

MOOS LINKING LOADER

REFERENCE MANUAL

M68LLD(D4)

SEPTEMBER 1979

The infonnation in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furt hermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

Fourth Edition
©Copyright 1979 by Motorola Inc.

Third Edition March 1978

CHAPTER 1

1.1
1. 2
1.3
1.4
1. 5
1.6
1. 7
1.8

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6

CHAPTER 3

3.1
3.2
3.3
3.4

3.5

APPENDIX A
APPENDIX B

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION
OPERATING ENVIRONMENT
ADVANTAGES OF THE LINKING LOADER
RELOCATION
LINKING
MODULE LIBRARIES
MEMORY ASSIGNMENT
LOAD MAPS

LINKING LOADER COMMANDS

INVOKING THE LINKING LOADER
LOADER INPUT
COMMAND FORMAT
LOADER COMMANDS

Command Nomenclature
CONTROL COMMANDS

EXIT
IDOF - Suppress Printing of Module ID
IDON - Print Module ID
IF - Intermediate File
IFOF - Intermediate File Mode Off
IFON - Intermediate file Mode On
INIT - Initialize Loader
MO - Map Output
OBJ - Produces Load Module

LOAD DIRE CT IVES
LIB - Library Search
LOAD - Load a File

STATE COMMANDS
BASE - Initialize Minimum Load Address
CUR - Set Current Location Counter
DEF - Loader Symbol Definition
END - Ending Address
MAP - Prints Load Maps
STR - Starting Address

SAMPLE OPERATIONS WITH THE LINKING LOADER

INTRODUCTION
SIMPLIFIED LOADER OPERATION
LOADER OPERATIONS USING INTERMEDIATE FILES
LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN

MOOS COMMAND
LOADER OPERATIONS USING A CHAIN FILE

A SUMMARY OF LINKING LOADER COMMANDS
LINKING LOADER ERROR MESSAGES

1-1
1-1
1-1
1-4
1-4
1-6
1-6
1-6

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-9
2-9
2-10
2-10

3-1
3-1
3-10
3-12

3-14

A-1
B-1

FIGURE 1-1.
1-2.
1-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

LIST OF ILLUSTRATIONS

Load Maps - Example 1
Load Map - Example 2
Loader-Produced Memory Map
Message Program 1 (PGl)
Message Program 2 (PG2)
Message Program 3 (PG3)
Basic Loader Operation
Using an Intermediate File
Using a Library File
Listing of Chain File Invoking RLOAD
Using a Chain File and RLOAD
Map Output File Listing

i i

p~

1-3
1-5
1-7

3-2/3-5
3-6/3-7

3-8
3-9
3-11
3-13
3-15
3-16
3-17

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

The MOOS Linking Loader combines relocatable object modules produced by the
Resident M6800 and Macro Assemblers, M6800 Resident FORTRAN Compiler, or
Resident MPL Compiler into an absolute load module. Th ·is resultant load module
is in a format suitable for loading by either the EXORciser loader or disk
operating system loader.

The Linking Loader is a two-pass loader requ1r1ng each input module to be read
twice. During Pass 1, a global symbol table is constructed describing the
attributes of the various global symbols. During Pass 2, the input modules are
read again and assigned absolute memory addresses. Module relocation and
linking is performed during the second pass, and an absolute load module is
produced.

1.2 OPERATING ENVIRONMENT

The minimum equipment required to use the Linking Loader is:

a. An EXORciser system

b. An EXORdisk II or EXORdisk III floppy disk drive system

c. An EXORciser-compatible terminal

d. 24K of Random Access Memory

e. Motorola Disk Operating System software (MOOS).

1.3 ADVANTAGES OF THE LINKING LOADER

In conjunction with the Resident M6800 Assembler, Macro Assembler, MPL Compiler,
and FORTRAN Compiler, the Linking Loader permits the user to:

• Segment source programs and data

• Relocate object modules

• Link modules via global symbols

• Search user created libraries to satisfy unresolved global symbols

Dynamically assign memory

• Create a memory map describing the location of each object module
and data block loaded

• Create a larger system than possible without linking by making smaller
assembly modules.

1-1

ASCT - Absolute Section (non-relocatable)

There may be an unlimited number of absolute sections in a user 1 s
program. These sections are used to allocate/load/initialize memory
1 ocat ions assigned by the programmer rather than the 1 oader; for
example, addresses assigned to ACIA 1 s and PIA 1 s.

BSCT - Base Section (direct addressing)

There is only one base section. The Linking Loader allocates
portions of this section to each module that needs space in BSCT.
BSCT is generally used for variables that will be referenced via
direct addressing. BSCT is limited to locations within the
addressing range of 0 through 255 ($0 through $00FF).

CSCT - Blank Common (uninitialized)

There is only one CSCT. This section is used for blank common
(similar to FORTRAN blank common). This section cannot be
initialized.

DSCT - Data Section

There is only one data section. The Linking Loader allocates
portions of this section to each module that needs a part of DSCT.
DSCT is generally used for variables (RAM) which are to be accessed
via extended mode addressing ($100-$FFFF).

PSCT - Program Section

PSCT is similar to DSCT except that it is intended to be used for
instructions. The PSCT/DSCT division was made to facilitate a
RAM/ROM dichotomy.

This section concept is preserved by the Loader during the load process. As a
module is being loaded, each of its sections is combined with the corresponding
sections of previously-loaded modules. As a result, the absolute load module
produced by the Loader will contain one continuous memory area for each section
type encountered during the load operation.

In addition to the program segmentation provided by the section concept, the
relocation and linking scheme supports named common. The named common concept
provides the function of initialization common areas within BSCT, DSCT, and
PSCT. In processing named common definitions, the Loader will:

• Assign to each named common area a size equal to the largest size defined
for the named common during the load process •

• Al lOcate memory at the end of each section for the named common bl eeks
defined within that section.

The 1 oad maps shown in Figure 1-1 describe the 1 oad process with regard to
sections and named common. The module EX! requires memory to be reserved in
BSCT, CSCT, DSCT, and PSCT, although the only space necessary in DSCT is for the
named common NCOMl. The module EX2 requires that memory be allocated in BSCT,
CSCT, DSCT, and PSCT. Neither module defines any ASCT blocks.

1-2

LENGTH

3

30

20

50

5

10

EXl

BSCT

CSCT

NCOMl(DSCT)

PSCT

NCOM2(PSCT)

NCOM3(PSCT)

DECIMAL
ADDRESS

0

32
35

45

80

100

120

170

230

235

250

LENGTH

10

35

20

10

60

15

5

LOAD MODULE

SYSTEM AREA

BSCT PGMl
BSCT PGM2

CSCT

DSCT PGM2

NCO Ml

PSCT PGMl

PSCT PGM2

NCOM2

NCOM3

EX2

BSCT

CSCT

DSCT

NCOMl(DSCT)

PSCT

NCOM3(PSCT)
NCOM2(PSCT)

FIGURE 1-1. Load Maps - Example 1

1-3

The load module map illustrates a typical memory map that might be produced by
loading EXl and EX2. The BSCT for both EXl and EX2 are allocated memory within
the first 256 bytes of memory. As shown, the first 32 ($20 hex) bytes of BSCT
are reserved by the Loader for use by the disk operating system, unless
otherwise directed. After BSCT, space for blank common is allocated, followed
by space for the EX2 DSCT. Since EXl requires no DSCT for its exclusive use,
none will be allocated. The named common block NCOMl within DSCT is assigned
memory at the, end of DSCT. Finally, the PSCT' s for EXl and EX2 are allocated
along with the PSCT common blocks NCOM2 and NCOM3.

The Loader assigns memory within sections in the order in which the modules are
specified. Named common blocks are allocated memory at the end of their
corresponding section, in the order in which they are defined. Figure 1-2
illustrates a load module map produced by loading EX2, followed by EX!. This
load module map is slightly different from the map in Figure 1-1 where EXl was
1 oaded first.

1.4 RELOCATION

Relocation allows the user to assemble/compile a source program without
assigning absolute addresses at the time of assembly or compilation. Instead,
absolute memory assignment is performed at load time. In order to relocate a
program (within memory), the source program must be assembled with the
Assembler, using the OPT REL directive, or compiled with the M6800 Resident
FORTRAN Compiler. The assembler or compiler will produce a relocatable object
module. These relocatable object modules contain information describing the
size of each section (ASCT, BSCT, CSCT, and DSCT) and named common area, as well
as the relocation data.

In order to load any relocatable object module, the MOOS Linking Loader must be
used. The Loader assigns addresses and produces an absolute object module
compatible with the system loader.

The advantages of using relocation are:

Re-assembly is not required for each new absolute load address

• Relocation via the Linking Loader is faster than re-assembly
Dynamic memory assignment of modules is possible

• Larger programs can be written than was possible before.

1. 5 LINKING

Linking allows instructions in one program to refer to instructions or data
which reside within other programs. If all programs are assigned absolute
addresses during assembly time, it is possible to directly reference another
program via absolute addresses. However, when using relocatable programs,
absolute load addresses are not generally known until load time. In order to
access other relocatable programs or data blocks, external reference symbols
must be used. These external symbols are commonly called global symbols since
they may be referenced by any module at load time. Although global symbols are
used to link modules at load time, they must be explicitly defined and referencd
at assembly time. This is accomplished by the Assembler directives, XDEF and
XREF. The XDEF directive indicates which labels defined within a module can be
referenced by other modules. The XREF directive indicates that the label being
referenced is defined outside the module. For FORTRAN programs, the compiler
will generate an XDEF and XREF for each SUBROUTINE and CALL statement,
respectively.

1-4

DECIMAL
ADDRESS

0

32

42

45

80

100

120

180

230

245

250

LOAD MJDULE

SYSTEM AREA

BSCT PGM2

BSCT PGMl

CSCT

DSCT PGM2

NCOMl

PSCT PGM2

PSCT PGMl

NCOM3

NCOM2

FIGURE 1-2. Lord Map - Example 2

1-5

At load time, global references are matched with their corresponding global
definitions. Any reference within a module to a global symbol is updated with
the load address of the global symbol. If the loader detects a global reference
without an associated global definition, an undefined global error will be
printed and a load address of zero will be assigned to the reference.

1.6 MODULE LIBRARIES

The Linking Loader can automatically search a file for modules which contain
definitions satisfying any unresolved global symbols. Such a file is called a
library file and is composed of one or more object modules merged together. The
Loader sequentially searches the library file. If a module is found that
contains a symbol definition satisfying an unresolved global symbol, that module
will be loaded. Only those modules which can satisfy an unresolved reference
will be loaded. Since a library file is searched only once, modules which
reference other modules within the library file should occur within the library
file before the referenced module. Otherwise, the user must direct the Loader
to search the library again.

1.7 MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned to the program sections
within the specified modules. Normally, the loader will automatically perform
this assignment by allocating memory by sections in the order: ASCT, BSCT,
CSCT, DSCT, and PSCT. However, the user may define the starting and/or ending
address of any non-ASCT section. In this case, the Loader will first reserve
memory for those sections with defined load addresses before a 11 ocat i ng space
for any other section. The Loader also permits a user to· specify the relative
section offset of a module within a section. However, a section of a module is
always loaded in the associated load section in the order in which the module
was specified. Named common blocks are always assigned memory at the end of the
associated load section.

1. 8 LOAD MAPS

The Loader will optionally produce a load map describing the memory layout
resulting from the loading of the specified modules. Figure 1-3 is an example
of some of the features included in a typical load map. In addition to this
full load map, the Loader may be directed to product partial load maps listing
only the undefined global symbols or section load addresses.

1-6

NO UNl)EFINEO SYMBOLS

Mf:MORY MAP

s SIZE STR END COMN
A 0006 4510 4515
A 0006 4406 440B
B C Cl A 0000 001q 0000
c 0030 00 20 004F 0030
D 0042 0400 0441 0020
p 0088 1000 1087 0000

MODULE NAME BSCT DSCT PSCT
PGl 0000 0400 1000
PG3 0005 040E 1060
PGZ 0005 040E 1070

COMMON SECT I O"IS

NA.ME s S ll.E STR
OCOMM 0 OOOB 0422
OCOM~2 D 0018 042A

DEFINED SYMSOLS

MODULE NAME: PGl
CR A 0000 EDT A 0004 EXBPRT A F024 LF A OOOA
MSG l p 1000 MSG2 D 0400 MSGSIZ B 0000 PGlNE p 1016
START p lOOA

MODULE NAME: PG3
A TEST A 4406 POwERS p 1060

MIJDULE NA,-.,E: PG2
EXBENT A F564 MSG3 0 040E MSG4 D 0418 PGM2 p 1070
STACK B 001q

FIGURE 1-3. Loader-Produced Memory Map

1-7

CHAPTER 2

LINKING LOADER COMMANDS

2.1 INVOKING THE LINKING LOADER

The Linking Loader must be called while under the control of the MOOS disk
operating system. When the user types the command:

=RLOAD <c/r>

the disk executive will load the Linking Loader. Upon entry, the loader prints:

M6800 LINKING LOADER REV
?

n.m
(where n.m is the revision number)

The character ? is the Loader prompt, and is printed whenever the Loader has
completed the last command and is ready for another.

2.2 LOADER INPUT

The input to the Loader is in one of two forms -- commands or object modules.
The Loader commands control the relocation and linking of desired object
modules. Object modules are produced by the MPL Campi l er, or Assembler, or
Resident FORTRAN Compiler. Each source program assembled or compiled creates a
single relocatable object module on a disk file. These disk files, or those
files created by merging one or more of these files, are used as the input to
the Loader. The Loader command structure provides for the loading of an entire
file or selected modules within a file. In addition, a disk file may be used as
a library file. The Loader may also be run under the MOOS CHAIN command.

2.3 COMMAND FORMAT

Each Loader command line consists of a sequence of commands and comments,
followed by a carriage return. The first space in a command line terminates the
command portion of the line, and the remainder is assumed to be comments.
Multiple commands may appear on a line by using a semicolon(;) as a command
separator. The format of a command line may thus be defined as:

~command>[; <command> J 9 ~ J [<space>[<comments>]] <c/r>

EXAMPLE: STRB=~;STRD=$1000;STRP=$4000
IDON
LOAD=PGl

The commands in a command 1 i ne are executed only after the Loader detects a
carriage return.

If a command line is entered incorrectly, the line may be corrected in either of
two manners. First, the command line may be deleted completely by typing CTRL X
(the CTRL and X keys typed simultaneously). This causes the Loader to ignore
the current command line, and issue a CR, LF, and await a new command input
line. However, instead of deleting the entire command line, it may be corrected
by deleting the character(s) in error. This is accomplished by typing a RUBOUT
to delete the last character typed. The typing of a RUBOUT also causes the last
character entered to be printed. After deleting the character(s) in error, the

2-1

corrected version of the command 1 ine may be entered. The (MOOS) CTRL D key
allows the operator to redisplay the line to show a "clean" copy of the line for
operator inspection. Thus, full compatibility is maintained with the normal
MOOS .KEVIN special character functions.

The Loader will execute all the commands in a command line before another prompt
is issued. If an error is detected while attempting to process a command, that
command will be terminated. The remaining commands in the command line will be
ignored.

When using multiple commands per line, it should be noted that selected commands
require that they are the last command on a line, and include:

• INIT

• all intermediate file commands (IF, IFOF, IFON)

• OBJ

2.4 LOADER COMMANDS

The Loader commands are divided into three classes:

1. control commands

2. load directives

3. state directives.

The control commands are used to initiate Passes 1 and 2 of the Loader, as well
as to return to EXbug or the disk operating system. The load directives are
used to identify the modules to be loaded. Finally, the state directives direct
the assignment of memory to the various program sections and the production of a
load map.

2.4.1 Command Nomenclature

<f-name>

<number>

[

[

{ }

Used to indicate the name of a disk file to be used by the
Loader. Unless specified, the file is assumed to have a suffix
of 11 R0 11 and drive number of 0. For the format of the fi 1 e
name, consult the MOOS Manual. (Example: PGl.RO:l)

Used to indicate a decimal or hexadecimal number. Unless
preceded by a $ character (which is used to denote
hexadecimal), the number will be interpreted as decimal.
Unless explicitly stated otherwise, the allowable number range
wi 11 be:

0 - 65,535 (decimal)
$0 - $FFFF (hexadecimal)

Used to indicate that the enclosed directive(s) is optional.

Used to indicate that the enclosed directive may be
repeated from 0 to 99 times, up to a total of 79 characters
maximum.

Indicates that one of the enclosed options must be used.

2-2

2.5 CONTROL COMMANDS

2. 5.1 EXIT

FORMAT: EXIT r ~~~~~~~~
DESCRIPTION: The EXIT command causes control to be returned to the disk

operating system after all Loader files have been closed.

The MOOS version of the Loader a 11 ows the user to define the
starting execution address of the object program. If the <number>
option is specified, the given absolute number will be used as the
starting execution address. This address must be a valid address
within the program. The <namel> option is similar to the <number>
option except that <name> must be a valid global symbol. If
neither option is used, the starting address defaults to the
address associated with the label appearing in the operand field
of the END statement in the assembled program. If two or more
modules have END statements with operands, the operand associated
with the first module loaded will be used as the starting address.

2.5.2 IDOF - Suppress Printing of Module ID

FORMAT: IDOF

DESCRIPTION: This command suppresses the printing of the name and printable
information associated with each object module loaded or
encountered in a library file. For assembly language programs,
this information is specified via the NAM and IDNT directives.

2.5.3 IDON - Print Module ID

FORMAT: IDON

DESCRIPTION: This command causes the name and printable information associated
with each object module loaded or encountered in a library file to
be printed at the console device. For assembly language programs,
this information is specified via the NAM and IDNT directives.

2-3

2.5.4 IF - Intermediate File

FORMAT: IF=<f-name>

DESCRIPTION: The IF command defines a file to be used as an intermediate file.

EXAMPLE:

An intermediate file is a copy of all Pass 1 Loader commands and
object modules. It is used to direct the 1 oad operation during
Pass 2, instead of requiring the user to retype the Pass 1 command
sequence during Pass 2. The IF command also automatically places
the Loader in intermediate file mode similar to the IFON command.
Like the !FON command, the IF command must be the last command in
a command 1 i ne. --

The IF file name must be a valid disk file name and may not be the
name of an existing file on the specified diskette. Upon proper
exiting from the Loader, the IF file is deleted.

IF=IFILE Defines !FILE on drive ~ as the intermediate file.
Default suffix is 11 IF 11

•

2.5.5 IFOF - Intermediate File Mode Off

FORMAT: IFOF

DESCRIPTION: IFOF temporarily suppresses the creation of the intermediate file
until an !FON directive is encountered. This command must be the
last command in a command line.

2.5.6 !FON - Intermediate File Mode On

FORMAT: !FON

DESCRIPTION: This command directs the Loader to write all further commands and
object modules onto the intermediate file. This directive remains
in effect until an IFOF or Pass 2 command is detected. The !FON
command .must be the last command on a command line. IFON is
implied when the intermediate file is defined by the IF command.
If an intermediate file is to be used during Pass 2, the IFON
directive must be in effect.

2.5.7 !NIT - Initialize Loader

FORMAT: !NIT

DESCRIPTION: !NIT initializes the Loader for Pass 1. This command is performed
automatically when the Loader is first initiated. The use of this
command permits the user to restart the Loader when entry errors
are made, without having to exit back to MOOS. Any previously
created object and/or intermediate files will be deleted. The
!NIT comand must be the last command in a command line.

2-4

2.5.8 MO - Map Output

f(f-name>J
FORMAT: MO=~device~

DESCRIPTION: The MO command is used to specify the media on which the map

EXAMPLE :

output is to be produced. The MAP output will default to the
console printer.

If a file name is specified, it must not be the name of an
existing disk file. The map cannot be directed to a file during
Pass 2 or whenever an intermediate file is being used.

A map can be produced on the console printer or line printer by
specifying the mnemonic #CN or #LP, respectively.

MO=MAPFL

MO=#LP

All output generated by the MAP command wi 11 be
written on file MAPFL on drive 0.

The line printer will be used for all future map
output.

2.5.9 OBJ - Produces Load Module

FORMAT: OBJA=<file-name>

OBJX=<file-name>[,printed information]

DESCRIPTION: This loader command is used with the MOOS Loader to initiate the
second pass of the Loader. During this pass, an object file is
created on disk with the name <file-name>. This file may not be
the name of an existing file on the specified disk. The file will
be created on disk ~ unless disk 1 is specified in <file-name>.
The type of object file produced by the Loader is determined by
the command form as follows:

OBJA - This format creates an absolute memory image file suitable
for 1 oadi ng vi a the MOOS LOAD command. A default file
suffix of 1 L0 1 and drive 0 will be used if none are
specified.

OBJX - An object file in EXORciser loadable format (S~, Sl, and
S9 records) is created vi a this command form. This file
may not be loaded via the MOOS LOAD command without first
usingthe MOOS EXBIN command. However, files created in
EXORci ser 1 oadabl e format may be copied to cassette or
paper tape and loaded vi a EXbug. A default . suffix of 1 LX 1

and drive ~ wil 1 be used if none are specified with the
file name.

If an intermediate file (IF) was generated during the first pass of the Loader,
the second pass automat i ca 11 y processes the commands entered during the first
pass. In the event that an intermediate file was not created, the same sequence
of commands used during the first pass must be repeated. Regardless of the use
of an intermediate file, the OBJA or OBJX command must be the last command on
the command line.

2-5

EXAMPLES: OBJX=SORT,BINARY SORT PROGRAM

This command initiates the second pass of the Loader,
which will create an EXORciser loadable file on disk
file 'SORT.LX:O'. The SO record will contain the file
named SORT and the ASCII character string 'BINARY SORT
PROGRAM'.

OBJA=REPORT:l

The Loader will create the absolute object file on file
'REPORT.LO' on drive 1.

2.6 LOAD DIRECTIVES

2.6.1 LIB - Library Search

FORMAT: LIB=<f-name> [c <f-name> ~ 9~

DESCRIPTION: The LIB command instructs the Loader to search the specified file
name(s) for those modules which satisfy any undefined global
references. Any module that satisfies an unresolved global
reference will be loaded. A suffix of .RO and logical drive of
:~ are assumed for <f-name>.

EXAMPLE:

A library file is a collection of individual relocatable object
modules which were merged into a single file.

Modules loaded vi a the LIB command may al so reference glob al
symbols that are not defined. Since a library file is searched
only once for each LIB command, it should be made with care so
that no module has any reference to a prior {higher level) module,
or multiple passes of the same library must bE done.

It should be noted that the Macro Assembler and certain compilers
{FORTRAN) produce a single relocatable object module in a file.
Since these single object module files can be merged together into
other {library) files, the terms "object file" and "object module"
are not necessarily equivalent.

LIB=MLIB: 1 The modules on file MLIB.RO on drive 1 will be
searched to resolve any unsatisfied global
references.

2-6

2.6.2 LOAD - Load a File

FORMAT: LOAD=<f-name> [[<f-name> ~ g~

DESCRIPTION: The LOAD command directs the Loader to load the specified object
files.

EXAMPLE:

The LOAD command directs the Loader to load all object modules
found in the specified file name(s). The file name could be a
library file, but the LOAD command, unlike the LIB command, will
load each object module found, irregardless of whether or not it
is needed.

A suffix of .RO and logical drive :~ are assumed.

LOAD=PGMl:l Loads all modules within file PGMl.RO on disk
drive 1

LOAD=PGM1,RAM:l,PGM2,PGM3 Loads all modules within files PGMl.RO
on drive~' RAM.RO on drive 1,
PGM2.RO on drive ~, and PGM3. RO on
drive ~.

2. 7 STA TE COMMANDS

2.7.1 BASE - Initialize Minimum Load Address

FORMAT: BASE [=<number>]

DESCRIPTION: The BASE command allows the user to specify an address above which
his program wi 11 load. The BASE command affects only the memory
assignment of CSCT, GSCT, and PSCT. Memory assignments related to
BSCT, ASCT, and those sections with defined starting/ending
addresses (via commands STR or END) are not affected by this
command.

EXAMPLE:

The use of the <number> option is used to define the 10~1est
address which may be assigned to CSCT, DSCT, or PSCT. If the
<number> option is not specified, the lowest assignable address
will default to the next modulo 8 address following MOOS. This
format of BASE al 1 ows the user to 1 oad his program above MOOS
without having to know where MOOS ends. If the BASE command is
not specified, a default address of $20 (32 decimal) will be used
as the lowest load address during memory assignment.

BASE Unassigned CSCT, DSCT, and PSCT will be assigned load
addresses above MOOS.

2-7

2.7.2 CUR - Set Current Location Counter

FORMAT: CUR~}=[~ <number>

DESCRIPTION: The CUR command is used to modify the Loader's current relative
loading address of the specified section (BSCT, DSCT, or PSCT).
The CUR command must be used prior to the LOAD or LIB command so
as to update the loading address first. If the 1

\
1 option is not

specified, the relative load address for the appropriate section
will be set equal to the given <number> starting section plus its
va 1 ue (see STR command). This <number> must be equa 1 to or
greater than the section's current relative load address. This
form of the CUR command allows the user to start a module section

EXAMPLE:

EXAMPLE:

at a defined address. For PSCT, the <number> entered is added to
the absolute value for STRP to obtain the new PSCT load address
value. The following example loads four lK EPROM's at $4400,
$4800, $5000, and $8COO from multiple files. Each LOAD command
utilizes less than $400 bytes in PSCT (starting PSCT=$4400).

?STRP=$4400
?LOAD=FILEll, FILE12,FILE13 EPROM at $4400
?CURP=$400
?LOAD=FILE21,FILE22,FILE23 EPROM at $4800 ($4400 + $400)
?CURP=$COO
?LOAD=FILE31,FILE32 EPROM at $5000 ($4400 + $COO)
?CURP=$4800
?LOAD=FILE41,FILE42,FILE43,FILE44 EPROM at $8COO ($4400 + $4800)

The '\ 1 option affects the section's relative load address in a
different manner. This option causes all future modules to be
loaded at an address which is a power of two relative to the start
of the section (2,4,8, etc.). The specified <number> defines the
given power of two. This option remains in effect until the
option is specified again or until the current pass of the Loader
is complete. If the 1

\
1 option is in effect when memory is

assigned to the starting section addresses, the starting address
of the section will also be assigned a load address which is a
power of t~m. This option does not apply to named common blocks
within the specified section.

If the CUR directive is not used, each module will normally be
loaded at the next load address in the appropriate section
(contiguously loaded modules). However, modules created via the
FORTRAN Compiler will be loaded at the next even address.

CURP=$100 Sets the relative PSCT location counter to $100
plus STRP value.

CURP=\16 Causes the Loader to load all future PSCT sections
at a relative address within PSCT which is modulo 16
plus the STRP value.

NOTE

When using the CUR command within an MOOS chain
file, the 1

\
1 option must use 1

\\
1 instead of 1

\
1

•

(See CHAIN command description in the MOOS Manual.)

2-8

EXAMPLE:

2.7.3 DEF -

FORMAT: DEF:

DESCRIPTION:

EXAMPLE:

STRP=$4001
CURP= $400
LOAD=PG1,PG2,PGJ

If each file is a single module with less than lK of PSCT in each
one, then each module's starting PSCT address would be assigned as
fo 11 O\'/S:

PG1=$4001
PG2=$4401
PG3=$4801

Loader Symbol Definition

[

ASCTJ <number> BSCT
<namel>= ~name2> J 'DSCT

PSCT

The DEF command is used to define a global symbol and enter it in
the global symbol table. The symbol to be defined is given by
namel and must be a val id Macro Assembler variable name. The
symbol may not currently be defined. If the <number> option is
used, the symbol will be defined with the given number as the
relatived address within the specified section. The DEF command
may be used to provide another name for a previously defined
symbol by using the <name2> option. <name2> must be a currently
defined global symbol. The section options -- ASCT, BSCT, DSCT,
PSCT -- are used to define the section associated with the defined
section. ASCT is the default section.

DEF:ACIA1=$EC10,ASCT Defines symbol ACIAl as an ASCT symbol
with absolute address $EC10 (hexadecimal).

2.7.4 END - Ending Address

FORMAT: END~}=<number>

DESCRIPTION: The END commands are used to set the absolute ending address of
the associated section (BSCT, CSCT, DSCT, PSCT). If both an
ending and starting address are defined, the size described by
these boundaries must be equal to or greater than the size of the
associated section.

EXAMPLE: ENDB=255

NOTE
An ending address of $0000 will reset any previous
END directive for the corresponding section.

BSCT will be allocated such that the last address
reserved is 255 (decimal).

2-9

2.7.5 MAP - Prints Load Maps

FORMAT:

DESCRIPTION: The MAP commands are used to display the current state of the
modules loaded or the Loader's state directives.

MAPC - Prints the current size, user defined starting address, and
user defined ending address for each of the sections, as
well as the size, starting address, and ending address for
each ASCT defined.

MAPF - A full map of the state of the loaded modules is produced
after the Loader assigns memory. This map includes a list
of any undefined symbols, a section load map, a load map
for each defined module and named common, and a defined
global symbol map. If a user assignment error (UAE)
exists, this command cannot be completed. Use the MAPC
command to determine the cause of the error.

MAPS - The Loader assigns memory to those sections not defined by
a user supplied starting and/or ending address. A merDory
load map, which defines the size, starting address and
ending address for each section, is printed. If a user
assignment error (UAE) exists, this command cannot be
completed. Use the MAPC command to determine the cause of
the error.

MAPU - Prints a list of all global references which currently
remain undefined.

2.7.6 STR - Starting Address

FORMAT:
{B} t } STR C = <number>
~ <global ASCT symbol>

DESCRIPTION: The STR commands set the absolute starting address of the
associated section (BSCT, CSCT, DSCT, PSCT). Those sections whose
starting address is -not defined- by the user wi 11 be assigned a
starting address by the loader.

EXAMPLE:

NOTE
A starting address of $FFFF will reset any previous
STR directive for the corresponding section. This
will allow the Loader to define the starting address.

STRP=$1000 PSCT will be allocated memory starting at $1000.

2-10

CHAPTER 3

SAMPLE OPERATIONS WITH THE LINKING LOADER

3.1 INTRODUCTION

This chapter provides a description of the operation of the Loader in typical
applications. To demonstrate the use of the Loader, a simple message printing
program will be used. This program consists of three modules which reference
instruction sequences or data within each other. As assembly listing of each
module is shown in Figures 3-1, 3-2, and 3-3.

3.2 SIMPLIFIED LOADER OPERATION

The simplest form of the Loader's operation is shown in Figure 3-4. In this
example, all three files -- PGl, PG2, and PG3 -- are loaded, and the object file
PG123 is created. The sequence of steps shown in Figure 3-4 is as follows:

1. The LOAD command loads the first file, PGl.RO:~.
operations, a global symbol table of all external
references is built.

During all
definitions

load
and

2. The LOAD command loads ,the next two files, PG2 and PG3.
default suffix 'RO' and drive number ·~· are assumed.

Notice the

3. The OBJA command starts pass 2 of the load function, which will create an
absolute memory image object file named PG123 on drive ~ with the suffix
'LO'. This command also assigns memory addresses to the various program
sections. The use of the OBJX command, instead of OBJA, would have a
similar effect, except an EXORciser load image would be pro~uced.

4. Since an intermediate file was not created in pass 1, all 'Commands
entered in pass 1, with the exception of MAP commands, must be repeated.
In pass 2, the LOAD command generates the absolute code for the object
file. Notice that all three files are loaded with one load command this
time.

5. The MAPU command is not really necessary here, but was entered to verify
that no undefined symbols exist.

6. A complete memory map is produced by the MAPF command. In the first part
of the map (6a), any undefined external references are listed. In the
next part (6b), the section type, the size, starting address, ending
address, and size of the section's common block are listed for each
program section. For example, PG123's DSCT area will have a size of 42
(hex) bytes, of which 20 (hex) bytes are in common. The DSCT area will
start at address $6A and end at $AB. The starting address of the various
sections for each program module is given in the next map part (6c). As
seen from the map, PG2 PSCT starts at address $FD, which corresponds to
the PG2 instruction:

PGM2 CLRA

3-1

PAGE 001 PGl

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012

00014
00015
00016
00017
00018

00020
00021
00022
00023
00024

00026
00027
00028
00029

.SA:l PGl PROGRAM TO PRINT OUT MESSAGES (MAIN)

PGl
REL,CREF,NOG

NAM
OPT
TTL
IONT

PROGRAM TO PRINT OUT MESSAGES (MAIN>
08/10/79 MAIN MESG PROGRAM - MODULE #l

* ASSEMBLY PROCEDURE: RASM 3.00
* =RASM PGl;LN=76

* * PR 0 GR AM PAR T S : PG 1 , PG 2 • PG 3
* COMPUTER: ~6800

MOOS 3.00

F024 A EXBPRT EQU $F024 EXBUG PRINT ROUTINE

-0004
OOOA
0000

* ASCII CHARACTER EQUATES

A EOT
A LF
A CR

EQU
EQU
EQU

4
$A

$0

ENO OF TEXT
LINE FEED
CARRIAGE RETURN

* EXTERNAL REFERENCES
XREF
XREF
XREF

A TEST
DSCT:MSG3,MSG4,ANY:STACK
EXBENT,PGM2

- EXTERNAL DEFINITIONS

* XOEF MSGZ,MSGl,EXRPRT,START,PGlNE
XOEF MSGSIZtEOTtlf,CR

FIGURE 3-1. Message Program 1 (PGl)

3-2

PAGE 002 PGl

00031
00032
00033
00034N 0000
00035N 0000
00036N 0002
00037N 0004
00038N 0006

00040
00041
00042
00043 N 0000
00044N 0000
00045N 0001

00047C 0000
00048C 0000

0005CO 0000
000510 0000
000520 0009

00054P 0000
00055 p 0000
00056P 0009

00058 l:l QOOO
00059B 0000

0000
0000
0000
0000

0001
0014

.sA:l PGl PROGRAM TO PRINT OUT MESSAGES CMAINl

* COMMON MESSAGE AREA
* (NAMED COMMON "DCOMM" IN OSCT)

DCOMM
P MSGlP
0 MSG2P
A MSG3P
A MSG4P

COMM
FOB
FDB
FOB
FOB

DSCT
MSGl
MSG2
MSG3
MSG4

* MESSAGES l ANO 2

PTR TO ME SG l
PTR TO MESG 2
PTR TO MESG 3
PTR TO MESG 4

(IN P SC T)
(IN DSCT>
(XREF IN DSCTl
< XREF IN OSCT>

* <NEW NAMED COMMON "DCOMM2" IN DSCT)

* DCOMM2
A CMSGCT
A CMSG

COMM
RMB
RMB

OSCT
1
20

COMMON MESSAGE COUNT
COM~ON MESSAGE

CSCT
0010 A MSGCST RMB 16

gLANK COMMON SECTION
RESERVE 16 BYTES

40
04

40
04

A -.iSG2
A

A MSG!
~

OSCT
FCC
FCB

PSCT
FCC
FCB

BSCT
0001 A MSGSIZ RMB

DATA SECTION
\MESSAGE 2\
EDT DELINEATE END OF MESSAGE

PROGRAM SECTION
\MESSAGE l\
EOT

BASE SECTION
1 MfSG SIZE STORAGE

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-3

PAGE 003 PGl .SA:l PGl PROGRAM TO PRINT OUT MESSAGES (MAIN)

00061 * PROGRAM SECTION
00062 O EXECUTION STARTS AT "START"
00063
00064? OOOA

00066P OOOA SE 0000
00067P 0000 FE 0000
OOC68P 0010 BD F024
00069P 0013 7E 0000
00070

* PSCT

A START LOS
N LOX
A JSR

.... ..,..
JMP

#STACK
MSGlP
EXBPRT
PGM2

PROGRAM SECTION

SET UP STACK REGISTER CXREF>
GET MESSAGE l POINTER
PRINT MESSAGE 1
GO TO PROGRAM 2 CXREF)

00071 * PROGRAM 2 RETURNS TO THIS POINT CXOEF>
00072
00073P 0016 CE 0000
00074P 0019 BO F024
00075P OOlC FE 0004
00076P OOlF 80 F024
00077P 0022 CE 0000
00078P 0025 BD F024
OOO?Q

A PGlNE L~X

A JSR
N LDX
A JSR
A LOX

JSR

#MSG3
EX BP RT
MSG3P
EXBPRT
#MSG4
EXBPIH

GET MESSAGE 3 ADDRESS
PRINT MESSAGE 3
GET MESSAGE 3 POINTER
PRINT MESSAGE 3 AGAIN
PRINT MESSAGE 4

00080 * MOVE MESSAGE FROM CMSG IN OCOMM2 TO BLANK COMMON
00081

B
N
~

N
B

.... ...
00082? 002A CE 0000 C
00083P 002B FF 0003
00084P 002E C~ 0001
00035P 003L FF 0001
00086P 0034 F6 0000
00087P 0037 D7 00
00088P 003q FE 0001
00089? 003C Ab 00
oooqop oo3E oa

B LOOPl
A

00091P 003F FF 0001 B
00092P 0042 FE 0003 B
00093P 0045 A7 00 A
00094P 0047 O~

00095P 0048 FF 0003 B
0009bP 0048 5A
00097P 004C 26 EB 0039
OOOQ8P 004E 7E 0000 A

LOX
STX
LOX
STX
LDAB
STAB
LOX
LDAA
INX
STX
LOX
STAA
I NX
STX
OECB
ANE
JMP

#MSGCST
TOPNTR
#CMSG
FROM PT
CMSGCT
MSGSIZ
FROMPT
o.x

FROMPT
TOPNTR
o.x

TOPNTR

LOOPl
A TEST

MESSAGE DESTINATION ADDRESS

MESSAGE ADDRESS <FROM)

MESSAGE LENGTH
SAVE MESG LENGTH
GET SOURCE POINTER
GET BYTE
UPDATE SOURCE POINTER

GET DESTINATION POINTER
SAVE BYTE
UPDATE DESTINATION POINTER

UPDATE CHARACTER COUNTER
LOOP
GOTO PROGRAM W/ASCT REGIONS

BSCT DIRECT ADDRESSING SECTION 001008 0001
00101 * NOTE: IF FORWARD REFERENCED. EXTENDED ADDR IS USED.
00102 * THEREFORE ALL BSCT VARIABLES SHOULD BE
00103 * DEFINED BEFORE REFERENCED.

.... ... 00104
00105B 0001
00 l 06 8 0003

0002 A FROMPT RMB
0002 A TOPNTR RMB

2
2

FROM POINTER
TO POINTER

OOlOBO OOOA
001oqo OOOA 96 01
OOllOD OOOC DE 03

00112

8
B

00113 OOOA P
TOTAL ERRORS 00000--00000

FIGURE 3-1.

OSCT
LDAA
LOX

FROM PT
TOPNTR

DATA SECTION
DIRECT ADDRESSING USED
(EXAMPLES ONLY - NOT EXECUTED•

TTL CROSS REFERENCE TABLE
END START

Message Program 1 (PGl) (cont'd)

3-4

PAGE 004 PGl .SA:l PGl CROSS REFERENCE TABLE

R A TE ST 00022*00098
Nf) 0001 CMSG 00045~:Q0084

ND 0000 CMS GC T 00044~'00086
0 0000 CR 00018*00029
NO DC0"1M 00034*
NO DCOMM2 0004 3;':
D 0004 EOT 1)001M:OQ029 00052 00056
fJ, EX81=NT 00024*
0 F024 EX6PRT 00012*00028 00068 00074 00076 0007R

B 00 01 FRCMPT 00085 00088 00091 00105:::00109
0 OOOA u= 00017*00029

p 0039 LOIJf>l 00088*00097
DP 0000 MSG 1 00028 00035 00055*
NO 0000 MSG l P 0003'>*00067
00 0000 MSG2 00028 00036 00051*
t-.4D 0002 MSG2P 00036*
R I) MSG3 00023*00037 00073
ND 0004 MSG3P 00037*00075
RO MSG4 00023:.':00038 00077
ND 0006 MSG4P 00038*
c 0000 MSGCST 0004~*00082

D!3 0000 MSG SI l 00029 00059*00087
DP 0016 PGl~E 00028 00073*
R PGM2 00024*00069
R. STACK 00023*00066
DI> OOOA STA RT 00028 00066*00113
~ 0003 TOP NTR 00083 00092 00095 00106*00110

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-5

PAGE 001 PG2

06001
00002
00003
00004

00006
00007
00008
00009
OOOlO

00012

00014
00015
00016
00017
00018
00019
00020

00022
00023
00024N 0000
00025N 0000
00026N 0002
00027N 0004
00028N 0006

00030N 0000
00031N 0000
00032N 0001
00033 N 0014
00034

00036
00037
000360 0000
000390 0000
00040D 0009
000410 OOOA
000421) 0013

.SA:l PG2 ~ESSAGE PRINTER SUBPROGRAM

NAM PG2
OPT CREFtRELtNOG
TTL MESSAGE PRINTER SUBPROGRAM
IONT 08/10/79 MESG PRNTR SUBPROG - MODULE #2

* ASS~MBLY PROCEDURE: RASM 3.00 MOOS 3.00
.... .,. =RASM PG2 a N=76

* PROGRAM PARTS: PGl. PGZ, PG3
* COMPUTER: M6800

F564 A E~BENT EQU $f 564 EXBUG ENTRY POINT

0002 A
0002 A
0002 A
0002 A

17 A
43 A
oc A
0018 N

40 A
00 A
40 A
00 A

.... ..,.

* XOEFS A~D XREFS

XOEF
XR.EF
XREF
XREF

MSG3.MSG4.STACK.EXBtNT.PGM2
SSCT:MSGSil
EXBPRT.PG1NE,MSG1,~SG2

F.OT,CR,LF

* MfSSAGE POINTER AREA CDC O.M ~ >

* OCOMM COMM OSCT
MSGlPT RMB 2
MSG2PT RMB 2
MSG3PT RMB 2
MSG4PT RMB 2

DCOMM2 COMM OSCT
CMSGCT FCB CMSGE-C~SG • COM MON Mf SS AGE
CMSG FCC \COMMON TEST PROGR.A~\

FC8 CR,lF,LF,EOT
CMSGE EQU END OF MESSAGf ~-

... MESSAGES 3 AND 4 ...

.,. ..,.

OSCT
MSG3 FCC \MESSAGE 3\

FCB EQT
MSG4 FCC \M~SSAGE 4\

FCB EQT

FIGURE 3-2. Message Program 2 (PG2)

3-6

CHAR COUNT!

PAGE 002

00044
00045
00046P 0000
00047P 0000
00048P 0001
00049P 0003
00050P 0006
00051P ()OOq
00052P oooc
00053P OOCF
(H)054P 0012
00055P 0015

00057B 0000
00058B 0000
000598 0014

00061

PG2

4F
97
FE
30
CE
BD
FE
BD
7E

.SA:l PG2 MESSAGE PRINTER SUBPROG~AM

* START OF
;':

PSCT
PGM2 CLRA

00 A STAA
0000 l\J l OX
0000 A JSR
0000 A LDX
0000 A JSR
0002 \I LOX
0000 A JSR
0000 A JMP

BSCT
0014 A RMB
0001 A STACK RMB

END

PROGRAM 2

MSGS I Z
MSGlPT
EX SP RT
#MSG2
EXBPRT
MSG2PT
EXBPRT
PGlNE

20
1

IN IT. MESG LENGTH
PRINT MESSAGE 1

PRINT MESSAGE 2

PRINT MESSAGE 2 AGAIN

RETURN TO PROGRAM ONE

DIRECT ADDRESSING SECTION

STACK STORAGE AREA

TOTAL ERRORS 00000--00000

ND 0001 CMS G
"4 D 0000 CMSGCT
"ID 0018 CMS GE
R c~
N'.J DCOMM
fl,: I) DCOMM2
R EOT
D f564 EXBENT
q_ EXBPRT
R LF
R MSG l
ND 0000 MSGlPT
R. MSG2
NO 0002 MSG2PT
00 0000 MSG3
NO 0004 MSG3PT
l)f) OOOA MSG4
ND 0006 MSG4PT
RB MSG SI Z
R PGlNE
OP 0000 PGM2
DB 0014 STACK

00031 00032*
00031*
00031 00034*
00020*00033
00024*
00030*
00020*00033 00040 00042
00012*00017
00019*00050 00052 00054
00020*00033 00033
00019*
00025*00049
00019*00051
00026*00053
00017 00039*
00027*
00017 00041*
00028*
00018*00048
00019*00055
00017 00047*
00017 00059*

FIGURE 3-2. Message Program 2 (PG2) (cont'd)

3-7

PAGE 001 PG3 .SA:l PG3 ***PROGRAM TO ILLUSTRATE USE OF ASCT

00001 NAM PG3
00002 TTL ***PROGRAM TO ILLUSTRATE USE OF ASCT
00003 OPT REL,CREF
00004 IDNT 08/10/79 ASCT ILLUSTRATION - MODULE

00006 ... ASSEMBLY PROCEDURE: RASM 3.00 ~DOS 3.00 ...
00007 ... =RASM PG3: ULN=76
00008
00009 PROGRAM PAR TS: PGl, PGZ, PG3
00010 * COMPUTER: M6800

00012 Xf)EF ATEST,POWERS
00013 XREF EXBPRT,EXBENT

00015 ... BLANK COMMON .,.

00016,..

00017C 0000 CSCT
OOOlBC 0000 0030 A CMSG RMB S30

UNNECESSARY! 00020A 0000
00021A 4406
00022A 4406 CE 0000
00023A 4409 7E 4510

.ASC T
ORG

C ATEST LOX
A JMP

$4406
#CMSG
ATEST2

• ORG CAUSES ASCT!
START OF COM~ON MESSAGE

00025A 4 "510
00026A 4510 BD 0000
00027A 4513 7E 0000

ORG
A ATEST2 JSR
A

00029P 0000
00030P 0000 0001 A POWERS
00031P 0002 OOOA A
00032P 0004 0064 A
00033P 0006 03EB A
00034P 0008 2710 A

00036
TOTAL ERRORS 00000--00000

D 4406
4510

c 0000
R

R
OP 0000

A TEST
ATE ST2
CMSG
EXBENT
EXBPRT
POWERS

00012 00022*
00023 00026*
00018*00022
00013*00027
00013*00026
00012 00030*

JMP

PSCT
FDB
FOB
FOB
FOB
FOB

ENO

$4510
EX BPRT
EX BENT

l
10
100
1000
10000

PRINT MESSAGE
GOTO EX~UG/OON'T STOP

PROGRAM SECTION
POWERS OF TEN TABLE

FIGURE 3-3. Message Program 3 (PG3)

3-8

#3

=h'.'.LOAD
MDOS LINKING LOADER REV 03 .00
COPYRIGHT BY MOTOROLA 1977
"'"LOAI1=PG1. RO: O --------------------------- LOAD FIRST FILE

2 ·-::·1_0AD=PG2' PG:3 ----------------------------- LOAD OTHER TWO FILES

a :~:E~~~~~:~ l ~~:i:;2-,-P13~:-:::::::::::::::::::::::: ~~~~ATP~~~s2 1 cm.1MANDS
5 ?MAPU--------------------------------------- PRINT UNDEFitlED SYt-1BOLS MAP

ND UNDEFINED SYMBOLS
(6 hMAPF ---------------------------- ----------- PRINT FULL MEMORY /SYMBOL t-1AP

NO UNDEFINED SYMBOL S 6a

ME MOR\' MAP

:s: S IZE :S:TR Etffl COMN
A OOOE. 4510 4515
A 0006 4406 440F:
f: 001A 0 Oi.::'. O fln 3 9 noon
I : n n::=: o no·-=:A 0069 003 0
II 0042 006A OOAB 0 02 0
p 0 07:3 OOAC 01 lE 0000

MODULE ti AMF BSCT D ~7:: CT p :s:cT
PG1 n n;=· n fl ni:=,A fl fl Al:
PG2 0025 0078 OOFD
PG:::: oo::::A oo::::c 0115

Cot'1MON SECT I Oti :S:

NAME S S I?E ~TR
ric:nMM n n no:::: o·ti::::i:: 6d
DCOMM2 D 001 8 0094

DEF I NEI1 :5: 'l MBOL:5:

t•11JDULE t·iAME: PG 1
CR A OOOD
MS: G1 P OOAC
:s: TAPT P 0 OF:E.

MrJTIULE NAME: PG;::·
F '.=·='F:nn A F'564
:~:TAO:: E: o 0::::9

MnDULE tiAME: PG 3

EDT
M:5:G2

M:::::i;. :;:

A
D

f l

6b

6c

0004 E:=<BPRT
006A t·E G:S: I Z

007:::: MSG 4

ATE S: T A 44 OE. POlilER :S: P 0115 6g

A F02 4
f: 0 02 0

D 0 08 2

(?)? EXIT ------------------------------------- - RETURN TO MOOS

LF
PG 1tiE

PGM2

=LOAD PG123; \.' ----------------------- - -- - -- LOAD OBJECT PROGRN1 FILE

•E ;p ------------- - ------------------------ START PROGRAM EXECUTION
MF:. :S::S: AGE 1
1>1ES:5: AGE 1
MF SSAGE c'
tvt i:: ::::::<::: A 1:; F. ;::·
111:.;;::~:eu~E 3
t-1E .::::::::: Ht.:tE :;:
Mi::SSAGE 4
cnMMON TE ST PROGRAM

IE>=:BUG 2. 1
•E

FIGURE 3-4. Basic Loader Operation

3-9

A
p

p

OOOA 6e OOC2

OOFD 6f

The fourth area of the map (6d) defines the size and starting address of
any named common blocks. Thus, the PGl variable CMSGST, which is the
first variable in the DCOMM2 common block, will be located at address
$8C. The final map feature provides an alphatized list of all global
symbols by modules (6e, 6f, 6g). The modules are listed in the order
that they were 1 oaded. Thus, the PGl variable START has an absolute
address of $B6.

7. To return to MOOS, the EXIT command is used. This command may, in
addition, be used to assign a starting execution address. In this
example, PG123's starting address will be at address $B6, since the
variable START appears as the operand on PGl 1 s END statement. Tvrn
alternate methods of defining the execution address are:

EXIT=START

or EXIT=$B6

3.3 LOADER OPERATIONS USING INTERMEDIATE FILES

As shown in the previous example, most commands must be re-entered during pass 2
of the Loader. The use of an intermediate file eliminates the need to retype
Loader commands. Figure 3-5 is an example of the use of intermediate fi 1 es.
Commands used in the sequence are explained below, with the exception of those
commands previously discussed.

1. The intermediate file feature is invoked by defining a new file for use
as the intermediate file.

2. The !DON command turns the identifier option on to allow printing of the
IDNT assembly directive as entered in the files.

3. This command line shows how more than one command may be specified on the
same line by using the 1

;
1 feature. The STR command is used to define

the starting section addresses of $400 and $1000 for DSCT and PCST,
respectively. These starting addresses are reflected in the map
generated in pass 2.

4. The CUR command with the 1
\

1 option causes the PSCT section of each
module to start at an address which is modulo $10 from the start of PSCT.
This feature permits the user to easily debug relocatable programs, since
modules start at convenient addresses. Thus, in the example of Figure
3-5, the first PSCT code for module PG2 will start at $1070.

5. Notice that
Figure 3-4.
(5a).

the loading order is different from the example in
As each file/module is loaded, its identifier is printed

6. As in the previous example, the OBJA command initiates pass 2 of the
Loader. However, since the intermediate file feature is being used, the
second pass 2 is automatically performed without the user re-entering the
commands. Notice the identifiers are also printed here as each
file/module is loaded (6a).

7. The Loader has completed processing all commands entered in pass l; the
user may now enter any non-load command such as a MAP command or EXIT.
In this case, all map output is directed to the line printer with the
MO=#LP command. ·

3-10

=RLOAD
MDOS LINKING LOADER REV 03.00
COPYRIGHT BY MOTOROLA 1977

1 ?lF=TFMP ----~--------------------------- CREATE INTERMEDIATE FILE = TEMP
2 ?I Dmi ----------------------------------- TURtl ON IDENTIFIERS
3 ·~'S TP.D=$400; STl''P=$1 ooo; STl''.B=O -------- DEFINE STARTING SECTI9N ADDR~SSES
4 ·-;:·cuRP=····.$10 ------------------------------ START PSCT ON MODULO 0 (HEXJ BOUNDARIES
5 -;:·1_0AD=Pi::;1, PG3, p1::;2 --------------------- LOAD Fii ES

PG1 08/10 / 79 MAIN MESG PROGRAM - MOD~E =1
(5a) PG3 08 / 10/ 79 ASCT ILLUSTRATION - MODULE =3

PG2 08/10 / 79 ME SG PRNTR SUBPRDG - MODULE =2
(6} '?OBJA=PG1 :32 ------------------------=---- START PASS 2 ... CONTROLLED BY INTERMEDIATE FILE

PG1 08/10/79 MAIN MESG PRObRHM - MODU~ =1
(6a) PG3 08 / 10/ 79 ASCT ILLUSTRATION - MODULE =3

PG2 08 / 10/79 MFSG PRNTR SUBPRDG - MnDULE =2 p ~ ?MO=~~LP --------------------------------- ASSIGtl MAP OUTPUT TO LINE PRINTER
t~1 :rn~~·~ -::::::::::::::::::::::::::::::::::: ~~tbR~JE~8RM~~~1BOL MAP TO LINE PRINTER

=LOAD p5132;v -------------------------- LOAD OBJECT PROGRAM FILE

•E ;p ------------------------------------ START PROGRAM EXECUTION
MESSA1::;E 1
MES:SA1::;E 1
MF:S:S:AGE 2
MES:SAt::;E c'.
MES:SAGE 3
Mi;::S:S:AGE 3
ME·::::<:::Af:;F 4
COMMON TEST PROGRAM

E:>=:Bu1::; 2. 1
•E

FIGURE 3-5. Using an Intennediate File

3-11

8. A full map is sent to the line printer to produce a hard copy with the
MAPF command. The line printer map output is shown in Figure 1-3.

9. The object file is closed and control is returned to MOOS via the EXIT
command.

3.4 LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN MOOS COMMAND

The previous examples have described the loading procedure performed via the
LOAD command. In these examples, the user was aware of each module that had to
be loaded. However, in other cases, the user may be aware of only the entry
point name required to perform a desired function. In such instances, the user
can create a file which contains a collection of utility modules. The Loader
may be used to extract only the required modules from this library file. The
use of a library file is shown in Figure 3-6, and a description of the various
steps is explained below:

1. The MOOS MERGE command is used to build a library file PGLIB. This file
contains the modules in files PGl, PG2, and PG3.

2. The use of the BASE command directs the Loader to assign memory for CSCT,
DSCT, and PSCT above the MOOS system area. As a result, the user program
may be invoked directly as an MOOS command without using the LOAD
command. However, if the program has init i alized BSCT, the MOOS LOAD
command must be used to execute the program. The effect of the BASE
command is shown in the program's memory map where CSCT, DSCT, and PSCT
are assigned memory above $2000.

3. All currently undefined symbols are listed via the MAPU command.
example, the six undefined symbols correspond to the six
references in PGl.

In this
external

4. The LIB command searches the file PGLIB for any modules \'lhich satisfy the
current undefined symbols. Since PG2 and PG3 are modules in PGLIB that
satisfy these undefined symbols (i.e., PG2 and PG3 have XDEF's for
ATTEST, EXBENT MSG3, MSG4, PGM2, and STACK), they will be loaded via the
LIB command. PGl, which is also in PGLIB, will not be loaded again.

5. The second MAPU command shows that all external references have now been
satisfied.

6. The second pass of the Loader is initiated with the OBJA command, and
creates an object file with the name MESSAGE. The use of the suffix
'CM', along with the Loader's BASE command, permits the created file to
be treated as an MOOS command (see item 9).

7. Since an intermediate file was \ not created during pass 1, all commands
entered in pass 1 must be repeated in pass 2. The MAP, END, and STR
commands are the only exceptions to this rule.

8. The EXIT command completes pass 2 of the Loader and returns to MOOS.

9. The file created by the Loader is treated as an MOOS command and,
therefore, is loaded and executed automatically.

3-12

(l)=MERGE PG1.RO,PG2.RO,PG3.RO,PGLIB.RO --------BUILD LIBRARY FILE
=RLDAD
MUD: LINKING LOADER REV 03.00
COPYRIGHT BY MOTOROLA 1977

(2)·;·BASE ---------.:.-----------------------------------LOCATE PROGRAM ABOVE MOOS
?LOAD=PG1 --LOAD FIRST FILE

(3)"::-MAPU --:..-~PRINT UNDEFINED SYMBOLS
ATEST EXP.F~T MSG3 MSG4 PbM2 STAL~ ·

noo6 UNDEFINED SYMBOLS
(4}?LIB=PGLIB ---------------------------------------SEARCH LIBRARY FILE
(5)?MAPU ---PRINT UNDEFINED SYMBOLS

ND UNDEFINED SYMBOLS
(6):I~~ ::~A=MES::;:AGE. CM --------------------------------START PASS ? - BUILD COMMAND FILE
(7) ... f.H.:::.E -----------~---------------------------------REPEAT PASS l COMMANDS

?~OATI=PGt;LJB=PbLIB

.,.M~EJFutiilE"F' it'iE:-ri-:s'.· .. i-ff.oC~:---------- --- --- ----- --- --PRINT FULL ME~10RY ;syr,moL MAP

"1EMDP'r' MAP

·~· ::;:JZE STR ENII COMN ._;.

A 0006 4510 4515
A 0006 44 (If, 44 O:E:
F: 001A 0020 0039 0000
c 0030 2000 202F 0030
D 0042 2030 2il71 oo;?o
p 0073 ;:::· f17;~ 20E4 0000

MODULE t-~AME BS:CT D:SCT PS:CT
PG1 0020 2030
PG2 00;::·5 c.· 03f?
PG3 0 n::=:A ;=.: n5;:·

COMMDI'~ S:ECT JOt·E:

NAME S S IZE STR
DCDMM D 0008 2052
DCDMM2 D 0018 20~A

UEF I NEI1 ::;:\'MBDLS

MOIIULE t~AMF: PG 1
CR A Oflflfl EDT

2072
c~ oc::;:
c' OIIP.

~EG1 P 2072 M:';:G2
START P 207C

MODULE NAME: PG2
E>::BEtn A FSE.4
::;:TAC¥ B 0039

MSG3

A 0004
D 2030

D 203E

MODI ILE NAME: PG::::
AfEST A 4406 POWERS P 20DB

i::::,=:BPJ;•T A FOc:4 LF A OOOA
l'1 S 1:; ::;:: I Z E: 0020 PGHiE p 20E:8

1'EG4 II 204t: PGM2 p 20C3

(8)?EXIT -- RETURN TO MOOS
(9) =ME:';:S:AGE -- LOAD MD EXECUTE NEl~ rmos COt·1MAMD

t-1F.S :';: A1:;E 1
MF.S:S:AGE 1
MF::SS:A(:iE 2
ME:';:S:AGE 2
MESS:AGE 3
"1t:S:S:AGE 3
"1F~::::--=:: AGE 4
COMMON TEST PROGRAM

i::::-=:P.u1:; c'. . 1
•E

FIGURE 3-6. Using a Library File

3-13

3.5 LOADER OPERATIONS USING A CHAIN FILE

For programs requiring more than a few modules, the use of the MOOS CHAIN
command to link them becomes a virtual necessity. It also provides a
self-documenting listing of how to link the program. A sample chain file is
shown in Figure 3-7. The use of this chain file is shown in Figure 3-8, and a
description of the various steps is explained below.

1. The chain file (LINK.CF) is invoked using the MOOS CHAIN command. There
are five option parameters which will be passed on to the chain file.
This is the only line entered by the operator until (7).

2. The chain file pauses here to give the operator a chance to abort, if so
desired, without destroying anything.

3. The previous map and object file are deleted.

4. The Linking Loader is invoked via the RLOAD command. The parameters from
the command line (1) are substituted to define the section values.

5. Map output is directed to an output file called PG321.MO. This provides
a permanent listing of the map output which can be listed at any time.

6. The MOOS LIST command is invoked to produce a hard copy of the map file
on the line printer. Note the header option is used and the DATE command
line parameter is substituted. The line printer listing of the map
output files is shown in Figure 3-9.

7. The chain file processing ends and the input stream returns to the
keyboard for operator input.

3-14

PAGE 001 LINK .CF:O

'* I* ***
I* ** LINK MESSAGE PROGRAMS CHAIN PROCESSOR ** '* ** 08/10/79 ** '* ***
I*

~* WARNING! GOING TO DELETE THE FOLLOWING FILES:
Cil* ------- PG321.LO:O COLD OBJECT)
Cil* PG321.MO:O COLD RLOAD MAP)

CilSET,M 8

ABORT WITH 'BREAK' KEY OR
STRIKE 'RETURN' TO CONTINUE •••

DEL PG321.LO,PG321.MO
OlSET,M 0
RLOAO
IDON
STRO=S%0%;STRP=S%Pt;STR8=S%8%
/IFS CP
CURP=\\S%CP%
/XIF
LOAD=PG3,PG2,PG1
MAPU
ORJA=PG321
STRD=siot;STRP=StP%:STRB=S%8%
/IFS CP
CURP=\\S%CPi
/XIF
LOAD=PG3,PG2ePG1
MAPU
MO=PG321.MO
MAPF
EXIT
Cil*
LIST PG321.MO;LH
MESSAGE PROGRAM TEST RLOAO MAP - %DATE%
<il*
/IFC s,o,P,OATE

'* I* COCKPIT ERROR DETECTED!
I*
I* MUST SPECIFY THE FOLLOWING OPTIONS:
I* ----------------------------------
/* START SASE SEGMENT ADDRESS (HEX, B =
I* " DATA " " (HEX, (l =
I* " PROGRAM " " CHEXt p =
I* TODAY'S DATE FOR MAP LISTING DATE =
I*
I* OPTIONAL

NO $)

NO $)

NO $)

I* CP = HEX VALUE <NO $) FOR "CURP=\\" COMMAND

'* I* *** CHAIN ABORTED ***
'* /ABORT
/XIF

FIGURE 3-7. Listing of Chain File Invoking RLOAD

3-15

(l)~cHAIN LINK;DATE%10 AUG. 1979%,B%0%,D%400%,P%1000%,CP%100% ..
++ LINK MF SSAGF PROGRAMS CHAIN PROCESSOR +•
•• 08/ 10/ 79 •• ...

::;i+
;j)•
:;1+ .l,.

WARNING! GOING TD DELETE THE FOLLOWING FILES:
------- PG321.LO:O (OLD OB . IF~T)

PG321.MO:O (OLD RLOAD MAP)
:l•• .l,.

(2) :i•.
ABORT WITH ~ BREAK~ KE Y DR
STRIKE ~ RETURN ~ TD CONTINUE ...

:i••
·lr~: ET F OFF 08 0 0

(3)DEL PG321.LO,PG321.MD
PG321 .LO:O DELETED
PG 321 .Mo:o DELETED
:;r~:ET F OFF 0 0 0 0

(4) i::·L.OAD
MDO~ LINKTNG LOADER REV 03 .00
COPYRIGHT BY MOTOROLA 1977
"" IDOi'~
7STRD=$400; STRP~$1000; STRB=$0
""CUPP=' .. $1 0 n
? LOAD=PG3·PG?.PG1

PG3 Oe / 1 0/ 79 A:s:cT I LLUS:TRAT I m 1 MODULE ~~ :3
PG2 ot:....- 1 0/ 79 MES:G PRNTR SUBPRDG 1'10DULE ~~2
PG 1 o:::: / 1 0/ 79 MA It-~ ME:~: G PROGRAM - MODULE ~~ 1

?MAPU
NO UNDEFI~ED SYMBOLS

"?Of:.JA=PG3c' 1
7STPU=$4nn;~TRP=$1000;STRB=$0
?CURP=·-.. $1 0 0
""LDAD=PG3.PG2,PG1

PG3 0:::: .. ·" 1 0.-·"79 ASCT I LLIJ:~: TRAT I Ot1 MODULE ~~3
PGc' 0::::....-1 o...-?9 MES:G PRtHR :~: UBPRDG MOIIULE ~~2
PG 1 o:~: / 1 n .. ·" 79 MA IN Mf'SG PROGRAM - MOflULE ~~ 1

·-::·"1APU

()
NO UNDEFINED SYMBOLS

5 ?MO=PG321.MO
?MAPF
·-::E:=< IT
:l••

(6)L1~T PG321.MO;LH
ENTER HEADING: MESSAGE PROGRAM TEST RLDAD MAP - 10 AUG. 1979
:i••
END CHAIN

(7) ~LOAD PG :~:21; V -------------------------- LOAD OBJECT PROGRAM

(8) •E ; P -- -- -- ---------- ------------ --- ---- -
MESS AGE 1
ME SS:AGE 1
MES::SAGE 2
MESSAGE 2
MESS:AGE :~:
tvfl="S::SA6E :::
MES:S:AGE 4
COMMON TEST PROGRAM

".::>::BUG 2. 1
•E

START PROGRAM EXECUTION

FIGURE 3-8. Using a Chain file ~nd RLOAD

3-16

PAGE 001 PG321 .Mo:o MESSAGE PROGRAM TEST RLOAO MAP - 10 AUG. 1979

NO UNDEFINED SYMBOLS

MEMORY MAP

S SIZE
A 0006
A 0006
8 OOlA
c 0030
0 0042
p 0 251

STR
4510
4406
0000
0020
0400
1000

ENO COMN
4515
4408
0019 0000
004F 0030
0441 0020
1250 0000

MODULE NAME BSCT DSCT PSCT
PG3 0000 0400 1000
PG2 0000 0400 1100
PGl 0015 0414 1200

COMMON SECTIONS

NAME S SIZE STR
DCOMM 0 0008 0422
DCOMM2 D 0018 042A

DEFINED SYMROLS

MODULE NAME: PG3
ATE ST A 4406 POWERS

MOD\.Jl E NAME: PG2
EXBENT A F564 MSG3
STACK 8 0014

MODULE NAME: PGl
CR A 0000 EOT
MSGl p 1200 MSG2
START p 120A

p 1000

D 0400 MSG4 D 040A

A 0004 EXBPRT A F024
D 0414 MSGSIZ B 0015

FIGURE 3-9. Map Output File Listing

3-17

PGM2 p 1100

LF A OOOA
PGlNE p 1216

APPENDIX A

A SUMMARY OF LINKING LOADER COMMANDS

COMMAND

CONTROL COMANDS

BASE[=<number>]

f<namel> 1
EXIT <number~

IDOF

IDON

IF=<f-name>

IFOF

IFON

!NIT

OBJ[~] =<f-name>

MO= f<devi ce)t
l_<f-name~

LOAD DIRECTIVES

LIB=<f-name> ~[<f-name> ~g~

LOAD=<f-name> ~[<f-name>]] 9 ~

FUNCTION

LOAD CSCT, DSCT, and PSCT above defined address
(default=MDOS compatible)

Give control to the disk operating system

Suppress identification printing

Print module identification information

Specify the intermediate file

Intermediate file mode off

Intermediate file mode on

Initialize the Loader

Initiates Pass 2

MAP output

Enter file mode

Load the indicated file(s)/module(s)

A-1

COMMAND FUNCTION

STATE COMMANDS

CUR~}·[\]<number> Set current location counter

[<number)\[~~~+] DEF: <namel>=l<name2> J >DSCT Define a symbol
PSCT

END{~}=<number> Set section ending address

MAPC List user assigned section sizes and addresses

MAPF List full load map

MAPS

MAPU

STRID= <number>

List loader assigned section sizes and
addresses

List undefined symbols

Set section starting address

A-2

APPENDIX B

LINKING LOADER ERROR MESSAGES

Errors detected by the Linking Loader, while processing a command or loading a
module, will result in an error message being printed at the user terminal.
These errors are divided into two classifications: fatal errors and non-fatal
(warning) errors. When the Loader detects a non-recoverable error, a fatal
error message will be printed. Any commands not processed on the last command
line will be ignored and a new prompt printed. If the Loader can recover from
an error, only a warning message will be printed. ·

FATAL
ERROR MESSAGES

MESSAGE

BAE BSCT Assignment Error - the combined size of BSCT is greater
than the amount that can be allocated in the defined BSCT area.

COV Common Overflow - the size of a section's common is greater
than 65,535.

GAE General Assignment Error - the Loader cannot assign absolute
memory addresses. This may result from:

• address conflicts associated with ASCT's
user assignment of section addresses

• the combined length of all sections exceeding 65,535
• the order in which the Loader assigns memory.

ICM Illegal Command

IOR Illegal Object Record - the input module is not a valid
relocatable object module.

ISA Illegal Stream Assignment - this error occurs when an invalid
I/0 device is assigned to a Loader I/0 stream.

ISY Illegal Syntax - error in the option or specification field of
a command. This error may a 1 so occur when a command is not
terminated by a semicolon, space, or carriage return.

LOV Local Symbol Table Overflow - not enough memory for al 1 the
local (external) symbols defined by the current object module.
Check for contiguous memory from location ~.

GOV Global Symbol Table Overflow - not enough memory for all the
global (external) symbols defined by the object modules. Check
for contiguous memory from location ~.

PHS Phase Error - the absolute address assigned to a global symbol
at the end of Pass 1 does not agree with the address computed
during Pass 2.

SOV Section Overflow - the size of a section is greater than
65,535.

B-1

FATAL
ERROR MESSAGES

MESSAGE

UAE User Assignment Error - the user has incorrectly defined load
addresses. Use the MAPC command to produce a map for
determining the cause of this error. The UAE error occurs
when:

• the user defined end address is 1 ess than the user
defined start address

• the space al located by the user defined start and end
addresses is less than that required for the section •

• the user has defined load section addresses which
overlap

• the user defined execution address is out of range

• the user has defined ASCT below $20

the user has initialized locations in BSCT which are
assigned below $20

UIF Undefined IF File

UOI Undefined Object Input File

WARNING MESSAGES

IAM - <address> - Illegal Address Mode - a global symbol is referenced as
a one-byte operand, and the most significant byte of the global
symbol address is non-zero. One byte relocation is performed,
using only the least significant byte of the global symbol
address:--T"he warning message indicates the absolute address of
such a reference.

MOS - <symbol> - Multiply Defined Symbol - the Loader has encountered
another definition for the previously defined global symbol.
Only the first definition will be valid. This can also be
caused by section conflicts for the symbol -- i.e., defined via
an EQU directive (ASCT) and referenced in another module as
BSCT.

UDS - <symbol> - Undefined Symbol - the symbol was not defined during
Pass 1. A load address of zero will be assumed.

B-2

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Microsystems
P.O. Box 20912
Attention: Publications Manager

Mail Drop M374
Phoenix, Az. 85036

Comments
Product:

Please Print

Name

Company

Street

City

HARDWARE SUPPORT:
SOFTWARE SUPPORT:

(800) 528-1908
(602) 831-4108

Manual:

Title

Division

Mail Drop Phone Number

State Zip

