(Includes CPU32 Instructions)

-_

PROGRAMMER'
REFERENCE ’
MANAL ‘

MOTOROLA
M68000 FAMILY

Programmer’s Reference Manual

(Includes CPU32 Instructions)

OMOTOROLAINC., 1992

TABLE OF CONTENTS

Paragraph Title Page
Number Number
Section 1
Introduction

1.1 Integer Unit User Programming Model. 1-2
11.1 Data Registers (D7 —DO0) 1-2
1.1.2 Address Registers (A7 —AQ). 1-2
1.1.3 Program Counter. 1-3
1.14 Condition Code Register e 1-3
1.2 Floating-Point Unit User Programming Model 1-4
1.2.1 Floating-Point Data Registers (FP7 —FPO). 1-4
1.2.2 Floating-Point Control Register (FPCR) 1-5
1.2.2.1 Exception Enable Byte. 1-5
1.2.2.2 Mode Control Byte. 1-5
1.2.3 Floating-Point Status Register (FPSR) 1-5
1.2.3.1 Floating-Point Condition Code Byte. 1-5
1.2.3.2 Quotient Byte. 1-6
1.2.3.3 Exception Status Byte.. 1-6
1.2.34 Accrued Exception Byte. 1-7
1.2.4 Floating-Point Instruction Address Register (FPIAR) 1-8
1.3 Supervisor Programming Model. 1-8
1.3.1 Address Register 7 (A7) 1-10
1.3.2 Status Register 1-10
1.3.3 Vector Base Register (VBR) 1-11
1.34 Alternate Function Code Registers (SFCand DFC) 1-11
1.35 Acu Status Register (MC68EC030only)...................... 1-11
1.3.6 Transparent Translation/access Control Registers 1-12
1.3.6.1 Transparent Translation/access Control Register Fields for the

MBB030. . . . 1-12
1.3.6.2 Transparent Translation/access Control Register Fields for the

MBBO0. 1-13
14 Integer Data Formats 1-14
15 Floating-Point Data Formats 1-15
151 Packed Decimal Real Format 1-15
1.5.2 Binary Floating-Point Formats. 1-16
1.6 Floating-Point Data Types it e e 1-17
1.6.1 Normalized Numbers. 1-18
1.6.2 Denormalized Numbers. 1-18
1.6.3 ZBIOS . . ottt 1-19
164 INfiNitiesS 1-19
1.6.5 NOt-A-NUMbDers 1-19
1.6.6 Data Formatand Type Summarycciiiun... 1-20
1.7 Organization of Data in Registers 1-25
1.7.1 Organization of Integer Data Formats in Registers. 1-25

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number
1.7.2 Organization of Integer Data Formats in Memory 1-27
1.7.3 Organization of Fpu Data Formats in Registers and Memory 1-30
Section 2
Addressing Capabilities
2.1 Instruction Format 2-1
2.2 Effective Addressing Modes. 2-4
221 Data Register DirectMode 2-5
2.2.2 Address Register DirectMode. i 2-5
2.2.3 Address Register IndirectMode 2-5
224 Address Register Indirect with Postincrement Mode. 2-6
2.2.5 Address Register Indirect with PredecrementMode 2-7
2.2.6 Address Register Indirect with Displacement Mode 2-8
2.2.7 Address Register Indirect with Index (8-Bit Displacement) Mode 2-9
2.2.8 Address Register Indirect with Index (Base Displacement) Mode. .. 2-10
229 Memory Indirect Postindexed Mode 2-11
2.2.10 Memory Indirect Preindexed Mode 2-12
2211 Program Counter Indirect with DisplacementMode 2-13
2.2.12 Program Counter Indirect with Index (8-Bit Displacement) Mode . . . 2-14
2.2.13 Program Counter Indirect with Index (Base Displacement) Mode. .. 2-15
2.2.14 Program Counter Memory Indirect Postindexed Mode 2-16
2.2.15 Program Counter Memory Indirect Preindexed Mode. 2-17
2.2.16 Absolute Short AddressingMode 2-18
2.2.17 Absolute Long AddressingMode. 2-18
2.2.18 Immediate Data. 2-19
2.3 Effective Addressing Mode Summary 2-19
2.4 Brief Extension Word Format Compatibility 2-21
2.5 Full Extension AddressingModes 2-22
25.1 No Memory Indirect ActionMode 2-24
25.2 Memory Indirect Modes. 2-25
2521 Memory Indirect with Preindex. 2-25
25.2.2 Memory Indirect with Postindex. 2-26
2523 Memory Indirect with Index Suppressed.. 2-27
2.6 Other Data StruCturest e e 2-28
2.6.1 System Stack. 2-28
2.6.2 QUEBUEBS . . 2-29
Section 3
Instruction Set Summary
3.1 InStruction Summary 3-1
3.1.1 Data Movement INStructions 3-5
3.1.2 Integer Arithmetic Instructions. 3-6

iv M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number

3.1.3 Logical InStructions 3-8
3.14 Shift and Rotate Instructions 3-8
3.1.5 Bit Manipulation Instructions 3-10
3.1.6 Bit Field Instructions 3-10
3.1.7 Binary-Coded Decimal Instructions. 3-11
3.1.8 Program Control Instructions. 3-11
3.1.9 System Control Instructions. 3-12
3.1.10 Cache Control Instructions (MC68040) 3-14
3.1.11 Multiprocessor Instructions i 3-14
3.1.12 Memory Management Unit (MMU) Instructions. 3-15
3.1.13 Floating-Point Arithmetic Instructions 3-15
3.2 Integer Unit Condition Code Computation. 3-17
3.3 Instruction Examples 3-20
3.3.1 Using the Cas and Cas2 Instructions 3-20
3.3.2 Using the Moves Instruction 3-20
3.33 Nested Subroutine Calls i 3-20
3.34 Bit Field Instructions 3-20
3.35 Pipeline Synchronization with the Nop Instruction. 3-21
3.4 Floating-Point Instruction Details 3-21
3.5 Floating-Point Computational Accuracy. 3-23
3.5.1 Intermediate Result 3-24
3.5.2 Roundingthe Result 3-25
3.6 Floating-Point POStprocessingt 3-27
3.6.1 Underflow, Round, Overflow 3-28
3.6.2 Conditional Testingttt 3-28
3.7 Instruction DescCriptions 3-32

Section 4

Integer Instructions
Section 5
Floating Point Instructions
Section 6
Supervisor (Privileged) Instructions
Section 7
CPUS32 Instructions
Section 8
Instruction Format Summary

8.1 Instruction Format 8-1

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Title Page

Number Number
8.1.1 CoprocessorIDField. 8-1
8.1.2 Effective Address Field i 8-1
8.1.3 Register/Memory Field 8-1
8.1.4 Source Specifier Field 8-1
8.1.5 Destination Register Field 8-2
8.1.6 Conditional Predicate Field 8-2
8.1.7 Shift and Rotate Instructions 8-2
8.1.7.1 CountRegisterField.. 8-2
8.1.7.2 Register Field. 8-2
8.1.8 Size Field. 8-4
8.1.9 Opmode Field 8-4
8.1.10 Address/Data Field 8-4
8.2 Operation Code Map e 8-4

Appendix A
Processor Instruction Summary

A.l MC68000, MC68008, MC68010 Processorsvvvvun... A-12
Al1l M68000, MC68008, and MC68010 Instruction Set. A-12
A.1l.2 MC68000, MC68008, and MC68010 Addressing Modes A-16
A.2 MCB8020 ProCeSSOIS. . . o vttt e e A-17
A21 MC68020 Instruction Set. A-17
A.2.2 MC68020 Addressing Modes A-20
A3 MCB8030 ProCeSSOrS. . . o vttt e A-21
A3.1 MC68030 Instruction Set. i A-21
A.3.2 MC68030 AddressingModes i, A-24
A4 MCB8040 ProCeSSOrS. . . v ittt e e A-25
A4l MC68040 Instruction Set. A-25
A.4.2 MC68040 AddressingModes i A-29
A5 MC68881/MCE8882 COPrOCESSOIS . v v v vt i et e i e a e A-30
A5.1 MC68881/MC68882 Instruction Set A-30
A.5.2 MC68881/MC68882 AddressingModes A-31
A.6 MCB8851 COPrOCESSOIS. . v v vttt e e e et et e e A-31
A.6.1 MC68851 Instruction Set. A-31
A.6.2 MC68851 AddressingModes A-31

Appendix B
Exception Processing Reference

B.1 Exception Vector Assignments for the M68000 Family B-1
B.2 Exception Stack Frames B-3
B.3 Floating-Point Stack Frames i, B-10

Vi M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TABLE OF CONTENTS (Concluded)

Paragraph Title Page
Number Number
Appendix C
S-Record Output Format
Cl S-Record Content. C-1
C.2 S-Record TYPeS . . o C-2
C.3 S-Record Creationt e C-3

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL Vii

Figure
Number

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

1-10

1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-19
1-18
1-20
1-21
1-22

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

3-1
3-2
3-3

B-1
B-2
B-3
B-4

LIST OF FIGURES

Title Page

M68000 Family User Programming Model.............ccuuviiiiiiiiiiiiiiiiiiiiieeeeeee 1-2
M68000 Family Floating-Point Unit User Programming Model....................... 1-4
Floating-Point Control REQISIENcooeiiiiiiiiiiiir e 1-5
FPSR Condition COOE BYL.......ccoiiiiiiiiiiiiiiieieciiiiitie ettt 1-6
FPSR QUOLIENt COAE BYLE ...t 1-6
FPSR EXCeption Status BYLEcoooiiiiiiiiiiiiiee e 1-6
FPSR Accrued EXCEeption BYLEcooeiiiiiiiiiiiiiiiiiii ettt 1-7
StALUS REGISIET...eviiiiiiie i e e et e e e e e e e e e e eeaeeannee 1-11
MC68030 Transparent Translation/MC68EC030 Access

Control Register FOrMAL............ooeviiiiiiiiiiii e e e e e e e e eeeeaeeees 1-12
MC68040 and MC68LC040 Transparent Translation/MC68EC040

Access Control Register FOrMALcooooiiiiiiiiiiiiie e 1-13
Packed Decimal Real FOrmMatooooiiiiiiiiiiiiiiiiiiieeececeeeee e 1-16
Binary Floating-Point Data FOrmats..........ccceeiiiiiiiiiiiii e, 1-16
Normalized Number FOrmat.............oooveiiiiiiiiiiii e 1-18
Denormalized NUMber FOrMat.........ooooiiiiiiiiiiiiiiiiiiieeeeeeeeee e 1-18
ZEI0 FOIMAL ...ttt e e et et e e e e e e e e e e e e e e enna e 1-19
INFINILY FOIMAL ...t 1-19
NOt-A-NUMDEI FOMM@L.....cciiiiiiiiiiiieii e 1-19
Organization of Integer Data Formats in Address Registers............cccceeenn... 1-26
Organization of Integer Data Formats in Data Registers............cccccvvvvvevnennnns 1-26
Memory Operand AdAreSSINGcovvvvvriiiiiiiiiieee e e e e e e eaes 1-27
Memory Organization for Integer Operands..........ccoeeevvveeieeiiiiiiiiiiieeee e 1-29
Organization of FPU Data Formats in MemMOrycooveveiiiiiiiiiiiiiiieeeeeee 1-30
Instruction Word General FOrmat............ooouuiiiiiiiiiiiieee e 2-1
Instruction Word Specification FOIMALSuuviiiiiiiiiiiiieeieeeeeeeiciieeee 2-2
M68000 Family Brief Extension Word Formats..............cccoovvevvvvviiiiiiciieeeeennn. 2-21
Addressing Array ITEIMS.......oooi i 2-23
NO Memory INAIr€Ct ACHON.........coeeiiiiiiiiieeee e 2-24
Memory Indirect With PreindeX............oovvviiiiiiiiiii e 2-26
Memory Indirect With POSHNUEXcooiiiiiiiiiiiiiie e 2-27
Memory Indirect With INdeX SUPPIESSvvvvvreiiiiiiiee et e e 2-27
Intermediate ReSUIt FOIMat........coooiiiiiiiiiiiieiieee e 3-24
Rounding Algorithm FIOWChart.............oovviiiiiiii e 3-26
Instruction DescCription FOrMatcouvuiiiiiiiiiiiie e 3-33
MC68000 Group 1 and 2 Exception Stack Framec.ccccccciiiiiiiiieeeeeeeee, B-3
MC68000 Bus or Address Error Exception Stack Frame...........cccccceeveevviinnnnnn. B-3
Four-Word Stack Frame, FOrmat $Ocoouuiiiiiiiiiee e B-3
Throwaway Four-Word Stack Frame, Format $1.........cccccceeeviiiiiiiieeeeeiiiieen, B-3

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

Figure
Number

B-5
B-6
B-7

B-8
B-9
B-10

B-11
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23

C-1
C-2

LIST OF FIGURES (Concluded)

- Page
Title Number

Six-Word Stack Frame, FOrMat $2.......coouuuuiieieieeeeeeeeeeeeee et B-4
MC68040 Floating-Point Post-Instruction Stack Frame, Format $3................. B-4
MC68EC040 and MC68LC040 Floating-Point Unimplemented

Stack Frame, FOIMAL B4 ...t e et e e e e e e e e e e eaeens B-5
MC68040 Access Error Stack Frame, Format $7ccovvivviiccciieeeeeee, B-5
MC68010 Bus and Address Error Stack Frame, Format $8 B-6
MC68020 Bus and MC68030 Coprocessor Mid-Instruction

Stack Frame, FOrmat $9uuviiiiiiiiiiiieee e B-6
MC68020 and MC68030 Short Bus Cycle Stack Frame, Format $A............... B-7
MC68020 and MC68030 Long Bus Cycle Stack Frame, Format $B............... B-8
CPU32 Bus Error for Prefetches and Operands Stack Frame, Format $C.....B-8
CPU32 Bus Error on MOVEM Operand Stack Frame, Format $C B-9
CPU32 Four- and Six-Word Bus Error Stack Frame, Format $C.................... B-9
MC68881/MC68882 and MC68040 Null Stack Frame.................ooeeevieinnnnnns B-10
MCB8881 Idle Stack Framecooovviiiiiiiiiiiiiis e B-10
MCB8881 BUSY StaCk Framecoovvviiiiiiiiiiiiie e B-11
MC68882 Idle Stack Framecooouviiiiiiiiie e B-11
MCB8882 BUSY StaCk Framecoooiiiiiiiiiiiiiiiee e B-11
MC68040 Idle Busy Stack Frameouuuiiiiiiiiieee e B-12
MC68040 Unimplimented Instruction Stack Frame.............ccccvvviiiiiiiiiinneenn. B-12
MCB8040 BUSY Stack Frameccoooiiiiiiiiiiiiiiiiiiee e B-13
Five Fields of an S-ReCOI..........ccooiiiiiiiiiiiiii e C-1
Transmission of an S1 RECOI.......ccooviiiiiiiiieeeieerr e C-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table
Number

1-1
1-2
1-3
1-4
1-5
1-6
1-6
1-7
1-8

2-1
2-2
2-3
2-4

3-1
3-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
5-1
5-2

LIST OF TABLES

- Page
Title Number
Supervisor Registers Not Related To Paged Memory Management.............. 1-9
Supervisor Registers Related To Paged Memory Management................... 1-10
Integer Data FOIMALS i 1-15
Single-Precision Real Format Summary Data Format............ccccvveveviviinnnnnn. 1-21
Double-Precision Real Format SUMmMmary.........ccccooeeiiieeieiiiieceeecieeee e 1-22
Extended-Precision Real Format SUMMArY...........cccouuiiiiiiiiiiiiiiiiieeeeeeens 1-23
Extended-Precision Real Format Summary (Continued)cccoeeeeiiiinnns 1-24
Packed Decimal Real Format SUMMArYccccoeeeiiieeeeeiiiieeeeeiee e 1-24
MC68040 FPU Data Formats and Data TYPEScuuvrreermieieiiiiieieeeaaeaaaannenns 1-30
Instruction Word Format Field DefinitionScvvviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeens 2-3
IS-1/1S Memory Indirect ACtion ENCOINGS.uuuummmmiiiiiiiiiiiiieeeeeeeeeeee e 2-4
Immediate Operand LOCALION..........covvviiiiiiiiiiiii e e e 2-19
Effective Addressing Modes and Categorieseeeveevveiiiiiieeeeeeiiiieeeeeennns 2-20
Notational CONVENTIONSccuiiiiiiiieee e e e e e e e e 3-2
Notational Conventions (ContinUEd)ccuuviiiiiiiiiiiiiie e 3-3
Notational Conventions (Concluded)cccoiiiiiiiiiiiiiieee e 3-4
Data Movement Operation FOrMaAL..............ouuuiuieiiiiiiiiiee e 3-6
Integer Arithmetic Operation FOrmat............ccoeviiiiiiiii e 3-7
Logical Operation FOMMAL...........ooueeiiiiiiiiiiiiiciiiei et 3-8
Shift and Rotate Operation FOrmat.............coooviiiiiiiiiiiiiiiiiie e 3-9
Bit Manipulation Operation FOrmatcooiiiiiiiiiiiiiieeeeei e, 3-10
Bit Field Operation FOIMAL...........ooooriiiiiiiiiiii e 3-10
Binary-Coded Decimal Operation FOrmat...........ccccoeeeeeiiiiiiccceiiiicceeee e 3-11
Program Control Operation FOrMat..............uuuuuiiiiiiiiieeeeeeeeeeeceeeiii e 3-12
System Control Operation FOIMALcceviiiiiiiiiiiiie e 3-13
Cache Control Operation FOrmat...........ccoooeieieiiiiiiiiiiiciesse e 3-14
MUItIProCESSOr OPEIatiONScoeeieeeieeeeeeeiei e e e e e 3-14
MMU Operation FOIMALcooiiiiiiiiiiiieiiiiiiii e 3-15
Dyadic Floating-Point Operation FOrmat..........cccccceeeeeeiiiiiiieeiiiiiccee e 3-16
Dyadic Floating-Point OPerationscccccuuiiiiiiiiiiiieieeeeeeee e 3-16
Monadic Floating-Point Operation FOrmMat...............eeeeiviiiiiiniininnninns 3-16
Monadic Floating-Point Operations..............ccceeeiiieeieeeeieeeeeeeesee e 3-17
Integer Unit Condition Code COMPULALIONS............uuriiiiiiiiiiiiiiieeeeaeeeeeeeaaeeens 3-18
CoNAItIONAI TESES ..o 3-19
Operation Table Example (FADD INStruction)...........cccevvuviiieeeviiiiineeeeeeeiinnnn. 3-22
FPCR ENCOUINGS. ...ttt ettt e e e e e e e 3-25
o o O O g Too o [Vo 1 3-29
Floating-Point Conditional TeStSciiiiiiiiiiii e 3-31
Directly Supported Floating-Point INStruCtionsoccovveeeeiiniiiieeeee e 5-2
Indirectly Supported Floating-Point INStructions..............cccoovvvvivvviviiiiiiieeeeenn. 5-3

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL Xi

Table
Number

7-1
7-2
7-3

8-1
8-2

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13

B-1

C-1
C-2

Xii

LIST OF TABLES (Continued)

- Page
Title Number
MC68020 Instructions NOt SUPPOIEd...........uvvveeiiiiiiiieeeeeeeeeeeeee e 7-1
M68000 Family Addressing MOES..........coouuuuiuiiiiiiiieiee e 7-2
CPUS32Z INSIIUCHION SeL.....ccciiiieeeeeeiiiiiiie e e e e e e e e e e e e e e eeeenaennnne 7-3
Conditional Predicate Field ENCOAINGcoooiiiiiiiiiiiiiiiiiie e 8-3
Operation CoAE MaPccooiiiiiiiiiii et e e e e e e 8-4
M68000 Family Instruction Set And Processor Cross-Reference................... A-1
M68000 Family INSrUCHION Set.......ccooviiiiiiiiiiiie e A-8
MC68000 and MCB8008 INStrUCION Sel........c.uuvviiiiiiiiiiiiiiiiiieieeeee e e e e e e e A-12
MCB80L0 INSIIUCHION SEL....uiiiiiiie e A-14
MC68000, MC68008, and MC68010 Data Addressing Modes..................... A-16
MC68020 INStruction Set SUMMAIYcvvviiiiiiiiieee e A-17
MC68020 Data AdAressing MOUESccooiiiiiiiiiiiiiee e A-20
MC68030 INStruction Set SUMMAIYcvvviiiiiiiiiieee e e e e A-21
MC68030 Data Addressing MOAESccooivviiiiiiiiiiiie e A-24
MCB8040 INSIIUCTION SeL....uiiiiieie e A-25
MC68040 Data Addressing MOUESeuvuiiiiiiiiieie e A-29
MCB68881/MCB8882 INSIIUCLION SeL.....ccevviiiiiiiiiiiiee e A-30
MCB885L INSIIUCHION SeL....uuiiiiieie e e e A-31
Exception Vector Assignments for the M68000 Family...............cccceeeeeeveinnnnn. B-2
Field Composition of an S-ReCOrdouvvviiiiiiiiiiiieeeeeeeeeeeeee e C-1
ASCHE COUC ...ttt e e e e e e e e e e e e e e e e s s s s annnrannees C-5

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SECTION 1
INTRODUCTION

This manual contains detailed information about software instructions used by the

microprocessors and coprocessors in the M68000 family, including:

MC68000 16-/32-Bit Microprocessor

MC68ECO000 16-/32-Bit Embedded Controller
MC68HCO000 Low Power 16-/32-Bit Microprocessor
MC68008 16-Bit Microprocessor with 8-Bit Data Bus
MC68010 16-/32-Bit Virtual Memory Microprocessor
MC68020 32-Bit Virtual Memory Microprocessor
MC68EC020 32-Bit Embedded Controller

MC68030 Second-Generation 32-Bit Enhanced Microprocessor
MC68ECO030 32-Bit Embedded Controller

MC68040 Third-Generation 32-Bit Microprocessor
MC68LC040 Third-Generation 32-Bit Microprocessor
MC68EC040 32-Bit Embedded Controller

MC68330 — Integrated CPU32 Processor

MC68340 — Integrated Processor with DMA

MC68851 — Paged Memory Management Unit
MC68881 — Floating-Point Coprocessor

MC68882 — Enhanced Floating-Point Coprocessor

NOTE

All references to the MC68000, MC68020, and MC68030
include the corresponding embedded controllers, MC68EC000,
MC68EC020, and MC68ECO030. All references to the MC68040
include the MC68LC040 and MC68ECO040. This referencing
method applies throughout the manual unless otherwise
specified.

The M68000 family programming model consists of two register groups: user and
supervisor. User programs executing in the user mode only use the registers in the user
group. System software executing in the supervisor mode can access all registers and uses
the control registers in the supervisor group to perform supervisor functions. The following
paragraphs provide a brief description of the registers in the user and supervisor models as
well as the data organization in the registers.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 11

Introduction

1.1 INTEGER UNIT USER PROGRAMMING MODEL

Figure 1-1 illustrates the integer portion of the user programming model. It consists of the
following registers:

* 16 General-Purpose 32-Bit Registers (D7 — DO, A7 — A0)
» 32-Bit Program Counter (PC)
« 8-Bit Condition Code Register (CCR)

31 15 0

D0 |
D1
D2
D3 | DATA
D4 REGISTERS
D5
D6
o7 |
31 15 0 —
A0
AL
A2 | ADDRESS
A3 REGISTERS
A
A5
AB
31 15 0 — USER
| | ?Jsp) — STACK
—I POINTER
81 0 7| PROGRAM
| | pC |7 CcounTter
15 7 0 — CONDITION
T j—C

— REGISTER

Figure 1-1. M68000 Family User Programming Model

1.1.1 Data Registers (D7 — DO0)

These registers are for bit and bit field (1 — 32 bits), byte (8 bits), word (16 bits), long-word
(32 bits), and quad-word (64 bits) operations. They also can be used as index registers.

1.1.2 Address Registers (A7 — A0Q)

These registers can be used as software stack pointers, index registers, or base address
registers. The base address registers can be used for word and long-word operations.
Register A7 is used as a hardware stack pointer during stacking for subroutine calls and
exception handling. In the user programming model, A7 refers to the user stack pointer
(USP).

1-2 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

1.1.3 Program Counter

The PC contains the address of the instruction currently executing. During instruction
execution and exception processing, the processor automatically increments the contents
or places a new value in the PC. For some addressing modes, the PC can be used as a
pointer for PC relative addressing.

1.1.4 Condition Code Register

Consisting of five bits, the CCR, the status register’s lower byte, is the only portion of the
status register (SR) available in the user mode. Many integer instructions affect the CCR,
indicating the instruction’s result. Program and system control instructions also use certain
combinations of these bits to control program and system flow. The condition codes meet
two criteria: consistency across instructions, uses, and instances and meaningful results
with no change unless it provides useful information.

Consistency across instructions means that all instructions that are special cases of more
general instructions affect the condition codes in the same way. Consistency across uses
means that conditional instructions test the condition codes similarly and provide the same
results whether a compare, test, or move instruction sets the condition codes. Consistency
across instances means that all instances of an instruction affect the condition codes in the
same way.

The first four bits represent a condition of the result generated by an operation. The fifth bit
or the extend bit (X-bit) is an operand for multiprecision computations. The carry bit (C-bit)
and the X-bit are separate in the M68000 family to simplify programming techniques that use
them (refer to Table 3-18 as an example). In the instruction set definitions, the CCR is
illustrated as follows:

X—Extend
Set to the value of the C-bit for arithmetic operations; otherwise not affected or set to a
specified result.

N—Negative
Set if the most significant bit of the result is set; otherwise clear.

Z—Zero
Set if the result equals zero; otherwise clear.

V—Overflow
Set if an arithmetic overflow occurs implying that the result cannot be represented in the
operand size; otherwise clear.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-3

Introduction

C—Carry
Set if a carry out of the most significant bit of the operand occurs for an addition, or if a
borrow occurs in a subtraction; otherwise clear.

1.2 FLOATING-POINT UNIT USER PROGRAMMING MODEL

The following paragraphs describe the registers for the floating- point unit user programming
model. Figure 1-2 illustrates the M68000 family user programming model’s floating-point
portion for the MC68040 and the MC68881/MC68882 floating-point coprocessors. It
contains the following registers:

8 Floating-Point Data Registers (FP7 — FPO)

16-Bit Floating-Point Control Register (FPCR)

32-Bit Floating-Point Status Register (FPSR)

32-Bit Floating-Point Instruction Address Register (FPIAR)

79 63 0 _
FPO
FP1
FP2
FP3 | FLOATING-POINT
FP4 DATA REGISTERS
FP5
FP6
FP7
31 15 7 0
CTT T T T o | EXCEPTION | MODE | FPCR:’_ Eonroe PONT
S ENABLE CONTROL REGISTER
31 23 15 7 0
| CONDITION QUOTIENT | EXCEPTION | ACCRUED | FPSR g'}OA%g\'G'PONT
CODE STATUS EXCEPTION REGISTER

FLOATING-POINT
INSTRUCTION
| | FPIAR ADDRESS

REGISTER

Figure 1-2. M68000 Family Floating-Point Unit User Programming Model

1.2.1 Floating-Point Data Registers (FP7 — FP0)

These floating-point data registers are analogous to the integer data registers for the
M68000 family. They always contain extended- precision numbers. All external operands,
despite the data format, are converted to extended-precision values before being used in
any calculation or being stored in a floating-point data register. A reset or a null-restore
operation sets FP7 — FPO positive, nonsignaling not-a-numbers (NANS).

1-4 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

1.2.2 Floating-Point Control Register (FPCR)

The FPCR (see Figure 1-3) contains an exception enable (ENABLE) byte and a mode
control (MODE) byte. The user can read or write to the FPCR. Motorola reserves bits 31 —
16 for future definition; these bits are always read as zero and are ignored during write
operations. The reset function or a restore operation of the null state clears the FPCR. When
cleared, this register provides the IEEE 754 Standard for Binary Floating-Point Arithmetic
defaults.

1.2.2.1 EXCEPTION ENABLE BYTE. Each bit of the ENABLE byte (see Figure 1-3)
corresponds to a floating-point exception class. The user can separately enable traps for
each class of floating-point exceptions.

1.2.2.2 MODE CONTROL BYTE. MODE (see Figure 1-3) controls the user- selectable
rounding modes and precisions. Zeros in this byte select the IEEE 754 standard defaults.
The rounding mode (RND) field specifies how inexact results are rounded, and the rounding
precision (PREC) field selects the boundary for rounding the mantissa. Refer to Table 3-21
for encoding information. .

EXCEPTION ENABLE MODE CONTROL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BSUN | SNAN | OPERR| OVFL | UNFL DZ | INEX2 | INEX1 PREC RND 0

ROUNDING MODE

ROUNDING PRECISION
INEXACT DECIMAL INPUT
INEXACT OPERATION

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNALING NOT-A-NUMBER
BRANCH/SET ON UNORDERED

Figure 1-3. Floating-Point Control Register

1.2.3 Floating-Point Status Register (FPSR)

The FPSR (see Figure 1-2) contains a floating-point condition code (FPCC) byte, a floating-
point exception status (EXC) byte, a quotient byte, and a floating-point accrued exception
(AEXC) byte. The user can read or write to all the bits in the FPSR. Execution of most
floating-point instructions modifies this register. The reset function or a restore operation of
the null state clears the FPSR.

1.2.3.1 FLOATING-POINT CONDITION CODE BYTE. The FPCC byte, illustrated in

Figure 1-4, contains four condition code bits that set after completion of all arithmetic
instructions involving the floating-point data registers. The move floating-point data register

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-5

Introduction

to effective address, move multiple floating-point data register, and move system control
register instructions do not affect the FPCC. .

31 28 27 26 25 24

0 N z I NAN

|\ NOT-A-NUMBER OR UNORDERED
INFINITY

ZERO

NEGATIVE

Figure 1-4. FPSR Condition Code Byte

1.2.3.2 QUOTIENT BYTE. The quotient byte contains the seven least significant bits of the
unsigned quotient as well as the sign of the entire quotient (see Figure 1-5). The quotient
bits can be used in argument reduction for transcendentals and other functions. For
example, seven bits are more than enough to figure out the quadrant of a circle in which an
operand resides. The quotient bits remain set until the user clears them. .

23 22 16

S QUOTIENT

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 1-5. FPSR Quotient Code Byte

1.2.3.3 EXCEPTION STATUS BYTE. The EXC byte, illustrated in Figure 1- 6, contains a
bit for each floating-point exception that might have occurred during the most recent
arithmetic instruction or move operation. This byte is cleared at the start of all operations that
generate floating-point exceptions. Operations that do not generate floating-point
exceptions do not clear this byte. An exception handler can use this byte to determine which
floating-point exception(s) caused a trap. .

15 14 13 12 11 10 9 8
BSUN SNAN OPERR OVFL UNFL Dz INEX2 INEX1
BRANCH/SET ON INEXACT DECIMAL
UNORDERED INPUT
SIGNALING NOT-A-NUMBER ——— — INEXACT OPERATION
OPERAND ERROR DIVIDE BY ZERO
OVERFLOW UNDERFLOW

Figure 1-6. FPSR Exception Status Byte

1-6 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

1.2.3.4 ACCRUED EXCEPTION BYTE. The AEXC byte contains five exception bits (see
Figure 1-7) required by the IEEE 754 standard for trap disabled operations. These
exceptions are logical combinations of the bits in the EXC byte. The AEXC byte contains a
history of all floating-point exceptions that have occurred since the user last cleared the
AEXC byte. In normal operations, only the user clears this byte by writing to the FPSR;
however, a reset or a restore operation of the null state can also clear the AEXC byte.

Many users elect to disable traps for all or part of the floating- point exception classes. The
AEXC byte makes it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most operations (FMOVEM and FMOVE excluded), the bits in the EXC byte
are logically combined to form an AEXC value that is logically ORed into the existing AEXC
byte. This operation creates "sticky" floating- point exception bits in the AEXC byte that the
user needs to poll only once—i.e., at the end of a series of floating-point operations.

IOP OVFL UNFL Dz INEX

INEXACT

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

INVALID OPERATION

Figure 1-7. FPSR Accrued Exception Byte

Setting or clearing the AEXC bits neither causes nor prevents an exception. The following
equations show the comparative relationship between the EXC byte and AEXC byte.
Comparing the current value in the AEXC bit with a combination of bits in the EXC byte
derives a new value in the corresponding AEXC bit. These equations apply to setting the
AEXC bits at the end of each operation affecting the AEXC byte:

AEI;I(G(}ZWBit AEX(?:IdBit V. EXCBits
IoP = 0P v (SNAN V OPERR)
OVFL = OVFL \% (OVFL)
UNFL = UNFL v (UNFL L INEX2)
Dz =DZ \Y (Dz)
INEX = INEX \Y (INEX1 V INEX2 V OVFL)

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-7

Introduction

1.2.4 Floating-Point Instruction Address Register (FPIAR)

The integer unit can be executing instructions while the FPU is simultaneously executing a
floating-point instruction. Additionally, the FPU can concurrently execute two floating-point
instructions. Because of this nonsequential instruction execution, the PC value stacked by
the FPU, in response to a floating-point exception trap, may not point to the offending
instruction.

For the subset of the FPU instructions that generate exception traps, the 32-bit FPIAR is
loaded with the logical address of the instruction before the processor executes it. The
floating-point exception handler can use this address to locate the floating-point instruction
that caused an exception. Since the FPU FMOVE to/from the FPCR, FPSR, or FPIAR and
FMOVEM instructions cannot generate floating- point exceptions, these instructions do not
modify the FPIAR. A reset or a null-restore operation clears the FPIAR.

1.3 SUPERVISOR PROGRAMMING MODEL

System programers use the supervisor programming model to implement sensitive
operating system functions—e.g., I/O control and memory management unit (MMU)
subsystems. The following paragraphs briefly describe the registers in the supervisor
programming model. They can only be accessed via privileged instructions. Table 1-1 lists
the supervisor registers and the processors not related to paged memory management. For
information concerning page memory management programming, refer to the device-
specific user’s manual. Table 1-2 lists the supervisor registers and the processors related to
paged memory management.

1-8 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

Table 1-1. Supervisor Registers
Not Related To Paged Memory Management

Devices
68000
68008
68HCO000
68HCO001 68020

Registers | 6BEC000 | 68010 | 68EC020 | CPU32 | 68030 | 6BEC030 | 68040 | 68EC040 | 68LC040
AC1, ACO X
ACUSR X
CAAR X X X
CACR X X X X X X
DACR1, x
DACRO
DFC X X X X X X X X
DTT1, DTTO X X
IACR1, "
IACRO
ITT1, ITTO X X
MSP X X X X X X
SFC X X X X X X X X
SR X X X X X X X X X
SSP/ISP X X X X X X X X X
TT1, TTO X
VBR X X X X X X X X

AC1,ACO = Access Control Registers ITT1, ITTO = Instruction Transparent

ACUSR = Access Control Unit Status Register Translation Registers
CAAR = Cache Address Register MSP = Master Stack Pointer Register
CACR = Cache Control Register SFC = Source Function Code Register
DACR1, DACRO = Data Access ControlRegisters SR = Status Register
DFC = Destination Function Code Register SSP/ISP = Supervisor and Interrupt Stack Pointer
DTT1, DTTO = Data Transparent Translation Registers TT1, TTO = Transparent Translation Registers
IACR1, IACRO = Instruction Access Control Registers VBR = Vector Base Register

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-9

Introduction

Table 1-2. Supervisor Registers
Related To Paged Memory Management

Devices
Registers 68851 68030 68040 68LC040
AC X
CAL X
CRP X X
DRP X
PCSR X
PMMUSR, x x x x
MMUSR
SCC X
SRP X X X X
TC X X X X
URP X X
VAL X
AC = Access Control Register

CAL = Current Access Level Register

CRP = CPU Root Pointer

DRP = DMA Root Pointer

PCSR = PMMU Control Register

PMMUSR = Paged Memory Management Unit Status Register
MMUSR = Memory Management Unit Status Register

SCC = Stack Change Control Register

SRP = Supervisor Root Pointer Register

TC = Translation Control Register
URP = User Root Pointer
VAL = Valid Access Level Register

1.3.1 Address Register 7 (A7)

In the supervisor programming model register, A7 refers to the interrupt stack pointer,
A7'(ISP) and the master stack pointer, A7" (MSP). The supervisor stack pointer is the active
stack pointer (ISP or MSP). For processors that do not support ISP or MSP, the system stack
is the system stack pointer (SSP). The ISP and MSP are general- purpose address registers
for the supervisor mode. They can be used as software stack pointers, index registers, or
base address registers. The ISP and MSP can be used for word and long-word operations.

1.3.2 Status Register

Figure 1-8 illustrates the SR, which stores the processor status and contains the condition
codes that reflect the results of a previous operation. In the supervisor mode, software can
access the full SR, including the interrupt priority mask and additional control bits. These bits
indicate the following states for the processor: one of two trace modes (T1, TO), supervisor
or user mode (S), and master or interrupt mode (M). For the MC68000, MC68ECO000,
MC68008, MC68010, MC68HC000, MC68HCO001, and CPU32, only one trace mode

1-10 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

supported, where TO is always zero, and only one system stack where the M-bit is always
zero. 12, 11, and 10 define the interrupt mask level.

USER BYTE
SYSTEM BYTE (CONDITION CODE REGISTER)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[s [wlo e ool o] olx [v]z]v]c]

I_'_ I—I—I
TRACE INTERRUPT CARRY
ENABLE PRIORITY MASK OVERELOW
SUPERVISOR/USER STATE ——— ZERO
NEGATIVE
MASTER/INTERRUPT STATE EXTEND
T1 | To | TRACE MODE S M | ACTIVE STACK
0 0 | NOTRACE 0 x | usp
1 0 | TRACE ON ANY INSTRUCTION 1 0 |iIsp
0 1 | TRACE ON CHANGE OF FLOW 1 1 | mMsp
1 1 | UNDEFINED

Figure 1-8. Status Register

1.3.3 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector adds to the value in this register, which accesses the
vector table.

1.3.4 Alternate Function Code Registers (SFC and DFC)

The alternate function code registers contain 3-bit function codes. Function codes can be
considered extensions of the 32-bit logical address that optionally provides as many as eight
4-Gbyte address spaces. The processor automatically generates function codes to select
address spaces for data and programs at the user and supervisor modes. Certain
instructions use SFC and DFC to specify the function codes for operations.

1.3.5 Acu Status Register (MC68EC030 only)

The access control unit status register (ACUSR) is a 16-bit register containing the status
information returned by execution of the PTEST instruction. The PTEST instruction
searches the access control (AC) registers to determine a match for a specified address. A
match in either or both of the AC registers sets bit 6 in the ACUSR. All other bits in the
ACUSR are undefined and must not be used.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-11

Introduction

1.3.6 Transparent Translation/access Control Registers

Transparent translation is actually a misnomer since the whole address space transparently
translates in an embedded control environment with no on-chip MMU present as well as in
processors that have built-in MMUs. For processors that have built-in MMUs, such as the
MC68030, MC68040, and MC68LCO040, the transparent translation (TT) registers define
blocks of logical addresses that are transparently translated to corresponding physical
addresses. These registers are independent of the on-chip MMU. For embedded
controllers, such as the MC68EC030 and MCG68EC040, the access control registers (AC)
are similar in function to the TT registers but just named differently. The AC registers, main
function are to define blocks of address space that control address space properties such
as cachability. The following paragraphs describe these registers.

NOTE

For the paged MMU related supervisor registers, please refer to
the appropriate user’s manual for specific programming detail.

1.3.6.1 TRANSPARENT TRANSLATION/ACCESS CONTROL REGISTER FIELDS FOR
THE M68030. Figure 1-9 illustrates the MC68030 transparent translation/MC68EC030
access control register format.

31 24 23 16
ADDRESS BASE ADDRESS MASK
E|] o] o] o[o] ca |[rRwW[RW]| 0 | FC BASE | o | FC MASK
15 14 13 12 11 10 9 8 7 6 4 3 2 0
Figure 1-9. MC68030 Transparent Translation/MC68EC030 Access Control Register
Format

Address Base
This 8-bit field is compared with address bits A31 — A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated/access controlled.

Address Mask
This 8-bit field contains a mask for the address base field. Setting a bit in this field causes
the corresponding bit of the address base field to be ignored. Blocks of memory larger
than 16 Mbytes can be transparently translated/accessed controlled by setting some log-
ical address mask bits to ones. The low-order bits of this field normally are set to define
contiguous blocks larger than 16 Mbytes, although this is not required.

1-12 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

E—Enable
0 = Transparent translation/access control disabled
1 = Transparent translation/access control enabled

Cl—Cache Inhibit
0 = Caching allowed
1 = Caching inhibited

R/W—Read/Write
0 = Only write accesses permitted
1 = Only read accesses permitted

R/WM—Read/Write Mask
0 = R/W field used
1 = R/W field ignored

FC BASE—Function Code Base
This 3-bit field defines the base function code for accesses to be transparently translated
with this register. Addresses with function codes that match the FC BASE field (and are
otherwise eligible) are transparently translated.

FC MASK—Function Code Mask
This 3-bit field contains a mask for the FC BASE field. Setting a bit in this field causes
the corresponding bit of the FC BASE field to be ignored.

1.3.6.2 TRANSPARENT TRANSLATION/ACCESS CONTROL REGISTER FIELDS FOR
THE M68040. Figure 1-10 illustrates the MC68040 and MC68LC040 transparent
translation/ MC68EC040 access control register format.

31 24 23 16
ADDRESS BASE ADDRESS MASK

E | srEeD | o [o [o | u1 | wo 0 | CM | o] o [w] o] o

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1-10. MC68040 and MC68LC040 Transparent Translation/MC68EC040 Access
Control Register Format

Address Base
This 8-bit field is compared with address bits A31 — A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated/access controlled.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-13

Introduction

Address Mask
This 8-bit field contains a mask for the address base field. Setting a bit in this field causes
the corresponding bit in the address base field to be ignored. Blocks of memory larger
than 16 Mbytes can be transparently translated/access controlled by setting some logical
address mask bits to ones. The low-order bits of this field normally are set to define con-
tiguous blocks larger than 16 Mbytes, although this not required.

E—Enable
This bit enables and disables transparent translation/access control of the block defined
by this register.
0 = Transparent translation/access control disabled
1 = Transparent translation/access control enabled

S—Supervisor/User Mode
This field specifies the use of the FC2 in matching an address.
00 = Match only if FC2 is 0 (user mode access)
01 = Match only if FC2 is 1 (supervisor mode access)
1X = Ignore FC2 when matching

Ul, U2—User Page Attributes
The MC68040, MC68E040, MC68LC040 do not interpret these user-defined bits. If an
external bus transfer results from the access, U0 and U1l are echoed to the UPAO and
UPAL signals, respectively.

CM—Cache Mode
This field selects the cache mode and access serialization for a page as follows:
00 = Cachable, Writethrough
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

W—Write Protect
This bit indicates if the block is write protected. If set, write and read-modify-write
accesses are aborted as if the resident bit in a table descriptor were clear.
0 = Read and write accesses permitted
1 = Write accesses not permitted

1.4 INTEGER DATA FORMATS

The operand data formats supported by the integer unit, as listed in Table 1-3, include those
supported by the MC68030 plus a new data format (16-byte block) for the MOVE16
instruction. Integer unit operands can reside in registers, memory, or instructions
themselves. The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation.

1-14 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

Table 1-3. Integer Data Formats

Operand Data Format Size Notes
Bit 1 Bit —
Bit Field 1 — 32 Bits |Field of Consecutive Bit

(Bér&ag-Coded Decimal 8 Bits |Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte

Byte Integer 8 Bits —

Word Integer 16 Bits —

Long-Word Integer 32 Bits —

Quad-Word Integer 64 Bits Any Two Data Registers

16-Byte 128 Bits |Memory Only, Aligned to 16- Byte Boundary

1.5 FLOATING-POINT DATA FORMATS

The following paragraphs describe the FPU’s operand data formats. The FPU supports
seven data formats. There are three signed binary integer formats (byte, word, and long
word) that are identical to those supported by the integer unit. The FPU supports the use of
the packed decimal real format. The MC68881 and MC68882 support this format in
hardware and the processors starting with the MC68040 support it in software. The FPU
also supports three binary floating- point formats (single, double, and extended precision)
that fully comply with the IEEE 754 standard. All references in this manual to extended-
precision format imply the double-extended-precision format defined by the IEEE 754
standard.

1.5.1 Packed Decimal Real Format

Figure 1-11 illustrates the packed decimal real format which is three long words consisting
of a 3-digit base 10 exponent and a 17-digit base 10 mantissa. The first two long words,
digits 15 — 0, are 64 bits and map directly to bit positions 63 — 0 of the extended-precision
real format. There are two separate sign bits, one for the exponent, the other for the
mantissa. An extra exponent (EXP3) is defined for overflows that can occur when converting
from the extended-precision real format to the packed decimal real format.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-15

Introduction

SIGN OF MANTISSA IMPLICIT DECIMAL POINT
SIGN OF EXPONENT
USED ONLY FOR % INFINITY OR NANS

% | | 65

SM[SE|Y Y| EXPO EXP1 EXPO (EXP 3) XXXX XXXX DIGIT 16

DIGIT15 | DIGIT14 | DIGIT13 | DIGIT12 | DIGIT11 | DIGIT10 | DIGIT9 DIGIT 8

DIGIT7 DIGIT 6 DIGIT5 DIGIT4 | DIGIT3 DIGIT2 | DIGIT1 DIGITO

32 0

NOTE: XXXX indicates “don't care", which is zero when written and ignored when
read.

Figure 1-11. Packed Decimal Real Format

1.5.2 Binary Floating-Point Formats

Figure 1-12 illustrates the three binary floating-point data formats. The exponent in the three
binary floating-point formats is an unsigned binary integer with an implied bias added to it.
When subtracting the bias from the exponent’s value, the result represents a signed twos
complement power of two. This yields the magnitude of a normalized floating-point number
when multiplied by the mantissa. A program can execute a CMP instruction that compares
floating-point numbers in memory using biased exponents, despite the absolute magnitude
of the exponents.

30 2 0
8BIT 23BIT
EXPONENT| FRAcTION | SINGLEREAL
L sien oF FraCTION
62 51 0
11BIT 52-BIT
EXPONENT FRACTION DOUBLE REAL
L sion oF FRACTION
9% 80 63 0
15-BIT : 64-BIT
5| EXPONENT ZERO ; MANTISSA EXTENDED REAL
SIGN OF MANTISSA L expLICIT INTEGER PART BIT

Figure 1-12. Binary Floating-Point Data Formats

Data formats for single- and double-precision numbers differ slightly from those for
extended-precision numbers in the representation of the mantissa. For all three precisions,
a normalized mantissa is always in the range (1.0...2.0). The extended-precision data format
represents the entire mantissa, including the explicit integer part bit. Single- and double-
precision data formats represent only a fractional portion of the mantissa (the fraction) and
always imply the integer part as one.

1-16 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

The IEEE 754 standard has created the term significand to bridge the difference between
mantissa and fraction and to avoid the historical implications of the term mantissa. The IEEE
754 standard defines a significand as the component of a binary floating-point number that
includes an explicit or implicit leading bit to the left of the implied binary point. However, this
manual uses the term mantissa for extended-precision formats and fraction for single- and
double- precision formats instead of the IEEE term significand.

NOTE

This section specifies ranges using traditional set notation with
the format "bound...bound” specifying the boundaries of the
range. The bracket types enclosing the range define whether the
endpoint is inclusive or exclusive. A square bracket indicates
inclusive, and a parenthesis indicates exclusive. For example,
the range specification "[1.0...2.0]" defines the range of numbers
greater than or equal to 1.0 and less than or equal to 2.0. The
range specification "(0.0... + inf)" defines the range of humbers
greater than 0.0 and less than positive infinity, but not equal to.

1.6 FLOATING-POINT DATA TYPES

Each floating-point data format supports five, unique, floating-point data types: 1)
normalized numbers, 2) denormalized numbers, 3) zeros, 4) infinities, and 5) NANSs.
Exponent values in each format represent these special data types. The normalized data
type never uses the maximum or minimum exponent value for a given format, except the
extended-precision format. The packed decimal real data format does not support
denormalized numbers.

There is a subtle difference between the definition of an extended- precision number with an
exponent equal to zero and a single- or double-precision number with an exponent equal to
zero. The zero exponent of a single- or double-precision number denormalizes the number’s
definition, and the implied integer bit is zero. An extended- precision number with an
exponent of zero may have an explicit integer bit equal to one. This results in a normalized
number, though the exponent is equal to the minimum value. For simplicity, the following
discussion treats all three floating-point formats in the same manner, where an exponent
value of zero identifies a denormalized number. However, remember the extended-precision
format can deviate from this rule.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-17

Introduction

1.6.1 Normalized Numbers

Normalized numbers encompass all numbers with exponents laying between the maximum
and minimum values. Normalized numbers can be positive or negative. For normalized
numbers in single and double precision the implied integer bit is one. In extended precision,
the mantissa’s MSB, the explicit integer bit, can only be a one (see Figure 1-13); and the
exponent can be zero.

MIN < EXPONENT < MAX MANTISSA = ANY BIT PATTERN

|— SIGN OF MANTISSA, 0 OR 1

Figure 1-13. Normalized Number Format

1.6.2 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold. The detection
of the underflow for a given data format and operation occurs when the result’'s exponent is
less than or equal to the minimum exponent value. Denormalized numbers can be positive
or negative. For denormalized numbers in single and double precision the implied integer
bit is a zero. In extended precision, the mantissa’'s MSB, the explicit integer bit, can only be
a zero (see Figure 1-14).

EXPONENT =0 MANTISSA = ANY NONZERO BIT PATTERN

|_ SIGN OF MANTISSA, 0 OR 1

Figure 1-14. Denormalized Number Format

Traditionally, the detection of underflow causes floating-point number systems to perform a
"flush-to-zero". This leaves a large gap in the number line between the smallest magnitude
normalized number and zero. The IEEE 754 standard implements gradual underflows: the
result mantissa is shifted right (denormalized) while the result exponent is incremented until
reaching the minimum value. If all the mantissa bits of the result are shifted off to the right
during this denormalization, the result becomes zero. Usually a gradual underflow limits the
potential underflow damage to no more than a round-off error. This underflow and
denormalization description ignores the effects of rounding and the user-selectable
rounding modes. Thus, the large gap in the number line created by "flush-to-zero" number
systems is filled with representable (denormalized) numbers in the IEEE "gradual
underflow" floating-point number system.

Since the extended-precision data format has an explicit integer bit, a number can be
formatted with a nonzero exponent, less than the maximum value, and a zero integer bit.
The IEEE 754 standard does not define a zero integer bit. Such a number is an
unnormalized number. Hardware does not directly support denormalized and unnormalized
numbers, but implicitly supports them by trapping them as unimplemented data types,
allowing efficient conversion in software.

1-18 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

1.6.3 Zeros

Zeros can be positive or negative and represent the real values + 0.0 and — 0.0 (see Figure
1-15).

EXPONENT =0 MANTISSA =0

|— SIGN OF MANTISSA, 0 OR 1

Figure 1-15. Zero Format

1.6.4 Infinities

Infinities can be positive or negative and represent real values that exceed the overflow
threshold. A result's exponent greater than or equal to the maximum exponent value
indicates the overflow for a given data format and operation. This overflow description
ignores the effects of rounding and the user-selectable rounding models. For single- and
double-precision infinities the fraction is a zero. For extended-precision infinities, the
mantissa’s MSB, the explicit integer bit, can be either one or zero (see Figure 1-16).

EXPONENT = MAXIMUM MANTISSA =0

|— SIGN OF MANTISSA, 0 OR 1

Figure 1-16. Infinity Format

1.6.5 Not-A-Numbers

When created by the FPU, NANs represent the results of operations having no
mathematical interpretation, such as infinity divided by infinity. All operations involving a
NAN operand as an input return a NAN result. When created by the user, NANs can protect
against unitialized variables and arrays or represent user-defined data types. For extended-
precision NANs, the mantissa’s MSB, the explicit integer bit, can be either one or zero (see
Figure 1-17).

EXPONENT = MAXIMUM MANTISSA = ANY NONZERO BIT PATTERN

|— SIGN OF MANTISSA, 0 OR 1

Figure 1-17. Not-A-Number Format
The FPU implements two different types of NANs identified by the value of the MSB of the

mantissa for single- and double-precision, and the MSB of the mantissa minus one for
extended-precision. If the bit is set, it is a nonsignaling NAN, otherwise, it is an SNAN. An

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-19

Introduction

SNAN can be used as an escape mechanism for a user-defined, non-IEEE data type. The
FPU never creates an SNAN resulting from an operation.

The IEEE specification defines NAN processing used as an input to an operation. A
nonsignaling NAN must be returned when using an SNAN as an input and there is a
disabled SNAN trap. The FPU does this by using the source SNAN, setting the MSB of the
mantissa, and storing the resulting nonsignaling NAN in the destination. Because of the
IEEE formats for NANSs, the result of setting an SNAN MSB is always a nonsignaling NAN.

When the FPU creates a NAN, the NAN always contains the same bit pattern in the
mantissa. All bits of the mantissa are ones for any precision. When the user creates a NAN,
any nonzero bit pattern can be stored in the mantissa.

1.6.6 Data Format and Type Summary
Tables 1-4 through 1-6 summarize the data type specifications for single-, double-, and
extended-precision data formats. Packed decimal real formats support all data types except

denormalized numbers. Table 1-7 summarizes the data types for the packed decimal real
format.

1-20 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table 1-4. Single-Precision Real Format Summary Data Format

Introduction

31 30

Data Format

23 22

Ls |

e |

Field Size In Bits

Sign (s)

Biased Exponent (e) 8

Fraction (f) 23

Total 32
Interpretation of Sign

Positive Fraction s=0

Negative Fraction s=
Normalized Numbers

Bias of Biased Exponent +127 ($7F)

Range of Biased Exponent

0 < e < 255 ($FF)

Range of Fraction

Zero or Nonzero

Fraction

1f

Relation to Representation of Real Numbers

(-1)5x 287127 x 1 f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($00)
Bias of Biased Exponent +126 ($7E)
Range of Fraction Nonzero
Fraction 0.f

Relation to Representation of Real Numbers

(-1)S x 2-126 x 0 f

Signhed Zeros

Biased Exponent Format Minimum 0 ($00)
Fraction 0.f=0.0
Signed Infinities
Biased Exponent Format Maximum 255 ($FF)
Fraction 0.f=0.0
NANSs
Sign Don't Care
Biased Exponent Format Maximum 255 ($FF)
Fraction Nonzero
Representation of Fraction
Nonsignaling 0.IXXXX...XXXX
Signaling 0.0XXXX...XXXX
Nonzero Bit Pattern Created by User XXXXX. ... XXXX
Fraction When Created by FPCP 11111...1111
Approximate Ranges
Maximum Positive Normalized 3.4x10%8
Minimum Positive Normalized 1.2 x 10-38
Minimum Positive Denormalized 1.4 x 10-4°

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

1-21

Introduction

Table 1-5. Double-Precision Real Format Summary

Data Format

63 62 52 51

Ls | e [f

Field Size (in Bits)

Sign (s) 1

Biased Exponent (e) 11

Fraction (f) 52

Total 64
Interpretation of Sign

Positive Fraction s=

Negative Fraction s=1

Normalized Numbers

Bias of Biased Exponent

+1023 ($3FF)

Range of Biased Exponent

0 < e <2047 ($7FF)

Range of Fraction

Zero or Nonzero

Fraction

1f

Relation to Representation of Real Numbers

(_1)5 x 26—1023 x 1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($000)
Bias of Biased Exponent +1022 ($3FE)
Range of Fraction Nonzero
Fraction 0.f

Relation to Representation of Real Numbers

(_1)5 x 2_1022 x 0.f

Signed Zeros

Biased Exponent Format Minimum

0 ($00)

Fraction (Mantissa/Significand)

0.f=0.0

Signed Infinities

Biased Exponent Format Maximum

2047 ($7FF)

Fraction 0.f=0.0
NANSs
Sign Oor1l
Biased Exponent Format Maximum 255 ($7FF)
Fraction Nonzero
Representation of Fraction
Nonsignaling LXXXX. .. XXXX
Signaling OXXXX...XXXX
Nonzero Bit Pattern Created by User fﬁolol()ﬁxﬁ
Fraction When Created by FPCP
Approximate Ranges
Maximum Positive Normalized 18 x 10308
Minimum Positive Normalized 2.2 x 10-308
Minimum Positive Denormalized 4.9 x 10-324

1-22 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Introduction

Table 1-6. Extended-Precision Real Format Summary

95 %4

Data Format

80 79

64 63 62 0

Ls |

| z

]

Field Size (in Bits)

Sign (s) 1
Biased Exponent (e) 15
Zero, Reserved (u) 16
Explicit Integer Bit (j) 1
Mantissa (f) 63
Total 96
Interpretation of Unused Bits
Input Don’t Care
Output All Zeros
Interpretation of Sign

Positive Mantissa s=0
Negative Mantissa s=1

Normalized Numbers

Bias of Biased Exponent

+16383 ($3FFF)

Range of Biased Exponent

0 <=e < 32767 ($7FFF)

Explicit Integer Bit 1
Range of Mantissa Zero or Nonzero
Mantissa (Explicit Integer Bit and Fraction) 1.f

Relation to Representation of Real Numbers

(_l)S x 29—16383 x 1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($0000)
Bias of Biased Exponent +16383 ($3FFF)
Explicit Integer Bit 0

Range of Mantissa Nonzero
Mantissa (Explicit Integer Bit and Fraction) o.f

Relation to Representation of Real Numbers

(_1)5 x 2_16383 x 0.f

Signed Zeros

Biased Exponent Format Minimum

0 ($0000)

Mantissa (Explicit Integer Bit and Fraction)

0.0

Signed Infinities

Biased Exponent Format Maximum

32767 ($7FFF)

Explicit Integer Bit

Don’'t Care

Mantissa (Explicit Integer Bit and Fraction)

x.000...0000

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

1-23

Introduction

Table 1-6. Extended-Precision Real
Format Summary (Continued)

NANSs
Sign Don't Care
Explicit Integer Bit Don’t Care
Biased Exponent Format Maximum 32767 ($7FFF)
Mantissa Nonzero
Representation of Fraction
Nonsignaling X IXXXX. .. XXXX
Signaling X.0XXXX... XXXX
Nonzero Bit Pattern Created by User XXXXXX. .. XXXX
Fraction When Created by FPCP 1.11111...1111
Approximate Ranges
Maximum Positive Normalized 1.2 x 104932
Minimum Positive Normalized 1.7 x 1074932
Minimum Positive Denormalized 3.7 x 104951

Table 1-7. Packed Decimal Real Format Summary

3-Digit 1-Digit
Data Type | SM | SE Y Y Exponent Integer 16-Digit Fraction
*Infinity 0/1 1 1 $FFF SXXXX $00...00
+NAN 0/1 1 1 $FFF FXXXX Nonzero
+SNAN 0/1 1 1 $FFF SXXXX Nonzero
+Zero 0 0/1 X X $000-$999 $XXXO0 $00...00
—Zero 1 0/1 X X $000-$999 $XXXO0 $00...00
+In-Range 0 0/1 X X $000-$999 SXXX0-$XXX9 $00...01-$99...99
—In-Range 1 0/1 X X $000-$999 FXXX0-$XXX9 $00...01-$99...99

A packed decimal real data format with the SE and both Y bits set, an exponent of $FFF,
and a nonzero 16-bit decimal fraction is a NAN. When the FPU uses this format, the fraction
of the NAN is moved bit- by-bit into the extended-precision mantissa of a floating-point data
register. The exponent of the register is set to signify a NAN, and no conversion occurs. The
MSB of the most significant digit in the decimal fraction (the MSB of digit 15) is a don’t care,
as in extended-precision NANs, and the MSB of minus one of digit 15 is the SNAN bit. If the
NAN bit is a zero, then it is an SNAN.

If a non-decimal digit ($A — $F) appears in the exponent of a zero, the number is a true zero.
The FPU does not detect non-decimal digits in the exponent, integer, or fraction digits of an
in-range packed decimal real data format. These non-decimal digits are converted to binary
in the same manner as decimal digits; however, the result is probably useless although it is
repeatable. Since an in-range number cannot overflow or underflow when converted to
extended precision, conversion from the packed decimal real data format always produces
normalized extended-precision numbers.

1-24 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

1.7 ORGANIZATION OF DATA IN REGISTERS

The following paragraphs describe data organization within the data, address, and control
registers.

1.7.1 Organization of Integer Data Formats in Registers

Each integer data register is 32 bits wide. Byte and word operands occupy the lower 8- and
16-bit portions of integer data registers, respectively. Long- word operands occupy the entire
32 bits of integer data registers. A data register that is either a source or destination operand
only uses or changes the appropriate lower 8 or 16 bits (in byte or word operations,
respectively). The remaining high-order portion does not change and goes unused. The
address of the least significant bit (LSB) of a long-word integer is zero, and the MSB is 31.
For bit fields, the address of the MSB is zero, and the LSB is the width of the register minus
one (the offset). If the width of the register plus the offset is greater than 32, the bit field
wraps around within the register. Figure 1-18 illustrates the organization of various data
formats in the data registers.

An example of a quad word is the product of a 32-bit multiply or the quotient of a 32-bit divide
operation (signed and unsigned). Quad words may be organized in any two integer data
registers without restrictions on order or pairing. There are no explicit instructions for the
management of this data format, although the MOVEM instruction can be used to move a
quad word into or out of registers.

Binary-coded decimal (BCD) data represents decimal numbers in binary form. Although
there are many BCD codes, the BCD instructions of the M68000 family support two formats,
packed and unpacked. In these formats, the LSBs consist of a binary number having the
numeric value of the corresponding decimal number. In the unpacked BCD format, a byte
defines one decimal number that has four LSBs containing the binary value and four
undefined MSBs. Each byte of the packed BCD format contains two decimal numbers; the
least significant four bits contain the least significant decimal number and the most
significant four bits contain the most significant decimal number.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-25

Introduction

31 30 10
BIT (0 < MODULO (OFFSET)
| MSB | | LSB | < 31,0FFSET OF 0 = MSB)
31 7 0
| NOT USED | MSB | | LSB | BYTE
31 15 0
| NOT USED | MSB | LOW-ORDER WORD | LSB | 16-BIT WORD
31 0
| MSB | LONG WORD | LSB | LONG WORD
63 3
| MSB | ANY DX |
31 0 QUAD WORD
| ANY DY | LSB |
31 0
BIT FIELD (0 < OFFSET < 32,
| OFFSET | WIDTH* | | 0<WIDTH £32)
31 8 7 4 3 0
| | UNDEFINED | LEAST SIGNIFICANT DIGIT | UNPACKED BCD
31 8 7 43 0
| | MOST SIGNIFICANT DIGIT | LEAST SIGNIFICANT DIGIT | PACKED BCD

*IF WIDTH + OFFSET > 32, BIT FIELD WRAPS AROUND WITHIN THE REGISTER.

Figure 1-18. Organization of Integer Data Formats in Data Registers

Because address registers and stack pointers are 32 bits wide, address registers cannot be
used for byte-size operands. When an address register is a source operand, either the low-
order word or the entire long-word operand is used, depending upon the operation size.
When an address register is the destination operand, the entire register becomes affected,
despite the operation size. If the source operand is a word size, it is sign-extended to 32 bits
and then used in the operation to an address register destination. Address registers are
primarily for addresses and address computation support. The instruction set includes
instructions that add to, compare, and move the contents of address registers. Figure 1-19
illustrates the organization of addresses in address registers.

31 16 15 0
| SIGN-EXTENDED 16-BIT ADDRESS OPERAND

31 0
FULL 32-BIT ADDRESS OPERAND

Figure 1-19. Organization of Integer Data Formats in Address Registers

1-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

Control registers vary in size according to function. Some control registers have undefined
bits reserved for future definition by Motorola. Those particular bits read as zeros and must
be written as zeros for future compatibility.

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, despite privilege mode. The
alternate function code registers, supervisor function code (SFC) and data function code
(DFC), are 32-bit registers with only bits OP2 implemented. These bits contain the address
space values for the read or write operands of MOVES, PFLUSH, and PTEST instructions.
Values transfer to and from the SFC and DFC by using the MOVEC instruction. These are
long-word transfers; the upper 29 bits are read as zeros and are ignored when written.

1.7.2 Organization of Integer Data Formats in Memory

The byte-addressable organization of memory allows lower addresses to correspond to
higher order bytes. The address N of a long-word data item corresponds to the address of
the highest order wordUs MSB. The lower order word is located at address N + 2, leaving
the LSB at address N + 3 (see Figure 1-20). Organization of data formats in memory is
consistent with the M68000 family data organization. The lowest address (nearest
$00000000) is the location of the MSB, with each successive LSB located at the next
address (N + 1, N + 2, etc.). The highest address (nearest $FFFFFFFF) is the location of the
LSB.

31 23 15 7 0

LONG WORD $00000000
WORD $00000000 WORD $00000002

BYTE $00000000 | BYTE $00000001 BYTE $00000002 | BYTE $00000003
LONG WORD $00000004

WORD $00000004 WORD $00000006

BYTE $00000004 | BYTE $00000005 BYTE $00000006 | BYTE $00000007

Z b Z ° Z

LONG WORD $FFFFFFFC

WORD $FFFFFFFC WORD $FFFFFFFE

BYTE $FFFFFFFC BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

Figure 1-20. Memory Operand Addressing

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-27

Introduction

Figure 1-21 illustrates the organization of U data formats in memory. A base address that
selects one byte in memory, the base byte, specifies a bit number that selects one bit, the
bit operand, in the base byte. The MSB of the byte is seven.

The following conditions specify a bit field operand:

1. A base address that selects one byte in memory.

2. Abit field offset that shows the leftmost (base) bit of the bit field in relation to the
MSB of the base byte.

3. A Dbit field width that determines how many bits to the right of the base bit are in
the bit field.

The MSB of the base byte is bit field offset O; the LSB of the base byte is bit field offset 7;
and the LSB of the previous byte in memory is bit field offset — 1. Bit field offsets may have
values between 2 — 31 to 231 — 1, and bit field widths may range from 1 to 32 bits.

A 16-byte block operand, supported by the MOVEL16 instruction, has a block of 16 bytes,
aligned to a 16-byte boundary. An address that can point to any byte in the block specifies
this operand.

1-28 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Introduction

7 0|7 07 07 0
| BYTEn-1 7654210 BYTEn+1 BYTEn+2 |B|TDATA
A A
ADDRESS BIT
NUMBER BASE BIT
7 0|7 0|7 vy 0[7 0
BIT FIELD
| BYTEn-1 BYTEn 0123....w-1 DATA
A
}— OFFSETZ—)lWOFFSET—)'eWIDTH%
" BASEADDRESS
7 0|7 07 07 0
| BYTEn-1 MSB BYTEn LSB BYTEn+1 BYTEn+2 | BYTE DATA
A
ADDRESS
7 0| 7 0|7 0|7 0|7 0
BYTEn-1 WORD INTEGER BYTEn+2 BYTEn+3 | WORD DATA
A
ADDRESS
7 0|7 0|7 0|7 0 7 0|7 0
| BYTEn-1 LONG-WORD INTEGER BYTEn+4 :52¥E-WORD
A
ADDRESS
7 0y 7 07 0|7 0|7 0|7 0
| BYTEn-1 QUAD-WORD
QUAD-WORD INTEGER DATA
BYTEn+8
7 0]7 07 0]7 0]7 07 0
BYTEn-1
16-BYTE BLOCK
(ALIGNED TO
16-BYTE 16-BYTE BLOCK
BOUNDARY)
BYTEn+16
7 07 413 0] 7 07 0 PACKED
| BYTEn-1 MSD LSD BYTEn+1 BYTEn+2 | BCD
DATA
A
ADDRESS
7 07 413 017 413 0|7 0 UNPACKED
| BYTEn-1 XX MSD XX LSD BYTEn+2 | BCD
DATA
A
ADDRESS

Figure 1-21. Memory Organization for Integer Operands

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-29

Introduction

1.7.3 Organization of Fpu Data Formats in Registers and Memory

The eight, 80-bit floating-point data registers are analogous to the integer data registers and
are completely general purpose (i.e., any instruction may use any register). The MC68040
supports only some data formats and types in hardware. Table 1-8 lists the data formats
supported by the MC68040.

Table 1-8. MC68040 FPU Data Formats and Data Types

Data Formats
Single- Double- | Extended- | Packed- Long-
Number | Precision | Precision | Precision | Decimal Byte Word Word
Types Real Real Real Real Integer | Integer Integer
Normalized O 0 O t O O 0
Zero O O O t O O O
Infinity O 0 O t
NAN 0 a g t
Denormalized T t t
Unnormalized t

NOTES:
* = Data Format/Type Supported by On-Chip MC68040 FPU Hardware
T = Data Format/Type Supported by Software (MC68040FPSP)

Figure 1-22 illustrates the floating-point data format for the single- , double-, and extended-
precision binary real data organization in memory.

7 017 0]7 07 0]7 0|7 0
BYTEn-1 SINGLE-PRECISION REAL BYTEn +4
ADDRESS
7 0y7 07 07 0|7 0|7 0
BYTEn-1
DOUBLE-PRECISION REAL
BYTEn +8
ADDRESS
7 07 0|7 0]7 0]7 017 0
BYTEn-1
EXTENDED-PRECISION REAL
BYTEn +12

Figure 1-22. Organization of FPU Data Formats in Memory

1-30 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SECTION 2
ADDRESSING CAPABILITIES

Most operations take asource operand and destination operand, compute them, and store
the result in the destination location. Single-operand operations take a destination operand,
compute it, and store the result in the destination location. External microprocessor
references to memory are either program references that refer to program space or data
references that refer to data space. They access either instruction words or operands (data
items) for an instruction. Program space is the section of memory that contains the program
instructions and any immediate data operands residing in the instruction stream. Data space
is the section of memory that contains the program data. Data items in the instruction stream
can be accessed with the program counter relative addressing modes; these accesses
classify as program references.

2.1 INSTRUCTION FORMAT

M68000 family instructions consist of at least one word; some have as many as 11 words.
Figure 2-1 illustrates the general composition of an instruction. The first word of the
instruction, called the simple effective address operation word, specifies the length of the
instruction, the effective addressing mode, and the operation to be performed. The
remaining words, called brief and full extension words, further specify the instruction and
operands. These words can be floating-point command words, conditional predicates,
immediate operands, extensions to the effective addressing mode specified in the simple
effective address operation word, branch displacements, bit number or bit field
specifications, special register specifications, trap operands, pack/unpack constants, or
argument counts.

15 0

SINGLE EFFECTIVE ADDRESS OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS)

Figure 2-1. Instruction Word General Format

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-1

Addressing Capabilities

An instruction specifies the function to be performed with an operation code and defines the
location of every operand. Instructions specify an operand location by register specification,
the instruction’s register field holds the register's number; by effective address, the
instruction’s effective address field contains addressing mode information; or by implicit
reference, the definition of the instruction implies the use of specific registers.

The single effective address operation word format is the basic instruction word (see Figure
2-2). The encoding of the mode field selects the addressing mode. The register field
contains the general register number or a value that selects the addressing mode when the
mode field contains opcode 111. Some indexed or indirect addressing modes use a
combination of the simple effective address operation word followed by a brief extension
word. Other indexed or indirect addressing modes consist of the simple effective address
operation word and a full extension word. The longest instruction is a MOVE instruction with
a full extension word for both the source and destination effective addresses and eight other
extension words. It also contains 32-bit base displacements and 32-bit outer displacements
for both source and destination addresses. Figure 2-2 illustrates the three formats used in
an instruction word; Table 2-1 lists the field definitions for these three formats.

SINGLE EFFECTIVE ADDRESS OPERATION WORD FORMAT
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

X X X X X X X X X X

BRIEF EXTENSION WORD FORMAT

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| DA | REGISTER | wo | scae | o | DISPLACEMENT

FULL EXTENSION WORD FORMAT

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
D/A REGISTER | wo| scae | 1 | BsS [1s | BDSIZE | 0 | Ins
BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)

Figure 2-2. Instruction Word Specification Formats

2-2 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table 2-1. Instruction Word Format Field Definitions

Addressing Capabilities

Field

Definition

Instruction

Mode

Addressing Mode

Register

General Register Number

Extensions

D/A

Index Register Type
0=Dn
1=An

WiL

Word/Long-Word Index Size
0 = Sign-Extended Word
1 = Long Word

Scale

Scale Factor
00=1
01=2
10=4
11=8

BS

Base Register Suppress
0 = Base Register Added
1 = Base Register Suppressed

Index Suppress
0 = Evaluate and Add Index Operand
1 = Suppress Index Operand

BD SIZE

Base Displacement Size
00 = Reserved
01 = Null Displacement
10 = Word Displacement
11 = Long Displacement

INns

Index/Indirect Selection
Indirect and Indexing Operand Determined in Conjunc-

tion with Bit 6, Index Suppress

For effective addresses that use a full extension word format, the index suppress (IS) bit and
the index/indirect selection (I/1S) field determine the type of indexing and indirect action.
Table 2-2 lists the index and indirect operations corresponding to all combinations of IS and

I/IS values.

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-3

Addressing Capabilities

Table 2-2. IS-I/IS Memory Indirect Action Encodings

IS Index/Indirect Operation

0 000 No Memory Indirect Action

0 001 Indirect Preindexed with Null Outer Displacement

0 010 Indirect Preindexed with Word Outer Displacement
0 011 Indirect Preindexed with Long Outer Displacement
0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement
0 110 Indirect Postindexed with Word Outer Displacement
0 111 Indirect Postindexed with Long Outer Displacement
1 000 No Memory Indirect Action

1 001 Memory Indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100-111 Reserved

2.2 EFFECTIVE ADDRESSING MODES

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways. A register field within an instruction can specify the register to
be used; an instruction’s effective address field can contain addressing mode information;
or the instruction’s definition can imply the use of a specific register. Other fields within the
instruction specify whether the register selected is an address or data register and how the
register is to be used. Section 1 Introduction contains detailed register descriptions.

An instruction’s addressing mode specifies the value of an operand, a register that contains
the operand, or how to derive the effective address of an operand in memory. Each
addressing mode has an assembler syntax. Some instructions imply the addressing mode
for an operand. These instructions include the appropriate fields for operands that use only
one addressing mode.

2-4 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.2.1 Data Register Direct Mode

In the data register direct mode, the effective address field specifies the data register

containing the operand.

GENERATION:

ASSEMBLER SYNTAX:

EA MODE FIELD:

EA REGISTER FIELD:

NUMBER OF EXTENSION WORDS:

DATA REGISTER

EA=Dn
Dn

000

REG. NO.
0

! OPERAND

2.2.2 Address Register Direct Mode

In the address register direct mode, the effective address field specifies the address register

containing the operand.

GENERATION:

ASSEMBLER SYNTAX:

EA MODE FIELD:

EA REGISTER FIELD:

NUMBER OF EXTENSION WORDS:

EA=An
An

001

REG. NO.
0

ADDRESS REGISTER

! OPERAND

2.2.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory. The effective address field
specifies the address register containing the address of the operand in memory.

GENERATION:

ASSEMBLER SYNTAX:

EA MODE FIELD:

EA REGISTER FIELD:

NUMBER OF EXTENSION WORDS:

EA = (An)
(An)

010
REG. NO.
0

31 0
ADDRESS REGISTER I OPERAND POINTER |
POINTS TO
MEMORY ! OPERAND |
MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-5

Addressing Capabilities

2.2.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. After the operand address is used, it is incremented by one, two, or four
depending on the size of the operand: byte, word, or long word, respectively. Coprocessors
may support incrementing for any operand size, up to 255 bytes. If the address register is
the stack pointer and the operand size is byte, the address is incremented by two to keep
the stack pointer aligned to a word boundary.

GENERATION: EA = (An) + SIZE
ASSEMBLER SYNTAX: (An) +
EA MODE FIELD: 011
EA REGISTER FIELD: REG. NO.
NUMBER OF EXTENSION WORDS: 0

31 0
ADDRESS REGISTER ! CONTENTS

A

OPERAND LENGTH (1, 2, OR 4) SIZE

31 0
OPERAND POINTER ! CONTENTS |

POINTS TO

MEMORY ! OPERAND |

2-6 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.2.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. Before the operand address is used, it is decremented by one, two, or four
depending on the operand size: byte, word, or long word, respectively. Coprocessors may
support decrementing for any operand size up to 255 bytes. If the address register is the
stack pointer and the operand size is byte, the address is decremented by two to keep the
stack pointer aligned to a word boundary.

GENERATION: EA = (An)-SIZE
ASSEMBLER SYNTAX: - (An)

EA MODE FIELD: 100

EA REGISTER FIELD: REG. NO.
NUMBER OF EXTENSION WORDS: 0

ADDRESS REGISTER I CONTENTS

OPERAND LENGTH (1, 2, OR 4) SIZE

OPERAND POINTER | CONTENTS |
T
POINTS TO

MEMORY I OPERAND |

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-7

Addressing Capabilities

2.2.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in memory. The sum
of the address in the address register, which the effective address specifies, plus the sign-
extended 16-bit displacement integer in the extension word is the operand’s address in
memory. Displacements are always sign-extended to 32 bits prior to being used in effective

address calculations.

GENERATION:

ASSEMBLER SYNTAX:

EA MODE FIELD:

EA REGISTER FIELD:

NUMBER OF EXTENSION WORDS:

EA=(An) +d16
(d16,An)

101

REG. NO.

1

31

ADDRESS REGISTER

DISPLACEMENT 7[SIGN EXTENDED

| CONTENTS

INTEGER

31

| CONTENTS

OPERAND POINTER

MEMORY

POINTS TO

2-8 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

! OPERAND

MOTOROLA

Addressing Capabilities

2.2.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains an index register indicator
and an 8-bit displacement. The index register indicator includes size and scale information.
In this mode, the operand is in memory. The operand’s address is the sum of the address
register’s contents; the sign-extended displacement value in the extension word’s low-order
eight bits; and the index register’s sign-extended contents (possibly scaled). The user must
specify the address register, the displacement, and the index register in this mode.

GENERATION: EA = (An) + (Xn) + dg
ASSEMBLER SYNTAX: (dg An, Xn.SIZE*SCALE)
EA MODE FIELD: 110
EA REGISTER FIELD: REG. NO.
NUMBER OF EXTENSION WORDS: 1
31 0
ADDRESS REGISTER ! CONTENTS |

DISPLACEMENT | SIGN EXTENDED
31
INDEX REGISTER ——— SIGN-EXTENDED VALUE
\
SCALE | }—>
31 0
OPERAND POINTER | CONTENTS |
POlNITS TO
MEMORY ! OPERAND |

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-9

Addressing Capabilities

2.2.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional 16- or 32-bit sign-
extended base displacement. The index register indicator includes size and scaling
information. The operand is in memory. The operand’s address is the sum of the contents of
the address register, the base displacement, and the scaled contents of the sign-extended
index register.

In this mode, the address register, the index register, and the displacement are all optional.
The effective address is zero if there is no specification. This mode provides a data register
indirect address when there is no specific address register and the index register is a data
register.

GENERATION: EA = (An) + (Xn) + bd
ASSEMBLER SYNTAX: (bd,An,Xn.SIZE*SCALE)
EA MODE FIELD: 110
EA REGISTER FIELD: REG. NO.
NUMBER OF EXTENSION WORDS: 12,0R 3
31 0
ADDRESS REGISTER | CONTENTS
31 0
BASE DISPLACEMENT ————| SIGN-EXTENDED VALUE
31 0
INDEX REGISTER] SIGN-EXTENDED VALUE
SCALE } SCALE VALUE }—)
31 0
OPERAND POINTER ! CONTENTS |
T
POINTS TO
MEMORY | OPERAND |

2-10 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.2.9 Memory Indirect Postindexed Mode

In this mode, both the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using a base address register and base
displacement. The processor accesses a long word at this address and adds the index
operand (Xn.SIZE*SCALE) and the outer displacement to yield the effective address. Both
displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When omitting a displacement or
suppressing an element, its value is zero in the effective address calculation.

GENERATION: EA = (An + bd) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: (Ibd,An],Xn.SIZE*SCALE, od)
EA MODE FIELD: 110
EA REGISTER FIELD: REG. NO.
NUMBER OF EXTENSION WORDS: 1,234, OR5
31 0
ADDRESS REGISTER i CONTENTS
31 0
BASE DISPLACEMENT = —— SIGN-EXTENDED VALUE
31 0
INTERMEDIATE
ADDRESS | CONTENTS . |
POINTS TO
31 0
MEMORY | VALUE AT INDIRECT MEMORY ADDRESS |
31 0
INDEX REGISTER 4| SIGN-EXTENDED VALUE
\
SCALE j SCALE VALUE }—)
31 0
OUTER DISPLACEMENT ——| SIGN-EXTENDED VALUE F———
31 0
OPERAND POINTER ! CONTENTS |
POlNll'S TO
MEMORY ! OPERAND |

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-11

Addressing Capabilities

2.2.10 Memory Indirect Preindexed Mode

In this mode, both the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using a base address register, a base displacement,
and the index operand (Xn.SIZE*SCALE). The processor accesses a long word at this
address and adds the outer displacement to yield the effective address. Both displacements
and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When omitting a displacement or
suppressing an element, its value is zero in the effective address calculation.

GENERATION: EA = (bd + An) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: (Ibd, An, Xn.SIZE*SCALE], od)
EA MODE FIELD: 110
EA REGISTER FIELD: REG. NO.
NUMBER OF EXTENSION WORDS: ~ 1,2,34, OR 5
31 0
ADDRESS REGISTER ! CONTENTS
31 0
BASE DISPLACEMENT ——| SIGN-EXTENDED VALUE >
31 0
INDEX REGISTER ————— SIGN-EXTENDED VALUE | —
SCALE } SCALE VALUE
31 0
INTERMEDIATE ADDRESS ! CONTENTS |
1
POINTS TO
31 0
MEMORY ! VALUE AT INDIRECT MEMORY ADDRESS |

31

0

OUTER DISPLACEMENT —'

SIGN-EXTENDED VALUE l—)?

OPERAND POINTER | CONTENTS |
POlN!rS TO
MEMORY ! OPERAND |
2-12 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Addressing Capabilities

2.2.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the program counter (PC) and the sign-extended 16-bit displacement integer in
the extension word. The value in the PC is the address of the extension word. This is a
program reference allowed only for reads.

GENERATION: EA=(PC) +d16
ASSEMBLER SYNTAX: (d16,PC)
EA MODE FIELD: 111
EA REGISTER FIELD: 010
NUMBER OF EXTENSION WORDS: 1
31 0
PROGRAM COUNTER | CONTENTS
31 15 0
e
DISPLACEMENT —— SIGN EXTENDED _ INTEGER |—>
31 0
OPERAND POINTER | CONTENTS |
POINITS TO
MEMORY | OPERAND |

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-13

Addressing Capabilities

2.2.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

This mode is similar to the mode described in 2.2.7 Address Register Indirect with Index
(8-Bit Displacement) Mode, except the PC is the base register. The operand is in memory.
The operand’s address is the sum of the address in the PC, the sign-extended displacement
integer in the extension word’s lower eight bits, and the sized, scaled, and sign-extended
index operand. The value in the PC is the address of the extension word. This is a program
reference allowed only for reads. The user must include the displacement, the PC, and the
index register when specifying this addressing mode.

GENERATION: EA = (PC) + (Xn) + dg
ASSEMBLER SYNTAX: (dg,PC Xn.SIZE*SCALE)
EA MODE FIELD: 111
EA REGISTER FIELD: 011
NUMBER OF EXTENSION WORDS; 1
31 0
PROGRAM COUNTER ! CONTENTS |

DISPLACEMENT

31
INDEX REGISTER 4'

SCALE

OPERAND POINTER I CONTENTS |
POIN!FS TO

MEMORY | OPERAND |

2-14 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.2.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the mode described in 2.2.8 Address Register Indirect with Index
(Base Displacement) Mode, except the PC is the base register. It requires an index register
indicator and an optional 16- or 32-bit sign-extended base displacement. The operand is in
memory. The operand’s address is the sum of the contents of the PC, the base
displacement, and the scaled contents of the sign-extended index register. The value of the
PC is the address of the first extension word. This is a program reference allowed only for
reads.

In this mode, the PC, the displacement, and the index register are optional. The user must
supply the assembler notation ZPC (a zero value PC) to show that the PC is not used. This
allows the user to access the program space without using the PC in calculating the effective
address. The user can access the program space with a data register indirect access by
placing ZPC in the instruction and specifying a data register as the index register.

GENERATION: EA = (PC) + (Xn) + bd
ASSEMBLER SYNTAX: (bd, PC, Xn. SIZE*SCALE)
EA MODE FIELD: 111
EA REGISTER FIELD: 011
NUMBER OF EXTENSION WORDS: 12, OR 3
31 0
PROGRAM COUNTER ! CONTENTS
31 0
DISPLACEMENT ——— SIGN-EXTENDED VALUE ———
31 0
INDEX REGISTER ———| SIGN-EXTENDED VALUE
SCALE | SCALEVALUE
31 0
OPERAND POINTER ! CONTENTS |
POlNITS TO
MEMORY | OPERAND |

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-15

Addressing Capabilities

2.2.14 Program Counter Memory Indirect Postindexed Mode

This mode is similar to the mode described in 2.2.9 Memory Indirect Postindexed Mode,
but the PC is the base register. Both the operand and operand address are in memory. The
processor calculates an intermediate indirect memory address by adding a base
displacement to the PC contents. The processor accesses a long word at that address and
adds the scaled contents of the index register and the optional outer displacement to yield
the effective address. The value of the PC used in the calculation is the address of the first
extension word. This is a program reference allowed only for reads.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. The user must supply the
assembler notation ZPC (a zero value PC) to show the PC is not used. This allows the user
to access the program space without using the PC in calculating the effective address. Both
the base and outer displacements may be null, word, or long word. When omitting a
displacement or suppressing an element, its value is zero in the effective address
calculation.

GENERATION: EA = (bd + PC) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: (Ibd,PC],Xn.SIZE*SCALE 0d)
EA MODE FIELD: 111
EA REGISTER FIELD: 011
NUMBER OF EXTENSION WORDS: 1,234, 0r 5
31 0
PROGRAM COUNTER | CONTENTS
31 0
BASE DISPLACEMENT ——| SIGN-EXTENDED VALUE
31 0
INTERMEDIATE |
ADDRESS I CONTENTIS |
POINTS TO
31 * 0
MEMORY | VALUE AT INDIRECT MEM. ADDRESS IN PROG. SPACE |
31 0
INDEX REGISTER 4| SIGN-EXTENDED VALUE
SCALE | SCALE VALUE
31 0
OUTER DISPLACEMENT ——| SIGN-EXTENDED VALUE
31 0
OPERAND POINTER ! CONTENTS |
POINITS TO
MEMORY ! OPERAND |

2-16 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.2.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the mode described in 2.2.10 Memory Indirect Preindexed Mode,
but the PC is the base register. Both the operand and operand address are in memory. The
processor calculates an intermediate indirect memory address by adding the PC contents,
a base displacement, and the scaled contents of an index register. The processor accesses
a long word at immediate indirect memory address and adds the optional outer
displacement to yield the effective address. The value of the PC is the address of the first
extension word. This is a program reference allowed only for reads.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. The user must supply the
assembler notation ZPC showing that the PC is not used. This allows the user to access the
program space without using the PC in calculating the effective address. Both the base and
outer displacements may be null, word, or long word. When omitting a displacement or
suppressing an element, its value is zero in the effective address calculation.

GENERATION: EA = (bd + PC) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: ([bd,PC,Xn.SIZE*SCALE],0d)
EA MODE FIELD: 111
EA REGISTER FIELD: 011
NUMBER OF EXTENSION WORDS: 1.2.34, or 5
31 0
PROGRAM COUNTER ! CONTENTS
31 0
BASE DISPLACEMENT ~ —— SIGN-EXTENDED VALUE
31 0
INDEXREGISTER ~ ——— SIGN-EXTENDED VALUE
SCALE | SCALE VALUE
31 0
INTERMEDIATE |
INDIRECT MEMORY ADDRESS
ADDRESS | (|
POINTS TO
31 \/ 0
MEMORY [VALUE AT INDIRECT MEM. ADDRESS IN PROG. SPACE|
31 0
OUTER DISPLACEMENT | SIGN-EXTENDED VALUE
31 0
OPERAND POINTER } CONTENTS |
POlNITS TO
MEMORY ! OPERAND |

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-17

Addressing Capabilities

2.2.16 Absolute Short Addressing Mode

In this addressing mode, the operand is in memory, and the address of the operand is in the
extension word. The 16-bit address is sign-extended to 32 bits before it is used. .

GENERATION: EA GIVEN
ASSEMBLER SYNTAX: (xxx).W
EA MODE FIELD: 111
EA REGISTER FIELD: 000
NUMBER OF EXTENSION WORDS: 1

Iiil ________ 15 0
EXTENSION WORD L SIGN-EXTENDED EXTENSION VALUE |

31 0
OPERAND POINTER I CONTENTS |
T
POINTS TO

MEMORY | OPERAND |

2.2.17 Absolute Long Addressing Mode

In this addressing mode, the operand is in memory, and the operand’s address occupies the
two extension words following the instruction word in memory. The first extension word
contains the high-order part of the address; the second contains the low-order part of the

address. .

GENERATION:

ASSEMBLER SYNTAX:

EA MODE FIELD:

EA REGISTER FIELD:

NUMBER OF EXTENSION WORDS:

EA GIVEN
(xxx).L
111

001

2

15 0

FIRST EXTENSION WORD

| ADDRESS HIGH

15 0

SECOND EXTENSION WORD

| ADDREsslow |

31 / Y 0

OPERAND POINTER

! CONTENTS |
POlN!l'S TO

MEMORY

2-18

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

| OPERAND |

MOTOROLA

Addressing Capabilities

2.2.18 Immediate Data

In this addressing mode, the operand is in one or two extension words. Table 2-3 lists the
location of the operand within the instruction word format. The immediate data format is as
follows:

GENERATION: OPERAND GIVEN
ASSEMBLER SYNTAX: HXXX>

EA MODE FIELD: 111

EA REGISTER FIELD: 100

NUMBER OF EXTENSION WORDS: 1,2,4, OR 6, EXCEPT FOR PACKED DECIMAL REAL OPERANDS

Table 2-3. Immediate Operand Location

Operation Length Location
Byte Low-order byte of the extension word.
Word The entire extension word.

High-order word of the operand is in the first extension word; the low-order

Long Word o .

9 word is in the second extension word.
Single-Precision In two extension words.
Double-Precision In four extension words.

Extended-Precision |In six extension words.

Packed-Decimal Real |In six extension words.

2.3 EFFECTIVE ADDRESSING MODE SUMMARY

Effective addressing modes are grouped according to the use of the mode. Data addressing
modes refer to data operands. Memory addressing modes refer to memory operands.
Alterable addressing modes refer to alterable (writable) operands. Control addressing
modes refer to memory operands without an associated size.

These categories sometimes combine to form new categories that are more restrictive. Two
combined classifications are alterable memory (addressing modes that are both alterable
and memory addresses) and data alterable (addressing modes that are both alterable and
data). Table 2-4 lists a summary of effective addressing modes and their categories.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-19

Addressing Capabilities

Table 2-4. Effective Addressing Modes and Categories

Mode | Reg.
Addressing Modes Syntax Field | Field |Data| Memory |Control| Alterable

Register Direct

Data Dn 000 reg. no. X — — X

Address An 001 | reg.no. | — — —
Register Indirect

Address (An) 010 | reg. no. X X X X

Address with Postincrement (An)+ 011 reg. no. X X — X

Address with Predecrement —(An) 100 | reg. no. X X — X

Address with Displacement (d16,AN) 101 | reg. no. X X X X
Address Register Indirect with Index

8-Bit Displacement (dg,An,Xn) 110 reg. no. X X X X

Base Displacement (bd,An,Xn) 110 reg. no. X X X X
Memory Indirect

Postindexed ([bd,An],Xn,od) 110 reg. no. X X X X

Preindexed ([bd,An,Xn],od) 110 reg. no. X X X X
Program Counter Indirect

with Displacement (d16,PC) 111 010 X X X —
Program Counter Indirect with Index

8-Bit Displacement (dg,PC,Xn) 111 011 X X X —

Base Displacement (bd,PC,Xn) 111 011 X X X —
Program Counter Memory Indirect

Postindexed ([bd,PC],Xn,od) | 111 011 X X X X

Preindexed ([bd,PC,Xn],0d) | 111 011 X X X X
Absolute Data Addressing

Short (xxx).W 111 000 X X X —

Long (xxx).L 111 000 X X X —
Immediate HXXX> 111 100 X X — —
2-20 M68000 FAMILY PROGRAMMER’'S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.4 BRIEF EXTENSION WORD FORMAT COMPATIBILITY

Programs can be easily transported from one member of the M68000 family to another in
an upward-compatible fashion. The user object code of each early member of the family,
which is upward compatible with newer members, can be executed on the newer
microprocessor without change. Brief extension word formats are encoded with information
that allows the CPU32, MC68020, MC68030, and MC68040 to distinguish the basic M68000
family architecture’s new address extensions. Figure 2-3 illustrates these brief extension
word formats. The encoding for SCALE used by the CPU32, MC68020, MC68030, and
MC68040 is a compatible extension of the M68000 family architecture. A value of zero for
SCALE is the same encoding for both extension words. Software that uses this encoding is
compatible with all processors in the M68000 family. Both brief extension word formats do
not contain the other values of SCALE. Software can be easily migrated in an upward-
compatible direction, with downward support only for nonscaled addressing. If the MC68000
were to execute an instruction that encoded a scaling factor, the scaling factor would be
ignored and would not access the desired memory address. The earlier microprocessors do
not recognize the brief extension word formats implemented by newer processors. Although
they can detect illegal instructions, they do not decode invalid encodings of the brief
extension word formats as exceptions.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| DA | REGISTER [we] o [o | o | DISPLACEMENT INTEGER

(a) MC68000, MC68008, and MC68010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| DA | REGISTER | wo | scae | o | DISPLACEMENT INTEGER

(b) CPU32, MC68020, MC68030, and MC68040

Figure 2-3. M68000 Family Brief Extension Word Formats

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-21

Addressing Capabilities

2.5 FULL EXTENSION ADDRESSING MODES

The full extension word format provides additional addressing modes for the MC68020,
MC68030, and MC68040. There are four elements common to these full extension
addressing modes: a base register (BR), an index register (Xn), a base displacement (bd),
and an outer displacement (od). Each of these four elements can be suppressed
independently of each other. However, at least one element must be active and not
suppressed. When an element is suppressed, it has an effective value of zero.

BR can be suppressed through the BS field of the full extension word format. The encoding
of bits 0-5 in the single effective address word format (see Figure 2-2) selects BR as either
the PC when using program relative addressing modes, or An when using non-program
relative addressing modes. The value of the PC is the address of the extension word. For
the non-program relative addressing modes, BR is the contents of a selected An.

SIZE and SCALE can be used to modify Xn. The W/L field in the full extension format selects
the size of Xn as a word or long word. The SCALE field selects the scaling factor, shifts the
value of the Xn left multiplying the value by 1, 2, 4, or 8, respectively, without actually
changing the value. Scaling can be used to calculate the address of arrayed structures.
Figure 2-4 illustrates the scaling of an Xn.

The bd and od can be either word or long word. The size of od is selected through the
encoding of the I/IS field in the full extension word format (refer to Table 2-2). There are two
main modes of operation that use these four elements in different ways: no memory indirect
action and memory indirect. The od is provided only for using memory indirect addressing
modes of which there are three types: with preindex, with postindex, and with index
suppressed.

2-22 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

SYNTAX: MOVE.B (A5, A6.L*SCALE),(A7)
WHERE
A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

SIMPLE ARRAY RECORD OF 2 BYTES
(SCALE=1) (SCALE=2)

A6 = 0 — >
1 ——>
22—
3———>

A6 = 0———>

1—>

RECORD OF 4 BYTES RECORD OF 8 BYTES
(SCALE = 4) (SCALE=8)
7 0 7 0
A6 = 0 ——>1 A6 = 0——>
1———>
1I—>

/

NOTE: Regardless of array structure, software increments
index by the appropriate amount to point to next
record.

Figure 2-4. Addressing Array Iltems

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-23

Addressing Capabilities

2.5.1 No Memory Indirect Action Mode

No memory indirect action mode uses BR, Xn with its modifiers, and bd to calculate the
address of the required operand. Data register indirect (Dn) and absolute address with index
(bd,Xn.SIZE*SCALE) are examples of the no memory indirect action mode. Figure 2-5
illustrates the no memory indirect action mode.

BR | Xn bd Addressing Mode

S S S |Not Applicable

S S A | Absolute Addressing Mode

S A S |Register Indirect

S A A |Register Indirect with Constant Index

An S S |Address Register Indirect

An S A | Address Register Indirect with Constant Index
An A S |Address Register Indirect with Variable Index
An A A | Address Register Indirect with Constant and Variable Index
PC S S |PC Relative

PC S A |PC Relative with Constant Index

PC A S |PC Relative with Variable Index

PC A A |PC Relative with Constant and Variable Index

NOTE: S indicates suppressed and A indicates active.

Anor PC —>» ‘
bd.BD SIZE

Xn.SIZE*SCALE

OPERAND

Figure 2-5. No Memory Indirect Action

2-24 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

2.5.2 Memory Indirect Modes

Memory indirect modes fetch two operands from memory. The BR and bd evaluate the
address of the first operand, intermediate memory pointer (IMP). The value of IMP and the
od evaluates the address of the second operand.

There are three types of memory indirect modes: pre-index, post-index, and index register
suppressed. Xn and its modifiers can be allocated to determine either the address of the IMP
(pre-index) or to the address of the second operand (post-index).

2.5.2.1 MEMORY INDIRECT WITH PREINDEX. The Xn is allocated to determine the
address of the IMP. Figure 2-6 illustrates the memory indirect with pre-indexing mode.

BR | Xn | bd od IMP Addressing Mode Operand Addressing Mode
S A S S |Register Indirect Memory Pointer Directly to Data Operand
S A S A |Register Indirect Memory Pointer as Base with Displacement
to Data Operand
S A A S |Register Indirect with Constant Index Memory Pointer Directly to Data Operand
S A A A |Register Indirect with Constant Index Memory Pointer as Base with Displacement
to Data Operand
An A S S Ado!ress Register Indirect with Memory Pointer Directly to Data Operand
Variable Index
Address Register Indirect with Memory Pointer as Base with Displacement
An A S A .
Variable Index to Data Operand
Address Register Indirect with . .

An A A S Constant and Variable Index Memory Pointer Directly to Data Operand
An A A A Address Register Indirect with Memory Pointer as Base with Displacement
Constant and Variable Index to Data Operand

PC A S S |PC Relative with Variable Index Memory Pointer Directly to Data Operand
PC A S A |PC Relative with Variable Index Memory Pointer as Base with Displacement
to Data Operand
PC A A S pC .Relatlve with Constant and Memory Pointer Directly to Data Operand
Variable Index
PC Relative with Constant and Memory Pointer as Base with Displacement
PC A A A .
Variable Index to Data Operand

NOTE: S indicates suppressed and A indicates active.

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-25

Addressing Capabilities

AnorPC —» ‘ > ‘
bd.BD SIZE 0d.0OD SIZE
‘ OPERAND
Xn.SIZE*SCALE
IMP

Figure 2-6. Memory Indirect with Preindex

2.5.2.2 MEMORY INDIRECT WITH POSTINDEX. The Xn is allocated to evaluate the
address of the second operand. Figure 2-7 illustrates the memory indirect with post-indexing
mode.

BR | Xn | bd od IMP Addressing Mode Operand Addressing Mode
S A S S — —
S A S A — —

Memory Pointer with Variable Index to
Data Operand

S A A S |Absolute Addressing Mode

Memory Pointer with Constant and Variable

S A A A |Absolute Addressing Mode Index to Data Operand

Memory Pointer with Variable Index to

An A S S |Address Register Indirect Data Operand

Memory Pointer with Constant and Variable

An A S A |Address Register Indirect Index to Data Operand

Address Register Indirect with Memory Pointer with Variable Index to
An A A S

Constant Index Data Operand

Address Register Indirect with Memory Pointer with Constant and Variable
An A A A

Constant Index Index to Data Operand

Memory Pointer with Variable Index to

PC | A S S |PC Relative Data Operand

Memory Pointer with Constant and Variable

PC A S A |PC Relative Index to Data Operand

Memory Pointer with Variable Index to

PC A A S |PC Relative with Constant Index
Data Operand

Memory Pointer with Constant and Variable

PC A A A |PC Relative with Constant Index Index to Data Operand

NOTE: S indicates suppressed and A indicates active.

2-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

AnorPC —» ‘ > ‘
bd.BD SIZE 0d.0D SIZE

IMP ‘
0d.0OD SIZE
OPERAND

Figure 2-7. Memory Indirect with Postindex

2.5.2.3 MEMORY INDIRECT WITH INDEX SUPPRESSED. The Xn is suppressed. Figure
2-8 illustrates the memory indirect with index suppressed mode.

BR | Xn | bd od IMP Addressing Mode Operand Addressing Mode
S S S S — —
S S S A — —
S S A S |Absolute Addressing Mode Memory Pointer Directly to Data Operand
S S A A |Absolute Addressing Mode Memory Pointer as Base with Displacement
to Data Operand
An S S S |Address Register Indirect Memory Pointer Directly to Data Operand
An S S A |Address Register Indirect Memory Pointer as Base with Displacement
to Data Operand
An S A S Address Register Indirect with Memory Pointer Directly to Data Operand
Constant Index
Address Register Indirect with Memory Pointer as Base with Displacement
An S A A
Constant Index to Data Operand
PC S S S |PC Relative Memory Pointer Directly to Data Operand
PC s s A |PC Relative Memory Pointer as Base with Displacement
to Data Operand
PC S A S |PC Relative with Constant Index Memory Pointer Directly to Data Operand
PC s A A |PC Relative with Constant Index Memory Pointer as Base with Displacement
to Data Operand

NOTE: S indicates suppressed and A indicates active.

Y

AnorPC —» ‘ ‘
bd.BD SIZE 0d.0D SIZE

IMP OPERAND

Figure 2-8. Memory Indirect with Index Suppress

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-27

Addressing Capabilities

2.6 OTHER DATA STRUCTURES

Stacks and queues are common data structures. The M68000 family implements a system
stack and instructions that support user stacks and queues.

2.6.1 System Stack

Address register seven (A7) is the system stack pointer. Either the user stack pointer (USP),
the interrupt stack pointer (ISP), or the master stack pointer (MSP) is active at any one time.
Refer to Section 1 Introduction for details on these stack pointers. To keep data on the
system stack aligned for maximum efficiency, the active stack pointer is automatically
decremented or incremented by two for all byte-size operands moved to or from the stack.
In long-word-organized memory, aligning the stack pointer on a long-word address
significantly increases the efficiency of stacking exception frames, subroutine calls and
returns, and other stacking operations.

The user can implement stacks with the address register indirect with postincrement and
predecrement addressing modes. With an address register the user can implement a stack
that fills either from high memory to low memory or from low memory to high memory.
Important consideration are:

» Use the predecrement mode to decrement the register before using its contents as the
pointer to the stack.

» Use the postincrement mode to increment the register after using its contents as the
pointer to the stack.

* Maintain the stack pointer correctly when byte, word, and long-word items mix in these
stacks.

To implement stack growth from high memory to low memory, use -(An) to push data on the
stack and (An) + to pull data from the stack. For this type of stack, after either a push or a
pull operation, the address register points to the top item on the stack.

LOW MEMORY
(FREE)

An—»| TOP OF STACK

[J
/o /
[)
BOTTOM OF STACK
HIGH MEMORY

2-28 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Addressing Capabilities

To implement stack growth from low memory to high memory, use (An) + to push data on
the stack and -(An) to pull data from the stack. After either a push or pull operation, the
address register points to the next available space on the stack. .

LOW MEMORY
BOTTOM OF STACK
[]

[]

/ s /
TOP OF STACK

An —> (FREE)

HIGH MEMORY

2.6.2 Queues

The user can implement queues, groups of information waiting to be processed, with the
address register indirect with postincrement or predecrement addressing modes. Using a
pair of address registers, the user implements a queue that fills either from high memory to
low memory or from low memory to high memory. Two registers are used because the
gueues get pushed from one end and pulled from the other. One address register contains
the put pointer; the other register the get pointer. To implement growth of the queue from low
memory to high memory, use the put address register to put data into the queue and the get
address register to get data from the queue.

After a put operation, the put address register points to the next available space in the
qgueue; the unchanged get address register points to the next item to be removed from the
gueue. After a get operation, the get address register points to the next item to be removed
from the queue; the unchanged put address register points to the next available space in the
queue. .

LOW MEMORY
LAST GET (FREE)
GET (Am) + — | NEXT GET

/ . /

LAST PUT
PUT (An) + — | (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the relevant address register should be checked
and adjusted. If necessary, do this before performing the put or get operation. Subtracting
the buffer length (in bytes) from the register adjusts the address register. To implement
growth of the queue from high memory to low memory, use the put address register indirect
to put data into the queue and get address register indirect to get data from the queue.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-29

Addressing Capabilities

After a put operation, the put address register points to the last item placed in the queue; the
unchanged get address register points to the last item removed from the queue. After a get

operation, the get address register points to the last item placed in the queue.

LOW MEMORY

(FREE)

PUT - (An) —|

LAST PUT

NEXT GET

GET - (Am) —>»]

LAST GET (FREE)

HIGH MEMORY

To implement the queue as a circular buffer, the get or put operation should be performed
first. Then the relevant address register should be checked and adjusted, if necessary.
Adding the buffer length (in bytes) to the address register contents adjusts the address

register.

2-30 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

SECTION 3
INSTRUCTION SET SUMMARY

This section briefly describes the M68000 family instruction set, using Motorola,s assembly
language syntax and notation. It includes instruction set details such as notation and format,
selected instruction examples, and an integer condition code discussion. The section
concludes with a discussion of floating-point details such as computational accuracy,
conditional test definitions, an explanation of the operation table, and a discussion of not-a-
numbers (NANS) and postprocessing.

3.1 INSTRUCTION SUMMARY

Instructions form a set of tools that perform the following types of operations:

Data Movement Program Control

Integer Arithmetic System Control

Logical Operations Cache Maintenance

Shift and Rotate Operations Multiprocessor Communications
Bit Manipulation Memory Management

Bit Field Manipulation Floating-Point Arithmetic

Binary-Coded Decimal Arithmetic
The following paragraphs describe in detail the instruction for each type of operation. Table

3-1 lists the notations used throughout this manual. In the operand syntax statements of the
instruction definitions, the operand on the right is the destination operand.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-1

Instruction Set Summary

Table 3-1. Notational Conventions

Single- And Double Operand Operations

Arithmetic addition or postincrement indicator.

Arithmetic subtraction or predecrement indicator.

Arithmetic multiplication.

Arithmetic division or conjunction symbol.

Invert; operand is logically complemented.

Logical AND

Logical OR

Logical exclusive OR

Source operand is moved to destination operand.

Two operands are exchanged.

<op>

Any double-operand operation.

<operand>tested

Operand is compared to zero and the condition codes are set appropriately.

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format +Offset Word — (SSP); SSP -2 - SSP; PC - (SSP); SSP -4 - SSP; SR
- (SSP); SSP -2 -, SSP; (Vector) —» PC
STOP Enter the stopped state, waiting for interrupts.
<operand>y The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>

else <operations>

Test the condition. If true, the operations after “then”are performed. If the condition is false and the
optional “else”clause is present, the operations after “else”are performed. If the condition is false
and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
as an example.

Register Specifications

An Any Address Register n (example: A3 is address register 3)
AX, Ay Source and destination address registers, respectively.
Dc Data register D7-D0, used during compare.
Dh, DI Data register’s high- or low-order 32 bits of product.
Dn Any Data Register n (example: D5 is data register 5)
Dr, Dg Data register’s remainder or quotient of divide.
Du Data register D7-D0, used during update.
Dx, Dy Source and destination data registers, respectively.
MRn Any Memory Register n.
Rn Any Address or Data Register
Rx, Ry Any source and destination registers, respectively.
Xn Index Register

3-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Instruction Set Summary

Table 3-1. Notational Conventions (Continued)

Data Format And Type

+ inf Positive Infinity
<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).
B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.
D Double-precision real data format (64 bits).
k A twos complement signed integer (—64 to +17) specifying a number’s format to be stored in the
packed decimal format.
P Packed BCD real data format (96 bits, 12 bytes).
S Single-precision real data format (32 bits).
X Extended-precision real data format (96 bits, 16 bits unused).
—inf Negative Infinity

Subfields and Qualifiers

#<xxx> or #<data>

Immediate data following the instruction word(s).

@) Identifies an indirect address in a register.
[] Identifies an indirect address in memory.
bd Base Displacement
cce Index into the MC68881/MC68882 Constant ROM
dn Displacement Value, n Bits Wide (example: dg is a 16-bit displacement).
LSB Least Significant Bit
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word
od Outer Displacement
SCALE A scale factor (1, 2, 4, or 8 for no-word, word, long-word, or quad-word scaling, respectively).
SIZE The index register’s size (W for word, L for long word).
{offset:width} Bit field selection.
Register Names
CCR Condition Code Register (lower byte of status register)
DFC Destination Function Code Register
FPcr Any Floating-Point System Control Register (FPCR, FPSR, or FPIAR)
FPm, FPn Any Floating-Point Data Register specified as the source or destination, respectively.
IC, DC, IC/DC Instruction, Data, or Both Caches
MMUSR MMU Status Register
PC Program Counter
Rc Any Non Floating-Point Control Register
SFC Source Function Code Register
SR Status Register

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-3

Instruction Set Summary

Table 3-1. Notational Conventions (Concluded)

Register Codes

General Case

C Carry Bitin CCR
cc Condition Codes from CCR
FC Function Code
N Negative Bit in CCR
U Undefined, Reserved for Motorola Use.
\% Overflow Bit in CCR
X Extend Bit in CCR
VA Zero Bitin CCR
— Not Affected or Applicable.
Stack Pointers
ISP Supervisor/Interrupt Stack Pointer
MSP Supervisor/Master Stack Pointer
SP Active Stack Pointer
SSP Supervisor (Master or Interrupt) Stack Pointer
USP User Stack Pointer
Miscellaneous
<ea> Effective Address
<label> Assemble Program Label
<list> List of registers, for example D3-DO0.
LB Lower Bound
m Bit m of an Operand
m-n Bits m through n of Operand
uB Upper Bound

3-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Instruction Set Summary

3.1.1 Data Movement Instructions

The MOVE and FMOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions transfer byte,
word, and long-word operands from memory to memory, memory to register, register to
memory, and register to register. MOVE instructions transfer word and long-word operands
and ensure that only valid address manipulations are executed. In addition to the general
MOVE instructions, there are several special data movement instructions: MOVELS6,
MOVEM, MOVEP, MOVEQ, EXG, LEA, PEA, LINK, and UNLK. The MOVE16 instruction is
an MC68040 extension to the M68000 instruction set.

The FMOVE instructions move operands into, out of, and between floating-point data
registers. FMOVE also moves operands to and from the floating-point control register
(FPCR), floating-point status register (FPSR), and floating-point instruction address register
(FPIAR). For operands moved into a floating-point data register, FSMOVE and FDMOVE
explicitly select single- and double-precision rounding of the result, respectively. FMOVEM
moves any combination of either floating-point data registers or floating-point control
registers. Table 3-2 lists the general format of these integer and floating-point data
movement instructions.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-5

Instruction Set Summary

Table 3-2. Data Movement Operation Format

Instruction | Operand Syntax | Operand Size Operation
EXG Rn, Rn 32 Rn « - Rn
FMOVE FPm,FPn X Source - Destination
<ea>,FPn B,W,L,S,D, X P
FPm,<ea> B,W,L,S,D,XP
<ea>,FPcr 32
FPcr,<ea> 32
FSMOVE, FPm,FPn X Source - Destination; round destination to single or
FDMOVE <ea>,FPn B,W,L,S, D, X |double precision.
FMOVEM <ea> <list>1 32, X Listed Registers — Destination
<ea>,Dn X . .
<list>1 <ea> 32>,<X Source - Listed Registers
Dn,<ea>
LEA <ea>,An 32 <ea> - An
LINK An,#<d> 16, 32 SP—-4 . SP; An - (SP); SP - An,SP+D - SP
MOVE <ea>,<ea> 8, 16, 32 Source — Destination
MOVE16 <ea>,<ea> 16 bytes Aligned 16-Byte Block - Destination
MOVEA <ea>,An 16,32 - 32
MOVEM list,<ea> 16, 32 Listed Registers — Destination
<ea>,list 16,32 - 32 Source - Listed Registers
MOVEP Dn, (d16,AN) 16, 32 Dn 31-24 — (An +d,); Dn 23-16 — (An +d, + 2);
Dn 15-8 - (An+d,+4);Dn7-0 - (An +d, + 6)
(d16,An),Dn (An +d,) - Dn 31-24; (An +d,, + 2) ~ Dn 23-16;
(An+d, +4) - Dn 15-8; (An +d,, + 6) - Dn 7-0
MOVEQ #<data>,Dn 8 - 32 Immediate Data — Destination
PEA <ea> 32 SP -4 - SP; <ea> - (SP)
UNLK An 32 An - SP; (SP) - An;SP+4 . SP

NOTE: A register list includes any combination of the eight floating-point data registers or any combination of
three control registers (FPCR, FPSR, and FPIAR). If a register list mask resides in a data register, only
floating-point data registers may be specified.

3.1.2 Integer Arithmetic Instructions

The integer arithmetic operations include four basic operations: ADD, SUB, MUL, and DIV.
They also include CMP, CMPM, CMP2, CLR, and NEG. The instruction set includes ADD,
CMP, and SUB instructions for both address and data operations with all operand sizes valid
for data operations. Address operands consist of 16 or 32 bits. The CLR and NEG
instructions apply to all sizes of data operands. Signed and unsigned MUL and DIV

instructions include:

* Word multiply to produce a long-word product.
» Long-word multiply to produce a long-word or quad-word product.

word remainder).

3-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

Long word divided by a word divisor (word quotient and word remainder).
Long word or quad word divided by a long-word divisor (long-word quotient and long-

MOTOROLA

Instruction Set Summary

A set of extended instructions provides multiprecision and mixed-size arithmetic: ADDX,
SUBX, EXT, and NEGX. Refer to Table 3-3 for a summary of the integer arithmetic
operations. In Table 3-3, X refers to the X-bit in the CCR.

Table 3-3. Integer Arithmetic Operation Format

Instruction | Operand Syntax | Operand Size Operation
ADD Dn,<ea> 8, 16, 32 Source + Destination - Destination
<ea>,Dn 8, 16, 32
ADDA <ea>,An 16, 32
ADDI #<data><ea> 8, 16, 32 Immediate Data + Destination — Destination
ADDQ #<data>,<ea> 8, 16, 32
ADDX Dn,Dn 8, 16, 32 Source + Destination + X — Destination
—(An), —(An) 8, 16, 32
CLR <ea> 8, 16, 32 0 - Destination
CMP <ea>,Dn 8, 16, 32 Destination — Source
CMPA <ea>,An 16, 32
CMPI #<data>,<ea> 8,16, 32 Destination — Immediate Data
CMPM (An)+,(An)+ 8, 16, 32 Destination — Source
CMP2 <ea>,Rn 8, 16, 32 Lower Bound —» Rn - Upper Bound
DIVS/DIVU <ea>,Dn 32 +16 - 16,16 | Destination +Source - Destination
<ea>,Dr-Dq 64 +32 - 32,32 | (Signed or Unsigned Quotient, Remainder)
<ea>,Dq 32+32 - 32
DIVSL/DIVUL <ea>,Dr—Dq 32+32 - 32,32
EXT Dn 8 - 16 Sign-Extended Destination — Destination
Dn 16 - 32
EXTB Dn 8 - 32
MULS/MULU <ea>,Dn 16x16 - 32 Source x Destination — Destination
<ea>,DI 32x32 - 32 (Signed or Unsigned)
<ea>,Dh-DI 32x32 - 64
NEG <ea> 8, 16, 32 0 — Destination - Destination
NEGX <ea> 8, 16, 32 0 — Destination — X — Destination
SUB <ea>,Dn 8, 16, 32 Destination = Source - Destination
Dn,<ea> 8, 16, 32
SUBA <ea>,An 16, 32
SuUBI #<data>,<ea> 8,16, 32 Destination — Immediate Data — Destination
SUBQ #i<data>,<ea> 8, 16, 32
SUBX Dn,Dn 8, 16, 32 Destination — Source — X — Destination
—(An), —(An) 8, 16, 32
MOTOROLA M68000 FAMILY PROGRAMMER’'S REFERENCE MANUAL 3-7

Instruction Set Summary

3.1.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations
with all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI,
and EORI) provides these logical operations with all sizes of immediate data. Table 3-4
summarizes the logical operations.

Table 3-4. Logical Operation Format

Instruction | Operand Syntax | Operand Size Operation

AND <ea>,Dn 8, 16, 32 Source A Destination — Destination
Dn,<ea> 8, 16, 32

ANDI #<data>,<ea> 8, 16, 32 Immediate Data A Destination — Destination

EOR Dn,<ea> 8, 16, 32 Source [Destination — Destination

EORI #<data>,<ea> 8, 16, 32 Immediate Data O Destination — Destination

NOT <ea> 8, 16, 32 ~ Destination - Destination

OR <ea>,Dn 8,16, 32 Source V Destination — Destination
Dn,<ea>

ORI #<data>,<ea> 8, 16, 32 Immediate Data V Destination — Destination

3.1.4 Shift and Rotate Instructions

The ASR, ASL, LSR, and LSL instructions provide shift operations in both directions. The
ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the CCR extend bit (X-bit). All shift and rotate operations can be performed on
either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count can be specified
in the instruction operation word (to shift from 1 — 8 places) or in a register (modulo 64 shift
count).

Memory shift and rotate operations shift word operands one bit position only. The SWAP
instruction exchanges the 16-bit halves of a register. Fast byte swapping is possible by using
the ROR and ROL instructions with a shift count of eight, enhancing the performance of the
shift/rotate instructions. Table 3-5 is a summary of the shift and rotate operations. In Table
3-5, C and X refer to the C-bit and X- bit in the CCR.

3-8 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Instruction Set Summary

Table 3-5. Shift and Rotate Operation Format

Instruction Operand Syntax Operand Size Operation
ASL Dn, Dn 8, 16, 32
(data), Dn 8, 16, 32 XIC |<—| < l(— 0
ea 16 |
ASR Dn, Dn 8, 16, 32
#(data), Dn 8, 16, 32 d" |—>| Xic |
ea 16
LSL Dn, Dn 8, 16, 32
#(data), Dn 8, 16, 32 XIC < 0
ea 16 | |<—| |€
LSR Dn, Dn 8, 16, 32
(data), Dn 8,16, 32 —>» ——— > |_>
(ea> 16 | | Xe |
ROL Dn, Dn 8, 16, 32
(data), Dn 8, 16, 32 | | |‘J
B
ea 16 c
ROR Dn, Dn 8,16, 32
(data), Dn 8,16, 32 LA 3 | c |
ea 16
ROXL Dn, Dn 8,16, 32
(data), Dn 8, 16, 32 < <
ea 16 | ¢ | | X |
ROXR Dn, Dn 8,16, 32
(data), Dn 8,16, 32 L»{ N > N
ea 16 X | | c |
SWAP Dn 32

NOTE: X indicates the extend bit and C the carry bit in the CCR.

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-9

Instruction Set Summary

3.1.5 Bit Manipulation Instructions

BTST, BSET, BCLR, and BCHG are bit manipulation instructions. All bit manipulation
operations can be performed on either registers or memory. The bit number is specified
either as immediate data or in the contents of a data register. Register operands are 32 bits
long, and memory operands are 8 bits long. Table 3-6 summarizes bit manipulation
operations; Z refers to the zero bit of the CCR.

Table 3-6. Bit Manipulation Operation Format

Instruction Operand Syntax Operand Size Operation

BCHG Dn,<ea> 8,32 ~ (<Bit Number> of Destination) - Z -
#<data>,<ea> 8,32 Bit of Destination

BCLR Dn,<ea> 8,32 ~ (<Bit Number> of Destination) - Z;
#<data>,<ea> 8, 32 0 - Bit of Destination

BSET Dn,<ea> 8,32 ~ (<Bit Number> of Destination) - Z;
#<data>,<ea> 8,32 1 - Bit of Destination

BTST Dn,<ea> 8,32 ~ (<Bit Number> of Destination) - Z
#<data>,<ea> 8, 32

3.1.6 Bit Field Instructions

The M68000 family architecture supports variable-length bit field operations on fields of up
to 32 bits. The BFINS instruction inserts a value into a bit field. BFEXTU and BFEXTS
extract a value from the field. BFFFO finds the first set bit in a bit field. Also included are
instructions analogous to the bit manipulation operations: BFTST, BFSET, BFCLR, and
BFCHG. Table 3-7 summarizes bit field operations.

Table 3-7. Bit Field Operation Format

Instruction Operand Syntax Operand Size Operation
BFCHG <ea> {offset:width} 1-32 ~ Field - Field
BFCLR <ea> {offset:width} 1-32 0's - Field
BFEXTS <ea> {offset:width}, Dn 1-32 Field - Dn; Sign-Extended
BFEXTU <ea> {offset:width}, Dn 1-32 Field —» Dn; Zero-Ext