
®MOTOROLA
M68F'IN(Al)

MAY 1981

ADDENDUM

TO

M6800/M6809

MDOS FORTRAN

REFERENCE MANUAL

M68FTN (D3)

'!he following attached pages are replacement pages for the M6800/M6809
MIXE FORTRAN Reference Manual, M68FTN(D3). Revised pages have been
marked with change bars to indicate areas of change.

Pages

4-3/4-4
4-5/4-6
5-3/5-4
5-7/5-8

5-15/5-16
7-3

9-1/9-2
10-3/10-4

10-5

Pages

A-1
B-1/B-2
D-1/D-2
E-3/E-4

G-3
I-1/I-2
J-1/J-2
J-3/J-4

J-5
L-1/L-2
L-3/L-4

MICROSYSTEMS

EXAMPLE:

IF (A(J,K)**3-B)l0,4,30

4 D=B+C

30 C = D**2

10 E = (F*B)/D+l

In this example, if the value of the expression (A{J,K)**3-B) is negative, the
statement nurrbered 10 is executed next. If the value of the expression is zero,
the statement number 4 is executed next. If the value of the expression is
positive, the statement numbered 30 is executed next.

4.3.2 Logical IF Statement

GENERAL FORM: IF (a) s

where: a is any logical expression.
s is any valid executable FORTRAN statement except IF or DO.

The statement s is executed if the expression a is true; otherwise, the next
executable statement following the logical IF statement is executed. The
statement following the logical IF will be executed in any case after the
statement s causes a transfer.

EXAMPLES:

IF {FI.AGL CR.FI..AG2) GO TO 123
IF (A*B.LT.1.23) CALL RATE
IF {.NOT.{A.LT.6.0.CR.B.GT.5.0) RE'IURN

If only a variable name is given as a, the variable will be considered true aN:]
statement s will be executed if the named variable is positive {greater than or
equal to zero). The variable will be considered false aN:] statements will not
be executed if the named variable is negative.

IF {MCNDP.Y) GO TO 10

NOTE

If the expression {a) is real, a test for exact zero, or a test with
the logical operator .EQ., may not be meaningful. If the expression
involves any amount of computation, a very small value is more likely
to result than a zero. For this reason, IF statements using real
numbers should not be programmed to have a zero or .EQ. value.

4-3

I
I

4.3.3 Block IF Statement

An alternate extension to the Logical IF statement is the block IF statement.
The block IF statement is used with the END IF statement and, optionally, with
the ELSE or ELSE IF statements to form a structured programming sequence of
execution.

GENERAL FORM: IF (a) THEN

where: a is any logical expression.

The statement(s) following the THEN are executed if the expression a is true;
otherwise, the statement following the optional ELSE or ELSE IF is executed. If
no ELSE or ELSE IF statement is present, then the statement following the END IF
statement is executed next if the expression is false. The statement or
statements following the THEN are executed until the ELSE or END IF is
encountered, then control passes to the statement following the END IF.

Block IF statements may be nested. It is important, however, to have an END IF
statement paired with every IF - THEN combination.

The ELSE IF key W'Ord may contain the space, or may be written as EL.SEIF. The
remainder of the logical IF must continue on the same line as the ELSE IF (or on
a following continuation line).

No other statements or key W'Ords may follow the THEN on a line.

The ELSE statement is used alone on a line, arrl there may not be any other key
W'Ord following it (with the exception of the ELSE IF).

The END IF statement is used alone on a line and may be written ENDIF. For
every "IF" •••• "THEN", including "ELSE IF" •••• "THEN", there must be a matching
"ENDIF".

EXAMPLE 1:

IF (A.GT.B) THEN
C=3.44
D=C*A+6.21

ELSE
C=4.15
D=C*B+7.07

END IF

EXAMPLE 2:

IF (ITIMEl. LT .MAX) THEN
<statements>

EL.SEIF (ITIME2. LT .MAX) THEN
<statements>

ELSEIF (ITIME3. LT .MAX) THEN
<statements>

EL.SEIF (ITIME4.LT.MAX) THEN
<statements>

END IF
END IF
END IF
END IF

Note the use of indentation to aid in depicting the various levels of logic.

4-4

·I

I

4.4 00 LOOPS

4.4.1 DO Statement

GENERAL FORM:

00

End of
Range

x

DO
Variable

i =

Initial
Value

ml,

Test
Value

m2[,

Increment

m3]

where: x is an executable statement number appearing after the DO statement.

i is a nonsubscripted integer value and cannot be a dummy.

ml, m2, and m3 are either unsigned integer constants greater than zero,
or unsigned nonsubscripted integer variable whose value is greater
than zero. m2 may not exceed 32767 in value. m3 is optional; if it
is omitted, its value is assumed to be 1. In this case, the
preceding conuna must also be omitted. The 00 and x must each be
separated by a blank. Values ml, m2, or m3, may not be an
expression.

The 00 statement is a conmand to execute, at least once, the statements that
follow the DO statement, up to and including the statement numbered x. These
statements are called the range of the 00. The first time the statements in the
range of the DO are executed, i is initialized to the value m; each succeeding
time, i is increased by the value m3. When, at the end of the iteration, i is
equal to the highest value that does not exceed m2, control passes to the
statement following the statement numbered x. Thus, the number of times the
statements in the range of the DO are executed is given by the expression:

m2 - ml
------- + 1

m3

The brackets represent the largest integral value not exceeding the value of the
expression within the brackets. If m2 is less than ml, the statements in the
range of the DO are executed once.

Another usage for DO LOOP's is inside RF.AD, WRITE, arrl PRINT statements to allow
specification of individual elements of an array without implicitly stating
them. This form is referred to as IMPLIED 00 LOOPS.

EXAMPLE:

DIMEt-EIClJ PAY{20),RATE{20),IDATE{6)
C NOTE: For brevity, the OPEN file #4 statements are deleted.
900 FORMAT{ 9(E8.2,2X), 6Al, 5{E8.2))

RF.AD{4,900) {PAY{I), I=l,9), IDATE, {RATE{I), I=3,7), M,N
C The above statement will read 9 values from file #4 into the first 9 elements
C of the array named "PAY", 6 characters into the array named "IDATE", and 5
C values into the 3rd through the 7th elements of array named "RATE".
c

PRINT 910, {PAY{I), I= M,N)
910 FORMAT{ 7(F8.2,2X))
C The above statement prints the Mth through the Nth element of the array named
C "PAY" on the console.

4-5

'!here are several ways in which looping (repetitively executing the same
statements) may be accomplished when using the FORTRAN language. For example,
assume that a manufacturer carries 1000 different machine parts in stock.
Periodically, he may find it necessary to compute the amount of each different
part presently available. 'Ihis amount may be calculated by subtracting the
number of each item used, OUT(!), from the previous stock on hand, STOCK(!).

EXAMPLE 1

•

I=O
10 I=I+l

STOCK (I) =STOCK (I) -OIJI' (I)
IF(I-1000) 10,30,30

30 A=B+c

The first, second, and fourth statements required to control the previously
shown loop could be replaced by a single DO statement, as shown in Example 2.

EXAMPLE 2

DO 25 I = 1, 1000
25 STOCK(!) = STOCK(!) - OUT(!)

A = B+c

In Example 2, the DO variable, I, is set to the initial value of l. Before the
second execution of statement 25, I is increased by the increment, 1, ~nd
statement 25 is again executed. After 1000 executions of the DO loop, I equals
1000. Since I is now equal to the highest value that does not exceed the test
value , 1000, control passes out of the DO loop aoo the third statement is
executed next.

EXAMPLE 3

DO 25 I=l,10,2
J=I+K

25 ARRAY(J)=BRAY(J)
A=B+c

In Example 3, the DO variable I is set to the initial value of l. Before the
second execution of statement 25, I is increased by the increment, 2, and the
secooo aoo third statements are executed a secooo time. After · the fifth
execution of the DO loop, I equals 9. Since I is now equal to the highest value
that does not exceed the test value, 10, control passes out of the DO loop and
the fourth statement is executed next.

4-6

'lbe form READ (b,a} list is used to read data from file number b into the
variables whose names are given in the list. The data is transmitted from the
file to mem:>ry according to the specifications in the FORMAT statement, which is
statement number a.

EXAMPLE l

READ(5,98}A,B,(C(J,K},J=l,l0}

The above statement causes input data to be read from the data file number 5
into the variables A, B, C(l,K}, C(2,K), ••• ,C(l0,K} in the format specified by
the FORMAT statement whose statement number is 98.

EXAMPLE 2

RF.AD 98,A,B, (C(J,K},J=l,10}

The above statement causes input data to be read from the console terminal
keyboard into the variables A, B, C(l,K), C(2,K, ••• ,C(l0,K) in the format
specified by the FORMAT statement whose statement nurrber is 98.

EXAMPLE 3

READ (100,98)A,B, (C(J,K),J=l,10)

The above statement reads data from the console terminal as in the preceding
example.

Refer to Paragrah 5.9.1 for further disk file information.

REREAD CAPABILITY: Sometimes it is desired to have records in a data file which
are not uniform in format. This feature allows a re-read of the I/O record
buffer without reading in a new record. Use file nurrber 99 to accomplish this.

EXAMPLE: RF.AD(7,900)A,B,J
READ (99,90l)C,K,L

Allows reading from file number 7 under format number 900 and rereading the same
record under format rumber 901.

5.5 WRITE STATEMENT

GENERAL FORM: WRITE (b, a) list

where: a is the statement number of the FORMAT statement describing the
record(s) being written.

b is an unsigned integer constant or an integer variable that is
in the range l to 255 and represents a file reference number.

list is optional and is an I/O list of variables that will he written
to disk according to the FORMAT a.

The statement WRITE (b, a) list is used to write data into the file whose I
reference number is b from the variables whose names are given in the list. The
data is transmitted from merrory to the file according to the specifications in
the FORMAT statement, whose statement number is a. The first character is
usually a form control character (see paragraph 5.10.1.3).

5-3

EXAMPLE

WRITE (10,75)A,(B(J,3),J=l,10,2),C

The above statement causes data to be written from the variables A, B(l,3),
B(3,3), 8(5,3), 8(7,3), 8(9,3), and C to file number 10 in the format specified
by the FORMAT statement whose statement number is 75. If the file number were
101 instead of 10, the data would have been printed at the console; or if it
were 102, data would have been printed on the line printer.

5.6 PRINT STATEMENT

GENERAL FORM: PRINT a,list

where: a is the statement number of the FORMAT statement describing the
record(s) being printed.

list is optional and is an I/O list of variables that will be printed
according to the FORMAT a.

The statement "PRINT a,list" is used to print data at the console from the
variables whose names are given in the list. The data is transmitted from
meroory to the console according to the specifications in the FORMAT statement,
whose statement number is a. The first character is usually a form control
character (see paragraph 5.10.1.3).

EXAMPLE

PRINT 75,A, (8(J,3),J=l,10,2),C

The above statement causes data to be written from the variables A, 8(1,3),
8(3,3), 8(5,3), 8(7,3), 8(9,3), and C to the console in the format specified by
the FORMAT statement whose statement number is 75.

5. 7 ENCODE/DECODE STATEMENI'S

These statements are used to re-format data which is being stored in variables.
ENCODE allows writing to a buffer under format control a list of variables, the
same as a WRITE statement except that the characters remain in the buff er and
not sent to an output device. DECODE then allows reading of that buff er under a
different format control. It is much the same as a READ statement except that
the characters are already in a buffer and therefore no access of an input
device is required.

GENERAL FORM:

ENCODE fsn,li st

DECODE fsn,list

where: fsn is the FORMAT Statement Number

list is the variable list

5-4

aFw.d Describes real data fields.

aAw Describes alphanumeric data fields.

aRw Describes alphanumeric data fields.

BN Indicates a blank is ignored in nurneric input field. (default)

BZ Indicates a blank is a zero in numeric input field.

Bm Describes a bit data field.

'Literal' Transmits literal data.

wx Indicates that a field is to be filled with blanks on output or
skipped on input.

a (•••) Indicates a group format specification.

where: a is optional and is an unsigned integer constant used to denote
the number of times the format code is to be used. If a is
omitted, the code is used only once.

w is an unsigned nonzero integer constant that specifies the
number of characters in the field.

d is an unsigned integer constant specifying the number of decimal
places to the right of the decimal point; i.e., the fractional
portion.

(•••) is a group format specification. Within the parentheses are
format codes separated by corrmas or slashes. Group format
specifications can be nested to a level of two. The a preceding
this form is called a group repeat count. Note: Both corrmas
arrl slashes can be used as separators between format codes (?ee
Paragraph 5.10.1, "Various Forms of a FORMAT Statement").

m is a bit mask.

The FORMAT statement is used in conjunction with the I/O list in the READ,
PRINT, arrl WRITE statements to specify the structure of FORTRAN records arrl the
form of the data fields within the records. In the FORMAT statement, the data
fields are described with edit codes, arrl the order in which these edit codes
are specified gives the structure of the FOR'IRAN records. The I/O list gives
the names of the data items to make up the record. The length of the list in
conjunction with the FORMAT statement specifies the length of the record (see
Paragraph 5.8.1). Throughout this paragraph, the examples show console input
and output. However, the concepts apply to all input/output media.

The following list gives general rules for using FORMAT statements:

1. FORMAT statements are not executed; their function is to supply
information to the object program. They may be placed anywhere in the
source program after specification statements.

5-7

2. When defining a roRTRAN record by a roRMAT statement, it is important to
consider the maximum size record allowed on the input/output medium. For
example, if a roRTRAN record is to be printed, the record should not be
longer than 132 characters unless the I/O buffer size is expanded (see
Apperrlix J) •

3. If the I/O list is omitted from the RF.AD, WRITE, or PRINT statement, a
record is skipped on input, or a blank record is inserted on output.

4. Types I, z, and B are valid only with integer variables. Types E and F
are valid only with real variables.

5.10.l Various Forms of a FORMAT Statement

All of the edit codes in a FORMAT statement are enclosed in a pair of
parentheses, within which the edit codes are delimited by the separators: comma
and slash.

Execution of a READ, WRITE, or PRINT statement initiates format control. Each
action of format control deperrls on information provided jointly by the I/O list
- if one exists - and the edit specification. There is no I/O list item
corresponding to the edit descriptors X arrl literals enclosed in apostrophes.
These output information directly to the record.

Whenever an I, E, F, Z, B, R or A code is encountered, format control determines
whether or not there is a corresporrling element in the I/O list. If there is
such an element, appropriately converted information is transmitted. Format
control terminates when these codes are encountered and there is no
corresponding data item in the I/O list.

If, however, format control reaches the last outer right parenthesis of the edit
specification arrl another element is specified in the I/O list, control is
transferred to the group repeat count of the group edit specification terminated
by the last right parenthesis that precedes the right parenthesis ending t.he
FORMAT statement.

The question of whether or not there are further elements in the I/O list is
asked only when an I, E, F, Z, B, R, or A, or the final right parenthesis of the
edit specification, is encountered. Before this is done, X, literals enclosed
in apostrophes, arrl slashes are processed.

If there are fewer elements in the I/O list than there are edit codes, the
remaining edit codes are ignored.

5.10.1.1 COMMA

The simplest form of a FORMAT statement is the one shown at the beginning of
Paragraph 5.10.5 with the edit codes, separated by commas, enclosed in a pair of
parentheses. One FORTRAN record is defined by the beginning of the FORMAT
statement (left parenthesis) to the end of the FORMAT statement (right
parenthesis).

5-8

EXAMPLE

RF.AD 998, I,J,X

998 FORMAT ()

The values may be input in the following form:

3,5,8.3
-3,6,5.8
etc.

Free Format Input may NOT be used for alphanumeric data.

5.11 OPEN/CLOSE STATEMENTS

The OPEN and CLOSE statements give the FORTRAN programmer control of disk file
hardling. With the MD'.)S operating system, one or IrOre disk files can be open at
a given time.

5.11.1 OPEN/CLOSE Statement Arguments

GENERAL FORM:

where:

OPEN (IUNIT,IFILE,IMODE)
CLOSE (IUNIT)

I UNIT

IFILE

IMODE

is an unsigned integer
range l to 255, ard
(FORTRAN unit number).
special use.)

constant or an integer variable in the
represents a file reference number

(99 through 103 are reserved for

is a 1-7 element integer array containing the file name (in
standard MDOS format) as a 1-13 literal ASCII character string
or a single integer variable containing the file name as a 1-2
literal ASCII character string. The array must be packed ASCII
- i.e., it cannot be in an Al or Rl data format. The file name
in standard MDOS format is as follows:

FILENAME.SX:N

where: "FILENAME" is a 1-8 character name, the period (". ") is
the suffix delimiter, "SX" is a 1-2 character suffix,
the colon (":") is the logical drive delimiter, and "N"
is the logical drive nurrber.

is an unsigned integer constant or an integer variable
specifying the IrOde with which the file is to be opened.

1 = input IrOde
2 = output Irode
3 = append Irode

5-15

I

No defaults are assumed for any of the arguments; therefore, all arguments must
be specified. Note that three (3) arguments are required for OPEN, while only
one (1) is required for CLCl3E. While no defaults are assumed for any arguments,
the suffix and/or logical drive number portion(s) of !FILE will default to "SA"
arrl "O", respectively, if omitted.

Additional information about the argments is in Paragraph 8. 7, "Arguments in a
Function or Subroutine Subprogram".

5.11.2 OPEN/CLCl3E Programming Considerations

The statement OPEN (!UNIT, lFILE, !MODE) is used to open a file for input (read)
or output (write). To open a file for input, the file name must already exist
in the directory. If the file is not found in the directory, an appropriate
MDOS error is returned. To open a file for output, the file name must not be in
the directory. If the file name already exists, or if there is no more room in
the disk directory or the disk file area, an appropriate MDOS error is returned.
To avoid fatal errors, see subroutine FILTST in Apperrlix E.

The statement CLCl3E (!UNIT) is used to close a disk file after input from or
output to a file is complete. If the file was opened for input, a flag will be
set to irrlicate the file is no longer open. If opened for output, an
end-of-file record is written, the directory is updated, and a flag is set to
irrlicate the file is no longer open. All files should be closed before exiting
from the FORTRAN program.

5.11.3 OPEN/CLCl3E Examples

The following examples illustrate several OPEN/CLCl3E CALLS. The examples assume
that I and K have been assigned valid values in previous assignment or data
statements.

In the first four examples, the OPEN call will result in the default suffix (SA)
and the default logical drive nwrber (0) being used, since the suffix and
logical drive are not explicitly provided.

EXAMPLE

EXAMPLE

EXAMPLE:

1:

OPEN (I, 'FN' ,K)
CLOSE (I)

2:

J='FN'
OPEN (I,J,K)
CLOSE (I)

3

DIMENSION J(7)
DATA J/'FL' ,'NA','ME'/

OPEN (I,J,K)
CLOSE (I)

5-16

7. 4 EQIJIVALEOCE STATEMENT

The EQUIVALEOCE statement is used to define one or rrore variable name (s)
equivalent to another variable. The same memory storage locations wi 11 be
shared by one or rrore variable names.

The main use of this statement would be to save on memory size needed for a
particular application.

GENERAL FORM: EQUIVALENCE (a,b), (c,d) ••• , (x,y)

where each pair enclosed by parethesis are declared equivalent.

If either or both of the variables are dimensioned, they must have been declared
prior to using in an equivalence statement.

Example: Suppose there were two arrays in a program - A and B. Let's dimension
them first •••

DIMENSION A(S),B(lO)

Now, to make them occupy the same area in merrory •••

EQUIVALENCE (B,A)

or to make the 2nd element of A occupy the same merrory location as the 5th
element of B .••

EQUIVALEOCE (B(5),A(2))

Note that reversing the two elements in the above statement would be illegal
since it would cause the lowest 3 elements of array B to fall lower than the
start of array A.

7.5 EXTERNAL STATEMENT

This statement is used to declare a name to be an external reference rather than
a variable name or subprogram name in a program unit.

GENERAL FORM: EXTERNAL nl,n2, ••• nN

where nl, n2, etc. are legal FORTRAN names.

After declaring external, the same name may not be used in any other way within
the program unit. There are only two statements with which this name may be
used - namely, OPEN and CALL - arrl then only as arguments.

Examples of this statement are shown in Chapter 10, paragraphs 10.2.1 and
10.2.2, and Chapter 11, paragraph 11.3.1.

7-3

I

OIAPTER 9

6800 REAL-TIME FORTRAN

9.1 INTRODUCTIOO

The Real-Time features available in the MIX)S REAL TIME FORTRAN version give the
user the capability of writing real-time software in a high-level language for
ultimate use in an EXORciser, EXORterm, Microrrodule or equivalent 6800 based
system.

NOI'E

EXORterm CRT's do not have the IRQ line from ACIA connected.
Connecting this line may cause MDOS not to boot due to improper
initialization of ACIA by EXbug (XMIT IRQ enabled). Therefore,
to boot MDOS, first enter FCF4/ll, and then boot MDOS.

The Real-Time version not only is a language compiler, but also contains an
execution-time operating system with severai queues of tasks to be performed,
along with an ability to respond to real-time interrupts and generation of
delays.

9.2 REAL-TIME OPERATIN:l SYSTEM

The operating system may be looked upon as having several features, namely:

Task queues
Priori ties

9.2.1 Task Queues

Interrupt handling
Delay queuing

There are five queues of tasks to be performed:

1. An active queue
2. A 10-millisecond timer queue
3. A one-second timer queue
4. A one-minute timer queue
5. An interrupt association queue

Tasks or segments of tasks which are to be executed after specified time delays
are placed in the 10 millisecond, 1 second, and 1 minute queues with associated
counts of time delay units. The programmer can do this with calls to START and
WAIT subroutines as described later.

The operating system determines when tasks are to be transferred to the active
queue based upon the specified time delays. Tasks with no time delays are
entered in the active queue directly.

When a READ, PRINT, or WRITE statement is encountered, the operating system does
not. permit the system to be locked in the I/O operation as is the case in
standard FORTRAN. The operating system will start the next ready task in the
active queue if a delay is encountered in waiting for an I/O device to become
ready. After the device has become ready, control will return to the I/O task.
It is up to the user to control multiple tasks requesting I/O to the same device
so as to not interleaf the output.

9-1

I

9.2.2 Priorities

Associated with each task in the active queue is a priority level. There are two
classes of priorities: Immediate and Normal. Priority levels are numbered from
1 to 255. Immediate class priority levels are 1-127, while Normal class
priority levels are 128-255. The lower the nurrber, the greater the priority.

In either class, when a task is placed in the active queue with the same
priority class as the currently executing task, the current task will not
irranediately be suspended, regardless of its priority level. Instead, the newly
invoked task must wait until the current task terminates or is delayed or
performs standard FORTRAN I/O. However, a task invoked with a priority in the
immediate class will cause a task with priority in the normal class to be
temporarily suspended until the task in the irranediate class has completed
execution. A task with a normal priority cannot cause the suspension of a task
with immediate priority.

It is suggested that immediate class priori ties only be used for short tasks
requiring very high priority, since they actually interrupt the execution of a
normal priority task and data integrity may be lost if data is common to both
tasks.

9.2.3 Interrupt Handling

A special form of a subroutine subprogram, called a TASK, is written to perform
the desired operations upon receiving an interrupt from some external device in
the system.

The association between a particular interrupt and a named TASK is made with a
subroutine CALL to A'ITAOi. Arguments passed with the call include the TASK
name, the meirory address of the interrupting peripheral device, a mask to
determine source of the interrupt arrl type of device, am the priority level
number of the TASK.

A given TASK can be attached to handle more than one peripheral device. The
real-time operating system will prevent the same task from executing
simultaneously for two or more interrupts.

9.2.4 Delay Queuing

Tasks can be invoked in either of two manners. One by external interrupt as
depicted above, the other by placing it into the queue by a subroutine call to
START or STARTV.

The call to START (am STARTV) requires specification of the TASK name and an
associated delay. The task is placed in the appropriate timing queue (or into
the active queue in case of zero delay). STARTV allows passing of two
additional arguments, one of them being a priority. START uses the current
executing task priority level for the priority of the newly invoked task.

Delay control routines enable the currently executing task to be susperrled from
execution for a period of time or until some event occurs. This suspension
allows other tasks to be executed. The subroutine names for this feature are
WAIT and WAITE, whereby the first specifies a time value, and the second
specifies an argument which must reach a value of zero before control is
returned.

9-2

GENERAL FORM: CALL DEVON (n)
CALL DEVOFF(n)

where: n specifies the file reference number assigned by an OPEN
statement.

10.4 DRIVER STRUCTURE

All external device drivers used with MOOS FORTRAN must adhere to certain
conventions. These are outlined in the following paragraphs.

10.4.1 VECTOR TABLE

Each driver must have a vector table, the start of which corresponds to the XDEF
of the driver name. The vector entries are described below:

Bytes Pointer to Function Called by

0-1 Initialize the device OPEN
2-3 Terminate the device CLOOE
4-5 Input to I/O buffer READ
6-7 Output from I/O buffer WRITE
8-9 Poll for IRQ R™OD routine (Real-Time version only)
A-B Reserved
C-D Turn on device DEVON
E-F Turn off device DEVOFF

If any p::irticular function is not implemented, the vector address given should
p:>int to an RTS instruction. All vector routines must end with an RTS.

The device address (if any) is passed to the driver through an externally
defined symbolic address of IJV$ADR, except for IRQ handling where accumulators A
and B are used. I/O is passed back and forth between FORTRAN and the driver
through a buffer defined by the symbol BUF$.

On a WRITE statement in FORTRAN, one formatted line of output is placed in BUF$
buffer, then control is passed to the driver (through the vector at bytes 6-7).
It is then the resp:>nsibili ty of the driver to take the data from the buffer aoo
send it out to the external device.

On a READ statement in FOR'IRAN, control is passed to the driver (through the
vector at bytes 4-5). It is the driver's responsibility to receive data from
the external device, place it in the BUF$ buffer with an ASCII EOT ($04)
character at the end, and then return control (via RTS) to FORTRAN to get the
data from the buffer and place it in the variable list associated with the READ
statement.

10.4.2 BUFFERS

Normally, most of the I/O will use only BUF$ as the buffer. However, in certain
interrupt driven systems, it may be desirable for the device driver routine to
have an additional buffer of its own. This allows the driver to transfer at
hl.gh speed the contents of its own buffer to BUF$ or vice-versa, when needed,
thus freeing up BUF$ for other I/O in the system.

10-3

An example of this might be when a system was writing to a line printer and
inputting from the keyboard at the same time. Here, it would be advantageous
for the keyboard input driver and line printer driver routines to each have
their own buffer, using BUF$ only when needed by FORTRAN.

10.4.3 INTERRUPI' HANDLIN:; (Real-Time Only)

Since interrupts may come from many different sources in a system, software
polling must be done to find the source of the interrupt. Provision has been
made through driver vector bytes 8-9 to allow polling of the external device for
an interrupt. Accumulators A and B will contain the device address (A most
significant byte of address). The driver must return accumulator A cleared if
the device did not cause the interrupt, or accumulator A as non-zero if an
interrupt is detected. In addition, any data to be returned upon detecting an
interrupt must be passed in the index register by the driver.

Clearing of the interrupt source is accomplished through this driver routine
before return to the caller.

10.4.4 Driver Address Restrictions

If the subroutine ATTACH is used, a device driver cannot start at any address
below $0100. Normally, this is no restriction to be concerned with as most
systems will use this area for either RAM or I/O devices - not program memory.

10.5 SAMPLE DRIVERS

The following is a source listing of a general purpose ACIA driver, which may be
modified by the user to suit the application. Interrupts are inhibited in this
version. Assumption is made that the ACIA clock divide ratio is 16 and that 7
bits of data, 1 stop bit, and even parity are being used.

NAM ACIAfJV
XDEF ACIAfJV
XREF BUF$,EBUF$,DV$AfJR
SPC 1
DSCT

BPI'R RMB 2 BUFFER POINTER STORAGE
SPC l
PSCT

ACIAfJV EQU *
FDB DEVINT
FDB DEVTRM
FDB DEVIN
FOB DEVOUT
FDB DEVIP
FDB DUMMY
FDB DEVON
FDB DEVOFF
SPC l

* UNIMPLEMENTED VECTORS
DEVTRM EQU *
DEVIP EQU *
DLJMv'IY EQU *
DEVON EQU *

10-4

DEVOFF EQU
RTS

*
SPC 1

* INITIALIZATION OF ACIA
DEVINT LOX D\l$ADR GET ACIA ADDRESS

LDAA #$03
STAA O,X MASTER RESET
LDAA #%00001001
STAA O,X INITIALIZE
RTS
SPC 1

* INPUT TO BUFFER FROM A.CIA: TERMINATE ON CR
DEVIN LOX #BUF$+1
DEVIN2 STX BPl'R

LOX D\l$ADR
DEVIN4 LDAA O,X

LSRA
BCC
LDAA
CMPA
BEQ
LOX
STAA
INX
CPX
BNE

DEVIN9 LOAA

DEVIN4
l,X
#$00
DEVIN9
BPl'R
o,x

#EBUF$
DEVIN2
#4

STAA O,X
RTS
SPC 1

GET A.CIA ADDRESS
STATUS

READY?
YES: GET DATA
CR?
YES: TERMINATE
NO: GET BUFFER POINTER

END OF BUFFER YET?
NE=> NOT YET

EOT
MARK END

* OUTPl!I' BUFFER TO ACIA: TERMINATE W/CRLF
* (IGNORES FOR!vS CONTROL CHARACTER AT BUF$)
DEVOUT LOX #BUF$+1
DEV02 STX BPl'R

LOAA O,X
CMPA #4

GET CHARACTER
EOT?

BEQ DEV09 YES: TERMINATE W/CRLF
BSR SEND NO: SEND CHAR & GET NEXT
LOX BPTR
INX
BRA
SPC

DEV09 LOAA
BSR
LDAA
BSR
CLRA

* FALL INTO
SPC

SEND LOX
SEND2 LDAB

LSRB
LSRB
BCC
STAA
RTS
SPC
END

DEV02
1
#$OD CR
SEND
#$0A LF
SEND

"SEND" SUBROUTINE!
1

NULL

DV$ADR GET ACIA ADDRESS
O,X STATUS

SEND2 READY?
l,X YES: SEND CHARACTER

1

10-5

APPENDIX A

SOURCE PRa:;RAM CHARACTERS

Alphabetic Characters Numeric Characters

A N 0 5

B 0 1 6

c p 2 7

D Q 3 8

E R 4 9

F s

G T Special Characters

H u
(blank) *

I v
+ , (conuna)

J w

K x
I ' (apostrophe)

L y

= &
M z

$

(period)

Except in literal data, where any valid ASCII character is acceptable, the 50
characters listed above constitute · the set of characters acceptable by MOOS
FORTRAN. See Chapter 2, paragraph 2.10, for reserved keywords. ~

A-1

APPENDIX B

COMPILER ERROR MESSAGES

When errors are detected by the compiler, the following message is printed at
the console terminal:

*
*** ERROR code

where: "code" represents one of the coded errors in the list below. An
asterisk will be printed on the line preceding the error code to indicate the
scanning position when the error was detected.

EXAMPLE:

IF(J-3 10,20,30
*

*** ERROR 05

00 illegal character

01 non-numeric statement number

02 program contains too many variable names, symbol table overflow

03 statement is too complex for compiler

04 string is too long

05 syntax error

06 too many arguments (13 maximum)

07 numeric value too large

10 duplicate statement label

11 name already defined

12 array dimension too large

13 CC1v1MON variables cannot be initialized in n.a.TA statements

14 name too long (6 character maximum)

15 PRCX3RAM, SUBROUTINE, TASK, or FUNCTION statement not first

16 n.a.TA variable does not match data type

17 subroutine name and variable name conflict

18 must be integer argument

B-1

19 name not yet declared EXTE~AL

20 too many statement labels with computed GOTO (20 maximum)

22 dumrrry argument name already used

23 too many external references

24 coouron or dumrrry argument not permitted

25 EOOIVALENCE not permitted

26 E arrl F editing codes not permitted with I option

I 30 over 20 operarrls in this statement

31 number of subscripts does not agree with nurrber of dimensions

50 too many nested DO's (10 maximum)

51 one of the DO arguments is not an integer

52 DO improperly terminated

53 END IF without matching IF-THEN

54 END IF missing

55 too many nested IF-THEN' s (10 maximum)

56 branch out of range in logical IF

B-2

APPENDIX D

LIBRARY FUNCTICNS

Argl.lllents of functions must be a simple variable, constant, or subscripted
variable. Expressions are not allowed. The type of argument (real or integer)
must be as shown in the examples (x and y are real; i and j are integer). The
function returns a single value result of the type according to function name.

ABS
Function Type: Real ABS(x)
Purpose: Returns absolute value of a real nunber supplied as an argument.

ALa:;
Function Type: Real AL03(x)
Purpose: Returns the natural logari thrn of "x" (base E), where "x" cannot be

negative.

ATAN
Function Type: Real ATAN(x)
Purpose: Returns the arctangent (in radians) of the argument.

cos
Function Type: Real COS(x)
Purpose: Computes and returns the cosine of "x", where "x" is in radians and

not negative.

EXP
Function Type: Real EXP (x)
Purpose: Computes and returns e**x.

!ABS
Function Type: Integer IABS(i)
Purpose: Returns the absolute value of the integer argument.

!AND

IB

Function Type: Integer IAND(i,j)
Purpose: Peforrns logical AND operation on the arguments and returns the

result.

Function Type: Integer IB(i)
Purpose: Inputs a single byte found at merrory location "i".

See also function IDB and subroutines BI, BO, DBI, DBO.

D-1

I

IBCLR
Function Type: Integer IBCLR(i,j)
Purpose: To clear the "j-th" bit of integer "i" aoo return the new value

of "i". "j" has a range of O to 15.

I BS ET
Function Type: Integer IS.SET (i, j)
Purpose: To set the "j-th" bit of integer "i" aoo return the new value of "i".

"j" has a range of O to 15.

IBTEST
Function Type: Integer IBTEST(i,j)
Purpose: To test the "j-th" bit of integer "i 11 aoo return the value of that

bit. "j" has a range of O to 15.

IDB
Function Type: Integer IDB(i)
Purpose: Inputs two bytes found at meroory locations "i" aoo "i+l".

See also function IB aoo subroutines BI, BO, DBI, DBO.

IEOR
Function Type: Integer IEffi (i ,j)
Purpose: Performs the logical exclusive OR operation on the arguments and

returns the result.

INOT
Function Type: Integer INOT(i)
Purpose: Performs the logical complement of the argument and returns the

result.

IOR
Function Type: Integer ICR (i, j)
Purpose: Performs the logical inclusive OR on the arguments and returns the

result.

I RAND
Function Type: Integer IRAND(O)
Purpose: Returns a random integer number.

The integer value returned can assume the full integer range (-32768 through
+32767). A dununy argument (a zero, for example) is necessary to satisfy the
requirement that all functions have at least one argument.

See subroutine RNrf.1Z for further information.

D-2

DELR
Subroutine CALL DELR(i,j)
Purpose: To delete the specified number of records from an MIX>S disk file open

for input (read), starting at the present position.
Enter: i = FORTRAN I/O file reference number

j = number of records to be deleted
Exit: i unchanged

j = actual nwrber of records deleted

Note: "Deletion" of records means to null-fill them on the diskette.

DEVOFF
Subroutine CALL DEVOFF(i)
Purpose: For I/O devices with drivers which implement this function, to turn

off something associated with the particular device. This can only be
used for files which have been OPENed with associated drivers.

Enter: i = FORTRAN I/O file reference number
Exit: i unchanged

DEVOO
Subroutine CALL DEVON(i)
Purpose: For I/O devices with drivers which implement this function, to turn

on something associated with the particular device. TI'lis can only be
used for files which have been OPENed with associated drivers.

Enter: i = FOR'IRAN I/O file reference number
Exit: i unchanged

DUMP
Subroutine CALL DUMP(i,j,k,l)
Purpose: Prints a specified area of meirory to either the console or line

printer for diagnostic purposes.
Enter: i = starting address

j = errling address
k = device number, 101 for console, 102 for line printer
1 = identification number which gets printed on the dump

Exit: all parameters unchanged

ENFP
Subroutine CALL ENFP(i)
Purpose: Enables front panel controls of the instrument(s) specified. For use

with MM12.
Enter: i = the integer bus address of a single instrument, or an integer array

containing one or more bus addresses.
Exit: i unchanged

Note: Refer to chapter 11, MM12 for further information.

ENSRQI
Subroutine CALL ENSRQI
Purpose: Enables IRQ to be generated by MM12 with SRQ. For use with MM12

Note: Refer to chapter 11, MM12 for further information.

E-3

I

EOFTST
Subroutine CALL EOFI'ST(i,j)
Purpose: To detect an end of file (EOF) condition for an MDOS disk file being

read without aborting in a fatal error.
Enter: i = FORTRAN I/O file reference number
Exit: i unchanged

j = 1 for normal condition, or
2 for end of file indication

ERR
Subroutine CALL ERR(i)
Purpose: Prints an execution time error on the console and stops the program.
Enter: i =error nurrt>er, from 1 to 99.
Exit: There is no return from this CALL.

EXIT
Subroutine CALL EXIT
Purpose: To stop execution of a program and return to the operating system.

FILTST

This will return to MDOS in a system where the executable program has
been loaded without the "V" option or executed as a corrrnand by MDOS.
Otherwise, an SWI instruct ion wi 11 be executed for the sys tern to
assume control at that p:>int. No "STOP" message will be printed in
either case.

Subroutine CALL FILTST(i,j)
Purpose: To test for existence of an MOOS disk file by name.
Enter: i = integer array containing the file name. The array must be packed

ASCII - i.e., it cannot be in an Al or Rl data format.
Exit: i unchanged

FSCALL

j = -1 if file does not exist
O if drive specified was not ready

+l if file was found

Subroutine CALL FSCALL(i,j,k,l,m)
Purpose: To allow calling of MDOS system calls (SCALL) from a FORTRAN program.

The last argument "m" is optional and may be omitted when not needed.
Enter: i = SCALL nurnbe r

j = A accumulator value
k = B accumulator value
1 = X index register value

Exit: i unchanged
j = value of A accumulator upon return from SCALL
k = value of B accumulator up:>n return from SCALL
1 = value of X index reg. upon return from SCALL
m = (if present) value of C-bit of condition code register.

E-4

The last argLU"nent must have an FCB with bit 1 set. This means a value of either
$02 or $42.

If FORTRAN I/O is to be used, the subroutine INITLZ must be called before
calling upon any FORTRAN routines using the IOPKG.

LINKIN3 ASSEMBLY LANGUAGE PR03RAMS AND FORTRAN FUNCTIOOS

This process is slightly different from linking with FORTRAN subroutines. The
only actual difference is that prior to using the JSR to the FORTRAN function,
the index register (X) must be loaded with an address of a 2- or 4-byte RAM area
where the value of the function will be returned. The 2 or 4 depends upon
whether the function is integer or real.

Following is an example of a program using both a function and subroutine:

NAME TEST
XREF SQRT,PRNT
XDEF STACK$
OOCT

NUMB FDB $0140,$0000 REAL NUMBER 4.0
ANSWER RMB 4

RMB 100 STACK AREA
STACK$ EQU *-1

*NOTE: Suggested stack default values (decimal). *
* 6800: 100 bytes 6809: 140 bytes S-stack *
* 32 bytes U-stack *

PSCT
START LDS #STACK$ DON'T FORGET THIS!!!
* MUST INITIALIZE U-STACK IF 6809 BEIN:; USED!

CLRA SET UP FLAGS ON STACK
PSHA
PSHA
LDX #ANSWER
JSR SQRT "SQRT" IS A FORTRAN FUNCTIOO
FCB $0 2 ONE ARGUMENT
FDB ANSWER

* ANSWER NOtl CONTAINS THE SQRT OF 4.0
JSR PRNT
FCB $02 ONE ARGUMENT
FDB ANSWER

* ANSWER WAS PRINTED
SWI
FCB $1A SCALL .MDENT RE-ENTER MOOS
END START

The accompanying FORTRAN subroutine "PRNT" might look like this:

SUBROUTINE PRNT(VALUE)
WRITE(l01,900)VALUE

900 FORMAT (I THE ANSWER IS I , F5. 3/ /)
RE'IURN
END

G-3

APPENDIX I

CHANGIN:; RUNTIME I/O ADDRESSES

For MDOS FORTRAN versions 3.10 and later, a monitor independent I/O package
module (IOPKG.RO) is included in the FORTRAN runtime library (FORLIB.RO). The
source code for this module (IOPKG.SA) is included on the FORTRAN product
diskette. All I/O is referenced to the base addresses of the I/O devices (ACIA,
PIA, etc.) as defined in a named common program section (PSCT) labeled 11 .IOADR11 •

Use of this module makes the resultant object code not dependent on EXbug and
MOOS firmware I/O routines, but rather only the I/O device addresses of the
system. Thus the user can easily transport the object code to a microroodule or
custom system by changing the I/O device addresses.

Since the roonitor indeperrlent I/O package is normally used, it should be noted
that the echo feature in EXbug 2.X will not function with programs using this
I/O module. The output is simply not going through the EXbug subroutines any
roore.

The named corruoon program sections 11 .IOADR11 and 11 .CNNUL11 are structured as shown
here:

INPUT ACIA BASE ADDRESS
II II CTRL Rm BYTE

OUTPUT ACIA BASE ADDRESS
II II CTRL Rm BYTE

PRINTER PIA BASE ADDRESS

.I(N)R CDMM
FOB
FCB
FOB
FCB
FOB
FCB
FCB
FCB

PSCT
$FCF4
$11
$FCF4
$11
$EC10
$3C
$3C
$34

II II CTRL 11A11 Rffi BYTE
II II II

II II II

11B11
11A11

II

"
II

STROBE

.CNNUL COMM PSCT
PCB 0
FCB 1

NULLS AFTER EACH NON-CR CHAR
NULI.S AFTER EAOI CR OlAR

Notes: 1. Input/output ACIA's are configured as follows:

2.

BASE+O= status register
BASE+l= data register

Printer PIA is configured as

BASE+O= "A11 side DDR/PDR
BASE+l= "A" side control
BASE+2= "B11 side DDR/PDR
BASE+3= "B" side control

follows:

register

register

"A" side for character output.
"B" side for status as follows:

bit O= 1 if printer ON-LINE
bit l= 1 if printer OUT-OF-PAPER
bits 2-7= don't cares

CA2 used for data strobe in MOOS version.

3. Null pad values range from zero ($00) through 255 ($FF).

4. The above values are the defaults supplied to correspond
with the EXORciser/MDOS environment.

I-1

I

This comrron section can be cha~ed to match the user's system by any of the
followi~ methods:

a. Use the MOOS PATCH corrmand to change the object module after using the
linker (RLCN)) :

1. Consult the linker map to obtain the absolute base addresses for
.IOADR and .CNNUL common sections.

2. Use the PATCH corrmand to change the desired l ocations as required
for your system.

Example: • IOADR= $BC23 and .OJNUL= $BC2E from the linker map.
Console ACIA base address in the target system is
$ED14, and five nulls are required after CR. No nulls
are required after each character. The printer PIA
base address is $EC10.

=PATCH MYPRCG. LO
2400 BD
>BC23,0/ED,14,,ED,14
>BC2E,l/5

change ACIA address
change CR nulls
quit >Q

b. Overlay the named common sections • IOADR and/or • CNNUL with the user's
values.

1. Create an assembly la~uage source file which includes the named
common sections to be changed. Use "RMB n" to skip over the bytes
you do not wish to cha~e.

2. Assemble the source file using, the proper Macro Assembler
(6800/6809) for your system.

3. Load the resultant module in the linker (RLOAD) just before the
OOJA/OBJX commarrl is entered. This causes the user's values to
overlay the default system values in the named common sections.

Example: Same I/O as previous example.

NAM MYIO
'ITL MY I/O DEFINITIONS
OPT REL
IDNT 08/14/80 - MY I/O DEFINITIONS
SPC 3

.IOADR Ca.1M PSCT
FDB $ED14
RMB 1
FOB $ED14
SPC 2

• CNNUL COMM PSCT
RMB 1
FCB 5
END

I-2

CONSOLE INPlJI' ACIA
SAME CTRL VALUE
CONSOLE OUTPlJI' ACIA

SAME NON-CR NULLS
CR NULL PADDING

APPENDIX J

CUS'IOOIZIN:; FORTRAN FOR YOUR TARGET SYSTEM

For MDCS FORTRAN versions 3.10 and later, there are several named conmon program
sections (PSCT) that the user can easily overlay to customize the program for a
given target system. A brief description of each section follows along with the
default assembly listing.

***** CHAR EQUATES ******
EOT E(XJ $04
CR E(XJ $OD
CAN E(XJ $18
ESC EQU $18
RUBOUT E(XJ $7F
SPACE EQU $20
BELL EQU $07
FF EQU $0C
LF EQU $0A

*** CONSOLE FORM FEED MSG STRINJ (via PDAT1$)
.CFMFD CCMM PSCT
FFSTR FCB FF ,CR,LF ,EOT

*** CONSOLE OUTPlJI' NULL PADDIN3
.a-JNUL CCMM PSCT

FCB 0
FCB 1

NUMBER OF NULLS AFTER EACH CHAR.
NUMBER OF NULLS AFTER EACH CR/LF.

* CONSOLE DELETE CHAR STRING (via a-JOUT)
* (can overlay "+,BS,SPACE,BS,EOT" here to erase character on CRT)
.DELST CCMM PSCT
DELSTR FCC "+\"

FCB EOT

* CONTROL TEXT FUNCTION CHARACTERS
.FCHRS <XlMM PSCT
DELETE FCB RUBOUT
CANCEL FCB CAN
ESCAPE FCB ESC

* SEE APPENDIX I FOR
• I Ql\DR CDMM PSCT
ACIAI$ Fil3 .ACIAI
CTRLI$ FCB .CTRLI
ACIAO$ Fil3 .ACIAO
CTRLO$ FCB • CTRLO
LPIA$ Fil3 .LPIA
CTRLA$ FCB .CTRLA
CTRLB$ FCB .CTRLB
STRBA$ FCB .STRBA

.IOADR CHANGES

Input ACIA address
Input ACIA ctrl reg byte
Output ACIA address
CXltput ACIA ctrl reg byte
Lineprinter PIA address
LP PIA ctrl reg A byte
LP PIA ctrl reg B byte
LP PIA ctrl reg A strobe

J-1

I

I
•

.ERSTK COMM PSCT
NUMBER FCB 4 NUMBER OF STACK ENTRIES PRINTED UPOO

FATAL EXECUTIOO TIME ERROR

* LP CR.LP message
.LCRLF COMM PSCT
LCRLF FCB CR,LF,EOT

* LPR Form Feed message
.LFMFD CCMM PSCT
FFS'IR FCB CR,LF ,FF ,Ear

* LP not ready message (via CNOUT)
.LNRDY COMM PSCT
NOTRDY FCB SPACE,BELL

FCC "** PRIN'l'ER NOT READY"
FCB EOT

* LPINIT Subroutine
.LPINT CCMM PSCT
NLINES FCB 6 # of lines to page up

* LINEPRINTER MESG STRING (VIA CNOUT)
.LPQ Q)MM PSCT
MSGl FCC " LINEPRINTER"

FCB EOT

* CONSOLE PRCMPT STRING (via CNOUT)
.PRMPT COMM PSCT
PROMPT FCC /+? /

FCB Ear

If the printer check for break feature is used, it should be noted that multiple
PRINTER NOT READY messages may be generated due to the way output is done in
several message strings.

* LP break feature
* Here when break found (via JMP)
.XBRKV CCMM PSCT
* Entry: Stack (6809 S-stack) contains return address.
* Registers are reserved.
XBRKV JMP LWAITl
*
*
*
*

* User must fix stack pointer
* We used LWAITl in case break & user does

not overlay - prevents infinite loop.

* Here to check for break condition (via JSR)
.XCBRK COMM PSCT
XCBRK CLC

RTS

J-2

Example:

The following source listing is an example of customizing by overlaying some of
the named comroc>n PSCT described above.

NAM PCOMN
TTL NAMED CCMMON PSCT OVERLAY EXAMPLE
IDNT 01.00- NAMED COMMOO PSCT OVERLAYS
SPC 2

*** EQUATES ***
SCALL EQU $3F
.CKBRK EQU $OD
Ear EQU $04
BS EQU $08
SPACE EQU $20

SPC 3
* DELETE STRING FOR CRT ERASE FUNCTION
* (SENT VIA FORTRAN OJOOT MOOOLE)
* THE FIRST CHAR IS FOR FORMAT CONTROL.
*
.DELST CCMM PSCT

FCB '+,BS,SPACE,BS,Ear
SPC 3

* FUNCTIOOAL CHARACTER DEF'S
*
.FCHRS (X)MM PSCT

FCB BS DELETE CHAR= BACKSPACE
RMB 1 CANCEL CHAR
FCB 'Y-$40 ESCAPE CHAR= CTRL+Y

* PREVENTS ACCIDENTAL TER-1INATICN FRClv1
* HITTING THE "ESC" KEY!

SPC 3
* PRINTER Nor READY CHECK FOR BREAK FEATURE
* (SHCJ.\!N HERE FOR MOOS ENVIRONMENI')
.XBRKV CCMM PSCT

RTS HERE WHEN BREAK FOUND
*
.XCBRK COMM

FCB
RTS
SPC
END

PSCT
SCALL, • CKBRK CHECK FOR BREAK

C= 1 IF BREAK
1

J-3

l

Changing the Size of the I/O Buffer

The I/O buffer contained within the FORLB.RO library is 134 bytes long. This
allows an effective length of 132 characters on input. (The first buffer
pcsition is normally used for carriage control arrl the last pcsition is reserved
for the EOT control character.) The maximum size is 255 bytes.

To change the buffer size, it is necessary to produce a relocatable nndule, as
shown below, arrl load this nndule (La.a.D=xxxx) before the library search
(LIB=FORLB) is done in the linking loader (RLOAD).

BUFSZ$
BUF$
EBUF$

NAM
XDEF
DSCT
EQU
RMB
EQU
END

IOBUF
BUF$,EBUF$,BUFSZ$

134 CHANGE THIS VALUE TO ALTER BUFFER SIZE
BUFSZ$
*-1

Changing the Number of "Ports"

The supplied table for PORT I/O allows up to six "perts" to be open at any time.
The user may quite easily customize this table for a lesser or greater number.
Each entry requires five bytes. The following nndule may be assembled by RASM
as relocatable, arrl loaded by RLO\D before performing the library search.
Change the value "NPORTS" to the desired nurrber.

NRM PTAB$
XDEF PTABS$,PTABE$
IOOT SPECIAL PORT I/O TABLE

NPORTS EQU 6 CHANGE THIS NUMBER ONLY
SPC 1
DSCT

PTABS$ EQU *
RMB 5*NPORTS

PTABE$ EQU *
END

J-4

Changing the Number/Sectors of Disk Files

The FORLB.RO run-time library supplied with the MOOS FORTRAN compiler allows a
maximum of four disk files open at any given time. In addition, the actual
read/write access to the disk harrlles only one sector (128 bytes) of data per
access.

The user of MDOS FOR~ may easily customize the disk I/O to:

1. Allow a maximum of one to nine (or even more) files open at a time.
2. Allow multisector access to the disk.

Trade-offs involve speed of disk I/O versus memory required. Each file requires
41 + n x 128 bytes, where n is the number of sectors. Using multisector disk
I/O will often speed up execution of a pr03ram considerably.

A source file named DKBUF.SA is contained on the original MOOS FORTRAN diskette.
This file contains instructions for changes. Assembling this file requires the
use of RASM.CM (Relocatable Macro Assembler, or RASM09.CM). The assembled I
relocatable module must be loaded before the library search during link time
with RLCY\D.CM.

J-5

APPENDIX L

SOF'IWARE CONSIDERATIONS

M6809 FORTRAN VERSICN

The M6800 and M6809 FORTRAN compilers are compatible with the following
exceptions to the M6809 version:

U Stack Initialized by MAIN program unit. Allocated 32 bytes by
default (may be changed by OPTION statement). This stack is
used by certain execution time routines, particularly in
subscript evaluation.

Y Register 1his register is used freely in the library routines.

DP Register Not used or altered. The direct addressing mode is not used
by the 6809 library except for Mr::oS system calls in the case
of disk I/O. The old-Value is saved and restored, so the user
may make free use of the DP register.

SWI2, 91/I3 1hese are not used at present.

MEMORY MAP

Any memory not shown on the RLan.D memory load map is not required to be present
in the end system, provided disk I/O is not being used at runtime. The full map
is obtained through the use of the MAPF commarrl. (Use MO=#LP to obtain map
output on the line printer.)

a. Reducing memory requirements

Examples:

1. Dimensioned variables passed in corranon to subroutines create a
10-byte table for referencing. Passing a small number of
dimensioned variables by argument instead of a large number by
comID'.)n could save some PSCT.

2. Direct initialization of small number of elements of an array could
save some PSCT over DO LOOP structure. It is also faster.

CCMMON ITEMP(3)
ITENP(l) = 0
ITEMP(2}= 0
ITEMP(3}= 0

L-1

b. Increasing speed

Examples:

1. IF {A.GT.B.OR.C.LT.D.OR.E.GE.F.OR.G.EQ.O) GOTO 200
replace with

IF (A.GT.B) GOTO 200
IF {C.LT.D) Garo 200
IF {E.GE.F) GO'ID 200
IF (G.EQ.O) Garo 200

2. Assignment of constants and literals to integer variables,
including dimensioned ones with coonstant subscripts, is done via a
"LDX #","STX <var>".

INAME(3)= '.S' -~-> LDX #$2E53
STX $nnnn

3. Place repeated, constant calculations outside of DO LOOP's.

DO 20 I= 1,100
10 TREE= 2*3.14 + TRUNK(J) + 10.39
20 RESULT{!)= TREE*S + I/4

Since line 10 does not vary for each iteration of I (J is
constant), this line should be moved prior to the loop.

LINK PRECAUTIONS

The real-time FORTRAN library (FORLB.RO) contains several IT'Odules with identical
symbol definitions (XDEF). Normally, this will cause no problem. However, the
assembly language programmer attempting to reference one or IT'Ore of these
symbols may cause the wrong modules from the library to be loaded, resulting in

II an MDOS linking loader (RLQ.l\D) error (multiply defined symbol).

The symbols to be cautious of are:

IN$NP, PDAT1$, PCRLF$

If the program is not real-time (i.e., does not call SETRT) and one of the above
symbols is referenced in an assembly language subprogram, the user should do the
library search (LIB=FORLB) before loading that particular subprogram.

L-2

REAL (FLOATING POINT) REPRESENTATION

Bytes

NarE

Future releases of MIX)S 6800/6809 FORTRAN may change
the floating point representation to comply with the
IEEE starrlard. The user is advised to document well
any assembly language routines he writes using the
present format, as future changes may be required.

Sign arrl
Exponent Mantissa

Byte 0 is the lowest
memory address

Byte 0:

MS bit (7)
is the sign
of the number.
0 for positive
1 for negative

Bytes 1-3:

.~
Bits 0-6 - the exponent
(bcise 16) represented in a
7-bit 2's complement form.

These three bytes represent the mantissa. The hexadecimal point is located to
the left of byte 1, and the nurrber is normalized if at least one bit of the
upper nibble of byte 1 is set.

EXAMPLES:

Decimal Number

o.o
1.0

10.0
2.5
0.5

3215.4
-1.0

Representation (in hex)

00 00 00 00
01 10 00 00
01 AO 00 00
01 28 00 00
00 80 00 00
03 CB F6 66
81 10 00 00

L-3

INTEGER REPRESENTATION

Integer numbers are represented in 16-bit 2's complement form.

The ran:Je of numbers is from -32768 to +32767. '111e most significant byte is
stored at the lower of the two merrory addresses.

EXAMPLES:

Decimal Number

0
1

3215
-1

-32768
+32767

CHARACTER

Representation (in hex)

00 00
00 01
OC 8F
Fr~ FE
80 00
7F FF

Literal characters are stored in either 2-byte integer variables or 4-byte real
variables. Character data may be placed in variable storage through use of a
UZ\TA statement, an assignment, or with a READ statement.

Normally, the characters are left-justified (first character is placed in the
lowest memory location) am blank filled (hexadecimal 20) in the event the
supplied data is less than the storage area. The exception to this is the Rl
format edit code, which right justifies the character with blank fi 11 on the
left.

EXAMPLE:

UZ\TA I/'AB'/
DATA A/'ABC'/
J='A'

DIMENSION FILE(4)

41 42
41 42 43 20
41 20

DATA FILE/'TESTDATA.DF:l'/
54 45 53 54144 41 54 4ll2E 44 46 3Al31 20 20 201

L-4

@ MOTOROLA Semiconductor Products Inc.
P.O. BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

14379·3 PAINTED IN USA (7182) MPS 2M

' J

' j
I

