

M68FTN(D3)

SEPTEMBER 1980

M6800/M6809

MOOS FORTRAN

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no resrx>nsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability., function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

EXORciser, EXORterm, EXORdisk, MDOS, and Micromodule are trademarks of Motorola
Inc.

Third Edi ti on

Copyright 1980 by Motorola Inc.

Second Edition March 1977

CHAPTER 1

1.1
1.2
1.3
1. 3.1
1.3.2
1. 3.3
1. 3.4
1.4
1.5
1.6
1. 7
1.8

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.6
2.6 . 1
2.6 . 2
2.6.3
2.7
2.7.1
2.7.2
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.10
2.11

CHAPTER 3

3.1
3.2

TABLE OF CONI'ENTS

MDOS FORTRAN CCMPILER

INI'RODUCTION
APPLICATION

...
CCMPILE PHASE OPERATION ••••••••••••••••••••••••••••••••••

MDOS Command Line
Command Line Options
Option H - Header Line
Console Source Code Input

.................................
SOURCE LINE CCMPILER DIRECTIVES
OPTION STATEMENT ...
CCMPILER MESSAGE FILE ••••••• ,• ••••••••••••••••••••••••••••
NON-LCWER CASE C0'1PATIBLE TERMINALS
INCLUDE Statement ..

ELEMENTS OF THE FOR'rRAN LANGUAGE

INTRODUCTION
STATEMENTS

...
CODIN3 FORTRAN STATEMENTS

Free Format Input
Card Image Format

CONSTANTS

......................................
Input

Integer Constants
Hexadecimal Integer Constants
Real Constants
Literal Constants

SYMBOLIC NAMES
VARIABLES

Vari able Name
Variable Types and Lengths
Type Declaration

ARRAYS
Declaring the Size and Type of an Array ••••••••••••••••
Arrangement of Arrays in Storage

SUBSCRIPTS
EXPRESSIONS

... Arithmetic Expressions
Arithmetic Operators
Construction of Arithmetic Expressions
Logical Expressions

KEYWORDS
Cav1MENTS

... ...

ARITHMETIC ASSIGNMENT STATEMENT

... GENERAL FORM
ASSIGNMENT STATF.M.ENTS

i

1-1
1-1
1-2
1-2
1-2
1-4
1-4
1-4
1-5
1-5
1-5
1-6

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-8
2-8
2-9
2-9
2-10
2-10
2-10
2-13
2-14
2-14

3-1
3-1

CHAPTER 4 CONTROL STATEMENTS

INTRODUCTION ... 4.1
4.2
4.2.l
4.2.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.5
4.6
4.7

GO TO STATEMENTS
Unconditional GO TO Statement
Computed GO TO Statement

ARITHMETIC CONTROL STATEMENTS
Arithmetic IF Statement
Logical IF Statement
Block IF Statement

................................

DO LOOPS

CHAPTER 5

5.1
5.2
5.3
5.4

DO Statement
Programming Considerations

CONTINUE Statement
STOP Statement
END Statement

INPUT/OUTPUT STATEMENTS

INTRODUCTION
INPl!I'/OUTPlJ'I' LIST •.•••••..•.•••••.••.••••.•••••.........•
SEQUENTIAL INPUT/OUTPUT STATEMENTS
READ STATEMENT

5.5
5.6
5.7

WRITE STATEMENT ••

5.8
5.9
5.10
5.10.l
5.10.1.1
5.10.1.2
5.10.1.3
5.10.2
5.10.3
5.10.4
5.10.5
5.10.6
5.10.7
5.10.8
5.10.9
5.10.10
5.10.11
5.11
5.11.1
5.11.2
5.11. 3
5.12
5.13

PRINT STATEMENT
ENCODE/DECODE STATEMENTS
EOFTST (END-OF-FILE TEST) SUBROUTINE
R~IND STAT.EM.ENT •••
FORMAT STATEMENT ...

Various
COMMA
SLASH

Forms of a FORMAT Statement

..
Printing of Formatted Records

I Edit Code
z Edit Code

..
E and F Edit Codes
Examples of Numeric Format Codes
A and R Format Codes
X Format Code
B Format Code
Literal Data

...................................

Group Format Specification
Free Format Input

OPEN/CLOSE STATEMENTS
OPEN/CLOSE Statement Arguments
OPEN/CLOSE Programming Considerations
OPEN/CLOSE Examples

UNFORMA'I"l'ED I/O ••
NON-SPACE COMPRESSED ASCII FILES

ii

4-1
4-1
4-1
4-2
4-2
4-2
4-3
4-4
4-5
4-5
4-7
4-8
4-9
4-9

5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-6
5-6
5-8
5-8
5-9
5-9
5-9
5-10
5-10
5-11
5-12
5-13
5-13
5-13
5-14
5-14
5-15
5-15
5-16
5-16
5-18
5-19

CHAPTER 6

6.1

CHAPTER 7

7.1
7.2
7.3
7.4
7.5

CHAPI'ER 8

8.1
8.2
8.3
8.3.1
8.3.2
8.4.
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.6
8.6.1
8.6.2
8.6.3
8.7

CHAPI'ER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.4
9.5
9.6
9.7
9.8
9.9

DATA STATF.MENT

INTRODUCTION ...

SPECIFICATION STATEMENTS

INTRODUCTION
DIMENSIOO STATEMENT
Cc::::t-1l40N STATEMENT •••
EQUIVALENCE STATEMENT
EX'I'ERNA.L STAT™.ENT •••••••••••••••••••••••••••••••••••••••

PROORAM UNITS

INTRODUCTION ••••••••••••••••••••.•••••••••••••••••.••.•.•
NAMING PROORAM UNITS
MA.IN PROO RAM lJN IT •

PROORAM Statement
RETURN Statement

FUNCTIONS
...................................

Function Definition
Function Reference

FUNCTION SUBPROORAMS
FUNCTION Statement
RETURN Statement

SUBROUTINE SUBPRCGRAMS
SUBROUTINE Statement
CALL Statement
RETURN Statement

ARGUMENTS IN SUBPRCGRAMS

6800 REAL-TIME FORTRAN

INTRODUCTION
REAL-TIME OPERATING SYSTEM

.. Task Queues
Priorities
Interrupt Handling
Delay Queuing

..................................... ..
INVOKINJ REAL-TIME FEATURES

SUBROUTINE SE'IRT ••.•••••••••••••••••••••••••••••.•.••••
QUEUE ARRAY ..
Using a P'IM Generated
Using a PIA for Clock

Clock
..................................

TASK SUBPRCGRAMS
START SUBROUTINE
STARTV SUBROUTINE
ATTACH SUBROUTINE
WAIT SUBROUTINE
WAITE SUBROUTINE

...

...
..

.......................

i ii

6-1

7-1
7-1
7-1
7-3
7-3

8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-2
8-3
8-4
8-4
8-5
8-6
8-6
8-6

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9- 3
9-3
9-4
9-4
9-4
9-5
9-6
9- 6
9-7
9-7

9.10
9.10.1
9.10.2
9.10.3
9.10.4
9.11
9.11.1
9.11.2
9.11.3
9.11.4
9.11.5
9.11. 6
9.12
9.12.1
9.12.2
9.12.3
9.13
9.14
9.14.1
9.14.2
9.14.3

CHAPTER 10

10.l
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.5

CHAPTER 11

OI'HER REAL-TIME SUPPORT SUBROUTINES ••••••••••••••••••••••
OCLEAR •••
Single Byte I/O
IX:>uble Byte I/O ••
Bit Manipulation

REAL-TIME PR(X;RAMMING HINTS ••••••••••••••••••••••••••••••
Use of the RETURN Statement
Multiple Interrupts •.••.....•.......•.•....•.•.........
Data Read at Interrupt
Task Sharing Same Subroutines ••••••••••••••••••••••••••
Processing Necessary Responses •••••••••••••••••••••••••
Task Stack Size Limitations ••••••••••••••••••••••••••••

END-SYSTEM HARIMARE CONSIDERATIONS•••••••••••••••••••••••
Real-Time Clock
No Console in System
MIX)S Disk I/O •••••••••.•••••••.•••••••••..••••••..•••••

VECTORS FOR NMI, IRQ, AND RESTART ••••••••••••••••••••••••
DEBUG OF REAL-TIME PR(X;RAMS ••••••••••••••••••••••••••••••

OJeue Entry Formats •••••••••••••••••••••••••••••••.••••
QDUMP Subroutine .••••..•••.•.••.••.••.••.••..••••.•.••.
Active Queue Dispatch Logging

EXTERNAL DEVICE DRIVERS

IN'I'RODUCTI ON •••
FORTRAN I/O STATEMENTS •••••••••••••••••••••••••••••••••••

EXTERNAL •••
OPEN •••
READ ,,l\VR.ITE •
CLOSE ••

SUPPORTING SUBROUTINES •••••••••••••••••••••••••••••••••••
OOIVER S'I'R.UCTURE •••

VECTOR TAB LE •
BUFFERS ••
INTERRUPT HANDLING (Real-Time Only)
Driver Address Restrictions

S.N-llPLE DRIVERS ••••••••••••••••••••..•••••••.••.•..•.•.••••

INTERFACIN3 WITH MICRC140DULES

I'N'rRODUCTION ••• 11.1
11.2 MICROMODULE 14/14A •••••••••••••••••••••••••••••••••••••••

Using MM"l4 or fv'r414A ••••••••••••••••••••••••••••••••••••
MM14/14A Precautions ••••••••••.••.••••••.••••••••••••••
Relocating MM14/14A Base Address •••••••••••••••••••••••

11. 2.1
11. 2. 2
11. 2. 3
11.3 MICROMODULE 12/12A •••••••••••••••••••••••••••••••••••••••

MM12 - GPIB Listener/Talker/Controller Module
Compiler Option G ••.•••...•.•..•....•............•..•
Relocating MM12 Base Address

11. 3.1
11.3.1.1
11.3.1.2
11.3.2
11.4

MM12A - GPIB Listener/Talker Module ••••••••••••••••••••
MM15A, MM15Al - A/D 8, 16, or 32 channel •••••••••••••••••

iv

9-8
9-8
9-8
9-8
9-9
9-9
9-9
9-9
9-10
9-10
9-10
9-11
9-11
9-11
9-11
9-12
9-12
9-12
9-12
9-14
9-14

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10-4
10-4
10-4

11-1
11-1
11-1
11-1
11-2
11-2
11-3
11-5
11-6
11-7
11-8

11.5
11.6
11. 7
11.8
11.9

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I
APPENDIX J
APPENDIX K
APPENDIX L

~OSA, MMOSB - A/D 8 or 16 channel •••••••••••••••••••••••
MMlSCV, MM15CI - D/A 1 to 4 channels •••••••••••••••••••••
~O.SC - D/A 4 channel•.....•......
MM15B - A/D 1 to 16 channels (with MM15BEX) ••••••••••••••
MM03, MM13A, MM13B, MM13C, MM13D •••••••••••••••••••••••••

SOURCE PRcx:;Rl\M CHARACTERS ••••••••••••••••••••••••••••••••
COMP! LER ERROR MESSAGES ••••••••••••••••••••••••••••••••••
EXECUTION TIME ERROR MESSAGES ••••••••••••••••••••••••••••
LIBRARY FUNCTIONS ••
LIBRARY SUBROUTINES ••••••••••••••••••••••••••••••••••••••
EXAM.PLE FOR'I'RAN PRcx;RAMS •••••••••••••••••••••••••••••••••
LINK!~ FOR'I'RAN AND ASSEMBLY LANGUAGE PROGRJ\MS •••••••••••
CREATING A LIBRARY OF ROUTINES •••••••••••••••••••••••••••
CHANG!~ RUNTIME I/O ADDRESSES •••••••••••••••••••••••••••
CUSTQ'vt!ZING FOR'I'RAN FOR YOUR TARGET SYSTEM •••••••••••••••
US!~ FORTRAN WITH READ-ONLY MEMORY ••••••••••••••••••••••
SOF'IWARE CONSIDERATIONS ••••••••••••••••••••••••••••••••••

LIST OF TABLES

TABLE 2-1. Determining the Type and Length of the Results
of +, - , *, / Operations

2-2. Valid Combinations with the Arithmetic Operator **
3-1. Conversion Rules for Arithmetic Assignment Statement a = b
5-1. Disk File I/O r~odes

v

11-9
11-10
11-10
11-10
11-11

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1
I-1
J-1
K-1
L-1

2-12
2-13
3-1 -
5-19

CHAPTER 1

MOOS FORTRAN Ca.1PILER

1.1 INTRODUCfION

The Motorola 6800/6809 MDOS FORTRAN compiler is designed for the solution of
small to medium scale scientific problems and control applications. The system
consists of computer hardware and software. There are two phases to any FORTRAN
program - the Ca.1PILATION phase and the EXECUTION or RUN-TIME phase.

For the compilation phase, the minimum configuration is:

- EXORciser or EXORterm Development System

- 48K bytes of memory

- EXORdisk drive with MDOS disk operating system

- ASCII terminal (may be EXORterm above)

- MDOS Edi tor, FORTRAN Compiler, FORTRAN Run-time Library, and Linking
loader

The minimum compile phase configuration may be expanded to include more memory,
up to four disk drives, and a variety of line printer and CRT terminal devices.

This version of FORTRAN is written to support both EXORciser/EXORterm and
Micromodule configurations during the execution phase of a FORTRAN program. The
object code produced by the compile/link process may be stored on diskette or
may be burned into PROM or EROM. If no disk I/O is required at execution time,
neither EXbug nor MDOS is required for execution of a FORTRAN program.

In addition, MDOS FORTRAN easily interfaces with assembly language programs or
routines, which are assembled as relocatable modules. The object code output of
the compiler is also in the form of relocatable modules.

1.2 APPLICATION

The FORTRAN language is especially useful in writing programs for applications
that involve mathematical computations and other manipulation of numerical data.
The name FORTRAN is derived from FORrnula TRANslator.

With extensions incorporated into MDOS FORTRAN, many control-type applications
become practical, including certain real-time applications. Three versions of
MDOS FORTRAN are offered: a standard 6800 version; a standard 6809 version; and
a 6800 version incorporating real-time features, including a real-time operating
system. Except where indicated, this manual applies to all versions. Chapters 9
and 11 apply only to the 6800 Real-Time version.

1-1

1.3 CDMPIIE PHASE OPERATION

Source pr03ram.s written in the FORI'RAN language consist of a set of statements
constructed by the programmer fran the language elements described in this
publication.

The canpiler analyzes the source pr03ram staterrents and translates them into a
machine language output called object programs, which are relocatable nodules.
If the FORI'RAN canpiler detects errors in the source statements, it produces the
appropriate diagnostic error message. The linking loader is utilized to create
an absolute object pr03ram that can be executed by an M:6800 or M:6809
microprocessor (depmding upon the version of MCOS FORI'RAN being used) •

1.3.1 Mix::>S Ccrnmarrl Line

The MCOS FORI'RAN canpiler is invoked by the FORI' carnnand. This cormna.nd arrl its
parameters are defined as follows:

CXM-lAND NAME: FORI'

PURPOSE: The FORT camand processes source program statements written in Mix::>S
FORTRAN language. These source statements are canpiled into object
programs by the FORI'RAN canpiler. Under option control, a source
listing is also produced.

GENERAL FORM: FOR!' [<delim><sfile>{.<suffix>][:<l03 drv>]][;<options>]}

where: <delim> is a valid caranarrl line delimeter

<sfile> may be one or rrore source pr03ram files (20 max.)

<suffix> is the file name suffix (.SA if not specified)

<103 drv> is the 103ical drive nunber of <sfile> (:0 if not specified)

<options> may be one or rrore of the canpiler options s11oNn in paragraph
1.3.2. Certain options are defaulted to being autanatically
specified or tiJrned on. These options may be disabled or
turned off by preceding the option letter with a minus
sign (-).

1.3.2 Camiand Line Options

OPI'ION
LE'ITER

A

B

c

F

G

A'ITRIBUI'E CONI'ROILED BY OPI'ION

Listing contains relative address

Listing contains line sequence nurrber

Source input is in card image fonrat

Fast subscript evaluation without error check

Special option for Micrarodule 12 (see Chapter 11)

1-2

DEFAULT

-A

B

-c

-F

-G

OPTICN
LEl"TER

H

I

L

L=#LP,

L=#rn,

L=<fn>,

M

N=nnn,

0

O=<fn>,

P=rm,

R

s

x

y

EXAMPLES:

A'ITRIBUI'E CONTROLLED BY OPTION

Input initial heading fran console

All variable names are integer

Print listing on line printer

Print listing on line printer (same as L)

Print listing on system console

Print listing on disk file with name "fn"
(Default suffix 11 .FL", default drive same as
drive for first source file)

Micrarodule 14 or 14A in final system
(Effective for 6800 Real-Time verson only)

Specifies maximum nuniber of columns printed
(50 <= nnn <= 120)

Produce object output in <sfilel.RO>

Produce object output in "fn"
(Default suffix ".RO", default drive same as
drive for first source file)

Specifies nuniber of lines per page printed
(10 <= nn <= 72)
-P will inhibit paging

Canpile for RAM/RJM dichotomy

Synilx>l table listing

OJnditional conpilation of "X" statements

OJnditional conpilation of "Y" statements

=FDR!' (l)NVRI':l;LSA

DEFAULT

-H

-I

-L

-L

-L

-L

-M

N=80

0

0

P=58

-R

-s

-x

-Y

will cause canpilation of source file OONVRI'.SA on drive 1, producing a
corrpilation listing on the line printer with a synilx>l table, relative addresses
arrl sequence line numbers, arrl an object file (l)NVR!'.RO on drive 1.

=FDR!' PK>Gl.FS,PRJG2.FS;L=#a1,S-O

will cause conpilation of source files PRCGLFS arrl PRJG2.FS on drive 0, with a
corrpilation listing on the console with a synilx>l table and sequence line
numbers, but no relative addresses will be displayed arrl no object output file
will be produced.

1-3

1.3.3 Option H - Header Line

This option allows entering of a header line up to 32 characters, which will be
displayed at the top of each printed page and also placed into the identifica
tion record of any relocatable object file produced.

1.3.4 Console Source Code Input

In addition to disk file source input, MOOS FORTRAN allows use of the console
device for the compiler source, This may be specified by #CN in place of source
disk file names. Console and disk sources may NOT be intermixed.

If an object file name is not specified, the default file name will be CN.RO on
drive O.

1.4 SOURCE LINE Ca.1PILER DIRECTIVES

In addition to the options which may be specified on the command line when
calling up the compiler, certain options and printing directives are available
if embedded in the source program. All are invoked by the use of a dollar
sign ($) in column 1 of the source file, and will not be printed on the compiler
listing.

Directive

$-L

$L

$P

$n

$H

$G

$43

Meaning

Stop listing output.

Start listing output again (will not override an "-L"
option on the command line).

Page to top of new page.

Skip "n" lines on the listing, where n is 1 to 9.

Change header to the 32 characters following the $H.

Turn on "G" option (see Chapter 11, M68MM12).

Turn off "G" option.

1-4

1.5 OPTION STATEMENT

This statement in a FORTRAN program unit directs the compiler to change certain
parameters. The options implemented at this time include processor stack size
control and integer only compilation.

GENERAL FORM: OPTION al[,a2, •••• ,aN]

where: al through aN are one or more of the following:

STACK = value
SSTACK = value
USTACK = value
INTEGER

(6809 only)
(6809 only)

"value" is a decimal or hexadecimal constant whose value is the desired
stack size in bytes of a main program unit.

OPTION INTEGER has the same effect as the "I" option letter on the compiler
command line.

The OPTION statement(s) should be the first statement in the source file (even
before a SUBROUTINE, FUNCTION, TASK, or PR(x;RAM statement).

The default stack sizes are 100 bytes for the SP or S stack, and 32 bytes for
the U stack (6809 only).

EXAMPLES:

OPTION STACK=$40,INTEGER
OPTION USTACK=200,SSTACK=$80

1.6 COMPILER MESSAGE FILE

When invoked by the FORT command, the compiler searches for a file named
FOR'IMSG.SA on drive O. If it finds such a file, the contents of that file will
be printed on the console output device.

This may be utilized by the user to insert any message or warning desired. To
eliminate this sign on message, delete or change the name of FOR'IMSG.SA.

1.7 NON-LCWER CASE COMPATIBLE TERMINALS

The FORTRAN compiler normally prints some messages iri upper and lower case
ASCII. Since some older terminals cannot accept lower case ASCII, a special flag
byte can be changed to force all messages to upper case ASCII only. This has no
effect on user-entered lower case, such as might be entered in FORMAT statements
or comments. The flag byte can be changed as follows:

=PATCH FORT.CM
2000 20
>A/XX
>Q
=

where XX = 00 to enable lower case
XX = FF to disable lower case

1-5

1.8 INCLUDE Statement

The INCLUDE statement allows calling in another source file at any point in the
original source. The INCLUDE statement may be used any number of times, but may
NOT be nested (one Included file calling another).

GENERAL FORM: INCLUDE 'filename'

where: filename is the MOOS source file name enclosed in apostrophes and
including any needed suffix and drive number.

The default suffix is SA and the default drive is O, and both will prevail
unless explicitly stated within the apostrophes. Only one file name may appear
with each INCLUDE statement.

Users will find this statement quite useful in programs consisting of many
subprograms with a large CCMMON. The CCJv1MON area may be kept in a separate
source file and INCLUDE'd in each subprogram as needed. This ensures that all
common declarations will be the same.

EXAMPLES:

INCLUDE 'CBLCCK.SA:l'
INCLUDE 'ENDPRCC:l'
INCLUDE 'CQ\1MENTS'

While nesting is not perrni tted, "chaining" is. If an INCLUDE 'd file contains
the INCLUDE statement, it will be the last read from that file. The next file
designated by the new INCLUDE will start supplying source lines to be compiled.
When the end of file is reached with an INCLUDE'd file, source input reverts
back to the original (command line) source file.

No special ending is used for an INCLUDE file.

1-6

CHAPTER 2

ELEMENTS OF THE FORTRAN LANGUAGE

2.1 INTRODUCTION

The basic elements of the language are discussed in the following paragraphs.
The actual FORTRAN statements in which these elements are used are discussed in
subsequent chapters. The term program unit refers to a main program or a
subprogram.

The order of a FORTRAN program unit is as follows:

1. Subprogram statement, if any.
2. EXTERNAL declarations, if any.
3. COMMON and DIMENSION statements, if any. They may be intermixed.
4. EQUIVALENCE statements, if any.
5. DATA statements, if any.
6. Executable statements.
7. END statement.

FORMAT and DATA statements may appear anywhere before the END statement. DATA
statements, however, must follow any specification statements that contain the
same variable or array names.

2.2 STATEMENTS

Source programs consist of a set of statements from which the compiler generates
machine instructions, constants, and storage areas. A given FORTAN statement
effectively performs one of three functions:

1. Causes certain operations to be performed (e.g., addition, multiplica
tion, branching).

2. Specifies the nature of the data being handled.

3. Specifies the characteristics of the source program.

FORTRAN statements are composed of certain key words used with constants,
variabl es, and expressions. The categories of FORTRAN statements are as
follows:

1. Arithmet i c Assignment Statements: These statements cause calculations to
be performed or conditions to be tested. The result replaces the current
value of a designated variable or subscripted variable.

2. Control Statements: These statements enable the user to govern the flow
of and to terminate the execution of the object program.

3. Input/Output Statements: These statements enable the user to transfer
data between internal storage and the terminal line printer, disk, or
other device.

4. FORMAT Statement: This statement is used in conjunction with input/
output statements to specify the form of a FORTRAN record.

2-1

5. DATA Initialization Statement: This statement is used to assign initial
values to variables.

6. Specification Statements: These statements are used to declare the
properties of variables and arrays.

7. Subprogram Statements: These statements enable the user to name and
define functions and subroutines, which can be compiled with the main
program as one source file or as a separate file not existing with the
main program.

No more than one statement may appear on each source line, al though one
statement may occupy more than one source line through a continuation, as
described in paragraphs 2.3.1 and 2.3.2

2. 3 CODIN:; FORTRAN STATEMENTS

2.3.1 Free Format Input

The statements of a FORTRAN source program can be entered with an editor on a
terminal. If a statement is too long for one line, it may be continued on
successive lines by placing an "&" symbol in column 1 of each continuation line.

To improve readability, as many blanks as desired may be written between
keywords and variable names. Each keyword must have at least one blank
following it. Blanks that are inserted in literal data are retained and treated
as blanks within the data. Variable names, keywords, and numbers may not
contain embedded blanks.

If the letter C or an asterisk (*) is placed in column 1, comments for
documentation purposes may be written in columns 2 through 72 of a line.
Comments may appear between FORTRAN statements; a comment line may not
immediately precede a continuation line. Comments are ignored by the FORTRAN
compiler except for listing. Comments may also be placed on a statement line if
preceded by a semicolon (;).

The "C" or "*" indicating a comment record, the "&" signifying statement
continuation, the "$" for compiler directives, and an "X" or "Y" for conditional
compilation must start in colwnn 1. If an "X" is in column 1, the record · is
treated as a comment unless an "X" appears on the MOOS command line as an option
when invoking the compiler. In this case, records with an "X" in column 1 will
be compiled. The same is true of a "Y" in column 1 and "Y" on the command line.
Statement numbers ranging from 1 to 99999 also start in column 1 and are
followed by at least one blank. All other statements may start anywhere from 2
to 72.

2.3.2 Card Image Format Input

A "C" option specified on the command line when invoking the compiler allows the
use of traditional "card image" type of input from a source file. With this,
column 1 is the same in respect to the "C" or "*" for comments, "$" for compiler
directives, and "X" or "Y" for conditional compilation. Columns 1 to 5 are
otherwise used for statement labels (numbers) and column 6 for continuation.
Statements must begin in column 7 or higher. Any non-blank character in
column 6 will signify a continuation to the compiler.

2-2

2.4 CONSTANTS

A constant is a fixed, unvarying quantity. There are two classes of constants -
those that specify numbers (numerical constants), and those that specify literal
data (literal constants).

Numerical constants may be integer or real numbers; literal constants may be a
string of alphanumeric and/or special characters.

2.4.l Integer Constants

An integer constant is a whole number written without a decimal point. It
occupies two bytes of me1oory. The allowable range is +32767 to -32768 and it is
interpreted as a base 10 (decimal) number. It must not contain embedded corrunas.

EXAMPLES:

Valid Integer constants:

0
91

173
-21474

Invalid Integer Constants:

27.
51459
5,396

(contains a decimal point)
(exceeds the allowable range)
(contains an embedded conuna)

2.4.2 Hexadecimal Integer Constants

This version of FORTRAN permits the use of hexadecimal (base 16) constants
wherever constants are permitted, if the constant is prefixed with the dollar
sign ($). Also refer to FORMAT edit character "Z" for hexadecimal I/O.

EXAMPLE: KKA = $FCF4
CALL BO ($8008, $ 3A)

2.4.3 Real Constants

A real constant has one of three forms: a basic real constant, a basic real
followed by a decimal exponent, or an integer constant followed by a decimal
point. A real constant occupies four bytes of memory arrl is an approximation of
a number. The precision using four bytes is approximately 6 decimal digits.

A basic real constant is a string of up to eight decimal digits with a decimal
point.

The magnitude range of a real constant is 16E-64 through 16E63 (approximately
10E75) , and including zero.

2-3

A real cxmstant may be positive, zero, or negative (if unsigned, it is assl.llred
to be positive) am rrust be within the allCMable magnitude. It may not contain
embedded ccrcmas. The decimal exponents J?ennit the expression of a real constant
as the product of a basic real constant or integer constant ti.Ires 10 raised to a
desired IXMer.

EXAMPLES:

Valid Real Constants:

-999.9999
7.0EO
7.E3

7.0E3
7E-03

Invalid Real Constants:

1
3,471.1

l.E
23.5E.'97

(Missing decimal point or decimal exponent)
(Embedded camia)
(Missing an integer constant after the E)
(Magnitude outside the allowable range)

2.4.4 Literal Constants

A literal constant is a string of alphanumeric am/or SJ?ecial characters
enclosed in apostrophes.

The string rnay contain any character. Each character requires one byte of
storage. The nurrber of characters in the string, including blanks, may not be
greater than 72. In order to SJ?ecify an apostrophe within the string, two
apostrophes in succession must be used.

Literals may be used in FORMAT, DATA, am assignment statements. Literals also
may be used as the actual argurrents in a CAIL statement and are limited to two
bytes.

EXAMPLES:

I IT I Is HERE! I

'X-a:>ORDINATE Y-a:>ORDINATE
'3.14'

K ='AB'

2.5 SYMBOLIC NAMES

Z-a:>ORDINATE'

Syrnb:)lic Names are fran 1 through 6 alphanurreric characters (i.e. , nwnerics 0
through 9 and upJ?ercase alphabetic A through Z) , the first of which must be
alphabetic. No key word - such as GO'IO, IF, FORMAT, etc. - may be used as a
syrribolic name. All key words are considered reserved words.

Syrribolic Names are used in a program unit (i.e., a main program or a subprogram)
to identify elements in the follo.ving classes.

2-4

• An array am the elements of that array (see "ARRAYS")
• A variable (see "VARIABLES")
• An intrinsic function
• A FUNCTION subprogram (see "FUNCTION subprograms")
• A SUBROUTINE subprogram (see "SUBROUTINE subprograms")
• A MAIN program unit

Symbolic names must be unique within a class in a program unit and, with the
exception of a function name, can identify elements .of only one class.

A FUNCTICN subprogram name must also be a variable name in the FUNCTION
subprogram.

Once a symbolic name - or an external procedure name - is used in any unit of an
executable program, no other program unit of that executable program can use
that name to identify an entity of these classes in any other way.

2. 6 VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that occupies a
storage area. The value specified by the name is always the current value
stored in the area.

For example, in the statement:

A= 5.0+B

both A am B are variables. The value of B is determined by some previous
statement and may change from time to time. The value of A is calculated
whenever this statement is executed am changes as the value of B changes.

2.6.1 Variable Name

Using meaningful variable names can serve as an aid in documenting a program -
that is, someone other than the programmer may look at the program and
understam its function. For example, the equation to compute the distance a
car travels in a given period of time at a given rate of speed could be written:

x = y * z

where "*" designates multiplication. However, it would be more meaningful to an
imividual reading this equation if the progranuner had written:

DIST = RATE * TIME

EXAMPLES:

Valid Variable Names:

B292S
RATE
VAR

2-5

Invalid Variable Names:

8292704
4ARRAY
SI.X

(Contains more than six characters)
(First character is not alphabetic)
(Contains a special character)

2.6.2 Variable Types and Lengths

The type of a variable corresponds to the type of data the variable represents.
Thus, an integer variable represents integer data and a real variable represents
real data.

For each type of variable, there is a corresponding number of storage locations
(bytes) that are reserved for the variable. 'Ihe following list shows each
variable type with its associated length:

I Variable Type Length (Bytes)

Integer 2

Real 4

2.6.3 Type Declaration

Type declaration by predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I, J, K, L, M, or N, the
variable is integer of length 2.

2. If the first character of the variable name is any other alphabetic
character, the variable is real of length 4.

This convention is the traditional FORTRAN method of implicitly specifying the
type of a variable as being either integer or real. In all examples that follow
in this publication, it is presumed that this specification applies.

The only execption to this convention in MDOS FORTRAN is that ALL names can be
declared INI'EGER by use of the "I" option at compile time or OPTION INTEGER at
the beginning of the source program.

2. 7 ARRAYS

A FORTRAN array is a set of variables identified by a single variable name. A
particular variable in the array may be referred top by its position in the
array (e.g., first variable, third variable, seventh variable, etc.). Consider
the array named NEXT, which consists of five variables, each currently
representing the following values: 273, 41, 8976, 59, and 2.

2-6

NEXT(l) is the location containing 273

NEXT(2) is the location containing 41

NEXT(3) is the location containing 8976

NEXT(4) is the location containing 59

NEXT(5) is the location containing 2

Each variable (element) in this array consists of the name of the array (i.e.,
NEXT) immediately followed by a number enclosed in parentheses, called a
subscript quantity. The variables which the array comprises are called
subscripted variables. Therefore, the subscripted variable NEXT(l) has the
value 273; the subscripted variable NEXT(2) has the value 41, etc.

The subscripted variable NEXT(I) refers to the "Ith" subscripted variable in the
array, where I is an integer variable that may assume a value of 1, 2, 3, 4,
or 5.

To refer to any element in an array, the array name must be subscripted. In
particular, the array name alone does not represent the first element.

Consider the following array named LIST described by two subscript quantities,
the first ranging from 1 through 5, the second from 1 through 3:

I Column 1 I Column 2 I Column 3 I

I RCM 1 I 82 4 7

I ROW 2 I 12 13 14

I ROW 3 I 91 1 31 I
-----------------------------~-----------

' ROW 4 I 24 16 10 I

I ROW 5 I 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this would be:

LIST (2,3)

Thus, LIST(2,3) has the value 14 and LIST(4,l) has the value 24.

Ordinary mathematical notation might use LIST to represent any element of the
array LIST. In FORTRAN, this is written as LIST(I,J), where I equals 1, 2, 3,
4, or 5, and J equals 1, 2, or 3.

2-7

2.7.1 Declaring The Size And Type Of An Array

The size (number of elements) of an array is specified by the number of
subscript quantities of the array and the maximum value of each subscript
quantity. This information must be given for all arrays before using them in
FORTRAN program so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMENSION statement or a COMMON
statement. These statements are discussed in detail in Chapter 7, SPECIFICATION
STATEMENTS. The type of an array name is determined by the conventions for
specifying the type of a variable name. Each element of an array is of the type
specified for the array name.

2.7.2 Arrangement Of Arrays In Storage

Arrays are stored in ascending storage locations, with the value of the first of
the subscript quantities increasing most rapidly arrl the value of the last
increasin:J least rapidly.

For example, the array LIST, whose values are given in the previous example, is
arranged in storage as follows:

82 12 91 24 2 4 13 l 16 8 7 14 31 10 2

The array named A, described by one subscript quantity which varies from l to 5,
appears in storage as follows:

A(l) A(2) A(3) A(4) A(5)

The array named 8, described by two subscript quantities with the first
subscript quantity varyin:J over the ran:Je from l to 5, arrl the second varying
from 1 to 3, appears in ascending storage locations in the following order:

8(1,1) B (2,1) 8(3,1) 8(4,l) 8(5,l)

8(1,2) 8(2,2) 8(3,2) 8(4,2) 8(5,2)

8(1,3) 8(2,3) 8(3,3) 8(4,3) 8(5,3)

Note that 8(1,2) and 8(1,3) follow in storage 8(5,l) and 8(5,2), respectively.
The following list is the order of a 3 dimensional array named c, described by
three subscript quantities with the first varying from l to 3, the second
varying from l to 2, arrl the third varying from l to 3:

C(l,1,1) C(2,l,l) C(3,l,l) C(l,2,1) C(2,2,l) C(3,2,l)

C(l,1,2) C(2,l,2) C(3,l,2) C(l,2,2) C(2,2,2) C(3,2,2)

C(l,1,3) C(2,l,3) C(3,l,3) C(l,2,3) C(2,2,3) C(3,2,3)

Note that C(l,1,2) and C(l,1,3) follow in storage C(3,2,l) arrl C(3,2,2),
respectively.

2-8

2.8 SUBSCRIPTS

A subscript is an integer subscript quantity, or a set of integer subscript
quantities separated by commas, that is used to identify a particular element of
an array. The number of subscript quantities in any subscript must be the same
as the number of dimensions of the array with which the subscript is associated.
A subscript is enclosed in parentheses and is written immediately after the
array name. A maximum of three subscript quantities can appear in a subscript.
Valid types are: integer constant, integer variable, or integer variable plus or
minus integer constant.

The following restrictions apply to the construction of subscript quantities:

1. Subscript quantities may not contain arithmentic expressions that use any
of the arithmetic operators: *,/,**·

2. Subscript quantities may not contain function references.

3. Subscript quantities may not contain subscripted names.

4. Variable subscripts must be integer only (not real).

5. The evaluated result of a subscript quantity should always be greater
than zero and less than or equal to the size of the corresponding
dimension.

A subscript may have one of the following forms:

1. Positive integer constant - e.g., 3, 21, 418

2. Integer variable

3. Integer variable plus/minus constant - e.g., NOX+3, IX-5

EXAMPLES:

Valid Subscripted Variables:

ARRAY(IHOLD)
NEXT(l9)
MATRIX (I-5)

Invalid Subscripted Variables:

ARRAY(-5)
LOT (0)
ALL(X)

2.9 EXPRESSIONS

(Subscript may not be negative)
(Subscript may never be zero)
(Subscript may not be a real variable)

The value of an arithmetic expression is always a number whose type is integer
or real.

2-9

2.9.1 Arithmetic Expressions

The simplest arithmetic expression consists of a primary which may be a single
constant, variable, subscriptej variable, function reference, or another
expression enclosed in parentheses. The primary may be either integer or real.

In an expression consisting of a single primary, the type of the primary is the
type of the expression.

EXAMPLES:

Primary Type of Primary I Type of Expression I

3

A

3.14E3

SIN(X)

(A*B+c)

Integer constant

Real variable

Real constant

Real function
reference

Parenthesized real I
expression I

INTEX:;ER*2

REAL*4

REAL*4

REAL*4

REAL*4

More complicated arithmetic expressions containing two or more primaries may be
formed by using arithmetic operators that express the computation(s) to be
per fo rrned.

2.9.2 Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator

**
*
I
+

Meaning

Exponentiation
Multiplication
Division
Addition
Subtraction

2.9.3 Construction of Arithmetic Expressions

Following are the rules for construction of arithmetic expressions that contain
arithmetic operators.

1. All desired computations must be specifiej explicitly. That is, if more
than one primary appears in an arithmetic expression, they must be
separatej from one another by an arithmetic operator. For example, the
two variables A and B will not be multiplied if written:

AB

2-10

If multiplication is desired, the expression must be written as follows:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the same
expression.

For example, the following expressions are invalid:

A*/B and A***B

The expression A*-B is an exception and is treated as

A* (-B)

In effect, -B will be evaluated first and then A will be multiplied with
it. (For further uses of parentheses, see rule 3.)

3. Order of Computation: Computation is performed from left to right
according to the hierarchy of operations shown in the following list.

Operation Hierarchy

Evaluation of functions 1st
Exponentiation (**) 2nd
Multiplication and division 3rd
Addition and subtraction 4th

This hierarchy is used to determine which of two consecutive operations
is performed first. If the first operator is higher than or equal to the
second, the first operation is performed. If not, the second operator is
compared to the third, etc. When the end of the expression is
encountered, all of the remaining operations are performed in reverse
order.

For example, in the expression A*B+c*D**I, the operations are performed
in the following order:

a. A*B Call the result X (multiplication) (X+c*D**I)

b. D**I Call the result Y (exponentiation) (X+c*Y)

c. C*Y Call the result Z (multiplication) (X+Z)

d. X+Z Final operation (addition)

A unary minus has the highest hierarchy. Thus,

A= -B is treated as A=O-B

A= -B*C is treated as A=(-B)*C

A= -B+c is treated as A= (-B) +c

2-11

Parentheses may be used in arithmetic expressions, as in algebra, to
specify the order in which the arithmetic operations are to be computed.
Where parentheses are used, the expression within the parentheses is
evaluated before the result is used. This is equivalent to the
definition above since a parenthesized expression is a primary.

For example, the following expression:

B+((A+B) *C)+A**2

is effectively evaluated in the following order:

a. (A+B) Call the result X B+(X*C)+A**2

b. (X*C) Call the result Y B+Y+A**2

c. B+Y Call the result W w+A**2

d. A**2 Call the result z w+Z

e. w+Z Final operation

4. The type arrl length of the result of an operation deperrls upon the type
and length of the two operands (primaries) involved in the operation.
Table 2-1 shows the type arrl length of the result of the operations +, -
*, and/.

TABLE 2-1. Determining the Type arrl Length of the Results
of+, -, *,I Operations

+ - * I INTEX:JER (2) REAL (4)

INTOOER (2) Integer (2) Real (4)

REAL (4) Real (4) Real (4)

NOTE

When division is performed using two integers, the answer is
truncated and an integer answer is given. For example, if I=9
and J=2, then the expression (I/J) would yield an integer
answer of 4 after truncation.

Assume that the type of the following variables has been specified as
follows:

Variable Names

C,D
I,J,K

Real Variable
Integer Variable

2-12

Length

4, 4
2, 2, 2

Then the expression I*J/C**K+D is evaluated as follows:

Subexpression Type and Length

I*J (Call the result M) Integer of length 2

C**K (Call the result Y) Real of length 4

M/Y (Call the result Z) Real of length 4

Z+D Real of length 4

Thus, the final type of the entire expression is real of length 4, but
the type changed at different stages in the evaluation. Note that,
depending on the values of the variables involved, the result of the
expression I*J*C might be different from I*C*J.

5. The arithmetic operator denoting exponentiation (i.e., **) may only be
used to combine the types of operands shown in Table 2-2.

TABLE 2-2. Valid Combinations with the Arithmetic Operator **

2.9.4 Logical Expressions

Base

Integer
Real

**
**

Exponent

Integer
Integer

A logical expression consists of two arithmetic expressions, which may be simple
variables, connected by one of the following relational operators:

.EQ. - equal

.NE. - not equal

.GT. - greater than

.LT. - less than

.GE. - greater than or equal to

.LE. - less than or equal to

EXAMPLES:

C.EQ.C
C+5.0.NE.21
(C+D)*E.GT.50

It should be clearly understood here that arithmetic expressions involved in
relational operations are evaluated first before the relational operation is
applied.

Relational operations in turn may be connected by the use of the logical
connectives .AND. and .OR.:

C.EQ.D.OR.E.EQ.F
C.NE.D.AND.E.GT.F.OR.G.EQ.H

2-13

Normally, .AND. operations have a higher hierarchy than .OR. operations; thus,
C.EQ.D.AND.E.GT.F.OR.G.EQ.H is evaluated as

(C.EQ.D.AND.E.GT.F) .OR.G.EQ.H

However, parentheses may be used to change the order or evaluation

C.EQ.D.AND.(E.GT.F.OR.G.EQ.H)

The meaning of a logical operation may be reversed by the modifier ".NOT." •

• NOT.(W.EQ.Y.AND.Z.EQ.V)

means everything but the intersection of W.EQ.Y.AND.Z.EQ.V

2.10 KEYWORDS

The following keywords are reserved by MDOS FORTRAN, and may not be used for any
naming convention such as Symbolic names, Variable names, Array names, etc.

AND
CALL
CLOSE
COMMON
CONTINUE
DATA
DECODE
DIMENSION
DO
ELSE
ELSE IF
ENCODE

END
END IF
ENDFILE
EQ
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GE
GO
Garo
GT

IF
INCLUDE
INTEGER
LE
LT
NE
NO!'
OPEN
OPTION
OR
PRINT
PR CG RAM

READ
RETURN
REWIND
SS TACK
STACK
STOP
SUBROUTINE
TASK
THEN
TO
US TACK
WRITE

In addition, future releases of MDOS FORTRAN may implement some or all of the
following list. Therefore, these names should be avoided in user programs if
they are expected to be uf,Mard compatible:

2.11 COMMENTS

ASSIGN
BACKSPACE
BIT
BLANK
BLOCK
BYTE
CHARACTER

CONSTANT
DOUBLE
ERROR
IMPLICIT
LCGICAL
NULL
OFF

ON
PAUSE
PRECISION
REAL
SAVE
STATUS
ZERO

As mentioned in paragraph 2.3, a source line may be a comment line by placing an
asterisk {*) or the letter C in column 1.

A second method is available to add a comment after a statement on the same
line. The semicolon (;) will cause the compiler to stop scanning the line;
therefore, any material on the line after the semicolon will be treated as a
comment.

2-14

rnAPI'ER 3

ARITHMETIC ASSIGNMENT srATEMENT

3.1 GENERAL FDRM

The general fonn is:

a=b

'Where: a is a subscripted or nonsubscripted variable
b is an arithmetic expression

'l'his FDRI'RAN statement closely resenbles a conventional algebraic equation.
HoNever, the equal sign specifies replacement rather than equality - that is,
the expression to the right of the equal sign is evaluated, and the resulting
value replaces the current value of the variable to the left of the equal sign.

Table 3-1 gives the conversion rules used for placing the evaluated result of
arithmetic expression b into variable a.

TABLE 3-1. Conversion Rules for Arithmetic Assignment Statement a= b

I Type of b I
Type of a 1--1

I I INI'ffiER I REAL I
1---------------1---------------------1--------------------1
I INTffiER I Assign I Fix and Assign I
1---------------1---------------------1--------------------1
I REAL I Float and Assign I Assign I

1. Assign means transmit the resulting value, without change.

2. Fix rreans transfonn the resulting value to the fonn of a
real constant and truncate the fractional portion.

3. Float means transform the resulting value to the fonn of
a REAL number, retaining in the process as much precision
of the value as a REAL nurrber can contain.

3. 2 ASSIGNMENT STATENENrs

Assume that the type of the follo.ving variables has been specified as:

Variable Names

I, J, K
A, B, C, D

Integer Variables
Real Variables

3-1

Length

2
4

Then the following examples illustrate valid arithmetic statments using
constants, variables, and subscripted variables of different types:

Statements Description

A = B The value of A is replaced by the current value of B.

K = B The value of B is truncated to an integer value and replaces
the value of K.

A= I The value of I is converted to a real value, and this result
replaces the value of A.

J = J+l The value of J is replaced by the value of J+l.

A = C*D The product of C and D replaces the value of A.

Multiple assignments are not permitted.
permitted in MOOS FORTRAN.

3-2

As an example, A=B=C=O. 0 is not

CHAPTER 4

CONTROL STATEMENTS

4.1 INTRODUCTia-J

Normally, FORTRAN statements are executed sequentially - that is, after one
statement has been executed, the statement immediately following it is executed.
This chapter discusses the statements that may be used to alter aoo control the
normal sequence of execution of statements in the program.

4. 2 GO TO STATEMENTS

GO TO statements permit transfer of control to an executable statement specified
by m.nnber in the GO TO statement. Control may be transferred either
unconditionally or conditionally. The GO TO statements are:

1. Unconditional GO TO statement
2. Computed GO TO statement

4.2.l Unconditional GO TO Statement

GO TO XXXX

where: XXXX represents an executable statement number.

GO TO may be separated by a blank or written as GOTO.

This GO TO statement causes control to be transferred to the statement specified
by the statement number. Every subsequent execution of this GO TO statement
results in a transfer to that same statement. Any executable statement
immediately following this statement must have a statement number; otherwise, it
can never be referred to or executed.

EXAMPLE:

10
GO TO 25

A= B + C

•

25 C = E**2

' I

In this example, each time the GO TO statement is executed, control is
transferred to statement 25.

4-1

4.2.2 Computed GO TO Statement

GENERAL FORM: GO TO (xl, x2, ••• , xn) i

where: i is a nonsubscripted integer variable
n has a range: l<=n<=20

GO TO may be separated by a blank or written as GOTO

This statement causes control to be transferred to the statement numbered xl,
x2, x3, ••• , or xn, depending on whether the current value of i is 1, 2, 3, ••• ,
or n, respectively. The index i is checked at execution time to ensure that it
is within the range l <= i <= n. If the i is outside that range, execution will
continue at statement following the computed GOTO. No error message will be
given.

EXAMPLE:

GOTO (25, 10, 7) ITEM

7 C = E**2+A

•
•

25 L = C

10 B + 21.3E02

•

In this example, if the value of the integer variable ITEM is 1, statement 25
will be executed next. If ITEM is equal to 2, statement 10 is executed next,
and so on.

4.3 ARITHMETIC CONTROL STATEMENTS

4.3.l Arithmetic IF Statement

GENERAL FORM: IF (a) xl, x2, x3

where: a is any arithmetic expression.
xl, x2, x3 are any executable statement numbers.

The arithmetic IF statement causes control to be transferred to the statement
numbered xl, x2, or x3 when the value of the arithmetic expression (a) is less
than, equal to, or greater than zero, respectively. The first executable
statement following the arithmetic IF statement must have a statement number;
otherwise, it can never be referred to or executed.

4-2

EXAMPLE:

IF (A(J,K)**3-B)l0,4,30

4 D = B + C

30 C = D**2

10 E = (F*B)/D+l

In this example, if the value of the expression (A(J,K)**3-B) is negative, the
statement numbered 10 is executed next. If the value of the expression is zero,
the statement number 4 is executed next. If the value of the expression is
positive, the statement numbered 30 is executed next.

4.3.2 Logical IF Statement

GENERAL FORM: IF (a) s

where: a is any logical expression.
s is any valid executable FORTRAN statement except IF or DO.

The statement s is executed if the expression a is true; otherwise, the next
executable statement following the logical IF statement is executed. The
statement following the logical IF will be executed in any case after the
statement s causes a transfer.

EXAMPLES:

IF (FLAG1.0R.FLAG2) GO TO 123
IF (A*B.LT.1.23) CALL RATE
IF (.NOT.(A.LT.6.0.0R.B.GT.5.0) RETURN

If only a variable name is given as a, the variable will be considered true and
statement swill be executed if the named variable is positive (greater than or
equal to zero). The variable will be considered false and statements will not
be executed if the named variable is negative.

IF (MONDAY) GO TO 10

NOTE

If the expression (a) is real, a test for exact zero, or a test with
the logical operator .EQ., may not be meaningful. If the expression
involves any amount of computation, a very small value is more likely
to result than a zero. For this reason, IF statements using real
numbers should not be programmed to have a zero or .EQ. value.

4-3

4.3.3 Block IF Statement

An alternate extension to the Logical IF statement is the block IF statement.
The block IF statement is used with the END IF statement and, optionally, with
the ELSE or ELSE IF statements to form a structured progra11111ing sequence of
execution.

GENERAL FORM: IF (a) THEN

where: a is any logical expression.

The statement(s) following the THEN are executed if the expression a is true;
otherwise, the statement following the optional ELSE or ELSE IF is executed. If
no ELSE or ELSE IF statement is present, then the statement following the END IF
statement is executed next if the expression is false. The statement or
statements following the THEN are executed until the ELSE or END IF is
encountered, then control passes to the statement following the END IF.

Block IF statements may be nested. It is important, however, to have an END IF
statement paired with every IF - THEN combination.

The ELSE IF key word may contain the space, or may be written as ELSEIF. The
remainder of the logical IF must continue on the same line as the ELSE IF (or on
a following continuation line).

No other statements or key words may follow the THEN on a line.

The ELSE statement is used alone on a line, and there may not be any other key
word followi03 it (with the exception of the ELSE IF).

The END IF statement is used alone on a line aoo may be written ENDIF.

EXAMPLE:

IF (A.GT.B) THEN
C=3.44
D=C*A+6.21

ELSE
C=4.15
D=C*B+7.07

END IF

Note the use of indentation to aid in depicting the various levels of logic.

4-4

4.4 DO LOOPS

4.4.1 DO Statement

GENERAL FORM:

DO

End of
Range

x

DO
Variable

i =

Initial
Value

ml,

Test
Value

m2 [,

Increment

m3]

where: x is an executable statement number appearing after the DO statement.

i is a nonsubscripted integer value and cannot be a dunmy.

ml, m2, and m3 are either unsigned integer constants greater than zero,
or unsigned nonsubscripted integer variable whose value is greater
than zero. rn2 may not exceed 32767 in value. m3 is optional; if it
is omitted, its value is assumed to be 1. In this case, the
preceding comma must also be omitted. The DO and x must each be
separated by a blank. Values ml, m2, or m3, may not be an
expression.

The DO statement is a command to execute, at least once, the statements that
follow the DO statement, up to and including the statement numbered x. These
statements are called the range of the DO. The first time the statements in the
range of the DO are executed, i is initialized to the value m; each succeeding
time, i is increased by the value m3. When, at the end of the iteration, i is
equal to the highest value that does not exceed m2, control passes to the
statement following the statement numbered x. Thus, the number of times the
statements in the range of the DO are executed is given by the expression:

m2 - ml
-------- + 1

m3

The brackets represent the largest integral value not exceeding the value of the
expression within the brackets. If m2 is less than ml, the statements in the
range of the DO are executed once.

There are several ways in which looping (repetitively executing the same
statements) may be accomplished when using the FORTRAN language. For example,
assume that a manufacturer carries 1000 different machine parts in stock.
Periodically, he may find it necessary to compute the amount of each different
part presently available. This amount may be calculated by subtracting the
number of each item used, OUT(I), from the previous stock on hand, STOCK(!).

4-5

EXAMPLE 1

I=O
10 I=I+l

STOCK(I)=STOCK(I)-OUT(I)
IF(I-1000) 10,30,30

30 A=B+c

The first, second, and fourth statements required to control the previously
shown loop could be replaced by a single DO statement, as shown in Example 2.

EXAMPLE 2

DO 25 I = 1, 1000
25 STOCK(!) = STOCK(!) - OUT(!)

A = B+c

In Example 2, the DO variable, I, is set to the initial value of 1. Before the
second execution of statement 25, I is increased by the increment, 1, and
statement 25 is again executed. After 1000 executions of the DO loop, I equals
1000. Since I is now equal to the highest value that does not exceed the test
value, 1000, control passes out of the DO loop and the third statement is
executed next.

EXAMPLE 3

DO 25 I=l,10,2
J=I+K

25 ARRAY(J)=BRAY(J)
A=B+c

In Example 3, the DO variable I is set to the initial value of 1. Before the
second execution of statement 25, I is increased by the increment, 2, and the
second and third statements are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I is now equal to the highest value
that does not exceed the test value, 10, control passes out of the DO loop and
the fourth statement is executed next.

4-6

4.4.2 Prograrrming Considerations

1. The indexing parameters of a DO statement (i, ml, m2, m3) should not be
changed by a statement within the range of the DO Loop.

2. There may be other DO statements within the range of DO statement. All
statements in the range of an inner DO must be in the range of the outer
DO. A set of DO statements satisfying this rule is called a nest of
DO's.

EXAMPLE 1

DO 50 I = 1,4--------------------------
A(I) = B(I)**2 I Range of
DO 50 J = 1, 5 ---1 Range of I outer DO

50 C(J+l) = A(I) ---1 inner DO I

EXAMPLE 2

DO 10 INDEX = L, M---------------------
N = INDEX + K I
DO 15 J = 1, 100, 2 ----- I Range of

15 TABLE(J) = SUM(J,N)-1 I Range of I outer DO
inner DO I

10 B(N) = A(N)----------------------------

3. A transfer out of the range of any DO loop is permissible at any time.

4. Never transfer into the middle of a DO loop with a GO TO.

5. The extended range of a DO is defined as those statements in the program
unit containing the DO statement that are executed between the transfer
out of the innermost DO of a nest of DO's and the transfer back into the
range of this innermost DO. The following restrictions apply:

- Transfer into the range of a DO is permitted only if such a
transfer is from the extended range of the DO.

- '!he extended range of a DO statement must not contain another DO
statement that has an extended range if the second DO is within the
same program unit as the first.

- The indexing parameters (i, ml, m2, m3) cannot be changed in the
extended range of the DO.

Note that a statement that is the end of the range of more than one DO
statement is within the innermost DO. The statement label of such a
terminal statement may not be used in any GO TO or arithmetic IF
statement that occurs anywhere but in the range of the most deeply
contained DO with that terminal statement.

6. The indexing parameters (i, ml, m2, m3) may be changed by the statements
outside the range of the DO statement only if no transfer is made back
into the range of the DO statement that uses those parameters.

4-7

7. The last statement in the range of a DO loop (statement x) must be an
executable statement. It cannot be a GO TO statement of any form, or a
STOP, RETURN, arithmetic IF statement, or another DO statement.

8. The use of, and return from, a subprogram from within any DO loop in a
nest of DO's is permitted.

4.5 CONTINUE Statement

GENERAL FORM: CONTINUE

CONTINUE is a dummy statement that may be placed anywhere in the source program
without affecting the sequence of execution. It may be used as the last
statement in the range of a DO in order to avoid ending the DO loop with a GO
TO, STOP, RETURN, arithmetic IF, or another DO statement.

EXAMPLE 1

DO 30 I=l,20
7 IF (A(I)-B(I)) 5,30,30
5 A(I)=A(I)+l.O

B(I)=B(I)-2.0

GO TO 7
30 CONTINUE

C=A (3) +B (7)

In Example 1, the CONTINUE statement is used as the last statement in the range
of the DO, to avoid ending the DO loop with the statement GO TO 7.

EXAMPLE 2

DO 30 I=l,20
IF (A(I)-B)I)) 5,40,40

5 A(I) =C (I)
GOTO 30

40 A(I)=O.O
30 CONTINUE

C=A(3)+B(7)

In Example 2, the CONTINUE statement provides a branch point enabling t he
programmer to bypass the execution of statement 40.

4-8

4.6 STOP Statement

GENERAL FORM: STOP

The STOP statement defines the logical eoo of an executing program. Its
execution causes the FORTRAN program to print the word "STOP" on the console
terminal aoo return to the operating system. This statement may be used any
number of times in a program or sub-program or may be omitted.

4.7 END Statement

GENERAL FORM: END

The END statement is a non-executable statement that defines the end of a source
program or source subprogram for the compiler. Physically, it must be the last
statement of each program or subprogram. The END statement replaces a STOP
statement at the physical end in a program or replaces a RETURN statement at the
physical en::i of a sub-program.

4-9

CHAPTER 5

INPl!I'/OUTPl!I' STATEMENTS

5.1 INTRODUCTION

Input/output statements are used to transfer and control the flow of data
between internal storage and an input/output device, such as a terminal or disk
storage unit.

5.2 INPUT/OUPUT LIST

Input/output statements in FORTRAN are primarily concerned with the transfer of
data between storge locations defined in a FORTRAN program and records external
to the program. On input, data is taken from a record and placed into storage
locations that are not necessarily contiguous. On output, data is gathered from
diverse storage locations and placed into a record. An I/O list is used to
specify which storage locations are used. The I/O list can contain variable
names, subscripted array names, unsubscripted array names, or array names
accompanied by indexing specifications in a form called an implied DO. No
function references or arithmetic expressions are permitted in an I/O list.

If an unsubscripted array name appears in the list, the entire array is
transmitted in the order in which it is stored. (If the array has more than one
dimension, it is processed by ascending storage locations. An example is given
in Paragraph 2. 7. 2, "Arrangement of Arrays in Storage".)

If an implied DO appears in the I/O list, the elements of the array(s) specified
by the implied DO are transmitted. The implied DO specification is enclosed in
parentheses. Within the parentheses there are one or more subscripted array
names, separated by commas with a conuna following the last name, followed by
indexing paremeters i=ml, m2, m3. The indexing parameters are as defined for
the DO statement. Their range is the list of the DO-implied list and, for input
lists, i, ml, m2, and m3, may appear within that range only in subscripts.

Example: A is a variable; B,
containing 20 elements.

C, and D are 1-dimension arrays,
The statement:

PRINT 998,A,B,(C(I),I=l,4),D(4)

each

writes the current value of variable A, the entire array B, the
first four elements of the array C, and the fourth element of D.

Implied DO's can be nested, if required. For example, the following would be
written to read an element into array B after values are read into each row of a
10x20 array A:

READ 998,((A(I,J),J=l,10),B(I),I=l,20)

The order of the names in the list specifies the order in which the data is
transferred between the record and the storage locations •.

5-1

Data is transmitted under control of a FORMAT statement controlling the
transmission of the data in the record from a form that can be read by the
programmer to a coded form that satisfies the needs of machine representation.
TI1e transformation for input takes the character codes and constructs a machine
representation of an item. 'Ihe output transformation takes the machine
representation of an i tern and constructs character codes suitable for output.
Most transformations involve numeric representations that require base
conversion. For formatted I/O the programmer must include a FORMAT statement in
the program, and must give the statement number of the FORMAT statement in each
READ or WRITE statement.

5.3 SEQUENTIAL INPUT/OUTPUT STATEMENTS

TI1ere are four sequential input/output statements: READ, WRITE, PRINT, and
REWIND. TI1e READ and WRITE statements initiate the transfer of records of
sequential files or console terminal data transfer. TI1e PRINT statement is used
to transfer data to the console terminal. TI1e REWIND statement controls the
positioning of the file. In addition to these four statements, the FORMAT
statement, although not an input/output statement, is used with the READ, WRITE,
and PRINT statements.

Before data can be read from or written to a disk file, the file must be opened.
When file I/O is complete, the file must be closed before the program is
terminated. See Paragraph 5.11, OPEN/CLCBE Statement Arguments, for a
discussion of these.

TI1e following reference chart indicates the MDOS FORTRAN pre-assigned file
reference number:

NUMBER

99
100
101
102
103

ASSIGNMENT or USAGE

Dummy device. Buffer I/O
Console keyboard
Console printer or display
Line printer
Reserved

5. 4 READ STATE.""IENT

GENERAL FORM:

where:

READ a, list
RFAD (b,a) list

a is the statement number of the FORMAT statement describing the
record(s) being read.

b is an unsigned integer constant or an integer variable that is in
the range 1 to 255 and represents a file reference number.

list is an I/O list of the variables.

TI1e READ statement may take two forms. The value of a must always be specified,
but b can be omitted. TI1e form READ a, list is used to read data from the
console according to the specifications of FORMAT statement a.

5-2

'!he form READ (b,a) list is used to read data from file number b into the
variables whose names are given in the list. The data is transmitted from the
file to memory according to the specifications in the FORMAT statement, which is
statement number a.

EXAMPLE 1

READ(5,98)A,B,(C(J,K),J=l,10)

The above statement causes input data to be read from the data file number 5
into the variables A, B, C(l,K), C(2,K) , ••• ,C(lO,K) in the format specified by
the FORMAT statement whose statement number is 98.

EXAMPLE 2

READ 98,A,B,(C(J,K),J=l,10)

'!he above statement causes input data to be read from the console terminal
keyboard into the variables A, B, C(l,K), C(2,K, ••• ,C(l0,K) in the format
specified by the FORMAT statement whose statement number is 98.

EXAMPLE 3

READ (100,98)A,B,(C(J,K),J=l,10)

The above statement reads data from the console terminal as in the preceding
example.

Refer to Paragrah 5.9.1 for further disk file information.

REREAD CAPABILITY: Sometimes it is desired to have records in a data file which
are not uniform in format. '!his feature allows a re-read of the I/O record
buffer without reading in a new record. Use file number 99 to accomplish this.

EXAMPLE: READ(7,900)A,B,J
READ (99,90l)C,K,L

Allows reading from file number 7 under format number 900 and rereading the same
record under format number 901.

5.5 WRITE STATEMENT

GENERAL FORM: WRITE (b,a) list

where: a is the statement number of the FORMAT statement describing the
record(s) being written.

b is an unsigned integer constant or an integer variable that is
in the range 1 to 255 and represents a file reference number.

list is optional and is an I/O list of variables that will be written
to disk according to the FORMAT a.

The statement WRITE (b,a) list is used to write data into the file whose
reference number is b from the variables whose names are given in the list. The
data is transmitted from memory to the file according to the specifications in
the FORMAT statement, whose statement number is a.

5-3

EXAMPLE

WRITE (10,75)A,(8(J,3) ,J=l,10,2),C

The above statement causes data to be written from the variables A, 8(1,3),
8(3,3), 8(5,3), 8(7,3), 8(9,3), and C to file number 10 in the format specified
by the FORMAT statement whose statement number is 75. If the file number were
101 instead of 10, the data would have been printed at the console; or if it
were 102, data would have been printed on the line printer.

5.6 PRINT STATEMENT

GENERAL FORM: PRINT a,list

where: a is the statement number of the FORMAT statement describing the
record(s) being printed.

list is optional and is an I/O list of variables that will be printed
according to the FORMAT a.

The statement "PRINT a,list" is used to print data at the console from the
variables whose names are given in the list. The data is transmitted from
memory to the console according to the specifications in the FORMAT statement,
whose statement number is a.

EXAMPLE

PRINT 75,A, (B(J,3) ,J=l,10,2),C

The above statement causes data to be written from the variables A, 8(1,3),
8(3,3), 8(5,3), 8(7,3), 8(9,3), and C to the console in the format specified by
the FORMAT statement whose statement number is 75.

5.7 ENCODE/DECODE STATEMENTS

These statements are used to re-format data which is being stored in variables.
ENCODE allows writing to a buffer under format control a list of variables, the
same as a WRITE statement except that the characters remain in the buffer and
not sent to an output device. DECODE then allows reading of that buffer under a
different format control. It is much the same as a READ statement except that
the characters are already in a buffer and therefore no access of an input
device is required.

GENERAL FORM:

ENCODE fsn,list

DECODE fsn,list

where: f sn is the FORMAT Statement Number

list is the variable list

5-4

MCOS FORI'RAN uses the I/O buffer which has a maximum length of 132 characters
for ENCDDE/DECDDE operations. Therefore, the fonnat staterrent must not contain
any slash characters or exceed the maximum buffer length. Since this buffer is
shared with other I/O, the DECDDE staterrent should .irrnnediately follo.v the ENCDDE
statement in the prCXJrarn.

EXAMPLE:

I='AB'
J='CD'
ENCDDE 1, I ,J
DEffiDE 2,A

1 FORMAT(2A2)
2 FORMAT(A4)

In the al::x:>ve exarrple, the variable "A" will contain the literal "ABCD" after
execution of the statements. In the follo.ving example, a numeric integer is
changed to a literal (that is, variable K contains the nurreric 16-bit
representation of the number 73, while L will contain the ASCII characters $37
and $33 after execution) •

EXAMPLE:

K=73
ENCDDE 3,K
DECDDE 4,L

3 FOPMAT(I2)
4 FORMAT(A2)

5.8 IDFTST (END--OF-FIIE TES!') SUBROl.JI'INE

This subroutine is used to test for END-OF-FILE conditions on files. Normally, a
read encountering an END-OF-FILE tenninates the run in an error condition.

GENERAL FORM: CALL EOFTST(IUNIT,IFIAG)

where: !UNIT is an unsigned integer constant or an integer variable n the
range l<=IUNIT<=255, arrl represents a file reference number
(FORI'RAN UNIT NUMBER) to be tested for an end-of-file
condition. The numbers 99 through 103 are reserved for special
use.

IFIAG is an integer variable v.ihich is set to two (2) if an
END-OF-FIIE has been encountered; otherwise, it is set to one
(1).

EXAMPLE:

DIMENSION IN(7),IOUI'(7)
DATA IN/'DISKDATA.SA:l'/
DATA IOU!'/ I DISK: l' I
OPEN (10,IN,l)
OPEN (11,IOUI',2)
CALL IDFTSI'(lO,MN)

40 READ (10,100) I,J,K,L

5-5

100 FORMAT(4I3)
CALL EOFTST(lO,MN)
GO TO (50,60),MN

50 PRINT 100,I,J,K,L
WRITE(ll,100) I,J,K,L
GO TO 40

60 CALL DELF(lO)
CLOSE (11)
END

When using EOFTST, an END-OF-FILE status is maintained for each device. Thus,
the test can be performed on as many different devices as desired during one
program.

The first call EOFTST, which must occur after the file is opened, sets the
END-OF-FILE indicator for this device to prevent the run from terminating when
an END-OF-FILE condition is encountered on a READ. If this condition is
encountered before the first execution of a call EOFTST, the run terminates. If
the first call EOFTST in the above example is omitted and the file is empty, the
run terminates.

Upon return from the second call EOFTST, MN is set to one (1) if an END-OF-FILE
has not been encountered, or two (2) if an END-OF-FILE indication has been
encountered.

Further attempts to read a file after the EOFTST has returned a "2" indication
will result in an error condition.

5.9 REWIND STATEMENT

GENERAL FORM: REWIND b

where: b is an unsigned integer constant or integer variable that is in the
range l<b<255 and represents a file reference/number.

The REWIND statement causes a subsequent READ or WRITE statement ref erring to b
to read data from or write data into the first record of file number b.

5.10 FORMAT STATEMENT

GENERAL FORM: xxxxx FORMAT (cl, c2, ••• , en)

where: xxxxx is a statement number (1 through 5 digits.)

cl, c2, ••• , en are format codes.

The format codes are:

aiw Describes integer data fields.

azw Describes integer hexadecimal base data fields.

aEw.d Describes real data fields.

5-6

aFw.d Describes real data fields.

aAw Describes alphanumeric data fields.

aRw Describes alphanumeric data fields.

BN Indicates a blank is ignored in numeric input field. (default)

BZ Indicates a blank is a zero in numeric input field.

Describes a bit data field.

'Literal' Transmits literal data.

wx Indicates that a field is to be filled with blanks on output or
skipped on input.

a (•••) Indicates a group format specification.

where: a is optional and is an unsigned integer constant used to denote
the number of times the format code is to be used. If a is
omitted, the code is used only once.

w is an unsigned nonzero integer constant that specifies the
number of characters in the field.

d is an unsigned integer constant specifying the number of decimal
places to the right of the decimal point; i.e., the fractional
portion.

(•••) is a group format specification. Within the parentheses are
format codes separated by conunas or slashes. Group format
specifications can be nested to a level of two. The a preceding
this form is called a group repeat count. Note: Both corrmas
and slashes can be used as separators between format codes (see
Paragraph 5.10.1, "Various Forms of a FORMAT Statement").

m is a bit mask.

The FORMAT statement is used in conjunction with the I/O list in the READ,
PRINT, and WRITE statements to specify the structure of FORTRAN records and the
form of the data fields within the records. In the FORMAT statement, the data
fields are described with edit codes, and the order in which these edit codes
are specified gives the structure of the FORTRAN records. 'Ille I/O list gives
the names of the data items to make up the record. The length of the list in
conjunction with the FORMAT statement specifies the length of the record (see
Paragraph 5.8.1). Throughout this paragraph, the examples show console input
and output. However, the concepts apply to all input/output media.

The following list gives general rules for using FORMAT statements:

1. FORMAT statements are not executed; their function is to supply
information to the object program. They may be placed anywhere in the
source program after specification statements.

5-7

2. When defining a FORI'RAN record by a FORMAT statement, it is important to
consider the maximlllTl size record allowed on the input/output medilllTl. For
exarrple, if a FORI'RAN record is to be printed, the record should not be
longer than 80 characters.

3 . If the I/O list is anitted fran the READ, WRITE, or PRINT statement, a
record is skipped on input, or a blank record is inserted on output.

4 . Types I, Z, am B are valid only with integer variables. Types E and F
are valid only with real variables.

5.10.l Various Fonns of a FORMAT Statement

All of the edit OJdes in a FORMAT statement are enclosed in a pair of
p:lrentheses, within which the edit cooes are delimited by the separators: corrrna
am slash.

Execution of a READ, WRITE, or PRINI' statement initiates forrrat control. F.ach
action of format control depends on infonna.tion provided jointly by the I/O list
- if one exists - am the edit specification. There is no I/O list item
corresponding to the edit descriptors X and literals enclosed in apostrophes.
These output information directly to the record.

Whenever an I, E, F, Z, B, R or A OJde is encountered, fonnat control determines
whether or not there is a corresponding element in the I/O list. If there is
such an elerrent, appropriately converted information is transmitted. Fonrat
control terminates when these OJdes are encountered and there is no
corresponding data item in the I/O list.

If, hCMever, fonnat control reaches the last outer right parenthesis of the edit
specification and another element is specified in the I/O list, control is
transferred to the group repeat count of the group edit specification terminated
by the last right parenthesis that precedes the right parenthesis ending the
FORMAT statement.

The question of whether or not there are further elements in the I/O list is
asked only when an I, E, F, Z, B, R, or A, or the final right parenthesis of the
edit specification, is encountered. Before this is done, X, literals enclosed
in apostrophes, and slashes are processed.

If there are fewer elements in the I/O list than there are edit OJdes, the
rerraining edit cooes are ignored.

5 .10.1. l o:MMI\

The sinplest fonn of a FORMAT statement is the one shCMn at the beginning of
Paragraph 5.10.5 with the edit OJdes, separated by ccmnas, enclosed in a pair of
parentheses. One FORI'RAN record is defined by the beginning of the FORMAT
statement (left parenthesis) to the en:1 of the FORMAT statement (right
parenthesis).

5-8

5.10.1.2 SLASH

A slash is used to indicate the end of a FORI'RAN record format. For example,
the statement:

25 FORMAT (I2,F6.2/El0.3,F6.2)

describes two FORI'RAN record fonnats. The 1st, 3rd, etc. records are
transmitted according to the format I2, F6.2, and the 2nd, 4th, etc. records are
transmitted according to the format El0.3, F6.2.

Consecutive slashes can be used to introduce blank output lines. If there are
"n" consecutive slashes at the beginning or end of a FORMAT statement, "n" blank
lines are inserted between output records. If "n" consecutive slashes appear
anywhere else in a FO™AT statement, the number of blank lines inserted is
"n-1". For exarrple, the statement:

30 FORMAT (1X,10I5//1X,8El4.5)

describes three FORI'RAN record fonnats. On output, it causes double spacing
between the line written with format lX,1015 am the line written with the
forrnat 1X,8El4.5.

5.10.1.3 Printing of Formatted Records

Fonna.t (carriage) control characters are special characters placed in the first
output buffer character position to control the printing device. These forrnat
control characters are soown belo.v:

(blank)
0

- NO:rmal CR, LF prior to printing the line.
- CR, LF, LF (double spacing)

1 - CR, LF, FF (Fann Feed)
+ - suppression of CR and LF (continues on same line)

(other) - normal CR, LF sequence prior to printing complete line including
the character in control position.

Note: The corrplete line, including the first character, will be output to a
disk data file. The control characters rrentioned abJve have no effect
when writing to disk.

EXAMPLE:

9000 FORMAT (I NORMAL CR, LF I)

9010 FORMAT (I OIXXJBIE SPACINJ=CR, LF I LF I)

9020 :FORMAT (I lFOR-1 FEED I CR, LF I)

9030 FORMAT('+SUPPRESSIOO OF CR,LF')
9040 FORM.Z\T (I Alffi NORMAL CR, LF I)

9050 FORMAT (lX, I2 I 3A2 I I NORMAL CR, LF I)

9060 FORMAT(' l' I I5, Z3, I FORM FEED,CR,LF')

5.10.2 I Etlit Code

The I edit code is used in transmitting integer data. For example, if a PRINT
statement refers to a FORMAT statement containing I edit codes, the input data
is asst.nned to be stored in internal storage in integer format.

5-9

INPUI'

OUTPur

Leading, enbedded, arrl trailing blanks in a field of the input
record are ignored unless a BZ has been specified previously in
the FORMAT statement, in which case all blanks are treated as
zeros.

If the number of significant digits and sign required to represent
the quantity in the storage location is less than w, the leftm::>st
print positions are filled with blanks (except where BN has been
specified, the positions will be zero filled). If it is greater
than w, the number is printed and expanded to the right (w is
overridden) •

5.10.3 z Edit Code

The Z edit code is the same as the I edit code, except that numeric data is
interpreted as hexadecimal instead of dec.i.mal. On fields wider than necessary
to print the number, leading zeros will be output. For exarrple, with a Z4
specification, the hexadecimal number 3C4 will be printed as 03C4.

5.10.4 E and F Edit Codes

The E and F edit codes are used in transmitting real data. The data must not
exceed the maximum magnitude for a real constant.

INPUI'

OOTPUI'

Input must be a real number which, optionally, may have an
exponent. The decimal point may be anitted. If it is present,
its position overrides the position indicated by the d portion of
the format field descriptor, and the number of positions specified
by w Im.1st include a place for it. Each data item must be right
justified in its field. Leading, trailing, and embedded blanks
are ignored. These two format codes are interd1angeable for
input. It makes no difference, for exarrple, whether E or F is
used to describe a field containing 12.42E08.

For data written under an E format code, output consists of an
optional sign (required for negative values), a dec.i.mal point,
the number of significant digits specified by d, arrl an E exponent
requiring four positions. The w specification should provide for
all these positions, including the one for a sign when the output
value is negative. If additional space is available, a leading
zero may be written before the decimal point.

For data written under an F format code, w should provide
sufficient spaces for an integer segment, if it is other than
zero, a fractional segment containing d digits, a decimal point,
and a sign. If too few spaces are available, w will be overridden
arrl the full number printed. If excess positions are provided,
the number is preceded by blanks.

For E and F edit codes, fractional digits in excess of the number specified by
d (see paragraph 5.10) are dropped.

5-10

F.dit codes E, F, and I: If the columns required on a WRITE exceeds the
specified number of columns in the format statement, FORTRAN will allow writing
of the full number, altering the format to fit the number. Thus, with a format
of F5.2, the value 1234.567 would be printed as 1234.56 (normally requiring a
format of F7.2). Digits are not truncated. A column is required for the sign
in the E, F, and I formats if it is a minus.

Left justifying numeric values on printout: By 'underformatting', it is
possible to left justify numeric values due to the expanding formt width feature
mentioned above. This could be quite useful in output such as:

There are 3 items in inventory.
There are 9712 items in inventory.

5.10.5 Examples of Numeric Format Codes

(use of Il format)
(use of Il format)

The following examples illustrate the use of the format codes I, F, and E.

EXAMPLE 1

75 FORMAT (1X,I3,F5.2,El0.3,El0.3)
PRINT 75, N,A,B,C

1. Four fields are described in the FORMAT statement, and four variables are
in the I/O list. Therefore, each time the PRINT statement is executed,
one line is printed on the console terminal.

2. When a line is printed, the number in integer format in location N is
printed in the first field of the line (three columns). The number in
the second field of the line (five columns) is printed in real format,
and comes from location A, etc.

3. If there were one more variable in the I/O list, say M, another line
would be printed, and the information in the first three columns of that
line would be printed in integer format and obtained from location M.
'Ihe rest of the line would be blank.

4. If there were one fewer variables in the list (say C is omitted), no
number would be printed according to the format El0.3.

EXAMPLE 2

Assume that the following statements are given:

76 FORMAT (1X,F6.2,El2.3,I5)
PRINT 76,A,B,N

and that the variables A, B, and N have the following values:

A

34.40
31.10

0.00
1.139

B

123.380E+02
11546.10E+02

834.621E-03
83.121E+06

N

31
130
428

0

5-11

Then the follo.ving lines are printed:

34.40
31.10
o.oo
1.13

0.123E+05 31
0.115E+07 130
0.834E+OO 428
0.831E+08 0

5.10.6 A an:i R Font1C1.t Codes

The A an:i R fontlelt codes are used in transmitting data that is stored internally
in character format. The nurrrer of characters transmitted under A or R fonnat
code is limited to two characters per integer variable or four characters per
real variable. Each character is stored in ASCII. Nurreric data is converted
digit by digit into ASCII, rather than the entire numeric field being converted
into a single binary nurrrer. Thus, the A and R fonnat codes can be used for
numeric fields, but not for numeric fields requiring arithmetic.

The difference between the A arrl R format codes is that the A code left
justifies characters in storage, While the R code right justifies the characters
in storage. For exarrple, if a single ASCII character were stored in an integer
variable (2 bytes), the character would actually be stored in the rrost
significant (lo.ver address) byte under the A forrrat code. Unused bytes of the
variable are blank filled with both A and R fonnats.

EXAMPLE 1

9900 FORMA.T (A2,Al)
READ 9900,I,K

The follo.ving is entered after the ? When the prcgram is executed:

? ABC

The AB will be stored in I, arrl C will be left justified arrl stored in K.

If it is printed with a different FORMAT:

9910 FORMAT (2Al)
PRINT 9910,I,K

the follo.ving will be printed at the console:

AC

EXAMPLE 2

DIMENSIOO 1(5)
I(l) = 'TH'
I(2) = 'E'
I{3) = 'QU'
I(4) = 'IC'
I{5) = 'K'
PRINT 9900,I

9900 FORMAT (5A2)

"THE QUICK" will be printed at the console.

5-12

5.10.7 X Format Code

The X format code specifies a field of w characters to be skipped on input or
filled with blanks on output.

EXAMPLE:

5 FORMAT (110,lOX,4110)
READ (5,5) I,J,K,L,M

Tile first ten characters of the input record are read into variable I, the next
ten characters are skipped over, and the next four fields of ten characters each
are read into the variables J, K, L, and M.

5.10.8 B Format Code

The B Format code allows writing of one or more bits of a byte. It is intended
for use with an I/O device driver routine such as described in Chapter 10 for
Micromodule 03.

On output, three bytes appear in the I/O buffer as a result of each B code
encountered in the FORMAT statement. The first byte is a flag byte of $00. The
second byte is the bit mask as specified by the "m" of Bm Format specification.
The third byte is the least significant byte of data from the integer variable
specified in the I/O list.

The intention is to have the device driver recognize the 00 flag byte as it
scans the buffer, and then utilize the mask and data bytes to alter only the
bits specified as "l's" in the mask byte.

As an example, let's say the variable J has the hexadecimal value of $A265. If
the format specifier for this variable were B$C3, then the following would be
output on a write statement to the I/O buffer:

00 C3 65

The mask of $C3 (or 11000011 in binary) specifies that only bits O, 1, 6, and 7
be altered by the data of $65 (or 01100101 in binary). The result would be that
bit 0 would be a 1, bit 1 would be a O, bit 6 would be a 1, and bit 7 would be a
0 on the output device.

This format code will find use in interfacing with a device such as a PIA
(MC6821) or Micromodule boards containing 32 I/O lines. Note that the device
driver must interpret the data in the I/O buffer resulting from the use of this
format code.

5.10.9 Literal Data

Literal data can appear in a FORMAT statement as a string enclosed in
apostrophes.

25 FORMAT (' 1975 INVENTORY REPORT')

5-13

No item in the I/O list corresp:::>rrls to the literal data. The data is written
directly fran the FORMAT statement. (The FORMAT statement can contain other
types of fonna.t codes with corresponding variables in the I/O list). Exarrple:

8 FORMAT ('MEAN AVERAGE: I ,F9.4)
PRINT 8,AVRGE

The follONing record is written if the value of AVRGE is 12.3456:

MEAN AVERAGE: 12.3456

The apostrophe may be included in the string by writing two successive
apostrophes for each one to be included. Thus, to print "L'CG' S OONE", a format
string would be written: 'D0'.3' 'S OONE'

5.10.10 Group Forrna.t Specification

The group forrna.t specification is used to repeat a set of format codes and to
control the order in which the format codes are used.

The group repeat count a is the same as the repeat indicator a, which can l:e
palced in front of other format codes. The follo.ving statements are equivalent:

10 FORMAT
10 FORMAT

(13,2(14,15),16)
(I3,I4,I5,I4,I5,I6)

Group repeat specifications control the order in which format codes are used
since control returns to ,the last group repeat specification when there are rrore
items in the I/O list than there are format codes in the FORMAT statement (see
Paragraph 5.7.l, "Various Fonns of a FORMAT Statement"). Thus, in the previous
exarrple, if there were rrore than six items in the 1/0 list, control would return
to the group repeat count 2 which precedies the specification (I4,I5).

The format codes within the group repeat specification can be separated by
ccmnas and slashes. The follONing statement is valid:

40 FORMAT (2I3/(3F6.2,F6.3/El0.3,3El0.2)

The first record is transmitted according to the specification 2I3; the second,
fourth, etc., records are transmittErl according to the specification 3F6.2,F6.3,
and the third, fifth, etc., records are transmitted according to the
specification El0.3,3El0.2, until the I/O list is exhausted.

5.10.11 Free Fonnat Input

Data may be read fran the console in free field, cama-separated input by
specifying an enpty format. For exarrple,

998 FORMAT ()

Data read in this manner will be convertErl to integer or real, depending upon
the rrode of the receiving variable. The values to be typed for the variables
must be in the proper format for a real or integer constant, and are separated
by ccmnas.

5-14

EXAMPLE

READ 998, I,J,X

998 FO™AT ()

The values may be input in the follo.ving fonn:

3,5,8.3
-3,6,5.8
etc.

Free Fornat Input may NOl' be used for alphanumeric data.

5.11 OPEN/CTDSE STATEMENTS

The OPEN and CTDSE staterrents give the FORI'RAN programner control of disk file
hamling. With the MIX>S operating system, one or rrore disk files can be open at
a given time.

5.11.1 OPEN/CLOSE Statement Arguments

GENERAL FORM:

OPEN (!UNIT I IFIIB I UUDE)
CLOSE (IUNIT)

where: IUNIT

IFII.E

IM)DE

is an unsigned integer constant or an integer variable in the
range a IUNIT 255, arrl represents a file reference number
(FORI'RAN unit nurriber). (99 through 103 are reserved for
special use •)

is a 1-7 element integer array containing the file name (in
standard MIX>S fornat) as a 1-13 literal ASCII character string
or a single integer variable containing the file name as a ' l-2
literal ASCII character string. '!'he file name in standard MJ))S
fonnat is as follo.vs:

FILENAME.SX:N

where: "FILENAME" is a 1-8 character name, the period (". ") is
the suffix delimiter, "SX" is a 1-2 character suffix,
the colon (":") is the logical drive delimiter, arrl "N"
is the logical drive nurriber .

is an unsigned integer constant or an integer variable
specifying the node with which the file is to be opened.

1 = input node
2 = output node
3 = apperrl node

5-15

No defaults are assumed for any of the arguments; therefore, all arguments must
be specified. Note that three (3) arguments are reg_uired for OPEN, While only
one (l) is required for CLCSE. While no defaults are assumed for any arguments,
the suffJ.x and/or logical drive number .r:ortion(s) of IFII.E will default to "SA"
am "O", respectively, if omitted.

Additional infonnation about the argments is in Paragraph 8. 7, "Arguments in a
Function or Subroutine Subprogram".

5.11.2 OPEN/CL0.5E Programning Considerations

The statement OPEN (IUNIT, lFII.E, IlvDDE) is used to open a file for input (read)
or output (write). To open a file for input, the file name must already exist
in the directory. If the file is not found in the directory, an appropriate
M!X)S error is returned. To open a file for output, the file name must not be in
the directory. If the file name already exists, or if there is no rrore roan in
the disk directory or the disk file area, an appropriate MCDS error is returned.
To avoid fatal errors, see subroutine FILTSI' in Appendix E.

The statement CLCSE (IUNIT) is used to close a disk file after input fran or
output to a file is corrplete. If the file was opened for input, a flag will be
set to irrlicate the file is no longer open. If opened for output, an
end-of-file record is written, the directory is updated, and a flag is set to
irrlicate the file is no longer open. All files should be closed before exiting
fran the FORI'RAN program.

5 .11. 3 OPEN/CLCSE Exarrples

The folla.vi03 exarrples illustrate several OPEN/CLCSE CALIS. The exarrples assume
that I and K have been assignErl valid values in previous assignment or data
statements.

In the first four exarrples, the OPEN call will result in the default suffix (SA)
and the default logical drive number (0) being used, since the suffix and
logical drive are not explicitly provided.

EXAMPLE 1:

EXAMPLE 2:

OPEN (I, 'FN' ,K)
CLOSE (I)

J='FN'
OPEN (I,J,K)
CLOSE (I)

EXAMPLE: 3

DIMENSION J(7)
DATA J/'FL', 'NA', 'ME'/

OPEN (I,J,K)
CLOSE (I)

5-16

EXAMPLE 4:

DIMENSI ON J(7)
J(l)='FI '
J(2)='LE'
J(3)= ' NA'
J(4)='ME '

OPEN (I,J,K)
CLOSE (I)

In the next two examples, the OPEN call will result in the default logical drive
number being used. The suffix for Exarrples 5 and 6 is FT.

EXAMPLE 5:

EXAMPLE 6:

DIMENSION J(7)
DATA J/'FILE.FT'/

OPEN (I,J,K)
CLOSE (I)

DIMENSION J(7)
J(l)='FI'
J(2)='LN'
J(3)='AM'
J(4)='E. I

J(S)='Fr'

OPEN (I,J,K)
CLOSE (I)

In Examples 7 and 8, the OPEN call will result in the default suffix (SA) bei ng
used. 1"'he logical drive for these two examples is 1.

EXAMPLE 7:

DIMENSION K(7)
J(l)='FI'
J(2)='LE'
J(3)='NA'
J(4)=' :l'

OPEN (I,J,K)
CLOSE (I)

5-17

EXAMPLE 8:

DIMENSICN J(7)
DATA J/'FI', 1L: 1

,
1 1 1

/

OPEN {I,F,K)
CLOSE (I)

The file narre, file suffix, arrl logical drive number are provided in Examples 9
and 10.

EXAMPLE 9:

DIMENSION J(7)
J(l)='FL'
J(2)= 1 NA 1

J(3)= 1 ME 1

J(4)=' .F'
J(5)= 1 D: 1

J(6)='1'

OPEN {I,J,K)
CLOSE (I)

EXAMPLE 10:

DIMENSICN A(4)
DATA A/'FILENAME.SA:O'/

OPEN (I,A,K)
CLOSE (I)

5.12 UNFORMATTED I/O

MCX>S FORI'RAN all<JNs unformatted READ and WRITE of data to and fran disk files or
external devices. The data will be written to the file in the same format that
it is stored internally by MIX>S FORI'RAN .

Since the MIX>S functions normally used on disk file I/O treat certain ASCII
control characters as special, it is necessary to create arrl use a binary type
file fonnat, rather than ASCII. Therefore, to create and read binary files,
these files are specified by different node numbers (Table 5-1). Specifically,
the node number 9 is used to read binary files, node number 10 is used to create
arrl write to a binary file, arrl node number 11 is used to apperrl to a binary
file.

other than use of different node numbers associated with the OPEN staterrent, the
only other difference is the anission of the fornat statement number in any READ
or WRITE statement.

5-18

TABLE 5-1. Disk File I/O Modes

MODE I
NUMBER MODE I USE

--~----- -----------1----------------------~---~------------
l Input I

--------- ---------~1
2 Output I Space compressed ASCII file (normal)

--------- --------~1
3 Append I

--------- -----------l------------~---------------------------
5 Input I

--------- -----------1
6 Output I Non-space compressed ASCII file

--------- -----------1
7 Append I

--------- -----------1-----------------------·------------------
9 Input I

-------~ ---------~1
10 Output I Binary file (used with unformatted I/O)

--------- -----------1
11 Append I

5.13 NON-SPACE COMPRESSED ASCII FILES

For certain applications, it may be desirable to create a disk file without the
normal MDOS space compression. Use mode numbers 5, 6, and 7 in the OPEN
statement to create and read this type of file. These numbers correspond to 1,
2, and 3, respectively, in the normal modes as described in paragraph 5.11.1.

5-19

CliAPI'ER 6

DATA STATEMENT

6.1 INI'IDDUCTICN

The general fonn of the DATA statement is as follc:Ms:

where:

DATA kl/dl/,k2/d2, •••••• /,kn/dn/

Each k is a variable or array name. Durrmy arguments ma.y not appear in
the list.

Each d is a list of constants (integer, real, or literal) •

Literal data rrust be enclosed in apostrophes arrl may contain strings
longer than a single storage element (2 for integer arrl 4 for real).

A DATA initialization statement is used to define initial values of variables,
and arrays. There rrust be a one-to-one correspondence between the total rnmiber
of elements specified or lirplied by the list k arrl the total number of constants
specified by the corresponding list d.

This staterrent cannot precede any other specification statement that refers to
the same variables or arrays. Otherwise, a DATA statement can appear anywhere
in the program, but rrust not include variables declared to be in cx:MM:>N. k
cannot be a subscripted variable - i.e. , AFJ?.P:i (2, 5) is illegal. There is no
bounds checking for the list (d} to fit inside the elernent k.

EXAMPLE

DIMENSION X(3)

DATA I/5/,J/-3/,X/8.0,-3.6,12.3/,N/'SA'/

The DATA staternent indicates that the variables I and J are to be initialized to
the values 5 arrl -3, respectively. In addition, the statement specifies that
the three variables in the array X are to be initialized to the values 8.0,
-3.6, arrl 12.3. The integer variable N WDuld contain the literal SA.

EXAMPLE

DIMENSICN B(4)

DATA B/'FILENAME.SA:2'/

In this exarrple, the real array element B(l) will contain the ASCII characters
"FILE", B (2) contains "NAME", B (3) contains " . SA: ", and B (4) will contain the
"2" arrl be spaced filled for the other 3 bytes.

Use of the DATA statement with the "R" crnpiler option
generates executable instructions which rrove the data
fran PSCI' to DSC!' at execution tine.

6-1

aIAPI'ER 7

SP:OCIFICATION STATEMENTS

7.1 INI'IDDUCTICN

The specification statements provide the carpiler with information about the
nature of the data used in the source program. In addition, they supply the
infonration required to allocate locations in menory for this data.

Specification statements must precede the pr03ram part containing executable
statements. Within the specification statements, any statement describing data
must precede references to that data. The data must be defined before it is
used.

7.2 DIMENSICN STATEMENT

GENERAL FORM

DIMENSION al(kl),a2(k2),a3(k3), •.•. ,an(kn)

where: al,a2,a3, an

kl,k2,k3, •.•.• kn

are array names.

are each carposed of one through three unsigned
integer constants, separated by camna.s, representing
the maximum value of each subscript in the array.
'Ihe maximum size of an integer constant is 32767.
HcMever, an array of this size would exceed the
available rnerrory.

The information necessary to allocate storage for arrays used in the source
pr03ram may be provided by the DIMENSIOO statement. The follo.ving example
illustrates haw this information may be declared.

EXAMPLE

DIMENSION A(l0),ARRAY(5,5,5),LIST(l0,100)

DIMENSION B(25,50),TABLE(5,8,4)

7.3 OJMl'1JN' STATEMENT

GENERAL FORM

a(kl),b(k2),c(k3), ,an(kn)

where: a,b,c, an

kl,k2,k3, •.. kn

are variable names or array names that cannot be
dummy argurents.

are required only if the variable represents an array
name arrl are each carposed of one through three
unsigned integer constants, separated by camas,
representing the maximum value of each subscript in
the array.

7-1

The mMMJN statement is used to define a storage area that can be referred to by
a calling program and one or rrore subprograms, and to specify the names of
variables and. arrays to be placed in this area. Therefore, variables or arrays
that appear in a calling program or subprogram can be made to share the same
storage locations with variables or arrays in other subprograms. Al.so, a CGiJMJN
area can be used to irrplictly transfer argurrents between a calling program and a
subprogram. ArgLUUents passed in CDMMJN are subject to the same rules with
regard to type, length, etc., as argurrents passed in an argurrent list (see
Chapter 8, "PID;RAM UNITS").

IF rrore than one CDMMJN statement appears in a calling program or subprogram,
the entries in the statements are cumulative. Redundant entries are not
permitted.

Since the entries in a (X)MM:)N area share storage locations, the order in which
they are entered is significant. Consider the follo.ving example:

EXAMPLE

Calling Program Subprogram

blJBROurINE MAPMY(•••)

CX)MvK)N A,B,C,K(lOO)
CJ:l.1M)N X,Y,Z,J(lOO)

CALL MAPMY(•••)

In the calling program, the staterrent cn+DN A, B, C, K(lOO) would cause 212
storage locations to be reserved in the follo.ving order:

BYTES VARIABLE

4 A

4 B

4 c

2 K(l)

196 K(2) - K(99)

2 K(lOO)

The staten-ent cx:MvDN X, Y, Z, J (100) would then cause the variables X, Y, Z arrl
J(l) .•• J(lOO) to share the same storage space as A, B, C, arrl K(l) .•. K(lOO),
respectively. Note that values for X, Y, Z, and J(l) .•. J(lOO), because they
occupy the same storage locations as A, B, C, and. K(l) .•. K(l99), do not have to
be transmitted in the argurrent list of a CALL staterrent.

The use of a second (Xl.M)N in the calling program, preceding the existing
m~, v.Duld cause the above example to be incorrect.

7-2

7.4 EQUIVALENCE STATF.MENT

The EQUIVALENCE statement is used to define one or more variable name (s)
equivalent to another variable. The same memory storage locations will be
shared by one or more variable names.

The main use of this statement would be to save on memory size needed for a
particular application.

GENERAL FORM: EQUIVALENCE (a,b),(c,d) ••• ,(x,y)

where each pair enclosed by parethesis are declared equivalent.

If either or both of the variables are dimensioned, they must have been declared
prior to using in an equivalence statement.

Example: Suppose there were two arrays in a program - A and B. Let's dimension
them first •••

DIMENSION A(S),B(lO)

Now, to make them occupy the same area in memory •••

EQUIVALENCE (B,A)

or to make the 2nd element of A occupy the same memory location as the 5th
element of B •••

EQUIVALENCE (B(5),A(2))

Note that reversing the two elements in the above statement would be illegal
since it would cause the lowest 3 elements of array B to fall lower than the
start of array A.

7.5 EXTERNAL STATEMENT

This statement is used to declare a name to be an external reference rather than
a variable name or subprogram name in a program unit.

GENERAL FORM: EXTERNAL nl,n2, ••• nN

where nl, n2, etc. are legal FORTRAN names.

After declaring external, the same name may not be used in any other way within
the program unit. There are only two statements with which this name may be
used - namely, OPEN and CALL - and then only as arguments.

7-3

CliAPTER 8

PI03RAM UNITS

8.1 INI'IDDUCTICN

A prcgram unit consists of a sequence of statements an:l may be either a main
prOJram or a subprogram. There may be only one main program unit, but several
or no subprcgrarns.

It is sanetimes desirable to write a prcgram which, at various points, requires
the same corrputation to be performed with different data for each calculation.
It would sirrplify the writing of that prcgram if the statements required to
perform the desired canputation could be written only once and then could be
referred to freely, with each subsequent reference having the same effect as
though these instructions were written at the point in the program where the
reference was made.

For exanple, to take the cube root of a number, a prcgram rrust be written with
this object in mind. If a general program were written to take the cube root of
any number, it would be desirable to be able to canbine that prcgram (or
subprogram) with other programs where cube root calculations are required.

The FORI'RAN language provides for the above situation through the use of
subprcgram.s. There are two classes of subprcgrams: FUNCI'ICN and SUBROUTINE.
Functions differ fran SUBROUI'INE subprograms in that they return one value to
the calling prcgram, whereas SUBROUTINE subprcgram.s need not return any.

8. 2 NAMil\G PROORAM UNITS

A prOJram unit nama consists of fran one through six alphanumeric characters,
the first of which must be alphabetic. A prcgram unit name may not contain
special characters (see Appendix A) or be a keyword (see Paragraph 2 .10) • The
type of a function name determines the type of the result that can be returned
from it by the predefined convention for variable names.

The type of a SUBRC>UrINE subprogram cannot be defined because the results that
are returned to the calling prcgram are dependent only on the type of the
variable names appearing in the argument list of the calling program and/or the
irrplicit argt.nnents in a:x-1M:)N.

8.3 MAIN PRCGRAM UNIT

A main program unit written in FORI'RAN may call other subprogram units, but not
vice-versa. MIX>S FORI'RAN produces a rnain prcgram unit when the first
non-ccmrent staterrent is not a SUBROUI'INE, FUNCTICN, or TASK staterrent. The
rrain prcgram unit will initialize the microprocessor's stack pointer (SP in the
6800, and both S and U in the 6809) before executing any other code.

8-1

8.3.1 PR:X;RAM Statement

The PR:X;RAM staternent is optional in a main pr09ram. If used, it will becx:me
the m:Jdule externally defined name in place of a default "MAIN$", and may be
observed on the merrory map produced by the linking loader (RLaill} •

The general form is: PR:X3RAM name

where: name is an acceptable name as defined in Paragraph 8.2.

8.3.2 RE:IUR'J Staterrent

The RE:IURN staterrent is NOT permitted in a main program unit except in the case
of a Real-Time FDRI'RAN main program unit which has called the subroutine SETRI'.

8.4 FUNCTIONS

A function is a staternent of the relationship between a nurriber of variables. To
use a function in FDRI'RAN, it is necessary to:

1. Define the function (i.e., specify which calculations are to be
performed) •

2. Refer to the function by name where req:uired in the program.

3. A maximum of 13 argurrents is permitted. Expressions are not permitted.

8.4.1 Function Definition

There are three steps in the definition of a function in FDRrRAN:

1. The function must be assigned a unique name by which it may be called
(see Paragraph 8.2).

2. The dummy arguments of the function must be stated.

3. The procedure for evaluating the function must be stated.

8.4.2 Function Reference

When the name of a function, follo.ved by a list of its arguments, appears in any
FORI'RAN expression, it references the function and causes the computations to be
perfonned as irrlicated by the function definition. The resulting quantity
replaces the function reference in the expression, and assumes the type of the
function. The type of the name used for the reference must agree with the type
of the name used in the definition.

8.5 FUNCTICN SUBPR:X;RAMS

The FUNCTICN subprogram is a FDRI'RAN subprogram consisting of a FUNCTION
statement follCMed by other staternents, including at least one RE'IURN statement.
It is an irrleperrlently written program that is executErl wherever its name is
referencErl in another program.

8-2

8.5.1 FUNCTICN Statement

GENERAL FORM: FUNCTION name(al,a2,a3, ••• an)

v.here: name is the name of the FUNCTION.

al,a2,a3, ••• an are dununy arguments. 'Ihey must be nonsubscripted
variable, array, or dununy names of SUBROUTINE or other
FUNCTION subprograms. (There must be at least one
argument in the argument list, and not more than 13).

Since the FUNCTION is a separate subprogram, the variables and statement numbers
within it do not relate to any other program.

The FUNCTION statement must be the first statement in the subprogram. 'Ihe
FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE
statement or another FUNCTION statement.

The name of the function must be assigned a value at least once in the
subprogram - either as the variable name to the left of the equal sign in an
assignment statement, as an argument of a CALL statement, or in an input list
(READ statement) within the subprogram.

The dununy arguments of the FUNCTION subprogram (i.e., al, a2, a3, •••• an) may be
considered to be dununy variable names. 'Ihese are replaced at the time of
execution by the actual arguments supplied in the function reference in the
calling program. Additional information about arguments is in Paragraph 8. 7,
"Arguments in a FUNCTION or SUBROUTINE Subprogram".

The relationship between variable names used as arguments in the calling program
and the dununy variables used as arguments in the FUNCTION subprogram is
illustrated in the following examples:

EXAMPLES

Calling Program

ANS= ROOTl*CALC(X,Y,I)

FUNCTION Subprogram

FUNCTION CALC(A,B,J)

I = J*2

CALC = A**I/B

RETURN
END

In this example, the values of X, Y, arrl I are used in the FUNCTION subprogram
as the values of A, B, and J, respectively. The value of CALC is computed, and
this value is returned to the calling program, v.here the value of ANS is
computed. The variable I in the argument list of CALC in the calling program is
not the same as the variable I appearing in the subprogram.

8-3

Calling Program

ANS = ROOTl*KALC(L,M,I)

FUNCTION Subprogram

FUNCTION KALC(I,J,K)

I = J*2

KALC = I+J+K**2

RETURN
END

'!he FUNCTION subprogram KALC is considered an INT.EX:;ER of length 2 in the above
example. '!he statement "RETURN" is not necessary in either of the examples.

8.5.2 RETURN Statement

FUNCTION subprograms may contain a RETURN statement, which signifies a logical
conclusion of the computation and returns the computed value and control to the
calling program. There may be more than one RETURN statement in a FORTRAN
subprogram, or the RETURN statement may be omitted (the END statement in this
case generates the return).

EXAMPLE

FUNCTION DAV(D,E,F)
IF (D-E) 10, 20, 30

10 A = D+2.0*F

5 A = F+2.0*F

..
20 DAV = A+B**2

RETURN
30 DAV = B**2

RETURN

8.6 SUBROUTINE SUBPRcx::;RAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in many
respects. They both require an END and RETURN statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the SUBROUTINE

8-4

program is a set of commonly used computations, but it need not return any
results to the calling program, as does the FUNCTION subprogram. A maximum of
13 arguments is permitted.

The SUBROUTINE subprogram is referenced by the CALL statement, which consists of
the word CALL followed by the name of the subprogram and its parenthesized
arguments.

8.6.1 SUBROUTINE Statement

GENERAL FORM: SUBROUTINE name{al,a2,a3, ••• ,an)

where: name is the SUBROUTINE name {see Paragraph 8.2, "Naming Subprograms").

al,a2,a3, •••• ,an are dummy input and/or output arguments. {There
need not be any, and maximum is 13.) Each argument
used must be a nonsubscripted variable or array
name.

Since the SUBROUTINE is a separate program, the variables and statement numbers
within it do not relate to any other program.

The SUBROUTINE statement must be the first statement in the subprogram. The
SUBROUTINE subprogram may contain any FORTRAN statement except a FUNCTION
statement, another SUBROUTINE statement, or a PROGRAM statement.

The SUBROUTINE subprogram may use one or more of its arguments to return values
to the calling program. Any arguments so used must appear to the left of an
arithmetic statement, in an input list within the subprogram, as arguments of a
CALL statement, or as arguments in a function reference. The keyword SUBROUTINE
and the subroutine name must not appear in any other statement in the SUBROUTINE
subprogram.

'Ihe durrany arguments (al,a2,a3, ••• ,an) may be considered durrany variable names
that are replaced at the time of execution by the actual arguments supplied in
the CALL statement. Additional information about dummy arguments is in
Paragraph 8.7, "Arguments in a FUNCTION or SUBROUTINE Subprogram".

The relationship between variable names used as arguments in the calling program
and the dummy variable used as arguments in the SUBROUTINE subprogram is
illustrated in the following example. The object of the subprogram is to "copy"
one array directly into another.

EXAMPLE

Calling Program

DIMENSION X(lOO),Y(lOO)

K = 100
CALL COPY (X,Y,K) 10

SUBROUTINE Subprogram

SUBROUTINE COPY(A,B,N)
DIMENSION A (100),B(lOO)
DO 10 I = 1, N
B(I) = A(I)
RETURN
END

8-5

8.6 . 2 CALL Statement

The CALL stat ement is used to cal l a SUBROUTINE program.

GENERAL FORM: CALL name (a l ,a2,a3, ••• ,an)

where: name is the name of a SUBROUTINE subprogram.

al, a2, a3, ••• , an

EXAMPLE

CALL OUT

are t he actual arguments that are being supplied
to the SUBROUTINE subprogram. (Maximum of 13)

CALL MA'IMPY(X,Y,Z,ROOT1 , R000'2)

The CALL statement transfers control to the SUBROUTINE program and replaces the
dummy variables with the value of the actual arguments that appear in the CALL
statement. A space may appear between the end of "name" and the parentheses
starting the argument list.

8.6.3 RETURN Statement

SUBROUTINE subprograms may contain a RETURN statement, which signifies a logical
conclusion of the computation and returns control to the calling program. There
may be more than one RETURN statement in a SUBROUTINE subprogram or the RETURN
statement may be omitted (the END statement in this case generates the return).

GENERAL FORM: RETURN

The normal sequence of execution following the RETURN statement of a SUBROUTINE
subprogram is to the next statement following the CALL in the calling program.

8.7 ARGUMENTS IN SUBPROORAMS

The dummy arguments of a subprogram appear after the FUNCTION or SUBROUTINE
name, and are enclosed in parentheses. They are replaced at the time of
execution by the actual arguments supplied in the CALL statement or function
reference in the calling program. The durrmy arguments must correspond in
number, order, type, and length to the actual arguments. For example, if an
actual argument is an integer constant, then the corresponding dummy argument
must be an integer. If a dummy argument is an array, the corresponding actual
argument must be (1) an array, or (2) an array element. In the first instance,
the size of the dummy array must not exceed the size of the actual array. In
the second, the size of the dummy array must not exceed the size of that portion
of the actual array which follows and includes the designated element.

8-6

Follo.ving is an example of the actual argurrent 'being an array element:

Calling Program

DIMENSICN A{6)

CALL SAM(A(5))

SUBROUI'INE Subprogram

SUBROOI'INE SAM(B)
DIMENSION B(2)

RE'IURN
END

In the foregoing example, the p:>rtion of the actual array that follows and
includes the designated element is element 5 arrl element 6. Therefore, dumny
array B nust not 'be larger than two.

The actual arguments can 'be:

- Any type of constant
- Any type of subscripted or nonsubscripted variable
- An array name
- An externally declared name

If a literal constant is passed as an argument, the actual argument passed is
the literal as defined, without delimiting ap:>strophes. A maximum of two
characters can 'be passed as a literal.

When the dummy argument is an array name, an appropriate DIMENSION statement
must appear in the subpro:irarn. None of the dummy arguments may appear in a
(Xl.1M)N statement.

If a durrmy argurrent is assigned a value in the subprogram, the corresp:>nding
actual argument must be a subscripted or unsubscripted variable name, or an
array name. A constant should not be specified as an actual argument unless the
pro:iranmner is certain that the corresp:>nding durrrny argument is not assigned a
value in the subprogram.

8-7

CHAPI'ER 9

6800 REAL-TIME FORTRAN

9.1 INI'RODUCTION

'Ihe Real-Time features available in the MDOS REAL TIME FORTRAN version give the
user the capability of writing real-time software in a high-level language for
ultimate use in an EXORciser, EXORterm, Micromodule or equivalent 6800 based
system.

'Ihe Real-Time version not only is a language compiler, but also contains an
execution-time operating system with several queues of tasks to be performed,
along with an ability to respond to real-time interrupts and generation of
delays.

9.2 REAL-TIME OPERATING SYSTEM

'Ihe operating system may be looked upon as having several features, namely:

Task queues
Priorities
Interrupt handling
Delay queuing

9.2.1 Task Queues

'!here are five queues of tasks to be performed:

1. An active queue
2. A 10-millisecond timer queue
3. A one-second timer queue
4. A one-minute timer queue
5. An interrupt association queue

Tasks or segments of tasks which are to be executed after specified time delays
are placed in the 10 millisecond, 1 second, and 1 minute queues with associated
counts of time delay units. 'Ihe programmer can do this with calls to START and
WAIT subroutines as described later.

'Ihe operating system determines when tasks are to be transferred to the active
queue based upon the specified time delays. Tasks with no time delays are
entered in the active queue directly.

When a READ, PRINT, or WRITE statement is encountered, the operating system does
not permit the system to be locked in the I/O operation as is the case in
standard FORTRAN. 'Ihe operating system will start the next ready task in the
active queue if a delay is encountered in waiting for an I/O device to become
ready. After the device has become ready, control will return to the I/O task.

9-1

9.2.2 Priorities

Associated with each task in the active queue is a priority level. There are two
classes of priorities: Immediate and Normal. Priority levels are numbered from
1 to 255. Immediate class priority levels are 1-127, while Normal class
priority levels are 128-255. The lower the number, the greater the priority.

In either class, when a task is placed in the active queue with the same
priority class as the currently executing task, the current task will not
immediately be suspended, regardless of its priority level. Instead, the newly
invoked task must wait until the current task terminates or is delayed or
performs standard FORTRAN I/O. lbwever, a task invoked with a priority in the
immediate class will cause a task with priority in the normal class to be
temporarily suspended until the task in the immediate class has completed
execution. A task with a normal priority cannot cause the suspension of a task
with immediate priority.

It is suggested that immediate class priori ties only be used for short tasks
requiring very high priority, since they actually interrupt the execution of a
normal priority task and data integrity may be lost if data is conunon to both
tasks.

9.2.3 Interrupt Handling

A special form of a subroutine subprogram, called a TASK, is written to perform
the desired operations upon receiving an interrupt from some external device in
the system.

The association between a particular interrupt and a named TASK is made with a
subroutine CALL to ATTACH. Arguments passed with the call include the TASK
name, the memory address of the interrupting peripheral device , a mask to
determine source of the interrupt and type of device, and the priority level
number of the TASK.

A given TASK can be attached to handle more than one peripheral device. The
real-time operating system will prevent the same task from executing
simultaneously for two or more interrupts.

9.2.4 Delay Queuing

Tasks can be invoked in either of two manners. One by external interrupt as
depicted above, the other by placing it into the queue by a subroutine call to
START or STARTV.

The call to START (and STARTV) requires specification of the TASK name and an
associated delay. The task is placed in the appropriate timing queue (or into
the active queue in case of zero delay). STARTV allows passing of two
additional arguments, one of them being a priority. START uses the current
executing task priority level for the priority of the newly invoked task.

Delay control routines enable the currently executing task to be suspended from
execution for a period of time or until some event occurs. 'Ihis suspension
allows other tasks to be executed. The subroutine names for this feature are
WAIT and WAITE, whereby the first specifies a time value, and the second
specifies an argument which must reach a value of zero before control is
returned.

9-2

CAUTION

TIME DELAY MAY NOT BE ABSOLUTELY ACCURATE DUE TO (1) ONE TASK
MUST WAIT UNTIL ANOTHER IS SUSPENDED FRa-1. OPERATION, AND (2)
POSSIBLE 0 TO -1 TIME UNIT VARIATION. (EXAMPLE: ONE-MINUTE
DELAY COULD BE NEAR 0 TO 60 SECONDS.) FOR THIS REASON, IT
WOULD BE WISE TO USE THE SMALLEST TIME UNIT POSSIBLE.

9.3 INVOKIN3 REAL-TIME FEATURES

A call to a subroutine in the REAL-TIME FORTRAN library is necessary to set up
certain parameters, storage areas, and links to the Real-Time operating system.

9.3.1 SUBROUTINE SETRT

This subroutine is used to initialize the Real-Time system.
first executable statement in a real-time program.

GENERAL FORM: CALL SETRT(a,c,m,p)

It must be the

Where: a is the memory address of the console or control ACIA

c is the base memory address of the P'IM (prograrrunable timer module,
MC6840) or PIA (per i pheral interface adapter, MC6820/MC6821) used
for the real- time clock.

m is the mask for P'IM ($01) or PIA ($80 or $40) clock interrupt
bit.

p is the name of an array used for queue data pool.

An exampl e of this would be a system containing an ACIA at $FCF4, a Micromodule
MMOlD board with P'IM at address $EC18, and the array named KPOOL is used for a
data pool. The following woul d be the proper cal l to SETRT:

CALL SETRT($FCF4,$EC18,l,KPOOL)

The execution of SETRT causes the designated PIA or P'IM to be i niti alized to
generate t he proper clock i nterrupts to the microprocessor. Duri ng pr ogram
operat ion , the real-time executive checks for the source of an inter rupt . I f
it was t he clock , the execut i ve will t ake car e of reset ting the i nter rupt flag
in t he PIA or P'IM.

9.3. 2 QUEUE ARRAY

The queue da t a pool array is used to provide space for dynamic s t orage
r equi r ements of the real-time operat i ng system. Storage entries are 10 bytes
l ong (5 integer variables elements of an a rray) • (ueue entries are used fo r:

1. ATTACH calls .
2. START calls.
3. WAIT calls.
4. outstanding TASKs awa iting completion.

'!be statement to allocate the necessary storage could be:

DIMENSION KPOOL(S,20)

if it were determined that 20 entries would be the maximum ever used at one time
by the system. If the system required more than this number, an execution time
error would be issued to the console terminal (if any).

9-3

9.3.3 Using a P'IM Generated Clock

'Ihe real-time module (R™OD), as supplied in the run-time library (FORLB.RO)
permits use of either an externally generated 10-millisecond clock via a PIA, or
the use of a P'IM (MC6840-Programmable Timer Module) part in conjunction with the
Phase 2 MPU clock.

If the P'IM is used to generate the 10-millisecond clock interrupt, the
initialization performed v.tien SETRT is called programs the P'IM properly. 'Ihe
initialization is based upon the use of a 1 MHz MPU clock. If another MPU clock
frequency is used, the user must alter the initialization value. Timer #1
generates the interrupt in conjunction with the microprocessor (MPU) clock. In
this configuration, pin 26 (Gl) of the P'IM (MC6840) must be grounded.

The value for initialization is found from the formula:

n = 0. Olf - 57

where: n is the initializing value

f is the MPU clock frequency in Hz

Thus, for a 1 MHz (l,000,000 Hz) MPU clock:

n = (0.01) (1 x 106) - 57

= 9943

A new value may be patched into the .LO file by relying on the map produced by
RLOAD with the MAPF command. The named common PSCT name is ".P'IMC" and consists
of two bytes. Don't forget to convert the decimal number "n" into two bytes of
hexadecimal for patching purposes with the MDOS PATCH command.

Alternatively, the user may assemble a short relocatable module and load after
the library search (LIB=FORLB) has been done. Here is the source to be
assembled:

.P'IMC

NAM
IrnT
C<Jv1M
FDB
END

P'IMVAL
P'IM INITIALIZATION VALUE FOR X.X MHZ MPU
PSCT
n PUT CALCUI.ATED DECIMAL VALUE OF n HERE

Use RASM with the "R" option to produce the ".RO" file.

9.3.4 Using a PIA for Clock

When a PIA is used, the external 10 millisecond clock signal is brought into
either CA! or CA2 interrupt inputs. 'Ihe PIA must be wired so that its interrupt
output pin is connected to the IRQ input pin of the microprocessor.

9.4 TASK SUBPRCGRAMS

A TASK subprogram is similar to a regular FORTRAN subroutine written to handle
interrupts. However, a TASK cannot be CALLed like a SUBROUTINE, it can only be
invoked by placing in the active queue by either a START (or STARTV) or using
A'ITACH and receiving an interrupt.

Except for the use of C<Jv1MON, only one byte of data can be passed to a TASK, and
then only through the queue.

9-4

GENERAL FORM:

TASK <name>

or

TASK <name> (p)

where: <name> specifies the name of the task.

p specifies an optional parameter.

This statement must be the first statement in a task subprogram, and is similar
to a SUBROUTINE statement. Each task thus defined acts as an independent
program, and may include any valid FORTRAN statement except PROGRAM, SUBROUTINE,
or FUNCTION. It may have one or more RETURN statements, or none at all. It
must end with an END statement at the physical end of its source statements.

Any TASK may invoke other tasks, call upon subroutines or functions, and use
COMMON in the normal manner.

9.5 START SUBROUTINE

The call to START is one of the methods of invoking a task.

GENERAL FORM: CALL START(<name>,i,j,k)

Where: <name> specifies the task name previously declared EXTERNAL.

i specifies the minimum amount of time to delay before executing
the specified task. Negative or zero values indicate no delay is
required prior to execution.

j specifies the value of the time unit associated with argument i
as follows:

0 - unit of real-time clock (10 ms.)

1 - 10 milliseconds

2 - seconds

3 - minutes

k specifies a return argument which indicates if the task was
accepted, where:

1 - specifies accepted

2 or greater - specifies not accepted

The execution of this call has the effect of queuing the invoked task with the
same priority as the current task. Control is maintained by the current task.

9-5

9.6 STARTV SUBROUTINE

A slight variation of the START subroutine permits a single argument to be
passed to the invoked task as well as allowing the task to be invoked with a
different priority from the currently executing task.

GENERAL FORM: CALL STARI'V(<name>,i,j,k,arg,pri)

where: <name> specifies the task name previously declared EXTERNAL.

i specifies the minimum amount of time to delay before executing
the specified task. Negative or zero values indicate no delay is
required prior to execution.

j specifies the value of the time unit associated with argument i
as follows:

0 - unit of real-time clock (10 ms.)

1 - 10 milliseconds

2 - seconds

3 - minutes

k specifies a return argument which indicates if the task was
accepted, where:

1 - specifies accepted

2 or greater - specifies not accepted

arg specifies the task argument (integer only) •

pri specifies the priority level of the invoked task.

'Ihe execution of this call has the effect of queuing the invoked task with the
specified priority level. Control is maintained by the current task.

9.7 ATTACH SUBROUTINE

This subroutine sets up an association between an interrupt and the task which
is to handle it.

GENERAL FORM: CALL ATTA.CH(<name>,addr,nnn,pri)

where: <name> specifies the task to be associated with the interrupt, the
name previously declared EXTERNAL.

addr specifies the memory address of the peripheral device.

nnn specifies the interrupt mask bit of the peripheral device in
cases of a PIA or P'Jlll, or the driver address for other devices
handled through drivers. RES'IRICTION: Driver address must
be above OOFF hexadecimal. See Chapter 10.

9-6

pri specifies the priority level of the task.

With this subroutine, a given task can be assigned to handle multiple peripheral
devices. The real-time operating system will prevent the same task from
executing simultaneously for two or more interrupts. The subroutine makes an
entry in the interrupt queue upon execution. The interrupt queue is searched
when an interrupt is received.

9.8 WAIT SUBROUTINE

This subroutine enables the currently executing task to be suspended from
execution for a period of time, allowing other tasks to be executed.

GENERAL FORM:

where: i

CALL WAIT{i,j,k)

specifies the minimum amount of time to delay before resuming
this task. Negative or zero values indicate no delay is required
prior to resumption.

j specifies the value of the time unit associated with argument i
as follows:

0 - unit of real-time clock (10 ms.)

1 - 10 milliseconds

2 - seconds

3 - minutes

k specifies a return argument which indicates if the task was
accepted, where:

1 - specifies accepted

2 or greater - specifies not accepted

9.9 WAITE SUBROUTINE

This subroutine suspends the currently executing task until a given event
happens. Control will not be returned to the task until the variable has a
value of zero. This suspension allows other tasks to be executed in the
meantime.

GENERAL FORM:

where: arg

CALL WAITE (arg)

specifies an integer variable with a value from 0 to 255. (Only
the least significant byte is used.)

NaI'E

'!he variable specified is set to 1
after resumption to the task.

9- 7

9.10 CJI'HER REAL-TIME SUPPORT SUBROUTINES

Some other subroutines which the real-time programmer may find useful are
described in this section.

9.10.1 QCLEAR

This subroutine facilitates possible execution time error recovery if the data
pool array containing the queues becomes overloaded. Execution of the subroutine
essentially clears all real-time queues, enabling the programmer to start over.
No arguments are permitted.

9.10.2 Single Byte I/O

Two subroutines enable the programmer to directly read and write single bytes to
or from memory. This allows initial ization of peripherial devices and has many
other uses to the advanced programmer who must manipulate data in memory at the
byte level.

GENERAL FORMS: CALL BI(adr,var)
CALL BO(adr,arg)

where: adr specifies the memory address.

var specifies the variable to receive the data.

arg specifies a constant or variable containing data.

The subroutine BI is used to input one byte (Byte In), while BO is used to
output one byte (Byte Out). All variables and constants must be integer.

9.10.3 Double Byte I/O

Two subroutines enable the programmer to directly read and write double bytes to
or from memory.

GENERAL FORMS: CALL DBI(adr,var)
CALL DBO(adr,arg)

where: adr specifies the memory address

var specifies the variable to receive the data

arg specifies a constant or variable containing data

The subroutine DBI is used to input two bytes (Double Byte In), while DBO is
used to output two bytes (Double Byte Out). All variables and constants must be
integer.

9-8

9. 10.4 Bit Manipulation

The f unction of bi t manipula t ion operations i s t o provide an efficient means of
pack i ng and t esti ng data. This is part icul arly useful i n microprocessor
programs, especi ally in r el ation to I/O handling. These rout i nes are implemented
as f unctions.

Function Name

I OR (j ,m)
IAND (j ,m)
INaI' (j)
IEffi (j ,m)
ISHFI'{j,m)
IBTEST{j,m)
IBSET(j ,m)
IBCLR (j ,m)

Operati on

Performs l ogi cal inclusive OR.
Performs l ogical AND {product) •
Pe r forms l ogi cal complement.
Performs l ogical exclusive OR.
Performs logical shift.
Performs test of specific bit.
Performs setting of specific bit.
Performs clearing of specific bit.

These and other functions are described in more detail in Appendix D.

9. 11 REAL-TIME PRcx:;RAMMING HINTS

The methods used and the philosphy behind real-time systems are so different
from conventional FORTRAN prograrrming that it is appropriate to cover certain
essential points. This is especially necessary because of timing considerations
and the interactions between the programmer's code and the operating system.

9.11.1 Use of the RETURN Statement

At least one RETURN (or END) statement must be used in every SUBROUTINE,
FUNCTION, or TASK. This statement may also be used in a main real-time program
if the main program does not contain i nstructions to be executed after execution
of the i nitialization tasks.

Usually the beginni ng of the main program will perform task initialization.
After initialization, there may be instructions to be executed in background or
there may not. If there is, then the background code will consist of an endless
loop. If there is no background code, then the RETURN statement is used. The
reason for this non-standard usage is that any main program of a real-time
system is itself considered to be a subroutine of the operating system.

9.11.2 Multiple Interrupts

External interrupts are handled by the TASK subprogram feature. Such interrupts
may occur at any time and on occasion may follow one another very rapidly. It
may, therefore, happen that while one external interrupt is being handled by its
associated task, another external interrupt may occur. If this happens, the
second interrupt will be placed in the active queue by the operating system.

If the executing task contains a call to WAIT, WAITE, or an I/O statement, this
will cause the operating system to suspend its operation and return to
processing the active queue.

The operating system will not permit the task to be re-entered until it has
completed execution on behalf of the first interrupt. This lockout provision
thus prevents execution confusion and allows several such interrupts to be
queued for execut ion i n an orderly manner.

9-9

9.11.3 Data Read at Interrupt

When an external interrupt has been sensed, data will always be read from the
corresponding PIA register or handled by the device driver. Note that this will
occur at time of the interrupt, not at the time at which the task associated
with the interrupt is executed. '!his data is available to the task if an
argument was used in the TASK statement.

9.11.4 Task Sharing Same Subroutines

Two tasks may call the same standard subroutine if that subroutine does not
contain a call to WAIT, WAITE, or an I/O statement. In order to understand the
reason for this, consider the following example:

TASK A

CALL X'f.Z

RETURN
END

SUBROUTINE X'f.Z

CALL WAIT(2,2,K)

RETURN
END

TASK B

CALL X'f.Z

RETURN
END

Task A is entered first and call subroutine X'f.Z. X'f.Z is then executed until the
2 second delay is encountered and control returns to the operating system. If
another interrupt is now sensed which starts task B, subroutine X'f.Z will again
be called and the system will fail.

A little consideration will show that this situation cannot occur if there is no
WAIT, WAITE, or I/O within subroutine 'JCTZ, since there will then be no
possibility of returning to the operating system.

9.11.5 Processing Necessary Responses

'!he manner in which the operati~g syste~ works, encourages the user to design
interrup~ tasks . and subroutines wluch are relatively short. Lengthy
computational routines I?ay cause the system to be locked out of processing
necessary resP?n~e~ to interrupts or other high frequency routines. A simple
~~~~~g ~fK~ubdividing l?ng c?mputational routines is to use the statement: CALL 
back t~ the at ap~ropnate interval~. This has the effect of passing control 

. . operating system. To this end, a subroutine named WAITZ is supplied 
and el1m1nates the necessity and overhead of the (0 o K) t , , argumen s. 

9-10 



9.11.6 Task Stack Size Limitations 

Each TASK subprogram has memory allocated for a stack area. 'Ihe stack must 
handle return addresses for subroutine and function calls and at least 7 bytes 
for each interrupt received. A compromise size of 32 bytes is allocated by the 
compiler in DSCT. If the user finds this size is too small, he may easily 
increase this size by loading a simple module before loading each TASK module in 
which he desires the stack size allocation increased. 

The assembly language source for this allocation module is shown below. 
be assembled as a relocatable module by the MDOS Macro Assembler (RASM) • 
be repeatedly loaded as needed. 

NAM INCSTK 
IOOT INCREASE DSCT STACK ALLOCATION BY $20 
DSCT 
RMB $20 (This value may be changed as desired) 
END 

9.12 END-SYSTEM HARJ:WARE CONSIDERATIONS 

9.12.1 Real-Time Clock 

It must 
It may 

A real-time clock is necessary for the operation of the REAL-TIME FORTRAN 
operating system. It has been determined that a 10 millisecond clock is a 
reasonable compromise in a microprocessor system between response time to 
interrupts, accuracy of timing, and overhead time associated with each "tick" of 
the clock. 

'IWo methods are provided to implement this clock in hardware. One is to use a 
clock oscillator and bring it into the system via a PIA. '!he other is to use a 
P'I'M arrl generate the clock signal as a function of the MPU clock signal. MDOS 
REAL-TIME FORTRAN makes the assl..llilption that if the P'IM is used, the MPU clock 
frequency is 1.0 MHz. If other than this frequency, the routine in SE'IRT must 
be patched to take this into consideration. 

9.12.2 No Console in System 

A system can be devised that does not have any kirrl of operator's terminal or 
console I/O device. If this is the desired system, then several items must be 
considered. 

First, what will happen if an execution time error occurs? '!here should be some 
provision to notify the operator of the end-system of this fact. 

Second, it will be necessary to put a "durrmy" address of 0000 for the ACIA in 
the CALL SE'IRT statement. '!his causes the operating system to ignore any 
initialization or attempt at I/O via the ACIA. 

9-11 



9.12.3 MDOS Disk I/O 

MDOS Disk I/O operation in a Real-Time system will cause the real-time clock 
interrupts (ticks) to be ignored during accesses to the disk. Therefore, any 
waits or other timing dependent upon the real-time clock would no longer be 
accurate or necessarily consistent. When MOOS disk I/O is used, the PSCT 
portion of the program cannot be put into any type of RCJv1. 

9.13 VECTORS FOR NMI, IRQ, AND RESTART 

The following externally defined symbols may be used in defining the upper RCJv1 
vectors for the end-system: 

IRQ$ 
NMI$ 
START$ 

IRQ vector (at $FFF8) 
NMI vector (at $FFFC) 
RES vector (at $FFFE) 

The NMI in this Real-Time operating system saves the stack pointer in memory, 
sets a flag in another location, and then just goes into an endless loop. 

The system may be restarted from the NMI condition by re-entering at the 
location defined by the externally defined symbol "RESTR$". This entry point 
checks for the NMI flag and, if it finds it present, will reload the stack 
pointer from the location it was saved in previously. If it does not find the 
NMI flag, the stack is loaded from a predetermined location - the same as if the 
"STAR!'$" entry point was used. Therefore, "RESTR$" could be used in place of 
"START$" for the RES vector at $FFFE. 

The NMI flag pattern used is $C3A5 and relies upon RAM memory not initializing 
to that exact two-byte pattern upon a power-up. 

9.14 DEBUG OF REAL-TIME PRcx;RAMs 

To assist the programmer in debugging Real-Time FORTRAN programs, certain tools 
have been developed. This section gives certain information necessary to be 
able to find the cause of a system crash or other malfunction. 

It has been found to be almost a necessity to be able to disable temporarily the 
real-time clock interrupts from the system while certain debug procedures are 
used. 

9.14.1 Queue Entry Formats 

The following information is presented here to aid an advanced real-time 
programmer in determining malfunction causes. 

9-12 



QUEUE ENTRIES: 

ACTIVE QUEUE (External reference link: AQ$) 

Bytes Used for 

0-1 Link to next entry 
2 Priority level 
3 Stack Flag: O=Entry mode/new stack, l=Use old stack 

4-5 Re-entry (task) or stack address 
6-7 Data 
8-9 Lock cell address 

TIMER CONTROL (External reference link: TQ$) 

Bytes Used for 

queue) (10 ms. 
0-1 

2 
3 

Link to first entry in queue array data pool 
Initial value (1) 
10 ms. Counter 

queue) (1 sec. 
4-5 

6 
7 

Link to first entry in queue array data pool 
Initial value (100) 
1 second counter 

queue) (1 min. 
8-9 
10 
11 

Link to first entry in queue array data pool 
Initial value (60) 
1 minute counter 

TIMER QUEUE ENTRY FORMAT (first entry found from TIMER CONTROL) 

Bytes Used for 

0-1 Link to next entry 
2 Priority level 
3 Stack Flag: O=Entry mode/new stack, l=Use old stack 

4-5 Re-entry or stack address 
6-7 Data 
8-9 Counter value 

INTERRUPT QUEUE (External reference: IQ$) 

Bytes Used for 

0-1 Link to next entry 
2 Priority level 
3 Bit to test (mask)/OO=driver 

4-5 Re-entry (task) address 
6-7 Driver address or 0000 
8-9 PIA/P'I'M address/device address 

9-13 



9.14.2 QDUMP Subroutine 

'Ihis subroutine is supplied as part of the REAL-TIME FORTRAN run time library 
(FORLB.RO). It may be called at any time during a program and will use whatever 
FORTRAN console I/O is provided by the user. The purpose of the subroutine is 
to produce a dump of the various queues, in an orderly fashion, to either the 
console or the line printer (the user is queried each time it is called). 

A possible use of this subroutine might be to call it whenever any error or a 
particular error is observed. Error calls may be intercepted through the module 
named ERROR. 

9.14.3 Active Queue Dispatch Logging 

A collection of several subroutines enable logging of all dispatches from the 
active queue. These subroutines are: 

SE'IRTD 
RTDON 
RTOOFF 
RTDI'MP 

'Ihe feature is invoked by calling SETRTD and supplying the name of a two
dimensional integer array to hold the data and the mode of operation. See 
Appendix E for a further description. The dimension statement should be as 
follows: 

DIMENSION L<X;ARY(6,i) 

where: i is the maximum number of data entries. 

'Ihe logging is started by calling RTOON and halted by RTDOFF. The data may be 
printed by RTDI'MP. 

The data logged includes the real-time clock tick counter (TIC$), data bytes 2-9 
of the Active Queue, and the stack pointer value. A header is printed to 
identify the six columns of hexadecimal data. 

9-14 



CHAPI'ER 10 

EXTERNAL DEVICE DRIVERS 

10.1 INTRODUCI'ION 

MD0S FORTRAN supports external device drivers in a way which makes I/O to 
devices other than console terminal, line printer, and MDOS disk quite easy and 
efficient. 

Most device drivers will be written in assembly language and assembled as a 
relocatable module to be linked to FORTRAN when required. Normal FORTRAN 
statements such as OPEN, CLCEE, READ, and WRITE will be used by the programmer 
to access most any device. 

10.2 FORTRAN I/O STATEMENTS 

The MDOS FORTRAN statements which may be used by the programmer in implementing 
external devices for I/O are described in this context in the following 
paragraphs. 

10.2.1 EXTERNAL 

The EXTERNAL statement is used to declare the name given to the device driver as 
external to the program, distinguishing it from an internal variable or 
subprogram name. 

EXAMPLE: EXTERNAL ACIADV 

where: "ACIADV" is the name of the driver routine to be used. 

10.2.2 OPEN 

Once the driver routine has been declared EXTERNAL, it may be associated with a 
particular FORTRAN file reference number with an OPEN statement. This is very 
similar to opening a disk file, except that the external name of the driver 
routine is supplied in place of the disk file name, and the external device 
address is supplied in place of the file mode. 

GENERAL FORM: OPEN (n,x,a) 

where: n specifies the file reference number 

x specifies the external device driver routine name 

a specifies the external device address 

The same driver may be used for more than one device by additional OPEN 
statements referencing that driver. 

EXAMPLE: OPEN (7,ACIADV,$EC90) 

10-1 



This example causes the following action upon execution: 

1. Associates unit number 7 with using a driver name 11 ACIADV" for a device 
physically located at meinory address $EC90. 

2. Goes to the driver routipe "ACIADV" to perform any initialization of the 
device located at $EC90. For some devices, no initialization is 
necessary. See paragraph 10.4.1. 

NarE 

Use of the OPEN statement in conjunction with an EXTERNAL routine 
overrides any previous assignment of a file reference number to 
either a disk file or a pre-assigned unit (such as 102 for line 
printer) until a corresponding CLOSE statement is issued, at which 
time any previous assignment is restored. 

10.2.3 READ/WRITE 

After the external driver routine has been defined and a reference number 
assigned, normal READ and WRITE statements may be used in conjunction with 
FORMAT statements to perform device I/O through the driver routine. 

EXAMPLE: WRITE (7,900) 
900 FORMAT (I ENTER NUMBER & NAME » I) 

READ (7,901) INUMB,NAMEl 
901 FORMAT (I3,7A2) 

Notice that normal READ, WRITE, and FORMAT statements are used. This is true 
except where only certain bits or bytes are required to be changed on output. 
See the "B" format editing code for an explanation on how to do this. 

10.2.4 CLOSE 

Termination of the external device is done by a CLOSE statement. 

EXAMPLE: CLOSE (7) 

This statement causes the following action upon execution: 

1. The driver executes any desired termination routine for the device. 

2. Unit 7 is dis-associated from the driver and device and is now available 
for re-use if desired. 

10.3 SUPPORT!~ SUBROUTINES 

There are two supporting subroutines available for use with an external driver. 
These are DEVON and DEVOFF. 

During execution of a FORTRAN program, additional ON/OFF control may be 
optionally exercised in relation to the external device. Depending upon how 
this feature is implemented in the device driver, a CALL DEVON or CALL DEVOFF 
will take the intended action. 

10-2 



GENERAL FORM: CALL DEVON(n) 
CALL DEVOFF(n) 

where: n specifies the file reference number assigned by an OPEN 
statement. 

10.4 DRIVER STRUCTURE 

All external device drivers used with MOOS FORTRAN must adhere to certain 
conventions. These are outlined in the following paragraphs. 

10.4.1 VECI'OR TABLE 

Each driver must have a vector table, the start of which corresponds to the XDEF 
of the driver name. The vector entries are described below: 

Bytes Pointer to Function Called by 

0-1 Initialize the device OPEN 
2-3 Terminate the device CLOSE 
4-5 Input to I/O buffer READ 
6-7 Output from I/O buffer WRITE 
8-9 Poll for IRQ RTMOD routine (Real-Time version only) 
A-B Reserved 
C-D Turn on device DEVON 
E-F Turn off device DEVOFF 

If any particular function is not implemented, the vector address given should 
point to an RTS instruction. All vector routines must end with an RTS. 

The device address (if any) is passed to the driver through an externally 
defined symbolic address of DV$ADR, except for IRQ handling where accumulators A 
and B are used. I/O is passed back and forth between FORTRAN and the driver 
through a buffer defined by the symbol BUF$. 

On a WRITE statement in FORTRAN, one formatted line of output is placed in BUF$ 
buffer, then control is passed to the driver (through the vector at bytes 6-7). 
It is then the responsibility of the driver to take the data from the buffer and 
send it out to the external device. 

On a READ statement in FORTRAN, control is passed to the driver (through the 
vector at bytes 4-5). It is the driver's responsibility to receive data from 
the external device, place it in the BUF$ buffer with an ASCII EOT ($04) 
character at the end, and then return control (via RTS) to FORTRAN to get the 
data from the buffer and place it in the variable list associated with the READ 
statement. 

10.4.2 BUFFERS 

Normally, most of the I/O will use only BUF$ as the buffer. However, in certain 
interrupt driven systems, it may be desirable for the device driver routine to 
have an additional buffer of its own. This allows the driver to transfer at 
high speed 'the contents of its own buffer to BUF$ or vice-versa, when needed, 
thus freeing up BUF$ for other I/O in the system. 

10-3 



An example of this might be when a system was writing to a line printer and 
inputting from the keyboard at the same time. Here, it would be advantageous 
for the keyboard input driver and line printer driver routines to each have 
their own buffer, using BUF$ only when needed by FORTRAN. 

10.4.3 INI'ERRUPI' HANDLI~ (Real-Time Only) 

Since interrupts may come from many different sources in a system, software 
polling must be done to find the source of the interrupt. Provision has been 
made through driver vector bytes 8-9 to allow polling of the external device for 
an interrupt. Accumulators A and B will contain the device address (A most 
significant byte of address). The driver must return accumulator A cleared if 
the device did not cause the interrupt, or accumulator A as non-zero if an 
interrupt is detected. In addition, any data to be returned upon detecting an 
interrupt must be passed in the index register by the driver. 

Clearing of the interrupt source is accomplished through this driver routine 
before return to the caller. 

10.4.4 Driver Address Restrictions 

If the subroutine ATTACH is used, a device driver cannot start at any address 
below $0100. Normally, this is no restriction to be concerned with as most 
systems will use this area for either RAM or I/O devices - not program memory. 

10.5 SAMPLE DRIVERS 

The following is a source listing of a general purpose ACIA driver, which may be 
modified by the user to suit the application. Interrupts are inhibited in this 
version. Assumption is made that the ACIA clock divide ratio is 16 and that 7 
bits of data, 1 stop bit, and even parity is being used. 

NAM ACIADV 
XDEF ACIADV 
XREF BUF$,DV$ADR 

DSCT 
BPI'R RMB 2 

PSCT 
ACIADV EQU * 

FOB DEVINT 
FDB DEVI'RM 
FOB DEVIN 
FOB DEVOUT 
FOB DEVIP 
FOB DUMMY 
FOB DEVON 
FOB DEVOFF 

* UNIMPLEMENTED VECTORS 
DEVI'RM EQU * 
DEVIP EQU * 
DUMMY EQU * 

BUFFER POINTER STORAGE 

10-4 



DEVON EQU * 
DEVOFF EQU * 

RTS 

* INITIALIZATION OF ACIA 
DEVINT LDX DV$ADR 

LDAA #3 
STAA O,X 
LDAA #%00001001 
STAA O,X 
RTS 

* INPUT FRQ\1 ACIA 
DEVIN LDX #BUF$+1 
DEVIN2 STX BPTR 

LDX DV$ADR 
DEVIN4 LDAA O,X 

LSRA 
BCC DEVIN4 
LDAA l,X 
CMPA #$OD 
BEQ DEVIN9 
LDX BPTR 
STAA O,X 
INX 
CPX #BUF$+ 132 
BNE DEVIN2 

DEVIN9 LDAA #4 
STAA O,X 
RTS 

* OUTPUT TO ACIA 
DEVOUT LDX #BUF$+1 
DEV02 STX BPTR 

LDAA O,X 
CMPA #4 
BEQ DEV09 
BSR SEND 
LDX BPTR 
INX 
BRA DEV02 

DEVIN9 LDAA #$OD 
BSR SEND 
LDAA #$0A 
BSR SEND 
CL.RA 
BSR SEND 
RTS 

SEND LDX DV$ADR 
SEND2 LDAB O,X 

LSRB 
LSRB 
BCC SEND2 
STM l,X 
RTS 

END 

GET ACIA ADDRESS 

MASTER RESET 

INITIALIZE 

GET ACIA ADDRESS 
STATUS 

NOT READY 
GET DATA 
CR? 
YES 
GET BUFFER POINTER 

END OF BUFFER YET? 

EOT 
MARK END 

GET CHARACTER 
EOT? 

CR 

LF 

NULL 

GET ACIA ADDRESS 
STATUS 

NOT READY 
SEND CHARACTER 

10-5 





CHAPTER 11 

INTERFACI~ WITH MICRCJl!ODULES 

11.1 INTRODUCTION 

Micromodules are a series of Motorola OEM boards, each with various features and 
functions. MDOS 6800 REAL-TIME FORTRAN has been written with these boards in 
mind and, in most cases, can be used in a system comprised of one or more 
Micromodules. 'Ihis chapter describes the interfacing and use of some 
Micromodules with FORTRAN. 

11.2 MICROMODULE 14/14A 

Micromodule 14 (and 14A) allows use of an Arithmetic Processor Unit (APU) with 
6800/6809 family microprocessors. The REAL-TIME version of MOOS FORTRAN may 
interface and use the APU on the Micromodule 14 and 14A boards to increase 
execution speed of real nwnber arithmetic operations and allow several more trig 
functions than present in the FORTRAN library. The additional functions are: 

ASIN 
ACOS 
ALCX,;10 

11.2.1 Using MM14 or MM14A 

'Ihe programmer simply specifies use of a Micromodule 14 (or 14A) board in the 
end-system at compile time through the "M" option letter on the command line. 
See Chapter 1 concerning the command line of the compiler. 

The rest is automatic, as during link time, the proper modules from the FORTRAN 
library will be searched for and loaded. 

11.2.2 MM14/14A Precautions 

The programmer must assure that ALL modules (outside the supplied FORTRAN 
library) have been compiled with the "M" option; otherwise, there will be a 
symbol conflict during link time. 

The FORTRAN program makes no checks to ascertain that an MM14 board is present 
in the system. If the board is not present in the system at execution time, 
rather unpredictable results will take place. The program probably will either 
hang up in a loop or will abort due to an execution time error (usually an 
overflow error) • 

11-1 



11.2.3 Relocating MM14/14A Base Address 

MM14/14A (Micromodule 14/14A) is supplied with the base address wired for memory 
address $EC30. It can be changed on the board by the user to a different 
address through the following directions in the MM14 manual. 

If the base address is changed, the programmer must convey the new address to 
the linking loader (RLOAD). This may be done by either of two methods: 

a. Supply the definition of the symbol MM14$ to RLOAD by the commnd: 

DEF:MM14$=$nnnn 

where: nnnn is the new base address. 

'!his must be done BEFORE the library search is done (LIB=FORLB). 

b. Assemble a relocatable module containing an XDEF to MM14$ and define the 
new base address. This module must be loaded before the library search. 
'!he module could be as follows: 

r.t-114$ 

NAM 
XDEF 
IDNT 
EQU 
END 

11.3 MICROMODULE 12/12A 

MM14XX 
MM14$ 
MM14 BASE ADDRESS DEF $COOO 
$COOO NE.W BASE ADDRESS 

Certain rules apply to interfaces with MM12 and MM12A. Generally, as long as a 
programmer is aware of these rules, they should not inhibit the usefulness of 
the micromodules or the interfaces. 

1. For a particular device on the GPIB, its talk address and listen address 
must be the same. '!his is normally the only way it can be done since 
usually only one address switch is provided. 

2. The GPIB address of all devices must be in the range of 1 to 30, 
inclusive. Addresses outside this range are not allowed. 

3. The listen/talk addresses for MM12 or MM12A cannot have a secondary 
address. Other devices on the GPIB may have a secondary address. 

4. Only one MM12 or MM12A module may be interfaced with MDOS FORTRAN on a 
microcomputer. This does not preclude several microcomputers in a total 
system, each with its own MM12 or MM12A module. 

11- 2 



11.3.1 MM12 - GPIB Listener/Talker/Controller Module 

Interface with this module and FORTRAN is accomplished by use of a 
FORTRAN callable subroutines, drivers, and special FORTRAN statements. 
make use of the firmware supplied as part of the MM12 module. 
subroutines, FORTRAN statements, and syntax are shown below. 

set of 
These 

Useful 

EXTERNAL MM12 

OPEN (frn,MM12,ba) 

where: frn 

Declares the driver name external so it wi 11 not be 
confused with local variable names. MM12 is the name of 
the supplied driver in the library. 

is the FORTRAN I/O reference number, which is the GPIB 
address of MM12 module talker/listener. It must be an 
integer value (constant or variable) of 1 to 30. The 
MM12 cannot have a secondary address. 

MM12 is the name of the driver. 

ba is the base address of the MM12 firmware (normally at 
$8800 unless altered by user). This value is not used or 
checked, but is included for documentation and 
consistency. 

RFADG (ta,la,fmt) list 

where: ta 

'Ihis statement provides the power-on initialization of 
the MM12, defines the MM12 bus address, and associates 
the FORTRAN I/O reference number with the driver for 
later use. 

is talker bus address. 

la is listener bus address (may be integer or an integer 
array containing 1 or ioore listener addresses). 'Ihe 
address of the r-Y-112 must be designated as a listener. 

fmt is the format statement number. 

list is the list of one or more variables to receive the data 
read. 

WRITEG (ta,la,fmt) list 

where: ta is talker bus address. '!he address of MM12 must be 
designated as the talker. 

la is listener bus address (may be integer or an integer 
array containing 1 or more listener addresses). 

fmt is the format statement number. 

list is an optional list of variables whose values will be 
output. 

11-3 



CALL ATTACH(name,device,MM12,pri) 

Y.he re: name 

device 

MM12 

pri 

CLOSE (frn) 

where: frn 

is the task name, previously declared EXTERNAL. 

is the GPIB address of the device. 

is the name of the driver. 

is the priority level for the task. 

'Ihis call sets up service request interrupts for MM12 if 
desired. NaI'E: MM12 board must have jumper added from 
11 to 12 of Kl to enable an SRQ interrupt. ENSRQI must 
be called to enable the interrupt. 

is the FORTRAN I/O reference number. 

This statement releases the reference number and masks 
PIA U of MM12 so that an interrupt will no longer be 
recognized through the ATTACH previously used. 

In addition to the above routines, other individual functions may be handled 
through the other supplied library routines as follows: 

CALL MRST 

CALL ENFP (add r) 

CALL LLO ( addr) 

CALL TSETUP(ta,la) 

where: ta 

la 

CALL LISTEN(addr) 

CALL UNL 

CALL UNT 

CALL UNTUNL 

CALL TALK(addr) 

Performs a master reset of all devices on the bus. The 
state of the instruments are reset to the conditions 
specified by the manufacturer. 

Enables Front Panel controls of the instrurnent(s) 
specified by the bus address(es) (addr). 

Locks out the front panel controls of the instrument(s) 
specified. 

{TALK SET-UP) 

is the bus address for the talker 

is the bus address for the listener(s). 

This subroutine sets up the bus for the designated 
talker and the one or more designated listeners. One 
talker and at least one listener must be specified. 

Sends the listen address(es) specified. 

Sends the unlisten command. 

Sends the untalk command. 

Sends both the untalk and unlisten commands . 

Sends the talk address specified. 

11-4 



CALL TSTSRQ(addr ,code) If the specified device (addr) generated a service 
request, returns code=l, otherwise returns code=O. A 
code of -1 will be returned if a parallel poll were 
conducted and the device address was not previously 
declared with a call to PPR. 

CALL PPR(addr , line) Parallel poll response. Enters the line position (1-8) 
and device address in a parallel poll table. 

CALL POLTYP(code) Determines if a request for service test (GSRQ) is to be 
accomplished using a serial or parallel poll. 'Ibe mode 
is specified by using code=O for serial (default) or 
code=l for parallel. 

CALL RQS(status) Sends a request for service to the active controller. 

CALL ENSRQI Enables IRQ to be generated by MM12 with SRQ. 

CALL PASCTL(addr) Passes bus control to the controller specified. 

CALL RESE'TG(addr) Resets only the device(s) specified. 

CALL GE'IRIG(addr) 

CALL WT4CTL 

CALL SETEar(arg) 

Group Execute Trigger. 
specified. 

Triggers the device(s) 

Waits until the active controller passes control to this 
controller (MM12). 

Sets Ear byte to value specified in the argument. If 
two non-zero bytes are specified, these bytes will be 
sent as termination characters by the WRITEG routine. 
Default is $0DOA (CR,LF). May be changed as often as 
needed by this call. The least significant byte (default 
$0A) will be interpreted as EQT (End of Transmission) 
character by RE'..AIX3. 

11.3.1.1 Compiler Option G 

Due to the nature of handshaking on the GPIB with MM12, it is necessary to 
periodically enter the firmware on MM12 ·to assure completion of handshaking when 
the MM12 is not the controller-in-charge (CIC). 

When operated in a real-time system, this will be done every clock interrupt. 
However, in a non-real-time environment when MM12 is not the CIC, the GPIB will 
hang up whenever a conunand byte is sent on the bus, unless the MM12 firmware is 
entered to complete the handshake. 

'Iberefore, this version of FORTRAN incorporates two methods of accessing the 
MM12 firmware: 

11-5 



1. Whenever console or line printer I/O is being done, the MM12 firmware 
will be accessed if: 

a. there is an MM12 in the system, and 

b. the MM12 is not the CIC, and 

c. it is waiting for the console I/O ACIA to become ready, or on 
every character output to the line printer. 

2. The programmer may selectively turn on and off the "G" option. When 
turned on, the G option will produce JSR (Jump to Subroutine) code after 
every FORTRAN source statement. The subroutine called (ET$R30) checks for 
MM12 being the CIC and, if not, enters the firmware. Note that this 
produces an overhead of three bytes per source line and some time delay 
when invoked. 

The G option may be turned on by "$G", with the "$" in column 1. Alternatively, 
it may be turned off with "$-G". It need only be used during the portion of a 
program executing when the MM12 is not the CIC. 

If the GPIB can withstand the delay, the G option does not have to be used. 
Likewise, it should not be used in a real-time FORTRAN PRcx;RAM. 

11.3.1.2 Relocating MM12 Base Address 

MM12 is supplied with on-board firmware starting at address $B800. If it is 
desired to change this address, the user must reassemble the firmware, reprogram 
the EROM devices and, in addition, must alter the hardware connections as per 
the MM12 manual. 

If the base address is changed, the programmer must convey the new address to 
the linking loader (RLOAD). This may be done by either of two methods: 

a. Supply the definition of the symbol MM12$ to RLOAD by the command: 

DEF:MM12$=$nnnn 

where: nnnn is the new base address. 

This must be done BEFORE the library search is done (LIB=FORLB). 

b. Assemble a relocatable module containing an XDEF to MM12$ and define the 
new base address. This module must be loaded before the library search. 
'Ihe module could be as follows: 

MM12$ 

NAM 
XDEF 
IDNT 
EQU 
END 

MM12XX 
MM12$ 
MM12 BASE ADDRESS DEF $8COO 
$8COO NEW BASE ADDRESS 

11-6 



11.3.2 MM12A - GPIB Listener/Talker Module 

The use of a software driver module (MM.12A) and several special subroutines 
allow easy interface of this Micromodule to MDOS REAL-TIME FORTRAN. The 
following lists the various interfaces (more detailed information on the FORTRAN 
statements may be found in Chapter 10). 

EXTERNAL MMl 2A 

OPEN (frn,MM12A,ba) 

where: frn 

MM12A 

ba 

READ (frn,fmt) list 

where: frn 

Declares the driver name external so it wi 11 not be 
confused with local variable names. MM12A is the name 
of the supplied driver in the library. 

is the FORTRAN I/O reference number, which must be the 
same as the GPIB address of the MM12A module. It must 
be an integer value (constant or variable) of 1 to 30. 
'Ihe MM.12A cannot have a secondary address. 

is the name of the driver. 

is the base address of the GPIA device on the MM12A 
module. 

'Ihis statement associates the address and drivers and 
performs initialization of the GPIA. 

is the FORTRAN I/O reference number. 

fmt is the FORMAT statement number. 

list is the list of one or more variables to receive the data 
read. 

WRITE (frn,fmt) list 

where: frn 

'Ihis statement reads data through the MM.12A Listener 
from the GPIB. 

is the FORTRAN I/O reference number. 

fmt is the FORMAT statement number. 

list is an optional list of variables whose values will be 
output. 

This statement writes data through the MM12A talker to 
the GPIB. 

11--7 

/ 



CLffiE (frn) 

where: frn 

CALL SETEar (arg) 

CALL RQS12A(status ) 

CALL CRQS 

CALL LPE(status) 

is the FORTRAN I/O reference number. 

'Ibis statement releases the "frn", thus disassociating 
the addresses and drivers. It also resets the GPIA. 

Sets Ear byte to value specified in the argument. If 
two (2) non-zero bytes are specified, these bytes will 
be sent as termination characters by the WRITE routine. 
Default is $0DOA (CR,LF). May be changed as often as 
needed by this call. The least significant byte will be 
considered the EOT by READ. 

Sends a request for service to the active controller. 

Clears the request for service. 

Sets up the parallel poll response wi th the status byte. 

11.4 MM15A, MM15Al - A/D 8, 16, or 32 channel 

A driver is supplied for these micromodules. The usual EXTERNAL declaration and 
OPEN statements are used. However, to "read" a channel, the user will CALL a 
library supplied subroutine. Actually, two of these "read" subroutines are 
supplied - one for data in 2 's complement ; the other for data in unsigned 
binary. 

The driver is named: MM15A. Therefore, the following would be an example of 
use in a FORTRAN prcx;ram: 

EXTERNAL MM15A 

OPEN (frn,MM15A,addr) 

where: frn is the FORTRAN I/O reference. 

addr is the base address of the MM15A or MM15Al. 

The syntax for the subroutine call is: 

CALL Rl5AS(frn,cn,gain,ivar) for signed results. 

CALL Rl5AU(frn,cn,gain,ivar) for unsigned results. 

where: frn is the FORTRAN I/O reference number. 

en is the channel number. 

gain is the gain (1, 2, 4, or 8) • 

ivar is the variable in which the r esult will be returned. 

11-8 



The result returned will be in integer form acceptable to FORTRAN for arithmetic 
calculations. It will not take into account the gain used nor the range 
selected (through hardware strapping). 

Since the conversion time is 40 microseconds maximum, no use of the interrupt 
feature of this module is made because the overhead associated with interrupts 
in Real Time FORTRAN is greater than any possible time savings. The processor 
is allowed to run in a loop, waiting for the end of conversion. 

No over- or under-range error condition is returned by this module. 

In addition to the above, there is available another set of "read" subroutines 
(called RlSASA and RlSAUA) which features auto-ranging. Operation from a FORTRAN 
viewpoint is the same except that the read routines return both the value and 
the range actually used. These routines may perform more than one actual 
channel read conversion to obtain a result with the most significant digits 
possible without overflow. The first read attempt will use the "gain" supplied 
in the calling argument. Caution should be observed to use a variable (not a 
constant) in the gain parameter of the call. 

11.5 MMOSA, MMOSB - A/D 8 or 16 channel 

'Ihese modules are handled quite like the MM15A module. The driver is MMOSA or 
MMOSB. The "read" subroutines use the following syntax: 

CALL ROSA(frn,cn,ivar) for both signed and unsigned results on MMOSA. 

CALL ROSB(frn,cn,ivar) for both signed and unsigned results on MMOSB. 

where: frn is the FORTRAN I/O reference number, 

en is the channel number 

ivar is the variable in which the result will be returned. 

Since this module will halt the microprocessor during conversion, no use of the 
interrupts are made. Also, it should be noted that in systems using the PI'M for 
the real-time clock generation, the clock "ticks" will be elongated if the 
"tick" occurs during the halting of the MPU. This probably will not be of any 
consequence for most systems; however, for systems requiring great accuracy in 
timing, the user may wish to provide an externally generated real-time clock 
(10 ms. repetition rate) instead of the PIM. 

The usual OPEN, EXTERNAL, and CLOSE statements apply to these modules. 

11-9 

/ 



11.6 MM15CV, MM15CI - D/A 1 to 4 channels 

A driver and a "write" subroutine are supplied for these modules. The driver is 
named MM15C and the output subroutine has the following syntax: 

CALL Wl5C(frn,cn,ivar) 

where: frn is the FORTRAN I/O reference number, 

en is the channel number (1-4) 

ivar is the variable (or constant) containing the value to be 
output. 

The value to be output may be signed or unsigned. The actual range is determined 
by hardware strapping. The usual EXTERNAL, OPEN, and CLOSE statements apply. 

The module is initialized to 0 volts (4 ma. for CI module) or most negative 
voltage (for bipolar output) with the OPEN statement. The driver will attempt 
to initialize four channels, even though less may be present on the module. 
Therefore, base address selection should be made to allow for unused addresses 
(put the next module 8 bytes higher to allow for unused channels) • 

11.7 MMOSC - D/A 4 channel 

'!he driver is MMOSC and the write subroutine is WOSC with the same syntax as for 
MM15C series above. 

11.8 MM15B - A/D 1 to 16 channels (with MM15BEX) 

Since conversion time for this module is relatively long (133 Milliseconds 
max.), the read routine calls WAITZ until end of conversion is indicated. After 
the "read" subroutine is called, the conversion is started and control is 
returned to the real-time executive. Control will eventually be returned to the 
statement following the original "read" call. 

Driver name is MM15B and the "read" subroutine has the following syntax: 

CALL Rl5B(frn,cn,ivar) 

where: frn is the FORTRAN I/O reference number, 

en is the channel number, 

ivar is the variable in which the result will be returned. 

The usual EXTERNAL, OPEN, and CLOSE statements are used with this module. 

11-10 



11.9 MM03, MM13A, MM13B, MM13C, MM13D 

This series of Micromodule uses driver MM03 in the FORTRAN library. The MM03 
module has both input and output capability, while MM13A and MM13B have only 
output capability, and MM13C and MM13D have only input capability. 

Input (FORTRAN "RF.AD" operation) is relatively simple and straightforward. 
Output to those modules (MM13A, MM13B, and MM03) is done with the FORTRAN 
"WRITE" statement in conjunction with a FORMAT statement using the "B" format 
edit code. This allows changing only the individual outputs desired, leaving the 
remainder unaffected. 

As an example, let us suppose we are using an MM03 which has its 32 outputs set 
to this hexadecimal byte pattern: 52 40 37 08. 

If it were desired to clear bits 0 and 4 and set bit 7 of the third byte, the 
proper statements could be: 

OPEN (72,MM03,$9FFC) 
KKKK=$80 
WRITE(72,901) KKKK 

901 FORMAT(2X,B$91) 

;data 

FORTRAN will place the following bytes into the I/O buffer (BUF$): 

20 20 00 91 80 04 

and the driver (MM03) will interpret them as skipping the first two-byte 
locations of the micromodule, and using hexadecimal 91 as the bit mask for the 
data 80 for the third location. The 00 byte is a flag for the driver, and the 04 
is the ending character. 

The net result will be the third byte changing to A6, since only the bits with a 
corresponding 1 in the bit mask will be changed. 

OLD DATA 
NEW DATA 
BIT MASK 
RESULT 

00110111 
10000000 
10010001 
10100110 

($37) 
($80) 
($91) 
($A6) 

Note that it is not possible to read the old output condition in these 
micromodules to perform manipulation via software. 

Several other features of the MM03 driver should be noted. First, it is possible 
to use the same driver with up to six different micromodules. The OPEN statement 
initializes all outputs to a data zero (OFF) pattern (outputs high in MM03, open 
contacts on MM13A and MM13B). The DEVON and DEVOFF calls will turn all outputs 
on or off. The CLOSE statement turns all outputs off (same as OPEN).~-

11-11 





APPENDIX A 

SOURCE PRCGRAM CHARACTERS 

Alphabetic Characters Numeric Characters 

A N 0 5 

B 0 1 6 

c p 2 7 

D Q 3 8 

E R 4 9 

F s 

G T Special Characters 

H u 
(blank) * 

I v 
+ , (comma) 

J w 

K x 
I ' (apostrophe) 

L y 

= & 
M z 

$ 

(period) 

Except in literal data, where any valid ASCII character is acceptable, the 50 
characters listed above constitute the set of characters acceptable by MOOS 
FORTRAN. 

A-1 





APPENDIX B 

Ca-1.PII.ER ERROR MESSAGES 

When errors are detected by the compiler, the following message is printed at 
the console terminal: 

* *** ERROR code 

where: "code" represents one of the coded errors in the list below. An 
asterisk will be printed on the line preceding the error code to indicate the 
scanning position when the error was detected. 

EXAMPLE: 

IF(J-3 10,20,30 
* 

*** ERROR 05 

00 illegal character 

01 non-numeric statement number 

02 program contains too many variable names, symbol table overflow 

03 statement is too complex for compiler 

04 string is too long 

05 syntax error 

06 too many arguments (13 maximum) 

07 numeric value too large 

10 duplicate statement label 

11 name already defined 

12 array dimension too large 

13 Ca-1.MON variables cannot be initialized in DATA statements 

14 name too long (6 character maximum) 

15 PR03RAM, SUBROUTINE, TASK, or FUNCTION statement not first 

16 DATA variable does not match data type 

17 subroutine name and variable name conflict 

18 must be integer argLUnent 

B-1 



19 name not yet declared EXTERNAL 

20 too many statement labels with computed GOTO (20 maximum) 

22 dummy argument name already used 

23 too many external references 

24 common or dummy argument not permitted 

25 EQUIVALENCE not permitted 

26 E and F editing codes not permitted with I option 

30 over 10 operands in this statement 

31 number of subscripts does not agree with number of dimensions 

50 too many nested DO's (10 maximum) 

51 one of the DO arguments is not an integer 

52 DO improperly terminated 

53 END IF without matching IF-THEN 

54 END IF missing 

55 too many nested IF-THEN's (10 maximum) 

56 branch out of range in logical IF 

B-2 



APPENDIX C 

EXECUTION TIME ERROR MESSAGES 

If a fatal error is detected during execution, the following message will be 
displayed on the console terminal: 

***EXECUTION TIME ERROR #nn 
xx xx 
xx xx 
xx xx 
xxxx 

In the above example, nn represents the error number, and the four lines of xxxx 
represent the last four double bytes found on the stack (SP on 6800 and S on 
6809). These values normally represent the subroutine return addresses and can 
be of some aid in locating what routines were called/executing when the error 
was encountered. 

The following is a listing of the execution time error numbers and their 
meanings: 

01 PCWER function cannot be called with -X 

02 cannot take log of a negative number 

03 cannot take SIN or COS of a negative number 

04 cannot take SQRT of a negative number 

05 only bit positions 0-15 valid 

11 invalid device 

30 call argument and dummies unequal in number 

31 integer formats only 

32 number of CALL arguments not as expected 

33 invalid argument (out of acceptable range) 

40 too many nested repeats in FORMAT 

41 OPEN/CLOSE arguments must be integer 

42 invalid OPEN mode 

43 conflicting file modes 

44 attempt to access file not open 

45 maximum number of files already open 

C-1 



46 EOFTST or SETEOF wi th file not open 

47 attempt to REWIND file open for output 

48 file number already open 

49 fatal MDOS related error 

50 subscript exceeds allowed range 

51 integer overflow 

52 real overflow 

53 attempt to position I.SN past EOF 

54 involution value not integer 

55 floating point routines missing 

56 cannot use BACKSP or DELR after RE.WIND or WRITE , or on files open for 
output. Cannot use SETI.SN after a WRITE. 

63 no driver for READ/WRITE 

64 attempt to access device not open 

65 maximum number of devices already open 

66 MM12 not addressed for I/O 

67 improper PPR response position 

68 device number already open 

69 invalid GPIB device address (must be 1-30) 

70 talk address does not match FORTRAN I/O reference number 

71 data pool variable not array 

72 data pool buffer overflow 

73 invalid real-time clock mask 

74 attempt to "CALL" a TASK subprogram 

75 ACIA framing error 

80 argument must be an array 

90-99 (Reserved for user) 

C-2 



APPENDIX D 

LIBRARY FUNCTIONS 

Argwnents of functions must be a simple variable, constant, or subscripted 
variable. Expressions are not allowed. The type of argwnent (real or integer) 
must be as shown in the examples (x and y are real; i and j are integer). The 
function returns a single value result of the type according to function name. 

ABS 
Function Type: Real ABS(x) 
Purpose: Returns absolute value of a real nwnber supplied as an argwnent. 

ALCG 
Function Type: Real ALcx:;(x) 
Purpose: Returns the natural logarithm of "x" (base E), where "x" cannot be 

negative. 

ATAN 
Function Type: Real ATAN(x) 
Purpose: Returns the arctangent (in radians) of the argwnent. 

cos 
Function Type: Real COS(x) 
Purpose: Computes and returns the cosine of "x", where "x" is in radians and 

not negative. 

EXP 
Function Type: Real EXP(x) 
Purpose: Computes and returns e**x. 

IABS 
Function Type: Integer IABS(i) 
Purpose: Returns the absolute value of the integer argwnent. 

!AND 
Function Type: Integer IAND(i,j) 

IB 

Purpose: Peforms logical AND operation on the argwnents and returns the 
result. 

Function Type: Integer IB(i) 
Purpose: Inputs a single byte found at memory location "i". 

See also function IDB and subroutines BI, BO, DBI, DBO. 

D-1 



IBCIR 
Function Type: Integer IBCLR(i,j) 
Purpose: To clear the "j-th" bit of integer "i" and return the new value 

of "i". "j" has a range of 0 to 15. 

IBSET 
Function Type: Integer IBSET(i,j) 
Purpose: To set the "j-th" bit of integer "i" and return the new value of "i". 

"j" has a range of 0 to 15. 

IBTEST 
Function Type: Integer IBTEST(i,j) 
Purpose: To test the "j-th" bit of integer "i" and return the value of that 

bit. "j" has a range of O to 15. 

IDB 
Function Type: Integer IDB ( i) 
Purpose: Inputs two bytes found at memory locations "i" and "i+l". 

See also function IB and subroutines BI, BO, DBI, DBO. 

IEOR 
Function Type: Integer IEOR(i,j) 
Purpose: Performs the logical exclusive OR operation on the arguments and 

returns the result. 

INOT 
Function Type: Integer INOT(i) 
Purpose: Performs the logical complement of the argument and returns the 

result. 

IOR 
Function Type: Integer IOR(i,j) 
Purpose: Performs the logical inclusive OR on the arguments and returns the 

result. 

I RAND 
Function Type: Integer IRAND(O) 
Purpose: Returns a random integer number. 

See subroutine RNa-1Z for further information. 

ISHFT 
Function Type: Integer ISHFT(i,j) 
Purpose: Performs the logical shift of integer "i" by "j" bit positions. If 

"j" is positive, the shift is to the left. If "j" is negative, the 
shift is to the right. Zeros are shifted in to fill the vacated bit 
positions. There is no wrap-around of bits; therefore, any absolute 
value of "j" exceeding 16 guarantees a result of zero. 

D-2 



MADV 
Function Type: Integer MADV(i) 
Purpose: Returns the memory address of variable "i". The variable argument 

may be integer, real, or subscripted. 

MOD 
Function Type: Integer MOD(i,j) 
Purpose: Returns the result of "i" modulo "j". 

POWER 
Function Type: Real PCMER(x,y) 
Purpose: Computes "x" raised to the "y" power. "x" must not be negative. 

SIN 
Function Type: Real SIN(x) 
Purpose: Computes and returns the sine of angle "x", where "x" is in radians 

and not negative. 

SQRT 
Function Type: Real SQRT(x) 
Purpose: Computes and returns the square root of "x". "x" cannot be negative. 

D-3 





APPENDIX E 

LIBRARY SUBROUTINES 

Expressions or functions are not allowed as subroutine arguments. The type 
(real or integer) and number of arguments must be as shown in the examples (all 
arguments of subroutines shown are integer). 

ATTACH 
Subroutine CALL ATI'ACH(i,j,k,l) 
Purpose: To set up an association between an interrupt and a task in a 

Real-Time system. 
Enter: See paragraph 9.7 

BACKSP 

BI 

BO 

Subroutine CALL BACKSP(i,j) 
Purpose: Backspaces the number of records specified in an MDOS disk file. 
Enter: i = FORTRAN I/O file reference number 

j = number of records to be backspaced 
Exit: i unchanged 

j = actual number of records backspaced 

Subroutine CALL BI(i,j) 
Purpose: To input one byte at address "i" to variable "j". 
Enter: i = memory address 

j = variable to receive data 
Exit: i unchanged 

j = one byte of data from memory address 11 i 11
• 

See also: functions IB, IDB and subroutines BO, DBI, DBO. 

Subroutine CALL BO(i,j) 
Purpose: To output one byte to address "i" from variable or constant "j". 
Enter: i = memory address 

Exit: 
j = one byte of data to be output (the LS byte of an integer) 
i unchanged 
j unchanged 

See also: functions IB, IDB and subroutines BI, DBI, DBO. 

CNIN 
Subroutine CALL CNIN 
Purpose: This subroutine inputs from the console keyboard to the I/O buffer 

defined by the symbol BUF$. When called in this manner, the normal 
console prompt is printed first. 

Exit: Any characters input will be in BUF$ buffer followed by the EOT 
(hexadecimal 04) character. 

Note: May be overridden by KEYIN. See subroutine KEYIN. 

E-1 



CNINNP 
Subroutine CALL CNINNP 
Purpose: Same as CNIN except no prompt will be issued. 

CNOUT 
Subroutine CALL CNOUT 
Purpose: 'Ibis subroutine causes the buffer pointed to by the X (index) 

register to be printed on the console. The first character will be 
interpreted as the format control character. '!he output will stop 
upon encountering the hexadecimal 04 (Ear) character. 

Enter: '!he index register must point to the first character to be output. 

Note: Because of the index register requirement, this subroutine will most 
likely be of value mainly in assembly language programs, although it 
could be used in conjunction with the MADV function in FORTRAN 
programs. 

CRQS 
Subroutine CALL CRQS 
Purpose: Clears the request for service for MM12A. See chapter ll, MM12A 

routines. 

DBI 
Subroutine CALL DBI(i,j) 
Purpose: To input two bytes at address "i" and "i+l" to variable "j". 
Enter: i = memory address 
Exit: i unchanged 

j =two bytes of data from memory address "i" and "i +l". 

See also: functions IB, IDB and subroutines BI, BO, DBO. 

DBO 
Subroutine CALL DBO(i,j) 
Purpose: To output two bytes to address "i" and "i+l" from variable or 

constant "j". 
Enter: i = memory address 

j = two bytes of data to be output 
Exit: i unchanged 

j unchanged 

See also: functions IB, IDB and subroutines BO, BI, DBI. 

DELF 
Subroutine CALL DELF(i) 
Purpose: Deletes an MOOS diskette file which is presently open. 
Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

E-2 



DELR 
Subroutine CALL DELR(i,j) 
Purpose: To delete the specified number of records from an MIX)S disk file open 

for input (read), starting at the present position. 
Enter: i = FORTRAN I/O file reference number 

j = number of records to be deleted 
Exit: i unchanged 

j = actual number of records deleted 

Note: "Deletion" of records means to null-fill them on the diskette. 

DEVOFF 
Subroutine CALL DEVOFF(i) 
Purpose: For I/O devices with drivers which implement this function, to turn 

off something associated with the particular device. This can only be 
used for files which have been OPENed with associated drivers. 

Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

DEVON 
Subroutine CALL DEVON(i) 
Purpose: For I/O devices with drivers which implement this function, to turn 

on something associated with the particular device. This can only be 
used for files which have been OPENed with associated drivers. 

Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

DUMP 
Subroutine CALL DUMP(i,j,k,l) 
Purpose: Prints a specified area of memory to either the console or line 

printer for diagnostic purposes. 
Enter: i = starting address 

j = ending address 
k =device number, 101 for console, 102 for line printer 
1 = identification number which gets printed on the dump 

Exit: all parameters unchanged 

ENFP 
Subroutine CALL ENFP(i) 
Purpose: Enables front panel controls of the instrument(s) specified. For use 

with MM12. 
Enter: i = the integer bus address of a single instrument, or an integer array 

containing one or more bus addresses. 
Exit: i unchanged 

Note: Refer to chapter 11, MM12 for further information. 

ENSRQI 
Subroutine CALL ENSRQI 
Purpose: Enables IRQ to be generated by MM12 with SRQ. For use with MM12 

Note: Refer to chapter 11, MM12 for further information. 

E-3 



EOFI'ST 
Subroutine CALL EOFTST(i,j) 
Purpose: To detect an end of file (EOF) condition for an MDOS disk file being 

read without aborting in a fatal error. 
Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

j = 1 for normal condition, or 
2 for end of file indication 

ERR 
Subroutine CALL ERR(i) 
Purpose: Prints an execution time error on the console and stops the program. 
Enter: i =error number, from 1 to 99. 
Exit: 'There is no return from this CALL. 

EXIT 
Subroutine CALL EXIT 
Purpose: To stop execution of a program and return to the operating system. 

'This will return to MDOS in a system where the executable program has 
been loaded without the "V" option or executed as a command by MDOS. 
Otherwise, an SWI instruction will be executed for the system to 
assume control at that point. No "STOP" message will be printed in 
either case. 

FILTST 
Subroutine CALL FILTST(i,j) 
Purpose: 
Enter: 
Exit: 

FSCALL 

To test for existence of an MDOS disk file by name. 
i = integer array containing the file name 
i unchanged 
j = -1 if file does not exist 

O if drive specified was not ready 
+l if file was found 

Subroutine CALL FSCALL(i,j,k,l,m) 
Purpose: To allow calling of MDOS system calls (SCALL) from a FORTRAN program. 

'Ihe last argument "m" is optional and may be omitted when not needed. 
Enter: i = SCALL number 

Exit: 

j = A accumulator value 
k = B accumulator value 
1 = X index register value 
i unchanged 
j = value of A accumulator upon return from SCALL 
k = value of B accumulator upon return from SCALL 
1 = value of X index reg. upon return from SCALL 
m = (if present) value of C-bit of condition code register. 

E-4 



GE'ICB 
Subroutine CALL GE'ICB(i,j) 
Purpose: To find the IOCB address of a designated disk file. 
Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

j = IOCB address of this file. 

GETLSN 
Subroutine CALL GETLSN(i,j) 
Purpose: To find the logical sector number currently pointed to in an MOOS 

disk file. 
Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

j = logical sector number 

GETRIG 
Subroutine CALL GE'IRIG(i) 
Purpose: Group Execute Trigger for MM12. 
Enter: i = the integer bus address of 

Triggers all devices specified. 

array containing one or more 
a single instrument, or an integer 
bus addresses. 

Exit: i unchanged 

Note: Refer to chapter 11, MM12 for further information. 

INITLZ 
Subroutine CALL INITLZ 
Purpose: Used to initialize I/O devices (IOPKG module) when 

program is not used and the IOPKG module is used. 
will call this subroutine automatically if needed. 

KEY IN 
Subroutine CALL KEYIN 

a MAIN FORTRAN 
A MAIN program 

Purpose: Provides MDOS .KEYIN SCALL for FORTRAN program input, thus allowing 
the program to be loaded and run from an MOOS CHAIN control program. 
This subroutine only needs to be called once in any program to cause 
it to become effective. If actually executed, no noticeable 
operation will take place. 

Special Considerations: If the user has customized his program, some of the 
custom features (like a substitute for the "ESCAPE" key) will be overridden. In 
addition, since the MOOS SCALL of .KEYIN is actually being used, MDOS must be 
present in the system (not overwritten by a "V" load option), and the ESC key 
must be followed by a "RETURN" to become effective to stop execution of a 
program. 

LISTEN 
Subroutine CALL LISTEN(i) 
Purpose: Sends the listen address(es) on the GPIB. For use with MM12. 
Enter: i = the integer bus address of a single instrument, or an integer 

array containing one or more bus addresses. 
Exit: i unchanged 

Note: Refer to chapter 11, MM12 for further information. 

E-5 



LLO 
Subroutine CALL LLO(i) 
Purpose: Locks out the front panel controls of the instrument(s) specified. 

For use with MM12. 
Enter: i = the integer bus address of a single instrument, or an integer 

array containing one or more bus addresses. 
Exit: i unchanged 

Note: Refer to chapter 11, MM12 for further information. 

LPCRLF 
Subroutine CALL LPCRLF 
Purpose: To perform a CR, LF on the line printer 

LPDATl 
Subroutine CALL LPDATl 
Purpose: To print a message string on the line printer without a preceding CR, 

LF. 
Enter: The index register (X) must point to the first character in the 

string to be output. The string must end with a hex 04. 

LPDATA 
Subroutine CALL LPDATA 
Purpose: To print a message string on the line printer with a preceding CR, 

LF. 
Enter: 

LPE 

The index register 
string to be output. 

Subroutine CALL LPE(i) 

(X) must point to the first character 
The string must end with a hex 04. 

in the 

Purpose: Sets up the parallel poll response with the status byte. For use 
with MM12A. 

Enter: i = status byte 
Exit: i unchanged 

Note: Refer to chapter 11, MM12A for further information. 

LPINIT 
Subroutine CALL LPINIT 
Purpose: Line feeds paper on lineprinter up 6 lines for proper positioning to 

print first line. '!he number may be changed by customizing .LPINT to 
the number desired. 

LPOUT 
Subroutine CALL LPOUT 
Purpose: 

Enter: 

Prints a buffer on 
control characters. 
The index register 
string to be output. 

the lineprinter, including interpretation of any 

(X) must point to the first character in the 
The string must end with a hex 04. 

E-6 



LPQ 
Subroutine CALL LPQ(i) 
Purpose: Queries the user via the console as to whether a line printer is 

wanted or not. 'Ihe value of 101 or 102 is returned depending upon 
response. 'Ihis variable can be used in all WRITE statements. 

Exit: i = 102 if the response from the console keyboard was either Y or y. 
= 101 if any other response was given. 

MERED 
Subroutine CALL MERED(i,j,k,l,m) 
Purpose: Performs an MDOS multisector disk read operation. 
Enter: j = starting PSN to be read 

k = sector buffer start address 
1 = number of sectors to be read 
m = FORTRAN I/O file reference number 

Exit: i = error status (0= no error) 
others unchanged 

MEWRT 
Subroutine CALL MEWRT(i,j,k,l,m) 
Purpose: Performs an MDOS multisector disk write operation. 
Enter: j = starting PSN to be written 

k = sector buffer start address 
1 = number of sectors to be written 
m = FORTRAN I/O file reference number 

Exit: i = error status (O= no error) 
others unchanged 

MLOAD 
Subroutine CALL MLOAD(i,j) 
Purpose: To load a memory image file and either execute it or return to the 

FORTRAN calling program. 
Enter: i = integer array containing MDOS filename. 

j = mode: O=load disk file into memory and return. 
!=load disk file into memory and execute. 
2=load and execute with corrunand line saved. 

(command line is contained in array "i") 

Note: default file sufffix is ".LO", default drive is "O". 

MRST 
Subroutine CALL MRST 
Purpose: Performs a master reset of all devices on the GPIB. For use with 

MM12. 

Note: Refer to chapter 11, MM12 for further information. 

PAGE 
Subroutine CALL PAGE 
Purpose: To issue a form feed character to the lineprinter. 

E-7 



PASCTL 
Subroutine CALL PASCTL(i) 
Purpose: To pass control from controller in charge to another controller in 

the system. For use by MM12. 
Enter: i = address of other controller 
Exit: i unchanged 

Note: Refer to chapter 11, MM12 for further information. 

POLTYP 
Subroutine CALL POLTYP(i) 
Purpose: Sets up polling type with MM12. 
Enter: i = mode: O=serial poll, l=parallel poll 
Exit: i unchanged 

Note: Refer to chapter 11, MM12 for further information. 

PPR 
Subroutine CALL PPR(i,j) 
Purpose: Parallel poll response. Enters the line position (1-8) and device 

address in a parallel poll table. For use with MM12. 
Enter: i = device address 

j = line position (1-8) 
Exit: unchanged 

Note: Refer to chapter 11, MM12 for further information. 

PRI 
Subroutine CALL PRI(i) 
Purpose: Changes the priority level currently being executed by the Real-Time 

executive. 
Enter: i =priority level (1-255) 
Exit: i unchanged 

CC LEAR 
Subroutine CALL CCLEAR 
Purpose: To clear the Real-Time executive queue of all entries. See 

paragraph 9.10.1. 

QDUMP 
Subroutine CALL QDUMP 
Purpose: Provides a dump of the Real-Time executive queues to either the 

console or line printer (user is queried for which) for diagnostic 
purposes. 

ROSA 
Subroutine CALL ROSA(i,j,k) 
Purpose: To perform a read operation on MMOSA for both signed and unsigned 

results. 
Enter: i = FORTRAN I/O file reference number 

j = chanhel number 
Exit: i unchanged 

j unchanged 
k = result 

E- 8 



ROSB 
Subroutine CALL ROSB(i,j,k) 
Purp:>se: To perform a read operation on MMOSB for both signed and unsigned 

results. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
Exit: i unchanged 

j unchanged 
k = result 

Rl5AS 
Subroutine CALL Rl5AS(i,j,k,l) 
Purp:>se: To perform a read operation on MM15A for signed results. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
k = gain (1, 2, 4, or 8) 

Exit: i,j,k unchanged 
1 = result 

Note: Refer to chapter 11, MM15A for more details. 

R15ASA 
Subroutine CALL Rl5ASA(i,j,k,l) 
Purp:>se: To perform a read operation on MM15A for signed results. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
k = gain (1, 2, 4, or 8) 

Exit: i,j unchanged 
k = gain actually used 
1 = result 

Note: Refer to chapter 11, MM15A for more details. 

Rl5AU 
Subroutine CALL Rl5AU(i,j,k,l) 
Purp:>se: To perform a read operation on MM15A for unsigned results. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
k = gain (1, 2, 4, or 8) 

Exit: i,j,k unchanged 
1 = result 

Note: Refer to chapter 11, MM15A for more details. 

Rl5AUA 
Subroutine . CALL Rl5AUA(i,j,k,l) 
Purp:>se: To perform a read operation on MM15A for signed results. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
k = gain (1, 2, 4, or 8) 

Exit: i,j unchanged 
k = gain actually used 
1 = result 

Note: Refer to chapter 11, MM15A for more details. 

E-9 



Rl5B 
Subroutine CALL Rl5B(i,j,k) 
Purpose: To perform a read operation on MM15B. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
Exit: i unchanged 

j unchanged 
k = result 

RESE'IG 
Subroutine CALL RESE'IG(i) 
Purpose: Resets the device(s) specified on the GPIB. For use with MM12. 
Enter: i = the integer bus address of a single instrument, or an integer 

array containing one or more bus addresses. 
Exit: i unchanged 

Note: Refer to chapter ll, MM12 for further information. 

RNI»1Z 
Subroutine CALL RNIJ.1Z(i) 
Purpose: To provide a starting seed for the function IRAND. If the argument 

is O, the subroutine provides a random seed by adding together all 
memory bytes from $0000 to $7FFF. If the argument is non-zero, then 
that value will be used for the starting seed, thus producing the 
same "random" sequence of numbers upon every program use. 

Enter: i = seed (see discussion above) 

Caution: Since an argument of 0 causes access (reading) all memory locations 
in the lower 32K of memory, this could cause problems in systems 
where certain I/O parts are located in that address range. 

Note: 'Ille above problem and any uncertainies about the randomness of a 
starting seed may be overcome by the user providing a random number for 
the argument (non-zero). 

RQS 
Subroutine 
Purpose: Sends 

MM12. 

RQS12A 

CALL RQS 
a request for service to the active controller. 

Subroutine CALL RQS12A(i) 

For use with 

Purpose: Sends a request for service to the active controller. For use with 
MM12A. 

Enter: 
Exit: 

RTDIJ.IP 

i = status 
i unchanged 

Subroutine CALL RTDIJ.IP 
Purpose: Produces a dump of accumulated data from the array in effect 

(declared by the SETRTD call) on the line printer. Execution of this 
routine also "clears" the array. (Resets pointers). 

Note: Refer to subroutine SETRTD. 

E-10 



RTDOFF 
Subroutine CALL RTDOFF 
Purpose: Ends trace action initiated by RTDON. 

Note: Refer to subroutine SETRTD. 

RTDON 
Subroutine CALL RTDON 
Purpose: Starts trace action of Real-Time executive queue dispatches. 

Note: Refer to subroutine SETRTD. 

SETEOF 
Subroutine CALL SETEOF(i) 
Purpose: Sets the MDOS disk file pointers to the end of file. 
Enter: i = FORTRAN I/O file reference number 
Exit: i unchanged 

SETEOT 
Subroutine CALL SETEOT(i) 
Purpose: Sets the end of transmission (EOT) byte to value specified. 'Ibis is 

used with MM12 and MM12A. If two non-zero bytes are specified, these 
bytes will be sent as termination characters by WRITEG routine. 
Default is $0DOA (CR,LF). 

Enter: i = termination character(s) 
Exit: i unchanged 

SETLSN 
Subroutine CALL SETLSN(i,j) 
Purpose: Sets the LSN (logical sector number) of an MOOS disk file to the 

value given. 
Enter: i = FORTRAN I/O file reference number 

j = desired LSN 
Exit: unchanged 

SE'IRT 
Subroutine CALL SETRT(i,j,k,l) 
Purpose: To initialize the Real-Time executive system. 
Enter: See paragraph 9.3.1 

E-11 



SETRTD 
Subroutine CALL SETRTD(i,j) 
Purpose: This subroutine sets up a Real-Time executive queue dispatch logging 

method. The array to which data is sent and the mode of operation is 
specified by this routine. This routine may be called more than once 
in a program, even with different array names and modes. Companion 
routines are RTOON, RTOOFF, and R'IDIX-tP. The data logged includes the 
tick value of the real-time clock (TIC$), priority level, stack flag, 
task address, data bytes passed, lock cell address, and stack 
address. 

Enter: i = integer array name, dimensioned with 1st dimension of 6 and a 2nd 
dimension large enough to accomodate the number of entries 
desired. 

j = mode: O=start accumulating data until array is filled, then 
ignore rest. 
l=become circular queue, overwriting first data if 

necessary. 
Exit: unchanged 

START 
Subroutine CALL START(i,j,k,l) 
Purpose: To invoke a task in the Real-Time executive. 
Enter: See paragraph 9.5 

STAR'I'V 
Subroutine CALL STARTV(i,j,k,l,m,n) 
Purpose: To invoke a task in the Real-Time executive. 
Enter: See paragraph 9.6 

TALK 
Subroutine CALL TALK(i) 
Purpose: Send out the talk address on the GPIB. Used with MM12. 
Enter: i = talk address desired 
Exit: i unchanged 

TRESET 
Subroutine CALL TRESET 
Purpose: Resets the tick counter in the Real-Time system to zero. 

TSETUP 
Subroutine CALL TSETUP(i,j) 
Purpose: Set up the GPIB for the designated talker and one or more 

listeners. Used with MM12. 
Enter: i = the integer bus address of the talker 
Enter: j = the integer bus address of a single instrument, or an integer 

array containing one or more bus addresses of the listener(s). 
Exit: j unchanged 

Note: Refer to chapter 11, MM12 for further information. 

E-12 



TSTSRQ 
Subroutine CALL TSTSRQ(i, j) 
Purpose: Tests for service request from the designated device. Used with MM12. 
Enter: i = device bus address 
Exit: i unchanged 

j = code: -1 = parallel poll and device not previously declared with 
a call to PPR. 

0 = no SRQ from this device. 
1 = SRQ from this device. 

TTIME 
Subroutine CALL TTIME(i) 
Purpose: Returns the current value of the tick counter (TIC$) in the Real-Time 

executive system. Each count represents 1 time period of the 
Real-Time clock being used. See also TRESET. 

Exit: i = value of tick counter. 

UNL 
Subroutine CALL UNL 
Purpose: Causes all devices on GPIB to unlisten. Used with MM12. 

UNT 
Subroutine CALL UNT 
Purpose: Causes all devices on GPIB to untalk. Used with MM12. 

UNTUNL 
Subroutine CALL UNTUNL 
Purpose: Causes all devices on GPIB to untalk and unlisten. Used with MM12. 

wosc 
Subroutine CALL WOSC(i,j,k) 
Purpose: Performs the output operation to MMOSC. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
k = value to be output 

Exit: all unchanged 

Wl5C 
Subroutine CALL Wl5C(i,j,k) 
Purpose: Performs the output operation to MM15C. 
Enter: i = FORTRAN I/O file reference number 

j = channel number 
k = value to be output 

Exit: all unchanged 

WAIT 
Subroutine CALL WAIT(i,j,k) 
Purpose: To suspend a currently executing Real-Time task for a period of time, 

allowing other tasks to be executed. 
Enter: See paragraph 9.8 

E-13 



WAITE 
Subroutine CALL WAITE(i) 
Purpose: To suspend a currently executing Real-Time task until a given 

event happens, allowing other tasks to be executed. 
Enter: See paragraph 9.9 

WAITZ 
Subroutine CALL WAITZ 
Purpose: To suspend a currently executing Real-Time task to allow other 

tasks of the same or higher priority a chance for execution. This is 
the same as WAIT with zero time arguments. 

wr4CTL 
Subroutine 
Purpose: Causes 

GPIB. 
before 

CALL wr4CTL 
the program to loop until the MM12 receives control of the 
For proper operation, this subroutine should always be used 

any commands are given on the GPIB by MM12. 

E-14 



APPENDIX F 

EXAMPLE FORTRAN PRCGRAMS 

The following simple program will be used as an example to take the beginning 
user of MDOS FORTRAN through the steps of compiling and linking. 

The sample source program is in a diskette file named RADIUS.SA. This is how 
the source program appears: 

******************************************************** 
*FOR A GIVEN RADIUS (R), THIS PRCGRAM CALCULATES THE 
* 2 DIMENSIONAL (CIRCLE) DIAMETER, CIRCUMFERENCE, AND 
* AREA. THE 3 DIMENSIONAL (SPHERE) SURFACE AREA AND 
* VOLUME ARE ALSO CALCULATED. 
******************************************************** 
$1 

PRCGRAM DEMOl 
100 WRITE(lOl,9000) 
PI=3.14159 
READ(l00,9010) RADIUS 
DIAM=2*RADIUS 
CIRCUM=PI*DIAM 
AREA=PI*RADIUS**2 
SURF=4*AREA 
VOLUM=(4*PI*RADIUS**3)/3 
PRINT 9020,RADIUS,DIAM,CIRCUM,ARF.A,SURF,VOLUM 
GOTO 100 

$1 
9000 FORMAT('OENTER RADIUS') 
9010 FORMAT() ; FREE FORMAT READ (IN-LINE Ca.1MENT) 
9020 FORMAT (I A RADIUS R= I ,F4. 2, I GIVES: I I 
& I DIAMETER = I ,F4. 2/ 
& CIRCUMFERENCE= ',F4.2/ 
& AREA = I ,F4. 2/ 
& SURFACE = ',F4.2/ 
& VOLUME = ',F4.2) 

END 

F-1 



The next step is calling upon the FORTRAN compiler to compile the source 
program. The MOOS command line and resultant output which appears on the 
console: 

=FORT RADIUS;LS 

MDOS 6800 RT FORTRAN - 3.10 
Copyrighted 1980 by Motorola, Inc. 

• • • and since the conunand line calls for line printer output (L option), the 
following appears on the line printer: 

Page 001 MDOS 6800 RT FORTRAN - 3.10 

00001 ******************************************************** 
00002 *FOR A GIVEN RADIUS (R), THIS PRCGRAM CALCULATES THE 
00003 * 2 DIMENSIONAL (CIRCLE) DIAMETER, CIRCUMFERENCE, AND 
00004 * AREA. THE 3 DIMENSIONAL (SPHERE) SURFACE AREA AND 
00005 * VOLUME ARE ALSO CALCULATED. 
00006 ******************************************************** 

PRCGRAM DEMOl 
WRITE(lOl,9000) 
PI=3.14159 
READ(l00,9010) RADIUS 
DIAM=2*RADIUS 
CIRCUM=PI*DIAM 
AREA=PI*RADIUS**2 
SURF=4*AREA 
VOLUM=(4*PI*RADIUS**3)/3 

00008 
00009 100 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 

PRINT 9020,RADIUS,DIAM,CIRCUM,AREA,SURF,VOLUM 
GOTO 100 

FORMAT('OENTER RADIUS') 00020 9000 
00021 9010 
00022 9020 
00023 
00024 
00025 
00026 
00027 
00028 

FORMAT () ; FREE FORMAT READ (IN-LINE CCJ.1MENT) 
FORMAT (I A RADIUS R= I ,F4. 2, I GIVES: I I 

& I DIAMETER = I ,F4. 2/ 
& CIRCUMFERENCE= ',F4.2/ 
& AREA = I ,F4.2/ 
& SURFACE = ',F4.2/ 
& VOLUME = ',F4.2) 

END 

DEFINED Symbols: 
Symbol S Addr 

ET$ROA X 0800 
CIRCUM D 0070 
ET$R09 X OAOO 
DIAM D 006C 

Program Size: 

Symbol S Addr 

ET$R01 X 0800 
VOLUM D 007C 
RADIUS D 0068 
ET$ROO X OCOO 

Symbol S Addr 

SURF D 0078 
ET$R07 X 0900 
PI D 0064 

CSCT=OOOO DSCT=0080 PSCT=OlA5 Total=0225 

F-2 

Symbol S Addr 

ET$ROB X OEOO 
ET$R08 X ODOO 
AREA D 0074 



Since we had no errors, the next step in the process is linking the object code 
produced by the above compilation in a file named RADIUS.RO. The following is 
what appears on the console for this process: 

=RLOAD 
MDOS LINKING LOADER REV 3.01 
COPYRIGHT BY MOTOROIA 1977 
?BASE 
?IF=TEMP 
?LOAD=RADIUS 
?LIB=FORLB 
?OBJA=RADIUS 
?MAPF 

NO UNDEFINED SYMBOLS 

MEMORY MAP 

S SIZE STR END Ca-1N 
B 0000 0040 0040 0000 
c 0000 2000 2000 0000 
D 01A4 2000 21A3 0022 
P 17AC 21A4 394F 0051 

MODULE NAME BSCT DSCT PSCT 
DEMO! 0040 2000 21A4 
ETRIO 0040 2080 234A 
ET$ROA 0040 20D4 2DB2 
CNIN 0040 20D4 2DBA 
IOBUF 0040 20D6 2ElC 
ET$ROO 0040 215C 2E!C 
ET$R01 0040 215C 3106 
RTDUM 0040 215C 362C 
ET$R26 0040 2164 3634 
ERROR$ 0040 216E 3688 
ET$ROB 0040 217A 374A 
LPOUT 0040 217A 3770 
CNOUT 0040 217E 37CE 
IOPKG 0040 2180 37FA 
EXIT 0040 2182 38FC 

Ca-'JMON SECTIONS 

NAME S SIZE STR 
.SCR$$ D 0008 2182 
.DISKA P 0006 38FF 
.PORTA P 0002 3905 
.INIT P 0002 3907 
.DELST P 0003 3909 
.FCHRS P 0003 390C 
.KYADR P 0002 390F 
.PRMPT P 0004 3911 
.ADa.t P 0004 3915 
.MPCCl<t D 0019 218A 
.ERSTK P 0001 3919 

F-3 



.LCRLF P 0003 391A 

.LFMFD P 0004 391D 

.LNRDY P 0017 3921 

.XBRKV P 0003 3938 

.XC8RK P 0002 3938 

.CFMFD P 0004 393D 

.CNNUL P 0002 3941 

.CIC D 0001 21A3 

.IOADR P 0008 3943 

.Ml2CA P 0002 394E 

DEFINED SYMBOLS 

MODULE NAME: DEMOl 
MAIN$ P 21A4 STACK$ D 2063 

MODULE NAME: ETRIO 
BLFIL$ P 2687 ET$R07 P 234A 
FILE$ D 20C5 HERE9$ P 265F 
P$ADR D 20D2 Xl$ D 20C2 

MODULE NAME: ET$ROA 
ET$ROA P 2D82 

MODULE NAME: CNIN 
CNIN P 2DBD CNINNP P 2DC8 

MODULE NAME: I08UF 
BUF$ D 20D6 BUFSZ$ A 0086 

MODULE NAME: ET$ROO 
ET$ROO P 2ElC IM$R A 0000 
STADT$ P 2F23 

MODULE NAME: ET$R01 
ET$R01 P 3106 RM$R A 0001 

MODULE NAME: RTDUM 
ERNUM$ D 2162 IMPRI$ P 362C 
WAIT P 362D WAITZ P 3633 

MODULE NAME: ET$R26 
ET$R26 P 3634 

MODULE NAME: ERROR$ 
ERROR$ P 3688 

MODULE NAME: ET$ROB 
CLALL$ P 3766 ET$ROB P 374A 

MODULE NAME: LPOUT 
LPCRLF P 37C2 LPDATl P 379F 

F-4 

ET$R08 P 2418 
IN$0UT D 20C6 

D8LLF$ P 2ElA 

E8UF$ D 2158 

NEGD$ P 2EEA 

PRI$ P 362C 

LPDATA P 3788 

ET$R09 P 2D2F 
I01H$ P 23D7 

SLffi$ P 30DO 

SPND$ P 362C 

LPOUT P 3770 



?EXIT 
= 

MODULE NAME: CNOUT 
CNOUT P 37CE PDATA$ P 37E7 

MODULE NAME: IOPKG 
IN$NE P 3899 
LOUTC$ P 38BA 

MODULE NAME: EXIT 
EXIT P 38FC 

IN$NP P 3854 
OUTCH$ P 3857 

IN$NPE P 38F7 
PCRLF$ P 383E 

INITLZ P 37FA 
PDAT1$ P 388E 

At this time, the process is complete and we have an absolute object file named 
RADIUS.LO on our diskette. We may now execute the program: 

=LOAD RADIUS;G 

••• and the program prompts us for the radius. To end execution, use the ESCape 
key on the console. 

A few corrunents are in order for this simple program. We could have used the 
command of IOON in RLOAD to show the names and identifications of all the 
modules loaded and encountered in the library. This may be interesting the 
first few times you go through thE! process, and can be of some benefit if 
various errors (such as MDS - multip\y defined symbol) occur. Through various 
RLOAD comands, we could have put the PSCI' and DSC!' almost anywhere in memory. 
The BASE command was used to start the loading process at $2000 (above MDOS). 
We could have named the resultant absolute object file RADIUS.CM, thus making it 
possible to load and execute as a corrunand. 

MASTERMIND 

A second example (this one more fun) source program is on the MOOS FORTRAN 
master product diskette received from Motorola. There are two files -
MSTRMIND.SA and GETAl.SA. The first is a FORTRAN source file, while the second 
is an assembly language source file. The two, when compiled (or assembled) and 
linked with the FORTRAN library, produce the object code for a game called 
MASTERMIND. (MASTERMIND is a trademarked name of a game produced by Invicta.) 

This program illustrates several features of MDOS FORTRAN. The following is a 
chain file which may be used to compile, assemble, and link the program. Note 
that the use of a line printer is assumed - if a line printer is not available, 
the user must change the "L" in the FORT and RASM command lines to "L=#CN", and 
the "MO=#LP" to "MO=#CN" in the RLOAD commands. 

FORT MSTRMIND;ISAL 
RASM GETAl;RXL 
RLOAD 
BASE 
IF=TEMP 
Lo.rill=MSTRMIND,GETAl 
LIB=FORLB 
OBJA=MSTRMIND.CM 
MO=#LP 
MAPF 
EXIT 

F-5 



After the user has created the above file with an editor, merely type the MIX>S 
corrmand: 

=CHAIN fn 

(where fn is the name of the chain file with a CF suffix) 

and the process is "automatic". To run the game, type the command "MSTRMIND". 

Once the user has produced listings from the above process for reference, the 
following may be noted: 

1. The main program calls upon GETAl to get one character from the console 
keyboard and to return a random number. Two methods of passing values 
are used: 

a. The keyboard character is passed as an argument. 
b. The random number is passed in CSCT or Ca.1MON. 

2. The I option was used in the compilation to save nearly lK bytes of 
object code memory. Only integer (no real) values were used in the 
program. 

3. '!he X and Y compile options are illustrated. The user - may wish to 
recompile/re-link with one or both of these options. 

4. The BELL control character may be sent to the console, as shown in lines 
16 and 61 of MSTRMIND.SA. 

5. In GETAl, note that ARGl on line 37 will contain the address of where the 
argument value is stored - not the actual value of the argument. 

F-6 



APPENDIX G 

LINKIN3 FORTRAN AND ASSF.MBLY LANGUAGE PROGRAMS 

LINKING FORTRAN MAIN PROGRAMS WITH ASSEMBLY LANGUAGE SUBROUTINES 

There are several ways to pass arguments (data) between a FORTRAN program and an 
assembly language subroutine. The easiest is probably using COMMON in FORTRAN 
and CSCT in the assembly language program. Keep in mind that integers take 2 
bytes, while real numbers take 4 bytes of storage. 

Another way is to call an assembly language subroutine from FORTRAN just like 
any other subroutine. There is no difference in the FORTRAN program (keep in 
mind the limitation of 13 arguments maximum). The linkage is accomplished in the 
assembly language subroutine as follows: 

1. Use an XDEF followed by the subroutine name. Avoid the '$' and '.' 
{period) characters in the name because FORTRAN will not allow them in 
the CALL statement. 

2. Use an XREF ET$Rl6 in the subroutine. Let's assume that we will have a 
subroutine named SUB23. The first of the assembly language program might 
look like: 

NAM SUB23 
XDEF SUB23 
XREF ET$Rl6 

(this does not have to be the same name) 

3. Set up an area in DSCT of the subroutine for receiving the addresses of 
the arguments. Suppose there were 4 arguments to be passed. This is how 
it might look: 

I:SCT 
ARGl RMB 2 ADDRESS OF lST ARGUMENT 
ARG2 RMB 2 ADDRESS OF 2ND ARGUMENI' 
ARG3 RMB 2 ADDRESS OF 3RD ARGUMENT 
ARG4 RMB 2 ADDRESS OF 4TH ARGUMENT 

4. Use the subroutine name as a label at its entry point in PSCT. 

5. After the entry point of the subroutine, make a call to ET$Rl6 to do the 
"WOrk of passing the argument addresses. It should take this form in our 
example: 

PSCT 
SUB23 JSR ET$Rl6 

FDB ARCH 
FDB ARG2 
FDB ARG3 
FDB ARG4 
FCB 4 (this tells the routine there were only 4 arguments) 

6. You will no doubt make use of the indexed addressing mode to fetch the 
actual data. Keep in mind that the double bytes in DSCT area contain the 
ADDRESS of the variable or constant, Nar the actual data. 

G-1 



7. After the FCB 4 in the above example, continue the instructions i n the 
subroutine. The ET$Rl6 routine will find its way there after it does its 
\\\'.>rk of argument address passing. 

8. End the logical conclusion of the subroutine with RTS, and the assembly 
language program with the END assembler directive. 

9. Use the Relocatable Macro Assembler to assemble (RASM with "R" option). 

There is a check between the CALL and the subroutine to determine that there is 
an equal number of arguments being sent and received. 'Ihe above subroutine 
would be called like this: 

CALL SUB23(Al,A2,A3,KK) 

LINKING FORTRAN MAIN PRcx;RAMS WITH ASSEMBLY LANGUAGE FUNCTIONS 

The main difference between the subroutine and function in MDOS FORTRAN is that 
a single result is passed back to the calling program by the function. 

Upon entry to the function, the index register (X) contains the address of where 
the result should be placed. Therefore, the usual procedure will be to save the 
value of the index register first before obtaining the argument addresses via 
JSR ET$Rl6. Then, after the necessary calculations are made, the result is 
stored in memory as addressed by the saved value of the index register. The 
result will be either 2 or 4 bytes, depending upon the function name as being 
integer or real. 

LINKING ASSEMBLY LANGUAGE PRcx;RAMS AND FORTRAN SUBROUTINES 

Often it is nice to be able to call upon FORTRAN to do certain calculations and 
I/O to a printer from an assembly language program. Again, arguments may be 
passed in CCT-1MON/CSCT or with an argument list. 

Two precautions: (1) An XREF must be used in the assembly language program to 
any FORTRAN subroutine name used, and (2) Don't forget to initialize the stack 
pointer in your assembly language program!!! FORTRAN does it for you in the 
case of a main FORTRAN program, but the programmer must take the responsibility 
in cases where he is dealing with only FORTRAN subroutines and functions. 

To call a subroutine written and compiled by FORTRAN, use: 

JSR SUBF where SUBF is the subroutine name desired 

To pass arguments, use this combination immediately following the JSR for each 
argument: 

FCB xx 
FDB yyyy 

where xx is either $00 or $40, and yyyy is the direct or indirect address of the 
argument. xx=$00 if yyyy is the actual address of the argument, and xx=$40 if 
yyyy is an address where the actual address is stored (indirect). 

G-2 



The last argument must have an FCB with bit 1 set. This means a value of either 
$02 or $42. 

If FORTRAN I/O is to be used, the subroutine INITLZ must be called before 
calling upon any FORTRAN routines using the IOPKG. 

LINKING ASSEMBLY LANGUAGE PROGRAMS AND FORTRAN FUNCTIONS 

This process is slightly different from linking with FORTRAN subroutines. The 
only actual difference is that prior to using the JSR to the FORTRAN function, 
the index register (X) must be loaded with an address of a 2- or 4-byte RAM area 
where the value of the function will be returned. '!he 2 or 4 depends upon 
whether the function is integer or real. 

Following is an example of a program using both a function and subroutine: 

NAM TEST 
XREF SQRT,PRNT 
DSCT 

NUMB FDB $0140,$0000 REAL NUMBER 4.0 
ANSWER RMB 4 

RMB 100 STACK AREA 
STACK EQU *-1 

PSCT 
START LDS #STACK DON'T FORGET THIS!!! 

LDX #ANSWER 
JSR SQRT SQRT IS A FORTRAN FUNCTION 
FCB $02 
FDB NUMB 

*ANSWER NCM CONTAINS THE SQRT OF 4.0 
JSR PRNT 
FCB $02 
FDB ANSWER 

*ANSWER WAS PRINTED 
SWI 
FCB $1A SCALL .MDENT RE-ENTER MOOS 
END START 

The accompanying FORTRAN subroutine "PRNT" might look like this: 

SUBROUTINE PRNT(VALUE) 
WRITE(l01,900)VALUE 

900 FORMAT(' THE ANSWER IS ',FS.3//) 
RETURN 
END 

G-3 





APPENDIX H 

CREATING A LIBRARY OF ROUTINES 

A library of various FORTRAN or assembly language routines may be created with 
the MERGE command. Consider how subprograms call one another before merging. 
For instance, if routine A calls routine B, A must be merged first. Otherwise, 
the library must be searched twice. See the Linking Loader manual for more 
details. 

For example, suppose you want to put a subroutine called PORT in FORLB. 

=MERGE FORLB.RO,PORT.RO,MYLIB.RO 

Program PORT now follows all of the FORTRAN library in a library called MYLIB. 

It is often convenient to create a library of often-used routines - or several 
libraries. Don't forget to search the library using "LIB=" instead of "LQ.lill=" 
during RLOAD. 'Ihe "LIB=" command only loads modules from the specified file 
which satisfy unsatisfied XREF names. 

H-1 





APPENDIX I 

CHANG!~ RUNTIME I/O ADDRESSES 

For MOOS FORTRAN versions 3.10 and later, a monitor independent I/O package 
module (IOPKG.RO) is included in the FORTRAN runtime library (FORLIB.RO). The 
source code for this module (IOPKG.SA) is included on the FORTRAN product 
diskette. All I/O is referenced to the base addresses of the I/O devices (ACIA, 
PIA, etc.) as defined in a named common program section (PSCT) labeled 11 .IOADR11 • 

Use of this module makes the resultant object code not dependent on EXbug and 
MDOO firmware I/O routines, but rather only the I/O device addresses of the 
system. '!bus the user can easily transport the object code to a micromodule or 
custom system by changing the I/O device addresses. 

Since the monitor independent I/O package is normally used, it should be noted 
that the echo feature in EXbug 2.X will not function with programs using this 
I/O module. '!be output is simply not going through the EXbug subroutines any 
more. 

The named common program sections 11 .IOADR11 and ".CNNUL11 are structured as shown 
here: 

.IOADR Ca.1M PSCT 
FDB $FCF4 INPUT ACIA BASE ADDRESS 
FCB $11 " II CTRL Rffi BYTE 
FDB $FCF4 OllrPUT ACIA BASE ADDRESS 
FCB $11 " " CTRL Rffi BYTE 
FDB $EC10 PRINTER PIA BASE ADDRESS 
FCB $3C II " CTRL llA" Rffi BYTE 
FCB $3C II II II 11B11 " II 

FCB $34 II II II "A" " STROBE 

.CNNUL COMM PSCT 
FCB 0 # NULLS AFTER EACH NON-CR CHAR 
FCB 1 # NULLS AFTER EACH CR CHAR 

Notes: 1. Input/output ACIA's are configured as follows: 

BASE+O= status register 
BASE+l= data register 

2. Printer PIA is configured as follows: 

BASE+O= "A" side DDR/PDR 
BASE+l= "A" side control register 
BASE+2= "B" side DDR/PDR 
BASE+3= "B" side control register 

11 A11 side for character output. 
11 8 11 side for status as follows: 

bit O= 1 if printer ON-LINE 
bit l= 1 if printer OUT-OF-PAPER 
bits 2-7= don't cares 

CA2 used for data strobe in MDOS version. 

3. Null pad values range from zero ($00) through 255 ($FF). 

4. The above values are the defaults supplied to correspond 
with the EXORciser/MDOS environment. 

I-1 



'!his corrunon section can be changed to match the user's system by any of the 
following methods: 

a. Use the MDOS PATCH corrmand to change the object module after using the 
linker (RL(W)) : 

1. Consult the linker map to obtain the absolute base addresses for 
.IOADR and .CNNUL common sections. 

2. Use the PATCH corrmand to change the desired locations as required 
for your system. 

Example: • I(W)R= $BC23 and .CNNUL= $BC2E from the linker map. 
Console ACIA base address in the target system is 
$ED14, and five nulls are required after CR. No nulls 
are required after each character. 'Ihe printer PIA 
base address is $EC10. 

=PATCH MYPROO.LO 
2400 BD 
>BC23/ED,14,,ED,14 
>BC2E,l/5 

change ACIA address 
change CR nulls 
quit >Q 

b. Overlay the named cormnon sections .IOADR and/or .CNNUL with the user's 
values. 

1. Create an assembly language source file which includes the named 
cormnon sections to be changed. Use "RMB n" to skip over the bytes 
you do not wish to change. 

2. Assemble the source file using, the proper Macro Assembler 
(6800/6809) for your system. 

3. Load the resultant module in the linker (RLOAD) just before the 
OBJA/OBJX command is entered. This causes the user's values to 
overlay the default system values in the named common sections. 

Example: Same I/O as previous example. 

NAM MYIO 
TTL MY I/O DEFINITIONS 
OPT REL 
IDNT 08/14/80 - MY I/O DEFINITIONS 
SPC 3 

.IOADR Cet-1M PSCT 
FDB $ED14 
RMB 1 
FDB $ED14 
SPC 2 

.CNNUL CCJ.1M PSCT 
RMB 1 
FCB 5 
END 

I-2 

CONSOLE INPUT ACIA 
SAME CTRL VALUE 
CONSOLE OUTPUT ACIA 

SAME NON--cR NULLS 
CR NULL PADDIN3 



c. Customize the I/O package source code. 

1. Edit a backup copy of the I/O package source code (IOPKG.SA) 
provided on the disk to match your target system. Instructions 
to modify the package are included in the source file. 

2. Assemble the source file, using the proper Macro Assembler 
(6800/6809) for your system. 

3. Load the customized I/O package module just prior to doing the 
FORTRAN library search (LIB=FORLB) in the linker (RLOAD). 

The monitor independent I/O package module is loaded by default and occupies 
about 265 bytes of program section (PSCT), including the named common program 
sections. For certain applications to be installed · in read only memory (ROM) 
where space is tight, this extra memory is not desired. If the necessary I/O 
subroutines already exist in another ROM (such as MINibug or MICRObug), ·these 
bytes can be saved by any of the following procedures: 

a. Define the I/O subroutine addresses in RLOAD. 

1. Before entering the FORTRAN library search command (LIB=FORLIB), 
define the I/O subroutine addresses manually by entering the 
following (do not enter the parentheses portion): 

?DEF:IN$NP=$F015 
?DEF:OUTCH$=$F018 
?DEF:PCRLF$=$F021 
?DEF:PDAT1$=$F027 
?DEF:LOUTC$=$EBCC 

(INCHNP) 
(OUTCH ) 
(PCRLF ) 
(XPDATl) 
(LIST ) 

The addresses shown above are for EXbug with MDOS. Using the 
names given in parentheses, consult the MDOS Equate File Listing 
and the EXbug Subroutines and Entry Points for specific details. 
The user can substitute equivalent subroutine addresses that are 
available in the target system. 

b. Create an I/O subroutine address definition module: 

1. Create an assembly language source file which defines the symbols 
shown above in section (a) as global symbols. 

2. Assemble the source file using the proper Macro Assembler 
(6800/6809) for your system. 

3. Load the customized I/O package module just prior to doing the 
FORTRAN library search (LIB=FORLB) in the linker (RLOAD). 

Consult Appendix J, "Customizing FORTRAN for Your Target System", to see 
additional features possible using named common program sections. 

I-3 



Following is information concerning the buffer and use of the I/O routines. 

BUF$ identifies the starting location of a 134-byte buffer. Location BUF$ is 
for carriage control, so input should start at BUF$+ 1. The I/O drivers 
must interpret any carriage control character at BUF$. Since the last byte 
is EOT ($04) and the first byte is for carriage control, a maximum of 132 
printable characters is allowed. 

Index register is loaded with either the buffer address or the starting address 
of a string message when entering the console or line printer output 
routines. User-supplied drivers should not, therefore, reload the index 
register. 

Return to the operating system is used normally after an error is encountered or 
after the STOP statement is found. The operating system will be MOOS if the 
.LO program file is produced using the BASE command in RLOAD and is loaded 
with only the G option at execution time. The module EXIT is called. 

'Ihe error routine processes the error number information and normally prints it 
on the console device. The index register will contain the error number in 
ASCII at the time control is passed to module ERROR. 

I-4 



APPENDIX J 

CUS'l'a4IZIN3 FORTRAN FOR YOUR TARGET SYSTEM 

For MDOS FORTRAN versions 3.10 and later, there are several named common program 
sections (PSCT) that the user can easily overlay to customize the program for a 
given target system. A brief description of each section follows along with the 
default assembly listing. 

***** CHAR EQUATES ****** 
EQT EQU $04 
CR EQU $OD 
CAN EQU $18 
ESC EQU $1B 
RUBOUT EQU $7F 
SPACE EQU $20 
BELL EQU $07 
FF EQU $0C 
LF EQU $0A 

*** CONSOLE FORM FEED MSG S'IRIN3 (via PDAT1$) 
.CFMFD CCMwt PSCT 
FFSTR FCB FF,CR,LF,EQT 

*** CONSOLE OUTPlJI' NULL PADDIN3 *** 
.CNNUL CCMwt PSCT 

FCB 0 
FCB 1 

NUMBER OF NULLS AFTER EACH CHAR. 
NUMBER OF NULLS AFTER EACH CR/LF. 

* CONSOLE DELETE CHAR STRING (via CNOlJI') 
* (can overlay "+,BS,SPACE,BS,EQT" here to erase character on CRT) 
.DELST CCMwt PSCT 
DELS'IR FCC "+\" 

FCB EQT 

* CONTROL TEXT FUNCTION CHARACTERS 
.FCHRS CCMwt PSCT 
DELETE FCB RUBOUT 
CANCEL FCB CAN 
ESCAPE FCB ESC 

* SEE APPENDIX I FOR 
.IOADR C0'1M PSCT 
ACIAI$ FDB .ACIAI 
CTRLI$ FCB .CTRLI 
ACIAO$ FDB .ACIAO 
CTRLO$ FCB .CTRLO 
LPIA$ FDB • LPIA 
CTRLA$ FCB .CTRIA 
CTRLB$ FCB .CTRLB 
S'IRBA$ FCB .S'IRBA 

• IOADR CHANGES 

Input ACIA address 
Input ACIA ctrl reg byte 
output ACIA address 
output ACIA ctrl reg byte 
Lineprinter PIA address 
LP PIA ctrl reg A byte 
LP PIA ctrl reg B byte 
LP PIA ctr! reg A strobe 

J-1 



.ERSTK COMM PSCT 
NUMBER FCB 4 NUMBER OF STACK ENTRIES PRINTED UPON 

FATAL EXECt.rrION TIME ERROR 

* LP CR.LF message 
.LCRLF Ca-tM PSCT 
LCRLF FCB CR,LF,EOT 

* LPR Form Feed message 
.LCRLF COMM PSCT 
LCRLF FCB CR,LF,EOT 

* LP not ready message (via CNOUT) 
.LNRDY Ca-tM PSCT 
NOTRDY FCB SPACE,BELL 

FCC "** PRINTER NOT READY" 
FCB EOT 

* LPINIT Subroutine 
.LPINT COMM PSCT 
NLINES FCB 6 # of lines to page up 

* LINEPRINTER MESG STRING (VIA CNOUT) 
.LPQ COMM PSCT 
MSGl FCC II LINEPRINTER" 

FCB EQT 

* CONSOLE PRa.1PT STRING (via CNOUT) 
.PRMPT Ca-tM PSCT 
PRa.iPT FCC /+? / 

FCB EQT 

If the printer check for break feature is used, it should be noted that multiple 
PRINTER NOT READY messages may be generated due to the way output is done in 
several message strings. 

* LP break feature 
* Here when break found (via JMP) 
.XBRKV COMM PSCT 
XBRKV JMP LWAITl 
* * User must fix stack pointer 
* * Must use LWAITl in case break & user does 
* not overlay - prevents infinite loop. 
* * Here to check for break condition (via JSR) 
.XCBRK Ca.iM PSCT 
XCBRK CLC 

RTS 

J-2 



Example: 

The following source listing is an example of customizing by overlaying some of 
the named common PSCT described above. 

NAM PC<J.1N 
TTL NAMED COMMON PSCT OVERLAY EXAMPLE 
IDNT 01.00- NAMED COMMON PSCT OVERLAYS 
SPC 2 

*** EQUATES *** 
SCALL EQU $3F 
.CKBRK EQU $OD 
EOT EQU $04 
BS EQU $08 
SPACE EQU $20 

SPC 3 
* DELETE STRI~ FOR CRT ERASE FUNCTION 
* (SENT VIA FORTRAN CNOUT MODULE) 
* THE FIRST CHAR IS FOR FORMAT CONTROL. 
* 
.DELST COMM PSCT 

FCB '+,BS,SPACE,BS,EOT 
SPC 3 

* FUNCTIONAL CHARACTER DEF'S 
* 
.FCHRS COMM PSCT 

FCB BS DELETE CHAR= BACKSPACE 
RMB l CANCEL CHAR 
FCB 'Y-$40 ESCAPE CHAR= CTRL+Y 

* PREVENTS ACCIDENTAL TERMINATION FROM 
* HITT!~ THE "ESC" KEY! 

SPC 3 
* PRINTER Nar READY CHOCK FOR BREAK FEATURE 
* (SHa./N HERE FOR MOOS ENVIRONMENT) 
.XBRKV COMM PSCT 

RTS HERE WHEN BREAK FOUND 

* 
.XCBRK COMM PSCT 

FCB SCALL,.CKBRK CHECK FOR BREAK 
RTS C= l IF BREAK 
SPC l 
END 

J-3 



Changing the Size of the I/O Buffer 

'Ihe I/O buffer contained within the FORLB.RO library is 134 bytes long. 'Ibis 
allows an effective length of 132 characters on input. (The first buffer 
position is normally used for carriage control and the last position is reserved 
for the EOT control character.) 

To change the buffer size, it is necessary to produce a relocatable module, as 
shown below, and load this module (LOAD=xxxx) before the library search 
(LIB=FORLB) is done in the linking loader (RLOAD). 

BUFSZ$ 
BUF$ 
EBUF$ 

NAM 
XDEF 
DSCT 
EQU 
RMB 
EQU 
END 

IOBUF 
BUF$,EBUF$,BUFSZ$ 

134 CHANGE THIS VALUE TO ALTER BUFFER SIZE 
BUFSZ$ 
*-1 

Changing the Number of "Ports" 

The supplied table for PORT I/O allows up to six "ports" to be open at any time. 
The user may quite easily customize this table for a lesser or greater number. 
Each entry requires five bytes. '!he following module may be assembled by RASM 
as relocatable, and loaded by RLOAD before performing the library search. 
Change the value "NPORTS" to the desired number. 

NRM PTAB$ 
XDEF PTABS$,PTABE$ 
IOOT SPECIAL PORT I/O TABLE 

NPORTS EQU 6 CHANGE THIS NUMBER ONLY 
SPC 1 
DSCT 

PTABS$ EQU * 
RMB S*NPORTS 

PTABE$ EQU * 
END 

J-4 



Changing the Number/Sectors of Disk Files 

The FORLB.RO run-time library supplied with the MDOS FORTRAN compiler allows a 
maximum of four disk files open at any given time. In addition, the actual 
read/write access to the disk handles only one sector (128 bytes) of data per 
access. 

'nle user of MOOS FORTRAN may easily customize the disk I/O to: 

1. Allow a maximum of one to nine (or even more) files open at a time. 
2. Allow multisector access to the disk. 

Trade-offs involve speed of disk I/O versus memory required. Each file requires 
41 + n x 128 bytes, where n is the number of sectors. Using multisector disk 
I/O will often speed up execution of a program considerably. 

A source file named DKBUF.SA is contained on the original MDOS FORTRAN diskette. 
This file contains instructions for changes. Assembling this file requires the 
use of RASM.CM (Relocatable Macro Assembler). The assembled relocatable module 
must be loaded before the library search during link time with RLOAD.CM. 

J-5 





APPENDIX K 

USING FORTRAN WITH READ-ONLY MEMORY 

MDOS FORTRAN has been implemented so that the user may place his program in some 
form of Read Only Memory (ROM) and operate it in a system other than a 
development EXORciser. 

The requirements for a candidate ROM program to meet are: 

1. The program does not use MDOS disk I/O. 

2. Use of the "R" option during all FORTRAN module compilations. 

3. Any non-FORTRAN modules (such as assembly language) are ROM-able. 

The actual division of ROM/RAM comes about during link load time where the user 
must specify the start addresses of CSCT, DSCT, and PSCT. The ROM-able portion 
of a FORTRAN program is PSCT. Both CSCT (if used) and DSCT must be assigned to 
memory containing RAM. 

K- 1 





APPENDIX L 

SOF'IWARE CONSIDERATIONS 

M6809 FORTRAN VERSION 

The M6800 and M6809 FORTRAN compilers are compatible with the following 
exceptions to the M6809 version: 

U Stack 

Y Register 

DP Register 

SWI2,SWI3 

MEMORY MAP 

Initialized by MAIN program unit. Allocated 32 bytes by 
default (may be changed by OPTION statement). This stack is 
used by certain execution time routines, particularly in 
subscript evaluation. 

'nlis register is used freely in the library routines. 

Not used or altered. 'nle direct addressing mode is not used 
by the 6809 library except for MDOS system calls in the case 
of disk I/O. The old value is saved and restored, so the user 
may make free use of the DP register. 

'nlese are not used at present. 

Any memory not shown on the RLOAD memory load map is not required to be present 
in the end system, provided disk I/O is not being used at runtime. The full map 
is obtained through the use of the MAPF command. (Use MO=#LP to obtain map 
output on the line printer.) 

LINK PRECAUTIONS 

The real-time FORTRAN library (FORLB.RO) contains several modules with identical 
symbol definitions (XDEF). Normally, this will cause no problem. However, the 
assembly language programmer attempting to reference one or more of these 
symbols may cause the wrong modules from the library to be loaded, resulting in 
an MDS loader error (multiply defined symbol). 

The symbols to be cautious of are: 

IN$NP, PDAT1$, PCRLF$ 

If the program is not real-time (i.e., does not call SETRT) and one of the above 
symbols is referenced in an assembly language subprogram, the user should do the 
library search (LIB=FORIB) before loading that particular subprogram. 

L-1 



REAL (FLOATING POINT) REPRESENTATION 

Bytes 

NOTE 

Future releases of MDOS 6800/6809 FORTRAN may change 
the floating point representation to comply with the 
IEEE standard. The user is advised to document well 
any assembly language routines he writes using the 
present format, as future changes may be required. 

Sign and 
Exponent Mantissa 

Byte 0 is the lowest 
memory address 

Byte 0: 

MS bit (7) 
is the sign 
of the number. 
0 for positive 
1 for negative 

Bytes 1-3: 

Bits 0-6 - the exponent 
(base 16) represented in a 
7-bit 2's complement form. 

1hese three bytes represent the mantissa. The hexadecimal point is located to 
the left of byte 1, and the number is normalized if at least one bit of the 
upper nibble of byte 1 is set. 

EXAMPLES: 

Decimal Number 

a.a 
1.0 

10.0 
2.5 
0.5 

3215.4 
-1.0 

Representation (in hex) 

00 00 00 00 
01 10 00 00 
01 AO 00 00 
01 28 00 00 
00 80 00 00 
03 CS F6 66 
81 10 00 00 

L-2 



INTEGER REPRESENTATION 

Integer numbers are represented in 16-bit 2's complement form. 

The range of numbers is from -32768 to +32767. The most significant byte is 
stored at the lower of the two memory addresses. 

EXAMPLES: 

Decimal Number 

0 
1 

3215 
-1 

-32768 
+32767 

CHARACTER 

Representation (in hex) 

00 00 
00 01 
OC 8F 
FF FE 
80 00 
7F FF 

Literal characters are stored in either 2-byte integer variables or 4-byte real 
variables. Character data may be placed in variable storage through use of a 
DATA statement, an assignment, or with a READ statement. 

Normally, the characters are left-justified (first character is placed in the 
lowest memory location) and blank filled (hexadecimal 20) in the event the 
supplied data is less than the storage area. The exception to this is the Rl 
format edit code, which right justifies the character with blank fill on the 
left. 

EXAMPLE: 

DATA I/'AB'/ 
DATA A/'ABC'/ 
J='A' 

DIMENSION FILE(4) 

41 42 
41 42 43 20 
41 20 

DATA FILE/'TESTDATA.DF:l'/ 
54 45 53 54144 41 54 4ll2E 44 46 3Al31 20 20 201 

L-3 





SUGGESTION/PROBLEM REPORT 

Motorola welcomes your comments on its products and publications. Please use this form. 

To : Motorola Microsystems 
P.O. Box 20912 
Attention : Publications Manager 

Ma11 Orop 56Z 
Phoenix, Az. 85036 

Comments 
Product: 

Please Print 

Name 

Company 

Street 

City 

Manual : 

Title 

Division 

Mail Drop 

State 

Hardware/Software Support: (800) 528-1908 

Phone Number 

Zip 






