bus transfer. The data associated with the access is not
cached internally, and the cache inhibited out (CIOUT) signal is asserted during the bus

- transfer to indicate to external memory that the access should not be cached. If the data
cache line is already resident in an internal cache, then the data cache line is pushed from
the cache if it is dirty or the data cache line is invalidated if it is valid.

If the CM field indicates serialized, then the sequence of read and write accesses to the
page is guaranteed to match the sequence of the instruction order. Without serialization,
the U pipeline allows read.accesses to occur before completion of a write-back for a
previous instruction. Serialization forces operand read accesses for an instruction to occur
only once by preventing the. instruction from being interrupted after the operand fetch
stage. Otherwise, the instruction is aborted, and the operand is accessed when the
instruction is restarted. These guarantees apply only when the CM field indicates the
serialized mode and the accesses are aligned. Regardless of the selected cache mode,
locked accesses are implicitly serialized. The TAS, CAS, and CAS2 instructions use
locked accesses for operands in memory and for updating translation table entries during
table search operations. _

4.3.3 Special Accesses

Several other processor operations result in accesses that have special caching
characteristics -besides those with an implied cache-inhibited access in the serialized
mode. Exception stack accesses, exception vector fetches, and table searches that miss
in the cache do not allocate cache lines in the data cache, preventing replacement of a
cache line. Cache hits by these accesses are handled in the normal manner according to
the caching mode specified for the accessed address.

Accesses by the MOVE16 instruction also do not allocate cache lines in the data cache for
either read or write misses. Read hits on either valid or dirty cache lines are read from the
cache. Write hits invalidate a matching line and perform an external access. Interacting
with the cache in this manner prevents a large block move or block initialization
implemented with a MOVE16 from being cached, since the data may not be needed
immediately.

If the data cache is re-enabled after a locked access has hit and the data cache was
disabled, the next non-locked access that results in a data cache miss will not be cached.

4.4 CACHE PROTOCOL

The cache protocol for processor and snooped accesses is described in the following
paragraphs. In all cases, an external bus transfer will cause a cache line state to change

MOTOROLA M68040 USER’S MANUAL 4-7

only if the bus transfer is marked as snoopable on the bus. The protocols described in the
following paragraphs assume that the data is cachable (i.e., write-through and copyback).

4.4.1 Read Miss

A processor read that misses in the cache causes the cache controller to request a bus
transaction that reads the needed line from memory and supplies the required data to the
1U. The line is placed in the cache in the valid state Snooped external reads that miss in
the cache have no affect on the cache.

4.4.2 Write Miss

The cache controller handles processor writes that miss in the cache differently for write-
through and copyback pages. Write misses to copyback pages cause the processor to
perform a bus transaction that writes the needed cache line into its cache from memory in
the same manner as for a read miss. The new cache line is then updated with the write
data, and the D-bits are set for each long word that has been modified, leaving the cache
line in the dirty state. Write misses to write-through pages write directly to memory without
loading the corresponding cache line in the cache. Snooped external writes that miss in
the cache have no affect on the cache.

4.4.3 Read Hit

The cache controller handles processor reads that hit in the cache differently for write-
through and copyback pages. No bus transaction is performed, and the state of the cache
line does not change. Physical address bit 3 selects either the upper or lower half-line
containing the required operand. This half-line is driven onto the internal bus. If the
required data is allocated entirely within the half-line, only one access into the cache is
required. Because the organization of the cache does not allow selection of more than one
half-line at a time, misalignment across a half-line boundary requires two accesses into
the cache.

A snooped external read that hits in the cache is ignored if the cache line is valid. If the
snooped access hits a dirty line, memory is inhibited from responding, and the data is
sourced from the cache directly to the alternate bus master. A snooped read hit does not
change the state of the cache line unless the snooped access also indicates mark invalid,
which causes the line to be invalidated aftér the access, even if it is dirty. Alternate bus
masters should indicate mark invalid only for line reads to ensure the entlre line is
transferred before invalidating.

4.4.4 Write Hit

The cache controller handles processor writes that hit in the cache differently for write-
through and copyback pages. For write-through accesses, a processor write hit causes
the cache controller to update the affected long-word entries in the cache line and to
request an external memory write transfer to update memory. The cache line state does
not change. A write-through access to a line containing dirty data constitutes a system
programming error even if the D-bits for the line are unchanged. This situation can be

4-8 M68040 USER'S MANUAL - MOTOROLA

avoided by pushing cache lines when a page descriptor is changed and ensuring that
alternate bus masters indicate the appropriate snoop operation for writes to corresponding
pages (i.e., mark invalid for write-through pages and sink data for copyback pages). If the
access is copyback, the cache controller updates the cache line and sets the D-bit for of
the appropriate long words in the cache line. An external write is not performed, and the
cache line state changes to, or remains in, the dirty state.

An alternate bus master can drive the SCx signals for a write access with an encoding that
indicates to the M68040 that it should sink the data, inhibit memory, and respond as a
slave if the access hits in the cache. The cache operation depends on the access size and
current line state. A snooped line write that hits a valid line always causes the
corresponding cache line to be invalidated. For snooped writes of byte, word, or long-word
size that hit a dirty line, the processor inhibits memory and responds to the alternate bus
master as a slave, sinking the data. Data received from the alternate bus master is written
to the appropriate long word in the cache line, and the D-bit is set for that entry. The cache
controller invalidates a cache line if the snoop control pins have indicated that a matching
cache line is marked invalid for a snoop write.

4.5 CACHE COHERENCY

The M68040 provides several different mechanisms to assist in maintaining cache
coherency in multimaster systems. Both write-through and copyback memory update
techniques are supported to maintain coherency between the data cache and memory.

Alternate bus master accesses can reference data that the M68040 caches, causing
coherency problems if the accesses are not handled properly. The M68040 snoops the
bus during alternate bus master transfers. If a write access hits in the cache, the M68040
can update its internal caches, or if a read access hits, it can intervene in the access to
supply dirty data. Caches can be snooped even if they are disabled. The alternate bus
master controls snooping through the snoop control signals, indicating which access can
be snooped and the required operation for snoop hits. Table 4-1 lists the requested snoop
operation for each encoding of the snoop control signals. Since the processor and the bus
snooper must both access the caches, the snoop controller has priority over the processor
for snoopable accesses to maintain cache coherency.

Table 4-1. Snodp Control Encoding

Requested Snoop Operation
SC1 SCo Alternate Bus Master Read Access Alternate Bus Master Write Access
0 0 . | Inhibit Snooping Inhibit Snooping
0 1 Supply Dirty Data and Leave Dirty Data Sink Byte/Word/Long/Long Word
1 0 Supply Dirty Data and Mark Line Invalid Invalidate Line
1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited)

The snooping protocol and caching mechanism supported by the M68040 are optimized to
support multimaster systems with the M68040 as the single caching master. In systems

MOTOROLA .M68040 USER’S MANUAL 4-9

implementing multiple MC68040s as bus masters, shared data should be stored in write-
through pages. This procedure allows each processor to cache shared data for read
access while forcing a processor write to shared data to appear as an external write to
memory, which the other processors can snoop.

If shared data is stored in copyback pages, only one processor at a time can cache the
data since writes to copyback pages do not access the external bus. If a processor
accesses shared data cached by another processor, the slave can source the data to the
master without invalidating its own copy only if the transfer to the master is cache
inhibited. For the master processor to cache the data, it must force invalidation of the
slave processor's copy of the data (by specifying mark invalid for the snoop operation),
and the memory controller must monitor the data transfer between the processors and
update memory with the transferred data. The memory update is required since the
master processor is unaware of the sourced data (valid data from memory or dirty data
from a snooping processor) and initially creates a valid cache line, losing dirty status if a
snooping processor supplies the data.

Coherency between the instruction cache and the data cache must be maintained in
software since the instruction cache does not monitor data accesses. Processor writes
that modify code segments (i.e., resulting from self-modifying code or from code executed
to load a new page from disk) access memory through the data memory unit. Because the
instruction cache does not monitor these data accesses, stale data occurs in the
instruction cache if the corresponding data in memory is modified. Invalidating instruction
cache lines before writing to the corresponding memory lines can prevent this coherency
problem, but only if the data cache line is in write-through mode and the page is marked
serialized. A cache coherency problem could arise if the data cache line is conflgured as
copyback and no serialization is done.

To fully support self-modifying code in any situation, it is imperative that a CPUSHA
instruction be executed before the execution of the first self-modified instruction. The
CPUSHA instruction has the effect of ensuring that there is no stale data in memory, the
pipeline is flushed, and instruction prefetches are repeated and taken from external
memory.

Another potential coherency problem exists due to the relationship between the cache
state information and the translation table descriptors. Because each cache line reflects
page state information, a page should be flushed from the cache before any of the page
attributes are changed. The presence of a valid or dirty cache line implicitly indicates that
accesses to the page containing the line are cachable. The presence of a dirty cache line
implies that the page is not write protected and that writes to the page are in copyback
mode. A system programming error occurs when page attributes are changed without
flushing the corresponding page from the cache, resulting in cache line states inconsistent
with their page definitions. Even with these inconsistencies, the cache is defined and
predictable.

4-10 Me8040 USER'S MANUAL MOTOROLA

4.6 MEMORY ACCESSES FOR CACHE MAINTENANCE

The cache controller in each memory unit performs all maintenance activities that supply
data from the cache to the execution units. The activities include requesting accesses to
the bus interface unit for reading new cache lines and writing dirty cache lines to memory.
The following paragraphs describe the memory accesses resulting from cache fill
operations (by both caches) and push operations (by the data cache). Refer to Section 7
Bus Operation for detailed information about the bus cycles required.

4.6.1 Cache Filling

When a new cache line is required, the cache controller requests a line read from the bus
controller. The bus controller requests a burst read transfer by indicating a line access
with the size signals (SIZ1, SIZ0) and indicates which line in the set is being loaded with
the transfer line number signals (TLN1, TLNO). TLN1 and TLNO are undefined for the
instruction cache. These pins indicate the appropriate line numbers for data cache
transfers only. Table 4-2 lists the definition of the TLNx encoding.

Table 4-2. TLNx Encoding
TLN1 TLNO Line
0 0 Zero
0 1 One
1 0 Two
1 1 Three

The responding device sequentially supplies four long words of data and can assert the
transfer cache inhibit signal (TCI) if the line is not cachable. If the responding device does
not support the burst mode, it should assert the TBI signal for the first long word of the line
access. The bus controller responds by terminating the line access and completes the
remainder of the line read as three, sequential, long-word reads.

Bus controller line accesses implicitly request burst mode operations from external
memory. To operate in the burst mode, the device or external hardware must be able to
increment the low-order address bits as described in Section 7 Bus Operation. The
device indicates its ability to support the burst access by acknowledging the initial long-
word transfer with transfer acknowledge (TA) asserted and TBI negated. This procedure
causes the processor to continue to drive the address and bus control signals and to latch
a new data value for the cache line at the completion of each subsequent cycle (as
defined by TA) for a total of four cycles. The bursting mechanism requires addresses to
wrap around so that the entire four long words in the cache line are filled in a single
operation.

When a cache line read is initiated, the first cycle attempts to load the line entry

corresponding to the Instruction half-line or data item requested by the IU. Subsequent
transfers are for the remaining entries in the cache line. In the case of a misaligned

MOTOROLA M68040 USER'S MANUAL 4-11

access in which the operand spans two line entries, the first cycle corresponds to the line
entry containing the portion of the operand at the lower address.

The cache controller temporarily stores the data from each cycle in a line read buffer,
where it is immediately available to the IU. If a misaligned access spans two entries in the
line, the second portion of the operand is available to the IU as soon as the second
memory cycle completes. A new IU access that hits the cache line being filled is also
supplied data as soon as the required long word has been received from the bus
controller. During the period required to fill the buffer, other IU accesses that hit in the
cache are supplied data. This is vertical for a short cache-inhibited code loop that is less
than eight bytes in length. Subsequent interactions of the loop hit in the buffer, but appear
to hit in the cache since there is no external bus activity associated with the reads.

The assertion of TCI during the first cycle of a burst read operation inhibits loading of the
buffered line into the cache, but it does not cause the burst transfer (or pseudo-burst
transfer if TBI is asserted with TCI) to be terminated early. The data placed in the buffer is
accessible by the IU until the last long word of the burst is transferred from the bus
controller, after which the contents of the buffer are invalidated without being copied into
the cache. The assertion of TCI is ignored during the second, third, or fourth cycle of a
burst operation and is ignored for write operations.

A bus error occurring during a burst operation causes the burst operation to abort. If the
bus error occurs during the first cycle of a burst, the data from the bus is ignored. If the
access is a data cycle, exception processing proceeds immediately. If the cycle is for an
instruction prefetch, a bus error exception is pending. The bus error is processed only if
the IU attempts to use either instruction word. Refer to Section 7 Bus Operation for more
information about p|pel|ne operatlon

For elther cache, when a bus error occurs on the second cycle or later, the burst operation
is aborted and the line buffer is invalidated. The processor may or may not take an
exception, depending on the status of the pending data request. If the bus error cycle
contains a portion of a data operand that the processor is specifically waiting for (e.g., the
second half of a misaligned operand), the processor immediately takes an exception.
Otherwise, no exception occurs, and the cache line fill is repeated the next time data
within the line is required. In the case of an instruction cache line fill, the data from the
aborted cycle is completely ignored.

On the initial access of a line read, a retry (indicated by the assertion of TA and TEA)
causes the bus controller to retry the bus cycle. However, a retry signaled during the
remaining cycles of the line access (either burst or pseudo-burst) is recognized as a bus
error, and the processor handles it as described in the previous paragraphs.

A cache inhibit or bus error on a line read can change the state of the line being replaced,
even though the new line is not copied into the cache. Before loading a new line, the
cache line being replaced is copied to the push buffer; if it is dirty, the cache line is
invalidated. If a cache inhibit or bus error occurs on a replacement line read, a dirty line is
restored to the cache from the push buffer. However, the line being replaced is not
restored in the cache if it was originally valid and the cache line remains invalid. If the line

4-12 M68040 USER'S MANUAL MOTOROLA

read resulting from a write miss in copyback mode is cache inhibited, the write access
misses in the cache and writes through to memory.

4.6.2 Cache Pushes

When the cache controller selects a dirty data cache line for replacement, memory must
be updated with the dirty data before the line is replaced. This occurs when a CPUSH
instruction execution explicitly selects the cache and when a cache inhibit access hits in
the cache. To reduce the requested data’s latency in the new line, the dirty line being
replaced is temporarily placed in a push buffer while the new line is fetched from memory.
When a line is allocated to the push buffer, an alternate bus master can snoop it, but the
execution units cannot access it. After the bus transfer for the new line successfully
completes, the dirty cache line is copied back to memory, and the push buffer is
invalidated. If the operation to access the replacement line is abnormally terminated or
signaled as cache inhibited, the line in the push buffer is copied back into its original
position in the cache, and the processor continues operation as described in the previous
paragraphs.

The number of dirty long words in the line to be pushed determines the size of the push
transfer on the bus, minimizing bus bandwidth required for the push. A single long word is
written to memory using a long-word push transfer if it is dirty. A push transfer is
distinguished from a normal write transfer by an encoding of 000 on the transfer modifier
signals (TM2-TMO) for the push. Asserting TA and TEA retries the transfer; a bus-error-
asserted TEA terminates it. If a bus error terminates a push transfer, the processor
immediately takes an exception.

A line containing two or more dirty long words is copied back to memory, using a line push
transfer. For a line push, the bus controller requests a burst write transfer by indicating a
line access with S1Z1 and SI1Z0. The responding device sequentially accepts four long
words of data. If the responding device does not support the burst mode, it should assert
TBI for the first long word of the line access. The bus controller responds by terminating
the line access and completes the remainder of the line push as three, sequential, long-
word writes. The first cycle of the burst can be retried, but the bus controller interprets a
retry for any of the three remaining cycles as a bus error. If a bus error occurs in any cycle
in the line push transfer, the processor immediately takes an exception.

A dirty cache line hit by a cache-inhibited access is pushed before the external bus access
occurs. If the access is part of a locked transfer sequence for TAS, CAS, or CAS2
operand accesses or translation table updates, the LOCK signal is also asserted for the
push access.

4.7 CACHE OPERATION SUMMARY

The instruction and data caches function independently when servicing access requests
from the 1U. The following paragraphs discuss the operational details for the caches and
present state diagrams depicting the cache line state transitions.

MOTOROLA M68040 USER'S MANUAL 4-13

4.7.1 Instruction Cache

The U uses the instruction cache to store instruction prefetches as it requests them.
Instruction prefetches are normally requested from sequential memory locations except
when a change of program flow occurs (e.g., a branch taken) or when an instruction that
can modify the status register (SR) is executed, in which case the instruction pipe is
automatically flushed and refilled. The instruction cache supports a line-based protocol
that allows individual cache lines to be in either the invalid or valid states.

For instruction prefetch requests that hit in the cache, the half-line selected by physical
address bit 3 is multiplexed onto the internal instruction data bus. When an access misses
in the cache, the cache controller requests the line containing the required data from
memory and places it in the cache. If available, an invalid line is selected and updated
with the tag and data from memory. The line state then changes from invalid to valid by
setting the V-bit. If all lines in the set are already valid, a pseudo-random replacement
algorithm is used to select one of the four cache lines replacing the tag and data contents
of the line with the new line information. Figure 4-5 illustrates the instruction-cache line
state transitions resulting from processor and snoop controller accesses. Transitions are
labeled with a capital letter, indicating the previous state, followed by a number indicating
the specific case listed in Table 4-3. :

13-CINV/CPUSH : V1-CPU READ MISS

V2-CPU READ HIT
INVALID)

(VALID

Figure 4-5. Instruction-Cache Line State Diagram

11-CPU READ MISS

V3-CINV/CPUSH
V5-SNOQOP READ HIT
V6-SNOOP WRITE HIT

4-14 Mé68040 USER'S MANUAL MOTOROLA

Table 4-3. Instruction-Cache Line State Transitions

Current State

Cache Operation Invalid Cases Valid Cases

CPU Read Miss 11 | Read line from memory; V1 | Read line from memory; supply
supply data to CPU and data to CPU and update cache
update cache; go to valid (replacing old line); remain in
state. current state.

CPU Read Hit 12 | Not Possible V2 | Supply data to CPU; remain in

current state.

Cache Invalidate or Push I3 | No action; remain in V3 | No action; go to invalid state.

(CINV or CPUSH) current state.

Alternate Master Read Hit 14 | Not possible; not snooped. V4 | Not possible; not snooped.

(Snoop Control = 01 — Leave Dirty)

Alternate Master Read Hit I5 | Not Possible V5 | No action; go to invalid state.

(Snoop Contro! = 10 — Invalidate)

Alternate Master Write Hit 16 | Not Possible V6 | No action; go to invalid state.
(Snoop Control = 01 — Leave Dirty or
Snoop Control = 10 — Invalidate)

4.7.2 Data Cache

The U uses the data cache to store operand data as it generates the data. The data
cache supports a line-based protocol allowing individual cache lines to be in one of three
states: invalid, valid, or dirty. To maintain coherency with memory, the data cache
supports both write-through and copyback modes, specified by the CM field for the page.

Read misses and write misses to copyback pages cause the cache controller to read a
new cache line from memory into the cache. If available, an invalid line in the selected set
is updated with the tag and data from memory. The line state then changes from invalid to
valid by setting the V-bit for the line. If all lines in the set are already valid or dirty, the
pseudo-random replacement algorithm is used to select one of the four lines and replace
the tag and data contents of the line with the new line information. Before replacement,
dirty lines are temporarily buffered and later copied back to memory after the new line has
been read from memory. If a snoop access occurs before the buffered line is written to
memory, the snoop controller snoops the buffer and the caches. Figure 4-6 illustrates the
three possible states for a data cache line, with the possible transitions caused by either
the processor or snooped accesses. Transitions are labeled with a capital letter, indicating
the previous state, followed by a number indicating the specific case listed in Table 4-4.

MOTOROLA M68040 USER’S MANUAL 4-15

VI—CINV V1—CPU READ MISS

V8~CPUSH V2—CPU READHIT
V10—SNOOP READ HITIINVALIll)ATEE ‘\;g:ggb’ wggg M‘F?SIW’!}’T
14—CPU WRITE MISSMWT: V11—SNOOP WRITE HIT/INVALIDAT!
7—CINV V12—SNOOP WRITE HIT/SINK DATA & V8—SNOOP READ HIT/LEAVE DIRTY
18—CPUSH SIZE % LINE
V13—SNOOP WRITE HIT/SINK DATA &
SIZE = LINE ‘
INVALID) (VALID
11—CPU READ MISS o\
D7—CINV 13—CPU WRITE MISS/CB V3—CPU WRITE MISS/CB
D8—CPUSH V5—CPU WRITE HIT/CB
D10—SNOOP READ
HITANVALIDATE
D11—SNOOP WRITE HIT/ D1—CPU READ MISS
INVALIDATE !
. D13—SNOOP WRITE HIT/SINK
DATA & SIZE = LINE
D2—CPU READ HIT
D3—CPU WRITE MISS/CB
D4—CPU WRITE MISSWT
ABBREVIATIONS: 82:2;3 Wﬁﬁé mﬁfsr
w&;gggﬁ%%g MODE | D9—SNOOP READ HIT/LEAVE DIRTY
D12—SNOOP WRITE HIT/SINK DATA
SNOOP OPERATION INDICATES: & SIZE=LINE
READ OR WRITE / SNCOP CONTROL
ENCODING

Figure 4-6. Data-Cache Line State Diagram

4-16 M68040 USER'S MANUAL MOTOROLA

Table 4-4. Data-Cache Line State Transitions

Current State

Cache Operation Invalid Cases Valid Cases Dirty Cases
CPU Read Miss 11 | Read line from V1 | Read line from D1 | Buffer dirty cache line;
memory; supply data memory; supply data read new line from
to CPU and update to CPU and update memory; supply data
cache; go to valid cache {replacing old to CPU and update
state. line); remain in current cache; write buffered
state. dirty data to memory;
go tovalid state.
CPU Read Hit 12 | Not Possible V2 | Supply data to CPU; D2 | Supply data to CPU;
remain in current state. remain in current state.
CPU Write Miss 13 | Read line from V3 | Read line from D3 | Butfer dirty cache line;
(Copyback) memory into cache; memory into cache read new line from
write data to cache; - (replacing old line); memory; write data to”
set Dn bits of modified write data to cache cache and set Dn bits;
long words; go to dirty and set Dn bits; go to write buffered dirty
state. dirty state. data to memory;
remain in current state.
CPU Write Miss 14 | Write data to memory; | V4 | Write data to memory; | D4 | Write data to memory;
(Write-through) remain in current state. remain in current state. remain in current state
(see note).
CPU Wiite Hit 15 | Not Possible V5 | Write data into cache; | D5 | Write data in cache;
(Copyback) set Dn bits of modified set Dn bits of modified
long words; go to dirty long words; remain in
state. current state.
CPU Write Hit 16 | Not Possible V6 | Write data to cache; D6 | Write data into cache
(Write-through) write data to memory; (no change to Dn bits);
remain in current state. write data to memory;
remain in current state
(see note).
Cache Invalidate 17 | No action; remain in V7 | No action; go to invalid | D7 | No action (dirty data
(CINV) current state. state. lost); go to invalid
state.
Cache Push 18 | No action; remain in V8 | No action; go to invalid | D8 | Write dirty data to
(CPUSH) current state. state. memory; go to invalid
state.
Alternate Master Read Hit 19 | Not Possible V9 | No action; remain in D9 | Inhibit memory and
(Snoop Control = 01 current state. source data; remain in
— Leave Dirty) current state.

NOTE: Dirty state transitions D4 and D6 are the result of a system programming error and should be avoided even
though they are technically valid.

MOTOROLA

M68040 USER'S MANUAL

4-17

Table 4-4. Data-Cache Line State Transitions (Continued)

Current State

Cache Operation Invalid Cases Valid Cases Dirty Cases
Alternate Master Read Hit | 110 | Not Possible V10| No action; go to invalid | D10| Inhibit memory and
(Snoop Control = 10 state. i source data; go to
— Invalidate) invalid state
Alternate Master Write Hit | 111 | Not Possible V11 No action; go to invalid | D11 | No action; go to invalid
(Snoop Control =10 state. state.

—Invalidate))

Alternate Master Write Hit | 112 | Not Possible V12| No action; go to invalid] D12] Inhibit memory and

{(Snoop Control = 01 state. sink data; set Dn bits

—- Sink Data and of modified long

Size # Line) words; remain in
current state.

Alternate Master Write Hit | 113 | Not Possible V13| No action; go to invalid | D13] No action; go to invalid

{Snoop Control = 01 state. state.

— Sink Data and

Size = Line)

4-18 M68040 USER'S MANUAL MOTOROLA

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in their functional
groups (see Figure 5-1). Each signal's function is briefly explained, referencing other
sections that contain detailed information about the signal and related operations. Table
5-1 lists the signal names, mnemonics, and functional descriptions of the input and output
signals for the M68040. Timing specifications for these signals can be found in Section 11
MC68040 Electrical and Thermal Characteristics.

NOTES

Assertion and negation are used to specify forcing a signal to a
particular state. Assertion and assert refer to a signal that is
active or true. Negation and negate refer to a signal that is
inactive or false. These terms are used independent of the
voltage level (high or low) that they represent.

For the MC68040V, MC68LC040, MC68EC040, and
MCG68ECO040V ignore all references to the floating-point unit
(FPU). For the MC68EC040 and MCE8EC040V only, ignore all
references to the memory management unit (MMU). Some pin
names are different on these parts; please refer to the
appropriate appendix in the back of this book for more
information. o

MOTOROLA M68040 USER’S MANUAL 5-1

Table 5-1. Signal Index

Signal Name Mnemonic Function
Address Bus A31-A0 | 32-bit address bus used to address any of 4-Gbytes.
Data Bus D31-D0 | 32-bit data bus used to transfer up to 32 bits of data per bus transter.
Transfer Type TT1,TT0 | Indicates the general transfer type: normal, MOVE16, alternate logical
function code, and acknowledge.
Transfer Modifier TM2-TMO | Indicates supplemental information about the access.
Transfer Line Number | TLN1,TLNO | Indicates which cache line in a set is being pushed or loaded by the current
. line transfer.
User-Programmable UPA1,UPAO | User-defined signals, controlled by the corresponding user attribute bits from
Attributes the address translation entry.
Read/Write RW. Identifies the transfer as a read or write.
Transfer Size S121,S120 | Indicates the data transfer size. These signals, together with A0 and A1, -
define the active sections of the data bus.
Bus Lock TOCK Indicates a bus transfer is part of a read-modify-write operation, and the
sequence of transfers should not be interrupted.
Bus Lock End TOCKE | Indicates the current transfer is the last in a locked sequence of transfers.
Cache Inhibit Out CIOUT | Indicates the processor will not cache the current bus transfer.
Transfer Start TS - |Indicates the beginning of a bus transfer.
Transfer in Progress TP Asserted for the duration of a bus transfer.
Transfer Acknowledge TA Asserted to acknowledge a bus transfer.
Transfer Error TEA Indicates an error condition exists for a bus transfer.
Acknowledge ‘ o
Transfer Cache Inhibit TCI Indicates the current bus transfer should not be cached.
Transfer Burst Inhibit T8I Indicates the slave cannot handle a line burst access.
Data Latch Enable? DLE Alternate clock input used to latch input data when the processor is operating
in DLE mode.
Snoop Control SC1,SC0 | Indicates the snooping operation required during an alternate master access.
Memory Inhibit M Inhibits memory devices from responding to an alternate master access
during snooping operations.
Bus Request BR Asserted by the processor to request bus mastership.
Bus Grant BG Asserted by an arbiter to grant bus mastership to the processor.
Bus Busy BB Asserted by the current bus master to indicate it has assumed ownership of
the bus.
Cache Disable CDIs Dynamically disables the internal caches to assist emulator support.
MMU Disable? MDIS Disables the translation mechanism of the MMUs.
Reset In RSTT Processor reset.
Reset Out RSTO Asserted during execution of a RESET instruction to reset external davices.
Interrupt Priority Level3 | TPL2-TPLO | Provides an encoded interrupt level to the processor.
Interrupt Pending PEND |Indicates an interrupt is pending.
Autovector AVEC Used during an interrupt acknowledge transfer to request internal generation
of the vector number.
Processor Status PST3-PSTO | Indicates internal processor status.
Bus Clock BCLK Clock input used to derive all bus signal timing.
5-2 M68040 USER’S MANUAL MOTOROLA

Table 5-1. Signal Index (Continued)

Signal Name Mnemonic Function

Processor Clock PCLK4 | cClock input used for internal logic timing. The PCLK frequency is exactly 2 x
the BCLK frequency.

Test Clock TCK Clock signal for the IEEE P1149.1 Test Access Port (TAP).
Test Mode Select T™S Selects the principle operations of the test-support circuitry.
Test Data Input TDI Serial data input for the TAP.
Test Data Output TDO Serial data output for the TAP.
Test Reset TRST4 Provides an asynchronous reset of the TAP controller.
Power Supply Vee Power supply.
Ground GND Ground connection.
NOTES: '

1. This signal is only available on the MC68040.

2. This signal is not available on the MC68EC040 and the MCE68EC040V.

3. These signals are different on power-up for the MC68LC040 and MCE68EC040.
4. These signals are not available on the MC68040V and MC68EC040V.

MOTOROLA M68040 USER’S MANUAL 5-3 ‘

- : SCo 7]
ADDRESS _| €, > BUS SNOOP CONTROL
BUS <S—> " mNDRESPONSE
- l———
DATABUS | By v
: <& - BUS ARBITRATION
B8
_ - >
(—W—* _ -
<—‘:M16—> ¢ D8
- MDIS? | PROCESSOR
™ -
4—@— o il CONTROL
M2 RSTO
< TN — > -
<M .
ATRBUTES | <_UPAL | <25 —
UPA1 e — INTERRUPT
-~ P n
RW - CONTROL
- MC68040 PEND
SiZo ﬁ—)
sz 3] < AEC
OcK -
<—LOCKE | PSTO o,
<—COUT | PSTI o,
- | PST2 o, | STATUSAND
MASTER 5 PSTS_3 CLOCKS
N S T «BCLK
CONTROL - | POk
B TA_ Ik 7
SLAVE TEA o, < IMS
TRANSFER] TO_ o, <2 [TEST
CONTROL TB1 > _F'9_4>
i DLET 3 ¢_TFST i
Vee 7
'(m— - POWER SUPPLY
< — |
NOTES:

1. This signal is only available on the MC68040.

2. This signal is not available on the MC68EC040 and MCE8EC040V.

3. These signals are different on power-up for the MC68LC040 and MCE8EC040.
4. These signals are not available on the MC68040V and MC68EC040V.

Figure 5-1. Functional Signal Groups

5.1 ADDRESS BUS (A31-A0)

These three-state bidirectional signals provide the address of the first item of a bus
transfer (except for acknowledge transfers) when the M68040 is the bus master. When an
alternate bus master is controlling the bus, the processor examines (snoops) these signals
to determine whether the processor should intervene in the access to maintain cache
coherency.

The level on CDIS can select a multiplexed bus mode during processor reset, which
allows the address bus and data bus to be physically tied together for multiplexed bus

5-4 M68040 USER’S MANUAL MOTOROLA

applications. Refer to Section 7 Bus Operation for detailed information about the
relationship of the address bus to bus operation and the multiplexed bus mode. Refer to
Appendix A MC68LC040 and Appendix B MC68EC040 for details concerning the CDIS
level and multiplexed bus mode.

5.2 DATA BUS (D31-D0)

These three-state bidirectional signals provide the general-purpose data path between the
M68040 and all other devices. The data bus can transfer 8, 16, or 32 bits of data per bus
transfer. During a burst transfer, the data lines are time-multiplexed to carry all 128 bits of
the burst request using four 32-bit transfers.

The level on CDIS can select a multiplexed bus mode during processor reset, which
allows the data bus and address bus to be physically tied together for multiplexed bus
applications. The level on MDIS can select a data latch mode during processor reset,
which allows the memory interface to specify when the processor should latch input data
through the DLE signal. Section 7 Bus Operation provides detailed information about the
relationship of the data bus to bus operation, the multiplexed bus mode, and the data latch
mode. Refer to Appendix A MC68LC040 and Appendix B MC68EC040 for details
concerning the CDIS level and multiplexed bus mode.

5.3 TRANSFER ATTRIBUTE SIGNALS

The following paragraphs describe the transfer attribute signals, which provide additional
information about the bus transfer. Refer to Section 7 Bus Operation for detailed
information about the relationship of the transfer attribute signals to bus operation.

5.3.1 Transfer Type (TT1, TTO)

The processor drives these three-state bidirectional signals to indicate the type of access
for the current bus transfer. During bus transfers by an alternate bus master, the
processor samples these signals to determine if it should snoop the transfer; only normal
and MOVE16 accesses can be snooped. Table 5-2 lists the definition of the transfer-type
encoding. The acknowledge access (TT1 = 1 and TTO = 1) is used for both interrupt and
breakpoint acknowledge transfers, and for LPSTOP broadcast cycles on the MC68040V
and MC68EC040V.

Table 5-2. Transfer-Type Encoding

TT1 TT0 Transfer Type
0 0 Normal Access
0 1 MOVE16 Access
1 0 Alternate Logical Function Code Access
1 1 Acknowledge Access

MOTOROLA M68040 USER'S MANUAL 5-5

5.3.2 Transfer Modifier (TM2-TMO0)

These three-state outputs provide supplemental information for each transfer type. Table
5-3 lists the encoding for normal and MOVE16 transfers, and Table 5-4 lists the encoding
for alternate access transfers. For interrupt acknowledge transfers, the TMx signals carry
the interrupt level being acknowledged; for breakpoint acknowledge transfers and
LPSTOP broadcast cycles on the MC68040V and MCE8EC040V, the TMx signals are low.
When the M68040 is not the bus master, the TMx signals are set to a high-impedance
state.

Table 5-3. Normal and MOVE16 Access
Transfer Modifier Encoding

™2 M1 TMO Transfer Modifier
0 0 0 Data Cache Push Access
-0 0 1 User Data Access*
0 1 0 User Code Access
o 1. 1 MMU Table Search Data Access
1 0 0 MMU Table Search Code Access
1 0 1 Supervisor Data Access”
1 1 0 Supervisor Code Access
1 1 1 Reserved

* MOVE16 accesses use only these encodings.

Table 5-4. Alternate Accéss Transfer Modifier Encoding

TM2 T™1 TMO Transfer Moditler

0 0 0 Logical Function Code 0

0 0 1 Reserved

0 1 0 - |Reserved

0 1 1 Logical Function Code 3

1 0 0 Logical Function Code 4

1 0 1 Reserved '

1 1 0 Reserved

1 1 1 Logical Function Code 7

5.3.3 Transfer Line Number (TLN1, TLNO)

These three-state outputs indicate ‘which line in the set of four data cache lines is being
accessed for normal push and line data read accesses. TLNx signals are undefined for all
other accesses to instruction space and are placed ina hlgh impedance state when the
processor relinquishes the bus.

5-6 M68040 USER'S MANUAL MOTOROLA

The TLNx signals can be used in high-performance systems to build an external snoop
filter with a duplicate set of cache tags. The TLNx signals and address bus provide a
direct indication of the state of the data caches and can be used to help maintain the
duplicate tag store. The TLNx pins do not indicate the correct TLN number when an
instruction cache burst fill occurs.

5.3.4 User-Programmable Attributes (UPA1, UPAO)

The UPAXx signals are three-state outputs. If they match the logical address, the user-
programmable attribute bits in the address translation entry or the transparent translation
register determine the UPAX signal level. These signals are only for normal code, data,
and MOVE16 accesses. For all other accesses, including table search and cache line
push accesses, which may result from a normal access, the UPAXx signals are zero. If the
transparent translation register and the memory management unit are disabled, the UPAx
signals are also zero. When the M68040 is not the bus master, these signals are set to a
high-impedance state.

5.3.5 Read/Write (R/W)

This bidirectional three-state signal defines the data transfer direction for the current bus
cycle. A high level indicates a read cycle, and a low level indicates a write cycle. The bus
snoop controller examines this signal when the processor is not the bus master.

5.3.6 Transfer Size (SIZ1, SIZ0)

These bidirectional three-state signals indicate the data size for the bus transfer. The bus
snoop controller examines this signal when the processor is not the bus master. Refer to
Section 7 Bus Operation for more information on the encoding of these signals.

5.3.7 Lock (LOCK)

This three-state output indicates that the current transfer is part of a sequence of locked
transfers for a read-modify-write operation. The external arbiter can use LOCK to prevent
an alternate bus master from gaining control of the-bus and accessing the same operand
between processor accesses for the locked sequence of transfers. Although LOCK
indicates that the processor requests the bus be locked, the processor will give up the bus
if the external arbiter negates the BG signal. When the M68040 is not the bus master, the
LOCK signal is set to a high-impedance state. LOCK drives high before three-stating.
Refer to Section 7 Bus Operation for information on locked transfers.

5.3.8 Lock End (LOCKE)

This three-state output indicates that the current transfer is the last in a sequence of
locked transfers for a read-modify-write operation. The external arbiter can use LOCKE to
support arbitration between unrelated locked transfer sequences while still maintaining the
indivisible nature of each read-modify-write operation. When the M68040 is not the bus
master, the LOCKE signal is set to a high-impedance state. LOCKE drives high before

MOTOROLA M68040 USER’S MANUAL 5-7

three-stating. Do not use LOCKE if it is possrble to retry the last write of a read-wrrte-
modlfy operatron :

5.3. 9 Cache Inhibit Out (CIOUT)

This three-state output reflects the state of the cache mode field in one of the address
translation caches and is asserted for accesses to noncachable pages to indicate that an
external cache should ignore the bus transfer. When the referenced logical address is
within .an area specified for transparent translation, the cache mode field of the
appropriate transparent translation register controls the state of CIOUT. Refer to Section
3 Memory Management Unit (Except MC68EC040 and MC68EC040V) for more
information about the address translation caches and transparent translation. When the
M68040 is not the bus master, the CIOUT signal is set to a high-impedance state.

5.4 BUS TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus transfers. Refer to Section 7 Bus
Operation for detailed information about the relationship of the bus transfer control
signals to bus operation.

5.4.1 Transfer Start (TS)

The processor asserts this three-state brdrrectronal sngnal for one clock penod to indicate
the start of each transfer. During alternate bus master accesses, the processor monitors
this signal to detect the start of each transfer to be snooped.

5.4.2 Transfer in Progress (TIP)

This three-state output is asserted to indicate that a bus transfer is in progress and is
negated during idle bus cycles if the bus is still granted to the processor. When the
processor loses the bus, TIP negates after completion of the current transfer and goes to
a high-impedance state. Note that TIP is kept asserted on back-to back bus cycles :

5.4.3 Transfer Acknowledge (TA)

This three-state bidirectional signal indicates the completion of a requested data transfer

operation. During transfers by the M68040; TA is an input signal from the referenced slave -
device indicating completion of the transfer. During alternate bus master accesses, TA is

normally three-stated to allow the referenced slave device to respond, and the M68040

samples it to detect the completion of each bus transfer. The M68040 can inhibit memory

and intervene in the access to source or sink data in its internal caches by asserting TA to

acknowledge the data transfer. This capability applies to alternate bus master accesses

that reference modified (dirty) data in the M68040 caches ‘

5.4.4 Transfer Error Ackr_lowledge (TEA)

The current slave asserts this input signal to indicate an error condition for the bus
transaction. When asserted with TA, this signal indicates that the processor should retry

5-8 M68040 USER’S MANUAL MOTOROLA

the access. During alternate bus master accesses, the M68040 samples TEA to detect
completion of each bus transfer.

5.4.5 Transfer Cache Inhibit (TC))

.This input si S|gnal inhibits read data from being loaded into the M68040 instruction or data
caches. TCI is ignored during all writes and after the first data transfer for both burst line
reads and burst-inhibited line reads. TCI is also ignored during all alternate bus master
transfers.

5.4.6 Transfer Burst Inhibit (TBI)

This input signal indicates to the processor that the accessed device cannot support burst
‘mode accesses and that the requested line transfer should be divided into individual long-
word transfers. Asserting TBI with TA terminates the first data transfer of a line access,
‘which causes the processor to terminate the burst and access the remaining data for the
line as three successive long-word transfers. During alternate bus master accesses, the
M68040 samples the TBI to detect completion of each bus transfer.

5.5 SNOOP CONTROL SIGNALS

The following signals control the operation of the M68040 on-chip snoop logic. Section 4
Instruction and Data Caches provides information about the relationship of the snoop

control signals to the caches, and Section 7 Bus Operation dlscusses the relationship of
these signals to bus operation.

5.5.1 Snoop Control (SC1, SC0)

These input signals. specify the snoop operation to be performed by the M68040 for an
alternate bus master transfer. If the M68040 is allowed to snoop an alternate bus master
read transfer, it can intervene in the access to supply data from its data cache when the
memory copy is stale, ensuring that the alternate bus master receives valid data. Writes
by an alternate bus master can also be snooped to either update the M68040 internal data
cache with the new data or invalidate the matching cache lines, ensuring that subsequent
M68040 reads access valid data. These signals are ignored when the processor is the bus
master.

5.5.2 Memory Inhibit (M)

This output signal prevents an alternate bus master from accessing possibly stale data in
memory while the M68040 is unable to respond. MI is asserted during reset preventing
external memory from responding. When the SCx signals indicate an access should be
snooped, the M68040 keeps MI asserted until it determines if intervention in the access is
required. If no intervention is required, Ml is negated and memory is allowed to respond to
complete the access. Otherwise, MI remains asserted and the M68040 completes the
transfer as a slave. It updates its caches on a write or supplies data to the alternate bus
master on a read. Ml is negated when the M68040 is the bus master. During a snoop

MOTOROLA M68040 USER’S MANUAL 5-9

cycle, the M68040 ignores all TA and TEA assertions while Ml is asserted; when RSTI is
asserted, Miis asserted.

5.6 ARBITRATION SIGNALS

The following control 'signals support requests to an external arbiter to become the bus
master. Refer to Section 7 Bus Operation for detailed information about the relationship
of the arbitration signals to bus operation.

5.6.1 Bus Request (BR)

This output signal indicates to the external arbiter that the processor needs to become bus
master for one or more bus transfers. BR is negated when the M68040 begins an access
to the external bus with no other accesses pending, and BR remains negated until another
access is required. There are some situations in which the M68040 asserts BR-and then
negates it without having run bus transfers; this is a disregard request condmon Refer to
Section 7 Bus Operation for details about this state.

5.6.2 Bus Grant (BG)

This input signal from an external arbiter indicates_t_hat the bus is available to the M68040
as soon as the current bus access completes. BG must be asserted and BB must be
negated (indicating the bus is free) before the M68040 assumes ownership of the bus.

5.6.3 Bus Busy (BB)

This three-state bidirectional signal indicates that the bus is currently owned. BB is
monitored as a processor input to determine when a alternate bus master has released
control of the bus. BG must be asserted and BB must be negated (indicating the bus is
free) before the M68040 asserts BB-as an output to assume ownership of the bus. The
processor keeps BB asserted until the external arbiter negates BG and the processor
completes the bus transfer in progress. When releasnng the bus, the processor negates
BB, then sets it to a high-impedance state for use again as an input.

5.7 PROCESSOR CONTROL SIGNALS

The following signals control disabling caches and memory management units (MMUs)
and support processor and external device initialization.

5.7.1 Cache Disable (CDIS)

CDIS dynamically disables the on-chip caches on the next internal cache access
boundary. CDIS does not flush the data and instruction caches; entries remain unaltered
and become available after CDIS is negated. The assertion of CDIS does not affect
snooping. During a processor reset, the level on CDIS is latched and used to select the
normal bus mode (CDIS high) or multiplexed bus mode (CDIS low). Refer to Section 4
Instruction and Data Caches for information about the caches and to Section 7 Bus
Operation for information about the multiplexed bus mode. Refer to Appendix E

5-10 M68040 USER’S MANUAL MOTOROLA

MC68040 Floating-Point Emulation (MC68040FPSP) for descriptions of emulator use of
this signal.

5.7.2 Reset In (ASTI)

This input signal causes the M68040 to enter reset exception processing. The RSTI signal
is an asynchronous input that is internally synchronized to the next rising edge of the
BCLK signal. All three-state signals are set to the high-impedance state, and all outputs,
except M|, are negated when RSTI is recognized. The assertion of RSTI does not affect
the test pins. Refer to Section 7 Bus Operation for a description of reset operation and to
Section 8 Exception Processing for information about the reset exception.

5.7.3 Reset Out (RSTO)

The M68040 asserts this output during execution of the RESET instruction to initialize
external devices. Refer to Section 7 Bus Operation for a description of reset out bus
operation. :

5.8 INTERRUPT CONTROL SIGNALS
The following signals control the interrupt functions.

5.8.1 Interrupt Priority Level (IPL2-1PLOQ)

These input signals provide an indication of an interrupt condition and the encoding of the
interrupt level from a peripheral or external prioritizing circuitry. TPL2 is the most significant
bit of the level number. For example, since the TPLx signals are active low, IPL2-IPLO = $5
corresponds to an interrupt request at interrupt priority level 2.

During a processor reset, the levels on the 1PLx lines are latched and used to select the
output driver characteristics for three signal groups listed in Table 5-5. Refer to Section 8
Exception Processing for information on interrupts and to Section 11 MC68040
Electrical and Thermal Characteristics for information on driver characteristics. Refer to
Appendix A MC68LC040 and Appendix B MC68EC040 for how these signals are
different on power-up.

Table 5-5. Output Driver Control Groups

Signal Output Buffers Controlled
PL2 Data-Bus: D31-D0

P Address Bus and Transfer Attributes:
A31-A0, CIOUT, LOCK, LOCKE, RW, SIZ1-SIZ0,
TLN1-TLNO, TM2-TMo, TT1-TT0, UPA1-UPAO

IPLO Miscellaneous Control Signals:
EB, BR, IPEND, Mi, PST3-PST0, ASTO, TA, TDO, TP, TS

NOTE: High input level = small buffers enabled; low input level = large buffers enabled.

MOTOROLA M68040 USER’S MANUAL 5-11

5.8.2 Interrupt Pending Status (IPEND)

This output signal indicates that an interrupt request has been recognized internally and
exceeds the current interrupt priority mask in the status register (SR). External devices
(other bus masters) can use IPEND to predict processor operation on the next instruction
boundaries. IPEND .is_not intended for use as an interrupt acknowledge to external
peripheral devices. Refer to Section 7 Bus Operation for bus information related to
interrupts and to Section 8 Exception Processing for interrupt information.

5.8.3 Autovector (AVEG

This input signal is asserted with TA during an interrupt acknowledge transfer to requést
internal generation of the vector number. Refer to Section 7 Bus Operatlon for more
information about automatic vectors.

5.9 STATUS AND CLOCK SIGNALS

The following paragraphs explain the signals that provide timing, test control, and the
internal processor status.

5.9.1 Processor Status (PST3-PSTO0)

These outputs indicate the internal execution unit’s status. The tlmmg is synchronous with
BCLK, and the status may have nothing to do with the current bus transfer. The PSTx
signal is updated depending on the type of PSTx encoding. There are two classes of
PSTx encodings. The first class is associated with instruction boundaries, and the second
class indicates the processor’s present status. Table 5-6 lists the deflnmon of the
encodings.

The encodings 0, 8, 4, 5, C, D, E, and F indicate the present status and do not reflect a
specific stage of the pipe. These encodings persist as long as the processor stays in the
indicated state. The default encoding 0 (user) or 8 (supervisor) is indicated if none of the
above conditions apply. The encodings 1, 2, 3, 9, A, and B belong to the first class of
PSTx encodlng This class indicates that the instruction is in its last instruction execution
stage. These encodings exist for only one BCLK period per instruction and are mutually
exclusive.

5-12 M&8040 USER'S MANUAL MOTOROLA

Table 5-6. Processor Status Encoding

Hex | PST3 | PST2 | PST1 | PSTO Internal Status
0 0 0 0 0 User, Start/Continue Current Instruction
1 0 0 0 1 User, End Current Instruction
2 0 0 1 0 | User, Branch Not Takern/End Current Instruction
3 0 0 1 1 User, Branch Taken/End Current Instruction
4 0 1 0 0 User, Table Search
5 0 1 0 1 Halted State (Double Bus Fault)
6 0 1 1 0 Low-Power Stop Mode (Supervisor Instruction)®
7 0 1 1 1 Reserved
8 1 0 0 0 Supervisor, Start/Continue Current Instruction
9 1 0 0 1 Supervisor, End Current Instruction
A 1 0 1 0 Supervisor, Branch Not Taken/End Current Instruction
B 1 0 1 1 Supervisor, Branch Taken/End Current Instruction
C 1 1 0 0 | Supervisor, Table Search
D 1 1 0 1 Stopped State (Supervisor Instruction)
E 1 1 -1 0 RTE Executing
F 1 1 1 1 Exception Stacking

NOTE: *MC68040V and MCEBEC040V only.

When a ‘branch taken/end current instruction’ is indicated, it means that a change of
instruction flow is pending. Along with the following instructions, an exception stacking
(encoding F) sequence is ended with the ‘supervisor, branch taken/end current instruction’
encoding as though it were a virtual JMP instruction. This includes all the possible
exceptions listed in the processor’s vector table. Instructions that cause a ‘branch
taken/end current instruction’ encoding when they are executed are as follows:

ANDI to SR DBcc (Taken) MOVE to SR RTD
Bec (Taken) FBcc (Taken) MOVE USP RTE
BRA FDBcc (Always) MOVEC RTR
BSR FMOVEM Rc,MRn MOVES RTS
CAS FMOVEM FPm,MRn NOP STOP
CAS2 FSAVE ORI to SR TAS
CINV ' JMP PFLUSH

CPUSH JSR PTEST

The Bce (not taken) and DBcc (not taken) are the only instructions that cause a ‘branch
not taken/end current instruction’ encoding. Note that the FBcc (not taken) is not included
in this category. The FBcc (not taken) instruction ends with an ‘end current instruction’
encoding. All other instructions and conditions end with the ‘end current instruction’
encoding. For instance, if the processor is running back-to-back single clock instructions,
the encoding ‘end current instruction’ remains asserted for as many clock cycles as
instructions.

MOTOROLA M68040 USER'S MANUAL 5-13

The following examples are for PSTx encodings:

1. An access error terminates an instruction such that the instruction execution stage is
not reached. In this case, an ‘end current instruction’ is not indicated. Exception
processing starts, the exceptlon stacking status is indicated, and then the virtual
JMP causes the ‘supervisor, branch taken/end current instruction’ encoding.

2. An FTRAPcc that does not take an exception ending with the ‘end current
instruction’ encoding. The exception stacking status is indicated and then reaches
the ‘supervisor, branch taken/end current instruction’ encoding if the FTRAPcc ends
in an exception.

3. Two simultaneous interrupt exceptlon processing sequences follow an ADD
instruction. The ADD instruction ends with ‘end current instruction’, followed by
exception stacking, followed by ‘branch taken/end current lnstructlon followed by
exception stacking, followed by ‘branch taken/end current instruction’.

4. An RTE instruction follows an ADD instruction. The ‘end current instruction’ is
followed by RTE executing followed by a branch taken/end current instruction.

5.9.2 Bus Clock (BCLK)

This input signal is used as a reference for all bus timing. It is a 'ITL-c‘ompatib‘Ie signal and
- cannot be gated off. Refer to Section 11 MC68040 Electrical and Thermal
Characteristics for electrical specifications.

5.9.3 Processor Clock (PCLK)—Not on MC68040V and MC68EC040V

PCLK is used to derive all internal timing. This clock is also TTL compatible and cannot be
gated off. Refer to Section 11 MC68040 Electrical and Thermal Characteristics for
electrical specifications.

5.10 MMU DISABLE (MDIS)—NOT ON MC68EC040

The MMU disable signal dynamically disables the translation of addresses by the MMUs.
The assertion of MDIS does not flush the address translation caches (ATCs); ATC entries
become available again when MDIS is negated. During a processor reset, the level on
MDIS is latched and used to select the normal data latch mode (MDIS high) or DLE mode
(MDIS low). Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MC68EC040V) for a description of address translation and to Sectlon 7 Bus Operation
for information about DLE mode.

5.11 DATA LATCH ENABLE (DLE)—ONLY ON MC68040

This input signal is used in DLE mode to latch the input data bus on read transfers. DLE
mode can be used to support asynchronous memory interfaces by allowing the interface
to specify when data should be latched instead of requiring data to be valid on the rising
edge of BCLK,

5-14 M68040 USER'S MANUAL MOTOROLA

5.12 TEST SIGNALS

The M68040 includes dedicated user-accessible test logic that is fully compatible with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the IEEE Test Technology Committee and Joint Test Action Group (JTAG)
sponsorship. The M68040 implementation supports circuit board test strategies based on
this standard. However, the JTAG interface is not intended to provide an in-circuit test to
verify M68040 operations; therefore, it is impossible to test M68040 operations using this
interface. Section 6 IEEE 1149.1 Test Access Port (JTAG) describes the M68040
implementation of the IEEE 1149.1 and is intended to be used with the supporting IEEE
document.

5.12.1 Test Clock (TCK)

This input signal is used as a dedicated clock for the test logic. Since clocking of the test
logic is independent of the riormal operation of the MC68040, several other components
on a board can share a common test clock with the processor even though each
component may operate from a different system clock. The design of the test logic allows
the test clock to run at low frequencies, or to be gated off entirely as required for test
purposes. '

5.12.2 Test Mode Select (TMS)
This input signal is decoded by the TAP controller and distinguishes the principle

operationas of the test support circuitry.
5.12.3 Test Data In (TDI)
This input signal provides a serial data input to the TAP.

5.12.4 Test Data Out (TDO)

This three-state output signal provides a serial data output from the TAP. The TDO output
can be placed in a high-impedance mode to allow parallel connection of board-level test
data paths. ' '

5.12.5 Test Reset (TRST)—Not on MC68040V and MC68EC040V
This input signal provides an asynchronous reset of the TAP controller.

5.13 POWER SUAPPLY CONNECTIONS

The M68040 requires connection to a Vg power supply, positive with respect to ground.
The Vg and ground connections are grouped to supply adequate current to the various
sections of the processor. Section 12 Ordering Information and Mechanical Data
describes the groupings of Vg and ground connections.

MOTOROLA M68040 USER’S MANUAL 5-15

5.14 SIGNAL SUMMARY

Table 5-7 provides a summary of the

this section.

Table 5-7. Signal Summary

electrical characteristics of the signals discussed in

Signal Name Mnemonlc Type Active Three-State
Address Bus A31-A0 Input/Output High Yes
Autovector AVEC Input Low —_
Bus Busy BB Input/Output Low Yes
Bus Clock BCLK Input _ -
Bus Grant BG Input Low —
Bus Request BR Output Low No
Cache Disable CDIS Input Low —
Cache Inhibit Out CIoU Output Low Yes
Data Bus D31-D0 Input/Output High Yes
Data Latch Enable! DLE Input High -
Ground GND Ground - —
Interrupt Pending PEND Output Low No
Interrupt Priority Level2 PLE-PLO Input Low —
Bus Lock LOCK Output Low Yes
Bus Lock End TOCKE Output Low Yes
Memory Inhibit M Output ‘Low No
MMU Disable3 MDIS Input Low —
Processor Clock PCLK Input —_ —_
Processor Status PST3-PSTO Output High No
Read/Write RW Input/Output High/Low Yes
Reset In RSTi Input Low —
Reset Out RSTO. - Output Low - “ No
Snoop Control - 8C1,8C0 . Input High —_
Transfer Acknowledge TA Input/Output Low Yes
Transfer Burst Inhibit TBI Input Low. -
Transfer Cache Inhibit TCI Input Low -
Transfer Error Acknowledge TEA Input Low —_
Transfer in Progress TP Output Low Yes
Transfer Line Number TLNt, TLNO Output High Yes
Transfer Modifier TM2-TMo Output High Yes
Transfer Size SlzZ1, SlZo Input/Output High Yes
5-16 M68040 USER'S MANUAL MOTOROLA

Table 5-7 Signal Summary (Continued)

Signal Name Mnemonic Type Active Three-State
Transfer Start TS Input/Output Low Yes
Transfer Type TT1, TTO Input/Output High Yes
Test Clock TCK Input — -
Test Data Input TDI Input High —_
Test Data Output TDO Output High Yes
Test Mode Selsct TMS Input High —
Test Reset TRST Input Low —
User-Programmable Attributes UPA1, UPAO Output High Yes
Power Supply Vee Power - -_

NOTES:

1. This signal is not available on the MC68LC040 and MC68EC040.
2. These signals are different on power-up for the MC68LC040 and MC68EC040.
3. This signal is not available on the MC68EC040.

MOTOROLA M68040 USER'S MANUAL 5-17

5-18

Me68040 USER’S MANUAL

MOTOROLA

SECTION 6 |
IEEE 1149.1A TEST ACCESS PORT (JTAG)

NOTE

This section does not apply to the MC68040V and
MC68EC040V. Refer to Appendix C MC68040V and
MC68EC040 for details. All references to M68040 in this
section only, refer to the MC68040, MC68LC040, and
MC6B8ECO040.

The M68040 includes dedicated user-accessible test logic that is fully compatible with the
IEEE standard 1149.1A Standard Test Access Port and Boundary Scan Architecture.
Problems associated with testing high-density circuit boards have led to the standard’s
development under the sponsorship of the IEEE Test Technology Committee and the
Joint Test Action Group (JTAG).

This section is to be used in conjunction with the supporting IEEE document and includes
those chip-specific items that the IEEE standard requires to be defined and additional
information specific to the M68040 implementation. For example, the IEEE standard
1149.1A test access port (TAP) controller states are referenced in this section but are not
described. For these details and application information regarding the standard, refer to
the IEEE standard 1149.1A document.

The M68040 implementation supports circuit board test strategies based on the standard.
The test logic utilizes static logic design and is system logic independent of the device.
The M68040 implementation provides capabilities to:

a. Perform boundary scan operations to test circuit board electrical continuity,
b. -Bypass the M68040 by reducing the shift register path to a single cell,

¢. Sample the M68040 system pins during operation and transparently shift out the
result,

d. Disable the output drive to output-only pins durihg circuit board testing, and
e. Select one of two output drivers on a pin-by-pin basis.

NOTE

The IEEE standard 1149.1A test logic cannot be considered
completely benign to those planning not to use this capability.
Certain precautions must be observed to ensure that this logic
does not interfere with system operation. Refer to 6.5
Disabling the IEEE Standard 1149.1A Operation.

MOTOROLA M68040 USER'S MANUAL 6-1

6.1 OVERVIEW

Figure 6-1 illustrates a block diagram of the M68040 implementation of IEEE standard
1149.1A. The test logic includes a 16-state dedicated TAP controller. These 16 controller
states are defined in detail in the IEEE standard 1149.1A, but only 8 are included in this
section.

Test-Logic-Reset Run-Test/ldle

- Capture-IR - Capture-DR
Update-IR Update-DR
Shift-IR Shift-DR

The TAP controller provides access to five dedicated signal pins:
TCK—A test clock input that synchronizes the test logic.

TMS—A test mode select input with an internal pullup resistor sampled on the rising
edge of TCK to sequence the TAP controller.

TDI—A test data input with an internal pullup resistor sampled on the nsmg edge of
TCK. :

‘TDO—A three-state test data output actively driven only in the shlﬂ-lR and shlft-DR
controller states that changes on the falling edge of TCK.

TRST—An active-low asynchronous reset with an internal pullup resistor that forces
the TAP controller into the test-logic-reset state.

The test logic also includes an instruction shift register and two test data régisters, a
boundary scan register and a bypass register. The boundary scan reglster links all devuce
signal pins into the instruction shift register.

TEST DATA REGISTERS

TOI

BYPASS

LATCHED DECODER ‘
| b1 S o

> - 3BITINSTRUCTION SHIFT REGISTER
| |
™S]
a Qo
TeK = %

TRST ——

Figure 6-1. M68040 ;l'est Loglc Block Diagram

6-2 M68040 USER'S MANUAL MOTOROLA

6.2 INSTRUCTION SHIFT REGISTER

The M68040 IEEE standard 1149.1A implementation includes a 3-bit instruction shift
register without parity. The register shifts one of eight instructions, which can either select
the test to be performed or access a test data register, or both. Data is transferred from
the instruction shift register to latched decoded outputs during the update-IR state. The
instruction shift register is reset to all ones in the TAP controller test-logic-reset state,
which is equivalent to selecting the BYPASS instruction. During the capture-IR state, the
binary value 001 is loaded into the parallel inputs of the instruction shift register. :

The M68040 IEEE standard 1149.1A implementation includes three mandatory public
instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST) and four manufacturer's public
instructions. The four manufacturer's public instructions provide the capability to disable all
device output drivers, operate the device in a BYPASS configuration without a system
clocking requirement, and select one of two output drive capabilities on a pin-by-pin basis.
The M68040 implementation does not support the optional standard public instructions.
Table 6-1 lists the three bits used in the instruction shift register to decode the instructions
and their related encodings. Note that the least significant bit of the instruction (bit 0) is the
first bit to be shifted into the instruction shift register.

Table 6-1. IEEE Standard 1149.1A Instructions

Bit2 | Bit1 | Bito Instruction Selected Test Data Register Accessed
0 0 0 EXTEST Boundary Scan
0 0 1 HIGHZ Bypass
0 110 SAMPLE/PRELOAD Boundary Scan
0 1 1 DRVCTL.T Boundary Scan
1 0 0 SHUTDOWN ‘ Bypass
1 0 1 PRIVATE Bypass
1 1|1 o0 DRVCTL.S) Boundary Scan
1 1 1 BYPASS ' Bypass

EXTEST, HIGHZ, DRVCTL.T, SHUTDOWN, and PRIVATE have a PCLK and BCLK
restriction. Failure to comply with this restriction results in potential internal damage to the
device (see 6.4 Restrictions). Once the restriction is complied with, SHUTDOWN,
EXTEST, HIGHZ, and DRVCTL.T can be entered regardless of order. The system clocks
(PCLK and BCLK) must be kept running while in the SAMPLE/PRELOAD, DRVCLT.S,
and BYPASS instructions. Failure to do so could result in potential internal damage to the
device. o S : .

- 6.2.1 EXTEST

The external test instruction (EXTEST) selects the 184-bit bou'ndary scan register. This
instruction also activates two internal functions that are intended to protect the device from.
potential damage while performing boundary scan operations.

MOTOROLA M68040 USER’S MANUAL 6-3

EXTEST asserts internal reset for the M68040 system logic to force a predictable benign
internal state and activates an internal keep-alive clock to protect the device from potential
internal damage. This internal clock eliminates the requirement to keep the system clocks
(PCLK and BCLK) running during EXTEST operations and allows these two system clock
pins to be included in boundary scan testing.

6.2.2 HIGHZ

The HIGHZ instruction is an optional instruction provided as a Motorola public instruction
to anticipate the need to backdrive output pins during circuit board testing. The HIGHZ
instruction activates an internal keep-alive clock, asserts internal system reset, selects the
bypass register, and forces all output and bidirectional pins to the high-impedance state.

Asserting TRST or holding TMS high and clocking TCK for at least five rising edges
causes the TAP controller to enter the test-logic-reset state. Using only the TMS and TCK
pins and the capture-IR and update-IR states invokes the HIGHZ instruction. This scheme
works because the value captured by the instruction shift register during the capture-IR
state is identical to the HIGHZ opcode.

6.2.3 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction provides two separate functions. First, it provides a
means to obtain a sample system data and control signal. Sampling occurs on the rising
edge of TCK in the capture-DR state. The user can observe the data by shifting it through
the boundary scan register to output TDO using the shift-DR state. Both the data capture
and the shift operations are transparent to system operation. The user must provide some
form of external synchronization to achieve meaningful results since there is no internal
synchronization between TCK and BCLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary
scan register output cells before selecting EXTEST, which is accomplished by ignoring
data being shifted out of TDO while shifting in initialization data. The update-DR state can
then be used to initialize the boundary scan register and ensure that known data and
output state will occur on the outputs after entering the EXTEST instruction.

6.2.4 DRVCTL.T

The DRVCTL.T instruction is a Motorola public instruction that provides the ability to select
one of two output drivers on a pin-by-pin basis. It is intended for use with EXTEST or
SHUTDOWN to provide an IEEE-compatible environment to select the output drivers for
board-level test environments. This instruction allows data in the boundary scan register to
select the output driver. A logic zero in the appropriate boundary scan output cell (see
Table 6-1) selects the large buffer, and a logic one selects the small buffer (see Section 7
Bus Operation). Data captured in the capture-DR state for this instruction is identical to
that captured during EXTEST: output data cells for outputs and pin state for inputs. Note
that no data relevant to the drive control function is captured during the capture-DR state.

6-4 M68040 USER’S MANUAL MOTOROLA

The DRVCTL.T instruction is intended to be used in test applications in conjunction with
the EXTEST and SHUTDOWN instructions and not for system applications. It therefore
differs from DRVCTL.S in that this instruction invokes the keep-alive clock, asserts the
internal reset, and the test logic, not the system logic, has control of the I/O pins.

When the system logic has control of signal pin I/O directions and levels, the drive control
latch is loaded from the TPL2-IPLO pins during the negation of RSTI. DRVCTL.T overwrites
this value with boundary scan data in the update-DR state. The selected output driver
state remains unchanged if only the DRVCTL.T, EXTEST, or SHUTDOWN instructions
are invoked. If an instruction other than one of these three is executed, the system logic
protocol regains control of the output driver state and overwrites the value that the
DRVCTL.T instruction previously defined.

Note that the output drive control state does not change while the 1149.1A instruction is
one of the three instructions DRVCTL.T, EXTEST, or SHUTDOWN. If DRVCTL.T changes
the output driver state and then the test-logic-reset state is entered, the instruction shift
register is reset to BYPASS, and the system logic can change the output driver state.

6.2.5 SHUTDOWN

This instruction provides an opcode for automatic test pattern generation (ATPG)
programs to cope with the clocking protocol required to stop the system clocks. This
instruction asserts internal system reset, activates an internal keep alive clock, and selects
the bypass register. Internal decoding of the instruction selects the bypass register, and
the test logic, not the system logic, has control of the I/O ports. Note that initializing the
boundary scan data register and then selecting the SHUTDOWN instruction provides a
clamping function. The test logic controls the 1/O state, and the bypass register is
selected.

6.2.6 PRIVATE

Motorola reserves this instruction for manufacturing use. The instruction does not change
pin 1/O as defined for system operation.

6.2.7 DRVCTL.S

The DRVCTL.S instruction controls the output driver selection on a pin-by-pin basis. This
instruction allows data in the boundary scan register to select the output driver during the
update-DR state when the system logic has control of the signal I/O directions and levels.
A logic zero selects the large buffer or driver; a logic one selects the small buffer or driver
(see Table 6-1). v

The DRVCTL.S instruction is intended to be used in system applications and not in test
applications. In system applications, the system logic has control of the signal pin /O
directions and levels; whereas, in test applications, the 1149.1A test logic has control of it.
It therefore differs from DRVCTL.T in that this instruction does not invoke the internal keep
alive clock, it does not assert the internal reset, and the system logic, not the test logic,

MOTOROLA M68040 USER'S MANUAL 6-5

has control of the I/O pins. - The 1149.1A interface is transparent to system operatron
except for drive control selection during executron of this rnstructron

When the system Ioglc has control of the srgnal I/0. drrectrons and levels, the dnve control
latches are loaded from the IPL2-IPLO pins at the negation of the RSTI signal. After RSTI
has been negated, and the 128-clock internal reset cycle has expired (see Section 7 Bus
Operation), the DRVCTL.S instruction is executed. Each drive control latch is modified
during the update-DR state. Any subsequent RSTI signal negation while in a system
configuration (i.e., system logic has-control of the signal I/O directions and levels) can
cause the drive control latches to be overwritten with new TPLx signal values. The system
bus can be suspended in a wait state while this function is being performed. :

6.2.8 BYPASS

The BYPASS instruction selects the single-bit bypass register, creating a srngle -bit shift-
register path from TDI to the bypass register to TDO. The instruction enhances test
efficiency when a component other than the M68040 becomes the device under test.
When the bypass register is initially selected, the instruction shift register stage is set to a
logic zero on the rising edge of TCK following entry into the capture-DR state. Therefore,
the first bit to be shifted out after selecting the bypass reglster is always a logic zero.
Frgure 6-2 illustrates the bypass register.

v ‘SHIFTDH —[__rlsﬁl

o—1"
| mux
FROMTOI ——

o : i l——— Ci
CLOCK DR

Figure 6-2. Bypass Register

—— TOTDO

-

6.3 BOUNDARY SCAN REGISTER

The 184-bit boundary scan register uses the TAP controller to scan user-defined values
into the output buffers, capture values presented to input pins, and control the direction of
bidirectional pins. The instruction shift register cell nearest TDO (i.e., first to be shifted out)
is defined as bit zero. The last bit to be :shifted out is bit 183. This register-includes cells
for all device signal pins and clock pins along with associated control signals. .

The M68040 boundary scan register consists of three cell structure types, O.Latch, I.Pin,
and 10.Ctl, that are associated with a boundary scan register bit. All boundary scan output
cells capture the logic level of the device output latch during the capture-DR state. Figures
6-3 through 6-5 illustrate these three cell types Frgure 6- 6 |llustrates the general
arrangement of these cells

6-6 M68040 USER'S MANUAL MOTOROLA

1= EXTEST, DRVCTLT,

ANDSHUTDOWN . TO OUTPUT
0= OTHERWISE SHIFTDR TONEXTCELL DRIVER SELECT
A A
G '
DATAFROM _____ I3 o :
SYSTEMLOGIC MUX TO OUTPUT
. BUFFER
et]
. . __ED
e L) —
MUX 1D ¢t
—11 o1 [T
—I>ct
FROM CLOCKDR UPDATE DR2 UPDATE DR
LAST "(ORVCTLX) (DRVCTLY)
CELL .
Figure 6-3. Output Latch Cell (O.Latch)
TONEXT CELL
T0 A
SYSTEM <€
Loaic . :
C e
10 MUX
¢14
CLOCKDR . .. FROM SHFTDR
LAST
caL

Figure 6-4. Input Pin Cell (I.Pin)

MOTOROLA M68040 USER'S MANUAL 6-7

6-8

1 = EXTEST

SHIFT DR TONEXT CELL

0« OTHERWISE
, A
G1
OUTPUT CONTROL = :
FROMSYSTEMLOGIC 1" wux > TRt
) r 1 (1=DRIVE)
—lGl I
T
MUX - 1D
—41 > et 10
>C1
I-h]
FROM CLOCK DR RESET
LAST
CELL UPDATE DR
Figure 6-5. Output Control Cells (10.Ctl)
TONEXT CELL
OUTPUT
Buele oo _|
OUTPUT
DATA .
INPUT
DATA
Y
FROM TONEXT
| USTCELL PINPAR
Figure 6-6. General Arrangement of Bidirectional Pins

M68040 USER'S MANUAL MOTOROLA

All M68040 bidirectional pins include two boundary scan data cells, an input, and an
output. One of five associated boundary scan control cells controls each bidirectional pin.
If these cells contain a logic one, the associated bidirectional or three-state pin will be
configured as an output and enabled. The cell captures the current value during the
capture-DR state. All five control cells are reset (i.e., logic zero) in the test-logic-reset
state. The five bidirectional/three-state control cells and their boundary scan register bit
positions are as follows:

Cell Name Bit
io.ab 150
jo.db 151
io.2 154
io.1 185
i0.0 156

Table 6-2 lists the 184 boundary scan bit definitions. The first column in the table defines
the bit position in the boundary scan register. The second column references one of the
three cell types. The third column lists the pin name for all pin-related cells. The fourth
column lists the system pin type for convenience where TS-Output indicates a three-state
output pin and I/O indicates a bidirectional pin. The last column lists the name of the
associated control bit of the boundary scan register for three-state output and bidirectional
pins. The boundary scan description language (BSDL) type for each cell can be found in
note 1. :

MOTOROLA M68040 USER'S MANUAL 6-9

 Table 6-2. Boundary Scan Bit Definitions?

: Pin/Cell - Output o Pin/Cell : Output
Bit [CellType] Name - | PinType |CtrlCell Bit [Cell Type| Name . Pin Type [Ctrl Cell
.0 O.Latch | . RSTO Output? |(Note 3) 37 O.Latch A24 o2 io.ab
1 . |O.latch | TPEND Output? - |(Note 3) 38 1.Pin A24 Vo io.ab
2 |Olach | CTioUT | TS-Output2 | io.0 39 | O.latch A25 1102 jo.ab
3 |odlach | upAo | TS-Output? | io.0 40 1.Pin A25 Vo jo.ab
4 |Olach | UPA1 | TS-Output? | 0.0 41 | Olatch A26 o2 jo.ab
5 | O.Latch TT0 /02 10.0 - 42 | LPin A26 Vo jo.ab
6 I.Pin TT0 Vo i0.0 . 43 | O.Latch A27 o2 jo.ab
7 | O.atch m Vo2 i0.0 44 - | " 1Pin A27 vo jo.ab
8 1.Pin T o i0.0 45 |o.latch A28 Vo2 jo.ab
9 |oO.Latch A10 1102 jo.ab 46 1.Pin A28 Vo jo.ab
10 .Pin A10 Vo jo.ab 47 | O.Latch A29 1102 jo.ab
11 | O.Latch A1 o2 io.ab 48 1.Pin A29° vo io.ab
12 1.Pin ‘AN o io.ab 49 | OlLatch A30 o2 io.ab
13 | O.Latch A12 102 io.ab 50 1.Pin A30 vo io.ab
14 I.Pin A12 Vo io.ab 51 | O.Latch A31 1102 jo.ab.
15. | O.Latch A13 Vo2 jo.ab 52 I.Pin A31 Vo jo.ab
16 | LPin A13 Vo o.ab 53 . |Odatch | Do o2 jo.db
17 | O.Latch Al4 Vo2 io.ab 54 | O.Latch D1 /o2 jo.db
18 1.Pin Al4 Vo io.ab 55 | O.Latch D2 102 jo.db
19 | O.latch A15 /o2 io.ab 56 | O.Latch D3 102 jo.db
20 1.Pin A15 Vo io.ab 57 | O.Latch D4 o2 jo.db
21 | O.Latch A16 102 io.ab 58 |oO.Latch D5 Vo2 jo.db
22 I.Pin A16 Vo fo.ab 59 | O.Latch D6 1102 io.db
23 |o.atch A17 Vo2 io.ab 60 | O.Latch D7 /o2 jo.db
24 L.Pin A17 Vo jo.ab .61 | O.datch D8 102 jo.db
25 |O.latch A8 Vo2 jo.ab 62 |O.latch D9 Vo2 io.db
26 I.Pin A18 Vo io.ab 63 | O.latch D10 102 jo.db
27 | o.Latch A19 /02 jo.ab 64 |O.lLatch D11 o2 io.db
28 1.Pin A19 Vo io.ab 65 |O.Latch D12 102 io.db
29 | O.Latch A20 1102 io.ab 66 |O.Latch D13 Vo2 fo.db
30 1.Pin A20 vo jo.ab .67 |O.latch D14 o2 jo.db
31 O.Latch A21 102 jo.ab 68 O.Latch D15 o2 io.db
32 I.Pin A21 Vo io.ab 69 O.Latch D16 o2 io.db
33 |O.Latch A22 02 jo.ab 70 | O.Latch D17 1102 io.db
34 L.Pin A22 Vo jo.ab 71 | O.Latch D18 /02 jo.db
35 |O.Latch A23 o2 jo.ab 72 | O.latch D19 /o2 io.db
36 1.Pin A23 Vo jo.ab 73 | O.latch D20 o2 io.db
6-10 M68040 USER'S MANUAL. MOTOROLA

Table 6-2. Boundary Scan Bit Definitions (Continued)

Pin/Cell Output Pin/Cell Output
Bit [Cell Type{ Name Pin Type |[Ctrl Cell Bit [Cell Type] Name Pin Type |[Ctrl Cell
74 {O.Latch D21 yo2? fo.db m I.Pin D26 vo io.db
75 | O.Latch D22 yo2 io.db 12 I.Pin D27 vo io.db
76 | O.Latch D23 vo2 fo.db 113 L.Pin D28 vo io.db
77 | O.Latch D24 yo2? jo.db 114 I.Pin D29 Vo io.db
78 | O.Latch D25 o2 jo.db 115 1.Pin D30 vo io.db
79 | O.Latch D26 Vo2 io.db 116 1.Pin D31 Vo jo.db
80 |O.Latch D27 vo2? io.db 117 | o.Latch A9 1102 io.ab
81 | O.Latch D28 o2 jo.db 118 1.Pin A9 vo io.ab
82 |O.Latch D29 vo2 jo.db 119 |O.latch | As /02 io.ab
83 |O.Latch D30 Vo2 jo.db 120 1.Pin A8 Vo jo.ab
84 |O.Latch D31 102 | io.db 121 | O.Latch A7 1102 jo.ab
85 .| LPin Do vo jo.db 122 1.Pin A7 Vo jo.ab
86 1.Pin D1 Vo io.db 123 | O.atch A6 Vo2 jo.ab
87 .Pin D2 Vo jo.db 124 1.Pin A8 Vo jo.ab
88 I.Pin D3 Vo jo.db 125 | O.Latch A5 /02 io.ab
89 I.Pin D4 Vo io.db 126 1.Pin A5 [/{e] jo.ab
90 .Pin D5 Vo io.db 127 | O.Latch A4 /02 io.ab
91 I.Pin Ds Vo io.db 128 I.Pin A4 Vo io.ab
92 I.Pin D7 ro jo.db 129 O.Latch A3 Vo2 io.ab
93 1.Pin D8 - vo io.db 130 .Pin A3 Vo io.ab
94 1.Pin D9 Vo io.db 131 |Odlatch | A2 Vo2 io.ab
95 L.Pin D10 Vo io.db 132 | LPin A2 vo io.ab
96 I.Pin D1 Vo jo.db 133 | O.Latch Al Vo2 io.ab
97 I.Pin D12 Vo jo.db 134 I.Pin Al Vo jo.ab
98 1.Pin D13 vo jo.db 135 | O.Latch A0 . vo? jo.ab
99 I.Pin D14 vo lo.db 136 1.Pin A0 Vo io.ab
100 I.Pin D15 vo io.db 137 | O.Latch T™2 TS-Output? | “i0.0
101 L.Pin D16 Vo jo.db 138 | O.atch TM1 | TS-Output2 | i0.0
102 I.Pin D17 Vo fo.db 139 | O.Latch T™MO TS-Output2 io.0
103 I.Pin D18 Vo io.db 140 | O.Latch TLN1 TS-Output2 | 0.0
104 1.Pin D19 vo io.db 141 |Odatch | TLNO | TS-Output2 | 0.0
105 I.Pin - D20 vo io.db 142 | O.Latch SiZo Vo2 i0.0"
106 LPin | D21 VO - | io.db 143 1.Pin SIZo vo | i.0
107 1.Pin D22 Vo io.db 144 | O.Latch RW 1102 i0.0
108 I.Pin D23 o fo.db 145 1.Pin RW Vo io.0
109 I.Pin D24 Vo io.db 146 |Olatch | TOCRE | TS-Output? | io.1
110 I.Pin -D25 vo io.db 147 | O.Latch siz1 vo2 i0.0

MOTOROLA M68040 USER’S MANUAL 6-11

Table 6-2. Boundary Scan Bit Definitions (Concluded)

Pin/Cell . Output Pin/Cell Output
Bit [Cell Type] Name Pin Type [Ctrl Cell Bit |CellType] Name Pin Type [Ctrl Cell
148 I.Pin sIZ1 vo i0.0 166 | O.Latch A 1102 i0.2
149 |O.dach | TOGR | TS-Output2 | io.1 167 I.Pin TA vo i0.2
150 lo.cl io.ab — (Note 4) 168 | ILPin TEA Input —_
151 10.ctl io.db - (Note 4) 169 L.Pin BG Input —
152 | O.Latch M Output2 * [(Note 3) 170 I.Pin SCi Input —
153 | O.Latch BR Output2 |(Note 3) 171 I.Pin SCO " Input —
154 | lo.cu i0.2 — (Note 4) 172 1.Pin TBI Input —
155 lo.ctl io.1 — (Note 4) 173 LPin AVEC Input —
156 lo.ctl i0.0 —— (Note 4) 174 1.Pin TCI Input -
157 | O.Latch TS Vo2 i0.0 175 1.Pin DLES Input -
158 I.Pin TS /O - i0.0 176 I.Pin PCLK - Input -
159 | O.Latch BB o2 jo.1 177 1.Pin BCLK Input -
160 1.Pin BB Vo io.1 178 1.Pin PLO - Input —
161 O.Latch TP TS-Output? | 0.1 179 I.Pin 18] - lnput | —
162 | O.Latch PST3 Output? - |(Note 3) 180 1.Pin Pz Input —
163 |O.latch { PST2 Output? - [(Note 3) 181 I.Pin RSTI Input —_
164 |O.Latch | PST1 Output2 |(Note 3) 182 .Pin cos Input -
165 [O.latch | PSTO. Output2 |(Note 3) 183 1.Pin MDis6 Input —
NOTES:

1. I.Pin, 10.Ct1, and O.Latch are equivalent to the BSDL descriptions: BC_4, BC_2, and BC 2, respectively.
2. Boundary scan register bit positions that are used during the drive control (DRVCTL.X) instructions.

3. These output-only cells can be turned off (high impedance) by using the HIGHZ instruction.

4. All of the control signals (I0.Ctl) are cleared in the test-logic-reset state.

5. Renamed JS0 on the MC68LC040 and MC68EC040.

6. Renamed JS1 on the MC68EC040.

6.4 RESTRICTIONS

The test logic is implemented using static logic design, and TCK can be stopped in either
a high or low state without loss of data. The system logic, however, includes considerable
dynamic logic. For this reason, the system clocks (PCLK and BCLK) cannot be stopped or
allowed to run slower than the specified frequency except when the EXTEST, HIGHZ,
DRVCTL.T, or SHUTDOWN instructions have been properly invoked. -

PCLK and BCLK must be kept running for two additional BCLK periods upon initial entry
into any of the four instructions, EXTEST, HIGHZ, DRVCTL.T, or SHUTDOWN. This
restriction is necessary to allow time for an internal reset to propagate through an internal
synchronizer. After this period, the user has complete time-domain freedom with the two
system clock pins. After any of the four instructions has been properly entered, these
instructions can be executed in any order without a time-domain clocking restriction.
Entering any instruction other than one of these four requires that the system clocks be

6-12 M68040 USER’S MANUAL MOTOROLA

restarted, and a proper reentry into any of the four instructions is again required before the
system clocks can be stopped.

Control over the output enable signals using the boundary scan register and the EXTEST
and HIGHZ instructions requires a compatible circuit-board test environment to avoid
destructive configurations. The user is responsible for avoiding situations in which the
M868040 output drivers are enabled into actively driven networks.

The TRST signal provides the ability for an asynchronous reset of the test logic and
requires no internal clocking to force the TAP controller into the test-logic-reset state. This
signal should be asserted during system power-up to initialize the 1149.1A test interface
and avoid the potential for board-level bus conflicts. Essentially the TRST signal provides
the ability to prevent possible board-level bus contention during power-up due to the test
logic having control of the pins. The device has no internal power-up reset circuit. The
TRST signal should be treated similar to the RSTI signal for board design considerations
concerning power-up conditions.

Negation of the TRST signal requires certain precautions to achieve a predictable TAP
controller state. The TMS signal is sampled on the rising edge of TCK and sequences the
TAP controller. If TMS is low and TRST is negated simultaneously with the rising edge of
TCK, the resultant TAP controller state is unpredictable but will be either test-logic-reset or
run-test/idle. To avoid this uncertainty, either 1) the negation of TRST can be synchronized
with the falling edge of TCK or 2) TMS can remain high until after TRST negation.
Alternatively, holding TMS low for two or more TCK periods following TRST negation
ensures that the TAP controller is in the run-test/idle state.

6.5 DISABLING THE IEEE STANDARD 1149.1A OPERATION

There are two considerations for non-lEEE standard 1149.1A operation. First, TCK does
not include an internal pullup resistor and should not be left unconnected to preclude mid-
level inputs. The second consideration is to ensure that the IEEE standard 1149.1A test
logic remains transparent to the system logic by providing the ability to force the test-logic-
reset state.

Figure 6-7 illustrates disabling the IEEE standard 1149.1A operation through connecting
TRST directly or through a resistor to ground or a suitable logic network. Connecting TRST
to RSTI while TCK is held either high or low meets the two considerations. If a pulse
asserts TRST, the TAP controller is forced into the test-logic-reset state and can remain in
this state as long as a rising edge on the TCK signal does not occur when TMS is low.

MOTOROLA M68040 USER’S MANUAL 6-13

6-14

TOI

" TRST

TCK

TDo

Ve

v

(—— NO CONNECTION

NS

Figure 6-7. Circuit Disabling
IEEE Standard 1149.1A

M68040 USER’S MANUAL MOTOROLA

6.6 MOTOROLA M68040 BSDL DESCRIPTION (VERSION 2.2)
Revision List:

1. LOCK and LOCKE controlled by io.1 vice io.0 (4D98D).
No other changes to Version 2.1 BSDL.
Instruction opcodes changed for SAMPLE, SHUTDOWN, and BYPASS
New instructions DRVCTL.T, DRVCTL.S and PRIVATE added.

New instructions DRVCTL.T and DRVCTL.S renamed to DRVCTL T and
DRVCTL_S for syntax compatibility.

5. Register access specified for DRVCTL_T, DRVCTL S and PRIVATE mstructlons
6. No other changes to Version 1.0 BSDL.

> who

Package Type: 18 x 18 PGA

This BSDL is for the newer MC68040 mask sets of E26A and after (roughly after the
second half of 1992). It does not include the 0.8-um mask sets D43B, D50D, and D98D.
For MC68LC040 and MCE8EC040, two pin names have changed. To make the necessary
modifications, change all occurrences of DLE to JS0 and MDIS to JS1. :

entity MC68040 is
generic(PHYSICAL_PIN_MAP:string := "PGA_18x18");

port (TDI: in bit;
TDO: out . bit;
TMS: in bit;
TCK: in bit;
TRST: in bit;

RSTO: buffer bit;

IPEND: buffer bit;)
CIOUT: out bit;

UPA: out bit_vector(0 to 1);

TT: inout bit_vector(0 to 1);
A: inout bit_vector(0 to 31);
D: inout bit_vector(0to 31); *

LOCKE: out bit;
LOCK: out bit;
R_W: inout bit;
TLN: out bit_vector(0 to 1);
TM: out bit_vector(0 to 2);
SIZ: inout bit_vector(0 to 1);

Mi: buffer bit;
BR: buffer bit;
TS: inout bit;

BB: inout bit;
TIP: out bit;
PST: buffer bit_vector(0 to 3);
TA: inout bit;

TEA: in bit;
BG: in bit;
SC: in bit_vector(0 to 1);
TBI: in bit;
AVEC: in bit;
TCl: in bit;

MOTOROLA ' M68040 USER’S MANUAL 6-15

DLE: in bit;

PCLK: in " bit;
BCLK: in bit;
IPL: in bit_vector(0 to 2);
RSTI: in bit;
CDIS: in bit;
MDIS: in bit;

EGND: linkage bit_vector(1 to 23);
EVDD: linkage bit_vector(1 to 12);
IGND: linkage bit_vector(1to 12);
IVDD: - linkage bit_vector(1 to 7);
CGND: linkage bit_vector(1 to 2);
CVDD: linkage bit_vector(1 to 6);
PGND: linkage bit_vector(1 to 3);
PVDD: linkage bit_vector(1to 2)

)

use STD_1149_1_1990.all;

attribute PIN_MAP of MC68040 : entity is PHYSICAL_PIN_MAP;

—18x18 PGA Pin Map
constant PGA_18x18 : PIN_MAP_STRING :=

6-16

*TDI: 83,

*TDO: T2,

*TMS: S5,

*TCK: S4,

*TRST: T3,

*RSTO: RS,

*IPEND: St,

*CIOUT: Ri,

‘UPA: (Q3,Q1),

T (P3, P2),

*A: (L18, K18, J17, J18, H18, G18, G16, F18, E18, F16, P1, N3,
" N1, M1, L1, K1, K2, J1, H1, J2, G1, F1, E1, G3,
. D1, F3, E2, C1, E3, B1, D3, A1),

‘D: (C3, B3, C4, A2, A3, A4, A5, A6, B7, A7, A8, A9,
" A10, A11, A12, A13, B11, A14, B12, A15, A16, A17, B16, C15,
" A18, C16, B18, D16, C18, E16, E17, D18),

“LOCKE: R18,

"LOCK: 818,

'R_W: Nis,

“TLN: (Q18, P18),

“T™: (N18, M18, K17),

*S1Z: (P17, P16),

*MI: Q16,

*BR: T18,

"TS: R16,

"BB: T17,

"TIP: R15, :

*PST: (T15, S14, R14, T16),

"TA: T14,

*TEA: 813,

*BG: T13,

*SC: (T12, S12),

*TBI: St1,

"AVEC: Ti1,

M68040 USER'S MANUAL

20 R0 R0 Ro Qo Ro RO R0 R0 R0 R0 RO R0 RO RO RO RO RO RO RO RA RO RO 2O RO RO RO RO R RO RO RO QO RO

MOTOROLA

*TCl: T10,

*DLE: T9,

"PCLK: Rg9,

*BCLK: R7,

*IPL: (T 8, T7, T6),
*RSTI:

*CDIS: T5

"MDIS: S6,

'EGND: (S2, Q2, N2, L2, H2, F2, D2, B2, B4, B6, B8, B10,

. B13, B15, B17, D17, F17, H17, L17, N17, Q17, S17, S15),
"EVDD: (R2, M2, G2, C2, B5, BS, B14, C17, G17, M17, R17, S16),
"IGND: (T4, R4, L3, K3, C7, C9, C11, K16, M16, R13, R11, s10),
"WDD: (RS, M3, C8, C10, C12, L16, R12),

*CGND: (C6, C13),

*CVDD: (J3, H3, C5, C14, H16, J16),

*PGND: (S9, R10, R6),

*PVDD: (S8, R8)

% % 2 ®E ®E 8 8 . 2. 828 E 8 8 ®E E =E 8 =
“* R0 Do Do fo R0 Ro Re Po Po e fo R0 R0 Po Do fo

—Other Pin Maps here when documented

attribute TAP_SCANL_IN of TD!:signal is true;

attribute TAP_SCAN_OUT of TDO:signal is true;

attribute TAP_SCAN_MODE of TMS:signal is true;

attribute TAP_SCAN_CLOCK of TCK:signal is (10.0e6, BOTH);
attribute TAP_SCAN_RESET of TRST:signal is true;

attribute INSTRUCTION_LENGTH of MC68040:entity is 3;
attribute INSTRUCTION_OPCODE of MC68040:entity is

"EXTEST (000),
"HI_Z (001),
*SAMPLE (010),
*DRVCTLT (011),
"SHUTDOWN (100),
*PRIVATE (101),
*DRVCTL.S (110),
‘BYPASS (111)

attribute INSTRUCTION_CAPTURE of MC68040:entity is "001%;
attribute INSTRUCTION_DISABLE of MC68040:entity is "HI_Z";
attribute REGISTER_ACCESS of MC68040:entity is

*BYPASS (SHUTDOWN, HI_Z, PRIVATE), - . &
~ "BOUNDARY (DRVCTL_T, DRVCTL_S) o R
attribute BOUNDARY_CELLS of MC68040:entity is

*BC_2,BC_4 ' "

attribute BOUNDARY_LENGTH of MC68040:entity is 184;
attribute BOUNDARY_REGISTER of MC68040:entity is

=* Re Qo Ro Qo o Qo Qo

MOTOROLA M68040 USER’S MANUAL ; 6-17

num cell port function safe ccell dsval rsh

0 (BC_2, RSTO, output2, X), " &
"1 (BC_2, IPEND, output2, X), & ‘
2 (BC_2, CIOUT, ' output3, X, 156, O, 2), " & —156 =i0.0
3 (BC_2, UPA(0), output3, X, 156, 0, 2), " &
"4 (BC_2, UPA(1), output3, X, 156, O, 2), " &
"5 (BC_2, TT(0), output3, X, 156, 0, 2), " &
6 (BC_4, TT(0), input, -~ X), © - °© 2 " &
7 (BC_2, TT(1), output3, "X, - 156, O, - 2), " &
8 (BC_4, TT(H), input; . "X, - &
"9 (BC_2, A(10), output3,”- X, 150, - 0, = 2), * & —150=i0.ab
10 (BC_4, ‘A(10), input, X), T S " &
"1 (BC_2, A(11), output3, X, 150, O, 2), " &
12 (BC_4, A(11), input, X), o " &
13 (BC_2, A(12), output3, X, 150, 0, 2), " &
14 (BC_4, A(12), input, X), " &
"15 (BC_2, A(13), output3, X, 150, O, 2), * &
16 (BC_4, A(13), input, X), &
17 (BC_2, A(14), output3, X, 150, O, 2), =&
18 (BC_4, A(14), input, X), : " &
19 (BC_2, A(15), output3, X, 150, O, 2), " &
20 (BC_4, A(15), input, X), . ' &
21 (BC_2, A(16), output3, X, 150, 0, 2), " &
22 (BC_4, A(16), input, X), C L ‘ " &
23 (BC_2, A(17), output3, X, 150, . 0, .- 2), " &
24 (BC_4, A(17), input, X), EEREEE v&
25 (BC_2, A(18), output3, X, 150, 0, 2, &
26 (BC_4, A(18), input, X), E , E " &
27 (BC_.2, A(19), output3, X, 150, O, 2), &
28 (BC_4, A(19), input, X), &
29 (BC_2, A(20), output3, X, 150, 0, 2), " &
*30 (BC_4, A(20), input, X), " &
*31 (BC_2, A(21), output3, X, 150, 0, 2, -~ &
32 (BC_4, A(21), input, X), " &
*33 (BC.2, A(22), output3, X, 150, O, 2), &
34 (BC_4, A(22), input, X), » ' &
'35 (BC_2, A(23), output3, X, 150, O, 2, " &
"36 (BC_4, A(23), input, X), " &
*37 (BC_2, A(24), output3, X, -- 150, 0, 2), &
*38 (BC_4, A(24), input, X), ~ , ' &
*39 (BC_2, A(25), output3, X 150,. 0, .2, &
*40 (BC_4, A(25), input, X), " &
"41 (BC_2, A(26), outpuld, X, 150, 0, 2, " &
42 (BC_4, A(26), input, X), ‘ " &
43 (BC_2, A(27), output3, X, 150, O, 2, " &
*44 (BC_4, A(27), input, X), Lo &
"45 (BC_2, A(28), output3, X, 150, O, 2), " &
"46 (BC_4, A(28), input, X), " &
47 (BC_2, A(29), ouput3, X, = 150, 0, -2, " &
"48 (BC_4, A(29), input, X), : C &
*49 (BC_2, A(30), output3, X, 150, 0, 2, "8
50 (BC_4, A(30), input, X), " &
"51 (BC_2, A(31), output3, X, 150, O, 2, " &
52 (BC_4, A(31), input, , " &
*s3 (BC_2, D(0), output3, X, 151, 0, 2, *& —151=iodb
*s4 (BC_2, D(1), output3, X, 151, O, 2), " &
55 (BC_2, D(2), output3, X, 151, O, 2), &
56 (BC_2, D(3), output3, = X, 161, O, 2), ‘&

6-18 M68040 USER'S MANUAL MOTOROLA

num cell

57 (BC_2,
58 (BC_2,
‘59 (BC_2,
60 (BC_2,
61 (BC_2,
62 (BC_2,
63 (BC_2,
64 (BC_2,
‘65 (BC_2,
66 (BC_2,
67 (BC_2,
68 (BC_2,
‘69 (BC_2,
70 (BC_2,
71 (BC_2,
“72 (BC_2,
“73 (BC_2,
74 (BC_2,
‘75 (BC_2,
*76 (BC_2,
‘77 (BC_2
78 (BC_2,
79 (BC_2,
'80 . (BC_2,
81 (BC_2,
82 (BC_2,
‘83 (BC_2,
84 (BC_2,
85 (BC_4,
‘86 (BC_4,
87 (BC_4,
88 (BC_4,
89 (BC_4,
30 (BC_4,
'91 (BC_4,
‘92 (BC_4,
93 (BC_4,
‘94 (BC_4,
‘95 (BC_4,
‘96 (BC_4,
‘97 (BC_4,
'98 (BC_4,
99 (BC_4,
.*100. (BC_4,
101 (BC_4,
"102 (BC_4,
103 (BC_4,
"104 (BC_4,
*105 (BC_4,
“106 (BC_4,
“107 (BC_4,
108 (BC_4,
*109 (BC_4,
110 (BC_4,
111 (BC_4,
“112 (BC_4,
"113 (BC_4,

MOTOROLA

function

output3,
output3,
output3,
output3,
output3,
output3,’
output3,
output3,
output3,
output3,.
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,

input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,

safe ccell dsval rslt
X, 151, 0, 2),
X, 151, 0, 2),
X, 151, 0, 2),
X, 151, 0, 2),
X, 151, O, 2),
X, 151, 0, 2),
X, 151, O, 2),
X, 151, 0, 2),
X, 151, O, 2),
X, 151, 0, 2),
X, 151, O, 2,
X, 151, 0, 2
X, 151, 0, 2.
X, 151, 0, 2),
X, 151, 0, 2),
X, 151; 0, 2),
X, 151, O, 2),
X, 151, O, 2),
X, 151, O, 2.
X, 151, 0, 2),
X, 151, 0, 2),
X, 151, O, 2),
X, 151, 0, 2),
X, 151, 0, 2),
X, 151, 0, 2),
Xl 1511 0, Z)l
X, 151, O, 2),
X, 151, 0, 2.
X))
X),
X),
X),
X),
X):
X),
X),
X),
X),
X):
X),
X),
X):
X),
X),
X),
X),
X),
X),
X),
X),
X)l
X),
X),
X),
X),
X),
X),

M68040 USER’S MANUAL

£0 29 20 0 2o Ra R0 R0 f0 20 RO Ro 20 R0 Ro Po fo PO PO R0 R0 Ro 29 29 29 PO RO 29 RO f9 RO RS RO 2O 2o RO RO RS RO RO RO 2O RO RO RO R9 B9 Ro R0 R0 R0 Ro Ro Ra Ro Ro Ro

6-19

num

"114
"115
"116
117
*118
"119
"120
"121
"122
"123
"124
"125
'126
"27
*128
*129
*130
"131
"132
"133
*134
*135
*136
*137
138
*139
*140
141
"142
"143
"144
145
"146
“147
“148
"149
*150
"151
"152
"153
*154
"155
"156
‘157
"158
*159
*160
"161
*162
"163
"164
"165
“166
"167
*168
169
"170

6-20

function

input,
input,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
output3,
output3,
output3,
output3,
output3,
input,
output3,
input,
output3,
output3,
input,
output3,
controlr,
controlr,
output2,
output2,
controlr,
controlr,
controlr,
output3,
input,
output3,
input,
output3,
output2,
output2,
output2,
output2,
output3,
input,
input,
input,
input,

safe ccell

X),

X),

X),

X, 150,
X),

X, 150,
X),

X, 150,
X),

X, 150,
X),

X, 150,
X),

X, 150,
X),

X, 150,
X),

X, 150,
X);

X, 150,
X)l

X, 150,
X),

X, 156,
X, 156,
X, 156,
X, 156,
X, 156,
X, 156,
x)l

X, 156,
x)l

X, 156,
X, 156,
X)l

X, 156,
0),

0),

X)l

X),

0),

0),

0),

X, 156,
X),

X, 155,
X), ,
X, 155,
X),

X),

X),

X),

X, 154,
x))

X),

X),

X),

dsval

Lo © 0 L0 0L L L0 e e e

-

rsh

NOoNN N ONNNNNN N

M68040 USER’S MANUAL

R0 2o Ro Ro R0 Ro Ro R0 RO Qo RO RO RO RO RO Ro RO RO RO RO RB RO Ro RO RO RO RO R0 o RO Ro R0-R0 RO Ro RO RO RO o RO R0 RO RO RO RO RO RO RO QO LV RO RO O RO Qo RO Qo

—150 = jo.ab

—156 = i0.0

—io.ab

—io.db

—i0.2
—i0.1
—jo.0
— 156 =i0.0
— 155 =io.1

— 155 =jo.1

—154=i0.2

MOTOROLA

num cell port function safe ccell dsval rsht

"171 (BC_4, SC(0), input, X),

“172 (BC_4, T8I, input, X),
173 (BC_4, AVEC, input, X),
“174 (BC_4, TCI, input, X),
“175 (BC_4, DLE, input, X),
176 (BC_4, PCLK, input, X),

177 (BC_4, BCLK, input, X),
“178 (BC_4, IPL(0), input, X),
179 (BC_4, IPL(1), input, X).
“180 (BC_4, IPL(2), input, X),
“181 (BC_4, RSTI, input, X),
182 (BC_4, CDIS, input, X).
183 (BC_4, MDIS, input, X)

= = 2 = = = E E E X E = =
T Ro Qo Qo Ro o Ro Qo Qo Ro R0 R RO

attribute DESIGN_WARNING of MC68040: entity is

*A non-standard clocking protocol on BCLK and PCLK mustbe " &
*observed when entering Boundary Scan Test Mode. - P
end MC68040 : ;

6.7 MC68040, MC68LC040, MC68EC040 JTAG ELECTRICAL
CHARACTERISTICS

The following paragraphs provide information on JTAG electrical and timing specifications.
This section is subject to change. For the most recent specifications, contact a Motorola
sales office or complete the registration card at the beginning of this manual.

JTAG DC Electrical Specifications

Characteristic Symbol Min Max Unit
Input High Voltage VIH 2 Vce Vv
Input Low Voltage ViL GND 0.8 Vv
Undershoot —_ - 0.8 Vv
TCK Input Leakage Current @ 0.5-2.4 V lin 20 20 HA
TDO Hi-Z (Off-State) Leakage Current @ 0.5-2.4 V ITsT 20 20 pA
S;ghr;aél,l:;)val'I;%xst_‘?urrent, ViL=08V | 4 I -1.1 -0.18 mA
Sl?l&asl,}:irll%?, I_;_\gtétTCurrent, ViH=2.0V IH 094 | -0.16 mA
TDO Qutput High Voltage VOH 24 -_ Vv
TDO Output Low Voltage VoL —_ 0.5 v
Capacitance®, Vin=0V,f=1MHz Cin - 25 pF

*Capacitance is periodically sampled rather than 100% tested.

MOTOROLA M68040 USER'S MANUAL 6-21

JTAG Timing Specifications (All Operating Frequencies)

Num Characteristic Min Max Unit
TCK Frequency of Operation 0 10 MHz
1 TCK Cycle Time 100 -— ns
2 TCK Clock Pulse Width Measured at 1.5 V 40 — ns
3 TCK Rise and Fall Times 0 10 ns
4 TRST Setup Time to TCK Falling Edge 40 —_ ns
5 TRST Assert Time 100 — ns
6 Boundary Scan Input Data Setup Time 50 — ns
7 Boundary Scan Input Data Hold Time 50 —_ ns
8 TCK to Output Data Valid 0 50 ns
9 TCK to Output High Impedance 0 50 ns
10 | TMS, TDI Data Setup Time 20 — ns
1 TMS, TDI Data Hold Time 5 -— ns
12 TCK to TDO Data Valid 0 20 ns
13 | TCKto TDO High Impedance 0 20 ns
W W™
—>{ <3
Figure 6-8. Clock Input Timing Diagram
TCK
—»
w r
Figure 6-9. TRST Timing Diagram
6-22 M68040 USER'S MANUAL

TCK \ /

DATA INPUTS

-
{ INPUT DATAVALID —

DATAQUTPUTS

N
DATAOUTPUTS % OUTPUT DATAVALID
\

DATAQUTPUTS N g OUTPUT DATAVALID

Figure 6-10. Boundary Scan Timing Diag_ram

ToK \ /
<>

0!, TMS

4 X
{ INPUTDATAVALD ——

N
T00 >g: OUTPUT DATAVALID
\

T0O

12
~—
T00 4 Y L QUTPUT DATAVALID

Figure 6-11. Test Access Port Timing Diagram

MOTOROLA M68040 USER'S MANUAL 6-23

6-24 Me8040 USER'S MANUAL MOTOROLA

SECTION 7
BUS OPERATION

The M68040 bus interface supports synchronous data transfers between the processor
and other devices in the system. This section provides a functional description of the bus,
the signals that control the bus, and the bus cycles provided for data transfer operations.
Operation of the bus is defined for transters initiated by the processor as a bus master and
for transfers initiated by an alternate bus master, which the processor snoops as a slave
device. Descriptions of the error and halt conditions, bus arbitration, and the reset
operation are also included. For timing specifications, refer to Section 11 MC68040
Electrical and Thermal Characteristics.

NOTE

For the MC68040V, MC68LC040, and MC68EC040 ignore all
references to floating-point. For the MC68EC040 and
MCG68EC040V ignore all references to the memory
management unit (MMU). Special modes of operation do not
apply to these devices. Refer to Appendix A MC68LC040 and
Appendix B MC68EC040 for details.

7.1 BUS CHARACTERISTICS

The M68040 uses the address bus (A31-A0) to specify the address for a data transfer
and the data bus (D31-D0}) to transfer the data. Control signals indicate the beginning and
type of a bus cycle as well as the address space and size of the transfer. The selected
device then controls the length of the cycle by terminating it using the control signals.

The M68040 uses two clocks to generate timing: a processor clock (PCLK) and a bus
clock (BCLK). The PCLK signal is twice the frequency of the BCLK signal and is internally
phase-locked to BCLK. PCLK is also distributed throughout the device to generate
additional timing for additional edges for internal logic blocks and has no bearing on bus
timing. The use of dual clock inputs allows the bus interface to operate at half the speed of
the internal logic of the processor, requiring less stringent memory interface requirements.
Since the rising edge of BCLK is used as the reference point for the phase-locked loop
(PLL), all timing specifications are referenced to this edge.

Figure 7-1 illustrates the general relationship between the two clock signals and most
input and output signals. The rising edge of the internally phase-locked PCLK is aligned
with the rising edge of BCLK, and the two PCLK cycles corresponding to each BCLK cycle
are divided into four states, T1-T4. Most outputs change during state T4, whether
transitioning between a driven and high-impedance state or switching between assert and

MOTOROLA M68040 USER’S MANUAL 7-1

negate logic levels. The exceptions to this rule are the TIP, TA, and BB signals that
transition between logic levels during T4 but transition from a driven state to a high-
impedance state during T1. The input setup time (tsy), input hold time (th;), output hold
time (tho), and delay time (tq) illustrated in Figure 7-1 are described in the AC electrical
timing specifications in Section 11 MC68040 Electrical and Thermal Characteristics.

BCLK
iSO |
AS T T2 1K) T4 T
PCLK
| [——
[e— t g—
e tho—1»~
3t ho'
OUTPUTS
fet—t gy —=1
et~
INPUTS
NOTES:

1. td = Propagation delay of signal relative to BLK rising edge.

2. td = Propagation delay of signal relative to PCLK falling edge; td'= td~1/2 PCLK
excapt for TIP, TA, BB when used as outputs.

3. tho = Output hold time relative to BCLK rising edge.

4. tho'= Output hold time relative to BCLK rising edge; tho'=th ~1/2 PCLK.

5. tsu = Required input setup time relative to BCLK rising edge.

6. thi = Required input hold time relative to BCLK rising edge.

Figuré 7-1. Signal Relationships to Clocks

Inputs to the M68040 (other than the IPL2-IPLO and RSTI signals) are synchronously
sampled and must be stable during the sample window defined by tgy, thi, and tho (see
Figure 7-1) to guarantee proper operation. The asynchronous TPLx and RSTI signals are
also sampled on the rising edge of BCLK, but are internally synchronized to resolve the
input to a valid level before using it. Since the timing specifications for the M68040 are
referenced to the rising edge of BCLK, they are valid only for the specified operating
frequency and must be scaled for lower operating frequencies.

72 M68040 USER'S MANUAL MOTOROLA

7.2 DATA TRANSFER MECHANISM

Figure 7-2 illustrates how the bus designates operands for transfers on a byte boundary
system. The integer unit handles floating-point operands as a sequence of related long-
word operands. These designations are used in the figures and descriptions that follow.

BYTES3 BYTE2 BYTE1 BYTEO
31 24 23 16 15 87 0
LMOST SIGNIFICANT BYTE | : | LEAST SIGNIFICANT BYTEl LONG-WORD OPERAND

| MOST SIGNIFICANT BYTE | LEAST SIGNIFICANT BYTE| - WORD OPERAND

| | svrecperanD

Figure 7-2. Internal Operand Representation

Figure 7-3 illustrates general multiplexing between an internal register and the external
bus. The internal register connects to the external data bus through the internal data bus
and multiplexer. The data multiplexer establishes the necessary connections for different
combinations of address and data sizes.

Unlike the MC68020 and MC68030 processors, the M68040 does not support dynamic
bus sizing.and expects the referenced device to accept the requested access width. The
MC68150 dynamic bus sizer is designed to allow the 32-bit M68040, MC68EC040,
MC68LC040 bus to communicate bidirectionally with 32-, 16-, or 8-bit peripherals and
memories. It dynamically recognizes the size of the selected peripheral or memory device
and then reads or writes the appropriate data from that location. Refer to MC68150/D,
MC68150 Dynamic Bus Sizer, for information on this device.

Blocks of memory that must be contiguous, such as for code storage or program stacks,
must be 32 bits wide. Byte- and word-sized I/O ports that return an interrupt vector during
interrupt acknowledge cycles must be mapped into the low-order 8 or 16 bits, respectively,
of the data bus ,

The multiplexer takes the four bytes of the 32-bit bus transfer and routes them to their
required positions. For example, byte 0 would normally be routed to D31-D24, but it can
also be routed to any other byte position supporting a misaligned data transfer. The same
is true for any of the other operand bytes. The transfer size (SIZ0 and SIZ1) and byte
offset (A1 and AQ) signals determine the positioning of the bytes (see Table 7-1). The size
indicated on the SIZx signals corresponds to the size of the operand transfer for the entire
bus cycle. During an operand transfer, A31-A2 indicate the long-word base address for
the first byte of the operand to be accessed; A1 and A0 indicate the byte offset from the
base. For a burst-inhibited line transfer, A1 and A0 for each of the four accesses (the
burst-inhibited line transfer and three long-word transfers) are copied from the lowest two
bits of the access address used to initiate the line transfer.

MOTOROLA M68040 USER'S MANUAL 7-3

a 2% 2 16 15 87 0
REGISTER | BYTES | BYTE2 BYTE 1 | BYTEO |
! R /
MULTIPLEXER | ROUTING | T
v v \ NTERNALTO
E MC68040
-- FETEONAL D31-D2é | D23-D16 | D15-D8 | DI-D0 fe--e-----
EXTERNALBUS
at v 2 23 Y 16 15 v 87 \ 0 ¢
ADDRESS
St BYTES | BYTE 2 | BiEr | BYTE0 |

Figure 7-3. Data Multiplexing

Table 7-1 lists the combinations of the SlZx, A1, and A0 signals, collectively called byte
enable signals, that are used for each of the four sections of the data bus. in the table,
BYTEn indicates the data bus section that is active, the portion of the requested operand
that is read or written during that bus transfer. For line transfers, all bytes are valid as
listed and can correspond to portions of the requested operand or to data required to fill
the remainder of the cache line. The bytes labeled with a dash are not required; they are
ignored on read transfers and driven with undefined data on write transfers. Not selecting
these bytes prevents incorrect accesses in sensitive areas such as I/0 devices. Figure 7-4
illustrates a logic diagram for one method for generating byte enable signals from the
SIZx, A1, and AO and the associated PAL equation. These byte enable signals can be
combined with the address decode logic.

Table 7-1. Data Bus Requirements for Read and Write Cycles

Transfer Signal Encodings Active Data Bus Sections

Size SIZ1 | SIZ0 | A1} A0 | D31-D24 D23-D16 D15-D8 D7-DO

Byte 0 1 0 0 BYTEn — — —_

0 1 0 1 —_— BYTEn -

0 1 1 0 - - BYTEn -
. 0 1 1 1 - - — BYTEn

Word 1 0 oo BYTEn BYTEn - -
1 0 1 0 — - BYTEn BYTEn
Long Word 0 0 X | X | BYTEn BYTEn BYTEn BYTEn
Line 1 1 X1 X BYTEn BYTEn BYTEn BYTEn

7-4 M68040 USER’S MANUAL MOTOROLA

UPPERUPPER DATA SELECT
D31-D24
UPPER MIDDLE DATA SELECT
D23-D16
LOWER MIDDLE DATA SELECT
D15-D8
LOWER LOWER DATA SELECT
D7-Do
[—
At
SiZ0
SIZ1
PAL16L8
U1

MC68040 Byte Data Select Generation.
Motorola Worldwide Marketing Training Organization
A0 A1 SIZ0 SIZ1 NC NC NC NC NC GND NC UUD UMD LMD LLD

NC NC NCNC VCC

/UUD = . JAO * /A1 ; directly addressed, any size
+/81Z1* /S1Z0 ; enable every byte for long word size
+SIZ1 * SlZo ; enable every byte for line size

/UMD = A0 * /A1 ; directly addressed, any size
+/A1*/S1Z1 ; word aligned, size is word or line
+SlZ1* SI1Z0 ; enable every byte for long word size

+/SIZ1 * /sIZo
/LMD = /A0 " /A1
+/SIZ1* IsIZo

; enable every byte for line size
; directly addressed, any size
; enable every byte for long word size

+8I21* S1Z0 ; enable every byte for line size
/LLD= A0*/A1 ; directly addressed, any size

+/A1*/SI1Z1 ; word aligned, word or line size

+8I21* 8120 ; enable every byte for long word size

+/8121* ISIZo

; enable every byte for line size

Figure 7-4. Byte Enable Signal Generation and PAL Equation

A brief summary of the bus éignal éncodings for each access type is listed in Table 7-2.
Additional information on the encodings for the M68040 signals can be found in Section 5
Signal Description.

MOTOROLA Me8040 USER'S MANUAL 7-5

Table 7-2. Summary of Access Types versus Bus Signal Encodings

Data Cache | ' Normal Table :

Bus Push Data/Code Search MOVE16 Alternate Interrupt Breakpoint
Signal Access Access Access Access Access | Acknowledge | Acknowledge
A31-A0 Access Access Entry Access Access $FFFFFFFF | $00000000

Address Address Address Address | = Address
UPA1, UPAO $0 MMU $0 MMU $0 $0 $0
' Source! Sourcel
SiZ1, SIZo L/Line B/W/ULine | Long Word Line B/WI/L Byte Byte
TT1, TT0 $0 $0 $0 $1 $2 - $3 $3
TM4-TM2 $0 $1,2,5,0r6 $3o0rd $1orb Function | Int. Level $1-7 $0
Code
TLN1, TLNO | Cache Set | Cache Set | Undefined | Undefined | Undefined Undefined Undefined
Entry Entry2 o
RW Wirite Read/Write | Read/Write | Read/Write | Read/Write Read Read
LOCK Negated Asserted/ Asserted/ Negated Negated Negated Negated
LOCKE Negated® | Negated3
CIoU Negated MMU Negated MMU Asserted Negated Negated
Source Source!
NOTES

1. The UPA1, UPAO, and CIOUT signals are determined by the U1, U0 data and CM bit fields, respectively,
corresponding to the access address.

2. The TLNx signals are defined only for normal push accesses and normal data line read accesses.

3. The TOCK signal is asserted during TAS, CAS, and CAS2 operand accesses and for some table search update
sequences. LOCKE is asserted for the last transfer of each locked sequence of transfers.

4. Refer to Section 5 Signal Description for definitions of the TMx signal encodings for normal, MOVE16,
and alternate accesses.

7.3 MISALIGNED OPERANDS

All M68040 data formats can be located in memory on any byte boundary. A byte operand
is properly aligned at any address; a word operand is misaligned at an odd address; and a
long word is misaligned at an address that is not evenly divisible by 4. However, since
operands can reside at any byte boundary, they can be misaligned. Although the M68040
does not enforce any alignment restrictions for data operands (including PC relative data
addressing), some performance degradation occurs when additional bus cycles are
required for long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction words and
extension words must reside on word boundaries. Attempting to prefetch an instruction
word at an odd address causes an address error exception. Refer to Section 8 Exception
Processing for details on address error exceptions.

The M68040 data memory unit converts misaligned operand accesses that are
noncachable to a sequence of aligned accesses. These aligned accesses are then sent to
the bus controller for completion, always resulting in aligned bus transfers. Misaligned
operand accesses that miss in the data cache are cachable and are not aligned before
line filling. Refer to Section 4 Instruction and Data Caches for details on line fill and the
data cache.

M68040 USER'S MANUAL MOTOROLA

Figure 7-5 illustrates the transfer of a long-word operand from an odd address requiring
more than one bus cycle. For the first transfer or bus cycle, the SIZx signals specify a byte
transfer, and the byte offset is $1. The slave device supplies the byte and acknowledges
the data transfer. When the processor starts the second cycle, the SlZx signals specify a
word transfer with a byte offset of $2. The next two bytes are transferred during this cycle.
The processor then initiates the third cycle, with the SIZEx signals indicating a byte
transfer. The byte offset is now $0; the port supplies the final byte and the operation is
complete. This example is similar to the one illustrated in Figure 7-6 except that the
operand is word sized and the transfer requires only two bus cycles. Figure 7-7 illustrates
a functional timing diagram for a misaligned long-word read transfer.

DATABUS

at 2% 2 16 15 87 0
| - | BYTES | - | - |]— TRANSFER 1
| - l - | BYTE2 | BYTE 1 |]—- TRANSFER 2
| a0 | - | - | X | | reavsrens
MEMORY

31 24 23 16 15 87 0

X0 BYTES BYTE2 BYTE 1

BYTEQ 00X XX X0

Figure 7-5. Example ofa Misaligned Long-Word Transfer

DATABUS

at % 2 6 15 87 0
| — | - | — | BYTE 1 |]—TRANSFER1
| BYTEO | - | - | BYTE 1 I]— TRANSFER2
MENORY
at) 6 15 87 0
XXX XX YK BYTE
BYTEO o XX X

Figure 7-6. Example of a Misaligned Word Transfer

MOTOROLA M68040 USER'S MANUAL 7-7

7-8

o
Q
1Y
Q
Y
Q
Q
N

3 1 1]
1 1 L 1
[1]
UPA, UPAD X X X
) 1 1
L}

1
1
sizi ' : | | I
. BYIE | EWORD E I_BYTE |
) ' ; ' '
[}
T, 710 i
T
T™M2-TMO

N

)

ANARNARANN

LR R SV
LRV VAR VA
-
I e e ?
Di5-D8 }E i E@. |
m.m:\,i @

1]

BYTE <« WORD o BYTE
READ READ READ

Figure 7-7. Misaligned Long-Word Read Transfer Timing

M68040 USER'S MANUAL MOTOROLA

The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 7-3 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and
write cycles. The table confirms that alignment significantly affects bus cycle throughput
for noncachable accesses. For example, in Figure 7-5 the misaligned long-word operand
took three bus cycles because the byte offset = $1. If the byte offset = $0, then it would
have taken one bus cycle. The M68040 system designer and programmer should account
for these effects, particularly in time-critical applications.

Table 7-3. Memory Alignment Influence on
Noncachable and Write-Through Bus Cycles

Number of Bus Cycles
Transfer Size $0° s1" | 2 | 3
N/A N/A N/A
1 1
2
Long-Word Operand 3 2

*Where the byte offset (A1 and A0) eqdals this encoding.

Instruction
Byte Operand
Word Operand

mlala]—

The processor always prefetches instructions by reading a long word from a half-line
address (A2-A0 = $0), regardless of alignment. When the required instruction begins at
the second long word, the processor attempts to fetch the entire half-line (two long words)
although the second long word contains the required instruction.

7.4 PROCESSOR DATA TRANSFERS

The transfer of data between the processor and other devices involves the address bus,
data bus, and control signals. The address and data buses are normally parallel,
nonmultiplexed buses, supporting byte, word, long-word, and line (16-byte) bus cycles.
Line transfers are normally performed using an efficient burst transfer, which provides an
initial address and time-multiplexes the data bus to transfer four long words of information
to or from the slave device. Slave devices that do not support bursting can burst-inhibit the
first long word of a line transfer, forcing the bus master to complete the access using three
additional long-word bus cycles. All bus input and output signals are synchronous to the
rising edge of the BCLK signal. The M68040 moves data on the bus by issuing control
signals and using a handshake protocol to ensure correct data movement. The following
paragraphs describe the bus cycles for byte, word, long-word, and line read, write, and
read-modify-write transfers.

MOTOROCLA M68040 USER'S MANUAL 7-9

7.4.1 Byte, Word, and Long-Word Read Transfers

During a read transfer, the processor receives data from a memory or peripheral device.
Since the data read for a byte, word, or long-word access is not placed in either of the
internal caches by definition, the processor ignores the level on the transfer cache inhibit
(TCI) signal when latching the data. The bus controller performs byte, word, and long-word
read transfers for the following cases:

e Accesses to a disabled cache.
e Accesses to a memory page that is specified noncachable.

* Accesses that are implicitly noncachable (read-modify-write accesses and accesses
to an alternate logical address space via the MOVES instruction).

« Accesses that do not allocate in the data cache on a read miss (table searches,
exception vector fetches, and exception stack deallocation for an RTE instruction).

» The first transfer of a line read is terminated with transfer burst inhibit (TBI), forcing
completion of the line access using three additional long-word read transfers.

Figure 7-8 is a flowchart for byte, word, and Iong-word read transfers. Bus operations are
similar for each case and vary only with the size indicated and the portion of the data bus
used for the transfer. Figure 7-9 is a functional timing diagram for byte, word, and long-
word read transfers.

PROCESSOR : EXTERNAL DEVICE
ADDRESS DEVICE '
1) SET RW TO READ
2) DRIVE ADDRESS ON A31-A0
3) DRIVE USER PAGE ATTRIBUTES ON UPA', UPAD
4) DRIVE SIZE ON S1Z1, SI20 (BYTE, WORD,
'OR LONG WORD)
5) DRIVE TRANSFER TYPE ON TT1, TT0
6) DRIVE TRANSFER MODIFIER ON TM2-TMO
7) CIOUT BECOMES VALID
8) ASSERT TS FOR ONE CLOCK ‘
9) ASSERTTIP > PRESENT DATA’
1) DECODE ADDRESS
2) PLACE DATA ON APPROPRIATE BYTES OF
D31-DO BASED ON SIZEx, A0, AND Af
ACQUIRE DATA -« S ASSERTTA

1) LATCH DATA . B Y

TERMINATE CYCLE

Y 1) REMOVE DATA FROM D31-D0
START NEXT CYCLE 2) NEGATETA

Figure 7-8. Byte, Word, and Long-Word Read Transfer Flowchart

7-10 M68040 USER’'S MANUAL MOTOROLA

|c1|02|01|cw|cz|ctlcz|

~SNASHNYY
:
S aT=l N
SeRSA
al M r

ONG-WORD
READ

Figure 7-9. Byte, Word, and Long-Word

i/ T\
| —

i .

: M\

i —
VR EERY
— j—
Y)
j—y —

[}
< WORD READ
|<—mmznm ->| VORD READ

Read Transfer Timing

7-11

M68040 USER’S MANUAL

MOTOROLA

Clock 1 (C1)

The read cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. For user and supervisor mode accesses,
which the corresponding memory unit translates, the user-programmable attribute
signals (UPAX) are driven with the values from the matching user bits (U1 and U0). The
transfer type (TTx) and transfer modifier (TMx) signals identify the specific access type.
The read/write (R/W) signal is driven high for a read cycle. Cache inhibit out (CIOUT) is
asserted since the access is identified as noncachable. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V) for information on the
M68040 and MC68LC040 memory units and Appendix B MC68EC040 for information
on the MC68EC040 memory unit.

The processor asserts transfer start (TS) during C1 to indicate the beginning of a bus
cycle. If not already asserted from a previous bus cycle, the transfer in progress (TIP)
signal is also asserted at this time to indicate that a bus cycle is active.

Clock 2 (C2)
During the first half of the clock after C1, the processor negates TS. The selected
peripheral device uses R/W, SIZ1, SIZ0, A1, and A0 to place its information on the data
bus. With the exception of the R/W signal, these signals also select any or all of the
operand bytes (D31-D24, D23-D16, D15-D8, and D7-D0). If the first clock after C1 is
not a wait state (CW), then the selected peripheral device asserts the transfer
acknowledge (TA) signal.

At the end of the first clock cycle after C1, the processor samples the level of TA and
latches the current value on the data bus; the bus cycle terminates, and the data is
passed to the processor's appropriate memory unit if TA is asserted. If TA is not
recognized asserted at the end of the clock cycle, the processor ignores the data and
inserts a wait state instead of terminating the transfer. The processor continues to
sample TA on successive rising edges of BCLK until TA is recognized asserted. The
data is then passed to the processor's appropriate memory unit.

When the processor recognizes TA at the end of a clock and trerminates the bus cycle,
TIP remains asserted if the processor is ready to begin another bus cycle. Otherwise,
the processor negates TIP during the first half of the next clock.

7.4.2 Line Read Transfer

The processor uses line read transfers to access a 16-byte operand for a MOVE16
instruction and to support cache line filling. A line read accesses a block of four long
words, aligned to a 16-byte memory boundary, by supplying a starting address that points
to one of the long words and requiring the memory device to sequentially drive each long
word on the data bus. The selected device must internally increment A3 and A2 of the
supplied address for each transfer, causing the address to wrap around at the end of the
block. The address and transfer attributes supplied by the processor remain stable during
the transfers, and the selected device terminates each transfer by driving the long word on

7-12 M68040 USER’S MANUAL . MOTOROLA

the data bus and asserting TA. A line transfer performed in this manner with a single
address is referred to as a line burst transfer.

The M68040 also supports burst-inhibited line transfers for memory devices that are
unable to support bursting. For this type of bus cycle, the selected device supplies the first
long word pointed to by the processor address and asserts transfer burst inhibit (TBI) with
TA for the first transfer of the line access. The processor responds by terminating the line
burst transfer and accessing the remainder of the line, using three long-word read bus
cycles. Although the selected device can then treat the line transfer as four, independent,
long-word bus cycles, the bus controller still handles the four transfers as a single line
transfer and does not allow other unrelated processor accesses or bus arbitration to
intervene between the transfers. TBI is ignored after the first long-word transfer.

Line reads to support cache line filling can be cache inhibited by asserting transfer cache
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does
not affect completion of the line transfer, but the bus controller latches and passes it to the
memory controller for use. TCI is ignored after the first long-word transfer of a line burst
transfer and during the three long-word bus cycles for a burst-inhibited line transfer.

The address placed on the address bus by the processor for line transfers does not
necessarily point to the most significant byte of each long word because for a line read, A1
and AQ are copied from the original operand address supplied to the memory unit by the
integer unit. These two bits are also unchanged for the three long-word bus cycles for a
burst-inhibited line transfer. The selected device should ignore A1 and A0 for long-word
and line read transfers.

The address of an instruction fetch will always be aligned to a half-line boundary
(BXXXXXXX0 or $XXXXXXX8); therefore, compilers should attempt to locate branch
targets on half-line boundaries to minimize branch stalls. For example, if the target of a
branch is a two-word instruction located at $1000000C, the following burst sequence will
occur upon a cache miss: $10000008, $1000000C, $10000000, then $10000004. The
internal pipeline of the M68040 stalls until the second access of the burst (the address of
the instruction to be executed) has completed. Figures 7-10 and 7-11 illustrate a flowchart
and functional timing diagram for a line read bus transfer.

MOTOROLA M68040 USER'S MANUAL 7-13

PROCESSOR | .

ADDRESS DEVICE

1) SET RW TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPAO
4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)

6) DRIVE TRANSFER TYPEON TT1, TT0

6) DRIVE TRANSFER MODIFIER ON TM2-TM0

7) CiOUT BECOMES VALID ..

8) ASSERT TS FORONE CLOCK

'EXTERNAL DEVICE

A

8) ASSERTTIP PRESENT DATA
1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERTTA

ACQUIRE DATA -
1) LATCH DATA Y
2) SAMPLE TBI AND TCI (FOR FIRST TRANSFER)
. . TERMINATE CYCLE

END OF BURST.

1) REMOVE DATA FROM D31-D0
2) NEGATE TA (IF NECESSARY)
3) INCREMENT ADDRESS BITS A3, A2 (IF NECESSARY)

11

A

1) NEGATE TiP (IF REQUIRED)

\

7-14

START NEXT CYCLE

WHEN FOUR LONG WORDS

TRANSFERRED

Figure 7-10. Line Read Transfer Flowchart

M68040 USER'’'S MANUAL

" UNTIL FOUR LONG WORDS
TRANSFERRED

MOTOROLA

a

T

m.,u:)(| - £
AT
W v
D G
e A
mw X X
L "
A
=7 w
s\ o
PN

I

>
\j

D31-Do

|

A3, 2= 01 | 10 l 1 i“OO |
NOTE: The selected device increments the value of A3 and A2,

Figure 7-11. Line Read Transfer Timing

Clock 1 (C1)

The line read cycle starts in C1. During the first half of C1, the processor places valid
values on the address bus and transfer attributes. For user and supervisor mode
accesses that are translated by the corresponding memory unit, the UPAx signals are
driven with the values from the matching U1 and UO bits. The TTx and TMx signals
identify the specific access type. The R/W signal is driven high for a read cycle, and the
size signals (SIZx) indicate line size. CIOUT is asserted for a MOVE16 operand read if
the access is identified as noncachable. Refer to Section 3 Memory Management Unit

MOTOROLA M68040 USER'S MANUAL 7-15

(Except MC68EC040 and MC68EC040V) for information on the M68040 and
MC68LC040 memory units and Appendix B MC68EC040 for information on the
MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, TIP is also asserted at this time to indicate
that a bus cycle is active.

Clock 2 (C2)

During the first half of the first clock after C1, the processor negates TS. The selected
device uses R/W, SIZ1, and SIZ0 to place the data on the data bus. (The first transfer
must supply the long word at the corresponding long-word boundary.) Concurrently, the
selected device asserts TA and either negates or asserts TBI to indicate it can or cannot
support a burst transfer. At the end of the first clock cycle after C1, the processor
samples the level of TA, TBI, and TCI and latches the current value on the data bus. If
TA is asserted, the transfer terminates and the data is passed to the appropriate
memory unit. If TA is not recognized asserted, the processor ignores the data and
inserts wait states instead of terminating the transfer. The processor continues to
sample TA, TBI, and TCI on successive rising edges of BCLK until TA is recognized
asserted. The latched data and the level on TCI are then passed to the appropriate
memory unit.

If TBI was negated with TA, the processor continues the cycle with C3. Otherwise, if TBI
was asserted, the line transfer is burst inhibited, and the processor reads the remaining
three long words using long-word read bus cycles. The processor increments A3 and
A2 for each read, and the new address is placed on the address bus for each bus cycle.
Refer to 7.4.1 Byte, Word, and Long-Word Read Transfers for information on long-
word reads. If no wait states are generated, a burst-inhibited line read completes in
eight clocks instead of the five required for a burst read.

Clock 3 (C3)

The processor holds the address and transfer attribute signals constant during C3. The
selected device must increment A3 and A2 to reference the next long word to transfer,
place the data on the data bus, and assert TA. At the end of C3, the processor samples
the level of TA and latches. the current value on the data bus. If TA is asserted, the
transfer terminates, and the second long word of data is passed to the appropriate
memory unit. If TA is not recognized asserted at the end of C3, the processor ignores
the latched data and inserts wait states instead of terminating the transfer. The
processor continues to sample TA on successive rising edges of BCLK until it is
recognized. The latched data is then passed to the appropriate memory unit.

Clock 4 (C4) S .

This clock is identical to C3 except that once TA is recognized asserted, the latched
value corresponds to the third long word of data for the burst.

7-16 Me8040 USER’S MANUAL MOTOROLA

Clock 5 (C5)

This clock is identical to C3 except that once TA is recognized, the latched value
corresponds to the third long word of data for the burst. After the processor recognizes
the last TA assertion and terminates the line read bus cycle, TIP remains asserted if the
processor is ready to begin another bus cycle. Otherwise, the processor negates TIP
during the first half of the next clock.

Figures 7-12 and 7-13 illustrate a flowchart and functional timing diagram for a burst-
inhibited line read bus cycle.

MOTOROLA Me68040 USER’S MANUAL 717

7-18

PROCESSOR EXTERNAL DEVICE
 ADDRESSDEVICE ' '

1) SET RW TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPAD

4) DRIVE SIZE ON SIZ1, S120 (LINE)

§) DRIVE TRANSFER TYPE ON TT1, TT0

6) DRIVE TRANSFER MODIFIER ON TM2-TMO

7) CIOUT BECOMES VALID

§) ASSERT TS FOR ONE CLOCK

§) ASSERTTIP > PRESENT DATA
1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT TA AND T8I

ACQUIRE DATA <
1) LATCH DATA

2) SAMPLE TBI AND TCI
3) RECOGNIZE TBI ASSERTED

Y

TERMINATE CYCLE

/

ADDRESS DEVICE

1) INCREMENT ADDRESS BITS A3, A2 AND DRIVE
NEW ADDRESS ON A31-A0

2) DRIVE SIZE ON SIZ1, 5120 (LONG WORD)

3) ASSERT TRANSFER START (TS) FOR ONE CLOCK

1) REMOVE DATA FROM D31-D0
2) NEGATETA

Y

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0

1) NEGATE TIP (IF REQUIRED)

A

START NEXT CYCLE

3) ASSERTTA
ACQUIRE DATA -
1) LATCH DATA
T '
UNTIL THREE LONG WORDS
TRANSFERRED] TERMINATE CYCLE
WHEN THREE LONG WORDS
TRANSFERRED 1) REMOVE DATA FROM D31-D0
' 2) NEGATETA
END OF LINE TRANSFER

Figure 7-12. Burst-Inhibited Line Read Transfer Flowchart

M68040 USER’S MANUAL

MOTOROLA

Ic1|ca|ca|a|cs|ce|c7|cs|

BCLK

A3t-M

A1, A0

UPA1, UPAO x ; .
T we| e lwe
t
SIZ1, S1Z0 1 LNE ! 1 LONG | 1 LONG | 1 LONG |
1 T T T T
1] 1 1 [}

™, TT0

N

aluialnls

S

TM2-TMO

alaln
Ul

A

TLN1, TLNO

3
LI LILD

:

TP

L
&
E
5

]
~dJ -
1

i

1) 1
: H / \ ! / \ . / \
! P S A \—.-J ! \ﬁ—/
INHIBITED LONG WORD LONG WORD LONG WORD

LINE READ 3

Figure 7-13. Burst-Inhibited Line Read Transfer Timing

z
L

MOTOROLA . M68040 USER’S MANUAL 7-19

7.4.3 Byte, Word, and Long-Word Write Transfers

During a write transfer, the processor transfers data to a memory or peripheral device.
The level on the TCI signal is ignored by the processor during all write cycles. The bus
controller performs byte, word, and long-word write transfers for the following cases:

Accesses to a disabled cache.

Accesses to a memory page that is specified noncachable.

Accesses that are implicitly noncachable (read-modify-write accesses and accesses
to an alternate logical address space via the MOVES instruction).

Writes to write-through pages.

Accesses that do not allocate in the data cache on a write miss (table updates and

exception stacking).

The first transfer of a line write is terminated with TBI, forcing completion of the line
access using three additional long-word write transfers.

Cache line pushes for lines containing a single dirty long word.

Figures 7-14 and 7-15 illustrate a flowchart and functional timing diagram for byte, word,

and

7-20

long-word write bus transfers.

PROCESSOR

ADDRESS DEVICE

1) SET RW TOWRITE

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPAt, UPAO

4) DRIVE SIZE ON SI21, SIZ0 (BYTE, WORD, OR
LONG WORD)

5) DRIVE TRANSFERTYPEON TT1, TTO

€) DRIVE TRANSFER MODIFIER ON TM2-TMO

7) CIOUT BECOMES VALID

8) ASSERT TS FOR ONE CLOCK

9) ASSERTTIP

10) DRIVE DATA ON APPROPRIATE BYTES OF

D31-D0 BASED ON SIZEx, A1, AND A0

EXTERNAL DEVICE

TERMINATE TRANSFER

ACCEPT DATA

A

1) DECODE ADDRESS

2) LATCH DATA ON APPROPRIATE BYTES OF
- 031-D0 BASED ON SIZEx, A1, ANDAD __

3) ASSERT TRANSFER ACKNOWLEDGE (TA)

1) REMOVE DATA FROM D31-D0
2) NEGATE TIP (IF REQUIRED)

[

START NEXT CYCLE

Y

TERMINATE CYCLE

1) NEGATE TA

Figure 7-14. Byte, Word, and Long-Word Write Transfer Flowchart

M68040 USER’S MANUAL

MOTOROLA

EXEN
BCLK | | l | I |
] 1

Siz1, Sizo

BIE
R

TT4,TT0

5

z
P

3l

g1k

E

S (SR ISR NP N

é

L
{J

o>
Figure 7-15. Long-Word Write Transfer Timing

Clock 1 (C1)

The write cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. For user and supervisor mode accesses,
which the corresponding memory unit translates, the UPAX signals are driven with the
values from the U1 and UO bits for the area. The TTx and TMx signals identify the
specific access type. The R/W signal is driven low for a write cycle. CIOUT is asserted if
the access is identified as noncachable or if the access references an alternate address
space. Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MC68EC040V) for information on the M68040 and MC68LC040 memory units and
Appendix B MC68EC040 for information on the MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not

already asserted from a previous bus cycle, the TIP signal is also asserted at this time
to indicate that a bus cycle is active.

MOTOROLA M68040 USER'S MANUAL 7-21

Clock 2 (C2) ‘

During the first half of the clock after C1, the processor negates TS and drives the
appropriate bytes of the data bus with the data to be written. All other bytes are driven
with undefined values. The selected device uses RW, SIZ1, SIZ0, A1, A0, and CIOUT
to latch only the required information on the data bus. With the exception of RW and
CIOUT, these signals also select any or all of the bytes (D31-D24, D23-D16, D15-D8,
and D7-D0). If the first clock after C1 is not a wait state, then the selected peripheral
device asserts the TA signal. '

At the end of the first clock cycle after C1, the processor samples the level of TA,
terminating the bus cycle if TA is asserted. If TA is not recognized asserted at the end of
the clock cycle, the processor ignores the data and inserts a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized asserted. The data bus then three-states and the
bus cycle ends.

When the processor recognizes TA at the clock edge and terminates the bus cycle, TIP
remains asserted if the processor is ready to begin another bus cycle. Otherwise, the
processor negates TIP during the first half of the next clock. The processor also three-
states the data bus during the first half of the next clock following termination of the
write transfer.

7.4.4 Line Write Transfers

The processor uses line write bus cycles to access a 16-byte operand for a MOVE16
instruction and to support cache line pushes. Both burst and burst-inhibited transfers are
supported. Figures 7-16 and 7-17 illustrate a flowchart and functional timing diagram for a
line write bus cycle.

7-22 M68040 USER'S MANUAL MOTOROLA

PROCESSOR - EXTERNAL DEVICE
ADDRESS DEVICE

1) SET RAW TO WRITE

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPAO
4) DRIVE SIZE ON 5121, 5120 {LINE)

§) DRIVE TRANSFER TYPE ON TT1, TT0

6) DRIVE TRANSFER MODIFIER ON TM2-TMO

7) CIOUT BECOMES VALID

8) ASSERT TS FOR ONE CLOCK

9) ASSERT TIP

Y
SUPPLY DATA > ACCEPT DATA =3
1) DRIVE DATA ON D31-D0 - 1) DECODE ADDRESS (FIRST TRANSFER ONLY)
2)SAMPLETA < 2) LATCH DATAON D3{-D0
3) SAMPLE TBI AND TCI {FOR FIRST TRANSFER) 3) ASSERTTA
UNTIL FOUR LONG WHEN FOUR LONG
WORDS TRANSFERRED WORDS TRANSFERRED ,
y TERMINATE CYCLE
END OF BURST —
1) NEGATE TA (IF NECESSARY)
1) REMOVE DATA FROM D31-D0 2) INCREMENT ADDRESS BITS A3, A2 (IF
2) NEGATE TIP (IF REQUIRED) ‘ NECESSARY)
\ : UNTIL FOURLONG
WORDS TRANSFERRED
START NEXT CYCLE

Figure 7-16. Line Write Transfer Flowchart

MOTOROLA M68040 USER’S MANUAL 7-23

we ML

A31-M

A3

A2-A0

UPA1, UPAO

SIz1, Sizo

™, T70

P LI LI L

E'

SNAANERARN

TR
‘j/'

D31-Do

%

NOTE: The selected device increments the value of A3 and A2,

Figure 7-17. Line Write Transfer Timing

Clock 1 (C1)

The line write cycle starts in C1. During the first half of C1, the processor places valid
values on the address bus and transfer attributes. For user and supervisor mode
accesses that are translated by the corresponding memory unit, UPAXx signals are
driven with the values from the matching U1 and UO bits. The TTx and TMx signals
identify the specific access type. The R/W signal is driven low for a write cycle, and
S1Z1 and SIZ0 indicate line size. CIOUT is asserted for a MOVE16 operand read if the
access is identified as noncachable. Refer to Section 3 Memory Management Unit
(Except MC68EC040 and MC68EC040V) for information on the M68040 and

7-24 M68040 USER’S MANUAL MOTOROLA

MC68LC040 memory units and Appendix B MC68EC040 for information on the
MC68EC040 memory unit.

The processor asserts TS during C1-to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, the TIP signal is also asserted at this time
to indicate that a bus cycle is active.

Clock 2 (C2)

During the first half of the first clock after C1, the processor negates TS and drives the
data bus with the data to be written. The selected device uses R/W, SIZ1, and SIZ0 to
latch the data on the data bus. Concurrently, the selected device asserts TA and either
negates or asserts T8I to indicate it can or cannot support a burst transfer. At the end of
the first clock after C1, the processor samples the level of TA and TBI. If TA is asserted,
the transfer terminates. If TA is not recognized asserted, the processor inserts wait
states instead of terminating the transfer. The processor continues to sample TA and
TBI on successive rising edges of BCLK until TA is recognized asserted.

If TBI was negated with TA, the processor continues the cycle with C3. Otherwise, if TBI a
was asserted, the line transfer is burst inhibited, and the processor writes the remaining

three long words using long-word write bus cycles. Only in this case does the processor

increment A3 and A2 for each write, and the new address is placed on the address bus

for each bus cycle. Refer to 7.4.3 Byte, Word, and Long-Word Write Transfers for

information on long-word writes. If no waits states are generated, a burst-inhibited line

write completes in eight clocks instead of the five required for a burst write.

Clock 3 (C3)

The processor drives the second long word of data on the data bus and holds the
address and transfer attribute signals constant during C3. The selected device
increments A3 and A2 to reference the next long word, latches this data from the data
bus, and asserts TA. At the end of C3, the processor samples the level of TA; if TA is
asserted, the transfer terminates. If TA is not recognized asserted at the end of C3, the
processor inserts wait states instead of terminating the transfer. The processor
continues to sample TA on successive rising edges of BCLK until TA is recognized
asserted.

Clock 4 (C4)

This clock is identical to C3 except that the value driven on the data bus corresponds to
the third long word of data for the burst. :

Clock 5 (C5)
This clock is identical to C3 except that the value driven on the data bus corresponds to
the fourth long word of data for the burst. After the processor recognizes the last TA
assertion and terminates the line write bus cycle, TIP remains asserted if the processor
is ready to begin another bus cycle. Otherwise, the processor negates TIP during the
first half of the next clock. The processor also three-states the data bus during the first
half of the next clock following termination of the write cycle.

MOTOROLA M68040 USER’S MANUAL 7-25

7.4.5 Read-Modify-Write Transfers (Locked Transfers)

The read-modify-write transfer performs a read, conditionally modifies the data in the
processor, and writes the data out to memory. In the M68040, this operation can be
indivisible, providing semaphore capabilities for multiprocessor systems. During the entire
read-modify-write sequence, the M68040 asserts the LOCK signal to indicate that an
indivisible operation is occurring and asserts the LOCKE signal for the last transfer to
indicate completion of the locked sequence. The external arbiter can use the LOCK and
LOCKE signals to prevent arbitration of the bus during locked processor sequences.
External bus arbitrations can use LOCKE to support bus arbitration between consecutive
read-modify-write cycles. A read-modify-write operation is treated as noncachable. If the
access hits in the data cache, it invalidates a matching valid entry and pushes a matching
dirty entry. The read-modify-write transfer begins after the line push (if required) is
complete; however, LOCK may assert during the line push bus cycle.

The TAS, CAS, and CAS2 instructions are the only M68040 instructions that utilize read-
modify-write transfers. Some page descriptor updates during translation table searches
also use read-modify-write transfers. Refer to Section 3 Memory Management Unit
(Except MC68EC040 and MC68EC040V) for information about table searches.’

The read-modify-write transfer for the CAS and CAS2 instructions in the M68040 differs
from those used by previous members of the M68000 family. If an operand does not
match one of these instructions, the M68040 still executes a single write transfer to
terminate the locked sequence with LOCKE asserted. For the CAS instruction, the value
read from memory is written back; for the CAS2 instruction, the second operand read is
written back. Figure 7-18 illustrates a functional timing diagram for a TAS instruction read-
modify-write bus transfer.

Clock 1 (C1)

~ The read cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. LOCK is asserted to identify a locked read-
modify-write bus cycle. For user and supervisor mode accesses, which the
corresponding memory unit translates, the UPAXx signals are driven with the values from
the matching U1 and U0 bits. The TTx and TMx signals identify the specific access
type. RW is driven high for a read cycle. CIOUT is asserted if the access is identified as
noncachable. The processor asserts TS during C1 to indicate the beginning of a bus
cycle. If not already asserted from a previous bus cycle, the TIP signal is also asserted
at this time to indicate that a bus cycle is active. Refer to Section 3. Memory
Management Unit (Except MC68EC040 and MC68EC040V) for information on the
M68040 and MC68LC040 memory units and Appendlx B MC68EC040 for information
on the MC68EC040 memory unit.

7-26 M68040 USER’S MANUAL MOTOROLA

|Ci|C2ICI

UPAL,UPAO . x

Siz1 \

LOCKED TRANSFER

3
&
3
5

Figure 7-18. Locked Transfer for TAS Instruction Timing

7-27

M68040 USER'S MANUAL

MOTOROLA

Clock 2 (C2)

During the first half of the first clock cycle after C1, the processor negates TS. The
selected device uses RW, SIZ1, SIZ0, A1, and A0 to place its information on the data
bus. With the exception of R/W, these signals also select any or all of the bytes (D24~
D31, D16-D23, D15-D8, and D7-D0). Concurrently, the selected device asserts TA. At
the end of the first clock cycle after C1, the processor samples the level of TA and
latches the current value on the data bus. If TA is asserted, the read transfer terminates,
and the latched data is passed to the appropriate memory unit. If TA is not recognized
asserted, the processor ignores. the data and appends a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized as asserted. The latched data is then passed to
the appropriate memory unit. If more than one read cycle is required to read in the
operand(s), C1 and C2 are repeated accordingly.

When the processor recognizes TA at the end of the last read transfer for the locked
bus cycle, it negates TIP during the first half of the next clock.

Clock Idle (Cl) o

The processor does not assert any new control signals during the idle clock states, but it
may begin the modify portion of the cycle at this time. The R/W signal remains in the
read mode until C3 to prevent bus conflicts with the preceding read portion of the cycle;
the data bus is not driven untii C4.

Clock 3 (C3) .

During the first half of C3, the processor places valid values on the address bus and
transfer attributes and drives R/W low for a write cycle. The processor asserts TS to
indicate the beginning of a bus cycle. The TIP signal is also asserted at this time to
indicate that a bus cycle is active.

LOCKE is asserted during C3 for the last write transfer of the locked sequence. If
multiple write transfers are required for misaligned operands or multiple operands,
LOCKE is asserted only for the final write transfer. The external arbiter can use this
indication to distinguish between two back-to-back locked bus cycles and allow
arbitration between them.

Clock 4 (C4)

During the first half of C4, the processor negates TS and drives the appropriate bytes of
the data bus with the data to be written. All other bytes are driven with undefined values.
The selected device uses R/W, SIZ1, SIZ0, A1, and A0 to latch the information on the
data bus. Any or all of the bytes (D31-D24, D23-D16, D15-D8, and D7-D0) are
selected by SIZ1, S1Z0, A1, and A0. Concurrently, the selected device asserts TA. At
the end of C4, the processor samples the level of TA; if TA is asserted, the bus cycle
terminates. If TA is not recognized asserted at the end of C4, the processor appends a
wait state instead of terminating the transfer. The processor continues to sample the TA
signal on successive rising edges of BCLK until it is recognized asserted.

7-28 M68040 USER'S MANUAL MOTOROLA

When the processor recognizes TA at the end of a clock, the bus cycle is terminated,
but TIP remains asserted if the processor is ready to begin another bus cycle.
Otherwise, the processor negates TIP during the first half of the next clock. The
processor also three-states the data bus during the first half of the next clock following
termination of the write cycle. When the last write transfer is terminated, LOCKE is
negated. The processor also negates LOCK if the next bus cycle is not a read-modify-
write.

7.5 ACKNOWLEDGE BUS CYCLES

Bus transfers with transfer type signals TT1 and TTO = $3 are classified as acknowledge
bus cycles. The following paragraphs describe interrupt acknowledge and breakpoint
acknowledge bus cycles that use this encoding.

7.5.1 Interrupt Acknowledge Bus Cycles

When a peripheral device requires the services of the M68040 or is ready to send
information that the processor requires, it can signal the processor to take an-interrupt
exception. The interrupt exception transfers control to a routine that responds
appropriately. The peripheral device uses the active-low interrupt priority level signals
(IPL2-IPLO) to signal an interrupt condition to the processor and to specify the priority level
for the condition. Refer to Section 8 Exception Processing for a discussion on the TPLx
levels and TPEND.

The status register (SR) of the M68040 contains an interrupt priority mask (12—10 bits). The
value in the interrupt mask is the highest priority level that the processor ignores. When an
interrupt request has a priority higher than the value in the mask, the processor makes the
request a pending interrupt. IPL2-TPLO must maintain the interrupt request level until the
M68040 acknowledges the interrupt to guarantee that the interrupt is recognized. The
M68040 continuously samples TPL2-IPLO on consecutive rising edges of BCLK to
synchronize and debounce these signals. An interrupt request that is held constant for two
consecutive clock periods is considered a valid input. Although the protocol requires that
the request remain until the processor runs an interrupt acknowledge cycle for that
interrupt value, an interrupt request that is held for as short a period as two clock cycles
can be recognized. Figure 7-19 is a flowchart of the procedure for making an interrupt
pending.

MOTOROLA M68040 USER'S MANUAL 7-29

(* RESET)

5| SAMPLE AND SYNCHRONIZE
ol R -T2

*—.—‘_—

INTERRUPT LEVEL>{2-10,
ORTRANSITIONONLEVEL7

OTHERWISE ASSERT iPEND

Figure 7-19. Interrupt Pending Procedu;e

The M68040 asserts IPEND when an interrupt request is pending. Figure 7-20 illustrates
the assertion of TPEND relative to the assertion of an interrupt level on the TPLx signals.
IPEND signals external devices that an interrupt exception will be taken at an upcoming
instruction boundary (followmg any higher priority exception). The IPEND signal negates
after the processor recognizes the internal interrupt acknowledge and can precede the
external interrupt acknowledge bus cycle.

. _m_i__[_‘__ :; :’ ‘.1
e LT

iPEND \
{PLs RECOGNIZED —3» - I—» ASSERT IPEND
{PLs SYNCHRONIZED —>
COMPARE REQUEST WITH MASK IN SR—>» IS

Figure 7-20. Assertion of IPEND

7-30 M68040 USER’S MANUAL MOTOROLA

The M68040 takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any other pending exception with a higher priority. Thus, the
M68040 executes at least one instruction in an interrupt exception handler before
recognizing another interrupt request. The following paragraphs describe the various kinds
of interrupt acknowledge bus cycles that can be executed as part of interrupt exception
processing. Table 7-4 provides a summary of the possible interrupt acknowledge
terminations and the exception processing results.

Table 7-4. Interrupt Acknowledge Termination Summary

TA TER AVEC Termination Condition

High High Don't Care | Insert Waits

High Low ° | Don't Care | Take Spurious Interrupt Exception

Low High High Latch Vector Number on D7-D0 and Take Interrupt
- Exception

Low High Low Take Autovectored Interrupt Exception

Low Low Don't Care | Retry Interrupt Acknowledge Cycle

7.5.1.1 INTERRUPT ACKNOWLEDGE BUS CYCLE (TERMINATED NORMALLY).
When the M68040 processes an interrupt exception, it performs an interrupt acknowledge
bus cycle to obtain the vector number that contains the starting location of the interrupt
exception handler. Some interrupting devices have programmable vector registers that
contain the interrupt vectors for the exception handlers they use. Other interrupting
conditions or devices cannot supply a vector number and use the autovector bus cycle
described in 7.5.1.2 Autovector Interrupt Acknowledge Bus Cycle.

MOTOROLA M68040 USER’S MANUAL 7-31

The interrupt acknowledge bus cycle is a read transfer. 1t differs from a normal read cycle
in the following respects:

1. TT1 and TTO = $3 to indicate an acknowledged bus cycl_e.
' 2. Address signals A31-A0 are set to all ones ($FFFFFFFF).
3. TM2-TMO are set to the interrupt request level (the inverted values of IPL2-IPLO).

The responding device places the vector number on the data bus during the interrupt
acknowledge bus cycle, and the cycle is terminated normally with TA. Figures 7-21 and

7-22 illustrate a flowchart and functional timing diagram for an interrupt acknowledge cycle
terminated with TA

7-32

PROCESSOR

EXTERNAL DEVICE

ACKNOWLEDGE INTERRUPT

A

REQUEST INTERRUPT

1) IPEND RECOGNIZED, WAIT FOR
INSTRUCTION BOUNDARY

2) SETRWTOREAD

3) DRIVE A31-A0 TO $FFFFFFFF

4) DRIVE UPA1, UPAOTO $0

5) SET SIZETOBYTE

6) SET TRANSFERTYPE ON TT1, TT0O TO $3
7) PLACE INTERAUPT LEVEL ON TM2-TMO
8) NEGATE CIOUT

9) ASSERT TS FOR ONE CLOCK
10) ASSERT TiP :

Y

PROVIDE VECTOR INFORMATION

ACQUIRE DATA

A

1) PLACE VECTOR NUMBER ON BYTE D7-Do
2) ASSERT TRANSFER ACKNOWLEDGE (TA)

1) LATCH VECTOR NUMBER

Y

START NEXT CYCLE

[

TERMINATE CYCLE

1) REMOVE DATA FROM D7-D0
2) NEGATETA

Figure 7-21. Interrupt Acknowledge Bus Cycle Flowchart

M68040 USER’S MANUAL

MOTOROLA

BCLK

|

<

A31-A0

UPA1, UPAD

SIZ1

BYTE

Sizo

™, TT0

SR

‘”zzz{z

TM2-TMo INTERRUPT LEVI

3

WP P

(LZZ/

i
L
1
}
1
1
I
[}
1
1
[}
I
I

5

Z ¢ <

:
e 1
r

AVEC .

D31-D8

GRS
¢ <

D7-Do

__>i INTERRUPT
ACKNOWLEDGE I < i‘—WRWE STACK

Figure 7-22. Interrupt Acknowledge Bus Cycle Timing

M

7.5.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE BUS CYCLE. When the
interrupting device cannot supply a vector number, it requests an automatically generated
vector (autovector). Instead of placing a vector number on the data bus and asserting T TA,
the device asserts the autovector (AVEC) signal with TA to terminate the cycle. AVEC is
only sampled with TA asserted. AVEC can be grounded if all interrupt requests are
autovectored. .

The vector number supplied in an autovector operatién is derived from the intérrupt priority

level of the current interrupt. When the AVEC signal is asserted with TA during an interrupt
acknowledge bus cycle, the M68040 ignores the state of the data bus and internally

MOTOROLA M68040 USER’S MANUAL 7-33

generates the vector number, which is the sum of the interrupt priority level plus 24 ($18).
There are seven distinct autovectors that can be used, corresponding to the seven levels
of interrupts available with IPL2-IPLO signals. Figure 7-23 illustrates a functional timing
diagram for an autovector operation.

Q
8
Q
8

BCLK

é

SR

<

A31-A0

UPAY, UPAO

SIzZ4

o
S
m

INTERRUPT LI

3

NINISININFIEIN

[e]
[s]
S

IS DA I

S %’I
| k5 |

e

AVEC
-\ —~
oa-D0) N C
INTERRUPT
- | . ACKNOWLEDGE |<— WRITESTACK

AUTOVECTORED

Flgure 7-23. Autovector lnterrupt Acknowledge Bus Cycle Tlming

75.13 SPURlOUS INTERRUPT ACKNOWLEDGE BUS CYCLE. When a device does
not respond to an interrupt acknowledge bus cycle with TA, or AVEC and TA, the external
logic typically returns the transfer error acknowledge signal (TEA). In this case, the
M68040 automatically generates the spurious interrupt vector number 24 ($18) instead of
the interrupt vector number If TA and TEA are both asserted the processor. retries the
cycle.

7-34 M68040 USER’S MANUAL MOTOROLA

7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle

The execution of a breakpoint instruction (BKPT) generates the breakpoint interrupt
acknowledge bus cycle. An acknowledged access is indicated with TT1 and TTO = $3,
address A31-A0 = $00000000, and TM2-TMO = $0. When the external device terminates
the cycle with either TA or TEA, the processor takes an illegal instruction exception.
Figures 7-24 and 7-25 illustrate a flowchart and functional timing diagram for a breakpoint
interrupt acknowledge transfer.

PROCESSOR - . EXTERNAL DEVICE

BREAKPOINT ACKNOWLEDGE

1) SET RW TO READ

2) DRIVE A31-A0 TO $00000000

3) DRIVE UPA1, UPAO TO $0

4) SETSIZETOBYTE

§) SETTRANSFER TYPEONTT1, TTOTO §3

6) SET TRANSFER MODIFIER TM2-TMOTO $0 -

&) NEGATE CIOUT ~
9) ASSERT TS FOR ONE CLOCK
10) ASSERT TIP - _
ASSERTTAORTEA
INITIATE ILLEGAL <
INSTRUGTION EXCEPTION PROCESSING
Y
TERMINATE CYCLE
1) NEGATE TAORTER

Figure 7-24. Breakpoint Interrupt Acknowledge Bus Cycle Flowchart

MOTOROLA M68040 USER’'S MANUAL 7-35

|

BCLK

A31-A0

UPA1, UPAO

SIZ4

3

Sizo

< & <<

T, TT0

TM2-TMO

RW

J4PYYyp PP

clout

e
<l

5

TIP

€

TA

'\l

BREAKPOINT
> | ACKNOWLEDGE I‘ — t*—WRITESTACK

Figure 7-25. Breakpoint Interrupt Acknowledge Bus Cycle Timing

D31-Do

Nr

Y

7.6 BUS EXCEPTION CONTROL CYCLES

The M68040 bus architecture reqwres assertion of TA from an external device to signal
that a bus cycle is complete. TA is not asserted in the following cases:

* The external device does not respond.

* No interrupt vector is provided.

* Various other application-dependent errors occur.
External circuitry can provide TEA when no device responds by asserting TA within an
appropriate period of time after the processor begins the bus cycle. This allows the cycle

to terminate and the processor to enter exception processing for the error condition. TEA
can also be asserted in combination with TA to cause a retry of a bus cycle in error.

7-36 Mé68040 USER’S MANUAL MOTOROLA

To properly control termination of a bus cycle for a bus error or retry condition, TA and
TEA must be asserted and negated for the same rising edge of BCLK. Table 7-5 lists the
control signal combinations and the resulting bus cycle terminations. Bus error and retry
terminations during burst cycles operate as described in 7.4.2 Line Read Transfers and
7.4.4 Line Write Transfers. ,

‘Table 7-5. TAand TEA Assertion Results

Case No. TA TEA “ Result
1 High Low Bus Error—Terminate and Take Bus Error Exception,
Possibly Deferred
Low Low Retry Operation—Terminate and Retry
3 Low High Normal Cycle Terminate and Continue
High - High Insert Wait States

7.6.1 Bus Errors

The system hardware can use the TEA signal to abort the current bus cycle when a fault
is detected. A bus error is recognized during a bus cycle when TA is negated and TEA is
asserted. When the processor recognizes a bus error condition for an access, the access
is terminated immediately. A line access that has TEA asserted for one of the four long-
word transfers aborts without completing the remaining transfers, regardiess of whether
the line transfer uses a burst or burst-inhibited access.

When TEA is asserted to terminate a bus cycle, the M68040 can enter access error
exception processing immediately following the bus cycle, or it can defer processing the
exception. The instruction prefetch mechanism requests instruction words from the
instruction memory unit before it is ready to execute them. If a bus error occurs on an
instruction fetch, the processor does not take the exception until it attempts to use the
instruction. Should an intervening instruction cause a branch or should a task switch
occur, the access error exception for the unused access does not occur. Similarly, if a bus
error is detected on the second, third, or fourth long-word transfer for a line read access,
an access error exception is taken only if the execution unit is specifically requesting that
long word. Otherwise, the line is not placed in the cache, and the processor repeats the
line access when another access references the line. If a misaligned operand spans two
long words in a line, a bus error on either the first or second transfer for the line causes
exception processing to begin immediately. A bus error termination for any write accesses
or for read accesses that reference data specifically requested by the execution unit
causes the processor to begin exception processing immediately. Refer to Section 8
Exception Processing for details of access error exception processing.

When a bus error terminates an access, the contents of the corresponding cache can be
affected in different ways, depending on the type of access. For a cache line read to
replace a valid instruction or data cache line, the cache line being filled is invalidated
before the bus cycle begins and remains invalid if the replacement line access is
terminated with a bus error. If a dirty data cache line is being replaced and a bus error
occurs during the replacement line read, the dirty line is restored from an internal push

MOTOROLA M68040 USER'S MANUAL 7-37

buffer into the cache to eliminate an unnecessary push access. If a bus error occurs
during a data cache push, the corresponding cache line remains valid (with the new line
data) if the line push follows a replacement line read; or is invalidated if a CPUSH
instruction explicitly forces the push. Write accesses to memory pages specified as write-
through by the data memory unit update the corresponding cache line before accessing
memory. If a bus error occurs during a memory access, the cache line remains valid with
the new data. Figure 7-26 illustrates a functional timing diagram of a bus error on a word
write access causing an access error exception. Figure 7-27 illustrates a functional timing
diagram of a bus error on a line read access that does not cause an access error
exception. . v

A physical bus error during an FSAVE instruction results in corruption of the floating-point
state frame. This is not a serious: limitation since, prior to writing the stack frame, the
M68040 ensures that the pages required for the floating-point state frame are resident.
Therefore, only a physical bus error can cause an access error during the stacking of the
state frame. In a normal application, writes caused by the processor should not result in a
physical bus error since the logical address space has already been translated and
allocated. Since there should be no parity errors caused by processor write accesses, only
spurious assertions of the TEA pin can cause physical bus errors. Furthermore, because
FSAVE instructions usually place the state frame on the system stack, the occurrence of a
physical bus error when using the system stack indicates a serious hardware error.

7-38 M68040 USER’S MANUAL MOTOROLA

BCLK

|

)P I

A31-A0

UPA1, UPAO

SIZ1

Sizo

P WP WL

N .
™, TT0 ! :
,'Qj
TM2-TMO '
! : N)L:
A ! : : !
: | N—] !
_ : : N— '
CiouT ! : !
L= N—

n_/ AR _
— | —N——

m P\ E L

o0) (U A {

|<wnrre CYCLE)-| I<— WRITE STACK

Figure 7-26. Word Write Access Terminated with TEA Timing

MOTOROLA ' ~ M6é8040 USER'S MANUAL 7-39

3

=
Q
8
8
Y

WL LI P L

aalslslalalzialzhhla

TEA ENDS BURST -
A3, A2s= 01 10 1" NO EXCEPTION
TAKEN

NOTE: The selected device increments the value on A3 and A2.

Figure 7-27. Line Read Access Terminated with TEA Timing

7-40 M68040 USER'S MANUAL MOTOROLA

7.6.2 Retry Operation

When an external device asserts both the TA and TEA signals during a bus cycle, the
processor enters the retry sequence. The processor terminates the bus cycle and
immediately retries the cycle using the same access information (address and transfer
attributes). However, if the bus cycle was a cache push operation, the bus is arbitrated
away from the M68040 before the retry operation, and a snoop during the arbitration
invalidates the cache push, then the processor does not use the same access information.
Figure 7-28 illustrates a functional timing diagram for a retry of a read bus transfer.

o | @ | o | oo | e |

A31-AD

UPA1, UPAO

siz1, Si20

TT1, 770

TM2-TMO

/'.‘\‘fé/'/'&'&é

]
I
[}
]
1
1
]
]
1
|
1
1
1

Al

wrwrmwnmh

/]

READ CYCLE RETRY
RETRY SIGNALED CYCLE

Figure 7-28. Retry Read Transfer Timing

j

TYYYP

" The processor retries any read or write cycles of a read-modify-write transfer separately;
LOCK remains asserted during the entire retry sequence. If the last bus cycle of a locked
access is retried, LOCKE remains asserted through the retry of the write cycle.

MOTOROLA M68040 USER’S MANUAL 7-41

On the initial cycle of a line transfer, a retry causes the processor to retry the bus cycle as
illustrated in Figure 7-29. However, the processor recognizes a retry signaled during the
second, third, or fourth cycle of a line as a bus error and causes the processor to abort the
line transfer. A burst-inhibited line transfer can only be retried on the initial transfer. A
burst-inhibited line transfer aborts if a retry is signaled for any of the three long-word
transfers used to complete the line transfer. Negating the bus grant (BG) signal on the
M68040 while asserting both TA and TEA provides a relmqunsh and retry operation for any
bus cycle that can be retried (see Figure 7-31) \

o
Q
Y
o
Q
Y
Q
«w
Y
o
o

o LML L LML

A31-A0

UPA1, UPAO .

Siz4, Sizo

c
=z
m

TT1,TT0

INAANANARD

TM-TMO

QPPN

g

]
1
]
1
t
1
1
1
1
)
1
1
1
1
1
!
1
Il
1
1
]
'
'
]
I
I
[}
|
|
I
]
1
I
'

'
]
]
1
1
(
1
1
|
w _\ 5
. !
w_/ L\
=
m _/ 5
1
@/ ; |
= "/
wn) A
I«'——nsrnv—><— RETRY CYCLE >
 SIGNALED)

Flgure 7-29. Retry Operation on Line Write

7-42 M68040 USER'S MANUAL MOTOROLA

7.6.3 Double Bus Fault

A double bus fault occurs when an access or address error occurs during the exception
processing sequence—e.g., the processor attempts to stack several words containing
information about the state of the machine while processing an access error exception. If
a bus error occurs during the stacking operation, the second error is considered a double
bus fault. ' '

The M68040 indicates a double bus fault condition by continuously driving PST3-PSTO
with an encoded value of $5 until the processor is reset. Only an external reset operation
can restart a halted processor. While the processor is halted, negating BR and forcing all
outputs to a high-impedance state releases the external bus.

A second access or address error that occurs during execution of an exception handler or
later, does not cause a double bus fault. A bus cycle that is retried does not constitute a
bus error or contribute to a double bus fault. The processor continues to retry the same
bus cycle as long as external hardware requests |t ,

7.7 BUS SYNCHRONIZATION

The M68040 integer unit generates access requests to the instruction and data memory
units to support integer and floating-point operations. Both the <ea> fetch and write-back
stages of the integer unit pipeline perform accesses to the data memory unit, with effective
address fetches assigned a higher priority. This priority allows data read and write
accesses to occur out of order, with a memory write access potentially delayed for many
clocks while allowing read accesses generated by later instructions to complete. The
processor detects a read access that references earlier data waiting to be written (address
collisions) and allows the corresponding write access to complete. A given sequence of
read accesses or write accesses is completed in order, and reordering only occurs with
writes relative to reads. Figure 2-1 in Section 2 Integer Unit illustrates the integer pipeline
stages.

Besides address collisions, the instruction restart model used for exception processing in
the M68040 causes another potential problem. After the operand fetch for an instruction,
an exception that causes the instruction to be aborted can ‘occur, resulting in another
access for the operand after the instruction restarts. For example, an exception could
occur after a read access of an I/O device's status register. The exception causes the
instruction to be aborted and the register to be read again. If the first read accesses clears
the status bits, the status information is lost, and the instruction obtains incorrect data, o

Designating the memory page containing the address of the device as serialized
noncachable prevents multiple out-of-order accesses to devices sensitive to such
accesses. When the data memory unit detects an attempt to read an operand from a page
designated as serialized noncachable, it allows all pending write accesses to complete
before beginning the external read access. The definition of a page as noncachable
versus serialized noncachable only affects read accesses. When a write operation
reaches the integer unit’s write-back stage, all previous instructions have completed.
When a read access to a serialized noncachable page begins, only a bus error exception

MOTOROLA M68040 USER'S MANUAL 7-43

on the operand read itself can cause the instruction to be aborted, preventing multiple
reads. It is important to note that when memory accesses are serialized noncachable,
FMOVE will cause two identical writes to the same location to occur if the next instruction
prefetch receives a bus error.

Since write cycles can be deferred indefinitely, many subsequent instructions can be
executed, resulting in seemingly nonsequential instruction execution. When this action is
not desired and the system depends on sequential execution following bus activity, the
NOP instruction can be used. The NOP instruction forces instruction and bus
synchronization because it freezes instruction execution until all pending bus cycles have
completed.

A write operation of control information to an external register in which the external
hardware attempts to control program execution based on the data that is written with the
conditional assertion of TEA is one situation where the NOP instruction can be used to
prevent multiple executions. If the data cache is enabled and the write cycle results in a hit
in the data cache, the cache is updated. That data, in turn, may be used in a subsequent
instruction before the external write cycle completes. Since the M68040 cannot process
the bus error until the end of the bus cycle, the external hardware cannot successfully
interrupt program execution. To prevent a subsequent instruction from executing until the
external cycle completes, the NOP instruction can be inserted after the instruction causing
the write. In this case, access error exceptlon processing proceeds immediately after the
write before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP mstructlon for this purpose is not requnred by most systems.

Note that the NOP instruction can also be used to force access serialization by placing
NOP before the instruction that reads an I/O device. This practice eliminates the need to
specify the entire page as serialized noncachable but does not prevent the instruction
from being aborted by an exception condition.

7.8 BUS ARBITRATION AND EXAMPLES

The bus design of the M68040 provides for one bus master at a time, either the M68040
or an external device. More than one device having the capability to control the bus can
be attached to the bus. An external arbiter prioritizes requests and determines which
device is granted access to the bus. Bus arbitration is the protocol by which the processor
or an external device becomes the bus master. When the M68040 is the bus master, it
uses the bus to read instructions and data not contained in its internal caches from
memory and to write data to memory. When an alternate bus master owns the bus, the
M68040 is able to monitor the alternate bus master’s transfer and intervene when
necessary to maintain.cache coherency. This capability is discussed in more detail in 7.9
Bus Snooping Operation..

Unlike earlier members of the M68000 family, the M68040 implements an arbitration
method in which an external arbiter controls bus arbitration and the processor acts as a
slave device requesting ownership of the bus from the arbiter. Since the user defines the
functionality of the external arbiter, it can be configured to support any desired priority
scheme. For systems in which the processor is the only possible bus master, the bus can

7-44 M68040 USER'S MANUAL MOTOROLA

be continuously granted to the processor, and no arbiter is needed. Systems that include
several devices that can become bus masters require an arbiter to assign priorities to
these devices so that, when two or more devices simultaneously attempt to become the
bus master, the one having the highest priority becomes the bus master first.

7.8.1 Bus Arbitration

The M68040 bus controller generates bus requests to the external arbiter in response to
internal requests from the instruction and data memory units. The M68040 performs bus
arbitration using the bus request (BR), bus grant (BG), and bus busy (BB) signals. The
arbitration protocol, which allows arbitration to overlap with bus activity, requires a single
idle clock to prevent bus contention when transferring bus ownership between bus
masters. The bus arbitration unit in the M68040 operates synchronously and transitions
between states on the rising edge of BLCK.

The M68040 requests the bus from the external bus arbiter by asserting BR whenever an
internal bus request is pending. The processor continues to assert BR for as long as it
requires the bus. The processor negates BR at any time without regard to the status of BG
and BB. If the bus is granted to the processor when an internal bus request is generated,
BR is asserted simultaneously with transfer start (TS), allowing the access to begin
immediately. The processor always drives BR, and BR cannot be wire-ORed with other
devices.

The external arbiter asserts BG to indicate to the processor that it has been granted the
bus. If BG is negated while a bus cycle is in progress, the processor relinquishes the bus
at the completion of the bus cycle. To guarantee that the bus is relinquished, BG must be
negated prior to the rising edge of the BCLK in which the last TA or TEA is asserted. Note
that the bus controller considers the four bus transfers for a burst-inhibited line transfer to
be a single bus cycle and does not relinquish the bus until completion of the fourth
transfer. The read and write portions of a locked read-modify-write sequence are divisible
in the M68040, allowing the bus to be arbitrated away during the locked sequence. For
system applications that do not allow locked sequences to be broken, the arbiter can use
LOCK to detect locked accesses and prevent the negation of BG to the processor during
these sequences. The processor also provides the LOCKE signal to indicate the last write
cycle of a locked sequence, allowing arbitration between back-to-back locked sequences.
See 7.4.5 Read-Modify-Write Transfers (Locked Transfers) for a detailed description of
read-modify-write transfers.

When the bus has been granted to the processor in response to the assertion of BR, one
of two situations can occur. In the first situation, the processor monitors BB to determine
when the bus cycle of the alternate bus master is complete. After the alternate bus master
negates BB, the processor asserts BB to indicate explicit bus ownership and begins the
bus cycle by asserting TS. The processor continues to assert BB until the external arbiter
negates BG, after which BB is first negated at the completion of the bus cycle, then forced
to a high-impedance state. As long as BG is asserted, BB remains asserted to indicate the
bus is owned, and the processor continuously drives the bus signals. The processor
negates BR when there are no pending accesses to allow the external arbiter to grant the
bus to the alternate bus master if necessary.

MOTOROLA M68040 USER'S MANUAL 7-45

In the second situation, the processor samples BB until the external bus arbiter negates
BB. The processor drives its output pins with undetermined values and three-states BB,
but does not perform a bus cycle. This procedure, called implicit ownership of the bus,
occurs when the processor is granted the bus but there are no pending bus cycles. If an
internal access request is generated, the processor assumes explicit ownership of the bus
and immediately begins an access, simultaneously asserting BB, BR, TIP, and TS. If the
external arbiter keeps BG asserted after completion of the bus cycle, the processor keeps
BB asserted and drives the bus with undefined values, causing the processor to park. In
this case, because BB remains asserted until the external arbiter negates BG, the
processor must assert BR, TIP, and TS simultaneously to enter an active bus cycle. When
it completes the active bus cycle and the external arbiter has not t negated BG, the
processor goes back into park, negating BR, TIP, and TS. As long as BG is asserted the
processor oscillates between park and active bus cycles.

The M68040 can be in any one of five bus arbitration states during bus operation: idle,
snoop, implicit ownership, park, and active-bus cycle. There are two characteristics that
determine these five states: whether the three-state logic determines if the M68040 drives
the bus and how the M68040 drives BB.:If neither the processor nor the external bus
arbiter asserts BB, then an external pullup resistor drives BB hlgh to negate it. Note that
the relationship between the mternal BR and the external BR is best descnbed as a
synchronous delay off BCLK. -

The idle state occurs when the M68040 does not have ownership of the bus and is not in
the process of snooping an access. In the idle state, BB is negated and the M68040 does
not drive the bus. The snoop state is similar to the idle state in that the M68040 does not
have:ownership of the bus. The snoop state differs from the idle state in that the M68040
is ready to servuce snooped transfers Otherwuse the status of BB and the bus is identical.

The |mp||c1t ownership state mdlcates that the M68040 owns the bus. The M68040
explicitly owns the bus when it runs a bus cycle immediately after being granted the bus. If
the processor has completed at least one bus cycle and no internal transfers are pending,
the processor drives the bus with undefined values, entering the park state. In either case,
BG remains asserted. The simultaneous assertion of BR, TIP, and TS allows the processor
to leave the park state and enter the actlve bus cycle state.

Flgure 7-30 is a bus arbitration state dlagram illustrating the relatlonshlp of these-five
states with an example of an external bus arbiter circuit. Table 7-6 lists the five states and
the conditions that indicate them.

7-46 M68040 USER’S MANUAL MOTOROLA

BGATSI

*‘BGATSIA'BBI

DLE, *BG A ‘TSIAEBI PROTOCOL
BEO DRIVEN BY VIAATCN
MC68040,
*THREE-STATED

\ BBIABG AIBRATSI

*BGI A TSI A *BBI

BGIA ‘TSI

BGATP

\
BG A ‘ENDCYCLEATIP

IMPLICIT J——
/| oWNERSHP, \wg — = — - — ——|_ I I I 2
‘BGABR | BBODRVENBY B6° AR o | BEODRYENSY
MCE8040, > 040,
THREE-STATED THREE-STATED

DCYCLE A BBIA BG

BG A ENDCYCLE
A TP

*ENDCYCLE A “BBI

=
/.

Y “*ENDCYCLE A BBI A B A *BR

*ENDCYCLE A BBI A *BG A IBR

__SNOOP,
BBO DRIVEN BY
. MC68040, .
*THREE-STATED

IBR = Intemal bus request signal (see schematic below).
BBI = Bus busy driven by altemate bus master. :
TSI - = Transfer start as an input, sampled by the MC68040.

ENDCYCLE = Whatever terminates a bus transaction
i whether it is nonmal, bus emor, or retried. Note

. : — . that false burst cycles are treated as a line

BR In g ER transaction. False locked transactions

‘ are treated the sama as any other bus cycle.

— — = — ~ = The 040 may or may not transition if an active bus
cycle is terminated with a bus error, and BG is
asserted.

. = Indicates the signal is asserted for that device.

BCLK >

Figure 7-30. M68040 Internal Interpretation State Diagram and
External Bus Arbiter Circuit

MOTOROLA M68040 USER’S MANUAL 7-47

Table 7-6. M68040 Bus Arbitration States

BB BG State Conditions

Negated Negated Idle M68040 }hree-st?tes BB; arbiter negates
: . BG; bus is not driven.

M68040 three-states BB; arbiter asserts

BG; bus is driven with undefined values.
) . M68040 asserts BB; arbiter asserts BG;

Asserted Negated Active Bus Cycle bus is driven with defined values;

TIP is asserted.

M68040 asserts BB; arbiter asserts BG;

Asserted Asserted Park bus is driven with undefined values; TIP is
- asserted.

Negated Asserted) Implicit Ownership

Alternate Bus Master Ownership | M68040 three-states BB; arbiter asserts
Asserted Asserted 4
i . and Snooped BG; M68040 does not drive the bus.

The M68040 can be in the active bus cycle, park, or implicit ownership states when BG is
negated. Depending on the state the processor is in when BG is negated, uncertain
conditions can occur. The only guaranteed time that the processor relinquishes the bus is
when BG is negated prior to the rising edge of BCLK in which the last TA or TEA is
asserted and the processor is in the active bus cycle state. However, if the processor is in
either the active bus cycle, park, or implicit. ownership states and BG is negated at the
same time or after the last TA or TEA is asserted, then from the standpoint of the external
bus arbiter, the next action that the processor takes is undetermined because the
processor can internally decide to perform another active bus cycle (indeterminate
condition).

External bus arbiters must consider this indeterminate condition when negating BG and
must be designed to examine the state of BB immediately after negating BG to determine
whether or not the processor will run another bus cycle. A somewhat dangerous situation
exists when the processor begins a locked transfer after the bus has been granted to the
alternate bus master, causing the alternate bus master to perform a bus transfer during a
locked sequence. To correct this situation, the external bus arbiter must be able to
recognize the possible indeterminate condition and reassert BG to the processor when the
- processor begins a locked sequence. The indeterminate condition is most significant when
dealing with systems that cannot allow locked transfers to be broken. Figure 7-31
illustrates an-example of an error condition that is a consequence of the interaction
between the indeterminate condition and a locked transfer. External bus arbiters must be
designed so that all bus grants to all bus masters be nagated for at least one rising edge
of BCLK between bus tenures; preventing bus conflicts resulting from the above
conditions.

7-48 M68040 USER'S MANUAL MOTOROLA

BUS HERE

i
040_BG v/ E
] 1
040_88 _—r__/ '
. ! |
JE—]) [
040_TS ! \ / !
| "
040_TA ' \ / .
—_ !
1
040_LOCK : :
1]
'
AMBG* A '
) X
-] 1
AM_BB ' C o\
i i
aTs* | | _/_
POSSIBLE } THE 040 LOCK IS
INDETERMINATE ACTIVELY VIOLATED
CONDITION OWNS THE

* AM indicates the altemate bus master.

Figure 7-31. Lock Violation Example

In addition to the indeterminate condition, the external arbiter’s design needs to include
the function of BR. For example, in certain cases associated with conditional branches,
the M68040 can assert BR to request the bus from an alternate bus master, then negate
BR without using the bus, regardless of whether or not the external arbiter eventually
asserts BG. This situation happens when the M68040 attempts to prefetch an instruction
for a conditional branch. To achieve maximum performance, the processor prefetches the
instructions of both paths for a conditional branch. If the conditional branch results in a
branch-not-taken, the previously issued branch-taken prefetch is then terminated since the
prefetch is no longer needed. In an attempt to save time, the M68040 negates BR. If BG
takes too long to assert, the M68040 enters a disregard request condition.

The BR signal can be reasserted immediately for a different pending bus request, or it can
stay negated indefinitely. If an external bus arbiter is designed to wait for the M68040 to
assert BB before proceeding, then the system experiences an extended period of time in
which bus arbitration is locked. Motorola recommends that an external bus arbiter not
assume that there is a direct relationship between BR and BB or BR and BG signals.

Figure 7-32 illustrates an example of the processor requesting the bus from the external
bus arbiter. During C1, the M68040 asserts BR to request the bus from the arbiter, which
negates the alternate bus master's BG signal and grants the bus to the processor by
asserting BG during C3. During C3, the alternate bus master completes its current access
and relinquishes the bus by three-stating all bus signals. Typically, the BB and TIP signals

MOTOROLA M68040 USER’S MANUAL 7-49

require a pullup resistor to maintain a logic-one level between bus master tenures. The
alternate bus master should negate these signals before three-stating to minimize rise
time of the signals and ensure that the processor recognizes the correct level on the next
BCLK rising edge. At the end of C3, the processor recognizes the bus grant and bus idle
conditions (BG asserted and BB negated) and assumes ownership of the bus by asserting
BB and immediately beginning a bus cycle during C4. During C8, the processor begins the
second bus cycle for the misaligned operand and negates BR since no other accesses are
pending. During C7, the external bus arbiter grants the bus back to the alternate bus
master that is waiting for the processor to relinquish the bus. The processor negates BB
and TIP before three-stating these and all other bus signals during C8. Finally, the
alternate bus master recognizes the bus grant and idle conditions at the end of C8 and is
able to resume bus activity during C9.

. : .
1
D TRANSFER i '
ATTRIBUTES HE
1 1
TS ' 1 '
' :)
_])
TiP \ 1
1 1
T\ o/
]

I\
—/

_/
D31-Do }

|
'
t
1
I
1
)
1
|
|
1
1
|
1
1

>
'Z
o
]

.l g 8 9

'
i
i
|
'
il
1
|

_BG'. ~ /

.

ALTERNATE—>{ }«--pnocssson——»{]«-ALTERNATE
MASTER MASTER

*AM indicates the alternate bus master.

Figure 7-32. Processor Bus Request Timing

7-50 M68040 USER’S MANUAL MOTOROLA

Figure 7-33 illustrates a functional timing diagram for an arbitration of a relinquish and
retry operation. Figure 7-34 is a functional timing diagram for implicit ownership of the bus.
In Figure 7-33, the processor read access that begins in C1 is terminated at the end of C2
with a retry request and BG negated, forcing the processor to relinquish the bus and allow
the alternate master to access the bus. Note that the processor reasserts BR during C3
since the original access is pending again. After alternate bus master ownership, the bus
is granted to the processor to allow it to retry the access beginning in C7.

]
1
, .
TRANSFER '
ATTRIBUTES '

<

ALTERNATE | r
Pnocssson—>‘ ’(- LTERNAT ‘ l<-— PROCESSOR

*AM indicates the altemate bus master.

‘Figure 7-33. Arbitration During Relinquish and Retry Timing

MOTOROLA M68040 USER’S MANUAL 7-51

A31-A0

TRANSFER
ATTRIBUTES

o\ pEVA
031-00—\:/—\ :
A WY -
- \

!
1
1
]
T
!
[
I
1
1 1
1 1
1 1
1 1
1 1
1
1 |
1]
)
' |
1
1 '
U '
t
|)
Ll '
)
! b
'
! L
1 '
1 i
] 1
1 1
]
1 '
] 1
1
' '
1 1
t |
' 1
| |
| '
' 0
1)
1 1
T T
' 1
i 1
' 1
t

1
|
!
1
'
I
[
'
t
i
|
|
I
1
1
|
!
1
1
'
1
|
1
l
]
1
!
1
!
1
l
1
[
]
T
1
1
1
'

IMPLI CITLY BUS OWN ED BUS OWNED
ALTERNATE. OWNED AND ACTIV AND IDLE =
MASTER PROCESSOR —————— >

*AM indicates the altemate bus master.

Undefined

Figure 7-34. Implicit Bus Ownership Arbitration Timing

7.8.2 Bus Arbitration Examples

The following paragraphs illustrate the behavior of the M68040 bus arbitration scheme
and provide examples of how an external bus arbiter can be designed to keep the integrity
of locked bus operations. The examples include the previously mentioned indeterminate
and disregard request conditions.

7.8.2.1 DUAL M68040 FAIRNESS ARBITRATION. The following state diagram illustrates
a fairness algorithm using two MC68040s and assigning the least priority to the processor
that owns the bus. If both processors keep their respective BR signals asserted, bus
ownership alternates between the two processors so that each processor can run at least
one bus cycle during its tenure. Each processor is allowed to own the bus without
relinquishing it to maintain the integrity of locked transfers. This example also illustrates

7-52 M68040 USER’S MANUAL MOTOROLA

how the LOCKE signal can be used to end a locked sequence and to yield the bus one
bus cycle earlier than is normally possible. Figure 7-35 illustrates the state dlagram of a
hypothetical external arbiter design.

B8 A LOCK A LOCKE®

BG1*, BG2

BR2'V_ STATEB

BR2 A LOCK A LOCKE 3G, BG2

BB A LOCK A LOCKE*

NOTES:

1. Bacause this example uses two MC68040s, 1 and 2 refer to the processor and its signals.
2. *Indicates the signal is asserted for that device.

Figure 7-35. Dual M68040 Fairness Arbitration State Diagram

Assuming that processor 1 currently owns the bus, the external arbiter is in state A. If
processor 2 asserts BR2, then processor 1 behaves in one of three ways:

. If processor 1 is currently in the middle of a nonlocked bus access, then the external
arbiter proceeds to state B, in which BGT is negated and BG2 is asserted. The
external arbiter then proceeds to state C only when BB is negated, signifying the end
of the bus cycle.

2. If processor 1 is currently in the middle of a locked bus access, then the external
arbiter stays in state A until LOCKE is asserted. Once LOCKE is asserted, the
external arbiter enters state B, in which BG1 is negated and BG2 is asserted. The
external arbiter proceeds to state C once BB is negated, signifying the end of the
bus cycle.

3. If processor 1 is in one of the three boundary conditions, then the external arbiter
proceeds to state B. During state B, the external arbiter checks for the possibility of a
newly initiated locked bus access. If it detects a locked bus cycle, it returns the bus
to processor 1 by entering state A. Note that even though processor 1 recognizes
BG1 is asserted, it does not take the bus because processor 1 asserts BB whenever
the boundary condition results in processor 1 performing another bus cycle. The
external arbiter stays in state A until LOCKE is asserted, then proceeds to state B to

MOTOROLA Mé68040 USER’S MANUAL 7-53

give the bus to processor 2. The arbiter remains in state B until BB is negated
signifying the end of the bus cycle. ‘

Once state C is reached, depending on whether or not processor 2 asserts BR2 and then
negates BR2 because of a disregard request condition, processor 1 may or may not
actively begin a bus cycle. If no other bus requests are pending by the time state C is
reached, processor 2 is in the implicit ownership state. If processor 1 asserts BRT, then it
is possible for state C to persist for only one clock. In this case, processor 2 does not have
a chance to run any active bus cycles.

A null bus cycle tenure is better than having the external bus arbiter wait for processor 2 to
perform at least one bus cycle before returning bus ownership to processor 1, even
though this appears to be a waste of bus arbitration overhead. Note that once processor 2
enters the disregard request condition, processor 2 reasserts BR anywhere from one clock
to an undetermined number of clocks before running another bus cycle. Waiting for
processor 2 to run a bus cycle can result in a temporary bus arbitration lockup.

This bus arbitration scheme is restricted if the system supports the relinquish and retry
operation that can occur for the last write cycle of a locked transfer. In this case, LOCKE
cannot be used. Assuming that LOCKE is always negated excludes the need for LOCKE in
an arbitration similar to this example. The reason for this restriction is that the external bus
arbiter gives up the bus to the other processor once LOCKE is asserted. If a relinquish and
retry operation were to occur, then the next bus cycle would be from the other processor
violating the integrity of the locked transfer.

7.8.2.2 DUAL M68040 PRIORITIZED ARBITRATION. This example is very similar to the
dual M68040 fairness arbitration example, except that one processor is assigned higher
priority over the other. Processor 2 can own the bus only if there are no processor 1
pending requests. It is important to note that when the processor asserts the LOCK signal,
it also asserts BR1. This implementation replaces LOCK with BR because BR is more
demanding than using LOCK. Only when processor 2 is in the middle of a locked
operation does it have higher priority than processor 1. Similar to the M68040 fairness
arbitration example, the restriction on using LOCKE applies to this example. Flgure 7-36
illustrates the state diagram for dual M68040 prioritized arbltratlon

7-54 M68040 USER’S MANUAL MOTOROLA

STATED R —
BR1A BR2*

BG1*, BG2

]
i&

= STATEB
BR2ALOCKALOCKE' : B8G2

BR2 A LOCK A LOCKE
v BR2 A LOCK*

88 A LOCK A LOCKE

NOTES:

1. Because this example uses two MCE8040s, 1 or 2 refers to the processor and its signals.
2. *Indicatas the signal is assarted for that device.

Figure 7-36. Dual M68040 Prioritized Arbitration State Diagram

7.8.2.3 M68040 SYNCHRONOUS DMA ARBITRATION. Figure 7-37 illustrates a system
with an M68040 and a synchronous direct memory access (DMA) that contains an
M68040 interface. Figure 7-37(a) illustrates that the DMA owning the bus only when the
M68040 has no pending requests, and Figure 7-37(b) illustrates the DMA having higher
priority than the M68040 causing the M68040 to yield the bus to the DMA at any time
except when the M68040 is performing a locked bus operation. In either case, the M68040
is the default bus master; if there are no pending requests from either device, the external
arbiter gives the bus to the M68040. Similar to the M68040 fairness arbitration example
the restriction on using LOCKE applies to this example.

MOTOROLA M68040 USER'S MANUAL 7-55

STATEB

040_BR V AM_BR*
AM_BR, 040_BG*
88 A 040_BR*

BB A 040_BR
(a) MC68040 High Priorty, Default Bus Master
BB A AM_ER

BB A AM_BR'

AVBR'V
LOCKAL
BBALOCK' VEB
A LOCK ALOCKE

STATEA

BB A LOCK A LOCKE*

* Indicates the signal is asserted for that device.

(b) MC68040 Low-Priorty, Default Bus Master

Figure 7-37. M68040 Synchronous DMA Arbitration
7-56 M68040 USER’S MANUAL MOTOROLA

7.8.2.4 M68040 ASYNCHRONOUS DMA ARBITRATION. Figure 7-38 illustrates a
sample synchronizer circuit. Figure 7-39 illustrates how an M68040 can be implemented
to simulate an MC68030. The synchronizer circuit has an output indicating whether or not
a signal has been asserted for at least two consecutive rising edges of BCLK. If the
synchronizer circuit indicates that the input has not been stable for at least two clocks,
then the processor and alternate bus master stay in the current state. Figure 7-37(a)
duplicates the MC68030 implementation of the bus arbitration circuitry in which the
M68040 is allowed to yield the bus only after the indeterminate condition has been
eliminated. Figure 7-37(b) is similar to the MC68030 implementation except that the DMA
device has lower priority and can only perform transfers when the M68040 is in the idle
state. In either case, the M68040 is the default bus master; therefore, if there are no
pending requests from either device, the external bus arbiter gives the bus to the M68040.

o >) >
CLK I—_ i
e ————c[>—l— | >—w
Tt | !

CLK

Figure 7-38. Sample Synchronizer. Circuit

MOTOROLA M68040 USER'S MANUAL 7-57

RARVAA AAV

RPARVAAAAV
VRV'VRA'

RARVAAA

FVRFY LOCK ALOCKE* AVVAAAY
RARVALOCKA
LOCKE'
RARVAR A
AVV AV VRV

RARVAR AAV

RV VAA'V
RARVAAAAV
(a) MC68040 Low-Priorty, Default Bus Master
RARVARAAV
VRARVAO040_BR —
R ARVAAAAV

VRV'VRA'

R'ARVAA'AAV
VAV VAV

RARVAR AAV

RV VRA'V
RARVAAAAV
NOTES: - .

1. Itis assumed that the asynchronous device takes the bus only after TIP or the MC68040's BB is negated.
2. *Indicates the signal is asserted for that device.

(b) MC68040 High-Priorty, Default Bus Master
Flgure 7-39. M68040 Asynchronous DMA Arbitration

7-58 * M68040 USER’S MANUAL MOTOROLA

7.9 BUS SNOOPING OPERATION

When required, the M68040 can monitor alternate bus master transfers and intervene in
the access to maintain cache coherency. The encoding of the SCx signals generated by
the alternate bus master for each bus cycle controls the process of bus monitoring and
intervention called snooping. Only byte, word, long-word, and line bus transfers can be
snooped. Refer to Section 4 Instruction and Data Caches for SCx encodings.

When the M68040 recognizes that an alternate bus master has asserted TS, the
processor latches the level on the byte offset, SiZx, TMx, and RMW signals during the
rising edge of BCLK for which TS is first asserted. The processor then evaluates the SCx
and TTx signals to determine the type of access (TTx.= $0 or $1), if it is snoopable, and, if
so, how it should be snooped. If snooping is enabled for the access, the processor inhibits
memory from responding by continuing to assert the memory inhibit signal (MI) while
checking the internal caches for matching lines. During the snooped bus cycle, the
M68040 ignores all TA assertions while Ml is asserted. Unless the data cache contains a
dirty line corresponding to the access and the requested snoop operation indicates sink
data for a write or source data for a read, Ml is negated, and memory is allowed to
respond and complete the access. Otherwise, the processor continues to intervene in the
access by keeping MI asserted and responding to the alternate bus master as a slave
device. The processor monitors the levels of TA, TEA, and TBI to detect normal, bus error,
retry, and burst-inhibited terminations. Note that for alternate bus master burst-inhibited
line transfers, the M68040 snoops each of the four resulting long-word transfers. If
snooping is disabled, Ml is negated, and the M68040 counts the appropriate number of TA
or TEA assertions before proceeding. For example, if the SIZx signals are pulled high, the
M68040 requires four TA assertions, one TEA assertion, or one retry termination before
proceeding.

As a bus master, the M68040 can be configured to request snooping operations on a
page-by-page basis. The UPAXx signals are connected to the SCx inputs of the snooping
processors. Appropriately programming the user attribute bits in the corresponding page
descriptor selects the required snooping operation for a page. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V) for details on configuring
the caching mode and user attribute bits for each memory page for the M68040 and
MC68LC040, and refer to Appendix B MC68EC040 for the MCESEC040.

In a system with multiple bus masters, the memory unit must wait for each snooping bus
master to negate MI before responding to an access. A termination signal asserted before
the negation of MI leads to undefined operation and must be avoided at all costs. Also, if
the system contains multiple caching masters, then each master must access shared data
using write-through pages that allow writes to the data to be snooped by other masters.
The copyback caching mode is typically used for data local to a processor because in a
multimaster caching system only one master at a time can access a given page of
copyback data. The copyback caching mode also prevents multiple snooping processors
from intervening in a specific access.

MOTOROLA M68040 USER’S MANUAL 7-59

7.9.1 Snoop-Inhibited Cycle

For alternate bus master accesses in which the SCx signal encodings indicate that
snooping is inhibited (SCx = $0), the M68040 immediately negates Ml and allows memory
to respond to the access. Snoop-inhibited alternate bus master accesses do not affect
performance of the processor since no cache lookups are required. Figure 7-40 illustrates
an example of a snoop-inhibited operation in which an alternate bus master is granted the
bus for an access. No matter what the values are on the SCx and TTx signals, Ml is
asserted between bus cycles. Because MI is asserted while a cache lookup is performed,
snooping inherently degrades system performance.

Ml is asserted from the last TA of the current bus cycle if the M68040 owns the bus and
loses it (see Figure 7-40). If an alternate bus master has the bus and loses it, there are
two different resulting cases. Usually, an idle clock occurs between the alternate bus
master’s cycle and the MC68040's cycle. If so, Ml is asserted during the idle clock and
negated from the same edge that the M68040 asserts the TS signal (see Figure 7-40). If
there is no idle clock, Ml is not asserted. Ml is asserted during and after reset until the first
bus cycle of the M68040. Even though snoop is inhibited, all TA or TEA assertions while
MI is asserted are ignored. If a line snoop is started, the M68040 still requires four TA
assertions. :

7-60 M68040 USER'S MANUAL MOTOROLA

SC1,5¢0 \ i /
1

A31-A0

SIZ1, S1Zo

m,TTo

RW

SR URUIPIION I VIV Il PRSIV NNDUPUIUN A AR N
—

. i
PROCESSOR —3»| (e ATERMATE > <—PROCESSOR
1) 1)]

* AM indicates the altemate bus master.
Undefined

Figure 7-40. Snoop-Inhibited Bus Cycle

7.9.2 Snoop-Enabled Cycle (No Intervention Required)

For alternate bus master accesses in which SCx = $1 or $2, indicating that snooping is
enabled, the M68040 continues to assert Ml while checking for a matching cache line. If
intervention in the alternate bus master access is not required, Ml is then negated, and
memory is allowed to respond and complete the access. Figure 7-41 illustrates an
example of snooping in which memory is allowed to respond. Best-case timing is

MOTOROLA M68040 USER'S MANUAL 7-61

illustrated, which results in-a memory access having the equivalent of two wait states.
Variations in the timing required by snooping logic to access the caches can delay the
negation of MI by up to two additional clocks. External logic must ensure that the
termination signals negate at all rising BCLK edges in which Ml is asserted. Otherwise, if
one of the termination signals is asserted, either the M68040 ignores all termination
signals, reading them as negated, or the M68040 exhibits improper operation.

N eligigiglipiginh
sorse0 ————{ . ' . —

t
]
'
|
oo ——(
|
siz1, 5120 D—H
'
:
:] :

)

™, 170

;

:

:

3l

w T\ ‘ma v

VAN /"
031-0032 ;

B i i

AM_BR"
g

mest /
|<— ALMTESH_'{{EAF{E ——>| |<—PaocESSOR

* AM indicates the altemate bus master.
2] Undefined

]
1
1
1
1
1
1
1
1
1
1
1
T
]
]
1
1
]
1
1
1
t
¥
1

Figure 7-41. Snoop Access with Memory Response

7-62 M68040 USER'S MANUAL MOTOROLA

7.9.3 Snoop Read Cycle (Intervention Required)

If snooping is enabled for a read access and the corresponding data cache line contains
dirty data, the M68040 inhibits memory and responds to the access as a slave device to
supply the requested read data. Intervention in a byte, word, or long-word access is
independent of which long-word entry in the cache line is dirty. Figure 7-42 illustrates an
alternate bus master line read that hits a dirty line in the M68040 data cache. The
processor asserts TA to acknowledge the transfer of data to the alternate bus master, and
the data bus is driven with the four long words of data for the line. The timing illustrated is
for a best-case response time. Variations in the timing required by snooping logic to
access the caches can delay the assertion of TA by up to two additional clocks.

7.9.4 Snoop Write Cycle (Intervention Required)

If snooping with sink data is enabled for a byte, word, or long-word write access and the
corresponding data cache line contains dirty data, the M68040 inhibits memory and
responds to the access as a slave device to read the data from the bus and update the
data cache line. The dirty bit is set for the long word changed in the cache line. Figure
7-43 illustrates a long-word write by an alternate bus master that hits a dirty line in the
M68040 data cache. The processor asserts TA to acknowledge the transfer of data from
the alternate master, and the processor reads the value on the data bus. The timing
illustrated is for a best-case response time. Variations in the timing required by snooping
logic to access the caches can delay the assertion of TA by up to two additional clocks.

MOTOROLA M68040 USER'S MANUAL 7-63

BCLK

L b-—--- o]
=
o
2
b - - - - - [
w
4
g
w
R a
w
[=4
]
ES
F
o
=
w
=

1
'

[l
1
1
'

SC1, SCo

A31-A0

}(— PROCESSOR

LINE READ

ALTERNATEMASTER ————— 3|

AM indicates the altemate bus master.

*

Figure 7-42. Snooped Line Read, Memory Inhibited

MOTOROLA

M68040 USER’S MANUAL

|

[}

1
1
SC1,5C0 —n—<: Pt
] 1 1 | |
]
M- ——{ ——{
] [] i i
i 1 t] 1
1 t] ‘]
siz1, siz0 :)—;—\ ! ; : ! /_'_C
) 1) 1)
'] 1 | 1 1
mm L EE
: t] 1)
] 1] 1]
AW Pt ' i ‘
' 1] 1]
1 T T T
1] 1]
1] 1]
t 1]
1 i] 1
1 1

'
MEMORY INHIBITED FROM RESPONDING

TADRIVEN BY énocssson;a
])

k)l;/l

]

ATAWRITTEN BY ALTERNATE BUS MASTER

5

AM_BR*

AM_BG*

Ll
[l
[
1
;
0
I
1
1
'
1
]
l
1
.
[
1
i
i
'
i
¢

L

'
]
'
[
i
0
[
)
Ll
1
]
I
[
L]
|
1
1
'
'
T
|
i
1
1
|
1
1
]
]
1

1
'
[
1
]
'
t
1
T
1
1
1
1
1
!
1
1
1
1
[l

]
ALTERNATE MASTER —’l "-— PROCESSOR
LONG-WORD WRITE
* AM indicates the alternate bus master.

Figure 7-43. Snooped Long-Word Write, Memory Inhibited

7.10 RESET OPERATION

An external device asserts the reset input signal (RSTI) to reset the processor. When
power is applied to the system, external circuitry should assert RSTI for a minimum of 10
BCLK cycles after Vcc is within tolerance. Figure 7-44 is a functional timing diagram of
the power-on reset operation, illustrating the relationships among Vce, RSTI, mode
selects, and bus signals. The BCLK and PCLK clock signals are required to be stable by
the time V¢ reaches the minimum operating specification. The V|4 levels of the clocks

MOTOROLA M68040 USER’S MANUAL 7-65

should not exceed Vg while it is ramping up. RSTI is internally synchronized for two
BCLKS before being used and must meet the specified setup and hold times to BCLK
(specifications #51 and #52 in Section 11 MC68040 Electrical and Thermal
Characteristics) only if recognition by a specific BCLK rising edge is required. M1 is
asserted while the M68040 is in reset.

'(— 12 10%{(— 128 —)-|
CLOCKS CLOCKS CLOCKS

5V A L S — : :
Vo AT : !
__ Lo N
o] R
iPL2IPLO N R N‘D : —\
])]) 1 1)] 1 1
BUS W L ' Vo
SIGNALS N N
_ AR S N
s /" L : L
- I WG S P
/) T ! o
_ S NI S N——
& / o ! L
= R o ! o
e e e LN
B N — N
+] 1 1 1)] 1 1 1}
woooN to : b
e S e — N

Undefined

Figure 7-44. Initial Power-On Reset Timing

Once RSTI negates, the processor is internally held in reset for another 128 clock cycles.
During the reset period, all signals that can be, are three-stated, and the rest are driven to
their inactive state. Once the internal reset signal negates, all bus signals continue to
remain in a high-impedance state until the processor is granted the bus. Afterwards, the
first bus cycle for reset exception processing begins. In Figure 7-44 the processor
assumes implicit bus ownership before the first bus cycle begins. The levels on CDIS,

MDIS, and IPL2-IPLO are used to selectively enable the special modes of operation when
RSTI is negated. These signals should be driven to their normal levels before the end of
the 128-clock internal reset period. ‘

7-66 M68040 USER'S MANUAL MOTOROLA

For processor resets after the initial power-on reset, RSTI should be asserted for at least
10 clock periods. Figure 7-45 illustrates timings associated with a reset when the
processor is executing bus cycles. Note that BB and TIP (and TA if driven during a
snooped access) are negated before transitioning to a three-state level.

T e T e
N 0 L N 1 B A B B B
D e e O o Mt e G
e
e N
I L e e e S B S
5 /A A A A A AR AR A W
o —A——— A
nininintiEE R
R N e N
AN O N S OO S

Figure 7-45. Normal Reset Timing

Resetting the processor causes any bus cycle in progress to terminate as if TA or TEA
had been asserted. In addition, the processor initializes registers appropriately for a reset
exception. Section 8 Exception Processing describes exception processing. When a
RESET instruction is executed, the processor drives the reset out (RSTO) signal for 512
BCLK cycles. In this case, the processor resets the external devices of the system, and
the internal registers of the processor are unaffected. The external devices connected to
the RSTO signal are reset at the completion of the RESET instruction. An RSTI signal that
is asserted to the processor during execution of a RESET instruction immediately resets
the processor and causes the RSTO signal to negate. RSTO can be logically ANDed with
the external signal driving RSTI to derive a system reset signal that is asserted for both an
external processor reset and execution of a RESET instruction.

MOTOROLA M68040 USER’S MANUAL 7-67

7.11 SPECIAL MODES OF OPERATION

The MC68LC040 and MC68EC040 do not support the following three modes of operation,
‘which for the M68040 are selectively enabled during processor reset and remain in effect
until the next processor reset. Refer to Appendix A MC68LC040 and Appendix B
MC68EC040 for differences in the special modes of operation for the MC68LC040 and
MC68EC040.

7.11.1 Output Buffer Impedance Selection

All output drivers in the M68040 can be configured to operate in either a large buffer mode
(low-impedance driver) or small buffer mode (high-impedance driver). Large buffers have
a nominal output impedance of 6 Q for both high and low drive, resulting in minimum
output delays. Signal traces driven by large buffers usually require transmission line
effects to be considered in their design, including the use of signal termination. Small
buffers have a nominal impedance of 25 Q for high and low drive, resulting in longer
. output delays and less critical board-design requirements. Refer to Section 11 MC68040
Electrical and Thermal Characteristics for further information on electrical
specifications, buffer characteristics, and transmission line design examples. The output
drivers are configured in three groups. Each group of signals is configured depending on
the corresponding TPLx signal level during processor reset (see Table 5-5).

7.11.2 Multiplexed Bus Mode

The multiplexed bus mode changes the timing of the three-state control logic for the
address and data buses to support generation of a multiplexed address/data bus. When
the M68040 is operating in this mode, the address and data bus signals can be hardwired
together to form a single 32-bit bus, with address and data information time-multiplexed on
the bus. This configuration minimizes the number of pins required to interface to
peripheral devices without requiring additional discrete multiplexing logic. This mode is
enabled during a processor reset by a logic zero on the CDIS signal.

Figure 7-46 illustrates a line write with multiplexed bus mode enabled. The address bus
drivers are enabled during C1 and disabled during C2. Later in C2, the data bus drivers
are enabled to drive the data bus with the data to be written. The address bus is only
driven for the BCLK rising edge at the start of each bus cycle..

7-68 M68040 USER’S MANUAL MOTOROLA

UPA1, UPAD

&

S121,S120

M1, 770

als

TM2-TMO

TLN1, TLNO

P LI LILIL L

3 @
£

i

I inlalginta

NP IR DRPEPED AUPRDRDR S N

A31-A0 ‘\ ,‘ {
oo (X XX —

Af,A0= 01 ‘ 10 | 1 ‘ 00 }

NOTE: The selected device increments the value of A3 and A2.

Figure 7-46. Multiplexed Address and Data Bus (Line Write)

7.11.3 Data Latch Enable Mode

The data latch enable (DLE) mode allows read data to be latched by the assertion of the
DLE signal instead of by the BCLK rising edge at the end of each transfer. In some
applications, this mode can reduce the number of clocks required to perform line burst
reads. A logic zero on the MDIS enables this mode during a processor reset.

Figure 7-47 illustrates a conceptual block diagram of the logic used to latch the read data
bus in DLE mode. The DLE signal controls transparent latch A, which allows data to be
latched before the rising edge of BCLK. Latch A operates transparently when DLE is
negated and latches the level on the data bus when DLE is asserted. Note that the DLE
signal only controls latching of the read data and does not affect termination of the bus

MOTOROLA M68040 USER'S MANUAL 7-69

transfer. Edge-triggered latch B is clocked by the nsung edge of BCLK and latches the
data from latch A for use by internal logic.

WRITE DATA

EXTERNAL TRANSPARENT ~ EDGE-TRIGGERED

DATABUS LATCH- A LATCH-B
LATCHED

D Q D Q> READDATA
G
DLE BCLK
S . TERMINATION
A TEA,TBI v ' > CONTROL

Figure 7-47. DLE Mode Block Diagram

Figure 7-48 illustrates the data read timing for both normal operation and DLE mode.
During normal operation (i.e., DLE mode disabled), latch A is always transparent, and by
the rising edge of BCLK, read data is latched. Data must meet setup and hold time
specifications #15 and #16 in this case. When the DLE mode is enabled, the data can be
latched by the rising edge of BCLK or the falling edge of DLE, depending on the timing for
DLE.

7-70 M68040 USER'S MANUAL MOTOROLA

DLE MODE DATA BUS TIMING

CASE 1 CASE2
BCLK \ ¥ . N\ / \ F \
<@ ~—>1@) @
e 7 ¥ '
@G> |- 5 L‘f @
DO-D31 IN 4 r
{READ)
— @) - -

LI /S

NORMAL DATA BUS TIMING
BCLK \ # \
@ <—
D0-DA1 IN r
(READ) 3
—
T __/

Figure 7-48. DLE versus Normal Data Read Timing

Case 1

If DLE is negated and meets setup time specification #35 to the rising edge of BCLK
when the bus read is terminated, latch A is transparent, and the read data must meet
setup and hold time specifications #36 and #37 to the rising edge of BCLK. Read timing
is similar to normal timing for this case.

Case 2

If DLE is asserted, the data bus levels are latched and held internally. D31-D0 must
meet setup and hold time specifications #32 and #33 to the falling edge of DLE, and can
transition to a new level once DLE is asserted. D31-D0 must still meet setup time
specification #36 to BCLK, but not hold time specification #37, since the data is
internally held valid as long as DLE remains asserted low.

MOTOROLA M68040 USER'S MANUAL 7-M

7-72 Mé68040 USER'S MANUAL MOTOROLA

SECTION 8
EXCEPTION PROCESSING

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. In particular, exception
processing does not include execution of the routine itself. This section describes the
processing for each type of integer unit exception, exception priorities, the return from an
exception, and bus fault recovery. This section also describes the formats of the exception
stack frames. For details on floating-point exceptions refer to Section 9 Floating-Point
Unit (MC68040 Only). '
NOTE
For the MC68040V, MC68LC040, MC68EC040, and
MCB68EC040V ignore all references to floating-point, including
any instructions that begin with an “F". Also, for the
MC68EC040 and MC6E8ECO040V ignore all references to the
memory management unit (MMU) and the instructions
PFLUSH and PTEST. The functionality of the MC68040
transparent translation register has been changed in the
MC68EC040 and MCE68EC040V to the access control registers

(ACR). Refer to Appendix A MC68LC040 and Appendix B
MC68EC040 for details.

8.1 EXCEPTION PROCESSING OVERVIEW

Exception processing is the transition from the normal processing of a program to the
processing required for any special internal or external condition that preempts normal
processing. External conditions that cause exceptions are interrupts from external
devices, bus errors, and resets. Internal conditions that cause exceptions are instructions,
address errors, and tracing. For example, the TRAP, TRAPcc, FTRAPce, CHK, RTE, DIV,
and FDIV instructions can generate exceptions as part of their normal execution. In
addition, illegal instructions, unimplemented floating-point instructions and data types, and
privilege violations cause exceptions. Exception processing uses an exception vector
table and an exception stack frame. The following paragraphs describe the vector table
and a generalized exception stack frame.

The M68040 uses a restart exception processing model to minimize interrupt and
instruction latency and to reduce the size of the stack frame (compared to the frame
required for a continuation model). Exceptions are recognized at each instruction
boundary in the execute stage of the integer pipeline and force later instructions that have
not yet reached the execute stage to be aborted. Instructions that cannot be interrupted,

MOTOROLA M68040 USER'S MANUAL 8-1

such as those that generate locked bus transfers or access serialized pages, are allowed
to complete before exception processing begins.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not
guaranteed to occur in the order in which they are described in this section. Figure 8-1
illustrates a general flowchart for the steps taken by the processor during exception
processing.

During the first step, the processor makes an internal copy of the status register (SR).
Then the processor changes to the supervisor mode by setting the S-bit and inhibits
tracing of the exception handler by clearing the trace enable (T1 and TO) bits in the SR.
For the reset and interrupt exceptions, the processor also updates the interrupt priority
mask in the SR.

During the second step, the processor determines the vector number for the exception.
For interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the
vector number. For all other exceptions, internal logic provides the vector number. This
vector number is used in the last step to calculate the address of the exception vector.
Throughout this section, vector numbers are given in decimal notation.

8-2 Me8040 USER’S MANUAL MOTOROLA

{

SAVE INTERNAL
COPY OF SR

S 1
T1,70 0
(SEE NOTE)

FETCH VECTOR
NUMBER

N

OTHERWISE
. BUS ERROR
SAVE CONTENTS (DOUBLE BUS FAULT)
TO STACK FRAME
(SEE NOTE)

OTHERWISE

A

BUS ERROR
EXECUTE EXCEPTION
LER
l - (DOUBLE BUS FAULT)
PREFETCH 4
LONG WORDS

,

BUS ERAOROR
ADDRESS ERROR
OTHERWISE
BEGIN INSTRUCTION
EXECUTION - © (DOUBLEBUSFAULT) |
HALTED STATE
(PST3-PSTO = $5)

DN o)

NOTE: These blocks vary for reset and interrupt exceptions.

@

Figure 8-1. General Exception Processing Flowchart

MOTOROLA ME8040 USER'S MANUAL 8-3

The third step is to save the current processor contents for all exceptions other than reset.
The processor creates one of five exception stack frame formats on the active supervisor
stack and fills it with information appropriate for the type of exception. Other information
can also be stacked, depending on which exception is being processed and the state of
the processor prior to the exception. If the exception is an interrupt and the M-bit of the
SR is set, the processor clears the M-bit and builds a second stack frame on the interrupt
stack. Figure 8-2 illustrates the general form of the exception stack frame.

15 12 0
SP —>1 STATUS REGISTER

PROGRAM COUNTER——

FORMAT VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2OR 26 WORDS, IF NEEDED)

Figure 8-2. General Form of Exception Stack Frame

The last step initiates execution of the exception handler. The processor multiplies the
vector number by four to determine the exception vector offset. It adds the offset to the
value stored in the vector base register (VBR) to obtain the memory address of the
exception vector. Next, the processor loads the program counter (PC) (and the interrupt
stack pointer (ISP) for the reset exception) from the exception vector table entry. After
prefetching the first four long words to fill the instruction pipe, the processor resumes
normal processing at the address in the PC. When the processor executes an RTE
instruction, it examines the stack frame on top of the active supervisor stack to determine
if it is a valid frame and what type of context restoration it requires.

All exception vectors are located in the supervisor address space and are accessed using
data references. Only the initial reset vector is fixed in the processor's memory map; once
initialization is complete, there are no fixed assignments. Since the VBR provides the base
address of the exception vector table, the exception vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that an operating system
executes. '

The M68040 supports a 1024-byte vector table containing 256 exception vectors (see
Table 8-1). Motorola defines the first 64 vectors and reserves the other 192 vectors for
user-defined interrupt vectors. External devices can use vectors reserved for internal
purposes at the discretion of the system designer. External devices can also supply vector
numbers for some exceptions. External devices that cannot supply vactor numbers use
the autovector capability, which allows the M68040 to automatically generate a vector
number. ‘ '

8-4 M68040 USER'S MANUAL MOTOROLA

Table 8-1. Exception Vector Assignments

Vector Vector Offset
Number(s) (Hex) Assignment
0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault
3 ooC Address Error
4 010 Ilegal Instruction
5 014 Integer Divide by Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPce, TRAPV Instructions
8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
1 02C Line 1111 Emulator (Ummplemented F-Line Opcode)
12 030 (Unassigned, Reserved)
13 034 Defined for MC68020 and MC68030, not used by M68040
14 038 Format Error
15 03C Uninitialized Interrupt
16-23 040-05C (Unassigned, Reserved)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector
28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector
32-47 080-0BC TRAP #0-15 Instruction Vectors
48-55 0C0-0DC Floating-Point Exception Vectors (see Note)
56 OEO0 Defined for MC68030 and MC68851, not used by M68040
57 OE4 Defined for MC68851, not used by M68040
58 OE8 Defined for MC68851, not used by M68040
59-63 OEC-OFC | (Unassigned, Reserved)
64-255 100-3FC User Defined Vectors (192)

NOTE: Refer to Section 9 Floating-Point Unit (MC68040 Only).

8.2 INTEGER UNIT EXCEPTIONS

The followihg 'paragraphs describe the external interrupt exceptions and the different tybes
of exceptions generated internally by the M68040 integer unit. The following except:ons
are discussed:

* Access Fault

* Address Error

e Instruction Trap

* lllegal and Unimplemented Instructions
* Privilege Violation

MOTOROLA M68040 USER’S MANUAL 8-5

* Trace

Format Error
Breakpoint Instruction
¢ Interrupt

* Reset

8.2.1 Access Fault Exception

An access fault exception occurs when a data or instruction prefetch access faults due to
either an external bus error or an internal access fault. Both types of access faults are
treated identically and the access fault exception handler or a status bit in the access fault
stack frame distinguishes them. An access fault exception may or may not be taken
immediately, depending on whether the faulted access specifically references data
required by the execution unit or whether there are any other exceptions that can occur,
allowing the execution pipeline to idle.

An external access fault (bus error) occurs when external logic aborts a bus cycle and
asserts the TEA input signal. A bus error on a data write access always results in an
access fault exception, causing the processor to begin exception processing immediately.
A bus error on a data read also causes exception processing to begin immediately if the
access is a byte, word, or long-word access or if the bus error occurs on the first transfer
of a line read. Bus errors on the second, third, or fourth transfers for a data line read
cause the transfer to be aborted, but result in a bus error only if the execution unit is
specifically requesting the long word being transferred. For example, if a misaligned
operand spans the first two long words in the line being read, a bus error on the second
transfer causes an exception, but a bus error on the third or last transfer does not, unless
the execution unit has generated another operand access that references data in these
transfers

Bus errors that occur during instruction prefetches are deferred until the processor
attempts to use the information. For instance, if a bus error occurs while prefetching other
instructions after a change-of-flow instruction (BRA, JMP, JSR, TRAP#n, etc.), BRA, JMP,
JSR, TRAP#n execution of the new instruction flow clears the exception condition. This
also applies to the not-taken branch for a conditional branch instruction, even though both
sides of the branch are decoded.

Processor accesses for either data or instructions can result in internal access faults.
Internal access faults must be corrected to complete execution of the current context Four
types of internal access faults can occur:

1. Push transfer faults occur when the execution unit is idle, the integer unit pipeline is
frozen, the instruction and data cache requests are cancelled (however writes are
not Iost) and pending writes are stacked.

2. Data access faults occur when the bus controller and the execution unit are idle. A
data access fault freezes the pipeline and cancels any pending instruction cache
accesses. Pending writes are stacked because the data cache is deadlocked until
stacking transfers are initiated.

8-6 M68040 USER'S MANUAL MOTOROLA

3. Instruction access faults occur when the PC section is deadlocked because of the
faulted data or another prefetch is required, the copyback stage is empty, and the
data cache and bus controller are idle. Since instruction access faults are reset, they
can be ignored.

4. An internal access fault also occurs when the data or instruction MMU detects that a
successful address translation is not possible because the page is write protected,

" supervisor only, or nonresident. Furthermore, when an address translation cache
(ATC) miss occurs, the processor searches the translation tables in memory for the
mapping, and then retries the access. If a valid translation for the logical address is
not available due to a problem encountered during the table search, an internal
access fault occurs when the aborted access is retried. The problem encountered
could be either an invalid descriptor or the assertion of the TEA signal during a bus
cycle used to access the translation tables. A miss in the ATC causes the processor
to automatically initiate a table search but does not cause an internal access fault
unless one of the three previous conditions is encountered. However, this is not true
if the memory management unit (MMU) is disabled.

When an exception is detected, all parts of the execution unit either remain or are forced
to idle, at which time the highest priority exception is taken. Restarting the instruction or a
user-defined supervisor cleanup exception handler routine regenerates lower priority
exceptions on the return from exception handling. Internal access faults and bus errors
are reported after all other pending integer instructions complete execution. If an
exception is generated during completion of the earlier instructions, the pending
instruction fault is cleared, and the new exception is serviced first. The processor restarts
the pending prefetch after completing exception handling for the earlier instructions and
takes a bus error exception if the access faults again. For data access faults, the
processor aborts current instruction execution. If a data access fault is detected, the
processor waits for the current instruction prefetch bus cycle to complete, then begms
exception processing immediately.

As illustrated in Figure 8-1, the processor begins exception processing for an access fault
by making an internal copy of the current SR. The processor then enters the supervisor
mode and clears T1 and T0. The processor generates exception vector number-2 for the
access fault vector. It saves the vector offset, PC, and internal copy of the SR on the
stack. The saved PC value is the logical address of the instruction executing at the time
the fault was detected. This instruction is not necessarily the one that initiated the bus
cycle since the processor overlaps execution of instructions. It also saves information to
allow continuation after a fault during a MOVEM instruction and to support other pending
exceptions. The faulted address and pending write-back information is saved. The
information saved on the stack is sufficient to identify the cause of the bus error, complete
pending write-backs, and recover from the error. The exception handler must complete the
pending write-backs. Up to three write-backs can be pending for push errors and data
access errors.

If a bus error occurs dunng the exception processing for an access fault, address error, or
reset or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs, and the processor enters the
halted state as indicated by the PST3-PSTO encoding $5. In this case, the processor

MOTOROLA M68040 USER'S MANUAL 8-7

does not attempt to alter the current state of memory. Only an external reset can restart a
processor halted by a double bus fault.

The supervisor stack has special requirements to ensure that exceptions can be stacked.
The stack must be resident with correct protection in the direction of growth to ensure that
exception stacking never has a bus error or internal access fault. Memory pages allocated
to the stack that are higher in memory than the current stack pointer can be nonresident
since an RTE or FRESTORE instruction can check for residency and trap before restoring
the state.

A special case exists for systems that allow arbitration of the processor bus during locked
transfer sequences. If the arbiter can signal a bus error of a locked translation table
update due to an improperly broken lock, any pages touched by exception stack
operations must have the U-bit set in the corresponding page descriptor to prevent the
occurrence of the locked access during translation table searches.

8.2.2 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This includes the case of a conditional branch instruction with an
odd branch oftset that is not taken. ‘A prefetch bus cycle is not executed, and the
processor begins exception processing after the currently executing instructions have
completed. If the completion of these instructions generates another exception, the
address error exception is deferred, and the new exception is serviced. After exception
processing for the address error exception commences, the sequence is the same as an
access fault exception, except that the vector number is 3 and the vector offset in the
stack frame refers to the address error vector. The stack frame is generated containing
the address of the instruction that caused the address error and the address itself (AOis
cleared). If an address error occurs during the exception processing for a bus error,
address error, or reset, a double bus fault occurs.

8.2.3 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP#n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPce, FTRAPcc, TRAPV, CHK, and CHK2 instructions force exceptions if the user
program detects an error, which can be an arithmetic overflow or a subscript value that is
out of bounds. The DIVS and DIVU instructions force exceptions if a division operation is
attempted with a divisor of zero.

As illustrated in Figure 8-1, when a trap exception occurs, the processor internally copies
the SR, enters the supervisor mode, and clears T1 and TO. The processor generates a
vector number according to the instruction being executed. Vector 5 is for DIVx, vector 6 is
for CHK and CHK2, and vector 7 is for FTRAPcc, TRAPcc, and TRAPV instructions. For
the TRAP##n instruction, the vector number is 32 plus n. The stack frame saves the trap
vector offset, the PC, and the internal copy of the SR on the supervisor stack. The saved
value of the PC is the logical address of the instruction following the instruction that
caused the trap. For all instruction traps other than TRAP#n, a pointer to the instruction

8-8 M68040 USER’'S MANUAL MOTOROLA

that caused the trap is also saved. Instruction execution resumes at the address in the
exception vector after the required instruction is prefetched.

8.2.4 lllegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction exception corresponds to vector number 4, and occurs when the
processor attempts to execute an illegal instruction. An illegal instruction is an instruction
that contains any bit pattern that does not correspond to the bit pattern of a valid M68040
instruction. An illegal instruction exception is also taken after a breakpoint acknowledge
bus cycle is terminated, either by the assertion of the transfer acknowledge (TA) or the
transfer error acknowledge (TEA) signal. An illegal instruction exception can also be a
MOVEC instruction with an undefined register specification field in the first extension
word.

Instruction word patterns with bits 15-12 equal to $A do not correspond to legal
instructions for the M68040 and are treated as unimplemented instructions. $A word
patterns are referred to as an unimplemented instruction with A-line opcodes. When the
processor attempts to execute an unimplemented instruction with an A-line opcode, an
exception is generated with vector number 10, permitting efficient emulation of
unimplemented instructions. For instruction word patterns with bits 15-12 equal to $F refer
to Section 9 Floating-Point Unit (MC68040 Only).

Exception processing for illegal and unimplemented instructions is similar to that for
instruction traps. When the processor has identified an illegal or unimplemented
instruction, it initiates exception processing instead of attempting to execute the
instruction. The processor copies the SR, enters the supervisor mode, and clears T1 and
TO, disabling further tracing. The processor generates the vector number, either 4 or 10,
according to the exception type. The illegal or unimplemented instruction vector offset,
current PC, and copy of the SR are saved on the supervisor stack, with the saved value of
the PC being the address of the illegal or unimplemented instruction. Instruction execution
resumes at the address contained in the exception vector. It is the responsibility of the
exception handling routine to adjust the stacked PC if the instruction is emulated in
software or is to be skipped on return from the exception handler.

8.2.5 Privilege Violation Exception

To provide system security, some instructions are privileged. An attempt to execute one of
the following privileged instructions while in the user mode causes a privilege violation
exception:

ANDI to SR " FSAVE MOVEC PTEST

CINV MOVE from SR MOVES RESET
CPUSH MOVE to SR ORIl to SR RTE
EORI to SR MOVE USP PFLUSH STOP
FRESTORE

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before

MOTOROLA M68040 USER’S MANUAL 8-9

executing the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters
the supervisor mode, and clears the trace bits. The processor generates vector number 8,
saves the privilege violation vector offset, the current PC value, and the internal copy of
the SR on the supervisor stack. The saved value of the PC is the logical address of the
first word of the instruction that caused the privilege violation. Instruction execution
resumes after the required prefetches from the address in the prrvrlege violation exception
vector.

8.2.6 Trace Exception

To aid in program development, the M68000 family includes an mstructron-by-rnstructron
tracing capability. The M68040 can be programmed to trace all instructions or only
instructions that change program flow. In the trace mode, an instruction generates a trace
‘exception after the instruction completes execution, allowrng a debuggrng program to
monitor executlon ofa program

In general terms, a trace exception is an extension to the function of any traced
instruction. The execution of a traced instruction is not complete until trace exception
processing is complete. If an instruction does not complete due to an access fault or
address error exception, trace exception processing is deferred until after execution of the
suspended instruction is resumed. If an interrupt is pending at the completion of an
instruction, trace exception processing occurs before interrupt exception processing starts.
If an instruction forces an exception as part of its normal execution, the forced exception
processing occurs before the trace exception is processed.

The T1 and TO bits in the supervisor portion of the SR control tracing. The state of these
bits when an instruction begins execution determines whether the instruction generates a
trace exception after the instruction completes. T1 and TO bit = $1 causes an instruction
that forces a change of flow to take a trace exception. The following instructions cause a
trace exception to be taken when trace on change of flow is enabled.

~ ANDI to SR CAS2 FBcc (Taken) JMP - MOVES RTD
Bcc (Taken) CINV FDBcc (Always) JSR ~ NOP RTE
BRA CPUSH FMOVEM MOVEto SR ORIto SR RTR
BSR DBcc (Taken) FRESTORE MOVE USP PFLUSH RTS

CAS - . 'EORIto SR FSAVE MOVEC PTEST STOP

Instructions that increment the PC normally do not take the trace exception. This mode
also includes SR manipulations because the processor must prefetch instruction words
again to fill the pipeline any time an instruction that modifies the SR is executed. Table 8-2
lists the different trace modes.

8-10 M68040 USER’S MANUAL MOTOROLA

Table 8-2. Tracing Control

.M T0 Tracing Function
0 0 No Tracing
0 1 Trace on Change of Flow
1 0 Trace on Instruction Execution (Any Instruction)
1 1 Undefined, Reserved

When the processor is in the trace mode and attempts to execute an illegal or
unimplemented instruction, that instruction does not cause a trace exception since the
instruction is not executed. This is of particular importance to an instruction emulation
routine that performs the instruction function, adjusts the stacked PC to skip the
unimplemented instruction, and returns. Before returning, the trace bits of the SR on the
stack should be checked. If tracing is enabled, the trace exception processing should also
be emulated for the trace exception handler to account for the emulated instruction.

Trace exception processing starts at the end of normal processing for the traced
instruction and before the start of the next instruction. As illustrated in Figure 8-1, the
processor makes an internal copy of the SR, and enters the supervisor mode. It also
clears the T1 and TO bits of the SR, disabling further tracing. The processor supplies
vector number 9 for the trace exception and saves the trace exception vector offset, PC
value, and the internal copy of the SR on the supervisor stack. The saved value of the PC
is the logical address of the next instruction to be executed. Instruction execution resumes
after the required prefetches from the address in the trace exception vector.

When the STOP instruction is traced, the processor never enters the stopped condition. A
STOP instruction that begins execution with the trace bits equal to $3 forces a trace
exception after it loads the SR. Upon return from the trace exception handler, execution
continues with the instruction following the STOP instruction, and the processor never
enters the stopped condition.

8.2.7 Format Error Exception

Just as the processor checks for valid prefetched instructions, it also performs some
checks of data values for control operations. The RTE instruction checks the validity of the
stack format code. For floating-point unit (FPU) state frames, the FRESTORE instruction
compares the internal version number of the processor to that contained in the state frame
(refer to Section 9 Floating-Point Unit (MC68040 Only)). This check ensures that the
processor can correctly interpret internal FPU state information from the state frame. If
any of these checks determine that the format of the data is improper, the instruction
generates a format error exception. This exception saves a stack frame, generates
exception vector number 14, and continues execution at the address in the format
exception vector. The stacked PC value is the logical address of the instruction that
detected the format error.

MOTOROLA M68040 USER'S MANUAL 8-11

8.2.8 Breakpoint Instruction Exception

To use the M68040 in a hardware emulator, the processor must provide a means of
inserting breakpoints in the emulator code and performing appropriate operations at each
breakpoint. Inserting an illegal instruction at the breakpoint and detecting the illegal
instruction exception from its vector location can achieve this. However, since the VBR
allows arbitrary relocation of exception vectors, the exception address cannot reliably
identify a breakpoint. Consequently, the processor provides a breakpoint capability with a
set of breakpoint exceptions, $4848-$484F.

When the M68040 executes a breakpoint instruction, it performs a breakpoint
acknowledge cycle (read cycle) with an acknowledge transfer type and transfer modifier
value of $0. Refer to Section 7 Bus Operation for a description of the breakpoint
acknowledge cycle. After external hardware terminates the bus cycle with either TA or
TEA, the processor performs illegal instruction exception processing.

8.2.9 Interrupt Exception

When a peripheral device requires the services of the M68040 or is ready to send
information that the processor requires, it can signal the processor to take an interrupt
exception using the active-low TPL2-IPLO signals. The three signals encode a value of 07
(IPLO is the least significant bit). High levels on all three signals correspond to no interrupt
requested (level 0). Values 1-7 specify one of seven levels of interrupts, with level 7
having the highest priority. Table 8-3 lists the interrupt levels, the states of IPL2-PLO that
define each level, and the SR interrupt mask value that allows an interrupt at each level.

Table 8-3. Interrupt Levels and Mask Values

Requested Control Line Status Interrupt Mask Level
Interrupt Level :w) PL3 PO Required for Recognition
0 High High High No Interrupt Requested
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3-
5 Low High Low 04
6 Low Low High 0-5
7 Low Low Low 0-7

When an interrupt request has a priority higher than the value in the interrupt priority mask
of the SR (bits 10-8), the processor makes the request a pending interrupt. Priority. level
7, the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be masked by
the interrupt priority mask, and they are transition sensitive. The processor recognizes an
interrupt request each time the external interrupt request level changes from some lower
level to level 7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the M68040 processes a

8-12 M68040 USER’S MANUAL MOTOROLA

level 6 interrupt, the SR mask is automatically updated with a value of 6 before entering
the handler routine so that subsequent level 6 interrupts and lower level interrupts are
masked. Provided no instruction that lowers the mask value is executed, the external
request can be lowered to level 3 and then raised back to level 6 and a second level 6
interrupt is not processed. However, if the M68040 is handling a level 7 interrupt (SR
mask set to level 7) and the external request is lowered to level 3 and than raised back to
level 7, a second level 7 interrupt is processed. The second level 7 interrupt is processed
because the level 7 interrupt is transition sensitive. A level comparison also generates a
level 7 interrupt if the request level and mask level are at 7 and the priority mask is then
set to a lower level (with the MOVE to SR or RTE instruction, for example). The level 6
interrupt request and mask level example in Figure 8-3 is the same as for all interrupt
levels except 7.

MOTOROLA M68040 USER'S MANUAL 8-13

EXTERNAL INTERRUPT PRIORITY

IPL2-PLO MASK (12-10) ACTION
| 1o 101 ($5) | ovmaL conomions)
Wl LF o THEN 110 56) AND LEVELGINTERRUPT | (LEVEL COMPARISON)
pe)
g Y
§ G 100 (83) ANDSTILL' 110(s5) THEN NOACTON |
g Y -
G 001 (86) ANDSTILL 110 (85) THEN NOACTION |
L [IFSTILL 001 (86) AND RTE SO THAT 101 ($5) THEN LEVELS lNTERRUPTJ (LEVEL COMPARISON)
| 100 ($3) 101 ($5) J (INITIAL CONDITIONS)
Wl L 000 (§7) THEN 111(87) AND LEVEL7 NTERRUPT | (TRANSITION)
2 Y
§ [100 (3) AND STILL 141(87) THEN NO ACTION |
g Y
G 000 (87) AND STILL 111 (87) THEN NOACTION | (TRaNSTION)
| IFSTLL ow0(7) ANDRTESOTHAT 101(85) THEN LEVEL7INTERRUPT | (LEVEL COMPARISON)

Figure 8-3. Interrupt Recognition Examples

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1-6 from
being recognized. In addition, neither masks a transition to an interrupt request level of 7.
The only difference between mask values of 6 and 7 occurs when the interrupt request
level is 7 and the mask value is 7. If the mask value is lowered to 6, a second level 7
interrupt is recognized.

External circuitry can chain or otherwise merge signals from devices at each level,
allowing an unlimited number of devices to interrupt the processor. When several devices
are connected to the same interrupt level, each device should hold its interrupt priority
level constant until its corresponding interrupt acknowledge bus cycle ensures that all
requests are processed. Refer to Section 7 Bus Operation for details on the interrupt
acknowledge cycle.

8-14 M68040 USER’S MANUAL MOTOROLA

Figure 8-4 illustrates a flowchart for interrupt exception processing. When processing an
interrupt exception, the processor first makes an internal copy of the SR, sets the mode to
supervisor, suppresses tracing, and sets the processor interrupt mask level to the level of
the interrupt being serviced. The processor attempts to obtain a vector number from the
interrupting device using an interrupt acknowledge bus cycle with the interrupt level
number output on the transfer modifier signals. For a device that cannot supply an
interrupt vector, the autovector signal (AVEC) must be asserted. In this case, the M68040
uses an internally generated autovector, which is one of vector numbers 25-31, that
corresponds to the interrupt level number (see Table 8-1). If external logic indicates a bus
error during the interrupt acknowledge cycle, the interrupt is considered spurious, and the
processor generates the spurious interrupt vector number, 24.

Once the vector number is obtained, the processor saves the exception vector offset, PC
value, and the internal copy of the SR on the active supervisor stack. The saved value of
the PC is the logical address of the instruction that would have been executed had the
interrupt not occurred.

If the M-bit of the SR is set, the processor clears the M-bit and creates a throwaway
exception stack frame on top of the interrupt stack as part of interrupt exception
processing. This second frame contains the same PC value and vector offset as the frame
created on top of the master stack, but has a format number of $1. The copy of the SR
saved on the throwaway frame has the S-bit set, the M-bit clear, and the interrupt mask
level set to the new interrupt level. it may or may not be set in the copy saved on the
master stack. The resulting SR (after exception processing) has the S-bit set and the M-bit
cleared. The processor loads the address in the exception vector into the PC, and normal
instruction execution resumes after the required prefetches for the interrupt handler
routine. :

Most ME8000 family peripherals use programmable interrupt vector numbers as part of
the interrupt acknowledge operation for the system. If this vector number is not initialized
after reset and the peripheral must acknowledge an interrupt request, the peripheral
usually returns the vector number for the uninitialized interrupt vector, 15.

MOTOROLA M68040 USER'S MANUAL 8-15

8-16

ENTRY

SAVE INTERNAL
COPY OF SR

I

Ss 1

T1,70 = 00
12-10 » LEVELOF
INTERUPT

FETCH VECTOR
FROM INTERRUPTING
DEVICE

i\BUS ERROR

IFNO VECTOR #

AUTOVECTOR 25-31

SPURIOUS INTERRUPT
VECTOR #24

N

-

IFM=0

THEN VECTOR QFFSET,
PC,ANDSR ACTIVE
STACK FRAME -

VECTOR - PC

— OTHERWISE —’
M 0; VECTOR
[¢]
THROWAWAY

PREFETCH FOUR
LONG WORDS

OTHERWISE
BEGIN INSTRUCTION
EXECUTION

FFSET, PC, AND SR

STACK FRAME ON ISP

BUS ERROR

[—

BUS ERROR OR
ADDRESS ERRCR

(DOUBLE BUS FAULT)

HALTED STATE
{PST3-PSTO = $5)

M68040 USER’S MANUAL

Figure 8-4. Interrupt Exception Processing Flowchart

MOTOROCLA

8.2.10 Reset Exception

Asserting the reset in (RSTI) input signal causes a reset exception. The reset exception
has the highest priority of any exception; it provides for system initialization and recovery
from catastrophic failure. Reset also aborts any processing in progress when RSTI is
recognized; processing cannot be recovered. Figure 8-5 is a flowchart of the reset
exception processing.

The reset exception places the processor in the interrupt mode of the supervisor privilege
mode by setting the S-bit and clearing the M-bit and disables tracing by clearing the T1
and TO bits in the SR. This exception also sets the processor's interrupt priority mask in
the SR to the highest level, level 7. Next the VBR is initialized to zero ($00000000), and
the enable bits in the cache control register (CACR) for the on-chip caches are cleared.
The reset exception also clears the enable bit but does not affect page size in the
translation control registers. It clears the enable bit in each of the four transparent
translation registers. An interrupt acknowledge bus cycle is begun to generate a vector
number. This vector number references the reset exception vector (two long words, vector
numbers 0 and 1) at offset zero in the supervisor address space. The first long word is
loaded into the interrupt stack pointer, and the second long word is loaded into the PC.
Reset exception processing concludes with the prefetch of the first four long words
beginning at the memory location pointed to by the PC.

MOTOROLA M68040 USER'S MANUAL 8-17

S =1

M =0

T1,70 = 0
20 = §7

VBR = $0
CACR = %0
DTTAES] = O
=0

TTn[E-bi]
I
FETCH VECTOR #0

s

OTHERWISE ‘
: BUS ERROR L '
VECTOR#0 P \
| ' (DOUBLEBUS FAULT)]
FETCH VECTOR #1

v

OTHERWISE 8US ERFOR
VECTOR#1 PC \
| (DOUBLE BUS FAULT)
PREFETCH 4
LONG WORDS
BUS ERROR OR
ADDRESS ERROR
OTHERWISE \
BEGIN INSTRUCTION
EXECUTION (DOUBLE BUS FAULT)
HALTED STATE
(PST3-PST0 = $5)
g EXIT

i

Figure 8-5. Reset Exception Processing Flowchart

After the initial instruction is prefetched, program execution begins at the address in the
PC. The reset exception does not flush the ATCs or invalidate entries in the instruction or
data caches; it does not save the value of either the PC or the SR. If an access fault or
address error occurs during the exception processing sequence for a reset, a double bus
fault is generated. The processor halts, and the processor status (PST3-PSTO) signals
indicate $5. Execution of the reset instruction does not cause a reset exception, or affect

8-18 M68040 USER’S MANUAL MOTOROLA

any internal registers, but it does cause the M68040 to assert the reset out (RSTO) signal,
resetting all external devices.

8.3 EXCEPTION PRIORITIES

When several exceptions occur simultaneously, they are processed according to a fixed
priority. Table 8-4 lists the exceptions, grouped by characteristics. Each group has a
priority, from 0-7, with 0 as the highest priority.

Table 8-4. Exception Priquty Groups

Group/ | Exception and Relative Priority Characteristics
Priority
0 Reset Aborts all processing (instruction or excaptlon) and does not
: " | save old context.
1 Data Access Error Aborts current instructions; can have pending trace, floating-
(ATC Fault or Bus Error) point post-instruction, or unimplemented floating-point
instruction exceptions.
2 Floating-Point Pre-Instruction* Exception processing begins before current floating-point
instruction is executed. Instruction is restarted on retur