MC68040UM/AD

32-BIT
MICROPROCESSOR
USER'S MANUAL

@ MOTOROLA

Introduction

Programming Model

Data Organization and Addressing Capabilities
Instruction Set Summary

Signal Description

Memory Management Unit

Instruction and Data Caches

Bus Operation

Exception Processing

Instruction Execution Timing

Electrical Characteristics

Ordering Information and Mechanical Data
| Appendix A

Appendix B

Glossary

Index

-
N

Introduction

Programming Model

Data Organization and Addressing Capabilities
Instruction Set Summary

Signal Description

Memory Management Unit

Instruction and Data Caches

Bus Operation

Exception Processing

Instruction Execution Timing

Electrical Characteristics

Ordering Information and Mechanical Data
Appendix A

Appendix B

Glossary

Index

MC68040

32-BIT THIRD-GENERATON
MICROPROCESSOR

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author- -

ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of

Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

©MOTOROLA INC., 1989

PREFACE

The complete documentation package for the MC68040 consists of the
MC68040UM/AD, MC68040 User’s Manaul, the MC68000PM/AD, M68000 Pro-
grammer’s Reference Manual, and the MC68040DH/AD, MC68040 Designer’s
Handbook.

The MC68040 User’ Manual describes the capabilities, operation, and pro-
gramming of the MC68040 32-bit third-generation microprocessor. The
M68000 Programmer’s Reference Manaul contains the complete instruction
set of all the M68000 Family. The MC68040 Designer’s Handbook contains
detailed timing and electrical specifications and system design guidelines
and information.

This user’s manual is organized as follows:

Section 1 Introduction

Section 2 Programming Model

Section 3 Data Organization and Addressing Capabilities
Section 4 Instruction Set

Section 5 Signal Desciption

Section 6 Memory Management

Section 7 Instruction and Data Caches

Section 8 Bus Operation

Section 9 Exception Processing

Section 10 Instruction Execution Timing

Section 11 Electrical Characteristics

Section 12 Ordering Information and Mechanical Data
Appendix A M68000 Family Summary

Appendix B MC68040 Floating-Point Emulation
Glossary

Index

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction
1.1 FEATUIES. .. ce i e 1-2
1.2 MC68040 Extensions to the M68000 Familyccoevvvnvinniinnannn. 1-3
1.3 Programming Model.......ccoooiiiiii e 1-4
1.4 Data Types and Addressing Modes............ccooviieiiiiiiiiiiiiiniieenns 1-7
1.5 INStruction Set OVEIVIEWccuiiviiiiiiiiii e 1-10
1.6 Memory Management Unitscooeviiiiiiiniinecee e 1-10
1.7 Instruction and Data Caches........ccocoviiiiiiiiiiiiiiiiecce e 1-12
Section 2
Programming Model

2.1 Processing STatesuivuiieiiiiii e 2-1
2.1.1 Privilege LeVelSouuiiiiiiii e 2-2
2.1.1.1 SUPErVISOr MOEoviiiiieeceee e 2-2
2.1.1.2 USEr MOE ... v e 2-3
2.1.1.3 Changing Privilege Levelc.cooiiiiiiiiiiiiiie, 2-4
2.1.2 Exception Processingcccoouveiiiiiiiiiiiiii e 24
2.1.21 Exception VECtOrsovvveneeiiiiiiiiccie e 2-5
2.1.2.2 Exception Stack Framecccoveviiiiiiiiiieiccee 2-5
2.2 Register DeSCriptioniuu i e 2-6
2.2.1 User Programming Modelcccooiiiiiiiiiiiie, 2-6
2.2.1.1 Data Registers (D7-D0)......cc.oooiriiiiniiiiiiiiiiieeieees 2-7
2.21.2 Address Registers (A7—A0)coiuviiieiiieiiiiiineieeeeeen. 2-7
2.2.1.3 Program Counter (PC)oeeuiiiiiiiiiiiiniececies 2-7
2214 Condition Code Register (CCR)......ccovviiiiiiiiiiiiiiiiinennen, 2-7
2215 Floating-Point Data Registers (FP7-FPO)c..cc..ccce.. 2-7
2.2.1.6 Floating-Point Control Register (FPCR)cc.iveennenn. 2-9
2.2.1.6.1 Exception Enable Byte........c.coovviiiiiiiiiiiin, 2-9
2.2.1.6.2 Mode Control Byte......ocuvvuiiiiiiiiiiieiceieeeeeeeeeeeas 2-10

MOTOROLA MC68040 USER’S MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2217 Floating-Point Status Register (FPSR).............cccceivnnnen. 2-11
22.1.71 Floating-Point Condition Code Bytec....en... 2-11
22.1.7.2 Quotient Byteoouviviiiiiiii 2-13
22.1.7.3 Exception Status Byteccoeveviiiiiiiiiiiiine, 2-13
22174 Accured Exception Byte..........cooviviiiiiiiiin 2-14
2.2.1.8 Floating-Point Instruction Address Register (FPIAR)........ 2-15
22.2 Supervisor Programming Model..........c..ccooviiiiiiiiiiiiiiiins 2-16
2.2.2.1 Interrupt and Master Stack Pointers (A7 and A7") 2-17
2222 Status Register (SR).......cvvviiiiiiiii 2-17
2223 Vector Base Register (VBR)......ccouiieiiiiiiiiiieieeeen, 2-18
2224 Alternate Function Code Registers (SFC and DFC).......... 2-18
Section 3
Data Organization and Addressing Capabilities

3.1 Integer Unit Operand Data Formatsccoovviiviiiiniiiiiiicennennn. 3-1
3.2 Floating-Point Unit Operand Data Formatscoeevvennennnn. 3-2
3.2.1 Integer Data FOrmats..........cooviiiiiiiiiiii 3-3
3.2.2 Binary Real-Data FOrmatsccocovviiiiiiiiinincce e 3-3
3.2.2.1 Normalized Numbers ..o 3-6
3.2.2.2 Denormalized Numbers........cc.cooviiiiiiiiin, 3-6
3.2.2.3 P4 o1 T PP PRUPTN 3-7
3.2.24 INF NS, et 3-8
3.2.25 NOt-a-NUMDEIS....coeiiiiii e 3-8
3.2.3 Floating-Point Data Format Details.................coooiviini 3-9
3.3 Organization of Data in Registersccoveeiviiiiiiiniiincinceenn, 3-9
3.3.1 Integer Data Registers.......c..covvviiiiiiiiiiii e, 3-9
3.3.2 Floating-Point Data Registerscoovveiiiiiiiiiiiiiinnn, 3-14
3.3.2.1 Internal Data Formatcoocoiiiiiiiiiiie e 3-14
3.3.2.2 Format CONVErSioNS.......cvuuiuiiieiiniiiiie e 3-15
3.3.3 Address Registers.......c.ovvvviiiiiiiiii 3-16
3.3.4 Control RegiSters .. .uiviiii i 3-17
34 Organization of Data in Memory.........ccoooviiiiiiniie e 3-18
3.4.1 Integer Data FOrmats........cooeiiiiiiiiiii e 3-18
34.2 Floating-Point Data Formats...........cocoveviiiiiiiiiiiiceeenes 3-21

iv MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.5 Addressing MOdES..........ovuiiiiiiiiiiie e 3-21
3.5.1 Data Register Direct Mode.........ccoviiiiiiiiiiiiiiiecceia . 3-23
3.5.2 Address Register Direct Mode...........ccovvvivviiiiiiiniiiniiianen, 3-23
3.5.3 Address Register Indirect Mode............ccoeveviiiieniiiiiniiinennn, 3-23
3.54 Address Register Indirect with Postincrement Mode............. 3-24
3.5.5 Address Register Indirect with Predecrement Mode.............. 3-24
3.5.6 Address Register Indirect with Displacement Mode.............. 3-25
3.5.7 Address Register Indirect with Index (8-Bit Displacement)

MO ... i 3-25
3.5.8 Address Register Indirect with Index (Base Displacement)

MOAE. ...t 3-26
3.5.9 Memory Indirect Postindexed Modecccivieiiniiennen. 3-26
3.5.10 Memory Indirect Preindexed Mode...........ccocevviiiniiinienn.n. 3-27
3.5.11 Program Counter Indirect with Displacement Mode.............. 3-28
3.5.12 Program Counter Indirect with Index (8-Bit Displacement) 3-29

MO, .. e e
3.5.13 Program Counter Indirect with Index (Base Displacement) 3-29

MOAE. .. e e
3.5.14 Program Counter Memory Indirect Postindexed Mode.......... 3-30
3.5.15 Program Counter Memory Indirect Preindexed Mode............ 3-31
3.5.16 Absolute Short Address Modec.ooeivieniiiiiiiiiineieeee, 3-32
3.5.17 Absolute Long Address Modeccccvvuviiiiiniineiieiniiiiinenn, 3-32
3.5.18 IMmmediate Data.........covvuviiiiiiiiiiiie i 3-33
3.6 Effective Address Encoding Summary.........ccccoeviiiiiiiieiiieiennn, 3-34
3.7 Programmer’s Viewpoint of Addressing Modes 3-36
3.7.1 Addressing Capabilities...........ccoviuieiiiiiiiin 3-37
3.7.2 General Addressing Mode Summarycccoceeveviviineinneennns 3-43
3.8 M68000 Family Addressing Compatibility.........ccccoeeviiiiiinninn.. 3-46
3.9 Other Data StrUCTUIES.......uiivneiiieit e e eeee e aeae e 3-47
3.9.1 SYStem Stackc.oovviiiiii 3-47
3.9.2 User Program Stacks.........cccoveuviiiiiiiiiiiiiiii e 3-48
3.9.3 QUEBUEBS ...t e 3-49

MOTOROLA MC68040 USER’'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 4
Instruction Set

4.1 INStruction FOrmMatc.couuiiiiiii e 4-1
4.2 INSTrUCLION SUMMIAIY....iiiieiii e 4-2
4.2.1 Data Movement InStructionsccoeviiiiiiiiiiiineeeiee e, 4-4
4.2.2 Integer Arithmetic Instructionsccocviiviiiiiniinii i, 4-6
4.2.3 Floating-Point Arithmetic Instructionsc.ccooeviiiininnee. 4-8
4.2.4 Logical INStruCtioNS........ceviuiiiiiiiiie e 4-10
4.2.5 Shift and Rotate INStructions..........ccocovvvviiiiiiiieiiiii e 4-10
4.2.6 Bit Manipulation InStructionsccooveieiviiiiniiiiieeeene, 4-12
4.2.7 Bit Field INStructionsccocoviieiiiiiiiinicc e 4-12
4.2.8 Binary Coded Decimal Instructionsccooevvevienvineinnenn.n. 4-13
4.2.9 Program Control InStructionsccocveviiiiiiiinininnnnnn. 4-14
4.2.10 System Control Instructions...........cccoveviiiiiiiiiiiiniiieceeeans 4-16
4.2.11 Memory Management Unit Instructionsccoceeinennn.. 4-18
4212 Cache INStrUCLIONSvvieiiiiieiee e 4-18
4.2.13 Multiprocessor Instructions 4-18
4.3 Integer Condition COAESccviviiiieiiiniiei e 4-19
4.3.1 Condition Code Computation..........ccvevveviniiiiiiiniiienenneanns 4-20
4.3.2 Conditional TestS...cuviiiiiiiieiei e 4-22
4.4 Floating-Point Detailsccovvviiiiiniii e, 4-23
4.4.1 Computational ACCUTaCY........cuiviriiiiiiiie e e 4-23
44.2 Conditional Test Definitionsc.coeeeviiiiiiiinnceeen 4-25
4.4.3 Operation Tablescccovviiiiii s 4-28
4.4.4 NANs ' 4-29
445 Operation Post Processing........coocueveuiiiiiieiiniineiieecinenineinnes 4-29
4.45.1 Setting Floating-Point Condition Codes........c..ccceuvvuninnns 4-29
4.45.2 Underflow, Round, Overflow.........cccooiviviiiiiiniiiiininnn, 4-30
45 Instruction Set SUMMAryoviiiviiiii e 4-31
4.6 Instruction EXamples........oouvviiiiiiniii 4-39
4.6.1 Using the CAS and CAS2 InStructions.........cccccuvvvveeunienneennes 4-39
4.6.2 Nested Subroutine Calls..........ccoeevviniiiiiiiiie e 4-44
4.6.3 Bit Field INStructionscovvuviiiiiiiii e 4-44
4.6.4 Pipeline Synchronization with the NOP Instruction............... 4-46

vi MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title _ Number
Section 5
Signal Description

5.1 Address Bus (A3T1=A0).......ccooiiiii i 5-4
5.2 Data Bus (D31-D0).......ccuuiiniiiiiieir e 5-4
5.3 Transfer Attribute Signals........ccocviiiiiiiiiiii 5-4
5.3.1 Transfer Type (TT1,TTO) coonivniiiiii e e 5-5
5.3.2 Transfer Modifier (TM2-TMO)ccooiiiiiiiiiiiiceee e, 5-5
5.3.3 Transfer Line Number (TLNT,TLNO)coviiiviiiiiieeee, 5-6
5.34 User Programmable Attributes (UPAT,UPAQ)........c..ceeeneeeee. 5-6
5.3.5 REAd/WIite (R/W) ...ocvieeiiiieiiiie e 5-7
5.3.6 Transfer Size (SIZ1,S1Z0).....c..coviirii 5-7
5.3.7 Bus Lock Status (LOCK).......ccovviiiniiiii e 5-7
5.3.8 Bus Lock End Status (LOCKE).........ccovviiviiiiiiiiiiii e, 5-7
5.3.9 Cache Inhibit Out (CIOUT)..ccuiiiiiie e 5-8
5.4 Bus Transfer Control Signals..........ccoooiviiiiiiiiiiiiic e 5-8
5.4.1 Transfer Start (TS)covvvveiieeie e 5-8
5.4.2 Transfer in Progress (TIP)u.ieieiiiiiiiiiieiiii e 5-8
5.4.3 Transfer Acknowledge (TA)......cooeeviiiiiiiiiiiiceee e 5-8
5.4.4 Transfer Error Acknowledge (TEA).............cooeeiiiviivieeeeneennn. 5-9
5.4.5 Transfer Cache Inhibit (TCl).......ooovvieiiiiiiiiiiiiciiieeeee e 5-9
5.4.6 Transfer Burst INhibit (TBI)......cviieeieiiiiieeeie e 5-9
5.4.7 Data Latch Enable (DLE)cccoviiiniiiniiiii e 5-9
5.5 SNoop Control SigNalsceuiveuiiii e 5-10
5.5.1 Snoop Control (SCT,SC0)....cenieiiiiiiii e 5-10
5.5.2 Memory Inhibit (MI)coooiiiiiieiiiiee e 5-10
5.6 Arbitration Signals........cooeiiiiiiiii 5-11
5.6.1 Bus ReqUESt (BR).......coeiiiiiiiieeieie ittt 5-11
5.6.2 T T L (=1C) S 5-11
5.6.3 BUS BUSY (BB) .vvvvviiiiiieieiiieeeeee ettt e e e e e e e e eiaeanaaes 5-11
5.7 Processor Control Signals.........ccoouvveiiiiiiiiii e, 5-11
5.7.1 Cache Disable (CDIS)......cviiiiniiiiiini e 5-12
5.7.2 MMU Disable (MDIS)couiiiiiiec e 5-12
5.7.3 RESEt IN (RSTI)..uuieieieieieee et 5-12
5.7.4 Reset Out (RSTO).. . iiuniiiiieiiiei e e ee e 5-12
5.8 Interrupt Control Signalsccoviiiiiiiie 5-13
5.8.1 Interrupt Priority Level (IPL2=IPLO)...........vvvvvvvreeeeeeeeeeiiinnnns 5-13
5.8.2 Interrupt Pending Status (IPEND)...........cccoovvieiiiiiiniiienn, 5-13
5.8.3 AUtoVECtOr (AVEC) .. ccviiiiiiiie e e 5-13

MOTOROLA MC68040 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
5.9 Status and Clock Signalscc.oviiiiiiiiiiiinii e 5-14
5.9.1 Processor Status (PST3-PSTO)cccovviiiiiiiiiiiiiiieeen 5-14
5.9.2 Bus Clock (BCLK) ..iviviiiiit i e 5-14
5.9.3 Processor Clock (PCLK)......oviriiiiiiiii e 5-15
5.10 TSt SIgNAIS coueiii e 5-15
5.10.1 Test CloCk (TCK) voviviriiiii e, 5-15
5.10.2 Test Mode Select (TMS) ..o, 5-15
5.10.3 Test Data In (TDI) ..o, 5-15
5.10.4 Test Data Out (TDO)...iniiriii e 5-15
5.10.5 Test Reset (TRST) e, 5-15
5.11 Power Supply ConnNeCtioNScuivviiiiiiiii e, 5-16
5.12 SigNal SUMMAIY ... 5-16
Section 6
Memory Management

6.1 Translation Table Structure........cccooiiiiiiiie e, 6-4
6.2 Address Translationo..iviviiiii 6-9
6.2.1 General Flow for Address Translation...........cccevvviiiinnnnnn.. 6-9
6.2.2 Affect of RESETI on MMU.......cooiiiiiiiii e, 6-11
6.2.3 Affect of MDIS on Address Translationcccoovivvviieninnnons 6-11
6.3 Transparent Translation........coovuviiiiiiii e 6-11
6.4 Address Translation Caches (ATCS)ovveriiiiiiiiiiiiiieieeeea 6-13
6.5 Translation Table Detailscoovviiiii s 6-17
6.5.1 Descriptors Details........ovuviuviriiiiiicc e 6-17
6.5.1.1 Table DesCriptorovvveii i 6-18
6.5.1.2 Page DeSCriPOr ...vuu it 6-18
6.5.1.3 Descriptor Field Definitions........c.cooviiiiiiiiiiini, 6-19
6.5.2 General Table Search.........ccoooviiiiiiiii 6-22
6.5.3 Variations in Translation Table Structure...................ccoun.e. 6-26
6.5.3.1 INAIrECHION. . .e i 6-26
6.5.3.2 Table Sharing Between Tasksccooviviiiiniiiiininnnee, 6-28
6.5.3.3 Paging of Tables.......ovvuiiiiiiiin e 6-28
6.5.3.4 Dynamic Allocation of Tables..........cccooiviiiiiiiinininnnns 6-29
6.5.4 Table Search Operation Detailscocveveviiiiininiiees 6-30
6.5.5 POt O ION Lot 6-33
6.5.5.1 User and Supervisor Translation Tree........cc.covvevivvenennes 6-34
6.5.5.2 SUPErVISOr ONlY...ciiii i 6-35
6.5.5.3 Write Protect ... 6-35

viii MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.6 REGISTOIS. .ttt it 6-36
6.6.1 Root Pointer Registers........couvvuiviiiiiiiiiiiiii e 6-37
6.6.2 Translation Control Register....... PPN 6-37
6.6.3 Transparent Translation Registersc.ccoeviieiiiiiiiininnne. 6-38
6.6.4 MMU Status Register......c.coiuviiiiiiiiiiiiieiieecee e 6-40
6.6.5 Register Programming Considerations...........c.cocceveevvvinnnnnns 6-41
6.7 MMU INSTIUCTIONS ...iviiiiicii e 6-41
Section 7
Instruction and Data Caches
7.1 Cache Organization...........coeuueiiiiiiieiiii e 7-2
7.2 Caching MOAES.vuuiiiiiiei e 7-4
7.21 Cachable, Writethrough Mode..........ccocoviiiiiiiiiniienn, 7-4
7.2.2 Cachable,Copyback Mode..........cccovviiiiiiiiiiieee e 7-5
7.2.3 Noncachable Modecccuviiiiiiiiiiii e 7-5
7.2.4 SPECIAl ACCESSES ..vvniiiiiiiii et 7-5
7.3 Cache CONBIENCY ...vuiiiiiii e e 7-6
7.4 Cache OpPeration.......cc.iiuiiiii e 7-8
7.4.1 INStruction Cache.......ooeuiiiiiiiiii e 7-8
7.4.2 Data Cache......oiuiiiiii i 7-10
7.4.2.1 Read MIiSS .. .uieiiiii e 7-11
7.4.2.2 WIItE IMISS o 7-11
7.4.2.3 Read Hite.oouiiniiiec e 7-11
7.4.2.4 WIte Hit ..o e 7-12
7.4.2.5 Protocol State Diagramcccceeviiiiiiiiiiieiiecie e 7-13
7.4.3 Line Replacement Algorithm.........cocoiiiiiiiiiiiiiinienne 7-15
7.4.4 Memory Accesses for Cache Maintenace.................cccc.eunee. 7-15
7.4.4.1 Cache FilliNg c.ueuniiie e 7-15
7.4.4.2 Cache PUShES.....cc.iviiiii e 7-17
7.5 Cache Control and Maintenance..........o.oeeueeiniiiiiiniiiniieeiienenen, 7-18
Section 8
Bus Operation

8.1 Bus CharacteristiCs.ouuiiuiiiiiiiiie e 8-2
8.2 Data Transfer Mechanism...........ccocoviiiiiiiiii e 8-4
8.2.1 Misaligned Operandscc.vvveieeniiiineiiece e 8-7
8.2.2 Address, Size, and Data Bus Relationships.......................l. 8-11

MOTOROLA MC68040 USER'S MANUAL ix

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.3 Processor Data Transfer Cyclescooovviviiiiiiiiiiiiieeen 8-13
8.3.1 Byte, Word, and Long-Word Read Transfers...............ccocuene. 8-13
8.3.2 Line Read Transfer......coovviiiiiii e 8-16
8.3.3 Byte, Word, and Long-Word Write Cycles..........cccovveeinninnnn. 8-23
8.3.4 Line Write Transfer ..o v 8-25
835 Read-Modify-Write Transfer........c.coocoviiiiiiiiiiiniiinees 8-29
84 Acknowledge CYCIescouiiiiiiiiiiiii e 8-32
8.4.1 Interrupt Acknowledge Bus Cycles.........ccovvviiviiniiiiiinninninnes 8-32
8.4.1.1 Interrupt Acknowledge Cycle - Terminated Normally 8-33
8.4.1.2 Autovector Interrupt Acknowledge Cycle............ccocevvnis 8-34
8.4.1.3 Spurious Interrupt Cycle.......coooviiiiiiiiiiiei e 8-37
84.2 Breakpoint Acknowledge Cycle.......c.coveviiiiiiiiniiiiiinieen, 8-37
85 Bus Exception Control Cycles........veuiuiiiiiiiiiiiiiiieiieeeeeee, 8-39
8.5.1 BUS ErrOrs. .. 8-39
8.5.2 Retry Operationoo.viiiiii e 8-43
8.5.3 Double Bus Fault.......cviiiiii e 8-45
8.6 Bus Synchronization and Access Serialization..............cccecevuinne. 8-45
8.7 BUs Arbitrationcoeviniii i 8-47
8.8 Bus SNooping Operationc.evuneeeiiineeiiiieiiniee e 8-50
8.8.1 Snoop Inhibited Cyclecouviiiiii 8-53
8.8.2 SNOOP MiISS CYCIE cuuvniniiiiiii e 8-563
8.8.3 Snoop Hit — Read Cycle....ccooviiiiiiiiiiiii e 8-55
8.8.4 Snoop Hit — Write Cycle......coooviviiiii e, 8-57
8.9 Special Modes of Operation..........c..cocviiiiiiiiiiini, 8-58
8.9.1 Output Buffer Impedance Selectioncccoceviiviiiiiniinnn, 8-58
8.9.2 Multiplexed Bus Modeocovvviiiiiiiiiii 8-58
8.9.3 Data Latch Enable Mode..................cccovenn. e 8-59
8.10 Reset Operation........ccuviiiiiiiiie e 8-62
Section 9
Exception Processing

9.1 Exception Processing SEqUENCEc.vvvnviniiiieiiiiiieieeeeeeeen 9-1
9.2 StaCK Frames......oouiiiii i e 9-2
9.3 Integer Unit EXCEPLIONSccuviniiiiiiiiiiiiiii e, 9-5
9.3.1 Reset EXCEPtioN......covviiiiiiiiiiiee 9-6
9.3.2 Bus Error EXCEPiONuvviiiiieiiii e 9-8
9.3.3 Address Error EXCeption.......cooviiiiiiiiiiii e 9-10
X MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
9.34 Instruction Trap EXCeptionc..coouvveiiiiiiiiiiiiinncenn,
9.35 lllegal Instruction and Unimplemented Instruction
EXCEPLIONS couiniiiiiii
9.3.6 Unimplemented Floating-Point Instruction Exception......
9.3.7 Privilege Violation Exception.........ccoccveviniciiniiiinninnnn,
9.3.8 Trace EXCePtioN......couiiiiiiiiiiir e
9.3.9 Format Error EXCeptioncocooviiviiiiiiiiiiiiineieeeeeens
9.3.10 Interrupt EXCeptions.......cooevviviiiiniiiiinini
9.3.11 Breakpoint Instruction Exceptioncccceviviinniininns
9.4 Exception Prioritiescovviiveiiiiiieei e
9.5 Return From EXCeptionsc.cccvvuviiiiiiiiiiniiiece e,
9.6 Access Fault RECOVEIY.......oiviiiiiiiiii e
9.6.1 Access Error Stack Frameccoovviveiiiiiniiiiciieee,
9.6.1.1 Effective Address......coovuvviviiiiiiiiiineea,
9.6.1.2 Special Status Word..........ccoeeiiiiiiiiiiiiniininn,
9.6.1.3 Writeback Status........ccovvviviiiiiiiiiiniiee e
9.6.1.4 Fault Addressccouveeiiiiiiiiiiiiieei e, e
9.6.1.5 Writeback Data.......cocovveveiviniiiiiiiiie
9.6.2 Instruction ATC Faults and Bus Errors...........cccceeuvennennn.
9.6.3 Address Errors ..o,
9.6.4 Data ATC Faults and Bus Errorsccoeoveeveiiinieiinnnnnn. :
9.6.5 Returning From Access Errors.........ccooviienviniiininneennen,
9.7 Floating-Point State Frames.........cc.covvveieineiiiiiiiieieenene,
9.8 Floating-Point EXCeptionsccceeiviiiiiniiiiiiie,
9.8.1 Unimplemented Floating-Point Instructions
9.8.2 Unimplemented Floating-Point Data Types....................
9.8.3 Branch/Set on Unordered (BSUN)........cccovvniiniiiiiiinnnnnn.
9.8.4 Signaling Not-a-Number (SNAN).......ocoviiiiiiiiiieen,
9.8.5 Operand Error ..o
9.8.6 OVEIFIOW. . it
9.8.7 UNAerfloW. ... o
9.8.8 Divide by Zero....c.covuiiniiieieiiie e
9.8.9 Inexact RESUIt........coiiiiiiiri e
9.8.10 Inexact Result on Decimal Inputcccoeoiiiiiiiiiinninnen.

MOTOROLA MC68040 USER'S MANUAL

Xi

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number

Section 10
Instruction Execution Timing
10.1 INErOUCHION ..itiiiii e e 10-1

Section 11
Electrical Characteristic
1.1 Maximum RatingsS.......couiiiiiinieiiiiiiiiiriie e 11-1
11.2 Thermal Characteristics — PGA Package..........ccoccvviviiniininnnnnn. 11-1

Section 12
Mechancial Data and Ordering Information

12.1 Ordering INnformationccooviiiiiiiiiiie e 12-1

12.2 Pin ASSIgNMENTS...cuiviiiiiiiiii e 12-2

12.3 Mechanical Data.........coviiiiiiiii 12-3
Appendix A

MC68000 Family Summary

Appendix B
MC68040 Floating-Point Emulation

Glossary

Index

xii MC68040 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MC68040 Block Diagram........coceuviiuiinieiiiiiiiiieieceene e 1-2
1-2 Programming Modelcccoiiiiiiiiiiiiiiiiecin e 1-56
2-1 General Form of Exception Stack Frame...............ccccoevvineinns 2-6
2-2 User Programming Modelcccoiiiiiiiiiiiiiiiiieeeen 2-2
2-3 FPCR Exception Enable Bytecccovviuiiiniiiiiiiiiniieeeeeeean, 2-9
2-4 FPCR Mode Control Byteccuvvuiviiiiiiiiiici e 2-11
2-5 FPSR Condition Code Byte........ccocvviviiiiiiiiiiiiiicieeieec e 2-11
2-6 FPSR Quotient Byte.........covuiiiiiiiiiieiee e 2-13
2-6 FPSR Exception Status Byte........ccocovvviiviiiiiniiiiiiiiniincneeeann 2-14
2-7 FPSR Accured Exception Byteoevuuviiiiiiiiiiiineeiineeiineeeeen, 2-15
2-9 Supervisor Programming Model..........cccooeeviiiiiniiiniiiniinennns, 2-16
2-10 "Status REgIStercvuiiiiiiir e 2-18
3-1 Signed Integer Data FOrmats.........ccovuvveiieiiiiiiineineenereeeins 3-3
3-2 Binary Real-Data Formatsc.ccooiiiiiiiiiiiieecceeeee e, 3-4
3-3 Format of Normalized Numberscccoeeiviiiiiiiiiniiiniieenns 3-6
3-4 Format of Denormalized Numbers.........c..coovviiiiiiiniiiiiiiinnnns 3-7
3-5 FOrmat Of Zeroc.ovuveeiiiiiei 3-7
3-6 Format of Infinity....ccooiririii 3-8
3-7 Format Of NANS ..o 3-8
3-8 Data Organization in Integer Data Registers..........ccoccoveeneennnes 3-13
3-9 Intermediate-Result Format..........ccooeiiiiiiiiiniicei 3-15
3-10 Address Organization in Address Registerscc.ccovevueennnee. 3-16
3-11 Memory Operand AdAressingcoeeviveeineneeiiniiiiiineeeeeneenns 3-19
3-12 Memory Organization for Integer Operands.........cc.ccceeevennnnee. 3-20
3-13 Memory Organization for Floating-Point Operands.................. 3-21
3-14 Single-Effective Address-Instruction Operand Word................. 3-22
3-15 Using SIZE in the Index Selection..........ccooviviiiiiiiiiiiieineens 3-37
3-16 Using Absolute Address with Indexes..........ccccocvvviiiiiininnennnn. 3-38
3-17 Addressing Array temMS.......couiiiiiiiiiiiiiie e 3-39
3-18 Using Indirect Absolute Memory Addressing..........ccceeeuennnnee. 3-40
3-19 Accessing an ltem in a Structure Using Pointer....................... 3-40
3-20 Indirect Addressing Suppressed Index Register....................... 3-41

MOTOROLA MC68040 USER’S MANUAL xiii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
3-21 Preindexed Indirect Addressing..........cceuveeiiiiiiiniiiieeiiinen, 3-4
3-22 Postindexed Indirect Addressingcoevveviiiiiiiiiiiiiiiiie s 3-42
3-23 Postindexed Indirect with Outer Displacement..............c..c...... 3-42
3-24 Postindexed Indirect Addressing with Outer Displacement....... 3-42
3-25 M68000 Family Address Extension Wordscoocevevinnennnneen 3-47
4-1 Instruction Word General Formatccoooiiiiiiiiiiiienninniennne. 4-1
4-2 Operation Table Example (FADD Instruction)........c...cccuueeennene. 4-28
4-3 Linked List INSErtioN . .cccvviiiiiii e 4-41
4-4 Linked List Deletion..........ovviiiiiiiii e 4-42
4-5 Doubly-Linked List InSertion..........coccvviiiiiininiciiinenee, 4-43
4-6 Doubly-Linked List Deletionc..cooveviiiiiiiiiiie e 4-45
5-1 Functional Signal Groupsc.oveiieiiiiiiece e 5-3
6-1 Memory Management Unit.........cccovvviiiiiiiiiiiiien 6-3
6-2 MMU Programming Model........cc.ocieiiiiiiiiiii 6-4
6-3 Translation Table Structure........ccoovvieiieiiciiiiiii s 6-5
6-4 Table Index Fields...................... T PSPPI 6-6
6-5 Translation Table Tree Examplecc.cooviiiiiiiiiiiiiinn 6-7
6-6 Translation Tree Layout in Memory Example.............ccooivinents 6-8
6-7 Address Translation General Flowchart..............co.cooooiiinee. 6-10
6-8 ATC Organization...........coceeueirnciiniviniii i 6-13
6-9 ATC Tag and Data........cccoiiiniiiiiiiii e 6-14
6-10 Table DeSCriptors. ... ccuuiie i 6-18
6-11 Page DesCriptors...c..ouuciiiiiiiiei e 6-18
6-12 INAirect DESCIIPLON «vuvuitiiiieieiite et ees 6-19
6-13 Simplified Table Search Flowchart............cocooviiiiiniiinnnenn. 6-23
6-14 Physical Address Generation (8K Page Size)cccovvvnnnn, 6-25
'6-15 Translation Tree Using Indirect Descriptors Example............... 6-27
6-16 Translation Tree Using Shared Tables Example 6-28
6-17 Translation Tree with Non-Resident Tables Example 6-30
6-18 Detailed Flowchart of Table Search Operationccoceveeee. 6-31
6-19 Detailed Flowchart of Descriptor Fetch Operation.................... 6-32
6-20 Translation Tree Structure for Two Tasks Example.................. 6-34
6-21 Logical Address Map with Shared Supervisor and
User Address Spaces Example.......ccooceviiiiiiiiiiiiinenienne, 6-35

Xiv MC68040 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure
Number

Title

6-22 Translation Tree Using S and W Bits to Set Protection

Example

6-23 Root Pointer Register (URP, SRP) Formatcccceeevvuveeennn...
6-24 Translation Control Register........cocoiviiiiiiiiiiiiiic e,
6-25 Transparent Translation Register Format..............co.ccevveiiinnnes
6-26 MMU Status RegiSter.......ccuuiiuniiiiiiiiiiie e
6-27 MMU Status Interpretationoovevviiiiiiieinciienee e

7-1 Internal Caches OVEIrVIEWoovviiiiiiiiieiiieeeie e

7-2 Internal Caches....

7-3 Instruction Cache Line Organization...........ccccovveviiiiniiiiiininennes
7-5 Data Cache Line Organizationcccoveiviiiieiineiiinieiis
7-6 Data Cache Line State Diagramccoeevviniiiiineiinieeeiee,
7-7 Cache Control REgiSter.......c.viuiiiiiiii i

8-1 Signal Relationships t0 ClOCKS...........covuviiiiiiiiiii e
8-2 Internal Operand Representation...........cc.coeviiiiiiiniiniineeieennns

8-3 Data Multiplexing

8-4 Example of a Misaligned Long-Word Read Transfer................
8-5 Long-Word Operand Read Timingcocoviveiiniiiiiniiiiinennenns
8-6 Example of a Misaligned Word Write Transfer........................
8-7 Byte Data Select Generationccouviiiiniinciiiniiin e
8-8 Byte, Word, and Long-Word Read Cycle Flowchart..................
8-9 Non-Cachable Byte, Word, and Long-Word Read Transfer........
8-10 Line Read Cycle Flowchart......c..cooviiiiiiiiiiiiin e
8-11 Line Read for Operand Access to Address $07...........cccvvuennees
8-12 Burst-Inhibited Line Read Flowchart...........c.cooooviiiiiininiinnnnss
8-13 Burst-Inhibited Line Read.............icoiiiiiiiiiiii e
8-14 Byte, Word, and Long-Word Write Cycle Flowchart.................
8-15 Long-Word Write Transferc.cooiiiiiiiiiiiiiiiecceeaas
8-16 Line Write Cycle Flowchartcooviiiiiiiiiii e
8-17 Line Write for Operand Access to Address $07ccuuve...
8-18 Locked Transfer for TAS Instruction..........c.covvoviiiiiiiniinenininnns
8-19 Interrupt Acknowledge Cycle Flowchart...........c..ccoivoieiiiieninnen,
8-20 Interrupt Acknowledge Cycle Timing......ccoovevviiviiiniiininninnenns
8-21 Autovector Operation Timing.......ccoviivniiiiiiiiiee
8-22 Breakpoint Operation FIOWcociiiiiiiiii e

MOTOROLA

MC68040 USER'S MANUAL

Page
Number

6-36

6-37
6-37
6-38
6-40
6-42

7-1
7-2
7-9
7-10
7-13
7-19

8-4
8-4

8-8

8-9

8-10
8-12
8-14
8-15
8-18
8-19
8-21
8-22
8-24
8-26
8-26
8-27
8-30
8-34
8-35
8-36
8-37

XV

Figure

Number

XVi

8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9

9-10

9-1
9-12

LIST OF ILLUSTRATIONS (Continued)

Title

Breakpoint Acknowledge Cycle Timing.........cccovvviviiiineninnen.
Word Write Access Terminated with TEA...............ccoevvvinnns
Line Read Access Terminated with TEAc.ccccceevveeeeeeennnn.
Read Cycle Retry ...cc.ovuiviiiiiiie e e
Retry Operation on Line Write.........coivviiiiiiiiiiiiic e
Processor Bus Request Example........c....coocoviiiiiiiiiiiininnss
Arbitration During Relinquish and Retry...........cccocoeviinnnnnnn.
Implicit Bus OWNEershipccoeoviiiiiiiii s
Snoop Inhibited Bus Cycle.......ccccoviiiiiiiiiiiiicee
Snoop Access with Memory Response.........cccccvvvveiiniinennnnn.
Snooped Line Read, Memory Inhibitedc..ccceeeiinnntn,
Snooped Longword Write, Memory Inhibited
Multiplexed Address and Data Bus — Line Write
DLE Mode Block Diagram........... [T
DLE versus Normal Data Read Timingc.ocooveviviiniennenne.
Initial Power-On Reset Timing......cocvvuveiiiiineieiieieieeeeenns
Normal Reset Timing ...c.oovuieuiiiiiiieiici e

Reset Operation Flowchart..............oooiiiiiiiiiii e
Interrupt Pending Procedureccooveviiiiviiiiiiiiicneaan
Interrupt Recognition Examples.......c..ccovviiiiiiiiiininiien,
Assertion of IPENDcccooiiiiii e
RTE Instruction for Throwaway Four-Word Frame................
Access Error Stack Frame.........cccooviviiiiiii i,
Floating-Point State Frames............cocoiiviiiiiiiiiiiii s
Mapping of Command Bits for CMDREG3B Field

Format of Denormalized Single Precision Source

Operand in State Framecocoeviiiniiiiieeceeeeee

Format of Denormalized Double Precision Source

Operand in State Framecooovivieviiiininenieee e
Intermediate Results Format..........c..cociiiiiiiiiiien
Rounding Algorithm........o.iiiiiii e

Clock Input Timing Diagram........cccoveieiiiiiieiiini e,
Read/Write Timingveeuiieeeieiei e
Address and Data Bus Timing Multiplexed Bus Mode...........

MC68040 USER'S MANUAL

Page
Number

MOTOROLA

Figure
Number

11-4 DLE Timing Burst Access
11-56 Bus Arbitration Timing
11-6 Snoop Hit Timing
11-7 Snoop Miss Timing
11-8 Other Signal Timing

MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

MC68040 USER'S MANUAL

Page
Number

Xvii

xviii MC68040 USER'S MANUAL MOTOROLA

LIST OF TABLES

Table
Number Title
I D - - T Y/ o1 TP
1-2 Addressing MOdES........ccceeeeeeeeeeeiiiiiiiiiiee e
1-3 Instruction Set SUMMArY.......ccccieviiiiiiiiiiececee e,

2-1 Condition Code versus Results Data Typec.........

K I B T - T Y o1 P
3-2 Single-Precision Binary Real-Data Format.....................
3-3 Double-Precision Binary Real-Data Format....................
3-4 Extended-Precision Binary Real-Data Format
3-5 FPU Data Formats and Data Typesccoccevvviiivinniinnns
3-6 Effective Address Specification Formats.......................
3-7 IS-I/IS Memory Indirection Encoding...........ccoccvveennnnnn.
3-8 Effective Addressing Mode Categories...............ccoeunee.
4-1 Data Movement Operations.........cccoeevvirieienininnenennnnnn.
4-2 Integer Arithmetic Operationsc.ccceveerieeinienennnnn.
4-3 Dyadic Floating-Point Operation Format.......................
4-4 Dyadic Floating-Point Operations............ccoccevviviinninnnnn.
4-5 Monadic Floating-Point Operation Format....................
4-6 Monadic Floating-Point Operations.........c..cc.ccevvvieennenn.
4-7 Logical Operations........cocuuviiiiiieiiiiiiiiinineienne e
4-8 Shift and Rotate Operations.........c.ccocevviviiveiiineneennnnnnn.
4-9 Bit Manipulation Operationscccovvveneeiiiiniininnnnnn.
4-10 Bit Field Operationsccocoveiviiiiiiiiieiieee e,
4-11 Binary Coded Decimal Operations............cccvevvenvennnnnn.
4-12 Program Control Operationsccceuvvienieiiiniincnnnnnn.
4-13 FPU Conditional Test Mnemonics..........cccovvviviveeneennen,
4-14 System Control Operations.........ccoccevvveiiiiiiiieiniineann.
4-15 MMU INSTrUCLIONS ...vvuiniiiiiiiie i
4-16 Cache INStruCtioNSovvvvviiiiiiiiei e

4-17 Multiprocessor Operations (Read-Modify-Write)

4-18 Condition Code Computations..........cocoveevvenriineinnennnnn.

MOTOROLA MC68040 USER'S MANUAL

Page
Number

Xix

Table

Number

XX

4-19
4-20
4-21
4-22
4-23

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10

6-1
7-1

7-2
7-3

8-1

8-2
8-3
8-4
8-5

8-6
8-7
8-8
8-9
8-10

9-1

9-2

LIST OF TABLES (Continued)

SIgnal INAeX ..vuieiic e
Transfer-Type Encoding.......cc.oovvvviiiiiiiiiiiicine e
Normal and MOVE16 Access TM Encoding.........c..ccvvunneen.
Alternate Access TM Encoding......cccoevvvveiviiniiiniiineeinennnn,
TLN ENCOAING...uiuiiiiiiiiiiii e e ae e
Transfer Size ENcoding.......ccocvieiiiiiiiiiii e
Snoop Control ENcoding.......couvviviiiiniiiiiiiiiiiciceeeeeaee e,
Output Driver Control Groupsccveevvveiiiiieiiiiiecieeeiieennas
Processor Status Encodingccccoovviiiiiiiiiiiiniiinci s
Signal SuMMary.......cccooiiiii

Updating U and M Bits for Page Descriptors......................

Snoop Control Encoding...........cccovviiiiiiiiiiieeiin e,
Instruction Cache Line State TransitionS.......cocvcvvvevnininnnnn.
Data Cache Line State Transitionsccoeviieiiiiiininnn.s.

Size Signal Encoding..........coociviiiiiiiiiinii e,
Address Offset ENCOdingsS........ccovviiiiiiiiiiiiiiiiicineiieiniieens
Data Bus Requirements for Read and Write Cycles.............

Summary of Access Types versus Bus Signal Encodings
Memory Alignment Influence on Non-Cachable and

Writethrough Bus Cyclesocooeiiiiiiiiiiiiiiecee,
Data Bus Byte Enable Signalsccccceeviiiiiiiiniiiiiinineinns
Interrupt Acknowledge Termination Summary
TA and TEA Assertion Results...........ccccoecivvveeeiivveeninnnn.
Snoop Control ENcoding........coocuuiiiiiieiiiiiiiiieiei e
Output Buffer Impedance Control Groups.........cccccovevvneennns

Exception Vector Assignments........ccoeviiveiiiiiiiiineinieieennn.
Exception Stack Frames..........cocoiviiiiiiiiiiiicc e

MC68040 USER'S MANUAL

. MOTOROLA

LIST OF TABLES (Concluded)

Table Page
Number Title Number
9-3 Privileged INStructions.........cccuvviiiiiiiii i 9-13
9-4 Tracing CONTrOl....cu.ieeeiiiii e 9-13
9-5 Interrupt Levels and Mask Values............cccooeiiiiiiiiiiiiiiini i, 9-16
9-6 Exception Priority GroUpPS.......ocvviiriiiiiiiiiiiieiiie e 9-20
9-7 Writeback Data Alignmentoooviuiiiiiiiin e 9-28
9-8 Possible Operand Errors.......cccveevieiiniiiiieieinee e 9-44
10-1 M68040 Preliminary Floating-Point Unit
INSTruction TimMINGSoveiiieiiiiie e 10-1
B-1 Directly Supported Floating-Point Instructionsc..cccuee. B-2
B-2 Indirectly Supported Floating-Point Instructions......................... B-3

MOTOROLA . MC68040 USER'S MANUAL Xxi

Xxii MC68040 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The MC68040 is Motorola’s third generation of M68000-compatible, high-
performance, 32-bit microprocessors. The MC68040 is a virtual memory
microprocessor employing multiple, concurrent execution units and a highly
integrated architecture to provide very high performance in a monolithic
HCMOS device. The MC68040 integrates an MC68030-compatible integer unit
an MC68881/MC68882-compatible floating-point unit (FPU), dual independ-
ent demand-paged memory management units (MMUs) for instruction and
data stream accesses, and independent 4K-byte instruction and data caches.
A high degree of instruction execution parallelism is achieved through the
use of multiple independent execution pipelines, multiple internal buses, and
a full internal Harvard architecture, including the separate physical caches
for both instruction and data accesses. Cache functionality is enhanced by
the inclusion of on-chip bus snooping logic to directly support cache coh-
erency in multimaster applications.

The MC68040 is user object-code compatible with previous members of the
M68000 Family and is specifically optimized to reduce the execution time of
compiler-generated code. The MC68040 is implemented in Motorola’s latest
HCMOS technology, providing an ideal balance between speed, power, and
physical device size.

Figure 1-1 provides a simplified block diagram of the MC68040. Instruction
execution is pipelined in both the integer unit and FPU, which interface to
fully independent data and instruction memory units. Each memory unit
consists of an MMU, an address translation cache (ATC), a main cache, and
a snoop controller. The ATCs decrease logical-to-physical address translation
overhead by storing recently-used translations, while the bus snooper circuit
ensures cache coherency in multimaster applications. External memory re-
quests from each cache are prioritized by the bus controller, which executes
bus transfers on the external bus.

MOTOROLA MC68040 USER’S MANUAL 1-1

INSTRUCTION DATA BUS
\Z
INSTRUCTION INSTRUCTION
TN [y T
: i L e
INSTRUCTION INSTRUCTION
TRUeT > MMUICACHE/SNOOP
CONVERT CONTROLLER
- DECODE INSTRUCTION MEMORY UNIT
EA
CALCULATE
EXECUTE
EA
FETCH |
(| eecure ATA MEMORY UNIT
WRITE DATA MEMORY U DATA
BACK p— AT ADDRESS
T j MMUCACHESNOOP K~
CONTROLLER
Al INTEGER | U {;
UNIT UNIT DATA DATA
ATC CACHE
T =
OPERAND DATA BUS =

Figure 1-1. MC68040 Block Diagram

1.1 FEATURES

1-2

The main features of the MC68040 include:
MC68030-Compatible Integer Execution Unit

Accessible Simultaneously

imizes Throughput

MC68040 USER'S MANUAL

Multimaster/Multiprocessor Support via Bus Snooping

IMEFrOJ—HZ00 wCw

ADDRESS
BUS

DATA
BUS

BUS
CONTROL
SIGNALS

Low Latency Bus Accesses for Reduced Cache-Miss Penalty

MC68881/MC68882-Compatible Floating-Point Execution Unit
Independent Instruction and Data Memory Management Units (MMUs)

4K-Byte Physical Instruction Cache and 4K-Byte Physical Data Cache

Concurrent integer unit, FPU, MMU, and Bus Controller Operation Max-

MOTOROLA

® 32-Bit, Nonmultiplexed External Address and Data Buses with Synchron-
ous Interface

® User Object-Code Compatibility with All Earlier M68000 Microprocessors
® 4-Gigabyte Direct Addressing Range

® Software Support Including Optimizing C Compiler and UNIX® System
V Port

The on-chip FPU and large physical instruction and data caches result in
improved system performance and increased functionality. The independent
instruction and data MMUs and increased internal parallelism also improve
performance.

1.2 MC68040 EXTENSIONS TO THE M68000 FAMILY

The MC68040 contains an on-chip FPU which is user object-code compatible
with the MC68882 floating-point coprocessor and is compatible with the
ANSVIEEE Standard 754 for binary floating-point arithmetic. The FPU has
been optimized to execute the most commonly used subset of the MC68882
instruction set, and includes additional instruction formats for single- and
double-precision rounding of results. Any floating-point instructions not di-
rectly supported in hardware are emulated in software. Floating-point in-
structions in the FPU execute concurrently with integer instructions in the
integer unit.

The MC68040 integer unit pipeline has been expanded to include effective
address calculation and operand fetch, with commonly used effective ad-
dressing modes further optimized. Conditional branches are optimized for
the more common case of the branch taken, and both execution paths of the
branch are fetched and decoded to minimize refilling of the instruction pipe-
line. The user instruction MOVE16 has been added to the instruction set to
support efficient 16-byte memory-to-memory data transfers.

Memory management in the MC68040 has been improved by including sep-
arate, independent paged MMUs for instruction and data accesses. Each
MMU stores recently used address mappings in separate 64-entry ATCs.
Table searches are performed with hardwired logic instead of microcode in
order to minimize search time. Each MMU also has two transparent trans-
lation registers available that define a one-to-one mapping for address space
segments ranging in size from 16 Mbytes to 4 Gbytes each.

UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA MC68040 USER'S MANUAL 1-3

Separate 4K-byte on-chip instruction and data caches operate independently,
and are accessed in parallel with address translation. Each cache and cor-
responding MMU resides on a separate internal address bus and data bus,
allowing simultaneous access to both. The data cache provides writethrough
or copyback write modes that can be configured on a page-by-page basis.
The caches are physically mapped, reducing software support for multitask-
ing operating systems, and support external bus snooping to maintain cache
coherency in multimaster systems.

The MC68040 bus controller supports a high-speed, nonmultiplexed syn-
chronous external bus interface. Burst accesses are supported for both reads
and writes to provide high data transfer rates to and from the caches. Ad-
ditional bus signals support bus snooping and external cache tag mainte-
nance.

1.3 PROGRAMMING MODEL

1-4

The MC68040 integrates the functions of the integer unit, MMU, and FPU.:
The registers depicted in the programming model (see Figure 1-2) provide
operand storage and control for the three units. The registers are partitioned
into two levels of privilege: user and supervisor. User programs, executing
in the lower-privilege mode, can only use the resources of the user model.
System software executing in the supervisor mode has unrestricted access
to all processor resources.

The user programming model consists of 16 general-purpose, 32-bit registers
and two control registers, and is the same as the user programming model
of the MC68030. The MC68040 user programming model also incorporates
the MC68882 programming model consisting of eight, 80-bit floating-point
dataregisters, a floating-point control register, a floating-point status register,
and a floating-point instruction address register.

The supervisor programming model is used exclusively by MC68040 system
programmers to implement operating system functions, 1/0 control, and
memory management subsystems. This supervisor/user distinction in the
M68000 architecture allows all application software to be written to execute
in the nonprivileged user mode and migrate to the MC68040 from any M68000
platform without modification. Since system software is usually modified by
system designers when porting to a new design, the control features are
properly placed in the supervisor programming model. For example, the

MC68040 USER'S MANUAL MOTOROLA

31 0
DO
..... D1
D2 "
DATA D3 FLOATING-POINT
— — DATA
I REGISTERS ‘ D4 REGISTERS
s 31 0
ADDRESS 1 a3 FP CONTROL REGISTER FPCR
REGISTERS ——— s FP STATUS REGISTER FPSR
a5 FP INSTRUCTION ADDRESS REGISTER FPIAR
A6
Sommm] ATUSP USER STACK POINTER
PC PROGRAM COUNTER
. | CCR CONDITION CODE REGISTER
USER PROGRAMMING MODEL
31 0
[AT/ISP INTERRUPT STACK POINTER
[AT MSP MASTER STACK POINTER
1 : (CCR) |SR STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODEL)
VBR VECTOR BASE REGISTER
SFC SOURCE FUNCTION CODE
DFC DESTINATION FUNCTION CODE
CACR CACHE CONTROL REGISTER
URP USER ROOT POINTER REGISTER
SRP SUPERVISOR ROOT POINTER REGISTER
| TC TRANSLATION CONTROL REGISTER
DTTO DATA TRANSPARENT TRANSLATION REGISTER 0
DTT1 DATA TRANSPARENT TRANSLATION REGISTER 1
ITT0 INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
ITT1 INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
| MMUSR MMU STATUS REGISTER
SUPERVISOR PROGRAMMING MODEL

Figure 1-2. Programming Model

transparent translation registers of the MC68040 can only be read or written
by the supervisor software. Programming resources of user application pro-
grams are unaffected by the existence of the transparent translation registers.

Data registers (D7-D0) contain operands for bit and bit field, byte, word,
long-word, and quad-word operations. Address registers (A6—AQ) and the
stack pointer register (A7) are address registers may be used as software
stack pointers or base address registers. Register A7, is also used as an user
stack pointer in user mode, and is either the interrupt (A7’) or master stack
pointer (A7”) in supervisor mode. In supervisor mode, the active stack pointer
(interrupt or master) is selected based on the setting of the master (M) bit

MOTOROLA MC68040 USER'S MANUAL 1-5

1-6

in the status register (SR). In addition, A7-A0 may be used for word and
long-word operations. Registers D7-D0 and A7-A0 may be used as index
registers.

The eight, 80-bit, floating-point data registers (FP7—FPQ) are analogous to the
integer data registers of all M68000 Family processors. Floating-point data
registers always contain extended-precision numbers. All external operands,
regardless of the data format, are converted to extended-precision values
before being used in any floating-point calculation or stored in a floating-
point data register.

The program counter (PC) usually contains the address of the instruction
being executed by the MC68040. During instruction execution and exception
processing, the processor automatically increments the contents of the PC
or places a new value in the PC, as appropriate. The status register (SR)
contains the condition codes that reflect the results of a previous operation
and can be used for conditional instruction execution in a program. The lower
byte of the SR is accessible in user mode as the condition code register (CCR).
Access to the upper byte of the SR, which contains operation control infor-
mation, is restricted to the supervisor mode.

As part of exception processing, the vector number of the exception provides
an index into the exception vector table. The base address of the exception
vector table is stored in the vector base register (VBR).

Alternate source function code (SFC) and destination function code (DFC)
registers contain 3-bit function codes, which can be considered extensions
of the 32-bit logical address. Function codes are automatically generated by
the processor to select address spaces for data and program accesses in the
user and supervisor modes. The alternate function code registers are used
by certain instructions to explicitly specify the function codes for various
operations.

The cache control register (CACR) controls enabling of the on-chip instruction
and data caches of the MC68040.

The supervisor root pointer (SRP) and user root pointer (URP) registers point
to the root of the address translation table tree to be used for supervisor
mode and user mode accesses. The URP is used if function code bit 2 (FC2)
of the logical address is zero, and the SRP is used if FC2 is one.

MC68040 USER'S MANUAL MOTOROLA

The translation control register (TC) enables logical-to-physical address trans-
lation and selects either 4K or 8K page sizes. There are four transparent
translation registers: two for instruction accesses (ITT1-ITTO0), and two for
data accesses (DTT1-DT70). These registers allow portions of the logical
address space to be transparently mapped and accessed without the use of
resident descriptors in an ATC. The MMU status register (MMUSR) contains
status information derived from the execution of a PTEST instruction. The
PTEST instruction searches the translation tables for the logical address as
specified by this instruction’s effective address field and the DFC, and returns
status information corresponding to the translation.

The 32-bit floating-point control register (FPCR) contains an exception enable
byte that enables/disables traps for each class of floating-point exceptions
and a mode byte that sets the user-selectable modes. The FPCR can be read
or written to by the user and is cleared by a hardware reset or a restore
operation of the null state. When cleared, the FPCR provides the IEEE 754
standard defaults for floating-point exceptions. The floating-point status reg-
ister (FPSR) contains a condition code byte, quotient bits, an exception status
byte, and an accrued exception byte. All bits in the FPSR can be read or
written by the user. Execution of most floating-point instructions modifies
this register.

For the subset of the FPU instructions that generate exception traps, the 32-
bit floating-point instruction address register (FPIAR) is loaded with the log-
ical address of an instruction before the instruction is executed. This address
can then be used by a floating-point exception handler to locate a floating-
point instruction that has caused an exception. The floating-point instructions
FMOVE (to/from the FPCR, FPSR, or FPIAR) and FMOVEM cannot generate
floating-point exceptions; therefore, these instructions do not modify the
FPIAR. Thus, the FMOVE and FMOVEM instructions can be used to read the
FPIAR in the trap handler without changing the previous value.

1.4 DATA TYPES AND ADDRESSING MODES

The MC68040 supports the basic data types shown in Table 1-1. Some data
types apply only to the integer unit, some only to the FPU, and some to both.
In addition, the instruction set supports operations on other data types such
as memory addresses. '

MOTOROLA MC68040 USER'S MANUAL 1-7

Table 1-1. Data Types

Operand Data Type Size Shpported By: Notes
Bit 1 Bit U —
Bit Field 1-32 Bits U Field of Consecutive Bit
BCD » 8 Bits U Packed: 2 Digits/Byte

Unpacked: 1 Digit/Byte

Byte Integer 8 Bits U, FPU —
Word Integer 16 Bits U, FPU —
Long-Word Integer 32 Bits U, FPU —
Quad-Word Integer 64 Bits U Any Two Data Registers
16-Byte 128 Bits U Memory-Only, Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Mantissa
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Mantissa
Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

IU =Integer Unit

The three integer data formats that are common to both the integer unit and
the FPU (byte, word, and long word) are the standard twos-complement data
formats defined in the M68000 Family architecture. Whenever an integer is
used in a floating-point operation, the integer is automatically converted by
the FPU to an extended-precision floating-point number before being used.

Single- and double-precision floating-point data formats are implemented in
the FPU as defined by the IEEE standard. These data formats are used for
most calculations with real numbers.

The extended-precision data format is also in conformance with the IEEE
standard, but the standard does not specify this format to the bit level as it
does for single- and double-precision. The memory format for the FPU con-
sists of 96 bits (three long words). Only 80 bits are actually used; the other
16 bits are for future expansibility and for long-word alignment of the floating-
point data structures in memory. The extended-precision format has a 15-
bit exponent, a 64-bit mantissa, and a 1-bit mantissa sign. Extended-precision
numbers are intended for use as temporary variables, intermediate values,
or where extra precision is needed.

The MC68040 addressing modes are shown in Table 1-2. The register indirect
addressing modes support postincrement, predecrement, offset, and index-
ing, which are particularly useful for handling data structures common to
sophisticated applications and high-level languages. The program counter
indirect mode also has indexing and offset capabilities; this addressing mode

MC68040 USER'S MANUAL MOTOROLA

is typically required to support position-independent software. In addition to
these addressing modes, the MC68040 provides index sizing and scaling
features that enhance software performance. Data formats are supported
orthogonally by all arithmetic operations and by all appropriate addressing
modes.

Table 1-2. Addressing Modes

MOTOROLA

Addressing Modes Syntax

Register Direct

Data Register Direct Dn

Address Register Direct An
Register Indirect

Address Register Indirect (An)

Address Register Indirect with Postincrement (An)+

Address Register Indirect with Predecrement —(An)

Address Register Indirect with Displacement (d16,An)
Register Indirect with Index

Address Register Indirect with Index (8-Bit Displacement) (dg,An,Xn)

Address Register Indirect with Index (Base Displacement) (bd,An,Xn)
Memory Indirect

Memory Indirect Postindexed ([bd,An],Xn,od)

Memory Indirect Preindexed ([bd,An,Xn],o0d)
Program Counter Indirect with Displacement (d16,PC)
Porgram Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement) (dg,PC,Xn)

PC Indirect with Index (Base Displacement) (bd,PC,Xn)
Program Counter Memory Indirect

PC Memory Indirect Postindexed ([bd,PC],Xn,o0d)

PC Memory Indirect Preindexed ([bd,PC,Xn],0d)
Absolute

Absolute Short xxx.W

Absolute Long xxx.L
Immediate #<data>

NOTES:

Dn = Data Register, D7-D0
An = Address Register, A7-A0

dg, d1g = A twos-complement or sign-extended displacement; added as port of the effective address

calculation; size is 8 (dg) or 16 (d1g) bits; when omitted, assemblers use a value of zero.

Xn = Address or data register used as an index register; form is Xn.SIZE/SCALE, where SIZE is W
or .L (indicates index register size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by

SCALE); use of SIZE and/or SCALE is optional.

bd = A twos-complement base displacement; when present, size can be 16 or 32 bits.

od = Quter displacement, added as part of effectie address calculation after any memory indirection;

use is optional with size of 16 or 32 bits.
PC = Program Counter
<data> = Immediate value of 8, 16, or 32 bits.
() = Effective Address
[] = Used as indirect access to long-word address.

MC68040 USER'S MANUAL

1-9

1.5 INSTRUCTION SET OVERVIEW

The instructions provided by the MC68040 are listed in Table 1-3. The in-
struction set has been tailored to support high-level languages and is optim-
ized for those instructions most commonly executed (however, all instructions
listed are fully supported). Many instructions operate on bytes, words, and
long words, and most instructions can use any of the addressing modes of
Table 1-2.

The floating-point instructions for the MC68040 are a commonly used subset
of the MC68881/M(C68882 instruction set with new arithmetic instructions to
explicitly select single- or double-precision rounding. The remaining unim-
plemented instructions are less frequently used and are efficiently emulated
in software, maintaining compatibility with the MC68881/MC68882 floating-
point coprocessors.

The MC68040 instruction set includes MOVE16, a new user instruction which
allows high-speed transfers of 16-byte blocks between external devices such
as memory-to-memory, or coprocessor-to-memory.

1.6 MEMORY MANAGEMENT UNITS

The data and instruction MMUs support virtual memory systems by trans-
lating logical addresses to physical addresses using translation tables stored
in memory. Each MMU stores recently used address mappings in an ATC,
reducing average translation time. Features of the MMUs include:

® Instruction and Data MMUs are Fully Independent
® 64-Entry, Four-Way Set-Associative ATCs

® Table Searches Automatically Performed by Hardware

Address Translation and Cache Indexing Performed in Parallel
4K or 8K Page Sizes
Two Optional Transparent Blocks for each MMU

Fixed Three-Level Translation Table Structure with Optional Indirection
User and Supervisor Root Pointer Registers
Global Attribute for Selective ATC Flushing

Write Protection and Supervisor Protection Attributes

MC68040 USER'S MANUAL MOTOROLA

Table 1-3. Instruction Set Summary

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend *FSUB Floating-Point Subtract
ADD Add FTRAPcc Floating-Point Trap-On Condition
ADDA Add Address FTST Floating-Point Test
/A"Bg'o ﬁgg '&’i’;ﬁd'a‘e ILLEGAL Take lllegal Instruction Trap
ADDX Add with Extend JMP Jump
QND Logical AND JSR Jump to Subroutine
NDI Logical AND Immediate N
ASL, ASR Arithmeti if i LEA Load Effective Address
rithmetic Shift Left and Right LINK Link and Allocate
Bcc Branch Conditionally LSL, LSR Logical Shift Left and Right
BCHG Test Bit and Change
BCLR Test Bit and Clear <MOVE Move "
BFCHG Test Bit Field and Change MOVE16 16-Byte Block Move
BFCLR Test Bit Field and Clear MOVEA Move Address)
BFEXTS Signed Bit Field Extract MOVE CCR Move Condition (;ode Register
BFEXTU Unsigned Bit Field Extract MOVE SR | Move Status Register
BFFFO Bit Field Find First One MOVE USP Move User Stack Pointer
BFINS Bit Field Insert *MOVEC Move Control Register
BFSET Test Bit Field and Set MOVEM Move Multiple Registers
BFTST Test Bit Field MOVEP Move Pe(lpheral
BRA Branch MOVEQ Move Quick
BSET Test Bit and Set *MOVES Move Alternate Address Space
BSR Branch to Subroutine MULS Signed Multiply
BTST Test Bit MULU Unsigned Multiply
CAS Compare and Swap Operands NBCD Negate Decimal with Extend
CAS2 Compare and Swap Dual Operands NEG Negate
CHK Check Register Against Bounds NEGX Negate with Extend
CHK2 Check Register Against Upper and NOP No Operation
Lower Bounds NOT Logical Complement
*CINV Invalidate Cache Entries OR Logical Inclusive OR
CLR Clear ORI Logical Inclusive OR Immediate
CMP Compare
CMPA Compare Address PACK Pack BCD
CMPI Compare Immediate PEA Push Effective Address
CMPM Compare Memory to Memory *PFLUSH Flush Entry(ies) in the ATCs
CMP2 Compare Register Against Upper *PTEST Test a Logical Address
and Lower Bounds RESET Reset External Devices
*CPUSH Push then Invalidate Cache Entries ROL, ROR Rotate l)_(eft and Right
DBcc Test Condition, Decrement and ROXL, RORX | Rotate with Extend Left and Right
Branch RTD Return and Deallocate
DIVS, DIVSL | Signed Divide RTE Return from Exception
DIVU, DIVUL [Unsigned Divide RTR Return and Restore Codes
- - RTS Return from Subroutine
EOR Logical Exclusive OR - -
EORI Logical Exclusive OR Immediate SBCD Subtract Decimal with Extend
EXG Exchange Registers Sce Set Conditionally
EXT, EXTB | Sign Extend STOP Stop
* - - SUB Subtract
*FABS Floating-Point Absolute Value SUBA Subtract Address
FADD Floating-Point Add SuBl Subtract Immediate
FBcc Floating-Point Branch SuUBQ Subtract Quick
FCMP Floating-Point Compare SUBX Subtract with Extend
FDBcc Floating-Point Decrement and Branch SWAP Swap Register Words
*FDIV Floating-Point Divide
*FMOVE Move Floating-Point Register TAS Test Operand and Set
FMOVEM Move Multiple Floating-Point TRAP Trap N
Registers TRAPcc Trap Conditionally
*FMUL Floating-Point Multiply TRAPV Tap on Overflow
*FENEG Floating-Point Negate TST Test Operand
FRESTORE Restore Floating-Point Internal State UNLK Unlink
FSAVE Save Floating-Point Internal State
. A . UNPK Unpack BCD
FScc Floating-Point Set According to
% Condition *MC68040 additions or alterations to the MC68030 and
FSORT Floating-Point Square Root MC68881/M68882 instruction set.
MOTOROLA MC68040 USER’'S MANUAL 1-11

Pages may be Specified as Writethrough, Copyback, Noncachable, or
Noncachable 1/0

Translations Enabled/Disabled by Software
Used and Modified Status Automatically Maintained in Tables and ATCs
Translations can be Disabled by External MMUDIS Signal

Cache Inhibit Out (CIOUT) Signals can be Asserted on a Page-by-Page
Basis

® 32-Bit Physical Address with Two User-Defined Attribute Signals

The memory management function performed by the MMU is called demand
paged memory management. Since a task specifies the areas of memory it
requires as it executes, memory allocation is supported on a demand basis.
If a requested access to memory is not currently mapped by the system, then
the access causes a demand for the operating system to load or allocate the
required memory image. The technique used by the MC68040 is paged mem-
ory management because physical memory is managed in blocks of a speci-
fied number of bytes, called page frames. The logical address space is divided
into fixed-size pages that contain the same number of bytes as the page
frames. The memory management software assigns a physical base address
to a logical page. The system software then transfers data between secondary
storage and memory, one or more pages at a time.

1.7 INSTRUCTION AND DATA CACHES

Because of the phenomenon of locality of reference, instructions and data
that are used in a program have a high probability of being reused within a
short time. Additionally, instructions and data operands residing near the
instructions and data currently in use also have a high probability of being
utilized within a short period. The MC68040 takes advantage of these locality
characteristics with its two on-chip physical caches, one for instructions and
one for data. Both caches are organized as four-way set-associated with 64
sets of four lines. Each line contains four long words, for a storage capability
of 4K bytes for each cache, or 8K bytes total. The processor fills the cache
lines using burst mode accesses which transfer the entire line as four long
words. This mode of operation not only fills the cache efficiently, but also
captures adjacent instruction or data items that are likely to be required in
the near future due to locality characteristics of the executing task.

MC68040 USER'S MANUAL MOTOROLA

The caches improve the overall performance of the system by reducing the
number of bus transfers required by the processor to fetch information from
memory and by increasing the bus bandwidth available for other bus masters
in the system. To further improve system performance, the data cache in the
MC68040 supports both copyback and writethrough caching modes for stor-
ing write accesses. For writes that hit in copyback pages, the data is used to
update the cache line without writing the data to memory immediately. This
“dirty’" data is copied to memory only when required, either to allow re-
placement of the cache line by new data, or as a result of explicit flushing
of the cache line, resulting in a lower bus bandwidth requirement for the
processor. Cache coherency for both caches is maintained by bus snooping
logic which allows the MC68040 to monitor accesses by an alternate bus
master. When an alternate master performs bus transfers, the MC68040 can
update cache lines which hit during an external write, or source data from
dirty data cache lines while inhibiting data from memory during external
reads.

MOTOROLA MC68040 USER'S MANUAL 1-13

MC68040 USER'S MANUAL

MOTOROLA

SECTION 2
PROGRAMMING MODEL

This section describes the MC68040 programming model, which is separated
into the user and supervisor programming models. User programs, executing
atthe user privilege level, can only use the registers of the user model. System
software executing in the supervisor mode has access to all registers and
uses the control registers of the supervisor mode to perform supervisor
functions. A brief description of the registers accessible at each level is pre-
sented in the following paragraphs.

2.1 PROCESSING STATES

Unless the processor has halted, it is always in either the normal or the
exception processing state. Whenever the processor is executing instructions
or fetching instructions or operands, it is in the normal processing state. The
processor is also in the normal processing state while it is storing instruction
results.

Exception processing refers specifically to the transition from normal proc-
essing of a program to normal processing of system routines, interrupt rou-
tines, and other exception handlers. Exception processing includes all stacking
operations, the fetch of the exception vector, and the filling of the instruction
pipe caused by an exception. This processing is completed when execution
of the first instruction of the exception handler routine begins.

The processor enters the exception processing state when an interrupt is
acknowledged, when an instruction is traced or results in a trap, or when
any other exceptional condition arises. Execution of certain instructions or
unusual internal conditions that occur during the execution of any instruc-
tions can cause exceptions. External conditions, such as interrupts and bus
errors, also cause exceptions. Exception processing provides an efficient
transfer of control to handlers and routines that process the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus
error or generates an address error while in the exception processing state.
This type of failure halts the processor. For example, if during exception
processing of one bus error another bus error occurs, the MC68040 has not

MOTOROLA MC68040 USER'S MANUAL 2-1

completed the transition to normal processing and has not completed saving
the internal state of the machine; thus, the processor assumes that the system
is not operational and halts. Only an external reset can restart a halted pro-
cessor. (When the processor executes a STOP instruction, it is in a special
type of normal processing state, one without bus cycles. The processor is
stopped, not halted.)

2.1.1 Privilege Levels

The processor operates in one of two privilege modes: user or supervisor.
The supervisor mode has higher privileges than the user mode. Not all in-
structions are permitted to execute in the user mode, but all are available in
the supervisor mode. This difference allows the supervisor to protect system
resources from uncontrolled access. The processor uses the privilege mode
indicated by the S bit in the status register (SR) to select either the user or
supervisor mode and either the user stack pointer (USP) or a supervisor stack
pointer (SP) for stack operations. The integer unit identifies a logical address
as accessing either the supervisor or user address space so that differentia-
tion between supervisor and user can be maintained. The memory manage-
ment units (MMUs) use the indicated privilege mode to control and translate
memory accesses to protect supervisor code, data, and resources from access
by user programs.

In many systems, most programs execute in the user privilege mode. User
programs access only their own code and data areas and are restricted from
accessing other information. Executing in the supervisor privilege mode, the
operating system has access to all resources, performs management and
service tasks for the user-level programs, and coordinates their activities.

2.1.1.1 SUPERVISOR MODE. The supervisor mode is the higher privilege level.

2-2

The privilege level is determined by the S bit of the SR; if set, the processor
executes instructions in the supervisor mode. The bus cycles for instructions
executed in the supervisor mode are normally classified as supervisor ref-
erences, and the values on the transfer modifier pins (TM2-TMO0) indicate
supervisor accesses.

All exception processing is performed in the supervisor mode. All bus cycles

generated during exception processing are supervisor references, and all
stack accesses use the active supervisor stack pointer.

MC68040 USER'S MANUAL MOTOROLA

In a multitasking operating system, it is more efficient to have a supervisor
stack space associated with each user task and a separate stack space for
interrupt-associated tasks. The MC68040 provides two supervisor stack point-
ers, master (MSP) and interrupt (ISP); the M bit of the SR selects which of
the two is active. When the M bit is set , supervisor stack pointer references
(either implicit or by specifying address register A7) access the MSP. The
operating system sets the MSP for each task to point to a task-related area
of supervisor data space. This procedure separates task-related supervisor
activity from asynchronous, I/O-related supervisor tasks that may be only
coincidental to the currently executing task. The MSP can separately maintain
task control information for each currently executing user task, and the soft-
ware updates the MSP when a task switch is performed, providing an efficient
means for transferring task-related stack items. The ISP, can be used for
interrupt control information and for workspace area as interrupt handling
routines require.

When the M bit is clear, the MC68040 is in the interrupt mode of the supervisor
privilege level, and operation is the same as in any other M68000 Family
processor when in supervisor mode. This mode is the default condition after
reset, and all supervisor stack pointer references access the ISP.

The value of the M bit in the SR does not affect execution of privileged
instructions. Instructions that affect the M bit are MOVE to SR, ANDI to SR,
EORI to SR, ORI to SR, and RTE. The processor automatically saves the M-
bit value and clears it in the SR as part of the exception processing for
interrupts.

2.1.1.2 USER MODE. The user mode is the lower privilege level. If the S bit of the
SR is clear, the processor executes instructions in the user mode. Most in-
structions execute at either privilege level, but some instructions that have
important system effects are privileged and can only execute in the supervisor
mode. For instance, user programs cannot execute the STOP or RESET in-
structions. To prevent a user program from entering the supervisor mode,
except in a controlled manner, instructions that can alter the S bit in the
status register are privileged. The TRAP #n instruction provides controlled
access to operating system services for user programs.

The bus cycles for an instruction executed in the user mode are classified as
user references, and the values on the signals TM2-TMO indicate user ac-
cesses. When enabled, the MMUs use the indicated privilege level to distin-
guish between user and supervisor activity and to control access to protected

MOTOROLA MC68040 USER'S MANUAL 2-3

portions of the address space. While the processor is operating in the user
mode, explicit references to the system stack pointer or to address register
seven (A7) refer to the user stack pointer.

2.1.1.3 CHANGING PRIVILEGE LEVEL. During exception processing the processor

changes from user to supervisor mode. Exception processing saves the cur-
rent value of the SR on the active supervisor stack and then sets the S bit,
forcing the processor into the supervisor mode. When the exception being
processed is an interrupt and the M bit is set, the M bit is cleared, putting
the processor into the interrupt mode. Execution of instructions continues in
the privileged exception handler to process the exception condition.

To return to the user mode, a system routine must execute one of the fol-
lowing instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE.
These instructions, which execute in the supervisor mode, can modify the S
bit of the SR. After these instructions execute, the instruction pipeline is
flushed and is refilled from the appropriate address space.

The RTE instruction returns to the program that was executing when the
exception occurred and restores the exception stack frame saved on the
supervisor stack. If the frame on top of the stack was generated by an inter-
rupt, trap, or instruction exception, the RTE instruction restores the SR and
program counter (PC) to the values saved on the supervisor stack. The pro-
cessor then continues execution at the restored PC address and at the priv-
ilege level determined by the S bit of the restored SR. If the frame on top of
the stack was generated by an access fault (bus error, MMU fault, or address
error), the RTE instruction restores the entire saved processor state from the
stack.

2.1.2 Exception Processing

2-4

An exception is defined as-a special condition that pre-empts normal proc-
essing. Both internal and external conditions cause exceptions. External con-
ditions that cause exceptions are interrupts from external devices, bus errors,
and reset. Instructions, address errors, and tracing are internal conditions
that cause exceptions. For example, the TRAP, TRAPcc, FTRAPcc, CHK, RTE,
DIV, and FDIV instructions can generate exceptions as part of their normal
execution. In addition, illegal instructions, unimplemented floating-point in-
structions and data types, and privilege violations cause exceptions.

MC68040 USER'S MANUAL MOTOROLA

Exception processing, which is the transition from the normal processing of
a program to the processing required for the exception condition, uses the
exception vector table and an exception stack frame. The following para-
graphs describes the vector table and a generalized exception stack frame.

Exception processing is discussed in detail in SECTION 9 EXCEPTION
PROCESSING.

2.1.2.1 EXCEPTION VECTORS. The vector base register (VBR) contains the base
address of the 1024-byte exception vector table, which consists of 256 ex-
ception vectors. Exception vectors contain the memory addresses of routines
that begin execution at the completion of exception processing. These rou-
tines perform a series of operations appropriate for the corresponding ex-
ceptions. Because the exception vectors contain memory addresses, each
vector consists of one long word, except for the reset vector. The reset vector
consists of two long words: the address used to initialize the ISP and the
address used to initialize the PC.

The address of an exception vector is derived from an 8-bit vector number
and the VBR. The vector numbers for some exceptions are obtained from an
external device; others are supplied automatically by the processor. The
processor multiplies the vector number by four to calculate the vector offset,
which it adds to the VBR. The sum is the memory address of the vector. All
exception vectors are accessed as supervisor data references, except the reset
vector, which is accessed as a supervisor program reference. Only the initial
reset vector is fixed in the processor's memory map; once initialization is
complete, there are no fixed assignments. Since the VBR provides the base
address of the vector table, the vector table can be located anywhere in
memory; it can even be dynamically relocated for each task that is executed.
Details of exception processing are provided in SECTION 9 EXCEPTION
PROCESSING.

2.1.2.2 EXCEPTION STACK FRAME. Exception processing saves the most volatile
portion of the current processor context on the top of the supervisor stack.
This context is organized in a format called the exception stack frame. This
information always includes a copy of the SR, the PC, the vector offset of
the vector, and the frame format field. The frame format field identifies the
type of stack frame. The RTE instruction uses the value in the frame format
field to properly restore the information stored in the stack frame and to
deallocate the stack space appropriately. The general form of the exception
stack frame is illustrated in Figure 2-1. Refer to SECTION 9 EXCEPTION PROC-
ESSING for a complete description of the various exception stack frames.

MOTOROLA MC68040 USER'S MANUAL 2-5

Sp ——> STATUS REGISTER

PROGRAM COUNTER

FORMAT J VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2 OR 26 WORDS, IF NEEDED)

Figure 2-1. General Form of Exéeption Stack Frame

2.2 REGISTER DESCRIPTION

The programming model of the MC68040 consists of two groups of registers:
the user model and the supervisor model, which correspond to the user and
supervisor modes. User programs, executing in the user mode, can only use
the registers of the user model. System software executingin the supervisor
mode has access to all registers and uses the control registers of the super-
visor model to perform supervisor functions. The following paragraphs pro-
vide a brief description of the registers in the user and supervisor models.

2.2.1 User Programming Model

2-6

The user programming model is shown in detail in Figure 2-2. The integer
portion of the user programming model, which is the same as previous
M68000 Family microprocessors, consists of the following registers:

® 16 General-Purpose 32-Bit Registers (D7-D0, A7-A0)

® 32-Bit Program Counter (PC)

e 38-Bit Condition Code Register (CCR)

The floating-point portion of the user programming model, which is identical
to the programming model for the MC68881/MC68882 floating-point copro-
cessors, consists of the following registers:

® 38 Floating-Point Data Registers (FP7-FP0)

e 16-Bit Floating-Point Control Register (FPCR)

® 32-Bit Floating-Point Status Register (FPSR)

® 32-Bit Floating-Point Instruction Address Register (FPIAR)

The following paragraphs described each group of registers.

MC68040 USER'S MANUAL MOTOROLA

2.2.1.1 DATA REGISTERS (D7-D0). These registers are used as data registers for
bit and bit-field (1 to 32 bits), byte (8 bit), word (16 bit), long-word (32 bit),
and quad-word (64 bit) operations. These registers may also be used as index
registers.

2.2.1.2 ADDRESS REGISTERS (A7-A0). These registers may be used as software
stack pointers, index registers, or base address registers. The address reg-
isters may be used for word and long-word operations.

Register A7 is used as a hardware stack pointer during stacking for subroutine
calls and exception handling. The register designation A7 refers to three
different registers: the USP (A7) in the user programming model and either
the ISP or MSP (A7’ and A7”) in the supervisor programming model. In the
supervisor programming model, the active stack pointer (ISP or MSP) is called
the supervisor stack pointer.

2.2.1.3 PROGRAM COUNTER (PC). The PC contains the address of the currently
executing instruction. During instruction execution and exception processing,
the processor automatically increments the contents of the program counter
or places a new value in the program counter, as appropriate. For some
addressing modes the PC may used as a pointer for PC-relative addressing.

2.2.1.4 CONDITION CODE REGISTER (CCR). The CCR is the lower byte of the SR
and is the only portion of the SR available in the user mode. See 2.2.2.2
STATUS REGISTER (SR) for further information.

2.2.1.5 FLOATING-POINT DATA REGISTERS (FP7-FP0). These floating-point data
registers are analogous to the integer data registers of all M68000 Family
processors. The floating-point data registers always contain extended-pre-
cision numbers. All external operands, regardless of the data format, are
converted to extended-precision values before being used in any calculation
or stored in a floating-point data register. A reset or a null-restore operation
sets FP7-FPO to positive, nonsignaling not-a-numbers (NANs). For acomplete
description of NANs and floating-point data formats, see SECTION 3 DATA
ORGANIZATION AND ADDRESSING CAPABILITIES.

MOTOROLA MC68040 USER'S MANUAL 2-7

31 15 7 0

oo |
D1
D2
D3 - DATA
b4 REGISTERS
D5
D6
D7
31 15 0 _
A0
Al
A2
x| ADDRESS
REGISTERS
A
A5
A6
3 15 0 USER
A7 STACK
[l —I (USP) POINTER
31 0
[7 ke PROGRAM
COUNTER
R — T -
L REGISTER
79 63 0
FPO
FP1
FP2
FP3 | FLOATING-POINT
DATA REGISTERS
FP4
FP5
FP6
FP7
31 15 7 0
Fm=s========= EXCEPTION MODE FLOATING-POINT
. S I ENABLE | CONTROL I FPOR |~ CoNTROL
31 2 15 7 0
[COMBTON | cuomen | PICERTION | ACCRRD I PSR | SranG-POINT
CODE STATUS EXCEPTION REGISTER
INSTRUGTION ™
I I FPUR } ADDRESS
REGISTER

Figure 2-2. User Programming Model

2-8 MC68040 USER'S MANUAL MOTOROLA

2.2.1.6 FLOATING-POINT CONTROL REGISTER (FPCR). The FPCR (see Figure 2-
2) contains an exception enable byte that enables/disables traps for each
class of floating-point exceptions and a mode byte that sets the user select-
able modes. The FPCR can be read or written to by the user. Bits 16 through
31 are reserved for future definition by Motorola. These bits are always read n
as zero and are ignored during write operations. The FPCR is cleared by the
reset function or a restore operation of the null state. When cleared, this
register provides the IEEE standard defaults.

2.2.1.6.1 Exception Enable Byte. One of the bits of the exception enable byte
(ENABLE) (see Figure 2-3) corresponds to each floating-point exception class.
The user can separately enable traps for each class of floating point-point
exceptions.

When the processor set a bit in the FPSR EXC byte and the corresponding
bit in the FPCR ENABLE byte is also set, an exception is signaled. The address
of the exception handler is derived from the vector address corresponding
to the exception. When a user writes to the ENABLE byte that enables a class
of floating-point exceptions. a previously generated floating-point exception
does not cause a trap to be taken regardless of the value in the FPSR EXC
byte.

The bits in the FPSR EXC byte and FPCR enable byte occupy the same po-
sitions within each byte. Dual and triple exceptions can be generated by a
single instruction execution. When multiple exceptions occur with traps en-
able for more than one exception class, the highest priority exception is
reported; the lower priority exceptions are never reported or taken. The
exception handler must check for multiple exceptions. The bits of the ENABLE
byte are organized in decreasing priority with bit 15 being the highest and
bit 8 the lowest.

15 14 13 12 1 10 9 8
I BSUN I SNAN IOPEHRl OVFL J UNFL LDZ I INEX2 I INEX1J

BRANCH/SET ON | INEXACT DECIMAL
UNORDERED INPUT
SIGNALLING NOT A R
NUMBER INEXACT OPERATION
OPERAND ERROR DIVIDE BY ZERO
OVERFLOW UNDERFLOW

Figure 2-3. FPCR Exception Enable Byte

MOTOROLA MC68040 USER’S MANUAL : 2-9

2.2.1.6.2 MODE CONTROL BYTE. The mode control byte (MODE) (see Figure

2-10

2-4) controls the user-selectable rounding modes and rounding precisions.
A zero in this byte selects the IEEE defaults.

The rounding mode (RND) specifies how inexact results are rounded. Refer
to SECTION 9 EXCEPTIONS for a detailed description of the rounding al-
gorithm used.

The rounding precision (PREC) selects where rounding of the mantissa oc-
curs. For extended precision, the results is rounded to a 64-bit boundary;
single precision results is rounded to a 24-bit boundary, and double precision
is rounded to a 53-bit boundary.

The single and double rounding precisions are provided for emulation of
machines that only support those precisions. When the MC68040 performs
any operation, the calculation is carried out using extended precision inputs
and the intermediate result is calculated as if to produce infinite precision.
After the calculation is complete, this intermediate result is rounded to the
selected precision and stored in the destination.

If the destination is a floating-point data register (FPO-FP7), the stored value
is in the extended precision format rounded to the precision specified by the
PREC bits. Thus, all mantissa bits beyond the selected precision are zero after
the rounding operation. If the single or double precision mode is selected,
the exponent value is in the correct range for the single or double precision
format (although it is stored in extended precision format).

If the destination is memory location, the PREC bits are ignored. In this case,
a number in the extended precision format is taken from the source floating-
point data register, rounded to the destination format precision and then
written to memory.

The execution speed of all instructions is degraded significantly when single
or double precision rounding modes are used. When operating in these
modes, the MC68040 produces the same results as any other machine that
conforms to the IEEE standard without supporting extended precision cal-
culations. The results may not be the same as performing the same operation
in extended precision and storing the results in the single or double precision
format.

MC68040 USER’S MANUAL MOTOROLA

PREC AND , 0

ROUNDING MODE

00 =TO NEAREST

01 = TOWARD ZERO

10 = TOWARD MINUS INFINITY
11 = TOWARD PLUS INFINITY

ROUNDING PRECISION

00 = EXTENDED

01 =SINGLE

10 = DOUBLE

11 = (UNDEFINED, RESERVED)

Figure 2-4. FPCR Mode Control Byte

2.2.1.7 FLOATING-POINT STATUS REGISTER (FPSR). The FPSR (see Figure 2-2)
contains a floating-point condition code byte (FPCC), a floating-point excep-
tion status byte (EXC), quotient bits, and a floating-point accrued exception
byte (AEXC). All bits in the FPSR can be read or written by the user. Execution
of most floating-point instructions modifies this register. The reset function
or a restore operation of the null state clears the FPSR.

2.2.1.7.1 Foating-Point Condition Code Byte. The floating-point condition code.
(FPCC) byte (see Figure 2-5) contains four condition code bits that are set at
the end of all arithmetic instructions involving the floating-point data reg-
isters. The FMOVE FPm, (ea), move multiple floating-point data register, and
move system control register instructions do not affect the FPCC.

31 30 29 28 27 26 25 24

0 INl Z| lme}

NOT A NUMBER OR UNORDERED
INFINITY

ZERO

NEGATIVE

Figure 2-5. FPSR Condition Code Byte

MOTOROLA MC68040 USER’S MANUAL 2-1

2-12

The operation result data type determines how the four condition code bits
are set. Table 2-1 lists the condition code bit setting for each result data
type.The MC68040 generates only eight of the 16 possible combinations.
Loading the FPCC with one of the other combinations and executing a con-
ditional instruction may produce an unexpected branch condition.

Table 2-1. Condition Code versus Results Data Type

N z | NAN Results Data Type

0 0 0 0 + Normalized or Denormalized
1 0 0 0 — Normalized or Denormalized
0 1 0 0 +0

1 1 0 0 -0

0 0 1 0 + Infinity

1 0 1 0 — Infinity

0 0 0 1 + NAN

1 0 0 1 — NAN

The IEEE standard defines the following four conditions and only requires
the generation of the condition codes as a result of a floating-point compare
operation. In addition to this requirement, the FPCP can test these conditions
at the end of any operation affecting the condition codes.

EQ Equal To

GT Greater Than

LT Less Than

UN Unordered

An unordered condition occurs when one or both of the operands in a float-
ing-point compare operation is a NAN. For purposes of the floating-point
conditional branch, set byte on condition, decrement and branch on condi-
tion, and trap on condition instructions, the MC68040 logically combines the
four condition codes to form the IEEE conditions according to the following
equations:

EQ=Z

GT=NvNANvZ

LT=NANANvZ

UN=NAN

where:
"“A" =Logical AND
"v'"=Logical OR

MC68040 USER'S MANUAL MOTOROLA

Note that the setting of the floating-point condition codes is independent of

the operation executed; the condition codes only indicate that data type of

the result generated. Unlike other M68000 condition codes, the IEEE defined

conditions can always be derived from the data type of the result. The setting n
of the M68000 integer condition codes is dependent upon the operation

executed as well as the result.

To aid programmers of floating-point subroutine libraries, the MC68040 im-
plements the four previously described floating-point condition code bits in
hardware instead of the four IEEE defined conditions. The IEEE conditions
are derived by an instruction when needed. For example, the programmers
of a complex arithmetic multiply subroutine usually prefers to handle “spe-
cial” data types such as zeros, infinities, or NANs, separately from ““normal”’
data types. The floating-point condition codes allow users to efficiently detect
and handle these “‘special” values.

2.2.1.7.2 Quotient Byte. The quotient byte (see Figure 2-6) is provided for com-
patibility with MC68881/MC68882 Floating-Point Unit. This byte contains the
seven least-significant bits of the quotient (unsigned) and the sign of the
entire quotient.

The quotient bits can be used in argument reduction for transcendentals and
other functions. For example, seven bits are more than enough to determine
the quadrant of a circle in which an operand resides. The quotient bits remain
set until they are cleared by the user.

2.2.1.7.3 Exception Status Byte. The exception status byte (EXC) (see Figure 2-7)
contains a bit for each floating-point exceptions that may have occurred
during the most recent arithmetic instruction or move operation. This byte

23 22 21 20 19 18 17 16
I S I QUOTIENT
SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 2-6. FPSR Quotient Byte

MOTOROLA MC68040 USER'S MANUAL 2-13

is cleared at the start of most operations; operations that cannot generate
any floating point exceptions do not clear this byte. This byte can be used
by an exception handler to determine which floating- point exception(s) caused
a trap.

15 14 13 12 1 10 9 8
I BSUN I SNAN lopennl OVFL | UNFL I Dz | INEX2 | INEX1 |
BRANCHSET (oN INEXACT DECIMAL
S'GNALUN&U"“%TEQ S L INEXACT OPERATION
OPERAND ERROR DIVIDE BY ZERO
OVERFLOW UNDERFLOW

Figure 2-7. FPSR Exception Status Byte

If a bit is set in the EXC byte and the corresponding bit in the ENABLE byte
in the floating-point control register is also set, an exception is signaled.
When a floating- point exceptions is detected by the MC68040, the corre-
sponding bit in the EXC byte is set, even if the trap for that exception class
is disabled. (A user write operation to the FPSR, which sets a bit in the EXC
byte, does not cause a trap to be taken regardless of the value in the ENABLE
byte).

2.2.1.7.4 Accured Exception Byte. The accured exception byte (AEXC) contains

2-14

five exception bits (see Figure 2-8) required by the IEEE standard for trap
disabled operation. These exceptions are logical combinations of the bits in
the EXC byte. The AEXC byte contains the history of all floating-point ex-
ceptions that have occurred since the user last cleared the AEXC byte. In
normal operations, only the user clears this byte by writing to the FPSR. The
AEXC is cleared by a reset or a restore operation of the null state.

Many users elect to disable traps for all or part of the floating-point exception
classes. The AEXC byte is provided to make it unnecessary to poll the EXC
byte after each floating-point instruction. At the end of most operations
(FMOVEM and FMOVE excluded), the bits in the EXC byte are logically com-
bined to form an AEXC value that is logically ORed into the existing AEXC
byte. This operation creates ““sticky’ floating-point exception bits in the AEXC
byte that the user need poll only once (for example, at the end of a series of
floating-point operations).

MC68040 USER'S MANUAL MOTOROLA

7 6) 4 3 2 1 0

r lop | OVFL I UNFL | Dz | INEX] I I I

INEXACT
DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

INVALID OPERATION

Figure 2-8. FPSR Accured Exception Byte

The setting or clearing of bits in the AEXC byte does not cause an exception
nor does it prevent taking an exception. The relationship between the bits
in the EXC byte and the bits in the AEXC is shown by the following equations.
These equations apply to setting the AEXC bits at the end of each operation
that affects the AEXC byte:

AEXC(IOP)=AEXC(IOP)VEXC(SNANVOPERR)

AEXC(OVFL)=AEXC(OVFL)VEXC(OVFL)

AEXC(UNFL) =AEXC(UNFL)VEXC(UNFLLINEX2

AEXC(DZ)=AEXC(DZ)vEXC(DZ

AEXC(INEX) = AEXC(INEX)VEXC(INEX1vINEX2vOVFL)
Where: “v”'=Logical OR

“L" =Logical AND

2.2.1.8 FLOATING-POINT INSTRUCTION ADDRESS REGISTER (FPIAR). The float-
ing-point instructions operate concurrently with the integer unit. That is, the
integer unit can be executing instructions while the floating-point unit (FPU)
is simultaneously executing a floating-point instruction. Additionally, the FPU
can concurrently execute two floating-point instructions. As a result of this
nonsequential instruction execution, the PC value stacked by the MC68040,
in response to a floating-point exception trap, may not point to the offending
instruction.

For the subset of the FPU instructions that generate exception traps, the 32-
bit FPIAR is loaded with the logical address of the instruction before the
instruction is executed. This address can then be used by a floating-point
exception handler to locate a floating-point instruction that has caused an
exception. Since the FPU FMOVE to/from the FPCR, FPSR, or FPIAR and

MOTOROLA MC68040 USER'S MANUAL 2-15

FMOVEM instructions cannot generate floating-point exceptions, these in-
structions do not modify the FPIAR. These instructions can be used to read
the FPIAR in the trap handler without changing the previous value. The FPIAR
is cleared by a reset or a null-restore operation.

2.2.2 Supervisor Programming Model

The supervisor programming model (see Figure 2-9) is used exclusively by
system programmers to implement sensitive operating system functions,
I/0 control, and MMU subsystems. All the accesses that affect the control
features of the MC68040 are in the supervisor programming model. Thus,
all application software is written to run in the user mode and migrates to
the MC68040 from any M68000 platform without modification.

0

0

{CCR)_]SR

31

|pTTO0

31

0

"ot

31

0
o

31

0

it

0

0
1AT(ISP) :l— INTERRUPT STACK POINTER

JA7(MSP) "}~ MASTER STACK POINTER

STATUS
REGISTER

:]_ VECTOR BASE REGISTER

ALTERNATE SOURCE AND DESTINATION
FUNCTION CODE REGISTERS

]_ CACHE CONTROL REGISTER

} USER ROOT POINTER REGISTER

]—— SUPERVISOR ROOT POINTER REGISTER

]—- TRANSLATION CONTROL REGISTER

j— DATA TRANSPARENT TRANSLATION REGISTER 0

j— DATA TRANSPARENT TRANSLATION REGISTER 1

INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 0

INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 1

JMMUSR "}~ MMU STATUS REGISTER

Figure 2-9. Supervisor Programming Model

MC68040 USER'S MANUAL MOTOROLA

The supervisor programming model consists of the registers available to the
user as well as the following control registers:

® Two, 32-Bit Supervisor Stack Pointers Interrupt Stack Pointer (ISP) and

Master Stack Pointer (MSP)

® 16-Bit Status Register (SR)
32-Bit Vector Base Register (VBR)
Two, 32-Bit Alternate Function Code Registers Source Function Code
(SFC) and Destination Function Code (DFC)
32-Bit Cache Control Register (CACR)
32-Bit User Root Pointer (URP)
32-Bit Supervisor Root Pointer (SRP)
16-Bit Translation Control Register (TC)
Two, 32-Bit Data Transparent Translation Registers (DTTO and DTT1)
Two, 32-Bit Instruction Transparent Translation Registers (ITTO and ITT1)
16-Bit MMU Status Register (MMUSR)

The following paragraphs describe the supervisor programming model reg-
isters. Additional information on the ISP, MSP, SR and VBR registers can be
found in SECTION 9 EXCEPTION PROCESSING. Refer to SECTION 7 IN-
STRUCTION AND DATA CACHES for information on the CACR and to SEC-
TION 6 MEMORY MANAGEMENT for information on the URP, SRP, TC, DTTn,
ITTn, and MMUSR registers.

2.2.2.1 INTERRUPT AND MASTER STACK POINTERS (A7’ and A7”). The interrupt
and master stack pointers are general-purpose address registers for the su-
pervisor mode that may be used as software stack pointers, index registers,
or base address registers. The interrupt and master stack pointers may be
used for word and long-word operations.

Register A7 refers to three different registers; the USP (A7) in the user pro-
gramming model and the ISP and MSP (A7' and A7") in the supervisor
programming model. In the supervisor programming model, the active stack
pointer (ISP or MSP) is called the supervisor stack pointer.

2.2.2.2 STATUS REGISTER (SR). The SR (see Figure 2-10), which stores the pro-
cessor status, contains the condition codes that reflect the results of a pre-
vious operation and codes can be used for conditional instruction execution
in a program. The condition codes are extend (X), negative (N), zero (Z),
overflow (V), and carry (C). The user byte containing the condition codes is
the only portion of the SR information available in the user mode; it is
referenced as the CCR in user programs. In the supervisor mode, software

MOTOROLA MC68040 USER'S MANUAL 2-17

USER BYTE
SYSTEM BYTE (CONDITION CODE REGISTER)

/ /
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|T1lm|s|~||o||2[n[|o|70lololxlu[z|v]c]
T N—
CE INTERRUPT
ENABLE PRIORITY MASK CARRY
OVERFLOW
SUPERVISORUSER
STATE ZERO
NEGATIVE
MASTERINTERRUPT EXTEND

Figure 2-10. Status Register

can access the full SR, including the interrupt priority mask as well as ad-
ditional control bits. These bits indicate the following states for the processor:
one of two trace modes (T1, TO), supervisor or user mode (S), and master
or interrupt mode (M).

2.2.2.3 VECTOR BASE REGISTER (VBR). The VBR contains the base address of
the exception vector table in memory. The displacement of an exception
vector is added to the value in this register to access the vector table.

2.2.2.4 ALTERNATE FUNCTION CODE REGISTERS (SFC and DFC). The alternate
function code registers contain 3-bit function codes. Function codes can be
considered extensions of the 32-bit logical address that optionally provides
as many as eight, 4 Gbyte address spaces. Function codes are automatically
generated by the processor to select address spaces for data and programs
at the user and supervisor modes. SFC and DFC registers are used by certain
instructions to explicitly specify the function codes for operations.

2-18 MC68040 USER'S MANUAL MOTOROLA

SECTION 3
DATA ORGANIZATION AND ADDRESSING
CAPABILITIES n

Most external references to memory by a microprocessor are either program
references or data references; they either access instruction words or op-
erands (data items) for an instruction. Program references are references to
program space, the section of memory that contains the program instructions
and any immediate data operands residing in the instruction stream. Data
references refer to the data space, the section of memory that contains the
program data. Data items in the instruction stream can be accessed with the
program counter relative addressing modes; however, these accesses are
classified as program references. The MC68040 automatically accesses the
program space or data space as required.

This section describes the data organization and addressing capabilities of
the MC68040. It lists the type of operands used by instructions, and describes
the registers and their use as operands. Next the section describes the or-
ganization of data in memory and the addressing modes available to access
data in memory. Finally, the section describes the system stack and user
stacks and queues.

3.1 INTEGER UNIT OPERAND DATA FORMATS

The MC68040, with its integer unit and floating-point unit (FPU), supports
the operand data types shown in Table 3-1. The operand types supported by
the integer unit include the data types supported by the MC68030 plus a new
data type (16-byte block) for the MOVE16 instruction. Integer unit operands
can reside in registers, in memory, or within the instructions themselves,
and may be a single bit, a bit field, a byte, a word, a long word, a quad word,
or a 16-byte block. The operand size for each instruction is either explicitly
encoded in the instruction or implicitly defined by the instruction operation.

MOTOROLA MC68040 USER’'S MANUAL 3-1

Table 3-1. Data Types

Operand Data Type Size Supported by: Notes
Bit 1 Bit Integer Unit —
Bit Field 1-32 Bits Integer Unit Field of Consecutive Bits
BCD 8 Bits Integer Unit Packed: 2 Digits/Byte

Unpacked: 1 Digit/Byte

Byte Integer 8 Bits | Integer Unit, FPU |—
Word Integer 16 Bits | Integer Unit, FPU |—
Long-Word Integer 32 Bits | Integer Unit, FPU |—
Quad-Word Integer 64 Bits Integer Unit Any Two Data Registers
16 Byte 128 Bits Integer Unit Memory-Only, Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Mantissa
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Mantissa
Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

3.2 FLOATING-POINT UNIT OPERAND DATA FORMATS

The following paragraphs describe the FPU unit operand data formats. Six
data formats are supported: three signed binary integer formats and three
binary floating-point formats. All data formats are supported uniformly by
all arithmetic instructions. These formats are as follows:

Byte Integer (B)

Single Precision Real (S)

Word Integer (W)

Double Precision Real (D)

Long-Word Integer (L)

Extended Precision Real (X)

The capital letter in parenthesis is the suffix added to a floating-point instruc-
tion in the assembly language syntax to specify the data format of operands
external to the MC68040.

A seventh data format, packed decimal real (P), is not directly supported in
hardware, but is implicitly supported by trapping as an unimplemented data
type (instead of as an illegal instruction) to allow efficient emulation in soft-
ware. Refer to SECTION 9 EXCEPTION PROCESSING for detailed information.

Within the floating-point data formats, there are five types of numbers that
can be represented: normalized numbers, denormalized numbers, zeros, in-
finities, and not-a-numbers (NANs). These data types are represented with
special encodings corresponding to each data format.

MC68040 USER'S MANUAL MOTOROLA

3.2.1 Integer Data Formats

The three signed (twos complement) integer data formats supported by the
FPU (byte, word, and long word) are identical to those supported by the
integer unit (see Figure 3-1).

Since all FPU operations are performed in full extended-precision format,
signed integer operands are converted to extended precision before the spec-
ified operation is performed. Thus, mixed-mode arithmetic is implicitly sup-

ported.
7 0
[saims | BvrE INTEGER
15 0
16 BITS | worp iNTegER
31 0
L 32 8ITS | LonG INTEGER

Figure 3-1. Signed Integer Data Formats

3.2.2 Binary Real-Data Formats

Floating-point numbers can be encoded in any of three data formats: single
precision (32 bits), double precision (64 bits), and double-extended precision
(96 bits, 80 of which are used). All three formats fully comply with the /EEE
Standard for Binary Floating-Point Arithmetic.

NOTE

The single-extended-precision format defined in the |IEEE standard
is redundant in a device that supports the double-extended-precision
format. Thus, all references in this manual to extended precision
imply double-extended precision as defined by the IEEE standard.

Since all floating-point internal operations are performed in extended pre-
cision, single- and double-precision operands are converted to extended-
precision values before the specified operation is performed. Thus, mixed-
mode arithmetic is implicitly supported. Memory formats for the real-data
formats are shown in Figure 3-2.

MOTOROLA MC68040 USER'S MANUAL 3-3

30 2 0

8-BIT 23-BIT
S| ExPONENT| FRACTION | SINGLEREAL
L sian oF FRACTION
62 51 0
1-BIT 52-BIT
H EXPONENT [FRACTION | DOUBLE REAL
SIGN OF FRACTION
94 63 0
15-BIT ! 64-BIT
H EXPONENT | ! MANTISSA I EXTENDED REAL
L siaN OF MANTISSA L IMPLICIT BINARY POINT

Figure 3-2. Binary Real-Data Formats

The exponent in all three binary formats is an unsigned binary integer with
an implied bias added to it. The bias values for single, double, and extended
precision are 127, 1023, and 16383, respectively. When the bias is subtracted
from the value of the exponent, the result represents a signed twos-comple-
ment power of two that yields the magnitude of a normalized floating-point
number when multiplied by the mantissa. Since biased exponents are used,
a program can execute an integer-compare instruction (CMP) to compare
floating-point numbers in memory (regardless of the absolute magnitude of
the exponents).

Data formats for single- and double-precision numbers differ slightly from
the data formats for extended-precision numbers in the representation of the
mantissa. For all three precisions, normalized mantissa is always in the range
[1.0... 2.0]. The extended-precision data format explicitly represents the en-
tire mantissa, including the explicit integer part bit. However, for single- and
double-precision data formats, only the fractional portion of the mantissa is
explicitly represented; the integer part, always one, is implied.

The IEEE standard has created the term “’significand’’ to bridge this difference

and to avoid the historical implications of the term mantissa. The IEEE stand-
ard defines a significand as the component of a binary floating-point number

MC68040 USER'S MANUAL MOTOROLA

that consists of an explicit or implicit leading bit to the left of the implied
binary point. This manual interchangeably uses the terms mantissa and sig-
nificand, defined as follows:

Single-Precision Mantissa Single-Precision Significand

1.<23-Bit Fraction Field>

Il

Double-Precision Mantissa = Double-Precision Significand

= 1.<52-Bit Fraction Field>
Extended-Precision Mantissa = Extended-Precision Significand

= 1.Fraction

= <64-Bit Mantissa Field>

NOTE

Throughout this manual, ranges are specified using traditional set
notation with the format “bound . .. bound” specifying the bound-
aries of the range. The type brackets enclosing the range defines
whether the endpoint is inclusive or exclusive. A square bracket
indicates inclusive, and a parenthesis indicates exclusive. For ex-
ample, the range specification ““[1.0...2.0]" defines the range of
numbers greater than or equal to 1.0 and less than or equal to 2.0.
The range specification ““[0.0 +inf]"” defines the range of numbers
greater than 0.0 and less than or equal to positive infinity.

Each of the three floating-point data formats can represent five, unique,
floating-point data types:

Normalized Numbers

Denormalized Numbers

Zeros

Infinities

Not-a-numbers (NANs)

The normalized data type never uses the maximum or minimum exponent
value for a given format (except for the extended-precision format see fol-
lowing note). These exponent values in each precision are reserved for rep-
resenting the special data types: zeros, infinities, denormalized numbers, and
NANSs. Details of each type number for each format are shown in 3.2.3 Float-
ing-Point Data Format Details.

MOTOROLA MC68040 USER’S MANUAL 3-5

NOTE

There is a subtle difference between the definition of an extended-
precision number with an exponent equal to zero and a single- or
double-precision number with an exponent equal to zero. If the ex-
ponent of a single- or double-precision number is zero, the number
is defined to be denormalized, and the implied integer bit is also
zero. However, an extended-precision number with an exponent of
zero may have an explicit integer bit equal to one, which results in
a normalized number (even though the exponent is equal to the
minimum value).

For simplicity, the following discussion treats all three real formats
in the same manner, where an exponent value of zero identifies a
denormalized number. It should be noted that the extended precision
format may deviate from this rule.

3.2.2.1 NORMALIZED NUMBERS. Normalized numbers encompass all repre-

sentable real values between the overflow and underflow thresholds: i.e.,
those numbers whose exponents lie between the maximum and minimum
values. Normalized numbers may be positive or negative. For normalized
numbers, the implied integer part bit in single and double precision is one.
In extended precision, the integer bit is explicitly a one (see Figure 3-3).

MIN < EXPONENT < MAX MANTISSA = ANY BIT PATTERN

L— SIGN OF MANTISSA, 0 OR 1

Figure 3-3. Format of Normalized Numbers

3.2.2.2 DENORMALIZED NUMBERS. Denormalized numbers represent real val-

3-6

ues near the underflow threshold (underflow is detected for a given data
format and operation when the result exponent is less than or equal to the
minimum exponent value). Denormalized numbers may be positive or neg-
ative. For denormalized numbers, the implied integer part bit in single and
double precision is a zero (0). In extended precision, the integer bit is explicitly
a zero (0), (see Figure 3-4).

MC68040 USER'S MANUAL MOTOROLA

EXPONENT =0 MANTISSA = ANY NON-ZERO BIT PATTERN

l— SIGN OF MANTISSA, 0 OR 1

Figure 3-4. Format of Denormalized Numbers

Traditionally, floating-point number systems perform a ““flush-to-zero” when
underflow is detected. This leaves a large gap in the number line between
the smallest magnitude normalized number and zero. The IEEE standard
implements gradual underflows: the result mantissa is shifted right (denor-
malized) while the result exponent is incremented until the result exponent
reaches the minimum value. If all the mantissa bits of the result are shifted
off to the right during this denormalization, the result becomes zero. In many
cases, gradual underflow limits the potential underflow damage to no more
than a round-off error. (This underflow and denormalization description ig-
nores the effects of rounding and the user-selectable rounding modes). Thus,
the large gap in the number line created by "“flush-to-zero”” number systems
is filled with representable (denormalized) numbers in the IEEE “‘gradual
underflow” floating-point number system.

Since the extended-precision data format has an explicit integer part bit, a
number can be formatted with a nonzero exponent (less than the maximum
value) and a zero integer bit, which is not defined by the IEEE standard. Such
a number is called an unnormalized number.

Denormalized and unnormalized numbers are not directly supported in hard-
ware, but are implicitly supported by trapping as an unimplemented data
type to allow efficient conversion in software. Refer to SECTION 9 EXCEPTION
PROCESSING for more details.

3.2.2.3 ZEROS. Zeros are signed (positive or negative) and represent the real
values +0.0 and —0.0 (see Figure 3-5).

EXPONENT =0 MANTISSA =0

SIGN OF MANTISSA, 0 OR 1

Figure 3-5. Format of Zero

MOTOROLA MC68040 USER'S MANUAL 3-7

3.2.2.4 INFINITIES. Infinities are signed (positive or negative) and represent real

values that exceed the overflow threshold. Overflow is detected for a given
data format and operation when the result exponent is greater than or equal
to the maximum exponent value. (This overflow description ignores the ef-
fects of rounding and the user-selectable rounding models.) For extended-
precision infinities, the MSB of the mantissa (the integer bit) can be either
one or zero (see Figure 3-6).

EXPONENT = MAXIMUM MANTISSA =0 *

L SIGN OF MANTISSA, 0 OR 1

* For the extended-precision format, the most significant bit of the mantissa (the integer bit) is a don't care.

Figure 3-6. Format of Infinity

3.2.2.5 NOT-A-NUMBERS. When created by the FPU, NANs represent the results

3-8

of operations having no mathematical interpretation, such as infinity divided
by infinity. All operations involving a NAN operand as an input return a NAN
result. When created by the user, NANs can protect against unitialized var-
iables and arrays or represent user-defined special number types. For ex-
tended-precision NANs, the MSB of the mantissa (the integer bit) can be
either one or zero (see Figure 3-7).

l l EXPONENT = MAXIMUM MANTISSA = ANY NON-ZERO BIT PATTERN

SIGN OF MANTISSA, 0 OR 1

Figure 3-7. Format of NANs

Two different types of NANs are implemented by the FPU. The value of the
MSB of the fraction identifies the type. The identifying bit is the MSB of the
mantissa for single and double precision, and the MSB of the mantissa minus
one for extended precision. NANs with a leading fraction bit equal to one
are nonsignaling NANs; NANs with a leading fraction bit equal to zero are
signaling NANs (SNANs). A SNAN can be used as an escape mechanism for
a user-defined, non-IEEE data type. The FPU never creates a SNAN as a result
of an operation.

MC68040 USER'S MANUAL MOTOROLA

The IEEE specification defines the manner in which a NAN is processed when
used as an input to an operation. Particularly, if a SNAN is used as an input
and the SNAN trap is not enabled, a nonsignaling NAN must be returned as
a result. The FPU accomplishes this by using the source SNAN, setting the
MSB of the fraction, and storing the resultant nonsignaling NAN in the des-
tination. Because of the IEEE formats for NANSs, the result of setting the most
significant fraction bit of a SNAN is always a nonsignaling NAN.

When NANs are created by the FPU, they always contain the same bit pattern
in the mantissa; for any precision, all bits of the mantissa are ones. When a
NAN is created by the user, any nonzero bit pattern can be stored in the
mantissa.

3.2.3 Floating-Point Data Format Details

Tables 3-2 through 3-4 provide the format specification details for the single
(S), double (D), and extended (X) precision binary real data formats.

3.3 ORGANIZATION OF DATA IN REGISTERS

The following paragraphs provide a description of data organization within
the data, address, and control registers.

3.3.1 Integer Data Registers

Each integer data register is 32 bits wide. Byte operands occupy the lower
order 8 bits, word operands the lower order 16 bits, and long-word operands
the entire 32 bits. When a data register is used as either a source or destination
operand, only the appropriate low-order byte or word (in byte or word op-
erations, respectively) is used or changed; the remaining high-order portion
is neither used nor changed. The LSB of a long-word integer is addressed
as bit zero and the MSB is addressed as bit 31. For bit fields, MSB is addressed
as bit zero, and the LSB is addressed as the width of the field minus one. If
the width of the field plus the offset is greater than 32, the bit field wraps
around within the register. Figure 3-8 shows the organization of various types
of data in the data registers.

Quad-word data consists of two long words: for example, the product of 32-

bit multiply or the quotient of 32-bit divide operations (signed and unsigned).
Quad words may be organized in any two integer data registers without

MOTOROLA MC68040 USER'S MANUAL 3-9

Table 3-2. Single-Precision Binary Real-Data Format

Memory Format:

Field Size (in Bits):

s = Sign
e = Biased Exponent
f = Fraction

Total

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum =
Bias of e .
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
f = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =
f = Mantissa = Significand =

NANs (Not-A-Number):
s =
e = Format Maximum =
f =
Representation of f

XXXX . . . XXXX
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

MC68040 USER'S MANUAL

31 30 23 2

BIASED
S EXPONENT FRACTION

+127 ($7F)

0 < e < 255 ($FF)

Zero or Nonzero

1f

(—1)s x 26127 x 1f

0 ($00)

+126 ($7E)

Nonzero

0.f

(—1)s x 2126 x of

0 ($00)
0.f =00

255 ($FF)
0.f =00

Don't Care

255 ($FF)

Non-Zero

0.7xxxx . .. xxxx, Nonsignaling
0.0xxxx . .. xxxx, Signaling
Nonzero Bit Pattern
Ao

34 x 1038
1.2 x 10s—38
14 x 10-4

MOTOROLA

Table 3-3. Double-Precision Binary Real-Data Format

Memory Format:

Field Size (in Bits):

s = Sign
e = Biased Exponent
f = Fraction

Total

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa = Significand =

Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum =
Bias of e
Range of f
Mantissa = Significand =

Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
f = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =
f = Mantissa = Significand =

NANs (Not-A-Number):
s =
e = Format Maximum =
f=
Representation of f

XXXX . . . XXXX
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

63 62 52 51 0
BIASED
N EXPONENT FRACTION

1

1

52

64

0

1

+1023

0 < e < 2047 ($7FF)
Zero or Nonzero

1.f

(—1)s x 261023 x 1§

0 ($000)

+1022 ($3FE)

Nonzero

0.f

(—1)s x 21022 x of

0 ($00)
0f =100

2047 ($7FF)
0f =00

Don’t Care
2047 ($7FF)
Nonzero

0.1xxxx . . . xxxx, Nonsignaling

0.0xxxx . .. xxxx, Signaling
Nonzero Bit Pattern
amem

18 x 10307
22 x 10—308
49 x 10—324

MC68040 USER’S MANUAL

3-1

Table 3-4. Extended-Precision Binary Real-Data Format

Memory Format:

Field Size (in Bits):

s = Sign
e = Biased Exponent
u = Zero, Reserved
i = Integer Part
f = Fraction

Total

Interpretation of Unused Bits:
Input
Output

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
j=
Range of f
jf = Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum
Bias of e
l =
Range of f
if = Mantissa = Significand =
Relation to Repr of Real Numbers

Signed Zeros:
e = Format Minimum '=
jf = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =
j=
jf = Mantissa = Significand

NANs (Not-A-Numbers):

N
i
e = Format Maximum =
f

Representation of f

XXX . . . XXXX
f When Created by the FPCP

Ranges (Approximate):

9% 94 80 79 64 62 0

BIASED INTEGER PART
EXPONENT FRACTION

S ZERO

1
15
16
1
63
96

Don't Care
All Zeros

+ 16383 ($3FFF)

0 <= e < 32767 ($7FFF)
1

Zero or Nonzero

1f

(—1)s x 26—16383 x jf

0 ($0000)

+16383 ($3FFF)

0

Nonzero

0.f

(—1)s x 216383 x of

0 ($0000)
00

32767 ($TFFF)
Don't Care
4000 . . . 0000

Don't Care
Don't Care
32767 ($7FFF)
Nonzero

j.Ixxx . .. xxxx, Nonsignaling
j.0xxx . .. xxxx, Signaling
Nonzero Bit Pattern
...

Maximum Positive Normalized 6 x 104931
Minimum Positive Normalized 8 x 10—4933
Minimum Positive Denormalized 9 x 104952
3-12 MC68040 USER'S MANUAL MOTOROLA

Bit (0=<Modulo (Offset)<31, Offset of 0=MSB)

3 30 2 10
[mss | | eoe T Tuss|
Byte
31 23 15 7 0
[HicH-0RDER BYTE MIDDLE-HIGH BYTE | MIDDLE-LOW BYTE | LOW-ORDERBYTE |
16-Bit Word
31 15 0
| HIGH-ORDER WORD | LOW-ORDER WORD [
Long Word
31 0
[LONG WORD |
Quad Word
63 2
[mss | ANY Dx |
31 0
| ANY Dy [158 |
Bit Field (0<Offset<32, 0<Width<32)
31 WIDTH 0
[OFFSET MsB - s | [

Note: If width + offset>32, bit field wraps around within the register.

Unpacked BCD (a=MSB)
3 7 6 5

4 3 2 1 0
I Ll [fxlalofcfa]
Packed BCD (a=MSB First Digit, e=MSB Second Digit)
31 2 1 0

7 6 5 4 3
I [ofolclafefrlafn]

Figure 3-8. Data Organization in Integer Data Registers

restrictions on order or pairing. There are no explicit instructions for the
management of this data type, although the MOVEM instruction can be used
to move a quad word into or out of the registers.

Binary-coded-decimal (BCD) data represents decimal numbers in binary form.
Although many BCD codes have been devised, the BCD instructions of the
M68000 Family support formats in which the LSBs consist of a binary number
having the numeric value of the corresponding decimal number. Two BCD

MOTOROLA MC68040 USER'S MANUAL 3-13

formats are used. In the unpacked BCD format, a byte contains one digit;
four LSBs contain the binary value and the four MSBs are undefined. Each
byte of the packed BCD format contains two digits; the least significant four
bits contain the least significant digit.

3.3.2 Floating-Point Data Registers

The eight, 80-bit floating-point data registers (FP7-FP0) are analogous to the
integer data registers (D7-D0) and are completely general purpose (i.e., any
instruction may use any register). The allowable data formats for the floating-
point data registers are explained in detail in the following paragraphs.

The FPU supports several data formats and data types with on-chip hardware.

Other data formats, such as packed-decimal real-data format, are supported
by software emulation (see Table 3-5).

Table 3-5. FPU Data Formats and Data Types

Data Formats
Data Types P?:(‘:igslieo-n PDr:;::Zn iﬁi?:«e,: ll;zf:'i(:\i-l I Byte Word Long-Word
Real Real Real Real nteger Integer Integer
Normal * * * @
Zero * * * (« * *
Infinity * * * («
NAN * * * (@
Denormalized (« (« (« @
Unnormalized (« («

NOTES:
* =Data Format/Type Supported by On-Chip FPU Hardware
(« =Data Format/Type Supported by Software

3.3.2.1 INTERNAL DATA FORMAT. All floating-point internal operations are per-

3-14

formed in extended precision. Regardless of data format, all external oper-
ands are converted to extended-precision values before the specified operation
is performed.

The format of an intermediate result is shown in Figure 3-9. The intermediate-
result exponent for some dyadic operations (multiply and divide) can easily
overflow or underflow the 15-bit exponent of the designation FP register. In
order to simplify the overflow and underflow detection, intermediate results
in the FPU maintain a 17-bit, twos-complement integer exponent. When an

MC68040 USER'S MANUAL MOTOROLA

overflow or underflow intermediate result is detected, the intermediate 17-
bit exponent is always converted into a 15-bit biased exponent before it is
stored in a floating-point data register. Additionally, the mantissa is main-
tained internally as 67 bits for rounding purposes, but is always rounded to
64 bits (or less, depending on the selected rounding precision) before it is
stored in a floating-point data register.

17-BIT 63-BIT
EXPONENT FRACTION

L LSB OF FRACTION j‘_l
INTEGER BIT GUARD BIT

OVERFLOW BIT ROUND BIT
STICKY BIT

Figure 3-9. Intermediate-Result Format

3.3.2.2 FORMAT CONVERSIONS. Two cases of conversion between two data for-
mats are as follows:

1) Converting an operand in any memory data format to the extended-
precision data format and storing it in a floating-point data register or
using it as the source operand for an arithmetic operation.

2) Converting the extended-precision value in a floating-point data register
to any data format and storing it in a memory destination or integer
register.

Since the internal data format used by the FPU is always extended precision,
all external operands, regardless of data format, are converted to extended-
precision values before the specified operation is performed. If the external
operand, regardless of data format, is a denormalized number, the number
is normalized before the operation is performed. Conversion and normali-
zation apply not only to loading a floating-point data register but also to
external operands involved in arithmetic operations.

Because floating-point data registers always contain extended-precision data
format values, an external extended-precision denormalized number moved
into a floating-point data register is stored as an extended-precision denor-
malized number. The number is first normalized and then denormalized be-
fore it is stored in the designated floating-point data register. This method
simplifies the handling of all other data formats and types.

MOTOROLA MC68040 USER'S MANUAL 3-15

333

3-16

If an external operand is an extended-precision unnormalized number, the
number is normalized before it is used in an arithmetic operation. If the
external operand is an extended-precision unnormalized zero (i.e., with a
mantissa of all zeros), the number is converted to an extended-precision
normalized zero before the specified operation is performed. This normali-
zation and conversion applies to loading a floating-point data register. The
regular use of unnormalized inputs not only defeats the purpose of the IEEE
standard, but also may produce gross inaccuracy in the results.

Conversion from the extended-precision data format to any of the other five
floating-point data formats occurs when the contents of a floating-point data
register are stored to memory or to an integer data register. Since no op-
eration performed by the FPU can create an unnormalized result, the result
of moving the contents of a floating-point data register to an extended-
precision external destination can never be an unnormalized number.

Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit
address. Address registers cannot be used for byte-sized operands. There-
fore, when an address register is used as a source operand, either the low-
order word or the entire long-word operand is used, depending upon the
operation size. When an address register is used as the destination operand,
the entire register is affected, regardless of the operation size. If the source
operand is a word size, it is first sign-extended to 32 bits, and then used in
the operation to an address register destination. Address registers are used
primarily for addresses and address-computation support. The instruction
set includes instructions that add to, compare, and move the contents of
address registers. Figure 3-10 shows the organization of addresses in address
registers.

31 15 0
l SIGN EXTENDED 16-BIT ADDRESS OPERAND I
31 0
I FULL 32-BIT ADDRESS OPERAND J

Figure 3-10. Address Organization in Address Registers

MC68040 USER'S MANUAL MOTOROLA

3.3.4 Control Registers

The control registers (refer to Figure 2-3) vary in size according to function.
The lower byte of the status register (SR), floating-point control register
(FPCR), floating-point status register (FPSR), and floating-point instruction
address register (FPIAR) are accessible at the user privilege level. All other
control registers may be accessed only at the supervisor privilege level.

NOTE

Some control registers have undefined bits reserved for future def-
inition by Motorola. Those particular bits are read as zeros and must
be written as zeros for future compatibility.

Although the SR is 16 bits wide, only 12 bits are defined. The undefined bits
are reserved by Motorola for future definition. The lower byte of the SR is
the condition code register (CCR). Operations to the CCR can be performed
in the supervisor or user mode. All operations to the SR and CCR are word-
sized operations, but for all CCR operations, the upper byte is read as all
zeros and is ignored when written, regardless of privilege level.

The 32-bit FPCR contains an exception enable byte that enables/disables traps
for each class of floating-point exceptions and a mode byte that sets the
user-selectable modes. The FPCR can be read or written to by the user. Bits
31-16 are reserved for future definition by Motorola.

The 32-bit FPSR contains a condition code byte, an exception status byte,
guotient bits, and an accrued exception byte. Execution of most floating-
point instructions modifies this register.

For the subset of the FPU instructions that generate exception traps, the 32-
bit FPIAR register is loaded with the logical address of an instruction before
the instruction is executed (unless all arithmetic exceptions are disabled).
This address can then be used by a floating-point exception handler to locate
a floating-point instruction that has caused an exception.

The vector base register (VBR) provides the base address of the exception
vector table. The cache control register (CACR) provides control and status
information for the on-chip instruction and data caches.

The alternate function code registers (SFC and DFC) are 32-bit registers with

only bits 0-2 implemented. These bits contain the address space values for
the read or write operands of MOVES, PFLUSH, and PTEST instructions. The

MOTOROLA MC68040 USER'S MANUAL 3-17

MOVEC instruction is used to transfer values to and from the SFC and DFC.
These are long-word transfers; the upper 29 bits are read as zeros and are
ignored when written.

The remaining control registers are used by the MMU. The user root pointer
(URP) and supervisor root pointer (SRP) contain pointers to the user and
supervisor address translation trees. Transfers of data to and from these 32-
bit registers are long-word transfers. The translation control (TC) register
contains information for the MMU. The MC68040 always uses word transfers
to access this 16-bit register. The 32-bit transparent translation registers (DTTO,
DTT1, ITTO, ITT1) identify memory areas for direct addressing without ad-
dress translation. Data transfers to and from these registers are long-word
transfers. The MMU status register (MMUSR) stores the status of the MMU
after execution of a PTEST instruction. Transfers to and from the MMUSR
are word transfers. Refer to SECTION 6 MEMORY MANAGEMENT UNIT for
more details.

3.4 ORGANIZATION OF DATA IN MEMORY

3.4.1

3-18

Memory is organized on a byte-addressable basis where lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the MSB of the highest-order word. The lower-
order word is located at address N +2, leaving the LSB at address N + 3 (see
Figure 3-11). The MC68040 does not require data to be aligned on word
boundaries, but the most efficient data transfers occur when data is aligned
on the same byte boundary as its operand size. However, instruction words
must be aligned on word boundaries.

All data formats are organized in memory consistent with the M68000 Family
data organization, i.e., the MSB is located at the lowest address (nearest
$00000000), with each successive LSB located at the next address (N+1,
N+2, etc.). The LSB is located at the highest address (nearest $FFFFFFFF).

Integer Data Formats

The following integer data types are supported in memory by the MC68040:
bit and bit-field data; signed and unsigned integer data of 8, 16, or 32 bits;
16-byte block; 32-bit addresses; and BCD {(packed and unpacked). These data
types are organized in memory as shown in Figure 3-12.

MC68040 USER'S MANUAL MOTOROLA

31 23 15 7 0
LONG WORD $00000000
WORD $00000000 WORD $00000002

BYTE $00000000 I BYTE $00000001 BYTE $00000002 I BYTE $00000003
LONG WORD $00000004

WORD $00000004 WORD $00000006

BYTE $00000004 I BYTE $00000005 BYTE $00000006 ‘ BYTE $00000007

/ . ? . Z

LONG WORD $FFFFFFFC
WORD $FFFFFFFC WORD $FFFFFFFE
BYTE $FFFFFFFC BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

Figure 3-11. Memory Operand Addressing

A bit operand is specified by a base address that selects one byte in memory
(the base byte) and a bit number that selects one bit in the base byte. The
MSB of the byte is seven.

A bit-field operand is specified by:
1. A base address that selects one byte in memory,

2. A bit-field offset that indicates the leftmost (base) bit of the bit field in
relation to the MSB of the base byte, and

3. A bit-field width that determines how many bits to the right of the base
bit are in the bit field.

The MSB of the base byte is bit-field offset 0, the LSB of the base byte is bit-
field offset 7, and the LSB of the previous byte in memory is bit-field offset
—1. Bit-field offsets may have values in the range of 2—31 to 231-1, and
bit-field widths may range from 1 to 32 bits. 4

A 16-byte block operand (supported by the MOVE16 instruction) consists of

a block of 16 bytes, aligned to a 16-byte boundary. This operand is specified
by an address that can point to any byte in the block.

MOTOROLA MC68040 USER'S MANUAL 3-19

7 0|7 0|7 0
BYTEn1 |765 4E|2 10| BYTEns BYTE n+2 | BIT DATA
ADDRESS BIT
NUMBER BASE BIT
7 0|7 0|7 v 0
BIT FIELD
BYTE n-1 BYTEn 0123.... wi DATA
le—OFFSET 1<—5—0FFSET—>Q—W|DTH—>
BASE ADDRESS
7 0|7 0|7 0
BYTEn1 |MSB BYTEn LSB| BYTEn BYTE n+2 IBYTE DATA
7
ADDRESS
7 0|7 0|7 0|7 0
WORD INTEGER BYTE n+2 BYTE n+3 IWORDDATA
Y
ADDRESS
7 0|7 017 0|7 0[7 0
f BYTE n-1 LONG-WORD INTEGER BYTE n+d LONG WoRD
A
ADDRESS
7 oy7 0[7 017 017 0
BYTE n-1
I QUAD-WORD INTEGER QuapwoRe
BYTE n48
7 07 0]7 0|7 0|7 0 0
BYTE n1
16-BYTE BLOCK
(ALIGNED TO
16-BYTE 16-BYTE BLOCK
BOUNDARY)
BYTE n+16 I
7 0|7 43 0|7 0 PACKED
l BYTE n-1 MSD | LsD BYTE n+1 BYTEn+2 | BINARY-CODED
DATA
ADDRESS
7 0|7 4|3 0|7 4[3 o0 UNPACKED
| BYTE n-1 XX | MsD | xx | Lsp BYTEn+2 | BINARY-CODED
DATA
ADDRESS
Figure 3-12. Memory Organization for Integer Operands
3-20 MC68040 USER’'S MANUAL

MOTOROLA

3.4.2 Floating-Point Data Formats

Figure 3-13 shows the floating-point data format for the single- (S), double-
(D), and extended-precision (X) binary real-data floating-point organization
in memory. Tables 3-2 through 3-4 provide the format specification details
for these formats.

7 0|7 0]7 0|7 0|7 0|7 0
l BYTE n-1 SINGLE- PRECISION REAL BYTE n+4 I
A
ADDRESS
7 oy 7 0|7 07 0]7 0|7 0
BYTE n-1
DOUBLE- PRECISION REAL
BYTE n+8
ADDRESS
7 oy 7 017 0]7 07 0|7 0
BYTE n-1
EXTENDED -
PRECISION
REAL
BYTEns2 |

Figure 3-13. Memory Organization for Floating-Point Operands

3.5 ADDRESSING MODES

The addressing mode of an instruction can specify the value of an operand
(with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad-
dressing mode.

Figure 3-14 shows the general format of the single-effective-address instruc-
tion operation word. The effective address field specifies the addressing
mode for an operand that can use one of the numerous defined modes. The
(ea) designation is composed of two 3-bit fields: the mode field and the
register field. The value in the mode field selects one or a set of addressing
modes. The register field specifies a register for the mode or a sub-mode for
modes not using registers.

MOTOROLA MC68040 USER'S MANUAL 3-21

3-22

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
x | x | x| x| x| x| x| x| x| «x
MODE | RecisTeR

Figure 3-14. Single-Effective-Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The
formats of these instructions include appropriate fields for operands that use
only one addressing mode.

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 3.6 EFFECTIVE ADDRESS ENCODING SUMMARY
for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this
section are:

EA—Effective address
An—Address register n
Example: A3 is address register 3
Dn—Data register n
Example: D5 is data register 5
Xn.SIZE*SCALE—Denotes index register n (data or address), the index size
(W for word, L for long word), and a scale factor (1, 2, 4,
or 8, for no-word, word, long-word, or 8 for quad-word
scaling, respectively).
PC—The program counter
dn—Displacement value, n bits wide
bd—Base displacement
od—Outer displacement
L—Long word size
W—Word size
()—ldentify an indirect address in a register
[]—Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

MC68040 USER'S MANUAL MOTOROLA

3.5.1 Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified
by the effective address register field.

GENERATION: EA = Dn

ASSEMBLER SYNTAX: Dn

MODE: 000 a1 0 3
REGISTER: n

DATA REGISTER: Dn > OPERAND |

NUMBER OF EXTENSION WORDS: 0

3.5.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register
specified by the effective address register field.

GENERATION: EA = An

ASSEMBLER SYNTAX: An

MODE: 001 3 0
REGISTER: n

ADDRESS REGISTER: An ={ OPERAND J

NUMBER OF EXTENSION WORDS: 0

3.5.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory and the
address of the operand is in the address register specified by the register

field.

GENERATION: EA = (An)

ASSEMBLER SYNTAX: (An)

MODE: 010 " 0

REGISTER: n :

ADDRESS REGISTER: An =|' MEMORY ADDRESS |
3 * ‘ 0

MEMORY ADDRESS: OPERAND J

NUMBER OF EXTENSION WORDS: 0

MOTOROLA MC68040 USER'S MANUAL 3-23

3.5.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. After the operand address is used, it is incremented by
one, two, or four depending on the size of the operand: byte, word, or long
word. Coprocessors may support incrementing for any size of operand, up
to 255 bytes. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION: EA = (An)
An = An + SIZE
ASSEMBLER SYNTAX: (An) +
MODE: on
0

REGISTER: n Ll:“
ADDRESS REGISTER: An —> MEMORY ADDRESS J
OPERAND LENGTH (1, 2, OR 4): %1—

31 0
MEMORY ADDRESS: l OPERAND l

NUMBER OF EXTENSION WORDS:

0

3.5.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in
memory and the address of the operand is in the address register specified
by the register field. Before the operand address is used, it is decremented
by one, two, or four depending on the operand size: byte, word, or long
word. Coprocessors may support decrementing for any operand size up to
255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION:
ASSEMBLER SYNTAX:
MODE:

REGISTER:
ADDRESS REGISTER:

OPERAND LENGTH (1, 2, OR 4):

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

3-24

An = An - SIZE
EA = (An)

- (An)

100

n

»l
An >

MEMORY ADDRESS

OPERAND

MC68040 USER'S MANUAL

3.5.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in
memory. The address of the operand is the sum of the address in the address
register plus the sign-extended 16-bit displacement integer in the extension
word. Displacements are always sign extended to 32 bits prior to being used
in effective address calculations.

GENERATION: EA = (An) + d1g
ASSEMBLER SYNTAX: {d1g.An)
MODE: 101
REGISTER: n 3 0
ADDRESS REGISTER: An =IL MEMORY ADDRESS |
31 15 0
DISPLACEMENT: [SIGN EXTENDED [INTEGER
31 0
MEMORY ADDRESS: OPERAND]

NUMBER OF EXTENSION WORDS: 1

3.5.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index
register indicator and an 8-bit displacement. The index register indicator
includes size and scale information. In this mode, the operand is in memory.
The address of the operand is the sum of the contents of the address register,
the sign extended displacement value in the low order eight bits of the
extension word, and the sign extended contents of the index register (pos-
sibly scaled). The user must specify the displacement, the address register,
and the index register in this mode.

GENERATION: EA = (PC) + (Xn) + dg
ASSEMBLER SYNTAX: (45, PC,¥n SIZE*SCALE)
MODE: 10
3 0
REGISTER: on
PROGRAM COUNTER: »{ ADDRESS OF EXTENSION WORD |
3 7 0
DISPLACEMENT: E SIGN EXTENDED | INTEGER I »(+
3 o 0
INDEX REGISTER: [SIGN EXTENDED VALUE
SCALE: [SCALE VALUE
3 0
MEMORY ADDRESS: | OPERAND 1

NUMBER OF EXTENSION WORDS: 1

MOTOROLA MC68040 USER'S MANUAL 3-25

35.8

Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The index register indicator
includes size and scaling information. The operand is in memory. The address
of the operand is the sum of the contents of the address register, the scaled
contents of the sign-extended index register, and the base displacement.

In this mode, the address register, the index register, and the displacement
are all optional. If none is specified, the effective address is zero. This mode
provides a data register indirect address when no address register is specified
and the index register is a data register (Dn).

GENERATION: EA = (An) + (Xn) + bd
ASSEMBLER SYNTAX: {bd, An, Xn.SIZE*SCALE)
MODE: 10 . 0
REGISTER: n -
ADDRESS REGISTER: An > MEMORY ADDRESS |
3 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE } +
3 0
INDEX REGISTER: | SIGN EXTENDED VALUE
SCALE: [SCALE VALUE
3 0
MEMORY ADDRESS: [OPERAND]

NUMBER OF EXTENSION WORDS: 1.2, 0R 3

35.9

3-26

Memory Indirect Postindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
(An) and base displacement (bd). The processor accesses a long word at this
address and adds the index operand (Xn.SIZE*SCALE) and the outer dis-
placement to yield the effective address. Both displacements and the index
register contents are sign extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

MC68040 USER'S MANUAL MOTOROLA

3.5.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register

(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE).
The processor accesses a long word at this address and adds the outer
displacement to yield the effective address. Both displacements and the index

register contents are sign extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is

taken as zero in the effective address calculation.

GENERATION: EA = (bd + An) + Xn.SIZE*SCALE + o
ASSEMBLER SYNTAX: ([bd, An], Xn.SIZE *SCALE.od) - 0
ngﬁéss REGISTER: l:‘o > MEMORY ADDRESS |
3 0
BASE DISPLACEMENT: [SIGN EXTENDED VALUE 'r +
31 0
I INDIRECT MEMORY ADDRESS]
R POINTS TO ,
[VALUE AT INDIRECT MEMORY ADDRESS]
31 0
INDEX REGISTER: [SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
3 0
OUTER DISPLACEMENT: [SIGN EXTENDED VALUE } >+
3 0
EFFECTIVE ADDRESS: (OPERAND]

NUMBER OF EXTENSION WORDS: 1,2, 3,4, OR5

MOTOROLA MC68040 USER'S MANUAL

3-27

3.5.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the
sum of the address in the program counter and the sign-extended 16-bit
displacement integer in the extension word. The value in the program counter
is the address of the extension word. The reference is a program space

reference and is only allowed for reads.

GENERATION: EA = (PC) + dig
ASSEMBLER SYNTAX: {d16,PC)
MODE: m
REGISTER: 010 31 0
PROGRAM COUNTER: =|f ADDRESS OF EXTENSION WORD l
3 15 0
DISPLACEMENT: E SIGN EXTENDED [INTEGER
31 0
MEMORY ADDRESS: [OPERAND]

NUMBER OF EXTENSION WORDS: 1

3-28 MC68040 USER'S MANUAL MOTOROLA

3.5.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

This mode is similar to the address register indirect with index (8-bit dis-
placement) mode described in 3.5.7 Address Register Indirect with Index (8-
Bit Displacement) Mode, except the PC is used as the base register. The
operand is in memory. The address of the operand is the sum of the address
in the program counter, the sign-extended displacement integer in the lower
eight bits of the extension word, and the sized, scaled, and sign-extended
index operand. The value in the PC is the address of the extension word.
This reference is a program space reference and is only allowed for reads.
The user must include the displacement, the PC, and the index register when
specifying this addressing mode.

GENERATION: EA = (An) + (Xn) + dg

ASSEMBLER SYNTAX: (dg.An,Xn.SIZE * SCALE)

MODE: m

REGISTER: n 5 0
ADDRESS REGISTER: An %{ MEMORY ADDRESS I

DISPLACEMENT: E SIGN EXTENDED | INTEGER }

INDEX REGISTER: l SIGN EXTENDED VALUE

SCALE:

31 1 0

31 0

I SCALE VALUE

31

MEMORY ADDRESS: L OPERAND I

NUMBER OF EXTENSION WORDS: 1

3.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base dis-
placement) mode described in 3.5.8 Address Register Indirect with Index
(Base Displacement) Mode, except the PC is used as the base register. It
requires an index register indicator and an optional 16- or 32-bit sign-ex-
tended base displacement. The operand is in memory. The address of the
operand is the sum of the contents of the PC, the scaled contents of the sign-
extended index register, and the base displacement. The value of the PC is
the address of the first extension word. The reference is a program space
reference and is only allowed for reads.

MOTOROLA MC68040 USER'S MANUAL 3-29

In this mode, the PC, the index register, and the displacement are all optional.
However, the user must supply the assembler notation “ZPC" (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space, without using the PC in calculating the effective
address. The user can access the program space with a data register indirect
access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

GENERATION: EA = (PC) + (Xn) + bd
ASSEMBLER SYNTAX: {bd,PC, X0 SIZE *SCALE)
MODE: m
3 0
REGISTER: o ,
PROGRAM COUNTER: =|r ADDRESS OF EXTENSION WORD j
31
BASE DISPLACEMENT: [SIGN EXTENDED VALUE
3
INDEX REGISTER: [SIGN EXTENDED VALUE
SCALE: l SCALE VALUE
3 0
MEMORY ADDRESS: | OPERAND |
NUMBER OF EXTENSION WORDS: 1, 2, OR 3

3.5.14 Program Counter Memory Indirect Postindexed Mode

3-30

This mode is similar to the memory indirect postindexed mode described in
3.5.9 Memory Indirect Postindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro-
cessor calculates an intermediate indirect memory address by adding a base
displacement (bd) to the PC contents. The processor accesses a long word
at that address and adds the scaled contents of the index register and the
optional outer displacement (od) to yield the effective address. The value of
the PC used in the calculation is the address of the first extension word. The
reference is a program space reference and is only allowed for reads.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC to indicate that
the PC is not used. This allows the user to access the program space, without
using the PC in calculating the effective address. Both the base and outer
displacements may be null, word, or long word. When a displacement is
omitted or an element is suppressed, its value is taken as zero in the effective
address calculation.

MC68040 USER’S MANUAL MOTOROLA

GENERATION: EA = (bd + PC) + Xn.SIZE*SCALE + od

ASSEMBLER SYNTAX: {[bd, PC] Xn.SIZE *SCALE.od)
MODE: m
31 0
REGISTER FIELD: on
PROGRAM COUNTER: ={ ADDRESS OF EXTENSION WORD]
31 0
BASE DISPLACEMENT: [SIGN EXTENDED VALUE J' »(+
3 0
[INDIRECT MEMORY ADDRESS |
POINTS TO
31 0
l VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE I
31 0
INDEX REGISTER: [SIGN EXTENDED VALUE
l SCALE VALUE
31 0
OUTER DISPLACEMENT: l SIGN EXTENDED VALUE J‘ +
31 0
EFFECTIVE ADDRESS: OPERAND J
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

3.5.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the memory indirect preindexed mode described in
3.5.10 Memory Indirect Preindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro-
cessor calculates an intermediate indirect memory address by adding the PC
contents, a base displacement, and the scaled contents of an index register.
The processor accesses a long word at that address and adds the optional
outer displacement to yield the effective address. The value of the PC is the
address of the first extension word. The reference is a program space ref-
erence and is only allowed for reads.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC to indicate that
the PC is not used. This allows the user to access the program space, without
using the PC in calculating the effective address. Both the base and outer
displacements may be null, word, or long word. When a displacement is
omitted or an element is suppressed, its value is taken as zero in the effective
address calculation.

MOTOROLA MC68040 USER’'S MANUAL 3-31

GENERATION: EA = (bd + PC + Xn.SIZE*SCALE) + od

ASSEMBLER SYNTAX: ([bd. PC,Xn.SIZE *SCALE] od)
MODE: m
3 0
REGISTER FIELD: o
PROGRAM COUNTER: ’ll ADDRESS OF EXTENSION WORD I
31 0
BASE DISPLACEMENT: I SIGN EXTENDED VALUE
3 0
INDEX REGISTER: [SIGN EXTENDED VALUE
r SCALE VALUE
3 0
| INDIRECT MEMORY ADDRESS |
POINTS TO
31 0

[VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE I

31 0
OUTER DISPLACEMENT: [SIGN EXTENDED VALUE

31

0

EFFECTIVE ADDRESS: l

OPERAND

]

NUMBER OF EXTENSION WORDS: 1,234 0R5

3.5.16 Absolute Short Address Mode

In this addressing mode, the operand is in memory and the address of the
operand is in the extension word. The 16-bit address is sign extended to 32

bits before it is used.

GENERATION: EA GIVEN

ASSEMBLER SYNTAX: (X)W

MODE: i

REGISTER: 000 N ' 0

EXTENSION WORD: =[SIGN EXTENDED MEMORY ADDRESS |
3 Y 0

MEMORY ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 1

3.5.17 Absolute Long Address Mode

In this mode, the operand is in memory and the address of the operand
occupies the two extension words following the instruction word in memory.
The first extension word contains the high-order part of the address; the low-
order part of the address is the second extension word.

3-32 MC68040 USER'S MANUAL

MOTOROLA

GENERATION: EA GIVEN

ASSEMBLER SYNTAX: pon).L
MODE: m " 0
REGISTER: 001
FIRST EXTENSION WORD: ='L ADDRESS HIGH]
15 0
SECOND EXTENSION WORD: er ADDRESS LOW I
31 \ 0

Y
[CONCATENATION]

31 { 0
MEMORY ADDRESS: | OPERAND]
NUMBER OF EXTENSION WORDS: 2

3.5.18 Immediate Data
In this addressing mode, the operand is in one or two extension words:

Byte Operation
Operand is in the low-order byte of the extension word

Word Operation
Operand is in the extension word

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word; the
low-order 16 bits are in the second extension word.

Floating-Point Single-Precision Operation
The single-precision operand is in two extension words.

Floating-Point Double-Precision Operation
The double-precision operand is in four extension words.

Floating-Point Extended-Precision Operation
The extended-precision operand is in six extension words.

Floating-Point Packed-Decimal Real Operation
Packed-decimal real operands are supported by software emulation, and
therefore have a length dependent on the implementation.

The immediate data format is as follows:

Generation: Operand given

Assembler Syntax: H#XXX

Mode Field: m

Register Field: 100

Number of Extension Words: 1, 2, 4 or 6, except for packed decimal real operands

MOTOROLA MC68040 USER'S MANUAL 3-33

3.6 EFFECTIVE ADDRESS ENCODING SUMMARY

Most of the addressing modes use one of the three formats shown in Table
3-6. The single effective address instruction is in the format of the instruction
word. The encoding of the mode field of this word selects the addressing
mode. The register field contains the general register number or a value that
selects the addressing mode when the mode field contains “111"”. Some
indexed or indirect modes use the instruction word followed by the brief
format extension word. Other indexed or indirect modes consist of the in-
struction word and the full format of extension words. The longest instruction
for the MC68040 contains ten extension words. It is.a MOVE instruction with
full format extension words for both the source and destination effective
addresses, and with 32-bit base displacements and 32-bit outer displace-
ments for both addresses.

Table 3-6. Effective Address Specification Formats

Single Effective Address Instruction Format

15 14 13 12 1 10 9 8 7 6 5 4 3.2 1 0
X X X X X X X X X X EFFECTIVE ADDRESS
MODE | RecisTeR
Brief Format Extension Word
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
[o] REGISTER [we] scae [o] DISPLACEMENT]
Full Format Extension Word(s)
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
D/A REGISTER | wi | ScALE | 1 [Bs | is | BosizE | o | s
BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)
Field Definition Field Definition
Instruction: BS Base Register Suppress:
Register - General Register Number 0=Base Register Added
Extensions: 1=Base Register Suppressed
Register Index Register Number 1S Index Suppress:
D/A Index Register Type 0=Evaluate and Add Index Operand
0=Dn 1=Suppress Index Operand
1=An BD SIZE Base Displacement Size:
W/L Word/Long Word Index Size 00 = Reserved

0=Sign Extended Word

01=Null Displacement

1=Long Word 10=Word Displacement

Scale Scale Factor 11=Long Displacement
00=1 ns Index/Indirect Selection:
01=2 Indirect and Indexing Operand Deter-
10=4 mined in Conjunction with Bit 6, Index
11=8 Suppress

3-34

MC68040 USER'S MANUAL MOTOROLA

For effective addresses that use the full format, the index suppress (IS) bit
and the index/indirect selection (I/IS) field determine the type of indexing and
indirection. Table 3-7 lists the indexing and indirection operations corre-
sponding to all combinations of IS and /IS values.

Table 3-7. IS-I/IS Memory Indirection Encodings

IS Index/Indirect Operation

0 000 No Memory Indirection

0 001 Indirect Preindexed with Null Outer Displacement
0 010 Indirect Preindexed with Word Outer Displacement
0 0 Indirect Preindexed with Long Outer Displacement
0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement
0 110 Indirect Postindexed with Word Outer Displacement
0 1M Indirect Postindexed with Long Outer Displacement
1 000 No Memory Indirection

1 001 Memory Indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100-111 Reserved

Effective address modes are grouped according to the use of the mode. They
can be classified as follows:

Data A data addressing effective address mode is one that refers to data
operands.

Memory A memory addressing effective address mode is one that refers
to memory operands.

Alterable An alterable addressing effective address mode is one that refers
to alterable (writable) operands.

Control A control addressing effective address mode is one that refers to
memory operands without an associated size.

Table 3-8 shows the categories to which each of the effective addressing
modes belong.

MOTOROLA MC68040 USER'S MANUAL 3-35

Table 3-8. Effective Addressing Mode Categories

Mode

Address Modes Field Register | Data | Memory | Control | Alterable |[Assembler Syntax

Data Register Direct 000 reg. no. X — — X Dn
Address Register Direct 001 reg. no. — — - X An
Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect

with Postincrement 011 reg. no. X X —_ X (An) +
Address Register Indirect

with Predecrement 100 reg. no. X X X —(An)
Address Register Indirect

with Displacement 101 reg. no. X X X (d16.An)
Address Register Indirect with

Index (8-Bit Displacement) 110 reg. no. X X X X (dg,An,Xn)
Address Register Indirect with

Index (Base Displacement) 110 reg. no. X X X X (bd,An,Xn)
Memory Indirect Postindexed 110 reg. no. X X X X ([bd,An],Xn,od)
Memory Indirect Preindexed 110 reg. no. X X X X ([bd,An,Xn],od)
Absolute Short m 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L
Program Counter Indirect

with Displacement 111 010 X X X — (d16,PC)
Program Counter Indirect with

Index (8-Bit) Displacement 1M 011 X X X — (dg,PC,Xn)
Program Counter Indirect with

Index (Base Displacement) m 011 X X X — (bd,PC,Xn)
PC Memory Indirect

Postindexed m 011 X X X — ([bd,PC],Xn,od
PC Memory Indirect

Preindexed 1M 011 X X X — ([bd,PC,Xn],0d)
Immediate 1 100 X X — — #(data)

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or data
alterable. The former refers to those addressing modes that are both alterable
and memory addresses, and the latter refers to addressing modes that are
both data and alterable.

3.7 PROGRAMMER’S VIEW OF ADDRESSING MODES

Extensions to the indexed addressing modes, indirection, and full 32-bit dis-
placements provide additional programming capabilities for the MC68020,
the MC68030, and the MC68040. The following paragraphs describe address-
ing techniques that exploit these capabilities and summarize the addressing
modes from a programming point of view.

3-36

MC68040 USER'S MANUAL

MOTOROLA

Several of the addressing techniques described use data registers and ad-
dress registers interchangeably. While the MC68040 provides this capability,
its performance has been optimized for addressing with address registers.
The performance of a program that uses address registers in address cal-
culations is superior to that of a program that similarly uses data registers.
The specification of addresses with data registers should be used sparingly
(if at all), particularly in programs that require maximum performance.

3.7.1 Addressing Capabilities

In the MC68020, MC68030, and the MC68040, setting the base register sup-
press (BS) bit in the full format extension word (Table 3-6) suppresses use
of the base address register in calculating the effective address. This allows
any index register to be used in place of the base register. Since any of the
data registers can be index registers, this provides a data register indirect
form (Dn). The mode could be called register indirect (Rn), since either a data
register or an address register can be used. This addressing mode is an
extension to the M68000 Family because the MC68040, MC68030, and
MC68020 can use both the data registers and the address registers to address
memory. The capability of specifying the size and scale of an index register
(Xn.SIZE*SCALE) in these modes provides additional addressing flexibility.
Using the SIZE parameter, either the entire contents of the index register can
be used, or the least significant word can be sign extended to provide a 32-
bit index value (see Figure 3-15).

oL W////////WW] o

31 16 15 0

o | Yoz
USED IN ADDRESS CALCULATION

Figure 3-15. Using SIZE in the Index Selection

For the MC68020, MC68030, and the MC68040, the register indirect modes
can be extended further. Since displacements can be 32 bits wide, they can
represent absolute addresses or the results of expressions that contain ab-
solute addresses. This allows the general register indirect form to be (bd,Rn),
or (bd,An,Rn) when the base register is not suppressed. Thus, an absolute
address can be directly indexed by one or two registers (see Figure 3-16).

MOTOROLA MC68040 USER’S MANUAL 3-37

3-38

SYNTAX (bd,An,Rn)

Rn

AN

/ /

Figure 3-16. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the effective address
calculation (the actual value in the index register remains unchanged). This
is equivalent to multiplying the register by one, two, four, or eight for direct
subscripting into an array of elements of corresponding size using an arith-
metic value residing in any of the 16 general registers. Scaling does not add
to the effective address calculation time. However, when combined with the
appropriate derived modes, it produces additional capabilities. Arrayed struc-
tures can be addressed absolutely and then subscripted, (bd,Rn*SCALE), for
example. Optionally, an address register that contains a dynamic displace-
ment can be included in the address calculation (bd,An,Rn*SCALE). Another
variation that can be derived is (An,Rn*SCALE). In the first case, the array
address is the sum of the contents of a register and a displacement, as shown
in Figure 3-17. In the second example, An contains the address of an array
and Rn contains a subscript.

The memory indirect addressing modes use a long-word pointer in memory
to access an operand. Any of the modes previously described can be used
to address the memory pointer. Because the base and index registers can
both be suppressed, the displacement acts as an absolute address, providing
indirect absolute memory addressing (see to Figure 3-18).

MC68040 USER'S MANUAL MOTOROLA

SYNTAX: MOVE.W (A5, A6.L*SCALE),(A7)
WHERE
A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

g s

15 0
" TR v —)
— i AN\

/ /7 /

RECORD OF 4 WORDS RECORD OF 8 WORDS
(SCALE =8)

“;:%</<<<<< Aﬁ%

N

NOTE: Regardless of array structure, software increments index by the
appropriate amount to point to next record.

/

Figure 3-17. Addressing Array ltems

MOTOROLA MC68040 USER'S MANUAL 3-39

3-40

bd ————> POINTER DATA ITEM

{ {4 {

Figure 3-18. Using Indirect Absolute Memory Addressing

The outer displacement (od) available in the memory indirect modes is added
to the pointer in memory. The syntax for these modes is ([bd,An],Xn,od) and
([bd,An,Xn],od). When the pointer is the address of a structure in memory
and the outer displacement is the offset of an item in the structure, the
memory indirect modes can access the item efficiently (see to Figure 3-19).

SYNTAX: ([An],0d)

MEMORY STRUCTURE

An ————> POINTER

DATA ITEM

7 ;7 /

Figure 3-19. Accessing an Item in a Structure Using Pointer

Memory indirect addressing modes are used with a base displacement in
five basic forms:

. [bd,An] — Indirect, suppressed index register

. ([bd,An,Xn]) — Preindexed indirect

. {[bd,An],Xn) — Postindexed indirect

. ([bd,An,Xn],od) — Preindexed indirect with outer displacement

. ([bd,An],Xn,od — Postindexed indirect with outer displacement

AP WN =

MC68040 USER'S MANUAL MOTOROLA

The indirect, suppressed index register mode (see Figure 3-20) uses the con-
tents of register An as an index to the pointer located at the address specified

by the displacement. The actual data item is at the address in the selected
pointer.

SYNTAX: ([bd,An))
POINTERLIST

* POINTER - : DATA ITEM

Figure 3-20. Indirect Addressing, Suppressed Index Register

The preindexed indirect mode (see Figure 3-21) uses the contents of An as
an index to the pointer list structure at the displacement. Register Xn is the
index to the pointer, which contains the address of the data item.

SYNTAX: ([bd,An,Xn])

POINTER LIST

]

!

| DATAITEM
Xn

!

POINTER

/ ;7 7

Figure 3-21. Preindexed Indirect Addressing

MOTOROLA MC68040 USER'S MANUAL 3-41

3-42

The postindexed indirect mode (sse Figure 3-22) uses the contents of An as
an index to the pointer list at the displacement. Register Xn is used as an
index to the structure of data items located at the address specified by the
pointer. Figure 3-23 shows the preindexed indirect addressing with outer
displacement mode. ”

SYNTAX: ([bdAn}.Xn) -

" POINTERLIST

bd —— >
- An .
Xn
POINTER DATA ITEM

Figure 3-22. Postindexed Indirect Ad.dressing
" SYNTAX: ([bdAnXnlod) .

POINTERLIST - STRUCTURE

S

I

Xn

!

POINTER

DATA ITEM

4 % {

Figure 3-23. Preindexed Indirect with Outer Displacement

The postindexed indirect mode with outer displacement, Figure 3-24, uses
the contents of An as an index to the pointer list at the displacement. Register
Xn is used as an index to the structure of data structures at the address in
the pointer. The outer displacement (od) is the displacement of the data item
within the selected data structure.

MC68040 USER’'S MANUAL MOTOROLA

SYNTAX: ([bd,An]Xn,od)

POST-INDEXED STRUCTURE

POINTER LIST WITH OUTER DISPLACEMENT
bd ——>
[
An 03
[
Xn
POINTER DATA ITEM

{ {7 {

Figure 3-24. Postindexed Indirect Addressing with Outer Displacement

3.7.2 General Addressing Mode Summary

The addressing modes described in 3.7.1 Addressing Capabilities are derived
from specific combinations of options in the indexing mode, or a selection
of two alternate addressing modes. For example, the addressing mode called
register indirect (Rn) assembles as the address register indirect if the register
is an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode using the data register as the indirect reg-
ister and suppresses the address register by setting the base suppress bit in
the effective address specification. Assigning an address register as Rn pro-
vides higher performance than using a data register as Rn. Another case is
(bd,An) which selects an addressing mode depending on the size of the
displacement. If the displacement is 16 bits or less, the address register
indirect with displacement mode (d16,An) is used. When a 32-bit displace-
ment is required, the address register indirect with index (bd,An,Xn) is used
with the index register suppressed.

It is useful to examine the derived addressing modes available to a pro-
grammer (without regard to the MC68040 effective addressing mode actually
encoded) because the programmer need not be concerned about these de-
cisions. The assembler can choose the more efficient addressing mode to
encode.

MOTOROLA MC68040 USER’S MANUAL 3-43

3-44

In the list of derived addressing modes that follows, common programming
terms are used. These definitions apply:

pointer

base

index

disp

subscript

relative

addr

psaddr

— Long-word value in a register or in memory which represents

an address.

— A pointer combined with a displacement to represent an ad-

dress.

— A constant or variable value added into an effective address

calculation. A constant index is a displacement. A variable
index is always represented by a register containing the value.

— Displacement, a constant index.

— The use of any of the data or address registers as a variable

index subscript into arrays of items one, two, four, or eight
bytes in size.

— An address calculated from the program counter contents.

The address is position independent and is in program space.
All other addresses but psaddr are in data space.

— An absolute address.

— An absolute address in program space. All other addresses

but PC relative are in data space.

preindexed — All modes from absolute address through program counter

relative.

postindexed — Any of the following modes:

addr — Absolute address in data space.

psaddr,ZPC — Absolute address in program space.

An — Register pointer.

disp,An — Register pointer with constant displacement.
addr,An — Absolute address with single variable name.
disp,PC — Simple PC relative.

MC68040 USER'S MANUAL MOTOROLA

The addressing modes defined in programming terms which are derivations
of the addressing modes provided by the MC68040 architecture are:

Immediate Data — #data:
The data is a constant located in the instruction stream.

Register Direct — Rn:
The contents of a register is the operand.

Scanning Modes:
(An)+ — Address register pointer automatically incremented after use.

—(An) — Address register pointer automatically decremented before use.
Absolute Address:
(addr) — Absolute address in data space.

(psaddr,ZPC) — Absolute address in program space. Symbol ZPC sup-
presses the PC, but retains PC-relative mode to directly access the
program space.

Register Pointer:

(Rn) — Register as a pointer.

(disp,Rn) — Register as a pointer with constant index (or base address).
Indexing:

(An,Rn) — Register pointer An with variable index Rn.

(disp,An,Rn) — Register pointer with constant and variable index (or a base
address with a variable index).

(addr,Rn) — Absolute address with variable index.

(addr,An,Rn) — Absolute address with two variable indexes.
Subscripting:

(An,Rn*SCALE) — Address register pointer subscript.

(disp,An,Rn*SCALE) — Address register pointer subscript with constant
displacement (or base address with subscript).

(addr, Rn*SCALE) — Absolute address with subscript.
(addr,An,Rn*SCALE) — Absolute address subscript with variable index.

MOTOROLA MC68040 USER'S MANUAL 3-45

Program Relative:
(disp,PC) — Simple PC relative.

(disp,PC,Rn) — PC relative with variable index.
(disp,PC,Rn*SCALE) — PC relative with subscript.

Memory Pointer:
([preindexed]) — Memory pointer directly to data operand.

([preindexed],disp) — Memory pointer as base with displacement to data
operand.

([postindexed],Rn) — Memory pointer with variable index.
([postindexed],disp,Rn) — Memory pointer with constant and variable index.
([postindexed],Rn*SCALE) — Memory pointer subscripted.

([postindexed], disp, Rn*SCALE) — Memory pointer subscripted with con-
stant index.

3.8 M68000 FAMILY ADDRESSING COMPATIBILITY

3-46

Programs can be easily transported from one member of the M68000 pro-
cessor family to another in an upward compatible fashion. The user object
code of each early member of the family is upward compatible with newer
members, and can be executed on the newer microprocessor without change.
The address extension word(s) are encoded with the information that allows
the MC68020/MC68030/MC68040 to distinguish the new address extensions
to the basic M68000 Family architecture. The address extension words for
the early MC68000/MC68008/MC680I0 microprocessors and for the newer 32-
bit MC68020/MC68030/MC68040 microprocessors are shown in Figure 3-25.
Notice the encoding for SCALE used by the MC68020/MC68030/MC68040 is
a compatible extension of the M68000 architecture. A value of zero for SCALE
is the same encoding for both extension words; therefore, software that uses
this encoding is both upward and downward compatible across all processors
in the product line. However, the other values of SCALE are not found in
both extension formats; so, while software can be easily migrated in an
upward compatible direction, only nonscaled addressing is supported in a
downward fashion. If the MC68000 were to execute an instruction that en-
coded a scaling factor, the scaling factor would be ignored and not access
the desired memory address. The earlier microprocessors have no knowledge
of the extension word formats implemented by newer processors, and while
they do detect illegal instructions, they do not decode invalid encodings of
the extension words as exceptions.

MC68040 USER'S MANUAL MOTOROLA

MC68000/MC68008/MC68010 Address
Extension Word

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
Loma] mewsteR [Jwel o [o [0| DISPLACEMENT INTEGER |
D/A: 0 = Data Register Select

1 = Address Register Select
WiL: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation

MCGSOZO/MC68030/M068040 Address
Extension Word

5 14 13 12° 1. 10 9 8 7 6 5 . 4 3 2 1 0
[oa] resisteR [we] scae | o | DISPLACEMENT INTEGER

D/A: Data Register Select
Address Register Select
Word-Sized Operation
Long-Word-Sized Operation
cale Factor 1 (Compatible with MC68000)

ol
S
Scale Factor 2 (Extension to MC68000)
S
S

WiL:

L R [

SCALE:

cale Factor 4 (Extension to MC68000)
cale Factor 8 (Extension to MC68000)

[N e = W = RN .Y
=)

nmn

Figure 3-25. M68000 Family Address Extension Words

3.9 OTHER DATA STRUCTURES

Stacks and queues are widely used data structures. The MC68040 implements
a system stack and also provides instructions that support the use of user
stacks and queues. o '

3.9.1 System Stack

Address register seven (A7) is used as the system stack pointer (SP). One of
the three system stack registers (MSP, ISP, USP) is active at any one time.
The M and S bits of the SR determine which SP is used. When S =0 indicating
user mode the user stack pointer (USP) is the active system stack pointer
and the master and interrupt stack pointers cannot be referenced. When S=1
indicating supervisor mode and M =1, the master stack pointer (MSP) is the
active system stack pointer. When S=1 and M =0, the interrupt stack pointer
(ISP) is the active system stack pointer. This mode is the MC68040 default
mode after reset and corresponds to the MC68000, MC68008, and MC68010
supervisor mode. The term supervisor stack pointer (SSP) refers to the master

MOTOROLA MC68040 USER’'S MANUAL 3-47

or interrupt stack pointers, depending on the state of the M bit. When M =1,
the term SSP (or A7) refers to the MSP address register. When M =0, the
term SSP (or A7) refers to the ISP address register. The active system stack
pointer is implicitly referenced by all instructions that use the system stack.
Each system stack fills from high to low memory.

A subroutine call saves the PC on the active system stack, and the return
restores it from the active system stack. During the processing of traps and
interrupts, both the PC and the SR are saved on the supervisor stack (either
master or interrupt). Thus, the execution of supervisor level code is inde-
pendent of user code and the condition of the user stack; conversely, user
programs use the USP independently of supervisor stack requirements.

To keep data on the system stack aligned for maximum efficiency, the active
stack pointer is automatically decremented or incremented by two for all

_byte-size'operands moved to or from the stack. In long-word-organized mem-
. ory, aligning the stack pointer on a long-word address significantly increases

the efficiency of stacking exception frames, subroutme calls and returns, and
other stacking operat|ons

3.9.2 User Program Stévcks

3-48

The user can implement stacks with the address register indirect with pos-
tincrement and predecrement addressing modes. With address register An
(n=0 through 6), the user can implement a stack that is filled either from

- high memory to low memory or from low memory to high memory. Important

considerations are:

® Use the predecrement mode to decrement the register before its contents
are used as the pointer to the stack.

® Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

® Maintain the stack pointer correctly when byte, word, and long-word
items are mixed in these stacks.
To implement stack growth from high-to-low memory, use:
—(An) to push data on the stack,
(An)+ to pull data from the stack.

MC68040 USER'S MANUAL MOTOROLA

MOTOROLA

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This is illustrated as:

LOW MEMORY
(FREE)

An—> TOP OF STACK

[]
/v /
L]
BOTTOM OF STACK
HIGH MEMORY

To implement stack growth from low-to-high memory, use:
(An)+ to push data on the stack,
—(An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This is illustrated as:

LOW MEMORY
BOTTOM OF STACK
L]
VA 4
[]
TOP OF STACK
An—> (FREE)
HIGH MEMORY

3.9.3 Queues

The user can implement queues with the address register indirect with pos-
tincrement or predecrement addressing modes. Using a pair of address reg-
isters (two of A0 through A6), the user can implement a queue which is filled
either from high memory to low memory, or from low memory to high
memory. Two registers are used because queues are pushed from one end
and pulled from the other. One register, An, contains the “put” pointer; the
other, Am, the “get” pointer.

To implement growth of the queue from low-to-high memory, use:
(An)+ to put data into the queue,
(Am)+ to get data from the queue.
After a “put” operation, the “put” address register points to the next available

space in the queue, and the unchanged ““get” address register points to the
next item to be removed from the queue. After a ““get” operation, the ““get”

MC68040 USER’'S MANUAL 3-49

3-50

address register points to the next item to be removed from the queue, and
the unchanged “put”” address register points to the next available space in
the queue. This is illustrated as:

LOW MEMORY
LAST GET (FREE)
GET (Am)+ —> NEXT GET
*
[/ v/
[]
LAST PUT
PUT (An)+ —>] (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the “put”
or “get” operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register.

To implement growth of the queue from high-to-low‘ memory, use:
—(An) to put data into the queue,

—(Am) to get data from the queue.

After a “put” operation, the “put” address register points to the last item
placed in the queue, and the unchanged “get” address register points to the
last item removed from the queue. After a ““get” operation, the “’get’ address
register points to the last item removed from the queue, and the unchanged
“put” address register points to the last item placed in the queue. This is
illustrated as:

LOW MEMORY
(FREE)
LAST PUT

(]
/ .
]

NEXT GET

LAST GET (FREE)
HIGH MEMORY

PUT -(An) —>]

GET -(Am) —>]

To implement the queue as a circular buffer, the “get”” or “put” operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

MC68040 USER'S MANUAL MOTOROLA

SECTION 4
INSTRUCTION SET SUMMARY
This section briefly describes the MC68040 instruction set. Refer to the

MC68000PM/AD, MC68000 Programming Reference Manual for complete de-
tails on the MC68040 instruction set.

The following include descriptions of the instruction format and the operands
used by instructions, followed by a summary of the instruction set. The
integer condition codes and floating-point details are discussed. Program-
ming examples for selected instructions are also presented.

4.1 INSTRUCTION FORMAT

All MC68040 instructions consist of at least one word; some have as many
as 11 words (see Figure 4-1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>